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Abstract: This article deals with experimental testing of magnetorheological fluid (MRF) behaviour in the oscillatory squeeze mode.  
The authors investigate and analyse the influence of excitation frequency and magnetic field density level on axial force in MRFs that differ 
in particle volume fraction. The results show that, under certain conditions, the phenomenon of self-sealing can occur as a result  
of the magnetic field gradient and a vacuum in the working gap of the system. 
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1. INTRODUCTION 

Magnetorheological fluids (MRFs) are non-uniform suspen-
sions of microsized ferromagnetic particles in the carrier fluid. In 
engineering applications, hydrocarbon or silicon oil bases are 
primarily used as carrier fluids. Owing to the magnetic properties 
of these materials, it is possible to control their rheological param-
eters by interacting with an external magnetic field. MRFs are 
used in applications with controlled characteristics, such as vibra-
tion dampers, brakes and clutches (Chengye et al., 2011; Farjoud 
et al., 2008; Guldbakke and Hesselbach, 2006; Kubík et al., 
2017).  Depending on the type of device, four basic modes of 
MRF operation can be distinguished: shear mode and valve 
mode, the essence of which is shear excitation; gradient pinch 
mode (Goncalves and Carlson, 2009), which is similar to valve 
flow but at a highly non-uniform magnetic field; and compression 
mode, in which a complex state of deformation occurs. The com-
pression mode is characterised by the possibility of obtaining 
significant forces at very small displacements (at a maximum of 
about a few millimetres). Stresses obtained in MRF when 
squeezed may approach up to 200 kPa (Tao,  2011). This feature 
can be advantageous for the development of new MR (magne-
torheological) devices, especially dampers (Liu et al., 2019), 
mounts (Farjoud et al., 2011; Gołdasz and Sapiński, 2011) and 
bearings (Guldbakke and Hesselbach, 2006), for which the ability 
to generate large forces and to provide a wide variability range of 
the performance parameters are of particular importance. Analysis 
of the MRF squeeze working condition is a complex issue. This is 
primarily due to the large number of factors affecting the process, 
that is, squeeze-strengthening effect (Liu et al., 2019; Wang et al., 
2019), clumping effect or aggregation of MRF particles (Farjoud et 
al., 2008;  Farjoud et al., 2011), complex deformation state (Ho-
rak, 2018; Laun et al., 2008), displaced carrier fluid from the 
squeeze zone (Laun et al., 2008; Szczęch and Horak., 2017), 

pressure generated in the MRF under the action of the applied 
magnetic field (Guo et al.,2012; Horak, 2018), the cavitation ef-
fects (Kuzhir et al., 2008) and the complex force progression during 
the compression process (Guo et al.,2013; Gstöttenbauer et al., 
2008; Horak, 2018). 

The present article summarises the experimental results and 
analysis of three MRFs differing in composition, operated in the 
oscillatory squeeze mode with a constant volume. The purpose of 
the experiments was to determine the behaviour of MRFs at 
variable excitation frequencies and magnetic field density. Atten-
tion has been paid to the influence of spatial magnetic field distri-
bution on the variability of the value as well as the direction of the 
squeeze force. 

2. CHARACTERISATION OF INVESTIGATED 
MAGNETORHEOLOGICAL FLUIDS 

In this article, we present the results of laboratory tests on the 
behaviour of selected MRFs operating in the oscillatory compres-
sion mode with a constant sample volume.  

Tab. 1. Properties of tested MRFs 

 Unit MRF-18 MRF-22 MRF-27 

Magnetic particle (by 

volume) 
(%) 18.3 22 27.5 

Dynamic viscosity 
(Tv = 25⁰C, B = 0T,γ = 100 

s−1) 

(mPa·s) 80.1 130 276 

Density (g/cm-3) 2.137 2.312 2.702 

Saturation 
magnetisation 

(kA/m) ~220 ~270 ~360 
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Three fluids produced based on oil (hydrocarbon), differing in 
the content of ferromagnetic particles, were investigated. The 
MRF-22 is a commercially available fluid marked MRF-122 by 
Lord Co.; the other two fluids have been obtained by adding or 
subtracting the base oil to specific samples. Selected physical 
properties of these fluids are presented in Table 1, and the mag-
netisation curves are shown in Figure 1. The names of the exam-
ined fluids express the volumetric percentage of magnetic parti-
cles.  

Increasing the amount of ferromagnetic particles in the MRF 
primarily results in increased magnetisation of saturation. Be-
tween MRF-18 and MRF-22, there is a 23% difference in magnet-
ic saturation, and between MRF-18 and MRF-27, the difference is 
64%. In addition, the examined fluids differ significantly in their 
zero-field viscosity. Between MRF-18 and MRF-27, there is a 
nearly 3.5-fold difference in this parameter. 

  
Fig. 1. Magnetisation versus magnetic field density of tested MRFs 

In the magnetic field density up to the range of approximately 
B = 400 mT, all the tested MRFs have an approximate linear M = 
f(B) characteristic. It can also be noted that in the analysed range 
of magnetic field density (B < 670 mT), only MRF-18 and MRF-22 
should reach the saturation state. 

3. EXPERIMENTS 

Experiments were conducted in the specially designed 
experimental setup (Fig. 2a) consisting of a frame (1) supporting a 
linear servomotor (7), allowing the main position of the measuring 
system to be changed.  

The oscillatory movement of the upper plate (4) is generated 
by a connecting rod (8) mounted on a cranked shaft (9), driven by 
a rotary servomotor (11) with timing belt transmission (10). The 
range of the oscillating plate movement is determined by the 
crank value ‘e’. The force sensor (6) used for measuring the 
tensile and compression forces is attached to the shaft supported 
by two linear bearings (5). The position of the movable plate is 
measured by a non-contact laser sensor (3).  

The MRF sample is placed inside the test cell (2) (Fig. 2b) 
directly above an electromagnet core (17) between a movable 
plate made of a paramagnetic material (4). The stationary plate 
(14) is made of a paramagnetic material and reduces ejection of 
the MRF from the gap. The magnetic circuit is closed by the cell 
housing (13, 15). The magnetic flux density in the measuring gap 
is altered by the current in the electromagnet coil (16). In the 

electromagnet core and in the cell housing, ducts for the coolant 
were made. This ensures the temperature stabilisation of the 
system. All experiments were conducted at the constant 
temperature of 25°C. The diameter of the movable plate dp was 
50 mm, whereas the diameter of the electromagnet core dc was 
45 mm (see Fig. 2c), initial gap height h was 2 mm and the range 
of motion of the movable plate Δh was 1 mm (compression rate, ε 
= 0.5).  

(a) 

 

(b) 

 

(c) 

 
Fig. 2. Schematic diagram: (a) experimental setup, (b) test cell  
           and (c) test geometry 

3.1. Scenario 

The distribution of the magnetic field density in the working 
gap was measured by using a teslameter at three points on the 
diameter of the electromagnet core front face for r = 0, R/2 and R 
(see Fig. 2c); the measurement results are presented  
in Figure 3a. 

 Near the symmetry axis of the system, lower magnetic field 
density occurs than at the edge of the analysed geometry. For 
a more detailed investigation of magnetic field spatial distribution, 
a numerical simulation was carried out by using the finite element 
method. Figure 3b compares the measurement and numerical 
simulation results (I = 2 A, dashed line marked in Fig. 3a). A good 
convergence of simulation to measurement was obtained, with the 
results presented in Figure 3a also consistent with the analyses 
presented in Figure 3b. More detailed information about the 
magnetic field spatial distribution is presented in Szczęch and 
Horak (2017). The curves of magnetic field density versus current 
measured at three points are shown in Figure 3b. Owing to the 
occurrence of the magnetic field density gradient, it should be 
expected that the higher B values near the edge of the 
electromagnet core may result in the self-sealing effect of the 
system (Szczęch and Horak, 2017). 
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(a) 

 

(b) 

 
Fig. 3. (a) Magnetic field density versus current measured at three points 
            of the electromagnet core face and (b) distribution of the magnetic  
            field density across the bottom measuring plate 

The study was based on measuring the force exerted by the 
MRF on an oscillatory moving plate during the increase in the 
magnetic flux density in the range of B = 0 to 670 mT 
(corresponding to the power supply current of the electromagnet I 
= 0–5 A). A linear ramp of the current was set for 180 s. Each 
experiment has been carried out at five extortion frequencies f = 
0.1, 0.5, 1, 2 and 3 Hz. Tests were performed for a constant MRF 
volume, V = 1 mL, which corresponds to the filling rate of the 
working gap 63% (calculated in relation to hmin = 1 mm). 

4. RESULTS AND DISCUSSION 

The study concerns a comparative analysis of MRFs 
behaviour. The aim of the study was to determine the range of 
force variation observed when MRFs are subjected to extortion by 
oscillatory compression. An example of the measurement result 
with a determined upper and lower force envelope is shown in 
Figure 4. The negative sign of the forces indicates that the MRF is 
in the compression phase, and the positive sign of force refers to 
the case when the MRF resists the moving plate upwards. 

The graphs of maximum compression forces (lower 
envelopes) of the tested MRFs are presented in Figure 5. For all 
the tested fluids up to approximately I = 1 A (i.e. B = 150 mT), no 
significant influence of the composition of samples or the 
oscillation frequency on the value of the compression force is 
observed. For higher electromagnet current values, higher forces 
are obtained for fluids with a higher particle content. The lowest 
values of compression force are observed for MRF-18 (up to 
about 365 N) for fluids with higher magnetisation values (MRF-22 
and MRF-27) 450 N and 605 N, respectively. A directly 
proportional relationship between the value of magnetisation of 
the fluid magnetisation saturation and the observed maximum 
compression force is visible. 

 
Fig. 4. Sample measurement result with marked upper and lower  
           envelopes (MRF-22, f = 1 Hz) 

 
Fig. 5. Lower measured force envelopes FNL versus current I 

The graphs of maximum ‘tensile’ forces (upper envelopes) 
of the tested MR liquids are shown in Figure 6. For all the tested 
liquids for I < 1.5 A (B < 250 mT), no significant influence of the 
frequency and composition of the tested fluids on the measured 
force is observed. Negative sign force values are observed at the 
lowest oscillation frequency (f = 0.1 Hz) and for I > 2.5 A (B > 
400 mT), indicating that, in this case, the MRF ‘pushes’ the 
movable measuring plate out also during the return motion. This 
may be related to the magnetostatic pressure (Horak et al., 2017; 
Liu et al., 2019; Mazlan, 2007), which may be related to the 
influence of columnar structures of magnetic particles on the 
measuring plate in this case. In the case of the MRF-18 and MRF-
22 samples, no significant differences in the measured force were 
observed (approximately FNLmax = −17 N), whereas for fluids with 
the highest number of particles, double force (FNLmax = −34 N) was 
obtained. 

In each of the analysed cases, the increase in frequency to 
0.5 and 1 Hz resulted in stabilisation of the measured force. Under 
these test conditions, there is no significant effect of a change in 
the magnetic field strength on the measured force. The observed 
positive values of the force (about 20 N) result from the inertia of 
the measuring system. Preliminary tests carried out without MRF 
showed the occurrence of forces of up to approximately 15 N. 

In the case of force frequency f = 2 and 3 Hz and the current 
intensity I >2.5 A (B > 400 mT), significant force values with a 
positive return can be observed. The value of the force increases 
as the oscillation frequency increases. This phenomenon is visible 
in all tested fluids. The occurrence of this may be associated with 
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a vacuum inside the working gap of the measuring system. 
The maximum force was observed for MRF-22, FNUmax = 94 N, 

which indicates the pressure of about p = 60 Pa. This effect can 
be compared to that which occurs in magnetic fluid seals. The 
presence of a magnetic field gradient on the edge of the core (see 
Fig. 3c) may result in the formation of a tight barrier from the MRF 
between the surface of the electromagnet core and the surface of 
the moving plate. It should be noted that the values of positive 
forces are so large that they should be considered when develop-
ing devices working in the discussed working conditions. 

In Figure 7, graphs of measured force values of (FN) as a 
function of displacement of a moving plate (Δh) are presented. In 
the case of f = 0.1 Hz, relatively high values of the compression 
force can be observed for the initial position of the movable plate 
(Δh = 0 mm). In this case, the maximum force value was around 
FN = −100 N. Similarly, for f = 0.5 Hz, this force is noticeable and 
is around FN = −50 N. This behaviour can be explained by the 
influence of the internal structure of the MRF on the measuring 
plate. With an increase in the oscillation frequency, the value of 
this force decreases. 

(a) 

 

(b) 

 

(c) 

 
Fig. 6. Upper measured force envelopes FNU versus current I,  
           (a) MRF-18, (b) MRF-22 and (c) MRF-27 

For f ≥ 1 Hz, the force in the initial compression phase does 
not change as the frequency increases. In addition, there are no 
noticeable differences in the measured compression force for 
individual MRFs with a low compression rate (ε). In Figure 7d and 
e, areas of positive force values are visible. It can be noticed that 
the area of its occurrence covers the range of movement of the 
plate from Δh = 0.95 to 0.7 mm. Therefore, the vacuum occurs 
only in the case of a significant degree of compression of the 
tested fluids (0.95 at the beginning and 0.7 at the end). 

 

  

  

 
Fig. 7. Measured force FN versus Δh, (a) f = 0.1 Hz, (b) f = 0.5 Hz,  
           (c) f = 1 Hz, (d) f = 2 Hz and (e) f = 3 Hz 

  

 
 

  
Fig. 8. Photographs of the MRFs after the test; (a) MRF-18, (b) MRF-22  
           and (c) MRF-27 

(a) (b) 

(d) (c) 

(e) 

(a) 

(b) 

(c) 
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The photographs also show a change in the structure of the 
tested fluids, depending on their composition. For the fluid with the 
lowest content of particles (MRF-18, Fig. 8a), the base fluid 
precipitations are clearly visible. The concentrations of the MRF 
are smaller and more dispersed with higher content of magnetic 
particles (cf. Fig. 8a, b and c). 

5. CONCLUSIONS 

The results of the experiments and their analysis lead us to 
the following conclusions: 

 The maximum compressive force is obtained for the greatest 

displacement and is related to the number of magnetic 

particles and, thus, to the magnetisation curve of the MRF. 

The volumetric percentage of particles in the carrier fluid can 

be used as an indicator to estimate the ability of MRF to 

produce normal compression force. 

 The increase in the compression force as a function of 

displacement is similar to an exponential shape, with the 

increase in the compression frequency causing the rate of 

increase to be lower in the range Δh = 0 to 0.3 mm, probably 

because of the ability to change the internal structure of the 

particles in the MRF as a result of the deformation. It should 

be noted that the lower frequency favours the creation of 

structures. 

 Static force is visible in the low enforcement frequency range 

(up to 0.5 Hz). This process is described in detail in Horak et 

al. (2017) and Horak (2018). 

 In the analysed case, the increase in the compression 

frequency and magnetisation of saturation encourages the 

movement of fluids outside the working gap (Fig. 8). This 

effect was observed only at the frequency of 3 Hz, and the 

loss of the liquid constituted about 8% of the applied volume. 

 Significant ‘tensile’ forces on the MRF can be generated in the 

analysed system. This phenomenon may be related to the 

phenomenon of self-sealing of the measurement gap because 

of the magnetic field gradient. The result is a vacuum in the 

working gap of the system. This phenomenon is visible only at 

higher frequencies of oscillations, that is, from 2 Hz. In 

addition, positive forces occur only in the case of a significant 

degree of MRF compression (Δh = 0.95–0.7 mm). 
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Abstract: Forging hammers are machines whose operation causes negative effects both at the place of their foundation (the soil  
settlement) and in their surroundings (e.g., vibrations propagating to the other devices, noise, etc.). Knowledge of the parameters charac-
terizing the time history of the force that arises as a result of impact of a ram on a shaped material is of fundamental importance for the 
correct analysis of both the structure of the hammer and its impact on the surroundings. In the paper, the effect of the shape and duration  
of a pulse load on the dynamic response of a hammer-foundation forging system was assessed. An analytical method of description of the 
forces that arise as a result of impact of the ram on the forged material, using different forms of pulses was presented. The forces defined 
in this way as loads in a mathematical model of three degrees of freedom forging system were used. The equations of motion derived  
from d'Alembert's principle were solved numerically in the Matlab program. The analyses for eight forms of the pulse loads with the same 
pulse sizes but different durations were performed. The results in the graphs were presented. It was found, among other things,  
that a greater impact on the maximum displacement, velocity and acceleration of each component of the hammer-foundation system  
as well as on the maximum forces transmitted to the soil has the duration of a pulse than its shape.  

Key words: Dynamic response, impact load, pulse shape, pulse duration, forging hammer 

1. INTRODUCTION 

Forging hammers are impact action devices. They shape ma-
terials using the energy generated before the tool touches them. 

There are basically two types of forging hammers: gravity 
hammers and power hammers (Major, 1980). The first group 
includes drop hammers and single-acting steam hammers, where 
during the downstroke, the ram is accelerated by gravity and 
builds up the impact energy. The second group includes double-
acting hammers, where during the downstroke, in addition to 
gravity, the ram is accelerated by steam or compressed air. Of 
these types, the power hammers are most commonly used be-
cause they can easily produce high-energy impacts. 

The following basic elements can be distinguished in the gen-
eral diagram of a forging hammer with high-energy impact (Fig. 1): 
a ram consisting of a rod and a piston 1, an upper anvil 2 and, if 
necessary, an upper die 3 attached to it, a frame 4 with guides 5 
and the ram drive mechanism 6, an anvil block 7 with a lower anvil 
8 and, if applicable, a lower die 9 attached to it. 

Due to the impact nature of the action, high-energy impacts 
and the need to protect the environment against the negative 
effects of the forging hammers operation (the soil load, vibrations 
and noise), spring-damping elements and a foundation are placed 
under the anvil block. Depending on the type of foundation, the 
spring-damping elements placed under the anvil block may be 
pads made of oak beams or a hard felt, or these may be sets of 
viscous-spring vibro-isolators (Lipiński, 1985; Major, 1980). Now-
adays, foundations are most often made either as systems of 
reinforced concrete structures (Fig. 2a), sometimes replaced with 
steel supporting structures (Fig. 6a), connected by spring-

damping elements, or as reinforced concrete foundation troughs 
placed directly on the soil (Fig. 2b). 

 
Fig. 1. Structural diagram of a forging hammer with high-energy impact  
            (Majewski and Trąbka, 2006) 

The forging process starts with the initiation of the ram move-
ment. The ram hits the forged material at a certain velocity, caus-
ing it to deform. At the moment of the impact a part of the kinetic 
energy, which is accumulated in the ram, changes into the work of 
plastic deformation of the forged material, and the remaining 
unused part of the energy gives the ram a return velocity, and 
above all causes vibrations and elastic deformations of the anvil 
and foundation. Then the vibrations are transmitted through the 
foundation to the soil and surroundings. 
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The influence of the impact loads on the dynamics of forging 
devices, as well as the surroundings, for many years has been the 
subject of discussions, the results of which are presented at scien-
tific conferences, for example, ‘International Conference on Struc-
tures Under Shock and Impact’, are made available as books 
(Altan et al., 1969; Dresig and Holzweißig, 2010; Gryboś, 1969; 
Harris ed. and Piersol ed., 2002; Lipiński, 1985; Major, 1980), and 
above all, are published as articles in scientific journals. 

 
Fig. 2. Examples of foundations for forging hammers: a) a reinforced 

concrete foundation block 1 with a sub-anvil block pad 2 based  
on a spring-rubber isolation system 3 in a reinforced concrete 
foundation trough 4, b) a reinforced concrete foundation trough  
5 placed directly on the soil with a set of viscous-spring  
vibro-isolators 6 

Chehab and El Naggar (2003) assumed that the dynamical 
systems analysed by them set in motion the impact force with a 
rectangular pulse shape. Using the models with one and two 
degrees of freedom, they investigated the possibility of reducing 
the negative impact of the hammers on the surroundings. Leopa 
(2011) in turn, for a three-mass system, analysed the influence of 
the impact pulse duration of 0.1s, 0.03s and 0.007s, respectively, 
on the frequency representation of the considered load. He car-
ried out the analyses for pulse loads of the shapes: haversine and 
trapezoidal. The influence of the pulse shape generated during an 
impact on the dynamic response of the forging hammer founda-
tion was investigated in Prolović et al. (2004). The analyses were 
carried out for models with one and two degrees of freedom. The 
pulse loads with rectangular, trapezoidal, parabolic and semi-
sinusoidal shapes were considered. The same pulse duration was 
assumed (0.001s). The study of the dynamic response of a one-
mass model of a forging hammer both on changes in the shape of 
the pulse load (rectangular, semi-sinusoidal and symmetric trian-
gular), as well as changes in its duration are presented in Chehab 
and El Naggar (2004). The same kind of analysis, but used in the 
study of the dynamics of one and two-mass models of foundations 
for presses, was presented in Zheng et al. (2014). 

Based on the papers found, it can be seen that all processes 
that occur during forging depend strictly on the load transferred 
from the ram to the forged material. This load has the form of a 
pulse and is characterized by its size, shape and duration. The 
authors of individual papers conduct the dynamic analyses of 
forging processes either for the selected load durations, or one, or 
at most several forms of the time history of the forging force. 
Although in some papers, attempts of the more general analyses 
are undertaken (Chehab and El Naggar, 2004; Zheng et al., 
2014), in relation to the hammer-foundation forging systems, it is 
carried out using maximally simplified models with one degree of 
freedom (Chehab and El Naggar, 2004). 

Since among the found papers, there was no comprehensive 
study on the assessment of the effect of the duration and shape of 

the pulse on the quantities particularly important for assessing the 
impact of the forging hammer on the surroundings (the maximum 
displacements, velocities and accelerations of the foundation and 
the forces transmitted to the soil), in this paper, an analysis was 
carried out in the above-mentioned scope. The forging system 
with three degrees of freedom was assessed. The analyses for 
eight forms of the pulse loads with the same pulse sizes but dif-
ferent durations were performed. The pulse durations were 
changed from 0.001 s to 0.2 s every 0.001 s. The dynamic re-
sponses of the forging system for unfavourable forging conditions, 
that is, cold forging of steel at maximum velocity were determined. 

2. IMPACT LOADS 

The forces that arise during the blows of the ram of the forging 
hammer against the forged material are the reaction of the system 
absorbing the impact energy to the impact load (Gryboś, 1969). 
These forces reach very high values and their durations 𝜏 are very 
short. They are referred to as the so-called pulse loads, and their 

size 𝑆 (1) is determined as equal to the area under the curve 
representing the time history of the pulse load 𝑃(𝑡) (Fig. 3). 

𝑆 = ∫ 𝑃(𝑡)𝑑𝑡
𝜏

0
 (1) 

where: 𝑆 – the pulse size, 𝑃(𝑡) – the time history of the pulse, 𝜏 – 
the pulse duration. 

 
Fig. 3. Pulse load 

If the pulse durations 𝜏 are extremely short, that is, satisfy the 
condition 𝜏 <  0.1 ∙ 𝑇𝑚𝑖𝑛 (where: 𝑇𝑚𝑖𝑛  is the smallest period of 
natural vibration of the system), they are referred to as sudden 
pulses (Harris ed. and Piersol ed., 2002;  Lipiński, 1985). The 
sudden pulses are fully characterized only by their size 𝑆. In the 
description of this type of loads, the shapes of the force time 
histories are omitted. However, it is assumed that the forces act 
only at selected points in time (the loads are defined using the 
Dirac delta function). 

If the pulse durations 𝜏 satisfy the condition 0.1 ∙ 𝑇𝑚𝑖𝑛  ≤
 𝜏 ≤  𝑇𝑚𝑎𝑥  (where: 𝑇𝑚𝑎𝑥  is the largest period of natural vibration 
of the system), the pulses are called short-term (Lipiński, 1985). In 
this case, the response of the system is affected by the character-
istics of the pulse loads. The short-term pulses are characterized 

by their shape, defined as the time history of the pulse 𝑃(𝑡), size 

𝑆 or amplitude 𝑃𝑚, as well as duration 𝜏 (Harris ed. and Piersol 
ed., 2002;  Lipiński, 1985; Prolović et al., 2004). 

The pulse loads resulting from the blows can take different 
shapes (Fig. 4). The differences between them result, among 
others, from the size and shape of the forged material, its temper-
ature and mechanical properties, elastic properties of the materi-
als used to make elements of the forging system, the contact 
surface geometry and the impact energy (Gryboś, 1969). A large 
number of factors affecting the time histories of forging forces 
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makes their theoretical determination very difficult, therefore, they 
are determined experimentally (Bieliajew and Popow, 1967). 

For theoretical considerations, the real non-linear time histo-

ries of the pulses are approximated in various ways, including 
straight lines or trigonometric functions (Fig. 5). 

 

Fig. 4. Time histories of forging forces obtained experimentally by Bieliajew and Popow (1967): a), b) for steel, c), d) for duralumin 

 

Fig. 5. Shapes of pulse loads: a) rectangular (type A), b) triangular (type B), c) trapezoidal (type C), d) triangular-trapezoidal (type D), e) parabolic (type E), 
f) semi-sinusoidal (type F), g) versed sine-rectangular (type G), h) exponential-rectangular (type H) 

The approximate time histories 𝑃(𝑡) of the pulses can be presented in analytical notation as follows: 

 Rectangular pulse (Fig. 5a): 

 𝑃(𝑡) = {
𝑃𝑚 =

𝑆

𝜏
                                                                        for                                              0 ≤ 𝑡 ≤ 𝜏

0                                                                                   for                                                      𝑡 > 𝜏
 (2)          

 Triangular pulse (Fig. 5b): 

𝑃(𝑡) =

{
 

 𝑃𝑚 ∙
𝑡

𝜏1
=

2∙𝑆

𝜏1+𝜏2
∙
𝑡

𝜏1
                                                    for                                            0 ≤ 𝑡 ≤ 𝜏1

𝑃𝑚 ∙
𝜏1+𝜏2−𝑡

𝜏2
=

2∙𝑆

𝜏1+𝜏2
∙
𝜏1+𝜏2−𝑡

𝜏2
                                 for                                 𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2

0                                                                                   for                                           𝑡 > 𝜏1 + 𝜏2

           (3) 

 Trapezoidal pulse (Fig. 5c): 

 𝑃(𝑡) =

{
 
 

 
 𝑃𝑚 ∙

𝑡

𝜏1
=

2∙𝑆

𝜏1+2∙𝜏2+𝜏3
∙
𝑡

𝜏1
                                           for                                           0 ≤ 𝑡 ≤ 𝜏1

𝑃𝑚 =
2∙𝑆

𝜏1+2∙𝜏2+𝜏3
                                                        for                                𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2

𝑃𝑚 ∙
𝜏1+𝜏2+𝜏3−𝑡

𝜏3
=

2∙𝑆

𝜏1+2∙𝜏2+𝜏3
∙
𝜏1+𝜏2+𝜏3−𝑡

𝜏3
             for             𝜏1 + 𝜏2 < 𝑡 ≤ 𝜏1 + 𝜏2 + 𝜏3

0                                                                                  for                                 𝑡 > 𝜏1 + 𝜏2 + 𝜏3

 (4) 

 Triangular-trapezoidal pulse (Fig. 5d): 

 𝑃(𝑡) =

{
 
 

 
 𝑢𝑃𝑚 ∙ 𝑃𝑚 ∙

𝑡

𝜏1
                                                              for                                          0 ≤ 𝑡 ≤ 𝜏1

𝑢𝑃𝑚 ∙ 𝑃𝑚 + (𝑃𝑚 − 𝑢𝑃𝑚 ∙ 𝑃𝑚) ∙
𝑡−𝜏1

𝜏2
                       for                               𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2

𝑃𝑚 ∙
𝜏1+𝜏2+𝜏3−𝑡

𝜏3
                                                          for             𝜏1 + 𝜏2 < 𝑡 ≤ 𝜏1 + 𝜏2 + 𝜏3

0                                                                                   for                                 𝑡 > 𝜏1 + 𝜏2 + 𝜏3

 (5)          

where: 𝑃𝑚 =
2∙𝑆

𝑢𝑃𝑚 ∙(𝜏1+𝜏2)+𝜏2+𝜏3
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 Parabolic pulse (Fig. 5e): 

 𝑃(𝑡) = {
4 ∙ 𝑃𝑚 ∙

𝑡

𝜏
 ∙ (1 −

𝑡

𝜏
) = 4 ∙

3

2
∙
𝑆

𝜏
∙
𝑡

𝜏
 ∙ (1 −

𝑡

𝜏
)            for                                        0 ≤ 𝑡 ≤ 𝜏

0                                                                                    for                                                 𝑡 > 𝜏
 (6)          

 Semi-sinusoidal pulse (Fig. 5f): 

 𝑃(𝑡) = {
𝑃𝑚 ∙ sin (𝜋 ∙

𝑡

𝜏
) =

𝜋

2
∙
𝑆

𝜏
∙ sin (𝜋 ∙

𝑡

𝜏
)                          for                                       0 ≤ 𝑡 ≤ 𝜏

0                                                                                     for                                                𝑡 > 𝜏
 (7)          

 Versed sine-rectangular pulse (Fig. 5g): 

 𝑃(𝑡) =

{
 
 

 
 
𝑃𝑚

2
∙ (1 − cos (𝜋 ∙

𝑡

𝜏1
))                                              for                                      0 ≤ 𝑡 ≤ 𝜏1

𝑃𝑚                                                                                  for                           𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2
𝑃𝑚

2
∙ (1 + cos (𝜋 ∙

𝑡−𝜏1−𝜏2

𝜏3
))                                    for        𝜏1 + 𝜏2 < 𝑡 ≤ 𝜏1 + 𝜏2 + 𝜏3

0                                                                                    for                            𝑡 > 𝜏1 + 𝜏2 + 𝜏3

 (8)         

where: 𝑃𝑚 =
2∙𝑆

𝜏1+2∙𝜏2+𝜏3
 

 Exponential-rectangular pulse (Fig. 5h): 

 𝑃(𝑡) =

{
  
 

  
 𝑃𝑚 ∙

1−𝑒
−2∙𝜋∙

𝑡
𝜏1

1−𝑒−2∙𝜋
                                                             for                                       0 ≤ 𝑡 ≤ 𝜏1

𝑃𝑚                                                                                 for                            𝜏1 < 𝑡 ≤ 𝜏1 + 𝜏2

𝑃𝑚 ∙
1−𝑒

−2∙𝜋∙(1− 
𝑡−𝜏1−𝜏2

𝜏3
)

1−𝑒−2∙𝜋
                                             for         𝜏1 + 𝜏2 < 𝑡 ≤ 𝜏1 + 𝜏2 + 𝜏3

0                                                                                   for                             𝑡 > 𝜏1 + 𝜏2 + 𝜏3

 (9)          

where: 𝑃𝑚 =
𝑆

𝜏1∙(
1

1−𝑒−2∙𝜋
 − 

1

2∙𝜋
)+𝜏2+𝜏3∙(

1

1−𝑒−2∙𝜋
 − 

1

2∙𝜋
)
 

 
In equations (2÷9): 𝑃(𝑡) – the time history of the pulse, 𝑃𝑚 –

the pulse amplitude, 𝑢𝑃𝑚 – the scaling factor (can take values in 

the range 0÷1), 𝑆 – the pulse size, 𝜏, 𝜏1, 𝜏2 and 𝜏3 – the pulse 
durations (as indicated in Fig. 5). 

The pulse amplitudes 𝑃𝑚 can be determined based on the 
size of the pulses 𝑆 and transformed formulas (2÷9) for the areas 
of the figures representing the approximate time histories of the 
pulses. 

The pulse size 𝑆 for forging, in the absence of measurement 
data, according to the information contained in Lipiński (1985) can 
be estimated based on the empirical relationship (10). 

𝑆 = (1 + 𝑅) ∙ 𝑚𝐵 ∙ 𝑣𝐵 = (1 + 𝑅) ∙ 𝑚𝐵 ∙ √
2∙𝐸𝑝

𝑚𝐵
  (10) 

where: 𝑚𝐵 – the mass of the ram with the upper die block, 𝑣𝐵 – 

the velocity of the ram at the moment of impact, 𝐸𝑝 – the total 

energy of the impact of the hammer, 𝑅 – the coefficient 
of restitution (the coefficient of impact elasticity). The value of 𝑅 
varies between 0 and 1, depending upon whether the colliding 

bodies are of plastic character (𝑅 = 0), or the impact is completely 
elastic (𝑅 = 1) (Gryboś, 1969; Lipiński, 1985; Major, 1980). 

3. CONSIDERED FORGING SYSTEM 

The real forging system (Fig. 6a) containing a steam-air die 
forging hammer MPM 16000 B – type 1, and a foundation consist-
ing of a viscous-elastic pad 2, a steel frame 3, a viscous-spring 
isolation system 4 and a foundation trough 5, which rests on an 
elastic subsoil, was selected as the object of considerations. For 
the above structure, a physical model with three degrees of free-
dom was adopted (Fig. 6b). 

Replacing the real object with the physical model, it was as-
sumed, among other things, that the hammer, the steel frame and 
the foundation trough are coaxially located, non-deformable mate-
rial bodies with linear relative motion. The Kelvin-Voigt body, 
defined by a spring and a dashpot connected in parallel, fulfils the 
role of constraints between the material bodies. The masses of 
the material bodies are concentrated in material points, while the 
elastic and damping constraints are considered as weightless. 

 
Fig. 6. a) Structural diagram of a real forging system, b) Physical model   

of the forging system 

4. MATHEMATICAL MODEL AND ITS PARAMETERS 

The mathematical model of the forging system consisting 
of three mass elements (Fig. 6b) was written in the form of the 
motion equations (11), which were derived based on the d'Alem-
bert principle for the case of forced-damped vibrations. 
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𝑚1 ∙ �̈�1 + 𝑐1 ∙ (�̇�1 − �̇�2) + 𝑘1 ∙ (𝑦1 − 𝑦2) = 𝑃(𝑡)  

𝑚2 ∙ �̈�2 + 𝑐1 ∙ (�̇�2 − �̇�1) + 𝑘1 ∙ (𝑦2 − 𝑦1) +  

+ 𝑐2 ∙ (�̇�2 − �̇�3) + 𝑘2 ∙ (𝑦2 − 𝑦3) = 0 (11) 

𝑚3 ∙ �̈�3 + 𝑐2 ∙ (�̇�3 − �̇�2) + 𝑘2 ∙ (𝑦3 − 𝑦2) +  

+ 𝑐3 ∙ �̇�3 + 𝑘3 ∙ 𝑦3 = 0    

where: 𝑚1, 𝑚2, 𝑚3 – the masses of the hammer, steel frame and  

foundation trough, respectively, 𝑐1, 𝑐2, 𝑐3 – the damping con-
stants of the viscous-elastic pad, viscous-spring isolation system 

and soil, respectively, 𝑘1, 𝑘2, 𝑘3 – the stiffness of the viscous-
elastic pad, viscous-spring isolation system and soil, respectively, 
𝑃(𝑡) – the time history of the pulse, �̈�𝑖, �̇�𝑖 , 𝑦𝑖  – the acceleration, 
velocity and displacement of the i-th mass (i = 1, 2, 3), respective-
ly. 

The differential equations of motion (11) with initial conditions 
(12) were solved numerically in the Matlab program. 

𝑡 = 0;   𝑦1 = 𝑦2 = 𝑦3 = 0;   �̇�1 = �̇�2 = �̇�3 = 0    (12) 

The subsequent time histories of the pulses 𝑃(𝑡) described 
by equations (2÷9) as the load were assumed. The integration of 
the equations was performed using the fourth order Runge-Kutta 
technique and own calculation scripts. 

As the solution of the differential equations the time histories 
of the displacements, velocities and accelerations of individual 
elements of the forging system were obtained. 

The force transmitted to the soil can be evaluated from equa-
tion (13) (Chehab and El Naggar, 2003; Chehab and El Naggar, 
2004; Zheng et al., 2014).  

𝑃S = 𝑐3 ∙ �̇�3 + 𝑘3 ∙ 𝑦3 (13) 

where: 𝑃S – the force transmitted to the soil, 𝑐3 – the damping 

constant of the soil, 𝑘3 – the stiffness of the soil, �̇�3 – the velocity 
of the foundation trough, 𝑦3 – the displacement of the foundation 
trough. 

The parameters of the numerical model were adopted on the 
basis of the data characterizing the real foundation of the die 
forging hammer MPM 16000 B - type, as shown in Fig. 6a. The 
parameters of the model are summarized in Table 1. 

Tab. 1. Parameters of the computational model 

Parameter 
Value 
[kg] 

Parameter 
Value 
[N/m] 

Parameter 
Value 

[N·s/m] 

𝑚1 168000 𝑘1 950·106 𝑐1 1.84·106 

𝑚2 18500 𝑘2 183·106 𝑐2 3.6·106 

𝑚3 248200 𝑘3 8329·106 𝑐3 12.26·106 

5. ANALYSIS PARAMETERS, RESULTS AND DISCUSSION 

To investigate the effect of the shape and duration of the 
pulse load on the dynamic response of the hammer-foundation 
forging system and the forces transmitted to the surroundings, 
comprehensive analyses were performed. 

A single hit of the ram was analysed. The analyses involved 
eight forms of the pulse loads (Fig. 5) with the same pulse sizes 

𝑆 = 79793 N · s  but different durations. 

The pulse size was determined on the basis of equation (10) 
(Lipiński, 1985) assuming that the impact of the ram and the 

upper die block with the total mass 𝑚𝐵 = 8085 kg occurs with the 
maximum kinetic energy, which for the considered die hammer is 

𝐸𝑝 = 175000 J, and the coefficient of restitution R has the value, 

which according to Dresig and Holzweißig (2010), Lipiński (1985) 
and Major (1980), corresponds to performing heavy works on the 
die hammers, that is, cold forging of steel (R  = 0.5). 

The pulse durations 𝜏 were changed from 0.001 s to 0.2 s 
every 0.001 s. The lower limit value was adopted based on the 
literature data (Altan et al., 1969; Leopa, 2011), while the upper 
limit was calculated based on the condition of occurrence of the 
short-term pulses (see chapter 2). For the triangular pulse, it was 
adopted that 𝜏1 = 𝜏2, while for the pulses: trapezoidal, triangular-
trapezoidal, versed sine-rectangular as well as exponential-

rectangular, it was assumed that 𝜏1 = 𝜏3 = 0.2 ∙ 𝜏. For the 
triangular-trapezoidal pulse, it was assumed, furthermore, that 

𝑢𝑃𝑚 = 0.7. 

On the basis of the results, the pulse amplitudes, the maxi-
mum displacements, velocities and accelerations of the individual 
elements of the computational model as well as the maximum 
forces transmitted to the soil were determined.  

The pulse amplitudes are shown in Fig. 7 as a function of the 
shape and duration of the pulses. 

 
Fig. 7. The pulse amplitudes as function of shape and duration of pulses 

Fig. 7 shows that for the same pulse sizes, regardless of their 
duration, the force reaches the highest value for the triangular 
pulse, while the maximum forces corresponding to the remaining 
pulses are lower by 21% for the semi-sinusoidal pulse, by 26% for 
the triangular-trapezoidal and parabolic pulse, by 37% for the 
versed sine-rectangular and trapezoidal pulse, by 50% for rectan-
gular and exponential-rectangular pulse, respectively. 

The maximum displacements, velocities and accelerations of 
the hammer and foundation trough in dependence of the shape 
and duration of the pulses are shown in Figs. 8–10. 

The displacements, velocities and accelerations of the ham-
mer and foundation trough reach the highest values for pulses 
with the shortest duration (Figs. 8–10). When the duration of the 
pulses increases, these values decrease. At the same time, de-
pending on the pulse shape, the differences between the maxi-
mum displacements of the individual elements increase. 
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a) b) 

  
Fig. 8. Effect of shape and duration of pulses on the maximum displacement: a) of the hammer, b) of the foundation trough 

a) b) 

  
Fig. 9. Effect of shape and duration of pulses on the maximum velocity: a) of the hammer, b) of the foundation trough 

a) b) 

  
Fig. 10. Effect of shape and duration of pulses on the maximum acceleration: a) of the hammer, b) of the foundation trough 

 
Fig. 11. The maximum forces transmitted to the soil as a function  

  of shape and duration of pulses  

Similar observations can be made regarding the maximum 
forces transmitted to the soil from Fig. 11. 

6. SUMMARY AND CONCLUSIONS 

In the paper, the effect of the duration and shape of a pulse 
load on the dynamic response of a hammer-foundation forging 
system was assessed. The forging system with three degrees of 
freedom was analysed. The analyses for eight forms of the pulse 
loads with the same pulse sizes but different durations were per-
formed. The parameters of the analysis for unfavourable forging 
conditions, that is, cold forging of steel at maximum velocity were 
determined. 
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To investigate the effect of the pulse shape and duration on 
the dynamic response of the hammer-foundation forging system, 
the maximum displacements, velocities and accelerations of the 
hammer and foundation as well as the maximum forces transmit-
ted to the soil were determined. 

The results of the numerical analyses as a set of graphs were 
presented. Based on the results of the analyses, it was found that: 

 A greater impact on the dynamic response of a forging system 
has the duration of a pulse than its shape; 

 The displacements, velocities and accelerations of the forging 
system components as well as the forces transmitted to the 
soil reach the highest values for the pulses with the shortest 
duration; 

 If the pulse duration is less than 0.01 s, the system response 
is insensitive to the shape of the pulse; 

 As the pulse duration increases, the response of the forging 
system decreases. 
Since, as the results of the analyses show, the shape of a 

pulse has a little effect on the dynamic response of the forging 
system, during the design work or checking the influence of the 
structure with known parameters on the soil and surroundings, 
theoretically, pulse loads of any shape can be used in calculation 
models. However, since with prolonging the pulse duration, the 
dynamic responses reach the highest values for the triangular 
pulse, it seems expedient to use this shape in the calculations. 

Due to the large impact of the pulse duration on the maximum 
displacements and velocities of the forging system components as 
well as the forces transmitted to the soil, it is important that the 
pulse duration corresponds to the real forging conditions. There-
fore, the analyses should be performed for the experimentally 
confirmed durations of the contact between the interacting materi-
als. 

If the results of the analyses show that for the adopted model 
parameters of the forging system, the permissible values of the 
foundation displacements (according to Lipiński (1985) and Major 
(1980)) or the permissible soil stress (according to Lipiński (1985)) 
have been exceeded and it is not possible to change these pa-
rameters, the only way to limit the negative impact of the forging 
hammer on the soil and surroundings will be such a modification 
of the parameters of the forming process, that will prolong the 
duration of contact between the interacting materials. The same 
actions should be taken to ensure the proper working conditions 

for hammerman when the permissible levels of the hammer vibra-
tion amplitudes are exceeded (according to Lipiński (1985) and 
Major (1980)). 
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Abstract: The paper reports on research into the effect of the troposphere correction on the accuracy of the vertical component determina-
tion of an aircraft's flight as it approaches landing at Deblin Airport. The article presents ellipsoidal height value of the aircraft when the 
troposphere correction is considered in navigational calculations and when it is not taken into account. Accuracy of the aircraft positioning 
in the vertical plane using the SPP method is determined. The study shows that application of the troposphere correction in navigational 
calculations increases the accuracy of the vertical component determination by 25%–32%. The article and the study may serve as a valu-
able source of information for pilots, flight instructors and aircraft crews during training in operation and implementation of GNSS in avia-
tion. 

Key words: GPS, Aircraft, Ellipsoidal Height, Troposphere Correction 

1. INTRODUCTION 

Studies of the tropospheric state are increasingly used 
in aviation. Atmospheric weather effect is a dangerous condition 
during air operations, especially whilst landing. Atmospheric haz-
ards are an unfavourable process during aircraft operation. Study 
and monitoring of the troposphere seems to be a key technical 
parameter in modern aviation. Use of GNSS satellite equipment is 
one of the ways to determine the state of the troposphere during 
air operations (Krasuski et al., 2017). The parameter of the tropo-
spheric effect is included in the observation equations using both 
code and carrier phase GNSS measurements (Schaer, 1999). 
Code measurements on L1 frequency are generally used to de-
termine the position of the aircraft via satellite navigation technol-
ogy (ICAO, 2006). In this case, the tropospheric effect parameter 
(troposphere correction) is estimated using deterministic tropo-
spheric models. The Hopfield model, the Saastamoinen model 
and the Simple model are the most common deterministic tropo-
spheric models. 

There is a vast amount of research worldwide aimed to de-
termine the status of the troposphere and how it is applied in 
aviation, for example: 

 determination of the tropospheric status in GBAS aircraft 
support system (Parameswaran et al., 2008); 

 error determination for the troposphere correction in the height 
function of the aircraft’s flight (Kutsenko et al., 2018); 

 determination of the tropospheric state using Hopfield and 
RTCA MOPS models for GPS system (Sultana et al., 2013); 

 determination of the tropospheric state using GPS and Galileo 
satellite navigation systems for air transport (Guilbert, 2016); 

 evaluation of the tropospheric effect on the determination of 
the aircraft’s geocentric coordinates (Krasuski et al., 2016); 

 evaluation of the tropospheric effect using the MOPS RTCA 
model within the APV approach procedure in transport avia-
tion (Neri, 2011); 

 evaluation of the tropospheric effect on the determination 
of the aircraft’s location (Boon et al., 1997); 

 determination of the troposphere correction while in flight 
(Vyas et al., 2011); 

 effect of the troposphere on the determination of the VPL 
reliability parameter in air transportation (Wang et al., 2017);  

 testing of the tropospheric model developed by UNB re-
searchers to determine airplane positioning in air navigation 
(Collins, 1999). 
The paper aims to evaluate the effect of the troposphere on 

the ellipsoidal height determination of the aircraft’s flight. Real 
navigation data and observations from the onboard GNSS receiv-
er installed on a Cessna 172 aircraft were used in the study. 
Results of the study directly affect flight safety in the vertical plane 
VNAV. The developed technique, which studies the effect of the 
troposphere on the determination of the aircraft’s positioning, can 
be used practically to improve flight safety. 

2. THE RESEARCH METHOD 

The tropospheric effect on the determination of the aircraft’s 
ellipsoidal height was investigated using the code-based method 
(SPP) in the GPS navigation system. The basic observation equa-
tion using the SPP code positioning method in the GPS system is 
(Hofmann-Wellenhof et al., 2008): 

𝐶1 = 𝑑 + 𝑐 ⋅ (d𝑡𝑟 − 𝑑𝑡𝑠) + 𝐼𝑜𝑛 + 𝑇𝑟𝑜𝑝 + 𝑇𝐺𝐷 +
Re𝑙 + 𝑀𝑝    

(1) 

where: C1 – the code observations at L1 frequency in GPS sys-
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tem (expressed in meters), c – light speed (expressed in m/s),  

d – geometric distance between satellite and receiver on L1 fre-
quency in GPS system (expressed in meters),  

d = √(X − Xsat)
2 + (Y − Ysat)

2 + (Z − Zsat)
2, (X, Y, Z)  

–  XYZ geocentric coordinates of the aircraft,  (Xsat, Ysat, Zsat)  
– satellite coordinates in GPS system, dtr – receiver clock bias  

in GPS system (expressed in seconds), dts – satellite clock bias 

in GPS system (expressed in seconds), Ion – ionosphere delay in 
GPS system (expressed in meters), Trop – troposphere correc-

tion in GPS system (expressed in meters), TGD – Time Group 

Delay in GPS system (expressed in meters), Rel – relativistic 
effect in GPS system (expressed in meters), Mp – multipath 
effect and measurement noise in GPS system (expressed 
in meters). 

In equation (1), the parameter Trop denotes an oblique trop-
osphere correction expressed as dependence (Savchuk et al., 
2018):  

𝑇𝑟𝑜𝑝 = 𝑆𝐻𝐷 + 𝑆𝑊𝐷 = 𝑚𝐻 ⋅ 𝑍𝐻𝐷 + 𝑚𝑊 ⋅ 𝑍𝑊𝐷          (2) 

where:  𝑆𝐻𝐷 – slant hydrostatic delay (expressed in meters), 

𝑆𝑊𝐷 – slant wet delay (expressed in meters), 𝑍𝐻𝐷 – zenith 
hydrostatic delay (expressed in meters), 𝑍𝑊𝐷 – zenith wet delay 

(expressed in meters), 𝑚𝐻 – mapping function for zenith 

hydrostatic delay (without a unit), 𝑚𝑊 – mapping function for 
zenith wet delay (without a unit). 

Whereas, the ellipsoidal height value is calculated using the 
recursive process based on the previously determined plane 
coordinates in the XYZ geocentric system, as shown below (Sanz 
Subirana et al., 2013): 

ℎ =
𝜌

cos𝐵𝑖
− 𝑅                                        (3) 

where: 𝜌 = √𝑋2 + 𝑌2 –  geocentric distance on the ellipsoid 
(expressed in meters), 𝑅 – radius of curvature of the first ellipsoid 

vertical, 𝑅 =
𝑎

√1−𝑒2⋅sin2𝐵𝑖
 (expressed in meters),  

𝑎 – semi-major axes (expressed in meters), 𝑒 – eccentricity 

(without a unit), 𝐵 – Latitude (expressed in degrees), 𝑖 – iteration 
step (without a unit). 

3. THE RESEARCH TEST 

The effect of the troposphere on the determination of the ellip-
soidal height during aircraft’s approach to landing was estimated 
during the research test. The Cessna 172 aircraft made a test 
flight around the EPDE military airport in Deblin (Ćwiklak et al., 
2010). The study focused strictly on the final stage of the flight, 
namely on the approach to landing and landing itself. Figure 1 
shows vertical flight trajectory using the ellipsoidal height values 
during the approach to landing. 

Analysis of the tropospheric effect on the determination of the 
aircraft’s ellipsoidal height was conducted. The analysis intended 
to detect a change in the ellipsoidal height of the aircraft’s flight 
with troposphere correction and without it. The effect of the tropo-
sphere was considered in two deterministic models: the 
Saastamoinen model and the SBAS model. Consequently, three 
results were obtained: in the first two results models that took into 
account tropospheric effect were used, whereas in the third tropo-
sphere correction was eliminated and omitted.  

The 𝑇𝑟𝑜𝑝 parameter was estimated in Saastamoinen model 

as below (Abdelfatah et al., 2018): 

𝑇𝑟𝑜𝑝 =
1

cos𝑧
⋅ (𝑍𝐻𝐷𝑆𝑎𝑎𝑠 + 𝑍𝑊𝐷𝑆𝑎𝑎𝑠)                                 (4) 

where:  

ZHDSaas = 0.002277 ⋅
P

1−0.00266⋅cos(2ϕ)−0.00000028⋅h
, 

ZWDSaas = 0.002277 ⋅ (
1255

T
+ 0.05) ⋅ e, (P, T, e) – pres-

sure, temperature and water vapor pressure, (ϕ, h) – Latitude 
and ellipsoidal height paramaters, z – zenith angle. 

 

Fig. 1. The vertical trajectory at approach to landing procedure 

The Trop parameter was estimated in SBAS model as below 
(Uemo et al., 2001): 

𝑇𝑟𝑜𝑝 =
1.001

√0.002001+sin2𝐸𝑙
⋅ (𝑍𝐻𝐷𝑆𝐵𝐴𝑆 + 𝑍𝑊𝐷𝑆𝐵𝐴𝑆)           (5) 

where: 𝑍𝐻𝐷𝑆𝐵𝐴𝑆 = 𝑍𝐻𝐷0 ⋅ (1 −
𝛽⋅ℎ

𝑇𝐾
)

𝑔

𝑅𝑑⋅𝛽, 𝑍𝑊𝐷𝑆𝐵𝐴𝑆 =

𝑍𝑊𝐷0 ⋅ (1 −
𝛽⋅ℎ

𝑇𝐾
)

(𝜆+1)⋅𝑔

𝑅𝑑⋅𝛽
−1

, (ZHD0, ZWD0) – ZHD and ZWD 

term at sea level,  (λ, β) – water vapor lapse rate and tempera-

ture lapse rate, (g, Rd) – constant coefficients,  

h – ellipsoidal height paramaters, TK – temperature, El – eleva-
tion angle. 

Calculations of the aircraft’s positioning were made  
in RTKLIB v.2.4.3 software using RTKPOST module. Calculation 
strategy using the RTKPOST library involved (Takasu, 2013):  

 positioning method: SPP; 

 elevation angle: 5o, based on ICAO recommendation (ICAO, 
2006);  

 source of the ionospheric correction: message in the naviga-
tion file; 

 source of the tropospheric correction: Saastamoinen model for 
the first result, SBAS for the second result, OFF for the third 
case; 

 source of the ephemeris data and satellite clock corrections: 
navigation file; 

 coordinate system: ellipsoidal BLh; 

 a priori average deviation of the pseudorange: ml = 1m; 

 type of observation: code at L1 frequency; 

 weight: in the elevation angle function, p = (
ml

sinEl
)
2

; 

 maximum DOP value: 30; 
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 observation interval: 1 s, 

 multipath and measurement noise: applied. 

4. THE RESULTS 

Ellipsoidal height value with and without troposphere correc-
tion was determined during the first stage of the study. Figure 2 
shows changes in ellipsoidal height calculated using the SPP 
code method. Results, where troposphere correction obtained 
from the Saastamoinen model was used, varied from 143.5 m to 
650.6 m. Whereas, ellipsoidal height in the SBAS troposphere 
model varied from 143.6 m to 651.6 m. Ellipsoidal height value in 
the third result, where troposphere correction was not considered 
(OFF), ranged between 152.9 m and 666.6 m. 

 

Fig. 2. The results of ellipsoidal height at approach to landing procedure 

Values ℎ shown in Figure 2 were compared to analyze the re-
sults of the aircraft’s ellipsoidal height (h). For this purpose, differ-
ences in the aircraft’s ellipsoidal height h were determined (Auh et 
al., 2018): 

{

𝑑ℎ1 = ℎ𝑂𝐹𝐹
𝑆𝑃𝑃 − ℎ𝑆𝑎𝑎𝑠𝑡𝑎𝑚𝑜𝑖𝑛𝑒𝑛

𝑆𝑃𝑃

𝑑ℎ2 = ℎ𝑂𝐹𝐹
𝑆𝑃𝑃 − ℎ𝑆𝐵𝐴𝑆

𝑆𝑃𝑃

𝑑ℎ3 = ℎ𝑆𝐵𝐴𝑆
𝑆𝑃𝑃 − ℎ𝑆𝑎𝑎𝑠𝑡𝑎𝑚𝑜𝑖𝑛𝑒𝑛

𝑆𝑃𝑃

                                             (6) 

where: ℎ𝑂𝐹𝐹
𝑆𝑃𝑃  – ellipsoidal height of aircraft without troposphere 

correction, see equation (3) (expressed in meters), ℎ𝑆𝑎𝑎𝑠𝑡𝑎𝑚𝑜𝑖𝑛𝑒𝑛
𝑆𝑃𝑃  

– ellipsoidal height of aircraft with troposphere correction 
of Saastamoinen model, see equation (3) (expressed in meters), 

ℎ𝑆𝐵𝐴𝑆
𝑆𝑃𝑃  – ellipsoidal height of aircraft with troposphere correction of 

SBAS model, see equation (3) (expressed in meters). 
Value of the aircraft’s ellipsoidal height difference is defined as 

a function of time (Figure 3). The corresponding differences of the 
ellipsoidal height dh1 are in the range of 6.7 m and 17.3 m, the 
average ellipsoidal height difference is 13.1 m and its RMS error 
equals 13.4 m. Meanwhile, aircraft’s ellipsoidal height difference 
dh2 ranges from 6.8 m to 16.0 m, the average height difference 
equals 12.6 m, and the RMS error is 12.7 m. Whereas, aircraft’s 
ellipsoidal height difference dh3 varies from -0.1 m to 1.3 m, the 
average ellipsoidal height difference equals 0.5 m, and the RMS 
error is 0.7 m. This, therefore, shows that troposphere correction 
effect is essential to determining the ellipsoidal height of the air-

craft during landing approach. Ignoring the tropospheric effect on 
the positioning of the aircraft causes significant errors in determi-
nation of its height. 

 

Fig. 3. The difference of ellipsoidal height at approach  
            to landing procedure 

The obtained results of the height differences (dh1, dh2, dh3) 
were also presented in a function of the ellipsoidal height change 
during the Cessna 172 aircraft’s flight (see Fig. 4). Figure 4 shows 
that (dh1, dh2) parameters have the highest value in the range of 
350 and 700 m. Moreover, significant differences in the (dh1, dh2) 
parameters occur directly during landing at Deblin Airport. In air 
navigation, information about the significant tropospheric effect on 
the determination of the aircraft’s ellipsoidal height during its 
approach to landing is negative for the safety of the flight. Thus, 
studying the tropospheric effect on the determination of the air-
craft’s ellipsoidal height in this flight stage is of a grave importance 
in aviation. The change in the ellipsoidal height of the aircraft is 
not that significant for dh3 parameter – the difference of ellipsoidal 
height is relatively small, less than 1.3 m. Therefore, the use of 
the troposphere model in equation (1) is important for the SPP 
code method in air navigation. 

 

Fig. 4. The difference of ellipsoidal height at approach  
            to landing procedure 

The next stage of the study focused on determining the accu-
racy of the vertical component h in aircraft positioning using the 
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SPP code method. Therefore, ellipsoidal height determined using 
the SPP method was compared with its more accurate value 
obtained using the dual-frequency L1/L2 PPP method. Using this 
method, the h-component of an aircraft can be determined with an 
average error of about 0.1 m. Thus, PPP technology is also used 
in air navigation to recreate the exact flight trajectory of an aircraft. 
Accuracy of the vertical component h in aircraft positioning is 
determined below using the SPP code method (Uemo et al., 
2001): 

{

𝑟ℎ1 = ℎ𝑂𝐹𝐹
𝑆𝑃𝑃 − ℎ𝑃𝑃𝑃

𝑟ℎ2 = ℎ𝑆𝑎𝑎𝑠𝑡𝑎𝑚𝑜𝑖𝑛𝑒𝑛
𝑆𝑃𝑃 − ℎ𝑃𝑃𝑃

𝑟ℎ3 = ℎ𝑆𝐵𝐴𝑆
𝑆𝑃𝑃 − ℎ𝑃𝑃𝑃

                                                        (7) 

where: ℎ𝑃𝑃𝑃 – ellipsoidal height of aircraft based on PPP solution 

(expressed in meters). 

 

Fig. 5. The accuracy of ellipsoidal height at approach  
            to landing procedure 

Figure 5 shows the accuracy of the aircraft’s h component ob-
tained after using the SPP code method. When the troposphere 
correction is not applied (OFF), the accuracy of the h component 
varies from -0.3 m to +13.4 m with an average accuracy value of 
7.5 m and RMS error being 8.1 m. When troposphere correction is 
determined using the Saastamoinen model with SPP method, the 
accuracy of the ellipsoidal height of the aircraft ranges from -8.4 m 
to -2.9 m, while an average accuracy equals 5.6 m and RMS error 
is 5.6 m. When the SBAS model is used, the accuracy of the 
aircraft’s ellipsoidal height varies from -8.3 m to -1.6 m, the aver-
age accuracy is -5.1 m and the RMS error is 5.2 m. 

The results of the study show that the use of the SBAS model 
increases the accuracy of the h-component positioning by 32% 
compared to when troposphere correction is not taken into ac-
count (OFF) in the positioning of the aircraft. Furthermore, the use 
of the tropospheric SBAS model increases the accuracy of the h 
positioning component by approximately 10% in comparison to 
Saastamoinen model. However, the use of the Saastamoinen 
model increases the accuracy of the h positioning component by 
approximately 25% when troposphere correction is not considered 
in the navigational calculations (OFF). 

5. CONCLUSIONS 

The paper presents the results of the navigational calculations 
measuring the tropospheric effect on the determination of the 

ellipsoidal height of an aircraft as it approaches landing. The 
accuracy of the aircraft’s navigational positioning with and without 
troposphere correction was analysed. Navigational calculations for 
the SPP code method were done in RTKLIB v.2.4.3 software. 
Calculations were based on real GPS navigation data and obser-
vations from an onboard GNSS receiver installed on a Cessna 
172 aircraft. As part of the study, the position of the aircraft was 
determined using three methods: 1) the Saastamoinen tropo-
sphere model, 2) the SBAS troposphere model, 3) without tropo-
sphere correction (OFF). Values of the aircraft’s ellipsoidal height 
obtained using the SPP code method were compared with more 
accurate data obtained using the PPP measurement technique. 
The study shows that: 

 Omission of the troposphere correction in the navigational 
calculations causes low accuracy (over 13 m) in determination 
of the vertical component h. 

 Consideration of the troposphere correction in navigational 
calculations increases the accuracy of the vertical component 
h determination by 25%–32%. 

 Troposphere correction effect plays a crucial role 
in determining the ellipsoidal height accuracy of the aircraft’s 
flight in navigation calculations. 
In the future, the authors will estimated the troposphere delay, 

especially Zenith Troposphere Delay (ZTD) in kinematic test in 
aviation. In addition, the ZTD will be calculated using the PPP 
method for dual-frequency onboard GNSS receiver. This solution 
will be tested in absolute and differential GNSS positioning in 
aviation.  
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Abstract: The paper presents a rigorous and straightforward approach for obtaining the 2D boundary integral equations for a thermoelas-
tic half-space containing holes, cracks and thin foreign inclusions. It starts from the Cauchy integral formula and the extended Stroh  
formalism which allows writing the general solution of thermoelastic problems in terms of certain analytic functions. In addition, 
 with the help of it, it is possible to convert the volume integrals included in the equation into contour integrals, which, in turn, will allow  
the use of the method of boundary elements. For modelling of solids with thin inhomogeneities, a coupling principle for continua of different 
dimensions is used. Applying the theory of complex variable functions, in particular, Cauchy integral formula and Sokhotski–Plemelj  
formula, the Somigliana type boundary integral equations are constructed for thermoelastic anisotropic half-space. The obtained integral 
equations are introduced into the modified boundary element method. A numerical analysis of the influence of boundary conditions 
 on the half-space boundary and relative rigidity of the thin inhomogeneity on the intensity of stresses at the inclusions is carried out. 

Keywords: thermoelasticity, anisotropic half-space, boundary element method, thin inclusion, crack, stress intensity factors,  
                   Stroh formalism

1. INTRODUCTION 

Modern composite materials are widely used in engineering 
structures due to their useful properties (Woo, 2011). To a large 
extent, most of them are anisotropic. It is also clear that the inter-
nal structure of most of them is not perfect. Since material fracture 
generally initiates at various defects, there is a need for the devel-
opment of analytical and numerical approaches for the analysis of 
internal physical and mechanical fields and the strength and 
reliability of the structural elements made of composite materials.  

In most cases, modelling of bulky structural elements can be 
reduced to the analysis of semi-infinite solids, for example, half-
space, since it is essential to estimate the influence of interaction 
of internal inhomogeneities with the boundary of a solid. A three-
dimensional model for solving steady-state heat conduction in a 
semi-infinite domain containing an elementary cuboidal inhomo-
geneity was established by Yang et al. (2019). Three-dimensional 
exact fundamental solutions of the thermoelastic field in a trans-
versely isotropic elastic medium weakened by a half infinite plane 
crack subjected to a pair of point thermal loadings symmetrically 
acting on the crack surface were presented by Li (2012). Sherief 
et al. (2014) applied the fractional order theory of thermoelasticity 
to a two-dimensional problem for a half-space. Şeremet (2011) 
derived the exact Green’s function and a Poisson-type integral 
formula for a boundary-value problem (BVP) for a thermoelastic 
wedge, half-space and quarter-space. For solving two-
dimensional thermoelastic crack problems, Chen et al. (2016) 
used singular edge-based smoothed finite element method (ES-
FEM).  

The jump function method is convenient and effective in simu-
lation of thin inhomogeneities (Sulym, 2007). The idea of this 

method is that the inclusion as a geometric object is excluded 
from consideration, and its effect is reduced to introduction of 
certain functions of the jump of physical and mechanical fields in 
the medium while passing the median surface of the thin-walled 
inhomogeneity. 

The boundary element method (BEM) perfectly suits for solv-
ing the stress concentration and fracture mechanics problems due 
to its high precision and efficiency (Bozhydarnyk et al., 2011; Hou, 
2011; Qin, 1999; Shiah, 2000). Tokovyy and Ma (2009) obtained 
the Volterra integral equations of thermoelasticity for the ortho-
tropic plane, half-plane and a strip. However, in the presence of 
thermal effects, there are additional volume integral terms in 
integral equations that fully reduce the advantages of BEM. In the 
case of isotropic solids, these volume integrals can be easily 
converted to boundary ones (Mukherjee, 1999). However, in the 
case of anisotropy, transformation of the volume integral into the 
contour one is a difficult task. For the first time, in the case of a 
plane thermoelasticity problem, the temperature volume integral 
was reduced to the contour one in the real domain in Pasternak 
(2012). 

The abovementioned works consider mainly half-space with 
traction-free thermally insulated surface. However, in most of the 
engineering problems, especially those of contact mechanics, 
mixed thermomechanical boundary conditions should be consid-
ered, that is, at the half-space boundary given are some compo-
nents of traction vector and some components of displacement 
vector. For example, if the half-space boundary x2 = 0 rests on 

the smooth rigid basement, the component u2 of displacement 

vector and the component t1 of traction vector are zero. Such 
problems for thermoelastic anisotropic half-space are not found in 
scientific literature. 

mailto:h.sulym@pb.edu.pl
mailto:yaroslav.pasternak@gmail.com
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In this paper, the methods based on the complex variable cal-
culus, the Stroh formalism, the jump function method and the 
BEM (Pasternak, 2012; Pasternak et al., 2013) are used to obtain 
new integral formulas and equations for anisotropic thermoelastic 
half-space with holes, cracks and thin deformable inclusions, 
taking into account all possible mixed mechanical and thermal 
boundary conditions on its boundary. 

2. GOVERNING EQUATIONS OF THERMOELASTICITY 

Consider a solid resting in a fixed rectangular coordinate sys-
tem 𝑂𝑥1𝑥2𝑥3. According to Hwu (2010), the equilibrium equation, 
the equation of thermal balance, as well as the constitutive equa-
tions of plain strain of a linearly thermoelastic body and of plane 
stationary heat conductivity are written as: 

𝜎𝑖𝑗,𝑗 = 0, ℎ𝑖,𝑖 = 0, (𝑖, 𝑗 = 1,2,3); (1) 

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑚휀𝑘𝑚 − 𝛽𝑖𝑗𝜃, ℎ𝑖 = −𝑘𝑖𝑗𝜃,𝑗, (2) 

where 휀𝑖𝑗 = (𝑢𝑖,𝑗 + 𝑢𝑗,𝑖)/2 is a strain tensor, 𝜎𝑖𝑗  is a stress 

tensor, ℎ𝑖 is a heat flux vector, 𝑢𝑖 is a displacement vector, 𝜃 is 
the change in temperature compared with the reference one, 
𝐶𝑖𝑗𝑘𝑚  are the elastic moduli, 𝑘𝑖𝑗  are the heat conduction coeffi-

cients, 𝛽𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑚𝛼𝑘𝑚 (𝑖, 𝑗, 𝑘, 𝑚 = 1, … ,3) are the thermal 

moduli and 𝛼𝑖𝑗  are the thermal expansion coefficients. The ten-

sors 𝐶𝑖𝑗𝑘𝑚, 𝑘𝑖𝑗 , 𝛼𝑖𝑗  and 𝛽𝑖𝑗  are fully symmetric. Here and further, 

the Einstein summation convention is used. Using the generalised 
Stroh formalism, it is possible to derive the following 
dependences:  

𝜃 = 2Re{𝑔′(𝑧𝑡)}, 𝜗 = 2𝑘𝑡Im{𝑔′(𝑧𝑡)}, ℎ1 = −𝜗,2, ℎ2 = 𝜗,1, 𝑘𝑡 =

√𝑘11𝑘22 − 𝑘12
2, 𝐮 = 2Re[𝐀𝐟(𝑧∗) + 𝐜𝑔(𝑧𝑡)], 𝛗 = 2Re[𝐁𝐟(𝑧∗) +

𝐝𝑔(𝑧𝑡)], 𝜎𝑖1 = −𝜑𝑖,2, 𝜎𝑖2 = 𝜑𝑖,1; 𝑧𝑡 = 𝑥1 + 𝑝𝑡𝑥2, 𝑧𝛼 = 𝑥1 +

𝑝𝛼𝑥2, 𝐟(𝑧∗) = [𝐹1(𝑧1), 𝐹2(𝑧2), 𝐹3(𝑧3)]𝐓, (3) 

where 𝜗 is a heat flux function, 𝐹𝛼(𝑧𝛼) and 𝑔(𝑧𝑡) are the 
complex analytic functions with respect to their arguments and the 
complex constant 𝑝𝑡 is a root (with a positive imaginary part) of 
the characteristic equation for heat conduction 
𝑘22𝑝𝑡

2 + 2𝑘12𝑝𝑡 + 𝑘11 = 0.  

Constant complex matrices 𝐀, 𝐁, vectors 𝐜, 𝐝 and scalars 

𝑝𝛼(𝛼 = 1,2,3) are determined from the extended Stroh 
eigenvalue problem. 

The relationship between the Stroh's complex potentials and 
vector functions of displacements and stresses is given by the 
following relations: 

𝐟(𝑧∗) = 𝐁T𝐮 + 𝐀T𝛗 − 𝑩T𝐮𝑡 − 𝐀T𝛗𝑡 , 

𝐮t = 2Re{𝐜𝑔(𝑧𝑡)}, 𝛗t = 2Re{𝐝𝑔(𝑧𝑡)}. (4) 

Based on Eq. (3), one can derive the following relation between 

the function 𝑔′(𝑧𝑡), temperature and heat flux function 

𝑔′(𝑧𝑡) =
1

2
(𝜃 + 𝑖

𝜗

𝑘𝑡
). (5) 

3. DERIVATION OF INTEGRAL FORMULAE  
FOR THE STROH COMPLEX FUNCTIONS 

For thermoelastic half-space 𝑥2 > 0 containing a system 
of holes bounded with smooth closed contours 𝛤 = ⋃ 𝛤𝑖𝑖 , the 
following dependencies are derived: 

 

𝐟(𝑧∗) =
1

2𝜋𝑖
∫ ⟨

𝑑𝜏∗

𝜏∗−𝑧∗
⟩ 𝐟(𝜏∗)

𝛤
+

1

2𝜋𝑖
∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1),

∞

−∞
 (Im 𝑧∗ > 0),(6) 

where ⟨𝐹(𝑧∗)⟩ = diag[𝐹1(𝑧1), 𝐹2(𝑧2), 𝐹3(𝑧3)].  
It is obvious that outside the half-space, Cauchy integrals (6) 

are equal to zero. Therefore, for external points 𝑧∗̅ (Im 𝑧∗ > 0), 
Eq. (6) is writes as: 

 

1

2𝜋𝑖
∫ ⟨

𝑑𝜏∗

𝜏∗−�̅�∗
⟩ 𝐟(𝜏∗)

𝛤
+

1

2𝜋𝑖
∫ ⟨

𝑑𝑥1

𝑥1−�̅�∗
⟩ 𝐟(𝑥1)

∞

−∞
= 0, (Im 𝑧∗ > 0). (7) 

 

Integral representations in Eqs (6) and (7) include linear 
integrals along the infinite half-space boundary that are 
inconvenient for further calculations. To exclude them from 
consideration, we will use four different types of boundary 
conditions on the half-space boundary: 

 

𝜗(𝑥1) = 0 (𝑥2 = 0); (8a) 
 

𝜃(𝑥1) = 0 (𝑥2 = 0); (8b) 
 

𝑢1(𝑥1) = 0, 𝜑2(𝑥1) = 0 (𝑥2 = 0); (8c) 
 

𝑢2(𝑥1) = 0, 𝜑1(𝑥1) = 0 (𝑥2 = 0). (8d) 

3.1. Heat conduction  

According to the boundary conditions in Eq. (8a) and Eq. (5), 
the integral formula for the function 𝑔′(𝑧𝑡) can be rewritten as 
follows: 

 

𝑔′(𝑧𝑡) =
1

2𝜋𝑖
∫

𝑔′(𝜏𝑡)𝑑𝜏𝑡

𝜏𝑡−𝑧𝑡𝛤
+

1

4𝜋𝑘𝑡
∫

𝜗(𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡

∞

−∞
. (9) 

 

Having calculated the complex conjugate expression for the 
Cauchy integral and using Eqs (6) and (5), we obtain the integral 
value along the half-space boundary: 

 

1

4𝜋𝑖
∫

𝜃(𝑥1)𝑑𝑥1

𝑥1−𝑧𝑡

∞

−∞
= −

1

2𝜋𝑖
∫

𝑔′(𝜏𝑡)𝑑�̅�𝑡

�̅�𝑡−𝑧𝑡𝛤
 . (10) 

 

Substituting Eq. (10) into (9), one obtains the integral formula 
for a complex function 𝑔′(𝑧𝑡). 

 

𝑔′(𝑧𝑡) =
1

2𝜋𝑖
[∫

𝑔′(𝜏𝑡)𝑑𝜏𝑡

𝜏𝑡−𝑧𝑡𝛤
− ∫

𝑔′(𝜏𝑡)𝑑�̅�𝑡

�̅�𝑡−𝑧𝑡𝛤
].    (11) 

 

Using Eq. (5), we can construct an integral representation of 
a function 𝑔′(𝑧𝑡) using the boundary values of physical 
parameters 𝜗 and 𝜃: 

 

𝑔′(𝑧𝑡) =
1

4𝜋𝑖
[∫

(𝜃+𝑖
𝜗

𝑘𝑡
)𝑑𝜏𝑡

𝜏𝑡−𝑧𝑡𝛤
− ∫

(𝜃−𝑖
𝜗

𝑘𝑡
)𝑑�̅�𝑡

�̅�𝑡−𝑧𝑡𝛤
]. (12) 

 

Eq. (12) can be reduced to the first-order curvilinear integrals: 
 

𝑔′(𝑧𝑡) = −
1

4𝜋𝑖
∫ [

𝑛2(𝑠)−𝑝𝑡𝑛1(𝑠)

𝜏𝑡(𝑠)−𝑧𝑡
−

𝑛2(𝑠)−�̅�𝑡𝑛1(𝑠)

�̅�𝑡(𝑠)−𝑧𝑡
] 𝜃(𝑠)𝑑𝑠

𝛤
  

+
1

4𝜋𝑘𝑡
∫ [ln(𝜏𝑡(𝑠) − 𝑧𝑡) + ln(�̅�𝑡(𝑠) − 𝑧𝑡)]ℎ𝑛(𝑠)𝑑𝑠

𝛤
. (13) 

 

Based on Eqs (8) and (13), we obtain integral representations 
for temperature and heat flux at an arbitrary point 𝛏 in the half-
space 𝑥2 > 0: 

 

𝜃(𝛏) = 2Re{𝑔′(𝑍𝑡(𝛏))} 

= ∫ [𝛩ℎ𝑠∗(𝐱, 𝛏)ℎ𝑛(𝐱) − 𝐻ℎ𝑠∗(𝐱,ξ)𝜃(𝐱)]𝑑𝑠(𝐱)
Γ

, (14) 
 

ℎ𝑖(𝛏) = 2𝑘𝑡Im{(𝛿2𝑖 − 𝛿1𝑖𝑝𝑡)𝑔′′(𝑍𝑡(𝛏))} 

= ∫ 𝛩𝑖
ℎ𝑠∗∗(𝐱, 𝛏)ℎ𝑛(𝐱)𝑑𝛤(𝐱)

Γ
− ∫ 𝐻𝑖

ℎ𝑠∗∗(𝐱, 𝛏)𝜃(𝐱)𝑑𝑠(𝐱)
Γ

, (15) 

where the kernels are defined as: 
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𝛩ℎ𝑠∗(𝐱, 𝛏) =
1

2𝜋𝑘𝑡

[ln|𝑍𝑡(𝐱 − 𝛏)| + ln|�̅�𝑡(𝐱) − 𝑍𝑡(𝛏)|], (16) 
 

Hℎ𝑠∗(𝐱, 𝛏) =
1

2𝜋
Im {

𝑛2(𝐱)−𝑝𝑡𝑛1(𝐱)

𝑍𝑡(𝐱−𝛏)
−

𝑛2(𝐱)−𝑝𝑡𝑛1(𝐱)

𝑍𝑡(𝐱)−𝑍𝑡(𝛏)
},  (17) 

 

Θ𝑖
ℎ𝑠∗∗

= −
1

2𝜋
Im {

𝛿𝑖2−𝑝𝑡𝛿𝑖1

𝑍𝑡(𝐱−𝛏)
+

𝛿𝑖2−𝑝𝑡𝛿𝑖1

𝑍𝑡(𝐱)−𝑍𝑡(𝛏)
}, (18) 

 

H𝑖
ℎ𝑠∗∗ = −

𝑘𝑡

2𝜋
Re{(𝛿𝑖2 − 𝑝𝑡𝛿𝑖1)  

× [
𝑛2(𝐱)−𝑝𝑡𝑛1(𝐱)

[𝑍𝑡(𝐱−𝛏)]2
−

𝑛2(𝐱)−𝑝𝑡𝑛1(𝐱)

[𝑍𝑡(𝐱)−𝑍𝑡(𝛏)]2
]} . (19) 

 

Here, 𝑍∗(𝐱) = 𝑥1 + 𝑝∗𝑥2. 

3.2. Thermoelasticity 

Using the boundary conditions (8c) and (8d) and 
representation of complex potentials in Eq. (4), we can rewrite the 
integral along the boundary of the half-space in Eq. (6) as follows: 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1)

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ [𝐁T𝐮

∞

−∞
+ 𝐀T𝛗  

−𝐁T𝐮𝑡(𝑥1) − 𝐀T𝛗𝑡(𝑥1).  (20) 

As a result of integration by parts of Eq. (20) and the limitation 
of functions 𝐮𝑡(𝑥1) and 𝛗𝑡(𝑥1), we obtain the following equation. 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1)

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐀T𝛗

∞

−∞
+ ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐁T𝐮

∞

−∞
  

+ ∫ ⟨ln(𝑥1 − 𝑧∗)⟩ [𝐁T 𝜕𝐮𝐭(𝑥1)

𝜕𝑥1
+ 𝐀T 𝜕𝛗𝑡(𝑥1)

𝜕𝑥1
] 𝑑𝑥1

∞

−∞
.  (21) 

Now consider that, according to Eqs (5) and (6) and the 
boundary conditions in Eqs (8a) and (8c): 

𝐁T 𝜕𝐮𝑡(𝑥1)

𝜕𝑥1
+ 𝐀T 𝜕𝛗𝑡(𝑥1)

𝜕𝑥1
= 𝐦𝜃, (22) 

where 

𝐦 = 𝐁TRe[𝐜] + 𝐀TRe[𝐝].  (23) 

Therefore, the Cauchy integral in Eq. (21) is written as 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1)

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐀T𝛗

∞

−∞
+ ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐁T𝐮

∞

−∞
  

+ ∫ ⟨ln(𝑥1 − 𝑧∗)⟩𝐦𝜃(𝑥1)𝑑𝑥1
∞

−∞
. (24)  

Substituting Eq. (24) in Eq. (7), we can write: 

∫ ⟨
𝑑𝑥1

𝑥1−�̅�∗
⟩ [𝐀T𝛗

∞

−∞
+ BT𝐮] = − ∫ ⟨

𝑑𝜏∗

𝜏∗−�̅�∗
⟩ 𝐟(𝜏∗)

𝛤
  

− ∫ ⟨ln(𝑥1 − 𝑧∗̅)⟩𝐦𝜃(𝑥1)𝑑𝑥1
∞

−∞
. (25) 

Let us introduce the notation 𝐀T𝛗 + 𝐁T𝐮 = 𝐂𝐗, where 

𝐗 = (
𝐮
𝛗), 𝐂 is a square matrix that will be formed on the basis of 

the matrix (𝐁T𝐀T). 
Now we can rewrite Eq. (25) in a slightly different manner: 

∫ ⟨
𝑑𝑥1

𝑥1−�̅�∗
⟩ [𝐀T𝛗

∞

−∞
+ 𝐁T𝐮] = ∫ ⟨

𝑑𝑥1

𝑥1−�̅�∗
⟩ 𝐂

∞

−∞
𝐗  

= − ∫ ⟨
𝑑𝜏∗

𝜏∗ − 𝑧∗̅
⟩ 𝐟(𝜏∗)

𝛤

− ∫ ⟨ln(𝑥1 − 𝑧∗̅)⟩𝐦𝜃(𝑥1)𝑑𝑥1

∞

−∞

 

or in complex conjugate form 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐂𝐗

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−�̅�∗
⟩

∞

−∞
[𝐀

T
𝛗 + 𝐁

T
𝐮]  

= − ∫ ⟨
𝑑�̅�∗

�̅�∗−𝑧∗
⟩ 𝐟(𝜏∗)

𝛤
− ∫ ⟨ln(𝑥1 − 𝑧∗)⟩�̅�𝜃(𝑥1)𝑑𝑥1

∞

−∞
.  (26) 

Accounting for the Stroh orthogonality relations, the first 
integral on the right side of Eq. (24) can be represented as 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ [𝐀T𝛟 + 𝐁T𝐮]

∞

−∞
= ∫ ⟨

𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐂𝐗

∞

−∞
  

= − ∑ 𝐈𝛽𝐂𝐂
−1

∫ ⟨
𝑑𝑥1

𝑥1−𝑧𝛽
⟩ 𝐂𝐗

∞

−∞
3
𝛽=1 . (27) 

Here, 𝐈1 = diag[1,0,0], 𝐈2 = diag[0,1,0] and 𝐈3 = diag[0,0,1]. 

Substituting Eq. (26) into Eq. (27) and taking into account the 
value received, Eq. (24) takes the form 

∫ ⟨
𝑑𝑥1

𝑥1−𝑧∗
⟩ 𝐟(𝑥1)

∞

−∞
= ∑ ∫ ⟨

𝑑�̅�𝛽

�̅�𝛽−𝑧∗
⟩ 𝐂−1𝐂𝐈𝛽𝐟(𝜏∗)

𝛤
3
𝛽=1   

 + ∫ ⟨ln(𝑥1 − 𝑧∗)⟩[𝐦 + 𝐂−1𝐂�̅�]𝜃(𝑥1)𝑑𝑥1
∞

−∞
,  (28) 

and integrating Eq. (10) gives 

∫ ⟨ln(𝑥1 − 𝑧∗)⟩𝜃(𝑥1)𝑑𝑥1
∞

−∞
= −2 ∫ ⟨ln(�̅�𝑡 − 𝑧∗)⟩𝑔′(𝜏𝑡)𝑑�̅�𝑡𝛤

. (29) 

Therefore, the integral formula in Eq. (7) can be written in the 
form which does not contains integrals along the boundary of the 
half-space 

𝐟(𝑧∗) =
1

2𝜋𝑖
[∫ ⟨

𝑑𝜏∗

𝜏∗−𝑧∗
⟩ 𝐟(𝜏∗)

𝛤
+ ∑ ∫ ⟨

𝑑�̅�𝛽

�̅�𝛽−𝑧∗
⟩ 𝐂−1𝐂𝐈𝛽𝐟(𝜏∗)

𝛤
3
𝛽=1   

−2 ∫ ⟨ln(�̅�𝑡 − 𝑧∗)⟩[𝐦 + 𝐂−1𝐂�̅�]𝑑�̅�𝑡Γ
].  (30) 

Using Eqs (4) and (5), the integral formula in Eq. (30) takes 
the form: 

𝐟(𝑧∗) =
1

2𝜋𝑖
[− ∫ [⟨

𝑛2(𝑠) − 𝑝∗𝑛1(𝑠)

𝜏∗(𝑠) − 𝑧∗
⟩ 𝐁T

𝛤

 

+ ∑ ⟨
𝑛2(𝑠) − �̅�𝛽𝑛1(𝑠)

�̅�𝛽(𝑠) − 𝑧∗
⟩ 𝐂−1𝐂𝐈𝛽�̅�T

3

𝛽=1

] 𝐮(𝑠)𝑑𝑠 

+ ∫[⟨ln(𝜏∗(𝑠) − 𝑧∗)⟩𝐀T

𝛤

 

+ ∑⟨ln(�̅�𝛽(𝑠) − 𝑧∗)⟩𝐂−1𝐂𝐈𝛽�̅�T

3

𝛽=1

] 𝐭(𝑠)𝑑𝑠 

− ∫⟨ln(𝜏∗(𝑠) − 𝑧∗)⟩(𝐀TRe[𝐝(𝑛2 − 𝑛1𝑝𝑡)]

𝛤

 

+𝐁TRe[𝐜(𝑛2 − 𝑛1𝑝𝑡)])𝜃(𝑠)𝑑𝑠                                                       (31) 

− ∫ ∑⟨ln(�̅�𝛽(𝑠) − 𝑧∗)⟩𝐂−1𝐂𝐈𝛽(�̅�TRe[𝐝(𝑛2 − 𝑛1𝑝𝑡)]

3

𝛽=1𝛤

 

+�̅�TRe[𝐜(𝑛2 − 𝑛1𝑝𝑡)])𝜃(𝑠)𝑑𝑠 

− ∫⟨ln(�̅�𝑡(𝑠) − 𝑧∗)⟩[𝑛2(𝑠) − �̅�𝑡𝑛1(𝑠)][𝐦 + 𝐂−1𝐂�̅�]𝜃(𝑠)𝑑𝑠

𝛤

 

−
1

𝑘𝑡
∫⟨𝑓∗(𝜏∗(𝑠) − 𝑧∗)⟩(𝐀TIm[𝐝] + 𝐁TIm[𝐜])ℎ𝑛(𝑠)𝑑𝑠

𝛤

 

+
1

𝑘𝑡
∫⟨𝑓∗(�̅�𝑡 − 𝑧∗)⟩[𝐦 + 𝐂−1𝐂�̅�]ℎ𝑛(𝑠)𝑑𝑠

Γ

 

−
1

𝑘𝑡
∫ ∑⟨𝑓∗(�̅�𝛽(𝑠) − 𝑧∗)⟩𝐂−1𝐂𝐈𝛽

3

𝛽=1Γ

 

× (�̅�TIm[𝐝] + �̅�TIm[𝐜])ℎ𝑛(𝑠)𝑑𝑠.  
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Based on Eqs (3), (9) and (31), one can derive the following 
Somigliana type integral identity for extended displacement at the 
arbitrary point 𝛏 of thermoelastic half-space: 

𝐮(𝛏) = 2Re{𝐀𝐟(𝑍∗(𝛏)) + 𝐜𝑔(𝑍𝑡(𝛏))} = ∫[

Γ

𝐔ℎ𝑠(𝐱, 𝛏)𝐭(𝐱) 

−𝐓hs(𝐱, 𝛏)𝐮(𝐱) + 𝐫ℎ𝑠(𝐱, 𝛏)𝜃(𝐱) + 𝐯ℎ𝑠(𝐱, 𝛏)ℎ𝑛(𝐱)]𝑑𝑠(𝐱). (32) 

Here, the kernels are defined as: 

𝐔ℎ𝑠(𝐱, 𝛏) =
1

𝜋
Im[𝐀⟨lnZ∗(𝐱 − 𝛏)⟩𝐀T  

+𝐀 ∑ ⟨ln (�̅�𝛽(𝐱) − 𝑍∗(𝛏))⟩ 𝐂−1𝐂𝐈𝛽�̅�T3
𝛽=1 ]; (33) 

𝐯ℎ𝑠(𝐱, 𝛏) = −
1

𝜋𝑘𝑡
Im[𝐀⟨𝑓∗(𝑍∗(𝐱 − 𝛏))⟩(𝐀TIm[𝐝] 

−𝐁TIm[𝐜])] −
1

𝜋𝑘𝑡
Im [∑ 𝐀 ⟨𝑓∗ (�̅�𝛽(𝐱) − 𝑍∗(𝛏))⟩ 𝐂−1𝐂𝐈𝛽

3

𝛽=1

 

× (�̅�TIm[𝐝] + �̅�TIm[𝐜])] −
1

2𝜋𝑘𝑡
Re[𝐜[𝑓∗(𝑍𝑡(𝐱 − 𝛏)) 

+ 𝑓∗(�̅�𝑡(𝐱) − 𝑍𝑡(𝛏))]] +
1

𝜋𝑘𝑡
Re[𝐀⟨𝑓∗(�̅�𝑡(𝐱) − 𝑍∗(𝛏))⟩ 

× (𝐦 + 𝐂−1𝐂�̅�)]; (34) 

𝐓ℎ𝑠(𝐱, 𝛏) =
1

𝜋
Im[𝐀 ⟨

𝑛2(𝐱) − 𝑝∗𝑛1(𝐱)

𝑍∗(𝐱 − 𝛏)
⟩ 𝐁T 

+𝐀 ∑ ⟨
𝑛2(𝐱)−𝑝𝛽𝑛1(𝐱)

𝑍𝛽(𝐱)−𝑍∗(𝛏)
⟩ 𝐈β𝐂−1𝐂3

𝛽=1 𝐁
T

] and (35) 

𝐫𝑖
ℎ𝑠(𝐱, 𝛏) = −

1

𝜋
Im[𝐀⟨ln𝑍∗(𝐱 − 𝛏)⟩(𝐀TRe{𝐝(𝑛2 − 𝑝𝑡𝑛1)} 

+𝐁TRe{𝐜(𝑛2 − 𝑝𝑡𝑛1)})] −
1

𝜋
Im ∑[𝐀 ⟨ln (𝑍𝛽(𝐱) − 𝑍∗(𝛏))⟩

3

𝛽=1

 

× 𝐂−1𝐂𝐈𝛽(�̅�TRe{𝐝(𝑛2 − 𝑝𝑡𝑛1)} + 𝐁
T

Re{𝐜(𝑛2 − 𝑝𝑡𝑛1)})] 

−
1

𝜋
Im[𝐀⟨ln(�̅�𝑡(𝐱) − 𝑍∗(𝛏))⟩𝐀−1Re[𝐜](𝑛2 − 𝑝

𝑡
𝑛1)] 

+
1

𝜋
[𝐜[𝑛2 − 𝑝𝑡𝑛1]ln𝑍𝑡(𝐱 − 𝛏) 

−(𝑛2 − 𝑝
𝑡
𝑛1)ln(�̅�𝑡(𝐱) − 𝑍∗(𝛏))]]. (36) 

Here, 𝑍∗(𝐱) = 𝑥1 + 𝑝∗𝑥2. 

Eqs (5), (13) and (31) yield the following integral formula for 
the components of the extended stress tensor: 

𝛔j(𝛏) = [σij(𝛏)] = 2Re{𝐁(𝛿2𝑗 − 𝛿1𝑗𝑃)𝐟′(𝑍∗(𝛏)) 

+𝐝(𝛿2𝑗 − 𝛿1𝑗𝑝𝑡)𝑔′(𝑍𝑡(𝛏))} = ∫ 𝐃𝑗
ℎ𝑠(𝐱, 𝛏)𝐭(𝐱)𝑑𝑠(𝐱)

𝛤

 

− ∫ 𝐒𝑗
ℎ𝑠(𝐱, 𝛏)𝐮(𝐱)𝑑𝑠(𝐱)

𝛤

+ ∫ 𝐪𝑗
ℎ𝑠(𝐱, 𝛏)𝜃(𝐱)𝑑𝑠(𝐱)

𝛤

 

+ ∫ 𝐰𝑗
ℎ𝑠(𝐱, 𝛏)ℎ𝑛(𝐱)𝑑𝑠(𝐱)

Γ
. (37) 

Here  

𝐪𝑖𝑗
ℎ𝑠(𝐱, 𝛏) = −

1

𝜋
Im {𝐁 ⟨

𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍∗(𝐱 − 𝛏)
⟩     

× (𝐀TRe{𝐝(𝑛2 − 𝑝𝑡𝑛1)} + 𝐁TRe{𝐜(𝑛2 − 𝑝𝑡𝑛1)})} 

1

𝜋
Im {𝐁 ∑

𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍𝛽(𝐱) − 𝑍∗(𝛏)

3

𝛽=1

𝐂−1𝐂𝐈𝛽 

× (𝐀
T

Re{𝐝(𝑛2 − 𝑝𝑡𝑛1)} + 𝐁
T

Re{𝐜(𝑛2 − 𝑝𝑡𝑛1)})} 

−
1

𝜋
Im {𝐁 ⟨

𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍𝛽(𝐱) − 𝑍∗(𝛏)
⟩ 𝐀−1Re[𝐜](𝑛2 − 𝑝

𝑡
𝑛1)} 

−
1

2𝜋
Im {𝐝(𝛿2𝑗 − 𝑝∗𝛿1𝑗) [

𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍∗(𝐱 − 𝛏)
−

𝛿2𝑗 − 𝑝
∗
𝛿1𝑗

𝑍𝑡(𝐱) − 𝑍𝑡(𝛏)
]} ; 

𝐰𝑖𝑗
ℎ𝑠(𝐱, 𝛏) =

1

𝜋𝑘𝑡
Im[−𝐁⟨(𝛿2𝑗 − 𝛿1𝑗P∗)ln𝑍∗(𝐱 − 𝛏)⟩ 

× (𝐁TIm[𝐜] + 𝐀TIm[𝐝])] 

+
1

𝜋𝑘𝑡
Im [∑ 𝐁⟨(𝛿2𝑗 − 𝛿1𝑗P∗)ln𝑍𝛽(𝐱) − 𝑍∗(𝛏)⟩

3

𝛽=1

 

× 𝐂−1𝐂𝐈𝛽 (𝐁
T

Im[𝐜] + 𝐀
T

Im[𝐝])] 

−
1

𝜋𝑘𝑡
Re [∑ 𝐁⟨(𝛿2𝑗 − 𝛿1𝑗P∗)ln𝑍𝑡(𝐱) − 𝑍∗(𝛏))⟩

3

𝛽=1

𝐀−1Re[𝐜]] 

+
1

2𝜋𝑘𝑡
Re[𝐝(𝛿2𝑗 − 𝛿1𝑗P𝑡(ln𝑍𝑡(𝐱 − 𝛏) + ln(𝑍𝑡(𝐱) − ln𝑍𝑡(𝛏)))]; 

𝐃𝑖𝑗𝑘
ℎ𝑠 (𝐱, 𝛏) = −

1

𝜋
Im {𝐁 [⟨

𝛿2𝑗 − 𝑝∗𝛿2𝑗

𝑍∗(𝐱 − 𝛏)
⟩ 𝐀T 

+ ∑ ⟨
𝛿2𝑗 − 𝑝∗𝛿1𝑗

𝑍𝛽(𝐱) − 𝑍∗(𝛏)
⟩

4

𝛽=1

𝐂−1𝐂𝐈𝛽𝐀
T

]}  and 

𝐒𝑖𝑗𝑘
ℎ𝑠 (𝐱, 𝛏) =

1

𝜋
Im {𝐁 ⟨

(𝛿2𝑗 − 𝑝∗𝛿1𝑗)(𝑛2 − 𝑝∗𝑛1)

(𝑍∗(𝐱 − 𝛏))2
⟩ 𝐁T} 

+
1

𝜋
Im{𝐁(𝛿2𝑗 − 𝑝∗𝛿1𝑗)

 × ∑ ⟨
(𝑛2−𝑝∗𝑛1)

(𝑍𝛽(𝐱)−𝑍∗(𝛏))
2⟩4

𝛽=1 𝐂−1𝐂𝐈𝛽𝐁
T

}. (38) 

Thus, for the problem with boundary conditions in Eqs (8a) 
and (8c), appropriate integral representations can be obtained. 

4. NUMERICAL EXAMPLES 

Sample problem is considered for an anisotropic (fibreglass) 
thermoelastic half-plane x2 > 0 under the action of a uniform heat 
flow directed along its boundary, which contains internal thin, 
rectilinear thermoelastic isotropic inclusion (Fig. 1). Its length is 
𝑙 = 2𝑎 and thickness is ℎ = 0,01𝑎, and it is located at a distance 

𝑑 = 𝑎 to the edge of the half-space. Properties of the half-space 
are as follows: 𝐸1 = 55 GPa, 𝐸2 = 21 GPa, 𝐺12 = 9.7 GPa, 

𝜈12 = 0.25, 𝛼11 = 6.3 × 10−6 К−1, 𝛼22 = 2.0 × 10−5 К−1, 

𝑘11 = 3.46 W/(m∙K) and 𝑘22 = 0.35 W/(m∙K). The values of these 
constants are given in the direction of the main axes of the 
anisotropy of the material. Inclusion is assumed to be thermally 
insulated and possesses no thermal expansion. 

 
Fig. 1. Thermoelastic anisotropic half-plane with thin inclusion 

Figs 2–9 show the relationship between the generalised stress 
intensity factors (SIF) and the relative rigidity 𝑘 = 𝐺𝑖 𝐺12⁄  (𝐺𝑖  is 
the shear modulus of inclusion) of the inclusion, under the 
boundary conditions in Eqs (8a) and (8c) at different values of 

inclusion inclination angle 𝜃. The normalising SIF 𝐾0 =
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𝑎√𝜋𝑎 ∙ 𝐸1 × 𝛼11/𝑘11 ∙ ℎ0. Dashed lines show cases when the 
influence of inclusion bending is excluded from its model. As can 
be seen from the plot, this effect is significant, and therefore 
requires careful analysis. 

 

Fig. 2. The relationship between SIF 𝐾11
− /𝐾0 and the generalised  

 stiffness at different values of 𝜃 

 

Fig. 3. The relationship between SIF 𝐾11
+ /𝐾0 and the generalised  

 stiffness at different values of 𝜃 

 

Fig. 4. The relationship between SIF 𝐾12
− /𝐾0 and the generalised  

stiffness at different values of 𝜃 

 

Fig. 5. The relationship between SIF 𝐾12
+ /𝐾0 and the generalised  

 stiffness at different values of 𝜃 
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Fig. 6. The relationship between SIF 𝐾21
+ /𝐾0 and the generalised stiff 

 ness at different values of 𝜃 

 

Fig. 7. The relationship between SIF 𝐾21
− /𝐾0 and the generalised  

 stiffness at different values of 𝜃 

 

Fig. 8. The relationship between SIF 
𝐾22

+

𝐾0
 and the generalised stiffness at 

different values of 𝜃 

 

Fig. 9. The relationship between SIF 𝐾22
− /𝐾0 and the generalised  

 stiffness at different values of 𝜃  
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In Figs 2 and 3, we see that the inclusion bending does not 
affect the values of the SIFs 𝐾11

+ /𝐾0 and 𝐾11
− /𝐾0. It should also 

be noted that the maximum value of the SIFs 𝐾11
− /𝐾0 is reached 

when the inclusion is at the angle 𝜃 = 60° to the boundary of the 
half-space. At lg𝑘 < −4, the values of the SIFs do not change, 
and at lg𝑘 > −4 (except in case of 𝜃 = 75°), they monotonically 
tend to become zero.  

In Figs 4–9, it can be seen that the bending of the inclusion 
significantly affects the values of the SIFs. This is especially 
noticeable in Fig. 4, when 𝜃 = 75° and 𝜃 = 60°. As mentioned 
earlier, this effect requires careful analysis.  

One can see in Figs 8 and 9 that below lg𝑘 = 4, the values of 
the SIFs grow slowly and above lg𝑘 > 4, their growth is intense. 
When the influence of inclusion bending is excluded from 
consideration, we can see that the SIFs 𝐾22

+ /𝐾0 and 𝐾22
− /𝐾0 

increase monotonously even at lg𝑘 = 0 and tend their maximum 
values faster. 

5. CONCLUSIONS 

The paper presents a simple and straightforward approach for 
obtaining the Somigliana type integral formulae and correspond-
ing dual boundary integral equations for an anisotropic thermoe-
lastic half-space with mixed boundary conditions on its surface. 

Integral equations in conjunction with the scheme of the modi-
fied BEM allow solving a number of new problems for the thermo-
elastic half-plane containing cracks or thin deformable inclusions. 

A numerical analysis of the influence of boundary conditions 
on the half-space boundary and the relative rigidity of the thin 
inhomogeneity on stress intensity at the inclusions is provided. 
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Abstract: This article presents numerical finite element method (FEM) analysis of the stress concentration at toes and crack-like faults  
in load-carrying fillet welded cruciform joints with transversal slits resulting from non-fused root faces. Potential fatigue damage of such 
joints subjected to cyclic tensile and bending loads appears in the form of fatigue cracks starting from the weld roots or toes. The aim  
of this article is to find qualitative and quantitative relationships between geometrical parameters of the load-carrying fillet welded cruciform 
joint subjected to tensile and bending loads and the stress concentration at weld toes and roots. The results of the analysis represented by 
the stress concentration factors (SCFs) and the stress intensity factors KI and KII are shown in the form of tables, graphs and mathematical 
formulas, which may be applied for fatigue assessment of such joints.  

Key words: cruciform welded joint, load-carrying fillets, stress concentration factor, stress intensity factor, finite element method 

 
1. INTRODUCTION 

Cruciform welded joints are commonly used in engineering 
practice. There are two general types of such connections known 
as the ‘non-load carrying fillet welded joints’ and the ‘load-carrying 
fillet welded joints’. In the first type, the external loads are sus-
tained by the main plate with additional transversal stiffeners, 
whereas, in the latter, the loads pass through the fillet welds. 
Besides, both types of joints may have un-fused root faces pro-
ducing the so-called ‘lack of penetration defects’.  

It is well known that fatigue fracture produced by fluctuating 
loads is the most common damage mechanism of welded connec-
tions. Therefore, the weakest points determining fatigue life of the 
structure are related to particular zones of high stress concentra-
tion located at a weld toe and at the apex of existing slits. Fatigue 
life of such connections may be estimated in many ways, taking 
into account possible damage mechanisms, including crack loca-
tion and its possible growth. Some details of different approaches 
used for the assessment of fatigue life can be found in the litera-
ture (e.g. in Peterson, 1974; Monahan, 1995; Singh et al., 2002; 
Chung et al., 2008; Wooryong and Chitoshi, 2008; Radaj et al., 
2009; Chattopadhyay et al., 2011; Sonsino et al., 2012; Singh et 
al., 2003; Livieri and Lazzarin, 2005; Dong, 2001; Lotsberg and 
Sigurdsson, 2006; Stenberg et al., 2015; Remes, and Varsta, 
2010; Kranz and Sonsino, 2010; Schijve, 2012; Zerbst et al., 
2016; Niemi et al., 2018; Tchoffo et al., 2017). Numerous design 
procedures have also been developed and published in the form 
of standards and recommendations (e.g. Young and Lawrence, 
1985; CES, 2005; Hobbacher, 2009; Fricke, 2012; Fricke, 2013; 
ISO, 2013). Many solutions to stress concentration factors (SCFs) 
regarding various types of weldments have also been published 
(e.g. in Ushirokawa and Nakayama, 1983; Tsuji, 1990; Iida and 
Uemura, 1996; Molski et al., 2019).  

The assessment of fatigue life requires high accuracy of SCFs 
solutions. As shown in Molski et al. (2019), several percentages of 
errors in estimating maximum stress range may lead in some 
circumstances up to 200% inaccuracy in estimating fatigue life. 
Therefore, SCF approximation formulas should be highly accurate 
and cover wide range of values of all basic geometrical parame-
ters, determining shape of the joint and influencing SCF. 

The fatigue strength of the load-carrying fillet welded cruciform 
joints with the lack of penetration defects is generally lower than 
that for the non-load carrying joints because of the fact that un-
fused root faces are in transverse position to the main plate. Such 
a location of both slits may produce high stress concentration at 
the vicinity of each apex and additionally increases the maximum 
stress at the weld toe.  

The present work deals with the determination of SCFs and 
the stress intensity factors KI and KII in the weld region of a load-
carrying fillet welded cruciform joint subjected to tensile and bend-
ing loads.  

2. GENERAL ASSUMPTIONS AND MODELLING STRATEGY 

The shape and the basic geometrical parameters of the joint 
under consideration subjected to tensile and bending loads are 
shown in Figure 1. Two zones located at the weld toe and at the 
apex of the slit, denoted by A and B, respectively, represent the 
places where significant increase of stresses is expected. 

As the toe radius ρ > 0, the maximum stress is finite and can 

be represented by the stress concentration factor Kt
t for tensile 

and Kt
b for bending load, respectively. In the case of un-fused 

crack-like defect, two stress intensity factors have to be deter-
mined separately for each loading mode. For convenience, both 
SCFs for tension and bending may be represented by the follow-
ing equations:  
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𝐾𝑡
𝑡 = 𝐾𝑡0

𝑡  𝐹𝑡  (1) 

𝐾𝑡
𝑏 = 𝐾𝑡0

𝑏  𝐹𝑏  (2) 

as a product of the known stress concentration factors Kt0
t  and 

Kt0
b  for fully penetrated welds and the unknown correction func-

tions Ft and Fb that have to be determined. An extended review 

of published formulas dealing with Kt0
t  and Kt0

b  for these weld-
ments is presented in Ushirokawa and Nakayama (1983) Tsuji 
(1990) and Iida and Uemura (1996), and, therefore, they will not 
be quoted here.  

 
Fig. 1. General shape and loading conditions of the load-carrying 
            fillet welded cruciform joint with two crack-like slits 

In the case of stress intensity factors KI and KII, it is conven-
ient to introduce the following general formula: 

Kj = σ√π𝑙 FKj
  (3) 

where σ represents the remote nominal stress and FKj
 is a cor-

rection function that has to be determined. The subscript j indi-
cates the loading mode of the joint. 

There are several geometrical parameters characterising the 
shape of the weldment, as weld toe radius ρ, nominal throat thick-
ness a, weld face angle θ, thickness of the main plate t and so on. 
It was supposed that the weld face angle θ = 45º and the ratios of 
other parameters change in the following ranges: 0.1 ≤ ρ/a ≤ 0.5, 

0.25 ≤ a/t ≤ 1, 0 ≤ 2l/t ≤ 1 and 0.5 ≤ T/t ≤ 2, which usually apply 

to weldments in engineering structures. Many particular values of 
geometrical parameters were chosen in each range depending on 
the values of calculated correction functions. For example, the ρ/a 
parameter was changed by a step of 0.1, whereas T/t parameter 
was changed by a step of 0.5. In cases of two remaining parame-
ters, 5 – 10 different values were chosen from the appropriate 
range.      

Numerical finite element method (FEM) modelling of the joint 
has been carried out using ANSYS 19 MultiPhysics program and 
PLANE 182 type of finite elements. The material of the body is 
linear-elastic, isotropic and homogeneous. Small deformations 
occur because of external load. Both load-carrying main plates of 
the same thickness t are co-linear, and the shape of all fillet welds 
is identical.  

Shape of the body as well as loading and displacement 
boundary conditions of the cruciform joints are shown in Figure 2.  

About 200,000 finite elements were used for each model and 
a special attention has been given to the finite element mesh 
density at the weld critical zones A and B, which is shown in 
Figure 3. In the first case, the arc of the toe radius ρ was de-
scribed by at least 40 elements. In the second case, the use of a 
very fine mesh was necessary with special triangular elements 
located at the core around the crack tip. Such a modelling strategy 
is appropriate for approximating the stress singularity and makes 
the stress field around the crack tip proportional to r–0.5 according-
ly to the exact analytical solution based on the theory of elasticity.     

(a) 

 

(b) 

 

Fig. 2. Geometry and loading conditions – (a) tensile  
            and (b) bending – of the modelled element  

3. RESULTS AND DISCUSSION 

Several hundred numerical FEM solutions have been obtained 
for the loaded joints, which are shown in Figure 2. One example of 
such a solution for tensile load is presented in Figure 3, where 
critical zones of increased stress concentration are clearly seen. 

 
Fig. 3. Distribution of the principal stress component σ1 in the joint subjected to tension. Details A and B show the finite element mesh in both critical zones
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The calculated maximum principal stresses at the weld toe 
were compared to the nominal ones and divided by the particular 

reference values of Kt0
t  and Kt0

b  obtained in the same way for 
joints without the lack of penetration defects. Such a procedure 
made it possible to calculate particular values of correction pa-
rameters Ft  and Fb using equations (1) and (2). Using equation 

(3), the values of correction parameters FKj

t  and FKj

b  have been 

obtained in a similar way. 
The detailed analysis of the results led to the conclusion that 

two shape parameter ratios l/t and a/t are the most important and 
have significant impact on the values of all correction parameters. 
Other geometrical ratios of ρ/a and T/t have minor influence on all 

Ft, Fb, FKj

t  and FKj

b . The maximum changes in correction parame-

ters for the weld toe because of ρ/a and T/t are about 5%, where-
as for the apex of the transverse, cracks do not exceed 1%. It is 
also important to note that for tensile loading, the stress intensity 
factor, KII, is about 8–15 times lower than KI and, therefore, may 
be omitted in the procedures of fatigue life assessment. 

In the case of bending load, both stress intensity factors KI 
and KII are of the same order. In spite of the fact that their values 
are much lower than KI for tension under the same nominal stress, 
both loading modes – tension and bending – are independently 
applied in the real structures, which means that their proportions 
are generally not known.    

It is important to note that from a theoretical point of view, if 
pure bending load is applied, one half of the central slit is open, 
whereas the other tends to be closed. As mutual penetration of 
both crack faces under compression is not physically possible, 
some additional comments are necessary. Generally, there are 
two reasons confirming the solution is reasonable. The first rea-
son is that welding process never introduces a perfect crack. The 
un-fused faces are usually slightly separated and such a penetra-
tion may not occur or may be very limited. The second reason is 
that bending load usually acts together with the accompanying 
tensile load, producing additional opening of the slit. This leads to 
the conclusion that real conditions inside the weldment are in fact 
unknown and the assumptions made here are rational enough to 
explain the applicability of the solution to the assessment of fa-
tigue life.  

Some examples of particular values of correction parameters, 
transformed later into correction functions are presented in Tables 
1 – 5 and shown in Figures 4 – 8. Mathematical formulas (A1)–
(A5) derived from numerical solutions and appropriate for the 
assessment of fatigue life of the load-carrying fillet welded cruci-
form joint are presented in Appendix. The accuracy of those equa-
tions does not exceed 1% compared to the numerical FEM solu-
tions. 

Table 1. Numerical values of the correction function Ft  

ρ/a=0.5 2l/t 

a/t Kt0
t 0.0 0.25 0.50 0.75 0.90 1.0 

0.25 2.207 1.0 1.072 1.311 1.773 2.179 2.502 

0.333 2.053 1.0 1.061 1.245 1.558 1.809 2.002 

0.4 1.960 1.0 1.048 1.190 1.420 1.599 1.734 

0.6 1.759 1.0 1.020 1.077 1.167 1.237 1.289 

0.8 1.624 1.0 1.007 1.028 1.061 1.087 1.107 

1.0 1.526 1.0 1.003 1.009 1.021 1.029 1.035 

 
Fig. 4. Correction function Ft for calculating Kt

t at a weld toe of a load-

carrying fillet welded cruciform joint with a lack of penetration  
defect and subjected to tensile load 

Table 2. Numerical values of correction function FKI

t  

 2l/t 

a/t 0.10 0.25 0.50 0.75 0.90 1.0 

0.25 0.826 0.832 0.868 0.960 1.051 1.131 

0.333 0.786 0.788 0.807 0.859 0.910 0.954 

0.4 0.752 0.751 0.759 0.791 0.824 0.823 

0.6 0.648 0.643 0.635 0.638 0.646 0.655 

0.8 0.562 0.554 0.541 0.534 0.534 0.537 

1.0 0.492 0.485 0.471 0.459 0.456 0.456 

 
Fig. 5. Correction function FKI

t  for calculating KI
t at the apex of a lack  

of penetration defect in the load-carrying fillet welded cruciform 
joint subjected to tensile load 
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Table 3. Numerical values of the correction function Fb 

ρ/a=0.5 2l/t 

a/t Kt0
b 0.0 0.25 0.50 0.75 0.90 1.0 

0.25 1.784 1.0 1.011 1.052 1.143 1.223 1.282 

0.333 1.647 1.0 1.006 1.027 1.065 1.095 1.115 

0.4 1.568 1.0 1.003 1.014 1.033 1.046 1.056 

0.6 1.416 1.0 1.0 1.001 1.003 1.005 1.006 

0.8 1.328 1.0 1.0 1.0 1.0 1.0 1.0 

1.0 1.271 1.0 1.0 1.0 1.0 1.0 1.0 

 
Fig. 6. Correction function Fb for calculating Kt

b at a weld toe of a load-

carrying fillet welded cruciform joint with a lack of penetration  
defect and subjected to bending load  

 

Table 4. Numerical values of the correction function FKI
b  

 2l/t 

a/t 0.10 0.25 0.50 0.75 0.90 1.0 

0.25 0.026 0.066 0.133 0.198 0.238 0.264 

0.333 0.022 0.054 0.106 0.153 0.177 0.193 

0.4 0.018 0.045 0.088 0.125 0.144 0.155 

0.6 0.011 0.026 0.051 0.072 0.083 0.089 

0.8 0.006 0.016 0.031 0.045 0.052 0.056 

1.0 0.004 0.010 0.021 0.030 0.034 0.037 

 

  
Fig. 7. Correction function FKI

b  for calculating KI
b at the apex of a lack  

of penetration defect in the load-carrying fillet welded cruciform 
joint subjected to bending load 

Tab. 5. Numerical values of the correction function FKII
b  

 2l/t 

a/t 0.10 0.25 0.50 0.75 0.90 1.0 

0.25 0.127 0.126 0.117 0.102 0.090 0.080 

0.333 0.114 0.111 0.101 0.086 0.075 0.068 

0.4 0.100 0.098 0.088 0.075 0.066 0.060 

0.6 0.066 0.064 0.059 0.051 0.046 0.042 

0.8 0.043 0.043 0.040 0.035 0.033 0.031 

1.0 0.029 0.029 0.028 0.025 0.024 0.023 

 
Fig. 8. Correction function FKII

b  for calculating KII
b  at the apex of a lack of 

penetration defect in the load-carrying fillet welded cruciform joint 
subjected to bending load 
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The correction formula (4) proposed by Ushirokawa and Na-
kayama (1983), reported also in Iida and Uemura (1996), and 
represented in parameters regarded in the present work, also 
deals with the increase in SCF at the weld toe of a load-carrying 
fillet joint subjected to tensile load and should correspond to the 
present solution given by equation (A1).   

FUN
t = 1 + 0.64

(2𝑙 t⁄ )2

2√2𝑎 t⁄
− 0.12

(2𝑙 t⁄ )4

(2√2𝑎 t⁄ )
2          (4) 

Comparison of both equations have shown significant differ-
ences in calculating correction values up to 33% in the range of 
0.25 ≤ a/t ≤ 0.5 and about ±5% in the range of 0.5 ≤ a/t ≤ 1.  

4. CONCLUSIONS 

An extended analysis of numerical FEM solutions carried out 
using the ANSYS 19 MultiPhysics program for the load-carrying 
fillet welded cruciform joint with the lack of penetration defects has 
shown the significant influence of the geometrical parameters a, l 
and t of the weldment on the stress concentrations at two critical 
zones: at the weld toe and at the weld root. The first effect is 
represented by the correction functions of the stress concentration 
factor, whereas the second may be quantitatively described by the 
stress intensity factors KI and KII commonly used in fracture me-
chanics. The influence of the other parameters ρ and T has a 
minor effect. 

Five correction functions have been derived, making it possi-
ble to calculate the corrected values of the stress concentration 
factors at the weld toe and particular values of KI and KII at the 
weld root for tensile and bending loads. For tensile load, KII is 8–
15 times smaller than KI and may be omitted in the assessment of 
fatigue life. The accuracy of the formulas compared to the FEM 
results does not exceed 1.5%. The formulas presented in Appen-
dix facilitate the computer-aided assessment of fatigue life of the 
structural element with such welded connections. 

The correction formula of Ushirokawa and Nakayama (4) dif-
fers from the present solution given by equations (A1) of about 
±5% in the range of 0.5 ≤ a/t ≤ 1 and provides underestimated 
values up to −33% for the lower a/t ratios in the range of 0.25 ≤ 
a/t ≤ 0.5. 

Appendix: Formulas for calculating SCFs and stress intensity 
factors at the critical zones of a load-carrying fillet welded cruci-
form joint containing lack of penetration defects 

Range of application: 0 < ρ/a ≤ 0.5; 0.25 ≤ a/t ≤ 1; 0 ≤ 2l/t ≤ 
1 and 0.5 ≤ T/t ≤ 2.  

 
Tensile load, SCF at a weld toe:  

Kt
t = Kt0

t  Ft             (A1) 

where 

Ft = 1 + A1(2𝑙 t⁄ )2 + A2(2𝑙 t⁄ )3  

A1 = Exp(−5.25(𝑎 t⁄ )3 + 0.103) 

A2 = 4.028 − 24.433(𝑎 t⁄ ) + 51.482(𝑎 t⁄ )2

− 45.700(𝑎 t⁄ )3 + 14.655(𝑎 t⁄ )4 

 

Tensile load, mode I stress intensity factor: 

KI
t = σt√π𝑙  FKI

t    (A2) 

where 

FKI

t = 1 + B1 + B2(2𝑙 t⁄ )2 + B3(2𝑙 t⁄ )6 

B1 = −0.774(𝑎 t⁄ ) + 0.366(𝑎 t⁄ )2 − 0.103(𝑎 t⁄ )3 

B2 = 0.489 − 1.434(𝑎 t⁄ ) + 1.086(𝑎 t⁄ )2 − 0.204(𝑎 t⁄ )3 

B3 = 0.439 − 2.013(𝑎 t⁄ ) + 3.126(𝑎 t⁄ )2 − 1.523(𝑎 t⁄ )3 

 
Bending load, SCF at a weld toe: 

Kt
b = Kt0

b  Fb              (A3) 

where  

Fb = 1 + C1(2𝑙 t⁄ )2 + C2(2𝑙 t⁄ )3  

C1 = Exp(−43.228(𝑎 t⁄ )4 − 1.693) 

C2 = Exp(−58.566(𝑎 t⁄ )2 + 1.613) 

 
Bending load, mode I stress intensity factor:  

KI
b = σb√π𝑙 FKI

b           (A4) 

where 

FKI

b = D1(2𝑙 t⁄ ) + D2(2𝑙 t⁄ )3 

D1 = 0.470 − 0.999(𝑎 t⁄ ) + 0.786(𝑎 t⁄ )2 − 0.214(𝑎 t⁄ )3 

D2 = 0.233 − 1.713(𝑎 t⁄ ) + 3.939(𝑎 t⁄ )2 − 3.737(𝑎 t⁄ )3

+ 1.272(𝑎 t⁄ )4 

 

Bending load, mode II stress intensity factor:  

KII
b = σb√π𝑙 FKII

b            (A5) 

where    

FKII

b = E1 + E2(2𝑙 t⁄ )2  

E1 = 0.193 − 0.281(𝑎 t⁄ ) + 0.118(𝑎 t⁄ )2 

E2 = −0.074 + 0.100(𝑎 t⁄ ) − 0.033(𝑎 t⁄ )2 

List of symbols: 

a, nominal weld throat thickness; Ft, correction function of Kt0
t  for 

partial penetration welds; Fb, correction function of Kt0
b  for partial 

penetration welds; FKI

t , correction function of KI for tensile load; 

FKI

b , correction function of KI for bending load; FKII

b , correction 

function of KII for bending load; FEM, finite element method; 2l, 
total length of a crack or slit appearing as a consequence of un-

fused root faces; KI
t, mode I stress intensity factor for cracks or 

un-fused slits, tensile load; KII
t , mode II stress intensity factor for 

cracks or un-fused slits, tensile load; KI
b, mode I stress intensity 

factor for cracks or un-fused slits, bending load; KII
b , mode II 

stress intensity factor for cracks or un-fused slits; bending load; 

Kt
t = σ1max/σt, weld toe stress concentration factor for partial pene-
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tration welds (tension); Kt
b = σ1max/σb, weld toe stress concentra-

tion factor for partial penetration welds (bending); Kt0
t  = σ1max/σt, 

weld toe stress concentration factor for full penetration welds 

(tension); Kt0
b  = σ1max /σb, weld toe stress concentration factor for 

full penetration welds (bending); r, radial distance measured from 
the crack tip; SCF, stress concentration factor; t, thickness of the 
main plate; T, thickness of the transversal plate; ρ, weld toe radi-
us; σt, nominal tensile stress; σb, nominal bending stress; σ1max, 
maximum principal stress at a weld toe. 
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Abstract: The paper presents a novel approach for the analysis of steady-state heat conduction of solids containing perfectly conductive 
thread-like inhomogeneities. Modelling of a thread-like heat conductive inhomogeneity is reduced to determination of density of heat dis-
tributed along a spatial curve, which replaces the inclusion. Corresponding boundary integral equations are obtained for anisotropic solids 
with thread-like inclusions. Non-integral terms are computed in a closed form. It is shown that, nevertheless the singularity of the equation 
is 1/r, it is hypersingular, since the kernel is symmetric. Boundary element approach is adopted for solution of the obtained equations. Nu-
merical example is presented for a rectilinear conductive thread, which verifies derived boundary integral equations.  

Key words: thread-like inclusion, steady-state heat conduction, anisotropy, boundary integral equation, hypersingular 

1. INTRODUCTION 

Thermomechanical problems for inhomogeneities in structural 
materials have been widely studied in modern scientific literature, 
since they are closely related to the analysis of effective proper-
ties, strength and fracture of composite materials. Berger et al. 
(2005) presented an analytic fundamental solution for steady-state 
heat conduction in functionally graded anisotropic medium. Wang 
et al. (2005) developed a meshless method for the analysis of 
steady-state heat conduction in anisotropic and inhomogeneous 
solids. Vales et al. (2016) presented a homogenisation technique 
for the estimation of effective thermal properties of composite 
materials and used it for the analysis of experimental data from 
thermographic measurements. Khan et al. (2016) presented an 
analytic approach for determination of effective thermal properties 
of composites with highly conductive inclusions. Kushch et al. 
(2017) derived an analytic approach for determination of effective 
heat conduction properties of composite materials with ellipsoidal 
inclusions. 

In general, thermomechanical problems for inhomogeneities 
can be divided into three main classes with respect to their geo-
metric shape, which determine the approaches used in their anal-
ysis. These are: a) bulky inhomogeneities, in which the dimen-
sions in different directions are comparable; b) thin inhomogenei-
ties (ribbons, shells), in which one dimension is much less than 
two others and c) thread-like inhomogeneities (wires), in which 
one dimension is much greater than two others. 

The class of bulky inhomogeneities includes globular defects 
of structural elements or globular filament of composite materials, 
which is rarely used at present. Such inclusions are mainly stud-
ied within the general approaches of thermomechanics. Analytic 
solutions for anisotropic solids with ellipsoidal inclusions are pre-
sented by Kushch et al. (2017). Chao et al. (2009) derived an 
exact solution for heat conduction in three-phase composite mate-
rials with elliptical inhomogeneities. Cepite and Jakovics (2008) 

presented a finite element analysis of heat conduction in inhomo-
geneous medium with elliptical pores. Lee et al. (2018) obtained 
an analytic solution for effective thermal properties for a medium 
containing spherical inclusions with imperfect interface. 

Thin ribbon-like, plate-like and wire-like filaments are widely 
used in modern composite materials, including nano-composites. 
It should be mentioned that modern carbon nano-filament, for 
example, graphene, possesses very high thermal conductivity 
(Balandin et al., 2010), which should be definitely accounted for in 
the numerical thermomechanical analysis of carbon nano-
composites. However, the study of thin-walled and thread-like 
inclusions is complicated due to the low accuracy of general 
numerical approaches (e.g. finite element and boundary element 
methods) in modelling of thin shapes. Therefore, thin and thread-
like inclusions are studied with special approaches (e.g. see Sulim 
and Piskozub, 2008), which can reduce the number of degrees of 
freedom accounting for the 2D or 1D geometries of such inhomo-
geneities.  

Thin ribbon-like and shell-like inclusions can be studied with 
the help of discontinuity (jump) function method, which replaces 
the inhomogeneity with a surface of field discontinuity (see Pas-
ternak et al., 2019). However, this approach cannot be directly 
applied to the study of thread-like inclusions. To the best of au-
thors’ knowledge, there are no publications which provide some 
special approaches for thermomechanical analysis of thread-like 
inhomogeneities. There are only some publications which provide 
analytic and experimental study of nano-wires based on the ap-
proaches of theoretical physics (Anufriev and Nomura, 2019; Im et 
al., 2013). 

Therefore, this study provides a straightforward boundary in-
tegral equation approach and the boundary element numerical 
solution strategy for the analysis of steady-state heat conduction 
in anisotropic medium containing a perfectly conductive thread-
like inclusion. It is the first step in the thermomechanical analysis 
of materials containing thread-like inhomogeneities. 

mailto:h.sulym@pb.edu.pl
mailto:n.ilchuk@lntu.edu.ua
mailto:iaroslav.m.pasternak@gmail.com
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2. BOUNDARY INTEGRAL EQUATIONS OF HEAT  
CONDUCTION OF ANISOTROPIC MEDIUM  
CONTAINING A THREAD-LIKE INCLUSION 

Consider an anisotropic medium containing a perfectly con-

ductive thread-like inclusion of constant radius 𝜌, in which the 

median line 𝐿 is a smooth curve (see Fig. 1). 

 
Fig. 1. Thread-like inclusion 

Green’s third identity for anisotropic heat conduction in a solid 
with such inclusion is written as (Pasternak et al., 2017) 

𝜃(𝐲) = ∬(Θ(𝐱′, 𝐲)ℎn(𝐱′) − 𝐻(𝐱′, 𝐲)𝜃(𝐱′))d𝑆(𝐱′) 

𝑆

 

                 +𝜃∞(𝐲), (1) 

where 𝜃 is temperature, ℎn is a heat flux normal to the surface 𝑆 
of the inclusion and 𝜃∞(𝐲) is a temperature field due to thermal 
loading at infinity. Kernels of integral Eq. (1) are defined as (Pas-
ternak et al., 2017) 

Θ(𝐱, 𝐲) = −
1

8π2|𝐱−𝐲|
∮ (𝑘𝑖𝑗𝜆𝑖𝜆𝑗)

−1
d𝑙(𝛌)

|𝛌|=1

, (2) 

𝐻(𝐱, 𝐲) = −𝑘𝑖𝑗𝑛𝑖(𝐱)Θ,𝑗(𝐱, 𝐲), (3) 

where 𝑘𝑖𝑗  are heat conduction coefficients, 𝑛𝑖(𝐱) is a unit normal 

to the inclusion surface at the point 𝐱 and 𝛌 is a unit vector normal 
to the position vector 𝐱 − 𝐲. 

When 𝜌 is small compared to a characteristic length 𝐿 of the 
thread, one can assume that according to Eq. (2) 

Θ(𝐱′, 𝐲) ≈ Θ(𝐱, 𝐲) (4) 

and according to Eq. (3) 

∫ 𝐻(𝐱′, 𝐲)d𝜗(𝐱′)
2π

0
= 0, (5) 

where 𝜗 is the polar angle in the normal cross-section of the 

inclusion at the point 𝐱. 
Since the inclusion is assumed perfectly heat conducting, its 

temperature 𝜃(𝐱) is a constant, and thus, for small 𝜌 accounting 
for Eqs (4) and (5), one can rewrite Eq. (1) as 

𝜃(𝐲) = ∫ Θ(𝐱, 𝐲)γ(𝐱)d𝐿(𝐱)
𝐿

+ 𝜃∞(𝐲), (6) 

where 

γ(𝐱) = ρ ∫ ℎn(𝐱′)d𝜗(𝐱′)
2π

0
 (7) 

is the sought heat distributed along the inclusion line. 

The unknown function γ(𝐱) can be determined by solving the 
integral equation obtained from Eq. (6) by approaching an internal 

point 𝐲 of a medium to some point 𝐱0 of the thread-like inclusion: 

𝜃0 = limy→𝐱0
∫ Θ(𝐱, 𝐲)γ(𝐱)d𝐿(𝐱)

𝐿
+ 𝜃∞(𝐱0), (8) 

where 𝜃0 is the constant temperature of the inclusion, since it is 
assumed perfectly conductive. 

Eq. (8) should be accompanied with the inclusion balance 
equation 

∫ γ(𝐱)d𝐿(𝐱)
𝐿

+ 𝐻0 = 0, (9) 

where 𝐻0 is the external heat applied to the inclusion. 

It should be noted that, nevertheless the kernel Θ(𝐱, 𝐲) has 
singularity 1/𝑟, the integral Eq. (8) is hypersingular and cannot be 
considered as a Cauchy type, since the kernel is symmetric, that 

is, Θ(𝐱, 𝐲) = Θ(𝐲, 𝐱). Therefore, consider this equation in detail. 
Assume that the line 𝐿, which models a thread, is a smooth 

spatial curve. Introducing an opened contour 𝐿𝜀  of small radius 

𝜀 → +0 surrounding the collocation point 𝐱0 (see Fig. 2), Eq. (8) 
is rewritten as 

∫ Θ(𝐱, 𝐱0)γ(𝐱)d𝐿(𝐱)
𝐿\𝐿𝜀

+ 𝐵(𝐱0)γ(𝐱0) = 𝜃0 − 𝜃∞(𝐱0),

 (10) 

where 

𝐵(𝐱0) = ∫ Θ(𝐱, 𝐱0)d𝐿(𝐱)
𝐿𝜀

. (11) 

 
Fig. 2. Determination of the non-integral terms 

Substituting Eq. (2) into Eq. (11), one obtains 

𝐵(𝐱0) = −
1

8π2 ∫ ∮ (𝑘𝑖𝑗𝜆𝑖𝜆𝑗)
−1

d𝑙(𝛌)
|𝛌|=1

dϑ

π

0

,  (12) 

where 𝛌(ψ) ⊥ −(cosϑ𝛕 + sinϑ𝐧). Since according to Eq. (2) 

the integrand of Eq. (12) is a 𝜋-periodic function of ϑ and ψ, the 

non-integral term 𝐵(𝐱0) depends only on the tangent vector 𝛕 to 

the line 𝐿 at the point 𝐱0. 
For isotropic materials, Eq. (12) reduces to 

𝐵(𝐱0) = −
1

4𝑘
 (13) 

and is independent of the spatial orientation of the inclusion line. 

Here, 𝑘 is a heat conduction coefficient of an isotropic material. 
It should be emphasised that, nevertheless the strength of 

singularity in Eq. (10) according to Eq. (2) is 1 r⁄ , the integral in 
Eq. (10) cannot be computed as the Cauchy principal value. 
Cauchy principal value can be computed for an integral of a type 

CPV ∫
f(x)

x−x0
dx

b

a

=

∫
f(x)

x−x0
dx

x0−ε

a

+ ∫
f(x)

x−x0
dx

b

x0+ε

                (a < x0 < 𝑏), (14) 
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but Eq. (10) contains integral of the type 

∫
f(x)

|x−x0|
dx

x0−ε

a

+ ∫
f(x)

|x−x0|
dx

b

x0+ε

  (a < x0 < 𝑏), (15) 

which diverges when ε tends to zero. Therefore, boundary integral 
equation (11) is hypersingular, and for its solution, the integral in it 
should be computed as the Hadamard Finite Part. 

3. COMPARISON WITH THE 2D SOLUTION FOR A HEAT 
CONDUCTIVE LINE INCLUSION 

The studies on 2D heat conductive line inclusions are widely 
covered in scientific literature (e.g. see Sulim and Piskozub, 
2008). However, in 2D heat conduction, line inhomogeneity is not 
exactly a line in 3D representation. Since a cylindrical (plane heat 
conduction and plane strain) or a plate-like (generalised heat 
conduction in a plate with thermally insulated surfaces, plane 
stress) solid is considered in 2D heat conduction and thermoelas-
ticity, for which the geometry and loading do not change along the 
generatrix (generally Ox3 axis), a 2D rigid line is, in general, a 
cylindrical surface, for which intersection (a 2D line) with a front 
plane is considered. 

Boundary integral equations for a 2D heat conducting line are 
obtained as (e.g. see Sulim and Piskozub, 2008) 

∫ Θ2D(𝐱, 𝐱0)Σhn(𝐱)d𝐿(𝐱)
𝐿

= 𝜃0 − 𝜃∞(𝐱0), (16) 

accompanied with the heat balance equation 

∫ Σhn(𝐱)d𝐿(𝐱)
𝐿

+ 𝐻0 = 0, (17) 

where Σhn(𝐱) is the heat flux discontinuity at transition through 
the 2D inclusion line. 

The 2D kernel Θ2D(𝐱, 𝐱0) of the integral Eq. (16) possesses 
logarithmic singularity. 

Comparing the boundary integral equations (9) and (10) for a 
heat conducting thread-like inclusion and Eqs (16) and (17) for a 
2D heat conductive line, one can observe the following. 

 Order of singularity. According to Eq. (16), boundary integral 
equations for 2D heat conductive line inclusions are weakly 
singular (with logarithmic singularity). After differentiation of 

Eq. (16) with respect to 𝐱0, one can obtain a singular integral 

equation with Cauchy principal value integral, which is well 
studied. In contrast, boundary integral equation (10) for a 3D 
heat conductive thread is hypersingular with symmetric kernel 

of the order 1 𝑟⁄ . The authors have found only one source 
(Eq. (54) on p. 316 of Polyanin and Manzhirov (2008)), refer-
ring the integral equation with a similar kernel. 

 Type of equation. It is readily seen that the integral Eq. (10) 
of a heat conductive thread-like inclusion is a Fredholm equa-
tion of the second kind and the integral Eq. (16) of the 2D heat 
conducting line inclusion is a Fredholm equation of the first 
kind. Both equations are inhomogeneous. 

 Heat flux singularity at inclusion tip. It is well known that 
the heat flux exhibits the square root singularity at the two tips 
of the 2D heat conducting line inclusion (Sulim and Piskozub, 
2008). The same concerns the sought solution Σhn(𝐱) of Eq. 

(16). Heat flux discontinuity Σhn(𝐱) at 2D inclusion line pos-
sesses square root singularity at its endpoints. The same con-
cerns the stress field at the 2D inclusion in thermoelastic prob-
lems. Nevertheless, the studies by Mirenkova and Sosnina 

(1982) revealed that the stress field near the tips of a rigid 
needle inclusion possesses another type of singularity. The 
stresses at the tip of an ellipsoidal needle are of order 

𝑂(1 (𝛼2|ln 𝛼|)⁄ , where 𝛼 ≪ 1 defines the curvature of the 
inclusion at its tips. According to the theory of asymptotic ex-
pansions, the same singularity is observed in the stress field 
in the vicinity of inclusion tips. Also, the same field behaviour 
is observed in the analysis of flows near thin axisymmetric 
cavities (see Petrov, 1986). 
This comparison reveals that thread-like inclusions should be 

attributed to a separate class of inhomogeneities, which stands 
alone from bulky inclusions and shell-like (or 2D line) inclusions. 
Special mathematical attention should be paid to the development 
of analytic and numerical approaches of the solution of boundary 
integral equation (10), which discover and account for the singu-
larity of the sought function at the endpoints of inclusion line. 

4. RECTILINEAR THREAD-LIKE INCLUSION  
IN ISOTROPIC MEDIUM 

Consider a rectilinear thread-like, heat conductive inclusion of 
length 2𝑎 in an isotropic medium, which is placed at the section 

– 𝑎 < 𝑥1 < 𝑎 of 𝑂𝑥1 axis. The heat ℎ0 is flowing uniformly 

along 𝑂𝑥1 axis. In this case, Eqs (9), (10) and (13) reduce to 

1

π
HFP ∫

γ(𝑥1)

|𝑥1−𝑥1
(0)

|
d𝑥1

𝑎

−𝑎

+ γ(𝑥1
(0)

) = −4ℎ0𝑥1
(0)

. (18) 

Here, HFP stands for the Hadamard Finite Part of the integral. 
Boundary integral equation (18) can be solved numerically 

with the following boundary element approach. The interval 

(– a, a) is divided into N equal parts (boundary elements). It is 

assumed that the function γ(𝑥1) is constant on each element 

(γ(𝑗)). Collocation points x1
(j)

= a(−1 + (2j − 1) N⁄ ) are 

placed at the centre of each boundary element. Thus, the integral 
equation (18) is reduced to the following system of linear algebraic 
equations: 

1

π
∑ aijγ

(j)N
j=1 = −4h0x1

(i)
, (19) 

where 

aij = {

π,                i = j

log |
tij+1

tij−1
| , i ≠ j,

 (20) 

and tij = (x1
(i)

− x1
(j)

)(N a⁄ ). Here, i = 1, … , N and j =

1, … , N. 
One thousand constant boundary elements of equal length 

are used to mesh the line of the thread-like inclusion. Numerical 

results for the sought function γ(𝑥1) are presented in Fig. 3. 

Normalised temperature field 𝜃𝑘 (ℎ0𝑎)⁄  near the tread-like 
inclusion is presented in Fig. 4 (here, 𝑘 is the heat conduction 
coefficient). The field is calculated based on Eq. (2). 

One can see in Fig. 4 that the temperature is zero on the in-
clusion line. Isothermal lines “envelop” the inclusion. Field distribu-
tion is very close to the thread. Large field gradient is observed at 
inclusion tips. 

Obtained temperature field was compared with the results of 
finite element analysis. Perfect agreement was observed, which 
verifies the proposed approach. 
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Fig. 3. Distribution of sought heat along the inclusion line 

 
Fig. 4. Dimensionless temperature field near the thread-like inclusion 

5. CONCLUSION 

The study presents a novel approach to the analysis of 
thread-like inclusions. Boundary integral equations of the problem 
are obtained and it is shown that, nevertheless the kernel pos-

sesses 1/𝑟 singularity, this equation is hypersingular. 
Numerical solution is presented for a rectilinear thread-like 

conductive inclusion. Big field gradients are observed near the 
inclusion line, especially at its tips. Therefore, special studies 
should be provided on the analysis of singularity of the solution of 
the obtained hypersingular boundary integral equations. 
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Abstract: Most of the industrial machines use round-shaped drive belts for power transfer. They are often a few millimetres in diameter, 
and made of thermoplastic elastomer, especially polyurethane. Their production process requires the bonding step, which is often  
performed by butt welding, using the hot plate method. The authors have undertaken to design an automatic welding machine  
for this purpose. Consequently, it is required to carry out a process analysis of hot plate welding, which entails describing the dependency 
between technological parameters (temperature, pressure force, time) and the quality of the joint, especially the outer surface of the belt 
around the weld. To analyse this process in a proper way, it is necessary to describe the physical phenomena that occur in the material, 
during particular operations of the hot plate welding process. One of the most troublesome phenomena occurring during the welding  
process is removing of the flash. These round rings, placed around the weld, which remains after the joining process, are unacceptable  
in the finished component. The authors took an effort to design the necessary equipment for removing of the flash after welding,  
using some simple parts that cut off excessive material. The paper shows the three possible solutions for flash removal. They were verified 
experimentally, and afterwards, the best solution was chosen. Additionally, a number of analytical calculations were carried out in order to 
determine the maximum force value required for this operation. Results of the analytical calculations were compared with experimental  
results.  

Key words: Hot plate welding, flash, flash removing, surface processing, cutting, round drive belts

1. INTRODUCTION 

Industrial grade belts, both used in drives and conveyors, are 
commonly utilized in machine building for transferring torque 
between the connected workstations or for transporting products 
on manufacturing lines. Both full cross-section and perforated 
conveyor belts are utilized in transportation; the latter are utilized 
in vacuum transportation of light objects (Wojtkowiak et al., 2018; 
Wojtkowiak and Talaśka, 2019). On the other hand, the most 
commonly used types of drive belts are flat, toothed and shaped 
belts. Toothed belts are used both in simple transmissions as well 
as non-classical solutions, for example, with variable ratios 
(Domek and Dudziak, 2011; Domek et al., 2016; Krawiec et al., 
2018; Krawiec et al., 2019). Shaped belts, in particular V-shaped 
and round belts are commonly employed in drives, that is, special 
robotic arm joint mechanism, with two twisted small diameter belts 
(Inoue et al., 2016), they can be made of rubber (Kukla et al., 
2015 and 2019) or polyester or polyurethane based elastomers 
(Behabelt, 2015). Their common application in industrial machines 
calls for an efficient manufacturing process, which usually takes 
place in two stages (Sikora, 1993). First of all, a long belt is manu-
factured and cut down to the required size. Finally, the ends are 
joined permanently to form a continuous loop (Wałęsa, 2018).  

Due to the peculiar characteristics of the thermoplastic elas-
tomers used in the manufacturing of such belts, it is possible to 
join them by hot welding. A specific approach to this process is 
butt-welding utilizing the hot plate method; it is popular due to its 
simplicity and efficiency (Grewell and Benatar, 2007; Yousepour 
et al., 2004). This method is commonly employed in the automo-
tive industry and civil engineering, for example, in the process of 

joining: tanks for utility fluids, lamp enclosures, engine instrumen-
tation (Pietrzak et al., 2019; Grewell and Benatar, 2007) and pipes 
(Rzasinski, 2017; Troughton, 1997; Cocard et al., 2009). Further-
more, studies were carried out on the hot welding of inflexible 
polymer materials, for example, acrylonitrile butadiene styrene 
copolymer (ABS) (Mokhtarzadeh and Benatar, 2012), polycarbon 
(PC) (Krishnan and Benatar, 2004), as well as polypropylene (PP) 
(Nieh and Lee, 1992). However, it needs to be pointed out that all 
of them apply primarily to plastics.  

The authors started design works on a device for automated 
butt welding of drive belts utilizing the hot plate technique (Wałęsa 
et al., 2018), which is to improve the efficiency of the manufactur-
ing process of continuous belts. For the purpose of verification of 
the design assumptions, the process was to be analysed together 
with further study of the influence of heating parameters on weld 
quality (Wałęsa et al., 2019a and 2019b). It was assumed that the 
drive belt made of TPU C85A polyurethane, commonly marketed 
by drive belt manufacturers (BASF, 2010) will be hot welded.  
A review of the available subject literature has concluded that 
information on this method of connecting thermoplastic elasto-
mers is difficult to obtain.  

The butt welding process utilizing the hot plate method can be 
divided into 5 stages (Wałęsa et al., 2019; Klimpel, 1999 and 
2000; Potente et al.; 2002, Jasiulek, 2006). One of the most im-
portant activities is the plasticization of the belt end, which ena-
bles the chemical reaction and physical interaction between the 
macromolecules in the joining process (Amanat et al., 2010; 
Amancio-Filho and dos Santos, 2009; Madej and Ozimina, 2010; 
Puszka, 2006; Żuchowska, 2000). The welding temperature 
choice is a very important issue. Exceeding some values causes 
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destruction of the material volume in a few stages (Wanqing et al., 
2017). On the other hand, in case of some polymers, joint strength 
increases with welding temperature (Evers et al., 2017). When the 
heating and cooling process is considered, also it should be noted 
some division in the three zones with different impact of tempera-
ture. This phenomenon can be observed in all of the semi-
crystalline thermoplastic polymers, so in butt welding of round 
belts, it has some impact to the process (Casalino and Ghorbel, 
2008). The plasticization of the belt material due to temperature 
and compression forces activities, results in a flash forming in the 
final stage of the process (Fig. 1).  

 
Fig. 1. Forming of the flash in the final stage of the drive belt hot welding: 

1 – belt end, 2 – grips, 3 – flash; Fc – pressure force during the fi-
nal stage of the hot welding, d – belt diameter, D – external flash 
diameter 

The flash constitutes excessive material in the form of a ring 
with diameter D around the weld, caused by the pressing of the 
plasticized belt end towards the hot plate with force Fc.  

The removal of flash is a significant problem in the aspect of 
automating the manufacturing process of these belts, as the belt 
forms a continuous circuit as a result of this welding. Therefore, 
this operation is often performed manually, using simple tools 
such as shears. Striving to optimize the entire manufacturing 
process of the belts, a method to remove the post-weld flash was 
devised, which entails automatic shearing with use of profiled 
cutting sleeves; furthermore, the necessary instrumentation was 
also designed. In order to select the correct components of the 
drive system, it is necessary to estimate the process forces during 
this technical operation. 

Subject literature provides formulas for calculating the neces-
sary force for cutting various materials using dies for, for example, 
sheet metal, leather and plastics (Groover, 2017; Marciniak, 1959) 
as well as composite belts (Wilczyński et al., 2019; Wojtkowiak et 
al., 2018). However, these approaches fail to account for the 
peculiar construction features of dies used when the belt is con-
tinuous. For this reason, the developed construction solution must 
be analysed and subject to empirical examination in order to verify 
its correct operation. 

Study of the technological process of hot welding and drive 
belt processing after the weld was made are problematic as the 
joined material exhibits non-classical thermomechanical charac-
teristics (Broniewicz et al., 1970). This is shared by other materi-
als, for example, crystallized carbon dioxide (Górecki et al. 2019), 
fragmented natural materials (Talaśka, 2018), organic fibres 
(Talaśka and Ferreira, 2017) or glues (Fierek et al., 2019), and 
predicting their behaviour under mechanical and thermal load 
conditions is problematic. One needs to consider that the influ-
ence of temperature on the characteristics of such polymers is 
significant (Ciszewski and Radomski, 1989; Sikora, 1993). With 

this fact in mind, experimental study to determine the behaviour of 
belt material during the removal of the flash is called for.  

In order to determine the force value necessary to carry out 
this operation, analytic calculations and experimental studies were 
performed on the process of cutting off the flash. As a conse-
quence, the characteristics of the process of flash removal utiliz-
ing this method were determined, with particular emphasis on the 
maximum force value utilized in the shearing process. Cutting 
tests were carried out for three cases of designed instrumentation 
assemblies, together with analytical calculations, which lead to 
obtaining maximum cutting force, for one of them. 

2. STUDY METHODOLOGY 

The study utilized conical blades of the author’s own design 
with different apex angle values: 10º, 20º, 30º and 40º, manufac-
tured with steel hardened to 58 HRC (Fig. 2). 

 

 
Fig. 2. Executive drawings for the blades used in the study with apex   

  angle values: 10°, 20°, 30° and 40° 

Dull Dull 

Dull 
Dull 
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For the assumed fixed blade geometry, three methods of flash 
removal were assumed, which are possible in the proposed con-
struction solution: 

 two-sided cutting of the flash with cutting force FT vectors in 
opposite directions, distributed evenly at the belt circumfer-
ence, acting in contact with the round external surface of the 
belt. This method is achieved by compressing the flash be-
tween two identical blades (Fig. 3), whereas both blades are 
movable in relation to one another,  

 

 
Fig. 3. Two-sided cutting of the flash with cutting forces in opposite 

directions, together with an implementation example: A – belt 
ends, B – flash, 1 and 2 – cutting sleeves; FT – forces cutting off 
the flash 

 one-sided cutting of the flash using FT cutting forces distribut-
ed evenly along the circumference of the belt, acting in con-
tact to the round external surface of the belt, with additional 
force Fc acting along the belt axis with opposite sense (Fig. 4). 
This method is carried out by drawing the belt with flash to-
wards the blade,  

 

 
Fig. 4. One-sided cutting of the flash with force drawing the belt in the 

opposite direction: A – belt end, B – flash; FT – forces cutting off 
the flash, Fc – force drawing the belt through the sleeve, 1 – draw-
ing sleeve, 2 – cutting sleeve 

 one-sided flash cutting using forces FT, distributed evenly at 
the belts circumference, acting in contact to the round external 
surface of the belt, with additional plate supporting the flash 
(Fig. 5). Its use causes a reaction force Fp, which prevents the 
movement of the flash and increases the effectiveness of the 
removal process. The implementation entails pressing the 
flash by the blade towards the support plate made of PA6 al-
uminium, with bore diameter allowing to freely move out the 
belt. 

 

 
Fig. 5. One-sided cutting of the flash with support: A – belt end, B – flash, 

1 – cutting sleeve, 2 – support plate; FT – forces cutting off the 
flash, Fp – reaction force of the support plate  

The tests were carried out for 4 different rake angles, for 
welded belt sections with average diameter dc = 4,11 mm. Cutting 
tests were performed on sixteen samples for each blade angle. 
The testing utilized the MTS Insight 50 kN durometer with stand-
ard grips, flat supporting board with openings together with  
a supporting plate (Fig. 6). The samples were hot welded belt 
sections of random length (Fig. 7).  

 

Fig. 6. The testing station during the examination of the flash removal 
process utilizing the third method: 1 – durometer grip, 2 – support-
ing plate with holes, 3 – supporting plate, 4 – cutting sleeve,  
5 – belt, 6 – flash 

1 

2 

3 

5 

4 

6 
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Fig. 7. Belt samples with flashes, prepared for the study 

Additionally, for the third method of removal, analytical calcu-
lations were carried out to determine the force value necessary to 
remove the flash, utilizing the balance of forces between the belt 
and the blade. Based on the dimensions of the blade and the belt 
(Fig. 8) as well as the distribution of forces between them (Fig. 9), 
it is possible to derive a general formula to calculate the force 
value required to remove the flash using this technique.  

 
Fig. 8. Dimensions assumed for the analytical calculations: φ – blade 

inclination angle, Dz – internal diameter of the cutting sleeve,  
D0 – bore diameter of the cutting sleeve, Dc – external belt  
diameter, DM – support bore diameter, g – flash thickness,  
FT – force necessary to remove the flash, l – length of contact  
area between the belt and the blade 

The process force required to remove the flash FT can be ex-
pressed with the formula below: 

𝐹𝑇 = 𝐹𝑇𝑟 + 𝐹𝑇1 + 𝐹𝑇2, (1) 

where: FT – flash removal process force, FTr – component of 
cutting force from flash stretching on the conical surface of the 
blade, FT1 – cutting force component from flash friction on the 
conical surface of the blade, FT2 – force component from belt 
friction inside the blade bore. 

Considering FTr, according to the force distribution (Fig. 9), 
may be expressed as follows: 

𝐹𝑇𝑟 = 𝐹𝑟 ∙ 𝑠𝑖𝑛𝜑 = 𝑝1 ∙ 𝐴𝑠, (2) 

where: Fr – singular force stretching the flash, φ – blade side 

inclination angle, p1 – flash bearing pressure on the blade surface, 
As – conical surface constituting the blade side on which the de-
formed flash is present. It should be therefore noticed that the 
flash surface in contact with the conical blade side can be calcu-
lated from the following formula: 

𝐴𝑠 = 𝜋 ∙ 𝑔 ∙ (𝐷0 + 𝑔 ∙ 𝑠𝑖𝑛𝜑). (3) 

Fig. 9. The dependence between force vectors during flash removal: 1 – 
blade, 2 – flash, 3 – belt; FT – flash removal process force, FTr – 
cutting force component from the stretching of the flash on the 
conical surface of the blade, FT1 – force component from flash fric-
tion on the blade conical surface, FT2 – force component from belt 
friction inside the blade bore, Fr – singular force stretching the 
flash, φ – blade side angle of inclination, p1 – flash bearing pres-
sure on the blade surface, T1 – total frictional force on the blade 
surface, between the flash and the conical blade surface, T2 – to-
tal frictional force between the belt surface and blade bore 

Contact stress p1, can be calculated from Hooke’s law, as-
suming average deformation on the conical surface for calculation 
(Osiński, 2007): 

𝑝1 =  휀𝐴𝑉𝐺 ∙ 𝐸𝑝, (4) 

where: εAVG – mean flash deformation of the conical surface which 
is identified in the radial direction, Ep – longitudinal flexural modu-
lus of the belt material. Mean deformation can be determined from 
the following formula:  

휀𝐴𝑉𝐺 =
𝐷𝐴𝑉𝐺−𝐷0

𝐷0
, (5) 

where DAVG mean diameter of the flash on the blade, and it is 
determined from the formula:  

𝐷𝐴𝑉𝐺 =
𝐷1+𝐷0

2
. (6) 

The external diameter of the flash on the blade can be calcu-
lated as below: 

𝐷1 = 𝐷0 +  2 ∙ 𝑔 ∙ 𝑠𝑖𝑛𝜑. (7) 

Considering the formulas 2-7, the component of cutting force 
from flash stretching on the conical surface of the blade FTr, can 
be determined from the formula as below: 

𝐹𝑇𝑟 =
𝑔2∙𝑠𝑖𝑛2𝜑∙𝐸𝑝∙𝜋

𝐷0
∙ (𝐷0 + 𝑔 ∙ 𝑠𝑖𝑛𝜑). (8) 
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Tab. 1. Major parameters assumed for calculating the process force for removal of flash after butt welding of drive belts 

 

The component FT1 of the FT is the process force from friction 
of the flash on the conical surface of the blade can be derived 
from the general dependence: 

𝐹𝑇1 = 𝑇1 ∙ 𝑐𝑜𝑠𝜑, (9) 

where T1 – is the total frictional force on the blade surface, be-
tween the blade surface, between the flash and the conical sur-
face of the blade. The value can be calculated from the below 
formula: 

𝑇1 =
𝐹𝑟

𝑡𝑔𝜑
, (10) 

Force stretching the flash Fr, considering the formulas 
2–7 is expressed as follows: 

𝐹𝑟 =
𝐹𝑇𝑟

𝑠𝑖𝑛𝜑
=

𝑔2∙𝑠𝑖𝑛𝜑∙𝐸𝑝∙𝜋

𝐷0
∙ (𝐷0 + 𝑔 ∙ 𝑠𝑖𝑛𝜑). (11) 

Considering the formulas 9, 10 and 11, the force value FT1 is 
ultimately derived from the formula: 

𝐹𝑇1 =
𝑔2∙𝑐𝑜𝑠2𝜑∙𝐸𝑝∙𝜋

𝐷0
∙ (𝐷0 + 𝑔 ∙ 𝑠𝑖𝑛𝜑). (12) 

The component FT2 of the cutting force FT, from the friction of 
the belt on the cylindrical surface of the blade bore can be derived 
from the formula:  

𝐹𝑇2 = 𝑝2 ∙ 𝜋 ∙ 𝐷0 ∙ 𝑙 ∙ 𝜇, (13) 

whereas: µ – coefficient of friction between the belt and the cut-
ting sleeve, p2 – belt bearing pressure in the blade bore, which 
can be determined from the formula (Osiński, 2007): 

𝑝2 = 𝑐 ∙ 𝑤, (14) 

where, w – effective relative interference of belt and sleeve com-
position, which can be calculated with the formula as below: 

𝑤 =
𝐷𝑐−𝐷0

𝐷0
, (15) 

as well as the strain coefficient of the coupled pair belt-sleeve c, is 
calculated from the formula: 

𝑐 =
1

𝛿𝑡+𝜗𝑡
𝐸𝑡

+
𝛿𝑝+𝜗𝑝

𝐸𝑝

, (16) 

where, δt – is the characteristic coefficient of the coupling for the 
sleeve, whereas δp – is the characteristic coefficient for the belt. 
These coefficient are calculated using the formulas: 

𝛿𝑡 =
1+

𝐷0
2

𝐷𝑧
2

1−
𝐷0

2

𝐷𝑧
2

, (17) 

𝛿𝑝 =
1+

𝐷𝑤
2

𝐷𝑐
2

1−
𝐷𝑤

2

𝐷𝑐
2

. (18) 

The calculations following the presented methodology were 
carried out for all rake angles. Major variable values used in the 
calculations are provided in Table 1. 

3. RESULT ANALYSIS 

The study with the first proposed method of removing the 
flash, that is, using two blades and compressing the flash between 
them has failed. During the first test, the blades were damaged by 
the sharp, brittle edges of the blades colliding in the final stage of 
the operation. It was therefore decided to discontinue further 
examination using this method as under industrial conditions, it is 
unacceptable to damage the working components after each 
processed belt. 

The study of the second proposed method, that is, drawing 
the belt with the flash between the blades were also unsatisfacto-
ry. The flash was not removed completely. This is caused by the 
peculiar characteristics of the belt material, it is very flexible and 
subject to significant flexible deformation. The belt would become 
significantly elongated before the blade, reducing its diameter. 
The flash was similarly deformed, which caused it to squeeze 
through the bore in the cutting sleeve without being removed. 
Consequently, further examination using this method was discon-
tinued.  

The study of the third method, that is, pressing the flash with 
the blade to a flat support with an opening proved to be success-
ful. The flash was removed in its entirety in every attempt. The 
results of empirical study as well as analytical calculations are 
juxtaposed in Table 2 and Fig. 10. For the considered processing 
method, a relatively good approximation of actual examination 
results were obtained with the analytical model. The difference in 
the results, no more than approx. 8% was caused by the likely 
occurrence of flexing reactions during the removal process. Fur-
thermore, a good repeatability of empirical study results was 
achieved.

  

1 Designation: Value: Source: 

Blade side angle of inclination φ [°] 5 10 15 20 Assumed – manufactured blades 

Blade bore diameter D0 [mm] 4.1 4.1 4.08 4.09 Measured 

Average belt diameter during examination Dc [mm] 4.11 4.11 4.11 4.11 Measured 

Length of the cylindrical section of the 
blade  

l [mm] 20 20 20 20 Assumed 

Poisson’s coefficient of the belt 𝜗𝑝 0.5 0.5 0.5 0.5 Assumed 

Young’s modulus of the belt  Ep [MPa] 50 50 50 50 (Wałęsa et al., 2019) 

Poisson’s coefficient of the sleeve 𝜗𝑡  0.33 0.33 0.33 0.33 Assumed 

Young’s modulus of the sleeve Et [MPa] 210000 210000 210000 210000 Assumed 

Flash thickness g [mm] 1.60 1.73 1.81 1.96 Measured 
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Tab. 2. Results of analytical calculations and empirical data of one-sided cutting of flash with support plate 

Analytical calculations 

Blade inclination 2φ [°] 10 20 30 40 

Force constituent from stretching of the flash FTr [N] 3.80 18.23 46.01 98.19 

Force constituent from friction between the flash and blade FT1 [N] 496.19 586.40 640.87 741.20 

Force constituent from friction between the belt and sleeve bore FT2 [N] 12.56 12.56 37.69 25.12 

Total calculated flash cutting force FT [N] 512.55 617.19 724.57 864.50 

Empirical data 

Average flash cutting force FT [N] 554.85 643.10 740.45 897.74 

Standard deviation of population σ [N] 70.81 51.43 67.65 128.84 

Percentage difference between empirical and analytical data [%] 8.25 4.20 2.19 3.84 

 

 

Fig. 10. Results of empirical examination and analytical calculations of force required for removal of the flash depending on rake angle  

4. CONCLUSIONS 

The removal of flash after hot plate butt welding is a decep-
tively simple technical operation with easy to implement kinemat-
ics in an automated device. However, the peculiar characteristics 
of the processed material (primarily, the high flexibility of the belt) 
mean that not every processing method can be successfully 
employed in this case. As indicated by the performed examina-
tions, the removal of the flash utilizing the double blade method is 
possible, but not suitable for application under industrial condi-
tions. The method of one-sided cutting of the flash by drawing the 
belt through the conical blade was also unsuccessful due to high 
flexibility of the belt. 

Therefore, the best approach to carry out this process is one-
sided cutting action utilizing a supporting plate. Analysing both the 
calculated and empirical data, one can observe a significant in-
crease of the cutting force on the flash with the increase of the 
blade rake angle. As indicated in the analysis of force distribution 
during flash removal, it is caused by a material increase of the 
stretching force of the flash on the surface of the conical blade, 
which subsequently causes a material increase in the frictional 
force on the conical section of the blade together with the increase 
in rake angle.  
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Abstract: Non-linear, dynamic, non-stationary properties characterize objects of the iron ore beneficiation line. Therefore, for their  
approximation, it is advisable to use models of the Hammerstein class. As a result of comparing the three models of Hammerstein: simple, 
parallel and recursive-parallel, it was shown that the best result for identifying the considered processes of magnetic beneficiation of iron 
ore by the minimum error criterion was obtained using the Hammerstein recursive-parallel model. Hence, it is recommended  
for the identification of beneficiation production objects.  

Key words: Predictive control, iron ore, beneficiation, Hammerstein model, recursive-parallel model 

1. INTRODUCTION 

Providing metallurgical production with high-quality raw mate-
rials remains an urgent problem. The growth in mineral consump-
tion requires the expansion of the raw material base, ensuring the 
necessary quality of raw and marketable ore, and increasing the 
profitability of mining and processing enterprises (Abonyi et al., 
2000; Babuska, 1998). Over the past 20–30 years, the iron con-
tent in the extracted ore at the mining enterprises of Ukraine 
decreased by an average of 12.9% (Babuska, 1998; Babuska, 
1998). Considering the current characteristics of raw materials 
processed at processing plants and the state of technological 
equipment when forming control actions in automatic control 
systems allows optimizing the technological process and increas-
ing its technical and economic indicators. Thus, increasing the 
iron content in the concentrate from 64 to 65% allows in the sinter-
ing redistribution – to reduce ore consumption by 29–32 kg/t and 
fluxes – by 30 kg/t; in the metallurgical division – to reduce the 
consumption of coke by 2.6–2.8%, to increase the relative produc-
tivity of the blast furnace by 4.5–5%. All this helps to reduce the 
total cost of iron production by about 4% (Abonyi et al., 2000). 
This work aims to increase the efficiency of the automated control 
of the magnetic beneficiation processes of iron ores by developing 
theoretical bases and building predictive control of these process-
es based on Hammerstein models. Based on the results of the 
study and analysis of the problem of increasing the efficiency of 
automated control of iron ore beneficiation processes, the control 
concept and research objectives are formulated: 

 to develop and study the models (in the class of Hammerstein 
models) and methods for the rapid identification of iron ore 
beneficiation processes as nonlinear dynamic objects, consid-
ering the interchangeability of their properties; 

 to develop algorithms for predictive control of iron ore benefi-
ciation processes based on the Hammerstein models. 
The object of the study is dynamic technological processes 

and transformations in the presence of fuzzy and incomplete 
information that occurs during the concentration of iron ores, 
methods, and systems for automatic control of these processes. 
The subject of the research is models and algorithms for identify-
ing nonlinear dynamic objects, predictive control algorithms, an 
automated process control system (APCS) of iron ore beneficia-
tion. An analytical review of the work on the problems of automatic 
control of iron ore beneficiation processes showed that under 
conditions when the ore characteristics and the condition of tech-
nological equipment change, the final performance of the pro-
cessing plant is mostly dependent on the efficiency of automatic 
control of technological units, which is primarily determined by its 
quality information and algorithmic support. Effective control re-
quires the constant and rapid provision of a significant amount of 
data on the state of the control object (the content of the useful 
component in the product, the particle size distribution of the pulp 
at various points in the process, the concentration of the solid 
phase and pulp density, etc.), as well as high-speed algorithms for 
their processing with the aim of identification of the object and 
definition of control actions. 

The same tendency also occurs in mining enterprises of other 
countries. Reducing the metal content in raw ore increases the 
resource intensity of production and the cost of finished products. 
To solve the problems of the synthesis of automatic control sys-
tems of nonlinear non-stationary objects, operating under severe 
restrictions, which are imposed on state and control variables, the 
Model Predictive Control method (МРС) (Zubov, 2006) and its 
modifications – Adaptive Model Predictive Control have recently 
been actively used (Sanches and Rodellar, 1996). Simplified, the 
idea of these methods is to use the variable values extrapolated to 
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a certain depth in such a way as to minimize the future deviation 
of the system from the desired state during the formation of the 
control law, and thereby, ensure optimal control. At present, the 
Predictive Control paradigm has achieved such successes, includ-
ing in industrial applications, which is considered by many authors 
as an alternative to PID regulation for complex multidimensional 
systems (Rossiter, 2003).  

In (Zubov, 2006; Morkun and Tcvirkun, 2014; Sanches and 
Rodellar, 1996; Rossiter, 2003; Morkun et al., 2014a), various 
control schemes based on MPC are presented. The variant of the 
control structure proposed in Morkun et al. (2014a) allows multi-
criteria optimization with ranking criteria by priority. Most control 
facilities at the processing plants have both dynamic and non-
linear properties. The identification of such objects often causes 
significant difficulties. Some methods for the identification of non-
linear dynamic objects are considered in Ivanov (1991), Morkun et 
al. (2015a), Morkun et al. (2014b), Yucai (1999), Leontaritis and 
Billings (1987), Stoica (1981) and Morkun et al. (2018). As the 
analysis of these works shows, a common technique for identify-
ing dynamic nonlinearity is the artificial separation of these two 
properties. The object is represented by a set of nonlinear static 
and linear dynamic blocks. In this case, N. Wiener proposed to 
consider a sequential connection in the following order: a dynamic 
block, followed by nonlinearity (Morkun et al., 2014c; Li and 
Shchetsen, 1968; Yucai,1999; Stoica, 1981). An alternative vari-
ant is a nonlinear block, followed by a dynamic one, proposed by 
Hammerstein and was considered in Shi and Sun (1990), Ivanov 
(1995), Narendra and Gallman (1966), Leontaritis and Billings 
(1987), Sjoberg (1995) and Stoica (1981). 

In this case, a simple sequential Wiener model turns out to be 
more profitable for about half of the real objects than a simple 
Hammerstein model (Morkun et al., 2015b). However, in such a 
simple version, Wiener and Hammerstein models are used ex-
tremely rarely. In most cases, the object of identification is approx-
imated by various combinations of these simple models. In this 
case, as shown by the studies carried out by the authors (Morkun 
et al., 2015b; Shi and Sun, 1990; Ivanov, 1995; Verhaegen and 
Westwick, 1996), parallel and recursive-parallel models turned out 
to be the best by the criterion of ‘simplicity-quality’. These models 
are a parallel connection of single-type simple links. In papers 
(Morkun et al., 2015b; Shi and Sun, 1990), an essential feature of 
parallel models with an unlimited number of parallel branches was 
emphasized. The use of this class of models eliminates the solu-
tion of a complicated problem of choosing a model structure. 

The question of choosing the parallel model structure is no 
longer determined by the accuracy of the model, but by the possi-
bilities for effectively identifying its parameters. In this regard, the 
parallel Hammerstein model turns out to be more profitable, since 
it allows one-dimensional orthogonal identification algorithms 
(Ivanov, 1991), which do not impose any severe restrictions on 
the type of input test actions. The one-dimensional algorithms for 
identifying the parameters of the parallel Wiener model are not 
orthogonal (Young, 1977). Orthogonal algorithms for Wiener 
models are multidimensional and require significant computational 
resources. 

In principle, it is possible to use not only parallel models but 
also sequential models containing a set of series-connected sim-
ple models of Hammerstein or Wiener. However, this approach is 
not used in practice since it has proven difficult to formalize and is 
associated with simulation modeling, which requires significant 
computational resources (Morkun et al., 2015b). 

Recently, scientific papers have been published, which offer 

various options for increasing the efficiency and ease of use of 
Hammerstein models. So, in Ikhouane and Girib (2014) a unified 
framework for the identification of Wiener and Hammerstein sys-
tems that is valid for SISO and MIMO systems, discrete- and 
continuous-time settings, and with the only a priori knowledge that 
the system belongs to the set including Wiener and Hammerstein 
models is presented. The paper Ozer et al. (2016) studies the 
application of system identification of the Hammerstein model, 
which is a cascade of nonlinear second-order Volterra and a linear 
FIR model. The recursive least squares algorithm is used to de-
termine the parameters of the proposed Hammerstein model. In 
(Rébillat et al., 2010), it is shown that the cascade of Hammer-
stein models makes it possible to describe a large class of nonlin-
earities conveniently. A simple method is proposed based on the 
phase property of exponential sinusoids for identifying the struc-
tural elements of such a model using only one measured system 
response. Ma et al. (2016) discusses the problem of estimating 
the state and parameters for a class of Hammerstein state space 
systems with a time delay. Both process noise and measurement 
noise are taken into account in the system. Based on the ob-
served space form of canonical states and the separation of criti-
cal terms, a pseudo-linear regressive identification model is ob-
tained. For unknown states in the information vector, the Kalman 
filter is used to search for optimal state estimates. Least squares 
algorithms based on the Kalman filter and recursive least squares 
algorithms are proposed. In Chen and Wang (2015), the problem 
of parameter identification for a Hammerstein system with contin-
uous nonlinearity is studied. Taking into account the unknown 
structure of continuous nonlinearity, a Weierstrass approximation 
theorem is introduced to simplify nonlinearity. Then a stochastic 
gradient algorithm and an algorithm for optimizing a swarm of 
particles to estimate all unknown parameters of the Hammerstein 
system are proposed. In Chen and Ding (2015), the hierarchical 
least-squares algorithm is developed using the principle of hierar-
chical identification, which decomposes the nonlinear system into 
several subsystems with smaller sizes and fewer variables and 
estimates the parameters of each subsystem, respectively. 

Importantly, the degree of adequacy of the model obtained is 
determined mainly by considering different types of uncertainty in 
the identification of the object. A significant error in the input data 
leads to an error in the calculation of the target function and, 
consequently, to a significant area of uncertainty in the choice of 
optimal control and optimal operation of the system. In Tobi and 
Hanafusa (1991), it was shown that only the representation of 
several constraints as fuzzy makes it possible to obtain a stable 
solution under conditions of inaccuracy of information and fuzzi-
ness of production constraints, with an indication of a reduced 
degree of admissibility of this mode, that is, as membership func-
tions. Setting the problem in fuzzy form also significantly reduces 
the possibility of obtaining incompatible solutions for the calcula-
tion and optimization. In Abba et al. (2019), Hammerstein-wiener 
(HW), general regression neural network (GRNN), and non-linear 
autoregressive with exogenous (NARX) neural network, least-
square support vector machine (LSSVM) models were employed 
for multi-parametric (Hardness (mg/L), turbidity (Turb) (μs/cm), pH 
and suspended solid (SS) (mg/L)). The comparison of the results 
of modeling showed that HW served as the best model for the 
simulation of Hardness, Turb, and SS. Mete et al. (2016) present 
the Hammerstein model, which is obtained by cascade form of a 
nonlinear second-order Volterra (SOV) and a linear FIR model. 
Besides, the proposed Hammerstein model is optimized with a 
differential evolution algorithm (DEA). In Le et al. (2012), the 
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recursive identification of Hammerstein structures is investigated. 
A recursive algorithm is then developed to address the limitations 
in the approaches currently available. The linear and nonlinear 
parameters are separated and estimated recursively in a parallel 
manner, with each updating algorithm using the most up-to-date 
estimation produced by the other algorithm at each time instant. 
Chen and Wang (2015) study the parameter identification problem 
for a Hammerstein system with continuous nonlinearity. Consider-
ing the unknown structure of the continuous nonlinearity, the 
Weierstrass approximation theorem is introduced to simplify the 
nonlinearity. Then a stochastic gradient algorithm and a particle 
swarm optimization algorithm are proposed to estimate all the 
unknown parameters of the Hammerstein system. 

In Falck et al. (2012), consider the identification of Wiener–
Hammerstein systems using the Least-Squares Support Vector 
Machines based models. Their study illustrates that black-box 
models are a suitable technique for the identification of Wiener–
Hammerstein systems. Wills A. and Ninness (2012) examine the 
use of a so-called ‘generalized Hammerstein–Wiener’ model 
structure that is formed as the concatenation of an arbitrary num-
ber of Hammerstein systems. This approach is profiled using a 
Wiener–Hammerstein Benchmark example, which illustrates it to 
be effective and, via Monte-Carlo simulation, relatively robust 
against capture in local minima. Piroddi et al. (2012) analyse the 
performance of several black-box nonlinear model identification 
techniques for input-output models with polynomial nonlinearities 
on a benchmark identification problem. 

The number of works devoted to the construction of fuzzy 
models, fuzzy control, and its various aspects is growing steadily, 
an example of some of which may be Tobi and Hanafusa (1991), 
Abonyi et al. (2000), and Postlethwaite (1996). The Takagi-
Sugeno models have found wide application for the approximation 
of nonlinear systems, some examples of which were considered in 
Babuska (1998), Babuska (1998), Morkun et al. (2015c), and 
Kazuo and Wang (2001), in particular, there is a positive experi-
ence of using them to control individual objects of iron ore pro-
cessing lines (Morkun and Tcvirkun, 2014; Morkun et al., 2015c). 

2. MATERIALS AND METHODS 

A significant role in the application of MPC approaches is per-
formed by the model, based on which the future behaviour of the 
system is calculated. In order to make full use of the control capa-
bilities using the MPC theory, it is necessary to provide an effec-
tive and fast identification of the characteristics of the control 
object, which will allow forming a model of this object quickly. 

Therefore, when developing effective process control sys-
tems, the following essential aspects are relevant: 

 development of new control algorithms and identification 
methods that make it possible to effectively use the infor-
mation obtained, as well as considering the inevitable uncer-
tainty and inaccuracy in the description of the control object; 

 improvement of information support (improvement of meas-
urement accuracy, the ability to measure additional parame-
ters in the course of process control, the efficiency of infor-
mation provided for control).  
It should be noted that in recent years there has been a sharp 

increase in the number of studies devoted to the extraction of the 
fullest possible information about the control object (Ozer et al., 
2016; Ma et al., 2016; Chen and Wang, 2015; Chen and Ding, 

2015). To fulfil the goals of control, it is currently possible to use 
information not only in a formalized numerical form but also in 
linguistics, in the form of expert conclusions. Such work initiated 
intensive research based on the use of new mathematical applica-
tions in the field of identification and control. 

The ore beneficiation processes are spatially distributed multi-
dimensional automation objects with a complex, multi-connected 
structure. The beneficiation technological lines usually consist of 
several successively arranged stages, each of which includes the 
following main technological operations: grinding, classification, 
magnetic separation. The technological processes of ore pro-
cessing plants provide for multistage crushing and grinding of ore 
to prepare it for the next separation (Morkun et al., 2014b; Morkun 
et al., 2015a; Morkun et al., 2018). The purpose of these opera-
tions is to reveal ore aggregates and to isolate fractions of various 
minerals from each other by reducing the size of mineral grains to 
0.1 mm or less. As control objects, grinding units can be repre-
sented in the form of some operators that convert the vectors of 
input variables into vectors of output parameters. In turn, the 
output parameters of the grinding process must be considered as 
input for the next stage of the beneficiation process. Elements of 
the vectors of the output parameters of the grinding department 
are their qualitative and quantitative indicators. The main quantita-
tive indicators are feed productivity and finished class size produc-
tivity. The quality of the crushed product is characterized by the 
density or solid content in the pulp, the granulometric composition 
of the solid phase, as well as the quality indicators of the initial ore 
(content of useful components, mineral composition, etc.), not 
depending on the technological mode of operation of the grinding 
cycle. Thus, the elements of the vector of output parameters 
formed by the grinding redistribution (productivity and particle size 
distribution of the product) can be taken as control actions in 
solving problems of optimizing the beneficiation process. 

Let’s consider the synthesis of control based on Hammerstein 
models for the first stage of iron ore beneficiation as an integral 
part of the entire iron ore beneficiation processing line, which 
makes a decisive contribution to the final result. As shown in Ozer 
et al. (2016), Morkun et al. (2014b), Sanches and Rodellar (1996), 
and Narendra and Gallman (1966), most technological devices of 
this stage of beneficiation correspond in their properties to the 
models of Hammerstein. The generalized control scheme is pre-
sented in Fig. 1.  

The following notation was used: 1 – mill, 2 – classifier,  
3 – magnetic separator, 4 – conveyor, 5 – bunker, 6 – drive motor, 
7 – water flow valve, 8 – ore supply control system, 9 – the classi-
fier water supply control system, 10 – an identification subsystem, 
11 – a driver of control actions, 12 – an optimizer, 13 – a sensor of 
industrial product parameters, 14 – an ore consumption sensor; 
15 – information support subsystem, 16 – pulp parameter sensor.  

The Hammerstein model, on the basis of which the predictive 
control will be implemented, is a combination of a fuzzy nonlinear 
block and a crisp linear dynamic block. Thus, the term ‘hybrid 
model’ corresponds to the structure of the model. 

Let a static nonlinear block represents the object of study with 

an input vector u = [u1, … , un]
T, a vector of converted input 

variables v = [v1, … , vn]
T, related to uh according to 

𝑣ℎ = 𝑓ℎ(𝑢ℎ), ℎ = 1,… , 𝑛, (1) 

where, 𝑓ℎ(𝑢ℎ) are the functions characterizing nonlinear block by 
control h-channel, and a dynamic linear block with a vector of 

output variables 𝑦 = [𝑦1, … , 𝑦𝑚]𝑇. 
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Fig. 1. The control scheme of the first stage of iron ore beneficiation 

In the control circuit, we will use the combination of the control 
object and the inverse fuzzy model obtained by inversion of the 
fuzzy static block from the Hammerstein hybrid model. If we con-
sider that the control object (CO) is identical to the Hammerstein 
hybrid model and its static nonlinearity corresponds to a fuzzy 
block, then the set of CO and the inverse fuzzy block can be 
considered as a linear dynamic block of the Hammerstein hybrid 

model. In this control scheme, the calculation results of �̂� corre-
sponding to the linear block of the Hammerstein model is equal to 
the real initial variables y of CO. Based on the differences in 
‘model - real object’, the control system is adapted. The proposed 
approach allows building control based on a standard linear gen-
eralized predictive controller (GPC). As follows from the studies 
published in Clarke et al. (1989), Fruzetti (1997), Garcia and 
Morari (1982), in the case of fuzzy modeling of systems such as 
one input - one output or multiple inputs - one output, the predic-
tive GPC controller allows the efficient control. The proposed 
control circuit allows avoiding non-linear programming in the 
control algorithm or the use of linearization methods.  

3. PROBLEM DEFINITION 

When implementing a control algorithm, a sequence of con-

trols is calculated {∆𝑢(𝑘 + 𝑗)}, 𝑗 = 1,… , 𝐻𝑐 , which minimizes 
the cost function (Stoica, 1981): 

𝐽(𝐻𝑝1, 𝐻𝑝2, 𝐻𝑝𝑐 , 𝜆) = ∑ (𝑤(𝑘 + 𝑗) − �̂�(𝑘 +
𝐻𝑝2

𝑗=𝐻𝑝1

𝑗))
2
+𝜆 ∑ Δ𝑢2𝐻𝑐

𝑗=1 (𝑘 + 𝑗 − 1), (2) 

where, �̂�(𝑘 + 𝑗) are the process output parameters according to 

model; 𝑤(𝑘 + 𝑗) are the modified state parameters, which are 

known in advance; 𝐻𝑝1 is the minimum estimated horizon; 𝐻𝑝2  

maximum estimated horizon (forecast horizon); 𝐻𝑐  is the control 

horizon; 𝜆 = 𝜆0𝐾(𝑢(𝑘))
2
 is the limiting factor (Clarke and 

Mohtadi, 1989); 𝐾(𝑢(𝑘)) is the static transfer coefficient of a 

fuzzy block of the Hammerstein model: 

𝐾(𝑢(𝑘)) =
𝜕𝑓(𝑢(𝑘))

𝜕𝑢(𝑘)
. 

Then, considering (1), ∆𝑣(𝑘) ≈ 𝐾(𝑢(𝑘))∆𝑢(𝑘) and (2) can 
be represented as: 

𝐽(𝐻𝑝1, 𝐻𝑝2, 𝐻𝑝𝑐 , 𝜆) ≈ ∑ (𝑤(𝑘 + 𝑗) − �̂�(𝑘 +
𝐻𝑝2

𝑗=𝐻𝑝1

𝑗))
2
+𝜆0 ∑ Δ𝑣2𝐻𝑐

𝑗=1 (𝑘 + 𝑗 − 1), (3) 

Thus, the linear dynamic model gives the output parameters 

�̂�(𝑘 + 𝑗) = ∑ 𝑔𝑖Δ𝑣
𝑗
𝑗=1 (𝑘 + 𝑖 − 1) + 𝑝𝑗 , based on which the 

GPC calculates the sequence of control actions {𝛥𝑢(𝑘 + 𝑗)}; 
𝑗 = 1,… , 𝐻𝑐 . At the same time, the response of the linear model 

on 𝑘 + 𝑗 step 𝑝𝑗  is determined based on the control signal in the 

previous steps and the value 𝑔𝑖: 

𝑝𝑗 = ∑ ∑ 𝑔𝑖Δ𝑣
𝑁𝑔

𝑖=𝑚+1
𝑗
𝑚=1 (𝑘 + 𝑚 − 𝑖), 𝑗 = 1,… , 𝑁𝑔, 

𝑔𝑗 {
0, ∀𝑗 ≤ 𝑛𝑑

− ∑ 𝑎𝑖𝑔𝑗−𝑖 + ∑ 𝑏𝑖 , 𝑓 > 𝑛𝑑
𝑗
𝑖=1

𝑗
𝑖=1

, 

where, 𝑁𝑔 is the model horizon (Botto, 1999).  

All predictable outputs can be formed into a vector �̂� =

[�̂�(𝑘 + 𝐻𝑝1), … , �̂�(𝑘 + 𝐻𝑝2)], and write the basic equation of 

the GPC algorithm: 

�̂� = 𝐺∆𝑣 + 𝑝, (4) 
where, ∆𝑣 = [∆𝑣(𝑘), … , ∆𝑣(𝑘 + 𝐻𝑐)]

𝑇, 

𝑝 = [𝑝𝐻𝑝1
, 𝑝𝐻𝑝1+1

, … , 𝑝𝐻𝑝2
]
𝑇

, 𝐺 – is the matrix (𝐻𝑝2 − 𝐻𝑝1 +

1) × 𝐻𝑙  with zero components for 𝑗 − 𝑖 > 𝐻𝑝1: 

𝐺 =

[
 
 
 
 

𝑔𝐻𝑝1
𝑔𝐻𝑝1−1

… 0

𝑔𝐻𝑝1+1
𝑔𝐻𝑝1

𝑔𝐻𝑝1−1
⋮

⋮ ⋱ ⋮
𝑔𝐻𝑝2

𝑔𝐻𝑝2−1
… 𝑔𝐻𝑝2−𝐻𝑐+1]

 
 
 
 

. 

If we do not consider the restrictions, then the optimal control 
can be calculated analytically from (4): 

∆�̅�(𝐺𝑇𝐺 + 𝜆0𝐼)
−1𝐺(𝑤 − 𝑝). (5) 

If constraints are taken into account, we have to use quadratic 
programming to solve the optimization problem. To avoid this, a 
two-stage approach to the constraints of the optimization problem 
with restrictions is proposed. The optimal control problem is 
solved without considering the constraints, and for the obtained 
predictive controls, the fulfilment of the constraints is checked. If 
the result is positive, then the resulting controls are applied to the 
system. Otherwise, it is necessary to linearize the constraints and 
then calculate the optimal control by one of the known methods. 
Such a solution procedure is more computationally rational com-
pared to the standard ones. 

Let's consider the solution of the optimization problem (3) with 

prediction ∆�̅� in the presence of restrictions in the form of equality 

𝑀∆�̅� = 𝑘 and restrictions in the form of inequality 𝐿∆�̅� ≤ 𝑐. 

In this case, a limited solution ∆𝑣𝑐  can be found in the form: 

∆𝑣𝑐 = ∆�̅� − (𝐺𝑇𝐺 + 𝜆0𝐼)
−1𝑀𝑇𝜇 − (𝐺𝑇𝐺 + 𝜆0𝐼)

−1 ∙ 𝐿𝑇𝜂,
 (6) 

where, 𝜇 and 𝜂 are the Lagrange multipliers vectors, correspond-
ing to restrictions in the form of equalities and inequalities.  
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We can find these vectors by solving a quadratic programming 
problem (Stoica, 1981): 

min
𝜇,𝜂

{[
𝜇
𝜂]

𝑇

+ 𝐻 [
𝜇
𝜂] + 𝑔𝑇 [

𝜇
𝜂]} 

Where, 𝐻 = [
𝑀(𝐺𝑇𝐺 + 𝜆0𝐼)

−1𝑀𝑇 𝑀(𝐺𝑇𝐺 + 𝜆0𝐼)
−1𝐿𝑇

𝐿(𝐺𝑇𝐺 + 𝜆0𝐼)
−1𝑀𝑇 𝐿((𝐺𝑇𝐺 + 𝜆0𝐼)

−1𝐿𝑇)
]; 

𝑔 = [𝑘 − 𝑀∆�̅�𝑓

𝑐 − 𝐿∆�̅�𝑓
] 

At the same time, 𝜂 is limited by positive evaluations. When 
solving practical problems, it is necessary from the limitations 

given for 𝑢(𝑘) and ∆𝑢(𝑘), go to 𝑣(𝑘) and ∆𝑣(𝑘), using de-

pendencies 𝑣(𝑘) = 𝑓(𝑢(𝑘)) and ∆𝑣(𝑘) ≈  𝐾(𝑢(𝑘))∆𝑢(𝑘). 

For example, from restrictions in the form: 

(

𝐼∆𝑢

−𝐼∆𝑢

𝐼𝐻𝑐

−𝐼𝐻𝑐

)∆𝑢 ≤ (

𝑢𝑚𝑎𝑥 − 𝐼𝑢𝑢(𝑘 − 1)

−𝑢𝑚𝑖𝑛 + 𝐼𝑢𝑢(𝑘 − 1)
∆𝑢𝑚𝑎𝑥

−∆𝑢𝑚𝑖𝑛

), (7) 

we can go to restrictions 𝐿∆𝑣 ≤ 𝑐 in the form: 

(

𝐼∆𝑢

−𝐼∆𝑢

𝐼𝐻𝑐

−𝐼𝐻𝑐

)∆𝑣 ≤ (

𝑣𝑚𝑎𝑥 − 𝐼𝑢𝑣(𝑘 − 1)

−𝑣𝑚𝑖𝑛 + 𝐼𝑢𝑣(𝑘 − 1)
∆�̅�𝑚𝑎𝑥

−∆�̅�𝑚𝑖𝑛

), (8) 

where, 𝑣𝑚𝑖𝑛 = 𝑓(𝑢𝑚𝑖𝑛), 𝑣𝑚𝑎𝑥 = 𝑓(𝑢𝑚𝑎𝑥), ∆�̅�𝑚𝑖𝑛 =

∆𝑣𝑚𝑖𝑛𝐾, ∆�̅�𝑚𝑎𝑥 = ∆𝑣𝑚𝑎𝑥𝐾, 𝐾 = [𝐾(𝑢(𝑘)), … , 𝐾(𝑢(𝑘 +

𝐻𝑐))]. 

In order to calculate ∆𝑣𝑚𝑖𝑛 and ∆𝑣𝑚𝑎𝑥 , it is necessary to 

know the vector 𝐾, caused by the sequence of predicted controls, 
which are unknown at the time of calculations in step 𝑘. To de-
termine this sequence, we can use algorithms, which are similar 
to the limited control method for linearized feedback. 

Let’s consider two algorithms for determining the control se-
quence (operating trajectory) for the fuzzy Hammerstein model 
with inversion of static nonlinearity. The first method allows choos-
ing the optimal operating trajectory, considering the constraints 
imposed on it by inequality (8). 

 
Algorithm 1. 

1. Determine unlimited optimal control ∆�̅�, by solving (5). 
2. Transform ∆�̅� and ∆𝑢 through non-linear mapping inversion 

𝑓−1 . 
3. Check the resulting control sequence for compliance with the 

constraints (7). If the constraints are satisfied, the resulting 
control is applied to the system in accordance with the meth-
odology of the MPC (principle of prediction horizon, which 
moves away). If the restrictions are not met, then go to step 4. 

4. Linear constraints are calculated in the form of inequalities (8), 
approximating the vector K with respect to the initially ob-
tained sequence of controls. 

5. Optimal forecast ∆�̅�𝑐 , calculated according to (6), using pre-
computed constraints (Step 4). 
Go to step 2. 
Studies of similar algorithms show that the algorithm should 

converge to a suboptimal solution (Morkun et al., 2014b). If the 
resulting sequence of controls is not feasible, then it is recom-
mended to strengthen the restrictions so that the solution is guar-
anteed to be feasible. To do this, take ∆𝑣𝑚𝑖𝑛 = ∆𝑣𝑚𝑖𝑛𝐾𝑚𝑎𝑥  and 

∆𝑣𝑚𝑎𝑥 = ∆𝑣𝑚𝑎𝑥𝐾𝑚𝑖𝑛 , wherein 𝐾𝑚𝑖𝑛  and 𝐾𝑚𝑎𝑥  are calculated 
as follows: 

𝐾𝑚𝑖𝑛,𝑖 = min𝑢 𝐾(𝑢),  

∀𝑢 ∈ [𝑢(𝑘 − 1) − 𝑖∆𝑢𝑚𝑖𝑛 , 𝑢(𝑘 − 1) + 𝑖∆𝑢𝑚𝑎𝑥], 
𝐾𝑚𝑎𝑥,𝑖 = max𝑢 𝐾(𝑢),  

∀𝑢 ∈ [𝑢(𝑘 − 1) − 𝑖∆𝑢𝑚𝑖𝑛 , 𝑢(𝑘 − 1) + 𝑖∆𝑢𝑚𝑎𝑥]. (9) 

Now for optimal prediction ∆�̅�𝑐 , found from (6), the restriction 

𝐿∆�̅� ≤ 𝑐∗ is applied in accordance with (7) and (8), which en-
sures the known feasibility of the solution. The proposed algorithm 
may increase the constraints imposed on the control too much. 
Therefore, as an alternative variant, it is possible to propose a 
different algorithm, which adapts NOT for control, but control 
constraints (in the form of linear inequalities). 

 
Algorithm 2. 

1. Calculate the constraints 𝑐∗ similar to (7) considering (9). 

2. Determine the vector �̂� as the initial approximation of the 
constraints, calculated in accordance with Step 4 of Algorithm 
1 for the last iteration.  

3. Set new restrictions 𝐿∆�̅� ≤ 𝑐, where c is a linear combination 
𝑐∗ and �̂�, that is,  

 𝑐 = 𝜂𝑐∗ + (1 − 𝜂)�̂� (𝜂 - a certain step size). 

4. Calculate the optimal prediction ∆�̅�𝑐  according to (6), consid-
ering (8), and transform ∆�̅�𝑐  to the real sequence of controls 

∆𝑢 (by inverse nonlinear mapping). 
5. If restrictions (7) are not violated, apply to the system the 

received controls in accordance with the MPC procedure. 
Otherwise, go to Step 3. The scheme of this algorithm is 
shown in Fig. 2. 

 

The determination of unlimited optimal control ∆𝑣𝑓  according 
to (5): 

∆𝑣𝑓 = (𝐺𝑇𝐺 + 𝜆0𝐼)
−1𝐺(𝑤 − 𝑝), 

where ∆𝑣 = [∆𝑣(𝑘), … , ∆𝑣(𝑘 + 𝐻𝑐)]
𝑇, 

𝑝 = [𝑝𝐻𝑝1, 𝑝𝐻𝑝1+1, … , 𝑝𝐻𝑝2]
𝑇

, 

𝑝𝑗 = ∑ ∑ 𝑔𝑖∆𝑣(𝑘 + 𝑚 − 𝑖)
𝑁𝑔

𝑖=𝑚+1
𝑗
𝑚=1 , 𝑗 = 1,… , 𝑁𝑔, is per-

formed in block 6. 

Then the resulting control sequence ∆𝑣𝑓  let's transform into a 
sequence of real controls ∆𝑢 by the non-linear mapping inversion 

𝑓−1   (block 8).  
Block 9 is used to verify the received control sequence for 

compliance with the restrictions (7). If the restrictions are satisfied, 
then the resulting control is applied to the system in accordance 
with the predictive control methodology based on the MPC model. 
If the restrictions are not met, then the parameters of the fuzzy 
block in the hybrid model of Hammerstein are specified in accord-
ance with (8) according to the initial control sequence (block 11). 

Block 12 according to the updated data calculates a new pre-

diction ∆𝑣𝑓𝑐  according to (6) ∆𝑣𝑐 = ∆𝑣𝑓 = (𝐺𝑇𝐺 +
𝜆0𝐼)

−1𝑀𝑇𝜇 − (𝐺𝑇𝐺 + 𝜆0𝐼)
−1𝐿𝑇𝜂, by which the specified 

sequence of controls is determined. If 𝜂 = 1, then we get a case 
of severe restrictions corresponding to the worst-case analysis, 
which gives a guaranteed feasible solution for control and conver-
gence of the procedure. 
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Fig. 2. Scheme of the control algorithm 

4. RESULTS AND ANALYSIS 

When implementing the control according to the scheme 
shown in Fig. 1, the value of the mill productivity by ore 𝑢1 = 𝑄1 

and water flow rate in the classifier 𝑢2 = 𝑄2 were used as control 
actions. As output indicators – performance on the intermediate 
product 𝑦1 = 𝑄𝑝𝑟 , iron content in the solid phase of the interme-

diate product 𝑦2 = 𝛽𝑝𝑟 and the loss of a useful component in the 

tails 𝑦3 = 𝛽𝑡  were used. In the course of control, the water flow 
rate into the mill was calculated while observing the ratio of ore to 
water within the limits of given parameters. 

The control actions were formed based on measuring the iron 
content of the magnetic and solid phases in the pulp (sensors 13, 
16), the concentration of particles of control size grades in the 
pulp at the discharge of classifier 2 (sensor 16), processed by the 
information support subsystem 15, the structure and operation 
principles of which are described in Morkun et al. (2015b). 

For approximation, a discrete model with a fuzzy nonlinear 
block was used. For each input variable, three terms were ap-
plied, according to the Hammerstein hybrid model. Three terms 
with kernels of 16%; 24%; 32% for the pulp density of the classifi-
er discharge and two terms with kernels of 220; 230; 240 for mill 
productivity by ore.  

According to the measured input and output variables, the 
subsystem 10 identifies the control object, builds the Hammerstein 
hybrid model. The linear dynamic block is approximated by a 
model: 

�̂�(𝑘 + 1) =

∑ 𝐴𝑖
𝑛𝑦

𝑖=1
�̂�(𝑘 − 𝑖 + 1) +

∑ ∑ ∑ ∑ 𝐵𝑖𝑑𝑗𝑙𝑝𝛽𝑗𝑙𝑝
𝑁3
𝑝=1

𝑁2
𝑙=1

𝑁1
𝑗=1

𝑛𝑢
𝑖=1 (𝑢(𝑘 − 𝑖 − 𝑛𝑑 + 1)), 

where, matrices 𝐴𝑖 and 𝐵𝑖  for the considered case, have dimen-
sion 3 × 3, 𝑁  is the number of fuzzy sets for the corresponding 

input (𝑁1 = 3,  𝑁2 = 3,𝑁3 = 3), �̂�(𝑘 + 𝑖) is the vector of 

output indicators (three components of the vector - 𝑦1 = 𝑄𝑝𝑟 , 

𝑦2 = 𝛽𝑝𝑟, 𝑦3 = 𝛽𝑡). 

By measurements of input and output indicators step by step, 

according to algorithms, matrices 𝐴𝑖, 𝐵𝑖 , coefficients 𝑑𝑗  the val-

ues 𝛽𝑗  are determined. The resulting model is specified at each 

step (see block diagram in Fig. 2). The optimizer 12 operates on 
the principle of predictive control with an inverse fuzzy model. In 
order to obtain optimal control effects in accordance with the 
obtained model, a minimum target function is found:  

𝐽(𝐻𝑝1, 𝐻𝑝2, 𝐻𝑝𝑐 , 𝜆) ≈ ∑ (𝑦(𝑘 + 𝑖) − �̂�(𝑘 +
𝐻𝑝2

𝑖=𝐻𝑝1

𝑖))
2
+𝜆0 ∑ Δ𝑣2𝐻𝑐

𝑖=1 (𝑘 + 𝑖 − 1),  

where, 𝑦(𝑘 + 𝑖) are the set values of output variables; �̂�(𝑘 + 𝑖) 

are the output variable values predicted by the model;  Δ𝑣(𝑘 +
𝑖 − 1) are the control actions determined from the condition of 
the minimum of the target function.  

This considers the restrictions imposed on Δ𝑣, according to 

(7). Based on �̂�(𝑘 + 𝑖), the predictive controller calculates the 
sequence of control impacts. The target function is quadratic, so 
the problem was considered as quadratic programming and 
solved using the simplex method. The resulting controls were 

applied to the object in order to obtain at the output of 𝑦1 a con-
sistently high value of the intermediate product output and at the 
output of 𝑦2 a stable specified value of the iron content in the 
intermediate product. Using the simplex method in accordance 

with the requirements 𝑄𝑖𝑛𝑡 → max, 𝛽1  ≤ 𝛽𝑝𝑟 ≤ 𝛽2, we previ-

ously found the maximum performance 𝑦1 = 𝑄𝑝𝑟   on the inter-

mediate product with imposed restrictions on quality 52% ≤
𝑦2 ≤  55%. 

The estimation of the quantity of the output product of a 
closed grinding cycle (discharge of a hydro cyclone) 𝑄(𝑡) with a 
given particle size characteristic in the presence of disturbances in 

the inputs 𝑤 and measurements 𝑣 is shown in Fig 3. The results 
of 𝑄(𝑡) prediction, obtained based on the developed hybrid fuzzy 
model are shown in Fig. 4. The standard deviation between accu-

rate and formed estimates of the values of 𝑄(𝑡) is 0.57. 
The results of the research were implemented at the enter-

prises of the Kryvyi Rih iron ore basin, which are part of the 
Ukrrudprom Association, which allows adequate structural and 
parametric identification of control objects (determination coeffi-
cient R2 ≥ 0.96, identification error is in the range 0.005–0.067). 
This made it possible to maximize the productivity of technological 
units, increase the content of the useful component in the concen-
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trate by 0.15% and reduce energy consumption by 1.85%. Tests 
have shown that the use of control algorithms based on hybrid 
models reduces the variance of parameters (by more than 27%) 
and the duration of transients (by more than 22%). 

 
Fig. 3. Estimation of the quantity of the output product of a closed grind-

ing cycle 

 
Fig. 4. The results of 𝑸(𝒕) prediction, obtained based on a hybrid fuzzy 

model 

 
Fig. 5. The change in control error when changing the value of the setting 

of the ore grinding degree in the hydrocyclone discharge 

 
Fig. 6. Change of regulation error when changing the particle size distri-

bution of the pulp solid phase in the mill discharge 

 
Fig. 7. Graphs of changes in the magnetic iron content in the intermedi-

ate product of the steady-state iron ore processing line:  
1 – the control system based on the Hammerstein hybrid model; 
 2 – the control system with reconfigurable PID controllers 

The effectiveness of the considered control system was eval-
uated concerning the hierarchical structure based on local auto-
matic control systems with reconfigurable PID controllers and the 
calculation of optimal tasks for these systems. Figure 7 shows 
graphs of changes in the magnetic iron content in the intermediate 
product of the steady-state iron ore processing line.  

Thus, the proposed algorithm based on the Hammerstein hy-
brid model ensures convergence of the procedure and ensures 
efficient control of the objects under consideration 

5. CONCLUSIONS 

1. Non-linear, dynamic, non-stationary properties characterize 
objects of the iron ore beneficiation line; therefore, it is advis-
able to use models of the Hammerstein class for their approx-
imation. The hybrid model of Hammerstein, in which the non-
linear block is represented by fuzzy Takagi-Sugeno models of 
zero and first order, built based on linguistic rules about the 
control object, makes it possible to visually and conveniently 
approximate the control object during magnetic beneficiation 
of iron ores. Therefore, it is advisable to use such models as 
predicting when controlling the beneficiation processes ac-
cording to the principles of MPC in the context of incomplete 
and fuzzy information about the state of the control object.  

2. The developed algorithms allow identification by automatically 
extracting information from a fuzzy knowledge base about the 
ore beneficiation process, which allows them to be used for 
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real-time identification. The proposed identification mecha-
nisms based on Hammerstein's hybrid models allow us to 
avoid non-linear optimization with non-linear res, which greatly 
simplifies the process of model coefficients calculating. The 
restrictions imposed on the model parameters guarantee the 
convergence of the procedure. 

3. The application of the model fuzzy block inversion in the 
synthesis of predictive control based on the Hammerstein hy-
brid model allows determining the prediction based on the lin-
ear model, which greatly simplifies the calculation of optimal 
control actions. 

4. The proposed Hammerstein hybrid model makes it possible to 
consider the information of various mathematical classes for 
the implementation of adequate structural and parametric 
identification of the control objects of the beneficiation produc-
tion (determination coefficient R2 ≥ 0.96. Depending on the 
dynamic characteristics of the object, the relative error of iden-
tification varies from 0.005 to 0.067; therefore, models allow 
the approximation of control objects with various dynamic 
properties, which are used at processing plants. 
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Abstract: The article presents a mathematical model describing the operation of a piston pneumatic air engine. Compressed air engines 
are an alternative to classic combustion solutions as they do not directly emit toxic exhaust components. In the study, a modified internal 
combustion piston engine was adopted as pneumatic engine. The mathematical model was divided on the two subsystems,  
that is, mechanical and pneumatic. The mechanical subsystem describes a transformation of compressed air supply process parameters 
to energy transferred to the piston and further the conversion of the translational to rotary motion; in turn, in the pneumatic part, the lumped 
elements method was used. Calculations were carried out using the Matlab-Simulink software, resulting in the characteristics of external 
and economic indicators. The presented mathematical model can be ultimately developed with additional elements, such as the intake  
or exhaust system, as well as timing system control. 

Key words: Mechanical engineering, drive sources, pneumatic engine, modelling 

1. INTRODUCTION 

In the subsequent years, the emission limits of the exhaust 
toxic components for the transport sector are successively re-

duced. The proposed 𝑊𝐿𝑇𝑃 (http://wltpfacts.eu/) and 𝑅𝐷𝐸 
(Commission Regulation 2017/1154, 2017) driving tests necessi-
tating the vehicles’ producers to finding the new emission reduc-
tion methods. There are still non-road vehicles (Wargula et al., 
2018) in case of which steps are taken to reduce their emission 
(Walus et al., 2018). In general, the European Union regulations 

indicate on the reduction of 𝐺𝐻𝐺 by ca. 20% by 2030 compared 
to the emissions in 2008 (A policy framework for climate and 
energy…, 2014). 

Many possible solutions of reducing the exhaust toxic compo-
nents in the powertrains of transport means can be distinguished: 
a) The organisation of processes related to the operation 

of  internal combustion engine: 

 𝐴𝑇𝐴𝐶 (Onishi et al., 1979), 

 𝐶𝐴𝐼 / 𝐻𝐶𝐶𝐼 (Jeuland et al., 2004), 

 𝐻𝑃𝐷𝐼 or 𝑅𝐶𝐶𝐼 (Mikulski et al., 2018), 

 usage of exhaust purification systems (Fox et al., 2019; 
Senthil Kumar et al., 2019; Resitoglu et al., 2020), 

 design changes, 

 more efficient control algorithms. 
b) Use of alternative energy sources: 

 for example, 𝐿𝑃𝐺 or 𝐶𝑁𝐺 (Raslavicius et al., 2014; 
Borawski, 2015; Pulawski and Szpica, 2015), biogas 
(Mikulski et al., 2015) and others, 

 electric drive (Grigor’ev et al., 2015), 

 hydraulic/pneumatic drive (Simon, 2017), 

 hybrid systems (Brejaud et al., 2011; Dimitrova and Mare-
chal, 2015; Raslavicius et al., 2017). 

Pneumatics drives used in road transport are not popular.  
Only MDi company (https://www.mdi.lu/) attempted to introduce  
a series of cars using the pneumatic engines in the powertrain 
system. The Engineair Company (http://www.engineair.com.au/) is 
conducting advanced researches on the efficiency improvements 
of the pneumatic engines. Pneumatic engines have many possible 
variants, that is, reciprocating, rotary, unconventional, for exam-
ple, Di Pietro (Zwierzchowski, 2017). In many cases presented in 
the literature, the pneumatic engine is a modification of a two or a 
four stroke internal combustion engine (Mitianiec, 2008; Allam and 
Zakaria, 2018). The researches also concern vane (Badr et al., 
1985; Librovich and Nowakowski, 2004) and rotary (Dvorak et al., 
2017) engines. 

Many studies can be found in the literature regarding the op-
eration of the piston pneumatic engine (i.e., Michael et al. (2012), 
Kalekin et al. (2014), or Semenchukova et al. (2018), Fang et al. 
(2018)). In the mechanical part, the mathematical models are 
based on the description of a piston machine. The pneumatic part 
describes the air flow through the inlet and outlet valves and a 
variable volume chamber representing the cylinder. Dvorak et al. 
(2017) used a standard subsystems blocks from the Matlab envi-
ronment in the course of the mathematical modelling, demonstrat-
ing the compatibility of model and experimental courses for the 
transition states of the rotary engines.  

The modelling methods described above were based on the 
values averaged over a working cycle. It has become significant 
to indicate the variability of these values within one cycle, consti-
tuting the basis for further simulation or strength calculations of 
working elements. The study proposes a methodology for model-
ling an operation of the pneumatic piston engine combining two 
subsystems, mechanical and pneumatic. In the pneumatic part, it 
was proposed that the lumped element method be used (Kamin-
ski, 2013, Kaminski 2014, Szpica, 2018b). 
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2. THE RESEARCH OBJECT 

The object of the research was conceptual piston pneumatic 
air engines with the parameters presented in Table 1. The engine 
(Fig. 1a) was based on a JAWA 50 (http://www.jawa-50.cz) com-
bustion engine, which was a 2-stroke unit with a gas exchange 
operated by the piston motion. The scope of the engine modifica-
tion for compressed air supply included: 

 the intake system in which the carburettor was removed and 
the intake channel was plugged (1 in Fig. 1b), 

 in the spark plug place, the solenoid valve enabling cyclically 
air supply was mounted (2 in Fig. 1b), 

 a custom plate was used between the cylinder head and the 
cylinder to lower the compression ratio (3 in Fig. 1c),  

 a custom plate was mounted between the engine block and 
the cylinder for blocking the scavenging system operation (4 in 
Fig. 1c), 

a) 

 
b) 

 
c) 

 
Fig. 1. Subject of the modelling: a – real view, b – 𝐶𝐴𝐷 model, 

c – modifications (description in the main text) 

The use of a custom plate 3 (Fig. 1b) was necessary as the 

engine with a base compression ratio of 9: 1 could generate 

about 10e5 Pa at the end of the compression stroke. Initially, 

assuming a compressed air supply pressure value at 10e5 Pa, it 
would be tough to expect measurable engine energy effects. 
Hence, the decision to reduce the compression ratio. The custom 
plate 4 and plate 1 was used to block the operation of the crank-
case as the pump pumping over the piston. 

The modified engine works as a two-stroke engine, with the 
processes occurring only over the piston, without the crankcase 
involvement. As a result of the crankshaft rotation, the piston 
closes the outlet window (A in Fig. 1b) and the compression pro-

cess starts. Close to the 𝑇𝐷𝐶, intake of the compressed air starts 
realized by solenoid valve 2. Compressed air is responsible for 
producing pressure force on the piston to create a crankshaft 
torque in a work stroke. The pressure generated in the crankcase 
is neutralised by the gearbox, which is originally locked to the 
engine. The holes between the engine crankcase and the gear-
box, in addition to the neutralisation, provide the lubrication of the 
crankshaft bearings. 

Tab. 1. The two stroke piston pneumatic air engine technical data 

parameter unit value 
number of cylinders – 1 
timing system (max. throughput): inlet 

outlet 
m2 

m2 
12.723e-6 

238.400e-6 
displacement / volume m3 0.5479e-6 
bore m 40.000e-3 
stroke m 43.600e-3 
connecting rod length m 100.000e-3 
compression ratio – 4:1 
weight of the components involved in 
the reciprocal motion kg 0.142 

substitute mass of the part of the con-
necting rod rotating on radius 𝑅 of the 

𝑥-th crank 

kg 0.140 

3. SIMULATION METHODOLOGY 

The scheme presented in Fig. 2 was used for the model de-
scription. 

 
Fig. 2. Scheme of the mechanical and pneumatic subsystem 

(description in the main text) 

The relevant assumptions for building the mathematical repre-
sentation of both subsystems were as follows: 
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a) mechanical subsystem: 

 the torque transfer system was perfectly stiff, 

 the influence of elastic vibrations was omitted, 

 energy flow flowed without loss, 

 the pressure course depended on the timing and input and 
output pressure as well as the position of the piston, 

 the moment of inertia of the crankshaft and flywheel were 
omitted at angular velocity analysis. 

b) pneumatic subsystem: 

 the air was regarded as a thermodynamically ideal gas, 
while being viscous and compressible, 

 the flow took place without internal friction and heat ex-
change with the surroundings, 

 the state of the air was constant in a given volume and 
depended on time, 

 the joints of the individual elements of the tested object 
were perfectly airtight, 

 the air properties were assumed to be uniform both in the 
local volume and in the entire cross-section of the flow 
through the local resistance, 

 the air temperature was constant in the process. 
In the model description, two presented subsystems were 

combined, where as a result of the compressed air supply (re-
placement of the combustion, as it was in the original design), 
force was generated on the piston that created torque and engine 
speed. The engine load conditions determined filling and emptying 
of the cylinder. 

In the description of the mechanical part, based on the 
scheme presented in Fig. 2 and Appendix, the general equation of 
the process in mechanical subsystem was: 

[
𝜔
𝑇𝑟
] =

[
0; (𝑅𝐴𝑝(sin 𝛼 +

𝜆

2
sin 2𝛼))

−1

𝑅𝐴𝑝 sin(𝛼+𝛽)

cos 𝛽
; −

𝑅𝑚𝐴

𝐴𝑝

sin(𝛼+𝛽)

cos 𝛽

] [
𝑝𝑐(𝛼)

𝑉𝑐 (𝛼)
] (1) 

In two stroke, one-cylinder engines that work cycle of which 

involves one full crankshaft revolution, the 𝑆(𝛼) function for the 
one-cylinder engine was: 

𝑆(𝛼) =
sin(𝛼+𝛽)

cos𝛽
=

𝜆 sin 2𝛼

2−𝜆2 sin2 𝛼
+ 𝑠𝑖𝑛𝛼 (2) 

The equation of engine torque was presented in the form: 

𝑇𝑟 = 𝑅𝐴𝑝𝑆(𝛼)𝑝𝑐(𝛼) − 𝑅2𝑚𝐴𝑆(𝛼)(cos 𝛼 + 𝜆 cos 2𝛼)𝜔2

 (3) 

 The engine torque calculated from Eq. 3 is the indicated en-
gine torque. To obtain effective power, the mechanical efficiency 
of the system should be taken into consideration.  
 The description omits the influence of many factors, that is, 
friction, the coefficient of which can be determined using the 
methods presented in (Borawski, 2016; Borawski, 2019). 
 When the instantaneous torque is greater than the average 
one, the instantaneous speed increases, when is smaller – de-
creases. This is the result of the fact that mechanical work of the 
engine is equal with the increase in the kinetic energy accumulat-
ed in the rotating masses of the engine components. When we 
compared the work and the energy, we could calculate the instan-
taneous angular crankshaft speed: 

𝜔𝑖 =

{
 

 √𝜔𝑖−1
2 −

2𝑇𝑟Δα

𝐽𝐸
∑ , 𝑇𝑟 ≤ 𝑇𝑚𝑒𝑎𝑛

√𝜔𝑖−1
2 +

2𝑇𝑟Δα

𝐽𝐸
∑ , 𝑇𝑟 > 𝑇𝑚𝑒𝑎𝑛

 (4) 

The mass moment of inertia of the rotating elements of the 
engine was: 

𝐽𝐸
∑
= 0.64𝑚𝐵𝑅

2 (5) 

The main problem in the modelling processes was the deter-
mination of mean torque value 𝑇𝑚𝑒𝑎𝑛 in cycle, which depended 
directly on the supplying conditions and angular crankshaft speed 

𝜔. It was necessary to change the 𝑇𝑚𝑒𝑎𝑛  value in subsequent 
approximations, to get closer to the 𝜔 reference value. 

Pressure in cylinder (Fig. 2 and Appendix) was described: 

d𝑝𝑐

d𝑡
=

𝜅𝑅𝑔𝑇𝑔

𝑉𝑐
(𝑚 𝑖𝑛 −𝑚 𝑜𝑢𝑡 −

𝑝𝑐

𝑅𝑔𝑇𝑔

d𝑉𝑐

d𝑡
) (6) 

where:  

𝑚 𝑖𝑛 = (𝜇𝐴)𝑖𝑛
𝑝𝑖𝑛

√𝑅𝑔𝑇𝑔
 𝜓max 𝑏

𝑝𝑖𝑛−𝑝𝑐

𝑏 𝑝𝑖𝑛−𝑝𝑐
 (7) 

and 

𝑚 𝑜𝑢𝑡 = (𝜇𝐴)𝑜𝑢𝑡
𝑝𝑐

√𝑅𝑔𝑇𝑔
 𝜓max 𝑏

𝑝𝑐−𝑝𝑎

𝑏 𝑝𝑐−𝑝𝑎
 (8) 

because 𝑝𝑜𝑢𝑡 = 𝑝𝑎. 

4. NECESSARY PARAMETER TO INITIATE CALCULATION 

To initiate the calculation, it was necessary to specify the input 
parameters that should be distinguished: 

 inlet pressure: 𝑝𝑖𝑛 = 10e5 Pa, 

 atmospheric pressure: 𝑝𝑎 = 1e5 Pa, 

 air temperature: 𝑇𝑔 = 293.15 K, 

 adiabatic exponent: 𝜅 = 1.4, 

 gas constant: 𝑅𝑔 = 287.15 J/(kg K), 

 max. value of the 𝑆𝑉𝑊 function: 𝜓max(𝜎) = 0.578, 

 factor of the 𝑀𝐴 function: 𝑏 = 1.13, 

 throughput of the timing system: see Fig. 3 and Fig. 4. 
The Inlet side flow characteristics were determined on the ba-

sis of the solenoid valves dynamical characteristics analysis, in 

this case 𝐿𝑃𝐺 vapour phase pulse injector (Duk and Czarni-
gowski, 2012; Czarnigowski, 2012; Szpica, 2016). Initially, for the 
compressed air supply, the solenoid valve 2M-15 ½`` 0–16 bar 

24 V with flow diameter 𝑑𝑣 = 4.5 𝑚𝑚 was provided. In this type 
of final control elements, specified inlet time 𝑡𝑖𝑛𝑙𝑒𝑡  (Fig. 3 – 

throughput absolute values) consisted of: opening time 𝑡𝑜, time of 

full opening 𝑡𝑓𝑜 and closing time 𝑓𝑐. It follows that the inlet time 

must contain imperfections in the opening and closing process. 
The solenoid valve opening and closing process analysis allowed 
on describing the inlet process in three time dependent ranges: 

(𝜇𝐴)

(𝜇𝐴)max
(𝑡) =

{
 
 

 
 

1

𝑡𝑜
2 𝑡

2, 0 ≤ 𝑡 < 𝑡𝑜

1, 𝑡𝑜 ≤ 𝑡 < 𝑡𝑜 + 𝑡𝑓𝑜

−
1

𝑡𝑐
2 𝑡

2 + 1, 𝑡𝑜 + 𝑡𝑓𝑜 < 𝑡 ≤ 𝑡𝑖𝑛𝑙𝑒𝑡

 (9) 

In the case of the solenoid valve supply, 𝐼𝑉𝑂 can be imple-

mented in any way in regard of the 𝑇𝐷𝐶. To increase the supply 
efficiency, the solenoid valve with piezoelectric actuator can be 
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used (Mieczkowski, 2017; Mieczkowski, 2018; Mieczkowski, 2019, 
Mieczkowski et al, 2020), which significantly reduce the opening 
and closing time if used in a double version. 

 
Fig. 3. Example course of the inlet process as a time function: 

𝑡𝑜 = 2 𝑚𝑠, 𝑡𝑐 = 4𝑚𝑠, 𝑡𝑓𝑜 = 3 𝑚𝑠, 𝑡𝑖𝑛𝑙𝑒𝑡 = 12 𝑚𝑠  

 
Fig. 4. Course of the outlet process as a crankshaft rotation 

 angle function 

To determine the course of the cylinder outlet port opening 

was used engine 𝐶𝐴𝐷 model. After developing the outlet port 
surface, the change of the flow area cross section in a function of 
a crankshaft rotation angle was determined in absolute values of 
throughput, which is presented in Fig. 4. In this case, the opening 
is symmetrical relative to the 𝐵𝐷𝐶. The value of 𝑡𝑓𝑜 depended on 

the position of the bottom edge of the port relative to the 𝐵𝐷𝐶. 

Boundary conditions of simulation for 𝑡 = 0s was established 
as:  

 angle of crankshaft rotation: 𝛼 = 0 rad, 

 displacement of pistons: 𝑥 = 0 mm, 

 volume of cylinder: combustion chamber 𝑉𝑐 = 𝑉min, 

 pressure in cylinder: depending on load conditions and rota-
tional speed, 

 timing system: (𝜇𝐴)𝑖𝑛 – depending on the adopted variant of 

analysis, (𝜇𝐴)𝑜𝑢𝑡 = 0 m2 (Fig. 4), 

 number of cycles analysing for determining the mean – 10. 

5. RESULTS OF THE SIMULATION 

The simulations were carried out using the Matlab-Simulink 
environment. The differential (Eq. 6) was solved numerically with 

the implicit trapezoidal method combined with reverse differentia-

tion (𝑜𝑑𝑒23𝑡𝑏, variable-step, max step size 0.0001, min step 

size 𝑎𝑢𝑡𝑜). Solution Eq. 6 is obtained as a function of time 𝑡; so, 
before starting the simulation, the angle increment 𝛼 was calcu-

lated with a determined value 𝜔. Knowing the angle increment 𝛼 

allowed the camshaft phases (𝜇𝐴) = 𝑓(𝛼) to be loaded into the 

working space. To calculate 𝑇𝑟 (Eq. 3), a value of 𝛼 = 𝑓(𝑡) and 
𝑝𝑐 = 𝑓(𝛼) was required, which was obtained from (Eq. 6). With 

𝑇𝑟 = 𝑓(𝛼) and 𝑇𝑚𝑒𝑎𝑛 , it was possible to calculate 𝜔 = 𝑓(𝛼) 
with Eq. 4. 

At the beginning of the calculation, it is important to specify 
the initial pressure at the simulation start. It affects the shape of 
the indicator diagram. Examples of the indicator diagrams with 
different value of initial pressure in cylinder were shown in Fig. 5. 
The simulation initial pressure value should be corrected each 
time for load conditions and rotational speed. 

a)                                                  b) 

   
Fig. 5. Examples of the indicator diagrams: a – low pressure at the start 

of the simulation (1e5 Pa), b – proper value of the pressure at the 

start of the simulation (8e5 Pa) 

 

In the next step, the determined mean load torque value 
𝑇mean should be approximated due to the fact that it has direct 
influence on the achieved angular speed. Therefore, the simula-
tion is performed several times, for questing a compliance be-
tween the specified 𝑇mean torque and the resulting mean torque 
from a certain number of cycles (crankshaft rotations). On its 
basis, the power could be calculated: 

𝑃 = 𝑇mean𝜔 = 𝑇mean2𝜋𝑛 (10) 

where: 𝑛 = 𝜔/2𝜋. 
and 

𝐵𝑆𝐴𝐶 = 𝑚 𝑖𝑛/𝑃 (11) 

For simulation initialization, into the program workspace 
should be loaded the courses of the inlet and outlet process as a 
function of crankshaft rotation (Fig. 6). 

 
Fig. 6. Example courses of the inlet and outlet process as a crankshaft 

rotation (𝑛 = 2000 rpm) 
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As a result of the calculations carried out, the courses of the 

inlet and outlet process 𝜇𝐴/𝜇𝐴max, pressure in cylinder 𝑝𝑐 , 
torque 𝑇𝑟 and rotation speed 𝑛 as a time function were received 

(Fig. 7). The results are presented as a function of time 𝑡 with 

regard to the specificity of solving Eq. 6, where pressure d𝑝𝑐/d𝑡 
is the determining factor for 𝑇𝑟 and n. Fig. 7 presents the last 5 
cycles out of the 10 performed due to the fact that there is a pos-
sibility of interference in the first cycles with inadequate selection 
of pressure 𝑝𝑐start and 𝑇𝑚𝑒𝑎𝑛 . Significant rotational speed fluctu-

ations can be observed resulting from 𝐼𝑉𝑂, and the assumption 

of only the mass 𝑚𝐵 was the rotational inertia load (Eq. 5), with-
out taking into account the crankshaft and flywheel mass moment 
of inertia. 

The results presented in Fig. 7 were obtained with 𝐼𝑉𝑂 =
30 deg 𝐵𝑇𝐷𝐶, inlet time 𝑡𝑖𝑛𝑙𝑒𝑡  equal to the 100 deg of a 
crankshaft rotate (control disc on a crankshaft with impulse trans-

mitter for opening and closing), opening and closing time 𝑡𝑜 =
𝑡𝑐 = 2.5 𝑚𝑠. For adopted values and input courses, the values 

of mean torque 𝑇𝑚𝑒𝑎𝑛 = 4.46 Nm, rotational speed 𝑛 =
880 rpm, power 𝑃 = 0.41 kW and the stream of supplying air 
𝑚 = 0.053 kg/s were obtained. Due to that, 𝐵𝑆𝐴𝐶 =
46.38 kg/(kWh). 

 
Fig. 7. Example calculation results 

Using created calculation algorithm, the engine full load char-
acteristics and performance were determined (Fig. 8) in relation to 
the energy and the economic indicators based on the indicated 
values. The shape of the characteristics is similar to the shape of 
the characteristics of internal combustion engines. The main 
difference consists of the rotational speed range, especially the 
lower value of speed in which the pneumatic engine is able to 
operate in situated below combustion engine possibility. The 

points of occurrence of the maximum torque 𝑇𝑟max and the mini-

mum 𝐵𝑆𝐴𝐶 occur on opposite sides of the characteristic, as in a 
combustion engine (Heywood, 1988). From around 2000 rpm is 
revealing a decrease in the mass stream of air supplying the 

engine d𝑚/d𝑡 = 𝑚 . The assumed range of inlet valve opening 
angle seems to be correct, however, the operation of it is deter-

mined by the opening time 𝑡𝑜 and closing time 𝑡𝑐, which at higher 
speeds often do not allow to achieve full opening. 

In order to compare a pneumatic engine and its basing com-
bustion engine, it is necessary to take into account the mechanical 
efficiency, for which the values for internal combustion piston 

engines are in the range 𝜂𝑚 = 0.80…0.92 (Heywood, 1988) 
and can be taken as reference value for pneumatic engines. In the 
calculations, it was assumed 𝜂𝑚 = 0.85. Statement of the ener-
getic indicators is presented in Table 2. The maximum computa-
tional power of the pneumatic engine is 50% lower than the basic 
combustion variant. In turn, the maximum torque is 30% higher. 
In the case of torque, the decisive factor is the rotation speed, 
which is nearly 3 times lower than in the combustion equivalent. 
The pneumatic engine from 4000 rpm is characterized by a 
significant decrease in energy indicators.  

 

 
Fig. 8. Full load pneumatic engine speed characteristics 

Tab. 2. The combustion and pneumatic engine comparison 

parameter combustion pneumatic 

maximum power 1.49 kW 0.78 kW 

rotation speed of the maximum power 6500 rpm 2467 rpm 

maximum torque 2.85 Nm 3.71 Nm 

rotation speed of the maximum torque 4500 rpm 1413 rpm 

 The mathematical model presented in the study was used to 
determine the engine full load characteristics and performance. It 
is possible to use it in regulatory characteristics such as the im-

pact of 𝐼𝑉𝑂, 𝑡𝑖𝑛𝑙𝑒𝑡  or 𝑝𝑖𝑛  on 𝑇𝑟 or 𝐵𝑆𝐴𝐶. At present, a prototype 
of the piston pneumatic engine proposed in the study was built. 
Work is underway to verify the mathematical model in relation to 
the real object, what will be the subject of subsequent publica-
tions. 
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6. CONCLUSIONS 

The study presents a mathematical model of a piston pneu-
matic air engines. As a research object, a two-stroke JAWA 50 
combustion engine was selected, which has been subjected to 
the necessary modifications to enable compressed air supply. In 
the scope of the simplifications adopted, engine modelling was 
divided into two sub-subsystems: mechanical, which described 
the transformation of compressed air energy into reciprocating 
machine torque, and pneumatic, where lumped elements method 
was used. The connecting part of both subsystems was the en-
gine cylinder, which on the one hand determined the generated 
torque and speed, however, its filling and emptying was a result 
of the timing system. Carried out calculations allowed the as-
sessment of the engine parameters within one working cycle. 
Significant torque and speed fluctuations have been indicated as 
a result of the low filling frequency and operation setting of the 
inlet valve operation. As a result, the engine full load characteris-
tics and performance were determined. The maximum computa-
tional power of a pneumatic engines is 50% lower than the basic 
combustion variant. In turn, the maximum torque is 30% higher. In 
the case of torque, the decisive factor is the rotation speed, which 
is nearly 3 times lower than in the combustion equivalent. The 
pneumatic engines from 4000 rpm is characterized by a signifi-
cant decrease in energy indicators. The structure of the presented 
mathematical model and calculation methodology allow to use it 
in the initial assessment of the impact of selected input parame-
ters of the pneumatic and mechanical system on both, the energy 
and the economic external indicators. 

 
Nomenclature: ATAC – Active Thermo-Atmosphere Combus-

tion, BDC – Bottom Dead Centre, BTDC - Before TDC, BSAC – 

Brake-Specific Air Consumption, CAD – Computer Aided Design, 

CAI – Controlled Auto-Ignition, CNG – Compressed Natural Gas, 
GHG – GreenHouse Gas, HCCI – Homogeneous Charge Com-

pression Ignition, HPDI – High Pressure Direct Injection, IVO – 

Inlet valve opening, LPG – Liquefied Petroleum Gas, MA – Met-
lyuk-Avtushko, RCCI – Reactivity Controlled Compression Igni-

tion, RDE – Real Driving Emissions, SVW – St`Venant and 

Wantzel, TDC – Top Dead Centre, WLTP – World Harmonized 
Light Vehicle Test Procedure. 

Glossary: a – acceleration, Ap – piston area, b – constant pa-

rameter value of MA flow function, Fc – force acting in the con-

necting rod axis, Fg – gas force acting on the piston, Fnet – re-

sistance force of mass inertia in reciprocating motion, Ft – the 

force tangent to the crank radius, V  – rate of change in volume, 
Vc – volume of cylinder, mA – weight of the components involved 

in the reciprocal motion, mB – the substitute mass of the part of 
the connecting rod rotating on radius R of the x-th crank, L – the 

length of the connecting rod, p – pressure, R – the crank radius, 

Rg – gas constant, Tg – air temperature, V – volume, x – dis-

placement of pistons. 
Greek symbols: α – the angle of crankshaft rotation, κ – adia-

batic exponent, λ – the connecting rod coefficient, (μA) – 

throughput, σ – pressure ratio, ψ(σ) – dimensionless function of 
flow. 

Indexes: c – closing, f – full, inlet, in – inlet, max – maximum 

volume, o – opening, outlet, out – outlet. 
 

APPENDIX 

A1. MECHANICAL SUBSYTEM 

The displacement of the piston without taking in account dis-
placement of the cylinder axis related to the crankshaft axis was 
presented in the form (Szpica, 2018a): 

𝑥 = 𝑅[(1 − cos 𝛼) +
𝜆

4
(1 − cos 2𝛼)]  

where: 𝜆 = 𝐿\𝑅. 
The movement of the piston was described by vector equa-

tion: 

�⃗�𝑔 + �⃗�𝑐 + �⃗⃗⃗� = 𝑚𝐴�⃗�  

where: �⃗�𝑔 = 𝑝𝑐(𝛼)𝐴𝑝𝐢, �⃗�𝑐 =
𝐹𝑔−𝐹𝑛𝑒𝑡

cos𝛽
𝐥, �⃗�𝑛𝑒𝑡 = −𝑚𝐴�̈�, 

𝑎 = �̈� =
D𝑉𝑐 

𝐴𝑝
, 𝐢 and 𝐥 – see Fig. 2. 

Engine torque is described: 

�⃗⃗�𝑟 = �⃗⃗� × �⃗�𝑡 = (𝐫 × 𝐭)(𝐹𝑔 + 𝐹𝑛𝑒𝑡)
𝑅 sin(𝛼+𝛽)

cos 𝛽
  

Because 𝐫 × 𝐭 = −𝐤: 

�⃗⃗�𝑟 = −𝑅(𝐹𝑔 + 𝐹𝑛𝑒𝑡)
sin(𝛼+𝛽)

cos𝛽
𝐤  

where: 𝐤 – see Fig. 2. 

𝑇𝑟 =
𝑅𝐴𝑝 sin(𝛼+𝛽)

cos𝛽
𝑝𝑐(𝛼) −

𝑅𝑚𝐴 sin(𝛼+𝛽)

𝐴𝑝 cos𝛽
𝑉𝑐 (𝛼)  

A2. PNEUMATIC SUBSYSTEM 

Having considered the above assumptions, the stream of air 
flowing through the local drag was expressed as (Fig. 2) (Kamin-
ski, 2013, Kaminski 2014, Szpica, 2018b): 

𝑚 =
d𝑚

d𝑡
= (𝜇𝐴)

𝑝

√𝑅𝑔𝑇𝑔
𝜓max𝜓(𝜎)  

The air pressure change in the lumped elements with 

a variable volume 𝑉 was described: 

d𝑝

d𝑡
=

𝜅𝑅𝑔𝑇𝑔

𝑉
(𝑚 −

𝑝

𝑅𝑔𝑇𝑔

d𝑉

d𝑡
)  

The dimensionless two-range 𝑆𝑉𝑊 flow function was incon-

venient during the modelling, hence the single-range 𝑀𝐴 hyper-

bolic function (Szpica, 2018c) 𝜓(𝜎)𝑏
1−𝜎

𝑏−𝜎
 , where 𝜎 = 𝑝𝑖𝑛/𝑝𝑜𝑢𝑡 . 
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