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From now on I denotes a set and E denotes a non empty set.
Let I be a non empty set, A be a many sorted set indexed by I, and i be an

element of I. Let us observe that coprod(i, A) is relation-like and function-like.
Let C be a non empty category structure, o be an object of C, I be a set,

and f be an objects family of I and C. A morphisms family of f and o is a
many sorted set indexed by I and is defined by

(Def. 1) Let us consider an element i. Suppose i ∈ I. Then there exists an object
o1 of C such that

(i) o1 = f(i), and

(ii) it(i) is a morphism from o1 to o.

Let I be a non empty set. Let us note that a morphisms family of f and o
can equivalently be formulated as follows:

(Def. 2) Let us consider an element i of I. Then it(i) is a morphism from f(i) to
o.
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Let M be a morphisms family of f and o and i be an element of I. Note
that the functor M(i) yields a morphism from f(i) to o. Let C be a functional
non empty category structure. Let I be a set. Let us note that every morphisms
family of f and o is function yielding.

Now we state the proposition:

(1) Let us consider a non empty category structure C, an object o of C, and
an objects family f of ∅ and C. Then ∅ is a morphisms family of f and o.

Let C be a non empty category structure, I be a set, A be an objects family
of I and C, B be an object of C, and P be a morphisms family of A and B. We
say that P is feasible if and only if

(Def. 3) Let us consider a set i. Suppose i ∈ I. Then there exists an object o of
C such that

(i) o = A(i), and

(ii) P (i) ∈ 〈o,B〉.
Let I be a non empty set. Let us observe that P is feasible if and only if the

condition (Def. 4) is satisfied.

(Def. 4) Let us consider an element i of I. Then P (i) ∈ 〈A(i), B〉.
Let C be a category and I be a set. We say that P is coprojection morphisms

if and only if

(Def. 5) Let us consider an object X of C and a morphisms family F of A and
X. Suppose F is feasible. Then there exists a morphism f from B to X
such that

(i) f ∈ 〈B,X〉, and

(ii) for every set i such that i ∈ I there exists an object si of C and there
exists a morphism Pi from si to B such that si = A(i) and Pi = P (i)
and F (i) = f · Pi, and

(iii) for every morphism f1 from B to X such that for every set i such
that i ∈ I there exists an object si of C and there exists a morphism
Pi from si to B such that si = A(i) and Pi = P (i) and F (i) = f1 ·Pi
holds f = f1.

Let I be a non empty set. Let us note that P is coprojection morphisms if
and only if the condition (Def. 6) is satisfied.

(Def. 6) Let us consider an object X of C and a morphisms family F of A and
X. Suppose F is feasible. Then there exists a morphism f from B to X
such that

(i) f ∈ 〈B,X〉, and

(ii) for every element i of I, F (i) = f · P (i), and

(iii) for every morphism f1 from B to X such that for every element i of
I, F (i) = f1 · P (i) holds f = f1.
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Let A be an objects family of ∅ and C. Note that every morphisms family
of A and B is feasible.

Now we state the propositions:

(2) Let us consider a category C, an objects family A of ∅ and C, and an
object B of C. Suppose B is initial. Then there exists a morphisms family
P of A and B such that P is empty and coprojection morphisms. The
theorem is a consequence of (1).

(3) Let us consider an objects family A of I and Ens{∅} and an object o of
Ens{∅}. Then I 7−→ ∅ is a morphisms family of A and o.

(4) Let us consider an objects family A of I and Ens{∅}, an object o of
Ens{∅}, and a morphisms family P of A and o. If P = I 7−→ ∅, then P
is feasible and coprojection morphisms. Proof: P is feasible by [11, (7)].
Reconsider f = ∅ as a morphism from o to Y. For every set i such that
i ∈ I there exists an object si of C and there exists a morphism Pi from
si to o such that si = A(i) and Pi = P (i) and F (i) = f ·Pi by [11, (7)]. �

Let C be a category. We say that C has coproducts if and only if

(Def. 7) Let us consider a set I and an objects family A of I and C. Then there
exists an object B of C and there exists a morphisms family P of A and
B such that P is feasible and coprojection morphisms.

Note that Ens{∅} has coproducts and there exists a category which is strict
and has products and coproducts.

Let C be a category, I be a set, A be an objects family of I and C, and B
be an object of C. We say that B is A-category coproduct-like if and only if

(Def. 8) There exists a morphisms family P of A and B such that P is feasible
and coprojection morphisms.

Let C be a category with coproducts. Let us observe that there exists an
object of C which is A-category coproduct-like.

Let C be a category and A be an objects family of ∅ and C. Note that every
object of C which is A-category coproduct-like is also initial.

Now we state the propositions:

(5) Let us consider a category C, an objects family A of ∅ and C, and an
object B of C. If B is initial, then B is A-category coproduct-like. The
theorem is a consequence of (2).

(6) Let us consider a category C, an objects family A of I and C, and objects
C1, C2 of C. Suppose

(i) C1 is A-category coproduct-like, and

(ii) C2 is A-category coproduct-like.

Then C1,C2 are iso.

From now on A denotes an objects family of I and EnsE .
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Let us consider I, E, and A. Assume
⋃

coprod(A) ∈ E. The functor
∐
A

yielding an object of EnsE is defined by the term

(Def. 9)
⋃

coprod(A).

The functor Coprod(A) yielding a many sorted set indexed by I is defined
by

(Def. 10) Let us consider an element i. Suppose i ∈ I. Then there exists a function
F from A(i) into

⋃
coprod(A) such that

(i) it(i) = F , and

(ii) for every element x such that x ∈ A(i) holds F (x) = 〈〈x, i〉〉.
Let us observe that Coprod(A) is function yielding.
Assume

⋃
coprod(A) ∈ E. The functor

∐
A yielding a morphisms family of

A and
∐
A is defined by the term

(Def. 11) Coprod(A).

Now we state the propositions:

(7) If
⋃

coprod(A) = ∅, then Coprod(A) is empty yielding.

(8) If
⋃

coprod(A) = ∅, then A is empty yielding.

(9) If
⋃

coprod(A) ∈ E and
⋃

coprod(A) = ∅, then
∐
A = I 7−→ ∅. The

theorem is a consequence of (7).

(10) If
⋃

coprod(A) ∈ E, then
∐
A is feasible and coprojection morphisms.

The theorem is a consequence of (7) and (8).

(11) If
⋃

coprod(A) ∈ E, then
∐
A is A-category coproduct-like. The theorem

is a consequence of (10).

(12) If for every I and A,
⋃

coprod(A) ∈ E, then EnsE has coproducts. The
theorem is a consequence of (10).
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Summary. Based on the Petri net definitions and theorems already for-
malized in the Mizar article [10], in this article we were able to formalize the
definition of Cell Petri nets. It is based on [? ]. Colored Petri net is already have
been defined in [9]. In addition the conditions of the firing-rule and ColoredSet
to this definition, that defines the Cell Petri nets extended to CPNT.i further.
Although it was synthesis of two Petri nets in [9], it is synthesis from the family
of Colored Petri nets (?? Colored-PT-net-Family of I) of finite number of pieces.
That is, extension to a CPNT family is performed by defining the output arc
from the transition of a certain Colored Petri nets to Place of a certain another
Colored Petri nets (definition of the neighborhood). Finally, activation of Colored
Petri nets was formalized.
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The notation and terminology used in this paper have been introduced in the
following articles: [? ], [17], [18], [4], [19], [5], [2], [? ], [15], [? ], [10], [9], [1], [?
], [7], [13], [8], [16], [? ], [? ], [12], [6], [14], [3], and [11].

1. Preliminaries

Let I be a non empty set and C1 be a many sorted set indexed by I. We say
that C1 is colored-pt-net-family-like if and only if

(Def. 1) Let us consider an element i of I. Then C1(i) is a colored place/transition
net.

Note that there exists a many sorted set indexed by I which is colored-pt-
net-family-like.

A colored place/transition net family of I is a colored-pt-net-family-like ma-
ny sorted set indexed by I. Let C1 be a colored place/transition net family of I
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and i be an element of I. One can check that the functor C1(i) yields a colored
place/transition net. Let C2 be a colored place/transition net family of I. We
say that C2 is disjoint valued if and only if

(Def. 2) Let us consider elements i, j of I. Suppose i 6= j. Then

(i) the carrier of C2(i) misses the carrier of C2(j), and

(ii) the carrier’ of C2(i) misses the carrier’ of C2(j).

Now we state the propositions:

(1) Let us consider a set I and many sorted sets F , D, R indexed by I.
Suppose

(i) for every element i such that i ∈ I there exists a function f such that
f = F (i) and dom f = D(i) and rng f = R(i), and

(ii) for every elements i, j and for every functions f , g such that i, j ∈ I
and i 6= j and f = F (i) and g = F (j) holds dom f misses dom g.

Then there exists a function G such that

(iii) G =
⋃

rngF , and

(iv) domG =
⋃

rngD, and

(v) rngG =
⋃

rngR, and

(vi) for every elements i, x and for every function f such that i ∈ I and
f = F (i) and x ∈ dom f holds G(x) = f(x).

Proof: For every element z such that z ∈
⋃

rngF there exist elements
x, y, i such that z = 〈〈x, y〉〉 and z ∈ F (i) and i ∈ I. For every element
z such that z ∈

⋃
rngF there exist elements x, y such that z = 〈〈x, y〉〉.

Reconsider G =
⋃

rngF as a binary relation. G is a function. For every
element x, x ∈ domG iff x ∈

⋃
rngD by [4, (3)]. For every element x,

x ∈ rngG iff x ∈
⋃

rngR by [4, (3)]. For every elements i, x and for every
function f such that i ∈ I and f = F (i) and x ∈ dom f holds G(x) = f(x)
by [4, (1), (3)]. �

(2) Let us consider a set I and many sorted sets Y, Z indexed by I. Suppose
elements i, j. If i, j ∈ I and i 6= j, then Y (i)∩Z(j) = ∅. Then

⋃
(Y \Z) =⋃

Y \
⋃
Z. Proof: Set X = Y \ Z. For every element x, x ∈

⋃
rngX iff

x ∈
⋃

rng Y \
⋃

rngZ by [4, (3)]. �

(3) Let us consider a set I and many sorted sets X, Y, Z indexed by I.
Suppose

(i) X ⊆ Y \ Z, and

(ii) for every elements i, j such that i, j ∈ I and i 6= j holds Y (i)∩Z(j) =
∅.

Then
⋃
X ⊆

⋃
Y \
⋃
Z. The theorem is a consequence of (2).
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2. Synthesis of CPNT and I

Let I be a non trivial set. The functor XorDelta I yielding a non empty set
is defined by the term

(Def. 3) {〈〈i, j〉〉, where i, j are elements of I : i 6= j}.

Now we state the proposition:

(4) Let us consider a non trivial finite set I and a colored place/transition net
family C2 of I. Then

⋃
{(the carrier of C2(j))Outbds(C2(i)), where i, j are

elements of I : i 6= j} is not empty.

Let I be a non trivial finite set and C2 be a colored place/transition net fami-
ly of I. A connecting mapping of C2 is a many sorted set indexed by XorDelta I
and is defined by

(Def. 4) (i) rng it ⊆
⋃
{(the carrier of C2(j))Outbds(C2(i)), where i, j are elements

of I : i 6= j}, and

(ii) for every elements i, j of I such that i 6= j holds it(〈〈i, j〉〉) is a function
from Outbds(C2(i)) into the carrier of C2(j).

Now we state the proposition:

(5) Let us consider colored place/transition nets C4, C5, a function O12 from
OutbdsC4 into the carrier of C5, and a function q12. Suppose

(i) dom q12 = OutbdsC4, and

(ii) for every transition t01 of C4 such that t01 is outbound holds q12(t01)
is a function from the thin cylinders of the colored set of C4 and
∗{t01} into the thin cylinders of the colored set of C4 and O12

◦t01.

Then q12 ∈ (
⋃
{(the thin cylinders of the colored set of C4 andO12◦t01)α, where

t01 is a transition of C4 : t01 is outbound})OutbdsC4 , where α is the thin
cylinders of the colored set of C4 and ∗{t01}.

Let I be a non trivial finite set, C2 be a colored place/transition net family
of I, and O be a connecting mapping of C2. A connecting firing rule of O is a
many sorted set indexed by XorDelta I and is defined by

(Def. 5) Let us consider elements i, j of I. Suppose i 6= j. Then there exists
a function O6 from Outbds(C2(i)) into the carrier of C2(j) and there
exists a function q8 such that q8 = it(〈〈i, j〉〉) and O6 = O(〈〈i, j〉〉) and
dom q8 = Outbds(C2(i)) and for every transition t01 of C2(i) such that
t01 is outbound holds q8(t01) is a function from the thin cylinders of the
colored set of C2(i) and ∗{t01} into the thin cylinders of the colored set of
C2(i) and O6

◦t01.
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3. Extension to a Family of Colored Petri Nets

Let I be a non trivial finite set, C2 be a colored place/transition net family
of I, O be a connecting mapping of C2, and q be a connecting firing rule of
O. Assume C2 is disjoint valued and for every elements i, j1, j2 of I such that
i 6= j1 and i 6= j2 and there exist elements x, y1, y2 such that 〈〈x, y1〉〉 ∈ q(〈〈i, j1〉〉)
and 〈〈x, y2〉〉 ∈ q(〈〈i, j2〉〉) holds j1 = j2. The functor synthesis q yielding a strict
colored place/transition net is defined by

(Def. 6) There exist many sorted sets P , T , S9, T8, C3, F indexed by I and there
exist functions U9, U8 such that for every element i of I, P (i) = the carrier
of C2(i) and T (i) = the carrier’ of C2(i) and S9(i) = the S-T arcs of C2(i)
and T8(i) = the T-S arcs of C2(i) and C3(i) = the colored set of C2(i) and
F (i) = the firing-rule of C2(i) and U9 =

⋃
rngF and U8 =

⋃
rng q and

the carrier of it =
⋃

rngP and the carrier’ of it =
⋃

rng T and the S-T
arcs of it =

⋃
rngS9 and the T-S arcs of it =

⋃
rng T8 ∪

⋃
rngO and

the colored set of it =
⋃

rngC3 and the firing-rule of it = U9+·U8.

4. Definition of Cell Petri Nets

Let I be a non empty finite set and C2 be a colored place/transition net
family of I. We say that C2 is cell Petri nets if and only if

(Def. 7) There exists a function N from I into 2rngC2 such that for every element
i of I, N(i) = {C2(j), where j is an element of I : j 6= i}.

Let N be a function from I into 2rngC2 and O be a connecting mapping of
C2. We say that (N , O) is cell Petri nets if and only if

(Def. 8) Let us consider an element i of I. Then N(i) = {C2(j), where j is
an element of I : j 6= i and there exists a transition t of C2(i) and there
exists an element s such that 〈〈t, s〉〉 ∈ O(〈〈i, j〉〉)}.

Now we state the proposition:

(6) Let us consider a non trivial finite set I, a colored place/transition net
family C2 of I, a function N from I into 2rngC2 , and a connecting mapping
O of C2. Suppose

(i) C2 is one-to-one, and

(ii) (N , O) is cell Petri nets.

Let us consider an element i of I. Then C2(i) /∈ N(i).
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5. Activation of Petri Nets

Let C6 be a colored place/transition net structure. We say that C6 has
nontrivial colored set if and only if

(Def. 9) The colored set of C6 is not trivial.

One can verify that there exists a strict colored-PT-net-like colored Petri
net which has nontrivial colored set.

Let C2 be a colored place/transition net with nontrivial colored set. One can
verify that the colored set of C2 is non trivial.

Let C6 be a colored place/transition net with nontrivial colored set, S be a
subset of the carrier of C6, and D be a thin cylinder of the colored set of C6 and
S. A color threshold of D is a function from locD into the colored set of C6.
Let C6 be a colored place/transition net. A color count of C6 is a function from
the colored set of C6 into N. The colored states of C6 yielding a non empty set
is defined by the term

(Def. 10) the set of all e where e is a color count of C6.

A colored state of C6 is a function from C6 into the colored states of C6.
From now on C6 denotes a colored place/transition net with nontrivial colored
set, m denotes a colored state of C6, and t denotes an element of the carrier’ of
C6.

Let C6 be a colored place/transition net with nontrivial colored set, m be
a colored state of C6, and p be a place of C6. Observe that the functor m(p)
yields a color count of C6. Let m1 be a color count of C6 and x be an element.
Let us observe that the functor m1(x) yields an element of N. Let us consider
C6, m, and t. Let D be a thin cylinder of the colored set of C6 and ∗{t} and Ca
be a color threshold of D. We say that t is firable on m and Ca if and only if

(Def. 11) (i) (the firing-rule of C6)(〈〈t, D〉〉) 6= ∅, and

(ii) for every place p of C6 such that p ∈ locD holds 1 ¬ m(p)(Ca(p)).

The firable set on m and t yielding a set is defined by the term

(Def. 12) {D, where D is a thin cylinder of the colored set of C6 and ∗{t} : there
exists a color threshold Ca of D such that t is firable on m and Ca}.

Now we state the proposition:

(7) Let us consider a thin cylinder D of the colored set of C6 and ∗{t}. Then
there exists a color threshold Ca of D such that t is firable on m and Ca
if and only if D ∈ the firable set on m and t.

Let us consider C6, m, and t. Let D be a thin cylinder of the colored set of
C6 and ∗{t}, Ca be a color threshold of D, and p be an element of C6. Assume t
is firable on m and Ca. The Petri subtraction(Ca,m,p) yielding a function from
the colored set of C6 into N is defined by

(Def. 13) Let us consider an element x of the colored set of C6. Then
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(i) if p ∈ locD and x = Ca(p), then it(x) = m(p)(x)− 1, and

(ii) if it is not true that p ∈ locD and x = Ca(p), then it(x) = m(p)(x).

Let D be a thin cylinder of the colored set of C6 and {t} . The Petri
addition(Ca,m,p) yielding a function from the colored set of C6 into N is defined
by

(Def. 14) Let us consider an element x of the colored set of C6. Then

(i) if p ∈ locD and x = Ca(p), then it(x) = m(p)(x) + 1, and

(ii) if it is not true that p ∈ locD and x = Ca(p), then it(x) = m(p)(x).

Let D be a thin cylinder of the colored set of C6 and ∗{t} and E be a thin
cylinder of the colored set of C6 and {t} . Let Cd be a color threshold of E. The
firing result(Ca,Cd,m,p) yielding a function from the colored set of C6 into N is
defined by the term

(Def. 15)


the Petri subtraction(Ca,m,p), if t is firable on m and Ca and p ∈ locD \ locE,
the Petri addition(Cd,m,p), if t is firable on m and Ca and p ∈ locE \ locD,
m(p), otherwise.

Let us consider a thin cylinder D0 of the colored set of C6 and ∗{t}, a thin
cylinder D1 of the colored set of C6 and {t} , a color threshold Cb of D0, a color
threshold Cc of D1, an element x of the colored set of C6, and an element p of
C6. Now we state the propositions:

(8) m(p)(x)− 1 ¬ (the firing result(Cb,Cc,m,p))(x) ¬ m(p)(x) + 1.

(9) If t is outbound, then m(p)(x)− 1 ¬ (the firing result(Cb,Cc,m,p))(x) ¬
m(p)(x).
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From now on S, T , W denote real normed spaces, f , f1, f2 denote partial
functions from S to T , Z denotes a subset of S, i, n denote natural numbers,
and Y denotes a real normed space.

Let us consider a real norm space sequence G, a real normed space F , a set
i, partial functions f , g from

∏
G to F , and a subset X of

∏
G. Now we state

the propositions:

(1) Suppose X is open and i ∈ domG and f is partially differentiable on X
w.r.t. i and g is partially differentiable on X w.r.t. i. Then

(i) f + g is partially differentiable on X w.r.t. i, and

(ii) (f + g)�iX = (f�iX) + (g�iX).
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(2) Suppose X is open and i ∈ domG and f is partially differentiable on X
w.r.t. i and g is partially differentiable on X w.r.t. i. Then

(i) f − g is partially differentiable on X w.r.t. i, and

(ii) (f − g)�iX = (f�iX)− (g�iX).

Now we state the propositions:

(3) Let us consider a real norm space sequence G, a real normed space F , a
set i, a partial function f from

∏
G to F , a real number r, and a subset

X of
∏
G. Suppose

(i) X is open, and

(ii) i ∈ domG, and

(iii) f is partially differentiable on X w.r.t. i.

Then

(iv) r · f is partially differentiable on X w.r.t. i, and

(v) r · f�iX = r · (f�iX).

Proof: Set h = r · f . For every point x of
∏
G such that x ∈ X holds h is

partially differentiable in x w.r.t. i and partdiff(h, x, i) = r ·partdiff(f, x, i)
by [18, (24), (30)]. Set f3 = f�iX. For every point x of

∏
G such that x ∈ X

holds (r · f3)x = partdiff(h, x, i). �

(4) Let us consider setsX, Y, Z, functions I, f , and a setX. Then (f�X)·I =
(f · I)�I−1(X).

Let us consider S and T . Let f be a function from S into T . We say that f
is isometric if and only if

(Def. 1) Let us consider an element x of S. Then ‖f(x)‖ = ‖x‖.
Now we state the propositions:

(5) Let us consider a linear operator I from S into T . If I is isometric, then
for every point x of S, I is continuous in x.

(6) Let us consider a linear operator I from S into T and a subset Z of S.
If I is isometric, then I is continuous on Z. The theorem is a consequence
of (5).

(7) Let us consider a linear operator I from S into T . Suppose I is one-to-
one, onto, and isometric. Then there exists a linear operator J from T into
S such that

(i) J = I−1, and

(ii) J is one-to-one, onto, and isometric.

Proof: Reconsider J = I−1 as a function from T into S. For every points
v, w of T , J(v+w) = J(v) + J(w) by [5, (113)], [4, (34)]. For every point
v of T and for every real number r, J(r · v) = r · J(v) by [5, (113)], [4,
(34)]. For every point v of T , ‖J(v)‖ = ‖v‖ by [5, (113)], [4, (34)]. �
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Let us consider a linear operator I from S into T and a sequence s1 of S.
Now we state the propositions:

(8) If I is isometric and s1 is convergent, then I ·s1 is convergent and lim(I ·
s1) = I(lim s1).

(9) If I is one-to-one, onto, and isometric, then s1 is convergent iff I · s1 is
convergent.

Let us consider a linear operator I from S into T and a subset Z of S. Now
we state the propositions:

(10) If I is one-to-one, onto, and isometric, then Z is closed iff I◦Z is closed.

(11) If I is one-to-one, onto, and isometric, then Z is open iff I◦Z is open.

(12) If I is one-to-one, onto, and isometric, then Z is compact iff I◦Z is
compact.

Now we state the propositions:

(13) Let us consider a partial function f from T to W , a function g from S
into T , and a point x of S. Suppose

(i) x ∈ dom g, and

(ii) gx ∈ dom f , and

(iii) g is continuous in x, and

(iv) f is continuous in gx.

Then f ·g is continuous in x. Proof: Set h = f ·g. For every real number r
such that 0 < r there exists a real number s such that 0 < s and for every
point x1 of S such that x1 ∈ domh and ‖x1−x‖ < s holds ‖hx1 −hx‖ < r
by [14, (7)], [12, (3), (4)]. �

(14) Let us consider a partial function f from T to W and a linear operator
I from S into T . Suppose I is one-to-one, onto, and isometric. Let us
consider a point x of S. Suppose I(x) ∈ dom f . Then f · I is continuous
in x if and only if f is continuous in I(x). The theorem is a consequence
of (7), (5), and (13).

(15) Let us consider a partial function f from T to W , a linear operator I
from S into T , and a set X. Suppose

(i) X ⊆ the carrier of T , and

(ii) I is one-to-one, onto, and isometric.

Then f is continuous on X if and only if f · I is continuous on I−1(X).
The theorem is a consequence of (14) and (4). Proof: For every point y
of T such that y ∈ X holds f�X is continuous in y by [5, (113)], [22, (57)].
�

Let X, Y be real normed spaces. The functor IsoCPNrSP(X,Y ) yielding a
linear operator from X × Y into

∏
〈X,Y 〉 is defined by
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(Def. 2) (i) it is one-to-one and onto, and

(ii) for every point x of X and for every point y of Y, it(x, y) = 〈x, y〉,
and

(iii) 0∏〈X,Y 〉 = it(0X×Y ), and

(iv) it is isometric.

The functor IsoPCNrSP(X,Y ) yielding a linear operator from
∏
〈X,Y 〉 into

X × Y is defined by

(Def. 3) (i) it = (IsoCPNrSP(X,Y ))−1, and

(ii) it is one-to-one and onto, and

(iii) for every point x of X and for every point y of Y, it(〈x, y〉) = 〈〈x, y〉〉,
and

(iv) 0X×Y = it(0∏〈X,Y 〉), and

(v) it is isometric.

Now we state the propositions:

(16) Let us consider real normed spaces X, Y and a point z of X × Y. Then
IsoCPNrSP(X,Y ) is continuous in z. The theorem is a consequence of (5).

(17) Let us consider real normed spaces X, Y and a point z of
∏
〈X,Y 〉. Then

IsoPCNrSP(X,Y ) is continuous in z. The theorem is a consequence of (5).

(18) Let us consider real normed spaces X, Y and a subset Z of X×Y. Then

(i) IsoCPNrSP(X,Y ) is continuous on Z, and

(ii) Z is closed iff (IsoCPNrSP(X,Y ))◦Z is closed, and

(iii) Z is open iff (IsoCPNrSP(X,Y ))◦Z is open, and

(iv) Z is compact iff (IsoCPNrSP(X,Y ))◦Z is compact.

The theorem is a consequence of (6), (10), (11), and (12).

(19) Let us consider real normed spaces X, Y and a subset Z of
∏
〈X,Y 〉.

Then

(i) IsoPCNrSP(X,Y ) is continuous on Z, and

(ii) Z is closed iff (IsoPCNrSP(X,Y ))◦Z is closed, and

(iii) Z is open iff (IsoPCNrSP(X,Y ))◦Z is open, and

(iv) Z is compact iff (IsoPCNrSP(X,Y ))◦Z is compact.

The theorem is a consequence of (6), (10), (11), and (12).

(20) Let us consider real normed spaces S, T , W , a point f of the real norm
space of bounded linear operators from S intoW , a point g of the real norm
space of bounded linear operators from T into W , and a linear operator I
from S into T . Suppose

(i) I is one-to-one, onto, and isometric, and
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(ii) f = g · I.

Then ‖f‖ = ‖g‖. The theorem is a consequence of (7). Proof: Consider
J being a linear operator from T into S such that J = I−1 and J is one-
to-one, onto, and isometric. Reconsider g0 = g as a Lipschitzian linear
operator from T into W . Reconsider g4 = g · I as a Lipschitzian linear
operator from S into W . For every element x, x ∈ {‖g0(t)‖, where t is
a vector of T : ‖t‖ ¬ 1} iff x ∈ {‖g4(w)‖, where w is a vector of S : ‖w‖ ¬
1} by [4, (13), (35)]. �

(21) Let us consider real normed spaces X, Y, a partial function f from
∏
〈X,

Y 〉 toW , and a point z ofX×Y. Suppose (IsoCPNrSP(X,Y ))(z) ∈ dom f .
Then f · IsoCPNrSP(X,Y ) is continuous in z if and only if f is continuous
in (IsoCPNrSP(X,Y ))(z). The theorem is a consequence of (14).

(22) Let us consider real normed spaces X, Y, a partial function f from X×Y
toW , and a point z of

∏
〈X,Y 〉. Suppose (IsoPCNrSP(X,Y ))(z) ∈ dom f .

Then f · IsoPCNrSP(X,Y ) is continuous in z if and only if f is continuous
in (IsoPCNrSP(X,Y ))(z). The theorem is a consequence of (14).

(23) Let us consider real normed spaces X, Y, a partial function f from∏
〈X,Y 〉 to W , and a set D. Suppose D ⊆ the carrier of

∏
〈X,Y 〉. Then

f · IsoCPNrSP(X,Y ) is continuous on (IsoCPNrSP(X,Y ))−1(D) if and
only if f is continuous on D. The theorem is a consequence of (15).

(24) Let us consider real normed spaces X, Y, a partial function f from
X × Y to W , and a set D. Suppose D ⊆ the carrier of X × Y. Then
f · IsoPCNrSP(X,Y ) is continuous on (IsoPCNrSP(X,Y ))−1(D) if and
only if f is continuous on D. The theorem is a consequence of (15).

(25) Let us consider a linear operator I from S into T . If I is isometric, then
I is a Lipschitzian linear operator from S into T .

Let us consider real normed spaces X, Y. Now we state the propositions:

(26) IsoCPNrSP(X,Y ) is a Lipschitzian linear operator fromX×Y into
∏
〈X,

Y 〉.
(27) IsoPCNrSP(X,Y ) is a Lipschitzian linear operator from

∏
〈X,Y 〉 into

X × Y.
Let X, Y be real normed spaces. Note that the functor IsoCPNrSP(X,Y )

yields a Lipschitzian linear operator from X × Y into
∏
〈X,Y 〉. Let us observe

that the functor IsoPCNrSP(X,Y ) yields a Lipschitzian linear operator from∏
〈X,Y 〉 into X × Y.

Let us consider real normed spaces X, Y, W , a point f of the real norm
space of bounded linear operators from X×Y into W , and a point g of the real
norm space of bounded linear operators from

∏
〈X,Y 〉 into W . Now we state

the propositions:

(28) If f = g · IsoCPNrSP(X,Y ), then ‖f‖ = ‖g‖.
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(29) If g = f · IsoPCNrSP(X,Y ), then ‖f‖ = ‖g‖.
Now we state the propositions:

(30) Let us consider real normed spaces S, T , a Lipschitzian linear operator
L from S into T , and a point x0 of S. Then

(i) L is differentiable in x0, and

(ii) L′(x0) = L.

Proof: Reconsider L = L0 as a point of the real norm space of bounded
linear operators from S into T . Reconsider R = (the carrier of S) 7−→ 0T
as a partial function from S to T . Set N = the neighbourhood of x0. For
every point x of S such that x ∈ N holds L0x−L0x0 = L(x−x0) +Rx−x0
by [19, (7)], [20, (4)]. �

(31) Let us consider real normed spaces X, Y and a point x0 of X ×Y. Then

(i) IsoCPNrSP(X,Y ) is differentiable in x0, and

(ii) (IsoCPNrSP(X,Y ))′(x0) = IsoCPNrSP(X,Y ).

(32) Let us consider real normed spaces X, Y and a point x0 of
∏
〈X,Y 〉.

Then

(i) IsoPCNrSP(X,Y ) is differentiable in x0, and

(ii) (IsoPCNrSP(X,Y ))′(x0) = IsoPCNrSP(X,Y ).

(33) Let us consider a partial function f from T to W , a Lipschitzian linear
operator I from S into T , and a point I0 of the real norm space of bounded
linear operators from S into T . Suppose I0 = I. Let us consider a point x
of S. Suppose f is differentiable in I(x). Then

(i) f · I is differentiable in x, and

(ii) (f · I)′(x) = f ′(I(x)) · I0.
The theorem is a consequence of (30).

(34) Let us consider real normed spaces X, Y, a partial function f from
∏
〈X,

Y 〉 toW , and a point I of the real norm space of bounded linear operators
from X×Y into

∏
〈X,Y 〉. Suppose I = IsoCPNrSP(X,Y ). Let us consider

a point z of X × Y. Suppose f is differentiable in (IsoCPNrSP(X,Y ))(z).
Then

(i) f · IsoCPNrSP(X,Y ) is differentiable in z, and

(ii) (f · IsoCPNrSP(X,Y ))′(z) = f ′((IsoCPNrSP(X,Y ))(z)) · I.
(35) Let us consider real normed spaces X, Y, a partial function f from X ×
Y to W , and a point I of the real norm space of bounded linear operators
from

∏
〈X,Y 〉 into X×Y. Suppose I = IsoPCNrSP(X,Y ). Let us consider

a point z of
∏
〈X,Y 〉. Suppose f is differentiable in (IsoPCNrSP(X,Y ))(z).

Then
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(i) f · IsoPCNrSP(X,Y ) is differentiable in z, and

(ii) (f · IsoPCNrSP(X,Y ))′(z) = f ′((IsoPCNrSP(X,Y ))(z)) · I.
(36) Let us consider a partial function f from T to W and a linear operator
I from S into T . Suppose I is one-to-one, onto, and isometric. Let us
consider a point x of S. Then f · I is differentiable in x if and only if f
is differentiable in I(x). The theorem is a consequence of (7), (25), (30),
and (33).

(37) Let us consider real normed spaces X, Y, a partial function f from
∏
〈X,

Y 〉 toW , and a point z ofX×Y. Then f ·IsoCPNrSP(X,Y ) is differentiable
in z if and only if f is differentiable in (IsoCPNrSP(X,Y ))(z). The theorem
is a consequence of (36).

(38) Let us consider a partial function f from T to W , a linear operator I
from S into T , and a set X. Suppose

(i) X ⊆ the carrier of T , and

(ii) I is one-to-one, onto, and isometric.

Then f is differentiable on X if and only if f ·I is differentiable on I−1(X).
The theorem is a consequence of (36) and (4). Proof: For every point y
of T such that y ∈ X holds f�X is differentiable in y by [5, (113)]. �

(39) Let us consider real normed spaces X, Y, a partial function f from X×Y
toW , and a point z of

∏
〈X,Y 〉. Then f ·IsoPCNrSP(X,Y ) is differentiable

in z if and only if f is differentiable in (IsoPCNrSP(X,Y ))(z). The theorem
is a consequence of (36).

(40) Let us consider real normed spaces X, Y, a partial function f from∏
〈X,Y 〉 to W , and a set D. Suppose D ⊆ the carrier of

∏
〈X,Y 〉. Then

f · IsoCPNrSP(X,Y ) is differentiable on (IsoCPNrSP(X,Y ))−1(D) if and
only if f is differentiable on D. The theorem is a consequence of (38).

(41) Let us consider real normed spaces X, Y, a partial function f from
X × Y to W , and a set D. Suppose D ⊆ the carrier of X × Y. Then
f · IsoPCNrSP(X,Y ) is differentiable on (IsoPCNrSP(X,Y ))−1(D) if and
only if f is differentiable on D. The theorem is a consequence of (38).

(42) Let us consider real normed spaces X, Y, a partial function f from∏
〈X,Y 〉 to W , and a subset D of

∏
〈X,Y 〉. Suppose f is differentiable

on D. Let us consider a point z of
∏
〈X,Y 〉. Suppose z ∈ dom f ′�D. Then

f ′�D(z) = ((f · IsoCPNrSP(X,Y ))′�(IsoCPNrSP(X,Y ))−1(D))(IsoPCNrSP(X,Y ))(z) ·
(IsoCPNrSP(X,Y ))−1. The theorem is a consequence of (40) and (33).
Proof: Set I = IsoCPNrSP(X,Y ). Set J = IsoPCNrSP(X,Y ). Set g =
f ·I. Set E = I−1(D). For every point z of

∏
〈X,Y 〉 such that z ∈ dom f ′�D

holds f ′�D(z) = (g′�E)J(z) · I−1 by [10, (31)], [5, (113)], [22, (36)]. �

(43) Let us consider real normed spaces X, Y, a partial function f from
X × Y to W , and a subset D of X × Y. Suppose f is differentiable on



256 yuichi futa, noboru endou, and yasunari shidama

D. Let us consider a point z of X × Y. Suppose z ∈ dom f ′�D. Then
f ′�D(z) = ((f · IsoPCNrSP(X,Y ))′�(IsoPCNrSP(X,Y ))−1(D))(IsoCPNrSP(X,Y ))(z) ·
(IsoPCNrSP(X,Y ))−1. The theorem is a consequence of (41) and (33).
Proof: Set I = IsoPCNrSP(X,Y ). Set J = IsoCPNrSP(X,Y ). Set g =
f · I. Set E = I−1(D). For every point z of X × Y such that z ∈ dom f ′�D
holds f ′�D(z) = (g′�E)J(z) · I−1 by [10, (31)], [5, (113)], [22, (36)]. �

Let X, Y be real normed spaces and x be an element of X ×Y. The functor
reproj1x yielding a function from X into X × Y is defined by

(Def. 4) Let us consider an element r of X. Then it(r) = 〈〈r, x2〉〉.
The functor reproj2x yielding a function from Y into X × Y is defined by

(Def. 5) Let us consider an element r of Y. Then it(r) = 〈〈x1, r〉〉.
Now we state the proposition:

(44) Let us consider real normed spaces X, Y and a point z of X × Y. Then

(i) reproj1 z = IsoPCNrSP(X,Y )·reproj(1(∈ dom〈X,Y 〉), (IsoCPNrSP(X,Y ))(z)),
and

(ii) reproj2 z = IsoPCNrSP(X,Y )·reproj(2(∈ dom〈X,Y 〉), (IsoCPNrSP(X,Y ))(z)).

Let X, Y be real normed spaces and z be a point of X × Y. Observe that
the functor z1 yields a point of X. Let us note that the functor z2 yields a point
of Y. Let X, Y, W be real normed spaces. Let f be a partial function from X ×
Y to W . We say that f is partial differentiable in‘1 z if and only if

(Def. 6) f · reproj1 z is differentiable in z1.

We say that f is partial differentiable in‘2 z if and only if

(Def. 7) f · reproj2 z is differentiable in z2.

Now we state the propositions:

(45) Let us consider real normed spaces X, Y and a point z of X × Y. Then

(i) z1 = the projection onto 1(∈ dom〈X,Y 〉)((IsoCPNrSP(X,Y ))(z)),
and

(ii) z2 = the projection onto 2(∈ dom〈X,Y 〉)((IsoCPNrSP(X,Y ))(z)).

(46) Let us consider real normed spaces X, Y, W , a point z of X × Y, and a
partial function f from X × Y to W . Then

(i) f is partial differentiable in‘1 z iff f · IsoPCNrSP(X,Y ) is partially
differentiable in (IsoCPNrSP(X,Y ))(z) w.r.t. 1, and

(ii) f is partial differentiable in‘2 z iff f · IsoPCNrSP(X,Y ) is partially
differentiable in (IsoCPNrSP(X,Y ))(z) w.r.t. 2.

The theorem is a consequence of (44) and (45).

Let X, Y, W be real normed spaces, z be a point of X×Y, and f be a partial
function from X × Y to W . The functor partdiff‘1(f, z) yielding a point of the
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real norm space of bounded linear operators from X into W is defined by the
term

(Def. 8) (f · reproj1 z)′(z1).

The functor partdiff‘2(f, z) yielding a point of the real norm space of boun-
ded linear operators from Y into W is defined by the term

(Def. 9) (f · reproj2 z)′(z2).

Now we state the propositions:

(47) Let us consider real normed spaces X, Y, W , a point z of X × Y, and a
partial function f from X × Y to W . Then

(i) partdiff‘1(f, z) = partdiff(f ·IsoPCNrSP(X,Y ), (IsoCPNrSP(X,Y ))(z), 1),
and

(ii) partdiff‘2(f, z) = partdiff(f ·IsoPCNrSP(X,Y ), (IsoCPNrSP(X,Y ))(z), 2).

The theorem is a consequence of (44) and (45).

(48) Let us consider real normed spaces X, Y, W , a function I from X into
Y, and partial functions f1, f2 from Y to W . Then

(i) (f1 + f2) · I = f1 · I + f2 · I, and

(ii) (f1 − f2) · I = f1 · I − f2 · I.
Proof: Set D1 = the carrier of X. For every element s of D1, s ∈
dom((f1+f2)·I) iff s ∈ dom(f1 ·I+f2 ·I) by [4, (11)]. For every element z of
D1 such that z ∈ dom((f1+f2)·I) holds ((f1+f2)·I)(z) = (f1 ·I+f2 ·I)(z)
by [4, (11), (12)]. For every element s of D1, s ∈ dom((f1 − f2) · I) iff
s ∈ dom(f1 · I − f2 · I) by [4, (11)]. For every element z of D1 such that
z ∈ dom((f1 − f2) · I) holds ((f1 − f2) · I)(z) = (f1 · I − f2 · I)(z) by [4,
(11), (12)]. �

(49) Let us consider real normed spaces X, Y, W , a function I from X into Y,
a partial function f from Y to W , and a real number r. Then r · (f · I) =
(r · f) · I. Proof: Set D1 = the carrier of X. For every element s of D1,
s ∈ dom((r · f) · I) iff s ∈ dom(f · I) by [4, (11)]. For every element s of
D1, s ∈ dom((r · f) · I) iff I(s) ∈ dom(r · f) by [4, (11)]. For every element
z of D1 such that z ∈ dom(r · (f · I)) holds (r · (f · I))(z) = ((r · f) · I)(z)
by [4, (12)]. �

Let us consider real normed spaces X, Y, W , a point z of X×Y, and partial
functions f1, f2 from X × Y to W . Now we state the propositions:

(50) Suppose f1 is partial differentiable in‘1 z and f2 is partial differentiable
in‘1 z. Then

(i) f1 + f2 is partial differentiable in‘1 z, and

(ii) partdiff‘1((f1 + f2), z) = partdiff‘1(f1, z) + partdiff‘1(f2, z), and

(iii) f1 − f2 is partial differentiable in‘1 z, and
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(iv) partdiff‘1((f1 − f2), z) = partdiff‘1(f1, z)− partdiff‘1(f2, z).

(51) Suppose f1 is partial differentiable in‘2 z and f2 is partial differentiable
in‘2 z. Then

(i) f1 + f2 is partial differentiable in‘2 z, and

(ii) partdiff‘2((f1 + f2), z) = partdiff‘2(f1, z) + partdiff‘2(f2, z), and

(iii) f1 − f2 is partial differentiable in‘2 z, and

(iv) partdiff‘2((f1 − f2), z) = partdiff‘2(f1, z)− partdiff‘2(f2, z).

Let us consider real normed spacesX, Y, W , a point z ofX×Y, a real number
r, and a partial function f from X × Y to W . Now we state the propositions:

(52) If f is partial differentiable in‘1 z, then r · f is partial differentiable in‘1
z and partdiff‘1((r · f), z) = r · partdiff‘1(f, z).

(53) If f is partial differentiable in‘2 z, then r · f is partial differentiable in‘2
z and partdiff‘2((r · f), z) = r · partdiff‘2(f, z).

Let X, Y, W be real normed spaces, Z be a set, and f be a partial function
from X × Y to W . We say that f is partial differentiable on‘1 Z if and only if

(Def. 10) (i) Z ⊆ dom f , and

(ii) for every point z of X × Y such that z ∈ Z holds f�Z is partial
differentiable in‘1 z.

We say that f is partial differentiable on‘2 Z if and only if

(Def. 11) (i) Z ⊆ dom f , and

(ii) for every point z of X × Y such that z ∈ Z holds f�Z is partial
differentiable in‘2 z.

Now we state the proposition:

(54) Let us consider real normed spaces X, Y, W , a subset Z of X × Y, and
a partial function f from X × Y to W . Then

(i) f is partial differentiable on‘1 Z iff f · IsoPCNrSP(X,Y ) is partially
differentiable on (IsoPCNrSP(X,Y ))−1(Z) w.r.t. 1, and

(ii) f is partial differentiable on‘2 Z iff f · IsoPCNrSP(X,Y ) is partially
differentiable on (IsoPCNrSP(X,Y ))−1(Z) w.r.t. 2.

The theorem is a consequence of (46) and (4).Proof: Set I = IsoPCNrSP(X,Y ).
Set g = f · I. Set E = I−1(Z). f is partial differentiable on‘1 Z iff g is
partially differentiable on E w.r.t. 1 by [5, (113)], [4, (34)], [5, (38)]. f is
partial differentiable on‘2 Z iff g is partially differentiable on E w.r.t. 2
by [5, (113)], [4, (34)], [5, (38)]. �

Let X, Y, W be real normed spaces, Z be a set, and f be a partial func-
tion from X × Y to W . Assume f is partial differentiable on‘1 Z. The functor
f ‘partial‘1|Z yielding a partial function from X × Y to the real norm space of
bounded linear operators from X into W is defined by
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(Def. 12) (i) dom it = Z, and

(ii) for every point z of X×Y such that z ∈ Z holds itz = partdiff‘1(f, z).

Assume f is partial differentiable on‘2 Z. The functor f ‘partial‘2|Z yielding
a partial function from X×Y to the real norm space of bounded linear operators
from Y into W is defined by

(Def. 13) (i) dom it = Z, and

(ii) for every point z of X×Y such that z ∈ Z holds itz = partdiff‘2(f, z).

Let us consider real normed spaces X, Y, W , a subset Z of X × Y, and a
partial function f from X × Y to W . Now we state the propositions:

(55) Suppose f is partial differentiable on‘1 Z. Then f ‘partial‘1|Z = (f ·
IsoPCNrSP(X,Y )�1(IsoPCNrSP(X,Y ))−1(Z)) · IsoCPNrSP(X,Y ).

(56) Suppose f is partial differentiable on‘2 Z. Then f ‘partial‘2|Z = (f ·
IsoPCNrSP(X,Y )�2(IsoPCNrSP(X,Y ))−1(Z)) · IsoCPNrSP(X,Y ).

(57) Suppose Z is open. Then f is partial differentiable on‘1 Z if and only
if Z ⊆ dom f and for every point x of X × Y such that x ∈ Z holds f is
partial differentiable in‘1 x.

(58) Suppose Z is open. Then f is partial differentiable on‘2 Z if and only
if Z ⊆ dom f and for every point x of X × Y such that x ∈ Z holds f is
partial differentiable in‘2 x.

Let us consider real normed spaces X, Y, W , a subset Z of X×Y, and partial
functions f , g from X × Y to W . Now we state the propositions:

(59) Suppose Z is open and f is partial differentiable on‘1 Z and g is partial
differentiable on‘1 Z. Then

(i) f + g is partial differentiable on‘1 Z, and

(ii) (f + g) ‘partial‘1|Z = (f ‘partial‘1|Z) + (g ‘partial‘1|Z).

(60) Suppose Z is open and f is partial differentiable on‘1 Z and g is partial
differentiable on‘1 Z. Then

(i) f − g is partial differentiable on‘1 Z, and

(ii) (f − g) ‘partial‘1|Z = (f ‘partial‘1|Z)− (g ‘partial‘1|Z).

(61) Suppose Z is open and f is partial differentiable on‘2 Z and g is partial
differentiable on‘2 Z. Then

(i) f + g is partial differentiable on‘2 Z, and

(ii) (f + g) ‘partial‘2|Z = (f ‘partial‘2|Z) + (g ‘partial‘2|Z).

(62) Suppose Z is open and f is partial differentiable on‘2 Z and g is partial
differentiable on‘2 Z. Then

(i) f − g is partial differentiable on‘2 Z, and

(ii) (f − g) ‘partial‘2|Z = (f ‘partial‘2|Z)− (g ‘partial‘2|Z).
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Let us consider real normed spaces X, Y, W , a subset Z of X × Y, a re-
al number r, and a partial function f from X × Y to W . Now we state the
propositions:

(63) Suppose Z is open and f is partial differentiable on‘1 Z. Then

(i) r · f is partial differentiable on‘1 Z, and

(ii) r · f ‘partial‘1|Z = r · (f ‘partial‘1|Z).

(64) Suppose Z is open and f is partial differentiable on‘2 Z. Then

(i) r · f is partial differentiable on‘2 Z, and

(ii) r · f ‘partial‘2|Z = r · (f ‘partial‘2|Z).

Let us consider real normed spaces X, Y, W , a subset Z of X × Y, and a
partial function f from X × Y to W . Now we state the propositions:

(65) Suppose f is differentiable on Z. Then f ′�Z is continuous on Z if and only
if (f ·IsoPCNrSP(X,Y ))′�(IsoPCNrSP(X,Y ))−1(Z) is continuous on (IsoPCNrSP(X,Y ))−1(Z).

(66) Suppose Z is open. Then f is partial differentiable on‘1 Z and f is
partial differentiable on‘2 Z and f ‘partial‘1|Z is continuous on Z and
f ‘partial‘2|Z is continuous on Z if and only if f is differentiable on Z and
f ′�Z is continuous on Z.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):

55–65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[7] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[8] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[9] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. The product space of re-

al normed spaces and its properties. Formalized Mathematics, 15(3):81–85, 2007.
doi:10.2478/v10037-007-0010-y.

[10] Hiroshi Imura, Morishige Kimura, and Yasunari Shidama. The differentiable functions on
normed linear spaces. Formalized Mathematics, 12(3):321–327, 2004.

[11] Hiroshi Imura, Yuji Sakai, and Yasunari Shidama. Differentiable functions on normed
linear spaces. Part II. Formalized Mathematics, 12(3):371–374, 2004.

[12] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathema-
tics, 1(4):697–702, 1990.

[13] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

[14] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on
normed linear spaces. Formalized Mathematics, 12(3):269–275, 2004.

[15] Hiroyuki Okazaki, Noboru Endou, and Yasunari Shidama. Cartesian products of family
of real linear spaces. Formalized Mathematics, 19(1):51–59, 2011. doi:10.2478/v10037-
011-0009-2.

http://fm.mizar.org/1990-1/pdf1-1/ordinal1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finseq_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/binop_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/funct_2.pdf
http://fm.mizar.org/1990-1/pdf1-2/partfun1.pdf
http://fm.mizar.org/1990-1/pdf1-1/zfmisc_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/finset_1.pdf
http://dx.doi.org/10.2478/v10037-007-0010-y
http://fm.mizar.org/2004-12/pdf12-3/ndiff_1.pdf
http://fm.mizar.org/2004-12/pdf12-3/ndiff_1.pdf
http://fm.mizar.org/2004-12/pdf12-3/ndiff_2.pdf
http://fm.mizar.org/2004-12/pdf12-3/ndiff_2.pdf
http://fm.mizar.org/1990-1/pdf1-4/partfun2.pdf
http://fm.mizar.org/1990-1/pdf1-2/vectsp_1.pdf
http://fm.mizar.org/1990-1/pdf1-2/vectsp_1.pdf
http://fm.mizar.org/2004-12/pdf12-3/nfcont_1.pdf
http://fm.mizar.org/2004-12/pdf12-3/nfcont_1.pdf
http://dx.doi.org/10.2478/v10037-011-0009-2
http://dx.doi.org/10.2478/v10037-011-0009-2


Isometric differentiable functions on real normed space 261

[16] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
[17] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics,

12(1):39–48, 2004.
[18] Yasunari Shidama. Differentiable functions on normed linear spaces. Formalized Mathe-
matics, 20(1):31–40, 2012. doi:10.2478/v10037-012-0005-1.

[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1
(2):329–334, 1990.

[20] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,
1990.

[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1

(1):73–83, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.
[24] Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Ma-
thematics, 3(2):171–175, 1992.

Received December 31, 2013

http://fm.mizar.org/1991-2/pdf2-1/normsp_1.pdf
http://fm.mizar.org/2004-12/pdf12-1/lopban_1.pdf
http://dx.doi.org/10.2478/v10037-012-0005-1
http://fm.mizar.org/1990-1/pdf1-2/funcop_1.pdf
http://fm.mizar.org/1990-1/pdf1-2/rlvect_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/subset_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relat_1.pdf
http://fm.mizar.org/1990-1/pdf1-1/relset_1.pdf
http://fm.mizar.org/1992-3/pdf3-2/vfunct_1.pdf


FORMALIZED MATHEMATICS

Vol. 21, No. 4, Pages 263–274, 2013
DOI: 10.2478/forma-2013-0028 degruyter.com/view/j/forma

Differential Equations on Functions from R
into Real Banach Space1

Keiko Narita
Hirosaki-city
Aomori, Japan

Noboru Endou
Gifu National College of Technology

Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we described the differential equations on func-
tions from R into real Banach space. The descriptions were based on the article
[20]. As preliminary to prove these theorems, we proved some properties of diffe-
rentiable functions on real normed space. For the proof we referred to descriptions
and theorems in the article [21] and the article [31]. And applying the theorems
of Riemann integral introduced in the article [22], we proved the ordinary diffe-
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(1) Let us consider a real normed space Y, a function J from 〈E1, ‖ · ‖〉 into
R, a point x0 of 〈E1, ‖ · ‖〉, an element y0 of R, a partial function g from
R to Y, and a partial function f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) J = proj(1, 1), and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f = g · J .

Then f is continuous in x0 if and only if g is continuous in y0. Proof: If
f is continuous in x0, then g is continuous in y0 by [14, (2)], [6, (39)], [36,
(36)]. �

(2) Let us consider a real normed space Y, a function I from R into 〈E1, ‖·‖〉,
a point x0 of 〈E1, ‖ · ‖〉, an element y0 of R, a partial function g from R to
Y, and a partial function f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) I = (proj(1, 1) qua function)−1, and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f · I = g.

Then f is continuous in x0 if and only if g is continuous in y0. Proof:
If f is continuous in x0, then g is continuous in y0 by [14, (1)], [21, (33)],
[26, (15)]. �

(3) Let us consider a function I from R into 〈E1, ‖·‖〉. Suppose I = (proj(1, 1) qua function)−1.
Then

(i) for every rest R of 〈E1, ‖ · ‖〉, Y, R · I is a rest of Y, and

(ii) for every linear operator L from 〈E1, ‖ · ‖〉 into Y, L · I is a linear of
Y.

Proof: For every rest R of 〈E1, ‖ · ‖〉, Y, R · I is a rest of Y by [15,
(23)], [5, (47)], [14, (3)]. Reconsider L0 = L as a function from R1 into
Y. Reconsider L1 = L0 · I as a partial function from R to Y. Reconsider
j0 = 1 as an element of R. Reconsider r = L1(j0) as a point of Y. For
every real number p, L1p = p · r by [6, (13)], [14, (3)], [6, (12)]. �

(4) Let us consider a function J from 〈E1, ‖ · ‖〉 into R. Suppose J =
proj(1, 1). Then

(i) for every rest R of Y, R · J is a rest of 〈E1, ‖ · ‖〉, Y, and

(ii) for every linear L of Y, L · J is a Lipschitzian linear operator from
〈E1, ‖ · ‖〉 into Y.
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Proof: For every rest R of Y, R · J is a rest of 〈E1, ‖ · ‖〉, Y by [14, (4)],
[15, (6)], [5, (47)]. Consider r being a point of Y such that for every real
number p, Lp = p · r. �

(5) Let us consider a function I from R into 〈E1, ‖·‖〉, a point x0 of 〈E1, ‖·‖〉,
an element y0 of R, a partial function g from R to Y, and a partial function
f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) I = (proj(1, 1) qua function)−1, and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f · I = g, and

(vi) f is differentiable in x0.

Then

(vii) g is differentiable in y0, and

(viii) g′(y0) = f ′(x0)(〈1〉), and

(ix) for every element r of R, f ′(x0)(〈r〉) = r · g′(y0).
The theorem is a consequence of (3). Proof: Consider N1 being a ne-
ighbourhood of x0 such that N1 ⊆ dom f and there exists a point L of
the real norm space of bounded linear operators from 〈E1, ‖ · ‖〉 into Y
and there exists a rest R of 〈E1, ‖ · ‖〉, Y such that for every point x of
〈E1, ‖ · ‖〉 such that x ∈ N1 holds fx − fx0 = L(x − x0) + Rx−x0 . Con-
sider e being a real number such that 0 < e and {z, where z is a point
of 〈E1, ‖ · ‖〉 : ‖z − x0‖ < e} ⊆ N1. Consider L being a point of the real
norm space of bounded linear operators from 〈E1, ‖ · ‖〉 into Y, R being a
rest of 〈E1, ‖ · ‖〉, Y such that for every point x3 of 〈E1, ‖ · ‖〉 such that
x3 ∈ N1 holds fx3 − fx0 = L(x3 − x0) +Rx3−x0 . Reconsider R0 = R · I as
a rest of Y. Reconsider L0 = L · I as a linear of Y. Set N = {z, where
z is a point of 〈E1, ‖ · ‖〉 : ‖z − x0‖ < e}. N ⊆ the carrier of 〈E1, ‖ · ‖〉. Set
N0 = {z, where z is an element of R : |z − y0| < e}. ]y0 − e, y0 + e[ ⊆ N0
by [28, (1)]. N0 ⊆ ]y0 − e, y0 + e[ by [28, (1)]. For every real number y1
such that y1 ∈ N0 holds (f · I)y1 − (f · I)y0 = L0y1−y0 + R0y1−y0 by [6,
(12)], [7, (35)], [14, (3)]. �

(6) Let us consider a function I from R into 〈E1, ‖·‖〉, a point x0 of 〈E1, ‖·‖〉,
a real number y0, a partial function g from R to Y, and a partial function
f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) I = (proj(1, 1) qua function)−1, and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and
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(iv) x0 = 〈y0〉, and

(v) f · I = g.

Then f is differentiable in x0 if and only if g is differentiable in y0. The
theorem is a consequence of (5) and (4). Proof: Reconsider J = proj(1, 1)
as a function from 〈E1, ‖ · ‖〉 into R. Consider N0 being a neighbourhood
of y0 such that N0 ⊆ dom(f · I) and there exists a linear L of Y and there
exists a rest R of Y such that for every real number y such that y ∈ N0
holds (f · I)y− (f · I)y0 = Ly−y0 +Ry−y0 . Consider e0 being a real number
such that 0 < e0 andN0 = ]y0−e0, y0+e0[. Reconsider e = e0 as an element
of R. Set N = {z, where z is a point of 〈E1, ‖·‖〉 : ‖z−x0‖ < e}. Consider
L being a linear of Y, R being a rest of Y such that for every real number
y1 such that y1 ∈ N0 holds (f ·I)y1−(f ·I)y0 = Ly1−y0+Ry1−y0 . Reconsider
R0 = R ·J as a rest of 〈E1, ‖·‖〉, Y. Reconsider L0 = L ·J as a Lipschitzian
linear operator from 〈E1, ‖·‖〉 into Y. N ⊆ the carrier of 〈E1, ‖·‖〉. For every
point y of 〈E1, ‖ · ‖〉 such that y ∈ N holds fy− fx0 = L0(y−x0) +R0y−x0
by [6, (13)], [7, (35)], [14, (4)]. �

(7) Let us consider a function J from 〈E1, ‖·‖〉 into R, a point x0 of 〈E1, ‖·‖〉,
an element y0 of R, a partial function g from R to Y, and a partial function
f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) J = proj(1, 1), and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f = g · J .

Then f is differentiable in x0 if and only if g is differentiable in y0. The
theorem is a consequence of (6).

(8) Let us consider a function I from R into 〈E1, ‖·‖〉, a point x0 of 〈E1, ‖·‖〉,
an element y0 of R, a partial function g from R to Y, and a partial function
f from 〈E1, ‖ · ‖〉 to Y. Suppose

(i) I = (proj(1, 1) qua function)−1, and

(ii) x0 ∈ dom f , and

(iii) y0 ∈ dom g, and

(iv) x0 = 〈y0〉, and

(v) f · I = g, and

(vi) f is differentiable in x0.

Then ‖g′(y0)‖ = ‖f ′(x0)‖. The theorem is a consequence of (5). Proof:
Reconsider d1 = f ′(x0) as a Lipschitzian linear operator from 〈E1, ‖ · ‖〉
into Y. Set A = PreNorms(d1). For every real number r such that r ∈ A
holds r ¬ ‖g′(y0)‖ by [14, (1), (4)]. �
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Let us consider real numbers a, b, z and points p, q, x of 〈E1, ‖ · ‖〉. Now we
state the propositions:

(9) Suppose p = 〈a〉 and q = 〈b〉 and x = 〈z〉. Then

(i) if z ∈ ]a, b[, then x ∈ ]p, q[, and

(ii) if x ∈ ]p, q[, then a 6= b and if a < b, then z ∈ ]a, b[ and if a > b, then
z ∈ ]b, a[.

(10) Suppose p = 〈a〉 and q = 〈b〉 and x = 〈z〉. Then

(i) if z ∈ [a, b], then x ∈ [p, q], and

(ii) if x ∈ [p, q], then if a ¬ b, then z ∈ [a, b] and if a  b, then z ∈ [b, a].

Now we state the propositions:

(11) Let us consider real numbers a, b, points p, q of 〈E1, ‖ ·‖〉, and a function
I from R into 〈E1, ‖ · ‖〉. Suppose

(i) p = 〈a〉, and

(ii) q = 〈b〉, and

(iii) I = (proj(1, 1) qua function)−1.

Then

(iv) if a ¬ b, then I◦[a, b] = [p, q], and

(v) if a < b, then I◦]a, b[ = ]p, q[.

The theorem is a consequence of (10) and (9).

(12) Let us consider a real normed space Y, a partial function g from R to
the carrier of Y, and real numbers a, b, M . Suppose

(i) a ¬ b, and

(ii) [a, b] ⊆ dom g, and

(iii) for every real number x such that x ∈ [a, b] holds g is continuous in
x, and

(iv) for every real number x such that x ∈ ]a, b[ holds g is differentiable
in x, and

(v) for every real number x such that x ∈ ]a, b[ holds ‖g′(x)‖ ¬M .

Then ‖gb − ga‖ ¬M · |b− a|. The theorem is a consequence of (11), (10),
(1), (9), (7), and (8).
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2. Differential Equations

In the sequel X, Y denote real Banach spaces, Z denotes an open subset
of R, a, b, c, d, e, r, x0 denote real numbers, y0 denotes a vector of X, and G
denotes a function from X into X.

Now we state the propositions:

(13) Let us consider a real Banach space X, a partial function F from R to
the carrier of X, and a continuous partial function f from R to the carrier
of X. Suppose

(i) [a, b] ⊆ dom f , and

(ii) ]a, b[ ⊆ domF , and

(iii) for every real number x such that x ∈ ]a, b[ holds Fx =
x∫
a

f(x)dx,

and

(iv) x0 ∈ ]a, b[, and

(v) f is continuous in x0.

Then

(vi) F is differentiable in x0, and

(vii) F ′(x0) = fx0 .

(14) Let us consider a partial function F from R to the carrier of X and a
continuous partial function f from R to the carrier of X. Suppose

(i) dom f = [a, b], and

(ii) domF = [a, b], and

(iii) for every real number t such that t ∈ [a, b] holds Ft =
t∫
a

f(x)dx.

Let us consider a real number x. If x ∈ [a, b], then F is continuous in x.

(15) Let us consider a continuous partial function f from R to the carrier of

X. If a ∈ dom f , then
a∫
a

f(x)dx = 0X .

Let us consider a continuous partial function f from R to the carrier ofX and
a partial function g from R to the carrier of X. Now we state the propositions:

(16) Suppose a ¬ b and dom f = [a, b] and for every real number t such that

t ∈ [a, b] holds gt = y0 +
t∫
a

f(x)dx. Then ga = y0.
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(17) Suppose dom f = [a, b] and dom g = [a, b] and Z = ]a, b[ and for every

real number t such that t ∈ [a, b] holds gt = y0 +
t∫
a

f(x)dx. Then

(i) g is continuous and differentiable on Z, and

(ii) for every real number t such that t ∈ Z holds g′(t) = ft.

Let us consider a partial function f from R to the carrier of X. Now we state
the propositions:

(18) Suppose a ¬ b and [a, b] ⊆ dom f and for every real number x such that
x ∈ [a, b] holds f is continuous in x and f is differentiable on ]a, b[ and for
every real number x such that x ∈ ]a, b[ holds f ′(x) = 0X . Then fb = fa.

(19) Suppose [a, b] ⊆ dom f and for every real number x such that x ∈ [a, b]
holds f is continuous in x and f is differentiable on ]a, b[ and for every real
number x such that x ∈ ]a, b[ holds f ′(x) = 0X . Then f�]a, b[ is constant.

Now we state the propositions:

(20) Let us consider a continuous partial function f from R to the carrier of
X. Suppose

(i) [a, b] = dom f , and

(ii) f�]a, b[ is constant.

Let us consider a real number x. If x ∈ [a, b], then fx = fa.

(21) Let us consider continuous partial functions y, G1 from R to the carrier
of X and a partial function g from R to the carrier of X. Suppose

(i) a ¬ b, and

(ii) Z = ]a, b[, and

(iii) dom y = [a, b], and

(iv) dom g = [a, b], and

(v) domG1 = [a, b], and

(vi) y is differentiable on Z, and

(vii) ya = y0, and

(viii) for every real number t such that t ∈ Z holds y′(t) = G1t, and

(ix) for every real number t such that t ∈ [a, b] holds gt = y0+
t∫
a

G1(x)dx.

Then y = g. The theorem is a consequence of (17), (16), (19), and (20).
Proof: Reconsider h = y − g as a continuous partial function from R
to the carrier of X. For every real number x such that x ∈ domh holds
hx = 0X by [34, (15)]. For every element x of R such that x ∈ dom y holds
y(x) = g(x) by [34, (21)]. �
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Let X be a real Banach space, y0 be a vector of X, G be a function from
X into X, and a, b be real numbers. Assume a ¬ b and G is continuous on
domG. The functor Fredholm(G, a, b, y0) yielding a function from the R-norm
space of continuous functions of [a, b] andX into the R-norm space of continuous
functions of [a, b] and X is defined by

(Def. 1) Let us consider a vector x of the R-norm space of continuous functions
of [a, b] and X. Then there exist continuous partial functions f , g, G1 from
R to the carrier of X such that

(i) x = f , and

(ii) it(x) = g, and

(iii) dom f = [a, b], and

(iv) dom g = [a, b], and

(v) G1 = G · f , and

(vi) for every real number t such that t ∈ [a, b] holds gt = y0+
t∫
a

G1(x)dx.

Now we state the propositions:

(22) Suppose a ¬ b and 0 < r and for every vectors y1, y2 of X, ‖Gy1−Gy2‖ ¬
r ·‖y1−y2‖. Let us consider vectors u, v of the R-norm space of continuous
functions of [a, b] and X and continuous partial functions g, h from R to
the carrier of X. Suppose

(i) g = (Fredholm(G, a, b, y0))(u), and

(ii) h = (Fredholm(G, a, b, y0))(v).

Let us consider a real number t. Suppose t ∈ [a, b]. Then ‖gt − ht‖ ¬
(r · (t − a)) · ‖u − v‖. Proof: Set F = Fredholm(G, a, b, y0). Consider
f1, g1, G3 being continuous partial functions from R to the carrier of
X such that u = f1 and F (u) = g1 and dom f1 = [a, b] and dom g1 =
[a, b] and G3 = G · f1 and for every real number t such that t ∈ [a, b]

holds g1t = y0 +
t∫
a

G3(x)dx. Consider f2, g2, G5 being continuous partial

functions from R to the carrier of X such that v = f2 and F (v) = g2
and dom f2 = [a, b] and dom g2 = [a, b] and G5 = G · f2 and for every real

number t such that t ∈ [a, b] holds g2t = y0+
t∫
a

G5(x)dx. Set G4 = G3−G5.

For every real number x such that x ∈ [a, t] holds ‖G4x‖ ¬ r · ‖u− v‖ by
[20, (26)], [6, (12)]. �

(23) Suppose a ¬ b and 0 < r and for every vectors y1, y2 of X, ‖Gy1 −
Gy2‖ ¬ r · ‖y1 − y2‖. Let us consider vectors u, v of the R-norm space of



Differential equations on functions from R ... 271

continuous functions of [a, b] and X, an element m of N, and continuous
partial functions g, h from R to the carrier of X. Suppose

(i) g = (Fredholm(G, a, b, y0))m+1(u), and

(ii) h = (Fredholm(G, a, b, y0))m+1(v).

Let us consider a real number t. Suppose t ∈ [a, b]. Then ‖gt − ht‖ ¬
(r·(t−a))m+1
(m+1)! ·‖u−v‖. The theorem is a consequence of (22). Proof: Set F =

Fredholm(G, a, b, y0). Define P[natural number] ≡ for every continuous
partial functions g, h from R to the carrier of X such that g = F $1+1(u1)
and h = F $1+1(v1) for every real number t such that t ∈ [a, b] holds

‖gt − ht‖ ¬ (r·(t−a))
$1+1

($1+1)!
· ‖u1 − v1‖. P[0] by [4, (70)], [18, (5), (13)]. For

every natural number k such that P[k] holds P[k+1] by [4, (71)], [6, (13)],
[36, (27)]. For every natural number k, P[k] from [1, Sch. 2]. �

(24) Let us consider a natural number m. Suppose

(i) a ¬ b, and

(ii) 0 < r, and

(iii) for every vectors y1, y2 of X, ‖Gy1 −Gy2‖ ¬ r · ‖y1 − y2‖.
Let us consider vectors u, v of the R-norm space of continuous functions of
[a, b] andX. Then ‖(Fredholm(G, a, b, y0))m+1(u)−(Fredholm(G, a, b, y0))m+1(v)‖ ¬
(r·(b−a))m+1
(m+1)! · ‖u− v‖. The theorem is a consequence of (23).

(25) If a < b and G is Lipschitzian on the carrier of X, then there exists
a natural number m such that (Fredholm(G, a, b, y0))m+1 is contraction.
The theorem is a consequence of (24).

(26) If a < b andG is Lipschitzian on the carrier ofX, then Fredholm(G, a, b, y0)
has unique fixpoint. The theorem is a consequence of (25).

(27) Let us consider continuous partial functions f , g from R to the carrier
of X. Suppose

(i) dom f = [a, b], and

(ii) dom g = [a, b], and

(iii) Z = ]a, b[, and

(iv) a < b, and

(v) G is Lipschitzian on the carrier of X, and

(vi) g = (Fredholm(G, a, b, y0))(f).

Then

(vii) ga = y0, and

(viii) g is differentiable on Z, and

(ix) for every real number t such that t ∈ Z holds g′(t) = (G · f)t.
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The theorem is a consequence of (17) and (16).

(28) Let us consider a continuous partial function y from R to the carrier of
X. Suppose

(i) a < b, and

(ii) Z = ]a, b[, and

(iii) G is Lipschitzian on the carrier of X, and

(iv) dom y = [a, b], and

(v) y is differentiable on Z, and

(vi) ya = y0, and

(vii) for every real number t such that t ∈ Z holds y′(t) = G(yt).

Then y is a fixpoint of Fredholm(G, a, b, y0). The theorem is a consequence
of (21). Proof: Consider f , g, G1 being continuous partial functions from
R to the carrier of X such that y = f and (Fredholm(G, a, b, y0))(y) = g
and dom f = [a, b] and dom g = [a, b] and G1 = G · f and for every real

number t such that t ∈ [a, b] holds gt = y0 +
t∫
a

G1(x)dx. For every real

number t such that t ∈ Z holds y′(t) = G1t by [6, (13)]. �

(29) Let us consider continuous partial functions y1, y2 from R to the carrier
of X. Suppose

(i) a < b, and

(ii) Z = ]a, b[, and

(iii) G is Lipschitzian on the carrier of X, and

(iv) dom y1 = [a, b], and

(v) y1 is differentiable on Z, and

(vi) y1a = y0, and

(vii) for every real number t such that t ∈ Z holds y1′(t) = G(y1t), and

(viii) dom y2 = [a, b], and

(ix) y2 is differentiable on Z, and

(x) y2a = y0, and

(xi) for every real number t such that t ∈ Z holds y2′(t) = G(y2t).

Then y1 = y2. The theorem is a consequence of (26) and (28).

(30) Suppose a < b and Z = ]a, b[ and G is Lipschitzian on the carrier of X.
Then there exists a continuous partial function y from R to the carrier of
X such that

(i) dom y = [a, b], and
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(ii) y is differentiable on Z, and

(iii) ya = y0, and

(iv) for every real number t such that t ∈ Z holds y′(t) = G(yt).

The theorem is a consequence of (26) and (27).
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Summary. In this article, we formalize a free Z-module and its property.
Specially, we formalize a vector space of rational field corresponding to a free
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Let V be a Z-module. Note that (the carrier of V )× (Z \ {0}) is non empty.
Assume V is cancelable on multiplication. The functor EQRZMV yielding

an equivalence relation of (the carrier of V )× (Z \ {0}) is defined by

(Def. 1) Let us consider elements S, T . Then 〈〈S, T 〉〉 ∈ it if and only if S, T ∈
(the carrier of V )×(Z\{0}) and there exist elements z1, z2 of V and there
exist integers i1, i2 such that S = 〈〈z1, i1〉〉 and T = 〈〈z2, i2〉〉 and i1 6= 0 and
i2 6= 0 and i2 · z1 = i1 · z2.

Now we state the proposition:

(3) Let us consider a Z-module V , elements z1, z2 of V , and integers i1,
i2. Suppose V is cancelable on multiplication. Then 〈〈〈〈z1, i1〉〉, 〈〈z2, i2〉〉〉〉 ∈
EQRZMV if and only if i1 6= 0 and i2 6= 0 and i2 · z1 = i1 · z2.

Let V be a Z-module. Assume V is cancelable on multiplication. The functor
addCosetV yielding a binary operation on Classes EQRZMV is defined by

(Def. 2) Let us consider elements A, B. Suppose A, B ∈ Classes EQRZMV . Let
us consider elements z1, z2 of V and integers i1, i2. Suppose

(i) i1 6= 0, and

(ii) i2 6= 0, and

(iii) A = [〈〈z1, i1〉〉]EQRZMV , and

(iv) B = [〈〈z2, i2〉〉]EQRZMV .

Then it(A,B) = [〈〈i2 · z1 + i1 · z2, i1 · i2〉〉]EQRZMV .

Assume V is cancelable on multiplication. The functor zeroCosetV yielding
an element of Classes EQRZMV is defined by

(Def. 3) Let us consider an integer i. Suppose i 6= 0. Then it = [〈〈0V , i〉〉]EQRZMV .

Assume V is cancelable on multiplication. The functor lmultCosetV yielding
a function from (the carrier of FRat)×Classes EQRZMV into Classes EQRZMV
is defined by

(Def. 4) Let us consider an element q and an element A. Suppose

(i) q ∈ Q, and

(ii) A ∈ Classes EQRZMV .

Let us consider integers m, n, i and an element z of V . Suppose

(iii) n 6= 0, and

(iv) q = m
n , and

(v) i 6= 0, and

(vi) A = [〈〈z, i〉〉]EQRZMV .

Then it(q, A) = [〈〈m · z, n · i〉〉]EQRZMV .

Now we state the propositions:
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(4) Let us consider a Z-module V , an element z of V , and integers i, n.
Suppose

(i) i 6= 0, and

(ii) n 6= 0, and

(iii) V is cancelable on multiplication.

Then [〈〈z, i〉〉]EQRZMV = [〈〈n · z, n · i〉〉]EQRZMV . The theorem is a consequ-
ence of (3).

(5) Let us consider a Z-module V and an element v of 〈Classes EQRZMV, addCosetV, zeroCosetV, lmultCosetV 〉.
Suppose V is cancelable on multiplication. Then there exists an integer i
and there exists an element z of V such that i 6= 0 and v = [〈〈z, i〉〉]EQRZMV .

Let V be a Z-module. Assume V is cancelable on multiplication. The functor
ZMQVectSpV yielding a vector space over FRat is defined by the term

(Def. 5) 〈Classes EQRZMV, addCosetV, zeroCosetV, lmultCosetV 〉.
Assume V is cancelable on multiplication. The functor MorphsZQV yielding

a function from V into ZMQVectSpV is defined by

(Def. 6) (i) it is one-to-one, and

(ii) for every element v of V , it(v) = [〈〈v, 1〉〉]EQRZMV , and

(iii) for every elements v, w of V , it(v + w) = it(v) + it(w), and

(iv) for every element v of V and for every integer i and for every element
q of FRat such that i = q holds it(i · v) = q · it(v), and

(v) it(0V ) = 0ZMQVectSpV .

Now we state the propositions:

(6) Let us consider a Z-module V . Suppose V is cancelable on multiplication.
Let us consider a finite sequence s of elements of V and a finite sequence
t of elements of ZMQVectSpV . Suppose

(i) len s = len t, and

(ii) for every element i of N such that i ∈ dom s there exists a vector s1
of V such that s1 = s(i) and t(i) = (MorphsZQV )(s1).

Then
∑
t = (MorphsZQV )(

∑
s). Proof: Define P[natural number] ≡ for

every finite sequence s of elements of V for every finite sequence t of ele-
ments of ZMQVectSpV such that len s = $1 and len s = len t and for every
element i of N such that i ∈ dom s there exists a vector s1 of V such that
s1 = s(i) and t(i) = (MorphsZQV )(s1) holds

∑
t = (MorphsZQV )(

∑
s).

P[0] by [27, (43)]. For every natural number k such that P[k] holds P[k+1]
by [5, (59)], [3, (11)], [5, (4)]. For every natural number k, P[k] from [3,
Sch. 2]. �

(7) Let us consider a Z-module V , a subset I of V , a subset I6 of ZMQVectSpV ,
a z linear combination l of I, and a linear combination l5 of I6. Suppose
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(i) V is cancelable on multiplication, and

(ii) I6 = (MorphsZQV )◦I, and

(iii) l = l5 ·MorphsZQV .

Then
∑
l5 = (MorphsZQV )(

∑
l). The theorem is a consequence of (6).

(8) Let us consider a Z-module V , a subset I6 of ZMQVectSpV , and a linear
combination l5 of I6. Then there exists an integer m and there exists an
element a of FRat such that m 6= 0 and m = a and rng(a · l5) ⊆ Z.
Proof: Define P[natural number] ≡ for every linear combination l5 of I6
such that the support of l5 = $1 there exists an integer m and there exists
an element a of FRat such that m 6= 0 and m = a and rng(a · l5) ⊆ Z.
P[0] by [28, (28)], [8, (113)], [28, (3)]. For every natural number n such
that P[n] holds P[n+ 1] by [2, (44)], [10, (31)], [2, (42)]. For every natural
number n, P[n] from [3, Sch. 2]. �

(9) Let us consider a Z-module V , a subset I of V , a subset I6 of ZMQVectSpV ,
and a linear combination l5 of I6. Suppose

(i) V is cancelable on multiplication, and

(ii) I6 = (MorphsZQV )◦I.

Then there exists an integer m and there exists an element a of FRat and
there exists a z linear combination l of I such that m 6= 0 and m = a
and l = (a · l5) ·MorphsZQV and (MorphsZQV )−1(the support of l5) =
the support of l. The theorem is a consequence of (8). Proof: Consider m
being an integer, a being an element of FRat such that m 6= 0 and m = a
and rng(a · l5) ⊆ Z. Reconsider l = (a · l5) ·MorphsZQV as an element
of Zthe carrier of V . Set T = {v, where v is an element of V : l(v) 6= 0}.
Set F = MorphsZQV . T ⊆ F−1(the support of l5) by [7, (13)], [8, (38)].
F−1(the support of l5) ⊆ T by [8, (38)], [7, (13)]. �

(10) Let us consider a Z-module V , a subset I of V , a subset I6 of ZMQVectSpV ,
a linear combination l5 of I6, an integer m, an element a of FRat, and a
z linear combination l of I. Suppose

(i) V is cancelable on multiplication, and

(ii) I6 = (MorphsZQV )◦I, and

(iii) m 6= 0, and

(iv) m = a, and

(v) l = (a · l5) ·MorphsZQV .

Then a ·
∑
l5 = (MorphsZQV )(

∑
l). The theorem is a consequence of (7).

(11) Let us consider a Z-module V , a subset I of V , and a subset I6 of
ZMQVectSpV . Suppose

(i) V is cancelable on multiplication, and
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(ii) I6 = (MorphsZQV )◦I, and

(iii) I is linearly independent.

Then I6 is linearly independent. The theorem is a consequence of (9) and
(10).

(12) Let us consider a Z-module V , a subset I of V , a z linear combination l
of I, and a subset I6 of ZMQVectSpV . Suppose

(i) V is cancelable on multiplication, and

(ii) I6 = (MorphsZQV )◦I.

Then there exists a linear combination l5 of I6 such that

(iii) l = l5 ·MorphsZQV , and

(iv) the support of l5 = (MorphsZQV )◦the support of l.

Proof: Reconsider I0 = the support of l as a finite subset of V . Recon-
sider I7 = (MorphsZQV )◦I0 as a finite subset of ZMQVectSpV . Define
P[element, element] ≡ $1 ∈ I7 and there exists an element v of V such that
v ∈ I0 and $1 = (MorphsZQV )(v) and $2 = l(v) or $1 /∈ I7 and $2 = 0FRat.
For every element x such that x ∈ the carrier of ZMQVectSpV there
exists an element y such that y ∈ Q and P[x, y] by [8, (64)], [25, (14)].
Consider l5 being a function from the carrier of ZMQVectSpV into Q such
that for every element x such that x ∈ the carrier of ZMQVectSpV holds
P[x, l5(x)] from [8, Sch. 1]. The support of l5 ⊆ I7. For every element x
such that x ∈ dom l holds l(x) = (l5 ·MorphsZQV )(x) by [8, (35), (19)],
[7, (12)]. I7 ⊆ the support of l5 by [8, (64)], [7, (12)], [14, (8)]. �

(13) Let us consider a free Z-module V , a subset I of V , a subset I6 of
ZMQVectSpV , a z linear combination l of I, and an integer i. Suppose

(i) i 6= 0, and

(ii) I6 = (MorphsZQV )◦I.

Then [〈〈
∑
l, i〉〉]EQRZMV ∈ Lin(I6). The theorem is a consequence of (12)

and (7).

Let us consider a free Z-module V , a subset I of V , and a subset I6 of
ZMQVectSpV . Now we state the propositions:

(14) If I6 = (MorphsZQV )◦I, then I = I6 .

(15) If I6 = (MorphsZQV )◦I and I is a basis of V , then I6 is a basis of
ZMQVectSpV .

Let V be a finite-rank free Z-module. Note that ZMQVectSpV is finite
dimensional.

Now we state the propositions:

(16) Let us consider a finite-rank free Z-module V . Then rankV = dim(ZMQVectSpV ).
The theorem is a consequence of (15) and (14).
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(17) Let us consider a free Z-module V and finite subsets I, A of V . Suppose

(i) I is a basis of V , and

(ii) I + 1 = A .

Then A is linearly dependent. The theorem is a consequence of (15), (11),
and (14).

(18) Let us consider a free Z-module V and subsets A, B of V . If A is linearly
dependent and A ⊆ B, then B is linearly dependent.

(19) Let us consider a free Z-module V and subsets D, A of V . Suppose

(i) D is basis of V and finite, and

(ii) D ⊂ A .

Then A is linearly dependent. The theorem is a consequence of (17) and
(18).

(20) Let us consider a free Z-module V and subsets I, A of V . Suppose

(i) I is basis of V and finite, and

(ii) A is linearly independent.

Then A ⊆ I .

2. Submodule of Free Z-module

Now we state the proposition:

(21) Let us consider a Z-module V . If ΩV is free, then V is free.

Let us consider a Z-module V , submodules W1, W2 of V , and strict submo-
dules W3, W4 of V . Now we state the propositions:

(22) If W3 = ΩW1 and W4 = ΩW2 , then W3 +W4 =W1 +W2.

(23) If W3 = ΩW1 and W4 = ΩW2 , then W3 ∩W4 =W1 ∩W2.
Now we state the propositions:

(24) Let us consider a Z-module V and a strict submodule W of V . Suppose
W 6= 0V . Then there exists a vector v of V such that

(i) v ∈W , and

(ii) v 6= 0V .

(25) Let us consider a subset A of V and z linear combinations l1, l2 of A.
Suppose (the support of l1) ∩ (the support of l2) = ∅. Then the support
of l1+ l2 = (the support of l1)∪(the support of l2). Proof: (The support
of l1) ∪ (the support of l2) ⊆ the support of l1 + l2 by [14, (8)]. �
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(26) Let us consider subsets A1, A2 of V and a z linear combination l of
A1∪A2. Suppose A1∩A2 = ∅. Then there exists a z linear combination l1
of A1 and there exists a z linear combination l2 of A2 such that l = l1+ l2.
Proof: Define P[element, element] ≡ if $1 is a vector of V , then $1 ∈ A1
and $2 = l($1) or $1 /∈ A1 and $2 = 0. For every element x such that
x ∈ the carrier of V there exists an element y such that y ∈ Z and P[x, y].
There exists a function l1 from the carrier of V into Z such that for every
element x such that x ∈ the carrier of V holds P[x, l1(x)] from [8, Sch. 1].
Consider l1 being a function from the carrier of V into Z such that for
every element x such that x ∈ the carrier of V holds P[x, l1(x)]. For every
element x such that x ∈ the support of l1 holds x ∈ A1 by [14, (8)]. Define
Q[element, element] ≡ if $1 is a vector of V , then $1 ∈ A2 and $2 = l($1)
or $1 /∈ A2 and $2 = 0. For every element x such that x ∈ the carrier of
V there exists an element y such that y ∈ Z and Q[x, y]. There exists a
function l2 from the carrier of V into Z such that for every element x such
that x ∈ the carrier of V holds Q[x, l2(x)] from [8, Sch. 1]. Consider l2
being a function from the carrier of V into Z such that for every element
x such that x ∈ the carrier of V holds Q[x, l2(x)]. For every element x
such that x ∈ the support of l2 holds x ∈ A2 by [14, (8)]. For every vector
v of V , l(v) = (l1 + l2)(v). �

(27) Let us consider a Z-module V , free submodules W1, W2 of V , a basis I1
of W1, and a basis I2 of W2. If V is the direct sum of W1 and W2, then
I1 ∩ I2 = ∅.

Let us consider a Z-module V , free submodules W1, W2 of V , a basis I1 of
W1, a basis I2 of W2, and a subset I of V . Now we state the propositions:

(28) If V is the direct sum of W1 and W2 and I = I1 ∪ I2, then Lin(I) =
the Z-module structure of V .

(29) If V is the direct sum of W1 and W2 and I = I1 ∪ I2, then I is linearly
independent.

Let us consider a Z-module V and free submodules W1, W2 of V . Now we
state the propositions:

(30) If V is the direct sum of W1 and W2, then V is free.

(31) If W1 ∩W2 = 0V , then W1 +W2 is free.

Let us consider a free Z-module V , a basis I of V , and a vector v of V . Now
we state the propositions:

(32) If v ∈ I, then Lin(I \ {v}) is free and Lin({v}) is free.

(33) If v ∈ I, then V is the direct sum of Lin(I \ {v}) and Lin({v}).
Let V be a finite-rank free Z-module. One can verify that every submodule

of V is free.
Now we state the propositions:
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(34) Let us consider a Z-module V , a submoduleW of V , and free submodules
W1, W2 of V . Suppose

(i) W1 ∩W2 = 0V , and

(ii) the Z-module structure of W =W1 +W2.

Then W is free. The theorem is a consequence of (31).

(35) Let us consider a prime number p and a free Z-module V . If ZMQVectSp(V, p)
is finite dimensional, then V is finite-rank.

(36) Let us consider a prime number p, a Z-module V , an element s of V ,
an integer a, and an element b of GF(p). Suppose b = a mod p. Then
b · ZMtoMQV(V, p, s) = ZMtoMQV(V, p, a · s).

(37) Let us consider a prime number p, a free Z-module V , a subset I of
V , a subset I6 of ZMQVectSp(V, p), and a z linear combination l of I.
Suppose I6 = {ZMtoMQV(V, p, u), where u is a vector of V : u ∈ I}.
Then ZMtoMQV(V, p,

∑
l) ∈ Lin(I6).

(38) Let us consider a prime number p, a free Z-module V , a subset I of V ,
and a subset I6 of ZMQVectSp(V, p). Suppose

(i) Lin(I) = the Z-module structure of V , and

(ii) I6 = {ZMtoMQV(V, p, u), where u is a vector of V : u ∈ I}.

Then Lin(I6) = the vector space structure of ZMQVectSp(V, p). The the-
orem is a consequence of (37).Proof: For every element v3 of ZMQVectSp(V, p),
v3 ∈ Lin(I6) by [15, (22)], [14, (64)]. �

(39) Let us consider a finitely-generated free Z-module V . Then there exists
a finite subset A of V such that A is a basis of V . The theorem is a
consequence of (38). Proof: Set p = the prime number. Consider B being
a finite subset of V such that Lin(B) = the Z-module structure of V . Set
B1 = {ZMtoMQV(V, p, u), where u is a vector of V : u ∈ B}. Define
F(element of V ) = ZMtoMQV(V, p, $1). Consider f being a function from
the carrier of V into ZMQVectSp(V, p) such that for every element x of V ,
f(x) = F(x) from [8, Sch. 4]. For every element y such that y ∈ B1 there
exists an element x such that x ∈ dom(f�B) and y = (f�B)(x) by [31,
(62)], [7, (47)]. Consider I6 being a basis of ZMQVectSp(V, p) such that
I6 ⊆ B1. �

One can verify that every finitely-generated free Z-module is finite-rank and
every finite-rank free Z-module is finitely-generated.

Now we state the proposition:

(40) Let us consider a finite-rank free Z-module V and a subset A of V . If A
is linearly independent, then A is finite. The theorem is a consequence of
(19).
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Let V be a Z-module and W1, W2 be finite-rank free submodules of V . One
can check that W1 ∩W2 is free.

Note that W1 ∩W2 is finite-rank.
Let V be a finite-rank free Z-module. Note that every submodule of V is

finite-rank.
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