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Abstract: The paper presents the strength evaluation of planetary gear teeth designed for a radial sedimentation tank drive. A novel type 
of gear drive, composed of a closed epicyclic gear train and an open gear train with internal cycloidal gear mesh is proposed. Contact 
stress and root stress in the planetary gear train were determined by the finite element method and according to ISO 6336. The influence 
of the mesh load factor at planet gears on stress values was also established. A comparison of the results followed. It was observed that 
the mesh load factor on satellites depends mainly on the way the satellites and central wheels are mounted, the positioning accuracy 
in the carrier and the accuracy of teeth. Subsequently, a material was selected for the particular design of planetary gear and the assumed 
load. The analysis of the obtained results allowed assuming that in case of gears in class 7 and the rigid mounting of satellites and central 
wheels, gears should be made of steel for carburizing and hardening. In case of flexible satellites or flexible couplings in the central wheels 
and gears in class 4, gears can be made of nitriding steel. 
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1. INTRODUCTION 

Planetary (epicyclic) gears are gear systems in which at least 
one gear, called a planet, has no fixed axis, and is instead sup-
ported by a rotating part called a carrier. Usually several planet 
gears are used, so that the transmitted power is distributed, allow-
ing the dimensions of the entire gear system to be reduced. A key 
factor here is the uniformity of load transfer expressed by the 
mesh load factor Kγ. Its value determines the percentage share in 
transmitting power of planet gear. This, as it was proved by Singh 
(2005, 2010), Ligata et al. (2008), Fernandez del Rincon et al. 
(2013), Cooley and Parker (2014),Tsai et al. (2015, 2018), by 
Iglesias et al. (2017), Marques et al. (2016, 2017), and specified in 
ANSI/AGMA 6123-C16 (2016) standard depends, in particular, on 
the errors in the fabrication of gears, errors in the positioning on 
the carrier and the mounting structure of the planets. 

The analyzed planetary gear is a part of the drive of a radial 
sedimentation tank (Fig. 1).  

Propulsion is provided by a three-phase squirrel-cage motor, 
which drives a planetary gear train—the first reduction stage. An 
electronic control system for the motor should offer a soft start 
functionality so as to avoid overloading the mechanism. The gear 
train’s output shaft connects to a pinion (a), which engages with 
an internal gear (b). The gear (b) is attached to a scraper (c), 
which is bearing-supported on the axis (d) of a sedimentation tank 
(e). In the present solution, the gear train in the second reduction 
stage (gears (a) and (b)) is an open gear train submerged in 
waste water, whereas the epicyclic gear train is a closed gear 
train located above the surface of waste water. A type series of 
second-stage open gear trains for scrapers of a diameter from 4 

m to 36 m was designed as part of the present project. The details 
of the analysis and synthesis of second-stage gear train meshing 
were presented in a study by Batsch et al. (2017). Data used in 
the design of the planetary gear train were determined on the 
basis of a dynamic analysis of the entire drive system as well as 
sedimentation and flotation process requirements. 

 
Fig. 1. Proposed kinematic system of a new radial settling tank drive 

This paper presents the results of the preliminary calculations 
of strength of the teeth of a planetary reduction gear designed for 
radial sedimentation tank drives. Calculations were carried out in 
accordance with ISO 6336 standard and the finite element meth-
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od. The analyses were aimed at selecting the material and deter-
mining the condition of the material that would ensure load trans-
mission in the planetary gear train. 

2. KINEMATICS 

The radial scraper is a device operating at a very low rotation 
speed (approx. 1 rpm). In order to drive it with a conventional 
cage induction motor, one should use gearboxes with a large 
reduction ratio. Planetary gears are one of the gears that allow 
this while maintaining a relatively small number of reduction stag-
es. There are many design variants of this type of gears, among 
which a large part has wheels with internal toothing (Dadley, 
2002). Finishing this type of teeth can be troublesome due to the 
need to use special grinding heads. For this reason, it was decid-
ed to use the kinematic system of the gears, in which only wheels 
with external toothing are present. The need to use a large reduc-
tion ratio and the desire to use only external gearing prompted the 
authors to choose gears, whose kinematic diagram is shown in 
Figure 2. 

 
Fig. 1. Kinematic diagram of gear, where: ω1 – gear 1 angular velocity, 

ω2 – gear 2 angular velocity, ω4 – gear 4 angular velocity,  
ω5 – gear 5 angular velocity, ω6 – gear 6 angular velocity,  
B – planet’s centre of rotation, D – gear 5 & 6 contact point,  
C – gear 3 and 4 contact point (planet’s momentary centre of rota-
tion), O – gear 6 center of rotation, a34 – distance between axes of 
gears 3 and 4, a56 – distance between axes of gears 5 and 6 

 Gear 1, meshing with gear 2, is driven by an electrical motor. 
Gear 2 has a rigid connection to the carrier. The carrier supports 
three planets including gears 4 and 5, fixed to each other. Gear 4 
rolls against a stationary sun gear (3). Meanwhile, gear 5, mesh-
ing with gear 6, transmits velocity and torque to the gear’s output 
shaft. In the discussed case, spur gears were applied, whose 
parameters are listed in Table 1.  

Tab. 1. Gear parameters 

Gear no. 
Module 
[mm] 

Number 
of teeth 

[-] 

Profile shift 
coefficient [-] 

Working 
pitch 

radius 
[mm] 

Meshing 
width [mm] 

1 
2.75 

21 0.1799 29.1818 
25 

2 56 0.2450 77.8182 

3 
3 

30 0.6110 46.7797 
45 

4 29 0.7100 45.2203 

5 
3.5 

26 -0.0786 45.1321 
45 

6 27 -0.1219 46.8679 

 The second gear’s (carrier’s) angular velocity is given by 
formula (1): 

𝜔2 = 𝜔𝑐 = 𝜔1
𝑟1

𝑟2
  (1) 

where: 𝑟1 – gear 1 rolling radius, 𝑟2 – gear 2 rolling radius. The 
planet rotates relative to the momentary centre of rotation C. 
Consequently, from the equality of linear velocities of point B 
assigned to the carrier and gear 4 stems the following relationship 
(2): 

𝜔𝑐 = 𝜔4
𝑟4

𝑟𝑐
  (2) 

 Likewise, on the basis of the equality of linear velocities of 
point D assigned to gears 5 and 6, the angular velocity of planet 
(3) was calculated 

𝜔4 = 𝜔5 = 𝜔6
𝑟6

𝑟4−𝑟5
  (3) 

 By introducing relationship (3) into formula (2), planetary stage 
gear ratio (4) was obtained: 

𝑖𝑒 =
𝜔𝑐

𝜔6
=

𝑟4𝑟6

(𝑟4−𝑟5)𝑟𝑐
= 261  (4) 

 Taking into account cylindrical stage gear ratio ic = r2/r1, the 
overall gear ratio is given by formula (5): 

𝑖 = 𝑖𝑐𝑖𝑒 =
𝑟2

𝑟1
∙

𝑟4𝑟6

(𝑟4−𝑟5)𝑟𝑐
= 696  (5) 

3. DISTRIBUTION OF MESHING FORCES 

 Figure 3 shows the distribution of meshing forces in the plane-

tary gear stage. The carrier is acted upon by torque 𝑇𝑐 , resulting 

from motor torque 𝑇1 = 1.95𝑁𝑚 and the gear ratio of the cylin-
drical stage (6): 

𝑇𝑐 = 𝑖𝑐𝑇1 = 5.20𝑁𝑚  (6) 

From the equations of the balance of torques acting on the planet, 
the following relationship (7) may be developed: 

𝐹34 = 𝐹65
𝑟5

𝑟4
  (7) 
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Fig. 3. Distribution of meshing forces in planetary gear stage, where:  

Tc – carrier torque, F34 – circumferential force exerted by gear 3 
on gear 4, F43 – circumferential force exerted by gear 4 on gear 3, 
F56 – circumferential force exerted by gear 5 on gear 6, F65 – cir-
cumferential force exerted by gear 6 on gear 5, F5c – circumferen-
tial force exerted by planet on carrier, Fc5 – circumferential force 
exerted by carrier on planet, T6 – resistance torque affecting out-
put shaft 

 By using relationship (7) in the equation, the balance of forces 
acting on the planet, we may obtain (8): 

𝐹𝑐5 = 𝐹65
𝑟4−𝑟5

𝑟4
  (8) 

 Taking into account that 𝐹𝑐5 =
𝑇𝑐

𝑟𝑐
 , the circumferential force at 

point D is given by formula (9): 

𝐹65 =
𝑇𝑐

𝑟𝑐

𝑟4

𝑟4−𝑟5
= 29006𝑁  (9) 

 By introducing relationship (9) into (8), we ultimately arrive at 
the circumferential force at point C (10): 

𝐹34 =
𝑇𝑐

𝑟𝑐

𝑟5

𝑟4−𝑟5
= 28949𝑁   (10) 

 The above equations were derived for a case in which a single 
planet gear occurs. In reality, in meshing force calculations, one 
must include the number of planet gears n and the load distribu-
tion coefficient Kγ according to formulas (11): 

𝐹34
′ =

𝐾𝛾

𝑛
𝐹34;  𝐹65

′ =
𝐾𝛾

𝑛
𝐹65   (11) 

In a perfect situation (even load distribution over planet gears 
Kγ = 1) all forces balance out, exerting no stress on the bearings 
of the output shaft or the carrier. The bearings may be stressed if 
the distribution of the load becomes uneven, and the forces do not 
balance out entirely. 

4. STRENGTH ASSESSMENT ACCORDING TO ISO 6336 

 Strength calculations were limited to determining nominal 
stress values resulting from static tooth load. 

4.1. Contact stress 

 Following the ISO 6336-2 (2006) standard, nominal contact 
stress values are given by formula (12): 

𝜎𝐻0 = 𝑍𝐻𝑍𝐸𝑍𝜀√
𝐹′

𝑑𝑏
∙

𝑢+1

𝑢
 (12) 

where: 𝑍𝐻 – zone factor, 𝑍𝐸  – elasticity factor, 𝑍𝜀  – contact ratio 

factor, 𝐹′ – circumferential force, 𝑑 – drive gear pitch diameter, 𝑏 

– ring width, 𝑢 – gear pair ratio. Calculation procedures determin-
ing individual coefficients were described in the above-mentioned 
standard. The resulting stress values for individual gear pairs are 
shown in Table 2. 

Tab. 2. Analytically-determined contact stress values 

 Mesh load factor Kγ [-] 

0.7 1 1.1 1.2 1.3 

Nominal contact stress σH0 [MPa] 

Gear pair 1-2 103.20 

Gear pair 3-4 712.01 851.02 892.56 932.25 970.31 

Gear pair 5-6 776.04 927.54 972.81 1016.07 1057.56 

4.2. Root stress 

 As it is given in ISO 6336-3 (2006) standard, nominal root 
stress values are calculated by means of formula (13): 

𝜎𝐹0 = 𝑌𝐹𝑌𝑆
𝐹′

𝑏𝑚
 (13) 

where: 𝑌𝐹  – form factor, 𝑌𝑆 – stress correction factor, 𝐹′ – circum-
ferential force, 𝑚 – module, 𝑏 – meshing width. Calculation pro-
cedures for determining individual coefficients were described in 
the above-mentioned standard. The resulting stress values for 
individual gears are shown in Table 3. 

Tab. 3. Analytically-determined root stress 

 Mesh load factor Kγ [-] 

0.7 1 1.1 1.2 1.3 

Nominal root stress σF0 [MPa] 

Gear 1 2.79 

Gear 2 2.80 

Gear 3 148.40 212.00 233.20 254.40 275.60 

Gear 4 146.02 208.61 229.47 250.33 271.19 

Gear 5 118.60 169.43 186.37 203.32 220.26 

Gear 6 119.89 171.27 188.40 205.53 222.65 

5. FEM SIMULATION 

5.1. Computational model 

 Numerical calculations of the gear motor were performed in 
Abaqus software by means of the finite element method (FEM). 
Key stress values were determined based on the models that 
accurately represent the dimensions of real gearbox components. 
These were compared with results obtained from analytical calcu-
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lations. To simplify finite element model, the entire task was split 
into three phases, which covered consecutive gear motor stages.  
 Since the gearing contains cylindrical spur gears, numerical 
FEM calculations were performed using flat models based on the 
plane stress states theory developed by Rusiński et al. (2000). For 
each of the stages, computational models were cross-sections 
through the center of the width of gears of a particular gearing 
stage. Such procedure, as it was concluded by Kopecki and Witek 
(2000) and by Rusiński et al. (2000), guarantees accurate results 
with considerably shorter calculation and result processing time.  
 It was assumed that the gears are made of steel of the follow-
ing parameters: Young’s modulus 2.05·1011 Pa, Poisson coeffi-
cient 0.3. All boundary conditions, loads, restraints and displace-
ments were defined according to the analytically pre-calculated 
values and the adopted kinematic system. Frictionless contact 
between the carrier and the planet gear (item 3 in Fig. 4) was 
assumed. The axis of the carrier was connected with a rigid body 
to the axis of the sun gear (item 4 in Fig. 4). In this case, the effect 
of play on the planet gears or errors in the geometry in the actual 
gear train were not investigated. The carrier axis was allowed to 
moved only over a circle, the center of which was placed on the 
axis of the sun gear. The movement of the carrier arising from the 
gear train kinematics was forced, and resistance (torque) was 
defined on the planetary gear due to its connection to gear 5  
(Fig. 2). 

 
Fig. 4. Gear model designed for calculations in Abaqus software 

 The models were discretized, that is, divided into finite ele-
ments in an uneven manner according to the recommendations 
formulated by Budzik and Pacana (2008) and Kopecki and Witek 
(2000). Definitely, the largest density of nodes was present in the 
toothed ring area, with lower density in other locations on the 
models, which can be seen in Figure 4. Also, within a single tooth, 
differentiation of the mesh was introduced by using several times 
more finite elements in the discretization of the active tooth flank 
than for its passive side (Fig. 4). It made possible to shorten the 
calculations and to get highly accurate results in key areas. The 
discretization performed in Abaqus’s pre-processor, CPS4R quad-
rilaterals were used. 
 Figure 4 presents an overview of the model prepared for 
calculations in Abaqus software for the second gear stage. Apart 
from gears 3 and 4, a model of the carrier was also included, 
through which rolling trajectory for the planet gear was defined. 
Grid density in the area of the toothed rings of engaging gear 
models is clearly visible. 
 In the process of the analysis, both the model preparation and 
computational methods were kept the same for three stages of the 
gear.  

5.2. Calculation results 

 The basic form in which the results were obtained was the 
distribution of reduced stress presented on previously prepared 
models. The analysis focused on the gear meshing area, where 
the highest stress values were recorded. The area is of funda-
mental importance in terms of strength. Figure 5 shows sample 
results for the second stage of the gearbox. 

 

Fig. 5. Distribution of reduced stress in gear 3 and 4 meshing area 

 Evidently, the highest stress values were recorded at the point 
of contact between the flanks of meshing teeth. Stress concentra-
tion is also present at the opposite side of the teeth. In accord-
ance with ISO 6336-1 (2006) standard, stress in these areas 
constitutes a basic criterion for assessing the correctness of the 
designed gear. The results showed as stress distribution and 
helped to identify areas at risk. However, they are insufficient to 
perform precise strength calculations. In order to increase clarity, 
the results may be presented as charts. Figures 6 and 7 show 
sample reduced root stress values for gears 3 and 4. The illustra-
tions also contain schematic charts taken into account in analyti-
cal calculations according to a generally approved literature on 
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strength calculations and gear performance quality (Sánchez et 
al., 2019). Here, we assume a rectilinear load distribution, evenly 
divided into three stages of engagement. As can be seen, the real 
nature of load exerted on a gear tooth is slightly different. It does 
not interfere with general-purpose gear calculations, however, 
when designing more demanding systems, one must take into 
account more accurate results offered by the numerical FEM 
method. 

 
Fig. 6. Changes in reduced root stress values in gear 3 (A, B, D, E – 

characteristic points on path of contact, A – entry into engagement 
of second tooth (two-pair meshing), B – lowest point of single 
tooth contact (LPSTC), D – highest point of single tooth contact 
(HPSTC), E – exit from meshing of second tooth) 

 
Fig. 7. Changes in values of reduced root stress in gear 4 (A, B, D, E – 

characteristic points on path of contact, description as in Fig. 5) 

 Charts illustrating reduced root stress as well as contact 
stress values for all gears of the analyzed gearing were created 
on a similar basis. This helped trace the moments where extreme 
values occurred and read their quantity. Subsequently, one may 
compare the results obtained in numerical calculations with the 
ones generated in analytical calculations and confirm their mutual 
consistency. 

5.3. Uneven load distribution 

 As multipath gears are characterized by the risk of uneven 
load distribution on each of the paths (Parker and Lin, 2004; 
Budzik et al. 2013), the issue was also examined in the analysis. 
 In the initial solution for Kγ = 1, each of the three planets car-
ried the same load. Knowing that during its operation, the torque 
value transmitted by each path is variable, such assumption was 
also made in FEM numerical calculations. It was assumed that the 

maximum practically foreseeable value of the mesh load factor 
would occur (ANSI/AGMA 6123-C16), and the load at the second 
and third stage of the gear motor was proportionally increased. An 
inverse situation was also taken into account, with the planet 
transmitting a torque lower than nominal, because the two remain-
ing ones carry a higher load. The results of numerical calculations 
obtained for the initial case and for inequality coefficients of 0.7, 
1.1, 1.2 and 1.3 were juxtaposed to compare how unbalanced 
load distribution affects stress values in the gears of a planetary 
gearing. 
 The results for reduced root stress and contact stress for all 
wheels of speed reducing gears were listed in Tables 4 and 5. 

Tab. 4. Contact stress values on basis of numerical FEM calculations  

 Mesh load factor Kγ [-] 
0,7 1,0 1,1 1,2 1,3 

Contact stress [MPa] 

Gear pair 1-2 112,21 

Gear pair 3-4 698,98 898,45 914,51 938,44 978,98 

Gear pair 5-6 813,42 937,44 966,54 997,12 1012,81 

Tab. 5. Reduced root stress on basis of numerical FEM calculations  

 Mesh load factor Kγ [-] 
0,7 1,0 1,1 1,2 1,3 

Tooth root stress [MPa] 

Gear 1 2,71 

Gear 2 2,67 

Gear 3 157,96 222,74 242,49 263,28 284,73 

Gear 4 156,32 224,80 245,00 266,69 288,67 

Gear 5 117,55 183,21 190,35 198,53 206,42 

Gear 6 126,61 189,14 197,46 205,35 212,25 

6. COMPARISON OF RESULTS 

 The results are presented in charts (Figures 8 and 9).  

 
Fig. 8. Reduced root stress for: a) gear 3, b) gear 6 
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 Reduced root stress values determined by FEM simulation 
approximate those obtained analytically. FEM error with respect to 
the analytical method reaches a maximum of 10.43% with a re-
duced stress difference of 17.87 MPa for gear 6 and mesh load 
factor 1.0. In addition, the largest differences in reduced root 
stress occur for all wheels with a load distribution coefficient 
equaling 1.0. 

 
Fig. 9. Contact stress values for: a) pair 3-4, b) pair 5-6 

 In the case of contact stress, it was noted that the FEM error 
related to the analytical method shows neither an upward nor a 
downward trend with increasing load (increase of load distribution 
coefficient). The largest difference in the value of reduced stress 
47.43 MPa, constituting approx. 5.6% of the value of analytical 
stress occurred for the mash load factor 1.0 (Fig. 9b). 

7. SUMMARY AND CONCLUSIONS 

 On the basis of the performed calculations and simulations, it 
can be concluded that: 

 The first gearing stage is slightly loaded, and gears 1 and 2 
can be made of quenched and tempered steel, for example, 
42CrMo4. 

 The epicyclical stage of the gearing is subjected to the highest 
load, and bending and contact stresses necessitate the use of 
steel for surface hardening (nitriding or carburizing and hard-
ening). 

 In addition, the mesh load factor over planets has a significant 
effect on the selection of the material for planetary stage gears 
(gear pairs 3-4 and 5-6). It depends in particular on how the planet 

and sun gears are mounted, the positioning accuracy on the 
carrier, tooth fabrication accuracy and, in the planetary gearing 
discussed in this study, the accuracy of the positioning of the teeth 
of gear 5 relative to gear 4. Guidelines contained in ANSI/AGMA 
6123-C16 (2016) standard, as well as simulations and calcula-
tions performed prompted the authors to form the following con-
clusions: 

 If planet and sun gears are supported without flexible mounts, 
and gears are made to class 7 (mesh load factor according to 
ANSI/AGMA 6123-C16 (2016) standard equals 1.23), gears 
should be made of carbon steel for carburizing and hardening. 

 If planets are flexibly mounted or flexible clutches are used 
and gears are made to class 4 (mesh load factor according to 
ANSI/AGMA 6123-C16 (2016) standard equals 1), gears may 
be made of steel for nitriding. 

 The analysis of the load capacity of a multi-path gearing pre-
sented in this study was aimed to determine the locations of po-
tential failures and work-flow hazards. Apart from gear contact 
areas, no other locations of increased stress values were found. 
One should note, however, that stress values obtained in numeri-
cal calculations are slightly different from the actual ones. This is 
due to both the use of discrete models as well as a simplified load 
pattern. Numerical analyses did not include, for example, friction, 
safety or overload factors. Without these additional parameters, 
the stresses calculated by numerical FEM often do not yield ulti-
mate results. The obtained results allow to identify risks or simu-
late engagement, providing very useful information for design 
purposes. However, they should always be checked by means of 
other computational or experimental methods. Verification of the 
results enables the introduction of suitable similarity coefficients 
into numerical calculations. This makes them an even more useful 
tool in the hands of a gear engineer. 
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Abstract: Three-point roll bending is one of the most common forming processes employed to obtain the desired radius of curvature  
in the sheet metal operations. Upon the removal of the forming load, the sheet metal deforms to a lesser extent than that of the required  
dimension. This phenomenon is termed as spring-back and is considered the most challenging areas of research in three-point roll  
bending of sheet metals. This study aims to develop a numerical model using HyperWorks and Radioss solver to understand the influence 
of load, the distance between the forming rollers, and its thickness on the spring-back effect in the course of three-point roll bending  
of sheet metal (AA5052). The results of the numerical model are validated with the results of the experimental trials. Besides, a statistical 
model is developed to relate the amount of spring-back with the three-point roll bending process parameters. 

Keywords: Three-point roll bending, multi-pass forming process, spring-back, dynamic explicit analysis, optimization 

1. INTRODUCTION 

AA5052 is an aluminum alloy with magnesium as the primary 
alloying element and is known for its high corrosion resistance 
and low weight to high strength ratio. Hence, it is widely used in 
aircraft tubes, automobile parts, and hydraulic tubes. Besides, 
AA5052 alloy has good formable properties. However, the forming 
of AA5052 alloy has many challenges. Sheet metal forming is one 
of the important and most common processes used in the manu-
facturing industries (Hecker, 1975; Hu et al., 2002; Parsa et al., 
2012). During forming processes, force is applied on the sheet 
metal to modify its geometry rather than the removal of material. 
Three-point roll bending is one of the forming processes, which 
bends a long continuous strip of sheet metal into a large or medi-
um size tubular section that is typically used in aircraft structures, 
pressure vessels, and tunnels. 

The symmetric roll bending machines have three rollers with 
an arrangement similar to that of an isosceles triangle. In symmet-
ric roll bending machines, the top roller moves vertically, and the 
bottom rollers move horizontally. The vertical movement of the 
roller applies a load on the sheet metal. The rotation of bottom 
rollers helps in uniform distribution of the load along the length of 
the sheet metal, forming the sheet metal to the desired radius of 
curvature. However, the recovery of the elastic region in the sheet 
metal upon removal of load results in the spring-back effect. The 
forming of the sheet metal to the desired radius of curvature de-
pends on the thickness of the sheet metal, material property 
(Young's modulus, Poisson's ratio & yield strength), and the pro-
cess parameters such as displacement of the top roller (TRD), the 
distance between the bottom rollers (DBBR), the radius of top and 
bottom roller. 

A few studies attempted to understand the behavior of the 

sheet metal during the forming process (Abvabi et al., 2014; 
Ghimire et al., 2017; lee et al., 2005; Westermann et al., 2011; 
Xing et al., 2013; Xu et al., 2004; Belykh et al., 2016; Davies and 
Magee, 1977; Fortin et al., 1983; Kumar et al., 2014). Hansen and 
Jannerup(1979) developed an analytical model to predict the final 
curvature (range) of the sheet metal. The results indicate that the 
final curvature is highly sensitive to the forming parameters than 
that of the material properties. However, the analytical model 
predictions could not determine the exact final curvature. Hardt et 
al. (1982) developed a shape controller system for the forming 
process. The shape controller attains the desired shape based on 
the loaded sheet metal, material properties at the loaded position, 
and the amount of elastic spring-back. A series of experiments 
were conducted with a shape controller to attain the desired 
shape. However, the dynamic control of the workpiece was highly 
challenging with the shape controller.  

Yang and Shima(1988) determined the relationship between 
the displacement of the center roller and the final curvature of the 
sheet metal in the forming process. He also demonstrated that the 
distribution of the curvature was axisymmetric about a point and 
was not symmetric about the center of the axis. However, material 
properties were not considered in the analytical method. Gandhi 
and Ravel (2006) developed models for single-pass bending with 
constant Young’s modulus and multi-pass bending with constant 
and varying Young’s modulus. However, the study lacks a com-
prehensive analysis of the influence of the number of passes and 
the load applied. Srivastav and Shinde (2010) studied the dynam-
ic process of the plate rolling using finite element analysis. A 3D, 
dynamic elastic-plastic for steel material, was developed and 
validated to study the stress and strain in the sheet metal using 
Radioss. However, the influence of parameters was not discussed 
explicitly. 

A few analytical models were developed to analyze the spring-
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back effect in the three-point roll bending of aluminum alloys 
(Yang and Shima, 1988; Paulsen and Welo, 1996; Badr et al., 
2017; Guo et al., 2017; Ameen, 2012; Liu et al., 2018; Ktari et al., 
2012; Khamen et al., 2016). However, these models were devel-
oped based on the theory of bending in which the neutral axis 
remains at the midpoint along with the thickness and the material 
properties like Young’s modulus remaining constant for the entire 
process. However, in practical situations, Young's modulus 
changes while deforming the material to the desired shape.  

Most of the studies were carried out using finite element mod-
els to correlate the process parameters with the experiment re-
sults (final radius of curvature). Finite element analysis to investi-
gate the effect of process parameters on the spring-back effect 
during deformation processing of materials is not available in the 
open literature.  

The study aims to perform a parametric study on the three-
point roll bending process and spring-back effect in the materials. 
A simulation model was developed for the three-point process 
using HyperWorks(2010) and Radioss(2014). The model was 
validated using the experimental test. The influence of process 
parameters in three-point roll bending on the spring-back effect 
was analyzed using a hybrid linear and radial basis function mod-
el. The model was used to optimize the process parameters to 
achieve the minimum spring-back effect (desired radius of curva-
ture).  

2. MATERIALS AND METHODS 

2.1. Computational Methodology 

Computation methodology is a powerful and cost-effective tool 
used to predict the approximate solution for practical problems. In 
this work, the finite element method and design of experiments 
are used to explore the amount of spring-back in the three-point 
roll bending process.  

2.1.1. Numerical Modeling 

Non-linear dynamic finite element model was developed to 
predict the large plastic strain, large deformation, and contact 
phenomenon during the three-point roll bending process of the 
sheet metal. The finite element model was developed using 
HyperWorks(2010) and solved using a Radioss solver (2004). The 
bending process of sheet metal was simulated using the explicit 
analysis while the spring back process used the implicit analysis. 
The developed finite element model used a multi-stage forming 
process, where the top roller displacement was given stage-wise 
to achieve the accuracy of the formed radius of curvature. The 
accuracy of the developed model depends on the contact proper-
ties between roll and sheet metal. The mid-surface of the sheet 
metal was extracted to reduce the computation time and the 
results were calculated along the mid-surface normal.  

2.1.2. Geometric Specification 

The 3D solid model of three rollers and the sheet metal was 
developed, based on the three-point roll machine specification 
process condition given in Table 1. 

Tab. 1. Geometric specification 

Parameters Dimension in mm 

Top roller diameter 220 

Bottom roller diameter 140 

Distance between the bottom rollers 380 

Sheet metal dimension 900×100×3 

2.1.3. Meshing and Element Properties  

The 3D model of the three-point roll bending process was im-
ported and was meshed using Hypermesh. The roller and sheet 
metal were meshed using 2D first order quadrilateral element of 
element length 10 mm as shown in Figure 1. The sheet metal 
elements were modeled as orthotropic shell elements with an 
angle of 0° degree. The QEPH Shell element would auto-stabilize 
hourglass energy. The shell element properties were as follows: 
the thickness of sheet metal = 3 mm, number of integration point 
(N) = 5, Ithick = 1, and Iplastic = 1. Since the roller is a rigid body, 
three rigid elements were created for each roller using the RB2 
element. RB2 element has one independent node at the center 
and all other nodes are dependent nodes connected to the inde-
pendent node.  

 

Fig. 1. Meshed model 

2.1.4. Material Properties 

The rollers were made of steel while the sheet metal was 
made of AA5052 alloy of thickness 3 mm. Since the sheet metal 
was deforming plastically in an anisotropic way, elastoplastic Hill’s 
model (Hill, 1958) was used to define the shell element of the 
sheet metal. The material properties like Young's modulus, Pois-
son ratio, and density were given as input.   

 

Fig. 2. True stress (MPa) – strain (ratio; no units) curve of Aluminum 
5052 
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In this elastoplastic model, the effective stress-strain curve of 
Aluminum 5052 and Lankford formability constant was given as 
an input following the studies of Hecker (1975). The anisotropic 
coefficients (plastic strain ratio; no units) are as follows: R0 = 0.74, 
R45 = 0.48, and R90 = 1.04. Figure 2 shows the true stress-strain 
curve of AA5052. 

2.1.5. Load and Boundary Conditions 

The forming process was accomplished in two-steps, the first 
step is bending, that is, the load is given to the sheet metal by the 
displacement of the top roller and the second step is rolling, that 
is, the rollers rotate to distribute the load along the length of sheet 
metal. Hence, the constraints of the rollers were given to the 
independent nodes of the rigid element (RB2), all the dependent 
node would take the constraints given to the independent node. 
The constraints were given in the global axis, for the top dis-
placement along the X3 axis, and rotation along the X2 axis was 
allowed. Similarly, for the bottom roller, only rotation along the X2 
axis was allowed. Since this forming process is a multi-stage 
process, for each displacement of the top roller, the bottom roller 
rotates at 0.000785 rad/ms. The top roller was displaced 8 times 
by 5 mm totaling a displacement of 40 mm.  

2.1.6. Contact Definition  

In the finite element analysis, the Master-Slave approach was 
used to define the contact in the model. Since the surface of the 
sheet metal made a contact with the rollers, the surface to surface 
contact was defined in the finite element model. Rollers were 
defined as the master nodes since it was a rigid body, and sheet 
metal as slave nodes. The interaction between the roller and 
sheet metal was assigned as a sliding approach because the 
sheet metal slides into the roller by the friction factor. In this mod-
el, the friction is assumed to be a constant of 0.1. The gap be-
tween the sheet metal and roller was set constant because of no 
considerable change in the thickness of the sheet metal. 

2.1.7. Spring-Back Procedure   

Spring back is the recovery of the elastic region when the ap-
plied load is removed. For the spring back process, a separate 
engine file was created, and it was carried out as an implicit anal-
ysis. The spring back engine file would start after the termination 
time of the dynamic forming process.  

2.2. Statistical Model 

A manufacturing process is analyzed based on the process 
parameters, as the process parameters significantly influence the 
properties/geometries of the product. Conducting experi-
mental/numerical trials for analyzing the influence of process 
parameters is a time-consuming process. Hence, the study 
adopted the Design of Experiments approaches to minimize the 
number of trials to study the influence of process parameters on 
the spring-back effect.  

In this study, three factors namely top roller displacement 

(TRD), the distance between bottom rollers (DBBR), and sheet 
metal thickness (Thick) were varied at five levels. The numerical 
simulations were carried out based on the parametric combina-
tions, given in Table 2. The finite element model was used to 
predict the amount of spring-back (geometry changes of the sheet 
metal before and after spring-back) in the roll forming process. A 
hybrid linear function and radial basis function was developed to 
correlate the process parameters with the amount of spring-back. 
The development of the hybrid linear function and radial basis 
function-based model is based on the previous literature (Rama-
lingam and Ramasamy, 2017; Vignesh et al., 2018; Vignesh and 
Padmanaban, 2018). The model was used to develop contour 
plots, which in turn were used to study the interactive effect of 
process parameters on the amount of spring-back in three-point 
roll bending of AA5052 alloy. 

Tab. 3. Design Matrix 

Sl. 
N
o. 

Process Parameters Amou
nt of 
Sprin

g 
Back 
(mm)*  

Real Value Coded value 

Thick 
(mm) 

TRD 
(mm) 

DBBR 
(mm) 

Thi
ck 

TR
D 

DBB
R 

1 1 40 380 -2 0 0 750 

2 2 40 380 -1 0 0 345 

3 3 30 380 0 -2 0 400 

4 3 35 380 0 -1 0 270 

5 3 40 360 0 0 -2 117 

6 3 40 370 0 0 -1 150 

7 3 40 390 0 0 1 218 

8 3 40 400 0 0 2 258 

9 3 45 380 0 1 0 130 

10 3 50 380 0 2 0 100 

11 4 40 380 1 0 0 140 

12 5 40 380 2 0 0 100 

*Geometry changes of the sheet metal before and after spring-back 

2.3. Experimental Methodology 

The three-point roll bending trails on AA5052 sheet metal 
were performed on the symmetrical three-point roll bending ma-
chine. The machine specification and the sheet metal specification 
are given in Table 1. In symmetrical three-point roll bending, the 
AA5052 alloy sheet metal was placed in such a way that the load 
will be acting on the midpoint of the sheet metal. Before applying 
the load, it was ensured that all the three rollers made contact with 
the sheet metal. The initial position of the top roller was noted and 
the top roller displacement was applied in steps. The top roller 
was displaced by 5 mm by the controller. Now at 5 mm of top 
roller displacement, the rotation velocity of 0.785 rad/s was given 
to the bottom rollers.  

As the bottom roller rotated, the sheet metal moved in a hori-
zontal direction because of the friction between the roller and the 
sheet metal. The bottom roller was rotated in both directions so 
that the direction could be reversed. The action was repeated until 
the load acted all over the sheet metal and until the top roller 
displaced up to 40 mm.  

While removing the load, the sheet metal would spring-back 
until the equilibrium was achieved between the elastic and plastic 
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regions in the sheet metal. By the spring-back effect, the radius 
formed by the top roller increases as soon as the top roller is 
moved back to the initial position. This geometry changes of the 
sheet metal before and after spring-back is measured as the 
amount of spring-back. By the experimental test, only the radius of 
the sheet metal after the spring-back is measured, which is known 
as the final radius of the sheet metal after the spring-back. The 
bend region length and the radius after spring-back were as fol-
lows: bend region length = 430 mm and radius after spring-back = 
660 mm. Since the experiment was carried out without the pre-
bending, the bend region was taken into consideration.  

3. RESULTS AND DISCUSSIONS 

3.1. Numerical Model 

3.1.1. Mesh Convergence 

A finite element model with sufficient mesh density was used 
in this study. A convergence study was performed with different 
mesh densities, as it affects stress, displacement, and CPU com-

putation time. A poor mesh that has a large aspect ratio of the 
element, leads to inaccurate prediction or convergence problems. 
However, refining the mesh considerably increases the computa-
tion time. A Mesh convergence study for the sheet metal was 
performed. The results indicate that that the load transfer was 
almost the same for 10 mm and 8 mm element length. But the 
computational time was high for 8 mm element length. So, an 
element size of 10 mm was used for the study, as the predicted 
results were in good agreement with the experimental results.  

3.1.2. Model Validation  

The 2D finite element model was simulated based on the ex-
perimental data. The following results were obtained: stress distri-
bution, strain distribution, deformation before and after spring-
back, radius before spring-back, and after spring-back. Figure 3 
shows the stress distribution in the sheet metal. The results indi-
cate that plastic deformation occurred in the sheet metal when 
stress crossed the yield limit. Based on this stress distribution, the 
plastic strain developed in the sheet metal is shown in Figure 4.  

 

 

Fig. 3. Stress (MPa) distribution in the sheet metal 

 

Fig. 4. Plastic strain (ratio; no units) distribution in the sheet metal 
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When the top roller contact was removed, the sheet metal un-
derwent spring-back, that is, recovery of the elastic region in the 
material. If spring-back occurred, the radius of the deformed sheet 
metal was either higher or lower than that of the desired radius. 
The curvature of the sheet metal before spring-back was 507 mm 
and the curvature of sheet metal after spring-back 635 mm.  

Table 3 shows the final radius of curvature after spring back 
from the finite element model and experimental test. The numeri-
cally predicted the final radius of curvature of the sheet metal was 
in good correlation with the experimental results.  

Tab. 3. Model validation with Experimental test 

 Simulation Result Experimental Result 

Radius after 
spring back (mm) 

635 660 

3.2. Statistical model 

Table 2 shows the design matrix for variation in the process 
parameters and the corresponding spring-back. The process 
parameters (top roller displacement, the distance between bottom 
rollers, the thickness of sheet metal) are related to the response 
(amount of spring-back) using a hybrid linear-radial basis function 
model. The generated statistical model is a hybrid Linear-Radial 
Basis Function, that is given by equation (1). The Radial Basis 
Function network was developed using a multiquadric kernel with 
4 centers, global width of 0.24811 and a regularization parameter, 
and a lambda of 0.0001. 

T =  118.2636 −  224.9054
∗ DBBR –  258.9317
∗ TRD –  924.9986 ∗ Thickness 
+  RBF                   

(1) 

 

Fig. 5. Amount of spring back (mm) – Finite element model vs Statistical 
model 

From Figure 5, a linear trend was observed between the 
amount of spring-back from the finite element model and the 
predicted statistical model. The coefficient of determination (R2) 
and root mean squared error (RMSE) value was used to assess 
the efficiency of the developed statistical model. The R2 was 1 for 
the statistical model, depicting its closeness with the finite element 
model predictions. The RMSE is 4.137 for the statistical model, 
which is small. 

3.2.1. Effect of Process Parameters  

The effect of TRD and the DBBR on the amount of spring 
back is shown in Figure 6. The material deformed at 30 mm TRD 
and 360 mm DBBR exhibited the largest spring-back. The amount 
of spring back reduced as the DBBR increased from 360 mm to 
380 mm. With the further increment in DBBR from 380 mm to 400 
mm, the amount of spring back increased. Similarly, if TRD in-
creased, the amount of spring back decreased. The force exerted 
on the sheet metal for 30 mm of TRD was 260 N.  

Correspondingly, the stress of 104.3 MPa and strain of 3.54e-
03 was induced in the sheet metal. With an increase in TRD to 50 
mm, the force exerted on the sheet metal was 310 N. The corre-
sponding stress in the sheet metal was 115.7 MPa, and strain in 
the sheet metal is 8.0e-03. The developed strain lay well enough 
in the plastic region, which was higher than that of the strain 
developed with TRD of 30 mm. Besides, the amount of spring-
back in the sheet metal reduced with more plastic deformation. 
Hence, spring-back decreased with an increase in TRD.  

 

Fig. 6. Effect of top roller displacement (mm) vs distance between bottom 
rollers (mm) on spring-back (mm) 

 

Fig. 7 Effect of the thickness (mm) vs distance between bottom roller 
(mm) on spring-back (mm) 

The amount of spring-back was low for the sheet metal de-
formed at 40 mm TRD and 360 mm DBBR. As DBBR increased, 
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the amount of spring back also increased. The load applied by the 
top roller acted over a narrow region in the sheet if the DBBR was 
less (i.e., 360 mm). Hence, the stress and strain developed in the 
region were 113.2 MPa and 7.37e-03. With an increase in the 
load application area (DBBR > 360 mm), the stress-induced was 
108.4 MPa, and the strain in the sheet metal was 5.02e-03. 
Hence, the sheet metal formed at 360 mm DBBR had lesser 
spring-back than that formed at 400 mm DBBR. A lesser amount 
of spring-back was observed in the sheet metal that was de-
formed at low DBBR and high TRD. 

The effect of sheet metal thickness and DBBR on the amount 
of spring-back is shown in Figure 7. The sheet metal of thickness 
1 mm deformed at 360 mm DBBR had the highest amount of 
spring-back. When the DBBR was increased from 360 mm to 380 
mm, the amount of spring-back decreased. However, with a fur-
ther increase in DBBR from 380 mm to 400 mm, the amount of 
spring back decreased. The amount of spring back reduced with 
an increase in the thickness of sheet metal. A force of 850 N was 
exerted on the sheet metal of thickness 5 mm that induced stress 
of 122.2 MPa and strain 1.10e-02. The developed strain was in 
the plastic region, as the stress was larger than the yielding stress 
of 89.5 MPa. Hence, the amount of spring-back was lesser. Dur-
ing deformation, a force of 24 N induced stress of 93.7 MPa and 
strain of 6.07e-04 in the sheet metal of thickness 1 mm. As the 
induced stress value was similar to the yielding stress of 89.5 
MPa, a large amount of spring-back was observed in the sheet 
metal of thickness 1 mm than that of sheet metal of thickness 5 
mm.  

 

Fig. 8. Effect of thickness (mm) vs top roller displacement (mm) on 
spring-back (mm) 

Tab.4.Optimized values 

Sl. 
No. 

Process Parameters Values 

1 Top roller displacement 42 mm 

2 Distance between bottom rollers 385 mm 

3 Sheet metal thickness 3.5 mm 

 
From Figure 6 and Figure 7, it is observed that DBBR has a 

less significant effect on the amount of spring-back than that of 
TRD and sheet metal thickness. However, DBBR behaves 
uniquely if TRD and thickness of the sheet metal were low. The 
effect of sheet metal thickness and TRD is shown in Figure 8. It is 

observed that the amount of spring-back was high for 1 mm sheet 
metal thickness and 30 mm TRD. As mentioned earlier, the 
amount of spring-back reduced with an increase in TRD from 30 
mm to 50 mm. It is observed that the amount of spring-back was 
less when the sheet metal thickness was high, and the TRD was 
high. The optimization results are as shown in Table 4. If the roll 
forming process is performed at that level of process parameters, 
the spring-back effect was minimum. The optimization results 
were successfully validated with the finite element model. 

4. CONCLUSION 

A finite element model was developed and validated to predict 
the amount of spring back in the roll forming process for AA5052 
alloy. A linear-radial basis function model was developed interre-
lating the process parameters namely top roller displacement, the 
distance between bottom rollers, and thickness of the sheet metal 
with the amount of spring back. The model was utilized to opti-
mize the process parameters to reduce the amount of spring back 
in the course of the roll forming process of AA5052 alloy. The 
results demonstrated the following:  

 The amount of spring-back increases with an increase in top 
roller displacement. 

 The amount of spring-back decreases with an increase in the 
thickness of the sheet metal.  

 Distance between the bottom rollers has a minor influence 
on the spring-back effect.  
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Abstract: In the present paper, the effect of diverse distribution of functionally graded porous material and Kerr elastic foundation on natu-
ral vibrations of nanobeams subjected to in-plane forces is investigated based on the nonlocal strain gradient theory. The displacement 
field of the nanobeam satisfies assumptions of Reddy higher-order shear deformation beam theory. All the displacements gradients are 
assumed to be small, then the components of the Green-Lagrange strain tensor are linear and infinitesimal. The constitutive relations for 
functionally graded (FG) porous material are expressed by nonlocal and length scale parameters and power-law variation of material pa-
rameters in conjunction with cosine functions. It created possibility to investigate an effect of functionally graded materials with diverse dis-
tribution of porosity and volume of voids on mechanics of structures in nano scale. The Hamilton’s variational principle is utilized to derive 
governing equations of motion of the FG porous nanobeam. Analytical solution to formulated boundary value problem is obtained in 
closed-form by using Navier solution technique. Validation of obtained results and parametric study are presented in tabular and graphical 
form. Influence of axial tensile/compressive forces and three different types of porosity distribution as well as stiffness of Kerr foundation on 
natural frequencies of functionally graded nanobeam is comprehensively studied. 

Keywords: Porosity distribution; nanobeam; Reddy beam theory; free vibrations; nonlocal strain gradient theory

1. INTRODUCTION 

Recent research and development in nanotechnology have 
contributed to design devices in nano and micro scale called 
nanoelectromechanical (NEMS) and microelectromechanical 
(MEMS) systems (Lyshevski, 2002). NEMS and MEMS may be 
used in many areas including automotive, aerospace, biotechnol-
ogy, healthcare, office equipment and telecommunication 
(Leondes, 2006). Nano and micro devices, depending on re-
quirements, can be manufactured with porous materials (Bhu-
shan, 2004), functionally graded materials (FGMs) (Ashoori et al., 
2017) and it commonly takes the form of plates and beams (Lam 
et al., 2003). 

To consider nano/micro size scale effect on structures non-
local theories have been derived, for instance couple stress theory 
(Toupin, 1962), modified couple stress theory (Yang et al., 2002), 
Eringen’s nonlocal theory (Eringen and Edelen, 1972; Eringen, 
1972), strain gradient theory (Mindlin, 1964, 1965) and nonlocal 
strain gradient theory (Lim et al., 2015). 

The literature survey related to the study of mechanical be-
havior of nanobeams is conducted to justify the originality of the 
present paper. The review is divided into two paragraphs: consid-
ering the effect of elastic foundation and mechanical response of 
nanostructures without foundation.  

Aydogdu (2008) studied the influence of length to thickness 
ratio on bending, buckling and free vibrations based on Eringen’s 
nonlocal theory and various beam models. Lim et al. (2010) ana-
lyzed the free vibration of axially pre-tensioned nanobeams with 
various boundary condition according to Eringen’s nonlocal elas-
ticity. Sahmani and Ansari (2011) presented buckling analysis with 

comparison of Euler-Bernoulli, Timoshenko and Levinson beam 
theory with different boundary condition using Eringen’s nonlocal 
elasticity. Thai (2012) introduced new nonlocal shear deformation 
beam theory and analyzed the mechanical behavior of simply 
supported nanobeam. Thai and Vo (2012a) investigated deflec-
tion, buckling and free vibrations of nanobeam on the basis of 
sinusoidal shear deformation theory and nonlocal constitutive 
relations of Eringen. Eltaher et al. (2012, 2013) used finite ele-
ment method to investigate free vibration and static buckling 
behaviors of functionally graded nanobeam based on Euler-
Bernoulli model assumptions and Eringen’s nonlocal theory. 
Nazemnezhad and Hosseini-Hashemi (2014) examined the non-
linear free vibrations of FGM Euler-Bernoulli nanobeam using 
Eringen’s nonlocal theory. Şimşek (2014) studied the effect of 
aspect ratio and Eringen’s nonlocal parameter on nonlinear fre-
quency of nanobeam. Rahmani and Jandaghian (2015) conducted 
buckling analysis of functionally graded nanobeam using Er-
ingen’s nonlocal and Reddy beam theories. Li and Hu (2015) 
examined deflection and buckling of Euler-Bernoulli nanobeam 
model on the basic of nonlocal strain gradient theory. Şimşek 
(2016) employed Euler-Bernoulli beam assumptions and nonlocal 
strain gradient theory to study the nonlinear free vibration of simp-
ly supported nanobeam made of functionally graded material. Lu 
et al. (2017) developed sinusoidal shear deformation beam theory 
to analyze free vibration problems of simply supported nanobeam 
using nonlocal strain gradient theory. Shafiei et al. (2017) applied 
Timoshenko beam model to study the influence of porosity on 
vibration problems of functionally graded nano and micro beams. 
Eltaher et al. (2018) presented the finite element method to study 
the bending and vibrations of functionally graded nanobeam with 
porosity according to Euler-Bernoulli beam and Eringen’s nonlocal 
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theories. Zhang et al. (2019) investigated the influence of Er-
ingen’s nonlocal parameter, power index and length to thickness 
ratio on natural vibrations of functionally graded nanobeam witch 
various boundary condition.  

El-Borgi et al. (2015) considered free and forced vibration of 
functionally graded nanobeam resting on nonlinear elastic founda-
tion on the basis of Euler-Bernoulli beam model assumptions and 
Eringen’s nonlocal theory. Ghadiri et al. (2017) presented the 
analytical solution for nonlinear vibrations of functionally graded 
visco-elastically supported nanobeam subjected to transverse 
concentrated load. Saffari et al. (2017) studied the free vibration of 
simply supported FGM nanobeam resting on Winkler-Pasternak 
foundation based on Timoshenko beam model and Eringen’s 
nonlocal elasticity. Reza Barati (2017) examined the forced vibra-
tions of FGM nanobeam resting on Kerr foundation under hydro-
thermal loads on the basis of sinusoidal shear deformation theory 
and Eringen’s nonlocal theory. Lv et al. (2018) analyzed the effect 
of Winkler foundation and material defects on nonlinear vibrations 
of FGM Timoshenko nanobeam via nonlocal strain gradient theo-
ry. Karami and Janghorban (2019) proposed a new shear defor-
mation theory and analyzed the free vibration of functionally grad-
ed nanobeam resting on Winkler-Pasternak foundation using 
nonlocal strain gradient theory. 

The carried out literature review indicates that there does not 
exist an analysis of effect of stiffness of Kerr foundation and in-
plane axial forces on free vibration of FGM nanobeam with di-
verse distributions of porosity based on the nonlocal strain gradi-
ent-based Reddy higher-order shear deformation theory. Unlike 
other nonlocal models, the utilized nonlocal strain gradient model 
is a hybrid nonlocal model, which can capture both hardening and 
softening phenomena in structures in nano scale. For the first 
time, influences of Kerr elastic foundation, volume of pores, di-
verse distribution of porosity and functionally graded material as 
well as both small scale parameters on dynamical response of 
nanobeams subjected to axial compressive/tensile loads were 
presented. Additionally, for the first time, comparison of Winkler-
Pasternak and Kerr foundation effect on eigenfrequencies of 
simply-supported FGM nanobeam is shown. 

2. DISPLACEMENT AND STRAIN FIELDS 

Consider a functionally graded porous nanobeam under an 

axial in-plane forces 𝑁̂𝑥𝑥  and resting on three-parametric founda-

tion. Let 𝐿, ℎ and 𝑏 denote the length, thickness and width of the 
nanobeam, respectively. The foundation is described by springs 
stiffness (𝐾𝑙 , 𝐾𝑢) and shear (𝐺) stiffness of layer. The coordi-

nate system (𝑥, 𝑧) and cross-section are presented in Fig. 1.

 

Fig. 1. The geometry and coordinate system of FGM porous nanobeam  
            subjected to in-plane axial forces 

Based on the higher-order shear deformation theory, the dis-
placement field of the nanobeam takes the form (Reddy, 2017): 

𝑢𝑥(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑧𝜑𝑥(𝑥, 𝑡) − c1𝑧3 (𝜑𝑥(𝑥, 𝑡) +
𝜕𝑤0(𝑥,𝑡)

𝜕𝑥
)  (1a) 

𝑢𝑧(𝑥, 𝑡) = 𝑤0(𝑥, 𝑡) (1b) 

where 𝑢𝑥 and 𝑢𝑧 are displacements along 𝑥 and 𝑧 directions, 
respectively. 𝑢0, 𝑤0 and 𝜑𝑥  are unknown generalized displace-

ments. Hence, 𝑢0 and 𝑤0 denote axial and transverse displace-

ment of a material point in the mid-plane (𝑥, 0) in the undeformed 
configuration at any time 𝑡. 𝜑𝑥  is rotation of the point on the cen-

troidal axis 𝑥 of the beam, and c1 = 4/(3ℎ2). 
Taking into account the assumptions that all the displacement 
gradients are very small, consequently, the components of Green-
Lagrange strain tensor are linear and infinitesimal. The general 
forms of strain-displacement relations associated with the dis-
placement field (1) are defined as: 

𝜀𝑥𝑥 = 𝜀𝑥𝑥
(0)

+ 𝑧𝜀𝑥𝑥
(1)

+ 𝑧3𝜀𝑥𝑥
(3)

 (2a) 

2𝜀𝑥𝑧 = 𝛾𝑥𝑧
(0)

+ 𝑧2𝛾𝑥𝑧
(2)

  (2b) 

where the particular components of the linear strains are: 

{𝜀𝑥𝑥
(0)

, 𝜀𝑥𝑥
(1)

, 𝜀𝑥𝑥
(3)

} = {
𝜕𝑢0

𝜕𝑥
,

𝜕𝜑𝑥

𝜕𝑥
, −c1 (

𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 )}  (3a) 

{𝛾𝑥𝑧
(0)

, 𝛾𝑥𝑧
(2)

} = {𝜑𝑥 +
𝜕𝑤0

𝜕𝑥
, −c2 (𝜑𝑥 +

𝜕𝑤0

𝜕𝑥
)}  (3b) 

where c2 = 3c1. 

3. CONSTITUTIVE RELATIONS 

On the basis of reduced higher-order nonlocal strain gradient 
theory (Lim et al., 2015) to only one length scale parameter, the 
constitutive relations of the nanobeam are expressed as:   

(1 − 𝔅∇2)𝜎𝑥𝑥 = (1 − ℓ2∇2)𝐶𝑥𝑥𝜀𝑥𝑥  (4a) 

(1 − 𝔅∇2)𝜎𝑥𝑧 = (1 − ℓ2∇2)2𝐶𝑥𝑧𝜀𝑥𝑧 (4b) 

where nonlocal parameter 𝔅 = (𝑒0𝑎)2 describes nonlocal stress 
field, material length scale parameter ℓ captures higher-order 

strain gradient stress field, and ∇2=
𝜕2

𝜕𝑥2 is the Laplace operator. 

Stiffness coefficients of the FGM porous nanobeam are: 

𝐶𝑥𝑥 = 𝐸(𝑧) (5a) 

𝐶𝑥𝑧 =
𝐸(𝑧)

2(1+𝜈)
 (5b) 

where Poisson’s ratio 𝜈 is assumed to be constant and Young’s 

modulus 𝐸(𝑧) varies through the nanobeam thickness according 
to the power-law (Kim et al., 2019): 

𝐸(𝑧) = [(𝐸𝑡 − 𝐸𝑏) (
𝑧

ℎ
+

1

2
)

𝑔

 + 𝐸𝑏] [1 − Υ(𝑧, ϑ)] (6) 

where 𝐸𝑡 and 𝐸𝑏  are Young’s modulus at the top (𝑧 = ℎ/2) and 

bottom (𝑧 = −ℎ/2) surface, respectively. The constant 𝑔 is 

power-law index and Υ(𝑧, ϑ) is a porosity distribution function. In 
the present paper, three different types of porosity are considered 
and written as: 
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Type 1: Υ(𝑧, ϑ) = ϑ𝑐𝑜𝑠 (
𝜋𝑧

ℎ
) (7a) 

Type 2: Υ(𝑧, ϑ) = ϑ𝑐𝑜𝑠 [
𝜋

2
(

𝑧

ℎ
−

1

2
)] (7b) 

Type 3: Υ(𝑧, ϑ) = ϑ𝑐𝑜𝑠 [
𝜋

2
(

𝑧

ℎ
+

1

2
)] (7c) 

where ϑ is porosity coefficient. Types of porosity distribution 
through nanobeam thickness is presented in Fig. 2. 

 
Fig. 2. Normalized distributions of porosity through nanobeam thickness  

An example of effect of both power-law index and types of po-
rosity distributions (with constant porosity coefficient value) on the 
variation of Young’s modulus is shown in Fig. 3. 

 
Fig. 3. Variations of Young’s modulus through beam thickness depending  
            on power-law index and porosity distribution  

Substituting strains (Eq. 2) into equations (4), particular form 
of constitutive relations are obtained: 

(1 − 𝔅∇2)𝜎𝑥𝑥 = (1 − ℓ2∇2)𝐶𝑥𝑥 [
𝜕𝑢0

𝜕𝑥
+ 𝑧

𝜕𝜑𝑥

𝜕𝑥
−

c1𝑧3 (
𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 )] (8a) 

(1 − 𝔅∇2)𝜎𝑥𝑧 = (1 − ℓ2∇2)𝐶𝑥𝑧 [𝜑𝑥 +
𝜕𝑤0

𝜕𝑥
− c2𝑧2 (𝜑𝑥 +

𝜕𝑤0

𝜕𝑥
)] (8b) 

4. EQUATIONS OF MOTION  

Equations of motion of the nanobeam are derived based on 
the dynamic version of Hamilton principle (Reddy, 2017): 

∫ (𝛿𝒰 − 𝛿𝒦 + 𝛿𝒱)𝑑𝑡 = 0
𝑇

0
 (9) 

The quantities 𝛿𝒰, 𝛿𝒦 and 𝛿𝒱 are the virtual strain energy, 
kinetic energy and work done by external forces, respectively. 
Each virtual energy and the virtual work are defined as: 

𝛿𝒰 = ∫ ∫ (𝜎𝑥𝑥𝛿𝜀𝑥𝑥 + 2𝜎𝑥𝑧𝛿𝜀𝑥𝑧)𝑑𝐴
𝐴

𝑑𝑥
𝐿

0
 (10a) 

𝛿𝒦 = ∫ ∫ 𝜌(𝑧)(𝑢̇𝑥𝛿𝑢̇𝑥 + 𝑢̇𝑧𝛿𝑢̇𝑧)𝑑𝐴
𝐴

𝑑𝑥
𝐿

0
 (10b) 

𝛿𝒱 = − ∫ [𝑁̂𝑥𝑥
𝜕𝑤0

𝜕𝑥

𝜕𝛿𝑤0

𝜕𝑥
+ 𝐹𝑓𝛿𝑤0] 𝑑𝑧

𝐿
 (10c) 

where 𝑑𝐴 = 𝑏𝑑𝑧, 𝑁̂𝑥𝑥 are the axial in-plane compressive/tensile 

forces, 𝐹𝑓 denotes a reaction of elastic foundation, and 𝜌(𝑧) is 

the mass density of the FGM porous nanobeam 

𝜌(𝑧) = [(𝜌𝑡 − 𝜌𝑏) (
𝑧

ℎ
+

1

2
)

𝑔

 + 𝜌𝑏] [1 − 𝛶(𝑧, 𝜗)] (11) 

that varies from a value at the bottom surface 𝜌𝑏 to a value at the 

top surface 𝜌𝑡. 
The particular form of the strain energy (Eq. 10a) is presented 

below: 

𝛿𝒰 = ∫ [𝑁𝑥𝑥
𝜕𝛿𝑢0

𝜕𝑥
+ 𝑀𝑥𝑥

𝜕𝛿𝜑𝑥

𝜕𝑥
− c1𝑃𝑥𝑥 (

𝜕𝛿𝜑𝑥

𝜕𝑥
+

𝜕2𝛿𝑤0

𝜕𝑥2 ) +
𝐿

0

𝑁𝑥𝑧 (𝛿𝜑𝑥 +
𝜕𝛿𝑤0

𝜕𝑥
) − c2𝑅𝑥𝑧 (𝛿𝜑𝑥 +

𝜕𝛿𝑤0

𝜕𝑥
)] 𝑑𝑥 (12) 

where introduced thickness-integrated forces and moments take 
the following form: 

{𝑁𝑥𝑥 , 𝑀𝑥𝑥 , 𝑃𝑥𝑥} = 𝑏 ∫ 𝜎𝑥𝑥{1, 𝑧, 𝑧3}𝑑𝑧
ℎ/2

−ℎ/2
 (13a) 

{𝑁𝑥𝑧 , 𝑅𝑥𝑧} = 𝑏 ∫ 𝜎𝑥𝑧{1, 𝑧2}𝑑𝑧
ℎ/2

−ℎ/2
 (13b) 

The final form of virtual kinetic energy (Eq. 10b) is expressed 
as: 

𝛿𝒦 = ∫ 𝐼0(𝑢̇0𝛿𝑢̇0 + 𝑤̇0𝛿𝑤̇0) + 𝐼1(𝑢̇0𝛿𝜑̇𝑥 + 𝜑̇𝑥𝛿𝑢̇0) +
𝐿

0

𝐼2(𝜑̇𝑥𝛿𝜑̇𝑥) − c1𝐼3 (𝑢̇0𝛿𝜑̇𝑥 + 𝑢̇0
𝜕𝛿𝑤̇0

𝜕𝑥
+ 𝜑̇𝑥𝛿𝑢̇0 +

𝜕𝑤̇0

𝜕𝑥
𝛿𝑢̇0) − c1𝐼4 (𝜑̇𝑥𝛿𝜑̇𝑥 + 𝜑̇𝑥

𝜕𝛿𝑤̇0

𝜕𝑥
+ 𝜑̇𝑥𝛿𝜑̇𝑥 +

𝜕𝑤̇0

𝜕𝑥
𝛿𝜑̇𝑥) + c1

2𝐼6 (𝜑̇𝑥𝛿𝜑̇𝑥 + 𝜑̇𝑥
𝜕𝛿𝑤̇0

𝜕𝑥
+

𝜕𝑤̇0

𝜕𝑥
𝛿𝜑̇𝑥 +

𝜕𝑤̇0

𝜕𝑥

𝜕𝛿𝑤̇0

𝜕𝑥
) 𝑑𝑥 (14) 

where introduced mass inertias are defined as: 

𝐼𝑖 = 𝑏 ∫ 𝜌(𝑧)𝑧𝑖𝑑𝑧
ℎ/2

−ℎ/2
   ∧   𝑖 ∈ 〈0,6〉 (15) 

The particular form of work done by external forces (Eq. 10c) 
takes the form:  

𝛿𝒱 = − ∫ [−𝑁̂𝑥𝑥
𝜕2𝑤0

𝜕𝑥2 𝛿𝑤0 + 𝐹𝑓𝛿𝑤0] 𝑑𝑧
𝐿

 (16) 

The reaction of foundation is modeled as Kerr foundation 
(Kerr, 1965): 

𝐹𝑓 ≡ 𝐹𝑘 = − (
𝐾𝑙𝐾𝑢

𝐾𝑙+𝐾𝑢
) 𝑤0 + (

𝐺𝐾𝑢

𝐾𝑙+𝐾𝑢
)

𝜕2𝑤0

𝜕𝑥2  (17) 

with lower 𝐾𝑙  and upper 𝐾𝑢 spring stiffness coefficients. 𝐺 repre-
sents stiffness of shear layer. 

Removing upper spring, the model is simplified to Winkler-
Pasternak foundation (Pasternak, 1954): 

𝐹𝑓 ≡ 𝐹𝑃 = −𝐾𝑤𝑤0 + 𝐾𝑠
𝜕2𝑤0

𝜕𝑥2  (18) 
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where 𝐾𝑤 and 𝐾𝑠 are spring and shear stiffness coefficient, re-
spectively.  

Further simplification by removing shear layer leads to Winkler 
model of foundation: 

𝐹𝑓 ≡ 𝐹𝑊 = −𝐾𝑤𝑤0 (19) 

Derived equations of motion for macro-scale FGM porous 
beam are expressed as: 

𝛿𝑢0:
𝜕𝑁𝑥𝑥

𝜕𝑥
= 𝐼0𝑢̈0 + 𝐼1𝜑̈𝑥 − c1𝐼3 (𝜑̈𝑥 +

𝜕𝑤̈0

𝜕𝑥
) (20a) 

𝛿𝜑𝑥 : 
𝜕𝑀𝑥𝑥

𝜕𝑥
− c1

𝜕𝑃𝑥𝑥

𝜕𝑥
− 𝑁𝑥𝑧 + c2𝑅𝑥𝑧 = 𝐼1𝑢̈0 + 𝐼2𝜑̈𝑥 −

c1𝐼3𝑢̈0 − c1𝐼4 (2𝜑̈𝑥 +
𝜕𝑤̈0

𝜕𝑥
) + c1

2𝐼6 (𝜑̈𝑥 +
𝜕𝑤̈0

𝜕𝑥
) (20b) 

𝛿𝑤0: c1
𝜕2𝑃𝑥𝑥

𝜕𝑥2 +
𝜕𝑁𝑥𝑧

𝜕𝑥
− c2

𝜕𝑅𝑥𝑧

𝜕𝑥
− 𝑁̂𝑥𝑥

𝜕2𝑤0

𝜕𝑥2 + (
𝐾𝑙𝐾𝑢

𝐾𝑙+𝐾𝑢
) 𝑤0 −

(
𝐺𝐾𝑢

𝐾𝑙+𝐾𝑢
)

𝜕2𝑤0

𝜕𝑥2 = 𝐼0𝑤̈0 + c1𝐼3
𝜕𝑢̈0

𝜕𝑥
+ c1𝐼4

𝜕𝜑̈𝑥

𝜕𝑥
− c1

2𝐼6 (
𝜕𝜑̈𝑥

𝜕𝑥
+

𝜕2𝑤̈0

𝜕𝑥2 ) (20c) 

Substituting particular form of constitutive equations (Eq. 8) in-
to thickness-integrated forces and moments (Eq. 13) in order to 
obtain nonlocal forces and moments in final nonlocal forms:  

(1 − 𝔅∇2)𝑁𝑥𝑥 = (1 − ℓ2∇2) [𝐴𝑥𝑥
(0) 𝜕𝑢0

𝜕𝑥
+ 𝐴𝑥𝑥

(1) 𝜕𝜑𝑥

𝜕𝑥
−

c1𝐴𝑥𝑥
(3)

(
𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 )] (21a) 

(1 − 𝔅∇2)𝑀𝑥𝑥 = (1 − ℓ2∇2) [𝐴𝑥𝑥
(1) 𝜕𝑢0

𝜕𝑥
+ 𝐴𝑥𝑥

(2) 𝜕𝜑𝑥

𝜕𝑥
−

c1𝐴𝑥𝑥
(4)

(
𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 )] (21b) 

(1 − 𝔅∇2)𝑃𝑥𝑥 = (1 − ℓ2∇2) [𝐴𝑥𝑥
(3) 𝜕𝑢0

𝜕𝑥
+ 𝐴𝑥𝑥

(4) 𝜕𝜑𝑥

𝜕𝑥
−

c1𝐴𝑥𝑥
(6)

(
𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 )] (21c) 

(1 − 𝔅∇2)𝑁𝑥𝑧 = (1 − ℓ2∇2) [𝐴𝑥𝑧
(0)

(𝜑𝑥 +
𝜕𝑤0

𝜕𝑥
) −

c2𝐴𝑥𝑧
(2)

(𝜑𝑥 +
𝜕𝑤0

𝜕𝑥
)] (21d) 

(1 − 𝔅∇2)𝑅𝑥𝑧 = (1 − ℓ2∇2) [𝐴𝑥𝑧
(2)

(𝜑𝑥 +
𝜕𝑤0

𝜕𝑥
) −

c2𝐴𝑥𝑧
(4)

(𝜑𝑥 +
𝜕𝑤0

𝜕𝑥
)] (21e) 

where resultant stiffness coefficients are obtained as: 

{𝐴𝑥𝑥
(0)

, 𝐴𝑥𝑥
(1)

, 𝐴𝑥𝑥
(2)

, 𝐴𝑥𝑥
(3)

, 𝐴𝑥𝑥
(4)

, 𝐴𝑥𝑥
(6)

} =

𝑏 ∫ 𝐶𝑥𝑥{1, 𝑧, 𝑧2, 𝑧3, 𝑧4, 𝑧6}𝑑𝑧
ℎ/2

−ℎ/2
 (22a) 

{𝐴𝑥𝑧
(0)

, 𝐴𝑥𝑧
(2)

, 𝐴𝑥𝑧
(4)

} = 𝑏 ∫ 𝐶𝑥𝑧{1, 𝑧2, 𝑧4}𝑑𝑧
ℎ/2

−ℎ/2
 (22b) 

Substituting nonlocal forces and moments (Eq. 21) into equa-
tions of motion (Eq. 19), three equations of motion of the nano-
beam expressed by displacements are derived in the form: 

𝐴𝑥𝑥
(0) 𝜕2𝑢0

𝜕𝑥2 + 𝐴𝑥𝑥
(1) 𝜕2𝜑𝑥

𝜕𝑥2 − c1𝐴𝑥𝑥
(3)

(
𝜕2𝜑𝑥

𝜕𝑥2 +
𝜕3𝑤0

𝜕𝑥3 ) −

ℓ2 [𝐴𝑥𝑥
(0) 𝜕4𝑢0

𝜕𝑥4 + 𝐴𝑥𝑥
(1) 𝜕4𝜑𝑥

𝜕𝑥4 − c1𝐴𝑥𝑥
(3)

(
𝜕4𝜑𝑥

𝜕𝑥2 +
𝜕5𝑤0

𝜕𝑥3 )] = 𝐼0𝑢̈0 +

𝐼1𝜑̈𝑥 − c1𝐼3 (𝜑̈𝑥 +
𝜕𝑤̈0

𝜕𝑥
) − 𝔅 [𝐼0

𝜕2𝑢̈0

𝜕𝑥2 + 𝐼1
𝜕2𝜑̈𝑥

𝜕𝑥2 −

c1𝐼3 (
𝜕2𝜑̈𝑥

𝜕𝑥2 +
𝜕3𝑤̈0

𝜕𝑥3 )] (23a) 

−𝐴𝑥𝑧
(0)

(𝜑𝑥 +
𝜕𝑤0

𝜕𝑥
) + 2c2𝐴𝑥𝑧

(2)
(𝜑𝑥 +

𝜕𝑤0

𝜕𝑥
) − c2

2𝐴𝑥𝑧
(4)

(𝜑𝑥 +

𝜕𝑤0

𝜕𝑥
) + 𝐴𝑥𝑥

(1) 𝜕2𝑢0

𝜕𝑥2 − c1𝐴𝑥𝑥
(3) 𝜕2𝑢0

𝜕𝑥2 + 𝐴𝑥𝑥
(2) 𝜕2𝜑𝑥

𝜕𝑥2 − c1𝐴𝑥𝑥
(4) 𝜕2𝜑𝑥

𝜕𝑥2 −

c1𝐴𝑥𝑥
(4)

(
𝜕2𝜑𝑥

𝜕𝑥2 +
𝜕3𝑤0

𝜕𝑥3 ) + c1
2𝐴𝑥𝑥

(6)
(

𝜕2𝜑𝑥

𝜕𝑥2 +
𝜕3𝑤0

𝜕𝑥3 ) −

ℓ2 [−𝐴𝑥𝑧
(0)

(
𝜕2𝜑𝑥

𝜕𝑥2 +
𝜕3𝑤0

𝜕𝑥3 ) + 2c2𝐴𝑥𝑧
(2)

(
𝜕2𝜑𝑥

𝜕𝑥2 +
𝜕3𝑤0

𝜕𝑥3 ) −

c2
2𝐴𝑥𝑧

(4)
(

𝜕2𝜑𝑥

𝜕𝑥2 +
𝜕3𝑤0

𝜕𝑥3 ) + 𝐴𝑥𝑥
(1) 𝜕4𝑢0

𝜕𝑥4 − c1𝐴𝑥𝑥
(3) 𝜕4𝑢0

𝜕𝑥4 +

𝐴𝑥𝑥
(2) 𝜕4𝜑𝑥

𝜕𝑥4 − c1𝐴𝑥𝑥
(4) 𝜕4𝜑𝑥

𝜕𝑥4 − c1𝐴𝑥𝑥
(4)

(
𝜕4𝜑𝑥

𝜕𝑥4 +
𝜕5𝑤0

𝜕𝑥5 ) +

c1
2𝐴𝑥𝑥

(6)
(

𝜕4𝜑𝑥

𝜕𝑥4 +
𝜕5𝑤0

𝜕𝑥5 )] = 𝐼1𝑢̈0 − c1𝐼3𝑢̈0 + 𝐼2𝜑̈𝑥 +

c1
2𝐼6 (𝜑̈𝑥 +

𝜕𝑤̈0

𝜕𝑥
) − c1𝐼4 (2𝜑̈𝑥 +

𝜕𝑤̈0

𝜕𝑥
) − 𝔅 [𝐼1

𝜕2𝑢̈0

𝜕𝑥2 −

c1𝐼3
𝜕2𝑢̈0

𝜕𝑥2 + 𝐼2
𝜕2𝜑̈𝑥

𝜕𝑥2 + c1
2𝐼6 (

𝜕2𝜑̈𝑥

𝜕𝑥2 +
𝜕3𝑤̈0

𝜕𝑥3 ) − c1𝐼4 (2
𝜕2𝜑̈𝑥

𝜕𝑥2  +

𝜕3𝑤̈0

𝜕𝑥3 )] (23b) 

𝑐1𝐴𝑥𝑥
(3) 𝜕3𝑢0

𝜕𝑥3 + 𝐴𝑥𝑧
(0)

(
𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 ) − 2𝑐2𝐴𝑥𝑧
(2)

(
𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 ) +

𝑐2
2𝐴𝑥𝑧

(4)
(

𝜕𝜑𝑥

𝜕𝑥
+

𝜕2𝑤0

𝜕𝑥2 ) + 𝑐1𝐴𝑥𝑥
(4) 𝜕3𝜑𝑥

𝜕𝑥3 −𝑐1
2𝐴𝑥𝑥

(6)
(

𝜕3𝜑𝑥

𝜕𝑥3 +

𝜕4𝑤0

𝜕𝑥4 ) − ℓ2 [𝑐1𝐴𝑥𝑥
(3) 𝜕5𝑢0

𝜕𝑥5 + 𝐴𝑥𝑧
(0)

(
𝜕3𝜑𝑥

𝜕𝑥3 +
𝜕4𝑤0

𝜕𝑥4 ) −

2𝑐2𝐴𝑥𝑧
(2)

(
𝜕3𝜑𝑥

𝜕𝑥3 +
𝜕4𝑤0

𝜕𝑥4 ) + 𝑐2
2𝐴𝑥𝑧

(4)
(

𝜕3𝜑𝑥

𝜕𝑥3 +
𝜕4𝑤0

𝜕𝑥4 ) +

𝑐1𝐴𝑥𝑥
(4) 𝜕5𝜑𝑥

𝜕𝑥5 −𝑐1
2𝐴𝑥𝑥

(6)
(

𝜕5𝜑𝑥

𝜕𝑥5 +
𝜕6𝑤0

𝜕𝑥6 )] = 𝐼0𝑤̈0 + 𝑐1𝐼3
𝜕𝑢̈0

𝜕𝑥
+

𝑐1𝐼4
𝜕𝜑̈𝑥

𝜕𝑥
− 𝑐1

2𝐼6 (
𝜕𝜑̈𝑥

𝜕𝑥
+

𝜕2𝑤̈0

𝜕𝑥2 ) + 𝑁̂𝑥𝑥
𝜕2𝑤0

𝜕𝑥2 +
𝐾𝑙𝐾𝑢

𝐾𝑙+𝐾𝑢
𝑤0 −

𝐺𝐾𝑢

𝐾𝑙+𝐾𝑢

𝜕2𝑤0

𝜕𝑥2 − 𝔅 [𝐼0
𝜕2𝑤̈0

𝜕𝑥2 + 𝑐1𝐼3
𝜕3𝑢̈0

𝜕𝑥3 + 𝑐1𝐼4
𝜕3𝜑̈𝑥

𝜕𝑥3 −

𝑐1
2𝐼6 (

𝜕3𝜑̈𝑥

𝜕𝑥3 +
𝜕4𝑤̈0

𝜕𝑥4 ) + 𝑁̂𝑥𝑥
𝜕4𝑤0

𝜕𝑥4 +
𝐾𝑙𝐾𝑢

𝐾𝑙+𝐾𝑢

𝜕2𝑤0

𝜕𝑥2 −
𝐺𝐾𝑢

𝐾𝑙+𝐾𝑢

𝜕4𝑤0

𝜕𝑥4 ](23c) 

5. SOLUTION OF THE PROBLEM 

Analytical solution for simply supported FGM porous nano-
beam is derived using Navier solution technique. The generalized 
displacements are expanded in trigonometric series in form of: 

(

𝑢0

𝜑𝑥

𝑤0

) = ∑ (

𝑢̅ cos(𝛽𝑛𝑥)𝑒𝑖𝜔𝑛𝑡

𝜑̅ cos(𝛽𝑛𝑥)𝑒𝑖𝜔𝑛𝑡

𝑤̅ sin(𝛽𝑛𝑥) 𝑒𝑖𝜔𝑛𝑡

)∞
𝑛=1   ∧    𝛽𝑛 =

𝑛𝜋

𝐿
 (24) 

where 𝑢̅, 𝜑̅, 𝑤̅ are maximum values of displacements and 𝜔𝑛 is 
natural frequency of the n-th mode. 

The system of three governing equations for free vibration 
analysis is defined as: 

{[𝐾] − 𝜔𝑛
2[𝑀]}{Δ} = 0 (25) 

where [𝐾] and [𝑀] are stiffness and inertia matrices with size 

3x3, and Δ are displacements in vector form: 

{Δ} = [𝑢̅ 𝜑̅ 𝑤̅]𝑇 (26) 

Stiffness and inertia matrices are symmetric (Kij = Kji, Mij =

Mji). Coefficients of these matrices are obtained as: 

𝐾11 = −𝐴𝑥𝑥
(0)

𝛽𝑛
2 − ℓ2𝐴𝑥𝑥

(0)
𝛽𝑛

4 (27a) 

𝐾12 = −𝐴𝑥𝑥
(1)

𝛽𝑛
2 + c1𝐴𝑥𝑥

(3)
𝛽𝑛

2 + ℓ2(−𝐴𝑥𝑥
(1)

𝛽𝑛
4 + c1𝐴𝑥𝑥

(3)
𝛽𝑛

4)(27b) 

𝐾13 = c1𝐴𝑥𝑥
(3)

𝛽𝑛
3 + ℓ2c1𝐴𝑥𝑥

(3)
𝛽𝑛

5 (27c) 
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𝐾22 = −𝐴𝑥𝑧
(0)

+ 2c2𝐴𝑥𝑧
(2)

− c2
2𝐴𝑥𝑧

(4)
− 𝐴𝑥𝑥

(2)
𝛽𝑛

2 + 2c1𝐴𝑥𝑥
(4)

𝛽𝑛
2 −

c1
2𝐴𝑥𝑥

(6)
𝛽𝑛

2 + ℓ2(−𝐴𝑥𝑧
(0)

𝛽𝑛
2 + 2c2𝐴𝑥𝑧

(2)
𝛽𝑛

2 − c2
2𝐴𝑥𝑧

(4)
𝛽𝑛

2 −

𝐴𝑥𝑥
(2)

𝛽𝑛
4 + 2c1𝐴𝑥𝑥

(4)
𝛽𝑛

4 − c1
2𝐴𝑥𝑥

(6)
𝛽𝑛

4) (27d) 

𝐾23 = −𝐴𝑥𝑧
(0)

𝛽𝑛 + 2c2𝐴𝑥𝑧
(2)

𝛽𝑛 − c2
2𝐴𝑥𝑧

(4)
𝛽𝑛 + c1𝐴𝑥𝑥

(4)
𝛽𝑛

3 −

c1
2𝐴𝑥𝑥

(6)
𝛽𝑛

3 + ℓ2(−𝐴𝑥𝑧
(0)

𝛽𝑛
3 + 2c2𝐴𝑥𝑧

(2)
𝛽𝑛

3 − c2
2𝐴𝑥𝑧

(4)
𝛽𝑛

3 +

c1𝐴𝑥𝑥
(4)

𝛽𝑛
5 − c1

2𝐴𝑥𝑥
(6)

𝛽𝑛
5) (27e) 

𝐾33 = −𝐴𝑥𝑧
(0)

𝛽𝑛
2 + 2c2𝐴𝑥𝑧

(2)
𝛽𝑛

2 − c2
2𝐴𝑥𝑧

(4)
𝛽𝑛

2 − c1
2𝐴𝑥𝑥

(6)
𝛽𝑛

4 +

ℓ2(−𝐴𝑥𝑧
(0)

𝛽𝑛
4 + 2c2𝐴𝑥𝑧

(2)
𝛽𝑛

4 − c2
2𝐴𝑥𝑧

(4)
𝛽𝑛

4 − c1
2𝐴𝑥𝑥

(6)
𝛽𝑛

6) −
𝐾𝑙𝐾𝑢

𝐾𝑙+𝐾𝑢
−

𝐺𝐾𝑢

𝐾𝑙+𝐾𝑢
𝛽𝑛

2 + 𝑁̂𝑥𝑥𝛽𝑛
2 + 𝔅 (

𝐾𝑙𝐾𝑢

𝐾𝑙+𝐾𝑢
𝛽𝑛

2 −
𝐺𝐾𝑢

𝐾𝑙+𝐾𝑢
𝛽𝑛

4 +

𝑁̂𝑥𝑥𝛽𝑛
4) (27f) 

𝑀11 = −𝐼0 − 𝔅𝐼0𝛽𝑛
2 (28a) 

𝑀12 = −𝐼1 + c1𝐼3 + 𝔅(−𝐼1𝛽𝑛
2 + c1𝐼3𝛽𝑛

2) (28b) 

𝑀13 = c1𝐼3𝛽𝑛 + 𝔅c1𝐼3𝛽𝑛
3 (28c) 

𝑀22 = −𝐼2 + 2c1𝐼4 − c1
2𝐼6 + 𝔅(−𝐼2𝛽𝑛

2 + 2c1𝐼4𝛽𝑛
2 −

c1
2𝐼6𝛽𝑛

2) (28d) 

𝑀23 = c1𝐼4𝛽𝑛 − c1
2𝐼6𝛽𝑛 + 𝔅(c1𝐼4𝛽𝑛

3 − c1
2𝐼6𝛽𝑛

3) (28e) 

𝑀33 = −𝐼0 − c1
2𝐼6𝛽𝑛

2 + 𝔅(−𝐼0𝛽𝑛
2 − c1

2𝐼6𝛽𝑛
4) (28f) 

6. RESULTS AND DISCUSSION 

Free vibration analysis of FGM porous nanobeam with simply 
supported edges is conducted in the present section. Firstly, the 
comparison of obtained numerical results with results from the 
literature is shown to verify the correctness of the present model. 
Then, the free vibration analysis of functionally graded porous 
nanobeam is presented in the following subsection. 

6.1. Verification 

Eigenfrequencies for functionally graded beam are compared 
with results on the basis of sinusoidal shear deformation theory 
(Thai and Vo, 2012b) and presented in Table 1. The parameters 
𝐿 = 10 𝑚, 𝜐 = 0.3, 𝐸1 = 380 𝐺𝑃𝑎, 𝐸2 = 70 𝐺𝑃𝑎,  

𝜌1 = 3960 𝑘𝑔 𝑚3⁄ , 𝜌2 = 2702 𝑘𝑔 𝑚3⁄  were applied to obtain 
the results. 

Tab. 1. Dimensionless natural frequency 𝜔̅ = √𝜔 √
𝐿4𝜌𝐴

𝐸𝐼2

4
 of simply  

             supported beam 

𝐿/ℎ 𝑔 
Thai and Vo 

(2012b) 
Present 

5 

0 5.1531 5.1528 

1 3.9907 3.9904 

2 3.6263 3.6264 

5 3.3998 3.4012 

20 

0 5.4603 5.4603 

1 4.2051 4.2051 

2 3.8361 3.8361 

5 3.6485 3.6485 

Table 2 presents the comparison of calculated first three 
modes of free vibrations with results obtained based on sinusoidal 
shear deformation theory and nonlocal strain gradient theory (Lu 
et al., 2017). The following parameters were used to obtain the 
numerical results: 𝐿 = 10 𝑛𝑚, 𝐿/ℎ = 10, 𝜐 = 0.3,  

𝐸 = 30 𝑀𝑃𝑎, 𝜌 = 1 𝑘𝑔/𝑚3. 

Tab. 2. First three modes of dimensionless natural frequency 

             𝜔̅𝑛 = 𝜔𝑛𝐿2√
𝐼0

𝐸𝐼2
 of simply supported nanobeam 

𝜔𝑛 𝔅 ℓ/ℎ Lu et al. (2017) Present 

𝜔1 

0 

0 

9.7077 9.7075 

1 9.2614 9.2612 

4 8.2198 8.2197 

0 

0.5 

9.8267 9.8266 

1 9.3750 9.3748 

4 8.3206 8.3205 

0 

1 

10.1755 10.1753 

1 9.7077 9.7075 

4 8.6159 8.6158 

𝜔2 

0 

0 

37.1009 37.0981 

1 31.4146 31.4122 

4 23.1019 23.1001 

0 

0.5 

38.8887 38.8857 

1 32.9283 32.9258 

4 24.2151 24.2133 

0 

1 

43.8165 43.8132 

1 37.1009 37.0981 

4 27.2835 27.2815 

𝜔3 

0 

0 

78.1855 78.1719 

1 56.8977 56.8878 

4 36.6416 36.6353 

0 

0.5 

86.4318 86.4168 

1 62.8988 62.8879 

4 40.5062 40.4992 

0 

1 

107.4379 107.4190 

1 78.1855 78.1719 

4 50.3508 50.3420 

Tab. 3. Dimensionless natural frequency 𝜔̅ = √𝜔 √
𝐿4𝜌𝐴

𝐸𝐼2

4
 of simply  

             supported beam 

𝐾𝑤 
𝐾𝑠

𝜋2
 

Karami and Janghorban 
(2019) 

Present 

0 

0 3.216341 3.216341 

0.5 3.532519 3.532519 

1 3.781208 3.781208 

2.5 4.326928 4.326928 

102 

0 3.793132 3.793132 

0.5 3.998874 3.998874 

1 4.177015 4.177015 

2.5 4.607107 4.607107 

104 

0 10.02651 10.02651 

0.5 10.03856 10.03856 

1 10.05058 10.05058 

2.5 10.08636 10.08636 
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Table 3 contains the comparison of fundamental frequency of 
homogeneous macro-sized beam resting on Winkler-Pasternak 
foundation (Karami and Janghorban, 2019). We have not found 
any numerical results in tabular form for nanobeam resting on 
Kerr foundation. Winkler-Pasternak stiffness coefficients are 

dimensionless, and takes the form: 𝐾𝑤 = 𝐾𝑤
𝐿4

𝐸𝐼2
, 𝐾𝑠 = 𝐾𝑠

𝐿2

𝐸𝐼2
. 

Numerical results are obtained for the following parameters:𝐿 =
10 𝑚, 𝐿/ℎ = 120, 𝜐 = 0.3, 𝐸 = 30 𝑀𝑃𝑎, 𝜌 = 1 𝑘𝑔/𝑚3, 

𝐶𝑥𝑥 =
𝐸(𝑧)

1−𝜐2 . 

It can be concluded, from Tables 1–3 that the numerical re-
sults from the present model are in good agreement with the 
results from the previous papers. 

6.2. Free vibration analysis 

In the present subsection, free vibrations analysis is conduct-
ed for simply supported FGM nanobeam with diverse porosity 
distributions. In the study, geometrical and material properties are 
assumed as constant: length 𝐿 = 50 𝑛𝑚, constant thickness  

ℎ = 10 𝑛𝑚 and unit width 𝑏. Young’s moduli take values  

𝐸𝑡 = 380 𝐺𝑃𝑎, 𝐸𝑏 = 70 𝐺𝑃𝑎, densities 𝜌𝑡 = 3100 𝑘𝑔 𝑚3⁄ ,
𝜌𝑏 = 2700 𝑘𝑔 𝑚3⁄  and constant Poisson’s ratio 𝜐 = 0.3. 
During investigation, the power-law index is assumed to be con-

stant 𝑔 = 2. 

 
Fig. 4. Effect of nonlocal parameter 𝔅 and length scale parameter ℓ  

in conjunction with compressive/tensile forces on dimensionless 
fundamental frequencies of FGM nanobeam 

Figure 4 presents the influence of nonlocal parameters 𝔅, ℓ 

on dimensionless fundamental frequencies (𝜔̅1 = 102 ∙

𝜔1𝐿2√𝐼0 𝐸𝑡𝐼2⁄ ) of FGM nanobeam without porosity. The figure 

shows softening (increasing nonlocal parameter 𝔅) and harden-

ing (increasing length scale parameter ℓ) effects according to 
Eringen’s nonlocal theory and Mindlin’s strain gradient theory, 
respectively. The figure also shows the dependence of axial in-

plane compressive (𝑁̂𝑥𝑥 > 0) and tensile (𝑁̂𝑥𝑥 < 0) forces on 

dimensionless natural frequencies. Applied compressive forces 
cause weakening of the structure stiffness, in consequence, its 
eigenfrequencies decrease. Opposite phenomenon may be ob-
served for tensile force. Nanobeam stiffness increases, thus its 
fundamental frequencies increase. The phenomena are similar to 
situations observed by Timoshenko and Woinowsky-Krieger 
(1959) in bending of rectangular plates subjected to compres-
sive/tensile axial in-plane forces. 

 
Fig. 5. Effect of nonlocal parameter 𝔅 and length scale parameter ℓ  

in conjunction with diverse porosity types on dimensionless funda-
mental frequencies of FGM nanobeam under tensile forces 

Natural frequencies for FGM nanobeam subjected to tensile 
forces without porosity and with diverse porosity types (with po-
rosity coefficient ϑ = 0.3) are presented in Figure 5. Based on 
the material properties’ variation (Fig. 3) and porosity distribution 
(Fig. 2), it can be observed that porosity Type 1 and Type 3 have 
similar influence on the response of structure. Porosity causes the 
structures to become lighter and softer, and consequently, dimen-
sionless fundamental frequencies decrease for Type 1 and Type 
3. Ratio of mass to stiffness of FGM nanobeam for Type 2 (porosi-
ty accumulated at the bottom surface with lower value of Young’s 
modulus) is higher than for structure without porosity, therefore, 
fundamental frequencies are also higher.  

 
Fig. 6. Effect of nonlocal parameter 𝔅 and length scale parameter ℓ  

in conjunction with reaction of foundation on dimensionless funda-
mental frequencies of FGM nanobeam 

Figure 6 shows the comparison of Winkler-Pasternak and Kerr 
foundations effects on eigenfrequencies of FGM nanobeam with-
out porosity. It is clearly observed that the foundation effect caus-
es the whole vibrational system to become stiffer, and thus, natu-
ral frequencies increase. Fundamental frequencies of nanobeam 
resting on Kerr foundation are lower in comparison to Winkler-
Pasternak foundation with the same springs and shear moduli 
stiffnesses. Nevertheless, Kerr foundation, due to more parame-
ters, gives an opportunity to more precisely control the dynamic 
behavior of the nanobeam.  

 
Fig. 7. Effect of nonlocal parameter 𝔅 and length scale parameter ℓ  

in conjunction with diverse porosity types on dimensionless funda-
mental frequencies of FGM nanobeam resting on Kerr foundation  
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Fig. 8. Effect of axial in-plane forces in conjunction with diverse porosity 

types on dimensionless fundamental frequencies of FGM nano-
beam resting on Kerr foundation.  

Dependence of eigenfrequencies of nanobeam resting on Kerr 
foundation on various porosity types (porosity coefficient  

ϑ = 0.6) is presented in Figure 7. Similar to previous analysis, 
porosity Type 1 and Type 3 have a similar impact on natural 
frequencies. From the figure, it can be also observed that increas-

ing porosity coefficient value causes decreasing of resultant stiff-
ness for porosity distribution Type 2, and natural frequencies are 
lower for structure without porosity (compare with Fig. 5). 

Figure 8 presents the effect of compressive/tensile forces of 
FGM nanobeam with various porosity distribution and foundation 
stiffness. It may be observed that natural frequencies of the nano-
beam decrease with increasing compressive force. It is related to 
the weakening of nanobeam stiffness under compressive force. 
Opposite effect, increasing structural stiffness, occur with increas-
ing tensile forces. Therefore, increase of tensile forces’ value 
causes an increase of nanobeams eigenfrequencies.  

Numerical results for natural frequencies of FGM nanobeam 
resting on Kerr foundation with diverse porosity distribution and 
subjected to compressive/tensile forces are presented in Table 4. 

Following results are calculated for nonlocal parameters 𝔅 = 2 
and ℓ = 2. 

Tab. 4. Dimensionless natural frequency (𝜔̅1 = 102 ∙ 𝜔1𝐿2√
𝐼0

𝐸𝑡𝐼2
) of elastically supported FGM porous nanobeam under axial in-plane forces 

𝑁̂𝑥𝑥 𝐺 
𝐾𝑢 

[∙ 1016] 

𝐾𝑙 

[∙ 1016] 

Type  
1,2,3 

Type 1 Type 2 Type 3 

ϑ 

0 0.3 

-10 

0 0 0 12.0200 11.9992 12.2672 12.0856 

0.6 

0.6 
0.6 12.1355 12.1284 12.4052 12.2236 

1.8 12.1605 12.1563 12.4349 12.2533 

1.8 
0.6 12.1929 12.1926 12.4736 12.2920 

1.8 12.2993 12.3114 12.6004 12.4187 

1.2 

0.6 
0.6 12.1680 12.1648 12.4439 12.2623 

1.8 12.1767 12.1744 12.4543 12.2727 

1.8 
0.6 12.2414 12.2467 12.5314 12.3498 

1.8 12.3314 12.3472 12.6385 12.4569 

-5 

0 0 0 11.4592 11.3695 11.5941 11.4123 

0.6 

0.6 
0.6 11.5803 11.5059 11.7400 11.5583 

1.8 11.6065 11.5353 11.7715 11.5897 

1.8 
0.6 11.6404 11.5735 11.8123 11.6306 

1.8 11.7519 11.6986 11.9461 11.7645 

1.2 

0.6 
0.6 11.6144 11.5442 11.7810 11.5993 

1.8 11.6235 11.5544 11.7919 11.6102 

1.8 
0.6 11.6912 11.6305 11.8733 11.6917 

1.8 11.7854 11.7363 11.9864 11.8048 

0 

0 0 0 10.8694 10.7029 10.8795 10.6966 

0.6 

0.6 
0.6 10.9971 10.8476 11.0348 10.8522 

1.8 11.0246 10.8788 11.0683 10.8857 

1.8 
0.6 11.0604 10.9193 11.1117 10.9292 

1.8 11.1776 11.0519 11.2539 11.0716 

1.2 

0.6 
0.6 11.0330 10.8882 11.0784 10.8959 

1.8 11.0425 10.8990 11.0900 10.9075 

1.8 
0.6 11.1138 10.9797 11.1766 10.9942 

1.8 11.2129 11.0917 11.2966 11.1144 

5 

0 0 0 10.2458 9.9918 10.1144 9.9294 

0.6 

0.6 
0.6 10.3811 10.1467 10.2813 10.0969 

1.8 10.4103 10.1800 10.3172 10.1328 

1.8 
0.6 10.4481 10.2232 10.3638 10.1796 

1.8 10.5722 10.3648 10.5161 10.3323 

1.2 0.6 0.6 10.4191 10.1901 10.3281 10.1438 
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1.8 10.4292 10.2016 10.3405 10.1562 

1.8 
0.6 10.5047 10.2878 10.4333 10.2493 

1.8 10.6095 10.4073 10.5618 10.3782 

10 

0 0 0 9.5816 9.2259 9.2864 9.0976 

0.6 

0.6 
0.6 9.7262 9.3935 9.4680 9.2802 

1.8 9.7573 9.4294 9.5069 9.3193 

1.8 
0.6 9.7977 9.4762 9.5575 9.3701 

1.8 9.9298 9.6287 9.7224 9.5358 

1.2 

0.6 
0.6 9.7667 9.4404 9.5187 9.3312 

1.8 9.7775 9.4528 9.5322 9.3447 

1.8 
0.6 9.8580 9.5458 9.6328 9.4458 

1.8 9.9695 9.6744 9.7719 9.5855 

 

 

Fig. 9. Effect of Kerr foundation in conjunction with compressive/tensile 
forces on dimensionless fundamental frequencies of FGM 
nanobeam 

It is observed from Figure 9 that natural frequencies of FGM 
nanobeam increase with increasing stiffness of both springs of 
Kerr foundation because the whole system becomes stiffer. For 
this analysis, the stiffness value of shear layer is assumed to be  
constant G = 0.6. Foundation response does not change the 

dynamical behavior of the structure under tensile (N̂xx < 0) and 

compressive (N̂xx > 0) forces. Nanobeam subjected to ten-

sile/compressive forces undergoes increasing/decreasing of 
stiffness, consequently eigen frequencies increase/decrease. 

 

Fig. 10. Effect of Kerr foundation in conjunction with diverse porosity 
distribution on dimensionless fundamental frequencies  
of FGM nanobeam. 

Figure 10 illustrates the influence of Kerr foundation on the 
dimensionless fundamental frequency of the nanobeam for di-
verse porosity distribution. For every considered porosity distribu-
tion, natural frequencies increase with increasing both stiffness 
coefficient of the foundation. For this analysis, stiffness value of 

lower spring is assumed to be constant Kl = 0.6 . Influence of 

elastic foundation does not change the free vibration characteristic 
for the investigated porosity distributions.  

7. CONCLUSIONS 

In the present paper, comprehensive analysis of free vibration 
is conducted for the generalized model of FGM nanobeam with 
diverse porosity distribution, axial in-plane forces and elastic 
foundation. The nanobeam is modelled using the nonlocal strain 
gradient-based Reddy higher-order shear deformation theory. 
Equations of motion have been derived on the basis of the dy-
namical version of Hamilton principle and the analytical solution 
for free vibration problems of simply supported nanobeam is 
obtained in closed-form using Navier solution technique. Present 
results have been compared with the results from the literature. 
The parametric analysis examined the effect of axial in-plane 
forces, porosity distribution, and foundation response in conjunc-
tion with both nonlocal parameters on dynamical behavior of 
simply supported nanobeam. 

The present study and the obtained results may be applied to 
validate different analytical and numerical methods to analyze 
nanostructures. Additionally, the numerical results can be used in 
the analysis and optimization of FGM porous nanostructures in 
NEMS devices.  
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Abstract: Belt conveyors are commonly employed in manufacturing and excavation processes. One of the basic components of such equipment 
are flat transport belts which can be monolithic or composite. In both cases, the belts are most often made of plastic materials. The manufacturing 
process of flat transport belts usually involves two stages. During the first stage, belts of very high length of up to several hundred meters are 
manufactured with use of the correct technology for a given belt type. In order to be usable in the finished conveyor system, correct length of such 
belts is to be achieved. Considering the above, the subsequent stage of manufacturing requires cutting the belts down to the appropriate length and 
very often joining the ends to form a closed loop with specific circumference. In an attempt to answer the demand of the manufacturing industry, the 
authors took up design works on an automated device for crosswise cutting of monolithic and composite belts. This article presents three construc-
tion concepts of the authors’ own design together with an analysis of construction and operating factors which affect their usability. The presented 
discussion leads to selecting one of the solutions for which a drive system concept designed by the authors is proposed. Additionally, an analysis of 
the influence of the cutting knife geometry on cutting force is provided. 

Key words: Transport belts cutting, Flat transport belts, Polyurethane and composite belts, Knife cutting, Knife penetration force 

1. INTRODUCTION 

Belt conveyors are widely employed in the processing and ex-
cavation industries. They are commonly used in food processing 
plants as well as for transporting food and plants (Soares et al., 
2014). They are also used for internal transportation of compo-
nents on production lines, e.g.: packaging, glass, paper (BASF, 
2010; Breco, 2011). Conveyors with perforated transport belts 
may also be used for vacuum conveying of low density materials 
(Wojtkowiak et al., 2017). The use of belt conveyors in many 
industry branches and under different operating conditions neces-
sitates that belts made of different materials are used, usually 
polymer as well as with different geometric parameters (Domek 
and Dudziak, 2011). Industrial manufacturing typically uses flat 
belts with thickness much lower than their width and length. These 
components are characterized by relatively high flexibility when 
untensioned, which is the key factor to account for when design-
ing equipment for their processing (Berdychowski et al., 2020). 

The manufacturing process of drive belts usually involves pro-
ducing belts of very high length and winding them on reels. In the 
next stage of manufacturing, it is cut down to the required size. 
After this operation is carried out, the belt can be used in a device. 
In numerous cases it is required to use belts forming a closed loop 
which calls for another process to form a permanent connection of 
the belt ends.  

Manufacturing a complete transport belt, apart from cutting it 
to size and connecting ends, if required, frequently involves many 
additional operations such as: perforation, surface activation and 
coating as well as mounting additional components to improve 

transport efficiency, which may involve making hot welded or 
adhesive connections (Behabelt, 2015; Fierek et al., 2020; Sikora, 
1993).  

Considering the wide scope of application of transport belts, 
which results in a variety of requirements that are set for these 
components, one needs to ensure that the crosswise cutting 
operation produces a product of high quality. This requirement 
involves primarily the quality of edge after cutting as well as shape 
and dimensioning accuracy of the entire belt. In addition, the 
broad range of possible additional processing means that the 
requirements to maintain the correct edge dimensioning are also 
critical. Furthermore, surface quality after the cut is performed has 
a material effect on the possible future processing of the belt. 
Uneven, frayed cut may necessitate further processing operations 
before the subsequent stages of manufacturing, which causes 
loss of material, increases manufacturing time and additional 
expenses. 

The process of cutting flexible materials may present numer-
ous challenges. The disadvantageous factors include the relative-
ly low thickness of the processed products which results in its high 
flexibility (Broniewicz et al., 1970; Wałęsa et al., 2019).  

In order to meet the industry demand regarding the crosswise 
cut of the belt to achieve the desired length, works were taken up 
to design a device for guillotine cutting of composite belts made of 
different polymers as well as monolithic belts made of thermo-
plastic polyurethane.  

The aim of this work is to discuss the conceptual designs de-
veloped for the construction of the device for cutting flat transport 
belts and to select the most suitable solution based on analyzing 
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the factors related to construction and operation for each pro-
posed solution. The selected concept will be supplemented with 
a control system design together with preliminary considerations 
for selecting the optimal knife geometry. In particular, the latter 
consideration is of significant importance as identifying the effec-
tive values of process forces is the baseline approach in con-
scious design of machines and technological devices (Górecki et 
al., 2016, 2020a and 2020b; Górecki, 2020; Klimpel, 2000; 
Wojtkowiak and Talaśka, 2019). 

2. DESIGN ASSUMPTIONS 

The design of every mechatronic device requires to formulate 
certain design assumptions (Osiński, 2007). Typically, they follow 
the requirements specified by the intended user for the prepared 
design as well as any limitations imposed by the current state of 
technology, or any conditions which stem from the available man-
ufacturing technology. 

Flat transport belts which are to be cut are characterized by 
the following geometric parameters, as per the user’s specifica-
tion: 

 maximum width s = 500 mm, 

 maximum thickness g = 10 mm, 

 flat profile or toothed on one side.  

 

  
Fig. 1. Example composite belt structures (Continental, 2020; Wilhelm 

Herm. Müller, 2020; Wojtkowiak et al., 2018a and 2018b) 

The cut belts may be made of two types of materials: 

 monolithic thermoplastic elastomer based on polyurethane, 

non-foamed and non-reinforced (Puszka, 2006; Żuchowska, 
2000). The material is typically manufactured in form of a flat 
tape, cast or extruded (Krawiec and Domek, 2019), 

 composite structure comprising several layers of different 
polymer materials (Fig. 1).  
In the case of composite belts, the most commonly employed 

plastic materials used as the constituents of the composite are: 
polyethylene, polyester fabrics, polyvinyl chloride, rubber, polyam-
ide and aramid fiber (Madej and Ozimina, 2010). Depending on 
the specific belt, some of these materials can be used in the belt 
body and others as reinforcement, e.g. in form of fabric, foil or 
loosely placed fibers (Ciszewski and Radomski, 1989). The diver-
sity of constituent materials means that the required force can 
change in the course of the separation process. Based on the 
data provided in literature, the cutting force, depending on the 
method employed, is between 30 and 7000 [N]. The force value 
depends on belt thickness, the type of material as well as the 
method of performing the cut. As evidenced in the body of re-
search, the force values are greater when perforating or cutting 
reinforced belts with thickness up to 6 mm, and lower when cut-
ting flat belts with thickness up to 1 mm (Wojtkowiak et al., 2018a 
and 2018b; Wilczyński et al., 2019). 

The information regarding the type of material to be cut is par-
ticularly important. What follows from numerous research, the 
necessary force to cut different belts will vary in a great range, 
similarly to the character of cutting force variance being different 
for different belts (Groover, 2015), e.g.: 

 for belts made of thermoplastic polyurethane, the force neces-
sary for the technical performance of cutting the flat belt exhib-
its a strong non-linear dependence on e.g. cutting speed 
(Wałęsa et al., 2020b; Wanqing et al., 2017), 

 for some types of composite belts (Fig. 1), the force necessary 
to perform the cut is varied, multi-linear, with the graph line 
depending on the number and thickness of the individual lay-
ers of the composite, whereas the coefficient of inclination for 
individual parts of the characteristic depends on the specific 
type of material (Talaśka and Wojtkowiak, 2018). 
The variety of cut belts necessitates the development of 

a construction solution for the cutting device which enables to 
efficiently perform the operation regardless of the processed 
material.  

The subsequent stages of the manufacturing process, includ-
ing connecting the belt ends to form a closed loop or surface 
coating, require maintaining the highest possible precision of the 
cut, typically referred to as: maximum belt edge non-linear error 
after cutting, as well as allowable deviation from perpendicularity 
relative to side surface. Moreover, the belt ends at the point of cut 
should be smooth without need for further processing. This re-
quirement is particularly important in the case of composite belts 
with fabric reinforcement. In this case, for all the punching and 
cutting operations, it is necessary to exactly sever the reinforce-
ment fibers so that they are not drawn out from the belt structure 
(Wojtkowiak et al., 2018a and 2018b). For monolithic belts, partic-
ularly when cutting belts of higher thickness, an edge chamfering 
effect is observed resulting from a complex state of stress in the 
cut area (Wałęsa et al., 2019, 2020a and 2020b). 

One of the conditions for seeking the optimal construction so-
lution for the belt cutting device is the requirement to maintain 
compatibility of the device with other machines employed in the 
flat transport belt manufacturing process. The designed device 
must not apply any force on the belt which might cause its dis-
placement as it is manufactured on an automated production line 



Aashutosh S. Kale, Aleksandra Biszczanik, Krzysztof Wałęsa, Mateusz Kukla, Maciej Berdychowski, Dominik Wilczyński    DOI 10.2478/ama-2020-0021 
Designing of the Machine for Cutting Transport Belts: Conceptual Works  

146 

involving other equipment, e.g. for lengthwise cutting and perfora-
tion. The designed solution must perform its intended function 
without affecting the other processes. It is required that the belt 
introduced to the device operating area does not change its longi-
tudinal and lateral position. Moreover, carrying out the cut must 
not cause any deformation of the belt.  

The above observations together with the experience involv-
ing the designed equipment for cutting and perforating composite 
belts allow to formulate the following design specification: 

 the machine must ensure the cutting operation maintains the 
required geometric accuracy, with maximum perpendicular 
deviation from the side edge being 1 mm and maximum recti-
linear error of the belt edge being 0.5 mm, 

 after the cutting operation is performed, the resulting edge 
must be smooth without fraying of the reinforcement fibers of 
composite belts an without chamfering of edges of monolithic 
belts, 

 the device must not apply any external force to the belt to 
cause it to move, 

 the working motion should separate the belt in one pass to 
maintain a uniform cutting line. This approach is necessary, 
considering the flexibility of the worked material. 
With view of the specifications provided above, a preliminary 

analysis was carried out for 3 different methods of delivery of the 
belt cutting process: 

 milling with shank cutter, 

 guillotine cutting using two cutting edges to ensure the pro-
cess is similar to a pure shear, 

 guillotine cutting using one cutting edge with the working knife 
being pressed into the belt with specified force. In this variant, 
the working knife is supported by a rigid body with a recess for 
the blade allowing for collision-free passing through the mate-
rial.  
The above concepts of implementation of the crosswise cut 

operation were subject to an analysis which allows to formulate 
the following conclusions: 

 the milling variant was discarded because this method re-
quires several passes to separate the material along its entire 
length. Furthermore, it may cause reinforcement fibers to get 
drawn outside the composite belt together with a significant 
loss of material, 

 the variant to employ guillotine cutting using two knife edges 
was discarded because such system requires highly precise 
instrumentation, with clearance adjustment between the main 
blade and counterblade. Furthermore, this approach causes 
the belt to move upwards, which may cause a displacement in 
the system. 
The variant to be used in the implementation shall employ 

guillotine cutting using a single cutting edge. This concept was 
considered to be the most appropriate due to the lower complexity 
of construction (single knife moving vertically) as well as the ex-
pected best cutting result.  

The concept of guillotine cutting employing a single knife with 
supporting material is furthermore the easiest to implement on an 
existing belt manufacturing line. Such a solution can easily be 
framed within a gated structure. This way the belt will be posi-
tioned on the table contained inside the frame to facilitate accu-
rate positioning to perform the cut. At the same time, the cut belt 
can be passed to the subsequent workstation of the manufactur-
ing line.  

3. DEVICE CONSTRUCTION CONCEPTS 

Based on: the listed requirements regarding the operation of 
the guillotine mechanism as well as the resulting assumptions 
regarding device construction, three conceptual designs were 
developed to facilitate crosswise cutting of flat transport belts. For 
each proposed solution, the same profiled table with grips to 
immobilize the belt were envisioned to ensure correct tensioning 
of the belt and preventing its further motion. This facilitates the 
correct performance of the cutting operation and maintaining the 
required dimensioning accuracy. Furthermore, this is beneficial for 
obtaining the required surface quality of the belt after the cut, 
which is one of the requirements related to the end result of the 
carried out operation. Finally, the tabletop will feature a recess 
allowing the blade to move safely after cutting the material. 

In each of the proposed design concepts, the cutting force is 
generated by use of pneumatic actuators. This choice is dictated 
by operational factors as compressed air used in the drive system 
is typically readily available on the premises of the manufacturing 
facility.  

When formulating the construction concept of the entire de-
vice, the final geometry of the knife was not considered. The 
solutions presented further mostly differ with respect to: the num-
ber of employed pneumatic actuators, the shape of the worktable 
on which the cutting process is to be carried out, the size of the 
frame, employed instrumentation and the method of transmitting 
the force from the actuator to the knife. 

According to the first concept (Fig. 2), the blade (5), attached 
to a guide beam (3), lead on linear guides (4) is put to motion via 
two bi-directional pneumatic actuators (2). This way the blade is 
pressed into the flat transport belt (6) placed on the supporting 
table (7), causing the belt to become cut. The total displacement 
of the knife (5) is equal to the piston stroke length of the pneumat-
ic actuator (2).  

The proposed device utilizes 2 pneumatic actuators (2) in-
stalled vertically at the upper beam of the device frame (1). The 
guide beam (3) is fastened by joints to the piston rods of the 
actuators (2), a small distance away from its ends. The guide 
beam (3) with attached simple knife (5) is connected with two 
guides (4) placed on both sides. The guides are to ensure correct 
travel of the knife. The belt (6) to be cut is placed on the table (7) 
under the knife (5) and secured with grips (8). 

During device operation, the extension of the actuator piston 
rod causes a downward movement of the guide beam with the 
knife. This exerts pressure on the belt resulting in cutting force 
with value dependent on the surface area of actuator pistons and 
their supply pressure.  

The advantages of this solution include:  

 simple construction facilitating easy integration with existing 
manufacturing line and problem-free operation, 

 achieving uniform distribution of force on the cutting edge, 

 possibility of easy modification. 
The disadvantages of the presented solution include: 

 no possibility to adjust the stroke of the blade which limits the 
possibility to adjust the device for cutting belts of different 
thickness or other materials used in the belt manufacturing in-
dustry, e.g. foams, 

 the system with two actuators acting as a joint drive for the 
fastened beam with knife is susceptible to the slanting of the 
beam and consequently of the knife. Synchronous operation 
of pneumatic actuators is typically very challenging to achieve, 
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this may lead to uneven extension and slanting of the beam 
causing jamming on vertical guides. In extreme cases, it is 
possible for one edge of the blade to hit the belt and damage 
another component. Therefore, the pneumatic control system 
necessary for the device with such construction requires to 
use the relatively expensive synchronizing valves, 

 the actuators effect the cutting force dynamically during the 
extension of the piston rod, which increases the probability of 
damaging them as a result of piston rod buckling  

(Osiński, 2007), 

 the required length of the blade for cutting belts with assumed 
width necessitates large dimensions of the machine and high 
spacing between the actuators. 
The second solution also entails employing a set of two verti-

cal pneumatic actuators (2), attached to the upper beam of the 
frame (1), however, in this variant the guide beam (3) with at-
tached knife (5) is longer, therefore the knife is placed on an arm 
outside the frame (Fig. 3). 

 
Fig. 2. Device for crosswise cutting of transport belts according to the first proposed concept: 1 – frame 2 – pneumatic actuator,  

3 – guide beam, 4 – linear guide, 5 – knife, 6 – belt, 7 – table, 8 – holding grips 

 
Fig. 3. Device for crosswise cutting of transport belts according to the second proposed concept: 1 – frame 2 – pneumatic actuator, 3 – guide beam, 

 4 – linear guide, 5 – knife, 6 – belt, 7 – table, 8 – belt grips 

Employing a lever-like system alters the distribution of forces 
applied to the knife, whereas the dependency between knife 

displacement and piston displacement is the same as in the first 
design concept. 

2 

4 

1 

3 

5 

6 

8 

7 

2 

4 

1 

3 

5 

6 

8 

7 



Aashutosh S. Kale, Aleksandra Biszczanik, Krzysztof Wałęsa, Mateusz Kukla, Maciej Berdychowski, Dominik Wilczyński    DOI 10.2478/ama-2020-0021 
Designing of the Machine for Cutting Transport Belts: Conceptual Works  

148 

An advantage of the second design concept is the possibility 
to adapt the device to cutting belts that are wider than provided in 
initial assumptions. It is possible because in this solution the 
actuator spacing does not depend on the width of the belt (6) and 
the knife (5), whereas the table supporting the belt is placed out-
side the frame. This allows to reduce the width of the frame (1). 
However, one needs to consider that too low width of this compo-
nent in such arrangement can negatively affect device stability 
and rigidity of the beam guiding (3). Additionally, the beam (3) 
component has significant length which means its rigidity be-
comes a critical characteristic. In the presented system, the force 
load on the guide beam is located outside the area between its 
supports, additionally, the dual pneumatic actuator drive solution 
without synchronization can cause slanting and jamming in the 
guides. Therefore, similarly to the first design concept, synchroni-
zation of actuators will be required.  

The third design concept (Fig. 4) involves a single pneumatic 
actuator (2) driving a cam (9) which revolves on a bearing in a grip 
(10) presses on the beam guiding the knife (3). The presented 
solution is characterized by the fact that the displacement of the 
knife is not dependent exclusively on the extension of the actuator 
since it is possible to use a cam with movable fastening point for 
the actuator piston rod joint.  

In this solution, the pneumatic actuator (2) is installed horizon-
tally and the piston rod is connected to the cam (9) by a pin 
placed in the oval shaped hole in the cam. Additionally, the cam is 
installed in the fixture (10) which allows free rotation. In this ar-
rangement, extension of the actuator causes rotational movement 

of the cam which due to eccentricity can affect the guide beam (3) 
by pushing it downwards. This motion causes displacement of the 
knife to cut the belt. The proposed concept also includes return 
springs (11) which cause the guide beam with the knife to move 
upwards after the pneumatic actuator piston retracts (2). In con-
trast to previously described solutions, the return springs are 
necessary for correct device operation. 

The use of such springs, apart from facilitating the return mo-
tion to the base position of the knife also provides shock absorp-
tion for the guide beam - knife system, allowing to carry out the 
cutting operation much more fluidly. Consequently, a significant 
improvement of the cut edge quality may be achieved. Moreover, 
the springs prevent sudden impact of the knife on the belt. An 
appropriate selection of cam geometry allows to shorten the 
stroke of the piston in comparison to previously discussed con-
cepts. The use of cam further serves to prevent excessive down-
ward displacement of the blade as after passing the extreme 
displacement of the cam, the system does not move downwards 
regardless of the piston extension, instead it retracts upwards. 
Finally, the use of one actuator simplifies the pneumatic and 
control systems which are to be employed.  

Among the disadvantages of this design concept, similarly to 
the first discussed concept, is that the width of the workstation is 
determined by the width of the table and the cut belt, which cannot 
be easily adapted to cut belts with higher width than initially as-
sumed. Additionally, the cutting force will not be equal to the force 
effected by the piston. This additionally entails optimizing the cam 
geometry for this purpose. 

 
Fig. 4. Device for crosswise cutting of transport belts according to the third proposed concept: 1 – frame 2 – pneumatic actuator, 3 – guide beam,  

4 – linear guide, 5 – knife, 6 – belt, 7 – table, 8 – belt grips, 9 – cam, 10 – cam fixture, 11 – spring 

Analyzing the features of the presented design concepts of 
the transport belt cutting device, only the third variant meets all 
the initial assumptions. This construction of this variant is relative-
ly simple, while similar to the first concept; however, the use of 
one actuator allows to simplify the pneumatic and control systems. 
The system concept in the third variant is further characterized by 
improved stability in comparison to the second variant, where 

dimensional requirements are difficult to specify without in-depth 
analysis due to the required system rigidity.  

An advantage of using the cam mechanism is the additional 
mechanical protection of the system, preventing excessive down-
ward motion of the knife. Such protection would be achievable in 
the other concept variants exclusively by selecting the exact value 
for the piston stroke with no margin, or by using additional sen-
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sors. The return spring system limits the dynamics of the down-
ward motion of the knife which may have a positive effect on 
component wear by reducing vibration and impacts, which will 
further affect cutting accuracy and surface quality of the cut edge. 
In comparison to the other variants, the above mentioned features 
of the third concept indicate that this is the best implementation for 
the given application. 

4. CONTROL SYSTEM DESIGN 

The concept selected in the previous stage is to facilitate the 
cutting of belts with initially assumed parameters. To this end, the 
device will carry out actions in a sequence as provided by the 
working algorithm on Fig. 5. 

 
Fig. 5. The working algorithm of the machine for cutting the belt 

 

Fig. 6. Pneumatic diagram, where: Ex I0.7 and Ex I0.6 – limit switches, 
Q0.1 and Q0.2 – electrovalve coils, K6 – pressure meter, PLC - 
controller 

Execution of the assumed algorithm requires a working sys-
tem equipped with the necessary actors and sensors. As provided 
in the selected conceptual design for the belt cutter, cam motion is 
forced by the operation of the pneumatic actuator. Its operation 
necessitates designing a pneumatic system. Apart from control 
and supply components, it includes the necessary sensors: limit 
switches and system pressure sensor. The diagram is provided on 
Fig. 6. 

The markings used in Fig. 6 correspond to the ones used in 
the software. For piston stroke control, 5-way electrovalve with 2 
coils. This is to ensure the piston stays in the given position even 
after the machine stops. This results from the requirement to 
ensure safe operation when carrying out work with a dangerous 
tool, i.e. the knife. Guards were also planned in the machine to 
reduce the risk of dangerous situations occurring, e.g. unexpected 
withdrawal of the blade which may occur in the case of valves with 
coil and spring being used. Additionally, unexpected withdrawal or 
lowering of the knife may damage the belt which should also be 
avoided. 

When carrying out design works it is necessary to maintain 
fluidity of motion of the actuator which facilitates improved surface 
quality of the cut belt. To this end, a pressure meter shall be 
employed which prevents the initialization of the cutting process if 
problems are detected with the pressure value in the system. 

In order to engage the power supply to the pneumatic system, 
a valve with manual lever and spring was envisioned, as this 
system does not require frequent operation.  
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5. SELECTION OF KNIFE GEOMETRY 

The working system of the device calls for utilizing a cutting 
component, i.e. the blade, able to cut the material with use of 
a single cutting edge. The geometry thereof has material influence 
on the forces present during the performance of the belt cutting 
operation (Wojtkowiak and Talaśka, 2019). As indicated by re-
search, the cutting speed, cutting force and dimensions of the cut 
material are the most important factors in the aspect of knife wear 
(Chao-Lieh Yang et al., 2009). Knife wear may significantly affect 
post-cut surface quality. Together with the selection of the optimal 
blade, it is necessary to use the correct method of force transmis-
sion from the actuator to the blade. Therefore, it is very important 
to select its correct geometry and determine the force value to be 
applied on the blade to carry out the cut with set dimensions and 
made of material with specific strength. 

The selected device concept for crosswise cutting of belts is 
compatible with at least two types of knife blades: 

 straight blade edge, where the cutting action is applied simul-
taneously at the entire width of the belt (Fig. 7), 

 inclined blade edge, with the inclination being one sided (Fig. 
8), in the course of the cutting action, the blade penetrates the 
belt gradually. 
The type and geometry of the knife blade has a major effect 

on the value and distribution of the cutting force. Generally, the 
cutting force with single blade edge can be described with the 

below formula (Marciniak, 1959): 

𝐹𝑇 = 𝑘 ∙ 𝑙 ∙ 𝑔 ∙ 𝑅𝑡 ,   (1) 

where: k – correctional coefficient, its value is determined empiri-
cally, in includes, e.g. the dulling of the edge with the increasing 
number of work cycles performed, l – cut line length, g – cut mate-
rial thickness, Rt – material shear strength.  

It can be observed that the force necessary to cut such a belt 
depends not only on the material type (expressed by the parame-
ter Rt), but also on the geometry of the cross-section. Total work 
to be performed by the blade in the course of the cutting process 
is equal to (Marciniak, 1959): 

𝑊 = 𝜆 ∙ 𝐹𝑇 ∙ 𝑠,   (2) 

where: λ – the cutting force graph fill coefficient, expressed as 
a percentage value, s – cutting tool stroke. The coefficient λ de-
scribes the ratio of the area below the curve describing the de-
pendency between the cutting force FT, and the displacement of 
the tool s, to the total area of the rectangle determined by the 
maximum cutting force value FTmax and the tool stroke s. 

Therefore, the cutting force required to separate the belt with 
width m and thickness g, if the straight knife blade is employed, 
shall be equal to (Fig. 7): 

𝐹𝑇1 = 𝑘 ∙ 𝑚 ∙ 𝑔 ∙ 𝑅𝑡 .   (3) 

 
Fig. 7. Cutting with straight knife blade: FT1 – total cutting force, s – stroke of cutting tool, g – thickness of cut material, l – cut line length,  

m – width of cut belt; 1 – knife, 2 – cut belt, 3 – support plate 

Total work performed during the cutting operation with the 
straight knife blade is equal to: 

𝑊1 = 𝜆 ∙ 𝐹𝑇1 ∙ 𝑔 =  𝜆 ∙ 𝑘 ∙ 𝑚 ∙ 𝑔2 ∙ 𝑅𝑡, (4) 

whereas for straight knife blade, the length of the cutting line l is 
equal to the width of the cut material m, and the working stroke 
s is equal to its thickness g.  

Please consider that the use of straight knife edge for cutting 
does not generate additional transverse force which might cause 
displacement of the belt in the corresponding direction. 

When examining the cutting of material with an inclined blade 
edge and one-sided slant, the distribution of forces is slightly 
different, mostly due to the presence of transverse, resulting from 
the inclination of the knife blade (Fig. 8). 

The work W2 necessary to separate the belt made of the 
same material with the same geometric parameters is equal to the 

work during cutting operation by the blade (Marciniak, 1959): 

𝑊1 = 𝑊2′, (5) 

where W1 – work carried out during cutting the belt material with 
straight blade (Fig .7), W2’ – work carried out during cutting the 
belt material with inclined blade (Fig. 8).  

Considering the total stroke of the knife blade in this variant is 
equal to: 

𝑠2 = 𝑔 + 𝑚 ∙ tan 𝜑.  (6) 

Therefore, the total work W2 carried out during the cutting of the 
belt with thickness g and width m by the inclined knife edge is:  

𝑊2 = 𝜆 ∙ 𝐹𝑇2 ∙ (𝑔 + 𝑚 ∙ tan 𝜑).   (7) 

At the same time, the work can be expressed with the following 
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formula:  

𝑊2 = 𝑊2′ + 𝑊2′′, (8) 

whereas W2 – total work carried out during cutting of the belt 
with inclined knife edge, W2’ – the work required to separate the 
material, W2’’ – work necessary to overcome frictional resistance 
of inclined knife stroke. 

The important matter is that the cutting force in this variant 
comprises two components: horizontal and vertical. Therefore, the 
knife must be supported on the side surface with a slide or roller 
guide. Consequently, the total cutting force value depends not 
only on the energy required to separate the material, but also on 
the resistance on the knife guide. Analyzing the distribution of 
forces during cutting operation involving the blade of such geome-
try, one needs to note that the cutting force FT2 has two compo-
nents: 

𝐹𝑇2 = 𝐹𝑇2′ + 𝐹𝑇2′′,   (9) 

whereas FT2’ – active component participating in the phenomenon 
of material separation, FT2’’ – component resulting from knife 
motion resistance on the guide. Its value can be calculated from 
the following formula: 

𝐹𝑇2′′ = 𝐹𝑛2 ∙ 𝜇1 = 𝐹𝑝2 ∙ 𝜇1 = 𝐹𝑇2′ ∙ 𝜇1 ∙ tan 𝜑,   (10) 

where Fn2 – normal component to the guide surface, Fp2 – hor-
izontal component resulting from the cutting process with inclined 
knife edge, its value equal to force Fn2, which may also cause 
transverse displacement of the belt, µ1 – frictional coefficient of 
the guide. 

 
Fig. 8. Cutting with inclined knife edge, with a one-sided slant: FT2 – total cutting force, FT2’ – force necessary to separate the belt,  FT2’’ – force necessary  

to overcome the movement resistance on the guide, Fp2 – transverse force causing belt displacement, Fn2 – normal force affecting the guides,  
F2 – resultant force, s2 – stroke of the cutting tool, g – thickness of the cut material, l – cut line length, m – cut belt width; 1 – knife, 2 – cut belt,  
3 – support plate 

Therefore, the total work during cutting of the belt with knife 
edge with one-sided slope is:  

𝑊2 = 𝜆 ∙ (𝐹𝑇2′ + 𝐹𝑇2′′) ∙ (𝑔 + 𝑚 ∙ tan 𝜑).  (11) 

Considering the equal value of work to be carried out to sepa-
rate the material with straight and inclined knife blade (5) the 
following condition can be calculated: 

𝜆 ∙ 𝐹𝑇1 ∙ 𝑔 = 𝜆 ∙ 𝐹𝑇2′ ∙ (𝑔 + 𝑚 ∙ tan 𝜑),   (12) 

and therefore, the formula to describe the ratio of both forces: 

𝐹𝑇2′

𝐹𝑇1
=

𝑔

(𝑔+𝑚∙tan 𝜑)
.     (13) 

Based on the above, the force necessary to separate the material 
with inclined knife blade FT2’ is equal to: 

𝐹𝑇2′ = 𝐹𝑇1 ∙
𝑔

(𝑔+𝑚∙tan 𝜑)
= 𝑘 ∙ 𝑚 ∙ 𝑔 ∙ 𝑅𝑡 ∙

𝑔

(𝑔+𝑚∙tan 𝜑)
.     (14) 

Therefore, considering the dependencies arrived on 
(9, 10 i 14), the total force to be applied to the guillotine knife is: 

𝐹𝑇2 = 𝑘 ∙ 𝑚 ∙ 𝑔 ∙ 𝑅𝑡 ∙
𝑔

(𝑔+𝑚∙tan 𝜑)
∙ (1 + 𝜇1 ∙ tan 𝜑).     (15) 

To summarize, considering the formulas (6, 7 and 15), the to-
tal work performed in the course of cutting the belt with inclined 
knife blade is: 

𝑊2 = 𝜆 ∙ 𝑘 ∙ 𝑚 ∙ 𝑔2 ∙ 𝑅𝑡 ∙ (1 + 𝜇1 ∙ tan 𝜑).   (16) 

One needs to consider that total work carried out to separate 
the belt with knife blade with one sided slope (16) is slightly higher 
than the work carried out when straight blade (4) is utilized. This 
results from the additional transverse force which is to be coun-
teracted on the blade guide. Consequently, an additional friction 
resistance as the stroke of the working mechanism is performed. 
However, considering that, in particular in the case of roller bear-
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ings, the frictional coefficient values are relatively low (between 
0,001 and 0,01), the contribution of this component is negligibly 
small (Hiwin, 2012). 

As observed, this method of cutting causes a transverse force 
to be effected which causes displacement of the belt in the corre-
sponding direction. Its value is equal to: 

𝐹𝑝2 = 𝐹𝑇2′ ∙ tan 𝜑 = 𝑘 ∙ 𝑚 ∙ 𝑔 ∙ 𝑅𝑡 ∙
𝑔∙tan 𝜑

(𝑔+𝑚∙tan 𝜑)
, (17) 

The presence of this force means that the design assumptions 
for the device construction are not met, as the belt must not move 
during the operation. This can be solved by adding holders to 
immobilize the belt during the cutting process. The press force of 
the holder should meet the following condition: 

𝐹𝑑 ≥
𝐹𝑇2′∙tan 𝜑

𝜇2
= 𝑘 ∙ 𝑚 ∙ 𝑔 ∙ 𝑅𝑡 ∙

𝑔∙tan 𝜑

(𝑔+𝑚∙tan 𝜑)∙𝜇2
, (18) 

where µ2 – the coefficient of friction between the belt and the 
table. 

What follows from the above analysis to select the optimal 
knife geometry, two solutions are possible. The first variant in-
volves the use of straight knife blade which does not exert any 
additional forces when separating the material to cause the dis-
placement of the belt. The second possible variant uses knife 
blade with one-sided inclination which is characterized by the 
following disadvantages: 

 it necessitates the employment of an additional knife guide 
due to the transverse forces occurring in the process of mate-
rial separation, 

 transverse forces may cause the motion of the belt on the 
cutting table, this necessitates using additional holding com-
ponents. 
However, the blade with inclination is characterized by signifi-

cantly lower force necessary to cut the belt. Moreover, the distri-
bution of this force remains uniform throughout the stroke of the 
working tool, in contrast to the straight knife.  

Considering the above mentioned advantages and disad-
vantages of both solutions, it is necessary to continue conceptual 
work on optimal geometry of the knife so as to arrive on a com-
promise solutions, characterized by low force value necessary to 
separate the material, at the same time applying no additional 
forces on the belt.  

6. CONCLUSIONS 

Transport belts are widely employed in the industry, and their 
manufacturing process often necessitates cutting them down to 
the desired length in order to prepare the final product. Market 
demand influenced the authors to make an effort to design a 
machine for cutting belts.  

Considering the design assumptions formulated earlier based 
on specifications given by the belt manufacturers and identified 
based on the authors’ own experience, three concepts were de-
veloped for the construction of the machine for crosswise cutting 
of transport belts. Each concept utilizes similar components to 
cause the motion of the working mechanism; however, they differ 
in regards to the layout of components and in the kinematics of 
motion of the working mechanism of the device. The first two 
variants employ a direct transmission of the stroke of the pneu-

matic actuators onto the motion of the cutting tool, these ap-
proaches were discarded due to the limited possibility of adjust-
ment of the knife stroke. Additionally, a possibly significant chal-
lenge is identified in the possible slanting of the support beam on 
which the knife is fixed. The concept involving a single pneumatic 
actuator and cam to force the motion of the knife together with 
guides and springs to ensure fluid motion of the knife was be-
lieved to meet the user requirements to the greatest degree.  

Furthermore, a control system concept was developed for this 
device, based on a programmable logic controller, connected to 
the pneumatic control system components.  

The presented design concept of the device construction and 
control system structure shall be supplemented in the course of 
the actual machine design. 

Considerations made in this work regarding the determination 
of forces affecting the belt during the cutting process involving the 
straight and inclined knife edges constitute a starting point for 
further examination to select the optimal geometry thereof. At this 
stage of works, it was established that neither the straight or the 
inclined blade constitute an effective solution. Therefore, further 
works are consider to modify the knife geometry. 
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Abstract: Cyclic loading of superelastic NiTi shape memory alloy (SMA) causes forward and reverse austenite–martensіte transfor-
mations, and also increases the volume of stabilized martensite. This appears in the change of stress-strain curve form, the decrease  
of dissipation energy, and increase of residual strain, that is, named transformation ratcheting. In real structures, the SMA components  
in most cases are under the action of variable amplitude loading. Therefore, it is obvious that the loading history will influence 
 the functional fatigue. In the present work, the effect of stress ratio on the functional properties of superelastic NiTi shape memory alloy 
under variable amplitude loading sequence with two blocks was investigated. The studies were carried out under the uniaxial tension of cy-
lindrical specimens under load-full unload and load-part unload. The change of residual strain, strain range, dissipation, and cumulative 
dissipation energy density of NiTi alloy related to load sequences are discussed. Under both stress ratios, the residual strain in NiTi alloy  
is increased depending on the number of loading cycles on the high loading block that is similar to the tests at constant stress or strain 
amplitude. An unusual effect of NiTi alloy residual strain reduction with the number cycles is found at a lower block loading. There  
was revealed the effect of residual strain reduction of NiTi alloy on the number of loading cycles on the lower amplitude block. The amount 
of decrement of the residual strain during a low loading block is approximately equal to the reversible part of the residual strain due 
 to the stabilized martensite. The decrease of the residual strain during the low loading block is approximately equal to the reversible part 
of residual strain due to the stabilized martensite. A good correlation of the effective Young’s modulus for both load blocks with residual 
strain, which is a measure of the volume of irreversible martensite, is observed. 

Keywords: Pseudoelastic NiTi alloy, functional fatigue, variable amplitude loading, strain range, residual strain, dissipation energy 

1. INTRODUCTION 

Shape memory alloys (SMA) are functional materials, which 
are characterized by shape memory effect and pseudoelasticity. 
Due to these properties, they are widely used in bioengineering 
(Nematollahi et al., 2019), aeronautics (Pecora and Dimino, 
2015), robotics (Zeng et al., 2020), and civil and mechanical 
engineering (Zeng et al., 2020).  

Recovery and residual strains are important parameters, 
which represent a quantitative measure of the cyclic evolution of 
the SMA pseudoelastic properties during loading. Recovered 
strain is pseudoelastic recovery from mechanical unloading and 
residual strain is unrecovered strain upon unloading. The accumu-
lation of inelastic deformation (residual strain) occurring in NiTi 
shape memory alloy under the cyclic loading is named transfor-
mation ratcheting, since it is mainly caused by the solid-solid 
transformation from austenite to martensite phase and vice versa 
(Auricchio et al., 2004; Kang, 2013). This evolution associated 
with deterioration of super-elastic characteristics is referred as 
“functional fatigue.” Recovered and dissipated energy are the 
parameters that represent the shape of the stress–strain hystere-
sis loop. 

The functional properties of the pseudoelastic SMA deterio-
rate under cyclic loading (Auricchio et al., 2004; Araya et al., 

2008; Kang G., 2013; Vantadori et al., 2018). In particular, there is 
a significant decrease of recovered strain, recovery energy, dissi-
pated energy, Young’s modulus, direct transformation stress, and 
increased residual strain at strain-controlled and stress-controlled 
tests (Maletta, 2014; Kang G., 2013).  

It is known that the temperature (Araya et al., 2008), type of 
loading (Mammano and Dragoni, 2012), stress ratio (Iasnii and 
Yasniy, 2019b; Mahtabi et al., 2015), and heat treatment (Wagner 
et al., 2008) affect the functional and structural fatigue of SMA. 

Most structures and structural elements made of SMA operate 
under variable amplitude loading at real conditions. However, 
there exist a few studies regarding the effect of load sequence 
(Soul and Yawny 2015; Mahtabi at al., 2018) and variable ampli-
tude loading (Soul and Yawny, 2017; Mahtabi et al., 2018) on 
SMA functional fatigue. In particular, there was studied the effect 
of various amplitude block loading history under the controlled 
crosshead displacement on the functional properties of pseudoe-
lastic NiTi alloy (Soul and Yawny, 2017). These blocks were ap-
plied with an increasing amplitude sequence, a decreasing ampli-
tude sequence, and interleaved amplitudes. It was shown that the 
loading type, namely, the block with increasing or decreasing 
amplitude sequence affects significantly on the residual strain 
evolution. The linear damage rule cannot be not applied complete-
ly to the test full austenite partial martensite (FAPM) cycles, for 
which the decreasing ordering sequence resulted in lower values 
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of maximum residual drift (Soul and Yawny, 2017). 
Though, it is not clear how the functional properties of supere-

lastic SMA will change after the alternation of blocks with high and 
low stress amplitude, and different stress ratio. Since degradation 
or total loss of functional properties may cause failure of a struc-
ture, machine or other object, it is important to study the functional 
behavior of SMA under variable amplitude loading. It is then 
expected that the global stress–strain response would reflect the 
previous cycling history of the specimen. 

In this paper, the uniaxial functional behavior of superelastic 
NiTi alloy under two blocks variable amplitude loading was studied 
experimentally, especially the evolution of the residual strain and 
energy dissipation of NiTi alloy. 

2. MATERIAL AND EXPERIMENTAL SETUP 

A commercial pseudoelastic Ni55.8Ti44.2 rod ( Wuxi Xin Xin glai 
Steel Trade Co., China) with diameter 8 mm was analyzed. The 
chemical composition of alloy was given in the paper (Iasnii et al., 
2018a). Mechanical properties were determined according to 
ASTM F2516-14 standard (2014) in ice water at 0°С, which is 
higher than the austenite finish temperature (Af = −38.7°С): yield 

strength, 0,2 = 447 MPa, ultimate tensile strength, UTS = 869 
MPa (V Iasnii et al. 2018a). The phase transformation tempera-

tures were identified as As = –60.5С and Af = –38.7С using 
differential scanning calorimetry by Q1000 TAI during heating and 
cooling of the specimen (Iasnii and Junga, 2018; V Iasnii et al., 
2018b). 

The effect of two blocks’ variable amplitude loading on func-
tional properties of NiTi alloy under uniaxial tension of the cylin-
drical specimens with a diameter of 4 mm and a gage length of 
12.5 mm at 0°C was investigated. The test technique at constant 
amplitude loading is described in the paper (Iasnii et al., 2018). 
Stress-controlled tests were carried out on servo-hydraulic testing 
machine STM-100 (Yasniy et al., 2005) with automated control 
and data acquisition system under sinusoidal loading with a fre-
quency of 0.5 Hz. Tests were performed under two blocks varia-
ble amplitude loading (Fig. 1a).  

a 
 

b 

Fig. 1. Loading history (а) and scheme of specimen testing (b):  

1  metal box; 2  ice and ice water; 3  specimen; 4  clamps;  

5  extensometer; 6  extenders; 7  insulation wrap 

The maximum and minimum loads were increased linearly in 
each block and jump-like every 50 cycles. This type of loading 
was chosen due to its similarity with the loading, which undergo 
the cardiovascular stents in the human body during the change of 
physical activity (Duerig T. et al., 2003; Pelton, A.R. et al., 2008), 
the structural elements of bridges due to the change of traffic, and 
so on. On the one hand, this allows studying the effect of loading 

history on the functional fatigue of SMA, that is necessary for the 
physical substantiation and building of SMA fatigue failure models 
under the variable amplitude loading. On the other hand, the 
features of functional behavior at variable amplitude loading are 
important for the design of models of structural fatigue of alloys 
(Soul H., Yawny A., 2017). 

Two series of tests were performed. In the first series, the 

stress ratio was R = min/max = 0.09–0.13, and in the second 

one, R = 0.33–0.51 (here min and max are the minimum and 
maximum stresses of loading cycle, respectively). The cyclic 
loading parameters are given in Table 1: 

(𝜎min 𝑠
𝐼 , 𝜎max 𝑠

𝐼 , 𝜎min 𝑓
𝐼 , 𝜎max 𝑓

𝐼 ) are the minimum and maximum 

stresses in the first and last cycle of the first (I) loading block; 

(𝜎min 𝑠
𝐼𝐼 , 𝜎max 𝑠

𝐼𝐼 , 𝜎min 𝑓
𝐼𝐼 , 𝜎max 𝑓

𝐼𝐼 ) are the minimum and maximum 

stresses in the first and last cycle of the second (II) loading block 
(Fig. 1a). The previously described sequences (Fig. 1a) and 
stress parameters (Tab. 1) provided the start of the tests from the 
fully austenitic side (R = 0.09–0.13), and from the fully martensitic 
side (R = 0.33–0.51). The force, crosshead displacement and 
longitudinal strain were recorded during the testing. The longitu-
dinal strain was measured by Bi-06-308 extensometer (Bangalore 
Integrated System Solutions); maximum error did not exceed 
0.1%. The crosshead displacement was determined by inductive 
Bi-02-313 sensor with an error not more than 0.1%. The tests 
were carried out in the chamber filled with ice and ice water (Iasnii 
et al., 2018b). Testing scheme is presented in Fig. 1b. This pro-
vided the constant temperature of 0°C measured by chromel–
alumel thermocouple mounted on the sample with an error not 
more than 0.5°C. 

3. RESULTS AND DISCUSSION 

Typical hysteresis loops for different values of the stress 
range and different number of loading cycles are shown in Fig. 2. 

The functional properties of pseudoelastic SMA can be char-

acterized by residual strain res. Fig. 3 shows the dependencies of 
residual strain upon the number of loading cycles at various stress 
ratio. The residual strain is generally increasing with the increase 

of loading cycles’ number at stress ratio R = 0.09–0.13 and 
reaches almost 7% before the failure (Fig. 3a). Nevertheless, the 
increase of residual strain at variable amplitude loading occurs 
only on the loading block with higher stress amplitude. The larger 
volume of non-damaged material is included into the transfor-
mation during the transition from the lower to the higher loading 
amplitude. The nature of this process is reflected in the almost 
constant residual strain rate on block I. This is consistent with the 
evolution of NiTi alloy residual strain with the number of loading 
cycles for blocks with an increasing amplitude sequence (Soul 
and Yawny, 2015). However, with the decrease of the amplitude 
sequence, the residual strain shows opposite tendency with the 
number of cycles. The effect of residual strain decrease is ob-
served during the second loading block. This can be caused by 
the decrease of material volume involved in the transformation 
and reduction of the residual stresses during the second block. 
SEM and TEM studies (Hua P. et al., 2020) indicate that cyclic 
phase transformation results in the formation and glide of trans-
formation-induced dislocations. These dislocations inhibit reverse 
transformation and result in residual martensite and residual 
stresses. 

It can be assumed that similar to NiTi alloy heating above the 
austenite transformation finish temperature (Hua P. et al., 2020), 
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low-amplitude loading triggers reverse transformation of the resid-
ual martensite after high amplitude, due to partial reduction of the 
residual stresses. Obviously, a decrease in residual stress will be 
accompanied by a decrease in residual strain. 

However, this phenomenon requires a more detailed experi-
mental study of functional properties and transformation of the 
microstructure under variable amplitude loading sequence. 

 

 
Fig. 2. Typical hysteresis loops for variable loading amplitude at 

R = 0.09–0.13 (a) and at R = 0.33–0.51 (b) 

This regularity is preserved during each block of loading up till 

specimen failure. Therefore, one can conclude that the stepwise 
decrease of stress amplitude changes on the opposite the charac-
ter of residual strain dependency on the number of loading cycles. 
The above-mentioned regularity was also observed at higher 
stress ratio (Fig. 3b). The increase of residual strain changes with 
its decrease on the block of lower amplitude (II) during next 50 
cycles of loading. This alternation of the increasing and decreas-
ing blocks is observed in each block of loading up till specimen 
failure. 

Fig. 4 shows the dependence of the residual strain increment 
on the number of loading cycles in blocks I and II at the end of the 

corresponding block under variable loading at R = 0.09–0.13. 
The residual strain increment was calculated as follows: 

𝛥𝜀res =  𝜀res
𝑓

− 𝜀res
𝑠 , 

where  𝜀res
𝑠  and 𝜀res

𝑓
 are residual strains at start and finish of 

block loading, respectively. 
The increment of residual strain in the block with a high amplitude 
(block I) increases from 0.8% for N = 50 cycles to 1.1% for N = 
550 cycles. In block II, the decrement of the residual strain varies 
from –0.2% to –0.11% and is significantly smaller than those in 
block I. It was studied that the residual strain consists of two parts: 
plastic strain (~79% of total) due to dislocations and reversible 
due to residual martensite (~21%), estimated by the recovered 
strain after heating (Hua P. et al, 2020). In our case, the decrease 
of residual strain in block ІІ comprises from 10% to 25% of total 
residual strain in end cycle of block I. This almost coincides with 

the reversible part of residual strain. Unlike the stress ratio R = 

0.09–0.13, at R = 0.33–0.51, the residual strain at the end and at 
the start of each block is practically not sensitive to the number of 
loading cycles (Fig. 3b). This can be explained that in this case, 
the value of residual strain in the first cycle of loading comprises 
8.8%, which exceeds the maximum strain, at which the effect of 
pseudoelasticity is observed (Iasnii et al., 2018). It is also known 
that the pseudoelastic deformation of SMA, accompanied with the 
stress-induced martensitic transformations leads to heat release 
and, in its turn, it affects the functional properties. The amplitude 
of the temperature increase becomes more and more significant 
as the strain level increases (Bubulinca et al., 2013). 

It should be noted, that in both cases, the failure of the speci-
mens occurred at the loading block with the higher amplitude. 

Tab. 1. The cyclic loading parameters during testing (Fig. 1) 

Block Rσ = σmin/σmax 
σmins σminf σmaxs σmaxf σs σf 

ΔN, cycles 
MPa 

I 0.09–0.10 50 58 530 580 480 522 50 

II 0.10–0.13 55 47 430 470 375 423 50 

I 0.33–0.43 245 216 572 650 327 434 50 

II 0.49–0.51 220 280 450 550 230 270 50 
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Fig. 3. The dependency of residual strain on the number of loading cycles 

under variable loading at R = 0.09–0.13 (a) and at R = 0.33–
0.51 (b) 

The functional properties of pseudoelastic shape memory al-
loy can be characterized by the strain range per cycle. 

 
Fig. 4. The dependences of residual strain increment in block I and 

block II on the number cycles under variable loading at R = 
0.09–0.13 

Fig. 5 shows the dependencies of minimum and maximum 
strains (Fig. 5a) and the strain range (Fig. 5b) on the number 

of loading cycles at R = 0.09–0.13.  
 

 

 
Fig. 5. The dependency of minimum and maximum strain (a) and strain 

range (b) on the number of cycles under variable amplitude load-

ing at R = 0.09–0.13 

Unlike the residual strain, the maximum strain increases with 
each loading cycle at both loading blocks. Also, the more inten-
sive increase of maximum strain is observed at block I (Fig. 1), 
that is caused by the interaction effect under the stepwise de-
crease of specimen loading. 

The minimum strain remains invariant to the number of load-
ing cycles within the margins of the first and second block, and the 
general increase of minimum strain occurs only during the transi-
tion from one block to the other. The character of minimum and 
maximum strain change affects the dependency of strain range on 
the cyclic loading (Fig. 5b). The mentioned above dependency 
and the values of the parameters of this dependency within the 
loading block are almost insensitive to the number of blocks load-
ing up to the specimen failure. 

The sawtooth dependency of minimum and maximum strain 
on the number of loading cycles was observed that was increas-
ing on the first block and decreasing on the second one at two 

step variable amplitude loading at R = 0.33–0.51, unlike the 

stress ratio R = 0.09–0.13, (Fig. 5a). This dependency repeats 
from the loading block to loading block with the constant average 
strain value. Regardless, some increase of fluctuation of minimum 
and maximum strain after 2000 loading cycles, this does not affect 
the dependency of strain range on the number of loading cycles 
(Fig. 5b). The dependency of strain range on the number of load-
ing cycles and the values of this dependency parameters within 
the loading block are also almost insensitive to the number of 

block up to its failure, similarly to the data at values R = 0.09–
0.13 (Fig. 4b). 

0

1

2

3

4

5

6

7

8

0 200 400 600 800

ε r
e

s,
 %

 

N, cycles 

a 

7,0

7,2

7,4

7,6

7,8

8,0

8,2

8,4

8,6

8,8

9,0

0 1000 2000 3000

ε r
es

, 
%

 

N, cycles 

-0,6

0,0

0,6

1,2

1,8

0 200 400 600 800

Δ
ε r

es
, 
%

 

N, cycles 

Block I

Block II

0,0

2,0

4,0

6,0

8,0

10,0

12,0

0 200 400 600 800

ε,
 %

 

N, cycles 

a 

2,0

2,5

3,0

3,5

4,0

4,5

5,0

5,5

6,0

0 200 400 600 800

Δ
ε,

 %
 

N, cycles 



Volodymyr Iasnii, Petro Yasniy, Yuri Lapusta, Oleg Yasniy, Oleksandr Dyvdyk       DOI 10.2478/ama-2020-0022 
Functional Behavior of Pseudoelastic NiTi Alloy Under Variable Amplitude Loading 

158 

 

 
Fig. 5. The dependency of minimum and maximum strain (a) and strain 

range (b) on the number of cycles under variable amplitude load-

ing at R = 0.33–0.51 

The dissipated energy per cycle was calculated as difference 
between the areas under loading and unloading stress – strain 
curves, using numerical integration. Fig. 6 shows the dependenc-
es of dissipation energy on the loading cycle number under varia-

ble amplitude loading at stress ratio R = 0.09–0.13 and R = 0.3–
0.39. The intensive decrease in the dissipation energy was ob-

served for both values of stress ratio R during twenty loading 
cycles (block I), followed by stabilizing block. These data are 
consistent with the results obtained under constant amplitude 

loading at stress ratio R = 0.1 and R = 0.5 (Iasnii and Yasniy, 
2019b). 

Subsequently, with increasing the loading cycle number at R 
= 0.09–0.13, the dissipation energy increases at the start and at 
the end of second block, and decreases at the beginning and end 
of the loading unit first block (Fig. 6a). 

In contrast, the dissipation energy is proportional to the loading 
cycles at the beginning and at the end of first block at stress ratio 

R = 0.33–0.52 (Fig. 6b). The dissipation energy is also propor-
tional to the number of loading cycles within the first block. 

Fig. 6 shows the dependences of accumulated dissipation en-
ergy on the loading cycle number under variable amplitude load-

ing at stress ratio R = 0.09–0.13 and R = 0.33–0.51. 
The total dissipation energy up to i-th cycle was determined by 

formula: 

𝑊𝑖 = ∑ ∆𝑊𝑖
𝑁𝑘
𝑖=1 , 

where Wi is the dissipated energy for i-th loading cycle. 
 

 

 
Fig. 6. Dependence of dissipation energy on the number of cycles under 

variable amplitude loading at R = 0.09–0.13 (a)  

and R =0.33–0.51 (b) 

 
Fig. 7. Dependence of total dissipation energy on the number of cycles 

under variable amplitude loading at R = 0.09–0.13 (a) and R = 
0.33–0.51 (b) 
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The total dissipation energy increases almost proportionally to 
the number of loading cycles for both stress ratios. Increasing of 

stress ratio from R = 0.09–0.13 to R = 0.33–0.51 decreases the 
total dissipated energy in two times for the same number of load-
ing cycles, but increases the total dissipated energy in more than 
3 times up to failure. It should be noted that under the lower value 
of mean stress, the stress range Δσf exceeds the stress range at 

R = 0.33–0.51 on the first block of loading spectrum (Fig. 1a) at 

the R = 0.09–0.13, which determines the intensity of the total 
dissipation energy increase. 

An important parameter that characterizes the functional 
properties of SMA is Young’s modulus of austenite. During cyclic 
loading the effective Young’s modulus decreases due to the in-
creased volume fraction of stabilized martensite. 

Fig. 8 shows the dependence of the effective Young’s modu-
lus at the last cycle of blocks I and II on the residual strain under 

variable amplitude loading at stress ratio R = 0.09–0.13. 
 
 

 
Fig. 8. Dependence of effective Young’s modulus austenite in the last 

cycle of blocks I and II on the residual strain under variable  

amplitude loading at R = 0.09–0.13 

There is observed a good correlation of the effective Young’s 
modulus for both loading blocks with the residual strain, which is a 
measure of irreversible martensite volume. Increasing the residual 
stress, the effective Young’s modulus decreases in the last load-
ing cycle of blocks I and II. There is a significant difference be-
tween the values of the effective elasticity modulus for I and II 
blocks. At equal residual strain, the effective Young’s modulus is 
smaller at high stress amplitudes. Therefore, the effect of the 
maximal stress on the effective Young’s modulus for a variable 

amplitude loading at R = 0.09–0.13 is similar to the test at con-
stant strain amplitude (Maletta et al., 2014).  

4. CONCLUSIONS 

The effect of stress ratio on the functional properties of super-
elastic NiTi SMA under variable amplitude loading sequence with 
two blocks at temperature above the austenite finish temperature 
was studied. 

Residual strain significantly increases with the increase of 

loading cycles number at stress ratio R = 0.09–0.13 and reaches 
almost 7% before failure. The residual strain is not sensitive to the 
number of cycles at the end (or start) of loading block under stress 

ratio R = 0.33–0.51. This can be explained by the fact that in this 
case, the residual strain in the first cycle is 8.8% that exceeds the 
maximum strain under which the pseudoelastic effect is still visi-
ble. 

The dependence of NiTi alloy residual strain on the number of 
loading cycles increases on the high loading block similarly to the 
test at constant stress or strain amplitude during both stress rati-
os. 

An unusual effect of functional properties partially recovery – 
reduce of the NiTi alloy residual strain with the number of loading 
cycles is found at a lower block loading. It can be assumed that 
similar to heating of NiTi alloy above the austenitic transformation 
finish temperature, low-amplitude loading after high amplitude one 
triggers residual martensite reverse transformation, which partially 
reduce the residual stresses. The amount of residual strain dec-
rement during a low load block is approximately equal to the 
reversible part of the residual strain due to the stabilized marten-
site. This effect can be used to the partial recovery of SMA func-
tional properties. 

With the increase of loading cycles’ number, the dissipation 
energy increases at the start and end of block II, and decreases 

at the start and end of block I at the stress ratio R = 0.09–0.13. 
In contrast to this, the dissipation energy is proportional to the 
number of loading cycles at the start and end of block I at stress 

ratio R = 0.33–0.51. Also, the dissipation energy is proportional 
to the number of loading cycles within the block I. 

Increase of stress ratio decreases the total dissipated energy 
for the same number of loading cycles, though increases the total 
dissipated energy up to failure. 
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Abstract: Considering experimental implementation control laws on digital tools that measurement cards are discharged every time unit 
one can see that time of simulations is partially continuous and partially discrete. This observation provides the motivation for defining  
the Grünvald-Letnikov fractional operator with measurable order defined on continuous-discrete time scale. Some properties  
of this operator are discussed. The simulation analysis of the proposed approach to the Grünwald-Letnikov operator with the measurement 
functional order is presented. 

Keywords: Grünvald-Letnikov fractional operator, measurement order, time scale 

1. INTRODUCTION 

It is well known that during control system design process, 
one of the most important steps is to develop the proper mathe-
matical model of an analyzed control plant. Generally, the analysis 
of experiment results shows that there is a large class of systems 
where behavior of real phenomena is not properly explained by 
using the classical calculus. It has been found that these systems 
not only contain non-local dynamics but can also be described 
using fractional-order operators and their properties, see for ex-
ample in control engineering, signal processing, electronics and 
electrical engineering, (Buslowicz and Nartowicz, 2009; Djen-
noune et al., 2019; Kavuran et al, 2017, Ortigueira, 1997, Balaska 

et al., 2020). Among the other, an example of the control plant 
that shows that fractional calculus applied to the modelling of its 
behavior is better than the classical tools is the voltage – current 
relation of a semi-infinite lossy transmission line (Wang, 1987), 
the diffusion process of the heat into a semi-infinite (Podlubny et 
al., 1995), modeling and simulation of plant models (Alagoz et al., 
2019). In automatic regulation and its industrial applications to 
process controlling the most popular and commonly used are  PID 
controllers. However, it is known that controllers of fractional 
orders (FOPID) in many cases can provide better optimal prefer-
ences and behaves more robust than the classical ones, see 
(Ostalczyk et al., 2015; Patniak et al., 2002; Tepljakov et al., 
2018). It follows from the fact that such controllers have more 
tuning freedom. However the usage of FOPID controllers usually 
requires some approximations which makes their applications 
more complex. 

Since the Grünwald-Letnikov fractional order operator in au-
tomatic control and industry applications has been considered as 
the most useful and a proper tool for approximations in the scope 
of numerical solutions (see, e.g., Coimbra, 2003; Patniak et al., 
2002; Alagz and Alisoy, 2018; Tepljakov, 2017 and references 
therein), we lay attention on it. The practical usefulness of this 

operator is due to the fact that its value depends on all past values 
of the fractionally derived function, so the history or memory of the 
process in naturally included in the analysis. Also, it provides a 
recursive solution in time and hence reduces computing time 
(Alagoz et al., 2019). However, taking into account the limitation of 
computational resources, computational complexity should be as 
low as possible. There are works addressed to optimization of 
number steps in approximation used in computing of the Grün-
wald-Letnikov fractional order operator (see Stanislawski and 
Latawiec, 2012; Alagoz et al., 2019; Tepljakov et al., 2012) and 
references therein.  

The natural analytic extension of fractional order operators are 
variable order ones. In some ways, this is a natural direction, not 
only from mathematical point of view, but also arises from model-
ling of real-word phenomena (Patniak et al., 2002). The first works 
in that scope have already shown that it is a good approach to 
modelling but not easy research topic (see, e.g. Coimbra, 2003; 
Lorenzo and Hartley, 2002; Samko and Ross, 1993). Note that in 
this case, there exist four different definitions of these operator 
with variable order (see Sierociuk et al., 2013; Sierociuk et al., 
2015; Valerio and Sa da Costa, 2001). These definitions have 
been used, for example, in modelling of FOPID controllers as well 
as in heat transfer process (Sierociuk and Macias, 2013). The 
influence on the shaping of the transient characteristics of a 
closed-loop systems has been analyzed in Ostalczyk et al. (2012, 
2015). In each case, the variable order has been taken as a func-
tion defined on the set of natural numbers. As it is known from the 
engineering point of view in measurement process digital tools are 
used to test different control plants. This means that measurement 
cards are discharged periodically every time unit 𝛿, so the 
measurment time is not only discrete, but partially continuous and 
partially discrete as on time scales (Bohner and Peterson, 2001). 

We concentrate on the classical approach to the Grünwald-
Letnikov fractional order operator. Taking into account its imple-
mentation in digital systems (Alagz and Alisoy, 2018, Koszewnik 
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et al., 2016, Koszewnik et al, 2018, Pawluszewicz et al., 2019), it 
is natural to consider a fractional order of this operator as a func-
tion defined on continuous-discrete time scale, that is, on a model 
of time that extends the classical time domain of dynamical sys-
tems (Bohner and Petrson, 2002). This problem, as well as the 
motivation to present work, is discussed in Section 2. The maxi-
mum bandwidth of the signal occurring during discharging of the 
measuring card may not be a good measure of signal changes, in 
the case of uniform sampling, some of the samples may be un-
necessary. To eliminate this redundancy, non-uniform discharging 
can be used. Application of the non-uniform sampling allows to 
reduce the amount of measured data and next decrease power 
consumption for computation, which is important in industrial 
applications. In Section 3, there is introduced the Grünwald-
Letnikov operator with the discrete-continuous order following 
from the non-uniform process of discharging measurement cards. 
In Section 4, the simulation analysis of proposed approach is 
presented. 

2. MOTIVATION 

     It is known that the continuous time control law of fractional 

order PID controller usually is expressed as 𝑢(𝑡) = 𝐾𝑝𝑒(𝑡) +

𝐾𝑖𝐷
𝜆𝑒(𝑡) + 𝐾𝑑𝐷

𝜇𝑒(𝑡) where orders 𝜆, 𝜇 are nonnegative, 

𝑢(𝑡) denotes the control signal, 𝑒(𝑡) is the control error between 
the desired value and the measured value, 𝐷 is a fractional opera-
tor. During experimental implementation or verification of this 
control law, digital tools are commonly used. This means that:  

 parameters 𝐾𝑝, 𝐾𝑑 , 𝐾𝑖   are recalculated by considering par-

ticular gains of A/D and D/A (Fig. 1) converters inbuilt to 
measure digital tools, 

 steady state error, which is strictly connected with the orders 
of fractional operator, is changing during the regulation pro-
cess.   

 
Fig. 1. Impulsator switched periodically for 1-δ time units 

      Furthermore, taking into account that measurement cards are 
discharged periodically every time unit and assuming that the 
discharging takes δ > 0 time units, time of simulations is partially 
continuous and partially discrete (not only discrete), see Fig. 1 
and Fig. 2.  

 
Fig. 2. Clock impulsator with duty cycle equal to 1-δ  of time units 

In a general case, this situation can be described using the 
following model of time presented on Fig. 3, see (Bohner and 
Petrson, 2002): 

𝑃1−𝛿,𝛿  = ⋃ [𝑘, 𝑘 + 1 − 𝛿]𝑘∈ℕ0   (1) 

 

Fig. 3. Time scale P1−δ,δ of signal from clock impulsator   

Then the previous time instant of 𝑡 ∈ 𝑃1−𝛿,𝛿 , denoted as 

𝜌(𝑡), is 

0
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In fact  𝜌(𝑡) defines the backward jump operator of t. The dif-
ference between t and its previous time instance 𝜌(𝑡), called 

(backward) graininess function 𝜐 : 𝑃1−𝛿,𝛿 ⟶ ℝ+⋃{0}, is de-

fined as: 

𝑣(𝑡): = 𝑡 − 𝜌(𝑡). 

Putting 𝜌𝑙 = 𝜌 ∘ … . .∘ 𝜌⏟      
𝑙 𝑡𝑖𝑚𝑒𝑠

 and 𝜌0(𝑡) = 𝑡 inductively, one can 

show that 𝜌𝑛(𝑡) = 𝑡 − 𝜈𝑛(𝑡) (Ortigueira et al., 2016). Then, 
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for any  𝑡 ∈ 𝑃1−𝛿,𝛿 . 

       Similarly, as in (Ortigueira et al., 2016), on the time model 
given by (1), one can look as a model of time defined by a set of 

discrete time instants 𝑡𝑛, 𝑛 ∈ ℤ+, and corresponding (backward) 
graininess. These instants are consecutive boundary point defin-
ing a closed interval, in which graininess is null inside the intervals 

starting in moment 𝑘 and finishing in moment 𝑘 + 1 − 𝛿. Follow-
ing Ortigueira et al. (2016), one can define the graininess interval 
as the width of the considered interval. For time model (1), we 

have 𝑣([𝑘, 𝑘 + 1 − 𝛿])=1-𝛿. Then, 𝑡𝑛 = 𝑡𝑛−1 + 𝑣𝑛, 𝑛 ∈ ℤ+, is 
the direct graininess. 
 
Remark 1. Such approach to time model (1) allows to consider 
not only a uniformly discharge periodically measurement cards but 
also a nonuniformly discharged measurement cards with dis-

charge time units 𝛿𝑘, 𝑘 ∈ ℕ. Nonuniform sampling in some situa-
tions reduces the required computing power and data processing. 
It is also possible to optimize the energy consumption of the con-
troller, and thus save energy necessary in the control processes 
(see, e.g. Janczak et al., 2016; Kondratiuk et al., 2018). 

3. THE GRÜNWLAD-LETNIKOV OPERATOR WITH DIS-
CRETE-CONTINUOUS FRACTIONAL ORDER 

      Let us consider a function 𝐶: 𝑃1−𝛿,𝛿  ×  ℤ+⋃{0} ⟶ ℝ de-

fined as follows: 
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 (3) 

where 𝜌 is the graininess interval and  𝜌𝑙 = 𝜌 ∘ …∘ 𝜌⏟    
𝑙 𝑡𝑖𝑚𝑒𝑠

. From (3), 

it follows that the following recursive relation 

𝐶𝛼(𝜏)(𝑠) = 𝐶𝛼(𝜏)(𝑠 − 1)
𝛼(𝜌𝑠(𝜏))

𝑠
  holds for given 𝑠 ≥ 1. 

 

Proposition 2. For any natural 𝑠 and 𝑗 such that s > j , it holds 

𝐶𝛼(𝜏)(𝑠) ± 𝐶𝛼(𝜏)(𝑗)

=  
𝑗!

𝑘!
𝐶𝛼(𝜏)(𝑗) (∏ (−1)𝑘−𝑖𝛼(𝜌𝑖(𝜏)) ±

𝑘

𝑖=𝑗+1

∏ 𝑖

𝑗

𝑖=𝑗+1

) 

Proof. Thesis follows from the fact that 

𝐶𝛼(𝜏)(𝑠) ± 𝐶𝛼(𝜏)(𝑗) =
(−1)𝑗

𝑗!
𝛼(𝜏)… . 𝛼 (𝜌𝑗(𝜏)) ∙

[
(−1)𝑘−𝑗

(𝑗+𝑘)….𝑘
𝛼 (𝜌𝑗+1(𝜏))…𝛼(𝜌𝑘(𝜏)) + 1]. □ 

Definition 3. The Grünwald-Letnikov – type fractional operator 

Δ𝛼(𝜏) of functional order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ, for a function 

𝑥 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ is defined as 

(Δ𝛼(𝜏)𝑥)(𝜏): = ∑ 𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏))∞
𝑠=0    (4) 

     In (4), weight function 𝐶𝛼(𝜏)(𝑠) is given by formula (3). Note 
that in a natural way, it contains information about the history of 

the process mathematically described  by function 𝑥 ∶ 𝑃 1−𝛿,𝛿 ⟶

ℝ . Since 𝛼 ∶ 𝑃 1−𝛿,𝛿 , then this history strictly depends on the 

process of discharging a measurement card. Moreover, since the 

weight function 𝐶𝛼(𝜏)(𝑠) is defined by the graininess interval, it 
follows that charging/discharging of the card can be done nonuni-

formly. If function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ is unbounded, then for a 

fixed s, the operator (4) may not be bounded or even may not 

exists. We assume that for given 𝑥 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ, function 

𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ is bounded and measurable. The domain of 

Grünwald-Letnikov – type operator Δ𝛼(𝜏) is formed by two sets: a 
set 𝑁𝛿 = {𝑘 ∈ ℤ+ ∶ 𝑘 + 1 − 𝛿} of discrete/isolated points and 

a set of intervals {𝑘 ∈ ℤ+ ∶ [𝑘, 𝑘 + 1 − 𝛿]}.  
     In practical implementations, instead of infinite sum in (4), 
there is need to use a finite one 

(Δ𝐽
𝛼(𝜏)𝑥)(𝜏): = ∑ 𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏))𝐽

𝑠=0    (5) 

where, following (Stanislawski Latawiec , 2012) and remembering 
that we look at time model (1) as a model of time defined by a set 

of discrete time instants 𝑡𝑛,   𝑛 ∈ ℤ+, corresponding to the (back-

ward) graininess,𝐽 = min(𝑡𝑛, 𝐽)̅ and 𝐽 ̅ is the upper bound to s 

when 𝑡𝑛, > 𝐽.̅ From (5), it follows that 

(Δ𝐽
𝛼(𝜏)𝑥)(𝜏) =

[1 𝐶𝛼(𝑡)(1) … . 𝐶𝛼(𝑡)(𝐽)] [

𝑥(𝑡)

𝑥(𝜌(𝑡))
… .

𝑥(𝜌𝑛−𝑎(𝑡))

]  (6) 

Proposition 4. If for every 𝑡 ∈ 𝑃1−𝛿,𝛿 , there is a real number K 

such that |𝑥(𝜏)| ≤ 𝐾 and 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ [0,1], then 

|(Δ𝛼(𝜏)𝑥)(𝜏) − (Δ𝐽
𝛼(𝜏)

𝑥)(𝜏)| ≤ 𝐾2𝑒. 

Proof. Since 

|(Δ𝛼(𝜏)𝑥)(𝜏) − (Δ𝐽
𝛼(𝜏)

𝑥)(𝜏)|

=  |∑𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏)) − 

∞

𝑠=0

∑𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏)) 

𝐽

𝑠=0

|

≤ ∑|𝐶𝛼(𝜏)(𝑠)𝑥(𝜌𝑠(𝜏)) ∑ 𝐶𝛼(𝜏)(𝑣)𝑥(𝜌𝑣(𝜏)) − 1

∞

𝑣=𝐽+1

|

𝐽

𝑠=0

≤𝐾∑|𝐶𝛼(𝜏)(𝑠)| [ ∑ |𝐶𝛼(𝜏)(𝑣)𝑥(𝜌𝑣(𝜏))] + 1|

∞

𝑣=𝐽+1

𝐽

𝑠=0

≤ 𝐾2∑|𝐶𝛼(𝜏)(𝑠)| ∑ |𝐶𝛼(𝜏)(𝑣)|

∞

𝑣=𝐽+1

𝐽

𝑠=0

                                (7) 

Since 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ [0,1], then |𝐶𝛼(𝑡)(𝑠)| ≤
1

𝑠!
, and from (7), 

it follows that  

|(Δ𝛼(𝜏)𝑥)(𝜏) − (Δ𝐽
𝛼(𝜏)

𝑥)(𝜏)| ≤ 𝐾2∑
1

𝑠!
= 𝐾2𝑒∞

𝑠=0 . □ 

4. SIMULATION ANALYSIS 

In this Section, simulation analysis of the Grünwald-Letnikov 

operator with the discrete-continuous order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ is 

presented. To this aim, a process of switching on/off of the switch 
occurring in the holding circuit has been analyzed in detail based 
on electrical scheme shown in Fig. 4.  

ip(t) iC Vp(t)Cp R

1-δ 

 
Fig. 4. Electrical circuit of RC system 

       Taking into account the behavior of the classical switch and 
the fractional operator, the capacitor has been firstly charged in 

the time 1 − 𝛿 in results of switching on/off the switch with ran-
domly occurring delay. Next, the switch is turned off. It has led to 
discharging of the capacitor by time 𝛿 and also getting value of 

the voltage signal 𝑥(𝜏) from this element to further analysis. As a 
result, the whole process of switching on/off the switch is change-
able, especially in time interval [1 − 𝛿, 𝛿]. 
      The proposed approach allowed to check the influence func-

tion 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ, on fitting of the Grünwald-Letnikov – type 

fractional operator Δ𝛼(𝜏) of functional order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ in 

reference to three base signals. As the first, the sinusoidal signal 

𝑥(𝑡) = sin (0.04𝑡), next 𝑥(𝑡) = 𝐻(𝑡 − 𝑎), where 𝐻(⋅) de-

notes the Heaviside’s step function, and as the last one, 𝑥(𝑡) =
𝑒−0.1𝑡  signal have been considered for function α, respectively. 

The obtained results for the given signals on time domain 𝑃 1−𝛿,𝛿 
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presented in Figs. 5–7 showed that the signal with the Grünwald-

Letnikov – type fractional operator of order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ is 

best customized to the base signal 𝑥(𝑡) for ever smaller values of 

the function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ also of a function that has increas-

ingly smaller values. Such behavior is especially visible for the 
variable value of the sampling step in the Grünwald-Letnikov – 

type fractional operator of order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ, where in-

creasing this value has led to weaker fitting to the base signals 

𝑥(𝑡). 

 
Fig. 5. The comparison of sinusoidal discrete-continuous signal with 

different values of function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ (for 𝛼(𝑡) = 𝑡, 
𝛼(𝑡) = 1 − 𝑡, 𝛼(𝑡) = 0.5 respectively) to the base function 

𝑥(𝑡) = sin (0.04𝑡) 

 
Fig. 6. The comparison of exponential discrete-continuous signal with 

different values of function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ (for 𝛼(𝑡) = 𝑡, 

𝛼(𝑡) = 1 − 𝑡, 𝛼(𝑡) = 0.5 respectively) to the base function 

𝑥(𝑡) = 𝑒−0.1𝑡 

In the second step, the influence of parameters a and b in 

function 𝑥(𝑡) = 𝑎 𝑠𝑖𝑛(0.04𝑡) + 𝑏, 𝑡 ∈ 𝑃1−𝛿,𝛿, has been addi-

tionally analyzed. To this aim, again the base sinusoidal signal 
𝑥(𝑡) = 𝑠𝑖𝑛 (0.04𝑡) has been taken. The obtained result in Fig. 8 
once again showed that the best customization to the base signal 

𝑥(𝑡) has been achieved for the smallest values of both parame-
ters of function α(∙). As a result, it leads to the conclusion that 
real industrial processes can be effectively controlled by using the 
discrete fractional control systems with variable sampling step and 
low values of the Grünwald-Letnikov – type fractional operator of 

functional order α ∶ P 1−δ,δ ⟶ ℝ. 

 
Fig. 7. The comparison of the Heaviside step function with delay discrete-

continuous signal with different values of function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶

ℝ (for 𝛼(𝑡) = 𝑡, 𝛼(𝑡) = 1 − 𝑡, 𝛼(𝑡) = 0.5 respectively) to the 

base function 𝑥(𝑡) = 𝐻(𝑡 − 𝑎) 

 
Fig. 8. The comparison of sinusoidal discrete-continuous signal with 

different values of function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ (for 𝛼(𝑡) = 𝑡, 

𝛼(𝑡) = 1 − 𝑡, 𝛼(𝑡) = 0.5 respectively) to the base function 

𝑥(𝑡) = 𝑎 sin(0.04𝑡) + 𝑏 

Consequently, taking into account Figs. 4–7, it can be con-
cluded that real industrial processes can be effectively controlled 
by using the discrete fractional control systems with variable 
sampling step and low values of the Grünwald-Letnikov – type 

fractional operator of functional order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ. 

5. CONCLUSIONS 

       The realization problem for Grünwld-Letnikov fractional oper-
ator with a measurable order on continuous-discrete time scale 
was studied. For this aim, firstly, some parameters from time scale 
calculus associated with sampling time (uniform and non-uniform) 
used in the measurement instruments like backward graininess 
was discussed. The proposed approach allowed to suppose that 
the process of charging and discharging of the capacitor inbuilt to 
the measurement cards of A/D and D/A converters could also be 
uniform. As a result, the practical implementation of the proposed 
approach for the measurement process can lead to reduction of 
consumption energy needed to control some industry processes 
by real time processor. Next, the proposed approach was checked 
in the simulation analysis. In order to do this, three base discrete-

continuous signals 𝑥(⋅), such as sinusoidal signal, the Heaviside 
step function and exponential function for constant and changea-
ble values of function order 𝛼(∙), were considered. The obtained 



DOI 10.2478/ama-2020-0023              acta mechanica et automatica, vol.14 no.3 (2020) 

165 

results, given in Figs. 4–7 for the given signals on time domain 

𝑃 1−𝛿,𝛿 , showed that the signal Grünwald-Letnikov – type frac-

tional operator of functional order 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ ℝ is best cus-

tomized to the base function 𝑥(⋅) for even smaller values of the 

function 𝛼 ∶ 𝑃 1−𝛿,𝛿 ⟶ℝ also of a function that has increasingly 

smaller values.  
     Finally, it can be concluded that real industrial processes can 
be effectively controlled by using the discrete fractional control 
systems with variable sampling step and low values of the Grün-
wald-Letnikov type fractional operator with variable order defined 
on continuous-discrete time domain. 
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Abstract: Due to their impressive capacity of sensing and actuating, piezoelectric materials have been widely merged in different industrial 
fields, especially aeronautic and aerospace area. However, in the aeronautic industry, the structures are operating under critical environ-
mental loads such as high and very low temperature, which made the investigation of the effect of thermal forces on the piezoelectric struc-
tures indispensable to reach the high functionality and performance. The present paper focuses on the effect of thermal loads on the active 
vibration control (AVC) of structures like beams. For this purpose, a finite element model of composite beam with fully covered piezoelec-
tric sensor and actuator based on the well-known high order shear deformation theory is proposed by taking into account the electrical po-
tential field and a linear temperature field. Hamilton’s principle is used to formulate the electro-thermo-mechanical governing equations. 
The negative velocity  feedback controller is implemented to provide the necessary gain for the actuator. Different analyses are effectuated 
to present the effect of the temperature ranging from -70°C to 70°C on the active vibration control of the composite beam.  

Keywords: Piezoelectric, thermal loads, beams, active vibration control, Hamilton’s principle

1. INTRODUCTION 

Structures made of composite materials are intensively used 
in different industrial sectors (Gay and Hoa, 2007). Due to their 
light weight, rigidity and high physical properties, they can be 
found especially in aeronautic and aerospace technology. These 
structures are subjected to different type of critical loads, which 
lead to huge amount of vibrations. The vibrations are mostly 
undesirable and significantly affect the composite structures and 
cause their failure and damage (Zou et al., 2000). To prevent the 
failure of the composite structures caused by the vibration, the 
research community proposed a variety of solutions, among them 
passive, semi active and active vibration control. The passive 
damping techniques (PDT) (Johnson, 1995) is based on the inte-
gration and the addition of materials or systems, possessing high 
damping properties, into the structure in such a way that the 
vibrations can be absorbed by the developed damping system 
without any further outside interference. However, these tech-
niques have certain limitations: their performance is limited in the 
low frequency domain, the size can be important and the damping 
coefficient is especially dependent on temperature and frequency. 
Semi-active control methods are well known in the context of 
structural vibration using piezoelectric actuator to dissipate energy 
caused by the system’s motion (Clark, 1999). The main benefit is 
that no additional energy is added to the system, and their imple-
mentation does not require any sophisticated signal processing 
systems or any bulky power amplifier (Qiu et al., 2009), which 
guarantees stability of the whole system. In addition, semi-active 
methods are more efficient than the passive ones, but always with 

a lower efficiency in comparison to the active methods. The last 
technique, which is the main objective of this study, is the based 
on piezoelectric active vibration control (AVC). It is inspired by the 
phenomena of piezoelectricity in certain materials (Ye, 2008), the 
AVC techniques are gradually merged in different fields (Crawley 
and De Luis, 1987). It consists of four main keys, the structure 
itself, the sensor, the actuator and the control algorithms. Thus, it 
requires bonding piezoelectric patches in a conventional structure 
to create a kind of smart structure, which have the ability of self-
control. 

An explosion of research papers have been focused on the fi-
nite element modelling of the AVC using piezoelectric materials. 
Lam et al. (1997) developed a finite element model for piezoelec-
tric composite laminate based on the classical plate theory. Peng 
et al. (1998) introduced a finite element model using the well-
known third order laminate theory for the active vibration control of 
composite beams with distributed piezoelectric sensors and ac-
tuators. Elshafei and Alraiess (2013) suggested a finite element 
formulation for modelling and analysis of isotropic as well as 
orthotropic composite beams with distributed piezoelectric actua-
tors subjected to both mechanical and electrical loads. Bendine et 
al. (2016) proposed a finite element method (FEM) to study the 
active vibration control smart FGM beam based on higher-order 
shear deformation theory, the authors analyzed different types of 
loading and provided a displacement feedback controller to re-
duce the vibrations. Beheshti-Aval et al. (2011) introduced a three 
nodded beam finite element of composite laminated beam with 
distributed piezoelectric sensor/actuator layers for the static anal-
ysis. Kargarnovin et al. (2007) considered a simply supported 
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FGM plate bonded with piezoelectric patches; the model equation 
of motion is derived using classical laminated plate theory CLPT. 
Tzou and Tseng (1990) derived a new piezoelectric finite element 
with internal degree of freedom for modelling a shell or plate 
structures containing distributed piezoelectric sensor and actuator. 
Tzou and Gadre (1989) established an experimental work to 
model active vibration suppression of a multi-layered shell cou-
pled with piezoelectric actuators.  

     Otherwise, the composite structures are used under a high 
critical environmental thermal field, especially in aerospace sector. 
This variation in temperature effects the system performance and, 
in particular, their dynamic responses. Recently, a great number 
of researches have focused on the analysis of piezothermoelastis-
ity. Lee and Saravanos (1996) developed and implemented a 
finite element equation to a beam element with linear shape func-
tion to model mechanical, electrical and thermal responses of 
composite beam integrated with piezoelectric patches. Zhou et al. 
(2000) used a higher order temperature field to describe the tem-
perature distribution through the thickness of a composite plate; a 
thermo-piezoelectric-mechanical theory is adopted to model dy-
namic response of a composite plate bonded with piezoelectric 
actuator. Bansal and Ramaswamy (2002) investigated the dynam-
ic as well as static thermal responses of laminated composites 
bonded with piezoelectric layers by using a four node finite ele-
ment formulation, which have five mechanical degrees of freedom 
per node. Lee and Saravanos (1998) implemented finite element 
equations for beams and plates to model active response of pie-
zoelectric composite laminate taking into account the thermal 
effect on the material properties. Liew et al. (2001) presented a 
finite element formulation to model active control of functionally 
gradient material FGM plate integrating with piezoelectric layers, 
the model is based on the first shear deformation theory and he 
subjected to a thermal gradient. Jiang and Li (2007) used a nega-
tive velocity feedback for active vibration control of a composite 
beam distributed with piezoelectric sensor and actuator layers 
subjected to a thermal excitation, the finite element model is 
based on a high-order displacement field. Raja et al. (2004) de-
rived the finite element actuator and sensor using a nine nodded 
field consistent shallow shell element to analyze piezohygrother-
moelastic laminated plates and shells. Gupta et al. (2011) intro-
duced AVC of a smart cantilever plate using negative velocity 
feedback control at elevated temperature ranging from 25°C to 
75°C. Sharma et al. (2016) investigated the dynamic response 
and the AVC of cantilever structure over a temperature range (-
70°C–70°C) experimentally and numerically, the model is based 
on the first order shear deformation theory. Song et al. (2004) 
presented a numerical and experimental study of active reduction 
of deformation due to thermal effect of a composite beam using 
piezoelectric ceramic actuators. Birman (1996) studied the effect 
of temperature on piezoelectric sensors and on a composite layer. 
Chandrashekhara and Tenneti (1995) developed an FEM for the 
active control of thermally induced vibration of laminated compo-
site plate bonded with piezoelectric actuators. Chattopadhyay et 
al. (1999) applied the principle of free energy and Hamilton’s 
principle to obtain differential equations to modelling a coupled 
thermo-piezoelectric-mechanical of composite laminate bonded 
with piezoelectric actuators in the surface. 

     In the previous paper, the piezoelectric coefficients’ values 
were assumed to be independent of temperature, which is not 
correct. The present paper proposes a finite element formulation 
of composite beam based on the well-known high order shear 
deformation theory. The piezoelectric coefficients were supposed 

to be dependent on temperature. Two types of analysis are con-
sidered, which include static and dynamic responses. A negative 
velocity feedback algorithm is used to provide the necessary gain 
for the active vibration control of the composite beam. Different 
results are presented to prove the efficiency of the proposed 
model. 

2. HAMILTON’S PRINCIPLE 

As presented in Fig. 1, a laminated beam with two piezoelec-
tric films bounded on its top and bottom surfaces is considered in 
this study. To derive the structure thermoelectromechanical equa-
tions, the well-known  Hamilton’s principle, which assumes that 
the energy variation over an arbitrary period of time equals zero, 
is used. 

 
Fig. 1. Cantilever graphite-epoxy Beam (90°) distributed  
            with piezoelectric patches 

The mathematical statement of Hamilton’s principle, which 
explains the variation of integration of the total energy, can be 
expressed as follows: 

∫ 𝛿(𝑇 − 𝑃)𝑑𝑡 = 0

𝑡2

𝑡1

 (1) 

where 𝑇 and 𝑃 are respectively the kinetic and the potential ener-
gies of the structure that can be defined as (Tzou and Bao, 1995): 

𝑇 = ∫(
1

2
𝜌𝑢̇𝑢̇) 𝑑𝑣

𝑣

 (2) 

𝑃 = ∫[𝑀(𝜎𝑖 , 𝐸𝑗 , 𝜃𝑎) + 𝛺𝜃𝑎]𝑑𝑣

𝑉

− ∫[𝑠𝑗𝑢 − 𝑞𝑗𝜆]𝑑𝑠

𝑆

 (3) 

We noted here that u and u̇ are the displacement and veloci-

ty, σi , Ej are the strain and the electric field, θais the absolute 

temperature and Ω is the thermal entropy density, ρ,M and qi is 
the mass density, the electric enthalpy and the surface electric 

charge ,sj is the surface traction in the J direction and λ is the 

electrical potential. V and S  are the volume and surface of the 
piezothermoelastic continuum. 

The electric enthalpy M can be formulated as: 

𝑀 =
1

2
{𝜎}𝑡[𝐶]{𝜎} −

1

2
{𝐸}𝑡[𝑑]{𝐸} −

1

2
𝑎𝜃2 −

{𝐸}𝑡[𝑝]{𝜎} − {𝜒}𝑡{𝜎}𝜃 − {𝜅}𝑡{𝑒}𝜃  
(4) 

where {𝜎}, {𝐸}, {𝜒} and {𝜅} denote respectively strain vector, 
electric field, stress temperature and pyroelectric coefficient vector 
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and[𝐶], [𝑑] and [𝑝] represent lastic stiffness, dielectric permittivi-
ty and piezoelectric coefficient matrix. 

We noted that θ is the temperature rise and αv is a material 

coefficient done by αv = ρcvθ0
−1, where cv is the specific heat 

and θ0 is the temperature of the natural plane. 
Using Eq. (2) and (3)  and including the electric enthalpy for-

mula Eq. (4), the Hamilton’s equation for the laminated piezoelec-
tric beam can be rewritten as: 

∫ ∫
1

2𝑣

𝑡1
𝑡0

𝜌𝛿(𝑢)2𝑑𝑉𝑑𝑡 − ∫ ∫ ({𝐷}𝑡𝛥(𝛿𝜆) +
𝑣

𝑡1
𝑡0

{𝑆}𝑡𝛿{𝜎})𝑑𝑉𝑑𝑡 + ∫ ∫ (𝑡𝑓𝛿𝑢𝑓 −
𝑣

𝑡1
𝑡0

𝑞𝑗𝛿𝜆)𝑑𝑆𝑑𝑡=0 

(5) 

3. PIEZOTHERMOELASTIC CONSTITUTIVE EQUATIONS 

According to Benjeddou and Andrianarison (2005), the pie-
zothermoelastic field, which is by definition the elasto-electric-
thermal interactions, is given by:  

{𝑆} = [𝐶]{𝜎} − [𝑝]𝑇{𝐸} − {𝜒}𝜃 

{𝐷} = [𝑝]{𝜎} + [𝑑]{𝐸} + {𝜅}𝜃 

𝛺 = {𝜒}{𝜎} − [𝜅]𝑇{𝐸} + 𝑎𝜃 

(6) 

It must be noted that {S}, {D} and Ω  are respectively the 
stress, electric displacement and thermal entropy density vector. 

4. DISPLACEMENT AND STRAIN 

According to Reddy (1984) and Zorić et al. (2013) and based 
on a simple higher-order shear deformation theory, the displace-
ment field can be written as following (Eq. 7): 

{
𝑢(𝑥, 𝑧, 𝑡) = 𝑢0(𝑥, 𝑡) − 𝑧

𝑑𝑤(𝑥)

𝑑𝑥
+ (𝑧 − 𝑧3

4

3ℎ2
)𝜑𝑥(𝑥, 𝑡)

𝑤(𝑥, 𝑧, 𝑡) = 𝑤0(𝑥, 𝑡)
 (7) 

where: (𝑢, 𝑤) and (𝑢0, 𝑤0) are the displacements of any point 

and the mid-plane displacement in the 𝑥 and 𝑧 directions. φx 
is the bending rotation of the mid-plane and h is the total thickness 
of the composite structure. 

From Eq. (7), the strain equation can be derived as: 

{
𝜎1 = 𝜎𝑥 =

𝑑𝑢

𝑑𝑥
− 𝑧

𝑑2𝑤(𝑥)

𝑑𝑥2 + (𝑧 − 𝑧3 4

3ℎ2)𝜑𝑥(𝑥, 𝑡)

𝜎5 = 𝜏𝑧𝑥 = (𝑧 − 𝑧3 4

3ℎ2)𝜑𝑥(𝑥, 𝑡)
  (8) 

We noted here that τ is the shear strain. The strain and dis-
placement Eq. (9) and (10) can be presented as: 

𝑢 = 𝑎𝑢𝑢𝑢 (9) 

𝜀 = 𝑙𝑢𝑢𝑢 (10) 

where:  

au = [1 −z
d

dx
z −

4z3

3h2

0 1 0

] (11) 

lu =

[
 
 
 
d

dx
−z

d2

dx2
z −

4z3

3h2

0 0 1 −
4z2

h2
0]
 
 
 

 

and, 

𝛺 = 𝑧3 −
4

3ℎ2
 (12) 

𝜀𝑥𝑥 = 𝜀𝑥𝑥
0 + 𝑧𝜀𝑥𝑥

1 − 𝛺𝜀𝑥𝑥
3  (13) 

𝜏𝑥𝑧 = 𝜏𝑥𝑧
0 − 𝑧2

4

ℎ2
𝜏𝑥𝑧

2  (14) 

5. FINITE ELEMENT FORMULATION 

5.1. Mechanical field 

In this work, the composite structure is modeled using the fi-
nite element method. Each beam element has two nodes  with 

four mechanical degrees of freedom {ue} = {u,w, φx,
∂w

∂x
} at 

each node. One electric degree of freedom for each piezoelectric 

layer is also used. The axial displacement u and the rotation φx 
are expressed in the nodal displacement in the finite element 
model as follows (Zorić et al., 2013): 

𝜉1 = (1 − 𝛾)/2 

(15) 

𝜉2 = (1 + 𝛾)/2 

where 𝜉1  is the Lagrangian shape function.   

The transverse displacement w is expressed in the finite ele-
ment model by a Hermite cubic interpolation shape functions: 

𝜃1 = 1/4(1 − 𝛾)2 (2 + 𝛾) 

𝜃2 = 1/4(2 − 𝛾)(1 + 𝛾)2 

(76) 

𝜃1
′ = 1/4(1 − 𝛾)2 (1 + 𝛾) 

𝜃2
′ = −1/4(1 − 𝛾)(1 + 𝛾)2 

where 𝛾 is the local coordinate define as:  

𝛾 = 2
𝑥

𝑙𝑒
− 1 (87) 

Putting Eq. 15, 16 and 17 into matrix form yields: 

nu = [

ξ1 0 0
0 θ1 0
0 0 ξ1

0 ξ2 0

θ1
′ (

le
2
) 0 θ2

0 0 0

0 0

0 θ2
′ (

le
2
)

ξ2 0

] 
(189

) 

The displacement vector and the strain vector can be ex-
pressed as follows: 

𝑢 = 𝑎𝑢𝑢𝑢 = 𝑎𝑢𝑛𝑢𝑢𝑢
𝑒 = 𝑛𝑢𝑢

𝑒  (10) 

ε=𝑙𝑢𝑢𝑢 = 𝑙𝑢𝑛𝑢𝑢𝑢
𝑒 = 𝑏𝑢𝑢𝑢

𝑒  (20) 

where 𝑛 is the displacement interpolation matrix and 𝑏𝑢 is the 
strain interpolation matrix. 
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5.2.  Electric  field  

The electric potential along the kth piezoelectric layer is as-
sumed to be a cubic form, and may be presented as: 

𝜙𝑘(𝑥, 𝑦, 𝑧)̃ = 𝑝1
𝑘(𝑧̃)𝐸1

𝑘(𝑥, 𝑦) + 𝑝2
𝑘(𝑧̃)𝐸𝑏

𝑘(𝑥, 𝑦)

+ 𝑝3
𝑘(𝑧̃)𝜙𝑘(𝑥, 𝑦) (21) 

where: 𝑒1
𝑘(𝑥, 𝑦), 𝑒𝑏

𝑘(𝑥, 𝑦) are the electric fields at the top and 

the bottom surface. 𝜙𝑘(𝑥, 𝑦) is the difference in potential be-

tween the top and bottom surface. 𝑝1
𝑘 , 𝑝2

𝑘𝑎𝑛𝑑 𝑝3
𝑘  are the interpo-

lation functions that can be given by: 

𝑝1
𝑘 = −(𝑧̃ +

1

2
)

2

(𝑧̃ −
1

2
) ℎ𝑘  

𝑝2
𝑘 = −(𝑧̃ +

1

2
) (𝑧̃ −

1

2
)

2

ℎ𝑘  

𝑝3
𝑘 = 3(𝑧̃ +

1

2
)

2

− 2(𝑧̃ +
1

2
)

3

−
1

2
 

(22) 

It is to be noted that hk and z̃ are the thickness of the kth pie-
zoelectric layer and the local thickness coordinate of the kth pie-

zoelectric layer respectively, z̃ϵ[−1/2 → 1/2] 

𝑧̃ =
𝑧

ℎ𝑘

−
𝑧𝑡

𝑘𝑧𝑏
𝑘

2ℎ𝑘

 (23) 

𝑧𝑡
𝑘and 𝑧𝑏

𝑘  are respectively the z-axis coordinate for the top and 
bottom surfaces of the kth piezoelectric layer. The electric field 
vector  𝐸𝑘 for each layer is by definition the gradient of the electric 
potential, thus, the electric field can be formulated as follow: 

𝐸𝑘 = [
𝐸𝑥

𝐸𝑧
] = {

−
𝜕∅

𝜕𝑥

−
𝜕∅

𝜕𝑧

}

= −

[
 
 
 𝑝1

𝑘
𝑑

𝑑𝑥
𝑝2

𝑘
𝑑

𝑑𝑥
𝑝3

𝑘
𝑑

𝑑𝑥
𝑑𝑝1

𝑘

𝑑𝑧

𝑑𝑝2
𝑘

𝑑𝑧

𝑑𝑝3
𝑘

𝑑𝑧 ]
 
 
 
{

𝐸𝑡
𝑘

𝐸𝑏
𝑘

𝛷𝑘̅̅ ̅̅

} = −𝑙𝛷
𝑘𝑈𝛷

𝑘  

(24) 

It is worth to be noted that the potential in the y direction can 
be taken as Ey = 0. 

5.3. Thermal field  

Assuming that the temperature field is a linear function 
through the thickness of the beam, hence, the temperature field 
can be interpolated as: 

𝜃(𝑥, 𝑧) = (
1

2
−

𝑧

ℎ
) 𝜃𝑏(𝑥) + (

1

2
+

𝑧

ℎ
)𝜃𝑡(𝑥) = 𝐵𝜃𝜃 (25) 

where θt and θb are the top and bottom surface temperature, Bθ 
is the linear interpolation vector for the temperature variation. 

6. GOVERNING EQUATION  

With the help of Eq. 6, 7, 8, 9 and using Eq. 5, 10 and 11 and 
taking into account the damping effect, we get the dynamic matrix 

equations as follow:  

𝑚𝑢̈𝑢 + 𝐶𝑢𝑢𝑢𝑢 + 𝐶𝑢𝑎𝑢𝑎 + 𝐶𝑢𝑠𝑢𝑠 = 𝑓𝑢 + 𝑘𝑢𝜃𝜃 (11) 

𝐾𝑎𝑢𝑢𝑢 − 𝑒𝑎𝑎𝑢𝑎 = −𝑓𝑎 − 𝑘𝑎𝜃𝜃 (27) 

𝐾𝑠𝑢𝑢𝑢 − 𝑒𝑠𝑠𝑢𝑠 = −𝑓𝑠 − 𝑘𝑠𝜃𝜃 (128) 

where m, Cuu, Cui and kuθ are respectively the mass, the elas-
tic,  the matrix coupling electric-mechanical for actuator and sen-

sor and the matrix coupling thermal-mechanical, and eaa, kkθ, fu 

and fs are the permittivity matrix for actuator and sensor, the 
matrix coupling electric-thermal for actuator and sensor, the me-
chanical load vector and the applied charge vector; which are of 
the form:   

𝑚 = ∫𝜌𝑛𝑡𝑛𝑑𝑣

v

 (139) 

𝐶𝑢𝑢 = ∫𝑏𝑢
𝑡𝐶𝑏𝑢𝑑𝑣

v

 (30) 

𝐶𝑢𝑖 = ∫𝑏𝑢
𝑡𝜎𝑡𝑏𝜙𝑑𝑣

v

  ; 𝑖 = (𝑐, 𝑎) (31) 

𝑘𝑢𝜃 = ∫𝑏𝑢
𝑡𝜒𝑏𝜃𝑑𝑣

v

 (32) 

𝐶𝑘𝑘 = ∫𝑏𝜙
𝑡 𝑑𝑘𝑏𝜙𝑑𝑣

v

  ; 𝑘 = (𝑐, 𝑎) (33) 

𝑘𝑘𝜃 = ∫𝑏𝜙
𝑡 𝜅𝑘𝑏𝜃𝑑𝑣

v

  ; 𝑘 = (𝑐, 𝑎) (34) 

𝑓𝑢 = ∫ 𝑛𝑡𝑓𝑏𝑑𝑉

v

+ ∫𝑛𝑡𝑓𝑑𝑆 + 𝑛𝑡𝑓𝑐
S𝑓

 (35) 

𝑓𝑘 = ∫𝑛𝜙
𝑡 𝑓𝑘

𝑡𝑞𝑑𝑠

v

 ; 𝑘 = (𝑐, 𝑎) (36) 

6.1. Negative velocity  feedback strategy 

It should be noted that in this study, we introduce a controller 
to damp the vibrations caused by the external excitation. A nega-
tive velocity feedback controller is considered in order to have 
good stability and robustness properties. The electrical potential is 
to be the feedback to the actuator, and is calculated as: 

{𝑉}𝑎 = 𝐺𝑣{𝑉}𝑠 (14) 

where 𝐺𝑣   is the control gain.        

7. RESULTS AND DISCUSSION  

In order to validate the present FE model, a benchmark  canti-
lever beam bonded by piezoelectric along the upper and bottom 
surface as shown in Fig. 1 is proposed. The beam dimensions 
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are: length L = 0.5 m, with 0.1 m and thickness h = 0.001 m. The 
FEM model is composed of four layers, the stacking sequence is 

[90°/90°/90°/90°]. The material properties of the structure are 
listed in the Table 1. 

Tab. 1. Material proprieties(Jiang and Li, 2007) 

Proprieties Graphite-Epoxy PZT  

Poison's ratio 𝝊𝟏𝟐=𝝊𝟏𝟑=𝝊𝟐𝟑 0.33 0.33 

Density 𝝆(𝒌𝒈/𝒎𝟑 ) 1600 7750 

Elastic stiffness matrix 𝑬(𝑮𝑵/𝒎𝟐) 𝐸11 = 180 , 𝐸22 = 𝐸33 = 10 𝐸11 = 𝐸22 = 𝐸33 = 60 , 

Shear modulus 𝑮(𝑮𝑵/𝒎𝟐) 𝐺11 = 𝐺13 = 8 , 𝐺23 = 3 ,  𝐺11 = 𝐺13 = 𝐺23 = 22.5 

Thermal expansion 𝑨 𝐴1 = 2.4𝑥10−8, 𝐴2 = 𝐴3 = 2.4𝑥10−5  𝐴1 = 𝐴2 = 𝐴3 = 1.2𝑥10−6 

Electric permittivity 𝒅(𝑭/𝒎) -- 𝑑11 = 𝑑22 = 𝑑33 = 150𝑥10−10 

Piezoelectric strain matrix 𝒆 -- 𝑒31 = 6.5, 𝑒33 = 23.3, 𝑒15 = 17 

Piezoelectric compliance 𝒅(𝑪/𝑵) -- 

𝑑15=𝑑24 = 6𝑥10−10 ,  

𝑑31 = 𝑑32 = −1.7𝑥10−10 

𝑑33 = 3.5𝑥10−10 

Pyroelectric constant 𝜿(𝒄/𝒌𝒎𝟐)  -- 𝜅3 = −2.5𝑥10−5 

a
Two cases are considered to validate the proposed model. the 

first case, the beam has been subjected to a temperature gradient 
of 5, 10, 20 and 50°C, as shown in Fig. 2, the deflection is up-
wards and proportional to the temperature, which is quite normal 
due to the fact that temperature in the bottom is higher than the 
top surface. The results are validated using the study of Jiang and 
Li (2007). 

The second validation case seeks the effect of pyroelectric 
and thermal strain effect, as shown in Fig. 3; the thermal strain 
effect is much more significant than the pyroelectric effect. Those 
results are confirmed by the study of Jiang and Li (2007). 

 
Fig. 2. Beam deflection along the length of the beam  
            (+50°C, ● 20°C, * 10°C, ○5°C) 

 

Fig. 3. Pzt sensor voltage due to temperature variation  
           (o Thermal strain effect , Δ Pyroelectric effect) 

7.1. Temperature effect on the active vibration control 

  In the area of active vibration control, most research papers 
consider that the piezoelectric stress coefficients and permittivity 
are independent of the temperature, which is quite incorrect due 
to the fact that the coefficients are highly sensitive to the tempera-
ture and their change can be described as linear when it comes to 
the stress coefficients and nonlinear for the case of permittivity 
(Gupta et al., 2011). In the present work, we considered the varia-
tions in piezoelectric and permittivity coefficients versus the tem-
perature in the bandwidth of [-70°C to +70°C] for the case of  lead 
zirconate titanate ceramic PZT-5H, which are provided by the 
experimental investigation done by Wang et al. (1998), which is 
shown in Table 2. 

Tab. 2. Dielectric constant and permittivity coefficient of piezo- 
            electric materials versus temperature (Sharma et al., 2016) 

Temperature (°𝑪) Piezoelectric constant 

(𝒅𝟑𝟏)𝟏𝟎−𝟏𝟐 (𝒑𝑪/𝑵) 

Dielectric constant 

(𝒌𝟑𝟑)𝟏𝟎−𝟗 (𝑭/𝒎) 

-70 1.6 1.67 

-50 1.84 1.92 

-25 2.13 2.22 

0 2.43 2.49 

25 2.72 2.84 

50 3 3.11 

70 3.24 3.34 

To study the performance of the active vibration control under 
the aforementioned thermal bandwidth, the structure under study 
is subjected to an external transient load of 10 N at the free end 
for a duration of 1 ms. The control gain is calculated using nega-
tive velocity feedback algorithm, while the structural damping is 
taken to be 1 %. The beam displacement for both control on and 
control off are presented in Fig. 4. Seven different values of tem-
perature [-70,-50,-25,0,25,50,70]°C have been tested. The results 
show that the efficiency of the piezoelectric layer on the control 
system is decreasing when the temperature is decreased, which 
agreed with the previous static analysis finding and can be ex-
plained by the fact that the piezoelectric coupling coefficient d31 is 
increasing proportionally with the temperature. 
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Fig. 4. Controlled dynamic response with a different thermal gradient (-70°C to 70°C) 

The controlled and uncontrolled sensor signal at the previous-
ly mentioned temperature ranged is shown in Fig. 5. It can be 
observed that the sensor signal increase with temperature, which 

proved the accuracy of the proposed control algorithm. The same 
control behavior as the displacement is noticed for the investigat-
ed temperature. 
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Fig. 5. Pzt sensor voltage due at different temperature 

The actuator voltage with consideration of  the range of tem-
perature are depicted in Fig. 6. As it is clearly shown in the figure,  

the actuator voltage is proportional to the temperature. 
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Fig. 6 Pzt actuator voltage versus time in different temperature 70°C, 50°C, 25°C, 0°C 

8. CONCLUSION 

In this paper, the finite element formulation for the laminated 
composite beam bounded by full recovery piezoelectric sensors 
and actuators has been developed for the purpose of AVC. The 
negative velocity feedback control algorithm is designed and 
implemented to provide the control gain. The coupling between 
thermal and piezoelectric effect is mathematically described and 
investigated. The results show a high dependency of the control 
efficiency on the temperature. The piezoelectric sensor voltage 
contributed by the thermal strain effect is much more than that 
contributed by pyroelectric effect. So, the temperature must be 
included in constitutive equations. It is found that AVC perfor-

mance is not maintained at a range of temperatures, if the control 
law ignores the temperature dependence of the PZT coefficients. 
However, AVC performance is maintained when the control law 
includes the temperature dependence of d31 and k33. This 
scheme can be implemented in all the applications of smart struc-
tures where piezoelectric materials are used as sensors and 
actuators. 
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