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ABSTRACTS 

Janusz Gołdasz, Bogdan Sapiński 
Application of CFD to Modeling of Squeeze Mode Magnetorheological Dampers 

The so-called squeeze flow involves a magnetorheological (MR) fluid sandwiched between two planar surfaces setting up a flow channel. 
The height of the channel varies according to a prescribed displacement or force profile. When exposed to a magnetic field of sufficient strength 
MR fluids develop a yield stress. In squeeze-mode devices the yield stress varies with both the magnetic field magnitude and the channel height. 
In this paper an unsteady flow model of an MR fluid in squeeze mode is proposed. The model is developed in Ansys Fluent R16. The MR mate-
rial flow model is based on the apparent viscosity approach. In order to investigate the material's behaviour the authors prepared a model  
of an idealized squeeze-mode damper in which the fluid flow is enforced by varying the height of the channel. Using mesh animation, the model 
plate is excited, and as the mesh moves, the fluid is squeezed out of the gap. In the simulations the model is subjected to a range of displace-
ment inputs of frequencies from 10 to 20 Hz, and local yield stress levels up to 30 kPa. The results are presented in the form of time histories  
of the normal force on the squeezing plate and loops of force vs. displacement (velocity). 

Artur Ganczarski, Damian Szubartowski 
On the Stress Free Deformation of linear FGM interface under Constant Temperature 

This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal deformation is proved 
in two ways. First  proof is based on application of the Iljushin thermo-elastic potential to displacement type sys-tem of equations. This reduces 
3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of simultaneous constant temperature 
and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system of equations which straightforwardly 
reduces to compatibility equations for purely thermal deformation. This occurs if only stress field is homogeneous in domain and at boundary.  
Finally an example of application to an engineering problem is presented. 

Vasyl’ Shvabjuk, Georgij Sulym, Olena Mikulich 
Stress State of Plates with Incisions under the Action of Oscillating Concentrated Forces 

This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action of oscillating 
forces. Calculation of dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the theory of complex 
variable functions. The numerical implementation of the developed algorithmis based on  the method of mechanical quadratures and collocation 
technique. The algorithm is effective in the analysis of the stress state caused by steady-state vibrations of plates. 

Zbigniew Budniak 
Modelling and Numerical Analysis Of Assembly System 

The present articles covers a concept of the creation and testing of assembly systems with the use of modern CAD and CAE systems  
on the example of an assembly system designed for joining parts with circular surfaces that are fitted with positive clearance. The numerical  
investigations were based on the constructed spatial skeleton pattern of the system. The purpose of the simulation tests was to determine  
the impact of the measurement and angular inaccuracies of all the elements of the assembly system as well as the inaccuracy of the positioning 
of the robot’s drives on the positioning accuracy of the parts joined taking into consideration the conditions of assembly in automatic assembly. 

Monika Prucnal-Wiesztort 
Accuracy of Positioning and Orientation of Effector of Planar Parallel Manipulator 3RRR 

Parallel manipulator belongs to group of mechanisms with closed kinematic chains. This feature involves both advantages and disadvantages. 
The study examined the issue of accuracy of a planar system with three degrees of freedom, with revolute pairs, showing the effect of errors  
of the drives settings on effector positioning deviation. Enclosed is a numerical example for which analyzed the deviation in motion manipulator 
when going through the singular configuration. Based on the analysis was determined the area around the singular positions for which to obtain 
the orientation of the assumed accuracy is impossible. 

 
Krzysztof Kęcik 
Application of Shape Memory Alloy in Harvesto-Absorber System 

This paper presents a conception of the harvester-absorber system consisting of two parts. The first is the pendulum attached to the main sys-
tem (oscillator), which is suspended on the linear damper and the nonlinear spring made of shape memory alloy. The spring is modelled  
as a polynomial function based on Landau–Ginzburg theory of phase transitions (similar as ferroelectric and ferromagnets). The obtained results 
show, that SMA element can increase harvesting energy level, while the absorber effect can be impaired (but not loss). Additionally, introducing 
SMA element causes changes in dynamics, introduces a new unstable solutions and bifurcations. The analysis was done by classical integration 
and continuation solution methods. 
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Aneta Bohojło-Wiśniewska 
Numerical Modelling of Humid Air Flow around a Porous Body 

This paper presents  an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat transfer.  
This kind of numerical simulation allows us to create  a heat and humidity transfer model between the Chinese cabbage and the flowing humid 
air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between the solid (vegetable 
tissue) and fluid (air) phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 software. 

Dominik Sawicki, Eugeniusz Zieniuk 
Parametric Integral Equations Systems Method in Solving Unsteady Heat Transfer Problems for Laser Heated Materials 

One of the most popular applications of high power lasers is heating of the surface layer of a material, in order to change its properties. Numer-
ical methods allow an easy and fast way to simulate the heating process inside of the material. The most popular numerical methods FEM  
and BEM, used to simulate this kind of processes have one fundamental defect, which is the necessity of discretization of the boundary  
or the domain. An alternative to avoid the mentioned problem are parametric integral equations systems (PIES), which do not require classical 
discretization of the boundary and the domain while being numerically solved. PIES method was previously used with success to solve steady-
state problems, as well as transient heat transfer problems. The purpose of this paper is to test the efficacy of the PIES method with time  
discretization in solving problem of laser heating of a material, with different pulse shape approximation functions. 

Piotr Czarnocki, Kamila Czajkowska 
Delamination Resistance of Laminate Made with VBO MTM46/HTS Prepreg 

A laminate made with the Vacuum Bag Only (VBO) prepregs can be cured out of autoclave. Because of low curing pressure such a process 
can result in deterioration of laminate mechanical properties. They can be significantly lower than those displayed by the autoclave cured ones. 
The resistance against delamination can be among the most affected. Since this property is a week point of all the laminates it was of particular 
interest.  Delamination resistance of unidirectional  laminate made from VBO  MTM46/HTS(12K) prepreg was in the scope of the presented re-
search and the critical values of the Strain Energy Release Rates and the Paris-type equations corresponding to  Mode I, Mode II and Mixed-
Mode I/II static and cyclic loadings, respectively, were determined. 

Heorhiy Sulym, Lyubov Piskozub, Yosyf Piskozub, Yaroslav Pasternak 
Antiplane Deformation of a Bimaterial Containing an Interfacial Crack with the Account of Friction. 2. Repeating and Cyclic Loading 

The paper presents the exact solution of the antiplane problem for an inhomogeneous bimaterial with the interface crack exposed to the normal 
load and cyclic loading by a concentrated force in the longitudinal direction. Using discontinuity function method the problem is reduced  
to the solution of singular integral equations for the displacement and stress discontinuities at the domains with sliding friction. The paper  
provides the analysis of the effect of friction and loading parameters on the size of these zones. Hysteretic behaviour of the stress  
and displacement discontinuities in these domains is observed. 
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Abstract: The so-called squeeze flow involves a magnetorheological (MR) fluid sandwiched between two planar surfaces setting up a flow 
channel. The height of the channel varies according to a prescribed displacement or force profile. When exposed to a magnetic field of suf-
ficient strength MR fluids develop a yield stress. In squeeze-mode devices the yield stress varies with both the magnetic field magnitude 
and the channel height. In this paper an unsteady flow model of an MR fluid in squeeze mode is proposed. The model is developed in An-
sys Fluent R16. The MR material flow model is based on the apparent viscosity approach. In order to investigate the material's behaviour 
the authors prepared a model of an idealized squeeze-mode damper in which the fluid flow is enforced by varying the height of the chan-
nel. Using mesh animation, the model plate is excited, and as the mesh moves, the fluid is squeezed out of the gap. In the simulations the 
model is subjected to a range of displacement inputs of frequencies from 10 to 20 Hz, and local yield stress levels up to 30 kPa. The re-
sults are presented in the form of time histories of the normal force on the squeezing plate and loops of force vs. displacement (velocity). 

Key words: Magnetorheological Fluid, Damper, Squeeze-Mode, Computational Fluid Dynamics, Mesh Animation 

1. INTRODUCTION 

The MR effect is manifested by changes in the material's ap-
parent viscosity when exposed to magnetic field. This feature has 
made it more than welcome in semi-active control systems and 
automotive applications in particular. The MR material has been 
basis for developing hardware and applications also in the real 
world and not only the academia. By examining the manner 
in which the material operates it is now well understood the mate-
rial may operate in any of the operation modes: flow-mode, shear-
mode, squeeze-mode (Jolly et al., 1996; Jolly and Carlson, 1996). 
Real-world examples of flow-mode hardware include automotive 
dampers and powertrain mounts. Rotary devices are controllable 
brakes and clutches. The squeeze-mode utilizes an MR fluid that 
is trapped in a flow channel whose height varies according to 
a prescribed displacement profile on either surface of the channel. 
The fluid is squeezed out of the gap simple by the plate motion. 
This particular operation mode may provide optimum performance 
when implemented in small-stroke dampers or vibration mounts. 
At the same time a successful application of squeeze-mode re-
quires a mathematical model of the phenomena for fast sizing of 
prototypes at a design stage of the development process. Analyti-
cal models based on the classic Bingham approach (Gołdasz 
and Sapiński, 2015) are rather limited in scope, and the solutions 
have been made available in few idealized cases, e.g. simple 
geometry. CFD (Computational Fluid Dynamics) tools offer 
a modeling potential that can be realized within a reasonable time 
constraint, although full scale unsteady flow problems are a chal-
lenge, too.  

CFD or finite-element studies on devices utilizing MR fluids 
are rare, e.g. (Case et al., 2013, Chen et al., 2007; Zheng et al., 
2014), and on squeeze-mode devices even so (Gstottenbauer et 

al., 2008; Sapiński and Szczęch, 2013). Therefore, there is a need 
to address the problem of developing a model procedure for use 
with more complex case studies. In this study the authors apply 
an apparent viscosity model to a simple 2D axi-symmetric model 
of an idealized squeeze-mode damper geometry. The unsteady 
behavior of the incompressible fluid in squeeze flow is then stud-
ied using mesh animation techniques. The calculations are per-
formed for a material in which the magnetic field-induced yield 
stress is allowed to vary in terms of the flow channel height 

2. MODELING 

In this section the authors was presented Navier-Stokes equa-
tion and the apparent viscosity model. Additionaly, the geometry 
of the damper, yield stress vs. gap height characteristics were 
highlighted. 

2.1. Theory 

The behaviour of MR fluids in flow can be studied using well-
known Navier-Stokes (N-S) equations. Their tensor form is 
(Tannehi et al., 1996) 

𝜌
𝜕𝑢𝑖

𝜕𝑡
+ 𝜌𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

𝜕𝑝

𝜕𝑥𝑖
+

𝜕𝜏𝑖,𝑗

𝜕𝑥𝑗
,                 (1) 

where: 𝜏 – shear stress, 𝜌 – density, 𝑢 – velocity, 𝑝 – pressure, 

and 𝑥𝑖 is the independent variable (𝑖=1,2,3). In N-S equations 
flow problems concerning specific materials are handled by the 
sheear stress term. In the case of MR fluids, using the Bingham 
model and defining the apparent viscosity as the ratio of the fluid's 
yield stress over the local shear rate the following expression is  
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𝜇𝑎𝑝𝑝 = 𝜇 +
𝜏0

|
𝜕𝑢𝑖
𝜕𝑥𝑗

|

              (2) 

and the yield stress term 

𝜏𝑖,𝑗 = 𝜇𝑎𝑝𝑝
𝜕𝑢𝑖

𝜕𝑥𝑗
,              (3) 

where: 𝜏0 – yield stress, 𝜇𝑎𝑝𝑝 – apparent viscosity, 𝜇 – base 

viscosity. The yield stress is allowed to vary in terms of space and 
magnitude. The model in Equation (2) has a discontinuity when 
the shear rate is zero which makes flow problems impossible to 
solve in these conditions. Solutions (Chen et al., 2007) suggest 
imposing an upper bound on the apparent viscosity term (2) when 
shear rate approaches zero. In the present model the upper 
bound is chosen to be 1000 times the base viscosity of the fluid. 
In Ansys Fluent this approach can be programmed into an user-
defined function. 

2.2. Analytical solution 

Sproston et al. (1994) and Zhang et al. (2011) obtained an 
analytical solution for ER/MR fluids in squeeze-flow. In this paper 
the expression obtained by Zhang is further utilized in subsequent 
calculations. It is an extension of Stefan model (de Vincente et al., 
2011; Esmonde et al., 2009; Farjoud et al., 2011) incl. the effects 
of viscosity, plasticity, and inertia (acceleration) 

𝐹𝑀𝑅 = 𝐹𝑣 + 𝐹τ − 𝐹𝑖            (4) 

and 

𝐹𝑣 = 3
μπ𝑅𝑝

4

2(ℎ0+𝑧)3 𝑣𝑧 ,            (5) 

𝐹τ = 3
π𝑅𝑝

3τ0

4(ℎ0+𝑧)
sgn(𝑣𝑧),            (6) 

𝐹𝑖 = 3
π𝑅𝑝

4ρ𝑎𝑧

8(ℎ0+𝑧)
,             (7) 

Where: 𝑅𝑝 – plate radius, ℎ0 – initial gap, 𝑎𝑧 – acceleration, 𝐹𝑀𝑅  

– normal force, 𝐹𝑣 – viscous force, 𝐹𝑖 – inertial force, 𝐹τ – force 
due to yield stress. In this study results obtained using the 
analytical expression given by Equation (4) are compared against 
CFD. 

2.3. Input data 

Consider the 2D axi-symmetric geometry in Fig. 1. The outer 
rectange denotes the fluid domain, and the inner wall boundary 
refers to a circular flat plate that is constrained to move vertically 

according to the prescribed displacement profile ℎ(𝑡). The fluid 
region directly underneath the plate is characterized by a volume 
of non-zero yield stress, whereas zero yield stress in imposed 

in the other portion of the fluid. The outer diameter 𝐷𝑝 of the plate 

is 64 mm, and the initial gap height ℎ0 = 3.38 mm. The CFD 
model is setup with wall boundary conditions on the outer and the 
inner boundary. Mesh is animated on the inner boundary in order 
to simulate flow conditions of a fluid subjected to external kinetic 
(as well as magnetic) excitation inputs. 

In the simulated study the authors assumed fluid properties 
similar to the BASF's 4035 MR material with 26% Fe vol (Kieburg, 
2010). The density of the fluid is 2.6 g/cc, and the base viscosity 

𝜇 = 50 cP. 
The region of the fluid underneath the plate is assumed to be 

characterized by a magnetic field supplied from a virtual core 
assembly with a coil of 𝑁 =150 wire turns. With the current range 
from 0 to 3 A, the fluid's yield stress vs. height characteristics can 
be estimated in Fig. 2. The arrows in the figure indicate the oper-
ating range of this virtual device; the minimum gap height was 
1.94 mm, and the maximum height was 4.82 mm. 

 
Fig. 1. CFD model schematic layout  

 

Fig. 2. Calculated yield stress vs. channel height, 𝜏0(ℎ) 

To summarize, the series of simulated experiments incorpo-
rated two stages. The first one assumed constant yield stress 
of the fluid (regardless of the channel height), whereas as the 
second part utilized the variable yield stress model according to 
Fig. 2. The external excitation was in the form of sinusoidal dis-
placement input applied to the inner boundary (plate). Given the 

initial gap size the gap height varied according to ℎ(𝑡) = ℎ0 +
𝑧(𝑡) = ℎ0 + 𝑐𝑜𝑠(2𝜋𝑓𝑡 + 𝜋/2), where 𝑧 – plate displacement, 

𝑧𝑚 – displacement amplitude, 𝑓 – frequency. The maximum 
aplitude of the displacement input was 1.44 mm, and the frequen-
cy range was from 10 Hz to 20 Hz, thus translating into peak 
velocities of the plate to be appr. 200 mm/s. In the CFD model the 
force is assumed to be positive in compression (downward mo-
tion). 

2.4. Results 

The section contains simulation results by means of Ansys 
Fluent R16. Unsteady flow equations were handled at the con-
stant time step of 0.04 ms. The data are presented in the form 
of plots of force vs. displacement (velocity) in Figs. 3-11. 

To provide force estimate, pressure distribution was integrated 
across the entire surface area below the plate.   
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a) 

 
b) 

 
c) 

 

Fig. 3. Non-energized condition: 𝜏0  = 0 kPa, 𝑓 = {10, 15, 20 Hz},  

a) 𝐹𝑀𝑅 vs. 𝑡, b) 𝐹𝑀𝑅 vs. 𝑧, c) 𝐹𝑀𝑅 vs. 𝑣𝑧 

Specifically, constant yield stress scenarios are revealed 
in Figs. 3-6. The effect of frequency can be studied by considering 
the results in Figs. 7-9. Next, a comparison of CFD results against 
the analytical squeeze-flow model as in Equation (4) is given 
in Fig. 10. Finally, variable yield stress cases are illustrated 
in Fig. 11. With the exception of Fig. 3. all illustrations show only 
the positive force output. Tensile forces were beyond the scope 
of this study. In Fig. 3a the simulation time 𝑡 is scaled by the input 

frequency 𝑓 to enable a direct comparison of the obtained results 
regardless of the kinetic excitation conditions. Fig. 3 reveals small 
yet noticeable effects of inertia manifested by a rotation of the 
force vs. displacement ellipse in Fig. 3b and the increase in the 
force vs. velocity hysteresis as in Fig. 3c. 

a) 

 
b) 

 

Fig. 4. Constant yield stress: 𝑓 = 10 Hz, a) 𝐹𝑀𝑅 vs. 𝑧, b) 𝐹𝑀𝑅 vs. 𝑣𝑧 

a) b) 

 

Fig. 5. Constant yield stress: 𝑓 = 15 Hz, a) 𝐹𝑀𝑅 vs. 𝑧, b) 𝐹𝑀𝑅 vs. 𝑣𝑧 

b) 

c) 
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Constant non-zero yield stress results in Figs. 4, 5 and 6 were 
performed for three frequencies (10, 15, 20) Hz and three distinct 
levels of the yield stress (1, 10, 30) kPa, respectively. Specifically, 
20 Hz data in Fig. 6 reveal an appr. 100 N increase in the force 
due to higher shear rates. The 30 kPa curve in Fig. 6 also shows 
a dual rate behavior that is almost absent in the corresponding 
data set in Fig. 4. The dual-rate feature is representative of the bi-
viscous implementation of the apparent viscosity model in Fluent. 
Effectively, the model response in low frequency and high yield 
stress scenarios may be underestimated The effect is yet to be 
studied in detail, however, the initial observation is consistent with 

other data obtained using the same apparent viscosity model 
(Farjoud et al., 2011). In all cases the force shows a strong de-
pendence on piston position. That is evident when observing 
a large hysteresis in force vs. velocity loops in Figs. 4-6. 
For comparison in Figs. 7-9 the influence of frequency (and veloci-
ty) can be observed and analyzed. Specifically, Fig. 7 reveals the 
model output at the constant yield stress of 1 kPa and the three 
frequencies, respectively. Fig. 8 illustrates the 10 kPa case, and 
Fig. 9 illustrates the behavior of the fluid whose yield stress was 
30 kPa. 

a) b) 

   
Fig. 6. Constant yield stress: 𝑓 = 20 Hz, a) 𝐹𝑀𝑅 vs. 𝑧, b) 𝐹𝑀𝑅 vs. 𝑣𝑧 

a) b) 

 
Fig. 7. Effect of frequency: 𝜏0  = 1 kPa, a) 𝐹𝑀𝑅 vs. 𝑧, b) 𝐹𝑀𝑅 vs. 𝑣𝑧 

a) b) 

 
Fig. 8. Effect of frequency: 𝜏0 = 10 kPa, a) 𝐹𝑀𝑅 vs. 𝑧, b) 𝐹𝑀𝑅 vs. 𝑣𝑧 
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a) b) 

 

Fig. 9. Effect of frequency: 𝜏0 = 30 kPa, a) 𝐹𝑀𝑅 vs. 𝑧, b) 𝐹𝑀𝑅 vs. 𝑣𝑧  

a) b) 

 

Fig. 10. Comparison: analytical model vs. CFD results, a) 𝑓 = 10 Hz, 𝜏0 = 1 kPa, b) 𝑓 = 15 Hz, 𝜏0 = 10 kPa 

a) b) 

 
Fig. 11. Variable yield stress, 𝜏0 = var, 𝑓 = 10 Hz, a) 𝐹𝑀𝑅 vs. 𝑧, b) 𝐹𝑀𝑅 vs. 𝑣𝑧 

To validate the CFD model the obtained results were com-
pared against the analytical expression given by Equation (4). The 
results are revealed in Fig. 10. In general, the illustrations show 
good agreement of the CFD output against the analytical theory. 
Discrepancies are at the extreme positions of the displacement 
range. The behavior is due to the bi-viscous character of the CFD 
solution, and is yet to be confirmed when analyzing the model 
performance against real data in near future. Finally, variable yield 

stress scenarios were considered in which the yield stress τ0 was 
allows to vary in terms of the control gap height and current sup-
plied by a virtual coil. The current range was from 0.5 A to 3 A. 
The output is presented in Fig. 11. The effect of yield stress in-
crease can be clearly seen in the revealed data. In the data the 
increase in the 𝐹𝜏 component with plate-to-base distance is ac-
companied by the effect of augmenting the yield stress due to 
position at current level. 
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3. CONCLUSIONS 

This study concerned a CFD experiment involving an MR fluid 
subjected to compressive loads. In general, the model confirms 
the well-known fact that as the gap height decreases, compres-
sive loads increase. Specifically, the authors developed a CFD 
model based on the apparent viscosity approach and tested its 
performance under constant yield stress conditions and variable 
yield stress conditions, respectively. A comparison of the CFD 
data against theory was made, too, in order to draw conclusions 
on the model limitations and operation range. It is clear from the 
data that the Fluent model underestimates the analytical solution 
at near-zero velocity points, however, good agreement is obtained 
in all presented cases. The results provide a reasonable base for 
future work with real devices and fluids. 
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Abstract: This paper demonstrates the stress free thermo-elastic problem of the FGM thick plate. Existence of such a purely thermal de-
formation is proved in two ways. First  proof is based on application of the Iljushin thermo-elastic potential to displacement type system 
of equations. This reduces 3D problem to the plane stress state problem. Next it is shown that the unique solution fulfils conditions of sim-
ultaneous constant temperature and linear gradation of thermal expansion coefficient. Second proof is based directly on stress type system 
of equations which straightforwardly reduces to compatibility equations for purely thermal deformation. This occurs if only stress field 
is homogeneous in domain and at boundary. Finally an example of application to an engineering problem is presented. 

Key words: Linear FGM Interface, Stress Free Deformation 

1. INTRODUCTION 

Functionally graded materials (FGMs) provide thermal insula-
tion and mechanical toughness at high temperature by varying  
the composition of thermal conductivity coefficient, thermal ex-
pansion coefficient and Young’s modulus from high temperature 
side to low temperature side continuously and simultaneously by 
removing the discontinuity of layered plate. These advantages 
cause that FGMs are applicable in many fields such as high per-
formance engines for aerospace vehicles, turbine blades and 
heat-resisting tools. A general overview of thermal stresses 
in FGMs comprises work by Noda (1999).  

Numerous analytical solutions of thermo-elastic plane 
or three-dimensional problems of FGMs take advantage of specif-
ic power or exponential function approximation methods of multi-
layered composite plate, limiting simultaneously their generality 
and suggesting question how to reduce the problem. One way to 
attain this may be proving theorem on the stress free deformation 
accompanying linear gradation of thermo-mechanical properties 
of the material staying in constant temperature condition. Such 
a proof can be done following two ways taking advantage of either 
displacement or stress formulation of thermo-elastic equations. 
In the first case lemma consists in generalization of theorem 
on the plane stress state in an isotropic thermo-elastic thick plate, 
originally proved by Sneddon and Lockett (1960). The authors 
presented convinced proof for a problem of semi-infinite thermo-
elastic medium bounded by two parallel planes and loaded by an 
arbitrary temperature field on one surface.  The method of solution 
employed was the double Fourier transform. The results con-
firmed solution of analogous problems, being inspiration to their 
work, received earlier by Sternberg and McDowell (1957), based 
on Green’s function, and by Muki (1957), who used method com-
bining the theory of Fourier series and the Hankel transforms 

of integral order. Also there exists other more elegant way, based 
on application of Iljushin’s potential (Iljushin et al., 1979), which 
is demonstrated in the present work. Final step of the proof 
of theorem relays on pointing out that unique solution of the plane 
stress equations, that satisfy homogeneous boundary conditions, 
guarantees stress free deformation if only temperature field 
is constant and gradation of thermal expansion coefficient is linear 
function. 

In the other case, when stress formulation of thermo-elastic 
equations is used, the proof of theorem is almost elementary and 
turns out to be straightforward analogy to these which were done 
by Fung (1965) and Nowacki (1970) for homogeneous material.  

2. FGM’S – CONCEPT, FABRICATION, PROPERTIES 
AND NUMERICAL MODELING 

In many applications, especially in the space industry as well 
as electronic industry, structures or part of structures are exposed 
to high temperature,  usually up to 2000K or even 3500K in some 
parts of rocket engines, see Schulz et al. (2003), high temperature 
gradients, and/or cyclic temperature changes. Conventional me-
tallic materials, such as carbon steels or stainless steels: ASTM 
321, ASTM 310, nickel- or aluminium-based alloys cannot resist 
such high temperatures, see Odqvist (1966). The first method to 
improve the resistance of metallic structures against extreme 
temperature conditions consists in covering the structure with a 
ceramic layer since ceramics are known for their high thermal 
resistance. For instance, in a metal-ceramic composite: Al-SiC the 
thermal conductivities ratio is approximately equal: 𝜆m/𝜆c = 3.6, 

the thermal expansion coefficients ratio: 𝛼m/𝛼c = 5, whereas 

the elastic moduli ratio: 𝐸𝑚/𝐸c = 0.16, see Potarescu and 
Sugano (1993). Indices m and c refer to matrix and ceramic mate-
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rials respectively. Hence, at the metal-ceramic interface, severe 
discontinuity of thermo-mechanical properties occurs, which re-
sults in high strain and stress mismatch at the interface. As a 
consequence, delamination or failure of the coating is rapidly 
observed. As a remedy to these disadvantages the concept of 
Functionally Graded Materials - FGM, was developed in Japan in 
the 1980s, see Yamanouchi et al. (1990), giving structural com-
ponents a spatial gradient in thermo-mechanical properties. The 
spatial gradient is achieved by use of two-component composites. 
The volume fraction of the composite constituents varies spatially 
such that the effective thermo-mechanical properties change 
smoothly from one material (ceramic) to the other (metal). In this 
way, in the case of a Thermal Barrier Coating deposited on a 
metallic substrate, the heat-resistant ceramic layer and the solid 
metal are separated by functionally graded FG layer, the composi-
tion of which varies from pure ceramic to pure metal. The pro-
cessing technologies for TBCs and FGMs may lead to residual 
stresses, which are built-in during cool-down from the elevated 
fabrication temperature. These residual stresses may be signifi-
cant relative to thermo-mechanical stresses applied subsequently. 
As regards FG layer processing, Plasma Spray Thermal Barrier 
Coating leads to lamellar microstructures, whereas columnar-
lamellar microstructures are produced when using Electron Beam 
Physical Vapour Deposition, see  Lee et al. (1996), Schulz et al. 
(2003).  

A general review article on the application of the several ce-
ramic materials  to TBCs is given by Lee et al. (1996). Selected 
thermo-mechanical properties as elastic modulus 𝐸 and both 

thermal expansion 𝛼 and conductivity 𝜆 coefficients are summa-
rized in Table 1 for two alumina-based composites, see Chen and 
Tong (2004), Cho and Shin (2004) for Ni-Al2O3 and Wang et al. 
(2000) for Ti-Al2O3. 

Tab. 1.  Comparison of properties of constituents of two alumina-based 
composites Ni-Al2O3 (Hen and Tong, 2004; Cho and Shin, 2004) 
and Ti-Al2O3 (Wang et al., 2000) 

Composite 𝐸 [GPa] 𝜆 [W/mK] 𝛼 ⋅ 10−6 [1/K] 

Ni 

Al2O3 

199.5 

393.0 

90.7 

30.7 

13.3 

8.8 

Al 

Al2O3 

73 

380 

154 

46 

23 

8.5 

 

Fig. 1. Microstructure of chemically graded Electron Beam Physical  
 Vapour Deposition thermal barrier coating, after Schulz et al. 
(2003) 

When the classical FEM based on homogeneous elements 
is used for FGMs, the material properties stay the same for all 
integration points belonging to one finite element. This means that 
material properties may vary in a piecewise continuous manner, 
from one element to the other and a unique possibility to model 
FGM structure is approximation by use of appropriately fine mesh. 
On the other hand, a too coarse mesh may lead to unrealistic 
stresses at the interface between the subsequent layers. To over-
come this difficulty a special graded element has been introduced 
by Kim and Paulino (2002) to discretize FGM properties. The 
material properties at Gauss quadrature points are interpolated 
there from the nodal material properties by the use of isoparamet-
ric interpolation functions. Contrary to the classical FEM formula-
tion, the stiffness matrix of an element is expressed by the integral 
in which constitutive matrix is a function of the coordinates. In the 
original formulation the same shape functions are used for ap-
proximation of the displacement field and material inhomogeneity. 
However, from the numerical point of view nothing stands in the 
way of implementation of shape functions referring directly to the 
individual character of inhomogeneity, for instance power func-
tions, see Akai et al. (2005) or exponential functions, see Bagri 
et al. (2005). 

3. THE GENERAL FORMULATION  
OF FGM THERMO-ELASTIC PROBLEM 

A thermo-elastic body under consideration (Fig.1) is bounded 

by two parallel planes normal to axis 𝑥3, and its thermo-
mechanical properties such as thermal conductivity coefficient, 
thermal expansion coefficient and Young’s (Kirchhoff’s) modulus 

are optional functions of 𝑥3  

𝜆 = 𝜆(𝑥3) 𝛼 = 𝛼(𝑥3) 𝐸 = 𝐸(𝑥3)       𝐺 = 𝐺(𝑥3). (1) 

Since 𝐸(𝑥3) and 𝐺(𝑥3) are controlled by the same function 

of 𝑥3 the Poisson ratio is considered as independent of 𝑥3 and 
satisfying classical relation 

𝜈 =
𝐸 

2𝐺
− 1.  (2) 

This guarantees isotropy (two independent material constants) 
on one hand and simultaneously prevents from some peculiar 
effects occurring on the other hand, see Ganczarski and Barwacz 
(2004). 

The body is established a temperature field 𝑇 + 𝜃(𝑥𝑖), where 

𝑇 stands for the temperature of the solid corresponding to zero 
stress and strain. Also it is assumed that there are no body forces 
within the solid and that its surfaces are free from tractions. 

The system of equations of uncoupled thermo-elasticity ex-
pressed in displacements takes the form  

 ∇2𝑢𝑖 +
1

1−2𝜈

𝜕𝛩

𝜕𝑥𝑖
+
1

𝐺

𝜕𝐺

𝜕𝑥3
(
𝜕𝑢𝑖

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥𝑖
) = 2

1+𝜈

1−2𝜈

𝜕(∝𝜃)

𝜕𝑥𝑖
, 

 ∇2𝑢3 +
1

1−2𝜈

𝜕𝛩

𝜕𝑥3
+
2

𝐺

𝜕𝐺

𝜕𝑥3
(
𝜕𝑢3

𝜕𝑥3
+

𝜈𝛩

1−2𝜈
) = 2

1+𝜈

1−2𝜈
                 (3) 

   × [
𝜕(∝𝜃)

𝜕𝑥3
+
1

𝐸

𝜕𝐸

𝜕𝑥3
𝛼𝜃] ,

∇2𝜃 +
1

𝜆

𝜕𝜆

𝜕𝑥3

𝜕𝜃

𝜕𝑥3
= 0,

  

where 𝑢𝑖  denotes the displacement vector, and 𝛩 = grad(𝑢𝑖)  
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is the dilatation. The underlined terms in Eqs (3) yield of FGM 
application and they are additional in comparison with classical 
formulation of homogeneous material. The relation between the 
stress tensor 𝜎𝑖𝑗  and the displacement vector 𝑢𝑖 is given by the 

Duhamel-Neumann equation  

𝜎𝑖𝑗 = 𝐺 [
𝜕𝑢𝑖

𝜕𝑥𝑗
+
𝜕𝑢𝑗

𝜕𝑥𝑖
+ 2(

𝜈(𝛩−3𝛼𝜃)

1−2𝜈
− 𝛼𝜃) 𝛿𝑖𝑗].  (4) 

The variation of temperature 𝜃 throughout the solid is deter-
mined by steady Fourier equation Eq. (33) in case of absence 
of inner heat sources.  

System of equations expressed in stresses (extension of Bel-
trami-Michell formulation) equivalent to (3) is as follows 

∇2𝜎𝑖𝑖 +
1

1+𝜈
[
𝜕2𝑠

𝜕𝑥𝑖
2 − ∇

2𝑠] − 2𝐸
𝜕

𝜕𝑥3
(
1

𝐸
) [
𝜕𝜎𝑗𝑗

𝜕𝑥3
−

𝜈

1+𝜈

𝜕𝑠

𝜕𝑥3
]  

   −𝐸
𝜕2

𝜕𝑥3
2 (

1

𝐸
) [𝜎𝑗𝑗 −

𝜈

1+𝜈
𝑠]   

   +
𝐸

1+𝜈
[
𝜕2(𝛼𝜃)

𝜕𝑥𝑖
2 −∇2(𝛼𝜃)] = 0              𝑖, 𝑗 = 1,2,

 

∇2𝜎33 +
1

1+𝜈
[
𝜕2𝑠

𝜕𝑥3
2 − ∇

2𝑠] +
𝐸

1+𝜈
[
𝜕2(𝛼𝜃)

𝜕𝑥3
2 −∇2(𝛼𝜃)] = 0,

 (5)

∇2𝜏𝑖𝑗 +
1

1+𝜈

𝜕2𝑠

𝜕𝑥𝑖𝑥𝑗
+

𝜕

𝜕𝑥3
(
1

𝐸
) [
𝜕𝜎𝑘𝑘

𝜕𝑥𝑖
−

1

1+𝜈

𝜕𝑠

𝜕𝑥𝑖
−
𝜕𝜏𝑘𝑖

𝜕𝑥𝑘
] 

    +
𝐸

1+𝜈

𝜕2(𝛼𝜃)

𝜕𝑥𝑖𝑥𝑗
= 0           𝑖, 𝑗, 𝑘 = 1,2,3    𝑖 ≠ 𝑗 ≠ 𝑘, 

∇2𝜃 +
1

𝜆

𝜕𝜆

𝜕𝑥3

𝜕𝜃

𝜕𝑥3
= 0, 

where 𝑠 = tr(𝜎) = 𝜎11 + 𝜎22 + 𝜎33. It worth to notice that 
equations (51-3) can be obtained either in classical way or directly 
from equations (31-2) according to concept by Ignaczak (1959). 

4. CONDITIONS OF EXISTENCE  
OF STRESS FREE DEFORMATION 

4.1. Proof based on displacement formulation 

To solve Eqs (3) the following potential, originally proposed by 
Iljushin et al. [8], is introduced 

𝑢𝑖 =
𝜕𝜙

𝜕𝑥𝑖
, 𝑢3 = −

𝜕𝜙

𝜕𝑥3
+ 𝑓(𝑥3), 

𝑓(𝑥3) = 𝐴𝑥3
2 + 𝐵𝑥3 + 𝐶  (6) 

𝛼𝛳 = 2
1−𝜈

1+𝜈
𝐴𝑥3 −

1

1+𝜈

𝜕2𝜙

𝜕𝑥3
2 , 

where function of displacement potential 𝜙 is of harmonic type  

∇2𝜙 = 0  (7) 

and 𝐴, 𝐵, and 𝐶 are constants. 
Simple introducing of definitions (6) to Eqs (3) shows that only 

equations of mechanical state are satisfied as identity, contrary 
to the case of homogeneous material, when also the equation 
of thermal state is satisfied as identity   

𝜕

𝜕𝑥𝑖
(∇2𝜙)⏟  

=0

+
1

1−2𝜈

𝜕

𝜕𝑥𝑖
(∇2𝜙⏟

=0

− 2
𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵), 

   +
1

𝐺

𝜕𝐺

𝜕𝑥3
(
𝜕2𝜙

𝜕𝑥3𝜕𝑥𝑖
−

𝜕2𝜙

𝜕𝑥𝑖𝜕𝑥3
)

⏟          
=0

, 

   = 2
1+𝜈

1−2𝜈
(−

1

1+𝜈

𝜕3𝜙

𝜕𝑥𝑖𝜕𝑥3
2) −

𝜕

𝜕𝑥3
(∇2𝜙)⏟  

=0

+ 2𝐴 

   +
1

1−2𝜈

𝜕

𝜕𝑥3
(∇2𝜙⏟

=0

− 2
𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵)  (8) 

   +
2

𝐺

𝜕𝐺

𝜕𝑥3
[−

𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵 +

𝜈

1−2𝜈
(∇2𝜙⏟

=0

− 2
𝜕2𝜙

𝜕𝑥3
2  

+2𝐴𝑥3 + 𝐵)] = 2
1+𝜈

1−2𝜈
[2

1−𝜈

1+𝜈
𝐴 −

1

1+𝜈

𝜕3𝜙

𝜕𝑥3
3 , 

+
1

𝐸

𝜕𝐸

𝜕𝑥3
(2

1−𝜈

1+𝜈
𝐴𝑥3 −

1

1+𝜈

𝜕2𝜙

𝜕𝑥3
2)]. 

The stress components referring to the plane stress state with 

respect to axis 𝑥3  

𝜏13 = 𝐺 (
𝜕𝑢1

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥1
) = 𝐺 (

𝜕2𝜙

𝜕𝑥1𝜕𝑥3
−

𝜕2𝜙

𝜕𝑥3𝜕𝑥1
)

⏟          
=0

= 0, 

𝜏23 = 𝐺 (
𝜕𝑢2

𝜕𝑥3
+
𝜕𝑢3

𝜕𝑥2
) = 𝐺 (

𝜕2𝜙

𝜕𝑥2𝜕𝑥3
−

𝜕2𝜙

𝜕𝑥3𝜕𝑥2
)

⏟          
=0

= 0, 

 𝜎33 = 2𝐺 [
𝜕𝑢3

𝜕𝑥3
− 𝛼𝜃 +

𝜈

1−2𝜈
(𝛩 − 3𝛼𝜃)] (9) 

       = 2𝐺 {−
𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵 − 2

1−𝜈

1+𝜈
𝐴𝑥3 +

1

1+𝜈

𝜕2𝜙

𝜕𝑥3
2  

       +
𝜈

1−2𝜈
[∇2𝜙⏟
=0

− 2
𝜕2𝜙

𝜕𝑥3
2 + 2𝐴𝑥3 + 𝐵 

       −3 (2
1−𝜈

1+𝜈
𝐴𝑥3 −

1

1+𝜈

𝜕2𝜙

𝜕𝑥3
2)]} = 2𝐺

1−𝜈

1−2𝜈
𝐵, 

are also identically equal to zero when 𝐵 = 0 for any point 𝑥𝑖. 
This proves that Eqs (6) transform original mechanical problem 

Eq. (3) into plane stress problem  

∇2𝜙 + 2(1 − 𝜈)𝐴𝑥3 − (1 + 𝜈)𝛼𝜃 = 0. (10) 

The general solution (10) can be written in a form which 
is more suitable to plate problem, namely in which the thermo-
elastic solid is bounded by two parallel planes 𝑥3 = 𝑧 and exhib-
its axial symmetry  

𝜕2𝜙

𝜕𝑟2
+
1

𝑟

𝜕𝜙

𝜕𝑟
+ 2(1 − 𝜈)𝐴𝑧 − (1 + 𝜈)𝛼𝜃 = 0. (11) 

Differentiation of Eq. (11) with respect to 𝑟 and next substitu-
tion 𝑢 = 𝜕𝜙/𝜕𝑟 according to Eqs (61), lead to the classical 
Euler-type differential equation describing thermo-mechanical 
membrane state  

𝜕2𝑢

𝜕𝑟2
+
1

𝑟

𝜕𝑢

𝜕𝑟
−

𝑢

𝑟2
= (1 + 𝜈)

𝜕(𝛼𝜃)

𝜕𝑟
. (12) 

Unique solution of equation (12) that satisfies homogeneous 
boundary conditions  

𝑢(0) = 0,  𝜎𝑟(𝑅) = 0 (13) 

takes well known form  

𝑢 =
(1−𝜈)

𝑅2
𝑟 ∫ 𝛼𝜃𝑟d𝑟

𝑅

0
+
(1+𝜈)

𝑟
∫ 𝛼𝜃𝜌d𝜌
𝑟

0
, 
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𝜎𝑟 =
𝐸

𝑅2
∫ 𝛼𝜃𝑟d𝑟 −

𝐸

𝑟2
∫ 𝛼𝜃𝜌d𝜌
𝑟

0

𝑅

0
, (14) 

𝜎𝜑 =
𝐸

𝑅2
∫ 𝛼𝜃𝑟d𝑟 +

𝐸

𝑟2
∫ 𝛼𝜃𝜌d𝜌
𝑟

0

𝑅

0
− 𝐸𝛼𝜃, 

which in case of constant temperature 𝜃 = const and linear 

gradation of coefficient of thermal expansion 𝛼(𝑧) = 𝑎0 + 𝑎1𝑧 

leads to purely linear (stress-less) deformation  

 𝑢(𝑟, 𝑧) = 𝛼𝜃(𝑧)𝑟, 𝜎𝑟 = 𝜎𝜑 ≡ 0, (15) 

what closes the proof. 

4.2. Proof based on stress formulation  

The proof of theorem presented in point 4.1, in case of the 
stress formulation Eq. (51-3), is straightforward analogy to those 
done by Fung (1965) and Nowacki (1970) for homogenous mate-
rial. This turns out to be almost elementary when one assumes 
that 𝜎𝑖𝑗 ≡ 0 in both Eq. (51-3) and appropriate boundary condi-

tions. Namely, system of equations is satisfied as identity if  

𝜕2(𝛼𝜃)

𝜕𝑥𝑖
2 − ∇2(𝛼𝜃) = 0          𝑖 = 1,2,3, 

𝜕2(𝛼𝜃)

𝜕𝑥𝑖𝑥𝑗
= 0                             𝑖, 𝑗 = 1,2,3, (16) 

∇2𝜃 +
1

𝜆

𝜕𝜆

𝜕𝑥3

𝜕𝜃

𝜕𝑥3
= 0. 

For constant temperature 𝜃 = const satisfying Fourier’s law 
(163) the unique solution of (161,2) corresponds again to the linear 

gradation of coefficient of thermal expansion 𝛼(𝑥3) = 𝑎0 +
𝑎1𝑥3.  

5. EXAMPLE 

It has been proved in points 4.1 and 4.2 that material of linear 
gradation of thermal expansion coefficient, subjected to constant 
temperature exclusively, is not stressed. This means that it exhib-
its unconstrained and purely thermal deformation. In case of axial 
symmetry such deformation can be expressed by following equa-
tions  

휀𝑟 =
𝜕𝑢

𝜕𝑟
= 𝛼𝜃, 휀𝜑 =

𝑢

𝑟
= 𝛼𝜃, 휀𝑧 =

𝜕𝑤

𝜕𝑧
= 𝛼𝜃.  (17) 

Let us assume that the structure is composed of homogene-
ous metallic substrate (Al) and ceramic layer (Al2O3), joined by 
FGM interface as shown in Fig.3, and thermo-elastic properties 
presented in Tab.1.  

 

Fig. 3. Metallic substrate and ceramic layer joined by FGM interface  
           of linear thermal expansion coefficient structure  

Hence linearly graded coefficient of thermal expansion exhib-
its polygonal function  

𝛼(𝑧) =  {

𝛼m                                0 ≤ 𝑧 < 𝑧i          

𝛼m − (𝛼m − 𝛼c)
𝑧−𝑧i

ℎi
𝑧i ≤ 𝑧 < 𝑧i + ℎi

𝛼c                                 𝑧i + ℎi ≤ 𝑧 ≤ 𝐻

 (18) 

and we easily arrive at following of solution Eqs (18) for 𝑢  

𝑢(𝑟, 𝑧) = ∫ 𝛼(𝑧)𝜃d𝜌
𝑟

0
=

   {

𝛼m𝜃𝑟                                      0 ≤ 𝑧 < 𝑧i          

𝛼m𝜃𝑟 − (𝛼m − 𝛼c)
𝑧−𝑧i

ℎi
𝜃𝑟 𝑧i ≤ 𝑧 < 𝑧i + ℎi

𝛼c𝜃𝑟                                       𝑧i + ℎi ≤ 𝑧 ≤ 𝐻

 (19) 

and for 𝑤 respectively 

𝑤(𝑟, 𝑧) = ∫ 𝛼(𝑧)𝜃d휁
𝑧

0
=

  

{
 
 

 
 
𝛼m𝜃𝑧                                             0 ≤ 𝑧 < 𝑧i          

𝛼m𝜃𝑧 − (𝛼m − 𝛼c)
(𝑧−𝑧i)

2

2ℎi
𝜃     𝑧i ≤ 𝑧 < 𝑧i + ℎi

𝛼c𝜃(𝑧i + ℎi) − (𝛼m − 𝛼c)
ℎi

2
𝜃

+𝛼c𝜃(𝑧 − 𝑧i + ℎi)
𝑧i + ℎi ≤ 𝑧 ≤ 𝐻

. (20) 

The displacement field corresponding to stress free defor-
mation defined by Eqs (19-20) is spanned over the mesh of 81×41 
square elements and shown in Fig. 4. It is well visible that both 
substrate and ceramic layers exhibit homogeneous deformation, 
whereas deformation of interface links them satisfying simultane-
ously stress less state. 

 

Fig. 4. Unconstrained (stress less) and purely thermal deformation  
Eqs (19-20) of three layer structure: initial mesh – black colour,  
deformed mesh – red colour (displacement magnified ×100)  

6. CONCLUSIONS 

Homogeneous temperature field does not result stress 
in thermo-elastic material of linear gradation, if only force type 
boundary conditions are homogeneous and there are not body 
forces. However, the case of stress less deformation has only 
theoretical sense since neither manufacturing nor classical FEM 
do not allow for modeling of continuously varying FGM. Namely, 
from technological point of view the Al2O3 outer layer deposed 
on top of a NiCoCAlY bond coat, shown in Fig. 1 after Schulz et 
al. (2003), exhibits hardly noticeable stress state resulting from 
mismatch between metal and ceramic Young’s modules and 
coefficients of thermal expansion. On the other hand, if the classi-
cal FEM is used for solving FGM problems, the material properties 
can only vary in a piecewise continuous manner since all integra-
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tion points within an element have a common property value. 
To overcome this difficulty a special graded element concept, 
based on additional interpolation for nodal material properties, 
is necessary to apply. 
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Abstract: This paper proposes the novel technique for analysis of dynamic stress state of multi-connected infinite plates under the action 
of oscillating forces. Calculation of dynamic stresses at the incisions of plates is held using the boundary-integral equation method and the 
theory of complex variable functions. The numerical implementation of the developed algorithmis based on  the method of mechanical 
quadratures and collocation technique. The algorithm is effective in the analysis of the stress state caused by steady-state vibrations 
of plates.  

Key words: Stress State, Plates, Incision, Hole  

1. INTRODUCTION 

Many structural elements, which are used in modern engi-
neering, can be modelled as plates during the structural analysis. 
Frequently these elements operate under the dynamic loads. 
Thus, estimation of their strength is based on the calculation 
of dynamic stress state near defects, which can be present in the 
plate. This greatly complicates the stress state due to the reflec-
tion of elastic waves from the defects' boundary inside the plate. 

In contrast with static loading, the strength of structural ele-
ments depends on the frequency of the applied dynamic load. 

Methods for analysis of the stress state of structural elements 
with one or more holes under dynamic loadings were developed 
in the works: Brebbia et al. (1984),  Guz et al. (1978), Savin 
(1968), Timoshenko (1967), Pao and Mow (1971), Mow 
and Mente (1963), etc.  

The problem of diffraction of elastic waves in an infinite plate 
with a circular hole or a system circular holes was solved by Guz 
et al. (1978), Pao et al. (1971) and Mow et al. (1963). In the works 
by Kubenko (1967) and Guz et al. (1978) the problem of the con-
centration of dynamic stress near holes of non-canonical form 
is studied by the method, which is based on the method of series 
and the  boundary shape perturbation technique. 

In the works Mushelishvili (1966) and Panasyuk et al. (1984) 
an algorithm for studying of the stress state of plates of different 
shape under the static loadings is developed. This algorithm 
is based on the boundary integral equation method and the theory 
of a complex variable. 

The main advantage of this approach is its universality and 
high accuracy in the case of multiply connected plates of difficult 
shape or infinite plates with holes, which are under the action of 
concentrated forces. 

Systems of integral equations for determination of the dynam-
ic stress state of plates are derived in the works: Kupradze (1963), 

Sherman (1962), Sladek et al. (2000). Numerical analysis of the 
stress state is held by the boundary element method in the works 
Benerjee (1994) and Brebbia et al. (1984). The Somigliana type 
integral formula is used. Thus, integral equations for relative 
displacements are directly obtained. Stress at the boundary 
is determined by the numerical differentiation. At high frequencies, 
numerical differentiation can lead to significant errors, thus, the 
technique which utilize stress integral formulae for dynamic prob-
lems is of high importance. 

2. SOLUTION OF THE PROBLEM 

2.1. Statement of the problem 

Consider an infinite plate with incision that is under the influ-

ence of concentrated oscillating forces  𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔, where 
𝜔 is the frequency of the applied loading, and 𝜏 is time (Fig. 1). 
The problem consists in determination of the dynamic stresses 
at the boundary incision in the plate. 

 
Fig. 1. Model of the plate 

The center of gravity of the plate is placed at the origin 
of a Cartesian coordinate system 𝑂𝑥1х2. Symbol 𝐷 denotes the 
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domain occupied by the plate, and 𝐿 is the boundary of the do-

main 𝐷.  

2.2. Integral equation of the problem  

For the plane stress state the potential solution for image mo-
tion is selected as (Bonnet, 1995): 

𝑢𝑗 = ∫ 𝑝𝑖𝑈𝑖𝑗
∗ 𝑑𝑠

𝐿
+ ∫ 𝑄𝑖𝑈𝑖𝑗

∗ 𝑑𝐷,
𝐷

 (1) 

where 𝑝1, 𝑝2  are unknown complex potential function.  

The representation of the image 𝑈𝑖𝑗
∗  should be choosing with 

the regard to Zommerfeld conditions, since the plate is infinite. 
It has the form (Brebbia et al., 1984):  

𝑈𝑖𝑗
∗ =

1

2𝑐2
2 (𝛿𝑖𝑗 −  ∙ 𝑟𝑖𝑟𝑗), 

where 

 =
𝑖𝜋

2
(−𝐻0

2 (
𝜔𝑟

𝑐2
) +

𝑐2

𝜔𝑟
(𝐻1

2 (
𝜔𝑟

𝑐2
)−

𝑐2

𝑐1
𝐻1

2 (
𝜔𝑟

𝑐1
))), 

 =
𝑖𝜋

2
(𝐻2

2 (
𝜔𝑟

𝑐2
)− (

𝑐2

𝑐1
)
2

𝐻2
2 (

𝜔𝑟

𝑐1
)), 

𝑟𝑖 =
𝑟

𝑥𝑖
, 𝑟 = √(𝑥1 − 𝑥1

0)2 + (𝑥2 − 𝑥2
0)2, 𝑐1, 𝑐2 are the 

speeds of expansion and shear waves: c1
2 =

E

(1−2)
, c2

2 =

E

2(1+)
, Е is the Young's modulus, ρ is the density of the material; 

 is the Poisson ratio; Hk
2(r) = Jk(r) − Yk(r) are Hankel func-

tions of the second kind; 𝐽𝑘(𝑟),   𝑌𝑘(𝑟)  are Bessel functions of 
the first and second kinds (𝑖, 𝑗 = 1, 2). The integration over the 
domain and along the boundary is performed within variable 

𝑥1
0, 𝑥2

0. Here the time factor 𝑒𝑖𝜔𝜏 is omitted at the displacements 
and the stresses terms. 

Determination of the stresses at an arbitrary point of the plate 
with normal �⃗�  are performed by the formula (Savin, 1968):  

2(𝑛 − 𝑖𝑛) =
2𝐸

1−
𝑅𝑒 (



�̅�
(𝑢1 − 𝑖𝑢2)) +  

+𝑒2𝑖 2𝐸

1+
(


𝑧
(𝑢1 − 𝑖𝑢2)),    (2) 

where 𝛼 is the angle between the normal to the boundary of the 

plate and the axis Ох1; 


z̅
=

1

2
((



x1
− i



x2
)), 



z
=

1

2
((



x1
+ i



x2
)). 

Since the functions 𝑈𝑖𝑗
∗  along with the displacement 𝑢𝑗  are 

complex, the determination of the stress is performed for the real 
and imaginary parts of images (1):  

𝑢𝑗
𝑅 = ∫ (𝑝𝑖

𝑅𝑈𝑖𝑗
∗ 𝑅

− 𝑝𝑖
𝐼𝑈𝑖𝑗

∗ 𝐼
)𝑑𝑠

𝐿
+ ∫ (𝑄𝑖

𝑅𝑈𝑖𝑗
∗ 𝑅

− 𝑄𝑖
𝐼𝑈𝑖𝑗

∗ 𝐼
)𝑑𝐷

𝐷
, 

𝑢𝑗
𝐼 = ∫ (𝑝𝑖

𝐼𝑈𝑖𝑗
∗ 𝑅

+ 𝑝𝑖
𝑅𝑈𝑖𝑗

∗ 𝐼
)𝑑𝑠

𝐿
+ ∫ (𝑄𝑖

𝐼𝑈𝑖𝑗
∗ 𝑅

+ 𝑄𝑖
𝑅𝑈𝑖𝑗

∗ 𝐼
)𝑑𝐷

𝐷
, 

where the values with the superscript 𝑅 are real parts 

of corresponding functions  𝐹𝑘
𝑅 = 𝑅𝑒(𝐹𝑘), and the values with 

the superscript 𝐼 are the imaginary parts of corresponding 

functions  𝐹𝑘
𝐼 = 𝐼𝑚(𝐹𝑘), 𝑘 = 1,2.  

Substituting the representation for displacement in the formula 
(2), we obtain formulas for determining stresses at the boundary 
of the plate: 

2(𝑛
𝑅 − 𝑖𝑠𝑛

𝑅 ) = ∫ (𝑓1
𝑅𝑞𝑅 − 𝑓1

𝐼𝑞𝐼)𝑑𝑡
𝐿

+ ∫ (𝑓2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝑡̅
𝐿

, 

∫ (𝑓1
𝑅𝑄𝑅 − 𝑓1

𝐼𝑄𝐼)𝑑𝐷
𝐷

+ ∫ (𝑓2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝐷
𝐿

, 

2(𝑛
𝐼 − 𝑖𝑠𝑛

𝐼 ) = ∫ (𝑓1
𝑅𝑞𝐼 + 𝑓1

𝐼𝑞𝑅)𝑑𝑡
𝐿

+ ∫ (𝑓2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝑡̅
𝐿

, 

+∫ (𝑓1
𝑅𝑄𝐼 + 𝑓1

𝐼𝑄𝑅)𝑑𝐷
𝐷

+ ∫ (𝑓2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝐷
𝐿

, 

where 𝑓𝑘
𝑅 = 𝑓𝑘

𝑅(𝑥1, 𝑥2, 𝑥1
0, 𝑥2

0), 𝑓𝑘
𝐼 = 𝑓𝑘

𝐼(𝑥1, 𝑥2, 𝑥1
0, 𝑥2

0),
𝑘 = 1, 2 are functions of the real argument, which contain Bessel 
functions of second and first kind respectively and are obtained 
similarly to those in Mikulich and Maksymovych (2011);  

𝑞𝑅 =
𝑖𝑝𝑅𝑑𝑠

𝑑𝑡
, 𝑞𝐼 =

𝑖𝑝𝐼𝑑𝑠

𝑑𝑡
 are unknown functions to be determined, 

𝑡 = 𝑥1
0 + 𝑖𝑥2

0. 

Integration of functions 𝑓𝑘
𝑅, 𝑘 = 1,2 for small values of the 

argument leads to singularity. To establish their characteristics we 
use the asymptotic expressions for the Bessel functions of the 
second kind for small values of the argument (Elbert and Laforgia, 
1986). Then the formula for determining of the stresses can be 
written as: 

2(𝑛
𝑅 − 𝑖𝑠𝑛

𝑅 ) =
1

2𝑖

1+

2
∫ ((

𝑑𝑧

𝑑�̅�

�̅�−𝑡̅

𝑧−𝑡
− 1)

1

𝑧−𝑡
)

𝐿
𝑞𝑅𝑑𝑡, 

−
1

2𝑖
∫ (−

1+

2

1

�̅�−𝑡̅
+

𝑑𝑧

𝑑�̅�

3−

2

1

𝑧−𝑡
)

𝐿
�̅�𝑅𝑑𝑡̅ +, 

∫ (𝐺1
𝑅𝑞𝑅 − 𝑓1

𝐼𝑞𝐼)𝑑𝑡
𝐿

+ ∫ (𝐺2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝑡̅
𝐿

+, 

∫ (𝑓1
𝑅𝑄𝑅 − 𝑓1

𝐼𝑄𝐼)𝑑𝐷
𝐷

+ ∫ (𝑓2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝐷
𝐷

; 

2(𝑛
𝐼 − 𝑖𝑠𝑛

𝐼 ) =
1

2𝑖

1+

2
∫ ((

𝑑𝑧

𝑑�̅�

�̅�−𝑡̅

𝑧−𝑡
− 1)

1

𝑧−𝑡
)

𝐿
𝑞𝐼𝑑𝑡, 

−
1

2𝑖
∫ (−

1+

2

1

�̅�−𝑡̅
+

𝑑𝑧

𝑑�̅�

3−

2

1

𝑧−𝑡
)

𝐿
�̅�𝐼𝑑𝑡̅ +, 

∫ (𝐺1
𝑅𝑞𝐼

𝐿
+𝑓1

𝐼𝑞𝑅)𝑑𝑡 + ∫ (𝐺2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝑡̅
𝐿

+, 

∫ (𝑓1
𝑅𝑄𝐼

𝐷
+ 𝑓1

𝐼𝑄𝑅)𝑑𝐷 + ∫ (𝑓2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝐷
𝐷

; 

where 𝑓𝑘
𝐼, 𝐺𝑘

𝑅 = 𝐺𝑘
𝑅(𝑥1, 𝑥2, 𝑥1

0, 𝑥2
0), 𝑘 = 1, 2 are bounded 

and continuous functions of real argument everywhere in D.  
Let us perform the limiting transition when (𝑥1, 𝑥2) → 𝐿 

in the last formula according to Plemelj-Sokhotski formulas (Savin, 
1968). Consequently, integral equations for determination of the 

unknown functions 𝑞𝑅 and 𝑞𝐼 for given loading at the boundary 
are obtain: 

q̅R +
1

2i

1+

2
∫ ((

dz

dz̅

z̅−t̅

z−t
− 1)

1

z−t
)

L
qRdt, 

−
1

2𝑖
∫ (−

1+

2

1

�̅�−𝑡̅
+

𝑑𝑧

𝑑�̅�

3−

2

1

𝑧−𝑡
)

𝐿
�̅�𝑅𝑑𝑡̅ +,           (3) 

∫ (𝐺1
𝑅𝑞𝑅 − 𝑓1

𝐼𝑞𝐼)𝑑𝑡
𝐿

+ ∫ (𝐺2
𝑅�̅�𝑅 − 𝑓2

𝐼�̅�𝐼)𝑑𝑡̅
𝐿

= 2𝑆𝑅; 

�̅�𝐼 +
1

2𝑖

1+

2
∫ ((

𝑑𝑧

𝑑�̅�

�̅�−𝑡̅

𝑧−𝑡
− 1)

1

𝑧−𝑡
)

𝐿
𝑞𝐼𝑑𝑡, 

−
1

2𝑖
∫ (−

1+

2

1

�̅�−𝑡̅
+

𝑑𝑧

𝑑�̅�

3−

2

1

𝑧−𝑡
)

𝐿
�̅�𝐼𝑑𝑡̅ +,             (4) 

∫ (𝐺1
𝑅𝑞𝐼

𝐿
+𝑓1

𝐼𝑞𝑅)𝑑𝑡 + ∫ (𝐺2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝑡̅
𝐿

= 2𝑆𝐼,  

 
where the first and second integrals are evaluated for their Cau-

chy principal value; 𝑆𝑅, 𝑆𝐼 are known function:   

2𝑆𝑅 = ∫ (𝑓1
𝐼𝑄𝐼 − 𝑓1

𝑅𝑄𝑅)𝑑𝐷
𝐷

+ ∫ (𝑓2
𝐼�̅�𝐼 − 𝑓2

𝑅�̅�𝑅)𝑑𝐷
𝐷

,  

2𝑆𝐼 = ∫ (𝑓1
𝑅𝑄𝐼

𝐷
+ 𝑓1

𝐼𝑄𝑅)𝑑𝐷 + ∫ (𝑓2
𝑅�̅�𝐼 + 𝑓2

𝐼�̅�𝑅)𝑑𝐷
𝐷

. 

Stresses at the boundary of the incisions of the plate are de-
termined in the absence of the contact of the incision's boundary. 
This is verified by the formulas: 
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𝑢1
𝑅 − 𝑖𝑢2

𝑅 = −
1+

𝐸𝑖
∫ (𝐹1

𝑅𝑞𝑅 − 𝐹1
𝐼𝑞𝐼)𝑑𝑡

𝐿
+, 

∫ (𝐹2
𝑅�̅�𝑅 −

𝐿
𝐹2

𝐼�̅�𝐼)𝑑𝑡̅ + ∫ (𝐹1
𝑅𝑄𝑅 − 𝐹1

𝐼𝑄𝐼)𝑑𝐷
𝐷

+

∫ (𝑓2
𝑅�̅�𝑅 − 𝐹2

𝐼�̅�𝐼)𝑑𝐷
𝐿

, (5)  

𝑢1
𝐼 − 𝑖𝑢2

𝐼 = −
1+

𝐸𝑖
∫ (𝐹1

𝑅𝑞𝐼 + 𝐹1
𝐼𝑞𝑅)𝑑𝑡

𝐿
+, 

∫ (𝐹2
𝑅�̅�𝐼 +

𝐿
𝐹2

𝐼�̅�𝑅)𝑑𝑡̅ + ∫ (𝐹1
𝑅𝑄𝐼 + 𝐹1

𝐼𝑄𝑅)𝑑𝐷
𝐷

+

∫ (𝑓2
𝑅�̅�𝐼 + 𝐹2

𝐼�̅�𝑅)𝑑𝐷
𝐿

, (6) 

where 𝐹𝑘
𝑅 = 𝐹𝑘

𝑅(𝑥1, 𝑥2, 𝑥1
0, 𝑥2

0), 𝐹𝑘
𝐼 = 𝐹𝑘

𝐼(𝑥1, 𝑥2, 𝑥1
0, 𝑥2

0),
𝑘 = 1, 2 are functions of the real argument, which contain Bessel 
functions of second and first kind respectively and are obtained 
similar to those by Mikulich (2012). 

2.3. Numeric solution of the algortim  

To study the stress state of the infinite plate with one incision 

denote its boundary contour as 𝛺. The incision in the plates 
is modeled as an elliptic hole with axis ratio of 10. Its equation in 
parametric form is as follows: 𝑥1 = 𝜑(𝜃), 𝑥2 = 𝜓(𝜃), 0 <
𝜃 < 2𝜋. Parameter θ is chooses with respect to the condition 
that  traversing the path boundary region remains at the left. To 
reduce the number of nodal points the numerical integration 
is performed using Sidi sigmoidal non-linear transformation (Sidi, 
2006):  

𝜃 = 𝐺(𝜉) = 𝜉 −
sin (2𝜉)

2
, 0 < ξ < 2𝜋. 

Then, at the boundary it holds that 𝑡 = 𝜑(𝜃) + 𝑖 ∙ 𝜓(𝜃) =
𝑔(𝜃). 

Solution of integral equations (3) - (4) is performed using the 
method of mechanical quadratures. For integrals with Cauchy-
type kernels quadrature formulas of the form (Kolm and Rokhlin, 
2001; Eshkuvatov et al., 2009) are used: 

∫
q

t−z
dt = h∑ qn

g′
n

tn−z

K
n=1  

Ω
, 

𝑡𝑛 = 𝑔(𝜃𝑛), 𝑔′𝑛 = 𝑔′(𝜃𝑛),   𝜃𝑛 = 𝑛 ∙ ℎ,   𝑧 = 𝑧(�̃�),  

�̃� = 𝜃 +
ℎ

2
,  = 1,𝐾, 𝑞𝑛 = 𝑞(𝑡𝑛), ℎ =

2𝜋

𝐾
. 

And for other of the integrals the quadrature formulas of the 
form (Mikulich, 2012) are applied: 

∫ 𝑞 ∙ 𝑓(𝑡,  𝑧𝛺
)𝑑𝑡 = ℎ∑ 𝑞𝑛 ∙ 𝑓𝑛 ∙ 𝑔′𝑛

𝐾
𝑛=1 , 

where 𝑓𝑛 = 𝑓(𝑡𝑛, 𝑧).  
Replacing the integrals with the specified quadrature formulas, 

the system of linear algebraic equations for determination of the 

nodal values of unknown boundary functions 𝑞𝑅 and 𝑞𝐼 is ob-
tained: 

�̅�
𝑅 + ℎ ∑ 𝑓1𝑛

𝑅 𝑞𝑛
𝑅𝑔′

𝑛

𝐾

𝑛=1

+ ℎ ∑ 𝑓2𝑛
𝑅 �̅�𝑛

𝑅�̅�′𝑛 −

𝐾

𝑛=1

ℎ ∑ 𝑓1𝑛
𝐼 𝑞𝑛

𝐼 𝑔′
𝑛

𝐾

𝑛=1

 

−ℎ ∑ 𝑓2𝑛
𝐼 �̅�𝑛

𝐼 �̅�′𝑛
𝐾
𝑛=1 = 2𝑆

𝑅, 

�̅�
𝐼 + ℎ ∑ 𝑓1𝑛

𝑅 𝑞𝑛
𝐼 𝑔′

𝑛

𝐾

𝑛=1

+ ℎ ∑ 𝑓2𝑛
𝑅 �̅�𝑛

𝐼 �̅�′𝑛 +

𝐾

𝑛=1

ℎ ∑ 𝑓1𝑛
𝐼 𝑞𝑛

𝑅𝑔′
𝑛

𝐾

𝑛=1

 

+ℎ ∑ 𝑓2𝑛
𝐼 �̅�𝑛

𝑅�̅�′𝑛
𝐾
𝑛=1 = 2𝑆

𝐼, 

where �̅�
𝑅 = �̅�𝑅(𝑧),  𝑞𝑛

𝑅 = 𝑞𝑅(𝑡𝑛),   �̅�
𝐼 = �̅�𝐼(𝑧), are real and 

imaginary parts of the unknown functions at the boundary, 𝑓𝑖𝑛
𝑅 =

𝑓𝑖
𝑅(𝑡𝑛,  𝑧), 𝑓𝑖𝑛

𝐼 = 𝑓𝑖
𝐼(𝑡𝑛,  𝑧),  𝑖 = 1, 2, 𝑆

𝑅 = 𝑆𝑅(𝑧), 
 𝑆

𝐼 = SI(z) are known function. 
Calculations were performed in the absence of contact 

of boundary of incisions that was tested on the basis of Esq. (5)-
(6). 

After determination of the unknown functions, stress state 
of the plate is calculated by dependencies, which are obtained 
in accordance with representation (1) by providing singular com-
ponents in the kernels of equations and consequently using Ple-
melj-Sokhotski formulas:  

2(𝜃 − 𝑖𝑠𝜃) = 2(𝜃
𝑅 − 𝑖𝑠𝜃

𝑅 ) + 2𝑖(𝜃
𝐼 − 𝑖𝑠𝜃

𝐼 ), 

2(𝜃
𝑅 − 𝑖𝑠𝜃

𝑅 ) =
1+

2
𝑞

𝑅 +
1−

2
�̅�

𝑅 + ℎ ∑ 𝑓1𝑛
𝑅 𝑞𝑛

𝑅𝑔′
𝑛

𝐾
𝑛=1 , 

+h∑ 𝑓2𝑛
𝑅 �̅�𝑛

𝑅�̅�′𝑛 −𝐾
𝑛=1 ℎ ∑ 𝑓1𝑛

𝐼 𝑞𝑛
𝐼 𝑔′

𝑛
𝐾
𝑛=1 −

ℎ ∑ 𝑓2𝑛
𝐼 �̅�𝑛

𝐼 �̅�′𝑛
𝐾
𝑛=1 ,+�̃�

𝑅, 

2(𝜃
𝐼 − 𝑖𝑠𝜃

𝐼 ) =
1+

2
𝑞

𝐼 +
1−

2
�̅�

𝐼 + ℎ ∑ 𝑓1𝑛
𝑅 𝑞𝑛

𝐼 𝑔′
𝑛

𝐾
𝑛=1 , 

+h∑ 𝑓2𝑛
𝑅 �̅�𝑛

𝐼 �̅�′𝑛 +𝐾
𝑛=1 ℎ ∑ 𝑓1𝑛

𝐼 𝑞𝑛
𝑅𝑔′

𝑛
𝐾
𝑛=1 +

ℎ ∑ 𝑓2𝑛
𝐼 �̅�𝑛

𝑅�̅�′𝑛
𝐾
𝑛=1 ,+�̃�

𝐼, 

where  f̃in
R = f̃i

R(tn,  z), f̃in
I = f̃i

I(tn,  z);  i = 1, 2; Φ̃
R,

Φ̃
I  are the values of known functions in selected points of collo-

cation, which are obtained  similar to Mikulich and Maksymovych 
(2011). 

2.4. Numeric calculation stresses in the plate  

Based on the developed technique the distribution of maximal 
stresses in the plate with an incision under the actions of oscillat-

ing forces 𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔 is studied. The forces are applied 

at the points (0; ±𝑏).  
The results of calculations of dynamic stresses are attributed 

to the intensity of the stresses oscillating forces. 

 

Fig. 2. Maximum dynamic stresses in the plate with a horizontal incision 

Fig. 2 shows the results of numerical calculation of the de-
pendence of the maximum dynamic stresses on the dimension-

less frequency 𝜔2
′ =

𝜔∙𝑎

𝑐2
 of the applied forces, where 𝑐2 is the 

speed of shear waves. The incision in the plate is modeled as an 
elliptic hole with axis ratio of 10. Calculations were performed for 
different values of the distance between the point of application of 
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the oscillating forces and the center of the incision. The calcula-
tions were performed for 200 nodal points at the boundary of the 
incision. The Poisson’s ratio was equal to 0.3. In Fig. 2 curve 1 

corresponds to the case of  𝑏 = 𝑎 ; curve 2 corresponds to the 
case of  𝑏 = 1.5𝑎  and curve 3 corresponds to the case of  𝑏 =
2𝑎, where 𝑎 is a major semi axis of the incision.  

Fig. 2 shows that the maximum dynamic stresses have the 
fluctuating nature. At high frequencies, a significant increase 
in the stresses doesn’t occur due to the absence of contact at the 
boundary of incision. 

Analysis of the numerical results shows that the maximum 
stresses at the boundary of the incision are increasing (for a range 
of frequencies in (0.01, 0.9)), and then they decrease and become 
lower comparing to those under static loads.  

The maximum dynamic stresses exceed the corresponding 
static ones in 1.82 times for the case, when the distance to the 
points of application of forces is equal to the major semi-axis 
of the incision. With the increase in distance to the point of appli-
cation of forces the maximum dynamic stresses exceed static 

in 1.86 times for  𝑏 = 1.5𝑎  and in 1.93 times for  𝑏 = 2𝑎. 
Values of dynamic stresses at the boundary of incision at specific 
values of the frequency for oscillating concentrated forces 

𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔, which are applied at the points (0, 𝑎) and 
(0, −𝑎)  and Poisson ratio of 0.3 are determined. The results are 

shown in Fig. 3. Here θ  is the angle in radians. 

 
Fig. 3. Distributions of stresses on the boundary of the horizontal incision 

 
Fig. 4. Maximum dynamic stresses in the plate with a vertical incision  

The figure shows that the maximum stresses are occurring 
at the end of the major semi-axis. There is no significant change 
in the distribution of stresses along the boundary of incision with 
increasing in frequency.  

The effect of orientation of incision on the distribution of max-
imum dynamic stresses is also studied. The values of the maxi-
mum stresses in the plate with a vertical incision for different 

values of dimensionless frequency 𝜔2
′ =

𝜔∙𝑎

𝑐2
 are calculated. The 

results are shown in Fig. 4.  
Calculations were performed for different values of the dis-

tance from the point of application of the oscillating forces to the 
center of the incision. In numerical calculations 250 nodal points 
meshed the boundary of the incision, and the Poisson ratio was 

equal to 0.3. In Fig. 4 curve 1 corresponds to the case of 𝑏 =
1.8𝑎; curve 2 corresponds to the case of  𝑏 = 2𝑎 curve 3 corre-
sponds to the case of  𝑏 = 2.2𝑎, where 𝑎 is the major semi-axis 
of the incision.  

Fig. 2 shows that the maximum dynamic stresses have the 
fluctuating nature.  

The maximum stresses are observed at the frequency of 0.75, 
and minimum stresses occur at frequency of 1.72. Increase in the 
frequency of the applied oscillating force causes a significant 
increase in stresses, which exceed the static ones.  

The maximum dynamic stresses exceed the corresponding 
static in 1.55 times for the case when the distance to the points of 

application of forces is 𝑏 = 1.8𝑎. With increase in distance to the 
point of application of forces the maximum dynamic stresses 

exceed static in 1.65 times for 𝑏 = 2𝑎 and in 1.75 times for 𝑏 =
2.2𝑎.   
Values of dynamic stresses at the boundary of vertical incision at 
specific values of the frequency for oscillating concentrated 

forces  𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔, which are applied at the points 
(0, 1.8𝑎) and (0, −1.8𝑎) and Poisson's ratio of 0.3 are 

determined. The results are shown in Fig.5. Here θ  is the angle in 
radians. 

The figure shows that the maximum stress occurs at the end 
of the major semi-axis. With increase in frequency the decrease 
in the oscillating nature of the distribution of stresses along the 
incision boundary is observed.  

With increase in frequency of the applied load stress distribu-
tion along the boundary of the incision changes. Therefore, 
to study the dynamic stress state it is not enough to determine the 
value of stress just at a few points. This demonstrates the signifi-
cant accuracy of the proposed algorithm as opposed to the meth-
ods of series and boundary shape perturbation. Since these 
methods define stresses only at specific points, but not along the 
boundary. 

 
Fig. 5. Distributions of stresses on the boundary of the vertical incision 

The dependence of the distribution of maximum dynamic 
stress from the inclination angle of the incision is investigated. 

Concentrated forces 𝑄1𝑒
𝑖𝜔, 𝑄2𝑒

𝑖𝜔 are applied at the points 
(0, 2𝑎) and (0, −2𝑎). The calculations were performed for 250 
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nodal points at the boundary of the incision and the Poisson’s 

ratio of 0.3. In fig. 6 curve 1 corresponds to the case of 0°, curve 

2 — 30°, curve 3 — 45°, curve 4 — 60°, curve 5 — 90°, where   
is an angle between the major axis of the incision and 𝑂𝑥1. axis. 

 
Fig. 6. Maximum dynamic stresses in the plate with an incision  

Fig. 6 shows that the maximal dynamic stresses have the fluc-
tuating nature regardless of the inclination of the incision. The 
maximum dynamic stresses exceed the corresponding static for 

the case when the frequency 𝜔2
′  of the applied load is in the 

range (0.9; 1). For vertical incision maximum dynamic stresses 

occur at a frequency 𝜔2
′ = 3.45. 

3. SUMMARY  

The technique developed in this paper allows to study the 
stresses at the boundary of incisions in plates under the action 
of concentrated oscillating forces. Effects of orientation of inci-
sions on the stress distribution are studied. Effects of the distance 
between the incisions on the stress distribution are investigated.  

The advantage of the proposed algorithm is the ability of de-
termination of the dynamic stresses along the entire boundary, 
and not at the only specific point. This makes it possible to inves-
tigate in details the dynamic stress state of defective plates. 
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Abstract: The present articles covers a concept of the creation and testing of assembly systems with the use of modern CAD and CAE 
systems on the example of an assembly system designed for joining parts with circular surfaces that are fitted with positive clearance. 
The numerical investigations were based on the constructed spatial skeleton pattern of the system. The purpose of the simulation tests 
was to determine the impact of the measurement and angular inaccuracies of all the elements of the assembly system as well as the inac-
curacy of the positioning of the robot’s drives on the positioning accuracy of the parts joined taking into consideration the conditions of as-
sembly in automatic assembly. 

Key words: Modeling, Analysis, Assembly Manipulator, Chain Dimensional, Assembly System, CAD/CAE 

1. INTRODUCTION 

Issues related to the specificity of modeling and kinematic 
analyses of technical systems were presented in papers Bil,  
(2011, 2012, 2013); Chen et al. (2014); Liuet et al. (2012), Kaca-
lak et al. (2015). The present article covers a method to create 
and test assembly systems that comprise an assembly robot, 
a holder to fasten the body with a fitted opening, a gripper and the 
parts to be combined. 

The essential part of the work presented included a verifica-
tion of the correctness of the spatial model developed of the as-
sembly system, development of the parametric models of the 
parts and the assembly, conducting a kinematic analysis (Budni-
ak, 2012) and its visualization including its animation. SolidWorks 
software was used for the purpose of parametric solid modelling 
of the mounting seat. Kinematic calculations and analyses were 
conducted with the use of SolidWorks Motion software (Chang, 
2011). 

Special attention needs to be drawn to the possibility of con-
ducting an analysis of the accuracy of the mutual position of the 
assembly system elements based on spatial dimension chains 
that are of a key importance in their designing. The task of the 
identification of dimension chains is strenuous and there is a high 

risk of making an error, especially in the case of mechanisms with 
a large number of parts with complex geometries. Owing to the 
use of spatial dimension chains, which are recorded as models in 
CAD/CAE, it is possible to conduct a verification of the conceptual 
spatial design of the assembly system, an analysis of the mutual 
positions of the elements combined in the technological process 
of assembly (Żurek et al., 2013; Tabara et al., 2013), an analysis 
of the dimensional and shape accuracy of the constituent ele-
ments of the assembly system as well as an analysis of clearanc-
es in movable connections (Storch et al., 2007; Zebrowski et al., 
2009; Ahn et al., 2013). 

2. CHAPTER TITLE 

The process of automatic assembly could not proceed correct-
ly without the required accuracy of the position of the parts com-
bined at each stage (Yun et al., 2010; Zhu et al., 2013; Tabara 
et al., 2013). This follows particularly from the seizure conditions 
of the elements combined, which in the majority of cases are the 
conditions of automatic assembly (Budniak, 2014; Huang, 2005). 
The mutual position of the parts combined is particularly important 
in the moment of their positioning (Fig.1a) and centering (Fig.1b). 

 
Fig. 1. The position of combined parts, where: a) positioning, b) centering 

mailto:zbigniew.budniak@tu.koszalin.pl
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The first stage of the combination of the parts is characterized 
by a single-point contact of the elements combined. Their seizure 
occurs only when the direction of the substitute assembly force 
passes through the contact point of the parts and it is simultane-

ously inside the cone of friction 2𝜑𝑇; cf. Fig.1a. It is evident from 
the figure that the probability of the parts combined being seized 
is minute; however, it grows when angle 𝜑𝑇 is increased. The 
probability of the parts combined being seized during their dis-
placement: both on the surfaces of phases and on the frontal 
surface of the sleeve is small. 

The second stage of combining parts is substantially different 
from the first one, as the surfaces that are matched contact one 
another in two points (Fig.1b). In order to determine the seizure 
conditions of the parts to be combined, a mechanical engineering 
law was accepted, according to which: if multiple forces and mo-
ments act on an element, they can be reduced to one substitute 
force, while it can be found that the roller that is inserted is in 
standstill when the substitute assembly force cuts the common 
area of friction cones. 

Seizure occurs when the substitute force that acts on the roller 
that is inserted cuts the equilibrium area that is the common area 
of friction cones (Fig.1b). This area is limited by a polygon, whose 
vertex coordinates are intersection points of the forming outline 

friction cones 2𝜑𝑇, where the value of this angle is calculated 
from the following formula: 


𝑇

= 𝑎𝑟𝑐𝑡𝑔 , (1) 

where:  – friction coefficient value 
At the moment of centering, the parts to be combined ought to 

take such a position so that with any of their dimensions that are 
within tolerance limits there should not occur any seizure of these. 
Hence, the conditions of automatic assembly are as follows: 

 ≤ 𝛾𝑝𝑒𝑟𝑚,  𝜔 ≤ 𝜔, (2) 

where for cylindrical parts to be combined (conical surface angle 

𝜑𝑆  = 00): 

𝛾𝑝𝑒𝑟𝑚 = arccos (
𝑑𝑤

𝐷𝑜
∗ 𝑐𝑜𝑠

𝑇
) − 

𝑇
, 

𝜔 = (𝐷𝑜 − 𝑑𝑤 ∙ 𝑐𝑜𝑠𝛾𝑝𝑒𝑟𝑚)/2. (3) 

Owing to the dependences present, it is possible to reveal 
ways to obtained the required positional accuracy. If Condition (2) 
is fulfilled, everything depends from what the direction will be 
of the substitute assembly force. This direction will chiefly depend 
from the accepted assembly diagram, the constructional details 
of the assembly mechanisms, the rigidity of the assembly system, 
the misalignment of the axes of the surfaces matched etc. 

3. SPATIAL MEASUREMENT CHAIN  
OF THE ASSEMBLY SYSTEM 

In the present study, a numerical analysis was conducted 
of the assembly system for combining parts of the roller-sleeve 
type as presented in Fig. 2. This system constitutes the basis 
of a robotic mounting seat, which consists of an assembly robot 
and peripheral instrumentation. The 𝑅𝑅𝑅𝑃𝑅𝑅  assembly robot 
possesses six degrees of freedom: five rotational couples and one 
sliding couple. 

In order to guarantee the mutual position of the axes of the el-

ements to be combined, points 𝑄𝑠  and 𝑃ℎ  with a specific accura-
cy, one needs to determine above all the mutual position of the 
elements of the assembly system. Value 𝑟∆, which determines the 

error of the mutual position of nodal points 𝑄𝑠  and 𝑃ℎ , depends 
from the accuracy of the relative position of the arms of the as-
sembly robot (𝑟1, 𝑟2 and 𝑟3), servo-motor s, gripper e with the 

gripping part c, the base of the robot 𝑝, the elements to be com-
bined and the accuracy of their workmanship. The determination 
of the closing link 𝑟∆ was based on the solution of the spatial 
measurement link (Fig. 2). 

 

 
Fig. 2. Location of the assembly system components
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In the general case, the value of the closing link 𝑟∆, the spatial 
measurement chain of the assembly system, is calculated from 
Formula (4): 

𝑟∆ = 𝑞𝑄𝑠
− 𝑞𝑃ℎ

= 𝑟𝑃𝑤
+ 𝑟𝐾+𝑟𝑅1

+ 𝑟𝑅2
+ 𝑟𝑅3

+ 𝑟𝑆 + 𝑟𝐸 +

𝑟𝐶 + 𝑟𝑃𝑜
+ 𝑟𝑈 + 𝑟𝑃ℎ

, (4) 

where: 𝑞𝑄𝑠
, 𝑞𝑃ℎ

 – vectors that determine the position of points 𝑄𝑠  

and 𝑃ℎ  in relation to the global system of coordinates 𝑂𝑋𝑌𝑍, 
𝑟𝑃𝑤

, 𝑟𝑃𝑜
– vectors that determine the position of nodal points 𝑃𝑤 

and 𝑃𝑜 in relation to the global system of coordinates 𝑂𝑋𝑌𝑍, 

𝑟𝐾,𝑟𝑅1
, 𝑟𝑅2

, 𝑟𝑅3
, 𝑟𝑆,𝑟𝐸 , 𝑟𝐶 , 𝑟𝑄𝑠

, 𝑟𝑈, 𝑟𝑃ℎ
 – vectors that determine the 

position of nodal points 𝐾, 𝑅1, 𝑅2, 𝑅3, 𝑆, 𝐸, 𝐶, 𝑄𝑠 , 𝑈, 𝑃ℎ that 
belong to the individual constituent elements of the assembly 
system in relation to their local systems of coordinates. 

4. MODELLING OF SPATIAL MEASUREMENT CHAIN 

A description of the assembly system can be considered 
as a description of the relative position of the local systems 
of coordinates related to the individual links of the measurement 
chain: to the reference link (base), the so-called global system 

𝑂𝑋𝑌𝑍 is attributed (Fig. 2). Such an approach to the description 
of this system orders and formalizes its modeling both in the area 
of the kinematics and dynamics of the assembly process. 

At every moment, the movable elements of the assembly sys-
tem accept a specific position in relation to the base and in rela-
tion to one another. When making an analysis of the position 
of this system, the determination is of particular importance of the 
mutual position of points 𝑄𝑠  and 𝑃ℎ  for the specified position 
of the remaining elements of the system. To the individual links 
of the assembly system, the following were attributed: the abso-
lute system of coordinates 𝑂𝑋𝑌𝑍 related to the immovable base 
as well as local systems of coordinates connected with main and 
auxiliary assembly bases of the remaining components. 

In the part of the assembly system (base 𝑝, the body of the 

assembly robot k, the arms of the assembly robot 𝑟1, 𝑟2, 𝑟3, ser-

vo-motor s, gripper e and its gripping part c and roller w), point 𝑄𝑠  
was selected, whose position is in the local system of coordinates 

𝑂𝐵𝑄𝑠
𝑋𝐵𝑄𝑠

𝑌𝐵𝑄𝑠
𝑍𝐵𝑄𝑠

 was determined as vector 𝑄𝑆𝐸
. In a particu-

lar case, the position of the centre of the roller with the length 

being equal to 𝑙𝑜, on its frontal surface, the following is calculated: 

𝑄𝑆𝐸
= [

0
−𝑙𝑜

0
]. (5) 

The same point is described with vector 𝑄𝑠 , which determines 
its position in the absolute system 𝑂𝑋𝑌𝑍: 

𝑄𝑆 = 𝑅𝑃𝑤
∙ 𝑄𝑆𝑃𝑤

+ 𝑇𝑃𝑤
, (6) 

where: 

𝑄𝑆𝑃𝑤
= 𝑅𝐾 ∙ 𝑄𝑆𝐾

+ 𝑇𝐾 , (7) 

𝑄𝑆𝐾
= 𝑅𝑅1

∙ +𝑇𝑅1
, (8) 

𝑄𝑆𝑅1
= 𝑅𝑅2

∙ 𝑄𝑆𝑅2
+ 𝑇𝑅2

, (9) 

𝑄𝑆𝑅2
= 𝑅𝑅3

∙ 𝑄𝑆𝑅3
+ 𝑇𝑅3

,   (10) 

𝑄𝑆𝑅3
= 𝑅𝑆 ∙ 𝑄𝑆𝑆

+ 𝑇𝑆,   (11) 

𝑄𝑆𝑆
= 𝑅𝐸 ∙ 𝑄𝑆𝐸

+ 𝑇𝐸 ,   (12) 

𝑄𝑆𝐶
= 𝑅𝐶 ∙ 𝑄𝑆𝐶

+ 𝑇𝐶 , (13) 

𝑅𝑃𝑤
, 𝑅𝐾 , 𝑅𝑅1

, 𝑅𝑅2
, 𝑅𝑅3

, 𝑅𝑆, 𝑅𝐸 , 𝑅𝐶  – matrices of rotation that 

determine the rotation of the local systems of coordinates, whose 
beginnings are in points 𝑃𝑤 , 𝐾, 𝑅𝑅1

, 𝑅𝑅2
, 𝑅𝑅3

, 𝑆, 𝐸 and 𝐶 around 

their axes; 𝑇𝑃𝑤
, 𝑇𝐾 , 𝑇𝑅1

, 𝑇𝑅2
, 𝑇𝑅3

, 𝑇𝑆, 𝑇𝐸 , 𝑇𝐶  –  vectors that de-

scribe the displacements of the local systems of coordinates. 
In a part of the assembly system (base 𝑝, gripper 𝑢 and the 

body with opening o into which roller w is inserted), point 𝑃ℎ  was 
selected, whose position in the local system of coordinates 
𝑂𝐵𝑈

𝑋𝐵𝑈
𝑌𝐵𝑈

𝑍𝐵𝑈
was determined as a vector: 

𝑃ℎ𝑈
= [

𝑋𝐵𝑈

𝑌𝐵𝑈

𝑍𝐵𝑈

]. (14) 

The same point is described with vector 𝑃ℎ  that determines its 
position in the absolute system 𝑂𝑋𝑌𝑍: 

𝑃ℎ = 𝑅𝑃𝑜
∙ 𝑃ℎ𝑃𝑜

+ 𝑇𝑃𝑜
, (15) 

where: 

𝑃ℎ𝑃𝑜
= 𝑅𝑈 ∙ 𝑃ℎ𝑈

+ 𝑇𝑈 , (16) 

𝑅𝑃𝑜
, 𝑅𝑈 - the matrix of rotation that determines the rotation of the 

local systems of coordinates, whose beginnings are located 

in points 𝑃𝑜 and 𝑅𝑈 around their axes. 

5. MODELLING OF A VIRTUAL MODEL OF THE ASSEMBLY 
SYSTEM 

The first stage of the construction of the virtual model of the 
mounting seat including the assembly system was the creation of 
models that contain the constructive geometry of its individual 
parts. This geometry is formed by planes, axes and constructional 
points as well as the beginning of the local systems of coordi-
nates. The parameters of constructive geometry, which deter-
mines the position of the local systems of coordinates, their axes 
and points were written in the form of modeling variables. The 
values of these variables correspond to the elements of the matrix 
of rotation of the vectors described in Equations (5-16). 

While being based on the model of the base of the assembly 
system, the relations were defined that occur between the remain-
ing elements of the assembly. For the purpose of a unique deter-
mination of the position of the individual elements of the mecha-
nism, the assembly bases that are adjacent to one another of the 
components to be combined were used. The view of the virtual 
mounting seat including the assembly system is shown in Fig. 2. 

6. KINEMATIC SYSTEM OF THE ASSEMBLY SYSTEM 

The structure of the assembly system shown in Fig. 2 pre-
sents the movement capacity of the 𝑅𝑅𝑅𝑃𝑅𝑅 assembly robot. 
The movements for the individual axes are obtained with the aid 
of drives that transfer kinematic energy to the mobile members. 

In order to determine the position and orientation of gripper 𝑒 
with roller w inserted in relation to the axis of the opening in the 
body, into which it is inserted, one needs to assign rectangular 
systems of coordinates to the links of the assembly system 
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in accordance with the previously presented Formulae (5-16). 
From the point of view of the assembly process, the determination 
is the most important of the mutual position of the axis of the 
elements to be combined: of the roller w and the axis of the open-

ing in the body 𝑜. Hence, in further studies, the position and orien-
tation of the roller will be analyzed. The roller w is permanently 
connected with the auxiliary assembly bases of the gripping part 𝑐 

of the gripper 𝑒, and its symmetry axis includes point 𝑄𝑠 , whose 
vector of position is described with Formula (6). 

In the simulation model of the SolidWorks Motion software, 
in order to determine the dependencies between the configuration 
coordinates and the base coordinates (Ω1, Ω2, Ω3, 𝛿4) of the 

position and orientation of the roller in (Ω5, Ω6), temporary 3𝐷 
connections were introduced that determine the position of the 
assembly system and its elements in the mounting seat in the 
starting and final positions. 

One needs to take note of the fact that the local system of co-

ordinates 𝑂𝐵𝐸
𝑋𝐵𝐸

𝑌𝐵𝐸
𝑍𝐵𝐸

 with the roller w inserted is connected 

with the working space and it constitutes the basic system when 
determining the mutual positions of the elements to be combined. 

The system 𝑂𝐵𝑅1
𝑋𝐵𝑅1

𝑌𝐵𝑅1
𝑍𝐵𝑅1

 is connected with the link 𝑟1 

and it can rotate solely by the angle Ω1 in relation to the axis 

𝑋𝐵𝑅1
. The local systems of coordinates 𝑂𝐵𝑅2

𝑋𝐵𝑅2
𝑌𝐵𝑅2

𝑍𝐵𝑅2
 and 

𝑂𝐵𝑅3
𝑋𝐵𝑅3

𝑌𝐵𝑅3
𝑍𝐵𝑅3

 are connected with the 𝑟1 and 𝑟2 links. For 

these systems, rotations are possible by the angle Ω2 in relation 

to the axis 𝑍𝐵𝑅2
 and around the axis 𝑍𝐵𝑅3

. The system of coordi-

nates 𝑂𝐵𝑆
𝑋𝐵𝑆

𝑌𝐵𝑆
𝑍𝐵𝑆

 of the linear servo-motor 𝑠 is displaced 

in the direction of the gripper 𝑒 by value 𝛿4. The system of coor-

dinates 𝑂𝐵𝐸
𝑋𝐵𝐸

𝑌𝐵𝐸
𝑍𝐵𝐸

 of the gripper 𝑒 is placed in the central 

part of the gripper and is determined by rotations by the angle Ω5 

in relation to the axis 𝑍𝐵𝐸
 and Ω6 around the axis 𝑌𝐵𝐸

. 

Forcing of the relative motion of the roller in order to perform 
a simulation of the motion was obtained through the use of virtual 
engines that perform a rotary motion with the following velocities: 
𝜔1, 𝜔2, 𝜔3, 𝜔4 and 𝜔6. In the position of the positioning of the 

roller, the linear engine 𝑣1 was started that forces the translational 

motion of the gripper 𝑒. 

7. POSITION AND ORIENTATION OF THE ASSEMBLY 
ROBOT 

In order to conduct simulation tests, the assembly system was 
selected that is presented in Fig. 2. To describe the movement 

path of the roller that is inserted in the opening in the sleeve, 𝑃ℎ  

and 𝑄𝑠  points were selected. It was accepted that these points 
are located on the symmetry axes of the roller and the sleeve 
on their frontal surfaces. The positions of these points are sought 
on their trajectories that are the result of the constraints imposed 
by the individual member and kinematic pairs of the assembly 
system. 

Forcing of the relative motion of the roller inserted, in order to 
perform a simulation of the movement, was obtained by the use 
of the virtual drives of the individual elements of the assembly 
robot in accordance with the motion parameters contained 
in Tab.1. 

The numerical analysis of the relative position of the elements 
of the assembly system was conducted for the centre of the roller 

𝑄𝑠  inserted in relation to the motionless centre of the sleeve 𝑃ℎ . 

The distance between these centers 𝜔𝛥 was calculated from the 

following formula: 

𝜔 = √∆𝑋
2 + ∆𝑍

2
𝑈

, (17) 

where: 

∆𝑋= 𝑋𝑄𝑠
− 𝑋𝑃ℎ

,   ∆𝑍= 𝑍𝑄𝑠
− 𝑍𝑃ℎ

. (18) 

Tab. 1. Parameters motion of the robot  assembly 

 

 

Virtual 
engine 

Speed Displacement Time 

 

rotatio
nal 

 

linear 

 

angular 

 

linear 

comme
nncem
ent of 
motion 

duration 
of 

motion 

 [°/𝑠] [m/s] [°] [mm] [s] [s] 

𝜔1 150 - 90 - 0.2 0.6 

𝜔2 150 - 30 - 0 0.2 

𝜔3 150 - 30 - 0.2 0.2 

𝑣4 - 0.6 - 120 0.8 0.2 

𝜔5 150 - 45 - 0.2 0.3 

𝜔6 180 - 90 - 0.1 0.5 

 

 
Fig. 3. Misalignment and crossing angle  
           of the axes of the parts to be combined 

The simulation model developed facilitated an easy determi-

nation of the trajectory for the known position of the point 𝑄𝑠  
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in the global system of coordinates 𝑂𝑋𝑌𝑍. Fig. 3 presents the 

values of misalignment in the global system of coordinates 𝑂𝑋𝑌𝑍 
and the warping angles of their axes 𝛾∆ of the parts to be com-

bined along the assembly path, where 𝛥𝑦 specifies the change 
of the distance between the frontal surfaces of the roller and of the 
sleeve. Numerical tests were conducted for the assembly system, 
where the individual elements are performed with absolute accu-
racy. This means that the value of the closing link at the moment 
of positioning is 𝜔𝛥=0 mm (Fig. 3a) and the crossing angle of the 

axes 𝛾∆ = 0° (Fig. 3b). 

Fig. 4 presents the formation of the misalignment 𝜔𝛥 and the 
warping angles 𝑦𝛥 of the axes of the parts to be combined de-

pending from the linear 𝐸𝐿 and angular 𝐸𝐴 accuracy of the ele-

ments of the assembly system and the positioning accuracy 𝐸𝑃 
of the virtual engines. In the simulation tests, assembly was ac-
cepted by means of the complete variability method with identical 
workmanship tolerance for all the links of the measurement chain. 
For linear measurements, a workmanship accuracy was accepted 
of 8 µm, while for angular measurements, this accuracy amount-
ed to 0.02°. The positioning accuracy of the virtual rotating en-

gines was 𝜔∆𝑖
= ± 0.02°, and for the virtual translational servo-

motor, this was 𝜕∆4
= ±0.02mm. 

 

 
Fig. 4. Misalignment and crossing angle  
           of the axes of the parts to be combined 

The results presented of the simulation tests for the summary 
constituent errors (𝐸𝐿 + 𝐸𝐴 + 𝐸𝑃) show that the greatest misa-

lignment is 𝜔𝛥 = 0.579 mm, and the warping angle is 𝑦𝛥 = 0.104°. 

Owing to the values found of positioning errors, it is possible to 
verify the possibility of an automatic assembly of parts of the 
roller-sleeve type depending from the mountability conditions that 
are described with Equations (2 and 3). For the system under 
analysis, with the friction coefficient between the surfaces of the 

parts to be combined being µ=0.15, automatic assembly will be 
possible solely for clearances in combination: 

8. CONCLUSIONS 

This article presents the potential of the present-day 
CAD/CAE systems for modeling and a kinematic analysis of a 
virtual assembly system. The simulation model developed makes 
it possible to conduct numerical analyses of the assembly system 
based on a spatial measurement chain. Among others, this allows 
one to: 

 investigate the accuracy of positioning and mountability 
conditions in automatic assembly taking into account the 
workmanship accuracy of the individual parts and units of the 
assembly system; 

 determine the impact of the accuracy of the motion of those 
engines that drive the movable elements of the assembly 
system on the positioning accuracy, which will facilitate an 
optimal selection of the assembly robot (Żurek et al., 2011; 
Kuzmierowski, 2010). 
The virtual simulation model constructed of an assembly sys-

tem with the use of CAD/CAE computer technology takes into 
account numerous parameters of real assembly. The advantages 
that follow from the analytical model presented are huge as they 
allow a thorough assessment of the designs made of technical 
systems. The results presented in the study of simulation tests 
contain an illustration only of selected factors that have an influ-
ence on the work of the assembly system. 
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Abstract: Parallel manipulator belongs to group of mechanisms with closed kinematic chains. This feature involves both advantages and dis-
advantages. The study examined the issue of accuracy of a planar system with three degrees of freedom, with revolute pairs, showing 
the effect of errors of the drives settings on effector positioning deviation. Enclosed is a numerical example for which analyzed the deviation 
in motion manipulator when going through the singular configuration. Based on the analysis was determined the area around the singular 
positions for which to obtain the orientation of the assumed accuracy is impossible. 

Key Words: Accuracy, Planar Parallel Manipulator, Singularities  

1. INTRODUCTION  

Parallel manipulator belongs to group of mechanisms with 
closed kinematic chains. This feature involves both advantages and 
disadvantages. Desirable features include ability to transfer heavy 
loads, stiffness, accuracy of trajectory mapping (or positions), abil-
ity to gain high speed of operating element, which is result of good 
dynamic properties of the system due to possibility to placing 
of heavy active elements at the basis. But closure of the kinematic 
chain significantly reduce range of motion of the effector (Bikhari 
et al., 2014). Additionally, dividing the work zone, resulting from the 
range of possible positions of the intermediate elements and active 
elements on areas dependent on the mutual configuration of the 
system on subzones achievable for certain mutual configurations 
of the system elements, causes that moving between the subzones 
is possible after disassembly and assembly of the mechanism. Di-
vision into subzones is caused by occurrence of singular positions 
from direct kinematics inside of zone indicated by singular positions 
of inverse kinematics.  

The particular configuration of the mechanism, called singular 
position, influencing on properties of the system – ceases to be ef-
fectively controllable (in this configuration the system loses its prop-
erties staring from motility, although they are characteristic within 
all other areas of the working zone). Singular positions appears 
in many analysis of parallel manipulator movements independently 
to adopted method of description (Bałchanowski, 2014). 

2. SCOPE OF WORK 

Scope of this study was to show the impact of the errors of the 
drive settings on deviation of effector’s positioning and orientation. 
There was examined accuracy of parallel mechanism with three de-
grees of freedom with rotating kinematics pairs – 3RRR. Was done 
description of configuration of the mechanism and derived deviation 
equations. The whole was illustrated by an example. Purpose of 

attached numerical example was to show deviations of effector 
movement while passing trough singular positions. 

3. DESCRIPTION OF THE MANIPULATOR CONFIGUATION  

Studied parallel manipulator contains three kinematic chains 
connecting the effector 7 with the base (Fig. 1). Active elements 1, 
2, 3 are placed at the base. Intermediate elements 4, 5, 6 connect 
active elements with effector. 

 
Fig. 1. The parameters of description of the position of elements  
            in absolute coordinates  

Description of the configuration of the mechanism was made 
using absolute coordinates. Every element was bound with local 
coordinate, which position and orientation described with vector 

𝒒𝑖 = [𝑥𝑖  𝑦𝑖  𝑖]𝑇 are the same as position of  element 𝑖. Configu-
ration of the mechanism is described then by the following system: 

mailto:monika.prucnal@pwr.wroc.pl
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Φ𝑙(𝐪, 𝑡) = [
Φ𝑊(𝐪)

Φ𝑙
𝐶(𝐪, 𝑡)

] = 0.          (1) 

First group of equations Φ𝑊 describes chains of kinematic 
pairs, second group is kinematic motion  describing movement 

of active elements Φ𝑙
𝐶 , where 𝑙 ={1,2} depending on direct or in-

verse kinematic.  
After differentiation of equation (1) velocity equation is given as 

Φ𝑙𝑞
(𝐪, 𝑡)�̇� = −Φ𝑡 ≡ 𝑣.            (2) 

This record is compatible with the derivatives of the Lagrangian 
symbology, wherein the index t is the time derivative and Φ𝑙 𝑞

 is ja-

cobian Φ𝑙 𝑞
= ∂Φ𝑙/ ∂𝐪. 

After transformation equation (2) takes the form 

�̇� = −Φ𝑙𝑞
−1Φ𝑡.           (3) 

It should be noted that equation (3) has solution for 

det (Φ𝑙𝑞
)  0, otherwise there is singular position. 

4. ACCURACY ANALYSIS 

An important property of the system is accuracy of realization 
of the movement of the passive element (Briot and Bonev, 2008; 
Tannous et al., 2014; Yu et al., 2008; Zhang et al., 2014). For the 
known configuration it is possible to determine values which de-
scribe deviations resulting from drives setting errors.  

Starting from equation (1) using the variance of function of pair 

chains Φ𝑊, deviations are determined 

Φ𝑊 = 0 → Φ𝐪
𝑊δ𝐪 = 0,                 (4) 

where: Φ𝐪
𝑊 =

∂Φ𝑊

∂𝐪
. 

Similar to vector of variables it is possible to distinguish vectors 
of conditional deviations and uninfluenced deviations as: 

δ𝐪 = [δ𝐪𝑍
𝑇 δ𝐪𝐶

𝑇]𝑇.            (5) 

Deviations vector δ𝐪𝐶  is given value coming from type of used 
drivers and control system. After taking into account (5) equation 
(4) transforms to 

Φ𝑞𝑍
𝑊 δ𝐪𝑍 + Φ𝑞𝐶

𝑊 δ𝐪𝐶 = 0           (6) 

and allows to find conditional deviations from equation: 

δ𝐪𝑍 = −[Φ𝑞𝑍
𝑊 ]

−1
Φ𝑞𝐶

𝑊 δ𝐪𝐶            (7) 

the equation has unique solution for det (Φ𝑞𝑍
𝑊  )  0. 

Equation (7) allows to determine deviations of point P in relation 
to nominal positions under condition of knowledge of value and sign 
of drives setting error δ𝐪𝐶 . Because at stage theoretical consider-
ations information about used drive and control system (errors 
of setting of active elements) is not available, then the maximum 
deviation values are determined resulting from errors of setting of 𝑛 
drives basing on relation (8) 

δ𝑥𝑃max = ∑ |𝑤𝑥𝑖δ𝑞𝐶𝑖|3
𝑖=1

δ𝑦𝑃max = ∑ |𝑤𝑦𝑖δ𝑞𝐶𝑖|3
𝑖=1

δΘ3max = ∑ |𝑤Θ3𝑖
δ𝑞𝐶𝑖|

3
𝑖=1

.          (8) 

In equation (8) values of δ𝐪𝑖  are known, and values of 𝑤𝑥𝑖 , 

𝑤𝑦𝑖 , 𝑤Θ3𝑖
 are influence factors defined according to equations: 

 

𝑤𝑥𝑖 =
δ𝑥𝑃

δ𝑞𝐶𝑖

𝑤𝑦𝑖 =
δ𝑦𝑃

δ𝑞𝐶𝑖

𝑤Θ3𝑖
=

δΘ3

δ𝑞𝐶𝑖

.          (9) 

Values of influence factors from individual drives are deter-

mined basing on known components of vector δ𝐪𝐶 , while calculat-
ing influence of setting error of drive 𝑘 δ𝐪𝐶𝑘

), remaining two has 

value of zero: δ𝐪𝐶𝑚
= δ𝐪𝐶𝑗

= 0 for 𝑚, 𝑗 𝑘. 

Value of influence factor depends only on configuration of the 
system and allows the accuracy analyze independent from values 
of errors of setting of individual drives. 

5. CALCULATION EXAMPLE  

Model described above was implemented into mechanism de-
scribed on Fig. 2, which dimensions are presented in Tab. 1.  

Tab. 1. Dimensions of the analyzed manipulator 

Element symbol mm 

Base 𝐴𝐵 = 𝐵𝐶 = 𝐶𝐴 173 

Crank 𝑙1 =  𝑙2 =  𝑙3 200 

Connector 𝑙4 =  𝑙5 =  𝑙6 200 

Effector 𝐺𝐻 = 𝐻𝐾 = 𝐾𝐺  100 

In order to use method described above, condition of solution 
of equation (7) must be checked. This equation has solution for 

det ( Φ𝑞𝑍
𝑊  )  0 (Choi et al., 2013; Firmani and Podhorodeski, 2009; 

Huang and Thebert, 2010). Following is determinant of the matrix 

Φ𝑞𝑍
𝑊  (Gronowicz and Prucnal-Wiesztort, 2006): 

𝑑𝑒𝑡 (Φ𝑞𝑍
𝑊 ) =  (4𝑥𝐺  −4𝑥𝐷)(5𝑥𝐻  −5𝑥𝐸)(6𝑥𝐾 −6𝑥𝐹) 

{𝑠𝑖𝑛(Θ6– Θ5) (7𝑥𝐺  𝑠𝑖𝑛(Θ4– Θ7) ) −7𝑦𝐺  𝑐𝑜𝑠(Θ4– Θ7) ))
+ 𝑠𝑖𝑛(Θ4– Θ6) )(7𝑥𝐻 𝑠𝑖𝑛(Θ5– Θ7) −7𝑦𝐻  𝑐𝑜𝑠(Θ5– Θ7))
+ 𝑠𝑖𝑛(Θ5– Θ4) )(7𝑥𝐾  𝑠𝑖𝑛(Θ6– Θ7) −7𝑦𝐾  𝑐𝑜𝑠(Θ6– Θ7))} 

(10) 

which corresponds to the value of determinant of Jacobian matrix 
for direct kinematic.  

 
Fig. 2. Realized trajectory 
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Singular positions of direct kinematic are possible to determine 
for planar kinematic systems with three degree of freedom using 
their graphic interpretation (Fig. 3). 
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Fig. 3. Supporting mechanisms 

After implementation of additional elements, mobility of sup-
porting mechanisms for: n=11, p1=14, p2=0 is equal to:    

𝑊 = 3(𝑛 − 1) − 2𝑝1 − 𝑝2 = 3 ⋅ 10 − 14 ⋅ 2 = 2.      (11) 

For known orientation of effector degree of freedom is 1, which 
indicates continuity of singular configuration for given orientation. 
Working area for chosen orientation of effector with singular posi-
tions is presented on Fig. 4. 

In this situation answer for question about value of deviations 
of positions and orientation of effector caused by errors of setting 
of the drives require specific analyze. Because usage of equation 
(7) throughout the range of motion expected it was decided, that 
analyze basing on solving of direct kinematic for nominal values 
of setting of the drives will be performed, and then the solution 
of a direct kinematic for all conceivable variations of displacement 
settings of the three drives. This is the basis for the adoption of ad-
ditional procedures for analyzing all the deviations and selecting 
maximum disadvantageous of their systems, which in turn allows 
to specify the range of possible trajectory deviations. For this pur-
pose algorithm was built (Fig. 5). Analyze of the accuracy of reali-
zation of the trajectory was determined as the difference between 
the nominal values of the position and orientation of the effector 
and the designated coordinates of the point P and the orientation 
Θ3 of specific effector assumed with misalignment of the drives. 
Near the singular positions algorithm for the positions go on poly-
nomial record, where the variable was the angle of orientation of the 
platform Θ3. The displacement values of the drives set were as-

sumed on the level of 𝑢𝑖=0.001rad. 
In Tab. 2 were shown parameters of realized trajectory, where 

𝑃𝑆 is starting point, 𝑃𝑅  is the point from which traffic moves at 
a constant speed 𝑣𝑃, 𝑃𝐻 – the point at which braking occurs,  

In the Tab. 2 shows the parameters of the realized trajectory, 

the 𝑃𝑆 is the starting point, 𝑃𝑅  point from which traffic is moving 

at a constant velocity 𝑣𝑃, 𝑃𝐻  - the point at which braking occurs, 

𝑃𝑃 - staging point lasting for the duration of 𝑇𝑃, followed by return 
to the 𝑃𝑆. 

 
Fig. 4. Singular position against the work area 

Tab. 2. Parameters of trajectory  

𝑃𝑆 (𝑥, 𝑦) 
mm 

𝑃𝑅 (𝑥, 𝑦) 
mm 

𝑃𝐻 (𝑥, 𝑦)   
mm 

𝑃𝑃 (𝑥, 𝑦) 
mm 

𝑇𝑃 
s 

𝑣𝑃  

m/s 

-130, 78 -120, 72 100, -60 110, -66 3 0.06 
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Fig. 5. A block diagram of algorithm accuracy 
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The results show that the trajectory in the working area with 
singular positions deviation of positioning and orientation of the ef-
fector dramatically increases. Fig. 6 shows the resulting deviation 
of the effector orientation. 

 
Fig. 6. Deviation of orientation ΔΘ3 

Permissible error of effector orientation was adopted at 3o. 
Such an approach entails a condition limiting the permissible zone.  

 
Fig. 7. Deviation of orientation during effector movement ΔΘ3 

 
Fig. 8. Permissible working area for orientation of effector ΔΘ3=50o  

           (criterion of accuracy) 

Basing on the analysis was defined area around the singular 
positions, for which achievement of orientation at predetermined 
accuracy is not possible (hatched in Fig. 8). 

Working area for the orientation of the effector ΔΘ3=50o  has 
been significantly reduced. Practically the entire central portion 
is not available. 

6. CONCLUSION 

 The study examined the issue of accuracy of the parallel mech-
anism with three degrees of freedom – 3𝑅𝑅𝑅. After derivation 
of equation of the deviation a numerical example was presented, 
for which is given manipulator working zone with different orienta-
tions including singular positions of the direct kinematics. Purpose 
of attached numerical example was to show deviations of effector 
movement while passing trough singular positions. 

 Based on the analysis was determined the area around the 
singular positions for which to obtain the orientation of the assumed 
accuracy is impossible (hatched in Fig. 8). Work area for effector 
orientation ΔΘ3=50o  has been significantly reduced. Practically 
the entire central portion is not available. This points to the need 
for a significant limitations and such a small work area of analyzed 
manipulator, which may preclude it from practical applications. 
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Abstract: This paper presents a conception of the harvester-absorber system consisting of two parts. The first is the pendulum attached to 
the main system (oscillator), which is suspended on the linear damper and the nonlinear spring made of shape memory alloy. The spring 
is modelled as a polynomial function based on Landau–Ginzburg theory of phase transitions (similar as ferroelectric and ferromagnets). The 
obtained results show, that SMA element can increase harvesting energy level, while the absorber effect can be impaired (but not loss). 
Additionally, introducing SMA element causes changes in dynamics, introduces a new unstable solutions and bifurcations. The analysis was 
done by classical integration and continuation solution methods. 

Key words: Pendulum, SMA Spring, Energy Harvester, Vibration Absorber, Control, Continuation Method 

1. INTRODUCTION 

The dynamic vibration absorber is proved to be a very simple 
and effective vibration suppression device, with many practical im-
plementations in civil and mechanical applications. While, the en-
ergy harvesting is a promise to recovery energy from unwanted vi-
brations (Kecik and Borowiec, 2013). The pendulum mechanism 
can be used in different mechanical systems for various purposes. 
The application for vibration absorption or energy harvesting is one 
of the most common. The dynamic vibration absorbers (DVAs), 
also called Vibration Neutralizers (VNs) or Tuned Vibration Absorb-
ers (TVAs), are mechanical appendages comprising inertia, stiff-
ness, and damping elements which, once connected to another 
mechanical system, or structure called the primary system or ma-
chine are capable of absorbing on controlling the vibrations (Liao et 
al., 2011).  

In the literature studies (Kaynia et al., 1981; Regis, 2010, 
Sladek and Klingner, 1983; Soto-Brito and Ruzi, 1999) it is shown, 
that the effectiveness of linear vibration absorbers is limited to the 
close neighborhood of a vibration mode. This frequency robustness 
limitation called for the development of nonlinear vibrations ab-
sorber (NLVA). On the most popular NLVA are the autoparametric 
vibration absorbers (AVAs) (Kecik, 2015). The idea of such solu-
tions lies in attaching the absorber to the primary structure in such 
a manner that it experiences a parametric base excitation, and 
therefore, the absorber frequency is tuned around one-half of the 
troublesome frequency value. The equations of motion of such sys-
tem include the quadratic nonlinearities, and inertial terms, which 
can influence parametric resonance (Warminski and Kecik, 2009).  

Moreover, such systems exhibit different nonlinear mechanism 
(e.g., saturation (Oueini et al., 1997), quenching, sub/ superhar-
monic resonances, autoparametric resonances (Warminski and 
Kecik, 2009), 0:1 resonances (Lacarbonara, 2012)) can be lever-
aged to produce effective actuator actions for resonance rejection 
in nonlinear lumped and distributed-parameter systems. Addition-
ally, they are very sensitive to system’s parameter, therefore the 

control method to maintain demand solution should be applied.  
In this aim, the application of smart material (SM) seems very 

promising. Nowadays, the most used materials are the shape 
memory alloys (SMA), the piezoelectric materials (PM), the magne-
tostrictive materials (MSM) and the electro- and magneto-rheologi-
cal fluids (MRF) (Janocha, 2007). These materials have the ability 
of changing their shape, stiffness, among other properties, through 
the imposition of temperature or stress, electrical or electro-mag-
netic fields. The SMAs are a kind of smart materials whose physical 
properties change as a function of temperature. This effect can be 
exploited to build tunable and adaptive devices.  

On the other hand, in nonlinear vibrating systems energy har-
vesting (EH) recovery is possible, too (Kecik and Borowiec, 2013; 
Xu and al., 2007; Wiercigroch, 2011). EH has been an active re-
search area and systems refer to devices that capture and trans-
form energy into electricity. Usually, the energy could be recovered 
from the kinetic energy of moving or vibrating structures. The vibra-
tion based energy harvesters can be categorized into three main 
types, namely: electromagnetic, piezoelectric, and electrostatic (de-
pending on the medium of the transducer).  

The civil structures and pendulum absorbers usually exhibit low 
frequency structural vibrations, which make it difficult for an energy 
harvester to extract energy. Therefore, tuning of such systems is 
very important. The vibrational energy harvesters achieve their 
highest output power nearly resonance regions (because of the 
highest amplitude of vibration) (Gu and Livermore, 2010). The ap-
plication of smart elements can increase the resonance region 
(Kecik, 2015) and improved power recovery. The novel conception 
for simultaneous vibration absorption and the energy recovery in 
this paper is proposed. The harvesto-absorber system consists of 
oscillator with added absorber (pendulum). In the pivot of absorber, 
the energy harvesting device is mounted.  

The proposed conception can be used for swinging or rotation 
of the pendulum. To control of dynamics, the SMA spring mounted 
in the suspension of the main system is applied. The SMA spring 
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beahavior is described by the polynomial model, which character-
izes relationship between strain, stress and temperature. The main 
idea of this work is influence analysis of nonlinearity of SMA spring 
on dynamics, absorption effect and energy harvesting problem. 

2. ENERGY HARVESTING DYNAMIC VIBRATION 
ABSORBER (EHDVA) 

2.1. Model of a pendulum-like system 

A schematic diagram of the proposed energy harvesting dy-
namic vibration absorber (EHDVA) is shown in Fig. 1. The system 
consits of two main parts. The first is a pendulum (absorber) made 

up two masses (𝑚2 and 𝑚3) and a length denoted as 𝑙. The sec-
ond part is called the main system (oscillator) suspended on the 

linear damper (where 𝑐 is a viscous damping coefficient) and non-
linear SMA spring. Assumed, that the main system can move only 
in vertical direction.  

 
Fig. 1. Schematic diagram of the energy harvesting vibration absorber 

 
Fig. 2. Real view of EHDVA system with SMA oscillator’s spring 

The system is excited with help of the linear spring with stiffness 

denoted as 𝑘2 (kinetic excitation). The excitation of end spring 

is a harmonic function 𝑦(𝑡) = 𝑄𝑐𝑜𝑠(𝑡). The system has two 
degree of freedom: 𝑥 vertical displacement of the oscillator and  
angular displacement of the pendulum. In the pendulum pivot, the 
energy harvesting device is mounted. Therefore, the total damping 
of the pendulum consists of the mechanical viscous (𝑐𝑀) and elec-

trical (𝑐𝐸) damping. 
The harvester device is connected directly to the electric load 

(𝐿𝑑). Note that parameters of model identified on the experimental 
system, presented in Fig. 2. Detailed information about experi-
mental system can be found in Kecik (2015). 

2.2. Model of SMA spring 

The most popular constitutive models for describing the behav-
ior of SMAs come from the original Landau-Ginzburg theory 
of phase transitions. This theory describes the constitutive infor-
mation about SMA material by a polynomial free-energy, function 
whose partial derivatives provide constitutive equations for strain 

() and entropy. In Falk (1980), Falk proposed a Landau-Devon-
shire like free-energy function based on the analogy between SMA 
uniaxial stress-strain curves and the electric field magnetization 
curves of ferromagnetic materials. This model assumes a polyno-
mial free energy potential, which allows pseudoelasticity and SME 
description. The free energy potential (𝑊) is defined as 

𝑊(𝑇, 휀) =
𝑎1

2
(𝑇 − 𝑇1)휀2 −

1

4
𝑎2휀4 +

𝑎2
2 6

24𝑎1(𝑇𝐴−𝑇𝑀)
,       (1) 

where parameters 𝑎1, 𝑎2 are positive constants, while 𝑇𝑀  and 𝑇𝐴 
are the temperature below the martensitic and austenite phase are  

stable, while 𝑇 is activated SMA temperature. 
By applaying the stress-strain relation 

𝜎(휀, 𝑇) =
∂𝑊( ,𝑇)

∂
,   (2) 

and replacing strain by the displacement, obtained function describ-
ing ellogation of SMA spring versus temperature 

𝐹𝑆𝑀𝐴(𝑥, 𝑇) = �̃�1(𝑇 − 𝑇𝑀)𝑥 − �̃�2𝑥3 +
�̃�2

2𝑥5

4𝑎1(𝑇𝐴−𝑇𝑀)
.  (3) 

The parameters �̃�1, �̃�2, �̃�3 are positive material constants in-
cludes cross-section of the SMA material spring.  

2.3. Energy harvesting device conception 

A typical vibration EH system consists of a mechanical system 
with external excitation, a transducer that converts the vibration en-
ergy into electric energy, mechanisms for motion transmission and 
magnification, power electronics and energy storage elements, and 
energy management. 

The rotatory harvester device is mounted in the pendulum sus-
pension. The harvester consists of two main elements, a stator and 
a rotor. Additionally, it includes two identical windings fixed to hous-
ing. When the pendulum is rotating or swinging, the converter gen-
erates electricity due to magnetic induction. Generally, inductive 
energy depends on a relative velocity between the coil and the 
magnet and electrical properties of circuits. Because of small size 
of harvester device (compared to total system), assumed that it is 
dynamics not influence on vibrations of other components. The 
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scheme of energy harvester system and electric circuit in Fig. 3 

is shown. The parameter  denotes housing radius, while  is a 
transduction factor, which depends on numbers of coil turns, aver-
age magnetic field strength, and the coil length. 

 
Fig. 3. Schematic diagram of inductive energy and equivalen circuit 

The total electromotive (electromagnetic) force generated by 
the windings denoted 𝐹𝑒𝑚, can be written as (Ma et al., 2012) 

𝐹𝑒𝑚 = 𝛿𝑖 = 𝑐𝑒�̇�.   (4) 

The coupling term of the mechanical system with the electric 
circuit is directly proportional to the angular velocity and electrical 
damping of the electrical device (Kecik and Borowiec, 2013). This 
means that is equivalent to a viscous damping force with a damping 
coefficient 𝑐𝑒. From mathematical point of view, equations of mo-
tion for the pendulum harversto-absorbers system are identical 
as system without harvester device. However, the harvester de-
vices slightly increases damping of the pendulum.  

To calculate the electrical damping coefficient 𝑐𝑒, the equation 
for the electrical circuit is used by applying Kirchhoff’s law 

𝑖(𝑅𝑙𝑜𝑎𝑑 + 𝑅int) − 𝛿𝜌�̇� = 0,   (5) 

where 𝑅𝑙𝑜𝑎𝑑  is the resistance of the external load, 𝑅𝑖𝑛𝑡  is the in-
ternal resonance.  

The recovered voltage can be calculated using classical Ohm’s 
law 

𝑈 = 𝑖𝑅𝑙𝑜𝑎𝑑 = 𝛿
𝜌𝑅𝑙𝑜𝑎𝑑�̇�

(𝑅𝑙𝑜𝑎𝑑+𝑅int)
,   (6) 

where 𝑖 denotes current.  
Then, the electrical damping coefficient can be calculated  

𝑐𝐸 =
𝜌𝛿2

(𝑅𝑙𝑜𝑎𝑑+𝑅int)
,   (7) 

which depends on the construction of harvester device and prop-
erty of electrical circuit. 

2.4. Dimensional  and non-dimesional equations of motion 

The dynamics of the primary mass (𝑚1), and the absorber 
(𝑚2 and 𝑚3), can be described by two coupled ordinary differential 
equations (ODE). The equations are coupled by inertial terms, 
which is typical for autoparametric systems. The equations of mo-
tion of model presented in Fig. 1 have form: 

(𝑚1 + 𝑚2 + 𝑚3)�̈� + 𝑐�̇� + 𝐹𝑆𝑀𝐴(𝑇, 𝑥) + (𝑚2 + 𝑚3/2)𝑙

(�̈�sin𝜑 + �̇�2cos𝜑) = 𝑘2𝑄cos(𝜔𝑡),
  (8) 

(𝑚2 + 𝑚3)𝑙2�̈� + (𝑐𝑀)�̇� + (𝑚2 + 𝑚3/2)𝑙(�̈� + 𝑔)sin𝜑
+𝛿𝑖 = 0,

  (9) 

where 𝐹𝑆𝑀𝐴 describes force of SMA spring which depends of tem-
perature and its deflection.  

Introducing dimensionless time  = 𝑜𝑡, where 𝑜  is a natural 

frequency of the oscillator, 𝑋 = 𝑥/𝑥𝑠𝑡  (where 𝑥𝑠𝑡 is a static dis-

placement of the oscillator) and replacing part 𝑖 (eq. (4)) obtained 
eqs. (8) and (9) in dimensionless form are: 

�̈� + 𝛼1�̇� + (𝜃 − 1)𝑋 − 𝛽1𝑋3 + 𝛽2𝑋5 +

𝜇𝜆(�̈�sin𝜑 + �̇�2cos𝜑) = 𝑞cos(ϑ𝜏),
  (10) 

�̈� + (𝛼2 + 𝜅)�̇� + 𝜆(�̈� + 1)sin𝜑 = 0.  (11) 

The dimesionless parameters are defined: 

𝜏 = 𝜔0𝑡,    𝜔0
2 = √

𝑎1𝑇𝑀

𝑀
,    𝑋 =

𝑥

𝑥𝑠𝑡
,    ϑ =

𝜔

𝜔0
, 𝜃 =

𝑇

𝑇𝑀
,

𝜃𝑐 =
𝑇𝐴

𝑇𝑀
, 𝛽1 =

𝑎2𝑥𝑠𝑡
2

𝜔0
2𝑀

, 𝛽2 =
𝛽1

2

4(𝜃𝑐−1)
, 𝑥𝑠𝑡 =

𝑔𝑀

𝑎1𝑇𝑀
,

𝑀 = ∑ 𝑚3
𝑖=1 , 𝛼1 =

𝑐

𝜔0𝑀
, 𝛼2 =

𝑐𝑀

𝜔0𝑙2(𝑚2+𝑚3/3)
,

𝜆 =
(𝑚2+𝑚3/2)𝑥𝑠𝑡

(𝑚2+𝑚3/3)𝑙
, 𝜇 =

(𝑚2+𝑚3/2)𝑙2

𝑀𝑥𝑠𝑡
2 ,

𝑞 =
𝑘2𝑄

(𝑘+𝑘2)𝑥𝑠𝑡
, 𝜅 =

𝑐𝐸

(𝑚2+𝑚3/3)𝑙𝜔0
.

  (12) 

The dimensionless equations of motion are easy to analysing 
because of lack of units and small number of parameters. 

In the dimensionless form the eq. (3) resorting force of SMA 
spring has a form 

𝐹𝑆𝑀𝐴(𝑋, 𝑇) = (𝜃 − 1)𝑋 − 𝛽1𝑋3 + 𝛽2𝑋5,  (13) 

where definition of dimesionless material constant are explained in 

(12). Note, for 
1

= 
2

= 0 and =2, SMA’s model exhibits linear 

behavior like classical linear spring. The examplary characteristics 
of SMA spring model in Fig. 4 are presented. The black line pre-
sents classical linear characteristics, while blue line denotes tem-

perature =0.75, green =1 and red =1.5. 

 
Fig. 4. Force-displacement characteristics of SMA spring for  1=0.6,  

2=0.9 

The proposed model shows strongly nonlinear behaviour, es-
pecially for large displacement. For small value of displacement 

(𝑥 <0.5) characteristics are close to linear. All parameters describ-
ing the harvesto-absorber system and SMA spring are identified 
on the laboratory rig.  
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3. NUMERICAL ANALYSIS  

3.1. Influence of the SMA spring on absorption effect 

The absorption region for the pendulum absorber system with 
the classical linear spring is known very well (Warminski and Kecik, 
2006). This region, existing for properly tuned system, near the res-
onace peak (Kecik et al., 2014). However, for system with the SMA 
spring the dynamics can diametrically changed. Considering the 
system as a dynamic absorber, it is necessary to understand the 
infuence of SMA stiffness spring on this effect. Additionally, the ap-
plication of SMA spring in oscillator’s suspension can be an alter-
native way to control the absorber dynamics. The suspension with 
the SMA spring is easy to apply in the real construction. Note, that 
the control by the element mounted in the pendulum pivot (e.g. ro-
tatory damper) is difficult due to the harvester. Alternative control 
for such systems can be realized by the oscillator’s damper. In pa-
pers (Cartmell and Lawson, 1994; Vazquez-Gonzalezal and Silva-
Navarro, 2008), the effective control by magnetorheological 
damper mounted in the oscillator’s suspension is proposed.  

 

Fig. 5. Frequency response curves for the oscillator, for  1=0.6, 2=0.9  

 and different temperature ratio 

 
Fig. 6. Frequency response curves for the pendulum velocity, for  1=0.6, 

2=0.9 and different temperature ratio 

The calculations in this section have been performed using soft-
ware for numerical continuation, Auto07p (Doedel at al., 2011). The 
results that have been obtained by continuation give us an overview 

of system dynamics demonstrating all possible periodic solutions. 
The exemplary frequency response curves are presented in Fig. 5.  

The simulation parameters are: 1=0.32, 2=0.0769, 𝑞=0.9, 
µ=17.2, =0.12, =0.0031. The dashed dotted line denotes unsta-
ble, while continous lines stable solutions. The labeled point de-
scribes the bifurcations points (PD –pediod doubling, LP – limit 
(fold) point, BP branch point).  

The frequency response curves, for harvesto-absorber system 

with clasical spring (=2, 
1
=

2
=0), marked by the black line 

in Figs. 5 and 6 are presented. The absorption region is clearly vis-
ible, for frequency range 0.6-1.05. Unfortunatelly, for system 
with the SMA spring, the absorption region is very small, and lo-
cated between 0.65 and 0.8. The size of this region depends on the 
temperature, and  additionaly, the effectivness level of vibration ab-
sorption is very low. However, the amplitude of semi-trivial solution 
(vibrates only the main system) is significantly reduced. The reso-
nance curves were bent in the rigt side, and for lower temperature, 
the semi trivial solution changes in unstable (see, the green line 
in Fig. 5).  

The SMA spring can be used to control of the pendulum veloc-
ity, as shown in Fig. 6. The temperature changes cause increase or 
decrease in the pendulum velocity. This effect can be used to find 
compromise beetween vibration absorption and energy harvesting. 
Note, that application of SMA spring reduces non-trivial solution 
from right side (from the higher frequency). 

 

Fig. 7. Influence of temparature on amplitude of the oscillator, for  =0.7  

(absorption region), 1=0.6, 2=0.9 

 

Fig. 8. Influence of temparature on amplitude of the pendulum, for   
 =0.7(absorption region), 

1
=0.6, 

2
=0.9 
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The effect of temperature (parameter ) on the oscillator and 
pendulum amplitudes has been investigated (Figs. 7 and 8). The 
stable solutions are observed for  >1.The pendulum executes 

motions for range of  from 1.1 to 2.3.  

3.2. Influence of SMA spring on energy harvesting 

The energy harvesting level strongly depends on the construc-
tion of the harvester device. Usually, these devices are mounted 
in the pendulum suspension. This construction is very difficult to 
control by applied the pendulum’s damping. Therefore, this paper 
proposes allternative method of control by SMA element mounted 
in the suspension. In this section influence of SMA spring on energy 
harvesting  is studied in detail. 

Firstly, the influence of temperature on recovery voltage is an-
alysed (Fig. 9). The resonance region is clearly visible, nerly fre-

quency =0.7-0.8. This result agrees with the resonance curves, 
presented in Figs. 7 and 8. The maximal recovered voltage was 
about 6mV. Of course, the values depend on electrical parameters 

of harvester (for analysis taken: 𝑅𝑖𝑛𝑡=55, 𝑅𝑙𝑜𝑎𝑑=140, 
=7.752Vs/m, =0.01m). The range of temperature in which volt-

age is recovered equals =0.5 to =2.3, but the best is located for 
=1.5 to =2.  

 

Fig. 9. The 3D plot:  temperature vs. frequency vs. voltage,  
            for 1=0.6, 2=0.9 

Next, parameters describing material of which the SMA spring  

is made (
1
, 

2
) are analyzed. The parameter 

1
 depends of nat-

ural frequency of the oscillator and static displacement, also (see 

eq. (12)). While, parameter 
2
 comes from 

1
 and depends on aus-

tenite and martesite temperature phases.  

The relationship beetwen temperature  and parameter 1 ver-
sus voltage harvesting in Fig. 10 is shown as 3D plot. This result 
was obtained near the absorption region (for frequency =0.7). The 
maximal recoverd voltage equals 6mV, and  can be recoverd for 

=1.4-2.4 in range of 
1
 larger  then 0.4. Additionally,  the small 

regions in which 6mV recovered can be observed for lower temper-
ature (martensite phases temperature). However, these regions are 
narrow.  

The second parameter 
2
 is much more difficult to choose. The 

region with high level of energy recovery (12mV) is very narrow 

(Fig. 11). Moreover, this parameter depends on 
1
 (eq. (12)). The 

obtained results from both diagrams show that properly choosen 
parameters can incrase recovered voltage. 

 

Fig. 10. The 3D plot:  temperature vs. parameter 1 vs. voltage,  

              for 2=0.9 

 

Fig. 11. The 3D plot:  temperature vs. parameter 
2
 vs. voltage,  

              for 
1
=0.6, =0.7 

The influences of total damping (mechanical and electrical) 
on energy harvesting is shown in Fig. 12. The critical damping has 
practically similar value , equals about 0.07-0.08. Note, that for the 
pendulum damping close to zero  and temperature =0.5-0.9, 
the recovered energy is highest and equals about 12mV. 

 
Fig. 12. The 3D plot:  temperature vs. parameter 2 vs. voltage,  

              for 1=0.6, =0.7 

All  the above results presented in this section have been done 

for fixed initial conditions: 𝑋 = �̇� = �̇� = 0 and 𝜑 = 0.1. 
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The obtained results show, that properly confiruration of SMA 

parameters (, 
1
 and 

2
) can increase energy recovery. How-

ever, the application of SMA spring in dynamic absorbers should 
be detailed checked by numerical studies. 

4. CONCLUSIONS AND FINAL REMARKS 

This paper presents an autoparametric system with added har-
vester device mounted in the pendulum pivot. This conception 
of rotatory pendulum harvester, practically prevents control of mo-
tion by the pendulum’s damping. Therefore, the other solution 
based on SMA spring mounted in suspension is proposed.  

The conception was analyzed in two aspects. Firstly the influ-
enece of SMA spring on absorption region was studied. Next, the 
problem of energy harvesting under SMA spring was analyzed. The 
SMA spring significantly reduce the absorption effect (but not elim-
inate it), what is problem for dynamic absorbers. The frequency re-
sponse curves for SMA spring are bents in the right side. For, some 
parameters the solution changes from stable into unstable motion 
and a new bifurcation point can appears. 

The SMA spring significantly influence on energy recovery. 
Change in the SMA springs parameters the increase or decrease 
enegy harvesting is possible. The best range of the temperature for 

EH equals =1.5-2.The properly choose of SMA parameters can 
incraeases recovered voltage up to 12mV.  

The next step will be experimental verification of obtained re-
sults and appied control algorithm to highest energy recovery. 
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Summary: This paper presents  an example of humid air flow around a single head of Chinese cabbage under conditions of complex heat 
transfer. This kind of numerical simulation allows us to create  a heat and humidity transfer model between the Chinese cabbage and the 
flowing humid air. The calculations utilize the heat transfer model in porous medium, which includes the temperature difference between 
the solid (vegetable tissue) and fluid (air) phases of the porous medium. Modelling and calculations were performed in ANSYS Fluent 14.5 
software.  

Key words: Numerical Modelling, Heat Transfer, Air Flow, Mass Transfer, Chinese Cabbage 

1. INTRODUCTION 

Fresh vegetables and fruit are living tissues, which after being 
harvested undergo a number of biological processes. Most im-
portant of these – directly influencing the nutritional and commer-
cial value – are: respiration, ripening, transpiration. The processes 
are greatly influenced by temperature and external air humidity. 
It is therefore essential for the product to be stored in optimal 
conditions - low temperature and adequate humidity - in order to 
minimize the product loss. Achieving such conditions in cold 
stores is possible thanks to cooling units with forced air circula-
tion. Because of the number and complexity of the physical phe-
nomena taking place in agricultural produce store chamber, this 
issue is a new and difficult field for Computational Fluid Dynamics 
(CFD). 

Most of the publications concerning the cold storage, and the 
experimental data gathered in this field, suggest that air parame-
ters in storage chambers are characterized by significant nonuni-
formity, both in the empty areas, as well as in areas occupied by 
storage containers (Moureh et at.,  2009, 2009a, 2009b; Tapsoba 
et at., 2007; Ben Amara  et at., 2004; Delele et at., 2009a, 2009b; 
Hoang et at., 2000; Than et at., 2008). This means that there are 
regions in the bed of vegetables where the temperature is too 
high, which causes the produce to dry, and areas where the tem-
perature is too low, resulting in cold damages. Therefore there is 
a need to focus the research on finding a solution, which would 
eliminate, or at least significantly limit, this problem. Computation-
al analysis done on an experimentally verified mathematical and 
computational model may serve as a tool for assessing the air 
parameters in cold storage, as well as the state of fruit and vege-
table stored there, without the need to conduct time-consuming, 
expensive and complicated experimental analysis. It will be 
a relatively cheap and flexible tool for solving this problem.  

Because of complex internal geometry of the vegetables bed 
in a cold store, and the scale difference between the storage 
chamber and a single vegetable, the most important element 

of the air flow model in a cold store is treating bed of vegetables 
as a porous medium. Direct modelling, i.e. modelling which in-
cludes the shape of vegetable is impossible in such a large space. 
The vegetables bed can be homogenized in two ways: taking into 
consideration the temperature difference between vegetables and 
flowing air, or disregarding it. In recent years there is a tendency 
in professional publications to include the temperature difference 
between the solid phase (vegetable) and the liquid phase (air) 
of the porous medium (vegetable load), because such a model 
of heat transfer better expresses the processes taking place in the 
load. The consequence of adopting this model of heat transfer 
is the need to determine the heat transfer coefficient on the 
boundary between solid and liquid phase of the porous medium.  

The value of heat transfer coefficient depends on a number 
of factors, most important of which are: vegetable shape, load 
arrangement, pore velocity and local turbulence intensity (Kon-
djovan et al., 2006). Therefore it is a function of location within the 
load. Experimental determination of the heat transfer coefficient 
spatial distribution is very difficult, if not impossible. In this situa-
tion the Computational Fluid Dynamics (CFD) might prove useful. 
It allows us to model a small bed of vegetables directly, that 
is taking into consideration the shape of vegetables. This type 
of modelling does not require the knowledge of the heat transfer 
coefficients, provided that the model includes the heat conduction 
within the vegetables. The direct modelling allows us to determine 
surface heat flux between the vegetables and the flowing air, and 
consequently to determine the heat transfer coefficients at any 
point of the load treated as a porous medium. 

The aim of this work is to present the preliminary stage of di-
rect modelling on the example of humid air flow around a single 
element of the vegetable load (a head of Chinese cabbage) under 
conditions of complex heat transfer (i.e. including the heat con-
duction within the product). This will allow us to create a heat and 
humidity transfer model between the Chinese cabbage and the 
flowing humid air. Modelling and calculations were performed 
in ANSYS Fluent 14.5 software.  

mailto:a.bohojlo@pb.edu.pl
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2. HEAT AND MASS TRANSFER MODEL BETWEEN A HEAD 
OF CHINESE CABBAGE AND THE FLOWING HUMID AIR  

The flow of air around a single head of Chinese cabbage will 
be analysed in a test tunnel because in the said tunnel, the exper-
iments of the heat and mass transfer between the suspended 
cabbage and the stream of humid air will be conducted. The 
geometric model of the cabbage and the tunnel is presented 
in Fig. 1. 

 
Fig. 1. Geometric model of the tunnel with a single element  
           of the Chinese cabbage load, and the calculation domain 

The actual shape of the Chinese cabbage (Fig. 2) and its in-
ternal structure are very complex. 

 
Fig. 2. Chinese cabbage head 

 
Fig. 3. Cross-section of a Chinese cabbage 

Fig. 3 presents the cross-section of a Chinese cabbage. The 
photographs presented show that only 2 or 3 external leaves are 
slightly open at the top of a head. The rest of the leaves form 
a separate, porous structure, which is almost completely isolated 
from the surrounding air. Therefore in the proposed model we 
treat the inside of a Chinese cabbage as porous medium and 
assume that the airflow within the porous medium has a velocity 
close to zero, i.e. we assumed a very high resistance of the medi-
um. The calculations do not take into account the porous structure 
of vegetable tissue (cabbage leaves).  

The domain of solution is divided into subdomain occupied by 
the air flowing around the cabbage head (tunnel) and the subdo-
main of cabbage itself, modelled as a porous medium. The calcu-
lations utilize the heat transfer model in porous medium, which 
includes the temperature difference between the solid (vegetable 
tissue) and fluid (air) phases of the medium.  

The porosity of the medium is defined as the ratio of the pore 

volume 𝑉𝑝 to the total volume of the porous medium 𝑉 (Strzelecki 

et at., 2008): 

𝜀𝑚 =
𝑉𝑝

𝑉
= 1 −

𝜌𝑝

𝜌𝑠
,          0 ≤ 𝜀𝑚 ≤ 1.                                          (1) 

In the equation (1) 𝜌𝑝 is the apparent density of the porous 

medium, and 𝜌𝑠 is the true density of a solid (cabbage leaf). 
Porous medium is a fictitious continuum, with flow resistance 
equal to the resistance of a real obstacle. This resistance is in-
cluded in the balance equation by adding an additional source 
term to the momentum equation (ANSYS FLUENT 14.5): 

𝑆𝑖  =  − (∑ 𝐷𝑖𝑗𝜇𝑣𝑗
3
𝑗=1   +   ∑ 𝐶𝑖𝑗

1

2
𝜌|𝑣|3

𝑗=1 𝑣𝑗),                        (2)                                                       

where: 𝑖, 𝑗 is the spatial direction (𝑥, 𝑦, 𝑧), 𝐷𝑖𝑗  and 𝐶𝑖𝑗  are the 

resistance coefficient matrices, viscous and inertial respectively, 

 – is the viscosity of fluid phase of the porous medium, including 

the turbulent viscosity, 𝑣𝑗  – denotes the respective velocity com-

ponent. In the model proposed, because of the Chinese cabbage 
internal structure, the convection within the medium is negligible. 
Therefore we assumed a very high resistance value, which almost 
eliminates motion of the medium.   

The operating medium in the tunnel subdomain was humid air, 
treated as a non-compressible ideal gas, being a mixture of oxy-

gen (𝑂2), nitrogen (𝑁2) and water vapour (𝐻2𝑂) (species 
transport model without chemical reactions). The thermo-physical 
properties of 𝑂2, 𝑁2 and 𝐻2𝑂 are dependent on the temperature 
according to the 4th order polynomial, according to ANSYS Fluent 
theory Guide 14.5. The cabbage subdomain was treated as 
a porous medium, where the solid material is the cabbage leaf 
tissue, whilst the fluid phase is the humid air. Within the porous 
medium we adopted a heat transfer model which includes the 
temperature difference between solid and fluid phases.  

The flow in the computational domain is described by the con-
tinuity equation:  

   
𝜕(𝜀𝑚𝜌𝑚)

𝜕𝑡
+ 𝛻 ∙ (𝜀𝜌𝑚�⃗�𝑚) = 0,                                                     (3)                                                                              

where: 𝜀𝑚 – is the porosity (for the tunnel subdomain 𝜀𝑚= 1), 𝜌𝑚 
is the mixture density, 𝑣𝑚 – its velocity, and the momentum equa-
tion which includes the natural convection term: 

𝜕(𝜀𝑚𝜌𝑚�⃗⃗�𝑚)

𝜕𝑡
+ 𝛻 ∙ (𝜀𝑚𝜌𝑚�⃗�𝑚�⃗�𝑚) = (𝜌𝑚 − 𝜌0)𝑔 − 𝜀𝑚𝛻𝑝 + 𝛻 ∙

(𝜀𝑚𝜇𝑚(𝛻�⃗�𝑚 + 𝛻�⃗�𝑚
𝑇 )) + 𝑆,                                                         (4) 

where: 𝑝 is the pressure, 𝜌0 – reference density, and 𝑆 – an 
additional source term resulting from the use of porous media 
model. 

Because of the use of species transport model for describing 
the humid air flow, the system of  equations is supplemented with 
two transport equations for oxygen and water vapour of the form: 

𝜕

𝜕𝑡
(𝜌𝑌𝑖) + 𝛻 ∙ (𝜌 �⃑�𝑚𝑌𝑖) = −𝛻 ∙ 𝐽𝑖 + 𝑆𝑖,                                        (5)                                                                                      

where 𝑖-denotes the species,  𝑌𝑖– is the „ 𝑖” species mass frac-

tion, 𝑆𝑖 –user defined source of „ 𝑖” species (Nitrogen mass frac-
tion is defined as the supplement to 1). 𝐽𝑖 is the diffusion flux 
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of species „𝑖” due to temperature and concentration gradients. 
In turbulent flow it is expressed as:  

𝐽𝑖

→

=   − (𝜌𝐷𝑖,𝑚 +
𝜇𝑡

𝑆𝑐𝑡
)   𝛻𝑌𝑖   −   𝐷𝑇,𝑖   

𝛻𝑇

𝑇
,                 (6)                                                                                 

where: 𝑆𝑐𝑡 = 𝜇𝑡/𝜌𝐷𝑡 is the effective Schmidt number for turbu-

lent flow (𝜇𝑡 – turbulent viscosity, 𝐷𝑡  – the effective mass diffu-
sion coefficient due to turbulence), 𝐷𝑖,𝑚 – is mass diffusion coeffi-

cient for species „𝑖”, 𝐷𝑇,𝑖 – is the thermal diffusion coefficient,  

𝑇 – temperature. 
The species transport model allowed us to include the mois-

ture source due to transpiration from the inner leaves of the cab-
bage (Si source in (5) equation for water vapour), as well as its 
diffusion.  

Within the cabbage subdomain we will therefore solve two en-
ergy equations – one for air (7) and one for cabbage leaves (8): 

𝜕

𝜕𝑡
(𝜀𝑚𝜌𝑚𝐸𝑚) + 𝛻 ∙ (�⃗�𝑚(𝜌𝑚𝐸𝑚 + 𝑝)) = 𝛻 ∙ (𝑘𝑚𝛻𝑇𝑚) −

∑ ℎ𝑗𝑖 𝐽𝑖 + (�̿�𝑒𝑓𝑓 ∙ �⃗�𝑚) + 𝑆𝑚
ℎ + ℎ𝑓𝑠𝐴𝑓𝑠(𝑇𝑓 − 𝑇𝑠),                          (7) 

𝜕

𝜕𝑡
((1 − 𝜀𝑚)𝜌𝑠𝐸𝑠) = 𝛻 ∙ ((1 − 𝜀𝑚)𝑘𝑠𝛻𝑇𝑠) + 𝑆𝑠

ℎ + 

ℎ𝑓𝑠𝐴𝑓𝑠(𝑇𝑠 − 𝑇𝑓),                                                                          (8)                                                    

where: 𝐸𝑚 = ℎ𝑚  +  𝑝 𝜌𝑚⁄ + 𝑣𝑚
2 2⁄   is the fluid phase (humid 

air) total energy and 𝐸𝑠 – solid phase (Chinese cabbage leaves) 

total energy; 𝑇𝑚 and 𝑇𝑠 – the temperature of humid air and cab-

bage leaves, respectively; 𝑘𝑚 is the fluid phase thermal conduc-
tivity (including the turbulent contribution); 𝜌𝑠, 𝑘𝑠 – density  and 

conductivity of the solid phase (leaves); ℎ𝑓𝑠 – the heat transfer 

coefficient for the leaves-humid air interface; 𝐴𝑓𝑠 – is the interfa-

cial  area density, that is the ratio of the contact area  between 
leaves and air to the volume of the porous medium (cabbage 

head), 𝑆𝑚
ℎ , 𝑆𝑠

ℎ – fluid and solid enthalpy source terms, respective-
ly.  

The heat transfer coefficient for the interface between vegeta-
ble tissue and the air within the cabbage was determined from the 
correlation for natural convection (Wiśniewski and Wiśniewski,  
2000): 

𝑁𝑢 = 0.13𝑅𝑎1/3 ,                                                                       (9) 

where the Nusselt number is defined as:  

𝑁𝑢 =
ℎ𝑙

𝑘
 ,                                                                                   (10) 

𝑙 – the length scale, 𝑘 – heat conductivity, ℎ – convective heat 
transfer coefficient. 

Rayleigh number is given as: 

𝑅𝑎 = 𝐺𝑟𝑃𝑟.                                                                               (11) 

Grashof number is defined as:  

𝐺𝑟 =
𝑔𝛽(𝑇𝑠−𝑇∞)𝑙3

𝑣2 ,                                                                       (12) 

where: 𝑔 – acceleration due to gravity,  – volumetric thermal 

expansion coefficient,  – kinematic viscosity, 𝑇𝑠 – surface tem-
perature,  𝑇∞ – bulk temperature. 

Prandtl number is defined as:  

 𝑃𝑟 = 𝑐𝑝
𝜇

𝑘
,                                                                                 (13) 

where: 𝑐𝑝 – specific heat, 𝜇 – dynamic viscosity.  

The proposed model includes heat processes taking place in 
the vegetable, biological process  – the heat of respiration, being 

the positive source in equation (8) and the heat of transpiration 
being the negative source in equation (7), due to evaporative 
cooling. In the water vapour transport equation (6) we include the 
positive source, due to transpiration from the surface of the cab-
bage leaves. They were placed in cabbage subdomain treated as 
a porous medium. In the presented model both heat and mass 
sources are treated as being constant.  

In the paper  the model SST 𝑘 −  was used. SST model uti-

lizes the advantages of both models: 𝑘 −   and 𝑘 − .  The use 
of a k-ω model in the inner parts of the boundary layer makes the 
model directly usable all the way down to the wall through the 

viscous sub-layer, therefore the SST 𝑘 − 𝜔 model can be used 
as a Low-Re turbulence model without any extra damping func-
tions. The SST formulation also switches to a k-ε behavior in the 

free-stream and thereby avoids the common 𝑘 − 𝜔 problem that 
the model is too sensitive to the free-stream turbulence properties. 

The model is to be applied to the study of phenomena on the 
border of the bed – empty space in the cold storage then it is to be 
extended and used for modeling the whole cold storage. For this 

type of calculation model SST 𝑘 −  works better than other 
models (Delele et at., 2009a, 2009b, 2012; Norton et at., 2007). 

3. COMPUTATIONAL MODEL  

The grid was created in ANSYS Meshing 14.5 software. 
It consists of 2 126 006 control volumes, including: 10896 tetrahe-
drons, 105834 wedges, 9794 pyramids, 1927387 hexahedrons, 
72095 polyhedrons. The grid was created using the cutcell meth-
od (Fig. 4). 

 

Fig. 4. Computational grid  

Tab. 1. Volume, density and porosity of cabbage heads 

 Mass Volume 
Volume 
of the 
leaves 

Apparent 
density 

Density 
of the 
leaves 

Porosity 

 [kg] [l] [l] [kg/m3] [kg/m3]  

Cabbage 
#1 

0.86483 1.76265 1.12183 490.6419 770.91 0.363555 

Cabbage 
#2 

0.7495 1.29366 0.861 579.364 870.4994 0.334446 

Cabbage 
#3 

1.1135 1.997 1.19945 557.5864 928.3422 0.399374 

Cabbage 
#4 

0.6365 1.465 0.781836 434.471 814.1094 0.466324 

 
Mean 
values 

515.5 846 0.391 

The stability and precision of calculations are strongly affected 
by the computational grid quality. Cutcell is described by orthogo-
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nal quality which ranges from 0 to 1, where values close to 0 
correspond to low quality. Our minimum orthogonal quality was 
0.296257. 

a) 

 

b) 

 

c) 

 
 

Fig. 5.  The meshing of computational model: a) The grid in the symmetry 
             plane of the cabbage domain, b) The grid is the cross – section  
             of the cabbage domain, c) The grid of the tunnel and cabbage 
             subdomains 

Tab.  2. The area of the cabbage leaves  
              (the interface between leaves and air) 

The total area of the leaves [m2] 

Leaves of cabbage #1 0.95636 

Leaves of cabbage #4 0.76182 

𝑖𝑛𝑡𝑒𝑟𝑓𝑎𝑐𝑖𝑎𝑙 𝑎𝑟𝑒𝑎 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑡𝑜𝑡𝑎𝑙 𝑎𝑟𝑒𝑎 𝑜𝑓 𝑡ℎ𝑒 𝑙𝑒𝑎𝑣𝑒𝑠

 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑎𝑏𝑏𝑎𝑔𝑒 ℎ𝑒𝑎𝑑 
  [m2/m3] 

Cabbage #1 542.5694 
Mean value 531.293 

Cabbage #4 520.0169 

Some of the cabbage physical properties were taken from var-
ious publications, others were determined in experiments. Tab. 1 
presents the volume, density and porosity determined experimen-
tally for 4 different Chinese cabbage heads. The average of ap-
parent density, the density of vegetable leaves and porosity were 
used as input data in numerical calculations. Specialized publica-
tions do not contain data for interfacial area for Chinese cabbage 
(Sadik et at., 2011, Uzokwe et at., 2012, Olfati et at., 2010), so the 

measurements were performed with a polar planimeter for two 
heads of Chinese cabbage. The calculations of the average inter-
facial area density inside the cabbage head is presented in the 
Tab. 2. 

 The following data were used as the input data in the calcula-
tions: 

 Inlet mass flow rate 3.938 kg/s (maximum mass flow meas-
ured experimentally in the channel in which in the future the 
experiment is planned), relative humidity 80%, air temperature 
0.5 °C, 

 Heat of respiration for Chinese cabbage at 0.5°C – 3590 
kJ/ton/24h (Murata et al. 1992),  

 Daily mass loss caused by transpiration, assumed as for white 
cabbage (no data available for Chinese cabbage) 0.233 %   
(Watkins and Nock, 2012), 

 Thermophysical properties of Chinese cabbage at 0.5°C and 
relative humidity of 80%: 
- The density of the tissue 846 kg/m3 (Tab. 1), 
- Density of the entire cabbage head (apparent density) 

515,5 kg/m3 (Tab. 1), 
- Moisture mass fraction for cabbage 𝑚=0.92 (Niesteruk, 

1996), 

- Specific heat 𝑐𝑝= 1402+2785·m, 𝑐𝑝=3964.2 J/(kg·K) 

(Niesteruk, 1996), 

- Thermal conductivity 𝑘=0.8 W/(m·K) (Niesteruk, 1996), 
- Porosity ε=0.391 (Tab.1), 
- The mass loss of the load treated as a volume water va-

pour source: 1.39 x10-5 kg/m3·s , 
- The heat of respiration, treated as a volume heat source: 

21.42 W/m3, 
- The volume of the cabbage was 1,12·10-3 m3, 
- Heat transfer coefficient 1.98 W/(m2·K), 
- Interfacial area density 531,293 1/m (Tab. 2).  

4. RESULTS OF CALCULATIONS 

The calculations were performed on a PC computer with Intel 
Xeon 3,47 GHz CPU, 24 GB RAM with ANSYS Fluent 14.5 code 
and the Couple algorithm. The parallel environment with 4 parallel 
processes was used and calculations were done in double preci-
sion. The calculations lasted around 1800 iterations. The residual 
convergence was presented in Fig. 6. 

 
Fig. 6. Residual convergence 
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The result of calculations were presented in graphic form 
in Figs. 7-10. Fig. 7 shows the velocity distribution in symmetry 
plane  of the tunnel. The maximum value was 3.84 m/s. A charac-
teristic wake behind the cabbage can be clearly seen in the pic-
ture – it was the area of the lowest velocity. Inside the cabbage 
the velocity was almost equal to zero. The distribution of pressure 
was presented in the Fig. 8. Around leading edge of the cabbage 
there is a small area of higher pressure – around 1.5 Pa more 
than in the trailing area. In the area around the poles of the cab-
bage the pressure is at its lowest – approx. – 10 Pa. Inside the 
cabbage the pressure is equal to 0.36 Pa. 

 
Fig. 7. Velocity distribution in the symmetry plane of the tunnel 

 
Fig. 8. Pressure distribution in the symmetry plane of the tunnel 

The temperature contours in the symmetry plane of the tunnel 
are given in Fig. 9. The distributions of temperature in the tunnel 
and in the air inside the cabbage are presented in Fig. 9a, whilst 
in the tunnel and inside the vegetable tissue- in Fig. 9b. Each plot 
uses a separate temperature scale in order to present the rela-
tions in more detail. The highest temperature was observed in the 
solid phase (leaf tissue) of the cabbage of the porous medium – 
0.536°C. The lowest temperature detected was 0.5°C – it was the 
temperature on the inflow and in the tunnel itself. Both figures 
clearly show the rise of temperature in areas near the Chinese 
cabbage head – which is caused by the heat source (heat 

of respiration). The total heat of respiration for the entire volume 
of the Chinese cabbage was 86.364 J/h.  

 

 
Fig. 9. Temperature distribution in the symmetry plane  

 a) in the tunnel and in the fluid phase (air) of a cabbage,  
 b) in the tunnel and in the solid phase (leaves of the cabbage) 

 
Fig. 10. Relative humidity distribution in tunnel and cabbage subdomains   

Fig. 10 presents the distributions of relative humidity in the 
symmetry plane. The relative humidity distribution was presented 
in two different scales – one for air in the tunnel and one for air 
in the porous medium. In the picture we can see that the relative 
humidity rises near the cabbage; it is caused by the water vapour 

a) 

b) 
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mass transfer from the cabbage in the transpiration process. The 
water vapour seen on the outer surface of the cabbage is a result 
of transfer within the product. The water vapour emitted by the 
Chinese cabbage head was equal to 0.056 g/h. 

5. CONCLUSIONS 

In the paper preliminary computational model  is presented 
which includes the temperature difference between the solid  
(vegetable tissue) and the fluid (air) phases of the porous medium  
representing the Chinese cabbage head. This model is able to 
calculate velocity, pressure, relative humidity and surface and 
inner temperature evolution of the vegetable. The temperature 
and relative humidity differences between the air and the cabbage 
are very small. Such differences are very difficult to measure 
in the experiment neither for one nor for a few cabbage heads. 
Experimentally it is possible to measure such small differences 
only in larger beds. Unfortunately for such a large space it is 
impossible to perform numerical computations by direct modelling 
approach. In the submitted computational model we are able to 
verify by experiment only  velocity of the air. 

In the future research it is planned to make the calculations on 
a larger number of heads of the Chinese cabbage in the test 
channel . In addition, in the computation model taking into account 
the intensity of the processes of evaporation and respiration de-
pendent on the temperature and humidity by adding the UDF 
(User Defined Function) is planned. Unfortunately, the data on the 
Chinese cabbage are either difficult to reach or do not exist. They 
are incomplete, ambiguous and therefore some values (porosity 
of the  cabbage head, interfacial area density, total area of the 
cabbage leaves) were determined experimentally. These pro-
cesses require further experimental research.  

The numerical calculations presented in the paper allowed us 
to test the computational model and helped to determine the 
important factors in the analysed problem. Further stages of the 
analysis will lead us to determine the spatial distribution of the 
heat transfer coefficient on the outer surface of the vegetable as 
a result of calculations of heat surface flux. 
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Abstract: One of the most popular applications of high power lasers is heating of the surface layer of a material, in order to change 
its properties. Numerical methods allow an easy and fast way to simulate the heating process inside of the material. The most popular nu-
merical methods FEM and BEM, used to simulate this kind of processes have one fundamental defect, which is the necessity 
of discretization of the boundary or the domain. An alternative to avoid the mentioned problem are parametric integral equations systems 
(PIES), which do not require classical discretization of the boundary and the domain while being numerically solved. PIES method was 
previously used with success to solve steady-state problems, as well as transient heat transfer problems. The purpose of this paper is to 
test the efficacy of the PIES method with time discretization in solving problem of laser heating of a material, with different pulse shape ap-
proximation functions.  

Key words: PIES Method, Transient Heat Transfer, Laser Heating, FEM 

1. INTRODUCTION 

High power lasers found broad application in processing and 
treatment of materials. They are very popular because of their 
unique properties, like high degree of special coherence, temporal 
dependence and beam directivity (Jewtuszenko et al., 2009; 
Gladush and Smurov, 2011). One of the laser applications 
is heating up the material in order to change its properties. This 
process depends highly on the properties of the processed mate-
rial and the laser itself, therefore modeling and simulation of this 
phenomenon plays a key role in proper selection of these proper-
ties. Analytical methods can be used to simulate these problems 
(Brugger, 1972; Warren and Spark, 1990; Al-Nimr et al., 2002; 
Yanez et al., 2002), but they are rather used to solve problems 
defined with elementary shape areas and elementary boundary 
conditions. In more complex cases numerical methods are used. 
The most popular methods are finite element method (FEM) 
(Lewis et al., 1996) and boundary element method (BEM) (Breb-
bia te al., 1984; Tanaka et al., 1994; Majchrzak, 2001). FEM 
requires discretization of the whole domain, while BEM requires 
only discretization of the boundary. However, when using classical 
BEM for solving temperature equation, domain integral appears. 
Numerical integration over the domain requires dividing it into 
subdomains called cells. Dividing domain into cells in BEM 
is basically the same as dividing it into elements in FEM, so it 
loses its main advantage. There are some approaches that allow 
avoiding domain integrals, like dual reciprocity boundary element 
method (DRBEM) (Partridge et al., 1992) and multiple reciprocity 
boundary element method (MRBEM) (Nowak and Brebbia, 1989). 
However, these modifications have some limitations and cannot 
be used in all situations. Beside the large number of methods that 
already exist, it is still very important to search for new ones that 

would eliminate the disadvantages of the existing methods. 
An alternative approach is served by a group of methods called 
meshless methods (Johanssona and Lesnicb, 2008; Xiaokun 
et al., 2011; Jirousek et al., 1996). These methods require only 
a number of nodes located inside the domain and on the bounda-
ry. Over the past years a method based on the parametric integral 
equations systems (PIES) has been developed. PIESs are analyt-
ical modifications of the classical boundary integral equation (BIE) 
that allows solving problems without the need of discretization of 
boundary and domain. It uses Bézier or B-spline curves and 
patches for modeling. For time dependent problems it also allows 
to avoid the time discretization, but further research is needed. 
First, a version of PIES using time discretization should be proper-
ly tested. Authors found it interesting to test the method for time 
dependent boundary conditions. 

This paper presents PIES method with time stepping scheme 
for laser heating of homogeneous materials. Results obtained with 
PIES have been compared with exact solution and results ob-
tained with FEM. 

2. PIES METHOD FOR UNSTEADY HEAT TRANSFER 
PROBLEMS 

The differential equation for unsteady Fourier heat conduction, 
without internal heat sources, is governed by Brebbia et al. (1984) 
and Majchrzak (2001): 

𝑐
∂𝑇(x,𝑡)

∂𝑡
= 𝐾 (

∂2𝑇(x,𝑡)

∂𝑥1
2 +

∂2𝑇(x,𝑡)

∂𝑥2
2 ),                             (1) 

where: 𝐾[𝑊/𝑚𝐾]is the thermal conductivity, 𝑇(𝐱, 𝑡) is the time-

dependent temperature field, 𝑐[𝐽/𝑚3𝐾] is the volume-specific 
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heat capacity, 𝑡 is time. 
The equation (1) is complemented by the given boundary 

conditions 

{
𝑥 ∈ 𝛤1: 𝑇(𝑥, 𝑡) = 𝑇𝑠 ,

𝑥 ∈ 𝛤2: 𝑞(𝑥, 𝑡) = −𝐾
𝜕𝑇

𝜕𝑛
= 𝑞

𝑠
,
                                 (1a) 

where: is the given temperature on the boundary segment 𝛤1, 𝑞𝑠 
is the given heat flux on the boundary segment 𝛤2 and 𝑛 is the 
normal vector.  

An initial condition is given by 

x ∈ Ω: T(x, 0) = 𝑇0(x),                              (1b) 

where 𝑇0 is the given temperature inside the domain 𝛺 at time 
𝑡 = 0.  

Classical boundary integral equation (BIE) for (1) is presented 
in the form of Majchrzak (2001): 

α(x)𝑇(ξ, 𝑡𝐹) = −
1

𝑐
∫ ∫ 𝑇∗(ξ, x, 𝑡𝐹, 𝑡)𝑞(𝑥, 𝑡)

Γ
𝑑Γ

𝑡𝐹

𝑡0
𝑑𝑡

+
1

𝑐
∫ ∫ 𝑄∗(ξ, x, 𝑡𝐹, 𝑡)𝑇(𝑥, 𝑡)

Γ

𝑡𝐹

𝑡0
𝑑Γ𝑑𝑡

  +∬ 𝑇∗(ξ, x, 𝑡𝐹 , 𝑡0)𝑇
Ω

(x, 𝑡0)𝑑Ω(x),

          (2)       

where  𝑡0, 𝑡𝐹 is the analyzed time interval and  

α(ξ) = {
1
0.5
0

 for 

ξ ∈ Ω
ξ ∈ Γ
ξ ∈ Ω

, for a smooth boundary. 

Integrands 𝑇∗ and 𝑄∗ from equation (2) can be found in an 
explicit form in Majchrzak (2001). 

After applying analytical modification to the classical BIE, simi-
lar to the one applied for steady problems [16], parametric integral 
equation system (PIES) (3) for unsteady heat transfer problem 
has been obtained (Zieniuk et al., 2014). 

0.5𝑇𝑙(𝑠1, 𝑡
𝐹) =

=
1

𝑐
∫ ∑ ∫ �̅�𝑙𝑗

∗

�̅�𝑗

�̅�𝑗−1

𝑛

𝑗=1

𝑡𝐹

𝑡0

(𝑠1, 𝑠, 𝑡
𝐹, 𝑡)𝑞𝑗(𝑠, 𝑡)𝐽𝑗(𝑠)𝑑𝑠𝑑𝑡

−
1

𝑐
∫ ∑ ∫ �̅�𝑙𝑗

∗

�̅�𝑗

�̅�𝑗−1

𝑛

𝑗=1

𝑡𝐹

𝑡0

(𝑠1, 𝑠, 𝑡
𝐹 , 𝑡)𝑇𝑗(𝑠, 𝑡)𝐽𝑗(𝑠)𝑑𝑠𝑑𝑡

+∬ �̅̅�𝑙𝑗
∗

𝛺

(𝑠1, 𝑦, 𝑡
𝐹 ,  𝑡0)𝑇(𝑦, 𝑡0)𝑑𝛺(𝑦) 

(3) 

where: �̅�𝑙−1 ≤ 𝑠1 ≤ �̅�𝑙, �̅�𝑗−1 ≤ 𝑠 ≤ �̅�𝑗, 𝑙 = 1,2,3, . . . , 𝑛. 

�̅�𝑙−1, �̅�𝑙  �̅�𝑗−1, �̅�𝑗 is the beginning and the end of segments, re-

spectively 𝑆𝑙 and 𝑆𝑗 , and 𝐽𝑗(𝑠) is the Jacobian of the transfor-

mation. 

Integrands �̅�𝑙𝑗
∗
, 𝑄

𝑙𝑗

∗
 and Integral Identity �̅� used for obtain-

ing results inside domain have been presented in an explicit form 
in Zieniuk et al. (2014). 

2.1. Numerical solution of PIES 

To solve PIES for transient heat transfer problem (3), a strate-
gy known from BEM and tested previously in PIES (Zieniuk et al., 

2014) was used. This strategy involves discretization of the time 
variable and use of the time stepping scheme, with time step size 

Δ𝑡 in order to get results at desired time. Collocation method was 
used to obtain an algebraic equations system, according to the 
algorithm provided in Zieniuk et al. (2014). Number of collocation 
points should be equal to the number of unknown coefficients 
in the series, used to approximate unknown boundary functions. 
After solving the algebraic equations system, unknown coeffi-
cients from approximating series are obtained. Presented ap-
proaches have been used before, to solve potential problems 
(Zieniuk, 2013) and lately also problems of transient heat transfer 
(Zieniuk et al., 2014). 

3. LASER BEAM CHARACTERISTICS 

The main function of the laser in material processing is to 
generate heat in the processed piece of material. A laser beam 
can be characterized with set of parameters, like divergence, 
radius, temporal structure and spatial intensity profile. The effi-
ciency with which a material absorbs an incoming laser beam and 
converts it to heat depends on the properties of the material, like 
absorption coefficient, but also on the characteristics of laser 
beam itself (Jewtuszenko et al., 2009). In the general form, the 
total laser intensity can be written as 

q(r, t) = 𝐴𝑞0φ(𝑟)𝑞𝑡(𝑡),                                    (4) 

where 𝐴 is the effective absorption coefficient of the heated mate-

rial, φ(𝑟) describes the (arbitrary) intensity distribution (beam 
shape) in the cross-section, 𝑞𝑡(𝑡) is the temporal dependence 

(pulse shape) and 𝑞0 is the characteristic intensity of the laser 
(Gladush and Smurov, 2011). 

Assuming the spatial intensity profile of the beam to be evenly 
distributed, equation (4) can be presented as 

q(t) = 𝐴𝑞0𝑞𝑡(𝑡).                   (5) 

Laser pulse shape 𝑞𝑡(𝑡) is often approximated by simple 
functions, like (Jewtuszenko et al., 2009): 

 Rectangular pulse shape: 

𝑞
𝑡
(𝑡) = {

1 𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑡𝑠,

0 𝑓𝑜𝑟 𝑡𝑠 < 𝑡.
            (6) 

 Triangular pulse shape: 

𝑞
𝑡
(𝑡) =

{
 

 2
𝑡

𝑡𝑟
𝑓𝑜𝑟 0 < 𝑡 ≤ 𝑡𝑟,

2
(𝑡𝑠−𝑡)

(𝑡𝑠−𝑡𝑟)
𝑓𝑜𝑟 𝑡𝑟 < 𝑡 ≤ 𝑡𝑠,

0 𝑓𝑜𝑟 𝑡𝑠 < 𝑡.

               (7) 

where 𝑡𝑟 is the pulse rise time and 𝑡𝑠 is the complete pulse time. 
For more accurate approximation, Gaussian function can be 

used (Jewtuszenko et al., 2009): 

𝑞
𝑡
(𝑡) = 𝐼exp[−γ(𝑡δ − 𝑡𝑟

δ)] (
𝑡

𝑡𝑟
)
β

, 𝑡 > 0.           (8) 

where parameters β, γ and δ are related to the pulse rise time 𝑡𝑟, 

while value of parameter 𝐼 can be obtained from the condition 
of total energy conservation for distributions (6-8).  

Fig. 1 presents 𝑞𝑡(𝑡) function diagram with 𝑡𝑟 = 0.2671[𝑠] 
and 𝑡𝑠 = 1[𝑠], for three different laser pulse shape approxima-
tion functions (6-8). 
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Fig. 1.  Diagram of function𝑞𝑡(𝑡) with 𝑡𝑟 = 0.2671[𝑠]  and 𝑡𝑠 = 1[𝑠], 
            for three different laser pulse shape approximation functions (7-9) 

This paper presents heating of a Steel 45 material 
with Nd:YAG (neodymium-doped yttrium aluminum garnet) laser, 
for three different laser pulse shape approximation functions (6-8). 

4. NUMERICAL ANALYSIS 

Few examples have been solved to test efficiency of PIES 
method for issues simulating laser heating of a material, where all 
boundary conditions are dependent on time. Results obtained with 
PIES method have been compared to exact solution and results 
obtained with FEM. For FEM solution authors have used ANSYS 
Workbench 14 simulation tool called Transient Thermal. In FEM, 
square elements with quadratic shape function have been used to 
model the issue. 

Accuracy and stability of results in PIES is dependent 
on many variables, like time step size Δ𝑡, number of collocation 
points used in the approximating series and their location, and 
number of weight coefficients in quadrature for integration over 
boundary and domain. There is a certain relationship between the 

time step size Δ𝑡 and the number of weights in the quadrature 
over the domain in PIES (Zieniuk et al., 2014). The shorter the 
time step the larger number of weight coefficients has to be taken 
for integration over the domain. The applied FEM software uses 
the implicit time integration method, so it is unconditionally stable 
and does not apply Courant-Friedrich-Levy condition (Lewis et al., 
1996). Taking into account the relationship in PIES and uncondi-
tionally stable FEM, both methods have been compared for the 
same time step sizes and a similar number of weight coefficients 
in quadrature for integration over the domain in PIES and nodes 
in FEM. 

3.1. Rectangular pulse shape 

First, a symulation of rectangular pulse shape approximation 
function (6) has been conducted. Exact solution of this problem is 
presented in the following form (Jewtuszenko et al., 2009):  

T(y, t) = 𝐴𝑞0
2√𝑘𝑡

𝐾
𝑖𝑒𝑟𝑓𝑐 (

𝑦

2√𝑘𝑡
), 𝑦 ≥ 0, 𝑡 ≥ 0,            (9) 

where 𝑘 = 𝐾/𝑐 is the diffusion coefficient and 𝑖𝑒𝑟𝑓𝑐(𝑥) is the 
integral of the complementary error function.  

In the exact solution a laser heating of the half-space is con-
sidered. However, the half-space has to be approximated with 

a rectangular area for numerical calculations with PIES and FEM, 
as shown in Fig. 2.    

 
Fig. 2. Laser heating schema 

Value of 𝑞(𝑡) has been calculated from equation (5). The en-
ergy losses by radiation and convection on the surface have been 
omitted. Material and laser parameters used in calculations are 
presented in Tab. 1. 

Tab. 1. Parameters used for simulation of temperature distribution  
             in material heated by laser beam (Jewtuszenko et al., 2009) 

Metal Laser 
𝐭𝐬
[𝒎𝒔]

 
𝐭𝐫
[𝒎𝒔]

 
𝐪𝟎 × 𝟏𝟎

−𝟗

[𝑾𝒎−𝟐]
 
𝐊
[𝑾𝒎−𝟏𝑲−𝟏] 

𝐤 × 𝟏𝟎𝟓

[𝒎𝟐𝒔−𝟏]
 
𝑨
[%]

 

Steel 
45 

Nd:YAG 1 0.2671 0.58 33.5 1.5 41 

The first step was to establish the optimal size of the area, 𝐿𝑥  

and 𝐿𝑦 approximating the half space (Fig. 2). Height of the area 

𝐿𝑦 has been determined based on the exact solution (9). A mini-

mal height y has been assumed, for which the temperature 𝑇 and 

heat flux 𝑞(𝑡) are approximately equal to 0, for the given bounda-
ry condition (5) and maximum simulation time (𝑡 = 2𝑚𝑠). Width 

of the area  𝐿𝑥  was established after a series of numerical exper-

iments with use of PIES method. A minimal width 𝐿𝑥  was sought, 
for which a further increase of this width won’t have any impact on 

the results obtained at point 𝑝1(0,0.04). It has turned out that 

the optimal size of approximating area is 𝐿𝑥 = 𝐿𝑦 = 3. It has 

been also established, that in order to get stable and accurate 
results there has to be a minimum of 9 collocation points evenly 
distributed on each of the boundary segments. Also a minimum 
number of 20 weight coefficients in quadrature for integration over 
each boundary segment has to considered. 

In the next step, the example has been solved multiple times 
using both methods, PIES and FEM. Results have been obtained 
for different time step sizes, and different number weight coeffi-
cients in quadrature for integration over the domain in PIES and 
number of nodes in FEM. Results have been compared with the 
exact solution. Temperature has been measured at point 

𝑝1(0,0.04). Tab. 2 presents parameters of different PIES solu-
tions. Results are shown in Fig. 3. 

As it can be seen in Fig. 3, PIES method gives more accurate 
results when decreasing the time step size and increasing the 
number of weight coefficients in quadrature for integration over 
the domain. The best results (PIES-3) have been obtained for the 
smallest time step size and the largest number of weights. 
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Next, results obtained with FEM, have been compared with 
the exact solution. Input data for FEM are shown in Tab. 3. Re-
sults are presented in Fig. 4. 

Tab. 2. Input data for PIES 

  PIES-1 PIES-2 PIES-3 

weights in the  
domain integral 

10080 19680 40080 

𝛥𝑡 [ms] 0.1 0.05 0.02 

 
Fig. 3. Relative error [%] history at point 𝑝1, obtained by different PIES  

           solutions, compared to the exact solution 

Tab. 3. Input data for FEM 

  FEM-1 FEM-2 FEM-3 

elements 3249 6415 13293 

nodes 9976 19564 40336 

𝛥𝑡 [ms] 0.1 0.05 0.02 

 
Fig. 4.  Relative error [%] history at point 𝑝1 obtained by different FEM  
             solutions, compared to the exact solution 

FEM (Fig. 4) also gives more accurate results for smaller time 
step size and larger number of nodes (elements). 

Tab. 4 presents temperature value at the point 𝑝1 and time 
𝑡𝑠. Temperature has been obtained for the exact solution, best 
PIES solution and best FEM solution.  

Tab. 4. Temperature at point 𝑝1 and time 𝑡𝑠 

t[ms] Exact PIES-3 FEM-3 

1 723.10 725.81 718.97 

Taking into account the data presented in Fig. 3-4 it can be 
noticed that FEM gives more accurate results than PIES, which is 
especially visible in the beginning of simulation. Tab. 4 shows that 

for 𝑡 = 𝑡𝑠 = 1[𝑚𝑠], best FEM and PIES solutions give results 
with similar accuracy. 

In the next step, the best PIES solution and the best FEM so-
lution have been compared. A longer time period has been con-
sidered, including the time after which the laser has been turned 

off. Fig. 5 presents temperature history at point 𝑝1, obtained with 
both methods during the laser heating process and after the laser 
has been turned off. 

 
Fig. 5. Temperature history at point 𝑝1 obtained with best PIES  

            and FEM solutions for rectangular beam shape 

As can be noticed, both methods give close results during 
the whole simulation time.  

3.2. Triangular pulse shape 

Next, a simulation for the triangular pulse has been carried out 
(7). The exact solution for this particular problem does not exist, 
so the problem has been first solved with FEM and then with 
PIES. Results obtained with PIES have been compared to the 
best FEM results. In FEM a different number of elements, nodes 
and different time step size have been considered, as presented 
in Tab. 3. Results are presented on Fig. 6. Result is the tempera-

ture history at point 𝑝1. 
As it can be seen on Fig. 6, improve of the accuracy of FEM 

solutions by reduction of the time step size and increase of the 
number of elements (nodes) leads to stabilization of results. FEM-
3 has been chosen as the best solution. 

Sequentially, the example has been solved with the use of 
PIES method and results have been compared to the best FEM 
solution (FEM-3). Parameters of specific PIES solutions can be 

found in Tab. 2. Temperature history at point 𝑝1 obtained with 
PIES can be found on Fig. 7. 

Fig. 7 shows that increase of accuracy of PIES method brings 
the obtained results closer to results obtained with best FEM 
solution. Closest to the FEM-3 results were the best PIES results 
(PIES-3).  
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Fig. 6. Temperature history at point 𝑝1 obtained with FEM  

            for triangular pulse shape 

 
Fig. 7. Temperature history at point 𝑝1 obtained with PIES  

           and compared to best FEM solution, for triangular pulse shape 

3.3. Gaussian pulse shape 

In the next step, the Gaussian approximation function (8) has 
been used in the simulation. The same procedure has been used 
here, as in previous example. Due to the lack of exact solution, 
examples has been solved first with FEM and best FEM solution 
was used as a reference points for results obtained with PIES 
method. 

Different variants of FEM (Tab. 3) have been considered. Re-
sults are presented on Fig. 8. Result is the temperature history at 

point 𝑝1. 
As it can be seen on Fig. 8, also in this case, increase of the 

accuracy of FEM solutions results in stabilization of obtained 
results. 

Next, the example has been solved with PIES method. Ob-
tained results are compared with FEM-3 results. 

As can be noticed (Fig. 9), increase of accuracy in PIES 
makes the results obtained with this method closer to the best 
FEM results. 

Fig. 10 presents the temperature history at point 𝑝1, obtained 
with best PIES-3 solution, for three different laser pulse shape 
approximation functions (6-8). 

 
Fig. 8. Temperature history at point 𝑝1 obtained with FEM  

            for Gaussian pulse shape 

 
Fig. 9. Temperature history at point 𝑝1 obtained with PIES and compared  

            to best FEM solution, for Gaussian pulse shape 

 
Fig. 10. Temperature history at point 𝑝1 obtained with best PIES  

              solution, for three different pulse shapes 

As can be seen on Fig. 10, the temperature history obtained 
for different pulse shape approximation functions varies, which is 
mostly visible at the beginning of simulation. After some time the 
temperature stabilizes and all graphs converge to a single point. 
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5. CONCLUSIONS 

This paper presents the parametric intergral equations system 
for temperature equation, with the use of time stepping scheme. 
In the time stepping scheme each step is treated as a seperate 
problem, which allows in an easy way to solve issues with all 
boundary condition dependent on time. The exaples presented in 
this paper, laser heating of homogeneous materials belong to this 
category of issues. Three different functions approximating the 
real laser pulse shape have been considered. Comparison of the 
results with the exact solution and FEM found that PIES method 
gives accurate results, comparable with FEM. Therefore, PIES 
method can be an alternative for the commonly used FEM. In the 
future, further tests are planned to prove the effectiveness of PIES 
method in solving transient heat transfer problems.  
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Abstract: A laminate made with the Vacuum Bag Only (VBO) prepregs can be cured out of autoclave. Because of low curing pressure 
such a process can result in deterioration of laminate mechanical properties. They can be significantly lower than those displayed by the 
autoclave cured ones. The resistance against delamination can be among the most affected. Since this property is a week point of all the 
laminates it was of particular interest.  Delamination resistance of unidirectional  laminate made from VBO  MTM46/HTS(12K) prepreg was 
in the scope of the presented research and the critical values of the Strain Energy Release Rates and the Paris-type equations corre-
sponding to  Mode I, Mode II and Mixed-Mode I/II static and cyclic loadings, respectively, were determined.  

Key words: Delamination, VBO Prepregs  

1. INTRODUCTION 

Vacuum Bag Only (VBO) prepregs are relatively new semi-
finished raw products for manufacturing laminate primary airframe 
parts. Such prepregs can be cured out of autoclave with the use 
of ovens only, Due to this the related investment and production 
costs can be lowered since autoclaves and autoclave curing can 
be eliminated form manufacturing process. However processing 
conditions of such prepregs are not well established yet, especial-
ly in the case of MTM46/HTS(12K)  one. For this prepreg the 
manufacturer suggested curing process should be carried at 

130C and under 90kPa vacuum pressure. Such a relatively low 
curing pressure, comparing to 800 kPa for prepregs cured 
in autoclaves, results in more difficult control of void formation and 
can generate problems with obtaining porosity in the range ac-
cepted by an aircraft industry, i.e. below 1%. The essential differ-
ence in the porosity control can be explained with the tempera-
ture-pressure-time diagrams overlapped with void size diagrams 
shown in Fig.1.  

 
 

 
Fig. 1. Temperature-pressure-time diagrams overlapped with void size 
           diagrams for: a) VBO prepregs, b) autoclave cured prepregs 

An autoclave pressure of 8 bars, Fig.1a can suppress void 
formation and reduce size of already formed ones while vacuum 
pressure created in vacuum bag does not produce such an effect 
and reduction of porosity can only be achieved by evacuation of 
the air entrapped inside a laminate with the help of air evacuation 
ducts, Fig.2, that were produced in the course of specific impreg-
nation process (Bai, 2013).  

 

  

Fig. 2. Structure of uncured prepregs; a) autoclave cured  
            a) VBO- air evacuation ducts are indicated 

 Resistance of laminates against  delamination is their well-
known weak point, in general, and porosity can make it even 
worst. In the case of laminates made with MTM46/HTS(12K)  
prepreg pores  can be easily formed because of  low curing pres-
sure. The MTM46/HTS(12K)  prepreg has often been considered 
as a potential candidate for manufacturing structural components 
of composite airframes. However, material data available in the  
literature and these provided by the manufacturer do not offer 
sufficient amount of information concerning the mentioned proper-
ty. Therefore investigations of delamination resistance under static 
and cyclic loadings of a laminate made with MTM46/HTS(12K) 
prepreg were undertaken and the obtained results are presented 
in this paper. The critical values of the Strain Energy Release 
Rate (SERR) GIc, GIIc and GI/IIc, and the Paris-type equations were 
determined for  Mode I, Mode II and Mixed-Mode I/II static and 
cyclic loadings for a unidirectional laminate.  For this purpose the 
beam type laminate specimens were used. While Mode I, Mode II, 
Mixed-Mode I/II (ASTM D5528-12, ASTN D6671-13)  static tests 
and fatigue Mode I (ASTM D6615-97) test have been standard-
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ised, there is no standard procedure for Mode II and Mixed-Mode 
I/II fatigue tests, yet. Therefore, when necessary more detailed 
information on the test procedures and data reduction methods 
were provided.  

2. EXPERIMENTAL  

2.1. Specimens  

The specimens were cut out from 300mm x 200mm x 3.2mm 
laminate plates consisted of 22 prepreg plies. To assure an ap-
propriate ply compaction a debulking procedure was carried out 
for each four consecutive ply placements. The applied curing 
temperature-time and pressure-time profiles are shown in Fig. 3.  

 
Fig. 3. Temperature-pressure-time curing profile 

To facilitate delamination onset and propagation 0.013mm 
Teflon tape delamination starters were embedded in the middle 
plane of specimens. The specimen geometry and loading configu-
rations are shown in Fig. 4. Both the static and cyclic Mixed-Mode 
tests were run for constant ratio of the SERR components GII/GI = 
0.724. 

 
Fig. 4. Specimen geometry and loading configurations for:  
           a) Mode I, b) Mode II and c) Mixed-Mode I/II tests 

2.2. Testing  

All the tests were run with the help of INSTRON Electro Puls 
E3000 testing machine equipped with 1000N load cell.  

Static tests were run under displacement control with cross 
head speed 0.5mm/s and 0.75mm/s for Mode I, Mode II and 
Mixed-Mode I/II tests, respectively.  

Fatigue tests were run with the use of the same equipment 
and under displacement control with the cyclic frequency 5Hz, the 

cycle parameter 𝑅=0.1 and initial values of GI, II, I/II max =0.5GI, II, I/II c.  

 

 
Fig. 5. Specimens configurations for experimental determination  
           of C(a’) relationships for DCB, ENF and SLB specimens 

In the case of both the static and fatigue tests a current de-
lamination length, a, was calculated based on specimen compli-
ance changes C(a’). These relationships were determined exper-
imentally for each specimen separately and then used for this 
particular specimen to calculate delamination length based on the 
compliance value.  

Determination of C(a’) relationship. To determine C(a’) rela-
tionship specimens with oversize delamination starters were 
manufactured, Fig.5 and delamination growth, a’, was simulated. 
End Notch Flexure (ENF) and Single Leg Bending (SLB) speci-
mens were gradually shifted in jigs to the right, Fig.5, to change a’ 
values. For each specimen and for each a’ value a specimen 
compliance was calculated and C(a’) relationship was construct-
ed. In the case of Double Cantilever Beam (DCB) specimens 
changes in a’ values could be obtained with the help of clamps 
which would be tighten in appropriate positions to obtain desired 
a’ values. The range of a’ changes was adjusted in such a way 
that the obtained C(a’) relationships covered ranges of expected 
delamination growths in the real tests, i.e. 25≤a’≤50 for ENF and 
SLB specimens, and 50≤a’≤80 for DCB ones.  

2.3. Data reduction 

Static tests: 

       
Fig. 6. Typical plots of P(f) relationships obtained from Mode I, Mode II  
           and Mixed-Mode I/II static tests 

Mode I test. ASTM D5528 recommends three data reduction 
methods: Modified Beam Theory (MBT), Compliance Calibration, 
(CC) and Modified Compliance Calibration (MCC). The critical 
values of the SERR according to these methods were calculated 
with the help of (1-3), respectively. 

𝐺𝐼𝑐 =
3𝑃𝑓

2𝐵(𝑎+∆)
,  (1) 

𝐺𝐼𝑐 =
𝑛𝑃𝑓

2𝐵𝑎
,  (2) 

𝐺𝐼𝑐 =
3𝑃2𝐶2/3

2𝐴1𝐵ℎ
,  (3) 

where: 𝐵 – specimen width, 𝑃 – load, 𝑓 – relative displacement of 
loading points, ℎ – half of specimen thickness, ∆ – value deter-
mined experimentally by generating a least square plot of the 

cube root of compliance √𝐶
3

, as a function of delamination length, 
𝐶 – compliance of the cracked beam (ratio  of the loading point 

displacement over the applied load), 𝑛 – slope of the straight line 
drawn through the data generated from a least square plot of log 

(𝑓𝑖/𝑃𝑖) versus log (𝑎𝑖), 𝐴1 – slope of the straight line drawn 
through the data generated from least squares plot of delamina-



DOI 10.1515/ama-2015-0029                acta mechanica et automatica, vol.9 no.3 (2015) 

175 

tion length normalized by specimen thickness, a/h, as a function 

of the cube root of compliance, √𝐶
3

 . 
In addition, three different values of force, 𝑃, and correspond-

ing values of f could be considered, i.e. 𝑃𝑁𝐿 , corresponding to the 
onset of nonlinearity of 𝑃(𝑓) plot, 𝑃5%𝐶 , corresponding to the  

intersection of 𝑃(𝑓) plot with the straight line representing 1.05 
of initial compliance and 𝑃𝑚𝑎𝑥 , being maximum force value rec-
orded during the test under consideration, see Fig. 6.  
Mode II test. The tests were run according to ASTM D D6671 
standard recommendations. The critical values of the SERR could 
be calculated with formula (4) or (5). For the presented research 
formula (4) was used 

𝐺𝐼𝐼𝑐 =
9𝑎0

2 𝑃𝑚𝑎𝑥𝑓𝑚𝑎𝑥

2𝐵(2𝐿3+3𝑎0
3)

,  (4) 

or alternatively 

𝐺𝐼𝐼𝑐 =
3𝑚𝑃𝑚𝑎𝑥

2 𝑎2

2𝐵
,  (5) 

where 𝑚 is the slope of experimentally determined C(a) relation-

ship of the form   𝐶(𝑎) = 𝐴 + 𝑚𝑎3 
Mixed-Mode test. For this test SLB loading configuration was 
used. Although this configuration is not recommended by the 
ASTM D6671 standard, nevertheless it was chosen because  an 
application  of the same loading configuration for the cyclic tests 
was intended due to convenient jig design. For this loading con-
figuration the critical value of the SERR is given by (6) (Sze-
krenyes, 2010).      

𝐺𝐼/𝐼𝐼𝑐 =
21𝑎2𝑃𝑓

2𝐵(7𝑎3+2𝐿3)
.    (6) 

 

   

      
Fig. 7. Data reduction procedure: (a) raw data, (b) compliance vs. cycle 

elapsed, (c) a(n) obtained with the help of (7), (d) 𝑑𝑎/𝑑𝑛(𝑛)  

obtained based on (7) and (c), (e) auxiliary graph for determining 
coefficients of the Paris relationship, (f) sought Paris relationship 

Fatigue tests. They aimed determination of Paris like relation-

ships of the form 𝑑𝑎/𝑑𝑛 = 𝑓(𝐺𝑚𝑎𝑥). The tests have not been 
standardized yet except Mode I fatigue test for which recommen-
dations are given in  ASTM D6115 standard. Where possible, this 
standard was considered for Mode II and Mixed-Mode I/II data 
reduction procedures. The major departures from the standard 

recommendation was done regarding determination of 𝑑𝑎/𝑑𝑛 =
𝑓(𝑛) relationships. The details of the applied procedure can be 
found in Czajkowska et al., (2014). The standard procedure rec-
ommends the 7-point polynomial piecewise approximation of 
𝑑𝑎/𝑑𝑛 = 𝑓(𝑛)  relationship. For the purpose of the presented 
research this relationship was not  obtained by the pricewise 

approximation but the entire set of 𝑎𝑖 and corresponding 𝑛𝑖  val-
ues was considered and correlated with the help of sigmoidal 
function of the form (7): 

𝑎 =
𝛼𝛽+𝛾𝑛𝛿

𝛽+𝑛𝛿 ,  (7) 

where:  , , ,  are parameters needed to fit the curve 

Delamination length, a, for each recorded 𝑛-th cycle was cal-
culated with the help of previously determined C(a') relationship 
and corresponding pairs of 𝑃𝑖  and 𝑓𝑖 values. Since all the test  
were carried out under displacement control all the nominal de-

flection values, 𝑓, remained constant during each test. 

2.4. Results 

 

Fig.8. Values of GIc calculated according to MBT, CC and MCC data 
reduction procedures assuming 𝑃𝑐 equal to 𝑃𝑁𝐿, 𝑃𝑚𝑎𝑥 and 𝑃5%𝐶  

for each of the method used.(For explanation of symbols  
and subscripts see eqs.1-3 and Fig. 6, respectively).  
For each 𝐺𝐼𝑐 value 95% confidence interval has been marked 

Bar diagram in Fig. 8 presents initiation values of 𝐺𝐼𝑐  calcu-
lated according to the three data reduction methods defined 
by eqs.1-3. For each data reduction method three different values 

of force, 𝑃𝑐 ,  initiating delamination propagation were assumed. 
They were, (see Fig. 6):  

 force corresponding to the onset of nonlinearity of 𝑃(𝑓) 
relationship, 𝑃𝑁𝐿 ; 

 force corresponding to the intersection point of 𝑃(𝑓)  plot and 
the straight line representing 5% increase in the compliance 

𝐶 = 𝑓/𝑃, 𝑃5%𝐶 ; 

 force corresponding to the maximum of 𝑃(𝑓)  plot, 𝑃𝑚𝑎𝑥 . 
Analysing the results used to construct bar diagram in Fig. 8 

one could noticed that the most narrow  95% confidence interval 

as well as standard deviation were obtained for 𝑃𝑐 =  𝑃5%𝐶 .  
Plot in Fig.9 presents variation of the critical values of the 

SERR, 𝐺𝑐𝑖, corresponding to the initiation of delamination propa-

b 

c d 

a 

e 
f 
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gation  as a function of the mode mixity defined with the phase 

angle  (8), (=40.4 corresponds to GII/GI =0.724). GIci was 
calculated for 𝑃𝑐 =  𝑃5%𝐶  while GIIci and GI/IIci for 𝑃𝑐 =  𝑃max. 

Ψ = 𝑎𝑡𝑎𝑛√
𝐺𝐼𝐼

𝐺𝐼
.  (8) 

 
Fig. 9. Resistance against delamination under Mode I, Mode II and 

Mixed-Mode I/II static loadings. The plot represents the initiation 
values of 𝐺𝑐𝑖 versus phase angle  (8) with  95%% CI marked 

 
Fig.10. Paris relationships 𝑑𝑎/𝑑𝑛 = (𝐺𝑚𝑎𝑥) (region II,  

on the pictogram) for Mode I, Mode II and Mixed-Mode I/II  
loadings for MTM46/HTS(12K) laminate. Scatter of the results   
for each loading mode reflects the scatter of the laminate delami-
nation resistance for the loading mode under consideration 

Experimental results of fatigue tests are shown in Figs.10 and 

11. for region II and I (see pictograms in Figs 10 and 11) of 𝑑𝑎/
𝑑𝑛(𝐺𝑚𝑎𝑥) relationship respectively. From plots in Fig.10 one 
could conclude that the most dangerous was Mode I loading. This 
founding corresponds with the results of the static tests showing 
the lowest resistance against delamination under static Mode I 
loading. Also, one could notice that for Mode I loading the rate of 
delamination propagation was more sensitive to the changes in G 
than for the two other loading Modes. The lowest sensitivity to 
such changes was noticed for Mode II. Unexpected relation be-
tween the delamination propagation rates was noticed for Mode II 
and Mixed-Mode I/II. In the aspect of GIIc and GI/IIc values, (Fig. 
9), one would expect that the rate of delamination propagation 
under Mode II cyclic loading should be lower than that under 
Mixed-Mode loading, which was not the case. 

Typical 𝑑𝑎/𝑑𝑛(𝐺𝑚𝑎𝑥) relationships for low values of 𝐺𝑚𝑎𝑥  
(region I) are shown in Fig.11. It could be noticed that for Mode II 

and Mixed-Mode I/II loadings possibly threshold values of 𝐺𝑚𝑎𝑥 , 
(for which delamination did not grow), could be indicated. This 
was not the case for Mode I loading for which a delamination 

growth rate  𝑑𝑎/𝑑𝑛 < 10-7 cycle/mm was observed even for 

𝐺𝑚𝑎𝑥<50N/m. (It was decided to terminate the tests at this delam-
ination growth rate).  

 

Fig. 11. Examples of 𝑑𝑎/𝑑𝑛(𝐺𝑚𝑎𝑥) data for Mode I, Mode II and 

Mixed-Mode I/II fatigue loadings  for low 𝐺𝑚𝑎𝑥 values, (region I 

on the pictogram). Possible threshold values of GIImax and GI/IImax  
could be noticed 

2.5. Delamination resistance of MTM46/HTS laminates 
in perspective 

For comparison purpose the critical values of the SERR for 
Mode I, Mode II and Mixed-Mode I/II loadings for common auto-
clave-cured laminates of aircraft grade are given in Tab. 1 togeth-
er with the corresponding properties of MTM46/HTS. 

Tab. 1. Interlaminar toughness of laminates 

laminate GIc  N/m GIIc  N/m GI/IIc  N/m 

MTM46/HTS 142 793 230 

3501-6/AS4 200 [5] 525 [5] - 

8552/IM7 230 [6] 1334 [13] 280 [10] 

977-3/IM7 154 [12] 670 [9] - 

914C/T300 112 [11] 220 [11] 220[11] GII/GI=1 

 
Fig. 12. Resistance against delamination of 914/T300, 8552/AS4 and 

977-2/IM7 laminates under cyclic Mode I and Mode II loadings. 
Data reproduced from (Meziere and Michel, 2000; Hiley, 2000; 
Stelzer at al., 2013) 
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Comparison of fatigue data is difficult because there is scant 
reference to this data in generally accessible literature. Further-
more, the published data are in the form of plots only, and coeffi-
cients of Paris equations corresponding  to these plots are not 
provided at all or are not complete. For this reason the plots 
shown in Fig. 12 are not very accurate representation of the cited 
literature data and should be regarded as same approximations 
of the original plots, only.  

3. CONCLUSIONS 

Comparing delamination resistance of MTM46/HTS laminate 
subjected to static and cyclic loadings against delamination re-
sistance  of aircraft grade laminates made with autoclave cured 
prepregs one could conclude that: 

 VBO MTM46/HTS laminate displayed  higher delamination 
resistance under static and cyclic loadings than laminate 
made with 914C/T300 prepreg containing non- toughened res-
in.  

 in the case of autoclave cured laminates containing tough-
ened resins their delamination resistance was significantly 
higher than that  of the laminate tested.  

 using out-of-autoclave curing process  one could obtain lami-
nates displaying similar delamination resistance as those for 
which autoclave curing process was used assuming that the 
laminates under consideration were impregnated with the  res-
in systems of similar toughness.     
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Abstract: The paper presents the exact solution of the antiplane problem for an inhomogeneous bimaterial with the interface crack ex-
posed to the normal load and cyclic loading by a concentrated force in the longitudinal direction. Using discontinuity function method the 
problem is reduced to the solution of singular integral equations for the displacement and stress discontinuities at the domains with sliding 
friction. The paper provides the analysis of the effect of friction and loading parameters on the size of these zones. Hysteretic behaviour 
of the stress and displacement discontinuities in these domains is observed. 

Keywords: Friction, Tribofatigue, Cyclic Loading, Interfacial Crack, Energy Dissipation, Stress Intensity Factor, Antiplane Deformation,  
                   Bimaterial, Discontinuity Function, Hysteresis 

1. INTRODUCTION 

The account of friction in studying of the contact phenomena 
is one of the most urgent problems of mechanical engineering and 
materials science in the analysis of the phenomena and process-
es occurring in moving elements of cars, during various techno-
logical operations (Goryacheva, 2001; Comninou, 1977; Panasiuk 
et al., 1976; Sulym and Piskozub, 2004; Johnson, 1985; Hills 
et al.,1993; Ulitko and Ostryk, 2006; Datsyshyn et al., 2006). 
Thus, friction can be accompanied with electric, thermal, vibrating 
and chemical processes, which damp the internal dynamic pro-
cesses essentially influencing the intensity materials wear, and 
consequently the reliability and durability of the structural ele-
ments made of them (Sosnovskiy, 2005; Bogdanovich and 
Tkachuk, 2009; Evtushenko and Kutsei, 2010; Pasternak et al., 
2010; Pyrievet al., 2012). Friction influence can be both negative 
and positive. 

From the point of view of structural integrity mechanics, fric-
tion of crack faces at their relative displacement is useful in most 
cases, since it causes internal strain energy dissipation, and 
consequently reduces the stress concentration, which reduces 
or even eliminates alternating plastic deformations at alternating 
loading. It is also known that development of the residual stress 
field thus assists in the adaptation of a material to operational 
loadings. The compression of composite materials arising doe to 
friction forces improves shear stress redistribution even in the 
case of macroscopic fracture of a fiber-matrix interface. 

Negative consequences of a friction are mainly the wear 
of contacting surfaces, and also thermal emission. At excessive 
intensity the latter can sometimes cause unpredictable change 
in mechanical, physical and chemical properties of a material, 
distribution of physical fields, and consequently influence the 
diffusive processes, in particular hydrogen diffusion, and devel-
opment of the fracture phenomena warned by tribofatigue (Sos-
novskiy, 2005; Evtushenko and Kutsei, 2010, Pyriev et al., 2012). 

This paper continues previous authors’ publication (Sulym 
et al., 2015) and develops the technique for studying the influence 
of friction in the antiplane problem for a solid with a closed crack 
under the applied quasi-static (inertia-free) repeatedly changing 
loading, including cyclic one. The most general case is consid-
ered, when at each step the loading can either increase (addition-
al loading) or change sign (unloading) reaching sufficient magni-
tude, which causes development of slippage zones.  

2. PROBLEM STATEMENT 

Problem statement coincides with those resulted earlier in 
Sulym and Piskozub (2004) except the way of loading. Here it is 
supposed, that a medium is subject to repeatedly changing load-
ing, which cause the quasi-static antiplane deformation of a solid 
and corresponding stress strain state (in-plane loading is as-
sumed to be constant). As the special case the cyclically changing 
loading can be considered, which is performed within the pattern 
loading-unloading-loading-... 

As well as in the previous work (Sulym et al., 2015), consider 
an infinite isotropic medium consisting of two half-spaces with 

elastic constants 𝐸𝑘 , 𝜈𝑘 , 𝐺𝑘     (𝑘 = 1,2), which are pressed to 
each other along their interface 𝐿 with normal stress 𝜎𝑦𝑦𝑘 =

−𝑃  (𝑘 = 1,2;   𝑥 ∈ 𝐿). Here the system of co-ordinates 𝑂𝑥𝑦𝑧 

is used, with its origin at a plane 𝑥𝑂𝑧 of contact of half-spaces, 

where 𝑁𝑂𝑧-coaxial strip cracks are localized at 𝐿′ = ∪
𝑛=1

𝑁
𝐿′𝑛 =

∪
𝑛=1

𝑁
[𝑎𝑛

−;   𝑎𝑛
+] (Fig. 1). 

Thus, the problem is reduced to study of stress strain state 

(SSS) of a cross-section 𝑥𝑂𝑦 perpendicular to a direction 𝑧 of its 
longitudinal (out-of-plane) displacement. The half-spaces perpen-
dicular to this axis form to half-planes 𝑆𝑘   (𝑘 = 1, 2), and their 

interface correspond to the abscissa 𝐿~𝑥. 

mailto:h.sulym@pb.edu.pl
mailto:piskozub
mailto:piskozub@pancha.lviv.ua
mailto:pasternak@ukrpost.ua


DOI 10.1515/ama-2015-0030                             acta mechanica et automatica, vol.9 no.3 (2015) 

179 

(
(15) 

 
Fig. 1. The loading and geometric scheme of the problem 

Thus, the problem is reduced to study of stress strain state 

(SSS) of a cross-section 𝑥𝑂𝑦 perpendicular to a direction 𝑧 of its 
longitudinal (out-of-plane) displacement. The half-spaces perpen-

dicular to this axis form to half-planes 𝑆𝑘   (𝑘 = 1,2), and their 

interface correspond to the abscissa 𝐿~𝑥.  
The application of similar traditional notation for an axis 𝑧 and 

a complex variable 𝑧 = 𝑥 + 𝑖𝑦 should not cause misunderstand-
ing in the solution of the problem. 

Contact between the bimaterial medium components along 

a line 𝐿′′ = 𝐿\𝐿′ is supposed to be mechanically perfect, and the 

contact along defects’ (cracks’) faces 𝐿′ is assumed to be per-
formed according to the laws of tangential mechanic contact, 
at which bodies contact mechanically perfect until the moment, 
when relative sliding of crack faces may start in some areas 

𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛  at the material interface (Johnson, 1985; Sulym et al., 
2015). 

Presence of such slippage zones (cracks with contacting fac-

es) at each 𝑝-th step of loading (cycle) is modeled with stress and 

displacement discontinuity vectors at 𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛  (Bozhydarnyk 

and Sulym, 1999; Sulym, 2007; Piskozub and Sulim, 2008): 

[Ξ]
𝐿′

≡ Ξ− − Ξ+ = 𝐟(𝑝)(𝑥, 𝑡),           (1) 

for 𝑥 ∈ 𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛 (𝑛 = 1, 𝑁),    

𝐟(𝑝)(𝑥, 𝑡) = 0, if 𝑥 ∉ 𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛 ,           (2) 

where Ξ(𝑧, 𝑡) = {𝜎𝑦𝑧 , ∂𝑤 ∂𝑥⁄ }(𝑧, 𝑡) is a state vector;  

𝐟(𝑝)(𝑥, 𝑡) = {𝑓3(𝑝), 𝑓6(𝑝)}(𝑥, 𝑡) is a discontinuity vector; 𝑝 in 

brackets denote the number of loading step (cycle); 𝑡 is time as 
a formal monotonously increasing parameter related with the 
convertible loading. The following notation are used hereinafter: 
[𝜙] = 𝜙(𝑥, −0) − 𝜙(𝑥, +0), ⟨𝜙⟩ = 𝜙(𝑥, −0) + 𝜙(𝑥, +0); 
indices "+" and "–" correspond to the limit values of a function at 
the top and bottom edges of a line 𝐿. 

The friction contact conditions at the closed crack provide that 

at the achievement by tangent traction 𝜎𝑦𝑧 at the lines 𝛾𝑛
(𝑝)

 of 

a certain critical value 𝜏𝑦𝑧
max the slippage occurs, and the tangent 

traction cannot exceed this threshold. Thus, within the classical 
Amontons’ law of friction (Johnson, 1985), consider a variant of 
a contact problem according to which the tangent traction (friction 

traction) is constant along the lines 𝛾𝑛
(𝑝)

: 

𝜎𝑦𝑧
± = −𝑠𝑔𝑛([𝑤](𝑝))𝜏𝑦𝑧

𝑚𝑎𝑥 ,    

𝜏𝑦𝑧
𝑚𝑎𝑥 = −𝛼𝜎𝑦𝑦(|𝑤− − 𝑤+| ≠ 0)

,                          (3) 

where 𝛼 is a coefficient of dry friction. Outside the lines 𝛾𝑛
(𝑝)

, 

which belong to 𝐿′𝑛 , the tangent traction at the crack points 
without slippage does not exceed the possible admissible level 

|σyz| ≤ τyz
max(w− − w+ = 0),           (4) 

and the mutual crack face displacement (displacement discontinu-
ity) is absent. The sign (an action direction) of tangent traction 
is chosen depending on a sign of the difference of displacements 

[𝑤](𝑝) at a considered point of 𝛾𝑛
(𝑝)

. 

3. THE PROBLEM SOLUTION 

Assume that the magnitude and direction of action of the ex-
ternal mechanical loading factors, which perform the longitudinal 
shear of a medium, change quasi-statically (so slowly that there 
is no necessity to consider inertial terms) under the certain law 
which can be arbitrary. Let the external loading of the problem be 
defined by monotonously changing in time intervals 

[𝑡(𝑝−1);   𝑡(𝑝)] step-by-step sequences of the following factors: 

stress 𝜎𝑦𝑧
∞ = ∑ 𝜏(𝑝)(𝑡)𝑝 , 𝜎𝑥𝑧

∞ = ∑ 𝜏𝑘(𝑝)(𝑡)𝑝  uniformly distribut-

ed at the infinity; the concentrated forces with magnitude 

𝑄𝑘(𝑡) = ∑ 𝑄𝑘(𝑝)(𝑡)𝑝 , and screw dislocations with Burgers 

vectors 𝑏𝑘(𝑡) = ∑ 𝑏𝑘(𝑝)(𝑡)𝑝  applied at the points 𝑧∗𝑘 ∈

𝑆𝑘(𝑘 = 1, 2). It should be noticed that the positive direction of 

force and Burgers vectors is selected along 𝑧-axis (such that it 
along with 𝑥 and 𝑦 axes forms the right rectangular coordinate 
system), unlike Panasyuk et al. (1976), where the opposite direc-
tions is implicitly accepted as a positive one. According to (20.5) 
Sulym (2007), at each moment of time stress at the infinity should 
satisfy the condition: 

𝜏2(𝑝)(𝑡)𝐺1 = 𝜏1(𝑝)(𝑡)𝐺2,           (5) 

which provides straightness of the material interface at the infinity. 
The first (initial) step of loading and the SSS produced by it 

are considered in details in Ref [17], where the resulting system of 
singular integral equations (SSIE) is obtained 

{
𝑓3(1)(𝑥, 𝑡) = 0,                  (𝑥 ∈ 𝐿′),

𝑔6(1)(𝑥, 𝑡) =   
1

2𝐶
(⟨𝜎𝑦𝑧(1)

0 (𝑥, 𝑡)⟩ + 2sgn[𝑤](1)𝜏𝑦𝑧
max),

       (6) 

which has the following closed-form solution: 

𝑓6(1)(𝑥, 𝑡) =
𝑋0

∗+(𝑥)

𝜋𝑖
∫

𝐹6(1)(𝑠,𝑡)𝑑𝑠

𝑋0
∗+(𝑠)(𝑠−𝑥)𝐿′

+

𝑋0
∗+(𝑥)𝑄𝑛−1(𝑥), (𝑥 ∈ 𝐿′), 

𝑋0
∗(𝑧) = ∏ [(𝑧 − 𝑎𝑛(1)

− )(𝑧 − 𝑎𝑛(1)
+ )]

−1 2⁄𝑁
𝑛=1 ,                      (7) 

where the factors at polynomials 𝑄𝑛−1(𝑥) are determined from 
additional displacement continuity conditions at each crack: 

∫ 𝑓6(1)(𝑠, 𝑡)𝑑𝑠
𝑎𝑛(1)

+

𝑎𝑛(1)
− = 0    (𝑛 = 1, 𝑁).          (8) 

Here and further for each step the following notation is used 
(Sulym et al., 2015): 

𝜎𝑦𝑧(𝑝)
0 (𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑝)

0 (𝑧, 𝑡) = 𝜏(𝑝)(𝑡) +  𝑖{𝜏𝑘(𝑝)(𝑡) 

+𝐷𝑘(𝑝)(𝑧, 𝑡) + (𝑝𝑘 − 𝑝𝑗)𝐷𝑘(𝑝)(𝑧, 𝑡) + 2𝑝𝑘𝐷𝑗(𝑝)(𝑧, 𝑡)},  

𝐷𝑘(𝑝)(𝑧, 𝑡) = −
𝑄𝑘(𝑝)(𝑡) + 𝑖𝐺𝑘𝑏𝑘(𝑝)(𝑡)

2𝜋(𝑧 − 𝑧∗𝑘)
, (𝑧 ∈ 𝑆𝑘 ,

𝑘 = 1, 2), 

𝑔𝑟(𝑝)(𝑧, 𝑡) =
1

𝜋
∫

𝑓𝑟(𝑝)(𝑥, 𝑡)𝑑𝑥

𝑥 − 𝑧𝐿′
,   

𝐶 =
𝐺1𝐺2

𝐺1 + 𝐺2

, 𝑝𝑘 =
𝐶

𝐶𝑗

. 

(9) 

and SSS components are defined by relations 
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(
(14) 

1
(18) 

𝜎𝑦𝑧(1)(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(1)(𝑧, 𝑡) = 𝜎𝑦𝑧(1)
0 (𝑧, 𝑡) 

+𝑖𝜎𝑥𝑧(1)
0 (𝑧, 𝑡) + 𝑖𝑝𝑘𝑔3(1)(𝑧, 𝑡) −  𝐶𝑔6(1)(𝑧, 𝑡)

(𝑧 ∈ 𝑆𝑘;   𝑟 = 3, 6;   𝑘 = 1, 2;   𝑗 = 3 − 𝑘);
 

𝜎𝑦𝑧(1)
± (𝑥, 𝑡) = ∓𝑝𝑘𝑓3(1)(𝑥, 𝑡) 

−𝐶𝑔6(1)(𝑥, 𝑡) + 𝜎𝑦𝑧(1)
0± (𝑥, 𝑡),     

𝜎𝑥𝑧(1)
± (𝑥, 𝑡) = ∓𝐶𝑓6(1)(𝑥, 𝑡) + 𝑝𝑘𝑔3(1)(𝑥, 𝑡) 

+𝜎𝑥𝑧(1)
0± (𝑥, 𝑡), (𝑥 ∈ 𝐿′). 

(10) 

Consider the next step of loading. Assume that the compo-

nents of SSS of the medium obtained at the end time 𝑡(1) of the 

previous (first) step can be considered as residual ones. 
Then one can assume that the problem statement at this step 

differs from the formulation of the problem of the previous step 
in already existing displacement and stress discontinuities caused 
by the previous step of loading. Hence, at this step additional 
change in loading is accompanied with additional discontinuities 
and the representation of a total stress field, which account for the 
residual SSS from the previous (𝑝 = 1) step, is as follows: 

𝜎𝑦𝑧(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑧, 𝑡) = 𝜎𝑦𝑧(1)(𝑧, 𝑡(1)) 

+𝑖𝜎𝑥𝑧(1)(𝑧, 𝑡(1)) + 𝜎𝑦𝑧(2)
0 (𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(2)

0 (𝑧, 𝑡) 

+𝑖𝑝𝑘𝑔3(2)(𝑧, 𝑡) − 𝐶𝑔6(2)(𝑧, 𝑡), 

(𝑧 ∈ 𝑆𝑘;   𝑘 = 1, 2;   𝑗 = 3 − 𝑘). 

 (11) 

The total stress should satisfy the boundary conditions (3) at 

𝛾𝑛
(2)

 with the account of a loading direction. Then one can formu-
late the following local problem for the second step: 

𝜎𝑦𝑧(2)(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(2)(𝑧, 𝑡) = {𝜎𝑦𝑧(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑧, 𝑡)} 

−{𝜎𝑦𝑧(1)(𝑧, 𝑡(1)) + 𝑖𝜎𝑥𝑧(1)(𝑧, 𝑡(1))} 

(𝑧 ∈ 𝑆𝑘;   𝑘 = 1, 2;   𝑗 = 3 − 𝑘) 

     (12) 

with boundary conditions 

𝜎𝑦𝑧(2)
± (𝑥, 𝑡) = −sgn([𝑤](2))𝜏𝑦𝑧

max − 𝜎𝑦𝑧(1)
± (𝑥, 𝑡(1)), 

𝑥 ∈ 𝛾𝑛
(2)

⊂ 𝐿′𝑛 (𝑛 = 1, 𝑁). 
(13) 

Conditions (13) can be specified depending on a relation be-

tween 𝛾𝑛
(2)

 and 𝛾𝑛
(1)

: 

𝜎𝑦𝑧(2)
± (𝑥, 𝑡)

= {
−sgn([𝑤](2))𝜏𝑦𝑧

max + sgn([𝑤](1))𝜏𝑦𝑧
max,     𝑥 ∈ 𝛾𝑛

(2 )
⊂ 𝛾𝑛

(1 )

−sgn([𝑤](2))𝜏𝑦𝑧
max − 𝜎𝑦𝑧(1)

± (𝑥, 𝑡(1)),    𝑥 ∈ 𝛾𝑛
(2 )

\𝛾𝑛
(1 )

.
 

According to Eq (14), the abovementioned assumption does 
not demand the proof in a case, when at a following step the sign 
of applied (local at this step) loading changes. As soon as at the 

moment 𝑡(1) of the first step end the local loadings reach their 

extreme values (at their increase those are maxima), a slippage 
zone is fixed in size, and contact surfaces stick together and the 
reached SSS is further considered as residual one. After that, with 
the beginning of a following step the magnitudes of total loadings 
start to decrease and quite similar to the process of unloading of 
the plastic material, new slippage does not arise, while at certain 

time 𝑡(2)
𝑠𝑡 (𝑡(1) < 𝑡(2)

𝑠𝑡 ≤ 𝑡(2)) the slippage conditions (3) are to 

be satisfied. Thus, the starting size of a slippage zone at the 
second step is always less than its size in the end of the previous 

step: 𝛾𝑛
(2)

(𝑡(2)
𝑠𝑡 ) ⊂ 𝛾𝑛

(1)
(𝑡(1)). Therefore, using for this case of 

loading the reasoning similar to that of the previous step one can 
obtain the following resulting SSIE 

{

𝑓3(2)(𝑥, 𝑡) = 0,   

𝑔6(2)(𝑥, 𝑡) =
1

2𝐶
{⟨𝜎𝑦𝑧(2)

0 (𝑥, 𝑡)⟩+2𝜏𝑦𝑧
max(sgn[𝑤](2) − sgn[𝑤](1))};

 

for determination of local (additional regarding the SSS reached at 

time 𝑡(1)) stress and displacement discontinuities from local (for 

this step) loadings. The obtained solution differs from Eqs (7)–(10) 

only in the influence of additional term −2𝜏𝑦𝑧
maxsgn[𝑤](1) at the 

right hand side of SSIE (15), and of course, the superscript in 
brackets defines the second step. 

Providing similar reasoning for the following steps of alternat-
ing monotonously changing loading one can obtain the local 

problem for the 𝑝-th step: 

𝜎𝑦𝑧(𝑝)(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑝)(𝑧, 𝑡) = {𝜎𝑦𝑧(𝑧, 𝑡) + 𝑖𝜎𝑥𝑧(𝑧, 𝑡)} 

− ∑{𝜎𝑦𝑧(𝑖)(𝑧, 𝑡(𝑖)) + 𝑖𝜎𝑥𝑧(𝑖)(𝑧, 𝑡(𝑖))}

𝑝−1

𝑖=1

(𝑧 ∈ 𝑆𝑘;   𝑘 = 1, 2;   𝑗 = 3 − 𝑘;  𝑡 > 𝑡(𝑝−1))

 
   (16) 

with boundary conditions: 

𝜎𝑦𝑧(𝑝)
± (𝑥, 𝑡) = −sgn([𝑤](𝑝))𝜏𝑦𝑧

max − 𝜎𝑦𝑧(𝑝−1)
± (𝑥, 𝑡(𝑚)) 

= −𝜏𝑦𝑧
max(sgn[𝑤](𝑝) − sgn[𝑤](𝑝−1)), 

𝑥 ∈ 𝛾𝑛
(𝑝)

⊂ 𝐿′𝑛 (𝑛 = 1, 𝑁̅̅ ̅̅ ̅), 

    
(17) 

which results in the following SSIE 

{

𝑓3(𝑝)(𝑥, 𝑡) = 0,

𝑔6(𝑝)(𝑥, 𝑡) =
1

2𝐶
{⟨𝜎𝑦𝑧(𝑝)

0 (𝑥, 𝑡)⟩+2𝜏𝑦𝑧
max(sgn[𝑤](𝑝) − sgn[𝑤](𝑝−1))};

 

and its solution has the same structure as in Eqs (7)–(10).  
In general the local displacement discontinuity and energy 

dissipation at the 𝑝-th step are defined as: 

[𝑤](𝑝)(𝑥, 𝑡) = ∫ 𝑓6(𝑝)(𝑠, 𝑡)𝑑𝑠,     

𝑥

𝑎𝑛(𝑝)
−

 

𝑥 ∈ 𝛾𝑛
(𝑝)

⊂ 𝐿′n, (𝑛 = 1, 𝑁̅̅ ̅̅ ̅), 

      
(19) 

𝑊(𝑝)
𝑑 (𝑡) = − ∫ 𝜏𝑦𝑧

max|[𝑤](𝑝)(𝑥, 𝑡)|
𝐿′

𝑑𝑥. (20) 

As a consequence, total values of stress, strain, displacement 

and its discontinuity, the dissipated energy etc. after the 𝑝-th step 
can be presented as a superposition, for instance 

[𝑤](𝑥, 𝑡) = ∑ [𝑤](𝑚)(𝑥, 𝑡(𝑚))
𝑝−1
𝑚=1  + [𝑤](𝑝)(𝑥, 𝑡)   

(𝑥 ∈ 𝐿′;    𝑡 > 𝑡(𝑝−1))
,        (21) 

𝑊𝑑(𝑡) = ∑ 𝑊(𝑚)
𝑑 (𝑡(𝑚))

𝑝−1
𝑚=1  + 𝑊(𝑝)

𝑑 (𝑡), (𝑡 > 𝑡(𝑝−1)).(22) 

As well as in Sulym et al. (2015), for detailed illustration of the 
developed approach for solution of the problem consider a special 
case of alternating loading symmetric concerning a vertical axis 
(𝑧∗𝑘 = ±𝑖𝑑) of a medium containing a single (𝑁 = 1) crack 

𝐿′1 = [−𝑏;   𝑏]. Then in the bounds of 𝐿′1 at each loading step 

only a symmetric slippage zone 𝛾1
(𝑝)

= [−𝑎(𝑝);   𝑎(𝑝)](𝑎(𝑝) ≤

𝑏) can occur and 

⟨𝜎𝑦𝑧(𝑝)
0 (𝑥, 𝑡)⟩ = 2𝜏(𝑝)(𝑡) − 4𝑝1Im𝐷2(𝑝)(𝑥, 𝑡) −

4𝑝2Im𝐷1(𝑝)(𝑥, 𝑡),                𝑄0(𝑥) ≡ 𝑐0 = 0. 
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In this case the solution of the integral equation (18) after calculation of corresponding integrals is as follows: 

𝑓6(𝑝)(𝑥, 𝑡) =
1

𝜋𝐶√𝑎(𝑝)
2 −𝑥2

{𝜋(𝜏(𝑝)(𝑡) + 𝜏𝑦𝑧
max(sgn[𝑤](𝑝) − sgn[𝑤](𝑝−1))) 𝑥 +

+ ∑ 𝑝2−𝑘 (𝑄𝑘(𝑝)(𝑡)Im
√𝑧∗𝑘

2−𝑎(𝑝)
2

𝑥−𝑧∗𝑘
+2

𝑘=1 𝐺𝑘𝑏𝑘(𝑝)(𝑡)Re (
√𝑧∗𝑘

2−𝑎(𝑝)
2

𝑥−𝑧∗𝑘
+ 1))},               (𝑥 ∈ [−𝑎(𝑝);   𝑎(𝑝)]).

   (23) 

The function 𝑋(𝑧) = √𝑧2 − 𝑎2 is understand as a branch, satisfying the condition √𝑧2 − 𝑎2 𝑧⁄ → 1 as 𝑧 → ∞. Similar reasoning is 

used for a choice of branches of functions √𝑧∗𝑘
2 − 𝑎2and √𝑧∗̅𝑘

2 − 𝑎2, 𝑘 = 1, 2. 

Based on Eq (23) one can obtain the following formula for 𝑔6(𝑝)(𝑧, 𝑡): 

𝑔6(𝑝)(𝑧, 𝑡) =
1

𝐶
[𝜏(𝑝)(𝑡) + 𝜏𝑦𝑧

max(sgn[𝑤](𝑝) −(sgn[𝑤](𝑝−1))] (1 −
𝑧

√𝑧2−𝑎(𝑝)
2

) −
𝑝1𝐺2𝑏2(𝑝)(𝑡)+𝑝2𝐺1𝑏1(𝑝)(𝑡)

𝜋𝐶√𝑧2−𝑎(𝑝)
2

−
1

2𝜋𝐶
∑ 𝑝2−𝑘 (𝑖𝑄𝑘(𝑝)(𝑡)𝑅𝑘

−(𝑎(𝑝), 𝑧, 𝑧∗𝑘) − (𝐺𝑘𝑏𝑘(𝑝)(𝑡)𝑅𝑘
+(𝑎(𝑝), 𝑧, 𝑧∗𝑘))),     2

𝑘=1 (𝑧 ∉ [−𝑎(𝑝);   𝑎(𝑝)]),

                 (24) 

where: 

𝑅𝑘
±(𝑎, 𝑧, 𝑧∗𝑘) =

1

𝜋
∫ (

√𝑧∗𝑘
2 − 𝑎2

𝑥 − 𝑧∗𝑘

±
√𝑧∗̅𝑘

2 − 𝑎2

𝑥 − 𝑧∗̅𝑘

)

𝑎

−𝑎

𝑑𝑥

√𝑎2 − 𝑥2(𝑥 − 𝑧)
=

1

√𝑧2 − 𝑎2
(

√𝑧∗𝑘
2 − 𝑎2

𝑧∗𝑘 − 𝑧
±

√𝑧∗̅𝑘
2 − 𝑎2

𝑧∗̅𝑘 − 𝑧
) − (

1

𝑧∗𝑘 − 𝑧
±

1

𝑧∗̅𝑘 − 𝑧
) .

 

Expression for displacement discontinuity [𝑤](𝑝) can be obtained from Eqs (19), (23) as 

[𝑤](𝑝)(𝑥, 𝑡) = ∫ 𝑓6(𝑝)(𝑠, 𝑡)𝑑𝑠
𝑥

−𝑎(𝑝)
= −

1

𝐶
(𝜏(𝑝)(𝑡) + 𝜏𝑦𝑧

max(sgn[𝑤](𝑝) − sgn[𝑤](𝑝−1))) √𝑎 (𝑝)
2 − 𝑥2 +

+
1

𝜋𝐶
{∑ 𝑝2−𝑘

2
𝑘=1 (𝑄𝑘(𝑝)(𝑡)Im𝐼(𝑥, 𝑧∗𝑘) + 𝐺𝑘𝑏𝑘(𝑝)(𝑡) (𝜋 + 2arcsin

𝑥

𝑎(𝑝)
+ Re𝐼(𝑥, 𝑎(𝑝), 𝑧∗𝑘)),    (|𝑥| ≤ 𝑎(𝑝)),

   (25) 

where: 𝐼(𝑥, 𝑎, 𝑧) ≡ √𝑧2 − 𝑎2 ∫
𝑑𝑥

√𝑎2−𝑡2(𝑥−𝑧)

𝑥

−𝑎
= 𝑖ln

𝑎(𝑧−𝑥)

𝑎2−𝑥𝑧−𝑖√𝑎2−𝑥2√𝑧2−𝑎2
. 

From Eqs (20), (25) it follows the expression for energy dissipation 𝑊(𝑝)
𝑑 (𝑡): 

𝑊(𝑝)
𝑑 (𝑡) = − ∫ 𝜏𝑦𝑧

max|[𝑤](𝑝)(𝑥, 𝑡)|
𝑎(𝑝)

−𝑎(𝑝)
𝑑𝑥 = −

𝜏𝑦𝑧
max

𝐶
|

𝜋𝑎(𝑝)
2

2
(𝜏(𝑝)(𝑡) + 𝜏𝑦𝑧

max(sgn[𝑤](𝑝) −

      − sgn[𝑤](𝑝−1))) + ∑ 𝑝2−𝑘(𝑄𝑘(𝑝)(𝑡))2
𝑘=1 Im (√𝑧∗𝑘

2 − 𝑎(𝑝)
2 − 𝑧∗𝑘) +𝐺𝑘𝑏𝑘(𝑝)(𝑡)Re (√𝑧∗𝑘

2 − 𝑎(𝑝)
2 − 𝑧∗𝑘)| .

  (26) 

Consider in details the determination of the size 𝑎(𝑝) of the slippage zone at each step of loading. Here SIF is the defining parameter, 

which is determined within Eq (22) of Sulym and Piskozub (2004) as: 

𝐾3(𝑝)(𝑡) =
1

√𝜋𝑎(𝑝)

∫ √
𝑎(𝑝) ± 𝑥

𝑎(𝑝) ∓ 𝑥
𝜎𝑦𝑧(𝑥, 𝑡)

𝑎(𝑝)

−𝑎(𝑝)

𝑑𝑥 =
=

1

√𝜋𝑎(𝑝)

∫ √
𝑎(𝑝) ± 𝑥

𝑎(𝑝) ∓ 𝑥
{ ∑ 𝜎𝑦𝑧(𝑚)(𝑥, 𝑡(𝑚))

𝑝−1

𝑚=1

+ 𝜎𝑦𝑧(𝑝)
0 (𝑥, 𝑡) + sgn[𝑤](𝑝)𝜏𝑦𝑧

max}

𝑎(𝑝)

−𝑎(𝑝)

𝑑𝑥 

= √𝜋𝑎(𝑝)(∑ 𝜏(𝑚)(𝑡(𝑚))
𝑝−1
𝑚=1 + 𝜏(𝑝)(𝑡) + sgn[𝑤](𝑝)𝜏𝑦𝑧

max) −
1

√𝜋𝑎(𝑝)
∑ 𝑝2−𝑘 {(∑ 𝑄𝑘(𝑚)(𝑡(𝑚)) +

𝑝−1
𝑚=1 𝑄𝑘(𝑝)(𝑡))Im

𝑎(𝑝)±𝑧∗𝑘

√𝑧∗𝑘
2 −𝑎(𝑝)

2
+2

𝑘=1

+ (∑ 𝑏𝑘(𝑚)(𝑡(𝑚))
𝑝−1
𝑚=1 + 𝑏𝑘(𝑝)(𝑡))𝐺𝑘Re (

𝑎(𝑝)±𝑧∗𝑘

√𝑧∗𝑘
2 −𝑎(𝑝)

2
∓ 1)} .

 (27) 

The equality of SIF to zero provides the condition for slippage 

start at the 𝑝-th step, the magnitude of the first critical loading 
𝑄𝑘(𝑝)

∗ , and the size 𝑎(𝑝) of the slippage. 

For definiteness it is assumed (other cases are studied simi-

larly) that at the point 𝑧∗2 = 𝑖𝑑 of the top half-space only one 
alternating monotonously changing concentrated force with mag-

nitude 𝑄2(𝑡) = ∑ 𝑄2(𝑚)(𝑡)𝑚  is applied, which increase at odd 

and decrease at even 𝑚. SIF magnitude, the size of a slippage 
zone, displacement discontinuity and energy dissipation at the first 
step of such loading are studied in Ref [17]. Consider the second 

step (unloading), when 𝑄2(2)(𝑡) < 0  (𝑡 > 𝑡(1)). Accounting for 

the fact that sgn[𝑤](2) = 1 at this step, from expression (27) 

one can obtain the size of new slippage zone 

𝑎(2)(𝑡) = √
𝑝1

2𝑄2(2)(𝑡)2

4𝜋2𝜏𝑦𝑧
max2 − 𝑑2,         (28) 

and a condition at unloading, when the slippage starts over again 

|𝑄2(2)(𝑡)| ≥
2𝜋𝑑𝜏𝑦𝑧

max

𝑝1
= 𝑄2(2)

∗ = 2𝑄2(1)
∗ .        (29) 

Here the first critical value of the applied force at the 𝑝-th step 

is denoted as 𝑄2(𝑝)
∗ . Local displacement discontinuity and the 

energy dissipation at the second step for such loading (while the 
condition (29) holds) is as follows 
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[𝑤](2)(𝑥, 𝑡) = ∫ 𝑓6(2)(𝑥, 𝑡)𝑑𝑥
𝑥

−𝑎(2)
=

𝑝1𝑄2(2)(𝑡)

2𝜋𝐶
ln

√𝑎(2)
2 +𝑑2−√𝑎(2)

2 −𝑥2

√𝑎(2)
2 +𝑑2+√𝑎(2)

2 −𝑥2
−

2

𝐶
𝜏𝑦𝑧

max√𝑎(2)
2 − 𝑥2(|𝑥| ≤ 𝑎(2));        (30) 

𝑊(2)
𝑑 (𝑡) = − ∫ 𝜏𝑦𝑧

max|[𝑤](2)(𝑥, 𝑡)|
𝑎(2)

−𝑎(2)
𝑑𝑥 =

𝜋𝑎(2)
2 𝜏𝑦𝑧

max2

2𝐶
−

𝜏𝑦𝑧
max

𝐶
𝑝1𝑄2(2)(𝑡) (√𝑎(2)

2 + 𝑑2 − 𝑑).    (31) 

Assuming that 𝑎 = 𝑏 in (29) one can obtain the second criti-
cal force, at which nonzero SIF (singular stress) arise at the vicini-
ty of crack tips 

𝑄2(2)
∗∗ =

2𝜋𝜏𝑦𝑧
max

𝑝1
√𝑑2 + 𝑏2 = 2𝑄2(2)

∗ √𝑑2+𝑏2

𝑑
. 

Continuing similar reasoning for the following steps of load-
ings one can find that both critical loadings of the second and 
following steps is higher twice than corresponding critical loadings 
of the initial step. 

For smooth contact between crack faces (zero friction coeffi-

cient) one should assume 𝜏𝑦𝑧
max = 0 in the abovementioned 

equations. This special case coincides with the solution of the 
antiplane problem for an interfacial crack under the identical static 
loading in Panasyuk et al. (1976) and in Sulym (2007). 

Let's prove that the proposed additive approach of the ac-
count of repeating loading is suitable and for the case when at the 
following step the applied loading does not change its sign. As at 

time 𝑡(1) the first step loading reaches maximum, and then con-

tinues to increase already at the second step, the slippage zon 
after the first step continues to grow without a delay to a maximum 

𝛾𝑛
(2)

(𝑡) ⊃ 𝛾𝑛
(1)

(𝑡(1))  (𝑡(2)
𝑠𝑡 = 𝑡(1)) of the second. Hence, if the 

total solution after the second step obtained by means of Eqs 
(23)–(28) coincides with the solution of this problem in a single 
step, but the medium is then subjected to the total loading of two 
steps. Thus, the proposed technique can be used for the arbitrary 
quasi-static multistage loading. Let’s show this on the abovemen-
tioned example for the two first steps of action of symmetric load-

ing with the regard to the vertical axis (𝑧∗𝑘 = ±𝑖𝑑) of a medium 
with a single (𝑁 = 1) crack. For simplification of calculations we 

will assume that only one concentrated force 𝑄2(𝑝)(𝑡) acts in the 

medium. Since 𝑎(2)(𝑡) ≥ 𝑎(1)(𝑡(1)) for 𝑡 ≥ 𝑡(1), in this case 

one should account for the second part of the boundary conditions 
(14), which contains the following terms: 

𝜎𝑦𝑧(1)
± (𝑥, 𝑡(1)) = 𝜎𝑦𝑧(1)

0± (𝑥, 𝑡(1)) − 𝐶𝑔6(1)(𝑥, 𝑡(1)) = 𝜎𝑦𝑧(1)
0± (𝑥, 𝑡(1)) −

𝐶

𝜋
∫

𝑓6(1)(𝜉,𝑡(1))𝑑𝜉

𝜉−𝑥

𝑎(1)

−𝑎(1)
,   

𝑥 ⊂ [−𝑎(2); 𝑎(2)]\[−𝑎(1); 𝑎(1)].

    (32) 

Calculating 𝐾3(2)(𝑡) at the second step one obtains 

𝐾3(2)(𝑡) =
1

√𝜋𝑎(2)

∫ √
𝑎(2) ± 𝑥

𝑎(2) ∓ 𝑥
{𝜎𝑦𝑧(1)(𝑥, 𝑡(1)) + 𝜎𝑦𝑧(2)

0 (𝑥, 𝑡) + sgn[𝑤](2)𝜏𝑦𝑧
max}

𝑎(2)

−𝑎(2)

𝑑𝑥 = 

=
1

√𝜋𝑎(2)

∫ √
𝑎(2) ± 𝑥

𝑎(2) ∓ 𝑥
(𝜎𝑦𝑧(2)

0 (𝑥, 𝑡) + sgn[𝑤](2)𝜏𝑦𝑧
max + {

−sgn[𝑤](1)𝜏𝑦𝑧
max,       𝑥 ∈ 𝛾1

(2)
⊂ 𝛾1

(1)

𝜎𝑦𝑧(1)
0 (𝑥, 𝑡) − 𝐶𝑔6(1)(𝑥, 𝑡(1)),       𝑥 ∈ 𝛾1

(2)
\𝛾1

(1)) 𝑑𝑥 =

𝑎(2)

−𝑎(2)

 

=
1

√𝜋𝑎(2)
∫ √

𝑎(2)±𝑥

𝑎(2)∓𝑥
(𝜎𝑦𝑧(2)

0 (𝑥, 𝑡) + sgn[𝑤](2)𝜏𝑦𝑧
max)

𝑎(2)

−𝑎(2)
𝑑𝑥 −

sgn[𝑤](1)𝜏𝑦𝑧
max

√𝜋𝑎(2)
∫ √

𝑎(2)±𝑥

𝑎(2)∓𝑥

𝑎(1)

−𝑎(1)
𝑑𝑥 +

+
1

√𝜋𝑎(2)
∫ √

𝑎(2)±𝑥

𝑎(2)∓𝑥
(𝜎𝑦𝑧(1)

0 (𝑥, 𝑡) − 𝐶𝑔6(1)(𝑥, 𝑡(1)))
−𝑎(1)

−𝑎(2)
𝑑𝑥 +

+
1

√𝜋𝑎(2)
∫ √

𝑎(2)±𝑥

𝑎(2)∓𝑥
(𝜎𝑦𝑧(1)

0 (𝑥, 𝑡) − 𝐶𝑔6(1)(𝑥, 𝑡(1)))
𝑎(2)

𝑎(1)
𝑑𝑥.

    (33) 

Accounting for sgn[𝑤](2) = sgn[𝑤](1) = −1 in the considered case, and utilizing the values of integrals 

1

𝜋
∫

𝜉𝑑𝜉

√𝑎2 − 𝜉2(𝜉 − 𝑥)

𝑎

−𝑎

= 1 −
|𝑥|

√𝑥2 − 𝑎2
,

1

𝜋
∫

𝑑𝜉

√𝑎2 − 𝜉2(𝜉 − 𝑥)(𝜉 − 𝑧)

𝑎

−𝑎

=
1

𝑧 − 𝑥
(−

1

√𝑧2 − 𝑎2
+

sgn(𝑥)

√𝑥2 − 𝑎2
) 𝑥 ∉ [−𝑎; 𝑎],

 

∫ √
𝑏±𝜉

𝑏∓𝜉
𝑑𝜉

−𝑎

−𝑏
+ ∫ √

𝑏±𝜉

𝑏∓𝜉
𝑑𝜉

𝑏

𝑎
= 2𝑏 (

𝜋

2
− arcsin

𝑎

𝑏
),                  ∫ √

𝑏±𝜉

𝑏∓𝜉

|𝜉|𝑑𝜉

√𝜉2−𝑎2

−𝑎

−𝑏
+ ∫ √

𝑏±𝜉

𝑏∓𝜉

|𝜉|𝑑𝜉

√𝜉2−𝑎2

𝑏

𝑎
= 𝑏𝜋,

∫ √
𝑏±𝜉

𝑏∓𝜉

sgn(𝜉)𝑑𝜉

(𝜉−𝑖𝑑)√𝜉2−𝑎2

−𝑎

−𝑏
+ ∫ √

𝑏±𝜉

𝑏∓𝜉

sgn(𝜉)𝑑𝜉

(𝜉−𝑖𝑑)√𝜉2−𝑎2

𝑏

𝑎
=

𝜋(𝑏±𝑖𝑑)

√𝑎2+𝑑2√𝑏2+𝑑2
,

   (34) 

one obtains SIF as: 

𝐾3(2)(𝑡) = √𝜋𝑎(2)(𝜏(1)(𝑡(1)) + 𝜏(2)(𝑡) − 𝜏𝑦𝑧
max) − √

𝑎(2)

𝜋

𝑝1(𝑄2(1)(𝑡(1))+𝑄2(2)(𝑡))

√𝑎(2)
2 +𝑑2

,      (35) 
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which coincides with the sum of expressions (25) and (26) of 
Sulym et al. (2015) for the case of a single-step loading equal to 

𝜏(1)(𝑡(1)) + 𝜏(2)(𝑡) and 𝑄2(1)(𝑡(1)) + 𝑄2(2)(𝑡). 

Thus, the proposed additive approach to the sequence of re-
sidual SSS is suitable for the account of multistage loading-
unloading. However, for simplification of the solution procedure it 
is expediently to unite the consecutive steps of additional loading 
or unloading in one single step. In this case, the solution of the 
problem formulated in section 1 can be easily obtained by means 
of the above-stated technique for alternating loading. 

4. THE NUMERICAL ANALYSIS 

Consider the following dimensionless values, which signifi-
cantly reduce the amount of calculations without loss in generality: 

𝑎(𝑝)/𝑏, 𝑥/𝑏, 𝑑/𝑏 are the slippage zone, co-ordinate 𝑥 

and distance to the concentrated force application point, respec-
tively, normalized to the semi-length of a crack at the 𝑝-th step; 

𝛽(𝑝) = 𝑄(𝑝)(𝑡)/𝑄(1)
∗  is a normalized magnitude of the applied 

force at the 𝑝-th step; 𝜋𝑑𝐶[𝑤](𝑝)(𝑥, 𝑡) 𝑏𝑝1𝑄(1)
∗⁄ , 

𝐶𝑊(𝑝)(𝑥, 𝑡) 𝜋𝛼2𝑏2𝑃2⁄  are normalized displacement discontinu-

ity and the energy dissipation at the 𝑝-th step. 

 
Fig. 2. Dependence of the size of a slippage zone  
            on the loading parameters at the 𝑝-th step 

 
Fig. 3. Hysteretic behavior of displacement discontinuity  
           in a full cycle of loading 

Fig. 2 plots the dependence of the size 𝑎(𝑝)/𝑏 of a slippage 

zone at the 𝑝-th step on the dimensionless magnitude 𝛽(𝑝) =

𝑄(𝑝)(𝑡)/𝑄(1)
∗  of the applied force.  

It should be notices that for 𝛽(𝑝)  ≤ 1 the slippage is always 

absent, and for 1 ≤ 𝛽(𝑝) ≤ 2  it occurs only at the first (initial) 

step of a cycle. The slippage zone at a step grows monotonously 
with increase in the magnitude of loading, not exceeding the size 
of a crack. 

Fig. 3 illustrates the hysteretic behaviour of the total displace-

ment discontinuity 𝜋𝑑𝐶[𝑤](𝑝)(𝑥, 𝑡) 𝑏𝑝1𝑄(1)
∗⁄  at various points 

𝑥/𝑏 of the slippage zone depending on the magnitude of loading 

in the alternating cycle 4𝑄(1)
∗ → −4𝑄(1)

∗ → 4𝑄(1)
∗ → −4𝑄(1)

∗ →

. ... Here it is well observed that such character of change is inher-
ent to displacement discontinuities not only at the centre of slip-
page zone, but also to all of its points. Continuous lines corre-
spond to a range of change of loading between the first and the 
second critical values, when the slippage zone has not reached 
crack tips yet. The dot line denote displacement discontinuities for 
loading exceeding the second critical force, when at the vicinity of 
crack tips stress singularity arise. 

Change in the form of both local and total displacement dis-

continuities 𝜋𝑑𝐶[𝑤](𝑝)(𝑥, 𝑡) 𝑏𝑝1𝑄(1)
∗⁄  in the zero-base cycle 

10𝑄(1)
∗ → 0 → 10𝑄(1)

∗ → 0 →. .. in its dependence on 𝑥/𝑏 is 

plotted in Fig. 4. It is well-noted that after a full cycle of change of 
loading crack edges do not come back into their initial positions, 
thus keeping some residual displacement discontinuity, which 
increase together with a friction coefficient. For 𝑄(𝑝)(𝑡)/𝑄(1)

∗ ≤

2 the slippage at the second and subsequent steps does not 
occur. 

 
Fig. 4. Dependence of the form of displacement discontinuity  
            on the magnitude of loading at the 𝑝-th step 

Fig. 5 illustrates the dependence of the form of displacement 

discontinuity on the relative remoteness 𝑑/𝑏 of the force applica-

tion point in the zero-base cycle 4𝑄(1)
∗ → 0 → 4𝑄(1)

∗ → 0 →. ... 

The increase in 𝑑/𝑏 decreases the range of 𝑄(𝑝)
∗∗ /𝑄(𝑝)

∗ =

√𝑑2 + 𝑏2/𝑑 and accordingly, the sensitivity of [𝑤](𝑝)(𝑥, 𝑡) to 

this parameter. 
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Fig. 5. Dependence of the form of displacement discontinuity on the  
           relative remoteness of the force application point at the 𝑝-th step 

 
Fig. 6. Dependence of energy dissipation on relative remoteness  
           of the force application point at the 𝑝-th step 

Energy dispersion 𝐶𝑊(𝑝)
𝑑 (𝑡) 𝜋𝛼2𝑏2𝑃2⁄  at the 𝑝-th step of 

the alternating cycle 4𝑄(1)
∗ → −4𝑄(1)

∗ → 4𝑄(1)
∗ → −4𝑄(1)

∗ →. .. 

depending on the relative remoteness 𝑑/𝑏 of the force application 
point is plotted in Fig. 6. Continuous lines correspond to a range 
of change of loading between the first and the second critical 

values, when the slippage zone has not reached crack tips yet. 
The dot line denote displacement discontinuities for loading ex-
ceeding the second critical force, when at the vicinity of crack tips 
stress singularity arise. Total energy dissipation at time 𝑡 can be 
obtained using Eq (22). 

Thus one can conclude that the parameter 𝐺1/𝐺2characteriz-
ing the difference of mechanical properties of half-spaces’ materi-
als is negligible in the resulted calculations due to a choice of 
dimensionless quantities of the problem. 
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