
COMPUTER RECONSTRUCTION

OF THE BODY OF MATHEMATICS

Series: STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18(31)

Under the Auspices of the Polish Association
for Logic and Philosophy of Science

COMPUTERRECONSTRUCTIONOF THE BODYOF MATHEMATICS
Guest Editors Adam Grabowski

Adam Naumowicz

University of Bia lystok

Bia lystok 2009

Guest Editors

Adam Grabowski
Institute of Mathematics, University of Bia lystok
Bia lystok, Poland
e-mail:adam@mizar.org

Adam Naumowicz
Institute of Informatics, University of Bia lystok
Bia lystok, Poland
e-mail:adamn@mizar.org

Series: STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18(31)
http://logika.uwb.edu.pl/studies/

Series Editor: Halina Święczkowska
University of Bia lystok, Faculty of Law, Section of Semiotics

in collaboration with Kazimierz Trzęsicki
University of Bia lystok, Faculty of Mathematics and Informatics
Chair of Logic, Informatics and Philosophy of Science
e-mail:logika@uwb.edu.pl

Editorial Advisory Board:
Jerzy Kopania, University of Bia lystok
Grzegorz Malinowski, University of Lódź
Witold Marciszewski (Chairman), University of Bia lystok
Roman Murawski, Adam Mickiewicz University, Poznań
Mieczysław Omy la, Warsaw University
Katarzyna Paprzycka, Warsaw School of Social Psychology
Jerzy Pogonowski, Adam Mickiewicz University, Poznań
Andrew Schumann, Belarusian State University, Minsk (Belarus)
Jan Woleński, Jagiellonian University, Cracow
Ryszard Wójcicki, Polish Academy of Sciences, Warsaw

Refereed by Andrzej Trybulec
Cover design: Krzysztof Tur

Copyright c© University of Bia lystok, 2009
ISBN 978–83–7431–229–5
ISSN 0860–150X

WYDAWNICTWO UNIWERSYTETU W BIA LYMSTOKU

15-097 Bia lystok, ul. Marii Sk lodowskiej-Curie 14, tel. +48-85 745 70 59http://wydawni
two.uwb.edu.pl e-mail: a
-dw � uwb.edu.pl
Nak lad 200 egz.

Printed in Poland by: PPHU TOTEM s.c., Inowroc law

Table of Contents

Preface ... 7

A Formal Proof of Euler’s Polyhedron Formula 9
Jesse Alama

Two Formal Approaches to Rough Sets 25
Adam Grabowski and Magdalena Jastrzȩbska

Improving Representation of Knowledge within the Mizar Library 35
Adam Grabowski and Christoph Schwarzweller

A Language for Mathematical Knowledge Management 51
Steven Kieffer, Jeremy Avigad, and Harvey Friedman

How to Define Terms in Mizar Effectively 67
Artur Korni lowicz

The Influence of Delocalization on the Results of Eliminating Repetitions
of Semantically Equivalent Sentences in the MML Database 79

Robert Milewski

Enhanced Processing of Adjectives in Mizar 89
Adam Naumowicz

The Chinese Remainder Theorem, its Proofs and its Generalizations in
Mathematical Repositories 103

Christoph Schwarzweller

Combining Mizar and TPTP Semantic Presentation and Verification
Tools .. 121

Josef Urban, Geoff Sutcliffe, Steven Trac, and Yury Puzis

Statistics on Digital Libraries of Mathematics . .. 137
Freek Wiedijk

Author Index 153

5

Preface

This special issue is devoted to various aspects of reconstructing the existing body

of mathematics within a formal framework of a computer-based environment. Since

the inception of the first systems designed for formalizing mathematics the research

on automated theorem proving and proof checking has produced numerous proof-

assistant tools. Their involvement in large-scale formalization projects revealed that

practical formalization of whole theories, complete mathematical monographs or

especially challenging proofs requires a substantial amount of dedicated work. It has

become evident that for this sort of task accumulating and distributing previously

formalized data is indispensable.

In this spirit the Mizar community initiated in 1989 a long-term project of

building a comprehensive library of formally interrelated mathematical data, the

Mizar Mathematical Library (MML) and several other proof-assistants followed.

Among the collected contributions there are three articles devoted to the prob-

lems connected with maintaining such libraries, expanding them, and at the same

time making them coherent, well-organized and suitable for querying. There is a

presentation of the current state of the biggest digital libraries of formalized math-

ematics. Admittedly, it has been estimated that building a formal library to cover

only undergraduate mathematics would require about 140 man-years. Therefore it

has been recognized that developing a library to base further formalizations on is

equally essential as improving the capabilities of proof-assistance software.

Another three articles deal with the complete process of formalizing certain

proofs which starts with considering different possible approaches and finally chos-

ing one which suits best the proof-checking system, the choice being based on known

existing proofs and the contents of the library available for the proof checker. The

works contain valuable observations on the underlying knowledge that is used in

“normal” mathematical practice and its reconstruction in the formalization pro-

cess. This reconstruction makes it possible to point out some inefficiency of the

current proof-assistants as compared to the standard mathematical apparatus.

The support offered to the end-user by proof-assistants is addressed in another

three articles. They describe recent enhancements in this area, ways of efficient

encoding of formal data, and presenting it to the users in an attractive way follow-

ing the notions used in standard mathematics. All these enhancements are highly

dependent on the linguistic capabilities of a language used for formalization. A par-

ticularily valuable contribution is presented in one of the papers that proposes the-

oretical foundations of an alternative to the existing languages for encoding formal

mathematics. The features of this proposal, which comes from within the mathe-

matical community, can stimulate further development of existing proof tools.

7

Handing to the readers this special issue dedicated to the computer reconstruc-

tion of the body of mathematics, we would like to disseminate research experiences

with proof-assistant systems that collect user contributions in an organized man-

ner, attempt to build proof libraries and allow for new developments on top of

previously accumulated mathematical knowledge. We believe that expanding such

libraries and at the same time making them coherent and well-organized is a highly

non-trivial enterprise. The collected works show that these activities are crucial for

surpassing the limitations of contemporary proof-assistants.

Adam Grabowski and Adam Naumowicz

8

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

A Formal Proof of Euler’s Polyhedron Formula

Jesse Alama1

Department of Philosophy
Stanford University
alama@stanford.edu

Abstract. Euler’s polyhedron formula asserts for a polyhedron p that

V − E + F = 2,

where V , E, and F are, respectively, the numbers of vertices, edges, and
faces of p. This paper concerns a formal proof in the mizar system of Euler’s
polyhedron formula carried out [1] by the author. We discuss the informal
proof (Poincaré’s) on which the formal proof is based, the formalism in
which the proof was carried out, notable features of the formalization, and
related projects.

1 Euler’s Polyhedron Formula

Euler first discussed his formula in a 1750 letter to Christian Goldbach:

Recently it occurred to me to determine the general properties of solids
bounded by plane faces, because there is no doubt that general theorems
should be found for them, just as for plane rectilinear figures, whose prop-
erties are: (1) that in every plane figure the number of sides is equal to the
number of angles, and (2) that the sum of all the angles is equal to twice as
many right angles as there are sides, less four. Whereas for plane figures
only sides and angles need to be considered, for the case of solids more parts
must be taken into account. [16]

Euler does not use the term polyhedra but rather “solids bounded by plane faces”.

He goes on to enumerate some interesting propositions about polyhedra such as:

6. In every solid enclosed by plane faces the aggregate of the number of
faces and the number of solid angles exceeds by two the number of edges,
or F + V = E + 2.1

and

1 Euler’s text has been modified to bring it into line with the notation used in this paper:
he did not use the conventional English abbreviations “V ”, “E”, and “F”.

ISBN 978-83-7431-229-5 ISSN 0860–150X 9

Jesse Alama

11. The sum of all plane angles is equal to four times as many right angles
as there are solid angles, less eight, that is 4V − 8 right angles.2

Euler expresses surprise that he has not been able to find a precedent for these

relations:

I find it surprising that these general results in solid geometry have not been
previously noted by anyone, so far as I am aware;3 and furthermore, that
the important ones, Theorems 6 and 11, are so difficult that I have not yet
been able to prove them in a satisfactory way.

It was not long before Euler presented his results publicly [8]. Like the letter to

Goldbach, Euler’s paper was programmatic: he was trying to encourage the study

of three-dimensional solids as an extension of planar geometry. The “most difficult”

propositions he mentioned to Goldbach were discussed in detail, though he acknowl-

edges that his presentation does not constitute a proof. Indeed, in the preface to

his paper Euler qualifies his work thus:

I for one have to admit that I have not yet been able to devise a strict
proof of this theorem. As however the truth of it has been established in so
many cases, there can be no doubt that it holds good for any solid. Thus the
proposition seems to be satisfactorily demonstrated.

Euler was not satisfied with the unfinished state of his theorem and continued

working with polyhedra. Eventually he did find a satisfactory proof [7].

Perhaps because of its simplicity and elegance, many other mathematicians

studied the polyhedron formula and tried to give new proofs. Cauchy, for example,

connected the study of polyhedra to planar graphs: project a polyhedron onto a

plane, triangulate it, and take away one triangle at a time in a way that preserves

χ until only a triangle remains; we obtain the desired result χ = 2 by noting that

the projection with which we started “removes” a face from the polyhedron (which

effectively sends one of the polyhedron’s faces onto an unbounded planar region).

Unlike Euler, whose conception of polyhedra was that of solid (which one can slice,

as with a knife), Cauchy apparently viewed polyhedra as wireframes.

Poincaré provided a new conception of polyhedra based on incidence matrices

with which he gave his own proof [22, 21] of Euler’s formula.4 Poincaré’s abstract,

combinatorial conception of polyhedra makes no mention of points in R3, nor does

it come from projecting polyhedra onto a plane. Poincaré’s approach even allows

2 Euler proved that proposition 6 is equivalent to proposition 11. This is an interesting
equivalence because one statement has a combinatorial flavor, while the other has an
analytic flavor. Proposition 11 can be seen in the famous Gauss-Bonnet formula [27].

3 Unknown to Euler, Descartes had actually given a proof of Proposition 11 [15]. This
result of Descartes’s, seems to have been missing at Euler’s time; it was rediscovered
in the 19th century, long after Euler’s death [24].

4 Poincaré was interested more broadly in the new subject of topology, of which he was
one of the earliest explorers; his new proof of Euler’s polyhedron formula was but one
element in his wider topological program.

10

A Formal Proof of Euler’s Polyhedron Formula

for polyhedra of arbitrary dimension; the general result5 states that

d−1
∑

k=0

(−1)kNk = 1 + (−1)d+1,

where the integer d is the dimension of p and Nk is the number of k-polytopes of

p. The classical three-dimensional version stated by Euler is obtained by setting

d := 3. The familiar property of a polygon that the number of vertices is equal to the

number of edges is obtained by putting d := 2. (And a 1-dimensional polyhedron is

just a line segment with its two endpoints, which also falls out of the general Euler

relation by putting d := 1.)

So far no definition of polyhedron has been given, nor have we placed any

restriction on the domain of validity of Euler’s relation. It is a commonplace that

one has to be careful with how one defines one’s terms, and the term “polyhedron”

is no exception. Grünbaum writes:

The “Original Sin” in the theory of polyhedra goes back to Euclid, and
through Kepler, Poinsot, Cauchy, and many others, in that at each stage,
the writers failed to define what are the ‘polyhedra’. [13]

In addition to defining polyhedra, it is a further task to specify the domain of

validity for Euler’s relation to hold; it turns out that around the time of Cauchy’s

proof in the early 19th century, it started to become clear to mathematicians that

Euler’s polyhedron formula does not hold for all polyhedra. In 1811, for example,

L’Hulier described “exceptions” to Euler’s polyhedron formula, classifying them

into three kinds. Research on polyhedra in the 19th century gradually revealed

that for Euler’s relation to hold one should focus on simple connectedness, which
roughly asserts that any two vertices can be connected by a path of edges and that

the faces can be continuously collapsed to a point.

(Lakatos’s history [18] of Euler’s polyhedron formula is an entertaining discus-

sion of some of the historical twists and philosophical problems surrounding the

result.6)

Poincaré’s definition, on which the formalization to be described is based, is

probably the simplest to describe. Following Poincaré, a polyhedron is characterized

by a list of incidence matrices, which can be understood as functions f from a

cartesian product A×B of sets A and B to {0, 1}, where f(a, b) = 1 is understood

as “a is incident with b” and f(a, b) = 0 is understood as “a is not incident with

b”. Thus to specify a polyhedron of dimension d + 1, one just gives d incidence

matrices. Let us call such a structure an abstract or combinatorial polyhedron.

5 Poincaré was not the first to generalize Euler’s polyhedron formula to higher dimen-
sions; that was done by L’Hullier.

6 Indeed, a motivation for carrying out the formalization described here was to study
Lakatos’s philosophy of mathematics.

11

Jesse Alama

2 Poincaré’s Proof of Euler’s Polyhedron Formula

As part of his algebraic topological program, Poincaré gave a new proof of Euler’s

polyhedron formula. In this section we give a sketch of Poincaré’s proof; for a more

detailed discussion, consult Lakatos [18] (chapter 2) or Coxeter [5] (chapter 9).

First, we should say how Poincaré defines polyhedra. In his framework, a three-

dimensional polyhedron is determined by five pieces of data:

– A set of vertices (the 0-polytopes),

– A set of edges (the 1-polytopes),

– A set of faces (the 2-polytopes),

– An incidence matrix that says which vertices belong to which edges, and

– An incidence matrix that says which edges belong to which faces.7

Conventionally there is also a 3-polytope, namely the whole polyhedron p, and

we specify a new incidence matrix declaring that all faces are incident with p.

Symmetrically, we conventionally define a single −1-polytope and declare that it

is incident with each vertex.

More generally, a d-dimensional polyhedron is characterized by a pair (F , I)

(F for “faces”, I for “incidences”) of finite sequences, where

– d = lenF ,

– lenF > 0,

– len I = lenF − 1,

– For 0 ≤ n < lenF , we have that Fn is a non-empty finite set (the set of

k-polytopes of p), and

– For 0 ≤ n < len I, we have that In is an incidence matrix for Fn and Fn+1.

In the more general setting we again stipulate that there is one d-dimensional

polytope, namely p, that is incident with all (d − 1)-polytopes; also, we stipulate

that there is one −1-dimensional polytope that is incident with all 0-polytopes.

Theorem 1. For every simply connected polyhedron p, we have

d−1
∑

k=0

Nk = 1 + (−1)d+1,

where d is the dimension of p and Nk is the number of polytopes of p of dimension
k.

For a polyhedron p and an integer k, let the k-chains of p be the powerset of the set

of k-polytopes of p. The k-chains of p naturally form a vector space over the two-

element field F2, where vector addition is represented by disjoint union (symmetric

difference); call this space Ck. The relation between Ck and polyhedra can be seen

in the fact that the dimension of Ck is precisely Nk, the number of k-polytopes of

7 In fact, Poincaré used a single incidence matrix to represent a polyhedron. The matrix
is a block matrix, two of whose blocks are just the zero matrix, expressing the fact that
vertices are not (strictly speaking) incident with faces but only with edges.

12

A Formal Proof of Euler’s Polyhedron Formula

p. (Reason: the singleton subsets of Fk are a basis for Ck.) The boundary ∂kc of a

k-chain c is the (k − 1)-chain

{x ∈ Fk−1 : x is incident with an odd number of k-polytopes of c}.

In other words, a (k − 1)-polytope x belongs to the boundary of a k-chain c iff

∑

y∈c

Ik−1(x, y) = 1,

where the sum is taken modulo 2. The boundary operation ∂k is a linear trans-

formation from Ck to Ck−1. It turns out that the k-chains c whose boundary is

empty (all (k − 1)-polytopes are incident with c an even number of times) form

a subspace, Zk, of Ck. Such k-chains are called k-circuits (sometimes also called

k-cycles). Another important subspace of the k-chain space Ck consists of those

k-chains that are the boundary of a (k+1)-chain; for lack of a better name, let Bk

(for “bounding”) denote this subspace.

The property of simple connectedness is the property that Bk = Zk, that the

k-circuits are the bounding k-chains. The inclusion Bk ⊆ Zk says that ∂k+1∂k ≡ 0.

The reverse inclusion intuitively says that the only way something can be a cycle

is if it “traverses” a “face”. This fails in cases where, for example, a face has a hole

in it (one can go around the boundary of the inner hole, but there’s no face that

one is traversing).

Proof of Theorem 1. If p is simply connected, then

Zk = Bk,

so that

dimZk = dimBk.

Since Nk = dimCk, we have by the rank+nullity theorem that

Nk = dimCk = dimBk−1 + dimZk = dimBk−1 + dimBk.

Thus

d−1
∑

k=0

(−1)kNk =

d−1
∑

k=0

(−1)k(dimBk−1 + dimBk) = dimB−1 + (−1)d−1 dimBd−1.

The last equation follows because of the hypothesis of simple connectedness. Now

dimB−1 = 1, since B−1 is a two-element vector space (it contains the empty chain

as well as the singleton chain containing the unique −1-polytope). And dimBd−1 =

1 for the same reason: it contains the empty chain as well as the “full” chain

containing all the (d − 1)-polytopes, so that it has at least two elements; if c is a

(d − 1)-chain different from the “full” (d − 1)-chain and the empty chain, then it

is not in the range of ∂d, since by stipulation all (d− 1)-polytopes are incident to

the unique d-polytope p. The proof is complete.

13

Jesse Alama

3 Overview of the Formalization

In this section we describe a formalization of Poincaré’s proof of Euler’s polyhedron

formula that was carried out in the mizar system. mizar is based on classical first-

order logic with equality and Tarski-Grothendieck set theory, a strong theory of sets

that is equivalent to the Zermelo-Fraenkel theory together with an axiom asserting

the existence of an inaccessible cardinal.

Among the many candidate systems (e.g., isabelle, Hol Light, coq) with

which the formalization could have been carried out, mizar was selected because

of its familiar logical foundations (first-order set theory), its everyday knowledge

representation language (dependent types, structures, flexible notation for functions

and predicates), its standard proof language (a kind of natural deduction), and

its large library of formalized mathematical knowledge on which one can build.8

But it must be admitted that the choice of mizar over the other candidates was

somewhat arbitrary. Nonetheless, it seems plausible that, if one were to compare

the formalization in mizar under discussion with a formalization of the same proof

in some other system, one would find considerable overlap.9

3.1 Main Formalizations

One often finds when formalizing that, in addition to the logical and mathematical

details in a formal proof that must be supplied, one must also formalize various

kinds of “background” knowledge. And one often finds that the simplest mathemat-

ical facts are (apparently) missing from the library of formalized mathematics10.

Like Euler writing to Goldbach, we can be surprised that “these general results have

not been previously noted by anyone”.11 The formalization of Poincaré’s proof of

Euler’s polyhedron formula in mizar was no exception to this phenomenon. But

this is understandable; just as libraries of implemented algorithms for various pro-

gramming languages do not eliminate the need for programmers to adjust them to

their specific problems, so too do general mathematical facts in a formal library

require further specification before they can be applied.

The contribution naturally divided into three mizar “articles” (collections of

definitions, theorems). They were:

8 At the time the formalization began, no formal proof of Euler’s formula was known.
But independently, another formal proof has been carried out in the coq system[6].

9 It would be interesting to discover cases where one learns something different about
a proof (and not about the different systems or the different logics on which they are
built) when formalizing it in one system as compared with what one learns from another
formalization of the same proof.

10 There are two kinds of missing knowledge: well-known (perhaps named) mathematical
results can be contrasted with details that, in an less formal context, are left tacit.

11 And, conversely, often one discovers that mathematical knowledge that we previously
thought to be unformalized does in fact exist in the library. At one point the author
thought that he had a proof that the mizar library did not contain a formalization
of the fact that {0, 1} can be made into a two-element field. This turned out to be
mistaken.

14

A Formal Proof of Euler’s Polyhedron Formula

– RANKNULL: The rank+nullity theorem;

– BSPACE: The vector space of subsets of a set based on disjoint union; and

– POLYFORM: Euler’s polyhedron formula.

We now briefly discuss some notable features of these formalizations.

The rank+nullity theorem The rank+nullity theorem states that if T is a linear

transformation from a finite-dimensional vector space V to a finite-dimensional

space W , then

dimV = dim imT + dimkerT.

We were able to straightforwardly formalize a standard proof [19] of the result, but

some formal groundwork had to be laid for that to be possible.

Much basic linear algebra has already been formalized in mizar; there are

a number of theorems and definitions concerning subspaces [30], linear combina-

tions [29], dimensions of vector spaces [33] and linear spans of sets of vectors [28].

But some of the linear algebraic facts involved in a proof of the rank+nullity theo-

rem were unavailable and had to be formalized. To carry out the formalization, we

defined:

1. the image and kernel of a linear transformation, and the fact that these form

subspaces of the domain and range of a linear transformation;

2. the restriction of a linear combination to a set of vectors; and

3. the image and inverse image of a linear combination under a linear transfor-

mation.

The first item is straightforward, but the second and third items may require some

explanation. In mizar, a linear combination is represented as a function from a

vector space to the field of scalars whose carrier (the set of vectors not mapped to

zero) is finite.12 The restriction of a linear combination l on a vector space V to a

subset X of V is thus naturally represented by the function

λv ∈ V.

{

l(v) if v ∈ X

0V otherwise
.

Suppose that T is a linear transformation from a vector space V to a vector space

W , both over a field F , and that l is a linear combination of vectors in V . Thus l

represents the linear combination

a1v1 + · · ·+ anvn,

where n is a natural number, ak ∈ F and vk ∈ V and ak 6= 0F (1 ≤ k ≤ n). Since

T is a linear transformation, we ought to have

T (a1v1 + · · ·+ anvn) = a1T (v1) + · · ·+ anT (vn).

12 This is a case where a representation of a mathematical object contains more informa-
tion than meets the eye. When represented this way, linear combinations tacitly build
in the commutativity of vector addition. u+v is represented by a function f that sends
u and v to 1 and every other vector to 0. The same function f also represents v + u.

15

Jesse Alama

Thus, it is natural to define the image of l under T to be the mizar-linear combi-

nation

λw ∈ W.

{

l(T−1({w})) if w ∈ imT

0F otherwise
.

The problem with this definition is that it works only if T is injective. We are

supposed to define the image of any linear transformation T on any linear combi-

nation l, so we need to allow for the possibility that some of the T (vi)’s are equal.

A definition that gets around this problem is

T (l) := λw ∈ W.
∑

l(T−1(w)).

This definition allows us to add together the coefficients, given by l, of those vectors

in V that are identified by T . It is interesting to note how the formal definition of

the image of a linear combination under a linear transformation differs from the

informal (or semi-formal) notation above. This case provides an interesting example

of a formal analysis of informal notation.

The inverse image operation also deserves to be mentioned. Suppose that X is

a subset of a vector space V , that T is a linear transformation from V to W , and

that l is a linear combination of T (X) (that is, that l is a function from W to F

with finite support whose value is 0F outside of T (X)). This is a precise way of

saying that l looks like

b1T (v1) + · · ·+ bnT (vn),

for some natural number n and vk ∈ X . We want to say that the inverse image of

l is the linear combination

b1v1 + · · ·+ bnvn.

This is correct, but only on the assumption that the vectors T (v1), . . . , T (vn) are

distinct. One way to ensure this is by requiring that T |X is one-to-one, and that is

in fact what we did when defining the inverse image operation in mizar and suited

the formalization task at hand. As it stands, the inverse image operation in mizar

is a partial operation. The restriction of injectivity of the restriction is, however,

unnecessary and it would be valuable to extend the formalization to account for

the general case.

The vector space of subsets of a set based on disjoint union Another result

needed for a formalization of Poincaré’s proof of Euler’s polyhedron formula is the

fact that the power set of a set forms a vector space over the two-element field F2.

Vector addition is disjoint union (symmetric difference), and scalar multiplication

is defined by

0 · x := ∅, 1 · x := x.

This fact seems to be standard, but we were unable to find any conventional name

for this space. For lack of a better notation, let B(X) (for “Boole”) be the vector

space of subsets of X based on disjoint union.

Approximately half of the article BSPACE is devoted to proving that B(X) is

indeed a vector space. The other half is devoted to some facts about the linear

algebraic features of the singleton subsets of X , namely that

16

A Formal Proof of Euler’s Polyhedron Formula

– they are a linearly independent set of vectors, and

– if X is finite, then they span B(X).13

Polyhedra Perhaps surprisingly, the formalization of Poincaré’s proof was rather

straightforward. The highlight of the article is the generalized relation, as well as

special cases for one-, two-, and three-dimensional polyhedra. The statement of the

main theorem, in the mizar syntax, is

p is simply-connected implies p is eulerian;

where of course p has type polyhedron. The term “Eulerian” is a neologism that

means that a polyhedron satisfies Euler’s relation; it appears in Lakatos [18]. The

definitions of the two properties are

p is simply-connected

means

for k being Integer

holds k-circuits(p) = k-bounding-chains(p);

and

p is eulerian

means

Sum (alternating-proper-f-vector(p))

= 1 + (-1)|^(dim(p)+1);

(The f -vector of a polyhedron p is the sequence

s := N−1, N0, N1, . . . , Nd,

where d = dim p and Nk is the number of polytopes of dimension k. It could also be

reasonably defined as a bi-infinite sequence indexed by the integers containing the

terms displayed above with all other terms being 0. The terminology is standard [4],

but to ease the formalization two related neologisms were coined: proper f -vector
and alternating proper f -vector. By definition deleting the first and last terms of

s gives the proper f -vector of p; alternating the signs of the sequence yields the

alternating proper f -vector of p.) We also proved a lemma on telescoping sums

that apparently did not exist in the mizar library:

for a,b,s being FinSequence of INT

st len s > 0 &

len a = len s & len b = len s &

(for n being Nat st 1 <= n & n <= len s

holds s.n = a.n + b.n) &

(for k being Nat st 1 <= k & k < len s

holds b.k = -(a.(k+1)))

holds Sum s = (a.1) + (b.(len s))

13 The condition of finiteness is necessary because linear combinations must be finite; if
X is infinite no finite linear combination of singletons can equal X.

17

Jesse Alama

The lemma is a formalization of the claim that if s, a, and b are are sequences of

integers, all of the same length n, and if s = a + b but bk = −ak+1, then
∑

s =

a1+ bn. In Poincaré’s proof, thanks to the assumption of simple connectedness, the

sum on the left-hand side of the Euler relation turns out to be telescoping in this

way.

4 Discussion

4.1 Filled gaps

One of the aims of formal mathematics is to give gap-free proofs of mathematical

theorems. One could take a skeptical view and doubt the validity of virtually every

proof in mathematics; for the skeptic, all proofs are informal and are (potentially)

rife with logical gaps. There is a kernel of truth in the skeptical view, but the paucity

of interesting gaps—oversights, ambiguities, or errors that, once exposed, would

alter the views of the working mathematician—makes the view less plausible [9,

25]. One might say that a formalized proof of a theorem gives us better grounds

to believe the theorem than were available before the proof was formalized, but at

present it seems to be an open philosophical challenge to say why this should be

so, while acknowledging the rarity of interesting gaps.

Were any interesting gaps uncovered in the formalization of Poincaré’s proof of

Euler’s polyhedron formula? If a gap can be both interesting and small, then the

answer might be “yes”, but is more likely “no”. In Coxeter’s Regular Polytopes, we

apparently see a proof that “the boundary of any (k + 1)-chain is a k-circuit” [5].

But this simply cannot be proved because there are counterexamples.

But it is not clear whether Coxeter is making an invalid inference here. An

alternative explanation is that, rather than proving that ∂∂ ≡ 0 for all polyhedra,

Coxeter was instead motivating the assumption of this property. Lakatos seems to

have observed as much; in his discussion of Poincaré’s proof, we find this exchange:

Gamma: I think that the boundary of a decent k-chain should be closed.
For instance I could not possibly accept as a polyhedron a cube with the top
missing; and I could not possibly accept as a polygon a square with an edge
missing. Can you prove, that the boundary of any k-chain is closed?
Epsilon: Can I prove that the boundary of the boundary of any k-chain is
zero?
Gamma: That is it.
Epsilon: No, I cannot. This is indubitably true. It is an axiom. There is
no need to prove it.

Lakatos is right that this principle (that Bk ⊆ Zk) must be an “axiom” in some

form. In the formalization under discussion, it is contained in the definition of

simple connectedness.

4.2 A proof-theoretic corollary

The result of the formalization is that Euler’s polyhedron formula (understood à la

Poincaré) is a first-order logical consequence of the axioms of Tarski-Grothendieck

18

A Formal Proof of Euler’s Polyhedron Formula

set theory (TG). But it should be clear that the full strength of TG set is not

required for Poincaré’s proof; it would be quite surprising if Poincaré’s proof of

Euler’s polyhedron formula required the existence of infinitely many inaccessible

cardinals. After all, following Poincaré, polyhedra are conceived as certain combina-

torial structures that, presumably, could be completely captured in an arithmetical

theory. And thanks to the fact that our work on a formal version of Euler’s poly-

hedron formula is quite detailed, one has a clear basis with which to start proving

Euler’s polyhedron formula in a weaker theory than TG.

The characteristic axiom of TG asserts: for every set N there exists a set M

such that

– N ∈ M ,

– M is closed under taking subsets,

– M is closed under the powerset operation, and

– if X ⊆ M and X 6∼ M , then X ∈ M .

Such a set M might be called a universe containing N ; accordingly, let us call this

principle the universe axiom. Some important consequences of the universe axiom

(none of which are axioms of TG) are:

– The existence of an infinite set,

– The axiom of choice, and

– Powerset.

When one inspects the deduction underlying the mizar proof of Euler’s polyhedron

formula, one can trace the argument through each of the three principles mentioned

above. Since each of these three principles are consequences of the universe axiom

(together, of course, with other axioms of TG), we see that the mizar proof of

Euler’s polyhedron formula uses the universe axiom. But in mizar this is to be

expected. Indeed, the proof of every theorem in the mizar mathematical library

that involves natural numbers uses the universe axiom by way of the existence of

an infinite set (obtained by applying the universe axiom to ∅).

It may be somewhat surprising that the axiom of choice appears in the proof

of Euler’s polyhedron formula. To be clear, what is claimed is not that Euler’s

polyhedron formula ineliminably depends on the axiom of choice in the way that,

say, the well-ordering principle does. Instead, what is claimed is that there is a

deduction of Euler’s polyhedron formula that uses choice. The use occurs in the

proof of the rank+nullity theorem theorem. The proof proceeds by starting with

a linear transformation T from a finite-dimensional vector space V to a finite-

dimensional vector space W . The first step is to choose a basis A for kerT ; one then

extends A to a basis B for all of V and, finally, one shows that T (B−A) is a basis

of imT . In the actual mizar proof of the rank+nullity theorem, the justification

for the first step (choosing a basis for kerT) appeals to the theorem [28] that every

vector space has a basis.14

14 In the mml version 4.110.1033, released September 9, 2008, the exact mizar item is
VECTSP 7:def 3. Every type in mizar must be provably non-empty. Interestingly, the
theorem that every vector space has a basis appears not as a mizar theorem per se, but

19

Jesse Alama

But clearly the principle that every vector space has a basis (which, perhaps

surprisingly, is equivalent over ZF [3] to the axiom of choice) is stronger than

what is required for the purpose of proving the rank+nullity theorem, which after

all deals with only finite-dimensional vector spaces.15 And for finite-dimensional

vector spaces, it is clear that we can produce a basis through an iterative search

procedure whose formalization requires only arithmetical principles.

Some custom software (building on Josef Urban’s work [31]) for computing

dependency relations in mizar texts provides evidence that the only way that the

universe axiom is used is by way of the three principles mentioned above (infinity,

choice, powerset). This in turn is evidence that, from the provability judgment

TG ⊢ EPF we have the improved judgment ZFC ⊢ EPF, where “EPF” is the

Poincaré/combinatorial formalization of Euler’s polyhedron formula.16

Applying “Kreisel’s trick” to the Poincaré/combinatorial understanding of Eu-

ler’s polyhedron formula, from the judgment ZFC ⊢ EPF we can drop choice and

conclude that ZF ⊢ EPF. We have thus moved from the heights of TG to the more

modest realm of ZF by studying the mizar deduction of Euler’s polyhedron for-

mula; we have established a new provability judgment without actually producing

a new deduction.

One can continue the process of trying to further weaken the theory with which

proof is carried out. It seems plausible that one can get away without having a

set of natural numbers. That is, it seems plausible that one can eschew the axiom

of infinity and deal with the natural numbers not as a set but as a proper class.

Accepting that for the moment, we see, using the equivalence of ZF− Infinity and

Peano Arithmetic (PA), that Poincaré’s proof of Euler’s polyhedron formula can

be carried out in PA.

Based on some initial studies, it appears that a formalization of Poincaré’s proof

can be carried out in the theory I∆0(exp), a first-order arithmetical theory in a

language with addition, multiplication, ordering, and exponentiation with an induc-

tion scheme for ∆0-formulas (which are permitted to contain exponentiation) [14].

It also appears that some kind of exponentiation is required. These are results in

progress and have not yet been rigorously proved.

rather as the justification for the non-emptiness of the type Basis of V, where V itself
has the dependent type VectSp of F, where, finally, F has type Field. The proof of the
non-emptiness of the Basis type appeals to the theorem that every linearly independent
subset of a vector space can be extended to a linearly independent spanning set, i.e., a
basis.

15 Simpson has shown that the principle “Every vector space has a basis” is equivalent,
over the second-order arithmetical theory RCA0 (for “recursive comprehension axiom”),
to the principle of arithmetical comprehension [26].

16 The custom code is not yet complete; certain features of the mizar system are not
yet accounted for, such as so-called registrations and the implicit uses of Hilbert’s ε-
operator. Thus it is possible that some important dependency relations are not being
taken into account with the present version of the software.

20

A Formal Proof of Euler’s Polyhedron Formula

4.3 Streamlining the formalization

At the time of writing, no mechanism for binders (apart from the quantifiers ∀

and ∃) has been implemented in the mizar language. (Wiedijk has a proposal [32]

for this as-yet-unimplemented feature.) For example, the definition of the so-called

incidence sequence Ix,c generated by a (k − 1)-polytope x and a k-chain c. Using

one common notation for sequences [11], Ix,c can be defined as

〈v@Pk,n · [x ∈ Pk,n] : 1 ≤ n ≤ Np,k〉,

The bracket notation “[x ∈ Pk,n]”, from Knuth [17], denotes 1 or 0 according as

the relation does or does not hold.17 The actual mizar definition is somewhat more

complicated:

incidence-sequence(x,v) -> FinSequence of F2

means

((k-1)-polytopes(p) is empty implies it = <*>{}) &

((k-1)-polytopes(p) is non empty implies

len it = num-polytopes(p,k) &

for n being Nat

st 1 <= n & n <= num-polytopes(p,k)

holds

it.n =

(v@(n-th-polytope(p,k)))*incidence-value(x,n-th-polytope(p,k)));

A binder syntax would simplify this definition. It would also help to simplify the

examples involving linear combinations that have already been discussed (in light

of the fact that in mizar linear combinations are represented as functions). Even

if these examples are unconvincing, it should be clear that, in general, notations

for sequences, functions (λ-abstraction), relations, and other mathematical objects

would help to streamline the mizar language and make it even more attractive as

a formal language for mathematics than it already is.

5 Further Work

Poincaré’s abstract, combinatorial conception of polyhedra facilitated formalization

because the definition could be easily captured using mizar structures. Following

Poincaré, the messy details are largely suppressed; one just formalizes the definition

of simple connectedness and carries out the linear algebraic proof. Whether one

regards this as a problem or a feature of Poincaré’s approach is left for the reader

to decide. A further challenge for formal mathematics would be to treat Euler’s

proof of his relation, involving “concrete” or “real” polyhedra. One could start

with the relatively easy case of convex polyhedra (with which Euler was arguably

working [10], even though his definition apparently permits non-convex polyhedra).

It would be especially interesting to take on Euler’s argument because of the subtle

17 Perhaps even this notation could be implemented in mizar, but its logical properties
are peculiar and would be a challenge to formally specify.

21

Jesse Alama

flaws that it was found to contain. The main problem was that Euler did not

specify just how to carry out the slicing procedure. One can see, by inspecting

simple examples, that one must be careful about the vertex about which the slicing

procedure is done, because for some polyhedra and some choices of the vertex,

Euler’s method can lead to strange results:

It is not at all obvious that this slicing procedure can always be carried out,
and it may give rise to ‘degenerate’ polyhedra for which the meaning of the
formula is ambiguous. [2]

Samelson [23] has repaired this gap in Euler’s proof. Are there any others?

As mentioned earlier, for the purposes of the formalization is was not necessary

to define in full generality the notion of the inverse T−1(l) of a linear combination

l under a linear transformation T . It would be valuable for future formalizations in

mizar of linear algebra to deal with the full generality of inverse images.

The property of a polyhedron satisfying ∂∂ ≡ 0 is part of the definition of

simple connectedness. This property is equivalent to the inclusion Bk ⊆ Zk, which

says that boundaries are circuits. One might regard this not as the definition of

simple connectedness, but rather as part of the definition of polyhedron; one would

then define simple connectedness as the converse inclusion Zk ⊆ Bk (circuits are

boundaries). For future formalizations using combinatorial polyhedra in mizar, it

may be valuable (if not necessary) to carry out this rearrangement.

A further step would be to give a formal proof of Steinitz’s theorem relating

convex “analytic” polyhedra (whose points are in R3) to planar graphs [12, 20, 4].

References

1. Alama, J.: Euler’s polyhedron formula. Formalized Mathematics 16(1), 2008, 7–17.
2. Biggs, N.L., Lloyd, E.K., Wilson, R.J.: Graph Theory: 1736-1936. Oxford University

Press, 1976.
3. Blass, A.: Existence of bases implies the axiom of choice. In Baumgartner, J.E.,

Martin, D.A., Shelah, S., eds.: Axiomatic Set Theory. Volume 31 of Contemporary
Mathematics Series. American Mathematical Society, 1984, 31–33.

4. Brøndsted, A.: An Introduction to Convex Polytopes. Graduate Texts in Mathemat-
ics. Springer, 1983.

5. Coxeter, H.S.M.: Regular Polytopes. Dover Publications, 1973.
6. Dufourd, J.F.: Polyhedra genus theorem and Euler formula: A hypermap-formalized

intuitionistic proof. Theoretical Computer Science 403(2-3), August 2008, 133–159.
7. Euler, L.: Demonstratio nonnullarum insignium proprietatum quibus solida hedris

planis inclusa sunt praedita. Novi Commentarii Academiae Scientarum Petropoli-
tanae 4, 1758, 94–108.

8. Euler, L.: Elementa doctrinae solidorum. Novi Commentarii Academiae Scientarum
Petropolitanae 4, 1758, 109–140.

9. Fallis, D.: Intentional gaps in mathematical proofs. Synthese 134, 2003, 45–69.
10. Francese, C., Richeson, D.: The flaw in Euler’s proof of his polyhedral formula.

American Mathematical Monthly 114, April 2007, 286–296.
11. Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Springer, 1993.
12. Grünbaum, B.: Convex Polytopes. 2nd edn. Number 221 in Graduate Texts in

Mathematics. Springer, 2003.

22

A Formal Proof of Euler’s Polyhedron Formula

13. Grünbaum, B.: Polyhedra with hollow faces. NATO-ASI Series C Mathematical and
Physical Sciences 440, 1994, 43–70.

14. Hájek, P., Pudlák, P.: Metamathematics of First-Order Arithmetic. Perspectives in
Mathematical Logic. Springer-Verlag, 1993.

15. Hilton, P., Pedersen, J.: Descartes, Euler, Poincaré, Pólya—and polyhedra.
L’Enseignement Mathématique (IIe Série) 27(3-4), 1981, 327–343.

16. Juskevich, A.P., Winter, E., eds.: Leonhard Euler und Christian Goldbach: Briefwech-
sel 1729–1764. Akademie-Verlag, Berlin, 1965.

17. Knuth, D.E.: Two notes on notation. American Mathematical Monthly 99(5), May
1992, 403–422.

18. Lakatos, I.: Proofs and Refutations: The Logic of Mathematical Discovery. Cambridge
University Press, 1976.

19. Lang, S.: Algebra. Number 211 in Graduate Texts in Mathematics. Springer, 2002.
20. Lindström, B.: On the realization of convex polytopes, Euler’s formula and Möbius

functions. Aequationes Mathematicae 6(2-3), June 1971, 235–240.
21. Poincaré, H.: Complément à l’analysis situs. Rendiconti del Circolo Matematico di

Palermo 13, 1899, 285–343.
22. Poincaré, H.: Sur la généralisation d’un théorème d’Euler relatif aux polyèdres.

Comptes Rendus de Séances de l’Academie des Sciences 117, 1893, 144.
23. Samelson, H.: In defense of Euler. L’Enseignement Mathématique 42, 1996, 377–382.
24. Sandifer, E.: How Euler did it: V , E and F (Part 2). MAA Online, July 2004.
25. Sherry, D.: On mathematical error. Studies in History and Philosophy of Science

28(3), September 1997, 393–416.
26. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Mathematical

Logic. Springer, 1999.
27. Spivak, M.: A Comprehensive Introduction to Differential Geometry. 3rd edn. Publish

or Perish, 1999 (5 vols.).
28. Trybulec, W.A.: Basis of vector space. Formalized Mathematics 1(5), 1990, 883–885.
29. Trybulec, W.A.: Linear combinations in a vector space. Formalized Mathematics

1(5), 1990, 877–882.
30. Trybulec, W.A.: Subspaces and cosets of subspaces in vector space. Formalized

Mathematics 1(5), 1990, 865–870.
31. Urban, J.: XML-izing mizar: Making semantic processing and presentation of mml

easy. In: MKM 2005: Mathematical Knowledge Management, 2005.
32. Wiedijk, F.: A proposed syntax for binders in mizar. Available at http://www.cs.

ru.nl/~freek/mizar/binder.pdf.
33. Żynel, M.: The Steinitz theorem and the dimension of a vector space. Formalized

Mathematics 5(3), 1996, 423–428.

23

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

Two Formal Approaches to Rough Sets

Adam Grabowski and Magdalena Jastrzębska

Institute of Mathematics
University of Białystok
ul. Akademicka 2

15-267 Białystok, Poland
adam@math.uwb.edu.pl, magja@osiedle.net.pl

Abstract. The formalization of rough sets in a way understable to ma-
chines seems to be far beyond the test phase. For further research, we try
to encode the bunch of classical papers within RST and as the testbed of
already developed foundations of the theory we try to adopt the interval
set model to put it within the existing set-theory machinery in the Mizar
computer-checked repository.

1 Preliminaries

During the past decades, mathematics evolved from the pen-and-paper model in
the direction of extensive use of computers. Digitization of mathematical journals
gets more and more popular, and it is often the case of

– the new material, when papers can be published faster, so information ex-
change, and hence research is more efficient and accessible – here the well-known
example could be Springer’s Online First;
– archival issues of journals.

Obviously, simple optical character recognition (OCR) is not the only activity
in the latter case – at least the bibliography section could be identified to calculate
impact factors properly. These activities can however be done independently, unlike
the formalization efforts. If we try to reach the research frontier, i.e. to formalize
new results, either solid background should be provided, or the discipline should
be relatively new.
We try to address some issues concerning the formalization of a fragment of

rough set theory using the Mizar language, presenting a report on the current state
of the work. RST delivers important tools to discover data from databases, it is
now especially valuable taking into account the amount of stored information and
the form of the records. The discipline is rather an emerging trend, and however
the stress is put on applications, some valuable results are already available.
The main pros of the use of the Mizar system are as follows:

– repetitions are no longer justified;

ISBN 978-83-7431-229-5 ISSN 0860–150X 25

Adam Grabowski and Magdalena Jastrzębska

– possible generalizations, even those computer-driven;
– possibility of the automatic obtaining new results – the area of knowledge
discovery.

The paper is organized as follows. The next section is devoted specifically to the
Mizar library, one of the leading mechanical repositories in the world, then follows
an outline of one of the most popular models for rough sets is given – namely
interval sets. Finally we describe our formalization efforts. The final section brings
some concluding remarks and the plans for future work.

2 The Repository

Formalization is a term with a broad meaning which denoted rewriting the text in
a specific manner, usually in a rigorous (i.e. strictly controlled by certain rules),
although sometimes cryptic language. Obviously the notion itself is rather old, orig-
inated definitely from pre-computer era, and in the early years formalization was
to ensure the correctness of the approach. As the tools evolved, the new paradigm
was established: computers can potentially serve as a kind of an oracle to check if
the text is correct.
The problem with computer-driven formalization is that it draws the attention

of researchers somewhere at the intersection of mathematics and computer science,
and if the complexity of the tools is too high, only software engineers will be
attracted and all the usefulness for an ordinary mathematician will be lost.
The Mizar Mathematical Library (MML for short) established in 1989 is con-

sidered one of the bigest repositories of computer checked mathematical knowledge
in the world. The basic item in the MML, called a Mizar article, reflects roughly a
structure of an ordinary paper, being considered at two main layers – the declar-
ative one, where definitions and theorems are stated and the other one – proofs.
Naturally, although the latter is the larger part, the former needs some additional
care – the submission will be accepted for inclusion into the MML if the approach
is correct and the topic is not already present there.
In recent years, the most intensively developed disciplines were general topology

(steered by Trybulec, Białystok, Poland) and functional analysis (led by Shidama,
Nagano, Japan). The first author took part in a large project of translating a
compendium Continuous Lattices and Domains with a significant success. As a
by-product of this encoding, apart from quite readable Mizar scripts, also the pre-
sentation of the source which is accessible to ordinary mathematicians and pure
HTML form with clickable links to notions and theorems are available.
Since mathematics in MML is based on ZFC set theory, and the notion of

structures is of somewhat other character, the basic division of the repository into
two parts is provided: the articles which do not use the notion of a structure
(forming the so called concrete part) and the remaining, abstract part of MML.
This division stimulates the enhancement of the library, forcing the movement of
preliminary concrete items from the abstract part of the library.
This can be considered a drawback of the MML – obviously the chosen set

theory cannot be changed easily, and the formalization of work which strongly

26

Two Formal Approaches to Rough Sets

depends (or just proposes another axiomatics) on a set theory other than ZFC, e.g.
Bryniarski’s work [1] is not that straightforward.

3 The Theory, Informally

There are two popular extensions of the classical set theory – one of them, Zadeh’s
fuzzy sets, are already present in the MML [7]. The rough-set (and correspond-
ing interval-set) model is another important extension for modelling vagueness,
where information is incomplete or imprecise. One of the views for rough sets is
operator-oriented, with approximations defined as two additional set-theoretic ob-
jects. The other is set-oriented view, taking a rough set as the family of sets having
the same upper and lower approximations. In the interval-set model, the range of
the unknown set is given as a pair of its bounds. Hence virtually any member of
such family can be the considered set. Although both models have strong logical
foundations, we will focus here rather on the construction of appropriate algebraic
models.

3.1 Rough sets

Rough sets, which were introduced by Pawlak [10], are often viewed through the
prism of applications, especially when the information is incomplete or uncertain.
Given a finite non-empty universe U and the relation R defined on U which in the
original Pawlak’s approach is an equivalence relation, i.e. is reflexive, symmetric
and transitive, a partition U/R of U into equivalence classes Ei, called elementary
sets, is given. The pair 〈U,R〉 is called an approximation space. From the agent’s
point of view, elements which belong to the same class of R are indiscernible.

In the approximation space 〈U,R〉 one can define for an arbitrary set A ⊆ U

the two operators of the lower and upper approximation.

A⋆ =
⋃

Ei⊆A

Ei = {x ∈ U : [x]R ⊆ A}

A⋆ =
⋃

Ei∩A 6=∅

Ei = {x ∈ U : [x]R ∩ A 6= ∅}

Potentially, we can consider elementary sets as just elements of a partition of U
with R as a hidden argument. It is clear that if equivalence classes are singletons,
then the rough set, treated as a pair of A⋆ and A⋆ reduces to the ordinary set
A. Lattices of rough sets were studied primarily by Iwiński in [5] in the original
Pawlak’s setting. In our case we drop the assumption of reflexivity of R, i.e. in case
of symmetric and transitive relations, or in case of tolerance relations, the lattice
retains some basic properties. This generalization can go even further, with the
obvious change from [x]R into the image R(x).

27

Adam Grabowski and Magdalena Jastrzębska

3.2 Interval sets

According to the interval-set approach, over a finite non-empty universe U we can
think of the interval set A as a pair of two sets, A1, A2 ∈ 2U , where A1 ⊆ A2 as
follows:

A = [A1, A2] = {X ∈ 2U : A1 ⊆ X ⊆ A2}.

Given two intervals, A = [A1, A2] and B = [B1, B2]. We define the interval-set
intersection, union and difference as

A ⊓ B = {A ∩B : A ∈ A, B ∈ B}

A ⊔ B = {A ∪B : A ∈ A, B ∈ B}

A \ B = {A \B : A ∈ A, B ∈ B}

Further on, we can define the interval-set complement by putting

¬[A1, A2] = [U,U] \ [A1, A2].

It is clear that I(2U), the set of all intervals over U, together with the above
operations, forms a completely distributive lattice which is not a Boolean algebra,
since for an interval set A, A⊓¬A is not necessarily equal to [∅, ∅], similarly A⊔¬A

is not necessarily equal to [U,U].

4 Formalization of Intervals

In this section we describe briefly main points of the formalization of (lattices of)
intervals we recently completed in [4].
Tolerance approximation spaces, i.e. the framework in which rough sets are

defined, are relational structures. An important fact here is that the formalization of
interval sets does not depend on the notion of a structure (essentially the operations
on such sets can be viewed as the operations applied to ordered pairs, or as collective
operations on families of subsets).

4.1 A mixture of modes and functors

Since appropriate correctness conditions should be proven for all definitions (the
existence for both modes and functors and additionally the uniqueness for functors),
the Library Committee suggests to use the functors instead of modes when possible
to prove that they are uniquely determined (one of the exceptions is given in Section
5.1). According to this policy, we are forced to use the notion of the interval set
parametrized by its ends.

definition let U be set;

let X, Y be Subset of U;

func Inter (X,Y) -> Subset-Family of U equals

:: INTERVA1:def 1

{ A where A is Subset of U : X c= A & A c= Y };

end;

28

Two Formal Approaches to Rough Sets

But we needed also more general notion, the class of all intervals over given
universe.

definition let U be set;

mode IntervalSet of U -> Subset-Family of U means

:: INTERVA1:def 2

ex A, B be Subset of U st it = Inter (A, B);

end;

The last redefinition is to restrict the result type of the functor Inter and to en-
sure that we can use operations defined on itervals to concrete intervals determined
by its ends.

definition let U; let A, B be Subset of U;

redefine func Inter (A, B) -> IntervalSet of U;

end;

4.2 Operations on intervals

On the one hand, treating interval sets as families of subsets, we can consider lattice
operations on them as corresponding set-theoretical collective operations.

definition let U be non empty set,

A, B be non empty IntervalSet of U;

func A _/_ B -> IntervalSet of U equals

:: INTERVA1:def 3

INTERSECTION (A, B);

end;

Using the “equals” construction both constructors (i.e. INTERSECTION and
“_/_” operation) are automatically unified.

definition let SFX, SFY be set;

func INTERSECTION (SFX,SFY) means

:: SETFAM_1:def 5

Z in it iff ex X,Y st X in SFX & Y in SFY & Z = X /\ Y;

end;

Note that these operations, named INTERSECTION and UNION in the Mizar
formalism, in fact were originally defined on families of subsets, and later the types
of arguments were generalized just into sets. Of course, basic translation lemmas
are provided.

theorem :: INTERVA1:12

for U being non empty set,

A1, A2, B1, B2 being Subset of U st

A1 c= A2 & B1 c= B2 holds

INTERSECTION (Inter (A1,A2), Inter (B1,B2)) =

{ C where C is Subset of U : A1 /\ B1 c= C & C c= A2 /\ B2 };

29

Adam Grabowski and Magdalena Jastrzębska

We proved some necessary lemmas – properties of intervals, and instead of using
concrete functors (Inter), we introduced an attribute with a similar meaning.

definition let X be set; let F be Subset-Family of X;

attr F is ordered means

:: INTERVA1:def 8

ex A, B being set st

A in F & B in F & for Y being set holds

Y in F iff A c= Y & Y c= B;

end;

We were surprised why the following was not proven before – Mizar article
SETFAM 1 [9] is dated back to 1989; apparently for twenty years nobody had
needed this elementary fact of distributivity or just the proof is hidden too deeply
(simple searching for simultaneous use of both functors was unsuccessful).

theorem :: INTERVA1:30

for X being set, A,B,C being non empty ordered Subset-Family of X holds

UNION (A, INTERSECTION (B,C)) =

INTERSECTION (UNION (A,B), UNION (A,C));

4.3 Linking the classical set theory

Note that min and max synonyms were introduced to set-theoretical meet and
union, respectively, because interval’s ends can be calculated so.

theorem :: INTERVA1:27

for A,B being Subset of U,

F being ordered non empty Subset-Family of U st

F = Inter (A,B) holds

min F = A & max F = B;

Speaking informally about the extension of the classical set theory we can avoid
some real formal difficulties (as in the case of the set of complex numbers which is
an extension of the set of all reals, but was originally defined in the MML as the
Cartesian square R2). Hence, trivial intervals determined by A correspond to the
singletons of A.

4.4 The complementation operator

The complementation has a slightly different notation than the ordinary set-theo-
retic one in order to avoid the overloading (remember A is a family of subsets of
the universe U, and hence a subset of 2U):

definition let U be non empty set, A be non empty IntervalSet of U;

func A ^ -> non empty IntervalSet of U equals

:: INTERVA1:def 10

Inter ([#]U,[#]U) __ A;

end;

30

Two Formal Approaches to Rough Sets

Similar overloading would be dangerous in the case of projections ‘1 and ‘2 –
originally these were just the coordinates of the Cartesian product. We defined the
A‘‘1 and A‘‘1 as the left-hand-side and the right-hand-side ends of the interval A
(or the meet and the union of A).

theorem :: INTERVA1:46

for U being non empty set, A being non empty IntervalSet of U holds

A^ = Inter ((A‘‘2)‘,(A‘‘1)‘);

Within the Mizar library some useful special objects are constructed when
needed to register some existential clusters, and counterexamples are considered
usually to illustrate the topic to students. Since interval sets act in some cases not
as classical crisp sets, we find it useful to also include them in the article [4].

theorem :: INTERVA1:54

for A being non empty IntervalSet of U holds

{} in A _/_ (A^);

5 Rough Sets Revisited

The problem with the rough sets is that in order to fully reuse the expressive
power of the Mizar language and to reflect the current state of the MML, unlike
the intervals, rough sets should be defined using the abstract part of the Mizar
library. On the other hand, to benefit from the generalized approach to sets via
rough sets, it would be necessary to have them in the concrete part. This, however,
is impossible, because the rough sets were defined in Mizar over the tolerance space,
i.e. the structure belonging to the latter part of MML.

5.1 Pairs vs. subsets

We will not describe here the basic notions of the formalized approximations, the
details can be found in [2] and [7]. They are defined in Mizar pretty closely to the
natural language according to Section 3.1. The only doubt was whether to choose
the definition of a rough set as a union of elementary sets or the latter one, in terms
of equivalence classes. The former can omit the notion of indiscernibility relation,
but we decided to follow the latter way as it is used more often. Obviously, none of
the properties of indiscernibility relation, neither transitivity, nor even symmetry
is assumed. The properties are added later to show essential properties of the
operators, only where needed.
For example, the lower approximationX⋆ of a rough setX in the approximation

space A is given by

definition let A be non empty RelStr;

let X be Subset of A;

func LAp X -> Subset of A equals

:: ROUGHS_1:def 4

{ x where x is Element of A : Class (the InternalRel of A, x) c= X };

end;

31

Adam Grabowski and Magdalena Jastrzębska

where Class is just another name for the image of a relation (as a result of a
revision, originally the class of abstraction of an equivalence relation).

definition

let A be Approximation_Space;

let X be Subset of A;

mode RoughSet of X means

:: ROUGHS_1:def 8

it = [LAp X, UAp X];

end;

Potentially, this mode can be defined as a functor (it is unique), but we found
it useful to have both views for rough sets formalized verbatim (with the other
representation just as the subset of the tolerance approximation space, being rough
in the case of the different lower and upper approximations, and exact or crisp,
otherwise).

definition let X be Tolerance_Space;

mode RoughSet of X ->

Element of [:bool the carrier of X, bool the carrier of X:] means

:: INTERVA1:def 13

not contradiction;

end;

As it can be easily seen, both notions coincide, but to ensure the correspon-
dence between the two models, the following operator which converts a subset of
approximation space (with the tolerance relation as a hidden argument) into the
pair of sets was introduced:

definition let X be Tolerance_Space, A be Subset of X;

func RS A -> RoughSet of X equals

:: INTERVA1:def 14

[LAp A, UAp A];

end;

5.2 Lattice-theoretical approach

In many real-life applications, lattice theory usually serves well as the source of
appropriate models, hence many examples of lattices can be found in the MML,
e.g. lattices of subgroups, subspaces of a vector space, real numbers or topological
domains. Also lattices of fuzzy sets are formalized there.

definition let X be Tolerance_Space;

func RSLattice X -> strict LattStr means

:: INTERVA1:def 23

the carrier of it = RoughSets X &

for A, B being Element of RoughSets X,

A’, B’ being RoughSet of X st A = A’ & B = B’ holds

(the L_join of it).(A,B) = A’ _\/_ B’ &

(the L_meet of it).(A,B) = A’ _/_ B’;

end;

32

Two Formal Approaches to Rough Sets

We have shown basic properties of the lattice of rough sets, such as distribu-
tivity, boundedness and completeness (Stone algebras are not yet defined in the
MML), most of them formulated as functorial registrations of adjective clusters of
the form

registration let X be Tolerance_Space;

cluster RSLattice X -> complete;

end;

Besides the obvious pros of using a computer math-assistant we can point out
here two main gains of this formalization. From the viewpoint of rough-set theory,
it is the inheritance – in Mizar the structures can be freely extended, e.g. to apply
to the lattice structures given a topology, or an ordering relation (since lattices and
posets are developed in some sense independently, or in parallel).
From the viewpoint of the Mizar community the gain is that some evident gaps

were identified and filled in, like the aforementioned distributivity of collective
intersection and union.

6 Conclusions and Further Work

Regardless of the concrete formal definition of rough sets chosen (either as a pair
of approximations or as the equivalence class of indiscernibility relation), many
interesting algebraic models of rough sets are presented, see e.g. Pomykała [11]
or the aforementioned Iwiński [5]. Also Bryniarski [1] offers a formal approach
which is pretty close to the Mizar formalism in its style, although the motivation
is somewhat different (and also computers were not used there).
Based on the MML, we can be sure that a thorough exploration of the theory,

like the formalization of “Continuous Lattices and Domains” or general topology
points out much better existing gaps and possible improvements of this repository.
Unlike RST, these disciplines have standard textbooks, and this can make this work
harder. Our goal is to formalize (or, more precisely, to map, because many of the
facts are already available in the MML) Järvinen’s paper [6]. Having constructed
the structure of intervals and rough sets, further research will be continued. As a by-
product, we can also reuse general topology which is the area where roughness could
also be studied – with the obvious example of the upper and lower approximation
operators as the topological closure and interior.
In parallel, the authors from China (not directly involved in this project) wrote

an article about the properties of rough subgroups, already accepted for inclusion
into the MML, as an extension of the existing group theory corpus.
Strenghtening of the Mizar checker will hopefully decrease the de Bruijn factor

(the quotient of the size of a formalization of a mathematical text and the size of its
informal original), and hence, the proofs will be more compact, with the readability
unaffected.
Although existing provers are best known in the area of finding short axiomati-

zations of various logical systems (like the classical problem of Robbins algebras),
other possibilities can enhance this framework. Urban’s [13] tools translating the

33

Adam Grabowski and Magdalena Jastrzębska

Mizar language into the input of first-order theorem provers or XML interface pro-
viding information exchange between various math-assistants are already in use.
Here we can foresee exploration of the properties of certain lattices.

References

1. Bryniarski, E.: Formal conception of rough sets, Fundamenta Informaticae 27(2–3),
pp. 109–136, 1996.

2. Grabowski, A.: Basic properties of rough sets and rough membership function, For-
malized Mathematics, 12(1), pp. 21–28, 2004.

3. Grabowski, A.: On the computer-assisted reasoning about rough sets, in B. Kęplicz
et al. (Eds.), Monitoring, Security and Rescue Techniques in Multiagent Systems,
Advances in Soft Computing, Springer, pp. 215–226, 2005.

4. Grabowski, A. and Jastrzębska, M.: On the lattice of intervals and rough sets, to
appear in Formalized Mathematics, 2009.

5. Iwiński, T.: Algebraic approach to rough sets, Bulletin of the Polish Academy of Sci-
ences. Mathematics, 35, pp. 673–683, 1987.

6. Järvinen, J.: Lattice theory for rough sets, in J.F. Peters et al. (Eds.), Transactions
on Rough Sets VI, LNCS 4374, pp. 400–498, 2007.

7. Mitsuishi, T., Endou, N. and Shidama, Y.: The concept of fuzzy set and membership
function and basic properties of fuzzy set operation, Formalized Mathematics, 9(2),
pp. 351–356, 2001.

8. Mizar Home Page, http://mizar.org/.
9. Padlewska, B.: Families of sets, Formalized Mathematics, 1(1), pp. 147–152, 1990.
10. Pawlak, Z.: Rough sets, International Journal of Computer and Information Sciences,
11, pp. 341–356, 1982.

11. Pomykała, J. and Pomykała, J.A.: The Stone algebra of rough sets, Bulletin of the
Polish Academy of Sciences. Mathematics, 36(7–8), pp. 495–508, 1988.

12. Trybulec, A.: Some Features of the Mizar Language. In Proceedings of ESPRITWork-
shop, Torino, 1993, available at http://mizar.uwb.edu.pl/project/trybulec93.ps.

13. Urban, J.: Translating Mizar for first order theorem provers, LNCS 2594, pp. 203–215,
2003.

14. Yao, Y.Y. and Li, X.: Comparison of rough-set and interval-set models for uncertain
reasoning, Fundamenta Informaticae, 27(2–3), pp. 289–298, 1996.

34

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

Improving Representation of Knowledge

within the Mizar Library⋆

Adam Grabowski and Christoph Schwarzweller

1 Institute of Mathematics, University of Białystok
Akademicka 2, 15-267 Białystok, Poland

adam@math.uwb.edu.pl
2 Department of Computer Science, University of Gdańsk

Wita Stwosza 57, 80-952 Gdańsk, Poland
schwarzw@inf.ug.edu.pl

Abstract. Efficient handling of extensive repositories is one of the ma-
jor objectives of mathematical knowledge management. It is naturally con-
nected, in order to attract more potential users (both researchers and stu-
dents), with the need to build large libraries of formalized mathematics,
and these two activities should not interfere. This may be achieved by con-
stant enhancement of the quality of digital repositories, in which the proofs
can additionally be verified with the help of proof assistants. Based on our
experience with the MML we discuss some of the issues concerned with this
process, describe mechanisms of revisions which seem to be indispensable
to meet the expectations of contemporary mathematicians. We argue that
even careful reviewing of contributions cannot cope with the task of keeping
a mathematical repository efficient and clearly arranged in the long term.

1 Introduction

The contemporary way of doing mathematics can be substantially enriched by
using computers, in comparison to classical pen-and-paper model – and this is
what Mathematical Knowledge Management network aims at.
For a researcher, one of the activities here is obviously just doing mathematics

for himself – and math assistants known in this areas offer much freedom and flexi-
bility. Certain doubts can appear if it comes to knowledge exchange – incompatible
definitions, different notations or more than one proof of the same theorem are
something natural in mathematical practice. For repositories of computer-checked
knowledge this means that either these various objects should be linked somehow
or they should be handled separately, however automatic discovery of such places
seems to be hard.
One possibility, of course, is reviewing the submissions. Reviewing improves the

quality of knowledge and proofs added to the repository, but we shall illustrate that
in the long run it cannot ensure that a mathematical repository meets the expecta-
tions. We therefore claim that revisions (as the reorganizations of the Mizar library

⋆ This is an extended and updated version of the paper from MKM 2007.

ISBN 978-83-7431-229-5 ISSN 0860–150X 35

Adam Grabowski and Christoph Schwarzweller

are usually called) are an essential part of maintaining mathematical repositories:
in order to keep it clean and attractive for users, from time to time a “core team”
has to check and improve the organization, quality, and proofs of a mathematical
repository.
In the following section we describe and discuss the goals and benefits of re-

visions compared to a straightforward reviewing process. Then, after a brief in-
troduction to the Mizar system [11], we consider the reviewing process of MML
submissions in Section 3. We describe reviewing criteria and show which insuffi-
ciencies can be handled by reviewing. In contrast, Section 4, is devoted to revisions
of MML illustrating on the one hand what kind of improvements reviewing cannot
perform, on the other hand the role of revisions in maintaining MML. This is the
process done mainly by a human hand as of now, but we also describe existing
Mizar utilities devised to facilitate this process; in the next section we discuss some
issues concerned with this activity and describe some traps the developers may
meet when enhancing the library. Then we conclude drawing some remarks for
future.

2 The Motivation

The goal of a revision is to improve the mathematical repository. In contrast to
reviewing submissions, however, here the attention is turned to the repository as
a whole, not to a single, new part of it. Consequently, the motivation for revisions
can be for example:

– keeping the repository as small as possible,
– preserving a clear organization of the repository in order to attract authors,
– establishing “elegant” mathematics, that is e.g. using short definitions (without
unnecessary properties) or better proofs.

Note that all these points characterize a qualitative repository and can hardly
be achieved by reviewing single submissions. Of course there are different possibil-
ities to achieve the points mentioned. Improving the prover e.g. can shorten proofs
and hence – simplify the repository. Reorganizing a mathematical repository prob-
ably demands manipulating the whole file structure, not only the files themselves.
Therefore we decided to classify revisions based on their occasion, that is on which
kind of insufficiency we want to address. Based on our experiences with the Mizar
Mathematical Library we distinguish four major occasions for revisions:

1. improving authors’ contributions;
2. improving the underlying prover or proof checker;
3. reorganizing the repository;
4. changing the representation of knowledge.

Improving an authors’ contributions is the typical task of reviewing and is of
course to be recommended for mathematical repositories too: nomenclature can
be polished up to fit to the yet existing one, definitions can be improved, that is

36

Improving Representation of Knowledge within the Mizar Library

e.g. generalized if appropriate. Proofs are also a matter of interest here, especially
keeping them as short as possible, yet still understandable is of major concern. In a
large, open repository however, authors sometimes may prove and submit theorems
or lemmas not being aware that those are already part of the repository. Similarly,
special versions of already included theorems can happen to be “resubmitted”. It
is doubtful that this kind of flaws will be detected by ordinary reviewing.

Strengthening the underlying prover or proof checker has also an impact on
the repository. Proofs can be shortened or rewritten in a more clear fashion, both
being fundamental properties of attractive mathematical repositories. Even more,
theorems in such a collection may become superfluous, because the improved prover
accepts and applies them automatically. A typical example here is the additional
inclusion of decision procedures.

Reorganizing the repository deals with the fact that a repository is built up
by a large number of contributors. For their new developments, authors (should)
use already existing theories as a basis. To establish their main results, however,
they often have to prove additional theorems or lemmas just because the theory
used does not provide them yet. So, these additional facts have to be put in the
right place of the repository. Otherwise, it will be hard for other authors to detect
them or at least searching the repository becomes less comfortable. The building of
monographs goes in the same direction: a frequently used theory should be handled
with extra care. Not only should all related theorems be collected in a distinguished
place, but also still lacking theorems be complemented, in order to ease the work
for further authors. These tasks can only be accomplished when considering the
repository as a whole, that is by revisions.

The last point concerns the development of a repository in the long term. What
if after a while it turns out that another definition or representation of mathematical
objects would serve our purposes better than the one chosen? Should it be changed?
Note that a lot of authors already could have used these objects in their proofs,
that is changing the definition or representation would imply changing all these
proofs – and of course one cannot force authors to redo all their proofs. On the
other hand, including both definitions or representations leads to an unbalance: the
theory of the new preferred version is much less developed than the one of the old
version, so authors hardly will base their developments on the new one. Again, the
solution is a revision: in the best case definitions and representations are changed
by the “core team”, so that ordinary users can further use all theorems without
even noticing they have been changed.

In the following sections we will illustrate these considerations by examples
taken from the Mizar Mathematical Library and in particular show how revisions
maintain mathematical repositories.

3 Reviewing MML Submissions

Reviews of submissions to the MML – as reviews of ordinary submissions for con-
ferences or journals – have the overall goal to check whether a submission should be
accepted (for inclusion into the MML) and simultaneously improve the quality of

37

Adam Grabowski and Christoph Schwarzweller

that submission. For mathematical repositories, however, the criteria for acceptance
and improvements are somewhat different.

3.1 The Criteria

Certainly the contents of a submission for a repository should likewise be origi-
nal and interesting. Original here, of course, means that definitions and theorems
presented are not part of the repository, yet. This is easy to check for the main
theorem of a submission. For technical lemmas used to establish this main result,
however, this task is much more difficult. So, for example, a reviewer will probably
neither know nor be willing to check whether a theorem like

theorem

for F,G being FinSequence, k being Nat st

G = F|(Seg k) & len F = k + 1 holds F = G ^ <*F/.(k+1)*>;

is already included in a repository. Even if the textual search via grepping is no
longer the only method to find such repetitions since the MML Query by Grzegorz
Bancerek [3] is available, even after the volunteer will learn how to use this system,
still there is no single automated bunch of tools which removes all repeated the-
orems effectively. Furthermore, the motivation to check these things in detail will
be even decreased, because such a point will not decide between acceptance and
rejection.
The question whether a submission is interesting should be handled more liber-

ally. Of course, the usual issues, that is the quality of the main results, apply here
too. There is, however, another kind of submissions to repositories: the one that
deals with the further development of (basic) theories. This concerns collections of
basically simple theorems providing necessary foundations, so that more ambitious
developments can be accomplished easier. Usually, these are theorems that easily
follow from the definitions, however are used so frequently that repeating the proof
over and over again is hardly acceptable. Examples here are the theories of com-
plex numbers or polynomials, where among other things we can find the following
theorems.

theorem

for a,b,c,d being complex number st

a + b = c - d holds a + d = c - b;

theorem

for n being Ordinal,

L being add-associative right_complementable add-left-cancelable

right_zeroed left-distributive (non empty doubleLoopStr),

p being Series of n,L holds

0_(n,L) *’ p = 0_(n,L);

Though hardly interesting from a mathematical point of view, such theorems are
important for the development of a repository and should therefore be considered
as interesting, too.

38

Improving Representation of Knowledge within the Mizar Library

Improvements of a submission are a more difficult issue. Firstly, we can consider
definitions and notations contained in the submission. Can they be arranged more
sparsely, i.e. can the results be established based on fewer axioms? Is it possible or
reasonable (in the actual repository) to generalize the definitions? This also applies
to theorems. Note that the above theorem, though applicable to polynomials, is in
fact stated for power series. Again to address these issues, a good knowledge of the
repository by the reviewers is necessary.
Secondly, when it comes to proofs, there are hardly any guidelines, because

proving in particular is a matter of style. We can hardly force an author to change
his (finished) proof into another one using completely different proof techniques.
What we can do, is to suggest improvements for the presented proof. We can, for
example, propose a more accurate use of the proof language to get more elegant or
better readable proofs. Or we can give pointers to other theorems in the repository
that allow to shorten the proof.

3.2 The Evaluation

Based on these considerations the reviewing process for Mizar articles, that is
for submissions to the Mizar Mathematical Library, has been introduced. Using
basically the commonly used scheme accept/revise/reject (and apart from its de-
scriptive grade) the rating of a submission can be3

A. accept
requires editorial changes only, which can be done by the editors

B. accept
requires changes by the author to be approved by the editors

C. revise
substantial author’s revisions necessary, resubmission for another review

D. decision delayed
revision of MML necessary

E. reject
no hope of getting anything valuable

The most important issue here, of course, is the question whether an article
should be included in MML. Note that there are two grades (A and B) for accep-
tance. The reason is that accepted articles should be included in the MML as soon
as possible to avoid duplication of results during the reviewing phase.4 So, while
submissions rated B or C need feedback from the authors, submissions rated A can
be added to MML without further delays.
The most interesting point is D. Note that here already the problem of a revision

of the whole repository is addressed. Reviewing can point out that – albeit the

3 There has been and is still going on an email discussion about these options, especially
the last grade is questionable since virtually in any paper one can find useful parts. E
is kept for articles which cover already formalized topics, blocks of theorems trivial for
the checker or just meaningless definitions and their consequences.

4 There even has been the proposition of making public submissions before reviewing to
avoid this problem, but we are not aware of a definite decision concerning this point.

39

Adam Grabowski and Christoph Schwarzweller

author has proved his main results – the way Mizar and MML support establishing
the presented results is not optimal and should be improved.
As the most notable example here, we can cite the newly submitted definition

of a kind of a norm for the elements of the real Euclidean plane, which are defined
in the Mizar library just as finite sequences of real numbers.

definition let n be Nat, f be Element of TOP-REAL n;

func |. f .| -> Real means

ex g being FinSequence of REAL st

g = f & it = |. g .|;

end;

where |. g .| is a usual Euclidean norm which was introduced in the MML before
as

definition let f be FinSequence of REAL;

func |. f .| -> Real equals

:: EUCLID:def 5

sqrt Sum sqr f;

end;

After the change of the loci type (the submission obtained grade D, of course)
from FinSequence of REAL into real-yielding FinSequence in the EUCLID arti-
cle the earlier definition was no longer needed which helped to simplify the structure
of notions in this new submission. We can (and eventually did so in December 2007)
go even further: it is reasonable to separate all operations on functions fulfilling
the same scheme into new library item; that is the way two articles from VALUED
started – devoted to various functions with numbers as values and their properties.
The possible flattening of the net of notions seems to be highly desirable –

another illustrative example can be here the notion of the absolute value, defined
originally for real numbers as

definition let x be real number;

func abs (x) -> real number equals

:: ABSVALUE:def 1

x if 0 <= x

otherwise -x;

end;

and the other, corresponding but fully independent, for complex numbers:

definition let z be complex number;

func |.z.| -> complex number equals

:: COMPLEX1:def 16

sqrt ((Re z)^2 + (Im z)^2);

end;

Because all reals are also complex numbers (it is automatically obtained via the
attributes and clusters mechanism), the following modification (such flattening or
linearization is called a redefinition) was done:

40

Improving Representation of Knowledge within the Mizar Library

definition let x be real number;

redefine func |. x .| equals

:: ABSVALUE:def 1

x if 0 <= x otherwise -x;

end;

which needed of course the proof of the equivalence of both notions for reals; abs
is still kept as a synonym.

3.3 First Impression

The decision is not a typical result of majority voting, because referees giving the C
grade point out possible improvements, so usually the lowest grade counts (luckily,
in case of E marks, all three referees agreed).
To summarize the grades for 2006, let us look at Table 1.

Table 1. Number of submissions to the MML and their grades in 2006

all A B C D E

items 39 6 4 20 6 3

% of total 100 15.4 10.2 51.3 15.4 7.7

Basically, all ten submissions graded A and B were included into the MML, and
among C and D candidate articles, which were returned to authors, other 15 were
accepted; in total there were 25 Mizar articles accepted in 2006, the first year when
the reviewing procedure as described above was introduced.
All in all we have seen that reviewing MML submissions indeed addresses only

the first point mentioned in Section 2. Of course a thorough reviewing process
will improve the quality of MML articles and may even guide authors into the
direction of a good style of “Mizar writing”. As we can conclude from Table 1, this
is the case of the majority of submissions because the authors should enhance the
articles according to the referees’ suggestions. However there remain situations in
which the MML as a whole should be improved; in the long term mere reviewing
of submissions cannot avoid this. Here even carefully reviewing of Mizar articles –
as already indicated by rate D above – can only help to detect the need for such
revisions.

3.4 Further Development

In 2007, the policy of reviewing showed its usefulness – all articles with A and B
grades were immediately (those with B – after suggested corrections) incorporated
into the MML, as well as four among the others. Four articles still wait for a revi-
sion of the library. Interesting to see, comparing to the previous year the number of
positive grades is granted to nearly 70% submissions. The reasons can be twofold:

41

Adam Grabowski and Christoph Schwarzweller

Table 2. Number of submissions to the MML and their grades in 2007

all A B C D E

items 50 14 20 10 5 1

% of total 100 28 40 20 10 2

first of all, assuming that majority of authors are active on a long term basis,
at least longer than one year, by applying referees’ suggestions they worked out
their better proof style for their future articles (remembering some of the submis-
sions are revised C-grades from 2006, so the total numbers are bigger). The other
reason is that articles can just be written better – thanks to revisions (especially
generalizations, removing repetitions, and a better organization of knowledge).

Table 3. Number of submissions to the MML and their grades in 2008

all A B C D E

items 55 8 37 9 0 1

% of total 100 14 68 16 0 2

In the subsequent year, actual D grades were suggested, but they were followed
by the detailed description of which changes of the MML should be done, hence
appropriate revisions were done immediately. The percentage of A grades is lower;
B ones were usually corrected by authors. What is worth noting here is that many
C-grades from this year were not improved by the authors and resubmitted, few
cases are students who just graduated. The only E was the case of unfortunate
repetition of virtually all theorems from an article already accepted to the MML
(of course the author did not know this).

4 Improving the Library

The Library Committee has been established on November 11, 1989. Its main aim
is to collect Mizar articles and to organize them into a repository – the MML.
Recently, from this agenda a new additional one was created – the Development
Committee, which takes care of the quality of the library as a whole.

4.1 Types of Revisions

For the reasons we tried to point out before, the Mizar Mathematical Library is
continuously revised. Roughly speaking, there are three different kinds of revisions:

– an authored revision – consists of small changes in some articles in the library
when somebody writing a new article notices a theorem or a definition in an old

42

Improving Representation of Knowledge within the Mizar Library

article that can be generalized. This is also the case of D grades as described
above. To do this generalization, sometimes it is necessary to change (improve)
some older articles that depend on the change. As a rule, a small part of the
library is affected, but if it is not the case, usually it is hard to handle more
such revisions at a time, otherwise the Library Committee has a lot of work
with the synchronization of the patches (some sort of revision control system
could be useful here).
– an automatic revision – takes place frequently whenever either a new revision
software is developed (e.g. software for checking equivalence of theorems, which
enables to remove one or two equivalent theorems) or the Mizar verifier is
strengthened and existing revision programs can use it to simplify articles.
– a massive reorganization of the library – although was very rare before, as of
now it happens rather frequently. It consists in changing the order of processing
articles when the Mizar data base is created. Its main steering force is the
division of the MML into the concrete and abstract parts.

4.2 MML Versions

Apart from the Mizar version numbering, the MML has also a separate indexing
scheme. As of the time of writing, the latest official distribution of the MML was
numbered as 4.128.1063.
As a rule, the last number, currently 1063 shows how many articles there are

in the library (this number can be sometimes different because 36 items were re-
moved so far from the MML, but some additional items such as EMM articles, and
“Addenda” which do not count as regular submissions, were added). The second
number (128) changes if a bigger revision is finished and the version is made official.
Although it is relatively small comparing with the age of the library, the changes
are much more frequent. To give some numbers, at the beginning of 2006, this value
was set to 51, so a revision happens approximately every two-three weeks (or, to
be more precise, this is how often it is made public).

4.3 Some Statistics

The policy of the head of Library Committee – to accept virtually all submissions
from the developers and, if needed, enhance it by himself, was then very liberal.
For these nearly twenty years there were only three persons taking the chair of
the head of the committee (Edmund Woronowicz, Czesław Byliński, and currently
Adam Grabowski); their decisions were usually consulted with other members of
the committee, though.
Such an openness of the repository was justified: in the early years of the Mizar

project the policy “to visit Białystok and get acquainted with the system straight
from its designers” resulted in the situation that all authors knew each other per-
sonally, now the situation changed.
The MML evolved from the project, frankly speaking, considered rather an

experiment of how to model mathematics to allow many users benefit from a kind
of parallel development. Now, when the role of the library is to be much closer to

43

Adam Grabowski and Christoph Schwarzweller

the reality and the MML itself is just one among many mathematical repositories,
the situation is significantly different.

Table 4. Number of accepted submissions to the MML by year

Year 1989 90 91 92 93 94 95 96 97 98 99

Articles 65 136 46 48 33 33 35 57 39 47 65

Year 2000 01 02 03 04 05 06 07 08 09

Articles 54 33 42 54 80 48 25 40 47 17

As it can be seen, the first two years were extremely fruitful. No doubt, the first
one was most influential, when the fundamentals, such as basic properties of sets,
relations, and functions, the arithmetic, and vector spaces were established – to
enumerate among many these most important. Some articles from that time were
more or less straight translations from those written in older dialects of the Mizar
language (Mizar PC, Mizar-2 etc., see [9]). Especially the subsequent year – 1990,
when many authors could benefit from introducing the basics, hence they were
able to work on various topics in parallel, brought into the Mizar Mathematical
Library the biggest number of submissions so far (136 per year), then the number
stabilized.

4.4 Towards Concrete and Abstract Mathematics

As it was announced in 2001 [12], the MML will be gradually divided into two parts.
As the library is based on the Tarski-Grothendieck set theory, the part devoted to
the set theory (and related objects, as relations, functions, etc.) is indispensable.
There is, however, huge amount of knowledge for which set theory is essential, but
actually based on the notion of structures by means of the Mizar language.
There are three parts of the Mizar Mathematical Library:

– concrete, which does not use the notion of structures (here of course comes
standard set theory, relations, functions, arithmetic and so on);
– abstract, i.e. STRUCT_0 and its descendants, operating on the level of Mizar
structures; both parts are not completely independent – here the concrete part
is also reused (abstract algebra, general topology including the proof of the
Jordan Curve Theorem, etc.);
– SCM, the part in which the theory of Random Access Turing Machines are
modelled, i.e. a mathematical model of a computer is described – from here in
fact all lemmas of a more general character are taken to the other two parts.
This will obviously never be self-contained but probably the best separated
part of the MML.

This division is reflected in the file mml.lar in the distribution containing the
order of processing of articles (it is especially important when creating the Mizar

44

Improving Representation of Knowledge within the Mizar Library

data base) – the “concrete” articles go first, at the end we have those devoted to
the SCM series. The process of separating these three parts is very stimulating for
the quality of the Mizar library – many lemmas are better clustered as a result
of this activity. Paradoxically, the more articles the concrete part consists of, the
better is the organization of the library, because although structures allow for more
feasible formal apparatus, still many useful “concrete” lemmas are contained in the
abstract part.
As of the middle of 2009, this division can be summarized in Table 5.

Table 5. The three parts of the MML

Part Number of articles % of total

concrete 275 25.87
abstract 733 68.96
SCM 55 5.17

Total 1063 100.00

Note that apart from the revisions suggested by the referees when giving D-
grades, any user can suggest changes via the Mizar TWiki site; he may of course
also send an improved version via email to the Library Committee; as an example,
lemmas needed for the Gödel Completeness Theorem were reformulated to provide
its better understanding as a result of the external call.

4.5 Reviewing Software

Most of massive changes of the Mizar repository are done automatically with the
help of computer programs. They can be roughly divided into four groups:

– existing, publicly available in every distribution of the system (the author is
encouraged to clean his article until all these tools will report no errors, but
there are only a few programs of this kind):
• on the syntactical level – chklab, inacc (removing unused labels and blocks
of text), here also (renthlab) can be listed – unifying labels in the article;
this of course does not report any errors, but it makes the source more
readable as the enumeration of theorems within the Mizar file reflects that
of the abstract file (without proofs),

• on the proof level – relprem, relinfer, reliters, trivdemo (suggesting
unnecessary premises, proof steps, parts of iterative equality, and nested
proofs, respectively),

– with use limited to the Library Committee (here the number of tools is much
bigger, including editing versions of the above) – mainly syntactical (corrolla,
incassum, irrcase, irrvar, irrpred – pointing out theorems justified only by
library references, unused assumptions, cases in proofs, irrelevant variables and
local predicates, to name only a few), also cleaning and sorting the directives
in the environment declaration of the article,

45

Adam Grabowski and Christoph Schwarzweller

– based on Bancerek’s MML Query [3],
– developed by Josef Urban, we will list some of them in the next section.

4.6 MML Management

As a first tool of collaborative work on the library we can enumerate Mizar TWiki
(wiki.mizar.org) which gradually changes its profile from an experimental – and
rarely used – forum into the place where suggestions/experiences with the MML
can be described. In our opinion, current Wiki for Mizar is far from being attractive
(e.g. it lacks the option of remote MML database building to check if the revision
can affect bigger part of the library) and the application of the others’ work (also
based on Wiki, like that of Coq [4]) would be interesting and highly desirable. But
without any additional optimizations (there is no make for the MML) it would be
abuse to call remote processing “interactive” because as of now, the verification of
the whole library takes about six hours while the regeneration of the database files
is ca. 30 minutes (frankly speaking, too much of this time is just file handling).
A the most important, and probably one of the better known MML tools, we

can point out MML Query [3]. It has proved its feasibility in situations when one
tries to search not only on the text level (by grep-like tools), but to find out items
which use restricted set of constructors or notations, and it is how subsequent EMM
(Encyclopedia of Mathematics in Mizar) items were created, e.g. XCMPLX, XREAL,
XXREAL, and XBOOLE series, dealing with complex, real, extended real numbers, and
boolean properties of sets, respectively. Also researchers, when writing their Mizar
articles, can find it very useful. But usually, a typical author does not care too
much if his lemma which takes some ten lines of Mizar code is already present in
the library. Actually, searching for such auxiliary facts can take much more time
than just proving them. This results in many repetitions in the library MML Query
cannot cope with. And although the author can feel uncomfortable with multiple
hits of the same fact, annotating such situations and reporting it to the MML
developers is usually out of his focus.
This is the area where another tool comes in handy. Potentially very useful

for the enhancement of the MML as a whole, MoMM (Most of Mizar Matches)
developed by Josef Urban was primarily developed to serve as an assistant during
authoring Mizar articles [15]. It is a fast tool for fetching matching theorems, hence
existing duplications can be detected and deleted from the MML (according to [15],
more than two percent of main Mizar theorems is subsumed by the others). The
work with the elimination of these lemmas is still to be done – many of detected
repetitions are useful special cases (or important proof steps, as in the Jordan Curve
Theorem polygonal case was), so their automatic removal is at least questionable.
The authors often want to add straightforward consequences of some theorems
from the MML to enrich the theory they develop and to have a complete set of
properties in a single place.
Another popular software, MML CVS – the usual concurrent version system

for the MML was active for quite some time, but then was abandoned because
the changes were too cryptic for the reader due to the lack of proper marking
of items. The main obstacle in the current state of the MML is that still there

46

Improving Representation of Knowledge within the Mizar Library

are no absolute names for definitions and theorems. Albeit the enumeration of
theorems within one file is not a big deal, especially if some of the theorems which
are before the chosen are moved elsewhere (canceled keyword which serves as a
placeholder for deleted theorem keeps the numbers right). The real problem is with
the movements of bigger parts between the articles, where simple translation of
the old library reference into the new one is insufficient; the user is obliged to add
some environment declaration items. Then the changes are usually too massive and
too technical to find out what really matters (and then it is better to check the
differences on the level of the abstract – i.e. without proofs).

5 Which Way to Go?

Contemporary standards of the publishing process open some new possibilities –
there are many journals online, Springer also announces their books/proceedings
at their webpage. Paper-printed editions have some obvious limitations, vanishing
for electronically stored and managed repositories of knowledge. We can notice, as
an example, new functionalities of [10] in comparison to (even online) version of
Abramowitz and Stegun [1].

5.1 Flexibility

Of course the content, once published on paper, is fixed. We can mind some real-life
situations – rough sets as an example of obtaining new results via a kind of revision
process (originally considered to be classes of abstraction with respect to some
equivalence relation, then some of the properties were dropped to generalize the
notion – see [7], [8]); also Robbins algebras and related axiomatizations of algebras
are a good example, when a classical problem could be rewritten and reused when
solved. In the aforementioned examples these were reasons for writing other papers,
within the computerized repository the enhancement (the generalization of results)
can be obtained via the revision process. Still, the problem of authorship of such
“mixed”, in a sense, results remains.

5.2 Distribution

As a rule, building an extensive encyclopedia of knowledge needs some investment;
on the one hand, it can be considered by purely financial means as “information
wants to be free, people want to be paid” [2]. That is the way Wolfram MathWorld
[17] has been raised, as a collection closed in style, in fact authored by one person,
Eric Weisstein.
But right after this service has been closed due to the court injunction, it soon

appeared that the need to bridge this gap is that strong – many volunteers were
working to develop a concurrent service to that of Wolfram’s, but of the more open
type, based on the mechanism similar to Wiki.
The effort of PlanetMath5 is now a kind of Wikipedia for mathematics (in fact

they even cooperate closely). Adding or editing content by virtually anyone is an

5 http://planetmath.org.

47

Adam Grabowski and Christoph Schwarzweller

obvious advantage of such sources, but at the same time this also makes them
less stable and less reliable. Jimmy Wales, Wikipedia’s founder, recalls that it is
not always a definitive source of information, and hence is not ideal for academic
purposes, if the knowledge is not supported by books, journals, etc. The urgent
need for correctness checking becomes critical when mathematical knowledge is
taken into account. Here, however proof assistants give the valuable possibility
of checking, at least for the correctness of proofs; still the question of whether
the definitions are right, i.e. how the encoded version reflects real mathematical
objects, is the one only humans can answer to a full extent.
As we can observe based on the HOL Light system, John Harrison is the person

who formalized all 74 theorems from Wiedijk’s “Top 100 Mathematical Theorems”
[16] proven with this proof-assistant. In the case of Mizar, 50 were developed by 36
people (notable exception is Marco Riccardi who during past three years formalized
twelve important facts from the list). Archive of Formal Proofs of Isabelle is closer
to the MML in this sense. Of course, for the bigger number of developers, high
price of lacking homogeneity must be paid. It is important then, to have a group
of supervisors (the “core team”) of the repository, as is the Library Committee for
the MML.

5.3 The Question of Authorship

Even in non-profit projects, like GNU, people may want to get their payment in
another form: at least the added annotation such as “This article is owned by...”,
as in PlanetMath, which can also be considered a kind of motivation to keep higher
standards of the encyclopedia since the authorship is not fully anonymous.
In the MML the authorship is fixed (every article is annotated, there are some

items of Library Committee), there were however, especially recently, cases when
the parts of submissions moved around so that the authorship actually exchanged
(as for example, with the formalization of the Zorn Lemma, originally created
by Grzegorz Bancerek, and now, after the changes concerned with the move of
this article to the concrete part, attributed to Wojciech Trybulec). Of course, the
content published in the automatically translated journal Formalized Mathematics
is authored accordingly with the original, not revised version. In the case of many
articles, especially those submitted much earlier, the content which was written by
their author is only a small part of the original size due to new language capabilities
or the generalizations which caused triviality of theorems proven there. There is
over 200 authors of MML items; many of them are no longer active (they left the
Mizar project), some were just short-term collaborators (e.g., students who did the
work suggested by someone else) and the ownership of such article does not matter
so much, at least for the authors.
It is clear that databases of knowledge will not be (so is not the MML as

of now) only collections of formalized existing, classical results. The authors who
develop their own results should retain their rights. Partly, although not officially
stated, it is achieved via dividing the article into two parts: preliminary, or of much
more general interest, and the proper submission. The first section is meant to be
moved eventually in a more appropriate place in the core of the MML. Usually

48

Improving Representation of Knowledge within the Mizar Library

the reviewers’ opinions reflect this policy – and even if the grade D is not given
explicitly, the suggestions are expected to be taken into account by the Library
Committee.

6 Final Remarks

To meet the expectations of researchers being potential users of repositories of
mathematical knowledge, such collections cannot be frozen. The availability of the
contemporary electronic media opens new directions of the development of the
new encyclopedias yet unavailable for their paper counterparts. The need of the
enhancement stems not only from the fact that there may be some obvious mistakes
in the source; the reasons are far more complex.
In the paper, we tried to point out some of the issues connected with the mecha-

nism of revisions performed on the Mizar Mathematical Library, a large repository
of computer-verified mathematical knowledge. The dependencies between its items
and the environment declaration (notation and especially, constructors) are as of
now too complex to freely move a single definition or a theorem between separate
articles.
In our opinion, the current itemization of the MML into articles does not fit the

needs we expect from the feasible repository of mathematical facts; if we try to keep
authors’ rights unchanged, there is an emerging need to have some other, smaller
items which guarantee the developer’s authorship rights, a kind of ownership similar
to that used in the PlanetMath project. We propose to keep the authorship for any
basic Mizar block/item (theorems, definitions and registrations), having in mind
that some of private lemmas which are not exported to the data base, can be
significant steps of the proof of a public theorem.
Also the better automation of the MML revision process is strongly desirable.

However possible, at least to some extent, due to some difficulties which can be met
as we pointed out, the human supervision of such automatic changes will probably
always be needed.

Acknowledgments

The first author wants to express his gratitude to Andrzej Trybulec and Artur
Korniłowicz for their continuous cooperation on the enhancement of the MML. We
express also our gratitude to all the reviewers of the Mizar Mathematical Library
(especially Adam Naumowicz) for their great job done.

References

1. Abramowitz, M. and Stegun, I.A.: Handbook of Mathematical Functions; National
Bureau of Standards, Applied Mathematics Series No. 55, U.S. Government Printing
Office, Washington, DC, 1964, see also http://www.convertit.com/Go/ConvertIt/
Reference/AMS55.ASP.

49

Adam Grabowski and Christoph Schwarzweller

2. Adams, A.A. and Davenport, J.H.: Copyright issues for MKM, in: A. Asperti, G.
Bancerek, and A. Trybulec (eds.), Proc. of MKM 2004, LNCS 3119, Springer, pp. 1–
16, 2004.

3. Bancerek, G.: Information retrieval and rendering with MML Query; in: J.M. Bor-
wein and W.M. Farmer (eds.), Proc. of MKM 2006, Lecture Notes in Artificial In-
telligence 4108, pp. 65–80, 2006.

4. Corbineau, P. and Kaliszyk, C.: Cooperative repositories for formal proofs; in:
M. Kauers, M. Kerber et al. (eds.), Towards Mechanized Mathematical Assistants,
Proc. of MKM 2007, LNAI 4573, Springer, pp. 221–234, 2007.

5. de Bruijn, N.G.: The Mathematical Vernacular, A Language for Mathematics with
typed sets; in: P. Dybjer et al. (eds.), Proc. of the Workshop on Programming Lan-
guages, Marstrand, Sweden, 1987.

6. Davenport, J.H.: MKM from book to computer: A case study; in: A. Asperti, B.
Buchberger, and J. Davenport (eds.), Proc. of MKM 2003, LNCS 2594, Springer,
pp. 17–29, 2003.

7. Grabowski, A.: On the computer-assisted reasoning about rough sets; in: B. Dunin-
Kȩplicz et al. (eds.), Monitoring, Security, and Rescue Techniques in Multiagent
Systems, Advances in Soft Computing, Springer, pp. 215–226, 2005.

8. Grabowski, A. and Schwarzweller, C.: Rough Concept Analysis – theory development
in the Mizar system; in: A. Asperti, G. Bancerek, and A. Trybulec (eds.), Proc. of
MKM 2004, Lecture Notes in Computer Science 3119, pp. 130–144, 2004.

9. Matuszewski, R. and Rudnicki, P.: Mizar: the first 30 years; Mechanized Mathe-
matics and Its Applications, 4(1), pp. 3–24, 2005.

10. Miller, B.R. and Youssef, A.: Technical aspects of the Digital Library of Mathematical
Functions; Annals of Mathematics and Artificial Intelligence, 38, pp. 121–136, 2003.

11. The Mizar Homepage; http://www.mizar.org/.
12. Rudnicki, P. and Trybulec, A.: Mathematical Knowledge Management in Mizar; in:
B. Buchberger and O. Caprotti (eds.), Proc. of MKM 2001, Linz, Austria, 2001.

13. Rudnicki, P. and Trybulec, A.: On the integrity of a repository of formalized mathe-
matics; in: A. Asperti, B. Buchberger, and J. Davenport (eds.), Proc. of MKM 2003,
Lecture Notes in Computer Science 2594, pp. 162–174, 2003.

14. Sacerdoti Coen, C.: From proof-asistants to distributed knowledge repositories: tips
and pitfalls; in: A. Asperti, B. Buchberger, and J. Davenport (eds.), Proc. of MKM
2003, Lecture Notes in Computer Science 2594, pp. 30–44, 2003.

15. Urban, J.: MoMM – fast interreduction and retrieval in large libraries of formalized
mathematics, International Journal on Artificial Intelligence Tools, 15(1), pp. 109–
130, 2006.

16. Wiedijk, F.: Formalizing 100 Theorems, http://www.cs.ru.nl/~freek/100/.
17. Wolfram Mathworld web page; http://mathworld.wolfram.com/.

50

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

A Language for Mathematical

Knowledge Management

Steven Kieffer1, Jeremy Avigad2, and Harvey Friedman3⋆

1 Simon Fraser University
2 Carnegie Mellon University

3 Ohio State University

Abstract. We argue that the language of Zermelo Fraenkel set theory with
definitions and partial functions provides the most promising bedrock se-
mantics for communicating and sharing mathematical knowledge. We then
describe a syntactic sugaring of that language that provides a way of writing
remarkably readable assertions without straying far from the set-theoretic
semantics. We illustrate with some examples of formalized textbook defi-
nitions from elementary set theory and point-set topology. We also present
statistics concerning the complexity of these definitions, under various com-
plexity measures.

1 Introduction

With the growing use of digital means of storing, communicating, accessing, and

manipulating mathematical knowledge, it becomes important to develop appro-

priate formal languages for the representation of such knowledge. But the scope

of “mathematical knowledge” is broad, and the meaning of the word “appropri-

ate” will vary according to the application. At the extremes, there are competing

desiderata:

– At the foundational level, one wants a small and simple syntax, and a precise

specification of its semantics. In particular, one wants a specification as to

which inferences are valid.

– At the human level, one wants to have mathematical languages that are as

easy to read and understand as ordinary mathematical texts, yet also admit a

precise interpretation to the foundational level.

For ordinary working mathematicians, the foundational interpretation is largely

irrelevant, but some sort of formal semantics is necessary if the information encoded

in mathematical texts is to be used and manipulated at the formal level. Of course,

one solution is simply to pair each informal mathematical assertion with a formal

translation, but then there is the problem of obtaining the formal translations

and ensuring that they match the intention of the informal text. As a result, it is

⋆ Work by Avigad and Friedman partially supported by NSF grant DMS-0700174.

ISBN 978-83-7431-229-5 ISSN 0860–150X 51

Steven Kieffer, Jeremy Avigad, and Harvey Friedman

more promising to use semi-structured languages that integrate features of both

the foundational and human levels. This results in a smooth spectrum of languages

in between the two extremes. At intermediate “expert user” levels, one may want a

language whose structure is close to that of the underlying foundational framework,

yet is as humanly readable as possible.

To complicate matters, there are features of mathematical knowledge that are

not captured at the level of assertions: mathematical language is used to communi-

cate definitions, theorems, proofs, algorithms, and problems, among other things.

At the level of a mathematical theory, language is also used to communicate re-

lationships between these different types of data. The formal information that is

relevant will vary depending on the application one has in mind, be it database

access and search, theorem proving, formal verification, etc.

Here we will be primarily concerned with mathematical assertions as they are

used to state definitions and theorems.4 If one is looking for a foundational frame-

work that is robust enough to subsume those used by most systems of MKM, it

is hard to beat the language of set theory: we know of no foundational system

other than Quine’s New Foundations that cannot be interpreted in the language

of set theory in such a way that inferences are reduced to inferences in Zermelo-

Fraenkel set theory with the axiom of choice (ZFC), or some plausible extension

(say, with large universes of sets). To be clear, we are not denying the importance of

other frameworks for more specific purposes. For example, the theory of real closed

fields is appropriate to representing many constraint problems, and constructive

frameworks are better suited to certain forms of algorithmic reasoning. It is also

important to find ways of sharing the additional information that comes with the

use of these more restricted frameworks. We are simply singling out set theory as a

unifying framework for expressing what assertions in the various local frameworks

have in common.

We extend the foundational framework in two ways. First, we allow for explicit

definitions of new predicates and functions on the universe of sets. And, second, we

allow function symbols to denote functions that are only partially defined, using a

logic of partial terms. We call the resulting formal system DZFC . As we observe in

Section 2, this system is easily shown to be conservative over ZFC . We argue that

these extensions are not just a matter of syntactic sugar, but, rather, are essential

to adequate representation of the mathematical data: there is a difference between

assertions using defined terms and their expanded versions, and, in mathemati-

cal terms, 1/0 really is an undefined quantity. Thus DZFC is our proposal for a

foundational language and its semantics.

Our main goal here is to show that the distance between this foundational level

and ordinary mathematical text is not as far as is commonly supposed, by pre-

senting a syntactically-sugared version of set theory, PST , that is simultaneously

4 In passing, we note that computational proof assistants like Mizar [13], HOL [7], Is-
abelle [12], Coq [3] and HOL light [8] all provide languages that can be used to describe
mathematical proofs. Of these, the Mizar and Isabelle/Isar languages model human
proof languages most closely. The Isar effort [16] shows that the proof language is
somewhat orthogonal to the assertion language; that is, Isar can be instantiated to
various foundational frameworks, subject only to minor constraints.

52

A Language for Mathematical Knowledge Management

close to both. On the one hand, we show that our language is easily parsed and

translated to DZFC . On the other hand, by automatically replacing symbolic ex-

pressions with user-provided natural language equivalents, we obtain output that

is humanly readable, and, although not exactly literary, recognizably faithful to

the original mathematical texts.

We support this last claim with examples from Suppes’s Axiomatic set theory
[14] and Munkres’s Topology [11]. In each case, we present our formal input with

both DZFC and our natural language translations. Indeed, the appendices to Kief-

fer [9] provide a corpus of 341 definitions, taken from Chapters 2–6 of Suppes and

Sections 12–38 of Munkres. Examples of the natural language translations can be

found in Appendix B, below. These examples show that PST offers a promising

target semantics for mathematical markup languages, like OMDoc [10].

To illustrate the utility of PST , we describe two pieces of software that take

advantage of both the formal structure of the definitions and their proximity to the

informal text. First, we describe statistical studies of the complexity of definitions

in our corpus, measured in various ways. Our analysis shows, not surprisingly, that

expanding definitions to the pure language of set theory yields formulas that are

huge. Perhaps more surprisingly, quantifier complexity of definitions remains re-

markably low, even when they are expanded to DZFC . We also describe software

that makes it possible to explore definitional dependencies, expanding and com-

pressing nodes via a graphical interface. To be sure, data like this can be mined

from contemporary formal verification efforts.5 But mathematical developments

are often changed significantly in the process of formalization; what distinguishes

the data presented here is the extent to which it faithfully represents the informal

texts it is supposed to model.

Our “user-friendly” version of set theory is based on Friedman [6]; see also

an earlier version in Friedman [5]. Most of the work described here, including the

implementation of the parser, the entering of the data from Suppes’s and Munkres’s

books, and associated software, constitute Kieffer’s MS thesis [9], written under

Avigad’s supervision. The thesis and code described here, as well as additional

samples of the natural language translations, can be found via Avigad’s web page.6

2 ZFC with definitions and partial terms

It is widely acknowledged that Zermelo-Fraenkel axiomatic set theory with the

axiom of choice, ZFC , is robust enough to accommodate ordinary mathematical

arguments in a straightforward way. The most notable exceptions are category-

theoretic arguments which rely on the existence of large universes with suitable

closure properties; but these can be formalized in extensions of ZFC with suitable

large cardinal axioms, or by restricting the closure properties of the universes in

question.

5 See, for example, the MPTP challenges, http://www.cs.miami.edu/~tptp/

MPTPChallenge/.
6 Specifically, see http://www.andrew.cmu.edu/user/avigad/Papers/mkm/.

53

Steven Kieffer, Jeremy Avigad, and Harvey Friedman

In this section, we describe a conservative extension DZFC of ZFC . This theory

incorporates two features that allow for a more direct and natural mathematical

modeling:

– it accommodates partially defined functions, and hence undefined terms; and

– it allows the introduction of new function and predicate symbols to stand for

explicitly defined functions and predicates.

We describe each of these extensions, in turn.

To start with, DZFC is based on a free logic, with a special predicate E(t). This

is usually written t↓, and can be read “t is defined” or “t denotes.” The axioms

governing the terms are presented as the “logic of partial terms” in Beeson [2], E+

logic in Troesltra and Schwichtenberg [15]; see also the very helpful explanation and

overview in Feferman [4]. The basic idea is that variables in the language range over

objects in the intended domain (in our case, sets), but, as function symbols may

denote partial functions, some terms fail to denote. So, for example, the axioms

for universal instantiation are given by ∀x ϕ(x) ∧ t↓ → ϕ(t). The basic relation

symbols of ZFC , which we take to be ∈ and =, are assumed only to hold between

terms that denote; thus we have axioms s ∈ t→ s↓∧t↓ and s = t→ s↓∧t↓. Partial

equality s ≃ t is defined as usual by the axiom s ≃ t↔ (s↓ ∨ t↓ → s = t).

Next, the syntax of ordinary set theory is extended to include definition de-

scriptions, à la Russell. Formally, for each formula ϕ(x), the expression (ιx)ϕ(x)

is a term whose free variables are just those of ϕ, other than x. These terms are

governed by the axioms

y = (ιx)ϕ(x) ↔ ∀z (ϕ(z) ↔ z = y).

Thus in DZFC one can show that (ιx)ϕ(x) is defined if and only if there is a unique

y satisfying ϕ(y), in which case, (ιx)ϕ(x) is equal to that y.

Finally, one is allowed to introduce new function symbols and relation sym-

bols to abbreviate formulas and terms. That is, for each formula ϕ(x, ȳ), one can

introduce a new function symbol f(ȳ) with the axiom

f(ȳ) ≃ (ιx)ϕ(x, ȳ),

and for every formula ψ(ȳ) one can introduce a new relation symbol R(ȳ) with the

axiom

R(ȳ) ↔ ψ(ȳ).

It is not hard to show that adding the usual axioms of set theory to this framework

yields a conservative extension:

Theorem 1. DZFC is a conservative extension of ZFC .

The proof amounts to an interpretation of partial functions and elimination of

definitions that is by now standard; details can be found in [15, 9]. Note, however,

that the usual method of eliminating defined function symbols and relation symbols

by replacing them by their definiens can result in an exponential increase in length.

54

A Language for Mathematical Knowledge Management

3 The language of practical set theory, PST

We now describe a more flexible language, Practical set theory, or PST , designed

by Friedman. This language has two key features:

– The language incorporates a healthy amount of syntactic sugar, making it pos-

sible to express ordinary mathematical definitions and assertions in a natural

way.

– The language is easily and efficiently translatable to DZFC .

In this section we describe some of the features of PST and the translation to

DZFC . A full and precise specification of the PST and its DZFC semantics can

be found in [9, 6], where it was called the Language of Proofless Text, or LPT . The

claims of naturality will be supported with examples in the next section and in

Appendix B.

The starting point for PST is the usual syntax of first-order logic. We adopt

conventions to distinguish between variables, defined functions, and relations; appli-

cation of a defined relation REL to terms t1, . . . , tk is written with square brackets

REL[t1, . . . , tk], while application of a defined function Fun is written with paren-

theses, Fun(t1, . . . , tk). The usual language of first-order logic is augmented with

a significant amount of “syntactic sugar,” to make the expression of mathematical

notions as convenient as possible. These include the following.

Function application for sets. Any term may be used as though it were a function,

of any arity (including “infix”). For example, one may quantify a variable f , and

then proceed to use it as though it were a function. In PST , f(x) denotes the

unique u such that the ordered pair 〈x, u〉 is in f , assuming there is such u. The

following definition of the unary predicate FCN therefore asserts that f is a function

if it is a set of ordered pairs 〈x, u〉 in which no x occurs more than once as the first

component of a pair.

DEFINITION FS.2.58: 1-ary relation FCN. FCN[f] ↔ f = {〈x, y〉 : f(x) = y}.

Finite sets and tuples. In the previous example, we saw a finite tuple; namely, the

ordered pair 〈x, y〉. Tuples of any finite length are terms in PST .

A finite set can be denoted by simply listing all of its elements. For example, in

defining the Wiener-Kuratowski ordered pair, we may use the term {{a}, {a, b}}.

Set-builder notation. The example above illustrates the use of set-builder notation.

In PST , the term {t : ϕ} denotes the set of all values of t(x1, . . . , xn), where

the variables x1, . . . , xn occurring in t range over tuples satisfying ϕ(x1, . . . , xn).

Note that this involves an essential use of partiality; for example, in the intended

semantics, the term {x : x = x} is undefined.

Suppose we wish to define Image(f) to be the set of all f(x) such that x ∈

Dom(f). The expression

Image(f) ≃ {f(x) : x ∈ Dom(f)}

55

Steven Kieffer, Jeremy Avigad, and Harvey Friedman

is not what we want, because f on the right-hand side is taken to be a bound

variable ranging over the universe of sets. Instead, PST has us write

Image(f) ≃ {f(x) : x ∈ Dom(f), f fixed}

to indicate that the expression depends on a fixed value of f .

Defined function symbols. We use an exclamation mark in place of Russell’s ι as a

definite description operator. It is used in the next example, where we define an

infix function, +Q, for addition on the rational numbers. Every infix function is

given a precedence number, for use in determining order of operations.

DEFINITION FS.5.25: Infix function +Q. x+Q y ≃ (!z)(x, y, z ∈Q∧(∃a, b, c)

(a∈x ∧ b∈ y ∧ c∈ z ∧ a+SUB b = c)). Precedence 40.

A definition may be composed of any number of “If ... then ...” clauses, and

may end with one “Otherwise ...” clause, which allows definition by cases, as in

the example below. In this example the ‘Otherwise’ clause introduces a condition

under which the function is undefined. For this we use the predicate ↑, and this

allows for the definition of partial functions.

DEFINITION FS.2.3: 1-ary function Dom. If BR[R] then Dom(R) ≃ {x : (∃y)(x R y)}.

Otherwise Dom(R)↑.

Defined relation symbols. As with functions, we may define infix relations, as in the

definition of < on the rational numbers, below.

DEFINITION FS.5.24: Infix relation <Q. x<Q y ↔ (∃z, w)(x, y ∈Q∧z ∈x∧w ∈ y∧

z <SUBw).

Lambda notation. PST includes a lambda operator which can be used to bind

variables and thereby denote functions. In the example below, we define a binary

function called Cartespow (for “Cartesian power”). This function maps a pair of

sets A, B to the set AB; i.e., a product of B-many copies of A. The definition

relies on a previously defined function, Cartesprod (for “Cartesian product”), a

binary function taking a map f and a set C to the product over c ∈ C of the sets

f(c). The definition of Cartespow uses lambda abstraction to define the constant

function b 7→ A on the fly, to serve as the first argument to Cartesprod.

DEFINITION MunkTop.19.2.5: 2-ary function Cartespow. Cartespow(A,B) ≃

Cartesprod((λb∈B)(A), B).

56

A Language for Mathematical Knowledge Management

Infix relation chains. Infix relations may be chained together in the usual way, as

with the <R relation in the example below.

DEFINITION MunkTop.13.3.a.basis: 0-ary function Stdrealtopbasis.

Stdrealtopbasis≃ {U ⊆R : (∃a, b∈R)(U = {x∈R : a<R x<R b})}.

Bounded quantifiers. Quantified variables and variables used in set-builder notation

may be bounded by any infix relation, as in the example above.

The translation from PST to DZFC is not difficult. Since our grammar for PST
is not LL, we used the ACCENT compiler-compiler 7, which implements Earley’s

algorithm. The latter can parse any context-free grammar in cubic time, and runs

in quadratic time when the grammar is unambiguous [1].

Appendix A contains a number of examples of PST definitions, together with

their translations to DZFC . In each case, we present the DZFC input, a LATEX

representation of that input generated by the parser, and the translation to DZFC .

A much larger corpus of examples – 183 definitions from Suppes’s Axiomatic Set
Theory [14] and 148 definitions from Munkres’s Topology [11] – can be found in [9].

In practice, the translation took at most a few seconds to process a file containing

a dozen large definitions. Comparing the (LATEX) DZFC output with the (LATEX

version of the) PST input yields a factor of about 0.91, which is to say, the DZFC
translations are actually slightly shorter.

4 Natural language output

The examples of PST input in the last section are readable, but not attractive. It

is hard to remember meaning of symbols “BR” or “TOPSP”; it would help to have

phrases like “is a binary relation” or “is a topological space.” In fact, even for logical

connectives like ∧, natural language equivalents like “and” are generally easier to

read. In an ordinary mathematical language text, however, words are not always

favored over symbols. For example, defined functions are usually given symbols:

gcd(x, y) instead of “the greatest common divisor of x and y.” Binary relations like

= and < are usually preferred to “equal to” and “less than.” On the other hand,

unary relations often represent concepts that are expanded to words, as shown by

the examples above.

In light of these observations, we chose to output natural language equivalents

for the connectives, and allow the user to input natural language equivalents for

defined symbols. For example, with the entry

TOPSP:2@

reln:$(#^0,#^1)$ is a %e?topological space%ee?@

negn:$(#^0,#^1)$ is not a topological space@

plur:%$(#^0,#^1)$% are topological spaces@

nplu:%$(#^0,#^1)$% are not topological spaces@@

7 http://accent.compilertools.net/.

57

Steven Kieffer, Jeremy Avigad, and Harvey Friedman

the user can specify the natural language that should be used in place of the TOPSP

relation.

In some cases, either symbols or a natural language equivalent can be used, as

in {x ∈ N | . . .} or “the set of x ∈ N such that” It is usually awkward to have

natural language occur as a subterm of a symbolic expression; for example, consider

“1+the greatest common divisor of x and y.” Thus we incorporate a monotonicity

rule: once a subterm of a term has been expanded to natural language, natural

language versions are favored from then on. This choice yields, for example, {x ∈

N | a < x < b}, but also “the set of x in N such that a < x < b and x is even.”

Accordingly, the user supplies two clauses for a defined function or relation for

which symbols are preferred over words:

\wp:1@

symb:$\wp(#^0)$@

word:the power set of #0@@

whereas if words are the desired default then just one clause is needed:

Stdrealtop:0@

word:the standard topology on \mathbb{R}@@

Appendix B provides examples of natural language output. We emphasize that

these were generated directly from the PST input, using the additional natural

language data, supplied by the user, described above. Although the definitions are

not exactly literary, they are surprisingly readable, and close to ordinary math-

ematical text. It is certainly the case that additional heuristics could be used to

render the output more attractive, and additional markup from the user would

result in improvements. In other words, there is a lot more that can be done along

these lines; our claim here is only that PST offers an auspicious start.

5 Exploring definitions

Among the benefits of having a database of definitions is the ability to explore

those definitions interactively. We designed two simple programs with which to

demonstrate some of the possibilities.

Our first program allows the interactive display and manipulation of directed

acyclic graphs (dags) of conceptual dependencies, as depicted in Figure 1.

With a second program we gathered statistics on these graphs. Associated to

each definition is the dag of all definitions on which it depends; by the size of this

dag we mean the number of vertices, and by the depth of this dag we mean the

length of its longest directed path. Table 1 shows the maximum and mean values

for all definitions in our database.

Additional statistics, including data on the quantifier complexity of definitions

in our corpus, can be found in Appendix C.

58

A Language for Mathematical Knowledge Management

Fig. 1. Exploring the definition dag for the Stone-Čech compactification.

Table 1. Max and mean dag sizes and depths

Max Mean

All Depth 32 10.77
Size 110 29.56

Suppes Depth 26 10.09
Size 77 25.91

Munkres Depth 32 12.25
Size 110 36.01

59

Steven Kieffer, Jeremy Avigad, and Harvey Friedman

6 Conclusions

We have argued that one should adopt a language close to definitional set theory

as a uniform language to support communication and exchange of mathematical

results. The particular language we describe here, Practical set theory, fares well

in that regard: it is easy and natural to work with, providing a high-degree of

readability while remaining close to a clear foundational semantics.

Appendix A: Examples of PST input and DZFC translations

We consider a few examples of formal definitions, highlighting the naturality of PST
over DZFC . (The ̟0 function appearing in the DZFC translations is a function

defined to take (a, b) to the Wiener-Kuratowski ordered pair {{a}, {a, b}}.)

Example 1. Here the description operator is used in PST to bind an ordered pair,

so that we are able to refer to “the unique ordered pair 〈Y, T ′〉 such that....” This

translates to a much clumsier expression in DZFC , requiring two additional bound

variables.

PST input:

DEFINITION MunkTop.29.4: 2-ary function Oneptcompactification.

If TOPSP[X,T] then Oneptcompactification(X,T) \simeq

(!<Y,T’>)(

COMPACTIFICATION[Y,T’,X,T] \wedge Y \less X \approx_{C} 1_{N}

).

PST rendered in LATEX:

DEFINITION MunkTop.29.4: 2-ary function Oneptcompactification. If

TOPSP[X,T] then Oneptcompactification(X,T) ≃ (! 〈Y, T ′〉)

(COMPACTIFICATION[Y, T ′, X, T] ∧ Y \X ≈C 1N).

DZFC translation:

Oneptcompactification(X,T) ≃ (ιy0)(TOPSP[X,T] ∧ y0 ≃ (ιx0)(∃Y, T
′)(x0 =

̟0(Y, T
′) ∧ (COMPACTIFICATION[Y, T ′, X, T] ∧ ≈C[\(Y,X), 1N])))

Example 2. Next observe what happens in DZFC , where we cannot match the

brevity of expression used in our definition of the FCN[f] predicate in PST (which

says that f is a function).

PST input:

DEFINITION FS.2.58: 1-ary relation FCN. FCN[f] \iff

f = {<x,y> : f(x) = y}.

60

A Language for Mathematical Knowledge Management

PST rendered in LATEX:

DEFINITION FS.2.58: 1-ary relation FCN. FCN[f] ↔ f = {〈x, y〉 : f(x) = y}.

DZFC translation:

FCN[f] ↔ f = (ιz0)(∀y0)(y0 ∈ z0 ↔ (∃x, y)(y0 = ̟0(x, y)∧ ((ιx0)(̟0(x, x0) ∈ f) =

y)))

Example 3. Here we see how important the lambda operator is:

PST input:

DEFINITION MunkTop.19.2.5: 2-ary function Cartespow. Cartespow(A,B)

\simeq Cartesprod((\lambda b \in B)(A),B).

PST rendered in LATEX:

DEFINITION MunkTop.19.2.5: 2-ary function Cartespow. Cartespow(A,B) ≃

Cartesprod((λb∈B)(A), B).

DZFC translation:

Cartespow(A,B) ≃ Cartesprod((ιz0)(∀y0)(y0 ∈ z0 ↔ (∃b, x0)(y0 = ̟0(b, x0) ∧

x0 = (A) ∧ b ∈ B)), B)

Appendix B: Examples of the natural language translations

In some cases our natural language generating program pst2nl produces output

that is quite close to what a human being might write. For example, from the

following PST input,

DEFINITION MunkTop.13.2: 2-ary function Basisgentop. If TOPBASIS[B, X]

then Basisgentop(B, X) ≃ (!T ⊆℘(X))((∀U ⊆X)(U ∈T ↔ (∀x∈U)(∃B ∈B)

(x∈B ∧B⊆U))).

we get the following NL (natural language) output:

Definition: If B is a basis for a topology onX then the topology on X generated
by B is the unique T ⊆ ℘(X) such that for every U ⊆ X , U ∈ T if and only if

for every x ∈ U , there exists B ∈ B such that x ∈ B and B ⊆ U .

Indeed, this is not substantially different from the original text in Munkres [11],

page 78. After defining what it means for B to be a basis, Munkres says,

If B satisfies these two conditions, then we define the topology T generated
by B as follows: A subset U of X is said to be open in X (that is, to be an

element of T) if for each x ∈ U , there is a basis element B ∈ B such that

x ∈ B and B ⊂ U . Note that each basis element is itself an element of T .

61

Steven Kieffer, Jeremy Avigad, and Harvey Friedman

What is more common is that the output of pst2nl reads nicely except for a

“run-on” sound, resulting from insufficient punctuation. For example:

Definition: If R is a strong simple order on X then the basis for the order
topology on (X,R) is the set of U such that there exist a, b ∈ X such that U =

(a, b) or a is a first element in X and U = [a, b) or b is a last element in X and U

= (a, b].

In Munkres, page 84, all of this information is spread out over a numbered list:

Definition. Let X be a set with a simple order relation; assume X has

more than one element. Let B be the collection of all sets of the following

types:
1. All open intervals (a, b) in X .

2. All intervals of the form [a0, b), where a0 is the smallest element (if

any) of X .

3. All intervals of the form (a, b0], where b0 is the largest element (if any)

of X .
The collection B is a basis for a topology on X , which is called the order
topology.

Heuristics, combined with additional user markup, could eventually be incor-

porated to help improve the flow and punctuation of the translations. We have

implemented one easy improvement already, whereby adjacent assertions of a com-

mon predicate are combined into a single assertion using plural form. Thus, from

the PST input,

DEFINITION MunkTop.12.4.a: 3-ary relation FINERTOP.

If TOPSP[X,T] ∧ TOPSP[X,T ′] then FINERTOP[T ′,T , X] ↔ T ′ ⊇T .

we obtain:

Definition: If (X,T) and (X,T ′) are topological spaces then T ′ is finer than

T on X if and only if T ′ ⊇ T .

This time Munkres is able to make several definitions in a single paragraph,

and can abbreviate a more complex logical locution with the phrase “respective

situations.”

Definition. Suppose that T and T ′ are two topologies on a given set X .

If T ′ ⊃ T , we say that T ′ is finer than T ; if T ′ properly contains T ,

we say that T ′ is strictly finer than T . We also say that T is coarser
than T ′, or strictly coarser, in these two respective situations. We say T

is comparable with T ′ if either T ′ ⊃ T or T ⊃ T ′.

We consider a final example,

DEFINITION MunkTop.13.3.c: 0-ary function Krealtop. Krealtop ≃

Basisgentop(Stdrealtopbasis∪{V ⊆R : (∃W ∈ Stdrealtopbasis)

(V =W\{InclFrR(1N /n) : n∈N})},R).

62

A Language for Mathematical Knowledge Management

for which the NL output is as follows:

Definition: The K-topology on R is the topology on R generated by the stan-

dard basis for a topology on R union the set of V ⊆ R such that there exists

W in the standard basis for a topology on R such that V = W \ {1/n : n ∈ N}.

There are two sets mentioned in this definition: the set of V ⊆ R such that ...,

and the set of 1/n such that According to the “monotonicity rule” described in

Section 4, the latter is rendered in symbols since it has no subterm in words; the

former is rendered in words since its subterm, “the standard basis for a topology

on R” has no symbolic form, and is displayed in words by default.

Another feature of pst2nl is apparent in this last example, where the word

“in” appears before “the standard basis....” We get this preposition rather than

the incorrect phrase “is in,” thanks to the final clause in the user-supplied natural

language equivalents for the ∈ relation:

\in:infix@

symb:#0 \in #1@

nsym:#0 $\not\in$ #1@

reln:#0 is %e?in%ee? #1@

negn:#0 is not in #1@

plur:%#0% are in #1@

nplu:%#0% are not in #1@

prep:#0 in #1@@

Finally we note that the user is free to suppress artifacts of formalization, in

the NL output. In the PST above there is an inclusion function InclFrR, and the

number 1 is subscripted as 1N. None of this shows up in the NL output.

Comparison with Munkres, page 82, reveals that he is free to write in a less

regimented form than that of our definitions:

Finally, let K denote the set of all numbers of the form 1/n, for n ∈ Z+,

and let B′′ be the collection of all open intervals (a, b), along with all sets

of the form (a, b) − K. The topology generated by B′′ will be called the

K-topology on R.

Appendix C: Data on quantifier complexity and length

Our database of definitions entered in PST consists of 183 definitions from Suppes’s

Axiomatic Set Theory [14] and 148 definitions from Munkres’s Topology [11].

Quantifier complexity data. For each definition in our database, we measured quan-

tifier complexity in eight different ways. In the first place, we considered both al-

ternating quantifier depth, and non-alternating. Secondly, we considered each def-

inition in four different states: (1) as given in PST ; (2) as translated into DZFC ;

(3) the expanded version of the DZFC , that is, with all definienda replaced by their

63

Steven Kieffer, Jeremy Avigad, and Harvey Friedman

definiens, recursively, until the process halts; and (4) a partially expanded version

of the DZFC in which certain low-level, foundational definienda were left unex-

panded, namely: the union, intersection, and set difference operations, the ordered

pair, and powerset functions, the empty set, and the subset and superset relations.

The maximum and mean depths are presented in Table 2.

Table 2. Max and mean quantifier depths

Max Mean

PST 4 0.66
unexpanded DZFC 5 1.31

fully expanded DZFC 1235 78.68
partially expanded DZFC 552 38.54

PST alternating 3 0.63
unexpanded DZFC alternating 5 1.18

fully expanded DZFC alternating 422 36.19
partially expanded DZFC alternating 239 22.16

It has been said that among actually occurring definitions in mathematics texts,

the maximum alternating quantifier depth is three. Insofar as PST comes close to

what actually occurs in textbooks, the maximum alternating depth of 3 tends to

confirm this conjecture.

Note that the maximum depth after translating into DZFC goes up to 5. This

reflects what we saw in Appendix A, where a definition that used no quantifiers in

PST turned out to require them after translation into DZFC .

The maximum depth of 1235 for a fully expanded definition confirms the ne-

cessity of using definitions to package information into manageable chunks. Mean-

while, the contrast between the total expansion maximum, and the partial expan-

sion maximum of 552, demonstrates that the lowest, most foundational definitions,

lend quite a bit of this complexity.

The ratio 78.68/36.19 ≈ 2.17 of the mean fully expanded depth to the mean fully

expanded alternating depth suggests that quantifiers often occur in runs of two,

before alternating, when definitions are written in pure set theory. The somewhat

lower ratio of 38.54/22.16 ≈ 1.74 for the partially expanded cases indicates the

extent to which the lowest-level concepts contribute to this doubling of consecutive

quantifiers.

The mean depth for PST alternating (again, what comes closest to what we

ordinarily think of as quantifier depth in textbooks) shows that, while the maximum

is three, the most common depths are 0 and 1. The exact number of occurrences

are presented in Table 3.

Length data. As was expected, there is rapid blowup in the size of definitions when

they are expanded. In collecting our data we set a maximum of 231 − 1 before we

stopped counting, and this maximum was often reached.

In particular, since the development of the real numbers taken from Suppes [14]

involves such deep definition trees, any definition mentioning the real numbers will

64

A Language for Mathematical Knowledge Management

Table 3. Quantifier depth frequencies in PST

Occurrences

Depth PST PST alternating

0 178 178
1 118 120
2 30 35
3 14 8
4 1 0

have enormous expanded length. For example, the definition of the basis for the

standard topology on the reals (see Section 3) is just 303 symbols long after initial

translation into DZFC , but blows up to over 231 − 1 symbols after expansion.

The longest definition we formalized from Suppes [14] was 526 symbols, and

the longest from Munkres [11] was 714 symbols.

References

1. Aho, A.V. and Ullman, J.D.: The Theory of Parsing, Translation, and Compiling,
volume 1. Prentice-Hall, Englewood Cliffs, N.J., 1972.

2. Beeson, M.J.: Foundations of Constructive Mathematics. Springer, Berlin, 1985.
3. Bertot, Y. and Castéran, P.: Interactive theorem proving and program development:

Coq’Art: The calculus of inductive constructions. Springer, Berlin, 2004.
4. Feferman, S.: Definedness. Erkenntnis, 43(3):295–320, 1995. Varia with a Workshop

on the Foundations of Partial Functions and Programming (Irvine, CA, 1995).
5. Friedman, H. and Flagg, R.C.: A framework for measuring the complexity of mathe-

matical concepts. Adv. in Appl. Math., 11(1):1–34, 1990.
6. Friedman, H.: Proofless text. Manuscript, September 29, 2005.
7. Gordon, M.J.C. and Melham, T.F., editors: Introduction to HOL: A theorem proving

environment for higher-order logic. Cambridge University Press, 1993.
8. Harrison, J.: HOL light: a tutorial introduction. In Mandayam Srivas and Albert

Camilleri, editors, Proceedings of the First International Conference on Formal Meth-
ods in Computer-Aided Design, pages 265–269, 1996.

9. Kieffer, S.: A language for mathematical knowledge management. Master’s thesis,
Carnegie Mellon University, 2007.

10. Kohlhase, M.: OMDoc: An open markup format for mathematical documents, volume
4810 of LNAI. Springer, Berlin, 2006.

11. Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River, N.J., second edition,
2000.

12. Nipkow, T., Paulson, L., and Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher-
Order Logic, volume 2283 of Lecture Notes in Computer Science. Springer, Berlin,
2002.

13. Rudnicki, P.: An overview of the Mizar project. In 1992 Workshop on Types for
Proofs and Programs. Chalmers University of Technology, Bastad, 1992.

14. Suppes, P.: Axiomatic Set Theory. Van Nostrand, Princeton, 1960.
15. Troelstra, A.S. and Schwichtenberg, H.: Basic Proof Theory. Cambridge University

Press, Cambridge, second edition, 2000.

65

Steven Kieffer, Jeremy Avigad, and Harvey Friedman

16. Wenzel, M.: Isabelle/Isar – a generic framework for human-readable proof documents.
Studies in Logic, Grammar, and Rhetoric, 10(23), 2007. From Insight to Proof –
Festschrift in Honour of Andrzej Trybulec, edited by R. Matuszewski and A. Zalewska.

66

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

How to Define Terms in Mizar Effectively

Artur Korni lowicz

Institute of Computer Science
University of Bia lystok, Poland

arturk@math.uwb.edu.pl

Abstract. This paper explains how proofs written in Mizar can evolve
if some dedicated mechanisms for defining terms are used properly, and
how to write articles to fully exploit the potential of these mechanisms. In
particular, demonstrated examples show how automatic expansion of terms
and terms identification allow to write compact, yet readable proofs.

1 Introduction

It is commonplace that new authors writing their first Mizar [1] articles learn how
to use the language and the verification system by looking at basic articles stored
in the Mizar Mathematical Library. This is in principle the correct way, but the
problem is that some of these articles were written many years ago, when many
features currently available in Mizar had not been implemented yet. The Library
Committee keeps revising the articles quite successively, rewriting proofs to use
new features, but there is still much work to be done in this area. In fact it is
probably a never ending process, since stronger and stronger mechanisms are still
being added to the verifier to increase reasoning automation and make proofs much
shorter, sometimes almost trivial.

We will take some articles written at the beginning of the previous decade as
our working examples. We will focus particularly on automatic expansions of terms
defined with the equals (this feature was implemented in August 2005 in Mizar

version 7.6.01) and the identification of terms using identify (implemented in
August 2006 in version 7.8.01).

2 Definitions

Mizar is an open language, i.e. users can introduce new symbols and define new
notions. Symbols are qualified with the kinds of notions that can be defined, i.e.
predicates, attributes, modes, functors, structures, selectors and left and right func-
torial brackets.

In this section we will focus on modes and functors only. In particular, we will
give some hints on how their result types should be defined effectively.

Let us look at the following example, taken from [10].

ISBN 978-83-7431-229-5 ISSN 0860–150X 67

Artur Korni lowicz

definition

let A, B be set;

mode FUNCTION_DOMAIN of A,B -> functional non empty set means

:: FRAENKEL:def 2

for x being Element of it holds x is Function of A,B;

end;

It defines a functional non empty set, named FUNCTION DOMAIN, consisting
of functions from any set A into a set B, where functional means that its every
element is a function. Although at a first glance everything may look fine, we will
analyze the result type of this definition in more detail.

The author’s intention was to ensure that FUNCTION DOMAIN is always non-
empty. So the adjective non empty has been stated. This is correct. But the prop-
erty functional can be proven based on the definiens, and therefore should not be a
part of the result type. Of course, we would like to know that every FUNCTION DOMAIN

is functional. The best way to achieve that is to make a conditional registration:

registration

let A, B be set;

cluster -> functional FUNCTION_DOMAIN of A,B;

end;

Then the definition may be changed to:

definition

let A, B be set;

mode FUNCTION_DOMAIN of A,B -> non empty set means

for x being Element of it holds x is Function of A,B;

end;

Why is this version accompanied with the registration better than the original
definition? The point is seen when one introduces a functor with the result type
FUNCTION DOMAIN, like, for example, in [7]

definition

let UA be Universal_Algebra;

func UAAut UA ->

FUNCTION_DOMAIN of the carrier of UA, the carrier of UA

means

:: AUTALG_1:def 1

for h being Function of UA, UA holds

h in it iff h is_isomorphism UA, UA;

end;

To properly define functors, the Mizar verifier requires proving two correctness
conditions: existence saying that there exists an object of the type FUNCTION DOMAIN

satisfying the definiens, and uniqueness saying that there exists exactly one such

68

How to Define Terms in Mizar Effectively

object. With the first condition in mind, it is obviously easier to construct an ob-
ject with a less complex mother type, the “weaker” FUNCTION DOMAIN is more con-
venient, and non empty set is obviously “weaker” than functional non empty

set. One disadvantage of this approach is that the extra conditional registration
must always be imported to fully exploit the definition. But once we have the reg-
istration imported the checker knows that not only UAAut, but all other functors
with the result type FUNCTION DOMAIN are functorial without any proof. And this
is the real gain in the end.

A slightly different situation is when one introduces a new functor. The result
type of a functor must contain the information needed to formulate its definiens in
a natural and concise way and to allow proving its uniqueness. For example, in

definition

let f1,f2 be complex-valued Function;

func f1 + f2 -> Function means

:: VALUED_1:def 1

dom it = dom f1 /\ dom f2 &

for c being set st c in dom it holds it.c = f1.c + f2.c;

end;

f1+f2 must be of the type at least Function since the application operator (.),
which is defined for functions, is applied to it.

A typical example showing that some adjectives are required in the mother
type of a functor is a definition of a structural object, where needed selectors are
described. For example, in the definition of the product of two relational structures
(see [6])

definition

let X, Y be RelStr;

func [:X,Y:] -> strict RelStr means

:: YELLOW_3:def 2

the carrier of it =

[:the carrier of X, the carrier of Y:] &

the InternalRel of it =

["the InternalRel of X, the InternalRel of Y"];

end;

the adjective strict, saying that there are no other fields in the defined structure,
is necessary to prove the uniqueness condition. RelStr is a relational structure
which can be a predecessor of, for example, a relation structure extended by a
topology. So, it is clear that not all relational structures with the carrier and the
internal relation described above are equal. But if the structures are both strict,
they are equal.

3 Theorems and Registrations

In this section we demonstrate what theorems and registrations should be stated
in an article to achieve short proofs and use the full Mizar power.

69

Artur Korni lowicz

As an example let us take a proof of the associativity of the supremum in the
lattice of natural numbers with the GCD and LCM operations taken from [4].

A very naive proof which does not use too many Mizar features would look
like:

registration ::R1

cluster Nat_Lattice -> join-associative;

coherence

proof

let p, q, r be Element of Nat_Lattice;

set L = the L_join of Nat_Lattice;

set o = lcmlat;

a1: L = o by Def5;

reconsider p1 = p, q1 = q, r1 = r as Element of NAT by Def5;

thus p"\/"q"\/"r = L.(p"\/"q,r) by LATTICES:def 1

.= L.(L.(p,q),r) by LATTICES:def 1

.= o.(p1 lcm q1,r) by a1,Def4

.= p1 lcm q1 lcm r1 by Def4

.= p1 lcm (q1 lcm r1) by NEWTON:56

.= o.(p,q1 lcm r1) by Def4

.= L.(p,L.(q,r)) by a1,Def4

.= L.(p,q"\/"r) by LATTICES:def 1

.= p"\/"(q"\/"r) by LATTICES:def 1;

end;

end;

where Def4 is a definition of the operation playing role of the supremum and Def5

is a definition of the lattice, both taken from [4].
The first step to make the proof shorter is to introduce a theorem showing the
correspondence between the operation in the lattice and the operation on numbers,
like:

theorem T0:

for x, y being Element of Nat_Lattice

for m, n being Nat st x = m & y = n holds

x "\/" y = m lcm n

proof

let p, q be Element of Nat_Lattice;

let p1, q1 be Nat such that

a1: p = p1 & q = q1;

thus p"\/"q = (the L_join of Nat_Lattice).(p,q)

by LATTICES:def 1

.= lcmlat.(p,q) by Def5

.= p1 lcm q1 by a1,Def4;

end;

which gives the more concise proof of the registration

70

How to Define Terms in Mizar Effectively

registration ::R2

cluster Nat_Lattice -> join-associative;

coherence

proof

let p, q, r be Element of Nat_Lattice;

reconsider p1 = p, q1 = q, r1 = r as Element of NAT by Def5;

a1: q"\/"r = q1 lcm r1 by T0;

p"\/"q = p1 lcm q1 by T0;

hence p"\/"q"\/"r = p1 lcm q1 lcm r1 by T0

.= p1 lcm (q1 lcm r1) by NEWTON:56

.= p"\/"(q"\/"r) by a1,T0;

end;

end;

Observe that because the operator lcm can only be applied to numbers, extra
variables p1, q1 and r1 are needed inside the proof to switch from the lattice
context to numbers, and vice versa. In such a situation the conditional registration

registration

cluster -> natural Element of Nat_Lattice;

coherence;

end;

helps to make it even simpler. It allows to treat elements of the lattice as natural
numbers, and then the theorem T0 can be reformulated as:

theorem T1:

for x, y being Element of Nat_Lattice holds x "\/" y = x lcm y

proof

let p, q be Element of Nat_Lattice;

thus p"\/"q = (the L_join of Nat_Lattice).(p,q)

by LATTICES:def 1

.= lcmlat.(p,q) by Def5

.= p lcm q by Def4;

end;

and the registration R2 as:

registration ::R3

cluster Nat_Lattice -> join-associative;

coherence

proof

let p, q, r be Element of Nat_Lattice;

a1: q"\/"r = q lcm r by T1;

p"\/"q = p lcm q by T1;

hence p"\/"q"\/"r = p lcm q lcm r by T1

.= p lcm (q lcm r) by NEWTON:56

.= p"\/"(q"\/"r) by a1,T1;

71

Artur Korni lowicz

end;

end;

In this case less variables are needed, which clearly makes the proof easier.
Another feature which increases the deduction power of the Mizar checker

is automatic expansion of terms defined using the equals keyword. In the above
example, several times we explicitly referred to the definition:

definition

let G be non empty \/-SemiLattStr, p, q be Element of G;

func p "\/" q -> Element of G equals

:: LATTICES:def 1

(the L_join of G).(p,q);

end;

However, this is not really necessary. It is enough to extend the article’s environ-
ment by the directive definitions LATTICES, where the notion was defined, see
[12]. With this directive in effect, the checker will always automatically equate all
occurrences of "\/" with the L_join. That process makes the theorem T1 almost
obvious:

theorem

for x, y being Element of Nat_Lattice holds

x "\/" y = x lcm y by Def4;

please note that even if the proof is trivial, the theorem should be stated and
referred to when needed. But one of the newest enhancements of the Mizar checker
makes even such references unnecessary by identifying selected terms internally.
This feature is discussed in the next section.

4 Terms Identification

In mathematical practice, a given object or an operation is often treated in many
different ways depending on contexts in which they occur. A natural number can
be considered as a number, or as a finite ordinal. The least common multiply can
be considered as an operation on numbers, or as the supremum of elements of
some lattice, as we do in our example. In such cases it is often worthwhile to have
’translation’ theorems, like the last one in the previous section. But it would be
really comfortable for the users, if they did not have to refer to such theorems,
but rather had them ’built-in’ some way. The developers of Mizar decided to
implement such a feature, naming it terms identification, and introducing a new
keyword, identify, in the Mizar language. Its syntax is the following:

Identify-Registration =

"identify" Functor-Pattern "with" Functor-Pattern

["when" Variable-Identifier "=" Variable-Identifier

{ "," Variable-Identifier "=" Variable-Identifier }] ";"

Correctness-Conditions .

72

How to Define Terms in Mizar Effectively

where Identify-Registration is a part of the rule

Registration-Block = "registration"

{ Loci-Declaration | Cluster-Registration | Identify-Registration }

"end" .

and Correctness-Conditions is compatibility described later.

The aim of the identification is matching the term at the left side of the with

keyword with the term stated at the right side, whenever they occur together. The
current implementation (version 7.11.01) allows matching in one direction only,
i.e. when the verifier processes a sentence containing the left side term, it generates
its local copy with the left side term symbol substituted by the right side one and
makes both terms equal to each other. Such a equality allows to justify facts about
the left side terms via lemmas written about the right side ones, but not vice versa.
In this sense identification is not symmetric, which is showed with the following
example. First, we introduce the registration:

registration

let p, q be Element of Nat_Lattice;

identify p "\/" q with p lcm q;

compatibility;

The lemma

L1: for x, y, z being Element of Nat_Lattice holds

x lcm y lcm z = x lcm (y lcm z);

can be used to justify the sentence

L2: for x, y, z being Element of Nat_Lattice holds

x "\/" y "\/" z = x "\/" (y "\/" z) by L1;

but justifying L1 with L2 directly does not work.

Let us now see at the proof of the associativity of the supremum that uses this
mechanism:

registration

cluster Nat_Lattice -> join-associative;

coherence

proof

let p, q, r be Element of Nat_Lattice;

thus thesis by NEWTON:56;

end;

end;

Comparing it with R3, the power of terms identification becomes evident.

73

Artur Korni lowicz

4.1 Some Technical Aspects

Correctness Conditions Terms identification can be used to identify two terms
built with different functor symbols, but also with the same symbol. In the case
when different variables are used at both sides of with, a when clause must be
used to establish the correspondence between appropriate arguments. Depending
on whether the when clause occurs or not, the system generates two different con-
ditions:

registration

let p, q be Element of Nat_Lattice;

let m, n be Nat;

identify p "\/" q with m lcm n when p = m, q = n;

compatibility

proof

thus p = m & q = n implies p "\/" q = m lcm n;

end;

end;

registration

let p, q be Element of Nat_Lattice;

identify p "\/" q with p lcm q;

compatibility

proof

thus p "\/" q = p lcm q;

end;

Identification Visibility Terms identification is available immediately at the
place where it is introduced till the end of the article. If one wants to use the identi-
fication introduced in an external article, it should be imported in the environment.
The current implementation of identification is internally similar to registrations,
so identification does not have a library directive on its own, so identifications are
imported with registrations.

4.2 Typical Errors Reported

registration

let p, q be Element of Nat_Lattice;

identify p "\/" q with 1_NN;

::> *189,189

end;

::> 189: Left and right pattern must have

the same number of arguments

In this case the error description offered by the checker is self-explanatory.

74

How to Define Terms in Mizar Effectively

registration

let p, q be Element of Nat_Lattice;

let m, n be Nat;

identify p "\/" q with m lcm n when p = m, q = n;

::> *139 *139

end;

::> 139: Invalid type of an argument.

This error means that the types of variables p and q do not round up to the types
of m and n, respectively. The solution to the problem is the registration:

registration

cluster -> natural Element of Nat_Lattice;

coherence;

end;

4.3 Examples of Use

Here we list some natural and useful identifications introduced in the Mizar Math-
ematical Library.

registration

let a, b be Element of G_Real, x,y be real number;

identify a+b with x+y when a = x, b = y;

end;

registration

let a be Element of G_Real, x be real number;

identify -a with -x when a = x;

end;

registered in [8], where G Real is the additive group of real numbers.

registration

let a, b be Element of Real_Lattice;

identify a "\/" b with max(a,b);

identify a "/\" b with min(a,b);

end;

registered in [5], where Real Lattice is the lattice of real numbers with the max

and min operations.

registration

let a, b be Element of INT.Group;

identify a*b with a+b;

end;

75

Artur Korni lowicz

introduced in [9], where INT.Group is the additive group of integers.
identify can be used not only when structural objects are constructed, but

also in, so called, classical cases:

registration

let X, D be non empty set,

p be Function of X,D, i be Element of X;

identify p/.i with p.i;

end;

registered in [2], where p/.i is a restricted application, defined in [3].

registration

let p be XFinSequence;

identify len p with dom p;

end;

introduced in [11], where len stands for the length and dom for the domain of a
finite sequence.

registration

let x, y be real number, a, b be complex number;

identify x+y with a+b when x = a, y = b;

identify x*y with a*b when x = a, y = b;

end;

defined in XXREAL 3, where x+y and x*y are operations on extended reals and
a+b and a*b are defined for complex numbers.

5 Conclusions

When a new feature is implemented in a system coupled with a database of source
files, like Mizar and the Mizar Mathematical Library, it is desirable to ’re-write’
the database to exploit new possibilities. But in general it is not possible to find all
contexts where these new features could be used, e.g. it is an undecidable problem
whether two terms are equal or not, and then no automatic tools can be invented to
find all cases where terms identification could be registered. Therefore, on behalf of
the Mizar Library Committee, with this paper we would like to issue an appeal to
Mizar users to get more involved in the continuous process of Mizar Mathematical
Library revisions motivated either by finding better ways of formalization of some
facts, or by implementation of stronger mechanisms in the checker. The simplest
thing that all users could do is to report what useful revisions can, or should, be
processed.

We showed in this paper that terms identifications definitely make proofs more
compact: the original proof of associativity of the supremum was 14 lines long,
while the new one using automatic expansion of terms and terms identification
had only 2 lines. So it would be valuable to gather from all Mizar users more
information on what terms identifications of notions already defined in the Mizar
Mathematical Library could be registered.

76

How to Define Terms in Mizar Effectively

References

1. Mizar homepage: http://mizar.org.
2. Czes law Byliński. Functions from a Set to a Set. Formalized Mathematics, 1(1):153–

164, 1990. MML Id: FUNCT 2.
3. Czes law Byliński. Partial Functions. Formalized Mathematics, 1(2):357–367, 1990.

MML Id: PARTFUN1.
4. Marek Chmur. The Lattice of Natural Numbers and The Sublattice of it. The Set of

Prime Numbers. Formalized Mathematics, 2(4):453–459, 1991. MML Id: NAT LAT.
5. Marek Chmur. The Lattice of Real Numbers. The Lattice of Real Functions. For-

malized Mathematics, 1(4):681–684, 1990. MML Id: REAL LAT.
6. Artur Korni lowicz. Cartesian Products of Relations and Relational Structures. For-

malized Mathematics, 6(1):145–152, 1997. MML Id: YELLOW 3.
7. Artur Korni lowicz. On the Group of Automorphisms of Universal Algebra & Many

Sorted Algebra. Formalized Mathematics, 5(2):221–226, 1996. MML Id: AUTALG 1.
8. Eugeniusz Kusak, Wojciech Leończuk, and Micha l Muzalewski. Abelian Groups,

Fields and Vector Spaces. Formalized Mathematics, 1(2):335–342, 1990. MML Id:
VECTSP 1.

9. Dariusz Surowik. Cyclic Groups and Some of Their Properties – Part I. Formalized

Mathematics, 2(5):623–627, 1991. MML Id: GR CY 1.
10. Andrzej Trybulec. Function Domains and Frænkel Operator. Formalized Mathemat-

ics, 1(3):495–500, 1990. MML Id: FRAENKEL.
11. Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-Based Finite

Sequences. Formalized Mathematics, 9(4):825–829, 2001. MML Id: AFINSQ 1.
12. Stanis law Żukowski. Introduction to Lattice Theory. Formalized Mathematics,

1(1):215–222, 1990. MML Id: LATTICES.

77

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

The Influence of Delocalization on the Results of

Eliminating Repetitions of Semantically

Equivalent Sentences in the MML Database

Robert Milewski

Institute of Computer Science
University of Bia lystok

Sosnowa 64, Bia lystok, Poland,
milewski@math.uwb.edu.pl

Abstract. Detecting and removing repetitions of semantically equivalent
sentences improves the quality of the MML database, but it is also an im-
portant factor in evaluating the robustness of the Mizar system. However,
the complicated structure of proofs in the MML database makes it very
difficult to automatically discover and remove such repetitions. One possi-
ble solution to this problem may be to apply the delocalization process, i.e.
moving some sentences to outer levels of a proof where the elimination of
repetitions becomes possible.

1 Main Ideas

TheMizar Mathematical Library (MML) is continuously developed by users of the

Mizar system [5], but it also undergoes frequent revisions. The necessity of these

changes is connected with the need of preserving the high quality of the database

[7]. On the other hand, extensive modifications allow to detect cases of atypical

system behavior. Similarly to testing monotonicity or permutability of references

[3], such revisions may be used to analyze the robustness and increase the quality

of the Mizar system.

In this paper we discuss detecting and eliminating repetitions of semantically

equivalent sentences in the MML. Preliminary experiments with this issue have

already shown some positive results. However, the results were not satisfactory,

because a lot of repetitions found in the process could not be removed automatically.

Then it became evident that the process of delocalization (moving sentences to the

highest possible level of the proof structure) can solve this problem. In the sequel

we present results of two experiments that have been carried out: first without, and

then with delocalization.

2 Detecting and Removing Repetitions of Semantically

Equivalent Sentences

It is quite common that during writing Mizar articles authors use the same sen-

tence many times. It also happens that these sentences are justified several times

ISBN 978-83-7431-229-5 ISSN 0860–150X 79

Robert Milewski

(usually by oversight). Such repetitions unnecessarily increase the length of the

formal text and decrease its clarity. In the graph of references the nodes become

duplicated and superfluous edges have to be added. Obviously, this is rather incom-

patible with the main principles of formalization where a proved statement (once

justified with the help of axioms or previously proved theorems) should be regarded

as true, and used in all relevant situations. To clear out the library, a specific utility

has been implemented which finds semantically equivalent sentences and removes

all repetitions.

The utility is called REMEQTH, an acronym for REMoving of EQuivalent

Theorems (of course it removes only repetitions of equivalent statements, not all of

them). This program analyses sentences within a Mizar text and checks if there

exist equivalent statements on the list of currently available sentences. If there are

such cases, their position is stored, so that after checking all the text only the first

appearance is retained and all repetitions could be removed. Here the equivalence

of statements means that sentences are not syntactically, but semantically equiva-

lent. Therefore REMEQTH cannot be based only on the information generated by

the Mizar parser (unlike the utilities used e.g. for testing permutability or mono-

tonicity of references [3]). REMEQTH also needs some information from the more

involved Mizar pass, the PREPARATOR, in which the logical form of sentences

is available. All sentences at that point are transformed into the form of semantic

correlates, i.e. they are built with the general quantifier, conjunction and negation

only. Only comparing sentences in this form can give the intended results, since

only in this form two semantically equivalent sentences are the same. Restricting

to the information generated by the parser, it would not be possible to state the

equivalence of sentences like below:

A implies B;

not (A and not B);

In this case only the statements equivalent with respect to the relation r0 (as

defined in [4]) would give any search results. Practically speaking, most of repeated

sentences would not be found.

If there exist more than two equivalent sentences, then of course all possible

pairs should be found, i.e.
(

n

2

)

pairs for n equivalent sentences. In practice, RE-

MEQTH changes all references to repetitions of semantically equivalent sentences

into references to the first occurrence. Then it is enough to apply the utility which

removes all unused labels (CHKLAB) to remove all labels of the repetitions of se-

mantically equivalent sentences (since no reference can refer to them anymore), and

finally call another tool to remove all irrelevant and not labeled sentences (INACC).

As a result all repetitions are removed.

The REMEQTH utility changes just the references, so considering only single

statements, its level of alteration to the original text is on the level of the r3 relation

[4]. However, elimination of repetitions of equivalent sentences in the whole text

changes the structure of proofs, and so the equivalence of texts can be true only

on the level of the r4 relation.

80

The Influence of Delocalization on the Results of Eliminating Repetitions in MML

Let us note that REMEQTH does not remove equivalent sentences located in

different sub-blocks, i.e. when the first sentence is not available on the level of

the other one. It is possible, howewer, and that situation is quite frequent in the

MML database, that there are many sub-blocks in the proof containing equivalent

sentences:

proof

..........

proof

sentence1;

..........

end;

..........

proof

sentence1;

..........

end;

..........

end;

Both occurrences of sentence1 are equivalent and one of them should be re-

moved, but it cannot be done with the procedure described above. In such cases

we can use delocalization which moves all sentences (that can be moved) from sub-

proofs to the highest possible level of the proof structure. This process is described

in next sections.

There is a specific context where equivalent sentences are found by REMEQTH,

but the repetitions cannot be removed. It happens when the second equivalent

sentence is a part of the thesis in the current proof:

A1: sentence1;

sentence2 by A1;

..........

hence sentence1 by A1;

The tactic used by REMEQTH assumes that every reference pointing to the

repetition of some sentence is changed into a reference to the first equivalent sen-

tence, and next redundant labels and unused fragments of the text are removed. In

the above case, this procedure does not result in removing the repetition. The sec-

ond sentence is a part of the thesis in the current proof, so it cannot be recognized

as redundant, and so the INACC tool does not remove it.

3 The Results of Eliminating Repetitions of Semantically

Equivalent Sentences

The REMEQTH tool was used to carry out the elimination of repetitions of se-

mantically equivalent sentences in the whole MML database. The main steps of

this experiment are described below (cf. [1], [3]):

81

Robert Milewski

– processing the MML with the FORMATER utility and storing the formatted

texts for future comparison,

– processing the MML with DELINKER and SEPREF tools,

– replacing references to repetitions with references to the first equivalent sen-

tence (REMEQTH),

– removing redundant labels and unnecessary parts of texts,

– reverting the changes made by DELINKER and SEPREF (LINKER, CHK-

LAB, TOHEREBY, RENTHLAB, SORTREF),

– final formatting with FORMATER.

The formatting is necessary for standardizing the texts. It helps to avoid dif-

ferences resulting from unintentional change of the text. Comparing the size of

articles after first and last formatting, we obtained the following results: the size of

the whole MML library was decreased from 51 275 019 bytes to 51 038 106 bytes.

It means saving 236 913 bytes, i.e. about 0.46 % of the initial size.

There were 8101 pairs of equivalent sentences found in this experiment. Of

course, it does not mean that 8101 sentences were removed. Taking into account

that it is a number of all possible pair combinations, and the impossibility of

removing a sentence if it is the part of a thesis, the actual number of removed

sentences is about half of it. There were 4807 replaced references and 4355 removed

sentences (the total number of sentences decreased from 1 339 485 to 1 335 130).

Because the texts were formatted, the number of removed sentences was equal to

the number of saved text lines (since after formatting one sentence is always one

line of text).

Apart from cleaning the MML, the graph of references was also simplified: there

were more than 4000 nodes removed together with relevant edges.

4 Delocalization

As mentioned previously, REMEQTH cannot compare sentences in different proof

sub-blocks. To solve this problem we should move to outer blocks all sentences

which do not depend on constants and variables introduced in the current block,

and are not justified by references to other sentences within the current block.

This process is called delocalization and is performed by the DELOCAL utility.

Of course there are situations when we have to move a sentence more then one

level up. This could be handled in two ways: create a rather complicated procedure

to determine on which level to put the sentence, or simply move a sentence one

level up and apply this process repeatedly as long as there is nothing more to

move. DELOCAL uses the second approach, which is much simpler, but is more

time-consuming.

It may not be obvious to say whether the delocalization improves or spoils

Mizar texts. But from the formal point of view, it does improve them and make

them logically “cleaner”. It is hard to justify why to place in a sub-block sentences

which do not depend on constants and variables introduced in this sub-block, and

also do not refer to other sentences within that block. Such sentences should rather

be placed as high as possible in the structure of sub-blocks of the proof. This

82

The Influence of Delocalization on the Results of Eliminating Repetitions in MML

approach seems natural, gives the possibility to refer to those sentences within a

bigger part of the proof.

The delocalization has a huge influence on the process of detecting semantically

equivalent sentences. Obviously, when applied to delocalized texts, the REMEQTH

utility is able to find all equivalent sentences that depend on the same constants

and variables (two sentences that depend on different constants or variables are

not considered equivalent).

One may wonder why authors of Mizar articles so frequently place certain sen-

tences so deeply in the structure of their proofs when it is not necessary and the

same sentence placed on the higher level would be accessible within a bigger part

of the proof. One of the reasons may be some kind of laziness. Often while proving

there appears a need to add one more new premise and refer to it, and the simplest

solution may seem to write that premise directly before the current sentence and

to refer to it with then without introducing any new labels. Placing that premise

e.g. a dozen or so lines before (on a higher proof level and between other sen-

tences concerning completely different subject matters) may seem unnatural and

can negatively affect the readability of the proof. This is the main reason why the

REMEQTH utility has not been applied as yet to permanently change the articles

stored in the MML, although it would have been a significant simplification of the

structure of the library. Still, REMEQTH can be useful for experiments concerning

data-mining and the robustness of the Mizar system.

Before the delocalization the MML must be prepared with DELINKER [3]

which removes references to the preceding sentences (then and hence linking), but

also standardizes the names of labels. In fact the standardization is a side effect of

DELINKER, but it makes easier the process of removing repetitions of semantically

equivalent sentences. After that we can be certain that any two different statements

have different labels. It allows to avoid situations when the meaning of a reference

is changed after moving a sentence to a higher level of the proof.

In practice, in order to check if it is possible to move a sentence to a higher

level, the utility writes down the amount of defined labels at the moment of opening

another block of text. Because of using DELINKER, this amount is equal to the

number stored in the name of the recently defined label. Analyzing a given sen-

tence we examine all references in its justification. The utility checks if the referred

sentences are in the current block, or before. If all referred sentences are before the

beginning of the current block, it is valid to move the sentence to the higher level

in the structure of the proof, as far as the references are concerned.

The other condition which has to be checked is whether there are in the sentence

any constants defined in the current block. The constants may be introduced with

set, take, let, consider and reconsider. The utility writes down the number of

such objects at the moment of opening another block of text, and next checks the

numbers of constants that occur in the analyzed sentence. Finally, if all numbers are

less than or equal to the one stored earlier, and the previous condition concerning

labels gives a positive result, the curent sentence can safely be moved to a higher

level. Its new location is set directly before the beginning of the current block.

As mentioned above, sentences using constants introduced by some language

constructs cannot be moved to a higher level. If it is the only reason which makes

83

Robert Milewski

the delocalization of the sentence impossible, we may also consider moving the

relevant constructs (mainly set, consider and reconsider, because take and

let are a part of the proof skeleton and moving them to the higher level of the

proof would destroy the proof structure). To delocalize them we must be sure that

moving them to a higher level would not override some other constant with the

same name. Such a situation is presented below:

consider x being set;

now

..........

then A1: P(x);

consider x being set such that A2: Q(x);

A3: R(x) by A2;

..........

end;

Let us assume that the sentence labeled A3 does not depend on labels and

constants defined in the current now-end block (of course beyond x). Then we

would want to move this sentence to the higher level - directly before the now

block. It is only the definition of x that does not allow doing so, but this definition

does not depend on labels and constants from the current block, therefore this

definition can be moved too. Thus the example after delocalization would look as

follows:

consider x be set;

consider x be set such that A2: Q(x);

A3: R(x) by A2;

now

..........

then A1: P(x);

..........

end;

But in this text the sentence labeled A1 depends now on the x constant which

is defined by the second consider (moved before the now-end block) rather than

the first one, as was formerly the case. It means that the meaning of this sentence

has changed, and such a situation is unacceptable.

To be sure that such a situation does not happen, we would have to change the

names of all constants, and give them unambiguous names according to some fixed

scheme. But planning such an algorithm we come across a problem connected with

reservations of variables. Let us consider the following situation:

reserve x for set;

reserve y for Subset of x;

let x;

..........

consider y;

84

The Influence of Delocalization on the Results of Eliminating Repetitions in MML

Proceeding with changing the names of variables, the x variable would get a

specific name at the moment it is introduced. But the y variable which is intro-

duced later (with consider), depends on the variable whose name is used in the

reservation block, and which is different from the new name of the variable created

with let. In this way at the moment of introducing the y variable a new extra

variable of the type set is created that y depends on, and it is not the constant

introduced by let. This situation shows that to create a tool which would auto-

matically change names of constants, it is necessary to remove first all reservations

and supply the types of variables at the point of their introduction.

In the current implementation of the Mizar system reservations are identi-

fied at the moment of declaration in the reservation block, not at the moment of

introducing a reserved variable. It can lead to the following situation:

definition

let x be set;

mode Subset of x is Element of bool x;

end;

reserve x for set;

reserve y for Subset of x;

definition

let x be set;

redefine mode Subset of x -> ...;

end;

for y holds P[y];

The variable y is reserved as Subset of x in terms of the first definition of the

Subset mode. Next there is a redefinition of Subset, but in the sentence:

for y holds P[y];

the variable y is understood as Subset of x in the sense of the original definition,

because the type of reserved variable was identified at the moment of reservation.

If we tried to add types to all variables at the moment of their introduction and

remove reservation blocks, we would have the following sentence:

for y be Subset of x holds P[y];

with the redefined Subset. Such a situation is of course unacceptable. In conse-

quence, creating an automatic tool which would eliminate reservations is not pos-

sible in the current implementation of the Mizar system. If we tried to change the

implementation of the Mizar system to have dynamic interpretation of variables

types at the moment of their introduction, it would cause other problems: it would

be impossible to use the original definition after a redefinition which in the current

implementation is realized by reservations of variables before a redefinition, and it

allows to use variables with a reserved, not redefined type.

85

Robert Milewski

Therefore in the current implementation of theMizar system the delocalization

of definitions of constants is just impossible.

The DELOCAL tool changes the form of proofs significantly. When we look at

the MML as a graph of references, we see that DELOCAL influences the number

and location of nodes and also edges. But it does not change the abstracts of created

texts, so using the previously mentioned classification, DELOCAL interferes in the

original text on the fourth level.

5 The Results of Delocalization

Below we present some statistics concerning the delocalization applied to the whole

MML. DELOCAL was executed 2983 times, i.e. on average about 3.82 times per

article. The biggest number of delocalizations for one article is 29 - in the article

JGRAPH 2 [6]. The program has to be run several times when a sentence is moved

several levels up, but also when there exists a whole block of sentences among which

the next one referrs to the previous one. Such a block would not be moved at a

time, but rather each run would move only the first sentence, because the others

depend on it. This situation is illustrated by the following example:

proof

A1: sentence1;

A2: sentence2 by A1;

A3: sentence3 by A2;

A4: sentence4 by A3;

A5: sentance5 by A4;

thus thesis by A5;

end;

With the text as above DELOCAL would have to be run five times. At the

beginning it would move sentence1, then sentence2 and so on. In the proof-end

block only the thesis would remain. The thesis of course cannot be moved, because

it is a part of the proof skeleton, but in such case we can think of eliminating a

proof which consists of the conclusion only.

The difference in article sizes is not interesting in this case, because the utility

moves sentences within the same article (only changes the order of sentences).

Therefore possible differences in size are caused by the formatting (connected with

the equivalence on the first level).

Running the DELOCAL tool on the whole MML resulted in moving 68787

sentences, i.e. on average about 23.06 times for one run, and about 88.08 times for

one article.

6 The Results of Eliminating Repetitions of Semantically

Equivalent Sentences after Delocalization

Below we present the procedure of eliminating repetitions of semantically equiva-

lent sentences after the delocalization process, and compare the results with these

showed in Section 3 (without delocalization).

86

The Influence of Delocalization on the Results of Eliminating Repetitions in MML

The experiment was carried out according to the following scheme:

– the first formatting of the MML to fix the format of texts,

– processing the MML with DELINKER and SEPREF,

– first elimination of repetitions of semantically equivalent sentences,

– restoring the format of texts changed by DELINKER and SEPREF with aux-

iliary utilities [2],

– second formatting of the MML to compare the current state with the original

texts,

– preparing the MML for the delocalization with auxiliary software,

– delocalization,

– processing with DELINKER and SEPREF,

– second elimination of repetitions of semantically equivalent sentences,

– restoring the format of texts changed by DELINKER and SEPREF,

– third formatting of the MML to compare the current state with the previous

one.

The above experiment showed a big influence of delocalization on the number

of detected and removed repetitions of semantically equivalent sentences. When we

compare the size of the formatted MML at the beginning (state 1), after the first

elimination of repetitions of semantically equivalent sentences (state 2), and at the

end (state 3), we obtain the following results:

State 1 55 403 103

State 2 55 221 676

Difference 1 181 427

Difference 1 (%) 0.33 %

State 3 54 817 606

Difference 2 404 070

Difference 2 (%) 0.73 %

Total difference 585 497

Total difference (%) 1.06 %

The number of removed repetitions in both elimination procedures is shown in

the following table:

First elimination 4 029

Second elimination 9 200

Total 13 229

As far as the graph of references is concerned, the elimination of repetitions

of semantically equivalent sentences preceded by the process of delocalization de-

creased the number of nodes by 13299. Each removed node had its semantically

equivalent counterpart, so all edges starting from the removed nodes were moved to

their equivalent counterparts. The large number of removed nodes allows to claim

that the described procedure may be used to significantly improve the quality of

the MML.

87

Robert Milewski

7 Final Remarks

Although the delocalization changes only the position of selected sentences in a

proof structure, its influence on the results of detecting and eliminating repetitions

of semantically equivalent sentences is very significant. The number of repetitions

removed after the delocalization is more than three times bigger than without it.

Therefore the tentative hypothesis that the delocalization might help to find a big

number of semantically equivalent sentences was confirmed. The fact that the size

of redundant information removed in the process exceeded one per cent of the initial

size of the MML was quite surprising even for the authors of the Mizar system.

8 Acknowledgments

I thank all of those who helped me with writing this paper for their valuable hints

and advice. In particular I want to thank A. Trybulec and A. Naumowicz.

References

1. Milewski, R.: Algorithms for Analysis of a System Supporting Formal Deduction,
PhD Thesis, Faculty of Computer Science, Bialystok Technical University, 2008.

2. Milewski, R.: New Auxiliary Software for MML Database Management, Mechanized
Mathematics and Its Applications, 5(2), pp. 1–10, 2006.

3. Milewski, R.: Robustness of Systems for Formalizing Mathematics – Testing Mono-
tonicity and Permutability of References in Mizar, Mechanized Mathematics and Its
Applications, Vol. 4(1), pp. 51–58, 2005.

4. Milewski, R.: Transformations of MML Database’s Elements, Lecture Notes in Com-
puter Science, Springer-Verlag, 3863, pp. 376–388, 2006.

5. Mizar Home Page, http://mizar.org/.
6. Nakamura, Y.: On Outside Fashoda Meet Theorem, Formalized Mathematics, 9(4),

pp. 697–704, 2001.
7. Rudnicki, P.: An Overview of the Mizar Project, Proceedings of the 1992 Workshop

on Types for Proofs and Programs, Chalmers University of Technology, Bastad, 1992.

88

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

Enhanced Processing of Adjectives in Mizar

Adam Naumowicz

Institute of Computer Science
University of Bia lystok, Poland

adamn@mizar.org

Abstract. As adjectival notions are ubiquitous in informal mathematics,
their important role must also be reflected in formal attempts to recon-
struct the existing body of mathematical texts. In this paper we describe
an enhancement of the Mizar proof checker which enables a more complete
automation of notions encoded as adjectives. The proposed improvement
concerns the Equalizer – Mizar’s module responsible for handling equality,
where adjective registrations can be re-used by matching them with classes
of equal terms in order to add extra information to inference steps.

1 Introduction

It is common knowledge that successful formalization of mathematical texts re-

quires the underlying formal language be near to the intuition of a mathematician.

The fine details of mathematics are much better accounted for in a mixture of math-

ematical and natural language than in a purely set-theoretical setting. Therefore

the languages devised particularly for formalization support the linguistic cate-

gories like adjectives that are amply used in informal texts, although they may

seem superfluous from the formal point of view. The support for adjectives in the

Mizar language dates back to 1983/84, when a version called Mizar HPF (with

hidden parameters and functions) was implemented to facilitate a much richer syn-

tax [3]. The idea was also present in de Bruijn’s famous Mathematical Vernacular,

and is also considered a key feature of its modern derivatives like Wtt [2].

In most (natural) languages that support adjectives, they form an open class of

words, i.e. it is relatively common for new adjectives to be formed via derivation.

In the formal context, this usually means applying ’technical’ suffixes like ’-like’ or

prefixes like ’being ’, ’having ’, or ’with ’ to predicates [3]. When attributes were

introduced in Mizar, such changes were done semi-automatically to numerous

predicates previously defined in the Mizar library1.

Since that time, adjectives have been playing a more and more important role

helping to minimize information losses in Mizar formalizations. There is still,

however, an open area for research on how to improve the processing of adjectival

notions in Mizar to imitate even better the use of adjectives in real mathematics.

This paper describes an attempt going in this direction.

1 See also Andrzej Trybulec’s posting to the Mizar-Forum mailing list on this topic:
http://mizar.uwb.edu.pl/forum/archive/0006/msg00003.html .

ISBN 978-83-7431-229-5 ISSN 0860–150X 89

Adam Naumowicz

2 Registrations of adjective clusters

The paper [6] presents a detailed discussion on how adjectives are handled in

Mizar. Let us just recall here that a “cluster of adjectives” is a collection of

attributes (constructors of adjectives) with boolean values associated with them

(negated or not) and their arguments. The tree-like hierarchical structure of Mizar

types is built by the widening relation which uses such collections of adjectives to

extend existing types [1, 7]. Grouping adjectives in clusters enables automation of

some type inference rules. Such rules are encoded in the form of so called regis-

trations. Previously proved registrations can subsequently be used to secure the

non-emptiness of Mizar types (existential registrations), to allow formulating and

automating relationships between adjectives (conditional registrations) and to store

adjectives that are always true for instantiations of terms with certain arguments

(functorial registrations), cf. [6].

Before the proposed enhancement, the role of adjective processing was mostly

syntactic, i.e. the Analyzer automatically “rounded-up” the information from all

available registrations to disambiguate used constructors and check their appli-

cability. See [5] for a more detailed overview of the internal functioning of the

Mizar verifier and the tasks distributed among the Analyzer and the Checker

(in particular the Equalizer). The semantic role was restricted to processing only

the type information for the terms explicitely stated in an inference. Also, attribu-

tive statements as premises or conclusions were not “rounded-up”. Neither did the

automation take into account the potential of applying registrations to every ele-

ment of a class of equal terms generated in the Equalizer as a consequence of the

equality calculus.

3 Examples

In this section we present some contexts where the automatic type reasoning did

not work, while it seemed rather “natural” to expect such statement be accepted

by the Checker. The most typical situation concerns attributive statements (x is

<some-attribute>) or qualifications (x is <some-type>) among the premises.

Even with the following registration imported from the article RAT_12

� �
registration

cluster i n t e g e r −> r a t i o n a l number ;

end ;
	� �

the last line in the listing below was not automatically accepted (the statement

was marked with the ::> *4 flag by the Checker):

2 Unique identifiers, like RAT 1 in this case, are assigned to all Mizar articles stored in
the MML. The respective files can be found in the mml sub-directory of the Mizar

distribution.

90

Enhanced Processing of Adjectives in Mizar

� �
now

let a be i n t e g e r number ;

l e t b be number ;

a i s r a t i o n a l ;

b i s i n t e g e r implies b i s r a t i o n a l ;

: :> ∗4
end ;

	� �

Although the Checker accepted that a is rational, it was not the case for

b, because the adjective integer was only mentioned as a premise and not in the

variable declaration, so it was not “rounded-up”.

The next example shows an inference where the type of neither constant can

be “rounded-up” on its own with a registration taken from XXREAL_0, but after

processing the equality a=b the statement should “naturally” be obvious (because

a and b should share all adjectives as elements of the same equality class):

� �

registration
cluster non nega t iv e non zero −>

po s i t i v e (ext−r e a l number) ;

end ;

now
let a be non nega t iv e (r e a l number) ;

l e t b be non zero number ;

a=b implies a i s po s i t i v e ;

: :> ∗4
end ;

	� �

The enhancement presented in Section 4 makes the Checker accept such state-

ments. Moreover, please note that this more complete “rounding-up” of attributive

statements gives also a nice side efect: in the Checker we get something like a con-

traposition of conditional registrations, because the conclusion is negated when the

Checker tries to deduce contradiction, cf. [3].

In this sense registrations are used like theorems, when it is enough to state an

implication and then be able to use it in a contraposition form. Of course it does

not mean that registering contraposition forms of conditional registrations is not

needed anymore – sometimes we want the Analyzer to use them as well (e.g. to

match certain notations).

To show an iterative effect of the “rounding-up” done for more complicated

terms, we may look at two functorial registrations extracted from the article ABIAN:

91

Adam Naumowicz

� �
registration

let i be even Integer , j be I n t e g e r ;

cluster i ∗ j −> even ;

end ;

registration
let i be even Integer , j be odd In t e g e r ;

cluster i+j −> odd ;

end ;
	� �

With these registrations imported, all the following statements are now ac-

cepted by the enhanced Checker while the old realization would mark them all as

unaccepted:

� �
now

let i , e , o be i n t e g e r number ;

e i s even implies i ∗e i s even ;

e i s even & o i s odd implies e+o i s odd ;

e i s even & o i s odd implies (i ∗e)+o i s odd ;

l e t z be complex number ;

z i s even In t e g e r implies z∗ i i s even ;

end ;
	� �

Let us note that in the above examples all the attributes are absolute, i.e. their

only argument is the subject. But in general, the subject may be defined with a

type that has its own (explicit or implicit) arguments, and so the adjective has

more implicit arguments. For example, with the following definition of continuity

as defined in the article PRE_TOPC:

� �
definition

let S ,T be TopStruct , f be Function o f S ,T;

attr f i s cont inuous means
for P1 being Subset o f T st

P1 i s c l o s ed holds f ” P1 i s c l o s ed ;

end ;
	� �

the function f may also map S to some space T1, and then may not be continuous

with respect to S and T1, so the processing of arguments is crucial to a proper

“rounding-up” extension in the Equalizer.

92

Enhanced Processing of Adjectives in Mizar

4 The extended “round-up” algorithm

The motivation for this work was presented in [8] showing the limitation of the

adjective handling process. As mentioned in Section 2, previously clusters of adjec-

tives in types were “rounded-up” in the Analyzer. The Equalizer just “adjusted”

the clusters, trying to move adjectives between various types of the same equality

constant if they were applicable. The extended algorithm presented below takes

into account the complex structure of terms processed in the Equalizer, that may

have numerous representatives, as well as multiple types, which in turn have their

arguments of the same form, and so on.

As a class may have several types and several term instances that may match

the same registration, the result of matching is a list of instantiations of classes for

the loci used in a registration (usually it is just one instantiation, but sometimes

there are more, see Section 5 for maximal values noted with current MML).

Technically, the implementation reuses some of the data structures already de-

veloped for the Unifier, where an algebra of substitutions is used to contradict

a given universal formula, cf. [8]. The main difference is when joining instantia-

tion lists – in the Unifier longer substitution is absorbed, while here the longer

substitution remains.

In the calculus of (lists of) instantiations we will use two binary functions, JOIN

and MEET with the following semantics:

– JOIN(l1,l2) produces a union of lists l1 and l2, replacing shorter substitu-

tions with longer ones – unlike in the Unifier, where a shorter list is always

preferred as it is used for refutation ([8]);

– MEET(l1,l2) produces a collection of unions of two instantiations (one from

l1, the other from l2 provided they agree on the intersection of their domains;

again a shorter substitution is replaced by a longer one if they both are inserted

into this collection).

For convenience we also use two lattice-like constants: TOP which denotes a trivial

substitution (no loci to be substituted, but all constants are matched) and BOTTOM

which is an empty list of substitutions (no match found). Our TOP and BOTTOM

have the usual lattice properties, e.g. are neutral with respect to the MEET and

JOIN operations, respectively.

Below is an outline of pseudo-code functions that have been implemented to

enable matching a class of terms with a given registration. All these functions

return as their result a (possibly empty) list of substitutions of classes for loci in

the registration. It should be clear which of the match functions is used in a certain

context looking at the type of their arguments. For simplicity, we treat any class of

terms E as a special kind of a term – one that satisfies the condition E is CLASS.

Let us consider a conditional registration C. To check if a given class E matches

C we generate substitutions which match both the type and the antecedent of C:

93

Adam Naumowicz

� �
match (E: term ,C: condreg)

begin
l :=match (E,C. type)
l :=MEET(l , match (E,C. antecedent))

r e turn l

end
	� �

In the case of a functorial registration F, the matching function generates sub-

stitutions which match both the registered type and term of F. As above, if a

substitution is found, it can be used to extend the cluster of the equality class E.

Let us note that F.type is just a radix type, the adjectives from the type’s cluster

of adjectives do not have arguments other than that of the type, so the cluster does

not have to be matched as such:

� �
match (E: term ,F : funcreg)

begin
l :=match (E,F . type)
l :=MEET(l , match (E,F . term))

return l

end
	� �

Matching a class E with a type T is just matching one by one all the types of E

with T:

� �
match (E: term ,T: type)
begin

l :=BOTTOM

i f E i s CLASS then
for t in E. types do

l :=JOIN(l , match (t ,T))

re turn l

end
	� �

When types T1 and T2 are to be matched, they must denote the same mode

(T1.id=T2.id) as well as all their arguments must match:

� �
match (T1 : type , T2 : type)
begin

i f T1 . id=T2 . id then
begin

l :=TOP

while n do
l :=MEET(l , match (T1 . arg (n) ,T2 . arg (n)))

94

Enhanced Processing of Adjectives in Mizar

end
else r e turn BOT

return l

end
	� �

Matching terms is the main part of the substitution process, since terms are

arguments of terms, types and adjectives. Therefore, all matching must eventually

come to this point. A class E can be matched with a term T being a locus in a

registration if the type of T (T.type) and the cluster of adjectives of T (T.cluster)

match the class E. Having a valid substitution, we merge it with (T<-E) (E is

substituted for T).

If E is a class but T is not a locus, then we generate a union of possible matches

of instances of E (taken from E.terms) with T.

Otherwise, if E and T have the same kind and number (so E is not a class and

T is not a locus), then we simply match all their arguments:

� �
match (E: term ,T: term)

begin
i f E i s CLASS then

begin
i f T i s LOCUS then

begin
l :=match (E,T. type))
l :=MEET(l , match (E,T. c l u s t e r))

l :=MEET(l , (T<−E))

return l

end
else

begin
l :=BOTTOM

for t in E. terms do l :=JOIN(l , match (t ,T))

re turn l

end
end

else
i f E. id=T. id then

begin
l :=TOP

while n do
l :=MEET(l , match (E. arg (n) ,T. arg (n)))

r e turn l

end
else r e turn BOTTOM

end
	� �

95

Adam Naumowicz

Matching a class E with a cluster of adjectives (for matching an antecedent of a

conditional registration or a cluster accompanying the type of a locus) can be split

for clarity into the following two steps:

� �
match (E: term ,L : c l u s t e r)

begin
l :=TOP

for a in L . a d j e c t i v e s do
l :=MEET(l , match (E, a))

r e turn l

end
	� �

and finally matching single adjectives as below. An adjective A matches some ad-

jective in the cluster of a class E (E.cluster) if they denote the same attribute,

have the same boolean value, and their arguments match as well:

� �
match (E: term ,A: a d j e c t i v e)

begin
l :=BOT

i f E i s CLASS then
for a in E. c l u s t e r do
i f a . id=A. id & a . bool=A. bool then

begin
l 1 :=TOP

while n do
l 1 :=MEET(l1 , match (a . arg (n) ,A. arg (n)))

l :=JOIN(l , l 1)

end
r e turn l

end
	� �

With the matching function as above, we can now present the actual “round-up”

algorithm as follows:

0. Create a dependence list for all equivalence classes in a given inference. Let

dep(E) denote a list of all classes in which E appears as a term argument.

1. Put all classes into a set CLASSES

2. Proceed as below until CLASSES remains empty:

96

Enhanced Processing of Adjectives in Mizar

� �
while CLASSES <> {} do

begin
take E from CLASSES

repeat
extended=: fa l se
for C in CondRegs do

l :=match (E,C)

i f l<>BOTTOM then
begin

extend E. c l u s t e r with l

app l i ed to C. consequent

extended :=true
end

for F in FuncRegs do
l :=match (E,F)

i f l<>BOTTOM then
begin

extend E. c l u s t e r with l

app l i ed to F . consequent

extended=true
end

i f extended then
CLASSES=CLASSES+dep (E)

unti l not extended

end
	� �

As we see, if the class is matched with some registration, the resulting substi-

tution is used to substitute all loci in the registration’s consequent cluster with

appropriate classes, this new cluster should be used to extend the cluster of a given

class. Please note that “rounding-up” with a conditional registration may enable a

functorial one, and the other way round, so the repeat loop must guarantee that

the algorithm is not sensitive to the order of registrations.

5 Some statistics

Below we present the statistics collected by running main Mizar utility programs

(verifier, relprem, trivdemo, and relinfer) equipped with the strengthened

Checker as compared to the current official system to demonstrate the performance

of the new algorithm. All tests have been performed using Mizar ver. 7.9.01 and

MML ver. 4.103.1019 on a single-processor Intel Xeon 2.8 GHz machine running

under the Linux operating system.

Here are the number of calls to the “round-up” procedure for respective utilities:

97

Adam Naumowicz

verifier 860379

relprem 3128080

trivdemo 182984

relinfer 700725

More detailed statistics concerning the equality classes occurring in all infer-

ences were collected for the verifier. The biggest number of instantiations gener-

ated when “rounding-up” a functorial registration was 17 (in POLYEQ_3) and 9 in

the case of conditional registrations (in LIMFUNC2). The average number of equal-

ity classes was 30.366 (max. 828 in SCMISORT). The average number of conditional

registrations tried was 52.2439 (max. 193 in JORDAN) and 163.911 for functorial

registrations (max. 671 in AOFA_I00). The average number of terms in equality

classes was 1.60257. Here we may notice that the biggest number (182) was de-

tected in FILTER_1 resulting from numerous instances of equal terms built from

automatically expanded commutative lattice operations.

The tools relprem, trivdemo and relinfer work with a different population

of inferences, so the numbers were slightly different. However, the differences in

the case of relprem were very small. A noticeable difference was the biggest num-

ber of equality classes when running trivdemo (728 in SCMISORT with a slightly

smaller average of 27.7032, and the biggest number of classes for relinfer: 826 in

SCMISORT) with the average of 39.3855 classes.

The extra code to be executed in order to “round-up” the adjectives in the

Checker caused a noticeable slowdown in all the utilities. In the table below we

present the calculated total running times for the selected utilities applied to the

whole library, with the effective times put in brackets (without the extra time

needed to load the utilities, accommodate each file, etc.).

Program Time (effective) New time Ratio

verifier 2h 40m (8791s) 4h 48 m (16486s) 1.8753

relprem 16h 43m (59291s) 24h 38m (87812s) 1.4810

trivdemo 2h 44m (9053) 3h 17m (10977s) 1.2125

relinfer 7h 21m (22209s) 9h 27m (29975s) 1.3496

In the following table we compare the times of running the Checker pass only.

Program Checker New Checker Ratio

verifier 5544s 13131s 2.3685

relprem 56029s 84490s 1.5079

trivdemo 5762s 7304s 1.2676

relinfer 22068s 29839s 1.35214

As far as single articles are concerned, below are tables showing the 10 articles

with the longest processing time (in seconds) for each of the utilities. Here is the

data collected for verifier and relprem:

98

Enhanced Processing of Adjectives in Mizar

Secs. verifier Secs. New verifier

51 BVFUNC_6 116 GROUP_9

54 GLIB_004 116 AOFA_000

57 JGRAPH_4 117 SCMFSA10

65 SCMISORT 124 JGRAPH_4

85 JORDAN 144 SCMBSORT

90 BINARITH 226 JORDAN

93 BINARI_2 237 SCPQSORT

105 AOFA_I00 240 AOFA_I00

125 SCPQSORT 240 SCMISORT

168 QUATERN2 409 QUATERN2

Secs. relprem Secs. New relprem

913 JORDAN1G 1163 SCPQSORT

973 JORDAN1J 1236 GEOMTRAP

1238 GEOMTRAP 1428 JORDAN

1276 GLIB_005 1434 GLIB_005

1428 SCMFSA10 1537 CONMETR

1485 JORDAN15 1644 AFF_2

1529 CONMETR 1718 JORDAN15

1656 AFF_2 1861 SCMFSA10

1694 JORDAN19 1969 JORDAN19

3972 CONMETR1 3991 CONMETR1

Below is the list of the 10 articles that need the longest time to get processed

by trivdemo and relinfer:

Secs. trivdemo Secs. New trivdemo

85 JORDAN 101 SCPQSORT

108 AOFA_I00 114 JORDAN

113 JORDAN15 117 JORDAN15

118 GEOMTRAP 118 GEOMTRAP

124 JORDAN19 128 JORDAN19

133 GATE_3 133 GATE_3

160 GATE_4 157 GATE_4

161 SCMFSA_2 166 AOFA_I00

200 ANALORT 200 ANALORT

770 XBOOLEAN 763 XBOOLEAN

Secs. relinfer Secs. New relinfer

376 SCPQSORT 425 CONMETR

385 ANALMETR 470 AOFA_I00

442 CONMETR 501 GEOMTRAP

457 JORDAN 567 SCPQSORT

520 GEOMTRAP 663 JORDAN

652 JORDAN19 694 CONMETR1

674 JORDAN15 729 JGRAPH_7

694 CONMETR1 754 JORDAN19

703 JGRAPH_7 770 JORDAN15

919 ANALORT 926 ANALORT

One may notice that in most cases the same articles appear in the top 10 lists

for each utility – it shows that the new extension works in a quite predictable way.

Note also that in some cases the running times of the new Checker are even

smaller, e.g. SCMFSA_2 ranking high for trivdemo (160 secs.) does not appear in the

list of the new trivdemo. It is because the new Checker, in this case in trivdemo,

is able to find much quicker two proofs that can be reduced to a straightforward

justification and then it runs for just 40 secs.

The benefit of applying the new Checker was measured by the number of errors

reported by the standard utilities after running it on all MML articles and then the

number of bytes removed from the library when these errors had been corrected.

The experiment was performed on the library “clean” with respect to relprem and

trivdemo (also inacc and chklab). As there is currently no tool available to handle

relinfer errors reliably and in a fully automatic way, the results for relinfer are

calculated as the difference between the number of errors reported by the new and

the old version.

Totally, errors were detected in 771 articles: 720 for relprem, 261 for trivdemo

and 637 for relinfer. The relprem utility detected 8439 errors (there were 296

99

Adam Naumowicz

errors in JGRAPH_4) trivdemo detected 580 + 20 errors3 (there were 36 errors in

TEX_2) and relinfer 6555 (10834 − 4279) errors (also note that there were 392

errors in JGRAPH_4).

Only by automatic elimination of relprem and trivdemo errors, the size of

MML was reduced from the original 72826045 bytes to 72587040 bytes. Although

the difference (239005 bytes) is only 0.33% of the total size, one may see that with

the average size of one MML article equal 71468.2 bytes this makes 3.3 articles.

Moreover, with a very rough estimate of 20 bytes reduction per one relinfer error,

that would give another 130KB, i.e. two more articles. The most significant changes

were done to the articles JGRAPH_4 (4593 bytes removed) and TEX_2 (13483 bytes

removed).

All in all, admitting the slowdown in processing time, we claim that the new

Checker seems to work in a predictable way and the reduction of Mizar texts

obtained thanks to it seems to make up for the loss.

6 Further work

The matching functions of the extended “round-up” algorithm presented in Sec-

tion 4 have been written to demonstrate how the rounding-up should work rather

than provide a final and most efficient solution. Eventually, profiling methods

should be used to identify the weak points of the rudimentary implementation and

a more efficient code with indexing and other optimizations should be developed

to speed up the processing.

The statistics presented in Section 5 show the immediate benefits of running

the strengthened Checker on the articles collected in MML at the time of writing

this article. But it will also be very important to make a proper use of the new

feature when developing new articles as well as during future MML revisions.

It would also be highly desirable to develop tools suitable for processing all

MML articles in order to detect and eliminate cases of unnecessary reconsider

statements and their proofs, because very often Mizar authors used to state an

explicite type restriction only to help the Checker use a specific registration, while

with the new “rounding-up” mechanism it is not needed anymore.

And finally, as always when the system has been strengthened, it would be very

interesting to turn off the relevant code after some time, and check if authors make

use of it in their new developments. Hopefully, extended adjective techniques will

become a key feature of the Mizar style of formalizing mathematics.

References

1. Bancerek, G.: On the Structure of Mizar Types. Electronic Notes in Theoretical Com-

puter Science 85(7) (2003).

3 After running trivdemo there can occur relprem errors (when a whole proof is reduced
to a straightforward justification) and new trivdemo errors (when a proof on a higher
level is reduced), so that it has to be run several times to get complete results.

100

Enhanced Processing of Adjectives in Mizar

2. Kamareddine, F. and R. Nederpelt: A Refinement of de Bruijn’s Formal Language of
Mathematics. Journal of Logic, Language and Information 13(3) (2004) 287–340.

3. Matuszewski, R. and P. Rudnicki: Mizar: The First 30 Years. Mechanized Mathematics

and Its Applications 4(1) (2005) 3–24.
4. Naumowicz, A.: Evaluating Prospective Built-in Elements of Computer Algebra in

Mizar. Studies in Logic, Grammar and Rhetoric 10(23) (2007) 191–200.
5. Rudnicki, P. and A. Trybulec: Mathematical Knowledge Management in Mizar. In

Buchberger, B. and O. Caprotti (Eds.), Electronic Proceedings of MKM 2001. Avail-
able at http://www.emis.de/proceedings/MKM2001/rudnicki.pdf.

6. Schwarzweller, C.: Mizar Attributes: A Technique to Encode Mathematical Knowl-
edge into Type Systems. Studies in Logic, Grammar and Rhetoric 10(23) (2007)
387–400.

7. Trybulec, A.: Some Features of the Mizar Language. In Proceedings of ESPRIT
Workshop, Torino (1993) available on-line at http://mizar.uwb.edu.pl/project/

trybulec93.ps.
8. Wiedijk, F.: Checker. A compilation of e-mails written by Andrzej Trybulec, available

on-line at http://www.cs.ru.nl/~freek/mizar/by.ps.gz.

101

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

The Chinese Remainder Theorem,

its Proofs and its Generalizations

in Mathematical Repositories

Christoph Schwarzweller

Department of Computer Science, University of Gdańsk
ul. Wita Stwosza 57, 80-952 Gdańsk, Poland

schwarzw@inf.univ.gda.pl

Abstract. In the spirit of mathematical knowledge management theorems
are proven with computer assistance to be included into mathematical
repositories. In the mathematical literature one often finds not only differ-
ent proofs for theorems, but also different versions or generalizations with
a different background. In mathematical repositories, for obvious reasons,
there is usually one version of a theorem with one proof only – the authors
choose a version and a proof which can be formalized most easily. In this
paper we argue that there are other issues to decide which proof of a theo-
rem or which version of a theorem should be included in a repository. These
basically depend on the intended further use of the theorem and the proof.
We illustrate these issues in detail with the Chinese Remainder Theorem
as an example.

1 Introduction

Over the years much effort has been spent proving more and more elaborated

theorems with computer assistance. Some of the most prominent examples recently

finished are the Four Colour Theorem using Coq by Georges Gonthier, the Prime

Number Theorem using Isabelle/HOL by Jeremy Avigad, and the Jordan Curve

Theorem using HOL Light by Tom Hales (shortly after also proven using Mizar by

a large group of authors). In contrast, building up repositories of proven theorems

is a topic much younger than proving them1. Lately this topic has received more

and more attention as the area of mathematical knowledge management evolved.

Mathematical knowledge management aims at providing both tools and infra-

structure supporting the organization, development, and also teaching of mathe-

matics using modern techniques provided by computers. Consequently, large repos-

itories of mathematical knowledge are here of major interest because they provide

users with a data base of – verified – mathematical knowledge. We emphasize the

fact that a repository should contain verified knowledge only together with the

corresponding proofs. We believe that (machine-checked or -checkable) proofs nec-

essarily belong to each theorem and therefore are an essential part of a repository.

1 An exception is the Mizar Mathematical Library that goes back to 1989.

ISBN 978-83-7431-229-5 ISSN 0860–150X 103

Christoph Schwarzweller

However, mathematical repositories should be more than collections of theo-

rems and their proofs accomplished by a prover or proof checker. The overall goal

here is not only stating and proving a theorem – though this remains an important

and challenging part – but also presenting definitions and theorems so that the

“natural” mathematical buildup remains visible. Theories and their interconnec-

tions should be available, so that the further development of the repository can be

based upon these. Being not trivial as such, this becomes even harder to assure for

an open repository with a large number of authors.

In this paper we deal with yet another aspect in building mathematical reposi-

tories that is usually not – or only implicitly – taken into account: the evolution of

theorems. By this we mean that in mathematics theorems and proofs do not remain

stable. New, more elegant proofs for a theorem are found, employing maybe other

(new) proof techniques or relying on different new lemmas. Connections between

mathematical subfields often lead to a “reformulation” of a theorem in order to

apply a different background in the proof. Generalization of theorems also is an

issue. The discovery that a theorem holds in a more general case than the original

formulation indicates, is a very natural one in mathematics. Hence, both theorems

and their proofs very often come in more than one version.

From the mathematical point of view this is not only harmless but also desirable;

it is part of the mathematical progress. In mathematical repositories, however, one

usually finds only one version of a theorem with one proof only. This is of course

reasonable, if formalizing – that is stating and proving the theorem in a system –

is the major goal. At this point sometimes different versions of theorems or proofs

are implicitly dealt with. Before starting the formalization alternatives are checked

and the one (seemingly) being best suited for formalization is chosen.

The argument “Once we have the theorem included in a repository, we can

use it for further development, no matter how it has been proven” however, ex-

cludes technical problems of building mathematical repositories. When extending

the repository it might occur that to finish a proof relying on a special theorem, it

would be much better to use another version of this theorem. And if repositories

are used for teaching mathematics, different versions of theorems and proofs are of

course of interest for didactic reasons.

Consequently, it may be reasonable to include different versions of theorems or

proofs in mathematical repositories, though at first sight this seems not only to

blow up the repository, but also causes additional work. Such decisions, therefore,

will usually depend on special intentions of the theorem, e.g.: Will it be also used

for didactic purposes? Can other versions be formalized with a reasonable amount

of work? In the following we will illustrate the above considerations by using the

Chinese Remainder Theorem [16,8] as a concrete example.

The plan of the paper is as follows. In the next section we present the Chinese

Remainder Theorem (CRT) in its standard version together with three different

proofs. To give the reader a feeling about formalizing such a theorem, we give a

brief introduction to the Mizar system [21] in Section 3 and a glimpse on the Mizar

proof of the CRT in Section 4. Section 5 then deals with other versions of the CRT.

One version is rather technical – due to formalization issues in open mathematical

repositories. The other one is a completely different formulation of the theorem

104

The CRT in Mathematical Repositories

which, unlike the first one, relies more on abstract algebra. Section 6 finally is

devoted to possible generalizations of the CRT and their relation to the original

theorem.

2 The Chinese Remainder Theorem and Its Proofs

The CRT is a result about congruences over the integers. It states that an integer

u can be completely described by the sequence of its remainders – if the number of

remainders is big enough. The “standard” version of the theorem reads as follows.

Theorem 1. Let m1, m2, . . . ,mr be positive integers such that mi and mj are

relatively prime for i 6= j. Let m = m1m2 · · ·mr and let u1, u2, . . . , ur be integers.

Then there exists exactly one integer u with

0 ≤ u < m and u ≡ ui mod mi for all 1 ≤ i ≤ r. ⋄

That this theorem should be part of a mathematical repository needs no further

explanation. But what kinds of proofs exist and what reasons are there to include

these proofs in mathematical repositories? In the following we present three differ-

ent proofs of the theorem and discuss their relevance to be included in mathematical

repositories. It is very easy to show, that there exists at most one such integer u;

in the following proofs we therefore focus on proving the existence of u. The proofs

are taken from [16].

First proof: Suppose integer u runs through the m values 0 ≤ u < m. Then

(u mod m1, . . . , u mod mr) also runs through m different values, because the sys-

tem of congruences has at most one solution. Because there are exactlym1m2 · · ·mr

= m different tuples (v1, . . . , vr) with 0 ≤ vi < mi, every tuple occurs exactly once,

and hence for one of those we have (u mod m1, . . . , u mod mr) = (u1, . . . , ur). ⋄

This proof is pretty elegant and uses a rather obvious variant of the pigeon hole

principle: If we pack m items without repetition to m buckets, then we must have

exactly one item in each bucket. It is therefore valuable to include this proof in

a repository for didactic or aesthetic reasons. On the other hand, formalization of

the proof is not straightforward. This proof is one of those, that can technically

really blow up being formalized. One has to argue about the number of different

r-tuples and, more importantly, to show that there exists a bijection between the

set of r-tuples and the non-negative integers smaller than m. Another disadvantage

is that the proof is non-constructive, so that it gives no hints to find the value of

u – besides the rather valueless “Try and check all possibilities, one will fit”. This

is even more disturbing, because a constructive proof can easily be given:

Second proof: We can find integers Mi for 1 ≤ i ≤ r with

Mi ≡ 1 mod mi and Mj ≡ 0 mod mi for j 6= i.

Because mi and m/mi are relatively prime, we can take for example

Mi = (m/mi)
ϕ(mi),

105

Christoph Schwarzweller

where ϕ denotes the Euler function. Now,

u = (u1M1 + u2M2 + · · ·+ urMr) mod m

has the desired properties. ⋄

This proof constructs r constants Mi with which the sought-after u can easily

be computed. It therefore, in some sense, contains more information than the first

proof, that should be contained in the repository also. The proof uses far more

evolved mathematical notations – namely Euler’s function – and for that reason

may also be considered more interesting than the first one. Formalization requires

the use of Euler’s function2 which may lead to a lot of preliminary work. From a

computer science point of view the proof has two disadvantages. First, it is not easy

to compute Euler’s function; in general one has to decompose the moduli mi into

their prime factors. Second, the Mi being multiples of m/mi are really big num-

bers, so that a better method for computing u is highly desirable. Such a method

has indeed been found by H. Garner, which gives a third proof of Theorem 1:

Third proof: Because we have gcd(mi,mj) = 1 for i 6= j we can find integers cij
for 1 ≤ i < j ≤ r with

cijmi ≡ 1 mod mj

by applying the extended Euclidean algorithm to mi and mj . Now taking

v1 := u1 mod m1

v2 := (u2 − v1)c12 mod m2

v3 := ((u3 − v1)c13 − v2)c23 mod m3

...

vr := (. . . ((ur − v1)c1r − v2)c2r − · · · − vr−1)c(r−1)r mod mr

and then setting

u := vrmr−1 · · ·m2m1 + · · ·+ v3m2m1 + v2m1 + v1

we get the desired integer u. ⋄

The proof uses
(

r

2

)

constants cij that can be computed with the extended Eu-

clidean algorithm because we have gcd(mi,mj) = 1 for i 6= j. When constructing

the vi the application of the modulo operation in each step ensures that the oc-

curring values remain small. Note that the finally computed u actually is a radix

number in m1,m2, . . . ,mr. The proof is far more technical than the others in con-

structing
(

r

2

)

+ r additional constants, the vi in addition being recursively defined.

Therefore, a formalization of this proofs will be rather unpleasant. On the other

hand, however, this proof includes an efficient method to compute the integer u

from Theorem 1.

2 Actually this is not completely true: a mild modification of the proof does without
Euler’s function; compare Section 4.2.

106

The CRT in Mathematical Repositories

We see that the question which proof of a theorem should be formalized, does

not only depend on the hardness of the formalization in a given system. Both

elegance and the amount of information are issues that can be taken into consid-

eration – this may even result in formalizing more than one proof. This, however,

is not the end of the line. In the literature we often find different versions or even

generalizations of a theorem, and again the question is which one to choose. Before

we discuss these issues in case of the CRT, we will briefly provide insight into how

to formalize the theorem in the Mizar system [21].

3 The Mizar System

The Mizar language as well as the Mizar system have been described elsewhere

(see e.g. [24,23,25,32]). Here we only give a brief overview necessary to follow the

subsequent sections.

Mizar’s [24,21] logical basis is the classical first order logic extended with so-

called schemes. Schemes allow for free second order variables, in this way enabling,

for example, the definition of induction schemes. The current development of the

Mizar Mathematical Library (MML) is based on Tarski-Grothendieck set theory

(a variant of Zermelo-Fraenkel set theory using Tarski’s axiom on arbitrarily large,

strongly inaccessible cardinals [28] which can be used to prove the axiom of choice),

though in principle the Mizar language allows for other axiom systems also. Mizar

proofs are written in the natural deduction style similar to the calculus of [13].

The rules of the calculus are connected with corresponding (English) natural lan-

guage phrases, so that the Mizar language is close to the one used in mathematical

textbooks. The Mizar proof checker verifies the individual proof steps using the

notion of obvious inferences [5] to shorten the rather long proofs of pure natural

deduction.

Mizar objects are typed, the types forming a hierarchy with the fundamental

type set [1]. New types are constructed using type constructors called modes.

Modes can be decorated with adjectives – given by so-called attribute definitions

– in this way extending the type hierarchy. For example, given the mode Ring and

an attribute commutative a new mode commutative Ring can be constructed,

which obeys all the properties given by the mode Ring plus the ones stated by

the attribute commutative. Furthermore, a variable of type commutative Ring is

also of type Ring, which implies that all notions defined for Ring are available for

commutative Ring. In addition all theorems proved for type Ring are applicable for

objects of type commutative Ring; indeed the Mizar checker itself infers subtype

relations in order to check whether theorems are applicable for a given type.

4 A Mizar Formalization of the Chinese Remainder

Theorem

We believe that in mathematical repositories both the formalization of the theo-

rem itself – that is its representation and in particular its readability – and the

formalization of the proof are equally important. Therefore, first we discuss our

107

Christoph Schwarzweller

representation of the theorem and then describe how we formalized the second

proof of Section 2.

4.1 The Theorem

We represent the given integers u1, . . . , ur and m1, . . . ,mr as finite sequences over

the integers. For the mi we need the additional condition that they are pairwise

relatively prime. Using the already defined predicate are_relative_prime [18] this

property is introduced in a Mizar attribute definition:

definition

let f be integer-yielding FinSequence;

attr f is Chinese_Remainder means

for i,j being natural number

st i in dom f & j in dom f & i <> j holds f.i, f.j are_relative_prime;

end;

Then a finite sequence of integers mi fulfilling the assumption of Theorem 1 –

a Chinese remainder sequence – can be described by the following mode definition.

Note that the number r of moduli is given simply by the length of the sequence.

definition

mode CR_Sequence is non empty positive-yielding Chinese_Remainder

(integer-yielding FinSequence);

end;

As a consequence each element of type CR_sequence describes a set of moduli

mi fulfilling the assumptions of Theorem 1. Note also that due to Mizar’s type

widening mechanism all theorems proven for elements of type FinSequence and

integer-yielding FinSequence can also be automatically applied to elements of

type CR_Sequence.

Using the predicate are_congruent_mod [30] and the functor Product [2] giving

the product of the elements of a finite sequence it is now easy to state the CRT in

Mizar in a very readable fashion. Here we present only the theorem on the existence

of the integer u. A second theorem describing the uniqueness of u is straightforward.

theorem

for u being integer-yielding FinSequence,

m being CR_Sequence st len u = len m

ex z being Integer

st 0 <= z & z < Product(m) & for i being natural number

st i in dom u holds z,u.i are_congruent_mod m.i;

4.2 A Mizar Formalization of the Second Proof

The proof starts with the definition of the constants Mi. Instead of Euler’s func-

tion we use a variant that analogously to Garner’s proof finds the constants by

employing the extended Euclidean algorithm: If m is the product of the mi we

108

The CRT in Mathematical Repositories

have gcd(m/mi,mi) = 1 for i = 1, . . . , r. We can therefore find integers si with

si ∗ (m/mi) ≡ 1 mod mi and thus constants Mi with the desired properties. In

Mizar we defined a finite sequence holding the values of Mi for i = 1, . . . , r:

definition

let m be CR_Sequence;

mode CR_coefficients of m -> FinSequence means

len it = len m &

for i being natural number st i in dom it holds

ex s being Integer, mm being Integer

st mm = Product(m)/m.i & s*mm,1 are_congruent_mod m.i &

it.i = s * (Product(m)/m.i);

end;

registration

let m be CR_Sequence;

cluster -> integer-valued CR_coefficients of m;

end;

To be more precise, we actually do not fix the constants si, we just state (and

prove) their existence. Therefore every finite sequence using appropriate values for

the si is of type CR_coefficients, and not only the one with the value for the si
computed by the extended Euclidean algorithm. As a consequence all that follows

holds for arbitrary choices of the si.

The next step is to construct the integer u = (u1M1 + . . . + urMr) mod m

from the constants Mi. This again is straightforward using the Mizar functors (#)

for componentwise multiplication of sequences [22] and Sum for summing up the

elements of a sequence [2]. We defined the Mizar functor to_int as follows.

definition

let u be integer-yielding FinSequence,

m be CR_Sequence such that len m = len u;

func to_int(u,m) -> Integer means :Def_to_int:

for c being CR_coefficients of m holds it = Sum(u(#)c) mod Product(m);

end;

Note that the term Sum(u(#)c) mod Product(m) denotes the same integer for

an arbitrary choice of the coefficients in c; or in other words (u1 ∗M1+ . . .+urMr)

mod m always gives the same integer u no matter what concrete values si have

been used in the construction of the CR_sequence c. This in fact is the reason that

we can state to_int(u,m) in this way as a Mizar functor.

The proof of the CRT now consists of showing that to_int(u,m) has the desired

properties. The key property here is of course that the constructed sum Sum(u(#)c)

is congruent with ui modulo mi for all i = 1, . . . , r as stated in the following

theorem.

theorem congsum:

for u being integer-valued FinSequence,

m being CR_Sequence st len m = len u

109

Christoph Schwarzweller

for c being CR_coefficients of m,

i being natural number st i in dom m

holds Sum(u(#)c),u.i are_congruent_mod m.i;

The proof is pretty technical and shows by induction on the length l of the

sequence u(#)s that its sum is congruent to 0 if l < i and congruent to mi if l ≥ i.

Together with the following result from [30]

theorem :: INT_1:41

for i1,i2,i3,i4,i5 being Integer

holds i4 * i5 = i3

implies (i1,i2 are_congruent_mod i3 implies i1,i2 are_congruent_mod i4);

the rest of the proof basically consists of applying properties of integer congruences,

that is applying theorems already present in the Mizar Mathematical Library. The

obvious fact that 0 ≤ to_int(u,m) < Product(m) has been shown in lemma2. To

give the reader an impression of how Mizar proofs are written, we include the proof:

proof

let u be integer-yielding FinSequence, m be CR_Sequence;

assume AS: len u = len m;

take z = to_int(u,m);

now let i be natural number;

assume A: i in dom u;

consider c being CR_coefficients of m;

set s = Sum(u(#)c) mod Product(m);

B: dom m = Seg(len u) by AS,FINSEQ_1:def 3

.= dom u by FINSEQ_1:def 3;

then Sum(u(#)c),u.i are_congruent_mod m.i by A,AS,congsum;

then C: Sum(u(#)c) mod m.i = u.i mod m.i by INT_3:12;

dom m = Seg(len u) by AS,FINSEQ_1:def 3

.= dom u by FINSEQ_1:def 3;

then m.i in rng m by A,FUNCT_1:12;

then D: m.i > 0 by PARTFUN3:def 1;

consider y being Integer such that E: y * m.i = Product(m) by A,B,thm;

s mod Product(m) = Sum(u(#)c) mod Product(m) by INT_3:13;

then s,Sum(u(#)c) are_congruent_mod Product(m) by INT_3:12;

then s,Sum(u(#)c) are_congruent_mod m.i by E,INT_1:41;

then s mod m.i = Sum(u(#)c) mod m.i by INT_3:12;

then s,u.i are_congruent_mod m.i by D,C,INT_3:12;

hence z,u.i are_congruent_mod m.i by Def_to_int,AS;

end;

hence thesis by AS,lemma2;

end;

We would like to add that using the functor to_int one can easily show that

modular integer arithmetic based on the CRT is correct [26]. Modular integer

arithmetic performs integer arithmetic by transforming integers into sequences of

their remainders, that is an integer u is transformed into an r-tuple of the form

(u mod m1, . . . , u mod mr) for given moduli m1,m2, . . . ,mr. After performing the

110

The CRT in Mathematical Repositories

arithmetic operation componentwise on the tuples the CRT (via to_int) allows to

transform the result back to the ordinary integers without loss of information – if

m = m1m2 · · ·mr is big enough.

To prove this we can easily define a functor mod that transforms an integer

u into the sequence of u’s remainders. The moduli mi are here given by a finite

sequence m.

definition

let u be Integer,

m be integer-yielding FinSequence;

func mod(u,m) -> FinSequence means

len it = len m &

for i being natural number st i in dom it holds it.i = u mod m.i;

end;

The componentwise arithmetic operations are then just the operations for se-

quences given in [22]. So, for example, mod(u,m) (#) mod(v,m) describes the com-

ponentwise multiplication of remainders for the integers u and v. Translating this

finite sequence to an integer z using the functor to_int from above results in z =

u * v, if u * v < Product(m). We thus get the following

theorem

for u,v being Integer,

m being CR_Sequence st 0 <= u * v & u * v < Product(m)

holds to_int(mod(u,m) (#) mod(v,m), m) = u * v;

Analogous theorems for addition and subtraction of integers can be easily stated

and proven (see [26]).

5 Other Versions of the Chinese Remainder Theorem

In this section we consider other versions of the CRT, that is, generally speaking,

other theorems stating the same fact as the original theorem. We try to analyze

where these different versions come from and, more importantly, their impact on

mathematical repositories.

5.1 Another Mathematical Version

The most natural reason for different versions of theorems is of course that math-

ematicians often look at the same issue from different perspectives. The CRT pre-

sented in Section 2 deals with congruences over the integers; it states the existence

of an integer solving a given system of congruences. Looking from a more algebraic

point of view, that is concentrating on the structures being involved aside from the

integers, we see that the moduli mi can be interpreted as describing the residue

class rings Zmi
. The existence and uniqueness of the integer u from the CRT then

gives rise to an isomorphism between these rings. So the reformulated CRT looks

as follows [8].

111

Christoph Schwarzweller

Theorem 2. Let m1, m2, . . . ,mr be positive integers such that mi and mj are

relatively prime for i 6= j and let m = m1 m2 · · ·mr. Then we have the ring

isomorphism

Zm

∼= Zm0
× · · · × Zmr

. ⋄

It is not easy to decide which version of the CRT is better suited for inclusion

in a mathematical repository. Theorem 2 looks more elegant and in some sense

contains more information than Theorem 1: It does not state the existence of a

special integer, but the equality of two mathematical structures.3 The proof of

Theorem 2 uses the homomorphism theorem for rings and is therefore interesting

for didactic reasons, too.

On the other hand, Theorem 1 uses integers and congruences only, so that one

needs less preliminaries to understand it. Theorem 1 and its proof also give more

information than Theorem 2 concerning computational issues4 – at least if not the

first proof only has been formalized.

5.2 Another Technical Version

Another reason for additional versions of a theorem may be based in the mathemat-

ical repository itself. Here again especially open repositories play an important role.

Different styles of formalizing and different kinds of mathematical understanding

and preferences meet in one repository. So, it may happen that two authors formal-

ize the same (mathematical) theorem, but choose a different formulation and/or a

different proof. We call this technical or representational versions.

In the Mizar Mathematical Library in [17], for example, we find another version

of the CRT from Section 2:

theorem :: WSIERP_1:44

len fp>=2 &

(for b,c st b in dom fp & c in dom fp & b<>c holds (fp.b gcd fp.c)=1)

implies

for fr st len fr=len fp holds

ex fr1 st (len fr1=len fp &

for b st b in dom fp holds (fp.b)*(fr1.b)+(fr.b)=(fp.1)*(fr1.1)+(fr.1));

This theorem is not immediately understandable, also because the variables’

types are not explicitly stated but given by a so-called reservation – that in the

article of course occurs before the theorem.

reserve b,c for Nat,

fp for FinSequence of NAT,

fr,fr1 for FinSequence of INT;

3 Of course this equality easily follows from Theorem 1, but is not explicitly stated there.
4 To apply the homomorphism theorem in the proof of Theorem 2 one needs to show that
the canonical homomorphism is a surjection with kernel (m). This sometimes is done
by employing the extended Euclidean algorithm, so that this proof gives an algorithm,
too.

112

The CRT in Mathematical Repositories

In this version no attributes are used. The condition that the mi are pairwise

relatively prime is here stated explicitly using the gcd functor for natural numbers.

Also the congruences are described arithmetically: u ≡ ui mod mi means that there

exists a xi such that u = ui+ xi ∗mi, so the theorem basically states the existence

of x1, . . . , xr instead of u.

Since the article has been written more than 10 years ago, a reason for this

technical formulation is hard to find. It may be that at the time of writing Mizar’s

attribute mechanism was not so far developed as today, i.e. the author reformulated

the theorem in order to get it formalized at all. Another explanation for this second

technical version might be that the author when formalizing the CRT already had

in mind a particular application and therefore chose a formulation better suited to

prove the application.

We see that in general the way authors use open systems to formalize theorems

has a crucial impact on the formulation, that is on the technical version of a theorem

– and may lead to different versions of the same theorem.

6 Generalizations of the Chinese Remainder Theorem

Generalization of theorems is everyday occurrence in mathematics. In the case of

mathematical repositories generalization is a rather involved topic: It is not obvious

whether the less general theorem can be eliminated. Proofs of other theorems using

the original version might not work automatically with the more general theorem

instead. The reason may be that a slightly different formulation or even a different

(mathematical or technical) version of the original theorem has been formalized.

Then the question is: Should one rework all these proofs or keep both the original

and the more general theorem in the repository? To illustrate that this decision is

both not trivial and important for the organization of mathematical repositories

we present in this section some generalizations of the CRT.

6.1 Mathematical Generalizations

A rather mild generalization of Theorem 1 is based on the observation that the

range in which the integer u lies, does not need to be fixed. It is sufficient that

it has the width m = m1m2 · · ·mr. This easily follows from the properties of the

congruence ≡.

Theorem 3. Let m1, m2, . . . ,mr be positive integers such that mi and mj are

relatively prime for i 6= j. Let m = m1 m2 · · ·mr and let a, u1, u2, . . . , ur be

integers. Then there exists exactly one integer u with

a ≤ u < a+m and u ≡ ui mod mi

for all 1 ≤ i ≤ r. ⋄

It is trivial that for a = 0 we get the original Theorem 1. The old proofs can

very easily be adapted to work with this generalization of the theorem. Maybe

113

Christoph Schwarzweller

the system checking the repository even automatically infers that Theorem 3 with

a = 0 substitutes the original theorem. If not, however, even the easy changing all

the proofs to work with the generalization can be an extensive, unpleasant, and

time-consuming task.

A second generalization of the CRT is concerned with the underlying algebraic

structure. The integers are the prototype example for Euclidean domains. Taking

into account that the residue class ring Zn in fact is the factor ring of Z by the

ideal nZ, it is rather obvious that the following generalization5 holds.

Theorem 4. Let R be a Euclidean domain. Let m1, m2, . . . ,mr be positive inte-

gers such that mi and mj are relatively prime for i 6= j and let m = m1 m2 · · ·mr.

Then we have the ring isomorphism

R/(m) ∼= R/(m0)× · · · ×R/(mr). ⋄

This generalization may cause some problems: In mathematical repositories it is

an immense difference whether one argues about the set of integers (with the usual

operations) or the ring of integers: They have just different types.6 Technically, this

means that in mathematical repositories we often have two different representations

of the integers. In the mathematical setting theorems of course hold for both of

them. However, proofs using one representation will not work for the other one.

Consequently, though Theorem 4 is more general, it will not work for proofs using

integers instead of the ring of integers; for that a similar generalization of Theorem

1 is necessary. So in this case in order to make all proofs work with a generalization,

we need to provide generalizations of different versions of the original theorem –

or just change the proofs with the “right” representation leading to an unbalanced

organization of the repository.

We close this subsection with a generalization of the CRT that abstracts even

from algebraic structures. The following theorem [19] deals with sets and equiva-

lence relations only and presents a condition whether the “canonical” function σ is

onto.

Theorem 5. Let α and β be equivalence relations on a given set M . Let σ : M −→

M/α×M/β be defined by σ(x) := (α(x), β(x)). Then we have ker(σ) = α∩ β and

σ is onto if and only if α ◦ β = M ×M . ⋄

In this generalization almost all of the familiar CRTs gets lost. There are no

congruences, no algebraic operations, only the factoring (of sets) remains. There-

fore, it seems hardly possible to adapt proofs using any of the preceding CRTs to

work with this generalization in a reasonable amount of time. Any application will

rely on much more concrete structures, so that too much effort has to be spent to

adapt a proof. Theorem 5 in some sense is too general to reasonably work with.

However, even if not applicable, the theorem stays interesting from a didactic point

of view.7 It illustrates how far we sometimes can generalize and may provide the

5 Literally this is a generalization of Theorem 2, but of course Theorem 1 can be analo-
gously generalized to Euclidean domains.

6 Though often the ring of integers is constructed using the (set of) integers.
7 In fact the proof of Theorem 5 has been an exercise in lectures on linear algebra.

114

The CRT in Mathematical Repositories

starting point of a discussion whether this is – aside from mathematical aesthetics –

expedient; a topic that is also of great interest for the organization of mathematical

repositories.

6.2 Generalization towards Concepts

Another kind of possible generalization does not stem from mathematics, but from

the intention of bringing more structure into the organization of mathematical

repositories and can be compared with the ideas of [27,7] on theory interpretation.

Modular arithmetic from Section 4.2 using the CRT is a typical example for the

concept of computing with homomorphic images: transforming data into another

algebraic structure, performing there algebraic operations and then reconstructing

the result in the original structure; or, to say it a little bit shorter, performing the

algebraic operations in another representation.

A second example is the multiplication of polynomials using the discrete Fourier

transformation [8]. A discrete Fourier transformation DFTω changes the represen-

tation of a polynomial p with deg(p) < n to an n-tuple by evaluating p for n values.

A special choice of these n values – ω0, ω1, . . . , ωn−1 for an n-th primitive root ω –

ensures that no information is lost. After carrying out a componentwise multipli-

cation on the n-tuples another discrete Fourier transformation – in fact (DFTω)
−1

– constructs the result polynomial.

Though different in nature, both the CRT and the discrete Fourier transfor-

mation serve to prove that a special instantiation of the concept computing with

homomorphic images is correct. Putting it the other way round, both of them can

in some sense be generalized to the concept computing with homomorphic images.

This adjacency should be reflected in mathematical repositories. This gives rise to

a theorem describing in essence the correctness of the concept.8

Theorem 6. Let R an S be <structures>, and let f : R −→ S be a function.

Let u and v be elements of r. If f, u and v fulfill <a condition>, then we have

u opR v = f−1(f(u) opS f(v)) for all operations opR in R. ⋄

Note that the usual homomorphic condition f(u opR v) = f(u) opS f(v) does

not allow to transform the result back into the structure R. If f is an isomorphism,

then of course the theorem becomes trivial. It therefore would be interesting to

find weaker realizations of <a condition>.

Theorem 6 states (in an abstract way) that to perform operations in R the

change of the representation from R to S using f is admissible if <a condition>

holds. Having such a theorem in a mathematical repository would allow to handle

the concept of computing with homomorphic images by just showing that a special

case fulfills <a condition>. Modular integer arithmetic, for example, according to

Theorem 2 sets R to Zm and S to Zm0
× · · · × Zmr

. It then takes the mod functor

as f and the to_int functor as f−1. Another variant according to Theorem 1 is

setting R to Z instead of Zm. In this case however we get the additional condition

8 The following “theorem” holds for arbitrary (algebraic) structures and a yet to find
condition, which we indicated by using Backus-Naur-like brackets < and >.

115

Christoph Schwarzweller

that u opR v < m holds. In the case of multiplication of polynomials p and q we get

that f = DFT and f−1 = DFT−1 with the additional condition that deg(p∗q) < n.

7 Related Work

Formalizations of the CRT can be found in other systems besides Mizar. The first

computer proof of the CRT dates back to 1992 using Rewrite Rule Laboratory [15].

Because the rewriting approach cannot handle quantifiers (all variables are assumed

to be universally quantified), existential quantifiers are eliminated by introducing

Skolem functions. So in [33] we find the following CRT.

(allpositive(Y) ∧ allprime(Y)) ⇒

(allcongruent(soln(Y), Y)∧

((allcongruent(x1, Y) ∧ allcongruent(x2, Y)) ⇒

(rem(x1 − x2, products(Y)) = 0)))

where soln is the above mentioned Skolem function. The goal was to experiment

with the cover set induction principle implemented in Rewrite Rule Laboratory,

that is the challenging point was proving the theorem – in whatever formulation.

In more current proof systems the CRT also have been formalized. Interestingly,

we found only two-number versions, that is CRTs where the number of moduli is

restricted to two. In HOL Light [11], for example, we find such a version of Theorem

1 stating that in case of two moduli a and b there exists a simultaneous solution x

of the congruences.

INTEGER_RULE

’!a b u v:int. coprime(a,b) ==>

?x. (x == u) (mod a) /\ (x == v) (mod b)’;;

INTEGER_RULE is a rule for proving divisibility properties of the integers. The rule

is partly heuristic and most of the statements automatically proven with it are

universally quantified. Again the main purpose of the CRT is to illustrate the

power of a proof technique.

The CRT has been formalized in hol98, too [12]. Here we find a two-number

version of Theorem 2 that in addition is restricted to multiplicative groups. Techni-

cally, the theorem states that for moduli p and q the function λx.(x mod p, xmod q)

is a group isomorphism between Zpq and Zp ×Zq.

⊢ ∀p, q.

1 < p ∧ 1 < q ∧ gcd p q = 1 ⇒

(λx.(x mod p, x mod q)) ∈

group iso (mult group pq)

(prod group (mult group p) (mult group q))

Note that, in contrast to Theorem 2, the isomorphism is part of the theorem itself

and not hidden in the proof. The main goal of [12] was the verification of the Miller-

Rabin probabilistic primality test. Therefore the restriction to multiplicative groups

is reasonable, because this version of the CRT is sufficient for the verification.

116

The CRT in Mathematical Repositories

In the Coq Proof Assistant [3] the CRT has been proved for a bit vector rep-

resentation of the integers [20]. We see that this again is a version of Theorem 1

restricted to two moduli a and b.

Theorem chinese_remaindering_theorem :

forall a b x y : Z,

gcdZ a b = 1%Z -> {z : Z | congruentZ z x a /\ congruentZ z y b}.

In fact this theorem and its proof are the result of rewriting a former proof of the

CRT in Coq. So in Coq there exist two versions of the CRT – though the former

one has been declared obsolete.

8 Conclusions

In order to discuss the question which proof and which version of a theorem is best

suited for inclusion in mathematical repositories, we have presented various proofs,

versions and generalizations of the Chinese Remainder Theorem.

It is probably no surprise that each version or generalization comes with its

pros and cons, so that it seems not possible in general to decide which one is best

suited to be included in a repository. On the contrary it may even be reasonable

to include more than one proof or version convenient for different purposes. One

maybe is better suited for further development (of applications) of the repository,

whereas another one better for didactic reasons.

It is not foreseeable whether it is possible to develop criteria for deciding which

proof, version or generalization of a theorem to include in a mathematical repos-

itory. However, it might be that the attempt to do so – like hopefully the con-

siderations in this paper – is a step towards the development of schemata how to

organize mathematical repositories.

Acknowledgment: I would like to thank the reviewers for their detailed comments

which have greatly improved the presentation of the paper.

References

1. Bancerek, G.: On the Structure of Mizar Types; in: H. Geuvers and F. Kamareddine
(eds.), Proceedings of MLC 2003, ENTCS 85(7), 2003.

2. Byliński, C.: The Sum and Product of Finite Sequence of Real Numbers; in: Formal-
ized Mathematics, 1(4), pp. 661–668, 1990.

3. The Coq Proof Assistant; available at http://coq.inria.fr, 2008.
4. Davenport, J.H.: MKM from Book to Computer: A Case Study; in: A. Asperti, B.

Buchberger, and J. Davenport (eds.), Proc. of MKM 2003, Lecture Notes in Com-
puter Science 2594, pp. 17–29, 2003.

5. Davies, M.: Obvious Logical Inferences; in: Proceedings of the 7th International Joint
Conference on Artificial Intelligence, pp. 530–531, 1981.

6. de Bruijn, N.G.: The Mathematical Vernacular, a language for mathematics with
typed sets; in: P. Dybjer et al. (eds.), Proceedings of the Workshop on Programming
Languages, Marstrand, Sweden, 1987.

117

Christoph Schwarzweller

7. Farmer, W., Guttman, J. and Thayer, F.: IMPS: An Interactive Mathematical Proof
System; in: Journal of Automated Reasoning 11, 213–248, 1993.

8. von zur Gathen, J. and Gerhard, J.: Modern Computer Algebra; Cambridge Univer-
sity Press, 1999.

9. Grabowski, A. and Schwarzweller, C.: Translating Mathematical Vernacular into
Knowledge Repositories; in: M. Kohlhase (ed.), Proceedings of the 4th International
Conference on Mathematical Knowledge Management, Lecture Notes in Artificial
Intelligence 3863, pp. 49–64, 2006.

10. Graham, R.E., Knuth, D.E. and Patashnik, O.: Concrete Mathematics; Addison-
Wesley, 1994.

11. Harrison, J.: The HOL Light System Reference; available at http://www.cl.cam.

ac.uk/~jrh13/hol-light/reference_220.pdf, 2008.
12. Hurd, J.: Verification of the Miller-Rabin Probabilistic Primality Test; in: Journal of

Logic and Algebraic Programming, 50(1-2), pp. 3–21, 2003.
13. Jaśkowski, S.: On the Rules of Supposition in Formal Logic; in: Studia Logica, vol.

1, 1934.
14. Kamareddine, F. and Nederpelt, R.: A Refinement of de Bruijn’s Formal Language

of Mathematics; in: Journal of Logic, Language and Information, 13(3), pp. 287–340,
2004.

15. Kapur, D. and Zhang, H.: An Overview of Rewrite Rule Laboratory (RRL); in:
N. Dershowitz (ed.), Proceedings of the 3rd International Conference on Rewriting
Techniques and Applications, LEcture Notes in Computer Science 355, pp. 559–563,
1989.

16. Knuth, D.: The Art of Computer Programming, Vol. 2: Seminumerical Algorithms;
3rd edition, Addison-Wesley, 1997.

17. Kondracki, A.: The Chinese Remainder Theorem; in: Formalized Mathematics, 6(4),
pp. 573–577, 1997.

18. Kwiatek, R. and Zwara, G.: The Divisibility of Integers and Integer Relative Primes;
in: Formalized Mathematics, 1(5), pp. 829–832, 1990.

19. Lüneburg, H.: Vorlesungen über Lineare Algebra (in German), BI Wissenschaftsver-
lag, 1993.

20. Ménissier-Morain, V.: A Proof of the Chinese Remainder Lemma; available
at http://logical.saclay.inria.fr/coq/distrib/current/contribs/ZChinese.
html, 2008.

21. The Mizar Home Page, http://mizar.org, 2009.

22. The Mizar Mathematical Library Committee, Properties of Number-Valued Func-
tions, 2007.

23. Naumowicz, A. and Byliński, C.: Improving Mizar Texts with Properties and Require-
ments, in: A. Asperti, G. Bancerek, and A. Trybulec (eds.), Proceedings of the 3rd
International Conference on Mathematical Knowledge Management, Lecture Notes
in Computer Science 3119, pp. 190–301, 2004.

24. Rudnicki, P. and Trybulec, A.: Mathematical Knowledge Management in Mizar; in:
B. Buchberger, O. Caprotti (eds.), Proceedings of the 1st International Conference
on Mathematical Knowledge Management, Linz, Austria, 2001.

25. Schwarzweller, C.: Mizar Attributes: A Technique to Encode Mathematical Knowl-
edge into Type Systems; in: Studies in Logic, Grammar and Rhetoric, vol. 10(23),
pp. 387–400, 2007.

26. Schwarzweller, C.: Modular Integer Arithmetic; in: Formalized Mathematics, 16(3),
pp. 247–252, 2008.

27. Shoenfield, J.: Mathematical Logic; Addison-Wesley, 1967.

118

The CRT in Mathematical Repositories

28. Tarski, A.: On Well-Ordered Subsets of Any Set; in: Fundamenta Mathematicae, vol.
32, pp. 176–183, 1939.

29. Treyderowski, K. and Schwarzweller, C.: Multiplication of Polynomials using Dis-
crete Fourier Transformation; in: Formalized Mathematics, 14(4), pp. 121–128, 2006.

30. Trybulec, M.: Integers; in: Formalized Mathematics, 1(3), pp. 501–505, 1990.
31. Wiedijk, F.: On the Usefulness of Formal Methods; Nieuwsbrief van de NVTI, pp. 14–

23, 2006.
32. Wiedijk, F.: Writing a Mizar Article in Nine Easy Steps; available at http://www.

mizar.org/project/bibliography.html, 2008.
33. Zhang, H. and Hua, X.: Proving the Chinese Remainder Theorem by the Cover Set

Induction; in: D. Kapur (ed.), Automated Deduction – CADE-11, Proceedings of the
11th International Conference on Automated Deduction, Lecture Notes in Computer
Science 607, pp. 431–455, 1992.

119

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

Combining Mizar and TPTP Semantic

Presentation and Verification Tools

Josef Urban1⋆, Geoff Sutcliffe2, Steven Trac2, and Yury Puzis2

1 Charles University, Czech Republic
2 University of Miami, USA

Abstract. This paper describes a combination of several Mizar-based tools
(the MPTP translator, XSL style sheets for Mizar), and TPTP-based tools
(IDV, AGInT, SystemOnTPTP, GDV) used for visualizing, analyzing, and
independent verification of Mizar proofs. The combination delivers to the
readers of the Mizar Mathematical Library (MML) an easy, powerful, and
almost playful way of exploring the semantics and the structure of the li-
brary. The key factors for the relative easiness of having these functionalities
are the choice of XML as both internal and external interface of Mizar, and
the existence of a TPTP representation of MML articles. This shows the
great added value that can be obtained by cooperation of several quite di-
verse (and quite often separately developed) projects, provided that they
are based on the same communication standards.

1 Instead of Reading This Paper

Perhaps the first thing a reader of this paper should do is to play with the func-

tionalities that have been implemented. These functionalities provide an easy,

powerful, and almost playful way of exploring the semantics and the structure

of the Mizar Mathematical Library (MML) [6]. Select one of the HTML files

at http://www.tptp.org/MizarTPTP/, e.g., the MML article about the Boolean

Properties of Sets, XBOOLE 1. This will show the HTML rendition of the article,

an extract of which is shown in Figure 1. Provided that Java 1.5 is installed and

available to the browser, clicking on the palm tree icon next to a theorem will run

the Interactive Derivation Viewer (IDV) [12] applet to display the TPTP form [11]

of the Mizar proof tree.3

Figure 2 shows the IDV window for the first theorem (Th1) in XBOOLE 1. The

many IDV functionalities available there are described later in this paper, on the

other hand, many of them are quite self-explanatory and easy to explore. One of

them, which might be particularly interesting to “semantically oriented” users, is

the verification functionality. The sequence of interactions is shown in Figure 3.

⋆ Supported by a Marie Curie International Fellowship within the 6th European Com-
munity Framework Programme.

3 See the IDV video – http://www.cs.miami.edu/~geoff/ResearchProjects/ART/

IDVVideo.mov.

ISBN 978-83-7431-229-5 ISSN 0860–150X 121

Josef Urban, Geoff Sutcliffe, Steven Trac, and Yury Puzis

Click the “white tick” (“show verified formulae”) icon (it turns green), and then

the “hurricane flags” icon on its right-hand side (“verify all formulae”), accept the

default EP system [7] as the verification ATP system in the pop-up window, and

click the “GO CANES” icon in the pop-up window. Green ticks will start to appear

in the IDV window, denoting that the (TPTP form of the) Mizar inference have

been verified by the GDV derivation verifier [15, 10], using EP for checking logical

consequences. Click the “hurricane flags” again to stop the verifications.

Fig. 1. Article XBOOLE 1

Going back to the HTML presentation and clicking on the “hammock between

palm trees” icon will similarly call IDV, now displaying the overall theorem struc-

ture of the article. If you think that this is not especially interesting, click this icon

in JGRAPH 7 (it will take a while to load the applet), to get the IDV window shown

in Figure 4. Would you be able to say just by looking at the HTML (or ASCII)

presentation that the Mizar article [3] has this particular derivation structure, and

be motivated to explore (and perhaps criticize) the reasons why it is so?

2 Motivation and Overview

There has been quite a lot of work recently on translating the MML to the TPTP

format, and on making the TPTP format sufficiently rich for this task. The goal

is to make the MML accessible to the automated theorem proving (ATP) systems

122

Combining Mizar and TPTP Tools

Fig. 2. Theorem Th1 in Article XBOOLE 1

123

Josef Urban, Geoff Sutcliffe, Steven Trac, and Yury Puzis

Fig. 3. Verifying Th1 in Article XBOOLE 1

Fig. 4. Article JGRAPH 7

124

Combining Mizar and TPTP Tools

that either directly, or through the TPTP translation tools, understand the TPTP

language. The systems can then in turn be used for proof assistance over the MML,

its independent verification [15], refactoring [17], and many more interesting AI

tasks [16]. Similarly, the (XSL-based) HTML presentation of the Mizar library has

been continuously developed, with the goal to make it a useful tool for its readers

and authors.

There are several other projects aimed at translating large formal corpora to

TPTP format, and at reaping the benefits from the unified TPTP interface to ATP

systems and tools. Examples include the Isabelle proof assistant, [2], the SUMO

ontology, [4], and the Cyc knowledge base [1]. The advantages of developing and

using tools that work directly with the TPTP format are obvious. While the Syste-

mOnTPTP interface for solving ATP problems [9] has been well known in the ATP

community for a long time, there has also been a significant recent development

of tools working with TPTP format derivations. IDV is a tool for graphical pre-

sentation of TPTP format derivations, and provides an interface for analysis and

verification of derivations. IDV is linked to the AGInT system [5], which assigns

interestingness values to derived formulae, based on several AI heuristics. This can

be used by IDV to compact large derivations into smaller presentations of the most

interesting facts and the links between them. Graphical presentation of a derivation

allows a user to quickly get a feel for the structure of the derivation, and interact

with the derivation in a more natural way than is possible with a text presenta-

tion. Another of IDV’s functionalities is its link to the GDV verification system

[10]. Recent versions of this system understand a Mizar-like assumption extension

to the TPTP language, and are capable of independent verification of the Mizar

proofs exported to this extended TPTP language by the MPTP system [15].

In short, the work presented here uses the existing (and continuously developed)

semantic link between Mizar and TPTP, and capitalizes on that link by re-using

the IDV, SystemOnTPTP, AGInT, and GDV systems, for additional semantic

presentation and verification purposes. In the following section it is explained how

this is (relatively easily) technically done by building on the MPTP system [14] and

the XSL style sheets for Mizar [13]. In Section 4 we summarize the new features

and improvements of the IDV tool that are used for this (and which, by IDV’s

nature, are generally available for any derivation in the TPTP format).

3 Structure of the System

The overall structure of the system is shown in Figure 5. The Mizar parser pro-

duces the XML form of a Mizar article, which is then translated by XSLT tools

to HTML, and by XSL and the MPTP translator to the TPTP format. A num-

ber of additions have recently been made to both the XSL translations. First, the

original Mizar identifiers (variables, labels, constants) are kept in the XML, and

are thus available for more faithful HTML presentation. The presentational infor-

mation is also retained, which allows re-creation of the original logical connectives

used in formulae. This is used for both the HTML and TPTP translations. The

TPTP translation has been enhanced to contain all the Mizar natural deduction

information necessary for recreating the proof structure. A TPTP format extension

125

Josef Urban, Geoff Sutcliffe, Steven Trac, and Yury Puzis

Fig. 5. Systems used for the Semantic Presentation

was implemented for recording proofs that introduce and discharge assumptions,

functions that export the Mizar proofs to this format have been written, and the

GDV verifier now allows independent verification of such proofs [15].

The linking to the IDV applet and display of the IDV icons in the Mizar HTML

(as in Figure 1) is added if the XSL processing uses the idv option. This was a

simple extension of the existing XSL style sheets, which have gradually become

highly parameterized for producing the Mizar HTML in quite different settings.

Together with the idv option, the ajax proofs option was used. It puts the Mizar

format theorem proofs into separate files, and loads and displays them (via an

XMLHttpRequest) when the user clicks on the proof keyword. This makes the

size of the HTML files much smaller, allowing more eye-candy (colors, titles, etc.),

and a faster browsing experience. A new display thesis option has also been

implemented, which puts a clickable thesis text after each Mizar natural deduction

step. This is used to display the implicit thesis (computed by Mizar) after each

natural deduction step. It is especially useful for this presentation, because the

TPTP counterparts of theses are necessary parts of the corresponding TPTP proofs

visualized by IDV.

126

Combining Mizar and TPTP Tools

The TPTP format proofs of the theorems in each article are available under

the TSTP icon to the right of each theorem header in the HTML presentation

(as in Figure 1). The Mizar-to-TPTP translation is also easy to do in real time,

and we hope to make this service available in the near future, see Section 6. Note

that these proofs are in a format that is intended to be really verifiable by ATP

systems. That means that the necessary background information used implicitly

by the Mizar proof checker has been added to the problems as axioms. In advanced

domains this can make the axiom set quite large, which is unsuitable for direct

IDV display. That’s one reason why the IDV “red line” functionality for hiding

axioms (see Section 4) was developed, and is used for presenting such problems.

An interestingness rating was added to each step in each theorem’s TPTP format

proof, based on the level of nesting the Mizar proof. The “lightbulb” icon and

slider in IDV (see Figure 2) allow the user to interactively set an interestingness

threshold for the derivation display, and hide nodes whose interestingness is below

the threshold, thus displaying a proof synopsis (see Section 4).

The TPTP format problem corresponding to the Mizar problem, as generated

by the MPTP system [14], are available under the TPTP icon to the right of the

palm tree of each theorem header in the HTML presentation (as in Figure 1).

The TPTP problem is an independent translation of the Mizar problem, which

can be attempted by any ATP system. Of course the derivation obtained by an

ATP system is unlikely to be the same as the TPTP format proof formed by the

translation of the Mizar proof of the theorem.

In the same way that individual theorem proofs are translated, the system is

used to produce the overall theorem structure of each Mizar article, in the form of

summarized TPTP derivations. In these summarized derivations each theorem is

a node of the derivation, and its parents are the axioms, definitions, and theorems

from which it was proved in Mizar. These are available under the TSTP icon to the

right of each article header in the HTML presentation (as in Figure 1). The goal of

this presentation is to provide structural information about dependencies between

articles’ “main results”. The example JGRAPH 7 given in Section 1 shows that the

visual information about this high-level structure can be very useful (to the authors,

reviewers, or just readers of the Mizar library). This information is intended to be

purely presentational, and as such the background information necessary for “high-

level” verification is not added. This would actually be very easy to do, but users

probably would not like to try to verify these high-level steps because the success

rate (in a reasonable time limit for an ATP system) is obviously much lower than

for the simple inferences in the individual theorem’s proofs. The AGInT system

was used on these overall presentations to add an interestingness rating to each

theorem, so that IDV can display a synopsis of the overall structure. That again

can produce new insights while viewing the high-level derivation structure.

4 Presenting with IDV

IDV is a tool for graphical rendering of derivations that are written in the TPTP

format. A number of additions and improvements have recently been done (since

[12]) to provide the functionalities needed for the presentation of the Mizar library

127

Josef Urban, Geoff Sutcliffe, Steven Trac, and Yury Puzis

and beyond. A description of the features, many of them new, useful for viewing

the Mizar proofs is provided here: the summarization, subderivation extraction,

and verification functionalities.

4.1 Summarization

The TPTP format proofs, and in particular the article summaries, are very large,

and typically have a very high proportion of axioms. Such large derivations are

difficult to display in full detail for three reasons. First, IDV runs as a Java applet,

which limits its speed. Second, it is hard to see a single formulae node when there are

a few thousand of them on the screen. Third, when there is a very high proportion of

axioms the display is necessarily very wide because of the axioms lined up across the

top, which requires zooming out a great deal to see the whole proof, and the nodes

become very small. For derivations that are very large, IDV offers two mechanisms

to make the derivation easier to view.

The first mechanism is proof synopsis. As explained in Section 3, an “interest-

ingness” value can be associated with each formulae, either in advance by some

external criteria, or by the AGInT system. AGInT may be used in advance (as

is done for the Mizar articles), or can be called from within IDV by toggling on

the “light bulb” (“show IDV synopsis”) icon. When the light bulb is on, nodes are

resized proportionally to their interestingness. Moving the interestingness slider to

the right increases the interestingness threshold, and nodes with lower interesting-

ness are hidden (with edges being extended from their children to their unhidden

ancestors). By default leaf nodes are protected from being hidden, but the new

“police badge” (“toggle protection of uninteresting axioms”) icon can be used to

turn off this protection, thus making it possible to hide large numbers of uninter-

esting axioms. The “artists palette” (“redraw”) icon redraws the derivation with

only the displayed nodes, to provide a synopsis of (a part of) the derivation. An

example synopsis of the first theorem in XBOOLE 1 is shown in Figure 6.

The second mechanism is unconditional hiding. The new “diver down” (“hide

formulae above the red line”) icon and slider allow the user to unconditionally hide

formulae above a chosen depth from the axioms. This is particularly useful for

(and was motivated by) Mizar article summaries that have a very high proportion

of axioms. For example, the overall theorem structure of the article JGRAPH 7 is

slow to display because of the large number of axioms. Using the red line slider

to hide the axioms (the top of Figure 7), and then doing a redraw (the bottom of

Figure 7), provides a summary of the lower, probably more important, parts of the

derivation.

The functionalities described above have been combined to automatically sum-

marize very large derivations that are given to IDV. If there are more than 256

nodes in the derivation, then IDV

1. Adds interestingness (by calling AGInT), unless already supplied by user.

2. Sets the interestingness threshold (i.e., moves the interestingness slider) to try

to reduce the number of nodes to less than 256.

3. If more than 256 nodes remain unhidden, sets the axiom protection off.

128

Combining Mizar and TPTP Tools

Fig. 6. Synopsis of Th1 in Article XBOOLE 1

4. If more than 256 nodes still remain unhidden, moves the red line down as many

levels as necessary.

5. Does a redraw, so that the hidden formulae do not affect the current drawing.

The user can move the sliders back and toggle/untoggle buttons to show hidden

formulae later.

This automatic summarization can be seen, e.g., in the display of the article

JGRAPH 4.

Together with an optimization of the AGInT system on very large data (thou-

sands of derivation steps are now rated within seconds), these mechanisms have

largely sped up and improved the display of the Mizar proofs.

4.2 Subderivation Extraction

There are now more ways to interact with the IDV graph, making it easier to

explore the proof in different ways, and render selected extracts.

The first group of extracts are determined by mouse clicks on a chosen node.

A left mouse click opens a pop-up window with the text of the annotated formula

and its parents. This window also allows verification of that inference, as explained

in Section 4.3. Note that the parents shown are of the “what you see is what you

get” nature, where hidden ones from non-interestingness and the red line are not

shown.

A control left mouse click on a node opens a new IDV window showing the

formula and its parents, with the full functionality of any IDV window. A shift-

control left mouse click opens a new IDV window showing the formula and all

its ancestors. This is useful for extracting a subderivation - Figure 8 shows the

subderivation rooted at the node e5 1 xboole 1 of the first theorem in XBOOLE 1.

A control right mouse click opens a new IDV window showing the formula and its

immediate descendants and their parents. A shift-control right mouse click opens

a new IDV window showing the formula and all its descendants and their parents.

This is useful for seeing what formulae depend on the clicked one - Figure 9 shows

the descendant derivation hung from the node t7 jgraph 7 of the JGRAPH 7 article.

129

Josef Urban, Geoff Sutcliffe, Steven Trac, and Yury Puzis

Fig. 7. Summary of Article JGRAPH 7

The new “good/evil cat” (“show only axioms and lemmas”) icon hides nodes

that are not axioms or logical consequences of the axioms. In proofs by contradic-

tion, which negate the conjecture, this hides formulae that are derived from the

negated conjecture. In proofs that have assumptions, this hides the assumptions

and any formulae that have undischarged assumptions. This is useful for identifying

formulae that can be used, e.g., as lemmas from the axioms.

4.3 Verification

A derivation displayed by IDV can be verified in three ways. Regardless of how the

verification is done, if a node has been verified and the “green tick” (“show verified

formulae”) icon is on, verified nodes will have a green tick on them (see Figure 3).

The verified status is reset if proof summarization changes the apparent parents of

the node.

The first way to verify nodes is as illustrated in Section 1. IDV iteratively calls

either GDV or a chosen ATP system to verify each node of the derivation. The

choice of whether to use GDV or an ATP system is controlled by the “beer” –

GDV – and “cocktail” – ATP system – icon in the pop-up window shown in the

upper right of Figure 3. If an ATP system is used directly then only steps of logical

consequence are verified, by proving them using the ATP system. If GDV is used

then all inference steps are verified, proving steps of logical consequence using the

ATP system, and using other techniques in other situations. In particular, GDV is

able to verify the propagation and discharge of assumptions.

130

Combining Mizar and TPTP Tools

Fig. 8. Extract from Th1 in Article XBOOLE 1

The second way is to verify an individual node from it’s pop-up window, pro-

duced by clicking on the node (see Section 4.2). Again, there is a choice of using

GDV or an ATP system. If an ATP system is used and a TPTP format proof is

returned by the ATP system, the “palm tree” (“new IDV window”) icon will open

a new IDV window displaying the verifying ATP system’s proof. Figure 10 show’s

EP 0.99’s verification proof of the final node t1 xboole 1 of the first theorem in

XBOOLE 1.

The third way is to use the “superman” (“SystemOnTSTP”) icon, which ex-

ports the derivation to the SystemOnTSTP interface4, which in turn provides access

to a range of derivation analysis and display tools. The GDV tool is available there

for a complete verification of the derivation, including structural checks that are

not done from within IDV. This interface is shown in Figure 11.

5 Conclusion

This paper describes a combination of Mizar- and TPTP-based tools used for visu-

alizing, analyzing, and independent verification of Mizar proofs. The combination

delivers to the readers of the MML an easy, powerful, and almost playful way of

exploring the semantics and the structure of the library. The key factors for the

relative easiness of having these functionalities are the choice of XML as both in-

ternal and external interface of Mizar, and the existence of a TPTP representation

of MML articles.

The system integrates so many components that it naturally behaves as a large

debugger for the various tools5. This has resulted in battle hardening of the tools,

4 http://www.tptp.org/cgi-bin/SystemOnTSTP
5 Just a recent example: While randomly inspecting the large number of Mizar derivations
in IDV, it has turned out that some cannot be verified, because of a recently introduced

131

Josef Urban, Geoff Sutcliffe, Steven Trac, and Yury Puzis

Fig. 9. Extract from Article JGRAPH 7

and a robust and reliable interface. The combination shows the great added value

that can be obtained by cooperation of several quite diverse (and, quite often,

separately developed) projects, provided that they are based on the same commu-

nication standards. This places the system alongside other work based around a

combination of component reasoning systems, e.g., [19, 18, 8].

Although much of work done was motivated by the desire to view the structure

of Mizar proofs and articles, all of the work is general and immediately available

for any derivations in the TPTP format. As such all the tools are now part of the

general SystemOnTSTP interface.

6 Future Work

Obvious future work is to make the systems presented here available in a dynamic

way, so that Mizar authors can use the functionalities described here on newly

written articles. This would correspond to the existing dynamic functionalities of

the SystemOnTPTP, used for interactive online work with ATP problems and

derivations.

An initial implementation of such a system has been started and is available

for experiments at http://octopi.mizar.org/~mptp/MizAR.html. This web in-

terface now provides the possibility to verify an article using Mizar, present it in

HTML linked to the full Mizar library, use MPTP to translate the article to TPTP,

verify simple justifications using ATPs, and present such ATP proofs using IDV.

incompatibility between the TPTP Java parser used by IDV, and the TPTP parser used
by the E prover.

132

Combining Mizar and TPTP Tools

Fig. 10. Node Verification from Th1 in Article XBOOLE 1

The initial goal of this web interface is to provide Mizar authors with detailed ex-

planation of the Mizar simple justifications, however many other presentation and

verification features described above can already be added quite easily. Another

very simple addition would be wiki-like functionalities: creating a semantically dis-

ambiguated XML document and linked HTML document from an ASCII Mizar

article involves just running Mizar and XSLT processor, so the only missing fea-

ture for a basic wiki is just some version system (e.g. RCS), and possibly user

tracking.

133

Josef Urban, Geoff Sutcliffe, Steven Trac, and Yury Puzis

Fig. 11. SystemOnTSTP for Th1 in Article XBOOLE 1

References

1. Matuszek, C., Cabral, J., Witbrock, M., and DeOliveira, J.: An Introduction to
the Syntax and Content of Cyc. In Baral C., editor, Proceedings of the 2006 AAAI

Spring Symposium on Formalizing and Compiling Background Knowledge and Its

Applications to Knowledge Representation and Question Answering, pp. 44–49, 2006.

2. Meng, J. and Paulson, L.: Translating Higher-Order Problems to First-Order Clauses.
In G. Sutcliffe, R. Schmidt, and S. Schulz, editors, Proceedings of the FLoC’06 Work-

shop on Empirically Successful Computerized Reasoning, 3rd International Joint Con-

ference on Automated Reasoning, volume 192 of CEUR Workshop Proceedings, pp.
70–80, 2006.

3. Nakamura, Y. and Trybulec, A.: The Fashoda Meet Theorem for Rectangles. For-

malized Mathematics, 13(2), pp. 199–219, 2005.

134

Combining Mizar and TPTP Tools

4. Niles, I. and Pease, A.: Towards A Standard Upper Ontology. In C. Welty and
B. Smith, editors, Proceedings of the 2nd International Conference on Formal Ontol-

ogy in Information Systems, pp. 2–9, 2001.

5. Puzis, Y., Gao, Y., and Sutcliffe, G.: Automated Generation of Interesting Theorems.
In G. Sutcliffe and R. Goebel, editors, Proceedings of the 19th International FLAIRS

Conference, pp. 49–54. AAAI Press, 2006.

6. Rudnicki, P.: An Overview of the Mizar Project. In Proceedings of the 1992 Workshop

on Types for Proofs and Programs, pp. 311–332, 1992.

7. Schulz, S.: A Comparison of Different Techniques for Grounding Near-Propositional
CNF Formulae. In S. Haller and G. Simmons, editors, Proceedings of the 15th Inter-

national FLAIRS Conference, pp. 72–76. AAAI Press, 2002.

8. Sorge, V., Meier, A., McCasland, R., and Colton, S.: Automatic Construction and
Verification of Isotopy Invariants. In U. Furbach and N. Shankar, editors, Proceedings
of the 3rd International Joint Conference on Automated Reasoning, number 4130 in
Lecture Notes in Artificial Intelligence, pp. 36–51. Springer-Verlag, 2006.

9. Sutcliffe, G.: SystemOnTPTP. In D. McAllester, editor, Proceedings of the 17th

International Conference on Automated Deduction, number 1831 in Lecture Notes in
Artificial Intelligence, pp. 406–410. Springer-Verlag, 2000.

10. Sutcliffe, G.: Semantic Derivation Verification. International Journal on Artificial

Intelligence Tools, 15(6), pp. 1053–1070, 2006.

11. Sutcliffe G., Schulz, S., Claessen, K., and Van Gelder, A.: Using the TPTP Language
for Writing Derivations and Finite Interpretations. In U. Furbach and N. Shankar, ed-
itors, Proceedings of the 3rd International Joint Conference on Automated Reasoning,
number 4130 in Lecture Notes in Artificial Intelligence, pp. 67–81, 2006.

12. Trac, S., Puzis, Y., and Sutcliffe, G.: An Interactive Derivation Viewer. In S. Autex-
ier and C. Benzmüller, editors, Proceedings of the 7th Workshop on User Interfaces

for Theorem Provers, 3rd International Joint Conference on Automated Reasoning,
volume 174 of Electronic Notes in Theoretical Computer Science, pp. 109–123, 2006.

13. Urban, J.: XML-izing Mizar: Making Semantic Processing and Presentaion of MML
Easy. In M. Kohlhase, editor, Proceedings of the 4th International Conference on

Mathematical Knowledge Management, volume 3863 of Lecture Notes in Computer

Science, pp. 346–360, 2005.

14. Urban, J.: MPTP 0.2: Design, Implementation, and Initial Experiments. Journal of

Automated Reasoning, 37(1-2), pp. 21–43, 2006.

15. Urban, J. and Sutcliffe, G.: ATP Cross-verification of the Mizar MPTP Challenge
Problems. In N. Dershowitz and A. Voronkov, editors, Proceedings of the 14th Inter-

national Conference on Logic for Programming, Artificial Intelligence, and Reasoning,
number 4790 in Lecture Notes in Artificial Intelligence, pp. 546–560, 2007.

16. Urban, J., Sutcliffe, G., Pudlak, P., and Vyskocil, J.: MaLARea SG1: Machine Learner
for Automated Reasoning with Semantic Guidance. In P. Baumgartner, A. Armando,
and D. Gilles, editors, Proceedings of the 4th International Joint Conference on Auto-

mated Reasoning, number 5195 in Lecture Notes in Artificial Intelligence, pp. 441–456,
2008.

17. Urban, J.: MoMM – fast interreduction and retrieval in large libraries of formalized
mathematics. International Journal on Artificial Intelligence Tools, 15(1), pp. 109–
130, 2006.

18. Zimmer, J. and Autexier, S.: The MathServe System for Semantic Web Reasoning
Services. In U. Furbach and N. Shankar, editors, Proceedings of the 3rd International

Joint Conference on Automated Reasoning, number 4130 in Lecture Notes in Artificial
Intelligence, pp. 17–20, 2006.

135

Josef Urban, Geoff Sutcliffe, Steven Trac, and Yury Puzis

19. Zimmer, J., Meier, A., Sutcliffe, G., and Zhang, Y.: Integrated Proof Transformation
Services. In C. Benzmüller and W. Windsteiger, editors, Proceedings of the Work-

shop on Computer-Supported Mathematical Theory Development, 2nd International

Joint Conference on Automated Reasoning, Electronic Notes in Theoretical Computer
Science, 2004.

136

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 18 (31) 2009

Statistics on Digital Libraries of Mathematics

Freek Wiedijk

Institute for Computing and Information Sciences
Radboud University Nijmegen

Toernooiveld 1, 6525 ED Nijmegen, The Netherlands

Abstract. We present statistics on the standard libraries of four major
proof assistants for mathematics: HOL Light, Isabelle/HOL, Coq and Mizar.

1 Introduction

1.1 Problem

The advent of digital computers has introduced a new way of doing mathematics

called ‘formalized mathematics’. In this style of doing mathematics one encodes

the mathematics in the computer in sufficient detail that the computer can fully

check the correctness according to a small number of logical rules. This style of

doing mathematics is much more precise and trustable than the traditional way

of first understanding the mathematics in one’s head and then just writing it on

a blackboard or on paper. Also it is a very pleasurable experience to write down

one’s mathematics in a way that all the details are there, knowing that there is

nothing left implicit.

However, these positive aspects of formalized mathematics have to be paid for.

Generally it takes much longer to turn mathematics into formalized form than it

takes to just understand it, or even than to write it down in a traditional way.

(A rough estimate might be that it takes about ten times as long to formalize

something than it takes to write it down in meticulous traditional ‘textbook style’.)

One might wonder where this time is going, i.e., how much it is spent on the

various aspects of formalization. For instance there are the aspects of formalizing

the definitions, choosing good notation for the defined notions, then stating the

appropriate formal statements to be proved, and finally writing the formal proofs

themselves.

Another question that might be posed is whether there are significant differ-

ences in the time needed for these activities between the different systems for

formalization of mathematics.

In this paper we will study these questions. We will not do this by focusing on

the activity of formalization, but rather by studying the results of this activity, the

libraries of formalized mathematics that have been created by the various research

communities that work on this subject. These libraries have grown into quite large

human ‘artifacts’, which – we claim – deserve study in their own right. In this

ISBN 978-83-7431-229-5 ISSN 0860–150X 137

Freek Wiedijk

paper we will do this by collecting various statistics on these libraries. One might

compare our work here to that of a biologist who just makes an inventarization of

the different species that are out there in the world. In this paper we mainly just

collect data.

The question that we will address here is what are the different aspects of

formalization that one can find in the formalized libraries that are out there, how

much of those libraries is spent on which of these aspects, and whether the different

systems for formalization are more or less similar in these aspects or whether they

have significant differences.

1.2 Approach

The way that we count the libraries of formalized mathematics is as follows. First

we concatenate all the files for a system into one huge file. Then we tag each line

of this file with the category of that line, and then we count the different types of

lines that we find.

We will explain this procedure with a small example. Here is a very small

formalization of the irrationality of the square root of two by John Harrison in the

HOL Light system (taken from The Seventeen Provers of the World [5], a collection

of formalizations of this irrationality proof in various systems):

(* --- *)
(* Definition of rationality (& = natural injection N->R). *)

(* --- *)

let rational = new_definition

‘rational(r) = ?p q. ~(q = 0) /\ abs(r) = &p / &q‘;;

(* --- *)
(* The main lemma, purely in terms of natural numbers. *)
(* --- *)

let NSQRT_2 = prove

(‘!p q. p * p = 2 * q * q ==> q = 0‘,
MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN

REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN
REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN

FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN
POP_ASSUM MP_TAC THEN CONV_TAC SOS_RULE);;

(* --- *)
(* Hence the irrationality of sqrt(2). *)

(* --- *)

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,

SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS; NOT_EXISTS_THM] THEN
REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
DISCH_THEN(MP_TAC o AP_TERM ‘\x. x pow 2‘) THEN

ASM_SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV; REAL_POW_2; REAL_LT_SQUARE;
REAL_OF_NUM_EQ; REAL_EQ_RDIV_EQ] THEN

ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_EQ; REAL_OF_NUM_MUL]);;

138

Statistics on Digital Libraries of Mathematics

Now for each system studied in this paper, which includes the HOL Light system,

we wrote a small perl script that tags each line in a formalization with its category.

In our investigation we applied it to the full HOL Light library, but this is what

we get when we tag just this example formalization with it:

C (* --- *)

C (* Definition of rationality (& = natural injection N->R). *)
C (* --- *)

B
D let rational = new_definition

D ‘rational(r) = ?p q. ~(q = 0) /\ abs(r) = &p / &q‘;;
B
C (* --- *)

C (* The main lemma, purely in terms of natural numbers. *)
C (* --- *)

B
T let NSQRT_2 = prove
T (‘!p q. p * p = 2 * q * q ==> q = 0‘,

P MATCH_MP_TAC num_WF THEN REWRITE_TAC[RIGHT_IMP_FORALL_THM] THEN
P REPEAT STRIP_TAC THEN FIRST_ASSUM(MP_TAC o AP_TERM ‘EVEN‘) THEN

P REWRITE_TAC[EVEN_MULT; ARITH] THEN REWRITE_TAC[EVEN_EXISTS] THEN
P DISCH_THEN(X_CHOOSE_THEN ‘m:num‘ SUBST_ALL_TAC) THEN

P FIRST_X_ASSUM(MP_TAC o SPECL [‘q:num‘; ‘m:num‘]) THEN
P POP_ASSUM MP_TAC THEN CONV_TAC SOS_RULE);;
B

C (* --- *)
C (* Hence the irrationality of sqrt(2). *)

C (* --- *)
B
T let SQRT_2_IRRATIONAL = prove

T (‘~rational(sqrt(&2))‘,
P SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS; NOT_EXISTS_THM] THEN

P REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
P DISCH_THEN(MP_TAC o AP_TERM ‘\x. x pow 2‘) THEN

P ASM_SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV; REAL_POW_2; REAL_LT_SQUARE;
P REAL_OF_NUM_EQ; REAL_EQ_RDIV_EQ] THEN
P ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_EQ; REAL_OF_NUM_MUL]);;

B

The lines with a ‘C’ are comment lines, the ones with a ‘B’ are blank, and so on.

The perl script is ad hoc in the sense that occasionally it will tag a line wrong.

However, by inspecting its output we improved it until it was sufficiently good for

our purposes. We claim that our perl scripts will tag less than 1% of the lines in a

formalization with the wrong tag.

Finally we count the lines in this ‘tagged’ file for the various tags, and present

the results in tabular format. For this small example that table then becomes:

lines bytes

B blank lines 6 65 18%

C comment lines 9 720 27%

D definitions 2 85 6%

T theorem statements 4 114 12%

P proof lines 12 746 36%

total 33 1,730 100%

139

Freek Wiedijk

Of course for a very small example like this, the percentages are not very mean-

ingful. For instance, the number of blank and comment lines is quite a bit higher

than it is in a more extensive HOL Light formalization.

The percentages in this table are in terms of line counts, and not in terms of

bytes. We believe that line counts is the more interesting measure. It indicates how

much one can oversee behind a computer screen without scrolling. (This means

that a formalization style where multiple steps are put together on a single line – a

formalization style that both John Harrison and Georges Gonthier use – is superior

to a more ‘programming’ like style in which each step gets a line of its own. Georges

Gonthier convinced us in a personal communication that line counts is the better

way to measure formalizations.)

Finally, we also present the table as a pie chart, as a graphical summary of

the results. For these charts the different kinds of lines are grouped together into

only seven categories. (In the example two of these categories are missing.) The pie

chart for the example is:

blank lines

comments
proofs

statements

definitions

Example

1.3 Related work

We are not aware of already existing research into the statistics of formalizations.

In the field of programming, counting lines of source code is one of the methods

in the subject called software metrics. However, there generally the focus is not

on the different kinds of source code lines and their function in the programming

languages, but more on programmer productivity.

1.4 Contribution

The investigation presented here is a snapshot in time. Also there is not too much

‘depth’ in our results: really all we did was count. However getting the software that

tagged the formalizations reasonably accurate took quite an effort, so obtaining the

numbers in this paper was significant work.

The main value of the research described in this paper is showing that all

systems for formalizations are quite similar despite their large differences both in

foundations and in interaction styles.

140

Statistics on Digital Libraries of Mathematics

The observations in this paper might be a guide for people who design systems

for formalizations, by pointing out from the start which elements will need to be

part of their formalization language. That way, these elements can all be designed

in from the start and will not have to appear as an afterthought later.

Finally this paper can be used as a guide for people who are interested in

formalization of mathematics and want to get an impression of the current state

of some important libraries.

1.5 Outline

The structure of this paper is as follows. In Section 2 we present an overview of our

results. Then in Section 3 we give the statistics in detail. In Section 4 we discuss

the different types of lines that we distinguished, and relate them between systems.

Finally, in Section 5 we draw some conclusions from our data and indicate possible

future work.

2 Overview

The four systems that we selected for this investigation were:

– HOL Light [1]

– Isabelle/HOL [3]

– Coq [4]

– Mizar [2]

Other systems that we considered were HOL4, ProofPower and PVS. The first

two are rather similar to HOL Light, so we did expect them to get quite similar

statistics. In the HOL family of systems HOL Light is the system that has been

used most for formalization of mathematics. For this reason we selected HOL Light

from that group, and left the other two systems out.

The PVS system is one of the most popular systems for formal methods in

computer science. It has a very interesting way of dealing with partial functions

(called ‘predicate sub-types’), and it has strong automation. However it has not

been used as much for formalization of mathematics as the other systems that we

looked at. For this reason we left PVS out of our comparison as well.

The four systems that we study here have mathematical libraries of quite dif-

ferent sizes. The sizes of these libraries is shown in the bar diagram on the next

page. In this diagram the left bars represent the libraries that are distributed with

the system. If you install the system, you will have these source files as part of the

distribution.

141

Freek Wiedijk

HOL Light Isabelle/HOL Coq Mizar

In these bars the gray parts are the parts of the library that can be considered to

be the library of the ‘core’ system. It is that part of the library of the system that is

available without doing anything special. In the bar for the HOL Light system the

rest of the library (the white part of the bar) has been divided into two sub-parts:

the part written by John Harrison, and the part written by other people (which is

mostly the formalization of the Jordan Curve Theorem by Tom Hales.) In the gray

bar of the Isabelle system the small part at the top corresponds to the sub-directory

of the contribution called ‘HOLCF’, while in the Coq system it corresponds to the

sub-directory ‘contrib’.

The right bars represent libraries that are distributed separately from the sys-

tem itself. These are collections of formalizations by users of the system that have

not (yet) been integrated into the standard library of the system itself. In the

case of Coq this is called the Coq contribs (short for ‘contributions’), while in the

Isabelle community it is called the AFP (Archive of Formal Proofs). The Mizar

system also has a library of user formalizations called MML (= Mizar Mathemati-

cal Library), but in the case of Mizar those formalizations are integrated into the

standard library of the system.

We now show a summary of the statistics from this paper in the shape of four

pie charts:

142

Statistics on Digital Libraries of Mathematics

blank lines

comments

proofs

statements

definitions

automation

HOL Light

blank lines

comments

proofs

statements

definitions
modules

automation

Isabelle/HOL

blank lines

comments

proofs

statements

definitions

modules
automation

Coq

blank lines
comments

proofs

statements
definitions

modules

Mizar

For most people the bar chart on the previous page and these pie charts will be

the most interesting part of this paper.

In the HOL Light pie chart there is a tiny sliver between ‘automation’ and

‘definitions’ for the very few lines related to ‘modules’, but it was too narrow to

be labeled. In the Mizar pie chart the ‘registration’ lines have been included in the

‘statements’ part, although we gave them category ‘H’ (which in Section 4 is in the

sub-section about automation; we will discuss this there in more detail.)

3 Line Counts

We now present the detailed statistics of the four systems, and discuss which files

were counted and which were not.

143

Freek Wiedijk

3.1 HOL Light

The statistics in this paper are on version 2.20 of the HOL Light system.

HOL Light input files have suffix ‘.ml’. These files both contain the implemen-

tation of the system as well as the mathematical library, all mixed together. We

divided the files that were primarily implementing the system from files that were

primarily proving the library in the following way:

The basic HOL Light system consists of a file called make.ml, which loads

the main file hol.ml, which then loads 44 more .ml files. (Apart from these 46

files there are in the top level directory 14 more .ml files with names of the form

‘pa_j_. . . .ml’ related to the input processing of the ocaml system that reads the

HOL Light files.)

Now the hol.ml file is divided into sections. One of these sections has the

header ‘Mathematical theories and additional proof tools.’ We decided that the 19

files in that section were the ‘mathematical library’ while the 25 files in the other

six sections contained the ‘implementation of the system’.

Apart from these 19 files we also counted the ‘auxiliary library’ consisting of

169 .ml files in 11 sub-directories. (There were 11 more .ml files in another sub-

directory named Proofrecording. However that is an alternative implementation

of the core system, and therefore was left out of this investigation.)

Altogether the number of files counted were:

19 files from *.ml

169 files */*.ml

188 files

And the statistics about these files were:

lines bytes

B blank lines 16,438 21,371 8.4%

C comments 19,044 864,913 9.7%

S imports 182 5,459 0.1%

D definitions 2,547 107,835 1.3%

N interfaces 486 19,525 0.2%

X automation: program code 19,979 833,040 10.2%

T theorem statements 25,493 1,073,208 13.0%

P proof lines 112,088 4,356,332 57.1%

total 196,257 7,281,683 100.0%

3.2 Isabelle/HOL

The statistics in this paper are on the Isabelle2007 version of the Isabelle/HOL

system.

Isabelle has two kinds of files, with suffixes ‘.ML’ and ‘.thy’. We decided that

the .ML files primarily contained the implementation of the system, while the .thy

144

Statistics on Digital Libraries of Mathematics

files primarily contained the mathematical library. Now the Isabelle system can be

used with different logics. The HOL logic is the dominant logic that is used by

almost all Isabelle users. For this reason we counted the .thy files inside the HOL

directory (together with HOLCF directory, which is closely related). However, we left

out the HOL/Import sub-directory as it does not contain mathematics but is about

importing theories from other systems.

The number of files counted were (here ** stands for zero or more sub-directory

levels in between):

649 files most of src/HOL/**/*.thy

88 files src/HOLCF/**/*.thy

737 files

And the statistics about these files were:

lines bytes

B blank lines 51,610 80,304 15.9%

C source comments 18,941 829,132 5.8%

E document markup 15,488 713,503 4.8%

S imports & sectioning 2,838 43,584 0.9%

L locales 1,394 58,862 0.4%

D definitions 23,386 1,165,813 7.2%

N notation 2,736 129,089 0.8%

H automation: directives 4,022 191,544 1.2%

X automation: program code 5,714 225,786 1.8%

T theorem statements 58,659 3,136,976 18.0%

P proof lines 140,596 5,024,717 43.2%

total 325,384 11,599,310 100.0%

3.3 Coq

The statistics in this paper are about version 8.1 of the Coq system.

Coq files have the suffix ‘.v’. (The implementation of the system is in files with

suffixes ‘.mli’ and ‘.ml’, but unlike HOL Light and Isabelle these are in a different

part of the distribution, and are not mixed together with the mathematical library.)

The main library is in the sub-directory theories. There is a supplementary

library in the sub-directory contrib, which mostly contains the supporting theory

for several automated proof procedures. (In this second directory the .v files and

the .mli and .ml files are together. However we also only looked at the .v files

there.)

Altogether the number of files counted were:

252 files theories/*/*.v

57 files contrib/*/*.v

309 files

145

Freek Wiedijk

And the statistics about these files were:

lines bytes

B blank lines 13,531 22,456 12.4%

C non-coqdoc comments 5,661 300,850 5.2%

E coqdoc comments 2,910 137,401 2.7%

S imports & sectioning 2,073 49,377 1.9%

L context 1,329 50,686 1.2%

D definitions 8,778 308,858 8.0%

N notation 1,047 40,293 1.0%

H automation: directives 1,157 45,680 1.1%

X automation: program code 2,648 94,556 2.4%

T theorem statements 11,781 541,836 10.8%

P proof lines 58,157 1,981,655 53.3%

total 109,072 3,573,648 100.0%

3.4 Mizar

The statistics in this paper are on version 7.8.05 of the Mizar system, which is

distributed with version 4.87.985 of the MML mathematical library.

Mizar files have the suffix ‘.miz’. (There also are files with suffix ‘.abs’ that

are ‘abstracts’ to the formalizations, but they are derived from the first kind of files

and do not contain any independent information.) As the version number of the

MML library already shows, there are 985 .miz files distributed with the system.

Therefore the number of files counted were:

985 files mml/*.miz

And the statistics about these files were:

lines bytes

B blank lines 84,609 87,744 4.3%

C comments 10,857 488,821 0.6%

S environments, cancellations 23,655 1,118,819 1.2%

L reservations 5,396 194,693 0.3%

D definitions 56,738 1,847,161 2.9%

N notation 1,634 45,598 0.1%

H registrations 26,016 749,427 1.3%

T theorem statements 177,829 6,625,141 9.0%

P proof lines 1,582,831 61,096,949 80.4%

total 1,969,575 72,254,353 100.0%

146

Statistics on Digital Libraries of Mathematics

4 Categories of lines in a formalization

In the previous section we tagged lines in different systems that had similar func-

tions with the same letter. Here we identify how these letters should be interpreted.

For most of the categories we list the main keywords that are associated with

the lines of that category. For a user of the system this makes it quite clear how we

divided the lines among the categories. (In Mizar there was the clearest bijection

between keywords starting a part of a formalization and categories in our statistics.

In the other systems the correspondence was a bit less obvious.)

4.1 Non-content lines

B – blank lines. Lines tagged ‘B’ are blank lines. These amount to a surprising

large part of the total line count of a formalization. In the byte counts of this

category we also included the white space at the end of other kinds of lines. Also

sometimes some care had to be taken with files that did not end in a newline

character. (For such files one newline byte was added.)

C – comments. The following table shows the comment styles found in the four

systems:

HOL Light: (* comment *)
Isabelle/HOL: (* comment *)

Coq: (* comment *)
Mizar: :: comment

E – documentation Isabelle and Coq generate documentation for the formaliza-

tions by having text inside special comments. In Isabelle these comments come in

two styles, and are always prefixed with a keyword or a double dash. At first we

included some of these lines in the sectioning category below, but Makarius Wenzel

convinced us in private communication that they really belong in this category.

Isabelle/HOL: header section subsection subsubsection text txt --

{* text *} "text"
Coq: (** text *)

4.2 Modules

Imports, sectioning and modules seem closely related, but there is a gray area with

the notion of definitions. For instance in Isabelle a ‘locale’ might be considered to

group related definitions together, but it also might be considered to consist of def-

initions. (We chose the second interpretation.) Similarly Coq modules seem rather

close to Coq structures. (We chose to consider the first to be about modularization

and the second to be a data-type definition.)

147

Freek Wiedijk

S – imports and sectioning. We did not distinguish between lines that group

parts of a formalization together into a section or module, and lines that open or

import these sections or modules.

The main keywords for this category of lines in the four systems were:

HOL Light: needs loadt

Isabelle/HOL: theory imports begin use uses

Coq: Require Section Module Import

Mizar: environ begin canceled

One could also consider Isabelle’s use and uses to belong to the automation cate-

gory below, but we decided to consider them to be import lines.

4.3 Definitions

L – contexts. The ‘L’ lines build ‘contexts’ in which a definition can be made. We

considered these lines to be part of those definitions. In the Isabelle system these

contexts are named entities. In Coq they just are implicit through the position in

the section or module. In Mizar we used this letter for lines that introduce variable

conventions.

Isabelle/HOL: class locale context

instance interpret interpretation

Coq: Variable Variables Hypothesis Parameter Axiom

Mizar: reserve

D – definitions. The systems all have numerous constructions for defining func-

tions, predicates and types. Here are the main keywords for these constructions:

HOL Light: new_definition new_recursive_definition define

new_inductive_definition new_specification

new_type_definition

Isabelle/HOL: abbreviation axclass coinductive constdefs consts

datatype definition defs fun function inductive

inductive_set nominal_datatype nominal_inductive

nominal_primrec primrec recdef record specification

typedecl typedef types

Coq: Definition Fixpoint Inductive CoFixpoint CoInductive

Record Function

Mizar: definition

N – notation. These are the lines that direct the parser and pretty-printer of the

system. These lines do not define the notions themselves, but introduce the syntax

for the defined notions.

148

Statistics on Digital Libraries of Mathematics

HOL Light: parse_as_infix unparse_as_infix parse_as_binder

make_overloadable overload_interface

override_interface reduce_interface

prioritize_num prioritize_real

Isabelle/HOL: syntax translations notation nonterminals

parse_translation print_translation

Coq: Infix Notation ‘Reserved Notation’ ‘Tactic Notation’

Coercion ‘Implicit Arguments’ ‘Set Implicit Arguments’

‘Unset Implicit Arguments’ ‘Set Strict Implicit’

‘Unset Strict Implicit’ ‘Open Scope’ ‘Open Local Scope’

Mizar: notation

4.4 Automation

The automation of a system has two kinds of lines. First there are the lines that

set parameters for the automated decision procedures and proof search procedures.

Second there are the implementations of these automated procedures.

Most of the automation is implemented outside of the formalizations and is not

counted here, but procedures that are specific to the subject are often implemented

inside the formalization.

H – automation: directives. The automation ‘directives’ often are mixed with

statements. For instance, in Isabelle theorem statements can be annotated with

‘[simp]’. This really is an automation directive, but it does not have a line of its

own, so it will not be reflected in the statistics for this category of lines. Similarly,

the Mizar ‘registrations’ (which direct the automation of the Mizar type system)

also can be read as statements. For this reason in the Mizar pie chart on page 143

this category was included in the group about statements, and not in a group about

automation.

Isabelle/HOL: declare lemmas theorems

Coq: Hint Add Opaque Transparent Scheme

Mizar: registration

X – automation: program code. These lines are implementations of proof

procedures. In the HOL Light system really all lines are in some sense in this

category, as a HOL Light formalization really just is an OCaml program. Therefore

in the case of HOL Light the lines of this category are what remains when the other

categories are removed.

The Mizar system does not have this kind of line as Mizar does not support

user level proof automation.

HOL Light: let

Isabelle/HOL: ML ML_setup declaration method_setup oracle setup

simproc_setup

Coq: Ltac

149

Freek Wiedijk

4.5 Theorems

A formalization mainly consists of a long chain of ‘lemmas’. These lemmas generally

consist of a label, a statement and a proof.

T – theorem statements. In this category are the lines which state the theorem

and give its label.

The Mizar system actually distinguishes between two kinds of statements: the-

orems and schemes. The first category are the first order statements, while the

second category are the higher order statements. Here we do not distinguish be-

tween these two categories.

HOL Light: prove prove_by_refinement

Isabelle/HOL: lemma theorem inductive_cases axioms axiomatization

corollary subclass termination

Coq: Lemma Theorem Goal

Mizar: theorem scheme

P – proofs. Finally there are the lines of the formalized proofs. As is apparent in

the pie charts in Section 2 these lines amount to about half of the formalizations.

These lines contain many different constructions all with their own keywords. Here

we just give the keywords that bracket the proofs.

Isabelle/HOL: apply by proof qed done oops sorry

Coq: Proof Qed Save Defined

Mizar: proof end

5 Conclusions

5.1 Discussion

The three main conclusions of this study for us are:

– The four systems are quite similar. Despite a large difference in foundations

(the HOL logic, the Calculus of Inductive Constructions and Tarski-Grothen-

dieck set theory are all quite different) and in interaction style (talking to an

OCaml interpreter, interacting with a tactic prover in a Proof General style

interface and using a compiler-like batch checker), the actual formalizations all

share the same elements.

– The HOL Light system has the smallest definition segment in its pie chart.

This seems to suggest that it is the most reliable. Andrzej Trybulec taught me

in private communication that a definition is like a debt, because you do not

know whether what you are defining corresponds to the informal notion in your

head. You gain confidence in this by proving theorems about the notion later.

That way you pay the debt back, and gain trust in that your formalization

actually means what you think it means. In this sense the HOL Light system

is the most trustable of the four.

150

Statistics on Digital Libraries of Mathematics

Another interpretation, proposed by John Harrison in a private communication,

is that the low percentage of the definitions does not so much reflect the quality

of the formalization but rather the fact that the HOL Light library primarily

contains pure mathematics. This seems to be collaborated by the observation

that the percentage of the definitions in John Harrison’s verification work at

Intel, also using the HOL Light system, is 3.7% instead of 1.3%.

– The Mizar system has the largest proof segment in its pie chart. This suggests

that its proof language might be less efficient. (It is very natural and pleasant

to use, though.) This might be related to Mizar’s declarative proof style, or the

fact that the Mizar system does not have much automation.

5.2 Future work

It might be interesting to delve into the ‘fine structure’ of the largest segment

in the pie charts, the proof lines. However, it probably is hard to systematically

distinguish different kinds of proof steps on a line by line basis. An interesting

question about the proof lines might be how many are straight-forward ‘manual’

reasoning steps, and how many invoke strong automated proof procedures.

Acknowledgments. Thanks to John Harrison, Henk Barendregt and Makarius Wen-

zel for helpful comments. Special thanks to John Harrison for sending me statistics

on his Intel verification work. Special thanks to Makarius Wenzel for sending me a

list of categorized Isabelle keywords.

References

1. Harrison, J.R.: The HOL Light manual (1.1), 2000. <http://www.cl.cam.ac.uk/

users/jrh/hol-light/manual-1.1.ps.gz>.
2. Muzalewski, M.: An Outline of PC Mizar. Fondation Philippe le Hodey, Brussels,

1993. <http://www.cs.ru.nl/~freek/mizar/mizarmanual.ps.gz>.
3. Nipkow, T., Paulson, L.C., and Wenzel, M.: Isabelle/HOL – A Proof Assistant for

Higher-Order Logic, volume 2283 of LNCS. Springer, 2002. <http://www.cl.cam.ac.
uk/Research/HVG/Isabelle/dist/Isabelle2004/doc/tutorial.pdf>.

4. The Coq Development Team. The Coq Proof Assistant Reference Manual, 2006. <http:
//pauillac.inria.fr/coq/doc/main.html>.

5. Wiedijk, F., editor: The Seventeen Provers of the World, volume 3600 of LNCS.
Springer, 2006. With a foreword by Dana S. Scott.

151

Author Index

Alama, Jesse 9

Avigad, Jeremy 51

Friedman, Harvey 51

Grabowski, Adam 25, 35

Jastrzębska, Magdalena 25

Kieffer, Steven 51

Korniłowicz, Artur 67

Milewski, Robert 79

Naumowicz, Adam 89

Puzis, Yury 121

Schwarzweller, Christoph 35, 103

Sutcliffe, Geoff 121

Trac, Steven 121

Wiedijk, Freek 137

153

