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ADVANCES IN COMPUTER SCIENCE RESEARCH

WARPED S-TRANSFORM FOR ANALYSING
THE BRAIN WAVES

Adam Borowicz

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: In this paper the warped S-transform is introduced as a tool for non-uniform
time-frequency representation (TFR) of the brain electrical activity. The brain oscillations
are classified as the five basic rhythms. The center frequencies and frequency ranges of
these rhythms are non-uniformly distributed over frequency scale. Unlike the conventional
S-transform the proposed technique is based on the warped discrete Fourier transform
(WDFT), that allows for frequency scale warping. This can improves a spectral resolution of
the TFR in particular oscillation band. In opposition to the time-domain filtering techniques,
the brain rhythms can be analysed more precisely in the time-frequency plane as a full-band
signal.

Keywords: WDFT, Stockwell transform, EEG

1. Introduction

The use of electro-encephalography (EEG) for registering brain activity has gained
growing interest in recent years. Five simple periodic rhythms recorded in the EEG
are alpha, beta, gamma, delta and theta. Since these rhythms are related to different
brain activities they are usually analysed independently. Most commonly, the sig-
nals within the delta band (<4 Hz) correspond to a deep sleep, theta frequencies
(4-8 Hz) are typical for dreamlike state, alpha band (8-13 Hz) signals correspond
to relaxed state, beta band (13-35 Hz) is related to waking activity and gamma fre-
quencies (> 35 Hz) are characteristics for mental activities [3]. It should be noted that
those are the basic rhythms only and the full classification of the brain waves includes
slow (<1.5 Hz), fast and ultra fast waves (>80 Hz). An important brain wave is also
mu rhythm that is commonly used as a control feature for brain-computer interfaces
(BCIs) [8]. The mu oscillations (7.5–12.5 Hz) occupies the same frequency range as
the alpha rhythm but specifically, they occur in the sensorimotor (SM) cortex.
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Unfortunately, the exact mechanisms of most brain oscillations are not known.
Some oscillations are independently generated, but many of them are active simul-
taneously. Therefore it is usually assumed that the frequency content of the EEG
recordings is non-stationary and multicomponent.

The discrete Fourier transform (DFT) is widely used in spectral analysis. It pro-
vides global information about the amplitude and phase spectra of the signal at each
frequency. However the EEG recordings (due to its non-stationary nature) are better
described by time-frequency representations (TFRs). Short-time Fourier transform
(STFT) was one of the first TFR technique [16]. Its major disadvantage is inability
to obtain a good frequency and time resolution of low and high frequency events at
once. In order to overcome this limitation the S-transform has been proposed [19]. In
opposition to the STFT, it employs a variable window length providing better time-
frequency resolution. The S-transform is similar to a continuous wavelet transform
(CWT) [4] but in opposition to the CWT the amplitude and phase spectra of the S-
transform are directly related to the spectra of the Fourier transform. It has found
applications in many fields including the EEG data analysis [15], [14].

Those methods are powerful tools in uniform spectral analysis. However the
center frequencies and the frequency ranges of the popular oscillation bands are non-
uniformly distributed over linear frequency scale. Some studies [12] indicate that,
they rather form a geometric progression on the linear scale (and a linear progres-
sion on a natural logarithmic scale). Therefore the uniform spectral analysis of the
full-band EEG signal may not be the best choice. Usually, in order to analyse partic-
ular brain wave the EEG signal is filtered using time-domain methods [11]. However
in this case, some important signal features can be lost or not visible enough (in
time domain). On the other hand some studies suggest [8], [10] that amplitude/phase
coupling exists between two or more oscillation bands. Thus, the non-uniform TFR
technique that is able to increase spectral resolution in arbitrarily selected oscillation
band while the preserving the full-band information can be interesting alternative.

A typical example of the non-uniform frequency decomposition tool is warped
discrete Fourier transform (WDFT) [9]. Number of the WDFT applications can be
found in the literature of signal processing, including filter banks [9] and frequency
estimation [5]. The WDFT was also employed in perceptual speech enhancement
[13], [2].

In this article a warped S-transform is introduced as a tool for non-uniform time-
frequency analysis of the brain wave EEG recordings. The proposed technique is
based on the WDFT and allows for an improving frequency resolution in particular
oscillation band at cost of the lower resolution in other bands. We propose to use
second order allpass function to obtain a proper frequency scale warping. In oppo-
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sition to the time-domain filtering methods, the warped S-transform is strictly TFR
technique thus the all bands can be analysed at once on the time-frequency plane.

2. The S-Transform

The continuous S-transform [19] of the function x(t) is defined as follows

S(τ, f ) =
∞∫
−∞

x(t)g(τ− t, f )e−i2π f tdt, (1)

where τ and f denote the time variable and Fourier frequency, respectively and g(t, f )
is a Gaussian window

g(t, f ) =
| f |√
2π

e−(t f )2/2. (2)

The frequency domain definition of the discrete S-transform, for n = 0,1, ...,N− 1
and k = 1,2, ...,N−1 is given by

S
[

n∆,
k

N∆

]
=

N−1

∑
m=0

X
[

k+m
N∆

]
e−2π2m2/k2

ei2πmn/N , (3)

where ∆ denotes sampling interval and X
[ k

N∆
]

is the DFT of the N-point time series
x[m∆] (with m = 0,1, ...,N−1). For k = 0 and any n the S-transform is simply equal
to arithmetic mean of x[m∆], i.e.

S [n∆,0] =
1
N

N−1

∑
m=0

x [m∆] . (4)

The TFR is strictly redundant, the inverse of the S-transform can be computed using
inverse DFT of the time-averaged spectra, i.e.

x [m∆] =
N−1

∑
k=0

1
N

N−1

∑
n=0

S
[

n∆,
k

N∆

]
ei2πkm/N . (5)

There are computational advantages that come from using the frequency domain def-
inition (3). Namely it can be implemented using the fast Fourier transform (FFT)
algorithm.
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3. The WDFT definition

The WDFT is not in itself the TFR technique, it transform the one-dimensional se-
quence of the time domain samples to one-dimensional frequency domain representa-
tion. It can be considered as a special case of non-uniform discrete Fourier transform
[1]. In the case of the WDFT, the frequency samples are allocated non-uniformly but
regularly over the unit circle. For the sequence x[n] of the length N, it is defined by

X̂ [zk] = X [ẑk] =
N−1

∑
n=0

x[n]ẑ−n
k , k = 0,1, ...,N−1, (6)

with ẑk being the images of allpass transformed equidistant points of the unit circle

z−1
k = e−i2πk/N → ẑk = A(z−1

k ), (7)

where A(z) can be an arbitrary, stable allpass function. As a generalization of the
DFT, the WDFT maintains some of its properties related to the linearity, symmetry
and shifting [9], [5]. Unfortunately, certain important properties are lost.

The matrix representation of the WDFT is given by
X̂0
X̂1
...

X̂N−1

=


1 ẑ−1

0 . . . z−N+1
0

1 ẑ−1
1 . . . z−N+1

1
...

...
. . .

...
1 ẑ−1

N−1 . . . z−N+1
N−1


︸ ︷︷ ︸

D


x0
x1
...

xN−1

 , (8)

with X̂k denoting X̂ [zk] and xk denoting x[k]. This representation is also a basis for
computation inverse transform. The matrix D is in fact the Vanermonde matrix and
for distinct points {zk}N−1

k=0 its inverse is guaranteed from the theoretical point of view.
Note that the elements of the WDFT matrix are no longer the roots of unity, thus
the construction of fast computation algorithm like the FFT, seems impossible. The
currently fastest algorithm was proposed in [9]. It exploits the factorization of the
WDFT matrix into the product of the three matrices: real, the DFT (implemented via
the FFT) and complex diagonal one. Its complexity is significantly reduced, but still
of O(n2).

4. Warped discrete S-transform

The TFR-based version of the WDFT can be implemented using a sliding-window
technique in a similar manner as the STFT. However due to fixed window length a
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such technique allows only for a rough time-frequency representation and is rather
dedicated to real-time processing applications. Therefore we propose a novel TFR
technique that is rather based on the S-transform and exploits some WDFT features.

The discrete S-transform can be defined for points on a complex plane {zk}N−1
k=0

as follows

S[n∆,zk] =
N−1

∑
m=0

x[m∆]gk(n∆−m)z−m
k , (9)

where
gk(n∆−m) = g

(
n∆−m,

argzk

2π

)
. (10)

The warped discrete S-transform can be considered as a special case of the non-
uniformly sampled continuous S-transform. Similarly to (6), it can be obtained from
(9) by replacing zk with ẑk, i.e.:

Ŝ[n∆,zk] = S[n∆, ẑk]. (11)

Unfortunately we can not use the frequency domain definition similar to (3) and the
FFT algorithm, thus the computational advantages are lost. Instead we propose to use
a vector/matrix notation which can be more suitable for hardware implementation
on some platforms. Let x = [x[0]x[∆] ...x[(N−1)∆]]T be an input vector and ŝk =
[Ŝ[0,zk] Ŝ[∆,zk] ... Ŝ[(N− 1)∆,zk]]

T be a corresponding S-transformed vector for kth
spectral bin. It can be verified that

ŝT
k =

(
D{k,:}⊗xT )Gk, (12)

where D{k,:} denotes kth row of the WDFT matrix, ⊗ is Kronecker product and

Gk =


gk(0) gk(1) . . . gk(N−1)
gk(1) gk(0) . . . gk(N−2)

...
...

. . .
...

gk(N−1) gk(N−2) . . . gk(0)

, (13)

is a symmetric Toeplitz matrix composed from Gaussian window coefficients. From
(12) we can derive

xT =
(
ŝT

k G−1
k

)
⊗D∗{k,:}, k > 0, (14)

which can be viewed as the inverse transformation. This expression is rather not sur-
prising since the time-frequency representation is redundant. Also note that for some
k << N−1 the signal is highly averaged, thus the matrix Gk can be ill-conditioned.

9



Adam Borowicz

5. Adjusting the allpass function to the brain waves

The allpass function of the warped S-transform is determined by particular applica-
tion. In the case of the brain waves spectral analysis, we propose to increase frequency
resolution within a specific oscillation band. It can be done by appropriate adjustment
of the allpass filter parameters that results in squeezing/compressing the z-transform
points on a particular section of the unit circle. Although there is some control over
the behaviour of the first-order allpass filter [5], more control is afforded using the
second-order allpass filter, whose the transfer function is given by [17]

A(z) =
a2 +a1z−1 + z−2

1+a1z−1 +a2z−2 , (15)

where a1, a2 are real valued parameters. For stability reasons we assume |am|< 1 for
all m. In order to ensure a proper mapping range, for k = 0,1, ...,N/2, we propose to
use a modified allpass function

ẑk = Â(z−1
k ) = A(z−1

k eiϕ)eiθ, (16)

where 0 < θ < π determines the location on unit circle where the frequency samples
are concentrated and ϕ is a phase offset. In our discussion we assumed that N is
even, for simplicity. Thus the z-transform points, for k = N/2+ 1, ...,N− 1, can be
computed according to

ẑk = Â∗(z−1
N−k). (17)

It can be verified that (16) is in itself a complex allpass function

Â(z) =
α∗2 +α∗1z−1 +α∗0z−2

α0 +α1z−1 +α2z−2 , (18)

with
α0 = e−i(θ/2−ϕ),

α1 = a1e−iθ/2,

α2 = a2e−i(θ/2+ϕ).

(19)

Similarly to the first-order allpass function [5], the magnitude of the parameter α2 (i.e.
a2) determines the local resolution and can be viewed as the independent variable. For
example, for a2 = 0, all frequency samples are placed uniformly on the unit circle,
whereas for 0 < a2 < 1 the frequency samples are compressed around the point eiθ.
We found it empirically that the parameter a1 together with ϕ controls phase mapping
range. In order to cover entire Nyquist frequency range (from 0 to π) we assume that{

Â(ei0) = ei0 = 1
Â(eiπ) = eiπ =−1

(20)

10
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Since the parameters a2 and θ are given, we can solve above equation set for a1 and
ϕ. As a result we obtain

ϕ = argzc, a1 =
a2

2−1
|zc|

, (21)

with zc = a2e−iθ− eiθ. Thus, the only thing we have to do is to adjust the parameters
a2 and θ, for a particular oscillation band. As mentioned before, the parameter a2
controls the strength of the frequency scale warping, whereas the parameter θ corre-
sponds to the warping location on the unit circle. Therefore we propose to set

θ = 2π fc/ fs, (22)

and

a2 =
1− tan(π fb/ fs)

1+ tan(π fb/ fs)
, (23)

where fs is a sampling rate and fc, fb is respectively the center frequency and band-
width of the selected oscillation band. It can be verified that (23) is inversely propor-
tional to the bandwidth fb, thus for narrower bands we get stronger warping. In fact
the equation (23) is commonly used to adjust 3dB attenuation bandwidth of notch
filters [17].

(a)
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Fig. 1. Adjusting the phase responses of the modified allpass filter: (a) illustrates how the frequency
warping location can be adjusted by varying a parameter θ, while (b) illustrates how the warping
strength can be tuned by varying a2.
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−1 −0.5 0 0.5 1

−1

−0.5

0
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Im
(z

)

Re(z)

 θ = π/4
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2
 = 0.67

Fig. 2. Locations of the allpass-transformed points {ẑk}N−1
k=0 on the unit circle.

In Figure 1 we depicted phase responses of the modified allpass filter (16), for
different values of the parameters θ and a2. Figure 2 presents the locations of the
allpass-transformed points on the unit circle, for θ = π/4, a2 = 0.67 and N = 64.

The proposed TFR technique has also been verified using real EEG data. The
recordings have been selected from PhysioNet database [6], [18]. They contain the
brain activity related to different motor/imagery tasks (opening and closing either
both fists or both feet). The EEG data were recorded at 160 Hz sampling rate from
64 electrodes placed according to the international 10-10 system [7] (excluding elec-
trodes Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9, and P10). For our purposes
we selected the signal from electrode C3 (placed above SM cortex of the left hemi-
sphere). The mu waves are present when SM cortex is in the idle state and they are
suppressed when subject performs or imagines a motor action.

Figure 3a presents the spectrogram obtained using conventional S-transform
with uniform frequency scale. The spectrograms presented in Fig. 3b and Fig. 3c have
increased spectral resolution within the beta and mu band respectively. They have
been both obtained using warped S-transform for parameters fc = 10 Hz, fb = 5 Hz
(mu band) and fc = 24 Hz, fb = 22 Hz (beta band). As can be seen the time-frequency
plane is non-uniformly stretched (warped) along the Y-axis. Note that the strongest
stretch is around the center frequency of a given oscillation band. In other words
the spectral resolution decreases with increasing distance from the center frequency.
Thus we can analyse the selected brain wave in details while preserving some sig-
nal features of the full-band activity. For instance, in Fig. 3c although the warped
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(a)

(b)

(c)

Fig. 3. Spectrograms of the example EEG signal recorded at electrode C3, obtained using: conventional
S-transform (a), warped S-transform adjusted to reveal activity in beta (b) and warped S-transform
tuned to mu band (c).
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S-transform has been tuned to mu band, some activities in beta and lower bands are
still visible.

In the case of relatively large bandwidths the deformation of the frequency scale
is rather small, thus the Fig. 3b does not introduce much information comparing to
Fig. 3a. Otherwise, for relatively narrow oscillation bands (i.e. mu rhythm) the time-
frequency components are visualised in details. It should be noted that the increase
in spectral resolution comes from data interpolation. In fact true frequency resolution
depends only on window size. However by relocating transform points on a unit
circle we can minimize spectral leak in a particular oscillation band and some spectral
components can be more visible.

6. Summary

We have introduced the warped S-transform as non-uniform TFR technique for anal-
ysis of the brain waves. In fact the novel approach can be considered as a special
case of the continuous S-transform with non-uniformly sampled frequency bins. In
order to achieve a proper frequency scale warping we exploited the allpass function
of the second order in a similar manner as in the case of the WDFT-based meth-
ods. The expressions for allpass function parameters have been provided that allows
for adjusting the frequency scale warping to a particular oscillation band. It results
in stretching the time-frequency plane along the Y-axis and around the center fre-
quency of the selected brain wave. In this way, the rhythms can be better visualized
on a time-frequency plane. At the same time by representing the full-band signal, we
retain information about relationships between different bands.
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SPACZONA TRANSFORMATA S DO ANALIZY FAL
MÓZGOWYCH

Streszczenie: W artykule wprowadzamy spaczoną transformatę S, jako narzędzie nierów-
nomiernej reprezentacji czasowo-częstotliwościowej aktywności elektrycznej mózgu. Oscy-
lacje mózgowe klasyfikowane są, jako pięć podstawowych rytmów. Częstotliwości środkowe
oraz zakresy odpowiadające tym rytmom rozmieszczone są nierównomiernie na skali czę-
stotliwości. Proponowana technika, w przeciwieństwie do konwencjonalnej transformaty S,
opiera się na spaczonej dyskretnej transformacie Fouriera, która pozwala na deformowa-
nie skali częstotliwości. Umożliwia to zwiększenie rozdzielczości widmowej reprezentacji
czasowo-częstotliwościowej w określonym paśmie oscylacji. W odróżnieniu od klasycznych
metod filtracji dziedziny czasu, rytmy mózgowe mogą być dokładniej analizowane w płasz-
czyźnie czasowo-częstotliwościowej, jako sygnał pełno-pasmowy.

Słowa kluczowe: WDFT, transformata S, EEG

Artykuł zrealizowano w ramach grantu badawczego Narodowego Centrum Nauki
nr DEC-2012/07/D/ST6/02454.
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A ROBUST GENERALIZED SIDELOBE CANCELLER
EMPLOYING SPEECH LEAKAGE MASKING

Adam Borowicz

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: A novel speech enhancement method based on generalized sidelobe canceller
(GSC) structure is presented. We show that it is possible to reduce audible speech distor-
tions and preserve residual noise level under acoustic model uncertainties. It can be done
by constraining a speech leakage power according to masking phenomena and conditional
minimizing the residual noise power. We implemented the proposed approach using a simple
delay-and-sum beamformer model. Finally a comparative evaluation of the selected meth-
ods is performed using objective speech quality measures. The results show that the novel
method outperforms conventional one providing lower speech distortions.

Keywords: GSC, psychoacoustics, speech enhancement

1. Introduction

A major objective of the speech enhancement is to reduce environmental noise while
preserving speech intelligibility. In a context of the multichannel methods the dere-
verberation and interference suppression is also expected. The most commonly used
dereverbaration methods are beamforming techniques [2]. The key idea of the beam-
forming is to process the microphone array signals to listen the sounds coming from
only one direction. Particularly the noise reduction can be implicitly achieved by
avoiding noise directions. The linearly constrained minimum variance (LCMV) al-
gorithm has been originally proposed by Frost [4] and it is probably the most studied
beamforming technique since then. It minimizes beamformer output variance subject
to the set of linear equations that ensure a constant gain in a specified listening direc-
tion. The minimum variance distortion-less (MVDR) method [11] can be considered
as a special case of the LCVM approach. Another popular technique is generalized
sidelobe canceller [5] [12]. The noisy signal domain is split into two orthogonal sub-
spaces where the dereverberation and noise suppression can be performed separately.

Advances in Computer Science Research, vol. 11, pp. 17-29, 2014.
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In order to work reasonably well in the reverberant environments, classical
beamforming techniques often require a system model identification i.e. knowledge
of the acoustic room impulse responses or its relative ratios. These parameters can
be fixed or estimated adaptively, however in general it is a difficult task. In addi-
tion the beamforming methods are usually very sensitive to the model uncertainties.
Recently, much efforts have been made to reformulate the multichannel speech en-
hancement problem so that the noise reduction can be achieved without performing
speech dereverberation [7]. However these methods are out of scope of this article.

The proposed system is based on the GSC beamformer. We directly assume the
presence of the system model uncertainties, which results in the estimation errors
(speech leakage effect) and thus increased speech distortions. Instead to minimize
these errors we propose to use perceptual properties of the auditory system (simul-
taneous masking phenomena) to make the speech distortions inaudible. In particular,
it is observed that for a given spectral power level, there is a masking threshold so
that any interferer below this threshold becomes unnoticed. A similar strategy has
been proved to be useful in several single channel methods [3] but according our best
knowledge it was not used in a field of the multichannel speech enhancement.

2. Notation

Consider an array of N microphones with arbitrary geometry and single speech source
s(t) located inside reverberant enclosure. The observation signal at nth microphone
is given by:

xn(t) = an(t)∗ s(t)+ vn(t) = yn(t)+ vn(t), (1)

where ∗ denote a convolution operator, an is a room acoustic impulse response from
the source speech signal to the nth microphone and yn(t), vn(t) are the clean speech
and noise components received at nth microphone.

The multichannel systems are often implemented in the frequency-domain using
the discrete Fourier transform (DFT). The samples are processed on frame-by-frame
basis using analysis window of the length M. Let Xn(ω), An(ω), S(ω), Yn(ω) and
Vn(ω) denote the DFTs of xn(t), an(t), s(t), yn(t) and vn(t) respectively. For suf-
ficiently large M (compared to the length of the room impulse response), we can
approximate the model (1) as follows [5]:

x(ω) = a(ω)S(ω)+v(ω) = y(ω)+v(ω), (2)
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Fig. 1. Graphic illustration of the multimicrophone signal model (1).

where

x(ω) = [X1(ω),X2(ω), . . . ,XN(ω)]
T ,

a(ω) = [A1(ω),A2(ω), . . . ,AN(ω)]
T ,

y(ω) = [Y1(ω),Y2(ω), . . . ,YN(ω)]
T ,

v(ω) = [V1(ω),V2(ω), . . . ,VN(ω)]
T .

(3)

For example, a correlation matrix for an arbitrary vector z(ω) is defined as: Rzz(ω) =
E{z(ω)zH(ω)}, where E{.} is an expectation operator and superscript H denotes
conjugate transpose. We assumed that the speech and noise processes are wide-sense
stationary and uncorrelated, i.e.: Rxx(ω) = Ryy(ω)+Rvv(ω).

3. Speech enhancement: GSC and speech leakage masking

The signal model that we use here (1) can also be presented in the graphical form
(Fig. 1). In the case of the frequency domain implementation, our aim is to estimate
complex spectrum of the source speech signal, i.e. S(ω) (then the signal s(t) is ob-
tained from S(ω) via inverse DFT). The most straightforward way is to apply a linear
filter h(ω) to observation vector x(ω) for each frequency bin:

Ŷ (ω) = hH(ω)x(ω). (4)

Above formula can be viewed as the frequency domain implementation of the finite-
impulse-response (FIR) filter. The derivation of the optimal filter h(ω) depends on
some criteria which we will investigate in the next subsections.
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Fig. 2. Block diagram of the GSC beamformer.

3.1 Generalized sidelobe caceller

The GSC approach assumes that the filtering for each channel can be performed in
two orthogonal subspaces. It can be expressed mathematically using decomposition
of the weighting vector:

h(ω) = w(ω)−B(ω)g(ω) (5)

where w(ω) is a steering vector of size N, and B(ω) is a blocking matrix of size
N× (N−1) that spans the null space of A(ω). The corresponding block diagram of
the GSC beamformer is depicted in Fig. 2.

The objective of the GSC approach is to find optimal noise cancellation vector
g(ω) of size N−1. It can be done by solving the following (unconstrained) optimiza-
tion problem:

min
g(ω)

E{|wH(ω)v(ω)−gH(ω)BH(ω)v(ω)|2}. (6)

Note that this is equivalent to minimizing average residual noise power at the GSC
output. An explicit solution for (6) is multichannel Wiener filter [5]:

gW(ω) = [BH(ω)Rvv(ω)B(ω)]−1BH(ω)Rv(ω)w(ω). (7)

Although the GSC and the LCMV beamformers are equivalent, the GSC approach
have some interesting interpretation. Note, that the objective of the first vector w(ω)
is to perform dereverberation on the signal x(ω), while the objective of the second
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component B(ω)g(ω) is to suppress the interferences and additive noise. It is worth-
while to note that computationally efficient, adaptive implementations are preferred
[5]. However in our experiments we use non-recursive implementation for simplicity.

3.2 Speech leakage constrained method

A major drawback of the GSC beamformer is a high sensitivity to model uncertain-
ties. In fact the performance of the GSC method is affected by the accuracy of the
steering vector and blocking matrix estimates. Unfortunately these parameters de-
pend on true channel transfer functions which are usually unknown. Although they
can be roughly estimated using second-order statistics [5], [11], in general it is a
difficult task. Similarly assuming a simpler acoustic model, can also result in the es-
timation errors. For example the delay-and-sum beamformer is reliable only in less-
reverberant environments.

In our approach, we assume a presence of the estimation errors in the model,
explicitly. The output of the GSC beamformer can be decomposed as follows:

Ŷ (ω) = Ŝ(ω)− ŜN(ω)+V̂ (ω)−V̂N(ω) (8)

where

Ŝ(ω) = wH(ω)a(ω)S(ω),
V̂ (ω) = wH(ω)v(ω),

ŜN(ω) = gH(ω)BH(ω)a(ω)S(ω),
V̂N(ω) = gH(ω)BH(ω)v(ω).

(9)

are the beamformer speech component, beamformer noise component, speech leak-
age and noise reference respectively. If steering vector w(ω) is estimated inaccu-
rately, the speech component contains reverberations. Similarly, if BH(ω)a(ω) 6= 0,
the speech signal leakages to the noise cancellation loop i.e. ŜN(ω) 6= 0, which results
in the cancellation of the speech components at the output of the GSC beamformer.
It is difficult to improve dereverberation efficiency, however we can minimize the
speech leakage effect at expense of some residual noise increase.

Let’s define average power of residual noise and speech leakage respectively at
the output of the GSC beamformer:

ε
2
v(ω) = E{|V̂ (ω)−V̂N(ω)|2},

ε
2
s (ω) = E{|ŜN(ω)|2}.

(10)
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Optimization problem for the GSC method can be reformulated as follows:

min
g(ω)

ε
2
v(ω), subject to: ε

2
s (ω) = α(ω), (11)

where α(ω) is a some predefined level of the speech leakage power. The complex
Lagrange functional is given by:

L(g(ω),λ(ω)) = ε
2
v(ω)+λ(ω)(ε2

s (ω)−α(ω)). (12)

Differentiating (12) with respect to g(ω) and equating to zero we find the solution:

gSLC(ω) = M(ω)−1BH(ω)Rvv(ω)w(ω), (13)

where
M(ω) = BH(ω)[Rvv(ω)+λ(ω)Ryy(ω)]B(ω). (14)

The Lagrange multiplier λ(ω) provides a trade-off between speech leakage and noise
reduction. It can be easily verified that for λ(ω)→ ∞ speech leakage power is de-
creased at the expense of increased residual noise. If λ(ω) = 0, the conventional
GSC method is obtained.

The simplest approach is to set this parameter to empirically chosen fixed value.
However an optimal (from the perceptual point of view) solution is to find λopt such
that the speech distortion is inaudible and the residual noise is as low as possible. It
can be done by substituting the masking threshold of the clean speech - φm(ω) for
α(ω) and solving the optimization constraint (11), i.e.:

gH
SLC(ω)B

H(ω)Ryy(ω)B(ω)gSLC(ω) = φm(ω), (15)

In this way the speech distortions can be effectively reduced. This situation is also
depicted in the Fig. 3. Unfortunately derivation of an explicit expression for λ(ω)
seems to be a difficult task. It can be done numerically but we found that for certain
cases the solution may not exists or be unstable (i.e. when the masking threshold
level is very small). Therefore instead trying to solve (15) explicitly, we propose a
suboptimal solution:

λ(ω) = λmaxmin(MNR(ω),1), (16)

where

MNR(ω) =
φm(ω)

E{|V̂ (ω)|2}
=

φm(ω)

wH(ω)Rvv(ω)w(ω)
(17)

is the mask to noise ratio and λmax is a maximum value for λ(ω). In our experi-
ments it was empirically set to 0.25. The speech correlation matrix Ryy(ω) may be
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semi-positive definite thus the limiting the Lagrange multiplier improves a numerical
stability of the matrix inversion in (13). Note that if the noise power level at beam-
former output is below the masking threshold (MNR(ω)≥ 1) the noise is not audible,
thus there is no need for noise cancellation and the speech leakage may be minimized
as much as possible. Otherwise, if 0 < MNR(ω)< 1, the noise is audible, thus λ(ω)
is scaled proportionally to the MNR value, giving a better noise attenuation.

Theoretically instead of using the MNR one can use local signal-to-noise ratio
(SNR), however it is known that the SNR estimate is rather erroneous and says noth-
ing about masking effects [14]. In fact, most psychoacoustic models compute φm(ω)
by performing some smoothing operations on speech power spectrum. Therefore we
estimate the clean speech power spectral density (PSD), first:

φs(ω)≈ E{|Ŝ(ω)|2}= wH(ω)Ryy(ω)w(ω). (18)

Then we use (18) as an input for Johnston’s psychoacoustic model [9]. The corre-
lation matrix of the microphone speech signal is computed as Ryy(ω) = Rxx(ω)−
Rvv(ω).

4. Experiments

In this section we compare the performance of the conventional GSC beamformer
with the proposed speech leakage constrained approach (denoted as GSC-SLC). The
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methods were implemented in MATLAB using overlap-save procedure. The micro-
phone signals are cut into 50% overlapping frames of size M = 1024 samples that
corresponds to time window of 128ms long (assuming 8kHz sampling rate). Once the
signals are filtered in the DFT domain they are transformed back to time domain and
only last M/2 samples are saved. In order to determine the system performance under
model uncertainties we assumed simple direct-path acoustic model and use delay-
and-sum beamformer, thus the steering vector and blocking matrix were computed
using propagation delays. To efficiently compute the frequency filters the correlation
matrix of the noise signal have to be estimated. However for comparative purposes
we put aside this problem and compute Rvv(ω) directly from data. In practice any
voice activity detector (VAD) can be used to update noise statistics in speech pauses
only. Similarly we estimate microphone delays for delay-and-sum beamformer using
an exact value of the direction of arrival (DOA) angle.

Two acoustic environments were simulated using the image method [1]: the first
one with absorptive surfaces (T60 = 33ms) and the second one with reflective surfaces
(T60 = 135ms). The parameter T60 denote reverberation time defined as the time taken
for the sound to decay to 60dB below its value at cessation [10]. In both cases we
assumed the rectangular enclosure with dimensions 6× 5× 2.8 (all dimensions and
coordinates are in meters). We considered an uniform linear array of 8 microphones
placed on the x-axis with the first microphone at the position (2.65,4,1) and spacing
0.05. The speech source signal was positioned at (1,1,1.8). It was about 30s-long
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comprised of eight shorter phonetically balanced sentences, uttered by eight of the
speakers (four males and four females). These sentences have been selected from
TIMIT database [6]. Originally they were recorded at 16kHz sampling rate but for
our purposes they were low-pass filtered and downsampled to 8kHz. The noise source
was located at (5,2,2). The locations of the microphones and the sound sources are
also depicted in Fig. 4. During the experiments two noise types have been considered:
white Gaussian noise and babble noise both selected from NOISEX-92 database [13].
The microphone signals were obtained by convolving the speech source signal with
the room impulse responses and adding to the corresponding noise signals at different
SNRs, according to (1).

Our experiments were based on objective performance measurement. The
amount of noise reduction was measured using noise attenuation factor defined as
the mean ratio between the input noise power and output noise power. The speech
distortion factor was defined as segmental signal to noise ratio where the noise is in-
terpreted as a difference between the original and enhanced speech, thus the higher
the factor the better. These measures mainly reflect the statistical differences between
the signals. Therefore the cepstral distance [15] and modified Bark spectral distortion
(MBSD) measure [16] were also used for evaluation of the audible differences. For
computation of the cepstral distance we use first 16 cepstral coefficients, that are
excepted to carry tonal information. The lower the cepstral distance and/or MBSD
measure, the less audible speech distortion. Additionally PESQ measure [8] was ex-
ploited for overall evaluation of the speech quality.

The objective measurement results are depicted in Fig. 5. The vertical error-bars
denote 95% confidence intervals estimated using 1000 bootstrap data samples. As
can be seen the relative improvements are similar for both noise types. Note that the
noise statistics were estimated directly from data, often noise signal is not directly
available and noise statistics must be estimated from the noisy speech signal, i.e.
during speech pauses, thus in practice some performance drop is expected.

For non-reverberant environment (T60 = 33ms) the improvement is rather not
significant. It is not surprising since in this case the direct path model is accurate
enough (speech signal goes straight from the sound source to the listener), thus speech
leakage is very low and the parameter λ(ω) has no impact on the system performance.
In this case the proposed method is equivalent to the conventional GSC beamformer.

In the case of reverberant environment (T60 = 135ms) the direct path model is
not sufficient (i.e. presence of the system model uncertainties) which results in in-
creased speech leakage. However as can be seen in Fig. 5 (solid lines) the proposed
method outperforms conventional one providing significantly better performance at
lower SNRs in the terms of speech distortion and MBSD measure. One exception
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is cepstral distance where confidence intervals are slightly overlapped and thus the
improvement is not significant. In order to avoid overestimation of the noise attenua-
tion factor, it should be measured in speech pauses only, however it is rather difficult
to precisely mark these regions. Thus, this factor was estimated also in transients
where mean squared error is substantially lower for the speech leakage constrained
method. Theoretically this measure should be comparable for both methods. On the
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Fig. 5. Comparison of the objective performance measures for the conventional GSC beamformer and
the proposed GSC-SLC method in two noisy environments: white noise (left) and babble noise (right);
vertical lines denote 95% confidence intervals.
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Table 1. Perceptual evaluation using PESQ.

White Noise Babble Noise
T60 = 33ms T60 = 135ms T60 = 33ms T60 = 135ms

SegSNR GSC GSC-SLC GSC GSC-SLC GSC GSC-SLC GSC GSC-SLC

-10 2.350 2.412 1.797 1.800 2.306 2.429 1.916 1.988
-5 2.575 2.648 1.914 1.992 2.548 2.643 2.027 2.147
0 2.775 2.847 2.041 2.139 2.757 2.838 2.133 2.262
5 2.947 3.006 2.150 2.262 2.945 3.021 2.243 2.340

10 3.113 3.165 2.249 2.343 3.128 3.191 2.335 2.389
15 3.293 3.356 2.334 2.387 3.301 3.369 2.390 2.437
20 3.479 3.566 2.404 2.423 3.468 3.542 2.433 2.454

other hand, it is clear that a residual noise increase is not proportional to the speech
distortion decrease. In our experiments this increase is ’negative’.

Similar observations can be made for the PESQ scores (see Tab. 1). Although
we observe lower performance results for the conventional GSC beamformer for both
reverberation/noise conditions, in the case of reverberant environment relative im-
provement is higher.

5. Conclusion

The performance of the conventional GSC beamformer can be improved in the pres-
ence system model uncertainties by using auditory properties. We derived a noise
cancellation filter which is able to reduce the speech leakage (and speech distortions)
at expense of residual noise increase. However as we show this increase is rather
small. In addition it is tolerated by auditory system as long as the noise level is placed
below masking threshold. The experimental results show that the proposed method
outperforms conventional GSC beamformer providing lower speech distortions and
comparable residual noise level.

There are some possible improvements of the proposed method, i.e.: a derivation
of an explicit formula for optimal Lagrange multiplier, a recursive implementation of
the frequency filters or an estimation of the steering vector and blocking matrix using
second-order statistics only. These issues will be considered in a future work.
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SKUTECZNY TŁUMIK LISTKÓW BOCZNYCH
Z WYKORZYSTANIEM MASKOWANIA PRZECIEKU

MOWY

Streszczenie: Prezentowana jest nowa metoda uzdatniania mowy w oparciu o strukturę
uogólnionego tłumika listków bocznych. Wykazujemy, że możliwe jest zmniejszenie sły-
szalnych zniekształceń mowy przy zachowaniu stałego poziomu szumu rezydualnego, dla
modeli przybliżonych środowiska akustycznego. Może to być dokonane poprzez uwarun-
kowanie poziomu mocy przecieku mowy zgodnie ze zjawiskiem maskowania oraz minima-
lizację warunkową mocy szumu rezydualnego. Proponowane podejście zaimplementowano
w oparciu o prosty model beamformera opóźniająco-sumującego. Ostatecznie przeprowa-
dzono ocenę porównawczą wybranych metod z wykorzystaniem obiektywnych miar jakości
mowy. Wyniki pokazują, że nowa metoda przewyższa konwencjonalną zapewniając mniej-
sze zniekształcenia mowy.

Słowa kluczowe: GSC, psychoakustyka, uzdatnianie mowy

Artykuł zrealizowano w ramach pracy badawczej S/WI/1/2013.
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1. Introduction

Dynamic development of expert systems brings uncountable benefits in many do-
mains. Especially the medical diagnosis requires very accurate and infallible com-
puter decision support systems. Introducing these kind of systems to real–world prob-
lems revealed that effectiveness of data mining depends on data distribution. Experts
have found that standard classifiers become not sufficient when processing complex
examples. One of the reasons of high complexity is an imbalanced class distribution.
This problem occurs when one class is underrepresented in a dataset. It may lead to
the reduction of performance when standard classifiers are used. Due to the fact that
many real–life domains suffer from the class imbalance problem, it has emerged as
one of the challenges in data mining community [9].

There is one fundamental difficulty when objects are classified: the assumption
that concerns the class distribution. Typically, the distribution of examples in a dataset
is predicted to be uniform and costs of misclassification are expected to be equal for
all classes. This is excessively simplified assumption, because many datasets contain
rare objects which represent the class of interest. Simple classifiers tend to generalize
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and create rules with broader data coverage. Hence, they usually ignore rare exam-
ples [12]. However, the accuracy may reach very high values, even when all instances
from the minority class are misclassified. Therefore more appropriate methods for
evaluating classification performance in case of occurrence of rare examples need to
be applied.

It should be emphasized that the erroneous recognition of examples from the
minority class may lead to disastrous consequences. Medical diagnosis, detection of
fraudulent financial transactions, anomaly detection, learning word pronunciation,
predicting pre-term births or detection of oil spills are only a few examples of areas
affected by the imbalanced data problem [1,9]. It is obvious that the necessity of
minimizing the number of wrong decisions in these domains is recognized as the
significant issue. Due to the critical role of imbalanced data in the modern world,
many proposals have been developed to decrease the negative effects of this problem.
These techniques can be divided into three main categories: data level, algorithm
level and cost-sensitive approaches.

Data level approaches are the most versatile. These algorithms are used indepen-
dently of the classifier and that is considered as their main advantage. The principal
aim of designing these solutions was to reduce disparity between the number of data
from the minority and majority class. The ability to deal with additional difficulties
of the learning process is very important in data processing.

One of the proposals concerning pre–processing imbalanced data is SMOTE.
Although this technique has been used with success in many domains, it is not de-
prived of some drawbacks. Limitations of this algorithm may lead to considerable
depletion of classifier performance. This problem usually occurs when dataset is not
only imbalanced, but also have a complex distribution [4]. Complex distribution may
be associated with factors such as overlapping, small disjunctions and noise. Recent
studies have shown that these difficulties are the main source of problems in the clas-
sification [11,9,5].

The novel approach for mining imbalanced data is presented in this paper. Two
algorithms are proposed as the improved version of the standard SMOTE technique.

2. Algorithm

Three main approaches can deal with the class imbalance problem. Although all of
these solutions have been successfully applied in many domains, in this paper we
focus only on the data level techniques as they are independent of the classifier and
therefore flexible. Studies have shown that the application of preprocessing phase to
balance the skewed class distribution usually improves the classifier performance [9].
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Data preprocessing methods consist of various approaches. It is possible to list
the following groups involving data level classification techniques:

– undersampling - a subset of the original dataset is created, some examples from
the majority class have to be removed,

– oversampling - new examples are generated, especially from the minority class,
– hybrid - combination of the two previous methods.

Neither undersampling nor oversampling is deprived of disadvantages. The ma-
jor drawback of undersampling is the risk of missing potentially important data. On
the other hand, the oversampling in its simplest version, assuming random replica-
tion of minority class examples, may lead to overfitting [4]. The numerous proposals
addressing these problems were developed.

SMOTE (Synthetic Minority Oversampling Technique) [6] represents the group
of oversampling techniques. Unlike the simple random oversampling, SMOTE does
not create new instances by generating identical copies of existing minority sam-
ples. The main idea of this algorithm is to create new minority class examples along
the line segments between each positive class object and any of the k nearest neigh-
bors. New instances are generated by randomly selecting appropriate number of the k
nearest neighbors of a positive class example and creating a combination of features
describing each of them and sample under consideration. The number of neighbors
involved in oversampling depends on the number of needed minority examples. Al-
gorithm 1 presents the pseudocode for SMOTE.

The objective of data preprocessing in SMOTE is to create synthetic examples
regarding similarity between minority class instances. The similarity is defined in
feature space by using the kNN algorithm, where the number of nearest neighbors k
is a parameter. It is crucial to choose an appropriate value for the k parameter. Ne-
cessity of finding an adequate number of nearest neighbors is one of the SMOTE
drawbacks. Over generalization and variance are considered as the other limitations
of this method [4]. Although SMOTE avoids the overfitting problem and makes the
decision boundaries for the minority class larger, the algorithm does not take into
consideration the neighborhood of the minority class examples. It may lead to the
overlapping between classes, which has a considerable negative impact on the classi-
fication process.

3. Methods

The method for creating synthetic items based on the combination of adjacent objects
features seems to be so effective and groundbreaking tool that would be unreasonable
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Algorithm 1 SMOTE (T, N, k)
Require: Number of minority class samples T ;

Amount of examples to create N%;
Number of nearest neighbors k

1: if N < 100 then
2: Randomize the T minority class samples
3: T = (N/100)∗T
4: N = 100
5: end if
6: N = (int)(N/100)
7: numattrs = number of attributes
8: Sample[][]: array for the original minority class samples
9: newindex: keeps a count of number of synthetic samples generated, initialized to 0

10: Synthetic[][]: array for synthetic samples
11: for i← 0 to T do
12: Compute k nearest neighbors for i, save the indices in the nnarray
13: Populate(N, i,nnarray)
14: end for
15: /* Function to generate the synthetic samples */
16: Populate(N, i,nnarray)
17: while N ̸= 0 do
18: Choose a random number between 1 and k, call it n. This step chooses one of the k nearest

neighbors of i.
19: for attr← 1 to numattrs do
20: di f = Sample[nnarray[nn]][attr]−Sample[i][attr]
21: gap = randomnumberbetween0and1
22: Synthetic[newindex][attr] = Sample[i][attr]+gap∗di f
23: end for
24: newindex++
25: N = N−1
26: end while
27: return

not to take advantage of the potential it brings. The original version of SMOTE tech-
nique turns out to be insufficient when faced with complex problems. On the other
hand, it has been proven that many real data sets has a complicated structure and dif-
ferences between the representatives of the different classes are not as obvious as it is
expected [5,11]. When data is imbalanced, the high complexity has a negative impact
mainly on identifying minority class instances. Especially small disjunctions, noise
and overlapping handicap the process of classification (figure 1). Improved SMOTE
(IS) algorithms were created to reduce negative impact of these impediments. The
novel algorithms comprise a compound of the existing approaches and provide a
brand new way of dealing with imbalanced data issue. Works such as [11,7,8] pose
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an effective solutions for the imbalanced data problem. However, they were not suf-
ficient for all kinds of specific domains. Therefore IS techniques were designed to be
more flexible.

Fig. 1. (a) Class overlapping (b) Small disjunctions

Both of the developed algorithms are based on the same main concept (algo-
rithm 27). At the beginning, right after loading the data, the metrics is choosen auto-
matically. The analysis of attributes characteristics indicates whether the Euclidean
distance is used or the HVDM. The HVDM metrics is applied, when more than half
of the attributes is nominal. Otherwise, the Euclidean distance is used. The idea pre-
sented in [10] was the inspiration for developing this method to determine which
distance function is the most proper for a specific issue. According to this work, the
effectiveness of HVDM metrics should be closely related to the number of nominal
attributes.

In the next step the k–NN algorithm is used to obtain the distance between each
minority example and all other instances from both classes. The k is a parameter
– user can specify the value of nearest neighbors. According to these calculations
minority objects are divided into three groups (Algorithm 2):

– NOISE, when all of the k nearest neighbors represent the majority class,
– DANGER, if half or more than half of the k nearest neighbors come from the

majority class,
– SAFE, when more than half of the k nearest neighbors represent the same class

as the example under consideration.
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Algorithm 2 IBA (S, M, k)
Require: Number of all instances S;

Number of minority class samples M;
Number of nearest neighbors k

1: metrics: keeps the name of used evaluation metric
2: numattrs: keeps the number of attributes
3: SampleMinority[][]: array for the original minority class samples
4: Sample[][]: array for all samples
5: Synthetic[][]: array for the new examples
6: nominal: keeps the number of nominal attributes
7: continuous: keeps the number of linear attributes
8: label[]: array for examples labels
9: for i← 0 to numattrs do

10: Verify the number of two kinds of attributes: nominal and linear. Save the number of nominal
attributes in nominal variable and the number of linear attributes in continuous variable.

11: end for
12: if continuous 6 numeric then
13: metrics := HV DM
14: else
15: metrics := Euklides
16: end if
17: for i← 0 to M do
18: Calculate the distance between minority class examples and all other examples using k–NN

method with measure written in metrics variable.
Indexes of k nearest neighbors write in nnarray array.
label[i] := LabelMinorityData(nnarray, i,k)

19: end for
20: Calculate the needed number of minority class examples to create. The result save in N variable.
21: for i← 0 to M do
22: if label ̸= NOISE then
23: Run the k–NN algorithm for the object i using distance measure saved in metrics variable,

indexes save in nnarray array
24: Populate(N, i,nnarray, label[i])
25: /* The Populate method is different for the two algorithms */
26: end if
27: end for

The mechanism of the above division considers the location of each minority
example in the feature space. There are plenty of proposals in the literature regarding
this approach. They vary in the way of distinguishing different objects types and
processing them in the next phases. The method presented in this paper assumes
that the NOISE examples are surrounded only by the majority class instances. It is
obvious that this kind of rare data may lead to serious difficulties in the learning
process [2]. Examples which occure in the area surrounding class boundaries are

36



Data preprocessing in the classification of the imbalanced data

labeled DANGER. The relatively homogeneous areas consists of the SAFE objects.
The main process, responsible for generating new data, strictly relates to the assigned
labels.

Algorithm 3 LabelMinorityData (nnarray, i, k)
Require: Number of nearest neighbors k;

Indexes of k nearest neighbors nnarray;
Index of the example under consideration i;

1: /* This method labels the minority class data */
2: minorityClass: keeps the number of minority class neighbors of the i example
3: ma jorityClass: keeps the number of majority class neighbors of the i example
4: if ma jorityClass == k then
5: returnNOISE
6: end if
7: if ma jorityClass < k/2 then
8: returnSAFE
9: end if

10: if ma jorityClass > k/2 then
11: returnDANGER
12: end if

The oversampling techniques necessitate the number of minority class examples
which should be created. In proposed IS solution this number is selected automati-
cally. The minority class instances are generated to even the amount of objects from
both classes.

Next, the distances between samples representing only the minority class are
calculated. The k–NN method is used for this purpose again. After this operation, it
is possible to start the next phase – generating new synthetic samples in the number
depending on the assigned labels and the algorithm version.

The main purpose of this paper is to verify the impact of DANGER examples
on the learning process. These borderline instances determine the boundaries be-
tween different classes. The two approaches of preprocessing minority samples are
proposed.

3.1 ASIS

ASIS (Amplify SAFE Improved SMOTE) is the first of presented algorithms. This
is a modified version of the standard SMOTE technique. The main assumption in the
SIS method is that excessive number of borderline minority examples may increase
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the data complexity. After the steps described previously, new data is generated. De-
pendency between assigned labels and the number of created minority class examples
is the following:

– SAFE – the numerous new objects are created, similarly to the standard SMOTE
algorithm,

– DANGER – only one new example is created by combining features of the nearest
neighbor and the instance under consideration; it is located closer to the DAN-
GER object,

– NOISE – no new example is created.

The fact that the NOISE instances are omitted in this phase is dictated by their
location in the feature space. Figure 2 illustrates the undesirable consequences of
applying the SMOTE technique to this kind of instances. Figure 2 (a) presents the
situation when the new object is created in the line segment between minority class
example A1, considered as noisy, and its nearest neighbor A2, located in the homo-
geneous area. As it is showed, generated object A3 overlaps with the majority class
example. The learner’s ability to generalize may cause the misclassification of the
A3. Situation is even worse in the figure 2 (b). When four neighbors are involved in
creating new samples, the level of distribution disturbances is very high. The bound-
aries between classes are ambiguous. Hence, discriminative rules are hard to prepare.
The avoidance of these problems is possible by omitting NOISE examples in pre-
processing step.

Fig. 2. Example of difficulties in processing NOISE instances
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The ASIS algorithm doubles the number of DANGER data. It is assumed that
this amount would be sufficient to make borderline minority examples more recogniz-
able and not increase the overlapping level. Moreover, in this case synthetic objects
are created closer to instance which is currently processed and only the nearest neigh-
bor takes part in processing. On the other hand, the plenty of new data is created for
SAFE objects. This kind of objects should be considered as the representatives of the
minority class. Due to the fact that SAFE examples are located in relatively homoge-
neous areas this data has characteristic properties of the minority class.

3.2 ADIS

The second algorithm is named ADIS (Amplify DANGER Improved SMOTE). It
represents different concept of treating respective groups of minority data. The novel
strategy assumes that the ambiguity of class boundaries should be reduced by am-
plifying the minority class instances especially in these areas. Experiments made in
[3] demonstrates that the local density of examples plays a key role in the analysis of
overlapping regions containing examples from different classes. Hence, performance
of the classifier should be improved when creating many new instances in DANGER
objects neighborhood. In this strategy, the following processing is performed for the
respective three groups:

– SAFE – one new object is created by interpolation of the example under consid-
eration and its nearest neighbor,

– DANGER – the numerous minority instances are created, the synthetic example
is placed closer to the object under consideration„

– NOISE – no new example is created.

The amplification of the minority class representatives in the borderline regions
should make learner to create more proper rules. However, it may lead to the degra-
dation of the classifier performance regarding majority class examples.

4. Experiments

Two experiments have been performed to test the new methods as the improvement
of the SMOTE algorithm.

4.1 Experiment 1

In the first experiment the artificial data set, containing only 25 objects, has been
used to present the performance of new methods. This data are characterized by the

39



Katarzyna Borowska, Magdalena Topczewska

Fig. 3. Distributions after ASIS preprocessing

Fig. 4. Distributions after ADIS preprocessing
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moderate IR value. The size of the majority class four times exceeds the number
of objects in the minority class. The obtained results of classification are shown in
the table 1. In the picture 3 and 4 the majority class objects are marked as circles,
while the minority class objects are squares. The new generated objects are marked
as diamonds.

Table 1. Results of the artifficialData classification (IR=4): Q – accuracy, T Prate – rate of true
positives, T Nrate – rate of true negatives, AUC – area under the curve, nIR – new value of IR

method k Q T Prate T Nrate F-measure AUC nIR

SMOTE 1 80.00 80.00 80.00 0.80 80.00 1.00
ASIS 1 80.00 90.00 70.00 0.82 80.00 1.00
ADIS 1 84.62 50.00 95.00 0.60 72.50 3.33
SMOTE 3 87.50 90.00 85.00 0.88 87.50 1.00
ASIS 3 95.00 90.00 100.00 0.95 95.00 1.00
ADIS 3 95.00 90.00 100.00 0.95 95.00 1.00
SMOTE 5 80.00 80.00 80.00 0.80 80.00 1.00
ASIS 5 90.00 85.00 95.00 0.89 90.00 1.00
ADIS 5 95.00 90.00 100.00 0.95 95.00 1.00
SMOTE 7 80.00 80.00 80.00 0.80 80.00 1.00
ASIS 7 75.00 65.00 85.00 0.72 75.00 1.00
ADIS 7 87.50 85.00 90.00 0.87 87.50 1.00

The analyzed data set may be specified as implicitly imbalanced, because the
size of the minority class is extremely small. The best results have been obtained for
the number of neighbours equaled 3. The ASIS and the ADIS methods occurred to
give the highest values of parameters: the accuracy at the level 95%, the rate of true
positives (90%), the rate of true negatives (100%), the F-measure (0.95) and the area
under the curve (the level 95%). The same highest results have been gained for the
number of neighbours 5. Thus we confirmed the assumption that the correctness of
the classification depends largely on the complexity of the data distribution. Place-
ment of objects from the minority class in a homogeneous area is one of the main
success factors in creating the correct model.

4.2 Experiment 2

In the second experiment the data sets from the UCI (University of California at
Irvine Repository) [13] are performed. The characteristics of the chosen data is pre-
sented in the table 2.
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Table 2. Characteristics of datasets

dataset number of objects number of attributes missing data IR
(numeric; symbolic)

abalone9-18 731 8 (7;1) no 16.60
blood transfusion 748 4 (4;0) no 3.20
breast cancer 286 9 (0;9) yes 2.36
german credit 1000 20 (7;13) no 2.33
hepatitis 155 19 (6;13) yes 3.84
vowel0 988 13 (13;0) no 9.98

Six chosen datasets have been preprocessed using the ASIS and ADIS methods.
The detailed results of classification are demonstrated in the tables 3 and 4 regarding
several values for the number of neighbours. The highest values are highlighted in
bold.

In the case of proposed methods, both approaches proved to be effective in the
real applications. For all chosen datasets the accuracy, the area under the curve, the
F-measure and what is the most important – the rate of true positives are better than
in the standard SMOTE case.The 3 neighbours occurred the most advantageous.

5. Conclusions

In the era of collecting increasingly large and large data volumes, the problem of
the class imbalance in data becomes one of the biggest challenges for the scientists.
Achieving high classification accuracy of data representing the minority class is not
an easy task and the variety of methods created only for this purpose may be the
confirmation of that growing need.

Among many, the algorithms belonging to the group called pre-processing of
data can be noticed. Their aim is to increase in the number of objects of the positive
(minority) class. The most well-known technique of this type is the SMOTE algo-
rithm that became the inspiration to create and test the new, improved versions of the
method.

In the first algorithm (ASIS ) the number of safe objects increases primarily. They
may be perceived as the best representation data of the minority class. Additionally,
the number of border objects is doubled, while the objects recognized as the noise do
not transform. In the second algorithm (ADIS ) most of the new objects are created in
the border area. The number of the safe objects is doubled, while similarly as in the
previous case the noise objects do not share the transformation process. Comparing
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Table 3. Results of the chosen UCI datasets classification: Q – accuracy, T Prate – rate of true positives,
T Nrate – rate of true negatives, AUC – area under the curve, nIR – new value of IR

method k Q T Prate T Nrate F-measure AUC

abalone9-18
SMOTE - 94.12 35.71 97.68 0.41 0.6670
ASIS 3 97.31 96.81 97.82 0.97 97.31

5 96.73 96.37 97.10 0.97 96.73
7 97.39 96.52 98.26 0.97 97.39

11 93.80 62.32 96.95 0.65 79.64
15 94.48 62.50 97.82 0.68 80.16

ADIS 3 97.02 97.10 96.95 0.97 97.02
5 96.73 96.37 97.10 0.97 96.73
7 96.08 96.37 95.79 0.96 96.08

11 95.07 95.50 94.63 0.95 95.07
15 94.27 95.21 93.32 0.94 94.27

blood transfusion
SMOTE - 76.07 33.71 89.30 0.40 61.50
ASIS 3 80.88 79.65 82.11 0.81 80.88

5 79.65 77.37 81.93 0.79 79.65
7 79.91 77.72 82.11 0.79 79.91

11 76.05 77.72 74.39 0.76 76.05
15 78.85 78.07 79.82 0.79 78.95

ADIS 3 80.61 84.04 77.19 0.81 80.61
5 77.98 80.53 75.44 0.79 77.98
7 74.47 80.53 68.42 0.76 74.47

11 76.49 73.86 79.12 0.76 76.49
15 78.07 74.56 81.58 0.77 78.07

breast cancer
SMOTE - 69.50 41.18 81.59 0.45 61.38
ASIS 3 69.90 72.14 67.66 0.71 69.90

5 70.15 70.15 70.15 0.70 70.15
7 73.38 74.13 72.64 0.74 73.38

11 68.66 72.14 65.17 0.70 68.66
15 69.15 71.14 67.16 0.70 69.15

ADIS 3 74.63 76.62 72.64 0.75 74.63
5 73.63 75.62 71.64 0.74 73.63
7 69.40 70.15 68.66 0.70 69.40

11 72.78 68.82 76.12 0.70 72.47
15 69.65 70.65 68.66 0.70 69.65
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Table 4. Results of the chosen UCI datasets classification: Q – accuracy, T Prate – rate of true positives,
T Nrate – rate of true negatives, AUC – area under the curve, nIR – new value of IR

method k Q T Prate T Nrate F-measure AUC

german credit
SMOTE - 69.60 47.33 79.14 0.48 63.24
ASIS 3 80.64 81.29 80.00 0.81 80.64

5 79.50 80.14 78.86 0.80 79.50
7 78.57 80.00 77.14 0.79 78.57

11 79.00 80.29 77.71 0.79 79.00
15 79.14 80.29 78.00 0.79 79.14

ADIS 3 80.14 80.86 79.43 0.80 80.14
5 78.21 78.14 78.29 0.78 78.21
7 78.64 79.00 78.29 0.79 78.64

11 79.00 79.86 78.14 0.79 79.00
15 79.00 79.86 78.14 0.79 79.00

hepatitis
SMOTE - 85.81 53.13 94.31 0.61 73.72
ASIS 3 89.84 93.50 86.18 0.90 89.84

5 89.02 92.68 85.37 0.89 89.02
7 87.80 89.43 86.18 0.88 87.80

11 91.87 96.75 86.99 0.92 91.87
15 88.62 91.06 86.18 0.89 88.62

ADIS 3 91.46 92.68 90.24 0.92 91.46
5 92.28 93.50 91.06 0.92 92.28
7 91.87 94.31 89.43 0.92 91.87

11 88.21 91.87 84.55 0.89 88.21
15 86.99 89.43 84.55 0.87 86.99

vowel0
SMOTE - 99.49 96.67 99.78 0.97 98.22
ASIS 3 99.78 100.00 99.55 1.00 99.78

5 99.94 100.00 99.89 1.00 99.94
7 99.83 99.89 99.78 1.00 99.83

11 99.83 99.89 99.78 1.00 99.83
15 99.78 99.89 99.67 1.00 99.78

ADIS 3 99.54 98.33 99.78 0.99 99.06
5 99.61 99.67 99.55 1.00 99.61
7 99.67 99.67 99.67 1.00 99.67

11 99.67 99.89 99.44 1.00 99.67
15 99.72 99.78 99.67 1.00 99.72
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to the standard SMOTE algorithm, new methods improved the classification results
like the accuracy, the rate of true positives or the area under the curve.
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PRZETWARZANIE WSTĘPNE W PROBLEMIE
KLASYFIKACJI DANYCH NIEZRÓWNOWAŻONYCH

Streszczenie: Artykuł dotyczy problemu klasyfikacji w przypadku, gdy mamy do czynienia
z klasami niezrównoważonymi. W tym celu stworzone zostały dwa algorytmy poprawiające
wyniki uzyskiwane za pomocą standardowego algorytmu SMOTE. Do pomiaru odległości
między obiektami zastosowano metrykę euklidesową lub metrykę HVDM, w zależności od
liczby cech nominalnych w zbiorze.

Słowa kluczowe: klasy niezrównoważone, tworzenie nowych obiektów, klasyfikacja

Artykuł w części zrealizowano w ramach pracy badawczej S/WI/2/2013.
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Abstract: We present a new method for segmenting the corneal endothelial cells from mi-
croscopic images. It uses multiple active contours initialized by adaptive thresholding and
limited with their growing to not overlap. Thanks to the inherent characteristics of the active
contour both outcomes can be achieved: cell quantity and delimitation. The tool implement-
ing this approach is built within the MESA framework - an environment for developing and
evaluating segmentation techniques. The accuracy is estimated on the base of real micro-
scopic cell images segmented manually.

Keywords: image processing, cell segmentation, active contour

1. Introduction and background

Cell segmentation, very important in many biomedical applications, is not a triv-
ial task. Many approaches to this problem have been proposed, but the most often
general techniques fail when applied to specific cell shapes and targeted methods
perform the best. One example are the corneal endothelial cells, which play impor-
tant role in the human visual mechanism and are of great interest for physicians [1].
The healthy cells have a characteristic regular hexagonal form (Fig. 1). With time
or in presence of pathologies their number drops and their shape deforms, so their
analysis can supply important diagnostic and monitoring information. Unfortunately,
their standard microscopic imaging does not always provide a good quality of im-
ages. Specifically, near the image borders the focus can be lost and the illumination
is not homogeneous. The noise is also present and the cell shape can be irregular.
Several dedicated approaches have been proposed to segment such the cells, apart
from the manual delineating. Vincent and Masters [2] firstly detect the cell centers by
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a dome extractor based on morphological grayscale reconstruction and then let the
marker-driven watershed segmentation to extract the binary (so unstructured) result.
Mahzoun at al. [3] focus on the cell edges, detecting them (including “tricorn” points)
with specially designed convolution filters. Then they complete the shapes with man-
ually initialized active contours, so the approach is not automatic but can provide the
cell structure. Sanchez-Marin [4] proposes a fully automatic method using the Gauss
low-pass filtering to remove the intensity gradient and also to close gaps in the cell
borders, then thresholding and skeletonization (to obtain the one-pixel wide net) fol-
lowed by some improvement (e.g. pruning) of the final cell structure. The result cells
can be smoothed with the active contour. The method seems sensitive to the scale
on the Gauss filtering stage. Khan et al. [5] apply the Frangi algorithm (originally
detecting vessels) to images filtered by consecutive low-pass Gauss filters in order to
track the cell borders. These borders are then improved by mathematical morphol-
ogy operations and finally thinned to get the one-pixel wide net. The result is not
structured - it consists of the border pixel collection. Bullet et al. [6] use composition
of four steps to automatically detect the cell contours: FFT band-pass filtering to re-
move the intensity information and noise, binarization with the mean value threshold,
watershed segmentation on the distance map and finally Voronoi diagram segmenta-
tion providing the final contours. All the above operations are performed within the
standard image processing tool – ImageJ. The most recent work by Piorkowski and
Gronkowska-Serafin [1] proposes two approaches. Both of them analyze local con-
figurations of pixel levels in order to mark the border (intensity valley) between cells.
The detected contours are then improved with the mathematical morphology.

This work is organized as follows. The next section describes the proposed seg-
mentation methods in details and reveals some implementation aspects. Section 3.
presents the method evaluation on real images of the corneal endothelium cells. The
last section summarizes the article and proposes some ideas to improve the segmen-
tation.

2. Method

The proposed algorithm is composed of the four steps:

– preprocessing,
– binarization,
– detection of the cell center points,
– segmentation of the cell contours.

All of them are automatic and do not require an operator interaction. Each steps is
described in details in the following subsections.
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2.1 Preprocessing

Our input images are noisy (Fig. 1), what is often the case while analyzing the med-
ical data. The intensity levels of the cell bodies and borders are not constant, even
locally. To alleviate these problems we apply the Gauss low-pass convolution filter to
the raw images (as like it is common in many segmentation frameworks). This filter-
ing extends also the high gradient zones located on the cell borders and makes them
more “visible” to the active contours segmenting the final cell shapes.

2.2 Binarization

In order to distinguish the cell bodies (more intensive) from the cell borders (darker)
the most obvious solution is to use the thresholding technique. But as it has been
already mentioned above, the illumination of the input images is not equal in all the
image regions – one can observe the intensity gradient superimposed on the local
intensity distribution (Fig. 1). This artifact makes impossible to binarize the input
with the simple thresholding with one global threshold.

One of the possible to employ techniques that has been used in our work is the
adaptive thresholding. As the intensity variation coming from the varying illumina-
tion has very low frequency and can be neglected locally, the threshold is calculated
and used also locally. The entire image is divided on square regions and the mean
intensity values are calculated for all of them. For each such region its center pixel
is given the local threshold equal to the mean intensity of this region, incremented
by few levels to avoid detecting some ghost structures in more or less homogeneous
areas. The rest of pixels obtain their local threshold by simple linear interpolation.
Then for all the pixels in the loop: each one is marked “black” (cell body) if its in-
tensity is above its own local threshold and it is marked “white” (cell border) if the
intensity is below it. Example of such the binarization is presented Fig. 1.

2.3 Detection of the cell center points

The healthy corneal cells have they shape close to hexagonal, and even if it is not
ideal, it can be approximated by a circle. After the binarization the next loop (go-
ing also through all the pixels) tries to localize the biggest (locally) circular regions
containing only “black” pixels. A special condition promotes bigger regions if two
or more of them overlap – it prevents from locating multiple circle regions inside
one cell what can happen because of the order of visiting the pixels (the loop simply
increments the pixel coordinates). This condition is effective for the most of cases
but it sometimes fails, especially for elongated cells. In order to eliminate such the
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Fig. 1. Example images of the corneal endothelial cells and effects of binarization by adaptive thresh-
olding (after the Gauss filtering)

situations all pairs of detected neighbor circles are examined to verify if the area sep-
arating them belongs also to the cell body (Fig. 2). If it is so the regions are merged
to form a single cell body representation.

Fig. 2. Merging neighbor circle regions inside a single cell

The effect of this procedure is shown on Fig. 3. One can observe several merged
circles inside elongated cells.

2.4 Final segmentation of the cell contours – active contours

The initial approximation of the cell bodies by the circular regions (or their unions)
are further deformed to fit the actual cell borders using the well known active con-
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Fig. 3. Comparison of the cell body detection: on the left before merging the neighbor circles, on the
right – after this procedure (colors are not corresponding on the two images)
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tours – snake [7]. We use here its discrete version where the evolving curve mini-
mizing its energy is represented by the collection of points given the local energy.
Each previously marked region defines (by its external points) the initial form of the
snake. All the snakes evolve on the original image with the full intensity range – its
binary form is used only for the initialization. We use three energies and one balloon
force (described below) that are applied to each potential (being examined) snake
point (snaxel) position. The following notation is used: p – examined position of the
snaxel, pprev and pnext – neighbor snaxels (fixed while p is examined), vprev =−−−−→p pprev

and vnext =−−−−→p pnext) – vectors from p to its neighbors.

1. Image energy given by:
Eimage(p) = I(p), (1)

where I(p) is the intensity level in the p position. Since the cell borders are darker
(lower intensity), the snake tends to them.

2. Internal energies controlling the snake appearance:
– smoothness energy promoting the linear location of snaxels and expressed as

a length of sum of two normalized vectors vprev and vnext (for the collinear
points it has its minimum equal to zero):

Esmoothness(p) =
∣∣∣∣ vprev

|vprev|
+

vnext

|vnext |

∣∣∣∣ ; (2)

– regularity energy favorizing the equal distance between all the snaxels and
expressed as the two square differences between a mean inter-snaxel distance
avg and the length of vectors vprev and vnext , divided by the square avg:

Eregularity(p) =
(avg−|vprev|)2 +(avg−|vnext |)2

avg2 . (3)

.
3. Balloon force [8] responsible for pushing out the contours (initially located in-

side the cells). This force does not influence the p position optimization (with
the above energies) – instead it shifts all the examined neighborhood of p by a
vector vballoon perpendicular to the difference vnext − vprev and directed outward.
Its length is the method parameter.

Evolution of snakes The process of minimization of the snake energy is decomposed
on the separate snaxels – no global energy is formulated and for every snaxel p the
local energy E(p) = Eimage(p)+Esmootheness(p)+Eregularity(p) is analyzed indepen-
dently. In every iteration each snaxel neighborhood (shifted by vballoon as described
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above) is examined and if a position with lower local energy is found – the snaxel
is moved there. Because there are multiple evolving contours on the image (one for
each cell) we impose a condition forbidding each snake to grow inside any other one.
To avoid the curve discretization problems two procedures are introduced to keep the
inter-snaxel distance reasonable (few pixels):

– each two neighbor snaxels too close one to another are replaced by a single one;
– if two neighbor snaxels are too distant one from another a new one is added in

the middle of them.

The evolution stops when there is no more moving snaxels (all snakes reached
their local optima). Two examples of automatic segmentations are given on Fig. 4.

Fig. 4. Examples of the automatic cell segmentation

2.5 Implementation issues

The entire method has been implemented within the MESA framework [9]. It helps
in designing and evaluating of new segmentations methods based on the deformable
models. Its on-line version is accessible (mesa.wi.pb.edu.pl) – however its desktop
version was used here (incorporation of the presented approach is planned). All the
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standard operations (e.g. image loading, visualization, segmentation procedure) are
offered there. The user is only responsible for defining the basic elements of his snake
(writing new Java classes). In this work all three custom components were used:

– model replacing the standard one since multiple contour evolves in the image
instead of the single one;

– energies defining the three ones as described in Section 2.4;
– extensions responsible for correcting the snake topology (adding and removing

snaxels).

The segmentation of a single image was of order of seconds (after some opti-
mization on controlling of the overlapping snakes) on a standard PC machine.

3. Experimental validation

Verification of quality of the medical image segmentation is not a trivial task. The
most important problem is usually lack of the ground truth location and shape of
the segmented object. A manual delineating by an expert can provide such a refer-
ence, but inter- and also intra-operator variabilities are very often significant. It is also
time-consuming and tedious. Nevertheless, this procedure is sometimes the only pos-
sibility to quantitatively asses the precision of the method. In our work this approach
was also selected and one of the authors (not being a medical expert) manually drew
the cell contours of two chosen images (Fig. 5 and 6). He took into account only well
visible cells. Then the presented method segmented the cells on the same images.
Both segmentations took 10 snake iterations.

Having such the reference we choose two segmentation quality indices (after
[10]):

– Overlap Error (OE)

OE(A,B) = 100(1− (|A∩B|/|A∪B|)), (4)

where A and B are the pixel sets (in our work representing the cell bodies: seg-
mented by our method and manually marked by the operator), value 0 character-
izes two sets completely overlapping, value 100 – two separate sets;

– Relative Volume Difference (RVD)

RV D(A,B) = 100((|A|− |B|)/|B|), (5)

A and B meaning as above, value 0 means that the two compared sets have the
same size (and says nothing about the set overlapping), negative value indicates
undersegmentation, positive one – oversegmentation.
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Fig. 5. Input image 1 (left), its manual segmentation – about 150 cells (center) compared with the
automatic segmentation (right)

These indices are defined to be used with a single segmented object. In our cases
there are multiple cells, so two problems are to be resolved. The first one is to find the
correspondence between cells in two such images. This is done by finding for each
reference cell an automatically segmented one with the highest overlapping ratio.
The second problem is to gives one value (or at least few ones) characterizing the
whole image and not separate values for each cell. So we give here: mean, median,
minimum and maximum values for every index. The results are presented in Tables 1
and 2. The value distributions are also presented Fig. 7 and 8.

Table 1. Overlap Error statistics for the two selected images

Image Median Mean Minimum Maximum
Image 1 (150 cells) 22.34 24.92 7.12 86.18
Image 2 (56 cells) 22.41 26.85 7.79 71.47

As it can be observed, for the most of cases the cells are detected correctly.
However one can see also some problems:
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Fig. 6. Input image 2 (left), its manual segmentation – about 50 cells (center) compared with the auto-
matic segmentation (right)

Table 2. Relative Volume Difference statistics for the two selected images

Image Median Mean Minimum Maximum
Image 1 (150 cells) 29.76 39.07 -48.83 363.83
Image 2 (56 cells) 5.35 35.25 -62.14 452.34
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Fig. 7. Overlap Error histograms for image 1 (left) and image 2 (right)
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Fig. 8. Relative Volume Difference histograms for image 1 (left) and image 2 (right)

– sometimes one cell is segmented as two separate contours;
– some contours do not reach the cell borders, stopping their evolution inside the

cells;
– some contours do not stop on the cell borders and they overpass them.

The first problem means that the detection of the cell centers does not work correctly
there, marking two separate circles inside one cell and not merging them. Since the
snake topology is fixed it results in two segmented cells inside the actual one. The
next two problems show how hard is to balance the snake energies. When the balloon
force is too weak (having too low weight in comparison to other forces, i.e. image
and internal ones) to push the snake enough to reach the border, the contour evolution
stops prematurely. But in the same time this weight is too high in other situations and
it pushes the contour too much what results in overpassing the border. This behavior
will be investigated more to improve the method.

The problems are reflected by the Overlapping Error values (especially the me-
dian and mean ones) what leaves a place to further working on the method. The
positive Relative Volume Error shows a slight oversegmentation, but it is not very
important.

In order to give even introductory comparison with other approaches (to be con-
tinued in future works) we took a single image from [1] and applied our method. The
results can be visually compared Fig. 9.

4. Conclusions and future works

In this article we have presented the automatic method segmenting the corneal en-
dothelial cells form microscopic images. The first results are promising, it detects
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Fig. 9. Comparison of the presented method and [1]: original image (first), our segmentation superim-
posed on the original image (second), binary result from [1] (third), two segmentations on one image
(fourth) - in gray common area, in black our segmentation, in white - [1].

even little visible cells and works quite fast (order of seconds on a standard machine).
The implementation, for the moment limited to the standalone version, is realized in
the technology (MESA environment) that allows an easy porting to the on-line web
application and can be make available for the public use.

However there is still some work that can be done here. The results have been
not yet seriously compared with the other existing methods and it is difficult to say
where our approach is between them in term of quality of segmentation. Only two
images (of rather good quality) was used to quantitatively assess the segmentation
accuracy and the tedious manual cell delineation was done by the non expert. The
parameter choice has not been extensively studied as well. Some of the parameters
seem not critical (the constant in the adaptive thresholding) but others (the weights
balancing the snake energies, especially the balloon one) have to be adjusted carefully
and even then fail in some configurations. An iterative incrementation of the balloon
force could solve the problems of not reaching some cell borders and overpassing
others in the same image.
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AUTOMATYCZNA SEGMENTACJA KOMÓREK
ŚRDBŁONKA ROGÓWKI OKA PRZY POMOCY

AKTYWNYCH KONTURÓW

Streszczenie: W artykule zaprezentowano autorską automatyczną metodę segmentacji ko-
mórek śródbłonka rogówki oka z obrazów mikroskopowych. Metoda używa wielu aktyw-
nych konturów zainicjalizowanych wewnątrz komórek za pomocą adaptacyjnego progowa-
nia i ograniczonych w swoim rozroście tak, aby nie pokrywać się. Metoda został zaimple-
mentowana w środowisku MESA przeznaczonym do rozwoju i ewaluacji technik segmenta-
cji. Jakość segmentacji została oszacowana na rzeczywistych obrazach mikroskopowych w
odniesieniu do ręcznie zaznaczonych konturów komórek.

Słowa kluczowe: przetwarzanie obrazów, segmentacja komórek, aktywny kontur

Artykuł zrealizowano w ramach pracy statutowej Politechniki Białostockiej
nr S/WI/2/2013 oraz pracy nr W/WI/5/2014.
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Abstract: A great number of works have been devoted to developing different medical
decision support systems, based on an image data. Such systems combine a wide range of
methods for digital image analysis and interpretation. It has been proven that one of the
most useful sources of information encoded in the image is its texture. Texture Analysis
(TA) provides many important discriminating characteristics, not normally perceptible with
visual inspection. With properly chosen TA methods, an image-based diagnosis could be
considerably improved. However, the choice of the methods is not an easy task and often
depends on the nuances of each diagnostic problem.
The present work provides an overview of the most frequently used methods for texture anal-
ysis (statistical, model-based, and filter-based) and shows their advantages and limitations.
It also includes an overview of texture-based medical decision support systems, recently
proposed for cancer detection and classification.

Keywords: medical imaging, image analysis, texture characterization, feature selection,
computer aided diagnosis, CAD, medical decision support

A list of abbreviations is given at the end of this article.

1. Introduction

Different imaging modalities are presently available to assist clinicians in the detec-
tion and the diagnosis of human pathologies. Among them are: Computed Tomogra-
phy (CT), Positron Emission Tomography (PET), Single Photon Emission Computed
Tomography (SPECT), Magnetic Resonance Imaging (MRI), Ultrasonography (US),
or Optical Imaging. With a constant improvement of image acquisition devices, the
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amount of diagnostic information obtained within a single study has considerably
increased. In such a situation, the interpretation of image content based only on its
visual inspection goes far beyond the human abilities. Indeed, an unarmed human
eye can distinguish barely 100 gray levels, whereas the gray-scale images obtained
nowadays (still commonly used) can encode many thousands of gray levels.

Since an experienced physician is not able to read all the useful image data
without any additional equipment, a great deal of work has been devoted to develop
different methods for (semi)automatic medical image analysis, interpretation, and
recognition. As a result, many Computer-Aided Diagnosis (CAD) systems have been
proposed over the past two decades. These systems combine a broad range of image
analysis methods (including image segmentation and tissue characterization tech-
niques), feature selection, and classification algorithms. The literature describes many
examples of image-based CAD systems that have already found their application in
various problems, concerning different organs and/or different imaging modalities.
Among them, we can enumerate the systems for hepatic diseases recognition, based
on the CT images (they will be detailed in the second part of the work [1]), on the
MR images [2], or on the contrast-enhanced ultrasonography [3]. Another example
concerns the breast lesion classification based on the ultrasound images [4–6] or on
the Dynamic Contrast Enhanced (DCE) MR images [7–13]. The recognition of the
prostate cancers on the basis of the DCE-MR images were also studied [14–22]. An
exhaustive overview of the CAD systems for lung cancer recognition, based on the
CT and/or the PET images can be found in [23]. Finally, the usefulness of CAD
systems for brain tumor detection and classification from MRI were investigated
in [24–30].

The advantage of CAD systems is that they improve considerably the image-
based diagnosis, which reduces the necessity of using other methods, such as a fine
needle aspiration biopsy or a surgical biopsy. Moreover, medical imaging is becom-
ing continuously cheaper, faster, and less wasteful. Finally, it is certainly much less
invasive (or even non-invasive) in comparison with many gold standard procedures.

The choice of the most appropriate methods for (semi)automatic image analysis
and interpretation is not a trivial task. The works presented so far have shown that
each diagnostic problem requires practically a re-validation of methods previously
tested in similar domains. However, a good selection of such methods is crucial to
guarantee the satisfactory tissue recognition. In 1979, Haralick stated that one of
the most important sources of analyzed image region could be its texture [31]. It
characterizes the spatial relationships between gray levels describing pixels within a
considered image region (so called "Region of Interest", commonly abbreviated as
ROI). Since then, numerous review studies have shown that texture analysis could
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be highly useful in various problems related to the recognition of medical (and also
nonmedical) images [32–38], as it provides a crucial information in terms of tissue
discrimination. Moreover, many works have revealed that digital image analysis en-
ables to detect the high order texture properties not accessible to visual inspection
(see, for example, [31, 39–41]).

The aim of present work is to review the most frequently used methods for ex-
traction of textural features. Three main TA approaches are considered: statistical,
model-based, and filter-based. The remaining sections are organized as follows. In the
next section, different methods of texture analysis are presented. Section 3 presents
some recent results of their application in several diagnostic domains. Finally, in the
last section, the main conclusions are drawn.

2. Overview of texture analysis methods

2.1 Gray Level Histogram

Features derived from a Gray Level Histogram (GLH) are based solely on the distri-
bution of pixel gray levels and do not consider the relationships between neighboring
pixels. They provide knowledge on the most and the less often occurring gray lev-
els, on the concentration of the gray levels around their average, or on the degree of
asymmetry in their distribution. On the contrary, they do not contain any information
neither about the possible direction of the texture, nor about its structure. Nevertheless
they are often used because of their invariability to translation or rotation, simplic-
ity, and low memory and time requirements for their calculation. The most popular
first-order features are:

– range of gray levels,
– mean of gray levels (measure of image brightness),
– median gray level (the second quartile),
– gray level energy (indicates how the gray levels are distributed),
– variance of gray levels (characterizes the distribution of gray levels around the

mean),
– gray level skewness (measures the asymmetry of the gray-level histogram),
– gray level kurtosis (indicates the relative flattening of the gray-level histogram),
– coefficient of variation (the ratio of the standard deviation to the mean).

2.2 Co-Occurrence Matrices

Co-Occurrence Matrices (COM) were introduced by Haralick et al. [42]. This method
consists in analyzing all the possible pairs of pixels, spaced apart by a fixed distance,
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d, and arranged in a given direction, θ. Four pixel alignment directions (0◦, 45◦,
90◦, and 135◦), and different distances between the pixels in pairs can be considered.
Typically, d takes small values. A combination (d,θ) determines thus unequivocally
the relative position of pixels composing the pairs to analyze. A co-occurrence matrix
C(d,θ) is of size G×G, where G is the number of gray levels possible to be encoded
in an image. Each element of co-occurrence matrix, ci j (i, j = 0, ...,G−1), represents
a probability of occurrence of a pair of pixels with gray levels of i and j, for the first
and for the second pixel, respectively. Several texture characteristics can be obtained
on the basis of a co-occurrence matrix [42]:

– energy or angular second moment (measure of homogeneity of gray levels char-
acterizing the pixels within an analyzed ROI),

– contrast or inertia (measure of contrast or local variations in pixel gray levels),
– inverse difference moment (measure of local homogeneity),
– entropy (quantifies a degree of randomness of the pixel gray levels),
– correlation (measures linear dependency of gray levels on neighboring pixels).

Other features can be calculated from the sums of probabilities that relate to
specified intensity sums or differences [34]. In practice, this requires the construction
of vectors whose components are the co-occurrence probabilities of pairs of pixels
with a determined sum or difference of the gray levels. All possible sum / differ-
ence values are taken into account. The probabilities form a vector and are sorted in
increasing order of corresponding sum or difference values. Some features derived
from such vectors are:

– sum average,
– sum variance,
– sum entropy,
– difference average,
– difference variance,
– difference entropy.

Conners et al. [43] proposed two additional COM-based features, that measure
the skewness (the lack of symmetry) of the matrix C(d,θ):

– cluster shade,
– cluster prominence.

For non-directed textures, several values of the same feature, corresponding to
different arrangement directions, θ, but obtained for the same distance between pixels
in pairs, can be averaged. Often feature values corresponding to different distances,
d, are also averaged.
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2.3 Run Length Matrix

Run Length Matrix (RLM) features are based on probabilities of pixel runs of each
possible length, arranged in a certain direction [44]. Like in previous method, four
standard directions of pixel runs are considered, θ = 0◦, 45◦, 90◦, or 135◦. A run-
length matrix, R(θ), has G columns and M rows, where G is the number of image
gray levels, and M is the maximum length of pixel run which can exist in an analyzed
image region. The element rmg (m = 1, ...,M, and g = 0, ...,G) of a run length matrix
R(θ) is the number of existing pixel runs of a gray level g, having a length of m, and
oriented in a direction θ.

Galloway initially proposed the following features, derived form a run length
matrix.

– short run emphasis,
– long run emphasis,
– gray level non-uniformity (distribution),
– run length non-uniformity (distribution),
– fraction of image in runs.

The proposition of two additional features can be found in [45]:

– low gray level runs emphasis,
– high gray level runs emphasis.

Yet another work [46] proposes to use a run length entropy as a texture feature.
Also in this method, the values of the same feature corresponding to different

directions of pixel runs can be averaged.

2.4 Gray Level Difference Matrices

Gray Level Difference Matrices (GLDM) are constructed with consideration of only
the absolute values of differences between the gray levels of pixels, still considered
in pairs [47]. Similarly to a COM-based method, also here four pixel alignment di-
rections θ, and different distances, d, between the pixels in pairs can be considered.
Further, all possible absolute differences in gray levels that can be encoded in the
image are taken into account. For each absolute difference, the probability of finding
a pair of pixels with just such a difference in the gray levels is calculated. The prob-
abilities sorted in increasing order of corresponding absolute gray level differences
form a vector l(d,θ) = [l0, l1, ..., lG−1]

T , where G is the number of gray levels possible
to be encoded in an image.

Five textural features can be derived from the l(d,θ) vector:
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– mean (measures a level of texture diversity),
– energy or angular second moment (measure of homogeneity of gray levels),
– contrast or inertia (measure of intensity contrast between a pixel and its neigh-

bors),
– inverse difference moment (measure of the local homogeneity),
– entropy (quantifies a degree of randomness of the pixel gray levels).

All above features could be averaged when they are calculated for different θ

and/or d parameters.

2.5 Gradient Matrices

Gradient-based features were introduced by Lerski et al. [48]. A gray-level gradient
at a particular image point is a function of the differences between the gray levels
of its neighboring pixels, aligned on vertical and horizontal lines passing through
the point. Often a neighborhood of 3× 3 pixels or 5× 5 pixels is considered. The
Gradient Matrix (GM) contains the values of the absolute gradient at each point of an
analyzed image region, excluding its boundaries.

Features derived from a gradient matrix are the following:

– mean,
– variance,
– skewness,
– kurtosis,
– percentage of pixels with nonzero gradient.

They can provide the information on the uniformity, homogeneity, or the roughness
of the texture. They may also indicate the presence or absence of edges.

2.6 Texture Feature Coding Method

Texture Feature Coding Method (TFCM) was proposed by Horng et al. [49]. The
method consists of three steps. First, an image is transformed. The transformation
consists of assigning to each pixel (except for the pixels located at the edges of a
considered ROI) a value that measures a degree of heterogeneity (of variation, of
diversity) of the local gray levels of its neighbors. The authors call this measure a
"Texture Feature Number" (TFN). Only a neighborhood of 3×3 pixels is considered.
Afterwards, a histogram of Texture Feature Numbers, and co-occurrence matrices are
constructed, based on a transformed image. Finally, several texture descriptors are
obtained, either from a TFN histogram:
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– coarseness,
– homogeneity,
– mean convergence (indicates how close the texture approximates the mean),
– variance (measures deviation of TFNs from the mean),

either from a TFN-based co-occurrence matrix:

– entropy,
– code similarity (assesses the density of the same TFNs in a 3×3 neighborhood),
– resolution similarity (measures the local homogeneity of TFNs).

2.7 Autocorrelation Coefficients

Autocorrelation Coefficients (AC) [50] expresses the correlation of the gray levels
describing pixels within a defined neighborhood. It is the function of the vertical (∆x)
and the horizontal (∆y) distance between the considered pixels in pairs. Usually such
distances are relatively small. In order to normalize the autocorrelation coefficients
a gray level of each pixel is decreased by the mean gray level. Normalized autocor-
relation coefficients are independent of the image brightness, and can be regarded as
textural features. They can provide knowledge on the spatial relationship between the
texture patterns, and the average size of texture patterns.

2.8 Fractal Model (FM)

Fractal Model (FM) was described in several works [51–53]. Unfortunately, each of
them gives different definitions of a fractal object. Mandelbrot characterized fractals
as self-similar objects, whose parts are similar to the whole, and whose topological
dimension is not an integer [51]. The fractal dimension of an object reflects the extent
to which this object fills the space or the rate of its diversity, the degree of irregularity
of the object.

A gray-level image can be considered as a topographic surface in three-
dimensional space, where two dimensions are those of the image plane and the third
one (height) is the gray level of image pixels. The fractal dimension of such a surface
can be used as a texture descriptor. It can measure the irregularity and the roughness
of the texture. Irregular surfaces (corresponding to a diversified textures) have rel-
atively high fractal dimension, while the smooth ones are characterized by the low
fractal dimension.

So far, several methods for calculating a fractal dimension of a texture have been
reported in the literature. Among them we can mention: the approaches based on the
fractional Brownian motion model [54, 55], the box-counting methods [56, 57], the
mass-radius methods [58], the wavelet-based methods [59], and others [60–63].
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2.9 Discrete Wavelet Transform
Discrete Wavelet Transform (DWT) of an image consists in its convolution with two
filters, the low-pass and the high-pass one, separately throughout the image rows and
separately throughout the image columns. The Mallat algorithm for DWT [64] di-
vides the image into the four sub-images, each of which is linearly two times smaller
than the decomposed image. Each sub-image can then be divided in the same man-
ner. Thus multiple resolution levels are obtained. Four sub-band images created at
each decomposition step are denoted: dLL, dLH , dHL, and dHH . They are created by
applying, respectively: the low-pass filter for rows and columns (LL), the low-pass
filter for rows and the high-pass filter for columns (LH), the high-pass filter for rows
and the low-pass filter for columns (HL), the low-pass filter for rows and columns
(LL). The component dLL is created by calculating the average of disjoint groups of
2× 2 pixels, using Haar transform. It is therefore an approximation (simplified rep-
resentation) of the transformed image. Further sub-bands represent the vertical (LH),
the horizontal (HL) and the diagonal (HH) image information. On the basis of them
an edge energy at three directions can be calculated. It is also possible to analyze the
energy distribution in each sub-band image. The image dLL is used only for DWT
calculation at the next scale.

2.10 Laws’ Texture Energy measures
Laws’ Texture Energy (LTE) measures [65] are useful for estimating the frequency of
the image elements, such as ripples, edges, or spots. Laws proposed to transform the
images using linear filters. During the transformation, each image pixel is assigned a
value that is a combination of initial gray levels of pixels belonging to a neighborhood
of a transformed pixel. Usually two types of neighborhood are considered: 3 × 3
pixels and 5×5 pixels. The weights of the neighboring pixels are defined by a zero-
sum convolution matrix (so-called Laws’ mask). For each pair of asymmetric masks,
the resulting images could be added. In this case, images obtained with an application
of symmetric masks are multiplied by two. On the basis of a transformed image, the
entropy can be calculated. Also, the filtered images can be once again subjected to
further transformation, that results in creation of texture energy images. Finally, the
features such as: mean, variance, skewness, and kurtosis can be calculated from the
resulting images.

3. Recent applications for cancer early detection

The following describes the most recently published works, considering textural fea-
tures as useful tissue descriptors. Each of the systems aims at cancer detection and
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characterization from MRI images. Three main diagnostic problems are considered:
prostate cancer diagnosis, brain tumor diagnosis, and breast lesion classification.

3.1 Prostate cancer diagnosis

The (semi)automated CAD systems using a texture analysis as a prostatic tissue de-
scriptor are still not broadly developed. Most of the existing works are based mainly
on the pharmacokinetic models, employing the signal-to-time curves, in order to find
perfusion parameters (e.g. [18]). Such models give an information about the propaga-
tion of contrast product, extracted from the T1-weighted DCE MRI sequences. Other
systems exploit also diffusion weighted image features (e.g. [66]), not based on textu-
ral properties. However some works exploiting the potential of TA in prostatic tissue
differentiation have appeared in recent few years [17, 19–22, 66, 67].

Lopes et al. [17] employed fractal and multifractal textural features to character-
ize prostatic tissues on T2-weighted MR images. Their system was able to recognize
two types of tissue: a tumorous and a non-tumorous one. The fractal dimension was
computed using the variance method. The multifractal spectrum was estimated by a
modified multifractional Brownian motion model. The classification was performed
with Support Vector Machines (SVM) [68] and an adaptive boosting voting scheme
(AdaBoost) [69]. The best result was obtained by AdaBoost classifier: 85% and 93%,
for sensitivity and specificity, respectively. Moreover, the results obtained by the pro-
posed system were better than those corresponding to the application of classical tex-
tural features, derived from co-occurrence matrices, wavelets, or Gabor filters [70].
The fractal method turned also to be most robust against signal intensity variations.

Niaf et al. [19] analyzed simultaneously different MRI sequences (T1-, T2-, and
diffusion-weighted) in order to differentiate between: (i) malignant vs benign pro-
static tissues, and (ii) malignant vs nonmalignant, but suspicious ones. The CAD
system proposed in their work combined functional parameters, extracted from DCE
images, together with textural features derived from the three considered MRI se-
quences. First-order and second-order (COM-based) textural features were utilized.
Four classifiers were applied: nonlinear SVM, Linear Discriminant Analysis (LDA)
[71], k-Nearest Neighbors (k-NN) [72] and Bayesian one [72]. The system per-
formances were assessed by the areas under the Receiver Operating Characteristic
(ROC) Curves (AUC) [73]. The best result was achieved with the SVM classifier and
was 0.89 and 0.82, for the first (i) and for the second (ii) discrimination problem,
respectively.

Peng et al. [66] assessed the utility of T2-weighted MRI texture features and dif-
fusion weighted image features in distinguishing prostate cancer from normal tissue.
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Here, the LDA and the areas under the ROC curves were used to evaluate the perfor-
mance of each feature. Among many tested texture characteristics, the sum average
turned to be the best feature. Nevertheless it did not outperform some of the Appar-
ent Diffusion Coefficient (ADC) features, that measure the magnitude of diffusion (of
water molecules) within a tissue. The combination of three features (sum average
and two ADCs) yielded AUC values of 0.94 and 0.89 on the images acquired with
the Phillips and the GE scanner, respectively.

Duda et al. [20] proposed to analyze simultaneously triplets of prostate MR im-
ages, corresponding to the same prostate slice, but derived from different image se-
ries: the contrast-enhanced T1-, the T2-, and the diffusion-weighted one. Two classes
of prostatic tissue were differentiated: tumorous and healthy. Six different texture
analysis methods were used: GLH-, COM-, RLM-, GM-, AC-, and FM-based. Their
ability of characterizing prostatic tissue was assessed with three classifiers: Logistic
Regression (LR) [74], Neural Network (NN) [75, 76] and SVM. The 10-fold cross-
validation [71] was used to assess the classification accuracies. The best overall clas-
sification result exceeded 99% and corresponded to the application of the SVM clas-
sifier.

Ginsburg et al. [67] tried to predict the probability of developing biochemical
recurrence risk (associated with raised risk of metastases and prostate cancer-related
mortality) following the radiation therapy. In their work they evaluated the efficiency
of different textural features, extracted from the T2-weighted images. They consid-
ered: first-order statistical features, gradients (involving image convolutions with So-
bel and Kirsch operators [77]), co-occurrence matrices-based, and Gabor wavelet
features [78]. For each feature, its prognostic potential and its contribution to classi-
fication results was assessed. As a classifier, a Logistic Regression was used. Despite
of poor resolution of images, available for the experiments, the area under the ROC
curve for the best three features (the Gabor wavelet ones) reached 0.83.

Litjens et al. [21] developed a fully automated computer-aided detection sys-
tem, which was able to differentiate between patients with and without prostate can-
cer. Their study based on: T2-weighted, proton density-weighted, dynamic contrast
enhanced, and diffusion-weighted images. Thus several types of features could be
used. They were: based on signal intensity, representing pharmacokinetic behavior,
anatomical features, blobness, and finally – texture descriptors, based on Gaussian
texture models. These latter characteristics contributed to the ability of the system to
achieve a performance comparable to the one achieved by radiologists.

Finally, Molina et al. [22] proposed a system that combined different features
(anatomic, textural, and functional) in order to recognize three classes of prostatic
tissue: cancerous, unhealthy non-cancerous, and healthy. Three different series of
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MR images were considered in the work: T2-weighted, Dynamic-Contrast Enhanced
Plasma Flow (DCE-PF) and DCE Mean Transit Time (DCE-MTT). Nevertheless, the
texture information was extracted from only the structural T2-weighted images. In the
work, three groups of features were used: the first-order statistical descriptors, and
the second-order ones, derived from: a Neighboring Gray Level Dependence Matrix
(NGLDM) [79] and a Neighborhood Gray-Tone Difference Matrix (NGTDM) [80].
Experiments showed that the use of texture descriptors could provide more relevant
discriminative information than the considered functional parameters. The average
sensitivity and specificity obtained with the system was of 84.46% and 78.06%, re-
spectively.

3.2 Brain tumor diagnosis

A few algorithms have been recently developed for brain tumor detection and classi-
fication, based on MR images of different modalities.

In 2012, John [25] proposed a system for brain tumor classification from T2-
weighted MR images. The system was able to recognize the three tissue types: nor-
mal, non-cancerous (benign) brain tumor and cancerous (malignant) brain tumor. The
tissue characterization process consisted of two stages. First, the images were decom-
posed with the wavelet transform. Next – the co-occurrence matrix-based textural fea-
tures were extracted from the LH and HL sub-bands of the first five levels of wavelet
decomposition. Five textural features were considered: energy, contrast, correlation,
homogeneity and entropy. Finally, they were fed into a Probabilistic Neural Network
(PNN) [81] for further classification and tumor detection. The system achieved the
classification accuracy of near 100%.

Patil et al. [26] tried to differentiate the four grades of Astrocytoma (from Grade
I to Grade IV). Their approach consisted of several stages: image preprocessing, seg-
mentation, feature extraction and classification. Feature extraction involved using the
co-occurrence techniques, providing a set of 11 features. Finally, a Probabilistic Neu-
ral Network has been developed to differentiate between different grades of consid-
ered brain tumor. The overall accuracy of the system (obtained on the test set) was of
94.87%.

The system presented by Islam et al. [27] was designed for the detection and the
segmentation of brain tumors from non-enhanced T1-weighted, T2-weighted, and
FLAIR images. Two different tumor groups were considered in their study: astrocy-
toma and medulloblastoma. The tissue was characterized here using fractal and mul-
tifractal (based on fractional Brownian motion model) methods. The features corre-
sponding to different modalities were fused. As a classifier, an extension of AdaBoost
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algorithm was used. The system was tested on 14 patients with over 300 images and
showed its high efficacy.

Jayachandran et al. [28] evaluated a system for detection and classification of
brain tumors on T1-weighted post contrast (gadolinium-based) images. Their sys-
tem was able to find tissue characteristics, to reduce the feature space, and to clas-
sify tissues into two categories: tumorous and non-tumorous one. Texture analysis
was performed with the co-occurrence matrices. The Principal Component Analy-
sis (PCA) [82] was used in order to reduce the feature space. Finally – the Fuzzy
based Support Vector Machine was applied for a classification. Experiments were
conducted on 80 brain MRI images. The proposed methodology resulted in quite
high rates of correctly classified cases (more than 95%).

Sachdeva et al. [29] developed a system aimed at the differentiation of six
tissue classes. They corresponded to the primary brain tumors: astrocytoma, mul-
tiform glioblastoma, childhood tumor – medulloblastoma, meningioma, secondary
tumor – metastatic, and normal regions. Their analyses involved using post-contrast
T1-weighted MR images. First, tumors were segmented with the content-based ac-
tive contour model [83]. Then over two hundred intensity and texture features were
used as tissue characteristics. Texture analysis considered: Laplacian of Gaussian
(LoG) filters [77], co-occurrence matrices, rotation invariant Local Binary Patterns
(LBP) [84], directional Gabor texture features [85], gray-level histogram, and rota-
tion invariant circular Gabor features [86]. Due to the large number of candidate fea-
tures, a feature space was reduced with the PCA. Then, an artificial Neural Network
was applied in order to perform the classification. The robustness of the proposed
system was tested using quite a large database (856 ROIs), with a partitioning of data
into a training and a test set. The overall classification accuracy was of 85.23%.

Most recently, Tiwari et al. [87] assessed different groups of textural features, in
terms of their ability to differentiate radiation necrosis (a radiation induced treatment
effect) from recurrent brain tumors. In fact this task is very difficult to the human
observer, because both pathological processes results in almost the same morpholog-
ical appearance on standard MRI. So far, the diagnosis was possible only through a
surgical intervention. The aim of the study was thus to find a set of features that could
accentuate subtle differences between both pathologies, and – further – to determine
which MRI protocol could provide the most discriminating information. Three MR
image series were considered: T1-weighted, T2-weighted and FLAIR. The exam-
ined textural features were derived from: co-occurrence matrices, neighboring gray-
level dependence matrices, Laplacian pyramids [88], Laws’ texture energy measures,
and Histogram of Gradient orientations (HoG) [89]. In total, 119 features were as-
sessed. Each feature was assessed by Principal Component Analysis-based Variable
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Importance Projection (PCA-VIP), developed by authors. Then a random-forest clas-
sifier [90] was used to differentiate between considered pathologies. The experiments
showed that HoG, COM, and Laws’ features were the most suitable ones for the
problem solution. The best MRI image series turned out to be the contrast-enhanced
T1-weighted one.

3.3 Breast lesion classification

The breast lesion characterization and differentiation from MRI images involves of-
ten a simultaneous analysis of images derived from different series, like T1-weighted
(non-enhanced or contrast-enhanced), T2-weighted, diffusion-weighted, or others. In
this case it is important not only to find potentially reliable pathology-related fea-
tures, but also to combine properly the tissue descriptors corresponding to different
image series. Here, textural features are often combined with other lesion descriptors:
morphological, intensity kinetic features (based on signal-to-time curve), or shape
descriptors.

Bhooshan et al. [8] combined textural features from both DCE T1- and T2-
weighted MR images in order to recognize benign and malignant breast lesions. For
the T1-weighted sequences, only the first post-contrast image was used for texture
analysis. As texture descriptors, again the COM-based features were used. The con-
trast product propagation was characterized by typical kinetic parameters obtained
from signal-to-time curves. The system was able to perform an automatic lesion
segmentation, then – the features were automatically extracted. In the experimental
stage, a stepwise feature selection was performed by Linear Discriminant Analysis.
The selected features were merged by with Bayesian artificial Neural Network clas-
sifier. The leave-one-out cross-validation [71], and the areas under the ROC curve
were used to assess the performance of tested sets of features. The experiments
showed, that the combination of texture characteristics, obtained from both T1-,
and T2-weighted images may outperform the conventional analysis of T1-weighted
contrast-enhanced sequences. When all the features were considered, the best result
was achieved. It gave the area under the ROC curve of 0.85.

Agner et al. [12] also tried to distinguish malignant from benign lesions. In their
work, they compared several approaches to lesion characterization, giving different
types of tissue descriptors: morphological features, signal intensity kinetic features,
and textural features. The latter ones were based on gray-level histogram, gradients,
and co-occurrence matrices. The study introduced a notion of "textural kinetics", that
characterized texture evolution under contrast product propagation in DCE MRI. At
first, textural features were calculated at each moment of contrast product propaga-
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tion, and the "textural kinetics curve" was created basing on the set of feature values.
Afterwards, a third order polynomial was fitted to such curve in order to characterize
its shape. Four polynomial coefficients constituted the feature vector. Feature vectors
were classified with the SVM and the AdaBoost classifiers. Experiments on 41 cases,
showed that textural kinetics features outperformed the other ones (morphological,
descriptors of signal intensity kinetics, and these based on "static" textures). The best
classification accuracy was about 90%.

Nagarajan et al. [13] used a multi-image texture analysis for breast lesion clas-
sification. In order to differentiate two types of small lesions (benign and malignant)
they analyzed simultaneously five post-contrast T1-weighted images. A multi-image
texture was characterized by five values of the same textural feature. Each value cor-
responded to a different moment of contrast agent propagation. Only the COM-based
textural features were considered. The tissue recognition was performed with Sup-
port Vector Regression and a fuzzy k-Nearest Neighbor classifier. The classifier per-
formances were determined through the ROC analysis. The highest AUC value ob-
served was of 0.82. Experiments also showed that textural features extracted from
the third and fourth post-contrast image contributed the most to the correct tissue
differentiation.

Recently, Cai et al. [10] combined dynamic contrast-enhanced and diffusion-
weighted images (DWI), also to recognize benign lesions and malignant ones. The
lesion regions were obtained with a semi-automated segmentation method. Then,
four types of tissue descriptors were considered: kinetic, morphological, textural (co-
occurrence matrix-based), and DWI features. In order to select the most robust fea-
tures, a hybrid filter-wrapper algorithm [91] was applied. Finally, various classifiers
(SVM, Bayesian, k-NN, LR) were used to evaluate the diagnostic performance of the
selected features. The study comprised of 234 female patients. The classification ac-
curacy was assessed with a 10-fold cross-validation and ROC characteristics. Finally,
seven selected features (among them – three textural features) were found to be statis-
tically different between the malignant and the benign groups, and their combination
gave the highest classification accuracy – 93%.

Still in 2014, Pang et al. [11] presented a fully automated CAD system for the
classification of malignant and benign masses. The system included a breast segmen-
tation method, the mass segmentation method (described in [92]), feature extraction
stage, feature selection (with the ReliefF [93] algorithm), and the SVM classifier. As
tissue descriptors, morphological and textural features were used. Like in previous
study, the texture analysis was performed using a co-occurrence matrix-based ap-
proach. A database comprised 120 cases. For the leave-one-out classifier assessment
method, the accuracy was of 90.0%.
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4. Conclusion

The present study enumerated the most commonly used methods for texture analysis.
In addition to a brief description of the methods, it also included a short interpretation
of the meaning of the parameters derived from each method. An overview of recently
proposed works, considering textural features as reliable tissue descriptors in differ-
ent classification problems, showed that the list of TA methods, presented in Section
2, is not exhaustive. The variety of methods proposed in the literature is far much
larger. Experiments show, that each diagnostic problem, each image modality, may
require the use of newer and newer procedures guaranteeing satisfactory classifica-
tion results. Nevertheless, it could be noticed, that some groups of textural features
show their huge potential more often than others. Among them the most powerful
ones are the statistical features, obtained from the co-occurrence matrices. Such fea-
tures were considered in almost all the quoted systems. The first-order statistics are
less popular, however they are also tested because of their simplicity. Quite often a
fractal model is used to find reliable texture characteristics. Also good are methods
involving an image filtering.

To sum up the first part of the work, it can be concluded, that texture analysis has
repeatedly demonstrated its valuable potential in the cancer early detection and dif-
ferentiation. The implementation of many referred systems might certainly improve
the image-based diagnosis, reducing the need for invasive procedures. The further
development of imaging techniques, and the continuous work to improve the digital
image-analysis methods may result in physicians more frequently refraining from the
use of any invasive procedure.

Abbreviations

AdaBoost: Adaptive Boosting algorithm
ADC: Apparent Diffusion Coefficient
AUC: Area Under the ROC Curve
CAD: Computer-Aided Diagnosis
COM: Co-Occurrence Matrix
CT: Computed Tomography
DCE: Dynamic Contrast Enhanced (in MRI)
DCE-MTT: DCE Mean Transit Time (in MRI)
DCE-PF: DCE Plasma Flow (in MRI)
DWI: Diffusion-Weighted Imaging (in MRI)
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DWT: Discrete Wavelet Transform
FLAIR: Fluid-Attenuated Inversion Recovery (in MRI)
FM: Fractal Model
GLDM: Gray Level Difference Matrix
GLH: Gray Level Histogram
GM: Gradient Matrix
HoG: Histogram of Gradient orientations
k-NN: k-Nearest Neighbors (classifier)
LBP: Local Binary Pattern
LoG: Laplacian of Gaussian
LR : Logistic Regression (classifier)
LTE: Laws’ Texture Energy
MR: Magnetic Resonance
MRI: Magnetic Resonance Imaging
AC: Autocorrelation Coefficient
NGLDM: Neighboring Gray Level Dependence Matrix
NGTDM: Neighborhood Gray-Tone Difference Matrix
NN: Neural Network (classifier)
PCA: Principal Component Analysis
PCA-VIP: PCA-based Variable Importance Projection
PET: Positron Emission Tomography
PNN: Probabilistic Neural Network (classifier)
RLM: Run Length Matrix
ROC: Receiver Operating Characteristic
ROI: Region of Interest
SPECT: Single Photon Emission Computed Tomography
SVM: Support Vector Machines (classifier)
T1: longitudinal (or spin-lattice) relaxation time (in MRI)
T2: transverse (or spin-spin) relaxation time (in MRI)
TA: Texture Analysis
TFCM: Texture Feature Coding Method
TFN: Texture Feature Number
US: Ultrasonography
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ANALIZA TEKSTUR JAKO NARZĘDZIE
WSPOMAGANIA DECYZJI MEDYCZNYCH.

CZĘŚĆ 1: NAJNOWSZE ZASTOSOWANIA
DO WCZESNEGO WYKRYWANIA NOWOTWORÓW

Streszczenie: W ciągu ostatnich dwudziestu lat zaproponowano wiele komputerowych sys-
temów wspomagania decyzji medycznych, opierających się na danych obrazowych. Systemy
te są w stanie zlokalizować patologicznie zmienione obszary, opisać właściwości rozpatry-
wanych tkanek, jak również dokonać ich klasyfikacji. Istotnym źródłem informacji zawartej
w obrazie jest jego tekstura. Cyfrowa analiza tekstur pozwala wykryć znacznie więcej szcze-
gółów obrazu, niż zwykła analiza wizualna. Odpowiedni dobór metod analizy tekstur może
przyczynić się do znacznego podwyższenia liczby trafnie rozpoznanych schorzeń. Wybór
ten często zależy od niuansów danego problemu diagnostycznego.
Niniejsza praca stanowi przegląd najczęściej stosowanych metod analizy tekstur (statystycz-
nych, opierających się na modelach, wykorzystujących filtry) oraz pokazuje ich zalety i
ograniczenia. Zawiera również przegląd najnowszych systemów do wczesnego wykrywa-
nia i rozpoznawania nowotworów, opierających się na analizie tekstury.

Słowa kluczowe: obrazowanie medyczne, analiza obrazów, tekstura, selekcja cech, wspo-
maganie decyzji medycznych, diagnoza wspomagana komputerowo

Artykuł zrealizowano w ramach pracy statutowej S/WI/2/2013.
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ADVANCES IN COMPUTER SCIENCE RESEARCH

TEXTURE ANALYSIS AS A TOOL FOR MEDICAL
DECISION SUPPORT.

PART 2: CLASSIFICATION OF LIVER DISORDERS
BASED ON COMPUTED TOMOGRAPHY IMAGES

Dorota Duda

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: Texture analysis has already demonstrated its great potential in many digital
image-based diagnostic systems. It allows to extract from an image many important diagnos-
tic information, impossible to capture with only the visual appreciation. The first attempts to
use a texture analysis (TA) as a tool for characterization of an image content took place in
the 70’s of the last century. Since then a variety of methods have been proposed and found
their application in many domains, also – in the medical field. However, it is still difficult to
indicate a method that would ensure satisfactory results for any diagnostic problem.
The present work gives an overview of the texture analysis methods, that have been applied
for hepatic tissue characterization from Computed Tomography (CT) images. It includes de-
tails of about forty studies, presented over the past two decades, devoted to (semi)automatic
detection or/and classification of different liver pathologies. Quoted systems are divided into
three categories: (i) based on a single-image texture of non-enhanced CT images of the liver,
(ii) based on a single-image texture of contrast-enhanced images, and (iii) based on a multi-
image texture. The latter ones concern a simultaneous analysis of sets of textures, each of
which corresponds to the same liver slice, but is related to a different contrast agent concen-
tration in hepatic vessels.

Keywords: medical imaging, image analysis, texture characterization, feature selection,
Computer Aided Diagnosis, CAD, medical decision support, liver, computed tomography,
CT

A list of abbreviations is given at the end of this article.

1. Introduction

In clinical practice, when dynamic CT of the liver is performed, three image series
are usually acquired: the first one – before the contrast agent injection, the next two

Advances in Computer Science Research, vol. 11, pp. 85-108, 2014.
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ones – after its injection, at arterial and at portal phase of its propagation [1]. The two
post-injection acquisition moments correspond, respectively, to the maximal concen-
tration of contrast agent that reaches the liver first via the hepatic artery, next – via the
portal vein. The arterial phase starts after about 25÷35 seconds after the intravenous
injection of contrast agent, the portal one – after about 60÷70 seconds. In some cases
a fourth – delayed hepatic phase is considered [2]. It takes place after about 5÷ 10
minutes succeeding the injection. Each of the three (or even four) images enhances a
different tissue property, that could reveal a development of a pathology. In the case
of the liver CT – it can be excessive or insufficient growth of the arterial or of the
portal vascular tree. After injection of the contrast agent, the high vascularization re-
gions are more enhanced than those with normal vasculature, and less vascularized
regions appear darker. The presence of contrast agent in hepatic vessels results also
in changes of texture properties, imperceptible to the naked eye.

In the first part of the study [3], several approaches to characterization of image
textures were presented. They based on:

– Gray Level Histogram (GLH), giving the First Order Statistics (FOS),
– Co-Occurrence Matrices (COM) [4–6],
– Run Length Matrices (RLM) [7–9],
– Gray Level Difference Matrices (GLDM) [10],
– Gradient Matrices (GM) [11],
– Texture Feature Coding Method (TFCM) [12],
– Autocorrelation Coefficients (AC) [13],
– Fractal Model (FM) [14–24],
– Discrete Wavelet Transform (DWT) [25],
– Laws’ Texture Energy (LTE) [26].

The aim of this part is to examine which of these methods have found their application
in Computer-Aided Diagnosis (CAD) systems, based on CT images of the liver.

The first attempts to liver texture characterization from CT images (about 20
years ago) considered only the non-enhanced images. Over the time, with a devel-
opment of imaging technique and with more and more wider access to studies it has
become possible to perform frequent imaging after administration of contrast agent.
Despite the availability of several series of images depicting the same part of liver,
texture analysis was performed yet for a long time on only one image (contrast-
enhanced, or still non-enhanced) . It is about 10 years ago, that the systems adapted
for multi-image texture analysis were introduced. Such systems tried to find tissue
characteristics based on analysis of several CT liver images, acquired at the same
slice location, but under different conditions (different moments of contrast agent
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propagation). Given the above, the review will present at first the systems based on
the analysis of a single image, acquired without contrast. Next, the systems dealing
with single-image textures, acquired after administration of contrast agent, will be
described. Finally, the multi-image texture-based systems will be quoted. The work
will be finished by general conclusions, drawn on the basis of the three parts of the
review.

2. Application of texture analysis in classification of liver disorders
based on CT images

2.1 Texture analysis of single liver CT image acquired without contrast agent

One of the earliest studies on the possibility of applying a texture analysis for the
characterization and recognition of liver tissue, from CT images, was presented in
1995 [27]. This work had two main objectives. The first was to investigate whether
the texture could be used to discriminate between various tissue types, providing the
information not accessible to human perception. The second was to find the most
useful features, in terms of tissue classification. In the study textural features ob-
tained by the COM (12 features), RLM (15 features) and the GLDM (20 features)
methods were used. Three types of hepatic tissue were characterized: normal liver,
abnormal liver with the clearly visible malignancy, and abnormal one with the invisi-
ble malignancy. The performance of features was compared on the basis of statistical
significance. It was found that the three features: entropy, local homogeneity (COM
method) and gray level distribution (RLM method) were the most appropriate to de-
tect an invisible (early) liver malignancy with a confidence level of above 99%

From this moment, quite a lot of semi-automatic systems for liver tissue recog-
nition from CT images have been proposed. In many of them, especially in the earlier
ones, the tissue was characterized on the basis of only one image, acquired without
injection of contrast agent [16, 28–38]. Quoted systems utilized several methods for
extraction of textural features. They included: gray-level histogram, co-occurrence
matrices, run length matrices, gray level difference matrices, fractal model, Laws’
texture energy measures, autocorrelation coefficients, or different frequency meth-
ods. A list of systems and tested methods is given in Table 1. Due to the fact that
each of the systems used different classifiers and that the methods for their quality
assessment were also different, the table do not contain the best classification results.

For example, the system evaluated by Chen et al. [16] was able to automatically
find the liver, to extract its boundaries and to recognize two types of liver tumors:
hepatoma and hemangioma. In this system, the image texture was characterized by
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Table 1. Comparison of systems based on single liver CT images acquired without contrast agent

Work Year TA Methods Tissue Classes and number of cases

Mir et al. [27] 1995
– COM
– RLM
– GLDM

– normal (200)
– abnormal, clearly visible (200)
– abnormal invisible (200)

Chen et al. [16] 1998
– COM
– FM

– hepatoma (20)
– hemangioma (10)

Husain et al. [28] 2000
– FOS
– COM

– normal
– abnormal

Sariyanni et al. [29] 2001 – FM
– healthy (99)
– HCC (50)

Gletsos et al. [30] 2003
– COM
– FOS

– healthy (76)
– liver cysts (19)
– hemangioma (28)
– HCC (24)

Valavanis et al. [31] 2004

– FOS
– COM
– GLDM
– LTE
– FM

– healthy (76)
– liver cysts (19)
– hemangioma (28)
– HCC (24)

Mala et al. [32] 2005
– OWT & FOS
– OWT & COM

– steatosis (70)
– cirrhosis (70)

Huang et al. [33] 2006 – AC
– malignant (80)
– benign (84)

Stoitsis et al. [34] 2006

– FOS
– COM
– GLDM
– LTE
– FM

– healthy (76)
– liver cysts (19)
– hemangioma (28)
– HCC (24)

Mougiakakou et al. [35] 2007

– FOS
– COM
– GLDM
– LTE
– FM

– healthy (76)
– liver cysts (19)
– hemangioma (28)
– HCC (24)

Ganeshan et al. [36] 2009
– filters & FOS
– filters & COM

– absence of malignancy (15)
– malignancy not related to the liver (9)
– liver metastases (8)

Kumar et al. [38] 2013

– FOS
– COM
– CCT & FOS
– CCT & COM
– WCT & FOS
– WCT & COM

– HCC (150)
– hemangioma (150)
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features obtained from the co-occurrence matrices (here, the correlation and sum
entropy turned out to be the best ones) and its fractal dimension, evaluated from a
fractional Brownian motion model (the method developed by authors and described
in their work). A probabilistic Neural Network (NN) [39] was used as a classifier.
The proposed system was tested on 30 liver cases and shown to be quite efficient.

Another system, described in [28], was also able to recognize a liver region (nor-
mal and abnormal) on CT images. The system used the gray-level histogram features
(mean gray level, standard deviation, and skewness) in combination with the COM-
based features (entropy, homogeneity), and a back-propagation Neural Network [40]
as a classifier. The system was able to recognize correctly more than 95% of analyzed
cases.

Sariyanni et al. [29] tried to recognize a healthy liver tissue and a tissue affected
by hepatocellular carcinoma (HCC). As texture descriptors, they used a fractal dimen-
sions calculated from four different methods: the power spectrum method (belong-
ing to the fractional Brownian motion methods) [21], the box-counting method, the
morphological fractal estimator (belonging to the area measurement methods) [22],
and the kth-Nearest Neighbor estimator (k-NN), proposed by authors. The Fuzzy C-
Means algorithm [41] was then applied for clustering the input data into two clusters.
It revealed that the k-NN estimator, introduced by authors, outperforms the other
methods.

The work of Gletsos et al. [30] described a CAD system adapted to the recog-
nition of four types of liver tissue: healthy, liver cysts, hemangioma, and hepato-
cellular carcinoma. It used 48 texture descriptors derived from the co-occurrence
matrices, and the average gray level of the Regions of Interest (ROIs). The classifi-
cation module consisted of three sequentially placed feed-forward Neural Networks,
each adapted to perform a pairwise classification. The first one distinguished nor-
mal from pathological liver regions, the second one recognized pathological regions
and distinguished cysts from "other pathologies", and the third one distinguished be-
tween "other pathologies" – hemangioma and HCC. Three feature selection tech-
niques were used separately for each binary classifier: the Sequential Forward Selec-
tion (SFS) [42], the Sequential Floating Forward Selection (SFFS) [43], and Genetic
Algorithm for feature selection (GAs) [44] with the implementation based on the
work [45]. The feature selection used a criterion based on the squared Mahalanobis
distance between the populations of the two classes for each binary NN classifier.
Finally, several subsets of features were considered for classification experiments.
The CAD performance was tested with validation and testing sets, each containing
a portion (1/5) of the initial data. Results obtained for different sub-sets of features
differed from one another. The best overall classification accuracy was of 97%.
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A more developed system was presented by Valavanis et al. [31]. It was eval-
uated in the process of recognition of four types of focal liver lesions, the same
that were considered in [30]. The number of ROIs for each tissue class was also the
same. Here, the relevance of the five texture characterization methods was assessed.
Among the tested methods were: the method based on the gray-level histogram, the
co-occurrence matrices, the run length matrices, the Laws’ texture energy measures,
and the fractal model. The most useful features were found using a feature selection,
based on Genetic Algorithms. Classification was carried out by Neural Networks
(three-layer feed-forward NN and Radial Basis Function (RBF) NN) and statistical
methods (k-NN [46] with different k). Here, the best classification accuracy was equal
to 90.63%. Similar works have been described, some years later, in [34], and further
– in [35]. The continuation of this research has finally resulted in the creation of
a telematics-enabled system for image archiving, management, and diagnosis sup-
port [37]. This integrated CAD system performed an image preprocessing, a semi-
automatic image segmentation, an extraction of texture features, and a classification.

Another CAD system was proposed by Mala et al. [32], in order to classify two
diffused liver diseases, steatosis and cirrhosis. First, it performed an automatic extrac-
tion of liver, using adaptive threshold and morphological processing. Second, images
were transformed into frequency domain using the Orthogonal Wavelet Transform
(OWT). Then, the statistical features were calculated based on the horizontal, the
vertical, and the diagonal details extracted from the images. They included: mean,
standard deviation, contrast, entropy, homogeneity, and angular second moment. Fi-
nally, the two-layer probabilistic Neural Network was used as a classifier. The system
was trained on 40 cases and tested on 100 ones. Both classes were equally numerous
in the train end the test set. The classification accuracy of 95% was achieved.

The next CAD example was described by Huang et al. [33]. Their system was
adapted for differentiation between two groups of liver tumors: malignant (primary
tumor – HCC or secondary tumors – metastases) and benign. As texture parame-
ters, only the normalized autocorrelation coefficients were used. The classification
was performed with the Support Vector Machines (SVM) [47]. The k-fold cross-
validation [48] was used to evaluate the performance of the proposed diagnostic sys-
tem. The classification accuracy was of nearly 82%.

The objective of yet another research, presented by Ganeshan et al. [36], was to
determine whether the textures corresponding to the apparently healthy liver regions
were altered by the presence of malignancy in patients with colorectal cancer. Three
types of liver tissue were considered. The first one corresponded to an absence of ma-
lignancy, the second one – to the presence of a malignancy but not related to the liver,
and the third one – to the presence of liver metastases. Here the frequency methods
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in combination with statistical approaches were used to characterize hepatic tissue.
The following statistical descriptors of texture were derived from both unfiltered and
filtered images (highlighting fine, medium, and coarse texture): mean gray level, en-
tropy, and uniformity. The experiments showed that textural features obtained from
the filtered images were statistically different for each of the three considered tissue
classes.

The most recently, Kumar et al. [38] developed a texture-based CAD system,
specialized in discrimination between malignant (hepatocellular) and benign (he-
mangioma) liver tumors. Their work tested several sets of features: gray-level tex-
ture features (first order statistics and second order, COM-based texture descriptors),
Wavelet Coefficient Texture (WCT) features (first- and second- order statistics), and
Contourlet Coefficient Texture (CCT) features [49, 50] (also of the first- and of the
second order). As numbers of considered features were quite large (in total about
300 features were tested) the Principal Component Analysis (PCA) [51] was applied
for a dimensionality reduction. The ability of each feature set in differentiating ma-
lignant from benign tissues was assessed with a probabilistic Neural Network classi-
fier. The areas under the Receiver Operating Characteristic (ROC) curves (AUC) [52]
were used for measuring the system performance. The highest classification accuracy
(96.7%), as well as the highest sensitivity and specificity (97.3% and 96%, respec-
tively) were obtained with the contourlet coefficient co-occurrence features.

2.2 Texture analysis of single liver CT image acquired after administration of
contrast agent

Preliminary studies on processing of contrast-enhanced CT images for semi-
automatic recognition of liver disorders were reported by Krętowski [53]. The work
aimed at comparing the classification accuracy obtained for the three acquisition mo-
ments, typical for the CT of abdominal organs (without injection, arterial phase, por-
tal phase). Five types of liver tissue were differentiated: the healthy liver and four
types of its metastases: insulinoma, adenocarcinoma (kidney), adenocarcinoma (in-
testine) and leiomyosarcoma. The image database was divided into three parts, each
of which being composed of images corresponding to one (of the three considered)
acquisition moment. The tissue was characterized by features calculated with the
FOS, GM, COM and RLM methods. The texture classification was performed by
oblique (multivariate) Dipolar Decision Trees [54], separately for each of the three
parts of the database. The classification accuracy for acquisitions with contrast mate-
rial outperformed the results obtained for those without contrast. The highest classi-
fication accuracy was observed for the arterial phase.
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The systems for liver tissue characterization and recognition from enhanced CT
images began to appear after this moment [55–65]. The texture analysis in these
systems was performed with the following methods: FOS, COM, RLM, GLDM, LTE,
or frequency methods (see the comparison in Table 2). However, all of those systems
were still limited to the analysis of only one image at a time and they did not consider
the changes in texture properties during the propagation of contrast material.

For example, Bilello et al. [55] presented a system working on portal-phase im-
ages. It combined the methods for detection, characterization and classification of
liver hypodense hepatic tissue (cysts, hemangiomas, and metastases). Its texture was
characterized with the frequency methods. Then the Support Vector Machines were
used to perform a pairwise lesion classification. In order to evaluate the system per-
formance, the Free-Response Receiver Operator Characteristic Curves (FROC) [66]
were utilized. The system assured perfect discrimination (100% of correctly recog-
nized cases) between hemangiomas and cysts, good discrimination between cysts and
metastases (at 95% sensitivity for detection of metastases, only about 5% of cysts
were incorrectly classified as metastases), and was least accurate in discriminating
between hemangiomas and metastases (at 90% sensitivity for detection of heman-
giomas, about 28% of metastases were incorrectly classified as hemangiomas).

The system described by Lambrou et al. [56], differentiated between healthy and
tumorous tissue. To extract texture features, it used a wavelet transform method, in
combination with three statistical methods (based on the gray level histogram, the co-
occurrence matrices, and the run length matrices). Three statistical classifiers were
employed in the study: minimum distance classifier, quadratic minimum distance
classifier, and Bayes classifier [46]. The performance of the classifiers was assessed
with the leave-one-out method [48]. The first- and the second order statistics turned
out to be better (yielding the classification accuracies exceeding 90%) than those
derived from the wavelet-based techniques.

Another system, developed by Smutek et al. [57], focused on the analysis of
focal liver lesions (HCC and cysts). It used the first- and the second order texture
features (COM-based). The analyzed images corresponded to the late portal phase.
In the system, an ensemble of Bayesian classifiers was applied. The classification
accuracy was assessed by leave-one-out method. The system was able to classify
correctly even 100% of recognized cases.

Mala et al. [58] presented a system adapted to the recognition of four types
of liver diseases: HCC, cholangiocarcinoma, hemangeoma and hepatoadenoma. This
system was able to automatically detect the areas affected by a disease, to characterize
a tissue (using Biorthogonal Wavelet Transform (BWT) and co-occurrence matrices
derived from the transformed images), to select the best texture features, and, finally,
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Table 2. Comparison of systems based on single liver CT images acquired after administration of con-
trast agent

Work Year TA Methods Tissue Classes and number of cases

Krętowski [53] 2002

– FOS
– GM
– COM
– RLM

– healthy (192)
– insulinoma (126)
– adenocarcinoma / kidney (104)
– adenocarcinoma / intestine (107)
– leiomyosarcoma (68)

Bilello et al. [55] 2004 – filters
– hemangiomas (11)
– cysts (25)
– metastases (52)

Lambrou et al. [56] 2006
– WT & FOS
– WT & COM
– WT & RLM

– healthy (425)
– tumor (425)

Smutek et al. [57] 2006
– FOS
– COM

– HCC (425)
– cysts (110)

Mala et al. [58] 2007 – DTW & COM

– HCC (60)
– cholangiocarcinoma (60)
– hemangeoma (60)
– hepato adenoma (30)

Lee et al. [59] 2009
– FOS
– GTF

– cyst (70)
– hepatoma (70)
– cavernous hemangioma (33)
– normal liver (60)

Wang et al. [61] 2009

– FOS
– COM
– GLDM
– RLM

– HCC (30)
– hemangioma (30)
– normal (30)

Mala et al. [62] 2010
– BWT & FOS
– BWT & COM)

– fatty (100)
– cirrhotic (100)

Kayaalti et al. [63] 2014

– COM
– RLM
– GTDM
– LTE
– DWT
– DFT
– GF
– FOS

– fibrosis, stage 0 (21)
– fibrosis, stage 1 (16)
– fibrosis, stage 2 (12)
– fibrosis, stage 3 (16)
– fibrosis, stage 4 (13)
– fibrosis, stage 5 (13)
– fibrosis, stage 6 (25)

Rao et al. [64] 2014
– filters & FOS
– filters & COM

– without metastases (15)
– synchronous metastases (10)
– metachronous metastases (4)

Simpson et al. [65] 2014 – COM
– postoperative liver failure (12)
– no liver failure (24)
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to classify tissues, using a probabilistic Neural Network. The BWT enabled to obtain
horizontal, vertical, and diagonal details of images. Then, 10 features were extracted
for each of three resulting images. Feature selection was performed here with a Se-
quential Backward Elimination (SBE) [42]. Regarding the classification experiments
– all the available data were randomly divided into two equally numerous sets (for
training and testing). Each experiment was repeated 5 times. The best classification
result was of 90.2%.

The aim of another work [59] was to automatically discriminate liver diseases
using a sigmoid Radial Basis Function Neural Network with growing and pruning
algorithm (described by the authors). This time cyst, hepatoma, cavernous heman-
gioma, and normal liver tissue were recognized. The ROIs were characterized using
gray level and Gabor Texture Features (GTF) [67, 68]. The ROC curves were used
to evaluate the diagnosis performance, and the area under ROC curve measured the
classification accuracies. The best classification result exceeded 99%.

The study presented in [60] aimed at the assessment of the utility of texture
analysis of liver CT images, and at the comparison of the abilities of texture analysis
and hepatic perfusion CT to help predict survival for patients with colorectal cancer.
The texture analysis comprised two stages. The first one was the image filtration
(here, a Laplacian of Gaussian band-pass filter was chosen). The second one was
the quantification of texture (here, the mean gray-level intensity and uniformity were
used). The study provided preliminary evidence that analysis of liver texture on portal
phase CT images was potentially a superior predictor of survival for patients with
colorectal cancer than the CT perfusion imaging.

Wang et al. [61] tested yet another diagnostic system, which worked with the
three types of liver tissue: HCC, hemangioma, and normal one. This system used
four texture analysis methods (based on the gray level histogram, the co-occurrence
matrices, the gray level difference matrices, and the run length matrices). As a clas-
sifier the Support Vector Machines were used, and two strategies were considered in
order to ensure a multi-class classification: One-Against-All (OAA) [69] and One-
Against-One (OAO) [70]. The performance of the CAD system was estimated by the
5-fold cross-validation. The experiments on 90 ROIs, described by set of 22 textural
features, gave the overall classification accuracy of about 94% and 98%, for the OAA
and the OAO strategy, respectively.

In yet another work [62], a CAD system used the wavelet-based statistical tex-
tural features as tissue descriptors. The system was able to extract the liver, and to
recognize between fatty and cirrhotic liver tissue. In this work, the original images
were first decomposed using a biorthogonal wavelet transform. Then, as in the previ-
ous work of the same team [32], the second order statistical features were extracted in
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horizontal, vertical and diagonal directions. After performing a feature selection, the
most robust texture descriptors were fed to the three types on Neural Networks. The
10-fold cross-validation procedure was used to evaluate the system abilities. The ex-
periments on 200 patients resulted in quite high percentages of correctly recognized
characters (reaching 96%).

The most recent studies, published this year, are also based on texture analysis of
contrast-enhanced CT images, acquired at portal venous phase [63–65]. For example,
Kayaalti et al. [63] recognized seven possible stages of liver fibrosis. For this pur-
pose, eight methods for texture feature extraction were tested. They were based on:
co-occurrence matrix, run length matrix, Gray Tone Difference Matrix (GTDM) [71],
Laws’ filters, Discrete Wavelet Transform [72], Discrete Fourier Transform (DFT),
Gabor Filters (GF) [73], and first order statistics. For each combination of classes, a
sequential floating forward selection and exhaustive search methods were used in or-
der to find the best texture descriptors. The pairwise classification experiments with
Support Vector Machines and k-NN classifier showed that DWT, Gabor, COM, and
Laws’ features were more successful than the others. The performances of the classi-
fiers were assessed by 2- or 3-fold cross-validation. When only 5 features were used,
the mean classification accuracy in pairwise group comparisons was approximately
95% for both the k-NN and the SVM method.

Rao et al. [64] evaluated the potential of analysis of the whole liver with ap-
parently disease-free parenchyma, for discriminating between three types of colorec-
tal cancer patients: without liver metastases, with synchronous liver metastases, and
with metachronous metastases. In their work, a texture characterization comprised
two stages. First, images were filtered with a Laplacian of Gaussian band-pass filter
with different bandwidths. Afterwards, three features were calculated from the fil-
tered and the unfiltered images: entropy, uniformity, and mean gray-level intensity.
The ROC analyses were conducted to determine the diagnostic performance of the
considered features. As a result, mean entropy and uniformity in patients with syn-
chronous metastases were significantly different compared with the non-metastatic
patients, while texture parameters for the metachronous metastases group were not
significantly different neither from the non-metastatic group nor from synchronous
metastases group.

Finally Simpson et al. [65] used some COM-based features of preoperative CT
images of the liver, in order to predict a postoperative liver failure after hepatic resec-
tion. The study was undertaken on 36 patients. It was discovered that the following
features: contrast, correlation, cluster prominence, and normalized inverse difference
moment were significantly different between patients with and without postoperative
liver failure.
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2.3 Multi-image texture analysis, involving non-enhanced and
contrast-enhanced liver CT images

In [74] a simultaneous analysis of triplets of liver textures, corresponding to the three
aforementioned typical acquisition moments, was proposed. At first, the three cor-
responding simple textures were characterized separately by features obtained from
gray-level histogram, Laws’ filtering, COM and RLM methods. As a result, three fea-
ture sets, each characterizing one of the three textures, were obtained. Then, all the
features from those three sets were placed together in one feature vector, character-
izing a multi-image ("triphase") texture. As a classifier, an oblique Decision Dipolar
Tree was used. The 5-times repeated 10-fold cross-validation procedure was applied
to estimate the classification accuracy. Three types of liver tissue were recognized:
healthy liver and its two main primary malignant tumors (HCC and cholangiocarci-
noma). The classification accuracies obtained for triphase textures were significantly
higher than those corresponding to each acquisition moment separately. For example,
the best classification accuracies obtained with the set of the 8 RLM-based features
were: 95.5%, 93.9%, and 95.5% for the no-contrast, the arterial, and the portal phase,
respectively, while considering simultaneously the three phases resulted in the 99.7%
of correctly diagnosed cases. Further work of the same team [75] has confirmed that
a simultaneous analysis of images, corresponding to the three acquisition moments
could lead to better results that the simple texture analysis – performed when only
one acquisition moment is considered.

An approach similar to the two preceding ones was used by Quatrehomme et
al. [76]. In their work, the analysis of multi-image textures was performed on four-
phase CT scans of the liver: the first one – taken in pre-injection phase, the next three
ones – after injection of contrast material, in arterial, portal and late phase. Five types
of hepatic lesions were differentiated: cysts, adenomas, haemangiomas, HCC and
metastases. Four techniques for feature extraction were used. They based on: gray-
level histogram, Gaussian Markov Random Fields (GMRF) measures [77], LTE mea-
sures, and Unser Histograms Statistics (UHS) [78]. Features, calculated separately for
four considered acquisition moments were placed side by side in a multiphase vector,
describing four-phase textures. As a classifier, the SVM were used. Its performance
was evaluated by the leave-one-out technique. The results obtained with multi-image
approach were significantly better than for the case of a single-image texture analysis.

A multi-phase liver images, derived from the four image series (non-enhanced,
arterial, portal, and delayed) were also considered by Chi et al. [79]. Their system
was designed in order to help radiologists in characterization of various focal liver le-
sions. Six types of lesions were considered: HCC, hemangioma, cysts, liver abscess,
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Focal Nodular Hyperplasia (FNH), and metastases. The latter class included: pan-
creatic carcinoma, sigmoid carcinoma, rectal carcinoma, colorectal carcinoma, and
gallbladder carcinoma. The system first localized a lesion on multi-phase CT using
a hybrid generative-discriminative method [80]. Then, a lesion was selected in one
phase, and nonrigid B-spline registration [81] was employed in order to align the im-
ages of all the four phases. The tissue was characterized by a simultaneous analysis
of textures corresponding to the four considered phases. Feature vectors were com-
posed of multi-phase density characteristics and combinations of the co-occurrence
matrix-based parameters, calculated for each of four phases. The system compared
a tested lesion with the model lesions from a reference database (characterized by
vectors of features), and measured their similarities using the L1-norm-based simi-
larity scores. The reference cases which were the most similar to the examined one
were finally provided to the users for their later studies. The system was tested on a
database of 69 cases and evaluated using the precision-recall curves and the "Bull’s
Eye Percentage" (BEP) score [82]. A multi-image texture analysis resulted in a BEP
value of 78%, while the best results for a single-phase cases were about 63% – 65%.

The aim of two other studies [83, 84] was to determine preliminarily how some
of the hepatic texture features (entropy, uniformity) change during the propagation of
contrast agent and to assess whether the differences in these changes between tumor-
ous and non-tumorous liver tissue were statistically significant. The potential utility
of Dynamic Contrast-Enhanced (DCE) texture analysis of the liver was compared
to the potential of the measurements of hepatic attenuation and perfusion, obtained
from the kinetic modeling. The study concerned patients following a resection of col-
orectal cancer and having apparently normal hepatic morphology. It showed that the
temporal changes of the two considered textural features were different from those
for hepatic attenuation and they were statistically significant between tumorous and
non-tumorous patients. It also demonstrated that the textural features were less sen-
sitive to changes in CT acquisition conditions (current and voltage variations).

In yet another work [85], four images of the same slice location, corresponding
to subsequent moments of contrast agent propagation (pre-contrast, arterial, portal
venous and delayed phase) were analyzed simultaneously. Here, four hepatic tissue
classes were differentiated: normal, cyst, haemangioma and HCC. In contrast to the
above cited works, this work considered only the combinations of the mean pixel
values of ROI in different phases as temporal features. These were: relative signal
intensity, intensity change tendency, and signal enhancement ratio. In addition, a
few sets of textural features (gray-level histogram-based, COM-based, and selected
features) were used in the four single-phase classification tasks. As a classifier, three
hierarchically organized binary SVMs were used. The classification accuracy was
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assessed by k-fold cross validation. Here, the application of temporal characteristics
did not result in better tissue recognition, in comparison with the best results obtained
with textural features for each separate moment of contrast agent propagation. It is
with a set of combined features (FOS, COM, and temporal) that the best classification
accuracy was achieved: 95.5%, 97.2% and 96.4% for normal vs abnormal, cyst vs
other disease and carcinoma vs haemangioma sub-problems, respectively.

Finally, in [86], 61 textural features were evaluated in the task of distinguish-
ing between four classes of liver tissue: HCC, cholangiocarcinoma, cirrhosis, and
healthy. The study involved: 4 first order statistics, 4 gradient-based features, 11
COM features, 8 RLM features, 5 GLDM features, 19 features obtained with Laws’
filtering, 2 fractal dimension estimates, 7 TFCM-based statistics, and 1 normalized
autocorrelation coefficient. Such features were calculated separately for each for the
three considered moments of contrast agent propagation: no-contrast, arterial phase,
and portal phase. In total 3×61 = 183 tissue descriptors were considered. The choice
of the most useful features proceeded in two stages. At the beginning, unstable fea-
tures (sensitive to small changes in ROI size and/or in ROI position) were rejected.
Then, a simplified Monte Carlo feature selection (initially proposed by Draminski
et al. [87]) was performed in order to find the most robust features. Classification
experiments were performed using an Adaptive Boosting (AdaBoost) algorithm [88]
with a C4.5 tree [89]. They revealed that a small set of 12 features was able to en-
sure classification accuracy exceeding 90%, while all of the 183 features provided an
accuracy rate of 88.94%.

Table 3 summarizes the most important information about selected CAD sys-
tems, adapted for characterization of multi-image liver CT textures.

3. Conclusion

A vast variety of CAD systems adapted for recognition of liver disorders from CT im-
ages were developed over the past 20 years. The most frequently diagnosed patholo-
gies were: primary malignant liver tumors (like HCC or cholangiocarcinoma), sec-
ondary tumors (different types of metastases), benign liver tumors (hemangiomas) or
other benign liver changes, like steatosis (fatty change), cirrhosis, or fibrosis. Despite
numerous proposals for texture analysis methods, that can be found in the literature,
the presented systems use only a few approaches for texture characterization. The
most popular are those that use: co-occurrence matrices, run length matrices, first or-
der statistics, fractal models, Laws’ texture energy measures, and different frequency
methods. Each of described systems was tested on different data (different were: im-
age resolutions – spatial and in gray levels, preprocessing techniques, numbers of
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Table 3. Comparison of selected CAD systems based on multi-image texture analysis, involving non-
enhanced and contrast-enhanced liver CT images

Work Year TA Methods Tissue Classes Phases

Duda et al. [74] 2006

– FOS
– COM
– RLM
– LTE

– healthy (150)
– HCC (150)
– cholangiocrcinoma (150)

– no contr.
– arterial
– portal

Ye et al. [85] 2009
– FOS
– COM

– normal (64)
– cysts (14)
– haemangioma (27)
– HCC (26)

– no contr.
– arterial
– portal
– delayed

Quatrehomme et al. [76] 2013

– FOS
– MRF
– LTE
– UHS

– cysts (25)
– adenomas (10)
– HCC (13)
– metastases (38)

– no contr.
– arterial
– portal
– delayed

Chi et al. [79] 2013
– FOS
– COM

– HCC (16)
– hemangioma (16)
– cysts (15)
– liver abscess (7)
– FNH (5)
– metastases (10)

– no contr.
– arterial
– portal
– delayed

Duda et al. [86] 2013

– FOS
– COM
– RLM
– GLDM
– GM
– TFCM
– AC
– LTE

– normal (573)
– cirrhosis (433)
– HCC (319)
– cholangiocarcinoma (222)

– no contr.
– arterial
– portal
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ROIs, ROI sizes, classification algorithms, ...). Different methods were used for the
evaluation of the system classification performance (leave-one-out, cross-validation,
using a training set). Therefore, it is difficult to conclude which TA method could be
the best possible one. Nevertheless, it can be noticed, that some methods have proven
to be reliable for each classification task. For example, the COM-based method was
successfully used for both the classification of non-enhanced images (acquired with-
out contrast agent) and of enhanced images (acquired after administration of contrast
agent). Other methods were frequently considered only for one type of images. In the
case of the cited works, the fractal model-based texture features were of frequent con-
sideration for non-enhanced images, whereas the first order statistics and run length
matrices were most often utilized for the enhanced ones. Some experiments have also
shown that image pre-filtering (like with WT, DWT, BWT, DFT), performed before
extraction of the first- and the second order texture features, could lead to better tissue
characterization (in terms of classification process) than the use of statistical meth-
ods alone. The comparison of results for non-enhanced an enhanced single-image
textures shows that considering the texture changes introduced with the presence of
the contrast agent could be a better solution. Finally, it is with the multi-image texture
analysis, that the best results could be achieved.

Abbreviations

AdaBoost: Adaptive Boosting algorithm
AUC: Area Under the ROC Curve
BEP: "Bull’s Eye Percentage"
BWT: Biorthogonal Wavelet Transform
CAD: Computer-Aided Diagnosis
CCT: Contourlet Coefficient Texture features
COM: Co-Occurrence Matrix
CT: Computed Tomography
DCE: Dynamic Contrast-Enhanced
DFT: Discrete Fourier Transform
DWT: Discrete Wavelet Transform
FM: Fractal Model
FNH: Focal Nodular Hyperplasia
FOS: First Order Statistics
FROC: Free-Response ROC Curves
GAs: Genetic Algorithm for feature selection
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GF: Gabor Filters
GLDM: Gray Level Difference Matrix
GLH: Gray Level Histogram
GM: Gradient Matrix
GMRF: Gaussian Markov Random Fields
GTDM: Gray Tone Difference Matrix
GTF: Gabor Texture Features
HCC: Hepatocellular Carcinoma
k-NN: k-Nearest Neighbors (classifier)
LTE: Laws’ Texture Energy
NA: Autocorrelation Coefficients
NN: Neural Network (classifier)
OAA: One-Against-All
OAO: One-Against-One
OWT: Orthogonal Wavelet Transform
PCA: Principal Component Analysis
RBF: Radial Basis Function
RLM: Run Length Matrix
ROC: Receiver Operating Characteristic
ROI: Region of Interest
SBE: Sequential Backward Elimination
SFFS: Sequential Floating Forward Selection
SFS: Sequential Forward Selection
SVM: Support Vector Machines (classifier)
TA: Texture Analysis
TFCM: Texture Feature Coding Method
UHS: Unser Histograms Statistics
WCT: Wavelet Coefficient Texture features
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ANALIZA TEKSTUR JAKO NARZĘDZIE
WSPOMAGANIA DECYZJI MEDYCZNYCH.

CZĘŚĆ 2: KLASYFIKACJA PATOLOGII WĄTROBY
NA OBRAZACH TOMOGRAFII KOMPUTEROWEJ

Streszczenie: Analiza tekstur jest szeroko stosowana w wielu cyfrowych systemach wspo-
magania decyzji medycznych, na podstawie danych obrazowych. Pozwala ona wydobyć z
obrazu istotne szczegóły, których nie można dostrzec podczas analizy wizualnej. Pierwsze
próby analizy tekstur miały miejsce w latach siedemdziesiątych ubiegłego wieku. Od tamtej
pory zaproponowano wiele metod analizy tekstur. Trudno jest jednak wskazać metodę uni-
wersalną, która zapewniłaby zadowalające wyniki dla każdego problemu diagnostycznego.
Niniejsza praca stanowi przegląd metod analizy tekstur, stosowanych do opisu tkanki wątro-
bowej na obrazach tomografii komputerowej. Przedstawia informacje o około czterdziestu
systemach diagnostycznych, zaproponowanych w ciągu ostatnich dwóch dekad, poświęco-
nych (pół)automatycznemu wykrywaniu lub / i klasyfikacji schorzeń wątroby. Opisywane
systemy zostały podzielone na trzy kategorie: (i) opierające się na teksturze pojedynczego
obrazu, pozyskanego bez podawania pacjentowi środka kontrastującego, (ii) opierające się
na teksturze pojedynczego obrazu, pozyskanego po podaniu pacjentowi środka kontrastują-
cego, oraz (iii) opierające się na jednoczesnej analizie wielu tekstur. Te ostatnie odnoszą się
do analizy zestawów tekstur przedstawiających ten sam wycinek wątroby, lecz odpowiada-
jących różnym stężeniom środka kontrastowego w jej naczyniach krwionośnych.

Słowa kluczowe: obrazowanie medyczne, analiza obrazów, tekstura, selekcja cech, wspo-
maganie decyzji medycznych, diagnoza wspomagana komputerowo, wątroba, tomografia
komputerowa

Artykuł zrealizowano w ramach pracy statutowej S/WI/2/2013.
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ADVANCES IN COMPUTER SCIENCE RESEARCH

ESTIMATION OF PARAMETERS OF GAUSSIAN
MIXTURE MODELS BY A HYBRID METHOD

COMBINING A SELF-ADAPTIVE DIFFERENTIAL
EVOLUTION WITH THE EM ALGORITHM

Wojciech Kwedlo

Faculty of Computer Science, Bialystok University of Technology, Białystok, Poland

Abstract: In the paper the problem of learning of Gaussian mixture models (GMMs) is
considered. A new approach based on hybridization of a self-adaptive version of differential
evolution (DE) with the classical EM algorithm is described. In this approach, called DE-
EM, the EM algorithm is run until convergence to fine-tune each solution obtained by the
mutation and crossover operators of DE. To avoid the problem with parameter representation
and infeasible solutions we use a method in which the covariance matrices are encoded using
their Cholesky factorizations. In a simulation study GMMs were used to cluster synthetic
datasets differing by a degree of separation between clusters. The results of experiments
indicate that DE-EM outperforms the standard multiple restart expectation-maximization
algorithm (MREM). For datasets with high number of features it also outperforms the state-
of-the-art random swap EM (RSEM).

Keywords: Gaussian mixture models, differential evolution, expectation maximization,
model-based clustering

1. Introduction

Gaussian mixture models (GMMs) [18] are one of the most versatile probability
density models, which are used commonly in machine learning and pattern recog-
nition. They are capable of approximating any multimodal distribution. Applications
of GMMs include clustering [7] discriminant analysis [9], speaker recognition [22]
and texture segmentation [19].

The standard method for maximum likelihood estimation (MLE) of parameters
of GMMs is the expectation-maximization (EM) algorithm [21]. It starts from an
initial set of mixture parameters and generates a sequence of mixture parameters with

Advances in Computer Science Research, vol. 11, pp. 109-123, 2014.
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increasing log likelihood. However, the application of the EM algorithm to GMM
parameter learning has several issues. The most important of these is ease of getting
trapped in a local maxima of the log likelihood. Consequently the quality of the final
solution is strongly dependent on the initial guess of the mixture parameters.

The most common approach proposed to overcome the above problem is to run
the EM algorithm many times, starting each run from different random initial con-
ditions, and return the solution with the highest log likelihood. We call this method
multiple restart EM (MREM). However this approach lacks effective utilization of
available CPU time, as multiple independent EM procedures are likely to exploit
similar local maxima.

In [3], an extension of MREM called emEM was proposed. The idea of emEM
involves performing several short EM runs using different random starting points and
a lax convergence criterion. The mixture parameters obtained by the best (in the sense
of the highest log p(X |Θ)) short run are used as a starting point for a long EM run.
This strategy can be improved by repeating it many times until the available CPU
time is exhausted. A variant of emEM called rndEM [16] reduces the short EM phase
to the evaluation of log p(X |Θ) of the random starting position.

Researchers investigating the problem of local maxima of the log likelihood
have increasingly started to apply population based global optimization algorithms
such as genetic algorithms [1,17,20], particle swarm optimization (PSO) [2] or dif-
ferential evolution [12]. However, a random nature of of search operators employed
by these algorithms makes it difficult to represent covariance matrices, because a
random modification of individual elements of covariance matrix usually results in
a matrix that is not valid (i.e. symmetric and positive definite). Consequently many
applications of global optimization algorithms to problem of GMM learning use di-
agonal (or even spherical) covariance structure.

To avoid the above restriction on covariance structure, the encoding of covari-
ance matrices in candidate solutions must allow for independent modification of indi-
vidual parameters [2]. Two such encodings have been proposed so far. In [2] covari-
ance matrix of d-dimensional Gaussian distribution was encoded using d eigenvalues
and d(d − 1)/2 Givens rotation angles. In our previous work [12], the covariance
matrix was represented by its Cholesky factorization.

The main contribution of this paper, in comparison with our previous works [12],
is the inclusion of the EM algorithm into the process of differential evolution (DE).
We show, that DE augmented in such way is able to compete with state-of-the-art
GMM parameter estimation methods such as random swap EM algorithm (RSEM)
[24].
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The rest of the paper is organized as follows. Section 2 presents the problem
of GMMs parameter estimation. Section 3 describes the EM algorithm, which is the
standard method for GMMs learning. Section 4 presents differential evolution al-
gorithm. Section 5 describes a self-adaptation scheme for two key DE parameters.
Section 6 presents the application of a hybrid self-adaptive DE to the problem of
GMM parameter estimation. Section 7 presents the results of simulation study in
which GMMs were used for data clustering. The last section concludes the paper.

2. Background on GMMs

A finite mixture model p(x,Θ) is defined by a weighted sum of K components:

p(x|Θ) =
K

∑
m=1

αm pm(x|θm), (1)

where αm is m-th mixing proportion and pm is the probability density function of the
m-th component. In (1) θm is the set of parameters defining the m-th component and
Θ = {θ1,θ2, . . . ,θK ,α1,α2, . . . ,αK} is the complete set of the parameters needed to
define the mixture. The mixing proportions αm ∈ (0,1) are constrained to sum up to
1. In this work we assume, that the number of components K is known a priori.

In GMMs m-th component follows a multivariate Gaussian distributions with
mean vector µm and covariance matrix Σm. Its probability density function is given
by:

pm(x|θm) =
1

(2π)d/2|Σm|1/2
exp(−1

2
(x−µm)

T
Σ
−1
m (x−µm)), (2)

where | · | denotes a determinant of a matrix, T denotes transposition of a matrix,
and d is the dimension of the feature space. Thus, for a GMM Θ is defined by: Θ =
{µ1,Σ1, . . . ,µK ,ΣK ,α1, . . . ,αK}.

A standard method for learning the parameters of GMMs is the maximum like-
lihood estimation (MLE). Given a training set of independent and identically dis-
tributed feature vectors X = {x1,x2, . . . ,xN}, where xi = [xi

1,x
i
2, . . . ,x

i
d ] ∈ Rd , the log

likelihood corresponding to the K-component GMM is given by:

log p(X |Θ) = log
N

∏
i=1

p(xi|Θ) =
N

∑
i=1

log
K

∑
m=1

αm pm(xi|θm). (3)

The maximum likelihood estimate of the parameters is given by:

ΘML = argmax
Θ

{log p(X |Θ)}. (4)
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It is a well known fact, that a solution of this maximization problem cannot be ob-
tained in a closed form [4]. For that reason a numerical optimization algorithm must
be employed to find it.

Model-based clustering [7] is an important application of GMMs. The aim of
clustering is to group similar feature vectors together. In this application of GMMs
each feature vector is assumed to originate from one K mixture components. We also
assume that mixture components are well-separated. The goal of the model-based
clustering is to identify, for each feature vector, the mixture component from which it
was generated. If we are able to estimate mixture parameters Θ, we can achieve this
by allocating e feature vector xi to a cluster (mixture component) the highest posterior
probability. Using the Bayes theorem this probability for mixture component m can
be expressed as:

hm(xi) =
αm pm(xi|θm)

p(xi|Θ)
. (5)

Maximization of (5) is equivalent to finding the mixture index m with the highest
value αm pm(x|θm).

3. EM algorithm for GMM learning

The standard method for maximizing (3) is the EM algorithm. It is an iterative al-
gorithm, which, starting from initial guess of a parameters Θ(0), generates a se-
quence of estimations Θ(1),Θ(2), . . . ,Θ( j), . . ., with increasing log likelihood (i.e.,
log p(X |Θ( j)) > log p(X |Θ( j−1)). Each iteration j of the algorithm consists of two
steps called expectation step (E-step) and maximization step (M-step) followed by a
convergence check. For the GMMs these steps are defined as follows [21]:

1. E-step: Given the set of mixture parameters Θ( j−1) from the previous iteration,
for each m = 1, . . . ,K and i = 1, . . . ,N, the posterior probability that a feature
vector xi was generated from mth component is computed as:

h( j)
m (xi) =

α
( j)
m pm(xi|θ( j−1)

m )

∑
K
k=1 α

( j)
k pk(xi|θ( j−1)

k )
, (6)

where θ
( j−1)
m and θ

( j−1)
k denote parameters of components m and k, in the iteration

j−1, respectively.
2. M-step: Given the posterior probabilities h( j)

m (xi) obtained in the E-step the set of
parameters Θ( j) is calculated as:

α
( j)
m =

1
N

N

∑
i=1

h( j)
m (xi) (7)
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µ( j)
m =

∑
N
i=1 h( j)

m (xi)∗xi

∑
N
i=1 h( j)

m (xi)
(8)

Σ
( j)
m =

∑
N
i=1 h( j)

m (xi)(xi−µ( j)
m )(xi−µ( j)

m )T

∑
N
i=1 h( j)

m (xi)
(9)

3. Convergence check: The log likelihood log p(X |Θ( j)) is computed according (3).
The algorithm is terminated if the following convergence criterion is met.

log p(X |Θ( j))− log p(X |Θ( j−1))

log p(X |Θ( j))
< ε, (10)

where ε� 1 is a user defined termination threshold. If the convergence criterion
is not met algorithm proceeds to Step 1.

The above algorithm is easy to implement. However it has one important draw-
back. It is highly sensitive to initialization and easily gets trapped in a local maxi-
mum of the log likelihood function. For that reason the quality of the final solution is
strongly dependent on the initial guess of the mixture parameters Θ(0). The problem
can be to some degree alleviated by performing multiple runs of the algorithm, each
of them starting from different random initial conditions, and returning the result with
the highest log p(X |Θ). We call this approach multiple restart EM (MREM).

4. Differential evolution

Differential evolution, proposed in [23], is an evolutionary algorithm, which in each
generation maintains a population of S solutions to optimization problem. In this
section the most common variant with rand/1/ mutation and binomial crossover is
described.

Let ui,G denote the i-th member (i = 1, . . . ,S) of the population in the G-th iter-
ation. It is assumed that ui,G Is a D-dimensional real-valued vectors (i.e., ui,G ∈ℜD).

At the start of the algorithm all population members are initialized randomly.
Each generation G consists of three steps. Two of them are mutation and crossover,
which for each population element ui,G create a trial solution yi,G. The mutation and
crossover are followed by a selection, in which fitness of population member ui,G is
compared to fitness of the trial solution yi,G. The solution with the better (i.e., higher
in our application) fitness survives into the next generation:

yi,G+1 =

{
yi,G if f (yi,G)> f (yi,G)

ui,G otherwise
, (11)
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where f : ℜD→ℜ is the fitness function.
The mutation operator of DE generates a creates a mutant vector v′i,G according

to the equation:
v′i,G = ua,G +F ∗ (ub,G−uc,G), (12)

where F ∈ [0,2] is a user-supplied parameter called amplification factor and a,b,c ∈
1, . . . ,S are randomly selected in such way that a 6= b 6= c 6= i.

The final trial vector yi,G is obtained by the crossover operator, which mixes
the mutant vector vi,G with the original vector ui,G. Let us assume that ui,G =
(u1i,G,u2i,G, . . . ,uDi,G). Each element y ji,G (where j = 1, . . . ,D) of the trial vector
yi,G is generated as:

y ji,G =

{
v ji,G if rnd( j)<CR or j = e
u ji,G otherwise

. (13)

where CR ∈ [0,1] is another user-supplied parameter called crossover factor, rnd( j)
denotes a random number from the uniform distribution on [0,1] which is generated
independently for each j. e ∈ 1, . . . ,S is a randomly chosen index which ensures that
at least one element of the trial vector yi,G comes from the mutant vector y′i,G.

5. Self adaptation of DE control parameters

Experimental studies have shown, that the choice of control parameters F and CR has
a significant impact on the performance of DE. In the first experiments with DE [23]
the parameters were fixed during the run of the algorithm. Later, some methods for
parameter control [6], which change the parameters during the run, were developed.
Among these, the approach called self-adaptive parameter control attracted many
researchers. In this approach the parameters are encoded into individuals and undergo
evolution. The better values of the parameters result in better individuals which are
more likely to reproduce and produce offspring and, thus, disseminate these better
parameters.

In our DE-EM method, a self-adaptation scheme proposed by Brest et al. [5] was
used. It works as follows. Each population element and each trial vector is augmented
with its own amplification factor and crossover factor. Let us denote by Fu

i,G and
Fy

i,G the amplification factors associated with the vectors ui,G and yi,G, respectively.
Similarly, let us denote by CRu

i,G and CRy
i,G the crossover factors associated with the

vectors ui,G and yi,G, respectively.
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Before the mutation Fy
i,G is generated as:

Fy
i,G =

{
L+ rnd2 ∗U if rnd1 < τ1

Fu
i,G otherwise

. (14)

rnd1 and rnd2 are uniform random values from [0,1], τ1 ∈ [0,1] is the probability
of choosing new random value of Fy

i,G, L and U are the parameters determining the
range for Fy

i,G.
Similarly to Fy

i,G, CRy
i,G is generated before the mutation as:

CRy
i,G =

{
rnd3 if rnd4 < τ2

CRu
i,G otherwise

, (15)

where τ2 ∈ [0,1] is the probability of choosing new random value of CRy
i,G.

It may seem that self-adaptation of F and CR introduces another four parameters
(L, U , τ1, τ2) which require a costly fine-tuning using the trial-and-error approach.
However, Brest et al. [5] used fixed values of these parameters obtaining very good
results for a very diverse range of benchmark numerical optimization problems. Fol-
lowing their advice in our experiments we set τ1 = τ2 = 0.1. L and U were set to 0.05
and 0.35 respectively, which ensured that Fy

i,G ∈ [0.05,0.4].

6. Application of hybrid self-adaptive DE to the problem of GMM
learning

6.1 Representation of GMM parameters

Since DE represents the problem solutions as real-valued vectors the encoding of
mixing proportions and mean vectors is very straightforward: they simply are stored
in solution vectors using the floating point representation. Unfortunately, this method
cannot be use in case of covariance matrices. A covariance matrix of Σ of d-
dimensional Gaussian distribution is symmetric, and thus has d(d + 1)/2 free pa-
rameters. However, if a distribution is non-degenerate, this matrix must be positive
definite i.e., for each non-zero x ∈ℜd xT Σx > 0 [11]. For that reason it is impossible
to store these parameters directly, because matrices obtained by a random operators
of crossover and mutation would violate the positive-definiteness constraint [2].

To overcome this obstacle DE-EM uses the representation of covariance ma-
trices, first proposed in [12], based on their Cholesky factorization. Each positive-
definite matrix Σ can be decomposed as a product of a lower triangular matrix L with
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positive diagonal elements and its transpose [8]:

Σ = LLT . (16)

The Cholesky factorization of a positive-definite matrix is unique [8]. The matrix
L is called the Cholesky factor of Σ or the square root of Σ.

In the DE-EM method the covariance matrices of a GMM are represented in
solution vectors of DE by their Cholesky factors. The constraints on Cholesky factors
(the diagonal elements must be positive) are easily handled by DE, because each
constraint on solution handled independently from the other constraints.

6.2 Fitness function

The fitness function used by DE-EM is log p(X |Θ). The selection method is config-
ured to maximize the fitness.

6.3 Hybridization with the EM algorithm

Before the selection step of DE, each candidate solution is fine-tuned by the EM
algorithm. First, the solution is used to initialize the EM. Next, the EM algorithm is
run until the convergence criterion (10) is met. Then, the solution obtained by the EM
algorithm is used in the selection step.

Similar fine-tuning by the EM algorithm is performed on random initial solu-
tions in generation 0.

7. Experimental results

In this section the results of the computational experiments on synthetic datasets,
in which the GMMs were used for model-based clustering, are reported. We com-
pared our DE-EM method to two other approaches: the standard multiple restart EM
(MREM) and recently proposed [24] random swap EM (RSEM), which is state-of-
the-art method for GMM parameters estimation, capable of escaping from local max-
ima of log likelihood.

The algorithms were implemented in C++ language and compiled by the In-
tel C++ compiler version 14.0.1 using optimizing options (-O3 -ipo -march=core2
-fno-alias). The compiled programs were run on a Dell Poweredge 1950 server with
two quad-core Intel Xeon 5355 (2.66 GHz) processors and 16 GB of RAM, run-
ning Ubuntu Linux 12.04. The implementation of EM was parallelized [14] using
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OpenMP standard for shared memory computers, taking advantage of all eight cores
of the system.

In the experiments we used a generator proposed by [15], which generates ran-
domly Gaussian clusters according to the user-defined overlap characteristic. The
overlap ωi j between two clusters i and j is defined as the sum of two misclassifi-
cation probabilities ω j|i and ωi| j, where: ω j|i = Pr[αi p(x|µi,Σi)< α j p(x|µ j,Σ j)|x∼
N (µi,Σi)], and similarly ωi| j = Pr[α j p(x|µ j,Σ j)< αi p(x|µi,Σi)|x∼N (µ j,Σ j)].

The overlap characteristic of the generator [15] was controlled by one parameter
ω expressing the average pairwise overlap between clusters. In our experiments the
number of components K was fixed at 20. Figure 1 shows example two-dimensional
training sets simulated from mixtures obtained from the generator for different values
of ω. It can be seen that by using different values of ω we can control the separation
of clusters.

In our experiments we generated mixtures with dimension d ∈ {5,10,25}. For
each dimension we used ω ∈ {0.0001,0.0002,0.0005,0.001,0.0025,0.005,
0.01,0.0250,0.05,0.1}. We used the adjusted Rand index (ARI) [10] to measure the
degree of agreement between partitions of data discovered by the clustering algo-
rithms and the original partitions (we knew them because we used synthetic datasets
drawn by a random generator, which allowed us to track the source of each feature
vector). The ARI is bounded between -1 and 1. The expected value of ARI in case of
randomly generated partitions is 0. A higher value of ARI indicates a higher similar-
ity between partitions; a maximum value of 1 means, that two partitions are identical.
A similar experimental setting was used for comparison of different EM initialization
methods in [13].

The feature vectors were clustered according to the MAP rule, as described in
Section 2. Since in this experiment the original (ground truth) mixture parameters
were available, we also performed clustering using them.

The experimental protocol was as follows. For every combination of d and ω

50 different random mixtures were generated. For each mixture a single dataset was
realized. For d = 5 and d = 10 the number of feature vectors in dataset was set
to 6000. For d = 25 we had to increase this number to 30000 to avoid issues with
the singularity of covariance matrices. To assure a fair comparison, each of three
algorithms was allocated equal CPU time.

Figure 2a shows the obtained values of ARI, (averaged over 50 different mix-
tures) when clustering was performed on the basis of the ground truth parameters. As
expected, whereas for clusters with very small overlap ARI close to 1 (indicating very
good agreement between original partitions and clustering results) could be obtained,
an increase of overlap between clusters led to lower values of ARI.
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Fig. 1. Two-dimensional training sets simulated from 20–component mixtures with (a) ω = 0.0001, (b)
ω = 0.001, (c) ω = 0.01, (d) ω = 0.1. The ellipses are centered around component means and represent
95% confidence regions.

The average ARI values obtained for ground truth mixture parameters were used
as the baseline for comparison of three GMM parameter estimation methods. The
results concerning these methods are shown on Figures 2b, 2c, 2d. The result of each
method is shown as a % error relative ground truth mixture parameters. The % error
of the method A is computed as (ARIT −ARIA)/ARIT ∗ 100, where ARIT is the
average (over 50 different mixtures) ARI obtained using the ground truth mixture
parameters and ARIA is average ARI obtained using mixture parameters estimated
by the method A. A lower value of % error indicates a better performance, values

118



Estimation of parameters of Gaussian mixture models by a hybrid method ...

close to 0 indicate that clustering using a given GMM parameter estimation method
achieves similar results as clustering using the ground truth parameters. The results
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Fig. 2. (a) The average ARI values obtained for clustering using true mixture parameters. % Error in
ARI relative true mixture parameters for (b) d = 5, (c) d = 10, (d) d = 25.

from Figures 2b – 2d are summarized by Table 1, which shows the results averaged
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over 10 different values of ω separately for each dimension d. The last row of the
table shows the total average result for each of compared methods.

Table 1. The average error in ARI relative known mixture parameters

d MREM RSEM DE-EM
5 4.70 2.89 2.81
10 6.35 4.50 4.39
25 4.06 2.93 1.63
Total 5.04 3.44 2.94

The results achieved by the three algorithms indicate that:

– The difference between the results obtained by clustering using each of three
estimation methods and clustering using the ground truth parameters widens as
the average overlap between clusters is increased.

– MREM is the worst estimation method irrespectively from the dimension d of
feature space.

– For d = 5 and d = 10 the results of the DE-EM method are on par with the RSEM
approach. However, our method clearly outperforms RSEM for d = 25.

8. Conclusions

In this paper a new method for GMMs learning which combines the self-adaptive dif-
ferential evolution with the EM algorithm was proposed. To avoid the problem with
infeasibility of solutions we used an representation, in which covariance matrices
were encoded using their Cholesky factorization.

The results of our study allow us to recommend DE-EM method over the MREM
and RSEM algorithms in application of GMMs to clustering problems. Although
there was little difference between DEEM and RSEM in experiments where d = 5
and d = 10 our method was clear winner for more difficult problems where d = 25.

In future works we are going to compare the performance of the DE-EM method
to other well established hybrid evolutionary algorithms, for instance the GA-EM
algorithm [20]. We also plan to use other encodings of covariance matrices, especially
based on Givens angles [2]. Finally, we are going to to test the performance of DE-
EM method in other applications of GMMs, for instance in discriminant analysis [9].

120



Estimation of parameters of Gaussian mixture models by a hybrid method ...

Acknowledgments

This work was supported by the grant S/WI/2/2013 from Bialystok University of
Technology.

References

[1] J. L. Andrews and P. D. McNicholas. Using evolutionary algorithms for model-
based clustering. Pattern Recognit. Lett., 34(9):987–992, 2013.

[2] C. Ari, S. Aksoy, and O. Arikan. Maximum likelihood estimation of Gaussian
mixture models using stochastic search. Pattern Recognit., 45(7):2804–2816,
2012.

[3] Christophe Biernacki, Gilles Celeux, and Gérard Govaert. Choosing starting
values for the EM algorithm for getting the highest likelihood in multivariate
Gaussian mixture models. Comput. Stat. Data Anal., 41(3):561–575, 2003.

[4] C. M. Bishop. Pattern Recognition and Machine Learning. Springer, New York,
2006.

[5] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer. Self-adapting
control parameters in differential evolution: A comparative study on numeri-
cal benchmark problems. IEEE Transactions on Evolutionary Computation,
10(6):646–657, 2006.

[6] A. E. Eiben, R. Hinterding, and Z. Michalewicz. Parameter control in evolu-
tionary algorithms. IEEE Trans. Evol. Comput., 3(2):124–141, 1999.

[7] C. Fraley and A. E. Raftery. Model-based clustering, discriminant analysis, and
density estimation. J. Am. Stat. Assoc., 97(458):611–631, 2002.

[8] G. H. Golub and C. F. van Loan. Matrix Computations. Johns Hopkins, Balti-
more, MD, 1996.

[9] T. Hastie and R. Tibshirani. Discriminant analysis by Gaussian mixtures. J.
Royal Stat. Soc. Ser. B, 58(1):155–176, 1996.

[10] L. Hubert and P. Arabie. Comparing partitions. J. Classif., 2(1):193–218, 1985.
[11] R.A. Johnson and D.W. Wichern. Applied Multivariate Statistical Analysis.

Prentice Hall, 6th edition, 2007.
[12] W. Kwedlo. Learning finite Gaussian mixtures using differential evolution.

Zeszyty Naukowe Politechniki Białostockiej. Informatyka, 5:19–33, 2010.
[13] W. Kwedlo. A new method for random initialization of the EM algorithm

for multivariate Gaussian mixture learning. In Proceedings of the 8th Inter-
national Conference on Computer Recognition Systems CORES 2013, pages
81–90. Springer, 2013.

121



Wojciech Kwedlo

[14] W. Kwedlo. A parallel EM algorithm for Gaussian mixture models imple-
mented on a NUMA system using OpenMP. In Proceedings of the 22nd Eu-
romicro International Conference on Parallel, Distributed, and Network-Based
Processing PDP 2014, pages 292–298. IEEE CPS, 2014.

[15] R. Maitra and V. Melnykov. Simulating data to study performance of finite mix-
ture modeling and clustering algorithms. J. Comput. Graph. Stat., 19(2):354–
376, 2010.

[16] Ranjan Maitra. Initializing partition-optimization algorithms. IEEE/ACM
Trans. Comput. Biol. Bioinforma., 6(1):144–157, 2009.

[17] A. M. Martinez and J. Vitria. Learning mixture models using a genetic version
of the EM algorithm. Pattern Recognition Letters, 21(8):759–769, 2000.

[18] G. McLachlan and D. Peel. Finite Mixture Models. Wiley, New York, 2000.
[19] H. Permuter, J. Francos, and I. Jermyn. A study of Gaussian mixture models

of color and texture features for image classification and segmentation. Pattern
Recognit., 39(4):695–706, 2006.

[20] F. Pernkopf and D. Bouchaffra. Genetic-based EM algorithm for learning Gaus-
sian mixture models. IEEE Trans. Pattern Analysis Mach. Intell., 27(8):1344–
1348, 2005.

[21] R. A. Redner and H. F. Walker. Mixture densities, maximum likelihood and the
EM algorithm. SIAM Rev., 26(2):195–239, 1984.

[22] D.A. Reynolds, T.F. Quatieri, and R.B. Dunn. Speaker verification using
adapted Gaussian mixture models. Digit. Signal Process., 10(1):19–41, 2000.

[23] R. Storn and K. Price. Differential evolution - a simple and efficient heuristic
for global optimization over continuous spaces. J. Glob. Optim., 11(4):341–359,
1997.

[24] Q. Zhao, V. Hautamäki, I. Kärkkäinen, and P. Fränti. Random swap EM algo-
rithm for Gaussian mixture models. Pattern Recognit. Lett., 33(16):2120–2126,
2012.

122



Estimation of parameters of Gaussian mixture models by a hybrid method ...

ESTYMACJA PARAMETRÓW MODELI MIESZANIN
ROZKŁADÓW NORMALNYCH PRZY POMOCY

METODY HYBRYDOWEJ ŁĄCZĄCEJ
SAMOADPTACYJNĄ EWOLUCJĘ RÓŻNICOWĄ

Z ALGORYTMEM EM

Streszczenie: W pracy poruszono problem uczenia modeli mieszanin rozkładów normal-
nych. Zaproponowano nowe podejście, nazwane DE-EM, oparte na hybrydyzacji samodap-
tacyjnego algorytmu ewolucji różnicowej i klasycznego algorytmu EM. W nowej metodzie
rozwiązanie otrzymane jako wynik operatorów mutacji i krzyżowania jest poddawane opty-
malizacji lokalnej, prowadzonej aż do momentu uzyskania zbieżności, przez algorytm EM.
Aby uniknąć problemu z reprezentacją macierzy kowariancji i niedopuszczalnością rozwią-
zań użyto metody, w której macierze kowariancji są kodowane przy pomocy dekompozycji
Cholesky’ego. W badaniach symulacyjnych modele mieszanin rozkładów normalnych za-
stosowano do grupowania danych syntetycznych. Wyniki eksperymentów wskazują, że me-
toda DE-EM osiąga lepsze wyniki niż standardowa technika wielokrotnego startu algorytmu
EM. Dla zbiorów danych z dużą liczbą cech, metoda osiąga lepsze wyniki niż technika lo-
sowej wymiany rozwiązań połączona z algorytmem EM.

Słowa kluczowe: Mieszniny rozkładów normalnych, ewolucja różnicowa, algorytm EM,
grupowanie danych

Artykuł zrealizowano w ramach pracy badawczej S/WI/2/2013.
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REAL-TIME ENGINE SOUND GENERATOR BASED
ON ANALYSIS OF VIDEO AND RECORDED SAMPLES

Marcin Skoczylas
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Abstract: Generating engine sound samples is a broad topic known for decades, mostly be-
cause of high usage of such algorithms in driving car simulations, especially in games. These
algorithms differ from very simple looped short sound players that change the frequency of
prerecorded samples to sophisticated algorithms that model the engine sound based on some
defined characteristics. The latter are computationally extensive and can’t be used in mobile
environment (such as smartphones). In this paper author presents own approach to use visual
analysis techniques to prepare a database of multiple recorded sound samples and a mixer
that can replay these sounds in proper order to mimic an engine sound in real-time.

Keywords: engine sound generator, recorded samples, mixer, visual anaylysis, Hough
Transform

1. Introduction

Generating automotive engine sound samples is a broad topic known for decades,
mostly because of high usage of such algorithms in games, especially driving car
simulations, also professional ones such as presented in [14]. Engine sounds gener-
ator is very important for the feeling of speed during the simulation and is insepara-
ble unit of the whole experience, giving constant impression of speed. To accurately
model the sound of a motor vehicle, in direct response to the interactivity of the sim-
ulation, there are many challenges in order to represent it as realistic as possible.
These algorithms differ from very simple looped short sound players that change the
frequency of prerecorded samples to sophisticated algorithms that model the engine
sound based on some defined characteristics. First approaches to simulate car engine
sounds were done back in ’80s using sine waves with eventually distortion added.
The first racing vehicle sounds were simulated using Revolutions Per Minute (RPM)
motor parameter and simple wave synthesis, so that the increase of RPM increased
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tone and motor sounds frequency. Even at this basic level, driving speed was commu-
nicated to the user and though these algorithms sounded very simple but were enough
to attract. One of very popular algorithms to represent engine sound is to use simple,
looped sounds with playback frequency correlated to the RPM value. The original
engine sound is recorded, played in a loop and then its frequency is changed depend-
ing on target RPM of the engine. Other algorithms use procedural engine models
to properly create dynamics in response to the player interaction, for example using
FFT analysis and granular synthesis, distortion and effects such as delay or flange.
These sophisticated algorithms model the sound based on some defined character-
istics of the engine. The latter are computationally extensive and can’t be used in
mobile environment (such as smart phones).

In this paper author presents own approach to use visual analysis techniques to
prepare a database of multiple recorded sound samples and a mixer that can replay
these sounds in proper order to mimic an engine sound in real-time.

2. Related work

Modeling of engine sound is not very popular research topic. Most existing solutions
are done commercially for the purpose of generating sounds for games and the idea
behind algorithms is not publicly shared. However, there are few publications that
are worth noting here. In [4] authors modeled and synthesized engine sounds using
a deterministic-stochastic signal decomposition approach, the deterministic compo-
nent was extracted using a FFT method and it was subtracted out from the original
signal and then the stochastic component was modeled and synthesized using a new
multipulse excited time-series modeling technique. The technique gives very good
results, however is quite computationally extensive, thus can’t be implemented in
mobile smartphones. Very often the sound generation is connected with implemen-
tation of a physics engine, as presented recently in [15] or [13]. Authors created a
framework that allows virtual object contact sounds to be synthesised in real time,
eventually adding a possibility to create car engine sounds. A very promising work is
presented in [9], where authors presented deep analysis of engine sounds and some
ideas are also base for this publication. Other approaches also exist to generate en-
gine sounds in real time, recently very popular became hardware boxes from Sonory
Engine Sound Synthesis [1]. These boxes can be hooked up to in-car stereo radio
system to replay artificial sounds of V8 engine based on RPM readings from internal
computer. Although these are implemented in hardware, still the sound is simulated
and synthesized thus it is not easily possible to change the characteristics to generate
different engine sounds.
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Engine sound analysis is much more popular topic in research, and mainly con-
cerns engine fault detection as for example in [10], a mobile application that analyzes
the engine sound and detects engine faults using discrete wavelet transform.

In this paper author presents own approach to use visual analysis techniques to
prepare a database of multiple recorded sound samples and a mixer that can replay
these sounds in proper order to mimic an engine sound in real-time.

3. Engine sound generator method

In this paragraph idea of the method to generate arbitrary engine sounds is presented.
To avoid computationally extensive engine sound synthesis and obtain realistic effect,
taking into account that the algorithm should be able to generate natural sounding
vehicle engine audio of multiple different engines and it should be relative easy to
switch and obtain sounds of other cars, author decided to create an algorithm that
creates and automatically organizes a bank of short sample sounds that will be used
for mixing by the engine sound player in real-time. In overall, to correlate engine
sounds with RPM readings one can use a plug to the car’s computer to obtain current
RPM readings. Unfortunately, not all available cars easily support sending a feedback
of the current RPM to a PC, especially old cars that do not have on-board computers.
Thus to avoid this problem and allow engineers to record and model sounds of very
old cars, a video analysis algorithm was created and current RPM is obtained from a
video frame.

In overall, this method contains a step that involves sound and video analysis of
recordings of the original sound of the engine. The setup consists of a video camera
that records readings of the RPM dial and in addition microphone that is attached to
the car body to record sounds. Sounds are recorded together with video of the RPM
dial on site, eventually operator drives a car with a load attached. These recordings are
then marked and transferred to a PC that performs video analysis. Sounds and video
frames are extracted and analyzed using the algorithm described below to create a
bank of organized short audio samples marked with the RPM readings.

3.1 Video analysis and extracting RPM readings

To allow users to record sounds of cars with significant load, recordings must be done
within a car that is in motion. Very often the mounted camera creates shaky videos,
especially when car drives on uneven terrain. Thus before to obtain a RPM reading
from one video frame, first that video needs to be stabilized.
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Many different video stabilization techniques exist. Main purpose of this step is
to reduce in-between frames motion. Author decided to create his own approach to
video stabilization based on detection of features in images and so-called keypoints
detectors and descriptors. First a marker is defined manually, this could be a vehicle
logo or some other element which is visible on all frames and that does not overlap
the RPM dial. This marker image is used as a reference point to stabilize the video.
From this marker image keypoints are detected and descriptors are calculated.

Image feature descriptors are becoming a standard in current state of the art
of image recognition algorithms. For this study, author selected most common and
popular feature detectors: Scale-Invariant Feature Transform (SIFT [12]), Speeded
Up Robust Features (SURF [5]) and also recently presented Binary Robust Invariant
Scalable Keypoints (BRISK [11]). Results of the accuracy of marker image detection
are presented in section 4.

In a new video frame a marker image is detected. First, keypoints are found
using the same feature detector, these keypoints form a set Kc = {p1, p2, ...} and are
considered as candidates for keypoints that correspond to the marker image. For all
keypoints in the set Kc feature descriptors Dc are calculated, so that each element from
set Kc corresponds to one descriptor from set Dc. A nearest neighbour kNN search is
performed on detected keypoints in a new frame and marker keypoints with1 K = 2.
Found pairs are filtered to find good matches using technique described in [7]: first,
the minimum distance (min) is found from all matches, and then all distances that are
bigger than 2 ·min are discarded. If the amount of keypoints in a set containing found
matches is less than 4 (thus, at least four corners), then the marker is not detected and
that frame is skipped: stabilization is not performed, the marker image is not visible.
In other case the marker is detected and a homography is found using a RANSAC [8]
algorithm using pairs of keypoint matches and then perspective matrix transformation
of vectors is performed. If the transformed polygon is not convex, then the marker is
considered not detected.

When a position of the marker on a new video frame is known, then a relative
position to the original position of the marker can be calculated. The whole video
frame is then shifted in the opposite direction to overlay a marker from new frame on
a marker in the previous (original) frame and video stabilization is continued for next
frames.

1 The k=2 in kNN is suggested by J. Beis and D. Lowe in their Best-Bin-First (BBF) algorithm [6]
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3.2 Detection of angle of the RPM pointer

When video is stabilized a next step of the algorithm is detection of the RPM pointer
and then its angle. Knowing the angle one can calculate also the RPM reading. All
video frame images are processed to obtain number of RPMs connected with a video
frame using following algorithm steps:

1. Image is converted to a gray scale color space.
2. Binarisation filter is applied with threshold calculated using Mean Iterative Se-

lection [2]. During each iteration the average brightness TB is determined for all
pixels below the estimated threshold, and similarly also the average brightness
TW of all pixels above value of the estimated threshold. The new value of the es-
timated threshold value is calculated as the average of the two values TB and TW .
The general formula for calculating the estimated value of the threshold for the
histogram h:

Tk =

Tk−1

∑
i=0

i∗h[i]

2
Tk−1

∑
i=0

h[i]

+

N

∑
i=Tk−1+1

i∗h[i]

2
N

∑
i=Tk−1+1

h[i]

(1)

The moment of stopping the algorithm is the condition:

(TB = TW )∨ (Tk−1 = Tk) (2)

3. Boundaries of the dial are detected using a sweep algorithm and pixels that reside
inside a circle of the RPM dial are extracted and considered for further analysis.

4. A Hough Transform is calculated. From the resulting Hough Transform matrix
the best representative of the angle (θ) and offset of the most visible line is chosen.
When these representatives are multiple then values are averaged.

5. RPM pointer angle is detected using data from the previous step. It is possible that
angle will be not correct. The Hough Transform result can detect angle from op-
posite part of the circle, and in such cases that angle needs to be corrected. First a
RPM dial is divided into 4 equal parts. Then, amount of pixels that reside in each
quarter is calculated and from that it is known in which quarter the pointer is lo-
cated. Then simple correction calculations are performed, for example, if pointer
is detected in left-down quarter and θ is higher than 220◦then θ = |180◦ − θ|,
etc.

6. Finally, a RPM angle value is linearly scaled to reflect RPM values range, thus
for example 180◦ becomes 3000 RPMs and so on.
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RPM pointer readings calculated from the angle are stored for all video frames.
For each frame as a result from this step a RPM reading is stored together with short
sound sample which has a duration of one frame: 1/( f rames per second). These
readings will be organized into bulk groups of samples. The algorithm is explained
in following paragraph.

Example of the RPM pointer detection is presented in Figure 1, and Hough
Transform matrix used to RPM pointer angle detection is visible in Figure 2.

Fig. 1. Example of RPM pointer detection steps. Original video frame image, segmented pointer and
divided dial with selected quarter highlighted.

3.3 Samples database creation

In previous paragraph all video frames were analyzed and RPM readings were stored.
Next step organizes sound samples into three groups: constant RPM, accelerate and
decelerate groups of samples. For this purpose vector of all RPM values is analyzed.
First the RPM signal is smoothed using gaussian smooth filter and then for each
frame discrete derivative is calculated. Knowing derivatives then groups of samples
that consist of acceleration, deceleration or constant RPM values are found, however
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Fig. 2. Hough Transform matrix calculated on segmented pointer example from Figure 1.

Table 1. Example temporary data structure for storage of detected RPMs together with video frames.
From this structure three groups of samples are created.

Frame # RPM State Start Frame # End Frame # Min RPM Max RPM
1 750 Constant 1 3 750 770
2 770 Constant 1 3 750 770
3 760 Constant 1 3 750 770
4 800 Accelerate 4 6 760 900
5 850 Accelerate 4 6 760 900
6 900 Accelerate 4 6 760 900
7 850 Decelerate 7 9 900 750
8 800 Decelerate 7 9 900 750
9 750 Decelerate 7 9 900 750

to avoid erroneous state changes with too rapid differences, frames are analyzed in
clusters of 3 frames. Thus, to confirm detection of a state change from constant to
acceleration, then three consecutive frames have to show the RPM acceleration. In
addition an information in which frame this group started and in which frame that
state ended is stored, as well as RPM for that group of samples. All groups of samples
are kept in three separate buckets: constant RPMs, accelerations and decelerations.
See as an example Table 1 where the concept is shown. Please note that RPM for a
frame starts as a previous value and finishes as current frame’s RPM (for example
see frame #4). This example stores links to three groups of samples detected, one
constant, one accelerate and one decelerate group. Start, end frames and start, end
RPMs are stored with groups and dataset is created.

3.4 Method to select group of samples during playback

The real-time player of the engine sounds is playing recorded samples based on in-
formation obtained after analysis from the previous sections. The input parameters to
the player are target RPM (Rtarget) and the engine load. The engine load parameter
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just selects proper bank of previously analyzed samples. Rtarget is a RPM value to
which the engine should aim and select consecutive sound samples.

The algorithm selects samples to be played based on dependencies of current
RPM (Rcurrent) and target RPM (Rtarget). Knowing RPM of the sound sample that
was previously played the algorithm selects new samples to be played as follows:

1. If the Rtarget is equal Rcurrent then select a random group of samples from ’Con-
stant’ samples bucket that has RPM equal to the Rtarget .

2. If the Rtarget is higher than Rcurrent then select a random group of samples from
’Accelerates’ samples bucket that has minimum RPM equal or below the Rcurrent

and the maximum RPM equal or higher than the Rtarget . If the Rcurrent is not
equal starting RPM of this group of samples then scroll the sample to frame that
matches Rcurrent .

3. If the Rtarget is less than Rcurrent then select a random group of samples from ’De-
celerates’ sample bucket that has minimum RPM equal or higher than the Rcurrent

and maximum RPM equal or below the Rtarget . If the Rcurrent is not equal start-
ing RPM of this group of samples then scroll the sample to frame that matches
Rcurrent .

The above algorithm is run every sample step. Note, that if a current group of
samples that is played resides in ’Accelerates’ bucket and maximum RPM from the
group is higher than Rtarget , then that group is replaced by a group of samples from
the ’Constant’ bucket when Rcurrent reaches Rtarget . Analogously, if a current group of
samples that is played resides in ’Decelerates’ bucket and minimum RPM in a group
is lower than Rtarget , then that group is replaced by a group of samples from the
’Constant’ bucket when Rcurrent reaches Rtarget . That group replacement is achieved
by the first step of the algorithm.

To quickly select proper group of samples a Red-Black tree is used as a stor-
age structure and search algorithm. In addition number of uses of a particular group
of samples is recorded. When a group of samples is selected to be played then the
number of usages is increased. Algorithm selects new group of samples based on the
amount of previous usages, thus it favors selection of a group that was not played
before than replaying the same again. This approach avoids repeatable loops of the
same group of samples.

Furthermore, a classical volume (amplitude) ramping method [3] is used, so each
sample group to be played is overlapped during mixing with previous to avoid clicks
and noise in a place of cut (see Figure 3).
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Fig. 3. Ramp-mixing of two groups of samples (signals). Green horizontal lines over the signals show
output volume. The Output signal does not have clicks when two signals are joined.

4. Results

4.1 Comparison of marker detection algorithm

First results of marker detection algorithm from section 3.1 for the purpose of video
stabilization will be presented. Image marker was extracted from first video frame and
other video frames were processed. Resolution of the marker was 240×160 pixels.
Normally video recording parameters can change, so to mimic this video frame im-
ages were changed: scale, noise, rotation, blur and lightness filters were applied and
detection results gathered. A ratio parameter was obtained in such way: first from the
original marker image keypoint descriptors were calculated, then video frames were
changed and on these amended images marker was detected using algorithm from
section 3.1. The ratio is a number of properly matched keypoints in a new image
(that are positioned inside marker area) divided by the original number of keypoints
from the marker. A ratio of 1.0 means that all the keypoints from the marker image
were found properly in the amended image. Results of this experiment are presented
in Table 2. It is clearly seen that SURF algorithm is performing best video stabiliza-
tion, surprisingly weak result of BRISK algorithm can be explained by low resolution
of the marker image.

4.2 Engine sound generator

It is not easy to create a comparatory review of the algorithm presented in this paper.
It is possible however to create a spectrogram of sounds generated by real vehicle
engine and compare it with results generated by the algorithm presented. These spec-
trograms should not be equal, as real engine sound is not generating exactly the same
sound every time and also it depends on the RPM throttle, so frequencies will vary
over time. But visualization of such spectrograms gives information about common
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Image filter
Ratio Time

SURF SIFT BRISK SURF SIFT BRISK
LIGHTNESS 96.9 94.0 60.7 27 28 2

NOISE 99.1 98.7 95.7 75 50 5
SCALE 90.5 87.8 40.4 133 123 9

ROTATE 98.4 96.6 66.7 42 49 5
BLUR 97.0 96.8 18.5 39 38 2

Table 2. Video-stabilization marker detection accuracy and algorithm run time. The higher ratio value,
the better. The lower time value, the better.

frequencies to some extent. Example spectrograms that show differences in real vehi-
cle sound and generated ones are visible in Figure 4, so they can be compared. Author
performed also a subjective study on the quality of the playback on a limited number
of people, however this topic needs to be studied further.

Fig. 4. Spectrogram of real car engine sound (left) and generated by the algorithm (right).

5. Conclusions

Modeling of engine sound is not very popular research topic. Most existing solutions
were implemented commercially for the purpose of generating sounds for games and
the idea behind algorithms is not publicly shared. Author created his own method
to generate vehicle engine sounds that uses visual analysis techniques to prepare a
database of multiple recorded sound samples and a mixer that can replay these sounds
in proper order to mimic an engine sound in real-time. The solution can be used in
a limited environment, such as for example on mobile smartphones. The algorithm
generates audio that can successfully mimic sounds of vehicle engine and it can be
used for the purpose of driving car simulation or computer games, especially in a
limited environment.
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GENERATOR DŹWIĘKU SILNIKA W CZASIE
RZECZYWISTYM NA PODSTAWIE ANALIZY WIDEO

I ZAREJESTROWANYCH PRÓBEK

Streszczenie: Generowanie dźwięku silnika jest szerokim tematem znanym od dziesięcio-
leci, głównie z powodu zastosowania takich algorytmów we wszelakiego rodzaju symula-
cjach jazdy samochodem, a w szczególności grach komputerowych. Algorytmy te stosują
różne podejścia, m.in. od bardzo prostych odtwarzaczy zapętlonych dźwięków, które zmie-
niają częstotliwość nagranych uprzednio próbek do zaawansowanych algorytmów modelo-
wania dźwięku silnika na podstawie określonych cech charakterystyki silnika. Algorytmy te
są obliczeniowo skomplikowane i nie mogą być stosowane w urządzeniach przenośnych (ta-
kich jak np. smartfony) w czasie rzeczywistym. W tym artykule autor przedstawia wĹ‚asne
podejście do korzystania z technik analizy wizualnej aby automatycznie przygotować bazę
wielu nagranych krótkich próbek dźwiękowych oraz miksera, który odtwarza uporządko-
wane dźwięki w odpowiedniej kolejności, tak aby naśladować sterowalny dźwięk silnika w
czasie rzeczywistym.

Słowa kluczowe: generator dźwięku silnika, nagrane próbki, mikser, analiza wizualna, Ho-
ugh Transform

Artykuł zrealizowano w ramach pracy badawczej MB/WI/3/2012.
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Abstract: Maintaining large amount of virtual machines requires a lot of dedication and
time from administrator. Using tools provided by virtualization vendors help in daily main-
tenance. Additionally it is often required to predict future problems. To address this need
there are solutions which include analytic mechanisms to lower the risk of possible issues.
In open source world there are many competitive tools, but none of them is integrated with
virtualization solution. Maintaining large infrastructure using many administrative consoles
is difficult and creates a potential for human mistakes. Mentioned software miss one key
functionality - it is not possible to deeply monitor guest operating system of the virtual ma-
chine while maintaining integration with virtualization software. Solution proposed in this
paper was created to solve this issue with agent based diagnostic mechanisms to provide
information about network connectivity, resource usage, applications state, system settings
and health.

Keywords: virtualization, diagnosis, KVM, virtio

1. Introduction

Running a modern data center is very difficult task even when major part of the in-
frastructure is virtualized. Maintaining large amount of virtual machines requires a lot
of dedication and time from administrator. Diversity of hardware, systems, vendors
and technologies is not helping in daily tasks. With introduction of software defined
approach in virtualization administration became more centralized, but still requires
a lot of time.

Managing virtual infrastructure can be easier by leveraging software provided
by virtualization vendors. There are two leading commercial hypervisors - VMware

Advances in Computer Science Research, vol. 11, pp. 137-150, 2014.
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ESXi [1] and Microsoft Hyper-V [2]. Maintaining virtual machines running under
control of first is done through VMware vCenter Server [3], while managing vir-
tual machines under control of latter is done through System Center Virtual Machine
Manager [4]. They allow to perform basic control actions such as creating, editing,
destroying, powering on and off and suspending virtual machines. To ensure access
to the virtual machines they have high availability mechanisms that in case of failure
move them to another physical server. When access to the application running inside
virtual infrastructure is critical both technologies provide fault tolerance mechanisms.
There is an copy of a virtual machine that is synchronized in real time and will take
place of the original one in event of failure. Additionally there are functionalities that
allow moving virtual machines between physical servers or storage without interrup-
tion.

Managing open source hypervisors such as KVM [5] or Xen [6] can be done
through many different solutions [7], starting from less popular such as PetiteCloud
[8], through oVirt [9] and OpenNebula [10], to rapidly developing OpenStack [11].
However, they are not as advanced as their commercial counterpart. They provide
basic functionalities to manage and control virtual infrastructure, but they lack ad-
vanced mechanisms such as high availability, fault tolerance or moving virtual ma-
chines between storage. These functionalities are often available through additional
software not integrated into one solution. For instance high availability can be deliv-
ered through Pacemaker [12] - open source resource manager. Because of fact that
these mechanisms are not integrated into one platform they require additional config-
uration and it is not possible to manage them from one management console.

Mentioned software provides management mechanisms only for virtual ma-
chines. In modern datacenters it is often required to manage all of the components
such as storage, network, physical, virtual servers and guest operating systems. Ad-
ministrators are expected to predict future problems and bottlenecks. Virtualization
vendors are aware of these requirements and released software such as VMware
vCenter Operations Manager [13] or Microsoft System Center Operations Manager
[14] providing advanced analytics of virtual and physical components. They are able
to predict future problems for instance not enough storage, computing power or per-
formance bottlenecks. Additionally these tools have ability to help administrator to
evaluate health of the virtual infrastructure. There is variety of available metrics such
as workload (showing how high virtual machine load is), anomalies (rating behaviour
of virtual machine compared to the past) or efficiency (showing how efficient your
virtual infrastructure is and how you can improve it). Using these tools it is easier
to manage and improve virtual platform. While using additional tools that extend
functionalities of these tools such as VMware vRealize Hyperic [15] or Management
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Packs for System Center Operations Manager it is possible to monitor applications
running inside of the guest operating system such as database servers, web servers,
SAP [16], application servers, email servers and more.

On the contrary there is much open source software able to monitor all infras-
tructure components for instance Zenoss [17], Nagios [18] or Zabbix [19]. These
tools are able to monitor [20] both physical and virtual infrastructure which allows
to see complete infrastructure health from single management platform. However,
these solutions are not aware of virtualized components such as virtual switches,
virtualized storage or vendor specific features. Therefore they are not able to lever-
age mechanisms available through virtualization software. It is possible to extend
functionalities of these tools by using additional software. However, while manag-
ing large virtual infrastructure administrator does not have time to switch between
consoles and compare results from many tools. It is very inconvenient and create a
potential for human mistakes while evaluating management feedback.

All mentioned software miss one key functionality - it is not possible to deeply
monitor guest operating system of the virtual machines while maintaining integra-
tion with virtualization software. This shortcoming inspired us to create a solution
that will solve this issue. The proof of concept was done for KVM hypervisor which
is rapidly developing, but is still missing important tools. By leveraging private com-
munication channel between hypervisor and virtual machine there is no network re-
quirement to exchange messages. By using agent architecture it is possible to di-
agnose high resource usage of running processes to avoid performance bottlenecks
of the virtual machine. Additionally to ensure highest service availability solution is
able to diagnose network failures and notify administrator about it. Often there are
critical applications running inside guest operating system and ensuring their avail-
ability is a priority. Software presented in this paper is able to diagnose and notify
when application is not responding. Biggest source of diagnostic data are log files,
therefore published solution is also able to track system settings and logs to diagnose
occurring errors.
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2. Principle of operation

Presented solution leverage agent architecture introduced in paper [21].

Fig. 1. Architecture of the proposed solution

Open source Linux operating system is installed on each physical server. Hy-
pervisor of choice is KVM which is built into operating system kernel and because
of that it does not require any additional modules to be installed. Administration is
performed through administration platform - web application intended to maintain
and run virtual infrastructure allowing for diagnosis and monitoring. It gathers all di-
agnostic information from virtual machines and presents them to the administrator. It
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has built in resolution knowledge base using Windows event IDs [22] to help admin-
istrator to easier fix occurring problems. By having all the data in one place, admin-
istrator is able to analyse and troubleshoot problems in virtual infrastructure more
accurate and faster. Communication is secured by using HTTPS protocol and soft-
ware security layer. Hypervisor agent is an agent installed on every physical server
with hypervisor role. It relays all the diagnostic data from virtual machines to the ad-
ministration platform using dedicated, secure network. Guest operating system agent
is a system service with elevated rights installed inside virtual machine operating sys-
tem. It periodically performs the diagnostic tasks, gathers results and sends them to
the hypervisor agent through hardware communication channel.

Fig. 2. Communication between components

Communication in proposed solution is one way only. The agent running inside
guest operating system is performing diagnostic tasks such as network, applications,
log files, system configuration and resource usage tests periodically. After all tasks are
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finished, results are converted to the JavaScript Object Notation (JSON) [23] format
and sent to the administration platform through VirtIO-Serial [24] communication
channel. VirtIO-Serial is a transparent, hardware bridge between virtual machine op-
erating system and hypervisor. Inside virtual machine it acts as a PCI device allowing
write and read operations. Then in the physical server VirtIO-Serial can act as many
types of output devices such as named pipes, text files, TCP servers, UNIX sockets
and more. Because of hardware nature of communication channel, proposed solution
is resistant to network problems. Hypervisor agent listens for incoming messages
containing diagnostic results from virtual machines and relays them to the adminis-
tration platform using dedicated, isolated network. Administration platform gathers
all messages incoming from hypervisor agents and updates database containing vir-
tual machine information. When diagnostic results contained problems, knowledge
base is searched for resolutions allowing for administrator to view quick fix to the
occurring problem.

3. Diagnostic cases

This section presents main diagnostic cases included in proposed solution in order of
importance with brief description.

One of the major problems in virtual infrastructure maintenance software is that
they require network connection to the guest operating system in order to diagnose
processes running inside. Therefore we focused on solution that does not have this
requirement and is able to perform network connectivity diagnosis and notify admin-
istrator in event of failure.

Fig. 3. Tasks performed during network diagnosis
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At first agent is retrieving network configuration of network interface that has
is active, is not loopback and has gateway address set. Then it perform simple ping
tests to the gateway. If ping fails result of the test is sent through VirtIO-Serial com-
munication channel to inform administrator about complete network failure. If not
another ping test is performed to the Google DNS servers. If it fails result is sent to
the hypervisor agent which will relay it to the administration platform indicating lack
of Internet connection. Otherwise all tests passed successfully and virtual machine
has properly functioning network connectivity.

Another significant aspect is that most of the virtual machines have important
processes running inside guest operating system that must be maintained. Making
sure that they are running properly is crucial. Therefore we developed a diagnostic
test that notifies administrator when process is not responding.

Fig. 4. Tasks performed during processes diagnosis

At first guest operating system agent retrieves list of all frozen processes. If the
list is not empty result of the diagnostic test is sent through VirtIO-Serial commu-
nication channel. Otherwise, test passed successfully and all processes are running
properly.

In most of the enterprises there are internal politics regarding security. We have
noticed that there are repeating rules in most of the rules sets. One of them is firewall
policy - it should be always enabled. Because of that we implemented diagnostic
mechanism that is monitoring firewall and will notify administrator when settings
have been changed.
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Fig. 5. Tasks performed during firewall diagnosis

Guest operating system agent periodically retrieves firewall settings and com-
pares them to the previous result. If change of settings was detected result of this
diagnosis is sent through VirtIO-Serial communication channel to inform adminis-
trator of potential security breach.

Log files are heart of every system. They contain a lot of diagnostic information
therefore analysing them provides large amount of feedback. In our solution we fo-
cused on error entries that administrator should be notified of. They are sent through
communication channel to the administration platform. Administrator can look up
resolution in built in knowledge base and decide to fix it.

Fig. 6. Tasks performed during logs diagnosis

At first guest operating system agent retrieves all system log files and searches
for error entries. If they are found result of this diagnosis is sent through VirtIO-
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Serial communication channel to inform administrator about failure. If resolution to
the error has been found in knowledge base it will be linked to the particular virtual
machine allowing administrator to look up resolution to the occurring errors.

Performance is very important factor in virtualization. Being aware when virtual
machine is using a lot of resources may prevent application performance issues. With
this knowledge administrator can either diagnose why virtual machine is under such
high load or assign more resources to the virtual machine. Therefore proposed solu-
tion has diagnostic test that notifies administrator when virtual machine is using a lot
of resources.

Fig. 7. Tasks performed during resources diagnosis

At first agent retrieves resource usage statistics to analyze usage. When very high
usage is detected it will retrieve list of all running processes with their resource usage,
filter it and prepare diagnosis result containing all resource intensive applications.
Such list is sent through VirtIO-Serial to the administration platform.

Important concern for the administrator are applications running inside of op-
erating system. Installation of software may leave system vulnerable and therefore
compromised. Diagnostic test proposed in our solution compares installed software
and notifies administrator through administration platform when application has been
installed or removed. It allows for administrator to have more detailed view on the
software that is being installed or removed inside of operating system.
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Fig. 8. Tasks performed during applications diagnosis

Guest operating system agent periodically retrieves list of installed software and
compares it to the previous result. If any application was installed or removed re-
sult of this diagnosis is sent through VirtIO-Serial communication channel to inform
administrator.

4. Case study

Presented solution was leveraged to create a self-service portal where customers are
able to order a customized virtual machines. They are able to choose an operating
system of their preference from predefined list containing Windows and Linux. Then
it is possible to adjust virtual machine hardware such as amount of virtual CPUs,
RAM and additional disks. To provide even more personal solution they are able
to modify system hostname and administrator password. Additionally customer is
able to order a virtual machine with preinstalled and preconfigured software such as
databases, identity, web and mail servers. Parameters required by additional compo-
nents are also customized during virtual machine creation process. User is able to
control complete lifecycle of the instance with power on, off, suspend and delete ac-
tions. Additionally it is possible to preserve the current state of the virtual machine
and return to it later with included snapshots mechanism. Self-service portal deliv-
ers variety of information about instance such as resource usage, health and network
state.

146



Diagnosing guest operating systems of virtual machines leveraging agent architecture

Fig. 9. Architecture of presented case study

Communication between components in this case study is depicted in figure 9.
Self-service portal and administration platform are built using Ruby on Rails [25],
open source web framework written in Ruby [26]. To meet requirements of mod-
ern, responsive web design technologies such as jQuery [27] and asynchronous calls
are leveraged. Self-service portal is using PostgreSQL [28] open source database en-
gine to store user and virtual machine data. To integrate with solution proposed in
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this paper RabbitMQ [29] was introduced. RabbitMQ is open source message bro-
ker to exchange messages between components in asynchronous manner. It imple-
ments Advanced Message Queueing Protocol (AMQP) [30] to control payload flow.
In presented case there are two RabbitMQ servers – one to handle communication
between self-service portal and hypervisor agent, second to handle communication
between administration platform and hypervisor agent. By separating message bro-
kers components are completely independent and can work separately. Failure of
self-service RabbitMQ server does not influence availability of administrative ca-
pabilities through administration platform. Payload in messages exchanged between
components is in JSON format. Presented use case leverage solution depicted in this
paper to install and preconfigure software delivered to the virtual machines. When
a virtual machine with database server is requested, new virtual machine is cloned
from predefined template image and configured with user hostname and password.
Then self-service portal requests an installation of database server software inside
of the virtual machine and preconfigure configuration files. In meantime, user can
observe whole process in self-service portal, because guest agent is notifying portal
about currently performed operation. After whole process is completed, user is no-
tified that a virtual machine is ready to use. Minimized results of diagnostic cases
presented in this paper are visible to the user in virtual machine information window
after deployment process is finished.

5. Conclusion

In this paper a complete solution is depicted that includes functionalities providing
diagnostic tests of the most frequently occurring problems inside virtual machines.
Agent running inside of guest operating systems performs network connection diag-
nosis to ensure network connectivity. Additionally it diagnoses system settings and
installed applications to make sure their configuration meets internal security poli-
cies. The agent periodically diagnoses state of running processes to ensure that criti-
cal applications are running properly. To avoid performance bottlenecks, the solution
is diagnosing resource usage inside a virtual machine. Additionally the agent diag-
noses system log files and events to provide most detailed diagnostic information.
By gathering results provided by these tests and depicting them in administration
platform, administrator is able to evaluate virtual infrastructure health and react to
problems as they emerge, before they influence performance or availability of the
services. Because of hardware private communication channel network failure does
not influence ability to inform administrator about problems. Presented mechanisms
are able to integrate into one management platform without additional configuration
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and provide management mechanisms for virtual machines, storage, network, physi-
cal servers and guest operating systems including services and applications.
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DIAGNOZOWANIE SYSTEMÓW OPERACYJNYCH
MASZYN WIRTUALNYCH PRZY WYKORZYSTANIU

ARCHITEKTURY AGENTOWEJ

Streszczenie: Zarządzanie dużą ilością maszyn wirtualnych wymaga od administratora
wiele czasu oraz poświęcenia. Wykorzystanie narzędzi dostarczonych wraz z oprogramo-
waniem wirtualizacyjnym ułatwia utrzymanie infrastruktury. Dodatkowo często wymagane
jest przewidywanie problemów, które mogą wystąpić w środowisku wirtualnym. W tym celu
powstało oprogramowanie zawierające mechanizmy analityczne zmniejszające ryzyko awa-
rii. W świecie oprogramowania open source istnieje wiele narzędzi, lecz żadne z nich nie
jest zintegrowane z platformą wirtualizacyjną, a w związku z tym zarządzanie infrastruk-
turą jest trudne. Przedstawionym rozwiązaniom brak jest jednej istotnej funkcjonalności -
możliwości dokładnego monitorowania systemów operacyjnych. Zaproponowane w publi-
kacji oprogramowanie w oparciu o architekturę agentową stara się rozwiązać ten problem
poprzez wykorzystanie mechanizmów dostarczających informacji o stanie sieci, zużyciu za-
sobów, stanie aplikacji, ustawieniach systemu oraz jego zdrowiu.

Słowa kluczowe: wirtualizacja, diagnostyka, KVM, virtio

Artykuł zrealizowano w ramach pracy badawczej S/WI/2/13.
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Abstract: Bayesian networks are recognized as a suitable tool for modelling diagnostic
problems. The power of this modelling is that it can combine knowledge coming from dif-
ferent sources. For example, in case of medical domain, the expert knowledge can be merged
along with the medical data. This paper presents a Bayesian network model for early diag-
nosis of autism. The model was built based on the medical literature and then was revised
by two domain experts. Our tool is dedicated to parents that can perform an early diagnosis
of their child before visiting a specialist.

Keywords: Bayesian networks, medical diagnosis, autism spectrum disorder

1. Introduction

The support of medical diagnosis by computer-based tools has a long history with the
first approaches proposed in the 1960s and 1970s (e.g., [6,9]). The medical diagnostic
support systems built in the last few decades were based on various approaches that
can be divided into two categories: (1) statistical modeling and (2) artificial intelli-
gence modeling that includes fuzzy sets, neural networks, decision trees, or proba-
bilistic graphical models. Probabilistic graphical models such as Bayesian networks
have proven to be powerful tools for modeling complex diagnostic problems involv-
ing uncertain knowledge. They have been employed in solving a variety of medical
diagnostic problems reaching the size of hundreds or thousands of variables (e.g.,
[1,2,3,4,10]).

Advances in Computer Science Research, vol. 11, pp. 151-164, 2014.
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Autism spectrum disorder (ASD) is a neurodevelopmental disorder with genetic
origins that leads to an impaired social interaction. In the last decades, a dramatic
increase of the ASD prevalence has been observed [5]. For example, the U.S. 2010
statistics show that the prevalence of ASD in children aged 8 is 1 in 68 [8]. ASD is not
easy to diagnose especially in children before the age of 24 months. We know that the
disease is more prevalent in males than in females with the ratio 4.5 : 1 [8]. However,
there is no definitive cause of ASD identified, i.e., usually there is a combination
of different risk factors and symptoms that have to be present to establish a final
diagnosis. Early diagnosis is important since different types of therapy can improve
child’s development. For example, the therapeutic interventions can help the child to
talk, walk, and communicate with others and then can increase child’s chances for
living independently in a society when they are adult.

There is no standard procedure or screening examination for early ASD diagno-
sis in Poland. Parents are often not aware of this disease and may overlook its first
symptoms. We have proposed a tool — a web-based application to support early di-
agnosis of ASD. This tool is dedicated to parents that observe an odd behaviour in
their child. The core of our application is the AutismNET model, a Bayesian net-
work that was built based on the medical literature and then revised by two domain
experts. The model allows for estimating the probability of developing ASD based
on the observed signs and symptoms entered into the model. This probability can be
further interpreted by parents suspecting ASD in their child. The AutismNET model
was developed and presented in [13].4

The reminder of this paper is structured as follows. Section 1. provides a brief
introduction to the problem of the ASD diagnosis. Section 2. presents an overview of
Bayesian networks. Section 3. describes the AutismNET model and its application.
Section 4. concludes the paper.

2. Bayesian networks

Bayesian networks [14] are acyclic directed graphs modeling probabilistic influences
among variables. The graphical part of a Bayesian network reflects the structure of a
modeled problem, while conditional probability distributions quantify local interac-
tions among neighboring variables.

Figure 1 captures a simple Bayesian network model. This example model in-
cludes one risk factor and two symptoms of autism. A left hand side of the figure

4 Justyna Pawłowska is a maiden name of Justyna Szczygieł.

152



Probabilistic graphical model supporting early diagnosis of autism spectrum disorder

Fig. 1. A simple example of a Bayesian network

shows the model along with marginal probabilities for each node while a right hand
side of the figure shows the same model but with observed three nodes and a poste-
riori probability distribution for the node Autism. Each arc of this graph represents
a probabilistic relationship. For example, the arc between the variables Gender and
Autism indicates that autism in males is more prevalent, i.e., males are around four
times more probable to be diagnosed with autism than females. Furthermore, this sim-
ple example captures two possible symptoms of autism: (1) impaired touch and (2)
impaired creativity. The numerical parameters of a Bayesian network model include
a conditional probability distribution for the nodes that have parents (e.g., Autism, Im-
paired touch, and Impaired creativity) and a prior distribution for the nodes without
parents (e.g., Gender). These probability distributions can be learned from the data
or can be assessed by the domain experts.

After creating a Bayesian network model, we can perform a reasoning that in-
volves calculating a posteriori probability distribution for the node Autism given the
observations that were entered into the model. This calculation consists of repetitive
application of a Bayes theorem that spreads over the network and leads to a derivation
of conditional posterior probabilities in every node of the network. A right hand side
of Figure 1 shows the result of such probabilistic reasoning and answers the question:
What is a probability of developing autism for a boy that has impaired creativity and
that has oversensitive touch? The probability of developing autism in this example
model is equal to 51%.

3. The AutismNET model

The following section describes the process of building the AutismNET model for
early diagnosis of ASD. The first part of the section shows a graphical structure of the
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model while the second presents a quantitative part that includes conditional proba-
bility distributions. While referring to the nodes of a Bayesian network model we will
use three terms: target, observation, and auxiliary indicating three different types of
nodes. The category target stands for the nodes representing diagnoses, observation
represents all these nodes that we would usually observe. For example, the nodes Im-
paired touch, Impaired creativity, and Gender in Figure 1 have a status observation.
A type auxiliary indicates the nodes that we would never observe.

3.1 Graphical structure of the model

We have started building the model from browsing and studying the medical literature
related to the ASD diagnosis.

Fig. 2. The three layers of AutismNET

First version of the model The first version of the model was built based on knowl-
edge encountered from the medical literature. A knowledge engineer identified 85
variables that were modeled in the framework of a Bayesian network model. The
variables have belonged to three categories: (1) risk factors, (2) diagnoses, and (3)
signs and symptoms. These three categories were mapped into three layers of the
AutismNET model (see Figure 2). Additionally, we decided to group the variables
within these three layers into submodels. This procedure helped us to organize the
models’ variables and to facilitate the process of navigation. The concept of a sub-
model is implemented in GeNIe [11] and it is simply a logical concept that does not
introduce any additional relationships in the model.

Figure 3 presents the first version of the AutismNET model. The model consists
of 85 nodes grouped in 14 submodels. A top layer of the model includes 9 submodels
representing 43 risk factors while a bottom layer consists of 5 submodels representing
31 different symptoms. A middle layer represents two diseases: Autism spectrum
disorder and ADHD (Attention Deficit Hyperactivity Disorder). We included ADHD
as a part of differential diagnosis for Autism spectrum disorder.

One of the problems that we encountered during building the model was the
number of parents per node. For example, the node Autism spectrum disorder had
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Fig. 3. The first version of the AutismNET model

initially 20 parents. Since it would be almost impossible to estimate the numeri-
cal parameters for the node with 20 parents,5 we have applied a technique called
in Bayesian networks as “parent divorcing” [12]. This technique helps to decrease
a complexity of the network by reducing the number of parents per node. We have
created 6 auxiliary nodes that divorced the parents of the node Autism spectrum dis-
order. The result of this procedure was a decrease of the number of parents for the
node Autism spectrum disorder from 20 to 10. All the auxiliary nodes that we have
created were modeled as the NoisyMAX gates. The advantage of applying the Noisy-
MAX gates is that we can estimate conditional probability distribution of a node with
a smaller number of numerical parameters [7].

Figure 4 shows an example of “parent divorcing” that we have performed in the
AutismNET model. The left hand side of the figure captures the four out of 20 parents
of Autism spectrum disorder, while the right hand side of the figure shows the result
of divorcing these parents. The auxiliary node Labour complications that divorced
the parents was further modeled as a Noisy MAX gate.

5 Assuming that all nodes are binary, the node with 20 parents needs 220 independent probabilities to
elicit.
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Fig. 4. An example of parent divorcing in AutismNET

Second version of the model After building the first version of the AutismNET
model, we have scheduled five meetings with the experts6 to verify it. Each meet-
ing lasted around two hours. The first two meetings were devoted to verification of
the model variables, while during the next two meetings we elicited the numerical
parameters from the experts. The last meeting was devoted to model evaluation.

Fig. 5. The second version of the AutismNET model

For the first meeting we have prepared a list of the model’s variables printed
for each of the two experts — the variables were grouped by submodels. During this
session with experts we went through this list and performed a clarity test for each

6 The third and fourth author of this paper.
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variable. The experts have excluded all the variables representing the risk factors of
ASD, but the gender i.e., 43 nodes were removed from the model along with 9 aux-
iliary nodes. The experts claimed that risk factors that we had included in the model
do not have much diagnostic value and that the ASD diagnosis should be performed
mainly based on signs and symptoms. At the same time, the experts proposed to in-
clude in the model new variables, for example: No response to name, No response to
reading books by parents, Gestural communication, Impaired speech. We included
in the model 22 additional variables that along with previous variables were grouped
into 8 submodels. The resulting model had three new submodels: Clothing, Consum-
ing food, and Other. Three out of five submodels in Version 2.0 changed their name,
for example, the submodel Senses was changed to Sensory stimulus. The experts ex-
cluded also the variable ADHD claiming that this disease is not crucial in differential
diagnosis of Autism spectrum disorder. During the second meeting with the experts,
we again verified the model’s variables – although this time it involved verification of
variables states. For example, the variable Impaired sleep was initially modeled as a
binary node with two states: Short sleep and Normal sleep. The experts claimed that
it should be modeled as the variable with three states: (1) Short sleep, (2) Interrupting
sleep, and (3) Normal sleep.

Figure 5 presents the second version of the model after two meetings with the
experts. In fact, after removing from the model all the variables representing risk
factors, the second version of AutismNET became a naive Bayesian network. The
model consists of 50 nodes: one target node and 49 observation nodes.

Third version of the model Although our experts believed initially that only signs
and symptoms play a significant role in a diagnosis of ASD, we agreed after a short
discussion with them that it would be interesting to include the risk factors in the
AutismNET model. Therefore, we have created the third version of the model that
includes again three layers of the variables, i.e., risk factors, diagnoses, and signs and
symptoms. Figure 6 presents the third version of the AutismNET model. The model
consists of 100 nodes grouped in 16 submodels. Similarly to Figure 3, a top layer of
the model includes the nodes representing risk factors while a bottom layer captures
the signs and symptoms. The third version of the AutismNET model is essentially a
hybrid of two previous versions: with a top layer of risk factors from Version 1.0 and
two bottom layers from Version 2.0.

Tables 1 and 2 present the properties for the three versions of the AutismNET
model. Table 1 contains the information about the nodes and submodels of the three
versions of AutismNET. For example, Version 1.0 of the model has in total 76 nodes
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Fig. 6. The third version of the AutismNET model

modeled as CPTs7 and 9 nodes modeled as NoisyMAX distributions. There were 2
target nodes, 74 observation nodes, and 9 auxiliary nodes; this version of the model
was grouped into 14 different submodels. Table 2 captures additional structural statis-
tics of AutismNET and shows a complexity of the models. For example, Version 1.0
of the model has 92 arcs, on average 1.08 parents per node (Avg indegree), and a
maximal number of parents equal to 10 (Max indegree). The model has on average
2.12 outcomes per node and a maximal number of outcomes per node is equal to 4.

Table 1. Characteristics of the AutismNET models; #nodes indicates the number of all nodes, #CPT
stands for the number of nodes with the CPT distributions, #NoisyMAX stands for the number of nodes
with the NoisyMAX distributions, etc.

Version #nodes #CPT #NoisyMAX #target #observation #auxiliary #submodels
Version 1.0 85 76 9 2 74 9 14
Version 2.0 50 50 0 1 49 0 8
Version 3.0 100 90 10 1 89 10 16

7 CPTs stands for Conditional Probability Tables
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Table 2. Structural statistics of the AutismNET models; #arcs stands for the number of arcs

Version #arcs Avg indegree Max indegree Avg outcomes Max outcomes
Version 1.0 92 1.08 10 2.12 3
Version 2.0 49 0.98 1 2.28 4
Version 3.0 102 1.02 10 2.19 4

3.2 Elicitation of numerical parameters

Quantitative part of Bayesian network model includes conditional probability distri-
butions. These probability distributions can be learned from the data or assessed by
a domain expert. There were no data available to us, therefore, we had to rely on
the expert opinion while quantifying the model. In the first version of the model we
simply assigned the distribution (0.2,0.8) for binary nodes, or a uniform distribution
for non-binary nodes. The quantification of the model was conducted for the second
version of the model. Two meetings with the experts were devoted to elicitation of the
numerical parameters. During the first meeting we were posing the following type of
questions: What is the probability that a symptom is present if a child has ASD? For
example, we asked the following question:

What is the probability that oversensitive touch is present if a child has ASD?

During the second meeting we were posing the following type of questions:
What is the probability that a symptom is present if a child does not have ASD? For
example, we asked the following question:

What is the probability that oversensitive touch is present if a child does not
have ASD?

During these two meetings, that lasted four hours together, we elicited 122 in-
dependent numerical parameters. We have noticed that it was easier for the experts to
assess the parameters for the first scenario, e.g., when we were asking for the proba-
bility of a symptom being present if a child had ASD.

During elicitation of the numerical parameters we have identified the variable
that was not significant in diagnosis of ASD. While assessing the probabilities for the
variable Mood swinging we have noticed that the experts specified the same probabil-
ity distribution for autistic and non autistic population. This led us to removing this
variable from the model.

Figure 7 presents a fragment of AutismNET along with its probability distri-
butions. The node Gender with two states male and female is described by a prior
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Fig. 7. A fragment of the AutismNET model along with conditional probability tables

probability distribution and it represents a general population distribution. The node
Autism spectrum disorder is described by a conditional probability distribution and it
reflects the relationship between gender and ASD. These numerical parameters were
specified based on the published statistics of the ASD prevalence in a general popu-
lation depending on a gender. The last node Autoaggression, again, is described by
a conditional probability distribution that was elicited from our experts. In fact, to
quantify this distribution, the experts had to specify only two independent numerical
probabilities: 0.8 and 0.01.

Table 3 shows a summary of quantitative part of the AutismNET models along
with the number of probabilities for target, observation, and auxiliary nodes. The
table shows also the number of dependent probabilities that are part of the CPT
or NoisyMAX distributions. For example, Version 1.0 of the model has 2,551 de-
pendent probabilities modeled by CPT and 96 dependent probabilities modeled by
NoisyMAX.

Since the third version of the model is a hybrid of the two previous versions,
only the variables from a bottom layer has the probabilities elicited by the experts.
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Table 3. Numerical parameters of the AutismNET models

Version CPT NoisyMAX Target Observation Auxiliary
Version 1.0 2,551 96 2,112 417 118
Version 2.0 228 0 2 226 0
Version 3.0 1,527 100 1,024 503 104

3.3 Model evaluation

We did not have any access to objective data to evaluate the AutismNET model,
therefore, we have performed only a subjective expert evaluation. We were entering
the data representing a typical autistic child and then the experts were observing how
the a posteriori probability of developing ASD is changing. During this evaluation
we also looked at the variables with the highest diagnostic value (calculated in Ge-
NIe based on cross-entropy measure) and asked the experts whether indeed these
variables are important in a diagnostic process. The experts had confirmed that the
indicated variables have a high diagnostic value.

While playing with AutismNET, we have noticed that the model is too sen-
sitive with respect to observed symptoms, i.e., after observing a few symptoms as
present, the probability of ASD was approaching the value of 1.0. For example, af-
ter we had observed the following symptoms in the model: an oversensitive touch,
unusual preoccupation with toys, and repeating unusual movements or actions, the
calculated model probability of developing ASD was 99.9%. This value suggested
that the model’s probabilities need additional revision and refinement.

3.4 Application of AutismNET

We have built a web-based interface for the AutismNET model. This interface al-
lows to access the model through Internet and to perform a diagnosis by answering
the questions of a survey. These questions correspond to the variables modeled in
AutismNET and they are grouped by submodels. This interface is dedicated to parents
that would like to perform an initial diagnosis of their child. The model could pos-
sibly indicate a need for a more detailed diagnosis by a specialist. Figure 8 presents
a screen shot of the application. A list of 8 elements on a left hand side of the win-
dow corresponds to 8 submodels from Version 2.0 of AutismNET.8 A right hand side

8 Currently, only Version 2.0 is fully quantified. Therefore, it is used in a web-based interface of
AutismNET.
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of the window shows a list of questions of the survey that correspond to the vari-
ables of the submodel Behaviour, activity, interests. The application is available at
http://www.autismnet.pl.

Fig. 8. Screen shot of AutismNET web-based application (in Polish)

4. Conclusions

We have built the AutismNET model for early diagnosis of ASD. The model was
entirely built based on the medical literature and experts’ knowledge. The model
calculates the posteriori probability of developing ASD given entered observations.
AutismNET has also a web-based interface that facilitates the interaction with the
model. This tool is dedicated to parents that observe an odd behaviour in their child
and suspect ASD.

Our project has several shortcomings that we plan to address in a future ver-
sion of the model. The model requires a revision of the numerical parameters since
they are too sensitive towards observed symptoms. A sensitivity analysis has to be
performed to identify these numerical parameters of the model that should be fur-
ther tuned. We also need to refine the variables representing risk factors modeled in
AutismNET and then elicit the numerical parameters for the corresponding nodes.

It is an interesting research question whether a simple diagnostic model would
perform better than a complete extended model. We plan to answer this question by
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comparing the two models: the AutismNET model in Version 2.0 consisting of 50
nodes and the AutismNET model in Version 3.0 including 100 nodes.

We also plan to implement AutismNET user interface for a mobile device – this
will even increase the availability of the model to its potential users.
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PROBABILISTYCZNY MODEL WSPIERAJĄCY
WCZESNE DIAGNOZOWANIE AUTYZMU

Streszczenie: Sieci bayesowskie są często używanym narzędziem w rozwiązywaniu pro-
blemów diagnostycznych. Jedną z zalet tego narzędzia jest możliwość łączenia wiedzy po-
chodzącej z różnych źródeł. Na przykład, wiedza ekspertów może być połączona z danymi.
W naszym artykule prezentujemy model sieci bayesowskiej wspomagający wczesne diagno-
zowanie autyzmu. Model został zbudowany w oparciu o literaturę medyczną, a następnie
zweryfikowany przez ekspertów. Narzędzie, które stworzyliśmy jest dedykowane rodzicom,
którzy mogą dokonać wstępnej diagnozy zanim skontaktują sie ze specjalistą.

Słowa kluczowe: sieci bayesowskie, diagnozowanie medyczne, autyzm

Artykuł zrealizowano w ramach pracy badawczej S/WI/2/2013.
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