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Preface 

There are many different types of structures and each structure has a specific function. 
Some of them are simple, while others are complex. However they must be capable 
of carrying the loads that they are designed for without collapsing. The main civil 
engineering structures are buildings, towers or bridges. These structures are very 
complex to analyze and design. It is important for a structural engineer to recognize 
the various types of elements that compose a structure and to be able to classify and 
analyze them. Simple examples of structures and parts of structures can be classified as: 
beams, columns, frames, trusses or curved members (arches). The engineer should know 
how loads are carried by structures. That is one of the most important aspects 
of structural engineering that one needs to study. Current structural analysis 
are computer based, but the engineer needs to be able to assess the computer-generated 
results with a simple independent hand computation. The classical hand-computation- 
-based procedures for finding the internal forces of the statically determinate bar 
structures due to applied loading will be discussed in this textbook. 

This textbook is intended for civil engineering students. Within each chapter, 
the theoretical basis necessary to solve the problems are given (briefly). The com-
putational examples are presented in detail. 

I hope that the analysis of the presented examples will help in solving other statically 
determinate elements of structures and will greatly facilitate the study of statically 
indeterminate structures in the future. 

At the same time, I will be extremely grateful for all the substantive comments 
regarding this textbook. 
 

Joanna Krętowska 
  



5 

1. Kinematical analysis and static determinacy 
of planar bar structures 

Civil engineering structures are connected to the ground at certain points called supports. 
When the external loading is applied to the structure, the supports develop reactions 
which oppose the tendency of the structure to move. The nature and number of reactions 
depends on the type of support. 

The term “structure” refers to a system of members with connected parts used 
to support a load. 

There are three types of planar motion for a rigid body: translation in the x direction, 
translation in the y direction, and rotation about an axis normal to the x – y plane (φ) 
(Fig. 1.1.a.). Hence, each body situated in one plane has three degrees of freedom – three 
independent parameters determining its movement. 

 a) b) 

 

 c) d) 

 

Fig. 1.1. The planar body and the constraints. 

A body is said to be stable when body motion is prevented. The possibility 
of movement can be limited by using three motion constraints. If three specially arranged 
support links will be put on a planar body, then it will be stable – without any possibility 
of movement (Fig. 1.1.c.). A structure with an exact number of constraints is called 
a determinate structure. 

If the planar body has less than three constraints, then some movement will be possible. 
Such a body is called a mechanism. Fig. 1.1.b. presents one degree of freedom mechanism. 
If more than three support constraints will be put on the planar body, then it is called 
an indeterminate structure (no possibility of movement – Fig. 1.1.d.). 
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In the case where there is not one body but several bodies, the degrees of freedom 
depend on the connections and supports. 

1.1. Member connections and supports [1], [2], [3] 
Structures are restrained against body motion by supports. When the structure is loaded, 
reaction forces are developed by the supports. 

In this chapter the different structure member connections and supports will 
be discussed. 

Link (constraint) – one-degree-of-freedom support kinematic pin joints, which limit 
the possibility of movement in one direction (limit one degree of freedom). 

Line element (member) – an element whose geometry is essentially one-dimensional, 
i.e., one dimension is large with respect to the other two dimensions (cables, beams, 
columns, arches). 

Disk (planar body) – two dimensional rigid body. 
Planar rigid body can be also formed by at system of line elements (members). 

Support links: 

• roller support – this support carries only shear forces between jointed members. 
The roller support allows rotation about the support point and motion parallel 
to the surface of contact but fully restrains motion in the direction perpendicular 
to the surface. It can be represented by a single link, which limits the possibility 
of movement in its direction (Fig. 1.2.) and limit one degree of freedom. 

 a) b) 

  

Fig. 1.2. 

• hinged (pin) support – this support carries shear and axial forces but not moment 
force between jointed members. It can be represented by two non-parallel links 
and limits two degrees of freedom. The hinged support allows rotation about 
the support point but doesn’t allow horizontal and vertical displacements (Fig. 1.3.). 

 a) b) 

 

Fig. 1.3. 
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• support with double parallel links – this support carries moment and shear forces 
between jointed members. This kind of support doesn’t allow vertical displacement 
of the support point and doesn’t allow rotation about the support point. It limits two 
degrees of freedom (Fig. 1.4.). 

 a) b) 

 

Fig. 1.4. 

• fixed support – this support carries moment, shear and axial forces between jointed 
members. This kind of support is prevented from translating and rotating. It can be 
represented by three non-parallel links and limits three degrees of freedom (Fig. 1.5.). 

 a) b) 

  

Fig. 1.5. 

• hinged (pin) connections (one-degree-of-freedom kinematic pin joints) – this 
connection carries shear and axial forces but no moment force between jointed 
members. Hinged connection allows the jointed members to have different 
rotations but the same displacements. It can be represented by two non-parallel links 
and limits two degrees of freedom (Fig. 1.6.). 

 a) b) 

 

Fig. 1.6. 

Hinges that connect m elements can be represented by 2(m – 1) links, so it will limit 
2(m – 1) degrees of freedom. 

1.2. Kinematic stability of planar structures [1], [2] 
Every two dimensional deformable planar element has three degrees of freedom (two 
displacements and one rotation). By using different support links, we control these 
degrees of freedom so the elements cannot move in the limited direction. 
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In case we have no one planar body but several numbers, the degrees of freedom 
depends on the body’s connection and supports: 
 f = 3t – r – 2s (1.1) 
where: 
f – number of degrees of freedom (mobility), 
t – number of planar bodies (disks) (the basic disk – ground (terra) is not counted), 
s – number of one-degree-of-freedom kinematic pin joints, 
r – number of support links. 

The numbers of s is calculated by the formulae: s = (m – 1), where m is the number 
of members connected at the pin joint. 

If there are one-element-closed-loops: 
 f = 3(t – z) – r – 2s (1.2) 
where: 
z – number of closed loops. 

In the example presented in Fig. 1.7.d. and Fig. 1.7.f. we have closed loops composed 
respectively of 5 elements and of 3 elements (no one-element-closed-loop), so z = 0. 

In the example presented in Fig. 1.7.b. we have one-element-closed-loop, so z = 1. 

 a) b) c) 

 
 d) e) f) 

 

Fig. 1.7. 

The number of degrees of freedom f may be positive, negative or zero. So we have 
three different cases for f: 
f > 0 – the system is mechanism, an unstable system (the structure can’t carry any load), 
f = 0 – stable system, 
f < 0 – stable system, but there are too many support links necessary for the system to be stable. 
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In general, a planar body with three nonconcurrent coplanar constraints (links) 
is stable for planar loading (Fig. 1.8.). 

a) b) c) 

 

Fig. 1.8. 

It is possible for a construction to be determinate and to be mechanism at the same 
time. This phenomenon is called kinematical instability and such a system – mechanism. 
So the upper formulas give us information only for the number of links but not for 
the kinematical stability. That is why a kinematical analysis is needed. 

Fig. 1.9. and Fig. 1.10. present these problems. Fig. 1.9. shows kinematical stable bodies. 
In Fig. 1.9.a. the direction of support links A and B intersect in point O as a rotating point 
but support link C obstructs this rotation so the structure is stable. Fig. 1.10.a. shows 
the kinematical unstable body. When the reactive forces are all parallel the translation in 
the horizontal direction is possible. In Fig. 1.10.b. and Fig. 1.10.c. the direction of the 
support links intersect at the same point. As a result the rotation is possible and the body is 
unstable. 

 a) b) 

 

Fig. 1.9. 

 a) b) c) 

 

Fig. 1.10. 

In the case presented in Fig. 1.11. we have two bodies with the real hinge between 
them. 
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 a) b) 

 

Fig. 1.11. 

In case a) the first disk has two support links that intersect in common hinge A and the 
second one also has two support links that intersect in common hinge B. There is one real 
hinge C between these two disks. The three hinges A, B and C are not lying at one line, 
that is why the system is a stable one. In case b) the three hinges are lying at one line and 
that is the reason the system is unstable. 

 a) 

 

 b) 

 

 c) 

 

Fig. 1.12. 

As we can see above, initial instability occurs when the constraints (links) 
are insufficient or are not properly arranged to resist applied external forces. In this case, 
the structure will fail under an infinitesimal load. This condition can be corrected 
by modifying the location of the supports or by including additional constraints. Fig. 1.12. 
presents kinematical stable systems. 

1.3. Statically determinate planar structures [2] 
The aim of structural analysis is to evaluate the external reactions, the deformed shape 
and internal stresses in the structure. If this can be accomplished by equations 
of equilibrium, then such structures are known as determinate structures. 

However, in many structures it is not possible to determine either reactions 
or internal stresses or both using equilibrium equations alone. Such structures are known 
as statically indeterminate structures. 

The indeterminacy in a structure may be external, internal or both. A structure is said 
to be externally indeterminate if the number of support reactions exceeds the number 
of equilibrium equations.  
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The degree of static indeterminacy of a planar structure can be expressed by the formula: 
 n = (r + 2s) – 3t (1.3) 
where: 
n – degree of static indeterminacy of planar structures, 
t – number of planar bodies (disks) (the disk – ground (terra) is not counted), 
s – number of one-degree-of-freedom kinematic pin joints, 
s = (m – 1), where m is the number of members connected at the pin joint, 
r – number of support links. 

The degree of static indeterminacy n may be positive, negative or zero. So we have 
three different cases for n: 

• n = 0 – determinate structure – it is possible to analyze the structure by using only 
equilibrium conditions, 

• n < 0 – mechanism – in the case of mechanism we don’t have a structure carrying 
any load, the structure is not stable, 

• n > 0 – indeterminate structure – it is not possible to analyze the structure by using 
only equilibrium conditions, additional equations are needed. 

If there are one-element-closed-loops the degree of static indeterminacy can be calculated 
by using the formula: 

 n = (r + 2s) – 3(t – z) (1.4) 

where z – number of one-element-closed-loops. 

Computational example 

Calculate the degree of static indeterminacy of planar structures presented 
in Fig. 1.13. degree of static indeterminacy n = (r + 2s) – 3(t – z) 

 

Fig. 1.13. 
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2. Internal forces in statically determinate 
planar bar structures 

There are many different types of structures and each of them has a specific function. 
Some structures are simple, while others are complex. 

In this chapter, we will consider the procedure of analysis of elementary (statically 
determinate) structures like simply supported beams, cantilever beams, compound 
beams, simply supported frames, dyad (three-hinged frame), compound frames, trusses 
and arches. 

When a structure is subjected to an external loading, it responds by developing 
internal forces which lead to internal stresses. The stresses generate strains, resulting in 
displacements. To design a structural or mechanical member it is necessary to know the 
forces acting within the member in order to be sure the material can resist the loading. 
Internal forces can be determined by using the method of sections [4]. 

2.1. Internal forces components [1], [3], [4] 
The internal forces in a section of a body are those forces which hold together two parts 
of a given body separated by the section (Fig. 2.1.1.). Both parts of the body remain 
in equilibrium. It follows that internal forces which exist at a section are equivalent to all 
external forces acting on the particular part of the body. 

 a) 

 

 b) 

 

Fig. 2.1.1. 

All internal forces in the section can be replaced by a force-couple system 𝑅𝑅�⃗  and 𝑀𝑀��⃗ 𝐶𝐶, 
in the centroid C of the section α (Fig. 2.1.2.). The resultant vector 𝑅𝑅�⃗  consists of the axial 
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force 𝑁𝑁��⃗  (its line of action is perpendicular to the plane α) and shearing force 𝑉𝑉�⃗  in the plane 
α (𝑉𝑉�⃗  has two components 𝑉𝑉�⃗𝑦𝑦 and 𝑉𝑉�⃗𝑧𝑧). Accordingly, 𝑀𝑀��⃗ 𝐶𝐶  consists of two components, the first 
of which is referred to as the torque 𝑀𝑀��⃗ 𝑥𝑥 (its line of action is perpendicular to the plane α) 
and the second is called the bending moment 𝑀𝑀��⃗  in the plane α (bending moment 𝑀𝑀��⃗  also 
has two components 𝑀𝑀��⃗ 𝑦𝑦 and 𝑀𝑀��⃗ 𝑧𝑧 – Fig. 2.1.3.). 

 

Fig. 2.1.2. 

 

Fig. 2.1.3. 

Fig. 2.1.3. shows six internal forces components in three dimensional coordinate 
system xyz, where: 
N – normal (axial) force, 
Vy – shear (transversal) force in y direction, 
Vz – shear (transversal) force in z direction, 
Mx – torque (twisting moment about x axis), 
My – bending moment about y axis, 
Mz – bending moment about z axis. 

For three dimensional force systems we can write six equations of equilibrium 
for the left (or right) part of the body. Solving them we can determine six internal forces 
components. 
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2.2. Internal forces in statically determinate planar bar structures [2], [4] 
Fig. 2.2.1. presents the simply supported beam under planar load. The support reactions 
can be calculated using three equations of equilibrium. 
 a) 

 

 b) 

 

 c) 

 

Fig. 2.2.1. 

If we cut the body of the beam (Fig. 2.2.1.b. and Fig. 2.2.1.c.) in the section α we will 
have three internal forces: normal (axial) force Nα, shear (transversal) force Vα and 
bending moment Mα in the section α. The normal force is said to be positive if it creates 
tension, a positive shear force will cause the beam segment on which it acts to rotate 
clockwise, and a positive bending moment will tend to bend the segment on which it acts 
in a concave upward manner. The internal forces positive positions are shown 
in Fig. 2.2.1.c. 

Actually, if we know the support reactions and loads we just need to compose 
the three equilibrium equations for the left (or right) part of the beam and we will be able 
to find the magnitudes of the internal forces. Hence, we have to reduce external loading 
to the beam axis x (Fig. 2.2.1.b.), so there is located additional distributed moment 
𝑚𝑚 = 𝑞𝑞𝑥𝑥

ℎ
2

. 
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2.2.1. Relationships between loads, shear and moment. 
Differential equations of equilibrium [2], [4] 

Consider the beam shown in Fig. 2.2.1.1.a. and the differential element (Fig. 2.2.1.1.b.). 
We use the same sign convention for Vα, Nα and Mα as defined in Chapter 2.2. We take 
the positive sense of the distributed loading to be “downward” since these loadings 
are generally associated with gravity. 

 a) 

 

 b) 

 

Fig. 2.2.1.1. a) Beam with arbitrary distributed loading, b) Differential beam element [4]. 

 a) b) 

 

Fig. 2.2.1.2. Differential beam element. 

Considering Vα, Nα and Mα to be functions of x, expanding these variables in terms of their 
differentials, and retaining up to first order terms we have the forces shown in Fig. 2.2.1.2.a. 
One can write three equations of equilibrium for differential beam elements: 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                        − 𝑉𝑉𝛼𝛼 + 𝑞𝑞𝑦𝑦𝑑𝑑𝑑𝑑 + (𝑉𝑉𝛼𝛼 + 𝑑𝑑𝑉𝑉𝛼𝛼) = 0  (2.1) 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                         −𝑁𝑁𝛼𝛼 + 𝑞𝑞𝑥𝑥𝑑𝑑𝑑𝑑 + (𝑁𝑁𝛼𝛼 + 𝑑𝑑𝑁𝑁𝛼𝛼) = 0  (2.2) 

∑𝑀𝑀(𝐶𝐶2) = 0;                  −𝑀𝑀𝛼𝛼 − 𝑉𝑉𝛼𝛼𝑑𝑑𝑑𝑑 −𝑚𝑚𝑑𝑑𝑑𝑑 + 𝑞𝑞𝑦𝑦𝑑𝑑𝑑𝑑
𝑑𝑑𝑥𝑥
2

+ (𝑀𝑀𝛼𝛼 + 𝑑𝑑𝑀𝑀𝛼𝛼) = 0  (2.3) 
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Hence, we have: 

 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

= −𝑞𝑞𝑦𝑦  (2.4) 

 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

= −𝑞𝑞𝑥𝑥  (2.5) 

 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

= 𝑉𝑉𝛼𝛼 + 𝑚𝑚  (2.6) 

In common used bar elements qx = 0 i m = 0 (Fig. 2.2.1.2.b.), so in this case 
the differential equations of equilibrium will have the form: 

 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

= −𝑞𝑞𝑦𝑦  (2.7) 

 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

= 𝑉𝑉𝛼𝛼  (2.8) 

 𝑑𝑑2𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥2

= 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

= −𝑞𝑞𝑦𝑦  (2.9) 

As we can see above, there are connections between the distributed loads, shear and 
moment functions. 

The first equation states that the slope of the shear diagram at a point is equal 
to the intensity of the distributed load at the point. Likewise, the second equation states 
that the slope of the moment diagram is equal to the shear at the point. 

These two relations are very useful for checking the consistency of the shear 
and moment diagrams. One can reason about the shape of these diagrams using only 
information about the loading on a segment of the beam. For example, if shear is constant, 
moment varies linearly; and if shear varies linearly, moment varies quadratically. 

The integral forms can be useful if we want to either compute values at discrete points 
or determine analytical solutions. 

Another useful property that can be established from integral forms relates to the 
maximum values of the moment. We know from calculus that extreme values 
of a continuous function are located at points where the first derivative is zero. Applying 
this theorem to the moment function, M(x), the location x, of an extreme value (either 
maximum or minimum) of moment can be found by solving equation: 

 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑥𝑥

= 𝑉𝑉𝛼𝛼 = 0  (2.10) 

As we see, the extreme values of moment occur at points where the shear force is zero. 
We can do the shear diagrams from the applied loading and find the points of zero shear. 
If we are interested only in peak values of moment, we can calculate its value from the 
equilibrium conditions. 

2.3. Internal forces diagrams – beams [1], [4] 

2.3.1. Simple beams 

Beams are used extensively in structures (for example in flooring systems of buildings or in 
bridges). Their longitudinal dimension is large in comparison to their cross-sectional 
dimensions so they belong to the line (bar) element category. Beams are loaded primarily 
normal to the longitudinal direction, and carry the loading by bending action. The first step 
in the analysis of a statically determinate beam is the determination of the reactions. Given 
the reactions, one can establish the internal forces using equilibrium-based procedures. 
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• concentrated P force loading: 

a) cantilever beam (Fig. 2.3.1.) 

 

Fig. 2.3.1. 

Assume that the beam is cut at point C a distance of x from the left free end 
and the portion of the beam to the right of C be removed (Fig. 2.3.2.). The portion removed 
must then be replaced by vertical shearing force V(x) and horizontal normal force N(x) 
together with a couple M(x) to hold the left portion of the bar in equilibrium under the 
action of force P. In this case, it is not necessary to determine the support reactions 
because the left side of the beam is free of supports. 

Considering V, N and M are functions of x one can write the three equations 
of equilibrium for the left part of the beam and find the values of the internal forces. 

  

Fig. 2.3.2. 

Segment A–B:     0 ≤ 𝑑𝑑 < 𝑙𝑙     
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                           𝑉𝑉(𝑑𝑑) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0          →        𝑉𝑉(𝑑𝑑) = −𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                           𝑁𝑁(𝑑𝑑) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0         →        𝑁𝑁(𝑑𝑑) = −𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

∑𝑀𝑀(𝐶𝐶) = 0;                        𝑀𝑀(𝑑𝑑) + 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 ∙ 𝑑𝑑 = 0   →        𝑀𝑀(𝑑𝑑) = −𝑃𝑃𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃  

for   𝑑𝑑 = 0    𝑀𝑀(𝑑𝑑) = 0       and     for      𝑑𝑑 = 𝑙𝑙                     𝑀𝑀(𝑑𝑑) = −𝑃𝑃𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 
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Internal forces diagrams are presented in Fig. 2.3.1. 

b) simply supported beam (Fig. 2.3.3.) 

 

Fig. 2.3.3. 

Support reactions are presented in Fig. 2.3.3. 
Considering V, N and M are functions of x one has to do the “cut” twice (A–D  

and B–D segment) and write the three equations of equilibrium for every beam section 
(separate left or right part) and then calculate the values of the internal forces (Fig. 2.3.4.). 

 

Fig. 2.3.4. 

Segment A–D:  0 ≤ 𝑑𝑑 < 𝑙𝑙
2
     

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                          𝑉𝑉(𝑑𝑑) − 𝑃𝑃
2

= 0         →         𝑉𝑉(𝑑𝑑) = 𝑃𝑃
2

 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                              𝑁𝑁(𝑑𝑑) = 0                

∑𝑀𝑀(𝐶𝐶) = 0;                     𝑀𝑀(𝑑𝑑) − 𝑃𝑃
2
∙ 𝑑𝑑 = 0         →        𝑀𝑀(𝑑𝑑) = 𝑃𝑃

2
𝑑𝑑  

for   𝑑𝑑 = 0    𝑀𝑀(𝑑𝑑) = 0      and    for       𝑑𝑑 = 𝑙𝑙
2

    𝑀𝑀(𝑑𝑑) = 𝑃𝑃𝑙𝑙
4
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Segment B–D:   0 ≤ 𝑑𝑑1 < 𝑙𝑙
2
     

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                        −𝑉𝑉(𝑑𝑑1) − 𝑃𝑃
2

= 0         →        𝑉𝑉(𝑑𝑑1) = −𝑃𝑃
2

 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                              𝑁𝑁(𝑑𝑑1) = 0                    

∑𝑀𝑀(𝐶𝐶1) = 0;                   −𝑀𝑀(𝑑𝑑1) + 𝑃𝑃
2
∙ 𝑑𝑑1 = 0         →        𝑀𝑀(𝑑𝑑1) = 𝑃𝑃

2
𝑑𝑑1  

for  𝑑𝑑1 = 0    𝑀𝑀(𝑑𝑑1) = 0      and    for       𝑑𝑑1 = 𝑙𝑙
2

    𝑀𝑀(𝑑𝑑1) = 𝑃𝑃𝑙𝑙
4

 

Internal forces diagrams are shown in Fig. 2.3.3. 

The normal force is zero because there isn’t any horizontal load. 

• concentrated M moment loading: 
a) cantilever beam (Fig. 2.3.5.) 

It is not necessary to determine the support reactions because the left side of the beam 
is free of supports. We can cut and separate the left-hand part of the member to determine 
the internal forces (Fig. 2.3.6.). 

Considering that V, N and M are functions of x, one can write the three equations 
for the left part of the beam and find the values of the internal forces. 

 

Fig. 2.3.5. 

  

Fig. 2.3.6. 
Segment A–B:  0 ≤ 𝑑𝑑 < 𝑙𝑙     
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                           𝑉𝑉(𝑑𝑑) = 0                 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                         𝑁𝑁(𝑑𝑑) = 0             
∑𝑀𝑀(𝐶𝐶) = 0;                     𝑀𝑀(𝑑𝑑) + 𝑀𝑀 = 0         →        𝑀𝑀(𝑑𝑑) = −𝑀𝑀  
Internal forces diagrams are shown in Fig. 2.3.5. 
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b) simply supported beam (Fig. 2.3.7.) 

 

Fig. 2.3.7. 

Support reactions are presented in Fig. 2.3.7. 
Considering V, N and M are functions of x one has to do the “cut” twice (A–D  

and B–D) and write the three equations of equilibrium for every beam section (separate 
left or right part) and then calculate the values of the internal forces (Fig. 2.3.8.). 

 

Fig. 2.3.8. 

Segment A–D:  0 ≤ 𝑑𝑑 < 𝑙𝑙
2
     

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                           𝑉𝑉(𝑑𝑑) − 𝑑𝑑
𝑙𝑙

= 0         →        𝑉𝑉(𝑑𝑑) = 𝑑𝑑
𝑙𝑙

 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                              𝑁𝑁(𝑑𝑑) = 0                    

∑𝑀𝑀(𝐶𝐶) = 0;                     𝑀𝑀(𝑑𝑑) − 𝑑𝑑
𝑙𝑙
∙ 𝑑𝑑 = 0         →        𝑀𝑀(𝑑𝑑) = 𝑑𝑑

𝑙𝑙
𝑑𝑑  

for   𝑑𝑑 = 0    𝑀𝑀(𝑑𝑑) = 0      and    for       𝑑𝑑 = 𝑙𝑙
2

    𝑀𝑀(𝑑𝑑) = 𝑑𝑑
2
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Segment B–D:  0 ≤ 𝑑𝑑1 < 𝑙𝑙
2
     

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                        − 𝑉𝑉(𝑑𝑑1) + 𝑑𝑑
𝑙𝑙

= 0         →        𝑉𝑉(𝑑𝑑1) = 𝑑𝑑
𝑙𝑙

 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                              𝑁𝑁(𝑑𝑑1) = 0                    

∑𝑀𝑀(𝐶𝐶1) = 0;                   −𝑀𝑀(𝑑𝑑1) − 𝑑𝑑
𝑙𝑙
∙ 𝑑𝑑1 = 0         →        𝑀𝑀(𝑑𝑑1) = −𝑑𝑑

𝑙𝑙
𝑑𝑑1  

for  𝑑𝑑1 = 0    𝑀𝑀(𝑑𝑑1) = 0      and    for       𝑑𝑑1 = 𝑙𝑙
2

    𝑀𝑀(𝑑𝑑1) = −𝑑𝑑
2

 

Internal forces diagrams are shown in Fig. 2.3.7. 

• uniformly distributed loading q: 

a) cantilever beam (Fig. 2.3.9.) 

 

Fig. 2.3.9. 

Assume that the beam is cut at point C a distance of x from the left free end and 
the portion of the beam to the right of C be removed (Fig. 2.3.10.). The portion removed 
must then be replaced by vertical shearing force V(x) and horizontal normal force N(x) 
together with a couple M(x) to hold the left portion of the bar in equilibrium under 
uniformly distributed loading q. In this case, it is not necessary to determine the support 
reactions because the left side of the beam is free of supports. 

Considering V, N and M are functions of x one can write the three equations for the left 
part of the beam and find the values of the internal forces. 

  

Fig. 2.3.10. 
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Segment A–B:  0 ≤ 𝑑𝑑 < 𝑙𝑙     
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                           𝑉𝑉(𝑑𝑑) + 𝑞𝑞𝑑𝑑 = 0         →        𝑉𝑉(𝑑𝑑) = −𝑞𝑞𝑑𝑑 

for   𝑑𝑑 = 0     𝑉𝑉(𝑑𝑑) = 0;      𝑑𝑑 = 𝑙𝑙     𝑉𝑉(𝑑𝑑) = −𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                              𝑁𝑁(𝑑𝑑) = 0                

∑𝑀𝑀(𝐶𝐶) = 0;                     𝑀𝑀(𝑑𝑑) + 𝑞𝑞𝑑𝑑 ∙ 𝑥𝑥
2

= 0         →        𝑀𝑀(𝑑𝑑) = −𝑞𝑞𝑥𝑥2

2
  

for   𝑑𝑑 = 0     𝑀𝑀(𝑑𝑑) = 0;      𝑑𝑑 = 𝑙𝑙
2

    𝑀𝑀(𝑑𝑑) = −𝑞𝑞𝑙𝑙2

8
;       𝑑𝑑 = 𝑙𝑙     𝑀𝑀(𝑑𝑑) = −𝑞𝑞𝑙𝑙2

2
 

If the uniformly distributed load loads the cantilever beam the internal moment 
diagram is a parabolic function. Three values are needed for plotting the diagram. 
The first one can be the free end of the beam, the second one is at the middle of the beam 
and the last one is at the support. 

The shear force diagram is linear and it is sufficient to determine its value at two 
points – at the free end and at the supported end of the beam. 

Internal forces diagrams are shown in Fig. 2.3.9. 

b) simply supported beam (Fig. 2.3.11.) 

Support reactions are presented in Fig. 2.3.11. 

 

Fig. 2.3.11. 

 

Fig. 2.3.12. 
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Internal forces equations (Fig. 2.3.12.) have the form: 

Segment A–B:  0 ≤ 𝑑𝑑 < 𝑙𝑙     

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0          −𝑞𝑞𝑙𝑙
2

+ 𝑞𝑞𝑑𝑑 + 𝑉𝑉(𝑑𝑑) = 0         →        𝑉𝑉(𝑑𝑑) =  𝑞𝑞𝑙𝑙
2
− 𝑞𝑞𝑑𝑑 

for   𝑑𝑑 = 0     𝑉𝑉(𝑑𝑑) = 𝑞𝑞𝑙𝑙
2

;      𝑑𝑑 = 𝑙𝑙     𝑉𝑉(𝑑𝑑) = −𝑞𝑞𝑙𝑙
2

 

𝑉𝑉(𝑑𝑑) = 0     →    𝑞𝑞𝑙𝑙
2
− 𝑞𝑞𝑑𝑑 = 0      →    𝑑𝑑 = 𝑙𝑙

2
          

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                              𝑁𝑁(𝑑𝑑) = 0                

∑𝑀𝑀(𝐶𝐶) = 0;                     𝑀𝑀(𝑑𝑑) + 𝑞𝑞𝑑𝑑 ∙ 𝑥𝑥
2
− 𝑞𝑞𝑙𝑙

2
𝑑𝑑 = 0         →        𝑀𝑀(𝑑𝑑) = 𝑞𝑞𝑙𝑙

2
𝑑𝑑 − 𝑞𝑞𝑥𝑥2

2
  

for   𝑑𝑑 = 0     𝑀𝑀(𝑑𝑑) = 0;      𝑑𝑑 = 𝑙𝑙     𝑀𝑀(𝑑𝑑) = 0;       𝑑𝑑 = 𝑙𝑙
2

      𝑀𝑀(𝑑𝑑) = 𝑞𝑞𝑙𝑙
2
∙ 𝑙𝑙
2
−

𝑞𝑞�𝑙𝑙2�
2

2
= 𝑞𝑞𝑙𝑙2

8
 

Internal forces diagrams are shown in Fig. 2.3.11. 

• triangular distributed loading:  

a) cantilever beam (Fig. 2.3.13.) 

 

Fig. 2.3.13. 

  

Fig. 2.3.14. 
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Internal forces equations (Fig. 2.3.14.) have the form: 

Segment A–B:  0 ≤ 𝑑𝑑 < 𝑙𝑙   

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                           𝑉𝑉(𝑑𝑑) + 1
2
𝑞𝑞(𝑑𝑑)𝑑𝑑 = 0         →         𝑉𝑉(𝑑𝑑) = −1

2
𝑞𝑞(𝑑𝑑)𝑑𝑑 

We have  
𝑞𝑞
𝑙𝑙

=
𝑞𝑞(𝑑𝑑)
𝑑𝑑

            →      𝑞𝑞(𝑑𝑑) =  
𝑞𝑞𝑑𝑑
𝑙𝑙

 

thus, 

𝑉𝑉(𝑑𝑑) = −
1
2
𝑞𝑞(𝑑𝑑)𝑑𝑑 = −

1
2
𝑞𝑞𝑑𝑑
𝑙𝑙
𝑑𝑑 = −

1
2
𝑞𝑞𝑑𝑑2

𝑙𝑙
 

for   𝑑𝑑 = 0        𝑉𝑉(𝑑𝑑) = 0;        𝑑𝑑 = 𝑙𝑙
2

       𝑉𝑉(𝑑𝑑) = −1
8
𝑞𝑞𝑙𝑙;       𝑑𝑑 = 𝑙𝑙     𝑉𝑉(𝑑𝑑) = −1

2
𝑞𝑞𝑙𝑙; 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                              𝑁𝑁(𝑑𝑑) = 0                

∑𝑀𝑀(𝐶𝐶) = 0;                     𝑀𝑀(𝑑𝑑) + 1
2
𝑞𝑞(𝑑𝑑)𝑑𝑑 ∙ 𝑥𝑥

3
= 0         →        𝑀𝑀(𝑑𝑑) = −1

2
𝑞𝑞𝑥𝑥
𝑙𝑙
𝑑𝑑 ∙ 𝑥𝑥

3
= −𝑞𝑞𝑥𝑥3

6𝑙𝑙
  

for   𝑑𝑑 = 0     𝑀𝑀(𝑑𝑑) = 0;        𝑑𝑑 = 𝑙𝑙
2
   𝑀𝑀(𝑑𝑑) = −𝑞𝑞𝑙𝑙2

48
;         𝑑𝑑 = 𝑙𝑙     𝑀𝑀(𝑑𝑑) = −𝑞𝑞𝑙𝑙2

6
 

Internal forces diagrams are shown in Fig. 2.3.13. 

b) simply supported beam (Fig. 2.3.15.) 

Support reactions are presented in Fig. 2.3.15. 

 

Fig. 2.3.15. 
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Fig. 2.3.16. 

Internal forces equations (Fig. 2.3.16.) have the form: 

Segment A–B:  0 ≤ 𝑑𝑑 < 𝑙𝑙   

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                      −  𝑞𝑞𝑙𝑙
6

+ 1
2
𝑞𝑞(𝑑𝑑)𝑑𝑑 + 𝑉𝑉(𝑑𝑑) = 0         →         𝑉𝑉(𝑑𝑑) = 𝑞𝑞𝑙𝑙

6
− 1

2
𝑞𝑞(𝑑𝑑)𝑑𝑑 

𝑞𝑞
𝑙𝑙

=
𝑞𝑞(𝑑𝑑)
𝑑𝑑

            →      𝑞𝑞(𝑑𝑑) =  
𝑞𝑞𝑑𝑑
𝑙𝑙

 

thus 

𝑉𝑉(𝑑𝑑) =
𝑞𝑞𝑙𝑙
6
−

1
2
𝑞𝑞(𝑑𝑑)𝑑𝑑 =

𝑞𝑞𝑙𝑙
6
−

1
2
𝑞𝑞𝑑𝑑
𝑙𝑙
𝑑𝑑 =

𝑞𝑞𝑙𝑙
6
−

1
2
𝑞𝑞𝑑𝑑2

𝑙𝑙
 

for   𝑑𝑑 = 0        𝑉𝑉(𝑑𝑑) = 𝑞𝑞𝑙𝑙
6

;  

        𝑑𝑑 = 𝑙𝑙
2

        𝑉𝑉(𝑑𝑑) = 1
24
𝑞𝑞𝑙𝑙;   

        𝑑𝑑 = 𝑙𝑙       𝑉𝑉(𝑑𝑑) = −1
3
𝑞𝑞𝑙𝑙; 

𝑉𝑉(𝑑𝑑) = 0     →    𝑞𝑞𝑙𝑙
6
− 1

2
𝑞𝑞𝑥𝑥2

𝑙𝑙
= 0      →    𝑑𝑑 = √3𝑙𝑙

3
          

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                              𝑁𝑁(𝑑𝑑) = 0                

∑𝑀𝑀(𝐶𝐶) = 0;         𝑀𝑀(𝑑𝑑) − 𝑞𝑞𝑙𝑙
6
𝑑𝑑 + 1

2
𝑞𝑞(𝑑𝑑)𝑑𝑑 ∙ 𝑥𝑥

3
= 0   →     𝑀𝑀(𝑑𝑑) = 𝑞𝑞𝑙𝑙

6
𝑑𝑑 − 1

2
𝑞𝑞𝑥𝑥
𝑙𝑙
𝑑𝑑 ∙ 𝑥𝑥

3
= 𝑞𝑞𝑙𝑙

6
𝑑𝑑 − 𝑞𝑞𝑥𝑥3

6𝑙𝑙
  

for   𝑑𝑑 = 0     𝑀𝑀(𝑑𝑑) = 0;  

        𝑑𝑑 = 𝑙𝑙     𝑀𝑀(𝑑𝑑) = 0;   

        𝑑𝑑 = √3𝑙𝑙
3

     𝑀𝑀(𝑑𝑑) = √3𝑞𝑞𝑙𝑙2

27
 

Internal forces diagrams are shown in Fig. 2.3.15. 
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• uniformly distributed moment m: 

a) cantilever beam (Fig. 2.3.17.) 

 

Fig. 2.3.17. 

  

Fig. 2.3.18. 

Internal forces equations (Fig. 2.3.18.) have the form: 

Segment A–B:  0 ≤ 𝑑𝑑 < 𝑙𝑙     
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                             𝑉𝑉(𝑑𝑑) = 0                

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                            𝑁𝑁(𝑑𝑑) = 0                
∑𝑀𝑀(𝐶𝐶) = 0;                     𝑀𝑀(𝑑𝑑) −𝑚𝑚𝑑𝑑 = 0         →        𝑀𝑀(𝑑𝑑) = 𝑚𝑚𝑑𝑑 = 𝑞𝑞𝑙𝑙𝑑𝑑  

for   𝑑𝑑 = 0     𝑀𝑀(𝑑𝑑) = 0;      𝑑𝑑 = 𝑙𝑙     𝑀𝑀(𝑑𝑑) = 𝑞𝑞𝑙𝑙2 

Internal forces diagrams are shown in Fig. 2.3.17. 
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b) simply supported beam (Fig. 2.3.19.) 

Support reactions are presented in Fig. 2.3.19. 
 

. 

Fig. 2.3.19. 

. 

Fig. 2.3.20. 

Internal forces equations (Fig. 2.3.20.) have the form: 

Segment A–B:  0 ≤ 𝑑𝑑 < 𝑙𝑙     
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                     −𝑞𝑞𝑙𝑙 − 𝑉𝑉(𝑑𝑑) = 0         →         𝑉𝑉(𝑑𝑑) = − 𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                        𝑁𝑁(𝑑𝑑) = 0                
∑𝑀𝑀(𝐶𝐶) = 0;                     𝑀𝑀(𝑑𝑑) −𝑚𝑚𝑑𝑑 + 𝑞𝑞𝑙𝑙𝑑𝑑 = 0         →        𝑀𝑀(𝑑𝑑) = 𝑞𝑞𝑙𝑙𝑑𝑑 − 𝑞𝑞𝑙𝑙𝑑𝑑 = 0  

Internal forces diagrams are shown in Fig. 2.3.19. 
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The internal forces analysis in the beams presented above show that: 
• normal (axial) force 𝑵𝑵𝜶𝜶 in α section is an algebraic sum of all forces longitudinal 

components located on the left (or right) side of the section, 
• shear (transversal) force 𝑽𝑽𝜶𝜶 in α section is an algebraic sum of all force 

components normal to the longitudinal direction and located on the left (or right) 
side of the section, 

• bending moment 𝑴𝑴𝜶𝜶 in α section is an algebraic sum of all moments caused 
by forces located on the left (or right) side of the section calculated about 
the centroid of the section. 

Internal forces – sign convention (Fig. 2.3.21.): 
• normal (axial) force 𝑵𝑵𝜶𝜶 – tensile force is positive, compressive force – negative, 
• shear (transversal) force 𝑽𝑽𝜶𝜶 – is positive when the algebraic sum of all force 

components normal to the longitudinal direction and located on the left side 
of the section is upward (or when the algebraic sum of all force components normal 
to the longitudinal direction and located on the right side of the section is downward),  

• bending moment 𝑴𝑴𝜶𝜶 – is positive if the lower fibers are bended. 

 

Fig. 2.3.21. 

Internal forces diagrams – important points: 
We may always determine the internal forces at each characteristic point of the beam.  

In addition, if we know some rules we can facilitate the composition of the internal 
forces diagrams. 

Some of these rules are as follow: 
• at force load point, the internal moment diagram has a kink and the shear force 

diagram has a jump, 
• at concentrated moment load point the internal moment diagram has a jump, 
• if some segment of the beam hasn’t any load then the internal moment diagram 

is linear and the shear force diagram is constant, 
• if some segment of the beam is under uniformly distributed load then the internal 

moment diagram is parabolic of second degree and shear force diagram is linear, 
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• if some segment of the beam is under triangular distributed loading then 
the internal moment diagram is third degree curve and the shear force diagram 
is parabolic of second degree, 

• the extreme values of moment occur at points where the shear force function 
is equal zero. We can do the shear diagrams from the applied loading and find 
the points of zero shear. If we are interested only in peak values of moment, we can 
calculate its value from the equilibrium conditions, 

• the moment diagram should be plotted at the bended side of the member. 

2.3.2. Computational problems – simple beams 

Computational example 2.3.1. 
For the beam presented in Fig. 2.3.22.a. draw internal forces diagrams. 

 a) 

 

 b) 

 

Fig. 2.3.22. 

1. Degree of static indeterminacy n = 0 
2. Support reactions (Fig. 2.3.22.b.): 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                   𝑅𝑅𝐴𝐴𝑦𝑦 + 𝑅𝑅𝐵𝐵 − 2𝑞𝑞𝑙𝑙 + 3𝑞𝑞𝑙𝑙 = 0                   

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                   𝑅𝑅𝐴𝐴𝑥𝑥 = 0                

∑𝑀𝑀(𝐴𝐴) = 0;               𝑅𝑅𝐵𝐵 ∙ 2𝑙𝑙 + 3𝑞𝑞𝑙𝑙2 − 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 + 3𝑞𝑞𝑙𝑙 ∙ 3𝑙𝑙 = 0       

hence: 
𝑅𝑅𝐵𝐵 = −5𝑞𝑞𝑙𝑙           𝑅𝑅𝐴𝐴𝑦𝑦 = 4𝑞𝑞𝑙𝑙 
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3. Internal forces equations (Fig. 2.3.23): 

 

Fig. 2.3.23. 

Segment A–B  0 ≤ 𝑑𝑑1 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 4𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑑𝑑1  

𝑉𝑉(𝑑𝑑1 = 0) = 4𝑞𝑞𝑙𝑙          𝑉𝑉(𝑑𝑑1 = 2𝑙𝑙) = 2𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑1) = 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 − 𝑞𝑞𝑑𝑑1 ∙
𝑑𝑑1
2

= 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 − 𝑞𝑞 ∙
(𝑑𝑑1)2

2
 

𝑀𝑀(𝑑𝑑1 = 0) = 0              𝑀𝑀(𝑑𝑑1 = 2𝑙𝑙) = 4𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 − 𝑞𝑞 ∙ (2𝑙𝑙)2

2
= 6𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑1) = 0 

Segment C–B  0 ≤ 𝑑𝑑2 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = −3𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑2) = 3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 + 3𝑞𝑞𝑙𝑙2 

𝑀𝑀(𝑑𝑑2 = 0) = 3𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑2 = 𝑙𝑙) = 6𝑞𝑞𝑙𝑙2 

Internal forces diagrams (V, M) are shown in Fig. 2.3.23. Diagram N(x) = 0. 
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Computational example 2.3.2. 
Draw internal forces diagrams for the beam shown in Fig. 2.3.24.a. 

 a) 

 

 b) 

 

Fig. 2.3.24. 

1. Degree of static indeterminacy 𝑃𝑃 = 0  
2. Support reactions (Fig. 2.3.24.b.): 
Since there are no horizontal loads acting on the beam, thus 𝑅𝑅𝐷𝐷𝑥𝑥 = 0 

          ∑𝑀𝑀(𝑐𝑐) = 0;     −2𝑞𝑞𝑙𝑙 ∙ 4𝑙𝑙 + 3𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 − 4𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 +  𝑅𝑅𝐷𝐷𝑦𝑦 ∙ 4𝑙𝑙 + 4𝑞𝑞𝑙𝑙 ∙ 6𝑙𝑙 + 6𝑞𝑞𝑙𝑙2 = 0      

                                      𝑅𝑅𝐷𝐷𝑦𝑦 = − 5𝑞𝑞𝑙𝑙 

          ∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;         𝑅𝑅𝐶𝐶 + 𝑅𝑅𝐷𝐷𝑦𝑦 + 2𝑞𝑞𝑙𝑙 − 3𝑞𝑞𝑙𝑙 − 4𝑞𝑞𝑙𝑙 + 4𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐵𝐵 = 6𝑞𝑞𝑙𝑙 

3. Internal forces equations (Fig. 2.3.25.): 

Segment A–B  0 ≤ 𝑑𝑑1 < 3𝑙𝑙 
𝑞𝑞(𝑑𝑑1)
𝑑𝑑1

=
2𝑞𝑞
3𝑙𝑙

    →   𝑞𝑞(𝑑𝑑1) =  
2𝑞𝑞𝑑𝑑1

3𝑙𝑙
   

𝑉𝑉(𝑑𝑑1) = 2𝑞𝑞𝑙𝑙 −
1
2
𝑞𝑞(𝑑𝑑1) ∙ 𝑑𝑑1 = 2𝑞𝑞𝑙𝑙 −

1
2

 ∙
2𝑞𝑞𝑑𝑑1

3𝑙𝑙
∙ 𝑑𝑑1 = 2𝑞𝑞𝑙𝑙 −

𝑞𝑞𝑑𝑑12

3𝑙𝑙
  

𝑉𝑉(𝑑𝑑1 = 0) = 2𝑞𝑞𝑙𝑙        𝑉𝑉 �𝑑𝑑1 = 3
2
𝑙𝑙� = 5

4
𝑞𝑞𝑙𝑙         𝑉𝑉(𝑑𝑑1 = 3𝑙𝑙) = −𝑞𝑞𝑙𝑙  

𝑉𝑉(𝑑𝑑1) = 0   →  2𝑞𝑞𝑙𝑙 − 1
2

 ∙ 2𝑞𝑞𝑥𝑥1
3𝑙𝑙

∙ 𝑑𝑑1 = 0    →   6𝑞𝑞𝑙𝑙2 − 𝑞𝑞𝑑𝑑12 = 0   → 𝑑𝑑1 = √6𝑙𝑙   

𝑀𝑀(𝑑𝑑1) = 2𝑞𝑞𝑙𝑙𝑑𝑑1 −
1
2
𝑞𝑞(𝑑𝑑1) ∙ 𝑑𝑑1 ∙

𝑑𝑑1
3

= 2𝑞𝑞𝑙𝑙𝑑𝑑1 −
1
2

 ∙
2𝑞𝑞𝑑𝑑1

3𝑙𝑙
∙ 𝑑𝑑1 ∙

𝑑𝑑1
3

= 2𝑞𝑞𝑙𝑙𝑑𝑑1 − 𝑞𝑞 ∙
(𝑑𝑑1)3

9𝑙𝑙
 

𝑀𝑀(𝑑𝑑1 = 0) = 0         𝑀𝑀(𝑑𝑑1 = 3𝑙𝑙) = 3𝑞𝑞𝑙𝑙2  

𝑀𝑀�𝑑𝑑1 = √6𝑙𝑙� = 2𝑞𝑞𝑙𝑙 ∙ √6𝑙𝑙 − 𝑞𝑞 ∙
�√6𝑙𝑙�

3

9𝑙𝑙
=

4
3√

6𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑1) = 0 
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Segment B–C  0 ≤ 𝑑𝑑2 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = 2𝑞𝑞𝑙𝑙 − 3𝑞𝑞𝑙𝑙 = −𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑2) = 2𝑞𝑞𝑙𝑙 ∙ (3𝑙𝑙 + 𝑑𝑑2) − 3𝑞𝑞𝑙𝑙 ∙ (𝑙𝑙 + 𝑑𝑑2) 

𝑀𝑀(𝑑𝑑2 = 0) = 3𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑2 = 𝑙𝑙) = 2𝑞𝑞𝑙𝑙 ∙ (3𝑙𝑙 + 𝑙𝑙) − 3𝑞𝑞𝑙𝑙 ∙ (𝑙𝑙 + 𝑙𝑙) = 2𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑2) = 0 

 
Fig. 2.3.25. 

Segment D–C  0 ≤ 𝑑𝑑3 < 4𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = −4𝑞𝑞𝑙𝑙 + 5𝑞𝑞𝑙𝑙 + 𝑞𝑞𝑑𝑑3 
𝑉𝑉(𝑑𝑑3 = 0) = 𝑞𝑞𝑙𝑙        𝑉𝑉(𝑑𝑑3 = 4𝑙𝑙) = 5𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑3) = 6𝑞𝑞𝑙𝑙2 + 4𝑞𝑞𝑙𝑙 ∙ (2𝑙𝑙 + 𝑑𝑑3) − 5𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 − 𝑞𝑞𝑑𝑑3 ∙
𝑑𝑑3
2

 

𝑀𝑀(𝑑𝑑3 = 0) = 14𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑3 = 4𝑙𝑙) = 2𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑3) = 0 

Segment E–D  0 ≤ 𝑑𝑑4 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑4) = −4𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑4) = 6𝑞𝑞𝑙𝑙2 + 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑4 
𝑀𝑀(𝑑𝑑4 = 0) = 6𝑞𝑞𝑙𝑙2        𝑀𝑀(𝑑𝑑4 = 2𝑙𝑙) = 14𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑4) = 0 

Internal forces diagrams (V and M) are presented in Fig. 2.3.25. Diagram N(x) = 0. 
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2.3.3. Compound beams 

 a) 

 

 b) 

 

Fig. 2.3.26. 

The compound beam is composed of more than one simple beam (Fig. 2.3.26.). 
The compound beam presented in Fig. 2.3.26.a. is composed of one cantilever beam 
and two simple beams, all of them lying on one line. Beam BC is based both on beam AB 
and beam CF. Beam AB is fixed and beam CF is supported on the ground (terra) so these 
beams we call primary beams. The middle beam is called the secondary beam. The beam 
shown in Fig. 2.3.26.b. is also composed of one cantilever beam and two simple beams. 
Beam DF is based on beam BD and on the roller support E. Beam BD is based on beam AB 
and the roller support C. Beam AB is fixed so we call this beam the primary beam 
and the two other we call secondary beams. 

As we can see in Fig. 2.3.26. the secondary beams transfer the loads to the basics ones. 
That is why we first analyze the secondary beams and then their support reactions load 
on the basic beam. We can write internal forces equations or calculate internal forces 
directly at points separately for every beam. We also draw separately the internal forces 
diagrams and after that, we join them for the whole compound beam. 
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2.3.4. Computational problems – compound beams 

Computational example 2.3.3. 
For the compound beam shown in Fig. 2.3.27.a. draw internal forces diagrams. 

 a) 

 

 b) 

  

Fig. 2.3.27. 

1. Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 4 + 2 − 3 ∙ 2 = 0  
2. Support reactions (Fig. 2.3.27.b.): 

Since there are no horizontal loads acting on the beam, thus 𝑅𝑅𝐴𝐴𝑥𝑥 = 𝑅𝑅𝐶𝐶𝑥𝑥 = 0 
– right beam: 

            ∑𝑀𝑀(𝐷𝐷) = 0;     −𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 2𝑙𝑙 + 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 + 3𝑞𝑞𝑙𝑙2 + 3𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 = 0     𝑅𝑅𝐶𝐶𝑦𝑦 = 4𝑞𝑞𝑙𝑙 

            ∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;           𝑅𝑅𝐶𝐶𝑦𝑦 − 2𝑞𝑞𝑙𝑙+𝑅𝑅𝐷𝐷 + 3𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐷𝐷 = −5𝑞𝑞𝑙𝑙 
– left beam: 

            ∑𝑀𝑀(𝐴𝐴) = 0;    −𝑀𝑀𝐴𝐴 + 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙−𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 2𝑙𝑙 = 0     𝑀𝑀𝐴𝐴 = −6𝑞𝑞𝑙𝑙2 

            ∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;          𝑅𝑅𝐴𝐴𝑦𝑦 + 2𝑞𝑞𝑙𝑙 − 𝑅𝑅𝐶𝐶𝑦𝑦 = 0              𝑅𝑅𝐴𝐴𝑦𝑦 = 2𝑞𝑞𝑙𝑙 
3. Internal forces equations (Fig. 2.3.28.): 

Segment A–B  0 ≤ 𝑑𝑑1 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 2𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑1) = −6𝑞𝑞𝑙𝑙2 +  2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 

𝑀𝑀(𝑑𝑑1 = 0) = −6𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑1 = 𝑙𝑙) = −4𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑1) = 0 
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Segment C–B  0 ≤ 𝑑𝑑2 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = 4𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑2) = − 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 

𝑀𝑀(𝑑𝑑2 = 0) = 0             𝑀𝑀(𝑑𝑑2 = 𝑙𝑙) = −4𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑2) = 0 

 

Fig. 2.3.28. 

Segment C–D  0 ≤ 𝑑𝑑3 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = 4𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑑𝑑3 

𝑉𝑉(𝑑𝑑3 = 0) = 4𝑞𝑞𝑙𝑙         𝑉𝑉(𝑑𝑑3 = 2𝑙𝑙) = 2𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑3) = 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 − 𝑞𝑞𝑑𝑑3 ∙
𝑑𝑑3
2

= 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 − 𝑞𝑞 ∙
(𝑑𝑑3)2

2
 

𝑀𝑀(𝑑𝑑3 = 0) = 0         𝑀𝑀(𝑑𝑑3 = 𝑙𝑙) = 7
2
𝑞𝑞𝑙𝑙2           𝑀𝑀(𝑑𝑑3 = 2𝑙𝑙) = 6𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑3) = 0 
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Segment E–D 0 ≤ 𝑑𝑑4 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑4) = −3𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑4) = 3𝑞𝑞𝑙𝑙2 +  3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑4 

𝑀𝑀(𝑑𝑑4 = 0) = 3𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑4 = 𝑙𝑙) = 6𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑4) = 0 

Internal forces diagrams (V, M) are shown in Fig. 2.3.28. Diagram N(x) = 0. 
 

Computational example 2.3.4. 
For the compound beam shown in Fig. 2.3.29. draw internal forces diagrams. 
 
1. Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 4 + 2 − 3 ∙ 2 = 0  
2. Support reactions (Fig. 2.3.29.): 

Since there are no horizontal loads acting on the beam, thus 𝑅𝑅𝐶𝐶𝑥𝑥 = 𝑅𝑅𝐴𝐴𝑥𝑥 = 0 

 

Fig. 2.3.29. 

– right beam: 
            ∑𝑀𝑀(𝐶𝐶) = 0;     𝑅𝑅𝐷𝐷 ∙ 2𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 = 0         𝑅𝑅𝐷𝐷 =  𝑞𝑞𝑙𝑙 

 ∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;        𝑅𝑅𝐷𝐷 − 2𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐶𝐶𝑦𝑦 = 0         𝑅𝑅𝐶𝐶𝑦𝑦 = 𝑞𝑞𝑙𝑙 
This beam is symmetrical and symmetrically loaded so it wasn’t necessary to calculate 

the reactions by the equations of equilibrium. It is obvious that the reactions should be 
equal: 

𝑅𝑅𝐶𝐶𝑦𝑦 = 𝑅𝑅𝐷𝐷 = 𝑞𝑞𝑙𝑙,  
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– left beam: 
           ∑𝑀𝑀(𝐴𝐴) = 0;    −𝑀𝑀𝐴𝐴 − 3𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙−𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 4𝑙𝑙 = 0       𝑀𝑀𝐴𝐴 = −10 𝑞𝑞𝑙𝑙2 

 ∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;      −𝑅𝑅𝐶𝐶𝑦𝑦 − 3𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴𝑦𝑦 = 0                  𝑅𝑅𝐴𝐴𝑦𝑦 = 4𝑞𝑞𝑙𝑙 

3. Internal forces equations (Fig. 2.3.30.): 

 

Fig. 2.3.30. 

Segment A–B  0 ≤ 𝑑𝑑1 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 4𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑1) = −10𝑞𝑞𝑙𝑙2 + 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 
𝑀𝑀(𝑑𝑑1 = 0) = −10𝑞𝑞𝑙𝑙2        𝑀𝑀(𝑑𝑑1 = 𝑙𝑙) = −6𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑1) = 0 

Segment C–B  0 ≤ 𝑑𝑑2 < 3𝑙𝑙 
𝑞𝑞(𝑑𝑑2)
𝑑𝑑2

=
2𝑞𝑞
3𝑙𝑙

    →   𝑞𝑞(𝑑𝑑2) =  
2𝑞𝑞𝑑𝑑2

3𝑙𝑙
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𝑉𝑉(𝑑𝑑2) = 𝑞𝑞𝑙𝑙 +
1
2
𝑞𝑞(𝑑𝑑2) ∙ 𝑑𝑑2 = 𝑞𝑞𝑙𝑙 +

1
2

 ∙
2𝑞𝑞𝑑𝑑2

3𝑙𝑙
∙ 𝑑𝑑2 = 𝑞𝑞𝑙𝑙 +

𝑞𝑞𝑑𝑑22

3𝑙𝑙
  

𝑉𝑉(𝑑𝑑2 = 0) = 𝑞𝑞𝑙𝑙         𝑉𝑉 �𝑑𝑑2 = 3
2
𝑙𝑙� = 7

4
𝑞𝑞𝑙𝑙           𝑉𝑉(𝑑𝑑2 = 3𝑙𝑙) = 4𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑2) = −𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 −
1
2
𝑞𝑞(𝑑𝑑2) ∙ 𝑑𝑑2 ∙

𝑥𝑥2
3

= −𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 −
1
2

 ∙ 2𝑞𝑞𝑥𝑥2
3𝑙𝑙

∙ 𝑑𝑑2 ∙
𝑥𝑥2
3

=  

        = −𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 − 𝑞𝑞 ∙
(𝑑𝑑2)3

9𝑙𝑙
 

𝑀𝑀(𝑑𝑑2 = 0) = 0         𝑀𝑀�𝑑𝑑2 = 3
2
𝑙𝑙� = −15

8
𝑞𝑞𝑙𝑙2       𝑀𝑀(𝑑𝑑2 = 3𝑙𝑙) = −6𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑2) = 0 

Segment C–D  0 ≤ 𝑑𝑑3 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = 𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑑𝑑3 
𝑉𝑉(𝑑𝑑3 = 0) = 𝑞𝑞𝑙𝑙         𝑉𝑉(𝑑𝑑3 = 2𝑙𝑙) = −𝑞𝑞𝑙𝑙  
𝑉𝑉(𝑑𝑑3) = 0    →    𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑑𝑑3 = 0    →   𝑑𝑑3 = 𝑙𝑙 

𝑀𝑀(𝑑𝑑3) = 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 − 𝑞𝑞𝑑𝑑3 ∙
𝑑𝑑3
2

= 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 − 𝑞𝑞 ∙
(𝑑𝑑3)2

2
 

𝑀𝑀(𝑑𝑑3 = 0) = 0         𝑀𝑀(𝑑𝑑3 = 2𝑙𝑙) = 0          𝑀𝑀(𝑑𝑑3 = 𝑙𝑙) = 𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 𝑞𝑞 ∙ (𝑙𝑙)2

2
= 1

2
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑3) = 0 

Internal forces diagrams (V and M) are presented in Fig. 2.3.30. Diagram N(x) = 0. 
 

Computational example 2.3.5. 
For the compound beam shown in Fig. 2.3.31.a. draw internal forces diagrams. 

Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 4 + 2 − 3 ∙ 2 = 0  
1. Support reactions (Fig. 2.3.31.b.): 

Since there are no horizontal loads acting on the beam, thus 𝑅𝑅𝐴𝐴𝑥𝑥 = 𝑅𝑅𝐵𝐵𝑥𝑥 = 0 
– left beam: 
            ∑𝑀𝑀(𝐴𝐴) = 0;   −2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙+𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 2𝑙𝑙 = 0       𝑅𝑅𝐵𝐵𝑦𝑦 = 𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;        𝑅𝑅𝐴𝐴𝑦𝑦 − 2𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐵𝐵𝑦𝑦 = 0                 𝑅𝑅𝐴𝐴𝑦𝑦 = 𝑞𝑞𝑙𝑙 

This beam is symmetrical and symmetrically loaded so we didn’t have to calculate the 
reactions by the equations of equilibrium. It is obvious that the reactions should be equal: 

 𝑅𝑅𝐴𝐴𝑦𝑦 = 𝑅𝑅𝐵𝐵𝑦𝑦 = 𝑞𝑞𝑙𝑙  

– right beam: 

            ∑𝑀𝑀(𝐶𝐶) = 0;     𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 2𝑙𝑙 + 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 + 𝑅𝑅𝐸𝐸 ∙ 2𝑙𝑙 + 𝑞𝑞𝑙𝑙2 = 0        𝑅𝑅𝐸𝐸 = −5
2
𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                  −𝑅𝑅𝐵𝐵𝑦𝑦+𝑅𝑅𝐶𝐶 + 2𝑞𝑞𝑙𝑙+𝑅𝑅𝐸𝐸 = 0                    𝑅𝑅𝐶𝐶 = 3
2
𝑞𝑞𝑙𝑙 



39 

a) 

 

 b) 

 

Fig. 2.3.31. 

 
2. Internal forces equations (Fig. 2.3.32.): 

Segment A–B  0 ≤ 𝑑𝑑1 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑑𝑑1 
𝑉𝑉(𝑑𝑑1 = 0) = 𝑞𝑞𝑙𝑙         𝑉𝑉(𝑑𝑑1 = 2𝑙𝑙) = −𝑞𝑞𝑙𝑙  
𝑉𝑉(𝑑𝑑1) = 0    →    𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑑𝑑1 = 0    →   𝑑𝑑1 = 𝑙𝑙 

𝑀𝑀(𝑑𝑑1) = 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 − 𝑞𝑞𝑑𝑑1 ∙
𝑑𝑑1
2

= 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 − 𝑞𝑞 ∙
(𝑑𝑑1)2

2
 

𝑀𝑀(𝑑𝑑1 = 0) = 0         𝑀𝑀(𝑑𝑑1 = 2𝑙𝑙) = 0           𝑀𝑀(𝑑𝑑1 = 𝑙𝑙) = 𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 𝑞𝑞 ∙ (𝑙𝑙)2

2
= 1

2
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑1) = 0 

Segment B–C  0 ≤ 𝑑𝑑2 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = −𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑2) = − 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 
𝑀𝑀(𝑑𝑑2 = 0) = 0        𝑀𝑀(𝑑𝑑2 = 2𝑙𝑙) = −2𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑2) = 0 

Segment C–D  0 ≤ 𝑑𝑑3 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = −𝑞𝑞𝑙𝑙 +
3
2
𝑞𝑞𝑙𝑙 =

1
2
𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑3) = −𝑞𝑞𝑙𝑙 ∙ (2𝑙𝑙 + 𝑑𝑑3) +
3
2
𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 
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𝑀𝑀(𝑑𝑑3 = 0) = −2𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑3 = 𝑙𝑙) = −3
2
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑3) = 0 

Segment E–D  0 ≤ 𝑑𝑑4 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑4) =
5
2
𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑4) = 𝑞𝑞𝑙𝑙2 −  
5
2
𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑4 

𝑀𝑀(𝑑𝑑4 = 0) = 𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑4 = 𝑙𝑙) = −3
2
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑4) = 0 

Segment F–E  0 ≤ 𝑑𝑑5 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑5) = 0  
𝑀𝑀(𝑑𝑑5) = 𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑5) = 0 
 

Internal forces diagrams (V, M) are shown in Fig. 2.3.32. Diagram N(x) = 0. 

 

Fig. 2.3.32. 
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Computational example 2.3.6. 
Draw internal forces diagrams for the beam shown in Fig. 2.3.33. 

 

Fig. 2.3.33. 

1. Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 5 + 4 − 3 ∙ 3 = 0  
2. Support reactions (Fig. 2.3.33.): 

Since there are no horizontal loads acting on the beam, thus 𝑅𝑅𝐴𝐴𝑥𝑥 = 𝑅𝑅𝐶𝐶𝑥𝑥 = 𝑅𝑅𝐸𝐸𝑥𝑥 = 0 
– right beam: 
            ∑𝑀𝑀(𝐹𝐹) = 0;     −𝑅𝑅𝐸𝐸𝑦𝑦 ∙ 𝑙𝑙 − 3𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 = 0       𝑅𝑅𝐸𝐸𝑦𝑦 = −3 𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;          𝑅𝑅𝐸𝐸𝑦𝑦 + 𝑅𝑅𝐹𝐹 − 3𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐹𝐹 = 6𝑞𝑞𝑙𝑙 
– middle beam: 
            ∑𝑀𝑀(𝐷𝐷) = 0;     −𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 2𝑙𝑙 + 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙−𝑅𝑅𝐸𝐸𝑦𝑦 ∙ 𝑙𝑙 + 3𝑞𝑞𝑙𝑙2 = 0     𝑅𝑅𝐶𝐶𝑦𝑦 = 4 𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;           𝑅𝑅𝐶𝐶𝑦𝑦 + 𝑅𝑅𝐷𝐷 − 𝑅𝑅𝐸𝐸𝑦𝑦 − 2𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐷𝐷 = −5𝑞𝑞𝑙𝑙 
– left beam: 
            ∑𝑀𝑀(𝐴𝐴) = 0;    −𝑀𝑀𝐴𝐴 + 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙−𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 2𝑙𝑙 = 0            𝑀𝑀𝐴𝐴 = −6 𝑞𝑞𝑙𝑙2 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;        −𝑅𝑅𝐶𝐶𝑦𝑦 + 2𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴𝑦𝑦 = 0                  𝑅𝑅𝐴𝐴𝑦𝑦 = 2𝑞𝑞𝑙𝑙 
3. Internal forces equations (Fig. 2.3.34.): 

Segment A–B  0 ≤ 𝑑𝑑1 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 2𝑞𝑞𝑙𝑙 
𝑀𝑀(𝑑𝑑1) = −6𝑞𝑞𝑙𝑙2 + 2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 
𝑀𝑀(𝑑𝑑1 = 0) = −6𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑1 = 𝑙𝑙) = −4𝑞𝑞𝑙𝑙2 
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Fig. 2.3.34. 

Segment C–B  0 ≤ 𝑑𝑑2 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = 4𝑞𝑞𝑙𝑙 
𝑀𝑀(𝑑𝑑2) = −4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 
𝑀𝑀(𝑑𝑑2 = 0) = 0         𝑀𝑀(𝑑𝑑2 = 𝑙𝑙) = −4𝑞𝑞𝑙𝑙2 

Segment C–D  0 ≤ 𝑑𝑑3 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = 4𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑑𝑑3 
𝑉𝑉(𝑑𝑑3 = 0) = 4𝑞𝑞𝑙𝑙         𝑉𝑉(𝑑𝑑3 = 2𝑙𝑙) = 2𝑞𝑞𝑙𝑙  
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𝑀𝑀(𝑑𝑑3) = 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 − 𝑞𝑞𝑑𝑑3 ∙
𝑑𝑑3
2

= 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 − 𝑞𝑞 ∙
(𝑑𝑑3)2

2
 

𝑀𝑀(𝑑𝑑3 = 0) = 0         𝑀𝑀(𝑑𝑑3 = 2𝑙𝑙) = 6𝑞𝑞𝑙𝑙2 

Segment E–D  0 ≤ 𝑑𝑑4 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑4) = −3𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑4) = 3𝑞𝑞𝑙𝑙2 +  3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑4 
𝑀𝑀(𝑑𝑑4 = 0) = 3𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑4 = 𝑙𝑙) = 6𝑞𝑞𝑙𝑙2 

Segment E–F  0 ≤ 𝑑𝑑5 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑5) = −3𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑5) = −3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑5 
𝑀𝑀(𝑑𝑑5 = 0) = 0         𝑀𝑀(𝑑𝑑5 = 𝑙𝑙) = −3𝑞𝑞𝑙𝑙2 

Segment G–F  0 ≤ 𝑑𝑑6 < 2𝑙𝑙 
𝑞𝑞(𝑑𝑑6)
𝑑𝑑6

=
2𝑞𝑞
3𝑙𝑙

    →   𝑞𝑞(𝑑𝑑6) =  
2𝑞𝑞𝑑𝑑6

3𝑙𝑙
   

𝑉𝑉(𝑑𝑑6) =
1
2
𝑞𝑞(𝑑𝑑6) ∙ 𝑑𝑑6 =

1
2

 ∙
2𝑞𝑞𝑑𝑑6

3𝑙𝑙
∙ 𝑑𝑑6 =

𝑞𝑞𝑑𝑑62

3𝑙𝑙
  

𝑉𝑉(𝑑𝑑6 = 0) = 0           𝑉𝑉 �𝑑𝑑6 = 3
2
𝑙𝑙� = 3

4
𝑞𝑞𝑙𝑙              𝑉𝑉(𝑑𝑑6 = 3𝑙𝑙) = 3𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑6) = −
1
2
𝑞𝑞(𝑑𝑑6) ∙ 𝑑𝑑6 ∙

𝑑𝑑6
3

= −
1
2

 ∙
2𝑞𝑞𝑑𝑑6

3𝑙𝑙
∙ 𝑑𝑑6 ∙

𝑑𝑑6
3

= −𝑞𝑞 ∙
(𝑑𝑑6)3

9𝑙𝑙
 

𝑀𝑀(𝑑𝑑6 = 0) = 0          𝑀𝑀�𝑑𝑑6 = 3
2
𝑙𝑙� = −3

8
𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑6 = 3𝑙𝑙) = −𝑞𝑞 ∙ (3𝑙𝑙)3

9𝑙𝑙
= −3𝑞𝑞𝑙𝑙2 

Internal forces diagrams (V, M) are shown in Fig. 2.3.34. 
There are no horizontal loads, hence 𝑁𝑁(𝑑𝑑) = 0.  

Computational example 2.3.7. 
Draw internal forces diagrams for the beam shown in Fig. 2.3.35.a. 

a) 

 

Fig. 2.3.35a. 

 
1. Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 5 + 4 − 3 ∙ 3 = 0  
2. Support reactions (Fig. 2.3.35.b.): 

Since there are no horizontal loads acting on the beam, thus 𝑅𝑅𝐴𝐴𝑥𝑥 = 𝑅𝑅𝐵𝐵𝑥𝑥 = 𝑅𝑅𝐸𝐸𝑥𝑥 = 0 
– right beam: 
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 b) 

 

Fig. 2.3.35b. 

            ∑𝑀𝑀(𝐹𝐹) = 0;     −𝑅𝑅𝐸𝐸𝑦𝑦 ∙ 2𝑙𝑙 + 2𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 − 𝑞𝑞𝑙𝑙2 = 0         𝑅𝑅𝐸𝐸𝑦𝑦 = 3
2

 𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;           𝑅𝑅𝐸𝐸𝑦𝑦 + 𝑅𝑅𝐹𝐹 + 2𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐹𝐹 = −7
2
𝑞𝑞𝑙𝑙 

– middle beam: 
            ∑𝑀𝑀(𝐷𝐷) = 0;     −𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 4𝑙𝑙 + 3𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙−𝑅𝑅𝐸𝐸𝑦𝑦 ∙ 4𝑙𝑙 = 0     𝑅𝑅𝐵𝐵𝑦𝑦 = 0 𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;           𝑅𝑅𝐵𝐵𝑦𝑦 + 𝑅𝑅𝐷𝐷 − 𝑅𝑅𝐸𝐸𝑦𝑦 − 3𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐷𝐷 = 9
2
𝑞𝑞𝑙𝑙 

– left beam: 
            ∑𝑀𝑀(𝐴𝐴) = 0;    −𝑀𝑀𝐴𝐴 − 4𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙−𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 4𝑙𝑙 = 0     𝑀𝑀𝐴𝐴 = −8 𝑞𝑞𝑙𝑙2 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;        −𝑅𝑅𝐵𝐵𝑦𝑦 − 4𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴𝑦𝑦 = 0                  𝑅𝑅𝐴𝐴𝑦𝑦 = 4𝑞𝑞𝑙𝑙 

3. Internal forces equations (Fig. 2.3.36.): 

Segment B–A  0 ≤ 𝑑𝑑1 < 4𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 𝑞𝑞𝑑𝑑1 
𝑉𝑉(𝑑𝑑1 = 0) = 0         𝑉𝑉(𝑑𝑑1 = 4𝑙𝑙) = 4𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑1) = −𝑞𝑞𝑑𝑑1 ∙
𝑑𝑑1
2

= −𝑞𝑞 ∙
(𝑑𝑑1)2

2
 

𝑀𝑀(𝑑𝑑1 = 0) = 0           𝑀𝑀(𝑑𝑑1 = 2𝑙𝑙) = −2𝑞𝑞𝑙𝑙2           𝑀𝑀(𝑑𝑑1 = 4𝑙𝑙) = −8𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑1) = 0 

Segment B–C  0 ≤ 𝑑𝑑2 < 3𝑙𝑙 
𝑞𝑞(𝑑𝑑2)
𝑑𝑑2

=
2𝑞𝑞
3𝑙𝑙

    →   𝑞𝑞(𝑑𝑑2) =  
2𝑞𝑞𝑑𝑑2

3𝑙𝑙
   

𝑉𝑉(𝑑𝑑2) = −
1
2
𝑞𝑞(𝑑𝑑2) ∙ 𝑑𝑑2 = −

1
2

 ∙
2𝑞𝑞𝑑𝑑2

3𝑙𝑙
∙ 𝑑𝑑2 = −

𝑞𝑞𝑑𝑑22

3𝑙𝑙
  

𝑉𝑉(𝑑𝑑2 = 0) = 0          𝑉𝑉 �𝑑𝑑2 = 3
2
𝑙𝑙� = −3

4
𝑞𝑞𝑙𝑙            𝑉𝑉(𝑑𝑑2 = 3𝑙𝑙) = −3𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑2) = −
1
2
𝑞𝑞(𝑑𝑑2) ∙ 𝑑𝑑2 ∙

𝑑𝑑2
3

= −
1
2

 ∙
2𝑞𝑞𝑑𝑑2

3𝑙𝑙
∙ 𝑑𝑑2 ∙

𝑑𝑑2
3

= −𝑞𝑞 ∙
(𝑑𝑑2)3

9𝑙𝑙
 

𝑀𝑀(𝑑𝑑2 = 0) = 0           𝑀𝑀�𝑑𝑑2 = 3
2
𝑙𝑙� = −3

8
𝑞𝑞𝑙𝑙2         𝑀𝑀(𝑑𝑑2 = 3𝑙𝑙) = −𝑞𝑞 ∙ (3𝑙𝑙)3

9𝑙𝑙
= −3𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑2) = 0 
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Fig. 2.3.36.   

Segment C–D  0 ≤ 𝑑𝑑3 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = −3𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑3) = −3𝑞𝑞𝑙𝑙 ∙ (𝑙𝑙 + 𝑑𝑑3) 
𝑀𝑀(𝑑𝑑3 = 0) = −3𝑞𝑞𝑙𝑙2          𝑀𝑀(𝑑𝑑3 = 𝑙𝑙) = −6𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑3) = 0 

Segment E–D  0 ≤ 𝑑𝑑4 < 4𝑙𝑙 

𝑉𝑉(𝑑𝑑4) =
3
2
𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑4) = −
3
2
𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑4 

𝑀𝑀(𝑑𝑑4 = 0) = 0          𝑀𝑀(𝑑𝑑4 = 4𝑙𝑙) = −6𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑4) = 0 

Segment E–F  0 ≤ 𝑑𝑑5 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑5) =
3
2
𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑5) = 𝑞𝑞𝑙𝑙2 +
3
2
𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑5 

𝑀𝑀(𝑑𝑑5 = 0) = 𝑞𝑞𝑙𝑙2          𝑀𝑀(𝑑𝑑5 = 2𝑙𝑙) = 4𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑5) = 0 
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Segment G–F  0 ≤ 𝑑𝑑6 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑6) = −2𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑6) = 2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑6 
𝑀𝑀(𝑑𝑑6 = 0) = 0          𝑀𝑀(𝑑𝑑6 = 2𝑙𝑙) = 4𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑6) = 0 

Internal forces diagrams (V and M) are presented in Fig. 2.3.36. Diagram N(x) = 0. 

Computational example 2.3.8. 
For the compound beam shown in Fig. 2.3.37. draw internal forces diagrams. 

 

 
Fig. 2.3.37. 

1. Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 4 + 2 − 3 ∙ 2 = 0  
2. Support reactions (Fig. 2.3.37.): 
– right beam: 
            ∑𝑀𝑀(𝐵𝐵) = 0;    −4𝑞𝑞𝑙𝑙2−3𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 +  𝑅𝑅𝐶𝐶 ∙ 𝑙𝑙 = 0            𝑅𝑅𝐶𝐶 = 10 𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;       − 𝑅𝑅𝐵𝐵𝑦𝑦 + 𝑅𝑅𝐶𝐶 − 3𝑞𝑞𝑙𝑙 = 0                     𝑅𝑅𝐵𝐵𝑦𝑦 = 7𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;       − 𝑅𝑅𝐵𝐵𝑥𝑥 + 3√3𝑞𝑞𝑙𝑙 = 0                 𝑅𝑅𝐵𝐵𝑥𝑥 = 3√3𝑞𝑞𝑙𝑙 

– left beam: 
            ∑𝑀𝑀(𝐴𝐴) = 0;       −𝑀𝑀𝐴𝐴 + 3𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙+𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 4𝑙𝑙 = 0       𝑀𝑀𝐴𝐴 = 34 𝑞𝑞𝑙𝑙2 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;            𝑅𝑅𝐴𝐴𝑦𝑦 + 𝑅𝑅𝐵𝐵𝑦𝑦 + 3𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐴𝐴𝑦𝑦 = −10𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;            𝑅𝑅𝐴𝐴𝑥𝑥 + 𝑅𝑅𝐵𝐵𝑥𝑥 = 0                  𝑅𝑅𝐴𝐴𝑥𝑥 = −3√3𝑞𝑞𝑙𝑙 
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Internal forces diagrams are presented in Fig. 2.3.38. 

 

Fig. 2.3.38. 

  



48 

Computational example 2.3.9. 
For the compound beam shown in Fig. 2.3.39.a. draw internal forces diagrams. 

 a) 

 

 b) 

 

Fig. 2.3.39. 

1. Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 5 + 4 − 3 ∙ 3 = 0  
2. Support reactions (Fig. 2.3.39.b.): 
– right beam: 
            ∑𝑀𝑀(𝐹𝐹) = 0;              𝑞𝑞𝑙𝑙 ∙ 3𝑙𝑙−3𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 𝑅𝑅𝐸𝐸𝑦𝑦 ∙ 𝑙𝑙 = 0        𝑅𝑅𝐸𝐸𝑦𝑦 = 0 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                𝑅𝑅𝐸𝐸𝑦𝑦 + 𝑅𝑅𝐹𝐹 − 3𝑞𝑞𝑙𝑙 + 𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐹𝐹 = 2𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                𝑅𝑅𝐸𝐸𝑥𝑥 − √3𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐸𝐸𝑥𝑥 = √3𝑞𝑞𝑙𝑙 

– middle beam: 
            ∑𝑀𝑀(𝐷𝐷) = 0;            −𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 𝑙𝑙 + 4 𝑞𝑞𝑙𝑙2 + 4𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙−𝑅𝑅𝐸𝐸𝑦𝑦 ∙ 𝑙𝑙 = 0     𝑅𝑅𝐶𝐶𝑦𝑦 = 8𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                  𝑅𝑅𝐶𝐶𝑦𝑦 + 𝑅𝑅𝐷𝐷−𝑅𝑅𝐸𝐸𝑦𝑦 + 4𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐷𝐷 = −12𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                 𝑅𝑅𝐶𝐶𝑥𝑥 − 𝑅𝑅𝐸𝐸𝑥𝑥 = 0                  𝑅𝑅𝐶𝐶𝑥𝑥 = √3𝑞𝑞𝑙𝑙 

– left beam: 
            ∑𝑀𝑀(𝐵𝐵) = 0;            −𝑀𝑀𝐴𝐴 − 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙−𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 2𝑙𝑙 = 0     𝑀𝑀𝐴𝐴 = −18 𝑞𝑞𝑙𝑙2 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                  𝑅𝑅𝐵𝐵 − 𝑅𝑅𝐶𝐶𝑦𝑦 − 2𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐵𝐵 = 10𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                 𝑅𝑅𝐴𝐴𝑥𝑥 − 𝑅𝑅𝐶𝐶𝑥𝑥 = 0                  𝑅𝑅𝐴𝐴𝑥𝑥 = √3𝑞𝑞𝑙𝑙 
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Fig. 2.3.40. 

Segment G–F  0 ≤ 𝑑𝑑1 < 3𝑙𝑙 
𝑞𝑞(𝑑𝑑1)
𝑑𝑑1

=
2𝑞𝑞
3𝑙𝑙

    →   𝑞𝑞(𝑑𝑑1) =  
2𝑞𝑞𝑑𝑑1

3𝑙𝑙
   

𝑉𝑉(𝑑𝑑1) = −𝑞𝑞𝑙𝑙 +
1
2
𝑞𝑞(𝑑𝑑1) ∙ 𝑑𝑑1 = −𝑞𝑞𝑙𝑙 +

1
2

 ∙
2𝑞𝑞𝑑𝑑1

3𝑙𝑙
∙ 𝑑𝑑1 = −𝑞𝑞𝑙𝑙 +

𝑞𝑞𝑑𝑑12

3𝑙𝑙
  

𝑉𝑉(𝑑𝑑1 = 0) = −𝑞𝑞𝑙𝑙  

𝑉𝑉 �𝑑𝑑1 =
3
2
𝑙𝑙� = −

1
4
𝑞𝑞𝑙𝑙  

𝑉𝑉(𝑑𝑑1 = 3𝑙𝑙) = 2𝑞𝑞𝑙𝑙  

𝑉𝑉(𝑑𝑑1) = 0   →  −𝑞𝑞𝑙𝑙 + 1
2

 ∙ 2𝑞𝑞𝑥𝑥1
3𝑙𝑙

∙ 𝑑𝑑1 = 0    →   3𝑞𝑞𝑙𝑙2 − 𝑞𝑞𝑑𝑑12 = 0   → 𝑑𝑑1 = √3𝑙𝑙       
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𝑀𝑀(𝑑𝑑1) = 𝑞𝑞𝑙𝑙𝑑𝑑1 −
1
2
𝑞𝑞(𝑑𝑑1) ∙ 𝑑𝑑1 ∙

𝑑𝑑1
3

= 𝑞𝑞𝑙𝑙𝑑𝑑1 −
1
2

 ∙
2𝑞𝑞𝑑𝑑1

3𝑙𝑙
∙ 𝑑𝑑1 ∙

𝑑𝑑1
3

= 𝑞𝑞𝑙𝑙𝑑𝑑1 − 𝑞𝑞 ∙
(𝑑𝑑1)3

9𝑙𝑙
 

𝑀𝑀(𝑑𝑑1 = 0) = 0  
𝑀𝑀(𝑑𝑑1 = 3𝑙𝑙) = 0  

𝑀𝑀�𝑑𝑑1 = √3𝑙𝑙� = 𝑞𝑞𝑙𝑙 ∙ √3𝑙𝑙 − 𝑞𝑞 ∙
�√3𝑙𝑙�

3

9𝑙𝑙
=

2
3√

3𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑1) = −√3𝑞𝑞𝑙𝑙 

Internal forces diagrams are presented in Fig. 2.3.40. 

2.3.5. Review problems – beams 

Draw internal forces diagrams for the beams presented below: 
 
Problem 1. 

 

Fig. 2.3.41. 

Problem 2. 

 

Fig. 2.3.42. 

Problem 3. 

 

Fig. 2.3.43. 
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Problem 4. 

 

Fig. 2.3.44. 

Problem 5. 
 

 

Fig. 2.3.45. 

Problem 6. 

 

Fig. 2.3.46. 
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2.4. Internal forces diagrams – planar frames [1], [2], [4] 
Frames are structures that consist of vertical, horizontal or inclined members. 
The vertical members are called columns and the horizontal members are called beams. 
Frames members can be connected rigidly or by pins (hinges). A planar frame 
is composed of individual members all of which are located in the same plane. When 
loaded in this plane, they are subjected to bending, shearing and axial action. 

2.4.1. Computational problems – frames 

Computational example 2.4.1. 
Draw internal forces diagrams for the frame presented in Fig. 2.4.1. 

 

Fig. 2.4.1. 

1. Degree of static indeterminacy  𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 4 + 2 − 3 ∙ 2 = 0  
2. The support reactions: 

Compound frame presented in Fig. 2.4.1. has been decomposed in the hinge C into two 
simple frames (Fig. 2.4.2.). 
– the right frame – equations of equilibrium: 
            ∑𝑀𝑀(𝐶𝐶) = 0;     𝑅𝑅𝐴𝐴 ∙ 𝑙𝑙 + 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 + 4𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 + 6𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 = 0       𝑅𝑅𝐴𝐴 = −16𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 𝑅𝑅𝐴𝐴 + 4𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐶𝐶𝑦𝑦 = 0                     𝑅𝑅𝐶𝐶𝑦𝑦 = 12𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;               − 𝑅𝑅𝑐𝑐𝑥𝑥 − 2𝑞𝑞𝑙𝑙 + 6𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐶𝐶𝑥𝑥 = 4𝑞𝑞𝑙𝑙 

– the left frame – equations of equilibrium: 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 𝑅𝑅𝐵𝐵 − 𝑅𝑅𝐶𝐶𝑦𝑦 = 0                  𝑅𝑅𝐵𝐵 = 12𝑞𝑞𝑙𝑙 

            ∑𝑀𝑀(𝐻𝐻) = 0;   −𝑀𝑀𝐷𝐷−𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 + 4𝑞𝑞𝑙𝑙2 = 0     𝑀𝑀𝐷𝐷 = −10 𝑞𝑞𝑙𝑙2 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                 𝑅𝑅𝐶𝐶𝑥𝑥 − 2𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐷𝐷𝑥𝑥 = 0                  𝑅𝑅𝐷𝐷𝑥𝑥 = −2𝑞𝑞𝑙𝑙 



53 

 

Fig. 2.4.2. 

3. Internal forces equations: 
Fig. 2.4.3. presents the reactions and loads acting on the frame. 
The bottom fibres of the rod members have been marked by using dashed line. 

 

Fig. 2.4.3. 

Segment A–I  0 ≤ 𝑦𝑦1 < 𝑙𝑙 

𝑉𝑉(𝑦𝑦1) = 0  
𝑀𝑀(𝑦𝑦1) = 0 
𝑁𝑁(𝑦𝑦1) = 16𝑞𝑞𝑙𝑙 

Segment I–F  0 ≤ 𝑦𝑦2 < 𝑙𝑙 

𝑉𝑉(𝑦𝑦2) = −6𝑞𝑞𝑙𝑙 
𝑀𝑀(𝑦𝑦2) = −6𝑞𝑞𝑙𝑙 ∙ 𝑦𝑦2 
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𝑀𝑀(𝑦𝑦2 = 0) = 0          𝑀𝑀(𝑦𝑦2 = 𝑙𝑙) = −6𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑦𝑦2) = 16𝑞𝑞𝑙𝑙 

Segment B–H  0 ≤ 𝑦𝑦3 < 2𝑙𝑙 

𝑉𝑉(𝑦𝑦3) = 𝑞𝑞𝑦𝑦3  
𝑉𝑉(𝑦𝑦3 = 0) = 0           𝑉𝑉(𝑦𝑦3 = 2𝑙𝑙) = 𝑞𝑞 ∙ 2𝑙𝑙 = 2𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑦𝑦3) = 𝑞𝑞𝑦𝑦3 ∙
𝑦𝑦3
2

= 𝑞𝑞 ∙
(𝑦𝑦3)2

2
 

𝑀𝑀(𝑦𝑦3 = 0) = 0          𝑀𝑀(𝑦𝑦3 = 2𝑙𝑙) = 𝑞𝑞 ∙ (2𝑙𝑙)2

2
= 2𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑦𝑦3) = −12𝑞𝑞𝑙𝑙 

Segment G–F  0 ≤ 𝑦𝑦4 < 𝑙𝑙 

𝑉𝑉(𝑦𝑦4) = −2𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑦𝑦4) = 2𝑞𝑞𝑙𝑙 ∙ 𝑦𝑦4 
𝑀𝑀(𝑦𝑦4 = 0) = 0           𝑀𝑀(𝑦𝑦4 = 𝑙𝑙) = 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 = 2𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑦𝑦4) = 0 

Segment E–F  0 ≤ 𝑑𝑑5 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑5) = −4𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑5) = 4𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑5 
𝑀𝑀(𝑑𝑑5 = 0) = 0          𝑀𝑀(𝑑𝑑5 = 𝑙𝑙) = 4𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑5) = 0 

Segment C–F  0 ≤ 𝑑𝑑6 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑6) = 12𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑6) = 12𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑6 
𝑀𝑀(𝑑𝑑6 = 0) = 0          𝑀𝑀(𝑑𝑑6 = 𝑙𝑙) = 12𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑6) = 4𝑞𝑞𝑙𝑙 

Segment C–H  0 ≤ 𝑑𝑑7 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑7) = 12𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑7) = 4𝑞𝑞𝑙𝑙2 − 12𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑7 
𝑀𝑀(𝑑𝑑7 = 0) = 4𝑞𝑞𝑙𝑙2          𝑀𝑀(𝑑𝑑7 = 𝑙𝑙) = −8𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑7) = 4𝑞𝑞𝑙𝑙 

Segment D–H  0 ≤ 𝑑𝑑8 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑8) = 0  
𝑀𝑀(𝑑𝑑8) = −10𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑8) = 2𝑞𝑞𝑙𝑙 

Internal forces diagrams are presented in Fig. 2.4.4. 

Moments verifications – equilibrium of the moments for the F and H nodes (Fig. 2.4.4.). 
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Fig. 2.4.4. 

Computational example 2.4.2. 
Draw internal forces diagrams for the frame presented in Fig. 2.4.5. 

 

Fig. 2.4.5. 

1. Degree of static indeterminacy  𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 3 + 6 − 3 ∙ 3 = 0  
2. The support reactions: 
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One of the supports is a roller and another is a pin. Three equations of equilibrium for 
the planar force system can be used to determine three support reactions (Fig. 2.4.5.). 
            ∑𝑀𝑀(𝐴𝐴) = 0;             −𝑅𝑅𝐵𝐵 ∙ 6𝑙𝑙 − 𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙

2
+ 𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 6𝑞𝑞𝑙𝑙2 = 0     𝑅𝑅𝐵𝐵 = −11

12
𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                  𝑅𝑅𝐵𝐵 + 𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴𝑦𝑦 = 0                                  𝑅𝑅𝐴𝐴𝑦𝑦 = − 1
12
𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;              −𝑅𝑅𝐴𝐴𝑥𝑥 + 𝑞𝑞𝑙𝑙 = 0                                             𝑅𝑅𝐴𝐴𝑥𝑥 = 𝑞𝑞𝑙𝑙 

 

Fig. 2.4.6. 

The compound frame presented in Fig. 2.4.5. has been divided at hinges C, G and F into 
two simple frames and a tie GF (Fig. 2.4.6.). The reactions 𝑅𝑅𝐶𝐶𝑥𝑥,𝑅𝑅𝐶𝐶𝑦𝑦 and 𝑁𝑁 (there is only 
one force N in the tie) can be calculated by taking into account either the left or right 
frame. 

If we take into account the right one we can use the left part to verify the results. If we 
take the left one, we use the right for verification. 

– the left frame: 
          ∑𝑀𝑀(𝐶𝐶) = 0;            −𝑅𝑅𝐵𝐵 ∙ 2𝑙𝑙 + 𝑞𝑞𝑙𝑙 ∙ 5𝑙𝑙

2
− 𝑁𝑁 ∙ 2𝑙𝑙 = 0           𝑁𝑁 = 13

6
𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                𝑅𝑅𝐵𝐵 + 𝑅𝑅𝐶𝐶𝑦𝑦 = 0                                    𝑅𝑅𝐶𝐶𝑦𝑦 = 11
12
𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                𝑅𝑅𝑐𝑐𝑥𝑥 − 𝑁𝑁 + 𝑞𝑞𝑙𝑙 = 0                            𝑅𝑅𝐶𝐶𝑥𝑥 = 7
6
𝑞𝑞𝑙𝑙 

3. Internal forces equations 
Fig. 2.4.7. presents the frame reactions and loadings. 
The bottom fibres of bar members have been marked by using a dashed line. 

Segment A–F  0 ≤ 𝑦𝑦1 < 𝑙𝑙 

𝑉𝑉(𝑦𝑦1) = 𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑦𝑦1) = 𝑞𝑞𝑙𝑙 ∙ 𝑦𝑦1 
𝑀𝑀(𝑦𝑦1 = 0) = 0           𝑀𝑀(𝑦𝑦1 = 𝑙𝑙) = 𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑦𝑦1) =
1

12
𝑞𝑞𝑙𝑙 

Segment F–E  0 ≤ 𝑦𝑦2 < 2𝑙𝑙 

𝑉𝑉(𝑦𝑦2) = 𝑞𝑞𝑙𝑙 −
13
6
𝑞𝑞𝑙𝑙 = −

7
6
𝑞𝑞𝑙𝑙 
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𝑀𝑀(𝑦𝑦2) = 𝑞𝑞𝑙𝑙 ∙ (𝑙𝑙 + 𝑦𝑦2) −
13
6
𝑞𝑞𝑙𝑙 ∙ 𝑦𝑦2 

𝑀𝑀(𝑦𝑦2 = 0) = 𝑞𝑞𝑙𝑙2           𝑀𝑀(𝑦𝑦2 = 2𝑙𝑙) = −4
3
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑦𝑦2) =
1

12
𝑞𝑞𝑙𝑙 

 

Fig. 2.4.7. 

Segment B–H  0 ≤ 𝑦𝑦3 < 𝑙𝑙 

𝑉𝑉(𝑦𝑦3) = −𝑞𝑞𝑦𝑦3  
𝑉𝑉(𝑦𝑦3 = 0) = 0           𝑉𝑉(𝑦𝑦3 = 𝑙𝑙) = −𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑦𝑦3) = −𝑞𝑞𝑦𝑦3 ∙
𝑦𝑦3
2

= −𝑞𝑞 ∙
(𝑦𝑦3)2

2
 

𝑀𝑀(𝑦𝑦3 = 0) = 0           𝑀𝑀(𝑦𝑦3 = 𝑙𝑙) = −𝑞𝑞 ∙ (𝑙𝑙)2

2
= −1

2
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑦𝑦3) =
11
12

𝑞𝑞𝑙𝑙 

Segment C–G  0 ≤ 𝑦𝑦4 < 2𝑙𝑙 

𝑉𝑉(𝑦𝑦4) =
7
6
𝑞𝑞𝑙𝑙 

𝑀𝑀(𝑦𝑦4) = −
7
6
𝑞𝑞𝑙𝑙 ∙ 𝑦𝑦4 

𝑀𝑀(𝑦𝑦4 = 0) = 0           𝑀𝑀(𝑦𝑦4 = 2𝑙𝑙) = −7
3
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑦𝑦4) =
11
12

𝑞𝑞𝑙𝑙 

Segment D–E  0 ≤ 𝑑𝑑5 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑5) = −𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑5) = 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑5 
𝑀𝑀(𝑑𝑑5 = 0) = 0          𝑀𝑀(𝑑𝑑5 = 𝑙𝑙) = 𝑞𝑞𝑙𝑙2 
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𝑁𝑁(𝑑𝑑5) = 0 

Segment C–E  0 ≤ 𝑑𝑑6 < 4𝑙𝑙 

𝑉𝑉(𝑑𝑑6) = −
11
12

𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑6) = 6𝑞𝑞𝑙𝑙2 −
11
12

𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑6 

𝑀𝑀(𝑑𝑑6 = 0) = 6𝑞𝑞𝑙𝑙2          𝑀𝑀(𝑑𝑑6 = 4𝑙𝑙) = 7
3
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑6) =
7
6
𝑞𝑞𝑙𝑙 

Segment H–G  0 ≤ 𝑑𝑑7 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑7) = −
11
12

𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑7) = −
11
12

𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑7 − 𝑞𝑞𝑙𝑙 ∙
1
2
𝑙𝑙  

𝑀𝑀(𝑑𝑑7 = 0) = −1
2
𝑞𝑞𝑙𝑙2          𝑀𝑀(𝑑𝑑7 = 2𝑙𝑙) = −7

3
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑7) = −𝑞𝑞𝑙𝑙 
Internal forces diagrams are presented in Fig. 2.4.8. 
Moments verifications – equilibrium of the moments for the E node (Fig. 2.4.8.). 

 

Fig. 2.4.8. 
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Computational example 2.4.3. 
Draw M, V, N diagrams for the frame presented in Fig. 2.4.9. 

 

Fig. 2.4.9. 

1. Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 4 + 2 − 3 ∙ 2 = 0  
2. The support reactions: 

Compound frame presented in Fig. 2.4.9. has been divided in the hinge C into two 
simple frames (Fig. 2.4.10.). 

 

Fig. 2.4.10. 

– the left frame – equations of equilibrium: 
            ∑𝑀𝑀(𝐶𝐶) = 0;             −𝑅𝑅𝐵𝐵 ∙ 6𝑙𝑙 + 6𝑞𝑞𝑙𝑙 ∙ 3𝑙𝑙 = 0                𝑅𝑅𝐵𝐵 = 3𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                   𝑅𝑅𝐵𝐵 − 6𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐶𝐶𝑦𝑦 = 0                  𝑅𝑅𝐶𝐶𝑦𝑦 = 3𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                   𝑅𝑅𝑐𝑐𝑥𝑥 = 0                   

– the right frame – equations of equilibrium: 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                      𝑅𝑅𝐴𝐴𝑦𝑦 − 𝑅𝑅𝐶𝐶𝑦𝑦 = 0                         𝑅𝑅𝐴𝐴𝑦𝑦 = 3𝑞𝑞𝑙𝑙 

            ∑𝑀𝑀(𝐴𝐴) = 0;    −𝑀𝑀𝐴𝐴 + 𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 4𝑙𝑙+𝑅𝑅𝐶𝐶𝑥𝑥 ∙ 4𝑙𝑙 + 2𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 + 𝑞𝑞𝑙𝑙2 = 0     𝑀𝑀𝐴𝐴 = 17 𝑞𝑞𝑙𝑙2 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                  −𝑅𝑅𝐶𝐶𝑥𝑥 − 2𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴𝑥𝑥 = 0               𝑅𝑅𝐴𝐴𝑥𝑥 = 2𝑞𝑞𝑙𝑙 

 
3. Internal forces equations 

Fig. 2.4.11. presents the frame reactions and loadings. 

Segment A–D  0 ≤ 𝑦𝑦1 < 2𝑙𝑙 

𝑉𝑉(𝑦𝑦1) = −2𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑦𝑦1) =  17𝑞𝑞𝑙𝑙2 −  2𝑞𝑞𝑙𝑙 ∙ 𝑦𝑦1 
𝑀𝑀(𝑦𝑦1 = 0) = 17𝑞𝑞𝑙𝑙2            𝑀𝑀(𝑦𝑦1 = 2𝑙𝑙) = 13𝑞𝑞𝑙𝑙2 
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𝑁𝑁(𝑦𝑦1) = −3𝑞𝑞𝑙𝑙 

 

Fig. 2.4.11. 

Segment D–F  0 ≤ 𝑦𝑦2 < 2𝑙𝑙 

𝑉𝑉(𝑦𝑦2) = −2𝑞𝑞𝑙𝑙 + 2𝑞𝑞𝑙𝑙 = 0 
𝑀𝑀(𝑦𝑦2) = 17𝑞𝑞𝑙𝑙2 − 2𝑞𝑞𝑙𝑙 ∙ (2𝑙𝑙 + 𝑦𝑦2 ) + 2𝑞𝑞𝑙𝑙 ∙ 𝑦𝑦2 = 13𝑞𝑞𝑙𝑙2  
𝑁𝑁(𝑦𝑦2) = −3𝑞𝑞𝑙𝑙 

Segment E–F  0 ≤ 𝑑𝑑3 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = 0 
𝑀𝑀(𝑑𝑑3) = 𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑3) = 0 

Segment C–F  0 ≤ 𝑑𝑑4 < 4𝑙𝑙 

𝑉𝑉(𝑑𝑑4) = −3𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑4) = −3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑4 
𝑀𝑀(𝑑𝑑4 = 0) = 0          𝑀𝑀(𝑑𝑑4 = 4𝑙𝑙) = −12𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑4) = 0 

Segment C–G  0 ≤ 𝑑𝑑5 < 3𝑙𝑙 

𝑉𝑉(𝑑𝑑5) = −3𝑞𝑞𝑙𝑙 + 𝑞𝑞𝑑𝑑5 
𝑉𝑉(𝑑𝑑5 = 0) = −3𝑞𝑞𝑙𝑙           𝑉𝑉(𝑑𝑑5 = 3𝑙𝑙) = 0  

𝑀𝑀(𝑑𝑑5) = 3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑5 − 𝑞𝑞𝑑𝑑5 ∙
𝑑𝑑5
2

= 3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑5 − 𝑞𝑞 ∙
(𝑑𝑑5)2

2
 

𝑀𝑀(𝑑𝑑5 = 0) = 0            𝑀𝑀(𝑑𝑑5 = 3𝑙𝑙) = 9
2
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑5) = 0 
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Segment H–G  0 ≤ 𝑑𝑑6 < 3𝑙𝑙 

𝑉𝑉(𝑑𝑑6) = −𝑞𝑞𝑑𝑑6 
𝑉𝑉(𝑑𝑑6 = 0) = 0           𝑉𝑉(𝑑𝑑6 = 3𝑙𝑙) = −3𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑6) = −𝑞𝑞𝑑𝑑6 ∙
𝑑𝑑6
2

= −𝑞𝑞 ∙
(𝑑𝑑6)2

2
 

𝑀𝑀(𝑑𝑑6 = 0) = 0           𝑀𝑀(𝑑𝑑6 = 3𝑙𝑙) = − 9
2
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑6) = 0 

Segment B–G  0 ≤ 𝑑𝑑7 < 3𝑙𝑙,     0 ≤ 𝑦𝑦7 < 2𝑙𝑙 

The system of forces in segment B–G is presented in Fig. 2.4.12. 

 

Fig. 2.4.12. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
3
√13

=
3√13

13
,       𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

2
√13

=
2√13

13
 

𝑉𝑉(𝑑𝑑7,𝑦𝑦7) = 3𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 3𝑞𝑞𝑙𝑙 ∙
3
√13

= 9
√13
13

𝑞𝑞𝑙𝑙 

𝑀𝑀(𝑑𝑑7,𝑦𝑦7) = 3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑7 
𝑀𝑀(𝑑𝑑7 = 0, 𝑦𝑦7 = 0) = 0           𝑀𝑀(𝑑𝑑7 = 3𝑙𝑙, 𝑦𝑦7 = 2𝑙𝑙) = 9𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑7,𝑦𝑦7) = −3𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −3𝑞𝑞𝑙𝑙 ∙
2
√13

= −6
√13
13

𝑞𝑞𝑙𝑙 

Internal forces diagrams are presented in Fig. 2.4.13. 

Moments verifications – equilibrium of the moments for the F and G nodes (Fig. 2.4.13.). 
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Fig. 2.4.13. 

Computational example 2.4.4. 

Draw M, V, N diagrams for the frame presented in Fig. 2.4.14. 

 

Fig. 2.4.14. 

1. Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 4 + 2 − 3 ∙ 2 = 0  
2. The support reactions: 

The compound frame presented in Fig. 2.4.14. has been divided at hinge C into two 
simple frames (Fig. 2.4.15.). 
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Fig. 2.4.15. 

– the right frame: 
       ∑𝑀𝑀(𝐶𝐶) = 0;              𝑅𝑅𝐴𝐴 ∙ 4𝑙𝑙 − 4𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 = 0                    𝑅𝑅𝐴𝐴 = 2𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 𝑅𝑅𝐴𝐴 − 𝑅𝑅𝐶𝐶𝑦𝑦 = 0                                  𝑅𝑅𝐶𝐶𝑦𝑦 = 2𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;               −3𝑞𝑞𝑙𝑙 − 4𝑞𝑞𝑙𝑙 +  𝑅𝑅𝑐𝑐𝑥𝑥 = 0                  𝑅𝑅𝐶𝐶𝑥𝑥 = 7𝑞𝑞𝑙𝑙 
– the left frame: 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                     𝑅𝑅𝐵𝐵𝑦𝑦 − 2𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐶𝐶𝑦𝑦 = 0                  𝑅𝑅𝐵𝐵𝑦𝑦 = 0 

       ∑𝑀𝑀(𝐵𝐵) = 0;    −𝑀𝑀𝐵𝐵+𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 𝑙𝑙−4𝑞𝑞𝑙𝑙2 + 𝑅𝑅𝐶𝐶𝑥𝑥 ∙ 4𝑙𝑙 + 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 4𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 = 0       𝑀𝑀𝐴𝐴 = 20 𝑞𝑞𝑙𝑙2 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                −𝑅𝑅𝐶𝐶𝑥𝑥 + 4𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐵𝐵𝑥𝑥 = 0                  𝑅𝑅𝐵𝐵𝑥𝑥 = 3𝑞𝑞𝑙𝑙 

Fig. 2.4.16. presents the frame reactions and loadings. 

3. Internal forces equations 

Segment C–E  0 ≤ 𝑑𝑑3 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = −2𝑞𝑞𝑙𝑙 
𝑀𝑀(𝑑𝑑3) = 2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 − 4𝑞𝑞𝑙𝑙2 
𝑀𝑀(𝑑𝑑3 = 0) = −4𝑞𝑞𝑙𝑙2           𝑀𝑀(𝑑𝑑3 = 𝑙𝑙) = −2𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑3) = −7𝑞𝑞𝑙𝑙 

Segment F–E  0 ≤ 𝑑𝑑4 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑4) = −2𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑4) = −2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑4 
𝑀𝑀(𝑑𝑑4 = 0) = 0          𝑀𝑀(𝑑𝑑4 = 𝑙𝑙) = −2𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑4) = 0 
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Segment B–E  0 ≤ 𝑦𝑦5 < 4𝑙𝑙 

𝑉𝑉(𝑦𝑦5) = −3𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑦𝑦5  
𝑉𝑉(𝑦𝑦5 = 0) = −3𝑞𝑞𝑙𝑙           𝑉𝑉(𝑦𝑦5 = 4𝑙𝑙) = −7𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑦𝑦5) = −20𝑞𝑞𝑙𝑙2 + 3𝑞𝑞𝑙𝑙 ∙ 𝑦𝑦5 + 𝑞𝑞𝑦𝑦5 ∙
𝑦𝑦5
2

= −20𝑞𝑞𝑙𝑙2 + 3𝑞𝑞𝑙𝑙 ∙ 𝑦𝑦5 + 𝑞𝑞 ∙
(𝑦𝑦5)2

2
 

𝑀𝑀(𝑦𝑦5 = 0) = −20𝑞𝑞𝑙𝑙2 
𝑀𝑀(𝑦𝑦5 = 4𝑙𝑙) = 0 
𝑁𝑁(𝑦𝑦5) = 0 

 

Fig. 2.4.16. 

Segment A–D     0 ≤ 𝑑𝑑1 < 3𝑙𝑙,     0 ≤ 𝑦𝑦1 < 4𝑙𝑙 

The system of forces in  segment A–D is presented in Fig. 2.4.17. 

 

Fig. 2.4.17. 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
3
5

,       𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
4
5

 

𝑉𝑉(𝑑𝑑1,𝑦𝑦1) = −2𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝑦𝑦1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −2𝑞𝑞𝑙𝑙
3
5

+ 𝑞𝑞𝑦𝑦1
4
5

 

𝑉𝑉(𝑑𝑑1,𝑦𝑦1) = 0   → −2𝑞𝑞𝑙𝑙
3
5

+ 𝑞𝑞𝑦𝑦1
4
5

= 0  →   𝑦𝑦1 =
3
2
𝑙𝑙   →  𝑑𝑑1 =

3
4
𝑦𝑦1 =

9
8
𝑙𝑙    

𝑉𝑉(𝑑𝑑1 = 0,    𝑦𝑦1 = 0) = −
6
5

 𝑞𝑞𝑙𝑙 

𝑉𝑉(𝑑𝑑1 = 3𝑙𝑙,    𝑦𝑦1 = 4𝑙𝑙) = 2𝑞𝑞𝑙𝑙 

𝑀𝑀(𝑑𝑑1,𝑦𝑦1) = 2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 − 𝑞𝑞𝑦𝑦1 ∙
𝑦𝑦1
2

= 2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 − 𝑞𝑞 ∙
(𝑦𝑦1)2

2
 

𝑀𝑀(𝑑𝑑1 = 0,    𝑦𝑦1 = 0) = 0  
𝑀𝑀(𝑑𝑑1 = 3𝑙𝑙,    𝑦𝑦1 = 4𝑙𝑙) = −2𝑞𝑞𝑙𝑙2 

𝑀𝑀�𝑑𝑑1 =
9
8
𝑙𝑙,    𝑦𝑦1 =

3
2
𝑙𝑙� =

9
8

 𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑1,𝑦𝑦1) = −2𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑞𝑞𝑦𝑦1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −2𝑞𝑞𝑙𝑙 ∙
4
5
− 𝑞𝑞𝑦𝑦1

3
5

 

𝑁𝑁(𝑑𝑑1 = 0,    𝑦𝑦1 = 0) = −
8
5

 𝑞𝑞𝑙𝑙 

𝑁𝑁(𝑑𝑑1 = 3𝑙𝑙,    𝑦𝑦1 = 4𝑙𝑙) = −4𝑞𝑞𝑙𝑙 

Segment C–D  0 ≤ 𝑑𝑑2 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = −2𝑞𝑞𝑙𝑙 
𝑀𝑀(𝑑𝑑2) = −2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 
𝑀𝑀(𝑑𝑑2 = 0) = 0           𝑀𝑀(𝑑𝑑2 = 𝑙𝑙) = −2𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑2) = −7𝑞𝑞𝑙𝑙 

 

Fig. 2.4.18a. 
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Fig. 2.4.18b. 

Internal forces diagrams are presented in Fig. 2.4.18. 

Verification of the results – equilibrium of the moments for the E node (Fig. 2.4.18.). 

Computational example 2.4.5. 
Draw M, V, N diagrams for the frame presented in Fig. 2.4.19.a. 

1. Degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 3 + 6 − 3 ∙ 3 = 0  
2. The support reactions: 

Equilibrium equations for the frame (Fig. 2.4.19.b.): 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                 𝑅𝑅𝐵𝐵𝑥𝑥 + 2𝑞𝑞𝑙𝑙 − 3𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐵𝐵𝑥𝑥 = 𝑞𝑞𝑙𝑙 

       ∑𝑀𝑀(𝐴𝐴) = 0;     −𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 7𝑙𝑙 − 4𝑞𝑞𝑙𝑙 ∙ 10𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 6𝑙𝑙 + 3𝑞𝑞𝑙𝑙 ∙ 3
2
𝑙𝑙 − 𝑞𝑞𝑙𝑙2+𝑅𝑅𝐵𝐵𝑥𝑥 ∙ 𝑙𝑙 = 0      

𝑅𝑅𝐵𝐵𝑦𝑦 = −
95
14

𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 𝑅𝑅𝐵𝐵𝑦𝑦 + 4𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴 = 0                  𝑅𝑅𝐴𝐴 = 39
14
𝑞𝑞𝑙𝑙 
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a)  b) 

 

Fig. 2.4.19. 

The compound frame presented in Fig. 2.4.19. has been separated at hinges C, D into 
two frames (Fig. 2.4.20.a.). 

The upper frame is at three-hinged frame. The three-hinged frame has two support 
reactions at each pin support. It is possible to write only three equilibrium equations for 
the whole upper frame but there are four reactions. It is necessary to find one more 
equation. The best equation in this case is a moment equation about the middle hinge. We 
can decompose the upper frame into two simple frames (Fig. 2.4.20.b.) and calculate the 
moment about hinge E (either for the left or for the right frame). If we take the right one 
we can use the left part to verify the results. If we take the left one, we use the right for 
verification. 

a)  b) 

 

Fig. 2.4.20. 
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– frame DCE: 
       ∑𝑀𝑀(𝐷𝐷) = 0;            −𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 7𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 3𝑙𝑙 − 𝑞𝑞𝑙𝑙2 = 0         𝑅𝑅𝐶𝐶𝑦𝑦 = −𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 𝑅𝑅𝐷𝐷𝑦𝑦 + 𝑅𝑅𝐶𝐶𝑦𝑦 = 0                                    𝑅𝑅𝐷𝐷𝑦𝑦 = 𝑞𝑞𝑙𝑙 

       ∑𝑀𝑀𝐸𝐸
𝐿𝐿 = 0;             −𝑅𝑅𝐶𝐶𝑦𝑦 ∙ 4𝑙𝑙 + 𝑅𝑅𝐶𝐶𝑥𝑥 ∙ 3𝑙𝑙 = 0                     𝑅𝑅𝐶𝐶𝑥𝑥 = −4

3
𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦𝐿𝐿 = 0;                 𝑅𝑅𝐸𝐸𝑦𝑦 + 𝑅𝑅𝐶𝐶𝑦𝑦 = 0                                  𝑅𝑅𝐸𝐸𝑦𝑦 = 𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑥𝑥𝐿𝐿 = 0;                 𝑅𝑅𝑐𝑐𝑥𝑥 +𝑅𝑅𝐸𝐸𝑥𝑥 + 2𝑞𝑞𝑙𝑙 = 0                       𝑅𝑅𝐸𝐸𝑥𝑥 = −2
3
𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                 𝑅𝑅𝑐𝑐𝑥𝑥 +𝑅𝑅𝐷𝐷𝑥𝑥 + 2𝑞𝑞𝑙𝑙 = 0                        𝑅𝑅𝐷𝐷𝑥𝑥 = −2
3
𝑞𝑞𝑙𝑙 

Fig. 2.4.21. presents the frame reactions and loadings. 

 

Fig. 2.4.21. 

Internal forces diagrams are presented in Fig. 2.4.22. 
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Fig. 2.4.22. 

2.4.2. Review problems – frames 

Draw internal forces diagrams for the frames presented below: 

Problem 1. 

 

Fig. 2.4.23. 
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Problem 2. 

 

Fig. 2.4.24. 

Problem 3. 

 

Fig. 2.4.25. 

Problem 4. 

 

Fig. 2.4.26. 
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Problem 5. 

 

Fig. 2.4.27. 

2.5. Statically determinate curved members [1], [2], [4] 
2.5.1. Introduction to arches [2] 

Arches have been used for a very long time to span large distances in buildings and 
bridges. 

Taking into account the height of the arch, we can divide arches into flat (𝑓𝑓 ≤ 𝑙𝑙
5
) and 

tall (𝑓𝑓 ≥ 𝑙𝑙
5
) ones, where f-rise (hight), l-span.  

 a) b) 

 

 c) d) 

 

Fig. 2.5.1. 

Model of an arch structure is a curved member restrained at its ends with 
a combination of fixed, hinged, and roller supports. Fig. 2.5.1. illustrates various types of 
arches due to their supports systems and connections: 

• fixed-fixed arch (Fig. 2.5.1.a.), 
• single-hinged arch (Fig. 2.5.1.b.), 
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• two-hinged arch (Fig. 2.5.1.c.), 
• three-hinged arch (Fig. 2.5.1.d.). 
The three-hinged arch is a statically determinate structure and its reactions 

and internal forces can be evaluated by static equations of equilibrium. The single-hinged 
arch, two-hinged arch and fixed-fixed arch are statically indeterminate structures. 

Types of arch due to the curvature of the arch: 
• parabolic arch (Fig. 2.5.2.): 

  

Fig. 2.5.2. 

 
Equation of the central line for a parabolic arch is presented below. Ordinate y of any 

point of the central line of the parabolic arch (Fig. 2.5.2.) can be calculated by the formula: 

 𝑦𝑦 = 4𝑓𝑓
𝑙𝑙2
⋅ 𝑑𝑑 ⋅ (𝑙𝑙 − 𝑑𝑑),

  
(2.11)

 
Hence slope can be expressed by: 

 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑡𝑡𝑡𝑡𝑡𝑡 = 4𝑓𝑓
𝑙𝑙2
⋅ (𝑙𝑙 − 2𝑑𝑑) ⇒ 𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑃𝑃𝑡𝑡𝑡𝑡 �4𝑓𝑓

𝑙𝑙2
⋅ (𝑙𝑙 − 2𝑑𝑑)�  (2.12)

 • circular arch (Fig. 2.5.3.): 

 

Fig. 2.5.3. 

Equation of the central line for circular arch (Fig. 2.5.3.) has the form: 

 𝑦𝑦 = 𝑓𝑓 − 𝑟𝑟 + �𝑟𝑟2 − �𝑑𝑑 − 𝑙𝑙
2
�
2

  
(2.13)

 
and slope can be expressed by: 
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 −−

−==
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2
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2
2

2

2
2

2

lxr

xlarctg
lxr

xltg
dx
dy ϕϕ   (2.14) 

• elliptical arch (Fig. 2.5.4.): 

 

Fig. 2.5.4. 

Equation of the central line for elliptical arch is presented below. Ordinate y of any 
point of the central line of the elliptical arch (Fig. 2.5.4.) can be calculated by the formula: 

 𝑦𝑦 = �𝑓𝑓2 −
4𝑓𝑓2⋅�𝑥𝑥−𝑙𝑙

2�
2

𝑙𝑙2   (2.15)
 

Slope can be written as: 

 𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑡𝑡𝑡𝑡𝑡𝑡 = −𝑓𝑓⋅(2𝑥𝑥−𝑙𝑙)
𝑙𝑙⋅�−𝑥𝑥⋅(𝑥𝑥−𝑙𝑙)

    ⇒      𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑃𝑃𝑡𝑡𝑡𝑡 � −𝑓𝑓⋅(2𝑥𝑥−𝑙𝑙)
𝑙𝑙⋅�−𝑥𝑥⋅(𝑥𝑥−𝑙𝑙)

�  (2.16) 

2.5.2. Arches – internal forces [1], [4] 

In this chapter, the general solution for the internal forces in a planar curved member will 
be analyzed. 

 

Fig. 2.5.5. 

The internal forces in a section of a body are those forces which hold together two 
parts of a given body separated by the section. Both parts of the body remain in 
equilibrium. 
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The basic idea of internal forces has been described in chapter 2.1. and chapter 2.2. 
Fig. 2.5.5. presents the simply supported arch under planar load. In a statically 

determinate arch, we can calculate the support reactions from the three equations 
of equilibrium (similar to beams or frames). 

If we interest the arch with a section α1, we have three internal forces in this cross-
section: normal (axial) force Nα1, shear (transversal) force Vα1 and bending moment Mα1. 
Their positive positions are shown in Fig. 2.5.6.a. If we make a cross-section α2, three 
internal forces will appear in it: normal (axial) force Nα2, shear (transversal) force Vα2 and 
bending moment Mα2 (Fig. 2.5.6.a.). 

 

Fig. 2.5.6.a. 

 

Fig. 2.5.6.b. 

As one can see the internal forces (shear and normal) that arise after cutting the bar 
(section α1 – α1 and α2 – α2), which are parallel and perpendicular to the axis of the bar, 
will change their position along with the curved line of the arch. 

Actually, if we know the support reactions and loads we just needs to compose the 
three equilibrium equations for the left (or right) part of the arch and will find the values 
of the internal forces. 

The equations depend on the adopted coordinate system We can perform calculations 
either with respect to Cartesian coordinates (x, y) or with respect to polar coordinates (ρ, φ). 
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2.5.3. Relationships between loads, shear and moment 
for arch with respect to polar coordinates [1], [4] 

Let’s take into account the arch member shown in Fig. 2.5.6.a. and its differential element 
(Fig. 2.5.6.b.). The external loadings have been reduced to the arch central line 
(Fig. 2.5.7.), hence, there is also the distributed moment 𝑚𝑚 = 𝑞𝑞𝑡𝑡

ℎ
2

. 
Considering Vα, Nα and Mα to be functions of φ, expanding these variables in terms of 

their differentials, and retaining up to first order terms we have the forces shown in 
Fig. 2.5.7. One can write three equations of equilibrium for differential arch elements: 

 ∑𝐹𝐹𝑖𝑖𝑖𝑖 = 0;       (2.17) 

−(𝑉𝑉𝛼𝛼 + 𝑑𝑑𝑉𝑉𝛼𝛼) cos 𝑑𝑑𝑑𝑑
2

+ 𝑉𝑉𝛼𝛼 cos 𝑑𝑑𝑑𝑑
2
− 𝑁𝑁𝛼𝛼 sin 𝑑𝑑𝑑𝑑

2
− (𝑁𝑁𝛼𝛼 + 𝑑𝑑𝑁𝑁𝛼𝛼) sin 𝑑𝑑𝑑𝑑

2
− 𝑞𝑞𝑖𝑖𝑑𝑑𝑃𝑃 = 0  (2.18) 

 −𝑑𝑑𝑉𝑉𝛼𝛼 − 2𝑁𝑁𝛼𝛼
𝑑𝑑𝑑𝑑
2𝜚𝜚
− 𝑞𝑞𝑖𝑖𝑑𝑑𝑃𝑃 = 0  (2.19) 

 ∑𝐹𝐹𝑖𝑖𝑡𝑡 = 0;      (2.20) 

(𝑁𝑁𝛼𝛼 + 𝑑𝑑𝑁𝑁𝛼𝛼) cos 𝑑𝑑𝑑𝑑
2
− 𝑁𝑁𝛼𝛼 cos 𝑑𝑑𝑑𝑑

2
− 𝑉𝑉𝛼𝛼 sin 𝑑𝑑𝑑𝑑

2
− (𝑉𝑉𝛼𝛼 + 𝑑𝑑𝑉𝑉𝛼𝛼) sin 𝑑𝑑𝑑𝑑

2
+ 𝑞𝑞𝑡𝑡𝑑𝑑𝑃𝑃 = 0  (2.21) 

 𝑑𝑑𝑁𝑁𝛼𝛼 − 2𝑉𝑉𝛼𝛼
𝑑𝑑𝑑𝑑
2𝜚𝜚

+ 𝑞𝑞𝑡𝑡𝑑𝑑𝑃𝑃 = 0  (2.22) 

 ∑𝑀𝑀(𝑐𝑐) = 0;      (2.23) 

 −𝑀𝑀𝛼𝛼 + (𝑀𝑀𝛼𝛼 + 𝑑𝑑𝑀𝑀𝛼𝛼) − 𝑉𝑉𝛼𝛼𝜚𝜚 tan 𝑑𝑑𝑑𝑑
2
− (𝑉𝑉𝛼𝛼 + 𝑑𝑑𝑉𝑉𝛼𝛼)𝜚𝜚tan 𝑑𝑑𝑑𝑑

2
− 𝑚𝑚𝑑𝑑𝑃𝑃 = 0  (2.24) 

 −𝑑𝑑𝑀𝑀𝛼𝛼 + 𝑉𝑉𝛼𝛼𝑑𝑑𝑃𝑃 + 𝑚𝑚𝑑𝑑𝑃𝑃 = 0  (2.25) 

𝑑𝑑𝑡𝑡 ≅ 0, hence   sin𝑑𝑑𝑡𝑡 ≅ 𝑑𝑑𝑡𝑡;   cos𝑑𝑑𝑡𝑡 ≅ 1 �   sin 𝑑𝑑𝑑𝑑
2
≅ 𝑑𝑑𝑑𝑑

2
;   cos 𝑑𝑑𝑑𝑑

2
≅ 1  �    𝑑𝑑𝑃𝑃 = 𝜌𝜌𝑑𝑑𝑡𝑡  

 

Fig. 2.5.7. 
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The differential equations of equilibrium have the form: 

 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑑𝑑

= −𝑞𝑞𝑖𝑖 −
𝑑𝑑𝛼𝛼
𝜚𝜚

 (2.26) 

 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑑𝑑

= −𝑞𝑞𝑡𝑡 + 𝑑𝑑𝛼𝛼
𝜚𝜚

 (2.27) 

 𝑑𝑑𝑑𝑑𝛼𝛼
𝑑𝑑𝑑𝑑

= 𝑉𝑉𝛼𝛼 + 𝑚𝑚   (2.28) 

As we can see above, there are connections between the distributed loads, shear and 
moment functions. 

2.5.4. Computational problems – arches 

In this chapter the members of circular, parabolic and elliptical curvature of the arch will 
be analyzed. 

Computational example 2.5.1. 
A semicircular arch is loaded as shown in Fig. 2.5.8.a. Draw internal forces diagrams. 

a)  b) 

 

Fig. 2.5.8. 

1. Degree of static indeterminacy: n = 0 

2. Support reactions (Fig. 2.5.8.b.): 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;              −𝑃𝑃 + 𝑅𝑅𝐴𝐴𝑦𝑦 = 0      →       𝑅𝑅𝐴𝐴𝑦𝑦 = 𝑃𝑃  
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                          𝑅𝑅𝐴𝐴𝑥𝑥 = 0                
∑𝑀𝑀𝐴𝐴 = 0;           𝑀𝑀𝐴𝐴 − 𝑃𝑃 ∙ 2𝑟𝑟 = 0      →       𝑀𝑀𝐴𝐴 = 2𝑃𝑃𝑟𝑟    
To determine internal forces, we isolate an arbitrary span such as B–A defined in 

Fig. 2.5.9. 

3. Internal forces equations – span B–A (Fig. 2.5.9.) 

In order to evaluate the axial (Nα) force and shear force (Vα), we need to specify the 
angle φ between the tangential and the horizontal axis Fig. 2.5.9. 

Now, we have to determine two components of concentrated P force: longitudinal 
force component as well as a transverse force component (with respect to the section α) – 
Fig. 2.5.9. 
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Enforcing equilibrium for the right span leads to the general solution for the internal 
forces. 

 
Fig. 2.5.9. 

Span B–A      0 ≤ 𝑑𝑑 < 2𝑟𝑟     0 ≤ 𝑦𝑦 < 𝑟𝑟 

�𝐹𝐹𝑖𝑖𝑡𝑡 = 0;          𝑁𝑁𝛼𝛼 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡   

�𝐹𝐹𝑖𝑖𝑖𝑖 = 0;         𝑉𝑉𝛼𝛼 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡  

             �𝑀𝑀𝑖𝑖𝐶𝐶 = 0;       𝑀𝑀𝛼𝛼 = −𝑃𝑃𝑑𝑑 

𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 =
𝑟𝑟 − 𝑑𝑑
𝑟𝑟

 

        𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑃𝑃 𝑃𝑃𝑃𝑃𝑃𝑃
𝑟𝑟 − 𝑑𝑑
𝑟𝑟

 

 

Table 2.5.1. Internal force magnitudes 

Point 
x 

[r] 
𝑡𝑡 

[rad] 
𝑉𝑉𝛼𝛼 
[P] 

𝑁𝑁𝛼𝛼 
[P] 

𝑀𝑀𝛼𝛼  
[Pr] 

B 0.00 
𝜋𝜋
2

 0 1 0 

1 0.20 0.927295 0.6 0.8 −0.2 

2 0.40 0.6435011 0.8 0.6 −0.4 

3 0.60 0.4115168 0.916515139 0.4 −0.6 

4 0.80 0.2013579 0.979795897 0.2 −0.8 

C 1.00 0 1 0 −1 

5 1.20 −0.2013579 0.979795897 −0.2 −1.2 

6 1.40 −0.4115168 0.916515139 −0.4 −1.4 

7 1.60 −0.6435011 0.8 −0.6 −1.6 

8 1.80 −0.927295 0.6 −0.8 −1.8 

A 2.00 −
𝜋𝜋
2

 0 −1 −2 

Internal forces diagrams are shown in Fig. 2.5.10. 
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Fig. 2.5.10. 

Computational example 2.5.2. 
A three-hinged parabolic arch is loaded as shown in Fig. 2.5.11.a. Draw M, V, N diagrams. 

 a) b) 

 

Fig. 2.5.11. 
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1. Degree of static indeterminacy: n = 4+2 – 3∙2 = 0 

2. Support reactions (Fig. 2.5.11.b.): 

 ∑𝑀𝑀𝐴𝐴 = 0;                            𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 4𝑙𝑙 − 4𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 = 0      →       𝑅𝑅𝐵𝐵𝑦𝑦 = 2𝑞𝑞𝑙𝑙  
 ∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                           −4𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴𝑦𝑦 + 𝑅𝑅𝐵𝐵𝑦𝑦 = 0     →       𝑅𝑅𝐴𝐴𝑦𝑦 = 2𝑞𝑞𝑙𝑙 

 ∑𝑀𝑀𝐶𝐶
𝑃𝑃 = 0;          𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 2𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 𝑅𝑅𝐵𝐵𝑥𝑥 ∙ 6𝑙𝑙 = 0      →       𝑅𝑅𝐵𝐵𝑥𝑥 = 1

3
𝑞𝑞𝑙𝑙  

 ∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                       𝑅𝑅𝐴𝐴𝑥𝑥 − 𝑅𝑅𝐵𝐵𝑥𝑥 = 0                         →       𝑅𝑅𝐴𝐴𝑥𝑥 = 1
3
𝑞𝑞𝑙𝑙          

 
3. Internal forces equations (Fig. 2.5.12.) 

Normal (axial) force 𝑁𝑁𝛼𝛼 in α section is an algebraic sum of all forces of the longitudinal 
components located on the left (or right) side of the section. In the case of a curved 
member, all vertical forces (y direction) should be multiplied by sinφ and horizontal 
forces (x direction) by cosφ. 

Shear (transversal) force 𝑉𝑉𝛼𝛼 in α section  is an algebraic sum of all force components 
normal to the longitudinal direction and located on the left (or right) side of the section. 
In the case of a curved member, all vertical forces (y direction) should be multiplied 
by cosφ and horizontal forces (x direction) by sinφ. 

Bending moment 𝑀𝑀𝛼𝛼  in α section is an algebraic sum of all moments caused by forces 
located on the left (or right) side of the section calculated about the center of the section. 

Origin of the coordinate axis is located at point A as shown in Fig. 2.5.12. 
Taking A as the origin, the equation of the central line for the three-hinged parabolic 

arch is given by: 

𝑦𝑦 =
4(6𝑙𝑙)
(4𝑙𝑙)2

⋅ 𝑑𝑑 ⋅ (4𝑙𝑙 − 𝑑𝑑) = 6𝑑𝑑 −
3
2
𝑑𝑑2

𝑙𝑙
 

The slope is evaluated by: 
𝑑𝑑𝑦𝑦
𝑑𝑑𝑑𝑑

= 𝑡𝑡𝑡𝑡𝑡𝑡 = 6 − 3
𝑑𝑑
𝑙𝑙

 
 

Hence,    𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑃𝑃𝑡𝑡𝑡𝑡 �6 − 3 𝑥𝑥
𝑙𝑙
�              𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = �6 − 3 𝑥𝑥

𝑙𝑙
� 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡                                                         
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Fig. 2.5.12. 

Span A–B      0 ≤ 𝑑𝑑 < 4𝑙𝑙     0 ≤ 𝑦𝑦 < 6𝑙𝑙 
𝑉𝑉𝛼𝛼 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑅𝑅𝐴𝐴𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 =

= 2𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −
𝑞𝑞𝑙𝑙
3
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡

= 2𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −
𝑞𝑞𝑙𝑙
3
�6 − 3

𝑑𝑑
𝑙𝑙
� 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = 0 

 
𝑁𝑁𝛼𝛼 = −𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑅𝑅𝐴𝐴𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

= −2𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −
𝑞𝑞𝑙𝑙
3
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

 
      𝑀𝑀𝛼𝛼 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑑𝑑−𝑅𝑅𝐴𝐴𝑥𝑥𝑦𝑦 − 𝑞𝑞𝑑𝑑 𝑥𝑥

2
= 

              = 2𝑞𝑞𝑙𝑙𝑑𝑑 − 𝑞𝑞𝑙𝑙
3
�6𝑑𝑑 − 3

2
𝑥𝑥2

𝑙𝑙
� − 𝑞𝑞𝑑𝑑 𝑥𝑥

2
=0 

 

Table 2.5.2. Internal force magnitudes 

Point 
x 

[l] 
y 

[l] 
φ 

[rad] 
Vα 

[ql] 
Nα 
[ql] 

Mα 
[ql2] 

A 0 0 1.405648 0 −2.02759 0 

1 0.4 2.16 1.365401 0 −1.63435 0 

2 0.8 3.84 1.299849 0 −1.24544 0 

3 1.2 5.04 1.176005 0 −0.86667 0 

4 1.6 5.76 0.876058 0 −0.52068 0 

C 2 6 0 0 −0.33333 0 

5 2.4 5.76 −0.87606 0 −0.52068 0 

6 2.8 5.04 −1.17601 0 −0.86667 0 

7 3.2 3.84 −1.29985 0 −1.24544 0 

8 3.6 2.16 −1.3654 0 −1.63435 0 

B 4 0 −1.40565 0 −2.02759 0 

Internal forces diagrams are shown in Fig. 2.5.13. 
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Fig. 2.5.13. 

Computational example 2.5.3. 
A three-hinged semicircular arch is loaded as shown in Fig. 2.5.14.a. Draw internal forces 
diagrams. 

 a) b) 

 

Fig. 2.5.14. 

1. Degree of static indeterminacy: n = 4 + 2 – 3∙2 = 0 

2. Support reactions (Fig. 2.5.14.b.): 

 ∑𝑀𝑀𝐴𝐴 = 0;                𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 𝑙𝑙 −
1
2
𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙

4
= 0       →       𝑅𝑅𝐵𝐵𝑦𝑦 = 1

8
𝑞𝑞𝑙𝑙  

 ∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;          −1
2
𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴𝑦𝑦 + 𝑅𝑅𝐵𝐵𝑦𝑦 = 0      →       𝑅𝑅𝐴𝐴𝑦𝑦 = 3

8
𝑞𝑞𝑙𝑙 

 ∑𝑀𝑀𝐶𝐶
𝑃𝑃 = 0;          𝑅𝑅𝐵𝐵𝑦𝑦 ∙

1
2
𝑙𝑙 − 𝑅𝑅𝐵𝐵𝑥𝑥 ∙

1
2
𝑙𝑙 = 0      →       𝑅𝑅𝐵𝐵𝑥𝑥 = 1

8
𝑞𝑞𝑙𝑙  

 ∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                    𝑅𝑅𝐴𝐴𝑥𝑥 − 𝑅𝑅𝐵𝐵𝑥𝑥 = 0            →       𝑅𝑅𝐴𝐴𝑥𝑥 = 1
8
𝑞𝑞𝑙𝑙          

3. Internal forces equations (Fig. 2.5.15.) 
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 a) b) 

 

Fig. 2.5.15. 

Equation of the central line for semicircular arch presented in Fig. 2.5.14. has a form: 
 𝑦𝑦 = √𝑑𝑑𝑙𝑙 − 𝑑𝑑2 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑙𝑙−2𝑥𝑥
2√𝑥𝑥𝑙𝑙−𝑥𝑥2

   ⇒     𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑃𝑃𝑡𝑡𝑡𝑡 � 𝑙𝑙−2𝑥𝑥
2√𝑥𝑥𝑙𝑙−𝑥𝑥2

�;  (x ≠ 0  ˄  x ≠ l)     

 
     x=0  →  𝑡𝑡 = 𝜋𝜋

2
    and      x=l  →  𝑡𝑡 = −𝜋𝜋

2
 

 

Span A–C      0 ≤ 𝑑𝑑 < 1
2
𝑙𝑙     0 ≤ 𝑦𝑦 < 1

2
𝑙𝑙     (Fig. 2.5.15.a.) 

𝑉𝑉𝛼𝛼1 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑅𝑅𝐴𝐴𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 =
3𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −

𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

𝑁𝑁𝛼𝛼1 = −𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑅𝑅𝐴𝐴𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = −
3𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −

𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

𝑀𝑀𝛼𝛼1 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑑𝑑−𝑅𝑅𝐴𝐴𝑥𝑥𝑦𝑦 − 𝑞𝑞𝑑𝑑
𝑑𝑑
2

=
3𝑞𝑞𝑙𝑙
8
𝑑𝑑 −

𝑞𝑞𝑙𝑙
8
𝑦𝑦 − 𝑞𝑞𝑑𝑑

𝑑𝑑
2

 

Span C–B      1
2
𝑙𝑙 ≤ 𝑑𝑑 < 𝑙𝑙     1

2
𝑙𝑙 ≥ 𝑦𝑦 > 0      (Fig. 2.5.15.b.) 

𝑉𝑉𝛼𝛼2 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑅𝑅𝐴𝐴𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞 
𝑙𝑙
2
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

=
3𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −

𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞

𝑙𝑙
2

 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = −
𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −

𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

𝑁𝑁𝛼𝛼2 = −𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑅𝑅𝐴𝐴𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞
𝑙𝑙
2
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

= −
3𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −

𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞

𝑙𝑙
2

 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 =
𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 −

𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

𝑀𝑀𝛼𝛼2 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑑𝑑−𝑅𝑅𝐴𝐴𝑥𝑥𝑦𝑦 − 𝑞𝑞
𝑙𝑙
2
�𝑑𝑑 −

𝑙𝑙
4
� =

3𝑞𝑞𝑙𝑙
8
𝑑𝑑 −

𝑞𝑞𝑙𝑙
8
𝑦𝑦 − 𝑞𝑞

𝑙𝑙
2
�𝑑𝑑 −

𝑙𝑙
4
� 

Table 2.5.3. presents internal force magnitudes. 
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Internal forces diagrams are shown in Fig. 2.5.16. 

 

Fig. 2.5.16. 

Table 2.5.3. presents internal force magnitudes. 
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Table 2.5.3. Internal force magnitudes 

Point 
x 

[l] 
y 

[l] 
φ 

[rad] 
Vα 

[ql] 
Nα 
[ql] 

Mα 
[ql2] 

A 0 0 1.570796 −0.125 −0.375 0 

1 0.1 0.3 0.927295 0.065 −0.295 −0.005 

2 0.2 0.4 0.643501 0.065 −0.205 0.005 

3 0.3 0.458258 0.411517 0.018738635 −0.14456 0.010218 

4 0.4 0.489898 0.201358 −0.0494949 −0.11747 0.008763 

C 0.5 0.5 0 −0.125 −0.125 0 

5 0.6 0.489898 −0.20136 −0.09747449 −0.14747 −0.01124 

6 0.7 0.458258 −0.41152 −0.06456439 −0.16456 −0.01978 

7 0.8 0.4 −0.6435 −0.025 −0.175 −0.025 

8 0.9 0.3 −0.9273 0.025 −0.175 −0.025 

B 1 0 −1.5708 0.125 −0.125 0 

Computational example 2.5.4. 
An elliptical arch is loaded as shown in Fig. 2.5.17. Draw internal forces diagrams. 

a)  b) 

 

Fig. 2.5.17. 

1. Degree of static indeterminacy: n = 0 

2. Support reactions (Fig. 2.5.17.b.): 

 ∑𝑀𝑀𝐴𝐴 = 0;              𝑅𝑅𝐵𝐵 ∙ 𝑙𝑙 −
1
2
𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙

4
= 0      →       𝑅𝑅𝐵𝐵 = 1

8
𝑞𝑞𝑙𝑙  

 ∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;       −1
2
𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴𝑦𝑦 + 𝑅𝑅𝐵𝐵 = 0      →       𝑅𝑅𝐴𝐴𝑦𝑦 = 3

8
𝑞𝑞𝑙𝑙 

 ∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                    𝑅𝑅𝐴𝐴𝑥𝑥 = 0             
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3. Internal forces equations (Fig. 2.5.18.) 

a)  b) 

 

Fig. 2.5.18. 

Equation of the central line for the elliptical arch shown in Fig. 2.5.17. has a form: 

𝑦𝑦 =
1
4
�𝑑𝑑𝑙𝑙 − 𝑑𝑑2 

𝑑𝑑𝑦𝑦
𝑑𝑑𝑥𝑥

= 𝑡𝑡𝑡𝑡𝑡𝑡 = 𝑙𝑙−2𝑥𝑥
8√𝑥𝑥𝑙𝑙−𝑥𝑥2

   ⇒     𝑡𝑡 = 𝑎𝑎𝑟𝑟𝑃𝑃𝑡𝑡𝑡𝑡 � 𝑙𝑙−2𝑥𝑥
8√𝑥𝑥𝑙𝑙−𝑥𝑥2

�; (x≠0  ˄  x≠l) 

 
     x=0    𝑡𝑡 = 𝜋𝜋

2
    and     x=l    𝑡𝑡 = −𝜋𝜋

2
 

Span A–C      0 ≤ 𝑑𝑑 < 1
2
𝑙𝑙     0 ≤ 𝑦𝑦 < 1

8
𝑙𝑙 

𝑉𝑉𝛼𝛼1 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 =
3𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

𝑉𝑉𝛼𝛼1 = 0   →   𝑑𝑑 =  
3
8
𝑙𝑙  

𝑁𝑁𝛼𝛼1 = −𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞𝑑𝑑𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = −
3𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞𝑑𝑑 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

𝑀𝑀𝛼𝛼1 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑑𝑑 − 𝑞𝑞𝑑𝑑
𝑑𝑑
2

=
3𝑞𝑞𝑙𝑙
8
𝑑𝑑 − 𝑞𝑞𝑑𝑑

𝑑𝑑
2

 

Moment extrema:   𝑀𝑀𝛼𝛼1 �𝑑𝑑 = 3𝑙𝑙
8
� = 3𝑞𝑞𝑙𝑙

8
∙ 3𝑙𝑙
8
− 𝑞𝑞

2
�3𝑙𝑙
8
�
2

= 9
128

𝑞𝑞𝑙𝑙2 

Span C–B      1
2
𝑙𝑙 ≤ 𝑑𝑑 < 𝑙𝑙     1

8
𝑙𝑙 ≥ 𝑦𝑦 > 0 

𝑉𝑉𝛼𝛼2 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞 
𝑙𝑙
2
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 =

3𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 − 𝑞𝑞

𝑙𝑙
2

 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = −
𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

𝑁𝑁𝛼𝛼2 = −𝑅𝑅𝐴𝐴𝑦𝑦𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞
𝑙𝑙
2
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 = −

3𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 + 𝑞𝑞

𝑙𝑙
2

 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 =
𝑞𝑞𝑙𝑙
8
𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 

𝑀𝑀𝛼𝛼2 = 𝑅𝑅𝐴𝐴𝑦𝑦𝑑𝑑 − 𝑞𝑞
𝑙𝑙
2
�𝑑𝑑 −

𝑙𝑙
4
� =

3𝑞𝑞𝑙𝑙
8
𝑑𝑑 − 𝑞𝑞

𝑙𝑙
2
�𝑑𝑑 −

𝑙𝑙
4
� 
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Table 2.5.4. Internal force magnitudes 

Point 
x 

[l] 
y 

[l] 
φ 

[rad] 
Vα 

[ql] 
Nα 
[ql] 

Mα 
[ql2] 

A 0 0 1.570796 0 −0.375 0 

1 0.1 0.075 0.927295 0.165 −0.22 0.0325 

2 0.2 0.1 0.643501 0.14 −0.105 0.055 

3 0.3 0.114564 0.411517 0.068738635 −0.03 0.0675 

4 0.4 0.122474 0.201358 −0.0244949 0.005 0.07 

C 0.5 0.125 0 −0.125 0 0.0625 

5 0.6 0.122474 −0.20136 −0.12247449 −0.025 0.05 

6 0.7 0.114564 −0.41152 −0.11456439 −0.05 0.0375 

7 0.8 0.1 −0.6435 −0.1 −0.075 0.025 

8 0.9 0.075 −0.9273 −0.075 −0.1 0.0125 

B 1 0 −1.5708 0 −0.125 0 

Internal forces diagrams are shown in Fig. 2.5.19. 

 

 

Fig. 2.5.19. 
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2.6. Statically determinate planar truss structures 
2.6.1. Basic information about trusses [1], [3], [5] 

The truss is one of the major types of engineering structures. Trusses are used commonly 
in buildings, towers and bridges. Fig. 2.6.1. presents examples of trusses [1]. 

We limit our attention to the planar trusses, i.e. all truss members are located in one 
plane and loads are also applied in this plane. 
Truss definition: 

Trusses are idealized structures consisting of straight and slender rigid bars 
(members of a truss), arranged such that its centroidal axis coincides with the line 
connecting the nodal points. Truss members are connected together with frictionless pin 
joints and connected only at the ends of the members. All forces (loads and reactions) 
must be applied at the joints and are transmitted from one member to another through 
pins. The weights of the members of the truss are also assumed to be applied to the joints. 

 

Fig. 2.6.1. Examples of named truss [1]. 

The consequence of the idealization described is that members of a truss are so-called 
“two-force members” which carry only a pair of equal magnitude, oppositely directed 
forces along their length (Fig. 2.6.2.). 

 
Fig. 2.6.2. 

The types of stable trusses: 
• simple truss (Fig. 2.6.3.a.), 
• compound truss – combination of two or more simple trusses together 

(Fig. 2.6.3.b.), 
• complex truss – one that cannot be classified as being either simple or compound 

(Fig. 2.6.3.c.). 
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a)  c) 

   

b) 

 

Fig. 2.6.3. 

Kinematic stability and static determinacy of planar truss [1], [2] 
Three bars joined by pins at their ends constitute a rigid structure (Fig. 2.6.4.). 

The term rigid is used to mean stable and also to mean that deformation of the members 
due to induced internal strains is negligible. 

Four bars pin-jointed to form a rectangle constitute a unstable system (Fig. 2.6.4.). 

 
Fig. 2.6.4. 

Simple planar truss structures are formed by combining one-dimensional linear 
members to create a triangular pattern. The structure which consists of a triangular 
arrangement of members that are pinned at their ends create a rigid structure. In terms 
of stability, the most simple truss can be constructed in the shape of a triangle using three 
members. 

Each node (pin, joint) of a plane truss is acted upon by a set of coplanar concurrent 
forces. There are no moments since the pins are frictionless and the lines of action of the 
forces intersect at the node. 

If the entire truss is in equilibrium, a single node is also in equilibrium. For the 
coplanar concurrent force system there are two equations of equilibrium: 

 ∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0    and   ∑𝐹𝐹iy = 0  (2.28) 

So for j number of nodes (joints) we have 2j equations of equilibrium. 
Hence, the degree of static indeterminacy can be determined by using the formula: 

 𝑃𝑃 =  𝑟𝑟 +  𝑚𝑚 –  2𝑗𝑗    (2.29) 
where: 
n – degree of static indeterminacy, 
m – number of truss members, 
r – number of support reactions, 
j – number of joints. 
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If 
n = 0 – statically determinate truss, 
n > 0 – statically indeterminate truss, 
n < 0 – unstable truss system – mechanism. 

When more members are present than are needed to prevent collapse, the truss is 
statically indeterminate. A statically indeterminate truss cannot be analyzed using the 
equations of equilibrium alone. 

Sign convention: tensile forces are denoted with + sign (are positive), compressive 
forces are denoted with − sign (are negative). 

There are two basic methods used for truss solving: method of joints and method of 
sections. Sometimes, we can have statically determinate truss for which both method of 
joints and method of sections will be not convenient to use. In this case we can use 
Henneberg’s method [2]. 

2.6.2. Analysis of planar truss [1], [3], [5] 

Analysis of planar truss includes: 
• determining the support reactions, 
• determining the internal forces in each of the members (tensile or compressive). 

In some cases we can simplify the analysis by finding “zero-force members”. 

“Zero-force members” 

The simplification is possible when: 
• the joint has two non-collinear members with no external force at the joint 

(Fig. 2.6.5.a.): 

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦1 = 0  →    𝑁𝑁2 = 0    and     𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →    𝑁𝑁1 = 0 

• in the joint there are two collinear members (N1 and N2) and a third member (N3) 
(Fig. 2.6.5.b.). We see from the force summation in the y-direction that the force N3 
must be zero and from the force summation in the x-direction that the other two forces 
must have the same magnitude but opposite sense. 

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →    𝑁𝑁3 = 0                𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥 = 0 →    𝑁𝑁1 = 𝑁𝑁2 

 a) b) 

 

Fig. 2.6.5. 
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The zero-force members are not useless. Although these members don’t carry any 
loads, some of them would probably carry loads if the loading conditions were changed. 
They are necessary to maintain the truss in the desired shape and to make the truss stable. 

When applying the method of joints or method of sections it is convenient to first 
determine the reactions from the equations of equilibrium of the total planar structure. 
Knowing the reactions will make it easier to find the truss members forces. 

 
• Method of joints 

In the method of joints, we first find a joint with at most 2 members connected 
(two unknowns) and by using two equations of equilibrium ∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0 and ∑𝐹𝐹iy = 0, 
the unknown forces can be determined. 

Then we work our way through the structure, one joint at a time, picking joints with 
at most two unknown members. Known reactions can help locate a joint that has only two 
unknown member forces. 

Hence, for a statically determinate truss (Fig. 2.6.6.a.), we calculate the support 
reactions first from the three global equilibrium equations: 

∑𝑀𝑀5 = 0,   ∑𝐹𝐹iy = 0   and  ∑𝐹𝐹ix = 0. 

a) 

 

b) 

 

Fig. 2.6.6. Planar truss – method of joints. 

We pick joint 1 (Fig. 2.6.6.b.) and for this joint we apply the force-balance equations: 

�𝐹𝐹𝑖𝑖𝑥𝑥 = 0    and   �𝐹𝐹iy = 0 
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We indicate a tensile member force with an arrow pointing away from the joint. 
The opposite sense is used for compression. 

Next, we can write two similar equations of equilibrium for joint No. 2. After this 
we can set two equations for the joint No. 6 then No. 7→No. 3→No. 4→No. 8. 

After finding the last force (joint No. 8) all truss member forces will be determined. 
The total number of joints equilibrium equations is equal to sixteen. If we use three global 
equations of equilibrium to calculate the support reactions, there are only 15 independent 
equations left to apply to the joints. As one can see, three equations (one for joint No. 8 
and two for joint No. 5) haven’t been used, so we can use them to verify the results of our 
calculations. The method of joints is suitable to be used when we need to determine all 
the member forces. 
 
• Method of sections (Ritter’s method) 

This method is suitable to be used if one wants to determine only the force in 
a particular member. Applying the method of joints might not be convenient because 
it involves first finding the force in other members. 

However, the method of sections can also be used to determine all the member forces 
in a truss [1]. Let’s consider the truss shown in Fig. 2.6.7.a. 

a) 

 

b) 

 

Fig. 2.6.7. Planar truss – method of sections. 

Suppose the force in member N6–7 is desired. 
First we have to determine the reactions from the three global equilibrium equations 

for the planar truss: 

∑𝑀𝑀5 = 0,   ∑𝐹𝐹iy = 0   and   ∑𝐹𝐹ix = 0. 
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With the reactions known, we cut the truss structure into two segments, we isolate 
either the left or right part, and apply the three global equilibrium equations to the 
segment. 

The cutting plane must cut the particular member whose force is desired, and the 
other two members that are concurrent. There are only three equilibrium equations 
of planar loading, and therefore, we can cut only three members (Fig. 2.6.7.a.). 

To determine N6–7 one can use the vertical cutting plane I–I and consider the left 
segment shown in Fig. 2.6.7.b. 

We can use the moment equilibrium condition with respect to joint No. 3 which is the 
point of concurrency for members 2–3 and 6–3. 

∑𝑀𝑀3 = 0        −𝑁𝑁6−7ℎ − 𝑅𝑅1 ⋅ 2𝑙𝑙 − 𝑃𝑃1ℎ = 0   →    𝑁𝑁6−7 = −𝑅𝑅12𝑙𝑙+𝑃𝑃1ℎ
ℎ

 

If the force in member N2–3 is desired, one can use the moment equilibrium condition 
with respect to joint No. 6 which is the point of concurrency for members 6–7 and 6–3. 

∑𝑀𝑀6 = 0         𝑁𝑁2−3ℎ − 𝑅𝑅1𝑙𝑙 = 0   →    𝑁𝑁2−3 = 𝑅𝑅1𝑙𝑙
ℎ

 

We can determine force N6–3 using the formula: 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0          −𝑁𝑁6−3 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃 + 𝑅𝑅1 = 0  →    𝑁𝑁6−3 = 𝑅𝑅1
𝑑𝑑𝑖𝑖𝑖𝑖 𝛼𝛼

 

Similarly, to determine forces in members 7–8, 8–3 and 3–4 we can use the vertical 
cutting plane II–II and consider the right segment shown in Fig. 2.6.7.c. 
 
• Henneberg’s method (truss member replacement) [2] 

In order to determine the member forces, one has to establish the complete set 
of nodal force equilibrium equations expressed in terms of the member forces. If the truss 
is statically determinate, the number of equations will be equal to the number of nodal 
forces unknowns. These unknowns can be found by solving the system of equations. 
However, finding the solution for a complex truss using the “solve-by-hand” method can 
be both inconvenient and time consuming. 

In the case of statically determinate complex truss (Fig. 2.6.8.) for which both method 
of joints and method of sections are inconvenient to use, we can use Henneberg’s method. 

In this method we replace one truss member by its axial force X (Fig. 2.6.8.b.c.d.). 
This will make the structure unstable. Therefore, we add one “extra” (z) member 
to ensure truss stability. Obviously, the magnitude of force in the “extra” member is equal 
zero. Using this condition and the superposition method we can calculate the force in the 
removed bar. 
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 a) b) 

 

 c) d) 

 

Fig. 2.6.8. Complex truss – Henneberg’s method 

The truss modified in this way can be first solved (using both method of joints and 
method of sections) for a given loading and then solved for the unit force X = 1. 
Hence, we have: 

 𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑋𝑋=1𝑖𝑖 𝑋𝑋 + 𝑁𝑁𝑃𝑃𝑖𝑖   (2.30) 

where: 
𝑁𝑁𝑋𝑋 = 1
𝑖𝑖  – “i” member force determined in the modified truss under the loading X = 1, 

𝑁𝑁𝑃𝑃𝑖𝑖  – “i” member force determined in the modified truss under the external loading P, 
X – removed member force. 
 
The “extra” (z) member doesn’t exist, so the magnitude of NZ is equal zero. 
Thus, 

 𝑁𝑁𝑧𝑧 = 𝑁𝑁𝑋𝑋=1𝑧𝑧 𝑋𝑋 + 𝑁𝑁𝑃𝑃𝑧𝑧 = 0  (2.31) 

 𝑋𝑋 = − 𝑑𝑑𝑃𝑃
𝑧𝑧

𝑑𝑑𝑋𝑋=1
𝑧𝑧   (2.32) 

If one knows the X force, the forces in the remaining truss members can be determined 
using the formula: 

 𝑁𝑁𝑖𝑖 = 𝑁𝑁𝑋𝑋=1𝑖𝑖 𝑋𝑋 + 𝑁𝑁𝑃𝑃𝑖𝑖   (2.33) 
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2.6.3. Computational problems – trusses 

Computational example 2.6.1. 
Determine the member forces of planar truss by the method of joints. The truss and 
loading are defined by Fig. 2.6.9. 

 

Fig. 2.6.9. 

Solution: 
The degree of static indeterminacy: 

𝑃𝑃 =  𝑟𝑟 +  𝑚𝑚 –  2𝑗𝑗 =  3 +  17 −  2 · 10 =  0  

 

Fig. 2.6.10. 

Support reactions (Fig. 2.6.10.) can be determined by using the three global 
equilibrium equations for the coplanar forces system. 

𝛴𝛴 𝑀𝑀1  =  0    →   − 2𝑃𝑃 · 𝑙𝑙 −  2𝑃𝑃 · 3𝑙𝑙 − 4𝑃𝑃 · 3𝑙𝑙 +  𝑅𝑅10  · 4𝑙𝑙 +  4𝑃𝑃 · 𝑙𝑙 = 0   →   𝑅𝑅10  =  4 𝑃𝑃 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0   →    𝑅𝑅1𝑥𝑥 –  4𝑃𝑃 =  0   →    𝑅𝑅1𝑥𝑥  =  4𝑃𝑃 
𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  = 0    →    −2𝑃𝑃 +  𝑅𝑅1𝑦𝑦 –  2𝑃𝑃–  4𝑃𝑃 +  𝑅𝑅10  = 0    →   𝑅𝑅1𝑦𝑦 =  4 𝑃𝑃  

“Zero-force” members are shown in Fig. 2.6.10.  
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Fig. 2.6.11. 

Joint 1 (Fig. 2.6.11.) 

𝑁𝑁1−2 = 0           𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  √2
2

                                                  

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0        𝑁𝑁1−3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅1𝑦𝑦 + 𝑁𝑁1−2  =  0         →   𝑁𝑁1−3 =  −4√2 𝑃𝑃 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0        𝑁𝑁1−3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑁𝑁1−4 + 𝑅𝑅1𝑥𝑥 =  0      →     𝑁𝑁1−4 = 0 

Joint 4 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0      −  𝑁𝑁4−1 + 𝑁𝑁4−6 =  0      →     𝑁𝑁4−6 = 0 

Joint 3 (Fig. 2.6.11.) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  √2
2

  

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0        −𝑁𝑁3−1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 2𝑃𝑃 − 𝑁𝑁3−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −𝑁𝑁3−4  =  0            →   𝑁𝑁3−6 =  2√2 𝑃𝑃 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0        −𝑁𝑁2−3−𝑁𝑁3−1𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑁𝑁3−5 + 𝑁𝑁3−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0      →     𝑁𝑁3−5 = −6P 

Joint 5 (Fig. 2.6.11.) 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0         −  𝑁𝑁5−3 + 𝑁𝑁5−7 =  0      →     𝑁𝑁5−7 = −6P 

Joint 6 (Fig. 2.6.11.) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  √2
2

  

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0        𝑁𝑁6−3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁6−7𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −𝑁𝑁6−5  =  0         →   𝑁𝑁6−7 = − 2√2 𝑃𝑃 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0        −𝑁𝑁6−4−𝑁𝑁6−3𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑁𝑁6−8 + 𝑁𝑁6−7𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0      →     𝑁𝑁6−8 = 4P 

Joint 8 (Fig. 2.6.11.) 
𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0        𝑁𝑁8−7 − 2𝑃𝑃 =  0         →   𝑁𝑁8−7 =  2 𝑃𝑃 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0       − 𝑁𝑁8−6  +  𝑁𝑁8−10 =  0      →     𝑁𝑁8−10 = 4P 
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Joint 7 (Fig. 2.6.11.) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  √2
2

  

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0        −𝑁𝑁7−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 4𝑃𝑃 − 𝑁𝑁7−10𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 −𝑁𝑁7−8  =  0            →   𝑁𝑁7−10 =  −4√2 𝑃𝑃 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0        −𝑁𝑁7−5−𝑁𝑁7−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑁𝑁7−9 + 𝑁𝑁7−10𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0      →     𝑁𝑁7−9 = −4P 

Verification: 

Joint 9 (Fig. 2.6.11.) 

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  = −𝑁𝑁9−7 –  4𝑃𝑃 = 4𝑃𝑃 − 4𝑃𝑃 =  0  
𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  = – 𝑁𝑁9−10  =   0    

Joint 10 (Fig. 2.6.11.) 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
√2
2

 

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  = −𝑁𝑁10−8 −  𝑁𝑁10−7𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −4𝑃𝑃 + 4√2 𝑃𝑃
√2
2

 =   0   

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  = 𝑅𝑅10  +  𝑁𝑁10−9  +  𝑁𝑁10−7𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 4𝑃𝑃 − 4√2𝑃𝑃 √2
2

 =  0   

 
Computational example 2.6.2. 
Determine the member forces 5–7, 6–7, 6–8. The truss and loading are defined 
by Fig. 2.6.12. 
 

The degree of static indeterminacy: 
𝑃𝑃 =  𝑟𝑟 +  𝑚𝑚–  2𝑗𝑗 =  3 +  17 −  2 · 10 =  0  

 

Fig. 2.6.12. 

 

Fig. 2.6.13. 
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Support reactions (Fig. 2.6.13.) can be determined by using the three global 
equilibrium equations for the planar structures. 

𝛴𝛴 𝑀𝑀1  =  0       − 2𝑃𝑃 · 𝑙𝑙 −  2𝑃𝑃 · 3𝑙𝑙 − 4𝑃𝑃 · 3𝑙𝑙 + 𝑅𝑅10  · 4𝑙𝑙 +  4𝑃𝑃 · 𝑙𝑙 = 0   →   𝑅𝑅10  =  4 𝑃𝑃 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0          𝑅𝑅1𝑥𝑥 –  4𝑃𝑃 =  0   →    𝑅𝑅1𝑥𝑥  =  4𝑃𝑃 
𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  = 0        − 2𝑃𝑃 +  𝑅𝑅1𝑦𝑦 –  2𝑃𝑃–  4𝑃𝑃 +  𝑅𝑅10  = 0    →   𝑅𝑅1𝑦𝑦 =  4 𝑃𝑃  

Zero-force members are shown in Fig. 2.6.13. 

To determine forces of members 5–7, 6–7, 6–8 we can use the vertical cutting  
plane I–I shown in Fig. 2.6.14.  

 

Fig. 2.6.14. 

 

Fig. 2.6.15. 

Equilibrium equations for the  right segment of truss (Fig. 2.6.15.): 

∑𝑀𝑀7 = 0 →   −𝑁𝑁6−8 ⋅ 𝑙𝑙 − 𝑅𝑅10 ⋅ 𝑙𝑙 = 0 →    𝑁𝑁6−8 = 4𝑃𝑃 
∑𝑀𝑀6 = 0 →    𝑁𝑁5−7 ⋅ 𝑙𝑙 + 𝑅𝑅10 ⋅ 2𝑙𝑙 + 4𝑃𝑃 ⋅ 𝑙𝑙 − 4𝑃𝑃 ⋅ 𝑙𝑙 − 2𝑃𝑃 ⋅ 𝑙𝑙 = 0 →    𝑁𝑁5−7 = −6𝑃𝑃 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →    𝑅𝑅10 − 𝑁𝑁6−7 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 4𝑃𝑃 − 2𝑃𝑃 = 0 →    𝑁𝑁6−7 = −2√2𝑃𝑃 
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Computational example 2.6.3. 
Determine the member forces 2–3, 9–8, 8–2, 7–8, 7–3, 3–4 of planar truss. The truss and 
loading are defined by Fig. 2.6.16. 

 

Fig. 2.6.16. 

Solution: 
The degree of static indeterminacy: 

𝑃𝑃 = 𝑟𝑟 + 𝑚𝑚 − 2𝑗𝑗 = 3 + 17 − 2 ⋅ 10 = 0 
„Zero-force” members are presented in Fig. 2.6.17. 

 

Fig. 2.6.17. 

Support reactions (Fig. 2.6.17.) can be determined by using the three global 
equilibrium equations for the planar structures: 

∑𝑀𝑀1 = 0 →    3𝑃𝑃 ⋅ 2𝑎𝑎 + 𝑅𝑅4𝑦𝑦 ⋅ 6𝑎𝑎 + 4𝑃𝑃 ⋅ 3𝑎𝑎 = 0 →    𝑅𝑅4𝑦𝑦 = −3𝑃𝑃 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →    𝑅𝑅1 + 3𝑃𝑃 + 𝑅𝑅4𝑦𝑦 − P = 0 →    𝑅𝑅1 = 𝑃𝑃 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0 →    −𝑅𝑅4𝑥𝑥 − 4𝑃𝑃 − P = 0 →    𝑅𝑅4𝑥𝑥 = −5𝑃𝑃 
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 a) b) 

 

Fig. 2.6.18. 

To determine forces of members 2–3, 9–8, 2–8 we can use the vertical cutting  
plane I–I shown in Fig. 2.6.17. and consider the left truss segment (Fig. 2.6.18.a.). 

Three equations of equilibrium have the form: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
3
√13

 

∑𝑀𝑀2 = 0 →   −𝑁𝑁9−8 ⋅ 3𝑎𝑎 + 𝑃𝑃 ⋅ 2𝑎𝑎 − 𝑅𝑅1 ⋅ 2𝑎𝑎 = 0 →    𝑁𝑁9−8 = 0 

∑𝑀𝑀8 = 0 →    𝑁𝑁2−3 ⋅ 3𝑎𝑎 − 𝑅𝑅1 ⋅ 4𝑎𝑎 − 3𝑃𝑃 ⋅ 2𝑎𝑎 + 𝑃𝑃 ⋅ 4𝑎𝑎 = 0 →    𝑁𝑁2−3 = 2𝑃𝑃 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →    𝑅𝑅1 + 𝑁𝑁2−8 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 3𝑃𝑃 − 𝑃𝑃 = 0 →    𝑁𝑁2−8 = −√13𝑃𝑃 

To determine forces of members 7–8, 7–3, 3–4 we will use the vertical cutting  
plane II–II shown in Fig. 2.6.17. and will consider the right truss segment (Fig. 2.6.18.b.). 

Three equations of equilibrium have the form: 

∑𝑀𝑀3 = 0 →    𝑁𝑁7−8 ⋅ 3𝑎𝑎 + 4𝑃𝑃 ⋅ 3𝑎𝑎 + 𝑅𝑅4𝑦𝑦 ⋅ 2𝑎𝑎 = 0 →    𝑁𝑁7−8 = −2𝑃𝑃 
∑𝑀𝑀7 = 0 →    −𝑁𝑁4−3 ⋅ 3𝑎𝑎 − 𝑅𝑅4𝑥𝑥 ⋅ 3𝑎𝑎 − 𝑃𝑃 ⋅ 3𝑎𝑎 = 0 →    𝑁𝑁4−3 = 4𝑃𝑃 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →    𝑅𝑅4𝑦𝑦 − 𝑁𝑁7−3 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0 →    𝑁𝑁7−3 = −√13𝑃𝑃 
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Computational example 2.6.4. 
Determine the member forces 3–5, 3–6, 4–6, 7–5, 7–6, 6–8 of planar truss. The truss and 
loading are defined by Fig. 2.6.19.a. 

 a)  b) 

 

Fig. 2.6.19. 

Solution: 
The degree of static indeterminacy: 

𝑃𝑃 = 𝑟𝑟 + 𝑚𝑚 − 2𝑗𝑗 = 3 + 17 − 2 ⋅ 10 = 0 
„Zero-force” members are shown in Fig. 2.6.19. 
Support reactions (Fig. 2.6.19.b.): 

∑𝑀𝑀1 = 0 →    3𝑃𝑃 ⋅ 6𝑎𝑎 + 𝑅𝑅2𝑦𝑦 ⋅ 3𝑎𝑎 − 𝑃𝑃 ⋅ 3𝑎𝑎 = 0 →    𝑅𝑅2𝑦𝑦 = −5𝑃𝑃 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →    𝑅𝑅1𝑦𝑦 − 2𝑃𝑃 + 𝑅𝑅2𝑦𝑦 − P = 0 →    𝑅𝑅1 = 8𝑃𝑃 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0 →    𝑅𝑅1𝑥𝑥 − 3𝑃𝑃 = 0 →    𝑅𝑅1𝑥𝑥 = 3𝑃𝑃 

To determine forces of members 7–5, 7–6, 6–8, we will use the horizontal cutting 
plane I–I shown in Fig. 2.6.19.b. and will consider the upper truss segment (Fig. 2.6.20.a.). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 =
3√13

13
 

In this case three equations of equilibrium have the form: 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0 →    𝑁𝑁6−7 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 = 0 →    𝑁𝑁6−7 = 0 
∑𝑀𝑀7 = 0 →    −𝑁𝑁6−8 ⋅ 3𝑎𝑎 − 𝑃𝑃 ⋅ 3𝑎𝑎 = 0 →    𝑁𝑁6−8 = −𝑃𝑃 
∑𝑀𝑀6 = 0 →    2𝑃𝑃 ⋅ 3𝑎𝑎 + 𝑁𝑁5−7 ⋅ 3𝑎𝑎 = 0 →  𝑁𝑁5−7 = −2𝑃𝑃 
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 a) b) 

 

Fig. 2.6.20. 

To determine forces of members 3–5, 3–6, 4–6, we will use the horizontal cutting plane 
II–II shown in Fig. 2.6.19.b. and will consider the bottom truss segment (Fig. 2.6.20.b.). 

Equilibrium equations for the bottom segment of truss: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
√2
2

 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0 →    𝑅𝑅1𝑥𝑥 + 𝑁𝑁6−3 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0 →    𝑁𝑁6−3 =
−3𝑃𝑃
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃

= −3√2𝑃𝑃 

∑𝑀𝑀6 = 0 →    −𝑁𝑁3−5 ⋅ 3𝑎𝑎 − 𝑅𝑅1𝑦𝑦 ⋅ 3𝑎𝑎+𝑅𝑅1𝑥𝑥 ⋅ 6𝑎𝑎 = 0 →    𝑁𝑁3−5 = −2𝑃𝑃 
∑𝑀𝑀3 = 0 →    𝑁𝑁4−6 ⋅ 3𝑎𝑎 + 𝑅𝑅2𝑦𝑦 ⋅ 3𝑎𝑎+𝑅𝑅1𝑥𝑥 ⋅ 3𝑎𝑎 = 0 →    𝑁𝑁4−6 = 2𝑃𝑃 
 
Computational example 2.6.5. 
Determine the member forces 8–7, 3–4, 13–7, 13–4 of K-type truss using the method of 
sections. The truss and loading are defined by Fig. 2.6.21. 

 

Fig. 2.6.21. 
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Solution:  

 

Fig. 2.6.22. 

The degree of static indeterminacy: 
𝑃𝑃 = 𝑟𝑟 + 𝑚𝑚 − 2𝑗𝑗 = 3 + 25 − 2 ⋅ 14 = 0 

We do not have to determine the support reactions if we consider the right segment 
of truss. 

A vertical section such as I–I cuts four truss members and does not lead to a solution. 
There are no vertical cutting planes that involve only three unknown forces. For this type 
of truss, we have to also take into account plane II–II to get the solution. 

To determine forces of members 8–7 and 3–4 we can use the vertical cutting  
plane I–I shown in Fig. 2.6.22. and consider the right truss segment (Fig. 2.6.23.a.). 

 a) b) 

 

Fig. 2.6.23. 

Equilibrium equations have the form: 

∑𝑀𝑀3 = 0 →   𝑁𝑁8−7 ⋅ 3𝑎𝑎 + 4𝑃𝑃 ⋅ 3𝑎𝑎 − 6𝑃𝑃 ⋅ 4𝑎𝑎 = 0 →    𝑁𝑁8−7 = 4𝑃𝑃 
∑𝑀𝑀8 = 0 →   −𝑁𝑁3−4 ⋅ 3𝑎𝑎 − 𝑃𝑃 ⋅ 3𝑎𝑎 − 6𝑃𝑃 ⋅ 4𝑎𝑎 = 0 →    𝑁𝑁3−4 = −9𝑃𝑃 
 



103 

To determine forces of members 13–7 and 13–4 we can use the vertical cutting plane 
II–II shown in Fig. 2.6.22. and consider the equilibrium of the right truss segment 
(Fig. 2.6.23.b.). 

Summation of forces in the x and y direction gives: 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →   −6𝑃𝑃 − 𝑁𝑁13−7 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁13−4 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0  
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0 →    −4𝑃𝑃 − 𝑃𝑃 − 𝑁𝑁13−7 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑁𝑁13−4 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑁𝑁8−7 − 𝑁𝑁3−4 =

= −𝑁𝑁13−7 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑁𝑁13−4 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 3
5
       𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 4

5
 

Hence: 
𝑁𝑁13−7 = −5𝑃𝑃    
𝑁𝑁13−4 = 5𝑃𝑃 

2.6.4. Review problems – trusses 

Problem 1. 
Determine the member forces 3–5, 3–4, 2–4, 5–6, 6–B, B–8, 6–7, 6–8, 9–11, 10–11, 10–C 

for the compound truss shown in Fig. 2.6.24. 

 

Fig. 2.6.24. 

Problem 2.  

Determine the member forces of planar truss by the method of joints. The truss and 
loading are defined by Fig. 2.6.25. 

 

Fig. 2.6.25. 
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Problem 3.  

Determine the member forces 9–8, 2–8, 2–3, 7–6, 7–4 and 3–4 of planar truss. 
The truss and loading are defined by Fig. 2.6.26. 

  

Fig. 2.6.26. 

Problem 4. 

Determine the member forces of planar truss presented below. 

a) 

 

b) 

 

c) 

 

Fig. 2.6.27. 
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d) 

 

Fig. 2.6.27. 
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3. Review problem solutions 

3.1. Review problem solutions – beams 
Problem 1. 

 

Fig. 3.1.1. 

1. n = 0 
2. Reactions: 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                  −6𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐶𝐶 − 3𝑞𝑞𝑙𝑙 = 0                   
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                    𝑅𝑅𝐴𝐴𝑥𝑥 = 0                
∑𝑀𝑀(𝐶𝐶) = 0;                    −𝑀𝑀𝐴𝐴 + 6𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 + 4𝑞𝑞𝑙𝑙2 − 3𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 = 0       
𝑅𝑅𝐴𝐴𝑥𝑥 = 0        𝑅𝑅𝐶𝐶 = 9𝑞𝑞𝑙𝑙                𝑀𝑀𝐴𝐴 = 4𝑞𝑞𝑙𝑙2 

3. Internal forces equations: 

Segment A–B      0 ≤ 𝑑𝑑1 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 0  
𝑀𝑀(𝑑𝑑1) = 4𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑1) = 0 

Segment B–C      0 ≤ 𝑑𝑑2 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = −6𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑2) = −6𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 + 4𝑞𝑞𝑙𝑙2 
𝑀𝑀(𝑑𝑑2 = 0) = 4𝑞𝑞𝑙𝑙2  
𝑀𝑀(𝑑𝑑2 = 𝑙𝑙) = −6𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 + 4𝑞𝑞𝑙𝑙2 = −2𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑2) = 0 

Segment C–D      0 ≤ 𝑑𝑑3 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = −6𝑞𝑞𝑙𝑙 + 9𝑞𝑞𝑙𝑙 = 3𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑3) = 4𝑞𝑞𝑙𝑙2 − 6𝑞𝑞𝑙𝑙 ∙ (𝑙𝑙 + 𝑑𝑑3) + 9𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 − 4𝑞𝑞𝑙𝑙2 
𝑀𝑀(𝑑𝑑3 = 0) = 4𝑞𝑞𝑙𝑙2 − 6𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 4𝑞𝑞𝑙𝑙2 = −6𝑞𝑞𝑙𝑙2  
𝑀𝑀(𝑑𝑑3 = 𝑙𝑙) = 4𝑞𝑞𝑙𝑙2 − 6𝑞𝑞𝑙𝑙 ∙ (𝑙𝑙 + 𝑙𝑙) + 9𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 4𝑞𝑞𝑙𝑙2 = −3𝑞𝑞𝑙𝑙2 
𝑁𝑁(𝑑𝑑3) = 0 
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Fig. 3.1.2. 

Segment E–D      0 ≤ 𝑑𝑑4 < 3𝑙𝑙 
𝑞𝑞(𝑑𝑑4)
𝑑𝑑4

=
2𝑞𝑞
3𝑙𝑙

    →   𝑞𝑞(𝑑𝑑4) =  
2𝑞𝑞𝑑𝑑4

3𝑙𝑙
   

𝑉𝑉(𝑑𝑑4) =
1
2
𝑞𝑞(𝑑𝑑4) ∙ 𝑑𝑑4 =

1
2

 ∙
2𝑞𝑞𝑑𝑑4

3𝑙𝑙
∙ 𝑑𝑑4 =

𝑞𝑞𝑑𝑑42

3𝑙𝑙
  

𝑉𝑉(𝑑𝑑4 = 0) = 0  

𝑉𝑉 �𝑑𝑑4 =
3
2
𝑙𝑙� =

3
4
𝑞𝑞𝑙𝑙  

𝑉𝑉(𝑑𝑑4 = 3𝑙𝑙) = 3𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑4) = −1
2
𝑞𝑞(𝑑𝑑4) ∙ 𝑑𝑑4 ∙

𝑥𝑥4
3

= −1
2

 ∙ 2𝑞𝑞𝑥𝑥4
3𝑙𝑙

∙ 𝑑𝑑4 ∙
𝑥𝑥4
3

= −𝑞𝑞 ∙ (𝑥𝑥4)3

9𝑙𝑙
  

𝑀𝑀(𝑑𝑑4 = 0) = 0  

𝑀𝑀�𝑑𝑑4 =
3
2
𝑙𝑙� = −

3
8
𝑞𝑞𝑙𝑙2 

𝑀𝑀(𝑑𝑑4 = 3𝑙𝑙) = −𝑞𝑞 ∙
(3𝑙𝑙)3

9𝑙𝑙
= −3𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑4) = 0 
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Problem 2. 

 
Fig. 3.1.3. 

1. 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 4 + 2 − 3 ∙ 2 = 0 

2. Reactions: 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                   𝑅𝑅𝐵𝐵𝑥𝑥 = 𝑅𝑅𝐶𝐶𝑥𝑥 = 0                 
– right beam: 
∑𝑀𝑀(𝐶𝐶) = 0;     −𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 2𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 + 4𝑞𝑞𝑙𝑙2 = 0         𝑅𝑅𝐵𝐵𝑦𝑦 = 𝑞𝑞𝑙𝑙  
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                  𝑅𝑅𝐵𝐵𝑦𝑦 + 𝑅𝑅𝐶𝐶𝑦𝑦 + 2𝑞𝑞𝑙𝑙 = 0                𝑅𝑅𝐶𝐶𝑦𝑦 = −3𝑞𝑞𝑙𝑙  

– left beam: 
∑𝑀𝑀(𝐴𝐴) = 0;    −𝑀𝑀𝐴𝐴 −𝑚𝑚 ∙ 2𝑙𝑙−𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 2𝑙𝑙 =  −𝑀𝑀𝐴𝐴 − 𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙−𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 2𝑙𝑙 = 0       𝑀𝑀𝐴𝐴 = −4𝑞𝑞𝑙𝑙2  
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 −𝑅𝑅𝐵𝐵𝑦𝑦 + 𝑅𝑅𝐴𝐴𝑦𝑦 = 0                          𝑅𝑅𝐴𝐴𝑦𝑦 = 𝑞𝑞𝑙𝑙  

3. Internal forces equations: 

Segment B–A      0 ≤ 𝑑𝑑1 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑1) = −𝑚𝑚 ∙ 𝑑𝑑1 − 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 = −𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 − 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 = −2𝑞𝑞𝑙𝑙𝑑𝑑1 
𝑀𝑀(𝑑𝑑1 = 0) = 0                       
𝑀𝑀(𝑑𝑑1 = 2𝑙𝑙) = −4𝑞𝑞𝑙𝑙2  

Segment B–C      0 ≤ 𝑑𝑑2 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = 𝑞𝑞𝑙𝑙 + 𝑞𝑞𝑑𝑑2 
𝑉𝑉(𝑑𝑑2 = 0) = 𝑞𝑞𝑙𝑙  
𝑉𝑉(𝑑𝑑2 = 2𝑙𝑙) = 3𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑2) = 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 + 𝑞𝑞𝑑𝑑2 ∙
𝑥𝑥2
2

= 𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 + 𝑞𝑞 ∙ (𝑥𝑥2)2

2
  

𝑀𝑀(𝑑𝑑2 = 0) = 0  
𝑀𝑀(𝑑𝑑2 = 2𝑙𝑙) = 4𝑞𝑞𝑙𝑙2 
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Fig. 3.1.4. 

Problem 3.  

 
Fig. 3.1.5. 

1. 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 4 + 2 − 3 ∙ 2 = 0,  

2. Reactions (Fig. 3.1.6.): 
𝑅𝑅𝐵𝐵𝑥𝑥 = 𝑅𝑅𝐴𝐴𝑥𝑥 = 0  

– right beam: 
∑𝑀𝑀(𝐶𝐶) = 0;     −𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 2𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 + 4𝑞𝑞𝑙𝑙2 = 0         𝑅𝑅𝐵𝐵𝑦𝑦 = 0 𝑞𝑞𝑙𝑙      
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                  𝑅𝑅𝐵𝐵𝑦𝑦 + 𝑅𝑅𝐶𝐶 − 2𝑞𝑞𝑙𝑙 = 0                     𝑅𝑅𝐶𝐶 = 2𝑞𝑞𝑙𝑙 

– left beam: 
∑𝑀𝑀(𝐴𝐴) = 0;    −𝑀𝑀𝐴𝐴 + 3𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙−𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 3𝑙𝑙 = 0     𝑀𝑀𝐴𝐴 = 3 𝑞𝑞𝑙𝑙2  
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 −𝑅𝑅𝐵𝐵𝑦𝑦 + 3𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐴𝐴𝑦𝑦 = 0                  𝑅𝑅𝐴𝐴𝑦𝑦 = −3𝑞𝑞𝑙𝑙 
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3. Internal forces equations: 

Segment B–A  0 ≤ 𝑑𝑑1 < 3𝑙𝑙 
𝑞𝑞(𝑑𝑑1)
𝑑𝑑1

=
2𝑞𝑞
3𝑙𝑙

    →   𝑞𝑞(𝑑𝑑1) =  
2𝑞𝑞𝑑𝑑1

3𝑙𝑙
   

𝑉𝑉(𝑑𝑑1) = −
1
2
𝑞𝑞(𝑑𝑑1) ∙ 𝑑𝑑1 = −

1
2

 ∙
2𝑞𝑞𝑑𝑑1

3𝑙𝑙
∙ 𝑑𝑑1 = −

𝑞𝑞𝑑𝑑12

3𝑙𝑙
  

𝑉𝑉(𝑑𝑑1 = 0) = 0  

𝑉𝑉 �𝑑𝑑1 =
3
2
𝑙𝑙� = −

3
4
𝑞𝑞𝑙𝑙  

𝑉𝑉(𝑑𝑑1 = 3𝑙𝑙) = −3𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑1) = 1
2
𝑞𝑞(𝑑𝑑1) ∙ 𝑑𝑑1 ∙

𝑥𝑥1
3

= 1
2

 ∙ 2𝑞𝑞𝑥𝑥1
3𝑙𝑙

∙ 𝑑𝑑1 ∙
𝑥𝑥1
3

= 𝑞𝑞 ∙ (𝑥𝑥1)3

9𝑙𝑙
  

𝑀𝑀(𝑑𝑑1 = 0) = 0  

𝑀𝑀�𝑑𝑑1 =
3
2
𝑙𝑙� =

3
8
𝑞𝑞𝑙𝑙2  

𝑀𝑀(𝑑𝑑1 = 3𝑙𝑙) = 𝑞𝑞 ∙
(3𝑙𝑙)3

9𝑙𝑙
= 3𝑞𝑞𝑙𝑙2 

Segment B–C   0 ≤ 𝑑𝑑2 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = 0  
𝑀𝑀(𝑑𝑑2) = −4𝑞𝑞𝑙𝑙2 

 

Fig. 3.1.6. 
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Segment D–C   0 ≤ 𝑑𝑑3 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = 2𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑3) = −2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 
𝑀𝑀(𝑑𝑑3 = 0) = 0  
𝑀𝑀(𝑑𝑑3 = 2𝑙𝑙) = −4𝑞𝑞𝑙𝑙2 
There are no horizontal loads, hence 𝑁𝑁(𝑑𝑑) = 0. 

 
Problem 4. 

 

Fig. 3.1.7. 

1.  𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 5 + 4 − 3 ∙ 3 = 0  

2. Reactions: 

𝑅𝑅𝐴𝐴𝑥𝑥 = 𝑅𝑅𝐷𝐷𝑥𝑥 = 𝑅𝑅𝐸𝐸𝑥𝑥 = 0 
– middle beam: 
∑𝑀𝑀(𝐷𝐷) = 0;     𝑅𝑅𝐸𝐸𝑦𝑦 ∙ 3𝑙𝑙 − 3𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 = 0                   𝑅𝑅𝐸𝐸𝑦𝑦 = 2 𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;          𝑅𝑅𝐸𝐸𝑦𝑦 + 𝑅𝑅𝐷𝐷𝑦𝑦 − 3𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐷𝐷𝑦𝑦 = 𝑞𝑞𝑙𝑙 

– right beam: 
∑𝑀𝑀(𝐹𝐹) = 0;     𝑅𝑅𝐺𝐺 ∙ 2𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 3𝑙𝑙+𝑅𝑅𝐸𝐸𝑦𝑦 ∙ 2𝑙𝑙 + 4𝑞𝑞𝑙𝑙2 = 0     𝑅𝑅𝐺𝐺 = − 𝑞𝑞𝑙𝑙  
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                   𝑅𝑅𝐺𝐺 + 𝑅𝑅𝐹𝐹 − 𝑅𝑅𝐸𝐸𝑦𝑦 − 2𝑞𝑞𝑙𝑙 = 0                  𝑅𝑅𝐹𝐹 = 5𝑞𝑞𝑙𝑙 

– left beam: 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 −𝑅𝑅𝐷𝐷𝑦𝑦 − 2𝑞𝑞𝑙𝑙 + 𝑅𝑅𝐶𝐶 = 0                  𝑅𝑅𝐶𝐶 = 3𝑞𝑞𝑙𝑙 
∑𝑀𝑀(𝐴𝐴) = 0;    −𝑀𝑀𝐴𝐴 − 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙+𝑅𝑅𝐶𝐶 ∙ 2𝑙𝑙 − 𝑅𝑅𝐷𝐷𝑦𝑦 ∙ 4𝑙𝑙 = 0           𝑀𝑀𝐴𝐴 = 0  

3. Internal forces equations: 

Segment A–B      0 ≤ 𝑑𝑑1 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 0  
𝑀𝑀(𝑑𝑑1) = 0 
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Segment B–C      0 ≤ 𝑑𝑑2 < 𝑙𝑙 

𝑉𝑉(𝑑𝑑2) = −2𝑞𝑞𝑙𝑙 
𝑀𝑀(𝑑𝑑2) = −2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2  
𝑀𝑀(𝑑𝑑2 = 0) = 0  
𝑀𝑀(𝑑𝑑2 = 𝑙𝑙) = −2𝑞𝑞𝑙𝑙2 

Segment D–C      0 ≤ 𝑑𝑑3 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑3) = 𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑3) = −𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑3 
𝑀𝑀(𝑑𝑑3 = 0) = 0  
𝑀𝑀(𝑑𝑑3 = 2𝑙𝑙) = −2𝑞𝑞𝑙𝑙2 

Segment D–E      0 ≤ 𝑑𝑑4 < 3𝑙𝑙 
𝑞𝑞(𝑑𝑑4)
𝑑𝑑4

=
2𝑞𝑞
3𝑙𝑙

    →   𝑞𝑞(𝑑𝑑4) =  
2𝑞𝑞𝑑𝑑4

3𝑙𝑙
   

𝑉𝑉(𝑑𝑑4) = 𝑞𝑞𝑙𝑙 −
1
2
𝑞𝑞(𝑑𝑑4) ∙ 𝑑𝑑4 = 𝑞𝑞𝑙𝑙 −

1
2

 ∙
2𝑞𝑞𝑑𝑑4

3𝑙𝑙
∙ 𝑑𝑑4 = 𝑞𝑞𝑙𝑙 −

𝑞𝑞𝑑𝑑42

3𝑙𝑙
  

𝑉𝑉(𝑑𝑑4 = 0) = 𝑞𝑞𝑙𝑙  

𝑉𝑉 �𝑑𝑑4 =
3
2
𝑙𝑙� =

1
4
𝑞𝑞𝑙𝑙  

𝑉𝑉(𝑑𝑑4 = 3𝑙𝑙) = −2𝑞𝑞𝑙𝑙  

𝑉𝑉(𝑑𝑑4) = 0   →  𝑞𝑞𝑙𝑙 − 1
2

 ∙ 2𝑞𝑞𝑥𝑥4
3𝑙𝑙

∙ 𝑑𝑑4 = 0    →   3𝑞𝑞𝑙𝑙2 − 𝑞𝑞𝑑𝑑42 = 0   → 𝑑𝑑4 = √3𝑙𝑙       

𝑀𝑀(𝑑𝑑4) = 𝑞𝑞𝑙𝑙𝑑𝑑4 −
1
2
𝑞𝑞(𝑑𝑑4) ∙ 𝑑𝑑4 ∙

𝑥𝑥4
3

= 𝑞𝑞𝑙𝑙𝑑𝑑4 −
1
2

 ∙ 2𝑞𝑞𝑥𝑥4
3𝑙𝑙

∙ 𝑑𝑑4 ∙
𝑥𝑥4
3

= 𝑞𝑞𝑙𝑙𝑑𝑑4 − 𝑞𝑞 ∙ (𝑥𝑥4)3

9𝑙𝑙
  

𝑀𝑀(𝑑𝑑4 = 0) = 0  

𝑀𝑀(𝑑𝑑4 = 3𝑙𝑙) = 0  

𝑀𝑀�𝑑𝑑4 = √3𝑙𝑙� = 𝑞𝑞𝑙𝑙 ∙ √3𝑙𝑙 − 𝑞𝑞 ∙
�√3𝑙𝑙�

3

9𝑙𝑙
=

2
3√

3𝑞𝑞𝑙𝑙2 

Segment E–F      0 ≤ 𝑑𝑑5 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑5) = −2𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑5) = −2𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑5 
𝑀𝑀(𝑑𝑑5 = 0) = 0  
𝑀𝑀(𝑑𝑑5 = 2𝑙𝑙) = −4𝑞𝑞𝑙𝑙2 

Segment F–G      0 ≤ 𝑑𝑑6 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑6) = −2𝑞𝑞𝑙𝑙 + 5𝑞𝑞𝑙𝑙 = 3𝑞𝑞𝑙𝑙  
𝑀𝑀(𝑑𝑑6) = −4𝑞𝑞𝑙𝑙2 − 2𝑞𝑞𝑙𝑙 ∙ (2𝑙𝑙 + 𝑑𝑑6) + 5𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑6 
𝑀𝑀(𝑑𝑑6 = 0) = −4𝑞𝑞𝑙𝑙2 − 2𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 = −8𝑞𝑞𝑙𝑙2  
𝑀𝑀(𝑑𝑑6 = 2𝑙𝑙) = −4𝑞𝑞𝑙𝑙2 − 2𝑞𝑞𝑙𝑙 ∙ (2𝑙𝑙 + 2𝑙𝑙) + 5𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 = −2𝑞𝑞𝑙𝑙2 
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Segment H–G      0 ≤ 𝑑𝑑7 < 2𝑙𝑙 

𝑉𝑉(𝑑𝑑7) = 𝑞𝑞𝑑𝑑7 
𝑉𝑉(𝑑𝑑7 = 0) = 0 
𝑉𝑉(𝑑𝑑7 = 2𝑙𝑙) = 2𝑞𝑞𝑙𝑙  

𝑀𝑀(𝑑𝑑7) = −𝑞𝑞𝑑𝑑7 ∙
𝑥𝑥7
2

= −𝑞𝑞 ∙ (𝑥𝑥7)2

2
  

𝑀𝑀(𝑑𝑑7 = 0) = 0  
𝑀𝑀(𝑑𝑑7 = 2𝑙𝑙) = −2𝑞𝑞𝑙𝑙2 

There are no horizontal loads, hence 𝑁𝑁(𝑑𝑑) = 0. 

 

Fig. 3.1.8. 
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Problem 5. 

 

Fig. 3.1.9. 

 

Fig. 3.1.10. 

There are no horizontal loads, hence 𝑁𝑁(𝑑𝑑) = 0. 
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Problem 6.  

 

Fig. 3.1.11. 

 

Fig. 3.1.12. 
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3.2. Review problem solutions – plane frames 
Problem 1. 

 

Fig. 3.2.1. 

 

Fig. 3.2.2. 



117 

Problem 2. 

 

Fig. 3.2.3. 
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Fig. 3.2.4. 

Problem 3. 

a)   b) 

 

Fig. 3.2.5. 
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Fig. 3.2.6. 

Segment A–C      0 ≤ 𝑑𝑑1 < 3𝑙𝑙 

𝑉𝑉(𝑑𝑑1) = 3𝑞𝑞𝑙𝑙 − 𝑞𝑞𝑑𝑑1  
𝑉𝑉(𝑑𝑑1 = 0) = 3𝑞𝑞𝑙𝑙  
𝑉𝑉(𝑑𝑑1 = 3𝑙𝑙) = 0  

𝑀𝑀(𝑑𝑑1) = 3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑1 − 𝑞𝑞 ∙
(𝑑𝑑1)2

2
 

𝑀𝑀(𝑑𝑑1 = 0) = 0 

𝑀𝑀(𝑑𝑑1 = 3𝑙𝑙) =
9
2
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑1) = 0 

Segment B–C     0 ≤ 𝑑𝑑2 < 3𝑙𝑙,     0 ≤ 𝑦𝑦2 < 2𝑙𝑙 

 

Fig. 3.2.7. 
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
3
√13

=
3√13

13
,       𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

2
√13

=
2√13

13
 

𝑉𝑉(𝑑𝑑2,𝑦𝑦2) = −3𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝑑𝑑2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃=(−3𝑞𝑞𝑙𝑙 + 𝑞𝑞𝑑𝑑2) 3√13
13

 

𝑉𝑉(𝑑𝑑2 = 0,    𝑦𝑦2 = 0) =
−9√13

13
 𝑞𝑞𝑙𝑙 

𝑉𝑉(𝑑𝑑2 = 3𝑙𝑙,    𝑦𝑦2 = 2𝑙𝑙) = 0  

𝑀𝑀(𝑑𝑑2,𝑦𝑦2) = 3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 − 𝑞𝑞𝑑𝑑2 ∙
𝑥𝑥2
2

= 3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑2 − 𝑞𝑞 ∙ (𝑥𝑥2)2

2
  

𝑀𝑀(𝑑𝑑2 = 0,    𝑦𝑦2 = 0) = 0  

𝑀𝑀(𝑑𝑑2 = 3𝑙𝑙,    𝑦𝑦2 = 2𝑙𝑙) =
9
2
𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑2,𝑦𝑦2) = −3𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝑑𝑑2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (−3𝑞𝑞𝑙𝑙 + 𝑞𝑞𝑑𝑑2) ∙
2√13

13
 

𝑁𝑁(𝑑𝑑2 = 0,    𝑦𝑦2 = 0) =
−6√13

13
 𝑞𝑞𝑙𝑙 

𝑁𝑁(𝑑𝑑2 = 3𝑙𝑙,    𝑦𝑦2 = 2𝑙𝑙) = 0  
 

Internal forces diagrams: 

 

Fig. 3.2.8. 

Problem 4. 

1. 𝑃𝑃 = 𝑟𝑟 + 2𝑃𝑃 − 3𝑡𝑡 = 3 + 6 − 3 ∙ 3 = 0  

2. Reactions (Fig. 3.2.9.): 

∑𝑀𝑀(𝐴𝐴) = 0;     𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 2𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 3𝑙𝑙 + 4𝑞𝑞𝑙𝑙2 = 0     𝑅𝑅𝐵𝐵𝑦𝑦 = 3𝑞𝑞𝑙𝑙  
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 𝑅𝑅𝐵𝐵𝑦𝑦 + 2𝑞𝑞𝑙𝑙 − 2𝑞𝑞𝑙𝑙 − 𝑅𝑅𝐴𝐴 = 0                                    𝑅𝑅𝐴𝐴 = 3𝑞𝑞𝑙𝑙 
∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                 −𝑅𝑅𝐵𝐵𝑥𝑥 + 2𝑞𝑞𝑙𝑙 = 0                                                       𝑅𝑅𝐵𝐵𝑥𝑥 = 2𝑞𝑞𝑙𝑙 
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– right frame (Fig. 3.2.10.): 

∑𝑀𝑀(𝐶𝐶) = 0;     𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 𝑙𝑙 − 𝑅𝑅𝐵𝐵𝑥𝑥 ∙ 4𝑙𝑙 − 2𝑞𝑞𝑙𝑙 ∙ 2𝑙𝑙 + 𝑁𝑁 ∙ 2𝑙𝑙 = 0        𝑁𝑁 = 9
2
𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0;                 𝑅𝑅𝐵𝐵𝑦𝑦 − 𝑅𝑅𝐶𝐶𝑦𝑦 − 2𝑞𝑞𝑙𝑙 = 0                                  𝑅𝑅𝐶𝐶𝑦𝑦 = 𝑞𝑞𝑙𝑙 

∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0;                 −𝑅𝑅𝑐𝑐𝑥𝑥 −𝑅𝑅𝐵𝐵𝑥𝑥 + 𝑁𝑁 = 0                                   𝑅𝑅𝐶𝐶𝑥𝑥 = 5
2
𝑞𝑞𝑙𝑙 

 

Fig. 3.2.9. 

 

Fig. 3.2.10. 
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Fig. 3.2.11. 

 

Fig. 3.2.12. 
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Problem 5. 

 

Fig. 3.2.13.a. 

 

Fig. 3.2.13.b. 
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Fig. 3.2.13.c. 

Segment B–G     0 ≤ 𝑑𝑑6 < 3𝑙𝑙,     0 ≤ 𝑦𝑦6 < 2𝑙𝑙 

The system of forces in segment B–G is presented in Fig. 3.2.13.c. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
3
√13

=
3√13

13
,       𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =

2
√13

=
2√13

13
 

𝑉𝑉(𝑑𝑑6,𝑦𝑦6) = −3𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝑑𝑑6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −3𝑞𝑞𝑙𝑙
3√13

13
+ 𝑞𝑞𝑑𝑑6

3√13
13

   

𝑉𝑉(𝑑𝑑6 = 0,    𝑦𝑦6 = 0) = −9 √13
13
𝑞𝑞𝑙𝑙  

𝑉𝑉(𝑑𝑑6 = 3𝑙𝑙,    𝑦𝑦6 = 2𝑙𝑙) = 0 

𝑀𝑀(𝑑𝑑6,𝑦𝑦6) = 3𝑞𝑞𝑙𝑙 ∙ 𝑑𝑑6 −
𝑞𝑞(𝑥𝑥6)2

2
  

𝑀𝑀(𝑑𝑑6 = 0,    𝑦𝑦6 = 0) = 0  

𝑀𝑀(𝑑𝑑6 = 3𝑙𝑙,    𝑦𝑦6 = 2𝑙𝑙) =
9
2

 𝑞𝑞𝑙𝑙2 

𝑁𝑁(𝑑𝑑6,𝑦𝑦6) = −3𝑞𝑞𝑙𝑙𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑞𝑞𝑑𝑑6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −3𝑞𝑞𝑙𝑙 2√13
13

+ 𝑞𝑞𝑑𝑑6
2√13
13

       

𝑁𝑁(𝑑𝑑1 = 0,    𝑦𝑦1 = 0) = −6
√13
13

𝑞𝑞𝑙𝑙 

𝑁𝑁(𝑑𝑑1 = 3𝑙𝑙,    𝑦𝑦1 = 2𝑙𝑙) = 0 
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Fig. 3.2.14. 
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3.3. Review problem solutions – trusses 
Problem 1. 

 

Fig. 3.3.1. 

The degree of static indeterminacy: 
𝑃𝑃 = 𝑟𝑟 + 𝑚𝑚 − 2𝑗𝑗 = 4 + 26 − 2 ∙ 15 = 0 

 a) 

 

 b) 

 

Fig. 3.3.2. 

The compound truss shown in Fig. 3.3.1. has been separated into two single truss 
(Fig. 3.3.2.). The support reactions have to be first determined for the right truss 
(Fig. 3.3.2.a.): 

∑𝐹𝐹𝑖𝑖𝑥𝑥𝑅𝑅 = 0    →   𝑅𝑅𝐷𝐷𝑥𝑥 + 3P = 0    →   𝑅𝑅𝐷𝐷𝑥𝑥 = −3P      
∑𝑀𝑀𝐷𝐷

𝑅𝑅 = 0   →   𝑅𝑅𝐶𝐶 ∙ 6𝑙𝑙 − 4𝑃𝑃 ∙ 3𝑙𝑙 − 3𝑃𝑃 ∙ 2𝑙𝑙 = 0  →    𝑅𝑅𝐶𝐶 = 3𝑃𝑃  
∑𝐹𝐹𝑖𝑖𝑦𝑦𝑅𝑅 = 0    →   𝑅𝑅𝐷𝐷𝑦𝑦 + 𝑅𝑅𝑐𝑐 − 4𝑃𝑃 = 0 →  𝑅𝑅𝐷𝐷𝑦𝑦 = 𝑃𝑃          
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Then we can determine support reactions for the left truss (Fig. 3.3.2.b.): 

∑𝑀𝑀𝐴𝐴
𝐿𝐿 = 0    →    𝑅𝑅𝐵𝐵𝑦𝑦 ∙ 6𝑙𝑙 − 𝑃𝑃 ∙ 4𝑙𝑙 − 2𝑃𝑃 ∙ 2𝑙𝑙 − 𝑅𝑅𝐷𝐷𝑦𝑦 ∙ 10𝑙𝑙 = 0 →   𝑅𝑅𝐵𝐵𝑦𝑦 = 3𝑃𝑃  

∑𝐹𝐹𝑖𝑖𝑦𝑦𝐿𝐿 = 0   →    𝑅𝑅𝐴𝐴 + 𝑅𝑅𝐵𝐵𝑦𝑦 − 𝑃𝑃 − 𝑅𝑅𝐷𝐷𝑦𝑦 = 0  →   𝑅𝑅𝐴𝐴 = −𝑃𝑃  

∑𝐹𝐹𝑖𝑖x𝐿𝐿 = 0    →   −𝑅𝑅𝐵𝐵𝑥𝑥 + 2𝑃𝑃 − 𝑅𝑅𝐷𝐷𝑥𝑥 = 0   →   𝑅𝑅𝐵𝐵𝑥𝑥 = 5P  
To determine forces of members 3–5, 3–4, 2–4 we can use the vertical cutting  

plane I–I shown in Fig. 3.3.2.b. and consider the equilibrium of the left truss segment 
(Fig. 3.3.3.a.). 

 a) b) 

 

Fig. 3.3.3. 

∑𝑀𝑀4 = −𝑅𝑅𝐴𝐴 ∙ 4𝑙𝑙 − 2𝑃𝑃 ∙ 2𝑙𝑙 − 𝑆𝑆3−5 ∙ 2𝑙𝑙 = 0  →    𝑆𝑆3−5 = 0  
∑𝑀𝑀3 = −𝑅𝑅𝐴𝐴 ∙ 4𝑙𝑙 + 𝑆𝑆2−4 ∙ 2𝑙𝑙 = 0  →    𝑆𝑆2−4 = −2𝑃𝑃  
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0   →   𝑅𝑅𝐴𝐴 − 𝑃𝑃 −  𝑆𝑆3−4 = 0 →  𝑆𝑆3−4 = −2𝑃𝑃          

To determine forces of members B–6, 6–5 and 8–B we can use the vertical cutting 
plane II–II and consider the right truss segment (Fig. 3.3.3.b.). 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
√2
2

 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0  →    −𝑆𝑆𝐵𝐵−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑅𝑅𝐷𝐷𝑦𝑦 = 0     →    𝑆𝑆𝐵𝐵−6 = −√2𝑃𝑃  

∑𝑀𝑀𝐵𝐵 = 0  →    −𝑅𝑅𝐷𝐷𝑦𝑦 ∙ 4𝑙𝑙 + 𝑆𝑆6−5 ∙ 2𝑙𝑙 = 0 →   𝑆𝑆6−5 = 2𝑃𝑃  

∑𝑀𝑀6 = 0  →    −𝑅𝑅𝐷𝐷𝑦𝑦 ∙ 2𝑙𝑙−𝑅𝑅𝐷𝐷𝑥𝑥 ∙ 2𝑙𝑙 − 𝑆𝑆8−𝐵𝐵 ∙ 2𝑙𝑙 = 0 →   𝑆𝑆8−𝐵𝐵 = 2𝑃𝑃  

 a) b) 

 

Fig. 3.3.4. 
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Cutting plane III–III (Fig. 3.3.4.a.) 
∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0  →    𝑆𝑆8−6 − 𝑅𝑅𝐷𝐷𝑦𝑦 = 0   →    𝑆𝑆8−6 = 𝑃𝑃  

∑𝑀𝑀8 = 0  →    −𝑅𝑅𝐷𝐷𝑦𝑦 ∙ 2𝑙𝑙 + 𝑆𝑆7−6 ∙ 2𝑙𝑙 = 0 →   𝑆𝑆7−6 = 𝑃𝑃  

∑𝑀𝑀6 = 0  →    −𝑅𝑅𝐷𝐷𝑦𝑦 ∙ 2𝑙𝑙−𝑅𝑅𝐷𝐷𝑥𝑥 ∙ 2𝑙𝑙 − 𝑆𝑆8−𝐵𝐵 ∙ 2𝑙𝑙 = 0 →   𝑆𝑆8−𝐵𝐵 = 2𝑃𝑃  
 
Cutting plane IV– IV (Fig. 3.3.4.b.) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 =
2√13

13
 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0  →    −𝑆𝑆10−11𝑃𝑃𝑃𝑃𝑃𝑃𝑐𝑐 + 𝑅𝑅𝐶𝐶 = 0   →    𝑆𝑆10−11 = 3√13
2
𝑃𝑃  

∑𝑀𝑀10 = 0  →    𝑅𝑅𝐶𝐶 ∙ 3𝑙𝑙 + 𝑆𝑆9−11 ∙ 2𝑙𝑙 = 0  →   𝑆𝑆9−11 = − 9
2
𝑃𝑃  

∑𝑀𝑀11 = 0  →    𝑆𝑆10−𝐶𝐶 = 0   
 

Problem 2. 

 

Fig. 3.3.5. 

The degree of static indeterminacy: 
𝑃𝑃 =  𝑟𝑟 +  𝑚𝑚 –  2𝑗𝑗 =  3 +  17 −  2 · 10 =  0  

Support reactions (Fig. 3.3.5.) can be determined by using the three global equilibrium 
equations for the planar structures. 
𝛴𝛴 𝑀𝑀2  =  0   →   − 𝑃𝑃 · 3𝑙𝑙 −  𝑃𝑃 · 3𝑙𝑙 +  𝑅𝑅5  · 9𝑙𝑙 +  2𝑃𝑃 · 4𝑙𝑙 = 0   →   𝑅𝑅5  =  −  2

9
 𝑃𝑃 

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0   →    𝑅𝑅2𝑥𝑥 –  2𝑃𝑃 =  0   →    𝑅𝑅2𝑥𝑥  =  2𝑃𝑃 

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  𝑃𝑃 +  𝑅𝑅2𝑦𝑦 –  𝑃𝑃 + 𝑅𝑅5  = 0    →   𝑅𝑅2𝑦𝑦 =  
2
9

 𝑃𝑃  
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Fig. 3.3.6. 

Joint 1 (Fig. 3.3.6.) 
       𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  4

5
           𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  3

5
 

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0        𝑁𝑁1−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑃𝑃 =  0         →   𝑁𝑁1−6 =  −  𝑃𝑃
𝑑𝑑𝑖𝑖𝑖𝑖∝

 =  −  5
4
𝑃𝑃 

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0      𝑁𝑁1−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑁𝑁1−2  =  0    →    𝑁𝑁1−2 =  −𝑁𝑁1−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
5
4
𝑃𝑃 ·  

3
5

 =  
3
4
𝑃𝑃 

Joint 6 (Fig. 3.3.6.) 
𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0  →     −𝑁𝑁2−6 – 𝑁𝑁1−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0    →   −𝑁𝑁2−6 +  5

4
𝑃𝑃 4
5

  =  0  →   𝑁𝑁2−6 = 𝑃𝑃 

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0  →     𝑁𝑁6−7 – 𝑁𝑁1−6𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0       →   𝑁𝑁6−7 +  
5
4
𝑃𝑃

3
5

  =  0    →   𝑁𝑁6−7 = −
3
4
𝑃𝑃  

Joint 2 (Fig. 3.3.6.) 
𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0    →   𝑅𝑅2𝑦𝑦  +  𝑁𝑁2−6 + 𝑁𝑁2−7𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0      →  𝑁𝑁2−7 = −55

36
𝑃𝑃   

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0    →    −𝑁𝑁1−2  +  𝑁𝑁2−3  +  𝑅𝑅2𝑥𝑥 + 𝑁𝑁2−7𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0  →  𝑁𝑁2−3 = −
1
3
𝑃𝑃   

Joint 7 (Fig. 3.3.6.) 

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0 →     −𝑃𝑃 – 𝑁𝑁3−7 – 𝑁𝑁2−7𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0 →      𝑁𝑁3−7 =
2
9
𝑃𝑃  

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0 →     −𝑁𝑁6−7  +  𝑁𝑁7−8 −  𝑁𝑁2−7𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0  →     𝑁𝑁7−8  = −
5
3
𝑃𝑃  

Joint 3 (Fig. 3.3.6.) 

𝛴𝛴 𝐹𝐹𝑖𝑖𝑦𝑦  =  0 →     𝑁𝑁3−8𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁3−7  =  0   →     𝑁𝑁3−8  = −
5

18
𝑃𝑃   

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0  →     −𝑁𝑁2−3 + 𝑁𝑁3−8𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑁𝑁3−4  =  0 →    𝑁𝑁3−4  = −
1
6
𝑃𝑃    
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Joint 8 (Fig. 3.3.6.) 

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0 →   −𝑁𝑁3−8𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 − 𝑁𝑁4−8  =  0   →   𝑁𝑁4−8 =
2
9
𝑃𝑃 

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0 →    −𝑁𝑁7−8  +  𝑁𝑁8−9 −𝑁𝑁3−8𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0 →    𝑁𝑁8−9  =  −
11
6
𝑃𝑃 

Joint 4 (Fig. 3.3.6.) 

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  0 →   𝑁𝑁4−9𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑁𝑁4−8  =  0   →    𝑁𝑁4−9  = −
5

18
𝑃𝑃 

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  0 →   −𝑁𝑁3−4  + 𝑁𝑁4−9𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +  𝑁𝑁4−5  =  0  →   𝑁𝑁4−5  =  0 

Joint 9 (Fig. 3.3.6.) 

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  −𝑁𝑁4−9𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 –  𝑁𝑁5−9  =   0   →   𝑁𝑁5−9  =  
2
9
𝑃𝑃 

𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  =  −𝑁𝑁8−9 – 𝑁𝑁4−9𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 +     𝑁𝑁9−10  =    0   →   𝑁𝑁9−10  =  −2𝑃𝑃 

Verification: 

Joint 10 (Fig. 3.3.6.) 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  = −𝑁𝑁9−10 –  2𝑃𝑃 = 2𝑃𝑃 − 2𝑃𝑃 =  0  
𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  = – 𝑁𝑁5−10  =   0    

Joint 5 (Fig. 3.3.6.) 
𝛴𝛴𝐹𝐹𝑖𝑖𝑥𝑥  = −𝑁𝑁4−5  +  𝑁𝑁5−10𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0 +  0𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =   0   

𝛴𝛴𝐹𝐹𝑖𝑖𝑦𝑦  =  𝑅𝑅5  +  𝑁𝑁5−9  +  𝑁𝑁5−10𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = −
2
9
𝑃𝑃 +  

2
9
𝑃𝑃 +  0𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  0   

Problem 3. 

The degree of static indeterminacy 𝑃𝑃 = 𝑟𝑟 + 𝑚𝑚− 2𝑗𝑗 = 3 + 15 − 2 ⋅ 9 = 0 
Support reactions (Fig. 3.3.7.) can be determined by using the three global equilibrium 

equations for the planar structures. 

 

Fig. 3.3.7. 

∑𝑀𝑀1 = 0  →    𝑅𝑅4𝑦𝑦 ⋅ 12𝑎𝑎 + 𝑃𝑃 ⋅ 16𝑎𝑎 + 4𝑃𝑃 ⋅ 3𝑎𝑎 − 𝑃𝑃 ⋅ 10𝑎𝑎 = 0 →    𝑅𝑅4𝑦𝑦 = −
18
12

𝑃𝑃 = −
3
2
𝑃𝑃 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0   →    𝑅𝑅1 + 𝑅𝑅4𝑦𝑦 + 𝑃𝑃 − 𝑃𝑃 = 0 →    𝑅𝑅1 =
3
2
𝑃𝑃 
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∑𝐹𝐹𝑖𝑖𝑥𝑥 = 0 →    𝑅𝑅4𝑥𝑥 − 4𝑃𝑃 = 0 →    𝑅𝑅4𝑥𝑥 = 4𝑃𝑃 

 a) b) 

 

Fig. 3.3.8. 

Cutting plane I–I (Fig. 3.3.8.a.) 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
3√13

13
 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →    𝑅𝑅1 + 𝑁𝑁2−8 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0 →    𝑁𝑁2−8 = −
3
2
𝑃𝑃 ⋅

√13
3

= −
√13

2
𝑃𝑃 

∑𝑀𝑀2 = 0 →    −𝑁𝑁9−8 ⋅ 3𝑎𝑎 − 𝑅𝑅1 ⋅ 4𝑎𝑎 = 0 →    𝑁𝑁9−8 = −2𝑃𝑃 

∑𝑀𝑀8 = 0 →    −𝑅𝑅1 ⋅ 6𝑎𝑎 + 𝑁𝑁2−3 ⋅ 3𝑎𝑎 = 0 →    𝑁𝑁2−3 = 3𝑃𝑃 

Cutting plane II–II (Fig. 3.3.8.b.) 
∑𝑀𝑀7 = 0 →    𝑅𝑅4𝑦𝑦 ⋅ 2𝑎𝑎 + 𝑅𝑅4𝑥𝑥 ⋅ 3𝑎𝑎 + 𝑃𝑃 ⋅ 6𝑎𝑎 − 𝑁𝑁4−3 ⋅ 3𝑎𝑎 = 0  

 −
3
2
𝑃𝑃 ⋅ 2𝑎𝑎 + 4𝑃𝑃 ⋅ 3𝑎𝑎 + 𝑃𝑃 ⋅ 6𝑎𝑎 = 𝑁𝑁4−3 ⋅ 3𝑎𝑎 →    𝑁𝑁4−3 = 5𝑃𝑃 

∑𝑀𝑀4 = 0 →    4𝑃𝑃 ⋅ 3𝑎𝑎 + 𝑁𝑁7−6 ⋅ 3𝑎𝑎 + 𝑃𝑃 ⋅ 4𝑎𝑎 = 0 →    𝑁𝑁7−6 = −
16
3
𝑃𝑃 

∑𝐹𝐹𝑖𝑖𝑦𝑦 = 0 →    𝑅𝑅4𝑦𝑦 + 𝑃𝑃 + 𝑁𝑁4−7 ⋅ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0 →    −
3
2
𝑃𝑃 + 𝑃𝑃 + 𝑁𝑁4−7 ⋅

3
√13

= 0  

 𝑁𝑁4−7 =
√13

6
𝑃𝑃 
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https://pixabay.com/pl/photos/konstrukcja-dachu-stalowe-pr%C4%99ty-3744133/
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