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ABSTRACTS 

Navid  Moshtaghi Yazdani 
Experimental Evaluation of the Effects of Structural Changes on the Vibration Properties of CK35 Steel 

The microstructure of some components which operate in high-temperature conditions (e.g. boiler components, turbine blades 
used in gas power plants, jet engines and reactors) is subjected to changes in long run, which leads to a degradation  
in the mechanical properties of these components and consequently, reduces their lifecycle. Therefore, it is so useful to detect  
the changes in the microstructure of these parts during their operation, employing an easy, fast and non-destructive method  
to determine their remaining life. In this study, we evaluate the effects of the microstructural changes on natural frequencies  
and the damping coefficient of CK35 steel, employing the experimental modal test. We aim to use the method for power plant 
components, if it has significant effects. To do so, we applied spheroidization heat treatment on CK35 steel samples having  
a primary structure of ferrite-pearlite for 24 and 48 hours. Then, we carried out the experimental modal test on samples having  
different metallurgical structures, but with the same dimensions and weights. According to the findings, the spherical ferrite-carbide 
particles in the ferrite structure increase the natural frequencies and damping coefficient. These tests show that the structural 
changes in this type of steel result in slight changes in the values of natural frequencies; however, it significantly changes  
the damping frequencies. 

Damak Hanen 
The Practical Feedback Stabilization  for Evolution Equations in Banach Spaces 

This paper investigates the notion of practical feedback stabilization of evolution equations satisfying some relaxed conditions  
in infinite-dimensional Banach spaces. Moreover, sufficient conditions are presented that guarantee practical stabilizability  
of uncertain systems based on Lyapunov functions. These results are applied to partial differential equations. 

Mohammad Javad Fotuhi, Zafer Bingul 
Comparative Study of the Parallel and Angular Electrical Gripper for Industrial Applications 

The aim of this paper is to study the position and power performances of an electrical lead screw-driven industrial gripper  
mechanism (LSDIGM). This work consists of designing and developing an electrical LSDIGM that has the potential to meet various 
demands in the automation industry and factories. The performances of both angular electrical gripper (AEG) and parallel electrical 
gripper (PEG) mechanisms were compared based on their position and power efficiency. The position efficiency of these electrical 
LSDIGM is computed from the position root mean square error (PRMSE) obtained from errors between the two measured  
positions (input incremental encoder and output linear encoder). In the experimental setup, a current sensor and a spring  
were employed to measure the current in the input of the system and the stiffness in the output of the system, respectively.  
The electrical power in the input of the electrical LSDIGM and the mechanical power in the output of the LSDIGMs were calculated 
using the current and the spring force, respectively. Finally, the power efficiency of these electrical LSDIGMs was examined  
and compared at different velocity circumstances. 

Marcin Kalinowski, Zbigniew Kamiński 
Measurement and Evaluation of Functional and Operational Coefficients of Hydraulic Solenoid Valve Prototypes  
Used for Variable Valve Timing Control in Combustion Engines 

This paper describes the engineering structure and functions of a typical solenoid valve used in hydraulic mechanisms that are 
based on variable camshaft timing (VCT). The main operating parameters and functional utility coefficients of hydraulic solenoid 
valves have been defined. Tests of 10 reference and 10 prototype valves were run on a test stand for a comparative assessment 
of both engineering concepts based on Welch and Mann–Whitney statistical tests of the mean values of designated coefficients. 
The studies identified differences between both designs, and the obtained research material was used as an input to improve  
the performance of the engineered concept. To perform a final evaluation of the effects that arise as a result of changes introduced 
to some functional–operational coefficients, additional tests are required to be run on an engine testbed. The applied test  
methodology may then be used for control and verification tests of the valves, which can further be used in VCT technology. 
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Onur Şahin, Barış Erbaş, Brent Wilson 
Approximate Formulation of the Rigid Body Motions of an Elastic Rectangle under Sliding Boundary Conditions 

Low-frequency analysis of in-plane motion of an elastic rectangle subject to end loadings together with sliding boundary conditions 
is considered. A perturbation scheme is employed to analyze the dynamic response of the elastic rectangle revealing  
nonhomogeneous boundary-value problems for harmonic and biharmonic equations corresponding to leading and next order  
expansions, respectively. The solution of the biharmonic equation obtained by the separation of variables, a consequence  
of sliding boundary conditions, gives an asymptotic correction to the rigid body motion of the rectangle. The derived explicit  
approximate formulae are tested for different kinds of end loadings together with numerical examples demonstrating  
the comparison against the exact solutions. 

Hoang Lan Ton-That 
Plate Structural Analysis Based on a Double Interpolation Element with Arbitrary Meshing 

This paper presents the plate structural analysis based on the finite element method (FEM) using a double interpolation element 
with arbitrary meshing. This element used in this research is related to the first-order shear deformation theory (FSDT)  
and the double interpolation procedure. The first stage of the procedure is the same with the standard FEM for the quadrilateral  
element, but the averaged nodal gradients must be computed for the second stage of this interpolation. Shape functions  
established by the double interpolation procedure exhibit more continuous nodal gradients and higher-order polynomial contrast 
compared to the standard FEM when analysing the same mesh. Note that the total degrees of freedom (DOFs) do not increase  
in this procedure, and the trial solution and its derivatives are continuous across inter-element boundaries. Besides, with controlling 
distortion factors, the interior nodes of a plate domain are derived from a set of regular nodes. Four practical examples with good 
results and small errors are considered in this study for showing excellent efficiency for this element. Last but not least,  
this element allows us to implement the procedure in an existing FEM computer code as well as can be used for nonlinear analysis 
in the near future. 

Włodzimierz Balicki, Paweł Głowacki, Leszek Loroch 
Birds Strike – Impact on the Safety of Civil Aircraft Operations in Poland in 2008- 2018 

The authors assessed the real threat to civil aircraft traffic in Poland resulting from bird strikes. It was found that in the period 
2013–2018, the probability of such events increased by four times. Data for this work were downloaded from the ECCAIRS  
database maintained by the Civil Aviation Authority. Air traffic events have been collected for several years in this database.  
An assessment of the energy of bird collision with the aircraft, resulting from the bird’s mass and relative speed of movement,  
was also presented. Ways to minimise the risk of collision were described by introducing crew warning systems and means  
to scare off birds from the airport grounds. The method of testing the resistance of turbine engines to the foreign body’s absorption 
was also shown, as well as design methods for increasing the engine resistance to bird strikes. 
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Abstract: The microstructure of some components which operate in high-temperature conditions (e.g. boiler components, turbine  
blades used in gas power plants, jet engines and reactors) is subjected to changes in long run, which leads to a degradation  
in the mechanical properties of these components and consequently, reduces their lifecycle. Therefore, it is so useful to detect the changes 
in the microstructure of these parts during their operation, employing an easy, fast and non-destructive method to determine  
their remaining life. In this study, we evaluate the effects of the microstructural changes on natural frequencies and the damping coefficient 
of CK35 steel, employing the experimental modal test. We aim to use the method for power plant components, if it has significant effects. 
To do so, we applied spheroidization heat treatment on CK35 steel samples having a primary structure of ferrite-pearlite  
for 24 and 48 hours. Then, we carried out the experimental modal test on samples having different metallurgical structures,  
but with the same dimensions and weights. According to the findings, the spherical ferrite-carbide particles in the ferrite structure increase 
the natural frequencies and damping coefficient. These tests show that the structural changes in this type of steel result in slight changes 
in the values of natural frequencies; however, it significantly changes the damping frequencies. 

Keywords: microstructure, spheroidization heat treatment, modal analysis, natural frequency, damping 

1. INTRODUCTION 

Changes in metal microstructures can influence their macro-
scopic properties. A change in microstructure can be the for-
mation of a new phase in the metal matrix, a change in the size of 
a grain or the size of a phase and/or sediment particles in a metal 
matrix. Some of the mechanical properties including toughness, 
yield strength and elasticity modulus, as well as some vibration 
properties such as natural frequencies and damping coefficient, 
may be influenced by changes in the metal microstructure. Nu-
merous studies have been carried out regarding the influences of 
microstructure on the mechanical properties of metals. For exam-
ple, Zieliński et al. (2017) evaluated the effects of ageing heat 
treatment on T24 steel microstructure and its mechanical proper-
ties. They concluded that as the ageing duration and its tempera-
ture increase, the steel mechanical properties degrade, which can 
be attributed to some reasons including the metal matrix recovery, 
removing the layers of bainitic structure, an increase in the size of 
carbides M23C6, as well as the formation of secondary sediments 
of M2C and M6C3 in the metal matrix. Carneiro et al. (2018) 
addressed the influence of ageing in the microstructural aspects in 
an A356 alloy and its impact in the static and damping. This study 
analyses the role of T6 heat treatments in the overall microstruc-
ture of A356 poured in ceramic block, associating the morphology 
transformations with the internal mechanisms that enhance yield 
strength and reduce damping. They suggested that these varia-
bles display an inverse proportionality and a linear model is de-
termined for the design of alloys with tailored yield/damping by the 
use of different artificial ageing times. Carneiro, V.H., and Puga, 
H. (2018) investigated the influence of solution treatment in the 
microstructural aspects (e.g. eutectic Si spheroidization) in an 

A356 alloy and its impact in the static and damping. Their findings 
owing to eutectic Si coarsening/spheroidization, Mg2Si/π-phase 
dissolution and α-Al solution strengthening, the solution treatment 
can enhance both static (yield strength) and dynamic (damping 
ratio) mechanical properties. As well, several other studies can be 
found in the field of microstructure influences on the mechanical 
properties of a metal (Bhardwaj et al., 2021; Diehl et al., 2010; 
Yamada et al., 2006; Liu et al, 2012; Ghorbanhosseini et al.,   
2020; Korznikova et al., 2020; Wang et al., 2020; Ghosh et al., 
2008). 

Hamisi et al. (2018) studied the ageing effects on the mechan-
ical and vibration properties of SA516 carbide steels. They sug-
gested that an increase in the ageing duration can degrade the 
samples’ mechanical properties, reduce their natural frequencies 
and increase the samples damping properties. Tsai, M. H. et al. 
(2011) addressed the effects of ageing heat treatment on vibration 
properties of an Mg-Zr alloy. They concluded that as the ageing 
heat-treatment temperature increases, some twin structures are 
formed in the alloy matrix, which plays a significant role in chang-
ing the samples’ damping coefficients. El-Morsy, A. W., & Farahat, 
A. I (2015) investigated the effects of ageing heat-treatment dura-
tion on the damping of Mg-6Al-1Zn alloy. They found that increas-
ing the ageing duration, the number of settled phases also in-
creases. They showed that the ageing of this alloy up to 34 hours 
can increase its damping properties, and the damping value de-
creases, as the ageing duration increase. Carneiro, V.H., and 
Puga, H. (2019) studied the impact of microstructure and T6 heat 
treatment on Young’s modulus and internal friction. Moreover, 
some other studies have addressed the influences of microstruc-
ture on metal vibration parameters (Lin et al., 2002; Limarga et al., 
2007; Cai et al., 2005). 

https://www.sciencedirect.com/science/article/abs/pii/S0921509318306919#!
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As mentioned earlier, the changes in metal structures may in-
fluence their mechanical and vibration properties. Therefore, by 
employing some methods to investigate the mechanical and 
vibration properties of metals, it is possible to find the changes in 
the data profile of their structure, without a need to use metallog-
raphy methods. In this study, we employed a modal non-
destructive test to find the data profile of metal structures. In other 
words, using a modal test and analysing its results, rather than 
employing destructive tests such as metallography and hardness 
measurement tests, can one discover the changes in data profiles 
of metal structures that operate in superheated conditions. There-
fore, we chose the CK35 steel having a primary structure of fer-
rite-pearlite and observed that the maximum changes occurred in 
its structure, as spheroidization heat treatment applied. It is worth 
mentioning that we chose this kind of heat-treatment process to 
induce the maximum changes in the steel structure to conclude 
that how much the maximum changes in the structure will change 
the steel vibration properties of the steel. Then, we applied the 
modal experimental test and hammer test for samples having 
completely the same dimensions and different structures. 

2.   EXPERIMENTAL PROCESSES 

2.1. Heat treatment  

To study the effects of microstructure changes on the steel vi-
bration properties, employing a heat-treatment process causing a 
significant change in the structure is considered suitable. In this 
study, we chose CK35 steel having the primary structure if ferrite-
pearlite. The chemical composition of this steel is shown in Tab. 1, 
according to optical emission spectrometry test and ref. 21. The 
maximum change in ferrite-pearlite structure occurs when the 
cementite layers in the pearlite phase are dispersed spherically in 
the ferrite structure, which can be reached by applying the sphe-
roidization heat-treatment process. 

As the spheroidization heat-treatment process in the natural 
mode can be so time-consuming, the process can be much less 
time-consuming if the primary structure is martensite (Chandler, 
1998; Totten, 2006). Therefore, the samples maintained in the 
furnace at an austenite temperature for enough time (about 1 
hour) to reach a complete austenite structure, and immediately 
they were cooled, so that they reached a martensite structure. 
Then, the samples were heated at 700° to reach spherical struc-
ture in their matrix, 2 of which for 24 hours and the other 2 for 48 
hours (Chandler, 1998). Following, the samples cooled in the 
furnace.  

Tab. 1. Chemical properties of the CK35 steel, weight percentage (%) 

 C M P S 

Optical emission 
spectrometry test 

0.34 0.621 0.0121 0.018 

Ref. 21 0.32–0.38 0.6–0.9 
Max. 
0.04 

Max. 
0.05 

2.2. Frequency response 

The modal test is an experimental technique to find the modal 
model for a vibration system. This theory is based on the relation-

ship between the vibration response in a certain point of the struc-
ture and the excitation at the same point or other points as a 
response to the excitation frequency. The relationship that is often 
in a form of a mathematical complex function is called the fre-
quency response function (FRF). The modal test includes the FRF 
measurements and the structure impact response. In other words, 
one can easily measure the FRF, exerting a (measured) force at a 
certain point of the structure, in the absence of other excitement 
forces, and measuring the vibration response in one or more 
points of the structure [24]. 

In this study, we employed the modal test, as well as the 
hammer test, by the help of which can one obtain the natural 
frequencies and damping values of the samples. As the samples’ 
natural frequencies and the damping values are compared in this 
study, the samples should have as the same dimensions and 
weights as possible to investigate the effects of microstructure 
changes on the steel vibration properties. Fig. 1 shows the pre-
pared samples for the test. The sample weights are equal to 
633.33 ± 0.02 g, and their dimensions are the same in a 0.01-mm 
precision range (Fig. 1). 

 
Fig. 1. Prepared samples for the modal test 

Fig. 2 and Fig. 3  shows how this test is carried out and the 
tools used in the test. The test applied to samples in free-free 
boundary conditions. To obtain the samples’ vibration properties, 
their frequency response (FRF) should be explored. To this end, a 
hammer (Type 8202 Bruel & Kjae) and a piezoelectric accelerom-
eter employed to excite the samples and to measure their re-
sponses, respectively. It should be mentioned that the test was 
carried out in several different points of the samples. As well, 
applying 10 hits and averaging the responses, each sample fre-
quency response was obtained.  

 

Fig. 2. Used tools in the modal test: a) Hammer and its accessories;  
           b) piezoelectric accelerometer 

a) b) 
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Fig. 3 Four-channel data collection model, model 3560 c 

Then, the damping coefficients were obtained, using frequen-
cy responses and employing the peak-peaking technique (half-
power bandwidth) (Fig. 4). In this technique, the damping coeffi-
cient can be conveniently calculated, using eq. 1. In this method, 
the maximum amplitude (i.e. |αWr|) that is related to the natural 
frequencies of each vibration mode of the system is first obtained, 

and then the frequencies (Wb, Wa) are chosen at both sides of 

the resonance peak having an amplitude of   
|αWr|

2
.  

The damping loss factor is obtained from eq. 1, according to 
the peak resonance width (Fu, Z. F., & He, J, 2001). 

ηr =
Wb

2 −Wa
2

2Wr
2 =

Wb−Wa

Wr
                                                      

         (1) 

where Wr is the maximum frequency of the diagram amplitude, 

and Wr and Wb  are the frequencies at both sides of the peak 
resonance.  

 
Fig. 4. Peak-peaking technique to calculate the damping loss factor 

2.3. Tensile test 

To study the effects of heat-treatment process on the steel 
elasticity modulus – that is considered as an important parameter 
influencing the natural frequency value – some samples were 
prepared according to ASTM E8/E8M. The gauge length and 
diameters of these samples were 25 and 6 mm, respectively, that 
is categorized as sub-size samples according to the standard. 

3. FINDINGS AND DISCUSSIONS 

3.1. Microstructure 

Fig. 5a shows the steel microstructure before applying the 
spheroidization heat-treatment process. As can be seen, the steel 
structure consists of ferrite and pearlite phases; the ferrite phase 

is shown in white, while the pearlite phase is brown. Fig. 5b and 
5c shows the steel microstructure after spheroidization heat 
treatment after 24 hours and 48 hours respectively. As can be 
observed in these figures, after applying the spheroidization heat-
treatment process, the cementite phases which are placed in the 
pearlite structure in a layered manner will be distributed spherical-
ly and dispersedly in the ferrite matrix. According to Fig. 5b and 
5c, one can conclude that there exists no significant difference 
between the samples heat treated for 24 hours and those pro-
cessed for 48 hours. In other words, it seems that once the sam-
ples are heat treated for 24 hours, the cementite phase sizes are 
saturated, and increasing the heat-treatment time incurs no signif-
icant changes in the size of these phases. Therefore, according to 
the microstructures shown in the figures, it seems that the results 
of the modal test and the tensile test that was applied to samples 
heat treated for 24 and 48 hours have no significant differences. 

a)                                                  b) 

 
c) 

 

Fig. 5. Microstructures: (a) the sample before applying heat-treatment 
process, with a magnification factor of 200×, Nital etch solution 
3%; (b) heat-treated sample for 24 hours with a magnification  
factor of 1000×, Picral etch solution, 4%; and (c) heat-treated 
sample for 48 hours with a magnification factor of 1000×,  
Picral etch solution, 4% 

3.2. Results of the modal and tensile tests 

As mentioned before, 2 samples of each heat-treatment pro-
cess were prepared for the modal test. Figure 6 shows the ob-
tained frequency response, following the sample excitation by the 
hammer. The results of the modal test are summarized in Table 2. 
It should be noted that these results are related to the case where 
the sensor installation and the hammer hit are both placed in the 
middle of the samples. According to the modal test results, it is 
observed that following the spheroidization process, the natural 
frequencies and the damping loss factor of the two modes of the 
first and second vibrations are increased. In other words, the 
dispersion of cementite particles within the ferrite matrix increases 
the natural frequencies, as well as damping loss factor. Moreover, 
the results show that although structural changes incur slight 
changes in natural frequencies, the phenomenon causes signifi-
cant changes in the damping loss factor, so that the damping loss 
factor increases at least 14%, with a change in ferrite-pearlite 
structure to a spheroidized structure. 
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Fig. 6. Obtained frequency response following the sample excitation 

Tab. 2.  Results of modal test 

Sample 

Natural frequency 
(Hz) 

Damping loss factor 
(percentage of difference 

compared to the non-
heat-treated sample) 

First 
mode 

Second 
mode 

First mode 
Second 
mode 

Non-heat 
treated 

3722 9424 0.00204 0.00328 

Heat treated for 
24 hours 

3735 9447 
0.00257 

(+0.14%) 

0.00371 

(+2.51%) 

Heat treated for 
48 hours 

3734 9448 
0.00280 

(+0.15%) 

0.00282 

(+2.14%) 

One can refer to the results of the tensile test (Table 3) to find 
a reason for the increase in natural frequencies. According to the 
results, the distribution of cementite particles in the ferrite phase 
causes the elasticity modulus to increase, which in turn leads to 
an increase in the natural frequency. As well, the spheroidization 
process can increase the phase continuity that causes an in-
crease in damping (Visnapuu et al., 1987). 

Tab. 3. Results of the tensile test 

Sample Elasticity modulus 

Non-heat treated 204.80 

Heat treated for 24 hours 208.50 

Heat treated for 48 hours 207.29 

According to the results of the modal and the tensile tests, one 
can see that increasing the heat-treatment duration from 24 hours 
to 48 hours, the natural frequencies, damping loss factor and the 
elasticity modulus don’t change significantly. According to the 
microstructure similarities between samples that were heat treated 
for 24 hours and 48 hours, these results can be predictable.  

4. CONCLUSION  

This study has been carried out to find whether it is possible to 
use the modal test as a non-destructive test to discover the 
changes in metal microstructures. The experimental test results 
showed that the dispersion of carbide phases within the ferrite 
matrix increases the natural frequencies and damping loss fac-
tors. According to the results of the modal test, slight changes in 
the microstructure may lead to slight changes in natural frequen-

cy, while changing the structure incurs no significant changes in 
the damping loss factor value. According to findings, one can see 
that microstructure changes in this steel cause the vibration pa-
rameters to change. Therefore, the modal test – which is a cheap 
and fast method to obtain a system vibration data – can be em-
ployed as a non-destructive test to detect the structural changes 
in components that are operated in superheated conditions.  
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Abstract: This paper investigates the notion of practical feedback stabilization of evolution equations satisfying some relaxed conditions 
in infinite-dimensional Banach spaces. Moreover, sufficient conditions are presented that guarantee practical stabilizability of uncertain 
systems based on Lyapunov functions. These results are applied to partial differential equations. 
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1. INTRODUCTION 

In the literature on control theory of time-varying dynamical 
systems, controllability and stabilizability are the qualitative control 
problems that play an important role in the systems and have 
attracted many researchers (Damak et al., 2016; Ikeda et al., 
1972; Phat and Ha, 2008; Phat, 2001, 2002; Phat and Kiet, 2002). 
The theory was first introduced by Kalman et al. (1963) for the 
finite dimensional time-invariant systems. Furthermore, the theory 
which related to exponential stability was first introduced by Won-
ham (1967). Lyapunov function approach and the method based 
on spectral decomposition are the most widely used techniques 
for studying stabilizability of special classes of control systems, 
see for example Kobayashi (1989) and Tsinias (1991). In the 
infinite-dimensional control systems, the investigation of practical 
stabili-zation is more complicated and requires more sophisticated 
tech-niques. The practical stabilization is to find the state feed-
back candidate such that the solution of the closed-loop system is 
practically exponentially stable in the Lyapunov sense in which the 
origin is not necessary to be an equilibrium point. In this case, 
Damak et al. (2016) proved the practical feedback stabilization of 
the time-varying control systems in Hilbert spaces where the 
nominal system is a linear time-varying control system globally 
null controllable and the perturbation term satisfies some condi-
tions. Kalman et al. (1963) and Wonham (1967) have shown that 
in the finite-dimensional autonomous control system, if the system 
is null controllable in finite time, then it is stabilizable. But it does 
not hold for the converse. Moreover, if the system is completely 
stabilizable, then it is null controllable in finite time. The results of 
stabilizability for the finite-dimensional systems can be general-
ized into infinite-dimensional systems. For time-invariant control 
systems in Banach spaces, Phat and Kiet (2002) defined an 
equivalence between solvability of the Lyapunov equation and 
exponential stability of linear system. Based on the Lyapunov 
theorem, a relationship between stabilizability and exact null 
controllability of linear time-invariant control systems is estab-
lished. Moreover, they gave the exponential stabilizability of a 

class of nonlinear control systems. In recent years, non-
autonomous differential equations on infinite-dimensional spaces 
have been studied by many researchers, see the references 
Damak and Hammami (2020), Damak (2021), Chen et al. (2020a, 
2020b, 2020c, 2021) and Chen (2021) for more details. In the 
study by Chen et al. (2020b), sufficient conditions of existence of 
mild solutions and approximate controllability for the desired 
problem are given by introducing a new Green’s function and 
constructing a control function involving Gramian controllability 
operator. 

In this paper, we extend the results of Pazy (1983) and Phat 
and Kiet (2002) to discuss the problem of practical stabilization for 
evolution equations in Banach spaces. Based on the exact null 
controllability assumption of the linear control system, sufficient 
conditions for the stabilizability are established by solving a 
standard Lyapunov equation. Further, the nonlinear perturbation 
term is locally Lipschitz continuous and satisfies some appropriate 
growth conditions. A feedback controller that assures global prac-
tical uniform exponential stability of the closed-loop system has 
been proposed, that is, the solutions of the closed-loop system 
converge towards an arbitrary small neighbourhood of the origin. 

The paper is organized as follows: Section 2 briefly introduces 
some notations and necessary preliminaries. Section 3 presents 
the required assumptions and the statement of the main results. 
Section 4 presents illustrative examples, which shows the im-
portance of this study. Section 5 provides conclusion of this study. 

2. PRELIMINARIES 

Throughout this paper, we adopt the following notations R+ 
and X. R+ denotes the set of all non-negative real numbers and X 
denotes an infinite-dimensional Banach space with the norm ǁǁ. 

Let X∗ be the topological dual space of X and U infinite-
dimensional Banach space. Let 〈𝑦∗, 𝑥〉 denote the value of y at x. 
L(X) (respectively L(X,Y)) denotes the Banach space of all linear 
bounded operators mapping X  into X (respectively, X into Y) 
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endowed with the norm ǁTǁ=supx∈X
ǁTxǁ

ǁxǁ
∙ 

 The domain, the image, the adjoint and the inverse operator 
of an operator A are denoted as D(A), ImA, A∗ and A−1 respec-
tively. Everywhere below A is a linear operator in X with domain 
D(A), generating a strongly continuous semigroup S(t), that is: 

A=limh→0
S(h)−I

h
,  

in the strong topology. L2([t, s], X) denotes the set of all strongly 

measurable L2 integrable and X valued functions on [t, s].  Let 
Q∈L(X,X∗) be a duality operator. We recall that the operator Q is 

positive definite in X if 〈Qx, x〉 ≥0 for arbitrary x∈ X and 
〈Qx, x〉 >0 for x ≠ 0.  

We will denote by LPD(X,X∗)  and LSPD(X,X∗)   the set of all 
linear bounded positive definite and strongly positive definite 

operators mapping X into X∗, respectively. Also, we define: 

 Lp(R+, R+) is the set of functions positive and integrable with 

pth power on R+ where p ≥ 1 endowed with the norm  

ǁϕǁp=(∫ ϕp
+∞

0
)
1

p    for ϕ ∈ Lp(R+, R+). 
 L∞(R+, R+) is the set of all measurable functions from R+ to R+ 

which are essentially bounded endowed with the norm   
 ǁϕǁ∞=supt∈Rϕ(t) for ϕ ∈ L∞(R+, R+). 

 1[ϑ,ζ]={
1,   si    ϑ ≤ x ≤ ζ ,
0 ,         elsewhere.

 

We consider the following system: 

{
ẋ = F(t, x, u),    t ≥ t0 ≥ 0,

x(t0) = x0,
                      (2.1) 

where x ∈ X  is the system state, u ∈ U is the control input and 

F: R+× X × U → R+  is a given function. 
Definition 2.1. System (2.1) is practically stabilizable if there 
exists a continuous feedback control u : X → U, such that system 
(2.1) with u(t) = u(x(t)) satisfies the following properties. 

 For   any  initial  condition x0 ∈ X, there  exists  a  unique  mild 
solution  x(t, x0) defined on R+ .  

 There  exist  positive  scalars ω, k, and r, such that the 
solution of the system  (2.1) satisfies the following: 

ǁx(t)ǁ ≤ kǁx0ǁ𝑒−ω(t−𝑡0)
 

+ r, ∀t ≥ t0 ≥ 0. 

When (i) and (ii) are satisfied, we say that Eq. (2.1) with u(t) = 
u(x(t)) is globally practically uniformly exponentially stable. 

Definition   2.2.  (Diesel and Uhl Jr, 1977). A Banach X∗ has the 
Radon-Nikodym property if: 

L2([0,T],X∗)= (L2([0, T], X))
∗. 

In the proof of the mains results, we shall use the following 
lemmas. 
Lemma  2.1.  (Nonlinear generalization of Gronwall’s inequality, 
Zhoo, 2017). 

Let θ be a non-negative function on R+, that satisfies the fol-
lowing integral inequality:  

θ(t)≤ 𝜈+∫ (
t

t0
χ(s)θ(s) +  σ(s)θα  (s))ds,  ν≥ 0,      

0 ≤ α < 1, 𝑡 ≥ t0, where χ and σ are non-negative continuous 
functions. Then: 

𝜃(𝑡) ≤ [ν1−αe
(1− α) ∫ χ(s)ds

t
t0 + (1

−  α)∫ σ(s)e(1−α) ∫ χ(r)dr
t
s ]

1
1−α

t

t0

 

Lemma 2.2. (Generalized Gronwall-Bellman Inequality, Dragomir,  
2002). 

Let λ, ρ : R+ → R be continuous functions and ϕ : R+ → R+ 
is a function, such that:  

ϕ̇(t)≤λ(t)ϕ(t)+ρ(t), ∀t≥ t0.   

Then, we have the following inequality: 

ϕ(t)≤ ϕ(𝑡0)e
∫  λ(v)dv
𝑡
𝑡0 +∫ 𝑒∫  λ(v)dv

𝑡
𝑠

𝑡

𝑡0
ρ(s)ds. 

Lemma  2.3.  Let  a,b≥ 0 and  p ≥ 1. Then: 

(a + b)p ≤ 2p−1(ap+bp). 

3. MAIN RESULTS 

In this section, we shall state and prove our main results. 

3.1 Practical stabilization of infinite-dimensional evolution 
equations 

The purpose of this subsection is to establish the practical 
stabilization of evolution equations in Banach spaces. Based on 
the exact null-controllability in finite time of the nominal system 
whose origin is an equilibrium point, a stabilizing controller for the 
nonlinear system is then synthesized that guarantees the uniform 
exponential convergence to a neighborhood of the origin. This 
leads us to address the problem of practical stability of time-
varying perturbed systems. 

Consider infinite-dimensional evolution equations of the 
follwing form:  

{
ẋ = Ax + Bu + F(t, x),

x(t0) = x0,
                     (3.1) 

where x ∈ X  is the system state, u ∈ U is the control input, X is 
a Banach space, X∗ has the Radon-Nikodym property and U is a 

Hilbert space. The operator A:D(A)⊂ X→ 𝑋 is assumed to be the 

infinitesimal generator of the 𝐶0-semigroup S(t) on X, B∈ L(U, X) 
and the function F: R+× X → R+  is continuous in t and locally 
Lipschitz continuous in x, that is for every 𝑡1 ≥ 0 and constant 

c≥ 0, there is a constant M(c, 𝑡1), such that: 

ǁF(t,u)-F(t,v)ǁ≤ M(c, t1) ǁu-vǁ 

holds for all u, v∈ 𝑋, with ǁuǁ ≤ c, ǁvǁ ≤ c and t∈ [0, 𝑡1]. 
This system is seen as a perturbation of the nominal system: 

{
ẋ = Ax + Bu,
x(0) = x0,

                                    (3.2) 

Next, we are interested in suitable feedback of the for the follow-
ing: 

u(t) = Dx(t),                                       (3.3) 

where D∈ L(X, U). 
Let x(t,x0,u)  denote the state of a system (3.1)  at moments 

t≥ t0 ≥ 0 associated with an initial condition x0 ∈ X at t=t0 and 
input u∈ U. 

Now, we recall the definition of the generator of an exponen-
tially stable semi-group as well as that of the exponential stability 
(Curtain and Zwart, 1995). 
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Definition 3.1.  The operator A generates an exponentially stable 
semigroup S(t) if the initial value problem: 

 𝑥̇=Ax,             t≥ 0,    x(0)=𝑥0                                                 (3.4) 

has a unique solution x(t)=S(t)x0 and ǁS(t)ǁ ≤ Me−αt for all  

t≥ 0 with some positive numbers M and α.  
Definition 3.2. The linear control system (3.4) is exponentially 
stable if there exist numbers M> 0 and α > 0,  such that: 

ǁx(t)ǁ≤ Me−αtǁx0ǁ,   ∀ t ≥ 0. 

Definition 3.3.  The control system (3.2) is exactly null-

controllable in finite time if for every x0 ∈ X,  there exist a number 
T> 0 and an admissible control u(t) ∈ U = {u(. ) ∈
L2([0,∞), U)}, such that: 

S(T)x0 + ∫ S(T − s)Bu(s)ds = 0.
T

0
 

If we denote by CT the set of null-controllable points in time T of 
system (3.2) defined by:                                                               
 

CT = {x0 ∈ X; S(T)x0 − ∫ S(T − s)Bu(s)ds;  u(. ) ∈
T

0
U}, 

 
the system (3.2) is exactly null-controllable in time T> 0 if 

CT = X.  
If A is the generator of an analytic semigroup S(t) for T > 0,  

then we can define the operator WT ∈ L(U, X) by: 

WT=∫ S−1(s)Bu(s)ds, u(. ) ∈
T

0
U,    

and we have  CT = Im WT. 
We state the following well-known controllability criterion for 

the infinite-dimensional control system presented in Curtain and  
Pritchard  (1978)  for reflexive Banach spaces and then in Xuejiao 
and  Zhenchao  (1999) for non-reflexive Banach spaces having 
the Radon-Nikodym property. 
Proposition 3.1.  (Curtain  and  Pritchard, 1978 and Xuejiao and  

Zhenchao, 1999 ). Let X, U be Banach and S(t) the C0-semigroup 
of A. Assume that X∗, U∗ has the Radon-Nikodym property. The 
following conditions are equivalent.  
 Control system (3.2) is exactly null-controllable in time 

T> 0. 
 There exists c> 0, ǁWT

∗x∗ǁ ≥ cǁx∗ǁ, ∀ x∗ ∈ X∗. 
 There exists c> 0, ǁB∗S∗(s)x∗ǁ2 ≥ ǁS∗(T)x∗ǁ, 
∀ x∗ ∈ X∗. 

 If U is a Hilbert space, the operator 

WT = ∫ S−1(s)BB∗
T

0
S∗−1(s)ds  is strongly positive definite. 

The operator P∈ L(X, X∗)  is called a solution of the Lyapun-
ov equation if the following condition hold: 

〈PAx, x〉 + 〈Px, Ax〉 = −〈Qx, x〉, ∀ x ∈ D(A).                    (3.5) 

Note that, if A is bounded, then the above Eq. (3.5) has the 
standard form: 

A∗Px + PAx = −Qx, ∀ x ∈ X. 

Remark 3.1. Datko (1970) showed that if A is exponentially stable 
in Hilbert space, then the Lyapunov equation has a solution. 

We present the equivalence between the solvability of the 
Lyapunov equation and the exponential stability of the linear 
system (3.4) in the following Proposition 3.2. 

Proposition 3.2.   (Phat  and  Kiet, 2002 )  If for some Q∈
LSPD(X, X∗), P∈  LPD(X, X∗), the Lyapunov equation holds, 
then the operator A is exponentially stable. Conversely, if the 

generator A is exponentially stable, then for any Q ∈

LSPD(X, X∗), there is a solution P∈  LPD(X, X∗) of the Lyapun-
ov equation: 

 A∗P + PA = −Q.                    (3.6) 

Definition 3.4. The linear control system (3.2) is completely stabi-

lisable if for every α > 0, there exists a linear bounded operator 

D:X→ U and a number M> 0 , such that the solution satisfies the 
following condition: 

 ǁx(t)ǁ≤ Me−αtǁx0ǁ,   ∀ t ≥ 0. 

 Note that, if the operator D and number M do not depend on 
α, then the complete stabilizability implies exponential stabilizabil-
ity in usual Lyapunov sense (Zabczyk, 1992). It is known from that 
if the linear control system (3.2), where X and U are Hilbert spac-
es is completely stabilizable then it is exactly null-controllable in 
finite time (Megan, 1975). Also, Phat  and  Kiet (2002)   improved 
this result in Banach spaces. 
Proposition 3.3.  If the linear control system (3.2)  is completely 
stabilisable then it is exactly null-controllable in finite time.  

In the sequel, Phat  and  Kiet (2002)  proved that the linear 
control system (3.2) is exponentially stabilizable by linear feed-

back D:X→ U, if it is null-controllable in finite time.  
Proposition 3.4. If the linear control system (3.2)  is exactly null-
controllable in finite time, then it is exponentially stabilizable.  

 We  define the Lie derivative of a function V(x)  along solu-
tions of (3.1) as:  

V̇(x) = limt→0+ sup
1

t
(V(x(t,x,u))-V(x)). 

Now, we suppose the following assumptions.                     

(H1) The linear control system (3.2)  is exactly null-
controllable in finite time and there exists a constant operator 

D:X→ U, such that a sufficient condition specially related to oper-
ator is presented in Phat and Kiet (2002)  as the following: for any 

Q∈ LSPD(X, X∗): 〈Qx, x〉 ≥ b1 ǁx ǁ 2, ∀ x ∈ X, there exists 

P∈  LPD(X, X∗),  b2ǁxǁ
2 ≤ 〈Px, x〉 ≤ ǁPǁǁxǁ2, ∀ x ∈ X, 

where  𝑏1, 𝑏2 > 0,  which satisfies: 

 AD
∗P + PAD = −Q.                         (3.7)                    

(H2) The perturbation F: R+× X → R+  verifies the following 
estimation: 

 ǁF(t, x)ǁ ≤ φ(t)ǁxǁ + μ(t) + η, ∀ 𝑡 ≥ 0, ∀𝑥 ∈ 𝑋, 𝜂 ≥ 0,  

where φ and μ are non-negative continuous functions with 

φ ∈ L1(R+, R+) and μ ∈ Lp(R+, R+) for some p∈ [1, +∞).  
Next, sufficient conditions are presented to guarantee the 

global existence and uniqueness of solutions of systems (3.1). 
Further, we investigate the practical stabilizability of the evolution 
equation using generalised Gronwall-Bellman inequality and 
Lyapunov theory.  
Theorem 3.1. Under assumptions (H1) and (H2) the closed-loop 
system (3.1)-(3.3) have a unique solution, which is globally de-

fined for all t≥ t0 and this system is globally practically uniformly 
exponentially stable. 

Proof. We break up the proof into two steps. 
Step 1: Since F is locally Lipschitz continuous in x, uniformly in t, 
it follows from Pazy  (1983)  that for every initial condition the 
closed-loop equation possesses a unique mild solution on some 

interval [𝑡0, 𝑡0 + 𝛿] with 𝛿 > 0. Indeed, integrating (3.1) , we 

obtain the following for t∈[𝑡0, 𝑡0 + 𝛿]: 
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x(t)=S(t-t0)x0+∫ S(t − s)[Bu(s) + F(s, x(s))]ds
t

t0
. 

Since B∈ L(U, X), then: 

ǁx(t)ǁ ≤ M1ǁx0ǁ +M1(∫ ǁB
t

t0
ǁǁDǁǁx(s)ǁ +

                  M2ǁx(s)ǁ +M3 +ηds),                              (3.8) 

where: 𝑀1= sup{ǁS(t − s)ǁ: 0 ≤ t0 ≤ s ≤ t ≤ t +  δ}, 
𝑀2 = sup𝑡∈[𝑡0,𝑡0+𝛿]

ǁφ(t) ǁ  and 𝑀3 = sup𝑡∈[𝑡0,𝑡0+𝛿]
ǁμ(t) ǁ. 

By applying Gronwall inequality (Tsinias, 1991, Lemma 2.7, 
p42) to inequality (3.8), any solution of this equation is uniformly 
bounded ǁx(t)ǁ ≤ M1(ǁx0ǁ +M3 +η) on an arbitrary time 

interval  [𝑡0, 𝑡0 + 𝛿]. Then, using Theorem 1.4 of Pazy  (1983) , 

we have 𝑡0 + 𝛿 =  ∞, and so we get global existence. 
Step 2: Consider a Lyapunov function: V(x)=〈Px, x〉.  Let us 
compute the Lie derivative of V with respect to system (3.1) in a 

closed-loop with the controller (3.3). For x∈ D(A), we have                                                                          

V̇(x)=〈Pẋ, x〉 + 〈Px, ẋ〉. From 〈P(Ax), x〉 = 〈Ax, Px〉 and (3.7)  
with the help of Cauchy-Schawtz inequality, we obtain the 
following: 

V̇(x) ≤ −〈Qx, x〉 + 2ǁPǁǁF(t, x)ǁxǁ                         
 ≤  -b1ǁxǁ

2 + 2ǁPǁ(φ(t)ǁxǁ + μ(t) + η)ǁxǁ      

≤ ( b1
ǁPǁ
 + 2ǁPǁ(φ(t)

b2
)V(x) + 2ǁPǁ

√b2
(μ(t) + η)√V(x) .   

Let z(x)=√V(x) , which implies that:                        

ż(x)≤ (- b1
2ǁPǁ

+
2ǁPǁφ(t)

b2
)z(x)+

ǁPǁ

√b2
(μ(t) + η).        (3.9)   

These derivations hold for x∈D(A)⊂X. If x∉D(A), then 
the solution x(t)∈ D(A) and t→ z(x(t)) is a continuously 

differentiable function for all t≥ t0 (for these properties of 
solutions, see Theorem 3.3.3 in Henry  (1981)). Thus, by the 
mean value theorem we obtain that Eq.(3.9) holds for all 

x∈ X. Using Lemma 2.2, we have for all 𝑡 ≥ t0                                               

z(x)≤ z(x0) exp (
ǁPǁMφ

b2
)exp (-

b1

2ǁPǁ
(t − t0))+ 

exp (
ǁPǁMφ

b2
) ∫

ǁPǁ

√b2
(μ(s) + η)

t

t0
exp(− b1

2ǁPǁ
 (t-s))ds, where 

Mφ = ∫ φ(s)ds.
∞

0
  We descriminate three cases: 

1. If p=1, we get ∫ (μ(s) + η)
t

t0
 exp(− b1

2ǁPǁ
 (t-s))ds≤

ǁμǁ1 +
2ǁPǁη

b1
.  

Then, for all 𝑡 ≥ 𝑡0, ǁx(t)ǁ ≤ √
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)ǁx0ǁ 

exp(− b1
2ǁPǁ

 (t-t0))+ 
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)( ǁμǁ1 +

2ǁPǁη

b1
).                

2. If p∈ (1,+∞) and q> 0, such that 
1

𝑃
+

1

𝑞
= 1,  we have by 

applying Hölder inequality ∫ (μ(s) + η)
t

t0
 exp(− b1

2ǁPǁ
 (t-

s))ds≤ (
2ǁPǁ

b1q
)
1

qǁμǁp +
2ǁPǁη

b1
.                                 

Therefore, for all 𝑡 ≥ 𝑡0, the solution x(t) verifies the 

estimation ǁx(t)ǁ ≤ √
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)ǁx0ǁ exp(− b1

2ǁPǁ
 (t-

t0))+ 
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)((

2ǁPǁ

b1q
)
1

qǁμǁp +
2ǁPǁη

b1
).  

3. If p=+∞. Then, we have ∫ μ(s)
t

t0
 exp(− b1

2ǁPǁ
 (t-s))ds≤

2ǁPǁη

b1
 

ǁμǁ∞.  

One can get, for all 𝑡 ≥ 𝑡0   ǁx(t)ǁ ≤ √
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)ǁx0ǁ 

exp(− b1
2ǁPǁ

 (t-t0))+ 
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)(
2ǁPǁ

b1
 ǁμǁ∞  +

2ǁPǁη

b1
). 

We conclude that, the system (3.1) in closed-loop with the 
controller (3.3) is globally practically uniformly exponentially sta-
ble. This completes the proof.             ∎        

As a consequence of Theorem 3.1, we have the following cor-
ollary.                                             
Corollary 3.1. We consider the dynamical system  (3.1). Assume 

that (H1) is fulfilled and there exists a continuous function μ : R+ 
→ R+ with μ ∈ Lp(R+, R+) for some p∈ [1, +∞) , such that                                                                   

 ǁF(t, x)ǁ ≤ μ(t), ∀ t ≥ 0, ∀x ∈ X. Then, the system (3.1) in a 
closed-loop with the controller (3.3) is globally practically uniformly 
exponentially stable.                                                

We can state  other assumptions to obtain the global exist-
ence, uniqueness and the practical stabilizability for the evolution 
Eq. (3.1)  under a restriction about the perturbed term bounded by 
the sum of Hölder continuous function and a Lipschitz function.                                               

(H3) There exists a non-negative constant 0< 𝛼 < 1, such 
that the  perturbation term  F: R+× X → R+  satisfies the follow-

ing condition: ǁF(t, x)ǁ ≤ φ(t)ǁxǁα + σ(t)ǁxǁ, ∀ t ≥ 0, ∀x ∈
X, where φ and μ are non-negative continuous functions with 
σ ∈ L1(R+, R+) and φ ∈ Lp(R+, R+) for some p∈ [1, +∞).                                   

Then, one has the following theorem.        
Theorem 3.2.  If assumptions (H1) and (H3) are fulfilled, then  the 
closed-loop system (3.1)-(3.3) have a unique solution, which is 

globally defined for all t≥ t0 and this system is globally practically 
uniformly exponentially stable.                         

Proof. We  break up the proof into two steps. 
Step 1: Since F is locally Lipschitz continuous in x, uniformly in t, 
it follows from Pazy  (1983)  that for every initial condition the 
closed-loop equation possesses a unique mild solution on some 

interval [𝑡0, 𝑡0 + 𝛿]  with 𝛿 > 0. Indeed,  integrating Eq.(3.1) ,  

we obtain the following for t∈[𝑡0, 𝑡0 + 𝛿]: 

x(t)=S(t-t0)x0+∫ S(t − s)[Bu(s) + F(s, x(s))]ds
t

t0
. 

Since B∈ L(U, X), then: 

ǁx(t)ǁ ≤ M1ǁx0ǁ +M1(∫ ǁB
t

t0
ǁǁDǁǁx(s)ǁ +

 M2ǁ𝑥(𝑠)ǁ
𝛼 +M3ǁx(s)ǁds),                                 (3.10)                    

where: 𝑀1 = {ǁS(t − s)ǁ: 0 ≤ t0 ≤ s ≤ t ≤ t +  δ},    
𝑀2 = sup𝑡∈[𝑡0,𝑡0+𝛿]

ǁφ(t) ǁ and 𝑀3 =  sup𝑡∈[𝑡0,𝑡0+𝛿]
ǁσ(t) ǁ.  

By applying Lemmas 2.1 and 2.3  to inequality (3.10), any so-
lution of this equation is  unifomly bounded:  ǁx(t)ǁ ≤

2
α

1−αeM1δ(ǁBǁǁDǁ+M3)(M1ǁx0ǁ + (M1M2δ(1 − α))
1

1−α), on 

an  arbitrary time interval [𝑡0, 𝑡0 + 𝛿].  Applying Theorem 1.4 of 

Pazy (1983), we have 𝑡0 + 𝛿 = ∞, and so we obtain global  
existence. 
Step 2: Define the function V:D(A)→ R +  by V(x)=〈Px, x〉. Then, 
the Lie derivative of V in t along the solution of the system (3.1) in 
a closed-loop system with the controller (3.3)  leads to                                                             
V(x)=〈Pẋ, x〉 + 〈Px, ẋ〉 ≤ −〈Qx, x〉 + 2ǁPǁǁF(t, x)ǁxǁ.  Using 
assumptions (H1) and (H3)  we get the following estimation:   

V̇(x)≤ (-
b1

ǁPǁ
+
2ǁPǁσ(t)

b2
)V(x)+

2ǁPǁφ(t)

√b2
α+1 V(x)

α+1

2 . 

Let ϑ(x) = V(x)
1−α

2 , which implies that: 

ϑ̇(x) ≤ −
(1−α)

2
(
b1

ǁPǁ
−

2ǁPǁσ(t)

b2
) ϑ(x) +

ǁPǁ(1−α)φ(t)

√b2
α+1 ,  
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Using  Lemma 2.2 ,  we get:  

ϑ(x) ≤ e
ǁPǁ(1−α)Nσ

b2 (ϑ(x0)exp (−
b1(1−α)

2ǁPǁ
(t − t0) +

ǁPǁ(1−α)

√b2
α+1 ∫ exp (−

b1(1−α)

2ǁPǁ
(t − s))φ(s)ds),

t

t0
   

where Nσ = ∫ σ(s)ds.
∞

0
  We discriminate three cases: 

1. If  p=1, we get: 

ϑ(x) ≤  e
ǁPǁ(1−α)Nσ

b2 (ϑ(x0)exp (−
b1(1 − α)

2ǁPǁ
(t − t0)

+
ǁPǁ(1 − α)

√b2
α+1 ǁφǁ1). 

From Lemma 2.3, it follows that:                                

ǁx(t)ǁ ≤ 2
α
1−αe

ǁPǁNσ
b2 (√

ǁPǁ

b2
ǁx0ǁ exp (−

b1
2ǁPǁ

(t−t0))

+
1

√b2
(
ǁPǁ(1 − α)

√b2
α+1 ǁφǁ1)

1
1−α

 ). 

2. If  p∈ (1,+∞) and q> 0,  such that 
1

P
+

1

q
= 1,  we have by 

applying / inequality: 

 𝜗(𝑥) ≤ e
ǁPǁ(1−α)Nσ

b2 (ϑ(x0) exp (−
b1(1−α)

2ǁPǁ
(t − t0)) + 

ǁPǁ(1−α)

√b2
α+1  ǁφǁp(

2ǁPǁ

q(1−α)b1
)
1

q  ).  

Then, using Lemma 2.3, we have: 
ǁx(t)ǁ

≤ 2
α
1−αe

ǁPǁNσ
b2 √

ǁPǁ

b2
ǁx0ǁ exp (−

b1
2ǁPǁ

(t − t0))

+
2

α
1−αe

ǁPǁNσ
b2

√b2
(
ǁPǁ(1 − α)ǁφǁp

√b2
α+1 )

1
1−α  (

2ǁPǁ

q(1 − α)b1
)

1
q(1−α)

. 

3. If p=+∞. Then, one has the following estimate: 

ǁx(t)ǁ ≤ 2
α
1−αe

ǁPǁNσ
b2 (√

ǁPǁ

b2
ǁx0ǁ 

exp (−
b1

2ǁPǁ
(t − t0)) +

1

√b2
(

2ǁPǁ2

b1√b2
α+1 ǁφǁ∞)

1

1−α ).   

We deduce that, the system (3.1) in a closed-loop with the 
controller (3.3) is globally practically uniformly exponentially sta-

ble. This ends the proof. ∎ 
For perturbed time-varying systems (3.1) in finite-dimensional 

spaces, we also have the following consequence. 

Corollary 3.2. (Ellouze, 2019)  Assume that X=Rn , U=Rm  and 
the assumptions (H1) and (H3) are satisfied, then the system (3.1) 
with the controller (3.3) is globally practically uniformly exponen-
tially stable. 
 
 

3.2  Feedback control of uncertain systems 

Let X be a Banach space, X∗ has the Radon-Nikodym proper-
ty and U is a Hilbert space.  

We consider the uncertain dynamical system:  

{
ẋ = Ax + Bu + G(t, x, u), t ≥  t0,

x(t0) = x0,
                                 (3.11) 

where x∈ X is the system state, u∈ U is the control input, A is 
the infinitesimal generator of the C0-semigroup S(t) on a Banach 

space X, B∈ L(U, X) and G: R+× X × U → R+ is continuous in 
t and locally Lipschitz continuous in x uniformly in t on bounded 
intervals, that is, for every t1 ≥ 0  and  constant c≥ 0, there is a 

constant M(c, t1), such that for all x, y∈ X:  ǁxǁ ≤ c, ǁyǁ ≤
c and for all t∈ [0, t1], u ∈ U  with  ǁuǁ ≤ c it holds that:   

ǁG(t, x, u) − G(t, y, u)ǁ ≤ M(c, t1)ǁx − yǁ. 

Let x(t,x0,u)  denote the state of a system (3.11) at moment 

t≥ t0 associated with an initial condition x0 ∈ X  at  t=t0 and 

input u∈ U.  
  We suppose the following assumption relating to system 

(3.11). 

(H4) The  perturbation term  G: R+× X × U → R+  satisfies 
the following condition: 

∃a, b > 0, ǁG(t, x, u)ǁ ≤ aǁxǁ + bǁuǁ + d(t) + ε, ∀ t ≥
0, ∀x ∈ X, ϵ ≥ 0.                                                        (3.12)  

where d is a non-negative continuous function with d ∈ Lp(R+, 

R+) for some  p∈ [1, +∞).           
The following lemma proved sufficient conditions for the global 

existence and uniqueness of solutions of system (3.11). 
Lemma 3.1. Under assumption (H4), the closed-loop system 
(3.3)- (3.11) have a unique solution which is globally defined for all 
t≥ t0. 
Proof. As G is locally Lipschitz continuous in x, uniformly in t, it 
follows from Pazy (1983) that for every initial condition the closed-
loop equation possesses a unique mild solution on some interval 

[t0, t0 + δ] with δ > 0. Indeed, integrating (3.11), we obtain the 

following for t∈[t0, t0 + δ]: 

x(t)=S(t-t0)x0+∫ S(t − s)[Bu(s) + G(s, x(s), u(s))]ds
t

t0
. 

 Since B∈ L(U, X), then by applying Gronwall inequality 
(Teschl, 2012, Lemma 2.7, p42), we have the following: 

ǁx(t)ǁ ≤ M1(ǁx0ǁ + M2 δ +ε)e M1δ(ǁBǁ ǁDǁ+a+bǁDǁ ),  

where: M1= sup{ǁS(t − s)ǁ: 0 ≤ t0 ≤ s ≤ t ≤ t + δ} and 
M2 = supt∈[t0,t0+δ]

ǁd(t) ǁ on an arbitrary time interval [t0,t0 +

δ].  Now, Pazy (1983, Theorem 1.4) gives that and so we have 

global existence. The proof is completed.                           ∎ 
The next theorem shows the practical stabilization of the sys-

tem (3.11) using the Lyapunov indirect method and Gronwall-
Bellman inequality. 
Theorem 3.3. Assume that A is exponentially stable and the 
assumption (H4) is satisfied. Let P, Q∈ LPD(X, X∗) be the opera-

tors satisfying the Lyapunov Eq. (3.6)  where P=P∗ and  
〈Qx, x〉 ≥ λǁxǁ2 for all  x∈ X, λ > 0.Then,  the nonlinear control 
system is practically stabilizable by the feedback control u(t)=-
ρB∗Px(t) if: 
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ρ <
λ−2aǁPǁ

2bǁBǁǁPǁ2
∙                                                      (3.13) 

Proof.   Let P∈ LPD(X, X∗) be an operator which is a solution of 

the Lyapunov Eq. (3.6). Define the Lyapunov function V:D(A)→
R + by V(x)=〈Px, x〉. Noting that, there exists 𝛼 > 0 such that:  

αǁxǁ2 ≤ V(x) ≤  ǁPǁǁxǁ2 ∙  

 Then, the derivative of V in t along the trajectories of system 
(3.11) and using the chosen feedback control and the Lyapunov 
equation is given as follows  

V̇(x)=〈Pẋ, x〉 + 〈Px, ẋ〉 = −〈Qx, x〉 − ρ〈PBB∗Px, x〉 −
ρ〈Px, BB∗Px〉 + 〈PG(t, x, u), x〉 + 〈Px, G(t, x, u)〉. 

 Since P is self-adjoint, by assumption (H4) and condition 

(3.13), we have for all t≥ t0: 

V(̇x) ≤ −kV(x) +
2ǁPǁ

√α
(d (t) +ϵ)√V(x),  

where  k=
λ−2bρǁBǁǁPǁ2−2aǁPǁ

ǁPǁ
> 0. 

Let ϑ(x)=√V(x). Then,   ϑ̇(x) ≤ −
k

2
ϑ(x) +

ǁPǁ

√α
(d(t) +

ε), ∀ x ∈ X, ∀ t ≥ t0.  Applying Lemma 2.2,  we obtain the fol-

lowing:    

ϑ(x)≤ ϑ(x0)e
−
k

2
(t−t0)+

ǁPǁ

√α
∫ exp (

k

2

t

t0
(s − t))(d(s) + ε) ds, 

∀ t ≥ t0.        

We distinguish three cases:  
1. If p=1,  we get: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁe

−
k

2
(t−t0) +

ǁPǁ

α
(ǁdǁ1 +

2ε

k
), ∀ t ≥ t0 

2. If  p∈ (1,+∞) and q> 0, such that 
1

P
+

1

q
= 1,  we have by 

applying Hölder inequality: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁe

−
k
2
(t−t0)

+
ǁPǁ

α
((

2

𝑞𝑘
)

1
q
ǁdǁp +

2ε

k
) ,∀ t ≥ t0 ∙ 

3. 3. If p=+∞. Then, we obtain the following: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁe

−
k

2
(t−t0) +

2ǁPǁ

αk
(ǁdǁ∞ +

2ε

k
), ∀ t ≥ t0 

We deduce that, the system (3.11) is practically stabilizable. 

This ends the proof.                                                                      ∎ 

In the following, we derive some sufficient conditions that 
guarantee practical stabilizability of system (3.11) in the case A is 

not exponentially stable and it is a generator of bounded C0-
semigroup, but the associated linear control system (3.2)  is ex-
actly null-controllable in finite time and the nonlinear perturbation 
satisfies a condition. 

Theorem 3.4. Assume that the linear control system (3.2) is ex-
actly null-controllable in finite time, then the system (3.11) is prac-
tically stabilizable for some appropriate numbers a, b satisfying 
the condition (3.12). 

Proof. The linear control system is exactly null-controllable in 
finite time, then from Proposition 3.4 there is an operator D∈
L(X, U), such the operator WL=A+BD is exponentially stable. Let 

P, Q ∈ LPD(X, X∗) be the operators satisfying the Lyapunov Eq. 
(3.6)  where P=P∗and 〈Qx, x〉 ≥ λǁxǁ2for all x∈ X and λ > 0. 
Consider the Lyaunov function V(x)=〈Px, x〉. We have: 

 αǁxǁ2 ≤ V(x) ≤  ǁPǁǁxǁ2 , α > 0. 

The Lie derivative of V along the trajectories of system (3.11)  
is given as follows: 

V̇(x) ≤ − λǁxǁ2 + 2〈PG(t, x, Dx), x〉
≤ −ηǁxǁ2 + 2 ǁPǁ(d(t) + ε), 

where η =  λ − 2(aǁPǁ + bǁDǁ).  We take a, b> 0, such that 

η > 0,  that is, aǁPǁ + bǁDǁ <
λ

2
∙   

Let ϑ(x)=√V(x).   Then:     

 ϑ̇(x) ≤ −
 η

2ǁPǁ
ϑ(x) +

ǁPǁ

√α
(d(t) + ε), ∀ x ∈ X, ∀ t ≥ t0. 

Using Lemma 2.2,  we have: 

ϑ(x)≤ ϑ(x0)e
−

 η

2ǁPǁ
(t−t0)+

ǁPǁ

√α
∫ exp (

 η

2ǁPǁ

t

t0
(s − t))(d(s) +

ε) ds, ∀ t ≥ t0.   

 We distinguish three cases:  

1. If p=1, we have for all t≥ 𝑡0:  

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁ e

−−
 η
2ǁPǁ

(t−t0) +
ǁPǁ

α
(ǁdǁ1

+
2ǁPǁε

η
), ∀ t ≥ t0 ∙ 

2. If  p∈ (1,+∞) and q> 0, such that 
1

P
+

1

q
= 1,  we obtain by 

applying Hölder inequality: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁ e

−
 η
2ǁPǁ

(t−t0)

+
ǁPǁ

α
((
2ǁPǁ

qη
)

1
q

ǁdǁp +
2ǁPǁε

η
) ,

∀ t ≥ t0 ∙ 

3.  If p=+∞. Then, we have: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
 ǁx0ǁ e

−
 η
2ǁPǁ

(t−t0)

+
2ǁPǁ2

αη
(ǁdǁ∞ + ε),∀ t ≥ t0 ∙  

 We deduce that, the system (3.11) is practically stabilizable. 

This finishes the proof.                                                                 ∎         
Remark 3.2. The above results generalise theorems of stabiliza-
bility in Phat and Kiet  (2002)  with  d(t)=ε =0. 

4. EXAMPLES                                                                     

In this section, we give some examples to illustrate the effec-
tiveness of the results obtained in the present paper. 
 
Example 4.1.  We consider the controlled metal bar: 
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{
 
 

 
 

∂x(ζ,t)

∂t
=

∂2x(ζ,t)

∂2ζ
+ 𝟏[1

2
,1]u(t) +

1

1+t2
x(ζ, t) +

1+t

(1+t2)(1+ǁx(ζ,t)ǁ
,

∂x

∂ζ
(0, t) = 0 =

∂x

∂ζ
(1, t), x(ζ, 0) = x0 (ζ), t ≥ 0,

        (4.1.) 

where x(ζ, t) represents the temperature at positionζ at time t 

and x0 (ζ) represents the initial temperature profile and u(t) rep-
resents the addition of heat along the bar. The two boundary 
conditions state that there is no heat flow at the boundary, and 

thus the bar is insulated. Let X=L2(0,1)  and U=C. Equation (4.1) 

can be rewritten as (3.1), where A=
∂2x(ζ,t )

∂2ζ
  with D(A)={h∈

L2(0,1), h,
∂h

∂ζ
  is absolutely continuous, 

 ∂2h

∂2ζ
∈ L2(0,1) and 

∂h

∂ζ
(0) = 0 =

∂h

∂ζ
(1)}, B=𝟏

[
1

2
,1]
  and F(t,x)= 

1

1+t2
x(ζ, t) +

1+t

(1+t2)(1+ǁx(ζ,t)ǁ
∙ 

A possesses an orthonormal basis of eigenvector 𝜑0(ζ) = 1  

and  𝜑𝑛(ζ) = √2 cos (n𝜋ζ), n ≥ 1.  Furthermore, the semi-

group (S(t))t≥t0  generated by A is given by:  

 

S(t)x= ∑ 𝑒−𝑛
2𝜋2𝑡∞

𝑛=0 〈𝑥,  𝜑𝑛〉 𝜑𝑛.  
 
Using Proposition 3.1, it is easy to see that the nominal system of 
(4.1) is exactly null-controllable in finite time. Moreover, the as-

sumption (H2) is satisfied with η=0 and φ(t) =
1

1+t2
 and μ(t) =

1+t

1+t2
 are non-negative functions with φ ∈ L1(R+, R +) and 

μ ∈ Lp(R+, R+) for some p∈ [1, +∞). Then, all hypotheses of 
Theorem 3.1 are satisfied and the controlled heat Eq. (4.1) is 
practically stabilizable.  
 
Example 4.2. We consider the controlled perturbed heat equation: 

{

∂x(ζ,t)

∂t
=

∂2x(ζ,t)

∂2ζ
+

2+t2

1+t2
u(t) + x(ζ, t) + e−t𝟏[0,π

2
]

 
x(0, t) = 0 = x(π, t), x(ζ, 0) = x0 (ζ), t ≥ 0,

            (4.2) 

where x(ζ, t) represents the temperature at position ζ ∈ [0, π] 
time t and x0 (ζ) represents the initial temperature profile.  

Let X=L2(0, 𝜋) and U=C. It is useful to formulate the equation 

(4.2) as an abstract differential equation of the form (3.11), where 

A=
∂2x(ζ,t)

∂2ζ
 with D(A) ={ h ∈ L2(0, π),

∂h

∂ζ
  is absolutely continuous 

∂2h

∂2ζ
∈ L2(0, 𝜋) and h(0) = 0 = h(π)}, B=I and 

G(t, x(ζ, t)u)=x(ζ, t) +
1

1+t2
u(t)+ 𝑒−𝑡𝟏

[0,
𝜋

2
]
. 

A possesses an orthonormal basis of eigenvector  φn(ζ) =

√
2

π
sin(nζ), n≥ 0.  Furthermore, the semigroup (S(t))t≥t0   gen-

erated by A is given by:  

S(t)=∑ e−n
2t∞

n=1  〈x,  φn〉 φn.  

Obviously, S(t) is exponentially stable. Therefore, A is expo-
nentially stable. Moreover, G satisfies the assumption (H4), just 

take a=1, b=1, ε = 0 and d (t) =
π  

2
e−t,  is a non-negative contin-

uous function, with d∈ Lp(R+, R+) for some  p∈ [1, +∞).   
Consequently, by applying Theorem 3.3, the controlled heat 
Eq. (4.2) is practically stabilizable.    

5. CONCLUSION 

Practical stabilization of infinite-dimensional evolution equa-
tions in Banach spaces has been investigated. Moreover, suffi-
cient conditions have been derived to guarantee the practical 
stabilization of a class of uncertain systems in Banach spaces. 
Illustrative examples are given to indicate significant improve-
ments and the application of the results. 
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Abstract: The aim of this paper is to study the position and power performances of an electrical lead screw-driven industrial gripper  
mechanism (LSDIGM). This work consists of designing and developing an electrical LSDIGM that has the potential to meet various  
demands in the automation industry and factories. The performances of both angular electrical gripper (AEG) and parallel electrical gripper 
(PEG) mechanisms were compared based on their position and power efficiency. The position efficiency of these electrical LSDIGM  
is computed from the position root mean square error (PRMSE) obtained from errors between the two measured positions (input  
incremental encoder and output linear encoder). In the experimental setup, a current sensor and a spring were employed to measure  
the current in the input of the system and the stiffness in the output of the system, respectively. The electrical power in the input  
of the electrical LSDIGM and the mechanical power in the output of the LSDIGMs were calculated using the current and the spring force, 
respectively. Finally, the power efficiency of these electrical LSDIGMs was examined and compared at different velocity circumstances.  

Key words: Electrical lead screw-driven industrial gripper mechanism (LSDIGM), Efficiency, Position root mean square error (PRMSE),  
                    Parallel electrical gripper (PEG), Angular electrical gripper (AEG) 

1. INTRODUCTION 

Nowadays, designing and developing an inexpensive and reli-
able electric gripper mechanism in factories is very important in 
the robotic manufacturing revolution. In robotic systems, the grip-
per is like the human hand that allows one to grab and place any 
particular object. Grippers have been used in factories to facilitate 
various operations and for tasks that are dangerous and difficult 
for humans to perform, such as logistics, underwater welding, 
material handling, sensitive surgery, detecting and defusing 
bombs, and industrial furnaces (Birglen and Schlicht, 2018). The 
basic requirements of the gripper system design should be char-
acterized as follows: high power/weight ratio giving the lowest 
machine mass, high torque/inertia ratio giving the best accelera-
tion possible, the smooth trajectory of torque particularly at low 
speeds to minimize speed variation and achieve good positional 
accuracy, controlled torque at zero-speed, high maximum speed 
of operation, high efficiency and power factor to minimize drive 
requirement, compact integrated design with the application, good 
frequency response, low backlash, and low cost (Liu et al, 2020). 
To develop an industry interesting product, there is a need for 
inexpensive, simple, and robust solutions. Industrial robotic grip-
pers have an effective role in modern automation as they consti-
tute the end-of-arm of robotic manipulators and then, they are in 
direct contact with the work piece (Honarpardaz et al, 2017; Lu et 
al., 2019). Also, with the development of series elastic actuators 
and control methods, flexible grippers can be developed; flexible 
grippers have more accuracy of control and gripping force (Li et 

al., 2017). With the advent of modeling and simulation technology, 
design and development studies are increasingly focusing on 
robotics research. The key challenge in these problems is to find 
the right balance between all the conflicting goals. The perfect 
solution to an optimal design problem of a given gripper system is 
to develop a set of solutions by analyzing the system parameters 
that accomplish all the goals simultaneously (Kuang et al., 2017; 
Hu et al, 2019). 

In a variety of industrial applications, hydraulic and pneumatic 
grippers are used to create a holding force according to specific 
specifications, depending on the load. However, hydraulic and 
pneumatic methods are not flexible and cannot be used in the 
manufacture of modern systems (Kumar et al., 2017). Today, 
a mechanical gripper in the system and mechatronics engineering 
are increasingly being replaced by electrically controlled drives 
called the electrical actuator (Tai et al., 2016). The electrical grip-
per is a mechanism used to perform linear motion electrically 
similar to that achieved with hydraulic and pneumatic grippers. In 
the main component of the electrical gripper, the classical me-
chanical gripper is replaced with an electrical motor and repro-
grammable controller. Compared to the mechanical grippers, the 
electrical gripper improves accuracy and repeatability (Shin et al., 
2012). The servomotors used in modern electrical grippers are 
well suited for complex motions because they are easy to control 
by changing the voltage and current, speed, and torque in the 
servomotors. However, motion systems using the feedback fea-
ture in these motors are expensive and quite complex. This is one 
of the main reasons why a stepper motor is used as an actuator 
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in a proposed electronic gripper system while considering the low 
price and easy usage (Datta et al., 2015). A stepper motor is a 
motor that converts digital electric pulses into stepping mechanical 
movements. The most important advantage of a stepper motor is 
its use in an accurately open-loop control system. This type of 
control eliminates the need for expensive detection and feedback 
devices such as sensitive encoders. Its position is simply deter-
mined by tracking the input electrical pulses (Shaw and Dubey, 
2016). The stepper motor can be a good selection for open-loop 
motion control. Stepper motors can be used in projects where 
rotation angle, speed, position, and synchronization must be 
controlled. Stepper motors can be used in many different projects 
(Su and Zhong, 2018). Because of these main advantages, a 
stepper motor is selected as an actuator for electromechanical 
gripper movement output in this paper. In this paper, the applica-
tion of the lead screw-driven industrial gripper mechanism 
(LSDIGM) was developed from the switching of the existing 
pneumatic cylinder. The main goal of such a system is to avoid 
force overshoots in the contact stage while keeping stress force 
error in the high-sensitive tracking stage, where traditional pneu-
matic cylinders are not competent. The proposed method of the 
ratio of the maximum force (RMF) has been used to prove the 
appropriate force rate. In this study, the lead screw and electrical 
motor-driven industrial gripper mechanism model was developed 
to have a flexible and reprogrammable system. First, the design 
and modeling of electrical LSDIGM are briefly introduced. Then, 
the overall behavior structure of the system is proposed. The 
position and power efficiency of these electrical LSDIGMs were 
examined and compared at different velocity circumstances. 

2. MATERIALS AND METHODS 

In the case of rotational actuators, first, the movement forms 
have to be converted from rotational to linear movement. This can 
be achieved by a connecting lead screw to the actuator and a 
linear guide the diagram of the electrical LSDIGM is illustrated in 
Fig.1. For the electrical gripper, a model was developed in Li et al. 
(2011) and Chen et al. (2014). The mathematical model is based 
on two movements: the movement angle, θ, to the motor angle 
and the movement distance to the load movement. The θ angle is 
linked by a lead-screw mechanism to the d distance. The resultant 
angular motion and linear motion produce two respective forces: a 

lead-screw torsional torque τls applied at the input of the system 
and a gripper linear force Fg applied at the output of the system.  

 
Fig. 1. Block diagram of the LSDIGM 

In order to evaluate the performance of position errors, in 
general, the square root of the mean of all square errors (PRMSE) 
is calculated between the stepper motor position and the meas-

ured load signal based on equation 1  (Chen et al., 2014; Nanda, 
2010). The equations (2, 3, 4, 5) are used to illustrate the effect 
of time and position error in equation 1. 

PRMSE = √
1

N
∑ (pi − p̂i

N
i=1 )2                         (1) 

Integral of the absolute value of the error (IAE):  

IAE = ∑ |(pi − p̂i)|N
i=1                   (2) 

Integral of the square value of the error (ISE):  

ISE = ∑ (pi − p̂i)
2N

i=1              (3)  

Integral of the time-weighted absolute value of the error 
(ITAE):  

ITAE = ∑ 𝑡|(pi − p̂i)|N
i=1              (4)  

Integral of the time-weighted square value of the error (ITSE):  

ITSE = ∑ 𝑡(pi − p̂i)
2N

i=1              (5)  

where pi is the output position, p̂i is the input position, t is the 
sampling time, and N is the sampling number (Najjari et al., 2014). 

In this paper, a standard algorithm using a C++ programming 
language is implemented in a Googoltech industrial PC to run the 
LSDIGM system. The stepper motor can be programmed and 
controlled in real-time by using this software via the output port of 
an industrial PC. In order to perform the gripper movement, the 
proposed method uses a lead screw for converting the rotary 
movement of the stepper motor into the linear movement. 

2.1. Mechanical Design  

To obtain a simple and inexpensive design, we minimized the 
amount of mechanical and electronic parts (Fig. 2). It was, there-
fore, decided to use a normal stepper motor and lead screw. Also, 
angular gripper and parallel gripper can be both opened and 
closed by only one HANPOSE 17HS3401S T8x8 Nema stepper 
motor with a PK6M05N lead screw driven by the stepper motor 
driver model CWD556 (Fig. 3). When a voltage of 24 V is applied 
to the motor, this results in a constant actuation torque of 0.5 Nm 
applied at the base of the finger and 0.25 Nm on each of the 
opposite fingers as defined (Park et al., 2016). First, it is required 
to determine the torque of the motor relative to the system’s out-
put force, the torque due to the force the load applies to the grip-

per finger called gripper force Fg(N), and it is introduced through 

function Fg. The gripper force is given in equation (6) as men-

tioned before; for rotational actuators, the movement has to be 
converted from rotational to linear. To calculate the velocity of the 
motor, the linear speed of the gripper finger can be converted to 
rotational speed using equation (7).  

Fg =
2π η τls

ℓ
               (6) 

v =
ℓω 

2π
                 (7) 

 

where Fg is the force/load applied (N), η is the efficiency factor, ω 

is the rotational speed (rad/sec), and v is the linear speed 

(mm/sec) (Liu et al., 2016). Torque τls is the lead-screw acting on 
the shaft caused by forces (see Fig. 4). It can be based on the 
following equations (8): 
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τls =
FaD𝑥

2
(

ℓ+μπD𝑥

πD𝑥−μL
) (

1

η
)                   (8)  

where: 

D𝑥 =  Dp − (
PB

2
)   ,    ℓ = nsPB             (9)  

Fa is the moving force in the direction of the lead screw, and θ is 
the tilt angle (Xu et al., 2018; Hassan and Abomoharam, 2017). 
The parameters of the lead-screw model are given in Table 1. 

 
Fig. 2. Simscape model of the electrical LSDIGM actuator 

   
Fig. 3. Experimental setup of LSDIGM (a) parallel gripper and  (b) angular gripper 

 

 
Fig. 4. Model of the lead screw 

Tab. 1. Parameters of lead-screw model-PK6M05N 

Parameter Symbol Value 

Pitch circle diameter Dp 9.5 mm 

Screw pitch PB 5 mm 

Lead of the thread ℓ 5 mm 

The starts number ns 1 

Friction coefficient of sliding 
surface 

μ 0.15 

Thread angle Α 30 degree 

 

2.2. Modeling of Electromechanical System 

To analyze the dynamic characteristics after the completion 
of the development of the electromechanical system, an electrical 
LSDIGM actuator model was created in SIMULINK™ (Fig. 2).  

Contributions from the different system variables were com-
bined to simplify the model. The motor rotor inertia, screw nut 
inertia, and carrier inertia were combined, along with the referred 
inertial contribution from the linear motion parts and were repre-
sented by equation (10). 

Jtot = Jmotor + Jnut + J𝑐𝑎𝑟𝑟𝑖𝑒𝑟 + m(
L

2π
)2                              (10) 

where m is the mass of the linear components, and ℓ is the screw 
lead. This leads to 

Jtotα = τmotor − (τload + τ𝑣𝑖𝑠𝑐𝑜𝑢𝑠 + τ𝐶𝑜𝑢𝑙𝑜𝑚𝑏)                 (11) 

Jtot
d2𝜃

d𝑡2 = τmotor − (𝐹𝑔𝑋 + β
d𝜃

d𝑡
− F𝑐

d𝜃

𝑑𝑡

|
d𝜃

d𝑡
|
)                        (12) 

(a) (b) 
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where Fg is the force on the gripper fingers, j represents the gear 

ratio and linear conversion, β represents the viscous damping 
coefficient, and Fc represents the Coulomb force component. 

 
Fig. 5. Force–distance (stiffness) characteristic of the springs  
           given in Table 3 

3. RESULTS AND DISCUSSION 

There are several methods for analyzing and measuring force, 
three springs with different stiffness coefficient values (Fig. 5 and 
Table 3) have been used to analyze the dynamic behavior of the 
system (Fotuhi et al., 2020). To analyze the gripper, two sensors 
were used to measure data. Sensors are incremental encoders of 
motor and linear encoders of load (Fotuhi and Bingul, 2021; Wang 
et al., 2016). Motor incremental encoder gives a pulse output of 
0.17578125 (degrees/pulse), and load linear encoder gives a 
voltage output of 0.5 (mV/mm). Over the range 0–20 mm, this is 
amplified by an amplifier with a voltage gain of 20, sampled, and 
applied to a 10-bit analog-to-digital converter with voltage range 
0–5 V. The resolution of the measurement is 1024 (digital val-
ue/mm). The experimental setup of electrical LSDIGM is shown in 
Fig. 3. The position and current analog signals are converted to 
physical parameters by using sensor gains (equations 13, 14, and 
15). They are given in Table 2.  

DL(mm) = (VL − ov) ∗ (cV)                                                 (13) 

DM(mm) = (PM − op) ∗ (cP
−1)                                          (14) 

Cs(Amper) = (Vc − oc) ∗ (cc
−1)                                         (15) 

here, 𝐷𝐿  is the distance of load (mm), 𝐷𝑀  is the distance of linear 

movement of motor (mm),  𝐶𝑠 is the equation of current sensing, 

𝑉𝐿 is the digitized voltage from analog to digital using an ADC 
(analog-to-digital converter) value of voltage output of the load 

linear encoder (digital value), 𝑃𝑀  is the pulse number of the motor 

incremental encoder (pulse), and 𝑉𝑐  is the discrete voltage (ADC 
value of voltage) output of the current sensor. 

Tab. 2. Position and current sensor gains 

Parameter Symbol Value 

Voltage coefficient of the linear 
encoder 

cV 1.427428571 

Pulse coefficient of the incremental 
encoder 

cP 1.0058 

Current coefficient of the current 
sensor 

cc 29.457 

Offset of voltage ov 779.7638571 

Offset of pulse op 62.41924891 

Offset of current oc 17.92554531 

Tab. 3. Technical specification of springs 

Spring 
type 

Stiffness (Ks 
= N/mm) 

Free length 

(mm) 

Full compres-
sion (mm) 

Total 
coil 

A 5.735 42.1 25.3 7 

B 11.764 42.5 25.2 7 

C 13.823 42.2 25.6 7 

Tab. 4. Velocity profile (maximum speed = 30 mm/sec) 

Speed mode Speed Speed (mm/sec) 

Low speed (LS) 5%   Max 1.5 

Medium speed (MS) 20% Max 6 

High speed (HS) 65% Max 19.5 

Very high speed (VHS) 85% Max 25.5 

To avoid repetition of showing the same behavior in the paper, 
the movement profile of a parallel and angular gripper A-type of 
the spring in the low-speed case is only illustrated in Fig. 6. The 
results of the medium, high, and very high speed of B-type and C-
type of springs for parallel and angular gripper are given also in 
Tables 5 and 6. The velocity profile is shown in Table 4. 

According to Table 5, for the A-type spring, the maximal force 
of 106.4 N and the maximum linear movement of 18.55 mm are 
obtained by the high velocity of 5.892 mm/sec. For the B-type 
spring, the maximal force of 100 N and the maximum linear 
movement of 9 mm are obtained by the high velocity of 1.375 
mm/sec. For the C-type spring, the maximal force of 105 N and 
the maximum linear movement of 8.013 mm are obtained by the 
high velocity of 1.375 mm/sec. According to Table 6, for the A-
type spring, the maximal force of 65.36 N and the maximum linear 
movement of 11.55 mm are obtained by the high velocity of 1.378 
mm/sec. For the B-type spring, the maximal force of 84.86 N and 
the maximum linear movement of 6.966 mm are obtained by the 
high velocity of 1.375 mm/sec. For the C-type spring, the maximal 
force of 103.7 N and the maximum linear movement of 7.504 mm 
are obtained by the high velocity of 1.371 mm/sec. 

According to Table 7, equations (2, 3, 4, and 5) are used  
to illustrate the effect of time and position error in equation (1). 
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Fig. 6. The motion profile of a (a) parallel gripper and (b) angular gripper A-type spring in the LS mode 

Tab. 5. Parallel gripper and spring motion analysis 

Spring type Speed mode Maximum linear 
movement 

(mm) 

Maximum 
force (N) 

Time 

(sec) 

Maximum 

current 

(A) 

Maximum 

velocity 

(mm/sec) 

Maximum 

acceleration 

(mm/sec2) 

A 

 

LS 18.54 106.4 28.869 0.3155 1.376 1.547 

MS 18.51 106.3 8.79 0.3150 5.892 6.598 

HS 17.26 103.73 3.735 0.3399 18.88 22.24 

VHS 6.085 34.9 4.26 0.3106 9.991 19.75 

B 

 

LS 9.09 106 13.49 0.7168 1.375 1.523 

MS 8.934 105.1 9.675 0.3161 5.889 6.336 

HS 8.934 105.1 4.59 0.3228 12.34 18.22 

VHS 2.827 33.26 6.21 0.3088 5.179 9.689 

C 

 

LS 8.013 105 14.45 0.3129 1.376 1.553 

MS 8.0 104 7.755 0.3045 5.887 6.667 

HS 7.864 101.1 3.38 0.3203 11.12 17.82 

VHS 1.935 25.39 69.08 0.2786 3.25 4.675 

  

(a) (b) 
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Tab. 6. Angular gripper and spring motion analysis 

Spring type Speed mode Maximum linear 
movement 

(mm) 

Maximum 
force (N) 

Time 

(sec) 

Maximum 

current 

(A) 

Maximum 

velocity 

(mm/sec) 

Maximum 

acceleration 

(mm/sec2) 

A 

 

LS 11.4 65.36 17.525 0.4862 1.378 1.561 

MS 11.4 65.36 8.04 0.3203 5.887 6.682 

HS 7.28 55.1 4.275 0.3176 11.74 17.94 

VHS 5.047 28.94 2.565 0.2941 8.848 16.75 

B 

 

LS 6.966 84.86 14.355 0.3765 1.375 1.528 

MS 6.611 79.27 3.51 0.3105 5.883 7.712 

HS 6.362 74.84 2.37 0.322 9.028 15.96 

VHS 4.137 48.67 44.087 0.3099 13.24 53.43 

C 

 

LS 7.504 103.7 20.7 0.3033 1.371 1.495 

MS 7.144 101.7 5.13 0.3094 5.886 6.586 

HS 6.847 98.21 3.386 0.3081 10.763 17.16 

VHS 3.714 51.32 2.40 0.3071 6.264 11.45 

 
Fig. 7. (a) Parallel and (b) angular gripper spring force analysis. Note: A-type, B-type, and C-type spring 

Tab. 7. RMS position error (ISE method) comparison of different speed cases (unit: mm). Note: A-type, B-type and C-type spring 

Speed 
mode 

Parallel gripper Angular gripper 

A B C A B C 

LS 0.0113 0.0199 0.0110 0.0557 0.0350 0.0117 

MS 0.0146 0.0323 0.0151 0.0784 0.0554 0.0354 

HS 0.0266 0.0379 0.0273 0.1177 0.0847 0.0473 

VHS 0.0260 0.0140 0.0085 0.0280 0.3765 0.0610 

 

Fig. 8. The PRMSEs of different speed cases with A-type spring: (a) parallel gripper and (b) angular gripper  
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To evaluate the performance of the maximum force of the 
electrical LSDIGM, the ratio of the maximum force (RMF) between 

the desirable force (𝐹𝑑) and the measured force (𝐹𝑚) of the sys-
tem is calculated based on the following equation (16) (Varanasi 
and Nayfeh, 2004). These ratios are given in Tables 8 and 9. The 
RMF is the highest ratio of the force applied by the system to the 
spring. 

RMF = (1 − (
𝐹𝑑−𝐹𝑚

𝐹𝑑
))  ∗ 100                                              (16) 

Tab. 8. The highest ratio of the force applied-PEG 

Speed 
mode 

Spring type 

A B C 

LS 92.52 92.17 92.45 

MS 92.43 91.39 92.27 

HS 90.20 91.39 86.55 

VHS 30.35 44.25 46.65 

The highest ratio of the force applied by the system to the A-
type spring is 92.52% obtained by the low velocity of 1.376 mm/s. 
It can be seen that in Table 8 the lowest values are related to the 
fourth row of speeds (VHS) that are less than 50% and the values 
are unacceptable, indicating that the system did not respond 
correctly at this speed (Heilala et al., 1992; Pham and Yeo, 1991). 

Tab. 9. The highest ratio of the force applied-AEG 

Speed 
mode 

Spring type 

A B C 

LS 59.42 77.15 91.30 

MS 59.42 72.06 90.43 

HS 50.09 68.04 87.91 

VHS 26.31 28.92 22.07 

The highest ratio of the force applied by the system to the C-
type spring is 92.45% obtained by the low velocities of 1.495 
mm/s. It can be seen that in Table 9 the lowest values are related 
to the fourth row of speeds (VHS) that are less than 50% and the 
values are unacceptable, indicating that the system did not 
respond correctly at this speed. According to Tables 4 and 5, and 
applying speeds from Tables 8 and 9, the highest power for the 
parallel gripper is 1.96 watt (A- HS) and for the angular gripper is 
1.06 watt (C- HS), respectively. 

 
Fig. 9. Velocity–force characteristics 

For three springs with different stiffness coefficient values, the 
force analysis of two different grippers (parallel and angular) is 
illustrated in Fig. 7.  Fig. 8 shows comparison of the position error 
of the grippers with A-type spring in different speed cases. As can 
be seen in Fig. 9 (taken from the data in Table 5), the output force 
of the parallel gripper is nearly constant with 105 N at the 
velocities of between 1.5 and 12 mm/sec.This relationship 
between force and speed can be seen in Figs. 7, 8 and 9. The 
best angular gripper efficiency with a spring stiffness of 11.764 at 
a velocity of 1.5 mm/sec, which is 29%, and the best parallel 
gripper efficiency with a spring stiffness of 5.735 at a velocity of 
1.5 mm/s, which is 52%. 

4. CONCLUSION 

In this paper, design and force–velocity performance analysis 
of the electrical gripper mechanism were examined. In this work, a 
stepper motor and a lead-screw mechanism were used for an 
inexpensive gripper as an industrial product. In order to test the 
performance of the system, an analysis of the LSDIGM, experi-
mental setup with springs and encoders were arranged. The 
performance of the grippers is dependent on position and power 
efficiency. The LSDIGMs were tested with different springs and 
velocity profiles to obtain these efficiencies. The results show that 
the electrical parallel gripper performed better than the electrical 
angular gripper, and the highest ratio of the force applied by the 
proposed parallel gripper is 92.52% at 1.376 mm/sec. Although 
the proposed method has a very small (low) position error (accu-
racy) due to the operating characteristics of the stepper motor, it is 
simpler and less expensive than its counterparts. Therefore, it 
may be preferred for some applications where minor position 
errors are not important. Using the proper stepper motor (high 
power and high position accuracy) and the lead screw, these 
position errors occurred here may be eliminated very easily. 
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Abstract: This paper describes the engineering structure and functions of a typical solenoid valve used in hydraulic mechanisms that are based 
on variable camshaft timing (VCT). The main operating parameters and functional utility coefficients of hydraulic solenoid valves have been de-
fined. Tests of 10 reference and 10 prototype valves were run on a test stand for a comparative assessment of both engineering concepts 
based on Welch and Mann–Whitney statistical tests of the mean values of designated coefficients. The studies identified differences between 
both designs, and the obtained research material was used as an input to improve the performance of the engineered concept. To perform  
a final evaluation of the effects that arise as a result of changes introduced to some functional–operational coefficients, additional tests  
are required to be run on an engine testbed. The applied test methodology may then be used for control and verification tests of the valves, 
which can further be used in VCT technology.   

Key words: variable valve timing, hydraulic solenoid valve, prototype verification 

1. INTRODUCTION 

The variable valve timing (VVT) system allows for selecting 
valve timing parameters that are optimal for the actual load and 
speed of a combustion engine (Jankovic and Magner, 2002). The 
variable settings of camshaft phases change filling parameters of an 
engine cylinder, which adapt to time-varying loads (Jankovic and 
Magner, 2002). As a result, depending on the engine design and the 
number (1, 2 or 4) of mounted valve timing control mechanisms, it is 
possible to reduce fuel consumption and exhaust emissions (HC 
and NOx), as well as to increase the engine’s power and torque 
(Chauvin and Petit, 2007; Gray, 1988; Stein et al., 1995).  

Certain mechanism designs allow for control of the valve open-
ing angle, valve lift or both (Dresner and Barkan, 1989; Ren, 2011; 
Stein et al., 1995). More advanced solutions include variable cam-
shaft timing (VCT) mechanisms, using electronically controlled 
hydraulic actuators for the infinitely variable control of inlet and outlet 
time of the exhalation valve vs. the crankshaft. With the application 
of VVT technology, it is possible to control valve stroke, phase and 
valve timing at any point of the engine map, with the result of en-
hancing overall engine performance (Hong et al., 2004). 

In the hydraulic subsystem of a typical VCT solution, it is a 4-
way, 3-position hydraulic solenoid valve that is responsible for ap-
propriate engine timing. The electromagnet of a solenoid valve with 
infinitely variable opening changes is supplied with a pulse-width 
modulation (PWM) voltage signal. The electronically controlled 

solenoid valve redirects pressurised oil from the engine lubrication 
system to the actuator to move or retract the camshaft angles (rota-
tion of a chain or belt pulley) vs. the crankshaft (Gray, 1988). 

Proper action of the hydraulic solenoid valve is highly significant 
for VCT operation and thus for engine performance. Therefore, at 
the final stage of the production process, solenoid valves are sub-
mitted to control tests (Kosuke et al., 2006) to verify the compliance 
of features and parameters of a pre-determined number of valves 
with the requirements set in the standard. In the case of prototype 
solenoid valves, they become subject to qualification tests (ISO-
16750-1, 2006), the goal of which is a comprehensive overview and 
evaluation of technical and operational features of the product to 
make a decision concerning either the manufacture of an informative 
or sample batch or the release of series production of a new sole-
noid valve.  

This paper describes the engineering structure and functions of 
a typical solenoid valve used in hydraulic mechanisms of VCT, 
discussing its major operational parameters and functional–
operational indices. The method and the test stand used for the 
measurement and assessment of the indices are also presented 
with regards to necessary control and qualification tests. The tests 
run on the test stand have been used for a comparative evaluation 
of the prototype design of a hydraulic solenoid valve offered for 
Aftermarket customers, designed and assembled in SMP Poland 
company and a reference solenoid valve that is used, for example, 
in Ford V8 combustion engines with 5.4 L capacity in 2004–2010.   
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2. THE OPERATING PRINCIPLE OF SOLENOID VALVE 
PARAMETERS AND FUNCTIONAL-OPERATIONAL 
COEFFICIENTS 

A solenoid valve consists of two main sub-assemblies (shown in 
Fig. 1): an electromagnet (an electromagnetic subsystem) and a 
hydraulic directional spool valve (a mechanical hydraulic subsys-
tem). The solenoid valve controls the oil stream at its outlet, depend-
ing on the supplied voltage signal UPWM, which is determined by 
PWM during the period in which the electric energy is supplied to the 
electromagnet. The coil in the electric circuit induces current, i(t), 

which is directly transformed into force, FM(t), generated in the elec-
tromagnetic circuit and pushing out the valve piston.  

To ensure simultaneous motion of the electromagnet piston and 
the valve spool, a spring is mounted in the solenoid valve, and it 
performs the function of pushing the piston face to the slide face. 
Depending on the applied forces acting on the mechanical subsys-
tem (piston, spool and spring), there is movement, x(t), of the spool 
of the 4-way, 3-position hydraulic directional valve. The movement 
of the spool in the valve body changes the direction and flows of 
volumetric oil streams, qvA(t) and qvB(t), supplied from the engine’s 
oil system, on the hydraulic valve outlets. 

 
Fig. 1. Flowchart of a hydraulic solenoid valve 

a)  

b)  

Fig. 2. A cross-section, illustrating the solenoid valve structure (a) and graphic representationl of the proportional electrohydraulic solenoid valve (b) 

A cross section of a typical solenoid valve used in VCT systems 
is shown in Fig. 2. In the initial state, when the current induced in the 
coil is not so high as to generate a force capable of shifting the 
electromagnet piston, the spool of the hydraulic solenoid valve is 
located on the left extreme position, pushed by the force of the 
return spring. In this case, ports P and A and B and T are connect-
ed, and their order is shown in Fig. 2. A maximum oil stream, qvA, 
flows under pressure from the supply port P to the outlet port A, 
connected with the actuator’s chamber (outflow), while oil from the 
actuator’s other chamber flows to port B and, farther, to port T, 
connected with the engine’s oil sump (runoff). 

Increasing the fill factor in the PWM signal brings an increase of 
coil current and a proportional decrease of flows qvA(t) and qvB(t) 
until their complete disappearance. In this state, corresponding to 
the valve spool neutral position, ports A and B are cut off from ports 
P and T, while the angular position of the camshaft vs. the engine’s 
crankshaft is not changed. This situation is observed at a constant 
load for a combustion engine, e.g. when constant crankshaft speed 
is observed. Regarding the valve design, when the valve spool is in 
a neutral position, there is  positive overlap. Further increases of 
PWM signal fill factor open the passage between ports P and B and 
A and T (a change of the flow direction to the actuator’s chambers) 
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to the upper control limit, in which the generated electromagnetic 
force is large enough for the piston to move the spool of the solenoid 
valve to the other extreme position, where maximum qvB flow value 
can be obtained. When the solenoid valve is checked on test stands, 
the outlet ports, A and B, are usually connected. 

The main functional–operational parameters, which are im-
portant for the assessment of correct solenoid valve operation, 
include the following:  

 The values of volumetric flow, qvLC and qvHiC, in extreme spool 
positions, are expressed in l/min; for qvLC, it is (P→A→B→T) 
flow at low control current, while for qvHiC, it is (P→B→A→T) 
flow at high control current (see Fig. 3a): 

𝑞𝑣𝐿𝐶 = 𝑞𝑉(𝐼 = 0.1𝐴)              (1) 

𝑞𝑣𝐻𝑖𝐶 = 𝑞𝑉(𝐼 = 1.3 𝐴)              (2) 

 The values of pressure, pLC and pHiC, at port P inlet in extreme 
spool positions, for pLC; it is the pressure value at low control 
current to the solenoid valve, (I=0.1A) for pLC and (I=1,3A) for 
pHiC (see Fig. 3e): 

𝑝𝐿𝐶 = 𝑝(𝐼 = 0.1𝐴)              (3) 

𝑝𝐻𝑖𝐶 = 𝑝(𝐼 = 1.3 𝐴)              (4) 

 The width of the neutral spool shift, defined as the absolute 
difference of current values at the time when flow drops to 0.5 
l/min and at the time when flow rises above 0.5 l/min, is another 
parameter. This parameter is measured both with increasing, 

∆𝐼𝐻𝑖𝑛𝑐 , and decreasing, ∆𝐼𝐻𝑑𝑒𝑐 , control current (see Fig. 3b): 

∆𝐼𝐻𝑖𝑛𝑐 = 𝐼2 − 𝐼1               (5) 

∆𝐼𝐻𝑑𝑒𝑐 = 𝐼3 − 𝐼4               (6) 

 The mean current value, IH, needed to maintain the neutral spool 
position, is another parameter, which is calculated as an arith-
metic mean of the current as flow drops below 0.5 l/min and flow 
increases above 0.5 l/min, with current increase, IHinc, and cur-
rent decrease, IHdec, respectively (see Fig. 3b): 

𝐼𝐻𝑖𝑛𝑐 =
𝐼1+𝐼2

2
               (7) 

𝐼𝐻𝑑𝑒𝑐 =
𝐼3+𝐼4

2
               (8) 

 The value of volumetric flow, qMLF, at the current level, which 
maintains the neutral spool position, is another parameter that 
functions as a measure of leakage flow; this is measured in-
crease, qMLFinc, and decrease, qMLFdec, in control current (see Fig. 
3b): 

𝑞𝑀𝐿𝐹𝑖𝑛𝑐 = 𝑞𝑉(𝐼𝐻𝑖𝑛𝑐)              (9) 

𝑞𝑀𝐿𝐹𝑑𝑒𝑐 = 𝑞𝑉(𝐼𝐻𝑑𝑒𝑐)            (10) 

 The value of pressure, pMLF, at the current level, which maintains 
the neutral spool position, is another parameter that functions as 
the measure of leakage; this is measured with increase, qMLFinc, 
and decrease, qMLFdec, in control current (see Fig. 3e): 

𝑝𝑀𝐿𝐹𝑖𝑛𝑐 = 𝑝(𝐼𝐻𝑖𝑛𝑐)            (11) 

𝑝𝑀𝐿𝐹𝑑𝑒𝑐 = 𝑝(𝐼𝐻𝑑𝑒𝑐)            (12) 

 The ΔIHist parameter functions as the hysteresis, i.e. the differ-
ence of current values with the spool moving to the left, ΔIHistL, or 
to the right, ΔIHistR, for the same flow value of 2 l/min. (see Figure 
3c): 

∆𝐼𝐻𝑖𝑠𝑡𝐿 = 𝐼6 − 𝐼5             (13) 

∆𝐼𝐻𝑖𝑠𝑡𝑅 = 𝐼8 − 𝐼7             (14) 

 The slope of the flow characteristic curve during changes of the 
directional valve state, defined as directional coefficients KA and 
KB of the regression line equation qv=K·I+C for flows in the range 
from 0.8 l/min to 2.8 l/min, during increase (inc) and decrease 
(dec) of the control current I (see Fig. 3d): 

𝑞𝑣𝐴𝑖𝑛𝑐 = 𝐾𝐴𝑖𝑛𝑐𝐼 + 𝐶𝐴𝑖𝑛𝑐  𝑓𝑟𝑜𝑚 0.8 𝑙/𝑚𝑖𝑛 < 𝑞𝑣𝑖𝑛𝑐 <

2.8 𝑙/𝑚𝑖𝑛 𝑓𝑜𝑟 𝐼 < 0.5 𝐴            (15) 

𝑞𝑣𝐵𝑖𝑛𝑐 = 𝐾𝐵𝑖𝑛𝑐𝐼 + 𝐶𝐵𝑖𝑛𝑐  𝑓𝑟𝑜𝑚 0.8 𝑙/𝑚𝑖𝑛 < 𝑞𝑣𝑖𝑛𝑐 <

2.8 𝑙/𝑚𝑖𝑛 𝑓𝑜𝑟 𝐼 > 0.5 𝐴            (16) 

𝑞𝑣𝐴𝑑𝑒𝑐 = 𝐾𝐴𝑑𝑒𝑐𝐼 + 𝐶𝐴𝑑𝑒𝑐  𝑓𝑟𝑜𝑚 0.8 𝑙/𝑚𝑖𝑛 < 𝑞𝑣𝑖𝑛𝑐 <

2.8 𝑙/𝑚𝑖𝑛 𝑓𝑜𝑟 𝐼 > 0.5 𝐴            (17) 

𝑞𝑣𝐵𝑑𝑒𝑐 = 𝐾𝐵𝑑𝑒𝑐𝐼 + 𝐶𝐵𝑑𝑒𝑐  𝑓𝑟𝑜𝑚 0.8 𝑙/𝑚𝑖𝑛 < 𝑞𝑣𝑖𝑛𝑐 <

2.8 𝑙/𝑚𝑖𝑛 𝑓𝑜𝑟 𝐼 < 0.5 𝐴            (18) 

The adequacy of the linear regression model can be tested by 
the coefficient of determination (Walpole et al., 2012), computed 
both when the control current is increased, R2Ainc, R2Binc, and de-
creased, R2Adec, R2Bdec, respectively, for ports A and B. 

a)  

b)  
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c)  

d)  

e)  

Fig. 3. Oil flow and pressure characteristics in the function of current 
           graphical interpretation of measured parameters 

3. TEST STAND AND TEST PROCEDURE 

Test stands for hydraulic solenoid valves are types of equipment 
with various purposes and they differ in their complexities. To check 
the correct operation of VCT systems, they use simplified models of 
an internal combustion engine, imitating the target operating condi-
tions. This type of tester uses original combustion engine heads, in 
which the camshaft is driven by an electric motor and the solenoid 
valve is connected to a hydraulic power supply, mapping the operat-
ing parameters of the lubrication system (Ren, 2011). By simulating 
the operation of a hydraulic solenoid valve through appropriate 
control, feedback is obtained about the correct operation of the 
entire VCT system on which the solenoid valve acts. 

Specialist testers are used to check the functional and opera-
tional parameters of the hydraulic solenoid valves themselves; the 
tested valve is mounted to a socket reflecting the original socket in 
the engine body. By setting oil pressure and controlling the PWM 
signal, parameters describing valve operation in steady and transi-
ent states can be determined. The tester manufactured by INA [8] is 
an example of such a device. The following parameters can be 
measured: 

 Coil resistance 

 Coil inductance 

 Insulation resistance 

 Magnet force 

 Magnet stroke 

 Oil pressures 

 Oil temperatures 

 Oil flow rates 

 Duty cycle 

 Electrical current. 
The following characteristics are determined from the measured 

parameters: 

 Maximum magnet stroke 

 Magnet force vs. magnet stroke for a given electrical current 

 Magnetic force hysteresis 

 Oil volumetric flow in the end positions 

 Oil volumetric flow in a closed position (leakage) 

 Electrical current in a closed position 

 Hysteresis 

 Pressure differences 
Hydraulic solenoid valves were examined on a test stand manu-

factured by a US supplier on a special order (see Fig. 4). The test 
stand has similar functionality to the INA stand, except for the possi-
bility to measure a magnet force. 

Fig. 5 presents a schematic diagram of the experimental device. 
The device consists of a VCT solenoid valve controller, a data ac-
quisition system and a hydraulic driving unit. The hydraulic system is 
supplied with oil from the gear pump (1), with a capacity of 17.4 
l/min; the pressure is set using the relief valve (2) (2700 kPa max.). 
The proportional reduction valve (3) is intended to reduce pressure 
in the hydraulic circuit of the tested VCT solenoid valve (6) in the 
103–620 kPa range. Directly before the solenoid valve (6), mounted 
in the test seat, a 3-way, 2-position directional control valve is 
mounted (5). During tests, the directional control valve redirects oil 
to port P of the tested solenoid valve and, when the test is complet-
ed, oil is redirected to the tank. Oil flow through the tested solenoid 
valve is measured using a flowmeter (4), with a 0.1–15 l/min scale 
range and 0.3% accuracy. Oil pressure at selected areas of the 
hydraulic system is measured using pressure transducers (8 and 9), 
with a measurement scope to 1000 kPa and 0.1% accuracy. Oil 
temperature is measured using a transducer (7), with a PT100 sen-
sor with a ±0.33°C accuracy.  

 
Fig. 4. Test stand for testing hydraulic solenoid valves  
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The coil of the tested solenoid valve is connected to a PWM 
generator (12), controlled by a control unit (13), integrated with the 
acquisition system of output signals from the pressure transducers 
(8 and 9), temperature transducer (7), current transducers (11) and 
coil resistance transducers (10). Test conditions and parameters can 
be changed from the control panel (14).  

 
Fig. 5. Schematic diagram of hydraulic solenoid valve test stand:  

1 – hydraulic pump, 2 – relief valve, 3 – reduction valve, 4 – flowme-
ter, 5 – 3-way 2-position directional control valve, 6 – tested hydrau-
lic  
solenoid valve, 7 – transducer with PT100 temperature sensor,  
8 and 9 – pressure transducers, 10 – coil resistance transducer,  
11 – current transducer, 12 – PWM generator, 13 – control unit,  
14 – operator panel 

When the solenoid valve is checked on test stands, the outlet 
ports, A and B, are connected. The control unit enables the perfor-
mance of measurement tests in the automatic mode, in which the 
full operational cycle of a VCT solenoid valve is run with variable 
control. The control unit provides a PWM signal with a variable PWM 
fill factor, causing a change in the current induced in the valve coil. 
Initially, the PWM fill factor grows in such a way that the current 
value changes from 0A to 1.6A and then it decreases again. The 
rate of increasing coil current is specified in the test station pro-
gramme. To change the current from 0A to 1.6A, the test stand has 
11 s, and thereafter it has the subsequent 11 s to decrease from 
1.6A to 0A. Depending on the rise time, we can observe different 
flow characteristics in the part where the valve is closing or opening 
port A or B. The heat conditions during the test are close to real 
solenoid valve application conditions, i.e. the temperature of the 
mounting seat for the solenoid valve and of the flowing oil is 90 ± 
5°C. Changes and control of settings are possible by the addition of 
input data to the device’s control software via the control panel. 

An integrated part of the test stand is control unit software, de-
signed by the manufacturer of the unit. Based on recorded time 
histories of oil pressure and flow through the studied solenoid valve, 
it is possible to determine its proper operating condition, verify 
whether the valve responds properly to variable control and check if 
there are no unwanted leaks on the valve. The control unit software 
also calculates the required functional–operational parameters, 
defined in Section 2. The advantage of this test stand and software 
is their universality, i.e. the ability to test solenoid valves with various 

designs, ease of defining parameters and their tolerance fields, 
visibility of results and the ability to automate quality control. 

An example screenshot presenting measured pressure charac-
teristics of port P (celadon green), with oil flows (yellow) as a func-
tion of current and the window with measured results for key sole-
noid valve coefficients, is shown in Fig. 6.  

a)  

 b)  

Fig. 6. Examples of hydraulic solenoid valve runs, measured by a tester (a) 
and the measured results of key solenoid valve parameters (b) 

4. TEST COURSE AND RESULTS 

Reference hydraulic solenoid valves, operating in the variable 
cam timing (VCT) system, manufactured by Ford, original equipment 
(OE) and prototype valves, for which the design is based on the 
reference products, were selected for tests. See Fig. 7 for the pho-
tos of both solenoid valves. The main difference between them is 
that they use different materials and process parameters. The elec-
tromagnet designs that have been selected as prototypes have 
different number of turns in coil and varying core properties. 

The goal of the tests was to evaluate the technical and opera-
tional features of the new product. The study programme included 
automatic tests, runs on a test stand described in the previous sec-
tion and comprises the reference and prototype solenoid valves. 

The results of the tests, performed for 10 of each solenoid valve 
type enabled us to develop values of functional–operational coeffi-
cients. 
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a)  

b)   

Fig. 7. A comparison of hydraulic solenoid valves. Ford’s design (a)  
and a prototype solenoid valve design (b) 

Then mean values and standard deviations were calculated for 
particular coefficients. The D`Agostino bilateral skewness test 
(D’Agostino et al., 1990), recommended for low-number samples 
(n>8), was applied to check the normality of the distribution of par-
ticular coefficients. p-values were computed based on the test statis-

tic s Z(√b1), which is the normal approximation to sample skew-

ness, √b1 [14]. In the majority of cases (Tab. 1), no reasons were 

found to reject the hypothesis of distribution normality at the α=0.05 
(p-value >0.05) significance level.  

Tab. 1. The results from tests and D’Agostino normality test for 10 reference solenoid valves from Ford and 10 solenoid valve prototypes  

 

Significance studies of mean value differences were performed 
for the same coefficient to achieve a comparative assessment of 
both solenoid valve designs. Due to ambiguous normality test re-
sults, both the Welch’s t-test (for population of normal distribution 
and different variances) (Kanji, 2006; Welch, 1947) and the non-
parametric Mann–Whitney U-test, also called the Mann–Whitney–
Wilcoxon test (MWW) (Kanji, 2006; Marks et al., 2016), were used 
for tests of equality of means. Test statistical values and their critical 
values were designated for both t-test and the U-test, respectively. 
The test statistics enables calculating the associated probability p-
values, which were then compared with the α=0.05 significance 
level. If p> α, then it was assumed that there were no reasons to 

reject the null hypothesis, H0, about the equality of means. If p≤ α, 
an alternative hypothesis, H1, was assumed concerning the signifi-
cance of the differences between the means of particular coeffi-
cients. Tab. 2 presents the results of probability calculations (p-
values) and test results.   

The results of both tests demonstrated statistically significant dif-
ferences between the coefficients obtained for both groups of sole-
noid valves, i.e. reference and prototype products. The Welch test 
enabled identifying 14 differences out of 20 analysed coefficients. 
On the other hand, the MWW test, besides the same 14 coefficients, 
also demonstrated a significant difference in solenoid resistance.  

 
  

p-value
Normal 

distribution
p-value

Normal 

distribution

Pressure at Low Current pLC kPa 100.1 0.400 0.12102 YES 100.3 0.320 0.47581 YES

Flow at Low Current qvLC l/min 5.531 0.069 0.28146 YES 6.061 0.263 0.16469 YES

Pressure at High Current pHiC kPa 100.2 0.271 0.22068 YES 100.3 0.369 0.02372 NO

Flow at High Current qHiC l/min 6.019 0.201 0.19119 YES 6.521 0.207 0.18439 YES

Mid Leak Pressure pMLPinc kPa 99.5 0.504 0.30709 YES 99.5 0.126 0.50000 YES

Mid Leak Flow qMLFinc l/min 0.113 0.019 0.22871 YES 0.169 0.041 0.04255 NO

Holding current IHCinc Adc 0.490 0.004 0.34267 YES 0.524 0.018 0.12583 YES

Midpoint Width ΔIHCinc Adc 0.174 0.009 0.09657 YES 0.211 0.018 0.37345 YES

Mid Leak Pressure pMLPdec kPa 100.0 0.359 0.00658 NO 100.1 0.322 0.35549 YES

Mid Leak Flow qMLFdec l/min 0.117 0.021 0.19481 YES 0.173 0.040 0.07439 YES

Holding current IHCdec Adc 0.455 0.005 0.21737 YES 0.488 0.016 0.21529 YES

Midpoint Width ΔIHCdec Adc 0.177 0.010 0.26571 YES 0.213 0.020 0.31029 YES

KAinc l/(min∙Adc) 26.0 1.146 0.37679 YES 33.6 3.715 0.22474 YES

CAinc l/min 14.70 0.631 0.48243 YES 14.4 0.681 0.47579 YES

R2 - slope A R2
KAinc - 0.995 0.990

KBinc l/(min∙Adc) 35.8 0.986 0.28271 YES 30.1 3.587 0.46642 YES

CBinc l/min -13.4 0.559 0.50000 YES -19.8 0.694 0.45970 YES

R2 - slope B R2
KBinc - 0.995 0.996

KAdec l/(min∙Adc) 27.9 1.926 0.40153 YES 40.9 5.959 0.25523 YES

CAdec l/min 12.6 0.704 0.50000 YES 11.9 0.702 0.47762 YES

R2 - slope A R2
KAdec - 0.995 0.989

KBdec l/(min∙Adc) 33.3 1.066 0.31149 YES 27.0 2.922 0.44216 YES

CBdec l/min -13.1 0.694 0.45536 YES -21.8 0.681 0.28707 YES

R2 - slope B R2
KBdec - 0.997 0.996

Left ΔIHistL Adc 0.037 0.001 0.26538 YES 0.038 0.004 0.35467 YES

Right ΔIHistR Adc 0.037 0.003 0.37865 YES 0.042 0.006 0.43033 YES

degC 90.5 0.236 0.00975 NO 90.7 0.136 0.09773 YES

Ohms 8.854 0.077 0.02911 NO 9.144 0.408 0.00497 NO

Slope A

Slope B

Average
Standard 

deviation

Normality test D'Agostino

Average
Standard 

deviation

Normality test D'Agostino

Reference valves Prototype valves

Slope A

Slope B

Functional charasteristics Unit

Coil resistance

Hysteresis

Temperature

Slope during 

decreasing 

current

Sweep during 

increasing 

current

Sweep during 

decreasing 

current

Slope during 

increasing 

current

Flow
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Tab. 2. Statistical analysis for 10 reference solenoid valves from Ford and 10 prototype solenoid valves 

 

The measurements of volumetric flows, qvLC, at low current lev-
els and qvLC at high current levels (Fig. 8a), demonstrated the flows 
to be higher for the prototype valves by >0.5 l/min. vs. the flows for 
the OE valves (by 9.58% and 8.34%, respectively). Since, during the 
tests, the oil pressures supplied to port P (Fig. 8b) were almost 
identical (approximately 100 kPa), it could be concluded that the 
prototype valves were characterised by lower flow resistance in 
comparison with the OE valves, which is their beneficial feature. A 
disadvantageous feature is the higher leaks of the prototype valves 
(Fig. 8c) in their neutral position (when ports A and B are cut off), 
both during control current increase, qMLFinc, and decrease, qMLFdec, 
by 49.6% and 47.7%, respectively, when compared with the OE 
valves. However, comparing the leak values to flow, when a given 
port is open, the leak in the reference valve constitutes 2.2% of the 
full volumetric flow, while it is 2.8% in the prototype solenoid valve. 
This difference should not affect the proper operation of the 
VVTcontrol system. In addition, the prototype valves demonstrated 
higher current values necessary to maintain the neutral spool posi-
tion both during control current increase, IHinc, and decrease, IHdec, 
which results in an extended width of the neutral spool position, 
ΔIHinc and ΔIHdec, by >20%.    

The comparative studies also indicated statistically significant 
differences in the values of directional coefficients for slopes A 
(when port A is opened) and B (when port B is opened), both direc-
tions of control current change. However, the directional coefficients 
for slope A were higher in the group of prototype valves than in the 
group of OE reference valves; the situation was reversed for slope 
B. The reference valves demonstrated lower divergences between 
the values of directional coefficients. The maximum difference value 
for OE valves is 7.6 l/(min∙A), while for the prototype valves, the 
maximum difference was 13.9 l/(min∙A). Higher differences in direc-
tional coefficient values may affect the quality of VVTcontrol. The 
prototype valves also had a bigger hysteresis on the ‘right side’ of 
flow; thus, they needed a bigger difference in the control current to 
change the state from opened port B to neutral position. There may 
be a few reasons for the above-mentioned divergences: a difference 
in the resistance or inductance of the electromagnet coil (solenoid), 
different stiffness levels of the return springs or differences in the 
hydraulic solenoid valve geometry (a different overlap degree). The 
slight difference of approximately 0.3 Ω in solenoid resistance indi-
cates that it was caused by differences in wire diameter and the 
number of turns in the coil. 

p-value
Signifcance of 

difference
p-value 

Signifcance 

of difference

Pressure at Low Current pLC kPa 100.1 100.3 0.1177 NO 0.50286 NO

Flow at Low Current qvLC l/min 5.531 6.061 0.0001 YES 0.00018 YES

Pressure at High Current pHiC kPa 100.2 100.3 0.6984 NO 0.79486 NO

Flow at High Current qHiC l/min 6.019 6.521 0.0000 YES 0.00018 YES

Mid Leak Pressure pMLPinc kPa 99.5 99.5 0.9101 NO 0.56868 NO

Mid Leak Flow qMLFinc l/min 0.113 0.169 0.0024 YES 0.00100 YES

Holding current IHCinc Adc 0.490 0.524 0.0001 YES 0.00018 YES

Midpoint Width ΔIHCinc Adc 0.174 0.211 0.0001 YES 0.00058 YES

Mid Leak Pressure pMLPdec kPa 100.0 100.1 0.6244 NO 0.30772 NO

Mid Leak Flow qMLFdec l/min 0.117 0.173 0.0021 YES 0.00168 YES

Holding current IHCdec Adc 0.455 0.488 0.0001 YES 0.00018 YES

Midpoint Width ΔIHCdec Adc 0.177 0.213 0.0002 YES 0.00058 YES

KAinc l/(min∙Adc) 26.0 33.6 0.0001 YES 0.00018 YES

CAinc l/min 14.7 14.4 0.2366 NO 0.00018 YES

R2 - slope A R2
KAinc - 0.995 0.990

KBinc l/(min∙Adc) 35.8 30.1 0.0008 YES 0.00058 YES

CBinc l/min -13.4 -19.8 0.0000 YES 0.00058 YES

R2 - slope B R2
KBinc - 0.995 0.996

KAdec l/(min∙Adc) 27.9 40.9 0.0000 YES 0.00424 YES

CAdec l/min 12.6 11.9 0.0234 YES 0.00424 YES

R2 - slope A R2
KAdec - 0.995 0.989

KBdec l/(min∙Adc) 33.3 27.0 0.0001 YES 0.00018 YES

CBdec l/min -13.1 -21.8 0.0000 YES 0.00018 YES

R2 - slope B R2
KBdec - 0.997 0.996

Left ΔIHistL Adc 0.037 0.038 0.4258 NO 0.56868 NO

Right ΔIHistR Adc 0.037 0.042 0.0260 YES 0.02574 YES

degC 90.5 90.7 0.0423 YES 0.02574 YES

Ohms 8.854 9.144 0.0627 NO 0.01140 YES

Slope A

Slope B

Slope A

Slope B

Slope during 

increasing 

current

Analysis results

Average

Mann-Whitney U test

Average

Reference Prototype

Welch test
Functional charasteristics Unit

Coil resistance

Hysteresis

Temperature

Slope during 

decreasing 

current

Sweep during 

increasing 

current

Sweep during 

decreasing 

current

Flow
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a)  

b)  

c)  

Fig. 8. Comparison of main coefficients: a) flow at low and high current 
levels, b) pressure at low and high current levels,  
c) oil leaks at neutral position 

5. SUMMARY  

The applied method of comparative studies of solenoid valve, 
based on two sample mean statistical tests, enabled a quality as-
sessment of the engineering project by highlighting significant differ-
ences in functional–structural coefficients between 10 prototype 
products and 10 original solenoid valves; the latter were approached 
as benchmark products. The tests revealed several statistically 
significant differences in the coefficients between both groups of 
solenoid valves; nevertheless, the operational parameters of the 
prototype products fell within the tolerance limits, approved in the 
design objectives. 

A significant flow resistance reduction, achieved in extreme so-
lenoid valve spool positions and resulting in volumetric flow values 
>8.5% higher, was a beneficial feature of the prototype design. The 
less advantageous features, identified during the statistical evalua-
tion, may include higher leaks in the neutral spool position, higher 
divergences between the values of directional slope coefficients or 
increased hysteresis in the current required to maintain the neutral 
spool position. The differences identified among the parameters of 
tested valves constitute a valuable input research material for stud-
ies on design improvements of prototype VCT solenoid valves. 

The performed tests demonstrated the suitability of the test 
stand for measurements and precise designation of operational 
parameters to meet the needs of control tests and quality assess-
ments of solenoid valves used in VVT technology. However, it 
should be emphasised that a final evaluation of the effects exerted 
on combustion engine operation, resulting from changes, introduced 
to some functional utility coefficients of the solenoid valve, as of a 
sub-assembly of the control system, requires additional tests to be 
run on an engine testbed.  
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Abstract: Low-frequency analysis of in-plane motion of an elastic rectangle subject to end loadings together with sliding boundary  
conditions is considered. A perturbation scheme is employed to analyze the dynamic response of the elastic rectangle revealing  
nonhomogeneous boundary-value problems for harmonic and biharmonic equations corresponding to leading and next order expansions, 
respectively. The solution of the biharmonic equation obtained by the separation of variables, a consequence of sliding boundary  
conditions, gives an asymptotic correction to the rigid body motion of the rectangle. The derived explicit approximate formulae are tested 
for different kinds of end loadings together with numerical examples demonstrating the comparison against the exact solutions. 

Key words: elastic rectangle, low-frequency, rigid body motion, perturbation scheme, sliding boundary conditions  

1. INTRODUCTION 

Dynamics of elastic structures, an important branch of solid 
mechanics, is of interest in several studies encountered in modern 
industrial applications (see Qin et al., 2008; Martin et al., 2012; 
Wang, 2014; Kudaibergenov et al., 2016; Viverge et al., 2016). 
Because most efforts in determining the exact formulations for 
displacement components and frequencies of such structures 
generally result in intricate transcendental relations, developing 
mathematical models that reveal the eigenfrequencies of the 
system from the traditional equations of rigid body dynamics has 
become an important endeavor in this area. A considerable num-
ber of studies in recent years, therefore, have focused on devel-
oping perturbation approaches allowing further insight into the 
dynamic response of considered elastic structures, e.g., 
(Kaplunov et al., 2019) and (Kaplunov and Şahin, 2020). It is well 
known that the conventional equations of rigid body motion are 
also an application of Newtonian mechanics to elastic solids. We 
mention (Milton and Willis, 2007) that suggest a new methodology 
leading to a better approximation of Newton’s second law of mo-
tion for macroscopic rigid bodies. A distinguished elastodynamic 
homogenization theory for periodic and random inhomogeneous 
media was presented in (Srivastava and Nemat-Nasser, 2012; 
Willis, 1981a; Willis, 1981b), including effective constitutive rela-
tions that are nonlocal in space and time. 

The self-equilibrated loading, the effect of which is generally 
omitted by classical rigid body dynamics may be important for 
various applications, e.g., longitudinal railway dynamics (see 
Kaplunov et al., 2015). Here, the self-equilibrium is not meant in 
the sense of Saint-Venant’s principle for elastic structures, e.g., 
(Vigak and Tokovyi, 2002), see also (Gregory and Wan, 1985), 
and (Kaplunov et al., 2021) adapting this principle for deriving 

boundary conditions in thin plate theory, but for the setup in which 
the end forces applied have the resultants of the same amplitude 
but different direction. A low-frequency analysis of a viscoelastic 
inhomogeneous bar under the action of end loads, also inspired 
by modeling of railcar dynamics, is considered in (Kaplunov et al., 
2015), and explicit asymptotic corrections to the conventional 
equations of rigid body motion are presented. We also mention 
almost rigid body motions of a system consisting of strongly inho-
mogeneous elastic beams considered in (Şahin, 2019) and (Şahin 
et al., 2020). 

In this paper, we construct a correction to Newton’s second 
law for an elastic rectangle subject to sliding boundary conditions 
in case of low-frequency motion related to a typical time scale that 
is assumed to be much greater than the time elastic waves that 
take the distance between the opposite sides of the rectangle. A 
perturbation scheme developed in terms of a small parameter 
associated with low-frequency is used to obtain a generalized 
formulation for displacements of the elastic rectangle under the 
influence of edge loadings. The asymptotic study of similar 
boundary-value problems, such as response of a semi-infinite 
rectangle to end loadings, usually agree with the Saint-Venant’s 
principle that states that statically self-equilibrated loads cause 
only local disturbances that do not propagate far away from a 
loaded area (see Babenkova and Kaplunov, 2004 and Babenkova 
et al., 2005). 

The paper is organized as follows. In Section 2, the statement 
of in-plane dynamic problem for an elastic rectangle subject to 
sliding boundary conditions is presented. The governing equations 
and scaling of the parameters are given. Section 3 contains a 
perturbation procedure that formulates the problem with the help 
of a small parameter arising from the definition of the low-
frequency of the rectangle. In Section 4, illustrative examples for 
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the developed model are given, and numerical computations 
comparing the exact and approximate formulations are presented. 
Conclusions are given in the last section. 

2. STATEMENT OF THE PROBLEM 

The in-plane dynamic problem for a linear, isotropic elastic 
rectangle under the action of edge loads and subject to sliding 
boundary conditions is considered in the framework of linear 
elasticity, see Fig. 1. 

 
Fig. 1. An elastic rectangle under the considered edge loading and   

sliding support 

In-plane motions of the isotropic rectangle are governed by 
the equations of two-dimensional elasticity: 

𝜎𝑖𝑗,𝑗 = 𝜌𝑢𝑖,𝑡𝑡  ,    𝑖, 𝑗 = 1,2 (1) 

where 𝑢𝑖 are in-plane displacement components, 𝜎𝑖𝑗  are stress 

tensor components, 𝑡 is time, and 𝜌 is mass density. The edge 
loadings and the sliding boundary conditions on the faces of 
rectangle are written, respectively, as: 

𝜎11(±𝑙1, 𝑥2, 𝑡) = 𝑃±,     𝜎12(±𝑙1, 𝑥2, 𝑡) = 0, 
𝜎21(𝑥1, ±𝑙2, 𝑡) = 0,        𝑢2(𝑥1, ±𝑙2, 𝑡) = 0. 

(2) 

It is natural to separate the solution in symmetric and anti-
symmetric parts. For simplicity, we consider only the symmetric 
part whereas the antisymmetric part may be investigated similarly. 

Therefore, it is assumed that 𝑃± = 𝑃±(𝑥2, 𝑡) are even in 𝑥2. 
The constitutive equations relating the stress and displacement 
components are expressed through: 

𝜎𝑖𝑖 =
𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 𝑢𝑖,𝑖 +

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
𝑢𝑗,𝑗, 

𝜎𝑖𝑗 =
𝐸

2(1 + 𝜈)
(𝑢𝑖,𝑗 + 𝑢𝑗,𝑖),    𝑖 ≠ 𝑗 = 1,2. 

  (3) 

where 𝐸 is Young’s modulus and 𝜈 is Poisson’s ratio. 
Our main concern is the low-frequency motions of the rectan-

gle under plane strain conditions that suggest introducing the 

small parameter 𝜂 defined by: 

𝜂 =
𝑙1

𝑇𝑐2

≪ 1, (4) 

and rescaling the problem in the nondimensional quantities intro-
duced in the form: 

𝜎𝑖𝑗
∗ =

𝜎𝑖𝑗

𝜂2𝜌 𝑐2
2 ,    𝑢𝑖

∗ =
𝑢𝑖

𝑙1

,     𝑃∗
± =

𝑃±

𝜂2𝜌 𝑐2
2 , 

𝑦𝑖 =
𝑥𝑖

𝑙𝑖

,    𝜏 =
𝑡

𝑇
,    𝑖, 𝑗 = 1,2. 

  (5) 

Here, c2 = √E/2ρ(1 + ν) denotes the transverse wave speed 

and T is a typical time scale grater than the longitudinal and 
transverse waves to propagate the distance equal to the thickness 
of the body. 

Formulae (1) and (3) may, therefore, be rewritten as:  

𝜎11,1
∗ + 𝛿𝜎12,2

∗ = 𝑢1,𝜏𝜏
∗ , 

𝜎12,1
∗ + 𝛿𝜎22,2

∗ = 𝑢2,𝜏𝜏
∗ , 

  (6) 

and: 

𝜂2𝜎11
∗ = 𝜅2 𝑢1,1

∗ + 𝛿 (𝜅2 − 2)𝑢2,2
∗ , 

𝜂2𝜎12
∗ = 𝛿 𝑢1,2

∗ + 𝑢2,1
∗ , 

𝜂2𝜎22
∗ = 𝛿 𝜅2 𝑢2,2

∗ + (𝜅2 − 2) 𝑢1,1
∗  

  (7) 

where 𝛿 = 𝑙1/𝑙2 and 𝜅2 = 2(1 − 𝜈)/(1 − 2𝜈). 

3. PERTURBATION PROCEDURE 

We seek the solution {𝑢𝑖 , 𝜎𝑖𝑗} of the boundary-value prob-

lems (6) to (7) in the form of the following asymptotic series: 

𝑢𝑖
∗ = 𝑢𝑖

(0)
+ 𝜂2𝑢𝑖

(1)
+ ⋯, 

𝜎𝑖𝑖
∗ = 𝜎𝑖𝑖

(0)
+ 𝜂2𝜎𝑖𝑖

(1)
+ ⋯, 

𝜎𝑖𝑗
∗ = 𝜎𝑖𝑗

(0)
+ 𝜂2𝜎𝑖𝑗

(1)
+ ⋯ ,    𝑖 ≠ 𝑗 = 1,2. 

(8) 

       On substituting expansions (8) into the governing equations 
(6) and the constitutive relations (7), the leading order displace-
ments, that is the first components in expansions (8) independent 
of the powers of 𝜂 are governed by the boundary-value problem 
given by:  

𝜎11,1
(0)

+ 𝛿𝜎12,2
(0)

= 𝑢1,𝜏𝜏
(0)

, 

𝜎12,1
(0)

+ 𝛿𝜎22,2
(0)

= 𝑢2,𝜏𝜏
(0)

, 
(9) 

with:  

𝜅2 𝑢1,1
(0)

+ 𝛿 (𝜅2 − 2) 𝑢2,2
(0)

= 0, 

𝛿 𝑢1,2
(0)

+ 𝑢2,1
(0)

= 0, 

𝛿 𝜅2 𝑢2,2
(0)

+ (𝜅2 − 2) 𝑢1,1
(0)

= 0, 

(10) 

and: 

𝜎11
(0)

|
𝑦1=±1

= 𝑃∗
±, 𝜎12

(0)
|

𝑦1=±1
= 0 

𝜎21
(0)

|
𝑦2=±1

= 0,             𝑢2
(0)

|
𝑦2=±1

= 0. 
(11) 

Eqns. (101) and (103) yield that: 

𝑢𝑖,𝑖
(0)

= 0,    𝑖 = 1,2 (12) 

resulting in: 

𝑢1
(0)

= 𝑢1
(0)

(𝑦2 , 𝜏),    𝑢2
(0)

= 𝑢2
(0)

(𝑦1, 𝜏). (13) 

     Substituting (13) into the second equation of (10) gives the 
final form of the leading order displacements, that is:  

𝑢𝑖
(0)

= 𝑈𝑖(𝜏),    𝑖 = 1,2. (14) 

Due to boundary condition (103), the second component of 
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leading order displacement vanishes, i.e., 

𝑢2
(0)

= 0. (15) 

Thus, equations (91) and (92) become: 

𝜎11,1
(0)

+ 𝛿𝜎12,2
(0)

= 𝑈1,𝜏𝜏 , 

𝜎12,1
(0)

+ 𝛿𝜎22,2
(0)

= 0. 
(16) 

Integrating (161) over the rectangular region we derive, em-
ploying boundary conditions (11): 

∫ ∫
𝜕𝜎11

(0)

𝜕𝑦1

𝑑𝑦1𝑑𝑦2

1

−1

1

−1

+ 𝛿 ∫ ∫
𝜕𝜎12

(0)

𝜕𝑦2

𝑑𝑦2𝑑𝑦1 =

1

−1

1

−1

 

= ∫ (𝜎11
(0)

|
𝑦1=1

− 𝜎11
(0)

|
𝑦1=−1

) 𝑑𝑦2

1

−1

 

+𝛿 ∫ (𝜎12
(0)

|
𝑦2=1

− 𝜎12
(0)

|
𝑦2=−1

) 𝑑𝑦1

1

−1

 

= ∫(𝑃∗
+ − 𝑃∗

−)𝑑𝑦2 = 4𝑈1,𝜏𝜏 .

1

−1

 

(17) 

We, therefore, have at leading order: 

𝑢1,𝜏𝜏
(0)

=
1

4
∫(𝑃∗

+ − 𝑃∗
−)𝑑𝑦2

1

−1

 (18) 

which is in agreement with Newton’s second law:  

𝑚 𝑢1,𝜏𝜏 =
1

4
∫(P+ − P−)𝑑𝑥2

𝑙2

−𝑙2

 (19) 

where 𝑚 = 𝑙1𝑙2𝜌, see (Kaplunov and Şahin, 2020). 
Next order boundary-value problem may be expressed 

through the pseudo-static equations given by:  

𝜅2
𝜕2𝑢1

(1)

𝜕𝑦1
2 + 𝛿2

𝜕2𝑢1
(1)

𝜕𝑦2
2 + 𝛿(𝜅2 − 1)

𝜕2𝑢2
(1)

𝜕𝑦1𝜕𝑦2

= 𝑢1,𝜏𝜏,
(0)

 

𝛿2𝜅2
𝜕2𝑢2

(1)

𝜕𝑦2
2 +

𝜕2𝑢2
(1)

𝜕𝑦1
2 + 𝛿(𝜅2 − 1)

𝜕2𝑢1
(1)

𝜕𝑦1𝜕𝑦2

= 0 

(20) 

with: 

𝜅2 𝑢1,1
(1)

+ 𝛿 (𝜅2 − 2)𝑢2,2
(1)

|
𝑦1=±1

= 𝑃∗
±, 

𝛿 𝑢1,2
(1)

+ 𝑢2,1
(1)

|
𝑦1=±1

= 0, 

𝛿 𝑢1,2
(1)

+ 𝑢2,1
(1)

|
𝑦2=±1

= 0, 

𝑢2
(1)

|
𝑦2=±1

= 0.  

(21) 

Let us consider solutions of eqn. (20) in the form: 

𝑢1
(1)

= 𝑋10(𝑦1) + ∑ 𝑋1𝑛(𝑦1)cos𝑛𝜋𝑦2,

∞

𝑛=1

   (22) 

𝑢2
(1)

= ∑ 𝑋2𝑛(𝑦1)sin𝑛𝜋𝑦2 .

∞

𝑛=1

 

       Substituting the assumed form of the next order displace-
ments (22) into the governing equations (20) yield:  

𝜅2 (𝑋10
′′ + ∑  

∞

𝑛=1

𝑋1𝑛
′′ cos𝑛𝜋𝑦2) − 

−𝛿2 ∑(𝑛𝜋)2𝑋1𝑛cos𝑛𝜋𝑦2 +

∞

𝑛=1

 

+δ(κ2 − 1) ∑(𝑛𝜋)𝑋2𝑛
′ cos𝑛𝜋𝑦2 =

∞

𝑛=1

 

=
𝑎0

2
+ ∑ 𝑎𝑛cos𝑛𝜋𝑦2 + 𝑏𝑛cos𝑛𝜋𝑦2,

∞

𝑛=1

 

  (23) 

and: 

−𝛿2𝜅2 ∑(𝑛𝜋)2𝑋2𝑛𝑠𝑖𝑛𝑛𝜋𝑦2 +

∞

𝑛=1

 

+ ∑ 𝑋2𝑛
′′ 𝑠𝑖𝑛𝑛𝜋𝑦2 −

∞

𝑛=1

 

−δ(κ2 − 1) ∑(𝑛𝜋)𝑋1𝑛
′ 𝑠𝑖𝑛𝑛𝜋𝑦2 = 0

∞

𝑛=1

 

  (24) 

where:  

a0 = ∫ 𝑝 𝑑𝑦2 = 2𝑝,

1

−1

 

a𝑛 = ∫ 𝑝 cos𝑛𝜋𝑦2 𝑑𝑦2,

1

−1

 

𝑏𝑛 = ∫ 𝑝 𝑠𝑖𝑛𝑛𝜋𝑦2 𝑑𝑦2 ,

1

−1

 

(25) 

with: 

𝑝 =
1

4
∫(𝑃∗

+ − 𝑃∗
−)𝑑𝑦2

1

−1

 (26) 

which is a constant function. Equations (23) and (24) may be 
reduced, on using (25) and (26), to the differential equations: 

𝜅2𝑋10
′′ =

𝑎0

2
= 𝑝 (27) 

and:  

𝜅2𝑋1𝑛
′′ − 𝛿2(𝑛𝜋)2𝑋1𝑛 + 𝛿(𝜅2 − 1)(𝑛𝜋)𝑋2𝑛

′ = 0, 

−𝛿2𝜅2(𝑛𝜋)2𝑋2𝑛 + 𝑋2𝑛
′′ − 𝛿(𝜅2 − 1)(𝑛𝜋)𝑋1𝑛

′ = 0, 
 (28) 

where the term-wise equality of Fourier series is utilized. 
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The solution of eqn. (27) may clearly be written as:  

𝑋10 =
𝑝

𝜅2
𝐴10𝑦1

2 + 𝐴20𝑦1 + 𝐴30. 
    

(29) 

      It can also be seen from (281) that:  

𝑋2𝑛′ = −
𝜅2

𝛿(𝜅2 − 1)(𝑛𝜋)
𝑋1𝑛′′ +

𝛿2(𝑛𝜋)2

𝛿(𝜅2 − 1)(𝑛𝜋)
𝑋1𝑛. (30) 

Taking the derivative of (282) with respect to 𝑦1 and using 
(30) we obtain: 

𝑋1𝑛
(iv)

− 2(𝛿𝑛𝜋)2𝑋1𝑛′′ + (𝛿𝑛𝜋)4𝑋1𝑛 = 0 (31) 

      The solution of which may be written as:  

𝑋1𝑛 = (𝐴1 + 𝛿𝑛𝜋𝑦1𝐴2)sinh𝛿𝑛𝜋𝑦1 + 

           +(𝐴3 + 𝛿𝑛𝜋𝑦1𝐴4)cosh𝛿𝑛𝜋𝑦1. 
(32) 

       Substituting (32) into the differential relation (30) results in: 

𝑋2𝑛
′ = −𝛿𝑛𝜋sinh(𝛿𝑛𝜋𝑦1)𝐴1 − 𝛿𝑛𝜋cosh(𝛿𝑛𝜋𝑦1)𝐴3 − 

−
𝛿𝑛𝜋(2𝜅2cosh(𝛿𝑛𝜋𝑦1) + 𝛿𝑛𝜋𝑦1(𝜅2 − 1)sinh(𝛿𝑛𝜋𝑦1))

𝜅2 − 1
𝐴2 

 

−
𝛿𝑛𝜋(2𝜅2sinh(𝛿𝑛𝜋𝑦1) + 𝛿𝑛𝜋𝑦1(𝜅2 − 1)cosh(𝛿𝑛𝜋𝑦1))

𝜅2 − 1
𝐴4  

which yields: 

𝑋2𝑛 = −cosh(𝛿𝑛𝜋𝑦1)𝐴1 − sinh(𝛿𝑛𝜋𝑦1)𝐴3 − 

− (𝛿𝑛𝜋𝑦1 cosh(𝛿𝑛𝜋𝑦1)

+
(𝜅2 + 1) sinh(𝛿𝑛𝜋𝑦1)

𝜅2 − 1
) 𝐴2 − 

(33) 

− (𝛿𝑛𝜋𝑦1sinh(𝛿𝑛𝜋𝑦1)

+
(𝜅2 + 1)cosh(𝛿𝑛𝜋𝑦1)

𝜅2 − 1
) 𝐴4. 

 

        The displacements may consequently be written as:  

𝑢1
(1)

=
𝑝

𝜅2
𝐴10𝑦1

2 + 𝐴20𝑦1 + 𝐴30 + 

        + ∑{(𝐴1 + 𝛿𝑛𝜋𝑦1𝐴2)sinh𝛿𝑛𝜋𝑦1

∞

𝑛=1

+ 

        +(𝐴3 + 𝛿𝑛𝜋𝑦1𝐴4)cosh𝛿𝑛𝜋𝑦1}cos𝑛𝜋𝑦2 

(34) 

and: 

𝑢2
(1)

= ∑ −cosh(𝛿𝑛𝜋𝑦1)𝐴1 − sinh(𝛿𝑛𝜋𝑦1)𝐴3

∞

𝑛=1

− 

− (𝛿𝑛𝜋𝑦1cosh(𝛿𝑛𝜋𝑦1) +
(𝜅2+1)sinh(𝛿𝑛𝜋𝑦1)

𝜅2−1
) 𝐴2- 

− (𝛿𝑛𝜋𝑦1sinh(𝛿𝑛𝜋𝑦1) +

       +
(𝜅2+1) cosh(𝛿𝑛𝜋𝑦1)

𝜅2−1
) 𝐴4} sin𝑛𝜋𝑦2.  

(35) 

 

 

 

      Boundary condition (21) may be written as:  

𝜅2 𝑢1,1
(1)

+ 𝛿 (𝜅2 − 2) 𝑢2,2
(1)

|
𝑦1=±1

=
𝐵0

±

2
+ 

+ ∑ 𝐵𝑛
±cos𝑛𝜋𝑦2 + 𝐶𝑛

±sin𝑛𝜋𝑦2,

∞

𝑛=1

 

𝛿 𝑢1,2
(1)

+ 𝑢2,1
(1)

|
𝑦1=±1

= 0, 

𝛿 𝑢1,2
(1)

+ 𝑢2,1
(1)

|
𝑦2=±1

= 0, 

𝑢2
(1)

|
𝑦2=±1

= 0 

 (36) 

where: 

𝐵0
± = ∫ 𝑃∗

±𝑑𝑦2,

1

−1

 

𝐵𝑛
± = ∫ 𝑃∗

± cos𝑛𝜋𝑦2 𝑑𝑦2

1

−1

, 

𝐶𝑛
± = ∫ 𝑃∗

± sin𝑛𝜋𝑦2 𝑑𝑦2 .

1

−1

 

(37) 

On employing, the displacements (34) and (35) in the bounda-
ry conditions (36) yield, respectively, the following equations for 

𝑋10, 𝑋1 and 𝑋2: 

𝜅2  
𝜕𝑋10

𝜕𝑦1

|
𝑦1=±1

=
1

2
∫ 𝑃∗

±𝑑𝑦2

1

−1

 (38) 

and: 

𝜅2 ∑ 𝑋1𝑛
′ (𝑦1)cos𝑛𝜋𝑦2

∞

𝑛=1

+ 

+𝛿(𝜅2 − 2)𝑛𝜋 ∑𝑋2𝑛(𝑦1)cos𝑛𝜋𝑦2|𝑦1=±1

∞

𝑛=1

= 

= ∑ 𝐵𝑛
±cos𝑛𝜋𝑦2 + 𝐶𝑛

±sin𝑛𝜋𝑦2,

∞

𝑛=1

 

−𝛿𝜅2𝑛𝜋 ∑ 𝑋1𝑛(𝑦1)sin𝑛𝜋𝑦2

∞

𝑛=1

+ 

+ ∑𝑋2𝑛
′ (𝑦1)sin𝑛𝜋𝑦2|𝑦1=±1 = 0

∞

𝑛=1

 

 (39) 

resulting in: 

𝜅2𝑋1𝑛
′ (𝑦1) + 𝛿 (𝜅2 − 2)𝑛𝜋𝑋2𝑛(𝑦1)|𝑦1=±1

= ∫ 𝑃∗
± cos𝑛𝜋𝑦2 𝑑𝑦2

1

−1

, 

−𝛿 𝜅2𝑛𝜋𝑋1𝑛(𝑦1) + 𝑋2𝑛′(𝑦1)|𝑦1=±1 = 0. 

(40) 

All coefficients appearing in the displacements 𝑢1
(1)

 and 𝑢2
(1)

, 

see (34) and (56), may be calculated substituting expressions 
(29), (32) and (33) into equation (40), which gives: 

𝐴10 =
1

2
, (41) 
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𝐴20 =
1

4𝜅2
∫(𝑃∗

+ + 𝑃∗
−)𝑑𝑦2,

1

−1

 

and: 

𝐴1 =
cosh(𝛿𝑛𝜋)(𝛿𝑛𝜋(𝜅2 − 1) + 𝜅2tanh(𝛿𝑛𝜋))

2𝛿𝑛𝜋(𝜅2 − 1)(2𝛿𝑛𝜋 + sinh(2𝛿𝑛𝜋))
𝐼1, 

𝐴2 =
cosh(𝛿𝑛𝜋)

2𝛿𝑛𝜋(2𝛿𝑛𝜋 − sinh(2𝛿𝑛𝜋))
  𝐼2, 

𝐴3

= −
cosh(𝛿𝑛𝜋) (𝜅2 + 𝛿𝑛𝜋(𝜅2 − 1) tanh(𝛿𝑛𝜋))

2𝛿𝑛𝜋(𝜅2 − 1)(2𝛿𝑛𝜋 − sinh(2𝛿𝑛𝜋))
  𝐼2, 

𝐴4 = −
sinh(𝛿𝑛𝜋)

2𝛿𝑛𝜋(2𝛿𝑛𝜋 + sinh(2𝛿𝑛𝜋))
  𝐼1, 

(42) 

where: 

I1 = ∫(𝑃∗
+ + 𝑃∗

−) cos𝑛𝜋𝑦2 𝑑𝑦2

1

−1

, 

I2 = ∫(𝑃∗
+ − 𝑃∗

−) cos𝑛𝜋𝑦2 𝑑𝑦2

1

−1

. 

(43) 

A higher order approximation is still needed to determine the 
coefficient 𝐴30. To this end, starting from (6) and (34), we write: 

𝜎11,1
(1)

+ 𝛿𝜎12,2
(1)

= 𝑢1,𝜏𝜏
(1)

 (44) 

with: 

𝜎11
(1)

|
𝑦1=±1

= 𝜎12
(1)

|
𝑦2=±1

= 0. (45) 

Integrating equation (44) over the rectangular region and us-
ing boundary condition (45), we obtain: 

𝐴30 = −
𝑝

6𝜅2
. (46) 

Thus, the expressions for the next order displacements 𝑢1
(1)

 

and 𝑢2
(1)

 are fully established. The following section aims to pre-

sent demonstrative examples. 

4. ILLUSTRATIVE EXAMPLES 

4.1.  Time-Harmonic Loadings of Parabolic Types 

First, we consider time-harmonic, parabolic type end loadings 
given by:  

𝑃± = 𝑀±(1 − 𝑥2
2/𝑙2

2)𝑒−𝑖𝜔𝑡  (47) 

where 𝑀± is a constant amplitude. Below, we utilize the scaling 

introduced in (5) and also omit the time-harmonic factor 𝑒−𝑖𝜔𝑡 . It 
is, therefore, an easy matter to obtain the tangential displacement 
using (18), which is:  

𝑢1
(0)

= −
𝑀∗

+ − 𝑀∗
−

3
 (48) 

where 𝑀∗
± is scaled as in (5). 

The solution of the next order problem may be written from 
eqns. (34) and (35) as: 

𝑢1
(1)

=
𝑀∗

+ − 𝑀∗
−

6𝜅2
𝑦1

2 +
𝑀∗

+ + 𝑀∗
−

3𝜅2
𝑦1 −

𝑀∗
+ − 𝑀∗

−

18𝜅2
+ 

+ ∑{(𝐷1 + 𝛿𝑛𝜋𝑦1𝐷2)sinh𝛿𝑛𝜋𝑦1 +

∞

𝑛=1

 

+(𝐷3 + 𝛿𝑛𝜋𝑦1𝐷4)cosh𝛿𝑛𝜋𝑦1}cos𝑛𝜋𝑦2 

(49) 

and: 

𝑢2
(1)

= ∑{−cosh(𝛿𝑛𝜋𝑦1)𝐷1 − sinh(𝛿𝑛𝜋𝑦1)𝐷3 −

∞

𝑛=1

 

− (𝛿𝑛𝜋𝑦1cosh(𝛿𝑛𝜋𝑦1) +
(𝜅2+1)sinh(𝛿𝑛𝜋𝑦1)

𝜅2−1
) 𝐷2- 

       − (𝛿𝑛𝜋𝑦1sinh(𝛿𝑛𝜋𝑦1)  

+
(𝜅2 + 1)cosh(𝛿𝑛𝜋𝑦1)

𝜅2 − 1
) 𝐷4} sin𝑛𝜋𝑦2 

(50) 

where: 

𝐷1 =
(−1)𝑛+12(𝑀∗

+ + 𝑀∗
−)cosh(𝛿𝑛𝜋)

𝛿𝑛3𝜋3(𝜅2 − 1)(2𝛿𝑛𝜋 + sinh(2𝛿𝑛𝜋))
× 

    × (𝛿𝑛𝜋(𝜅2 − 1) + 𝜅2tanh(𝛿𝑛𝜋)), 

𝐷2 =
(−1)𝑛+12(𝑀∗

+ − 𝑀∗
−) cosh(𝛿𝑛𝜋)),

𝛿𝑛3𝜋3(2𝛿𝑛𝜋 − sinh(2𝛿𝑛𝜋))
 

𝐷3 =
(−1)𝑛2(𝑀∗

+ − 𝑀∗
−) cosh(𝛿𝑛𝜋))

𝛿𝑛3𝜋3(𝜅2 − 1)(2𝛿𝑛𝜋 − sinh(2𝛿𝑛𝜋))
× 

           × (𝜅2 + 𝛿𝑛𝜋(𝜅2 − 1)tanh(𝛿𝑛𝜋)), 

𝐷4 =
(−1)𝑛2(𝑀∗

+ + 𝑀∗
−)sinh(𝛿𝑛𝜋)

𝛿𝑛3𝜋3(2𝛿𝑛𝜋 + sinh(2𝛿𝑛𝜋))
. 

(51) 

In the following figures, we illustrate the comparisons of ap-
proximate and exact longitudinal displacement 𝑢1 given, respec-
tively, by formulas (49) and (60). Here, we set the Poisson ratio 
𝜈 = 0.25 together with 𝛿 = 1. Figures 2 and 3 illustrate the 
behavior of the approximate and exact displacement component 

𝑢1 along the longitudinal coordinate 𝑦1 under the action of self-
equilibrated and non-self-equilibrated loads, that is, we take 
𝑀∗

+ = 𝑀∗
− = 1 and 𝑀∗

+ = −𝑀∗
− = 1, respectively. An excel-

lent agreement is evident for the parameter 𝜂, even when its 
value is not very small. 

In both of these figures, we consider only positive 𝑦2-values 
due to the intrinsic symmetry. The largest displacements occur 
along the 𝑦1-axis, while they decrease in the 𝑦2-direction due to 
the form of the applied loads. However, for a self-equilibrated 

load, Fig. 2, there is no displacement along the 𝑦2-axis, i.e., at 
𝑦1 = 0, which is not observed in the case of a non-self-
equilibrated load, see Fig 3.  
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Fig. 2. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝑦1 for 𝑦2 = 0 (black), 𝑦2 = 0.5 (red), 

and 𝑦2 = 1 (blue) in case of a self-equilibrated load at 𝜂 = 0.5 

 

Fig. 3. Comparison of exact (solid lines) and approximate (dotted lines) 
displacements 𝑢1 versus 𝑦1 for 𝑦2 = 0 (black), 𝑦2 = 0.5 (red), 

and 𝑦2 = 1 (blue) in case of a non-self-equilibrated load at 

𝜂 = 0.5 

 
Fig. 4. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝜂 for 𝑦1 = 𝑦2 = 0.5 (black), 𝑦1 = 1, 

𝑦2 = 0.5 (red), and 𝑦1 = 1, 𝑦2 = 0 (blue) in case of a self-

equilibrated load 

 
Fig. 5. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝜂 for 𝑦1 = 𝑦2 = 0.5 (black), 𝑦1 = 1, 

𝑦2 = 0.5 (red), and 𝑦1 = 1, 𝑦2 = 0 (blue) in case of a non-self-

equilibrated load 

Figures 4 and 5 demonstrate the variations of the longitudinal 
displacement with respect to the small frequency 𝜂 in case of self- 
and non-self-equilibrated loads, respectively. A remarkable coin-
cidence between the approximate and exact displacements is 
observed even in the global low-frequency regime. When the load 
is self-equilibrated, we observe from Fig. 4 that at very low fre-

quencies the horizontal displacement 𝑢1 acquires considerably 
small values both along the 𝑦1-axis (𝑦2 = 0) as well as in the 
vertical direction. As the frequency increases, the horizontal dis-
placement attains larger values that also increase in the positive 
vertical direction. For a non-self-equilibrated load, the displace-
ments for the considered points are not small even for low-
frequency regime. The displacement characteristics are also quite 
different than the previous case, clearly a result of non-self-
equilibrated loading. 

4.1. Time-Harmonic Uniform Loading 

We now consider time-harmonic, uniform end loadings in the 
form:  

𝑃± = 𝐴±𝑒−𝑖𝜔𝑡  (52) 

where 𝐴± are again assumed to be constants. On using eqn. (18) 

and omitting 𝑒−𝑖𝜔𝑡, the leading order displacement may be ob-
tained as: 

𝑢1
(0)

= −
𝐴∗

+ − 𝐴∗
−

2
. (53) 

     Similar to previous section, the next order solution for the 
displacement components may be written as   
     On substituting expansions (8) into the governing equations (6) 
and the constitutive relations (7), the leading order displacements, 
that:  

𝑢1
(1)

=
𝐴∗

+ − 𝐴∗
−

4𝜅2
𝑦1

2 +
𝐴∗

+ + 𝐴∗
−

2𝜅2
𝑦1 −

𝐴∗
+ − 𝐴∗

−

12𝜅2
, (54) 

and: 

𝑢2
(1)

= 0 (55) 

since each coefficient given in (43) becomes zero. 
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Fig. 6. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝑦1 in case of a self-equilibrated load at 

𝜂 = 0.75 

 
Fig. 7. Comparison of exact (solid lines) and approximate (dotted lines) 

displacements 𝑢1 versus 𝜂 for 𝑦1 = 0.25 (black), 𝑦1 = 0.5 (red), 

and 𝑦1 = 1(blue) in case of a self-equilibrated load 

 

Fig. 8. Comparison of exact (solid lines) and approximate (dotted lines) 
displacements 𝑢1 vs 𝜂 for 𝑦1 = 0.25 (black), 𝑦1 = 0.5 (red), and 

𝑦1 = 1(blue) in case of a non-self-equilibrated load 

The effect of a non-self-equilibrated uniform loading on the 

horizontal displacement along the 𝑦1-axis is displayed both for 
approximate and exact formulations in Fig. 6. An apparent para-
bolic form emerges with the largest displacement arising along the 
center of the rectangle. 

Figures 7 and 8 exhibit the same characteristics as their coun-
terparts for parabolic loading. For a fixed value of the frequency, 
the displacements grow larger as we move to the edges of the 
rectangle. The displacements are positive for a self-equilibrated 
load, see Fig. 7, and they are negative for a non-self-equilibrated 
load, see Fig. 8. We also note that, as in the case of parabolic 
loading, the accuracy of approximate formulation is significant, 
which are displayed against the exact formulation in Figs. 6–8.  

5. CONCLUSIONS 

A perturbation scheme is implemented to calculate the first 
order low-frequency corrections to rigid body motions of an elastic 
rectangle subject to longitudinal forces applied to its opposite 
faces together with sliding boundary conditions on its upper and 
lower faces. The leading order solution of the nonhomogeneous 
harmonic equation corresponds to Newton’s second law whereas 
the next order terms results in a nonhomogeneous biharmonic 
equation. A similar problem was considered in (Kaplunov and 
Şahin, 2020); however, the boundary conditions allowed explicit 
solutions only in the antiplane case and further assumptions had 
to be imposed in the case of in-plane motions. The sliding bound-
ary considered in this paper, fortunately, allows the variables to be 
separated resulting in the derivation of an explicit approximate 
solution for the in-plane displacements of the rectangle. The 
solution of the next order problem, namely, the nonhomogeneous 
biharmonic equation, leads to a correction to the classical rigid 
body dynamics, see eqns. (35) and (36). The obtained corrections 
to rigid body motions in the low-frequency regime under the action 
of both self- and non-self-equilibrated loads allow the calculation 
of the variation of stress and displacement components over the 
interior of the rectangle. Several figures are presented displaying 
the variation of displacement components for the derived approx-
imate model along with their exact counterparts. An excellent 
coincidence between the asymptotic and exact results is observed 

for a rather large interval of the small parameter 𝜂 in all figures. It 
should also be noted that the case of self-equilibrated loading 
cannot be treated within the classical rigid body model. 

The perturbation approach may also be extended to investi-
gate the dynamic response of strongly inhomogeneous layered 
rectangular structures, see (Prikazchikova et al., 2020), with inner 
and/or outer sliding boundaries, including anisotropy; multi-span 
rectangles with contrasting material properties may also be inves-
tigated. It is also possible to consider a set of arbitrary stresses 
applied to opposing sides of the rectangle. The nonlinear struc-
tures might also be another promising research area for which the 
developed model may be employed. In addition, various problems 
of multi-body dynamics, including calculation of longitudinal forces 
in railcar dynamics might be taken into account.  

APPENDIX. EXACT SOLUTION 

In this section, we present the exact solutions of the longitudi-
nal and transverse displacements of the elastic rectangle subject 
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to time-harmonic parabolic and uniform type end loadings. First, 
we derive the formulations for the parabolic type end loading. 

The equations of motion and boundary conditions given in (1) 
and (2) can be written in terms of the displacement components, 
respectively, as:  

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)

𝜕2𝑢1

𝜕𝑥1
2 +

𝐸

2(1 + 𝜈)

𝜕2𝑢1

𝜕𝑥2
2 + 

    +
𝐸(1 − 𝜈)

2(1 + 𝜈)(1 − 2𝜈)

𝜕2𝑢2

𝜕𝑥1𝜕𝑥2

= 𝜌
𝜕2𝑢1

𝜕𝑡2
, 

𝐸

2(1 + 𝜈)

𝜕2𝑢2

𝜕𝑥1
2 +

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)

𝜕2𝑢2

𝜕𝑥2
2 + 

    +
𝐸(1 − 𝜈)

2(1 + 𝜈)(1 − 2𝜈)

𝜕2𝑢1

𝜕𝑥1𝜕𝑥2

= 𝜌
𝜕2𝑢2

𝜕𝑡2
, 

(56) 

and: 

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)

𝜕𝑢1

𝜕𝑥1

+
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)

𝜕𝑢2

𝜕𝑥2

|
𝑥1=±𝑙1

= 

    = 𝑀± (1 −
𝑥2

2

𝑙2
2 ) 𝑒−𝑖𝜔𝑡 , 

𝜕𝑢1

𝜕𝑥2

+
𝜕𝑢2

𝜕𝑥1

|
𝑥1=±𝑙1

= 0, 

𝜕𝑢1

𝜕𝑥2

+
𝜕𝑢2

𝜕𝑥1

|
𝑥2=±𝑙2

= 0, 

𝑢2|𝑥2=±𝑙2
. 

(57) 

      Considering time-harmonic vibrations together with scaled 
quantities introduced in (5), the boundary-value problem (56) and 
(57) may be rewritten as:  

𝜅2
𝜕2𝑢1

∗

𝜕𝑦1
2 + 𝛿2

𝜕2𝑢1
∗

𝜕𝑦2
2 + 𝛿(𝜅2 − 1)

𝜕2𝑢2
∗

𝜕𝑦1𝜕𝑦2

+ 𝜂2𝑢1
∗ , 

𝜕2𝑢2
∗

𝜕𝑦1
2 + 𝛿2𝜅2

𝜕2𝑢2
∗

𝜕𝑦2
2 + 𝛿(𝜅2 − 1)

𝜕2𝑢1
∗

𝜕𝑦1𝜕𝑦2

+ 𝜂2𝑢2
∗ , 

(58) 

with: 

𝜅2
𝜕𝑢1

∗

𝜕𝑦1

+ 𝛿(𝜅2 − 2)
𝜕𝑢2

∗

𝜕𝑦2

|
𝑦1=±1

= 𝜂2𝑀∗
±(1 − 𝑦2

2), 

𝛿
𝜕𝑢1

∗

𝜕𝑦2

+
𝜕𝑢2

∗

𝜕𝑦1

|
𝑦1=±1

= 0, 

𝛿
𝜕𝑢1

∗

𝜕𝑦2

+
𝜕𝑢2

∗

𝜕𝑦1

|
𝑦2=±1

= 0, 

𝑢2
∗|𝑦2=±1 

(59) 

where 𝜂 = 𝜔𝑙1/𝑐2. 
Let us assume the solutions of (58) are in the form: 

𝑢1
∗ = 𝑢10

∗ + ∑  

∞

𝑛=1

𝑢1𝑛
∗ (𝑦1)cos𝑛𝜋𝑦2 , (60) 

𝑢2
∗ = ∑  

∞

𝑛=1

𝑢2𝑛
∗ (𝑦1)cos𝑛𝜋𝑦2, 

see (Kaplunov et al., 2005). Substituting equations (60) into the 
governing equations and boundary conditions given by (58) and 
(59) and employing a straightforward but a lengthy algebra we 
arrive at, omitting all the details: 

𝑢10
∗ = −

𝑀∗
+ − 𝑀∗

−

3𝜅sin
𝜂
𝜅

𝜂cos (
𝜂

𝜅
𝑦1)

+
𝑀∗

+ + 𝑀∗
−

3𝜅cos
𝜂
𝜅

𝜂sin (
𝜂

𝜅
𝑦1), 

𝑢1𝑛
∗ = 𝐸1cosh𝑟1𝑦1 + 𝐸2sinh𝑟1𝑦1 + 𝐸3cosh𝑟2𝑦1

+ 𝐸4sinh𝑟2𝑦1, 

𝑢2𝑛
∗ = −

𝑛𝜋𝛿𝐸1

𝑟1

sinh𝑟1𝑦1 −
𝑛𝜋𝛿𝐸2

𝑟1

cosh𝑟1𝑦1 − 

    −
𝑟2𝐸3

𝑛𝜋𝛿
sinh𝑟2𝑦1 −

𝑟2𝐸4

𝑛𝜋𝛿
cosh𝑟2𝑦1, 

(61) 

where: 𝑟1 = ±√𝛿2𝑛2𝜋2 − 𝜂2/𝜅2, 𝑟2 = ±√𝛿2𝑛2𝜋2 − 𝜂2, 

and 𝐸𝑖 are the Fourier coefficients given by: 

𝐸1 =
2𝜂2(𝑛2𝜋2𝛿2 + 𝑟2

2)𝑟1cosh𝑟2cos𝑛𝜋(𝑀∗
+ − 𝑀∗

−)

4𝑛4𝜋4𝛿2𝑟1𝑟2cosh𝑟1sinh𝑟2 − 𝑛2𝜋2(𝑛2𝜋2𝛿2 + 𝑟2
2)2sinh𝑟1cosh𝑟2

, 

𝐸2 =
2𝜂2(𝑛2𝜋2𝛿2 + 𝑟2

2)𝑟1sinh𝑟2cos𝑛𝜋(𝑀∗
+ + 𝑀∗

−)

4𝑛4𝜋4𝛿2𝑟1𝑟2sinh𝑟1cosh𝑟2 − 𝑛2𝜋2(𝑛2𝜋2𝛿2 + 𝑟2
2)2cosh𝑟1sinh𝑟2

, 

𝐸3 =
−4𝜂2𝛿2𝑟1cosh𝑟1cos𝑛𝜋(𝑀∗

+ − 𝑀∗
−)

4𝑛2𝜋2𝛿2𝑟1𝑟2cosh𝑟1sinh𝑟2 − (𝑛2𝜋2𝛿2 + 𝑟2
2)2sinh𝑟1cosh𝑟2

, 

𝐸4 =
−4𝜂2𝛿2𝑟1sinh𝑟1cos𝑛𝜋(𝑀∗

+ + 𝑀∗
−)

4𝑛2𝜋2𝛿2𝑟1𝑟2sinh𝑟1cosh𝑟2 − (𝑛2𝜋2𝛿2 + 𝑟2
2)2cosh𝑟1sinh𝑟2

. 

(62) 

      The exact solution to the elastic rectangle subject to time-
harmonic uniform loading may also be treated similarly. Therefore, 
leaving out all the algebraic details, the exact formulation for the 
displacement components are given as: 

𝑢1
∗ = −

𝜂(𝐴∗
+ − 𝐴∗

−)

2𝜅sin
𝜂
𝜅

cos
𝜂

𝜅
𝑦1

+
𝜂(𝐴∗

+ + 𝐴∗
−)

2𝜅cos
𝜂
𝜅

sin
𝜂

𝜅
𝑦1, 

𝑢2
∗ = 0. 

(63) 
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Abstract: This paper presents the plate structural analysis based on the finite element method (FEM) using a double interpolation element 
with arbitrary meshing. This element used in this research is related to the first-order shear deformation theory (FSDT) and the double in-
terpolation procedure. The first stage of the procedure is the same with the standard FEM for the quadrilateral element, but the averaged 
nodal gradients must be computed for the second stage of this interpolation. Shape functions established by the double interpolation pro-
cedure exhibit more continuous nodal gradients and higher-order polynomial contrast compared to the standard FEM when analysing the 
same mesh. Note that the total degrees of freedom (DOFs) do not increase in this procedure, and the trial solution and its derivatives are 
continuous across inter-element boundaries. Besides, with controlling distortion factors, the interior nodes of a plate domain are derived 
from a set of regular nodes. Four practical examples with good results and small errors are considered in this study for showing excellent 
efficiency for this element. Last but not least, this element allows us to implement the procedure in an existing FEM computer code as well 
as can be used for nonlinear analysis in the near future. 

 
Key words: mesh irregularity, first-order shear deformation theory, double interpolation procedure 

1. INTRODUCTION 

The first-order shear deformation theory (FSDT) is simple to 
implement and is applied for plate-shell structures, but because of 
finite element analyses, the accuracy of solutions will be strongly 
dependent on the shear correction factors, as studied by Allman 
(1984). Hence, the finite element method (FEM) associated with 
the FSDT shows reasonable results and easy implementation of 
the standard FEM codes. Because of their better performance,  
quadrilateral elements are usually used compared with other 
elements. As referenced in the studies by Ansys (2009), Bui et al. 
(2014), Ton-That et al. (2020), Nguyen-Xuan et al. (2010), Ton-
That (2019), Hoang (2020) and Ton-That (2020), the difficulty in 
the development of the four-node element related to thin plates 
will be rectified by using shear correction factors. Furthermore, in 
the literature, there are many other ways to enhance solutions of 
the FEM. A new method was proposed by Ahmadian and Farughi 
(2011) to obtain shape functions for superconvergent element 
models; by using an inverse method proposed by Ahmadian and 
Farughi (2011), new formulation for the plane stress element with 
superconvergent properties was also presented, and the super-
convergent element formulations in local co-ordinates were ob-
tained by using inverse strategies proposed by Farughi and Ah-
madian (2010). Besides, a novel four-node quadrilateral element 
with five degrees of freedom (DOFs) per node, SQ4P, based on 
the FSDT and Chebyshev polynomials was introduced by Hoang-
Lan et al. (2021) to analyse plate/shell structures. Another ele-
ment was improved by using edge-based smoothed strains for 
analyses of laminated composite plates as in the study by Chau-

Dinh et al. (2021). The C0- type of Shi’s third-order shear defor-
mation theory can be applied for linear and nonlinear analyses of 
composite plates because this theory was taking the advantages 
and desirable properties of the third-order shear deformation 
theory such as in paper of Hoang-Lan (2020), etc. The smoothed 
FEM represented by the SQ4C element as in the studies by Ho-
ang-Lan (2020), Ton-That et al. (2020), Hoang-Lan and Nguyen-
Van (2021) or the isogeometric analysis shown in the studies by 
Tran et al. (2017), Da et al. (2012) and Devarajan et al. (2018, 
2020) is reported here. Going back to this paper, the main objec-
tive of the present work is to review the influence of mesh irregu-
larity on the results of plate structural analysis based on a double 
interpolation element that related to the double interpolation pro-
cedure. Several desirable characteristics of this procedure are 
listed here: (i) the total number of the DOFs of the whole system 
does not change, (ii) the trial solution and its derivatives are con-
tinuous across inter-element boundaries, or in other words, stress 
in the domain can be transited smoothly element by element as 
indicated in the studies by Bui et al. (2014), Wu et al. (2012), 
Zheng et al. (2010) or Ton-That et al. (2020). In this study, all 
parts of element stiffness matrices are established and then ap-
plied to consider the behaviours of plate structures. 

The rest of this paper is given as follows. Section 2 briefly 
presents the formulation of the double interpolation element based 
on the FSDT and the double interpolation procedure. Section 3 
shows the numerical results and some discussions related to this 
element with mesh irregularity for structural analysis. Finally, 
some conclusions drawn from the study are presented in the last 
section. 
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2. FORMULATION 

2.1. The first-order shear deformation theory  

The FSDT for plates includes the effect of transverse shear 
deformations. In the FSDT, the normals to the undeformed middle 
plane of the plate remain straight but not normal to the deformed 
middle surface. 

 
Fig. 1. A plate with positive definition of displacements and rotations 

The displacements in the plate can be expressed by the FSDT 
of Reddy (2007) as follows: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝑜(𝑥, 𝑦) + 𝑧𝛽𝑥   (1) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑜(𝑥, 𝑦) + 𝑧𝛽𝑦  (2) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑜(𝑥, 𝑦)  (3) 

where u, v and w are the translational displacements in the x, y 
and z directions, respectively, uo, vo and wo correspond to the 
displacements of the middle plane and βx and βy are, respectively, 
the rotation of the mid-plane of x and y axis with positive direc-
tions defined in (Fig. 1). 

The in-plane strains are obtained as 

𝜀 = [

𝑢𝑜,𝑥

𝑣𝑜,𝑦

𝑢𝑜,𝑦 + 𝑣𝑜,𝑥

] + 𝑧 [

𝛽𝑥,𝑥

𝛽𝑦,𝑦

𝛽𝑥,𝑦 + 𝛽𝑦,𝑥

] = 𝜀𝑚 + 𝑧𝜀𝑏  (4) 

while the transverse shear strains are obtained as 

𝛾 = [
𝛾𝑥𝑧

𝛾𝑦𝑧
] = [

𝛽𝑥 + 𝑤,𝑥

𝛽𝑦 + 𝑤,𝑦
]  (5) 

The linear elastic stress-strain relations in in-plane part are 
defined for a homogeneous, isotropic material as 

𝝈 = 𝐃𝛆  (6) 

where D is defined as 

𝑫 = [
𝑫𝒎 𝟎
𝟎 𝑫𝒃

]  (7) 

𝑫𝒎 =
𝐸𝑡

1−𝜈2 [

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]  (8) 

𝑫𝒃 =
𝐸𝑡3

12(1−𝜈2)
[

1 𝜈 0
𝜈 1 0

0 0
1−𝜈

2

]  (9) 

while the linear elastic stress-strain relations in transverse shear 
part are defined as 

𝝉 = 𝑫𝒔𝛄                                                                                  (10) 

with 

𝑫𝒔 =
𝐸𝑡𝑘𝑠

2(1+𝜈)
[
1 0
0 1

]                                                               (11) 

and ks = 5/6 is the shear correction factor.   
Note that nonlinear relations are not mentioned in this paper. 
 

2.2. The double interpolation procedure 

Let xC be a point in a four-node quadrilateral element with 
nodes i, j, k and m as shown in Fig. 2. The author denotes Si, Sj, 
Sk and Sm elements that share nodes i, j, k and m. The supporting 
nodes for the point xC in this quadrilateral element involve all 
nodes of elements Si, Sj, Sk and Sm. The support domain of point 
xC is much larger than the standard FEM support domain, and the 
trial solution at point xC can be written as follows: 

𝑢̌(𝑥) = ∑ 𝑁𝑟̌(𝑥)𝑑𝑟
𝑛𝑠𝑝

𝑟=1 = 𝑁̌(𝑥)𝑑                                        (12) 

In equation (12), the double interpolation shape function is de-
termined 

𝑁𝑟̌ = 𝜑𝑖𝑁𝑟
[𝑖]

+ 𝜑𝑖𝑥𝑁𝑟,𝑥
[𝑖]

+ 𝜑𝑖𝑦𝑁𝑟,𝑦
[𝑖]

+ 𝜑𝑗𝑁𝑟
[𝑗]

+ 𝜑𝑗𝑥𝑁𝑟,𝑥
[𝑗]

+

𝜑𝑗𝑦𝑁𝑟,𝑦
[𝑗]

+ 𝜑𝑘𝑁𝑟
[𝑘]

+ 𝜑𝑘𝑥𝑁𝑟,𝑥
[𝑘]

+ 𝜑𝑘𝑦𝑁𝑟,𝑦
[𝑘]

+ 𝜑𝑚𝑁𝑟
[𝑚]

+

𝜑𝑚𝑥𝑁𝑟,𝑥
[𝑚]

+ 𝜑𝑚𝑦𝑁𝑟,𝑦
[𝑚]

                                                           (13) 

where dr denotes the nodal displacement vector, while  is the 

shape function with respect to node i, and nsp is the total number 
of the supporting nodes in regard to the point xC. 

 
Fig. 2. Schematic sketch of the double interpolation procedure for a 

quadrilateral element in 2D 

The formulation of the average derivative of the shape func-
tions at node i is given (similar for other nodes). 

𝑁𝑟,𝑥
[𝑖]

= ∑ (𝜔𝑒𝑁𝑟,𝑥
[𝑖][𝑒]

)𝑒∈𝑆𝑖
                                                       (14) 

𝑁𝑟,𝑦
[𝑖]

= ∑ (𝜔𝑒𝑁𝑟,𝑦
[𝑖][𝑒]

)𝑒∈𝑆𝑖
                                                       (15) 
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In equations (14) and (15), the term 𝑁𝑟,𝑥
[𝑖][𝑒]

is the derivative of 

𝑁𝑟
[𝑖]

 computed in element e, and 𝜔𝑒 is the weight function of 

element e ∈ Si, which is defined 

𝜔𝑒 =
𝐴𝑒

∑ 𝐴𝑒̅𝑒̅∈𝑆𝑖

                                                                          (16) 

eA being the area of the element e. In equation (13), the functions 

𝜑𝑖, 𝜑𝑖𝑥  and 𝜑𝑖𝑦 forming the polynomial basis associated with 

node i must satisfy the following conditions 

𝜑𝑖(𝑥𝑟) = 𝛿𝑖𝑟       𝜑𝑖,𝑥(𝑥𝑟) = 0      𝜑𝑖,𝑦(𝑥𝑟) = 0                            

𝜑𝑖𝑥(𝑥𝑟) = 0     𝜑𝑖𝑥,𝑥(𝑥𝑟) = 𝛿𝑖𝑟    𝜑𝑖𝑥,𝑦(𝑥𝑟) = 0              (17)           

𝜑𝑖𝑦(𝑥𝑟) = 0      𝜑𝑖𝑦,𝑥(𝑥𝑟) = 0     𝜑𝑖𝑦,𝑦(𝑥𝑟) = 𝛿𝑖𝑟                       

with r is any one of the indices i, j, k and m 

𝛿𝑖𝑟 = {
1 𝑖𝑓 𝑖 = 𝑟
0 𝑖𝑓 𝑖 ≠ 𝑟

                                                            (18) 

The above conditions have to be applied in a similar manner 

to other functions, i.e., 𝜑𝑗, 𝜑𝑗𝑥, 𝜑𝑗𝑦, 𝜑𝑘, 𝜑𝑘𝑥, 𝜑𝑘𝑦, 𝜑𝑚, 𝜑𝑚𝑥  

and 𝜑𝑚𝑦 . These polynomial basis functions 𝜑𝑖, 𝜑𝑖𝑥  and 𝜑𝑖𝑦 for 

the quadrilateral element are given 

𝜑𝑖 = 𝑅𝑖 + 𝑅𝑖
2𝑅𝑗 + 𝑅𝑖

2𝑅𝑘 + 𝑅𝑖
2𝑅𝑚 

        −𝑅𝑖𝑅𝑗
2 − 𝑅𝑖𝑅𝑘

2 − 𝑅𝑖𝑅𝑚
2                                                (19) 

𝜑𝑖𝑥 = −(𝑥𝑖 − 𝑥𝑗)(𝑅𝑖
2𝑅𝑗 + 0.5𝑅𝑖𝑅𝑗𝑅𝑘 + 0.5𝑅𝑖𝑅𝑗𝑅𝑚) 

       −(𝑥𝑖 − 𝑥𝑘)(𝑅𝑖
2𝑅𝑘 + 0.5𝑅𝑖𝑅𝑘𝑅𝑗 + 0.5𝑅𝑖𝑅𝑘𝑅𝑚)      (20) 

       −(𝑥𝑖 − 𝑥𝑚)(𝑅𝑖
2𝑅𝑚 + 0.5𝑅𝑖𝑅𝑚𝑅𝑗 + 0.5𝑅𝑖𝑅𝑚𝑅𝑘) 

𝜑𝑖𝑦 = −(𝑦𝑖 − 𝑦𝑗)(𝑅𝑖
2𝑅𝑗 + 0.5𝑅𝑖𝑅𝑗𝑅𝑘 + 0.5𝑅𝑖𝑅𝑗𝑅𝑚) 

       −(𝑦𝑖 − 𝑦𝑘)(𝑅𝑖
2𝑅𝑘 + 0.5𝑅𝑖𝑅𝑘𝑅𝑗 + 0.5𝑅𝑖𝑅𝑘𝑅𝑚)      (21) 

       −(𝑦𝑖 − 𝑦𝑚)(𝑅𝑖
2𝑅𝑚 + 0.5𝑅𝑖𝑅𝑚𝑅𝑗 + 0.5𝑅𝑖𝑅𝑚𝑅𝑘) 

Other functions can be calculated in the same manner by us-
ing Eqs (19)–(21) with a circulatory permutation of indices i, j, k 
and m. Besides, Ri, Rj, Rk and Rm are the area coordinates of the 
point xC in the quadrilateral element with four nodes i, j, k and m; 
for more details, see in Bui et al. (2014), Wu et al. (2012), Zheng 
et al. (2010) and Ton-That et al. (2020). These shape functions 
are complete polynomials, satisfy properties of the partition of 
unity and possess Kronecker’s delta function property. 

2.3. The double interpolation element 

With five degrees of freedom for one node, the in-plane 
strains at an arbitrary point xC can be obtained as follows 

𝛆𝐦(𝑥𝐶) = 𝐁𝐦(𝑥𝐶)𝐪                                                             (22) 

𝛆𝐛(𝑥𝐶) = 𝐁𝐛(𝑥𝐶)𝐪                                                               (23) 

in which 

𝑞𝑖 = [𝑢𝑖 𝑣𝑖 𝑤𝑖      𝛽𝑥𝑖 𝛽𝑦𝑖]𝑇                                         (24) 

𝐁𝐦(𝑥𝐶) =  

 
 
 
 
 
 

sp

sp

sp sp
sp

1,x n ,x

1,y n ,y

1,y 1,x n ,y n ,x
3×5n

N 0 0 0 0 ... N 0 0 0 0

0 N 0 0 0 ... 0 N 0 0 0

N N 0 0 0 ... N N 0 0 0

          (25)      

𝐁𝐛(𝑥𝐶) =  

 

 
 
 
 
 
 

sp

sp

sp sp
sp

1,x n ,x

1,y n ,y

1,y 1,x n ,y n ,x
3×5n

0 0 0 N 0 ... 0 0 0 N 0

0 0 0 0 N ... 0 0 0 0 N

0 0 0 N N ... 0 0 0 N N

            (26) 

with nsp is the total number of the supporting nodes in regard to 
the point xC. The transverse shear strains are also expressed by 

𝛄(𝑥𝐶) = 𝐁𝐬(𝑥𝐶)𝐪                                                                 (27) 

where 

𝐁𝐬(𝑥𝐶) =  

 
 
 
 

sp sp

sp sp
sp

1,x 1 n ,x n

1,y 1 n ,y n
2×5n

0 0 N N 0 ... 0 0 N N 0

0 0 N 0 N ... 0 0 N 0 N
        (28) 

The double interpolation element stiffness matrix is then 
written as 

𝐊𝑒𝑙 = 𝐊𝐦 + 𝐊𝐦 + 𝐊𝐦 = ∫ 𝐁𝒎
𝑻 𝐃𝒎𝐁𝒎𝑑Ω

 

Ω
                                         

+ ∫ 𝐁𝒎
𝑻 𝐃𝒎𝐁𝒎𝑑Ω

 

Ω
+ ∫ 𝐁𝒎

𝑻 𝐃𝒎𝐁𝒎𝑑Ω
 

Ω
                               (29)                           

For static analysis 

𝐊𝐪 = 𝐅                                                                                   (30) 

with K is the global stiffness matrix and F is the load vector which 
is given as follows 

𝐅 = ∫ 𝐍𝑇𝐩𝑑Ω
 

Ω
                                                                       (31) 

in which N is the shape functions of standard quadrilateral 
element.  
For free vibration analysis 

(𝐊 − 𝜔2𝐌)𝐪 = 0                                                                 (32) 

with ω is the natural frequency and M is the global mass matrix 
which is defined by 

𝐌 = ∫ 𝐍𝑇𝐦𝐍𝑑Ω
 

Ω
                                                                 (33) 

𝐦 =  

 
 
 
 
 
 
 
 
 
  

2

2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0
ρt t

0 0 0 0
12

t
0 0 0 0

12

                                             (34) 

2.4. The mesh irregularity procedure 

The domain of the plate structure is created by the double 
interpolation elements related to irregular interior nodes. These 
interior nodes are derived from a set of regular nodes by using a 
controlling distortion factor s. The coordinates of an irregular mesh 
are obtained by the following expressions: 
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𝑥′ = 𝑥 + 𝑟𝐶 × ∆𝑥                                                                  (35) 

𝑦′ = 𝑦 + 𝑟𝐶 × ∆𝑦                                                                  (36) 

where cr is a computer-generated random number between -1.0 

and 1.0; ∆𝑥, ∆𝑦 are initial regular element sizes in the x- and y- 
directions, respectively and s is used to control the shapes of the 
distorted elements. (Fig. 3) illustrates the mesh irregularity with 
three values 0.1, 0.2 and 0.3 of s. 

 
s = 0.1 

 
s = 0.2 

 
s = 0.3 

 
Fig. 3. Typical irregular meshes of 18 × 18 with various distortion factor s 

3. SOLUTIONS AND DISCUSSIONS  

The double interpolation element will be used through 
numerical examples. The SI units are used in this paper. 

3.1. The Cook’s membrane 

The Cook’s membrane problem is studied in this section with 
E = 1.0, ν = 0.499 and thickness t = 1, and this model is shown in 
Fig. 4. Under plane stress conditions, the reference value of the 
vertical displacement at the centre of the tip section (point C) in 
Fredriksson et al. (2004) is 23.96. Here, the double interpolation 
element is compared with other elements listed in Tab. 1 as well 
as in Fig. 5: Allman’s membrane triangle element (AT) by author 

Allman (1984), assumed stress hybrid methods such as P-S 
element by Pian et al. (1984), HQM/HQ4 element by Xie (2005) 
and node-based smoothed NSQ4 element by Xuan (2008). 
Furthermore, the normal stress field will be also plotted in Fig. 4.  
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Fig. 4. Typical irregular meshes of 8×8 with various distortion factor s 

(0.1; 0.2 and 0.3) and the normal stress field 

Tab. 1. Results of displacement tip (at C) for Cook’s problem 

Element 
Displacement tip 

2x2 4x4 6x6 8x8 10x10 

AT  19.67 22.41 – 23.45 – 

P-S  21.13 23.02 – 23.69 – 

HQM/HQ4  21.35 23.04 – 23.69 – 

NSQ4  24.69 25.38 – 24.51 – 

Paper (s = 0) 15.24 22.23 23.40 23.76 23.91 

Paper (s = 0.1) 14.31 21.87 23.36 23.62 23.90 

Paper (s = 0.2) 14.98 22.17 23.39 23.72 23.88 

Paper (s = 0.3) 15.34 22.04 23.04 23.75 23.81 

Ref (Exact 
solutiion) 

23.96 23.96 23.96 23.96 23.96 

AT, Allman’s membrane triangle element, P-S, element based on polynomial 
stress, HQM/HQ4, hybrid macro element, NSQ4, node-based smoothed element. 
 

Based on the comparison results as below, we can see that (i) 
when changing the value of s, the results obtained by the 

proposed element do not have big differences or, in other words, 
these results achieved stability with different distorted meshes, 
and (ii) when the total number of elements increases beyond 60, 
these results also converge to the exact result better than the 
other elements. 

Additionally, it is observed that the stress obtained by the 
proposed element is continuous and smooth, whereas the 
standard FEM does not guarantee such smoothness and 
continuity. 

 
 
 

 
Fig. 5. The comparison of displacements at point C and error of these 

displacements with exact solution. 

3.2. The L-shape plate subjected to in-plane load 

Next, consider a L-shaped domain with applied tractions, 
boundary conditions and arbitrary meshing, as shown in Fig. 6. 
The parameters of the structure are as follows: Young’s modulus 
E = 1.0, Poisson’s ratio ν = 0.3, length a = 50 and thickness t = 1. 
The reference value of the displacement at point A based on 
Ansys software from Ansys (2009, Canonsburg, PA 15317, USA) 
is 2.328,. The solutions of a double interpolation element related 
to s = 0; 0.1; 0.2 and 0.3 are in good agreement with Ansys 
solutions as depicted in Tab. 2. Besides, the normal stress field 
will be also plotted in Fig. 6. 
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Fig. 6. Typical irregular meshes with various distortion factor s (0.1; 0.2 

and 0.3) and the normal stress field 

Tab. 2. Results of displacement uA at point A for L-shape problems 

uA 

Paper 
s = 0 

s = 0.1 s = 0.2 s = 0.3 Ansys 

2.327 2.323 2.319 2.317 2.328 

Error 
(%) 

0.043 0.215 0.386 0.472  

Apparently, it is again shown that the normal stress achieved 
by the proposed element is continuous and smooth through all 
boundaries of the element. 

3.3. The square plate subjected to uniformly distributed and 
sinusoidal load 

The clamped square plate is considered in this section, as 
shown in Fig. 7.  

 
Fig. 7. A clamped square plate under uniformly distributed load and 

sinusoidal load 
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Following material properties of this isotropic plates are used: 
E = 210 GPa and ν = 0.3. When subjected to uniformly distributed 
and sinusoidal load, the author’s result obtained for the central 
displacement will now be compared and discussed with the corre-
sponding results of the exponential shear deformation theory 
(ESDT) by Sayyad et al. (2012), the higher-order shear defor-
mation theory (HSDT) by Reddy (1984), the trigonometric shear 
deformation theory (TSDT) by Ghugal et al. (2010), the FSDT by 
Mindlin (1951) and the classical plate theory (CPT) by Kirchhoff 
(1850), as shown in Tab. 3. The numerical result is presented in 
the following non-dimensional form w̅ = 100Ew/[qt(a/t)4] 
and shows good agreement with others. 

Tab. 3. Comparison of non-dimensional transverse displacement in an 
isotropic square plate subjected to uniformly distributed and 
sinusoidal load 

Theory Model 
 (Uniform load) 

 (Sinusoidal 

load) 

a/t=4 a/t=10 a/t=4 a/t=10 

Sayyad  ESDT 5.816 4.658 3.748 2.954 

Reddy  HSDT 5.869 4.666 3.787 2.961 

Ghugal  TSDT 5.680 4.625 3.653 2.933 

Mindlin  FSDT 5.633 4.670 3.626 2.934 

Kirchhoff  CPT 4.436 4.436 2.803 2.802 

Paper (s = 0) FSDT 5.626 4.633 3.782 2.913 

Paper 
(s = 0.1) 

FSDT 5.601 4.644 3.771 2.885 

Paper 
(s = 0.2) 

FSDT 5.583 4.556 3.734 2.889 

CPT, classical plate theory; ESDT, exponential shear deformation theory; 
FSDT, first-order shear deformation theory; HSDT, higher-order shear 
deformation theory; TSDT, trigonometric shear deformation theory. 

3.4. Free vibration analysis of the square plate 

In this last section, author investigates the efficiency of the 
double interpolation element for analyzing natural frequencies of 
square plates. The plate has clamped edges with length a and 
thickness t. The material parameters are E = 2.0 × 1011, ν = 0.3 
and ρ = 8000 as follows Nguyen-Xuan et al. (2010). The plate is 
modeled with 16 elements per each side.  

A non-dimensional frequency parameter 𝚟 = (𝜔2𝜌𝑎4𝑡/
𝐷)1/4 where 𝐷 = 𝐸𝑡3/(12(1 − 𝜈2)) is often used and then 
compared to analytical solutions and other numerical results 
which are available in the literature Nguyen-Xuan et al. (2010) and 
Robert (1979). Tab. 4 shows the first three values of based on the 
double interpolation element. 

Tab. 4. A non-dimensional frequency parameter of a CCCC square plate 

t/a Elements 
Mode sequence number 

1 2 3 

0.005 
DSG3 6.1786 8.8759 9.0680 

ES-DSG3  6.0355 8.6535 8.7081 

Paper (s = 0) 5.9861 8.5760 8.5760 

Paper 
(s = 0.1) 

5.9933 8.5822 8.5873 

Paper 
(s = 0.2) 

6.0182 8.6125 8.6165 

Paper 
(s = 0.3) 

6.0331 8.6396 8.6557 

Exact 5.9990 8.5680 8.5680 

0.1 

DSG3 5.7616 7.9935 8.0525 

ES-DSG3 5.7250 7.9211 7.9627 

Paper (s = 0) 5.7396 7.9787 7.9787 

Paper 
(s = 0.1) 

5.7402 7.9802 7.9803 

Paper 
(s = 0.2) 

5.7419 7.9822 7.9839 

Paper 
(s = 0.3) 

5.7449 7.9879 7.9901 

Exact 5.7100 7.8800 7.8800 

 

 

 
Fig. 8. Error of the normalized frequencies with t/a = 0.005 and t/a = 0.1 
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As shown in Fig. 8 with t/a = 0.005, the double interpolation 
element is almost better than the DSG3 and ES-DSG3 elements 
and gives a small error with the exact solution of Robert (1979) for 
all frequencies examined in this problem. Similarly, in Fig. 8 with 
t/a = 0.1, the paper’s results are better than the DSG3’s results for 
all frequencies. Besides, Fig. 9 shows the first mode shapes with 
the stability of paper’s results related to the small errors. 

 
Mode 1_s = 0     (5.9861) 

 

 
Mode 1_s = 0.1     (5.9933) 

 

 
Mode 1_s = 0.2     (6.0182) 

 

 
Mode 1_s = 0.3     (6.0331) 

Fig. 9. The first mode shapes of clamped square plate with t/a = 0.005 
and s = 0, 0.1, 0.2 and 0.3 

4. CONCLUSION 

This paper presented the stability of solutions when using 
mesh irregularity for structural analysis based on the FEM and the 
double interpolation elements. Due to the framework of the FSDT 
and the double interpolation procedure, the double interpolation 
element becomes an efficient flat quadrilateral element for 
structural analysis. The shape functions of this element are 
higher-order polynomials and posses the Kronecker-delta function 
property, which permits a straightforward imposition of the 
essential boundary conditions. Moreover, with the influence of 
neighbouring elements on the element under consideration, the 
errors will be reduced as well as the results will be stable and less 
affected by the mesh. Finally, the results obtained in this paper 
are also compared with other available numerical results to 
illustrate the robustness of this element as stated above. 
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Abstract: The authors assessed the real threat to civil aircraft traffic in Poland resulting from bird strikes. It was found that in the period 
2013–2018, the probability of such events increased by four times. Data for this work were downloaded from the ECCAIRS database  
maintained by the Civil Aviation Authority. Air traffic events have been collected for several years in this database. An assessment  
of the energy of bird collision with the aircraft, resulting from the bird’s mass and relative speed of movement, was also presented. Ways  
to minimise the risk of collision were described by introducing crew warning systems and means to scare off birds from the airport grounds. 
The method of testing the resistance of turbine engines to the foreign body’s absorption was also shown, as well as design methods  
for increasing the engine resistance to bird strikes. 

Key words: air transport, air traffic safety, aviation events, bird strike 

1. INTRODUCTION  

Birds and planes move in the same environment; this is the 
reason for the most frequent incidents occurring near airports. 
The first recorded bird collision report is from Orville Wright. His 
plane collided with a blackbird in Dayton in 1905. The first rec-
orded casualty was that of pilot Calbraith Rogers, whose plane 
drowned in the sea after the collision with a seagull (3 April 1912 
on Long Beach – California). The most tragic bird strike accident 
so far, claiming the lives of 62 passengers, was that of the Lock-
heed Electra L-188 plane, which crashed during take-off from 
Boston airport when three engines (Allison 501D) failed after a 
collision with a herd of starlings. The most famous case of a bird 
strike involved US Airways Flight 1549 in 2009 (popularly known 
as the ‘Miracle on the Hudson’). Six minutes after take-off, the 
aircraft (Airbus A320-214) lost power in both engines as a result 
of a collision with a flock of wild geese, which caused damage to 
its engines and forced the pilot to perform an emergency landing 
on the Hudson River. Thanks to the pilot’s skills, all the passen-
gers survived the disaster (Fortońska, 2018, Korte, 2019).  

The increase in the number of air operations in the world, the 
change in bird migration habits, and faster and quieter turbine-
powered aircraft, which give birds less time to get off the flight 
line of an aircraft, are some of the causes for the increase ob-
served in the number of collisions. The Federal Aviation Admin-
istration (FAA) in its study (1990–1999) reported that, while the 
number of reported bird collisions has increased rapidly, the 
number of reported harmful ones has decreased since 2000. The 
number of reported collisions occurring in US airspace has in-
creased by 144% from 5,872 in 2000 to 14,349 in 2017. The 
number of serious incidents, however, fell by 16%, from 741 to 
625. This decrease was most evident for commercial aircraft in 

the airport environment (at 1,500 ft above ground level). On 

average, there are 8–19 collisions per 10,000 flights, depending 
on the world region. The number of these cases depends on the 
season: in the northern hemisphere, the highest number of inci-
dents occurs in August, September and October (40% of the 
annual number). The reason is migration of birds. The probability 
of a collision is significantly influenced by the flight altitude: as 
much as 80% is for flights below 1,000 feet (take-off, approach, 
moving flight). However, similar events have not decreased in the 
case of general aviation  (GA) aircraft (Directive 2003/42/EC). 
These phenomena have attracted the interest of insurance com-
panies, which pay significant compensation to the heirs of crash 
victims, as well as to airlines bearing the costs of aircraft mainte-
nance and decommissioning. The average cost of removing the 
effects of a collision between a passenger aircraft and birds is 
US$235,000 if damage is detected and US$22,000 if there is no 
damage (inspection costs, cancelled flight, etc.). The seriousness 
of these issues led the International Civil Aviation Organization 
(ICAO) to establish the Bird Strike Committee Europe (Matijaca, 
2001, 2008).  

In Poland, there is also a significant increase in the number 
of air events caused by collisions with birds; however, no serious 
effects resulting from them were observed. 

1.1.  Methodology of analysis  

The number of aircraft registered in Poland is growing (cf. 
Tab. 1 and Fig. 1). Some regularity is maintained as follows: 
there are 10 light aircraft with maximum take-off mass 

(MTOM)  5,700 kg, while for one large aircraft it is MTOM   
5,700 kg. 

The number of events caused by birds was referred to the 
number of aircraft registered in a given year to objectify the re-
sults of comparisons (Balicki W. et al 2016). Coefficient has been 
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added as:  

 

(1) 

where: Nev is the number of events involving birds and Nreg is the 
number of aircraft registered in the year under consideration. 

Tab. 1. Change in the number of aircraft registered in Poland 
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Fig. 1. Change in the number of aircraft registered in Poland 

1.2. Effects of collision energy discharge  

Previous observations of damage to the fan blades and the 
blades of the first compressor stages indicate that their collisions 
with so-called foreign bodies are found most often on 1/4–1/3 of 
the length of blades – measured from the tips of the shoulder 
blades. 

When the engine is running at the take-off range, the periph-
eral speeds of the compressor blades at collision points reach 
250–300 m/s and the fan blades to even 400 m/s. The energy of 

colliding with the body of a small bird is said to be similar to the 
energy of a bullet from a pistol fired (see Tab. 2).  

Tab. 2. The energy of a bird hitting an aircraft compares  
             with the weapon bullet energy  

 
Type of 
bullet  

Mass of 
bullet  

Bullet 
initial 

velocity  

Energy of 
bullet  

 Bird Bird Bird Bird 

Gun P-64 ‘CZAK’ Makarov 
9 mm 

6.1 g 310 m/s 293 J 

Small airplane 
speed 200 km/h 

Starling 80 g 56 m/s 125 J 

Automatic rifle 
AK-47 ‘Kalash-
nikov’ 

Intermedi-
ate rifle 

cartridge 
7.62 mm 

7.91 g 715 m/s 2,022 J 

Large aircraft 
speed 400 km/h 

Seagull 500 g 111 m/s 3,080 J 

High-calibre 
WKM M1921 

0.50 BMG 
(12.7 mm) 

33–47 g 
885–

1036 m/s 
18,000 J 

Large aircraft 
speed 400 km/h 

Goose 2,000 g 111 m/s 12,320 J 

The effects of ‘discharging’ such energy can be surprisingly 
serious, e.g. a swallow (40 g) can penetrate the cabin cover of a 
small flying plane and injure the pilot. 

The range of damage to the turbine engine depends on the 
weight of the ‘foreign body’, flight speed and the range of engine 
operation (rotation speed). Most often it was found after suction-
ing as follows: 

 a small bird (swallow, starling): disturbance of the flow 
through the compressor, unstable compressor operation, 
engine stalling;   

 larger bird (seagull, crow, goose): breakage of the fan blades 
or first stages of the compressor rotor, damage to the air 
intake, damage to the wing edge, control system, puncture of 
the pilot cabin fairing. 
Unfortunately, as much as 50% of collisions involve seagulls 

(Dolbeer, 2006; Wildlife Strikes, 2019). In the statistics of military 
aircraft accidents, the Turkish vulture (body weight > 6 kg), which 
in the 1990s participated in about 200 collisions, with losses of 
over 30 million dollars, also occupies a high position. 

2. RESULTS OF DATA ANALYSYS  

2.1.  Light aircraft – with MTOM  5,700 kg 

Fig. 2 shows the percentage share of bird collisions for air-

craft with MTOM  5,700 kg compared to other categories of 
operational air events. Fig. 3 shows the change in the number of 
collisions of light aircraft with birds in 2008–2018, and Fig. 4 the 
change in the K1,000 coefficient for this category of aircraft. 

There is a systematic increase in this coefficient from 2013, 
but its values are small. In 2018 it came close to the alert level. 
Despite the fact that light airplanes very often perform air opera-
tions at field (grass) airports, collisions with birds do not dominate 
in the total number of reported occurrences (unlike large aircraft, 
for which bird strike is one of the significant causes of collision). 
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Fig. 2. Percentage share of particular categories of operational aviation  

            events for light aircraft with MTOM  5,700 kg in 2008–2018  

 
Fig. 3. Number of collisions with birds for light aircraft in the 2008–2018 

Tab. 3. Probabilities of a safety hazard  

Probability Description Size 

Frequent 
Occurs many times (took 

place frequently) 
5 

 

 
Fig. 4. Change in the K1,000 coefficient for light aircraft in the 2008–2018  

As shown in Fig. 5, the most frequent collisions with birds oc-
cur during the approach, cruising and take-off. 

 
Fig. 5. Percentage of individual light aircraft traffic phases during  
           which collisions with birds were recorded 

Tab. 4. Severity assessment, safety risk in the event of collisions  
            with birds 

Severity Description Level 

Lesser 

Inconvenience 

Operational limitation 

Using emergency procedures 

Minor incident 

D 

Tab. 5. The real degree of threat to flight safety 
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An important task is to determine the alert levels as well as 
the level of security threat resulting from bird strikes. To deter-
mine the alert levels, the methodology developed at the Institute 
of Aviation (Balicki at all 2016) was used. The projected average 
value determined in 2017 for 2018 in the drawings (Fig. 4) is 
marked in magenta. However, the forecasted alarm level is 
marked in red. The security risk was determined using the meth-
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od described in Safety Management Manual (Applying an SMS 
2015, Bird Control 1991, Airport Service 2012). It should be 
emphasised that in Poland there were no major incidents related 
to the collision of aircraft with birds. That is why it was accepted 
that the security risk in this case is not significant. The analysis of 
the safety risk assessment consists in examining available statis-
tical data and determining the level of collision effects with birds. 
In this case, it becomes necessary to rely on facts and not con-
sider the potential possible effects of such events. Otherwise, it 
would lead to a situation in which virtually most aviation events 
could be classified as severe: level A – i.e. catastrophic. It was 
assumed on the basis of statistical data that for airplanes with 

MTOM  5,700 kg, the security risk has a lower severity, as 
shown in Tab. 4. However, Tab. 3 presents the assessment of 
the likelihood of a security risk as isolated (unlikely). From con-
clusions drawn fromanalysing Tabs 3 and 4, a safety risk as-
sessment matrix is constructed, which is presented in Tab. 5. It 
shows that for light airplanes, the real degree of threat to flight 
safety caused by collisions with birds is very low. 

2.2.  Large aircraft – with MTOM  5,700 kg 

 

Fig. 6. Percentage share of individual categories of operational aviation  

           events for large aircraft with MTOM  5,700 kg in 2008–2018 

The turbine engines of large aircraft are particularly sensitive 
to collisions with birds. The Bird Strike Committee Europe rec-
ommends, for example, the following: 

 Plan the flight route in such a way as to avoid bird flyways; 

 Avoid low-altitude flights, especially along sea shores, rivers, 
cliffs (these are nesting sites), lakes, islands, processing 
plants (especially fish) and landfills; 

 Practice the procedures to be followed in case of damage to 
the cabin cover, engine damage; 

 During landing, after noticing the flock of birds on the final 
approach to the lane, it is better to stop the landing and go to 
the second approach (unsuccessful approach procedure); 

 After a collision with a bird, if possible, a control test should 
be carried out before the approach, and if the bird has been 
sucked into the engine, a flight procedure with a failed engine 
should be performed.  
After a systematic decrease in the number of collisions with 

birds in the period 2009–2013 in the past 5 years, there was a 
clear increase. In 2018, despite a much larger number of bird 
strikes compared to those in 2017, the K1,000 ratio dropped due to 
the fact that the number of registered aircraft had increased. This 
ratio is between the projected average value and the alert level.  
The number of aviation events related to bird strikes in the years 
2008–2018 is shown in Fig. 7, and in Fig. 8 is shown the values 
of the K1,000 coefficient. It is important to emphasise the fact that, 
according to the ICAO document, every bird-related event should 
be recorded, not only those confirmed by traces of impact on the 
airframe or power unit, but also those that could lead to a colli-
sion. 

 
Fig. 7. Increase in the number of collisions with birds for aircraft  

           with MTOM  5,700 kg between 2008 and 2018  

 
Fig. 8. K1,000 values for large aircraft collisions with birds in 2008–2018 
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Fig. 9. Percentage of individual large aircraft traffic phases during  

which collisions with birds were recorded 

 

Fig. 10. Number of occurrences with birds near airports in individual  

   quarters for aircraft with MTOM  5,700 in 2011–2018 

 
Fig. 11. Values of the number of bird events reported in relation  

   to the number of passenger operations of large aircraft  
   in individual quarters of the year 

Fig. 9 shows the percentages of individual phases of flight 
during which bird strikes were reported. They occur most often 
during the approach, take-off and landing of the aircraft. It is 
somewhat obvious because of the limited ‘flight altitude range’ of 
birds. Almost every tenth event involving birds is detected only 
during aircraft inspection. 

The above results are attributable to the fact that a significant 
number of bird collisions are not perceived by the crew and 
therefore are not reported by the pilots, but are only detected by 
the maintenance services. 

Figs. 10 and 11 show the seasonality of changes of collision 
factor with birds in the number of passenger operations in 2011–
2018. Most of them occur in the third quarter of the year, and the 
least in the winter. 

Similar to the assessment carried out for light aircraft, the 
safety risk assessment matrix presented in Tab. 8 was devel-
oped. Likewise, for light aircraft, the consequences of collisions 
with birds of large aircraft were of lesser severity (Tab. 7), 
whereas the probability of this event is frequent (Tab. 6). 

Tab. 6. Probabilities of a safety hazard  

Probability Description Size 

Frequent 
Occurs many times (took place 

frequently) 
5 

Tab. 7. Severity assessment, safety risk in the event of collisions with 
birds 

Severity Description Level 

Lesser 

Inconvenience 

Operational limitation 

Using emergency procedures 

Minor incident 

D 

Tab. 8. Real safety risk of  performing flights 

Probability of 
danger 

Degree of danger 
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Frequent   
5
A 

5B 5C 5D 5E 

Although the analysis presented shows that the degree of 
risk is not high, the causes of the systematic increase in aviation 
events caused by bird strikes should be controlled and appropri-
ate measures taken to reduce the possibility of a serious acci-
dent. 

3. ACTIONS TO REDUCE THE RISK ASSOCIATED  
WITH BIRD STRIKES 

3.1.  Tests of engine resistance to bird collisions 

During the implementation of the PZL-I22 ‘Iryda’ aircraft pro-
gramme, the Institute of Aviation conducted tests of turbine en-
gines’ resistance to collisions with birds. This type of research 
was carried out for the first time in our country, on a specially 
constructed test stand equipped with a pneumatic launcher and 
measuring apparatus (see Fig. 12) (Balicki at al., 2016). The 
pneumatic launcher with a 75-m barrel was supplied with com-
pressed air (maximum pressure 0.8 MPa). The hydraulic retard-
ing device controlled the increase in air pressure, and thus the 
container with a ‘foreign body’ (lumps of ice or a bird weighing up 
to 2 kg) was accelerated with an acceleration of not more than 
50 g (g – gravitational acceleration; exceeding 50 g could crush 
the bird – that is the reason for the barrel length). The trigger unit 
has been activated by an electric signal from the operator’s cab. 
At the same time, a fast film camera and an electronic container 
speed measuring system at the exit of the barrel were launched. 
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Fig. 12. Schematic diagram of a stand with a pneumatic launcher f 

or testing engine resistance to foreign body impact:  

(1 – compressed air tank, 2 – electric trigger with hydraulic de-

lay unit, 3 – container with a ‘foreign body’, 4 – container speed 

measuring system, 5 – barrel outlet with a container stop de-

vice, 6 – engine tested) 

The obtained tank movement speeds depended on the initial 
air pressure in the tank: 

 for a pressure of 0.2 MPa the speed was 160 m/s; 

 for 0.8 MPa, the speed was 250 m/s. 
According to the regulations, after a collision with a bird shot 

at 200 m/s into the engine inlet operating in the take-off range, 
damage to the units may prevent its further operation, but no part 
of the engine can get out of its nacelle, threatening the airframe 
structure and its installations. 

3.2.   Increasing crash resistance by changing engine  
  and airframe design 

Experience till date shows that every single-flow engine is 
destroyed during take-off after a collision with a large animal 
(over 0.5 kg). This is because the impacted blades of the first 
stage of the compressor bend and ‘rub’ against the stationary 
steering blades behind them. The rotor performs 100–200 rota-
tions per second. The chances of reducing the size and area of 
damage should be seen in the fragmentation of the bird’s body 
before impacting the rotating vanes. For this purpose, for exam-
ple, ribs acting as knives were placed in the inlets of a PZL TS-
11 aircraft. A similar effect can be achieved by properly shaping 
(bending) the  inlets to the jet engines of combat aircraft so that 
the birds bumping against the duct walls (at a speed of about 
200 m/s) reach the rotors already sufficiently smashed. The use 
of this method requires appropriate computational and experi-
mental research for each newly designed aircraft. One of the 
effects of such research is the design of a new, jet engine by 
General Electric (Dolbeer R.A. 2006), presented in Fig. 13 (GEnx 
series).  

Based on the analysis of the ‘foreign object’ motion paths, in 
the inlet and flow ducts of this engine, the shape of the cap (con-
ical–elliptical) was developed so that the falling elements (dust 
grains, pieces of ice, birds) would be ejected into the external 
flow duct of the engine, i.e. they would bypass the inlet to the 
low-pressure compressor. This is also done by increasing the 
distance between the fan rotor and the compressor inlet. As a 
result, grains with diameter >0.25 mm are ejected into the outer 

channel. 
The fan blades of the GEnx series engines are made of car-

bon fibre composites. In the event of breakage, the blade is kept 
inside the engine nacelle (it does not pierce the nacelle wall), 
thanks to special reinforcements (bandage – armor) and ‘pock-
ets’ into which it retracts after detaching from the hub. 

When the engine is running in the low thrust range, e.g. when 
taxiing the plane to the runway, the discharge valves from the 

low pressure compressor open (inwards). This enables the ejec-
tion of finer particles from the compressor into the engine outer 
duct. 

 
Fig. 13. A method of shaping the inlet of a large jet engine to increase 

resistance to damage caused by the ingress of a ‘foreign body’ 

3.3.   Crash prevention  

The development of civilisation often creates conflicts con-
cerning the coexistence of man and nature. Unfortunately, this 
also applies to the development of air traffic. ‘For the safety of 
both parties’, birds should be discouraged from being around 
airports. This is done by depriving the area of all the elements 
attractive for them, i.e. liquidation of feeding grounds near air-
ports, drying water reservoirs, removing landfills – sources of 
food, mowing grass and thus depriving birds of comfortable 
shelters at the airport (Birdstrike risk, 2007; Shamoun-Baranes, 
2008; Summary of Wildlife Strikes, 2017).  

Birds repelling is another range of protective measures. For 
this purpose, the following areused: 

 pyrotechnics: firecrackers, automatic gas cannon, firearms; 

 acoustic means: e.g. ‘shout of fear’ reproduced around loud-
speakers, or voices of hunting predators (high recording 
quality must be maintained); 

 chemicals: spraying repellents, e.g. anthranilic methylate 
(range up to 500 m); 

 use of trained birds of prey and trained dogs (the most effec-
tive border collie, which, however, must be accustomed to 
airplanes, and denied from entering the runway); 

 a motorised ‘flying crew’ to drive away the flock.  
The main disadvantage of all these deterrents is that the 

birds get used to them and therefore the same method cannot be 
used for a long time. 

Flock detection systems in the vicinity of airports (usually 
passive infrared sensors) and information on bird migra-
tion/flights (satellite telemetry) are used to reduce the likelihood 
of aircraft encounters with birds. One of the ideas of such a 
system, presented in Fig. 14, was created during the observation 
of the spread of the H5N1 bird flu virus and assumes the use of 
the existing meteorological and military radar network to observe 
bird behaviour ‘in real time’. 
This network includes the following:  

 long-range military surveillance radars – observation of mi-
gration of large flocks of birds within 150 km;  

 weather radars – images of bird flights according to flight 
altitude within 25 km;  

 specialised short-range radars (5–10 km) – movements near 
airports and training grounds. 
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Fig. 14. Concept for a bird migration monitoring system  
              to increase flight safety (Shamoun-Baranes, 2008) 

Attempts have already been made to implement such a sys-
tem to protect NATO air bases in Belgium, with a view to extend-
ing it to the Netherlands, France and Germany. Information on 
the likelihood of encounters of flying birds in the different zones 
of the observed area and current bird activity near the departure 
and destination airports is included in the bulletins (e.g. BIRD-
TAM – Bird Notice To Air Man) and should be taken into account 
in route planning. 

4. CONCLUSION  

The analysis of events included in the ECCAIRS database al-
lows us to conclude that in Poland the actual level of risk of a 
dangerous event involving birds and large aircraft is moderate. 
However, air surveillance and airport authorities should take 
action to reduce the number of collisions with birds. Their number 
has been constantly increasing since 2013 – since then the 
probability of such an event has increased by four times.  

Due to the increasing risk of collisions, there is a need for 
behavioural studies of birds in the vicinity of airports. Climate 
change, food distribution sites and low risk from predators con-
tribute to their presence. They are also likely to become accus-
tomed to the ways that are being used to deter them. 

Every tenth collision with a bird is not noticed by the crew 
and its effects are only detected during technical inspections of 
aircraft.  

What is puzzling is the small number of incidents reported for 

light aircraft (MTOM  5,700 kg), although they operate mostly at 
airports and in remote areas. According to the current legal regu-
lations, the level of self-service of small aircraft is expanding. In 
the current system, reporting of bird crashes should not be ex-
pected to increase due to the fact that the level of risk is accept-
ed by small aircraft owners. It therefore seems appropriate to 
review the standards that cover bird collisions and related re-
quirements. The results of analyses and examples of incidents 
related to bird collisions should also be disseminated in the in-
dustry and in specialised publications. 
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