qJ POLITECHNIKA BIALOSTOCKA

INFORMATYKA

zeszyty naukowe —

N 1644-0331

Zeszyty Naukowe Politechniki Biatostockiej

INFORMATYKA

/eszyt 4

Oficyna Wydawnicza Politechniki Biatostockiej
Biatystok 2009

Redaktor naukowy:
dr hab. inz. Marek Kretowski

Recenzenci:

dr Andrzej Biela

dr inz. Ireneusz Czarnowski

dr Matgorzata Cwiklinska-Jurkowska

prof. dr hab. inz. Marian Bolestaw Gorzalczany
dr hab. Stanistaw Grzegorski, prof. PL

dr hab. Ryszard Gubrynowicz

dr hab. inz. Urszula Markowska-Kaczmar
dr hab. Edward Oczeretko

prof. dr hab. inz. Wojciech Penczek

prof. dr hab. inz. Pavel Sevastsyanau

dr hab. inz. Stanistaw Szczepanski, prof. PG
prof. dr hab. inz. Andrzej Swierniak

Sekretarz redakcji:
mgr inz. Tomasz Lukaszuk

© Copyright by Politechnika Biatostocka
Biatystok 2009

ISSN 1644-0331

Publikacja nie moze by¢ powielana i rozpowszechniana, w jakikolwiek sposob,
bez pisemnej zgody posiadacza praw autorskich

Druk:
Oficyna Wydawnicza Politechniki Biatostockiej

Naktad: 100 egz.

CONTENTS
SPIS TRESCI

Krzysztof Bandurski, Wojciech Kwedlo

TRAINING NEURAL NETWORKS WITH A HYBRID
DIFFERENTIAL EVOLUTION ALGORITHM

UCZENIE SIECI NEURONOWYCH HYBRYDOWYM
ALGORYTMEM OPARTYM NA DIFFERENTIAL EVOLUTION
Maciej Brzozowski, Vyacheslav Yarmolik

OBFUSCATION QUALITY IN HARDWARE DESIGNS
JAKOSC OBFUSKACII PROJEKTOW SPRZETOWYCH

Marcin Czajkowski, Marek Kretowski

AN EXTENSION OF TSP-FAMILY ALGORITHMS
FOR MICROARRAY CLASSIFICATION

ROZSZERZENIE METOD Z RODZINNY TSP W KLASYFIKACIJI
MIKROMACIERZY DNA
Joanna Goscik, Jozef Goscik

NUMERICAL EFFICIENCY OF THE CONJUGATE GRADIENT
ALGORITHM - SEQUENTIAL IMPLEMENTATION

EFEKTYWNOSC NUMERYCZNA ALGORYTMU GRADIENTOW
SPRZEZONYCH - IMPLEMENTACJA SEKWENCINA

Jerzy Krawczuk

RANDOM TEST FOR TRADING SYSTEM

TEST LOSOWOSCI MECHANICZNYCH SYSTEMOW
TRANSAKCYJNYCH

Matgorzata Kretowska

PROGNOSTIC ABILITIES OF DIPOLES BASED ENSEMBLES
— COMPARATIVE ANALYSIS

ZDOLNOSCI PROGNOSTYCZNE KOMITETOW BAZUJACYCH
NA DIPOLACH - ANALIZA POROWNAWCZA

19

31

47

63

73

10.

11.

12.

Tomasz Lukaszuk 85
FEATURE SELECTION USING CPL CRITERION FUNCTIONS
SELEKCJA CECH Z WYKORZYSTANIEM FUNKCIJI
KRYTERIALNYCH TYPU CPL

Agnieszka Makarec 97

PROBABILISTIC AND NONDETERMINISTIC SEMANTICS
FOR ITERATIVE PROGRAMS

PROBABILISTYCZNE I NIEDETERMINISTYCZNE SEMANTYKI
DLA PROGRAMOW ITERACYJNYCH
Andrzej Sawicki, Piotr Zubrycki, Alexandr Petrovsky 111

DESIGN OF TEXT TO SPEECH SYNTHESIS SYSTEM BASED
ON THE HARMONIC AND NOISE MODEL

KONCEPCJA UKLADU SYNTEZY MOWY Z TEKSTU OPARTEGO
NA MODELU ,,HARMONICZNE I SZUM”
Marcin Skoczylas, Roberto Cherubini, Silvia Gerardi 127

AUTOMATIC DETECTION OF UNSTAINED VIABLE CELLS
IN PHASE-CONTRAST MICROSCOPE IMAGES

AUTOMATYCZNA DETEKCJA ZYWYCH KOMOREK
NIEBARWIONYCH W OBRAZACH WYKONANYCH

MIKROSKOPEM FAZOWO-KONTRASTOWYM

Marta K. Smolinska, Zenon A. Sosnowski 139
PARALLEL FUZZY CLUSTERING FOR LINGUISTIC SUMMARIES
PODSUMOWANIA LINGWISTYCZNE Z ROWNOLEGLYM
GRUPOWANIEM ROZMYTYM

Kazimierz Trzesicki 151

LOGIC IN FORMAL VERIFICATION OF COMPUTER SYSTEMS.
SOME REMARKS.

LOGIKA I FORMALNA WERYFIKACJA SYSTEMOW
KOMPUTEROWYCH. KILKA UWAG.

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIE]J 2009
Informatyka — Zeszyt 4

Krzysztof Bandurski!, Wojciech Kwedlo!

TRAINING NEURAL NETWORKS WITH A HYBRID
DIFFERENTIAL EVOLUTION ALGORITHM

Abstract: A new hybrid method for feed forward neural network training, which combines
differential evolution algorithm with a gradient-based approach is proposed. In the method,
after each generation of differential evolution, a number of iterations of the conjugate gra-
dient optimization algorithm is applied to each new solution created by the mutation and
crossover operators. The experimental results show, that in comparison to the standard differ-
ential evolution the hybrid algorithm converges faster. Although this convergence is slower
than that of classical gradient based methods, the hybrid algorithm has significantly better
capability of avoiding local optima.

Keywords: neural networks, differential evolution, conjugate gradients, local minima

1. Introduction

Artificial Neural Networks with feedforward structure (ANNs) are widely used in
regression, prediction, and classification. The problem of ANN training is formulated
as the minimization of an error function in the space of connection weights. Typical
ANN training methods e.g. backpropagation and conjugate gradient algorithms are
based on gradient descent. The most advanced of them [4,12] are capable of fast
convergence. However, like all local search methods, they are incapable of escaping
from a local minimum of the error function. This property makes the final value of
the error function very sensitive to initial conditions of training.

In recent years global search methods have received a lot of attention. Examples
of such methods include evolutionary algorithms (EAs) [11] and simulated annealing
[1]. EAs are stochastic search techniques inspired by the process of biological evo-
lution. Unlike gradient descent methods they simultaneously process a population of
problem solutions, which gives them the ability to escape from local optima. How-
ever this ability comes at the expense of very high computational complexity. This
problem is especially important in neural network training where evaluation of each
solution requires reading the whole learning set. A possible method for alleviating

! Faculty of Computer Science, Bialystok Technical University, Biatystok

Krzysztof Bandurski, Wojciech Kwedlo

this drawback is construction of a hybrid algorithm which incorporates the gradient
descent into the process of the evolutionary search.

The hybridization of EAs with gradient based methods can be achieved in a
number of ways. In one approach, employed e.g. in the commercial DTREG package
([14]), an EA is used to locate a promising region of the weight space. Next, a gra-
dient descent method is used to fine-tune the best solution (or all the solutions from
the population) obtained by the EA. A version of this method, in which Levenberg-
Marquardt algorithm is employed to refine a solution obtained by the DE was pro-
posed in [16].

In an alternative approach, referred to in [13] as Lamarckian and applied for
neural network training in [5], a gradient descent procedure is incorporated into an
EA as a new search operator. This operator is applied to the population members in
each EA iteration, in addition to standard operators such as mutation and crossover.
Each application of the operator usually involves more than one iteration of a gradient
descent method.

This paper is motivated by the work of Ilonen et al. presented in [9], in which
they applied Differential Evolution (DE) proposed in [15] to train the weights of
neural networks. They concluded that although the algorithm can converge to a global
minimum, the computation time required to achive that goal can be intolerable. In an
attempt to speed up the convergence rate of DE we followed the Lamarckian approach
and combined it with the Conjugate Gradients ([4]) algorithm.

2. Artificial Neural Networks

A single node (artificial neuron) of an ANN receives a vector of input signals x, aug-
mented by the bias signal which is always equal to one. The node then computes
the dot-product of this input vector and the vector of weights w to obtain its activa-
tion. The output signal y emitted by the node is a usually nonlinear function of the
activation, referred to as the transfer function or the activation function and denoted
here as f(net). It may be a simple threshold function, though other functions, like
standard sigmoid or hyperbolic tangent, are often chosen for their specific properties,
e.g. differentiability. The above operations can be written down as:

y = flnet) = f(x-w), @)
where net is the node’s activation, x represents the vector of input values including
bias and w stands for the vector of weights.

In a multilayer feed forward ANN nodes are arranged in layers. A single network
of this type consists of the input layer, which does not perform any computations and

Training neural networks with a hybrid Differential Evolution algorithm

Fig. 1. A feed-forward ANN with two processing layers

only emits output signals, an arbitrary number of processing layers, i.e. one or more
hidden layers and one output layer. Each node uses Equation (1) to compute its output
signal which is then transmitted to one input of each node in the following layer. An
example of an ANN with two processing layers (e.g. one hidden layer and one output
layer) is presented in Fig.1. The outputs of the nodes that form the /-th processing
layer in such a network can be calculated as follows:

yi = fi(x;Wy), (2)

where X; = [1,y/—1,1...Yi—1,n---Yi—1,,,] is a vector consisting of n;_; outputs signals
emitted by the previous layer / — 1 augmented with the bias signal equal to 1, y; =
Vi1---Yin---Yin] is the vector of output values yielded by the /-th layer, fj is the
element-by-element vector activation function used in the /-th layer and W; is the
matrix of weights assigned to the neurons in the /-th layer, in which a single n-th
column contains all the weights of the n-th neuron, n =1...n;. When / is the number
of the output layer, equation (2) yields the final output vector z.

Before an ANN can be used for prediction it must first undergo fraining. This
is usually done using a training set T consisting of m pairs (training samples): 7 =
{(x1,t1), (Xx2,t2), ..., (X, t;), ..., (X, t) }, Where X; is a vector of d input values and
t; is a vector of c¢ desired target values corresponding to the i-th input vector. For
each input vector x; supplied to the input layer the neural network yields an output

Krzysztof Bandurski, Wojciech Kwedlo

vector z;, which is compared against the desired target vector t; using a chosen error
function E. A commonly used error function is the sum of squared errors:

c

SSE(T,W) =Y ¥ (tw —z)?, 3)
i=lk=1
where W is the set of all weights in the network, #;; denotes the k-th value in the i-th
target vector and z;; denotes the k-th output of the network produced in response to the
i-th input vector. The training error calculated using Equation (3) is then reduced by
adjusting the weights. We may thus formulate the problem of learning as the problem
of minimizing the error function in the space of weights.

3. Differential Evolution

In this section the most popular DE/rand/1/bin differential evolution method is pre-
sented. For a more detailed description the reader is referred to [15].
Like all evolutionary algorithms, differential evolution maintains a population
U = {uj,uy,...,u,} of s solutions to the optimization problem. Usually each solution
takes the form of a D-dimensional real-valued vector, i.e. u; € ®P. At the beginning
all members of the population are initialized randomly. The algorithm advances in
generations. Each generation involves three consecutive phases: reproduction (cre-
ation of a temporary population), computing of the objective function (called the
fitness in the EA terminology) for each temporary population member, and selection.
Reproduction in differential evolution creates a temporary population
V ={vy,va,...,Vs} of trial vectors. For each solution u; a corresponding trial vector
v; is created. Each element v;; (where j = 1...D) of the trial vector v; is generated
as:
- ugj+F +(upj—ucj) if rmd() <CR @
Y Ui otherwise '

In the above expression F € [0,2] is a user supplied parameter called the
mutation coefficient. a,b,c € 1,...,s are randomly selected in such a way, that
a#b#c#i rnd() denotes a random number from the uniform distribution on
[0,1), which is generated independently for each j. CR € [0, 1] is another user sup-
plied parameter called the crossover factor. The parameters F and CR influence the
convergence speed and robustness of the optimization process. The choice of their
optimal values is application dependent [15]. To alleviate the problem of finding op-
timal F and CR values we turned to [3] where Brest et al. proposed a self-adaptation

Training neural networks with a hybrid Differential Evolution algorithm

scheme for these parameters. The values of F and CR are stored with each individ-
ual u;. Before they are used to generate a candidate solution v; they are changed as
follows:

F,+rmmd() xF, if rnd() <1
Figi1= { “ X .)
G otherwise
rmd() if rmd() <1
CRiG+1 =) . (6)
CR;c otherwise

where 71 =1, = 0.1, F; = 0.1 and F, = 0.9, whereas F; s and CR; ¢ denote
the F and CR values assigned to the i-th individual in the G-th generation. The new
values F; g1 and CR; g4 are stored with the candidate solution which may replace
the original one.

The remaining two phases of a single DE generation are the computation of
fitness for all members of the trial population V and the selection. The selection in
differential evolution is very simple. The fitness of each trial solution v; is compared
to the fitness of the corresponding original solution u;. The trial vector replaces the
original in U if its fitness is better. Otherwise the trial vector is discarded.

To apply DE to ANN training [9] the weights of all neurons are stored in a real-
valued solution vector u. The algorithm is used to minimize the sum of squared errors
(SSE) or a similar criterion function. The evaluation of this function requires iterating
through all elements of the training set 7 and summing all the partial results (squared
errors in the case of SSE) obtained for all the elements of 7. In the terminology of
gradient-based methods, a similar approach, in which the weights are updated after
the presentation of all the elements of 7' to the network is called the batch training
protocol [6].

4. Conjugate Gradient Descent

The conjugate gradient algorithm (CG) was originally proposed in [8] and applied
to minimize of n-dimensional functions in [7]. In [4] it was used for neural network
learning as a replacement for the classical backpropagation algorithm (BP). In clas-
sical BP the vector of weights being the current estimate of the desired minimum is
updated in each step by shifting it along the gradient, but in the opposite direction,
according to the following formula:

W = w g m-wEWO)),)

Krzysztof Bandurski, Wojciech Kwedlo

where W) is the set of all m weights in the network (including biases), mn is
an arbitrarily chosen learning coefficient and \/E (W(k)) is the gradient of E in W),
In the CG algorithm, however, the gradient is used only to determine the first error
descent direction, whereas each subsequent direction is chosen to be conjugate with
all the previous ones, i.e. one along which the gradient changes only its magnitude,
and not direction (in practical applications, though, the algorithm is restarted every m
iterations). Another feature that differs the CG algorithm from BP is that it employs
a line search algorithm in order to find a “sufficient” approximation of a minimum of
the error function along a given direction. The CG algorithm works as follows:

Let W(© be the initial estimate of the minimum W* of E(W), m be the size of
W, k=0.

[step 0]: if k mod m == 0 then

DY = — 7 E(WW))
else

DY = —EWW) + B,)

where By is the coefficient governing the proportion of the previous search di-
rections in the current one. It may be one of several expressions. In our work we
chose the one suggested Polak-Ribiere, which, according to [6], is more robust in
non-quadratic error functions:

[VEWW)T[VEW*) — VE(W* D))
D

P E W) T EW)

(10)

[step 1]: Perform a line search starting at W®) along direction D®) to determine
a step length oy, that will sufficiently approximate the minimum of the single variable
function given by:
F(a) = EWW - aD®) (11)
[step 2]: Update the estimate of the minimum of E(W):

wkt) — w4 g, pk) (12)

[step 3]: k=k+1, goto [step 0]

The above procedure is repeated until a chosen termination criterion is met. It
is clear that the selected line search algorithm has a significant impact on the overall
performance of the algorithm presented above. We used an algorithm developed by

10

Training neural networks with a hybrid Differential Evolution algorithm

Charalambous, which is based on cubic interpolation. For a detailed description of
this algorithm the reader is referred to [4].

5. Hybridization

As indicated in the introduction, our method of combining DE and the CG algorithm
consisted in applying the latter to each candidate solution v; obtained according to
(4) before the computation of its fitness. The number of CG iterations is set by the
user and remains constant throughout the entire experiment. By “fine-tuning” each
candidate before comparing it with its predecessor we were hoping to speed up the
convergence rate of DE.

6. Experiments

We tested our hybrid algorithm on 3 artificial problems and 1 real-life dataset that are
described in the following paragraphs. Two versions of each of the artificial problems
were tackled, each differing in the size of a single training sample. The convergence
properties of our method were compared against the results yielded by self-adaptive
DE with no local optimization, the Polak-Ribiere variant of Conjugate Gradient. As
the computational complexity of one epoch is different in each of these algorithms,
we decided to follow [9] and present our results on timescales. Each algorithm was
run 30 times for each dataset. The weights of each neuron were initialized with ran-
dom values from the range (— ﬁ, n‘;), where n;, is the number of inputs of the neuron,
including bias. Each neuron uses standard sigmoid as the activation function, whereas
the error is measured by SSE. The population size in DE was set to 32. The experi-
ments were run under Linux 2.6 on machines fitted with 64-bit Xeon 3.2GHz CPUs

(2MB L2 cache) and 2GB of RAM.

6.1 Synthetic datasets

The bit parity problem. Two networks were examined: one consisting of 6 input
nodes, 6 hidden nodes and 1 output node (6-6-1) and one consisting of 12 input
nodes, 12 hidden nodes and 1 output node (12-12-1). The output should be set to
1 if the number of 1s in the input vector is even. The training sets consisted of 2°
and 2! samples, respectively

The encoder-decoder problem. One network consisted of 10 input nodes, 5 hidden
nodes and 10 output nodes (loose encoder), whereas the other consisted of 64
input nodes, 5 hidden nodes and 64 output nodes (tight encoder). The task was to
recreate the unary represention of a number presented in the input layer.

11

Krzysztof Bandurski, Wojciech Kwedlo

The bit counting problem. Two networks, (5-12-6) and (10-16-11) were trained to
generate a unary representation of the number of bits that are set in the input
vector.

6.2 Real-life dataset

The real-life dataset that we used was the optdigits database available in the UCI
Machine Learning Repository [2]. It consists of preprocessed, normalized bitmaps of
handwritten digits contributed by a total of 43 people. Each sample consists of 64
input values, representing a matrix of 8x8 where each element is an integer in the
range 0..16, and 1 output value in the range of 0..9 representing the digit. The entire
training set consists of 3823 samples. We modified the dataset and made each training
sample contain a unary representation of the relevant digit, consisting of 10 binary
values. The network that we trained consisted of 64 input nodes, 20 hidden nodes and
10 output nodes.

6.3 Results

Results are presented in tables and graphs. In the case of the synthetic datasets, each
table consist of three columns. The first one contains the names of algorithms that
were compared in our study: cgpr stands for Conjugate Gradients described in section
4., DE denotes the Differential Evolution algorithm presented in section 3., whereas
DE-cgpr-zxxx corresponds to Differential Evolution augmented with the conjugate
gradient algorithm as described in section 5., where xxx denotes the number of itera-
tions of Conjugate Gradients that were applied to each individual before the selection
phase. The two other columns contain the results obtained for each variant of the
dataset (the respective network configuration and the duration of each run are given
in the header of each column). These results were averaged over 30 independent runs
and include: the sum of squared errors divided by 2 (SSE), the standard deviation
(0), the number of forward passes of the entire training set through the network per
second (fp/s) and the number of backward passes of the error (bp/s) and finally the
mean number of DE generations (gen).

Below each table there are two graphs, each presenting 6 mean error curves
reflecting the progress of the tested algorithms.

The results obtained for the real-life dataset are presented in a similar manner,
with the difference being that only one network configuration was used.

12

Training neural networks with a hybrid Differential Evolution algorithm

Table 1. Results obtained for the bit parity problems

algorithm (6-6-1) - 5 min (12-12-1)-4h
SSE| © fp/s bp/s gen SSE c | fp/s |bp/s| gen
cgpr 0.457(1.423|11398.3|11398.3| n/a 512.00| 0.00 |75.7|75.7) n/a
DE 2.609]0.593|18826.2| 0.0 [176494.7| |321.80{175.97|133.5| 0.0 {60063.3
DE-cgpr-z008(0.285(0.229|11585.3|11585.2| 2591.3 | [108.20| 35.27 | 76.0 |76.0| 884.2
DE-cgpr-z016(0.044(0.113|11578.3|11578.2| 1324.6 | | 56.39 | 20.10 | 76.0 |76.0| 439.7
DE-cgpr-z032(0.000{0.000|11595.8|11595.7| 671.1 26.62 | 13.91|76.0 |76.0| 217.0
DE-cgpr-z064(0.000{0.000(11605.4|11605.3| 342.1 26.56 | 10.63 | 76.0 |76.0| 96.5
(@ (b)
‘ cgpr — ‘ cgpr —
DE DE
100000 DE-cgpr-z008 1 DE-cgpr-z008
DEcgp 1032
L DE-cgpr-z064 --e-- 1000 ¢ DE—CEEFZO@ mm@me
1 ;&mg‘l' . J o N S NN
Y oo, it i, a B T TV ARVERVHE VR
= °°°a{ev @ .
s le-05 "‘::n?. 7 s Ak TR
[, 100 | B
H "'._._“ «..“‘__' . 5::‘::‘:"5...“”5_,_5 o-g-m-g-n
le-10 H 1 "'S?° a.
H R S,
le-15 ‘ ‘ : __Sereves 10 ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 50 100 150 200 250 300 0 2000 4000 6000 8000 10000 12000 14000
time(s) time(s)

Fig. 2. SSE curves for the 6-bit (a) and 12-bit (b) parity problems

7. Conclusions

The results presented above demonstrate that the hybrid algorithm converges signifi-
cantly faster than the original version of DE used in [9], provided that the number of
iterations of the local optimization algorithm is sufficient. In two cases (namely 64-
5-64 encoder-decoder, DE-cgpr-z008 and 10-bit counting, DE-cgpr-z008) the hybrid
solution achieved a greater error value than the one achieved by the unmodified ver-
sion of DE, but as the number of iterations of conjugate gradient descent increased,
the hybrid version proved to be superior. This supports the findings presented by
Cortez in [5], who advocated the use of the Lamarckian approach.

Our solution’s capability to escape local minima is visible the most in figures
2 (a), 2 (b), 3 (a), 5, which also demonstrate its superiority in comparison to the

13

Krzysztof Bandurski, Wojciech Kwedlo

Table 2. Results obtained for the encoder-decoder problems

algorithm (10-5-10) - 5 min (64-5-64) -4 h

SSE| © fp/s bp/s gen SSE| o | fp/s | bp/s gen
cgpr 0.017|0.090{35535.8|35535.8| n/a 1.85(6.591048.7|1048.7| n/a
DE 0.075|0.169|44603.3| 0.0 |418154.8| [15.61|0.88|1546.9| 0.0 [696124.0

DE-cgpr-z008|0.000|0.000{35569.4|35569.3| 7141.7 | [17.99(1.24|1044.3|1044.3| 12602.6
DE-cgpr-z016|0.000{0.000|35615.8(35615.7| 3785.0 | [13.15/2.29{1044.9{1044.9| 6463.8
DE-cgpr-z032|0.000|0.000{35662.8|35662.7| 1949.1 | | 7.72 |1.60{1045.2{1045.2| 3056.6
DE-cgpr-z064|0.000|0.000{35696.9|35696.8| 1003.9 | | 1.66 [1.00|1045.2|11045.2| 1045.5

(@) (b)
T T 100 T T T
100000 cgpr —— A cgpr ——
DE --eesenes DE --eewenes
DE-cgpr-z008 - DE-cgpr-z008
DE-cgpr-z016 - DE-cgpr-z016
DE-cgpr-z032 ---= DE-cgpr-z032 ---=--
Iy DE-cgpr-z064 -=o-= 5 DE-cgpr-z064 --e-=:
2 1e-05 B, j ,
i - U e K
le-10 fi 1
!
le-15 |14 1
H— 1
0 50 100 150 200 250 300 0 2000 4000 6000 8000 10000 12000 14000
time(s) time(s)
Fig. 3. SSE curves for the 10-5-10 (a) and 64-5-65 (b) encoder-decoder problems
(a) (b)
T 1000 T T T
cgpr —+— cgpr —+—
DE -s-s- DE -
DE-cgpr-z008 -+ DE-cgpr-z008 -
DE-cgpr-z016 - DE-cgpr-z016
DE-cgpr-z032 - === DE-cgpr-z032 ===
DE-cgpr-z064 === DE-cgpr-z064 ---o--
v e,
oy e
@ K ‘EY?'““““ Hn;:--.-----n»:-41-»:u:--n......;,,__,,__,_,. 2 100 . |
7 Y g COOOOOE 8800800808888 «
® .
y ‘-,__.\
01 F J
8.
°*o‘e-e_ N
0.01 10
0 50 100 150 200 250 300 0 2000 4000 6000 8000 10000 12000 14000

time(s) time(s)

Fig. 4. SSE curves for the 5 bit (a) and 10-bit (b) counting problems

14

Training neural networks with a hybrid Differential Evolution algorithm

Table 3. Results obtained for the bit counting problems

algorithm (5-12-6) - 5 min (10-16-11)-4h

SSE| © fp/s | bp/s gen SSE | o | fp/s |bp/s| gen
cgpr 0.300{0.355| 9996.4 19996.4| n/a 28.07 |34.67|152.4|152.4| n/a
DE 0.541|0.262|14971.5| 0.0 |140356.9| | 91.93 [10.26(269.6| 0.0 |121326.9

DE-cgpr-z008|0.343|0.295| 9893.8 [9893.7| 2255.8 | [100.73|12.47|153.8|153.8| 1877.8
DE-cgpr-z016|0.250{0.250| 9904.6 [9904.5| 1181.0 | | 89.89 |10.36153.8{153.8| 909.7
DE-cgpr-z032|0.117]0.211] 9912.5 {9912.4| 579.0 76.71 | 6.66 |153.8]|153.8| 434.0
DE-cgpr-z064|0.017]0.090| 9917.7 [9917.6] 278.9 39.94 | 8.00 |153.8]|153.8| 216.7

Table 4. Results obtained for the optdigits dataset

(64-20-10) - 16 h
algorithm SSE| o | fp/s | bp/s | gen
cgpr 54.75/129.910.112{10.112| n/a
DE 36.55(3.56 | 17.3 |0.000 |31121.0
DE-cgpr-z008| 8.15 | 5.51 | 10.0 | 10.0 | 510.9
DE-cgpr-z016| 4.33 | 1.90 | 10.0 | 10.0 | 261.9
DE-cgpr-z032| 1.34 | 0.64 | 10.0 | 10.0 | 130.6
DE-cgpr-z064| 0.35 | 0.40 | 10.0 | 10.0 | 64.0

conjugate gradient method. Figures 3 (b) and 4 (b) may suggest, however, that for
some problems the hybrid algorithm performs much worse. In these cases it is worth
to pay attention to the standard deviation values computed on the basis of all 30
runs performed for each dataset. They are much higher for the conjugate gradient
method, which implies that under pre-defined time constraints the hybrid algorithm
could require a smaller number of longer runs to yield results at an acceptable level
of certainty.

Another advantage of our algorithm is its potential parallelizability. In [10] the
authors proposed a method for parallelizing the original version of DE that is based
on the decomposition of not only the dataset, but also the population of solutions.
The algorithm presented here can be parallelized in a similar manner, with some
additional mechanisms to support backpropagation. This subject is currently being
investigated and will be presented in a following paper.

15

Krzysztof Bandurski, Wojciech Kwedlo

DE-cgpr-z008
DE-cgpr-z016 -
DE-cgpr-z032
DE-cgpr-z064 ---o--

1000}

100 ¢

Xe
““““““““““

SSE

10 ¢ -‘:‘;E‘Bvu-u:uj..‘ TR]
.

L
Sogy. T rana
1r 600
S0
o0

0.1

0 10000 20000 30000 40000 50000
time(s)

Fig. 5. SSE curves for the optdigits problem

References

[1]

(2]

[7]

[8]

[9]

16

E. H. L. Aarst and J. Korst: Simulated Annealing and Boltzmann Machines,
John Wiley, 1989.

C. Blake, E. Keogh, and C. J. Merz: UCI repository of machine learn-
ing databases, University of California, Dept. of Computer Science,
http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998.

J. Brest, S.Greiner, B. Boskovic, M. Mernik, and V.Zumer: Self-adapting
control parameters in differential evolution: A comparative study on numeri-
cal benchmark problems, IEEE Transactions on Evolutionary Computation,
10(6):646-657, 2006.

C. Charalambous: Conjugate gradient algorithm for efficient training of ar-
tificial neural networks, Circuits, Devices and Systems, IEE Proceedings G,
139:301-310, 1992.

Paulo Cortez, Miguel Rocha, and Jos Neves: A lamarckian approach for neural
network training Neural Processing Letters, 15:105-116, 2002.

R. O. Duda, P. E. Hart, and D. G. Stork: Pattern Classification, John Wiley and
Sons, 2001.

R. Fletcher and C. M. Reeves: Function minimization by conjugate gradients,
The Computer Journal, 7:149-154, 1964.

M. R. Hestenes and E. Stiefel: Methods of conjugate gradients for solving linear
systems, Journal of Research of the National Bureau of Standards, 49:409-436,
1952.

J. llonen, J. K. Kamarainen, and J. Lampinen: Differential evolution training
algorithm for feed-forward neural networks, Neural Processing Letters, 17:93—
105, 2003.

Training neural networks with a hybrid Differential Evolution algorithm

[10]

[11]
[12]

[13]

[14]
[15]

[16]

W. Kwedlo and K. Bandurski: A parallel differential evolution algorithm for
neural network training, In Parallel Computing in Electrical Engineering, 2006.
PARELEC 2006. International Symposium on, pages 319-324. IEEE Computer
Society Press, 2006.

Z. Michalewicz: Genetic Algorithms + Data Structures = Evolution Programs,
Springer Verlag, 1996.

M. E. Mgller: A scaled conjugate gradient algorithm for fast supervised learn-
ing, Neural Networks, 6(4):525-533, 1993.

Brian J. Ross: A lamarckian evolution strategy for genetic algorithms, In
Lance D. Chambers, editor, Practical Handbook of Genetic Algorithms: Com-
plex Coding Systems, volume 3, pages 1-16. CRC Press, Boca Raton, Florida,
1999.

Phillip H. Sherrod: Dtreg - predictive modeling software, 2008.

R. Storn and K. Price: Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces, Journal of Global Optimization,
11:341-359, 1997.

B. Subudhi and D. Jena: Differential evolution and Levenberg Marquardt
trained neural network scheme for nonlinear system identification, Neural Pro-
cessing Letters, 27(3):285-296, 2008.

UCZENIE SIECI NEURONOWYCH HYBRYDOWYM

ALGORYTMEM OPARTYM NA DIFFERENTIAL
EVOLUTION

Streszczenie: W artykule przedstawiono nowa, hybrydowa metode uczenia sieci neurono-
wych, taczca w sobie algorytm Differential Evolution z podejsciem gradientowym. W nowej
metodzie po kazdej generacji algorytmu Differential Evolution kazde nowe rozwiazanie, po-
wstate w wyniu dzialania operator6w krzyzowania i mutacji, poddawane jest kilku iteracjom
algorytmu optymalizacji wykorzystujacego metode gradientéw sprzezonych. Wyniki ekspe-
rymentéw wskazuja, ze nowy, hybrydowy algorytm ma szybsza zbiezno$¢ niz standardowy
algorytm Differential Evolution. Mimo, iz zbiezno$¢ ta jest wolniejsza, niz w przypadku
klasycznych metod gradientowych, algorytm hybrydowy potrafi znacznie lepiej unikaé mi-
niméw lokalnych.

Stowa kluczowe: sieci neuronowe, differential evolution, gradienty sprzezone, minima lo-
kalne

17

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIEJ 2009
Informatyka — Zeszyt 4

Maciej Brzozowski'!, Vyacheslav Yarmolik!

OBFUSCATION QUALITY IN HARDWARE DESIGNS

Abstract: Software is more and more frequently distributed in form of source code. Un-
protected code is easy to alter and build in others projects. The answer for such attacks
is obfuscation. Transformation of software source code which preserves its semantical func-
tionality but analizability is made very dificult. We focus in our research on Very High Speed
Integrated Circuits Hardware Description Language (VHDL). In previous articles we pre-
sented transformats assimilated from other high level languages for needs of hardware de-
signs and we showed a set of new transformants which do not appear in different languages
than VHDL. The next step we have to do is to establish a set of criterias through which we
can rate quality of analyzed transformats. In article we present current bacground of soft-
ware quality measure and we rate their usage for protecting intellectual property on digital
designs. After that we propose a new way of obfuscation quality measure taking into account
requirements of hardware designs.

Keywords: Obfuscation, Very High Speed Integrated Circuits Hardware Description Lan-
guage (VHDL), Intelectual Property Protection

1. Introduction

Hackers’ activity shows that it should secure not only software before stealing
but also a hardware projects. Source code is stolen and built in other projects. Many
of the security tools that can be used to protect the software were created like water-
marks, fingerprints and obfuscation (Figure 1).

The purpose of watermarking [9,14,10] is to insert a mark (owner copyright
notice) to the program that is invisible and difficult to remove. With the watermark,
it is possible to prove the owner rights to the code or project.

Next technique for protecting projects is fingerprinting [7,6]. Fingerprinting
is similar to watermarking, except a different (unique) secret message is embedded
in every distributed cover message. A typical fingerprint includes a seller, product,
and customer identification numbers. This allow to detect when and where theft has
occurred and to trace the copyright offender.

! Faculty of Computer Science, Bialystok Technical University, Biatystok

19

Maciej Brzozowski, Vyacheslav Yarmolik

[Intellectual Property Protection]

ZERN

[Legal Protection Technical Protection]

/

(Software Protection) (Hadware Protection)

S~

[Watermarking] [Cryptographlc Methods (Obfuscatron)

Fig. 1. Ways of intelectual property protection.

The last one technique is obfuscation [5] - one of the most modern and effective
software protection technique. Obfuscation alters the code so that it is very diffi-
cult to read and understand. This type of protection does not protect against illegal
copying and execution. The aim of obfuscation is prevention against stealing parts
of source code (analysing and rebuilding in) and on the reverse engineering.

Subject of obfuscation is so young so it is hard to tell about its history. The first
articles date from the second half of nineties. The precursor of subject was Christian
Collberg. He wrote the first publication connected with obfuscation [5]. In several
articles, which coauthor he is, Collberg presents techniques of code obfuscation and
divide them into four groups by the target application - layout, data, control and
preventive transformations. A lot of articles were written but no one concerned ob-
fuscation of VHDL code. It is very easy to change code of other language like JAVA
or C# because size and execute time of transformed program is not so significant.
In VHDL these metrics are the most important for a software engineer.

The purpose of our work is to study obfuscation techniques and choose most
suitable of them to protecting intellectual property rights on VHDL source code.
We should remember that this language in comparison with other most frequently
used high level languages is, in his building, unique. VHDL language makes uses
of parallel processing and a lot of obfuscation techniques which can not be used
in such languages like C# or Java are very useful and relatively cheep.

20

Obfuscation quality in hardware designs

2. Definition of obfuscation

For people who are not familiar with the subject of obfuscation, it is intentional
action conducting to modify the software code in such way that it becomes difficult
to understand. Gaél Hachez in [9] changed definition of obfuscation created by
Collberg in [5] and also used in [8] to:

Definition 1 (Obfuscating Transformation) P ~ P’ be a transformation of a
source program P into a target program P’. P 5 Plisan obfuscating transformation,
if P and P’ have the same observable behavior. More precisely, in order for P — P’
to be a legal obfuscating transformation the following conditions must hold:

a) If P fails to terminate or terminates with an error condition, then P’ fails to termi-
nate or terminates with an error.

b) Otherwise, P’ must terminate and produce the same output as P.

We should remember, that every program P’ will be possible to reconstruct to P”,
which will have very similar structure to P. Obviously, such operation will absorb
much time and costs, but always it will be possible [3]. Therefore problem of obfus-
cation is not a protection before decompilation of program, but makes it very difficult.

Listing 1.1. Winner of 1st International Obfuscated C Code Contest in category Dis-
honorable mention - 1984

int i;main(){for (;i["]<i;++i){——i;}"];read(’—’—"=",i+++"hell\
o, world!\n",”/°/7/7));}read(j,i,p){ write(j/p+p,i—]j,i/1);}

In Listing 1.1 is showed program source code anonimous.c - winner of 1st Inter-
national Obfuscated C Code Contest in category Dishonorable mention. Obfuscated
example shows how complicated analysis of protected code may be. For people who
would like to take analysis of code and check its correctness we place base code
(Listing 1.2).

Listing 1.2. Hello word. Code before obfuscation.

#include<stdio .h>

int main(void){
printf ("Hello_World!\n");
return 0;}

21

Maciej Brzozowski, Vyacheslav Yarmolik

3. Quality characteristics - theoretical background

Before we attempt to describe obfuscation transforms, we need to be able to evalu-
ate their quality. In this section we describe theoretical background of quality code
measurement. We will also examine different new approaches to this problem.

3.1 International Standard ISO/IEC-9126

In 1991 the International Standards Organization introduced standard ISO/IEC-9126
[1], whose task was to define the standards and requirements for the description of the
software. In subsequent years, the standard has been extended by four characteristics:

ISO/IEC 9126-1:2001 Quality model
ISO/IEC 9126-2:2003 External metrics
ISO/IEC 9126-3:2003 Internal metrics
ISO/IEC 9126-4:2004 Quality in use metrics

It is currently the most widely known and wide-spread quality standard of soft-
ware. The standard ISO/IEC-9126 is often confused with the characteristics ISO/IEC-
9126-1:2001 [2] introduced in 2001. The model defines the following six main qual-
ity characteristics:

— Functionality - a collection of attributes that describe a set of software functions
and their designated properties.

— Reliability - a collection of attributes describing the capabilities of software
to maintain the specified requirements as to its stability under strictly defined
conditions of work.

— Usability - a collection of attributes that describe the level of work needed to learn
to use the software and the subjective assessment of the attractiveness of the soft-
ware expressed by group members.

— Efficiency - a measurement of the use of system resources compared to the per-
formance of software subject to certain conditions.

— Maintainability - a collection of attributes that describe the level of work required
to bring about changes in the software.

— Portability - a collection of attributes describing the product the ability to transfer
programming between other systems.

They are supported by less significant characteristics in order to increase the precision
of individual metrics.

22

Obfuscation quality in hardware designs

3.2 Collberg’s quality measures

In 1997 in the technical report [5] Christian Collberg with Clark Thomborson
and Douglas Low defined the concept of obfuscation and attempted to assess its qual-
ity.

They defined quality of obfuscation as combination of:

— Potency - degree of difficulty understanding obfuscated code for the analysing
person. Influence on the power of transformation have: introduce new class and
methods, increase predicates and nestling level of conditional, increase the high-
est of the inheritance tree, increase long-range variables dependencies.

— Resilience - how much time a developer has to spend to implement automatic
deobfuscator, which can effectively lower the power of transform.

— Cost - metric applies to both increase the cost of the implementation of the pro-
gram as well as increased demand for resources like memory or CPU time.

In the lectures [16] Collberg previously defined range of metrics expends by
a descriptive metric stealth. Its estimate is dependent on the context in which it was
used.

3.3 Petryk’s software metrics

In [15] Siarhei Petryk with Ireneusz Mrozek and Vyacheslav N. Yarmolik proposed
metric composed from two submetrics. First group based on code complexity like
the number of conditional operators compared to all words in the program or average
depth of branching operators. The second based on program execution time and its
length. Values of metrics from first class should be maximized whereas from the sec-
ond class should be minimized. They assumed that the best obfuscator optimise the
program code simultaneously makes source code more confusing and harder to inter-
pret.

4. Obfuscation quality - new approach

Presented above metrics have been developed for non hardware languages. For exam-
ple size of the code does not have such signification in designing hardware systems
in opposite to the software projects. We are not bound by the amount of RAM or
CPU speed. Above metrics do not take into account the signal delay propagation
time on critical path which is one of most significant metric in digital designs and
not occur in software projects. Therefore, there is a need to develop metrics which
are intended solely to evaluate the quality obfuscation transforms used in hardware
projects.

23

Maciej Brzozowski, Vyacheslav Yarmolik

First step in design quality metric is divide metrics in two groups:

— critical metrics - most important metrics like the path delay of the system
and the amount of used area on a chip.
— less important metric but not meaningless like complexity and code size.

target
Lower Upper
specification specification
limit limit

Fig. 2. Target and tolerance for metrics.

ISO/IEC-9126 [1] does not define how to measure metrics described in it. Some
of quality attributes are subjective and difficult to measure. The standard describe
only how the metrics should work and measure of them leaves for experts. We can
not rely on metrics which estimate will be so costly. By expensive we understand
the time effort and resources needed for estimate. The better expert that his time
is more and more expensive.

Effective metrics satisfy the following conditions:

— performance is clearly defined in a measurable entity - the metric is quantifiable.
— exists a capable system to measure metric in the entity.

current delay
on critical path

Maximum No upper
delay on specification
critical path limit

Fig. 3. Target and tolerance metric for critical path delay in obfuscated design.

The second criteria that metrics must be estimated taking into account is the pa-
rameters imposed by the user. In Figure 2 is presented target value of metric witch
allowable deviation where a characteristic will be still acceptable. Lower specifica-
tion limit (LSL) and upper specification limit (USL) are break points where make

24

Obfuscation quality in hardware designs

worse performance will make design unable to work properly and improve make
design extremely useful.

It is mean that user has to know metric or estimated value expected ranges for ob-
fuscated design. Figure 3 present maximal delay on critical path propagation of pro-
tected design source code. The propagation delay reflects how fast system can operate
and is usually considered as speed of the system. Minimal delay is not defined be-
cause delay lower than maximal or in special cases lower than nominal delay will be
always acceptable if we consider only combinational circuits. In other cases we have
to remember about triggers time specification - setup time and hold time. We should
note that reach of low value of propagation delay will lead to high costs of code
transformation.

The second most important metric is area on the target chip used by obfuscated
design. As in the case of propagation delay user does not define the upper value of the
used area because it is not necessary and any value in range below maximal would
be acceptable. Design area greater than maximal would not fit in target chip. Circuit
area combined with propagation delay is most important design criteria in digital
systems.

The third most significant metric is cost of apply obfuscation transformation.
We count the cost as effort of resources such as time of execute transformation, im-
plementation effort and human resources needed.

tq area as
Ei=a— +ta s+ =
1 area E.
la la ld
LSLy, = —— = ; <7:>tdmax>tclz
dmax dmax d

area area area
= < ;

/
LSLyreq = = aredy,, = ared

~
aredyqy ared gy area

E.={free— 1, cheap — 2, expensive — 2°, very expensive — 23}

ty - nominal value of propagation delay on critical path

o - maximal value of propagation delay on critical path

1 - value of propagation delay on critical path after obfuscation transforma-
tion applying

area - nominal value of used area

area,,, - maximal value of used area

ared' - value of used area after obfuscation transformation applying

E, - cost of apply obfuscation transformation

ap,az,as - weight of the importance of metrics

25

Maciej Brzozowski, Vyacheslav Yarmolik

The second group describes how good obfuscated code is. It is very easy to de-
scribe how correctly written code should look but it is very difficult to reflect it in met-
rics. The first easiest to estimate submetric is number of lines of code (LOC). Count-
ing lines of code is not reliable in high level languages therefore quality metric should
based on instruction statements to (IS). More instruction statements to line of code
increase submetric value and makes analysis difficult.

Other useful metric is cyclomatic complexity defined by Thomas McCabe in
[13]. The measure describe the number of linearly independent (distinct) paths
through a program’s flow graph. To have poor testability and maintainability we rec-
ommends that program module should exceed a cyclomatic complexity of 10. This
high level of metric will fuzzy logical pattern of design.

Our quality metric lets user to choose more suitable metrics for him. User might
chose for example:

— one or more from Halstead metrics [11] - metric currently less used
— Henry and Kafura’s structure complexity metric [12] - increasing fan-in
and fan-out will decrease readability and analyzability of project

VoG
+ag—— +az +---
Ecc Eis/Loc Vi Cp

E] E]
Ey = ay cc +as IS/LOC

optional

1S
Ers/roc = ToC

CC - Cyclomatic Complexity

IS - Instruction Statements

LOC - Lines Of Code

\%4 - Halstead Volume

Cp - Henry and Kafura’s structure complexity
as, ... - weight of the importance of metrics

On the basis of previous parts of metrics we achieved our goal:

E=E +E,

Ej is a group of the most important metrics for digital designs and E, represents
complexity of obfuscated code.

26

Obfuscation quality in hardware designs

5. Estimation quality of obfuscating transformation

Layout obfuscation [5] relies on changing (removing) information in the source code
that does not effect operation of program. It is often called free because does not
influence on size of program neither on its speed of operation after transformation.
There is one-way transformation because once deleted information can not be re-
stored. Amount of helpful information decreases for analysing person. This technique
contains removing comments, descriptions and changing names of variables which
suggest what is it for. For scrambling identifiers does not change propagation delay
on critical path nor project area on the target chip.

E=a1+ax+az+as+as

/
tqg area E{. Eigoc 1
= = = =
t, area’ Ecc Ejs/Loc

E.= free=1

It is easy to see that layout obfuscation is one of the cheapest techniques allowed
to protect intellectual property.

There is transformation which does not appear in other programming languages.
In view of its specification VHDL is based on parallel processing instruction. Almost
every code written in VHDL may be converted from or to sequential processing.

Listing 1.3. Conversion of sequential processing to parallel

process (x)

variable tmp : std_logic;
begin
tmp := ’07;
for i in x’range loop
tmp := tmp xor x(i);
end loop;
y <= tmp;

end process;

4

tmp <= tmp(N—-2 downto 0)&’0’ xor x;
y <= tmp(N—-1);

Mentioned above transform is not difficult to realize. Listing 1.3 presets two obfus-
cation techniques from group of control transformation. We used technique called
unrolling loops connected with conversion of sequential processing to parallel [4].
Transformation does not influence on critical part of metric.

27

Maciej Brzozowski, Vyacheslav Yarmolik

6. Conclusion

We have developed the first hardware design obfuscation quality metering scheme.
The metric takes into account the signal delay propagation time on critical path
and the amount of used area by design on a target chip. Moreover with this quality
tool a user can choose obfuscation transforms answering his requirements of created
project.

References

[1] ISO/IEC-9126, International Standard ISO/IEC. In Information technology:
Software product evaluation: Quality characteristics and guidelines for their
use. International Standards Organisation, 1991.

[2] ISO/IEC-9126-1:2001, International Standard ISO/IEC 9126. In Information
Technology — Product Quality — Partl: Quality Model. International Standard
Organization, June 2001.

[3] Impagliazzo R. Rudich S. Sahai A. Vadhan S. Yang K. Barak B., Goldreich O.:
On the (im)possibility of obfuscating programs, Lecture Notes in Computer
Science, 2139:1-14, 2001.

[4] Yarmolik V. N. Brzozowski M.: Vhdl obfuscation techniques for protecting
intellectual property rights on design, Sth IEEE East-West Design and Test
Symposium, pages 371-375, 2007.

[5] Low D. Collberg C., Thomborson C.: A taxonomy of obfuscating transforma-
tions, Technical report, July 1997.

[6] Thomborson C. Collberg C.: The limits of software watermarking, 1998.

[7] Thomborson C. Collberg C.: Watermarking, tamper-proofing, and obfuscation
— tools for software protecti on, Technical Report TR00-03, Thursday, 10 2000.

[8] Low D. Collberg C. S., Thomborson C. D.: Breaking abstractions and unstruc-
turing data structures, In International Conference on Computer Languages,
pages 28-38, 1998.

[9] Hachez G.: A comparative study of software protection tools suited for e-
commerce with contributions to software watermarking and smart cards, Uni-
versite Catholique de Louvain, March 2003.

[10] Wroblewski G.: General Method of Program Code Obfuscation, PhD thesis,
Wroclaw University of Technology, Institute of Engineering Cybernetics, 2002.

[11] Halstead M. H.: Elements of Software Science, North-Holland, Amsterdam,
The Netherlands, 1977.

[12] Kafura D. Henry S.: Software structure metrics based on information flow,
7(5):510-518, September 1981.

28

Obfuscation quality in hardware designs

[13]
[14]
[15]

[16]

McCabe T. J.: A complexity measure, IEEE Trans. Software Eng., 2(4):308—
320, 1976.

Petitcolas F. A. P. Katzenbeisser S.: Information hiding - techniques for
steganography and digital watermarking, Artech House, Norwood, 2000.
Yarmolik V. N. Petryk S., Mrozek I.: Efficiency of obfuscation method based
on control transformation, In ACS, pages 351-359, 2006.
www.cs.arizona.edu/~collberg/Research/Publications/index.html.

JAKOSC OBFUSKACJI PROJEKTOW SPRZETOWYCH

Streszczenie Obfuskacja jest technika przeksztatcania kodu zZrédtowego oprogramowania,
ktéry zachowuje swoje dzialanie semantyczne, ale znaczaco zostaje utrudniona jego ana-
liza oraz zrozumienie. Swoje badania skupiliSmy na sprzgtowym jezyku Very High Speed
Integrated Circuits Hardware Description Language (VHDL). W poprzednich pracach prze-
stawiliSmy szereg transformat zaasymiowanych z jezykéw wysokiego poziomu na potrzeby
projektéw sprzgtowych oraz zaproponowaliSmy nowe nie wystgpujace w innych jezykach
niz VHDL. Kolejnym krokiem jaki nalezy wykonac jest ustalenie kryteriow dzigki ktérym
bedzie mozna oceni¢ jako$¢ analizowanych transformat. W artykule przedstawimy dotych-
czas uzywane metody oceny jakosci oprogramowania oraz przeprowadzimy ich oceng na
potrzeby ochrony wtasnosci intelektualnej projektéw sprzetowych. Nastgpnym krokiem be-
dzie przedstawienie nowego sposobu oceny jakosci obfuskacji z uwzglednieniem wymagan
jakie stawiaja przed programista projekty sprzgtowe.

Stowa kluczowe: Obfuskacja, VHDL, ochrona wtasnosci intelektualnej

29

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIE]J 2009
Informatyka — Zeszyt 4

Marcin Czajkowski!, Marek Kretowski!

AN EXTENSION OF TSP-FAMILY ALGORITHMS
FOR MICROARRAY CLASSIFICATION

Abstract: Classification of microarray data and generation of simple and efficient decision
rules may be successfully performed with Top Scoring Pair algorithms. 7SP-family meth-
ods are based on pairwise comparisons of gene expression values. This paper presents a
new method, referred as Linked TSP that extends previous approaches k — TSP and Weight
k — TSP algorithms by linking top pairwise mRNA comparisons of gene expressions in dif-
ferent classes. Opposite to existing 7 SP-family classifiers, the proposed approach creates
decision rules involving single genes that most frequently appeared in top scoring pairs.
Motivation of this paper is to improve classification accuracy results and to extract simple,
readily interpretable rules providing biological insight as to how classification is performed.
Experimental validation was performed on several human microarray datasets and obtained
results are promising.

Keywords: pairwise classification, decision rules, microatray, gene expression

1. Introduction

DNA chips technology has given rise to the study of functional genomics [3,14]. The
entire set of genes of an organism can be microarrayed on an area not greater than 1
cm? and enable to analyze hundred of thousands of expression levels simultaneously
in a single experiment [7]. Microarray technology make possible comparisons of gene
expressions levels and computational analysis allows classification samples by their
mRNA expression values.

Nowadays, DNA chips are widely used to assist diagnosis and to discriminate
cancer samples from normal ones [2,6]. Extracting accurate and simple decision rules
that contain marker genes is of great interest for biomedical applications. However,
finding a meaningful and robust classification rule is a real challenge, since in differ-
ent studies of the same cancer, diverse genes consider to be marked [16].

Typical statistical problem that often occurs with microarray analysis is dimen-
sionality and redundancy. In particular, we are faced with the "small N, large P prob-
lem" [17,18] of statistical learning because the number of samples (denoted by N)

! Faculty of Computer Science, Bialystok Technical University, Poland

31

Marcin Czajkowski, Marek Kretowski

comparing to number of features/genes (P) remains quite small as N usually does
not exceeded one or two hundreds where P is usually several thousands. This may
influence the model complexity [11] and cause the classifier to overfit training data.
Considering some dimensionality reduction (i.e. feature selection) seems to be rea-
sonable as most of the genes are known to be irrelevant for classification and pre-
diction. Applying gene selection prior classification [15] may simplify calculations,
model complexity and often improve accuracy of the following classification.

Recently, many new solutions based on classification approaches including sta-
tistical learning and pattern recognition methods are applied to microarray data
[19,10]. However most of them generate very complex decision rules that are very
difficult or even impossible to understand and interpret. This is a trade-off between
credibility and comprehensibility of the classifiers [20].

In this paper, we would like to propose an alternative approach for 7SP-family
classifiers. The presented solution (denoted as Linked T'SP) may be applied to origi-
nal TSP classifier [8] or its extensions: k — T'SP [20] and Weight k — TSP [5]. In our
research we have experimentally observed that some genes, more often to the oth-
ers, appear in top pairs calculated by one of these TSP algorithms. This may suggest
that some genes from the list of top pairs more accurate discriminate cancer samples
from normal one. Our method is focused on finding predominatingly genes from cal-
culated top pairs of genes. We believe that these approach will simplify decision rules
without reducing classification accuracy or even improve it for some datasets.

The rest of the paper is organized as follows. In the next section 7 SP-family
algorithms are briefly recalled. Section 3 describes proposed solution - Linked T SP.
In section 4 the presented approach is experimentally validated on real microarray
datasets. The paper is concluded in the last section and possible future works are
suggested.

2. A Family of TSP Algorithms

T SP-family methods are applied according to the classical supervised learning frame-
work. In the first step the top scoring pairs are generated from the training dataset.
This process is illustrated in Fig. 1. In the second step, the obtained classifier can
be applied to a new microarray sample with unknown decision class. Only selected
genes called "marker genes" are analyzed and used in TSP prediction (Fig. 2). Linked
TSP classifier uses only first step of 7SP-family methods to obtain sorted (decreas-
ingly by significance) list of gene pairs generated by these algorithms.

32

An Extension of TSP-family Algorithms for Microarray Classification

training set
50 sampies

microarray
samples

class A

selected genes K top scoring pairs
class A class B class A class B
890
|
3425
eneration s B g
) 7074
gene selection 9 1 rores []
—> e l
RELIEF-F Jd B
13347

Fig. 1. Building 7 SP-based decision rules on the training dataset

: tested
new microarray mpl
sample 5 top scoring pairs
unknown class — 90 590 class A class B
- g iz E l
3425
—3425 5789 E 5
7074
|-—5789 14299 l
= marker genes 890 l 8588
Tora 10341 2176
3425
. H 2o H Ei:i E
|—10341 7074
14299 -
8588
—18848 12176 classification decision:
|—13347 12943 H -
—14200 13347 - class A

Fig. 2. Testing a new sample with the 7 SP classifier based on the selected genes

2.1 Top Scoring Pair

Top Scoring Pair (T'SP) method was presented by Donald Geman [8] and is based
on pairwise comparisons of gene expression values. Despite its simplicity comparing
to other methods, classification rates for TSP are comparable or even exceeds other
classifiers [8]. Discrimination between two classes depends on finding pairs of genes
that achieve the highest ranking value called "score".

Consider a gene expression profile consisting of P genes and N samples par-
ticipating in the training microarray dataset. These data can be represent as a P x N
matrix X:

X11 X12 .- XIN
X21 X22 ... X2N

Xp; Xp2 ... XPN

33

Marcin Czajkowski, Marek Kretowski

in which the expression value of i-th gene from the n-th sample is denoted by x;;. Each
row represents observations of a particular gene over N training samples, and each
column represents a gene expression profile composed from P genes. Each profile has
a true class label denoted C,, € C = {C},...,Cy}. For the simplicity of calculations
it is assumed that there are only two classes (M = 2) and profiles with indices from
1 to N7 (N; < N) belong to the first class (C;) and profiles from range (N; + 1,N) to
the second class ().

TSP method focuses on gene pair matching (i,j) (i,j € {1,...,P},i # j) for
which there is the highest difference in the probability p of an event x;, < x;, (n =
1,2,...,N) between class C; and C,. For each pair of genes (i, j) two probabilities
are calculated p;;(C;) and p;;(C>):

AL
pij(CI):WZI(Xm <Xjn), (D)
n=1
1 N
pij(C) == Y I(xin<xjn),)
|G n=Nj+1

where |C,,| denotes a number of profiles from class C,, and I(x;, < x,) is the indicator
function defined as:

L, if xin < Xjn
0, ifxl-n Z Xjn ’

It < x) — { 3)
TSP is a rank-based method, so for each pair of genes (i, j) the "score" denoted A;;
is calculated:

Aij = |pij(C1) — pij(C2)] - “4)

In the next step of the algorithm pairs with the highest score are chosen. There should
be only one top pair in the TSP method, however it is possible that multiple gene
pairs achieve the same top score. A secondary ranking based on the rank differences
in each class and sample is used to eliminate draws.

For each top-scoring gene pair (i, j) the "average rank difference" in both C; and
C, are computed and defined as:

5
1]) &)

Y5(C1) =

Z]::Nl +1 (Xin = Xjn)

6
|G| ©

¥(C2) =

34

An Extension of TSP-family Algorithms for Microarray Classification

Value of this second rank for each pair of genes (i, j) is defined as:

T = [v;(C1) —v(C2)| (7)

and the algorithm chooses a pair with the highest score.

The TSP classifier prediction is made by comparing the expression values from
two genes (i, j) marked as "top scoring pair" with a test sample (inew, jnew). If We
observe that p;;(C1) > p;j(C2) and Xjpey, < X jnew, then T'SP votes for class Cy, however
if Xinew > Xjnew then TSP votes for class C. An opposite situation is when p;;(Cy) <
Dij (C2), cause if Xjpey < X jnew T'SP votes for Cy and if Xjse > Xjnew TSP chooses C;.
In other words, if p;;j(Ci) > p;;(C>) then:

Cy, if Xipew < Xjnew
C27 if Xinew = Xjnew

Ynew = hrsp(new) = { , (8

where hrsp is a prediction result. Opposite situation is when p;;(Cy) < p;;(Ca).

2.2 Kk-Top Scoring Pairs

A k-Top Scoring Pairs (k — T SP) classifier proposed by Aik Choon Tan [20] is a
simple extension of the original 7.SP algorithm. The main feature that differ those two
methods is the number of top scoring pairs included in final prediction. In the TSP
method there can be only one pair of genes and in k — T'SP classifier the upper bound
denoted as k can be set up before the classification. The parameter & is determined by
a cross-validation and in any prediction the k — T'SP classifier uses no more than k top
scoring disjoint gene pairs that have the highest score. Both primary and secondary
rankings (equations (4) and (7)) remain unchanged.

The class prediction is made by comparing the expression values for each pair
of genes (iy, j,) (u=1,...,k) with a new test sample. The k — TSP classifier denoted
as hy_rsp based on partial classifiers &, (new) employs a majority voting to obtain the
final prediction of y,,,,, however each vote has the same wage:

k
Ynew = hx—1sp(new) = argmax Z I(hy(new) =GC;) ,)

u=1
where C; € C = {Cy,...,Cy}, and

1, if h,(new)=C;

0, otherwise (10)

I(hy(new) = C;) = {

Meaning of h,(new) is the same as in the equation (8).

35

Marcin Czajkowski, Marek Kretowski

2.3 Weight k-TSP

In classification Weight k — TSP proposed by us [5] all rankings have been changed,
comparing to TSP and k — T SP. Therefore, the selection of top scoring pairs, and the
prediction is different than in 7SP or k — T'SP classifier. The main reason that mo-
tivates research on extensions of the k — TSP algorithm was its limitation in finding
appropriate top scoring pairs. There were two factors that could cause it. First factor
that hampers finding appropriate top scoring pairs is connected to the relatively high
computational complexity, which for these methods is (N * P?). Microarray datasets
contain huge amounts of data and the feature selection is usually applied before the
actual classification. However, k — T'SP sensitivity to the feature selection and small
size of datasets may effect rank calculations and decrease accuracy. This is connected
with the second factor which is a small number of features having similar expression
values and being opposite to each other in different classes.

Considering that S represents average values quotient in each pair of genes from
P training samples. For each pair of genes (i, j) (i, j € {1,...,P},i # j) single element
from S can be described as:

N
Zmzl)C,'m/)ij

Sij: N

(1D
Weight k — TSP is focused on finding pairs of genes (i, j) that have the highest dif-
ference in probability of event {x;,/x in <S; j} (n=1,2,...,N) between class C| and
C.

Similar to k — TSP, Weigh k — TSP is a rank-based method, so for each pair of
genes (i, j) score is calculated and the algorithm chooses the pairs with the highest
one. Final prediction is similar to TSP or k — T'SP methods and involves voting. How-
ever unweighed majority voting was extended by adding weight and mixed decision
rules to improve accuracy for different types of datasets.

3. Linked TSP

Concept of Linked TSP has arisen during our tests of Weight k — TSP algorithm.
We have observed that some genes, much more often to other ones, join in pairs that
achieve high scores in k — TSP and Weight k — T'SP rankings. This may suggest that
these genes more precisely discriminate cancer samples from normal ones.

The presented method can work with any standard 7'SP-family classifier or dif-
ferent approach that calculates pairs of genes. Proposed algorithm require sorted (de-
creasingly by significance) list of gene pairs denoted as L from 7'SP methods. Idea of

36

An Extension of TSP-family Algorithms for Microarray Classification

approach is to discover list (denoted as G) of most frequently appearing genes from
list L. Let the parameter k alike in k — T'SP be determined by a cross-validation and
stands for the upper bound on the number of top genes to be included in the final
Linked TSP classifier.

In the first step, we seek for genes g (g € G = {g1,...,8k}) that most frequently
appears in the list Ly (Ly € L). List denoted as Ly contains top 7T pairs of genes from
L that have the highest 7'SP ranking. For each gene in Ly ranking is calculated based
on a appearing frequency in the rest 7 — 1 pairs. After finding gene with the highest
ranking score denoted as g, all pairs from list Ly containing this gene are removed
and first step is repeated until £ top genes are found.

Next step (which is optional) uses permutation of G list to remove irrelevant
genes. All top genes from list G are used to test training sample - at first individ-
ually and later in double and triple size sets. At each step the worst gene or set of
genes is removed. To prevent classifier over-fitting, internal 10-folds cross-validation
is performed and to ensure stable results - average score of 10 runs is calculated.

Finally, algorithm determine (mn-times by internal cross-validation) final number
of top k genes from list G that will be used in prediction - similar to 7SP method.
Concept of choosing top genes is presented in Algorithm 1.

Algorithm 1 Calculate the list of G = {g1,..., g} top genes

Require: Maximum number of genes to search: k > 0
Ensure: Linked TSP classifier
for cross-validation - repeat m times do
Make an ordered list L of all of the gene pairs from highest to lowest score using 7’SP methods.
fori=1tokdo
Make a list L7 that contains top 7' gene pairs from the L list
for each gene in L7 do
Calculate the number of pairs that involve this gene
end for
Add the most common gene g; to the G list
Remove every pair from L that involves g;
Compute the error rate for the classifier based on genes in list G
end for
end for
Select the value of K whose average classification rate over m loops is optimal.
[optional] Remove genes from list G that have the lowest accuracy through internal permutation
Return Linked T SP classifier

List of genes denoted as G that will be used in Linked TSP classifier is usually
similar to the ones obtained from 7 SP-family classifiers. Often the top genes from

37

Marcin Czajkowski, Marek Kretowski

each pairs that were used in 7 SP prediction also built Linked T SP classifier. However,
no pairs of genes and the concept of "relative expression reversals"[8][20] in Linked
T SP prediction model required new method to classify data.

We would like to propose rank prediction that will be composed of 3 simple
steps. Let’s assume that prediction model require k genes denoted as g1,g2,...,8k
from list G. Genes are marked separately in each classes C,, € C = {Cy,...,Cu},
where M denotes alike in 7.SP number of classes. Ranking for each class is presented
in the equation (12).

k

Rank(Cy) = Y (&) +h(g:) +1(g:), (12)
i=1

where:
N T1, where gmin,' (Cm) S 8i S gma)q (Cm)
Ii(g) =

0, otherwise

T2, where (gmln,(cm> S 8min; (C\Cm) and 8i S 8Emin; (Cm)>
Iz(gi) = or (gmaxl‘ (Cm) Z gmax,' (C\Cm) and 8i Z gmaxi(cm))
0, otherwise

)

Ig) =4 where |gi — &i(Cp)| < |8i — &i(C\ Cy)|
3\8i 0, otherwise

where: gmin,(Cin); 8max;(Cm), &i(Cpn) denote minimum, maximum and average
value of expression level of i-gene in training dataset that was chosen for prediction,
in class Cj,,.

Score achieved by genes from list G determines prediction result. Tested sample is
classified to the class that has the highest average score through all K genes. Ranking
prediction may be adjusted to analyzed dataset by parameter T in each step.

4. Experimental Results

Performance of Linked TSP classifier was investigated on public available microar-
ray datasets described in Table 1. We have comprised accuracy and size of Linked
TSP method with T SP-family algorithms. In addition, other popular classifiers were
analyzed and all results were enclosed in Tables from 2 to 5.

38

An Extension of TSP-family Algorithms for Microarray Classification

Table 1. Kent Ridge Bio-medical gene expression datasets

Datasets Abbreviation |Attributes| Training Set|Testing Set

1 | Breast Cancer BC 24481 34/44 12/7
2 | Central Nervous System CNS 7129 21/39 -

3 | Colon Tumor CT 6500 40/22 -

4 | DLBCL Standford DS 4026 24/23 -

5 | DLBCL vs Follicular Lymphoma DF 6817 58/19 -

6 | DLBCL NIH DN 7399 88/72 30/50
7 | Leukemia ALL vs AML LA 7129 27/11 20/14
8 | Lung Cancer Brigham LCB 12533 16/16 15/134
9 | Lung Cancer University of Michigan LCM 7129 86/10 -

10| Lung Cancer - Totonto, Ontario LCT 2880 24/15 -

11| Prostate Cancer PC 12600 52/50 27/8

4.1 Datasets

Datasets came from Kent Ridge Bio-medical Dataset Repository [12] and are related
to studies of human cancer, including: leukemia, colon tumor, prostate cancer, lung
cancer, breast cancer etc. Typical 10-folds crossvalidation was applied for datasets
that were not arbitrarily divided into the training and the testing sets. To ensure stable
results for all datasets average score of 10 runs is shown. All data was not trans-
formed, no standardization or normalization was performed.

4.2 Setup

Comparison of Linked TSP was performed with original k— TSP and Weight k— TSP
algorithms. Maximum number of gene pairs k used in all prediction models was de-
fault (equal 10) through all datasets. Linked TSP method has this number doubled
because it calculates single not pairs of genes. Default values for the prediction rank-
ings were set decreasingly: Ty =1, T, = 0.5, T3 = 0.1 and the list Ly default size equal
100 top pairs.

All classifications were preceded by a step known as feature selection where a
subset of relevant features is identified. We decided to use popular for microarray
analysis method Relief-F [13] with default number of neighbors (equal 10) and 1000
features subset size.

Linked TSP accuracy was also compared to other popular classifiers that gener-
ates comprehensible decision rules. Comparison Linked T SP to other classifiers was
performed with:

— Several popular decision trees:

39

Marcin Czajkowski, Marek Kretowski

AD Tree (AD) - alternating decision tree
BF Tree (BF) - best-first decision tree classifier
J48 Tree (J48) - pruned C4.5 decision tree
Random Tree (RT) - algorithm constructing a tree that considers K randomly
chosen attributes at each node
5. Simple Cart (CT) - CART algorithm that implements minimal cost-
complexity pruning
— Rule classifier:
6. JRip (JR) - rule learner - Repeated Incremental Pruning to Produce Error
Reduction (RIPPER)
— Ensemble decision trees:
7. Bagging (BG) - reducing variance meta classifier
8. Adaboost (ADA) - boosting algorithm using Adaboost M1 method

bl

The main software package used in the comparison experiment for these classifiers is
Weka [22]. Classifiers were employed with default parameters through all datasets.
Experimental results on tested datasets are described in Tables 2 and 5.

4.3 Outcome

Table 2 enclose Linked TSP comparison results to 7SP-family classifiers. Since first
step Linked TSP algorithm may involve list of best gene pairs calculated from dif-
ferent TSP methods we would like to present results separately. Let Linked k — TSP
denote results of Linked TSP classifier built on k — TSP method and Linked Weight
k — TSP represents Linked TSP built on Weight k — T SP method.

Results enclosed in Table 2 reveal that Linked TSP based on k — T'SP yield the
best averaged accuracy (78.59) over 11 classification problems. Linked T SP based on
Weight k — TSP achieved second score and also improve Weight k — T SP classifiers.
We can observe that in 7 over 11 datasets Linked TSP has the highest accuracy. We
believe that achieved results are promising and proposed approach may compete and
be an alternative for k — TSP or Weight k — TSP methods. However in our opinion
Linked TSP can not replace other TSP classifiers because each method generates
significant rules that can capture interactions in datasets from different aspects. In our
experiments around 50% identical genes were used by all three classifiers however
the different prediction model influence the final score.

Worth to notice in Table 2 is the number of genes used in classification. It is
significantly smaller in Linked TSP (6.57 and 11.38) to the k — TSP (14.21) and
Weight k — TSP (14.85) methods. Therefore presented solution simplify decision
rules and uses only significant genes in classification and prediction.

40

An Extension of TSP-family Algorithms for Microarray Classification

Table 2. Comparison of Linked TSP accuracy and size with original kK — TSP and Weight k — TSP
classifiers. The highest classifiers accuracy for each dataset was bolded.

Classifiers

Datasets k-TSP Weight k-TSP Linked k-TSP ||Linked Weight k-TSP

accuracy| size |laccuracy| size ||laccuracy| size ||accuracy size
1. BC 74.73 17.20 47.36 18.00 88.42 8.10 51.57 12.20
2. CNS 59.49 17.96 51.16 17.84 55.66 7.96 65.33 18.37
3. CT 76.83 10.40 85.47 5.08 82.19 8.37 86.73 18.13
4. DS 78.90 | 14.91 6220 | 17.68 65.65 8.37 86.95 15.52
5. DF 91.44 | 17.44 81.41 15,71 87.80 8.44 87,76 13.11
6. DN 56.37 17.60 52.25 17.60 70.00 9.00 51.62 20.00
7. LA 94.11 18.00 93.23 17.60 91.17 3.00 91.17 2.00
8. LCB 77.18 2.00 96.71 16.80 || 100.00 | 3.00 91.94 2.00
9. LCM 95.62 15.48 98.53 15.34 97.26 3.71 99.26 2.00
10. LCT 73.41 12.44 89.50 4.76 67.00 8.28 74.50 13.27
11.PC 63.66 12.88 73.66 16.92 59.33 4.08 59.33 8.57
Average score| 76.52 14.21 75.59 14.85 78.59 6.57 76.92 11.38

Table 3. Marker genes used in Lung Cancer Brigham dataset classification

Classifiers| k-TSP |Weight k-TSP| Linked k-TSP |Linked Weight k-TSP
Accuracy | 77.18% 96.71% 100.00% 91.94%
31393 _r_at more 37947 _at 37013_at
Genes (33499 _s_at than 33499_s_at_at 35236_g_at
20 genes 36528

In one of our experiments we tested Lung Cancer dataset (LCB) from "Brigham
and Women’s Hospital" Harvard Medical School. We managed to achieve perfect ac-
curacy with only 3 genes to other classifiers results (90-99%) described in [9] that
used 6 features and more. In Table 3 we have enclosed genes that build tested classi-
fiers and we have bolded identical ones. We may observe that using more features in
this case increased classifiers accuracy. However involving too many genes in deci-
sion model makes the method harder to understand by human experts.

Higher number of genes used in prediction not always cause increase of an ac-
curacy. Different Lung Cancer dataset (LCM) from University of Michigan [1] may
be a good example. Number of genes that build classification model in Linked TSP
was more than 5 times smaller to TSP methods although accuracy results slightly
increased. In Table 4 we have compared genes used by Linked k — TSP and Linked
Weight k — TSP classifiers. Higher number of genes to classifiers size is caused by
crossvalidation of training dataset as no tested set was provided. Similar genes that

41

Marcin Czajkowski, Marek Kretowski

Table 4. Marker genes used in Lung Cancer University of Michigan dataset classification

Classifiers| k-TSP |Weight k-TSP|Linked k-TSP|Linked Weight k-TSP
Accuracy | 95.62% 98.53% 97.26% 99.26%
more more J03600_at J02871_s_at
than than M24486_s_at M24486_s_at
Genes |40 genes| 40 genes |X64177_f at X64177_f at
U87964_at U87964_at
U60061_at -
Y09216_at -

build Linked TSP classifiers despite different algorithms suggest that those genes
can be considered as marked. Original 7SP methods used over 40 different genes
in prediction. They contained Linked TSP genes however many irrelevant features
were also enclosed making the classifiers results much more difficult to analyze and
interpret by human experts.

We have observed that genes from list G that built Linked TSP more often oc-
curred in tested decision trees and the rest of classifiers to selected ones from k — TSP
or Weight k— T SP. This may confirm that Linked T SP prediction model involve only
predominatingly genes from 7'SP pairs. Relying on experimental results we may con-
clude that Linked TSP simplify decision rules without reducing classification accu-
racy and even improving it for some datasets.

In our research we also investigate performance 8 different classifiers on datasets
from Table 1. In our research we were focused on the "white box" methods rather
the "black box" algorithms and this is the reason why methods like Support Vec-
tor Machine (SVM) [?] or neutral networks [4] were not included in our analysis.
Comparison tests were performed with methods that like TSP generate simple and
comprehensible decision rules. Results for those classifiers are enclosed in Table 5. If
we compare them with ones from Table 2 we may observe that 7SP-family classifiers
achieve relatively higher average accuracy through all datasets. Even methods, that
generate more complex to analyze and interpret decision tree ensembles like Bagging
or Boosting also achieved slightly lower score.

5. Conclusion and Future Works

This paper presents extension of 7'SP-family classifiers called Linked TSP. We be-
lieve it is an interesting approach that may compete with 7'SP-family methods. Gen-
eral improvement of Linked TSP method did not exceed 2% although for some ana-
lyzed datasets idea of linking top pairwise mRNA comparisons of gene expressions

42

An Extension of TSP-family Algorithms for Microarray Classification

Table S. Comparison classifiers accuracy

Dataset/Classifier | 1.AD | 2.BF | 3.J48 | 4. RT | 5.CT 6.JR| 7.BG | 8. ADA
1. BC 42.10 | 47.36 | 52.63 36.84 68.42 | 73.68 | 63.15 57.89
2. CNS 63.33 | 71.66 | 56.66 | 63.33 73.33 | 65.00 | 71.66 75.00
3. CT 74.19 | 75.80 | 85.48 | 70.96 75.80 | 74.19 | 79.03 79.03
4. DS 95.74 | 80.85 | 87.23 | 68.08 82.97 | 7446 | 87.23 89.36
5. DF 88.31 79.22 | 79.22 | 81.81 83.11 | 77.92 | 85.71 90.90
6. DN 50.00 | 60.00 | 57.50 | 53.75 62.50 | 61.25 | 58.75 65.00
7. LA 91.17 | 91.17 | 91.17 | 55.88 91.17 | 94.11 | 94.11 91.17
8. LCB 81.87 | 89.65 | 81.87 | 77.18 81.87 | 9597 | 82.55 81.87
9. LCM 96.87 | 96.87 | 98.95 | 91.66 96.87 | 93.75 | 9791 96.87
10. LCT 69.23 | 61.53 | 58.97 | 53.84 5897 | 64.10 | 61.53 69.23
11. PC 38.23 | 44.11 29.41 47.05 4411 | 3235 | 41.17 41.17
Average score 7190 | 73.04 | 72.05 65.02 75.65 | 7430 | 76.68 76.72

increased accuracy for over 10%. The size of classification model was significantly
smaller (almost 40%) therefore Linked TSP generates more adequate and compre-
hensible decision rules. However, for some tested datasets original 7SP was more
accurate that is why the best TSP method can not be indicated. It is worth to notice
that all TSP classifiers used similar set of top genes in decision model. This may
suggest that each algorithm generates significant rules that capture interactions in
datasets from different aspects.

Classification results comparison through tested datasets reveal that 7SP-family
classifiers are good alternative to decision trees and other classification rules. We
believe that there is still place for improvement 7 SP-family classifiers. Merging the
k— TSP, Weight k — TSP and Linked TSP predictive power in a single algorithm
might significantly increase accuracy and provide efficient decision rules with clear
biological connections to adequate cancer type.

References

[1] Beer D.G.: Gene-expression Profiles Predict Survival of Patients with Lung
Adenocarcinoma. Nature Medicine, 8(8):816-823, 2002.

[2] Bittner M., Meltzer P., Chen Y.: Molecular classification of cutaneous malignant
melanoma by gene expression profiling. Nature, 406, 536-540, 2000.

[3] Brown P.O., Botstein D.: Exploring the new world of the genome with DNA
microarrays. Nature Genet 21. 33-37, 1999.

43

Marcin Czajkowski, Marek Kretowski

[4] Cho H.S., Kim T.S., Wee J.W.: cDNA Microarray Data Based Classification
of Cancers Using Neural Networks and Genetic Algorithms. Nanotech, vol. 1,
2003.

[5] Czajkowski M., Kretowski M.: Novel extension of k-TSP algorithm for micro-
array classification. Lecture Notes in Artificial Intelligence, vol. 5027:456-465,
2008.

[6] Dhanasekaran S.M.: Delineation of prognostic biomarkers in prostate cancer.
Nature, 412, 822-826, 2001.

[7] Duggan D.J., Bittner M., Chen Y., Meltzer P., Trent J.M.: Expression profiling
using cDNA microarrays. Nature Genetics Supplement, 21, 10-14, 1999.

[8] Geman, D., d’ Avignon, C., Naiman, D.Q., Winslow, R.L.: Classifying Gene Ex-
pression Profiles from Pairwise mRNA Comparisons. Statistical Applications in
Genetics and Molecular Biology, 3(1), 19, 2007.

[9] Gordon J.G.: Translation of Microarray Data into Clinically Relevant Cancer
Diagnostic Tests Using Gege Expression Ratios in Lung Cancer And Mesothe-
lioma. Cancer Research, 62:4963-4967, 2002.

[10] Grzes M., Kretowski M.: Decision Tree Approach to Microarray Data Analysis.
Biocybernetics and Biomedical Engineering, vol. 27(3), 29-42, 2007.

[11] Hastie T., Tibshirani R., Friedman J.H.: The Elements of Statistical Learning.
Springer-Verlag, 2001.

[12] Kent Ridge Bio-medical Dataset Repository: http://datam.i2r.a-
star.edu.sg/datasets/index.html

[13] Kononenko I.: Estimating Attributes: Analysis and Extensions of RELIEF. In:
European Conference on Machine Learning, 171-182, 1994.

[14] Lockhart D.J., Winzeler E.A.: Genomics, gene expression and DNA arrays. Na-
ture 405, 827-836, 2000.

[15] Lu Y., Han J.: Cancer classification using gene expression data. Information
Systems, 28(4), pp. 243-268, 2003.

[16] Nelson P.S.: Predicting prostate cancer behavior using transcript profiles. Jour-
nal of Urology, 172, 28-32, 2004.

[17] Sebastiani P., Gussoni E., Kohane I.S., Ramoni M.F.: Statistical challenges in
functional genomics. Statistical Science, 18(1), 33-70, 2003.

[18] Simon R., Radmacher M.D., Dobbin K., McShane L.M.: Pitfalls in the use of
DNA microarray data for diagnostic and prognostic classification. Journal of
the National Cancer Institute, 95, 14-18, 2003.

[19] Speed T.: Statistical Analysis of Gene Expression Microarray Data. Chapman
& Hall/CRC, New York, 2003.

44

An Extension of TSP-family Algorithms for Microarray Classification

[20] Tan A.C., Naiman D.Q., Xu L., Winslow R.L. and Geman D.: Simple decision
rules for classifying human cancers from gene expression profiles. Bioinformat-
ics, vol. 21, 3896-3904, 2005.

[21] Vapnik, V.N.: Statistical Learning Theory. Wiley, New York, 1998.

[22] Witten L.H., Frank E.: Data Mining: Practical machine learning tools and tech-
niques. 2nd edn. Morgan Kaufmann, San Francisco, 2005.

ROZSZERZENIE METOD Z RODZINY TSP
W KLASYFIKACJI MIKROMACIERZY DNA

Streszczenie Klasyfikacja danych mikromacierzowych a takze pdzZniejsza interpretacja re-
gut decyzyjnych moze by¢ skutecznie przeprowadzona za pomoca metod z rodziny Top
Scoring Pair, polegajacych na analizie par genéw o przeciwstawych poziomach ekspresji w
réznych klasach. W ponizszym artykule zaprezentowano nowa metode: Linked TSP, ktéra
rozszerza dzialanie klasyfikatoréw k — TSP 1 Weight k — TSP. W przeciwienstwie do al-
gorytméw z rodziny 7'SP proponowane rozwigzanie tworzy reguly decyzyjne zbudowane z
pojedynczych genéw co znacznie utatwia ich pdzniejszg interpretacje medyczng. W algo-
rytmie wykorzystywane sa pary genéw uzyskane z algorytméw TSP z ktérych nastepnie,
wybierane sg pojedyncze, najczgsciej powtarzajace si¢ geny. Testy algorytmu Linked TSP
przeprowadzone zostaty na rzeczywistych zbiorach danych pacjentéw a uzyskane wyniki sa
obiecujace.

Stowa kluczowe: klasyfikacja par genéw zaleznych, analiza mikromacierzy, reguty decy-

zyjne, ekspresja gendw

Artykut zrealizowano w ramach pracy badawczej W/WI1/5/08.

45

ZESZYTY NAUKOWE POLITECHNIKI BIALOSTOCKIE]J 2009
Informatyka — Zeszyt 4

Joanna Goscik!, Jozef Goscik?

NUMERICAL EFFICIENCY OF THE CONJUGATE
GRADIENT ALGORITHM - SEQUENTIAL
IMPLEMENTATION

Abstract: In the paper we report on a second stage of our efforts towards a library design
for the solution of very large set of linear equations arising from the finite difference ap-
proximation of elliptic partial differential equations (PDE). Particularly a family of Krylov
subspace iterative based methods (in the paper exemplified by the archetypical Krylov space
method - Conjugate Gradient method) are considered. The first part of the paper describes
in details implementation of iterative algorithms for solution of the Poisson equation which
formulation has been extended to the three-dimensional. The second part of the paper is fo-
cused on the performance measurement of the most time-consuming computational kernels
of iterative techniques executing basic linear algebra operations with sparse matrices. The
validation of prepared codes as well as their computational efficiency have been examined
by solution a set of test problems on two different computers.

Keywords: Iterative solvers, Finite difference method, Poisson equation,
Performance of sequential code

1. Introduction

At this time, the search for high performance in a large scale computation is of grow-
ing importance in scientific computing. This is very important due to recent attention
which has been focused on distributed memory architectures with particular interest
in using small clusters of powerful workstations. However, the appearing of mod-
ern multiprocessors platforms demands to resolve a lot of tasks which are addressed
to efficient porting solvers on three different architectures: a sequential machine, a
shared memory machine and on a distributed memory machine. So the key problem
is to understand how the computation aspects of using linear algebra solvers (in our
case - iterative) can affect the optimal execution of code on machines with different
architecture.

For understanding the implication of design choices for systems, and for study-
ing increasingly complex hardware architecture and software systems very important

! Faculty of Computer Science, Bialystok Technical University, Bialystok, Poland
2 Faculty of Mechanical Engineering, Bialystok Technical University, Bialystok, Poland

47

Joanna Goscik, Jozef Goscik

tools are more or less standardized benchmarks. However running for example very
well known Linpack benchmark [1] on complex architectures is not so obvious and
easy in interpretation. The problem was discovered when the execution time of Lin-
pack was studied systematically on different machines (the results and main problems
arise when we tried to estimate performance of the benchmark will be pulished else-
where). This observation in our opinion should be interpreted by misunderstanding
the impacts of different architecture designs. Among them are characteristic differ-
ences in latency between different levels of caches and memory, introduction of si-
multaneous multithreading and single-chip multiprocessors, to mention of few.

In the paper we try to explore some of the main challenges in implementation
and estimation computational efficiency of the executing sequential code. The spe-
cial attention has been paid on credible study of performance in terms of number of
equations. The paper report on continuation of our research described in [2]. So, we
were mainly interested in building and improvement of the software for solving very
large set of linear equations arising from the finite difference approximation of the
elliptic PDE. At the stage the iterative solver module has been rearranged in a such
way which allows flexible operating on separate basic algebra operations as inner
products of two vectors, updating of vectors and the matrix-vector multiplication.

This paper continues as follows. In Section 2 we present the scope of the mathe-
matical formulation of the elliptic PDE as well as results of calculations made by
making use raw, not tuned codes. Our main goal was to prepare validated iterative
solver for systems with large sparse matrices of coefficients. In Section 3 we describe
in details our data structures and results of testing performance on two platforms (in-
cluding one which is installed in WI Bialystok - Mordor2). In Section 4 we present
our results for timing and estimating performance of running different parts of the
solver routines. Finally, in Section 5 we summarize our efforts and formulate direc-
tion of further research.

2. Software for the Poisson equation solution

In mathematical formulation we confined ourselves to the one of the simplest elliptic
boundary value problem described by the Poisson equation in a classical form (for
the constant coefficients)

VZu(x)=f(x) Y(x)eQ (1)

where u is a continuous function, V2 is the Laplace operator and f is specified in
domain Q forcing (source). The problem (1) is considered with homogenous Dirichlet
boundary conditions

u=0 VY(x)edQ (2)

48

Numerical efficiency of the conjugate gradient algorithm - sequential implementation

The essential difference of the work in the relation to the previous stage [2] is ex-
tension of the consideration on any descryption in space. Taking respectively 1D, 2D
and 3D domains we worked out three different codes (Pois1D, Pois2D and Pois3D)
dedicated for solution of these problems. For the purpose of the codes validation,
three different problems have been resolved. However the special attention is also
directed on linear algebra problems arising from approximation technique. Each con-
tinuous problem has been discretized by standard second order difference method on
structured grid. Thus our numerical schemes generate a class - in general very large
systems - of linear equations which can be expressed as

A_D(h) U= fh (3)

where A p, is the matrix of coefficients which structure depends on finite difference
operator used, 0 is the vector of nodal unknowns, and f,, is the right - hand side vector.
The system of equations (3) is solved using the conjugate gradient solver with
or without diagonal scaling (preconditioning). The iteration were performed till the
relative norm of residual [2] dropped to 1078,
The accuracy of the schemes were analyzed by convergence of a global measure
of the error, which a discrete norm (L2 - norm) has been chosen as

1/2
lell = (Z ef/Nm] : @)

J

where N, is the total number of grid points and J stands for summation index as a i,
ij, ijk for 1D, 2D and 3D respectively.
The error (4) is defined as

e=u-1 5)

and overall accuracy is found in each case by a systematic grid refinement study.

In the next, we present our numerical experiments which were carried out for
three representative test problems. Our implementation is in C++.

2.1 Case 1D

As a first test case we consider (1,2) in 1D domain. In this case the problem in fact
reduces to ordinary differential equation, which consequently for general Laplace
operator form we defined as a

2

—ﬂ:f(x) Y(x)eQ (6)
dx2

49

Joanna Goscik, Jozef Goscik

where Q is defined as the open section (0, 1). For homogenous Dirichlet boundary
conditions u(x = 0) =0 and u(x = 1) = 0 the problem has the exact solution

ux)=(1-x)-x-¢e*
with the source term defined as

f(x) =B +x)-x-¢e~. @)

For finite difference based solution of the Case 1D we use uniform grid describing
the computational domain Q. The grid nodes are equally spaced, h=1/(n,-1), where
n, is the number of grid points in x-direction. The grid coordinates are defined as

x;,=@3—-1)-h, for 1<i<n,.

Te-1 ¥

+ number of iterations # L2-norm e+l

Te-3

1e-4 +

L2-norm

1e-5 -

Number of iterations performed

¥
1e-7 * + i

1512 11256 1nze 1164 1132 e 118 114

Mesh size h

Fig. 1. Convergence plot (in L2-norm) and number of iterations performed versus mesh size for the test
Case 1D.

We solved the problem (6, 7) on a series of meshes with h = 1/4, 1/8, 1/16, 1/32, 1/64,
1/128, 1/256 and 1/512. The results in a form of norm (4) for the sequence of meshes
are presented in Fig. 1.

2.2 Case2D

As a second test case we consider the Poisson equation defined for 2D. Laplace op-
erator modifies to the form

___7=f(x,y) Y(x,y) € Q, (8)

where Q is defined as a unit square (0, 1) X (0, 1), and the exact solution has a form

50

Numerical efficiency of the conjugate gradient algorithm - sequential implementation

u(x,y) = sin(mtx) - sin (27y) .
For taken form of the exact solution and boundary conditions kind of (2) the source
term is defined as

f(x,y) = 57 - sin (7tx) - sin (27ty) .

©)

For finite difference based solution of the Case 2D we use uniform grid describing

2e-1
Te-1

Te-2

+ number of iterations # L2-norm

1.2e+3

1.1e+3

1e+3

Ge+2

ge+2
*

1e-3 Te+2
Be+2

L2-norm
+
*

G+l
Te-4 -
da+d

- + de+2

Number of iteration performed

1e-5 2847

1e+2

+

+
1e-6 + = a
1512 14266 1128 1184 132 118 18 104

Mesh size h

Fig. 2. Convergence plot (in L2-norm) and number of iterations performed versus mesh size for the test
Case 2D.

the computational domain €. The grid nodes are equally spaced, h=1/(n,—1) =
1/(n, — 1), where n, and n, is the number of grid points in x-, and y-direction, respec-
tively. For unifirm mesh, the grid coordinates are defined as

x;=@1—-1)-h, yy=(G-1)-h for 1<i,j<n(=n,=n,).
The results for the same sequence of meshes in the 2D case as for the case 1D (uni-
form spacing along x- and y-direction) are presented in Fig. 2.

2.3 Case 3D

Finally, we successfully extended finite difference schemes approximation to 3D do-
mains, so the generic Poisson equation has a form
Pu du du

—_____:f(xsyvz) V(X,y,Z)EQ

1
x> oy? 077 (10)

where Q is defined as the unit cube (0, 1) x (0, 1) x (0, 1). For testing purpose we again
took a test problem which has an exact solution

51

Joanna Goscik, Jozef Goscik

u(x,y,z) = sin(7x) - sin (sty) - sin (7z) .
For the homogenous Dirichlet boundary conditions (2) - corresponding source term
is defined as
f(x,y,z) = 37’ sin (7x) - sin (;ty) - sin (7z) . (11

Also in this case, for defining the computational domain, we use an uniform, rectan-
gular finite difference grid. The grid nodes are again equally spaced,h=1/(n,—1) =
1/(n,—1) =1/(n,— 1), where in general n,, n,, n, are the number of grid points in
X-, y-, and z-direction, respectively. For uniform spacing (n, = n, = n, = n) the grid
coordinates are defined as
x;=(@{-1)-h, yy=(G-1)-h, zz=(k-1)-h, 1<i,jk<n.

The problem Case 3D has been resolved by using different discrete problem with
h=1/4,1/8,1/16,1/32,1/64,1/128. Results are given in Fig. 3.

1e-1 4p+32
+ number of iterations # L2-norm

Te-2 3e+2

L2-norm
7
&
ra
b
i)
Number of iterations performed

Te-4 Te+2

nzs 1164 1132 1016 e 114
Mesh size h

Fig. 3. Convergence plot (in L2-norm) and number of iterations performed versus mesh size for the test
Case 3D.

A log-log plots (Fig. 1, Fig. 2, Fig. 3) of the error in L2 - norm versus h is ap-
proximately a straight line with a constant slope when h is sufficiently small. This
observation confirm correctness of the worked out numerical schemes. At the same
Figures we also present the total number of iterations performed for each run. Points
related to performed iterations versus mesh size illustrate also the typical behavior of
CQG iterative algorithm for which number of iterations grows as the problem size in-
creases. Moreover, they are also clear confirmation that CG like algorithm has a finite
termination property - that means that at N-th iteration the algorithm will terminate

52

Numerical efficiency of the conjugate gradient algorithm - sequential implementation

(for our boundary value problem N = n-2). For Case 1D this property is perfectly
fulfilled. For 2D and 3D cases the number of iterations needed for convergence is
likely much lower than N.

3. Performance and preliminary timing experiments

The obtained results very well validate the codes Pois1D, Pois2D and Pois3D. In
this way - especially by comparisons with analytical solutions - we ensure that we
operate on validated software. On this base we can redirect the main attention to
linear algebra problems arising from approximation technique. It is worth to notice,
that in the previous Section we have illustrated convergence plots as well iteration
counts only in the sense of the maximum of iteration needed to obtain convergence.

Before we describe in details iterative solvers performance lets take a look on
the linear algebra demands. As was pointed earlier, if we will consider a standard
second order finite difference discretization of (1) on regular grid in 1D, 2D, and 3D
dimensions we obtain linear system of equations (3). Data structure for storing grid
points is not important because uniform mesh subdivision has been assumed. Quite
different situation is when we must decide about data structure for storing coefficients
of the matrix A. Strictly, after discretization on uniform mesh, the A is a matrix which
is symmetric, positive definite and has a block-tridiagonal structure where the block
have order N. In details, depending on the problem under consideration, the coeffi-
cient matrix is described in Tab. 1

Table 1. Coeflicient matrix forms in diagonal format.

Ap has a 3-diagonal structure, in which non-zero coefficients (2) lie on the main diagonal and
coefficients equal (-1) lie on the two off-diagonals;

Ay has a 5-diagonal structure, in which all the non-zero coefficients lie on: the main diagonal
(4), the two neighboring diagonals (-1), and two other diagonals (-1) removed by N positions
from the main diagonal;

Asp has a 7-diagonal structure, in which all the non-zero coefficients lie on: the main diagonal
(6), the two neighboring diagonals (-1), two diagonals (-1) removed by N positions from
the main diagonal and two other diagonals (-1) removed by NxN positions from the main
diagonal.

Our final choice of data structure for matrices was primarily dictated by goals taken
among of them first of all we wanted to operate on a very large sets of data. In result,
in spite of the true sparsity of matrices A we store them in a two different formats

53

Joanna Goscik, Jozef Goscik

1. dense - which is standard practice for storing full matrices, and
2. diagonal [3] - which is a most preferred for the diagonal matrices resulting from
finite difference discretization technique.

In this way we can easily operate on the diagonal scheme which may allow the com-
putational problem to be kept in main memory, and dense array scheme which can not
to be kept in main memory. For this, in fact we created two versions of our codes for
each Poisson problem, namely: PoisID(_DNS, _DIA), Pois2D(_DNS, _DIA) and
Pois3D(_DNS, _DIA). The needed resources for storage of the matrix coefficients
have been summarized in Tab.2.

Table 2. Size of coefficient matrices for different formats of storage.

Dense format Diagonal format
Matrix size Diagonals Matrix size Problem size
1D NxN 261121 3 Nx3 1533 511
2D N2 xN? 68184176641 5 N>x5 1305605 262144
3D N* xN? 887503681 7 N*x7 14338681 2048383

Next, in this section we present preliminary results of possible performance of ba-
sic algebra operations attainable on the tested machines. The summary of technical
specification of the used machines is given in Tab. 3.

Table 3. Machines used in tests.

Name PC Mordor2 cluster
CPU Intel Core 2 Duo E6600 Intel Xeon X5355
0s Ubuntu 7.10 CentOS 4.6
C compiler gcc ver. 4.1.3 gcc ver. 3.4.6
C flags no optimization no optimization
BLAS” in line’™ in line’™

54

Numerical efficiency of the conjugate gradient algorithm - sequential implementation

I Basic Linear Algebra Subprograms (BLAS) - proposed by Lawson et al. [4], at present
optimized and implemented in a form of kernel routines of different specialized linear
algebra packages.

e The results presented in the paper were obtained by running the simple loops as an
in-line code.

The point of the first experiments was to get basic information about instruments
for timing codes running on Linux platforms and especially to find attainable timer
resolution. Because there are several Linux timers as: clock, getrusage, clock_gettime,
gettimeofday in the first experiment we performed a several tests in order to chose the
one with the best resolution and which invoking give the most stable results. For this
we looked for the elapsed time in calculation one of the simplest algebraic operation
(vector updating isolated to the one element)

X=x+a-y, 12)

where x, y and a are known numbers (in double precision).

PC Intel Core 2 Duo EBEOD
540

LA R S AR LR LI R R X T
+
+t 44
520 *

LT

500 ¥

480 | 4

Mflops

4B0

440

420
Te+7 1e+d Ze+d Je+d 4e+8 Ge+d

Number of operations
Fig. 4. Performance chart for simple updating - PC Intel Core 2 Duo E6600.

Because the timers have a different resolution (declared us, 1 ms, 1/100™, 1s)
therefore the timing has been obtained by execute calculation many times (repeti-
tions). As a result of this preliminary set of experiments we decided to use for timing
the C gettimeofday function which provides accuracy to approximately lus. Using
the function we estimate performance of the used machines by repetitions of (12)

55

Joanna Goscik, Jozef Goscik

from 107 to the 5- 107 times. The result of these calculations are given in Fig. 4 and
Fig. 5.

Mordor2 cluster
44030

44025
+

44020 G + + " ++4

440,15 + +

44010
++

Mflops

44005

44000

43985

439490

43985 s L L L
1e+7 1e+8 2e+8 de+ e+l Se+

Number of operations

Fig. 5. Performance chart for simple updating - Mordor2 cluster Intel Xeon X5355.

4. Iterative solver performance

Among of many solution techniques for symmetric systems the conjugate gradient
(CG) method is an ideal iterative solver. The CG algorithm can be also treated as a
generic for all family of Krylov subspace methods. The CG algorithm in your classi-
cal form which we will called next as CGHS, is well known and his pseudo-code is
given by Algorithm 1 [3].

As we can see in a sequence of CGHS algorithm there are three basic linear algebra
operations:

1. _dot - scalar (inner or dot) product. There are two _dot’s in the algorithm what
gives 4-n operations.

n
s=x-y=(%y)=) Xy,
i=1
2. _axpy - vector update (where underscore mark in the operation name is used

according to known from BLAS terminology prefix convention). There are three
_axpy’s in the algorithm what gives 6-n operations.

y=y+o-X,

56

Numerical efficiency of the conjugate gradient algorithm - sequential implementation

where x and y are vectors of length n, and a is a number.

. matvec - matrix and vector multiplication. There are one matvec in the algorithm

what gives 2-n* operations.

where A in our case is two-dimensional array which is A,,, in dense format and

y = AX,

A,,q - banded, (incorporated diagonal format storage).

Table 4. Number of memory references and floating point operations for vectors of length n [5].

Read Write Flops Flops/mem access
_dot 2'n 1 2:n 1
_axpy 2:n n 2:n %
matvec n’+n n 2-n? 2

Table 5. System parameters.

System parameters PC Intel Core 2 Duo E6600 Mordor2 cluster
Clock rate 2.4 GHz 2.66 GHz
Bus speed 1066 MHz 1333 MHz
L1 cache 64 KB 128 KB
L2 cache 4 MB 8 MB
350 400
340 :A\.
H 380
gt
330 E‘%&*‘-H#1ﬂ 4 ﬁfﬂ
* L 4, T r
+ R T 380 |
a R R R -
o . * o . [TE RS
S a0 L Bt 4 b
= + + H 1»++ . o g, s
300 + + gt
320 + +_'++_'++ -l++
200 + + e e
x
300
280 +
+ +
280

270
2E5

3E5 4E5 5E5 0 1E5

2E5 3E5

Vector size

(a) PC Intel Core 2 Duo E6600

Vector size

(b) Mordor2 cluster Intel Xeon X5355

Fig. 6. Daxpy

Joanna Goscik, Jozef Goscik

We timed the solver in two stages. First stage refers to the execution time which
accounts only for the solver basic algebraic operation (_axpy, _dot and matvec
for different format of matrices storage). The results are given in Figures 6+9. All
results in the Figures clearly show that exist some kind of mismatch between CPU
and memory performance. This mismatch has an unfavorable influence on computer
performance because as a general CPU’s outperforms memory systems. The system
parameters of the platform/machines we use in the paper are characterized in Tab. 5.
The Mflops rates reflect also the ratios of memory access of the two machines. The
high rates are for vectors that can be held in the on-chip cache. The low rates with
very long vectors are related to the memory bandwith. The matvec has about the same
performance as daxpy if the matrix can be held in cache. Otherwise, it is considerably
reduced.

Next, in the second stage we measured the overall performance of the CGHS
routine according to the scheme given in Algorithm 1. The timing covers entire iter-
ation process which takes into account the time spent by the program/code for exe-
cuting all commands and instructions.
S N

380

Er ;

+ ++4++++++++o++++++,,++ NN 440 t;*+ +
B + 4

++ + +.,*F¢ mtﬂf1{.
oy

370 § . 430 (F, +

+ + -3

360 +

Mflops
+
Mflops
s
+

350 fr
340 410 ++
330

320

310 390
0 1E5 2E5 35 4E5 5E5 0 1E5 2E5 3;E5 4E5 5E5

Vector size Vector size

(a) PC Intel Core 2 Duo E6600 (b) Mordor2 cluster Intel Xeon X5355

Fig.7. Ddot

58

Numerical efficiency of the conjugate gradient algorithm - sequential implementation

Mflops

Mflops

330 f

325 +

3t o+

315

310

305

285 | 4

290

Mflops

385

360 [+

355

350

345

340 + +

+

1e42 1e+d 2e+3 Je+d de+d Be+3 Be+d

Vector size

(a) PC Intel Core 2 Duo E6600

225

7e+3

Be+3

9e+3

Te+d

335

1e+2 1e+d 2e+3

(b) Mordor2 cluster Intel Xeon X5355

Fig. 8. Matvec DNS

3e+3

qe+3

5e43
Vector size

Be+3

7e+3

Be+3

9e+3

Te+d

220 +

215

210

205

200 -

195

Mflops

254 ¥
252
250 |+ +
248
246
244
242
240

238
b

a0
fe+2 1e+3 2e+3 3e+3 devd Be+d Be+d

Vector size

(a) PC Intel Core 2 Duo E6600

7e+3

8e+3

9e+3

Te+d

236
fes2 le+3 2e+d

(b) Mordor2 cluster Intel Xeon X5355

3e+3

4e+3

5243
Vector size

Be+3

7e+3

8e+3

9e+3

Te+d

Fig.9. Matvec DIA

5. Summary

In the paper, we described the implementation of the iterative, conjugate gradient
based solver for the Poisson equation. The special attention has been paid on estimate
of performance of the most time consuming parts of the code.

Summarizing our achievements we compare our performance results to theoret-
ical peak performance of the two, various platforms used in the experiments. As a
peak performance we take counted number of floating point additions and multipli-
cations which can be completed in a period of machine cycle time. So, during the one
cycle we can estimate theoretical peak performance as a

59

Joanna Goscik, Jozef Goscik

loperation
Icycle

-cycletime = peak performance [Mflop/s].

Table 6 shows comparison of the used computers peak performance and attained,
average performance of the CGHS solver. It is clear, that at the stage we can say

Table 6. Summary of the CGHS efficiency results.

Machine Peak perfor- CGHS perfor- CGHS effi-
mance [Mflop/s] mance [Mflop/s] ciency [%]

PC Intel Core 2 Duo E6600 2400 285 + 335 12+ 14

Mordor2 cluster 2600 335 + 370 13+ 14

only that we posses unoptimized, correct sequential codes for solution the Poisson
equation (Pois1D, Pois2D, Pois3D). At the further stages of the project we would
like to do the following extensions of the current implementation, by

adopting or preparing own instrumentation necessary to the baseline performance

measurement (including possible implementation of a free available profilers),

compilers,
in attainable performance,

the performance bottlenecks.

performing compiler optimization with the special emphasis on free available gcc
linking optimized libraries of the BLAS kernels and asses the possible improvements

modification of source solver code taking into account possible identification of

320

315

310

Mflops

305
300
295

290 fy

a7

385

360

355

Mflops

350

345

340

¥
¥
+ o+ + o+
o+ o+

+

+ o+ +
+

285

335

1e+2 1e#3 2e+3 Je+d de+d Be+3 Bet3 7e+d Be+3 Oe+d levd 0

Vector size

(a) PC Intel Core 2 Duo E6600

le+d 2e+3 3e+3 de+3 Se+d Be+d Te+3 Be+d Ge+d led

Vector size

(b) Mordor2 cluster Intel Xeon X5355

Fig. 10. Overall performance of the CGHS routine - dense matrix of coefficients

60

Numerical efficiency of the conjugate gradient algorithm - sequential implementation

210

190

Mflops

180

170 +

160 + =+

Mflops

240

230

220

210

200

190

180

170

1e+2 1e+3 2e+3 3e+3 de+3 Ge+3 Be+d Te+3 8e+3

Vector size

(a) PC Intel Core 2 Duo E6600

9e+3

Te+d

160

le+2 le+d 2e43 3e+d

de+3 Se+d Be+d Te+3 Besd Gesd

Vector size

(b) Mordor2 cluster Intel Xeon X5355

Te+d

Fig. 11. Overall performance of the CGHS routine - diagonal matrix of coefficients

Algorithm 1 The standard (unpreconditioned) CGHS algorithm

k=0
X =0
if x, # O then
ro=Ax,—b
else
ro=>b
end if
Po = llroll?
while \/p; > €-||r,l| do
if k£ =0 then
Pr="
else
Pt = T+ (Pt /P) - Px // —axpy
end if
k=k+1

wy=A-p. // matvec
oy = PH/P{ ‘Wi // _dot
Xy = Xpoy + O Pr // _axpy
Ty =rey — O W, // _axpy
pe = llnllP // _dot

end while

xX=x

61

Joanna Goscik, Jozef Goscik

References

(1]

(2]

(3]
[4]

[5]

Dongarra J., Luszczek P, Petitet A.: The LINPACK Benchmark: Past, Present,
and Future. Concurrency and Computation: Practice and Experience, Vol. 15,

No. 9, 2003, pp. 803-820.

Goscik J., Goscik J.: Numerical efficiency of iterative solvers for the Poisson
equation using computer cluster. Zeszyty Naukowe Politechniki Biatostockiej,

Seria: Informatyka, Vol. 3, 2008.

Saad Y.: Iterative Methods for Sparse Linear Systems. Second Edition, SIAM,

Philadelphia, Pa, 2003.

Lawson C.L, Hanson R.J., Kincaid D.R., Krogh F.T.: Basic linear algebra sub-
programs for Fortran usage. ACM Transactions on Mathematical Software, Vol.

5, No. 3, September 1979, pp. 308-323.

Arbenz P., Peterson W.: Introduction to Parallel Computing - A Practical Guide
with examples in C. Oxford University Press, 2004, Series: Oxford Texts in

Applied and Engineering Mathematics No. 9, Oxford 2004.

EFEKTYWNOSC NUMERYCZNA ALGORYTMU

GRADIENTOW SPRZEZONYCH - IMPLEMENTACJA

62

SEKWENCJNA

Streszczenie: Przedstawiono wyniki realizacji drugiego etapu projektu majacego na celu
opracowanie i wdrozenie algorytméw rozwiagzywania wielkich uktadéw réwnan liniowych
generowanych w procesie aproksymacji eliptycznych réwnan rézniczkowych o pochodnych
czastkowych (PDE) metoda réznic skonczonych. W szczegdlnosci skoncentrowano si¢ na
implementacji wersji sekwencyjnej najbardziej reprezentatywnej metody iteracyjnej zde-
finiowanej w przestrzeni Krytowa (metody gradientéw sprzezonych). W pierwszej czesci
pracy opisano szczegély implementacji schematu iteracyjnego rozwiazywania dyskretnej
postaci réwnania Poissona, uogélniajac sformutowanie réwniez do zagadniefi przestrzen-
nie tréjwymiarowych. W drugiej czgsci pracy skoncentrowano si¢ przedstawieniu czasu wy-
korzystania procesora podczas wykonywania najbardziej czasochtonnych operacji algebry
liniowej na macierzach rzadkich. Oceny poprawnosci formalne;j jak tez i wydajnosci oblicze-
niowej stworzonego kodu sekwencyjnego dokonano poprzez rozwiazanie trzech zagadnief
testowych z wykorzystaniem dwdéch komputeréw o réznej konfiguracji sprzgtowe;.

Stowa kluczowe: Metody iteracyjne, Metoda réznic skonczonych, Réwnanie Poissona,
Wydajnos$¢ kodu sekwencyjnego

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIEJ 2009
Informatyka — Zeszyt 4

Jerzy Krawczuk!

RANDOM TEST FOR TRADING SYSTEM

Abstract: Many traders use mechanical systems to trade. Such trading systems usually are
tested on historical data. It shows good performance in the past. This paper describes the
method for evaluating such trading systems based on the hypothesis that the tested system
is trading randomly [1]. Under this null hypothesis we build a random system of the same
characteristics as the tested one. The random system presents the same probabilities of taking
a long position (betting on the price going up) and taking a short position (betting on the
price going down) as tested system. The only distinguishing factor is the performance of
the system. Simulations of the random system are run many times to create a performance
distribution that is used to verify the null hypothesis. The test system in this paper trades the
S&P500 futures from January 2003 until September 2008, taking always either long or short
positions (always in the market) and reinvesting the profits.

Keywords: mechanical trades, random signal test

1. Introduction

Mechanical systems are widely used by the traders, and become more and more so-
phisticated as more powerful computers are available and more complex financial
instruments can be traded. Also some systems that perform well in the past, become
less efficient now and new systems need to be developed. Over 20 years ago, well
known Turtle Trading System was very profitable, but in current market conditions
it’s not working so well.

The major advantage of using mechanical system over the human trading is
eliminating the human emotions. There are many described and well known human
behaviours that are destructive during trading [2]. Probably the most destructive is
allowing losses to grow. People don’t like loosing. They do not want to commit that
they make bad decision by keeping losing position in their portfolios. But in the
case of profit, they tend to close position very quickly, not allowing for bigger gains.
Another advantage of mechanical system is to have fixed money management policy,
which secure portfolio from too high risk. Available leverage is very high that could

! Faculty of Computer Science, Bialystok Technical University, Biatystok

63

Jerzy Krawczuk

make a trader take too big risk. Mechanical systems also reduce the cost of money
management and saving investors time, since they do not need to watch market all
the time.

Many small investors as well as big hedge funds are using mechanical systems.
Probably one of the most sophisticated systems is used by the Renaissance Tech-
nologies [3]. The company employs many specialists also with non-financial back-
grounds, including mathematicians, physicists, astrophysicists and statisticians. An-
other famous hedge funds are Global Alpha fund by Goldman Sachs and The High-
bridge Statistical Market Neutral Fund by J.P Morgan Chase.

Mechanical systems are developed and tested on historical data. Usually they
have some parameters, that can be optimized for higher profit in the past. The result
of the same system in the future is unknown. To maximize chances of having similar
results is to make sure, that system works in the past:

— for many different market data
— for many time periods
— for the lowest possible system parameters

Additional test for randomness of the system is described in this paper.

2. Random signal test

This methodology described in [1] comparing the system performance with similar
random system. Such random system trades the same contracts in the same time
period, only difference is that it’s deciding on long/short position randomly. If such
system is created, it’s run many times to produce the distribution of performance.
From this distribution critical values are read for desired significance levels. If the
system performance is greater then the critical value, we reject the hypothesis of
random system trading. Let’s ¢ be the critical value, the hypothesis test will be:

— HO: System performance is not significant better then one achieved by the random
trading. Per formance(TestedSystem) <= ¢

— H1: System performance is significant better then random trading.
Per formance(TestedSystem) > ¢

As the system performance many different measures can be used. Most common
and basic measures are based on total profit. This could be percent profit of the start
capital - Return On Investment. In this article annual ROI is used.

annualROI = (endcapital /startcapital)"/ — 1 (1)

64

Random test for trading system

The profit measures could be also adjusted by some of the risk measures. For exam-
ple Alex Strashny in [1] uses profit divided by three times maximum drawdown. One
of the well known risk adjusted measure is Sharp Ratio [6]. Another custom perfor-
mance measures could also be used in random test, for example: Time to recovery,
Percent of Wining Trades. The second one is also tested in this article, it is calculated
as the number of profitable trades divided by the total number of trades.

3. Description of tested system

Tested system was run on almost 6 years of historical data. It present a good total
return of 1508.37% (fig.1), that gives in average 63.3% annual ROI (return on invest-
ment). System always keep either long or short position on S&P500 futures. Decision
about changing position is made once per day at the market close. Position is chang-
ing very often giving the average holding time 2.3 days. Profit is reinvested. System
is using leverage of 2:1. Signal either long or short is calculated based on probability

Return On Investment
1,250 -

AW
W

7509

500

ROI

250 4

0

2003-01-01 2004-01-01 2005-01-01 2006-01-01 2007-01-01 2008-01-01
Date

Fig. 1. Return on investment for tested system

distributions of short-term stock price movements. Distributions are calculated from
over 5,000 US equity option prices. Then all of this information is used to derive
the likely short-term direction of the S&P500. Actual transaction is made on futures
contracts on the S&P500.

65

Jerzy Krawczuk

4. Creating the random system

Random system will be different from tested one only in a point of long/short signal.
Tested system is using some rules that traders believe are working on the market
giving the edge over other investors, while random system will do decision randomly.
Other parameters of the systems stays the same, some of them are:

transaction costs,

size of a position,

transaction time and contracts price, always closing prices
time period

used leverage

The random decision should also reflect characteristic of tested system. If system
take long position it can keep it for a while as well as short position, that create the
time series of positions:

LLLSLLSSSSSLLSSSLSLSLLL...... 2)

when L stands for long position, and S for short. In this example system keeps long
position for the first three days, then change for short for one day, and again for long
for two days, and so on.

4.1 Bernoulli process [4]

We assume that every day decision is independent from the current position. Let’s call
L probability of the system signal saying be long, and according to our assumption
1 — L is a probability of the system saying be short. The system final path probability
could be wrote like this:

SystemProbability = Lx L L (1 —L)«L*xLx(1—L)....... (3)

Let say that the N is number of days on long position and M is number of days on
short position, we can write previous equitation as:

SystemProbability = LN x (1 — L) 4

Using Maximum Likelihood method we assume that SystemProbability is the highest
of possible, and we estimate L as:

L=N/(N+M) (5)

66

Random test for trading system

4.2 Markov process [5]

Let’s say that the system is on long position, and it need to decide either to change
short or stay long. Let’s call p(LS) probability of changing position from long to
short, the probability of staying on long position will be p(LL) = 1 — p(LS). Similar
we will call p(SL) probability of changing position from short to long, the probability
of staying on short will be p(SS) = 1 — p(SL). As an example let’s consider that
realized path is:

LLSLSS (6)

Let’s assume that probability of the first position is 0.5. Now we can describe proba-
bility of realized path 6 as:
SystemProbability = 0.5 x p(LL) x p(LS) * p(SL) * p(LS) * p(SS) (7

Let’s define:

PL — number of days staying on long position

CL — number of days changing position from long to short
PS — number of days staying on short position

CS — number of days changing position from short to long

Please note that those numbers of days do not include first day. Now we can
write the probability of any realized path as:
SystemProbability = 0.5 p(LL)PL s p(LS)°E x p(SS)7S % p(SL)®S (8)
Same as the function of 2 variables:
0.5% (1 — p(LS))Ex p(LS)CL* (1 — p(SL))™S x p(SL)S)

We are looking for p(LS) and p(SL) that will maximize probability of realized path.
Let’s notice that this function can be write as f(p(LS)) *g(p(SL)), both functions are
non negative, so we can search for maximum of

(1= p(LS))"™ = p(LS)™ (10)
and independently of

(1= p(SL)"™ = p(SL)™ (1)
Using Maximum Likelihood method we estimate probabilities as:

p(LS) =CL/(CL+ PL) (12)

p(SL) =CS/(CS+ PS) 13)

67

Jerzy Krawczuk

5. Random System

Markov process was used to create random system since tested system tend to keep
chosen position. That was reflected in average holding time of 2.3 days. Simulations
was running from January 2nd 2003 until September 26th 2008. There was PL = 427
days keeping long position, CL = 316 days of changing position from long to short,
PS = 386 days keeping short position, and CS = 315 changing from short to long.

Probabilities for tested system of changing position was calculated using 12 and
13:

— p(LS) = 0.4253
— p(SL) = 0.4487

Software that perform simulations was modified to trade based on calculated
probabilities. At each day random number R is generated from unified distribution in
range (0,1) and conditions for changing position are checked:

if system has long position then

if R < p(LS) then
change to short;

end
end
if system has short position then

if R < p(SL) then
change to long;

end
end
Algorithm 1: Random signal execution

1,000 random simulations was run produces distribution for ROI of random sys-
tem showed in fig.2, since best result wasn’t higher then one of the tested system an-
other 10,000 simulations was run fig.3. In this case also the best result wasn’t higher
then achieved by the tested system. Second tested performance measure is Percent
Of Wining Trades (POWD) fig.4.

6. Veryfication hypothesis of random trades
The level of significance is the probability of rejecting the null hypothesis when it

is true. In simple case of just one system the critical value of 5% significance is just
the 95th percentile of a performance distribution. In case of ROI and 10,000 random

68

Random test for trading system

120

100

B0

Count

&0

40

20

Annual ROI

Fig. 2. ROI distribution for 1,000 random system simulations

1000
900
800
700
600
500
400
300
200
100

Count

Annual RO

Fig. 3. ROI distribution for 10,000 random system simulations

simulations 95th percentile is 17.48 and 99th percentile is 26.63. For both signifi-
cance levels we reject the null hypothesis since system annual ROI is 63.3%. Also

69

Jerzy Krawczuk

Count

Percentof Wining Trades

Fig. 4. POWD distribution for 1,000 random system simulations

best results in 10000 simulations was 50.30, so we can reject hypothesis of random
trading even with lower significance level. In case of POWD and 1,000 random sim-
ulations 95th percentile is 52.27 and 99th percentile is 53.44 and the system Percent
Of Winning Trades is 53.24%. In case of this performance measure we can reject null
hypothesis only on 5% significance level, but we can not on 1%.

However, tested system got some parameters, and during optimizations best ones
was picked up. For example 9 days moving average was used. But during optimiza-
tions also other values was tested like 8 and 10 days. If the system is not to much
fitted to data, results for similar parameters should also produce good results. Addi-
tional tests for 8 and 10 days mean was performed. For each value probabilities p(LS)
and p(SL) was calculated and 1,000 simulations was run to read the critical values
for 1% and 5% significance levels. As shown in table 6. in all 3 cases hypothesis
of random trading is rejected on both significance levels. Results for other values of
moving average parameter are shown on fig.5.

7. Conclusion

This paper described the test of random trades for trading system. Long/short signals
for random system was created using Markov process, other system properties stays
the same. Null hypothesis of random signals was rejected for tested system on both

70

Random test for trading system

Table 1. Random test for different values of average moving parameter

moving avg|annual ROI|alfa=0.05|alfa=0.01|p(LS) [p(SL)

8 36.00 15.89/27.38 0.42445]0.42897
9 63.3 17.48(26.63 0.42472(0.44872
10 41.62 16.61|25.69 0.40608|0.44348

70

Annual ROI

Mowving Average

Fig. 5. Tested system results for different values of moving average parameter

1% and 5% significant levels for the ROI, and rejected only on 5% for the POWD
performance measure. Is worth to note that any of 10,000 random simulations didn’t
outperform tested system’s ROI . Since tested system goes through some optimiza-
tions to chose best parameters, tests for 2 additional moving average parameter was
run. In this case also hypothesis of random signals was rejected.

Presented methodology could be the first step of verification trading system that
was developed on historical data and show good past performance. It verify hypothe-
sis that similar results could be achieved by the random signals. Even if system pass
test for random signals, trader should also consider the ability of the system to work
in the future, before using a system in real live. Things that should be considered are
time period of the test, different market data and number of parameters used in the
system.

References

[1] Alex Strashny: System evaluation based on past performance: Random Signals
Test [http://ideas.repec.org/p/wpa/wuwpfi/0205003.html], Irvine,
CA: University of California, May 2002.

71

Jerzy Krawczuk

(2]
(3]
[4]
[5]

[6]

John R. Nofsinger: Psychology of Investing Second edition, Pearson Education
2005.

Renaissance Technologies [http://en.wikipedia.org/wiki/Renaissance_
Technologies].

Carl W. Helstrom: Probability and Stochastic Processes for Engineers Macmillan
Publishing Company 1984.

Papoulis A.: Brownian Movement and Markoff Processes Ch. 15 in Probability,
Random Variables, and Stochastic Processes McGraw-Hill 1984.

Sharpe, William F.: Adjusting for Risk in Portfolio Performance Measurement
Journal of Portfolio Management, Winter 1975, pp. 29-34.

TEST LOSOWOSCI MECHANICZNYCH SYSTEMOW

TRANSAKCYJNYCH

Streszczenie Wielu inwestoréw uzywa mechanicznych systeméw transakcyjnych. Systemy
takie testowane sa na danych historycznych, gdzie osiagaja dobre wyniki. W artykule tym
opisano metodg testowania systeméw transakcyjnych oparta na hipotezie iz system podej-
muje decyzje losowo. Przy zatozeniu prawdziwosci hipotezy konstruowany jest odpowiedni
system losowy, ktdry z takimi samymi prawdopodobienistwami generuje sygnaly zajecia po-
zycji. Opisywany system zajmuje pozycje dtuga (zaktada wzrost cen) badZ krétka (zaktada
spadek cen) na kontraktach futures na indeks S&P500 (system zawsze posiada pozycje, ni-
gdy nie jest poza rynkiem). Obliczenia dla systemu losowego wykonywane sa wiele razy i
tworzony jest rozklad prawdopodobieristwa wynikéw systemu. W oparciu o uzyskany roz-
ktad weryfikowana jest hipoteza o losowosci testowanego systemu.

Stowa kluczowe: mechaniczne systemy transakcyjne, test losowosci

Artykut zrealizowano w ramach pracy S/W1/2/08 Politechniki Biatostockie;.

72

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIEJ 2009
Informatyka — Zeszyt 4

Matgorzata Kretowska'

PROGNOSTIC ABILITIES OF DIPOLES BASED
ENSEMBLES - COMPARATIVE ANALYSIS

Abstract: In the paper, comparative analysis of ensembles of dipolar neural networks and
regression trees was conducted. The techniques are based on the dipolar criterion function.
Appropriate formation of dipoles (pairs of feature vectors) allows using them for analysis of
censored survival data. As the result the methods return aggregated Kaplan-Meier survival
function. The results, obtained by neural networks and regression trees based ensembles, are
compared by using Brier score and direct and indirect measures of predictive accuracy.

Keywords: survival analysis, dipolar criterion, regression trees ensembles, neural networks
ensembles

1. Introduction

In real data problems, the question about the future behavior of a given patient arises.
Such situation is very common in survival data, in which the failure time is under
investigation. In medical data, the failure is often defined as death or disease relapse
and time is measured from the initial event, e.g. surgery. Analyzing the survival data
requires taking into account censored observations, for which the exact failure time
is unknown. The follow-up time for such patients gives us only the information, that
the failure did not occur before.

Besides statistical techniques (the most common Cox’s proportional hazards
model [2]), which require some conditions to fulfill, other non-statistical methods
are developed. Artificial neural networks and regression trees belong to the most
popular ones. Recently, also methods concerning the use of ensemble of regression
trees in prognosis of survival time appear. Their application allows receiving the tool
unaffected by small changes in dataset, what is particularly important in discovering
the risk factors. Hothorn et al. [5] proposes boosting survival trees to create aggre-
gated survival function. Kretowska [11] developed the approach by using the dipolar
regression trees or dipolar neural networks [12] instead of the structure proposed in

! Faculty of Computer Science, Bialystok Technical University, Biatystok

73

Matgorzata Kretowska

[5]. The technique proposed by Ridgeway [15] allows minimizing the partial like-
lihood function (boosting Cox’s proportional hazard model). The Hothorn et al. [6]
developed two approaches for censored data: random forest and gradient boosting.

The paper is organized as follows. In Section 2. the introduction to survival data
as well as Kaplan-Meier survival function are presented. Section 3. introduces the
idea of dipoles and in Section 4. two dipoles based structures: neural networks and
regression trees are described. In Section 5. the algorithm of building the ensemble of
predictors is presented. Experimental results are presented in Section 7. They were
carried out on the base of two real datasets. The first one contains the feature vec-
tors describing the patients with primary biliary cirrhosis of the liver [3], the other
includes the information from the Veteran’s Administration lung cancer study [7].
Section 8. summarizes the results.

2. Kaplan-Meier survival function

We have learning sample L = (x;,#,9;), i = 1,2,...,n, where X; is N-dimensional
covariates vector, ¢; - survival time and J; - failure indicator, which is equal to 0 for
censored cases and 1 for uncensored ones.

The distribution of random variable 7, which represents the true survival time,
may be described by the marginal probability of survival up to time r > 0 (S(¢) =
P(T > t)). The estimation of survival function S(z) may be done by using the Kaplan-
Meier product limit estimator [8], which is calculated on the base of learning sample
L and is denoted by $(¢):

S(t) = mj—d;) 1
(1 ,~|g<t < py (1)
where 7(1) < 1) < ... <{(p) are distinct, ordered survival times from the learning
sample L, in which the event of interest occurred, d; is the number of events at time
1(j) and m; is the number of patients at risk at 7(;) (i.e., the number of patients who
are alive at #(;) or experience the event of interest at 7 ;)).

The ’patients specific’ survival probability function is given by S(z|x) = P(T >
t|X = x). The conditional survival probability function for the new patient with co-
variates vector Xy, is denoted by $ (t[Xnew)-

3. Dipoles

The methodology used during the learning process of artificial neural network and
induction of regression tree bases on the concept of dipole [1]. The dipole is a pair of

74

Prognostic abilities of dipoles based ensembles — comparative analysis

different covariate vectors (X;,X;) from the learning set. Mixed and pure dipoles are
distinguished. Mixed dipoles are formed between objects that should be separated,
while pure ones between objects that are similar from the point of view of the ana-
lyzed criterion. The aim is to find such a hyper-plane H(w,8) that divides possibly
high number of mixed dipoles and possibly low number of pure ones. It is done by
minimization of the dipolar criterion function.

Two types of piece-wise linear and convex penalty functions (p;r(v) and @; (v)
are considered:

di—<vy;>if<vy;, ><9;
—+ — J 'J] W] T =]
?j (V)_{o if <v,y;>> 38, @
~(v) = dji+ <vy; >if <v)y; >> —9; 3)
? V=0 if <v,y; ><—9;

where §; is a margin (§; = 1), y; = [1,x1,...,xy]? is an augmented covariate vector
and v=[—0,wy,...,wy]” is an augmented weight vector. Each mixed dipole (y;,y,),
which should be divided, is associated with function (pZ’.(V) being a sum of two func-
tions with opposite signs (¢f;(v) = (pj (V) +; (v) or 9/}(v) = @; (v) + ¢; (v)). For
pure dipoles that should remain undivided we associate function: @ (v) (9};(v) =
©; (v) + ¢/ (v) or 9;(v) = 9; (V) +; (v)). A dipolar criterion function is a sum of
the penalty functions associated with each dipole:

Ya(v) = Y o0fi(v)+ Y oefi(v) 4)

(jvi)elp (jvi)EIm

where o;;; determines relative importance (price) of the dipole (y;,y;), I, and I,, are
the sets of pure and mixed dipoles, respectively.

The rules of dipoles formations depend on the purpose of our research. Assum-
ing that the analysis aims at dividing the feature space into such areas, which would
include the patients with similar survival times, pure dipoles are created between pairs
of feature vectors, for which the difference of failure times is small, mixed dipoles
- between pairs with distant failure times. Taking into account censored cases the
following rules of dipole construction can be formulated:

1. a pair of feature vectors (x;,X;) forms the pure dipole, if
- 0;=0;= 1 and |l‘i—l‘j| <n

2. a pair of feature vectors (xX;,X;) forms the mixed dipole, if
-0;,=0;= 1 and |ll'—tj| >C_,
- (G,‘ :O,Gj =1 andti—tj > C) or (Gi = 1,(5]' :Oandtj—ti > g)

75

Matgorzata Kretowska

Parameters 1 and are equal to quartiles of absolute values of differences between
uncensored survival times. The parameter 1 is fixed as 0.2 quartile and - 0.6.

As the result of minimization of the dipolar criterion function we receive the val-
ues of parameters v of the hyper-plane. Depending on the set of dipoles, parameters
v describe the neuron in artificial neural network or internal node in regression tree.

4. Individual prognostic structures

Two prognostic structures are considered in the paper: dipolar neural network [10]
and regression tree [9]. The basic element of the structures (that is binary neurons
and internal nodes) are characterized by the hyper-plane with parameters v:

1if vViy>0
Z:f(yﬂv):{olf VT§20 (5)

From the geometrical point of view an element divides a feature space into two sub-
spaces by using hyperplane H(v) = {y : v'y = 0}. If the vector y is situated on the
positive side of the hyper-plane, the element returns 1 (z = 1).

Neural network

A dipolar neural network model, considered in the paper, consists of two layers: input
and output layer. The neurons weight values are obtained by sequential minimization
of the dipolar criterion functions. The function is built from all the pure dipoles and
those mixed dipoles which were not divided by previous neurons. The learning phase
is finished when all the mixed dipoles are divided. The other, optimization phase,
aims at distinguishing and enlargement of prototypes (i.e. active fields which contain
the largest number of feature vectors x) and at reduction of redundant neurons [10].

The output layer of R binary neurons divided the N-dimensional feature space
into disjoint regions - active fields (AF). Each region is represented by R-dimensional
output vector: z = [z1,22,...,2z]! , where z; € {0,1}. As the result, the set of active
fields SAF = {AF';AF?;... AFi*} is received. Each active field AF/ contains the
subset L/ of observations from the learning sample L.

Regression tree

Hierarchical and sequential structure of a regression tree recursively partitions the
feature space. The tree consists of terminal nodes (leaves) and internal (non-terminal)
nodes. An internal node contains a split (5), which tests the value of an expression

76

Prognostic abilities of dipoles based ensembles — comparative analysis

of the covariates. Each distinct outcome (0 or 1) of the test generates one child node,
which means that all non-terminal nodes have two child nodes. A terminal node gen-
erates no descendant. The function in a given node is designed on the base on those
feature vectors that have reached the node. The induction of survival tree is stopped
if one of the following conditions is fulfilled: 1) all the mixed dipoles are divided; 2)
the set that reach the node consists of less than 5 uncensored cases.

Each terminal node represents one region in the N-dimensional feature space.
Similarly to the neural network results, the leave j contains the subset L/ of observa-
tions from the learning sample L.

5. Ensembles of predictors

Let assume, that we have a set of k dipolar predictors (dipolar neural networks or
dipolar regression trees): DP;, i = 1,2,...,k. The set is called ensemble when each
of k predictors is generated on base of k learning samples (L, Ly, ...,L;) drawn with
replacement from a given sample L. As the result of each dipolar predictor DP;, the
set SL; = {L};L?;... ,Lf" } of observations from learning sample L;. Having a new co-
variate vector Xye,,, each DP;,i = 1,2, ... k returns the subset of observations L;(Xy.ey)
which is connected with region (or active field in case of neural networks), to which
the new vector belongs. Having k sets L;(Xpe), aggregated sample L (Xpe) is built
[5]:
La (Xnew) = {Ll (Xnew);LZ (Xnew); oLy (Xnew)}

The aggregated conditional Kaplan-Meier survival function, calculated on the base
of set L4 (Xpew) can be referred to as Sa (tXnew)-
The algorithm for receiving the aggregated survival function is as follows:

1. Draw k bootstrap samples (L, Ly,...,Li) of size n with replacement from L

2. Induction of dipolar predictor DP; based on each bootstrap sample L;, i =

1,2,...,k

Build aggregated sample La (Xpew) = {L1 (Xnew)3 L2 (Xnew), - - - Lk (Xnew) }

4. Compute the Kaplan-Meier aggregated survival function for a new observation
Xnew: SA (t|xnew)-

»

6. Measures of predictive accuracy

Beside the problems concerning the use of censored data in the process of building
the prediction tool, the question how to evaluate the prediction ability of received
models appears. The lack of exact failure times for a part of data causes that the

77

Matgorzata Kretowska

classical measures based on difference between empirical and theoretical values can
not be used. Instead of them, other, censoring oriented, measures are proposed.

One of them is the Brier score introduced by Graf at al. [4]. The Brier score as
a function of time is defined by

BS(t) = L¥N (S(t|x))(t; <t Aoy =1)G(1) ' +
(1= S(|x:)*1(ti >)G (1)) ©6)

where G(t) denotes the Kaplan-Meier estimator of the censoring distribution. It is
calculated on the base of observations (#;,1 — ;). I(condition) is equal to 1 if the
condition is fulfilled, 0 otherwise. The BS equal to 0 means the best prediction.

The Brier score belongs to direct estimators of prediction ability, because it
uses the information explicitly from the data. Another direct approach is proposed
by Schemper and Henderson [14]. The predictive accuracy (without covariates), ex-
pressed by absolute predictive error (APE), at each distinct failure time ;) is defined
as:

A

M(t) = Xi [l(fi > 1)) (1= 8(1(;))) + 8l (1 < f(j>)§(f<j>>+

The measure with covariates (M (¢ (t(j)|x)) is obtained by replacing S(t (j)) by S(t (t(jx)

and S(z;) by S(#;|x). To receive overall estimators of APE with (D,) and w1th0ut co-
variates (D) the weighed averages of estimators over failure times are calculated:

D:W_lzé(t(j))_lde(t(j)) (8)
J

Dy=w 1ZG)~ 'diM (1) |x) ©)

where w =Y ; G(t() 'dj, dj is the number of events at time 7(; and G(t) denotes the
Kaplan-Meier estimator of the censoring distribution (see equation 6).

The indirect estimation of predictive accuracy was proposed by Schemper [13].
In the approach the estimates (without M(z(;)) and with covariates M(z;)|x)) are de-
fined by

A

M (1)) = 28(t;)) (1= S(t(;))) (10)
M1 Y Sy %) (1= S xi) (11)

78

Prognostic abilities of dipoles based ensembles — comparative analysis

The overall estimators of predictive accuracy with ([)&x) and without (Dy) co-
variates are calculated similarly to the estimators Dy and D. The only change is re-
placing M (t(j)) and M (t(j)|x) by M(1(;) and Mz |x) respectively.

Based on the above overall estimators of absolute predictive error, explained
variation can be defined as:

Vo= —1—= 12

5 Bs (12)
and o
.~ D—Dy

V= _ 13

B (13)

7. Experimental results

All the experiments were performed using the ensemble of 200 dipolar predictors
DP. The measures of predictive accuracy were calculated on the base of learning
sample L. To calculate the aggregated survival function for a given example x from
the learning set L, only such DP; (i = 1,2,...,200) were taken into consideration,
for which x was not belonged to the learning set L; (i.e. X did not participate in the
learning process of the DF;).

The analysis was conducted on the base on two datasets. The first one is from the
Mayo Clinic trial in primary biliary cirrhosis (PBC) of the liver conducted between
1974 and 1984 [3]. 312 patients participated in the randomized trial. Survival time
was taken as a number of days between registration and death, transplantation or
study analysis time in July 1986. Patients are described by the following features:
age(AGE), sex, presence of edema, logarithm of serum bilirubin [mg/dl] (LOGBILL),
albumin [gm/dl] (ALBUMIN), logarithm of prothrombin time [seconds], histologic
stage of disease. Dataset contains 60 per cent of censored observations.

In table 1, the results for PBC dataset are presented. Three different measures
of predictive accuracy were calculated for three methods: Kaplan-Meier estimator,
ensemble of DNN (dipolar neural network) and ensemble of DRT (dipolar regres-
sion tree). As we can see the absolute predictive error for K-M estimator (which is
equivalent to the model without covariates) is equal to 0.37 and is higher than for
other two methods (0.29 - indirect approach (0.26 - direct approach) for EDNN and
0.23(0.22) for EDRT). Comparing the results received for EDNN and EDRT we can
noticed that for the model with all covariates as well as for model with only one
feature the predictive measures are better for EDRT. Brier score for EDNN is equal
to 0.17 and is bigger by 0.1 than Brier score for EDRT. In case of indirect and di-
rect APE - explained variation for EDNN is smaller (0.22 (0.26)) than for EDRT -

79

Matgorzata Kretowska

0.39(0.41). Taking into account individual factors, the order of them is the same for
both methods. The most important prognostic factor is logarithm of serum bilirubin
for which the explained variation is equal to 0.25 (0.25) and 0.34 (0.35) for EDNN
and EDRT respectively. The influence of age and albumin for prediction of survival
probability is less important.

Table 1. Measures of predictive accuracy for PBC dataset

Model BS Indirect APE/ Direct APE/
(12years)|Explained variation|Explained variation
K-M Estimator 0.23 0.37 0.37
Ensemble of DNN
all covariates 0.17 0.29/0.22 0.27/0.26
AGE 0.22 0.36/0.036 0.36/0.038
LOGBILL 0.17 0.28/0.25 0.28/0.25
ALBUMIN 0.22 0.33/0.11 0.33/0.12
Ensemble of DRT
all covariates 0.16 0.23/0.39 0.22/0.41
AGE 0.18 0.33/0.11 0.33/0.12
LOGBILL 0.16 0.24/0.34 0.24/0.35
ALBUMIN 0.18 0.28/0.24 0.28/0.24

The other analyzed data set contains the information from the Veteran’s Admin-
istration (VA) lung cancer study [7]. In this trial, male patients with advanced inop-
erable tumors were randomized to either standard (69 subjects) or test chemotherapy
(68 subjects). Only 9 subjects from 137 were censored. Information on cell type (O -
squamous, 1 - small, 2 - adeno, 3 - large) - CELL TYPE, prior therapy, performance
status at baseline (Karnofsky rating - KPS), disease duration in months (TIME) and
age in years at randomization (AGE), was available.

The measures of predictive accuracy for VA lung cancer data was shown in table
2. The unconditional absolute predictive error is 0.335. The ensemble of DNN, built
on the base of all the covariates, reduces the error by 0.035 or 0.045 for indirect and
direct approach respectively. The ensemble of DRT reduces the error by 0.145 and
0.185. As for PBC dataset case the results are better for EDRT, but the order of prog-
nostic factors is the same. The most important prognostic factor is KPS (error equal
to 0.3 (029) and 0.25(0.25), for EDNN and EDRT respectively). Explained variation
is 11 (13) and 25 (25) per cent. Taking into account the EDNN, other variables have
the marginal influence on the prediction of survival probability, but in case of EDRT
also the cell type is quite important (explained variation equal to 13 (12) per cent).

80

Prognostic abilities of dipoles based ensembles — comparative analysis

Table 2. Measures of predictive accuracy for VA lung cancer data

Model BS Indirect APE/ Direct APE/
(100 days)|Explained variation|Explained variation
K-M Estimator 0.24 0.335 0.335
Ensemble of DNN
all covariates 0.18 0.3/0.11 0.29/0.14
AGE 0.24 0.32/0.034 0.33/0.013
CELL TYPE 0.24 0.33/0.002 0.33/0.006
KPS 0.19 0.3/0.11 0.29/0.13
TIME 0.24 0.33/0.003 0.33/0.003
Ensemble of DRT
all covariates 0.09 0.22/0.35 0.18/0.46
AGE 0.2 0.3/0.09 0.3/0.1
CELL TYPE 0.19 0.29/0.13 0.3/0.12
KPS 0.18 0.25/0.25 0.25/0.25
TIME 0.22 0.31/0.07 0.31/0.07

8. Conclusions

In the paper, prognostic abilities of two ensemble of dipolar predictors (neural net-
works and regression trees) were compared. The prognostic ability of the models
was verified by several measures, such as the Brier score and direct and indirect es-
timators of absolute predictive errors: Ds,x, D In all cases the measures were better
for ensemble of dipolar regression trees then for ensemble of neural networks. For
VA lung cancer data the explained variation was equal to 0.35 (0.46) for EDRT and
0.11 (0.14) (indirect (direct approach)) for EDNN. Similarly for PBC dataset, the ex-
plained variation received for EDRT - 0.39 (0.41) was greater than for EDNN - 0.22
(0.26). It worth noticed than two method distinguished the same risk factors. The
feature that influence the survival the most is Karnofsky rating in case of VA lung
cancer data and serum bilirubin for PBC dataset. The results suggest that the way of
creating the consecutive hyper-planes in regression trees approach allows using the
information from the given learning sample in the better manner.

References

[1] Bobrowski L., Kretowska M., Kretowski M.: Design of neural classifying net-
works by using dipolar criterions. Proc. of the Third Conference on Neural Net-
works and Their Applications, Kule, Poland (1997) 689-694

[2] Cox D.R.: Regression models and life tables (with discussion). Journal of the
Royal Statistical Society B 34 (1972) 187-220

81

Matgorzata Kretowska

[3] Fleming T.R.: Harrington D.P., Counting Processes and Survival Analysis. John
Wiley & Sons, Inc. (1991)
[4] Graf E., Schmoor C., Sauerbrei W., Schumacher M.: Assessment and compari-
son of prognostic classification schemes for survival data. Statistics in Medicine
18 (1999) 2529-2545
[5] Hothorn T., Lausen B., Benner A., Radespiel-Troger M.: Bagging survival trees.
Statistics in medicine 23 (2004) 77-91
[6] Hothorn T., Buhlmann P., Dudoit S., Molinaro A. M., van der Laan M. J.:
Survival ensembles. [URL http://www.bepress.com/ucbbiostat/paper174] U.C.
Berkeley Division of Biostatistics Working Paper Series 174 (2005)
[7] Kalbfleisch J.D., Prentice R.L.: The statistical analysis of failure time data. John
Wiley & Sons, New York (1980)
[8] Kaplan E.L., Meier P.: Nonparametric estimation from incomplete observations,
Journal of the American Statistical Association 5 (1958) 457481
[9] Kretowska M.: Dipolar regression trees in survival analysis. Biocybernetics and
biomedical engineering 24 (3) (2004) 25-33
[10] Kretowska M., Bobrowski L.: Artificial neural networks in identifying areas
with homogeneous survival time, L.Rutkowski et al. (Eds.): ICAISC 2004,
LNAI 3070, (2004) 1008-1013
[11] Kretowska M.: Random forest of dipolar trees for survival prediction,
L.Rutkowski et al. (Eds.): ICAISC 2006, LNAI 4029, (2006) 909-918
[12] Kretowska M.: Ensemble of Dipolar Neural Networks in Application to Sur-
vival Data, L.Rutkowski et al. (Eds.): ICAISC 2008, LNAI 5097, (2008) 78-88
[13] Schemper M.: Predictive accuracy and explained variation. Statistics in
Medicine 22 (2003) 2299-2308
[14] Schemper M., Henderson R.: Predictive accuracy and explained variation in
Cox regression. Biometrics 56 (2000) 249-255
[15] Ridgeway G.: The state of boosting. Computing Science and Statistics 31 (1999)
1722-1731
[16] Blake, C., Merz, C.: UCI Repository of machine learning databases [http://
www.ics.uci.edu/~mlearn/MLRepository.html], Irvine, CA: University
of California, Department of Information and Computer Science, 1998.
[17] Duda O.R., Heart P.E., Stork D.G.: Pattern Classification, Second edition, John
Wiley & Sons, 2001.
[18] Quinlan J.: Induction of decision trees, Machine Learning 1(1), 1986, pp. 81-
106.

82

Prognostic abilities of dipoles based ensembles — comparative analysis

ZDOLNOSCI PROGNOSTYCZNE KOMITETOW
BAZUJACYCH NA DIPPOLACH - ANALIZA
POROWNAWCZA

Streszczenie W pracy przedstawiona zostala analiza poréwnawcza wtasnosci prognostycz-
nych komitetéw bazujacych na sieciach neuronowych oraz drzewach regresyjnych. Two-
rzenie kolejnych sigé przestrzeni cech w obu metodach polega na minimalizacji odpowied-
nio skonstruowanego kryterium dipolowego. Do poréwnania metod wykorzystano indeks
Brier’a oraz posrednia i bezposrednia miarg jakoSci predykcji. Eksperymenty wykonane
zostaly w oparciu o dwa rzeczywiste zbiory danych: pacjentdw z pierwotna marskosScia
z6lciowa watroby oraz z rakiem ptuc. W obu przypadkach wyniki otrzymane dla komitetu
drzew regresyjnych byty lepsze niz dla komitetu sieci neuronowych. Dotyczyto to zaréwno
badania jakosci catego modelu, do ktérego wzigte zostaty wszystkie dostepne w zbiorze ce-
chy, jak tez jakosci prognostycznej pojedynczych cech. Natomiast uszeregowanie poszcze-
gblnych cech jako czynnikéw ryzyka byto podobne w obu metodach. Podsumowujac mozna
powiedzied, ze sposéb podziatu przestrzeni cech zaproponowany w drzewach regresyjnych
w lepszy sposdb wykorzystuje informacje zawarte w zbiorze uczacym.

Stowa kluczowe: analiza przezy¢, kryterium dipolowe, komitety drzew decyzyjnych, ko-
mitety sieci neuronowych

Artykut zrealizowano w ramach pracy badawczej W/W1/4/08.

&3

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIEJ 2009
Informatyka — Zeszyt 4

Tomasz Fukaszuk!

FEATURE SELECTION USING CPL CRITERION
FUNCTIONS

Abstract: Dimensionality reduction of a feature set is a common preprocessing step used
for pattern recognition and classification applications. It is particularly important when a
small number of cases is represented in a highly dimensional feature space. The method
of the feature selection based on minimisation of a special criterion function (convex and
piecewise-linear - CPL) is considered in the article. A comparison of the experimental re-
sults of this method with the results of NIPS2003 Feature Selection Challenge participant’s
methods is also included.

Keywords: feature selection, CPL criterion function, NIPS2003 Feature Selection Chal-
lenge

1. Introduction

The feature selection is the technique, commonly used in machine learning, of se-
lecting a subset of the most important features for building robust learning models.
By removing most irrelevant and redundant features from the data, feature selec-
tion helps improve the performance of models constructed on the base of that data.
In other words the feature selection means neglecting such measurements (features)
which have no significant influence on the final decisions [4].

Dimensionality reduction is a preprocessing step commonly applied in pattern
recognition and classification applications. It makes easier the next data analysis steps
by alleviating the effect of the curse of dimensionality, enhancing generalization ca-
pability, speeding up learning process and improving model interpretability. Feature
selection also helps people to acquire better understanding about their data by telling
them which features are the important features.

The feature selection is particularly important when the data sets are composed
of a small number of elements in a highly dimensional feature space. The situation
when a small number of elements is represented in a highly dimensional feature space

! Faculty of Computer Science, Balystok Technical University, Biatystok

85

Tomasz fukaszuk

(long feature vectors) usually leads to the linear separability of data sets [3]. The
genomic data sets contain examples of the "long feature vectors".

This paper is engaged in the feature selection by minimization of a special con-
vex and piece-wise linear (CPL) criterion function. The minimization process allows
to calculate the parameters of hyperplane separated the learning sets and to find the
best set of features ensured the linear separability of them at once. Moreover the goal
of the paper is to make a comparison of described method expermiental results with
the NIPS2003 Feature Selection Challenge participant’s methods results.

2. Approaches to feature selection

Feature selection in substance is a task consists in removing irrelevant and redundant
features from the initial data (features) set. Irrelevant and redundant features means
features with no or minimal effect on later decisions.

There are two ways of selecting features set. One consists in making a ranking
of features according to some criterion and select certain number of the best features.
The other is to select a minimum subset of features without learning perfomance
deterioration [6]. In the second way the quality of the whole subset is evaluated.

Important aspects connected with feature selection are models and search strate-
gies. Typical models are filter, wrapper, and embedded. Filter methods use some own
internal properties of the data to select features. Examples of the properties are fea-
ture dependence, entropy of distances between data points, redundancy. In the wrap-
per methods the feature selection is connected with the other data analysis technique,
such as classification, clustering algorithm, regression. The accompand technicque
helps with evaluation of the quality of selected features set. An embedded model
of feature selection integreates the selection in model building. An example of such
method is the decision tree induction algorithm. At each node a feature has to be
selected. Basic search strategies applied in feature selection are forward, backward,
floating, branch-and-bound and randomized strategies [6]. Besides there are a lot of
modifications and improvements of them.

3. Linear separability of data sets and feature selection

Let us consider data represented as the feature vectors X;[n] = [xj1,....xj)] (j =
1,...,m) of the same dimensionality » or as points in the n-dimensional feature space
F[n]. The components x; of the vectors X[n] are called features. We are considering
a situation, when the data can be a mixed (a qualitative-quantitative) type. Some

86

Feature selection using CPL criterion functions

components x j; of the vectors X;[n] can be the binary (x; € {0, 1}) and others the real
numbers (x; € Rl).
Let us take into consideration two disjoined sets C* and C~ composed of m
feature vectors X :
ctnc =0. (1)

For example vectors from the first set represent patients suffered from certain disease
and vectors from the second one represent patients without the disease. The positive
set C* contains m* vectors x; and the negative set C~ contains m~ vectors (m =
m*+m).

We are considering the separation of the sets C* and C~ by the hyperplane
H(w,0) in the feature space F'[n].

H(w,0)={x:(w,x) =0} (2)

where w = [w1,...,w,]T € R" is the weight vector, © € R! is the threshold, and (w,x)
is the inner product.

Definition 1. The feature vector X is situated on the positive side of the hyperplane
H(w,0) if and only if (w,X;) > 0 and the vector X is situated on the negative side of
H(w,0) if and only if (w,x;) < 6.

Definition 2. The sets C™ and C~ are linearly separable if and only if they can be
fully separated by some hyperplane H(w,0) (2):

(Iw,0) (Vx; €CT)(w,x;) >0 and (Vx;€C)(W,x;) <9. (3)

In accordance with the relation (3), all the vectors X; belonging to the set C* are
situated on the positive side of the hyperplane H(w,0) (2) and all the feature vectors
x; from the set C™ are situated on the negative side of this hyperplane.

The feature selection can be linked with searching of hyperplane H(w,0) (2)
separated the sets C™ and C~. It is possible to find a hyperplane in reduced feature
space F[n'] n’ < n. This fact results from the characteristic of the linear independence
of the feature vectors x; constituting the sets C Tand C™ [2].

4. Convex and piece-wise linear (CPL) criterion function &, (w,0)

If the sets C* and C™ are linearly separable there are very many hyperplanes H(w,0)
(2) divided them [3]. In order to avoiding overfitting of the model and obtainig good

87

Tomasz fukaszuk

Kz

77 :

Fig. 1. Optimal hyperplane H(w*,0*) ensured the widest margin between itself and the elements
of the sets C™ and C~

its generalization ability the optimal hyperplane H(w*,0") should be found. Optimal
hyperplane means the hyperplane ensured the widest margin between itself and the
elements of the sets C*™ and C~.

The hyperplane H(w*,0") could be calculated by the minimization of the crite-
rion function ®; (w,0) [3].

Dy (w,0) = Y ;0] (w,0)+ Y o0, (w,0)+L) Yioi(w,0) 4)
x;€C* x;€C i€l

where o; > 0,A>0,v,>0,/={1,...,n+1}.
The nonnegative parameters o; determine relative importance (price) of particular
feature vectors X;. The parameters ;. represent the costs of particular features x;.

The function @) (w, 0) is the sum of the penalty functions (p;-L (w,0) or @; (w,0)
and ¢;(w,8). The functions @/ (w,8) are defined on the feature vectors x; from the
set C*. Similarly 9 (w,0) are based on the elements X; of the set C.

1+0—(w,x;) if (wx;)<1+86

and
o 140+ (wx)) if (wx;)>—1+86
(VXjGC) (Pj(W,e)—{ 0 ’ if (w,x;>§—1+9 ©)

The penalty functions ¢;(w,0) are related to particular features x;.

. _Jwmil if1<i<n

88

Feature selection using CPL criterion functions

The criterion function @) (w,0) (4) is the convex and piecewise linear (CPL)
function as the sum of the CPL penalty functions (p;r(w,e) ©), ¢; (w,0) (7) and
0;(w,0) (7). The basis exchange algorithm allows to find the minimum efficiently,
even in the case of large multidimensional data sets C* and C~ [1].

Dy = D) (W",0") = mindy(w,0) >0 (8)

The vector of parameters w* and the parameter 8 define the hyperplane H (w*,0%).
It is the best hyperplane separated the sets C™ and C~ according to the interpretation
showed on the figure 1.

5. NIPS2003 Feature Selection Challenge

NIPS is the acronym of Neural Information Processing Systems. It is the annual con-
ference name taken place in Vancouver, Canada from 1987. Its topics span a wide
range of subjects including neuroscience, learning algorithms and theory, bioinfor-
matics, image processing, and data mining [7].

In 2003 within the framework of NIPS Conference took place the challenge in
feature selection. The organizers provided participants with five datasets from differ-
ent application domains and called for classification results using a minimal number
of features. All datasets are two-class classification problems. The data were split
into three subsets: a training set, a validation set, and a test set. All three subsets were
made available at the beginning of the benchmark, on September 8, 2003. The class
labels for the validation set and the test set were withheld. The identity of the datasets
and of the features (some of which, called probes, were random features artificially
generated) were kept secret. The participants could submit prediction results on the
validation set and get their performance results and ranking on-line for a period of 12
weeks. On December 1st, 2003, the participants had to turn in their results on the test
set. The validation set labels were released at that time. On December 8th, 2003, the
participants could make submissions of test set predictions, after having trained on
both the training and the validation set [8]. Performance was assessed using several
metrics, such as:

— the balanced error rate (the average of the error rate of the positive class and the
error rate of the negative class),

— area under the ROC curve (the ROC curve is obtained by varying a threshold
on the discriminant values (outputs) of the classifier, The curve represents the
fraction of true positive as a function of the fraction of false negative),

— fraction of features selected,

&9

Tomasz fukaszuk

— fraction of probes (random artificially generated features) found in the feature set
selected.

The NIPS 2003 challenge on feature selection is over, but the website of the
challenge is still open for post-challenge submissions. One can compare results by
his own method with the challenge participant’s methods results.

6. Numerical experiments

There was performed the experiments with the use of earlier described feature selec-
tion methods. The input data were taken from the NIPS2003 Feature Selection Chal-
lenge web site [8]. The author’s own implementation of the feature selection methods
was applied during experiments. The results were formated according to directions
of the challenge organizers and compared with the results of challange participans.

6.1 Data sets

There are five datasets spaned a variety of domains (cancer prediction from mass-
spectrometry data, handwritten digit recognition, text classification, and prediction of
molecular activity). One dataset is artificial. All problems are two-class classification
problems. For the purpose of challange the data sets were prepared appropriately.
Preparing the data included, amoung other things:

— preprocessing data to obtain features in the same numerical range (0 to 999 for
continuous data and 0/1 for binary data),

— adding ,,random” features (probes) distributed similarly to the real features in
order to rank algorithms according to their ability to filter out irrelevant features,

— splitting the data into training, validation and test set.

6.2 Course of experiments

Large data dimensions and connected with it a big size of data files determine using
a special methods of dealing with data and strong enough computer system. The au-
thor’s own implementation of the feature selection method relied on the minimization
of CPL criterion function (described in section 4.) with the use of the basis exchange
algorithm [1] was applied. The calculation executed on the computer equiped with
64 bit linux operation system, Intel Core2 Quad processor and 4MB RAM memory.

90

Feature selection using CPL criterion functions

Table 1. The data sets of NIPS2003 Feature Selection Challenge

Training| Validat. | Test

Dataset Domain Type |Features|Probes
exam. | exam. | exam.

mass-spectrometric data, pa-
Ascene [tients with cancer (ovarian or| Dense 10000 | 3000 100 100 700
prostate cancer), and healthy

handwritten digits: the four and

Gisette . Dense | 5000 | 2500 | 6000 | 1000 | 6500
the nine

Dexter |\Xts about "corporate acquisi-| Sparse | 5000 | 150531 300 | 300 | 2000
tions nteger

discovery drt{gs, predict Wthh Sparse 100000 | 50000 | 800 350 300
compounds bind to Thrombin | binary
Madelon |artificial data, XOR problem Dense 500 480 2000 600 1800

Dorothea

The learning data sets were constructed from the objects from training and vali-
dation sets. It means the author as a participant of the challenge starts from the second
challange stage, when labels of the object from validation set are known.

The applied feature selection method generates indexes of selected features and
coefficients of the hyperplane separated the learnig sets C* and C~ (1) corresponding
to the indexes. The obtained results needed to additional process in order to submit
them via NIPS2003 challenge web site and compare author’s methods with the chal-
lenge entries. The results on each dataset should be formatted in ASCII files. In the
separated files should be placed the classifier outputs for training, validation and test
examples, the forth file should include a list of feature indexes used for classification.
The author’s results were formated according to the instructions.

6.3 Results

Table 2 includes the outcomes of applying author’s feature selection method with the
data sets of NIPS2003 Feature Selection Challenge. The numbers were received from
the challenge web site after submitting formated results.

The series of results consist of the Balanced Error and Area Under Curve val-
ues (described in section 5.) defined seperately for train, validation and test sets, the
number of features used by classifier and its proportion to the whole set of features
and also the number of artificial features (probes) in the selected features set and its
proportion to the number of all features selected by method. Besides the results con-
cerning particular data sets, the table 2 includes the average results for all five data
sets in the last row.

A perfect feature selection method should characterized by as small as possible
values of Balanced Error with reference to all part of data set: train, validation and test

91

Tomasz fukaszuk

Table 2. Results of author’s method in the NIPS2003 challenge

Balanced Error Area Under Curve | Features | Probes
Train | Valid | Test | Train | Valid | Test | # % #| %
arcene [0.0000{0.0000{0.3084|1.0000{1.0000|0.6916| 32 | 0.32 | 18 |56.25
gisette |0.0000{0.0000{0.0571|1.0000{1.0000(0.9429|222| 4.44 |160{72.07
dexter [0.0000{0.0000{0.1560{1.0000{1.0000(0.8440(56 | 0.28 | 12 |21.43
dorothea|0.0000{0.0000{0.3401|1.0000|1.0000|0.6599| 44 | 0.04 | 33 |75.00
madelon |0.2665[0.2517(0.474410.7335]0.7483(0.5256(500{100.00{480|96.00
overall |0.0533|0.0503|0.2672(0.9467|0.9497|0.7328 21.02 64.15

Dataset

(and connected with it close to 1 value of Area Under Curve). The number of features
selected by a perfect feature selection method does not defined and it depends on a
type of data set. Nevertheless the number should not be excessive numerous. In case
of artificial features a perfect feature selection method should not choose them. It
means the number of them should be as small as possible or equal to 0 in perfect
situation.

The table of results shows the author’s feature selection mehtod (especially its
applied version) is not a perfect one. Particularly bad results were produced in case of
madelon data set. Moreover the method selected too many arificial features. It con-
cerns all data sets. The number of features used in classification are in the adequate
level (except madelon data set). In case of values of Balanced Error and Area Under
Curve with reference to train and validatin data sets the method turned out to be a
perfect one (except madelon data set).

6.4 Conclusions

The applied method of feature selection uses the linear classifier. The properties of
that kind of classifier disqualify it as a good one with xor problem. So disadvanta-
geous results for madelon dataset follow from the character of used classifier, because
medalon dataset represents exactly xor problem.

On the basis of the results the applied method is found as the method with a
tendency to overfitting. The classification errors do not occure in case of train and
validation data sets, whereas in the test data sets the errors are equal about 25%. The
substantial number of the artificial features in the selected features set points at the
tendency to overfitting, too.

92

Feature selection using CPL criterion functions

6.5 Comparison with NIPS2003 Feature Selection Challenge participant’s
results

According to rating placed on the web site [8] and created on the basis of the results
provided by the participants of NIPS2003 challenge, the author’s method has placed
itself on 185th position (when classification criterion is the average Balanced Error
on the test set). It means about a half of the list.

A large negative influence on the rating position has very bad outcome obtained
with madelon data set. The applied method does not manage with that kind of data
from its nature. If the results of madelon dataset were not taken into account and
the average value based on the remaining four datasets, the author’s method would
achieve Balanced Error value refered to the test set equal 0.2154. It would improve
the rating position of method to 154th position.

The author’s method occupies 134th position if the proportion of the number
of features used by classifier to the number of all features is the rating criterion.
The result attained for madelon dataset has again a disadvantageous influence to the
situation. If the results of madelon dataset were not taken into account, the method
would rate on the high enought 40th position.

The bast methods employed by participants of the challenge have obtained the
Balanced Error on the test set less than 7%. However a different methods have been
used with particular data sets by a single participant as a rule. For example one of the
competitor describes his method in the following manner: "Combination of Bayesian
neural networks and classification based on Bayesian clustering with a Dirichlet dif-
fusion tree model. A Dirichlet diffusion tree method is used for Arcene. Bayesian
neural networks (as in BayesNN-large) are used for Gisette, Dexter, and Dorothea.
For Madelon, the class probabilities from a Bayesian neural network and from a
Dirichlet diffusion tree method are averaged, then thresholded to produce predic-
tions." [8]. The other participants with well results applied among other things ran-
dom forests method, SVM, a different form of neural networks.

In sum it could be ascertained that the results of author’s method are not ex-
tremely well. Nevertheless they are not bad, too.

7. Concluding remarks and future work

The paper presents basic assumptions of the method of feature selection based on
the minimisation of the CPL criterion function. It contains the results obtained from
applying of described method with the data provided by the NIPS2003 Feature Se-
lection Challenge organizers. In comparison with participants of the challenge the

93

Tomasz fukaszuk

author’s method has placed itself in the middle of list, particularly in case of the
Balanced Error for test set, the most important rating criterion.

It needs to be noticed described experiment was the first experience of author
with NIPS2003 challenge. On the basis of observations of the results list it can be
stated that the approach to the challenge several times is the rule among the challenge
participants. On every next approach the participant attains better rating position as
the effect of improving own method. The purpose of author is also the improving his
feature selection method and reaching higher rating position in the future.

The NIPS2003 Feature Selection Challenge is a good benchmark allowed on a
competent estimating of the efficiency of improvements introduced in own feature
selection methods as well as a comparising of own solutions with other from the
research domain.

References

[1] Bobrowski L.: Design of Piecewise Linear Classifiers from Formal Neurons by
Some Basis Exchange Technique, pp. 863-870 in: Pattern Recognition, 24(9),
1991.

[2] Bobrowski L., Lukaszuk T.: Selection of the linearly separable feature sub-
sets, pp.-544-549 in: Artificial intelligence and soft computing: ICAISC’2004,
eds. Leszek Rutkowski, Jorg Siekmann, Ryszard Tadusiewicz, Lotfi A. Zadeh,
Lecture Notes in Computer Science, vol.3070, 2004.

[3] Bobrowski L.: Eksploracja danych oparta na wypuktych i odcinkowo-liniowych
funkcjach kryterialnych, Wyd. Politechniki Biatostockiej, Biatystok, 2005.

[4] Duda O.R., Heart P.E., Stork D.G.: Pattern Classification, Second edition, John
Wiley & Sons, 2001.

[5] Fukunaga K.: Statistical Pattern Recognition, Academic Press, Inc., San Diego,
1990.

[6] Liu H., Motoda H.: Computational methods of feature selection, Chapman &
Hall/CRC data mining and knowledge discovery series, Chapman & Hall/CRC,
2008.

[7] http://nips.cc/

[8] http://www.nipsfsc.ecs.soton.ac.uk/

94

Feature selection using CPL criterion functions

SELEKCJA CECH Z WYKORZYSTANIEM FUNKCJI
KRYTERIALNYCH TYPU CPL

Streszczenie Redukcja wymiarowosci zbioru cech jest czgsto uzywanym wstepnym kro-
kiem przetwarzania danych stosowanym przy rozpoznawaniu wzorcéw i klasyfikacji. Jest
ona szczegOlnie istotna kiedy mata liczba obserwacji jest reprezentowana w wysoko wymia-
rowej przestrzeni cech. W artykule rozwazana jest metoda selekcji cech opierajaca si¢ na
minimalizacji specjalnej funkcji kryterialnej (wypuktej i odcinkowo-liniowej - CPL). Zata-
czono takze poréwnanie wynikéw eksperymentéw uzyskanych za pomocg opisanej metody
z wynikami metod uczestnikéw konkursu NIPS2003 Feature Selection Challenge.

Stowa Kkluczowe: selekcja cech, funckcja kryterialna typu CPL, konkurs NIPS2003 Feature
Selection Challenge

Artykut zrealizowano czg$ciowo w ramach grantu MNiSW 3T11F01130 i w ramach
pracy badawczej S/W1/2/08 Politechniki Biatostockie;j.

95

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIE]J 2009
Informatyka — Zeszyt 4

Agnieszka Makarec!

PROBABILISTIC AND NON-DETERMINISTIC
SEMANTICS FOR ITERATIVE PROGRAMS

Abstract: In this paper probabilistic and non-deterministic programs are considered on the
ground of logic of programs. We are interested in dependencies between nondeterministic
and probabilistic interpretation of a program. The formal definitions of probabilistic and
non-deterministic semantics are the starting point for our considerations. The emphasis is on
differences in expressibility the halting property in probabilistic and non-deterministic logic
of programs.

Keywords: non-deterministic program, probabilistic program, non-deterministic computa-
tion, probabilistic computation

1. Introduction

There are many reasons that make the problem of non-deterministic and probabilistic
constructions an important field of study: average case analysis, randomized algo-
rithms, distributed systems, concurrency, reliability, security. There were proposed
several approaches to model of non-deterministic and random choice of the control
in programming languages (cf. [2,3,4,6,7]). Non-determinism can be used to abstract
over probabilities. It is a valuable tool that helps us understand the expressiveness of
programming language constructs. However, the input to a program and the output
may be described in terms of a probability distribution, in which case the average
case behavior of the program can be formally analyzed.

2. Non-deterministic and probabilistic interpretations of random
assignments

The considerations of the presented paper will be formulated in terms of logics of
programs. We shall compare properties of iterative programs expressible in non-
deterministic and probabilistic versions of algorithmic logic (cf. [1,8]). To com-
pare these two approaches we assume that computations of probabilistic and non-
deterministic programs are realized in a fixed algebraic structure for language L,

! Faculty of Computer Science, Bialystok Technical University, Biatystok

97

Agnieszka Makarec

containing assignments of the form x :=? and the construction either ...or Proba-
bilistic and non-deterministic interpretation of assignments x :=? should be consistent
in a natural sense: an element is probabilistically generated with a positive probability
if and only if non-deterministic generation of this element is possible.

The concepts of them seem to be essentially different but some dependencies can
be formulated and proved. Namely, if in probabilistic interpretation, program K halts
with positive probability, then in the non-deterministic interpretation the formula ex-
pressing the possibility of halting is valid. In the present paper we restrict ourselves to
finite interpretations because of the efficiency of verification of programs properties.

The algorithmic language L, being an extension of first-order language L, is
an abstract programming language of iterative programs.

There are three kinds of well-formed expressions in Ly,: terms, formulas and
programs. The alphabet of the language L,;, contains enumerable sets of predicates
¥, functors @ and a countable set V; of individual variables. The set 7 of terms
and the set F of first-order formulas are defined as in the classical logic. The set IT of
iterative programs is the least set of expressions containing assignments x :=?, x := 1,
where x € V,T € V|, and closed under the program constructions: begin M; N end ,
if Ythen M else N , while 'y do M, either M or N.

3. Probabilistic Algorithmic Logic

In this subsection we describe the syntax and semantics of language L., which is an
extension of Lge (such that L C Lyjg C Lprop). The syntax and semantics of language
Lo derives from Probabilistic Algorithmic Logic PrAL [1].

3.1 Syntax of L,

The alphabet of the language L., contains:

¥ — an enumerable set of predicates (the equality sign = is distinguished), which in-
cludes subset Wy of arithmetical predicates and ¥; of non arithmetical predicates,
@ — an enumerable set of functors, which includes subset ®g = {4+, —, *, /} of arith-
metical functors and subset ®; of non arithmetical functors,

V — an countable set of variables, which includes subset V; of individual variables
and subset V of real variables,

C - a finite set of real constants.

L, is a two-sorted language with the sets of terms 7" and T , and the set of all
formulas Fp.

The set Tx of arithmetical terms is the least set of expressions such that:

98

Probabilistic and non-deterministic semantics for iterative programs

i. if o € F and Ke IT then P(a), P(Ka) € T,
ii. Vg CTg,
iii. if @ € P is an j-argument functor and T1,...,T; € T then ¢(7y,...,T;) € Tr

The set F},,p is the least set of expressions such that:

i. if o € F and Ke IT then Kot € F)ypp,
ii. if o, B € Fppop then oV B, A B, 00 = B, 200 € Fpyrop,
iii. if & € W is an j-argument predicate and T1,...,T; € Tg then &(T1,...,T;) € Fprop.

The set Fy of open formulas is the least set of expressions such that:

i. if 6 € W is an j-argument predicate and 7y,...,T; € T then 6(1y,...,T;) € Fy,
ii. if a,B € Fy then aV B, AP, o0 = B, —a € Fp.

3.2 Semantics of Ly,

The interpretation of the language L, will be understood as the triple (3,p, p),
where 3 is a structure for L with the universe U = {uy,...,u,} and p: U — [0,1] is
the fixed probabilistic distribution on the set U connected with a random assignment
x :=?, such that

p(w)=pi, Y, pi=1 (1)
i=1,...,r

The number p, satisfying 0 < p < 1, corresponds to the probability of choosing the
subprogram M as the result of the realization of the construction either M| or M.

By a valuation of individual variables we mean a mapping ® : V| — U, where
Vi = {x1,x2,... }. By a valuation of real variables we mean a mapping ®g : Vg — R.
Let us denote by K(xj,...,x,) the probabilistic program with all variables among
{x1,...,x,}. We will write it simply K when no confusion can arise. Each state
of program K is described by the valuation ® = (®(x),...,0(x,)). We will de-
note by W = {®y, ..., },] = r" the set of all possible valuations of variables from
{x1,...,x,}. Fact that the valuation ® in the structure (3, p, p) satisfies the formula a
will be denoted by (3,p, p),® = o (or shortly ® = o).

The interpretation of open formulas and terms in the language L, is classical
and it was presented in [1,5].
The element T/5 ,,) (®) of U is called the value of the term T in the structure (3,p, p)
at the valuation ® and it will be shortly denoted by t(®) (when no confusion can
arise).

99

Agnieszka Makarec

3.3 Computational semantics of L,

By a configuration in the structure (3,p, p) we understand any ordered triple of the
form s = (®;q; ?), where ® is a valuation, g is a probability of occurring that valua-
tion, K= (Ki,...,Ky) is a finite sequence of programs, which are executed in order
as they are written (the sequence may be empty).

A computation of a probabilistic program K with an input valuation ®, which
appears with probability g, we mean as the sequence of configurations satisfying the
following conditions.

L. The first element of this sequence is in the form of s; = (®; ¢;K).

I1. If i-th configuration s; = (®';¢";K1,... ,K,,) of the sequence is determined and
¢ denotes a probability of occurring valuation @’ then s;. is the next configu-
ration and:

i. If K is in the form of x := T, then 5;1 = (0”;¢";K>, ... ,K,,), where

"N T() iff y = x,
o) ={ oy s @

ii. If Ky is in the form of x :=?, then s;11 = (0";¢ - p(u);Ks, ... ,K;), where
p(u) denotes probability assignment of an element u € U to a variable x

d
o (y) = u iff y=x, 3
OO =\ @) ity £)

iii. If K; is in the form of either M or N, then

siv1 = (05¢ - p;M, Ky, ..., K or sivg = (054" - (1 — p);N, Ky, ..., Kp)

“4)
and p denotes the probability of choosing the subprogram M.
iv. If K; is in the form of begin M; N end, then
siv1 = (0 ;M, N, Ky, ..., Kp). %)
v. If K| is in the form of if y then M else N, then
o (0;¢M,Ky,....Ky)iff ® Ev,
Si+1 = r.o 1. . (6)
(0';¢;N,K;,...,K,) otherwise.
vi. If K; is in the form of while 'y do M, then
(0';¢;M, while ydo M, Ky, ..., K,,) iff o =7,
Si41 = A . (7)
(@54 Ko, .., Kip) otherwise.

100

Probabilistic and non-deterministic semantics for iterative programs

I If the i-th triple of the sequence is in the form of s; = (®';4’;0), then s; is the
last element of the sequence. The valuation ® is the result of the successful
computation. The valuation @' is obtained with the probability ¢’.

3.4 Algebraic semantics of Lo

Let (3,p, p) be a structure for Lo, , Kbe a program and W be the set of all valuations
of variables from the program K. The measure

u:2% —10,1] (®)

will be called probability distribution on W. Let us consider the set S of all such
measures p on W. Program K is interpreted as a partial function K5, ,y : § — S. If
w is an input distribution, such that u(®;) = p;,i = 1,...,1, then g =K(g 5 »» (1) is the
output distribution such that ¢/ (@;) = ¢/,i =1,...,1 (Fig. 1).

o H M
a)l L) lu/ 3

Fig. 1. Probabilistic interpretation of a program

Theorem 1. [1]. Let (3,p,p) be a structure for Ly, with universe U =
{uy,uz,...,u,}. For every program K(xi,...,x;) interpreted in (3,p, p), we can con-
struct, in an effective way, a matrix K = [k; j],-7 j=1,..1» where l =r", such that for every
input probability distribution u, the output distribution u' satisfies:

W =uK.)

An element k;; of matrix K corresponds to the probability that ®; is the output val-
uation after computation of program K, provided that the computation starts at the
valuation ®;. The way of construction of the transition matrix K corresponding to
program K is described in details in [1,5].

The following lemma enables us to determine, which positions k;; of the matrix K
are equal 0.

Lemma 1. [1]. Let K be a program of the form while ydo M and let M!*! (1 = ")
denote the program

101

Agnieszka Makarec

begin if ythen M;...; if Y then M end.

-~

I+1 times
Then for each distribution y,
[while 'y do M] (3.0.0) (1) = [while y do Ml+1]<3’p’p> (u). (10)
Furthermore,
kij=0iffm ' =0,ij=1,..1, (a1

where k;; denote elements of the matrix K corresponding to the program K in the

structure (3,p,p), and mf;rl denote the elements of the matrix M+ corresponding

to the program M'*1.

Moreover, by that lemma we can detect the places in program K, where it loops.

4. Non-deterministic Algorithmic Logic

In this subsection we briefly present a non-deterministic algorithmic language L.,
being an extension of Ly, (L C Ly C Lyaim). The interpretation of the language
Lya:m will be understood as the pair (3,Up), where 3 is a structure for first-order lan-
guage L with a finite universe U and Uy denotes a subset of U. The non-deterministic
interpretations (3,Up) will be called probe if and only if Uy = U.

4.1 Syntax of L4,

We are given a fixed alphabet in which V is a set of individual and propositional
variables, W is a set of predicates, and & is a set of functors. Let F, be a set of open
formulas and T be set of terms. The set of non-deterministic iterative programs is
defined in the same way, as for language L, with nondeterministic assignment x :=?
and non-deterministic program construction either M| or M. The set of all formulas
we denote by F,,4,,,. It contains the classical first-order formulas constructed by means
of the connectives A, V,—,=> and quantifiers 3, V. It also contains every expression o
in the following form:

(3x)B(x), (vx)B(x), (12)
(BVA), (BAL), (B=4),—B, (13)
OKB, OKB, (14)

where x is an individual variable, B,A are arbitrary formulas and K is an arbitrary
non-deterministic program.

102

Probabilistic and non-deterministic semantics for iterative programs

The informal meaning of the formula CIK is: it is necessary that after realization K
the formula B holds. The informal meaning of the formula QK is: it is possible that
after realization K the formula 3 holds, analogously to [8].
The fact, that the valuation o in the structure (3,U)) satisfies the formula o will be
denoted by (3,Up),® = o (or simply ® = a when no confusion can arise).

The interpretation of open formulas and terms in the language L4, is classical
and this can be found in [8].
The element T(g g, (@) of U is called the value of the term T in the structure (3,Uy)
at the valuation ® . It will be shortly denoted by t(®) when no confusion can arise.

4.2 Computational semantics of L4,

By a configuration in structure (3,Up) we shall understand an ordered pair (®; ?),
where ® is a valuation, and K = {Ki,...,K,} is a finite sequence of programs (which
may be empty).

By a tree of possible computations of a program K(x;,xy,...,x,) in the struc-
ture (3,Up) with a fixed input valuation ® we mean a tree Tree(K,®,3,U,) (shortly
Tree), such that the configuration (; ?> is the root of the Tree, Rest denotes a se-
quence of programs (it may be empty) and:

i. If a configuration (®'; if y then M else N, Rest) is a vertex of Tree, then the
unique son of this vertex is (®'; M, Rest) if @ |=yor (0; N, Rest) otherwise.
ii. If a configuration (®'; begin M; N end, Rest) is a vertex of Tree, then the unique
son of this vertex is (®'; M, N, Resr).
iii. If a configuration (®'; while Y do M, Rest) is a vertex of Tree, then the unique
son of this vertex is (@'; M,while ydo M, Rest) if @' |= o or (@'; Rest) otherwise.
iv. If a configuration (@';either M or N, Rest) is a vertex of Tree, then the left son
of this vertex is (®@'; M, Rest) and the right son is (@'; N, Rest).
v. If a configuration (@';x := T, Rest) is a vertex of Tree, then the unique son of this
vertex is (@”; Rest), where

woy (o) iff y =x,

vi. If a configuration (@';x :=?, Rest) is a vertex of Tree, then the sons of this vertex
are in the form (®@”; Rest), where

(0”():{” iff y=xAu € U, (16)

o (y) iff y # x.

103

Agnieszka Makarec

vii. If a configuration (@';0) is a vertex of Tree, then it is a leaf of Tree, i.e. it has no
sons.

Every path of the Tree(K,®,3,U,) we called a computation of a program
K in the structure (3,Up) at the input valuation ®. If (®';0) is the leaf of the
Tree(K,®,3,U,), then the valuation «' is called the result of the corresponding com-
putation.

By the interpretation of program K in the structure (3,Uj) we shall understand
binary relation K g, in the set W of all valuations, such that (o, o) €Kz, 1ff
@' is a result of a computation of program K from the valuation ® in the structure
(S,Up). The set of all results of the program K at the valuation ® in the structure
(3,Uy) we denote by

Kis.0) (@) = {0 : (0,0) € K3) } (17)
The definition of interpretation of program K for different programs is as follows:
i. If K is of the form x := 1, then
Kis) = {(0,0) 1 0 (x) = 13 1) (@) AVyer\ (@' () = 0(y) }.~ (18)
ii. If K is of the form x :=?, then
K = {(0,0): /() € UpAVyen g/ (0) =0} (19)

iii. If K is of the form while —y do x := x, then the interpretation of program K will
be denoted by I, and

I ={(0,0): o1} (20)
iv. If K is of the form begin M; N end, and M3), N(3 1) are the interpretations of
the subprograms M, N, then

Kis,00) = M(3,05) ©N(S,0p)- 2D

v. If K is of the form if y then M else N and M3 yy, N(3 v, are the interpretations
of the subprograms M, N respectively, then

K<37U0> = IYmM<S,Uo> UlﬁYﬂN@’UO). (22)

vi. If K is of the form either M or N , and M5 1y, N(3 1) are the interpretations of
the subprograms M, N respectively, then

K(3.00) = M(3,05) UN(S 1) - (23)

104

Probabilistic and non-deterministic semantics for iterative programs

vii. If K is of the form while Y do M, then

oo

Koy = (W0 Mg gy ULy) oLy, (24)
i=0

In the above U, N denote standard operations on sets and o denotes the superposition
of relations.

For an arbitrary valuation o in the structure (3,U)) we assume:
(3,Uo),® = OKBiff 3yyekg (@) (3 Uo), 0 |= B, (25)
(3,Uo), 0 = OKB iff Voycx g (0) (3 Uo), @ = B and
all computations of the program K at the valuation ® are finite. (26)

Remark 1. The formula [JK1, where 1 is any formula of the form vV —y will be called
the stopping formula of the program K and it will be denoted by STOP(K). For this
formula we have:

(3,Up) = STOP(K) iff all computations of the program K are finite. 27

5. Results
Example 1. Let the probabilistic distribution on the set U = {1,2,3} be fixed as:

p(1) =1/2,p(2) = 1/3,p(3) = 1/6.

Let us consider an extremely simple program K interpreted in the universe U:

Algorithm 1 Program K

1: while x # 3 do
2: if x = 1 then

3 x:=?
4 else

5: x:=1
6 end if
7: end while

It is possible that, the sequence of states of program K looks as follows:

105

Agnieszka Makarec

ox)=1,0x) =2,0(x)=1,0x) =2,0(x)=1,0(x) =2,... (28)

However, if we consider the program K in the probabilistic structure (3,p, p) we
have transition matrix for that program in the form:

001
K=1001]. (29)
001

The probability that program K halts (when x = 3) is exactly 1 and the probability
that the program K loops equals 0.

Now, lets consider program K in the non-deterministic structure (3,Up). It is
easy to observe that in the tree Tree(K,®,3,Up) of possible computations of a pro-
gram K contains infinite path. It means that, it is possible that program K loops. Thus
the formula [J K(x = 3), expressing fact that the all computations are finite, is not
valid in the structure (3, Up).

Now, we can formulate our main results.

Definition 1. The interpretations (3,p, p) and (3,Uy) will be called consistent pro-
vided that, for eachi =1,2,...,r the following holds:

uecly<p(u)>0. (30)

Lemma 2. Assume that the non-deterministic structure (3,Uy) is consistent with the
probabilistic structure (3,p,p). If

(00 KDY, (0l:g? ROY (g0 K)o @
is a probabilistic computation (finite or not) of the program K for the input valuation
0)(0), then

<m(°>;?<1)> : <m(1>; ?(2>> s <m(i+1); ?("+1>> - (32)

is a non-deterministic computation (finite or not) of the program K for the input
valuation ().

Proof. The proof is by induction on i (with respect to the length of computation) and
consists in analysis all possible cases of the program constructions. It is omitted for
the sake of this paper compactness.

As an immediate consequence of Lemma 2 we have

106

Probabilistic and non-deterministic semantics for iterative programs

Corollary 1. Ler (3,p, p) and (3,Uy) be probabilistic and non-deterministic inter-
pretation structures for Ly, respectively and 0,0 be valuations. Let p be a proba-
bility distribution such that u(®) > 0. From the above we check at once that in the
case, when the output distribution u' = K5, , (1) satisfies y' (') > 0, exists a non-
deterministic computation of program K starting with ® and ending at ®'.

We can also prove the following

Theorem 2. Let K be a program in the algorithmic language Ly, Assume that
the non-deterministic structure (3,Uy) is consistent with the probabilistic structure
(3,p,p). For any distribution u and any valuation ® in the structure (3,p,p), if
u(®) =1and (3,p,p),® EK(P(Y) > 0), then (3,Up),® = OKY.

Proof. Proof is omitted. It proceeds by induction on the length of the program com-
putation.

Now, we will formulate the non-deterministic analogon of the Lemma 1.

Theorem 3. Let K be a program in the algorithmic language Ly, Assume that
the non-deterministic structure (3,Uy) is consistent with the probabilistic structure
(3,p,p). If in the tree of all possible probabilistic computations of the program K,
starting with distribution satisfying u(®) = 1, exists a path of length longer than I,
where | = |W|=1", then (3,Up),® = - STOP(K).

5.1 Algebraic semantics of L, 4,

In this approach we suggest using the calculus abstract over probabilities. More pre-
cisely, we resign from precise probability values by replacing them with terms possi-
bility and necessity. We define formalism by analogy to algebraic semantics of itera-
tive probabilistic algorithms and using in matrices only two values: 0 and e, express-
ing impossibility and possibility, respectively.

Definition 2. Ler ({0,e},+,- =) be the algebraic structure. The operations -,+ are
defined on the set {0,e} in the following way.

Table 1. Operation 1

-10e
0/0]|0
el0|e

107

Agnieszka Makarec

Table 2. Operation 2

+10|e
0

The following theorem we will formulate without proof.

Theorem 4. Let (3,Uy) be a structure for Lygy, with the universe U =
{ur,ua,...,u,}. Let K(x1,...,x,) be a program interpreted in the structure (3,Up)

and ®;,®; be any valuations from the set W = {y,...,w},I = r". For every pro-
gram K(xy,...,x,), we can construct a matrix
Ex = [eij]i7,/':17-~,1’ (33)

such that e;j € {0,e} and

0 otherwise.

e — {6 iff (i, ;) € K(3,05) (34)

Proof. The detailed proof is omitted. We only give the main ideas of construction of
the transition matrix Eg corresponding to program K:

i. If K is of the form x := 7, then matrix Ex is defined as:

o = L eiff ©;(x) = T3,00) (@) AVyer\ (0 0;(y) = @i(y), (35)
H 0 otherwise.

1. If K is of the form x :=?, then matrix Ex is defined as:

_ Jeiffj(x) € Uy AVyey\ (0 (y) = 0;(y)

€ij = {O otherwise. (36)

iii. If K is of the form while —y do x := x, then matrix corresponding to program K
will be denoted by I, and defined as:

_Jeiffi=jAwy; =,
€ij = { 0 otherwise. 37)

iv. If K is of the form begin M; N end, and the matrices Ej; and Ey for the subpro-
grams M, N are constructed, then

Ex = Ey - Ey. (38)

108

Probabilistic and non-deterministic semantics for iterative programs

v. If K is of the form if ¥ then M else N, and the matrices Ej; and Ey for the
subprograms M, N are constructed, then

EK:I«{'EM —I—Iﬁy'EN. 39)

vi. If K is of the form either M or N, and the matrices Ej; and Ey for the subpro-
grams M, N are constructed, then

Ex =Ey+EpN. (40)

vii. If K is of the form while 'y do M, then the matrix Ek is defined as:

Eg = lim Z (- Ey+1y) - Ly (41)
j=0

[—00 %

The reader can easily verify that the limit in the equation 41 always exists.

Example 2. Let us reconsider program K from Example 1. The transition matrix Ex
corresponding to the program K, determined in accordance with the above rules, is

as follows:
00e

Ex=100¢]. (42)
00e

6. Final remarks

The formalism proposed in subsection 5.1 is useful in situations in which we interest
if it is possible that program K halts and we do not have to know the accurate values
of probabilities, except the fact that they are positive (cf. [1]).

Theorem 2 and Theorem 3 point at a direction for further work. The main goal
of our research is to explain the dependencies between non-deterministic and proba-
bilistic interpretation of the iterative programs. It will be the subject of next paper.

References

[1] Dariko W.: The Set of Probabilistic Algorithmic Formulas Valid in a Finite Struc-
ture is Decidable with Respect to Its Diagram, Fundamenta Informaticae 19,
1993, pp. 417-431.

[2] Feldman Y. A., Harel D.: A Probabilistic Dynamic Logic, Journal of Computer
and System Sciences 28, 1984, pp. 193-215.

109

Agnieszka Makarec

(3]
(4]
[5]
[6]
[7]

(8]

Hare D., Pratt V. R.: Nondeterminism in Logics of Programs, Proc. of the 5th
Symp. on Principles of Programming Languages SIGACT - SIGPLAN, ACM,
1978, pp. 23-25.

Harel D., Kozen D., Tiuryn J.: Dynamic Logic, MIT Press, MA, 2000.
Koszelew J.: The Methods for Verification Properties of Probabilistic Programs,
Ph.D. thesis, Inst. of Comput. Sci., Polish Academy of Sciences, 2000.

Kozen D.: Semantics of probabilistic programs, Journal of Computer and System
Sciences 22, 1981, pp. 328-350.

Kozen D.: A Probabilistic PDL, Journal of Computer and System Sciences 30(2),
1985, pp. 162-178.

Mirkowska G., Salwicki A.: Algorithmic Logic, D. Reidel Publ. Co. & PWN,
1987.

PROBABILISTYCZNE I NIEDETERMINISTYCZNE

SEMANTYKI DLA PROGRAMOW ITERACYJNYCH

Streszczenie W pracy rozwazane sa, na gruncie logiki programéw, probabilistyczne i niede-
terministyczne interpretacje programéw iteracyjnych. Uwaga autoréw skupia si¢ na zwiaz-
kach miedzy tymi interpretacjami. Punktem wyjscia sa formalne definicje semantyk dla obu
podejsé. Gtéwny nacisk zostat potozony na wyrazalno$¢ wtasnosci stopu w tych semanty-
kach.

Stowa kluczowe: Stowa kluczowe: program niedeterministyczny, program probabili-
styczny, obliczenie probabilistyczne, obliczenie niedeterministyczne

Artykut zrealizowano w ramach pracy badawczej S/W1/3/2008.

110

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIEJ 2009
Informatyka — Zeszyt 4

Andrzej Sawicki!, Piotr Zubrycki!, Alexandr Petrovsky!

DESIGN OF TEXT TO SPEECH SYNTHESIS SYSTEM
BASED ON THE HARMONIC AND NOISE MODEL

Abstract: This is a proposal of concatenative text to speech synthesizer for the Polish lan-
guage, based on diphones and "Harmonics and Noise Model”(HNM). HNM has been suc-
cessfully applied on a speech encoder and decoder, resulting in a high-quality of processed
speech at low bit rate. Applying this model to speech synthesis system allows obtaining good
quality of synthesized speech, and the small size of database parameters.

The proposed project consists of two main modules. The Natural Language Processing
(NLP) is used to analyse and convert the written text for phonemes and diphones using
morphological rules. NLP discovers at the same time prosodic features for later modifica-
tion of synthesized speech parameters in order to obtain the stress and voice intonation. The
second section is a synthesis system, derived from speech decoder, preceded by a system of
adapting the parameters of speech based on prosodic rules.

The system of speech synthesis from the parameters is working in the frequency domain
and uses the frequency spectrum envelope, which easily allows modifying the frequency,
amplitude and duration of the signal when applying the prosodic rules. The algorithm of
continuous phase designation at the speech frame borders allows concatenating portions of
synthesized speech and diphones without phase distortion on the merger. Speech synthesizer
operates on the diphone database, created applying fragmentation of recorded speech signal
representing the pairs of phonemes. Sounds related to diphones are analyzed by speech en-
coder. It provides the parameters that described harmonic and noise components of speech,
using the linear prediction filter LSF coefficients, resulting in a small size of diphone data-
base.

Keywords: Speech synthesis, TTS, harmonic and noise model

1. Introduction

Most of modern Text To Speech (TTS) systems are based on unit concatenation[1].
Concatenative text-to-speech systems are designed to produce speech by concatena-
ting small segmental units of speech, such as phonemes, diphones or triphones. TSS
systems uses database of recorded, segmented and labeled utterances and words. The
choice of unit size motivated by vocabulary is a key element in TTS systems for

! Faculty of Computer Science, Bialystok Technical University, Biaystok

111

Andrzej Sawicki, Piotr Zubrycki, Alexandr Petrovsky

improving the synthesis quality and meeting storage requirements. Good quality of
produced speech, close to the original voice, assured system with huge databases of
recorded speech and large concatenation speech units.

Such model however, has large memory and computing requirements, and its im-
plementation especially in mobile systems is problematic. Small units, like diphones,
gives smaller database and computational requirements, but cause several problems,
such as distortions at the concatenation points. Distortions can be reduced through
select suitable speech model, which provides spectral smoothing between combined
parts of speech.

In this paper we propose a concatenative Text To Speech synthesiser for the
Polish language, based on diphones and Harmonics and Noise Model (HNM)[8] of
speech.

HNM has been successfully applied on a speech encoders and decoders, resul-
ting in a high-quality of processed speech at low bit rate [2]. Applying this model to
TTS synthesis system as essential of signal processing module, allows to get good
quality of synthesised speech, and the small size of database parameters. The size of
the speech database may be reduced through record only HNM speech coefficients:
harmonic and noise envelopes, and pitch frequencies of diphones.

The proposed project of TTS system consists of two main modules. The Natural
Language Processing module (NLP) is used to text analyse and to provide to the
synthesiser necessary prosodic and phonemic information. HNM Synthesis module
is used to produce synthetic speech.

The paper is organised as follows. Section 2 of document provides description
of Natural Language Processing module in TTS system for Polish language. Section
3 describes in detail HNM for speech analysis and synthesis. In section 4 process
of diphones database creation is introduced. In section 5 TTS synthesis system is
presented. Section 6 comprises conclusions of the article.

2. Natural Language Processing

Natural Language Processing (NLP) module is responsible for text analysing and its
conversion to a phonetic transcription. First the incoming text must be accurately co-
nverted to its phonemic and stress level representations. Written text and all symbols,
numbers, abbreviations and non-text expressions should be converted into speakable
forms. This includes determination of word boundaries, syllabic boundaries, syllabic
accents, and phonemic boundaries. Then prosody properties of text should be disco-
vered for proper intonation and stress in synthesised speech pronunciation.There are

112

Design of text to speach synthesis system based on the harmonic and noise model

numerous methods that have been proposed and implemented for the text processing
for English, especially. For Polish language, see [5].

2.1 Text preprocessing and normalisation

Text normalization encompasses all aspects of conversion from the mixture of abbre-
viations, symbols, numbers, dates, and other no orthographic entities of text into a ap-
propriate orthographic transcription. Text is divided into phrases, using end of phrase
punctuation marks as ’.”, ., ’?’, ’I’. Then sentences are splitted into individual tokens
based on whitespaces and punctuation marks. Each token can be classified into one

of the following group:

Words

Symbols, E.g.: =, +, -, %, $.

Abbreviations, E.g.: mgr., n.p.

Numbers, E.g.: 1,2,3 etc.

Time, E.g.: 12:34

Date, E.g.: 01/02/2008, 12.03.06, 2008 r.,

URLs and E-mails, E.g.: somebody @domain.com

Identified tokens we have to expand to full text, using lexicon and rules, e.g. +
- plus, 2 - dwa (eng. two), 12:34 - dwunasta trzydziesci cztery (eng. thirty four past
twelve) , 01/02/2008 - pierwszy luty dwa tysiace osiem (eng. the first of February
two thousand eight).

2.2 Grapheme to phoneme conversion

Pronunciation of a words may be determined either by a lexicon (a large list of words
and their pronunciations) or by letter to sound rules. In our implementation for Polish
language, grapheme to phoneme rules are the basis of the conversion process. For
nonstandard and foreign language words, lexicon with direct phoneme translation is
used.

In this article we use SAMPA (Speech Assessment Methods Phonetic Alphabet)
symbols of phonemes, which mapping symbols of the International Phonetic Alpha-
bet onto ASCII codes. The Polish language acoustic system comprises 37 phonemes,
included eight vowels:

— Oral: a, 0, u, e, I, i, pronounced [6] as in words para, bok, paru, era, dary, lis .
— Nasal: e, o, pronounced as in words ide, tq.

113

Andrzej Sawicki, Piotr Zubrycki, Alexandr Petrovsky

Consonants comprise 29 sounds:

— Plosives: p, b, t, d, k, g, pronounced as in words pani, bak, tama, dam, kura, noga.

— Fricatives: v, {, s, 2,7, S, 2, s°, X, pronounced as in words wam, fajka, sam, koza,
Zona, szary, kozia, Kasia, chor.

— Affricates: ts, tS, ts’, dz, dZ, dz’, pronounced as in words koca, lecz, laé, rydza,

dzem, dziata.

— Nasals: m, n, n’, N, pronounced as in words mam, len, barika, bank.

— Approximants: w, 1, r, j, pronounced as in words fam, pal, rak, daj.

Our TTS system use diphones for concatenate speech synthesis. Diphones are adja-
cent pair of phonemes, selected from the stationary area of first phone to stationary
area of second phone in recording.

Prosodic

Generation |

[

Text Normalized Text Phones Diphones
. Phones to
Database of o Text ~ Phonetic »| Diohones
Text Senteces | Processing Analysis o phone
Conversion

*

Phoneme
Rules

Grapheme to

Rules

Morphological

NATURAL LANGUAGE
PROCESSING

Fig. 1. Natural language processing module

Diphone Text
Database

—

To

Acoustical

Processor

Processing of natural language (NLP) is based on the model proposed by A.W.
Black and P. Taylor in the Festival [4] TTS system and used in open source software
speech synthesizer eSpeak [14]. Text analysis and prosody annotation for Polish lan-
guage is based on the work of S. Grocholewski and G. Demenko [5]. Our system use
for tests and research database of recorded texts in Polish language ’"CORPORA’ de-
veloped by prof. S. Grocholewski [3]. Diagram of proposed NLP module is presented

in fig.1.

114

Design of text to speach synthesis system based on the harmonic and noise model

3. Harmonic and noise model for speech analysis and synthesis

3.1 Speech analysis

High quality speech coding at low bit-rates is major interest of speech coding me-
thods. Speech signal modelling based on HNM was presented in [8]. Speech is di-
vided into two subbands by the maximum voiced frequency, lower band is conside-
red fully voiced and upper band fully unvoiced. From the speech production point
of view it is clear, that both voiced and unvoiced components are present in whole
speech band. This idea was used by Yegnanarayana et. all [9] in speech decompo-
sition method into voiced and noise components. Decomposition of speech is per-
formed on excitation signal approximated with use of inverse linear prediction filter.
Idea of work is to use an iterative algorithm based on Discrete Fourier Transform
(DFT)/Inverse Discrete Fourier Transform (IDFT) pairs for noise component esti-
mation. Voiced component of excitation is obtained by subtracting noise component
from LP residual. These approaches were designed without taking into account time-
varying fundamental frequency and harmonic amplitudes.

In this paper we present another approach to speech decomposition into voiced
and noise components and its application to speech synthesis system. As the methods
presented in [9],[10] our method considers voiced and noise components present in
whole speech band. Pitch-Tracking modification is applied to standard DFT in or-
der to provide spectral analysis in harmonic domain rather than frequency domain.
Voiced component parameters (i.e. harmonics amplitudes and phases) are estimated
in harmonic domain. Estimation is done every 16ms. Amplitudes and phases of har-
monics are interpolated between points of estimation. Voiced component is genera-
ted with time-varying frequency and harmonics amplitudes. After voiced component
generation decomposition of speech signal is done in time domain. An iterative al-
gorithm is used for decomposition in order to obtain exact components separation.
Time-domain speech components separation and voiced component modelling me-
thod is sensitive to pitch estimation errors, thus precise and accurate pitch detection
algorithm is needed. A robust pitch detection method based on tuning pitch frequency
to its harmonics presented in [11],[2] is used.

Pitch estimation and tracking. Pitch tracking algorithm operates both in time and
frequency domain. Preliminary pitch estimation is taken every 8ms using autocorrela-
tion method. This estimate is used to refine pitch frequency using algorithm working
in spectral domain similar to the one proposed in [12]. In order to prevent Gross Pitch
Errors (GPE) and pitch track distortions a tracking algorithm is used. Scheme of pitch

115

Andrzej Sawicki, Piotr Zubrycki, Alexandr Petrovsky

estimation and tracking algorithm is shown on fig. 2. First, the autocorrelation vec-
tor is computed. In order to improve robustness of the algorithm low-pass filtering
and signal clipping operation are performed according to Sondhi [13]. Autocorrela-
tion vector is computed in interval corresponding to possible fundamental frequency
values (typical from 60 to 5S00Hz) using formula:

N—1
R(k)="Y s(n)s(n+k),k=—I.1, (1)
n=0

where / is maximum lag corresponding to minimal fundamental frequency.

INPUT SPEECH
|
v
‘ SIGNAL FILTERING AND CLIPPING ‘
INITIAL PITCH SHORT TIME
ESTIMATION FOURIER
TRANSFORM
HARMONICS DETECTION AND PITCH
REFINING
v v
PITCH TRACE < RESULTING PITCH
BUFFER COMPUTATION
TRACE TRACKING PITCH
ALGORITHM TRACK

Fig. 2. Pitch estimation algorithm

Length of autocorrelation window is 32ms and 16ms before and after the frame
is needed, thus algorithm operates with delay of 16ms. This approach to autocorre-
lation computation enables transient frame detection, because resulting vector is not
symmetric. If the speech segment is transient maximum of autocorrelation is ava-
ilable only at one side of vector, and the side depend on the frame is beginning or
ending of voiced segment. Initial pitch estimation is computed as weighted mean of
maximums of autocorrelation sequence on left and right side.

After initial estimation input speech signal is weighted in 256-point time win-
dow and STFT is computed. Initial pitch value is tuned to all present pitch harmonics
[2]. In case of inability to identify at least two out of four leading pitch frequency
harmonics, the segment is considered unvoiced. Refined pitch value F, for each we-
ighting window is identified with the harmonic factor, which can be understood as

116

Design of text to speach synthesis system based on the harmonic and noise model

adequacy of the estimation:
hy =" 2
Nmax
where n;, is number of present harmonics, 7,,,, is number of all possible harmonics
with given pitch.

False pitch frequency estimations got during speech flow pauses are discarded
on the base of analysis of the weighting factors of pitch frequency estimations and
analysis of the values of the input signal level, of the speech and silence levels. In
order to prevent gross errors and provide better quality, pitch estimation is performed
with a delay of two analysis windows. Estimations of the pitch frequency are included
in the current track in case the difference between neighbouring windows does not
exceed the allowed one. Trace tracking estimation of pitch frequency is calculated
using linear approximation of current trace according to the least-square method.
The condition determining end of the trace tracking is checked by availability of
preliminary estimations to the right of the window being analysed and by harmonic
factors. Resulting pitch frequency is determined as:

F():hfFr—l-(l—hf)E 3)

where F, is refined pitch; F; is trace tracking estimation.

Pitch-tracking modified DFT. Pitch-Tracking modified DFT transform providing
analysis in spectral domain is given by:

2k

N—1
X(k)=Y x(n)e ' F k=0.K 4)
n=0

where X (k) is k-th spectral component corresponding to k-th harmonic, x(n) is input
signal, N is transformation length, F; is sampling frequency, Fy is fundamental frequ-
ency. Kernel of transformation has to be modified in case tracking analysis. Argument
of exponential can be written as follows:

n Ok (Fo(i) — Foi— 1)

(pn’k:)
=Y T

n+#£0 (5)

¢(n,k) =0,for:n =0, and FO(i) is fundamental frequency at the time specified by
i. Transformation providing tracking harmonic analysis is given as follows:

N—1
X(k) =Y x(n)e 7*"H k=0.K (6)
n=0

117

Andrzej Sawicki, Piotr Zubrycki, Alexandr Petrovsky

Non-orthogonal transformation kernel can cause energy leakage to neighbouring
spectral lines. Time-Varying window is used in order to deal with leakage phenome-
non. Idea of this solution is to design a spectral window, which follows fundamental
frequency changes. Window length is chosen to contain at least two pitch periods.
Experiments showed, that window length should be approximately 2.5 pitch period
which is a trade-off between spectral resolution and computational efficiency. Good
results could be achieved when Kaiser window is used as a prototype [11]:

o — Io(B\/1-

(ZX('EE\;(II\’)*U)2
Io(B)

where N is window length, B is window parameter, Iy(x) is zero order Bessel
function, x(n) is a function enabling time-varying feature, given as:

,n=0.N—1 (7

p(n—1)

x(n) = ——==- 8

0= ST ®)

where ¢(n, 1) is computed using formula (5), F; is average fundamental frequ-
ency in analysis frame.

Decomposition algorithm. In this paper we present solution which is based on con-
tinuous harmonic component generation. Continuous generation of voiced compo-
nent is performed with a delay of 16ms which is necessary to iterative algorithm. Pro-
posed method performs decomposition in whole speech band, which leads to more
accurate representation of speech. Synthesised signal sounds more natural. Speech
signal decomposition scheme is shown on figure 3.

First step of decomposition is pitch tracking. This information is passed to ite-
rative decomposition algorithm. It performs decomposition every 16ms. First step of
decomposition is speech windowing with time-varying window. Centre of time win-
dow is set every 16ms. In order to reduce leakage length of window is chosen as
integer multiple of pitch periods. Pitch-Tracking Modified DFT every 16ms gives an
information about instantaneous amplitudes and initial phases of the harmonics. For
synthesis of the harmonic component a set of time-varying oscillators can be used:

K
h(n) = ZAk(n)cas((p(n,k) +Dy) 9
k=0

where phase @(n, k) is determined using formula (5). While pitch harmonics amplitu-
des estimation is performed every 16ms instantaneous amplitudes of harmonics have

118

Design of text to speach synthesis system based on the harmonic and noise model

HARMONIC AND

INPUT P s TIIoN AND prTeH NOISE SPEECH
SPEECH ACKING ANALYSIS
v Number of iteration:
I | TiME-vARYING A
WINDOW NOISE CONSTRUCTION
COMPONENT OF SPECTRAL
v > ENVELOPES
\ 4 VOICED
PITCH TRACKING|
N NOISE COMPONENT
MODIFIED DFT COMPONENT
BUFFER
AMPLITUDE AND
PHASE |4

INTERPOLATION \ 4

|

|

|

|

|

|

| COEFFICIENTS
| CODING AND
| QUANTIZATION
I

|

[

VOICED
COMPONENT
GENERATION

VOICED
COMPONENT
BUFFER

Fig. 3. Harmonic and noise speech analysis.

to be computed using interpolation algorithm. Piecewise Cubic Hermite Interpolation
method is used, as it can be easily implemented in real-time applications. Having har-
monic component, noise component is defined as a difference between input speech
signal and harmonic component:

r(n) = s(n) —h(n) (10)

Voiced component is stored in voiced component buffer and noise component is sto-
red in noise component buffer. After first iteration noise component still consists of
some voiced component. This is mainly due inability of perfect reconstruction of
harmonic amplitudes tracks imposed by amplitudes variations. In the next iterations
noise component is processed in the same way as original speech in first iteration.
Remaining in noise voiced component is subtracted from noise component. OQutput
voiced component is sum of harmonic components from all iterations and noise com-
ponent is residual from last iteration.

3.2 Speech synthesis

The periodic spectrum is created by a set of sinusoidal generators working at variable
frequency changing linearly within time window, using equation:

K
H(n) =Y Ac(n)cos(q(n,k)+P;) (11)
k=0

Correctly calculated phases of pitch harmonics avoid any reverberation in the
synthesised speech, especially in diphone concatenation points. In proposed model

119

Andrzej Sawicki, Piotr Zubrycki, Alexandr Petrovsky

Speech
Coefficients

HARMONIC)
AND NOICE Harmonics Harmonic
SPEECH mpuces Component— + ———
SYNTHESIS Generation 7 Syntetic
A speech
\/
Coefficients Phase)
| > e Overlapping
decoding Pitch frquency prediction
Noise I—f
Spectrum
Envel i i
B > Subband Fiter — ‘oite Noise

Generator

Fig. 4. Harmonic and noise speech synthesis

phases are modelled by a parabolic temporal model of instantaneous phase witch
take changes on pitch from frame to frame Phase of k+1’th frame is predicted from
k’th frame. New phase is calculated on time-varying contribution of the frequency
trajectory:

- o1 — @b

(O
1 4 oot + o (12)

@i (t) 2T

where T is frame length, and (])f‘ is phase offset at the begin of k’th frame. An initial
phases for voiced groups of speech frames are chosen randomly. The unvoiced speech
is synthesised by the bandpass filtering of white noise. The voiced and the unvoiced
components are added. Detailed view of presented speech synthesiser can be found
in [2].

4. Diphone Database Creation.

For diphone database creation we used database of Polish Speech CORPORA [3] ,
projected by prof. Grocholewski. Database consists 45x365 segmented and labelled
utterances. Files in database were recorded using 12 bits resolution and frequency 16
kHz. In Polish language there are 37 phonemes. We use additional symbol sil (#) in
order to indicate silence at beginning and end of the words, thus the optional number
of phoneme to phoneme connections is about 1400. In [3] it is suggested, that not all
combination of neighbouring phonemes occur in polish language, or such diphones
happen very rarely. Finally, our diphone database consist of 1270 diphones.

120

Design of text to speach synthesis system based on the harmonic and noise model

WaveSurfer #8 [_[O[x]
Fie Edt Transfom \View Help

DS EH|8RB|% & o|a a H % |omw

Rvd A7 1K1113.WAY [Configuration: HTK transcription] HPF>I NS X
26495

KHz ,l {

7| ”.W

6] “‘ "ﬂ

} \ b o

o] |1 I'\WW’" =\I |

3] |

N m il

i M

T mbmrmumw 4 MK | "

time | 05 00 0is 030 4,‘25 D0 s oas s4s 0y 0s s s o070 075 s by o 030 o
et |asn sl | all Al sl oIl el el A)
[en][i1 -] on | ok P o1 | 1o o] o]
o . - s " P

Speciragram - from 00,209 to 00,300 length 00.091, 00300 3673Hz -89.31d8

Fig. 5. Waveform diphone labelling using WaveSurfer

Text of database sentences was converted to diphones using NLP module. Pre-
liminary waveform marker description (e.g. beginnings and endings of the particular
phoneme) is given in the Corpora database. Proposed system uses diphones as a ba-
sic units, thus accurate determination of the exact boundary locations of a diphone
in waveform should be performed manually, as shown in figure 5. We use open so-
urce program WaveSurfer [7] for waveform labelling. Based on labelled waveform,
diphone database for speech synthesis is prepared, using harmonic and noise speech
analysis module.

Diphone
Labels

Diphone text labels Harmonic

. »(Diphone envelopes

Ili_)lpbh?ng Database Noi

EISED Speech oise

Database of | '**° HARMONIC | Goefficients envelopes

Waveforms AND NOISE

»| SPEECH > Pitch

ANALYSIS frequency

Fig. 6. Diphone database creation.

121

Andrzej Sawicki, Piotr Zubrycki, Alexandr Petrovsky

Each diphone in database is described by set of 16 milliseconds frames included
coefficients of speech model:

harmonic envelope
harmonic gain
noise envelope
noise envelope gain
pitch frequency

A

For each diphone additional information about its duration is stored in the database.
The duration is determined by waveform labels.

5. Text To Speech synthesis using Harmonic and Noise Model.

TTS system consist of 3 main components described above: NLP section, HNM syn-
thesis module and diphone database. The diphone database is created for one speaker.
All utterances are analysed using method described in section 3.1 and the database
is created as described in section 4. As a result of text processing in NLP module,
we get diphone labels and prosody description. The prosody description gives infor-
mation about stress of the syllable and necessary modifications of the parameters i.e.
relative changes of a F, duration and gain for particular diphone. Using diphone text
labels, a set of frames for actual diphone is selected from database. Speech model
coefficients for each frame are transformed in accordance with prosody descriptions.
It is worth notice, that using harmonic model makes diphone transformation process
easy. Gain and pitch modification is simply straightforward, modification of the di-
phone duration is done by changing the time offset between frame coefficients (i.e.
single frame time-scaling). Converted coefficients are passed to the signal processing
module, where synthetic speech is generated in accordance with the HNM, as was
described in section 3.2.

For example for given text:

”Artykut przedstawia projekt konkatenacyjnego syntezatora mowy z tekstu dla
Jjezyka polskiego.”

phonetical description, using presented above phoneme notation, with word
stress (appointed as: ‘) is following:

7 art ‘Tkuw pSetst ‘avja pr‘ojekt koNkatenatsljn‘ego sintezat‘ora m‘ovl s t’ekstu
dla je 7'yka polski‘ego™.

And diphone transcription is following: "#-a a-r r-t t-1 I-k k-u u-w w-# #-p p-S
S-e e-t t-s s-t t-a a-v v-j j-a a-# #-p p-r r-o o-j j-e e-k k-t t-# #-k k-0 o-N N-k k-a a-t t-e
e-n n-a a-ts ts-1 I-j j-n n-e e-g g-o o-# #-s s-1 I-n n-t t-e e-z z-a a-t t-o o-r r-a a# #-m

122

Design of text to speach synthesis system based on the harmonic and noise model

Text

v

Processed
Text Diphone NATURAL
text labels LANGUAGE
PROCESSING
MODULE
Diphone
Labels Prosodic
¥y Accents
Harmonic _
i envelopes e HARMONIC
iphone i Synthetic
Database _ Pitch, spectral AND NOISE | Speech
Noise _ | envelope and SPEECH N
envelopes o time I SYNTHESIS
. modification MODULE
—
frequency o

Fig.7. TTS Synthesis

m-o0 0-v v-1 I-# #-s s-# #-t t-e e-k k-5 s-t t-u u-# #-d d-l l-a a-# #-j j-e e -z z-1 I-k k-a
a# #-p p-o o-l I-s s-k k-i i-e e-g g-0 o-#"
Such list of diphones is synthesised using HNM model described in section 3.

6. Conclusions

In this article we propose new approach to the topic of concatenative text to speech
synthesiser for the Polish language. System based on Harmonics and Noise Model
of speech allow to accurate represent speech signal for diphones database building.
Signal processing in frequency domain and instantaneous interpolation of harmonic
amplitudes and phases allow to smooth concatenation of diphones. The HNM-based
speech analysis/synthesis system proved its ability to produce high quality of syn-
thetic speech [12], almost indistinguishable from the original one. The performance
of the proposed TTS system mostly depends on NLP module. Time and frequency
modification of diphones can be done separately and without any loose of quality.
Presented approach can be successfully used in high-quality speech synthesis appli-
cations for TTS system.

Our TTS system is still in development. Especially prosody parsing and dipho-
nes modification in accordance with prosody annotations have need of improvement.
Current version of NLP module gives information about stress in syllables, phrase in-
tonation description function is under development. While voiced component modifi-
cation is easy task, unvoiced component in current version of the system can change
only its duration which can cause artifacts. Future works include improvement of

123

Andrzej Sawicki, Piotr Zubrycki, Alexandr Petrovsky

voiced component modification method. Applying effective methods of speech com-
pression using vector quantization for database size reduction is also under investi-
gation.

Small database size and effective algorithms of speech generation allow to im-

plement presented system in embedded devices.

References

[1]
(2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]

[11]

124

Dutoit T., An Introduction to Text-to-Speech Synthesis, Kluwer Academic
Publishers, 1997.

Petrowsky A., Zubrycki P., Sawicki A.: Tonal and Noise Components Separa-
tion Based on a Pitch Synchronous DFT Analyzer as a Speech Coding Method,
Proceedings of ECCTD, 2003, Vol. II1, pp. 169-172.

Grocholewski S.: Zatozenia akustycznej bazy danych dla jezyka polskiego
na no$niku CD-ROM, Mat. I KK: Gtosowa komunikacja cztowiek-komputer,
Wroctaw 1995, s. 177-180

A. Black and P. Taylor: Festival Speech Synthesis System: system docu-
mentation (1.1.1), Human Communication Research Centre Technical Report
HCRC/TR-83, 1997.

Demenko, G. Grocholewski, S. Wagner, A. Szymanski M.: Prosody annota-
tion for corpus based speech synthesis. [in:] Proceedings of the Eleventh Au-
stralasian International Conference on Speech Science and Technology, New
Zealand. Auckland, 2006.

M. Wisniewski: Zarys fonetyki i fonologii wspélczesnego jezyka polskiego,
wyd. Uniwersytetu Mikotaja Kopernika, Torun, 2007.

Sjolander, Kyre / Beskow, Jonas: Wavesurfer - an open source speech tool, In
ICSLP-2000, vol.4, 464-467

Y. Stylianou, Applying the Harmonic Plus Noise Mode in Concatenative Speech
Synthesis, IEEE Trans. on Speech and Audio Processing, vol. 9, no 1., 2001.
B. Yegnanarayana, C. d’Alessandro, V. Darsions An Iterative Algorithm for
Decomposiiton of Speech Signals into Voiced and Noise Components, IEEE
Trans. on Speech and Audio Coding, vol. 6, no. 1, pp. 1-11, 1998.

P.J.B. Jackson, C.H. Shadle, Pitch-Scaled Estimation of Simultaneous Voiced
and Turbulence-Noise Components in Speech, IEEE Trans. on Speech and Au-
dio Processing, vol. 9, no. 7, pp. 713-726, Oct. 2001

V. Sercov, A. Petrovsky, An Improved Speech Model with Allowance for Time-
Varying Pitch Harmonic Amplitudes and Frequencies in Low Bit-Rate MBE
Coders, in Proc. of the 6ht European ?onf. on Speech Communication and
Technology EUROSPEECH’99, Budapest, Hungary, 1999, pp. 1479-1482.

Design of text to speach synthesis system based on the harmonic and noise model

[12] P. Zubrycki, A. Petrovsky Analysis/synthesis speech model based on the pitch-
tracking periodic-aperiodic decomposition, in Information processing and secu-
rity systems (Khalid Saeed, Jerzy Peja eds.) Springer Verlag, Heidelberg 2005,
pp. 33-42

[13] M.M. Sondhi, New Methods of Pitch Extraction, IEEE Trans. on Audio and
Electroacoustics, vol. AU-16, no. 2, pp. 262-266, 1968.

[14] Espeak, eSpeak text to speech, http://espeak.sourceforge.net/[viewed
15/09/2009]

KONCEPCJA UKLADU SYNTEZY MOWY Z TEKSTU
OPARTEGO NA MODELU HARMONICZNE I SZUM

Streszczenie: Artykul przedstawia projekt konkatenacyjnego syntezatora mowy z tekstu
dla jezyka polskiego, opartego na difonach i modelu Harmoniczne i Szum. Model Harmo-
niczne i Szum zostal z powodzeniem zastosowany w ukladzie kodera i dekodera mowy,
dajac w rezultacie dobra jako$¢ przetwarzanej mowy przy niskiej przeptywnosci bitowe;.
Zastosowanie tego modelu do uktadu syntezy mowy pozwala na uzyskanie dobrej jakosci
syntezowanej mowy, oraz niewielki rozmiar bazy parametrow.

Uktad sktada si¢ z dwch gléwnych modutéw. Modut Naturalnego Przetwarzania Jezyka
stuzy do analizy i zamiany tekstu pisanego na fonemy oraz difony, przy wykorzystaniu
regut morfologicznych. Procesor tekstu wyznacza jednocze$nie warunki prozodii zwiazane
z péZniejsza modyfikacja parametréw syntezowanego gtosu w celu uzyskania akcentowania
i intonacji. Drugim uktadem jest modut syntezy, oparty na dekoderze mowy poprzedzonym
systemem adaptacji parametréw mowy w oparciu 0 wyznaczone wczesniej reguty prozo-
dyczne.

Uktad syntezy mowy z parametrw dziala w dziedzinie czstotliwosci i bazuje na obwiedni
spektrum, co w prosty sposéb pozwala na modyfikacje czstotliwos$ci, amplitudy i czasu trwa-
nia sygnatu przy stosowaniu regut prozodycznych. Algorytm wyznaczania ciaglej fazy na
granicach ramek sygnatu mowy pozwala na taczenie fragmentéw syntezowanej mowy oraz
poszczegdlnych difonéw bez znieksztatceri fazowych na potaczeniu.

Syntezator mowy operuje na bazie difonéw, stworzonej na podstawie fragmentaryzacji na-
granego sygnatlu mowy na czesci, reprezentujace potaczenia par foneméw. DZwigki odpo-
wiadajace difonom sa analizowane przez modutl analizy mowy. Dostarcza on ciag para-
metréw reprezentujacych harmoniczne i szumowe komponenty sygnatu mowy, opisane za
pomoca filtréw liniowej predykcji i wspétczynnikéw LSF, dajac w rezultacie niewielkiej
wielkosci baze difonéw.

Stowa kluczowe: Synteza mowy, model harmoniczne i szum

Artykut zrealizowano w ramach pracy badawczej W/W1/6/09.

125

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIEJ 2009
Informatyka — Zeszyt 4

Marcin Skoczylaslvz, Roberto Cherubini!, Silvia Gerardi!

AUTOMATIC DETECTION OF UNSTAINED VIABLE
CELLS IN PHASE-CONTRAST MICROSCOPE IMAGES

Abstract: Irradiation of cultured mammalian cells one-by-one with a known number of
ions, down to one-ion per single-cell, is a useful experimental approach to investigate the
low-dose ionizing radiation exposure effects and to contribute to a more realistic human can-
cer risk assessment. Mammalian cells (specifically, Chinese hamster V79 cells) are seeded
and grown as a monolayer on a mylar surface used as bottom of the special designed holder,
having as cover an other mylar foil and allowing the cell culture to be in wet and sterile con-
ditions. Manual recognition of unstained cells in bright-field is a time consuming procedure,
therefore a parallel algorithm has been conceived and developed in order to speed-up this
step of the irradiation protocol and increase the number of cells that can be irradiated during
an accelerator run. Many technical problems have been faced to overcome the complexity of
the images to be analyzed. The unstained cells have to be discriminated in an inhomogeneous
background, among many disturbing bodies mainly due to the mylar surface roughness and
culture medium. Additionally, cells can have various shapes depending on how they attach
on the surface, which phase of the cell cycle they are in and on cell density, thus making the
detection task more difficult.

Keywords: unstained cell recognition, charged-particle microbeam, image analysis

1. Introduction

It is known that common people are continuously exposed to various sources of ion-
izing radiation which may be classified in two major groups: natural (background)
and man-made radiation sources [5]. Natural sources of radiation, including terres-
trial (above all radon gas), internal radiation sources and cosmic rays, constitute the
major contribute of exposure of the population.

At the low doses (and low dose rates) relevant to environmental and occupa-
tional radiation exposure (0—50 mSv), which are of practical concern for radiation
protection, very few cells in the human organism experience more than one traversal
by densely ionising particles in their lifetime [3].

! Laboratorio di Radiobiologia, INFN-Laboratori Nazionali di Legnaro, Legnaro-Padova, Italy
2 Faculty of Computer Science, The Biatystok Technical University, Biatystok, Poland

127

Marcin Skoczylas, Roberto Cherubini, Silvia Gerardi

Up to now no experimental and epidemiological data about low doses are avail-
able and so human cancer risk evaluation at low-doses derives from extrapolation of
experimental and epidemiological data collected at high doses by means of in-vitro
and in-vivo conventional cell irradiations as well as from studies on Uranium miners,
Japanese atomic bomb survivors, nuclear fallout accidents. In practice, in radiation
protection a linear no-threshold (LNT) risk model is assumed in the low dose region
in a precautionary way.

Recent in-vitro radiobiological results following direct investigations of low
dose effects seem to indicate a non-linear response to low dose exposure as a con-
sequence of phenomena acting in this dose region: hypersensitivity, induced radio-
resistance, adaptive response and bystander effect.

Irradiation of cultured mammalian cells one-by-one with a known number of
ions, down to one-ion per single-cell, is a useful experimental approach to investigate
the low-dose ionizing radiation exposure effects and to contribute to a more real-
istic human cancer risk assessment. In the past 15 years, the development and use
of accelerator-based charged-particle microbeams as a tool for low-dose studies has
generated much interest in the scientific community [3]. In this framework, a hor-
izontal single-ion microbeam facility for single-cell irradiations has been designed
and installed at the Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di
Legnaro (INFN-LNL), 7MV Van de Graaff CN accelerator [4].

Cell recognition is a fundamental task to be accomplished to perform single-
ion microbeam cell irradiation. As a distinctive feature of the INFN-LNL facility,
cell recognition is performed without using fluorescent staining and UV light. In
particular, this is based on an inverted phase-contrast optical microscope coupled with
a grayscale camera and on X-Y translation stages with sub-micrometric positioning
precision. An in-house-written software, CELLView [6], allows the remote control
of the irradiation protocol. The cell holder is scanned under the microscope, the cells
are identified individually by experienced operator eyes and their coordinates are
logged; afterwards the sample is moved from the microscope to the beam and cells are
irradiated automatically. Mammalian cells (specifically, Chinese hamster V79 cells)
are seeded at an appropriate density and grown as a monolayer on a mylar surface
used as bottom of the specially designed holder, having as cover an other mylar foil
and allowing the cell culture to be in wet and sterile conditions as well as the sample
to be transparent for the observation under the microscope and for the transmission of
ions during irradiations. Manual recognition of unstained cells in bright-field is a time
consuming task that restricts the irradiation cell troughput. Recently, to overcome
such a restriction, an automated cell recognition system for single-cell irradiations
[12] has been continued with a view to its insertion in the CELLView software.

128

Automatic detection of unstained viable cells in phase-contrast microscope images

Many technical problems have been faced to overcome the complexity of the
images to be analyzed. The unstained cells have to be discriminated in an inhomoge-
neous background, among many disturbing bodies mainly due to the mylar surface
roughness and culture medium. Additionally, cells can have various shapes depend-
ing on how they attach on the surface, which phase of the cell cycle they are in and
on cell density, thus making the detection task more difficult.

When cells are stained and scored with a fluorescent microscope, a simple bina-
risation with morphological processing is sufficient to obtain marker points that show
a cell reference. This geometric approach [10] is very fast and reliable when the back-
ground is easily separable from objects. In the case considered here, unstained V79
cells, differ not only in shape but also in texture. Moreover, the sample images con-
tain additional objects from the mylar structure or from the culture medium, which
make tricking the recognition. Therefore, in this case, geometric methods are not ap-
propriate and an approach based on texture segmentation with supervised learning
has been conceived.

2. Cell body detection

To discriminate textures on the cell images, three classes of regions of interest were
defined by spots: background, cell edge and cell inner body part. Regions of interest
(ROIs) from these classes were extracted manually on learning images. They were
classified by an expert operator (see Fig. 1). Feature vectors are constructed by cal-

00000000000000000000000
00000000000 O000GCNIGS

background cell edge cell inner part

Fig. 1. Example regions of interest extracted from learning images.

culation of texture features from each manually extracted region. Selected classifier
is trained to a sufficient level using previously combined learning vectors.

Detection of the cell body (Fig. 2) is performed by classification of overlapping
regions of interest from the captured image. For each automatically obtained spot,
texture features are calculated, a feature vector is constructed and it is presented to
the classifier. Information from classifier is tested against all defined classes and new
pixel intensity depends on the classification result, thus every new pixel corresponds
to one region in the original image. After preliminary classification of pixels, a new
simplified picture with smaller resolution is obtained.

129

Marcin Skoczylas, Roberto Cherubini, Silvia Gerardi

P 5 E™

original image classification result

Fig. 2. Result of the classification of overlapping regions of interest by a neural network (cell seeded on
cell culture plastic)

In particular, features from normalized histogram, the absolute value of gradient
features; and second order statistics: the co-occurrence matrix [16] and run-length
matrix [13] features for selected angles are calculated. Additional two feature vectors
were evaluated: features obtained after 2D wavelet decomposition using Daubechies
4 wavelet; also Fourier and wavelet features calculated from polar coordinates: from
extracted vectors discrete Fourier or wavelet coefficients are calculated and for each
coefficient, standard deviation from all vectors is obtained. This creates an energy
feature vector that is rotation invariant (see Fig. 3). The computation time of these
two additional feature vectors was not satisfactory to fit into our experimental re-
quirements.

-

Fig. 3. Texture features extracted from polar coordinates.

Furthermore, captured images of cells were normalized and for each extracted
region of interest a raw pixel data was also used to construct feature vectors.

130

Automatic detection of unstained viable cells in phase-contrast microscope images

Singular Value Decomposition, SVD [9] was performed to reveal minimum
number of dimensions required to represent a feature vector. Often multi-dimensional
data may be represented approximately in fewer dimensions due to redundancies in
data. For practical purposes, only first K principle components were considered, giv-
ing new feature vectors with reduced dimensionality, but still keeping most of their
variance.

After the calculation of SVD depending on the aim of executed classifica-
tion tests, the Independent Components Analysis was additionally performed. ICA
seeks directions that are most statistically independent. Number of features is not
decreased, but the coordinate system is modified giving a clustered structure. The
FastICA [7] algorithm was used to separate independent components.

Computed texture features of the cell body, edge and the background (with cor-
responding class number) were presented as input vectors to the classifier and it was
trainined to a sufficient error level. Three classifiers and one cascade of classifiers
were considered in this research.

— Artificial feed-forward neural network with back-propagation learning [11], to
achieve training in parallel manner, the input dataset was split among worker
nodes and each node calculated only its part of the contribution to overall gradi-
ent. Learning was stopped when learning error dropped below 10~*.

— Simplified Fuzzy ARTMAP [8], a slow learning (with small B parameter) was
performed and it was stopped when all training vectors presented to the SFAM
were classified correctly.

— Support Vector Machines, SVM [14][2], the Radial Basis Function (RBF) kernel
was selected in these tests: K (x;,x;) = exp(—7||x; —x;]|*),y > 0.

— Cascade of Support Vector Machines: each node of the SVM cascade was learned
using only some part of the training dataset. First layer of SVM nodes obtained
normalized input vector directly, other layers were constructed in such a way, that
input for it were distances from hyperplanes of the input vector presented to the
previous layer.

Obtained new image can be classified once again using different classifier and
another database of learning datasets and classes. This approach creates additional
layer of classification and can be interpreted as second level of resolution, where
first classifier detects small details and another one detects groupped details into one
more recognizable object. However, for this technique one needs to have images in
very high resolution and the recognition time is prolonged considerably.

131

Marcin Skoczylas, Roberto Cherubini, Silvia Gerardi

3. Cell shape recognition

The simplified image is morphologically processed and potential cell markers for
the segmentation algorithm are acquired. Watershed with markers [1] on the original
gradient image is applied (see Fig. 4).

markers for the segmentation oversegmented fibroblast

Fig. 4. Example segmentation (cell on plastic).

Segmented objects were extracted from the image and their shape features were
calculated: height, width, perimeter, volume, major and minor axis length, roundness
of the object, equivalent diameter and Fourier shape descriptors. Additionally, all
texture features within segmented object are computed. For all feature vectors from
learning set also dimensionality reduction by calculation of the SVD was performed
and subsequently the ICA. Objects from learning images were qualified by the oper-
ator, and, when necessary, over-segmented objects were joined manually. Their nor-
malized shape and texture features were presented to the additional classifier and
supervised training was performed.

During recognition, shape features of combinations of objects connected into
one region are calculated. The obtained combination is considered as detected cell
when a new region constructed from joined objects is classified as a “cell body” by
the classifier and volume of that region is higher than other combinations classified
as a “cell body”. In such a case, all connected objects from this combination are
extracted from the original region and the operation is repeated until all remaining
combinations are classified as “not cell body”. For practical reasons, not all com-
binations are considered for segments joining, and before any calculation of shape

132

Automatic detection of unstained viable cells in phase-contrast microscope images

features, they are sorted descending by their volume and some criteria is applied to
filter out objects and combinations that are for sure not cells.

Input: segments, criterion

find continous regions in segments

C <+ combinations of segments joined into every continous region

remove regions from C where joined segments do not satisfy criterion

sort regions in C descending by the volume

foreach Region € C do

if classify(Region) = cell then
push result(Region)

remove regions from C, where 3 segments also in Region
end
end
Algorithm 1: Algorithm for cells recognition from oversegmented objects

The task of discrimination which segments have to be joined depends on the
classifier’s accuracy. This approach was preferred rather than calculation of segments
similarity, because of presence of the mylar grain that can be located also on the
cell body. Moreover, proper recognition of favoured shape helps in correct segments
joining.

For each recognized cell the largest inscribed circle (Fig. 5) is calculated using
the Voronoi diagram [15]. Circle centers define the point (X,Y) with respect to an

Fig. 5. Largest inscribed circle (cell on plastic).

appropriate reference marker, where the irradiation should be performed.

4. Experimental results

Main calculations are executed on the cluster of machines. Every worker node cal-
culates only its own part of the whole data set. During on-line recognition, ROIs and

133

Marcin Skoczylas, Roberto Cherubini, Silvia Gerardi

shapes are spread among worker nodes for parallel classification. Average time to
perform textures classification of 15470 ROIs with 20x20 pixels window size was
9.5 seconds for INFN-LNL 10 dual-core machines (Intel Xeon 2.4GHz, 19 workers).

20
(SpoedUp)

o

Fig.6. Average speed up time of textures classification for different number of worker nodes
Timesequential
SpeedUp = ——===

Time(P)pamllel :

From performed experiments appeared that texture of the cell edge is very hard
to detect and the best efficiency was obtained for the SVM classifier, without apply-
ing any changes in the coordinate system. It was very small, only 87%, considering
that the cell inner part achieved 97% of properly classified spots. The best accu-
racy for the cell shape classification (95%) was reached for all shape and texture
features, after applying dimensionality reduction. For the SVM decreased training
dataset sometimes achieved better discrimination. This can be explained by overfit-
ting of the classifier. The proposed SVM cascade had slightly lower accuracy than
pure SVM in all performed experiments. The neural network had precision below the
SVM (around 3% below) and the worst discrimination was obtained after applying
the ARTMAP classifier (no more than 82%).

\ i ey

image of cells coordinates for the irradiation

Fig. 7. Example recognition of unstained V79 cells placed between two mylar foils.

134

Automatic detection of unstained viable cells in phase-contrast microscope images

5. Conclusions

Unstained cells are very hard to recognise, especially when confounding objects and
not clean background feature the acquired image. Supervised training of the classi-
fier helps to qualify small parts of the image, providing additional information for the
segmentation algorithm. At present, the classification is not optimized and the opera-
tor has to perform additional revision of cells coordinates. Further improvements are
in progress.

Acknowledgements

This work was partially supported by the CELLION project MRTN-CT-2003-
503923. The authors acknowledge: M. Mackey (Iowa University, USA) for his sup-
port and the interesting discussions, as well as for the hospitality (of M.S.) in his
Institute; M. Biasotto (INFN-LNL Computing Dept., Italy) for his support and for
making possible access and use of LNL cluster machine; Z. Stachura and J. Lekki
(IFJ-PAN, Krak"ow, Poland); the Biologists of LNL Radiobiology Lab, V. De Nadal
and D. Guryev (CELLION post-doc fellow), for the preparation of the culture cells
used in this work and for the useful discussions on the various biological aspects.

References

[1] S. Beucher and F. Meyer: Mathematical Morphology in Image Processing,
chapter 12, pages 433-481. Marcel Dekker, 1993.

[2] Chih C. Chang and Chih J. Lin: LIBSVM: a library for support vector machines,
2001.

[3] S. Gerardi: A comparative review of the charged particle microbeam facilities,
Radiat. Prot. Dos., 122:285-291, 2006.

[4] S. Gerardi, G. Galeazzi, and R. Cherubini: A microcollimated ion beam facil-
ity for investigations of the effects of low-dose radiation, Radiation Research,
164(4):586-590, 2005 (and references therein).

[5] S. Gerardi, G. Galeazzi, and R. Cherubini: Single ion microbeam as a tool for
low-dose radiation effects investigations, Journal of Physics: Conference Series,
41:282-287, 2006.

[6] S. Gerardi and E. Tonini: CELLView: a software control system for sample
movement, single-cell visualization and micropositioning at the LNL horizontal
single-ion microbeam facility, LNL Annual Report 2002, page 65, 2003.

135

Marcin Skoczylas, Roberto Cherubini, Silvia Gerardi

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

136

A. Hyvirinen and E. Oja: Independent component analysis: algorithms and
applications, Neural Netw., 13(4-5):411-430, 2000.

Mohammad-Taghi, Vakil-Baghmisheh, and Nikola PaveSi¢: A fast Simplified
Fuzzy ARTMAP network, Neural Process. Lett., 17(3):273-316, 2003.

R. Philips, L. Watson, R. Wynne, and C. Blinn: Feature reduction using singu-
lar value decomposition for the IGSCR Hybrid Classifier, In The 2007 Interna-
tional Conference on Scientific Computing, 2007.

S. Raman, Bahram Parvin, C. Maxwell, and Mary Helen Barcellos-Hoff: Ge-
ometric approach to segmentation and protein localization in cell cultured as-
says, In George Bebis, Richard D. Boyle, Darko Koracin, and Bahram Parvin,
editors, ISVC, volume 3804 of Lecture Notes in Computer Science, pages 427—
436. Springer, 2005.

D. E. Rumelhart, E. E. Hinton, and R. J. Williams: Learning representations by
back-propagating errors, Nature, 323:533, Oct 1986.

M. Skoczylas, R. Cherubini, and S. Gerardi: Automatic unstained cells recog-
nition for single-cells irradiations, LNL Annual Report 2006, page 61, 2007.

Fumiaki Tomita and Saburo Tsuji: Computer Analysis of Visual Textures,
Kluwer Academic Publishers, Norwell, MA, USA, 1990.

V. Vapnik, S. Golowich, and A. Smola: Support vector method for function ap-
proximation, regression estimation, and signal processing, Neural Information
Processing Systems, 9, 1997.

Georgy Voronoi: Nouvelles applications des parametres continus a la théorie
des formes quadratiques, Journal fiir die Reine und Angewandte Mathematik,
pages 97-178, 1907.

A. Zizzari, B. Michaelis, and G. Gademann: Optimal feature functions on co-
occurrence matrix and applications in tumor recognition, In Applied Simulation
and Modelling, 2002.

Automatic detection of unstained viable cells in phase-contrast microscope images

AUTOMATYCZNA DETEKCJA ZYWYCH KOMOREK
NIEBARWIONYCH W OBRAZACH WYKONANYCH
MIKROSKOPEM FAZOWO-KONTRASTOWYM

Streszczenie: Precyzyjne napromieniowywanie zywych komoérek biologicznych z uzyciem
znanej liczby jonéw (z doktadnoscia do pojedynczej czastki) pozwala na badanie efektéw
niskiej dawki promieniowania oraz dostarcza unikalnych danych stuzacych ocenie ryzyka
wystapienia choroby nowotworowej jako konsekwencji ekspozycji na niskie dawki promie-
niowania jonizujacego. Komérki ssaka (doktadniej chomika chinskiego, komérki V79) sa
hodowane w jednej warstwie na powierzchni folii wykonanej z cienkiego mylaru, uzytej
jako dolna czg$¢ specjalnie do tego celu zaprojektowanej szalki, posiadajacej jako przy-
krycie kolejna, wierzchnia warstwe folii, umozliwiajac komérkom przebywanie w steryl-
nym otoczeniu. Ptytka z komdrkami jest skanowana pod mikroskopem, komoérki sg identy-
fikowane przez operatora oraz zapisywane sg ich wspétrzgdne; po tej procedurze prébka
jest przesuwana z mikroskopu pod wiazke i komoérki sa automatycznie napromieniowy-
wane. Reczne rozpoznawanie komoérek niebarwionych w obrazach uzyskanych mikrosko-
pem fazowo-kontrastowym jest bardzo czasochtonng procedura, dlatego zostat zaprojekto-
wany oraz zaimplementowany roéwnolegly algorytm, aby przyspieszy¢ ten krok protokotu
radiacji oraz by zwigkszy¢ ilo§¢ komdrek ktére moga zosta¢ napromieniowane w pojedyn-
czym eksperymencie, ktérego czas powinien by¢ skrécony do minimum. Napotkano wiele
probleméw w przezwycigzeniu trudnosci analizy tego rodzaju obrazéw. Komorki niebar-
wione musza zosta¢ rozréznione na niejednorodnym tle, posréd wielu dodatkowych obiek-
tow, pochodzacych gtéwnie ze struktury folii mylar oraz Srodowiska w ktérym zyja komorki.
Dodatkowo, ksztatty komdrek sa bardzo zr6znicowane, w zaleznosci od sposobu w jaki przy-
czepiaja si¢ do powierzchni, w jakim cyklu komérkowym aktualnie przebywaja oraz ich
gestosci, powodujac iz rozwiazanie problemu rozpoznawania ich jest trudnym zadaniem.

Stowa kluczowe: rozpoznawanie komdrek niebarwionych, mikrowiazka jonowa, analiza
obrazu

Artykut zrealizowano w ramach grantu MRTN-CT-2003-503923.

137

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIEJ 2009
Informatyka — Zeszyt 4

Marta K. Smolinska!, Zenon A. Sosnowski!

PARALLEL FUZZY CLUSTERING FOR LINGUISTIC
SUMMARIES

Abstract: The linguistic summaries have the associated truth value so they can be used
as predicates. We use summaries of the form “most objects in population P are similar to
0;” to find typical values in population P. Then typical values are used in fuzzy clustering
algorithm. Disadvantage of this algorithm is its complexity. For the purpose of processing
the huge number of data, we decided to use parallel computing mechanism to implement
this algorithm, and run it on the cluster machine. We use MPI (Message Passing Interface)
to communicate between processes, which work on different processors. This paper presents
this parallel algorithm and some results of experiments.

Keywords: linguistic summary, fuzzy clustering, parallel computing

1. Introduction

In the preceding article [1] we presented the algorithm of clustering objects in object-
oriented database, based on linguistic summaries, according to Yager’s approach
[2,3]. We also introduced the certain modification of Yager’s algorithm which im-
proves the clustering but extremely increases complexity, which is high, in this algo-
rithm without modification. For the purpose of processing the huge number of data,
we decided to use parallel computing mechanism to implement this algorithm, and
use it on the cluster machine. We use MPI (Message Passing Interface) to communi-
cate between processes, which work on different processors. This paper presents this
parallel algorithm and some results of experiments.

The paper is organised as follows. Section 2. describes the linguistic summary.
In Section 3 we describe typical values, and in Section 4. their use for searching
typical clusters is presented. In Section 5. we introduce parallel version of cluster-
ing algorithm. Then in Section 6. we present the results of experiments. Finally, the
conclusion will follow in Section 7.

! Faculty of Computer Science, Bialystok Technical University, Biatystok

139

Marta K. Smoliriska, Zenon A. Sosnowski

2. Linguistic summary

Rasmussen and Yager in [2,3] propose linguistic summary of the form
”Q objects in P are S”. In this paper we will use notation Summary(Q, P, S) to express
that summary. For example linguistic summary can look as follows “most people are
tall” (Summary(most, people, tall)), "few tall people are light” (Summary(few, tall
people, light).

Q is the quantity in agreement (a linguistic quantifier as most, few etc.), P is a
data collection and S is called the summarizer (e.g. young, tall), which very often is
a fuzzy predicate.

The truth value t[0, 1], called the measure of validity is associated with a lin-
guistic summary. It provides an indication of how compatible the linguistic summary
with the population is. As a population we mean a fuzzy set of objects. Each object o
in a population P has a degree of membership to P - up(0) (we will also use symbol
o.1).

Measure of validity is calculated as the grade of membership of the proportion
of objects in P that satisfy S (eq. 1).

B cards(SNP)
oG) v

M is defined as the minimum aggregation. cardy is the fuzzy cardinality of a
fuzzy subset and is defined by equation 2

cardg(P) =Y up(0;) (2)

0,€P
Complexity of calculating the true degree T of a linguistic summary is O(N), where

N is the number of objects in P.

3. Typicality - typical values

Typicality of an object tells as how much the object is typical in the population. It is
calculated by means of linguistic summary, which like a fuzzy predicate has a truth
value. So we can use it as a predicate. Value of typicality #(o;) (we will use also
syntax o;.t) of object o; is the minimum of membership degree of o; and measure of
validity of summary: “most objects in P are similar to o0;” like in eq. 3

t(0;) = o0;.t = min(u(o;), Summary(most, P,Similar_to(o;))) 3)

140

Parallel Fuzzy Clustering for Linguistic Summaries

In order to query about typical objects in P, we can establish a new population
typical, which will consist of objects from P with associated typicality. oi-cut can
be used to cut off objects with typicality lower than o. Complexity of calculating
typicality for one object is O(N), where N is the number of objects in P. So creating
population typical (calculating all objects in population) has a complexity O(N?).

4. Fuzzy clustering algorithm

This algorithm is based on Rasmussen approach [2]. Algorithm 1 presents an idea of
finding typical clusters using linguistic summaries. In [1] we modified this algorithm
by adding step 4. This gives better clustering results but increases complexity from
O(N?) to O(N?). Practically this complexity depends on the number and size of the
obtained clusters.

Algorithm 1 TypicalClusters(P, Q, Sim)

Require: P— population, Q— function (pointer to function) of fuzzy quantifier, Sim(o;,0;) - similarity
function o;,0; € P

1: For each object o in population count its typicality o.t. Add them all to the population typical,
remember their typicality o.r and membership degree to the original population o.p.

2: Let the most typical object o’ (Vo € typical : o’ .t > 0.t) be a seed for a new cluster C;.

3: Find objects o; from typical that are close to any object of C;, thatis Jo € G;: ~ Similarity(oj,0) >
o.. Add them to the cluster C; and remove from typical. Continue until no more objects are added.
The cluster C; will then constitute a typical cluster.

4: For each object o in typical count its typicality 0.z, among objects remaining in typical. In this
calculations we use membership degree that objects had in original population o.u.

5: To find next cluster repeat from step 2, as long as there are objects in typical, and the most typical
object o has a degree of typicality greater or equal than 3 (o’.r > B).

6: return Clusters Cy...C, {n - number of created clusters}

Clustering Quality

We tested our and Rassmusen algorithms on database formed from pixels of an im-
age. To create the resultant image, we assign colour of the first object in cluster (which
was added to cluster as first) to all pixels from this cluster. We run this algorithm with
factor B = 0 to cluster all pixels. To compare results with original image we use Eu-

141

Marta K. Smoliriska, Zenon A. Sosnowski

clidean distance metric between colours in RGB space eq. 4.

D(o.r)=Y, \/(o[i, JI-R—rli, jl.R)?+ (0[i, j1.G — r[i, j].G)> + (oli, j|.B — rli, j].B)>
4)

where o and r are original and result image respectively. This metric is chosen
for its computational speed and simplicity.

Rassmusen’s algorithm created 305 clusters and the difference D between result
and original image was equal to 13 745 431. Modified version created 301 clusters
and D was equal to 5 605 994.5 . There is less colours (less created clusters) in
the result image and difference from original is over 2 times less than in algorithm
without modification.

5. Parallel Fuzzy clustering algorithm

This parallel algorithm was implemented and tested on populations with the large
amount of data. In our parallel implementation we use MPI (Message Passing Inter-
face). We execute our algorithm on many processors. One process on each processor.

We have one master process - “special process designated to manage the pool
of available tasks” and many slaves - “processes that depend on the master to obtain
work” [4]. Each process is executed on different processor of cluster machine.

In our algorithm there are two situations.

First: when we can divide work among processes and we know that it will take
the same time (the same number of computations). This is when we calculate typi-
cality for objects of population. Then we use static mapping of tasks onto processes.
Each process calculates the part of objects.

Second situation: when we check if object is similar to cluster. Object is similar
to the cluster, if it is similar, to one or more elements of cluster. In optimistic situation,
when object is similar to the first object of the cluster, the computation of similarity is
done only once. In pessimistic situation - when object is not similar to the cluster, we
have to calculate similarity as many as cluster size. To obtain load balancing we use
dynamic mapping of tasks to processors. The master tells slaves which object they
have to check of similarity to the cluster. When slave process returns result to master,
then it receives another task if there are any.

Message in MPI has a tag. We use it to inform other processes what message
is sent. In many situations slaves cannot establish what message will be received. So
it checks (with MPI_Probe) what tag the message has, and does adequate operations
e.g. allocates memory and then receives message.

142

Parallel Fuzzy Clustering for Linguistic Summaries

The idea of our parallel algorithm is as follows. (Algorithms 2 and 3 present
in detail master and slave functions. As a function typicality(o,P) we mean
typicality(o,P) = min(u(o), Summary(most, P, Similar_to(0))))

In our case each process needs all the objects, because computing typicality of
one object requires all other objects. Master packs the population P, and sends it to
all other processes - slaves. The slaves receive packed population and unpack it. So
each process has a copy of data. Then slaves calculate typicality of the part of the
population - each slave different part. Processes in communicator have identifiers
from O to p — 1 where p is number of processors. In our case process with identifier 0
becomes master. If N is the population size (number of objects), process with identi-
fier p;y considers objects starting from the object with index equal to % * (pia — 1)
ending with index equal to (% * pig) — 1. When N is not divisible by (p — 1) then
master calculates the rest of objects with indices from N — (N mod (p—1))toN — 1
(indices of the population are zero-based). Then each slave sends results to master,
which accumulates them and sends back to all slaves. So each slave can create copy
of the population typical.

All processes create new cluster containing one object - the most typical. Master
saves all clusters in an array. Slaves do not need to keep all clusters. They use only
one actually created cluster.

In the next step, the master sends to each slave index of the object, it have to
calculate, if that object is similar to the cluster, or not. Then slave sends back the
information, and if there are any other objects, it receives another index. This is re-
peated until all objects are checked.

Master sends to all slaves indices of objects that have to be added to cluster, and
removed from typical.

Searching is continued as long as there were any object added to cluster.

If no more objects were added, each slave clears its cluster. All the processes
compute typicality of their part of objects that remain in typical. Master receives
it and accumulates, creates next cluster containing most typical object and so on.
This is continued until there are any objects in typical and most typical object has a
typicality not less than f3.

In this algorithm similarity between each two objects is calculated many times.
We had an idea of creating similarity matrix of objects. Such a solution is good with
small populations. In the case when the population size is large, similarity matrix
is too big to fit in memory. For example: if size of the population is 250 000 then
similarity matrix takes the place of 250 0007 x sizeof (float) = 250 000? * 4 bytes. It
is over 232 GB. At this moment this is too large to fit into memory. On the other hand
keeping it on hard disk is not profitable because of disk access time.

143

Marta K. Smoliriska, Zenon A. Sosnowski

Algorithm 2 TypicalClustersMaster(P, p, Q, Sim,A, B)

Require: P— population, p— number of processes (p > 2), Q— pointer to function of fuzzy quantifier,

——

16:
17:
18:
19:
20:
21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:

AN Sl ey

Sim(0;,0;) - similarity function 0;,0; € P, A, B - functions counting value of factors o and B
pack population P and send it to all slaves
if P.size mod (p—1) > 0 then

for i=N—(Nmod (p—1))toN—1do

o;.t =typicality(o;,P) typical Add(o;)

end for
end if
receive from slaves and save in typical typicality of objects they calculated
send typicality of all objects to all slaves
find o’ the most typical object {the object with the highest degree of typicality }

co=A(dt) B=B(t) k=0

: while rypical.Size > 0 and o'.t > B do
12:
13:
14:
15:

create new cluster Cy,
Cy.Add(0') typical.Remove(o')
repeat
send to each slave a consecutive index of object {Slave counts similarity of this object to the
cluster Cy }
while any slave count similarity do
receive from any slave s, similarity of object o; and if it is similar save i in the array Inds
if there are indices, that wasn’t send then
send consecutive index i to slave s,.
end if
end while
send to all slaves array Inds.
for all objects o; : i € Inds do
Cr.Add(o;) typical . Remove(o;)
end for
until Tab.Size > O{there where any objects added to cluster Cy }
if typical.Size < p then
send message with tag=11 to redundant slaves {Slave exits. }
p = p —typical.Size send p to other slaves
end if
N = typical .size
if N mod (p—1) > 0 then
for i=N— (N mod (p—1)) toN-1 do
0;.t = typicality(o;,typical)
end for
end if
receive from slaves and save in typical typicality of objects they calculated
send typicality of all objects to all slaves
find o’ the most typical object
oa=A(dt) PB=B(t) k=k+1;
send a and index of o’ to all slaves
end while
return clusters Cy...C,

144

Parallel Fuzzy Clustering for Linguistic Summaries

Algorithm 3 TypicalClustersSlave(p, p;d, Q, Sim)

Require: p— number of processes (p > 2), p;q - rank of this process, Q— pointer to function of quantity

—_— =

A A ol s

in agreement,Sim(o;,0;) - similarity function 0;,0; € O

receive and unpack population original

N = original .Size

for all o;, such that % *x(pig—1)<i<
Tli] = typicality(o;,original)

end for

send filled part of T to master

receive from master index m of the most typical object o' = oy,

receive from master array 7' {typicality of all objects}

create new population typical from objects of original and typicality from array T

N
(p—1)

* Dig do

: create new cluster C with most typical object o’
: remove o’ from typical

: repeat

13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44

test for a message from master
if message.tag = 11 then
exit;
else if message.tag = 4 then
receive o from Master
else if message.tag = 6 then
receive index i from master
check if o; is similar to the cluster C and send similarity to master
else if message.tag = 7 then
receive array Inds from master
if Inds.size > 0 then
for all objects o; : i € Inds do
C.Add(0;); typical Remove(o;);
end for
else {there are no objects similar to cluster.}
if typical.size < p — 1 then
receive p from master or exit if message.tag = 11
end if
end if
N=typical.Size
for all o; € typical, such that % #(pig—1) <i< s piydo

Tli] = typicality(o;, typical)
end for
send filled part of T to master
receive from master index m of the most typical object o’ = oy,
receive from master array 7' {typicality of all objects in typical}
for all o; € typical do

0j.t = T[i]
end for
C.clear C.Add(o') typical.Remove(o')
end if

until message.tag # 11

145

Marta K. Smoliriska, Zenon A. Sosnowski

6. Results of experiments

We tested our algorithm on Compute Cluster - “mordor2” at Faculty of Computer
Science of Bialystok Technical University. There are 16 compute nodes, each of 2
quad-core processors Intel Xeon X5355 (2660 MHz) with 4GB RAM. The program
is implemented in C++, and we use Intel compiler.

We performed three experiments with three various population size. In the first
experiment, there was 65 536 objects (44 192 unique values of attribute on witch sim-
ilarity function was defined) and 190 clusters were created. In the second 301 clusters
from population of 262 144 objects (69 997 unique values). The last experiment was
performed on population 1 064 000 objects. This time only 28 clusters were created
, because there was only 254 unique values of attribute. We used factors: o, = 75%
of the most typical value (ot = o’.t * 75%) and B = O to cluster all the objects. Figures
1, 2,3 show speedup of our parallel algorithm for those three experiments and Table
1 contains time in seconds of performing each of this three experiments.

In all figures p is the processors number, 71(p) - is time of processing first ex-
periment on p processors, 7>(p) and T3(p) second and third experiment accordingly.
T(1) - is the time of running program sequentially on one processor. Speedup of
algorithm is calculated by formula in eq. 5.

S(p) == §))

Analysing the charts we can say that there is no speedup for 2 processors because
of algorithm architecture. One of two processes is master and it doesn’t take part in
calculations. From 5 processors to 20 processors (fig. 2) we can say that speedup is
close to linear speedup. It grows slower for greater number of processes as a conse-
quence of Amdahl’s law. It starts to saturate earlier (with less number of processors)
for smaller population (fig. 1 and later for greater population (fig. 3). Like in fig. 3 the
chart locally drops. It may be caused by load imbalance - there are situations when
master participates in calculations or not, depending on the number of processors and
actual number of objects. It is noteless with smaller population (fig. 1). The time of
running program on one processor in third experiment is 73 638s. that is over 20
hours, while on 48 processors 1 760.04s - somewhat less than half an hour.

7. Conclusion

The parallel version of this algorithm allows to deal with large data bases in ac-
ceptable time. The more objects we have, the more processors we can use without

146

Parallel Fuzzy Clustering for Linguistic Summaries

Table 1. Time of performing experiments

Ti(p)

K (p)

T3(p)

p

Ti(p)

T (p)

T3(p)

536

8833

104 066

25

28.024

392.796

2862.57

542.771

8827.04

111943

26

26.6639

398.204

3086.98

440.099

6917.32

76519.8

27

26.1264

384.812

2973.57

369.37

5938.48

41201

28

25.2003

375.33

2885.53

294.841

2232.53

16613.9

29

24.4827

341.483

2482.13

160.135

1786.62

13615

30

23.8073

331.278

2425.07

93.7401

1495.43

11613.9

31

23.3445

341.783

2724.54

| | || | W]~

81.7998

1372.49

11135.7

32

22.8769

330.902

2649.3

o

72.1456

1104.92

24866.1

33

22.1609

321.069

2430.05

—
(=)

63.8581

991.029

14712.6

34

21.681

310.859

2358.91

j—

57.6498

899.491

6788.27

35

21.3022

304.901

2303.22

—_
[\

52.7288

820.887

6253.87

36

20.7538

279.391

3606.57

—
w

48.8878

761.468

5829.14

37

20.7321

305.128

2282.51

=

45.498

746.249

5958.49

38

20.3226

299.343

2219.04

—
W

43.1952

691.14

9235.31

39

20.0423

293.134

2162.86

—
=)}

40.291

684.79

5434.6

40

19.6307

284.499

2113.97

~

38.0155

572.078

4291.65

41

19.1846

263.208

1953.81

—_
e

36.14

541.105

4086.26

42

18.8672

257.352

1910.82

—
\O

34.937

510.345

3774.39

43

18.8057

242.463

1965.2

[\
(=]

33.3961

484.716

6627.98

44

18.4836

260.475

1921.94

[\
—_

31.7411

493.387

3862.84

45

18.3377

232.151

1879.08

N
(S}

30.6009

495.573

3874.26

46

18.1134

250.914

1834.79

N
Y}

29.4827

476.159

3699.19

47

17.8429

246.288

1794.08

[N}
N

28.4549

456.875

3556.91

48

17.6971

242.1

1760.04

147

Marta K. Smoliriska, Zenon A. Sosnowski

" S()

354
30

45

204

algorithm speedup
linear speedup

[

Fig. 1. Algorithm speedup for population of 65 536 objects

r

" S)

04

0

S0

typical clusters speedup
linear speedup

30

204

Fig. 2. Algorithm speedup for population of 262 144 objects

efficiency degradation. Our algorithm is not perfect. We use only blocking commu-
nication operations and there is moment of poor load balancing (master should more
participate in computation). There are also messages that master sends to all pro-

148

Parallel Fuzzy Clustering for Linguistic Summaries

F'. S(p)

304

T algotithm speedup

linear speedup

Fig. 3. Algorithm speedup for population of 1 064 000 objects

cesses. It would be better to use collective communications operations. We have not
implemented those yet.

We didn’t make parallel linguistic summaries, but only clustering algorithm,
because complexity of the former is O(N). Object-oriented databases, that are subject
of our interest, allow creating object attributes that are collections of other objects or
other data like multimedia. In that situation, predicate defined on such an attribute or
group of attributes may be very time consuming. Next we plan to implement parallel
linguistic summaries to deal with such databases.

References

[1] Smolifiska M. Sosnowski Z.: Linguistic Summaries with Fuzzy Clustering,
Zeszyty Naukowe Politechniki Biatostockiej. Informatyka Nr 2 (2007), s.141-
154 (in Polish)

[2] Rasmussen D.: Application of the Fuzzy Query Language - Summary SQL,
DATALOGISKE SKRIFTER, Roskilde University, 1997.

[3] Rasmussen D., Yager R.: Introduction of Fuzzy Characteristic Rules by Typical
Values, DATALOGISKE SKRIFTER, Roskilde University, 1997.

[4] Grama A., Gupta A., Karypis G., Kumar V.: Introduction to Parallel Computing,
Second Edition, Addison Wesley, 2003.

149

Marta K. Smoliriska, Zenon A. Sosnowski

PODSUMOWANIA LINGWISTYCZNE
Z ROWNOLEGEYM GRUPOWANIEM ROZMYTYM

Streszczenie: Z podsumowaniem lingwistycznym, jak i z predykatem rozmytym zwiazana
jest warto§¢ prawdy. Mozemy wigc podsumowan lingwistycznych uzywac¢ jako predyka-
téw rozmytych. Podsumowanie postaci “wigkszos$¢ obiektéw w populacji P jest podobna do
obiektu o; wykorzysta¢ mozemy do znajdowania typowych wartosci w populacji P, ktére to
wykorzystuje rozmyty algorytm grupujacy. Wada tego algorytmu jest jego duza ztozonos$é
obliczeniowa. W celu przetwarzania duzej liczby danych zaimplementowaliSmy ten algo-
rytm réwnolegle, korzystajac ze standardu MPI do komunikacji migdzy procesami dziata-
jacymi na réznych procesorach. W tej pracy przedstawiamy algorytm réwnolegly i wyniki
eksperymentéw.

Stowa kluczowe: podsumowania lingwistyczne, grupowanie rozmyte, programowanie

rownolegte

Artykut zrealizowano w ramach pracy badawczej S/W1/2/08.

150

ZESZYTY NAUKOWE POLITECHNIKI BIAL.OSTOCKIEJ 2009
Informatyka — Zeszyt 4

Kazimierz Trzesicki!

LOGIC IN FORMAL VERIFICATION OF COMPUTER
SYSTEMS. SOME REMARKS.

Abstract: Various logics are applied to specification and verification of both hardware and
software systems. The problem with finding of proof is the most important disadvantage of
proof-theoretical method. The proof-theoretical method presupposes the axiomatization of
the logic. Proprieties of a system can also be checked using a model of the system. A model
is constructed with the specification language and checked using automatic model checkers.
The model checking application presupposes the decidability of the task.

Keywords: Logic, Verification, Proof-theoretical Method, Model Checking

1. Logic in Computer Science

Connections between logic and computer science (CS) are wide-spread and varied.
Notions and methods from logic can fruitfully be applied within CS. Logic plays the
same role in CS as the calculus plays in physics. Logic is ,.,the calculus of computer
science” [74,16,29].

On the one hand, logic permeates more and more its main areas. On the other
hand we may notice that [59, p. 181]:

Until the invention of the digital computer, there were few applications of for-
mal mathematical logic outside the study of logic itself. In particular, while
many logicians investigated alternative proof systems, studied the power of
various logics, and formalized the foundations of mathematics, few people
used formal logic and formal proofs to analyze the properties of other sys-
tems. The lack of applications can be attributed to two considerations: (i) the
very formality of formal logic detracts from its clarity as a tool of communi-
cation and understanding, and (ii) the “natural” applications of mathematical
logic in the pre-digital world were in pure mathematics and there was lit-
tle interest in the added value of formalization. Both of these considerations

! University of Bialystok

151

Kazimierz Trzesicki

changed with the invention of the digital computer. The tedious and precise
manipulation of formulas in a formal syntax can be carried out by software
operating under the guidance of a user who is generally concerned more with
the strategic direction of the proof.

The logical methods are applicable for the design, specification, verification?
and optimization of programs, program systems and circuits. Logic has a significant
role in computer programming. While the connections between modal logic® and CS
may be viewed as nothing more than specific instances, there is something special to
them.

In 1974 the British computer scientist Rod M. Burstall first remarked on the
possibility of application of modal logic to solve problems of CS. The Dynamic Logic
of Programs has been invented by Vaughan R. Pratt [81]:

In the spring of 1974 I was teaching a class on the semantics and axiomatics of
programming languages. At the suggestion of one of the students, R. Moore,
I considered applying modal logic to a formal treatment of a construct due to
C. A.R. Hoare, “p{a}q”, which expresses the notion that if p holds before ex-
ecuting program a, then g holds afterwards. Although I was skeptical at first,
a weekend with Hughes and Cresswell* convinced me that a most harmonious
union between modal logic and programs was possible. The union promised

2 Some authors distinguish between Validation and Verification and refer to the overall checking
process as V&V. Validation is answering to the question: Are we trying to make the right thing?.
Verification answer the question: Have we made what we were trying to make? In general methodol-
ogy of sciences the term “verification” denotes establishing correctness. The term “falsification” (or
“refutation”) is used in meaning: to detect an error. In CS “verification” covers both the meanings
and refers to the two-sided process of determining whether the system is correct or erroneous.

For Dijkstra [33] the verification problem is distinct from the pleasantness problem which con-
cerns having a specification capturing a system that is truly needed and wanted. Emerson observes
that [36, p. 28]:

The pleasantness problem is inherently pre-formal. Nonetheless, it has been found that care-
fully writing a formal specification (which may be the conjunction of many sub-specifications)
is an excellent way to illuminate the murk associated with the pleasantness problem.

3 The traditional modal logic deals with three *modes’ or "moods’ or *modalities’ of the copula ‘to
be’, namely, possibility, impossibility, and necessity. Related terms, such as eventually, formerly,
can, could, might, may, must, are treated in a similar way, hence by extension, logics that deals with
these terms are also called modal logics.

The basic modal operator [J (necessarily) is not rigidly defined. Different logics are obtained form
different definition of it. Here we are interested in temporal logic that is the modal logic of temporal
modalities such as: always, eventually.

4 The book Pratt is talking about is An Introduction to Modal Logic [55].

152

Logic in Formal Verification of Computer Systems. Some remarks.

to be of interest to computer scientists because of the power and mathemati-
cal elegance of the treatment. It also seemed likely to interest modal logicians
because it made a well-motivated and potentially very fruitful connection be-
tween modal logic and Tarski’s calculus of binary relations.

This approach was a substantial improvement over the existing approach based on the
pre-condition/post-condition mechanism provided by Hoare’s logic.> Kripke models,
the standard semantic structure on which modal languages are interpreted, are nothing
but graphs. Graphs are ubiquitous in CS.

The connection between the possible worlds of the logician and the internal
states of a computer is easily described. In possible world semantics, ¢ is possible in
some world w if and only if ¢ is true in some world w’ accessible to w. Depending
on the properties of the accessibility relation (reflexive, symmetric, and so on), there
will be different theorems about possibility and necessity. The accessibility relation
of modal logic semantics can thus be understood as the relation between states of
a computer under the control of a program such that, beginning in one state, the
machine will (in a finite time) be in one of the accessible states. In some programs, for
instance, one cannot return from one state to an earlier state; hence state accessibility
here is not symmetric.

The question of using of temporal logic (T'L) to software engineering was un-
dertaken by Kroger [61,62,63,64]. The development of TL as applied to CS is due
to Amir Pnueli. He was inspired by ,, Temporal Logic”, a book written by Rescher
and Urquhart [84].% ,,The Temporal Logic of Programs” [79], a paper by Pnueli,’ is
the classical source of TL for specification and verification of programs. This work
is commonly seen as a crucial turning point in the progress of formal methods for
the verification of concurrent and reactive systems. Amir Pnueli argues that temporal
logic can be used as a formalism to reason about the behavior of computer programs
and, in particular, of non-terminating concurrent systems.® In general, properties are

5 Hoare’s logic views a program as a transformation from an initial state to a final state. Thus it is not
eligible to tackle problems of reactive or non-terminating systems, such as operating systems, where
the computation does not bring to a final state.

6 See [42, p. 222].

7 Pnueli received the Turing Award in 1996:

for seminal work introducing temporal logic into computing science and for outstanding con-
tributions to program and system verification.

8 A system is said to be concurrent when its behavior is the result of the interaction and evolution of

multiple computing agents. The initial interest in concurrent systems was motivated by the speed
improvements brought forth by multi-processor computers.

153

Kazimierz Trzesicki

mostly describing correctness or safety of the system’s operation. For Clarke [20,
p- 1] works of Pnueli [79], Owicki and Lamport [78]:

demonstrated convincingly that Temporal Logic was ideal for expressing con-
cepts like mutual exclusion, absence of deadlock, and absence of starvation.

There is a difference between logician and computer scientists approach to sys-
tems of logics [14, p. 315]:

Decidability and axiomatization are standard questions for logicians; but for
practitioner, the important question is model-checking.

In opinion of Dijkstra:°

The situation of programmer is similar to the situation of mathematician,
who develops a theory and proves results. [...] One can never guarantee that
a proof is correct, the best one can say, is: “I have not discovered any mis-
takes”. [...] So extremely plausible, that the analogy may serve as a great
source of inspiration. [...]

Even under the assumption of flawlessly working machines we should ask
ourselves the questions: “When an automatic computer produces results, why
do we trust them, if we do so?”’ and after that; “What measures can we take
to increase our confidence that the results produced are indeed the results
intended?”

In another work [32, p. 6] Dijkstra says:

Program testing can be used to show the presence of bugs, but never to show
their absence.

Formulated in terms of Turing Machines, the verification problem was already con-
sidered by Turing [88]. He demonstrated that there is no general method of proving
of correctness of any program.

Application of a computer system may cause not only material losses, e.g., in
e-banking, but also may be dangerous for life, e.g., in health care, transportation,
especially air and space flights.!? Correctness of design is a very important factor of

9 See Dijkstra E. W., Programming Considered as a Human Activity, http: //www.cs.utexas.edu/
users/EWD/transcriptions/EWD01xx/EWD117.html.

10°A famous example: The Ariane-5 launch on June 4, 1996; it crashed 36 seconds after the launch
due to a conversion of a 64-bit floating point into a 16-bit integer value. In 2008 it was announced
that the Royal Navy was ahead of schedule for switching their nuclear submarines to a customized
Microsoft Windows solution dubbed Submarine Command System Next Generation. In this case any
error may have an unimaginable aftermath.

154

Logic in Formal Verification of Computer Systems. Some remarks.

systems for preventing economical and human losses caused by minor errors. The
reduction of errors in computer systems is one of the most important challenges of
CS [64, p. V]. It has long been known that [36, p. 27]:

computer software programs, computer hardware designs, and computer sys-
tems in general exhibit errors. Working programmers may devote more than
half of their time on testing and debugging in order to increase reliability.
A great deal of research effort has been and is devoted to developing improved
testing methods. Testing successfully identifies many significant errors. Yet,
serious errors still afflict many computer systems including systems that are
safety critical, mission critical, or economically vital. The US National Insti-
tute of Standards and Technology has estimated that programming errors cost
the US economy $60B annually'!.

Computer systems are more and more complicated. Verification of digital hard-
ware designs has become one of the most expensive and time-consuming compo-
nents of the current product development cycle. Empirical testing and simulation is
expensive, not ultimately decisive and sometimes excluded for economical or ethi-
cal reasons. Formal methods are the most notable efforts to guarantee a correctness
of system design and behaviors. Thus the formal specification and computer aided
validation and verification are more and more indispensable. Formal methods have
gained popularity in industry since the advent of the famous Intel Pentium FDIV
bug in 1994, which caused Intel to recall faulty chips and take a loss of $475 million
[28]. Digital computers are intended to be abstract discrete state machines and such
machines and their software are naturally formalized in mathematical logic.

Given the formal descriptions of such systems, it is then natural to reason
about the systems by formal means. And with the aid of software to take
care of the myriad details, the approach can be made practical. Indeed, given
the cost of bugs and the complexity of modern hardware and software, these
applications cry out for mechanical analysis by formal mathematical means.
[59, p. 181-182]

Errors should already be detected at design stage. It is very important to specify
the correctness property of system design and behavior, and an appropriate prop-
erty must be specified to represent a correct requirement. It is estimated that 70%
of design-time is spent to minimize the risk of errors [86], see [76]. Formal meth-
ods, model checkers as well theorem provers, are proposed as efficient, safe and less
expensive tools [59,15]. According to Emerson [36, pp. 27-28]:

11 See: National Institute of Standards and Technology, US Department of Commerce, “Software Errors
Cost U.S. Economy $59.5 Billion Annually”, NIST News Release, June 28, 2002.

155

Kazimierz Trzesicki

Given the incomplete coverage of testing, alternative approaches have been
sought. The most promising approach depends on the fact that programs and
more generally computer systems may be viewed as mathematical objects
with behavior that is in principle well-determined. This makes it possible
to specify using mathematical logic what constitutes the intended (correct)
behavior. Then one can try to give a formal proof or otherwise establish that
the program meets its specification. This line of study has been active for
about four decades now. It is often referred to as formal methods.

2. Formal methods of verification

2.1 Formal methods

Formal methods include: formal specification, specification analysis and proof, trans-
formational development, program verification. The principal benefits of formal
methods are in reducing the number of faults in systems. Consequently, their main
area of applicability is in critical systems engineering. There have been several suc-
cessful projects where formal methods have been used in this area. The use of formal
methods is most likely to be cost-effective because high system failure costs must
be avoided. Nevertheless formal methods have not become mainstream software de-
velopment techniques as was once predicted. Other software engineering techniques
have been successful at increasing system quality. Hence the need for formal meth-
ods has been reduced. Market changes have made time-to-market rather than software
with a low error count the key factor. Formal methods do not reduce time to market.
Moreover, the scope of formal methods is limited. They are not well-suited to spec-
ifying and analyzing user interfaces and user interaction. Formal methods are still
hard to scale up to large systems. Nevertheless as it is stressed by Edmund M. Clarke
[56, p. ix], one of the prominent researcher in the field of formal methods in CS:

Formal methods have finally come of age! Specification languages, theorem
provers, and models checkers are beginning to be used routinely in industry.

The formal methods to be appropriate need to be properly adapted. Temporal
logic and its language are of particular interest in the case of reactive'?, in particular
concurrent systems. The language of 7L is one that fulfills three important criteria.
It:

12 Systems can be divided into two categories: transformational programs (data intensive) and reac-
tive systems (control intensive). The systems of the second type maintain an ongoing interaction
with their environment (external and/or internal stimuli) and which ideally never terminate. Their
specifications are typically expressed as constraints on their behavior over time.

156

Logic in Formal Verification of Computer Systems. Some remarks.

— has the ability to express all sorts of specification (expressiveness);
— has reasonable complexity to evaluate the specified rules (complexity);
— due to its resemblance to natural language is easy to learn (pragmatics).

The knowledge of TL is indispensable in practice, tough, as it is remarked by Sch-
noebelen [87]:

In today’s curricula, thousands of programmers first learn about temporal
logic in a course on model checking!

T L languages can be used to specification of widely spectrum of systems. Methods
of TL can be applied to verification [72]. In the case of reactive systems 7'L is more
useful than Floyd-Hoare logic that is better in the case of “input-output” programs.
TL languages [64, p. 181]:

provide general linguistic and deductive frameworks for state systems in the
same manner as classical logics do for mathematical systems.

There are two main methods: proof-theoretical and model-theoretical [26].

2.2 Proof-theoretical approach

Already in the works of Turing the mathematical methods were applied to check
correctness of programs [83]. By the end of sixties of last century Floyd [37], Hoare
[48] and Naur [77] proposed axiomatic proving sequential programs with respect to
their specification. Proof-theoretical method based on TL was proposed by Pnueli
and Manna [72].

This method is used to prove a correctness of system through logical proving
about system constraints or requirement for safe system behavior. Propositions spec-
ifying the system are joined as premisses to the thesis of deduction system of logic.
Proofs can be “described” a variety of ways, e.g., by giving the inference steps, by
specifying tactics or strategies to try, by stating the “landmark” subgoals or lemmas
to establish, etc. Often, combinations of these styles are used within a single large
proof project. Verification is positive if the proposition expressing the desired prop-
erty is proved by using formal axioms and inference rules oriented towards sequential
programs. Correctness of formal derivations could be “mechanically” checked, but
finding a proof needs some experience and insight.

But all proofs of commercially interesting theorems completed with mechan-
ical theorem proving systems have one thing in common: they require a great
deal of user expertise and effort. [59, pp. 182-183]

157

Kazimierz Trzesicki

For example [59, p. 182]:

The proof, constructed under the direction of this paper’s authors and Tom
Lynch, a member of the design team for the floating point unit, was com-
pleted 9 weeks after the effort commenced. About 1200 definitions and theo-
rems were written by the authors and accepted, after appropriate proofs were
completed by the ACL2'3 theorem prover.

At the time of its introduction in the early 1980’s, a “manual” proof-theoretic ap-
proach was a prevailing paradigm for verification. Nowadays proofs are supported by
semi-automatic means'#, provers and proof checkers. Interactive provers are used to
partially automate the process of proving. Among the mechanical theorem proving
systems used to prove commercially interesting theorems about hardware designs are
ACL2", Coq'®, HOL', HOL Light'8, Isabelle!®, and PV 5?°. The proof assistant ap-
proach is a subject of research projects, e.g. BRICKS http://www.bsik-bricks.
nl/research_projects_afm4.shtml.

The proof-theoretic framework is one-sided. It is possible only to prove that
a proposition is a thesis. If we do not have a proof, we are entitled only to say that we
could not find a proof, and nothing more. However, theorem proving can deal with
an infinite state space, i.e., system with infinitely many configurations. Nevertheless
this method is also indispensable in some intractable cases of finite state systems.
Though today’s model checkers are able to handle very large state spaces, eg. 10'2°
[[59, p. 183], [25]] but it does not mean that these states are explored explicitly.
The above discussed theorem about FDIV (see p. 155) could be checked by running
the microcode on about 10°° examples. Since in this case there are no reduction tech-
niques, if it is assumed that one example could be checked in one femtosecond (1013
seconds — the cycle time of a petahertz processor), the checking of the theorem will
take more than 107 years [59, p. 183].

For Emerson [36, p. 28]:

The need to encompass concurrent programs, and the desire to avoid the dif-
ficulties with manual deductive proofs, motivated the development of model

13 See [71,12].

14 Until the artificial intelligence problem is solved, human interaction will be important in theorem
proving.

15 See http://www.cs.utexas.edu/~moore/acl2/, [59].

16 See http://coq.inria.fr/.

17 See http://www.cl.cam.ac.uk/research/hvg/HOL/, [39].

18 See http://www.cl.cam.ac.uk/~jrh13/hol-1light/.

19 See http://www.cl.cam.ac.uk/research/hvg/Isabelle/.

20 See http://pvs.csl.sri.com/.

158

Logic in Formal Verification of Computer Systems. Some remarks.

checking. In my experience, constructing proofs was sufficiently difficult that
it did seem there ought to be an easier alternative.

2.3 Model-theoretical approach

Both the idea of automatic verification of concurrent programs based on model-
theoretic approach and the term “model checking” were introduced by Clarke and
Emerson in [21],>! and independently the idea of model checking was conceived by
Quille and Sifakis [82].> The idea was developed in works by Clarke, Emerson,
Sistla and other [22,23,24,11,27].

Model checking is a verification technique that is preferred to theorem proving
technique. This method, similarly as it is in the case of logical calculi, is more ef-
fective comparatively to proof-theoretic method. It is one of the most active research
areas because its procedures are automatic and easy to understand.

According to Edmund M. Clarke [20, p. 1]:

Model Checking did not arise in a historical vacuum. There was an important
problem that needed to be solved, namely concurrent program verification.

In another place he continues:??

Existing techniques for solving the problem were based on manual proof con-
struction from program axioms. They did not scale to examples longer than
a page and were extremely tedious to use. By 1981 the time was ripe for a new
approach to the problem, and most of necessary ideas were already in place.

Model checking bridges the gap between theoretical computer science and hard-
ware and software engineering. Model checking does not exclude the use of proof-
theoretical methods, and conversely, the proof-theoretical methods do not exclude
using of model checking. In practice one of theses methods is complementary to the
other at least at the heuristic level. On the one hand, failed proofs can guide to the
discovery of counterexamples. Any attempt of proving may be forego by looking for
counterexamples. Counterexamples of consequences of a theorem can help to refor-
mulate it. Examples may aid comprehension and invention of ideas and can be used
as a basis for generalization being expressed by a theorem. The role of decision pro-
cedures is often essential in theorem proving. There has been considerable interest in

21 See (36, p. 9.

22 E. M. Clarke and E. A. Emerson interpreted concurrent system as finite Kripke structure/transition
system and properties were expressed in CTL language. J.-P. Queille and J. Sifakis based on Petri
nets and properties were expressed in language of branching time logic.

2 See http://events.berkeley.edu/index.php/calendar/sn/coe.html?event.

159

Kazimierz Trzesicki

developing theorem provers that integrate SAT" solving algorithms. The efficient and
flexible incorporating of decision procedures into theorem provers is very important
for their successful use. There are several approaches for combining and augmenting
of decision procedures. On the other hand, the combination of model checking with
deductive methods allows the verification of a broad class of systems and, as it is
in the case of eg. STeP [73], not restricted to finite-state systems. The question of
combining proof-theoretical and model checking methods and the general problem
of how to flexibly integrate decision procedures into heuristic theorem provers are
subjects of many works [13].

In model checking the first task is to convert a system to a formal model ac-
cepted by a model checker. We model a system as a finite state machine. It is a model
in the form of a Kripke structure?* or labeled graph of state transitions — that has to
accurately describe the behavior of the checked system. To do this formal languages
defined by formal semantics must be used. To draw an abstract model many tech-
niques are applied. Many methods are used to reduce states of a system. In practice,
this process is not automated.

The second task is to specify properties that that must be satisfied by the real
system. Mechanically assisted verification of properties of a complex system requires
an accurate formal model of the system. The specification usually is given in some
logical formalism. Generally, temporal logics are used to represent a temporal char-
acteristic of systems.

We perform a model checker whether the system satisfies its properties as ex-
pressed by temporal logic formulas. The answer is positive only if all runs are models
of the given temporal logic formula. The technique is based on the idea of exhaustive
exploration of the reachable state space of a system. For this reason it can only be
applied to systems with a finite state space, i.e., systems with finitely many configu-
rations, and — for practical limitations (tractability) — with not too many states. The
verification is completely automatic with the abstract model and properties. Thus
it is possible to verify the correctness of very complicated and very large systems
manual checking of which is almost not possible. We can verify a complex system
as a hardware circuit or communication protocol automatically. The verification re-

24 Kripke or relational semantics of modal logics has been conceived in fifties of the last century. This
semantics was philosophically inspired nevertheless it has found application in CS. In CS Kripke
structure is associated with a transition system. Because of the graphical nature of the state-space, it
is sometimes referred to as the state graph associated with the system. Similarly as in modal logics
this role may be played by Hintikka frames [8]. A Kripke frame consists of non-empty set and
a binary relation defined on this set. In modal logics elements of the set are called possible worlds
and the relation is understood as accessibility of one world from another. In the case of T'L as applied
in CS the Kripke semantics is based on computational time.

160

Logic in Formal Verification of Computer Systems. Some remarks.

sults are correct and easy to analysis. However, it does need human assistance to
analyze the result of model checking. If logic is complete with respect to the model
and is decidable, then in the case of any proposition that specifies the behavior of
the system the procedure of checking is finite. But if the model is too detailed the
verification becomes intractable. A model checker verifies the model and generates
verification results, “True” or counterexample if the result is “False”. If the proposi-
tion is satisfied the system is verified. If the proposition is not valid the construction
results in a counterexample — this is one of important advantages of model check-
ing. The counterexample provides an information about an error (bug) in the system.
The model checker can produce a counterexample for the checked property, and it
can help the designer in tracking down where the error occurred.

The counterexample gives us a new precondition or a negative result in the fol-
lowing way: When we obtain a counterexample, we analyze it and as far as this trace
could not occur in real system we add new preconditions to the formula. We may ob-
tain a counterexample again which often results to many preconditions. In this case,
analyzing the error trace may require a modification to the system and reapplication
of the model checking process. The error can also result from incorrect modeling of
the system or from an incorrect specification. The error trace can also be useful in
identifying and fixing these two problems.

Model checking comes in two varieties depending on the way the proprieties are
expressed. If theory of automata is employed the system as well as its specification
are described by automaton. Questions concerning system and its specification are
reduced to the question about the behavior of automaton. In other words, when we
say “automata theoretic approach” we mean:

— specifying systems using automata
— reducing model checking to automata theory.

In the case of TL model checking the system is modeled as a finite-state automa-
ton, while the specification is described in temporal language. A model checking
algorithm is used to verify whether the automaton has the proper temporal-logical
proprieties. In other words, if 7L is applied [76, p. 2-3]:

Model checking involves checking the truth of a set of specifications defined
using a temporal logic. Generally, the temporal logic that is used is either
CTL" or one of its sublogics, CTL [...] [23] or LTL[...] [80].

Various model checkers are developed. They are applied to verification of large
models, to real-time systems, probabilistic systems, etc. [50,66,24,10] — see [87].

161

Kazimierz Trzesicki

Software is usually less structured than hardware and, especially in the case of con-
currency, asynchronous. Thus the state space is bigger in the case of software than in
hardware. Consequently, Model Checking has been used less frequently for software
verification than for hardware verification [20, p. 18]. The limits of models check-
ing are pushed by employing work-station clusters and GRIDs, e.g. the VeriGEM
project aims at using the storage and processing capacity of clusters of workstations
on a nation-wide scale www.bsik-bricks.nl/research_projects_afm6.shtml.
Despite being hampered by state explosion, since its beginning model checking has
had a substantive impact on program verification efforts.

It is worth mentioning some of the applications of model checking elsewhere.
These include understanding and analyzing legal contracts, which are after all pre-
scriptions for behavior [31]; analyzing processes in living organisms for systems biol-
ogy [43]; e-business processes such as accounting and workflow systems [91]. Model
checking has also been employed for tasks in artificial intelligence such as planning
[38]. Conversely, techniques from artificial intelligence related to SAT-based plan-
ning [60] are relevant to (bounded) model checking.

Let us repeat after Emerson some interesting remarks concerning model check-
ing [36, p. 42]:

Edsger W. Dijkstra commented to me that it was an “acceptable crutch” if one
was going to do after-the-fact verification. When I had the pleasure of meeting
Saul Kripke and explaining model checking over Kripke structures to him, he
commented that he never thought of that. Daniel Jackson has remarked that
model checking has “saved the reputation” of formal methods.

3. Model checkers

By a model checker we mean a procedure which checks if a transition system system
is a model for a formula expressing a certain property of this system [23].

There is a wide variety of model checkers available, with a number of different
capabilities suited to different kinds of problems. Some of these are academic tools,
others are industrial internal tools, and some are for sale by CAD vendors. The variety
is of great benefit to practitioners. They have to know which tools are available and
which tools to chose for a particular problem. Today, software, hardware and CAD
companies employ several kinds of model checkers. In software, Bell Labs, JPL,
and Microso ft, government agencies such as NASA in USA, in hardware and CAD,
IBM, Intel (to name a few) have had tremendous success using model checking for
verifying switch software, flight control software, and device drivers.

162

Logic in Formal Verification of Computer Systems. Some remarks.

Some programs are grouped as it is in the case of MODEL-CHECKING
KIT http://www.fmi.uni-stuttgart.de/szs/tools/mckit/overview.shtml.
This is a collection of programs which allow to model a finite-state system using
a variety of modeling languages, and verify it using a variety of checkers, includ-
ing deadlock-checkers, reachability-checkers, and model-checkers for the temporal
logics CTL and LT L. The most interesting feature of the Kit is that:

Independently of the description language chosen by the user, (almost) all
checkers can be applied to the same model.

The counterexamples produced by the checker are presented to the user in terms of
the description language used to model the system.

The Kit is an open system: new description languages and checkers can be added
to it.

The description languages and the checkers have been provided by research
groups at the Carnegie-Mellon University, the University of Newcastle upon Tyne,
Helsinki University of Technology, Bell Labs, the Brandenburg Technical University
at Cottbus, the Technical University of Munich, the University of Stuttgart, and the
Humboldt-Universitdt zu Berlin.

Problems of techniques and tools of verification of /CT systems are subjects of
research projects. E.g., in the scheme of BRICKS http://www.bsik-bricks.nl/
index.shtml under theme Algorithms and Formal Methods there are developed

Advancing the Real Use of Proof Assistants

Infinite Objects: Computation, Modeling and Reasoning

A Verification Grid for Enhanced Model Checking

Modeling and Analysis of QoS for Component-Based Designs

A Common Framework for the Analysis of Reactive and Timed Systems

Many of the research problems originating from industrial parties.

Below we give a few examples of model checkers. Usually they description will
be taken from they website home pages.

Two of the most popular on-the-fly, explicit-state-based model checkers are
SPIN (Simple Promela INterpreter) and MUR® or MURPHI [35,34].

SPIN is:

a popular open-source software tool, used by thousands of people worldwide,
that can be used for the formal verification of distributed software systems.
The tool was developed at Bell Labs in the original UNIX group of the Com-
puting Sciences Research Center, starting in 1980. The software has been

163

Kazimierz Trzesicki

available freely since 1991, and continues to evolve to keep pace with new
developments in the field. In April 2002 the tool was awarded the presti-
gious System Software Award for 2001 by the ACM. http://spinroot.
com/spin/whatispin.html

SPIN continues to evolve to keep pace with new developments in the field. The
DSPIN tool [57] is an extension of SPIN, which has been designed for modeling and
verifying object-oriented software (JAVA programs, in particular).

Mur¢ is a system description high-level language and model checker developed
to formally evaluate behavioral requirements for finite-state asynchronous concurrent
systems [35,34], http://sprout.stanford.edu/dill/murphi.html. Murdis de-
veloped by a research group at the University of Utah http://www.cs.utah.edu/
formal_verification/.

SMV http://www.cs.cmu.edu/~modelcheck/smv.html (Symbolic model
verifier) is a model checker that accepts both the temporal logics LTL and CTL. It
is the first and the most successful OBDD-based symbolic model checker [75]. SMV
has been developed by The Model Checking Group that is a part of Specification
and Verification Center, Carnegie Mellon University http://www-2.cs.cmu.edu/
~modelcheck/index.html.

CADENCE SMV http://www.kenmcmil.com/smv.html is a symbolic model
checking tool released by Cadence Berkeley Labs. CADENCE SMV is provided for
formal verification of temporal logic properties of finite state systems, such as com-
puter hardware designs. It is an extension of SMV. It has a more expressive mode
description language, and also supports synthesizable VERILOG as a modeling lan-
guage.

NUSMV http://nusmv.irst.itc.it, http://nusmv.fbk.eu is an updated
version of SMV [18,17]. The additional features contained in NUSMYV include a tex-
tual interaction shell and graphical interface, extended model partitioning techniques,
and facilities for LTL model checking. NUSMV [19] has been developed as a joint
project between Formal Methods group in the Automated Reasoning System divi-
sion at Istituto Trentino di Cultura, Istituto per la Ricerca Scientifica e Tecnologica in
Trento, Italy), the Model Checking group at Carnegie Mellon University, the Mech-
anized Reasoning Group at the University of Genoa and the Mechanized Reasoning
Group at the University of Trento.

NUSMV 2 is open source software. It combines BDD-based model checking
with SAT-based model checking. It has been designed as an open architecture for
model checking. NUSMV 2 exploits the CUDD library developed by Fabio Somenzi
at Colorado University and SAT-based model checking component that includes an

164

Logic in Formal Verification of Computer Systems. Some remarks.

RBC-based Bounded Model Checker, connected to the SIM SAT library developed
by the University of Genova. It is aimed at reliable verification of industrially sized
designs, for use as a back-end for other verification tools and as a research tool for
formal verification techniques.

An enhanced version of SMV, RULEBASE www.haifa.ibm.com/projects/
verification/RB_Homepage/ [7] is an industry-oriented tool for the verification
of hardware designs, developed by the IBM Haifa Research Laboratory. In an effort
to make the specification of CTL properties easier for the non-expert, RULEBASE
supports its own language, Sugar. In addition, RULEBASE supports standard hard-
ware description languages such as VHDL and VERILOG. RULEBASE is especially
applicable for verifying the control logic of large hardware designs.

VEREOFY http://www.vereofy.de/ was written at Technische Universitit
Dresden. It is developed in the context of the EU project CREDO. VEREOFY is
a formal verification tool of checking of component-based systems for operational
correctness.

Model checking tools were initially developed to reason about the logical cor-
rectness of discrete state systems, but have since been extended to deal with real-time
and limited forms of hybrid systems. Real-time systems are systems that must per-
form a task within strict time deadlines. Embedded controllers, circuits and commu-
nication protocols are examples of such time-dependent systems. The hybrid model
checker HYTECH [44] is used to analyze dynamical systems whose behavior ex-
hibits both discrete and continuous change. HYTECH automatically computes the
conditions on the parameters under which the system satisfies its safety and timing
requirements.

The most widely used dense real-time model checker (in which time is viewed as
increasing continuously) is UPPAAL www.uppaal.com/ [70]. Models are expressed
as timed automata [2] and properties defined in UPPAAL logic, a subset of Timed
Computational Tree Logic (T'CTL) [1]. UPPAAL is an integrated tool environment
for modeling, validation and verification of real-time systems modeled as networks
of timed automata, extended with data types (bounded integers, arrays, etc.). The tool
is developed in collaboration between the Department of Information Technology at
Uppsala University, Sweden and the Department of Computer Science at Aalborg
University in Denmark.

Another real-time model checker is KRONOS http://www-verimag.imag.fr/
TEMPORISE/kronos/ [92]. KRONOS is developed at VERIMAG, a leading research
center in embedded systems in France. KRONOS checks whether a real-time system
modeled by a timed automaton satisfies a timing property specified by a formula of
the Timed Computational Tree Logic TCTL, a timed extension of CT L.

165

Kazimierz Trzesicki

Model checking requires the manual construction of a model, via a model-
ing language, which is then converted to a Kripke structure or an automaton for
model checking. Model checking starts with translation to model checker language.
In model checking considerable gains can be made by finding ways to extract models
directly from program source code. There have been several promising attempts to
do so.

VERISOFT http://cm.bell-labs.com/who/god/verisoft/ is the first
model checker that could handle programs directly.

The first version of BLAST (Berkeley Lazy Abstraction Software
verification Tool) http://mtc.epfl.ch/software-tools/blast/,
http://www.sosy-lab.org/~dbeyer/blast_doc/blast001.html,
www.sosy-lab.org/~dbeyer/blast_doc/blast.pdf [45] was developed for
checking safety properties in C programs at University of California, Berkeley.
The BLAST project is supported by the National Science Foundation. BLAST
is a popular software model checker for revealing errors in Linux kernel code.
BLAST is relatively independent of the underlying machine and operating
system. It is free software, released under the Modified BSD license http:
//www.oss-watch.ac.uk/resources/modbsd.xml. BLAST is based on similar
concepts as SLAM http://research.microsoft.com/en-us/projects/slam/.
BLAST and SLAM are relatively new. SLAM was developed by Microsoft Research
around 2000, i.e., earlier than BLAST, which was developed around 2002. Both the
checkers have many characteristics in common. One key difference between SLAM
and BLAST is the use of lazy abstraction in BLAST.

SLAM has been customized for the Windows product StaticDriverVerifier,
SDV, a tool in the WindowsDriverDevelopmentKit.

SLAM and BLAST differ from other model checking tools in many ways. First
of all, the traditional approach to model-checking (followed by SPIN and KRONOS)
has been to first create a model of a system, and once the model has been verified,
move on to the actual implementation. SLAM and BLAST fall in the category of the
“modern” approach in model checking. The user has already completed the imple-
mentation and wishes to verify the software. The objective then is to create a model
from the existing program and apply model checking principles, such that the original
program is verified.

The FEAVER (Feature Verification system) http://cm.bell-labs.com/cm/
cs/what/feaver/ tool grew out of an attempt to come up with a thorough method
to check the call processing software for a commercial switching product, called the
PATHSTAR® access server [54,51]. It allows models to be extracted mechanically

166

Logic in Formal Verification of Computer Systems. Some remarks.

from the source of software applications, and checked using SPIN. SPIN allows C
code to be embedded directly within a PROMELA specification [53,52].

The Time Rover http://www.time-rover.com/ is a specification based veri-
fication tool for applications written in C, C++, JAVA, VERILOG and VHDL. The
tool combines formal specification, using LTL and MTL, with conventional simu-
lation/execution based testing. The Temporal Rover is tailored for the verification
of complex protocols and reactive systems where behavior is time dependent. The
methodology and technology are based on the Unified Modeling Language (UML)
and are currently in active use by NASA and the national Missile Defense develop-
ment team.

Since Pnueli introduced temporal logic to computer science, the logic has been
extended in various ways to include probability. Probabilistic techniques have proved
successful in the specification and verification of systems that exhibit uncertainty.
Early works in this field were focusing on the verification of qualitative properties.
These included work of [30] which considered models of two types, Discrete-Time
Markov Chains (DTMCs) and Markov Decision Processes (MDPs).

Tools concerning model checking probabilistic systems such as PRISM (PRo-
babilistic Symbolic Model Checker) http://www.cs.bham.ac.uk/~dxp/prism/,
[67,69,68] have been developed and applied to several real-world case studies.
Other tools include ETMCC [46], CASPA [65] and MRMC (Markov Reward Model
Checker) [58].

ETMcc [90] requirements against action-labeled continuous time Markov
chains. Probabilistic Model Checker ETMCC (Erlangen-Twente Markov Chain
Checker) [46] is developed jointly by the Stochastic Modeling and Verification group
at the University of Erlangen-Niirnberg, Germany, and the Formal Methods group at
the University of Twente, the Netherlands. ETMCC is the first implementation of
a model checker for Discrete-Time Markov Chains (DTMs) and Continuous-Time
Markov Chains (CTMCs). It uses numerical methods to model check PCT L [41] and
Continuous Stochastic Logic (CSL)> formulas respectively for DTMCs and CTMCs.

Markov Reward Model Checker Markov Reward Model Checker (MRMC)
http://www.mrmc-tool.org/trac/ has been developed by the Formal Methods
& Tools group at the University of Twente, The Netherlands and the Software Mod-
eling and Verification group at RWTH Aachen University, Germany under the guid-
ance of Joost-Pieter Katoen [5, Ch. 10 Probabilistic systems]. MRMC is a successor
of ETMCC, which is a prototype implementation of a model checker for continuous-
time Markov chains.

5 A branching-time temporal logic a” la CT L with state and path formulas [4,6,3].

167

Kazimierz Trzesicki

PrRISM stands for Probabilistic Symbolic Model Checker http://www.
prismmodelchecker.org/. It is the internationally leading probabilistic model
checker being implemented at the University of Birmingham [67,69,68], http:
//www.cs.bham.ac.uk/~dxp/prism/. First public release: September 2001.

There are three types of probabilistic models that PRISM can support directly:
Discrete-Time Markov Chains, Markov decision processes and Continuous-Time
Markov Chains.

PRISM [69,85] allows time to be considered as increasing either in discrete steps
or continuously. Models are expressed in PRISM own modeling language and con-
verted to a variant of a Markov chain (either discrete- or continuous-time). Properties
are written in terms of PCT L or CSL, respectively. Models can also be expressed us-
ing PEPA (Performance Evaluation Process Algebra) [47] and converted to PRISM.
PRISM is free and open source, released under the GNU General Public License
(GPL), available freely for research an teaching.

References

[1] Alur R., Courcoubetis C., Dill D. L. (1990): Model-checking for real-time sys-
tems, in ‘Proceedings of the Sth Annual IEEE Symposium on Logic in Com-
puter Science’, IEEE Computer Society Press, Philadelphia, PA, pp. 414-425.

[2] Alur R., Dill D. (1993): A theory of timed automata’, Inf. Comput. 194, 2-34.

[3] Aziz A., Sanwal K., Singhal V., Brayton R. (2000): Model checking continuous
time Markov chains, ACM Trans. Computational Logic 1(1), 162-170.

[4] Aziz A., Sanwal K., Singhal V., Brayton R. K. (1996): Verifying continuous
time Markov chains, in R. Alur, T. A. Henzinger, eds, ‘Eighth International Con-
ference on Computer Aided Verification CAV 1996°, Vol. 1102 of Lecture Notes
in Computer Science, Springer Verlag, New Brunswick, NJ, USA, pp. 269-276.

[5] Baier C., Katoen J. P. (2008): Principles of Model Checking, The MIT Press.
Foreword by Kim Guldstrand Larsen.

[6] Baier C., Katoen J.-P., Hermanns H. (1999): Approximate symbolic model
checking of continuous-time Markov chains, in ‘International Conference on
Concurrency Theory’, pp. 146—-161.

[7] Beer, L., Ben-David, S., Eisner, C., Landver, A. (1996): Rulebase: An industry-
oriented formal verification tool, in ‘Proceedings of the 33rd Conference on
Design Automation (DAC’96)’, ACM Press, Las Vegas, NV, pp. 655—660.

[8] Ben-Ari, M., Manna, Z., Pnueli, A. (1981): The temporal logic of branch-
ing time, in ‘Proc. 8th ACM Symposium on Principles of Programming Lan-
guages’, ACM Press, New York, pp. 164—-176. Por. [9].

168

Logic in Formal Verification of Computer Systems. Some remarks.

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Ben-Ari, M., Manna, Z., Pnueli, A. (1983): ‘The temporal logic of branching
time’, Acta Informatica 20, 207-226. Por. [8].

Bérard, B., Bidoit, M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Sch-
noebelen, P. (2001): Systems and Software Verification. Model-Checking Tech-
niques and Tools, Springer.

Bidoit, B. M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L. , Schnoebelen,
P. (2001): Systems and Software Verification: Model-checking Techniques and
Tools, Springer.

Boyer, R. S., Moore, J. S. (1979): A Computational Logic, Academic Press,
New York.

Boyer, R. S., Moore, J. S. (1988): ‘Integrating decision procedures into heuris-
tic theorem provers: A case study of linear arithmetic’, Machine Intelligence
11, 83-124.

Bradfield, J. C., Stirling, C. (2001): Modal logics and p-calculi: An introduction,
in J. A. Bergstra, A. Ponse, S. A. Smolka, eds, ‘Handbook of Process Algebra’,
Elsevier Science, chapter 4, pp. 293-330.

Brock, B., Hunt, W. (1997): Formally specifying and mechanically verifying
programs for the motorola complex arithmetic processor dsp, in ‘Proceedings of
the IEEE International Conference on Computer Design (ICCD’97)’, pp. 31—
-36.

Cengarle, M. V., Haeberer, A. M. (2000): Towards an epistemology-based
methodology for verification and validation testing, Technical report 0001,
Ludwig-Maximilian’s Universitit, Institut fiir Informatik, Miinchen, Oettingen-
str. 67. 71 pages.

Cimatti, A., Clarke, E., Giunchig lia, E., Giunchig lia, F., Pistore, M., Roveri,
M., Sebastiani, R., Tacchella, A. (2002): NUSMV2: A new opensource tool for
symbolic model checking, in E. Brinksma, K. Larsen, eds, ‘Proceedings of the
14th International Conference on Computer-Aided Verification (CAV 2002)’,
Vol. 2404 of Lecture Notes in Computer Science, Springer-Verlag, Copenhagen,
Denmark, pp. 359—-364.

Cimatti, A., Clarke, E., Giunchig lia, F., Roveri, M. (1999): NUSMV2: A new
symbolic model verifier, in N. Halbwachs, D. Peled, eds, ‘Proceedings of the
11th International Conference on Computer-Aided Verification (CAV ’99)’,
Vol. 1633 of Lecture Notes in Computer Science, Springer- Verlag, Trento, Italy,
pp. 495—499.

Cimatti, A., Clarke, E. M., Giunchig lia, F., Roveri, M. (2000): ‘NUSMV: A new
symbolic model checker’, International Journal on Software Tools for Technol-
ogy Transfer 2(4), 410-425.

169

Kazimierz Trzesicki

[20] Clarke, E. M. (2008): The birth of model checking, in DBLP:conf/spin/5000,
pp. 1-26.

[21] Clarke, E. M., E., E. A. (1982): Design and synthesis of synchronization skele-
tons using branching-time temporal logic, in ‘Logic of Programs, Workshop’,
Vol. 131 of Lecture Notes in Computer Science, Springer-Verlag, London, UK,
pp. 52—-71.

[22] Clarke, E. M., Emerson, E. A., Sistla, A. P. (1983): Automatic verification of
finite state concurrent systems using temporal logic specifications: A practical
approach, in ‘Conference Record of the Tenth Annual ACM Symposium on
Principles of Programming Languages’, Austin, Texas, pp. 117-126.

[23] Clarke, E. M., Emerson, E. A., Sistla, A. P. (1986): ‘Automatic verification of
finite-state concurrent systems using temporal logic specifications’, ACM Trans-
actions on Programming Languages and Systems 8(2), 244-263.

[24] Clarke, E. M., Grumberg, J. O., Peled, D. A. (1999): Model Checking, The MIT
Press.

[25] Clarke, E. M., Grumberg, O., Jha, S., Lu, Y., Veith, H. (2001): Progress on the
state explosion problem in model checking, in ‘Informatics — 10 Years Back.
10 Years Ahead.’, Vol. 2000 of Lecture Notes in Computer Science, Springer-
Verlag, London, UK, pp. 176-194.

[26] Clarke, E. M., Wing, J. M., Alur, R., Cleaveland, R., Dill, D., Emerson, A., Gar-
land, S., German, S., Guttag, J., Hall, A., Henzinger, T., Holzmann, G., Jones,
C., Kurshan, R., Leveson, N., McMillan, K., Moore, J., Peled, D., Pnueli, A.,
Rushby, J., Shankar, N., Sifakis, J., Sistla, P., Steffen, B., Wolper, P., Woodcock,
J., Zave, P. (1996): ‘Formal methods: state of the art and future directions’, ACM
Computing Surveys 28(4), 626—643.

[27] Clarke, E., Wing, J. M. (1996): ‘Formal methods: State-of-the-art and future di-
rections’, ACM Comput. Surv. 28(4), 626—-643. Report by the Working Group
on Formal Methods for the ACM Workshop on Strategic Directions in Comput-
ing Research.

[28] Coe, T., Mathisen, T., Moler, C., Pratt, V. (1995): ‘Computational aspects of the
pentium affair’, IEEE Comput. Sci. Eng. 2(1), 18-31.

[29] Connelly, R., Gousie, M. B., Hadimioglu, H., Ivanov, L., Hoffman, M. (2004):
‘The role of digital logic in the computer science curriculum’, Journal of Com-
puting Sciences in Colleges 19, 5-8.

[30] Courcoubetis, C., M. Yannakakis, M. (1988): Verifying temporal properties
of finite state probabilistic programs, in ‘Proc. 29th Annual Symposium on
Foundations of Computer Science (FOCS’88)’, IEEE Computer Society Press,
pp. 338—-345.

170

Logic in Formal Verification of Computer Systems. Some remarks.

[31]

[32]

[33]
[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Daskalopulu, A. (2000): Model checking contractual protocols, in J. Breuker,
R. Leenes, R. Winkels, eds, ‘Legal Knowledge and Information Systems’, JU-
RIX 2000: The 13th Annual Conference, IOS Press, Amsterdam, pp. 35-47.
Dijkstra, E. W. (1968): Notes on structured programming, in E. W. D. O.-
J. Dahl, C. A. R. Hoare, eds, ‘Structured Programming’, Academic Press, Lon-
don, pp. 1-82.

Dijkstra, E. W. (1989): In reply to comments. EWD1058.

Dill, D. L. (1996): The mur¢ verification system, in R. Alur, T. Henzinger, eds,
‘Proceedings of the 8th International Conference on Computer Aided Verifica-
tion (CAV ’96)’, Vol. 1102 of Lecture Notes in Computer Science, Springer-
Verlag, New Brunswick, NJ, pp. 390—-393.

Dill, D. L., Drexler, A. L., Hu, A. J., Yang, C. H. (1992): Protocol verification
as a hardware design aid, in ‘Proceedings of the 1992 IEEE International Con-
ference on Computer Design: VLSI in Computer and Processors ICCD’92)’,
IEEE Computer Society, Cambridge, MA, pp. 522-525.

Emerson, E. A. (2008): The beginning of model checking: A personal perspec-
tive, in DBLP:conf/spin/5000, pp. 27-45.

Floyd, R. W. (1967): Assigning meanings to programs, in J. T. Schwartz,
ed., ‘Mathematical Aspects of Computer Science. Proceedings of Symposia in
Applied Mathematics’, Vol. 19, American Mathematical Society, Providence,
pp- 19-32.

Giunchig lia, F., Traverso, P. (1999): Planning as model checking, in ‘Proceed-
ings of the Fifth European Workshop on Planning, (ECP’99)’, Springer, pp. 1-
20.

Gordon, M., Melham, T. (1993): Introduction to HOL: A Theorem Proving En-
vironment for Higher Order Logic, Cambridge University Press.

Grumberg, O., Veith, H., eds (2008): 25 Years of Model Checking - History,
Achievements, Perspectives, Vol. 5000 of Lecture Notes in Computer Science,
Springer.

Hansson, H., Jonsson, B. (1994): ‘A logic for reasoning about time and reliabil-
ity’, Formal Aspects of Computing 6, 512-535.

Hasle, P. E. V., @hrstrgm, P. (2004): Foundations of temporal logic. The WW W-
site for Arthur Prior, http://www.kommunikation.aau.dk/prior/index2.
htm.

Heath, J., Kwiatowska, M., Norman, G., Parker, D., Tymchysyn, O. (2006):
Probabalistic model checking of complex biological pathways, in C. Priami, ed.,
‘Proc. Comp. Methods in Systems Biology, (CSMB’06)’, Vol. 4210 of Lecture
Notes in Bioinformatics, Springer, pp. 32-47.

171

Kazimierz Trzesicki

[44]

[45]

[46]

[47]

(48]
[49]
[50]
[51]
[52]

[53]

[54]

[55]
[56]

[57]

172

Henzinger, T., Ho, P., Wong-Toi, H. (1997): ‘A model checker for hybrid sys-
tems’, Int. J. Softw. Tools Technol. Transfer 1(1/2), 110-122.

Henzinger, T., Jhala, R., Majumdar, R., Sutre, G. (2003): Software verification
with BLAST, in T. Ball, S. Rajamani, eds, ‘Model Checking Software: Proceed-
ings of the 10th International SPIN Workshop (SPIN 2003)’, Vol. 2648 of Lec-
ture Notes in Computer Science, Springer-Verlag, Portland, OR, pp. 235-239.
Hermanns, H., Katoen, J.-P., Meyer-Kayser, J., Siegle, M. (2000): A Markov
chain model checker, in ‘Tools and Algorithms for Construction and Analysis
of Systems’, pp. 347—-362.

Hillston, J. (1996): A Compositional Approach to Performance Modeling, Dis-
tinguished Dissertations in Computer Science, Cambridge University Press,
Cambridge, UK.

Hoare, C. A. R. (1969): ‘An axiomatic basis for computer programming’, Com-
munications of the ACM 12(10), 576-580,583. Réwniez w: [49, 45-58].
Hoare, C. A. R., Jones, C. B. (1989): Essays in Computing Science, Prentice
Hall.

Holzmann, G. (1991): Design and validation of computer protocols, Prentice
Hall, New Jersey.

Holzmann, G. J. (2002): Software analysis and model checking, in ‘CAV’,
pp. 1-16.

Holzmann, G. J., Smith, M. H. (2002): FEAVER 1.0 user guide, Technical re-
port, Bell Labs. 64 pgs.

Holzmann, G., Smith, M. (1999): A practical method for the verification of
event-driven software, in ‘Proceedings of the 21st International Conference on
Software engineering (ICSE ’99), Los Angeles, CA’, ACM Press, New York,
pp. 597-607.

Holzmann, G., Smith, M. (1999): Software model checking. Extracting verifica-
tion models from source code, in J. W. et al., ed., ‘Proceedings of the Joint Inter-
national Conference on Formal Description Techniques for Distributed Systems
and Communication Protocols and Protocol Specification, Testing and Verifica-
tion (FORTE/PSTV ’99)’, Vol. 156, International Federation for Information
Processing, Kluwer, Beijing, China, pp. 481-497.

Hughes, G. E., Cresswell, M. J. (1968): An Introduction to Modal Logic,
Methuen and Co., London.

Huth, M. R. A., D., R. M. (2000): Logic in Computer Science: Modelling and
Reasoning about Systems, Cambridge University Press.

Iosif, R., Sisto, R. (1999): dspin: A dynamic extension of spin, in D. D.
et al., ed., ‘Proceedings of the 5th and 6th International SPIN Workshops’, Vol.

Logic in Formal Verification of Computer Systems. Some remarks.

[58]

[59]

[60]

[61]
[62]
[63]

[64]
[65]

[66]

[67]

[68]

[69]

1680 of Lecture Notes in Computer Science, Springer-Verlag, Trento, Italy and
Toulouse, France, pp. 20-33.

Katoen, J.-P., Khattri, M., Zapreev, 1. S. (2005): A Markov reward model
checker, in ‘Quantitative Evaluation of Systems (QEST)’, pp. 243—-244.
Kaufmann, M., Moore, J. S. (2004): ‘Some key research problems in automated
theorem proving for hardware and software verification’, Rev. R. Acad. Cien.
Serie A. Mat. 98(1), 181—-196.

Kautz, H., Selman, B. (1992): Planning as satisfiability, in ‘ECAI *92: Proceed-
ings of the 10th European conference on Artificial intelligence’, John Wiley &
Sons, Inc., New York, NY, USA, pp. 359-363.

Kroger, F. (1977): ‘A logic of algorithmic reasoning’, Acta Informatica
8(3), 243-266.

Kroger, F. (1987): Temporal Logic of Programs, Springer-Verlag New York,
Inc., New York, NY, USA.

Kroger, F.,, Merz, S. (1991): ‘Temporal logic and recursion’, Fundam. Inform.
14(2), 261-281.

Kroger, F., Merz, S. (2008): Temporal Logic and State Systems, Springer.
Kuntz, M., Siegle, M., Werner, E. (2004): Symbolic performance and depend-
ability evaluation with the tool CASPA.

Kurshan, R. (1995): Computer-Aided Verification of Coordinating Processes:
The Automata-Theoretic Approach, Princeton Series in Computer Science,
Princeton University Press, Princeton, NJ.

Kwiatkowska, M., Norman, G., Parker, D. (2001): PRISM: Probabilistic sym-
bolic model checker, in P. Kemper, ed., ‘Proc. Tools Session of Aachen 2001°,
International Multiconference on Measurement, Modelling and Evaluation of
Computer-Communication Systems, Dortmund, pp. 7-12. Available as Techni-
cal Report 760/2001, University of Dortmund.

Kwiatkowska, M., Norman, G., Parker, D. (2002): Probabilistic symbolic model
checking with PRISM: A hybrid approach, in J.-P. Katoen, P. Stevens, eds,
‘Proc. 8th International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS’02)’, Vol. 2280 of Lecture Notes in Com-
puter Science, Springer, pp. 56—66.

Kwiatkowska, M., Norman, G., Parker, D. (2002): Probabilistic symbolic model
checking with PRISM, in J. Katoen, P. Stevens, eds, ‘Proceedings of the 8th In-
ternational Conference on Tools and Algorithms for Construction and Analysis
of Systems (TACAS 2002)’, Vol. 2280 of Lecture Notes in Computer Science,
Springer-Verlag, Grenoble, France, pp. 52—66. Held as part of the Joint Euro-
pean Conference on Theory and Practice of Software (ETAPS 2002).

173

Kazimierz Trzesicki

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]
[78]

[79]

[80]

[81]

[82]

[83]
[84]
[85]

174

Larson, K., Pettersson, P., Yi, W. (1997): ‘Uppaal in a nutshell’, Int. J. Softw.
Tools. Technol. Transfer 1(1/2), 134—-152.

M. Kaufmann, M., Manolios, P., Moore, J. S. (2000): Computer-Aided Reason-
ing: An Approach, Kluwer Academic Press, Boston.

Manna, Z., A. Pnueli, A. (1992, 1995): The Temporal Logic of Reactive and
Concurrent Systems, Vol. 1: Specification, 2: Safety, Springer-Verlag, New
York.

Manna, Z., Bjgrner, N., Browne, A., Chang, E., Alfaro, L. D., Devarajan, H.,
Kapur, A., Lee, J., Sipma, H. (1994): STEP: The stanford temporal prover,
Technical report, Computer Science Department, Stanford University Stanford,
CA.

Manna, Z., Waldinger, R. (1985): The Logical Basis for Computer Program-
ming, Addison-Wesley.

McMillan, K. L. (1993): Symbolic Model Checking: An approach to the State
Explosion Problem, Kluwer Academic, Hingham, MA.

Miller, A., Donaldson, A., Calder, M. (2006): ‘Symmetry in temporal logic
model checking’, ACM Computing Surveys 38(3).

Naur, P. (1966): ‘Proof of algorithms by general snapshots’, BIT 6(4), 310-316.
Owicki, S. S., Lamport, L. (1982): ‘Proving liveness properties of concurrent
programs’, ACM Trans. Program. Lang. Syst. 4(3), 455-495.

Pnueli, A. (1977): The temporal logic of programs, in ‘Proceedings of the 18th
IEEE-CS Symposium on Foundation of Computer Science (FOCS-77)’, IEEE
Computer Society Press, pp. 46-57.

Pnueli, A. (1981): ‘The temporal semantics of concurrent programs’, Theoreti-
cal Comput. Sci. 13, 45-60.

Pratt, V. R. (1980): ‘Applications of modal logic to programming’, Studia Log-
ica9,257-274.

Queille, J.-P., Sifakis, J. (1982): Specification and verification of concurrent
systems in CESAR, in ‘Proceedings Sth International Symposium on Pro-
gramming’, Vol. 137 of Lecture Notes in Computer Science, Springer-Verlag,
pp- 337-351.

Randell, B. (1973): The Origin of Digital Computers, Springer Verlag.
Rescher, N., Urquhart, A. (1971): Temporal Logic, Springer, Wien, New York.
Rutten, J., Kwiatkowska, M., Norman, G., Parker, D. (2004): Mathemati-
cal Techniques for Analysing Concurrent and Probabilisitic Systems, Vol. 23
of American Mathematical Society, CRM Monograph Series, Centre de
Recherches Mathématiques, Université de Montréal.

Logic in Formal Verification of Computer Systems. Some remarks.

[86] Schneider, K. (2003): Verification of Reactive Systems. Formal Methods and
Algorithms, Texts in Theoretical Computer Science (EATCS Series), Springer-
Verlag.

[87] Schnoebelen, P. (2002): ‘The complexity of temporal logic model checking’,
Advances in Modal Logic 4, 1-44.

[88] Turing, A. M. (1936-37): ‘On computable numbers, with an application to
the Entscheidungsproblem’, Proceedings of the London Mathematical Soci-
ety 42(Series 2), 230-265. Received May 25, 1936; Appendix added August
28; read November 12, 1936; corrections Ibid. vol. 43(1937), pp. 544-546.
Turing’s paper appeared in Part 2 of vol. 42 which was issued in December
1936 (Reprint in: [89]; 151-154). Online version: http://www.abelard.org/
turpap2/tp2-ie.asp.

[89] Turing, A. M. (1965): On computable numbers, with an application to the
Entscheidungsproblem, in M. Davis, ed., ‘The Undecidable’, Raven Press,
Hewlett, NY, pp. 116-151.

[90] Vaandrager F. W.and De Nicola, R. (1990): Actions versus state based logics for
transition systems, in ‘Proc. Ecole de Printemps on Semantics of Concurrency’,
Vol. 469 of Lecture Notes in Computer Science, Springer, pp. 407—-419.

[91] Wang, W., Hidvegi, Z., Bailey, A., Whinston, A. (2000): ‘E-process design and
assurance using model checking’, IEEE Computer 33(10), 48-53.

[92] Yovine, S. (1997): ‘Kronos: A verification tool for real-time systems’, Int. J.
Softw. Tools Technol. Transfer 1(1/2), 123—133.

LOGIKA I FORMALNA WERYFIKACJA SYSTEMOW
KOMPUTEROWYCH. KILKA UWAG.

Streszczenie Do specyfikacji i weryfikacji zaréwno sprzgtu jak i programéw stosowane sa
rézne logiki. Gléwna wada metody teorio-dowodowej weryfikacji jest problem znalezienia
dowodu. Zastosowanie tej metody zaklada aksjomatyzacje logiki. Wtasnosci systemu moga
by¢ sprawdzane za pomoca jego modelu. Model jest zbudowany w jezyku specyfikacji i
sprawdzany automatycznie. Zastosowanie sprawdzania za pomocg modelu zaktada rozstrzy-
galno$¢ zadania. Istnieje wielka réznorodnos$¢ programéw (model checker) do sprawdzania
wlasnosci za pomoca modeli.

Stowa kluczowe: Logika, Weryfikacja, Metoda teorio-dowodowa, Sprawdzanie za pomoca

modelu

Praca wspierana przez grant MNiSW nr 3 T11F 01130.

175

	Informatyka 4.pdf
	000 - okładka.pdf
	0 - strona redakcyjna.pdf
	00 - spis tresci.pdf
	01 - BandurskiKwedlo (5-17).pdf
	02 - BrzozowskiYarmolik (19-29).pdf
	03 - CzajkowskiKretowski (31-45).pdf
	04 - GoscikGoscik (47-62).pdf
	05 - Krawczuk (63-72).pdf
	06 - Kretowska (73-83).pdf
	07 - Lukaszuk (85-95).pdf
	08 - Makarec (97-110).pdf
	09 - SawickiZubryckiPetrovsky (111-125).pdf
	10 - SkoczylasCherubiniGerardi (127-137).pdf
	11 - SmolinskaSosnowski (139-150).pdf
	12 - Trzesicki (151-175).pdf

	okładka.pdf
	Strona 1

	str tytułowa.pdf
	Strona 1

