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STUDIES IN LOGIC, GRAMMAR AND RHETORIC 4 (17) 2001

Witold Marciszewski
University of Bialystok

LEIBNIZ’S MATHEMATICAL AND PHILOSOPHICAL
APPROACHES TO ACTUAL INFINITY
A CASE OF CULTURAL RESISTANCE

The notion of cultural resistance, as introduced by Raymond L. Wilder
in his treatment of the history of mathematics, is a reliable guide in any
pursuit of the history of ideas. A trouble which afflicts historians of ideas
is that they find inconsistencies where a perfect logic is expected, to wit
with great thinkers. However, after a while of reflexion, rather something
contrary to that should be expected, if a cultural resistance is taken into
account. Let us dwell a while on that phenomenon.

1. Creative thought and cultural resistance

1.1. Greatness of one’s creative thought consists in surpassing the bounds
of that cultural system in which one happened to be born and to live.
But even the greatest mind is no supernatural being that would be able to
easily overcome such confines. There must ever arise a tension between the
existing paradigm and the drive of new original visions being characteristic
of a genuine philosopher. This is a struggle which cannot end without
victims, that is, uncertainties, changes of mind, even inconsistencies in the
output of any original thinker.

Thus, what a philosopher’s contemporaries firmly believe has to affect
his mind, even most original and bold. Moreover, not only the beliefs which
a philosopher encounters in the time he lives modify his original vision.
There is even a more important factor, namely the invincible ignorance
shared by him with his contemporaries. When seeing the views of our
ancestors from the point of advanced knowledge of ours, we hardly can
imagine how much different their way of thinking must have been. Let me
mention two historical examples related to Leibniz’s intellectual struggles:
that of the theory of infinity and that of the idea of cosmic evolution.
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Witold Marciszewski

Since Aristotle, people distinguished between actual and potential
infinity, and they asked, as Aquinas did, if there might exist infinite actually
number of things. Aquina’s answer in the negative is characteristic not only
of the theological but also of the mathematical mode of thinking since the
ancient Greeks up to the end of the 19th century.

Aquinas relies on that maxim of the Book of Wisdom, which impressed
also Augustine and Leibniz, that God ordered all the things according to
a number: omnia in numero disposuistil. It seemed obvious for anybody
since Greeks up to the appearing of modern set theory that the term
“pnumber” had to denote a finite number, so to speak, ex definitione. For,
it was rightly believed that numbers are those objects on which operations
of addition, multiplication, etc. should be defined. No such definitions were
even in a remote field of vision, hence nobody could seriously think of infinite
numbers. Only when precise definitions of operations in various domains of
infinite numbers have been given in modern set theory, the term “infinite
number” started to have a sense.

Thus, when the Holy Scripture declared that the world was created “in
number”, this must have meant for Aquinas and other heirs of the ancient
thought that the world was not infinite. This was the picture of the universe
with which Leibniz’s vision of the infinite multitude of monads must have
clashed. He proved not discouraged by this cultural resistance. However,
on the other hand, he had no conceptual devices to incorporate his vision
into a reasonable mathematical scheme; in such a sense he incurred losses
because of the limitations of the cultural system in which he happened to
live. This is why Monadology, the main work to develop his idea of the
actually infinite universe, does not contain any reference to mathematical
approaches to infinity.

1.2. Another conceptual abyss between Leibniz’s time and that of ours may
be hinted with the following Teilhard de Chardin’s remark: the greatest event
in the evolution of human race is that it once learned about its evolution.
This gretest event was among those things in the earth and heaven which
were not even dreamt by the philosophers in the 17th century.

I do not mean Darwin’s idea of the evolution of plants and animals which
was just a small step when compared with what Hubble’s discovery and the

1 See Summa Th., Pars Prima, q. 7, a. 4). The text in question mentions also weight
and measure as the principles of ordering (in pondere et mensura). However, according to
the typical biblic style these terms seem to be added just for emphasis, not as carrying
a new content; hence “number” renders the concept in question.
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general relativity theory disclosed to the people of the 20th century. The ide‘a
of the evolving universe was so puzzling, so unbelievable, that even Einstein
rejected it in his first version of general relativity at the cost of distorting
the theory. Only after Hubble’s empirical discovery of the expansion of the
universe, in 1923, Einstein returned to the non-distorted version, ashamed
of his previous mistake.

While Einstein was not able to free himself from the century long habit
of conceiving the universe as eternally stable, should we wonder that Leibniz
did not manage it? Though his metaphysical vision included a presentiment
of the eternally evolving universe as due to God’s eternal activity, there was
no remotest idea of that in the world picture of his time. Here we encounter
another case of resistance; a fruitful idea did not bring fruits which it would
offer in more favourable cultural circumstances.

Leibniz’s vague intuition of the infinitely developing universe is implicit
in his idea that the world is incessantly becoming — due to God’s
computing, and setting his thoughts in motion: cum Deus calculat and
cogitationes ezercet, fit mundus. Now, one faces the question, whether God
may stop his computing and thinking. Provided the answer in the negative,
and provided that God’s intellectual activity makes the world ever better
(and not ever worse), one has to endorse the idea of the universe ever getting
better. Thus the best of possible worlds, as Leibniz used to call the existing
one, in not the one in which we presently live but the one to evolve from
that of ours in an infinitely remote future (this would make Voltaire’s known
satire rather pointless).

However, while so expressing his most intimate vision, Leibniz was not
capable of working it out towards an idea of cosmic evolution. Among the
reasons of that inability there was that he had no conceptual means to guess
what kind of numbers might be involved in God’s eternal computing.

2. Uneasiness about mathematical infinity

2.1. Georg Cantor used the phrase ‘horror infiniti’ coined on the pattern
of ‘horror vacui’. The latter was to be a property of Nature, while the
former was to mean one’s being afraid to face the abysmal infinity of infinite
collections. The word ‘fear’ may be too dramatic to call Leibniz’s attitude,
but such words as ‘disquiet’ or ‘uneasiness’ truly render the state of mind
both of him and his contemporaries.

The first well known sign of such a disquiet, extensively referred to by
Leibniz in his Accessio ad arithmeticam infinitorum appears in Galileo’s
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Discorsi [...] (Dialogues Concerning Two New Sciences). The passage in
Discorsi is worth quoting as a historical landmark in the human way
to apprehending infinity. The text runs as follows (p. 32 in Engl. ver-
sion).

If I should ask how many squares there are one might reply truly that there
are as many as the corresponding number of roots, since every square has its
own root and every root its own square, while no square has more than one
root and no root more than one square.

But if I inquire how many roots there are, it cannot be denied that there are
as many as there are numbers because every number is a root of some square.
This being granted, we must say that there are as many squares as there are

numbers because they are just as numerous as their roots, and all the numbers
are roots.

What then must we conclude under such circumstances? We can only infer
that the totality of all numbers is infinite, and that the number of their
roots 1s infinite; neither is the number of squares less than the totality of
all numbers, nor the latter greater than the former; and finally the attributes

“equal”, “greater”, and “less”, are not applicable to infinite but only to finile,
quantities. — [Italics W.M.]

The last sentence (italicized) makes evident the enormous distance between
mathematical thinking in those times and in the period after the establishing
of set theory. Until the power set axiom and the diagonal reasoning were
introduced, nobody could reasonably speak of greater and smaller infinite
totalities. Thus, in a sense, Galileo was right when he restricted applicability
of these predicates to finite numbers; their meaning had not been defined
for infinite numbers, hence their scope must have been restricted to the
domains in which they originated, that is, the finite ones.

2.2. Leibniz’s approach was more ambitious. He tried to handle the problem
within a research programme concerning mathematical methods, and in
connexion with some mathematical tasks which he was occupied with
in 1672. It was the year which Leibniz spent in Paris waiting for an
opportunity to carry out a diplomatic mission. The opportunity delayed
(with no final success), hence he got a fair amount of time to engage himself
into various research projects.

One of them started from a talk with Christian Huygens whom Leibniz
regarded as his master in mathematics. This meeting is by Leibniz reported
in an extensive letter to Gallois written by the end 1972, entitled Accessio
ad arithmeticam infinitorum.
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According to that report, Huygens suggested that Leibniz should try
to solve a demanding (in that time) mathematical problem, namely to find
the sum of a series of rational numbers. This series is listed as item (3]
below. The remaining items exemplify akin results achieved by him after be
generalized Huygen’s problem. To wit, he defined a whole class of arithme‘tlc
series, the class being constructed in a systematic way to lead to the s91ut10n
being looked for. It is that construction which Leibniz combined with the
problem of infinity in arithmetic. .

Leaving aside that method of construction (which would require
a rather comprehensive exposition), let us just notice that in every next
series the diferences between denominators of any adjacent terms become
greater. Here are examples of the series (starting from [2], not from [1], for
a reason to be seen later).

(2]
(3]
(4]
Note that in [2] the difference equals one in any case; in [3] it equals two
between the first two terms, three between the 2nd and the 3rd term, a.nd
so on. In [4] such differences are still greater than in the preceding series.

Leibniz lists, moreover, series [5], [6], [7] as examples, each obeying the'same
law of increasing (with each next series) the differences between adjacent

denominators.
At the same time, in the fractions being the sums of series, numerators
and denominators increase in such a way the they form the sequence

(from [2] to [7], respectively):

1
ti4dediti+i+gtoete =5
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Now we come to the point in which Leibniz’s argument concerning infinity
can be traced. We should complete the above list of series with the lacking
item [1] in which denominator differences would be lesser than 1 (as
occurring in [2]). This should equal zero, while the sum should equal the
fraction ¥ (for it should have the numerator less than that in [2]). Thus we

obtain the following series.
_ 0 _
1] $+341+ ete. =5=0

Leibniz’s comment concerning this series requires a bit of discussion since
its meaning does not seem clear to a modern reader. The comment runs as
follows (p. 15 in the edition mentioned in References).

11



Witold Marciszewsks

[...] audacter concludo numerum istum infinitum sive numerum maximum
seu omnium unitatum possibilium summam, quam et infinitissimum appellare
possis, sive numerum omnium numerorum esse 0 seu nihil. Et demonstratio
nova vel ex eo suppetit, quod numerus maximus est summa omnium unitatum
sive numerus omnium numerorum. At summa numerorum necessario major est
numero numerorum (ut 14243 etc. majus quam 1+1+1 etc.). Ergo numerus
maximus non est numerus maximus seu numerus maximus est 0, efsi non
tdeo infinitas partes coniinuo aut infinitam magniludinem tempori ac spatio
protinus negem. [Italics — W.M.]

The passage italicized by myself is worth utmost attention as it displays
that uneasiness which I hint at in the title of this section. The scientists
and rationalist philosophers in the 17th century claimed that the new
science must be entirely mathematical if it is to succeed in explaining
the world. Leibniz belonged to most ardent followers of that programme.
However, he must have admitted that mathematics does not fully reflect
the structure of reality. While time and space possess infinite magnitudes,
these magnitudes, unfortunately, cannot be rendered with mathematical
concepts.

Before trying to find out a possible source of that failure of Leibnizian
mathematics, some comments are in order to interpret the previous part
of the quotation. Leibniz makes use there of the equality listed above
as [1], where the left side represents an infinite magnitude, as the ones
are being added and added without stopping, while the right side amounts
to zero (that it is obtained with dividing zero by zero may be here
disregarded as a minor point). Thus Leibniz feels entitled to emphatically
conclude that the infinite number of all numbers amounts to zero, or
nothing.

It does not seem clear how to understand the identifying of zero with
nothing. As for the series [1], ‘0’ denotes a mathematical entity in it, but no
mathematical entity deserves to be called nothing. Moreover, in the next
argument (‘demonstratio nova’) being like a reductio ad absurdum, Leibniz
seems to blame the concept of an infinite number as lacking consistency.
For, he argues, such a number (as the sum of all terms in series [1])
would be both the greatest one, as being infinite, and not the greatest
one, since the series of all natural numbers (as 14+2+3, etc.) would be
greater yet. According to Leibniz, the self-contradictory phrase ‘the greatest
number is not the greatest one’ denotes zero, and here again he identifies
zero with nothing; however, zero is an object undoubtedly free from being
self-contradictory while nothing is defined by an inconsistent expression,

indeed.
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2.3. Why did Leibniz prefer to deprive his philosophy of mathematical
support than to admit infinite numbers? An explanation can be found
in the same Accessio, where he sketches a project for what would be
nowadays called ‘foundations of knowledge’. This project included deri-
vation of Euclidean axioms from mere definitions of the terms involved.
This seemed to him the safest way of ensuring the truth of the first
premis:ses of mathematics. When announcing the subject of Accessio in
its introductory passage, he puts on the same footing arguments against
infinity and arguments for the possibility of proving mathematical axioms.
This declaration, serving both as a title and an abstract, runs as follows.

Accessio ad arithmeticam infinitorum, ubi et ostenditur numerum maximum
sen numerum infinitum omnium numerorum impossibilem esse sive nullum;
item ea, quae pro axiomatis habentur, demonstrabilia esse evincitur exemplis.

Among those most venerable axioms whose proofs, as Leibniz believed, were
supplied by him on the basis of definitions alone, there was that a whole is
greater than any part of it:

Omne totum est majus sua parte.

At the last pages of Accessio Leibniz offers examples of such proofs, including
a demonstration of the above principle (the course of reasoning is not
relevant to the present subject). Leibniz was so earnestly engaged in that
methodological project that he most appreciated what he regarded as its
results. This should explain why he was so sensitive to anything what seemed
to endanger the whole-part principle; and the idea of a set of numbers whose
part equals the whole appeared to him destructive.

There is a moral to be drawn from this story, which may be instructive
for students of the history of ideas. Let me express this lesson in the
familiar metaphor of hardaware and software. Imagine, you have to
choose between (1) a computer which due to the hardware has enormous
computational power (as consisting in speed, memory size, etc.), but no
software is supplied with it, and (2) a computer with less giant hardware
parameters but richly endowed with useful software.

Now compare (A) a genius of old times, enjoing a wonderfull brain
but devoid of knowledge and skills which came later in the historical
development, and (B) a less gifted brain but equipped with advanced
knowledge and sophisticated problem-solving methods. Obviously, A is the
counterpart of 1, while B is the countepart of 2 in the hardware-software

parable.
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The moral is as follows. When admiring the intellectual power of people
like Leibniz, we should be prepared to take into account their limitations
of knowledge, methods, and conceptual equippment (‘software’) which are
overcome with later achievements, those inherited by our generation. It is
historian’s task to sharply analyze our ancestors’ failures. Thus he wins
a starting point to trace the progress owed to next generations.

3. Is it possible for a modern mind to understand Monadology?

3.1. One’s understanding of other one’s view involves either agreeing or
disegreeing with it, or else refraining from both with being aware of why
one refrains. Does it often happen that this criterion is met by Leibniz
scholars with respect to strange ideas of Monadology?

There are at least two prerequisities for Leibniz scholars to realize these
ideas. (1) A scholar is bound either to recognize an infinite set of monads, at
least as being possible in one of scenarios admissible for nowadays science,
or to state that there is no chance of such a scientific exemplification.
(2) He should decide whether he admits the view of the universe as having
infinitely many levels of complexity. The dealing with these questions should
be aided by an awareness which infinity is at stake: that of denumerable sets
(aleph zero) alone, that of continuum, or else a higher one. The innocent
ignorance of our ancestors who did not distinguish among infinities is no
longer available to a modern researcher; he may refuse, like Leibniz, to
connect metaphysics with set-theoretical notions but, unlike Leibniz, he
would be obliged to account for the disregarding of set theory.

In what follows, I shall attempt at a rational reconstruction of
Monadology in terms of modern science, treating that procedure as a means
to understand Leibniz’s thought; when suggesting one from among many
possible intepretations, one approaches to understanding. One should notice
that such reconstruction may involve counterfactual assumptions — in order
to free oneself from accidental historical facts.

3.2. Let me start from assuming that Leibniz’s rejection of infinity in
mathematics was just a historical accident. Had he been born, say, in the
20th century, he would have willingly agreed that there are as many even
numbers as all natural numbers, and so on. For, owing to the achievements
of set theory, he would have accepted the distinction of two kinds of the
whole-part relation, one valid for finite collections, the other for infinite
collections. Certainly he would have enjoyed Cantor’s diagonal argument
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to the effect that the set of natural numbers, being a part of the set of
reals, has to be smaller than the latter (because of the lack of one-to-one
corespondence), in accordance with his favourite principle?2.

When making use of such counterfactual considerations, I claim thereby
that Leibniz’s rejection of mathematical infinity is logically independent
from the rest of his philosophical thinking (depending solely from too narrow
interpretation of the whole-part axiom in that time mathematics). Should we
reject that rejection, the rest of the intellectual edifice would remain intact.
If someone affirms the opposite, it is up to him to demonstrate a logical
nexus between the denial of infinite numbers and philosophical principles.

The historical, and not logical, dependence of Leibniz views on infinity,
connected with the cultural circumstances of his time, has been noticed
by Hans Poser who reports on most influential rationalist thinkers as
well as most renowned mathematicians of that time, all of them denying
reasonabless of the idea of infinity, and then concludes: “Dies ist die
Situation die Leibniz vorfindet”. Had he found a different situation, his views
on mathematical infinity would have been likely to be different, without any
significant change in his philosophical vision.

It should be distinguished between, so to speak, downword and upword
understanding of older ideas. The former relies on knowing those historical
antecendents which account for the content and the appearance of the idea
or theory in question. The latter consists in an attempt to render this idea in
modern conceptual framework, to make it reasonable within this framework;
this does not mean its acceptance, rather a mere possibility of acceptance if
certain conditions prove satisfied. Such interpretational hypothesis in a way
resembles an empirical hypothesis in science; even if not accepted in the
moment, it may be seriously cpnsidered owing to its well-defined content.

3.3. Let me start from a conjecture to interpret the notion of monad. It
seems that neither elementary particles of physics nor human minds can
pretend to be monads. Though in the moment no commonly acceptable
candidate is in view, a situation is better for Monadology now than it was
in the framework of classical physics. For in various ways physics becomes
to be permeated with the concept of information.

2 There is an inspiring Friedman’s essay on analogies between Monadology and set
theory. He notices Leibniz’s refusal to acknowledge actual infinity in mathematics, but
a historical explanation of the divergence in question is not intended in his essay. The
problem appears more sharply when one takes into account Leibniz’s view on mathematics
as the most powerful device for philosophy. Then the question arises why did he give up
applying this tool to the foundations of his own philosophical system.
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The uncertainty principle somehow connects physical processes with
activities of the human mind. This was the first departure from the
paradigm in which mind (as well as information) and matter were absolutely
separated. It is commonly known how far we are from a satisfying
interpretation of the uncertainty principle. Hence no reliable path leading
from such ideas to monadology can be imagined in the present state of
science. Nevertheless, a rift in the old picture has been made, and clima for
connecting matter with information gets more favourable. This is why there
could appear a popular book on quanta entitled The Ghost in the Atom:
a discussion of the mysteries of quantum physics. It includes interviews
with most prominent representatives of eight, competing with each other
interpretations of quantum physics. 7

.Among these interpretations there is one, developed by David Bohm
having been initiated by Louis de Broglie, which should suit Leibniz in’
a particular way. Contrary to the mainstream interpretation by Bohr
and Heisenberg, which suggests an influence of the mind on ;;hysical
phenomena, Bohm’s view is free from such subjectivist approach. Instead,
the famous uncertainty is being explained as resulting from researcher’s lack
of knowledge as to a deeper, more complex, level of phenomena; because
of this emphasis on the objective reality, Bohm’s intérpretation is called
ontological.

Th.e whole point of ontological interpretation is to claim that there may
be an infinity of levels in nature. Ever new kinds of entities and processes
may appear at a deeper level. Bohm (1957; 133) characterizes the qualitative
infinity of nature in the following way3.

A sys'tematic and consistent analysis of what we can actually conclude from
exper%m.entval and observational data leads us to the notion that nature may
have in it an infinity of different kinds of things. .

Popper (1977; 33) when approvingly discusses Bohm’s ideas, summarizes
them as follows in the context of complexity of particles deemed earlier as
elementary (here the Leibnizian anti-atomism would be triumphant).

More recently, the subatomic particles have in their turn been diagnosed as
complex structurgs; and David Bohm (1957) has discussed the possibility that
there may be an infinity of such hierarchic layers.

I.Je%bniz in the frequently mentioned passage 64 of Monadology speaks of
living bodies as being structures in the least of their parts ad infinitum.
3 The quotations below from Bohm’s texts are given after Pylkkinen 1992.
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Here Bohm and Popper seem to be more monadologist than Leibniz himself
as the latter restricted the infinite structural complexity to organic bodies
alone. However, would he have sticked to this restricted view, if he had
possessed our modern knowledge of matter? Then he should have known
that parts of organic bodies may be isolated and exist outside a living body.
Should they lose their structure then? If not, Leibniz’s notion of infinite
structurad complexity of living matter, down to ever deeper layers, should
be extended to any matter at all. As if continuing this line of thought, Bohm
(1990; 283f) claims the following.

In some sense a rudimentary mind-like quality is present even at the level
of particle physics, and as we go to subtler levels, this mind-like quality
becomes stronger and more developed. Each kind and level of mind may have
a relative autonomy and stability. One may then describe the essential mode
of relationship of all these as participation. [...] Through enfoldment, each
relatively autonomous kind and level of mind to one degree or another partakes
of the whole. Through this it partakes of all the others in its “gathering” of
information. And through the activity of this information, it similarly takes
part in the whole and in every part.

This seems to be akin to Leibniz’s idea which in passage 63 is expressed as
follows. Every monad is in its way a mirror of the universe, and since the
universe is requlated in a perfect order, there must also be an order in that
which represents, that is to say in the perceptions of the soul. Bohm’s notion
of gathering information is worth comparing with that of perception, while
participation seems to be like Leibnizian mirroring.

These and other analogies do not mean that Bohm'’s theory is something
like Monadology resuscited. There are differences to be discussed, for
instance, the notion of substance (which is very rigid in Leibniz while in
Bohm is more relative), and the claim of determinism (which with Bohm is
combined with a kind of indeterminism). However, what I intend is not to
vindicate Monadology within the frame of modern science but just to hint
at the possibility of reasonably discussing it in modern terms.

3.4. There may be still another modern approach to Monadology. I mention
it very briefly here as the subject requires more size and a separate
discussion.

Ever more popular with phycists and information scientist becomes the
idea that the universe is like a giant computer. On the other hand, within
a view due to Richard Feynmann, even single elementary particles may
be viewed as computers. Between these two extremes there are in Nature
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innumerable systems — included in the universe and including particles —
which also may act like computing devices.

If we try to imagine monads on the pattern of computing automata,
belonging to Nature, hence automata naturalia (as called in Monadolo-
gy, 64), then we obtain a picture not very far from that drawn by Leibniz.
If, moreover, we emphasize the role of software, treating hardware as
a secondary element which may be produced if a suitable software (to
control production) is available, then the analogy with monads gets even
closer.

Let us go further. Essentiae rerum sunt sicut numer: — says Leibniz in
his juvenile dissertation De principio individui, and develops this thought
throughout later writings. At the same time, each Turing machine, hence
each computer, can be defined with a single number, owing to the ingeniuos
coding procedure invented by Turing. Analogically, monads might be
represented by single numbers. While computers, ex definitione, are coded
with computable numbers, there is no obstacle to believe that what Leibniz
called divine or natural machines might be coded with non-computable
numbers (an idea close to Penrose’s contention), and so known to God
alone.

After thus arriving at God’s calculating powers, we reach a fitting finale
to sum up the argument with the saying: cum Deus calculat, fit mundus. This
seems to disclose the essence of Leibniz’s thought. Therefore, contrary to all
the arguments he had against infinity of numbers, and in spite of the cultural
resistance, there was a moment when he could not help expressing a faith
in the infinity of numbers. Neque enim negari potest, omnium numerorum
possibilium naturas revera dari, saltem in divina mente, adeoque numerum
multitudinem esse infinitam. (Letter to Des Bosses, 11 March, 1706.) Let
me say it once more, in English. “One cannot deny that the natures of all
possible numbers do exist, at least in the mind of God, and this is why the
set of numbers is infinite.”
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1. Introduction

Logic as a formal mathematical theory is interesting in itself. It poses
problems, like any other body of knowledge. Some of them, especially
questions concerning axiomatization, consistency, completeness (in various
senses of the term), decidability, etc. are more specific with respect to logic
(and mathematics to some extent) than in the context of other theoretical
systems. These questions are in principle independent of any application
of logic to other branches of science. If logic is conceived in this manner,
we speak about logica docens. On the other hand, logicians always claim
that the main task of logic consists in governing intellectual activities.
Thus, logica utens (logic in use) is deduction, indispensable device of mind,
particularly in various reasonings. Leaving aside traditional prescriptions,
usually considered as stemming from logic and helping us in processes of
defining or classifying, the main aim of logical theory is to codify the rules

- of deductive proofs. These tules should be stated formally and effectively. In
particular, checking whether a proof is correct or not should be subjected to
mechanical or algorithmic procedures. However, the rules of deductive proofs
must guarantee that they lead from true premises to true conclusions, that
is, block deductive derivations of falsehoods from truth. We have here an
important difference between deduction and induction. The label “correct
deduction” is in fact pleonastic, unless it points out that a given deduction
was more complex than the proof required, for instance, that is employs
unnecessary premises oT proceeds indirectly instead of directly. Yet too
complicated deduction is still deduction, if any. Induction may be correct,
despite starting with true premises and resulting with false conclusions, if
its rules are preserved (of course, I am conscious that speaking about rules
of induction is a delicate matter, but we think, for instance, that inductive

ISBN 83-89031-06-X ISSN 0860-150X 21



Jan Wolenski

.reason?ng is correct if it was performed as carefully as possible). Incorrect
induction is still induction, although incorrect deduction is not a deduction.

According to the contemporary view about logic, the codification of the
rules of proof is a matter of syntax, although semantics investigates what it
means that logical rules do not pass from true premises to false conclusions.
On the other hand, we expect that syntax and semantics interplay in such
a way that syntactically stated principles of inference have their semantic
c?unterparts. To be more explicit, provability as a syntactic phenomenon
displays the semantic fact that logical consequence is an operation that
preserves truth. The question whether it is so or not, is known as the
completeness problem (I will com back to this issue in section 5 below).
Roughly speaking, a logic LOG is (semantically) complete if and only if
the sets of its truths (logically valid sentences, tautologies) coincide v;ith
the set of its theorems (provable sentences). More strictly, the completeness
problem consists in the question whether all tautologies are provable, and
the problem whether provable sentences are tautological constituteé the
soundnes.s (adequacy) question. The latter is much easier to be solved,
because it is sufficient to check whether axioms are tautologies, but the:
rules lead from tautologies to tautologies. The real completeness p;oblem is
a much more difficult topic. It is clear when we consider another formulation
of the completeness theorem (equivalent with the formerly given), namely
that every consistent set of sentences has a model. Since constructing models
of theories is not a straightforward matter, it shows how complex the
completeness problem can be.

It is quite understandable that logicians expected decidability of the
mqhods of deductive proofs. At the first sight, it is even strange that
thlflgs. could be different. The concept of proof as formalized by our familiar
logic, is recursive. Since any string of formulas can be mechanically checked
whether it is a proof or not, it could well motivate the claim that the
Property of provability is decidable. Great philosophers or mathematicians
hke' Lebniz or Hibert were convinced about decidability of provabilityj
This expectation was showed (Church, Turing) to be a dream. Thus even
a semantically complete logic does not need to be decidable: although we
can know that every tautology is provable, it does not imply that we have
a mechanical procedure which tells us whether an arbitrary formula is
provable or not. Things look differently in particular systems. Propositional
cal'cul.us is semantically complete and decidable, but first-order predicate
logic is 'Semantically complete but undecidable. Going further, arithmetic is
senTantlcally incomplete (unless we employ a primitive trick consisting in
taking all arithmetical truths as axioms) and undecidable.
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Discovering theorems displaying various properties and limitations of
formal systems became a great achievement of logicians of 20*" century.
So-called limitative theorems (Godel ~ incompleteness of arithmetic, un-
provability of consistency; Tarski — undefinability of truth; Church — un-
decidability of first-order quantification theory, undecidability of arithmatic;
Skolem — the existence of non-standard models of first-order theories) threw
a new light at formal systems and their properties. On the other hand,
the crystal vision of logic as an instrumentarium of deduction, formerly
propagated by people, like Frege, Russell or Hilbert, became obsolete.
The question “What is logic?” appears much more complicated than the
pioneers of logic were inclined to think. The problem is what we should
preserve as essential properties of logic. Completeness?, decidability?, or
something else, perhaps a considerable expressibility. It is an interesting
philosophical question. I will try to exhibit some of its aspects by focusing
on first-order logic and its properties as related to concepts of provability
and logical consequence. Of course, it requires a comparison of first-
-order logic (FOL) with higher-order systems. One guiding idea directs my
considerations. Although we are free to a great extent in adopting this or
convention governing the use of the word “logic”, it basically has nothing
to do with properties of formal systems. They are complete or incomplete,
decidable or undecidable, have a great expressive power oI not, etc. entirely
independently of our terminological decisions and inclinations concerning
the usage of words. It should be remembered in any discussion about the

nature of logic.

2. Some remarks about the main foundational projects

of 20*® century

The standard account of the history of mathematical logic is like that.
Leibniz was a great forerunner of it, but his ideas were not understood and
probably they could not be properly appreciated at the time. Then, Boole
came and began the algebraic tradition in logic which was continued by
people, like Peirce and Schroder. The genius of Frege changed everything.
Firstly, Frege established the proper succession of logical systems, which
starts with propositional calculus and goes to quantification theory. Second-
ly, he also projected and elaborated logicism in details, a project of logica
magna (one of Leibniz’s dreams), which could cover the whole of mathe-
matics. Unfortunately, Frege’s system was damaged by discovery of the
Russell antinomy. Russell tried to save logicism by the theory of types.
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However, this construction was not satisfactory even for Russell himself,
who found some of its elements, like the axiom of reducibility, dubious. On
the other hand, the theory of types disappointed other people not because of
its details, but quite principally. Other foundational projects arose, namely
Brouwer’s intuitionism and Hilbert’s formalism. All foundational projects
had advantages and disadvantages. Logicism was either incomplete or based
on artificial assumptions (the mentioned axiom of reducibility). Intuitionism
cut classical mathematics too much. Formalism was promising but Godel’s
and Church’s results devastated it considerably.

I do not want to suggest that these facts did not happen. Also I do
not underestimate works of Godel, Tarski or Church, which brought the
real revolution and done in the frameworks of Principia Mathematica. Yet
the history of mathematical logic and the foundations of mathematics the
above outlined scenario suggests, does not exhibit the whole truth. First
of all, it overestimates the relevance of antinomies. What matters here is
not only that some antinomies (the paradox of Burali-Forti) were earlier
discovered than Russell’s, but that the problem of the set of all set that are
not elements of themselves was known to Zermelo and probably Hilbert
and did not alarm them. Zermelo’s way out consisted in an axiomatiza,tiori
of set theory, which precluded dangerous sets. However, one can argue
that, due to the common practice of axiomatizing of mathematical theories
at the break of 19*" and 20" century, set theory would be captured by
an axiomatic system, even if no antinomies were discovered. Hilbert’s
case was even more explicit. His demand that consistency of mathematics
should be effectively proved was explicitly articulated before Russell
announced his famous paradox. The same concerns Hilbert’s slogan that
in mathematics there is no room for non ignorabimus. Finally, Brouwer’s
protest against epistemology of classical mathematics is also conceivable
independently of antinomies. Of course, since antinomies appeared, all three
great foundational projects (logicism, intuitionism an formalism) had to
propose devices to avoid them, but, with exception of logicism, it was their
secondary task.

' Also, I think, that the consequences of Gddel’s incompleteness theorems
did not concern formalism only. Look at the definition of logic in Frege
and Russell. Roughly speaking, it says that theorems of logic, including
mathematics as reducible to logic, are provable by purely logical methodz
plus definitions in terms of a few very primitive concepts (in particular, the
membership relation). Since the logicist identifies logical truths and loéical
theorems, the definition of logic says that all logical truths are provable by
purely logical means. However, due to the first incompleteness theorem, it
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is impossible, because we have true sentences, but unprovable by logic (see
Wolenski 1995, 1995a).

The matter of intuitionism is perhaps less evident, but consider
the following reasoning. The intuitionist demands that all mathematical
theorems must be proved by constructive methods. Whatever it means,
constructive methods have to avoid the principle of excluded middle. The
second incompleteness theorem says that consistency of arithmetic is not
provable in arithmetic itself. Now, it is reasonable to say that constructive
methods should not go beyond arithmetic. Since Peano arithmetic is
interpretable in Heyting arithmetic (Peano arithmetic formalized in logic
without the principle of excluded middle via the Godel translation: -—A is
a theorem of HA iff A is a theorem of PA; the symbol - stands for the
intuitionistic negation), the latter is also subjected to the second Godel
theorem. Now let CON(HA) abbreviate “HA is consistent”. Due to the
Gédel result, CON(HA) is not provable in PA. Should the intuitionist prove
that HA is consistent? I say “yes”. The intuitionist says that existence
means consistency + the method of construction. Thus, consistency is
a necessary, though not sufficient condition of existence in the intuitionistic
sense, and this is a reason that the intuitionist should be able to prove
that his basic theory, namely arithmetic, is consistent. Perhaps one will
remark that something improper was smuggled in the above reasoning,
namely that CON(HA) is to be provable by the intuitionist. In fact, if
we inverse the link between PA and HA, we obtain that if A is not
a theorem of PA, then 74 is not a theorem of HA. Hence, ~~CON(HA)
is not a theorem of HA. The reasoning that leads to the result is of
course classical. A possible counterattack of the intutionist is that we
must distinguish ~—~CON(HA) and COH(HA). The former is too weak
in order to capture the conmsistency of HA in the intuitionistic sense,
but the latter also is defective as formalized by classical devices and
it does not express the intuitive (intuitionistic) consistency of HA. We
know, the intuitionist continues, that HA is consistent, because it is
a true manisfestation of the Mathematician’s Mind. I consider this way
out as begging the question. It is really strange to say that consistency is
a matter of intuitive faith, but everything else in mathematics is subjected
to constructive proofs. The situation seems rather like this: either the
intuitionist is not able to express CON(HA) in a rigorous way or he or she
cannot constructively prove it (in fact, ~~CON(HA) expresses something
very close to the requirement of consistency; so if this formula is not
intutionistically provable, a stronger one is unprovable too). No horn of

this dilemma is nice.
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Due to various circumstances, mainly works of Hilbert, Brouwer, Hey-
ting, Godel, Tarski and Skolem, the new situation in logic and the founda-
tions of mathematics consisted in replacing old positions, heavily burdened
by philosophical assumptions, by three new schemes: set theoretical (akin
to logicism), proof theoretical (akin to formalism) and constructive (akin to
intuitionism). I will take the first one as the point of reference. According
to the set theoretical foundational project, mathematics is not reducible to
logic, but to set theory. This brought the question concerning the limits of
logic. Considering the further development, the question is to be reduced
to another one: what is the logic? First-order or higher-order logic? If we
add formalism to this business, we encounter another problem, namely the
relation between proof and proof or, more generally, syntax and semantics.
The Hilbert program was in fact based on a hope that all mathematical
questions are solvable by finite (or combinatorial) syntactic methods. In
Poland, due to Tarski, set theoretical methods resulted with the rise of
rigorous semantics done by exact mathematical methods. I regard the Godel
incompleteness theorems and the Tarski undefinability theorem as signs of
the limitations of syntax over semantics. These results so deeply changed
the foundational scenario that we can properly speak about the semantic
revolution (see Woleniski 1999), which produced a new style of thinking in
logic, the foundations of mathematics and philosophy. When we look at
the interplay between syntax and semantics in formal theories, a natural
question that arises is this: how to characterize constructions in which
syntactic and semantic descriptions coincide? Perhaps we should answer
that logic is the domain in which syntax and semantics are equivalent. What
about constructivism? Well, it has its own merits because it is always good
to know what the limitations of constructive methods are, that is, what
can be constructively proved and what require other methods. However,
constructivism is not directly involved in the problem of how syntax is
related to semantics, because the latter is clearly non-constructive. So I will
not touch constructivism in my further remarks. I will assume, somehow
dogmatically, that constructive or effective procedures do not exceed
primitive recursive arithmetic. This view seems to be a reasonable minimal
understanding what should be included into the domain of constructive
methods.

1 take semantic revolution as being of the utmost importance. Yet,
I understand other preferences, in particular pointing out that the most
revolutionary work was given by Turing and consisted in elaborating the
concept of computability. The reason for this view is obvious because of the
significance of Turing’s ideas for computer science which, their technological
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effects and their influence on philosophy, particularly the philosophy of
mind. It is highly probable that logic in the 21 century will be dominated
by the needs of theoretical informatics. On the other hand, I am inclined
to think that ideas advanced by Turing still belong to syntax. If I can
prophet something, I will do it by saying that sooner or later the Tarski-
-style computer semantics will become equally important as it is in logic
of the second half of 20" century. Even if not, let us look at the semantic
revolution as a historical fact.

3. The rise of first-order logic (see Moore 1980, Moore 1988)

Famous (and less famous) axiomatizations at the end of the 19" century,
namely Dedekind’s (number theory), Peano’s (number theory) and Hilbert’s
(geometry) were second-order, due to axioms, like induction (Dedekind,
Peano) and completeness (of real numbers) (Hilbert). Frege’s logic was
also second-order, and the system of Principia covered what is presently
known as w-logic. Nobody at that time made any difference between first-
-and higher-order logic. The situation changed about 1915 when Lowenheim
proved his famous result, later improved by Skolem, about satisfiability of
first-order formulas in the domain of natural numbers. What is interesting
in this context is that Lowenheim was strongly influenced by Schroder and
the algebraic tradition in logic. So, at least in this respect, this tradition
became something more that only a historical blind path of the development
of logic. Another important fact, which helped to see the difference between
first and second-order logic consisted in the change of formalization of
set theory. Zermelo’s system distinguishes sets and their elements in this
way that there are some objects (atoms), which are not sets. It invites
elementary quantification (over atoms) and non-elementary one (over sets,
their families, etc.). Von Neumann recommended (in the twenties) another
approach, based on the principle that everything is a set. This principle,
somehow at odds with ordinary intuition, but natural in the realm of
mathematics, enabled to formalize the set theory as an elementary (first-
-order) construction.

First-order system logic was consciously extracted from the whole
body of logic by Hilbert (see Hilbert-Ackermann 1928, Hilbert 1928). It
is sometimes said that Hilbert accepted the view that all mathematical
theories can be formalized in first-order language (the Hilbert thesis; see
Pogorzelski 1994, p. 170). Historically speaking, this view is false. Hilbert
never said something like that. He only came to the conclusion that all
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deductive rules of inference can be formalized in first-order logic. It was the
reason that he became interested in first-order logic and its properties. In
particular, Hilbert stated as an open problem the question whether first-
-order logic is (semantically) complete. The positive answer given by Godel
in 1930 was an essential contribution to Hilbert problem because it assured
that every universally valid formula of first-order logic was provable. Hilbert
had to be very happy that a semantic concept (validity) was reducible to
a syntactic one, namely provability. Partial successes (Bernays, Schofinkel,
Ackermann, Goédel, Behmann) in attempts to solve the decision problem
also looked promising. However, the hopes concerning the final solution of
the decision problem became destroyed after 1936, when Church proved
the undecidability of first-order logic. Yet, elementary logic remained the
most secure logical quantification system, due to its completeness and,
in the course of time, it attracted many logicians (including Tarski and
Godel). Also the opus magnum of Hilbert and Bernays (see Hibbert-Bernays
1934-1939) seems to favour first-order logic for its “hard” properties, like
consistency, completeness or effective syntax. However, I do not know any
explicit statement of Hilbert, Gédel or Tarski suggesting that logic should be
reduced to FOL. In general, every textbook of mathematical logic, published
since the 40s of the 20" century extracts FOL as a separate and basic order
logic. It was Quine (see Quine 1970) who made the claim that the logic
should be identified with FOL. This claim, rather philosophical than purely
logical, began to be extensively discussed in the last twenty five years (see
Westerstahl 1976, papers in Barwise-Feferman 1985, Shapiro 1991, papers
in Shapiro 1996).

4. The rise of metamathematics and formal semantics

It is self-understandable that the Hilbert program with its demands
of solvability of every mathematical problem (including the consistency of
mathematics) by finitary devices resulted with a vital interest concerning
properties of formal mathematical systems. It does not mean that this
question was entirely overlooked by other logicians. Russell and Whitehead
clearly saw that consistency and completeness (adequacy) are fundamental
properties of logical systems. This is well documented by the following
fragment of Principia Mathematica (Whitehead-Russell 1910, p. 12).

“The proof of a logical system is its adequacy and completeness. That is:
(1) the system must embrace among its deductions all those propositions
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which we believe to be true and capable of deduction from logical premisses
alone, though possibly they may require some slight limitation in the form
of an increased stringency of enunciation; and (2) the system must lead to
no contradictions, namely by pursuing our inferences we must never be led
to assert both p and not-p, i.e. both “F p” and “k —p” cannot legitimately

appear.” :

However, the authors of Principia Mathematica did not think that
consistency and completeness could be solved by applying exact mathe-
matical methods. Post went further and proved formally (Post 1921) that
propositional calculus was complete. He clearly saw that the problem of
completeness is about propositional calculus but not a question, which could
be solved within the system developed in Principia Mathematica (Post 1921,
p. 21-22; page-reference to reprint):

“We here wish to emphasize that the theorems of this paper are about the
logic of propositions but are not included therein. More particularly, whereas
the propositions of ‘Principia’ are particular assertions introduced for their
interest and usefulness in later portions of thr work, those of the present paper
are about the set of all such possible assertions.”

On the other hand, there is nothing in Post, which would testify that
he saw the completeness problem as an example of a wider project of the
foundational research. It was Hilbert who consciously and systematically
initiated such a program. He established metamathematics as a mathe-
matical field. More specifically, metamathematics in the Hilbertian sense
consisted in investigating formal, that is, logical and mathematical systems
by so called finitary methods.

Hilbert’s idea of metamathematics became popular in Poland. In fact,
the Warsaw school of logic (Lukasiewicz, Lesniewski, Tarski, Lindenbaum
and others) were doing some metamathematical work in the twenties of
the 20"" century, probably independently of any knowledge about the
Hilbert project. In the end of the 20s, Tarski published two papers
(Tarski 1930, Tarski 1930a) in which he defined and systematised many
metamathematical concepts with a full consciousness that he followed
Hilbert and his school (Tarski 1930a, p. 60; page-reference to English

translation):

“The deductive disciplines constitute the subject-matter of the methodology
of the deductive sciences, which today, following Hilbert, is usually called
metamathematics, in much sense in which spatial entities constitute the
subject-matter of geometry and animals that of zoology. [..]. Strictly speaking
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mefcama.thematics is not to be regarded as a single theory. For the purpose
of invetigating each deductive discipline a special metadiscipline should be
constructed. The aim is to make precise the meaning of a series of tmportant
metamathematical concepis which are common to the special metadisciplines
and to estgblish the fundamental properties of these concepts. One result of thisi
approach is that some concepts which can be defined on the basis of special

metadis.cplines will here be regarded as primitive concepts and characterized
by a series of axioms.”

Tarski did not remark, however, that his work was fairly different
from that of Hilbert at a very basic point. The main difference is
that Tarski did not restrict metamathematical methods to finitary ones.
A famous Lindenbaum’s lemma, which appeared in Tarski 1930 for the
first time, namely the statement that every consistent set of sentences
has a maximally consistent extension is perhaps the best exemplification
of a metamathematical and non-constructive theorem. Tarski, after years
stressed that it was a crucial point that Warsaw school was m:)re liberal in,
the repertoire of sound mathematical methods as metamathematical devices
(Tarski 1954, p. 713; page-reference to reprint):

“As an essential contribution of the Polish school to the development of
metgmathematics one can regard the fact that from the very beginning it
admitted into mathematical research all fruitful methods, whether finitary
or not. Restriction to finitary methods seems natural in certain parts of
metamathematics, in particular in the discussion of consistency problems
though even here these methods may be inadequate. At present it seems’
certa%n, however, tha exclusive adherence to these methods would prove a great
handicap in the development of metamathematics.”

,\./Vhy did Polish logicians (with some exceptions, like Chwistek or
Le$niewski) admit infinitary methods? It was due to the way of looking
at ‘set theory and its controversial problems, for instance the status of the
axiom of choice. Perhaps this way of thinking is best represented by two
following quotations, very similar in their content, although separated by
a fe\jv decades (Sierpinski 1965, p. 94; Tarski 1962, p. 124; page-reference to
reprint; in order to clarify the phrase “separated by a few decades”, I note
that Sierpinski’s view was expressed by him in the twenties of 20*" ce’ntury):

“Still, apart from our personal inclination to accept the axiom of choice, we
must take into consideration, in any case, its role in the Set Theory and in) the
Calculus. On the other hand, since the axiom of choice has been questioned
b}./ some mathematicians, it is important to know which theorems are proved
with its aid and to realize exact point at which the proof has been based on
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the axiom of choice; for it has frequently happened that various authors have
made use of axiom of choice in their proof without being aware of it. And after
all, even 1f no one questioned the axiom of choice, it would not be without
interest to investigate which proofs are based on it, and which theorems can
be proved without its aid - this, as we know, is also done with regard to other

axioms.”

«“We would of course fully dispose of all problems involved [that is, concerning
the existence of inaccessible cardinals — J. W.), if we decide to enrich the
exiom system of set theory by including (on a permanent basis so to speak)
a statement which precludes the existence of “very large cardinals”, e.g. by
a statement to a effect that every cardinal > w is strongly incompact. Such
a decision, however, would be contrary to what is regarded by many as one
of the main aims of research in the foundations of set theory, namely, the
axiomatization of increasingly large segments of “Cantor’s absolute’. Those
who share these attitude are always ready to accept new “constructions
principles”, new axioms securing the existence of new classes of “large”
cardinals (provided they appear to be consistent with old axioms), but are
not prepared to accept any axioms precluding the existence of such cardinals
_ unless this is done on a strictly temporary basis, for the restricted purpose
of facilitating the metamathematical discussion of some axiomatic system of
set theory.”

Metamathematics in the understanding of Hilbert and (early Tarski)
was restricted to syntactic matters. If we say that metamathematics is
“3bout” mathematics and deals with its subject-matter by mathematical
methods, nothing prevents us to add formal semantics to metamathematical
investigations. Adjective “formal” is important here, because only formal
semantics is done by mathematical methods. Since I described the develop-
ment of semantics elsewhere, I restrict here to the facts concerning formal
semantics. Two conceptions of semantics have to be distinguished. The best
way to see the difference consists in an appeal to Frege’s distinction between
sense and reference, although he did not invent it in order to clarify various
ways of semantic thinking. Traditionaly, the linguists considered semantics
as devoted to studies about meanings (senses) and their changes. This
understanding attracted also many philosophers, who often worried about
meanings of expressions. The further development of formal semantics, at
least that important for mathematical logic, gave priority to referential
issues.

The Loéwenheim-Skolem theorem and the Gédel completeness theorem
are early semantic results. Post probably did not observe that his comple-
teness theorem had an explicit semantic flavour. Neither Lowenheim, nor
Skolem, nor Godel defined semantic concepts, which they used, for instance
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domain, validity or satisfaction. These ideas were understood in their
writings as it was practicized in the ordinary mathematical parlance of
that time. Godel himself clearly appreciated the importance of semantic
methods. After years, he documented it in the following way with respect
to the concept of truth (quoted after Wang 1996, p. 242):

“..] it should be noted that the heuristic principle of my construction
of undecidable number theoretical proposition in the formal systems of
mathematics is the highly transfinite concept of ‘objective mathematical truth’
as opposed to demonstrability [...] which with it was generally confuse(i
before my own and Tarski’s work. Again, the use of this transfinite concept
eventually leé}ds to finitary provable results, fo example, the general theorems
about the existence of undecidable propositions in consistent formal systems
[..]. A similar remark applies to the concept of mathematical truth wheré
formalists considered formal demonstrability to be an analysis of the corllcept of
ir}llathematical truth and, therefore, were of course not in position to distinguish
e two.”

qédel even accused Skolem for being insensitive to non-finitistic methods
(in fact, to semantic matters) and thought that it prevented the latter to
prove the completeness theorem (quoted after Wang 1974, p. 7-8):

“The completeness theorem, mathematically, is indeed an almost trivial
consequence of Skolem 1922. However, the fact is that, at that time, nobody
(including Skolem himself drew this conclusion (neither from Skolem i922 nor
as I did, from similar consideration of his own. [...] This blindness (or prejudicé
[...]) of logicians is indeed surprising. But I think the explanation is not hard
to find. It lies in widespread lack, at that time, of the required epistemological
attitute toward metamathematics and toward non-finitary reasoning.”

Yet, as I already mentioned, Gddel himself also did not define semantic
n.otions. Why? It seems that Gddel did not believe that they are subjected to
rigorous mathematical treatment, although he always considered semantic
intuitions as very powerful heuristic pathways.

‘ It was Tarski who introduced semantics as a part of metamathematics
in his seminal treatise on the concept of truth in formalized languages. The
success of formal semantics was rooted in four factors. First, the fear of
semantic antinomies had to be overcome. Perhaps it was more important
in Poland than in other countries, because Polish logicians with their
considerable philosophical inheritance were more sensitive to the problem
of antinomies than their mostly mathematical colleagues in other countries.
Secondly, a new conception of logic (see van Heijenoort 1967) had to replace
the old one. This new conception considered logic as a reinterpretable

32

Logical consequence and the limits of first-order logic

calculus, contrary to the looking at logic as a language (as the universal
medium; see Hintikka 1989, Kusch 1989, Wolenski 1997a). The second
conception, shared by Frege, to some extent by Russell and very radically by
Wittgenstein, prevented any serious talk about relations between language
and its referential relations to something else. In particular, it makes the
distinction between language and metalanguage (crucial for semantics)
simply meaningless. Quite contrary, logic conceived as reinterpretable
calculus naturally suggested that language referred to something which
was dependent on interpretation. Thirdly, language and its referential
relations had to be dressed in a mathematical manner. It was done by
recursive definition of language as a set of sentences and assuming that
the concepts of interpretation and satisfaction, which establish the link
between language and its subject matter, are also recursive. Thus, syntax
and semantics became compositional. Sometimes it is regarded as a too
restrictive approach, which does not fit intensional language, but the way
of overcoming meanders of intensionality is unclear until now. Fourthly,
semantics required infinitary methods. It is remarkable that the first mention
of satisfiability by Tarski appeared in his paper on definable real numbers,
that is, on the occasion of considering problems of descriptive set theory,
which makes heavy use of infinitary methods. If we look at circumstances
associated with the development of formal semantics, nothing is peculiar as
compared with syntax. Both semantics and syntax use infinitary methods
and both are compositional. What is then the difference between them?
The fundamental question is this: is it possible to define semantic relations
by syntactic machinery? The general answer, well motivated by basic
metamathematical results, is: no (see Woleniski 1997 for further philosophical
comment about the relation between syntax and semantics). I claim that
FOL is the only logic in which syntax and semantic are parallel in the
way which can be called “logical”, but this qualification must be somehow
restricted even in this case.

5. First-order logic and its basic properties

There is an ambiguity in conceiving logic, even in the case of FOL.
A more traditional account considers logic as the set of theorems derived
from suitably adapted axioms by proper inference rules, for instance,
modus ponens. According to another view, logic is a pair (L, Cn), where
L is a language and Cn 1s a consequence operation, which operates
on L. Under the second understanding, logic produces theorems from some
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assumptions dependent on the considered subject matter, for example,
arithmetic or geography. On the other hand, logic as the set of theorems
consists of propositions assumed to be tautologies, at least in the case
of first-order logic. We can try to reconcile (at least, to some extent)
both approaches to logic by the following way. Firstly, we introduce (first-
-order) Cn axiomatically by stipulating the following postulates (this way
of introducing the consequence operation goes back to Tarski; see Tarskvi
1930, Tarski 1930a):

(Cl) P<L<YN

(C2) X CCnX

(C3) if X CY, then CnX C CnY

(C4) CnCnX = CnX

(C5) if A€ CnX,then 3Y C X AY € FIN(4 € CnY)

(C6) if B e Cn(X U{A}), then (A — B) € CnX, provided that A, B

and element of X are sentences, that is, closed formulas.
(C7) if (A— B) € CnX, then B € Cn(X U{A4})
(C8) Cn{A,-A}=1L
(C9) Cn{A} N Cn{-A} =10
(C10)  A(ti/z;) € Cn{Vz;A}, if the term ¢; is substitutable in A for z;
(C11) (A — Vz;B) € Cn{Vz;(A — B)}, if z; is not free in A4;
(C12) Vaz,;A € Cn{A}.
Then, we define logic by
(D)  LOG = Cnd.

I will not enter into a deper motivation for defining logic as the set of
consequences of the empty set (see Wolenski 1998 for a more extensive
discussion discussion). At the moment the observation will suffice that (D)
sees logic as independent of any particular assumptions, that is, connected
with specific domains. In the case of first-order logic, (D) has an additional
justification in the (weak) completeness theorem

(WCT) A € Cnl if and ounly if A is universally valid, that is true in all
models.

Thus, assuming (D), the completeness theorem establishes the parity
between derivability from the empty set and the universal validity. Since
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universality was always conceived as a basic property of logic, it gives
a strong evidence for (D) as an intuitive definition of logic. The strong
completeness theorem is important, when we understand logic as (L, Cn).

It is the statement

(SCT) A € CnX if and only if A is true in all models of the set X of

sentences.

Of course, if we take the empty set instead of X, (SCT) becomes (WCT).
Unfortunately, completeness does not select a logic uniquely, because it is
a property of many formal systems. It is always possible to state axioms
for Cn, that it will allow us to define the resulting systems as Cn. Some such
systems are semantically complete, others not. Thus, semantic completeness
as a property does not separate first-order logic from other candidates for
being logics. Thus, we must look for an other characterization of first-order
logic. One hint comes from the following theorem:

(NDC) FOL does not distinguish any extralogical content, that is, if
something is provable in this logic about an individual object,
property or relation denoted by a predicate letter, the same is also
provable about any other object, property or relation.

This feature is certainly desirable, if we like to keep the intuition that logic
is independent of specific subject-matters.

The recent and most popular characterization of first-order logic comes
from the Lindstrém theorem (more strictly, one of theorems of this sort;
note that this theorem applies above all to logic understood as (B, Cn)).

(L) A logic LOG is equivalent to FOL if and only if the following

conditions hold:

(a) LOG is effectively regular (its syntax is recursive, its formulas
are finite);

(b) LOG has Boolean connectives;

(¢) LOG is compact (it has a model if its every finite subset has
a model);

(d) LOG satisfies the downward Lowenheim-Skolem theorem (if
it has an infinite model, it has a countable model).

This theorem says that FOL is the strongest logic, which jointly possesses
properties (La)-(Ld). For instance, second-order logic is neither compact
nor satisfies the Lowenheim-Skolem theorem

(L) is in its main part a semantic theorem and it has no clear syntactic
counterpart, although the regularity of FOL and the Boolean character of its
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connectives are guaranteed by properties of Cn. If we have the completeness
theorem, compactness as related to models, can be mapped on the finiteness
of syntactic consistency. However, no simple syntactic counterpart of the
downward Lowenheim-Skolem theorem is available. What is known is the
Lindenbaum maximalization theorem for languages with uncountably many
constants is equivalent to the downward Lowenheim-Skolem (see Surma
1968) theorem, but it goes beyond syntax of FOL. (L) is surprising, because
it characterizes FOL by unexpected properties as basic. A more discussed
matter concerns the consequences of (L) for the expressive power of FOL. Its
compactness and (d) decide that many concepts important for mathematics,
for instance, finiteness, are simply not definable in first-order languages.
Moreover, first-order theories are automatically non-categorical, because,
due to the Lowenheim-Skolem theorem, they have models, which differ
in cardinalities. These properties of FOL, in particular, the limitations
of its expressive power, are commonly regarded as disadvantages of first-
-order logic and reasons for favouring higher-order logics or logic with
infinitely long formulas (see Shapiro 1991 for the first option and Barwise
and Feferman 1985 for more wide spectrum of possibilities).

I have some reservations toward criticism of FOL via (L). Although
I agree that (L) is surprising, I guess (similarly Tharp 1975) that properties
listed in (L) are important for understanding logic and they clarify some
controversial issue. (L) does not mention the completeness theorem which
seems crucial for the concept of logic. However, we can say that (L) shows
that (WCT), if it is considered as a supplement of (D), must be understood
in a way. More specifically, since the completeness phenomenon is much
more general than the related property of FOL, and it is too wide as
a mark of logic, (L), so to speak, restricts (WCT) to a proper shape.
Let me explain the point in such a way. Compactness and the downward
Léwenheim-Skolem theorem are consequences of the completeness theorem
(in the version: every consistent set of first-order formulas has a model),
but only in FOL. It is clear, because second-order logic is complete but
it does not satisfy conditions (Lc) and (Ld). It suggests that completeness
in second-order logic means something different than in the case of FOL.
Formally, everything is similar: every consistent set of second-order formulas
has a model. On the other hand, it is well-known that the Henkin proof of
the completeness theorem for second-order logic, introduces some distinction
in the class of all models. Thus, not every model of second-order logic is
treated in the same way. Putting it in another way, extralogical elements are
present in selecting second-order models. This fact, together with the lack
of recursive axiomatization of second-order modes of inference (I mentioned
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it earlier), shows that second-order (a fortiori, higher-order too) logic has
feature which are not proper for logic. Nothing like that occurs in the
case of FOL. In particular, the Lowenheim-Skolem theorem says that all
models of a first-order language are equal, independently of their cardinality.
Hence, the definition of logic as the set of sentences true in all models and
its equivalence with (D), has its full sense only in FOL. (WCT), (NDC)
and (L) collectively taken exhibit fundamental properties of fist-order logic,
in particular, contribute to a better understanding of its universality. If we
insist that logic, should be universal, FOL satisfies this requirement to the

greatest extent.

6. Final remarks

First-order logic certainly has serious expressive limitations. On the
other hand, second-order logic, although richer in content, does not admit
any recursive definition of its deductive machinery. Although the concept
of logical (semantic) consequence is the same in all types of logic, it is
not everywhere replaceable by effectively given proof-procedures. Now, one
must decide what is expected from logic: a powerful expressive power or
recursive production of the modes of inference, closely connected with the
strict parallelism of syntax and semantics. The moral from my discussion
is that both aims canmot be simultaneously achieved. Something must
be chosen. As I already indicated, the strict parallelism of syntax and
semantics is restricted even in the case of FOL. It is due to the fact that
the completeness theorem for first-order logic, contrary to propositional
calculus has no constructive proof. Thus, effective syntax is mapped into
non-effective semantics and reversely, due to the use of methods, which
are not constructive. Another point to be observed is that FOL has some
extralogical aspects, at least two. Firstly, it is based on an assumption
that something exists. Secondly, the identity predicate is somehow between
logical and extralogical notions. On the one hand, first-order logic with
identity obeys all principal metatheorems, which hold for FOL without
identity, but, on the other hand, identity allows us to define numerical
quantifiers (for example, “there are exactly two objects”), which are purely
not logical items. I only note these points without entering into a deeper
discussion of them.
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ON PROOFS OF THE CONSISTENCY
OF ARITHMETIC

1. The main aim and purpose of Hilbert’s programme was to defend
the integrity of classical mathematics (refering to the actual infinity) by
showing that it is safe and free of any inconsistencies. This problem was
formulated by him for the first time in his lecture at the Second International
Congress of Mathematicians held in Paris in August 1900 (cf. Hilbert,
1901). Among twenty three problems Hilbert mentioned under number 2
the problem of proving the consistency of axioms of arithmetic (under the
name “arithmetic” Hilbert meant number theory and analysis).

Hilbert returned to the problem of justification of mathematics in
lectures and papers, especially in the twentieth!, where he tried to describe
and to explain the problem more precisely (in particular the methods
allowed to be used) and simultaneously presented the partial solutions
obtained by his students.

Hilbert distinguished between the unproblematic, finitistic part of
mathematics and the infinitistic part that needed justification. Finitistic
mathematics deals with so called real sentences, which are completely
meaningful because they refer only to given concrete objects. Infinitistic
mathematics on the other hand deals with so called ideal sentences
that contain reference to infinite totalities. It should be justified by
finitistic methods — only they can give it security (Sicherheit). Hilbert
proposed to base mathematics on finitistic mathematics via proof theory
( Beweistheorie). It should be shown that proofs which use ideal elements in
order to prove results in the real part of mathematics always yield correct
results, more exactly, that (1) finitistic mathematics is conservative over
finitistic mathematics with respect to real sentences and (2) the infinitistic

1 More information on this can be found for example in (Mancosu, 1998).
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mathematics is consistent. This should be done by using finitistic methods
only.

2. It seems that the first result in this direction was obtained by Wilhelm
Ackermann in 1924. In his paper “Begriindung des ‘tertium non datur’
mittels der Hilbertschen Theorie der Widerspruchsfreiheit” (cf. Ackermann,
1924) Ackermann gave a finitistic proof of the consistency of arithmetic of
natural numbers without the axiom (scheme) of induction. In fact it was
a much weaker system than the usual systems of arithmetic but the paper
provided the first attempt to solve the problem of consistency. Add that
Ackermann used in (1924) a formalism with Hilbert’s e-functions.

3. Next attempt to solve the second Hilbert’s problem was the paper by
Janos (later Johann, John) von Neumann “Zur Hilbertschen Beweistheorie”
published in 1927. He used another formalism than that in (Ackermann,
1924) and, similarly as Ackermann, proved in fact the consistency of
a fragment of arithmetic of natural numbers obtained by putting some
restrictions on the induction. It is worth mentioning here that in the
introductory section of von Neumann’s paper a nice and precise formulation
of aims and methods of Hilbert’s proof theory was given. It indicated how
was at that time the state of affairs and how Hilbert’s programme was
understood. Therefore we shall quote the appropriate passages.

Von Neumann writes that the essential tasks of proof theory are (cf.
von Neumann, 1927, 256-257):

I. First of all one wants to give a proof of the consistency of the classical
mathematics. Under ‘classical mathematics’ one means the mathematics
in the sense in which it was understood before the begin of the criticism
of set theory. All settheoretic methods essentially belong to it but not
the proper abstract set theory. [...]

II. To this end the whole language and proving machinary of the classical
mathematics should be formalized in an absolutely strong way. The
formalism cannot be too narrow.

III. Then one must prove the consistency of this system, i.e., one should
show that certain formulas of the formalism just described can never be
“proved”.

IV. One should always strongly distinguish here between various types of
“proving”: between formal (“mathematical”) proving in a given formal
system and contents (“metamathematical”) proving [of statements]
about the system. Whereas the former one is an arbitrarily defined
logical game (which should to a large extent be analogues to the
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classical mathematics), the latter is a chain of directly evident contents

insights. Hence this “contents proving” must proceed according to the

intuitionistic logic of Brouwer and Weyl. Proof theory should so to
speak construct classical mathematics on the intuitionistic base and in
this way lead the strict intuitionism ad absurdum?.

Note that von Neumann identifies here finitistic methods with intuitio-
nistic ones. This was then current among members of the Hilbert’s school.
The distinction between those two notions was to be made explicit a few
years later — cf. (Hilbert and Bernays, 1934, pp. 34 and 43) and (Bernays
1934, 1935, 1941).

4. In 1930 Kurt Gédel obtain a result which undermined Hilbert’s prog-
ramme. Godel proved that any consistent theory extending the arithmetic
of natural numbers and based on a recursive set of axioms is incomp-
lete (this result is called today Godel’s First Incompleteness Theorem).
This result was announced for the first time by Gédel during a conference
in Konigsberg in September 1930. It seems that the only participant of
the conference in Konigsberg who immediately grasped the meaning of
Godel’s theorem and understood it was J. von Neumann. After Godel’s
talk he had a long discussion with him and asked him about details of
the proof. Soon after coming back from the conference to Berlin he wrote
a letter to Godel (on 20th November 1930) in which he announced that
he had received a remarkable corollary from Godel’s First Theorem, namely
a theorem on the unprovability of the consistency of arithmetic in arithmetic
itself. In the meantime Godel developed his Second Incompleteness Theorem

2 I, In erster Linie wird der Nachweis der Widerspruchsfreiheit der klassischen
Mathematik angestrebt. Unter ,klassischer Mathematik” wird dabei die Mathematik in
demjenigen Sinne verstanden, wie sie bis zum Auftreten der Kritiker der Mengenlehre
anerkannt war. Alle mengentheoretischen Methoden gehoren im wesentlichen zu ihr, nicht
aber die eigentliche abstrakte Mengenlehre. [...]

II. Zu diesem Zwecke mufl der ganze Aussagen- und Beweisapparat der klassischen
Mathematik absolut streng formalisiert werden. Der Formalismus darf keinesfalls zu eng
sein.

III. Sodann muf die Widerspruchsfreiheit dieses Systems nachgewiesen werden, d.h.
es muf gezeigt werden, daB gewisse Aussagen ,Formeln” innerhalb des beschriebenen
Formalismus niemals ,bewiesen” werden konnen.

1V. Hierbei mufl stets scharf zwischen verschiedenen Arten des ,Beweisens” unter-
schieden werden: Dem formalistischen (,mathematischen”) Beweisen innerhalb des forma-
len Systems, und dem inhaltlichen (,metamathematischen”) Beweisen iiber das System.
Waihrend das erstere ein willkiirlich definiertes logisches Spiel ist (das freilich mit der
klassischen Mathematik weitgehend analog sein mufl), ist das letztere eine Verkettung
unmittelbar evidenter inhaltlicher Einsichten. Dieses ,inhaltliche Beweisen” mufl also ganz
im Sinne der Brouwer-Weylschen intuitionistischen Logik verlaufen: Die Beweistheorie
soll sozusagen auf intuitionistischer Basis die klassische Mathematik aufbauen und den
strikten Intuitionismus so ad absurdum fiihren.
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and included it in his paper “Uber formal unentscheidbare Sitze der
‘Principia Mathematica’ und verwandter Systeme. I” (cf. Godel, 1931). In
this situation von Neumann decided to leave the priority of the discovery
to Godel.

In fact in (Godel, 1931) one finds only a statement of the theorem on the
unprovability of consistency (called today Godel’s Second Incompleteness
Theorem) and a remark that it can be proved by formalizing the proof of
the first theorem. Godel promissed also there to publish the full proof in
the second part of the paper which would be ready soon. But this second
part was never written and Godel published in fact no proof of his second
theorem. Moreover, his remark on the proof was not correct. The first proof
of the theorem on the unprovability of consistency appeared in the second
volume of Hilbert and Bernay’s monograph Grundlagen der Mathematik
(1939). It has turned out that the way in which the metamathematical
sentence “the theory T is consistent” is formalized in the formal language
of T is significant here. Hilbert and Bernays formulated certain so called
derivability conditions for formulas representing in 7" the metamathematical
notion of provability in T' (in fact those conditons require certain internal
properties of provability to be formally derivable in T'). If those conditions
are fulfilled then the second incompleteness theorem holds.

Hilbert-Bernay’s conditions were not elegant. A useful and elegant form
of them was given by M. H. Léb in 1954 (cf. Lob, 1955). It was also shown
that there exist formal translations of the sentence “I" is consistent” which
are provable in T and for which the second incompleteness theorem fails.
Examples of such formulas were given by J. B. Rosser and A. Mostowski?.

Those results weakened in a sense (the metamathematical and philo-
sophical meaning of) Gédel’s Second Incompleteness Theorem. In fact this
theorem does not say simply that Peano arithmetic, if consistent, cannot
prove its own consistency (and similarly for any consistent extension of
it). It turns out that the way in which the metamathematical property
of consistency is expressed in the language of the considered theory plays
here the crucial role. The crude numerical adequacy in the sense of strong
representability is not enough here — one needs in fact that the formal
representation “reflects” the very structure of the notion of provability (cf.
Feferman. 1960). Nevertheless Godel’s theorem indicated certain limitations
of formalized systems and showed that certain corrections in Hilbert’s
programie are necessary.

3 . . . . N
For technical as well as philosophical and historical information on Gédel’s theorems
see, e.g., (Murawski, 1999).
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In spite of those new circumstances Hilbert defended the very idea
of his programme. In the Preface to the first volume of Grundlagen der
Mathematik he wrote:

[...] the occasionally held opinion that from the results of Godel follows the
non-executability of my Proof Theory, 1s shown to be erroneous. This result
shows indeed only that for more advanced consistency proofs one must use
the finite standpoint in a deeper way than is necessary for the consideration
of elementary formalisms?.

5. Through von Neumann about Godel’s incompleteness theorems
learned (in November 1930) Jacques Herbrand. He found them to be of great
interest. They also stimulated him to reflect on the nature of intuitionistic
proofs and of schemes for the recursive definition of functions. In a letter
to Godel of 7th April 1931 Herbrand suggested the idea of extending the
schemes for the recursive definition of functions. His remarks inspired Godel
to formulate the notion of general recursive function (in the lectures he gave
at Princeton in 1934 — cf. Gédel, 1934).

From the point of view of the present paper however more important
is Herbrand’s paper “Sur la non-contradiction de arithmétique” published
in 1931 already after the Godel’s «{Tber formal unentscheidbare Sétze...”.
Herbrand probably started to write his paper before Godel’s paper reached
him (the manuscript sent for publication to the Journal fir reine und
angewandte Mathematik was dated “Géttingen, 14 July 19317; it was
sent just before Herbrand left for a vacation trip in the Alps, and was
received on 27 July 1931 — on that day Herbrand was killed in a fall).
Nevertheless, he had opportunity to examine Godel’s results (in particular
his second theorem) and in the last section of his paper he was dealing with
them.

Herbrand’s paper presents a proof of the consistency of a fragment of
arithmetic of natural numbers. It was certainly intended to be a contribution
to the realization of Hilbert’s programme. The fragment considered by
Herbrand is arithmetic with induction for formulas containing no bounded
variables and induction for formulas containing bounded variables but

4 [..] die zeitweilig aufgekommene Meinung, aus gewissen neueren Ergebnissen
von Gédel folge die Undurchfiihrbarkeit meiner Beweistheorie, als irrtiimlich erwiesen
ist. Jenes Ergebnis zeigt in der Tat auch nur, daf man fir die weitergehenden
Widerspruchsfreiheitsbeweise den finiten Standpunkt in einer schirferen Weise ausnutzen
mufB, als dieses bei der Betrachtung der elementaren Formalismen erforderlich ist.
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containing no function symbols except eventually the successor function.
The proof uses Herbrand’s fundamental theorem5 (section 1 consists of
a very clear presentation of this theorem).

It is worth noting here that Herbrand, similarly as von Neumann (see
above), uses the name “intuitionistic” to describe methods which are allowed
in the metamathematics, hence finitistic methods. This identification was
then current in Hilbert’s school.

The key trick of Herbrand’s proof of the consistency of the indicated
fragment of aritmetic is the elimination of the induction axiom scheme
through the introduction of functions. The definition conditions for those
functions are such that, for every set of arguments, a well-determined
number can be proved in a finitary way to be the value of the function. It
should be noted that those functions are (general) recursive functions. This
is in fact the first appearance of the notion of a general recursive function
as opposed to primitive recursive (cf. Godel’s definition of general recursive
functions from 1934 “suggested by Herbrand” — see Gddel, 1934, p. 26).

As indicated above, in the last section of his paper (1931) Herbrand
considered the problem of connections between his result and Godel’s
theorem on the unprovability of consistency. He explains very clearly why
the latter does not hold for the fragment of arithmetic he considers. The
reason is that the metamathematical description of the system cannot be
projected into the system itself (because the system is too weak).

6. First proof of the consistency of the arithmetic of natural numbers
was given by Gerhard Gentzen in the paper “Die Widerspruchsfreiheit
der reinen Zahlentheorie” (1936) (cf. also his paper “Neue Fassung des
Widerspruchsfreiheitsbeweises fiir die reine Zahlentheorie” from 1938).
According to Godel’s Second Incompleteness Theorem a proof of the
consistency of the full arithmetic of natural numbers should use means
stronger than those available in the arithmetic itself (modulo the restrictions
concerning the way of expressing in the formal language the property of
consistency). Indeed the analysis of Gentzen’s proof shows that it is just
in the concept of a reduction process applied by Gentzen in (1936) that
the transgression of the methods formalizable in the formal system under

5 This theorem contains a reduction (in a certain semnse) of predicate logic to
propositional logic, more exactly it shows that a formula is derivable in the axiomatic
system of quantification logic if and only if its negation has a truth-functionally
inconsistent expansion. Herbrand intended to prove this theorem by finitistic means. The
theorem was contained in Chapter 4 of his doctoral dissertation presented to the Sorbonne
in 1930 and published in the same year — cf. Herbrand, 1930.
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consideration comes about. By assigning ordinals to the derivations one sees
that the transfinite induction up to ¢, suffices for the proof®.

It is worth noting here that the first version of Gentzen’s consistency
proof was submitted in 1935 but was withdrawn after criticism directed
against the means used in the proof which were considered to be too strong.
Gentzen took care of the criticism and modified his original proof before
it was published (the modified proof was published in the paper (1936)).
Fortunately the text of the original proof was preserved in galley proof.
It became publically known because of the paper by Bernays (1970) and
was recently published in the name of Gentzen (cf. Gentzen, 1974). Bernays
remarks in (1970) that Gentzen’s original proof was certainly easier to follow
than the first published proof and at least as easy to follow as the second
Gentzen consistency proof from (1938).

7. Gentzen’s proof was apparently accepted by Hilbert and Bernays in
the second volume of Grundlagen der Mathematik (1939). Indeed, in the
Preface Bernays wrote there (p. VII):

In any case one can say on the basis of Gentzen’s proof that the short-lived
failure of proof theory was caused solely by the whimsicality of the methodo-
logical demand put on it7.

In the same Preface it was also announced that W. Ackermann is
working on extending his earlier consistency proof (published in 1927) along
the lines indicated by Gentzen, i.e., by applying the transfinite induction.
Indeed, in 1940 appeared Ackermann’s paper “Zur Widerspruchsfreiheit der
Zahlentheorie” in which the consistency of the full arithmetic of natural
numbers was proved by using methods from his paper (1927) and the
transfinite induction.

Since then other proofs along Gentzen’s lines have been published.
One should mention here among others papers by Lorenzen (1951), Schiitte
(1951, 1960) and Hlodovskii (1959).

6 The countable ordinal eq is defined as the smallest ordinal e such that w® = ¢ or as

the limit of the sequence w, w®, w* ...

7 Jedenfalls kann schon auf Grund des Gentzenschen Beweises die Auffassung vertre-
ten werden, daB das zeitweilige Fiasko der Beweistheorie lediglich durch eine Uberspan-
nung der methodischen Anforderung verschuldet war, die man an die Theorie gestellt
hat.
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LATTICE PROPERTIES OF
A PROTOLOGIC INFERENCE

A protologic construction of g-consequence in [1] has been designed as
a formal counterpart of reasoning admitting rules of inference which lead
from non-rejected premises to accepted conclusions. The very concept is
a generalisation of Tarski consequence and, as such, it may be investigated
similarly cf. [3]. In the paper we present results concerning the lattice Q(L)
of all g-consequence operations of a given sentential language L.

1. Q-consequence as a protologic inference

The concept of a g-consequence was introduced in [1] for the purpose of
formalization of reasoning leading from non-rejected premisses to accepted
conclusions. Accordingly, the first approach is based on extended logical
matrices. having two disjoint sets of distinguished values: rejected and
accepted. The so-called g-matrix consequence relation, on its turn, imitated
an inference not necessarily accepting the rule of unlimited repetition.

Let L = (For,Fy,...,F;) be a sentential language. Formulas, i.e.
elements of For, are then built from variables using the operations
Fy,..., F,, representing the sentential connectives. In algebraic terms, L is

freely generated by the set of its variables, Var = {p,q,r,...}. A g-matriz
is a triple

M* = (A,D~, D),
where A is an algebra similar to L and D*, D are disjoint subsets of A
interpreted as sets of rejected and distinguished values of M, respectively.

For any such M* one defines the relation ks, between sets of formulae and
formulae. a matrir g-consequence of M* putting for any X C For,a € For

X k- o iff for every h € Hom(L, A)(ha € D whenever hX N D* = {)
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The g-concepts reduce to usual concepts of matrix and consequence
only if D*UD = A, i.e. when the sets D* and D are complementary. In that
case the set of rejected elements coincides with the set of non-designated
elements. So, the first set may be omitted and what then we have is a matriz

M = (A, D)

based on the same algebra of values and D serving as the set of distinguished
elements.
The matrix consequence relation =3,C 2F°7 x For for M,

X Em aiff h € Hom(L,A)(ha € D whenever hX C D),

may obviously be regarded as a special gq-matrix consequence.

Given a matrix M for a language L, the system E(M) of sentential logic
is defined as the content of M, i.e. the set of all formulas taking for every
valuation h (a homomorphism) of L in M. Thus

E(M) = {a € For : for every h €¢Hom(L, A), h(a) € D}.

Notice, that E(M) = {a : 0 Ep a} = {a : 0 =pm- a}. This obviously
means that both, the matrix consequence, and g-matrix consequence may
serve as inferential extensions of the single logical system.

With every f=ps- there may be uniquely associated an operation Wn -
ofor —, 9For gych that

a € Wnp-(X) if and only if X . 0.
called a g-matriz consequence operation of M*. Cnpy - 2F°7 — 27°" defined
by
a € Cnpr(X) if and only if X Eum a,
a matriz consequence operation of M, is a special case of Wnps-.
As known, the concept of structural sentential logic is the ultimate
generalisation of the notion of the matrix consequence operation. A struc-

tural logic for a given language L is identified with Tarski’s consequence
C 2For _ 2F0r

(T0) X C C(X)

(T1) C(X) C C(Y) whenever X C Y

(T2) C(C(X)) = C(X),

satisfying the following condition of structurality

(5) eC(X) C C(eX) for every substitution of L.
cf. [3].
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The investigation in [1] showr that similar generalisation of the q-matrix
consequence aims at the theory of the g-consequence operation W : oFor _,
2For satisfying the following postulates:

(T1) W(X)C W() whenever X C Y
(T2) W(X uW(X)) = W(X),
and, possibly,

(s") eW(X) C W(eX) for every substitution of L.

2. The lattice Q(L) — general properties

Let L = (For, Fi,..., Fy) be agiven sentential language and let (L) be
a class of all g-consequence operations on L.

Consider W;, W, € Q(L). If W (X) C W,(X) for any X C For, then
we say that W;, is weaker than W, or that W,, is stronger than W, and
we write W, < W,. Since C partially orders the powerset of the set of
formulas, 2F7°7 we obtain

2.1. <is a partial ordering in Q(L).

Where U C Q(L), let Sup(U) and Inf(U) denote the least upper bound
and the greatest lower bound, respectively, i.e.
(1) Sup(U) is the weakest q-consequence operation in Q(L), such that for
every W e U, W < Sup(U),
(2) Inf(U) is the strongest g-consequence operation in @(L), such that for
every WeU,inf(U)XW.
In what ‘ollows, we adopt a standard concept of a rule inference R as
a set of sequents (X, @), i.e. R C 2F°" x For; cf. [3]. Next, we also need the
notion of a g-consequence operation Wiy, : 2F°" — 277 based on the set R
of rules of inference. Thus, for any X C For

Wig(X) = (HY C For : Y is R-closed relative to X'}

Recall, that Y C For is R-closed relative to X C For if and only if for
each (Z,0) e Re Rif ZC X UY, then a € Y; cf. [1].

Finally, let Rule(W) denote the set of all rules of inference of a given
g-consequence W:

Rule(W) = {R: forevery (X,a)€ R, a € W(X)}.
Clearly, Rule(W) is the biggest inferential basis for W.
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2.2. For any W, W, € Q(L)
W, < W, iff Rule(W)) C Rule(W,).

Assuming that U = {W; : i € I} we get the characterisation theorems
concerning Sup(U) and Inf(U):

2.3. Sup(U) = Wg, where Q@ = U{Qi : W; = Wng, }.

Proor. Since Rule(W;) C Rule(Sup(l)), for every W; € U, W; < Sup(U).
On the other hand, for any W* such that W; < W* for all W; € U we get
U{Rule(W;) : W; € U} C Rule(W™). So Wg = Wy puew,)w.evy < W7
and, therefore, Wgo < Wt.

24. Inf(U) = ({W; : i € I}, ie. for every X C For Inf(U)(X) =
N{Wi(X):i€I}.

PRrOOF. Assume that W* : 2F°7 — 9F°r is an operation defined as:
W*(X)=({Wi(X):i€l}.

What then we have to prove as first is that W* is a g-consequence, i.e. that
it satisfies the conditions (W1) and (W2). W* obviously satisfies (W1). To
check that it also satisfies (W2) let us assume that for some X C For
and a« € For, a € W*(W*(X) U X). Then, also, for every ¢+ € I,
a € Wy(W*(X)U X) and due to W*(X) C Wi(X), a € W;(Wi(X)U X).
Since each W; is a g-consequence we obtain that o € W;(X) and, conse-
quently, a € W=(X). So, W*(W*(X)U X) C W*(X). Taking into account
that the reverse inclusion is implied by (1), the task is concluded.

Assume now that W~ is a g-consequence weaker than all W/. Thus
W=(X) C Wy(X) for every X C For and every ¢+ € I. Therefore,
W= (X) C W*(X) = N{W:(X) : 4 € I}. This justifies that W* = Inf(U).
Inf(U)X) = W*(X) = N{Wi(X) :i € I}.

2.5. Corollary. Q(L) is a complete lattice under <.

Now, let R C Rule(L) be any set of inference rules in L. Next,
let Qr(L) be the subclass of all g-consequence operations with the very
property of having (at least) all rules in R:

Qr(L)={W :W € Q(L) and R C Rule(L)}
2.6. Qr(L) is a complete sublattice of Q(L).
Proor. The property follows easily from 2.2, 2.3 and 2.4.
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3. Important sublattices of Q(L)

Since adding the unrestricted rule of repetition,
rep={({a}, @) : a € For}

to the set of rules of any q-consequence W changes it into the consequence
operation, cf. [1]. p. 51, from 2.6 we immediately get

3.1. The class C(L) of all consequence operations on L is a complete

sublattice of Q(L).

3.2. The class Qg(L) of all structural g-consequence operations on L is
a complete sublattice of Q(L).

Further to 3.2 and also 3.1 we easily get another characterisation Sup
and Inf in Q(L). Namely,
3.3. For every U C Q(L):

(1) If at least one of W € U is a consequence operation, then Sup(U) is
a consequence operation as well.

(2) If at least one of W € U is not a consequence operation, then
Inf(U) is not a consequence operation.

Using the last corollary we may localize the greatest and the smallest
elements of Q(L). Let us consider the following two operations on L:
W such that for every X C For, Wg(X) = For
Wy such that for every X C For, Wy(X) =0

The former, W, is the inconsistent consequence and the biggest element
of Q(L). The latter, Wy, is the smallest element of Q(L). To complete the
view, let us recall that the identity operator:

Wr such that for every X C For, Wp(X) =X

the smallest element of Q¢ (L)
Given a language L,let Q(0,T) = {W € Q(L) : Wy < W < Wr}, where
< means that < and #.

3.4.Q(0,T) > 2.
ProoOF. card(For) = w. For every Z € 257 let us put:

_{Z it X = For
WZ(X)“{(Z) if X # For.
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It is obvious, that every such Wy is a g-consequence operation in
between Wy and Wyp. The aproximation comes, directly from the theory
of characteristic functions.

4. Two negative results

Every consequence operation C has the property that all C-indistin-
quistable formes are C-equivalent. We say that «,3 € For are C-indistin-
guishable, a =¢ 3, if

a=c Biff VxC(X,p(a/p)) = C(X,e(B/p))

and C-equivalent, o =¢ 3, if
a =c iff Vx(e(a/p) € C(X) iff o(8/p)) € C(X)).
The inclusion
(*) =c C =c.
exemplifying the property does not hold generally, i.e. it fails for some

W e Q).

For the purpose of discerning between two kinds of operations in Q(L)
in [2] the notions of extensional and intensional g-consequence were intro-
duced. Assuming the same definitions for =y, &, we say that a g-con-
sequence is ertensional provided that :

*) =w C ~w.
Otherwise, W is called intensional.
A natural question obtains whether or not the two classes of g-conse-

quences are sublattices of Q(L). Below, we give two examples showing that
the answer in both cases is negative.

ExampLE 1. Showing that Inf of two extensional g-consequence operations
may be intensional. Given p,q,r € Var(L) we put

W) =10

wWi({p}) = Wi({e}) = W.({p,¢}) = {p, ¢}

Wi (X) = For, otherwise.

It is easy to verify that W is a consequence operation and, as such, it
is an extensional g-consequence operation.
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Next, we put
W,(0) =0
Wy ({r}H) = {r}
W ({a}) = {¢}
Wo({p}) = Wa({p, q}) = Wal{p,r}) = Wa({g,7}) =
= Wa({p,¢,7}) = {a, 7}
Wo(X) = For, otherwise.
Now, note that
P=w, P, a=w, ¢ T =w, T
and
a=w, S
for o, 8 € For — {p,q,7}. Moreover, each variable p, ¢,7, is not W, equal to
other formula different from itself, i.e.
p #w, a forevery a#p
q #w, o forevery a # ¢
r #w, a for every a # T.
On the other hand, we have
q Bw, ;T Rw, T
and
o Rw, J¢]
for @, 8 € For — {q,7}. And, further to that,
q %w, aforevery a#q
r #w, aforevery a#r
One may easily verify that W3 is an extensional consequence operation,
i.e. that W, is a q-consequence and that =w,C~w,.

In the end, let W = Inf(Wy, Ws).
Then, due to ..., we get that

wWd =0
Ww({p}) = {a}
W({e}) = {q}
W{rh)=r

W({p,q}) = {p}
W({pa T}) = W({an}) = W({p7 Qar}) = {an}
W(X) = For otherwise.
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One may check that p =w q. However, at the same time p ¢ W({p}) and
g € W({q}). Consequently, p %y p. This means that W is not extensional.

EXAMPLE 2. (Showing that inf of two intensional g-consequence operations
may be intensional). Given p,q € Var(L), we put
1(0) =10
Wi({p}) = Wi{g}) = W1({p, ¢}) = {p}
W, (X) = For, otherwise.

The g-consequence thus defined is intensional since p =w, ¢, but
p € Wi({p}), ¢ € Wi({p}) and, therefore p Zw q.

Next, we put
Wy (0) =90
Wa({p}) = Wa({g}) = Wa({p, ¢}) = {¢}
Wy (X) = For otherwise.

For this q-consequence we have:

p=w, ¢,;p ¢ W({q}) and ¢ € W>({p})
and thus, W, is also intensional.
Now consider W = Inf{W;,W,}. W is then characterised as below:
W) =wW{ph) = W({e}) = W({p,q}) =0
W(X) = For, otherwise.

Accordingly, every two formulas a and § of the language are g-equiva-
lent, a ~yw [. So, W is an extensional g-consequence operation.
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FORMAL MATHEMATICAL TEXTS.
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1. Introduction

Formal proof systems have long been studied as part of mathematical
logic, especially proof checker systems were originally intended for the
actual use in carrying out standard mathematical texts. With the advent
of powerful and sophisticated implementations of logics, formal reasoning
in general, and formal proofs in particular, are becoming relevant and
accessible to other fields that use and rely on mathematical reasoning
techniques. Though the use of formalisms enables formal proofs to be written
by a human and checked with the help of a computer, such articles have
one serious deficiency: they are overburdened by large amounts of technical
detail of the underlying formal systems. This formal view obscures the basic
line of reasoning and hinders human comprehension. There is evidently
a wide gap, then, between formal texts and conventional mathematical
proofs, whose essential purpose, in addition to establishing the truth of
propositions, is to provide insight and understanding. One may argue that
it is not worthwhile trying to understand a formal proof at all, once
it has been machine-checked for correctness. This is certainly the case
where proofs are technical and tedious, and fail to offer any insights,
and we would be happy to leave the verification of such arguments to
the machine. But in other cases, a formal mathematical text, just as its
informal counterpart, carries important information that we would like to
commurnicate.

* This research was partially supported by two European Community 5FP grants:
CALCULEMUS (HPRN—CT—ZOOO—OOIOZ) and TYPES (IST-1999-29001).
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Traditionally, research in the area of computer aided formalization
of mathematics focussed on how the computer can help in the process
of constructing correct, mechanically checked mathematical articles. Con-
sequently, the research concentrated on building a library of articles.
The largest, developed since 1989, is the Mizar Mathematical Library
[RudTry99]. In the last few years there has been a growing interest in reading
and using proof checked articles, by authors of formalized articles and by
the wider audience through the internet. Understanding and then practical
application of articles depends strongly on their presentation. Language
and notation are used to explain the reasoning, intuition, association and
stylistical paraphrasing may be used to help the reader. We therefore
propose a planning approach to the presentation of Mizar proofs that
integrates a formal proof and its explanation into a single document. The
support of mathematical notation deserves special attention. Well designed
notation, especially in TgX, plays an important role in the communication
of mathematical understanding.

In the research we propose an approach to formal text presentation
that attempts to combine formality with comprehensibility. This approach
is guided by an analogy relating the activities of proving and programming.
Although proving in Mizar is a declarative process, programming is
a procedural process. Developing a program from a specification is very
much like developing a proof for a theorem. By following this analogy, we
apply techniques and principles known from program design to proof design
and presentation. Most important, we apply the principle of refinement
to proofs. Refinement has been used as both an informal and a formal
abstraction principle to control complexity and to structure and guide
the process of programming. By transferring the refinement paradigm to
formal proof design, we will show how we arrive at formal and hierarchically
structured texts, which are presented at different levels of abstraction. The
upper levels indicate how complete formal text can be constructed, and they
carry the essential information that constitutes the basic line of reasoning.
The lower levels fill in the necessary technical detail, a task that can be left
entirely up to the machine. Thus, the choice of the most appropriate level of
abstraction depends on the difficulty of the proof, and of those for whom the
presentation is intended (education, report of the database, journal, etc.).
Its depends also on the mechanical capabilities of the underlying reasoning
system, which besides proof checking of the formal text must also maintain
and verify the database of mathematical knowledge.

In this article we will show, how based on a proof plan, a structured
presentation at the level of proof methods can be investigeted. Mainly two
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kinds of knowledge are incorporated into the content planning in the form of
presentation of proofs. The hierarchical planning split the task of presenting
a particular proof into subtask of presenting subproofs. A Local navigation
operators simulates the unplanned aspect, where the next conclusion to be
presented is chosen under guidance of a local focus mechanism. From the
other side we have to investigate textbooks [BelSlo69, Gra79, HarWri79,
KurMos76, Lan80] proofs consists the structural and logical information,
which is contained in the proof. This includes the identification of:

— sequences of sentences that constitute subproofs,
the contribution of each of the proof segments to the overall goal to
decrease the proof obligations,

— the scope and quantification of the variables,

— the logical/structural relations between sentences/segments.

The very important principle in our approach is, that investigated
formal mathematical text is logically and mathematically correct (proof
checked). It is important to note, that this assumption give guaranty, that
text will be coherent. The document containing the formal proofs is the same
document containing the presentation of the proofs, guaranteeing that once
the document is checked, the presented version is correct.

The readability of a proof depends on the effort required by the reader
to understand it. Therefore, in order to be readable, a proof should contain
the necessary information to be followed without undue effort. It should also
omit irrelevant information, or any information, which can be easily deduced
by the intended reader of the proof. Furthermore, in order to facilitate its
readability, the information contained in a proof should be organized in
a way, which highlights its structure.

Presenting a formal mathematical text may be seen as an attractive
idea, particularly since formal arguments tend to be bogged down by
technical details. These circumstantiality usually hides the basic line of
reasoning underlying a proof, but is necessary to enable a computer to
check the correctness of an argument. Strictly formal proofs contain too
much technical detail, which is of no interest to the human reader, who only
wishes to understand the basic idea. This results in a long, overly detailed
proof in which the basic line of reasoning is obscured. The representation
of a formal text is geared towards a form that is easy to parse for the
computer, which differs from the form a human would choose in order
to understand it. This results in a lack of structural information. Both
above combined result in superfluous information on the one hand and
the lack of helpful information on the other hand. But still, such a proof
contains a representation of the basic proof idea that was on the mind of the

|
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person who has written the Mizar article. Thus, by hiding the unnecessary
information and by providing additional information it should be possible
to recover the proof idea.

On the other hand, the primary goal of our research should be to
convince the user of the correctness of an argument and not the machine.
The intelligible presentation of formal proofs is usually not attempted
because of their technical detail. We want to separate the discussion of
the requirements into two areas: what features are necessary to present
formal reasoning in a structured and natural language way, and how can
the whole system be kept flexible, i.e., applicable for various instances of
formal reasoning. We will keep the discussion at a rather abstract level so
that the software architecture of the supports system becomes visible.

The mechanical translation of formal proofs into natural language needs
several steps. On the high level planning will be profiling of the structure of
the proof, extracting references and subproofs. On the low level planning will
be reorganizing of linguistic resources in order to produce connected text.
On the output realizer level generated text will be enhanced and pruned.

Another question is the graphical representation of the text. The
fact, that the formulas are displayed in the severely restricted ASCII
character set doesn’t add to the comprehensibility either. Thus we take this
representation merely as a basis to derive step by step proof document that
is independent from the syntax of the system, well structured, and oriented
at common proving styles. Afterwards, a TgX, or HTML, document can
be generated, where all the operators, constants, and so on are replaced by
their appropriate mathematical symbols.

In contrast to the belief that mathematical texts are only schematic and
mechanical, state of the art techniques of natural language processing are
necessary to produce coherent texts that resemble those found in typical
mathematical textbooks. The human proof presentation process is based on
the natural language generation techniques. On one side we have a formal
text as input, and as output we will have a text in natural language.
Traditionally, the generation process has been divided into two stages:

— what to say, and
- how to say it.

The first stage comprises of processing from the concept and inter-
mediate representation of the formal proof to the planning of contents. The
second covers realization of the plans into text or output in other modalities.

The planning of the contents could be developed through the research
of the Discourse Representation Theory [GroSid90]. While the realization
of the plans — through the Rhetorical Structure Theory [ManTho87].
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2. Current Situation in the Related Research

Over the past thirty years there have been significant achievements
in the field of automated theorem proving with respect to the reasoning
power of the inference engines. Although some effort has also been made
to facilitate more user friendliness of the deduction systems, most of
them failed to benefit from more recent developments in the related fields
of artificial intelligence, such as natural language generation and user
modeling. In particular, no model is available which accounts both for
human deductive activities and for human proof presentation. In this
thesis, a reconstructive approach is suggested which substantially abstracts,
reorgénizes and finally translates machine checked proofs into a natural
language. Both the procedures and the intermediate representations of our
architecture find their basis in the Discourse Representation Theory and in
the Rhetorical Structure Theory for informal mathematical reasoning and
for proof presentation. User modeling is not incorporated into the current
theory, although we plan to do so later.

The need for better outputs of formal texts was recognized some years
ago and several attempts have been made to produce proof presentations
based on rules of the natural deduction calculus and otherwise readable
proofs.

The system EXPOUND [Che76] was pioneering presentation of proofs
in natural language, in 1976. It is an example of direct translation. Although
a sophisticated linearization is applied on the input natural deduction
proofs, the steps are then translated locally in a template driven way.

Proof presentation in natural language has recently been realized in ILF
[Dah94] and PROVERB [Hua94], which slightly abstract proofs before the
presentation:

~ ILF provides a schematic verbalization, not natural language generation
but merely the application of templates. Each logical rule, as well as
each of the various manifestation of reasoning rules, has a template
associated with it.

— PROVERB returns a more elaborate proof presentation at the so-
called assertion level that employs linguistic knowledge in order to
combine single assertion level steps. However a proof verbalization at
the assertion level is not necessarily the most natural and best way to
communicate a proof to mathematicians or to students. In particular,
often the proof is not abstract enough and the user cannot go from an
abstract level to a more detailed level because a hierarchical structure

is missing.
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Last years research was done also by:

- Yaunn. (?oscoy [Cos94] — describe how a natural language proof
fiescrlPtlon can be extracted automatically from proof objects, which are
in their case — terms of the Calculus of Construction of COQ, encoding
a natural deduction proof. They use techniques that are ;imilar to
the ones employed to extract programs from proofs. Questions such
as h.lerarchical structuring are not addressed, nor is the treatment of
special proof styles. This technique would therefore appear — thus far -
to be usable for small proofs only.

- Martin Simons [SimSin97] — literate and structured presentation of
formal proofs of Deva language.

- Sh. Kobayashi, Y. Nakamura and Y. Fuwa [KobNakFuw97] - deve-
%oped automatic translation from Japanese into English, using one
intermediary language INE (Internet New Esperanto). Th,is approach
was based on translation into Function Format Language (predicate
calculus), with help of specialized templates (devised by Writing Aid).

. Concerning automatic translation of Mizar texts into natural language
besides research noted in [BanCar93], there was also one attempt t(;
translation of Mizar-MSE texts into Chinese by Bin Qin [Qin84]. Similar
approach as in [Mat89] was made by P. Rudnicki and A. Trybulec

[RudTry89] — A Collection of TpX-ed Mizar Abstracts, but mostly on the
typesetting level.

3. Mathematical Vernacular

. The term Mathematical Vernacular has been used with varying mean-
ing, e.g. in [deB87] - it is a mixture of words and formulas that mathe-
maticians speak and write. It is a language, which is suitable for ordinar
mathematical practice, and which can be implemented on the compute};
under the guidance of formal semantics. But more precisely, we mean
that a mathematical and natural language which is suitable for’developing
mathematics, has formal semantics, and is implementable for interactive
mathematical development based on the technology of a computer assisted
formal reasoning and natural language processing. In this language logical
content is a prominent part of meaning.

Mathematical vernacular is characterized in part by an open system of
st.andardized notation. A writer of mathematics is not free to fill his text
with an undisciplined growing of freely invented notation. If a standard
notation is adequate for the purpose, the author is well advised to use
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it. Only the rarest circumstances permit a relaxation of this practice.
Nevertheless, excessive formalism should be avoided since it invites a level
of detail simply too distracting, indeed boring, from the main point of
the argument. The standardization of notation permits the possibility of
a formal reconstruction of mathematical vernacular. The requirement that
the mathematical presentation be not too formally detailed, but nevertheless
clear in a step wise style, permits the use of some aspects of automated
reasoning in a reasoning assistance system. A single human oriented step in
a mathematical argument is viewed as a small, quickly solvable, automated
reasoning task. The ultimate success and value of such system is determined
by how useful a tool it proves to be in practice and not by how well it is
alleged to embody a particular teaching style.

The reason is, that mathematicians define the meaning of their words
and sentences locally, without having to compare them to the existing habits
in the outside world. On the one hand, the grammar of mathematical
vernacular is much simpler than the one of natural languages. The rules
of mathematical vernacular are expressed in terms of three grammatical
categories:

e sentence,
e name,

e substantive.
On the other hand, it is more complex, since the correctness of mathematical

statements depends on the context and on everything said before.

The next question is the conceptual structure of mathematical language,
which depends on the notion of conceptual category. An important issue in
this analysis is that of well-formedness and meaningfulness of expressions
in mathematical vernacular. Mathematicians attach importance to the
criterion of semantic well-formedness, as well as to grammatical well-
formedness. Conceptual categories play an important role not only in the
correctness of checking (i.e. deciding whether an expression or a sentence
is well-formed and meaningful) but also in capturing the generative nature
of conceptual composition in mathematical vernacular. To mechanize any
aspect of mathematics, we need a good formal understanding of the
language. :

As mentioned above, there is quite a lot of interesting and novel
problems attached to mathematical vernacular. Given the prime need
for correctness in implementing mathematical vernacular, we believe it is
necessary to identify its successful parts, together with good practice sug-
gested by our experience of formal mathematics, and fully formalize that,
rather than attempt to formalize “all” of mathematics, a concept which
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we find hard to define precisely. Naturally, the language should be as close
as possible to good mathematical language, in the sense of exposing the
richness of it, without having too many restrictions. Qur view is, that
mathematical vernacular should be developed by formalizing the essential
core of the mathematical language, without which no useful mathematics
may be practiced — even if the means of expression are cumbersome, then
by extending this core to make the language more flexible without losing
the formal properties.

To achieve better ‘meta-variable’ facilities, we have identified an aspect,
which will allow the user to omit parts of his proofs temporarily —
such as details he considers trivial. This ‘feedback’ of ideas can also
occur in informal mathematical language: studying it in order to create
mathematical vernacular will help us to identify good parts and bad
parts, showing a way of improvements in mathematical language. Thus,
we can regard development of mathematical vernacular as a constraint
satisfaction problem — mathematical vernacular is between mathematics
and its realization in today’s mathematical language.

Another important question is, whether the current set of vernacular
is sufficient to formalize all proofs in a mathematical style. Some exist-
ing vernaculars (COQ [Dow90] and LEGO [Luo89, CalLuo98]) have one
disadvantage — the inability to express a proof in a traditionally mathema-
tical style. Only Mizar and based on it declarative languages seems to be
sufficiently close to today’s mathematical language.

4. Formal Proof

In Webster’s dictionary, a proof is “the process or an instance of
establishing the validity of a statement esp. by derivation from other
statements in accordance with principles of reasoning”. To put it more
succinctly, a proof yields evidence. An informal proof provides readers with
sufficient intuitive evidence to convince them of the validity of the statement
that is to be proven. Human understanding of why the theorem is true is
achieved by explaining the line of reasoning underlying the proof. A formal
proof, on the other hand, provides evidence by reducing every aspect of the
preceding definition to the level of symbols and their precise formal syntactic
manipulation within a well defined and sound logical framework. The sole
purpose of a formal proof is to establish the validity of a statement by
mechanical — not necessarily automatical — deduction from a given fixed set
of axioms, and possibly a set of hypotheses. The process of actually proving
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a theorem, establishing the validity of a concrete statement, is insignificant
with respect to providing insight. The result of the process is what counts:
the truth of the theorem is either established or not. Only at the meta level
is the process relevant again: it is formally expressed, proven sound and
possibly complete, and it is the object of further study, e.g. of proof theory
or research investigating possible automation. By disregarding the specific
process during which a proof is successfully produced, and by focusing
exclusively on the mechanical establishment of truth, a formal proof ignores
_ or rather abstracts form — all other aspects. Moreover, formal proofs,
which are intended to be checked by a machine, are by their very nature
overburdened with so much technical detail that any line of reasoning that
might have existed when the proof was originally conceived is completely
hidden.

There are two main approaches towards the formalization of proofs
to enable automatic verification. One of them are theorem provers -
they interactively seek a proof of a certain theorem, at the same time
guaranteeing that the constructed proof is correct. The internal result of
such proof is not readable for a human. It is like an internal language of
programming; very “close” for computer, “far” for humans.

Formal proofs in general, and formal proofs arising during formal system
development in particular, tend to be of a very technical and shallow nature.
With tedious theorems, we are really only interested in whether they are
true or not. We are only too glad to leave their actual proof to a machine.
It is ¢lear that a formal proof as such cannot mirror the cognitive and
intellectual aspects of a proof and its presentation. A formal proof is a game
with symbols, by its very nature devoid of aids to human understanding. If,
then, we are to make formal proofs, i.e. proofs that are machine checkable,
not only intelligible and manageable, but also ultimately as useful to humans
as informal proofs, we must provide mechanisms and facilities that address
these human oriented issues.

In [Har97) Harrison describes several different uses of the word “proof”
in the field of automated reasoning. Three of these are of interest here:

e a proof as found in a mathematical text book, ie. a sketch given
in a mixture of natural, symbolic and formal languages, sufficient to
convince the reader,

e a script to be presented to a machine for checking. This may be just
a sketch, or a program, which describes the syntactic manipulations,
needed to construct a formal proof,

e a formal “fully expansive” proof in a particular formal system, e.g.
a derivation tree of inference rules and axioms.
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From the practical point of view we can say, that mathematics is the
language of mathematicians, and a proof is a method of communicating
a mathematical truth to another person, who also ‘speaks’ the language.
Our general problem is, how to communicate a proof to a machine. We use
the word “proof” in the second listed above sense, and “proof outline” to
mean proofs (again in the second sense) that are merely sketches, and that
require significant reasoning to fill in gaps. Proofs in Mizar are expressed
as proof outlines, in a language that approximates written mathematics.
Therefore, the user must write a rigorous, i.e., completely formalized proof,
that he believes represents the intent of the author of the textbook proof,
and use the computer to check this rigorous proof.

Rigorous and formal proofs

The difference between rigorous and formal proofs is not easy, because
the English meaning for both terms refers to the same. We can say,
that rigorous proof is written in a formal language above inference level,
independent of some calculus. This kind of proof interest is not on the
individual, step by step, inferences of the proof - the application of
individual inference rules — but, rather, on the main ideas of the proof.
A rigorous proof relies to some extent on the reader’s ability to judge its
correctness, and the reader is certain that steps are correct, with no gaps
or omissions. Then, a Mizar proof seems to be a rigorous proof.

In metamathematics, rigorous arguments showing how various pieces of
rigorous mathematics can be codified in the predicate calculus. Textbooks
of axiomatic set theory, which state the axioms of ZFC and then sketch how
to introduce various mathematical concepts such as the real number system
in (definitional extensions of ) ZFC and prove standard theorems about such
cocepts, all on the basis of the axioms.

The formal proof, in this comparison, is written in a language at
inference level and the language depends only on the calculi used. The
reader is able to expand a proof into primitive rules and it is constructed
in conformance with a set of precisely defined and mechanically checkable
rules.

The advantage of a rigorous proof is that a human can concentrate
on formulating the important steps of a proof and not be diverted by
technical details of how these steps must actually be performed. The notion
of rigorous proof is related to the human activity of planning when proving
a theorem. We will apply this activity in our presentation of the proof,
see [Mat99].
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Formal proofs vs. informal proofs

Our work in analyzing chosen mathematical textbooks: [BelSlo80],
[Gra79], (HarWri79], [KurMos76], [Lan80] and Mizar texts shows, that the
major difference between formal and informal proofs is the level of detail
between the two. Informal proofs contain gaps in their reasoning that the
reader is required to fill in order to understand the proof. The author
of an informal proof usually has a specific type of reader in mind, one
who has a certain amount of knowledge in a number of mathematical
fields, and one who has read and understood the preceding sections of
the literature containing the proof. The author can therefore rely on his,
usually justified, assumptions about what the intended reader is able
to understand when deciding what to include in an informal proof and
what can be easily inferred by the reader, and can (or must) therefore
be unjustified. For example, if one assumes that some set A is a subset
of B, and that some element a is a member of A, then the inference
which derives the membership of @ in B can usually be omitted if the
reader is assumed to be familiar with the notions of set membership and
containment. This is dependings, of course, on the power of the proof
checker. V. Zammit in [Zam99] proposes to reinforce the proof checker by
facts of trivial knowledge (in Mizar we call them - requirements), which
increase the speed of checking and which have been derived much earlier in
the mechanization. Case studies have shown, that the length of the proofs
can be substantially reduced through the use of a much more powerful proof
checker.

Besides our approach, there are also results reported in (Zin98]. It is
interesting to compare informal proofs taken from the above mentioned
textbooks, with formal proofs:

— A formal proof is written in a formal language. An informal proof
is written in an informal language, say English, enriched with terms
and formulae. The syntactic constructions one encounters in proofs are
relatively easy and stylized.

~ Finding proofs (informal and formal) is not trivial.

— Machines are good at verifying formal proofs, but (currently) cannot
check informal proofs. Humans are good at verifying informal proofs,
and (will hopefully forever remain) bad in verifying formal proofs.

— In a formal proof, for each proof step, it is explicitly given which
conclusion is derivable by which set of premises and by which inference
rule. In an informal proof, many proof steps are omitted or incomplete
(incomplete set of premises, and lack of reference to inference rules

used).
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— In formal proofs there is no ambiguity. In informal proofs there should
be no ambiguity, but there is.

- In a formal proof, the theory in which the proof is stated is explicitly
stated. The theory, and nothing else, defines the context. In an informal
proof, there is no full and explicit theory that one can refer to. The
context is to be completed by the proof reader.

— In a formal proof, form matters. In an informal proof, meaning matters.

- Formal proofs are structured (e.g., resolution graphs, natural deduction
trees, semantics tableaux). Informal proofs are structured, too (e.g.,
a proof per induction consists of induction base case, induction hypo-
thesis and induction step, the first and the latter contain subproofs
themselves).
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PROBLEMS WITH »-RULES
IN MECHANIZATION OF REASONING.
A COMPARISON OF TWO SYSTEMS

1. Motivation

Gédel’s First Incompleteness Theorem (Godel, 1931) showed that in
any consistent formal system powerful enough to do a certain sort of
arithmetic there will be a true sentence that the system cannot prove. The
theorem indicated a certain gap in Hilbert’s programme (Hilbert, 1901):
truth cannot be achieved by provability; it can be only approximated by
syntactic means. How to extend the Hilbert’s finitistic point of view and
to overcome incompleteness of formal axiomatic systems? Hilbert in 1930
proposed to admit a new inference rule to be able to realize his program
(it was a some kind of informal w-tule). Also Turing in 1939 (Turing, 1939)
pursued Church’s idea for his Ph. D. thesis, looking to ordinal logic as a
way to “escape” Godel’s incompleteness theorem. Now several approaches
to the problem in question are known among them admitting the w-rule,
adding new axioms or adding (partial) notions of truth.

In logics of programs (such as dynamic logic (Harel, 1979), Hoare-like
logics (Hoare, 1969) or algorithmic logic (Mirkowska, Salwicki, 1987;
Mirkowska, 1971, 1981)) by reason of complexity there also do not exist
formal finitistic proof systems that are complete in the classical sense. There
are two fundamental approaches to the construction of these logics: to limit
a class of considered interpretations or to admit some w-rules. Algorithmic
logic is a result of the second approach.

It is obvious that a formal verification of program correctness is a
very important task. Consequences of possible errors in programs may
prove expensive and sometimes irreversible, particularly nowadays when
computers have become indispensable in all domains of our life. But
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the formal proofs of program properties in algorithmic logic (and also in
dynamic logic or Hoare-like logics) are often nontrivial and with a large
number of tedious technical details. For that reason no wonder that there is
a growing need for mechanization of the proof process. The main obstacle
in the mechanization of reasoning in algorithmic logic are, first of all, the
w-rules which are not implemented.

In the present paper two formal systems (Sprnvp and Spoop) for the
logic are compared. Each of them is suitable for computer realization but
tries to overcome the problem of w-rules in the different way: the first of
them replaces w-rules by metainduction; the second of them uses the notion
of proof as a finite tree with redundant nodes, i.e. looping nodes satisfying
some conditions.

2. Introduction

Both the Sps;np system and the Sppoop system are finite cut—free
Gentzen—type axiomatizations for propositional algorithmic logic (PAL).
The syntax of PAL is based upon two sets of symbols:

V4 — an enumerable set of propositional variables,
V, — an enumerable set of program variables.

From V, we construct the set of open formulas Fy as usual propositional
formulas (i.e. Vo € Fy) and if e, 8 € Fy then (a V ), (@ A B), na € F} are
propositional formulas.

Given sets Fi and V), the set Pr of programsis generated by the following
grammar:

Pr:= V, | (Pr;Pr) | if F, then Pr else Pr fi | while F; do Pr od.
The set of all formulas F is defined as follows
F:=F, | FVF | FANF|-~F | MF.

Let B, be two-element Boolean algebra. By a semantic structure I
we shall understand a triple (5,7, w) where S is a nonempty set of states,
7 : V,—25%5 is an interpretation of the program variables (where Z(Id) =
= {(5,8) : s € §}) and w : S—B;® is a function assigning to every state
a valuation of propositional variables. For every program variable K and
three states s, s;, s the following condition (condition of deterministic
programs) is satisfied:

if (s,81) € Z(K) and (s,85) € Z(K), then s; = s5.
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For a given structure 9t and a given state s € 5 the Boolean value of
the formula « is denoted by aq(s) and is defined for classical connectives as

follows:

pa(s) = w(s)(p)  (p € Vo), (ne)a(s) = —au(s),

(aV B)a(s) = auls) U Bauls), (a A Ba(s) = auls) N Bals),

Let us denote by Ky a relation which is assigned to a program variable K
by interpretation Z in the semantic structure M=(5,Z,w). Let s be a state
and M, M’ be arbitrary programs then

Idy(s) = s,

Ka(s) = {s': (s,8') € Ky} and Ky(s) is at most an one-element set,

(M;MNa(s) = U My(s),
s'€Muy (s)

My(s) if (Y)als) =1,

iy then M else M fla(4) = {M' (s) i (-7)afs) =1
oA - 4

while v do M ody(s) = .UN{Sl € (if y then M fi)i(s) : (0y)al(s) =1}
1€

For an arbitrary state s in the structure 91 we assume that
(Ma)qy(s) = 1 iff there exists the state s’ € Ma(s) such that (a)a(s’) = 1.

We shall write 901, sk= « in order to denote that ay(s) = 1. The formula « is
valid in the structure M (9N k= a) iff for every state s € S holds M, s E a.
In the rest of the paper (a = ) is an abbreviation of the formula (~a V 3)
and (a < ) is an abbreviation of the formula (@ = B)A (B = «). Let us
denote by true the formula (pV —p) and by false the formula (p A —p), for
a fixed propositional variable p.

3. The Syrnp system

The Sy snp system correspond to earlier research on prover for
algorithmic logic of Zalewska (1996, 2001). In this section we would like
to recall some basic notions connected with the system.

The main idea of the Spsrnp system is as follows: replace w-rules such

as the below one

{r,~while v do M oda,A}

{T,A,~(if v then M ﬁ)i(ﬂ'y AN)Yien

75



Anna Zalewska

by metainduction, i.e. by the rule as follows

({T, ~while v do M oda, A}, A)

({r,A,-6}, A); ({T,A,- IF(IF6)}, AU {{[,A,-IF6}})

where § = -y A o, IF = if v then M fi, j is a parameter of natural type.

It allows to prove only that the proof exists instead of carrying out full
proof for a given formula. The notion of metainduction is formalized in this
way that the conclusion and premises of rules are presented as ordered pair
of the form (II, A) where II denotes the main sequent and A stands for set
(maybe empty) of sequents that are called metainduction assumptions. The
notion of validity of the main sequent I of the ordered pair (II, A) with
respect to A is defined in the following way: Il is valid assuming that each
sequent from the set A is also valid. In our calculus w-rules are replaced
by metainduction rules. In consequence the standard notion of sequent and

process of inferences is modified. The main sequent II of the ordered pair
(I, A) is said to be

o indecomposable iff no rule can be applied to it;
e fundamental iff the formulas & and —~a belongs to the sequent II;

o A-provable iff there exists a sequent ¥ € A such that * C I
(we will say sometimes that I is A-provable with respect to the
sequent T);

o A*-provable iff there exists a sequent £ € A for which at least one
formula 3 € T is with negation and there exists a program M such that

Vaesdgen(8 = an)

where apr = +Ma' if @ = o' and 4+ € {=,¢}
(we will say sometimes that II is A*—provable with respect to the sequent
¥ and the program M);

o terminal iff 1T is indecomposable but II is not fundamental and neither
A-provable nor A*-provable.

A proof of the sequent II is a diagram (diagram is a decomposition tree
obtaining by application of decomposition rules to the input formula) of the
sequent such that all paths of the diagram are finite and each its leaf is
labelled by the ordered pair (1I,.4) where 1I is fundamental or .A-provable
or A*-provable.
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4. The Sp.oop system

The Sroop system correspond to earlier researches on the finite
Gentzen-like axiomatization for PAL of Chlebus (1982) and Walukiewicz
(1990). In this section we would like to present the system for some
deterministic version of PAL.

The main rules of the Spoop system (where upper sequents of rules
will be called assumptions, lower will be called conclusion and F € {—,€})

are as follows:

(1) (2)
{T,~—a, A} {r,FIda, A}
{T,0,A} {r,Fa, A}
(3) (4)
{r, F(eop), o} {T, F(e0B), A}
{1, Fa, 0} {T, 06,4} {T, Fa, ¥6,4}

where (F,0) € (6, A), (7, V)} where (F,0) € {(&, V)(=,A)}

(5) (6)
{r,¥(M"; M")a, A} {r, Fif v then M’ else M" fia, A}

(T, FM'(M"a), A} (T, F (A M) V (=7 A M"a)), A}

(7)
{r,-while v do M oda, A}

{r,-a,v,A}; {T,~y, M(while y do M oda),A}

(8)
{r,while y do M oda, A}

{r,e,v,A}; {T,~y, M(while v do M oda), A}
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(9)
{T,-Ma,A}

{{B: MBeT or ~MBeT},~a, {B: MBeAor-MpEeA}}

Given a sequence of sequents {T';, A;};c; such that {Ti1;, A1} is an
assumption and {I';, A;} a conclusion in some rule of the S;00p system, we
define:

— family of trace relations R; ;1 j(¢ + 7 € I,¢,7 > 0) in the following way:
1. if formula a € T; is not reduced by the rule applied to {I';,A;}
then (a,a) € R; it1;

2. if formula Ko € T; and a rule applied to {T';, A;} reduced it to the

formula M3 then (Ko, MB3) € R; i1

3. otherwise R;;y; = R;itj—10R;-1,; (> 1);

trace of any formula a@ € T; to be a sequence (a;);es such that
aj € Riyj

loop node as such element 7 € I that there exists 7 < 7,{[;,A;} =
= {Fj, Aj} and R;; = 0;

— redundant node as such element ¢ € I that there exists j; < j» < 7, such
that

1. {FhAi} = {Fjl'/Ajl} = {sz’Ajz};
2. Rji=Rj 5 #0;
3. {{Te, Ak} g1 <k <1} C{{Tk, Ak} k <1}

4. there is no loop node between j; and i and between j; and j,.

A proof of the sequent II is a diagram (diagram is a decomposition tree
obtaining by application of decomposition rules to the input formula) of the
sequent such that all paths of the diagram are finite and each its leaf is
labelled by the sequent TI,, where n is redundant node or II,, is axiom (i.e.

{a,ma} C1I,).
EXAMPLE. Let us consider the following formula:
{while v do M ode — while y do M od(—v)}.

In the proof process, after the application of rules for logical connectives:
—, we obtain the following sequent:

(*) {-while v do M odea, while v do M od(-7)}.
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After the application of the rule (7) to the sequent we obtain two new
sequents:

(1)  {-v,~M(while y do M oda), while vy do M od(—7)}

(2) {-a, v, while y do M od(~7)}.

We can apply the rule (8) to the sequent (2). In this way we obtain as
follows:

(2.1) {-a, -7, 7, while ydo M od(—)}

(22) {~a.™7. 7.}
Both of the above sequents are axioms. Now we can apply the rule (7) to
the sequent (1). In this way we have two sequents:

(1.1)  {~y,~M(while v do M oda), 7, -7}

(1.2) {-v,~M(while v do M oda), M (while v do M od(—7))}

The sequent (1.1) is an axiom. From (1.2) (after the application of the rule
(9)) we obtain the following sequent:

(1.2.1) {-while y do M oda, while v do M od(—v)}

The sequent (1.2.1) is equal to the sequent (*). It is not a redundant
sequent but repeating the proof for this sequent we obtain a redundant one.

5. Comparison of the systems

Both systems are sound, complete and decidable. In the section we prove
derivability of the Spoop rules in the Sarinp system. Next we shall discuss
the problem of the application of the systems to the first-order algorithmic
logic.

Theorem. For every rule r if 7 is the Spoop rule then r is derivable in the
SamIND system.

Proof. The rule (1)=(6) of the Soop system are the same as the proper
rules of the Sasrvp system.

The rule (7). In order to derive the rule (7) in the Sprnp system we have
to prove the main sequent of the following ordered pair

({~while v do M oda, },
A= {{~e,7, }, {~v,~M(while vy do M oda)}}).
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After the application of the rule (1) to the main sequent and to the elements
of the set A we obtain the following sequent:
({~Uif v then M fi(~y A a),},
A= {{~a,7,},{=7,~MUif v then M fi(-y A a)}}).
Now we can apply the metainduction rule (3) to the main sequent. We have
two following sequents:

(1) ({~(=7Ara),l,
A={{~a,7,}, {~y,"MUif vy then M fi(=y A a)}, }).
(2) ({-ify then M A/ F'(=y A a)),}, A' = AU{ {=IF(=yAa)}}).
The sequent (1), after the application of rules for logical connectives, is
A-provable with respect to the assumption {-a,v}:

({77ﬁ0‘)’ }a A= {{‘!01,’)’,}, {ﬁr}lﬁ —‘MUif’y then M ﬁ(_‘7 A a)}}>
From the sequent (2), after the application of the rule for the program
connective if — then — fi, rules for logical connectives and the rule (4), we
obtain two sequents:

(21) {{~y ~MUF'(~yAa)),},

A'= AU{{~TF'(=y Na)}, {~7, "MIF' (=7 A )} }).
(2'2) ({7 > _'IFi(_"y A ), }7

A'= AU{{~IF'(=y A &)}, {7, "M(IF'(=y A ))}}).
The first of them is A’-provable with respect to the sequent

{~v,~M{IF(~y Aa))}. The second of them is .A'-provable with respect to
the sequent {-IF*(~vy A a)}.
The rule (8). In order to derive the rule (8) in the Sp;;vp system we have
to prove the main sequent of the following ordered pair
({while v do M odq, },
A= {{a,7}, {»7,M(while v do M oda)}}).
After the application of the rule (1) to the main sequent and to the elements
of the set A we obtain the following sequent:
({Uif v then M fi(-yA @), },
A= {{a,7}, {=7,MUif vy then M od(-y A a)}}).
Now we can apply the rule (2) to the main sequent. We have the following
sequent:
({-7 A a,if y then M filJthen M fi(~y A @)}, A}).
From the sequent, after the application of the rule for the program connec-
tive if — then - fi and rules for logical connectives, we obtain as follows:

(1) {({=7,7,"yAUthen M fi(~y A )}, A}),
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(2) ({-v,M Uthen M fi(=y A @),~y AUthen M fi(=y A a)}, A}),
(3) ({a,7,~7AUthen M fi(~y A a)}, A}),
(4) ({a, M Uthen M fi(~y A @),~y AJthen M fi(-y A a)}, A}).

The sequent (1) is fundamental. The sequent (2) is A-provable with respect
to the sequent {—y, M Jif v then M fi(-y A a)}. The sequent (3) is
A-provable with respect to the sequent {a,~v}. Let us observe that the
sequent (4) is equivalent to the following sequent:

{(y A=7),a, M Uthen M fi(~y Aa),~y AUthen M fi(=y A a)}, A}).
After the application of the rule for logical connective A we obtain two
sequent:

({y,a, M Jthen M fi(~y A a),~y AUthen M fi(~y A @)}, A}),

({~7,a,M Jthen M fi(~y A @),y AUUthen M fi(~y A o)}, A}).
The first of them is .A-provable with respect to the sequent {a,7}.

The second of them is .A-provable with respect to the sequent
{~v,MJif v then M fi(-y A a)}.

The rule (9). In order to derive the rule (8) in the Sprrvp system we have
to prove the main sequent of the following ordered pair
<{F, —‘Ma, A}, _A =
{{{B: MB €T or ~MB €T},-a,{B: MB € A or ~MS € A}}}).
Let us observe that the main sequent is A*-provable with respect to
assumption and the program M. O

Because

any valid formula of propositional algorithmic logic becomes a valid

formula of the first-order algorithmic logic following a substitution of

formulas for propositional variables and programs for programs variables
we can extend each of the systems presented in the paper to the first-order
algorithmic logic (AL). Of course AL is not complete. We can only try to
enlarge the class of provable formulas in a given extended system by some
modifications and other new rules. In order to do this we have to base on
some kinde of “open” system which allows to do such modifications and
which allows to extend the basic system by new rules in natural way.

Let us consider the following AL formula:

{~(z = f(2))Q(z), ~P(f(2)),
while - P(z) do z := f(z) od P(z)}, 0).

The proof in the Sprrvp system is presented below.
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After the application of the rule (1) to the main sequent we obtain the
following sequent:
({~(z = f(2)Q(z), ~P(f(2)),
Uif =P(z) then z := f(z) iP(z)}, 0).
Now we can apply the rule (2) to the main sequent. We obtain the following
one:
{2 = f(2)Q(z), ~P(f(2)), P(2),
if ~P(z) then z := f(z) iJif =P(z) then z := f(z) fiP(z)}, 0).
From the sequent, after the application of the rule for the program connec-
tive if — then — fi and rules for logical connectives, we have the following
sequents (where § = P(z) AJif - P(z) then z := f(z) iP(z)):
(1) ({—\(.27 = f(iE))Q(Z), —'P(f(x))? P(z), ~P(z), 6}7 ®>
(2) ({~(z = f(2))Q(z), =P(f(z)), P(z),
(z == f(z))Uif - P(z) then z := f(z) iP(z),6}, 0).
The sequent (1) is fundamental. Now we can apply to the sequent (2) again
the rule (2):
({~(z = f(2)Q(z), ~P(f(x)), P(z), (z = f(z))P(),
(z .= f(z))if =P(z) then
z = f(z) iJif ~P(z) then z := f(z) iP(z),6}, 0).
This sequent is also fundamental (after the application of the rule (5)):
({~(z = f(2)Q(z), ~P(f(z)), Pz), P(f(z)),
(z := f(z))if =P(z) then
z = f(z) ilJif ~P(z) then z := f(z) iP(z),6}, 0).

Now we shall try to prove the same formula in the S poop system.

After the application of the rule (8) we obtain the following two sequents:
{~(z == f(2))Q(z), ~P(f(2)), P(z) ~P(z)},
{~(z == f(@))Q(z), ~P(f()), P(z),
(z := f(z)Jif - P(z) then z := f(z) iP(z)}.

The first sequent is an axiom. Now we can apply the rule (9) to the second
sequent for M = (z := f(2)):

{-Q(z),Jif = P(z) then z := f(z) iP(z)}.

Let us observe that the formula —=P(f(z)) has been removed from our

sequent. Of course we can again apply the rule (8) obtaining in that way
two sequents:
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{_‘Q(iE), P(z), —‘P(x)}v

{-Q(z), P(z), (z = f(z))Uif - P(z) then z := f(z) fiP(z)}.
The first sequent is fundamental but the second of them is not provable in
the Sroop system.

Let us recapitulate the comparison of the systems. Let Croop be the
class of provable formulas in the Sroop system, Carrnp be the class of
provable formulas in the Sy rnvp system, CLoop be the class of provable
formulas in the SLoop system extended to AL and Cpr7np be the class
of provable formulas in the SyinD system extended to AL. The following
relations describe the dependences between these classes:

1. Croop = CMmIND

2. Croop C CMIND.
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Appendix
Decomposition rules for Sy;np system

We present only rules which are used (in the proof) in the present paper
and are not the same as the rules of the S pop system.

Let T' denotes a set of indecomposable formulas; A is an arbitrary set
of formulas; a, § are arbitrary formulas; v denotes a propositional formula;
J is a parameter of natural type; M, M’, M" denote arbitrary programs;

o€ {—,+} Fe {~esoe {AV)E Qe {UN); pref° is a sequence of
simple programs.

(1)
{I',pref°Fwhile v do M oda, A}

{T,pref°FJ if v then M fi (=7 A a),A}

(2)
({T,pref*FQMa, A}, A)

({F,pref°$a, A,pref°:FMQMa}, A)
where (07 F, Q) € {(+7 ) U)a (_’ €, ﬂ)a (_a ) U)7 (+3 h m)}

(3)
({I‘,pref°q:QMa, A}v A)

({T,pref°Fa, A}, A>; <{T, A,prefeFM(IdM’a)},
AU{{T, A, prefeFIdMia}})

where (07 +, Q) € {(_a €, U)a (+7 € ﬂ)’ (+7 T U)7 (_7 ™ ﬂ)}
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(4)
(mA=A"U {1 ,pref°FQMa, A"}

(1, AU {{T',pref°Fa, A"}, {1 prefoFIdM o, A'}})
Where (07:{:7 Q) e {(_76’ U)7(+7€7 n), (+7—17 U)’(—’ _"n)}
and j occurs in II

(5)
({T,prefoFsy, A}, A)

({prefoFsy,T,pref F57, A}, A)
where 37 is the execution of the substitution s in the formula
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TENSE LOGICS
AND THE THESIS OF DETERMINISM

The logical determinism! is a point of view, that for prove the thesis
of determinism only logical principles are sufficient. Logical determinists
says, that the principle of bivalency and the excluded middle low are
sufficient — without adduction on other principles — for construction of
proof of an argument on determinism. Arguments on determinism were
considered in antiquities already. The problem was clearly formulated by
Aristotle in IX chapter of Hermenetutica. Aristotle assumes that sentences
on the past and the presence are true or false. In his opinion, the assumption
that sentences on the future are true or false is sufficient for a construction
of an argument of determinism. If all sentences on the future are true or
false, then events described by these sentences are determined. If all future
events are determined, then there are not accidental events and everything
is necessary. Therefore, the thesis, that sentences on the future events are
true or false implies, that — apart from the past and the presence — the
future is also logical determined.

Recently, the problem of the logical determinism was considered by
Jan Lukasiewicz2. In the article On determinism he gives the following
interpretation of determinism:

If an object A has a property b in a some moment of time ¢, then in every
moment earlier than ¢, it is true, that the object A has the property b
in the moment ¢.

1 Apart from the logical determinism the physical determinism is considered. The
physical determinism is a point of view, that every fact has immemorial causes in
other earlier facts. The physical determinism is connected with the principle of causality.

2 J. Lukasiewicz, On determinism, Selected Works, edited by L. Borkowski, Warszawa,
1970.
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It is, so called, the principle of determinism formulated semantically.
Zbigniew Jordan wrote, that this principle not run on events, but it run
on sentences which describes events. Jordan also wrote, that this principle
says about particular properties of true sentences. In accordance with
this principle predicative word “true” is an absolute predicative word. If
a sentence is true, then it is true irrespective of a person, a place and a time
in which says about it, it is true. True sentences are atemporal, but events
described by these sentences have temporal component.

Constructions of proofs of arguments on determinism from the principle
of bivalency and the excluded middle law were considered in [10]. However,
the argument on determinismm may be reconstructed from the principle of
causality, too.

The principle of causality
Fach event Z in a moment t has a cause in a some event Z; in
a moment t;, earlier than . In each moment later than t; and earlier
than ¢, there is an event, which is a consequence of Z; and a cause of Z.

Therefore, if there is a cause of some event, then it is inescapable. But
actual inescapability of some event, does not mean, that actual exists a cause
of it. For example, the event a man X will be dead is inescapable, but
perhaps not exists immediate cause of the man X death.

Some events creates causal-effect association with other events in a set
of events. Usually, we assume, that this association is transitive. It means,
if an event Z; is a cause of an event Z, and the event Z, is a cause of
an event Zs, then Z; is a cause of the event Zs5. Therefore, events 7,
Zy, Z3 are creating a causal-effect chain. In a set of events, ordered with
causal-effect association, every event has a cause in other events, which are
preceding it in a causal-effects chain. Then, causal-effects chains are infinite.
The infinity of causal-effect chains is not adequate condition, that each
event has immemorial causes (is determined). Causal-effects chains may be
infinite and limited in time. A necessary condition of infinity and limitation
of causal-effect chains is density of causal-effect association. Each event is
located in a some moment of time. The principle of causality postulates the
existence of cause for each event. Therefore, each event in a causal-effect
chain is located in a moment of time different from remaining moments
of time. If we assume, that time is a measure of change (from cause to
effect), then necessary condition for existence of infinite and limited in
time causal-effect chains is density of time. Them, if we assume density
of time, the principle of causality not implies of the thesis of determinism.
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It was proved by Jan Lukasiewicz. We usually assume, that the physics
time is continuous. This assumption implies that time is dense. The thesis
of determinism is not a result of the principle of causality if we accept
properties of time usually assumed. For prove, that the thesis of determinism
is the result of the principle of causality, the assumption time is discreet
is necessary. If we assume, that time is discreet, then causal-effect chains
are infinite in the past. It is interpreted, that there are immemorial causes
for each event. If each event has immemorial causes, then all events are
determined.

Determination should be considered in a temporal context. It is realized
in a some systems of tense logic.

The precursor of tense logic was A. N. Prior. One of the basic Prior
conception was a temporal interpretation of modal operators. The tense
operators are interpreted in the usual way:

F — at least once in the future,

G - it is always going to be the case,

P — at least once in the past,

H — it has always been the case.

The basic deduction system of tense logic is K;3. K; is the system of
tense logic based on classical logic. It is a minimal tense logic. Formally it
means, that ever other system of tense logic (based on classical propositional
logic) is richer than K. Semantical considerations in K are based on point
structure of time?.

The system K; was intended as a formal system coding aid of operators
G, H, F, P reasonings about world taking temporal aspects of world
into consideration There are no assumes for time structure in K, seman-
tics.

However, we usually assume, that the real time is linear, continuous,
non-ending and non-beginning. If we accept such structure of time, a lot
of philosophical and physics considerations are simpler. Of course, not
all considerations are more simple. Some considerations are more comp-
licated. For example the rejection of arguments on determinism. Some sen-
tences, which not express of determinism in minimal tense logic, express

3 This is equivalent of minimal deduction system K for modal logics. See. J. F. A. K.
van Benthem, The Logic of Time, D. Reidel Publishing Company, Dordrecht, Holland,
1983.

4 There are tense logic systems, such that semantical considerations are based on
period time structure. (See. J. F. A. K. van Benthem, The Logic of Time, D. Reidel
Publishing Company, Dordrecht, Holland, 1983, p. 193-218.)
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determinism in tense logic of non-ending linear time. For example the
sentence:

a= HFa.

According to understanding tense operators accepted in K, (and K
extensions which semantics are based on linear time) the sentence a = H Fa
is reading as:

If it is true, that «, then it is true, that it has always been the case, that
at least once in the future a.

If we assume, that time is linear, then if at present there is event Z,
which is a semantical correlate of sentence «, then it has always been, that
the event Z will be in the future. Since, in every past moment of time it
was known that the event 7 will be in the future, then we can to say, that
the event Z is determined. )

If a tense logic of non-ending linear time is based on classical logic, then
FaV F~o

is a tautology of this logic.

According to understanding of F' tense operator, Fa V F'~a we read as
follows:

At least once in the future o or at least once in the future ~q.

Since, for any «, the sentence FaV F~a is a tautology of this logic, then
in a language of tense logic of non-ending linear time (based on classical
logic) Fa V F~a express the thesis of determinism. Its consequence is
a statement, that all future events are determined and there are not future
accidental events. By means of a language of the tense logic of non-ending
linear time is possible a description of only such that world, where future is
determined.

Indeterminists usually assumes, that past is determined, but future —
not. We should to consider a difference between the past and the future.
One of arguments to accentuate of this difference is McTaggart paradox on
unreality of time. This paradox is connected with two ways of understanding
of time.

From one hand, time is understood as a dynamic process. Events are
arranging itself according to distinguish between past, presence and future.
This is the dynamic conception of time, called A-theory.

In other, these same events, temporal characteristics of which are
changing with reference to the past, the presence and the future, are
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arranged in order given by an earlier-later relation. This is the static
conception of time, called B-theory. According to the B-theory of time,
temporal characteristic of all events exist as data.

It seems, that the A-theory of time should be derived from the B-theory,
and the B-theory should be derived from the A-theory. However, apparently
the static conception of time is derived from the dynamic conception, but
not inversely. Some philosophers says, that this is an argument, that the
dynamic conception of time is contradictory and time is unreal and illusory.
Followers the dynamic conception of time says, that there are ontological
differences between past and future events. Past events already have been
real events, whereas future events are only possible. The difference can
be explained by — for example — logical asymmetry between the past and
the future. All expressions on past events are true or false, whereas some
expressions on future events are neither true nor false. We can to say, that
each past event is determined, but we can not to say, that determined are
all future events.

In a certain state of development of world the past may be unknown,
but events, which has been, are not changing. The past of world is unique.
However, future development of the world is indetermined and may be a lot
of way to occur of it.

This point of view was a base to considerations on branching time
structure.

The idea of a tense logic of branching time was given by A. N. Prior?.
One of the main motivation to construction of the tense logic of branching
time was attempt at doing an indeterministic tense logic. In the tense logic
of branching time, arguments on determinism are rejected by modification of
structure of time. If we consider a branching time structure, then apart from
moments of linear time, we have to consider moments of time where time is
branching. In these moments there are alternative possibilities of realization
of the world. Since, realization of the world taking place according to one of
the alternative, then if we do something, then it may be to cause, that future
will be realized according to another branch of branching time structure.

In the branching time structure the past has no alternatives, however
there are a lot of way of a realization of the future. Alternative possibilities
of a realization of the future are called possible futures. However, usually
we assume, that among all possible futures only one is realized. It is, so
called, actual future.

5 A. N. Prior, Past, Present and Future, Oxford University Press, 1967.
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There are logicians, which do not agree with an opinion, that tense
logic of branching time is an indeterministic tense logic. P. Yourgran, for
example, says, that regardless of which branch is actual future, events occurs
in moments of time such that, these moments creates linear time structures$.
If we choose actual future, then we have only one branch and real time
structure is reduced to linear structure. However, if structure of real time is
reduced to linear structure, then all events are determined?.

It seems, that modalization of temporal operators is a solution of
reduction of branching time to linear time. Tense logic system with modal-
-tense operators was given by R. P. McArthur8. There are no “actual
futures” in a tense logic system with tense-modal operators. All branch
of branching time structure McArthur calls accessible future. McArthur
gives the following questions: how we can to distinguish “tomorrow will
be...”, “tomorrow should be...”, “it is possible, that tomorrow will be...”. In
models based on linear time all sentences are equivalent. However, in models
based on branching time it does not hold. In these models there is hidden
modalization of future tense operators.

McArthur introduces the following modal-tense operators: F©, F9,
G°, GU. Operators F©, FU are interpreted as follows:

F° — it is possible, that at least once in the future...,

FP - it is necessary, that at least once in the future...

Aid of operators F'®, FU are defined the operators G° and G©:

G®a=~F"~a,
G =~F°n~a.

Axiomatization of minimal tense logic® with modal-tense operators was
given by W. A. Smirnow10. However, if we would like to reject of arguments
on determinism, we need semantics based on branching time. Branching
time tense logic with operators F'®, FP, G°, GV, H, P (operators H and P
are interpreted as usually) was created by J. Burgess!! and called K.

8 P. Yourgran, On the logic of indeterministic time, The Journal of Philosophy, Vol. 82,
1985, p. 548-559.

7 A. Karpienko, Fatalizm i stuczajnos¢ buduszczego, Moskwa, 1990.

8 R. P. McArtur, Factuality and modality in the future tense, Nous Vol: 8, 1974,
p. 283-288.

® The are no conditions upon structure of time.

10 W. A. Smirnow, Logiczeskije sistiemy z modalnymi vriemiennymi operatorami,
Modalnyje i vriemiennyje logiki, Moskwa 1979, p. 89-98.

11 J. P. Burgess, Decidability for branching time, Studia Logica, Vol. 39, 1980,
p. 203-218.
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The sentence
a= HF°a

is a tautology of system K. But it does not express of determinism. We
read this sentence as follows:

If it is true, that a, then it is true, that always has been, that o 1s
possible in the future.

Then, in conclusion, « is only possible in the future, but it does not
necessary.

In the K, the sentence a = H FPq express determinism. We read the
sentence a = H FPa as follows:

If it is true, that a, then it is true, that always has been, that o is
necessary in the future.

However, the sentence
a= HF o

is not a tautology of K. Because the thesis of determinism is not a tauto-
logy of K[, we can to say, that the logic K§ is an indeterministic tense
logic.

In the literature is considered the problem of construction of many-
-valued tense logic was. It is connected with possibility of the rejection
of arguments of determinism from the principle of bivalency. Many-valued
tense logic were crated for example by A. N. Prior'2, N. Rescher and
A. Urquhart!3, K. Trzesickil4. However some sentences, which express
determinism (for example a = PFa, a = H~G~a), are tautologies of
these logics.

There is a question: is possible a construction of an indeterministic tense
logic satisfying the following conditions:

e there are two logical values,
e there are no condition upon structure of time,
e there are no specific operators apart from tense operators.

It seems, that all conditions are fulfilled by an intuitionistic tense lo-
gic. In the system of tense logic based on intuitionistic propositional logic

12 Por. A. N. Prior, Time and Modality, Calendron Press, Oxford 1957.
13 N. Rescher, A. Urquhart, Temporal Logic, Wien New York 1971, p. 219-224.

14 K. Trzesicki, Logika operatordw czasdw gramatycznych a problem determinizmu,
Bialystok 1986, p. 298-328.
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is rejected the excluded middle law. Then, in the intuitionistic tense lo-
gic, we can not to reconstruct of argument on determinism based on the
excluded middle law. Intuitionistic tense logic systems were considered in
a literature1s.

The sentence

a=> HFa

is a tautology of intuitionistic tense logic. However, the meaning of tense
operators is such that, the @ = H Fa does not express of determinism.
Moreover, the sentence F'aV F'~a (which express determinism) is not
a tautology of intuitionistic tense logic.
And finally, the thesis of determinism is not a tautology of intuitionistic
tense logic, even if we assume, that time is linear and non-ending!6.
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LEGAL REASONING AND LOGIC

In this paper I discuss relations between rules of legal reasoning and formal logic.
I state that some rules of legal reasoning can be arranged as formal systems. To
prove my thesis I construct a formal system of the kind in question.

1. In the process of legal argumentation two kinds of rules of reasoning are
used. The rules of the first kind are the well-known rules of classical logic.
The rules of the second kind are usually called “the rules of legal reasoning”.

2. The rules of legal reasoning can be divided into five groups:

a) the rules of the first group (so called “rules of interpretation”) are used
to reconstruct the meaning of legal expressions; the famous rule clara
non sunt interpretanda is of this kind,

b) the rules of the second group (so called “rules of inference”) are used
to infer consequences from legal norms; the rules of reasoning: per
analogiam (a simili), a contrario, a fortiori (a matori ad minus, a m™mi-
nori ad maius) are of this kind,

¢) the rules of the third group (so called “rules of collision”) are used to
solve collisions of legal norms; the rule lez posterior derogat legi prior:
is of this kind,

d) the rules of the fourth group are used to determine factual circumstan-
ces; the rule in dubio pro reo (in dubio pro libertate) is of this kind,

e) the rules of the fifth group are the rules of procedure; the rule that
a judge should consider arguments of both parties is of this kind.

3. The system of rules of legal reasoning is called “legal logic”. How can we
define the relation between legal logic and formal logic? Chaim Perelman
opposes legal logic to formal logic in two ways. First, he maintains that legal
logic is a heuristic logic, whereas formal logic is just the logic of justification.
Second, he maintains that legal logic is possible only as “material logic”,
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“nonformal logic”. This peculiarity of legal logic is connected — according
to Perelman - with the fact that many rules of legal reasoning depend on
subjective valuations.

4. Ad hoc 1 can agree that formal logic is not a heuristic logic. In fact,
it doesn’t offer us rules effective in all cases of legal argumentation.
However, I admit that in some cases rules of formal logic could be effective

(for example, it seems that rules of inductive logic are used in legal
argumentation as a heuristic method).

5. It is reasonable to assume that legal logic is a heuristic logic. Having this
assumption we can consider legal logic as a part of methodology of law: the
part which deals with problems such as which legal norm should we use in
legal argumentation and how should we use it? Legal logic helps us with
finding the solution of a legal problem whereas formal logic (which includes

both kind of rules: deductive and inductive) helps us with justification of
this solution.

6. However, I can not agree that legal logic is necessarily nonformal.
Indeed, many rules of legal logic are based on subjective valuations. Quite
often this fact makes it difficult or even impossible to formalise such rules.
For example, I don’t know how we can formalise the rule clara non sunt
interpretanda. However, on the other hand, many rules of legal reasoning

can be formalised quite easily. For example, I formalise the rule of reasoning
a contrario in the following way:

(2){P(z) = Q(x)}
(z){-P(z) = -Q(z)}

Moreover, sometimes it is possible not only to formalise a single rule,
but also to build a formal system of rules of legal reasoning.

7. Let us consider the following rules of legal reasoning (these rules are called
“rules of collision”):

e lex posterior derogat legi prior: (later norms suppress earlier norms),

e lex superior derogat legi inferiori (superior norms suppress inferior
norms),

o lex specialis derogat legi generali (particular norms suppress general
norms),

o lex superior prior derogat legi inferiori posteriori (earlier superior norms
suppress later inferior norms),
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o lez superior generalis derogat legi inferiori speciali (superior general
norms suppress inferior particular norms), . .

e lez prior specialis derogat legi posteriori generali (earlier particular
norms suppress later general norms). N
The first three of these rules are called “the first order rules of collision”.

The last three are called “the second order rules of collision”. Whenever the
use of first order rules leads us to a contradiction, we employ a second
order rule. Respectively, a third order rule of collision would be defined and
employed in the case of contradiction between second order rules.

8. Let us build a formal system for the above relations. We‘ add some
two-place predicates to the vocabulary of a system of predicate logic:
ESup(...,...), ESpec(...;...), EPost(...,...), Sup(.----), S??ec(...,...),
Post(...,...), Der(...,...). The definitions: of term, of atomic f.ormula,
of formula and the definition of sentence are standard. The axioms of
the system are: all sentences of the language of the system whic.h are
constructed according to the schemas of valid formulas of predicate logic and
some axioms which describe the properties of ESup(...,...), ESpec(...,...),

EPost(...,...), Sup(...,...), Spec(...,...), Post(...,...):

AXIOM 1 (z)ESup(z,z),

AXIOM 2 (2)(){ESup(z,y) = ESup(y,2)},

AXIOM 3 (2)()(2){ESup(z,y) & ESup(y,z) = ESup(z,2)},
AXIOM 4 (z)Sup(z,z),

AXIOM 5 (2)(y){Sup(z,y) & —ESup(z,y) = —Sup(y,2)},
AXIOM 6 (2)(y)(2){Sup(z,y) & Sup(y,z) = Sup(z,2)},
AXIOM 7 (2)(9){—-Sup(z,y) = Sup(y,)},

AXIOM 8  (z)ESpec(z,z),

AXIOM 9 (z)(y){ESpec(z,y) = ESpec(y,)},

AXIOM 10 (2)(y)(2){ESpec(z,y) & ESpec(y,z) = E Spec(z,2)},
AXIOM 11 (z)Spec(z,z),

AXIOM 12 (z)(v){Spec(z,y) & —ESpec(z,y) = —Spec(y,z)},
AXIOM 13 (z)()(2){Spec(z,y) & Spec(y,z) = Spec(z,2)},
AXIOM 14  (z)(y){—Spec(z,y) = Spec(y, )},

AXIOM 15 (z)EPost(z,z),

AXIOM 16 (z)(y){E Post(z,y) = EPost(y,z)},

AXIOM 17 (z)(y)(2){E Posi(z,y) & EPost(y, z) = EPost(z,z)},
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AXIOM 18 (z)Post(z,z),

AXIOM 19 (z)(y){Post(z,y) & —E Post(z,y) = —Post(y,z)},
AXIOM 20 (z)(y)(2){Post(z,y) & Post(y,z) = Post(z,2)},
AXIOM 21 (z)(y){—Post(z,y) = Post(y,z)}.

The only rules of the system are the rules of predicate logic and the
following rules describing the properties of Der(...,...):

Sup(z,y)
—ESup(z,y)

RULE 1 Der(z.y)

ESup(z,y)
Spec(z,y)
—ESpec(z,y)

RULE 2 Der(z.y)

ESup(z,y)
ESpec(z,y)
Post(z,y)
—EPost(z,y)

ULE
R 3 Der(z,y)

9. According to the axioms: AXIOM 1 - AXIOM 21, the predicates:
ESup(...,...), ESpec(...,...), EPost(...,...) denote some equivalence re-
lations and the predicates: Sup(...,...), Spec(...,...), Post(...,...) denote
some linear order relations. According to intuition, the above relations
order the set of legal norms. So, we read: ESup(...,...) — “the norm ...
is neither superior nor inferior in relation to the norm ...”, ESpec(...,...)
— “the norm ... is neither general nor particular in relation to the norm ...”,
EPost(...,...) — “the norm ... is neither later nor earlier in relation to the
norm ...”, Sup(...,...) — “the norm ... is not an inferior norm in relation to
the norm ...”, Spec(...,...) - “the norm ... is not a general norm in relation
to the norm ...”, Post(...,...) — “the norm ... is not an earlier norm in
relation to the norm ...”.

10. The rules for Der(...,...) can be called: RULE 1 - “the rule of derogation
of inferior norms”, RULE 2 — “the rule of derogation of general norms”,
RULE 3 - “the rule of derogation of earlier norms”. These rules describe
the order of derogation defined by the rules of legal reasoning introduced
in the point 7 - so called “rules of collision”. The construction of the rules:
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RULE 1 - RULE 3 determines their “hierarchy”: RULE 1 is t1.1e strongest
rule (in the sense that one needs only two premises to use this rule) and
RULE 3 is the weakest rule. So, in the above system the second order rules

of collision are needless.

11. The above system is a formal system as well as a system of legal logic.
So, legal logic is not necessarily nonformal.

Quod erat demonstrandum

Andrzej Malec .
Department of Logic, Informatics and Philosophy of Science

University of Bialystok
15-420 Bialystok, Plac Uniwersytecki 1, Poland
e-mail: malec@hum.uwb.edu.pl
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DO WE THINK ALGORITHMICALLY?

The title of the paper may suggest my approach towards the basis
of recognition mechanisms, providing some arguments supporting the
algorithm of thinking process thesis, or refuting it. The problem occurs,
because radical decisions are currently under examination concerning
recognition functions of the brain/mind, and the scientists studying this
issue bring different, often in contrary to each other, theories and hypothesis.
Those thesis are based on empirical material, but collected facts are the
elements of some model, which shape depends on philosophical assumptions.

That how it is, as in an example of mind functions hypothesis
presented by the American neurologist Antonio Damasio, which assumed
close correlation between the body and the mind, and its philosophical base
is determined by the negation of the Cartesian dualism. In a latest published
book entitled “Decartes’ Error...”, Damasio shows the polemics with the
basic assumptions of this kind of rationalism, which exists in the ideas of
the West (Damasio 1999).

Damasio writes, that the mind finds its foundation on the determined
brain systems, that is why there must be both: functional and anatomical
connections between the mind, the feelings and the body. Therefore, we
are absorbed by the passion of reasoning, and the impulse produced in the
core of the brain, penetrates into other elements of the nervous system and
occurs as feelings, or unconscious mechanisms directing the decision making
process. The mind — from the practical one to the theoretical one — probably
is based on the control of this inborn impulse. When the impulse disappears,
you will never achieve mastery. But just the fact of possessing it, does not
make a master out of you.

Damasio concentrates mainly on the emotions, questioning the dogma
of the contrary between the emotions and the rational decision taking. He
also determines the right function of feelings in the human acting, but he
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analyzes as well this part of thinking processes, that we call reasoning. The
purpose of the reasoning lies in taking decisions, and the essence of the
taken ones states our choice reaction: non-verbal acting, words, sentences
or some combination of those elements, that belongs to a whole collection’
of the reactions in a given moments. Reasoning and deciding require from
a resolving person a certain knowledge a) about the situation, which exacts
taking a resolution, b) about different chances of reacting and about the
consequences of choosing any of the possible options, according to the
close a,‘nd déstant future. Therefore, reasoning and deciding necessitate
possession of some strategy by a uni - i j

Poon. 100). gy by a unit, based on the rules of logic (Damasio

Damasio discusses the model of the decision making process based on
the traditional mind fundament. Rational reasoning cannot be distracted
by the passion. According to this approach human gathers various scenarios
of the progress of the events and uses the right strategies, making the
fmnalysis of the profit and the loss. Taking into consideration “subjectively
implied usefulness”, which he desires to maximize, he concludes logically
what is good or bad for him. The main part of this calculation is based’
on the creation of the other possible scenarios of the event development
founded, among other things, on the visual and aural pictures, as well7
as .forming of the verbal narration, necessary to keep the process of the
log%c reasoning. Damasio states, that if this strategy was the only one
rationality in the given sense would not exist. In the best option, the processj
of rr.laking the decision would have taken extremely lot of time. ’As a barrier
against the effectiveness of this model, there is also a limitation of the
attention and the memory, as well as, suggested by the imperfection of
our .re:‘asoning strategies, unawareness or wrong use of the probability and
statistics theories. However, as Damasio notices, our brain often can take
th'e right decision in within a second or a minute, depending on what time
Wln .be accepted as a right one according to the aim, we want to achieve.
Ef it is pf)ssible, the brain ought to make miracles, not being limited by the

pure mind”. That is why, there is the need for an alternative model of its
functioning (Damasio 1999, 198).

The option for a pure mind appears in a hypothesis of a “somatic
ma?ker”. In Damasio’s opinion, the somatic markers are the special kind of
feelings generated on the base of the former emotions (Damasio 1999, 200).
Thos:e emotions and feelings were joined in a process of studying fro’m the
predictable future results of some event progress scenarios. The somatic
marlf:ers do not help us out in reasoning. They go together with the
considerations by the relief of some options (especially peculiar or profitable)
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and quick elimination of them in a further analyzing progress. We may
imagine them as an autonomic system of foreseeing and selection, which
works whether we want or not, in order to estimate the extreme possibilities
of the event development that may appear in the future.

Damasio proves, that the somatic markers have a close physiological
basis. Some part of them came into being in the evolution process, the
major part arose in our mind in the process of education and socialization
by joining the particular category of the impulses with the categories of the
somatic states. Therefore, the somatic markers are, in some sense, an effect
of the cultural environment. On the neuron level, creation of the somatic
markers is based on the process of system learning, that can gather some
categories of existence or events with pleasant or unpleasant states of the
body.

Damasio notices that evolution is rather economical one and prefers to
improve and complete to build than to create from the beginning. It formed
in the brains of many species, based on the body and orientated towards
survival resolving mechanisms. Those mechanisms occurred to be effective in
different types of ecological niches. The oldest decision mechanisms, from the
evolution perspective, refer to the biological regulation, then to the private
and social domain, and the youngest ones can operate on the collection
of the abstract- symbolic elements, that is connected with the artistic
creation, scientific reasoning, development of the language and mathematics
(Damasio 1999, 217).

In Damasio’s opinion there are three components that have an influence
on the process of reasoning. These are: automatic somatic states, together
with their directed mechanisms, operation memory and attention. All those
clements interact in completing the assignment, that consists of selection
of the parallel appeared representation. The problem occurs, because the
brain construction allows conscious production of the limited stream of the
mental and motive information. The images that compose our thoughts have
to be constructed in phrases, which consist of the “sentence structure”.
The same thing refers to the movements, being exterior reactions, and

supposed to bring expected results. The selection of the frames, in which
those phrases, sentences of our thoughts and movements are t0 be created,
is based on the parallel preview of the possible options. Therefore, both
mind and attention require synchronous transforming, building of those
arranged sequences remains uninterruptedly. The preview of the possible
options depends on designating their order. Qualifying requires the criteria
of establishment (preferences and values). Those criteria are provided by
the somatic markers (Damasio 1999, 226).
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Lot of decisions, made in a process of reasoning, have an influence on
the future of the organism. It is right, in Damasio’s opinion, that some of
the criteria — directly or indirectly — are rooted in the biological impulses
of the organism (that might be understood as its “mind”). The biological
impulses may be expressed openly or secretly and can be used as a directed
marker system, set in motion by the concentration of the attention on the
representations kept by the operation memory in an active state.

Human acquired automatic mechanism of the somatic marker also
thanks to creation of the culture and civilization. Although, its roots reach
the biological regulation, it assumed cultural norms as well, created to
survive in a given society.

The motion of the biological impulses, the states of the body and
emotions compose as Damasio claims, a necessary basis of the rationality.
Those lower levels control the direct, mutual connections between the brain
and the body, positioning the body in the chain of operation, that helps in
reaching the summit of the intellectual and creative abilities. Rationality,
in another words, is shaped by the signals coming from the body. Damasio
asserts outright, that the organism has some kind of the intellect, which has
to be used by the mind. Verification of the justness of the taken decisions
using the logic tools is a secondary process, decoding the rules of the
autonomic preference (Damasio 1999, 229).

Damasio by describing the activity of the mind, assumed the existence
of a close correlation of the mental and physiological processes. Intellectual
processes are characterized by a high level of an automatic action ability,
and this automatism has its biological basis. The same automatic action,
in unison with the hypothesis, refers to the motion of the somatic markers,
which were produced on the basis of the cultural experience.

Reviewer of the book “Cartesian’ Error...” writes, that it became from
the authors believe, that the traditional notion on the nature of the mind
cannot be right - that is why Damasio questions dualism, explaining the
right relations between the body and the mind, on the ground of the biology
and culture.

Philosophical fundament of Damasio’s theory proclaims a contestation
with the Cartesian type of rationalism, a dispute leading to its declination.
As an alternative we receive a theory, that can be called a theory of
the “incarnated mind”, amazingly convergent to the Leibniz’s version of
rationalism, built on the negation of the dualism rule. However, Damasio
does not refer to Leibniz’s philosophical system, but Leibniz’s ideas are
worth mentioning, because they might be a historical and philosophical
base of Antonio Damasio’s theory.
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Leibniz presented an idea of the universe as a harmonious system, in
which we experience the existence of unity and variety, coordination and
division of parts, and this great order results in the fact, that the nature is
the God’s clock.

Although his model of nature was based on the laws of the mechanics
but, by accepting the beginning Leibniz emphasized that those laws do
not depend on the mathematical extension, but on some metaphysical
causes. In his opinion, the basic scarcity of the mechanistic physics was
not taking into consideration some dynamic factors existing in the nature.
By replacing the Cartesian principle of the maintaining motion with the
principle of the perfect balance between the cause and the effect, Leibniz
educed some metaphysical consequences. Namely, that the power or energy,
even measured, its future effect is something real, existing permanently in
the substances. (See Swieczkowska, 1998, 17).

In the language of Leibniz’s metaphysics the term of power means
tendency — that is one of the main attributes constituting the elementary
unit of the existence, called by Leibniz a substance, or a real atom of the
nature. The second attribute, is the perceptivness which is always some
consequence of the tendency.

The world of the nature, whose matters are indivisible metaphysical
points — substances — is ordered with the rules of God’s interference.
Admittedly, it has an factual status, but it is the world of the occurrences
well grounded.

Endeavour and perception, considered on the level of a substance, stay
in a close relationship with the physical world. Leibniz emphasizes in many
places, that “all souls and spirits, simple substances are always created in
some body, and there are no souls that are completely separated from that”
(Leibniz, NE, Preface). The term of the bodily substance introduced by
Leibniz corresponds to any living thing. In the letter to Arnaud, he explains
it as follows: “Je responds que supposant qu’il y a une ame ou Entelechie
dans les bestes ou authres substances corporelles, il en faut raisonner en ce
point comme nous raisonnons tout de ’homme, qui est un estre doue d'une
veritable unite, que son ame luy donne, non obstant que la masse de son
corps est divise en organs, vases, humeurs, esprits; et que les parties sont
pleines sans doute d’une infinite d’authres substances corporelles douees de
leur propres Entelechies.” (GP II, 120).

Leibniz by maintaining, that every substance deserves, in a general
meaning, something that he calls endeavour (or tendency) and perception,
forms from the cognitive substances the basis of their classification.
The general term of monads or entelechies is kept for the substances,
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whose cognitive activity is close to zero, and whose beginning is the
ability of unconscious perceptions. Those monads, in which the perception
is connected with the memory or sensation, Leibniz calls the souls;
furthermore, those souls are equipped in the ability of perception connected
with the memory and/ consciousness, able to reason, are called the rational
souls, or the spirits (Swieczkowska, 1998, 24).

Every inspection of the world, every perception stays in a perfect
conformity with the perspective of God’s possession, however the reality
of “God’s vision” states the guarantee of authenticity of the perceptions
created by God substances.

Cognitive activity of any substances depends on the God’s rule of
the sufficient propriety. This activity, independent in some sense from the
complexity degree of the organism, responding to God’s order of the world.
Whereas, this order, in Leibniz’s opinion, is a mathematical sequence, and
in the matter of reminding, when God calculates and makes thoughts, the
world is created.

This metaphysical thesis on the algorithm of the perception processes
occurs currently in a context of the evolution theory. Some of the scientists
(for instance Daniel Dennett) by analyzing the theory of the natural
selection claim, that only those species survived, which developed well
functioning highly specialized perceptive mechanisms and they behave,
as they recognized “propriety freely seized towards them”. Referring to
such approach Roger Penrose argues: “If we suppose that the action of
the human brain, conscious or otherwise, is merely the acting out of some
very complicated algorithm, then we must ask how such an extraordinary
effective algorithm actually came about. The standard answer, of course,
would be “natural selection”. As creatures with brains evolved, those with
the effective algorithms would have a better tendency to survive and
therefore, on the whole, had more progeny. These progeny also tended
to carry more effective algorithms than their cousins, since they inherited
the ingredients of these better algorithms from their parents; so gradually
the algorithms improved — not necessarily steadily, since there could have
been considerable fits and starts in their evolution — until they reached the
remarkable status that we (would apparently) find in the human brain.”
(Penrose, 1995, 454).

A question occurs, whether those cognitive processes, proper to all
organisms on the different levels of their complexity can be reproduced using
the tools of made by the creative mind. In other words, if organism’s acting
follows some rational plan, it is possible to stimulate it. Damasio speaks
about automatic acting of decisive processes, that have the basic influence
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on the future of the organism, which is possible by the mechanism of the
somatic marker. He claims, that the logical principles, the rules of the pure
mind may decide about the additional item of this mechanism, but they do
not decide on the effective side of reasoning.

According to Leibniz’s plot, rational souls, or the spirits joining the
aggregates of the monads are able, in his opinion, to recognize and reproduce
the mathematical plan of the creator. This plan, seized in the natural
order of the idea, is memorized in everyone’s mind. Leibniz assumed,
that apperception, in other words thinking that leads to the idea, has
an algorithmic character. The natural order of the idea is isomorphic
with the universe order, and this order is a consequence of Creator’s
action, who by choosing the best from the possible worlds, created the
one following the internal order of the thoughts. On trusting the power
of the creative mind, Leibniz believed, that the human can reproduce this
natural order of the idea and can recognize the complexity of universe on
all the levels. On the other hand, there are still some essential difficulties
in reconciling Leibniz’s trust confidence in miraculous force of algorithm
with the dynamic structure of cognition unfolded in “Monadology”. He
wrote: “It must be confessed moreover that perception and all that
depends on it are inexplicable by mechanical reasons that is figures and
motions”. Mechanization of cognition process is therefore only imitating
nature, it is the human ability of reconstructing God’s order, likewise as
“no machine made by human art is not a machine corresponding with
the God’s one which is a natural authomaton” (Leibniz, Monadology,
Paragraph 64).

Therefore, we may repeat for Damasio, that the organism has some
kind of the intellect, which must be used by the mind. The first one may be
composed of monads’ reasoning, that are integrated with the monad joining
all the body with the mind, soul, or entelechy.

We can find a surprising resemblance to this idea, in Daniel Dennett’s
book entitled “The nature of the mind”. He maintains that not only we
come from macromolecular robots but we are composed out of them. And
those collections of billions of macromolecular mechanisms evinces authentic
consciousness (Dennett, 1997, 36).

To finish the discussion, we should consider just natural robots, meaning
the God’s machinery.

On the question stated in the title, it is possible to give at least
a partial answer. Many research workers share the belief, that considerable
part of the cognition processes and the undertaken actions, proceeds in
the body automatically. It is accepted according to the lower organisms.
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However, the problem refers to those cognition processes which determine
the species’ difference between human and animals’ world. The issue still
remains open.
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