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STUDIES IN LOGIC, GRAMMAR AND RHETORIC 2 (15)

Witold Marciszewski

CAN TURING-POST MACHINE PRODUCE
PREREQUISITES FOR AUTOMATED REASONING?®
INTRODUCTION TO THIS VOLUME

Alan Turing appealed to humans that they should give a chance to
digital machines, that is, not demand too much from them at so early stage
of their evolution. The human brain, he argued, owing to a long process of
evolutionary development, could succeed in winning qualities which in the
moment cannot be enjoyed by our younger brothers.

That claim seems right. However, on the other hand, let us give humans
a chance that happens to be denied by the adherents of strong AL I mean
those of them who care for “political correctness” in treating what they
regard as a supressed minority, to wit machines. According to that approach,
it is fair to speak of astonishing performances of computing machines, but
not fair to remind how much they owe to the preparatory work of human
experts.

Anyway, it is worth while to remind these prerequisites. Especially
those involved in automated (ie, mechanized) reasoning, for it is a specially
important activity expected from digital machines. When having this in
view, we become capable of seeing the following problem: which of these
preparatory tasks can be taken over by machines in a future? Are there,
may be, any tasks which require a greater computational power than that of
a digital machine? May such a power be possessed by analog machines alone
(or still another brand of machines)? If so, is not so that the prerequisites
for mechanical reasoning require that greater computational power?

* % %

* The work presented here was supported by the Polish Ministry of Science (‘Komi-
tet Badafi Naukowych’), Committee for Informatics [etc.], under the grant to the Chair
of Logic, Informatics and Philosophy of Science at the University of Biatystok, No. 8
T11C 018 12, for research concerning Al vs. Natural Intelligence from the Point of View
of Mechanization of Reasoning.



Witold Marciszewski

Before addressing the issues listed, this introductory comment should
report on a session commemorating Emil L. Post’s centenary of birth. The
reason is that this session was to start a series of annual workshops to tackle
the issues mentioned above. These can be summarized as dealing with the
question of whether there should be systems surpassing the computational
power of Turing-Post machine.

As for the term “Turing-Post Machine”, this terminological usage follows
that' of Martin Davis who uses so the hyphen to hint at the convergence of
tI‘urmg’s and Post’s seminal results (eg, in his paper on what is computing
in Arthur Sten’s (Ed.) Mathematics Today. Twelve Informal Essays, Springer—’
—Verl.ag 1979): There are, obviously, differences between Turing’s and Post’s
definitions of an abstract machine (or, an algorithm or a program) but in the
present context the differences are negligible. A fairly detailed comparison of
thes_e two machines is found in Z. Pawlak’s Logika dla Inzynierdw [Logic for
Engineers], Warsaw, PWN 1970.

Why the centenary of Post’s birth was celebrated in Poland in a special
way? Let me answer starting from an anecdote.

1. Post’s achievements and logical research in Poland

There is a story about Emil L. Post regarding a talk he had with
Alfred Tarski. The latter playfully expressed his astonishment that Post,
an American logician, contributed so much to propositional calculi, being
that time a field explored mainly by Polish authors. Post — as reported by
Tarski — replied that he would not see himself as an exception as he was
also born in Poland.

He was actually born into a Jewish family on February 11, 1897 in
Augustéw, in the North-Eastern region of Poland, nowadays centred around
Bialystok as its regional capital; with his parents he emigrated to New
York in 1904. Martin Davis, Post’s pupil and the editor of his works
himself renowned for contributions to mechanical reasoning, when met’
collegaues busy at the same field in the University of Bialystok, proved
to be acquainted with the name of this city as mentioned by his master.

No wonde.r that the people interested in logic and computer science both
in the University and the Politechnic in Bialystok did not fail to recall the
centenary of his birth. In December 1997, they arranged session in Biatystok
to survey Post’s contributions to logic and foundations of informatics. Among
the. invited speakers there were eminent Polish scholars active in those fields to
wh%ch Post contributed his famous results, to wit, multi-valued logics, algebras
logical matrices, algorithmic procedures. The present volume cont’ains mos£

9f the papers read at that session, and some additional texts, including this
introductory one.

Can Turing-Post Machine Produce Prerequisites for Automated Reasoning?

Let it be added, after the year which passed from the Post Session in 1997,
that in September 1998 there was held the Workshop (in the 50th Anniversary
of Turing’s Report Intelligent Machinery), entitled Turing Machine and
Mechanization of Reasoning. The next Workshop, planned for 1999, is to
discuss computational power of minds in terms of Turing-Post machine.

It is procedures of theorem-proving in what Bialystok logicians are specially
engaged. The leading role is played by the Section of Informatics in the
Institute of Mathematics at the University of Biatystok. The Section is run
by Andrzej Trybulec, the author of Mizar - the system for representing
mathematical knowledge, this representation being encoded into a specially
devised language, and equipped with a software for proof checking and for
knowledge management.

There is a close partnership between the Mizar team and the same University’s
Chair of Logic, Informatics and Philosophy of Science. (In Poland, a chair is
an academic unit of the rank of an institute but of smaller size.) This Chair is
engaged both in the automatic theorem-proving research and in philosophical
foundations of such research, those going back to Leibniz (as manifested in
the preceding volume of this Chair’s series “Studies in Logic, Grammar and
Rhetoric”), and those regarding the founders of modern logic. At the same
time, the teaching of logic carried out by the Chair requires a theoretical
reflection on relations between algorithmic methods of reasoning and those due
to natural language and some inborn intelligence (as supposed to be enjoyed
by our audiences).

When Tarski, as mentioned above, compared Post’s contributions with
those of Polish logicians of his time, he meant just a research in propositional
calculi. However, some later research of Polish logicians is close to other
Post’s inquiries, namely those concerned with decidability and provability.
As for decidability, it was Tarski himself to be merited for enormous
contributions, continued by Andrzej Mostowski, Andrze] Grzegorczyk, and
others.

The issue of provability entered a new stage with machine-assisted
theorem proving (whose practising in Poland was exemplified above with
the case of Mizar). This research too is close to Post’s ideas, to wit his notion
of a machine to calculate computable functions; among them a distinguished
role is played by consequence operations in proving theorems.

2. From ideas recorded in an internal language to provability

in formal systems

There is a complex evolutionary process from some primordial ideas to
the provability of a sentence (of a formal system) which involves symbols
which can get interpreted as standing for the ideas in question. For instance,

9



Witold Marciszewsk:

before some propositions of Peano arithmetic became provable, there must
have been a long evolution of the concept of natural number. Provability
is a syntactic property of sentences that appears in a sophisticated process
of abstraction, to wit the abstraction from semantic properties (meaning,
etc) as possessed by the sentence in question at previous stages. Obviously,
also at the start we can obtain meaningless strings of symbols constructed
according to strict formation rules, we can select some strings as primitive,
and then process such strings according to certain transformation rules; then
provability is a property of sentences resulting from such transformations.
In such a game there would be no need to disregard semantic properties
since these would be lacking from the very start.

However, this is not the way people proceed when carry out projects
of automated (or mechanized) theorem-proving (forming a substantial part
of AI research). People wish that machines assist their looking for truth.
Hence, they feed machines with what they regard as true axioms and reliable
rules of inference, and wish that computers prove true theorems. Thus, the
main problem consists in the suitable devising of axioms and rules so that
they could be manipulated by a machine.

The problem attacked in this discussion is whether such evolution could
be simulated by a Turing-Post machine. The problem might not arise, as
common sense seems at once to suggest the answer “no”, were not the case
that some authors, including Turing, claimed that all cognitive processes
can be carried out by Turing-Post machines. If so, then the development
of concepts (that from primordial ideas to the stage of provability) would
be no exception (let it be noted that Post himself was very far from such
claims, characteristic of strong AI).

To attack this problem, one should not forget that the machine in
question deals with discrete symbols alone, hence at any stage of evolution
the things involved have to be represented by such symbols. However
the evolution starts from unverbalized ideas due to some perceptions (eg:
perception of fire which after a process of generalization ends with creating
a general name like “fire”). Hence — one must conjecture — such ideas are
expressed in symbols of what has been called an internal language or private
language.

This is a key notion in The Language of Thought by Jerry A. Fodor, The
Harvester Press 1976, esp. the Section “Why There Has To Be a P;ivate
Language”. For the present discussion the following Fodor’s statement is of
utmost consequence (the bracketed phrases are found in a relevant context of
the_ quoted passage). “Computational models of such processes [considered
action, concept learning, perceptual integration] are the only ones we’ve
got. Computational models presuppose representational systems. But the

10
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representational systems of preverbal and infrahuman organisms surely cannot
be natural languages. So either we abandon such preverbal and infrahuman
psychology, or we admit some thinking, at least, isn’t done in English.” (p. 56)
Let it be added that a machine language, an internal language of a computer,
belongs to preverbal “psychology”, and thus can, to same extent, be compared

to a human internal language.

It is concept learning, including concept formation (“the learning from
himself”, as called by Plato and Augustine), that the present discussion is
to pertain. Once having had concepts, we can form axiomatic propositions
since they render relations involved in the contents of primitive concepts.
Such axioms, in turn, enable other propositions to be provable. Provided
there are discrete internal symbols to represent concepts, one can hope that
the process of concept formation and its interplay with linguistic processes
is likely to be rendered in terms of Turing-Post machine. Thus the way to
provability leads through the following stages:

1. a concept appears in an internal language;
[this concept is put into a spoken language];
this concept is put into a written language;
this concept is put into a (written) formalized language;
the symbols of formalized language which express this concept are
encoded into an arithmetical language feasible for a machine.
The proposition bracketed hints at a stage which may be omitted, but
often it turns out to be useful, hence it is listed tentatively. Note also that the
pronoun “this” is used here in a special way; the object referred to changes
with passing from one stage to the next, as usual in any development; eg, the
concept verbalized is not identical “with itself” as occurring at the preverbal
level since it gets better defined (however, apart from such a pronoun there
is no other linguistic device to render the process in question).

The keen interest in the problem of provability of propositions is due
to its relation to the decision problem, belonging to the central issues of the
theory of science. Let me recall the concepts involved.

The decision procedure for a formalized system S is a method of deciding
in each case whether a given sentence stated in the language of S is provable
by means of devices available in S. The decision problem for S is the problem
of whether there is a decision procedure for S. A system is called decidable
or undecidable according to the answer to the decision problem is in the
affirmative or in the negative.

The notion of provability was being explained above with various
contexts. Let this be summed up in the following definition. A sentence
is said to be provable in a system S if a proof of that sentence exists; that
is, a sequence of sentences exists whose last term is the given sentence and

Sl
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Witold Marciszewski

each of whose terms is either an axiom of S or is deducible from preceding
terms (or class of preceding terms) of the sequence by the inference rules.
Obviously, the notion of provability, so defined, is a syntactical notion, the
term “syntax”, obviously, being referred here to an external language.

If there is an internal language (as argued above), and any language
and any process of problem solving have to consist of discrete symbols (as
claimed by Turing), then the internal language also must consist of discrete
signals; moreover, these must be ruled by a syntactic system (otherwise
a set of signals would not deserve to be called a language).

The above statement is of consequence for the strategy of Al debate.
Now, the adherents of strong Al will win if they give us a precise description
of an internal language being the source of a formal system, say, Peano
arithmetic; let that supposed internal language be called IS(Ar) (“IS” for
“internal source”). They should then define the vocabulary and syntax
of IS(Ar); or, at least, should prove that such a definition is possible (if
one must wait still for relevant empirical research in biology). Moreover,
they should produce (or discover) an algorithm of encoding symbol strings
of IS(Ar) into symbol strings of the formalized Peano arithmetic.

Anyway, their task will not end with that. There is a very important
phenomenon in the development of human thought (both in individual
histories and in history of civilization) that consists in gaining ever greater
clarity of the concepts involved. According to the strategy suggested
above, this process should be also accounted for in terms of transition
from an internal langauge to a formal system (ie, one with well defined
provability). Such a transition involves, let me recall, an algorithm of
encoding the internal language in question into the respective language of
a formal system (which thus becomes a mirror of its internal source). This
iSssue, sophisticated enough, requires special attention to be paid in the next

ection.

3. Solvability requires clear notions. How these are to be attained?

A terminological remark is in order at the start. In what follows there
appear the terms “decidability” and “solvability”. In a sense, they refer to
the same situation, while their use depends on the context in the folowing
way. Solvability is a property of problems, while decidability is a property
of theories; a problem is said to be solvable if there is a decidable theory
in which this question can be answered. Thus, whenever we discuss one of
them, the other is within sight too.

12
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This Section continues the issue of the capabilities of Turing-Post
(ie, digital) machine, compared with those of the mind, in the following
point. Solvability of a problem, or decidability of a respective theory,
which amounts to provability of relevant theorems, requires clear terms
in which the problem could be stated. However, such a clarity results
from an evolutionary process starting somewhere at the level of an internal
language. Could such a process be carried out by a digital machine?

In looking for an answer, let me start from recalling a method of
discussion which is characteristic of the AT debate but which seems to lead
to nowhere. Then another approach, based on the idea of internal language
will be suggested. :

There is a curious epistemological puzzle about the problem of
decidability. The same formal results produced by Gédel, Turing, Church,
and Post, induce people to dramatically differring conclusions as for
capabilities of the human mind. One thing is sure, as a mathematical result:
there are problems unsolvable for a machine as defined by Turing and Post,
hence unsolvable for a digital computer. Then some authors, let us call them
Mentalists, reason as follows.

People answer such unsolvable questions when find that some formally
unprovable sentence is true, for instance that being known as the Godelian
sentence. Hence some mental abilities exceed possibilities of digital computer.

On the other hand, there are Antimentalists who argue as follows.

This is a subjective feeling of a human that he/she solves a problem which
a2 machine cannot solve. However, such a feeling lacks objective validation, since
objectively validated is solely what is computed by Turing machine. Moreover
— the argument runs further — what is unsolvable for a particular machine can
be solved by another machine fed with stronger axioms and/or rules. Exactly,
likewise a wiser man can solve problems which exceed abilities of one being
less wise. Thus, there is no essential difference between human and mechanical
intelligence.

A Mentalist may reply that
his learned collegaue prudently used the passive voice ‘fed’ when speaking
about axioms, rules, and programs as employed by a machine. This is to mean,
there must have been a human who equipped the machine with such devices,
and thus the human mind surpasses its mechanical counterpart.

His opponent would riposte that

again, the difference is spurious since people are also fed with principles,
rules and programs either by other people, as in education, or by Nature,
called also Evolution, which provides humans and other living beings with
genetic software. Moreover, when a machine is employed as a teacher to
instruct a human, it modifies a human software likewise a human programmer
controlling a machine. '

13
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Thus, arguments of neither side are conclusive. Therefore, instead of
comparing and assessing performances of humans and machines, we should
rather reflect on the laws of mathematical creativity, as encouraged by Post.

Let us note (as discussed below) that the very essence of the creative
power of humans lies in their ability of having thoughts which lack clearness.
Is this compatible with being a discrete state machine, such as a digital
computer? If not, then there does exist an essential difference between
humans and computers. Such compatibility seems dubious since the discrete
state machines, as known so far, owe their discreteness to the use of discrete
external (available to an observer) symbols, while thoughts lacking clearness
may exist without external symbols. However, it may be that such a thought
reduces to a sequence of neuronal signals which are as discrete as symbols
appearing at the tape of Turing machine; to prove their discreteness is
a challenge to Antimentalists.

Unclearness is crucial for the development of human understanding. It
is a driving force in the process of forming a language, the process supported
by some inferences, as can be exemplified by the history of the concept of
infinity.

It is the creative insight of Galileo which caused anxiety for paradoxical
consequences of the concept of infinite set of integers. Galileo noticed that
the multitude of all squares, cubes, etc equals to that of all integers. Let
me dwell upon that story as a suggestive exemplification. Here is a text by

Galileo to give us an impression of his dilemma (note, when Galileo speaks
of numbers, he means integers).

“If I assert that all numbers, including both squares and non-squares, are more
than the squares alone, I shall speak truth, shall I not?”

After this is confirmed by an interlocutor of the dialogue, Galileo puts
forward an argument for the opposite.

“If I should ask further how many squares there are one might reply truly that
there are as many as the corresponding number of roots, since every square
has its own root and every root its own square, while no square has more than
one root and no root more than one square.

But if I inquire how many roots there are, it cannot be denied that there are
as many as there are numbers because every number is a root of some square.
This being granted we must say that there are as many squares as there are
numbers because they are just as numerous as their roots, and all numbers
are roots. Yet at the outset we said there are many more numbers as squares,
since the larger portion of them are not squares.”

The above passage is quoted after Galileo Galilei (in the English translation)
Dialogues Concerning Two New Sciences, translated by Henry Crew and
Alfonso de Salvio, Dover Publications, 1914, p. 32. Let it be noted that

14
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i 1 1 i f infinity is found in
even more instructive case of dealing WIth paur.a,doxes7 o . .
G. W. Leibniz’s “Accessio ad arithmeticam infinitorum” (1('572) included in the
1st vol. of the mathematical series of Leibniz’s Works, pubh§hed by Akademie-
_Verlag, Berlin 1976 (that case deserves a special treatment in another essay).

It would require too much space to follow Galileo’s reasoning to solve
this paradox. The quoted passage may suffice to trace a part of a way from
less clear to more clear a concept. .

A member of a primitive tribe in which the concept of numbe.r is very
far from being clear, has no troubles of the kind discussed py Gahl.eo. The
problem could not be raised until one defined some functlo.ns O.f integers
(squares, etc) and, moreover, attained at the idea of an infinite set of

ers.
lntegAt such a stage, there appears a person, like Galileoj who notices the
problem of consistency of the conceptual system in question. The pr?blem
results from two chains of inferences which produce mutually contrafilctory
conclusions. Attempts at making the system free from contradiction .mvolve
new conceptual constructions and new reasonings, as those Whl.Ch led
Dedekind, Cantor and others to the concepts of countable sets, contmuurp,
etc. At the new stage, though much more sophisticated, there may again
appear contradictions, as the set-theoretical antinomies. Then one neesis
new conceptual constructions (as those in the theory of types, or those in
ZF), and so on. o

Now the question arises whether such processes of elucidating c'oncepts
can be carried out by Turing-Post machine. One thing is certf—mn: new
symbols have to be invented to render new perceptions. For instance,
the operation of finding the square of a given integer should be p?opeﬂy
symbolized in order to be manageable by a machine. Once symbohze(.i, it

becomes manageable in a mechanical way; but what about new perceptions
and rendering them with suitably created symbols?

Is it possible for a machine to carry out such processes? If so, there Ir.lust
be an algorithm to encode concepts as records in an internal language into
external (observable) symbols to express these concepts, and such syrr.Lbols
should be produced by the machine. I do not deny that suc_h an algorlthm
may exist. However, I insist on the conditional conjecture: if the encoding
algorithm does exist, what is being encoded into external symbols amounts
to neuronal records. These records would be physical counterparts of :what
is given in human consciousness as concepts capable of in.creasing .cla.rlt)f.

The proposed conjecture is crucial for any AI project dealing w11:,h
provability. Artificial intelligence should not only prove theorems in
a symbolic language fed into a machine. It should also be able to create

15
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such a language. The creation would require having unverbalized concepts
(resulting from perceptions of the external world), then verbalizing them
in more and more precise a language, up to a symbolic formalized system:
only then when such symbols are produced, they can be manipulated in the
procedure of automatic theorem-proving.

Tu sum up, the problem of this discussion can be stated as a problem of
symmetry. There are two sets of processes ordered in time, and separated by
the stage at which some sentences become provable. The processes following
that stage are those of successive mechanizing the theory in question, as
planned in projects of mechanizing mathematical activity. It is that part
which can be carried out by Turing-Post machine. Is there the case that the
earlier processes, those being a prerequisite for the stage of provability, can
be also carried out by Turing-Post machine? This is the question. Perhaps
the question of to be or not to be for strong Al

Witold Marciszewski

Chair of Logic, Informatics and Philosophy of Science
at the University of Bialystok

e-mail: witmar@calculemus.org

home page: www.calculemus.org/wit.html
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Roman Murawski

E. L. POST AND THE DEVELOPMENT
OF MATHEMATICAL LOGIC
AND RECURSION THEORY

Abstract

In the paper the contribution of Emil L. Post (1897-1954) to mathe-
matical logic and recursion theory will be considered. In particular we shall
study: (1) the meaning of results of his doctoral dissertation to the deve-
lopment of the metamathematical studies of propositional calculus, (2) the
significance of his studies on canonical systems for the theory of formal lan-
guages as well as for the foundations of computation theory, (3) his anticipa-
tion of Goédel’s and Church’s results on incompleteness and undecidability,
(4) his results on the undecidabiity of various algebraic formal systems and
finally (5) his contribution to establishing and to the development of recur-
sion theory as an independent domain of the foundations of mathematics. At
the end some remarks on the philosophical and methodological background
of his results will be made.

1. Post’s doctoral dissertation

Most of scientific papers by Emil Leon Post were devoted to mathema-
tical logic and to the foundations of mathematics?.

His first paper in logic was the doctoral dissertation from 1920 publi-
shed in 1921 in American Journal of Mathematics under the title “Intro-
duction to a general theory of elementary propositions” (cf. [14]). It was
written under the influence of Principia Mathematica by A.N. Whitehead
and B. Russell (cf. [24]) on the one hand (Post participated in a seminar

! Post published 14 papers and 19 abstracts {one of the papers was published after
his death): 4 papers and 8 abstracts were devoted to algebra and analysis and 10 papers
and 11 abstracts to mathematical logic and foundations of mathematics.

17
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led by Keyser at Columbia University devoted to Principia) and A Survey
of Symbolic Logic by C.I. Lewis (cf. [9]). Post’s doctoral dissertation con-
tained the first metamathematical results concerning a system of logic. In
particular Post isolated the part of Principia called today the propositional
calculus, introduced the truth table method and showed that the system
of axioms for the propositional calculus given by Whitehead and Russell is
complete, consistent and decidable (in fact Post spoke about the finiteness
problem instead of decidability). He also proved that this system is com-
plete in the sense called today after him, i.e., that if one adds to this system
an unprovable formula as a new axiom then the extended system will be
inconsistent. It is worth mentioning here that the completeness, the consi-
stency and the independence of the axioms of the propositional calculus of
Prinicipia was proved by Paul Bernays in his Habilitationsschrift in 1918
but this result has not been published untill 1926 (cf. [1]) and Post did not
know it.

In Post’s dissertation one finds also an idea of many-valued logics ob-
tained by generalizing the 2-valued truth table to m-valued truth tables
(m > 2). Post proposed also a general method of studying systems of logic
(treated as systems for inferences) by finitary symbol manipulations (later
he called such systems canonical systems of the type A) — hence he consi-
dered formal logical systems as combinatorial systems.

In doctoral dissertation Post mentioned also his studies of systems of
2-valued truth functions closed under superposition. In particular he showed
that every truth function is definable in terms of negation and disjunction.

Those latter considerations were developed in the monograph The
Two-Valued Iterative Systems of Mathematical Logic from 1941 (cf. [16]).
One finds there among others the result called today Post’s Functional
Completeness Theorem. It gives a sufficient and necessary condition for
a set of 2-valued truth functions to be complete, i.e., to have he property
that any 2-valued truth function is definable in terms of it. Post distin-
guished five properties of truth functions. His theorem says that a given
set X of truth functions is complete if and only if for every of those five
properties there exists in X a truth function which does not have it. Did
Post prove this theorem? In [16] one finds no proof satisfying the standards
accepted today. The reason for that was Post’s baroque notation (it was
in fact an unprecise adaptation of the imprecise notation of Jevons from
his Pure Logic, cf. [7]), other reason was the fact that Post seemed to be
simultaneously pursuing several different topics. The proof of Post’s theo-
rem satisfying today’s standards can be found in the paper by Pelletier and
Martin [13].

18

E. L. Post and the development of mathematical logic and recursion theory
2. Canonical systems

During a year stay at Princeton University 1920-21 (he was awarded the
post-doctoral Procter Fellowship) Post studied mainly canonical system.s.
Those systems founded the theory of formal languages. Post’s results in
this field were the anticipation of famous results by Gédel and Church on
the incompleteness and undecidability of first order logic.

The investigations mentioned above were connected with the following
ideas: the whole Principia Mathematica can be considered as a canonical
system of type A, i.e., as a system of signs in an alphabet which can be
manipulated according to a given set of rules. Post wanted to solve the
decision problem (in his terminology: the finiteness problem) for canonical
systems of type A. In his way he wanted to find a method which would
decide for any given formula of the system of Principia whether it is formally
provable in it or not. Since Principia are a formalization of the whole of
mathematics, this method would give a decision procedure for the whole of
mathematics.

Besides canonical systems of type A Post introduced systems of type B
and C. Just the latter are known today as Post’s production systems. Let
us define them using the contemporary terminology and notation.

Let ¥ be a finite alphabet. Its elements are called terminals. One uses
also non-terminal symbols P. A canonical production has the form:

q11 Pill gi2 P,"Z coe Gimy Pi'm1 g1(m+1)

a1 Pz'; 22 Pi;' cor Gom, Pi,ribz 92(m,+1)

9k1 Pz.gk) Gk2 Pigk) o Gkmy Pigﬁ;c Gk(mi+1)
¢

g1 P,' [*}] P,' cer Gm Pi Im+1

where gy are strings on the alphabet T, Py are variable strings (non-termi-
nals) and each of the P’s in the line following the | also occurs as one.of
the P’s above {J. A system in canonical form of type C consists of a finite
set of strings (Post called them initial assertions) together with a finite set
of canonical productions. It generates of course a subset of ©* (= the set of
all finite strings over T) which can be obtained from the initial assertions
by the iterations of canonical productions. Today it is known that such sets
are exactly recursively enumerable languages.

Post proved the equivalence of canonical systems of type A, B and C'. He
also showed that this part of Principia which corresponds to the first-order
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predicate calculus can be formalized as a canonical system of type B and
consequently also of type C. Moreover the set of all provable formulas of
the system of Principia can be regarded as a set of strings of symbols which
can be generated by certain canonical system of type C'.

Post proved also the important Normal Form Theorem for canonical
systems of type (. Let us say that a canonical system of type C' is normal
if and only if it has exactly one initial assertion and each of its productions
has the form

gP = Pg.

A set of strings U C ¥* is said to be normal if and only if there exists
a normal system on an alphabet A containing ¥ and generating a set A/
such that U = A N £*. Post’s Normal Form Theorem says now that if
U C ¥* is a set of strings generated by some canonical system of type C
then U is normal (a proof can be found in [17] and [22]).

One of the consequences of Normal Form Theorem is that a decision
procedure for canonical systems of type C would induce a decision procedure
for the whole system of Principia.

Post started his reasearches in this direction by considering normal sy-
stems of a special form, so-called tag systems. Tag systems are normal sy-
stems in which all ¢g’s in production rules are of the same length (but not
ne.cessarily the g’s) and §’s depend only on the first symbol of the appro-
priate string ¢. In particular Post started by studying the following simple
system:

agP =— Paa,
bg P = Pbbab,

where g € {a,b}* and |g] = 2. This case turned out to be difficult (the
question whether such systems are decidable is open till today).

Post supposed that tag systems are recursively undecidabe. This was
proved by M. Minsky in 1961 (cf. [11]).

Note that the procedure of generating expressions by a canonical system
of type C is similar to the process of generating computable functions from
certain given initial functions by iterations of certain given operations on
functions?. Hence those systems can be regarded as a formalism making
precise the intuitive notion of effective computability. Consequently one can

9 -
It was shown later that the definition of effective computability by Post’s canonical

systems is equivalept to the definitions in the language of A-definability, of recursive
functions or by Turing machines.
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formulate a thesis analogous to Church’s thesis and called Post’s thesis
which says that any finitely given language is generated by rules of some
canonical normal system.

An application of Cantor’s diagonal method led Post to the conclusion
that the decision problem for normal systems has a negative solution. In
1921 Post sketched a formal proof of this. He wrote in [22] (pp. 421-422):

We (...) conclude that the finiteness problem for the class of all normal systems

is unsolvable, that is, there is no finite method which would uniformly enable

us to tell of an arbitrary normal system and arbitrary sequence on the letters

thereof whether that sequence is or is not generated by the operations of the
system from the primitive sequence of the system.

Those considerations led him also to the conclusion about the incomplete-
ness, i.e., to the conclusion that:
not only was every (finitary) symbolic logic incomplete relative to a certain
fized class of propositions (...) but that every such logic was exlendable relative
to that class of propositions

(cf. [17]). In [17] he also wrote:

No normal-deductive-system is equivalent to the complete logical system (if
such there be); better, given any normal-deductive-system there exists another
which second proves more theorems (1o put 1t roughly) than the first

and he added

A complete symbolic logic s impossible.

Those results anticipated results by Godel and Church on the incomple-
teness and undecidability of systems of first-order logic (cf. [6], [2] and [3]).
Post knew of course that his results are, as he wrote, “fragmentary”. He ne-
ver published them (though in 1941, hence already after the publication of
Gédel’s and Church’s results) he tried to publish results of his investigations
from 1920-1921).

What was his reaction to the appearance of the Godel’s paper [6]7 On
the one hand he was disappointed that not his name will be connected
with results he anticipated and on the other he admired the genius and
contribution of Gédel. In a postcard to Godel sent on 19th October 1938
Post wrote: )

I am afraid that T took advantage of you on this, I hope but our first mee-

ting. But for fifteen years I had carried around the thought of astounding the

mathematical world with my unorthodox ideas, and meeting the man chiefly
responsible for the vanishing of that dream rather carried me away.

Since you seemed interested in my way of arriving at these new developments
perhaps Church can show you a long letter I wrote to him about them. As
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for any claims I might make perhaps the best I can say is that I would have
proved Godel’s Theorem in 1921 —~ had I been Godel.

And in the letter to Godel from 30th October 1938 he wrote:

... after all 1t is not ideas but the execution of ideas that constitute a mark of
greatness.

Considering decidability problem one should mention Post’s contribu-
tion to making precise the notion of effective computability. Post was of the
opinion that Herbrand-Goédel’s and Church-Kleene’s definitions were both
lacking in that neither constituted a “fundamental” analysis of the notion
of algorithmic process. In 1936 (cf. [15]) he proposed a definition based on
the operations of marking an empty box and erasing the mark in a mar-
ked box. Note the similarity with the definition given at the same time
by A. Turing (cf. [23]). The difference between both approaches consists
is that Turing formulated his definition in terms of an idealized computer
while Post in terms of a program (a list of instructions written in a given
language).

At the beginning of the 40’s Post wrote a paper in which he tried to de-
scribe his studies on the incompleteness and undecidability from 1920-1921
anticipating Godel’s and Church’s results. It is the paper “Absolutely un-
solvable problems and relatively undecidable propositons — account of an
anticipation”. It was submitted in 1941 to American Journal of Mathema-
tics. In a letter to H. Weyl accompanying the manuscript Post explained
why he did not publish his results twenty years earlier and wants to do it
now, i.e., after the publications by Gédel and Church. Among reasons he
mentions problems he had with publishing his earlier papers (in particu-
lar of [14] and [16]) which did not find a recognition and appreciation by
mathematicians as well as the problems with the health which delayed the
preparation of full detailed proofs. Though the editors appreciated the si-
gnificance of Post’s investigations and results, the paper has been rejected.
Communicating this decision H. Weyl wrote in a letter to Post from 2nd
March 1942:

... I have little doubt that twenty years ago your work, partly because of its
then revolutionary character, did not find its due recognition. However, we
cannot turn the clock back; in the meantime Gddel, Church and others have
done what they have done, and the American Journal is no place for historical
accounts; ... (Personally, you may be comforted by the certainty that most of
the leading logicians, at least in this country, know in a general way of your
anticipation.)

Only a small part of Post’s paper has been published, i.e., the part
containg his Normal Form Theorem (cf. [17]). The full version of the paper
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“Absolutely unsolvable problems and relatively undecidable propositions —
. . .
account of an anticipation” was published posthumously in 1965 in Davis

book The Undecidable.

3. Recursion theory

Main Post’s results which found the recognition and appreciation belong
to the recursion theory. They were of course connected with his investiga-
tions described above.

Considering Post’s results in the recursion theory one must tell first of a‘ll
about his paper “Recursively enumerable sets of positive integers a.md theTr
decision problems” (cf. [18]). It turned out to be the most influential of 'hlS
publications and foundamental for the whole recursion theory. Recursion
theory was for the first time presented in it as an autonomous branch of

mathematics.

One finds there: . .
~ a theorem called today Post’s Theorem and stating that a set X is

recursive if and only if the set X and its complement - X are recursively
enumerable3,
— atheorem stating that (a) any infinite recursively enumerable sef has an
infinite recursive subset and (b) there exists a recursively enumerable
set which is not recursive. o
Main subject of the considered paper is the mutual reducibility of recur-
sively enumerable sets. Recall that a set X is said to be many-one reducible
to a set V if and only if there exists a recursive function f such that

z€eX = f(z)eY.

If the function f is one-one then we say about one-one reducibility. o
Post proved the existence of a recursively enumerable set K which is
complete with respect to many-one (one-one) reducibility, i.e., such 'Ehat any
recursively enumerable set X is many-one (one-one) reducible to K. Hence
K has a maximal degree of unsolvability with respect to many-one (one-o.ne)
reducibility. Post constructed also a recursively enumerable set which is sim-
ple, i.e., has the property that there exists no infinite recursively enumeral.)le
subset of its complement. Such a set cannot be of a maximal degree with
respect to one-one reducibility. This led Post to the formulation of the fol-

3 Recall that a set X is recursively enumerable if and only .if there exis.ts a recgrsive
function f such that X is the image of f if and only if there exists a recursive relation R
such that z € X = JyR(z, Y).
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lowing problem called today Post’s problem: does there exist a recursively
enumerable but not recursive set of a degree lower than the degree of the
complete set K with respect to a given type of reducibility?

Post did not succeed in solving this problem. Though he proved in 1948
(cf. [21]) the existence of sets of a degree lower than the degree of the set K
but those sets were not recursively enumerable.

Post’s problem was solved independently by A. A. Muchnik (cf. [12])
and R. Friedberg (cf. [5]) by a new method introduced by them - and
called the priority method. This method proved later to be really fruitful —
many results in the recursion theory, in particular in the theory of degrees,
have been obtained by it. They showed that there exist two recursively
enumerable sets A and B such that A is not recursive in B and B is not
recursive in A.

As a consequence one obtains that degrees of unsolvability (even the de-
grees of recursively enumerable sets) are not lineary ordered and that there
are recursively enumerable degrees other than the degree of recursive sets
and the degree of the complete set (sets A and B constructed by Friednerg
and Muchnik are examples of such sets).

Discussing here Post’s paper “Recursively enumerable sets of positive
integers and their decision problems” one should mention the way in which
Post presented his results in it. This way became a norm and a standard
in the recursion theory. It consisted in giving rather informal proofs with a
description of intuitions. Post saw the need of providing formal proofs but
on the other hand he wrote:

... the real mathematics involved must lie in the informal development. For

in every instance the informal “proof” was first obtained; and once gotten,

tranforming it into the formal proof turned out to be a routine chore.

The considered paper had important long term effects. It was the be-
ginning of extensive studies of recursively enumerable sets, in particular of
various types of reducibility. Here one can also see the source of such im-
portant notion as polynomial time reducibility or of studies connected with
NP-completeness.

Post continued his studies of degrees of unsolvability in the paper “De-
grees of recursive unsolvability (preliminary report)” (cf. [21]) where he
generalized the notion of a degree to the case of any sets (not necessarily
recursively enumerable) and proved the existence of a pair of incomparable
degrees (both were lower than the degree of the complete recursively enu-
merable set K'). He announced also a theorem (called today Post’s theorem)
stating that a set X is recursive in a set A € X2(I1%) if and only if X is
a AY set.
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One should also mention here the joint paper by Post with S. C. Kleene
“The upper semi-lattice of degrees of recursive unsolvability” (cf. [8]). One
finds there among others a theorem stating that the ordered set of degrees
of unsolvability contains a densely ordered subset.

4. Undecidability of algebraic combinatorial systems

Discussing Post’s contribution to the recursion theory one should say
about his results on undecidability of algebraic combinatorial systems. They
provided “mathematical” examples of undecidable problems.

Let us start with the correspondence problem. It can be formula-
ted as follows. A correspondence system is a finite set of ordered pairs
(91, 1), (g2, ha), -+ -5 (gn, hn) such that g;, h; € £*, ¥ a given ﬁnit.e allphabe't.
Such a system is said to be solvable if there exists a sequence 21,%,...,%
such that 1 < 4q,%9,...,1x < n and

9i,9i, - - - Giy, = hilhu coohag

The corrspondence problem is to provide an algorithm for determining of
a given correspondence system whether it is solvable or not. Post proved
in the paper “A variant of a recursively unsolvable problem” (cf. [19]) that
such an algorithm does not exist, hence the correspondence problem is not
recursively solvable. This result plays an important role in the theory of
formal languages.

Church suggested to Post to study also the decidability problem for
Thue’s systems known also as the word problem for monoids or semi-groups.
It was formulated by the Norwegian mathematician Axel Thue in 1914 and
can be formulated as follows: Let & be a finite alphabet. Define an equiva-
lence relation ~ in T* by giving a finite set of pairs of words for which this
equivalence holds, i.e., by putting

Uy %’Ul,uzzvg,...,unz?}n,

and closing this under the substitution of v; for u; (i =1,...,n). The pro-
blem consists now in providing an algorithm for determining of an arbitrary
pair (u,v) € £* X £* of strings whether or not v ~ v. In the paper “Recur-
sive unsolvability of a problem of Thue” (cf. [20]) Post gave an example of
a set of initial pairs defining an equivalence relation ~ for which the word
problem is unsolvable. In the proof Post used Turing machines (in fact he
showed that the theory of Turing machines can be interpreted in terms of
the word problem in such a way that an algorithm for the latter could be
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tranformed into an algorithm for a problem concerning Turing machines
known to be unsolvable). Post also gave a very careful technical critique of
Turing’s paper [23].

It is worth adding that the recursive unsolvability of the word problem
was established independently by A. A. Markov in 1947 (cf. [10]) who based
his proof on Post’s normal systems.

5. Post’s philosophical and methodological ideas

Discussing the works and results of Post in the field of mathemtaical
logic and recursion theory one should consider their philosophical and me-
thodological background.

Post — similarly as Godel — emphasized the significance of the absolut-
ness and the fundamental character of the notion of recursive solvability.
He attempted also to explain the notion of provability — more exactly, he
wanted to find a precise notion which would explain the intuitive notion of
provability in arithmetic in such a way as the notion of recursiveness expla-
ins the notion of effective computability and solvability. He hoped that this
will enable us to find absolutely undecidable arithmetical propositions. La-
ter (before the death) he added to this also the problem of providing an
absolute explication and explanation of the general mathematical notion of
definability (he was convinced that this should be done even before giving
the absolute explication of the notion of provability).

Post emphasized (cf. [22], p. 64):

I study Mathematics as a product of the human mind and not as absolute.

.He was convinced that mathematical thinking is in fact creative. He wrote
in [22], p. 4:

... mathematical thinking is, and must be, essentially creative.

He thought also that the human capacity to know cannot be closed and
reduced to a formal system. And added (cf. [22], p. 4):

creativeness of_' human mathematics has a counterpart inescapable limita-
tions thereof — witness the absolutely unsolvable (combinatory) problems.

On the other hand he was convinced that the results on the undeci-
dability and incompleteness indicate that human capacity to know with
respect to mathematics are in fact bounded in spite of the creativeness of
the mathematical thinking. He wrote in [22], p. 56:
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The unsolvability of the finiteness problem for all normal systems, and the
essential incompleteness of all symbolic logics, are evidences of limitations in
man’s mathematical powers, creative though these be.

Post claimed that there exist absolutely undecidable (i.e., unsolvable by
no methods and means) propositions and that there is no complete system
of logict. A consequence of this was in his opinion the fact that (cf. [22],
p. 55):

logic must not only in some parts of its description (as in the operations),

but in its very operation be informal. Better still, we may write The Logical
Process is Essentially Creative.

Consequently the human mind can never be replaced by a machine. He
wrote in [22], p. 55:

We see that a machine would never give a complete logic; for once the machine
is made we could prove a theorem it does not prove.

6. The significance of Post’s results for the development
of the mathematical logic and the foundations of mathematics

The above considerations lead us to the conclusion that Post’s works
and results contributed very much to the development of mathematical lo-
gic and the foundations of mathematics. His works (together with works
of J. Lukasiewicz) initiated the investigations on many-valued logics and
on the Post algebras connected with them. His studies of the propositional
calculus (the results of which were included in his doctoral dissertation)
were the first metamathematical studies of a system of logic. Most signi-
ficant were probably his works and results in the recursion theory. They
contributed very much to establishing this field as an autonomous branch
of the foundations of mathematics. They began intensive studies on degrees
of unsolvability, in particular of recursively enumerable degrees, investiga-
tions on the (un)decidability of various systems, in particular combinatorial
systems in algebra and on the various types of recursive reducibility. They
influenced also the researches in the computer science (though Post showed
no interest in computers). They were also very important for the theory of
formal languages.

Post’s investigations and results were in a sense ahead of his time, were
precursory (compare his anticipation of Godel’s and Church’s results descri-

4 In [22], p. 54, he wrote: “A complete symbolic logic is impossible”.

27



Roman Murawsks:

bed above). This had of course negative consequences as the fear of being not
understood properly and the delay of publication of the results. Problems
with health, in particular the illness under which he suffered almost the
whole life, also hindered him from publishing the results at proper time.
Many of Post’s results were left in an incomplete form. He tried the whole
time to improve his results and to find the most general form which also
caused some delay. Nevertheless his contributio to the mathemtaical logic
and to the foundations of mathematics was really significant.
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Ewa Orlowska

POST ALGEBRAS AND POST LOGICS

Emil Post doctoral dissertation Post (1921) contained a description of
an n-valued, functionally complete algebra, for a finite n > 2. The notion
of Post algebra was introduced in Rosenbloom (1942). In Rousseau (1969,
1970) an equivalent formulation of the class of Post algebras was given
which became a starting point for extensive research. Since then various
generalisations of Post algebras inspired by applications in computer science
have been developed. This note in a brief survey of major classes of Post
algebras.

1. Plain semi-Post algebras

These algebras were introduced and investigated in Cat Ho (1973), Cat
Ho and Rasiowa (1987, 1989, 1992). Let (T, <) be a poset and let ET' be
the set of ideals of T together with the empty set (. Clearly, T € ET. It
is known that any s € ET is of the form s = U{s(t):s(t) C s}, where
s(t) = {w € T:w < t}. The system (ET,C) is a complete lattice, where join
and meet are set-theoretical union and intersection, respectively.

An abstract algebra

(P) P = (P,U,N,—,~,{dvt € T},{es:s € ET})

where U, N, — are 2-argument operations, -, d; for ¢ € T are unary
operations and e, for s € ET are 0O-argument operations (constants)
is a plain semi-Post algebra (psP-algebra) of type T provided that the
following conditions are satisfied:

(pO) (P,U,ﬂ,—*,ﬂ)

is a Heyting algebra with the zero element 0 = ey and the unit element
1=ep,

31



Fwa Ortowska

For any a,be P

(pl)  di(aUb) =dya U d;b,
(p2)  di(anb) =deandb,
(p3) dydia = d;a,

(p4) dies =1 if t € s, otherwise d;e; = 0
(p5) dta U —Idta =1
(p6) a =J{esq;y Ndia:t € T} where |J is the least upper bound in P

Let P = (P,U,N,—,,{du:t € T}, {es:s € ET}) be a psP-algebra of
type (7, <).

By Bp we denote the set of elements of P of the form d;a, t € T. Then
Proposition 1.1
(a) Bp is closed under the operations U,N, —,~ of P
(b) The algebra Bp = (Bp,U,N,—,—,1,0) is a Boolean algebra.

Let Cp be the set of all complemented elements in the distributive

lattice (P,U,N). Then

Proposition 1.2

(a) Cp is closed under the operations U,N, —, -~ of P
(b) The algebra Cp = (Cp,U,N, —,=,1,0) is a Boolean algebra
(¢) For every a € Cp, di—a = ~dsa, t € T.

However, Bp and C'p do not always equal. Consider a poset (T, <) such
that T = {a,b,c} and <= {(b,a)}. Then ET = {0, {b},{c},{b,c},{a,b},T},
Bp ={0,T}, and Cp = {0, T,{c},{a,b}}.

Proposition 1.3 (Epstein lemma)

For any set {a;:j € J} of elements in P it holds
(a) a=P)U{a;:j € J} iff for every t € T dya = (Bp)U{d:a;:j € J}
(b) a=P)(a;:j € J}iff forevery t € T dya = (Bp)({dia;:j € J}
where (PYU, (P)(, (Bp) U, (Bp)[) denote joins and meets in the algebras P

and Bp, respectively.
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Proposition 1.4

(a) di(a — ¢) = ({dwa — dyc:w < 1}

(b) dina = ({~dya:w <t}

(c) dya < dya whenever w < t, for any w,t €T
(d) a<biff dia < dibforaliteT

(e) ew < e iff wCt, for any w,t € ET

It follows that every psP-algebra of type (T, <) uniquely determines the
set

M(P) = {\{dwa — dyc:w < t}:t € T} of infinite meets of P.
Observe that for any sets s',s" € ET there exists the relative pseudo-
-complement s’ — s" defined by
¢ =" =U{s€ ET — s nNsCs"}
and the pseudo-complement —s' defined by
—s' =8 >0 ==U{s€ ET:s'Nns=0}
Clearly, s' — s, =s' € ET.

Proposition 1.5

(a) For any poset (T, <), the system (ET,U,N,—, -,T,0), where U, N
are set-theoretical operations of union and intersection, respectively,
and —, - are defined as above, is a Heyting algebra with the unit ele-

ment T and zero element (.

(b) Given a psP-algebra P = (P,U,N, —,,{d::t € T}, {es:s € ETY),
let EP = {es:s € ET}.
Then (EP, <) is a poset isomorphic to (ET,C).

Condition (b) follows from Proposition 1.4(e).

Example 1.1
An important example of a psP-algebra is the following algebra, referred

to as a basic psP-algebra:
(ET,U,n,—, =, {di:t € T}, {es:s € ET})

where (ET,U,N,—,-) is the Heyting algebra defined above and the
operations dy, t € T, and e,, s € ET, are defined by:
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es = s, in particular eg = ) and er = T,

dis =T if t € s, otherwise d;s = 0.

Proposition 1.6
The basic psP-algebra is functionally complete, that is any n-argument

operation f: ET™ — ET,n = 0,1,..., is definable with the operations of
this algebra.

Given a Boolean algebra B = (BU,N,—,—,15,05) and a poset (T, <),
by a descending T-sequence of elements of B we mean an indexed family
(be)ter of elements of B such that w < t in T implies b; < b, in B (for
the sake of simplicity we denote the Boolean ordering of B with the same
symbol). We say that B and T satisfy condition (erpc) of existence of relative
pseudo-complement if

(erpc)  For any two descending T-sequences b = (b;)ier, ¢ = (¢i)ier of ele-
ments of B there exists (B)(\{by — cy:w <t} forall t € T.

Example 1.2

We present a psP-algebra Pp(B) of type T determined by a Boolean
algebra B = (B,U,N,—,—,1p,0p) such that B and T satisfy condition
(erpc). The universe P(B) of Pp(B) is the set of all descending T-sequences
of elements of B. We define a partial ordering < on P(B) as follows. Let
b= (bi)ter and ¢ = (ct)rer be any elements of P(B). Then

b<cin P(B)iff by <c;in Bforallt € T.
The system (P(B), <) is a lattice with join and meet defined by
bUc= (bt U Ct)tET’ bNe= (bt n Ct)tET-

Since B and T satisfy (erpc), for any b, ¢ in P(B) there exists the
relative pseudo-complement b — ¢ and

b — ¢ = (z¢)ier, where z; = {by — cy:w < t}.
For every s € ET we define
es = (Z1)ter, where z; = 15 if t € s, otherwise z; = 0p.
Moreover, we put

dyb = (z4)teT, Where z; = b, for every t € T,
b = (z4¢)ter, where z; = N{—by: w < t}.
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It is easy to verify that the algebra
Pr(B) = (P(B),U,N,—,~, {dyt € T}, {es:s € ET})
defined above is a psP-algebra of type (7, <).

Proposition 1.7

Let a Boolean algebra B and a poset (T, <) satisfying (erpc) be given.
Let P be the algebra P7(B) defined as in Example 1.2. Then the algebra Bp
(see Proposition 1.4) is isomorphic to B.

Example 1.3

A particular instance of the algebra defined in Example 1.2 is a set
algebra obtained by taking the field of all subsets of a set as the respective
Boolean algebra. Let U be a nonempty set and let B(U) be the field of all
subsets of U. We have 1gyy = U and Ogw) = 0. For any poset (T, <), B(U)
and T satisfy condition (erpc). Let P(B(U)) be the set of all descending
T-sequences of sets from B(U). The ordering on P(B(U)) is the inclusion.
The algebra P(B(U)) = (P(B(U)),U,N,—, =, {det € T}, {es:s € ET})
defined as in Example 1.2 is a psP-algebra of type (T, <). The infinite joins
in the axiom (p6) are set unions.

Proposition 1.8 (Representation theorem)

Let P = (P,U,N,—,,{du:t € T},{es:s € ET}) be a psP-algebra of
type (T, <). If T is denumerable and either well-founded or the set M(P) is
denumerable (in particular if P is denumerable), then for any denumerable
set Q of infinite joins and meets in P there exists the field B(U) of all
subsets of a nonempty set U and a monomorphism A from P into Pp(B(U))
preserving all the operations in Q.

2. Post algebras of order m

The first axiom system for the algebras characterising Post’s m-valued
logics, for a finite m greater than 2, was presented in Rosenbloom (1942). He
called them Post algebras. The axiomatisation was then simplified in Epstein
(1960) and Traczyk (1964). Traczyk proved the equational definability of
the class of Post algebras. Over the years the theory of Post algebras and
several generalisations of these algebras have been developed. Here we define
Post algebras of order m as a particular case of psP-algebras.
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Let (T),,<) be a poset such that T, = {1,...,m — 1}, where m is
a natural number greater than 2, and < is a natural ordering in T,. Then
ET,, = {0,s(1),...,8(m — 1)}, where s({) = {w € Tp:w < t}. Clearly
(ETy,, C) is isomorphic to {0,1,...,m—1} with the natural ordering. Hence7
we can identify these two posets and assume that constants es are indexed,
with elements from {0,1,...,m — 1}.

By a Post algebra of order m we mean a psP-algebra of type (T.,, <).

It can be easily shown that this definition is equivalent to the standard
definition of Rousseau (1969, 1970).

Example 2.1

A classical example of a Post algebra of order m is an m-element Post
algebr;'x such that P = {eg,...,€m_1}, and for 7,7 € {0,1,...,m — 1} the
operations in P are defined as follows:

exl)  eiUej = emax(i,j),

ex2)  eiNej = emin(i,j),

ex4 e, = €; — 0,

(ex1)
(ex2)
(ex3) e; —e;=1if 1 <7, otherwise e; — €; = €17,
(ex4)
(exb)

die; =1 if i < j, otherwise d;e; = 0.

Proposition 2.1

(a) €)= G = €m_1
(b) es — a=J{diaNeut <s}Udsa
(¢) €m_o1 — 0 =20a
(d) a—e;=e;Udga,fors=0,...,m—2
(e) 04— €m_1 = Cm_1.
We define disjoint operations ¢, for s € {0,1,...,m — 1} as follows:
(c1) coa = 1dia = a

(c2) csa =dsanN~dsyafor s € T\ {m—1}

(C3) Cm—10 = dp_1a.
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We clearly have
csaNecia = eg for s #t.
Any element a of P has the following disjoint representation:
(c4) a=U{canesteT}.

Theorems analogous to propositions 1.1,...,1.8 hold and constructions
from examples 1.2 and 1.3 carry over to the case of type (Tm,<).
Algebras presented in Example 1.1 can be identified with those defined in
Example 2.1. Moreover, the algebras Bp and Cp corresponding to a Post
algebra of order m coincide.

The m-valued Post logic is a propositional logic with binary connectives
V, A, —, unary connectives =, D;fort €T, and propositional constants Es
for s € {0,1,...,m—1}. The algebraic semantics for the logic is determined
in the standard way by the class of Post algebras of order m. A Hilbert-style
axiomatisation of m-valued Post logic and its completeness with respect to
the algebraic semantics is presented in Rasiowa (1969). The main results
on m-valued Post logic include: Model existence theorem (Rasiowa 1970),
Craig interpolation theorem (Rasiowa 1970), Herbrand theorem (Perkowska
1972).

Applications of the m-valued Post logic are concerned with the theory
of programming. An algorithmic logic based on m-valued Post logic is
developed in Perkowska (1972).

Post algebras and logics of any finite type (T, <) are considered in Nour
(1997). They are also treated in Konikowska, Morgan and Orlowska (1998).

3. Post algebras of order wt

Let (T,,<) be a poset such that T, = w is the set of natural
numbers and < is the natural ordering of natural numbers. Then ET, =
{0, s(1),8(2), ..., Tu}. Clearly, (ET., C) is isomorphic to {0,1,2, ... ,w} with
the natural ordering. Hence, we can identify these two posets and assume
{hat constants e, are indexed with elements from {0,1,... ,w}.

A Post algebra of order w* is a psP-algebra of type (1w, <)-

An example of a Post algebra of order wt can be defined in a way similar

to that developed in Example 2.1.
Theorems analogous to propositions 1.1,...,1.8 hold and constructions
from examples 1.2 and 1.3 carry over to the case of type (T, <). Moreover,
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the algebras Bp and Cp corresponding to a Post algebra of order wt
coincide.

Representation theory for Post algebras of order w® has been also
developed in Maksimova and Vakarelov (1974), Rasiowa (1985).

A Hilbert-style axiomatisation of w¥-valued Post predicate logic and
its completeness with respect to the algebraic semantics is presented
in Rasiowa (1973). The other results on w*-valued Post logic include:
Kripke style semantics (Maximova and Vakarelov 1974, Vakarelov 1977),
Herbrand theorem and a resolution-style proof system (Orlowska 1977,
1978, 1980), relational semantics and a relational proof system (Orlowska
1991).

Applications of the wt-valued Post logic are concerned with the theory
of programming. An algorithmic logic based on w*-valued Post logic is
developed and investigated in Rasiowa (1974a, 1977, 1979).

4. Post algebras of order w + w™ (in a strict sense)

These algebras are introduced and investigated in Epstein and Rasiowa
(1990, 1991). Let T = {1,2,...,-2,—1} and E = {0,1,2,...,-2,—1}.
A Post algebra of order w + w* is an algebra of the form (P) satisfying
axioms (p0),...,(p6), where in (p0) 0 = 5 and 1 = e_;, and the following

(p7) dia =d_jaUJ{dsaN—ds;1a:1 < s < —1} pivot elimination axiom
(38) (a—bUG—a)=1

The axiom (p7) says that an element e such that e; < e (die = 1) for
all positive ¢ and e < e; (d;e = 0) for all negative ¢ does not exist.

Propositions analogous to Propositions 1.1, 1.2, 1.3, 1.4 hold for Post
algebras of order w +w*. Moreover, the algebras Bp and Cp corresponding
to a Post algebra of order w + w* coincide.

Example 4.1
A most natural example of a Post algebra of order w + w* is a linear
Post algebra of order w + w* defined as follows:

P = {es:s € E}, and the operations in P are defined with condi-
tions analogous to (ex1),...,(ex5) from Example 2.1.

Disjoint operations in Post algebras of order w +w™ can be defined with
conditions analogous to (c1), (c2), (c3) from section 2 by replacing m — 1
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with —1. Then any element a of P has a disjoint representation given by
condition (c4).
In Post algebras of order w+w™ one can define arithmetic-like operations

in the following way. .
The successor sa (the predecessor pa) of an element a of P is an element

given by the following disjoint representation
sa=\{ciaNew:t € B}
pa = {ciaNe;_i:t € B}

provided that either of these exist. N .
The inverse —a of an element a is given by the disjoint representation

—a=U{ciane_:t €T}

provided that it exists. N ‘
Addition and multiplication operations have disjoint representations as
follows
a+b=U{c(a+b)NesteT}
where for each ¢ € T the infinite join ¢;(a+b) = U{ciaNe;bi+] = t} exists,
a-b=U{c(a-b)Net €T}

where for each ¢ there is the finite join ¢;(a - b) = U{cia N ¢;biij =t}

Proposition 4.1 - S
A Post algebra of order w+w™ with inverse, addition and multiplication

is a commutative ring with unit, where the ring zero is €o and the ring unit
is ey.
These rings have the characteristic 0.

For a descending T-sequence X = (Xi)ier of subsets from the field
B(U) of all subsets of a nonempty set U we define
X+ = ({X,:t positive}
X; = U{X:t negative}.
It can be shown that the algebra of descending T'-sequences X = (Xp)ter

of sets from B(U) such that X = X~, with the operations defined as in

Example 1.2 is a Post algebra of order w + w™. ‘
Representation theorem Post algebras of order w+w* has the following

form.
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Proposition 4.2 (Representation theorem)

For every denumerable Post algebra P of order w + w* there is
a monomorphism h of P into a Post set algebra of order w + w* whose

elements are descending T-sequences X = (X;);er of sets from the field
B(U) of all subsets of a nonempty set U such that X+ = X ~. Moreover,
h preserves a given denumerable set @) of infinite joins and meets of P. l

Applications of the logic are concerned with approximation reasoning.
An. approximation reasoning to recognise a subset S of a nonempty
universe U is understood as a process of gradual approximating S by

subsetsof U S C 5, C S5, C ... which cover §
and subsets ... C §_, C §_; C S which are contained in S.
Then the approximations of set 5 are defined as follows:
St =N{S::t positive}
ST = U{S::t negative}.
In Epstein and Rasiowa (1991) a characterisation of sets S such that
St =87 is given.

. Post algebras of order ¥, where ¥ is an arbitrary ordinal number are
introduced and investigated in Przymusinska (1980, 1980a, 1980b, 1980c).
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Grzegorz Malinowski

MANY-VALUED POST LOGICS

Emil Post’s doctoral dissertation appeared in print as Post (1921)!
is one of the major logic works of the first half of the 20th Century. It’s
contribution to the semantic and metalogic of the classical propositional
calculus can hardly be overestimated. Besides of that one of the parts of
the dissertation contained the description of the n-valued (n > 2, n finite)
functionally complete algera of logic and its interpretation in terms of the
(n — 1) dimentional Euclidean space.

Emil Post independently from FLukasiewicz introduced his (finitely)
many-valued logics in 19202. The main motivation of the actual conside-
ration of truth values next to the truth and falsity stemmed from his work
on functional completeness properties of the classical propositional logic.
Though apparently tailored algebraically, the fuctionally complete Post logic
and algebras have been playing an important role in the area of philosophical
logic as well as in advanced applications in Computer Science.

The aim of the paper is a concise presentation of Post work on
many-valued logic and its evolution.

1. Post matrices

The fundamental, many-valued constructions of Post are connected
with two, primitive in the Principia Mathematica, propositional connectives:
negation (-) and disjunction (V). For any natural » > 2 Post builds an
n—valued logical algebra on the linearly ordered set of objects

1 Abstracted as Post (1920).

2 The priority of Lukasiewicz is unquestioned, though it concerns merely the
introduction of the three-valued logic in 1918, widely published as Lukasiewicz (1920),
and thus the first construction many-valued logic at all. In Lukasiewicz (1929) one finds
the generalization of the original concept onto the case of finite and infinite (countable
and continuum) number of values.
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P, = {tl, tz,...,tn}
(1, < t; iff 1 < j) equipped with two operations: unary cyclic rotation -
(cyclic negation) and binary disjunction V, defined in the following way:

{t,-+1 if i£n

; i Ui Vi = tmag(i,f)-
1 —_

The disjunction function fixes on a natural and entirely intuitive meaning of
the disjunction connective, typical at least for the most known many-valued
(including infinite) constructions. In plain terms, the logical

.. . " a -
value of disjunctive proposition equals the greater of the 2
values of its components. The function of cyclic rotation 2 ta
permutes, in some specified manner, the set P, and the ne- iz &

gation corresponding to it is, the case n = 2 being excluded, :
quite special — compare the beside table. It is just the fact of tn
combining of the latter with an appropriate binary function

of algebra on P, that warrants the functional completeness of that algebra,
i.e. it ensures that by means of the primitive functions, there can be defined
every finitely—argument function on P,, including constant functions and

hence the objects ¢;,t5,...,t,. For a given finite n > 2 the algebraic
structure:

t,

Pn = ({tl,tz,.. 'ytn}, -, V)

will be called n—valued Post algebra.
The matrix P, naturally associated with the algebra P,:

Pn = ({tl,tz,...,tn}, -, V, {tn})

will, in the sequel, be referred to as the (basic) n—wvalued Post matriz.
It is easily seen that the two—valued Post matrix is isomorphic to the
negation—disjunction matrix for the classical propositional calculus. To
check it, one must replace ¢; in P, by the falsity (0) and %, by the
symbol of truth 1. Simultaneously, however, the matrices P, for n > 2
are totally incompatible to the mentioned classical matrix, which is the
result of nonstandard mode of the negation connective. Hence, for instance,
for n = 3 t3 could be the only counterpart of “truth” respective the
adopted interpretation of disjunction but then ¢; would have to correspond
to “falsity” as -tz = ¢;, which should not take place because =—t5 = —t; =
ty # t3. A contradiction.

It is remarkable that among the laws of n—valued logics determined by
Post matrices P, there are many—valued counterparts of some significant
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classical tautologies expressed in terms of negation and disjunction connecti-
ves, including the “generalized law of the excluded middle”:

pV-pV-pV...V12...3p

(n—1) times

On the other hand, however, the connectives of implication, conjunction and
equivalence introduced up to the two—valued pattern

a—*ﬁ:ﬂaVﬁ,
aAfB=-(~aV-pg) and a=f8=(a—BHNB—a)

evidently stray away from their classical counterparts. Thus, e.g. the
connective — resembles no “reasonable” connective of implication and A
is neither associative nor symmetric. Accordingly, due to the second remark

the formula

“(p A "p A mp A...A o= .. p)

(n—1) times

is not among the laws of n-valued Post logic. One may also check that this
formula as it stands, without internal parentheses, is even not well ff)rmed.

The property of functional completeness of Post logic algebl:as, i.e. the
property that every finitary mapping f: P7* — P, (m > 0,m finite) can be
represented as a composition of the operations = and V, Wa‘rr;.mts .that1all
counterparts of classical connectives are definable in P,. This implies that
the whole classical logic may be interpreted within any many-valued system
of Post logic.

2. Interpretation

Post did manage to present a semantical interpretation for his nonstallldard
matrices P, providing the following, Euclidean in its spirit, construction of
the “spaces” E™~!: . ;
(1) Elements P € E™~! are (n — 1)-element tuples of ordinary two—value
propositions (represented by small letters), P = (pl,Pz,...,pn_l)
subject to the condition that the true propositions are listed before
the false. . .
(2) —P is formed by replacing the first false element of P by its denial,

—P = (~(pr ApaA...APp),(PrAP2 A APn-1) A (Py V.p2)7-"7_'(p'1 A
PaA .. APn_1)A(Pr—2 V Pn-1)), the connectives on the right-hand side
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are the usual (classical) connectives; but if there is no false element in
P, then all of them are to be denied, in which case —P is a sequence of
false propositions.

(3) When P = (p1,p2,---+Pn—1) and @ = (q1,¢2,..-,qn—1), then PV Q =

(p1Vq1,P2V g2,y Pr1Vgn_1) (with the right-hand side V as above).
The mapping 1: E"™! — P,:

i(P) =1t; iff P contains exactly (: — 1) true propositions

establishes an isomorphism of (E™"~1,V, —) onto the Post algebra P,.

The discussed interpretation shows, among others, that similarly stated
%ogical values appearing in diverse matrices P, are, regarding the author’s
intention, objects different from each other. Therefore, for the sake of

precision the symbols of logical values #; should be always indexed by a
parameter assigning them to a given matrix.

Example. Five-valued Post logic based on the set Ps = {t;, t3,3,%4,15} of
values may be interpreted in E* consisting of the following elements:

(0,0,0,0)
(1,0,0,0)
(1,1,0,0)
(1,1,1,0)
(1,1,1,1)

w.hich correspond to ty, ts, ts, t4, s, respectively. While V of E* “coincides”
with Boolean sum on the axes, an application of ~ results in descending step
down on the array with the exception that —(1,1,1,1) = (0,0,0,0).

Urquhart (1973) gave an interpretation of Post logics in terms of
a Kripke-style semantics

Kn=(5.,<,F),
where S, = {0,1,...,n — 2}, F C §, X For and the relation < is transitive:
(Tr) fzFaandz <ye€S,,thenyt a.
The conditions stating the sense of Post connectives are the following;:

T - iff yFafornoye S, orthereisaye S,
such that y < z and y - &

zhavpg iff zhaorzt g

Several meanings may be attached to “reference points” z € §,.
Urquhart suggests a temporal interpretation: 0 being the present moment,
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¢ # 0 a future moment, then “z b o” reads “a being true at (the
moment) z”. It is worth noting that the assumption (Tr) guarantees that
any proposition true at z is also true at every moment y future to z.
That obviously means that in the framework elaborated, propositions are
treated as temporally definitive units and, as such, they must not contain
any occasional, time-depending expressions (such as e.g. “now”, “today”
etc.). A quick reflection upon the Example would lead one to the conclusion
that Urquhart’s interpretation is entirely compatible with the original
interpretation envisaged by Post himself.

Apart from the basic matrices P,, Post considered matrices with
more designated elements. In turn, he also defined a family of function-
ally incomplete n—valued implicative matrices with k designated values
1<k<mn)

Ppg = ({tlat% e -7tn}’_’nk7 {tn-—k—i—l, .. -atn})7
where
t if i<
t; onkt; =t if i>j and i>2n—-k+1
tn—itj if 1> and 1<n—k+1.

The matrices of that family can serve as a tool for description of the
implication connectives of other known many-valued logics. So, for instance,
>y and —p 1 are n—valued of Fukasiewicz and Godel implication
respectively (to obtain the implicative Godel matrix one ought to reduce the
set of distinguished values to {t,}, previously having built the truth—table
for implication).

The fact that Post has designated many (at a time) logical values
induced a significant impulse for a just emerging, in the 1920’s, theory
of logical matrices. It seems that other originators of many-valued logics
ignored that possibility, or, did not attach great importance to it.

3. Axiomatization of functionally complete systems of n—valued logic

The original (=, V) systems of Post’s logic are not axiomatized so far.
However, the problem of their axiomatizability has been for years a foregone
matter; hence Stupecki (1939) has constructed the largest possible class
of functionally complete finite logics and gave a general method of their
axiomatization. From this it evidently follows that also Post logics are
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axiomatizable albeit the problem of providing axioms for their original
version still remains open.

Stupecki matrix S, (n being a given natural number, 1 < k < n) is of
the form:

Sne=({1,2,...,n},—,R,S5,{1,2,...,k}).

where — is a binary (implication), and R, S unary operations defined in the
following way:

y if 1<z<k
T — =
4 1 if k<z<n

R($)_{z+1 %f 1<z<n-1
1 if z=n

2 if z=1
Szy=<1 if =2
z if 3<z<n

Functional completeness of each of these matrices is based on Picard (1935):

R and S are two of the Picard’s functions, in order to define the third, it
suffices to put:

1 if 2 =2
Hz =(z — R(z — z)) - Sz fork:l,theon:{ 1 *

z if z#2

1 if 2=k
Hrxr=R(z —wz)—> =z for k > 1, then Hz = )

r if z#k

Stupecki produced an effective proof of axiomatizability of every logic
determined by the matrix Sy, (any pair (n,k) as above) giving a long list
of axioms formulated in terms of implication and special one-argument
connectives defined through the superpositions of R, S, and H. The chief
line of approach here is to make capital of the stand character of implication,
which can be classically axiomatized using MP (the Detachment Rule).
Stupecki extends MP onto the whole language, taking the Lukasiewicz’s
formula: (p — ¢q) — 1)) — ((r — p) — (s — p)) as the only axiom for
implication and provides an inductive, combinatorial completeness proof.

In the end the method of axiomatization in Rosser, Turquette (1952)
should at least be mentioned here. Rosser and Turquette determine the
conditions that make finitely many-valued propositional logic resemble more
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the Classical Propositional Calculus, CPC. and hence simplified projblerg
of their axiomatization. The heart of the method is the use special j
operators, which play a role of identifiers of respective 1og1cal.values.
Since Post matrices are functionally complete all necessary C(?nnectlves are
definable, including the counterparts of all classical connectives and j as
well. Consequently, all Post logics are axiomatizable in the Rosser and
Turquette style3.

4. Algebraic counterparts and a new formalization

The concept of Post algebra of order n (n > 2) was introduced.by Rosen-
bloom (1942) who defined Post algebras by means of the_ rotation -, the
disjunction V and some auxiliary functions. Subsequently, it has. undergone
several modifications resulting both from theoretical and practical reasons
(see e.g. Dwinger (1977)). A particular importance among them 1.1as
the lattice-theoretical characterization (Epstein (1960)) fixing a creative
direction for the studies (see 14.4). The equational definition of these
algebras is due to Traczyk (1964): Post algebra of order n (n > 2) can
be presented as an algebra having two binary U,N, n unary operations
—,D,,..., D,y and constants eg,...,€n—1

L=(L,u,N, =, Diy...;Dn_1, €05+, €n—1),
satisfying the conditions:
(1) (L,U,N)is a distributive lattice with zero, 0 = eo, and unit, 1 = e,y
(2) —(zUy)=-zN-y, ——-T=¢
8) enNnej=¢if i<y
(4)  DizUy) = Di()UDiy), DizNy)=Dix)N Di(y)
(5) Diz)U-Di(z)=1, Diz)N—-Di(z)=0
(6)  Di(z)NDj(z)=Di(z) if 1< 7
(1) Di(-2) = —Dai(z)
(8) Di(ej)=1 for 1 <j, Di(ej)=0 for j <1

3 An overall idea of axiomatization given in Rosser and il‘urquett.e co.inc’i,des w?th thlat
by Supecki since the central is here also the use of a “classical implication” and its rule,
MP, as base for the axiom system.
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(9) z=Di(z)Ne)U(DyNex)U...U(Dpi(x)NeEn_y).

. It can be proved that the set C(L)={D;(z): 2 € L,i € {1,...,n—1}}
is closed under lattice operations and that the structure (C(L,n),U,N, —1,0)
is a Boolean algebra. Apparently, each Post algebra of order 2 is a Boolean
algebra as well.

. The simplest Post algebra of order n is the structure based on the set of
loglcal values {t;,...,t,} having the operations z Uy = maz{z,y},z Ny =
min{z,y} and

t i ;
Di(w):{ n if T >t

oz <t —ti=lp—it1.

To the end, every Post algebra of order n is isomorphic to some field of sets
P(U,n) (Wade (1945)).

At present the attention is generally focused on the formalization of
Post logics basing on Rousseau algebras. Rousseau (1969) noticed that
any Post algebra of order n is a pseudo-Boolean algebra (see Rasiowa
(1974)). Consequently, he proposed a definition of Post algebra (of order
n) w'hich turned out to be exceedingly important from the point of view of
applications (see e.g. Rasiowa (1977)). A new operation appearing in this
definitional version is a binary operation of relative pseudocomplement —,

which on the set of constants {eg,...,en—1} can be described as follows:
€en—1 when 1< 7
€ > €5 = -
e; otherwise.

The system of n-valued propositional calculus corresponding to the
Rousseau algebras (given n) is determined in the language with connectives
= =, Vy, A, =, Dy, ..., Dp_q, €, ..., €n—y (for the sake of brevity
algebraic symbols used here bear new meaning, e.g. e; now refers to logical
constants i.e. zero-argument connectives). Its axioms are the schemes of
C.omlplete derivational axiom system of intuitionistic logic* and, for every
t=1,...,n—-1,

(P11)  Di(eVv B) = (DiaV Dif)
(P12)  Di(a A B) = (Dia A Dif)
(P13) Di(a — B) = (D1a — DyB) A (Dsa — D3B) A ... A (Dia — D;3))
(P14) Di(-a) = ~D;«
4 See e.g. Rasiowa (1974). p. 264
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(P15) DiDjo= Dja

(P16) Die; when i<j and -D;e; when j>7J
(P17) a= (Do Ney)V oV (Dporo Aen—y)
(P18) Dia V -Dia.

And, apart from MP, an extra inference rule is

8
(T’n-) D REe'

The predicate calculi for Post logics are built in a standard way on the
basis of propositional calculi. The most systematic studies of them carried
out so far are due to Rasiowa (1974).
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Zenon Sadowski

ON THE DEVELOPMENT OF EMIL POST’S IDEAS
IN STRUCTURAL COMPLEXITY THEORY

Abstract

Structural complexity theory is one of the branches of computer science.
In this survey we will show how notions of a complete r.e. set and many-one
reducibility from Post’s 1944 paper influenced the study of NP-complete
languages in structural complexity theory.

1. Introduction

Fmil Post’s 1944 address to the American Mathematical Society,
“Recursively enumerable sets of positive integers and th(?il‘ decis%on
problems” [2], had a great impact on later research in recursive function
theory and theoretical computer science. The line of research which started
with this paper culminated in the invention of NP-completeness, the central
notion of structural complexity theory and the favorite paradigm of the
whole field of computer science. .

In Post’s paper, in recursive function theory and structural complexity
theory the concept of decision problem is the main subject of 'research.
Connected with every decision problem are an infinite family of instances
and a question. For any instance we ask this question and expect the answer
YES or NO. _

An example of decision problem is the Hamilton cycle problem (see [1]).
Instance: A graph G = (V, E) with a finite set of nodes and a set E of edges,
which are pairs of nodes.

Question: Is there a cycle that visits all nodes of the graph G onFe?

Every problem is fully determined by the set of its YES instances.
Coding these YES instances by strings or by natural numbers we can
treat problems as sets of words (formal languages) or as subsets of natural
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numb.ers. The first approach appears in Post’s paper and in recursive
function theory, the second one is typical for complexity theory.

2. Classification of recursively enumerable sets

In his paper Emil Post introduced the concept of reductions between
problems, defined complete problems and started the classification of
recursively enumerable sets. In this section we will consequently code
problems, following the approach from Post’s paper, as subsets of natural
numbers.

A nonempty set of natural numbers is recursively enumerable provided
there is an automatic method (a recursive function) for listing out its
members, one after the other. This does not imply that there is a decision
method for determining membership in the set. Sets possessing such
a decision method are called recursive.

There is another equivalent definition of recursively enumerable sets.
A set of natural numbers is recursively enumerable if and only if every
number belonging to this set has a certificate witnessing its membership
in the set. Numbers which are not elements of the set possess no such
certificates.

Let A, B be two sets of natural numbers. The set A is reducible to the
set B if there exists an effective method which determines for each natural
number n a natural number m such that m is or is not in B according as n is
or is not in A. Emil Post studied reductions between recursively enumerable
sets. He considered five types of reducibility: 1) many-one reducibility
2) one-one reducibility, 3) truth-tables reducibility, 4) bounded truth-tables7
reducibility and 5) Turing reducibility.

The notion of reducibility orders recursively enumerable sets. The
maximal elements of this partial order Post named complete recursively
enumerable sets. Every recursively enumerable set is reducible to a complete
set. Post proved the following theorem: '

Theorem 1. (Post)

There exist complete recursively enumerable sets with respect to

one-one reducibility (many-one, truth-tables, bounded truth-tables, Turing
reducibility).

Wh.ether there exist recursively enumerable sets which are not recursive
and which are not complete was the main question considered by Post in
paper [2]. He proved that with respect to many-one, one-one, truth-tables,
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and bounded truth-tables reducibility such sets exist. The problem whether
there exists a recursively enumerable set which is not recursive and which is
not complete with respect to Turing reducibility was solved over ten years
Jater by R. Friedberg and independently by A. Muchnik.

3. Classification of NP-languages

By an alphabet we mean any finite set of symbols, as denoted by X.
A finite sequence of symbols from L is named a word. By a formal language
we mean any set of words over £. In this section decision problems are coded
as formal languages (sets of codes of their YES-instances).

In structural complexity theory the basic models of computation
are deterministic and nondeterministic Turing machines (see [1]). In the
deterministic Turing machine model every move is completely defined by
the current situation. The state of the machine and the symbol currently
scanned by the tape head completely determine the next state and the move
of the tape head. Nondeterministic Turing machines may have choices in
selecting the next move. Such a machine accepts input z if and only if there
is a sequence of choices of the allowable moves which lead from the starting
configuration to an accepting state.

In structural complexity theory decision problems are classified as
tractable and intractable. Tractable problems are those which are feasibly
computable (practically solvable). A problem is generally considered to
be tractable if it can be solved by an algorithm with a time-complexity
function which is bounded by a polynomial. Since problems are encoded
as formal languages, the class P consisting of all languages accepted by
deterministic Turing machines in polynomial time may be considered as
a formal equivalent of tractable problems.

The class of problems which can be solved in polynomial time using
a nondeterministic procedure is the second class central to structural
complexity theory. Problems from this class have one common property:
the certificate property. In each case, if a given input of the problem is
a YES instance, then there is a short argument (a succint certificate)
which convinces us that the input is indeed a YES instance. Naturally
NO instances possess no such certificates. Certificates are small which
means that their length is bounded by a polynomial in the length of
the input. The formal counterpart of these problems is the class NP
consisting of all languages accepted by a nondeterministic Turing machine
in polynomial time. At the moment we do not know whether NP=P,
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and this open question is the central problem in structural complexity
theory.

The polynomial time analogue of many-one reducibility from Post’s
paper is the notion of polynomial time reducibility (Karp reducibility)
intensively studied in complexity theory. Just as the family of recursively
enumerable sets possesses complete sets with respect to many-one
reducibility, NP-languages possess complete languages with respect to Karp
reducibility.

NP-complete languages capture the essence and difficulty of the whole
NP class. They enjoy the following property: one of NP-complete languages
belongs to P only if they all do, only if the whole NP class comes down to P.

The most important NP-complete language was discovered by Stephen
Cook.

Theorem 2. (Cook)
SAT, the set of satisfiable Boolean formulas, is NP-complete.

The importance of NP-completeness for combinatorial optimization was
revealed by Richard Karp. He proved that the following graph theoretic
problems are NP-complete: HAMILTONIAN CYCLE, CLIQUE, VERTEX
COVER, TSP - the travelling salesman problem (for exact definitions
see [1]). His results opened the floodgate to proofs that hundreds of different
problems are NP-complete. A proof that a language is NP-complete is now
considered strong evidence that the problem encoded by this language is
not feasibly solvable.

Post’s problem was considered in polynomial setting by Richard Ladner.
He finished the classification of NP languages by proving the following
theorem:

Theorem 3. (Ladner)

If P # NP, then there is a language in NP which is neither in P nor
15 it NP-complete.

4. Isomorphism Conjecture

It was proved by John Myhill that all many-one complete recursively
enumerable sets are recursively isomorphic, i.e., are identical up to
a recursive permutation of their elements. NP-complete languages
correspond to many-one complete recursively enumerable sets and this
analogy together with Myhill’s result led to the Isomorphism Conjecture: all
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NP-complete languages are isomorphic under polynomial time computable
permutations (polynomial time bijections).This conjecture was supported
by Leonard Berman and Juris Hartmanis’ result that all known-up-to-now
NP-complete languages are polynomially isomorphic.

One way of disproving the Isomorphism Conjecture. would .be by
showing that there exist NP-complete languages with sufficiently dlfferel}t
densities, because if two languages are polynomially isomorphic, then their
densities are polynomially related.

We say that alanguage is sparse if the number of its words up to leng.th n
is bounded by a polynomial in n. A sparse language can not be Pf)lyx}omlally
isomorphic to SAT, since SAT is too dense to be mapped by a b1Ject.10n onto
a sparse set. Thus sparse NP-complete languages are natural candidates to
refute the Isomorphism Conjecture.

The possibility of finding sparse NP-complete languages was resolved
by Stephen Mahaney’s result.

Theorem 4. (Mahaney) . ‘
There ezist sparse NP-complete languages if and only if P=NP.

It is worth mentioning that the first step in this direction was done
by Polish mathematician Piotr Berman. He proved that there exist sparse
NP-complete languages over a single letter alphabet if and only if P=NP.
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Wiktor Dariko, Jolanta Koszelew

THE POST CORRESPONDENCE PROBLEM
AS A TOOL FOR PROVING UNDECIDABILITY
IN LOGICS OF PROBABILISTIC PROGRAMS

Abstract

We present a simple proof of undecidability of the set of tautologies of
Probabilistic Algorithmic Logic (cf. [1]). It is based on the well-known Post
Correspondence Problem (e.g., cf. [6]).

1. Introduction

Logics for probabilistic programs, e.g., Probabilistic Dynamic Logic
(cf. [4]), Probabilistic Algorithnic Logic (cf. [1]), are highly undecidable
formal systems. To establish their degrees of undecidability we need
some advanced techniques of recursion theory (cf. [4,8]). Nevertheless, the
Post Correspondence Problem is sufficient to prove undecidability of such
systems.

2. The Post Correspondence Problem

We recall basic notions related to the problem mentioned in the title of
this section (cf. [6]).

Let A = {¢1,...,9,} be a finite alphabet and let 5, T be two sequences
of strings (words) on A, say

S = (wy,...,ws),
T = (’Ul,...,’US).

" We say that there exists a Post correspondence solution (PC-solution) for
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the pair (5,7T) if there is a nonempty sequence of integers (m1,...,m.),
my,...,mr € {1,...,s}, such that the strings

Wmy - Wi,y Umy oo U,

are identical.
The Post correspondence problem is to devise an algorithm that will
tell us for any (5, T) whether or not there exists a PC-solution.

2.1. Theorem (cf. [6])
The Post correspondence problem is undecidable.

3. Probabilistic Algorithmic Logic

We shall use an abstract programming language Lp being an extension
of a first order language L, based on a countable set V = {z0,21,20,...}
of individual variables (denoted shortly by z,v, z,...), a set F ; {’f g, .
of function symbols, a set R = {r,s,...} of predicate symbols an:i z; set
C ={c,d,...} of constant symbols.

. Let 3 =(U, f,g,...,1,5,...,¢,d,=,...) be a structure for L with the
universe U. By a valuation of variables from the set X, = {zo,21,..., 281}
we shall understand any mapping w: X; — U. The set of all va.h;ations
of variables from Xj we shall denote by wy. The fact, that a formula
a(xg,...,zk_1) of L is satisfied at a valuation w will be denoted by J,w E «
(we shall write a(zo,...,zx_,) instead of o provided that all free variables
of o are among {zo,...,z5—1}).

Probabilistic programs of Lp are understood as iterative programs
with typical program constructions begin...;...end, if...then...else...
while...do... (tests are assumed to be open formulas of L) and with two,
probabilistic constructions: z:=?, either...or... interpreted as follows: the
first corresponds to a random generation of a value of the variable z, each
part of the second one is choosen with the probability 0,5. We shall d’enote
by p the probability distribution corresponding to random generation of
.elements in the realization of assignments of the form z:=7. We can write
in an informal way:

p:U—[0,1], 3 p(u)=1.
uelU

By a probabilistic structure for Lp we shall understand the pair (7, p)
and denote by J,. ,

We recall that a deterministic iterative program K(zo,...,z5_1) is

62

The Post correspondence problem as a tool for proving undecidability...

interpreted in J as a (partial) function transforming (input) valuations into
(output) valuations (cf. [1,4]):

Ka W, — W
(Similarly, to the case of formulas, we shall write K(Zo,...,Zk-1) instead
of K, provided that all free variables of K are among {Zoy oy Th=1};

a formal definition of the set of free variables of a program is given
in [7]).

In the case of probabilistic programs we shall assume that each
possible valuation of program variables is assumed to appear with
a probability. A probabilistic programs P is interpreted in the structure
(3, p) as a (total) mapping transforming input (sub)distributions into output
(sub)distributions (cf. [1,4]):

P(g,p)IM g M,

P(5,5y(p) will denote the output subdistribution realized by the program P
in the structure (J, p) at the initial subdistribution . We can illustrate this

situation as follows

wy, — — Wy
Hi 5

Wy —> P — Wy
M2 - 72

For details we refer the reader to the paper [1]. An example illustrating
the above introduced notions is given in Appendix (Example 6.2.). It
remains to explain why we use the term “(sub)distribution” instead of

“distribution”:

3.1. Remark
Note, that in the case, where a program does not terminate any

computation, then for the output subdistribution u, w(w) = 0, for every

valuation w.

The language L, contains an additional set Vi of variables ranging
over the set || of real numbers and the set of symbols {+,-,%,/,<,0,1}
interpreted in the standard way in the ordered field R of real numbers. These
variables will be used to denote probabilities of transitions (in program

_computations) from an input valuations to an output valuation and/or
probabilities that a formula is satisfied.

63



Wiktor Dariko, Jolanta Koszelew

Thus L, is a two sorted language with the set T of terms (defined in
a standard way), the set Tz of arithmetical terms defined as the least set
satisfying

- 0,1 € T and each variable from Viz belongs to Tw,

—if o is a formula of L then P(a) belongs to T,

—if ¢',t" belong to Tk then t' +¢',¢' —¢",¢' - t",t'/t" belong to T,

' The language L contains the set Fp of probabilistic algorithmic formulas
which are used to express properties of probabilistic programs. Fp is defined
as the least set of expressions satisfying:

- if K is a probabilistic program of Lp and A is a formula of Fp then
K A belongs to Fp,
-if A,B € Fp then —=A,(AA B),(AV B),(A— B) € Fp,
—if A€ Fp and r € Vi then (31)A4,(Vr)A € Fp.
The intuitive meaning of a formula of the form K A is the following;:
K A is satisfled in an initial state p iff the program K end its

computation at a final state u’ and the formula A is satisfied at
the state u'.

We omit here formal definitions of the interpretation of a language
of Probabilistic Algorithmic (Dynamic) Logic and refer the reader to the
papers [1,4]. In Section 4 we shall consider the case of finite interpretations,
where the intuitive meaning of the interpretation is more simple.

4. Decidable and Undecidable Problems
in Probabilistic Algorithmic Logic

The Probabilistic Dynamic Logic (PrDL) is the system for reasoning
about probabilistic programs proposed by Feldman and Harell in [4]. This
system differs from the sytem of the Probabilistic Algorithmic Logic:

. -a language of PrDL contains disjoint set of variables for reals and
integers;

— the results in [4] are presented under an additional assumption that
the universe of interpretation is the set of real numbers or, more general,
an) arithmetical universe (cf. [4] for the definition of an arithmetical univer-
se).

We would like to accent, that in the case of Probabilistic Algorithmic
Logic, we do not use variables for integers, values of real variables are not
changed during program computations, and the field of reals is an external
tool for probabilistic estimation of behaviours of algorithms.

64

The Post correspondence problem as a tool for proving undecidability...

4.1. Remark (cf. [4])

In [4], Feldman and Harel have mentioned that the set of tautologies
of the Probabilistic Dynamic Logic is highly undecidable (for information
about the position of this set in the Kleene-Mostowski hierarchy, we refer
the reader to [4,8]). In [4] Feldman and Harell present an axiom system
for Probabilistic Dynamic Logic that is complete relative to an extension
of first order analysis (second order arithmetic is definable in first order
analysis, cf. [8]). Therefore the Probabilistic Dynamic Logic does not admit
a complete axiomatization in the classical sense.

In the paper [4] a question is formulated:
when the first-order analysis, without integer variables is sufficient
to describe properties of probabilistic algorithms?
We answer this question in [1]:

4.2. Theorem (cf. [1])
The set of formulas of Probabilistic Algorithmic Logic, valid in a fixed
finite structure J is decidable with respect to the diagram of the structu-

re J.

By a diagram of a structure J for L we understand the set of all atomic
formulas valid in J (for each element of U = |J| there is a constant symbol
in ). The proof consists in reducing the validity of a formula « of Lp
in J to the validity of a corresponding formula o' in the ordered field of
reals R (cf. [1]). Some facts related to the proof of this theorem are given
in Appendix.

Moreover, this theorem enables us to construct an effective axiom
system sufficient to prove all valid sentences in a given finite structure J,
provided that the diagram of J is taken as the set of specific axioms.

Now, we shall demonstrate that the proof of undecidability of the
set of tautologies of the Probabilistic Algorithmic Logic does not require
advanced results of the Recursion Theory and can be based on the Post
Correspondence Problem. -

Let § = (wy,...,ws), T = {vi,...,vs) be two sequences of strings
on A = {p1,...,pq}. We shall treat the symbols of A as one-argument
function symbols of a language Lp. Denote by K(s1) the following program
of Lp:
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begin
Yi=T; 2:=1;
repeat
either
begin
yi=wi(y); zi=v1(2);
end
or either
begin
yi=wa(y); z:=va(2);
end
or etther

or either

begin
Y=ws-1(y); z:=0s-1(2);

end

or

begin
y=w;(y); z:=v,(2);

end,;

untid y = z;
end.

Note, that the program construction repeat...until..., used in this
program can be easily eliminated by the while...do... construction and
therefore this program can be viewed as a program of Lp. The subprogram
of K(s ) contained between repeat and until we shall denote by K.

The following facts reduce the halting problem for the program K, (5,1)
to the Post Correspondence Problem; the fact that the program K(s 1) ha,lts
with a positive probability can be expressed by the formula of L 1,: of the
form P(K(s,1)(yV —)) > 0, where v is an open formula of L.

(1) Suppose, that the sequence (my,...,m,), my,...,m, € {1,...,58}, is
a PC-solution for the pair (5,T), S = (w1,...,wn), T = {v1,...,05).
’ Let p be a distribution such that a value u of the variable z appears
with a positive probability,
From the definition of interpretation of the either...or... construction
it follows that after r repetitions of the subprogram K’ the probability of
realization of the following sequence of assignments is positive:

66

The Post correspondence problem as a tool for proving undecidability...

Yi=Wm, (Y); 2:=0m,(2);

Y:=Wm, (y)§ ZZ:vmz(Z%

Y:=Wm, (¥); 2=vm,(2);

Note that the at the begining of the realization of the instruction
construction repeat...until... the initial values of the variables y,z are
identical (the common value is the initial value of z). Since (ms,..., m) is
a PC-solution for (5, T), then the strings

W, oo W,y VUmy - Um,

are identical. Thus the values of the terms

Wiy oo W, (Y)s  VUmy - - VU, (2)

are identical which means, that the probability that K(s 1) end its
computation is positive.

(2) Now, suppose that for the pair (5,T), S = (wi,...,wn), T =
(v1,...,0n), there is no PC-solution, i.e., for each sequence {my,...,My),
mi,...,my € {1,...,s}, the strings

Wy -+ - Wmyy  VUmy «--Um

r

are different.

Let us consider a Herbrand interpretation J of Lp such that its universe
is A* (i.e., consists of all strings on A) and for every function symbol ¢ of
A = {py,..., s}, the interpretation @: A* — A* is defined as follows:

@y(w) is the string ow of A™.

It is easy to note, that for each initial value v of z, for each number r of
repetitions of the subprogram K’ during realization of K(s,1), and for the
sequensce of assignments corresponding to these repetitions

y::wml (y)’ Z::vmx (Z),

y::wmz (¥); 2:=vm,(2);

Yi=Wm,(Y); 2:=Vm,(2);
the values of y, z after r repetitions of K’ are the strings

Wy, « - W, Vy  VUmy -V, U

1

67



Wiktor Dariko, Jolanta Koszelew

respectively. These strings are different, since the strings wp, ... wn, ,
Vrn, - - . Um, are different.

This means that the halting formula of the repeat...until ... instruc-
tion of K (s 1)y cannot be satisfied.

From the points 1, 2 it follows the equivalence:

4.4. Corollary
Let 5, T be two sequences of strings on A, and let Ks7) has the
meaning as in the above. The halting formula of the program K(s 7y can

be satisfied in an interpretation J if and only if the Post Correspondence
Problem has a PC-solution for (5, T)

Thus the undecidability of the Post Correspondence Problem induces
the undecidability of validity of halting formulas of the Probabilistic
Algorithmic Logic and therefore proves the following theorem:

4.5. Theorem

The set of tautologies of the Probabilistic Algorithmic Logic is
undecidable.

We end this Section by a remark:

4.6. Remark
The Post Correspondence Problem can be used to prove undecidability

of the set of tautologies in logics of nondeterministic programs (like the
Algorithmic Logic of Nondeterministic Programs (cf. [8]).
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6. Appendix

We recall here some facts related to the proof of the theorem 4.2. In
particular we give a lemma proved in [1] on that the proof of Theorem
4.2 depends in an essential manner. For details we refer the reader to the
paper [1].

Let U = {uy,us,...,um} and let us denote by p the probability
distribution corresponding to the realization of random assignments of the
form v:=":

p:A - [Oa*l]a p(U'O) +p(a1) + .. '+p(am) =L

Let P(zg,p,zm) be a program. Since U = {uy,...,un} and Xy =
{Zo,T1,. .. Tk-1}, then Wy consists of N = m" elements, W,, =
{wy,wy,...,wn}. Thus each distribution p can be viewed as a N-element
vector p = [i1, Ha,- - -, pN], Where p; = p(w;), ¢ = 1,...,N. Denote by M
the set of all such vectors of distributions. Then

. P(jyp)ZM — M.
To avoid any misunderstanding, we shall write [(wl,ul,),...,(wN,pN?]
instead of [iq, fa,- .-, ] if the ordering among the valuations of W, is

not obvious.

The following lemma shows that each program P can be interpreted as
“a linear operator P on the space M of vectors of distributions:
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6.1. Lemma (cf. [1])

Let (J, p) be a structure for Lp with the universe U = {u,...,u,}. For
every program P(z,,...,Z,) we can construct, in an effective way,a N x N
matrix P = [p;;]i j=1,..,~v such that for every vectors p = [ui,...,un],
N =[M,---s1Mn] = Pz, (1), the following holds:

n=pu-P
(+ denotes here the product operation for matrices).
Moreover, an element p;; of P describes the probability that w; is the

output valuation after computation of P, provided that the valuation w;
appears as the input valuation with the probability 1.

We illustrate the Lemma as follows:

Pui ... PIN
[y ... ,uN]-[ e e ...]:[771 oo NN]

DN1 ... DPNN

where p=lp1,-... s BN =M, ., NN] = P(ﬂ'p)('u‘)’ P= [pij]i,j:l,...,N
6.2. Example
Let K denote the program
while z = b do

either z:=? or z:=a

and denote by K’ the subprogram either z:=? or z:=a.

Assume that the universe U of the interpretation J consists of two
elements, U = {a,b}. Note, that in this case the above defined set W, (of
valuations of the variable z consists of two valuations) w;, w, satisfying:

wi(z) = a, wy(z)=bh.

Moreover, assume that the random generator distribution p is defined as
follows:

ple)=p, p)=1-p
and the initial distribution p satisfies
w(wy) =¢q, p(wz)=r.

One can check that the output distribution y' for the program K’ at the
initial distribution u satisfies:
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¢ =p(w)=05-(1+p)-g+05-(1+p)-T,

P o= p(wy) =05-(1+p)-g+05-(1+p)

This may be written in the form
0.5-(1+p) 05-(1-p)

lg>r1= el {0.5 (1+p) 0.5-(1—p)

that shows the transition matrix K' for the subprogram K. ‘
Using the method proposed in [1] we can check that the matrix K for

. |11
the program K is [0 ]
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SOME METHODS
FOR QUALIFYING PROPERTIES
OF PROBABILISTIC PROGRAMS

Key words. probabilistic programs, Markov chain, program termination,
random variable, modelling stochastic processes

In this work, some methods and tools for a quantitative analysis of
iterative probabilistic programs are proposed. The need for analyse of
probabilistic programs arises in two main situations. The first is when
we analyse a probabilistic program whose nondeterministic constructions
are realised with known probability distribution, and we wish to infer
some statistical property of the program, such as its average running
time, the expected value of some output state, the probability of program
termination, etc. Another situation is that of a probabilistic programs where
we know a set of all possible distributions for realisation of nondeterministic
constructions. For that case, the method of determining average probability
of program termination in a fixed state is presented.

First situation: Probabilistic Programs are understood as iterative
programs with two probabilistic constructions: z:=7?, either...or...
interpreted as follows: the first corresponds to a random generation of
a value of the variable z, each part of the second one is choosen with the
probability 1/2. Each possible valuation of program variables appears with
known probability. Thus one can define distributions of probabilities on
sets of input and output valuations and therefore programs are interpreted
as mappings transforming input distributions into output distributions. In
the case of probabilistic programs interpreted in a finite universe, there
is an effective algebraic method (cf. [2]) for determining probabilities of
transitions from an initial distribution to a to a final one.

The similarities between such programs and finite — state Markov
chains enable to adopt the results for searching properties of probabilistic
‘algorithms. On the other hand, the composiotin (decomposition) problem
for the probabilistic programs can not be solved using Markov chains theory.

73



Jolanta Koszelew

Contrary to Markov chains, probabilistic algorithms preserve an internal
structure of stochastic processes which are modelled. For example: M is
a program which simulates cooperation of two alarms: z and y. Each of
them can work in a “good” state (denote by 1) or “bad” state (0).

M: begin
while (x = 1) and (y =1) do
{M':} begin z:=7; y:=7; end;
end;

If we treat such program as Markov chain we can analyse only one
matrix M corresponding to whole program M. We can not determine
a submatrix M’ which is corresponding to a sub-program M'. The
original method for composition (decomposition) of probabilistic programs
is proposed.

Second situation: The exact distribution for nondeterministic construc-
tion of the form: z:=7? is unknown but an information about the set Z of all
admissible probability distributions is given.

Moreover, we known that each distribution px € Z appears with a pro-
bability fr. Then we can determine average case matriz, which describes an
average probabilities of transition from state to state.

Let us consider the same program M. Let us assume, that the set Z is
the same for both devices and is defined as follows:

Z ={pr:pr(l) = gx pr(1) =1 — g where ¢z € (0.7,1)}.

Proposed method unable us to determine an average probability of event that
alarm z and alarm y will be in “bad” state simultaneously (z = 0 and y = 0)
for a given probability distribution fi (for all elements of a set Z). If f is
the folowing;:

P 0 for g, € (0,0.7)
711 for g €(0.7,1)

then the exact result is: 0.02504 and its practical interpretation is:
An average risk, that this control system is deceptive is equal to 2,5% under
condition that a probability of “bad” state for alarm z and y (independent)
is not greater then 0.3.

A prototype of computer system for automatically analysis of statistical
properties of probabilistic programs is prepared and implemented. The
above problems: composition (decomposition) and “average case” of proba-
bilistic programs arise during a work on this system.
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AXIOMATIZABILITY OF LOGICAL MATRICES

1. The completeness theorem for classical propositional logic was proved
by Emil Post [1921]. Let D, be the classical two-valued matrix and let
E("M,) denote the set of all its tautologies, that is propositional formulae
valid in the matrix. The completeness theorem

EON) = Cn({ro,m+}, As)

says that any 90, tautology can be derived by use of two inferential rules:
substitution for propositional variables 7, and detachment (modus ponens)
rule 7o from a finite set A, of axioms (which are tautologies, too). This
form of axiomatization (substitution, detachment and a finite set of axioms)
became then a standard in propositional logic. Post referred to axioms
given earlier by G. Frege and showed the completeness theorem using
(conjunctive) normal forms of formulae. The completeness theorem, with
the same argument, was then rediscovered by several logicians who were
unaware of the earlier paper by E. Post. It shows the significance of the
result and probably means that normal forms provide the most natural
way of proving the theorem. Others, more interesting, methods of proving
(for example by the construction of Lindenbaum algebra) were provided
much later on. The completeness theorem is maintained as one of the most
fundamental results in logic and is included in probably all elementary
courses in logic. The possibility of elementary proving all classically valid
formulae fascinates and attracts our attention. Nevertheless, let me make
the following two general remarks.

a) We still seem to believe that any concept in science is accompanied
with a finite set of natural axioms characterizing it. We seem to forget
that the axiomatizabilty method, the ingenious discovery of ancient Greeks,
shows only certain weaknesses of human nature and is not occurring
immanently in the nature. The development of logic did not confirm the
priority of one axiom system (for propositional logic) over others. Axioms
may differ very roughly and I would even say that each logician has its own
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preferred axiom system for classical propositional logic. The choice of the
method of proving the completeness theorem decides mostly on the choice
of the set of axioms. Certainly, not any set equivalent (with respect to the
substitution and detachment rule) to A, may be widely accepted as a set of
axioms. For instance, the proposal of J. Lukasiewicz with a single axiom

(((p—9) = (~u— 28)) 5 u) = 1) = ((t = p) — (s = p)),

which is known to be the shortest formula with this property, has not been
widely accepted. Any axiom system for classical propositional logic should
be intuitively clear and should consist of relatively simple formulae. Despite
some attempts, no formal general conditions obeyed by any acceptable set
of axioms was given. In this situation it seems to be proper to say about
axiomatizabilty of the matrix 90, rather than the completeness theorem.

b) In case of propositional logic there raises a more general question
if any axiom system is really needed. What are the adventages of the
axiomatizability method there. This question disappears in predicate logic
where the axiomatizability method is in fact the only possibility to introduce
all classically valid laws. To support the significance of the axiomatizability
method in propositional logic one could refer today to results in complexity
theory. But this kind of argument could not be used in Post times though
the completeness theorem was valued. Probably, the most important fact as
concerns the result in questions is the reduction of possibly infinite the set
of classical tautologies to its finite subset.

2. As soon as non-classical systems appeared in logic, the problem of
their axiomatizability was posed immediately. It was natural as much as
the first systems of non-classical logics were introduced by logical matrices.
There were the so-called systems of Post and Lukasiewicz. Let me say that
the main difference between these two groups of logics was the existence of a
kind of philosophical motivation for Lukasiewicz logics whereas Post systems
were motivated only formally. This philosophical motivation, despite the fact
if it was correct or not, attracted an interest. Let me focus on FLukasiewicz
logics. This is not due to the fact that any formal result confirms the
philosophical significance of the systems. Contrary, it seems to me that it
does not. But Lukasiewicz logics provide a nice illustration for the discussed
in this lecture question of axiomatizability. So, similarly as for Post systems,
the motivation for Lukasiewicz logics is only formal.

a) The problem of axiomatizability of Lukasiewicz logics was by no
means one of the most important questions in the so-called Lwow-Warsaw
school of logic in the twenties and thirties. The most important results
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in this field were achieved by M. Wajsberg. In particular, he provided an
axiomatization for the three-valued logic,

E(MN3) = Cn({ro, r«}, As).

This axiomatization was widely accepted and was often referred to.
Wajsberg also confirmed Lukasiewicz conjecture and showed the complete-
ness theorem for the infinite valued logic

EMy) = Cn({ro, T+}, Aco)-
Let me recall that the set Ao, consists of the formulae
p=@—=p) , (p—=9—g—3)—(—9),
(P9 —9—~g—=pP—p , (p—=79 (P

In Lukasiewicz conjecture there also occurred ((p — ¢) — (¢ — p)) —
(g — p) which was showed to be dependent by D. Meredith. Unfortunately,
Wajsberg’s proof has never been published and first (non-elementary) proof
of this theorem was given by C. C. Chang [1955]. An elementary proof of
this theorem may be found in R. Cignoli, D. Mundici {1997]. '

b) For remaining Lukasiewicz logics no sets of axioms was regarded in

the thirties. Wajsberg [1935] showed a general theorem from which finite
axiomatizability of any n-valued Lukasiewicz logic immediately follows.

If M is a finite and normal (ie the detachment rule is normal) matrix
and A, C E(N), then E(9N) finitely axiomatizable by use of substitution
and detachment rule. The set A,, consists of

=g —~(g—=s)—@—9) , (g=s)~>((p—9— (@~ s),
P—op—-@—9) », @=—(g—-p , ~¢—(p—9 D)
The proof of this theorem contains an algorithm for searching of a finite
set of axioms for any given finite matrix. But the algorithm is very difficult
and useless for any practical reason. Apparently Wajsberg was unable to
reduce the received, in the case of n-valued Lukasiewicz logics, sets of
axioms to an acceptable form. Some solution of this problem can be foun.d
in W. A. Pogorzelski, P. Wojtylak [1993] and R. Tuziak [1988]. There is
shown that

E®M,) = C’I’L({To, T*}a Ar)

where A,, results from A, by addoing formulae of the form (for appropriate

p—"q)—@—=""rp , p=(@-F-p-"""¢
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3. Results on axiomatizability of logical matrices achieved in the
thirties though deep and sophisticated showed certain difficulties. Logicians
could not overcome problems raised by additional informal restrictions
on intuitive meaning of axioms and formal restrictions to axiomatizations
based on two inferential rules of inference: substitution and detachment.
The further progress in the area was mostly due to the change of the
point of view on Jlogical systems. Logic was ceased to be seen as a
set of logical laws (tautologies) and more attention was given to its
inferential rules. Logical systems were described in terms of consequence
operations where not only the set of tautologies plays a role but all
theories over the logic are important. If one takes into account logical
rules other than substitution and detachment, then any restriction to de-
tachment-substitutionary axiomatizations should be neglected. The change
of the point of view, together with additional concepts such as matrix
consequence operation and structural completeness, creates a number of
new problems and benefits with a number of interesting results. It also
.made the theory of axiomatizability of logical matrices more attractive and
interesting.

a) In the theory of logical matrices, the change of the point of view
realized by use of the concept of the matrix consequence operation; J. Los,
R. Suszko [1958]. Let 90t = (A, D) be a logical matrix in a propositional
language S. The operation 9 : 25 — 2% is defined as follows

a € TM(X) = Voara [R*(X) C D — h¥(a) C D]

. o .
One easily shows that 91 is a structural consequence operation. It means
that for any sets X,Y of formulae and any substitution e

X C M(X)
X CY - M(X) C M(Y)
M(M(X)) C M(X)
he(TR(X)) C (e X)

There immediately raises the question of axiomatizability of matrix con-
sequences determined by certain known logical matrices, in particular those
determined by Lukasiewicz matrices. It is known as the problem of strong
axiomatization and it relies on searching for a set R of schematically defined
rules and axioms A, such that for each set X of formulae

P(X) = Cn(R, Sb(A) U X).
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Schematically defined rules are rules defined by one of their sequents. So,
schematically define rule is any inferential rules consisting of all (and only)
instances of this basic sequent. The detachment rule is schematically defined
and determined by its sequent ({p,p — ¢}, q). The simplification rule is also
schematically defined

o'

f—a

but the substitution rule is not. Let Sb(A) be the set of all substitution
instances of formulae in A. There is a clear coincidence between the
schematically defined rules and axiom schemata. Axiom schemata may be
seen as a special case of inferential rules in which the sets of premises is
empty. Since for schematically defined (structural) rules Cn(RU {r.}, A) =
Cn(R, Sb(A)), the strong axiomatizability of a matrix implies its usual
(weak) axiomatizability by use of the same rules together with the sub-
stitution rule.

b) Let me illustrate the concept of strong axiomatizability by referring
to results on infinite valued Lukasiewcz logic and related matrices. I shall
refer to results included in R. Wéjcicki [1973] and P. Wojtylak [1978]. Clearly,

Cn({ro}, Sb(As)) = E(Moo) = ﬁ E@M,) = E(P7L,Mn) = E(Lo)

where P2° .91, is the product of the involved matrices and £, is the
Lindenbaum matrix for the infinite valued Lukasiewicz logic. For any set
X of formulae the following inclusion hold and for certain sets they are
proper

— *® _— —
Cr({ro}, Sb(Ass) U X) € Moa(X) € () Tea(X) € PE,M(X) € Leo(X)
n=2

So, the problem of strong axiomatizability of infinite valued Lukasiewicz
logic becomes more complicated as it is not quite clear which matrix should
be axiomatized and what is a matrix strongly adequate for the propositional
system ({ro}, Sb(Aco)). Moreover, one can easily extend the above sequence
by adding new matrix consequences with the same set of tautologies; for
instance the submatrix of 9., determined by rational numbers. It is only
known that the matrix consequence determined by the Lindenbaum matrix
£ is structurally complete (cf. W. A Pogorzelski [1971]) and hence it is
the greatest structural consequence with a given set of tautologies.

¢) The view that any of the above consequences represents infinite
valued Lukasiewicz logic could be questioned as the operations (except of
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the first one) are not finite. If one considers only finite sets X, then some of
the inclusions can be replaced with equalities:

oo
Cn({ro}, Sb(Ace) U X) € Meo(X) = (] Ma(X) € PEL M (X) C Loa(X),
n=2
In result, the matrix consequence operations should be axiomatized by use of
inferential rules with infinite sets of premises and the problem is that there is
no proper logical theory for such rules. The difference between finitary and
infinitary rules are not so fundamental as one could expect. Let us consider,
for instance, the substitution version of the above consequence operations.
Then we get

—

Cr({r0,T+}, Aoo UX) C Meg(SH(X)) = ... = P2, 9M,.(SH(X)) C Loo(SH(X))

The last, strongest consequence operation (the structural complete exten-
sion of the infinite valued logic) is finite and contains exactly three theories:
EMN.), E(M,) and S. So, all finite valued logics (except of the classical
one) can be rejected on the ground of the infinite valued one. The admittance
of the substitution rule corresponds to the admittance of all instances of a
given set of premises and is acceptable form a finitistic point of view.

d) Let us note that the above relations between consequence operations
will change if we change (extend or restrict) the propositional language. The
above inclusions concern the usual logical language with the usual logical
operations including implications and negation. If we restrict to the positive

fragment (that is the fragment without negation), then we get for any finite
set X of formulae

Cr({rs}, SB(AZ) U X) = TRE(X) = (| DE(X) = 2,00 (X) = ZL.(0).

So, the logic ({ro}, Sb(AZL,)) is structurally complete for rules with finite sets
of premises (but is not for arbitrary ones). If one considers, the extensions
of the n-valued (for n > 2) logic ({70}, Sb(A,)), then the situation changes
a bit. The logic ({ro}, Sb(A,)) is strongly adequate for SJ_T:L but is not
structurally complete. Its structural complete extension is 9, X 9, and
is received by extending ({ro}, Sb(A,)) with the rule

aVa—"tl g A-a

Some additional information on the lattice of strengthenings of any finite
valued Lukasiewicz logic can be found in G. Malinowski [1977].
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4. As one easily notice, the above does not concern at all the fundamen-
tal (as one might think) question as concern the problem of axiomatizability
of logical matrices — namely, the question of finite axiomatizablity (that is
axiomatizability with a finite set of schematically defined rules and axioms)
of finite matrices (or, more specifically the sets of tautologies or matrix
consequences determined by finite matrices). A partial solution to this
question was given by M. Wajsberg and we discussed it above. This question
become central in research programme initiated by R. Wdjcicki [1977]. Let
us call a consequence operation Cn strongly finite (or SF in short) iff
Cn =9, 0N...NnMN, for some finite matrices Ny, . .. ,MN,,. Then let us try to
identify logical properties of strongly finite logics. If SF logics have some
“pice” logical properties, then finitness will get some logical meaning and it
will turn out that finitness is significant from a logical point of view.

a) The initial interest in SF logics was supported by the following two
general results

(1) Each strongly finite logic Cn is finite, that is o € Cn(X) iff
a € Cn(Y) for some finite Y C X.

(2) If Cn is strongly finite, then its degree of completeness (that is
the number of theories closed under substitution) is finite.

As concerns (1) (see J. Lo$, R. Suszko [1958]) the argument used there
is similar to that used if one wants to show the compactness theorem for
satisfiability (ie. if one shows that a set is satisfiable iff all its finite subsets
are satisfiable). One can simply make use of Boolean Prime Ideal Theorem
or related (fundamental) results in set theory. In other words, our argument
is set-theoretical, not logical, in nature. As concerns (2) the concept of the
degree of completeness was introduced by A. Tarski and the result that
any finite valued Lukasiewicz logic has a finite degree of completeness was
noted in literature. From this point of view, the result (2) (by R. Wiéjcicki)
was an essential strengthening of the known result. However, the result in
question is an immediate corollary of the following characterization of the
substitution version of the matrix consequence r

M(SB(X)) = (HED) : X C E(M) oraz N C M}

given by P. Wojtylak [1978]. It does not mater here if the matrix 9N is
finite or not. Since any finite matrix has only finitely many submatrices,
the finitness of the degree of completeness of any strongly finite logic
immediately follows. So, one can say that our argument with (2) has little
to do with finitness of matrices and properties of strongly finite logics.
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b) Nevertheless, the above “positive” results encouraged to make several
conjectures on strongly finite logics. In particular,

(3) Each structural strengthening of any SF logic is SF;
Cni>Cne€SF=Cn €5F
(4) The supremum of two SF logics is SF;

Cn,Cny € SF=CnUCn € SF

(5) Fach strongly finite logic Cn is finitely based (FB in short) which
means that for some finite set R of inferential rules (including
aziom schemata)

Cn(X)=Cn(R,X) for every X

It soon appeared that all the above conjecture (and also some others)
are false. Counterexamples were provided by M. Tokarz [1976], A. Wronski
[1976] and [1979], P. Wojtylak [1979]. For the considered in this paper
question of axiomatizability, the most important is the negative answer to
(5) provided by A. Wroriski [1979]. If one wants to get a positive result on
finite axiomatizability of a finite matrix one has to assume certain logical
properties of the logic determined by this matrix. To illustrate this question
let us consider the following general (positive) results on axiomatizability
of finite matrice from my paper [1979]:

. . . ~2 .
If 9 is a finite matrix and_)ﬁﬁ is a consequence operation with
equivalence and disjunction, then 9 jest finitely based.

Let me give here a sketch of its proof. Then, each finite structural
consequence operation, in parti_c)ular M, can be given in the form Y, Cnyi
where Cny is the fragment of 91 determined by rules (and axioms) which
can be defined by sequents containing at most k variables. Since each C'ny
can be easily shown to be finitely based, the by the known Tarski’s criterion
9 is finitely based iff it collapses to one of its fragments Cng. Next, let us
consired the following formulae

Vipi=pj:0<i<j<k}

and let me notice that the same formulae were considered by K.Gédel when
he showed that intuitionistic logic has no adequate finite matrix. According
to our assumptions 90 is a consequence operation with equivalence and
disjunction and hence the above formula is valid in 97 if the number k is
sufficiently large. Thus, we get

84

Aziomatizability of Logical Matrics

Crgs1(X)= () Cresa(X,pi = pj)
i<j<k

for each set X if k is sufficiently large. By use of this equation we can reduce
rules of Cngy, to those of Cny and hence M collapses to C'ny.

¢) Let me make the following general comments. First, all counter-
examples concerning strongly finite logics provided by many authors shows
that, perhaps against some obvious suppositions, finiteness is not an
assumption of a logical character. The finitness of semantics does not
provide any interesting logical property unless the logic in question is
sufficiently strong and regular. Finitness let alone means nothing in logic
and it profits only if accompanied with additional assumptions of logical
character. Second, the progress in formal sciences is a very complex subject.
No progress is possible if one only reads works by one’s masters without
any attempt to improve them. Some arrogance or ignorance is sometimes
needed to overcome old tuts and mistakes of our masters. It so happend
with the considered subject when, against strong tradition in Polish logic,
taking into account logical rules caused progress and originated interesting
results and important questions. On the other hand, however, if we read
more carefully works by our masters, we could avoid new mistakes and
false conjectures. In particular, the old result by M. Wajsberg has the same
form as the above one. Both theorems say that not all finite matrices enjoy
finite axiomatizability (though finite axiomatizability is understand in both
cases differently). Wajsberg’s argument is very difficult to follow but in my
opinion it resembles very much the argument sketched above.

5. Let me present some finite matrices considered in literature which
do not enjoy finite axiomatizability. These counterexamples attracts much
attention when one considers the question of finite axiomatizability.

a) 1 should begin with the oldest (known to me) counterexample
by M. Wajsberg [1935]. It was intended to show the importance of the
assumption of normality of the matrix considered. Normality of the matrix
9% means that if the premises for the detachment rule are distinguished in
the matrix, then the conclusion is distinguished too. Let 91 be the matrix
on {0,...,k} with D = {0} as the set of distinguished elements and the
logical operation (implication and negation) interpreted as

fey=y . =0
One easily shows that 91 tautologies are formulae

e or a; — (ay = (... (0 = 70)..)
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So, it is clear that E(9) cannot be axiomatized by use by the detachment
rule and a finite set of axioms. However, it does not settle the problem of
finite axiomatizability if one allows other inferential rules. For instance, o
and the simplification rule suffice to derive all 9 tautologies.

b) Now, let us consider the finite matrix given by Wroéki [1979] the
matrix consequence of which is not finitely based. The matrix is defined in
alanguage with one binary operator. We will omit as usual the symbol of this
operators and accept the convention of omitting brackets where 2yz means

(zy)z. The matrix is 3-element on {0,1,2} and 2 is the only distinguished
element and is defined by

N = O
N N NSO
R DN O
NN NN

We will not repeat the proof of the fact that the matrix consequence is
not finitely based. Let us only note that finite non-axiomatizability of the
matrix consequence does not mean finite non-axiomatizability of the set of
all tautologies. In fact, the set of all tautologies can be finitely axiomatized.
As axioms we can take formulae of the form a(87) and aa which are clearly
valid in the matrix. Let us note that not only these formulae but also all
formulae containing them as subformulae are valid in the matrix. So, we
will also need the simplification rule in the form

a

b a
There remains to consider formulae of the form

PiyPiy -+ Piy

Any such formula is valid in the matrix iff 4 € {i;,...,4x}. To show all
these valid instances it suffices to make use of the following additional rule

o f

ay B

Let us notice that the above rule, similarly as the above simplification rule,
is normal in the matrix and hence we obtain a finite axiomatization of the
set of all formulae valid in the matrix.

¢) So, the above counterexample still leaves open the problem of finite
(weak) axiomatizability of finite matrices. An example of a finite matrix

86

Aziomatizability of Logical Matrics

whose set of tautologies is not finitely axiomatizable was given in Wojtylak
[1979]. It was a 5-element matrix with 2 elements distinguished. A better (in
many respects) example was provied by W. Dziobiak [1991]. there was gives
a 4-element matrix with one element distinguished with the same property.
But the best result in this field is due to K. Palasifiska [1994]. She showed
a 3-element matrix with one element distinguished which is not finitely
axiomatizable in any reasonable way. The matrix is given by

| o 1 2
0]1(2) 2 2
1| 2 2 2
2] 1 2 2

where 2 is distinguished and 1(2) in the first row means that one can put
1 or 2 there. So, there are given two 3-element matrices with the same
property. At first sight one easily notices a large number of 2’s in the matrix.
It must be so. If there were no 2’s (or there were no enough 2’s), then the
set of all tautologies were empty and hence finitely axiomatizable. If we
consider an operation with less number of 2’s, but with nonempty set of
tautologies, it usually happens that the operation is sufficiently strong to
define disjunction and equivalence which gives finite axiomatizability of the
matrix consequence. One should not expect that matrices which do not enjoy
finite axiomatizability were natural and regular from the point of view of
standards in logic.

d) The above results on finite non-axiomatizability also have certain
consequences in universal algebra. Instead of axiomatizability of matrices
we consider quasivarieties generated by a finite algebra and the results
transforms. But these algebraic aspects are far beyond the scope of my
lecture. At the end let me only say that the result by K. Palasinska is
by all means optimal and one should not even try to improve it. This is
impossible as

If | M| =2, then M is finitely based.

The proof of this result given by W. Rautenberg [1981] is long and not
quite interesting as one has to consider a large number of cases. It gives
me, however, an opportunity to get back to E. Post at the end. Namely,
to show his result W. Rautenberg used Post’s classification of all clones
(that is sets of operations closed under substitions and projection) on a

. two element set. In consequence, the old result by E. Post can be used to

support the view that, although finitness of semantics is not an assumption
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of a logical character, the two-valuedness does have a logical character. The
admittance of a third logica value destoys more than one could even expect
at the beginning.
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STUDIES IN LOGIC, GRAMMAR AND RHETORIC 2 (15)

Witold Marciszewski

POST’S PROBLEM OF CREATIVITY
AND ‘NATURE AS INFINITE INTELLIGENCE’"

The phrase quoted in the title is found in Emil L. Post’s Diary which
under the title “Time Accounts” was begun in the spring of 1916 and
continued to the spring of 19221, That time interval embraces the most
productive time in Post’s life when he prepared his doctoral dissertation
(1920) “Introduction to a general theory of elementary propositions” (The
American Journal of Mathematics, 43, 1931, 163-185) — that so seminal
work which (i) introduced the truth-table method, (i) with generalizing that
method put algebraic foundations of multi-valued logic, and (iii) provided
a general framewok for systems of logic as means of deriving theorems
through finitary symbol manipulation.

Like great predecessors being both mathematicians and philosophers
(notably Pascal), Post carefully distinguished scientific results, to be
made public, from incomplete projects and philosophical intuitions to be
entertained in privacy until they mature enough. This in why in the time
he wrote the dissertation he made notes of his problems and dawning ideas,
somehow related to his ‘public’ research. Those thoughts did not come to
light until Martin Davis as the editor of The Collected Works of Emil L. Post
put them as Appendix to Post’s paper on absolutely unsolvable problems.

Post contributed to grasping the essence of finitary mechanical
operations on equal footing with Turing and Hilbert.

If someone asks how is Hilbert involved in mechanization research, this can be

answered by quoting Turing’s description of what he calls paper machines. It
amounts to what Hilbert called formalization. This description runs as follows.

* The work presented here was supported by the Polish Ministry of Science (‘Komi-
tet Badati Naukowych’), Committee for Informatics [etc.], under the grant to the Chair
of Logic, Informatics and Philosophy of Science at the University of Bialystok, No. 8
T11C 018 12, for research concerning Al vs. Natural Intelligence from the Point of View
of Mechanization of Reasoning.

1 See “Absolutly Unsolvable Problems and Relatively Undecidable Propositions —
Account of an Anticipation” in Solvability, Provability, Definability. The Collected Works
of Emil L. Post edited by Martin Davis. Birkhauser (Boston, etc.) 1994.
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“It is possible to produce the effect of computing machine by writing down a set
of rules of procedure and asking a man to carry them out. Such a combination
of a man with written instructions will be called a ‘Paper Machine’. A man
provided with paper, pencil, and rubber, and subject to strict discipline, 1s in
effect a universal machine. The expression ‘paper machine’ will be often used
below.” A. Turing, ‘Intelligent Machinery’ in Collected works of A.M. Turing.
Mechanical Intelligence, ed. D.C. Ince, North-Holland 1992. See p. 113.
However, Post was not fully satisfied with his theory of such operations,
since it did not explain the riddle of mathematical creativity. It was the
phenomenon which astonished and intrigued him (like Pascal who wondered
that our reason before starts a precise proof has to trust a ‘feeling’ that there
are numbers, space, time, motion, etc).

The problem of creativity was seen by Post as closely tied to that of
solvability. There are problems which can be solved by mere manipulating
symbols in a finite chain of steps; these do not require a creative thought.
However, people successfully deal with problems which are not solvable in
that way. How is it possible? How to describe the mechanism being behind
such processes? What kind of logic could render and guide them?

When reading Post’s Diary, we find no definite answer to such questions.
His notes express rather a dim anxiety than a conclusive line of thought.
However, they should be appreciated as witnessing the struggles of a great
mind at the peak of his creative powers. His helplessnes gives us a measure
of the degree of objective difficulties in that part of philosophy of science
which so much absorbed Post.

Is there any chance in attacking the problem some tens of years later?
The answer seems to be in the affirmative since we had a lot of discussions
on the issues raised by Post (a great deal of them due to Gédel and Turing).
Moreover, we have some experiences with computing and reasonig machines,
and with computational power of Nature, which were not available to Post
(he died in 1954). A totality of such discussions may be covered by what
nowadays is called cognitive science. The objective of this essay is to confront
Post’s questions with some ideas belonging to this new field.

1. Two Concepts of Solvability

There is a remarkable difference between the lexical meaning of the
word solvability and its technical meaning which is in the focus of logic,
philosophy of science, computer science, and cognitive science. To wit,
the lexical meaning as defined, eg, by Webster’s Third New International
Dictionary, is as follows:
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solve — to find an answer, explanation or remedy for; arrive at a clear,
definite and satisfying answer.

solution — the fact or state of a problem’s being solved.

solvable — suceptible of solution.

solvability — the quality or state of being solvable.
Obviously, in this context ‘answer’ means a true answer.

Now, take the famous Godel sentence, G for short, and put the problem:

[Pg] Is G true?

Provided that G has number N at a list of propositions of a formalized
system S, the sentence G, roughly, runs as follows.

[N] The sentence no. N is not provable in S, provided that S is consistent.

The answer YES to Pg results from the following consideration. The
denial of G is to the effect that G is provable in S, and this means that
a sentence which predicates non-provability about itself is provable. This
is a contradiction. Since the denial of G implies contradiction, this denial
must be false, hence G itself is true.

The answer we arrive at is clear, definite and satisfying, as required
by Webster. Thus the problem answered by it enjoys the quality of being
solvable, in the ordinary lexical meaning of this word.

However, in the technical meaning which holds in logic and in
philosophy of science, the problem Pg is not solvable, since there is no
mechanical procedure, such as a formalized proof, to check the truth of G.

Now, one may ask: Which concept of solvability should be endorsed by
cognitive science? That being in use in ordinary English, or that defined
in logic, philosophy of science and computer science? The latter option
is highly plausible because of yielding a precise definition. On the other
hand, cognitive science deals with the functioning of human intelligence in
the conditions of everyday life, and its features are best rendered by our
everyday language.

2. Solvability as the point where cognitive science meets

philosophy of science

The science-philosophical term Entscheidungsproblem can be rendered
as the problem of solvability as well as decision problem. The transitive
verbs ‘to solve’ and ‘do decide’ enter a grammatical structure with different
objects: it is a problem which is said to be solvable, while it is a proposition
(or a set of them, as a theory) which is said to be decidable. This usage can
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be exemplified by the title of Post’s study referred to in this discussion.

Thus, a problem is said to be solvable if the answer, either in the
affirmative or in the negative, is decidable. A part of the technical sense
of ‘solvability’ appears in Post’s usage of the term finiteness as the property
of a mechanical procedure which consists in reaching a solution in a finite
number of steps.

At the same time, this term enters the definition of intelligence to
mean the ability of problem solving. Since any procedures of representing
and processing information by minds and organisms (the subject-matter of
cognitive science) serve solving problems, the concept of solvability is as
crucial for cognitive science as is for philosophy of science.

To solve problems was always the goal of science, and thus the subject of
philosophical reflexion on science. However, there was no problem of solvability
in the modern sense until Hilbert in 1900 announced his great programme, and
then Godel — precursed by Post — has demonstrated its limitations.

In modern philosophy of science, the problem of solvability emerged
with dramatic strengthening of the rigour of proof. This new rigour is what
is called formalization, and it amounts to a mechanical procedure in proving.
It was Frege, Peano and Russell who paved the way to this new notion in
their axiomatic approaches, while Hilbert was the one who put it into an
explicit methodological doctrine. Now, to solve a problem means to support
the answer with a formalized proof (or, at least, a proof liable to such
enhancement).

Should the term mechanical be seen as a metaphor or be taken literally?
Since the latter is the case — as shown by Turing, Post, and others — the
theory of logic, branching into philosophy of science, meets both the theory
of problem solving machines (computer science) and that of problem solving
organisms (cognitive science).

It would be advantageous to have a more comprehensive concept to cover

both computer science and cognitive science. The term ‘informatics’ seems to

be a suitable candidate for that role, though sometimes it is used in a narrower

sense, which amounts to that of ‘computer science’ {this terminological issue
deserves a careful consideration).

The great problem of cognitive science is as follows. In the present state
of research on information processing — as a procedure of solving problems
— we have to distinguish between two kinds of systems, to wit mechanical
and creative systems. Should this difference become less and less, as we
shall gain ever more knowlwedge on the both kinds of systems? Or, is it
fundamental, that is, not being likely to disappear?
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Turing believed that the producing of creative machines was just
a matter of time; thus the mentioned disparity should disappear with the
progress of our knowledge and technology. In spite of obtaining similar
technical results, Post entertained a much diferent feeling. He saw the
phenomenon of mental creativity as something that hardly could be reduced
to operations of machine, even a highly advanced one.

Obviously, such contrasting approaches produce two divergent
perspectives on cognitive science (including a theory of mind) as well
as philosophy of science. In that of Turing, both disciplines would tend
to become parts of a general theory of machines. In that of Post, they
will ever preserve their specific problem and methods, the theory of mind
being concerned with the solving of problems by creative non-mechanical
minds.

3. Post’s engagement in the problem of creativity

Emil Post’s concern with what we nowadays call cognitive science
was greater than it can be judged when one reads his published meta-
mathematical results. We learn about it owing to a ceratain coincidence
of facts (partly reported by Roman Murawski in his contribution to this
volume, Section ‘Canonical systems’).

To wit, Post anticipated Go&del’s results on incompleteness in his
unpublished Diary. He did not publish those notes for his having been aware
that they needed a more detailed elaboration (moreover, he imagined how
shocking such a highly unorthodox point would have been in the academic
atmosphere of the twenties).

However, after Godel’s results had been published, Post desired to let
people know about his own approach — as a methodological alternative
worth to be discussed. To certify these claims, he was ready to make
publicly available a diary and notes where his ideas were sketched. The
full text of them has been edited by his pupil M. Davis in the Collected
Works, and so we got a look into those private records. There we encounter
remarks on human creativity, much to the point for cognitive science. These
comments form the Appendix to the paper in question where Post wrote in
Introduction with emphasis. (p. 378)

But perhaps the greatest service the present account could render would stem
from its stressing of its final conclusion that mathematical thinking is, and
must be, essentially creative. It is to the writer’s continuing amazement that
ten years after Godel’s remarkable achievement current views on the nature
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of mathematics are thereby affected only to the point of seeing the need of
many formal systems, instead of a universal one. Rather has it seemed to us
to be inevitable that these developments will result in a reversal of the entire
axiomatic trend of the late 19th and early 20th centuries, with a return to
meaning and truth. Postulational thinking will then remain as but one phase
of mathematical thinking.

In the above passage, the italicized part is accompanied by the following
footnote (no. 12).

Yet, as this account emphasises, the creativeness of human mathematics has
a counterpart inescapable limitations thereof — witness the absolutly unsolvable
(combinatory) problems. Indeed, with the bubble of symbolic logic as universal
logical machine finally burst, a new future dawns for it as the indispensable
means for revealing and developing those limitations. For, in the spirit of
the Appendix, Symbolic Logic may be said to be Mathematics self-conscious.
[Aactually, the old dream of symbolic logic is finding partial realization in
Tarski’s recent positive work on decision problems.]

Let us notice the expressive metaphor that “the bubble of symbolic logic
as universal Jogical machine finally burst”. On the basis of that conviction,
Post claims the restatement of the goal of logic towards its becoming just
self-consciousness of mathematics (instead of being its universal tool). When
compared with the contention (of some cognitive scientists) that nothing
essentially changed with discoveries of Gédel, Turing, Church, and Post
himself, this attitude should draw close attention. Post may have been
wrong, nevertheless his intellectual quests are worth to be traced.

In what follows those introductory comments, Post develops his ideas
and results in two parts. Part I, entitled Formal Transformations, gives us
an account of his theory of canonical forms (A, B, C), ie normal forms
to which propositions of a logical system, namely Principia Mathematica,
can be reduced. Part II The Anticipation serves the purpose mentioned in
the title of his account, namely, to show how the results reported in Part I
anticipated those of Gddel; these points are extensively disussed in Sections 2
and 3, respectively, of Roman Murawski’s paper (this volume).

Part II concludes with the following statement:

A complete symbolic logic is impossible.

It follows from two previously proved theorems (whose content is hinted at in
the footnote quoted below), and is commented as being in line with ideas of
other authors, as Russell, C. I. Lewis, and (unexpectedly enough) Bergson
as the author of Creative Evolution. The latter may prove an important
hint in interpreting Post’s attitude. This final statement is provided with
an extensive footnote (no. 101, p. 428); it deserves to be cited as a whole,
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being related to the distinction of two concepts of solvability discussed above
(Section 1).

Mere incompleteness, as in the first of the two “Theorems” preceding, might
not rule out the logic being as complete as 1t ever could be made. Fundamental,
then, is the added effect of the second theorem, which rules out the posibility
of a completed symbolic logic. That 1is, any symbolic logic can be made more
complete. [Post, as seen from the context, means logic in the sense of such an
extensive system as Principia, which in the sequel he calls ‘upper reaches
of symbolic logic”] It is doubtful if the writer ever paused note the mere
incompleteness of a symbolic logic in the sense of existence of some undecidable
propositions therein, for experience with Zermelo’s axiom, the axiom of infinity,
and the theory of types clearly leads one expect incompleteness in the upper
reaches of symbolic logic. Rather was the emphasis placed on the stronger
concept of incompleteness with respect to a fixed subject matter, in the
present instance the propositions stating whether a given sequence is or not
is generated by the productions in a given normal systems from its initial
sequence. Likewise, Godel would stress, for example, the incompleteness of any
symbolic logic with respect to the class of arithmetical propositions. Where
we say “symbolic logic” the tendency is now to say “finitary symbolic logic”.
However, it seems to the writer that logic should be considered essentially
a human enterprise, and that when this is departed from, it is then incumbent
on such a writer to add a qualifying “non-finitary”.

After having so explained the concluding maxim that a complete
symbolic logic is impossible, Post gives this thought still another
formulation, when saying: “Better still, we may write

The Logical Process is essentially Creative.

This conclusion [...] makes of the mathematician much more than a kind of
clever being who can do quickly what a machine could do ultimately. We
see that a machine would never give a complete logic; for once the machine
is made we could prove a theorem it does not prove.”

This is the last passage of the study in question. Then follows Appendix
including the Diary. In it various observations are recorded to explain the
fact stated in the above conclusion (the pages below refer to Collected
Works).

Post notices that in the mental process of proof creative and
non-creative parts are intermingled (p. 433). Those creative ones are found
in a stream of consciousness extended in time while the non-creative parts
consist of symbols manipulated which are extended in space (p. 431). The
creative parts are not expressed in symbols, and therefore the mind may be
unaware of them (p. 434).

There are in the text comments on a connexion between the creative
side in the process of proof and transfinite ordinals. For scarcity of a context
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such utterances are not easy for interpretation. They may mean that
the discovery of transfinite induction, following the discovery of tranfinite
ordinals, provides a most striking example of creativity which consists in
a good vision of infinitude of elements which possess stateable properties.
This, Post says (p. 56), cannot be unravelled by our logical process of
syllogism etc. (if logical, then mechanical or combinatory, for logic is meant
here as finitary logic).

Whatever this should mean, there arises the question concerning
a source of that capability of ‘seeing the infinitude’ which transdends the
abilities of a machine. There is a clue to a tentative answer if we take
into account the phrase quoted in the title, but only when we accept an
assumption which is by Post never mentioned (at the same time, there is
no evidence that he would question it).

To wit, let us take literally his maxim that nature is (or possesses) an
infinite intelligence. The brain of a human (or even a non-human animal) is
a part of nature (unlike a machine made by humans), and so may participate
in its infinite intelligence.

If someone feels this conjecture as a crazy metaphysics, let him take its
weaker form. That there are giant computational powers in living beings
is no crazy claim nowadays (though this fact was less conspicuous in
Post’s times). At the same time, owing to our experiences with computers,
we know the enormous role of miniaturization for obtaining ever higher
computational powers. This is why a vision of quantum computer is so
prémising for the increase of computational powers available to us. Now
suppose that the human body, or mind (seen also as part of nature) has
computational power even greater than quantum computer.

To put the thing in a nutshell, the greater is the complexity of
computing, the greater complexity is demanded from the computing device,
and in the existing physical conditions the latter is being increased through
ever deeper miniaturization. This, in turn, is incomparably greater with
minds than with machines.

Now the crucial issue is whether the complexity of nature can be ever
matched by human technology. There is no ready answer yet. However, those
who believe — as do some quantum physicists (eg, Louis de Broglie, David
Bohm, Basil Hiley), some mathematicians (eg, Georg Cantor, Stanislaw
Ulam) and some classics of metaphysics (eg, Pascal and Leibniz) — in the
infinitude of levels with increasing degrees of complexity in the physical
world, should be ready to assume that the mind may be located at a level
of complexity not to be matched by human technology. Owing to that,
an internal mental code (a notion that should have been enjoyed by Post,
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had he learned it), if recorded at a sufficiently deep level of complexity
(possibly in a continuous structure) might prove unsurpassable by any
discrete symbolic code of a machine.

No one can now prove things like those, but no one can disprove either;
this is an open option to be investigated. Those who would try to investigate,
may find encouragement in Post’s belief in the infinite intelligence of nature
which inspired his vision of human creativity.

Witold Marciszewski

Chair of Logic, Informatics and Philosophy of Science
at the University of Bialystok

e-mail: witmar@calculemus.org
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STUDIES IN LOGIC, GRAMMAR AND RHETORIC 2 (15)

Urszula Wybraniec-Skardowska

A FORMAL-LOGICAL APPROACH
TO THE PROBLEM OF IMPRECISION

Abstract

The problems of the paper refer to the theory of knowledge and its
representation, and may be used for the needs of semiotics and artificial
intelligence. It contains a proposal of a formal-logical approach to the que-
stion of imprecision: incompleteness and uncertainty in information systems
in the spirit of Z. Pawlak’s conceptions [3,2,4,6]. It contains explication of
the notions of empty, exact and inexact, i.e., imprecise: incomplete or vague
information, it defines the accuracy coefficient of information in the process
of communication and it shows the relationship of classical logic to reasoning
based on incomplete or vague premises.

1. Introduction

The problems of the imprecision of knowledge and its representation has
been the subject of reflection of logical semiotics, philosophy and linguistics
for a long time. Recently it has become the subject of investigations of
computer scientists interested in the problems of artificial intelligence, in
particular in the questions of reasoning on the basis of incomplete or vague
information and in the possibility of a representation of such information in
computer memory. .

In the process of cognition of a definite fragment of reality, the cognitive
agent (a man or a group of men, some other living organism, or a group of
organisms, or a robot) attempts to discover objective information contained
in it. The agent’s knowledge of the given reality, and of the components of
knowledge, i.e. information about the particular objects of the reality, is the
basis for reasoning and communication with other agents. This knowledge
may be empty, ezact or imprecise: incomplete or vague.
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The subject of this paper is a formal-logical approach to the problem
of the imprecision of information about objects of reality. The main ideas
and intuitions are taken from the author’s papers [8-11]. Reality will be
understood as a relational structure. Reality discovered by the agent will be
defined through an assigned information system in Z. Pawlak’s sense [3,4,6].

2. Reality and information contained in it

Reality is complex and hierarchical. In the cognitive process the agent
discovers its fragments. Each such fragment % may be described as the
following relational structure:

R= <Ua:R1a"'7Rn>7

where U, the universe of objects of reality R, is a nonempty set and R;,
for ¢ = 1,...,n, is the set of i-ary relations on U. These relations have
either a momentary, situational, unit character or a more steady, constituted
character. In this way reality & may be of a twofold kind:

SR or CR

where

1° Situational Reality 2° Constituted Reality

(1)
R, C{R:RC U} = P(U)
| (i +1) |
Riv1 S{rir=(01,...,0i41) € UH'} = Riz1 C{R:RCU"'} =
— Ui+1 — P(U'i+1)

(*YYoe U Ire Riyy Joy,...,0, €U T =(01,...,0,...,0;).

ng{T:TZ(O):oEU}:U

In case 1°, for the situational reality SR, its 1-ary, unit relation r is a unit
property of an object identifying this object — in a formal approach the unit
relation r is identified with this object (see (1)), while multi-ary relation r
Is a mutual location, co-occurrence of objects of a system — in a formal
approach it is identified with this system (see (i 4 1)). For the objects of
the situational reality we assume additionally (see (*)) that for every object
of the reality S?R there exists a certain multi-ary relation, determining its
co-occurrence with some objects.

In case 2°, for the constituted reality CfR, its unary relation R is a pro-
perty of objects of the universe — in a formal approach identified with a sub-
set of the objects of the universe which can be regarded as an equivalence
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class of the indiscernibility objects — objects possessing this property, i.e. the
same property (see (1)), while the multi-ary relation R is identified with the
relationship occurring between systems of objects — in a formal approach
this is a set-theoretical relation, i.e. a subset of the finite Cartesian product
of the set U which as the set of ordered systems of objects of the universe
can be regarded as equivalence classes of indiscernibility systems of objects —
systems remaining in this relationship, i.e. the same relationship (see (z+1)).

The objective knowledge contained in reality consists of pieces of unit
information about the objects of U which are determined by the relations
defining R. They are the following image functions ~ of objects with respect
to relations in fR:

1° for SR
1) if € Ry, then 7: {r} — {r} and 7(0) = o for 0 = 7;
(7’+1) ifrERi+17T:(017"'70i+1)7

then 7: {o;} — {(01,.+.,01-1,0141,---,0i41)}

and ’F(Ol) = (01, v 3041y Oy 1y - .,Oi+1)

forooeU,l=1,...,1+1

2°  for CR
(1) if R € Ry, then R: R — P(U) and R(0) = R for every o € R;

(t+1) if R€ Riy1, Di(R) is k-th domain of R (k=1,...,i+ 1),
then R: D)(R) — Dy X ... X Dy X Dy X ... X Diyq and

}_i(ol) ={(015-++,01-1,001415 -« -, 0i41):
(017' -->Ol—1701701+17"'70i+1) € R}

forall o, € Di(R),l=1,...,i+1.

In the situational reality SR a piece of unit information about its object
with respect to a unary relation r (individual property of this object) is this
object, while with respect. to a multi-ary relation r — ordered system of
remaining objects constituting this relation together with this objects.

In the constituted reality CR a piece of unit information about its
object with respect to a unary relation R to which this object belongs is
this relation, i.e. an ascribed property — the set to which this object belongs
as possessing this property, while a piece of unit information about its object
with respect to the multi-ary relation R is the set of all the ordered systems
of objects with which the object remains in relation.
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.Information contained in reality consists of suitable sets of unit infor-
mation determined by relations of this reality:

1° for SR 2° for CR
ISR= (Ry,...,Rn) ICR= (R, ..., Rn)
. where
Ri =A{fr € R;} ﬁi:{R:REfRi}
fore=1,...,n.

3. Reality determined by an information system and its information

. 'We usally discover reality and the objective information contained in
it, in a more or less exact way, with respect to definite attributes of the
objects of its universe U. As the universe we usually choose a finite set of its
objects Ob and we put it forward as a generalized attribute-value system T
called also an information system (cf. [1] and [3,2,4,6]):

= = (0b,Ay,..., Ay,

Whe.re Ob C U, |0b] < wand A; (2 = 1,...,n) is the set of i-argument
attributes understood as i-ary functions, i.e.

Ya € A; a:0b* — V,,

where V, is the set of all values of the attribute a.

I.n. the. case where Y. determines the situational reality, an additional
condition is satisfied: a is a one to one function onto V,, i.e.

Va € A; Yv € V, 3(04,...,0;) € Ob" (a(oy,-..,0;) = v).

.Every attribute of the information systern ¥ and every value of this
attribute explicitly assigns a relation belonging to the reality 2R(X). The

fragment R(X) of the reality discovered by means of information system %
can be described as follows:

1°  Situational Reality SR(X)

R, Ry,
SR(Z) = (Ob, {{raptv € Vara € A1}, ..., {{rap}v € Vara € An}),

where

Vi=1,...,nVa € A, Yo €V, (rap = (01,...,0i)) <> a(01,...,0;) = v);
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2° Constituted Reality CR(Z)

921 :Rn
CR(E) = (Ob, {{Ra,u}v € Vara € Ar}, ..o, {{Rap}v € Vaia € An}),

where

Vi=1,...,nVa€ A; Vo€V, (Rapw = {(01,...,01-)EObi:a(ol,...,oi):v}).

Both realities consist of the set of objects Ob and relations determined
by any attribute a and its values. In case SR(X) any relation 74, determi-
ned by an attribute a and its value v is an ordered system such that the
attribute’s value for it is equal to v. In case CRR(E) any relation R, , de-
termined by an attribute a and its value v is the set of all ordered systems
such that the attribute’s value for each of them equals v.

Each piece of unit information determining information ISR(T) or
ICR(%) is the image function ™ with respect to the relation in the form 74,4
or R, , assigning it.

Example 1. A “situational” information system is a concrete concert of
a symphony orchestra, e.g. a concert CON of the New York Philharmonic
Orchestra (NYPO) characterized as the following system:

CON = ({1,2,3}, 41, A3, As),

where: object 1 is the conductor, object 2 is NYPO and object 3 is the
audience, while A; = {LOCATION,POSITION}, A; = {MUTUAL LOCATION},
As = {acTviTY}. The set Vioc. Is defined through assigning the values:
conductor’s podium for 1, stage for 2, place for audience for 3, and the
set Vpos. — the values: standing for 1, sitting? for 2, sitting® for 3. The
set Vyur.roc. = {m11, fiz, biss far, R2s, fass for, fa2,nas}, where each of the
values nyx is neutral to oneself — k to k, fx; are the values of facing -
k facing j, for k,j = 1,2,3, and bz is the value of standing with his back to
-1to 3.

Fourth attribute — ACTIVITY does not refer to a potential activity of
objects 1, 2, 3 but to the situational activity in which the subject performs
a definite activity by referring to two remaining subjects, in particular to
oneself. The domain of the attribute (function) ACTIVITY is compounded
from 27 ordered triples of objects and from the same number of values
vk = ACT(jk0 (1, ks 1= 1,2,3) of this attribute determining the set Vaor.
We can assume that its values in particular are the following:

V123 = conducting .2 in front of 3.
v139 = presenting .3. the way of conducting .2.

105



Urszula Wybraniec-Skardowska

v111 = making movements with one’s (1) hands and body according to the
score perceived by 1.

V222 = playing one’s .%. instruments for oneself (2)

Vaaz = perceiving the concert with one’s (8) senses connected with its
reception by .3.

vo13 = playing under conduction of .1. for .3.

vgn3 = playing one’s 2. instruments for others .3.

vsy1 = perceiving the play of the orchestra .2. conducted by .1. .

The situational reality determined by the information system CON is
the relational structure:

SR(CON) - <{1a 2) 3}) :Rl) :RZa :R3>7
where
Ry ={rLoc..v}v € Veoc. U{rpos..}v € Vpos.,

Ry = {rmur.Loc.u}v € Viqur.Loc.,
Rz =A{racr.v}v € Vacr..

The information contained in reality SSR(CON) is the system
ISR(CON) = (R;, Ry, Rs).
The unit information of set fﬁl is 34+ 3 =6, jig -9, jég - 27.

Example 2. A “constituted” information system is NYPO (the New York
Philharmonic Orchestra) mentioned in Example 1 and understood as the
following system:

Al AZ
NYPO = ({01, 0s,...,050}, {PLAYING INSTRUMENT, PART }, {DEPENDENCE} ),

where the universe of the NYPO system is assumed to be a 90-element
set of all the members of the New York Philharmonic Orchestra, where
PLAYING INSTRUMENT is a one-argument attribute for which all the values
will be playing a particular instrument (thus Vpp ins. = {piano, harp,
violin I, violin II, violoncello, doublebass, viola, flute, oboe, horn, clarinet,
fagot, trumpet, trombone, tuba, percussion}); PART is also a one-argument
attribute, understood as a musical function in the orchestra in general; the
set of values Vpapr consists of particular principal instrumentalists (ie.,
concert master, principal violoncellist, etc.), particular associate principal
instrumentalists (i.e., associate concert master, assistant principal cellist,
etc.) and regular members, DEPENDENCE is a two-argument attribute for
which a set of all values Vpgp, = {id,indp,dep,ld}, is compounded from
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the values: identical, independent, dependent, leading a particular instru-
mentalists of a given group. .
The constituted reality determined by the NYPO system is as follows:

C%(NYPO) = ({01, 09,y ...y 090}, Rla Rz),

where
Ry = {Rpr.INs. v}V € VpL.ins. U {RPART v}V € VPART
Ry = {RpEp.v}v € VDEP.

Information contained in the reality is

ICR(NYPO) = (R, R,).

4. Complete information and incomplete information

The information IR(Z) contained in reality 28(X) is objective. A piece
of unit information discovered by the cognitive agent is information about
the objects of this reality. It is subjective information — it depends on the
knowledge of this agent about the attributes of an information system X.

4.1. Knowledge about attributes of the system %
Let a € A; (j = 1,...,n). The knowledge K, about the attribute a of &
is — according to Professor A. Skowron’s suggestion — the following set:

K, ={(0,V?):0 € Ob7},

where V2 C V, and V? is the set of all possible values of the attribute a
for the object o € ObJ from the point of view of the agent discovering the
reality 2(Z). The knowledge of this agent corresponds to his ability to §01ve
the following equation of the agent’s unknowing for any object o € ob:

(e) a(0) = z,

where z is the unknown quantity the range of which is the set V2. The know-
ledge K, of this agent about the attribute a and its value for the object o can
be either (0) empty or (1) ezact or (>1) inezact, i.e. imprecise. In case (0)
the equation (e) has no solution, in case (1) it has exactly one sqlutlon and
in case (>1) it has more than one solution and we have, respectively

©  [Vgl=0, O V=1 >y VI>tL
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The knowledge K, about the attribute a € A; of the system X is totally
empty, if every object o € Ob/ (j = 1,...,n) satisfies the condition (0).
It is complete, exact if every such object satisfies the condition (1). K, is
incomplete, if at least object o € Ob’ satisfies the condition (>1); then the
knowledge K, is ineract, imprecise.

From the point of view of the agent, the information system ¥ is com-
plete if K, is exact for any of its attributes a and it is incomplete if K,
is inexact, imprecise for a certain attribute a of this system. The discove-
red system ¥ includes gaps from the agent’s point of view if the knowledge
about an attribute of £ is empty.

If, from the agent’s point of view, the system X is complete, then it is
identified with X. If such a system is for him incomplete, then more than
one information system corresponds to it (there can be many such systems).
Each such system is obtained by assigning to each attribute the knowledge
about which is incomplete for a certain object, one of its possible values for
this object.

The system discovered by the agent can be represented in the form
of data tables as a syntactical representation of the agent’s knowledge. If
such a system is complete, then every place in these tables indicating the
value of an attribute of this system is filled in by the name of this value.
If the system determines a situational reality this name will be a singular
term, and if it determines a constituted reality this name will be most often
a non-singular sharp name. If it is incomplete then in a certain data table
a variable (a vague name) corresponding to an unknown quantity of the
value of an attribute for a certain object appears. If such a system includes
gaps with respect to the attribute, then in its table representation, in place
of the names of the values of this attribute, at least one place is empty.

Example 3. Referring to the information system CON from Example 1 the
agent’s complete knowledge about the one-argument attributes LOCATION
and POSITION can be represented in Table 1, and his knowledge about the
two-argument attribute MUTUAL LOCATION — in Table 2.

MUTUAL |}
Ob LOCATION POSITION LocaTion | 1 2 3 |0Ob
1 conduc. podium | standing 1 ny1 fiz bia
stage sitting? 2 fa1 man fos
place for audience | sitting® 3 fa1 faz Mas
Ob
Table 1 Table 2
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The knowledge about the three-argument attribute ACTIVITY can be
represented by means of a data table in which all the possible combinations
of triads of objects are indicated in three columns and all the possible values
of this attribute could be indicated in 27 rows. For any triad of objects the
knowledge about this attribute can be either empty (in the table there will
be one or more than one respective empty places) or incomplete (in the
table there will appear at least one variable, e.g. instead of the name of the
value vg93 the variable representing the names of values vaa3 and vgyy will
appear).

Similarly, the knowledge about the attributes of the system NYPO from
Example 2 can be represented in data tables. Fragments of such tables are
shown by Table 3 and Table 4.

Ob PLAYING INSTRT PART
01 piano regul. member
09 harp requl. member
03 violin I concert master
04 violin I associate concert master
05 violin 11 requl. member
0 violin 1 regul. member
090 percussion requl. member
Table 3
DEP 01 09 O3 04 Os Og NN Ogp
01 id ind ind ind ind ind ... ind
0, ind id ind ind ind ind ... nd
03 ind ind id ld ld ld ... ind
o4 | ind ind dep id ind ind ... ind
05 ind ind dep ind id ind ... ind
06 ind ind dep ind ind id ... ind
090 ind ind ind ind ind ind ... id
Table 4
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4.2. Discovering unit information

For a complete information system, information about the reality R(T)
is complete: it is identical with I2R(Z). Then each piece of unit information
about the objects of the reality 8(XT) is ezact. For an incomplete information
system or a system containing a gap there exists inezact, i.e. imprecise, or
empty unit information, respectively.

When the knowledge K, of an agent about the attribute a € A; and
its value for jts object o is not defined yet, then indefinite unit informa-
tion 7, ; or R, ;, determined by the attribute a and its unknown discove-
red value z for o (see (e)), information about objects oy,...,0;, such that
0 = (01,...,0;) € Ob’, is obtained by solving the following information
equations with two unknown quantities z and z':

1°  for SR(X)
(e1) if 74,0(0) € Ry, then for 0 = 74 4,
Te,z(0) = 2’
where z’ is unknown quantity the range of which is the set
O' ={ron}v € V2 C Ob;
(€iv1) i 714 ,400) € Riy1 and 0 = (04,...,0:41), then for o;, 1 =1,...,i+1
Tac(o) = = (T1,. .., C101, Tigns -+, Tig1)

where 2’ is an ordered system of unknown quantities the range of
which for any 7 =1,...,0{—1,l+1,...,7+ 1 are the nonempty sets

0; = {r] ,}v € V2, where ri ,is j-th element of r, ,

2°  for CR(T)
(e1) if Ry a0) € Ry, then for every o € Rg a0
Eavz(o) =z
where 2’ is unknown quantity the range of which is the family
F' ={Ro}v € V2 C P(Ob);

(6,‘.}_1) if Ra,a(o) S Ri—{-l and o = (0]_, ey 01‘_’_1),
then for all 0; € Di(Ra,a¢0)), {=1,...,0+1

R, (o) = {(zla e T, Ty Tig) = 2
(xh . '7xl—1aolaml+17 v ,l‘i+1) € Ra,z‘}
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where z' is an ordered system of unknown quantities the range of
which for any j =1,...,0—1,l+1,...,i+ 1 are the nonempty sets

Fj = {Dj(Raw)}v € V2, where D;(R, ) is j-th domain of Ry o

4.3. Exact information

Unit information 7, ; or }_éayz of an agent about the object o or o; with
respect to his knowledge about the attribute a and its value for this object is
ezact, when the equation (e;) or (e;41) has exactly one solution, respectively,
and for the range of the unknown quantity z’ we have, respectively

O'={o0}, TJ' ={Ruew} 0j={o}, TF;j={D;j(Raa}
forj=1,...,0—-1,l+1,...,:+ 1.

It occurs if and only if equality (e) has exactly one solution and
V2 = {a(0)}. Then the information 7, . or R, , about the object o is iden-
tical with the objective information 7, 4(,) or Ra,a(o) contained in the given
reality SR(Z) or CR(ZT).

Exact information 7, , or R’a)v assigned by relations and so by attributes
and their values has sign carriers and can be represented by means of data
tables (cf. Table 1 — Table 3 for information systems CON and NYPO).

If such information has representations in a natural language then the
atomic sentences there are representations describing relations according to
the number of arguments of suitable relations determining several pieces of
unit information. They have the following form s(1) or s(: + 1):

1° s(1) for SR(T)

(a) o has (corresponds to) a with the value v
P
or
(b) o with respect to the property assigned by the value v of the
attribute a is identified with itself
P

(P is a one-argument predicate)

2° (1) for CR(E)

(a) o is an object which has ¢ with the value v

P

or
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(b) o0 is an object with the property assigned through the value v
of the attribute a.

P
(P is a predicate noun)
In a natural language, equality in the form (i + 1) defining the unit
information about object o; determined by the i+1-argument relation r, , =

(01,...,01,...,0;41) and so by the i+ 1-argument attribute a and its value v,
is represented by the relative atomic sentence s(i + 1) stating that

1° s(i+ 1) for SR(X)
(a) o) together with objects 04,...,0/_1,0141,...,0;4; creates

the system (relation) r, , which has the attribute a
with the value v.

R

or
(b) oy is in the relation r, , with objects 0y,...,01-1,0141,...,0i41

R
(R is a ¢ + l-argument predicate)

The equality (¢ + 1) defining the unit information about object o, €
Dy(R, ), where R, , is the relation determined by the ¢ + 1-argument attri-
bute @ and its value v is represented by the class of all the relative atomic
sentences s(z + 1) stating that

2°  s(¢+ 1) for CR(T)

(a) o; is an object such that system (01,...,01-1,0;,0141,...,0;41) has
the attribute ¢ with the value v
R
(R is a relative i-argument predicate noun)
or
(b) oy is in the relation R, , with objects 01,...,01-1,0141,. .., 041
R

(R is a © + l-argument predicate).

Example 4. And here we have several pieces of unit information and their
representation for the reality SSR(CON) from Example 1 and for the reality
CR(NYPO) from Example 2 in the form of atomic sentences assuming that
the object 2 — NYPO, belongs to the first domain of multi-ary relations.
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for SR(CON)

Unit information Language representation

FLOC. c.podium(2) = 2 2 has LOCATION on the conductor’s podium
Fpos. sitt2(2) =2 2 is in sitting? POSITION

TMUT.LOC. £, (2) =1 2 has (MUTUAL) LOCATION facing 1

FMUT.LOC 1y, (2) = 2 2 has (MUTUAL) LOCATION neutral to oneself (2)

FMUT.LOC. f,5(2) =3 2 has (MUTUAL) LOCATION facing 3

FACT. v32(2) = (2,2) 2 is playing one’s (2) instruments for oneself (2)
FACT. vms(2) = (1,3) 2 is playing under conduction of 1 for 3
FACT. 0320 (2) = (2,3) 2 is playing one’s (2) instruments for 3

for CR(NYPO)

Unit information

RpL INSTRpiano(01) = RPL.INSTRpiano 01 15 A PIANIST in t.he NYPO
Rp1 INSTRwiol.1(06) = RPL.INSTRviol.I ~ 0O 1S A VIOLINIST I Int NYI‘)O
RPART,con.masteT.(OEI) = RPART,con.master 03 1S A CONCERT MASTER 1n

Language representation

the NYPO
If o3 € Di(RpEP.1d), then For every o € D2(RpEP. 1d)
RDEP.,ld(Os) = {0:(03,0) € RDEp,,ld} each sentences of such type:

03 i8 A LEADER OF A GROUP
WHOSE MEMBER IS 0

4.4. Empty information

Unit information 74, or Ra,z about an object o or an object o; as
an element of the ordered system o = (01, ...,0i41) is empty, with respect to
the knowledge of the agent about the attribute a and its value for this object,
if the information equation (e;) or (e;y;), respectively, has no solution; then
the range of the unknown quantity ' is empty (sets 0!, ' and 0;, F;
for j =1,...,0 —1,l4+1,...,%+ 1 are empty). It holds if and only if the
equation (e) of the agent’s unknowing has no solution, ie. V2 =10.

If the agent’s unit information has a table representation and for the
attribute a and the object o or o; as an element of the system (o1,...,0i41)
the information about it with respect to this attribute is empty, in the
data table, in the place corresponding to the value of @ for o or o, a gap
appears. If the pieces of unit information about the object o or o; have
representations in a natural language, then the representation of empty
information is a sentence stating the lack of whichever data about the value
of this attribute for o or o;.
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4.5. Imprecise information: incomplete and vague

Unit information 7, , or Ra,x about an object o or an object 0; as an
element of the ordered system o = (0;,...,0i41) is imprecise, i.e. ineract,
with respect to the knowledge of the agent about the attribute a and its
unknown value z for this object, if the information equation (e;) or (e;41),
respectively, has more than one solution; then the range of the unknown
quality z' of the information equation (e;) is the multielement set O' or F*
— the set of solutions of this information equation (e;), and at least one of the
sets Ojor F; (j=1,...,1—1,1+1,...,i+1) creating the appropriate sets of
solutions for information equation (e;41) is a multi-element set. The agent’s
imprecise unit information about o or o; is called incomplete in case 1°,
if it refers to the reality SR(X), and vague in case 2°, if it refers to the
reality CR(Z).

The counterparts of the equations (e;) and (e;4;) for imprecise infor-
mation are the following relationships:

1°  for SR(X)
(e1) If 74,0(0) € Ry, then
7a,2(0) € O for 0 =14 4(0);
(eir1) T 7o) € Riyr and 0 = (0y,...,0i41), then for o7, [ =1,...,1+1
Tao(01) €01 X ... X 0121 X Ot41 X ... X Oigq

where 0 # O; = {r] Jv e V2 COb, j=1,...,1-1,1+1,...,i+1

2°  for CR(T)
(e1) If Ry a(0) € Ry, then
Ra,x(o) € F forany o € Rq a0y

(€iy1) I Rga(0) € Riyy and 0= (04,...,0441),
then for all 0; € Di(Raa0)), I=1,...,14+1

Roz(o) €Fix ... X Fros X Frpn X oo X Fig

where § # F; = {D;(R,,,)}v € V2 C P(0b),
j=1,...,0-1,01+1,...,i+1

The above relationships hold if and only if equation (e) of the agent’s
unknowing about the attribute a has more than one solution, i.e. the con-
dition (> 1) holds and |V?| > 1. For every solution of the unknowing equa-
tion (e) and so for every possible value of the attribute a for the object o,
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from the point of view of the agent, in cases (ej) there exists one unit
information about object o; then in the agent’s estimation indefinite, infor-
mation 74 o OT Ra‘x about the object o corresponds to as many possible unit
information about o as many possible values are in the set V2. There is
also the same number of elements of the range O' or F of the unknown
quantity z’ in (e;).

In the case of information equations (e;;;) the unknown quantity z' is
a properly ordered system of unknown quantities each of which has a range
of cardinality less then or equal to the the cardinality of the set V2. Thus
the possible unit information about the object o; as an element of the system
0 = (01,...,0i41) is no more than |V?|* (i-power of the cardinality of the
set V.2).

4.6. The degree of inexactness of information

If information is imprecise with respect to the agent’s knowledge about
the attribute a for the object o or o, then the risk of error, and so the
degree of inezactness of the agent’s information about objects of reality,
depends on the cardinality of the scope of the unknown value z of the
attribute a for the object o or oy, i.e. on the set V2. The degree of inexactness
of information 7, ; or R'G,I about the object o can be assigned by means of
the accuracy measure o which we call the coefficient of ezactness of the
agent’s information:
1°  for SR(X)

(@)  a(Fas(0) = —

|0

(0% =1vyh

1 1
. 7 = < X
(@iv1) e s(1)) [01]0...101-1] 0[Ol oo 0 |Oup] ~ (VI

2°  for CR(Z)

(an) a(ﬁa,zw)):,giq (5% = [ve))

1
< =
|3’1| o... |Fizilo|Figr] 0. 0Fipal — VP

(@i41)  a(Ras(o)) =

0<a<l).

4.7. Representation of inexact information

Inexact information of the agent about the object o determined by the
unary relation 74, or R,z is linguistically represented as a sentential func-
tion — given in the below form and stating that:

115



Urszula Wybraniec-Skardowska

sf(1)
1°  for SS‘{(E)

(a) o has (corresponds to) ¢ with the variable value z
or
(b) 0 — with respect to indefinite property assigned by the attribute a
and its unknown value z — is identified with z';

2°  for CR(X)

(a) o is an object ' which has the attribute a with the variable value z
or
(b) o is an object which with respect to indefinite property assigned by
the attribute a and its unknown value z is an object z'.

The values of the variable “z’” in the sentential function are the same
as the values of the unknown quantity z’ in the information equation (e;).
In case 1° the value of the variable “z'” is each object which could be iden-
tified with o with respect to the unknown value z of the attribute a for o.
The variable “z'” represents singular terms of these objects which for the
attribute @ have one of the possible values for z. In a natural language, an
indefinite pronoun or indefinite description corresponds to the variable “z'”,
and expression (b) is an incomplete utterance. In case 2° the value of the
variable “z'” is any set of objects (thus each unary relation — each subset
of the universe of reality) which from the agent’s point of view has some
possible value of the attribute a for the object o. Each such set belongs to
the range of the variable “z’” and is the range of a sharp name represen-
ting this variable. In a natural language a vague name corresponds to this
variable. The expression (b) can be regarded as a vague utterance. Hence,
the range of a vague name contained in it — regarded as the variable “z'”
— is a family of all extensions of sharp names which are represented by this
variable-name. Such a family can be regarded as a generalized rough set
in Pawlak’s sense [5,7] (cf. U. Wybraniec-Skardowska [8-11]), the lower and
upper approximations of which are the greatest lower bound and the least
upper bound, respectively.

The inexact information 7, ; or Ea,m about the object 0; as an element of
the system o = (04, ...,0;41), determined by ¢+1-ary relation assigning by ¢+
l-argument attribute ¢ and an indefinite value z, is represented in language
as a sentential function corresponding to indefinite, indetermined relative
sentences or a class of such sentences; such sentences describe a i+ 1-ary
relation between object o; and ¢ indefinite objects. And thus we have
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sf(t+1)

1°  for SR(Z)

(a) o) together with the indefinte system z' = (Z1,.. ., Ti—1, L1415+ - - a:.i_H)
of objects gives an object o' = (Z1,...,%1-1,01, Ti415-- ., Tiy1) Which
has (coresponds to) a with the indefinite value 2

or

(b)  o; with respect to the unknown value z of the attribute a for‘ some
objects of the form o' = (%1,...,%1-1,01, %141, - - - ,Tiy1) TEmains 1.n
relation to the indefinite objects zy, ..., &1, Tit1, -3 Tit1 creating
system o'.

2°  for CR(Z)
(a) o is such the object that the attribute a for an indefinite object

0 = (T1y+++yTim1,00, Tip1,- -+, Tip1) has the indefinite value z
or
(b)  o; remains in relation to an indefinite system of objects
' =(zy,. . T, Tty - .,Tiy1) such that z is the indefinite value
of the attribute a for o' = (Z1,...,Zi—1,00, Tig1s- -+ Tit1)-

The values of the variable “z'” in these sentential functions are values of
the unknown quantity z' of the information equation (eit1). The variables
“p” L “aisy”y “zig”, oo “Tigpn” Tepresent singular terms of objects
whose appropriate system with the object o takes on a possible value of
the variable “z'”. In colloquial language, indefinite pronouns or indefinite
descriptions correspond to these variables. In sentential functions sf(¢ + 1)
there appear words containing i-argument relative names (predicate nouns).
These words are regarded as variables representing sharp names. So that in
case 1° the expression representing incomplete information is an incomplete
utterance and in case 2° — a vague utterance, which is a carrier of vague

information. .
When we represent inexact information about the object o or o; as the
element o = (o, ...,0i41) with respect to its attribute a by means of a data

table, we put the variable “z” in the place corresponding to the unknow
value z of a for the object o or o;. Its role is fulfilled by either an indefinite
pronoun, in case 1°, or an indefinite description, in case 2°.

Example 5. The example of incomplete information about the object 1
(the conductor) of the reality SR(CON) from Example 1, with respect to
the attribute LOCATION and its unknown value SOMEWHERE ON THE
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PLATFORM with the range {conductor’s podium, stage}, is the information
represented by an incomplete utterance (in the form sf(1) for 1°):

— The conductor has LocaTiION SOMEWHERE ON THE PLATFORM.
or more exactly

— The conductor with respect to LOCATION and his indefinite value SO-

MEWHERE ON THE PLATFORM is identified with A PERSON LO-
CATED SOMEWHERE ON THE PLATFORM.

0b | LOCATION POSITION
1 SOMEWHERE standing
2 conduc. podium sitting?
3 place for audience sitting®

Table 1’

In Table 1 (see Table 1’) from Example 3, in the first row and first
column, instead of the name “conductor’s podium” the indefinite pronoun-
-variable “SOMEWHERE (ON THE PLATFORM)” occurs, representing
the unknown value SOMEWHERE ON THE PLATFORM of the attribute
LOCATION.

The following incomplete utterance (in the form sf(1 + 2)) for 1°

- NYPO is playing SOMEBODY’S instruments for SOMEBODY,

in which the distinguished indefinite pronoun-variable “SOMEBODY’S” has
only one value: NYPO (2), and the variable “SOMFEBODY” has two values:
NYPO (2) and the audience (3), represents incomplete information with
respect to the attribute ACTIVITY about the object NYPO (2) which toge-
ther with two indefinite objects: SOMEBODY’S and SOMEBODY creates
an ordered triad for which the value of this attribute is the unknown quan-
tity: playing SOMEBODY’S instruments for SOMEBODY with the scope

{'U2227 1’223}-

Example 6. Let us consider the information system NYPO from Example 2
(see Table 3’ and Table 4’).

When, e.g. the knowledge about the attribute PLAYING INSTRUMENT
referring to o, is incomplete, then in the fourth line and first column of
the Table 3 (see Table 3’) there appears a variable, let us say, “A4 STRING
INSTRUMENT” (“z”) representing possible sharp names of some string
instruments, e.g.: violin I, violin II, violoncello, obviously from the point of
view of the agent.
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Ob PLAYING INSTR. PART

0, piano requl. member
0y harp requl. member
03 wiolin 1 IMPORT. INSTR.
04 A STRING INSTR IMPORT. INSTR.
05 violin I requl. member
06 violin [ requl. member
090 percussion requl. member

Table 3’

DEP 0y 09 O3 04 O5 Og “e Ogq
04 id ind ind ind  ind ind ... ind
0, |ind id ind tnd  ind ind ... ind
03 | ind ind 1d Ild UNK UNK ... ind
04 | tnd ind dep id ind ind ... nd
o5 |ind ind UNK ind id ind ... ind
0o¢ |ind ind UNK ind ind id ... ind
090 | tnd ind ind ind ind ind .ood

Table 4’

The following vague utterance (in the form sf(1) for 2°) expresses im-
precise information about the member o, of NYPO with respect to the
attribute PLAYING INSTRUMENT with indefinite values A STRING INSTRU-
MENT (z):

— 04 is A MEMBER OF NYPO WHO PLAYS A STRING INSTRU-

MENT IN NYPO (z')

or

— 04 is A STRING INSTRUMENTALIST IN NYPO (z').

Let us notice that the family of three sets which are extensions of the
sharp names: “violinist I”, “violinist IT”, “violoncellist” is the extension of
the vague name distinguished in the second utterance and representing these
sharp names.
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If the agent possesses inexact information about the attribute PART for
the objects 03 and o4, in the third and fourth rows and second column
of Table 3 (see Table 3’) a variable appears, e.g. “AN IMPORTANT IN-
STRUMENTALIST” (“z”) whose possible values, from the point of view
the agent, can be: concert master, associate concert maser. The following
vague utterance (in the form sf(1)) corresponds to the vague information
about for instance os:

- 03 is AN IMPORTANT INSTRUMENTALIST IN NYPO (z’).

Then the vague name occurring in this utterance represents two sharp names
which are a definite description: “the concert master in NYPQO” and “the
associate concert master in NYPO”.

If the agent’s knowledge about the attribute DEPENDENCE for an ordered
pair (03, Z9) is inexact, in the third line and in a certain column of Table 4
(see Table 4”) the variable “UNKNOWN” (“z”) can appear, for instance ran-
ging over three terms of values: independent, dependent, leading. Then the
following vague utterance (in the form sf(1+1)) concluding a one-argument
relative vague name (a two-argument vague predicate) represents the vague
information about the object o3 with respect to the attribute DEPENDENCE
and its indefinite values UNKNOWN (z):

— oz remains in UNKNOWN DEPENDENCE on SOMEBODY (z,)in NYPO
or

— 03 is a MEMBER OF NYPO WITH UNKNOWN DEPENDENCE (z) ON
SOMBODY (z,) IN NYPO.

The vague name “MEMBER OF NYPO WITH DEPENDENCE ON” di-
stinguished in the second utterance represents three relative sharp names:
“independent”, “dependent”, “leading” the extensions of which are, respec-
tively, three sets of an ordered pair in the form (o3, z5), where 2z, — SOME-
BODY - is an unknown quantity, values of which are members of NYPO
such that o3 together with them has the attribute DEPENDENCE with the
value either dependence or independence or leading, respectively. And so the
family compounded from three sets of ordered pairs of members of NYPO
is the extension of this relative vague name. Fach of these sets is a set of
pairs which have a certain value of the attribute DEPENDENCE, which was
mentioned above. The whole utterance determines the class of three vague
utterances with the indefinite pronoun-variable “SOMFEBODY”. All such
utterances represent relative atomic sentences.
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5. Incomplete and vague utterances and processes of communication

and reasoning; observations and conclusions

(i) In the proposed approach an incomplete utterance representing in-
complete information about an object of reality S?R(X) is assumed to be
a sentential function in which variables represent singular terms, while a va-
gue utterance representing vague information about an object of the reality
CHR(T) is assumed to be a sentential function in which vague names are
treated as variables representing sharp names. In both cases, the ranges of
these variables are established in advance by the agent.

(i) Substituting in the classical sentential calculus laws sentential func-
tions understood as incomplete or vague utterances (representing true or
false logical sentences) for propositional variables, we obtain true expres-
sions — satisfying all the laws of this calculus.

(iii) On the basis of premises which are incomplete or vague utterances
with the same established ranges for equiform variables, correct logical re-
asoning can be done.

Example 7. An illustration of the above remarks can be the following correct
reasoning referring to CR(NYPO):

04 is A STRING INSRUMENTALIST IN NYPO (z')
o7 is A STRING INSTRUMENTALIST IN NYPO ()
and so o0, and o; are STRING INSTRUMENTALISTS IN NYPO (z’s)

This reasoning runs according to the schemes

o, p

07 € (El q

04 and o; are z’s iff o4 € 2’ and o7 € 2 r <= pAg
and so o4 and o; are z’s r

(iv) The extensions of the variables occurring in incomplete and vague
utterances can be variously established by a user of information. It is essen-
tial especially in the process of verbal communication where for a sender s
and a receiver r the variables occurring in incomplete or vague utterances
can have different values. The lack of common agreement concerning the
extensions of the variables occurring in these utterances is, as we know, one
of the main causes of misunderstanding between a sender and a receiver.

(v)  When in the discussed utterances the variable “y” occurs whose range
for a sender s is Range®(y) and for a receiver 7 — Range’(y), then the degree
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of ezactness of understanding between s and r is determined by the following
coefficients:

_ |Range®(y) N Range Wl < Bly) <1,

) Range' (7))

_ |Range’(y) N Range”(y)| _

() = [Range’ (9)] ;o 0<v(y) <1,

B(y) — the coefficient of understanding between s and 7,
7(y) — the coefficient of understanding between r and s.

Form the point of view of a sender and a receiver there can occur known
relations between the ranges of the variable “y”:
(1) If Range®(y) = Range(y), then B(y) = ¥(y) = 1, and a complete under-
standing between s and r takes place,
(2) If Range®(y) N Range”(y) = 0, in the process of communication a com-
plete misunderstanding between s and r holds; then B(y) = v(y) = 0,
(3) If Range®(y) and Range”(y) remain in different range relations: the re-
lation of overlapping (0 < A(y), 7(y) < 1), of subordination (8(y) = 1,
7(y) < 1), of superordination (0 < B(y) < 1 = 7y(y)), there occurs
misunderstanding between s and r the degree of inexactness of which
is determined by appropriate coefficients of understanding.
(vi) When imprecise information about an object is expressed by means
of sentential functions with a greater number of variables, for such variables
we count coefficients § and «. If for every such variable both of them are
equal to 1 in the process of communication, understanding between s and r
is achieved; when they are all equal to 0, we have to do with a complete
misunderstanding. In the remaining cases we obtain an understanding or
a partial misunderstanding, the degree of inexactness of which can be de-
termined by appropriate coefficients of understanding dependent on all the
unknown quantities of the transmited information.
(vii) The unification of the extension of the variable-vague name in the
process of transmission of vague information or in the process of reasoning,
when the premise of reasoning is a carrier of vague information of many
agents, can be achieved by its approximation (see Z. Pawlak [5,7]) - i.e.
in our approach by establishing the greatest lower bound and the least
upper bound (with respect to inclusion) of this extension, treated as a rough
set and at the same time as a family of extensions of sharp names which
can be represented by a variable. Then the degree of exactness of vague
information about the object, when it is expressed by means of the vague
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name “y”, can be determined by the following coefficient 6(y) of ezactness

of approzimation:

_ [Range(y)l
[Range(y)|

6(y) ;o 0<46(y) L4,

where Range(y) is the greatest lower bound of the family Range(y) which
is being the range y, while Range(y) is the least upper bound of this family.
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