

Refereed by Andrzej Trybulec

Series: STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11(24)
http://logika.uwb.edu.pl/studies/

Series Editor: Halina Święczkowska
University of Białystok, Faculty of Law, Section of Semiotics

in collaboration with Kazimierz Trzęsicki
University of Białystok, Faculty of Mathematics and Informatics
Chair of Logic, Informatics and Philosophy of Science
e-mail: logika@uwb.edu.pl

Guest Editor:
Dariusz Surowik
University of Białystok
e-mail: surowik@uwb.edu.pl

Editorial Advisory Board:
Jerzy Kopania, University of Białystok
Grzegorz Malinowski, University of Łódź
Witold Marciszewski (Chairman), University of Białystok
Roman Murawski, Adam Mickiewicz University, Poznań
Mieczysław Omyła, Warsaw University
Katarzyna Paprzycka, Warsaw School of Social Psychology
Jerzy Pogonowski, Adam Mickiewicz University, Poznań
Andrew Schumann, Belarusian State University, Minsk (Belarus)
Jan Woleński, Jagiellonian University, Cracow
Ryszard Wójcicki, Polish Academy of Sciences

c© Copyright by Uniwersytet w Białymstoku, Białystok 2007

Cover design: Krzysztof Tur
Type-setting: Stanisław Żukowski

ISBN 978–83–7431–158–8
ISSN 0860–150X

WYDAWNICTWO UNIWERSYTETU W BIA LYMSTOKU
15-097 Bia lystok, ul. Marii Sk lodowskiej-Curie 14, tel. 0857457059

http://wydawnictwo.uwb.edu.pl, e-mail: ac-dw@uwb.edu.pl
Nakład 300 egz.

Druk i oprawa: Sowa – druk na życzenie
www.sowadruk.pl tel. 022 431-81-40

CONTENTS

Andrzej Malec
The Is-Ought Problem and Legal Rationality . 7

Kazimierz Trzęsicki
Polish Logicians’ Contribution to the World’s Informatics 15

Andrzej Malec
A Formal Approach to Natural Law . 35

Andrew Schumann
Non-Archimedean Foundations of Mathematics 47

Katarzyna Zbieć
A Linear Approximation Method in Prediction of Chaotic Time Series 61

Vitaly. I. Levin
Basic Concepts of Continuous Logic . 67

Mariusz Giero
Querying Temporal Database with the Language of First-Order
Temporal Logic . 85

Dariusz Surowik
A Few Remarks on Querying Lists, Trees and Dags a Temporal-Logic

Approach . 95

Witold Marciszewski
Computational Dynamics of Complex Systems. A New Way
of Doing Science . 107

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11 (24) 2007

Andrzej Malec
University of Białystok

THE IS-OUGHT PROBLEM AND
LEGAL RATIONALITY

The aim of this paper is to discuss the following issue: what is rational behaviour
of a lawyer (mainly in the process of the interpretation of legal texts)? We are
especially interested if the ‘is-ought problem’ affects the issue.

Two Meanings of Rationality

Those from countries in the west generally have a firm belief in rationa-
lity. They consider being rational as one of the most important of virtues.
Thinking and behaving in a rational manner can be seen as an almost ethical
value. However, the notion of rationality, as taken from natural language,
is rather vague. “Rational” naturally means something like “being in ac-
cordance with reason”. But what does it mean to be in accordance with
reason? Philosophers, logicians and others try to make it clearer1.

When searching for a clear understanding of rationality we initially
discover that the expression “rationality” is an abstract term. It refers to
a certain feature: the feature of being rational. So we should determine
which objects the term “being rational” does refer to. Presently it is said
that there are two independent meanings of “being rational”: (i) as a feature
of thinking (“rational beliefs”) and (ii) as a feature of behaviour (“rational
behaviours”)2. All other meanings of “being rational” can be defined in
terms of the two above.

1 A complex investigation of the idea and concepts of rationality can be found in:
Ryszard Kleszcz, O racjonalności. Studium epistemologiczno-metodologiczne (in Polish;
On Rationality. An Epistemological and Methodological Investigation), Wydawnictwo
Uniwersytetu Łódzkiego, Łódź 1998.
2 See: Ryszard Kleszcz, O racjonalności..., p. 39

ISBN 978–83–7431–158–8 ISSN 0860-150X 7

Andrzej Malec

Rational Thinking

When philosophers or logicians are talking about the rationality of
thinking, they are declaring that rationality mainly consists in preserving
three principles. Firstly: the language we use should be as clear as possible.
We should avoid vague notions in science as well as in the humanities. Se-
condly: logical rules should be preserved in all considerations. The best way
to achieve this is to be aware of every step of our argumentation: what the
premises are, what rules are applied. In particular we should be aware of the
logical status, the logical “force”, of the rules we are applying: are they de-
ductive or merely giving us a probability of valid conclusion? Thirdly: being
aware of the way science is developing over time, i.e., that old theories are
continuously being replaced by new, we must be open to the arguments of
others. We should be open to critique. And even more: self-criticism should
be our motto.

Such understanding of being rational is quite clear. Undoubtedly anyone
(including lawyers) should be rational in the above sense to be considered
a rational being.

On the other hand, the meaning described above does not determine
any exact way of thinking: what premises should be accepted, what rules
of reasoning should be used. Certainly, we should accept facts, tautologies,
logical rules, etc. But the above principles will not help us solve most of the
real problems connected to a lawyer’s practice. Lawyers defending opposite
views during a court trial can be equally rational in the above sense. So,
maybe it is possible to put forward more principles of rationality? Principles
not restricted to thinking.

Rational Behaviour

When philosophers or logicians are talking about the rationality of be-
haviour it is often connected to praxiology – the theory that deals with the
efficiency of activities of any kind. An action is considered to be efficient if
it is both effective (an action is or can be successful) and economic (goals
are achieved at reasonable costs).

Conveying rationality of behaviour is also possible in terms of theories
of choice, game theories, etc. Then, rationality can be defined in terms of
expected gains.

Such concepts of rational behaviour are much clearer than the vague
notion of rationality taken from natural language. However, there are still

8

The Is-Ought Problem and Legal Rationality

many concepts of rationality, and no one among them is clearly a dominating
concept.

We must also take into account that all such concepts are usually de-
fined in natural language and so remain uncertain to a certain degree.
If we want to be precise, we can restate the above in the following way:
the term “rational behaviour” has several meanings (equivocality) and in
every (or in most) of these meanings is also not completely clear (un-
clarity).

Therefore, we do not have a “ready to use” notion of rational behaviour
for classifying the deeds of lawyers as rational or non-rational. So, maybe
lawyers have such a notion elaborated within the legal sciences?

Lawyers and Rationality

The notion of rationality is very important to lawyers. At least law-
yers talk about rationality a lot. They talk about rationality investigating
theoretical issues, as well as solving practical problems. We dare to say
that the idea of rationality is one of the most important ideas connected
to law.

On the other hand, any person who has learnt even a tiny amount of the
practical aspects of law knows perfectly well that lawyers earn their money
defending just about anything we want them to. And, they win as frequently
as they lose. Theoretically, their understanding of law should be determined
by legal texts and the rules of legal interpretation. In practice however, what
we find is a complete sense of chaos whenever legal texts are interpreted. The
same is true in relation to a court of law practice3. It is generally known that
the same text is often interpreted in completely different ways by different
courts. And every judge is convinced about her/his rationality. But could
they all be rational giving various interpretations of the same text? Probably
not. Nevertheless they all claim they are right, they are rational. This is
possible because there is no commonly accepted set of criteria of rationality
of legal interpretation. This means there is no commonly accepted concept
of legal rationality. Is the above fact accidental? Or, is there a reason for
this fact?

3 Anyway, it is true regarding the Polish system of courts of law.

9

Andrzej Malec

The Lawmaker’s Rationality

One of the most important issues regarding legal studies is the issue of
choosing the best way for inferring legal norms from legal texts4. This issue
is investigated within the theory of legal interpretation5. In their investiga-
tions, Polish theoreticians use concepts of rationality of the lawmaker.

The lawmaker is a fictitious person who is the supposed author of all
legal texts. It is supposed that the lawmaker is rational in several aspects.
Firstly, he is perfectly aware of the language he uses: he knows the precise
meaning of every word, he understands all the grammar, etc. Having perfect
knowledge of the language he is able to communicate all his ideas clearly and
completely in accordance with his will. Such rationality is called “semiotic
rationality”.

The lawmaker is also aware of what justice is. He knows the desired
goals that should be achieved by humankind, i.e., he knows the value of
every event or situation and is able to compare such values. Such rationality
is called “axiological rationality”.

Among other “rationalities” there are suppositions that the lawmaker
has a perfect understanding of factual situations and a perfect comprehen-
sion regarding the rules governing reality – including social reality. Finally, it
is necessary to foresee all possible results of establishing any new regulation.

Two Models of Legal Interpretation

In legal theory, two key models of interpretation are considered. The
first model is based on the idea that rules prescribed by the lawmaker,
and somehow “concealed” by him in legal texts, should be derived from
legal texts merely by semiotic procedures or at least – by procedures that
prefer semiotic measures. This model is justified by assuming the semiotic
rationality of the lawmaker.

The second model is based on the idea that rules derived from legal
texts should be just. So, if a legal text implies something unjust, then we
are supposed to abandon the direct meaning of the text and interpret the

4 Legal norms are rules of behaviour prescribed by authorities. Legal texts are sets
of inscriptions from which legal norms can be inferred. A text to be a legal text must be
accepted in a due course by a legitimated do to so authority of a state.
5 The theory of legal interpretation is the theory examining ways in which legal texts

are understood by lawyers and formulating principles in accordance with which legal texts
should be understood by lawyers.

10

The Is-Ought Problem and Legal Rationality

text in such a way that the rules derived from the text are just. This model
is founded on the supposition of the axiological rationality of the lawmaker.

So lawyers have two opposing models of interpretation regarding legal
texts. Therefore, they are able to defend anything. If we want them to
defend something that is in accordance with “the letter of the law”, they
will use the model of interpretation based on the semiotic rationality of the
lawmaker. However, if we want them to defend something that is in conflict
with “the letter of the law” they can then use the model of interpretation
based on the axiological rationality of the lawmaker. In both cases they can
be seen as somehow being rational. But are they equally rational by using
opposing models?

The Is-Ought Problem

It is Hume’s statement that moral distinctions cannot be derived from
reason:

Reason is the discovery of truth or falsehood. Truth or falsehood consists in
an agreement or disagreement either to the real relations of ideas, or to real
existence and matter of fact. Whatever, therefore, is not susceptible of this
agreement or disagreement, is incapable of being true or false, and can never
be an object of our reason6.

Laudable or blameable, therefore, are not the same with reasonable or unreaso-
nable. The merit and demerit of actions frequently contradict, and sometimes
controul our natural propensities. But reason has no such influence. Moral
distinctions, therefore, are not the offspring of reason7.

Presently, the above thesis of Hume can be restated in a more general way:

Deontic statements are logically separated from non-deontic statements, i.e.,
neither can deontic statements be derived from non-deontic statements (sim-
ple Hume’s thesis) nor can non-deontic statements be derived from deontic
statements (reverse Hume’s thesis)8.

6 David Hume, A Treatise of Human Nature, Penguin Classics 1985, p. 510
7 ibidem
8 See: Jan Woleński, Uogólniona teza Hume’a (in Polish; A Generalized Hume’s The-

sis), in: I. Bogucka, Z. Tobor (editors) “Prawo a wartości. Księga jubileuszowa Profesora
Józefa Nowackiego” Zakamycze Kraków 2003, p. 293–303. Deontic statements are state-
ments that describe norms, e.g., “John ought to open the window”.

11

Andrzej Malec

Pursuant to the above thesis, it is impossible to infer obligations from
facts or to infer facts from obligations. Intuitively, the thesis holds. Some
formal argumentation is also possible9. The true meaning of the thesis is
that the so called “positive sciences” cannot help us with moral dilemmas.

What is important here is that a similar thesis can be put forward in
relation to axiological modalities: it is impossible to infer values from facts
or to infer facts from values. But if so, then how can we put forward binding
arguments for any model of legal interpretation?

Facts and Values

Several arguments based on intuition can be put forward to support
the thesis that axiological statements and non-axiological statements are
logically separated.

The first argument is based on the idea of intractability of social
phenomena10. Since our ability to compute future states of society is limi-
ted, we are not aware of all the effects of our behaviour. Therefore, we are
not able to value our behaviour. So, it is impossible to say if the final result
of any action will be good or bad. This is reflected in a Polish proverb: “Nie
ma tego złego, co by na dobre nie wyszło” (If an event seems to be bad,
don’t worry. It may turn out that the event is good).

The second argument is based on the idea of expected time horizon
of events11. Let us suppose that we are able to compute future states
of society. So, we are able to compute all the consequences of all possible
(alternatively attainable) ways of behaving. The problem is as follows: how
far should computations go and be acted upon? Is it enough to compute
the future effects of present deeds for one year? Or, should we compute
our future to take into account the lifetime of our generation? Or perhaps
several generations? Let us suppose that we can act in a way such as A or
(alternatively) in a way such as B. It may turn out that the consequences
of A are better than those of B if we are say looking at a time scale of
5 years, but are worse if we are looking at a time span of 10 years, but are

9 ibidem
10 See: Witold Marciszewski, Undecidability and Intractability in Social Science, in:

W. Marciszewski (editor) “Issues of Decidability and Tractability” University of Bialystok
2006, p. 143–174.
11 The idea of expected time horizon of events was used in literature by Stanislaw Lem

in his famous novel Powtórka (in Polish; Repetition), Iskry 1979, p. 55–57. In the novel
two scientists discuss how to re-create the world to make it perfect.

12

The Is-Ought Problem and Legal Rationality

again better if we are looking at a time span of 20 years and so on. When
should we stop our computation in order to have a real valuation of the
effects of alternatively attainable ways of behaving?

The third argument is based on the Ant and the Grasshopper Pa-
radox12. The ant is working very hard all summer to survive during winter.
The grasshopper in contrast is enjoying life as much as possible all summer
long, aware that he will die during winter. In consequence, the ant survi-
ved the winter and the grasshopper did not. However, the grasshopper was
happy during the summer, the ant was not happy either during the sum-
mer (since it worked very hard), nor during the winter (since the winter is
a bad season to enjoy life). Who was right? Who was wrong? Are we able
to answer the questions in a rational manner? Probably not.

Formal Rationality – Material Rationality

If we accept the thesis that axiological statements and non-axiologi-
cal statements are logically separated, then we have to admit that it is
impossible to establish a universal model of legal interpretation.

Of course, we can state some formal features of a good interpretation
(like clarity of language, being in accordance with logical rules, etc.). If
a legal interpretation has such features it is rational from the formal point
of view.

On the other hand, we cannot put forward binding arguments concer-
ning the choice between semiotic and axiological rationalities of interpreta-
tion. Therefore, if we try to define the material rules of legal interpretation,
they have to have a hypothetical form: “if you choose semiotic rationality
you should do A, but if you choose axiological rationality you should do B”.
And there is no universal argumentation to choose between A and B.

Therefore the material rationality of lawyers is merely hypothetical.

Andrzej Malec
Department of Logic, Informatics and Philosophy of Sciences
University of Białystok
e-mail: malets@uwb.edu.pl

12 The paradox was put forward by Martin Hollis in his The Cunning of Reason,
Cambridge University Press 1987, p. 95–96.

13

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11 (24) 2007

Kazimierz Trzęsicki
University of Białystok

POLISH LOGICIANS’ CONTRIBUTION
TO THE WORLD’S INFORMATICS*

The position of Polish informatics, both in research and teaching, in the world
of informatics, has its roots in the achievements of the Polish mathematicians
of the Warsaw School and the logicians of the Lvov-Warsaw School.
Jan Łukasiewicz is the most famous Polish logician in the world of compu-
ter science. Invented by him, the parenthesis-free notation is known as PN
(Polish Notation) and RPN (Reverse Polish Notation). Łukasiewicz created
multi-valued logic as a separate subject. The idea of multi-valuedness is app-
lied to hardware design (many-valued or fuzzy switching, analogue computer).
A many-valued approach to vague notions and commonsense reasoning is the
method of expert systems, databases and knowledge-based systems, as well as
data and knowledge mining.
Stanisław Jaśkowski’s system of natural deduction is the basis of systems re-
garding automatic deduction and theorem proving. He created a system of pa-
raconsistent logic. Such logics are used in AI.
Kazimierz Ajdukiewicz, with his categorial grammar, participated in the deve-
lopment of formal grammars, the field significant for programming languages.
Andrzej Grzegorczyk has made an important contribution to the development
of the theory of recursiveness.
Alfred Tarski, and the significance of his work for informatics, is not under
consideration in the paper. His achievements are the subject of S. Feferman’s
article “Tarski’s Influence on Computer Science”.
Keywords: parenthesis-free notation, many-valued logic, paraconsistent logic,
categorial grammar, theory of recursiveness, Polish notation, fuzzy switching,
analogue computer, AI

When we hear of the successes achieved by Polish students of informa-
tics at the Students’ World Championships in Programming, or the winners
of competitions for young scientists in the European Union, or the fact that
Warsaw University occupies a top position in the world rankings of informa-
tics studies; we have to ask ourselves, why this is so and in which place we
should look for the causes of this success. Undoubtedly, their achievements,
and this includes those of students from other Polish universities as well,

* I would like to thank the anonymous reviewer for the comments which made this
article better. The work was supported by KBN (The Commission for Scientific Research)
Grant 3 T11F 01130.

ISBN 978–83–7431–158–8 ISSN 0860-150X 15

Kazimierz Trzęsicki

are their very own successes – the result of their talents, hard work and
ambition. All this however, would matter little without good teachers, who
being scientists themselves, contribute significantly to the development of
informatics. We can be so bold as to say that informatics stemming from
Warsaw University leads the world. While commenting on the fact that
Warsaw University was listed in 2003 as one of the top universities (this
according to a number of the most often quoted publications), professor
Damian Niwiński (2003) points out that informatics has been developing
systematically at Warsaw University since 1960. He sees the cause of this
state of affairs in the attitudes of great Polish mathematicians,1 the succes-
sors of the Polish school of mathematics: Kazimierz Kuratowski, Stanisław
Mazur, Wacław Sierpiński, Hugo Steinhaus,2 and Helena Rasiowa.3 At the
same time he emphasizes the role of logicians. It was mainly in this field
that the critical mass of today’s successes was created. It could have been
a matter of chance in a sense, but when in 1948 the first Polish institution
dealing with computers came into existence (the Mathematical Appara-
tus Group), professor Kuratowski appointed the logician and statistician
Henryk Greniewski4 (1930–1972) as its first director. It was Greniewski
who initiated the establishment of the Polish Cybernetics Society5 in 1962.
The 23rd of December, 1948 however can be considered the launch date
regarding the history of Polish informatics. Romuald W. Marczyński re-
members that six people met on that very day in the mathematics seminar
room in the Institute of Physics. Those present were Professor Kazimierz
Kuratowski, Professor Andrzej Mostowski (logician), Doctor Henryk Gre-
niewski and the three engineers Krystyn Bochenek, Leon Łukaszewicz and
Marczyński himself. During the meeting they discussed the possibilities of

1 There are two other important names worth mentioning in this context: professor
Oskar Lange – economist, professor Janusz Groszkowski – director of the State Institute
of Telecommunications, later deputy chairman of the State Council of the Polish People’s
Republic.
2 At first he was deputy director of the Mathematical Apparatus Group dealing with

applications. Later this post was held by Professor Stanisław Turski (1906–1986).
3 Professor Rasiowa was very dedicated to publishing Fundamenta Informaticae. This

journal started to appear in 1977 mainly thanks to her efforts. She was its Editor-in-Chief
until her death. She never ceased to deal with it, even when she was ill. Let us add that
she was an active member of the editorial board of Studia Logica (from 1974) and Journal
of Approximate Reasoning (from 1986).
4 He was expelled from the Planning Commission for political reasons, as a result of

the growing class struggle.
5 The name was ideologically conditioned. This is how informatics was referred to in

the Soviet Union as well.

16

Polish Logicians’ Contribution to the World’s Informatics

constructing mathematical apparatuses. It should be added that the first
GAM-1 machine was built in 1950 by Zdzisław Pawlak, but was not used
for calculations.

One of the achievements on a world scale was the language KLIPA,
created in the 1960s by a team headed by Professor Władysław M. Turski:
Marek Greniewski, Jadwiga Empacher, Jadwiga Zdanowska and Ryszard
Solich. KLIPA was the external language for the URAL digital computer
(Greniewski, Turski 1963). In the 1970s Andrzej Salwicki created the ob-
ject-oriented programming language LogLan. A few years before dynamic
logic was appreciated in the West, the team headed by Salwicki – Gra-
żyna Mirkowska, Antoni Kreczmar and others – created algorithmic logic
as a tool for examining and describing problems connected with the veri-
fication of programmes. Following Niwiński, one should also mention the
works of Jerzy Tiuryn and his successors concerning the place of logic in
informatics (type theory, the lambda calculation, functional programming,
programming logic, the computing power of programming languages, comp-
lexity issues in logic and finite model theory). Tiuryn is presently in charge
of a bio informatics team. Professor Jan Madey, head of the Section of
Operating Systems in the Institute of Informatics, Warsaw University, di-
rector of the Centre for Open Multimedia Education (COME) at Warsaw
University and the author of the first Polish handbooks of the languages
Algol 60 and Pascal, conducted innovative classes for students at various
levels. He is the author of the system OS Kit designed to examine operating
systems, problems of parallel computation and the efficiency of information
systems. This world class specialist in the field of software engineering, who
is probably best known for the methodology he developed in co-operation
with David Lorge Parnas known in the literature as “Parnas-Madey Four
Variable Model”, finds a great deal of satisfaction in the achievements of
his students. He rates their academic successes as his greatest success. His
supervisees won the Academic World Championships in Team Program-
ming and European Union Contests for Young Scientists (Szumiec-Presch
2004). He himself studied with professors Andrzej Kiełbasiński (doctor at
the time), Karol Borsuk, Kazimierz Kuratowski, Stanisław Mazur and An-
drzej Mostowski. He points out how important it was for him to enjoy
the confidence of Professor Andrzej Turski, the rector of Warsaw Univer-
sity, and at the same time one of the people who made the greatest con-
tributions to Polish informatics: “He threw me into the deep end of the
pool”, he said, “but was always there keeping an eye on me and suppor-
ting me from a distance”. From 1964–70, Jan Madey was deputy head of
the Section of Numerical Calculations at Warsaw University under Pro-

17

Kazimierz Trzęsicki

fessor Stanisław Turski. Professor Stanisław Turski was a very important
figure in the history of informatics at Warsaw University, who as its rector
established the first computing centre (the Section of Numerical Calcula-
tions), and in 1975 also launched the Institute of Informatics within the
department bearing a new name: the Department of Mathematics, Infor-
matics and Mechanics. These institutional changes were connected with
the launch of full informatics MA programmes (in place of studies offered
within the section of numerical methods). Other areas of research in the In-
stitute comprised automata theory (Stanisław Waligórski and others) and
applied linguistics (Leonard Bolc, Janusz Bień and others), especially in
connection with issues concerning artificial intelligence and programming
in logic.

It is undoubtedly difficult to answer the question as to how impor-
tant Polish logic was for achieving the aforementioned results. Many ap-
parently irrelevant ideas may have significance in creating the right cli-
mate. Many enterprises, regardless of the intentions of their architects, may
have an unexpected importance in other areas. As far as logic is concerned,
however,

... the best known Pole in informatics is the logician Jan Łukasiewicz
(1876–1956), who in 19176 introduced a way of expressing arithmetic expres-
sions which avoids the use of parentheses, known as the Polish Notation. This
notation is now commonly applied to automatic calculations of the value of
expressions, used, among other things, in various calculators. (Madey, Sy-
sło 2000)

This is the reason why solving the problem regarding the economisation of
the notation, not in the least inspired by informatics issues, gave Łukasiewicz
a lasting position in informatics.

Logic, alongside algorithmics, is a component of theoretical informa-
tics.7 In this sense all output by Polish logicians would be significant for
informatics, and would render my initial question regarding their contribu-
tion to the world’s informatics irrelevant. Therefore I will point out only
those ideas which seem to be more directly connected with informatics, as
was the case of the aforementioned Polish notation. Accordingly, I will not
comment on the authors’ intentions, nor will I ponder over the fact as to

6 For more information (on this subject) see the next page.
7 Electronics should also be added to contemporary informatics as a whole. Electronic

solutions have turned out to be more effective than mechanical ones. Perhaps in the future
electronics will be replaced by some biotechnological solutions.

18

Polish Logicians’ Contribution to the World’s Informatics

whether those ideas were taken from their authors directly or indirectly or
whether, as it was in the case of multi-valued logic, the same idea occurred
independently to different scholars at the same time. Their importance for
informatics will be discussed in as much as it is deemed necessary for their
comprehension.

Polish Notation (Parenthesis-Free Notation)

The idea of the notation which avoids the use of parentheses appeared
in connection with examining formal systems. Polish logicians, alongside
other current issues, found the independence of the set of primitive terms
and axioms equally important. Subsequently the problem of ‘economisation’
arose; in particular, a system with the smallest possible number of primitive
terms and one shortest axiom was sought out.

From the point of view of semiotics (and informatics) – due to an eco-
nomy of expression – it was interesting to find out whether a language
without punctuation marks in general, and parentheses in particular, was
possible. This kind of notation was invented by Jan Łukasiewicz. Łukasie-
wicz (1931, p. 165), who states that he laid down the principles of paren-
thesis-free symbolism in 1924, used it for the first time in his article O zna-
czeniu i potrzebach logiki matematycznej (On the importance and needs
of mathematical logic) published in 1929, and although it was Chwistek
who at the beginning of the 1920s talked about placing conjunctions be-
fore arguments, as Woleński (1985, p. 93) writes, there is more to paren-
thesis-free symbolism than writing conjunctions in front of arguments, hence
there is no conflict in attributing the creation of parenthesis-free symbolism
to Łukasiewicz and the idea of placing conjunctions in front of arguments
to Chwistek.

It turned out that whenever all the conjunctions were prefixes (i.e. when
they were written before their arguments) or when all of them were suffixes
(i.e. written after their arguments), it was possible to eliminate the paren-
theses. Łukasiewicz’s notation, apart from the economisation of means of
expression, has an additional advantage in that the structure of an expres-
sion is defined by the position of symbols of which it is built. This very
feature displays an advantage from the viewpoint of informatics (and not
only informatics).

The importance of Łukasiewicz’s notation for informatics was noted
by Turing, who met Łukasiewicz in 1949. According to Turing, it is more
advantageous for mechanical devices to have function symbols at the begin-

19

Kazimierz Trzęsicki

ning of formulas. In informatics it is a suffixal notation that is particularly
important. It was Hamblin who found a way of applying it. According to
Pearcey (1994), Hamblin, who had gained some experience from radar servi-
ces during World War II, was employed to run a third university computer
in Australia in 1956. He became aware of the problems connected with
(a) computing mathematical formulas containing parentheses and (b) load-
ing memory with proper names of memory resources. As a formal logician
he knew Łukasiewicz’s work.8 The solution to the first problem was sup-
plied by Łukasiewicz’s notation. Instead of writing, for example: (a+ b)× c,
one can write: ×,+abc. The other problem, enabling the machine to access
resources which do not require an address (a current operation would be
always carried out on the results of the operations immediately preceding
it, left and always remaining in the resources), was solved by applying Łu-
kasiewicz’s reverse notation (Reverse Polish Notation – RPN). Instead of
writing: × + abc, one writes: ab + c×). This is how the idea of organising
resources into a stack was born – last-in, first-out (LIFO). Humblin pre-
sented his results at the First Australian Conference on Computing and
Data Processing (1957). Representatives of the English Electric Company
who were present at the conference carried his ideas to England and the
company used Hamblin’s architecture (and even his terminology) (Laving-
ton 1980). Hamblin presented his conception in (1962) as well. One of the
designers of the American computer B5000 (announced in 1961 and produ-
ced in 1963), in which RPN was used, R. S. Burton, wrote (1970) that the
idea had occurred to him independently of Hamblin, when he was reading
a handbook of symbolic logic. 10 years after Hamblin’s first publication,
the RPN idea was used by engineers from Hewlett-Packard in a calculator
which appeared on the market in 1968 and then in HP-35 from 1972. In this
way RPN became popular in scientific and engineering circles.9 It is worth
adding at this point that Hamblin was the precursor of many conceptions,
among others, the application of temporal logic in informatics (Allen 1984,
Allen 1985, Hamblin 1987, Williams 1985).

8 Łukasiewicz’s notation was used by A. N. Prior, a logician from New Zealand, among
others in a handbook of logic (1955), which ‘hindered’ readability (see a comment on this
in Woleński 1985, pp. 94–95).
9 Edsger W. Dijkstra, converting infix notation into RPN, invented an algorithm which

due to its similarity to the way a railroad shunting yard operates was called the ‘shunting
yard’.

20

Polish Logicians’ Contribution to the World’s Informatics

Multi-Valued Logic

Jan Łukasiewicz (1878–1956) is best known for his concept of multi-va-
lued logic.10 Łukasiewicz was convinced not only that it was a discovery
comparable to non-euclidian geometry, when he wrote (1930, p. 161):

It is not easy to predict the impact of non-chrysippian11 systems of logic upon
philosophical speculation. It seems however that the philosophical importance
of the systems presented here may be at least as great as the importance of
non-euclidian systems of geometry.

Łukasiewicz designed his systems as the basis for mathematical research
in arithmetic and multiplicity theory.12 As far as practical application is
concerned, having cybernetics in mind, he wrote in a letter to Lejewski
in 1951 (Woleński 2005, p. 261):

Multi-valued systems already today have important practical applications and
may become a source of significant income.

One may agree with Woleński when he writes that:

At present it is beyond any doubt that Łukasiewicz’s expectations have not
been fulfilled. Multi-valued logics have not revolutionised either logic or ma-
thematics, or philosophy. (Woleński 1985, pp. 122–123)

It should be added however that the thesis concerning the practical benefits
from multi-valued logics, and I do not mean those used in metatheoretical
research but those in widely understood informatics, seems to have a chance
to be confirmed. It is worth noting however that both multi-valued logics
and the concept of the notation were not created for the sake of informatics.
In the case of multi-valued logic it was philosophical motives. There is a mo-
nograph devoted to the use of multi-valued logics in informatics (Rine 1977).
Interest in using multi-valued logics in informatics is reflected in conferences
devoted to this issue. In 2006 the 36th annual symposium organised by The
Multi-Valued Logic Technical Committee of the IEEE Computer Society will
be held in Singapur.

10 Independently of Łukasiewicz (1920c, 1920b, 1920a) multi-valued logics were created
by E. Post (1921), born in Augustów, Poland.
11 For more on the history of creating Łukasiewicz’s multi-valued logics, see (Woleński

1985, pp. 115–122).
12 This is how Łukasiewicz referred to multi-valued logics.

21

Kazimierz Trzęsicki

The Multi-Valued Logic – An International Journal (www.csi.uotta-
wa.ca/∼ivan/mvl.html), among issues in its sphere of interest, mentions
the following:

MVL13 and Soft Computing: neural networks, evolutionary computation, fuzzy
systems, computational intelligence cost-effectiveness;

Engineering aspects of MVL: circuit design, programmable logic, hardware
and software verification, testing, analog and digital VLSI and ULSI, new
concept devices and architectures, carrier computing (biocomputing, optical
computing, ...);

MVL and Automated Reasoning: machine learning, reasoning, theorem pro-
ving, expert systems;

Computer Science and MVL: databases, massively parallel systems, collision-
based computing;

Fuzzy Logic and MVL: theoretical and practical aspects;

Philosophical aspects of MVL

Ewa Orłowska from the Institute of Telecommunications is a member
of the journal’s editorial board.

One can distinguish between the applications of multi-valued logic in
designing informatics equipment and in the methods of artificial intelligence.

Engineering Applications

To put it simply, just as multi-valued logics are a generalisation of
two-valued logics, so are electrical circuits where m states a generalisation
of circuits with two states. This issue has been addressed for a long time.
Henryk Greniewski, who, as already mentioned, was the first director of the
Mathematical Apparatus Group, was interested in the technical application
of multi-valued logics. Let me add in passing that his book Elementy cyber-
netyki systemem niematematycznym wyłożone (Cybernetics without Mathe-
matics) (1959) was translated into German, English and French and is still
available from Pergamon Press (1960). In the German Democratic Republic
Greniewski was an authority, among other things, in the field of applying cy-
bernetics (informatics) in planning economic development (Segal 1999). His
views on this issue have been quoted to this day (Greniewski 1962). There
is at least one major publication in Polish on the subject of the application

13 Multi-Valued Logic

22

Polish Logicians’ Contribution to the World’s Informatics

of Łukasiewicz’s logics. It is a two-volume work by Moisil (1966, 1967).14

Epstein (1993) is a good introduction to the problem of multi-valued (fuzzy)
switches.15

Currently the binary standard is obligatory in informatics. It was Leib-
niz who already in his day opted for this solution, but – and one has to
remember that it was the era of mechanics – based his ‘computer’ on the
decimal system. The architecture for contemporary computers was postula-
ted by Von Neumann in the report ‘First Draft of a Report on the EDVAC’
(1981) written in 1945 under the auspices of the University of Pennsylva-
nia and the United States Army Ordinance Department. In his justification
for the choice of the binary system, similarly to Leibniz, he points to the
simplicity of the system. The report states (Von Newman 1981):

5.1 ... Since these tube arrangements are to handle numbers by means of their
digits, it is natural to use a system of arithmetic in which the digits are also
two valued. This suggests the use of the binary system.

5.2. A consistent use of the binary system is also likely to simplify the ope-
rations of multiplication and division considerably. Specifically it does away
with the decimal multiplication table. ... In other words: Binary arithmetic
has a simpler and more one-piece logical structure than any other, particu-
larly than the decimal one.

The report emphasises that:

An important part of the machine is not arithmetical, but logical in nature.
Now logics, being a yes-no system, is fundamentally binary. Therefore, a binary
arrangement of the arithmetical organs contributes very significantly towards
a more homogenous machine, which can be better integrated and is more
efficient.

If designing computers operating with the decimal system can be explained
in terms of it being natural, for other systems it is theoretical and practical
arguments that are important. Such arguments can be found not only for
the binary system but also for the ternary system.

The first designer of the machine operating in the ternary system was
Thomas Fowler. In May 1840 he demonstrated his wooden calculating ma-
chine. It was described by De Morgan (1840, (1837–1843)).16

14 His earlier work (1959) was also published in English by Pergamon Press. See
also (1972).
15 Cf. (Gottwald Winter 2004).
16 The bibliography concerning this subject can be found at: http://www.mortati.com/

glusker/fowler/refslinks.htm.

23

Kazimierz Trzęsicki

In the Soviet Union 50 ternary computers were built – Setun and Se-
tun 70. The designer of these computers, Brousentsov, writes as a co-author
(Brousentsov, Maslov, Ramil, Zhogolev 2005):

It is known that the ternary arithmetic has essential advantages as compa-
red with the binary one that is used in present-day computers. In connec-
tion with this Donald Knuth assumed that the replacement of “flip-flop” for
“flip-flap-flop” one a “good” day will nevertheless happen [1].17 Now, when
the binary computers predominate, it is hard to believe in a reality of such
assumption, but if it would happen not only the computer arithmetic, but
the informatics on the whole would become most simple and most perfect.
The third value (Aristotle named it σνµβεβηκοc – attendant) what is very ac-
tual but hidden in binary logic, will become obvious and direct manipulated.
Ternary logic has better accordance with the Nature and human informal thin-
king [2]. Unfortunately the modern researches of the multi-valued (non-binary)
logic are formal and not associated with practical requests.
A remarkable exclusion is the experience of creating the ternary computers
“Setun” and “Setun 70” at Moscow State University [...]. This experience
convincingly confirms practical preferences of ternary digital technique.

1. Knuth D. E. The art of computer programming. Vol. 2. Seminumerical algorithms.
– Addison-Wesley, 1969.

2. Brousentsov N. P. Origins of informatics. – Moscow, The New Millenium Foun-
dation, 1994. (In Russian).

Brousentsov points out in an interview (Rumyantsev 2004) the technical
sources of the idea. He noticed however the importance of three-valued logic,
stating that these issues were not well thought out in his computers.

The Analogue Computer18

Nowadays digital computers predominate. It seems that the concept
of the analogue computer has finally been abandoned. However, it would
not be for the first time in informatics that predictions have turned out
to be wrong. Suffice to recall the prognosis concerning the number of com-
puters necessary for the United States. Professor Jonathan W. Mills from
Indiana University Bloomington19 believes in the success of such machi-

17 Let me add that for Knuth this must be a balanced system, which the system based
on {−1, 0, 1} supposedly is. More on the advantages of such a system in (Hayes 2001).
18 It was Professor Witold Marciszewski who pointed out this application of Łukasie-

wicz’s logic to me.
19 For his conception of the analogue computer see (Mills 1993) and (Mills, Walker,

Himebaugh 2003).

24

Polish Logicians’ Contribution to the World’s Informatics

nes. He is not alone in his beliefs. In 1995 Lee Rubel20 wrote to him
(Mills 2006):

The future of analog computing is unlimited. As a visionary, I see it eventually
displacing digital computing, especially, in the beginning, in partial differential
equations and as a model in neurobiology. It will take some decades for this to
be done. In the meantime, it is a very rich and challenging field of investigation,
although (or maybe because) it is not in the current fashion.

Mills became interested in the idea of the analogue computer back
in 1990 in connection with his studies of Łukasiewicz’s multi-valued logic.
He collaborated at the time with J. Michael Dunn, professor of philosophy,
and Oscar R. Ewing, professor of informatics. Together with Ch. Daffin-
ger and M. G. Beavers he started designing electric circuits based on in-
finitely valued Łukasiewicz’s logic. Mills considered this logic suitable for
describing analogue circuits. The construction of the machine was inspired
by Kirchhoff’s research on electricity. Mills writes the following about his
Kirchhoff-Łukasiewicz machine:

I’m thinking that within five to ten years, we will find a niche in which these
processors are superior, efficient, and cost-effective. (Hedger 2006)

He predicted that:

We may develop sensors that would detect chemicals in the environment or
toxins within our bodies, such as life-threatening cholesterol levels. We might
develop an implant that could predict heart attacks – sort of a biological
beeper. (Hedger 2006)

Applications in AI

Applications in AI seem to be the most promising of all the possible
applications of multi-valued logics.

Multi-valued logics form the basis for the description of vague concepts,
which are characteristic of natural language and non-formal reasoning. This
has an importance, among others, for expert systems.

The most famous conception is the theory of fuzzy sets developed in the
1960s by Lofti A. Zadeh (1965). He applied Łukasiewicz’s logic to elements

20 The author, among others, of the article The Extended Analog Computer (1993),
which prompted the invention of Kirchhoff-Łukasiewicz Machine.

25

Kazimierz Trzęsicki

of a set, thereby creating an algebra of fuzzy sets. They were not put to use
until the mid 1970s, when Ebrahim H. Mamdani of Queen Mary College in
London designed a ‘fuzzy’ controller for a steam engine.

A similar solution in connection with the research on expert systems
was worked out in Poland by Z. Pawlak. Rough set theory was developed in
many publications, for example (Pawlak 1982, Pawlak 1991, Pawlak 1993)
and (Komorowski, Pawlak, Polkowski, Skowron 1999).

The theories of fuzzy and rough sets are applied in artificial intelligence
and expert systems. They are used for the automation of data and knowledge
exploration. In connection with the applications of multi-valued logic in
informatics the notion of fuzzy logic is used (see, for example, http://pla-
to.stanford.edu/entries/logic-menyvalued/).

Natural Deduction

In contemporary informatics, natural logic is applied first of all in broad-
ly understood issues relating to artificial intelligence. It is the starting point
of the basic systems of theorem proving and/or proof verification. It was
created independently by Genzten (1934) and Jaśkowski (1906–1965). Jaś-
kowski testifies that in 1926 Łukasiewicz formulated the problem of a logical
system which would be in line with the practice of proving mathematical
theorems. Gentzen approached the issue in a similar way (1934, p. 176):

My initial point of view was as follows: The formalisation of logical reasoning,
especially in the way it was developed by Frege, Russell and Hilbert, differs
significantly from the way of reasoning practised in mathematical proofs. One
gets significant formal advantages in return. I would like therefore to present
a formalism, which is as close to real-life reasoning as it is possible.21

Jaśkowski published the solution to the problem in 1934, creating an
assumption-based system. The first announcement concerning this issue ap-
peared as early as 1929, in The Commemorative Book of the Polish Mathe-
matical Symposium, 1927. In this announcement, Jaśkowski wrote about his
results, which had been presented at Łukasiewicz’s seminar in 1926.

21 Mein erster Gesichtspunkt war folgender: Die Formalisierung des logischen Schlie-
ßens, wie sie insbesondere durch Frege, Russell und Hilbert entwickelt worden ist, entfernt
sich ziemlich weit von der Art des Schließens, wie sie in Wirklichkeit bei mathematischen
Beweisen geübt wird. Dafür worden beträchtliche formale Vorteile erzielt. Ich wollte nun
zunächst einmal einen Formalismus aufstellen, der dem wirklichen Schließen möglichst
nahe kommt.

26

Polish Logicians’ Contribution to the World’s Informatics

Andrzej Trybulec, the author of the MIZAR system used for verify-
ing mathematical proofs, directly refers to Jaśkowski’s system (and the
non-Fregian logic of Roman Suszko). Witold Marciszewski (1994, 2005)
holds the view that Jaśkowski’s system is more useful in computer-assisted
proof verification, while Gentzen’s system is better in computer-assisted
proving. As far as the problems of the mechanisation of reasoning are con-
cerned, it is worth noting the work of (Marciszewski, Murawski 1995).

Temporal Logic

Undoubtedly the founder of temporal logic is Arthur Norman Prior.
One should note however the influence of the Lvov-Warsaw School and espe-
cially that of Łukasiewicz upon the development of Prior as a logician and
upon his early temporal considerations.22 Among the works that are men-
tioned as important for its founding, one should mention the work of Jerzy
Łoś (1948). Prior (1996, p. 46) was astonished by the usefulness of temporal
logic, learning from, among others, Dov Gabbay and Dana Scott that:

There are practical gains to be had from this study too, for example in the
representation of time-delay in computer circuits.

Presently, temporal logic is a recognised and important subject from the
point of view of informatics.

Paraconsistent Logics

Jaśkowski formulated and designed discursive logic. His work “Rachu-
nek zdań dla systemów dedukcyjnych sprzecznych” (Propositional calculus
for contradictory deductive systems) (1948, 1969) was written as a response
to a political need. Marxists rejected the principle of inconsistency. The-
refore there appeared a need in logicians’ circles for a work which would
show the rationality of such a stance. The concerns of logic for paraconsi-
stent systems, however, are more deeply rooted. Contradiction on classical
logic grounds leads to trivialisation and its rejection is one of the oldest
postulates of logic, clearly formulated, for example, by Aristotle. We know,
however, that in ‘real-world’ cognitive activity, despite hidden or revealed

22 I write more on this subject in (2005).

27

Kazimierz Trzęsicki

inconsistencies, the complete rejection of the system does not have to take
place. The importance of paraconsistent systems reveals itself in informa-
tics in connection with the fact that data a computer programme has to
deal with may be, in a sense, contradictory. Man can somehow deal with
the inconsistency of his views. Therefore artificial intelligence should also
have this ability. A programme may draw data from various resources and
hence collect contradictory data. Since man can cope with this, a computer
should too. Man, in his activity, can give up reason, while a computer has
to run according to a formal programme. If a programme is to be able to
deal with an inconsistency, it has to be based on systems of paraconsistent
logic. It was Stanisław Jaśkowski who created an important system of this
kind, which is commonly recognised and well known.

Categorial Grammar

The idea of categorial grammar was formulated by Kazimierz Ajdukie-
wicz (1890–1963) in his work (1935). Undoubtedly informatics used other
grammars for its purposes. What is important, however, is the very fact
that this is a formal grammar. It can be used in various applications of in-
formatics, especially in linguistics, but not only (Park 2001). The theory of
categorial grammars is developed in connection with the Lambek Calculus.
The work is also carried out in Poland. Among major world-ranking publi-
cations one should mention (Buszkowski, Marciszewski, van Benthem 1988).

The Theory of Recursive Functions

Andrzej Grzegorczyk23 joined in on the mathematical milieu at the time
when “the political situation was conducive to staying in the safe circle of
logical and mathematical speculations”. In 1950 he received his doctoral
degree and was promoted by Andrzej Mostowski. Three years later, on the
basis of his work Some Classes of Recursive Functions (1953), he was pro-
moted to the position of ‘docent’. This very work is an important historical
contribution to world informatics. It is his most frequently cited work in the
area of broadly understood issues of theoretical informatics. He showed his
interest in the problems of decidability in his works Zagadnienia rozstrzy-

23 My text devoted to A. Grzegorczyk is almost entirely based on the information
taken from Stanisław Krajewski’s work Andrzej Grzegorczyk, (2005).

28

Polish Logicians’ Contribution to the World’s Informatics

galności (issues of decidability) (Grzegorczyk 1957, Grzegorczyk 1961). The
problems regarding the concept of decidability, the concept of computabi-
lity and the concept of recursive function, which arose in connection to
Hilbert’s programme and eventually resulted in the creation of the theoreti-
cal foundations of informatics, were taken up by Gödl, Church, Turing and
Kleene. The work of Grzegorczyk contributed in a significant way to a better
understanding of them. As Krajewski writes (2005, p. 109): “Throughout
the whole period of his scientific academic activity he was faithful to the
problems of decidability and computable functions.” Let us add that for
him it was (Krajewski 2005, p. 109) “connected with an in-depth study of
concrete, empirical, ‘tangible’ aspects of the world, which are approached
mathematically.”

The contribution of Polish logicians to the problems of decidability and
computability is much greater if one considers the achievements of Alfred
Tarski, one of the most remarkable logicians. The influence of Alfred Tarski
and the Polish logicians collaborating with him (A. Mostowski, L. Szczerba
and others) goes beyond the scope of the problems of decidability and com-
putability. This issue calls for separate treatment. Finally, let us add that
a Polish presence in the world as far as these issues are concerned has found
its expression in publications like that by Roman Murawski (1999).

Bibliography

(1929) ‘Księga pamiątkowa pierwszego polskiego zjazdu matematycznego,
1927’, Kraków.

Ajdukiewicz K. (1935), ‘Die syntaktische Konnexität’, Studia Philosophica,
Leopoli 1,

Ajdukiewicz K. (1960), Język i poznanie. Wybór pism z lat 1920–1939, t. 1,
PWN, Warszawa.

Allen J. F. (1984), ‘Towards a general theory of action and time’, Artificial
Intelligence 23 (2), 123–154.

Allen J. F. (1985), ‘Charles Hamblin (1922–1985)’, The Australian Compu-
ter Journal 17 (4), 194–195.

Barton R. S. (1970), Ideas for computer systems organization: a personal
survey, w J. S. Jou, red., ‘Proceedings of the Third Symposium on
Computer and Information Sciences held in Miami Beach, Florida, De-
cember 1969’, t. 1 Software Engineering, Academic Press, New York,
7–16.

29

Kazimierz Trzęsicki

Brousentsov, N. P., Maslov, S. P., Ramil, A. J., Zhogolev, E. (2005), ‘Deve-
lopment of ternary computers at Moscow State University’, Internet.

Buszkowski W., Marciszewski W., van Benthem J. (1988), ‘Categorial
Grammar’, John Benjamins Publishing Company.

De Morgan, A. (1837–1843), ‘Description of a calculating machine, invented
by Mr. Thomas Fowler of Torrington in Devonshire’, Abstracts of the
Papers Printed in the Philosophical Transactions of the Royal Society
of London 4 243–244. Abstract (De Morgan 1840).

De Morgan, A. (1840), ‘Description of a calculating machine, invented by
Mr Thomas Fowler of Torrington in Devonshire’, AP.23.24., London:
The Royal Society.

Epstein, G. (1993), Multiple-Valued Logic Design, Institute of Physics Pu-
blishing, Bristol.

Genzten, G. (1934), ‘Untersuchungen über das logische Schliessen’, Mathe-
matische Zeitschrift 39, 176–210, 405–431. Translation into english:
“Investigation into logical deduction”, 68–131 of The Collected Papers
of Gerhard Gentzen, red. M. E. Szabo. North-Holland, Amsterdam,
1969 Translation into polish: Trzęsicki, K. Badania nad wnioskowa-
niem logicznym, Białystok 1980.

Gottwald, S. (Winter 2004), Manyvalued logic, w E. N. Zalta, red., ‘The
Stanford Encyclopedia of Philosophy’.
http://plato.stanford.edu/archives/win2004/entries/logic-manyvalued

Greniewski, H. (1959), Elementy cybernetyki systemem niematematycznym
wyłożone, Warszawa.

Greniewski, H. (1960), Cybernetics without Mathematics, Pergamon Press,
New York.

Greniewski, H. (1962), ‘Logique et cybernétique de la planification’, Cahiers
du Séminaire d’Econométrie, ss. 115–164.
http://www.globalsecurity.org/wmd/library/report/2005/art137-
teheran2005.htm.

Greniewski, H. (1966), Kybernetische Systemtheorie ohne Mathematik,
Dietz, Berlin.

Greniewski, M., Turski, W. (1963), ‘The external language KLIPA for the
URAL-2 digital computer’, Communications of the Association for
Computing Machinery 6 (6), 322–324.

Grzegorczyk, A. (1953), Some Classes of Recursive Functions, IV w ‘Roz-
prawy Matematyczne’, Instytut Matematyczny PAN, Warszawa.

Grzegorczyk, A. (1957), Zagadnienia rozstrzygalności, PWN, Warszawa.
Grzegorczyk, A. (1961), Fonctions Récursives, Gauthier-Villars, Paris.

30

Polish Logicians’ Contribution to the World’s Informatics

Hamblin, C. L. (1957), An addressless coding scheme based on mathematical
notation, w ‘Proceedings of the First Australian Conference on Com-
puting and Data Processing‘, Salisbury, South Australia: Weapons
Research Establishment.

Hamblin, C. L. (1962), ‘Translation to and from Polish notation’, Computing
Journal 5, 210–213.

Hamblin, C. L. (1987), Imperatives, Basil Blackwell, Oxford.
Hayes, B. (2001), ‘Third base’, American Scientist 89(6), 490-494.

http://www.americanscientist.org/content/AMSCI/AMSCI/Article-
AltFormat/20035214317 146.pdf.

Hedger, L. (2006), ‘Analog computation: Everything old is new again’,
http://www.indiana.edu/rcapub/v21n2/p01.html.

Jaśkowski, S. (1934), ‘On the rules of supposition in formal logic’, Studia
Logica 1.

Jaśkowski, S. (1948), ‘Rachunek zdań dla systemów dedukcyjnych sprzecz-
nych’, Studia Societatis Scientiarun Torunesis 1 (5), 55–77.

Jaśkowski, S. (1969), ‘Propositional calculus for contradictory deductive sys-
tems’, Studia Logica 24, 143–157. Translation into english (Jaśkowski
1948).

Komorowski, J., Pawlak, Z., Polkowski, L., Skowron, A. (1999), Rough
sets: A tutorial, w ‘Rough Fuzzy Hybridization. A new Trend in
Decision-Making’, Springer Verlag, Singapore.

Krajewski, S. (2005), Andrzej Grzegorczyk, w W. Mackiewicz, red., ‘Polska
filozofia powojenna’, t. 3, Agencja Wydawnicza Witmark, Warszawa,
pp. 99–118.

Lavington, S. H. (1980), Early British Computers: The Story of Vintage
Computers and the People who Built Them, Manchester University
Press, Manchester.

Łoś, J. (1948), ‘Podstawy analizy metodologicznej kanonów Milla (the fo-
undations of the methodological analysis of Mill’s canons)’, Annales
Universitatis Mariae Curie-Skłodowska, Section FII (5), 269–301.

Łukasiewicz, J. (1920a), ‘Logika trójwartościowa’, Ruch Filozoficzny V,
166–171.

Łukasiewicz, J. (1920b), ‘O pojęciu możliwości’, Ruch Filozoficzny V.
Łukasiewicz, J. (1920c), ‘On three-valued logic’, Ruch Filozoficzny 5,

170–171. Translation into english in: Borkowski, L. (red.) 1970. Jan
Łukasiewicz: Selected Works. Amsterdam: North Holland.

Łukasiewicz, J. (1929), ‘O znaczeniu i potrzebach logiki matematycznej’,
Nauka Polska 10, 604–20.

31

Kazimierz Trzęsicki

Łukasiewicz, J. (1930), ‘Philosophische Bemerkungen zu mehrwertigen Sys-
temem des Aussgankalkül’, Sprawozdania Towarzystwa Naukowego
Warszawskiego Wydział III 23, 51–77.

Łukasiewicz, J. (1931), Uwagi o aksjomacie Nicoda i «dedukcji uogólniają-
cej», w ‘Księga Pamiątkowa Polskiego Towarzystwa Filozoficznego we
Lwowie’, Lwów.

Łukasiewicz, J. (1961), Z zagadnień logiki i filozofii. Pisma wybrane, Pań-
stwowe Wydawnictwo Naukowe, Warszawa. Choice of papers done by
J. Słupecki.

Madey, J., Sysło, M. M. (2000), ‘Początki informatyki w Polsce’, Informa-
tyka 9/10.

Marciszewski, W. (1994), A Jaśkowski-style system of computer-assisted lo-
gic, in J. Woleński, red., ‘Philosophical Logic in Poland’, Synthese
Library, Kluwer, Dordrecht. Changed version: A System of Supposi-
tional Logic as Embodied in the Proof Checker Mizar MSE
http://www.calculemus.org/MathUniversalis/3/marc-jas.html.

Marciszewski, W. (2005), ‘A system of suppositional logic as embodied in
the proof checker Mizar MSE’,
http://www.calculemus. org/MathUniversalis/3/marc-jas.html.

Marciszewski, W., Murawski, R. (1995), Mechanization of Reasoning in
a Historical Perspective, Rodopi, Amsterdam/Atlanta.

McCall, S., red. (1967), Polish Logic in 1920–1939, Clarendon Press, Oxford.
Mills, J. (1993), Lukasiewicz’ insect: The role of continuous-valued logic in

a mobile robot’s sensors, control, and locomotion, w ‘Proc. 23rd Int.
Symp. On Multiple-Valued Logic’, IEEE Computer Society.

Mills, J. W. (2006), ‘Kirchhoff-Lukasiewicz machines’,
http://www.cs.india-na.edu/∼jwmills/ANALOG.NOTEBOOK/klm/
klm.html.

Mills, J., Walker, T., Himebaugh, B. (2003), ‘Lukasiewicz’ insect: Conti-
nuous-valued robotic control after ten years’, Int. Jour. Multiple-Va-
lued Logic 9 (2).

Moisil, G. C. (1959), The Algebraic Theory of Switching Circuits (in Roma-
nian), Bucharest. English translation: Pergamon Press 1969.

Moisil, G. C. (1966), Zastosowanie algebr Łukasiewicza do teorii układów
przekaźnikowo-stykowych, t. 1, Wrocław – Warszawa – Kraków.

Moisil, G. C. (1967), Zastosowanie algebr Łukasiewicza do teorii układów
przekaźnikowo-stykowych, t. 2, Wrocław – Warszawa – Kraków.

Moisil, G. C. (1972), Essais sur les logiques non Chrysippiennes, Editions
de l’Acad. de la Rép. Soc. de Roumania, Bucharest.

32

Polish Logicians’ Contribution to the World’s Informatics

Murawski, R. (1999), Recursive Functions and Metamathematics. Problems
of Completeness and Decidability, Gödel’s Theorems, Kluwer Acade-
mic Publishers, Dordrecht – Boston – London.

von Neuman, J. (1981), First draft of a report on the EDVAC, w N. Stern,
red., ‘From ENIAC to UNIVAC: An Appraisal of the Eckert-Mauchly
Computers’, Digital Press, Bedford, Massachusetts, ss. 177–246.

Niwiński, D. (2003), ‘University of Warsaw’,
http://www.in-cites.com/institutions/UniversityofWarsaw.html.

Park, J. (2001), ‘Using combinatory categorial grammar to extract biome-
dical information’, IEEE Intelligent Systems and Their Applications
16, 62–67.

Pawlak, Z. (1982), ‘Rough sets’, International Journal of Computer and
Information Sciences 11, 341–356.

Pawlak, Z. (1991), Rough Sets – Theoretical Aspects of Reasoning about
Data, Kluwer Academic Publisher, Dordrecht.

Pawlak, Z. (1993), ‘Rough sets. Present state and the future’, Foundations
of Computing and Decision Sciences 18, 157–166.

Pearcey, T. (1994), Australian computing: The second generation, w J. M.
Bennett, R. Broomham, P. M. Murton, T. Pearcey, R. W. Rutledge,
red., ‘Computing in Australia: The Development of a Profession’, Au-
stralian Computer Society.

Post, E. (1921), ‘Introduction to a general theory of elementary proposi-
tions’, American Journal of Mathematics XLIII.

Prior, A. N. (1955), Formal Logic, Clarendon Press, Oxford. II wyd. 1962.
Prior, A. N. (1996), A statement of temporal realism, w B. J. Copeland, red.,

‘Logic and Reality: Essays on the Legacy of Arthur Prior’, Oxford
University Press.

Rescher, N. (1969), Many-valued Logic, New York.
Rine, D. C., red. (1977), Computer Science and Multiple Valued Logic,

North-Holland Publ. Comp., Amsterdam. The second edition. 1984.
Rubel, L. A. (1993), ‘The extended analog computer’, Adv. In Appl. Math.

14, 39–50.
Rumyantsev, D. (2004), ‘Interview s konstruktorom troicznoj ewm (inte-

rviews with the designer of the ternary computer)’, Upgrade 33 (175).
Segal, J. (1999), L’introduction de la cybernétique en R.D.A. Rencontres

avec l’idéologie marxiste, in ‘Proceedings of the XXth Internatio-
nal Congress of History of Science (Liege, 20–26 July 1997)’, t. 1,
pp. 67–80. Die Einführung der Kybernetik in der DDR. Begegnung
mit der marxistischen Ideologie http://jerome-segal.de/Publis/Kyb-
DDR.htm.

33

Kazimierz Trzęsicki

Szumiec-Presch, B. (2004), ‘Madey: Najbardziej cieszą mnie sukcesy moich
studentów i wychowanków’,
http://www.naukawpolsce.pap.pl/nauka/index.jsp?place=Lead20&
news cat id=62&news id=319&layout=1&page=text.

Trzęsicki, K. (2005), Arthura Normana Priora związki ze szkołą lwowsko-
-warszawską, in K. Trzęsicki, editor., ‘Ratione et studio’, Uniwersytet
w Białymstoku, Białystok, pp. 269–288.

Williams, G. (1985), ‘A shy blend of logic, maths and languages (obituary
of Charles Hamblin)’, Morning Herald, Sydney.

Woleński, J. (1985), Filozoficzna szkoła lwowsko-warszawska, PWN, War-
szawa.

Woleński, J. (2005), Dzieje pewnego przypisu, w K. Trzęsicki, editor., ‘Ra-
tione et studio’, Wydawnictwo Uniwersytetu w Białymstoku, Biały-
stok, pp. 249–268.

Zadeh, L. (1965), ‘Fuzzy sets’, Journal of Information and Control 8,
338–353.

34

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11 (24) 2007

Andrzej Malec
University of Białystok

A FORMAL APPROACH TO
NATURAL LAW

The idea of the paper is to use a symbolism taken from logic to explicate some
notions of civil law, such as: subjective right, relative right, right, liability, obli-
gation and claim. By having a formal explication of the above notions we will be
able to find some logical consequences of these notions. In particular, we should
be able to establish relations between the explicated notions. Legal statements
that are logical consequences of generally accepted legal notions truly deserve
the name of “natural law”: if we accept the notions, logic itself will force us to
accept the statements.

Two Meanings of the Expression “Legal Rationality”

When using the expression “legal rationality” we usually have in mind
either (1) some attributes of lawyers (“rational lawyer”) or (2) some attri-
butes of law itself (“rational law”).

Rational Lawyer

To explain legal rationality as the rationality of lawyers it is necessary
to define the expected rules of behaviour of rational lawyers (i.e., to define
what the expression “rational behaviour” means in relation to lawyers).
Generally speaking, we can define rational behaviour in the following way:
a behaviour is rational if and only if:
(a) it is based on a certain schema of action (an “algorithm”),
(b) it is efficient (in some sense1),
(c) it leads us to a good in a moral sense.

1 There are several notions of efficiency. They are defined in praxiology, rational choice
theory, expected utility theory, game theory, etc.

ISBN 978–83–7431–158–8 ISSN 0860-150X 35

Andrzej Malec

Assuming the above general idea of rational behaviour to be true, we
need to have an accepted (rational) hierarchy of values to be able to deter-
mine if a behaviour is rational or not. So, a choice of hierarchy of values
determines a set of rational behaviours. Let us set forth an example related
to lawyers2. There is a conflict of legal formalism and legal activism in the
theory of law. According to legal formalism, legal norms applied by lawyers
should be strictly connected to legal texts3. This means that a judge should
be no more than a “logical device” for inferring norms that are coded by
a lawmaker in legal texts (for example: coded by parliament in a bill). On
the contrary, according to legal activism, lawyers should avoid blind sub-
ordination to legal texts: if a norm inferred from a legal text is “unjust”,
then a lawyer should (is supposed to) ignore it. The above opposite concep-
tions of rational behaviour of lawyers are based on different hierarchies of
values. If we accept that the predictability of law is more important than
the justice of the law, then we make a choice in favour of legal formalism.
Otherwise – we make a choice in favour of legal activism.

The Is-Ought Problem

However, since Hume we have become aware that it is impossible to
infer any statement about values from any statement about facts (Hume’s
“is-ought problem”). Today, we say that factual statements and deontic
statements are logically separated4. Therefore, it is impossible to justify
any hierarchy of values by methods of the so called “positive sciences”.
Respectively, it is difficult (if at all possible) to find a universal (absolute)
hierarchy of values.

But if so, then we are not able to make a rational choice between legal
formalism and legal activism. In other words, we are not able to determine
by reason who is rational: a judge that subordinates himself to unjust norms
coded in legal texts, or a judge that ignores such unjust norms. Therefore,
the rationality of lawyers can be understood merely in terms of the so called

2 The paper is connected with continental (especially Polish) tradition in theory of
law. Nevertheless, methods and ideas presented in the paper apply to common law as well.
3 Legal norms are rules of behaviour prescribed by the authorities. Legal texts are

sets of inscriptions from which legal norms can be inferred. A text to be a legal text must
be accepted in due course by a legitimate authority of the state.
4 See: Jan Woleński, Uogólniona teza Hume’a, in: I. Bogucka, Z. Tobor (editors)

“Prawo a wartości. Księga jubileuszowa Profesora Józefa Nowackiego” Zakamycze Kraków
2003, p. 293–303.

36

A Formal Approach to Natural Law

“instrumental rationality” (“hypothetical rationality”): any action taken by
a lawyer can be classified as rational or not rational only from a viewpoint of
a certain accepted hierarchy of values. Therefore, we cannot say “behavior
x is rational”; all we can say is: “if our aim is y, then behavior x is rational”.

Rational Law

To explain legal rationality as the rationality of law it is necessary to say
what the attributes of a rational system of legal norms are. We can indicate
some formal attributes such as consistency or completeness, but the question
remains: can we indicate any material attributes? In other words: can we
indicate any universal (absolute) legal norms? Or: is there a natural law?

At first sight the answer to the above questions is “no”. The thesis
that factual statements and deontic statements are logically separated still
holds. So, if it is impossible to justify any hierarchy of values by using the
methods supplied by the positive sciences, then it is probably also impossible
to indicate any universal (absolute) norms5.

So, it is difficult (if possible) to set forth any material attributes of
a rational system of law without a prior acceptance of a hierarchy of values.

There is a way however. A way that enables us to set forth some material
attributes of a rational system of law that avoids simultaneously all the
possible discussions about which system of values is better.

The Way

The way consists in:
(a) obtaining a symbolic explication of certain legal notions and
(b) having such an explication – inferring logical consequences of these no-

tions.
The notions that shall be examined are those which belong to civil law,

evident since the Roman Empire. Such notions are present in our language.
They are a part of our language. Therefore we need not accept any system of
values to accept such notions: we learnt these notions when we were learning
the language we use. We can say that the system of values connected with
these notions is an intrinsic part of our language.

5 Deontic statements are not norms but are closely related to norms. “John is obliged
to close the window” is a deontic statement. “John, close the window, please!” is a norm.

37

Andrzej Malec

Obviously, the logical consequences of these notions constitute a set of
sentences that are analytical in relation to these notions (analytical state-
ments)6. So, since the notions in question (and the system of values con-
nected with them) are a part of our language, the logical consequences
in question constitute a set of analytical statements from the viewpoint
of our language. Since these notions are legal in nature and the related
statements are about legal relations, the logical consequences in question
constitute a set of analytical statements related to the matter of law. It
is quite in accordance with common intuition to name such a set “natu-
ral law”.

Some Notions of Civil Law

Some of the most general (and also/therefore most important) notions
of civil law are the following notions:
(a) subjective right,
(b) relative right,
(c) right,
(d) liability,
(e) obligation,
(f) claim7.

The above notions arose in Roman civil law or from the inspiration
derived from Roman civil law. In the Polish Civil Code of 1964 (the code
still remains in force) they are not defined8. Nevertheless, the correct under-
standing of the notions in question has a key role in understanding regu-
lations of civil law: any person that interprets a regulation of civil law has
to take into account not only the regulation itself, but also the notions in
question. It is necessary for finding a rule of behaviour prescribed by the
regulation, i.e., for finding a legal norm.

6 A statement is analytical if and only if the issue of whether it is true or false can be
determined exclusively by analyzing the meaning of words that constitute the statement.
7 There are no exact English equivalents of the Polish legal terms “prawo podmio-

towe” (subjective right) and “wierzytelność” (relative right). I have proposed the above
translation having in mind the meanings of the terms: a subjective right is a right attri-
buted to a subject of law (e.g., to a physical person) and is valid in relation to all other
subjects of law; on the contrary – a relative right is valid only between parts of a legal
relation (e.g., a legal relation that occurred as a consequence of a contract or a tort).
8 With the exception of the notion of liability that is defined in article 353. There are

also some consequences of the notions in the code.

38

A Formal Approach to Natural Law

On the other hand, it can be observed that the notions in question
do not have a clear meaning for many lawyers9. It is a consequence of
their abstract character. For example, what is the difference between the
meanings of “right” and “claim” in the sentences: “I have a right” and
“I have a claim”?

Some Definitions

Let us look at some definitions:
(a) a definition of liability given in article 353 of the Polish Civil Code

of 1964:
Liability consists in that a creditor may demand from a debtor to
fulfil the debtor’s debt and the debtor ought to fulfil the debt.

(b) definitions and relations given by the theory of civil law10:
(i) Subjective right – a sphere of the ability to act in a way defined

by a legal norm (i.e., to act according to the matter/essence of
subjective right) that is granted by the norm to a subject of legal
relation.

(ii) A subjective right brings rights. The rights are correlated to liabi-
lities of uncertain (undefined) subjects or liabilities of certain (de-
fined) subjects. If a right is correlated to a liability of a certain
(defined) subject, the right is a claim.

(iii) A claim consists in an ability to demand from a certain (defined)
subject to behave in a certain (defined) way (to act, to give up,
to bear).

(iv) Relative right – a sphere of the ability to act in a way defined by
a legal norm in relation to a defined (other) party of legal relation.

Symbolism

Let us construct a theory based on the first order predicate logic.
To the axioms of the first order predicate logic we add some new axioms

that are supposed to be explanations of the legal notions in question. We

9 The author of the present paper has made several observations of this kind.
10 Reconstructions based on “System prawa cywilnego” (in Polish: “The System of

Civil Law”) – a system of fundamental inquiries concerning Polish civil law, prepared
when the Polish Civil Code was issued.

39

Andrzej Malec

presume that the additional axioms define the meanings of the notions in
question as they are in Roman law. We also admit that it is a partial expla-
nation: i.e., that the explanation indicates only a number, but not all of the
relations between the notions.

For every subjective right, relative right, right, liability or claim we
should have a separate axiom (axioms). But all axioms that define subjec-
tive rights are of the same schema (schemas). Respectively, all axioms that
define relative rights are of the same schema (schemas), all axioms that de-
fine claims are of the same schema (schemas), et cetera. Therefore, we will
analyze schemas of axioms.

Subjective Right versus Right

According to the definitions stated above, a subjective right is a sphere
of the ability to act in a way which is defined by a legal norm that is granted
by the norm to a subject of a legal relation. We also have that a subjective
right brings rights. We can express the above in the following way:

∀x{SR(x) ≡ ∀y[R1(x, y) ∧R2(x, y) ∧ . . . ∧Rn(x, y)]}

where:
the domain is the set of subjects of law,
SR stands for a subjective right,
R1, R2, . . . , Rn stand for rights.

Right versus Claim

According to the definitions stated above, a subjective right brings
rights. The rights are correlated to liabilities of uncertain (undefined) sub-
jects or liabilities of certain (defined) subjects. If a right is correlated to
a liability of a certain (defined) subject, the right is a claim. We can express
the above in the following way:

∀x∀y{Ri(x, y) ≡ [Si(y) → Ci(x, y)]}

where:
Si stands for the status of y (we read the expression Si(y) as “y is
a subject in the situation Si (y is a defined subject”),
Ci stands for a claim.

40

A Formal Approach to Natural Law

Claim versus Actions of a Creditor and a Debtor

According to the definitions stated above, a claim consists in the ability
to demand from a certain (defined) subject to behave in a certain (defined)
way. We can express the above in the following way:

∀x∀y{Ci(x, y) ≡ [Di(x) → Bi(y)]}

where:
Di stands for the status of x (we read the expression Di(x) as “x de-
mands a behaviour”),
Bi stands for the status of y (we read the expression Bi(y) as “y ought
to behave”).

Liability versus Obligation

According to the definitions stated above, a liability consists in that
a creditor may demand from a debtor to fulfil the debtor’s debt and the deb-
tor ought to fulfil the debt. We can express the above in the following way:

∀x∀y{Li(y, x) ≡ [Si(y) → Oi(y, x)]}

∀x∀y{Oi(y, x) ≡ [Di(x) → Bi(y)]}

where:
Li stands for a liability,
Oi stands for an obligation.

Therefore a debtor is obliged to fulfil a debt if and only if a creditor has
demanded to fulfil the debt.

Some Consequences

The following relations can also be established.

∀x∀y{Ci(x, y) ≡ Oi(y, x)}

(Every claim is correlated to an obligation.)

∀x∀y{Ri(x, y) ≡ Li(y, x)}

(Every right is correlated to a liability.)

41

Andrzej Malec

∃x SR(x) → ∃x∀y Ri(x, y)

(Every subjective right brings rights.)
¬∀x∀y{Ri(x, y) → Ci(x, y)]}

(Some rights do not bring claims.)

Subjective Liability

So, we found that the term “right” forms a pair with the term “liability”
and the term “claim” pairs with the term “obligation”. However, there is
no term that forms a pair with the term “subjective right”. Do we have
a notion that pairs with the notion of subjective right? We should imagine
such a notion (which we can call “subjective liability”) in the following way:

∀y{SL(y) ≡ ∀x[L1(y, x) ∧ L2(y, x) ∧ . . . ∧ Ln(y, x)]}

where:
SL stands for subjective liability.

Such a notion can be found in the Polish Civil Code of 1964 – namely in
article 919:

Who publicly declared a prize for an action is obliged to fulfil the decla-
ration.

So, there is no such term as “subjective liability” in legal language. However,
using formal tools, we came to the idea of a relevant notion. And after that
we found such a notion in a legal text. It shows that a formal approach can
enlarge the theoretical apparatus of the theory of law.

Relative Right

Relative rights constitute a kind of subjective rights. Namely, a subjec-
tive right is a relative right if and only if it constitutes a sphere of ability to
act in a way defined by a legal norm in relation to a defined (other) party
of a legal relation. We can express the above in the following way:

∀x{RR(x) ≡ ∀y[R1(x, y) ∧R2(x, y) ∧ . . . ∧Rn(x, y)] ∧
∧ ∃y[S1(y) ∧ Si(y) ∧ . . . ∧ Sn(y)]}

where:
RR – stands for relative right.

42

A Formal Approach to Natural Law

And we can infer some consequences:

∀x{Ri(x, b) ≡ Ci(x, b)]}

(Rights derived from any relative right are claims.)

∀x{RR(x) → ∃y[C1(x, y) ∧ C2(x, y) ∧ . . . ∧ Cn(x, y)]}

(Relative rights bring claims.)

∀x{Li(b, x) ≡ Oi(b, x)}

(Liabilities corresponding to relative rights are obligations.)

Li(b, a) ≡ Ci(a, b)

(Any debtor’s liability corresponds to a claim of a creditor.)

Li(b, a) ≡ [Di(a) → Bi(b)]

(A liability consists in that a creditor may demand from a debtor to fulfil
the debtor’s debt and the debtor ought to fulfil the debt – i.e., the norm
expressed in article 353 of the Polish Civil Code of 1964)

Beyond First Order Logic?

The aim of the paper is to examine whether a logical symbolism can
be effectively used in the theory of law for explication of legal notions. In
previous paragraphs we were concerned with means taken from first order
logic and some basic notions of civil law: subjective right, relative right,
right, liability, obligation and claim. However more results can be obtained
if we enrich our formal apparatus with some means of the second order
logic and temporal logic. Then we are able to explain, e.g., how we should
understand a Roman definition of ownership as ius possidendi, disponendi,
utendi – fruendi et abutendi11:

∀x{OS(x, a) ≡ ∀R[A(R, a) → ∀y R(x, y)]}

where:
a is a constant denoting a property,
OS stands for ownership,
A stands for a kind of connection between R and a (we read “R is
a right relevant to a”).

11 “Ownership is a right to possess, to dispose of, to use and to abuse.”

43

Andrzej Malec

Or, how we should define the transition of a subjective right12:

TR(x, y, SR, tk) ≡ {SR(x, tk−1) ∧ SR(y, tk+1)}

where:
TR stands for transition,
tk, tk−1, tk+1 stand for moments of time,

having as an important consequence of the above:

¬SR(x, tk−1) → ¬TR(x, y, SR, tk)

that constitutes a Roman rule: Nemo plus iuris in alium transferre potest
quam ipse habet13.

Having temporal notions of right and claim we can express a legal rule
that any claim will expire whereas no right can expire:

∀x∀y{Ri(x, y) ≡ ∀t[Si(y, t) → Ci(x, y, t)]}

∀x∀y{Ci(x, y, t) ≡ [Di(x, t) → Bi(y, t)]}

∀y∀t{Si(y, t) → ∃tj < t [¬Si(y, tj)] ∧ ∃tk > t [¬Si(y, tk)]}

Natural Law?

So, we have outlined some explications of legal notions by means of logic.
As a result, several legal relations were established as logical consequences
of the explications:
(a) Any claim corresponds to an obligation,
(b) Any right corresponds to a liability,
(c) Subjective rights bring rights,
(d) Some rights do not bring claims,
(e) Rights derived from any relative right are claims,
(f) Liabilities corresponding to relative rights are obligations,
(g) Any debtor’s liability corresponds to a claim of a creditor,
(h) A liability consists in that a creditor may demand from a debtor to fulfil

the debtor’s debt and the debtor ought to fulfil the debt,
(i) Any relative right brings claims,
(j) Ownership is a right to possess, to dispose of, to use and to abuse

(i.e., contains all rights connected to a property),

12 However, for this purpose we need a temporal explication of subjective right:
∀x∀t{SR(x, t) ≡ ∀y[R1(x, y, t) ∧ R2(x, y, t) ∧ . . . ∧ ∀Rn(x, y, t)]} where t is a variable
for time moments.
13 “No one can transfer more than she/he has.”

44

A Formal Approach to Natural Law

(k) Nemo plus iuris in alium transferre potest quam ipse habet,
(l) Any claim will expire, whereas no right can expire.

As stated at the beginning of the paper, the logical consequences in
question constitute a set of analytical statements related to the matter of
law. It is quite in accordance with common intuition to name such a set
“natural law”.

Conclusions

There are two conclusions from the above examination.
Firstly and fundamentally, it is possible to indicate material proper-

ties, which any rational system of law should possess, without choosing any
hierarchy of values. As a consequence, it is possible to develop an objec-
tive theory of natural law which is not limited to formal considerations (as
consistency or completeness of a system of norms or so on).

Secondly, logical formal tools are really useful for legal reasoning (at any
rate – in the theory of law) and therefore such tools should be propagated
among students of law. These tools, when used correctly, can significantly
improve a student’s understanding of fundamental legal notions.

Andrzej Malec
Department of Logic, Informatics and Philosophy of Sciences
University of Białystok
e-mail: malets@uwb.edu.pl

45

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11 (24) 2007

Andrew Schumann
Belarusian State University (Minsk, Belarus)

NON-ARCHIMEDEAN FOUNDATIONS
OF MATHEMATICS

Finite foundations of mathematics developed by D. Hilbert are presently consi-
dered in computer science as an original mathematical canon. Nevertheless,
transfinite foundations of mathematics proposed by G. Cantor can also be
urgent for soft computing. In this paper I consider some perspectives of trans-
finite foundations, namely I propose non-Archimedean foundations of mathe-
matics and non-Archimedean multiple-validity. Further, I construct a logical
language with non-Archimedean valued semantics.

1. Finite and Transfinite Foundations of Mathematics

In the foundational views of late-19th century mathematicians we can
observe two approaches to foundations of mathematics, which are presently
called finite and transfinite foundations. According to the first approach
developed, e.g. by Kronecker and Brouwer, only objects that are “intuitively
present as immediate experience prior to all thought” [4] are interpreted as
initial objects of algebra and analysis. These objects are considered to be
natural numbers. This means that all the mathematical operations must be
defined on finite sets or on sets of potential attainable objects, i.e. they must
have a reduction to operations on natural numbers. As a result, completed
infinite totalities must be rejected in mathematical research. What comes
to mind here the Kronecker’s famous aphorism: “Die ganze Zahl schuf der
liebe Gott, alles Übrige ist Menschenwerk” (“God created natural numbers,
all others are fashioned by human beings”).

For instance, David Hilbert considered natural numbers to be the fi-
nitary numerals, those which have no meaning, i.e., they do not stand for
abstract objects, but can be operated on and compared. According to Hil-
bert, knowledge of their properties and relations is intuitive and unmediated
by logical inference.

ISBN 978–83–7431–158–8 ISSN 0860-150X 47

Andrew Schumann

In the transfinite approach to foundations of mathematics created by
Georg Cantor, operations on completed infinite totalities are possible if we
have no contradiction regarding their restrictions to finite sets. “Mathema-
tics is in its development entirely free and is only bound in the self-evident
respect that its concepts must both be consistent with each other, and also

stand in exact relationships, ordered by definitions, to those concepts which
have previously been introduced and are already at hand and established. In

particular, in the introduction of new numbers, it is only obligated to give
definitions of them which will bestow such a determinacy and, in certain

circumstances, such a relationship to the other numbers that they can in
any given instance be precisely distinguished. As soon as a number satisfies

all these conditions, it can and must be regarded in mathematics as existent
and real” [1].

Cantor distinguished between the improper infinite (“Uneigentlich-Un-
endliches”) and the proper infinite (“Eigentlich-Unendliches”). He called the
first kind of infinity the variable finite (veränderliches Endliches) and syn-
categorematic infinity (απειρoν, synkategorematice infinitum). The second
kind of infinity is regarded by him as the actual infinite (transfinitum) and
categorematic infinity (αφωρισµενoν, kategorematice infinitum). According
to Cantor, the set of natural numbers is improper infinite. He believed that
there exists the proper infinite, which includes unattainable objects.

Modern mathematics and computer science are based, as a rule, on
discrete objects, therefore they are constructed in the framework of finite
foundations of mathematics. These foundations were formulated by Hilbert
and they came to be known as Hilbert’s Program, in which a formalization of
all mathematics in axiomatic form, together with proof that this axiomatiza-
tion of mathematics is consistent, is supposed. The consistency proof itself
was to be carried out using only what Hilbert called “finitary” methods.
Hilbert’s Program was optimistic – it was assumed that the subject of ma-
thematics consists only of the problems that can have a positive or negative
solution by means of finitary methods. This optimistic standpoint allows
us to set up 23 mathematical problems, which Hilbert addressed to the In-
ternational Congress of Mathematicians in 1900 (see [5]). Hilbert thought
that every well defined mathematical problem can have a solution: “Take
any definite unsolved problem, such as the question as to the irrationality

of the Euler-Mascheroni constant C, or the existence of an infinite number
of prime numbers of the form 2n + 1. However unapproachable these pro-

blems may seem to us and however helpless we stand before them, we have,
nevertheless, the firm conviction that their solution must follow by a finite

number of purely logical processes” [5].

48

Non-Archimedean Foundations of Mathematics

However there exist mathematical problems that are effectively inso-
lvable, i.e. it is possible to set an effective proof of their insolvability. For
example, Gödel and Cohen showed that the first of Hilbert’s 23 problems
does not have a solution (see [3], [2]). On the other hand, Matiyasevich pro-
ved the same result concerning the tenth of Hilbert’s 23 problems (see [7]).
These results show the limits of application of regarding the finite approach.

The tenth of Hilbert’s problems was the following. “Given a Diophantus
equation with any number of unknowns and with rational integer coefficients:
devise a process, which could determine by a finite number of operations

whether the equation is solvable in rational integers”. Yuri Matiyasevich
proved the insolvability of this problem using Cantor’s diagonal construction
(see [7]).

The first problem was the following: The set of real numbers is well
ordered, or equivalently there is no a transfinite number between that of
a denumerable set and the numbers of the continuum, i.e. c = ℵ1 = 2ℵ0 . This
statement was proposed by Cantor and it is called continuum hypothesis. It
is also connected to the axiom of choice. Since the continuum hypothesis is
true, every object must be attainable – for any two upper bounded subsets
of an ordered set there exists an upper bound.

Also, if we accept continuum hypothesis, then we set infinite objects as
an infinite union of finite objects. For example, we can define the set ω of
natural numbers as follows: ω = sup{n:n is a natural number and n < ω}.
In Hilbert’s opinion, we cannot avoid infinite constructions, therefore we
must obtain infinite unions of finite objects using continuum hypothesis and
the axiom of choice. For instance, a set of real numbers should be obtained
by the union of rational number sets (denumerable sets): “It should also
be remarked that the process just described for obtaining an upper bound

amounts to forming a union set. In fact every real number is defined by a
partition of the rational numbers into larger and smaller ones or by the set

of the smaller rational numbers. The given set of real numbers is therefore
represented as a set M of sets of rational numbers. And the upper bound

of the set M is formed from the set of those rational numbers which belong
to at least one of the sets in M. The totality of these rational numbers is,

however, exactly the union set ofM” [4]. On the other hand, “it follows from
the property of an upper bound that for every integer n there is a number cn
in the set such that a − 1

n
< cn ≤ a and so |a − cn| <

1
n

. The numbers cn
constitute therefore a sequence which converges toward a, and they all belong

to the set under consideration.
When we argue in this way our manner of expression hides a fundamen-

tal point in the proof. For when we use the notation cn we presuppose that

49

Andrew Schumann

for each number n among those real numbers c belonging to the set under

consideration and satisfying the inequality a− 1
n
< c ≤ a, a certain one is

distinguished.” [4].
Also, Hilbert’s first problem is to constraint or formalize set theory

and thereby prove continuum hypothesis and axiom of choice. Let us take
Zermelo-Fraenkel’s set theory ZF. Suppose M is a model for ZF and α is an
ordinal. DefineMα by setting (1) M0 = ∅, (2) if α 6= 0, thenMα =

⋃
β<αMβ .

A set x is constructible if there exists an ordinal α such that x ∈Mα. Gödel
showed that continuum hypothesis and the axiom of choice are provable in
ZF if we take his universe of constructible sets.

At the same time, Cohen proved that we can refute continuum hypothe-
sis and the axiom of choice in other models for ZF. Define a new model N
that is a denumerable and transitive extension ofM . Then we can prove in N
that there is no universe of constructible sets. Let Fn(A,B) := {p ⊂ A×B:
p is finite function}. Then continuum hypothesis is refuted on the base of
Fn(ω × λ, 2), where λ is an ordinal, and on the basis of other assumptions,
because already ℵ1 6= 2ℵ0 . Cohen’s idea is that there exist infinite unions of
finite objects that are not attainable.

Thus, Gödel and Cohen proved that the solution to the first Hilbert’s
problem depends on the particular version of the set theory assumed, i.e. the
acceptance or rejection of the continuum hypothesis and the axiom of choice
is subjective and it is not connected to the axiomatic formalization of the
set concept. Consequently, the setting of infinite sets as attainable infinite
union (as upper bound) is no less subjective than its setting as unattainable
infinite union (as actual infinity). The finite approach to foundations of
mathematics is no less subjective than a transfinite one!

Consider some examples of sets that cannot be regarded as attainable
infinite union (as upper bound).

1. The set of incomputable functions. Let d(n) = U(n, n), where U
is a two-place computable function that is universal for the class of one-place
computable functions. Define the new function as follows

d′′(x) =

{
1 if d(x) = 0,
0 if d(x) > 0.

Each completely defined extension of the function d′′(x) will be in-
computable. This implies that the set of all completely defined extensions
of d′′(x) is actual infinity, i.e. we cannot get this set as a minimal one in the
given class (it has no an upper bound).

2. The set of non-constructible real numbers. Assume that any
real numbers of (0, 1) are contained in a sequence x1, x2, . . . , xn, . . . and

50

Non-Archimedean Foundations of Mathematics

every number xn can be represented as an infinite decimal fraction xn =

0, a
(n)
1 a

(n)
2 . . . a

(n)
n . . . that is not repeating with a repeater of 9. Take a num-

ber bn for any a(n)
n such that bn 6= a

(n)
n . Let us consider the infinite decimal

fraction 0, b1b2 . . . bn . . . This number is called non-constructible real number.
The set of such numbers is not attainable infinite union – it is the maximal
set in the given class.

3. The set of transcendental numbers. According to Liouville’s
theorem, for any algebraic number α with degree n > 1, there exists po-
sitive λ such that

∣∣∣α− p
q

∣∣∣ ≥ λ
qn for any rational number p

q
. From this it

follows that each transcendental number α satisfies the following inequality∣∣∣α− p
q

∣∣∣ < λ
qn , i.e., it has a stronger convergence than an algebraic number.

This means that if we set the union of two transcendental numbers, then
we obtain their maximum such that the law of strong convergence absorbs
the law of weak convergence. Conversely, the law of weak convergence ab-
sorbs the law of strong convergence for the union of two algebraic numbers.
In fact, if α1 ≥ α2, the law of convergence for an algebraic number α1 is
weaker.

Also, in some cases we cannot use Hilbert’s idea of an upper bound
as an attainable infinite union for the transfinite setting of mathematical
objects and we must postulate actual totalities in advance. We can pro-
pose the following understanding of actual infinity. A set of mathemati-
cal objects of the same nature is called an actual infinite set if we are al-
ways able to obtain their infinite intersection, but cannot obtain their in-

finite union (as upper bound) in a general sense. For instance, if A is the
set of incomputable functions (resp. the set of non-constructible real num-
bers or the set of transcendental numbers) and A ⊂ B, then B is also the
set of incomputable functions (resp. the set of non-constructible real num-
bers or the set of transcendental numbers). Therefore the union for these
sets is not upper bound. In the same way, we can postulate the following
principle.

Principle 1 (Principle of non-linearity)An actual infinite totality can-
not be represented as linear sequence of its objects.

Suppose that we have built a transfinite metalanguage of mathematics,
in which we define well formed formulas by setting some actual infinities.
Suppose also that our formulas and proofs can be coded by some numbers
(evidently, it is possible that they are actual infinite numbers). Then, our
formulas can be seen as a number of transfinite programs to set operations
on actual infinite numbers. In consequence we obtain the following new
principle.

51

Andrew Schumann

Principle 2 (Transcendental principle)Transfinite logical language is
infinite-order.

According to this, transfinite logical language has no a metatheory in the
sense that the truth concept is formalized in such metalanguage.

It is known that actual infinite numbers does not satisfy Archimedes’
axiom. Let us remember that this axiom is the formula of infinite length
which has one of the following notations:
• For any ε that belongs to the interval [0, 1], we have

(ε > 0) ⊃ [(ε ≥ 1) ∨ (ε+ ε ≥ 1) ∨ (ε+ ε+ ε ≥ 1) ∨ . . .], (1)

• For any positive integer ε, we have

[(1 ≥ ε) ∨ (1 + 1 ≥ ε) ∨ (1 + 1 + 1 ≥ ε) ∨ . . .]. (2)

Formulas (1) and (2) are valid in the field Q of rational numbers as well
as in field R of real numbers. In the ring Z of integers, only formula (2)
has a nontrivial sense, because Z does not contain numbers of the open
interval (0, 1). Also, Archimedes’ axiom affirms the existence of an integer
multiple of the smaller of the two numbers which exceeds the greater: for
any positive real or rational number ε, there exists a positive integer n such
that ε ≥ 1

n
or n · ε ≥ 1. The negation of Archimedes’ axiom has one of the

following forms:
• There exists ε which belongs to the interval [0, 1] such that

(ε > 0) ∧ [(ε < 1) ∧ (ε+ ε < 1) ∧ (ε+ ε+ ε < 1) ∧ . . .], (3)

• There exists a positive integer ε such that

[(1 < ε) ∧ (1 + 1 < ε) ∧ (1 + 1 + 1 < ε) ∧ . . .]. (4)

Notice that (3) is the negation of (1). It is obvious that formula (3) reveals
there exist infinitely small numbers (or infinitesimals), i. e., numbers that
are smaller than all real or rational numbers of the open interval (0, 1). In
other words, ε is said to be an infinitesimal if and only if, for all positive
integers n, we have |ε| < 1

n
. Further, formula (4) reveals there exist infinitely

large integers that are greater than all positive integers. Infinitesimals and
infinitely large integers are called nonstandard numbers or actual infinities.

The field that satisfies all the properties of R without Archimedes’
axiom is called the field of hyperreal numbers and it is denoted by ∗R.
The field that satisfies all the properties of Q without Archimedes’ axiom
is called the field of hyperrational numbers and it is denoted by ∗Q. By
definition of field, if ε ∈ R (respectively ε ∈ Q), then 1/ε ∈ R (respectively
1/ε ∈ Q). Therefore ∗R and ∗Q simultaneously contain infinitesimals and

52

Non-Archimedean Foundations of Mathematics

infinitely large integers: for an infinitesimal ε, we have N = 1
ε
, where N is

an infinitely large integer.
The ring that satisfies all the properties of Z without Archimedes’ axiom

is called the ring of hyperintegers and it is denoted by ∗Z. This ring includes
infinitely large integers. Notice that there exists a version of ∗Z that is called
the ring of p-adic integers and is denoted by Zp.

The main originality of non-Archimedean number systems consists in
that the set of hypernumbers cannot be well ordered – e.g., there is no effec-
tive ordering relation on the set of infinitesimals. Therefore hypernumbers
satisfy the principle of non-linearity.

Set up a problem to construct a metalanguage of mathematics in that
well formed formulas have their truth values in the set of hypernumbers (na-
mely, in ∗R and ∗Q). I will show that this metalanguage is infinite-order,
i.e., it satisfies the transcendental principle and it truly is a transfinite me-
talanguage.

2. Non-Archimedean Valued Matrix

Consider a set Θ. Let I be any infinite index set. Then, we can construct
an indexed family ΘI , i.e., we can obtain the set of all functions: f : I → Θ
such that f(α) ∈ Θ for any α ∈ I. The set of all complements for finite
subsets of I is a filter and it is called a Frechet filter. A maximal filter
(ultrafilter) that contains a Frechet filter is called a Frechet ultrafilter and is
denoted by U. Let U be a Frechet ultrafilter on I. Define a new relation ≈ on
the set ΘI by f ≈ g ≡ {α ∈ I: f(α) = g(α)} ∈ U. It is easily proven that the
relation ≈ is an equivalence. Notice that the aforementioned formula means
that f and g are equivalent iff f and g are equal on an infinite index subset.
For each f ∈ ΘI let [f] denote the equivalence class of f under ≈. The
ultrapower ΘI/U is then defined to be the set of all equivalence classes [f]

as f ranges over ΘI : ΘI/U := {[f]: f ∈ ΘI}.
Also, we can say that each nonempty set Θ has an ultrapower with re-

spect to a Frechet filter/ultrafilter U. (Notice that if U is a Frechet filter, we
have no well-ordering relation. On the other hand, suppose that U is a Fre-
chet ultrafilter, in this case we obtain an ineffective well-ordering relation.
In the sequel we propose that U is a Frechet filter.) This ultrapower ΘI/U
is said to be a proper nonstandard extension of Θ and it is denoted by ∗Θ.
There exist two groups of members of ∗Θ: (1) functions that are constant,
e.g., f(α) = m ∈ Θ for an infinite index subset {α ∈ I} (a constant function
[f = m] is denoted by ∗m), (2) functions that are not constant. The set of
all constant functions of ∗Θ is called a standard set and is denoted by σΘ.

53

Andrew Schumann

The members of σΘ are called standard. It is readily seen that σΘ and Θ

are isomorphic: σΘ ≃ Θ. If Θ was a number system, then members of ∗Θ
are called hypernumbers.

Assume that ∗Q[0,1] = QN[0,1]/U is a nonstandard extension of the subset
Q[0,1] = Q ∩ [0, 1] of rational numbers and σQ[0,1] ⊂

∗Q[0,1] is the subset
of standard members. We can extend the usual order structure on Q[0,1] to
a partial order structure on ∗Q[0,1]: (1) for rational numbers x, y ∈ Q[0,1]

we have x ≤ y in Q[0,1] iff [f] ≤ [g] in ∗Q[0,1], where {α ∈N: f(α) = x} ∈ U
and {α ∈ N: g(α) = y} ∈ U, i.e., f and g are constant functions such that
[f] = ∗x and [g] = ∗y, (2) each positive rational number ∗x ∈ σQ[0,1] is
greater than any number [f] ∈ ∗Q[0,1]\

σQ[0,1], i.e., ∗x > [f] for any positive
x ∈ Q[0,1] and [f] ∈ ∗Q[0,1], where [f] is not constant function.

These conditions have the following informal sense: (1) The sets σQ[0,1]

and Q[0,1] have an isomorphic order structure. (2) The set ∗Q[0,1] contains
actual infinities that are less than any positive rational number of σQ[0,1].

Define this partial order structure on ∗Q[0,1] as follows:

O∗Q For any hyperrational numbers [f], [g] ∈ ∗Q[0,1], we set [f] ≤ [g] if {α ∈
N: f(α) ≤ g(α)} ∈ U. For any hyperrational numbers [f], [g] ∈ ∗Q[0,1],
we set [f] < [g] if {α ∈ N: f(α) ≤ g(α)} ∈ U and [f] 6= [g], i.e., {α ∈
N: f(α) 6= g(α)} ∈ U. For any hyperrational numbers [f], [g] ∈ ∗Q[0,1],
we set [f] = [g] if f ∈ [g].

Introduce two operations max, min in the partial order structure
O∗Q: (1) min([f], [g]) = [h] iff there exists [h] ∈ ∗Q[0,1] such that {α ∈
N: min(f(α), g(α)) = h(α)} ∈ U; (2) max([f], [g]) = [h] iff there exists
[h] ∈ ∗Q[0,1] such that {α ∈ N: max(f(α), g(α)) = h(α)} ∈ U.

Note there exist the maximal number ∗1 ∈ ∗Q[0,1] and the minimal
number ∗0 ∈ ∗Q[0,1] under condition O∗Q.

Now define hyperrational valued matrix logicM∗Q as the ordered system
〈V∗Q,¬,⊃,∨,∧, ∃̃, ∀̃, {∗1}〉, where (1) V∗Q = ∗Q[0,1] is the subset of hyper-
rational numbers, (2) for all x ∈ V∗Q, ¬x = ∗1 − x, (3) for all x, y ∈ V∗Q,
x ⊃ y = ∗1 − max(x, y) + y, (4) for all x, y ∈ V∗Q, x ∨ y = (x ⊃ y) ⊃
y = max(x, y), (5) for all x, y ∈ V∗Q, x ∧ y = ¬(¬x ∨ ¬y) = min(x, y),
(6) for a subset M ⊆ V∗Q, ∃̃(M) = max(M), where max(M) is a maximal
element of M , (7) for a subset M ⊆ V∗Q, ∀̃(M) = min(M), where min(M)

is a minimal element of M , (8) {∗1} is the set of designated truth values.
The truth value ∗0 ∈ V∗Q is false, the truth value ∗1 ∈ V∗Q is true, and

other truth values x ∈ V∗Q are neutral.
If we replace the set Q[0,1] by R[0,1] and the set ∗Q[0,1] by ∗R[0,1] in all

above definitions, then we obtain hyperreal valued matrix logic M∗R.

54

Non-Archimedean Foundations of Mathematics

3. Non-Archimedean Valued Propositional Logical Language

An infinite-order propositional logical language L∞
V consists of the follo-

wing symbols: (1) first-order propositional formulas: ϕ, φ, ψ, . . . of n-valued
 Lukasiewicz’s logic LV , where |V | = n; (2) logical symbols: (i) various order
propositional connectives of arity nj: Fn0

0 , Fn1
1 , . . . , Fnr

r , which are built
by a superposition of negation ¬ and implication ⊃, (ii) vertical quantifiers
of various order Q1, Q2,. . . ,Qi−1, . . . such that an i-order quantifier has the
lower index i− 1; (3) auxiliary symbols: (,), and , (comma).

If V = Q[0,1], then we have ℵ0 universal vertical quantifiers at the level i
and ℵ0 existential vertical quantifiers at the level i: ∀

y∈Q[0,1]

i , . . . , ∀
y′∈Q[0,1]

i ,
. . . , ∃

y∈Q[0,1]

i , . . . , ∃
y′∈Q[0,1]

i , . . . If V = R[0,1], then we have 2ℵ0 universal
vertical quantifiers at the level i and 2ℵ0 existential vertical quantifiers at
the level i: ∀

y∈R[0,1]

i , . . . , ∀
y′∈R[0,1]

i , . . . , ∃
y∈R[0,1]

i , . . . , ∃
y′∈R[0,1]

i , . . .
Well-formed formulas of L∞

V are inductively defined as follows: (1) If ϕ is
a first-order propositional formula of n-valued Lukasiewicz’s logic LV , where
|V | = n, and Q1,Q2, . . . ,Qi−1 are a finite sequence of vertical quantifiers,
then

Qi−1(. . . (Q1ϕ) . . .) . . .Q1ϕ(ϕ)

is an i-order formula denoted sometimes by ϕi or by Qi−1ϕ(ϕi−1) to em-
phasize what is the least quantifier in ϕi. It is called atomic or an atom.
Its outermost logical symbols are Q1,Q2, . . . ,Qi−1. If the first of these qu-
antifiers is ∀y1∈V

1 , then the other are also universal with the upper indices
that are equal to y1. If the first of these quantifiers is ∃y1∈V

1 , then the
other are also existential with the upper indices that are not possibly equal
to y1. (2) If ϕi, . . . , ψi are formulas of i-order and Fn is a propositional
connective of arity n, then Fn(ϕi, . . . , ψi) is an i-order formula with outer-
most logical symbol Fn. (3) If ϕ is a first-order propositional formula and
Q1,Q2, . . . ,Qi−1, . . . are an infinite sequence of vertical quantifiers, then

. . .Qi−1(. . . (Q1ϕ) . . .) . . .Q1ϕ(ϕ)

is an infinite-order formula denoted sometimes by ϕ∞. It is called atomic or
an atom. Its outermost logical symbols are Q1,Q2, . . . ,Qi−1, . . . If the first
of these quantifiers is ∀y1∈V

1 , then the other are also universal with the upper
indices that are equal to y1. If the first of these quantifiers is ∃y1∈V

1 , then
the other are also existential with the upper indices that are not possibly
equal to y1. (4) If ϕ∞, . . . , ψ∞ are formulas of infinite order and Fn is
a propositional connective of arity n, then Fn(ϕ∞, . . . , ψ∞) is a formula with
outermost logical symbol Fn and this formula is an infinite-order formula.

55

Andrew Schumann

Consider the set ∗V of all equivalence classes [f] under a Frechet ultra-
filter U such that f :N→ V . Recall that for each i ∈ V , ∗i = [f = i], i.e., it
is a constant function. Every element of ∗V has the form of an infinite tuple
[f] = 〈y0, y1, . . .〉.

Let 1 be the designated truth value of n-valued Lukasiewicz’s logic LV ,
where |V | = n. An i-order truth assignment is a function vi(·) whose domain
is the set of all i-order formulas of L∞

V and whose range is the set ∗V of
truth values such that:
1. For any first-order propositional formula ϕ1, v1(ϕ1) is a truth assign-

ment of n-valued Lukasiewicz’s logic.

2. For any first-order propositional formula ϕ1, vi(ϕ1) = 〈y1, y1, . . . y1︸ ︷︷ ︸
i

〉 iff

v1(ϕ1) = y1.

3. For any i-order atomic propositional formula ∀
yi−1∈V
i−1 ϕ(ϕi−1), (1) if

vi−1(∀
yi−2∈V
i−2 ϕ(ϕi−2)) = 〈yi−1, . . . , yi−1︸ ︷︷ ︸

i−1

〉 for all valuations, then

vi(∀
yi−1∈V
i−1 ϕ(ϕi−1)) = 〈yi−1, . . . , yi−1︸ ︷︷ ︸

i

〉;

(2) if (i) vi−1(∀
yi−2∈V
i−2 ϕ(ϕi−2)) 6= 〈yi−1, . . . , yi−1︸ ︷︷ ︸

i−1

〉 for some valuations,

(ii) vi−1(∀
yi−2∈V
i−2 ϕ(ϕi−2)) = 〈y′1, . . . , y

′
i−1〉 and v1(ϕ) = y′0 for some

valuations, then vi(∀
yi−1∈V
i−1 ϕ(ϕi−1)) = 〈y′0, y

′
1 . . . , y

′
i−1〉.

4. For any i-order atomic propositional formula

ϕi = ∃
yi−1∈V
i−1 (. . . (∃y1∈V

1 ϕ) . . .) . . . ∃y1∈V
1 ϕ(ϕ),

(1) if (i) vi−1(ϕi−1) = 〈y1, . . . , yi−1〉 for some valuations and (ii)
v1(ϕ1) = y0 for some valuations, then vi(ϕi) = 〈y0, y1, . . . , yi−1〉;
(2) if (i) vi−1(ϕi−1) 6= 〈y1, . . . , yi−1〉 for all valuations, (ii) vi−1(ϕi−1)
= 〈y′1, . . . , y

′
i−1〉 and v1(ϕ) = y′0 for some valuations, then vi(ϕi) =

〈y′0, y
′
1 . . . , y

′
i−1〉.

5. For any formula ϕi, vi(¬ϕi) = 〈1 − y0, 1 − y1, . . . , 1 − yi−1〉, where
vi(ϕi) = 〈y0, y1, . . . , yi−1〉.

6. For any formulas ϕi and ψi, vi(ϕi ⊃ ψi) = 〈(1−max(x0, y0) + y0), (1−
max(x1, y1)+y1), . . . , (1−max(xi−1, yi−1)+yi−1)〉, where vi(ϕi) = 〈x0,
x1, . . . , xi−1〉 and vi(ψi) = 〈y0, y1, . . . , yi−1〉.

56

Non-Archimedean Foundations of Mathematics

7. For any formulas ϕi and ψi, vi(ϕi∨ψi) = 〈max(x0, y0),max(x1, y1), . . . ,

max(xi−1, yi−1)〉, where vi(ϕi) = 〈x0, x1, . . . , xi−1〉 and vi(ψi) = 〈y0, y1,
. . . , yi−1〉.

8. For any formulas ϕi and ψi, vi(ϕi ∧ψi) = 〈min(x0, y0),min(x1, y1), . . . ,

min(xi−1, yi−1)〉, where vi(ϕi) = 〈x0, x1, . . . , xi−1〉 and vi(ψi) = 〈y0,
y1, . . . , yi−1〉.

An infinite-order truth assignment is a function v∞[·] whose domain is
the set of all infinite-order formulas of L∞

V and whose range is the set ∗V of
truth values such that:

1. For any first-order propositional formula ϕ1, v1(ϕ1) is a truth assign-
ment of n-valued Lukasiewicz’s logic.

2. For any first-order propositional formula ϕ1, v∞[ϕ1] = ∗y1 = 〈y1, y1, . . .〉
iff v1(ϕ1) = y1.

3. For any infinite-order atomic propositional formula

ϕ∞ = . . . ∀
yi−1∈V

i−1 (. . . (∀y1∈V
1 ϕ) . . .) . . . ∀y1∈V

1 ϕ(ϕ),

(1) if v∞[ϕ∞] = ∗y1 = 〈y1, . . . , y1, . . .〉 for all valuations, then v∞[ϕ∞] =
∗y1; (2) if (i) v∞[ϕ∞] 6= ∗y1 for some valuations and (ii) v∞[ϕ∞] = [f]

for some valuations, then v∞[ϕ∞] = [f].

4. For any infinite-order atomic propositional formula

ϕ∞ = . . . ∃
yi−1∈V
i−1 (. . . (∃y1∈V

1 ϕ) . . .) . . . ∃y1∈V
1 ϕ(ϕ),

(1) if v∞[ϕ∞] = [f] = 〈y0, y1, . . . , yi−1, . . .〉 for some valuations, then
v∞[ϕ∞] = [f]; (2) if v∞[ϕ∞] 6= [f] for all valuations and v∞[ϕ∞] = [f ′]

for some valuations, then v∞[ϕ∞] = [f ′].

5. For any formula ϕ∞, v∞[¬ϕ∞] = ∗1 − v∞[ϕ∞].

6. For any formulas ϕ∞ and ψ∞, v∞[ϕ∞ ⊃ ψ∞] = ∗1 − max(v∞[ϕ∞],
v∞[ψ∞]) + v∞[ψ∞].

7. For any formulas ϕ∞ and ψ∞, v∞[ϕ∞ ∨ψ∞] = max(v∞[ϕ∞], v∞[ψ∞]).

8. For any formulas ϕ∞ and ψ∞, v∞[ϕ∞ ∧ ψ∞] = min(v∞[ϕ∞], v∞[ψ∞]).

Note that the function v∞[·] is an infinite sequence of functions vi(·).
Suppose that n-valued Lukasiewicz’s logic LV , where |V | = n, is

truth-functionally complete thanks to S lupecki’s operators Tk(ϕ) : v(ϕ) 7→
k ∈ V/{0, 1}, where v(ϕ) is any truth valuation of ϕ ∈ LV . In this case

57

Andrew Schumann

some formulas of L∞
V have truth values of the form ∗k. Without S lupecki’s

operators, only ∗0, ∗1 are constant functions that can be truth values for
formulas of L∞

V .

4. Non-Archimedean Valued Logic

A hyperrational valued logic denoted by L∗Q[0,1]
(resp. a hyperreal va-

lued logic denoted by L∗R[0,1]
) is built on the basis of language L∞

Q[0,1]
(resp.

L∞
R[0,1]

).
The following properties of higher-order formulas are evident without

proofs:
• vi(∀

yi−1∈V
i−1 ϕ(ϕi−1)) = 〈yi−1, . . . , yi−1〉 := “a formula ϕ has the truth

value yi−1 for all truth valuations, a formula ϕ1 has the truth value
〈yi−1, yi−1〉 for all truth valuations, etc.”;

• vi(∃
yi−1∈V
i−1 (. . . (∃y1∈V

1 ϕ) . . .) . . . ∃y1∈V
1 ϕ(ϕ)) = 〈y0, . . . , yi−1〉 := “a for-

mula ϕ has the truth value y0 for some truth valuations, a formula ϕ1

has the truth value 〈y0, y1〉 for some truth valuations, etc.”;
• a formula ∀

yi−1∈V
i−1 ϕ(ϕi−1) or ∃

yi−1∈V
i−1 (. . . (∃y1∈V

1 ϕ) . . .) . . . ∃y1∈V
1 ϕ(ϕ) is

a tautology iff a formula ϕ is a tautology;
• a formula ∀

yi−1∈V
i−1 ϕ(ϕi−1) or ∃

yi−1∈V
i−1 (. . . (∃y1∈V

1 ϕ) . . .) . . . ∃y1∈V
1 ϕ(ϕ) is

satisfiable iff a formula ϕ is satisfiable.
These properties allow setting a non-Archimedean calculus. Consequen-

tly, we can extend the Hilbert’s type calculus of infinite-valued Lukasiewicz’s
logic L∞ for the non-Archimedean case. The axioms of the Hilbert’s type cal-
culus for L∗Q[0,1]

(resp. for L∗R[0,1]
) are as follows.

(ϕi ⊃ φi) ⊃ ((φi ⊃ ψi) ⊃ (ϕi ⊃ ψi)), (5)

ϕi ⊃ (φi ⊃ ϕi), (6)

((ϕi ⊃ φi) ⊃ φi) ⊃ ((φi ⊃ ϕi) ⊃ ϕi), (7)

(¬ϕi ⊃ ¬φi) ⊃ (φi ⊃ ϕi), (8)

(ϕ∞ ⊃ φ∞) ⊃ ((φ∞ ⊃ ψ∞) ⊃ (ϕ∞ ⊃ ψ∞)), (9)

ϕ∞ ⊃ (φ∞ ⊃ ϕ∞), (10)

((ϕ∞ ⊃ φ∞) ⊃ φ∞) ⊃ ((φ∞ ⊃ ϕ∞) ⊃ ϕ∞), (11)

(¬ϕ∞ ⊃ ¬φ∞) ⊃ (φ∞ ⊃ ϕ∞), (12)

(¬(ψ1 ≡ ψ∞) ∧ ¬(φ1 ≡ ⊥)) ⊃ (ψ∞ ⊃ φ1), (13)

where ⊥ is a contradiction.

58

Non-Archimedean Foundations of Mathematics

Axioms (5)–(8) are called horizontal. Axiom (13) is called vertical.
Axioms (9)–(12) are called axioms of infinite length. Notice that the upper
indices of vertical quantifiers belong to the countable set Q[0,1] in L∗Q[0,1]

and belong to the uncountable set R[0,1] in L∗R[0,1]
.

Inference rules are as follows: (1) modus ponens (if two formulas ϕi

(resp. ϕ∞) and ϕi ⊃ ψi (resp. ϕ∞ ⊃ ψ∞) hold, then we deduce a formula
ψi (resp. ψ∞)); (2) substitution rule: we can substitute a formula of the same
order for an atomic formula.

The non-Archimedean valued Hilbert’s type calculus has all the deduc-
tive and semantic properties of the Hilbert’s type calculus of infinite-valued
 Lukasiewicz’s logic L∞. At the same time the truth concept of L∞ can be
syntactically expressed by means of non-Archimedean valued logic. Thus,
non-Archimedean valued logic is more formally expressive than L∞.

5. Conclusions

In this paper I considered some perspectives of transfinite foundations
of mathematics, namely I built the non-Archimedean valued propositional
logic. This new metalanguage also has a lot of practical applications, in
particular it can be applied in non-Kolmogorovian probability theory and
in soft computing (see [6] and [8]).

References

[1] Cantor, G. Gesammelte Abhandlungen mathematischen und philoso-
phischen Inhalts (hrsg. Ernst Zermelo). Berlin Heidelberg New York
1980.

[2] Cohen, P. J. Set Theory and the Continuum Hypothesis, New York,
1966.

[3] Gödel, K. The consistency of the Axiom of Choice and of the Genera-
lized Continuum-Hypothesis with the Axioms of the Set Theory, [in:]
Annals of Math. Studies, 3 (1940).

[4] D. Hilbert and P. Bernays, Grundlagen der Mathematik, Vol. 1. Zweite
Auflage. Springer-Verlag, 1968.

[5] Hilbert, D. Mathematical Problems, [in:] Bulletin of the American Ma-
thematical Society 8 (1902), pp. 437–479.

[6] A. Khrennikov and A. Schumann, Logical Approach to p-adic Pro-
babilities, [in:] Bulletin of the Section of Logic Volume 35/1 (2006),
pp. 49-57.

59

Andrew Schumann

[7] Matiyasevich, Yu. Hilbert’s Tenth Problem. MIT Press, Cambridge,
Massachusetts, 1993.

[8] Schumann, A. DSm Models and non-Archimedean Reasoning, [in:]
F. Smarandache, J. Dezert (Editors), Advances and Applications of
DSmT (Collected works), Vol. 2, American Research Press, Rehoboth.
2006, pp. 183–204.

[9] Schumann, A. Non-Archimedean Fuzzy Reasoning, Fuzzy Systems and
Knowledge Discovery (FSKD’07), IEEE Press (2007)

[10] Schumann, A. Non-Archimedean Valued Predicate Logic, Bulletin of
the Section of Logic, 36/1 (2007) pp. 1–12.

[11] Schumann, A. Non-Archimedean Valued Sequent Logic, Eighth Inter-
national Symposium on Symbolic and Numeric Algorithms for Scienti-
fic Computing (SYNASC’06), IEEE Press (2006) pp. 89–92.

[12] Schumann, A. p-Adic Multiple-Validity and p-Adic Valued Logical Cal-
culi, Journal of Multiple-Valued Logic and Soft Computing, 13, 1–2
(2007) pp. 29–60.

60

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11 (24) 2007

Katarzyna Zbieć
University of Białystok

A LINEAR APPROXIMATION METHOD
IN PREDICTION OF CHAOTIC TIME SERIES

This paper presents a method to make predictions regarding the chaotic time
series, known as a linear approximation method. After embedding a time series
in a phase space, it is necessary to replace nonlinear mapping using a local
approximation. This allows making a short-term prediction of future behaviour,
using information based only on past values. The effectiveness of this method
is demonstrated by applying it to the prediction of share prices.

Introduction

The basic problem of scientific investigation is forecasting – How can
we predict the future, given the past? The behaviour of periodical structure
we can predict in infinity, but chaotic structure is predictable in the short
term only. It is connected with a basic property – the sensitivity on initial
conditions.

It consists in that very similar initial conditions sometimes give very
different structure’s behaviour. The reason for this is that we can establish
initial conditions with finished exactitude, but miscalculations grow expo-
nentially. (Therefore forecasting such structures is sensible only in short
intervals). This means, that when we want to predict the behaviour of such
a structure in any moment, we would dispose of the data entrance pas-
sed with infinite exactitude as well as execute all calculation with finite
accuracy. Otherwise, small mistakes in setting initial values as well as mi-
scalculations (e.g. the mistakes of roundings) grow in an exponential way.
This means that the evolution of such systems is very complex and virtually
unpredictable in the long-term.

There exist different methods of forecasting a chaotic time series. This
article presents a method of the linear approximation applied to a short-term
prediction regarding the share prices on the Warsaw Stock Exchange. The

ISBN 978–83–7431–158–8 ISSN 0860-150X 61

Katarzyna Zbieć

time series of share prices is a type of deterministic series and can behave
chaotically [6, 1997].

A Linear Approximation Method

If we want to model nonlinear systems:

xi+1 = f(xi), i = 0, 1, ... (1)

we might fit the data to combinations of nonlinear functions. This however
is a very complicated method. We can therefore apply a method based on
an approximation of behaviour in the midst of any point on an attractor1 by
a unique local function. Then, the evolution on an attractor is represented
by the set of such functions. Functions are linear at each point. This means:

xi+1 = a+ bxi, (2)

where matrix b and vector a are defined for every point. A class of the local
map creates a global nonlinear map [1, 1993].

Suppose the time series folded from T observations: x1, x2, . . . , xT . We
can establish a dimension of embedding m and make the reconstruction of
the phase space2. In such a space we get the following set of vectors:

xm
i = (xi, xi−1, . . . , xi−m+1), i = m,m+ 1, . . . , T. (3)

We should predict the value of the time series with number P – xP , which is
the first component of a point: xm

P = (xP , xP−1, . . . , xP−m+1). In the neigh-
bourhood of this point we can estimate the following equation parameters:

xm
P = a+ bxm

P−1 + εm
P , (4)

a is mx1 dimensional vector of parameters,
b os mxm dimensional matrix of parameters,
εm
P is mx1 dimensional vector of errors.

We assume that the function is linear.

1 Attractor is a set to which the system evolves after a long enough time. For a set
to be an attractor, trajectories which get close enough to the attractor must remain close
even if slightly disturbed.
2 Phase space is the space in which all possible states of a system are represented,

with each possible state of the system corresponding to one unique point in the phase
space. Dimension of the phase space depends on quantity of variables necessary to the
description of the system. The reconstruction of phase space consists in reproducing the
multidimensional attractor based on the one-dimensional time series.

62

A Linear Approximation Method in Prediction of Chaotic Time Series

Illustrated bellow is the matrix form:

xP

xP−1
...

xP−m+1

=

a1

a2
...
am

+

b11 b12 . . . b1m

b21 b22 . . . b2m

...
...

. . .
...

bm1 bm2 . . . bmm

·

xP−1

xP−2
...

xP−m

+

εP

εP−1
...

εP−m+1

. (5)

Therefore we should estimate only the first component a1 of vector a
and the first row of matrix b. We need to solve the following equation:

xP = a1 +
m∑

j=1

b1jxP−j + εP . (6)

To calculate the parameters we use an approximation by k nearest neighbour
xm

P−1 point.
The estimation of the parameters relating to equation 6 proceeds as

follows [3, 1989]:
• We define components of k points in the m-dimensional reconstructed

phase space: xn1m , xn2m , . . . , xnkm , where k > m. They are the ne-
arest, in the sense the of the Euclidean metric, neighbours of the point
(xP−1, xP−2, . . . , xP−m). We should consider k ≥ 2(m + 1) the closest
neighbours.

• We mark the first components of the nearest neighbours: xn1
, xn2

, . . . ,
xnk

, and then corresponding to them, the following points in time series:
xn1+1, xn2+1, . . . , xnk+1.

• As a result we form a system of k equations with m+ 1 unknowns:

xni+1 = a1 +
m∑

j=1

b1ixni+1−j + εni+1, i = 1, 2, . . . , k. (7)

• Parameters a1, b1j (j = 1, ...,m) are estimated by the least squares
method.

• Using equation 6 we predict the value of element xP :

x̂P = â1 +
m∑

j=1

ˆb1jxP−j . (8)

Thus for any xt there is a marked predicted value x̂t. It can precisely deter-
mine an absolute error εt = xt − x̂t. Relative error ψt it is the percentage
deviation of the obtained value from the real value.

63

Katarzyna Zbieć

The Share Prices on the Warsaw Stock Exchange Prediction

The method of linear approximation can be used for forecasting share
prices. It has been proven was that the time series of share prices are ge-
nerated by a deterministic system, showing a tendency for chaotic beha-
viours.

The time series, we studied, consisted from around 2500 observations.
The method will be applied to an example time series of share prices for the
Żywiec company. We take t = 2001, . . . , 2300.

Firstly, we assume the dimension of embedding m = 2, and its ne-
arest neighbours’ number k = 8 (Fig. 1). For an exact analysis of the me-
thod we specified the fragment of time series for t = 2110, . . . , 2120. The
last point of this fragment is x2120. The nearest eight neighbours of po-
int x2

2119 in reconstructed phase space for m = 2 are points: x2
2111, x2

2112,
x2

2113, x2
2114, x2

2115, x2
2116, x2

2117, x2
2118. The consequents are: x2

2112, x2
2113,

x2
2114, x2

2115, x2
2116, x2

2117, x2
2118, x2

2119. We ascertained the following matrix
equation:

x2112

x2113

x2114

x2115

x2116

x2117

x2118

x2119

=

1 x2111 x2110

1 x2112 x2111

1 x2113 x2112

1 x2114 x2113

1 x2115 x2114

1 x2116 x2115

1 x2117 x2116

1 x2118 x2117

·

a1

b11
b12

+

ε1
ε2
ε3
ε4
ε5
ε6
ε7
ε8

. (9)

As a result of the estimation parameters we get the equation:

ˆx2120 = 150,3669467 + 0,18326264 · x2119 − 0,040650558 · x2118. (10)

The predicted value comes to 175,23, with an error ε2120 = −0, 73. The
error amounts to ψ2120 = 0, 42% of the real value. In most cases the mistakes
did not exceed 2%, so this is quite an effective method (Fig. 2).

As a rule, experimental results show that an increase to the 12 the ne-
arest neighbours numbers improves the effectiveness of a prediction (Fig. 3).

As we can see from above, the method of linear approximation gives
enough first-rate results in predicting of share prices. However, we must
bear in mind, that it relates only to short-term forecasting.

64

A Linear Approximation Method in Prediction of Chaotic Time Series

Figure 1. Comparison of the Żywiec’s share prices with predicted values for t = 2001 −
2300, m = 2, k = 8

Figure 2. Comparison of the Żywiec share prices with predicted values for t = 2110 −
2120, m = 2, k = 8

Figure 3. Comparison of the Żywiec share prices with predicted values for t = 2110 −
2120, m = 2, k = 8 and k = 12

65

Katarzyna Zbieć

References

[1] Abarbanel H. D. I. and Brown R. and Sidorowich J. and Tsimiring T. S.
The analysis of observed chaotic data in physical systems. Reviews of
Modern Physics, 65:1331–92, 1993.

[2] Baker G. L. and Gollub J. P.Wstęp do dynamiki układów chaotycznych.
Wydawnictwo Naukowe PWN, Warszawa, 1998.

[3] Casdagli M. Nonlinear prediction of chaotic time series. Physica D,
35:335–56, 1989.

[4] Farmer J. D. and Sidorowich J. J. Predicting Chaotic Time Series, vo-
lume 59. 1987.

[5] Kacprzak D. O metodzie przewidywania stanów chaotycznych na przy-
kładzie cen akcji z giełdy nowojorskiej NYSE. In Energia w nauce
i technice, Białystok–Suwałki, 2005. Wydawnictwo Politechniki Biało-
stockiej.

[6] Peters E. E. Teoria chaosu a rynki kapitałowe. Wig Press, Warszawa,
1997.

66

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11 (24) 2007

Vitaly. I. Levin
Penza State Technological Academy, Penza, Russia

BASIC CONCEPTS OF CONTINUOUS LOGIC

In this paper, a general description of a continuous (-valued) logic is given and
some problems and particulars of their solutions are discussed. Firstly, we define
algebra of continuous logic and enumerate its basic unary, binary and ternary
functions. All laws of continuous logic are compared to laws of discrete binary
logic. We discuss how to enumerate all the functions of continuous logic with
a specified number of variables and how to represent such functions in a stan-
dard form. Procedures of minimization regarding continuous logical functions
and their decomposition into functions with less clarity are exploited. The pro-
cedures are compared to their counterparts from binary logic. We also tackle
problems of the analysis and synthesis of continuous logical functions, and show
that the problem of synthesis may not have a solution. Basics of differential
and integral calculus are applied to continuous-valued logic. We demonstrate
that any continuous logical function has the points where a derivative does not
exist. To conclude, we briefly discuss a problem of incompleteness regarding
continuous logic, application of continuous logic in mathematics, engineering
and economy, give examples, draw a perspective of further development and
supply an extensive bibliography of Russian works in the field.

1. Introduction

A continuous logic (CL) is a natural generalization of a discrete lo-
gic (DL). A few laws of DL take place in CL as well. A general structure
of CL differs from that of DL; thus, for example an operation of negation
regarding CL cannot be defined in terms of addition (as it is done in binary
logic) in a consistent way. CL now forms an independent scientific discipline
where theoretical and applied key points lie in such diverse fields as:
• mathematics (approximation of functions, geometry, theory of sets, the-

ory of numbers, interval analysis);
• engineering (design of electrical circuits, synthesis of functional genera-

tors and analogue-discrete transformers, design and analysis of analogue
and digital devices, diagnostics and maintenance service);

• systems (theory of service systems, pattern recognition and analysis of
scenes, decision making, information processing, synchronization);

ISBN 978–83–7431–158–8 ISSN 0860-150X 67

Vitaly. I. Levin

• economy (discrete optimization, schedule theory, simulation of economic
systems),

• biology (simulation of neuron systems at all levels of representation),
• sociology (simulation of the dynamics of collective behaviour);
• politology (simulations of dynamics of a society),
• history (simulation of the streams of historical events).

The new results in CL can be obtained with the help of several stra-
ightforward techniques:
• calculation of the values of logical expressions;
• equivalent conversion of logical expressions;
• unification of individual logical expressions;
• partition of common logical expressions onto individual ones.

We can also embed the algebra of CL in a more general distributive
structure; in this situation all methods of the theory of structures are useful.

A range of the main problems of CL includes the following categories:
1. enumeration of all CL functions for the given number of arguments,
2. representation of CL functions in a standard form (including unambi-

guous representation),
3. selection of elementary CL functions;
4. minimization and decomposition of CL functions,
5. analysis and synthesis of CL functions;
6. solution of the equations and inequalities of CL,
7. differentiation and integration of CL functions,
8. verification of completeness regarding the system of CL functions.

Problems 1–4 are similar in formulation and, partially in the methods
of solution, to the appropriate DL tasks. Problems 5–8 belong exclusively
to CL.

2. General Description of Continuous Logic

Let C = [A,B] be a closed interval such that M = (A + B)/2. Basic
operations of CL are defined on as follows:

a ∨ b = max(a, b) (Disjunction),

a ∧ b = min(a, b) (Conjunction), (1)

ā = 2M − a (Negation).

The sign ∧ is usually omitted.
Sometimes the following operations are used as basic ones:

68

Basic Concepts of Continuous Logic

• inclusion a ⊃ b = (ā+ b) ∧B,

• implication a→ b = ā ∨ b,

• equivalence (a ≡ b) = (a ∨ b̄)(ā ∨ b),

• non-equivalence (a 6≡ b) = (ab̄ ∨ āb,

• Sheffer a|b = ab,

• Webb a ↓ b = a ∨ b,

• contradiction (a 6= a) = aā,

• tautology (a ≡ a) = a ∨ ā,

• prohibition a→b) = ab̄.

An algebraic system of the supporting set C and the basic operations
is called an algebra of CL. A CL function is a function Cn → C, which
is represented by the superposition of a finite number of basic operations
of the CL algebra with the arguments x1, . . . , xn ∈ C. The number of CL
functions is finite, though the set of all functions of the sort Cn → C is
infinite.

A quasi-Boolean algebra:

∆ = (C;∨,∧,)̄ (2)

is one of the most developed and investigated algebras of CL. The func-
tions of algebra (2) are usually tabulated. One can easily transform tabular
representation into an analytical one using a method of union. A reverse
transition from analytical to tabular representation is carried out by a me-
thod of partition.

The number P (n) of n-ary CL functions in quasi-Boolean algebra grows
quite fast when n increases: P (0) = 2, P (1) = 6, P (2) = 84, P (3) = 43918.
For n = 0 the functions are constant:

y0 = A, y1 = B. (3)

For n = 1 there are constants y0, y1 and 4 functions, essentially depen-
ding on argument x:

y2 = x, y3 = x̄, y4 = x ∨ x̄, y5 = xx̄. (4)

For n = 2 there are constants (3), 8 functions (4), depending on one
argument (x1 or x2), and 10 functions, depending on two arguments:

y10 = x1 ∨ x2, y11 = x1x2, y12 = (x1 ∨ x̄2)(x̄1 ∨ x2),

y13 = x1x̄2 ∨ x̄1x2, y14 = x1x2, y15 = x1 ∨ x2, y16 = x̄1 ∨ x2, (5)

y17 = x1 ∨ x̄2, y18 = x̄1x2, y19 = x1x̄2.

69

Vitaly. I. Levin

There are also 64 functions depending on 2 arguments. They can be
obtained by the superposition of the previous 20 functions or via the com-
pilation of the function value tables and the consequent transition to analy-
tical representation. For n = 3 CL functions include all previous functions
depending on, at most, 2 arguments, and all functions essentially depending
on 3 arguments. The most common ternary functions include the following:

Disjunction and conjunction (maximum and minimum):

y = x1 ∨ x2 ∨ x3 = max(x1, x2, x3), y = x1x2x3 = min(x1, x2, x3), (6)

median and median negation (inversion):

y = med(x1, x2, x3) = x1x2 ∨ x1x3 ∨ x2x3,
(7)

y = med(x1, x2, x3) = x̄1x̄2 ∨ x̄1x̄3 ∨ x̄2x̄3,

Sheffer and Webb functions:

y = x1x2x3, y = x1 ∨ x2 ∨ x3, (8)

and elementary three-place disjunction and conjunction:

y = x1 ∨ x̄1 ∨ x2 ∨ x̄2 ∨ x3 ∨ x̄3, y = x1x̄1x2x̄2x3x̄3. (9)

It is possible to obtain other functions depending essentially on 3 ar-
guments by the superposition of the functions listed above or by compiling
the table of values followed by a transition to analytical representation.
Any set of CL functions of a great number of arguments is generated in the
same way.

Notice that the number P (n) of CL functions of n arguments grows
with n sufficiently faster than the number Q(n) of functions of binary logic.
For example, Q(0) = 2, Q(1) = 4, Q(2) = 16, Q(3) = 256. Therefore we are
not able to apply exhaustive techniques to the investigation of CL functions,
as it is done with binary functions. Thus we should stick to the analysis of
typical CL functions.

Basic operations of CL were analyzed by R. McNaughton; the gene-
ral description of CL and its mathematical apparatus is elaborated on by
S. A. Ginsburg, V. I. Levin and P. N. Shimbirev. A review of their work can
be found in [1, 2, 4, 6, 7, 9, 11, 12, 14, 21].

3. Some Examples of Applications regarding Continuous Logic

Example 1 (geometry). Given a piece-wise linear function y = f(x)

formed of two linear functions y = ax+b and y = cx+d, the first function is

70

Basic Concepts of Continuous Logic

accepted on the left side of the intersection of graphs of these two functions;
the second function works on the right side. Using graphs of y = ax+ b and
y = cx+d we can check that only two possibilities for the formation of f(x)

are correct: we can use either the lower of the lines (concave function f(x))
or the upper of the lines (convex function f(x)). Therefore we obtain an
analytic form of the piece-wise linear function f(x):

y = (ax+ b) ∧
∨ (cx+ d),

where the operation of CL disjunction ∨ is applied when the graph of f(x)

is concave and the operation of CL conjunction ∧ is used when it is convex.
The analytical representation of piece-wise linear and piece-wise non-li-

near functions in terms of CL is developed in the work of E. I. Berkovich,
S. A. Ginsburg and V. I. Levin [1, 6, 12].

Example 2 (theory of discrete automata). Let us consider an automaton
with two binary inputs x1, x2 and one binary output y; the automaton
implements a Boolean function:

y = x1 & x2, x1, x2, y ∈ {0, 1}.

The inputs are determined by the binary processes of the form:

x1(t) =

{
0, t < a,
1, t ≥ a, x2(t) =

{
1, t < b,
0, t ≥ b.

Our purpose here is to analyze the binary process y(t) on an automa-
ton’s output and its reaction on the given input processes. Let 1(A,B) be
a binary process of impulses in the time interval (A,B). The reaction of an
automaton equals the impulse 1(a, b) when b ≥ a and it is the constant 0
when b < a. We can interpret the constant 0 as an impulse with a coinci-
dental end and beginning. Then the reaction can be written in the terms
of CL as follows:

y(t) =

{
1(a, b) if b ≥ a

0 = 1(a, a) if b < a

∣∣∣∣ = 1(a, a ∨ b).

Analytical theory of the processes in discrete automata was developed by
V. I. Levin in [2, 4, 6, 14].

Example 3 (optimization). Let us imagine three vacancies and three
candidates to fill these vacancies. Let aij be an efficiency of ith candidate
to jth position. Our aim here is to distribute the positions between the can-
didates in such a manner that all positions are occupied, all the candidates
are accepted and an integral efficiency is maximal. Obviously, every distri-
bution of the positions between the candidates has its own sum of elements

71

Vitaly. I. Levin

regarding the matrix A = ‖aij‖; this sum includes exactly one element from
every column and every row. Thus, we need to find a maximal sum A∨

of the elements of the matrix A. The sum has the following general form:

A∨ = (a11 + a22 + a33) ∨ (a11 + a23 + a32) ∨ (a12 + a21 + a33)∨

∨(a12 + a23 + a31) ∨ (a13 + a21 + a32) ∨ (a13 + a22 + a31).

An algorithm of exhaustive search can be employed. The expression simpli-
fied with the help of law (20) looks like this:

A∨ = {a11 + [(a22 + a33) ∨ (a23 + a32)]}∨

∨{a12 + [(a21 + a33) ∨ (a23 + a31)]}∨

∨{a13 + [(a21 + a32) ∨ (a22 + a31)]}.

It is three operations less than the previous expression. Therefore, we redu-
ced the complexity of an exhaustive search.

The methods of optimization using CL were designed by V. I. Levin
in [6, 9, 14–20].

Numerous examples of these techniques can be found in [1] (appro-
ximation of functions and the design of electrical circuits), [3] (design of
digital devices), [5] (set theory and decision theory), [6] (design of analogue
and digital devices, simulation of tools, queue theory, pattern recognition),
[7] (fault-tolerance and diagnostics, technical servicing), [8, 13] (control,
decision making), [9] (simulation and optimization of economic systems),
[10–12, 17, 19] (synthesis of functional generators, design of analogue and
hybrid devices), [15, 16, 18, 20] (simulation of economic systems, social gro-
ups, societies and historical events).

4. Laws of Continuous Logic

There is a straightforward generalization regarding CL in the frame
of DL for the continuous interval C:

a ∨ a = a, aa = a (Tautology) (10)

a ∨ b = b ∨ a, ab = ba (Commutative) (11)

(a ∨ b) ∨ c = a ∨ (b ∨ c), (ab)c = a(bc) (Associative) (12)

a(b ∨ c) = ab ∨ ac, a ∨ bc = (a ∨ b)(a ∨ c) (Distributive) (13)

a ∨ b = āb̄, ab = ā ∨ b̄ (de Morgan) (14)

a ∨ ab = a, a(a ∨ b) = a (Absorption) (15)

72

Basic Concepts of Continuous Logic

¯̄a = a (Double negation) (16)

aA = A, aB = a, a ∨A = a, a ∨B = B (Operation with constants) (17)

aā(b ∨ b̄) = aā, aā ∨ (b ∨ b̄) = b ∨ b̄ (Kleene) (18)

The laws of contradiction and the eliminated third of DL are replaced by

aā = M − |a−M |, a ∨ ā = M + |a−M |. (19)

As soon as the operations of CL are applied to a continuum it is qu-
ite reasonable to combine them with algebraic operations over continuous
variables.

Instead of addition and multiplication we can use new distributive laws
of CL, which combine either disjunction or conjunction with addition:

a+ (b ∨ c) = (a+ b) ∨ (a+ c), a+ (b ∧ c) = (a+ b) ∧ (a+ c),
(20)

a− (b ∨ c) = (a− b) ∧ (a− c), a− (b ∧ c) = (a− b) ∨ (a− c).

A similar law works when disjunction and conjunction are coupled with
multiplication.

A law of descent of negation on addends is as follows:

a+ b = ā− b = b̄− a (21)

The operations of CL are expressed with the help of addition and multi-

plication, as well as two auxiliary functions: I(x) =

{
1, x ≥ 0
0, x < 0

and |x|.

Therefore disjunction and conjunction in CL are expressed as

a ∨ b = 0,5[a+ b+ |a− b|], a ∧ b = 0,5[a+ b− |a− b|]. (22)

The possibility to express CL operations via algebraic operations
(see (1) and (22)) indicates a connection between algebra and logic.

If we consider the generalization of CL itself, CL will be a special case
of distributive structure with a pseudo-complement, i.e. with the operation
of negation, which is not a complement because contradiction and excluded
middle laws do not take place. In this context the values of a continuous
CL variable (which belongs to the interval [A,B]) can be interpreted simi-
larly to a variable of DL: the boundary value x = A (x = B) represents
the statements “absolutely false” (“absolutely true”), and the intermediate
values x, A < x < B, measure the truth values of other statements.

Some basic laws of CL for the particular case of C = [0, 1] were indicated
by R. McNaughton. These laws were investigated in a general manner by
S. A. Ginsburg, V. I. Levin and E. I. Berkovich. A review of these results
can be found in [1, 2, 4, 6, 9, 14–16, 21].

73

Vitaly. I. Levin

5. Enumeration and the Standardization of Continuous-Valued
Logical Functions

The enumeration of all CL functions for a fixed number of argu-
ments and the representation of CL functions in standard form are the
two most typical problems of CL. The problem relating to the enumera-
tion of all CL functions in algebra (2) requires a specification of the ap-
propriate analytical expressions. This can be done using the following two
steps:
1. Enumeration of the tables of function values (the tables for all functions

have an identical order of the following of argument ordering variants
x1, . . . , xn and their negations x̄1, . . . , x̄n, with various distributions of
function values equal xi or x̄i);

2. Transition from the tables to appropriate analytical expressions by
a method of uniting.

Unfortunately this approach is not appropriate for n ≥ 3. Therefore in
practice we are limited by the defined classes of CL functions, which can be
selected from the corresponding similar functions of DL, simplicity in the
deriving of formulas and their practical importance.

Being the standard forms of CL, the functions of algebra (2) obey di-
sjunctive and conjunctive normal forms (DNF and CNF). These forms differ
from similar forms of binary DL because their elementary conjunctions (di-
sjunctions) may include, together with argument xi, its negation x̄i. The
transition from any analytical representation of CL function to its DNF
or CNF is similar to the transformation in binary DL. In the case of DNF
the transition consists of (1) descent of negations on more simple expressions
according to laws (14), (16); (2) disclosure of brackets in agreement with
law (13). For CNF we have (1) the same descent of negations; (2) placement
of brackets in accordance to law (13).

Example 4. Let us transform the analytical representation of CL to
its DNF:

(x1x2 ∨ x̄2x3)x̄1x4 = (x1x2 ∨ x̄2x3)(x1 ∨ x̄4) =

= x1x2 ∨ x1x̄2x3 ∨ x1x2x̄4 ∨ x̄2x3x̄4 =
= x1x2 ∨ x1x̄2x3 ∨ x̄2x3x̄4.

We can accept canonical forms of DNF and CNF as unambiguous stan-
dard forms of the functions of CL. DNF unambiguously represents the CL
function if it is a deadlock disjunction of non-decomposable elementary con-
junctions. In turn, the elementary conjunction is non-decomposable in a dis-

74

Basic Concepts of Continuous Logic

junction of conjunctions when it is fundamental, i.e. consistent (does not
contain simultaneously xi and x̄i) or inconsistent but contains all the argu-
ments of a given function, in direct xi or inverse x̄i form. From this point
we can apply the following algorithm for the reduction of some DNF of
a function of CL to canonical DNF:
1. Select in DNF all fundamental conjunctions;
2. represent each non-fundamental conjunction k (i.e. a conjunction which

is contradictory and does not contain all of the arguments of the func-
tions) by a disjunction of the fundamental conjunctions (to do this we
can combine its conjunction with a suitable disjunction xj∨x̄j because it
does not change the value of k that includes xix̄i ≤M , for xj∨ x̄j ≥M)
and to open the brackets;

3. eliminate the smaller conjunction of each pair of comparable (in the
sense of ratio ≤) conjunctions of DNF. The resultant canonical DNF
is similar in sense but not form to the complete DNF of a Boolean
function.

Example 5. Let us transform DNF of a CL function to its canonical
DNF:

y = x2x4 ∨ x1x̄2x3x̄4 ∨ x1x2x̄2x3x̄3.

The first two conjunctions are fundamental. The third conjunction is not:
when multiplied as x4∨x̄4 it is transformed to x1x2x̄2x3x̄3x4∨x1x2x̄2x3x̄3x̄4.
These newly emerged fundamental conjunctions are absorbed by the first
two fundamental conjunctions of DNF of y. Eventually we have the canoni-
cal DNF:

y = x2x4 ∨ x1x̄2x3x̄4.

Any CL function different from a fundamental conjunction is decomposable,
i.e. a class of non-decomposable (elementary) CL functions in algebra (2)
consists of only fundamental conjunctions.

The problems of representation and enumeration of CL functions were
discussed by C. M. Clark, D. Dubois, H. Prade, A. Kandel, V. I. Levin,
M. Mukaidono and P. N. Shimbiriev (see [3, 5, 6, 9, 11–13]). The standard
representation of CL functions was tackled by F. P. Preparata, A. Kan-
del, D. Dubois, H. Prade, V. I. Levin and P. N. Shimbiriev (see reviews
in [3, 6, 9, 11].

75

Vitaly. I. Levin

6. Minimization and the Decomposition of Continuous-Valued
Logical Functions

The minimization of CL functions, similarly to the minimization of DL
functions, aims to produce a form with a minimal number of variables.

A procedure of the minimization of the functions of CL in algebra (2)
is developed only for such functions as represented in DNF. It deals with
the search for the DNF with a minimal number of the entries of xi, x̄i. The
procedure of minimization regarding CL functions can be described in terms
similar to the minimization of a Boolean function:
1. Make a search for all the fundamental conjunctions of the CL func-

tion f (these conjunctions play a role in the elementary conjunctions
of the complete DNF of a Boolean function) and a representation f in
canonical deadlock form;

2. search for all the simple implicants of the function (as usual, an im-
plicant of the function f is thought of as an elementary conjunction k
such that k ≤ f ; the implicant k is called simple if it is not absorbed
by other implicants);

3. compute a minimal covering of the set of fundamental conjunctions
by a set of simple implicants; for examples, with the help of tables of
implicants.

Steps (1) and (2) are specific for CL functions. Step (1) is discussed in
Section 7 of the paper. As for step (2), it is based on the content of con-
sensus of elementary conjunctions ki: if k1 = xia, k2 = x̄ib, where a, b
are conjunctions of other characters, then consensus of k1 and k2 is re-
presented in the sets of such contradictory conjunctions that (i) ab, (if it
is inconsistent); (ii) conjunctions xix̄iab, i = 1, n (if ab is consistent). If
k1, k2 are non-representable in indicated form with any i then consensus
equals 0.

Example 6. For elementary conjunctions k1 = x1x̄2x3, k2 = x2x̄3 the
consensus is

{x1x2x̄2, x1x3x̄3}.

For elementary conjunctions k1 = x1x2x3, k2 = x2x̄3 the consensus is

{x1x2x3x̄3, x1x2x̄2, x1x̄1x2}.

We can search for all the simple implicants of CL function f , represented
in deadlock DNF f = ∨

i
ki by using the following algorithm:

1. For some pair ki, kj a consensus is formed;

76

Basic Concepts of Continuous Logic

2. all conjunctions obtained at step 1 are added to the disjunction ∨
i
ki;

3. all conjunctions ka included in other conjunctions kb (i.e. ka ≤ kb) are
eliminated.

Steps 1–3 are repeated for new pairs ki, kj until the form of the function f
remains unchanged. The final expression f = ∨

i
k̃i in terms of conjunctions k̃i

does contain all the simple implicants of the function f .
The number of CL functions grows enormously when the number of

arguments increases, which is reflected in the complexity of minimization;
therefore, the problem of decomposition regarding CL functions begins to
play a very important role. The decomposition of the CL function f(x),
x = (x1, . . . , xn), represents f as a composition of several CL functions with
a smaller number of arguments:

f(x) = F [fm(xm), . . . , f1(x
1), xi], xi ⊂ x, i = 0,m. (23)

If the intersection of the sets xi, i = 0,m is empty, the decomposition is
called a separating decomposition, otherwise this is a non-separating de-
composition. The representation in (23) with m = 1 is called a simple de-
composition. This is presently the only known algorithm in the search for
simple decomposition of the CL function in algebra (2).

The problems of minimization and decomposition of CL functions
were investigated by A. Kandel, D. Dubois, H. Prade, N. P. Shimbiriev
(see [3, 9, 11, 12]).

7. Analysis and Synthesis of Continuous-Valued Logical Functions

Analysis and synthesis of CL functions is quite different from those
problems relating to DL. Let be a range of values of a vector of arguments
x = (x1, . . . , xn), Df be a range of values of the CL function f(x); there is
also a one-to-one correspondence:

(x ∈ Dx) ⇔ (f(x) ∈ Df). (24)

The analysis of function f is converted to the following problem: given
range Df and function f(x), find the range Dx in accordance with (24).
The synthesis of the function f(x) can be thought of as the following: given
ranges Dx and Df , construct the CL function f which realizes the corre-
spondence in (24). Most methods of the analysis are developed for special
cases when f is either a many-placed disjunction or conjunction, and Df is
a half-interval or interval. They are based on the following equivalencies:

77

Vitaly. I. Levin

(
∨

i=1

n
xi ≥ a

)
⇔ (x1 ≥ a or . . . or xn ≥ a);

(
∨

i=1

n
xi ≤ b

)
⇔ (x1 ≤ b, . . . , xn ≤ b);

(25)(
∧

i=1

n
xi ≥ a

)
⇔ (x1 ≥ a, . . . , xn ≥ a);

(
∧

i=1

n
xi ≤ b

)
⇔ (x1 ≤ b or . . . or xn ≤ b);

In general, with the arbitrary CL function f and its range Df , we should ap-
ply formal methods: divide Df on sub-range, half-intervals, make a decision
for each appropriate inequality (see section 8) and unify the results. Some-
times the analysis of the function f(x) may be understood as the search for
given f and ranges Dx1

, . . . ,Dxn
for the arguments x1, . . . , xn (components

in aggregate range Dx) of the appropriate range Df (24). This task is an
inverse of the previous one; it is based on the following equivalencies:

(a ≤ x1 ≤ b, c ≤ x2 ≤ d) ⇔ (a ∨ c ≤ x1 ∨ x2 ≤ b ∨ d, ac ≤ x1x2 ≤ bd),
(26)

(a ≤ x ≤ b) ⇔ (2M − b ≤ x̄ ≤ 2M − a)

The task of the synthesis of the CL function in a common case has no
unique solution. An algorithm for the exact solution is unknown. One of the
possible methods might be as follows:
1. Discard the requirement x ≤ Dx;
2. select any standard function f(x);
3. analyze f(x) for the given condition f ∈ Df , select an appropriate

condition for x : x ∈ D′
x;

4. if Dx ⊆ D′
x, then f(x) is a solution of this task; otherwise, make a transi-

tion to the following function f(x) and continue.
Such an exhaustive search is unrealistic for large n, therefore we can reject
the requirement x ∈ Dx, and set up the following problem of the synthesis:
construct function f(x) on the given range Df such that f(x) ∈ Df . But
almost any (except constants) function f(x) of CL with suitable x can accept
any value in C. Therefore we have the following problem: Find, according
to (24), the range Dx on the given range Df and selected function f(x).

8. Solution of Equations and Inequalities of CL

Equations and inequalities of CL bear the same sense as the equations
and inequalities of DL. However they must be treated in a different way
because they do relate to continuous sets. An equation of CL is:

f(a, x) <
=
F (a, x), (27)

78

Basic Concepts of Continuous Logic

where f and F are given CL functions, a = (a1, . . . , ak) is a vector of
parameters, x = (x1, . . . , xn) is a vector of unknowns. An individual solution
of the inequality (27) names any vector x, for which the equality is fair.
Equations and inequalities in CL are classified on the number of unknowns n
and on the complexity of CL functions of the left and right parts represented
in standard deadlock DNF. Now we can fill the inequality with one unknown
in the standard form:

ax ∨ a′x̄ ∨ bxx̄ ∨ c <
=
dx ∨ d′x̄ ∨ lxx̄ ∨ e (28)

A maximal number of unknowns and their negations in one elementary
conjunction of a standardized inequality is called an order I of the inequality;
thus, for example, I = 2 for the equation (28). The equations with I = 1 are
called linear, and those with I ≥ 2 are nonlinear. A general form of a simple
equation with n unknowns in the standard form looks like this:

(
∨

i=1

n
aixi

)
∨
(
∨

i=1

n
a′ix̄i

)
∨ c ≤

(
∨

i=1

n
dixi

)
∨
(
∨

i=1

n
d′ix̄i

)
∨ e (29)

The inequalities of CL can be subdivided into ones containing negations of
unknowns and those which do not contain them. The main method of the
solution of inequalities of CL is the sequential partition of their right-hand
and left-hand parts allowing replacing an input inequality by equivalent
association of systems of the more simple equations and inequalities.

Example 7. Let us consider equation (27), where the last operation on
the left-hand side is the disjunction of CL:

f1(a, x) ∨ f2(a, x) <=
F (a, x).

Using a definition of CL disjunction we can subdivide this equation into an
equivalent union of two following systems of equations:

{
f1(a, x) ≥ f2(a, x)

f1(a, x) <=
F (a, x)

}
⋃
{
f1(a, x) < f2(a, x)

f2(a, x) <=
F (a, x)

}

Here, the newly obtained equation is simpler than the original one because
it contains fewer operations in one of its parts. The simplification can be
continued with the right-hand part of the equation, etc. The process will be
finished when we obtain indivisible equations and inequalities that represent
a solution of a given equation. Cases when the last operation of the left-hand
part or the right-hand part of a given equation is a conjunction can be
considered by analogy.

The theory, together with the solution techniques, was developed by
V. I. Levin. The most detailed investigation of the problem can be found
in [2]. We also recommend the reviews in [4–6, 9].

79

Vitaly. I. Levin

9. Differentiation and Integration of Continuous-Valued
Logical Functions

Functions of DL, defined on discrete arguments, cannot be differentiated
or integrated. CL functions have continuous-valued arguments. Therefore
they can be differentiated and integrated. However, it is difficult to diffe-
rentiate the functions of CL because they always have some points at which
they break, where a derivative does not exist. Let us call a CL function
derived as a superposition of operations ∨ and ∧ of the arguments xi (their
negations) as a function of the first and the second sort, respectively. Point
x = (x1, . . . , xn) is called a half-regular point of the function of the first
sort, if it has an ε-vicinity in the constant ordering of x1, . . . , xn. The point
x = (x1, x̄1, . . . , xn, x̄n) is called a regular point of the function of the second
sort, if it has an ε-vicinity in the constant ordering of x1, x̄1, . . . , xn, x̄n. It is
necessary and sufficient for point x to have its coordinates strictly ordered
in values to be a half-regular (or regular) point. The following theorems are
very important:
1. Any CL function of the first sort has in each half-regular point the single

derivative for any argument with values from the set {0, 1};
2. any CL function of the second sort has in each regular point the single

derivative for any argument with values from the set {1,−1, 0};
3. any CL function f in each point of existence of its derivatives ∂f/∂xi,
i = 1, n, has no more than one non-zero derivative.

The main method of differentiation of CL functions lies in their sequential
partition with obtaining a collection of simpler expressions, correct in their
sub-ranges, and their differentiation. If necessary, some general rules of dif-
ferential calculus (as, e.g. a derivative of a sum and a product) can be used
as well.

Some examples of the derivatives of CL functions are shown below:

x′x = 1, (x̄)′x = −1, (x ∨ x̄)′x = 1(x−M) − 1(M − x),

(xx̄)′x = 1(M − x) − 1(x−M), x 6= M ; (30)

(x1 ∨ x2)
′
x1

= 1(x1 − x2), (x1x2)
′
x1

= 1(x2 − x1), x1 6= x2.

Here 1(x) is a single function. The condition x 6= M excludes the irregular
point x = M , where the third and fourth derivatives do not exist. The
differential calculation in CL may be a source of new laws. They emerge,
in particular, with differentiation of the laws of a CL algebra and can be
considered as the differential equations defining various functions of CL. For
example:

80

Basic Concepts of Continuous Logic

(x1 ∨ x2)
′
x1

+ (x1x2)
′
x1

= 1, (x1 ∨ x2)
′
x1

· (x1x2)
′
x1

= 0. (31)

The system in (31) of the two differential equations determines two
functions of CL: disjunction and conjunction, which are solutions of the
system.

When differentiating functions with a large number of arguments, it
is reasonable to transform them to standard forms where a differentiate
variable is selected. This form can be easily differentiated. Thus, for example,
for standard forms (in the class of DNFs) with the selected variable

ax ∨ d, bx̄ ∨ d (32)

the derivatives are as follows:

(ax ∨ d)′x = I(ax− d) · I(a− x), ax 6= d, x 6= a;
(33)

(bx̄ ∨ d)′x = I(bx− d) · I(x̄− b), bx̄ 6= d, x̄ 6= b.

For functions of CL we can define the high-order derivatives, e.g. 2nd order
and 3rd order derivatives. In this case any function of the 1st order has
a derivative of higher orders, which equal 0; the same takes place for the
2nd order function.

It is possible to integrate CL functions as functions of continuous va-
riables. The function may be decomposed into the collection of more simple
expressions, correct in their sub-ranges, which are integrated. If necessary,
such usual rules of integration as integral of a sum, subdivision of integra-
tion interval, etc., can be used. The obtained integrals always exist because
CL functions are continuous.

Differential and integral calculus of CL functions was investigated in
detail by E. I. Berkovich and V. I. Levin [12].

10. Completeness in Continuous-Valued Logic

In CL, as well as in DL, there is a problem of completeness. A system
of CL functions {f1, . . . , fm} is a complete system (basis) in R class, if
any function from R can be represented by a superposition of the functions
f1, . . . , fm. In contrast with DL, whereR is a given and the basis is unknown,
in CL the basis is usually a given, and R class has to be found. The following
examples seem to be useful:
1. The system {∨,∧} is the basis for class R1 of the functions Cn → C

which accept the value of one of the arguments;
2. the system {∨,∧, }̄ is the basis for class R2 of the functions Cn → C

which accept the value of one of the arguments or its negation;

81

Vitaly. I. Levin

3. the systems {x1x2} and {x1 ∨ x2} are the basis for class R1;
4. the systems {x1x2, }̄ and {x1 ∨ x2, }̄ are the basis for class R2;
5. the system {∨,∧,⊃} is the basis for class R3 of such functions Cn → C

which can be represented in the following form:

y =

[
A ∨

(
b0 +

n∑

i=1

bixi

)]
∧B, where b0, . . . , bn are integer. (34)

The classes R1, R2, R3 are different subsets of the continuous set of
all CL functions. Mathematically, these classes are quite narrow. However
their practical importance cannot be overestimated because the elementary
operations of CL (disjunction, conjunction etc.) are similar to the proces-
ses of real systems. This adequacy together with the completeness of CL
operations lies in the basis of numerous applications of CL in the investiga-
tion of mathematical, engineering, economical, social and other phenomena.
The problems of completeness regarding CL functions were investigated by
R. McNaughton, F. P. Preparata and V. I. Levin. An overview of the results
can be found in [5, 6, 9, 21].

11. Conclusions

We may predict that in the future the main attention regarding the
theory of CL will be, apparently, given to the development of new genera-
lizations of CL. The good old traditional tasks should not be overlooked
either. In the field of enumeration of CL functions, in search for their re-
presentations and minimal forms, more effective solutions will be found.
Great progress is expected in the applications of CL concerning opera-
tion research, simulation of complex economic systems and neuronal struc-
tures, description and the analysis of the processes in sociology and hi-
story.

It should be noted that in addition to CL, discussed here in this paper,
there is another continuous logic. This is the ℵ0-valued logic of Lukasiewicz,
defined during the interval [0, 1]. This logic has basic operations which are
similar to those of CL. However, as it was demonstrated by R. McNaugh-
ton [21], but not for all tuples of arguments, for which CL functions are
defined, it is possible to determine corresponding functions of Lukasiewicz
logic. In the works of V. I. Levin [2, 3, 6, 7, 9] it was proved that by si-
mulating applied systems with CL we must define the operations on the
interval [A,B], where A < 0, B > 1. Therefore, the theoretical and applied
potentials of CL are wider than those of Lukasiewicz logic.

82

Basic Concepts of Continuous Logic

The further particulars on the subjects, mentioned in our review, can
be found in the publications [1–13]. A lot of applied results were discus-
sed at the conferences held in Penza and Ulianovsk [14–20]. Let us now
briefly discuss some Russian works in the field [1, 2, 4, 6–12]. The early
book [1] considers the basic principles of continuous-valued logic applied to
problems of function approximation, synthesis of functional schemes and
the design of electrical circuits. A theory of CL, including equations and
inequalities of CL and their application to automata theory and the design
of digital devices is proposed in [2, 4]. The book [6] considers CL, its ge-
neralizations and application to automata theory, information processing,
reliability theory, decision theory, and optimization. A theory of the relia-
bility of engineering systems, based on CL, is built in [7]. The collection
of papers [8] includes various fuzzy logics and their application to artificial
intelligence. The mathematical apparatus of CL, its generalization and its
application to scheduling, optimization and simulation of economic systems
can be found in [9]. The hybrid systems, derived from CL and DL and alge-
braic structures, form a subject of the monograph [11]; here we can also find
the minimization of CL functions and its application to functional synthe-
sis. Some basic results of CL and its applications in mathematics, economic,
engineering, system theory and biology are presented in [12].

References

1. Ginsburg S. A. (1968). Mathematical Continuous Logic and Image of
Functions. – Moscow, Energia (In Russian).

2. Levin V. I. (1975). Introduction to the dynamic theory of finite auto-
mata. – Riga: Zinatne (In Russian).

3. Kandel A., Lee S. C. (1979). Fuzzy switching and automata. Theory
and application. – New York. Grain, Russak and Co.

4. Levin V. I. (1980). Dynamics of logical devices and systems. – Moscow,
Energia (In Russian).

5. Koffman A. (1982). Introduction to the theory of fuzzy sets. – Moscow,
Radio and Svjaz (In Russian).

6. Levin V. I. (1982). Infinite-valued logic in the tasks of cybernetics. – Mo-
scow, Radio and Svjaz (In Russian).

7. Levin V. I. (1985). The logical theory of reliability of complex systems.
– Moscow, Energoatomizdat (In Russian).

8. Pospelov D. A. (Editor) (1986). Fuzzy sets in models of control and
artificial intelligence – Moscow, Nauka Publishers (In Russian).

83

Vitaly. I. Levin

9. Levin V. I. (1987). Structure-logical methods of a research of complex
systems with applications of the computer. – Moscow, Nauka (In Rus-
sian).

10. Volgin L. I. (1989). Synthesis of devices for processing and conversion
of the information in element basis of relators. – Tallinn: Valgus (In
Russian).

11. Shimbirev P. N. (1990). Hybrid continuous-logical devices. – Moscow,
Energoatomizdat (In Russian).

12. Volgin L. I., Levin V. I. (1990). Continuous logic. The theory and ap-
plications. – Tallinn: Academy of Sciences of Estonia (In Russian).

13. Terano A., Asai E. and Sugeno M. (Editors) (1993). Application of fuzzy
systems – Moscow, Mir (In Russian).

14. Levin V.I. (Editor) Proc. 1st All-Russian Conf. “Continuous logic and
its application in engineering, economics and sociology”, Penza, 1994.
(in Russian).

15. Levin V. I. (Editor) Proc. Int. Conf. “Continuous logical methods and
models in a science, engineering and economics” Penza, 1995. (in Rus-
sian).

16. Levin V. I. (Editor) Proc. Int. Conf. “Continuous and similar logics in
engineering, economics and sociology”. Penza, 1996 (In Russian).

17. Volgin L. I. (Editor) Proc. Int. Conf. “Continuous-logical systems, mo-
dels and algorithms”, Ulyanovsk. 1995. (in Russian).

18. Levin V. I. (Editor) Proc. All-Russian Conf. “Continuous and related
logics in computer science, economics and sociology” Penza, 1997 (in
Russian).

19. Volgin L. I. (Editor) Proc. Int. Conf “Relator and continuous logical
networks and models” Ulyanovsk, 1998 (in Russian).

20. Levin V. I. (Editor) Proc. Int. Conf. “Logic-mathematical methods in
engineering, economics and sociology”, Penza, 1998 (In Russian).

21. McNaughton R. A theorem about infinitive-valued sentential logic.
J. Symb. Logic. 16. No 1. 1951.

84

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11 (24) 2007

Mariusz Giero
University of Białystok

QUERYING TEMPORAL DATABASE
WITH THE LANGUAGE

OF FIRST-ORDER TEMPORAL LOGIC1

1. Introduction

A temporal database [Etz, Ste, Tan] is defined as a database main-
taining object histories, i.e., past, present, and possibly future data. There
are numerous application domains dealing with temporal data: Medical Sys-
tems (e.g. patient’s records), Computer Applications (e.g. history of file back
ups), Archive Management Systems (e.g. sporting events, publications and
journals), Reservation Systems (e.g. when was a flight booked) and many
others [Sno]. Support for time-varying data within a traditional relational
database is not straightforward. There have been more than two dozens
extended relational data models proposed [JenSno]. Time-varying data is
commonly represented by timestamping values [JenSno, Jen]. Timestamps
can be time points, intervals or a set of intervals and can be added to tuples
or attributes. There are also different considerations of what time stamps
represent: valid time, i.e., time when data (tuple) is true in the universe of
discourse, transaction time, i.e., time when data is stored in a database or
both time references together.

In this paper we consider a temporal database model with tuple time-
stamping. Tuples are timestamped by a set of intervals which represent valid
time.

1 The research reported in this paper is part of the project entitled Temporal Re-
presentation of Knowledge and Its Implementation in the Computer Systems of Medi-
cal Conducts supported by the Polish Ministry of Science and Higher Education, grant
no. 3 T11F 011 30.

ISBN 978–83–7431–158–8 ISSN 0860-150X 85

Mariusz Giero

2. Structure of Time

In this paper, we assume that the flow of time (T,<) is a linear, discrete
and ordered structure with no end points. T is a set of time points and < is
a binary order relation defined on T which satisfies the following conditions:
• transitivity ∀x, y(x < y ∧ y < z → x < z)
• irreflexivity ∀x¬(x < x)

• totality x = y or x < y or y < x, where x, y, z ∈ T

3. Relational Database

The relational data model was introduced in the 1970s by E. F. Codd
[Cod, Dat]. Currently, it is the most widespread data model used for data-
base applications. Formally, it can be defined as follows:

Definition 1.
A relational database schema is a quintuple S = (R,A,D, attr,dom),

where:
• R = {R1, . . . , Rk} is a set of relation names,
• A = {A1, . . . , An} is a set of attribute names,
• D = {D1, . . . ,Dm} is a set of domains,
• attr : R → TUP(A), where TUP(A) denotes a set of finite tuples of

different elements of A, is a mapping that assigns to each relation name
a tuple of attribute names,

• dom : A → D is a mapping that assigns to each attribute name a do-
main.

Definition 2.
An instance of relational database (or just a relational database) for

schema S = (R,A,D, attr,dom) is a set DB = {R1, . . . ,Rk} where Ri is
a relation instance (or just a relation) over the relation name Ri ∈ R, i.e.,

Ri ⊆ dom(A1) × . . .× dom(Al),

where attr(Ri) = (A1, . . . , Al), l ≤ n and × is the Cartesian product ope-
rator.

Example 1.
Let us consider a database storing data about the patients at a hospital.

For simplicity, we will use only two attributes and one relation name.

86

Querying Temporal Database with the Language of First-Order...

R = {PATIENTS}, A = {ID,NAME}, D = {N,CHAR}2,
attr(PATIENTS) = (ID,NAME),
dom(ID) = N, dom(NAME) = CHAR.

DB = {PATIENTS}
PATIENTS = {(1,Kowalski), (2,Kozłowski), (3,Piasecka)}

The fact (x, y) ∈ PATIENTS means that a person named y with
an identifier x is a patient at a specific hospital. A database can also be
represented (not formally, for the sake of readability) as a set of tables.
A table represents a relation. In this example:

PATIENTS

ID NAME

1 Kowalski

2 Kozłowski

3 Piasecka

4. Temporal Database

Definition 3.
An instance of temporal database (or just a temporal database) for

schema S = (R,A,D, attr,dom) over the flow of time (T,<) is a set
TDB = {R1, . . . ,Rk} where Ri is a temporal relation instance (or just
a temporal relation) over the relation name Ri ∈ R, i.e.,

Ri(dom(A1) × . . .× dom(Al)) × 2T ,

where attr(Ri) = (A1, . . . , Al).

Example 2.
Let S be the same schema as in Example 1. We take the flow of time

to be that of days T = {. . . , 2007–03–01, 2007–03–02, 2007–03–03, . . .}.

TDB = {PATIENTS}
PATIENTS =

{((1,Kowalski), [2007–02–01, 2007–02–25]3 ∪ [2007–03–15, 2007–03–16]),
((2,Kozłowski), [2007–02–25, 2007–03–01]),

((5,Piasecka), [2007–02–20, 2007–03–05] ∪ [2007–04–01, 2007–04–16])}

2 N denotes a set of natural numbers, CHAR a set of character sequences.
3 [a, b] = {x : x ∈ T, a ≤ x ≤ b}.

87

Mariusz Giero

The set of time points (stamps) associated to a tuple describes when data
represented by the tuple are true in modelled reality, i.e., in this example,
when a person is (or was or is going to be) a patient at the hospital. The
temporal database can also be represented as a set of tables:

PATIENTS

ID NAME

1 Kowalski [2007–02–01, 2007–02–25] ∪ [2007–03–15, 2007–03–16]

2 Kozłowski [2007–02–25, 2007–03–01]

3 Piasecka [2007–02–20, 2007–03–05] ∪ [2007–04–01, 2007–04–16]

5. The Query Language for Temporal Database

Let S = (R,A,D, attr,dom) be a relational database scheme, (T,<) be
the flow of time and TDB = {R1, . . . ,Rk} be a temporal database for S
over (T,<). The query language (QL) for TDB is based on the language of
first-order temporal logic [Gab, ChoTom]. It has the following categories of
basic symbols:
• Domain variables: x1, x2, . . .;
• Domain constants: c1, c2, . . .;
• time variables: t1, t2, . . .;
• time constants: e1, e2, . . .;
• elements of R as predicate symbols: R1, R2, . . . , Rk and a predicate

symbol time;
• equality symbol: =;
• logical connectives: ¬,∧;
• existential quantifier: ∃;
• temporal connectives: U,S;
• punctuation symbols: (,).

Syntax
A term is either a constant or a variable. The atomic formulas of the

language are of the form:
• ai = aj , where ai and aj are terms of the same sort, i.e., either domain

terms or time terms,
• Ri(a1, a2, . . . , an), where n is the length of the sequence attr(Ri) and
aj is a domain variable (constant) that ranges over (is element of) the
domain dom([attr(Ri)]j),

• time(a), where a is a time term.

88

Querying Temporal Database with the Language of First-Order...

Formulas of QL are finite strings of basic symbols defined in the follow-
ing recursive manner:
(1) Any atomic formula is a formula,
(2) if ϕ,ψ are formulas, so also are ¬ϕ, ϕ∧ψ, ∃aϕ, U(ϕ,ψ), S(ϕ,ψ), where

a is any variable xi.

Semantics
We define interpretation Θ as follows: Θ(Ri) = Ri, Θ(ci) ∈

⋃
D,

Θ(ei) = T , for every i. An assignment v is a mapping that associates every
domain variable xi with a domain value v(xi) ∈

⋃
D and every time varia-

ble ti with a time point v(ti) ∈ T . It is convenient to extend an assignment
over constants by making v(ci) = Θ(ci) and v(ei) = Θ(ei), for every i. We
define a formula ϕ to be true in TDB at time t under assignment v (denoted
by TBD, v, t |= ϕ) by induction on the structure of the formula:

Definition 3a.
(1) TBD, v, t |= Ri(a1, . . . , as) iff ((v(a1), . . . , v(as)), τ) ∈ Θ(Ri),

where τ ⊆ T and t ∈ τ ,
(2) TBD, v, t |= ai = aj iff v(ai) = v(aj),
(3) TBD, v, t |= time(ai) iff v(ai) = t,
(4) TBD, v, t |= ¬ϕ iff not TBD, v, t |= ϕ,
(5) TBD, v, t |= ϕ ∧ ψ iff TBD, v, t |= ϕ and TBD, v, t |= ψ,
(6) TBD, v, t |= ∃xi ϕ iff TBD, v∗, t |= ϕ,

where v∗ is an assignment which agrees with the assignment v on the
values of all variables except, possibly, on the values of xi,

(7) TBD, v, t |= U(ϕ,ψ) iff
there exists a t1 ∈ T with t < t1 and TBD, v, t1 |= ϕ

and for every t2 ∈ T such that t < t2 < t1 holds TBD, v, t2 |= ψ,
(8) TBD, v, t |= S(ϕ,ψ) iff

there exists a t1 ∈ T with t1 < t and TBD, v, t1 |= ϕ
and for every t2 ∈ T such that t1 < t2 < t holds TBD, v, t2 |= ψ.

For convenience, we will introduce additional symbols: ∨,→,↔ (other
logical connectives), ∀ (universal quantifier) and F,P,G,H,X,Y (other tem-
poral connectives, (see Fig. 1)) defined as:

Definition 3b.
(1) ϕ ∨ ψ ≡def ¬(¬ϕ ∧ ¬ψ)
(2) ϕ→ ψ ≡def ¬ϕ ∨ ψ
(3) ϕ↔ ψ ≡def (ϕ→ ψ) ∧ (ψ → ϕ)
(4) ∀xϕ ≡def ¬∃x¬ϕ
(5) Fϕ ≡def U(ϕ,⊤)

89

Mariusz Giero

(6) Gϕ ≡def ¬F¬ϕ
(7) Pϕ ≡def S(ϕ,⊤)
(8) Hϕ ≡def ¬P¬ϕ
(9) Xϕ ≡def U(ϕ,⊥) (if the flow of time is discrete)

(10) Yϕ ≡def S(ϕ,⊥) (if the flow of time is discrete)

Fig. 1. Graphical Representation of Temporal Connectives

Definition 4.
A temporal database query is a formula of QL with at least one free

variable. The answer of the query ϕ (denoted by ϕ(TDB)) is the temporal
relation it generates in the database:

ϕ(TDB) = {((v(x1), . . . , v(xs)), τ) : TBD, v, t |= ϕ and t ∈ τ},

where x1, . . . , xs are all free variables of the formulae ϕ.

90

Querying Temporal Database with the Language of First-Order...

6. Queries

We will formulate four queries over the temporal database presented in
Example 2 (we will assume that today is 2007–04–03).

Query 1.
Find those who were (but are no longer) patients at the hospital

ϕ = (P PATIENTS(x1, x2)) ∧ ¬PATIENTS(x1, x2) ∧ time(2007–04–03)

According to definition 4 the answer of the query is the set:

ϕ(TDB) = {((v(x1), v(x2)), τ) : TBD, v, t |= (P PATIENTS(x1, x2))

∧ ¬PATIENTS(x1, x2)

∧ time(2007–04–03) and t ∈ τ}.

From definition 3a and 3b, we have:
TBD, v, t |=(P PATIENTS(x1,x2))∧¬PATIENTS(x1,x2)∧time(2007–04–03)

m (def. 3a, p. 5)

(a) TBD, v, t |= P PATIENTS(x1, x2)
(b) and TBD, v, t |= ¬PATIENTS(x1, x2)

(c) and TBD, v, t |= time(2007–04–03)

(a) TBD, v, t |= P PATIENTS(x1, x2)

m (def. 3b, p. 7)

TBD, v, t |= S (PATIENTS(x1, x2),⊤)

m (def. 3a, p. 8)

there exists t1 ∈ T with t1 < t
and TBD, v, t1 |= PATIENTS(x1, x2)
and for every t2 ∈ T such that t1 < t2 < t holds TBD, v, t2 |= ⊤

m

there exists t1 ∈ T with t1 < t and TBD, v, t1 |= PATIENTS(x1, x2)

m (def. 3a, p. 1)

there exists t1 ∈ T with t1 < t and (v(x1), v(x2), τ) ∈ PATIENTS,
where τ ⊆ T and t1 ∈ τ

(b) TBD, v, t |= ¬PATIENTS(x1, x2)

m (def. 3a, p. 4)

91

Mariusz Giero

not TBD, v, t |= PATIENTS(x1, x2)

m (def. 3a, p. 1)

(v(x1), v(x2), τ) /∈ PATIENTS, where τ ⊆ T and t ∈ τ

(c) TBD, v, t |= time(2007–04–03)

m (def. 3a, p. 3)

t = 2007–04–03

(a), (b) and (c) are satisfied by:

t1 = 2007–03–01,
τ = [2007–02–25, 2007–03–01],
v(x1) = 2, v(x2) = Kozłowski

and
t1 = 2007–03–16,
τ = [2007–02–01, 2007–02–25] ∪ [2007–03–15, 2007–03–16],
v(x1) = 1, v(x2) = Kowalski, therefore,

ϕ(TDB) = {((1,Kowalski), [2007–02–01, 2007–02–25]∪
[2007–03–15, 2007–03–16]),

((2,Kozłowski), [2007–02–25, 2007–03–01])}

Query 2.
Find those who stayed at the hospital more than once

ϕ = P (PATIENTS(x1, x2)∧
P (¬PATIENTS(x1, x2)∧P PATIENTS(x1, x2)))∧ time(2007–04–03)

ϕ(TDB) = {((1,Kowalski),
[2007–02–01, 2007–02–25] ∪ [2007–03–15, 2007–03–16])}

(It can be shown in an analogous way to the previous query).

Query 3.
When did Kowalski (id = 1) stay at the hospital? (in other words: show

the past history of the tuple (1,Kowalski))

ϕ = PATIENTS(1, x)

ϕ(TBD) = {((1,Kowalski),
[2007–02–01, 2007–02–25] ∪ [2007–03–15, 2007–03–16])}

92

Querying Temporal Database with the Language of First-Order...

Query 4.
Find those who were admitted to hospital between 2007–01–01 and

2007–04–03

ϕ = time(2006–12–31) ∧ ¬PATIENTS(x1, x2)∧
F (PATIENTS(x1, x2) ∧ F (time(2007–04–04)))

ϕ(TBD) = {((1,Kowalski),
[2007–02–01, 2007–02–25] ∪ [2007–03–15, 2007–03–16]),

((2,Kozłowski), [2007–02–25, 2007–03–01]),
((5,Piasecka),
[2007–02–20, 2007–03–05] ∪ [2007–04–01, 2007–04–16])}

References

[ChoTom] Chomicki J, Toman D.: Temporal Logic in Information Systems.
In Logics for Databases and Information Systems, Kluwer Academic
Publishers, 1998, pp. 31–70.

[Cod] Codd E. F.: A Relational Model of Data for Large Shared Data Banks.
Communications of the ACM, 1970, 13(6), pages 377–387.

[Dat] Date C. J.: Introduction to Database System, Addison-Wesley, 2003.
[Etz] Etzion, Jajodia, Sripada. Temporal Databases: Research and Practice.

Springer 1998.
[Gab] Gabbay D. M., Reynolds M. A., Finger M.: Temporal Logic, Ma-

thematical Foundations and Computational Aspects, Vol 2. Clarendon
Press. Oxford 2000.

[Jen] Jensen, C. S.: Temporal Database Management, PhD Thesis, Depart-
ment of Computer Science, Aalborg University, 2000
[http://www.cs.aau.dk/∼csj/Thesis/].

[JenSno] Jensen C. S., Snodgrass R. T.: Semantics of Time-Varying Infor-
mation, Information Systems, 21(4), 1996, pp. 311–352.

[Sno] Snodgrass R., editor. The TSQL2 Temporal Query Language. Kluwer
Academic Publishers, 1995.

[Ste] Steiner A.: A Generalisation Approach to Temporal Data Models and
Their Implementations, PhD Thesis, Departement Informatik, ETH
Zurich, Switzerland, 1997.

[Tan] Tansel A. U., Clifford J., Gadia S., Jajodia S., Segev A., Snod-
grass R.: Temporal Databases: Theory, Design, and Implementation,
Benjamin-Cummings Publishing Co., Inc., 1993.

93

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11 (24) 2007

Dariusz Surowik
University of Białystok

A FEW REMARKS ON QUERYING LISTS, TREES
AND DAGS A TEMPORAL-LOGIC APPROACH1

Abstract. This paper discusses various conceptions of query languages for
database systems (object oriented), in which objects are lists, trees and directed
acyclic graphs. I use temporal logic as a modelling tool for the query languages
under consideration. In the case of query language regarding lists, I will discuss
temporal logic constituting an extension of linear time temporal logic, whereas
in the case of query language regarding trees and directed acyclic graphs, I will
discuss temporal logics constituting extensions of the branching–time temporal
logic, the so called computation tree logic (CTL).

Key words: temporal logic, data models, query language

1. Introduction

Lists, trees and graphs are among the most important data structures
in informatics. Computer linguistics or text databases are typical fields of
database applications where trees, for example, are useful as a data type.
In these applications, trees can serve as a tool for modelling a description
of integrated concepts (for example, as a result of syntactic analysis) or
for representing document structure. Although these structures are very
important as tools for modelling, they have hardly been used so far as data
types in existing databases. Standard database systems offer only sets of
suitable relations as a way of representing unit sets and simple data types,
such as whole numbers or strings, for representing unit attributes.

The present paper discusses lists, trees and directed acyclic graphs, as
well as formal tools offered by temporal logic for searching the aforemen-

1 The research reported in this paper is part of the project entitled Temporal Re-
presentation of Knowledge and Its Implementation in the Computer Systems of Medi-
cal Conducts supported by the Polish Ministry of Science and Higher Education, grant
no. 3 T11F 011 30.

ISBN 978–83–7431–158–8 ISSN 0860-150X 95

Dariusz Surowik

tioned data structures. Applying temporal logic allows one to easily con-
struct queries, which would be difficult to express without taking a temporal
context into account. For example, a temporal modality such as “always”
can be used to express the dynamic utterance “The wages of the workers on
the list never decrease”. One can, of course, express the same in a sense in
a ‘static’ way as, for example, “the workers’ wage list is ordered according
to wages”. It seems, however, that the use of temporal context makes the
utterance more interesting.

2. Querying lists

In order to correctly define the syntax of temporal logic used for for-
mulating queries in structures which have a form of lists, we must specify
what we mean by the notion of an atomic formula. The correct definition of
this concept turns out to be problematic, however. The problem lies in the
fact that the elements of a list may have a very complex structure. What an
atomic formula actually is depends therefore on the type of data to which
the list has been applied. Thus, the definition of an atomic formula should
be different when the elements of the list are some numerical values and
different when the list has sets or families of sets as its elements. An atomic
formula is a predicate which can be directly evaluated by referring to an
individual element of a list. I am aware of the fact that this is not a pre-
cise definition of the concept in question. An atomic formula is a syntactic
notion and should be described in syntactic terms. Unfortunately, the only
thing we can say at this point about an atomic formula from a syntactic
point of view is that it does not comprise logical operators2. An example of
an atomic formula is the formula (◦ < 2). This formula is true if the value
of the current element of the list is smaller than 2.

In the language L of our logic we have the connectives ¬,∨ temporal
operators S (Since), U (Until), ◦ (Next) and • (Previous), and the binder
operator ↑.

Well formed formulas we may define as follows:
• Atomic formula is well formed formula,
• If α, β are well formed formulas, then so are ¬α, ↑α, ◦α, •α, α ∨ β,
αUβ, αSβ.

2 In some temporal logic systems an atomic formula is simply a formula which does
not contain temporal operators.

96

A Few Remarks on Querying Lists, Trees and Dags...

SYNTAX

Definition 1
A list is a string of n objects L[1], L[2], . . . , L[n], where n > 0.
The value of the i-th element of the list will be marked as L[i], whereas

the i-th element of the list will have the symbol 〈L, i〉. In order to refer to
the current position on the list, I will use the symbol ↓.

The truthfulness of the formula is defined as the truthfulness at the i-th
point of the list L.

Definition 2
For any list L, for any 1 ≤ i ≤ n and for any formula α holds:

1) 〈L, i〉 |= α ≡ α is an atomic formula and evaluates to true
for L[i],

2) 〈L, i〉 |= ¬α ≡ 〈L, i〉 6|= α,

3) 〈L, i〉 |= (α ∨ β) ≡ 〈L, i〉 |= α or 〈L, i〉 |= β,

4) 〈L, i〉 |= ◦α ≡ if 1 ≤ i < n, then 〈L, i+ 1〉 |= α,

5) 〈L, i〉 |= (αUβ) ≡ ∃j≥i such that 〈L, j〉 |= β
and ∀k (if i ≤ k < j, then 〈L, k〉 |= α),

6) 〈L, i〉 |= •α ≡ if 1 < i ≤ n, then 〈L, i− 1〉 |= α,

7) 〈L, i〉 |= (αSβ) ≡ ∃j≤i such that 〈L, j〉 |= β
and ∀k (if j < k ≤ i, then 〈L, k〉 |= α),

8) 〈L, i〉 |= ↑xα ≡ 〈L, i〉 |= αx
L[i].

Operators ◦, • are the operators of the next and the previous respec-
tively. The notation 〈L, i〉 |= ◦α is understood as follows: a formula α is
fulfilled for the i+1-st element of the list. The graphic interpretation of the
notation 〈L, 1〉 |= ◦p is shown below.

In the language of the logic under consideration, the sentence the follo-
wer of the current element of the list is negative can be written as ◦(↓< 0).

Operators U and S are known operators until and since. The formula
αUβ is understood as follows: formula β is true at a certain moment in
the future, let us call this moment j, whereas formula α is true from the

97

Dariusz Surowik

current moment till the moment j. The graphic interpretation of the notation
〈L, 2〉 |= (p Uq) is shown below.

The notation L |= α will be used as an abbreviation for the notation 〈L, 1〉 |=
α. If L |= α obtains, we will say that list L is the model for formula α. Let us
note that operators ◦,• are weak operators, i.e., formula ◦α, (•α) is true in
the last (first) element of the list, regardless of the form of formula α. This
is the so called empty fulfilment, since, as follows on from the definition of
fulfilment respectively for operators ◦,• in the first (last) element of the
list the predecessor of the corresponding implication is false.

With the help of the previously defined operators, we can introduce
additional specific temporal operators.

Definition 3

1) ◦̄α ≡ ¬◦¬α (strong next)

2) •̄α ≡ ¬•¬α (strong previous)

3) ♦α ≡ true Uα (eventually in the future)

4) �α ≡ true Sα (eventually in the past)

5) �α ≡ ¬♦¬α (always in the future)

6) �α ≡ ¬�¬α (always in the past)

Examples of the graphic interpretations of the chosen operators are
presented below.

Formula ◦̄α is true at the i-th point of list L if the i-th point of the list
is not the last point and α is fulfilled at point i+ 1.

Example 1

a) The sentence The list does not contain two neighbouring negative ele-
ments can be written symbolically as: G((↓< 0) ⇒ ◦(↓≥ 0))

98

A Few Remarks on Querying Lists, Trees and Dags...

The model for the formula under consideration is list A; while list B
is not the model for this formula due to the value of the second and
third element of the list. In the language of first order classical logic the
above formula can be written as follows:

¬∃1≤i<n (L[i] < 0 ∧ L[i+ 1] < 0)

b) The expression (↓> 0)∧ ◦̄((↓> 0)U�(↓< 0)) is a formal notation of the
statement that
The first element of the list is positive. The following elements are also

positive until a certain element is reached whose value is negative. All
the elements following the element that has negative value, also have

negative value. (We can thus state that the change in the value sign of
the elements of the list has occurred only once).

List A is not a model for this formula, because the change of the sign
of the elements of the list occurs twice. List B, on the other hand,
constitutes the model for the formula under consideration since the first
element of the list is positive and the change in the sign of the elements
of the list occurs only once. In the language of first order classical logic
the formula under consideration can be written as follows:

L[1] > 0 ∧ ∃j>1 (∀1≤i<j L[i] > 0 ∧ ∀i>j L[i] < 0)

So far we have considered expressions in which individual list values
are compared to some constant arbitrarily chosen value. However, in the
case of a query of the type Is the list monotonously growing?, we have to
compare a number of values of the elements of the list to one another. To this
end we shall use the operator ↑. By formula αx

L[i] we understand a formula
obtained from formula α by replacing all free occurrences of variable x
in formula α with the value L[i]. According to definition 2, we should under-
stand formula ↑xα in the same way.

99

Dariusz Surowik

Example 2

a) Formula �(↑x◦(↓> x)) is a formal notation of the statement that the list
is monotonously growing. (In the language of first order classical logic
the above formula can be written as follows: ∀1≤i<n (L[i+ 1] > L[i])).

b) Formula �(↑x¬◦♦(↓= x)) is understood as: the list does not contain
two identical elements. (¬(∃1≤i≤n ∃1≤j≤n (i 6= j ∧ L[i] = L[j])) in the
language of first order classical logic).

List A is a model for the formula �(↑x◦(↓> x)), while both list A and
list B are examples of models for the formula (�(↑x¬◦♦(↓= x)).

3. Querying trees

Let us consider an unordered tree T = (V,E, λ). V is a set of nodes of
tree T , E is a set of edges of tree T , while λ is a function assigning to each
node v of tree T a value from a certain domain D and thus λ : V → D.
Analogously to lists, T [v] denotes a value in node v of tree T , while by 〈T, v〉
we understand node v of tree T .

In order to analyse lists with the help of temporal logic, it is sufficient to
adopt notions of temporal logic regarding linear time (PLTL). In linear time
there is only one future (just like in list type structures) and each element
can have only one follower. It is different in the case of tree-like structures,
whose elements can have several followers. The future in such structures
can branch. Hence, for tree analysis one should use notions created for
the purpose of temporal logic of branching time. A temporal logic which,
after small modifications, can be used to construct the language of queries
for tree-like structures is CTL∗ logic. The main idea of CTL∗ logic was
introducing the so called path operators E,A. Formula Eα should be under-
stood as There is a path starting at the current node such that formula α is
fulfilled in this path. Formula Aα, on the other hand, should be understood
in the following way: In all the paths starting at the current node formula α
is fulfilled.

A temporal logic which was to serve the purpose of tree analysis was pro-
posed by Peter Becker [1]. Because it is a construct very similar to the known

100

A Few Remarks on Querying Lists, Trees and Dags...

CTL∗ logic, the author of the system in question uses the symbol CTL∗
DB

for his logic.
Just as in the case of lists, this logic assumes that there is a set of ato-

mic formulae. In CTL∗
DB logic, however, we deal with two types of formulae,

i.e. point formulae and path formulae. Point formulae are connected to no-
des and their truthfulness or falsehood is verified with reference to a given
node. Path formulae, on the other hand, are connected to paths and their
truthfulness or falsehood is verified in relation to a given path.

The syntax of CTL∗
DB is as follows:

Definition 4

a) State formulas
1. Each atomic formula is a state formula,
2. If α and β are state formulas, then α ∨ β, ¬α are state formulas,
3. If α is a patch formula, then Eα, Aα are state formulas.

b) Patch formulas
1. Each state formula also is a patch formula,
2. If α and β are patch formulas, then α ∨ β, ¬α are patch formulas,
3. If α and β are patch formulas, then so are: αUβ, αSβ, ◦α, •α.

c) The set of state formulas generated by the above rules forms the lan-
guage of CTL∗

DB logic.

Before presenting the semantics of CTL∗
DB logic, let us define the notion

of maximal path for a given node.

Definition 5

Let v be a node of tree T . Path p = (v, v1, v2, . . . , vrp
) of tree T is called

the maximal path for node v if and only if vrp
is a leaf.

The definition of truthfulness for CTL∗
DB logic is the following:

Definition 6

a) STATE FORMULAS
For each tree T , for each node v and for each state formulas α, β

1) 〈T, v〉 |= α ≡ α evaluates to true for T [v],

2) 〈T, v〉 |= ¬α ≡ 〈T, v〉 6|= α,

3) 〈T, v〉 |= (α ∨ β) ≡ 〈T, v〉 |= α or 〈T, v〉 |= β,

4) 〈T, v〉 |= Eα ≡ ∃p=(v,v1,v2,...,vrp) p is maximal path,
such that 〈T, p, 1〉 |= α,

5) 〈T, v〉 |= Aα ≡ ∀p=(v,v1,v2,...,vrp) p is maximal path,
such that 〈T, p, 1〉 |= α.

101

Dariusz Surowik

b) PATH FORMULAS
For each tree T , for each maximal path p = (v, v1, v2, . . . , vrp

), for each
1 ≤ i ≤ r and for each path formulas α, β holds:

1) 〈T, p, i〉 |= α ≡ 〈T, vi〉 |= α,

2) 〈T, p, i〉 |= ¬α ≡ 〈T, p, i〉 6|= α,

3) 〈T, p, i〉 |= (α ∨ β) ≡ 〈T, p, i〉 |= α or 〈T, p, i〉 |= β,

4) 〈T, p, i〉 |= ◦α ≡ if 1 ≤ i < r, then 〈T, p, i + 1〉 |= α,

5) 〈T, p, i〉 |= (αUβ) ≡ ∃j≥i such that 〈T, p, j〉 |= β and
∀k (if i ≤ k < j, then 〈T, p, k〉 |= α),

6) 〈T, p, i〉 |= •α ≡ if 1 < i ≤ r, then 〈T, p, i − 1〉 |= α,

7) 〈T, p, i〉 |= (αSβ) ≡ ∃j≤i such that 〈T, p, j〉 |= β and
∀k (if j < k ≤ i, then 〈T, p, k〉 |= α),

Example 3

In the language of CTL∗
DB logic, the formulation:

a) There is a monotonously growing path can be written symbolically as:

E (� (↑x◦(↓> x))).

In the language of the first order logic the formula under consideration
can be written as follows:

∃p=(v1,v2,...,vrp)∈T ∀1≤i<r (T [p, vi] < T [p, vi+1]).

An example of a tree-like structure, which is a model of the formula
under consideration, is presented in the drawing below.

102

A Few Remarks on Querying Lists, Trees and Dags...

b) The statement that Every node with a negative value has only non-ne-
gative children can be written symbolically in the formula

A (� (↓< 0) → A(◦(↓≥ 0)))).

In the language of the first order logic the formula under consideration
can be written as follows:

∀p=(v1,v2,...,vr)∈T ((∃1≤i<r T [p, vi] < 0) ⇒

⇒ ∀p′=(v1′ ,v2′ ,...,vr′)∈T ((∃1≤j<r′ vi = vj(∈ p′)) ⇒ (T [p′, vj+1] ≥ 0))).

An example of a tree-like structure, which is a model of the formula
under consideration, is presented in the drawing below:

4. Querying directed acyclic graphs

Analogical constructions can be created for the purpose of graph ana-
lysis. If a graph is coherent and undirected, it is equal to a tree, hence, in
order to analyse such a graph we can use the tools discussed in the previous
part of the paper. In the case of directed graphs (i.e. structures of the form
G = 〈V,A〉 where: V is a set of vertices, A is a set of ordered pairs of va-
rious nodes from set V , called directed edges, or arcs: A = {(u, v), u, v ∈ V }),
we will consider only acyclic graphs, i.e., directed graphs that do not have
cycles. An example of such a graph is presented below.

103

Dariusz Surowik

Considering only this type of graph guarantees that there is a finite num-
ber of maximal paths. Unfortunately, contrary to trees, where the number
of maximal paths from a given node to any leaf was limited by the number
of nodes of a given tree, in graphs, the number of such paths grows expo-
nentially. For this reason in the construction of the language of queries for
directed acyclic graphs, one can use only the notions employed in CTL lo-
gic. It is only point formulae that are considered in this logic. A temporal
logic which was to serve the purpose of directed acyclic graph analysis was
proposed by Peter Becker [1], who marks the logic in question as CTLDAG.

Unfortunately there are several problems connected with effective mo-
del verification for formulae of CTLDAG. If, for example, G is an acyclic
digraph with n nodes, then model verification for formula Φα of CTLDAG

logic (where Φ is any operator of this logic) may be performed by testing
formula α for at least n nodes.

5. Conclusion

This paper discussed selected constructions of temporal logic systems,
which allow forming queries for the purpose of analyzing lists, trees or acyclic
digraphs. The constructions of these systems were based on CTL [3] logic
or on CTL∗ logic. The use of temporal logic formalism for the analysis of
the aforementioned data structures has its justification in well developed
formal tools connected to temporal logic. The formalism of temporal logic
expresses intuitive notions such as ‘always’, ‘possibly’, ‘from now on...’ well.
This formalism, however, has certain limitations, which is especially visible
when one considers issues relating to graph analysis, but not only. Even
in the case of simpler data structures, such as lists, not everything can
be expressed by means of temporal logic. For example, it is impossible to

104

A Few Remarks on Querying Lists, Trees and Dags...

formulate a query regarding only those elements of a list which occupy even
positions [6].

Moreover, as we showed, some of queries are more complicated in the
language of the first order classical logic in compare to the formulation in
the language of temporal logic. From the other hand, there are some queries,
which are simpler in the language of the first order classical logic.

Bibliography

[1] Becker P., A temporal Logic based approach fro querying lists, trees
and dags in databases, vol. 978 of Lecture Notes in Computer Science,
pp. 293–302, Springer, 1995.

[2] Cattel R. G. G., editor, The object database standard, ODMG-93. Mor-
gan Kaufmann, 1994.

[3] Emerson E. A., Temporal and modal logic, Handbook of theoretical com-
puter science, Elsevier, 1990.

[4] Richardson J., Supporting lists in a data model (a timely approach),
Proceedings of the 18th VLDB Conference, 1992.

[5] Subramanian B., Zdonik B., Leung T. Vandenbergy S., Ordered types
in the AQUA Data Model, Proc. 4th Intl. Workshop on Database Pro-
gramming Languages, 1993.

[6] Wolper P., Temporal logic can be more expressive, Information and con-
trol, vol. 56, 1983.

[7] Yamamoto M, Tanabe Y, Takahashi K., Hagiya M., Abstraction of
Graph Transformation Systems by Temporal Logic and Its Verification.

105

STUDIES IN LOGIC, GRAMMAR AND RHETORIC 11 (24) 2007

Witold Marciszewski
University of Białystok

COMPUTATIONAL DYNAMICS
OF COMPLEX SYSTEMS
A NEW WAY OF DOING SCIENCE

A comment on Thinking in Complexity. The Computational Dynamics of Mat-
ter, Mind and Mankind by Klaus Mainzer, Springer-Verlag 2004 (4th Edi-
tion). Polish translation: Poznawanie złożoności. Obliczeniowa dynamika mate-
rii, umysłu i ludzkości, Wydawnictwo UMCS, Lublin 2007, translated by a team
run by Marek Hetmański.

There is a good message for those Polish philosophers who realize the
enormous philosophical import of thinking in complexity: the mentioned
book by Klaus Mainzer has become more available to Polish readers owing
to the translation done by a team of philosophers and translators at UMCS
(Maria Curie Skłodowska University) in Lublin, Poland.1

To account for why I regard this message so good, let me recall the
following. The way of perceiving the world which in the book is aptly called
thinking in complexity is something like a creeping revolution both in science
and in philosophy. It is a revolution, indeed, as it radically changes our world
perspective. It is creeping as no single great event announced its start, and
even no single branch of learning might be named as its proper terrain,
hence a specialist in one field alone may overlook its emergence and signi-
ficance.

1 At the start, let me hint at the intention of these comments. I do not intend to offer
a paper in which the book under review gets examined for the correctnes of its statements
and methods. This would require from the reviewer a level of expertise comparable with
that found in the book, and this is not the case in question. Instead, I take the attitude of
an appreciating reader who wishes to encourage fellow philosophers to make acquaintance
with the book, as well as address the Author with certain issues. So my text distinguishes
some items being attractive from a philosophical point of view, and puts some questions
concerning philosophy of mind and epistemology. A special item might be devoted to the
quality of Polish translation, but such an assessment should be made (and will, hopefully,
be) in Polish.

ISBN 978–83–7431–158–8 ISSN 0860-150X 107

Witold Marciszewski

The revolutionary initiative is due to mathematical logic at this point
from which theoretical computer science (informatics) has emerged, that is,
the discoveries concerning computability contributed by Gödel, Turing, Post
and companions. This, so to speak, software complexity is deeply entangl-
ed with the complexity of hardware, the latter meaning dynamic systems
changing in time as studied by physics, technology, biology etc.

Quite a number of Polish philosophers and mathematicians are familiar
with the problems of computability, owing to contributions to this field as
made by their natives Alfred Tarski, Andrzej Mostowski, Andrzej Grzegor-
czyk and others. That is to say, they are fairly familiar with the software
side of the complexity. However, a knowledge of complex dynamic systems,
and of how these are related to computability studies, is far from being emi-
nent among our philosophers. Thus the translation of Professor Mainzer’s
book – to be, hopefully, duly disseminated in academic circles – should assist
Polish scholars in their endeavours to keep in line with current science.

In what follows, (1) I introduce some key concepts in a way which
should fit into the Polish philosophical audience’s interests and conceptual
equippment. Then, (2) I briefly survey the book content to let prospective
readers know what they may expect from it. At last (3) I put some questions
of how the study of complexity can profit from some promising research in
automated theorem proving.

1. Some notions of complexity historically explained

1.1. Klaus Mainzer belongs to that circle of scholars who claim the rise of
the new science of complexity. That circle includes Stephen Wolfram whose
monumental book (2002) bears the much speaking title A New Kind of
Science to resemble Galileo’s phrase nuove scienze (in the title of his famous
treatise of 1638). Such a claim alludes to the notions of new paradigm and
scientific revolution, as introduced by Thomas Kuhn, which entered the
vernacular of historians and philosophers of science. Hence it is reviewer’s
task to scrutinize to what extent such a far-reaching claim can be justified
with reliable evidence. This involves an assessment of the essential point,
opening the Author’s Preface to the Fourh Edition; it runs as follows.

The first edition of this book, published in 1994, began with the statement
that the science of complexity would characterize the scientific development of
the 21th century. In the first decade of this century, the prediction has been
confirmed by overwhelming new empirical results and theoretical insights of
the physical and biological sciences, cognitive and computer sciences, and the

108

Computational dynamics of complex systems

social and economic sciences. Complexity and nonlinearity are still prominent
features in the evolution of matter, mind and human society. Thus, the science
of complexity still aims at explanation for the emergence of order in nature
and mind and in the economy and society by common principles.

This opening paragraph puts in a nutshell what the book is to tell. It should
be read jointly with the book’s title. In this title Complexity, as the category
in which one should think about the world, is linked with Computational
Dynamics of the universe, which is meant as involving Matter, Mind, and
Mankind.

Before going deeper into the subject, it will be in order to address some
conceptual troubles in our thinking about complexity.2

This is the very concept of ‘complex system’ as liable to be burdened
with too many roles and a kind of redundancy. When speaking of a system,
one thinks about an object having a number of elements which are in a way
interrelated, hence a complex object. Then the phrase ‘complex system’
would mean ‘complex complex object’. To avoid such a redundancy, let us
distinguish the two following notions of complexity.
(1) The most general notion refers to any system qua system, that is, any set

having elements interrelated with one another. A system may be either
(A) abstract and static, as are the domains of mathematical theories,
computer programs, etc, or (B) dynamic, that is, changing in time as are
bodies (except, presumably, elementary particles), ecosystems, minds,
societies, etc.

(2) A more specific notion refers only to dynamic systems (mentioned above
in 1 as B), and – moreover - just those among them which behave in
a way that we call nonlinear; this is a feature that makes a system
complex in this more restricted sense.
Note, besides those listed in (2) there are dynamic systems that possess

the feature of linearity, hence behave in a regular and predictable way, like
our old good earth, also its companion the moon (this is why we happen
to be so successful in predicting eclipses); those do not deserve to be called
complex in this special sense. As being systems, they are complex in that

2 ‘When I make a word do a lot of work like that’, said Humpty Dumpty, ‘I always pay
it extra.’. This was the replay to Alice’s: The question is whether you can make words mean
so many different things. (Lewis Carroll, Through The Looking Glass). This is exactly what
happened to the term complexity in academic vernacular. It has got overworked with
too many meanings, so there is a need to distinguish among them. A specially needed
distinction is between the complexity of a dynamic systems due to its nonlinearity, and
the complexity of a static system which depends on a number of elements and their
interrelations. In the latter case (here under discussion) it is convenient to make use also
of the comparative form, and so be allowed to talk about greater or smaller complexity.

109

Witold Marciszewski

most general sense mentioned in (1), hence we need a term to distinguish
their type of complexity from that characteristic of nonlinear systems. For
this purpose, we may devise the phrase rudimentary complexity.

In what follows, I am to use the single term system to refer to ob-
jects characterized by complexity in the most general sense as defined
in (1) above, that is, embracing both rudimentary complexity and that
possessed by nonlinear systems. Let the phrase dynamic system refer to
any systems changing in time, and let the phrase complex dynamic systems
denote those dynamic systems which are nonlinear.

1.2. Since I wish to encourage philosophers to take advantage of Mainzer’s
work let me start from their favourite phrase ‘already the ancient Greeks’
to mention two ancient insights, that of the Atomists and that of the Stoics.

Either of them contributed to the truth that the dynamics of the uni-
verse depends on two factors, to wit hardware and software. And each of
them, when contributing one half of this truth to the picture, at the same
time, ignored the other part. While the Atomists explained the universe
in terms of hardware (atoms and space) alone, with Stoics the whole dyna-
mics of the universe was explained by what might be compared to a software.

According to the Stoics, there is a ubiquitous system of non-physical
units called in Greek logoi spermatikoi, in Latin (Augustinus) rationes se-
minales, what is being rendered in English as ‘seeds of reason’, ‘germinating
ideas’, or else ‘seminal plans’; the last phrase is the fittest for this discussion.
While human-made things are produced according a plan devised outside
these things themselves, to wit by a human mind, the things in Nature po-
ssess the designs of their construction and evolution inbuilt somehow inside.
Such an idea might have come from observing seeds of plants, as suggested
by the adjective ‘seminal’. The tenets of either side can be summed up as
follows.
(1) Atomists: the more complex a system is, that is, the more it invol-

ves elements and their interrelations as a physical object, the more
problems it is able to solve.3

(2) Stoics: the ability of problem-solving depends on the kind and size of
the seminal plan that is responsible for the development of the system
in question, that is, the processes of solving its vital problems.

3 As to the problem difficulty, it may be measured with the number of partial pro-
blems, down to single lines of a program or a proof, whose solutions are steps in the
way towards the target solution, as can be seen in proving theorems. Thus the degree of
difficulty reduces to the multiplicity of problems.

110

Computational dynamics of complex systems

Now let us compare either position with the following statements.
(1*) The more complex a processor – hardware – is, that is, the more it

involves elements and their interrelations, the more problems it is
able to solve (as can be seen in the example of high-scale integration
devices).

(2*) The ability of problem-solving depends on the kind and size of pro-
gram – software – that is responsible for the solving of problems by
the system in question.

When comparing 1 with 1*, we realize that the Atomists grasped a rudi-
mentary level of complexity, the same which is exemplified with such struc-
tures as electronic chips. What they did not succeed to grasp will be discus-
sed a bit further.

When comparing 2 with 2*, we realize that the Stoics did not imagine
any quantitative estimations of the power of plan relative to its comple-
xity. This can be expressed by recalling that the great German pioneer
of computer science Konrad Zuse introduced the concept of program un-
der the German name Plankalkül. Thus we notice that the Stoics had
an idea of plan, without having any idea of calculus. This sheds light
on the giant distance between modern science and its philosophical anti-
cipations.

From the Atomists up to the second half of the 20th century their ru-
dimentary conception of complexity dominated both in philosophy and in
science. Physical systems being complex in that manner, easily tractable
with linear equations, were what Newtonian physics dealt with. A more
refined concept appeared with inquiries into the role of feedbacks in dyna-
mic systems; this led to paying special attention to non-linear dependen-
cies. Let the link between positive feedback loops and the phenomenon of
non-linearity be explained with the following example. It exemplifies how
some unpredictable processes emerge in systems which previously behaved
in a predictable way.4

Imagine a microphone which induces a loud squeal from a speaker when the
microphone gets too close to the speaker. The positive feedback occurs because
the sound picked up from the microphone is amplified, sent out through the
speaker and returns to the microphone to be picked up louder than before. Now
imagine a system consisting of many microphones randomly connected with
wires, as well as many speakers. The probability of the emergence of powerful
feedbacks increases as more elements are added, more interconnections are

4 The example is taken from the text Multicellular Computing: Dynamic Complexity,
see: evolutionofcomputing.org/Multicellular/DynamicComplexity.html.

111

Witold Marciszewski

added, or the elements themselves become more complex and therefore can
interact with others in more complex ways. Thus, any change to the system
that increases the number of possible feedback loops increases the probability
of such an emergent phenomenon.

This is a nice example since it exemplifies both feedback loops and transition
from linear to non-linear process. Let us note, there is an interval of distances
between a speaker and his microphone in which the squeal does not appear,
and thus there holds a linear dependence between the distance in question
and the sound power: the closer the microphone, the more intense is the
sound, but without any unexpected events – up to a certain point beyond
which a squeal emerges, and gets more and more intense; thus the process,
so far having been linear, starts to be non-linear.

2. A survey of contents

2.1.5 The introductory chapter emphasises the novelty of the theory of non-
linear complex systems as well as its successes in problem solving in natural
and in social sciences. The novelty consists in discovering and explaining
the feature of ‘emergence of certain macroscopic phenomena via nonlinear
interactions of microscopic element in complex systems’. This new approach
opposes the paradigm of reductionism which the Author exemplifies, with
regard to mental and social phenomena, by mechanistic explanation as of-
fered by Hobbes, Lamettrie etc.

According to the traditional paradigm of science, including the Newto-
nian mechanics, our macroscopic world would be – as a rule – linear, while
nonlinearities would be negligible exceptions. Contrary to that view, recen-
tly we start to realize (what Poincare anticipated a century ago) that as
a rule we deal with nonlinear systems, while linear ones are exceptional.
In the macroscopic world of quanta, in spite of certain aspects of linearity,
the quantum world is not linear in general. Thus, the picture of the whole
science as seen by the Author is like Stephen Wolfram claim (see 1.1 above)
that we enter into the age of new science.

2.2. In the next chapter we encounter a feature of the book, characteristic
of the next chapters too, namely a combine of philosophical interpretations,
merged in the history of philosophy, with technical discussions involving

5 In the numbering in this section, each second digit corresponds to the so numbered
chapter in the book.

112

Computational dynamics of complex systems

a considerable knowledge from various fields of science: not only Newtonian
physics but also quantum physics, thermodynamics, chemistry, biology, eco-
nomics etc., supported by a necessary piece of mathematical apparatus. This
is a reason, indeed, to appreciate the Author’s expertize, and at the same
time to caution philosophers, who as a rule hardly share such a competence,
that the reading may appear a bit stressing. However, this by no means
should discourage prospective readers, since a substantial lot of knowledge
and understanding can be obtained from the book as a whole, in spite of
local difficulties.

This chapter, entitled ‘Complex Systems and the Evolution of Matter’
starts from a historical background, dealing first with philosophical antici-
patory insights of Aristotle and Heraclitus concerning the question: ‘how can
order arise from complex, irregular, and chaotic states of matter?’ Another
historical survey outlines the picture of deterministic and linear universe
as found in Newton, Einstein and Laplace. The next sections reveal various
departures from determinism and linearity.

A section most attractive from a philosophical point of view deals with
the question of the emergence of order in cosmic evolution. No definitive
answer is available at the current stage of research, but we learn from this
section about several alternative models which were considered, as Hoyle’s
stationary universe, Linde’s idea that our universe is involved in a fractal
multiverse (a set of universes), and the string theory – an attempt to unify
the four basic kinds of interactions as generated by oscillating strings. The
last alternative is optimistic, giving a chance to avoid the loss of information
(as stored in the strings) in black holes.

2.3. In the Chapter entitled ‘Complex Systems and the Evolution of Life’
we find illuminating remarks concerning the first integration of the idea of
information, physics (thermodynamics) and biology (theory of evolution)
elaborated by Boltzmann (1844-1906). It should be of special interest for
philosophers as those who look for a synthetic picture of the world. Boltz-
mann’s synthesis anticipated the very foundations of modern scientific phi-
losophy.

Highly ordered complex systems, such as plants and animals, are most
highly improbable forms in the light of the second law of thermodynamics.
This law says that entropy (to be roughly equated with disorder and minimal
information) grows with time, hence the intelligent life, as being an apex
of order, should not have arisen in our universe. In the story in which this
paradox gets explained, it is the sun which plays the role of the main hero.
From it the earth receives energy to compensate the spontaneous increase

113

Witold Marciszewski

of entropy in organisms. This is a crucial idea to elucidate the origins of life
and its further evolution.

This idea sheds light on a universal feature of life and intelligence. There
may be surprisingly many forms of life in the universe, many of them lack-
ing any similarity to our familiar earth life, but no one can escape this
dependency on the input of energy. Thus Boltzman’s ideas have contributed
to the philosophically fascinating issue of how energy and information are
related to each other.

2.4. The chapter ‘Complex Systems and the Evolution of Brain’ deals with
the emergence of brain and mind. Let me focus on one chosen point to
recommend it for philosophical reflexion. It is found in the following passage
concerning the neuronal basis generating consciousness (p. 172).

Concerning consciousness [...], it is assumed that global activation of cell po-
pulation, as exerted by the recticular formation on the cortex, would generally
increase the probability of assemblies being formed. [...] The production rate of
cell assemblies determines the amount, complexity, and duration of represen-
tations of sensory patterns from the outer world, for instance. Consciousness
is a self-referential state of self-reflexion. Thus, a conscious state is based on
a cell assembly representing an internal state (and not only a state of the outer
world. [Italics – WMF] For example, I not only have the impression of a green
tree, but I am conscious that I am looking at this tree.

Two comments will be in order, one to hint at the weakness of behaviourism,
and one to exemplify the nonlinear dynamics and emergence in mental pro-
cesses. Some examples in these comments are not taken from the chapter
reported; however, they are meant to shed light on certain points in it that
deserve special attention from a philosophical point of view.

According to behaviourists, getting rid of the concept of consciousness
is necessary for any progress in psychology – for two reasons. First, the
concept of consciousness is empty, it is a product of metaphysicians’ phan-
tasy. Second, even if fictional entities might sometimes be of use in science,
this one proves of no use. The job of psychology consists in registering how
certain stimuli are invariably associated by observable reactions. Behaviou-
rists happen to refuse studying the nervous system, they remain satisfied
with the results of their experiments corelating no more than stimuli and
reactions.

This was a dogmatic attitude ignoring facts and losig chances to under-
stand actual interactions. Among the ignored facts there is that mentioned
in the quotation given above (the point italicized). Let X be an assem-
bly of cells mapping a state of the outer world (e.g., the redness of a rose),

114

Computational dynamics of complex systems

and M(X) be the state of X which consists in the mapping in question. Then
there is another assembly of cells, say Y , to map the internal state M(X),
and this internal state of Y may be mapped by another internal state (one
of a higher order, so to speak), and so on.

Some processes of development of intelligence consist in positive feed-
backs between cell assemblies as those described above. When dynamic ele-
ments in a system, like those named above as X and Y , interact with other
dynamic elements, they generate positive feedback loops. Then qualitatively
much different and surprising new phenomena may emerge.

Analogous interactions, let me add here, occur in social processes of the
evolution of intelligence. Consider, for instance, the development of logic
from Socrates’ teachings, twined with the progress of mathematics, up to the
current theory of computability as a basis of computer science. I refer to
that historical process as being well-known from numerous sources, but
something like that appears in joint processes of learning logic, mathematics
and computer science by an individual mind/brain.

Socrates dialogues are illuminating as a practice of reasoning combined
with his ad hoc comments regarding correctness of the reasoning in question.
In such comments there arises a primary logical consciousness. Suppose that
Plato, owing to these beginnings of logical theory, improved such a practical
art of reasoning so, that Aristotle had at his disposal a rich repertoire of
forms of reasoning practised in Academia, and then he reflected upon them
in a systematic way. Thus the first systematic logical theory has been born.

About the same time Euclid erected a wonderful edifice – a parennial
paradigm of axiomatic mathematical practice. For centuries it provided logi-
cians with an abundant material for logical reflexion. Owing to both streams
of reflexion, that on Aristotle’s theory and that on mathematical practice
(e.g. a refined use of quantifiers in Calculus), mathematical logic emerged
with Boole and Frege. This helped to improve mathematical practice, as me-
thods of investigating consistency, completeness, decidability etc. Problems
of decidability, in turn, gave rise to the study of computability, as initiated
by Gödel and Turing, and that blossomed with the idea of computer from
which a new period of civilization begins. This is, indeed, an emergence of
something surprisingly new, a new civilization, from a cycle of positive feed-
backs involving at the start the Greek passion for arguing and the ancient
mathematical practice, both events fairly remote from the final result.

Such a historical process happens to be mapped by an individual deve-
lopment of an individual philosophical mind. His education should include
an intense practice of reasoning which reinforces and gets reinforced by
a theory of logic. It should include too a portion of mathematics to supply

115

Witold Marciszewski

a material for logical reflexion, which in turn deepens the understanding of
mathematics, science and cognition.

The moral to be drawn from such stories is to the effect that emer-
gent phenomena are due to strings of positive feedbacks, and so result from
a nonlinear growth. This is also a practical receipe for success in business,
national economy, cultural development, etc. One has to deliberately em-
ploy such factors that they will interact in the positive feedback mode. Then
emerge results which would astonish us as miracles, were we not conscious
of their being natural in the nonlinear world of brain/mind and society.

2.5. From a philosophical perspective (outlined below in Section 3), the
chapter ‘Complex Systems and the Evolution of Computability’ is central
to this book. Its opening paragraph runs as follows.

(1) The evolution of complexity in nature and society can be understood as the
evolution of computational systems. In the beginning of modern times, Leib-
niz already had the idea that the hierarchy of natural systems from stones
and plants up to animals and humans corresponded to natural automata with
increasing degrees of complexity. (2) The present theory of computability en-
ables us to distinguish complexity classes of problems, meaning the order of
corresponding functions describing the computational time of their algorithms
or computational programs. But we can also consider the size of a compu-
ter program when defining the algorithmic complexity of symbolic patterns.
[Numbering and emphasis – WM.]

The chapter consists of four sections whose contents can be put in a nut-
shell as follows. Point (1) is discussed in the first section of the chapter,
point (2) in the second section. The third section deals with information
entropy in complex systems; since the approach in terms of such informa-
tion dynamics does not account for human knowledge processing, it is asked
whether a higher efficiency of information processing might be brought with
quantum computing. The fourth (last) section, after recalling Leibniz’s idea
of automaton, presents John von Neumann’s cellular automata (CA) frame-
work as capable to account for chaos and randomness in complex systems.

In section 1 the first sentence (italicized in the quotation above) may
figure as a motto for the whole book as it explains the key phrase compu-
tational dynamics in the title of the book. The phrase is to mean that the
dynamics of the universe (i.e., matter, mind and mankind) possesses the
essential feature of being computational.

What should it mean? Let me suggest that this dynamics consists in
a rapid increase of computational power of the universe as a processing

116

Computational dynamics of complex systems

information device – somehow like devices referred to by the famous Moore’s
Law. In fact, the computational power of the universe does dramatically
expand with the rise of life, then the appearance of brain, then of society,
civilization, esp. information civilization, and so on. It is in order here to
refer to what Barrow and Tippler endorse as Final Anthropic Principle.6

Intelligent information-processing must come into existence in the Universe,
and, once it comes into existence, it will never die out.

Even if one does not share the optimistic ‘will never die out’ (a view con-
nected with a specific approach of the authors), the picture of such a dyna-
mic evolution of information-processing (that is, computing) activity may
us help in realizing a cosmological content of the notion ‘computational
dynamics’.

To contribute to the discussion of this chapter, let me sketch the que-
stion of limits of computational power. The limits of the Universal Turing
Machine are well-defined by Church-Turing Thesis. Now, the crucial que-
stion is the following: are they the same for the human mind? Klaus Mainzer
is cautious in proposing a definite answer, but an inclination of him may
be read from his summary of the chapter in question as found in the in-
troducing chapter. He puts a question in which it is assumed for granted
that there are limitations to the analogies of computers with human mind
and brain. The question based on this assumption is to the effect: do these
limitations result from Gödel’s and Turing’s results of incompleteness and
undecidability? No direct answer is found in this passage but an indirect
one may be inferred from what the Author says of Stephen Wolfram results
concerning CA. He refers to the result that all kinds of nonlinear dynamics
can be simulated by CA.

For a final conclusion two more premisses are needed, one of them being
already known; as to the second, it can be reasonably guessed to be held by
the Author. The known one is to the effect that CA are equivalent to uni-
versal Turing machines (hence limited by Church-Turing Thesis), though in
practice much more efficient. The premiss to be guessed would say that the
nonlinear activity of the brain, that gives it so great advantages ower electro-
nic computers, is just of the kind studied with Wolfram’s research on CA.
Now, since brains are CA, and those are equivalent to universal Turing
machines, it would follow that brains are equivalent to universal Turing

6 John D. Barrow and Frank J. Tipler, The Anthropic Cosmological Principle, Oxford
University Press, 1996. See p. 23.

117

Witold Marciszewski

machines; and, since they are like CA, they share their enormous efficiency
with those von Neumann’s creatures.

This is a hypothetical line of reasoning whose conclusion I am to use
to put the following question. Let us assume (as I guess to be assumed by
the Author) that our brains/minds are CA: does this assumption accounts
for the phenomenon of mathematical creativity? Emil Post who designed
an abstract computing machine, which has proved equivalent to the uni-
versal Turing machine, firmly refused to believe that such a machine could
simulate human creativity in proving theorems. Here is one of his numerous
utterances in this question.7

The logical process is essentially creative. This conclusion [...] makes of the
mathematician much more than a kind of clever being who can do quickly
what a machine would do ultimately. We see that a machine would never give
a complete logic; for once the machine is made we would prove a theorem it
does not prove.

In Section 3 I am to tell about some experiences which shed light on the
phenomenon of creativity, as referred to by Post, and on its relation to al-
gorithmic complexity. Since the point is crucial from the perspective here
adopted, let it be the last item of this review. However, this has to be at
the cost of giving up a discussion of the three ending chapters: the 6th
concerning complexity in the evolution of artificial life and artificial intel-
ligence, the 7th concerning complexity of evolutionary social and economic
processes, and the 8th dealing with some philosohical issues. They offer such
a reach supply of facts, ideas and problems that it will be more advisable
to handle them in a special paper which I feel likely to write in a due time.

3. Insights producing algorithms to reduce complexity
Are such insights themselves produced by algorithms?
Exemplification through the ‘Curious Inference’ story

3.1. The question in the title above could be restated in the form: is the dy-
namics of mind in a full manner computational? The latter form refers to the
computational dynamics of mind as called in the title of the book discussed.
Should it be answered in the affirmative, then the whole dynamics of mind,

7 Emil Post, Absolutely Unsolvable Problems and Relatively Undecidable Propositions
– An Account of an Anticipation in: Solvability, Provability, Definability. The Collected
Works of Emil L. Post, edited by Martin Davis, Birkhäuser, Boston (etc.) 1994. See p. 428,
footnote 101.

118

Computational dynamics of complex systems

not only when using algorithms, but also when eliciting insights, would en-
tirely result from some algorithms – recorded, presumably, in a brain code.

Suppose, there exists a hard problem, that is such that no algorithmic
(mechanical) intelligence is able to handle it, while it gets solved efficiently
with an insight of human intelligence.

Before I discuss such a situation, let me suggest some handy termino-
logical devices. Let the algorithmic intelligence be called a robot, and the
insightful one – a daemon (in Unix slang, the name to mean a process
runnig under its own account, as ‘behind the scene’).8 In the enterprise
of proving theorems, especially in mathematics, robots produce formalized
proofs, i.e., such that their checking for logical correctness is carried strictly
according to an algorithm. Let us call them algorithmic proofs, and those
which require an insight let be called intuitive proofs. Now robots can be
defined as entities whose proving ability is restricted to algorithmic proofs
while daemons are capable of intuitive proving as well.

The story named in the last line of this section’s title tells about expe-
rimenting with a problem which so far has proved too hard for any robot
(i.e., any prover system), and easily solvable for a human daemon. The story
goes back as far as 1936, when Kurt Gödel published a short comment re-
garding the complexity of algorithmic (formalized) proofs. Such a comple-
xity is identified either with the number of steps (operations) in the course
of proving or with the number of symbols occurring in a proof; the latter
is the case here. It is crucial that the proof be formalized (within a system
of formal logic), since only then no symbols are likely to be omitted (while
in intuitive proofs some steps are omitted, if obvious for a supposed class
of daemons). Owing to such, so to speak, typographical completeness, the
number of symbols can be adopted as a measure of complexity. The paper
offered by Gödel bears the title Über die Länge von Beweisen – On the
Length of Proofs, where the length means a number of symbols, that is, the
kind of complexity which in the moment we have in mind.9

Gödel discovered the phenomenon which nowadays is called speedup in
the efficiency of proving; let me call it the Gödelian speedup. The respective
Gödel’s statement (English translation) runs as follows (italics – WM).

8 More discussion on Unix daemon as a model of intuitive processes is offered in my
paper Rational Belief as Produced by Computational Processes in: Foundations of Science,
vol. 2, no. 1, 1997, Kluwer Academic Publishers.
9 Kurt Gödel, Über die Länge der Beweisen in: Ergebnisse eines mathematischen Kol-

loquiums Heft 7, Franz Deuticke, Leipzig und Wien 1936. From among three forms of
this term, ‘speed up’, ‘speed-up’ and ‘speedup’, I choose the last which is reported in
Webster (though in a different meaning, occurring in economics, see www.merriam-web-
ster.com/dictionary/), and also in some texts concerning data processing.

119

Witold Marciszewski

Thus, passing to the logic of the next higher order has the effect, not only of
making provable certain propositions that were not provable before, but also
of making it possible to shorten, by an extraordinary amount, infinitely many
of the proofs already available.

The first part of this statement says what is involved in Gödel’s ground-
breaking paper of 1931, while the second (italicized) tells something new,
which is of great practical import for computer science. Let us dwell a while
on the method of reducing complexity as suggested by that statement. Its
significance lies in the fact that it opens the following questions.
• A. How great is that extraordinary amount by which a proof gets shor-

tened, i.e., its complexity gets reduced, owing to the passing to the next
higher order? How much is such a reduction significant practically?
• B. Is this method (of complexity reducing) (B1) obtainable in the same

degree for human provers and mechanical provers (the latter dealing solely
with algorithmic proofs)? If not the same, then (B2) how big may there be
such a difference of degree, and (B3) how should it be accounted for?
• C. Provided its availability for mechanical provers, how great would

be the difference when comparing complexities of the shortest proofs of
the same theorem, one produced by a human prover (daemon) and one by
a mechanical prover (robot)?

3.2. Question A has been answered after a half century hiatus by George
Boolos in his seminal paper of 1987, attractively titled A Curious Inference
(from now on cited as BP – for Boolos’ Proof), which offered an enlightening
case study. I can feel free from reporting wider on BP, since its contents is
summed up in a preceding, easily available, volume of this journal’s elec-
tronic version.10 Let me just mention what counts most: that Boolos’ proof
of an arithmetical theorem (concerning a property of Ackermann function)
when performed in the second-order logic takes one page alone. On the other
hand, the number of symbols occurring in the first-order derivation is repre-
sented by the exponential stack of as many 2’s as 64536, that is, larger than
any integer that might appear in science. This is a dramatic result, indeed,
which nicely exemplifies the Gödelian speedup.

10 See logika.uwb.edu.pl/studies/vol9.htm. Roman Murawski, The Present State of
Mechanized Deduction, and the Present Knowledge of its Limitations in: Witold Mar-
ciszewski (Ed.), Issues of Decidability and Tractability, vol. 9 (22), 2006 of the journal
Studies in Logic, Grammar and Rhetoric. A sketchy discussion on this subject is also
found in the same volume, in the paper by Witold Marciszewski: The Gödelian Speed-up
and Other Strategies to Address Decidability and Tractability.

120

Computational dynamics of complex systems

The same result answers the second part of Question A. Since a proof
in the language of first-order logic is so much intractable, the adopted me-
thod of reducing the proof to such a short, so easily tractable, version is of
enormous practical import. At the same time, Boolos to some extent paved
the way to answering question B2 as discussed below.

The next two decades after BP have brought forth some answers to
the remaining questions, due to an intense research in automated theo-
rem-proving. As for B1, the answer is decidedly in the negative. In point B2
it is continued to the effect that differences of degree are colossal, and the
source of them (asked in B3) lies in the fact that a great deal of creative
intuition is necessary, which so far is a priviledge of humans, unattain-
able to robots. Both Boolos and automated reasoning researchers refer to
the set-theoretical axiom of comprehension, essential for the proof under
study, as one whose applications much require creative insights. This axiom
(equivalent to a formula in the second-order language) makes it possible to
introduce new concepts needed for the proof in question.

To win more understanding, let me give a voice to experts in automated
reasoning research. The most illuminating guide to our problem I could find
so far is the survey by Benzmüller and Kerber [2001] entitled A Challenge
for Mechanized Deduction.11 In the report on their research they conclude
as follows.

Boolos’ example perspicuously demonstrates the limitations of current first-
order and higher-order theorem proving technology. With current technology
it is not possible to find his proof automatically, even worse, automation seems
very far out of reach. Let’s first give a high-level description why this is so.
Firstly, Boolos’ proofs need comprehension principles to be available and it
employs different complex instances of them. [...] Secondly, the particular in-
stances of the comprehension axioms cannot be determined by higher-order
unification but are so-called Heurika-steps which have to be guessed. However,
the required instantiations here are so complex that it is unrealistic to assume
that they can be guessed. [...] Here it is where human intuition and creati-
vity comes into play, and the question arises how this kind of creativity can be
realised and mirrored in a theorem prover. [Emphasis – WM]

11 See Christoph Benzmüller and Manfred Kerber, A Challenge for Mechanized Deduc-
tion, 2001 (www.cs.bham.ac.uk/ mmk/papers/01-IJCAR.html). A considerable number
of other studies on this subject can be found with the search: citeseer.ist.psu.edu/. There
may be of special interest the paper by Natarajan Shanker Using Decision Procedures with
a Higher-Order Logic which refers to excellent surveys of higher-order logics as offered by
S. Feferman, J. van Benthem, etc.

121

Witold Marciszewski

3.3. As for question C (regarding complexity differences between algorith-
mic and intuitive proofs), its relevance can be noticed with the following
consideration. What may be a tractable size of a mathematical proof car-
ried by a human mathematician? A highly interesting evidence is due to
the fact that the famous proof of Fermat’s great theorem by Andrew Wiles
(published in Annals of Mathematics, May 1995) required 200 manuscript
pages, that is, approximately, 400000 bits (symbols), and must have been
divided into six parts to become readable for each of the six reviewers asked
by the editor to critically read and comment on the proof. It is no formalized
proof, hence it must have gaps to insightfuly be filled up by a competent
reader.

Certainly, after filling up such gaps according to the rigours of algorith-
mic methods, the proof has to get longer. How much longer? Would have
such a difference a practical relevance concerning time and memory size for
data processing? Unfortunately, we have no answer in this individual in-
stance, but we can consider a case having already been subject to a study,
and so obtain instructive analogies. Such is the research on automated proof
checking reported by Christoph E. Benzmüller (the University of Cambridge
and Universität des Saarlandes) collaborating with Chad E. Brown (Uni-
versität des Saarlandes).12 The authors possess a unique expertise in com-
paring automatic proving (which they call full automation) with automatic
proof-checking as performed by systems like Mizar and OMEGA. As for au-
tomatic proving, they conclude, thus confirming the conclusion of the pre-
viously quoted paper (by Benzmüller and Kerber, 2001), with the following
statement.

The full automation of Boolos curious inference seems not to be in reach and
it will be a challenge problem to automated theorem proving for a long time
to come.

However, owing to the procedure of the automated checking (for logical
correctness) of Boolos’ inference, we can fancy a minimum size (hence a mi-
nimum complexity) of the same proof if produced by a robot (here, a system
being an automatic prover). Let us suppose that a proof written by a human
in a language specially devised for proof-checking (as Mizar, OMEGA, etc.)

12 Christoph E. Benzmüller and Chad E. Brown, The Curious Inference of Boolos in
Mizar and OMEGA in: Roman Matuszewski and Anna Zalewska (Eds.), From Insight to
Proof. Festschrift in Honour of Andrzej Trybulec, vol. 10 (23) of the journal Studies in
Logic, Grammar and Rhetoric, University of Białystok, Białystok (Poland) 2007. See also:
logika.uwb.edu.pl/studies/. A. Trybulec, let me add, is the author of the system Mizar
referred to in the mentioned title.

122

Computational dynamics of complex systems

will be roughly of like size as the proof of the same theorem produced by an
automatic prover. Thus we obtain (according to the paper by Benzmüller
and Brown) the following sizes of compressed (using gzip) files.
— Boolos’ proof sketch: 637 bytes;
— Mizar article: 2310 bytes;
— OMEGA article (in one of the versions produced): 2602 bytes.

Obviously, an article being a proof (of the same theorem) which would
be produced by an automatic prover might considerably differ in size from
those mentioned above. However, we can reasonably estimate that the order
of quantity would be preserved.

Thus we can realize that the carrying of a proof in the second-order
language dramatically lowers its complexity (as compared with first-order
procedures) in any case; that is, independently of technology adopted, be it
the old-fashioned pencil-and-paper technology, be it the modern computer
technology.

What makes the problem hard for computer is that its solution requires
a creative insight which so far is not obtainable for robots. This brings the
problem of choosing between two philosophical options which are as follows.
(α) Is there so that insights belong to a category of cognitive acts entirely
disjoint with the class of algorithms? Or, rather, (β) any insight is due to
a hidden algorithm? (Hidden in the sense that we cannot recognize this fact
for limitations of our current knowledge.)

If the latter is the case, then a brain as that of Boolos should con-
tain a second-order algorithm somehow recorded in a brain code (being like
machine code in a computer). As being algorithmic, it does not exceed ca-
pabilities of a robot, to wit a universal Turing machine. Then no daemon is
needed, to do the job of, for instance, inventive using the axiom of compre-
hension.

This statement of options leads to a final comment on the book under
discussion. It takes the form of the following question. The title of the book
contains the term the Computational Dynamics of Mind (‘computational’
amounts to ‘algorithmic’). Should it mean that the whole dynamics of mind
is computational? Or, that there is a kind of mental dynamics which is
computational, while another one is not computational, and it is the former
which belongs to the subject matter of the book (the latter being outside
the scope of the Author’s interests)?

The remaining items, Matter and Society (Mankind) might be addres-
sed with an analogous disjunction. However, this would require a special
discussion, at least as detailed as that devoted here to the computability of
mental dynamics. Let it be left to another opportunity.

123

