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Abstract: In this paper, the experimental investigations, constitutive description and numerical modelling of low-cycle fatigue behaviour  
of P91 steel in non-isothermal conditions are presented. First, experimental tests are performed to recognise different aspects of material 
behaviour. Then, an appropriate constitutive model is developed within the framework of thermodynamics of irreversible processes  
with internal state variables. The model describes two phases of cyclic softening, related to plastic mechanisms. An important goal  
of the presented research is to include thermomechanical coupling in the constitutive modelling. Next, the model parameters are identified 
based on the available experimental data. Some parametric studies are presented. Finally, numerical simulations are performed,  
which indicate the significant influence of thermomechanical coupling on the response of the constitutive model in thermomechanical  
fatigue conditions. 
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1. INTRODUCTION 

The interest in prediction of cyclic behaviour of materials and 
structures is growing in the industry. The 9%–12% Cr steels are 
being extensively used as structural materials for the components 
of reactors and power plants (Fournier et al., 2010). Research on 
this new steel grade dedicated for operation at elevated tempera-
tures began in the USA at the end of the 1970s. As a result of the 
extensive research, the optimal chemical composition of steel was 
determined, which resulted in a good combination of mechanical 
and thermal properties (Kannan et al., 2013) such as high creep 
resistance and good ductility, high resistance to thermal fatigue, 
good weldability and the ability to easily make connections with 
other ferritic steel grades, good thermal conductivity and low 
thermal expansion coefficient, and good corrosion resistance and 
fracture toughness in water–steam and gas environments (in the 
presence of hydrogen) (Fournier et al., 2008; Nagesha et al., 
2002; Sauzay et al., 2005; Kyaw et al., 2016)). P91 steel, which is 
one of the 9%–12% Cr steel family members, is perfectly suited 
for thick-walled pipes or forgings for the construction of boilers 
with extremely high operating requirements and steam genera-
tors, nuclear reactors and other responsible devices operating at 
temperatures up to 650°C (Duda, 2015). P91 steel has been also 
used for many years in power plant installations during renova-
tions to replace austenitic steel and 21/4Cr–1Mo steel pipes. The 
benefits of its use are the reduction in the diameter and thickness 
of tubular elements, and thus their mass, which is the result of the 
higher creep strength of P91 steel. 

During the process of frequent starting up and shutting down 
of the power plant units, high-temperature components are sub-

jected to alternating cyclic changes in temperature and mechani-
cal load, i.e. to thermomechanical fatigue. High-chromium steels 
subjected to high-temperature loads are subject to the evolution of 
the microstructure. This has been well documented in Nagesha et 
al. (2002) and Farragher (2014). This evolution manifests itself in 
the form of subgrain coarsening, where the boundaries between 
the martensitic laths and subgrain boundaries disappear (Sauzay 
et al., 2005), which leads to a coarser microstructure. The sub-
grain coarsening phenomenon depends on the applied plastic 
strain (Kyaw et al., 2016). There is also a decrease in dislocation 
density (Nagesha et al., 2002). As a consequence of these micro-
structural rearrangements, the 9%–12% Cr steels commonly 
exhibit cyclic softening (Kyaw et al., 2016; Farragher, 2014; Shan-
kar et al., 2006; Sulich et al., 2017). This softening is observed 
regardless of the test temperature and the level of deformation. 

The present investigation aims at a qualitative and quantitative 
description of the cyclic softening of P91 steel during low cycle 
fatigue at elevated and changing temperatures. Due to the varia-
bility in temperature, an important goal of the presented research 
is to include in the constitutive modelling the thermomechanical 
coupling. The effect of temperature (and its changes) on the 
phenomenon of cyclic softening of P91 steel is investigated exper-
imentally, and an appropriate constitutive model is developed. The 
model parameters are determined here from strain-controlled, 
low-cycle fatigue tests at several isothermal test temperatures 
with the use of optimisation software. The results obtained at 
discrete temperatures are then interpolated into the temperature 
functions of material characteristics. Then the qualitative and 
quantitative impact of thermomechanical coupling on the response 
of the model is illustrated. 
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2. MATERIAL BEHAVIOUR 

Experimental tests were performed on P91 steel specimens 
cut out of a boiler pipe (see Fig. 1; cf. Sulich et al., 2017). The 
chemical composition of steel was 0.127 C, 0.442 Si, 0.489 Mn, 
0.017 P, 0.005 S, 8,82 Cr, 0.971 Mo, 0.307 Ni, 0.012 Al, 0.017 
Co, 0.036 Cu, 0.074 Nb, 0.004 Ti and 0.201 V. Low-cycle fatigue 
tests were strain controlled, with a constant total strain amplitude 

εac and a constant temperature θ in each test. Five levels of total 
strain amplitude (0.25%, 0.30%, 0.35%, 0.50% and 0.60%) and 
three levels of temperature (20°C, 400°C and 600°C) were ap-
plied. Experiments were performed on the testing machine Instron 
8502 equipped with a heating chamber. 

 

 
Fig. 1. Shape and dimensions of the tested specimen 

a) 

 

b) 

 

c) 

 

Fig. 2. (a) Maximum stress on cycle versus number of cycles for strain amplitude εac = 0.5% and three test temperatures, 20°C, 400°C and 600°C;  
           (b) chosen hysteresis loops for the test temperature 20°C; (c) chosen hysteresis loops for the test temperature 600°C

The results (see Fig. 2) indicate that except the first several 
cycles, the tested steel exhibits cyclic softening, regardless of the 
testing temperature and strain amplitude (Saad et al., 2011; Li et 
al., 2016; Mroziński and Golański, 2014; Zhao et al., 2017). This 
softening could be divided into three phases, which are: the rapid 
softening phase, followed by the slow quasi-linear softening and 
finally again fast softening caused by micro-damage development 
in the material that ultimately leads to failure of the tested sample 
(Mroziński, 2011). As mentioned before, the tested material gen-
erally exhibits an initial slight hardening during the very first cy-
cles, the extent of it being dependent on the test temperature 
(decreasing with increasing temperature, see Fig. 2a, cf. also 

Nagesha et al., 2002; Kruml and Polák, 2001. It may be the effect 
of several mechanisms, such as the interaction between disloca-
tions and solute atoms, mutual interaction among dislocations and 
formation of fine precipitates on dislocations during testing. After 
this very short consolidation phase, the maximum stress on the 
cycle continuously drops without a saturation period within the 
range of considered strain amplitudes. For higher plastic strain 
amplitudes, the tendency to saturation may be observed.  

The existing literature suggests various mechanisms respon-
sible for the cyclic softening/hardening of the high-strength steel 
group. In general, this phenomenon is explained by the modifica-
tion of dislocation structure and density, carbide morphology, 
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density and chemical composition (Zhang et al., 2002). In the 
study of Jones and Van Den Avyle (1980), it was found for 
2.25Cr–1Mo steel that cyclic loading-induced dislocation shuttling 
accelerates the formation of Mo–C–Mo clusters, leading finally to 
the replacement of Mo–C pairs, which results in a continuous drop 
of the stress amplitude. Other mechanisms that have been pro-
posed to explain the phenomenon of cyclic softening of this type 
of steel include stress reduction associated with the surface oxide 
film (Kim and Weertman, 1988), and change from the original lath 
structure to cells or equiaxed subgrains.   

There are several parameters that influence the softening am-
plitude and kinetics (temperature, total or plastic strain amplitude, 
testing frequency, initial hardness, etc.). The present paper is 
focused on the description of the influence of variable temperature 
on the cyclic behaviour in non-isothermal conditions, while the 
dependence on other test conditions (Xie et al., 2018) and strain 
range memorisation effect (Zhou et al., 2018) are disregarded. 

3. CONSTITUTIVE MODEL 

3.1. Basic assumptions 

Cyclic constitutive models have been widely developed for 
metallic materials and successfully used in academic research 
and industrial applications during the past decades. In constitutive 
modelling, the formalism of thermodynamics of irreversible pro-
cesses with internal state variables and the local state method are 
often adopted (Skrzypek and Kuna-Ciskał, 2003; Egner and Ryś, 
2017; Zhou et al., 2018; Xie et al., 2018). The current state of a 
material is determined by certain values of some independent 
variables called variables of state (observable or internal). The 
choice of internal variables depends on dissipative phenomena 
taking place in the material that need to be regarded in the theo-
retical model. The present model is based on the following as-
sumptions: small strains, rate-independent plasticity, mixed iso-
tropic/kinematic plastic hardening. 

3.2. State variables  

For elastic–plastic material exhibiting mixed hardening, the fol-
lowing set of state variables is defined: 

{𝑉𝛼} = {𝜀𝑖𝑗
e , 𝜃; 𝛼𝑖𝑗

(m)
, 𝑟(n)} (1) 

where 𝜀𝑖𝑗
e  are components of the reversible (elastic) strain tensor, 

𝜃 is the absolute temperature in Kelvin degrees, 𝛼𝑖𝑗
(m)

 correspond 

to kinematic plastic hardening, while 𝑟(n) are related to isotropic 

plastic hardening. Indexes m and n denote the number of differ-
ent physical mechanisms (different dislocation populations) result-
ing in the occurrence and nature of hardening (Cailletaud and Saï, 
1995; Egner and Egner, 2016). To reduce the number of model 

parameters, in the present analysis, the simplest case, m = n =
1, is considered. 

3.3. Cyclic softening 

Within the framework of hardening models, isotropic harden-
ing is generally used to express the cyclic evolution of the materi-

al’s mechanical strength with respect to the plastic flow 
(Chaboche, 2008). The dimension of the elasticity domain can be 
controlled with a law of the type:  

𝑅 = 𝑄(𝜃)(1 − 𝑒−𝑏(𝜃)𝑟) (2) 

where 𝑏(𝜃) and 𝑄(𝜃) are two coefficients that are material and 
temperature dependent. However, such a description leads to a 
typical saturation; therefore, it is not suitable for steels that soften 
continuously without a saturation period. To take into account the 
non-saturating cyclic softening observed experimentally in the 

case of P91 steel, the drag stress R can be divided into two parts, 
𝑅1 and 𝑅2 (Zhang et al., 2002; Taleb and Cailletaud, 2010; Egner 
and Egner, 2014): 

𝑅1 = 𝑄(𝜃)(1 − 𝑒
−𝑏(𝜃)𝑟), 𝑅2 = 𝐻

R(𝜃)𝑟 (3) 

The first part, 𝑅1, corresponds to the strong softening typically 
taking place during the first hundred of cycles, while the second 

one, 𝑅2, allows reflecting continuous softening. Due to the quasi-
linear character of the second stage of softening, drag stress 𝑅2 
was here adopted in a linear form (Saad et al., 2013, Lu et al., 

2015), where 𝐻R reflects the slope of the second stage of cyclic 
softening (see Fig. 2a). 

3.4. State equations 

The thermodynamic forces conjugated to state variables (1) 
result from the assumed form of the state potential, which is here 
the Helmholtz free energy 𝜌𝜓, decomposed into thermoelastic 
and thermoplastic parts (Sulich et al., 2017). In the present analy-
sis, the following state equations define the thermodynamic forc-
es: 

𝜎𝑖𝑗 = 𝜌
𝜕𝜓

𝜕𝜀𝑖𝑗
e = 𝐸𝑖𝑗𝑘𝑙(𝜃)(𝜀𝑘𝑙 − 𝜀𝑘𝑙

p
) − 𝛽𝑖𝑗(𝜃)(𝜃 − 𝜃0) (4) 

𝑋𝑖𝑗 = 𝜌
𝜕𝜓

𝜕𝛼𝑖𝑗
=
2

3
𝐶(𝜃)𝛼𝑖𝑗  (5) 

𝑅 = 𝜌
𝜕𝜓

𝜕𝑟
= 𝑄(𝜃)(1 − e−𝑏(𝜃)𝑟) + 𝐻R(𝜃)𝑟 = 𝑅1 + 𝑅2 (6) 

Symbol 𝜎𝑖𝑗  denotes the Cauchy stress tensor (thermodynamic 

force conjugated to elastic strain), 𝑋𝑖𝑗  denotes back stress (con-

jugated to plastic kinematic hardening variable 𝛼𝑖𝑗) and drag 

stress 𝑅 is conjugated to plastic isotropic hardening variable 𝑟. 

Additionally, 𝐸𝑖𝑗𝑘𝑙(𝜃) denote the components of the elastic stiff-

ness tensor, while 𝐶(𝜃), 𝑄(𝜃), 𝑏(𝜃) and 𝐻𝑅(𝜃) stand for 
temperature-dependent material characteristics. 

3.5. Dissipation potential and evolution equations 

To establish the rate laws, the potential approach is applied 
here, based on the assumption of the existence of dissipation 
potential 𝐹, being closed, convex and scalar-valued function of 
the thermodynamic forces (4)–(6) and some other possible varia-
bles.  

To allow for a nonlinear plastic hardening description (Freder-

ick and Armstrong, 2007), the potential of plastic dissipation 𝐹 is 
assumed to be not equal to plastic yield surface here (non-
associated plasticity):  

𝐹(𝐽𝛼, 𝑍𝛽 , 𝜃) = 𝑓(𝐽𝛼 , 𝑍𝛽 , 𝜃) +
3𝛾(𝜃)

4𝐶(𝜃)
𝑋𝑖𝑗𝑋𝑖𝑗 (7) 
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𝑓(𝐽𝛼 , 𝑍𝛽 , 𝜃) = √
3

2
(𝑠𝑖𝑗 − 𝑋𝑖𝑗)(𝑠𝑖𝑗 − 𝑋𝑖𝑗) − 𝜎y(𝜃) − 𝑅 (8) 

where 𝑓(𝐽𝛼 , 𝑍𝛽 , 𝜃) is the von Mises–type plastic yield function of 

thermodynamic conjugated forces 𝐽𝛼 (deviatoric stress 𝑠𝑖𝑗 , back 

stress 𝑋𝑖𝑗  and drag stress 𝑅) and material characteristics 𝑍𝛽 

(yield stress 𝜎y(𝜃) and material parameters 𝐶(𝜃) and 𝛾(𝜃)). 

According to the generalised normality rule (Chaboche, 2008), the 
following rate equations are obtained: 

𝜀𝑖̇𝑗
p
=
3

2
𝜆̇p

𝑠𝑖𝑗−𝑋𝑖𝑗

√
3

2
(𝑠𝑘𝑙−𝑋𝑘𝑙)(𝑠𝑘𝑙−𝑋𝑘𝑙)

  (9) 

𝛼̇𝑖𝑗 = 𝜀̇𝑖𝑗
p
−

3𝛾

2𝐶
𝑋𝑖𝑗𝑟̇   (10) 

𝑟̇ = 𝜆̇p   (11) 

4. THERMOMECHANICAL COUPLING 

4.1. Rates of thermodynamic forces 

The constitutive model involves a number of temperature-
dependent model characteristics. According to Eqs (4)–(6), the 
rates of thermodynamic conjugate forces involve explicitly the rate 
of temperature and are expressed as: 

𝜎̇𝑖𝑗 = 𝐸𝑖𝑗𝑘𝑙(𝜃)(𝜀̇𝑘𝑙 − 𝜀̇𝑘𝑙
p ) − 

[−
𝜕𝐸𝑖𝑗𝑘𝑙

𝜕𝜃
(𝜀𝑘𝑙 − 𝜀𝑘𝑙

p
) +

𝜕𝛽𝑖𝑗

𝜕𝜃
(𝜃 − 𝜃0) + 𝛽𝑖𝑗]⏟                          

coupling term 𝑃𝑖𝑗
θ

𝜃̇    (12) 

𝑋̇𝑖𝑗 =
2

3
𝐶𝛼̇𝑖 +

2

3

d𝐶

d𝜃
𝛼𝑖𝑗⏟    𝜃̇

coupling term 𝐶𝑖𝑗
θ

    (13) 

𝑅̇ = (𝑄𝑏e−𝑏𝑟 + 𝐻R)𝑟̇ + 

+ [
d𝑄

d𝜃
(1 − e−𝑏𝑟) + (𝑄

d𝑏

d𝜃
e−𝑏𝑟 +

d𝐻R

d𝜃
) 𝑟]⏟                        𝜃̇

coupling term 𝑄θ

    (14) 

In the presence of thermoplastic coupling, the rate of a con-
sidered thermodynamic force depends, therefore, not only on the 
rate of internal variable conjugated to it, but also on the rate of 
temperature. In the following sections, the significance of coupling 
terms appearing in the kinetic equations (12)–(14) 

𝑃𝑖𝑗
θ = −

𝜕𝐸𝑖𝑗𝑘𝑙

𝜕𝜃
(𝜀𝑘𝑙 − 𝜀𝑘𝑙

p
) +

𝜕𝛽𝑖𝑗

𝜕𝜃
(𝜃 − 𝜃0) + 𝛽𝑖𝑗     (15) 

𝐶𝑖𝑗
θ =

2

3

d𝐶

d𝜃
𝛼𝑖𝑗    (16) 

𝑄θ =
d𝑄

d𝜃
(1 − e−𝑏𝑟) + (𝑄

d𝑏

d𝜃
e−𝑏𝑟 +

d𝐻R

d𝜃
) 𝑟    (17) 

will be investigated for the case of thermomechanical cyclic load-
ing. 

4.2. Heat balance equation 

To determine the temperature distribution within the body, the 
heat balance equation is used, which is derived from the first law 
of thermodynamics by substituting into it the internal energy densi-
ty together with Fourier’s law. The heat balance equation takes 

the following form (Egner and Egner, 2016) (𝑐ε
θ is the specific 

heat capacity at a constant strain, 𝑞𝑖 stands for the heat flux and 

𝑟θ is the distributed heat source per unit volume): 

𝜌𝑐ε
θ𝜃̇ =

−𝑞𝑖,𝑖 + 𝑟
θ + 𝜎𝑖𝑗 𝜀̇𝑖𝑗

p
− 𝑅𝑟̇ − 𝑋𝑖𝑗𝛼̇𝑖𝑗⏟          

mechanical dissipation

+

𝜃 [
𝜕𝑅

𝜕𝜃
𝑟̇ +

𝜕𝑋𝑖𝑗

𝜕𝜃
𝛼̇𝑖𝑗 − 𝑃𝑖𝑗

θ(𝜀𝑖̇𝑗 − 𝜀𝑖̇𝑗
p
)]⏟                  

thermo−mechanical coupling term

    (18) 

According to Eq. (18), determination of the temperature distri-
bution within the body is coupled not only to the total strain rate 

𝜀𝑖̇𝑗 , but also to the inelastic rates, 𝜀𝑖̇𝑗
p

, and fluxes 𝛼̇𝑖𝑗  and 𝑟̇. 

4.3. Loading/unloading conditions 

Since the thermodynamic conjugate forces are functions of 
state variables, the consistency relation for the development of 
dissipative phenomena takes the following form: 

𝑓̇ =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝜎̇𝑖𝑗 +

𝜕𝑓

𝜕𝑋𝑖𝑗
𝑋̇𝑖𝑗 +

𝜕𝑓

𝜕𝑅
𝑅̇ +

𝜕𝑓

𝜕𝜃
𝜃̇ = 0   (19) 

where the term 
𝜕𝑓

𝜕𝜃
 explicitly includes the dependence of the initial 

yield stress 𝜎y on temperature. 

Using the chain rule and Eqs (9)–(11) and (12)–(14), the con-
sistency condition becomes: 

𝑓̇ =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝜎̇𝑖𝑗 − 𝜆̇

p𝐻 − 𝜃̇𝑆 = 0  (20) 

In the above equation, 𝐻 is a generalised hardening modulus, 

𝐻 =
2

3

𝜕𝑓

𝜕𝜎𝑖𝑗
(𝐶

𝜕𝑓

𝜕𝜎𝑖𝑗
−
3

2
𝛾𝑋𝑖𝑗) −

𝜕𝑓

𝜕𝑅
(𝑄𝑏e−𝑏𝑟 +𝐻R)   (21) 

while S reflects the sensitivity of the yield surface on temperature 
changes (Egner, 2012): 

𝑆 {

> 0 ⇒ yield surf. contracts with increasing 𝜃               
= 0 ⇒ yield surf. remains constant with increasing 𝜃
< 0 ⇒ yield surf. expands with increasing 𝜃                  

   (22) 

where 

𝑆 =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝐶𝑖𝑗
θ −

𝜕𝑓

𝜕𝑅
𝑄θ −

𝜕𝑓

𝜕𝜃
   (23) 

Concerning the majority of experiments, the physical meaning 
has the case when the yield surface contracts with increasing 
temperature. 

Expression (20) determines the consistency multiplier: 

𝜆̇p(𝜃) =
1

𝑤
[
𝜕𝑓

𝜕𝜎𝑖𝑗
𝐸𝑖𝑗𝑘𝑙𝜀̇𝑘𝑙 − (

𝜕𝑓

𝜕𝜎𝑖𝑗
𝑃𝑖𝑗
θ + 𝑆)

⏟        
𝜃̇

coupling term

] (24) 

where 𝑤 =
𝜕𝑓

𝜕𝜎𝑖𝑗
𝐸𝑖𝑗𝑘𝑙

𝜕𝑓

𝜕𝜎𝑘𝑙
+𝐻 > 0. 

Temperature influences the mechanical properties of conven-
tional engineering materials. Generally speaking, degradation of 
mechanical properties is observed (referred to as thermal soften-
ing), accompanied by increasing values of thermal properties. The 
numerical examples presented below will investigate the qualita-
tive and quantitative influence of thermomechanical coupling in 
the set of Eqs (12)–(18) and (24). 
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5. RESULTS 

5.1. Numerical implementation 

The constitutive model is implemented into numerical subrou-
tines by the use of the fully implicit backward Euler scheme (which 
is always stable and very accurate) and the Newton–Raphson 
method. The iterative solution procedure is defined as 

∆𝐘(𝑘+1) = ∆𝐘(𝑘) − [𝐉(𝑘)]
−1
𝐑res(𝑘)    (25) 

where ∆𝐘 = {∆𝑉𝛼} is the vector containing the increments of the 

unknowns, [𝐉] = ∂𝐑res/ ∂∆𝐘 is the Jacobian matrix and 

𝐑res = {𝑅∆𝑌𝑖} is a residual vector containing the components 

𝑅∆𝑌𝑖 = ∆𝑌𝑖 − ∆𝑌̂𝑖 , where ∆𝑌𝑖  is a variable while ∆𝑌̂𝑖 denotes the 

function resulting from the evolution rule for i-th variable 𝑌𝑖. In the 
case of uniaxial tension/compression, it is 

∆𝐘 = [

∆𝛆
∆𝜃
∆𝜆
Δ𝛂

], 𝐑res = [

𝐑Δ𝜀
𝑅Δ𝜃
𝑅Δ𝜆
𝐑Δ𝛼

], 𝐉 =

[
 
 
 
 
 
 
𝜕𝐑Δ𝜀

𝜕𝛆

𝜕𝐑Δ𝜀

𝜕𝜃
    
𝜕𝐑Δ𝜀

𝜕𝛂

𝜕𝐑Δ𝜀

𝜕𝜆
𝜕𝑅Δ𝜃

𝜕𝛆

𝜕𝑅Δ𝜃

𝜕𝜃
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    (26) 

The condition 𝐑res(∆𝐘) = 𝟎 defines the solution; therefore, 

the iteration procedure is stopped when the norm of 𝐑res is suffi-
ciently small.  

 
Fig. 3. Scheme of numerical implementation 

To solve the problem numerically, the classical concept of 
elastic predictor/plastic corrector was applied. Wolfram Mathemat-
ica 11 (Wolfram Mathematica 11.2, 2017) software was used to 
generate the expressions for components of the Jacobian matrix. 
Numerical subroutines were automatically generated in C++ 
language by the use of AceGen software (Korelc, 2016) (see Fig. 
3).  

5.2. Material data 

Experimental observations indicate that P91 steel is not a sta-
ble material during fatigue, i.e. the steel microstructure can be 
modified by the thermomechanical cycle. This is the case, howev-
er, only when the temperature reaches or exceeds the tempering 
temperature during some period of time (Zhang et al., 2002). In 
general, there are two temperature ranges (separated by temper-
ing temperature) in which the fatigue behaviour of P91 steel is 

different. Above the tempering temperature, pronounced effects of 
ageing are observed, additionally enhanced by the fatigue load-
ing. In this temperature range, changes in the mechanical proper-
ties of steel depend not only on the current temperature, but also 
on its history. Identification of model parameters should, therefore, 
take place jointly for all temperatures in a given load programme 
(Cailletaud et al., 2000). To do this, experimental thermomechani-
cal fatigue tests should be performed and used to identify the 
temperature history–dependent parameters. 

On the other hand, ageing at temperatures below tempering 
remains almost constant (which is the case considered here) and 
mechanical properties depend only on the current temperature, 
and not on its history. This means that there is no need to include 
all temperatures together in the identification procedure. Instead 
of that, it is possible to carry out several isothermal tests at differ-
ent temperatures, identify material parameters in each test tem-
perature and finally to take into account the influence of tempera-
ture on the material parameters by the use of interpolation tech-
niques with polynomial or spline functions. In the present analysis, 
P91 steel was tested in the temperature range between 20°C and 
600°C, while the tempering temperature of this steel is 730°C–
760°C. 

The identification of model parameters for each isothermal 
test was performed with the application of the SIMULIA-Isight 
package (Dassault, 2016). Two key components from the point of 
view of identification were used: “Data Matching”, which offers the 
ability to calculate different error measures of two or more data 
sets (e.g. stresses obtained from the experiment and stress calcu-
lated numerically) and “Optimisation” component, which allows for 
various methods of finding the minimum of a multivariable function 
(see Fig. 4). The following vector of normalised material parame-

ters 𝑃𝑖 ∈ 〈−1,1〉 was searched (the temperature dependence of 

Poisson’s ratio ν and thermal expansion coefficient αθ was disre-
garded): 

𝑃𝑖 =
2𝑃𝑖−(𝑈𝑖+𝐿𝑖)

𝑈𝑖−𝐿𝑖
, 𝑃𝑖 ∈ 〈𝐿𝑖 , 𝑈𝑖〉, {𝑃𝑖} = {𝜎y, 𝐸, 𝛾, 𝐶, 𝑏, 𝑄,𝐻

R}    (27) 

Parameters 𝑃𝑖  are bounded between their respective lower 

bounds 𝐿𝑖 and upper bounds 𝑈𝑖.  
In the present analysis, the following error measure was used: 

𝐹obj(𝐏) = 𝑤1∑|𝜎𝑘(𝐏) − 𝜎𝑘
exp
|

𝑚

𝑘=1

+ 

+𝑚𝑤2Max|𝜎𝑗(𝐏) − 𝜎𝑗
exp
|
𝑗=1,…,𝑚

    (28) 

where 𝜎𝑘
exp

 denote the experimental stress data and 𝜎𝑘(𝐏) are 

the stress data calculated numerically by the use of current values 

of model parameters 𝑃𝑖 . The objective function is a weighted sum 
(weights 𝑤1 and 𝑤2) of two components: the sum of absolute 
differences between the experimental and numerical data (stress) 
and the absolute maximal differences between the experimental 
data and the numerically simulated data. Such function allows to 

effectively reduce the maximum error (𝑤2 ≫ 𝑤1) or to adjust very 

well the data in the entire tested range (𝑤1 ≫ 𝑤2). 
The search time depends strongly on the selection of the 

starting point. To shorten the “distance” to the optimal solution, the 
following procedure was used to select the appropriate starting 
point as close as possible to the optimal solution:  

 Elastic parameters (initial yield stress 𝜎y and elastic modulus 

𝐸) were determined manually, taking into account the initial 
part of the first hysteresis loop.  

Symbolic Calculations
(Wolfram Mathematica)

Constitutive
Modelling

Automatic
Code Generation
AceGen C++

Numerical Subroutine
(C++)
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 Next, considering the entire first hysteresis loop, the 
approximate values of the kinematic hardening parameters 
were determined (𝛾 and 𝐶) assuming that the isotropic 

hardening in the first loop can be disregarded (𝑏 = 0, 𝑄 = 0 

and 𝐻R = 0).  

 Then, parameters related to isotropic hardening were 
searched based on several selected hysteresis loops. As a 
result, approximate values of all material parameters were 
determined as the starting point for optimisation. 

 Finally, the identification of all material parameters 

(𝜎y, 𝐸, 𝛾, 𝐶, 𝑏, 𝑄, 𝐻
R) was carried out again, but in a 

substantially reduced range around the starting point.  
The results of the identification procedure described above 

are presented in Table 1. They ensure the best match of numeri-
cal results to experimental results for the selected objective func-

tion 𝐹obj(𝐏) and the assumed constitutive model. 

 
Fig. 4. Algorithm of parameter identification 

Table 1. Material parameters (𝜀ac = 0.5%) 

 20°C 400°C 600°C 

𝜎y (MPa) 371 281 199 

𝐸 (MPa) 210464 184782 173791 

𝜈 0.3 0.3 0.3 

𝛾 634 658.7 663.5 

𝐶 (MPa) 125806 123726 99433 

𝑏 0.68 1.17 3.27 

𝑄 (MPa) −45.5 −47.7 −66.3 

𝐻R (MPa) −1.27 −2.61 −5.46 

The influence of temperature on the material parameters was 
then determined by interpolation techniques with spline functions 
according to the following scheme: 
𝑔(𝜃) = 𝑎𝑖(𝜃 − 𝜃𝑖)

3 + 𝑏𝑖(𝜃 − 𝜃𝑖)
2 + 𝑐𝑖(𝜃 − 𝜃𝑖) + 𝑑𝑖     (29) 

for 𝜃𝑖 ≤ 𝜃 ≤ 𝜃𝑖+1 
To illustrate the significance of temperature influence, the 

temperature-dependent material characteristics are plotted  
in Fig. 5. 

5.3. Validation 

The general procedure of constitutive modelling, numerical 
implementation and parameter identification was validated with 
the use of available experimental data. A very good agreement 
was obtained between numerical simulations of cyclic softening 
behaviour and experimental tests (see Fig. 6). 
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

 

g) 

 

Fig. 5. Function interpolations of material characteristics  
           (T denotes temperature expressed in Celsius degrees) 

a) 

 
b) 

 
Fig. 6. Validation tests: (a) maximum stress on cycle versus the number  
            of cycles; (b) chosen hysteresis loops at a temperature of 20°C 

 

Fig. 7. Influence of linear part of isotropic softening (isothermal fatigue  
            test at a temperature of 20°C) 
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The identification procedure allowed to fit very well into the 
softening curve, while the monotonic stress–strain curve (and 
individual hysteresis loops) exhibited some differences in the 
shape between the experiment and numerical simulations (see 
Fig. 7). This is most likely due to a single back stress used in the 
presented analysis. Increasing the number of terms in the back 
stress decomposition would allow the expression of a more exten-
sive strain domain and a better description of the soft transition 
between elasticity and the onset of plastic flow. On the other 
hand, it would increase the number of model parameters, and this, 
in turn, would worsen some other aspects of the model behaviour. 
The increasing number of model parameters usually leads to 
multiple local minima of the error function, resulting in a non-
unique set of optimal model parameters. Secondly, with a large 
number of parameters, the model becomes sensitive to their 
changes, so that a small change in a parameter may cause signif-
icant discrepancies in the simulation results. 

In the subsequent sections, parametric studies were per-
formed to show the influence of subsequent effects regarded in 
the constitutive description on the model response. 

5.4. Isothermal tests 

The influence of a linear term in Eq. (6) is shown in Fig. 8. 

Without the linear term in Eq. (6) (𝐻R = 0), the shape of the 
maximum stress evolution cannot be reflected accurately.  

 

Fig. 8. Influence of linear part of isotropic softening (isothermal fatigue  
           test at a temperature of 20°C) 

It is possible to fit well into the first stage of cyclic softening, 
but then the second stage is highly erroneous and unrealistic (the 
rate of the maximum stress evolution drops to zero, cf. e.g. Saad 
et al., 2013). If both first and second stages are subjected to 
parameter optimisation described in the previous section, the error 
is unacceptably large and the simulated curve substantially differs 
from the experimental one for both, regarding here stages of 

material softening. The linear term 𝑅2 included in Eq. (6) allows 
obtaining a very good compatibility between experimental and 
numerical results in the whole softening range considered. 

5.5. Non-isothermal simulations 

Several non-isothermal fatigue tests were subjected to numer-

ical simulation according to the strain and temperature control 
scheme presented in Figs 9 and 10. Reversed strain cycles are 
considered in Fig. 9, with temperature changes taking place at the 
maximum and minimum total strain (in-phase and out-of-phase 
configurations are considered, cf. Fig. 9a,b). During the strain 
change, the temperature is kept constant. To evaluate the influ-
ence of thermomechanical coupling terms in Eqs (12)–(18), the 
following two cases are compared: 
(case 1) Temperature rate terms in kinetic Eqs (12)–(14) are 

disregarded and the influence of temperature changes is 
accounted for only by updating the material characteris-
tics; 

(case 2) All temperature rate-dependent terms are included (full 
thermomechanical coupling). 

a) 

 

b) 

 
Fig. 9. Non-isothermal fatigue simulations with cyclic temperature change 

The stress–strain loops for both cases are presented  
in Fig. 9a,b. Qualitatively, different results are obtained: without 
temperature rate terms (case 1), the response exhibits shift 
of hysteresis loops along the stress axis, while including the tem-
perature rate terms (case 2) allows for preserving stable behav-
iour. Such an effect was already indicated by Chaboche (2008), 
and also by Egner and Egner (2016), Egner and Egner (2014) and 
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Besson et al. (2009). Due to this unreasonable shift, the simulated 
maximum stress on cycle contains a substantial error when the 
temperature rate-dependent terms in Eqs (12)–(14) are disre-
garded. 

The significance of temperature rate influence depends on the 
specific case of the strain/temperature control scheme. For exam-
ple, if cyclic strain change is accompanied by monotonic tempera-
ture increase or decrease, the difference between case (1) and 
case (2) is not so pronounced (see Fig. 10). 

 
Fig. 10. Non-isothermal fatigue simulations with monotonic temperature change 

6. CONCLUSIONS 

This article is concerned with the description of the cyclic sof-
tening of P91 steel under non-isothermal conditions. Particular 
attention is paid to accounting for thermomechanical coupling in 
constitutive modelling and to examining the effect of this coupling 
on the model's response. The analysis presented in this work 
consists of six stages: (1) experimental testing of the material at 
several test temperatures, (2) constitutive modelling concerning 
variable temperature influence and the phenomenon of material 
cyclic softening, (3) numerical implementation of the mathematical 
model, (4) identification of model parameters at different test 
temperatures and then interpolating the results to obtain tempera-
ture-dependent material characteristics, (5) validating the analysis 
by comparing the experimental and numerical results and (6) 
investigating the effect of thermomechanical coupling on the 
model response, depending on the thermomechanical loading 
scheme. 

To investigate the effect of full thermomechanical coupling on 
the model response, the classical constitutive model of Armstrong 
and Frederick (Frederick and Armstrong, 2007) was extended to 
take account of the rate of temperature explicitly. To properly 
reflect the first two stages of material cyclic softening, in the de-
scription of the isotropic plastic hardening, the drag stress was 
decomposed into two components – one of them responsible for 
the first stage of rapid softening, while the other for the quasi-
linear softening stage. The influence of temperature on material 
parameters was determined using interpolation techniques with 
polynomial spline functions. The numerical test results revealed a 
significant qualitative and quantitative effect of temperature. This 
means that the coupling between temperature and dissipative 
phenomena occurring in the material can have a significant impact 
on the response of the constitutive model. Disregarding the tem-
perature rate in the model equations can, therefore, lead to erro-

neous results, while the amount of error depends on the thermo-
mechanical cyclic load configuration. 

The constitutive description presented in this work was based 
on a model of the Armstrong and Frederick type. Such a model is 
not capable to reflect all the physical mechanisms able to produce 
material nonlinearities on a macro scale (such as unilateral dam-
age, plastic strain range memorisation effect, etc.). Nevertheless, 
even this relatively simple model involves seven parameters that 
have to be identified for several temperatures of fatigue tests. This 
is a laborious and time-consuming task, and each additional 
parameter significantly increases the size of the problem. There-
fore, in the presented analysis, a relatively simple model is con-
sidered, but the described procedure is general and can also be 
applied to more comprehensive modelling (Saanouni and Deva-
lan, 2012). 
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Abstract: The influence of impulse load applied for different duration on the distribution of normalised dynamic radial stresses in positive  
and negative Poisson’s ratio medium was investigated in this study. For solving the non-stationary problem in the case of plane 
 deformation for structurally inhomogeneous materials, the model of Cosserat continuum was applied. This model enables accounting  
for the influence of shear-rotation deformation of micro-particles of the medium. In the framework of Cosserat elasticity, on applying  
the Fourier transforms for time variable and developing the boundary integral equation method, solving of the non-stationary  
problem reduces to the system of singular integral equations, where the components that determine the influence of shear-rotation  
deformations are selected. The numerical calculations were performed for the foam medium with positive and negative Poisson’s ratio  
for different values of time duration of impulse. Developed approach can be used to predict the mechanical behaviour of foam auxetic  
materials obtained at different values of a volumetric compression ratio under the action of time variable load based on analysis of the dis-
tribution of radial stresses in foam medium. 

Key words: Stress state, Foam, Poisson’s ratio, Cosserat elasticity 

1. INTRODUCTION 

In recent years, the interest of scientists has grown to the cre-
ation of new materials, which have additional functional capabili-
ties. These additional functional capabilities are wider than the 
properties which are defined by the composition of the material. 
Such materials are called smart materials. Expansion of their 
functional capabilities is based on the peculiarities of their internal 
structure. These materials also include the materials with negative 

Poisson's ratio  (Scarpa et al., 2016; Brighenti, 2014). Such 
materials are called auxetics (Evans, 1991). Under the action of 
stretching force, they become thicker perpendicular to the applied 
force. 

Reviews of auxetic materials and the possibility of their appli-
cation were made by Carneiro et al. (2013), Novak et al. (2016), 
Ren et al. (2018) and others. 

Developing the technology for creation of materials with a 
negative Poisson’s ratio is important for using them in sports 
applications (Duncan et al., 2018) and other aspects (Naik et al., 
2019).  

Thus, in the work of Lakes (1991), the method of creating syn-
thetic materials with negative Poisson's ratio was described. This 
method was based on triaxial compression and heat treatment of 
as-received foam for converting it to negative Poisson’s ratio 
foam. An alternative method converting open-cell polyurethane 
foam into auxetic foam was based on using chemo-mechanical 
process (Underhill, 2017).  

The researches of Lakes (2016), Rueger et al. (2016), Li et al. 

(2016) and others were dedicated to the investigation and com-
parison of elastic characteristics of foam materials with positive 
and negative Poisson's ratio. These experiments were performed 
in the framework of Cosserat elasticity. Applying the model of the 
moment theory of elasticity, we can account for the influence of 
material microstructure through consideration of shear-rotation 
deformation of micro-particles of a medium.  

The results of the research performed (Lakes, 2016; Rueger 
et al., 2016; Li et al., 2016, etc.) confirm that the refined models of 
continuous medium mechanics should be used for investigation of 
the deformation processes in structurally inhomogeneous materi-
als since the obtained results cannot be correctly described using 
the equations of the classical theory of elasticity. However, ac-
counting for the influence of shear-rotation deformations leads to 
the complication of motion equation of the micropolar medium and 
obtaining the solutions with corresponding problems (Sulym et al., 
2018).  

A lot of papers investigated the dynamic behaviour of auxetics 
with different internal structures using computational analysis. In 
the work of Zang et al. (2014), the in-plane dynamic crushing 
behaviour of honeycomb auxetics with various cell wall angles 
was studied using dynamic finite element simulation. Strek et al. 
(2019) performed computational analysis of the dynamic behav-
iour of a three-layered sandwich beam with a metal foam core. 

Besides, comparing the stress distribution in the initial foam 
material and auxetic foam obtained based on numerical modelling 
of the influence of time variable load on the stress state of these 
materials has a practical interest too. These numerical calcula-
tions must be performed in the framework of Cosserat elasticity.  

https://wm.pb.edu.pl/en/
mailto:shyprao@gmail.com
mailto:h.sulym@pb.edu.pl
mailto:%20v.shvabyuk@gmail.com
https://www.sciencedirect.com/science/article/abs/pii/S0263823114002304#!
mailto:Carneiro
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Sylum et al. (2018) developed the method of investigating the 
stress state of structurally inhomogeneous materials in Cosserat 
elasticity. This method was based on the application of Fourier 
transforms of time variable and development of boundary integral 
equation method in the framework moment theory of elasticity.  

Therefore, the aim of the work is comparison of the dynamic 
stress state of foam media with positive and negative Poisson’s 
ratios under the action of impulse load which is applied to the 
boundary of tunnel cavity.  

2. STATEMENT AND SOLUTION OF THE PROBLEM 

2.1. Statement of the problem  

Consider a foam medium with the tunnel cavity of constant 
cross section (Sulym et al., 2018). To the boundary of the cavity, 
non-stationary load is applied in the normal direction. Denote the 
boundary of a cross section of the cavity by L (Fig. 1). The centre 
of gravity is placed at the origin of a Cartesian coordinate system 
Ох1х2. 

 
Fig. 1. 3D full geometry and 2D plane geometry of the problem  

The problem consists in the determination and comparison of 
the dynamic stresses at negative and positive Poisson’s ratio 
media with the tunnel cavity under the action of impulse load 
applied for different duration in a direction normal to the boundary 
of cavity.  

The boundary conditions of the problem are written as (Sulym 
et al., 2018): 

𝜎𝑛|𝐿 = 0𝑃(𝑡), 𝜏𝑠𝑛|𝐿 = 0,  𝑚𝑛|𝐿 = 0,  (1) 

where 0 is a constant and 𝑃(𝑡) is a known function which de-
scribes the change of load intensity over time.  

2.2. Solution of the problem  

If  applying load in a direction normal to the boundary of cavity 
one can solving of 3D problem convert to solving 2D problem in 
case of plane deformation. 

 For the investigation of the stress state of the micropolar me-
dium under the action of time variable load, the motion equations 
of Cosserat elasticity are used (Nowacki, 1974): 

𝑗𝑖,𝑗 + 𝑋𝑖 = 𝑢̈𝑖 , (2) 

𝑘𝑖𝑗𝑖𝑗 + 𝑚𝑗𝑘,𝑗 + 𝑌𝑘 = 𝐽̈
𝑖
, (3) 

where 𝑗𝑖 is the force stress, 𝑚𝑗𝑖 is the couple stress,  is the 

material density, 𝐗 = {𝑋𝑖} is the mass forces vector, 𝐘 = {𝑌𝑖} is 
the couple forces vector, 𝐽 is the inertia of unit volume rotation, 

𝑘𝑙𝑚  is the permutation symbol, 𝒖 = {𝑢𝑖} is the displacement 

vector and  = {
𝑘

} is the rotation vector. Functions 𝑢𝑖 and 
𝑘

 

are continuous functions.  
Here and further, the Einstein summation convention is used. 

A comma at subscript denotes differentiation with respect to a 

coordinate indexed after the comma, i.e. 𝑢𝑗,𝑖 = 𝑢𝑗  /𝑥𝑖 . Under 

the condition of plane, strain indices vary from 1 to 2, and 𝑘 = 3.  
The dependencies for determining force and couple stresses 

are written as (Nowacki, 1974): 

𝑗𝑖 = ( + )
𝑗𝑖

+ ( − )
𝑖𝑗

+ 
𝑘𝑘
𝑖𝑗 , 

𝑚𝑗𝑖 = ( + )𝑗𝑖 + ( − )𝑖𝑗 + 𝑘𝑘𝑖𝑗 , (4) 

where , ,  and  are the elastic constants required to describe 
an isotropic constrained Cosserat elastic solid,  and  are Lame 

parameters, 
𝑖𝑗

= 𝑢𝑖,𝑗  −  𝑘𝑗𝑖𝑘
 is the asymmetric deformation 

tensor and 𝑖𝑗 = 
𝑖,𝑗

 is the torsion bending tensor. 

For solving the non-stationary problem of a dynamic stress 
state investigation in auxetic foam materials, Fourier transforms is 
used: 

𝑓(𝒙, 𝜔) = ∫ 𝑓(𝒙, 𝑡)𝑒−𝑖𝜔𝑡𝑑𝑡,
∞

−∞
 (5) 

where 𝑖 = √−1 and 𝜔 is the frequency. 
Applying Fourier transforms (5) to the motion equations (2) 

and (3), we obtain the equations which are equivalent to the equa-

tions of time-harmonic motion with cyclic frequency . Applying 
the weighted residual approach and collocation method (Vincent 
et al., 1994) to the obtained equations, the representations of 
displacement and microrotation transforms for the case of ab-
sence of concentrated forces are written as (Sulym et al., 2018): 

𝑢̂𝑖 = ∫ 𝑝𝑗 ∙ 𝑈𝑖𝑗
∗ 𝑑𝐿

𝐿
+ ∫ 𝑚𝑘 ∙ 𝑘𝑗

∗ 𝑑𝐿
𝐿

, (6) 

̂
𝑘

= ∫ 𝑝𝑗 ∙ 𝑈𝑘𝑗
∗∗𝑑𝐿

𝐿
+ ∫ 𝑚𝑘 ∙ 𝑘𝑘

∗∗ 𝑑𝐿
𝐿

,  (7) 

where 𝑈𝑖𝑗
∗ , 𝑈𝑘𝑗

∗∗,  𝑘𝑗
∗  and 𝑘𝑘

∗∗  are the fundamental functions for 

displacements and microrotations and 𝑝𝑗 , 𝑚𝑘 are unknown func-

tions (Sulym et al., 2018). Sulym et al. (2018) showed that the 
obtained representations for the fundamental functions for dis-

placements and microrotations 𝑈𝑖𝑗
∗ , 𝑈𝑘𝑗

∗∗,𝑘𝑗
∗  and 𝑘𝑘

∗∗  contain 

the components which correspond of the classical theory of elas-
ticity and the components which are obtained in the framework of 
Cosserat elasticity. 

In the field of Fourier transforms, we substitute the displace-
ment and microrotation representations (6) and (7) with the formu-
las for determining force and couple stresses (4), thus satisfying 
the Fourier transforms of boundary condition (1).  

Therefore, for applying the approach which was developed by 
Mikulich et al. (2017), we write integral functions in a complex 
form. Selecting the irregular components and using the formulas 
of Sokhotski–Plemelj for the limiting boundary values of the Cau-
chy integrals, we obtain the integral equations for determining the 
unknown on the boundary functions 𝑝1, 𝑝2 𝑚3 in the form:  

𝑅𝑒(𝑞)

2
+ 𝑃𝑉 ∫ (𝑓1(, ̅, 𝑧, 𝑧̅) ∙ 𝑞 ∙ 𝑑𝑡 + 𝑓2(, ̅, 𝑧, 𝑧̅) ∙ 𝑞̅ ∙ 𝑑𝑡̅ +

𝐿

𝑓3(, ̅, 𝑧, 𝑧)̅ ∙ 𝑚3 ∙ 𝑑𝐿) = 0𝑃̂(),  (8) 

𝐼𝑚(𝑞)

2
1 + 𝑃𝑉 ∫ (𝑔1(, ̅, 𝑧, 𝑧̅) ∙ 𝑞 ∙ 𝑑𝑡 + 𝑔2(, ̅, 𝑧, 𝑧̅) ∙ 𝑞̅ ∙

𝐿

𝑑𝑡̅ + 𝑔3(, ̅, 𝑧, 𝑧̅) ∙ 𝑚3 ∙ 𝑑𝐿) = 0,  (9) 
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𝑚3

2
+ 𝑃𝑉 ∫ (𝐺1(, ̅, 𝑧, 𝑧̅) ∙ 𝑞 ∙ 𝑑𝑡 + 𝐺2(, ̅, 𝑧, 𝑧)̅ ∙ 𝑞̅ ∙ 𝑑𝑡̅ +

𝐿

𝐺3(, ̅, 𝑧, 𝑧̅) ∙ 𝑚3 ∙ 𝑑𝐿) = 0,  (10) 

where 𝑓𝑙(), 𝑔𝑙() and 𝐺𝑙() are the known complex functions 

(Sulym et al., 2018), 1 = (1 − (



)

2

) is a constant, and 

 = 𝑥1 + 𝑖 ∙ 𝑥1, 𝑧 = 𝑥1
0 + 𝑖 ∙ 𝑥2

0, 𝑝 ∙ 𝑑𝐿 = 𝑖 ∙ 𝑞 ∙ 𝑑𝑡, 𝑝 =
𝑝1 + 𝑖 ∙ 𝑝2. Here, the integrals are understood in the sense of 
Cauchy principal value. 

The system of integral equations (8)–(10) is solved numerical-
ly by applying the method which is based on the mechanical 
quadrature method and collocation method (Mikulich et al., 2017).  

For determining the Fourier transform of radial stresses, the 
integral representation is used (Sulym et al., 2018): 

̂𝑟 = 𝑃𝑉 ∫(ℎ4(𝒙, 𝒙0) ∙ 𝑝1 + ℎ5(𝒙, 𝒙0) ∙ 𝑝2 +
𝐿

 

+ℎ6(𝒙, 𝒙0) ∙ 𝑚3)𝑑𝐿, (11) 

where ℎ𝑘() are known functions.  
On the basis of the solutions of a system of integral equations, 

the values of dynamic stresses are obtained in a numerical form. 
For calculation of originals of the dynamic hoop and radial stress-
es, the modified discrete Fourier transform is used (Sulym et al., 
2018): 

𝑟(𝑡𝑘) =
2

𝑇
Re ∑ (̂𝑟(𝜔𝑛)exp (2𝜋𝑖

𝑛 ∙ 𝑘

𝐾
) −

𝐾−1

𝑛=0

 

− ∑ ̂𝑟(𝜔𝑛)𝐾−1
𝑛=0 ), (12) 

where 𝐾 is the number of elements of selection, 𝜔𝑛 = 2𝜋𝑛/𝑡 is 

the frequency and 𝑡𝑘 = 𝑘 ∙ 𝑡/𝐾, 𝑘 = 0 … 𝐾 − 1 is time.  

3. NUMERICAL CALCULATION OF STRESSES  

Let us study the influence of time duration of impulse load on 
the distribution of radial stresses in positive and negative 
Poisson’s ratio polymer foam media with a tunnel cavity of circular 
cross section.  

For numerical calculations, change of the load intensity over 
time is chosen in the form of weak shock impulse (Mikulich et al., 
2017):  

𝑃(𝑡) = 𝑝∗𝑡̅𝑛∗𝑒−𝛼∗𝑡̅, 𝑡̅ > 0, 𝑛∗ ≥ 0,  (13) 

where 𝑝∗, 𝑛∗ and ∗ are constants, 𝑡̅ =
𝑡𝑐𝑙

𝑎
 is the time 

parameter, 𝑐𝑙 = √
+2


 is the speed of the expansion wave and 

𝑎 is the character size (for the case of tunnel cavity of circular 

cross section, 𝑎 = 𝑅, where 𝑅 is the radius of cavity). 
The numerical calculations are performed for the foam 

material with negative and positive Poisson's ratio foam. The 
values of elastic characteristics of positive and negative foam 
materials are used with the work of Rueger et al. (2016). Here 
auxetic foam material was obtained under triaxial compression 
and heat treatment of positive Poisson's ratio foam. 

The internal structure of positive Poisson's ratio foam is 
modelled as the complex of honeycomb with average cell size ℎ 
(Fig. 2a), whereas the internal structure of the negative Poisson’s 
ratio foam, obtained via triaxial compression, is modelled as the 
complex of re-entrant cells (Fig. 2b) (Novak et al., 2016; Ren et 
al., 2018). 

 
Fig. 2. 2D plane model of the foam material with positive (a) and negative 

(b) Poisson’s ratio  

In Rueger et al.’s (2016) study for positive Poisson’s ratio 
foam, values of the physical characteristics were obtained: the 

density of foam was ρ = 30 
kg

m3, the shear modulus was 

G = 45 kPa, length characteristics in Cosserat elasticity were 

ℓt = 2.1 mm and ℓb = 9 mm and Poisson’s ratio was 
 = 0.3. The inertia of unit volume rotation of honeycomb ele-

ments in case of h = 1.2 mm was J = 72.4 ×  10−6  
kg

m
.    

For a foam material with negative Poisson’s ratio with a volu-
metric compression ratio 3.2, the value of an acute angle of a re-
entrant element was 58.43°. This value is obtained without ac-
counting for bending deformations of the edges of the cells. The 
inertia of unit volume rotation of re-entrant elements was J =

29.34 ×  10−6  
kg

m
. For auxetic foam, the physical characteris-

tics of the obtained material were as follows: the density of foam 

specimens was ρ = 96 
kg

m3, the shear modulus was G =

16 kPa, characteristics of length in Cosserat elasticity were 

ℓt = 2.3 mm and ℓb = 3.9 mm and negative Poisson’s ratio 

was  = −0.63.  
Moreover, on the basis of length characteristics in Cosserat 

elasticity, the values of the elastic constants required to describe 

an isotropic constrained Cosserat elastic solid are  =
28.36 kPa,  = 0.0845 N and  = 0.8885 N for negative 

Poisson’s ratio foam and  = 4.54 kPa,  = 0.199 N and  =
14.382 N for positive Poisson’s ratio foam. 

For numerical calculations, values of constants of the impulse 
load in equation (14) are chosen as: 𝛼∗ = 1.25, 𝑝∗ =
 2.89, 𝑛∗ =  2 for the case of 𝑡∗ = 8; 𝛼∗ = 0.9375, 𝑝∗ =
 1.64, 𝑛∗ =  2 for the case of 𝑡∗ = 12 and 𝛼∗ = 0.625, 𝑝∗ =
 0.7225, 𝑛∗ =  2 for the case of 𝑡∗ = 16, where 𝑡∗ is a 
dimensionless paremeter, which characterizing of the impulse 
duration.  . 

Numeric calculations of dynamic normalised radial stresses at 
the internal points of the foam media are shown in Figs 4–6 for the 
case 𝑡∗ = 8, 12 and 16 accordingly. Here, 𝑡∗ is the 
dimensionless parameter characterised by impulse duration: the 
period of growth and attenuation of load intensity.  

Numeric results are calculated for the four values of the dis-

tance  between the boundary of the cavity and the internal points 
of medium (Fig. 3) (Mikulich et al., 2017).  

In Figs 4–6, curves 1–4 correspond to the case of  = 1.5𝑅, 
 = 2.5𝑅,  = 5𝑅 and  = 7.5𝑅 . Numerical calculations are 

performed for the case of the radius of cavity cross section 𝑅 =

ℓ𝐶 , where ℓ𝐶 = √
+

2
 is scale parameter in Cosserat elasticity 

(Sulym et al., 2018). 
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Fig. 3. 2D plane strain geometry of the problem  

 
Fig. 4. Distribution of normalised dynamic radial stresses in foam media 

 with tunnel cavity for the case 𝑡∗ = 8  

 
Fig. 5. Distribution of normalised dynamic radial stresses in foam media 

with tunnel cavity for the case 𝑡∗ = 12 

 
Fig. 6. Distribution of normalised dynamic radial stresses in foam media 

with tunnel cavity for the case 𝑡∗ = 16  

In Figs 4–6, numeric calculation results of normalised radial 
stresses are shown by solid lines for the case of negative 
Poisson’s ratio foam and by dotted lines for the case of positive 
Poisson’s ratio foam. 

Analysis of results of numerical calculations which is shown in 
Figs 4–6 confirms that the effect of impulse loading on foam mate-
rials causes higher stresses in auxetics than in foam materials 

with a positive Poisson’s ratio. Thus, for the foam materials which 
are investigated, the maximum values of radial stresses in the 
interior points of the foam media which are located near the 
boundary of the cavity are 44%–54% of the intensity applied to the 
boundary load for the positive Poisson’s ratio foam and 60%–68% 
for negative Poisson’s ratio.  

However, the speed of wave propagation in the foam medium 
with negative Poisson's ratio is much lower than in medium with 
positive Poisson's ratio. It also explains better operational proper-
ties of the foam materials with negative Poisson's  ratio due to 
transfer of part of the deformations into sections that are farther 
away from the defect and to reduce localised effects in the mate-
rial during its using. 

Fig. 7 shows the dependence of the ratio of the maximum val-
ues of radial stresses in foam media with a negative and positive 
Poisson’s ratio for changing the distance  from the tunnel cavity 
boundary for different impulse durations.  

 
Fig. 7. The ratio of maximum values of radial stresses in foam media  

Besides, based on the numerical calculations, it has been 
shown that for foam auxetic material, the maximum values of 
normalised dynamic radial stresses are higher by 1.2 to 2.2 times 
than the corresponding ones calculated for a positive Poisson’s 
ratio foam. It can be explained that auxetic foam materials have a 
higher density than classical foams. Besides, the load that causes 
compression deformation in pre-compressed materials passes 
higher dynamic stresses than in materials with a positive Pois-
son's ratio. 

Also, for foam materials with positive and negative Poisson's 
ratio, the maximum value of the normalised dynamic radial stress-
es in the internal points of the stress medium slightly depends on 
the duration of the impulse. In this case, the smaller the duration 
of the impulse, the higher are the values of the corresponding 
stresses. The oscillating character of radial stress distribution in 
foam materials with negative Poisson’s ratio, which occurs after 
impulse expansion, is explained by lesser stiffness of re-entrant 
element compared with honeycomb. 

4. CONCLUSION  

Based on modify method of boundary integral equations 
(Sulym et al., 2018) in the framework of Cosserat continuum, 
comparison of the distribution of normalised dynamic radial 
stresses in materials with a positive and negative Poisson’s ratio 
was performed. The results of the numerical calculations confirm 
the necessity of using refined theories of the continuum 
mechanics (moment theory of elasticity – Cosserat elasticity) to 
study the stress state of foam materials with positive and negative 
Poisson’s ratio. 
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Based on the numerical calculations, it is established that the 
distributions of the relative radial stresses in foam media with 
positive and negative Poisson’s ratio have similar characteristics, 
but the stresses arising from compressive stresses in materials 
with positive Poisson coefficient are smaller. 

An adaptive approach for the investigation of the effect of time 
variable load on the distribution of radial stresses in foam media 
can be used to predict the mechanical behaviour of foam auxetic 
materials obtained at different values of a volumetric compression 
ratio. 
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Abstract: Most industrial machines use belt transmission for power transfer. These mechanisms often use the round belts of several milli-
metres in diameter that are made of thermoplastic elastomers, especially polyurethane. Their production process calls for bonding the ma-
terial, which is often performed by hot plate butt welding. In order to achieve proper design of an automatic welding machine, the authors 
analysed the hot plate welding process of round belts. This process consists of five phases. It is necessary to recognize all the physical 
phenomena that occur during welding, especially those connected with thermomechanical properties of material. This knowledge is neces-
sary to determine the temperature distribution during each step of the process. The paper presents a standard welding cycle together with 
an explanation of the physical phenomena in each phase. An analysis of these fundamentals will be used to derivate the function of tem-
perature distribution during all process phases. In addition, some assumptions for calculation of temperature distribution and some funda-
mental physic correlations were presented. 

Keywords: Hot plate welding, round drive belts, heating, thermal conducting, plasticizing 

1. INTRODUCTION 

Industrial grade belts, both used in drives and conveyors, are 
commonly utilized in machine building for transferring torque 
between the connected workstations or for transporting products 
on manufacturing lines. Both full cross-section and perforated 
conveyor belts are utilized in transportation, especially the latter 
are present in vacuum transportation of light objects (Wojtkowiak 
et al., 2018; Wojtkowiak and Talaśka, 2019; Wilczyński, 2019). 
The most commonly used types of drive belts are flat, toothed and 
shaped belts. Toothed belts are used both in simple transmissions 
as well as non-classical solutions, for example, with variable ratios 
(Domek and Dudziak, 2011; Domek et al., 2016; Krawiec et al., 
2018; Krawiec et al., 2019). Shaped belts, in particular V-shaped 
and round belts, are commonly employed in drives, that is, special 
robotic arm joint mechanism, with two twisted small diameter belts 
(Inoue et al., 2016), they can be made of rubber (Kukla et al., 
2015) or polyester or polyurethane based elastomers (Behabelt, 
2015). Their common application in industrial machines calls for 
an efficient manufacturing process, which usually takes place in 
two stages (Sikora, 1993). First of all, a long belt is manufactured 
and cut down to required size. Finally, the ends are joined perma-
nently to form a continuous loop (Wałęsa, 2018).  

Due to the peculiar characteristics of thermoplastic elastomers 
used in the manufacturing of such belts, it is possible to join them 
by hot welding (Groover, 2015). A specific approach to this pro-
cess is butt-welding utilizing the hot plate method; it is popular due 
to its simplicity and efficiency (Grewell and Benatar, 2007; 
Yousepour et al., 2004). This method is commonly employed in 
the automotive industry and civil engineering, for example, in the 
process of joining: tanks for utility fluids, lamp enclosures, engine 
instrumentation (Pietrzak et al., 2019; Grewell and Benatar, 2007) 

and pipes (Rzasinski, 2017; Troughton, 1997; Cocard et al., 
2009). Furthermore, studies were carried out on the hot welding of 
inflexible polymer materials, for example, acrylonitrile butadiene 
styrene copolymer (ABS) (Mokhtarzadeh and Benatar, 2012), 
polycarbonate (PC) (Krishnan and Benatar, 2004), as well as 
polypropylene (PP) (Nieh and Lee, 1992). However, it needs to be 
pointed out that all of them apply primarily to plastics.  

The authors started design work on a device for automated 
butt welding of drive belts utilizing the hot plate technique, which 
is to improve the efficiency of the manufacturing process of con-
tinuous belts. For the purpose of verification of the design as-
sumptions, the process has to be analysed together with further 
study of the influence of heating parameters on weld quality 
(Wałęsa et al., 2019a and 2019b). One of the basic research 
actions regarding this topic is to analyse the heat transfer during 
the hot plate welding process. To this end, it is required to identify 
the heat transfer phenomena taking place during hot plate weld-
ing. These considerations will consequently form the basis for 
performing temperature distribution calculations, which describe 
the temperature values at every point of the material, according to 
time. The results obtained from calculations and research, in 
combination with known material characteristics, will be used for 
calculating the plasticized distance. Identifying this value and its 
dependence on process variables (e.g., hot plate temperature, 
time and applied force) will be used to control the hot plate weld-
ing process. This allows to anticipate the extent of belt shortening 
throughout the manufacturing process and to determine the best 
parameters to obtain a satisfactory weld quality. Moreover, analy-
sis of plasticized distance and temperature distribution will be 
used in the research regarding the influence of welding process to 
macrostructure of material. Thanks to this, the division for three 
heat affected zones, commonly expected for semi-crystalline 
material (Casalino and Ghorbel, 2008), will be verified. 



DOI 10.2478/ama-2020-0012               acta mechanica et automatica, vol.14 no.2 (2020) 

85 

In addition, it should be noticed that a lot of thermal exchang-
ing processes can be described in a mathematical way, especially 
using the FEM implements (Dyja et al., 2017; Gawrońska, 2019; 
Kubiak, 2019; Saternus et al., 2018 and 2019; Winczek et al., 
2016). Considering the partial results of examinations of the plas-
ticizing process and mechanical parameters derivation (Wałęsa et 
al., 2020a and 2020b), in further works, the hot plate welding 
process will be described by a mathematical model, which will 
take into consideration conclusions from the presented process 
analysis. 

2. THE HOT PLATE WELDING CYCLE 

Concerning the necessary technological operations, the hot 
plate welding process of the drive belts can be divided into five 
phases (Wałęsa et al., 2019a and 2019b; Klimpel, 2000; Potente 
et al., 2002; Jasiulek, 2006), with different physical phenomena 
occurring during the heat transfer in each phase. Considering this 
fact, the approximate temperature distribution can be expected 
(Potente et al., 2002). One of the most important activities is the 
plasticization of the belt end that enables the chemical reaction 
and physical interaction between the macromolecules in the join-
ing process (Amanat et al., 2010; Amancio-Filho and dos Santos, 
2009; Madej and Ozimina, 2010; Puszka, 2006; Żuchowska, 
2000). The course of plasticization process conditions the rest of 
welding process, especially the ability of the ends of the belts to 
make durable joint during cooling step, where durable connections 
between macromolecules are made (Ciszewski and Radomski, 
1989).  

2.1. The matching phase  

The first phase of welding is the matching of belt ends (Fig. 1). 
It entails plasticizing and melting the flat surfaces of the belt dur-
ing their contact with the heated plate. The plate has the tempera-
ture Tp, which facilitates the welding process by gaining the weld-
ing temperature Tw in the bonded material. The welding tempera-
ture choice is very important issue and its value depends on 
polymer type. Exceeding the degradation temperature causes 
destructing the material in a few stages (Wanqing et al., 2017). On 
the other hand, in case of some polymers, joint strength increases 
with welding temperature (Evers et al., 2017).  

In matching phase, the belt ends (1) are held by shaped grips 
(2), and are moved towards the hot plate surface (3) with velocity 
vm. After the surfaces of the belt and the hot plate make contact, 
the belt is pressed to the plate with force Fm. In this phase, flash is 
formed due to the belt plasticizing in contact with the hot plate. 
The partial melting results in the surface of the belt adapting to the 
surface shape of the hot plate. This is the result of the material’s 
reaction to the temperature of the hot plate.  

The belt heating causes the temperature to increase along its 
axis. Two main characteristic quantities can be therefore distin-
guished: 

 the distance p, where belt temperature exceeds the welding 
temperature Tw (the temperature when a material is plasti-
cized and melted), 

 the distance h, where belt temperature exceeds T0. 

  
Fig. 1. The matching phase of the hot plate welding process with expected temperature distribution: 1 – belt, 2 – shaped grip, 3 – hot plate, Fm – matching 

force, vm – matching velocity, Tp – the hot plate temperature, Tw – welding temperature, T0 – ambient temperature, p – plasticize distance,  
h – heating distance; Qp3-1, Qp1, Qr1, Qr3, Qc1, Qc3 – heat 

During this phase, the following heat transfer phenomena are 
observed: conduction, convection and radiation. Considering the 
particular heat fluxes, the following can be identified: 

 the heat Qp3-1, which stands for heat transfer from the hot plate 
to the belt by contact conduction, 

 the heat Qp1, which stands for heat transfer in the volume  
of the belt material through conduction, 

 the heat Qc3, which stands for heat transfer from the hot plate 

through convection, 

 the heat Qr3, which stands for heat transfer from the hot plate 
through radiation, 

 the heat Qc1, which stands for heat transfer from the outer 
surface of the belt through convection, 

 the heat Qr1, which stands for heat transfer from the outer 
surface of the belt through radiation. 
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In this case, the dominant methods of heat transfer are: con-
duction in the belt material and contact conduction between the 
hot plate and the belt surface. The radiation is not as significant as 
the phenomena mentioned above, because the process tempera-
ture is relatively low. In further analysis, it is possible to disregard 
the issue of convection because the airflow around the belt or hot 
plate will be not forced; therefore, forced convection is not pre-
sent. It is also possible to disregard natural convection during the 
analysis because the ends of the belt will be clamped in the 
shaped grips and dies, thus limiting the heat energy transfer to the 
cooler air. 

The matching phase is very important. The melting of the belt 
surface as a result of hot plate contact allows matching the belt to 
the flat surface of the plate. Consequently, belt surfaces are 
placed parallel to each other and perpendicular to the central axis. 
Thus, the flat ends of the belt are properly aligned for bonding. 
The most important effect of material plasticizing is the removal of 
any inequalities, roughness and faults, which may have been 
incurred during the cutting process. This allows to avoid joint 
defect issues caused by inadequate surface preparation.  

 
Fig. 2. Heating of the non-matched belt surface by the hot plate: 1 – belt, 

2 – hot plate, 3 – contact points, 4 – cavities (filled by hot gases);  
Qp3-1, Qr3, Qc3 – heat 

 
Fig. 3. Heating of the matched belt surface by the hot plate: 1 – belt,              

2 – hot plate; Qp3-1 – heat 

Another benefit of the matching phase is providing uniform 
conditions for heat transfer along the whole flat surface of the belt 
(Amancio-Filho and dos Santos, 2009). This allows to replace the 
point thermal conduction (Qp3-1), convection (Qc3) and radiation 
(Qr3) occurring through the cavities in the material (Fig. 2) with 
whole surface conduction (Qp3-1) resulting in more stable heat 
transfer conditions (Fig. 3). 

2.2. The heating phase  

During the heating phase (Fig. 4), the ends of the belt (1) are 
pressed against the hot plate (3) by the shaped grips (2) with 
force Fh. In this phase, the heat transfer phenomena are similar to 
the previous one. The area of the convection (Qc1) and the radia-
tion (Qr1) effect is expanded. This is the result of the expansion of 
the heated area. Due to this fact, a new heat transfer mechanism 
occurs: conduction between the outer surface of the belt and 
shaped grips (Qp1-2). 
The main assumptions of the heating phase are as follows: 

 increase of the plasticized (melted) distance p to the value 
ensuring the best conditions to perform the joining (chemical 
reactions and mechanical interactions between macromole-
cules), the increase in the h distance is the side effect of the 
heating, 

 the Fh force value is significantly lower than the matching force 
Fm (Fh is about 10%–20% of Fm) because of the sharp de-
crease in polymer viscosity together with the increase in tem-
perature (Klimpel, 2000). If too much clamping force is applied 
during the heating phase, it causes excessive flash formation. 
The first negative consequence is unnecessary loss of materi-
al. Secondly, the plasticized polymer is displaced from the 
joining area, which is disadvantageous because it can impede 
the joining process and form cavities in the central area of the 
joint. On the other hand, it is required to utilize a small value of 
Fh force, as otherwise, issues with contact breaking might oc-
cur due to the outflow of material from the heating area. In this 
case, the belt ends should be pressed toward the hot plate, 
but this is impossible without applying Fh force. It should be 
noticed that this action can be performed automatically owing 
to the thermal expansion of the belt material. 

2.3. The switchover phase  

The switchover phase consists in removing the hot plate from 
the area between the ends of the belt (Fig. 5).  
The belt (1) is moved slightly by the shaped grips (2) to achieve  
a small clearance from the hot plate; however, this action can be 
disregarded in the heat transfer analysis. In this phase, the heat-
ing process ends, because of the source of energy is being with-
drawn. Consequently, the switchover phase should be as short as 
possible. The convection (Qc1) and the radiation (Qr1) from the belt 
surfaces (especially in the flat surfaces of the weld) cause unnec-
essary loss of energy. Considering this fact, it is necessary to 
control the belt temperature, which has a tendency to decrease 
mainly in the flat, plasticized area. This is the result of the convec-
tion phenomenon, which becomes more significant with higher 
surface temperature. It is critical to maintain the temperature of 
the welding area greater than Tw. For this reason, the switchover 
time should be as short as possible. 
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Fig. 4. The heating phase of the hot plate welding process with expected temperature distribution: 1 – belt, 2 – shaped grip, 3 – hot plate, Fh – force during 

heating, Tp – the hot plate temperature, Tw –welding temperature, T0 – ambient temperature, p – plasticized distance, h – heated region length; Qp3-1, 
Qp1-2, Qp1, Qr1, Qr3, Qc1, Qc3 – heat 

 
Fig. 5. The switchover phase of the hot plate welding process with expected temperature distribution: 1 – belt, 2 – shaped grip, Tp – the hot plate tempera-

ture, Tw –welding temperature, T0 – ambient temperature, p – plasticize distance, h – heated region length; Qp1-2, Qp1, Qr1, Qc1 – heat 

2.4. The joining phase  

In the joining phase, the ends of the belt (1) are clamped by 
shaped grips (2) and moved towards each other, which results in 
joining their surfaces (Fig. 6). 

The joining phase is critical, because it is where the material 
bonding begins. It comprises two main characteristic phenomena:  

 chemical reactions between molecules of the hydrocarbons, 

 mechanical interactions between macromolecules which result 
in their splicing (Grewell and Benatar, 2007). 
During the joining phase, one needs to consider a compro-

mise between the short duration of the phase and low joining 
velocity vj. The short phase time is associated with the relatively 
high velocity vj, which is beneficial because of reduced energy 
loss by convection (Qc1) and radiation (Qr1). On the other hand, 

the joining velocity vj and the joining force Fj should be as low as 
possible, to avoid the problem of excessive distortion of the plasti-
cized region. 

2.5. The cooling phase  

In the cooling phase (Fig. 7), the ends of the belt (1) are 
pressed against each other. Free cooling occurs at the joint and 
the belt as a result of the interaction with the air surrounding the 
belt. In the ideal scenario, the duration of this activity should be 
sufficiently long, allowing the belt temperature to decrease to the 
level of ambient temperature T0. Afterwards, the belt can be re-
moved from the grips and the joint can be subject to further pro-
cessing to remove the flash. 

The main assumptions for the cooling phase are: 
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 belt temperature is equalized by contact conduction,  

 continuation of the chemical reactions and the mechanical 
interactions occurring between macromolecules, 

 main heat transfer occurs through conduction (Qp1) in the 
material,  

 heat transfer with the environment only occurs via natural 
convection (Qc1) and radiation (Qr1), 

 the duration of this step depends on belt temperature – its 

value should decrease to the level of ambient temperature  
T0 at the end of the phase. 
The cumulative hot plate welding process time, ranging from 

over a dozen seconds to a few dozen minutes (Cocard et al., 
2009), depends on the dimensions of the welded parts. Usually, 
the longest is the cooling phase (Klimpel, 2000). 

 

 
Fig. 6. The joining phase of the hot plate welding process with expected temperature distribution: 1 – belt, 2 – shaped grip, Fj – joining force, vj – joining 

velocity, Tp – the hot plate temperature, Tw –welding temperature, T0 – ambient temperature, p – plasticize distance, h – heated region length; Qp1-2, 
Qp1, Qr1, Qc1 – heat 

 
Fig. 7. The cooling phase of the hot plate welding process with expected temperature distribution: 1 – belt, 2 – shaped grip, Fc – force during cooling, Tp – 

the hot plate temperature, Tw –welding temperature, T0 – ambient temperature, Qp1, Qr1, Qc1 – heat 

3. MODELLING OF THE HEAT TRANSFER PHENOMENA 

The complete analysis of the hot plate welding process calls 
for establishing temperature distribution. This function describes 

the temperature values at all the points of the heated region, 
according to time (Carslaw and Jaeger, 1959). To obtain this 
derivation, it is necessary to solve the heat transfer equations.  
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3.1. Simplifications regarding the heat transfer phenomena  

To simplify analysing the heat transfer process in preliminary 
description of the hot plate welding process, some factors can be 
omitted. Furthermore, several assumptions can be made for the 
purpose of performing the mathematical calculation: 

 the transient heat transfer during the entire process, that is, 
the temperature in every point of the belt changes throughout 
the process duration, 

 belt as a long body, with high length to diameter ratio, 

 uniform temperature distribution in the belt cross section, 
because the belt material is homogeneous in the macro scale; 
therefore, it can be treated as isotropic, 

 the phenomenon of heat generation is not present, 

 considering the heat transfer along the main axis of the belt as 
unidimensional, heated from a flat surface together as well as 
the isotropic model of the material, 

 heating of both ends of the belt is symmetrical,  

 disregarding natural convection from the outer surface of the 
belt and the hot plate, because the airflow is not forced, and 
therefore, natural convection is not a significant factor, 

 omitting the radiation from the outer surface of the belt and the 
hot plate. This assumption is based on the relatively low tem-
perature and a short time,  

 disregarding heat conduction from the belt to shaped grips, 
which are a relatively long distance away from the heating ar-
ea, and therefore, their contribution is not significant, 

 constant hot plate temperature on the whole surface, this 
allows to simplify the issue because the temperature change 
due to the energy transfer can be omitted,  

 disregarding the effect of thermal expansion, 

 density, heat transfer coefficient and specific heat of the belt 
are not dependent on temperature. Considering the prelimi-
nary calculations, we can assume that these parameters do 
not vary with temperature increase, 

 the hot plate is a rigid and non-deformable body.  
These assumptions can be made, due to relatively low pro-

cess temperature, which does not exceed 300°C (Wałęsa et al., 
2019b and 2020a). These simplifications allow to perform the 
calculation on temperature distribution taking into consideration 
the commonly known heat transfer cases, that is, the semi-infinite 
space, the round rod placed between the walls or the round ribs 
(Carslaw and Jaeger, 1959). 

3.2. Possibilities of mathematical modelling 

The heat transfer in almost every phase of hot plate welding is 
primarily through conduction. Considering this fact, it is required to 
solve the heat conduction equation (1). In general case, it takes 
the following form (Staniszewski, 1979):  

𝜕
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𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑦
(𝜆

𝜕𝑇

𝜕𝑦
) +

𝜕

𝜕𝑧
(𝜆

𝜕𝑇

𝜕𝑧
) + 𝑞𝑣 = 𝑐𝑝 ∙ 𝜌 ∙

𝜕𝑇

𝜕𝑡
 . (1) 

Using the simplifications mentioned above, it can be assumed 
that: thermal conductivity (λ), latent heat (cp) and density (ρ) are 
constant within the whole temperature range. Moreover, internal 
heat generation (qv) can be omitted. Consequently, the simplified 
Fourier’s equation (2), shall have the following form: 

𝑎 ∙ ∇2𝑇 =
𝜕𝑇

𝜕𝑡
 ,  (2) 

where: a stands for thermal diffusivity, described in equation: 

𝑎 =  
𝜆

𝑐𝑝∙𝜌
 .  (3) 

Assuming the unidimensional character allows to further sim-
plify equation (2) to achieve the following form: 

𝑎 ∙
𝜕2𝑇

𝜕𝑥2 =
𝜕𝑇

𝜕𝑡
 .   (4) 

The solution of this differential equation is not obvious, and its 
form depends on the starting and boundary condition. For the 
matching and heating phase, it can utilize the first type of bounda-
ry conditions, where the value of the hot plate and the ambient 
temperature is set. The temperature distribution in switchover 
phase can be simplified by transferring the coordinates of heating 
temperature distribution. For the joining and cooling phase, it is 
required to use the third type boundary condition in the following 
form (Carslaw and Jeager, 1959): 

𝜕𝑇(𝑥,𝑡)

𝜕𝑥
= −

𝛼

𝜆
∙ 𝑇(𝑥, 𝑡),   (5) 

where: α is the heat transfer coefficient.  
Obviously, other assumptions may be made as well. For ex-

ample, it is possible to account for melting. In this case, thermo-
dynamic constants (α, λ, cp) and density (ρ) will be different in 
solid and liquid phase (Taler and Duda, 2003). This fact calls for 
further analysis. 

4. SUMMARY 

We distinguish the following heat transfer phenomena that are 
of key importance for the hot plate welding process: conduction, 
convection and radiation. It is necessary to analyse their specific 
parameters for each phase of the hot plate welding. Considering 
the phenomena in particular, together with employing a number of 
simplifications allows to derive the temperature distribution, which 
describes the temperature in every point along the belt axis. This 
function is to be solved analytically and the results will be exam-
ined by FEM implements. Afterwards, it is anticipated that experi-
mental research should allow to verify the model.  

The temperature distribution along the axis of the belt, togeth-
er with the known material characteristics, will be used to estab-
lish the plasticized area of the belt as well as the shortening of the 
belt during the hot plate welding process.  

After preliminary analysis, with listed simplifications of heat 
transfer modelling, authors will make an effort to the estimate 
radiation and convection coefficients. After that, the temperature 
distribution results will be compared with calculations regarding 
simplifications, to obtain precisely described temperature distribu-
tion, and real error of calculations with simplifications.   
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Abstract: The paper concerns the inverted pendulum control system with using pneumatic cylinder. A mathematical model of the pendu-
lum used to derive the LQG controller was presented. Prepared laboratory stand was presented and described in detail. The main purpose 
of the work was experimental researches. A number of control process tests were conducted with variable model parameters such as addi-
tional mass, injected disturbances and so on. The results were shown on the time plots of the control object states. 

             Keywords: Inverted pendulum, pneumatic actuator, inverted pendulum control, encoder, stabilization 

1. INTRODUCTION 

Inverted pendulums are popular systems used in researches 
about control theory. Nowadays, there are many configurations of 
inverted pendulums. The most common pendulums are linear, 
rotational (Ahangar-Asr et al., 2011), (Ozbek et al., 2010), single 
(Astrom et al., 2000), double (Sang et al., 2011) or triple (Zhangn 
et al., 2017) and pendulums on a cart (Hui et al., 2016). Many 
analyses on inverted pendulums are conducted because of simi-
larity to such objects as robots and rockets (Boubaker, 2012), 
(Hovingh et al., 2007). These analysis mostly concerned with 
modern control systems application like genetic adaptive (Moore 
et al., 2001), with visual feedback (Wang et al., 2008) or another 
advanced control methods (Zhijun et al., 2013) including sliding 
mode control and swing up control. There are also investigations 
concern nonlinear analysis (Boubaker, 2013), (Prasad et al., 
2013). Moreover, the actuation systems for inverted pendulums 
were intensively studied. We can list here the electric, pneumatic 
or hydraulic drives applied to pendulum stabilization (White et al., 
1999). 

Controlling an inverted pendulum on a cart requires 
knowledge on implementing algorithms by means of digital devic-
es and pneumatically actuated systems (Uszynski, 2018). Control 
systems based on PC stations and separate signal processing 
cards are very often used. Inverted pendulum systems can be 
controlled with different types of drives. Pneumatic actuators are 
not very popular, mainly because of air compressibility and signifi-
cant mechanical friction (Beater, 2007). On the other hand, high 
durability and simple maintenance makes pneumatic drives a 
good replacement for electric drives.  

This paper presents design and construction of inverted pen-
dulum system controlled with pneumatic actuator and Arduino 
Due microcontroller. Second chapter presents the development of 
cart position and pendulum angle measurement system. In this 
part, an optical encoder was designed. Computer program that 
measures pendulum angle was implemented by means of Arduino 
microcontroller and Simulink environment. In order to define the 

cart position, a linear potentiometer with analogue output was 
used. Third chapter presents a design of inverted pendulum con-
trol system and output signal amplifier. Next chapter describes the 
derivation of inverted pendulum mathematical model, which was 
used to predefine linear-quadratic regulator and Kalman state 
observer. Design of pneumatically actuated inverted pendulum 
was developed by means of CAD software. In chapter five, exper-
imental setup and research results in the form of plots (pendulum 
angle, cart position and control signal) were presented. 

2. MEASUREMENT OF CART POSITION AND INVERTED 
PENDULUM ANGLE 

Design and practical implementation of the inverted pendulum 
system is connected with two main tasks. First is the measure-
ment of the pendulum deflection angle and the second is reading 
cart position. 

2.1. Pendulum angle measuring system design 

Optical encoders can be used to measure linear or rotational 
movement. Generally, we can divide them into two types: incre-
mental or absolute encoders. The main difference between them 
is the possibility to remember the position after loss of power. 
Incremental encoder only sends electric pulses – that is why, 
during every single turning on, the device has to calibrate its 
position. This drawback can lead into loss of pulses and false 
position measurement. Absolute encoders use Gray code to 
define the position and need more optical sensors. This makes 
them more complicated and more expensive. 

To measure the rotation of inverted pendulum, it would be 
easier to buy an absolute encoder but to reduce cost of made it, 
an incremental encoder from ink printer was used. The inconven-
ience will be the need to use the pendulum position calibration, 
but some software modifications can allow to do it even on run-
ning program in microcontroller. The used optical encoder AEDS-
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962x (Fig. 1) from Avago Technologies does not require to amplify 
pulses (Avago, 2006). 

It is equipped with two output channels, and thanks to this fea-
ture, it is possible to distinguish the direction of pendulum rotation. 
Microcontroller Arduino Due has a pin that can be used as a 3.3 V 
power supply for encoder. Each pulse on both channels is detect-
ed by means of external interrupts on microcontroller digital in-
puts. This function guarantees that no pulses will be lost and also 
that computing power is not harmed. 

 

Fig. 1. Optical encoder block diagram (Avago, 2006) 

The programming part of the project was realized in 
MATLAB/Simulink environment (MathWorks, 2017). Creating the 
program is quite intuitive and Arduino products are supported, but 
to measure the pendulum angle, a special function in the form of a 
block had to be developed. This process starts from empty ‘S-
Function Builder’ block that can contain specified parts of C code. 
Choosing open source library for optical encoders reduced 
amount of code and complexity of configuration ‘S-Function Build-
er’ block. Using external interrupts on both optical encoder chan-
nels and high resolution disk resulted in reading pendulum angle 
by every 0.08°. 

2.2. Reading cart position with linear potentiometer 

Another necessary variable that had to be measured was lin-
ear cart position. Pneumatic system is based on Festo products. 
That is a way in which a linear encoder MLO-POT-TLF was used. 
This encoder has one 0-10 V range analogue output. Arduino Due 
has limited maximal voltage to 3.3 V; therefore, simple voltage 
divider based on two resistors was made. Each resistance was 
calculated from simple equation (1) written below: 

𝑈out =
𝑅2

𝑅1+𝑅2
∙ 𝑈in  (1) 

Reading cart position in Simulink is simpler since there is 
ready ‘Analog Input’ block that has two configurable parameters: 
pin number and sampling time. Pendulum and cart positions can 
be analysed in real time using ‘Time Scope’ block. 

3. INVERTED PENDULUM CONTROL SYSTEM DESIGN 

Electro pneumatic diagram (Fig. 2) was developed in FluidSIM 
software. The system consists of air preparation unit (0.1), rodless 

cylinder (1.0) and proportional directional control valve (1.2). 
Depending on the control voltage applied to the proportional 

valve, its position can change. Spool position determines the 
speed and direction of the cylinder slider movement. Prechosen 
Festo DGPL cylinder has a very solid slider that allows to make 
simple and easily mounted construction with pendulum. 

 
Fig. 2. Electro pneumatic system: a) pneumatic part, b) electrical part 

The proportional valve MPYE-5 can be controlled with 0–10 V 
range analogue signal. Arduino Due has two analogue output pins 
but they are not standardized with industrial devices. These out-
puts have a range from 0.55 V to 2.75 V and 12-bit DAC convert-
er. In order to achieve 0–10 V control signal, a simple differential 
amplifier was realized. Using an operational amplifier allowed to 
remove the 0.55 V offset and amplify the output signal in order to 
reach the desired value. Fig. 3 shows the diagram of the circuit. 

 
Fig. 3. Differential amplifier circuit diagram 

The amplifier is based on integrated circuit TL072CN, which 
has to be supplied with symmetrical voltage. This small drawback 
also has a good effect because only this kind of amplifiers can 
reach exact 0 V in this application. Resistor R4 makes sure that 
current on Arduino output is limited and capacitor C4 reduces 
eventual possibility of noises in the signal. 

The prepared electrical circuit was specifically developed in 
the form of a PCB (printed circuit board) using thermal transfer 
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method. Fig. 4 presents the final effect of the circuit that consisted 
of the amplifying part and additional four voltage dividers adjusted 
for sensors with 0–10 V output signals.  

 
Fig. 4. Developed control signal amplifier and voltage dividers 

Controlling analogue output in Simulink is similar to reading 
signals. This can be done with one already provided block that 
has one configurable parameter, which is DAC pin number. In 
order to be able to control, the proportional valve signal had to be 
biased to 5 V (valve closed position) and limited to 0–10 V range. 

4. INVERTED PENDULUM MODEL AND CONTROLLER DE-
SIGN 

Fig. 5 presents the physical model of the inverted pendulum 
where: M – cart mass [kg], m – pendulum mass [kg], b – damping 
coefficient in linear motion [N·s/m], bp – damping coefficient in 
rotational motion [N·s/rad], I – pendulum mass moment of inertia 
[kg·m2], x – cart coordinate [m], θ – pendulum deflection angle 
[rad], l – pendulum half-length [m], g – acceleration of gravity 
[m/s2], F – cylinder applied force [N].  

 
Fig. 5. Physical model of inverted pendulum 

It is an unstable system in vertical pendulum position that can 
rotate freely in one plane. Applying force F to the cart allows to 
control the pendulum position. 

After the calculation of forces in the inverted pendulum, the 

system of nonlinear equations (2) and (3) was obtained: 

(𝑀 + 𝑚)𝑥̈ + 𝑏𝑥̇ + 𝑚𝑙𝜃̈𝑐𝑜𝑠𝜃 − 𝑚𝑙𝜃̇2𝑠𝑖𝑛𝜃 = 𝐹  (2)

 
(𝐼 + 𝑚𝑙2)𝜃̈ + 𝑚𝑙𝑥̈𝑐𝑜𝑠𝜃 = 𝑚𝑔𝑙𝑠𝑖𝑛𝜃 − 𝑏𝑝𝜃̇  (3) 

In order to linearize these equations, a model operating point 
was assumed in the top pendulum position. Assuming small angle 
deflections, we have the approximations: 𝑠𝑖𝑛𝜃 ≈ 𝜃, 𝑐𝑜𝑠𝜃 ≈ 1,

𝜃̇2 ≈ 0. Now linearized equations can be described with equation 
(4) and (5): 

(𝑀 + 𝑚)𝑥̈ + 𝑏𝑥̇ + 𝑚𝑙𝜃̈ = 𝐹  (4) 

(𝐼 + 𝑚𝑙2)𝜃̈ + 𝑚𝑙𝑥̈ + 𝑏𝑝𝜃̇ = 𝑚𝑔𝑙𝜃  (5) 

Based on the above equations, we can have the following 
state-space model described with following equations: 

𝐱̇ = 𝐀𝐱 + 𝐁𝐮, (6)
 

𝐲 = 𝐂𝐱 + 𝐃𝐮, (7) 

where: 

𝐱 = [

   𝑥1   

𝑥2

𝑥3

𝑥4

] = [

   𝜃   
𝜃̇
𝑥
𝑥̇

], 

𝐀 =

[
 
 
 
 

0 1 0 0
(𝑀+𝑚)𝑚𝑔𝑙

𝑞1

−(𝑀+𝑚)𝑏𝑝

𝑞1
0

𝑚𝑙𝑏

𝑞1

0 0 0 1
𝑚𝑙𝑏

𝑞1

𝑚𝑙𝑏𝑝

𝑞1
0

−(𝐼+𝑚𝑙2)𝑏

𝑞1 ]
 
 
 
 

, 

𝐁 =

[
 
 
 
 

0
−𝑚𝑙

𝑞1

0
(𝐼+𝑚𝑙2)

𝑞1 ]
 
 
 
 

, 

𝐂 = [
1 0 0 0
0 0 1 0

], 

𝐃 = [
0

   0   
], 

and 𝑞1 = (𝑀 + 𝑚)𝐼 + 𝑀𝑚𝑙2. 

For stabilizing inverted pendulum system dynamics, the LQR 
(Linear-Quadratic-Regulator) controller was developed and im-
plemented to ensure local stability of the control plant. LQR ap-
proach is often used and mentioned to stabilize a structurally 
unstable system like inverted pendulum. LQR controller uses 
measurements y of control plant to generate a control signal u 
that controls y. The LQR regulator minimizes the cost function: 

𝐽 = ∫ [𝐱(𝑡)𝐐𝐱(𝑡)  + 𝐮(𝑡)𝐑𝐮(𝑡)]𝑑𝑡
∞

0
  (8) 

The state control law we can be written as follows: 

𝐮 = −𝐤𝐱  (9) 

The closed loop system can be determined with equation (9) 
as: 

𝐱̇ = [𝐀 − 𝐁𝐤]𝐱   (10) 

In addition to the state-feedback gain k, LQR returns the solu-
tion S of the associated Riccati equation described as: 
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𝐀𝐓𝐒 + 𝐒𝐀 − 𝐒𝐁𝐑−𝟏𝐁𝐓𝐒 + 𝐐=0 (11) 

where k is derived from S using following formula: 

𝐤 = 𝐑−𝟏𝐁𝐓𝐒 (12) 

In order to determine Q and R values, Bryson's rule was used. 

 
Fig. 6. Implemented control system 

During the experimental setup, we cannot measure all the  
state vector elements. That is why, we have to estimate them. In 
this purpose, a state observer was designed. During this process, 
it is important to place poles on the left from the observed system 
poles. Combining LQR regulator and Kalman filter resulted in 
obtaining the final control algorithm for inverted pendulum system 
called LQG (Bryson et al., 1969). Fig. 6 presents control system. 

Simulation results are presented in Fig. 7. Initially, the pendu-
lum is deflected 3° from the vertical position and at the seventh 
second, an external disturbance force (100 N) is applied in order 
to check the control system robustness. 

 
Fig. 7. Simulation results in form of a plots 

Achieved results do not exceed the predicted values, which 
means – in this way, the control design can be considered suc-
cessful. 

5. EXPERIMENTAL SETUP AND RESULTS 

Experimental setup is presented in Fig. 8 consists of: 1 - air 
compressor, 2 - air preparation unit, 3 - directional proportional 
control valve, 4 - rodless cylinder, 5 - linear potentiometer, 6 - 

optical encoder, 7 - inverted pendulum module, 8 - external power 
supply, 9 - signal amplifier, 10 - microcontroller, 11 - PC station. 

 
Fig. 8. Experimental setup of pneumatically actuated inverted  
            pendulum system 

All the elements are also included in the diagram in Fig. 9. 

 

Fig. 9. Experimental system diagram 

Serial transmission between PC and microcontroller allows to 
draw plots, save data and change online parameters during the 
experiment. Arduino Due can also be programmed as an inde-
pendent device to stabilize the inverted pendulum, but then there 
is no interface to interact in such a mode. 

During the experiment, the developed inverted pendulum sys-
tem was tested with external disturbances in the form of a push 
and step change of set cart position. Each experiment was con-
ducted at full air compressor tank at 0.8 MPa. Then the air pres-
sure was reduced to 0.5 MPa. 

In Fig. 11–14, the system responses for external disturbance 
are presented. After the disturbance, the cart is moving in order to 
stabilize the pendulum. Oscillations on the plots are the result of 
significant static friction during linear cylinder movement. Inverted 
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pendulum system needs about 3 seconds to reach a stable posi-
tion, maximal deflection angle was around 3° and the cart had to 
travel approximately 80 mm. Control signal amplitude is fading as 
pendulum is reaching a stable position. 

 

Fig. 10. Signals flow on the test rig 

Tab. 1. System parameters 

 Parameter value  Parameter value 

Long 
pendulum 

without 
additional 

load 

𝑚 = 32 𝑔 

Long 
pendulum 
with addi-
tional load 

𝑚 = 37 𝑔 

𝑙 = 215 𝑚𝑚 𝑙 = 215 𝑚𝑚 

𝐼 = 0,002 𝑘𝑔𝑚2 𝐼 = 0,0029 𝑘𝑔𝑚2 

𝑏𝑝 = 0,013 
𝑁𝑚𝑠

𝑟𝑎𝑑
 𝑏𝑝 = 0,009 

𝑁𝑚𝑠

𝑟𝑎𝑑
 

Short 
pendulum 

without 
additional 

load 

𝑚 = 26 𝑔 

Short 
pendulum 
with addi-
tional load 

𝑚 = 31 𝑔 

𝑙 = 175 𝑚𝑚 𝑙 = 175 𝑚𝑚 

𝐼 = 0,0011 𝑘𝑔𝑚2 𝐼 = 0,0016 𝑘𝑔𝑚2 

𝑏𝑝 = 0,018 
𝑁𝑚𝑠

𝑟𝑎𝑑
 𝑏𝑝 = 0,015 

𝑁𝑚𝑠

𝑟𝑎𝑑
 

𝑀 = 2,7 𝑘𝑔 𝑔 = 9,81 
𝑚

𝑠2
 𝑏 = 65 

𝑁𝑠

𝑚
 

 
Fig. 11. Experimental results for long pendulum without additional load  
             (external disturbance system response) 

 
Fig. 12. Experimental results for long pendulum with additional load  
              (external disturbance system response) 

 
Fig. 13. Experimental results for short pendulum without additional load  
             (external disturbance system response) 

 
Fig. 14. Experimental results for short pendulum with additional load  
              (external disturbance system response) 
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Fig. 15. Experimental results for long pendulum without additional load       
             (step system response) 

 
Fig. 16. Experimental results for long pendulum with additional load  
             (step system response) 

 
Fig. 17. Experimental results for short pendulum without additional load  
             (step system response) 

 
Fig. 18. Experimental results for short pendulum with additional load  
              (step system response) 

Next part of the experiment was step response by changing 
cart position. Fig. 15–18 present how system reacts to this kind of 
disturbance. The moment after cart set position changes, a pen-
dulum is oscillating around its top vertical position, and at the 
same time, the cart is moving to the desired location. Also, this 
experiment resulted in average 3 seconds settling time and maxi-
mal deflection angle around 3°. 

In Tab. 2, all the obtained results from the conducted experi-
ments are shown. It contains setting times for external disturbance 
and step responses, maximal deflections and evolving error val-
ues for all tests. 

Tab. 2. Control quality parameters 

 

Long 
pendulum 

without 
additional 

load 

Long 
pendulum 

with 
additional 

load 

Short 
pendulum 

without 
additional 

load 

Short 
pendulum 

with 
additional 

load 

Setting time 
(disturbance), [s] 

3,12 3,84 1,58 2,25 

Setting time (step 
response), [s] 

3,41 2,14 5,67 4,02 

Maximal deflec-
tion, [°] 

3,05 2,83 3,36 3,69 

Error, [cm] 0,16 0,29 0,31 0,17 

6. CONCLUSIONS 

The main purpose of the controlling inverted pendulum with 
pneumatic actuator was achieved. Difficulties during the develop-
ment applied mainly to the programming part. One of them was 
reading pendulum angle using Simulink environment. The signifi-
cant advantage of Arduino microcontroller is the possibility to 
control the inverted pendulum without a PC and any additional 
software.  

The presented solution brings opportunity to research pneu-
matic drives in closed loop systems and thanks to that, the area of 
their application it can be broaden. Developed control algorithm 
can be successfully and easily adapted for inverted pendulum 
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system with electric drive. Simultaneous use of MATLAB and 
microcontrollers allow relatively convenient verification of calcula-
tions without knowledge and deep analyse of C code. Developed 
amplifying device makes Arduino Due microcontroller much more 
applicable in automation industry. During the experiments, it was 
observed that cylinder mechanical friction is mainly responsible for 
pulling effect at the time of pendulum stabilization. Another big 
advantage of Arduino microcontroller is major cost reduction in 
comparison with the building control system based on DAQ cards. 
Pneumatically actuated inverted pendulum system would be much 
more robust if at least twice as long cylinder and bigger, heavier 
pendulum were used. 
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Abstract: Numerical investigation is accomplished to study the roles of governing parameters of natural convection on the fluid motion  
and heat transfer rate of four heated circular cylinders placed inside a circular enclosure of cold surface. The cylinders are positioned  
in across arrangement. The representative results are obtained within the ranges of initial conditions as: Prandtl number (Pr = 7.1 to 1000) 
and Rayleigh number (Ra = 103 to 105). The average Nusselt number of each inner cylinder is computed. The effects of thermal buoyancy 
strength on the fluid motion and temperature are also illustrated. It was found that the heat transfer rate of cylinders depends significantly 
on the position inside the enclosure. Moreover, the role of Prandtl number on flow and thermal patterns is negligible. The values of Nusselt 
number are also given, which can be useful for some engineering applications. 

             Key words: Natural convection, multiple cylinders, annular space, heat transfer, numerical simulation 

1. INTRODUCTION 

The heat transfer inside an annular space is an important 
phenomenon that can be widely encountered in many industrial 
applications such as heat exchangers, refineries, cooling small 
electronic devices, marine engineering applications, chemical 
processes and so on. Therefore, an important number of scientific 
researches have been devoted recently to understand the govern-
ing parameters on the fluid flow and thermal patterns. For exam-
ple, Masoumi et al. (2019) studied the laminar natural convection 
between two horizontal cylinders. The cylinders were placed in a 
concentric manner. The fluid used for this work was yield stress 
fluid. The governing parameters of this research were limited for 
Ra = 103 to 106. Pandey et al. (2019) presented an extensive 
review of the roles of thermo-physical characteristics of the fluid 
and the geometrical forms of the inner bodies on natural convec-
tion inside square cavity. The studied characteristics are modulat-
ed by the dimensionless numbers of Rayleigh and Prandtl. Aly 
(2017) investigated the natural convection heat transfer from two 
circular cylinders placed in tandem arrangement within rectangu-
lar cavity. The annular space for this research was assumed to be 
porous. The research examined the porous characteristics and 
the cylinder dimensions on the rate of heat transfer. Hussein 
(2013) numerically examined the effects of geometrical modifica-
tions of outer square cavity on the heat transfer rate of circular 
cylinder placed in the centre of this outer cavity. 

It can be seen that the heat transfer in annular space depends 
expensively on the geometrical configuration of heated or cold 
organs and the thermo-characteristics of the fluid. For this reason, 
several researchers have worked on these aspects in order to 
enhance the heat transfer rate in annular configurations. 

Matin and Khan (2013) numerically studied the thermal buoy-

ancy of natural convection in annular space. The studied geome-
try consisted of two horizontal concentric cylinders of circular 
shape. The computed domain was assumed to be filled with non-
Newtonian power fluids. The controlling parameters of Prandtl and 
Rayleigh numbers were studied for Pr = 0.7 to 1000 and Ra = 103 
to 105. The results showed that the first category of power-law 
fluids (shear thinning) having a tendency to improve the rate of 
heat transfer. On the other hand, the shear thickening fluids re-
duced the heat transfer rate. Abu-Nada et al. (2008) for the same 
the geometry of Matin and Khan (2013) used nanofluids instead of 
base-fluid. They confirmed that the nanofluids enhance the ther-
mo-physical characteristics of base-fluid, and consequently, im-
prove the heat transfer rate. Nada and Said (2019) found that 
there is a possibility to increase the heat transfer rate of single 
cylinder placed within cold outer cylinder. The solution was added 
to some radial fins to the wall of inner cylinder. El-Maghlany et al. 
(2016), Char and Lee (1998) and Nasiri et al. (2017) used the 
nanofluids as convective medium to transfer heat between two 
horizontal cylinders. The cylinders were arranged in an eccentric 
manner. They found that the eccentricity factor of inner cylinder 
increases the heat transfer rate. Iqbal et al. (2017), Arbaban and 
Salimpour (2014), Ha et al. (2004), Hadidi et al. (2020) also used 
the same idea to increase the effect of heat transfer. Laidoudi 
(2020) studied the natural convection in enclosed cold cavity in 
which two hot circular cylinders were placed in tandem. Laidoudi 
et al. (2020) also studied a numerical investigation on natural 
convection within an annular space of a special shape of horizon-
tal inner cylinder. It was found that the thermo-physical proprieties 
of fluids have a limited effect on convective heat transfer. Eid 
(2011) performed an experimental study on free convection in 
annulus of elliptical cross-section. Kozlov (2018) numerically 
examined the effect of rotational vibrations on flow and thermal 
behaviours in annulus. Sheikhzadeh et al. (2013) numerically 
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combined the effects of radial fins of inner cylinder with nanofluid 
characteristics to improve the heat transfer in an annulus of circu-
lar form.  

From these mentioned papers and others such as Zhang et al. 
(1992), Kuehn and Goldstein (1976) and Ho et al. (1989), the 
analyses of fluid flow inside the annulus showed that the appari-
tion of two loops and the form of these loops as well as their main 
centre depend mainly on the value of Rayleigh number, that is, 
the thermal buoyancy strength. 

After this presentation of previous researches on laminar natu-
ral convection in annular space, it can be concluded that the heat 
transfer rate of inner cylinders is significantly affected by the 
shapes of the domain and thermo-characteristics of fluid. Although 
there are many researches that cover the buoyancy-driven flow in 
annular space, few papers studied the multiple arranged cylinders 
in circular enclosure under the effect of thermal buoyancy. For 
that reason, the present paper is an attempt to add some insights 
about the effects of mentioned parameters on the natural convec-
tion heat transfer from four circular cylinders placed in across 
arrangement within cold circular cylinder. The results are analysed 
and interpreted for the range of the following parameters: Ra = 
103 to 105 and Pr = 7.1 to 1000. The evolutions of heat transfer 
rate are quantified by the value of average Nusselt number. 

2. PHYSICAL DOMAIN AND MATHEMATICAL MODELLING 

The studied problem is schematized in Fig. 1. It involves a 
cold circular enclosure (Tc) of a diameter H. Inside this circular 
cavity, four circular cylinders are placed in across arrangement. 
The cylinders are hot (Th) and they have a similar diameter (d). 
This diameter (d) is defined by the blockage ratio B = d/H = 0.2. 
The gap distance between the centres of parallel cylinders is 
given by the value S = 0.5 H.  Effectively, the studied domain is a 
symmetrical arrangement. The annular space between inner 
cylinders and the outer cavity is assumed to be filled with incom-
pressible Newtonian fluid. Due to temperature difference between 
the surfaces of inner cylinders and outer cylinder that induces-
thermal buoyancy force, which is the source of fluid motion. 

These kinds of physical phenomena are mostly modelled by 
the governing equations of continuity, Navier-Stockes and energy.  
And the effect of buoyancy-driven flow is treated by Bousssinesq 
approximation. 

 
Fig. 1. Schematic view of studied geometry   

The governing equations for tow-dimensional flow in Cartesian 
coordinate systems can be written in dimensionless form as:  
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The number Ra and Pr are given by following expressions, re-
spectively: 

𝑅𝑎 =
𝑔𝛽(𝑇ℎ−𝑇𝑐)𝑑

3

𝜈𝛼
, Pr =

𝜈

𝛼
(5) 

The written variables in governing equations refer to: u and v 
are velocity components along the x and y-directions, respective-
ly; p is the pressure; and T is the temperature. These variables 
are written in dimensionless form as:   
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The studied fluid is defined by its thermo-physical characteris-
tics, which are given by density ρ, kinematic viscosity ν, thermal 
diffusivity α and the expansion coefficient β. However, g refers to   
gravitational acceleration.  

The average Nusselt number of each inner cylinder is calcu-
lated by integrating the local Nusselt number along the surface of 
the cylinder. The expressions for the Nusselt number are: 

𝑁𝑢𝑙 =
∂ϕ

∂𝑛
|
𝑤𝑎𝑙𝑙

(7) 

𝑁𝑢 =
1

𝑠
∫ 𝑁𝑢𝑙
𝑠

0
𝑑𝑠(8) 

where n and s are the direction normal to the wall. 
Due to numerical considerations, appropriate boundary condi-

tions are subjected to domain extremities as: 
Around the outer cylinder; cold surface with no-slip boundary 

layer as:  

𝑢• = 0, 𝑣• = 0, 𝑇• = 0(9) 

On the surfaces of inner cylinders; hot surfaces with no-slip 
boundary layer as: 

𝑢• = 0, 𝑣• = 0, 𝑇• = 1(10) 

3. GRID INDEPENDENCY AND VALIDATION TESTS  

The governing equations for present work are non-linear par-
tial differential. Therefore, the suitable commercial code ANSY-
CFX is used to solve them numerically. The software transforms 
the equations into matrix system under the aspect of finite-volume 
method. The convective terms of matrix system is solved by High 
resolution discretization scheme. However, SIMPLEC (Semi-
Implicit Method for Pressure-Linked Equations-Consistent) is used 
for velocity-pressure coupling. The obtained results from these 
equations are considered when the relative error of the equations 
becomes less than 10-8 for continuity and momentum equations 
and 10-6 for energy equation. 
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The grid for present geometry is meshed by using the soft-
ware Gambit. The elements of grid are non-uniform and unstruc-
tured. The elements of the grid are concentrated near the walls of 
cylinders where thermal and flow layers are very thin. Fig. 2 
shows the grid for present investigation. The grid contains 74,962 
elements. This value was considered after examining the grid 
indecency test on obtained results. This step is obviously repre-
sented in the results of Tab. 1.  

 
Fig. 2. Typical grid used for present investigation 

Tab. 1. Results of grid independency test for Pr = 10 and Ra = 104 

Mesh Elements Nu (C1) Variation (%) 

M1 10324 3.79345 0.74 

M2 32980 3.76674 0.25 

M3 74962 3.7575 - 

This section also incorporates the validation test. This step is 
shown to prove the accuracy and precision of the used numerical 
method. To do so, we have executed the same geometry studied 
by Kuehn and Goldstein (1976) and Matin and Khan (2013). The 
comparison between all results is depicted in Fig. 3. In fact, Fig. 3 
shows the variation of average Nusselt number versus Rayleigh 
number of a single circular cylinder placed at the centre of circular 
enclosure for Pr = 1. Fig. 3 shows a good agreement between all 
the results. The relative error between the present results and the 
previous works is almost less than 2%.  

4. RESULT AND DISCUSSION  

The present investigation is conducted to understand the roles 
of Rayleigh number and Prandtl number on laminar natural con-
vection in annular space. The studied domain consists of four 
equal-sized cylinders in across arrangement confined in circular 
enclosure. The inner cylinders are heated with constant tempera-
ture (Th) and the outer cylinder is kept cold with constant tempera-
ture (Tc). The computational domain is assumed to be filled with 
incompressible Newtonian fluid. The circulation of flow inside the 
domain and temperature distributions are depicted as representa-
tive streamline and isotherm contours. However, the average 
Nusselt number is graphically plotted versus the studied parame-
ters. 

Fig. 4 and 5 shows the isotherms and streamlines inside the 
annular space with different values of Rayleigh and Prandtl num-

bers. It can be noticed that the particles of the fluid around the 
heated cylinders become hot, and consequently, the fluid density 
in these regions becomes lighter, which leads to the movement of 
lighter regions towards the upper part of the cavity. On the other 
hand, the fluid particles by the curvature of cold cavity becomes 
heavier and they move down towards the lower part of circular 
enclosure. This successive movement of fluid generates two 
symmetrical loops in the annular space as it is showing Fig. 5 for 
Ra = 103. 

 
Fig. 3. Validation test 

Ra = 103   

   
Ra = 104   

   
Ra = 105   

   
Pr = 7.1 Pr = 50 Pr = 1000 

 

 
Fig. 4. Isotherm contours for three values of Prandtl and Rayleigh num-

bers 
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It is also shown that an increase in the value of Rayleigh 
number leads to an increase in the strength of thermal buoyancy, 
and as a consequence, the centre of main loops shifts upwards. 
Moreover, the increase in the value of Rayleigh number creates a 
complicated flow inside the domain. Two extra small loops appear 
above the lower cylinder for Ra = 105. For all cylinders, the lower 
part of cylinder has remarkable isotherms in comparison to the 
upper part. These thin regions of isotherms indicate that the ther-
mal gradient is very important, which results in an important rate 
of heat transfer in these zones. Furthermore, the isotherms show 
that lateral distributions of isotherms decrease with an increase in 
the Rayleigh number, hinting that the heat transfer of inner cylin-
ders increases with increasing Rayleigh number. The influence of 
Prandtl number on streamlines and isotherms is almost negligible.  
Finally, it can be expected that the lower cylinder (C1) has the 
highest value of heat transfer rate, whereas the upper cylinder 
(C4) has the lowest value of heat transfer rate. Also, the plumes 
that are shown on cylinders show the direction of the flow. 

Ra = 103   

   
Ra = 104   

   
Ra = 105   

   
Pr = 7.1 Pr = 50 Pr = 1000 

Fig. 5. Streamline contours for three values of Prandtl and Rayleigh 
numbers 

In order to elucidate additionally the flow inside the annular 
space, Fig.6 depicts the evolution of dimensionless competent 
velocity profiles of y-direction along the line x for y =0. The velocity 
profiles indicate that an increase in the value of Rayleigh number 
increases the velocity. Also, the effect of Prandtl number is almost 
negligible. The negative values of velocity are close to the outer 
cylinder, whereas, the positive values are in the vicinity of inner 
cylinders. The maximum value of velocity is induced by cold 
source. 

Fig. 7 shows the average Nusselt number of inner cylinders as 
a function of Prandtl number and Rayleigh number. As it was 

expected, the lower cylinder has the highest values of Nusselt 
number. Generally, as we move from the lower cylinder (C1) to 
the upper cylinder (C4), the average Nusselt number decreases. 
Increase in Rayleigh number increases the average Nusselt num-
ber of all cylinders. On the other hand, with an increase in Prandtl 
number, the values of Nusselt number remains constant for all 
cylinders. 

 

 
Fig. 6. Dimensionless velocity profiles along x-direction at y = 0  
for different values of Ra and Pr 

5. CONCLUSION  

Numerical simulations are carried out to study the laminar 
natural convection in annular space. The domain consists of four 
circular cylinders, which are placed in across arrangement inside 
circular enclosure. The work tested the roles of Prandtl and Ray-
leigh numbers on the flow and thermal patterns. The obtained 
results of the present study let us draw some new points: 

 The heat transfer rate of inner cylinders depends strongly on 
the position of cylinder. 

 Increase in the value of Rayleigh number increases the heat 
transfer rate. 

 The Prandtl number is a negligible parameter for the natural 
convection in annular space. 

 As we move from the lower part to upper region of annular 
space increases the heat transfer rate. 

 This arrangement of circular cylinders generate new extra 
loops above the lower cylinder.  

 The upper part of inner cylinder has the lowest value of heat 
transfer rate, whereas, the bottom part of cylinder has the 
highest value of heat transfer. 
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Fig. 7. Average Nusselt number versus Prandtl number  
for different cylinders and Rayleigh numbers 
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Abstract: The aim of this study is to develop the numerical–analytical model of frictional heating in a pad/disc system during braking  
including the pressure fluctuations, engendered by the pump in an anti-skid braking operation. For this purpose, the problem of motion  
and the one-dimensional thermal problem of friction for a semi-space/semi-space tribosystem were formulated and solved. Obtained  
solutions allow to calculate temperature distribution on the contact surface and inside the friction elements. Thermal analysis  
was performed for a metal–ceramic pad and a cast iron disc during one-time braking including the time-dependent, oscillating pressure. 
The influence of amplitude of pressure fluctuations on the temperature variations was investigated, especially on the value of maximum 
temperature achieved during braking. 

Key words: Braking, Pressure fluctuations, Pad/disc system, Temperature 

1. INTRODUCTION 

Braking operation is performed by proper clamp of friction 
pads to the rotating disc. Therefore, the nominal value and varia-
tions of pressure determine the effectiveness of the friction pro-
cess that occurs. In the case of severe, heavy-loaded braking 
processes, the spatial distribution of pressure on the contact 
surface can be assumed as uniform (Yevtushenko and Kuciej, 
2012; Matysiak and Yevtushenko, 2001). However, the time pro-
file of contact pressure can have various shapes, which has signif-
icant influence on the process. 

Most known solutions for thermal friction problems have been 
obtained for a classic case of braking with constant deceleration, 
i.e. assuming that pressure is invariable in time (Fazekas, 1953; 
Belhocine and Bouchetara, 2012; Talati and Jalalifar, 2009; Nosko 
et al., 2012). More precise models use an exponential function to 
describe the increase of contact pressure at the beginning of 
braking to nominal value (Topczewska, 2018; Yevtushenko et al., 
1999; Matysiak et al., 2002) or its simplified form – linear growth 
of pressure – and maintain the achieved nominal value to the end 
of braking (Topczewska, 2018; Yevtushenko and Grześ, 2015; 
Yevtushenko et al., 2019). In the article Topczewska (2018), the 
evolution of temperature on friction surface was found in a closed 
analytical form for a classic semi-space/semi-space system with 
regard to the time profiles of specific friction power corresponding 
to the exponential and linear increase of pressure. Another possi-
ble pressure variation during braking was taken into account 
indirectly by applying different profiles of specific friction power 
during single braking (Yevtushenko et al., 2019). In the above-
mentioned article, the analytical solutions of one-dimensional heat 
conduction problem formulated for semi-space/semi-space sys-
tem were found. 

All of the above-mentioned problems concerned processes 
with monotonically increasing pressure during braking. However, 
the growth of contact pressure may also be accompanied by its 
fluctuations caused by anti-slip regulation, anti-lock braking sys-
tem or pulse braking mode. Thermal problems of friction contact 

pressure fluctuations during braking were formulated and solved 
for a strip/semi-space (Yevtushenko et al., 2010) and semi-
space/strip/semi-space tribosystems (Kuciej, 2011). In the latter 
articles, mainly, the influence of the time of pressure increase to 
nominal value and heat transfer through a contact surface at the 
temperature level were investigated. 

In this paper, the distribution of temperature in the pad/disc 
system was found during braking with an exponential growth of 
pressure and its fluctuations. For this purpose, the initial problem 
of motion and the one-dimensional boundary value problem of 
heat conduction were considered. Performed numerical analysis 
allowed to establish the effect of amplitude of pressure oscillation 
on the contact surface during braking on the temperature distribu-
tion.  

2. STATEMENT OF THE PROBLEM 

 One-time, rapid braking process of a pad/brake disc system 
was considered. The operating principle of this type of brake 
system is based on the friction pads’ clamp on the surface of the 
rotating disc. As a result of friction, heat is generated on the 
contact surfaces. Investigations of temperature distribution in a 
heated friction element during braking at high sliding speed 
showed the following (Yevtushenko and Kuciej, 2012; Balakin and 
Sergienko, 1999): 
1. Almost all frictional heat is absorbed by the pads and disc in 

an axial direction, i.e. perpendicular to the friction surface. 
2. Significant gradients of temperature are present only at a 

short distance from the contact surface, the so-called effective 
depth of heat penetration (Chichinadze et al., 2010), which is 
much smaller than the actual thickness of friction elements.  

3. The effect of convective heat exchange with the environment 
and wear are negligible (Yevtushenko et al., 2020; 
Topczewska et al., 2020). So, the whole energy generated 
during braking is converted into heat. 
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4. Thermal resistance on the interface of pad and disc is 
inconsiderable. So, thermal contact is perfect. 

 In order to determine the temperature distribution in friction 
elements, proper initial problem of motion and thermal problem of 
friction were formulated on the basis of the above assumptions 
(1–4). 

3. THE INITIAL PROBLEM OF MOTION 

The initial problem of motion for a pad/disc system during sin-
gle braking from initial sliding velocity of the disc 𝑉0 to the stand-
still position at 𝑡𝑠 has the following form (Kuciej, 2012): 

2𝑊0𝑉0
−2 𝑑

𝑑𝑡
𝑉(𝑡) = −𝑓𝑝(𝑡)𝐴𝑘, 0 ≤ 𝑡 ≤ 𝑡𝑠 , (1) 

𝑉(0) = 𝑉0,  (2) 

where 𝑊0 is the initial kinetic energy, 𝑓 the coefficient of friction, 
𝐴𝑘 = 2𝜋(𝑟𝑒

2 − 𝑟𝑖
2) the nominal contact surface, 𝑟𝑒 , 𝑟𝑖 the external 

and internal radii of a single friction surface and 𝑝(𝑡) is the con-
tact pressure. Problem of motion (1), (2) can be written in the 
dimensionless form: 

𝜏𝑠
0 𝑑

𝑑𝜏
𝑉∗(𝜏) = −𝑝∗(𝜏), 0 ≤ 𝜏 ≤ 𝜏𝑠, (3) 

𝑉∗(0) = 1,  (4) 

where the introduced dimensionless variables and parameters 
are: 

𝜏 =
𝑘1𝑡

𝑑2
, 𝜏𝑠 =

𝑘1𝑡𝑠

𝑑2
, 𝜏𝑠

0 =
𝑘1𝑡𝑠

0

𝑑2
, 𝑡𝑠

0 =
2𝑊0

𝑓𝑉0𝑝0𝐴𝑘
, 

 𝑉∗ =
𝑉

𝑉0
, 𝑝∗ =

𝑝

𝑝0
, 𝑑 = √3𝑘1𝑡𝑠

0, (5) 

where 𝑝0 is the nominal value of pressure, 𝑘1 the thermal diffusivi-
ty of the disc material and 𝑑 is the effective depth of heat penetra-
tion. Based on equation (3), taking into account of the initial condi-
tion (4), the dimensionless sliding velocity can be found using the 
equation: 

𝑉∗(𝜏) = 1 −
1

𝜏𝑠
0 ∫ 𝑝∗(𝑠)𝑑𝑠

𝜏

0
, 0 ≤ 𝜏 ≤ 𝜏𝑠 . (6) 

Taking into account the growth of contact pressure at the be-
ginning of braking, and also fluctuations of its value due to anti-
lock braking system, the dimensionless time-dependent pressure 
function 𝑝∗(𝜏) is (Yevtushenko et al., 2010; Kuciej, 2011) calcu-
lated as: 

𝑝∗(𝜏) = [1 − exp (
−𝜏

𝜏𝑚
)] [1 + 𝑎sin (𝜔𝜏)], 0 ≤ 𝜏 ≤ 𝜏𝑠 , (7) 

where 𝑡𝑚 is the time of pressure increase, 𝜏𝑚 = 𝑘1𝑡𝑚𝑑−2 the 
dimensionless time of pressure increase, 𝑎 the dimensionless 
amplitude of pressure oscillations and 𝜔 is the dimensionless 
frequency of pressure oscillations. With the analytical solution of 
equation (6) including pressure (7), the dimensionless sliding 
speed was found: 

 𝑉∗(𝜏) = 1 −
𝜏

𝜏𝑠
0 +

𝜏𝑚

𝜏𝑠
0 [1 − exp (

−𝜏

𝜏𝑚
)] −

𝑎

𝜏𝑠
0 𝑉𝑎

∗(𝜏), 0 ≤ 𝜏 ≤ 𝜏𝑠 , 

𝑉𝑎
∗(𝜏) =

1

𝜔
[1 − cos (𝜔𝜏)] +

1

𝜔2+𝜏𝑚
−2 {exp (

−𝜏

𝜏𝑚
) [𝜔 cos(𝜔𝜏) +

                    + 𝜏𝑚
−1sin (𝜔𝜏)]} − 𝜔. (8) 

 The stop condition 𝑉∗(𝜏𝑠) = 0 allows to calculate numerically 
the time of braking. 

For constant friction coefficient 𝑓, the specific friction power 
is the product of sliding velocity (8) and pressure (7): 

𝑞(𝑡) = 𝑞0𝑞∗(𝜏), 𝑞0 = 𝑓𝑝0𝑉0,    

𝑞∗(𝜏) = [1 − exp (
−𝜏

𝜏𝑚
)] [1 + 𝑎sin (𝜔𝜏)] 〈1 −

𝜏

𝜏𝑠
0 +

𝜏𝑚

𝜏𝑠
0 [1 −

                −exp (
−𝜏

𝜏𝑚
)] −

𝑎

𝜏𝑠
0 𝑉𝑎

∗(𝜏)〉, 0 ≤ 𝜏 ≤ 𝜏𝑠. (9) 

 Substituting 𝑎 = 0, the obtained relations (7)–(9) take the 
forms:  

𝑝∗(𝜏) = 1 − exp (
−𝜏

𝜏𝑚
), 𝑉∗(𝜏) = 1 −

𝜏

𝜏𝑠
0 +

𝜏𝑚

𝜏𝑠
0 [1 − exp (

−𝜏

𝜏𝑚
)],  

𝑞∗(𝜏) = [1 − exp (
−𝜏

𝜏𝑚
)] 〈1 −

𝜏

𝜏𝑠
0 +

𝜏𝑚

𝜏𝑠
0 [1 − exp (

−𝜏

𝜏𝑚
)]〉,  

0 ≤ 𝜏 ≤ 𝜏𝑠 ,  (10) 

which correspond to braking with monotonically increasing 
pressure without fluctuations.  
 As the time of pressure growth approaches zero, 𝜏𝑚 → 0, 

from equations (7) to (10), the following equations were obtained: 

𝑝∗(𝜏) = 1 + 𝑎sin (𝜔𝜏),   

𝑉∗(𝜏) = 1 −
𝜏

𝜏𝑠
0 −

𝑎

𝜏𝑠
0 {

1

𝜔
[1 − cos (𝜔𝜏)] − 𝜔}, 

𝑞∗(𝜏) = [1 + 𝑎sin (𝜔𝜏)] 〈1 −
𝜏

𝜏𝑠
0 −

𝑎

𝜏𝑠
0 {

1

𝜔
[1 − cos (𝜔𝜏)] − 𝜔}〉, 

0 ≤ 𝜏 ≤ 𝜏𝑠.  (11) 

 And the simpliest typical braking process with uniform 
pressure can be found for 𝑎 = 0 and 𝜏𝑚 → 0: 

𝑝∗(𝜏) = 1,  𝑉∗(𝜏) = 1 −
𝜏

𝜏𝑠
0 ,  𝑞∗(𝜏) = 1 −

𝜏

𝜏𝑠
0,  

0 ≤ 𝜏 ≤ 𝜏𝑠 = 𝜏𝑠
0.  (12) 

4. THE HEAT PROBLEM OF FRICTION 

 To establish the temperature field 𝑇𝑖(𝑧, 𝑡) in the brake disc 
(𝑖 = 1) and pad (𝑖 = 2), the thermal problem of friction was 
considered. Due to the symmetry of the system, we assume that 
the friction processes occurring on both friction surfaces of the 
brake disc are the same; so, the model was prepared for half of 
this system. Based on assumptions (1–4), half of the disc and the 
brake pad was simplified by a system of two semi-limited bodies. 
The orientation of semi-space/semi-space system considered 
here is given relative to a Cartesian frame of reference 𝑂𝑥𝑦𝑧 
(Fig. 1). 

 
Fig. 1. Scheme of the problem 
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 On the contact surface, 𝑧 = 0; the frictional heat is generated 

and absorbed by elements along the 𝑧-axis direction. It was as-
sumed that the friction materials are homogeneous and their 
thermal properties do not change during braking. 
 The boundary value problem of heat conduction was 
formulated for a semi-space/semi-space system in the 
dimensionless form:  

𝜕2

𝜕𝜁2
𝑇1

∗(𝜁, 𝜏) =
𝜕

𝜕𝜏
𝑇1

∗(𝜁, 𝜏), 𝜁 > 0, 0 < 𝜏 ≤ 𝜏𝑠 , (13) 

𝜕2

𝜕𝜁2
𝑇2

∗(𝜁, 𝜏) =
1

𝑘∗

𝜕

𝜕𝜏
𝑇2

∗(𝜁, 𝜏), 𝜁 < 0, 0 < 𝜏 ≤ 𝜏𝑠, (14) 

𝐾∗ 𝜕

𝜕𝜁
𝑇2

∗(𝜁, 𝜏)|
𝜁=0

−
𝜕

𝜕𝜁
𝑇1

∗(𝜁, 𝜏)|
𝜁=0

= 𝑞∗(𝜏), 0 < 𝜏 ≤ 𝜏𝑠, (15) 

𝑇1
∗(0, 𝜏) = 𝑇2

∗(0, 𝜏) = 𝑇∗(𝜏), 0 < 𝜏 ≤ 𝜏𝑠, (16) 

𝑇𝑖
∗(𝜁, 𝜏) → 0, |𝜁| → ∞, 0 < 𝜏 ≤ 𝜏𝑠 , 𝑖 = 1,2, (17) 

𝑇𝑖
∗(𝜁, 0) = 0, |𝜁| ≥ 0, 𝑖 = 1,2,   (18) 

𝜁 =
𝑧

𝑑
, 𝐾∗ =

𝐾2

𝐾1
, 𝑘∗ =

𝑘2

𝑘1
, 𝑇0 =

𝑞0𝑑

𝐾1
, 𝜏 =

𝑘1𝑡

𝑑2 , 𝜏𝑠 =
𝑘1𝑡𝑠

𝑑2 ,     

  𝑇𝑖
∗ =

𝑇𝑖−𝑇𝑎

𝑇0
, 𝑑 = √3𝑘1𝑡𝑠

0, 𝑖 = 1,2 , (19) 

where 𝑇𝑎 is the initial temperature. 
 Solution to the problem (13)–(19) was found based on the 
following Duhamel’s theorem (Ozisik,1993). 

𝑇𝑖
∗(𝜁, 𝜏) = ∫ 𝑞∗(𝑠)

𝜕

𝜕𝜏
𝑇𝑖

∗(0)(𝜁, 𝜏 − 𝑠)𝑑𝑠
𝜏

0
, 

|𝜁| ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 , 𝑖 = 1,2,   (20) 

where (Carlslaw and Jaeger, 1959) 

𝑇𝑖
∗(0)(𝜁, 𝜏) = 2𝛾√𝜏ierfc[𝑍𝑖(𝜁, 𝜏)],  𝜁 ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠, 

𝑍1(𝜁, 𝜏) =
𝜁

2√𝜏
, 𝜁 ≥ 0, 𝑍2(𝜁, 𝜏) =

𝜁

2√𝜏𝑘∗
, 𝜁 ≤ 0, 

 𝛾 = (1 + 𝜀)−1, 𝜀 = 𝐾∗(𝑘∗) −0.5 (21) 

is the solution to the problem (13)–(19) with a constant intensity of 
frictional heat flux 𝑞∗(𝜏) = 1 in the boundary condition (15). 
Taking into account the partial derivative of function (21) 
(Abramowitz and Stegun, 1972) 

𝜕

𝜕𝜏
𝑇𝑖

∗(0)(𝜁, 𝜏) = 𝛾[𝜋(𝜏 − 𝑠)]−0.5exp[−𝑍𝑖
2(𝜁, 𝜏 − 𝑠)] (22) 

and the obtained specific friction power 𝑞∗(𝜏) (9), we determined 
the temperature fields for the braking process considered here:  

𝑇𝑖
∗(𝜁, 𝜏) = 𝛾𝜋−0.5 ∫ [1 − exp (

−𝑠

𝜏𝑚
)] [1 + 𝑎 sin(𝜔𝜏)] 〈1 −

𝑠

𝜏𝑠
0 +

𝜏

0

+
𝜏𝑚

𝜏𝑠
0 [1 − exp (

−𝑠

𝜏𝑚
)] −

−
𝑎

𝜏𝑠
0 {

1

𝜔
[1 − cos (𝜔𝑠)] +

1

𝜔2+𝜏𝑚
−2 {exp (

−𝑠

𝜏𝑚
) [𝜔 cos(𝜔𝑠) +

       + 𝜏𝑚
−1sin (𝜔𝑠)]} − 𝜔}〉 (𝜏 − 𝑠)−0.5exp[−𝑍𝑖

2(𝜁, 𝜏 − 𝑠)]𝑑𝑠,  

0 ≤ 𝜏 ≤ 𝜏𝑠 , − ∞ < 𝜁 < ∞,  𝑖 = 1,2. (23) 

 In the case of braking, when the time of pressure increase is 
close to zero, 𝜏𝑚 → 0 (11), the solution to the thermal friction 
problem (13)–(19) has the following form:  

𝑇𝑖
∗(𝜁, 𝜏) =

𝛾

√𝜋
∫ [1 + 𝑎sin(𝜔𝜏)] 〈1 −

𝜏

𝜏𝑠
0 −

𝑎

𝜏𝑠
0 {

1

𝜔
[1 − cos(𝜔𝑠)] −

𝜏

0

−𝜔}〉 (𝜏 − 𝑠)−0.5exp[−𝑍𝑖
2(𝜁, 𝜏 − 𝑠)]𝑑𝑠,  

0 ≤ 𝜏 ≤ 𝜏𝑠 , − ∞ < 𝜁 < ∞,  𝑖 = 1,2. (24) 

 Analytical integration of the formulas (23) and (24) 
is impossible. Therefore, it was done by means of the adaptive 
quadrature integrator, which handles singularities – procedure 
QAGS from a package of numerical integration QUADPACK 
(Piessens et al., 1983). 
 The analytical solution to the considered problem (13)–(19) 
without taking into account the pressure oscillations for 𝑎 = 0 has 
been succesfully found in the paper Topczewska (2018). Using 
the same method (20)–(22) for functions (10), the following 
formula has been obtained: 

𝑇∗(𝜏) = 𝛾√𝜏 [(1 +
𝜏𝑖

2𝜏𝑠
0 −

2

3

𝜏

𝜏𝑠
0)

2

√𝜋
− (1 −

𝜏

𝜏𝑠
0 +

3

2

𝜏𝑖

𝜏𝑠
0) 𝐷 (√

𝜏

𝜏𝑖
) +

                             +
𝜏𝑖

𝜏𝑠
0 𝐷 (√

2𝜏

𝜏𝑖
)] , 0 < 𝜏 ≤ 𝜏𝑠,   (25) 

where 

𝐷(𝑥) =
2

√𝜋

exp(−𝑥2)

𝑥
∫ exp(𝑠2)

𝑥

0
𝑑𝑠. (26) 

However, this solution, (25) and (26), allows to establish 
temperature evolution only of the friction surface 𝜁 = 0, where the 
temperature level is the highest. 
 Also, the full analytical solution of this problem (13)–(19) has 
been determined for the uniform braking mode in the paper 
Yevtushenko et al. (2019): 

𝑇𝑖
∗(𝜁, 𝜏) =

4

3
𝛾√𝜏

𝜏

𝜏𝑠

〈{3
𝜏𝑠

𝜏
− 2[1 + 𝑍𝑖

2(𝜁, 𝜏)]} ierfc[𝑍𝑖(𝜁, 𝜏)] +

                                      + 𝑍𝑖(𝜁, 𝜏)erfc[𝑍𝑖(𝜁, 𝜏)]〉, 

|𝜁| ≥ 0, 0 ≤ 𝜏 ≤ 𝜏𝑠 , 𝑖 = 1,2,   (27) 

which allows to calculate temperature both on the contact surface 
and at any depth |𝜁| ≥ 0 inside the friction elements.  

5. NUMERICAL ANALYSIS 

 Distribution of temperature during braking was designated for 
the friction pair consisting of the pad made of metal–ceramic 
composite FMC-11 and the brake disc made of cast iron 
ChNMKh. Properties of these materials and input parameters to 
perform analysis are presented in Table 1. 

Table 1. Input parameters (Yevtushenko et al., 2020; Kuciej, 2012) 

Thermal conductivity of disc, 𝐾1 (W/mK) 51 

Thermal conductivity of pad, 𝐾2 (W/mK) 34.3 

Thermal diffusivity of disc, 𝑘1 (mm2/s) 14 

Thermal diffusivity of pad, 𝑘2 (mm2/s) 15.2 

Initial velocity, 𝑉0 (m/s) 23.8 

Initial kinetic energy, 𝑊0 (k) 103.54 

Nominal contact pressure, 𝑝0 (MPa) 0.607 

Friction coefficient, 𝑓 (−) 0.27 

Time of pressure increase, 𝑡𝑚 (s) 0.5 

Ambient temperature, 𝑇𝑎 (°C) 20 

External radius, 𝑟𝑒 (mm) 37.5 

Internal radius, 𝑟𝑖  (mm) 26.5 

Pressure fluctuation amplitude, 𝑎 (−) 0.1 

Pressure fluctuation frequency, 𝜔 (−) 100 
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 Based on the values included in Table 1, the following 
parameters were computed: the time of braking 𝑡𝑠 = 12.43 s, the 
whole area of friction pair contact 𝐴𝑘 = 4.42 × 10−3 m2, effective 
depth of heat penetration in the brake disc 𝑑 = 22.45 mm and the 
coefficient of heat flux partition 𝛾 = 0.607. 

 
Fig. 2. Changes of contact pressure 𝑝 and sliding speed 𝑉 during 

braking on account of pressure fluctuations for 𝑎 = 0.1 (solid 
lines), (7), (8) and without for 𝑎 = 0 (dashed lines) (6), (10) 

 Changes in contact pressure 𝑝 and sliding speed 𝑉 during 
braking are shown in Fig. 2. Solid lines present the results ob-
tained for oscillations with amplitude 𝑎 = 0.1 (7), (8), and dashed 
lines show the results obtained excluding the pressure fluctuations 
for 𝑎 = 0 (10). In the first case (for 𝑎 = 0.1), at the beginning of 
the process, the pressure rapidly increases. After that, it oscillates 
around the nominal value 𝑝0 with a constant amplitude to the end 
of braking 𝑡 = 𝑡𝑠. However, the sliding velocity monotonically 
decreases in time until the stop moment. The time profiles of 
speed in both cases are almost convergent (Fig. 2). 

 
Fig. 3. Changes of specific friction power 𝑞 (9) and temperature 𝑇 on the 

contact surface during braking: including the pressure fluctuations 
for 𝑎 = 0.1 (solid lines) (23) and excluding for 𝑎 = 0 (dashed 

lines) (24) 

 Pressure oscillations with 𝑎 = 0.1 noticeably affect specific 
friction power 𝑞 (9) and temperature 𝑇 (23), (24) on the contact 

surface 𝑧 = 0, which is demonstrated in Fig. 3 by solid lines. The 
amplitude of their fluctuations is the greatest near the time 

moment of reaching their maximum values 𝑞max = 3.46 W/mm2 
and 𝑇max = 339.5°C at time moments 𝑡 = 2.66 s and 𝑡 = 6.64 s, 
respectively, and after that it decreases until the end of braking. 
Temperature oscillations on the friction surface are much less 
intense than the fluctuations of specific friction power. 

 
Fig. 4. Variations of temperature 𝑇 (23) on the contact surfaces 𝑧 = 0 

and on selected distance from 𝑧 in the disc (𝑖 = 1) (solid lines) 
and pad (𝑖 = 2) (dotted lines) 

 
Fig. 5. Dependence of maximum temperature 𝑇max attained during 

braking on the value of dimensionless amplitude 𝑎 

 Changes in temperature 𝑇 on the interface and few depths 𝑧 
inside the brake disc (𝑖 = 1) (solid lines) and pad (𝑖 = 2) (dotted 
lines) were calculated based on formula (23) and are presented in 
Fig. 4. The temperature values on the contact surfaces |𝑧| = 0 

are the highest and the same for both friction pair elements (16). 
Due to similarity of thermal properties of friction materials (Table 
1), the values of achieved temperature at selected distances in 
both elements are close to each other. The greater the distance 
from the friction surface 𝑧, the more noticeable are the differences 
between the temperature in the disc and the pad. As the distance 
from the friction surface increases, the temperature level 
decreases and its maximum values are reached later. The 
influence of pressure oscillations on temperature is especially 
visible on the friction surfaces 𝑧 = 0, and moving away from this 
surface, the fluctuation amplitude decreases. Below the depth 
𝑧 = 5 mm, this effect is not noticeable both in the disc and the 
brake pad.  
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 Figure 5 presents the maximum temperature values achieved 
on the contact surface during braking for different values of 
fluctuations amplitude 𝑎. When braking without contact pressure 
oscillation 𝑎 = 0, the maximum temperature value is 𝑇max =

340°C. The lowest value of maximum temperature 𝑇max = 339°C 
is attained for small pressure fluctuations with an amplitude 
𝑎 = 0.03. However, further increasing the amplitude value causes 
increase in maximum temperature to 𝑇max = 353.9°C at the most 
intense oscillations for an amplitude 𝑎 = 0.3. 

6. CONCLUSIONS 

 Numerical analysis of temperature distribution in a pad/disc 
brake system was performed based on the solution to the 
boundary value problem of heat conduction formulated with 
oscillating pressure. Calculations were performed for the frictional 
pair such as composite pad and cast iron disc. Results were 
compared with data obtained excluding the pressure fluctuations. 
The following conclusions were made: 
1. Pressure fluctuations do not influence the sliding speed of the 

brake disc, and hence the time of braking. 
2. The temperature in the disc and pad oscillates only in the near 

distance from friction surface and with a much lower intensity 
than the corresponding fluctuations in pressure. The 
amplitude of temperature oscillations changes over time 
during braking and achieves the highest value in the middle of 
process, despite the fact that pressure fluctuates with 
a constant amplitude. 

3. Increase in the level of amplitude of pressure fluctuations 
causes a slight increase in the value of maximum temperature 
attained on the friction surface. 
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Abstract: The problem of realisation of linear control systems with the 𝒉 −difference of Caputo-, Riemann–Liouville- and Grünwald–
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1. INTRODUCTION 

In engineering experiments, in many cases, only information 
about inputs and measurements of the investigated process are 
available. So, a relationship between these variables is needed. It 
is a question of the possible systems that provide a good 
description of observed system's input–output behaviour. This 
leads to the crucial idea of the realisation problem. In fact, the 
realisation of an input–output map describing a system's 
behaviour means finding a dynamical state-space system with 
input and output, which can be reproduced, when initialised at 
some state for the given (input–output) behaviour. In Bartosiewicz 
and Pawluszewicz (2006), classical conditions for existing 
realisation for continuous time or/and discrete time linear systems 
were generalised to any time domain. The next natural question is 
whether this problem can be extended to a more general case of 
differential/difference order, i.e. on systems defined by fractional 
order operators. The term fractional basically implies all non-
integer numbers. In fact, in nature, there are many processes that 
can be more accurately modelled using fractional differ-integrals 
(see, e.g. in Ambroziak et al., 2016; Das, 2008; Koszewnik et al., 
2016; Sierociuk et al., 2013; Wu et al., 2015). The rapid 
development of computer techniques has caused the parallel 
investigations in the field, among others, combinatorics tools and 
difference equations. This is the reason that in modelling of real 
phenomena, a generalisation of nth order differences to their 
fractional forms and the state-space description of control systems 
in discrete time are used (see, e.g. Bastos et al., 2011; 
Oprzedkiewicz and Gawin, 2016; Podlubny 1999). 

The goal of this study is to construct a state-space fractional 
vector-order representation of an abstract input–output map and 
to give conditions under which such representation exists. To 

achieve this aim, fractional order h −differences of Caputo-, 
Riemann–Liouville- and Grünwald–Letnikov-type operators are 
considered. Taking into account their properties (Mozyrska et al., 
2013), the state-space description of the system's behaviours is 
presented in terms of these operators parallel. The main result 
may be seen as an extension of the classical realisability criterion 

saying that an abstract input–output map has a state-space 
realisation if and only if the Markov parameters satisfy  
a recurrence relation (see Sontag, 1998; Zabczyk, 2008).  
To achieve this aim, h −Markov parameters for the input–output 
map are defined. It is shown that the input–output map has  

a state-space fractional vector-order h −realisation in finite 
number of steps if and only if the h −Markov parameters satisfy 
the linear recursion equation. The obtained relation is similar to 
the one given in the classical case; it extends the classical result 
to the fractional case. Generally, the obtained realisation is not 
unique; but under certain minimality or redundancy requirements, 
it can be what is a desirable property in practice. In fractional 
order case, some aspects of realisation problem were raised in 
Bettayeb et al. (2008), where the concept of the structured 
realisation index was introduced.  

The paper is organised as follows. After introducing Mittag-
Leffler function (Section 2.1) and fractional order difference 
operators (Section 2.2), the extension of controllability and 
observability conditions for fractional vector-order systems is 
presented (Section 3). In the next step, conditions of existing 
state-space fractional vector-order realisation are considered. As 
the last step, the problem of existing minimal fractional vector-
order realisation is discussed (Section 4). 

2. PRELIMINARIES  

2.1. Discrete Mittag-Leffler function 

     Let 𝛼 be any number and 𝑠 any integer. Then: 

(
𝛼
𝑠
) = {

0                                             𝑓𝑜𝑟 𝑠 < 0

1                                             𝑓𝑜𝑟 𝑠 = 0

 
𝛼(𝛼 − 1)… (𝛼 − 𝑠 + 1)

𝑠!
  𝑓𝑜𝑟 𝑠 > 0

 

denotes the classical binomial coefficient. Denote the family 

of binomial functions by 𝜑𝜇  parametrised by 𝜇 > 0 as: 

mailto:e.pawluszewicz@pb.edu.pl
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𝜑𝜇(𝑛) = {
(
𝑛 + 𝜇 − 1

𝑛
)       𝑓𝑜𝑟 𝑛 ∈ 𝑁0

0                         𝑓𝑜𝑟 𝑛 < 0.
                                (1) 

If "∗" denotes a convolution operator, then (𝜑𝜇 ∗ 𝑥̅)(𝑛) ≔

∑ (
𝑛 − 𝑠 + 𝜇 − 1

𝑛 − 𝑠
) 𝑥̅(𝑠)𝑛

𝑠=0 , where 𝑥̅(𝑠) ≔ 𝑥(𝑎 + 𝑠ℎ).  

   The discrete two-parameter Mittag-Leffler function is defined 
as (Mozyrska and Wyrwas, 2015; Mozyrska et al., 2017):   

𝐸(𝛼,𝛽)(𝜆, 𝑛) ≔ ∑ 𝜆𝑘𝜑𝑘𝛼+𝛽(𝑛 − 𝑘).
∞
𝑘=0                       (2) 

If A is n × n dimensional matrix with constant coefficients, then 

𝐸(𝛼,𝛽)(𝐴, 𝑛) ≔ ∑ 𝐴𝑘 (
𝑛 − 𝑘 + 𝑘𝛼 + 𝛽 − 1

𝑛 − 𝑘
)∞

𝑘=0  and 

𝜑𝑘𝛼+𝛽(𝑛 − 𝑘) = 0 for 𝑛 < 𝑘. If 𝛼 = 𝛽, then 𝐸(𝛼,𝛼)(𝐴, 𝑛) =

∑ 𝐴𝑘 (
𝑛 − (𝑘 + 1)(𝛼 − 1)

𝑛 − 𝑘
)∞

𝑘=0 . It is easy to check that even if 

there are matrices 𝐵 and 𝐶  such that 𝐴 = 𝐵𝐶, then 

𝐸(𝛼,𝛽)(𝐵𝐶, 𝑛) ≠ 𝐸(𝛼,𝛽)(𝐵, 𝑛)𝐸(𝛼,𝛽)(𝐶, 𝑛). 

Let 𝐴 ∈ 𝑅𝑛×𝑛 be a diagonalisable matrix with eigenvalues 

𝜆1, 𝜆2, … , 𝜆𝑚𝑟  of multiples 𝑚1, 𝑚2, … ,𝑚𝑟 , respectively, such 

that ∑ mi ≤ n
r
i=1 . Suppose that the function 𝑓(𝜆) is well defined 

on the spectrum of the matrix 𝐴. Then a function of the matrix A is 
given by the Lagrange–Sylvester's interpolation formula 
(Gantmacher, 1959; Kaczorek, 1998) as: 

𝑓(𝐴) = ∑ [𝑍𝑖1 
𝑑𝑓(𝜆)

𝑑𝜆
|𝜆=𝜆𝑖 +⋯+ 𝑍𝑖1 

𝑑𝑓(𝑚𝑖−1)(𝜆)

𝑑𝜆(𝑚𝑖−1)
|𝜆=𝜆𝑖]

𝑟
𝑖=1   (3) 

with coefficients: 

𝑍𝑖𝑗 = ∑
(𝐴−𝜆𝑖𝐼𝑛)

𝑘Φ(𝐴)

(𝑘−𝑗+1)!(𝑗−1)!

𝑑𝑓𝑘−𝑗+1 

𝑑𝜆𝑘−𝑗+1 
[
1

Φ(𝜆)
] |𝜆=𝜆𝑖

𝑚𝑖−1
𝑘=𝑗−1                     (4) 

for 𝑗 = 1,… ,𝑚𝑟 , 𝛷(𝐴) = ∏ (𝐴 − 𝜆𝑗𝐼𝑛)
𝑚𝑖𝑚𝑟

𝑗=1 , Φ(𝜆) =

∏ (𝜆 − 𝜆𝑗)
𝑚𝑖𝑚𝑟

𝑗=1  and 𝐼𝑛 – identity matrix of dimension 𝑛 × 𝑛. 

Theorem 1 (Kaczorek, 2017): Let Φ(𝜆) = det[𝜆𝐼𝑛 − 𝑓(𝐴)] =
𝜆𝑛 + 𝑎𝑛−𝑎𝜆

𝑛−𝑎 +⋯+ 𝑎1𝜆 + 𝑎0, where 𝑓(𝐴) is given by (3), 

be the characteristic polynomial of matrix 𝐴. Then 𝑓(𝐴) satisfies 

its characteristic equation [𝑓(𝐴)]𝑛 + 𝑎𝑛−1[𝑓(𝐴)]
𝑛−1 +⋯+

𝑎1𝑓(𝐴) + 𝑎0𝐼𝑛 = 0. 

Proposition 2: Let Φ(𝜆) = det[𝜆𝐼𝑛 − 𝐸(𝛼,𝛽)(𝐴, 𝑘)] = 𝜆
𝑛 +

𝑎𝑛−𝑎𝜆
𝑛−𝑎 +⋯+ 𝑎1𝜆 + 𝑎0 be the characteristic equation of 

the Mittag-Leffler function (2). Then matrix Φ(𝑘) = 𝐸(𝛼,𝛽)(𝐴, 𝑘) 

satisfies its characteristic equation [𝐸(𝛼,𝛽)(𝐴, 𝑘)]
𝑛
+

𝑎𝑛−1[𝑓𝐸(𝛼,𝛽)(𝐴, 𝑘)]
𝑛−1

+⋯+ 𝑎0𝐼𝑛 = 0. 

Proof: The reasoning using the Lagrange–Sylvester's formula (3), 
based on Kaczorek (2017), is the same as for one-parameter 
function Mittag-Leffler given in Pawluszewicz and Koszewnik 
(2019). □ 

From Proposition 2, immediately it follows that 

𝐸(𝛼,𝛽)(𝐴, 𝑛) ≔ ∑ 𝐴𝑘 (
𝑛 − 𝑘 + 𝑘𝛼 + 𝛽 − 1

𝑛 − 𝑘
)𝑛

𝑘=0 . 

2.2. Fractional 𝐡 −difference operators 

Let ℎ be a positive real number. For any real 𝑎, let (ℎ𝑁)𝑎 =
{𝑎, 𝑎 + ℎ, 𝑎 + 2ℎ,… }. Consider a function 𝑥: (ℎ𝑁)𝑎 → 𝑅. The 

forward h-difference operator is classically defined as 

(𝛥ℎ 𝑥)(𝑡) =
𝑥(𝑡+ℎ)−𝑥(𝑡)

ℎ
. The 𝑛-fold application n of operator 

𝛥ℎ, i.e. 𝛥ℎ
𝑛: = 𝛥ℎ ∘ … ∘ 𝛥ℎ , for any natural n, leads to 

(𝛥ℎ
𝑛𝑥)(𝑡) = ℎ−𝑛 ∑ (−1)𝑛−𝑘𝑛

𝑘=0  (
𝑛
𝑘
)  𝑥(𝑡 + 𝑘ℎ). Additionally, 

we have (𝛥ℎ
0  𝑥)(𝑡): = 𝑥(𝑡). The fractional h −sum of order 

α > 0 for a function 𝑥: (ℎ𝑁)𝑎 →  𝑅 is defined by: 

 ( Δ𝑎 ℎ
−𝛼𝑥 )(𝑡): =   ℎ𝛼(𝜑𝛼 ∗ 𝑥̅)(𝑛), 

where 𝑡 = 𝑎 + (𝛼 + 𝑛)ℎ for any natural 𝑛.  
      Let 𝛼 ∈ (0,1]. The Caputo-type ℎ −difference operator 

Δ𝑎 ℎ,∗
𝛼  of order 𝛼 for a function 𝑥: (ℎ𝑁)𝑎 →  𝑅 is defined as 

(Mozyrska and Girejko, 2013): 

( Δ𝑎 ℎ,∗
𝛼 𝑥)(𝑡) ≔ ( Δ𝑎 ℎ

−(1−𝛼)(Δℎ𝑥))(𝑡)                                    (5) 

for any 𝑡 ∈  (ℎ𝑁)𝑎+(1−𝛼) ℎ. If 𝛼 = 1, then ( Δ𝑎 ℎ,∗
𝛼=1𝑥)(𝑡) =

(Δℎ 𝑥)(𝑡) for any 𝑡 ∈ (ℎ𝑁)𝑎. Note that ( Δ𝑎 ℎ,∗
𝛼 𝑥)(𝑡) =

ℎ−𝛼(𝜑1−𝛼 ∗ Δℎ=1𝑥̅)(𝑛) for any 𝑡 = 𝑎 + (1 − 𝛼)ℎ + 𝑛ℎ and 

𝑥̅(𝑛) = 𝑥(𝑎 + 𝑛ℎ). 
The Riemann–Liouville-type fractional ℎ −difference operator 

 Δ𝑎 ℎ
𝛼 of order 𝛼 ∈ (0,1] for a function 𝑥: (ℎ𝑁)𝑎 →  𝑅 is defined 

as (Bastos et al., 2011; Fereira and Torres, 2011): 

( Δ𝑎 ℎ
𝛼𝑥 )(𝑡) ≔ (Δℎ( Δ𝑎 ℎ

−(1−𝛼)𝑥 ))(𝑡), 

where 𝑡 ∈  (ℎ𝑁)𝑎+(1−𝛼)ℎ. 

The last operator we are considering is the Grünwald–

Letnikov-type fractional ℎ −difference operator Δ̃a h
α of a real 

order α, defined for a function 𝑥: (ℎ𝑁)𝑎 →  𝑅 as (Mozyrska et 
al., 2013): 

( Δ̃𝑎 ℎ
𝛼x )(𝑡): =∑ 𝑎𝑠

(𝛼)

𝑡−𝑎
ℎ

𝑠=0
𝑥(𝑡 − 𝑠ℎ), 

where 𝑎𝑠
(𝛼) = (−1)𝑠 (

𝛼
𝑠
)
1

ℎ𝛼
. If 𝑎 = (𝛼 − 1)ℎ. Then 

( Δ̃0 ℎ
𝛼y )(𝑡 + ℎ) = ( Δ𝑎 ℎ

𝛼𝑥 )(𝑡),                                             (6) 

where 𝑥(𝑡) = 𝑦(𝑡 − 𝑎) for 𝑡 ∈ (ℎ𝑁)𝑎 (Mozyrska et al., 2013). 

Also, in Mozyrska et al. (2013), it was shown that for 𝛼 ∈ (0,1], 

( Δ𝑎 ℎ,∗
𝛼 𝑥)(𝑡) = ( Δ𝑎 ℎ

𝛼𝑥 )(𝑡) −
𝑥(𝑎)

ℎ𝛼
( 
𝑡−𝑎

ℎ
−𝛼
)                            (7) 

for 𝑡 ∈  (ℎ𝑁)𝑎+(1−𝛼)ℎ. Taking into account relations (6) and (7), 

one can use the common symbol defined by its values: 

( Υℎ
𝛼𝑥)(𝑡) = {

( Δ𝑎 ℎ,∗
𝛼 𝑥)(𝑡) 𝑜𝑟 ( Δ𝑎 ℎ

𝛼𝑥 )(𝑡)    𝑓𝑜𝑟 𝑎 = (𝛼 − 1)ℎ

( Δ̃𝑎 ℎ
𝛼x )(𝑡 + ℎ)              𝑓𝑜𝑟 𝑎 = 0.

𝑎  

Recall that the single-sided 𝑍 −transform of a sequence 
{𝑦(𝑛)}𝑛∈𝑁0  is a complex function 𝑌(𝑧) given by 𝑌(𝑧): =

𝑍[𝑦](𝑧) = ∑
𝑦(𝑘)

𝑧𝑘
∞
𝑘=0 , where 𝑧 is a complex variable for which 

series ∑
𝑦(𝑘)

𝑧𝑘
∞
𝑘=0  converges absolutely. 

Proposition 3 (Mozyrska and Wyrwas, 2015): Let 𝑎 ∈ 𝑅 and 

𝛼 ∈ (0,1]. Define 𝑦(𝑛) ≔ ( Υℎ
𝛼𝑥)(𝑡)𝑎 , where 𝑡 ∈

 (ℎ𝑁)𝑎+(1−𝛼)ℎ and 𝑡 = 𝑎 + (1 − 𝛼)ℎ + 𝑛ℎ. Then: 

𝑍[( Υℎ
𝛼𝑥)(𝑡)𝑎 ](𝑧) = 𝑧 (

ℎ𝑧

𝑧−1
)
−𝛼
(𝑋(𝑧) − 𝑥(𝑎)),          (8) 

where 𝑋(𝑧) = 𝑍[𝑥̅](𝑧), 𝑥̅(𝑛): = 𝑥(𝑎 + 𝑛ℎ) and 𝛽 = 𝛼 for 

the Riemann–Liouville- or Grünwald–Letnikov-type ℎ −difference 

operators and 𝛽 = 1 for the Caputo-type ℎ −difference operator, 

and 𝑎 = 𝛼 − 1 for the Riemann–Liouville- or Caputo-type 
operators and 𝑎 = 0 for the Grünwald–Letnikov-type operator. 
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Proposition 4 (Mozyrska and Wyrwas, 2015): Let 𝛼 ∈ (0,1]. 

Then 𝑍[𝐸(𝛼,𝛽)(𝜆,⋅)](𝑧) = (
𝑧

𝑧−1
)
𝛽

(1 −
𝜆

𝑧
(
𝑧

𝑧−1
)
𝛼

)
−1

, where 

|𝑧| > 1 and |𝑧 − 1|𝛼|𝑧|1−𝛼 > |𝜆|. Additionally 𝛽 = 𝛼 for the 

Riemann–Liouville- or Grünwald–Letnikov-type ℎ −difference 

operators and 𝛽 = 1 for the Caputo-type ℎ −difference operator. 

3. LINEAR FRACTIONAL VECTOR-ORDER SYSTEMS 

Let us consider the following common form of vector-order 

α = ( α1, … , αp), αi ∈ (0,1], 𝑖 = 1, … , 𝑝, linear control 

systems initialised at time 𝑡0 ∈ (ℎ𝑁)𝑡0 : 

( Υℎ
𝛼𝑥)(𝑡)𝑡0 = 𝐴𝑥(𝑡 + 𝑡0) + 𝐵𝑢(𝑡)    (9a) 

𝑦(𝑡) = 𝐶𝑥(𝑡 + 𝑡0)   ,   (9b) 

where 𝑥: (ℎ𝑁)𝑡0 → 𝑅
𝑝 denotes a state vector, 𝑦: (ℎ𝑁)0 → 𝑅

𝑟  

an output vector, 𝑢: (ℎ𝑁)0 → 𝑅
𝑚 a control, and 𝐴 ∈  𝑅𝑝×𝑝, 

𝐵 ∈  𝑅𝑝×𝑚 and 𝐶 ∈  𝑅𝑟×𝑝 are real stationary matrices. 
Equation (9a) defines the dynamics of system (9) and Equation 

(9b) its output. Since matrices 𝐴, 𝐵, 𝐶 for given 𝛼 = (𝛼1, … , 𝛼𝑝) 

completly determinate system (9), shortly we will say that this 
system is described by the triple (𝐴, 𝐵, 𝐶) for a given 𝛼. From 

definitions of fractional ℎ-difference operators 

( Δ𝑎 ℎ,∗
𝛼 𝑥)(𝑡), ( Δ𝑎 ℎ

𝛼𝑥 )(𝑡) and ( Δ̃𝑎 ℎ
𝛼x )(𝑡 + ℎ), it follows that 

dynamics (9a) can be rewritten as: 

 ( Υℎ
𝛼𝑖𝑥)(𝑡𝑖)𝑡𝑖

= ℎ𝛼𝑖∑𝐴𝑖𝑗𝑥𝑗(𝑡𝑖 + 𝑡0𝑖)

𝑝

𝑗=1 

+ ℎ𝛼𝑖∑𝐵𝜄𝑢_𝜄(𝑡𝑖)

𝑚

𝜄=1

 

for 𝑖 = 1,… , 𝑝. Let 𝑔𝜌(𝑡): = 𝑔(𝑡 − ℎ) for any 𝑡 ∈ (ℎ𝑁)𝑡0 .  

For matrix 𝐴 ∈  𝑅𝑝×𝑝 , define 

𝐸(𝛼,𝛽)(𝐴, 𝑝) ≔ 𝑑𝑖𝑎𝑔{𝐸(𝛼𝑖,𝛽𝑖)(𝐴, 𝑝): 𝑖 = 1,… , 𝑝}.             (10) 

Example 5: Let 𝐴 = (
1 −1
0 1

), 𝑝 = 2 and 𝛼 = (𝛼1, 𝛼2), such 

that 𝛼1 = 𝛽1 = 0,5 and 𝛽2 = 0,5𝛼2 = 0,5. Then, for a positive 
ℎ, we have:  

𝐸(𝛼,𝛽)(𝐴, 2) = 𝑑𝑖𝑎𝑔{𝐸(𝛼1,𝛽1)(𝐴, 2), 𝐸(𝛼2,𝛽2)(𝐴, 2)} = 

𝑑𝑖𝑎𝑔{(

3

8
+ (ℎ0,5 − 1)ℎ0,5 (1 − 2ℎ0,5)ℎ0,5

0
3

8
+ (ℎ0,5 − 1)ℎ0,5

) ,(

3

8
+ (ℎ0,25 − 1)ℎ0,25 (

3

8
− 2ℎ0,25)ℎ0,25)

0 
3

8
+ (ℎ0,25 −

3

4
)ℎ0,25

)}. 

Lemma 6: Let 𝛼 = ( 𝛼1, … , 𝛼𝑝),  𝛼𝑖 ∈ (0,1], 𝑖 = 1,… , 𝑝 and 

𝐴̅ = 𝑑𝑖𝑎𝑔{ℎ−𝛼𝑖𝐴: 𝑖 = 1,… , 𝑝}, 

𝐵̅ = (𝐻−1𝐵 0𝑝×𝑚 … 0𝑝×𝑚 )
𝑇

, 𝐻 ∶= 𝑑𝑖𝑎𝑔(ℎ−𝛼𝑖: 𝑖 =

1, … , 𝑝)}. Dynamics of system (9) together with initial state 

𝑥0 = (𝑥(𝑡01) … 𝑥 (𝑡0𝑝))
𝑇

= (𝑥01 … 𝑥0𝑝)𝑇 = 𝑥0 ∈

𝑅𝑝, 𝑡0𝑖 = (𝛼𝑖 − 1)ℎ, 𝑖 = 1,… , 𝑝, and fixed controls 𝑢𝜄, 

𝜄 = 1, … ,𝑚 has the unique solution: 

𝑥(𝑡) = 𝐸(𝛼,𝛽) (𝐴,̅
𝑡 − 𝑡0
ℎ

) 𝑥0 + (𝐸(𝛼,𝛼)
𝜌 (𝐴̅,⋅) ∗ 𝐵̅𝑢̅) (

𝑡 − 𝑡0
ℎ

), 

where 𝑢̅ (
𝑡−𝑡0

ℎ
) = ℎ𝛼𝑢(𝑡), and 𝛽 = 1 for the fractional 

ℎ −difference of Caputo-type operator, 𝛽 = 𝛼 for the fractional 

ℎ −differences of Riemman–Liouville- and Grünwald–Letnikov-
type operators. 

Proof: Taking the 𝑍 −transform of both sides of Equation (9a), 
from Proposition 3 it follows that: 

𝑧ℎ−𝛼𝑖 (1 −
1

𝑧
)
𝛼𝑖
(𝑋𝑖(𝑧) − (

𝑧

𝑧−1
)
𝛽𝑖
𝑥𝑖(𝑡0𝑖)) =

∑ 𝐴𝑖𝑗𝑋𝑗(𝑧) + ∑ 𝐵𝜄𝑈𝜄(𝑧)
𝑚
𝜄=1

𝑝
𝑗=1 ,                                             (11) 

where 𝑍 [𝑥̅𝑖 (
𝑡𝑖−𝑡0𝑖

ℎ
)] (𝑧) = 𝑋𝑖(𝑧), 𝑈𝜄 [𝑢𝜄 (

𝑡𝑖−𝑡0𝑖

ℎ
)] (𝑧) =

𝑈𝜄(𝑧) for 𝑖 = 1,… , 𝑝 and 𝜄 = 1, … ,𝑚. Denoting 𝑋(𝑧) =

(𝑋1(𝑧) … 𝑋𝑝(𝑧))𝑇, Λ𝛼 =  𝑑𝑖𝑎𝑔 {(
𝑧

𝑧−1
)
𝛼𝑖
: 𝑖 = 1, … , 𝑝 } 

and Λ𝛽 =  𝑑𝑖𝑎𝑔 {(
𝑧

𝑧−1
)
𝛽𝑖
: 𝑖 = 1, … , 𝑝 }, equation (11) can be 

rewritten as: 

𝑋(𝑧) = (𝐼𝑛 −
1

𝑧
Λ𝛼𝐻𝐴)

−1

Λ𝛽𝑥0

+
1

𝑧
(𝐼𝑛 −

1

𝑧
Λ𝛼𝐻𝐴)

−1

Λ𝛼𝐻𝐵𝑈(𝑧). 

If we put 𝐹1(𝑧) = (𝐼𝑛 −
1

𝑧
𝛬𝛼𝐻𝐴)

−1

𝛬𝛽 and 𝐹2(𝑧) =

(𝐼𝑛 −
1

𝑧
𝛬𝛼𝐻𝐴)

−1

𝛬𝛼, then 𝑋(𝑧) = 𝐹1(𝑧)𝑥0 + 𝐹2(𝑧)𝐻𝐵.  

So, 𝑥̅(𝑛) = 𝑍−1[𝑋(𝑧)] (
𝑡−𝑡0

ℎ
) = 𝑍−1[𝐹1(𝑧)] (

𝑡−𝑡0

ℎ
) 𝑥0 +

𝑍−1[𝐹2(𝑧)𝑈(𝑧)] (
𝑡−𝑡0

ℎ
). 

Since 𝐻, 𝛬𝛼 and 𝛬𝛽 are diagonal matrices, then by 

Proposition 4, one has 

𝑥𝑖(𝑡𝑖 + 𝑡0𝑖) =

𝐸(𝛼𝑖,𝛽𝑖) (ℎ
−𝛼𝑖𝐴,

𝑡−𝑡0

ℎ
) 𝑥0 + (𝐸(𝛼𝑖,𝛼𝑖)

𝜌
(ℎ−𝛼𝑖𝐴̅̅ ̅̅ ̅̅ ̅̅ ,⋅) ∗

ℎ−𝛼𝑖𝐵𝑢̅) (
𝑡−𝑡0

ℎ
). Taking into account (10), one obtains thesis. □ 

      By 𝐽0(𝑚), let us denote the set of all sequences 𝑈 =
(𝑢0, 𝑢1, … ), where 𝑢𝑛: = 𝑢(𝑡) = 𝑢(𝑛ℎ + 𝑡0) ∈ Ω, 𝑡 ∈
(ℎ𝑁)𝑡0 . Then, 𝛾(𝑡 + 𝑡0, 𝑥0, 𝑈):= 𝑥(𝑡 + 𝑡0) will denote the 

state forward trajectory of system (9), i.e. a solution which is 

uniquely defined by the initial state 𝑥0 and the control sequence 
𝑈 ∈  𝐽0(𝑚). The reachable set from the given initial state 𝑥0 in 𝑞 

steps, denoted as 𝑅𝑞 (𝑥0), is the set of all states to which the 

given system can be steered from 𝑥0 in 𝑞 steps by the control 

sequence 𝑈 ∈  𝐽0(𝑚), i.e. 𝑅𝑞(𝑥0) ∶=  {𝑥 ∈ 𝑅
𝑝: 𝑥 =

𝛾(𝑞, 𝑥0, 𝑈), 𝑈 ∈  𝐽0(𝑚)} with 𝑅0(𝑥0) ∶=  {𝑥0}. Then, the set 

𝑅(𝑥0): = ⋃ 𝑅𝑞(𝑥0)𝑞∈𝑁0  is the set of all states reachable  

from 𝑥0. 
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Definition 7: System (9) is locally controllable in 𝑞 steps from 𝑥0 

if there exists a neighbourhood 𝑉 ⊂ 𝑅𝑛 of 𝑥0, such that 𝑉 ⊂
 𝑅𝑞(𝑥0). System (9) is globally controllable from 𝑥0 in 𝑞 steps if 

𝑅𝑞(𝑥0) = 𝑅
𝑝 . 

Proposition 8: Let 𝛼 = ( 𝛼1, … , 𝛼𝑝) with 𝛼𝑖 ∈ (0,1], 𝑖 =

1,… , 𝑝. Then system (9) is controllable in 𝑞 steps if and only if 
the rank of controllability matrix 

𝑄𝑞 = (𝑩̅ 𝐸(𝛼,𝛼)(𝐴̅, 1)𝐵̅ … 𝐸(𝛼,𝛼)(𝐴̅, 𝑞 − 1)𝐵̅) is full, 

i.e. 𝑟𝑎𝑛𝑘𝑄𝑞 = 𝑝. 

Proof: The result is the consequence of Lemma 6. The reasoning 
is similar to the one in a scalar fractional order case in Mozyrska 
et al. (2017). □ 

From the Rank Matrix Theorem and Proposition 8, it follows 
that 𝑟𝑎𝑛𝑘𝑄𝑞 = 𝑝 if and only if 𝑞 = 𝑝. So, any state 𝑥0 ∈ 𝑅

𝑝 

can be steered to a final state 𝑥𝑓 ∈ 𝑅
𝑛 in no more then p steps. 

Definition 9: System (9) is observable in 𝑞 steps if from the 

control sequence 𝑈 = (

𝑢(0)
𝑢(1)
⋮

𝑢((𝑞 − 1)ℎ)

) and the output 

sequence Y=(

𝑦(0)
𝑦(1)
⋮

𝑦((𝑞 − 1)ℎ)

) it is possible to determinate 

uniquely initial state 𝑥0 of the given system. 

Proposition 9: Let 𝛼 = ( 𝛼1, … , 𝛼𝑝) with 𝛼𝑖 ∈ (0,1], 𝑖 =

1,… , 𝑝. Then, system (9) is observable in 𝑞 steps if and only if 

the rank of observability matrix 𝑊𝑞 =

(

 

𝐶̅

𝐶̅𝐸(𝛼,𝛽)(𝐴̅, 1)

⋮
𝐶̅𝐸(𝛼,𝛽)(𝐴̅, 𝑞 − 1))

 , 

where 𝐶̅: = (𝐶 0𝑟× 𝑝 … 0𝑟× 𝑝) is full, i.e. 𝑟𝑎𝑛𝑘𝑊𝑞 = 𝑝. 

Proof: The result is the consequence of Lemma 6. The reasoning 
is similar to the one in a scalar fractional order case in Mozyrska 
et al. (2017). □ 

From the Rank Matrix Theorem and Proposition 10, it follows 

that 𝑟𝑎𝑛𝑘 𝑊𝑞 = 𝑝 if and only if 𝑞 = 𝑝. So, based on the 

knowledge of control and output measurable sequences 𝑈 and 𝑌, 
respectively, the initial state 𝑥0 ∈ 𝑅

𝑝 can be uniquely determined 

in no more then 𝑝 steps. 
    Controllable and observable triple (𝐴, 𝐵, 𝐶) is called canonical 
triple. 

4. REALISATION PROBLEM OF THE GIVEN IMPULSE  

Consider system (9) with the initial state 𝑥(𝑡0) = 𝑥0, vector-

order α = ( α1, … , αp), αi ∈ (0,1], 𝑖 = 1,… , 𝑝 and given 

positive ℎ. Observe that for any input 𝑢: (ℎ𝑁)𝑡0 → 𝑅
𝑚 and 

𝑡 ≥  𝑡0, 𝑡 ∈ (ℎ𝑁)𝑡0  , the following holds: 

𝑦(𝑡) = ∑ ΨΛ(𝑡 − 𝑠ℎ)𝑢(𝑠ℎ)
𝑞=

𝑡−𝑡0
ℎ

𝑠=0 = (ΨΛ ∗  𝑢)(𝑡),            

(12) 

where ΨΛ(𝑡) = 𝐶𝐸(𝛼,𝛽)(𝐴,
𝑡−𝑡0

ℎ
)𝐵, and 𝛽 = 1 for the fractional 

ℎ −difference of Caputo-type operator, 𝛽 = 𝛼 for the fractional 

ℎ −differences of Riemman–Liouville- and Günwald–Letnikov-

type operators. Function ΨΛ is called the impulsive response 
of system (9). Formula (12) defines the relation 𝑆𝛹,𝑞 between the 

input 𝑢 and output 𝑦 in 𝑞 steps of the given control system, i.e.:  

 𝑆Ψ,𝑞(𝑢) = 𝑦.                                                                           (13) 

Map 𝑆Ψ,𝑞 is called the (𝑞 step) input–output map of the 

considered system. Observe that between the impulsive response 
and the input–output map, there is a mutually inverse 
correspondence. 

Suppose that 𝑆Ψ,𝑞  is an abstract 𝑞 −steps input–output map 

acting on the input function 𝑢 as  

𝑆𝑞(𝑢) = ∑ Ψ(𝑡 − 𝑠ℎ)𝑢(𝑠ℎ)
𝑞=

𝑡−𝑡0
ℎ

𝑠=0 = (Ψ ∗  𝑢)(𝑡),            (14)   

where map Ψ: 𝑡 ↦ Ψ(𝑡) is defined for all  𝑡 ∈ (ℎ𝑁)𝑡0 . The 

problem is: find a fractional vector-order state-space 

representation of map 𝑆𝑞  in 𝑞 steps. In other words, for a chosen 

real positive ℎ, we are looking for a linear fractional vector−order 

𝛼 = ( 𝛼1, … , 𝛼𝑝) control system (𝐴, 𝐵, 𝐶), such that maps 𝑆𝑞  

and  𝑆Ψ,𝑞 coincide. 

     For the given abstract input–output map 𝑆𝑞(𝑢) =

(Ψ ∗  𝑢)(𝑡), define ℎ −Markov parameters as 

𝑀𝑛
ℎ: = Ψ(𝑛ℎ + 𝑡0) = Ψ(𝑡), 𝑡 ∈ (ℎ𝑁)𝑡0 .                          (15) 

Sequence 𝑀ℎ = {𝑀𝑛
ℎ: 𝑛 ∈  𝑁0} with elements 𝑀𝑛

ℎ given  
by (15) will be called ℎ-Markov sequence and its elements as ℎ-
Markov parameters. 

Theorem 11: Let ℎ > 0 and 𝛼 = ( 𝛼1, … , 𝛼𝑝) with 𝛼𝑖 ∈ (0,1], 

𝑖 = 1,… , 𝑝. Function Ψ(𝑡) = Ψ(𝑛ℎ + 𝑡0) = ∑ 𝑀𝑛
ℎ∞

𝑛=0  is an 
impulsive characteristic of the fractional vector-order 𝛼 =

( 𝛼1, … , 𝛼𝑝), 𝛼𝑖 ∈ (0,1], 𝑖 = 1,… , 𝑝 system given by triple 

(𝐴, 𝐵, 𝐶) if and only there are natural 𝑝 and real 

𝑎0, 𝑎1, … , 𝑎𝑝−1, such that the following recursive relation holds: 

 𝑀𝑝+𝑗 
ℎ + 𝑎𝑝−1𝑀𝑝+𝑗−1 

ℎ +⋯+ 𝑎1𝑀1+𝑗 
ℎ + 𝑎0𝑀𝑗

ℎ = 0.       (16) 

 for 𝑗 = 0,1,2,3, …. 
Proof: Suppose that the input–output map (14) is a realisation of 

the fractional vector-order 𝛼 system (𝐴, 𝐵, 𝐶). Denote Ψ̅(𝑛): =
Ψ(𝑛ℎ + 𝑡0) for any 𝑛 ∈ 𝑁. So, there is 𝛼𝑖 , 𝑖 = 1,… , 𝑝, such 

that 𝛹̅𝑖(𝑝) = 𝐶̅𝐸(𝛼𝑖,𝛽𝑖)(𝐴̅, 𝑝)𝐵̅ for some 𝐴̅ ≔ diag{h−𝛼𝑖A: i =

1,… , p}, 𝐵̅ ≔ (𝐻−1𝐵 0𝑝×𝑚 … 0𝑝×𝑚)
T

, 𝐶̅ ≔
(𝐶 0𝑟×𝑝 … 0𝑟×𝑝) with 𝐻 = 𝑑𝑖𝑎𝑔{ℎ−𝛼𝑖: 𝑖 = 1, … , 𝑝}. 
Thus, 𝑀𝑝

ℎ = 𝛹̅𝑖(𝑝) = 𝐶̅𝐸(𝛼𝑖,𝛽𝑖)(𝐴̅, 𝑝)𝐵̅. By Proposition 2 and 

formula (10) for any natural 𝑗, the following holds: 

𝐶̅[𝐸(𝛼,𝛽)(𝐴̅, 𝑝)]
𝑝+𝑗
𝐵̅ + 𝑎𝑝−1𝐶̅[𝐸(𝛼,𝛽)(𝐴̅, 𝑝)]

𝑝+𝑗−1
𝐵̅ + ⋯+

𝑎0𝐶̅[𝐸(𝛼,𝛽)(𝐴̅, 𝑝)]
𝑗
𝐵̅ = 0. 

Hence, (16) is fulfilled. 

Now suppose that (16) holds for the given 𝛼 = ( 𝛼1, … , 𝛼𝑝) 

with 𝛼𝑖 ∈ (0,1], 𝑖 = 1,… , 𝑝. Then, for 

𝐴 =

(

  
 

0𝑝×𝑝 0𝑝×𝑝
ℎ𝛼2𝐼𝑝 0𝑝×𝑝

… −𝑎0ℎ
𝛼1𝐼𝑝

… −𝑎1ℎ
𝛼2𝐼𝑝

0𝑝×𝑝 ℎ𝛼3𝐼𝑝
⋮

0𝑝×𝑝

⋮
0𝑝×𝑝

… −𝑎1ℎ
𝛼2𝐼𝑝

…
…

⋮
−𝑎𝑝ℎ

𝛼𝑝𝐼𝑝)

  
 

                              (17)   

and 

𝐵 =  

(

 

𝐻−1

0𝑝×𝑝
⋮

0𝑝×𝑝)

                                                                           (18) 
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𝐶 = (𝑀0
ℎ 𝑀1

ℎ … 𝑀𝑝−1 
ℎ ),                                               (19) 

one obtains 𝑀𝑝
ℎ = 𝐶𝐸(𝛼,𝛽) (𝐴, 𝑝 =

𝑡−𝑡0

ℎ
)𝐵. Hence, matrices 

𝐴, 𝐵, 𝐶 given by (17)–(19) define a realisation of the map 𝑆Ψ,𝑞 . □ 

Example 12: Suppose that ℎ is any real positive number, 𝑡0 = 0 

and 𝛼 = ( 𝛼1, 𝛼2), such that 𝛼𝑖 ∈ (0,1], 𝑖 = 1,2 and 𝛼1 = 𝛼2. 

Let Ψ(𝑡) = Ψ(𝑛ℎ) = ∑ ℎ−2𝛼1 (
−𝑘𝛼1 − 𝛽1
𝑛 − 𝑘

)
𝑛=

𝑡

ℎ
𝑘=0 . Therefore, 

𝑀𝑛
ℎ = ∑ ℎ−2𝛼1 (

−𝑘𝛼1 − 𝛽1
𝑛 − 𝑘

)𝑛
𝑘=0 . Then, 𝑀2+𝑗

ℎ −𝑀1+𝑗
ℎ +

(1 − ℎ−𝛼1 −
𝛽(𝛽1+1)

2
ℎ−𝛼1)𝑀𝑗 = 0. The realisation for 

fractional ℎ −differences of Riemman–Liouville- and Grünwald–

Letnikov-type operators is given by the matrices 𝐴 =

(
0

𝛼1(𝛼1+1)

2
ℎ2𝛼1

ℎ𝛼1 −1
), 𝐵 = (

ℎ−𝛼1

0
) and 

𝐶 = (ℎ−𝛼1 ℎ−𝛼1(1 − 2𝛼1)), and for fractional ℎ −difference 

of Caputo-type operator, it is given by 𝐴 = ( 0 ℎ2𝛼1

ℎ𝛼1 −1
), 

𝐵 = (
ℎ−𝛼1

0
) and 𝐶 = (ℎ−𝛼1 −𝛼1ℎ

−𝛼1).  

For a given ℎ −Markov sequence 𝑀ℎ and positive integers 
𝑠, 𝜈, the block matrix 

𝐻𝑠𝜈(𝑀
ℎ) =

(

 

𝑀1
ℎ 𝑀2

ℎ

𝑀2
ℎ 𝑀3

ℎ

… 𝑀𝜈
ℎ

… 𝑀𝜈+1
ℎ

⋮ ⋮
𝑀𝜈
ℎ 𝑀𝜈+1

ℎ   
    ⋱ ⋮
…     𝑀𝑠+𝜈−1

ℎ )

                (20) 

is called the Hankel matrix associated with the sequence 𝑀ℎ.  
Proposition 13: Let the triple (𝐴, 𝐵, 𝐶) be described by (9a)–
(9b). Then, 

1.  (𝐴, 𝐵, 𝐶) realises 𝑀ℎ in 𝑞 steps if and only if 𝑊𝑞𝑄𝑞 =

𝐻𝑠𝜈(𝑀
ℎ) for all 𝑠, 𝜈 ∈ 𝑁. 

2. If (𝐴, 𝐵, 𝐶) realises 𝑀ℎ in 𝑞 steps and (𝐴, 𝐵, 𝐶) is a 

canonical triple, then 𝑟𝑎𝑛𝑘 𝐻𝑠𝜈(𝑀
ℎ) = 𝑝 for 𝑠, 𝜈 ≥  𝑝. 

Proof: The result follows directly from propositions 8 and 10. □ 
In general, realisations are not unique. From a practical point 

of view, it is good to have such realisation for which the state-
space has the possible minimal dimension, i.e. it is good to have a 
minimal realisation. This property is not easy for checking, but 

classically it is equivalent to the fact that triple (𝐴, 𝐵, 𝐶) realising 

the ℎ −Markov sequence should be canonical. 
Theorem 14: If there is a realisation of ℎ −Markov sequence 

𝑀ℎ, then it is the canonical realisation. 
Proof: The idea of the proof comes from Bartosiewicz and 
Pawluszewicz (2006). Suppose that system (9) is not controllable 
in a finite number of steps. So, there exist a natural number 𝑝1 

and a nonsingular matrix 𝑃 ∈ 𝑅𝑝×𝑝, such that 𝑃−1𝐴𝑃 =

(
𝐴11 𝐴12
0 𝐴22

) with 𝐴11 ∈ 𝑅
𝑝1×𝑝1 , 𝐴12 ∈ 𝑅

𝑝1×(𝑝−𝑝1)  and 

𝐴22 ∈ 𝑅
(𝑝−𝑝1)×(𝑝−𝑝1). Let 𝐴̅ and 𝐵̅, 𝐶̅ be defined as in Lemma 

6. So, by Proposition 2, it follows that  

𝑃−1𝐸(𝛼,𝛽)(𝐴̅, 𝑝)𝑃 = (
𝐸(𝛼,𝛽)(𝐴̅11, 𝑝) 𝐸(𝛼,𝛽)(𝐴̅12, 𝑝)

0 𝐸(𝛼,𝛽)(𝐴̅22, 𝑝)
). Also, 

𝑃𝐵̅ = (𝐵̅
0
) with 𝐵̅1 ∈ 𝑅

𝑝1×𝑚1 . So, 𝐶̅𝐸(𝛼,𝛽)(𝐴̅, 𝑝)𝐵̅ =

𝐶̅𝑃𝐸(𝛼,𝛽)(𝐴̅, 𝑝)𝑃
−1 𝐵̅ = 𝐶1̅𝑃𝐸(𝛼,𝛽)(𝐴̅11, 𝑝)𝑃

−1 𝐵1̅̅ ̅ for some 

matrix 𝐶̅. So, system (9) is controllable in a finite number of steps. 
   The reasoning that system (9) is observable is the same. □ 

Corollary 15: A realisation of ℎ −Markov sequence 𝑀ℎ is 

minimal if and only if it is canonical. 

Proof: The implication " ⇒ " is the direct consequence of 

Proposition 13. The implication " ⇐ " follows from Theorem 14. □ 

5. CONCLUSIONS 

The problem of realisation of the impulsive response function 
for fractional vector-order discrete time linear control systems was 
considered. It is shown that an abstract input–output map has a 

state-space realisation if and only if the h −Markov parameters 
satisfy the recurrence relation given by (16). This result extends 
the classical realisability criterion to fractional order systems. The 
description of state-space representation of input–output map is 
given in terms of fractional vector-order h −differences of Caputo-
, Riemann–Liouville- and Grünwald–Letnikov-type operators. It is 
shown that the minimal fractional vector-order realisation exists if 
and only if triple (A, B, C) defining the state-space system is 
controllable and observable. Obtained results are illustrated by an 
academic example. Further work will focus on practical 
implementation of the obtained results in physical systems, 
including automatic control systems. Therefore, in a natural way 
also, more practical examples will appear. 
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Abstract: A very important problem in designing of controlling systems is to choose the right type of architecture of controller.  
And it is always a compromise between accuracy, difficulty in setting up, technical complexity and cost, expandability, flexibility  
and so on.  In this paper, multipurpose adaptive controller with implementation of artificial neural network is offered as an answer  
to a wide range of tasks related to regulation. The effectiveness of the approach is demonstrated by the example of an adaptive 
thermostat. It also compares its capabilities with those of classic PID controller. The core of this approach is the use of an artificial 
neural network capable of predicting the behaviour of controlled object within its known range of parameters. Since such a network, 
being trained, is a model of a regulated system with arbitrary precision, it can be analysed to make optimal management decisions  
at the moment or in a number of steps. Network learning algorithm is backpropagation and its modified version is used to analyse  
an already trained network in order to find the optimal solution for the regulator. Software implementation, such as graphical user 
interface, routines related to neural network and many other, is done using Java programming language and Processing open-source 
integrated development environment.  

Keywords: Artificial neural network, adaptive regulator, backpropagation algorithm, system modelling 

1. INTRODUCTION 

Nowadays, the use of artificial neural networks in control 
processes and other activities is a very popular area of research. 
And this is understandable, since these structures are a good tool 
in the modelling of complex systems, for which it is difficult to find 
a simple mathematical solution. It should also be remembered 
that artificial neural networks are capable of providing high quality 
data processing even in the conditions of their incompleteness. 
Such a predicting model is successfully being using for weather 
forecasting in short term for some localities (Wica et al., 2019). It 
can also be useful to provide neural classification mechanism in 
genetics researches (Liu et al., 2019; MacLean, 2019). The usage 
of artificial neural network (hereinafter referred to as ANN) is a 
reasonable solution for power flow regulators (Ma et al., 2018). 
Also, ANN can be used as a tool for detecting stable equivalent 
series resistance (ESR) in voltage regulator characterization 
(Zaman et al., 2018), in mechatronic hydraulic drive regulation 
(Burennikov et al., 2017) or autopilot (Zhao et al., 2018). However, 
researchers are particularly curious about the possibility of using 
artificial neural networks in the automatic tuning of PID regulators 
(Ayomoh and Ajala, 2012; Hernández-Alvarado et al., 2016; 
Pirabakaran and Becerra, 2002; Zhang et al., 2016; Du et al. 
2018; Han et al., 2017). The method proposed in this paper 
excludes the PID section from the controller system. As will be 
shown, a trained neural network with a multi-step error estimation 
module is sufficient for high quality control of a wide range of 
systems providing flexible controls. Moreover, the network does 
not require any specific or detailed data, rather accurate system 
data in the regulatory range. To demonstrate the principle 

operation of the multipurpose controller as thermostat, a software 
model of the solid body temperature under the influence of 
external factors was created. Such an example is simple to 
understand and easily portable to a real thermostat or to another 
type of system. For the software implementation, Processing 
integrated development environment (IDE) was selected, which 
uses a Java programming language. It speeds up and facilitates 
both writing and debugging of programs for which it is important to 
have as many graphical evaluation options as possible. 

2. DESCRIPTION OF MULTIPURPOSE NEURONAL 
NETWORK-BASED CONTROLLER 

In order to understand the principle of operation of a 
multipurpose adaptive controller, it is necessary to consider its 
work in stages with a detailed analysis of the work of each 
element. We list these stages. Primary training of predictive ANN, 
during which the regulator acquires the ability to assess the state 
of regulated object in the future, based on the state of that object 
at the present moment. Further, the already trained ANN is 
embedded in a multi-step planning mechanism, where, thanks to 
the neural network's ability to approximate functions, we obtain a 
model of the object's behaviour depending on the actions of the 
controller itself on a certain number of steps forward. The 
predicted sequence of states of the control object over time is 
used to estimate the error relative to the desired control result for 
each of these states. Depending on the approach chosen in the 
assessment, these error values are used to optimize the 
controller's actions in the appropriate way. First of all, we will look 

mailto:bondarrian@gmail.com
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at the core of the whole system – one-step predictive artificial 
neural network. 

2.1. One-step predictive artificial neural network 

The module is so called Feedforward Backpropagation Neural 
Network. Quite traditional architecture of network with neurons 
(knots) grouped into layers (see Fig.1). There are three types of 
layers: input, hidden, and output. The input layer is a set of 
corresponding signals that the module must process to obtain the 
output signal. In this case, the following signals are: RV – 
regulated value, RA – regulator action. Regulated value is the 
parameter that should be controlled such as temperature (for 
thermostats), speed or torque (for motor controller), distance, 
pressure or voltage and so on. Regulator action is any relevant 
action that affects a regulated value such as change of voltage, 
PWM, power, or any other parameter that the regulator may 
manipulate during control. 

RV RA

1-1k 1-2k 1-jk

2-1k 2-2k 2-jk

i-1k i-2k i-jk

RV+

RV RA

RV+

 
Fig. 1. The scheme of one-step predictive ANN 

Hidden layers can contain a certain number of neurons in 
each layer and consist of a certain number of layers. The number 
of hidden layers depends on the complexity of the behaviour of 
the control object, but in most cases, one hidden layer is sufficient 
(Heaton, 2008). The number of neurons in each layer is defined 
as a balance between the precision with which the neural network 
as a model is able to reproduce the behaviour of the system on 
which it is trained and the complexity of implementing such a 
system in a software sense. Each additional neuron in the layer 
increases the accuracy with which the system can make 
predictions as a whole, but it also increases the computational 
power requirements of the equipment on which this network must 
operate. For each neuron of the hidden or output layers, the 
internal state of the neuron is first calculated based on the signals 
coming from the previous layer. As it was stated, the prediction 
module trains with the backpropagation algorithm, but there are 
no restrictions on using other algorithms such as genetic or 
imperialist competitive or others (Elsisi, 2019). Equation 1 shows 
how to calculate the internal state of the hidden or output neuron 
in layer with 𝑖 neurons and previous layer with 𝑙 neurons. All other 
neurons in this layer are calculated similarly by replacing the 

corresponding index 𝑖 with the desired one. 

𝑠𝑡𝑎𝑡𝑒𝑘𝑖
= (∑ (𝑤𝑙𝑖 ∙ 𝑜𝑢𝑡𝑙)𝑙 ) + 𝑏𝑘𝑖

  (1)                         

where: 𝑠𝑡𝑎𝑡𝑒𝑘𝑖
– internal state of neuron in a row of 1 to 𝑖 of 

hidden or output layer, 𝑙 – the number of neurons in the previous 

layer, 𝑤𝑙𝑖  – the weight of the connection between the calculated 

neuron and the output of neuron in a row of 1 to 𝑙 from the 
previous layer (𝑜𝑢𝑡𝑙), 𝑏𝑘𝑖

 – offset of the calculated neuron, 

makes it possible for the internal state of the neuron not to be 0 
when the input signals are 0. After that, the output of the neuron is 
calculated. To do this, the resulting internal state of the neuron 
must be passed through the activation function. There are 
different variants of the activation function, but in this paper, a 
linear activation function is used for the output neuron, and a fast 
sigmoid (https://stackoverflow.com/questions/10732027/fast-
sigmoid-algorithm) for the hidden layers. The linear activation 
function simply transmits to the output of the neuron its internal 
state and allows the output value of the neuron to not be limited 
by any asymptotes in its range. Which is useful for a network 
whose output values may reach values that other activation 
functions do not allow. The sigmoid, as a function of activating the 
hidden layers, on the contrary, limits the output values in the 
range from 0 to 1 and provides nonlinearity in the operation of the 
network. Nonlinearity is necessary where the behaviour of the 
system to be simulated cannot be reduced to the sum of linear 
functions, which is any more or less complex system. The fast 
sigmoid (see Eq. 2) is close to the original but significantly 
reduces the time to calculate the activation function since it does 
not require a floating point exponent. 

𝑜𝑢𝑡𝑘𝑖
= {

0.5

1+𝑠𝑡𝑎𝑡𝑒𝑘𝑖
2  ,   𝑤ℎ𝑒𝑛   𝑠𝑡𝑎𝑡𝑒𝑘𝑖

< 0

1 −
0.5

1+𝑠𝑡𝑎𝑡𝑒𝑘𝑖
2  ,   𝑤ℎ𝑒𝑛   𝑠𝑡𝑎𝑡𝑒𝑘𝑖

≥ 0
  (2) 

where: 𝑜𝑢𝑡𝑘𝑖
 – the output value of the neuron in a row of 1 to 𝑖 of 

some hidden layer (from 1 to 𝑗, see Fig.1).  
The output layer of this model consists of one neuron and 

forms the final result of the network. The output 𝑅𝑉+ itself is the 
prediction of a regulated value (RV) on the next step of regulation. 
It is worth noting that such a network may also contain some 
additional inputs and outputs, which on the one hand allow to 
expand the number of parameters being monitored for regulation, 
and on the other hand create additional opportunities for 
optimizing the controller's actions. But it should also be 
remembered that increasing the number of inputs and outputs of 
the network requires an increase in its complexity, and thus, the 
requirements for hardware to process it (Heaton, 2008). 

2.2. Multi-step planning mechanism 

After considering the one-step predictive ANN as a basic 
element of the planning mechanism, we move on to the multi-step 
mechanism as a whole. 

As can be seen from Fig. 2, the mentioned mechanism is 
composed as a sequence of one-step forecasts made using the 
previously described neural network. Moreover, since the trained 
network is capable of making predictions for the original managed 
object within the range of values in which it was trained, only one 
forecasting network is needed for any long-range forecast in time. 
The first step in forecasting is based on the current data of 
regulated value (𝑅𝑉0) and regulator action (𝑅𝐴0). After this, the 
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forecast for the first adjustment step 𝑅𝑉1 becomes the input value 

for the prediction of the next step 𝑅𝑉2, and so on, down to some 

step 𝑛 which limits the planning horizon. Increasing the planning 
horizon on one hand improves the dynamic characteristics of the 
controller, such as stability and the absence of overshoots in 
operation, on the other hand, it increases the time to calculate all 
the steps. Regarding the values of future control actions 

(𝑅𝐴1…𝑅𝐴𝑛−1), prior to optimization, they may be equal to the 
current control or may be random in a certain range. Further, all 
the results predicted at each step are sent for estimation of a 
regulation error in the corresponding module.  

One-step 

predictive ANN

RV0 RA 0

RV 1

One-step 

predictive ANN

RA 1

RV 2

One-step 

predictive ANN

RA n-1

RV n

RVn-1

Error 

estimation 

module

Er

RVset

 
Fig. 2. The scheme of multi-step planning mechanism 

2.3. Error estimation module  

As the proposed multi-step controller must be able to make 
current decisions based on certain predictions of both behaviour 
of the system it manages and its actions, it must also adequately 
assess how its actions are approaching in the future achievement 
of the goal, avoiding oscillations and overshoots. This function is 
performed by the error estimation module. Taking into account the 

target value to be reached by the control object (𝑅𝑉𝑠𝑒𝑡), the 
controller calculates an error for each predicted step. The 
equation to calculate the regulation error in the first step of 
forecasting is: 

𝐸𝑟1 =
(𝑅𝑉1−𝑅𝑉𝑠𝑒𝑡)2

2
 (3) 

where: 𝐸𝑟1 – regulation error in the first step of forecasting. 
It should also be remembered that each new step of the 

prediction is based on the previous one, and the error of the 
neural network modelling of the source system will accumulate. 
Therefore, the regulator should not equally evaluate the result at 
each step. Equation 4 shows how it calculates the values of the 
regulation errors in the range from 2nd to n-th steps. 

𝐸𝑟𝑛 =
(𝑅𝑉𝑛−𝑅𝑉𝑠𝑒𝑡)2

2∙(𝑛−1)∙𝑑
 (4) 

where: 𝐸𝑟𝑛 – regulation error in the n-th step of forecasting,  

n – step number, d – initial depreciation, 𝑅𝑉𝑛 – regulated value in 
the n-th step of forecasting. As we can see, from the second step, 
the significance of each subsequent regulation error decreases in 
arithmetic progression. The initial depreciation is the factor in how 
many times the second forecast is less important for the regulator 
than the first one. This approach helps to increase the stability of 
the regulator and indicate that the first step is the most important 
to control because it influences further events by domino effect. 

3. THE CONTROL ALGORITHM 

After a schematic description of the proposed regulator, we 
proceed to the disclosure of the algorithm of its operation. First of 
all, let’s say that the given controller can work on different 
algorithms of optimization of control action. This paper describes 
one such algorithm. A common feature of such algorithms is their 
similarity to the backpropagation method in neural network 
training. They are also iterative and use a gradient descent 
method with dividing into the forward and backward pass. But if 
backpropagation in a step-by-step training changes the 
parameters of the neural network, then the control algorithms 
below do not change the network itself, but use it to detect a 
correlation between the action of the controller and the error of 
regulation. Mathematically, the optimization step in general is 
shown in Equation 5. 

𝑅𝐴′ = 𝑅𝐴 − 𝜆 ∙
𝜕𝐸𝑟

𝜕𝑅𝐴
 (5) 

where: 𝑅𝐴′ – regulator action after one optimisation step, 𝜆 – 

optimization rate, 𝐸𝑟 – predicted regulation error (depends on the 
optimization strategy). Thus, at each step of the optimization of 
the control action, it changes by a value proportional to the 
instantaneous speed of change of the predicted regulation error 

with the change of the regulatory action. Moreover, 𝜆 should be 

small enough to ensure the smoothness and accuracy of the 
process, but not too small, as this will require a large number of 

iterations for a successful result. Further work is to calculate  
𝜕𝐸𝑟

𝜕𝑅𝐴
. 

According to the chain rule, this task can be divided into two 
simpler ones (see Eq. 6). 

𝜕𝐸𝑟

𝜕𝑅𝐴
=

𝜕𝐸𝑟

𝜕𝑅𝑉
∙

𝜕𝑅𝑉

𝜕𝑅𝐴
 (6) 

where: RV – predicted regulated value. So, calculation of 
𝜕𝐸𝑟

𝜕𝑅𝑉
 

allows the error estimation module. And the forecasting network 

allows to calculate 
𝜕𝑅𝑉

𝜕𝑅𝐴
. But for this, we need to decide on a 

strategy by which we will evaluate regulatory errors and optimize 
the regulation action. So, let’s describe the strategy of 
optimization of the maximum predicted regulation error. 

3.1. Maximum Predicted Error Reduction Strategy (MAPERS) 

The essence of the Maximum Predicted Error Reduction 
Strategy (hereinafter referred to as MAPERS) is to look for that 
step in the planning mechanism that predicts more regulation 
error than others, then change the planned action in this step  
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to the side, which should reduce the error in that step (see 
Equation 5).  

As can be seen from Fig. 3, in each forward pass of the 
optimization cycle, the multi-step planning mechanism generates 
a chain of forecasts from 𝑅𝑉1 to 𝑅𝑉𝑛, which together with 

𝑅𝑉𝑠𝑒𝑡  go to the input of the error estimation module. Here, the 
error of regulation of each of the predicted steps is calculated 
separately by Equations (3) and (4), after which the step with the 

maximum error is selected from all the steps (𝐸𝑟𝑚𝑎𝑥). The 

𝐸𝑟𝑚𝑎𝑥  computation ends the forward pass and the back pass 
begins, the purpose of which is to change the step with the 

predicted 𝐸𝑟𝑚𝑎𝑥  to reduce it. The way of back pass is shown in 

the Fig. 4 (arrow pointing from 𝐸𝑟𝑚𝑎𝑥   to  𝑅𝐴𝑚𝑎𝑥). 

Er max

RV1 RVn

RV
(𝑅𝑉1 −𝑅𝑉𝑠𝑒𝑡 )

2

2
 

(𝑅𝑉2 − 𝑅𝑉𝑠𝑒𝑡 )
2

2 ∙ 𝑑
 

(𝑅𝑉𝑛 − 𝑅𝑉𝑠𝑒𝑡 )
2

2 ∙ (𝑛 − 1) ∙ 𝑑
 

RV2

MAX

set

 
Fig. 3. Schematic diagram of the error estimation module for the 

Maximum Predicted Error Reduction Strategy (forward pass) 

One-step 

predictive ANN

RV0 RA 0

RV 1

One-step 

predictive ANN

RA 1

RV 2

One-step 

predictive ANN

RAmax

RVmax

RVmax-1

Error 

estimation 

module

Ermax

RVset

 
Fig. 4. Schematic diagram of the way of back pass for MAPERS 

Therefore, Equation 5 for MAPERS can be rewritten according 
to the Fig. 4 as: 

𝑅𝐴′
𝑚𝑎𝑥 = 𝑅𝐴𝑚𝑎𝑥 − 𝜆 ∙

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥
 (7) 

where: 𝑅𝐴𝑚𝑎𝑥 – regulator action in step with maximum value of 
predicted regulation error.    

We can also rewrite Equation 6 for MAPERS as: 

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥
=

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝑉𝑚𝑎𝑥
∙

𝜕𝑅𝑉𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥
 (8) 

where: 𝑅𝑉𝑚𝑎𝑥  – predicted regulated value in step with maximum 
value of predicted regulation error. 

To calculate  
𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝑉𝑚𝑎𝑥

, we need to refer to Equations 3 and 4, 

mentioned earlier. After calculations, we get the corresponding 
derivatives: 

𝜕𝐸𝑟𝑚𝑎𝑥

𝜕𝑅𝑉𝑚𝑎𝑥
= {

𝑅𝑉1 − 𝑅𝑉𝑠𝑒𝑡 , 𝑖𝑓 𝐸𝑟𝑚𝑎𝑥 = 𝐸𝑟1
𝑅𝑉𝑛−𝑅𝑉𝑠𝑒𝑡

(𝑛−1)∙𝑑
, 𝑖𝑓 𝐸𝑟𝑚𝑎𝑥 = 𝐸𝑟𝑛  𝑎𝑛𝑑 𝑛 > 1

 (9) 

Now to calculate  
𝜕𝑅𝑉𝑚𝑎𝑥

𝜕𝑅𝐴𝑚𝑎𝑥

 , we have to dive into the work of the 

one-step predictive ANN with the algorithm of backpropagation of 
the effect of the signal. Since this algorithm is involved in the 
regulator strategy, we are considering that it is worth exploring it in 
detail. 

3.2. Backpropagation of the Effect of the Signal(BES) 

Having a trained neural network, we can use it to determine 
the direction and value in which the output parameter will change 
when the input is changed. The algorithm of Backpropagation of 
the Effect of the Signal (hereinafter referred to as BES) resembles 
a backpropagation training algorithm but works without changing 

the network settings. Instead, it allows to calculate 
𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
 for the 

specific status of the inputs and outputs of this network. And that 
is just what we have left to do to complete Equation 8. Refer to 
Fig. 1 for an explanation of the BES algorithm, but somewhat 
simplify the network structure. Let’s leave one input (no matter 
which one) and one output. Hidden neurons are located in two 
layers, two in each. This network configuration makes it possible 
to trace possible signal propagation options and can be easily 
scaled to any number of layers with any number of neurons in 
each. 

IN

1-1k 1-2k

2-1k 2-2k

OUT

IN

OUT

f1 f2

v1 v2

w1

w2 w3

w4

 
Fig. 5. The scheme of simplified one-step predictive ANN in BES 

algorithm 

First of all, it should be understood that this scheme provides 
for three types of connections between elements. Namely, input-
hidden neuron, hidden neuron-hidden neuron and hidden neuron-
output neuron. Therefore, a description of these three types of 
communication enables a general description of the scheme. For 
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simplicity, each type of communication has its own letter in the 
scheme: f for input-neuron, w for neuron-neuron, v for neuron-
output. Although they correspond to the weights for Equation 1. 
The BES algorithm starts with a forward pass through the 
network, in order to establish all the internal states and outputs of 
its nodes. After that, the back passage begins, where the effect of 
network input on the output must be calculated. Using a chain 
rule, find the effect on the output signal of a neuron from the last 
hidden layer, for example, 𝑘2−1: 

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘2−1

=
𝜕𝑜𝑢𝑡

𝜕𝑜𝑢𝑡𝑘2−1

∙
𝜕𝑜𝑢𝑡𝑘2−1

𝜕𝑠𝑡𝑎𝑡𝑒𝑘2−1

= 𝜇𝑘2−1
 (10) 

where: 𝜇𝑘2−1
– effect of the neuron 𝑘2−1 state on the output 

signal. As for neuron 𝑘2−2, its effect is calculated in the same 
way. Remembering Equations (1) and (2), we unpack the 
derivatives.   

𝜇𝑘2−1
= 𝑜𝑢𝑡𝑘2−1

(1 − 𝑜𝑢𝑡𝑘2−1
) ∙ 𝑣1  (11) 

As we go further, we come across a neuron-neuron type 
connection, so we write down an equation describing the effect of 
neuron 𝑘1−2 on the output signal (with 𝑘1−1 everything is the 
same). 

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−2

= 𝑜𝑢𝑡𝑘1−2
(1 − 𝑜𝑢𝑡𝑘1−2

) ∙ (𝜇𝑘2−1
∙ 𝑤3 + 𝜇𝑘2−2

∙ 𝑤4)(12) 

Finally, we pack the influence of the neurons of the first 
hidden layer and write the equation for the input signal. 

𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
=

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−1

∙
𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−1

𝜕𝑖𝑛
+

𝜕𝑜𝑢𝑡

𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−2

∙
𝜕𝑠𝑡𝑎𝑡𝑒𝑘1−2

𝜕𝑖𝑛
 (13) 

Solving derivatives, we have: 

𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
= 𝜇𝑘1−1

∙ 𝑓1 + 𝜇𝑘1−2
∙ 𝑓2 (14) 

After solving this problem in a simplified version, we can 

generalize its solution to allow search of  
𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
  in a network with 

an arbitrary number of hidden layers and with an arbitrary number 
of neurons in each (but in all hidden layers identical). 

For the input of the neural network (see Fig. 1), the effect 
equation will be: 

𝜕𝑜𝑢𝑡

𝜕𝑖𝑛
= ∑ (𝜇𝑘1−𝑗

∙ 𝑓𝑗)𝑗  (15) 

where: 𝜇𝑘1−𝑗
 – effect on output of the neuron of the first hidden 

layer which makes neuron in range from 1 to 𝑗, 𝑓𝑗 – weight of the 

connection between 𝑘1−𝑗  and input. 

For hidden layers (except the last): 

𝜇𝑘(𝑖−1)−𝑗
= 𝑜𝑢𝑡𝑘(𝑖−1)−𝑗

(1 − 𝑜𝑢𝑡𝑘(𝑖−1)−𝑗
) ∙ ∑ (𝜇𝑘𝑖−𝑗

∙ 𝑣𝑖−𝑗)𝑗  (16) 

where: 𝑘(𝑖−1)−𝑗 and 𝑘𝑖−𝑗  – neurons from adjacent layers (𝑖 - the 

number of hidden layers) with 𝑗 neurons in each, 𝑣𝑖−𝑗 – weight of 

connection between them. 
For the last hidden layer: 

𝜇𝑘𝑖−𝑗
= 𝑜𝑢𝑡𝑘𝑖−𝑗

(1 − 𝑜𝑢𝑡𝑘𝑖−𝑗
) ∙ 𝑤𝑗  (17) 

where: 𝑘𝑖−𝑗  – neuron from the last hidden layer, 𝑤𝑗  – weight of 

connection between 𝑘𝑖−𝑗  and output. 

So, using the BES algorithm, we are able to complete the 
calculation of the Equation 8 and, accordingly, Equation 7. 
Multiple repetition of MAPERS gradually reduces the largest 

values of the regulation error throughout the planning horizon. As 
a result, we get an array of optimized predicted regulator actions, 

including 𝑅𝐴0 (see Fig. 4), which is the action that will be sent for 
execution by the next control cycle. 

 In the next section, we will consider the implementation of the 
previously described multipurpose neuronal network-based 
regulator on the example of a thermostat. 

4. TEMPERATURE CONTROLLER  
BASED ON SELF-TUNING PREDICTIVE ANN 

To demonstrate the operation of the specified multipurpose 
controller, run it within the task of regulating the temperature of a 
particular object. Thus, in Fig. 2, we replace the regulated value 
(RA) with the temperature of the regulated object (T), and at the 
site of the regulator action (RA), there will be a heater power (P) 
that is able to heat the control object. Our control object will be 
virtual, so let’s specify the equation according to which it 
functions. 

𝑇 = 𝑇𝑎 +
𝑃

𝑚
∙ (1 − 𝑒−𝑏∙𝑡) + (𝑇0 − 𝑇𝑎) ∙ 𝑒−𝑏∙𝑡  (18) 

where: 𝑇𝑎  – ambient temperature, 𝑚 and 𝑏 – parameters that 
make object temperature inertia (taking into account mass and 

volume), 𝑡 – time, 𝑇0 –  initial temperature. With each change of 

heater power (P), time (t) is reset to zero and 𝑇0 equals the 
current temperature value (𝑇). In this way, the attenuation 
processes are restarted. Set the temperature range in which the 

controller should operate from 0 to 50°𝐶. In this range, it shall 
provide a regulation accuracy of up to 0.5°𝐶. Since this paper 
describes the processes in the simulated environment, to simplify 
the demonstration of the principles, the error of temperature 
measurement is neglected. 

One hidden layer with 30 neurons is sufficient to achieve the 
specified accuracy of controller.  

4.1. Training of one-step predictive artificial neural network 

As a training set, we will use the reaction of the control object 
on full power of the heater with consistent cooling.  

 

Fig. 6. Training set of temperature for ANN 
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Fig. 7. Training process of ANN 

Fig. 6 shows that for half of the training set points (500), the 
object is heated at P = 100%, after which the heater switches off 
(P = 0) and the object cools the other half of the set to ambient 
temperature (𝑇𝑎 = 0°𝐶). Regarding the shape of the curve, it can 
be changed, the slope can be reduced and split into a larger 
number of time intervals with different heater power. It is not 
important for training but may be important for maintaining the 
control object. 

As can be seen from Fig. 7, the ANN training process is non-
linear. The first 100 epochs reduce the maximum absolute 
prediction error for the training set to 2 degrees. And after 1000 
epochs, the level of the specified error decreases under 0.5 
degrees. This means that the network is able to operate with the 
desired accuracy within the specified range. After training, the 
regulator is ready to go. Now let’s compare it with a PID controller. 

4.2. The result of the operation of the self-tuned temperature 
controller 

To evaluate the performance of the previously described 
controller (with MAPERS), consider it together with a regular PID 
controller. Fig. 8 shows the response of the system to the change 

in the desired temperature of the control object (𝑇𝑠𝑒𝑡).  

 
Fig. 8. Comparison of adaptive controller operation with classic PID 

At the beginning of measurement, 𝑇𝑠𝑒𝑡 is equal to 10 degrees, 
after which it switches to 11 degrees and after the transition 
processes returns to 10 degrees. So, we can see the response of 
regulators to the single step up and down. From what we have 
seen, we can conclude that the self-tuning controller is capable of 

operating in a given range with a given accuracy (0.5°𝐶), and 
even significantly outperforming it (the maximum absolute error for 
steady state during measurements was 0.097°𝐶). It is worth 
recalling that in modelling, we ignore measurement errors and 
focus on the behaviour of regulators under given conditions. Also, 
the self-tuning controller performed better than the manual tuned 
PID controller in dynamics, avoiding oscillations and large 
overshoot. At the same time, the PID controller was more 
accurate in steady state. It is possible to increase the accuracy of 
the self-tuning controller by increasing the number of hidden layer 
neurons and increasing the learning time. But the main advantage 
of an adaptive controller, as opposed to the manual tuned PID, is 
automatic tuning. With having a training set that characterizes the 
behaviour of the control object, we can build a controller with 
arbitrary complexity and precision without human intervention. 
The given example of a temperature regulator is the most 
primitive and clear, therefore, it is necessary to emphasize the 
possibility for the described adaptive regulator to operate much 
more complex, multidimensional processes (such as autopilot, 
industrial control systems, automotive onboard systems, etc.) with 
the involvement of many input and output signals. The use of a 
classic PID controller in such processes may not be appropriate 
and sometimes possible. 

5. CONCLUSIONS 

The research work aimed to consider a control system that 
may be an alternative to classic PID controllers in tasks that 
require automation of the controller setup process. A multipurpose 
neuronal network-based controller, discussed in this paper, may 
be that kind of system. We first looked at its structure and the 
main modules that make it up with a detailed description of the 
operation of each of these modules and the system as a whole. 
After a general analysis, we proceeded to solve a specific 
problem, which was the synthesis of an adaptive thermostat. The 
synthesized adaptive thermostat showed the set accuracy and 
stability of control at the simulation level. The success of this task, 
showed the value of the original model, its strengths, weaknesses 
and possible ways to improve it. At the same time, it is necessary 
to continue studying the capabilities of the described regulator on 
the examples of real control processes. It is worth to study the 
possible strategies (beyond MAPERS) for optimizing the control 
action of the regulator. 
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