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Summary. Let S be a subset of the topological Euclidean plane
E2

T. We say that S has Jordan’s property if there exist two non-empty,
disjoint and connected subsets G1 and G2 of E2

T such that Sc = G1 ∪G2

and G1 \ G1 = G2 \ G2 (see [19], [10]). The aim is to prove that the
boundaries of some special polygons in E2

T have this property (see Section
3). Moreover, it is proved that both the interior and the exterior of the
boundary of any rectangle in E2

T is open and connected.

MML Identifier: JORDAN1.

The articles [22], [24], [11], [17], [1], [4], [5], [20], [3], [16], [7], [15], [23], [18], [12],
[2], [21], [14], [13], [8], [6], and [9] provide the notation and terminology for this
paper.

1. Selected theorems on connected spaces

In the sequel G1, G2 are topological spaces and A is a subset ofG1. The following
propositions are true:

(1) If A 6= ∅, then the carrier of G1
�
A = A.

(2) For every topological space G1 if for every points x, y of G1 there exists
G2 such that G2 is connected and there exists a map f from G2 into
G1 such that f is continuous and x ∈ rng f and y ∈ rng f , then G1 is
connected.

The following propositions are true:

1The article was written during my visit at Shinshu University in 1992.
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(3) For every topological space G1 if for all points x, y of G1 such that
x 6= y there exists a map h from � into G1 such that h is continuous and
x = h(0) and y = h(1), then G1 is connected.

(4) Let A be a subset of G1. Then if A 6= ∅G1 and for all points x1, y1 of
G1 such that x1 ∈ A and y1 ∈ A and x1 6= y1 there exists a map h from �
into G1

�
A such that h is continuous and x1 = h(0) and y1 = h(1), then

A is connected.

(5) For every G1 and for every subset A0 of G1 and for every subset A1 of
G1 such that A0 is connected and A1 is connected and A0 ∩A1 6= ∅ holds
A0 ∪A1 is connected.

(6) For every G1 and for all subsets A0, A1, A2 of G1 such that A0 is
connected and A1 is connected and A2 is connected and A0 ∩A1 6= ∅ and
A1 ∩A2 6= ∅ holds A0 ∪A1 ∪A2 is connected.

(7) For every G1 and for all subsets A0, A1, A2, A3 of G1 such that A0 is
connected and A1 is connected and A2 is connected and A3 is connected
and A0∩A1 6= ∅ and A1∩A2 6= ∅ and A2∩A3 6= ∅ holds A0∪A1∪A2∪A3

is connected.

2. Certain connected and open subsets in the Euclidean plane

We follow a convention: P , Q, P1, P2 denote subsets of E2
T and w1, w2 denote

points of E2
T. One can prove the following proposition

(8) For every P such that P 6= ∅E2
T

and for all w1, w2 such that w1 ∈ P and

w2 ∈ P and w1 6= w2 holds L(w1, w2) ⊆ P holds P is connected.

We adopt the following rules: p1, p2 will be points of E2
T and s1, t1, s2, t2, s,

t, s3, t3, s4, t4, s5, t5, s6, t6, l, s7, t7 will be real numbers. Next we state two
propositions:

(9) If s1 < s3 and s1 < s4 and 0 ≤ l and l ≤ 1, then s1 < (1− l) · s3 + l · s4.

(10) If s3 < s1 and s4 < s1 and 0 ≤ l and l ≤ 1, then (1− l) · s3 + l · s4 < s1.

In the sequel s8, t8 denote real numbers. The following propositions are true:

(11) {[s, t] : s1 < s ∧ s < s2 ∧ t1 < t ∧ t < t2} = {[s3, t3] : s1 < s3} ∩ {[s4,
t4] : s4 < s2} ∩ {[s5, t5] : t1 < t5} ∩ {[s6, t6] : t6 < t2}.

(12) {[s, t] : ¬(s1 ≤ s ∧ s ≤ s2 ∧ t1 ≤ t ∧ t ≤ t2)} = {[s3, t3] : s3 < s1} ∪ {[s4,
t4] : t4 < t1} ∪ {[s5, t5] : s2 < s5} ∪ {[s6, t6] : t2 < t6}.

(13) For all s1, t1, s2, t2, P such that s1 < s2 and t1 < t2 and P = {[s,
t] : s1 < s ∧ s < s2 ∧ t1 < t ∧ t < t2} holds P is connected.

(14) For all s1, P such that P = {[s, t] : s1 < s} holds P is connected.

(15) For all s2, P such that P = {[s, t] : s < s2} holds P is connected.

(16) For all t1, P such that P = {[s, t] : t1 < t} holds P is connected.

(17) For all t2, P such that P = {[s, t] : t < t2} holds P is connected.
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(18) For all s1, t1, s2, t2, P such that P = {[s, t] : ¬(s1 ≤ s ∧ s ≤ s2 ∧ t1 ≤
t ∧ t ≤ t2)} holds P is connected.

(19) For all s1, P such that P = {[s, t] : s1 < s} holds P is open.

(20) For all s1, P such that P = {[s, t] : s1 > s} holds P is open.

(21) For all s1, P such that P = {[s, t] : s1 < t} holds P is open.

(22) For all s1, P such that P = {[s, t] : s1 > t} holds P is open.

(23) For all s1, t1, s2, t2, P such that P = {[s, t] : s1 < s ∧ s < s2 ∧ t1 <
t ∧ t < t2} holds P is open.

(24) For all s1, t1, s2, t2, P such that P = {[s, t] : ¬(s1 ≤ s ∧ s ≤ s2 ∧ t1 ≤
t ∧ t ≤ t2)} holds P is open.

(25) Given s1, t1, s2, t2, P , Q. Suppose P = {[s7, t7] : s1 < s7∧s7 < s2∧t1 <
t7 ∧ t7 < t2} and Q = {[s8, t8] : ¬(s1 ≤ s8 ∧ s8 ≤ s2 ∧ t1 ≤ t8 ∧ t8 ≤ t2)}.
Then P ∩Q = ∅E2

T
.

(26) For all real numbers s1, s2, t1, t2 holds {p : s1 < p1 ∧ p1 < s2 ∧ t1 <
p2 ∧ p2 < t2} = {[s7, t7] : s1 < s7 ∧ s7 < s2 ∧ t1 < t7 ∧ t7 < t2}, where p
ranges over points of E2

T.

(27) For all s1, s2, t1, t2 holds {q1 : ¬(s1 ≤ q11 ∧ q11 ≤ s2 ∧ t1 ≤ q12 ∧ q12 ≤
t2)} = {[s8, t8] : ¬(s1 ≤ s8 ∧ s8 ≤ s2 ∧ t1 ≤ t8 ∧ t8 ≤ t2)}, where q1 ranges
over points of E2

T.

(28) For all s1, s2, t1, t2 holds {p0 : s1 < p01∧p01 < s2∧t1 < p02∧p02 < t2},
where p0 ranges over points of E2

T, is a subset of E2
T.

(29) For all s1, s2, t1, t2 holds {p3 : ¬(s1 ≤ p31∧ p31 ≤ s2∧ t1 ≤ p32 ∧ p32 ≤
t2)}, where p3 ranges over points of E2

T, is a subset of E2
T.

(30) For all s1, t1, s2, t2, P such that s1 < s2 and t1 < t2 and P = {p0 :
s1 < p01 ∧ p01 < s2 ∧ t1 < p02 ∧ p02 < t2}, where p0 ranges over points of
E2

T holds P is connected.

(31) For all s1, t1, s2, t2, P such that P = {p3 : ¬(s1 ≤ p31∧ p31 ≤ s2∧ t1 ≤
p32 ∧ p32 ≤ t2)}, where p3 ranges over points of E2

T holds P is connected.

(32) For all s1, t1, s2, t2, P such that P = {p0 : s1 < p01 ∧ p01 < s2 ∧ t1 <
p02 ∧ p02 < t2}, where p0 ranges over points of E2

T holds P is open.

(33) For all s1, t1, s2, t2, P such that P = {p3 : ¬(s1 ≤ p31∧ p31 ≤ s2∧ t1 ≤
p32 ∧ p32 ≤ t2)}, where p3 ranges over points of E2

T holds P is open.

(34) Given s1, t1, s2, t2, P , Q. Suppose P = {p : s1 < p1 ∧ p1 < s2 ∧ t1 <
p2 ∧ p2 < t2}, where p ranges over points of E2

T and Q = {q1 : ¬(s1 ≤
q11 ∧ q11 ≤ s2 ∧ t1 ≤ q12 ∧ q12 ≤ t2)}, where q1 ranges over points of E2

T.
Then P ∩Q = ∅E2

T
.

(35) Given s1, t1, s2, t2, P , P1, P2. Suppose that
(i) s1 < s2,

(ii) t1 < t2,
(iii) P = {p : p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 =

t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, where
p ranges over points of E2

T,
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(iv) P1 = {p1 : s1 < p11 ∧ p11 < s2 ∧ t1 < p12 ∧ p12 < t2}, where p1 ranges
over points of E2

T,

(v) P2 = {p2 : ¬(s1 ≤ p21 ∧ p21 ≤ s2 ∧ t1 ≤ p22 ∧ p22 ≤ t2)}, where p2

ranges over points of E2
T.

Then

(vi) P c = P1 ∪ P2,

(vii) P c 6= ∅,
(viii) P1 ∩ P2 = ∅,

(ix) for all subsets P3, P4 of (E2
T)

�
P c such that P3 = P1 and P4 = P2 holds

P3 is a component of (E2
T)

�
P c and P4 is a component of (E2

T)
�
P c.

(36) Given s1, t1, s2, t2, P , P1, P2. Suppose that

(i) s1 < s2,

(ii) t1 < t2,

(iii) P = {p : p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 =
t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, where
p ranges over points of E2

T,

(iv) P1 = {p1 : s1 < p11 ∧ p11 < s2 ∧ t1 < p12 ∧ p12 < t2}, where p1 ranges
over points of E2

T,

(v) P2 = {p2 : ¬(s1 ≤ p21 ∧ p21 ≤ s2 ∧ t1 ≤ p22 ∧ p22 ≤ t2)}, where p2

ranges over points of E2
T.

Then P = P1 \ P1 and P = P2 \ P2.

(37) Given s1, s2, t1, t2, P , P1. Suppose that

(i) s1 < s2,

(ii) t1 < t2,

(iii) P = {p : p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 =
t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, where
p ranges over points of E2

T,

(iv) P1 = {p1 : s1 < p11 ∧ p11 < s2 ∧ t1 < p12 ∧ p12 < t2}, where p1 ranges
over points of E2

T.

Then P1 ⊆ Ω(E2
T) � P c .

(38) Given s1, s2, t1, t2, P , P1. Suppose that

(i) s1 < s2,

(ii) t1 < t2,

(iii) P = {p : p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 =
t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, where
p ranges over points of E2

T,

(iv) P1 = {p1 : s1 < p11 ∧ p11 < s2 ∧ t1 < p12 ∧ p12 < t2}, where p1 ranges
over points of E2

T.

Then P1 is a subset of (E2
T)

�
P c.

(39) Given s1, s2, t1, t2, P , P2. Suppose that

(i) s1 < s2,

(ii) t1 < t2,
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(iii) P = {p : p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 =
t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, where
p ranges over points of E2

T,

(iv) P2 = {p2 : ¬(s1 ≤ p21 ∧ p21 ≤ s2 ∧ t1 ≤ p22 ∧ p22 ≤ t2)}, where p2

ranges over points of E2
T.

Then P2 ⊆ Ω(E2
T

) � P c .

(40) Given s1, s2, t1, t2, P , P2. Suppose that

(i) s1 < s2,

(ii) t1 < t2,

(iii) P = {p : p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 =
t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, where
p ranges over points of E2

T,

(iv) P2 = {p2 : ¬(s1 ≤ p21 ∧ p21 ≤ s2 ∧ t1 ≤ p22 ∧ p22 ≤ t2)}, where p2

ranges over points of E2
T.

Then P2 is a subset of (E2
T)

�
P c.

3. Jordan’s property

In the sequel S, A1, A2 will be subsets of E2
T. Let us consider S. We say that S

has Jordan’s property if and only if the conditions (Def.1) is satisfied.

(Def.1) (i) Sc 6= ∅,
(ii) there exist A1, A2 such that Sc = A1 ∪ A2 and A1 ∩ A2 = ∅ and

A1 \ A1 = A2 \ A2 and for all subsets C1, C2 of (E2
T)

�
Sc such that

C1 = A1 and C2 = A2 holds C1 is a component of (E2
T)

�
Sc and C2 is a

component of (E2
T)

�
Sc.

The following propositions are true:

(41) Suppose S has Jordan’s property. Then

(i) Sc 6= ∅,
(ii) there exist subsets A1, A2 of E2

T and there exist subsets C1, C2 of
(E2

T)
�
Sc such that Sc = A1 ∪A2 and A1 ∩A2 = ∅ and A1 \A1 = A2 \A2

and C1 = A1 and C2 = A2 and C1 is a component of (E2
T)

�
Sc and C2 is

a component of (E2
T)

�
Sc and for every subset C3 of (E2

T)
�
Sc such that

C3 is a component of (E2
T)

�
Sc holds C3 = C1 or C3 = C2.

(42) Given s1, s2, t1, t2, P . Suppose that

(i) s1 < s2,

(ii) t1 < t2,

(iii) P = {p : p1 = s1 ∧ p2 ≤ t2 ∧ p2 ≥ t1 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 =
t2 ∨ p1 ≤ s2 ∧ p1 ≥ s1 ∧ p2 = t1 ∨ p1 = s2 ∧ p2 ≤ t2 ∧ p2 ≥ t1}, where
p ranges over points of E2

T.

Then P has Jordan’s property.
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of an Extremally Disconnected Space 1

Zbigniew Karno
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Summary. Let X be a topological space and let A be a subset of

X. Recall that A is said to be a domain in X provided IntA ⊆ A ⊆ IntA
(see [24], [11]). Recall also that A is said to be a(n) closed (open) domain

in X if A = IntA (A = IntA, resp.) (see e.g. [14], [24]). It is well-known
that for a given topological space all its closed domains form a Boolean
lattice, and similarly all its open domains form a Boolean lattice, too (see
e.g., [15], [3]). In [23] it is proved that all domains of a given topological
space form a complemented lattice. One may ask whether the lattice of
all domains is Boolean. The aim is to give an answer to this question.

To present the main results we first recall the definition of a class of
topological spaces which is important here. X is called extremally dis-
connected if for every open subset A of X the closure A is open in X [18]
(comp. [10]). It is shown here, using Mizar System, that the lattice of all
domains of a topological space X is modular iff X is extremally discon-
nected. Moreover, for every extremally disconnected space the lattice of
all its domains coincides with both the lattice of all its closed domains
and the lattice of all its open domains. From these facts it follows that
the lattice of all domains of a topological space X is Boolean iff X is
extremally disconnected.

Note that we also review some of the standard facts on discrete,
anti-discrete, almost discrete, extremally disconnected and hereditarily
extremally disconnected topological spaces (comp. [14], [10]).

MML Identifier: TDLAT 3.

The notation and terminology used in this paper are introduced in the following
articles: [20], [22], [21], [16], [6], [7], [17], [24], [9], [4], [19], [12], [5], [25], [8], [2],
[1], [23], and [13].

1Editor’s Note: This work has won the 1992 Śleszyński’s Award of the Mizar Society.
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1. Selected Properties of Subsets of a Topological Space

In the sequel X will be a topological space. We now state the proposition

(1) For every set B and for every subset A of X such that B ⊆ A holds B
is a subset of X.

In the sequel C denotes a subset of X. We now state three propositions:

(2) C = (Int(Cc))c.

(3) Cc = (IntC)c.

(4) Int(Cc) = Cc.

In the sequel A, B denote subsets of X. Next we state several propositions:

(5) If A ∩ B = ∅, then if A is open, then A ∩ B = ∅ and also if B is open,
then A ∩B = ∅.

(6) If A ∪ B = the carrier of X, then if A is closed, then A ∪ IntB = the
carrier of X and also if B is closed, then IntA ∪B = the carrier of X.

(7) A is open and A is closed if and only if A = IntA.

(8) If A is open and A is closed, then IntA = IntA.

(9) If A is a domain and IntA ⊆ IntA, then A is an open domain and A is
a closed domain.

(10) If A is a domain and IntA ⊆ IntA, then A is open and A is closed.

(11) If A is a domain, then IntA = IntA and A = IntA.

2. Discrete Topological Structures

We now define two new attributes. A topological structure is discrete if:

(Def.1) the topology of it = 2the carrier of it.

A topological structure is anti-discrete if:

(Def.2) the topology of it = {∅, the carrier of it}.
Next we state two propositions:

(12) For every Y being a topological structure such that Y is discrete and
Y is anti-discrete holds 2the carrier of Y = {∅, the carrier of Y }.

(13) For every Y being a topological structure such that ∅ ∈ the topology
of Y and the carrier of Y ∈ the topology of Y holds if 2the carrier of Y =
{∅, the carrier of Y }, then Y is discrete and Y is anti-discrete.

Let us mention that there exists a topological structure which is discrete
anti-discrete and strict.

Next we state two propositions:

(14) For every Y being a discrete topological structure and for every subset
A of the carrier of Y holds (the carrier of Y ) \ A ∈ the topology of Y .
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(15) For every Y being an anti-discrete topological structure and for every
subset A of the carrier of Y such that A ∈ the topology of Y holds (the
carrier of Y ) \A ∈ the topology of Y .

Let us observe that every topological structure which is discrete is also
topological space-like and every anti-discrete topological structure is topolog-
ical space-like.

One can prove the following proposition

(16) For every Y being a topological space-like topological structure such
that 2the carrier of Y = {∅, the carrier of Y } holds Y is discrete and Y is
anti-discrete.

A topological structure is almost discrete if:

(Def.3) for every subset A of the carrier of it such that A ∈ the topology of it
holds (the carrier of it) \ A ∈ the topology of it.

One can verify the following observations:

∗ every topological structure which is discrete is also almost discrete,

∗ every topological structure which is anti-discrete is also almost discrete,
and

∗ there exists an almost discrete strict topological structure.

3. Discrete Topological Spaces

Let us mention that there exists a discrete anti-discrete strict topological space.

In the sequelX denotes a topological space. Next we state three propositions:

(17) X is discrete if and only if every subset of X is open.

(18) X is discrete if and only if every subset of X is closed.

(19) If for every subset A of X and for every point x of X such that A = {x}
holds A is open, then X is discrete.

Let X be a discrete topological space. Note that every subspace of X is open
closed and discrete.

Let X be a discrete topological space. Observe that there exists a discrete
strict subspace of X.

Next we state three propositions:

(20) X is anti-discrete if and only if for every subset A of X such that A is
open holds A = ∅ or A = the carrier of X.

(21) X is anti-discrete if and only if for every subset A of X such that A is
closed holds A = ∅ or A = the carrier of X.

(22) If for every subset A of X and for every point x of X such that A = {x}
holds A = the carrier of X, then X is anti-discrete.

Let X be an anti-discrete topological space. Observe that every subspace of
X is anti-discrete.
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Let X be an anti-discrete topological space. Note that there exists an anti-
discrete subspace of X.

One can prove the following propositions:

(23) X is almost discrete if and only if for every subset A of X such that A
is open holds A is closed.

(24) X is almost discrete if and only if for every subset A of X such that A
is closed holds A is open.

(25) X is almost discrete if and only if for every subset A of X such that A
is open holds A = A.

(26) X is almost discrete if and only if for every subset A of X such that A
is closed holds IntA = A.

Let us observe that there exists an almost discrete strict topological space.

One can prove the following two propositions:

(27) If for every subset A of X and for every point x of X such that A = {x}
holds A is open, then X is almost discrete.

(28) X is discrete if and only if X is almost discrete and for every subset A
of X and for every point x of X such that A = {x} holds A is closed.

Let us observe that every discrete topological space is almost discrete and
every anti-discrete topological space is almost discrete.

Let X be an almost discrete topological space. Observe that every subspace
of X is almost discrete.

Let X be an almost discrete topological space. One can verify that every
open subspace of X is closed and every closed subspace of X is open.

Let X be an almost discrete topological space. Note that there exists a
subspace of X which is almost discrete and strict.

4. Extremally Disconnected Topological Spaces

A topological space is extremally disconnected if:

(Def.4) for every subset A of it such that A is open holds A is open.

Let us note that there exists a topological space which is extremally disconnected
and strict.

In the sequel X denotes a topological space. The following propositions are
true:

(29) X is extremally disconnected if and only if for every subset A of X such
that A is closed holds IntA is closed.

(30) X is extremally disconnected if and only if for all subsets A, B of X
such that A is open and B is open holds if A ∩B = ∅, then A ∩B = ∅.

(31) X is extremally disconnected if and only if for all subsets A, B of X
such that A is closed and B is closed holds if A ∪ B = the carrier of X,
then IntA ∪ IntB = the carrier of X.
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(32) X is extremally disconnected if and only if for every subset A of X such
that A is open holds A = IntA.

(33) X is extremally disconnected if and only if for every subset A of X such
that A is closed holds IntA = IntA.

(34) X is extremally disconnected if and only if for every subset A of X such
that A is a domain holds A is closed and A is open.

(35) X is extremally disconnected if and only if for every subset A of X such
that A is a domain holds A is a closed domain and A is an open domain.

(36) X is extremally disconnected if and only if for every subset A of X such
that A is a domain holds IntA = IntA.

(37) X is extremally disconnected if and only if for every subset A of X such
that A is a domain holds IntA = A.

(38) X is extremally disconnected if and only if for every subset A of X
holds if A is an open domain, then A is a closed domain and also if A is
a closed domain, then A is an open domain.

A topological space is hereditarily extremally disconnected if:

(Def.5) every subspace of it is extremally disconnected.

One can check the following observations:

∗ there exists a hereditarily extremally disconnected strict topological
space,

∗ every hereditarily extremally disconnected topological space is extremally
disconnected, and

∗ every topological space which is almost discrete is also hereditarily ex-
tremally disconnected.

One can prove the following proposition

(39) For every extremally disconnected topological space X and for every
subspace X0 of X and for every subset A of X such that A = the carrier
of X0 and A is dense holds X0 is extremally disconnected.

Let X be an extremally disconnected topological space. One can check that
every open subspace of X is extremally disconnected.

Let X be an extremally disconnected topological space. Note that there
exists an extremally disconnected strict subspace of X.

Let X be a hereditarily extremally disconnected topological space. Note that
every subspace of X is hereditarily extremally disconnected.

Let X be a hereditarily extremally disconnected topological space. Note that
there exists a hereditarily extremally disconnected strict subspace of X.

One can prove the following proposition

(40) If every closed subspace of X is extremally disconnected, then X is
hereditarily extremally disconnected.
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5. The Lattice of Domains of Extremally Disconnected Spaces

In the sequel Y is an extremally disconnected topological space. The following
propositions are true:

(41) The domains of Y = the closed domains of Y .

(42) D-Union(Y ) = CLD-Union(Y ) and D-Meet(Y ) = CLD-Meet(Y ).

(43) The lattice of domains of Y = the lattice of closed domains of Y .

(44) The domains of Y = the open domains of Y .

(45) D-Union(Y ) = OPD-Union(Y ) and D-Meet(Y ) = OPD-Meet(Y ).

(46) The lattice of domains of Y = the lattice of open domains of Y .

(47) For all elements A, B of the domains of Y holds (D-Union(Y ))(A, B) =
A ∪B and (D-Meet(Y ))(A, B) = A ∩B.

(48) For all elements a, b of the lattice of domains of Y and for all elements
A, B of the domains of Y such that a = A and b = B holds at b = A∪B
and a u b = A ∩B.

(49) For every family F of subsets of Y such that F is domains-family and
for every subset S of the lattice of domains of Y such that S = F holds⊔

(the lattice of domains of Y ) S =
⋃
F .

(50) For every family F of subsets of Y such that F is domains-family and
for every subset S of the lattice of domains of Y such that S = F holds if
S 6= ∅, then d−e(the lattice of domains of Y )S = Int

⋂
F and also if S = ∅, then

d−e(the lattice of domains of Y )S = ΩY .

In the sequel X will denote a topological space. One can prove the following
propositions:

(51) X is extremally disconnected if and only if the lattice of domains of X
is a modular lattice.

(52) If the lattice of domains of X = the lattice of closed domains of X, then
X is extremally disconnected.

(53) If the lattice of domains of X = the lattice of open domains of X, then
X is extremally disconnected.

(54) If the lattice of closed domains of X = the lattice of open domains of
X, then X is extremally disconnected.

(55) X is extremally disconnected if and only if the lattice of domains of X
is a Boolean lattice.
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Summary. This paper is based on a previous work of the first
author [12] in which a mathematical model of the computer has been
presented. The model deals with random access memory, such as RASP
of C. C. Elgot and A. Robinson [11], however, it allows for a more re-
alistic modeling of real computers. This new model of computers has
been named by the author (Y. Nakamura, [12]) Architecture Model for
Instructions (AMI). It is more developed than previous models, both in
the description of hardware (e.g., the concept of the program counter, the
structure of memory) as well as in the description of instructions (instruc-
tion codes, addresses). The structure of AMI over an arbitrary collection
of mathematical domains N consists of:

- a non-empty set of objects,

- the instruction counter,

- a non-empty set of objects called instruction locations,

- a non-empty set of instruction codes,

- an instruction code for halting,

- a set of instructions that are ordered pairs with the first element
being an instruction code and the second a finite sequence in which
members are either objects of the AMI or elements of one of the
domains included in N,

- a function that assigns to every object of AMI its kind that is either
an instruction or an instruction location or an element of N,

- a function that assigns to every instruction its execution that is again
a function mapping states of AMI into the set of states.

By a state of AMI we mean a function that assigns to every object of
AMI an element of the same kind. In this paper we develop the theory
of AMI. Some properties of AMI are introduced ensuring it to have some
properties of real computers:

- a von Neumann AMI, in which only addresses to instruction locations
are stored in the program counter,

- data oriented, those in which instructions cannot be stored in data
locations,

- halting, in which the execution of the halt instruction is the identity
mapping of the states of an AMI,

- steady programmed, the condition in which the contents of the in-
struction locations do not change during execution,

1The work has been done while the second author was visiting Nagano in autumn 1992.
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- definite, a property in which only instructions may be stored in in-
struction locations.

We present an example of AMI called a Small Concrete Model which has
been constructed in [12]. The Small Concrete Model has only one kind of
data: integers and a set of instructions, small but sufficient to cope with
integers.

MML Identifier: AMI 1.

The terminology and notation used here have been introduced in the following
articles: [19], [5], [6], [15], [2], [20], [14], [3], [17], [16], [10], [1], [4], [18], [13], [7],
[9], [21], and [8].

1. Preliminaries

In the sequel x is arbitrary. Next we state several propositions:

(1) � 6= � .

(2) For arbitrary a, b holds 1 6= 〈〈a, b〉〉.
(3) For arbitrary a, b holds 2 6= 〈〈a, b〉〉.
(4) For arbitrary a, b, c, d and for every function g such that dom g = {a, b}

and g(a) = c and g(b) = d holds g = [a 7−→ c, b 7−→ d].

(5) For arbitrary a, b, c, d such that a 6= b holds
∏

[a 7−→ {c}, b 7−→ {d}] =
{[a 7−→ c, b 7−→ d]}.

Let A be a set, and let B be a non-empty set. Then A ∪ B is a non-empty
set. Let A be a non-empty set, and let B be a set. Then A ∪B is a non-empty
set. A set has non-empty elements if:

(Def.1) ∅ /∈ it.

One can verify that there exists a set which is non-empty with and non-empty
elements.

Let A be a non-empty set. Then {A} is a non-empty set with non-empty
elements. Let B be a non-empty set. Then {A,B} is a non-empty set with
non-empty elements. Let A, B be non-empty sets with non-empty elements.
Then A ∪B is a non-empty set with non-empty elements.

2. General concepts

In the sequel N will be a non-empty set with non-empty elements.
We now define several new constructions. Let us consider N . We consider

AMI’s over N which are systems
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〈objects, a instruction counter, instruction locations, instruction codes, a halt
instruction, instructions, a object kind, a execution〉,
where the objects constitute a non-empty set, the instruction counter is an el-
ement of the objects, the instruction locations constitute a non-empty subset
of the objects, the instruction codes constitute a non-empty set, the halt in-
struction is an element of the instruction codes, the instructions constitute a
non-empty subset of [: the instruction codes, (

⋃
N ∪ the objects)∗ :], the object

kind is a function from the objects into N ∪ {the instructions,the instruction
locations}, and the execution is a function from the instructions into (

∏
(the

object kind))
∏

(the object kind). Let us consider N , and let S be an AMI over N .
An object of S is an element of the objects of S.

An instruction of S is an element of the instructions of S.
An instruction-location of S is an element of the instruction locations of S.
Let us consider N , and let S be an AMI over N . The functor ICS yields an

object of S and is defined by:

(Def.2) ICS = the instruction counter of S.

Let us consider N , and let S be an AMI over N , and let o be an object of S.
The functor ObjectKind(o) yielding an element of N∪{the instructions of S, the
instruction locations of S} is defined by:

(Def.3) ObjectKind(o) = (the object kind of S)(o).

Let A be a set, and let B be a non-empty set with non-empty elements, and let
f be a function from A into B. Then

∏
f is a non-empty set of functions. Let

P be a non-empty set of functions. We see that the element of P is a function.
Let us consider N , and let S be an AMI over N . A state of S is an element of∏

(the object kind of S).
Let us consider N , and let S be an AMI over N , and let I be an instruction

of S, and let s be a state of S. The functor Exec(I, s) yielding a state of S is
defined by:

(Def.4) Exec(I, s) = (the execution of S qua a function from the instructions

of S into (
∏

(the object kind of S))
∏

(the object kind of S))(I)(s).

Let us consider N , and let S be an AMI over N satisfying the condition: 〈〈the
halt instruction of S, ε〉〉 ∈ the instructions of S. The functor haltS yields an
instruction of S and is defined as follows:

(Def.5) haltS = 〈〈the halt instruction of S, ε〉〉.
Let us consider N . An AMI over N is von Neumann if:

(Def.6) ObjectKind(ICit) = the instruction locations of it.

An AMI over N is data-oriented if:

(Def.7) (the object kind of it) −1 {the instructions of it} ⊆ the instruction
locations of it.

An AMI over N is halting if:

(Def.8) for every state s of it holds Exec(haltit, s) = s.

An AMI over N is steady-programmed if:
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(Def.9) for every state s of it and for every instruction i of it and for every
instruction-location l of it holds (Exec(i, s))(l) = s(l).

An AMI over N is definite if:

(Def.10) for every instruction-location l of it holds ObjectKind(l) = the instruc-
tions of it.

Let us consider N . Note that there exists a von Neumann data-oriented halting
steady-programmed definite strict AMI over N .

Let us consider N , and let S be a von Neumann AMI over N , and let s be
a state of S. The functor ICs yields an instruction-location of S and is defined
as follows:

(Def.11) ICs = s(ICS).

3. A small concrete model

In the sequel i, k will be natural numbers. We now define four new functors.
The non-empty subset LocSCM of � is defined by:

(Def.12) LocSCM = � \ {0}.
The element HaltSCM of � 9 is defined as follows:

(Def.13) HaltSCM = 0.

The non-empty subset Data-LocSCM of LocSCM is defined as follows:

(Def.14) Data-LocSCM = {2 · k + 1}.
The non-empty subset Instr-LocSCM of � is defined by:

(Def.15) Instr-LocSCM = {2 · k : k > 0}.
We adopt the following convention: I, J , K are elements of � 9, a, a1, a2 are

elements of Instr-LocSCM, and b, b1, b2, c, c1 are elements of Data-LocSCM. The
non-empty subset InstrSCM of [: � 9,

⋃{ � }∪ � ∗ :] is defined as follows:

(Def.16) InstrSCM = {〈〈HaltSCM, ε〉〉} ∪ {〈〈J, 〈a〉〉〉 : J = 6} ∪ {〈〈K, 〈a1, b1〉〉〉 : K ∈
{7, 8}} ∪ {〈〈I, 〈b, c〉〉〉 : I ∈ {1, 2, 3, 4, 5}}.

The following propositions are true:

(6) InstrSCM = {〈〈HaltSCM, ε〉〉} ∪ {〈〈J, 〈a〉〉〉 : J = 6} ∪ {〈〈K, 〈a1, b1〉〉〉 : K ∈
{7, 8}} ∪ {〈〈I, 〈b, c〉〉〉 : I ∈ {1, 2, 3, 4, 5}}.

(7) 〈〈0, ε〉〉 ∈ InstrSCM.

(8) 〈〈6, 〈a2〉〉〉 ∈ InstrSCM.

(9) If x ∈ {7, 8}, then 〈〈x, 〈a2, b2〉〉〉 ∈ InstrSCM.

(10) If x ∈ {1, 2, 3, 4, 5}, then 〈〈x, 〈b1, c1〉〉〉 ∈ InstrSCM.

The function OKSCM from � into { � }∪ {InstrSCM, Instr-LocSCM} is defined
by:

(Def.17) OKSCM(0) = Instr-LocSCM and for every natural number k holds
OKSCM(2 · k + 1) = � and OKSCM(2 · k + 2) = InstrSCM.
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The following four propositions are true:

(11) Instr-LocSCM 6= � and InstrSCM 6= � and Instr-LocSCM 6= InstrSCM.

(12) For every i holds OKSCM(i) = Instr-LocSCM if and only if i = 0.

(13) For every i holds OKSCM(i) = � if and only if there exists k such that
i = 2 · k + 1.

(14) For every i holds OKSCM(i) = InstrSCM if and only if there exists k
such that i = 2 · k + 2.

A stateSCM is an element of
∏

(OKSCM).

In the sequel s is a stateSCM. We now state several propositions:

(15) For every element a of Data-LocSCM holds OKSCM(a) = � .

(16) For every element a of Instr-LocSCM holds OKSCM(a) = InstrSCM.

(17) For every element a of Instr-LocSCM

and for every element t of Data-LocSCM holds a 6= t.

(18) π0
∏

(OKSCM) = Instr-LocSCM.

(19) For every element a of Data-LocSCM holds πa
∏

(OKSCM) = � .

(20) For every element a of Instr-LocSCM holds πa
∏

(OKSCM) = InstrSCM.

We now define two new functors. Let s be a stateSCM. The functor ICs

yielding an element of Instr-LocSCM is defined by:

(Def.18) ICs = s(0).

Let s be a stateSCM, and let u be an element of Instr-LocSCM. The functor
ChgSCM(s, u) yields a stateSCM and is defined as follows:

(Def.19) ChgSCM(s, u) = s+· (07−→. u).

The following three propositions are true:

(21) For every stateSCM s and for every element u of Instr-LocSCM holds
(ChgSCM(s, u))(0) = u.

(22) For every stateSCM s and for every element u of Instr-LocSCM and for
every element m1 of Data-LocSCM holds (ChgSCM(s, u))(m1) = s(m1).

(23) For every stateSCM s and for all elements u, v of Instr-LocSCM holds
(ChgSCM(s, u))(v) = s(v).

Let s be a stateSCM, and let t be an element of Data-LocSCM, and let u be
an integer. The functor ChgSCM(s, t, u) yielding a stateSCM is defined by:

(Def.20) ChgSCM(s, t, u) = s+· (t7−→. u).

The following four propositions are true:

(24) For every stateSCM s and for every element t of Data-LocSCM and for
every integer u holds (ChgSCM(s, t, u))(0) = s(0).

(25) For every stateSCM s and for every element t of Data-LocSCM and for
every integer u holds (ChgSCM(s, t, u))(t) = u.

(26) For every stateSCM s and for every element t of Data-LocSCM and for
every integer u and for every element m1 of Data-LocSCM such thatm1 6= t
holds (ChgSCM(s, t, u))(m1) = s(m1).
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(27) For every stateSCM s and for every element t of Data-LocSCM and for
every integer u and for every element v of Instr-LocSCM holds
(ChgSCM(s, t, u))(v) = s(v).

We now define two new functors. Let x be an element of InstrSCM. Let us
assume that there exist m1, m2 of the type elements of Data-LocSCM; I such that
x = 〈〈I, 〈m1,m2〉〉〉. The functor xaddress1 yields an element of Data-LocSCM and
is defined by:

(Def.21) there exists a finite sequence f of elements of Data-LocSCM such that
f = x2 and xaddress1 = π1f .

The functor xaddress2 yields an element of Data-LocSCM and is defined by:

(Def.22) there exists a finite sequence f of elements of Data-LocSCM such that
f = x2 and xaddress2 = π2f .

One can prove the following proposition

(28) For every element x of InstrSCM and for all elements m1, m2 of Data-
LocSCM and for every I such that x = 〈〈I, 〈m1,m2〉〉〉
holds xaddress1 = m1 and xaddress2 = m2.

Let x be an element of InstrSCM. Let us assume that there exist m1 of
the type an element of Instr-LocSCM; I such that x = 〈〈I, 〈m1〉〉〉. The functor
xaddressj yielding an element of Instr-LocSCM is defined as follows:

(Def.23) there exists a finite sequence f of elements of Instr-LocSCM such that
f = x2 and xaddressj = π1f .

We now state the proposition

(29) For every element x of InstrSCM and for every element m1 of Instr-LocSCM

and for every I such that x = 〈〈I, 〈m1〉〉〉 holds xaddressj = m1.

We now define two new functors. Let x be an element of InstrSCM. Let us
assume that there exist m1 of the type an element of Instr-LocSCM; m2 of the
type an element of Data-LocSCM; I such that x = 〈〈I, 〈m1,m2〉〉〉. The functor
xaddressj yields an element of Instr-LocSCM and is defined as follows:

(Def.24) there exists an element m1 of Instr-LocSCM and there exists an element
m2 of Data-LocSCM such that 〈m1,m2〉 = x2 and xaddressj = π1〈m1,
m2〉.

The functor xaddressc yielding an element of Data-LocSCM is defined by:

(Def.25) there exists an element m1 of Instr-LocSCM and there exists an element
m2 of Data-LocSCM such that 〈m1,m2〉 = x2 and xaddressc = π2〈m1,
m2〉.

The following proposition is true

(30) For every element x of InstrSCM and for every element m1 of Instr-LocSCM

and for every element m2 of Data-LocSCM and for every I such that
x = 〈〈I, 〈m1,m2〉〉〉 holds xaddressj = m1 and xaddressc = m2.

We now define five new functors. Let s be a stateSCM, and let a be an element
of Data-LocSCM. Then s(a) is an integer. Let D be a non-empty set, and let x,
y be arbitrary, and let a, b be elements of D. Then (x = y → a, b) is an element
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of D. Let D be a non-empty set, and let x, y be real numbers, and let a, b be
elements of D. The functor (x > y → a, b) yields an element of D and is defined
as follows:

(Def.26)

(x > y → a, b) =





a, if x > y,

b, otherwise.

Let d be an element of Instr-LocSCM. The functor Next(d) yields an element of
Instr-LocSCM and is defined as follows:

(Def.27) Next(d) = d+ 2.

Let x be an element of InstrSCM, and let s be a stateSCM. The functor
Exec-ResSCM(x, s) yielding a stateSCM is defined as follows:

(Def.28) (i) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(s, xaddress1, s(xaddress2)),
Next(ICs)) if there exist elements m1, m2 of Data-LocSCM such that
x = 〈〈1, 〈m1,m2〉〉〉,

(ii) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(s, xaddress1, s(xaddress1)+
s(xaddress2)),Next(ICs)) if there exist elements m1, m2 of Data-LocSCM

such that x = 〈〈2, 〈m1,m2〉〉〉,
(iii) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(s, xaddress1, s(xaddress1)−

s(xaddress2)),Next(ICs)) if there exist elements m1, m2 of Data-LocSCM

such that x = 〈〈3, 〈m1,m2〉〉〉,
(iv) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(s, xaddress1, s(xaddress1)·

s(xaddress2)),Next(ICs)) if there exist elements m1, m2 of Data-LocSCM

such that x = 〈〈4, 〈m1,m2〉〉〉,
(v) Exec-ResSCM(x, s) = ChgSCM(ChgSCM(ChgSCM(s, xaddress1, s(xaddress1)

÷s(xaddress2)), xaddress2, s(xaddress1) mod s(xaddress2)),Next(ICs))
if there exist elements m1, m2 of Data-LocSCM such that x = 〈〈5, 〈m1,
m2〉〉〉,

(vi) Exec-ResSCM(x, s) = ChgSCM(s, xaddressj) if there exists an element m1

of Instr-LocSCM such that x = 〈〈6, 〈m1〉〉〉,
(vii) Exec-ResSCM(x, s) = ChgSCM(s, (s(xaddressc) = 0→ xaddressj,

Next(ICs))) if there exists an element m1 of Instr-LocSCM and there exists
an element m2 of Data-LocSCM such that x = 〈〈7, 〈m1,m2〉〉〉,

(viii) Exec-ResSCM(x, s) = ChgSCM(s, (s(xaddressc) > 0→ xaddressj,
Next(ICs))) if there exists an element m1 of Instr-LocSCM and there exists
an element m2 of Data-LocSCM such that x = 〈〈8, 〈m1,m2〉〉〉,

(ix) Exec-ResSCM(x, s) = s, otherwise.

The function ExecSCM from InstrSCM into
∏

OK

∏
OKSCM

SCM is defined by:

(Def.29) for every element x of InstrSCM and for every stateSCM y holds

(ExecSCM(x) qua an element of (
∏

(OKSCM))
∏

(OKSCM))(y) =
Exec-ResSCM(x, y).

The von Neumann strict AMI SCM is defined by:
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(Def.30) SCM = 〈 � , 0, Instr-LocSCM, � 9,HaltSCM, InstrSCM,OKSCM,ExecSCM〉.
Next we state three propositions:

(31) SCM is data-oriented.

(32) SCM is definite.

(33) The objects of SCM = � and the instruction counter of SCM = 0 and
the instruction locations of SCM = Instr-LocSCM and the instruction
codes of SCM = � 9 and the halt instruction of SCM = HaltSCM and the
instructions of SCM = InstrSCM and the object kind of SCM = OKSCM

and the execution of SCM = ExecSCM.

An object of SCM is said to be a data-location if:

(Def.31) it ∈ Data-LocSCM.

Let s be a state of SCM, and let d be a data-location. Then s(d) is an integer.

We adopt the following convention: a, b, c denote data-locations, l1 denotes
an instruction-location of SCM, and I denotes an instruction of SCM. We
now define several new functors. Let us consider a, b. The functor a:=b yielding
an instruction of SCM is defined by:

(Def.32) a:=b = 〈〈1, 〈a, b〉〉〉.
The functor AddTo(a, b) yielding an instruction of SCM is defined by:

(Def.33) AddTo(a, b) = 〈〈2, 〈a, b〉〉〉.
The functor SubFrom(a, b) yielding an instruction of SCM is defined by:

(Def.34) SubFrom(a, b) = 〈〈3, 〈a, b〉〉〉.
The functor MultBy(a, b) yields an instruction of SCM and is defined by:

(Def.35) MultBy(a, b) = 〈〈4, 〈a, b〉〉〉.
The functor Divide(a, b) yields an instruction of SCM and is defined as follows:

(Def.36) Divide(a, b) = 〈〈5, 〈a, b〉〉〉.
Let us consider l1. The functor goto l1 yields an instruction of SCM and is
defined by:

(Def.37) goto l1 = 〈〈6, 〈l1〉〉〉.
Let us consider a. The functor if a = 0 goto l1 yielding an instruction of SCM
is defined as follows:

(Def.38) if a = 0 goto l1 = 〈〈7, 〈l1, a〉〉〉.
The functor if a > 0 goto l1 yields an instruction of SCM and is defined as
follows:

(Def.39) if a > 0 goto l1 = 〈〈8, 〈l1, a〉〉〉.
In the sequel s will denote a state of SCM. Next we state two propositions:

(34) ICSCM = 0.

(35) For every stateSCM S such that S = s holds ICs = ICS .

Let l1 be an instruction-location of SCM. The functor Next(l1) yielding an
instruction-location of SCM is defined by:
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(Def.40) there exists an element m3 of Instr-LocSCM such that m3 = l1 and
Next(l1) = Next(m3).

Next we state two propositions:

(36) For every instruction-location l1 of SCM and for every element m3 of
Instr-LocSCM such that m3 = l1 holds Next(m3) = Next(l1).

(37) For every element i of InstrSCM such that i = I and for every stateSCM

S such that S = s holds Exec(I, s) = Exec-ResSCM(i, S).

4. Users guide

One can prove the following propositions:

(38) (Exec(a:=b, s))(ICSCM) = Next(ICs) and (Exec(a:=b, s))(a) = s(b)
and for every c such that c 6= a holds (Exec(a:=b, s))(c) = s(c).

(39) (Exec(AddTo(a, b), s))(ICSCM) = Next(ICs)

and (Exec(AddTo(a, b), s))(a) = s(a) + s(b) and for every c such that
c 6= a holds (Exec(AddTo(a, b), s))(c) = s(c).

(40) (Exec(SubFrom(a, b), s))(ICSCM) = Next(ICs)

and (Exec(SubFrom(a, b), s))(a) = s(a) − s(b) and for every c such that
c 6= a holds (Exec(SubFrom(a, b), s))(c) = s(c).

(41) (Exec(MultBy(a, b), s))(ICSCM) = Next(ICs)

and (Exec(MultBy(a, b), s))(a) = s(a)·s(b) and for every c such that c 6= a
holds (Exec(MultBy(a, b), s))(c) = s(c).

(42) Suppose a 6= b. Then

(i) (Exec(Divide(a, b), s))(ICSCM) = Next(ICs),

(ii) (Exec(Divide(a, b), s))(a) = s(a)÷ s(b),
(iii) (Exec(Divide(a, b), s))(b) = s(a) mod s(b),

(iv) for every c such that c 6= a and c 6= b holds (Exec(Divide(a, b), s))(c) =
s(c).

(43) (Exec(goto l1, s))(ICSCM) = l1 and (Exec(goto l1, s))(c) = s(c).

(44) If s(a) = 0, then (Exec(if a = 0 goto l1, s))(ICSCM) = l1 and also
if s(a) 6= 0, then (Exec(if a = 0 goto l1, s))(ICSCM) = Next(ICs) and
(Exec(if a = 0 goto l1, s))(c) = s(c).

(45) If s(a) > 0, then (Exec(if a > 0 goto l1, s))(ICSCM) = l1 and also
if s(a) ≤ 0, then (Exec(if a > 0 goto l1, s))(ICSCM) = Next(ICs) and
(Exec(if a > 0 goto l1, s))(c) = s(c).

(46) Exec(haltSCM, s) = s.

(47) For every state s of SCM and for every instruction-location i of SCM
holds s(i) is an instruction of SCM.
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[8] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,

2(5):701–709, 1991.
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[13] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized

Mathematics, 1(3):555–561, 1990.
[14] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Math-

ematics, 2(5):623–627, 1991.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[18] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics,

1(3):495–500, 1990.
[19] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[20] Micha l J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.

Received October 14, 1992



FORMALIZED MATHEMATICS

Volume 3, Number 2, 1992
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Summary. We define and prove some simple facts on Cartesian
categories and its duals co-Cartesian categories. The Cartesian category
is defined as a category with the fixed terminal object, the fixed projec-
tions, and the binary products. Category C has finite products if and
only if C has a terminal object and for every pair a, b of objects of C the
product a×b exists. We say that a category C has a finite product if every
finite family of objects of C has a product. Our work is based on ideas of
[13], where the algebraic properties of the proof theory are investigated.
The terminal object of a Cartesian category C is denoted by 1C . The
binary product of a and b is written as a×b. The projections of the prod-
uct are written as pr1(a, b) and as pr2(a, b). We define the products f ×g
of arrows f : a→ a′ and g : b→ b′ as < f · pr1, g · pr2 >: a× b→ a′ × b′

Co-Cartesian category is defined dually to the Cartesian category.
Dual to a terminal object is an initial object, and to products are co-
products. The initial object of a Cartesian category C is written as 0C .
Binary coproduct of a and b is written as a+b. Injections of the coproduct
are written as in1(a, b) and as in2(a, b).

MML Identifier: CAT 4.

The terminology and notation used in this paper are introduced in the following
papers: [16], [15], [11], [4], [5], [14], [9], [12], [2], [1], [3], [7], [6], [8], and [10].

1. Preliminaries

In the sequel o, m, r will be arbitrary. We now define two new constructions.
Let us consider o, m, r. [〈o,m〉 7→ r] is a function from [: {o}, {m} :] into {r}.

Let C be a category, and let a, b be objects of C. Let us observe that a and
b are isomorphic if:

(Def.1) hom(a, b) 6= ∅ and hom(b, a) 6= ∅ and there exists a morphism f from a
to b and there exists a morphism f ′ from b to a such that f · f ′ = idb and
f ′ · f = ida.
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2. Cartesian Categories

Let C be a category. We say that C has finite product if and only if:

(Def.2) for every set I and for every function F from I into the objects of C such
that I is finite there exists an object a of C and there exists a projections
family F ′ from a onto I such that codκ F

′(κ) = F and a is a product
w.r.t. F ′.

We now state the proposition

(1) Let C be a category. Then C has finite product if and only if there
exists an object of C which is a terminal object and for every objects a, b
of C there exists an object c of C and there exist morphisms p1, p2 of C
such that dom p1 = c and dom p2 = c and cod p1 = a and cod p2 = b and
c is a product w.r.t. p1 and p2.

We now define several new constructions. We consider Cartesian category
structures which are extension of category structures and are systems
〈objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a

terminal, a product, a 1st-projection, a 2nd-projection〉,
where the objects, the morphisms constitute non-empty sets, the dom-map, the
cod-map are functions from the morphisms into the objects, the composition is
a partial function from [: the morphisms, the morphisms :] to the morphisms, the
id-map is a function from the objects into the morphisms, the terminal is an
element of the objects, the product is a function from [: the objects, the objects :]
into the objects, and the 1st-projection, the 2nd-projection are functions from
[: the objects, the objects :] into the morphisms. Let C be a Cartesian category
structure. The functor 1C yielding an object of C is defined by:

(Def.3) 1C = the terminal of C.

Let a, b be objects of C. The functor a× b yielding an object of C is defined as
follows:

(Def.4) a× b = (the product of C)(〈〈a, b〉〉).
The functor π1(a× b) yielding a morphism of C is defined as follows:

(Def.5) π1(a× b) = (the 1st-projection of C)(〈〈a, b〉〉).
The functor π2(a× b) yields a morphism of C and is defined as follows:

(Def.6) π2(a× b) = (the 2nd-projection of C)(〈〈a, b〉〉).
Let us consider o, m. The functor ˙�

c(o,m) yielding a strict Cartesian category
structure is defined by:

(Def.7) ˙�
c(o,m) = 〈{o}, {m}, {m} 7−→ o, {m} 7−→ o, 〈m,m〉 7−→ m, {o} 7−→ m,

Extract(o), [〈o, o〉 7→ o], [〈o, o〉 7→ m], [〈o, o〉 7→ m]〉.
We now state the proposition

(2) The category structure of ˙�
c(o,m) = ˙�

(o,m).

Let us note that there exists a Cartesian category structure which is strict
and category-like.
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Let o, m be arbitrary. Then ˙�
c(o,m) is a strict category-like Cartesian

category structure.

The following propositions are true:

(3) For every object a of ˙�
c(o,m) holds a = o.

(4) For all objects a, b of ˙�
c(o,m) holds a = b.

(5) For every morphism f of ˙�
c(o,m) holds f = m.

(6) For all morphisms f , g of ˙�
c(o,m) holds f = g.

(7) For all objects a, b of ˙�
c(o,m) and for every morphism f of ˙�

c(o,m)
holds f ∈ hom(a, b).

(8) For all objects a, b of ˙�
c(o,m) every morphism of ˙�

c(o,m) is a mor-
phism from a to b.

(9) For all objects a, b of ˙�
c(o,m) holds hom(a, b) 6= ∅.

(10) Every object of ˙�
c(o,m) is a terminal object.

(11) For every object c of ˙�
c(o,m) and for all morphisms p1, p2 of ˙�

c(o,m)
holds c is a product w.r.t. p1 and p2.

A category-like Cartesian category structure is Cartesian if:

(Def.8) the terminal of it is a terminal object and for all objects a, b of it holds
cod (the 1st-projection of it)(〈〈a, b〉〉) = a and cod (the 2nd-projection of
it)(〈〈a, b〉〉) = b and (the product of it)(〈〈a, b〉〉) is a product w.r.t. (the
1st-projection of it)(〈〈a, b〉〉) and (the 2nd-projection of it)(〈〈a, b〉〉).

We now state the proposition

(12) For arbitrary o, m holds ˙�
c(o,m) is Cartesian.

One can verify that there exists a strict Cartesian category-like Cartesian
category structure.

A Cartesian category is a category-like Cartesian category structure.

We adopt the following convention: C denotes a Cartesian category and a,
b, c, d, e, s denote objects of C. We now state three propositions:

(13) 1C is a terminal object.

(14) For all morphisms f1, f2 from a to 1C holds f1 = f2.

(15) hom(a,1C) 6= ∅.
Let us consider C, a. !a is a morphism from a to 1C .

Next we state several propositions:

(16) !a = ||1Ca.

(17) dom(!a) = a and cod(!a) = 1C .

(18) hom(a,1C) = {!a}.
(19) domπ1(a× b) = a× b and codπ1(a× b) = a.

(20) domπ2(a× b) = a× b and codπ2(a× b) = b.

Let us consider C, a, b. Then π1(a× b) is a morphism from a× b to a. Then
π2(a× b) is a morphism from a× b to b.

The following four propositions are true:
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(21) hom(a× b, a) 6= ∅ and hom(a× b, b) 6= ∅.
(22) a× b is a product w.r.t. π1(a× b) and π2(a× b).
(23) C has finite product.

(24) If hom(a, b) 6= ∅ and hom(b, a) 6= ∅, then π1(a × b) is retraction and
π2(a× b) is retraction.

Let us consider C, a, b, c, and let f be a morphism from c to a, and let g be
a morphism from c to b. Let us assume that hom(c, a) 6= ∅ and hom(c, b) 6= ∅.
The functor 〈f, g〉 yields a morphism from c to a× b and is defined by:

(Def.9) π1(a× b) · 〈f, g〉 = f and π2(a× b) · 〈f, g〉 = g.

The following propositions are true:

(25) If hom(c, a) 6= ∅ and hom(c, b) 6= ∅, then hom(c, a× b) 6= ∅.
(26) 〈π1(a× b), π2(a× b)〉 = id(a×b).
(27) For every morphism f from c to a and for every morphism g from c

to b and for every morphism h from d to c such that hom(c, a) 6= ∅ and
hom(c, b) 6= ∅ and hom(d, c) 6= ∅ holds 〈f · h, g · h〉 = 〈f, g〉 · h.

(28) For all morphisms f , k from c to a and for all morphisms g, h from c
to b such that hom(c, a) 6= ∅ and hom(c, b) 6= ∅ and 〈f, g〉 = 〈k, h〉 holds
f = k and g = h.

(29) For every morphism f from c to a and for every morphism g from c to
b such that hom(c, a) 6= ∅ and hom(c, b) 6= ∅ and also f is monic or g is
monic holds 〈f, g〉 is monic.

(30) hom(a, a× 1C) 6= ∅ and hom(a,1C × a) 6= ∅.
We now define four new functors. Let us consider C, a. The functor λ(a)

yielding a morphism from 1C × a to a is defined by:

(Def.10) λ(a) = π2(1C × a).

The functor λ−1(a) yielding a morphism from a to 1C × a is defined as follows:

(Def.11) λ−1(a) = 〈!a, ida〉.
The functor ρ(a) yields a morphism from a× 1C to a and is defined as follows:

(Def.12) ρ(a) = π1(a× 1C).

The functor ρ−1(a) yielding a morphism from a to a× 1C is defined as follows:

(Def.13) ρ−1(a) = 〈ida, !a〉.
The following propositions are true:

(31) λ(a) · λ−1(a) = ida and λ−1(a) · λ(a) = id(1C×a) and ρ(a) · ρ−1(a) = ida
and ρ−1(a) · ρ(a) = id(a×1C ).

(32) a and a× 1C are isomorphic and a and 1C × a are isomorphic.

Let us consider C, a, b. The functor Switch(a) yielding a morphism from
a× b to b× a is defined as follows:

(Def.14) Switch(a) = 〈π2(a× b), π1(a× b)〉.
One can prove the following three propositions:

(33) hom(a× b, b× a) 6= ∅.
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(34) Switch(a) · Switch(b) = id(b×a).

(35) a× b and b× a are isomorphic.

Let us consider C, a. The functor ∆(a) yielding a morphism from a to a× a
is defined by:

(Def.15) ∆(a) = 〈ida, ida〉.
We now state two propositions:

(36) hom(a, a× a) 6= ∅.
(37) For every morphism f from a to b such that hom(a, b) 6= ∅ holds 〈f, f〉 =

∆(b) · f .

We now define two new functors. Let us consider C, a, b, c. The functor
α((a, b), c) yielding a morphism from a× b× c to a× (b× c) is defined by:

(Def.16) α((a, b), c) = 〈π1(a×b) ·π1((a×b)×c), 〈π2(a×b) ·π1((a×b)×c), π2((a×
b)× c)〉〉.

The functor α(a, (b, c)) yields a morphism from a × (b × c) to a × b × c and is
defined as follows:

(Def.17) α(a, (b, c)) = 〈〈π1(a×(b×c)), π1(b×c) ·π2(a×(b×c))〉, π2(b×c) ·π2(a×
(b× c))〉.

The following three propositions are true:

(38) hom(a× b× c, a× (b× c)) 6= ∅ and hom(a× (b× c), a× b× c) 6= ∅.
(39) α((a, b), c) · α(a, (b, c)) = id(a×(b×c)) and

α(a, (b, c)) · α((a, b), c) = id(a×b×c).
(40) (a× b)× c and a× (b× c) are isomorphic.

Let us consider C, a, b, c, d, and let f be a morphism from a to b, and let g
be a morphism from c to d. The functor f × g yields a morphism from a× c to
b× d and is defined by:

(Def.18) f × g = 〈f · π1(a× c), g · π2(a× c)〉.
One can prove the following propositions:

(41) If hom(a, c) 6= ∅ and hom(b, d) 6= ∅, then hom(a× b, c× d) 6= ∅.
(42) ida × idb = id(a×b).
(43) Let f be a morphism from a to b. Let h be a morphism from c to d.

Then for every morphism g from e to a and for every morphism k from
e to c such that hom(a, b) 6= ∅ and hom(c, d) 6= ∅ and hom(e, a) 6= ∅ and
hom(e, c) 6= ∅ holds (f × h) · 〈g, k〉 = 〈f · g, h · k〉.

(44) For every morphism f from c to a and for every morphism g from c to
b such that hom(c, a) 6= ∅ and hom(c, b) 6= ∅ holds 〈f, g〉 = (f × g) ·∆(c).

(45) Let f be a morphism from a to b. Let h be a morphism from c to d.
Then for every morphism g from e to a and for every morphism k from
s to c such that hom(a, b) 6= ∅ and hom(c, d) 6= ∅ and hom(e, a) 6= ∅ and
hom(s, c) 6= ∅ holds (f × h) · (g × k) = (f · g)× (h · k).
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3. Co-Cartesian Categories

Let C be a category. We say that C has finite coproduct if and only if:

(Def.19) for every set I and for every function F from I into the objects of C such
that I is finite there exists an object a of C and there exists a injections
family F ′ into a on I such that domκ F

′(κ) = F and a is a coproduct
w.r.t. F ′.

Next we state the proposition

(46) Let C be a category. Then C has finite coproduct if and only if there
exists an object of C which is an initial object and for every objects a, b
of C there exists an object c of C and there exist morphisms i1, i2 of C
such that dom i1 = a and dom i2 = b and cod i1 = c and cod i2 = c and c
is a coproduct w.r.t. i1 and i2.

We now define several new constructions. We consider cocartesian category
structures which are extension of category structures and are systems
〈objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a

initial, a coproduct, a 1st-coprojection, a 2nd-coprojection〉,
where the objects, the morphisms constitute non-empty sets, the dom-map, the
cod-map are functions from the morphisms into the objects, the composition is
a partial function from [: the morphisms, the morphisms :] to the morphisms, the
id-map is a function from the objects into the morphisms, the initial is an ele-
ment of the objects, the coproduct is a function from [: the objects, the objects :]
into the objects, and the 1st-coprojection, the 2nd-coprojection are functions
from [: the objects, the objects :] into the morphisms. Let C be a cocartesian
category structure. The functor 0C yields an object of C and is defined as
follows:

(Def.20) 0C = the initial of C.

Let a, b be objects of C. The functor a+ b yields an object of C and is defined
as follows:

(Def.21) a+ b = (the coproduct of C)(〈〈a, b〉〉).
The functor in1(a+ b) yields a morphism of C and is defined as follows:

(Def.22) in1(a+ b) = (the 1st-coprojection of C)(〈〈a, b〉〉).
The functor in2(a+ b) yields a morphism of C and is defined by:

(Def.23) in2(a+ b) = (the 2nd-coprojection of C)(〈〈a, b〉〉).
Let us consider o, m. The functor ˙� op

c (o,m) yielding a strict cocartesian category
structure is defined by:

(Def.24) ˙� op
c (o,m) = 〈{o}, {m}, {m} 7−→ o, {m} 7−→ o, 〈m,m〉 7−→ m, {o} 7−→

m,Extract(o), [〈o, o〉 7→ o], [〈o, o〉 7→ m], [〈o, o〉 7→ m]〉.
One can prove the following proposition

(47) The category structure of ˙� op
c (o,m) = ˙�

(o,m).
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Let us note that there exists a strict category-like cocartesian category struc-
ture.

Let o, m be arbitrary. Then ˙� op
c (o,m) is a strict category-like cocartesian

category structure.

One can prove the following propositions:

(48) For every object a of ˙� op
c (o,m) holds a = o.

(49) For all objects a, b of ˙� op
c (o,m) holds a = b.

(50) For every morphism f of ˙� op
c (o,m) holds f = m.

(51) For all morphisms f , g of ˙� op
c (o,m) holds f = g.

(52) For all objects a, b of ˙� op
c (o,m) and for every morphism f of ˙� op

c (o,m)
holds f ∈ hom(a, b).

(53) For all objects a, b of ˙� op
c (o,m) every morphism of ˙� op

c (o,m) is a
morphism from a to b.

(54) For all objects a, b of ˙� op
c (o,m) holds hom(a, b) 6= ∅.

(55) Every object of ˙� op
c (o,m) is an initial object.

(56) For every object c of ˙� op
c (o,m) and for all morphisms i1, i2 of ˙� op

c (o,m)
holds c is a coproduct w.r.t. i1 and i2.

A category-like cocartesian category structure is cocartesian if:

(Def.25) the initial of it is an initial object and for all objects a, b of it holds
dom (the 1st-coprojection of it)(〈〈a, b〉〉) = a and dom (the 2nd-coprojection
of it)(〈〈a, b〉〉) = b and (the coproduct of it)(〈〈a, b〉〉) is a coproduct w.r.t.
(the 1st-coprojection of it)(〈〈a, b〉〉) and (the 2nd-coprojection of it)(〈〈a, b〉〉).

One can prove the following proposition

(57) For arbitrary o, m holds ˙� op
c (o,m) is cocartesian.

One can check that there exists a category-like cocartesian category structure
which is strict and cocartesian.

A cocartesian category is a category-like cocartesian category structure.

We adopt the following rules: C is a cocartesian category and a, b, c, d, e, s
are objects of C. Next we state two propositions:

(58) 0C is an initial object.

(59) For all morphisms f1, f2 from 0C to a holds f1 = f2.

Let us consider C, a. !a is a morphism from 0C to a.

We now state a number of propositions:

(60) hom(0C , a) 6= ∅.
(61) !a = ||0Ca.

(62) dom(!a) = 0C and cod(!a) = a.

(63) hom(0C , a) = {!a}.
(64) dom in1(a+ b) = a and cod in1(a+ b) = a+ b.

(65) dom in2(a+ b) = b and cod in2(a+ b) = a+ b.

(66) hom(a, a+ b) 6= ∅ and hom(b, a+ b) 6= ∅.
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(67) a+ b is a coproduct w.r.t. in1(a+ b) and in2(a+ b).

(68) C has finite coproduct.

(69) If hom(a, b) 6= ∅ and hom(b, a) 6= ∅, then in1(a+ b) is coretraction and
in2(a+ b) is coretraction.

Let us consider C, a, b. Then in1(a+ b) is a morphism from a to a+ b. Then
in2(a+ b) is a morphism from b to a+ b. Let us consider C, a, b, c, and let f be
a morphism from a to c, and let g be a morphism from b to c. Let us assume
that hom(a, c) 6= ∅ and hom(b, c) 6= ∅. The functor 〈f, g〉 yielding a morphism
from a+ b to c is defined as follows:

(Def.26) 〈f, g〉 · in1(a+ b) = f and 〈f, g〉 · in2(a+ b) = g.

Next we state several propositions:

(70) If hom(a, c) 6= ∅ and hom(b, c) 6= ∅, then hom(a+ b, c) 6= ∅.
(71) 〈in1(a+ b), in2(a+ b)〉 = id(a+b).

(72) For every morphism f from a to c and for every morphism g from b
to c and for every morphism h from c to d such that hom(a, c) 6= ∅ and
hom(b, c) 6= ∅ and hom(c, d) 6= ∅ holds 〈h · f, h · g〉 = h · 〈f, g〉.

(73) For all morphisms f , k from a to c and for all morphisms g, h from b
to c such that hom(a, c) 6= ∅ and hom(b, c) 6= ∅ and 〈f, g〉 = 〈k, h〉 holds
f = k and g = h.

(74) For every morphism f from a to c and for every morphism g from b to
c such that hom(a, c) 6= ∅ and hom(b, c) 6= ∅ and also f is epi or g is epi
holds 〈f, g〉 is epi.

(75) a and a+ 0C are isomorphic and a and 0C + a are isomorphic.

(76) a+ b and b+ a are isomorphic.

(77) (a+ b) + c and a+ (b+ c) are isomorphic.

We now define two new functors. Let us consider C, a. The functor ∇a

yields a morphism from a+ a to a and is defined by:

(Def.27) ∇a = 〈ida, ida〉.
Let us consider C, a, b, c, d, and let f be a morphism from a to c, and let g be
a morphism from b to d. The functor f + g yielding a morphism from a+ b to
c+ d is defined as follows:

(Def.28) f + g = 〈in1(c+ d) · f, in2(c+ d) · g〉.
The following propositions are true:

(78) If hom(a, c) 6= ∅ and hom(b, d) 6= ∅, then hom(a+ b, c+ d) 6= ∅.
(79) ida + idb = id(a+b).

(80) Let f be a morphism from a to c. Let h be a morphism from b to d.
Then for every morphism g from c to e and for every morphism k from
d to e such that hom(a, c) 6= ∅ and hom(b, d) 6= ∅ and hom(c, e) 6= ∅ and
hom(d, e) 6= ∅ holds 〈g, k〉 · (f + h) = 〈g · f, k · h〉.

(81) For every morphism f from a to c and for every morphism g from b to
c such that hom(a, c) 6= ∅ and hom(b, c) 6= ∅ holds ∇c · (f + g) = 〈f, g〉.
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(82) Let f be a morphism from a to c. Let h be a morphism from b to d.
Then for every morphism g from c to e and for every morphism k from
d to s such that hom(a, c) 6= ∅ and hom(b, d) 6= ∅ and hom(c, e) 6= ∅ and
hom(d, s) 6= ∅ holds (g + k) · (f + h) = g · f + k · h.
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[10] Czes law Byliński. Products and coproducts in categories. Formalized Mathematics,
2(5):701–709, 1991.

[11] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[13] M. E. Szabo. Algebra of Proofs. North Holland, 1978.
[14] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.

Received October 27, 1992



170



FORMALIZED MATHEMATICS

Volume 3, Number 2, 1992
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The terminology and notation used in this paper have been introduced in the
following papers: [10], [5], [2], [3], [1], [12], [9], [4], [6], [11], [8], and [7]. For
simplicity we adopt the following rules: X, Y will denote sets, C will denote
a non-empty set, c will denote an element of C, V will denote a real normed
space, f , f1, f2, f3 will denote partial functions from C to the carrier of V ,
and r, p will denote real numbers. We now define several new functors. Let us
consider C, V , f1, f2. The functor f1 + f2 yielding a partial function from C to
the carrier of V is defined as follows:

(Def.1) dom(f1 +f2) = dom f1∩dom f2 and for every c such that c ∈ dom(f1 +
f2) holds (f1 + f2)(c) = f1(c) + f2(c).

The functor f1 − f2 yields a partial function from C to the carrier of V and is
defined as follows:

(Def.2) dom(f1−f2) = dom f1∩dom f2 and for every c such that c ∈ dom(f1−
f2) holds (f1 − f2)(c) = f1(c)− f2(c).

Let us consider C, and let us consider V , and let f1 be a partial function from C
to � , and let us consider f2. The functor f1 f2 yielding a partial function from
C to the carrier of V is defined by:

(Def.3) dom(f1 f2) = dom f1 ∩ dom f2 and for every c such that c ∈ dom(f1 f2)
holds (f1 f2)(c) = f1(c) · f2(c).

Let us consider C, V , f , r. The functor r f yielding a partial function from C
to the carrier of V is defined as follows:

(Def.4) dom(r f) = dom f and for every c such that c ∈ dom(r f) holds (r f)(c) =
r · f(c).
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Let us consider C, V , f . The functor ‖f‖ yields a partial function from C to �
and is defined by:

(Def.5) dom‖f‖ = dom f and for every c such that c ∈ dom‖f‖ holds ‖f‖(c) =
‖f(c)‖.

The functor −f yielding a partial function from C to the carrier of V is defined
as follows:

(Def.6) dom(−f) = dom f and for every c such that c ∈ dom(−f) holds
(−f)(c) = −f(c).

Next we state a number of propositions:

(1) f = f1 + f2 if and only if dom f = dom f1∩dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c) + f2(c).

(2) f = f1− f2 if and only if dom f = dom f1∩dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c)− f2(c).

(3) For every partial function f1 from C to � holds f = f1 f2 if and only
if dom f = dom f1 ∩ dom f2 and for every c such that c ∈ dom f holds
f(c) = f1(c) · f2(c).

(4) f = r f1 if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = r · f1(c).

(5) For every partial function f from C to � holds f = ‖f1‖ if and only if
dom f = dom f1 and for every c such that c ∈ dom f holds f(c) = ‖f1(c)‖.

(6) f = −f1 if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = −f1(c).

(7) For every partial function f1 from C to � holds dom(f1 f2) \ (f1 f2) −1

{0V } = (dom f1 \ f1
−1 {0}) ∩ (dom f2 \ f2

−1 {0V }).
(8) ‖f‖ −1 {0} = f −1 {0V } and (−f) −1 {0V } = f −1 {0V }.
(9) If r 6= 0, then (r f) −1 {0V } = f −1 {0V }.

(10) f1 + f2 = f2 + f1.

(11) (f1 + f2) + f3 = f1 + (f2 + f3).

(12) For all partial functions f1, f2 from C to � and for every partial function
f3 from C to the carrier of V holds (f1 f2) f3 = f1 (f2 f3).

(13) For all partial functions f1, f2 from C to � holds (f1 + f2) f3 = f1 f3 +
f2 f3.

(14) For every partial function f3 from C to � holds f3 (f1 + f2) = f3 f1 +
f3 f2.

(15) For every partial function f1 from C to � holds r (f1 f2) = (r f1) f2.

(16) For every partial function f1 from C to � holds r (f1 f2) = f1 (r f2).

(17) For all partial functions f1, f2 from C to � holds (f1 − f2) f3 = f1 f3 −
f2 f3.

(18) For every partial function f3 from C to � holds f3 f1 − f3 f2 = f3 (f1 −
f2).

(19) r (f1 + f2) = r f1 + r f2.
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(20) (r · p) f = r (p f).

(21) r (f1 − f2) = r f1 − r f2.

(22) f1 − f2 = (−1) (f2 − f1).

(23) f1 − (f2 + f3) = f1 − f2 − f3.

(24) 1 f = f .

(25) f1 − (f2 − f3) = (f1 − f2) + f3.

(26) f1 + (f2 − f3) = (f1 + f2)− f3.

(27) For every partial function f1 from C to � holds ‖f1 f2‖ = |f1| ‖f2‖.
(28) ‖r f‖ = |r| ‖f‖.
(29) −f = (−1) f .

(30) −−f = f .

(31) f1 − f2 = f1 +−f2.

We now state a number of propositions:

(32) f1 −−f2 = f1 + f2.

(33) (f1 + f2)
�
X = f1

�
X + f2

�
X and (f1 + f2)

�
X = f1

�
X + f2 and

(f1 + f2)
�
X = f1 + f2

�
X.

(34) For every partial function f1 from C to � holds (f1 f2)
�
X = (f1

�
X) (f2

�
X) and (f1 f2)

�
X = (f1

�
X) f2 and (f1 f2)

�
X = f1 (f2

�
X).

(35) (−f)
�
X = −f �

X and ‖f‖ �
X = ‖f �

X‖.
(36) (f1 − f2)

�
X = f1

�
X − f2

�
X and (f1 − f2)

�
X = f1

�
X − f2 and

(f1 − f2)
�
X = f1 − f2

�
X.

(37) (r f)
�
X = r (f

�
X).

(38) f1 is total and f2 is total if and only if f1 + f2 is total and also f1 is
total and f2 is total if and only if f1 − f2 is total.

(39) For every partial function f1 from C to � holds f1 is total and f2 is
total if and only if f1 f2 is total.

(40) f is total if and only if r f is total.

(41) f is total if and only if −f is total.

(42) f is total if and only if ‖f‖ is total.

(43) If f1 is total and f2 is total, then (f1 + f2)(c) = f1(c) + f2(c) and
(f1 − f2)(c) = f1(c)− f2(c).

(44) For every partial function f1 from C to � such that f1 is total and f2

is total holds (f1 f2)(c) = f1(c) · f2(c).

(45) If f is total, then (r f)(c) = r · f(c).

(46) If f is total, then (−f)(c) = −f(c) and ‖f‖(c) = ‖f(c)‖.
Let us consider C, V , f , Y . We say that f is bounded on Y if and only if:

(Def.7) there exists r such that for every c such that c ∈ Y ∩ dom f holds
‖f(c)‖ ≤ r.

Next we state a number of propositions:
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(47) f is bounded on Y if and only if there exists r such that for every c
such that c ∈ Y ∩ dom f holds ‖f(c)‖ ≤ r.

(48) If Y ⊆ X and f is bounded on X, then f is bounded on Y .

(49) If X ∩ dom f = ∅, then f is bounded on X.

(50) If 0 = r, then r f is bounded on Y .

(51) If f is bounded on Y , then r f is bounded on Y .

(52) If f is bounded on Y , then ‖f‖ is bounded on Y and −f is bounded on
Y .

(53) If f1 is bounded on X and f2 is bounded on Y , then f1 + f2 is bounded
on X ∩ Y .

(54) For every partial function f1 from C to � such that f1 is bounded on
X and f2 is bounded on Y holds f1 f2 is bounded on X ∩ Y .

(55) If f1 is bounded on X and f2 is bounded on Y , then f1− f2 is bounded
on X ∩ Y .

(56) If f is bounded on X and f is bounded on Y , then f is bounded on
X ∪ Y .

(57) If f1 is a constant on X and f2 is a constant on Y , then f1 + f2 is a
constant on X ∩ Y and f1 − f2 is a constant on X ∩ Y .

(58) For every partial function f1 from C to � such that f1 is a constant on
X and f2 is a constant on Y holds f1 f2 is a constant on X ∩ Y .

(59) If f is a constant on Y , then p f is a constant on Y .

(60) If f is a constant on Y , then ‖f‖ is a constant on Y and −f is a constant
on Y .

(61) If f is a constant on Y , then f is bounded on Y .

(62) If f is a constant on Y , then for every r holds r f is bounded on Y and
−f is bounded on Y and ‖f‖ is bounded on Y .

(63) If f1 is bounded on X and f2 is a constant on Y , then f1+f2 is bounded
on X ∩ Y .

(64) If f1 is bounded on X and f2 is a constant on Y , then f1−f2 is bounded
on X ∩ Y and f2 − f1 is bounded on X ∩ Y .
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[4] Czes law Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[6] Jaros law Kotowicz. Partial functions from a domain to a domain. Formalized Mathe-

matics, 1(4):697–702, 1990.



algebra of vector functions 175

[7] Jaros law Kotowicz. Partial functions from a domain to the set of real numbers. Formal-
ized Mathematics, 1(4):703–709, 1990.

[8] Jan Popio lek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
[9] Jan Popio lek. Some properties of functions modul and signum. Formalized Mathematics,

1(2):263–264, 1990.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–

296, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

Received October 27, 1992



176



FORMALIZED MATHEMATICS

Volume 3, Number 2, 1992
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Summary. Let X be a topological space and let X1 and X2 be
subspaces of X with the carriers A1 and A2, respectively. Recall that X1

and X2 are weakly separated if A1 \A2 and A2 \A1 are separated (see [2]
and also [1] for applications). Our purpose is to list a number of properties
of such subspaces, supplementary to those given in [2]. Note that in the
Mizar formalism the carrier of any topological space (hence the carrier
of any its subspace) is always non–empty, therefore for convenience we
list beforehand analogous properties of weakly separated subsets without
any additional conditions.

To present the main results we first formulate a useful definition. We
say that X1 and X2 constitute a decomposition of X if A1 and A2 are
disjoint and the union of A1 and A2 covers the carrier of X (comp. [3]).
We are ready now to present the following duality property between pairs
of weakly separated subspaces : If each pair of subspaces X1, Y1 and X2,
Y2 of X constitutes a decomposition of X, then X1 and X2 are weakly
separated iff Y1 and Y2 are weakly separated. From this theorem we get
immediately that under the same hypothesis, X1 and X2 are separated
iff X1 misses X2 and Y1 and Y2 are weakly separated. Moreover, we show
the following enlargement theorem : If Xi and Yi are subspaces of X such
that Yi is a subspace of Xi and Y1 ∪ Y2 = X1 ∪X2 and if Y1 and Y2 are
weakly separated, then X1 and X2 are weakly separated. We show also
the following dual extenuation theorem : If Xi and Yi are subspaces of X
such that Yi is a subspace of Xi and Y1∩Y2 = X1 ∩X2 and if X1 and X2

are weakly separated, then Y1 and Y2 are weakly separated. At the end we
give a few properties of weakly separated subspaces in subspaces.
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The papers [6], [7], [4], [8], [5], and [2] provide the notation and terminology for
this paper.
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1. Certain Set–Decompositions of a Topological Space

In the sequel X denotes a topological space. Next we state the proposition

(1) For all subsets A, B of X holds Ac \ Bc = B \ A.

Let X be a topological space, and let A1, A2 be subsets of X. We say that
A1 and A2 constitute a decomposition if and only if:

(Def.1) A1 ∩A2 = ∅ and A1 ∪A2 = the carrier of X.

In the sequel A, A1, A2, B1, B2 are subsets of X. We now state a number
of propositions:

(2) A1 and A2 constitute a decomposition if and only if A1 ∩A2 = ∅X and
A1 ∪A2 = ΩX .

(3) If A1 and A2 constitute a decomposition, then A2 and A1 constitute a
decomposition.

(4) If A1 and A2 constitute a decomposition, then A1 = A2
c and A2 = A1

c.

(5) If A1 = A2
c or A2 = A1

c, then A1 and A2 constitute a decomposition.

(6) A and Ac constitute a decomposition and Ac and A constitute a de-
composition.

(7) ∅X and ΩX constitute a decomposition and ΩX and ∅X constitute a
decomposition.

(8) If A is non-empty, then A and A do not constitute a decomposition.

(9) If A1 and A constitute a decomposition and A and A2 constitute a
decomposition, then A1 = A2.

(10) If A1 and A2 constitute a decomposition, then A1 and IntA2 constitute
a decomposition and IntA1 and A2 constitute a decomposition.

(11) A and Int(Ac) constitute a decomposition andAc and IntA constitute a
decomposition and IntA and Ac constitute a decomposition and Int(Ac)
and A constitute a decomposition.

(12) If A1 and A2 constitute a decomposition, then A1 is open if and only if
A2 is closed.

(13) If A1 and A2 constitute a decomposition, then A1 is closed if and only
if A2 is open.

(14) If A1 and A2 constitute a decomposition and B1 and B2 constitute a
decomposition, then A1 ∩B1 and A2 ∪B2 constitute a decomposition.

(15) If A1 and A2 constitute a decomposition and B1 and B2 constitute a
decomposition, then A1 ∪B1 and A2 ∩B2 constitute a decomposition.

2. Duality between Pairs of Weakly Separated Subsets

In the sequel X will denote a topological space and A1, A2 will denote subsets
of X. Next we state a number of propositions:
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(16) For all subsets A1, A2, C1, C2 of X such that A1 and C1 constitute a
decomposition and A2 and C2 constitute a decomposition holds A1 and
A2 are weakly separated if and only if C1 and C2 are weakly separated.

(17) A1 and A2 are weakly separated if and only if A1
c and A2

c are weakly
separated.

(18) For all subsets A1, A2, C1, C2 of X such that A1 and C1 constitute a
decomposition and A2 and C2 constitute a decomposition holds if A1 and
A2 are separated, then C1 and C2 are weakly separated.

(19) For all subsets A1, A2, C1, C2 of X such that A1 and C1 consti-
tute a decomposition and A2 and C2 constitute a decomposition holds
if A1 ∩A2 = ∅ and C1 and C2 are weakly separated, then A1 and A2 are
separated.

(20) For all subsets A1, A2, C1, C2 of X such that A1 and C1 constitute a
decomposition and A2 and C2 constitute a decomposition holds if C1 ∪
C2 = the carrier of X and C1 and C2 are weakly separated, then A1 and
A2 are separated.

(21) If A1 and A2 constitute a decomposition, then A1 and A2 are weakly
separated if and only if A1 and A2 are separated.

(22) A1 and A2 are weakly separated if and only if (A1 ∪ A2) \ A1 and
(A1 ∪A2) \ A2 are separated.

(23) For all subsets A1, A2, C1, C2 of X such that C1 ⊆ A1 and C2 ⊆ A2

and C1 ∪C2 = A1 ∪A2 holds if C1 and C2 are weakly separated, then A1

and A2 are weakly separated.

(24) A1 andA2 are weakly separated if and only ifA1\A1∩A2 andA2\A1∩A2

are separated.

(25) For all subsets A1, A2, C1, C2 of X such that C1 ⊆ A1 and C2 ⊆ A2

and C1 ∩C2 = A1 ∩A2 holds if A1 and A2 are weakly separated, then C1

and C2 are weakly separated.

In the sequel X0 will denote a subspace of X and B1, B2 will denote subsets
of X0. One can prove the following propositions:

(26) If B1 = A1 and B2 = A2, then A1 and A2 are separated if and only if
B1 and B2 are separated.

(27) If B1 = (the carrier of X0)∩A1 and B2 = (the carrier of X0)∩A2, then
if A1 and A2 are separated, then B1 and B2 are separated.

(28) If B1 = A1 and B2 = A2, then A1 and A2 are weakly separated if and
only if B1 and B2 are weakly separated.

(29) If B1 = (the carrier of X0)∩A1 and B2 = (the carrier of X0)∩A2, then
if A1 and A2 are weakly separated, then B1 and B2 are weakly separated.
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3. Certain Subspace–Decompositions of a Topological Space

Let X be a topological space, and let X1, X2 be subspaces of X. We say that
X1 and X2 constitute a decomposition if and only if:

(Def.2) for all subsets A1, A2 of X such that A1 = the carrier of X1 and
A2 = the carrier of X2 holds A1 and A2 constitute a decomposition.

In the sequel X0, X1, X2, Y1, Y2 denote subspaces of X. The following
propositions are true:

(30) X1 and X2 constitute a decomposition if and only if X1 misses X2 and
the topological structure of X = X1 ∪X2.

(31) If X1 and X2 constitute a decomposition, then X2 and X1 constitute a
decomposition.

(32) X0 and X0 do not constitute a decomposition.

(33) If X1 and X0 constitute a decomposition and X0 and X2 constitute
a decomposition, then the topological structure of X1 = the topological
structure of X2.

(34) For all subspaces X1, X2, Y1, Y2 of X such that X1 and Y1 constitute a
decomposition and X2 and Y2 constitute a decomposition holds Y1∪Y2 =
the topological structure of X if and only if X1 misses X2.

(35) If X1 and X2 constitute a decomposition, then X1 is open if and only
if X2 is closed.

(36) If X1 and X2 constitute a decomposition, then X1 is closed if and only
if X2 is open.

(37) If X1 meets Y1 and X1 and X2 constitute a decomposition and Y1 and
Y2 constitute a decomposition, then X1 ∩ Y1 and X2 ∪ Y2 constitute a
decomposition.

(38) If X2 meets Y2 and X1 and X2 constitute a decomposition and Y1 and
Y2 constitute a decomposition, then X1 ∪ Y1 and X2 ∩ Y2 constitute a
decomposition.

4. Duality between Pairs of Weakly Separated Subspaces

In the sequel X is a topological space. We now state several propositions:

(39) For all subspaces X1, X2, Y1, Y2 of X such that X1 and Y1 constitute
a decomposition and X2 and Y2 constitute a decomposition holds X1 and
X2 are weakly separated if and only if Y1 and Y2 are weakly separated.

(40) For all subspaces X1, X2, Y1, Y2 of X such that X1 and Y1 constitute
a decomposition and X2 and Y2 constitute a decomposition holds if X1

and X2 are separated, then Y1 and Y2 are weakly separated.

(41) For all subspaces X1, X2, Y1, Y2 of X such that X1 and Y1 constitute
a decomposition and X2 and Y2 constitute a decomposition holds if X1
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misses X2 and Y1 and Y2 are weakly separated, then X1 and X2 are
separated.

(42) For all subspaces X1, X2, Y1, Y2 of X such that X1 and Y1 constitute a
decomposition andX2 and Y2 constitute a decomposition holds if Y1∪Y2 =
the topological structure of X and Y1 and Y2 are weakly separated, then
X1 and X2 are separated.

(43) For all subspaces X1, X2 of X such that X1 and X2 constitute a de-
composition holds X1 and X2 are weakly separated if and only if X1 and
X2 are separated.

(44) For all subspaces X1, X2, Y1, Y2 of X such that Y1 is a subspace of X1

and Y2 is a subspace of X2 and Y1 ∪ Y2 = X1 ∪X2 holds if Y1 and Y2 are
weakly separated, then X1 and X2 are weakly separated.

(45) For all subspaces X1, X2, Y1, Y2 of X such that Y1 is a subspace of X1

and Y2 is a subspace of X2 and Y1 meets Y2 and Y1 ∩ Y2 = X1 ∩X2 holds
if X1 and X2 are weakly separated, then Y1 and Y2 are weakly separated.

In the sequel X0 will denote a subspace ofX. Next we state four propositions:

(46) For all subspaces X1, X2 of X and for all subspaces Y1, Y2 of X0 such
that the carrier of X1 = the carrier of Y1 and the carrier of X2 = the
carrier of Y2 holds X1 and X2 are separated if and only if Y1 and Y2 are
separated.

(47) For all subspaces X1, X2 of X such that X1 meets X0 and X2 meets X0

and for all subspaces Y1, Y2 ofX0 such that Y1 = X1∩X0 and Y2 = X2∩X0

holds if X1 and X2 are separated, then Y1 and Y2 are separated.

(48) For all subspaces X1, X2 of X and for all subspaces Y1, Y2 of X0 such
that the carrier of X1 = the carrier of Y1 and the carrier of X2 = the
carrier of Y2 holds X1 and X2 are weakly separated if and only if Y1 and
Y2 are weakly separated.

(49) For all subspaces X1, X2 of X such that X1 meets X0 and X2 meets
X0 and for all subspaces Y1, Y2 of X0 such that Y1 = X1 ∩ X0 and
Y2 = X2 ∩X0 holds if X1 and X2 are weakly separated, then Y1 and Y2

are weakly separated.
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Summary. This article presents the basic place/transition net
structure definition for building various types of Petri nets. The basic
net structure fields include places, transitions, and arcs (place-transition,
transition-place) which may be supplemented with other fields (e.g., ca-
pacity, weight, marking, etc.) as needed. The theorems included in this
article are divided into the following categories: deadlocks, traps, and
dual net theorems. Here, a dual net is taken as the result of inverting all
arcs (place-transition arcs to transition-place arcs and vice-versa) in the
original net.

MML Identifier: PETRI.

The papers [3], [5], [6], [7], [1], [4], and [2] provide the terminology and notation
for this paper.

1. Basic Place/Transition Net Structure Definition

Let A, B be non-empty sets. Observe that there exists a non-empty relation
between A and B.

Let A, B be non-empty sets, and let r be a non-empty relation between A
and B. We see that the element of r is an element of [:A, B :].

We consider place/transitions net structures which are systems
〈places, transitions, S-T arcs, T-S arcs〉,

where the places, the transitions constitute non-empty sets, the S-T arcs consti-
tute a non-empty relation between the places and the transitions, and the T-S
arcs constitute a non-empty relation between the transitions and the places.

In the sequel P1 will denote a place/transitions net structure. We now define
several new modes. Let us consider P1. A place of P1 is an element of the places
of P1.
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A transition of P1 is an element of the transitions of P1.
An S-T arc of P1 is an element of the S-T arcs of P1.
A T-S arc of P1 is an element of the T-S arcs of P1.
Let us consider P1, and let x be an S-T arc of P1. Then x1 is a place of P1.

Then x2 is a transition of P1. Let us consider P1, and let x be a T-S arc of P1.
Then x1 is a transition of P1. Then x2 is a place of P1.

The scheme Set of Elements deals with a non-empty set A, and a unary
predicate P, and states that:
{x : P[x]}, where x ranges over elements of A, is a subset of A

for all values of the parameters.
In the sequel S0 will denote a set of places of P1. We now define two new

functors. Let us consider P1, S0. The functor ∗S0 yielding a set of transitions
of P1 is defined as follows:

(Def.1) ∗S0 = {t :
∨
f

∨
s[s ∈ S0 ∧ f = 〈〈t, s〉〉]}, where t ranges over transitions

of P1, and f ranges over T-S arcs of P1, and s ranges over places of P1.

The functor S0
∗ yielding a set of transitions of P1 is defined as follows:

(Def.2) S0
∗ = {t :

∨
f

∨
s[s ∈ S0 ∧ f = 〈〈s, t〉〉]}, where t ranges over transitions

of P1, and f ranges over S-T arcs of P1, and s ranges over places of P1.

Next we state four propositions:

(1) ∗S0 = {f1 : f2 ∈ S0}, where f ranges over T-S arcs of P1.

(2) For an arbitrary x holds x ∈ ∗S0 if and only if there exists a T-S arc f
of P1 and there exists a place s of P1 such that s ∈ S0 and f = 〈〈x, s〉〉.

(3) S0
∗ = {f2 : f1 ∈ S0}, where f ranges over S-T arcs of P1.

(4) For an arbitrary x holds x ∈ S0
∗ if and only if there exists an S-T arc

f of P1 and there exists a place s of P1 such that s ∈ S0 and f = 〈〈s, x〉〉.
In the sequel T0 is a set of transitions of P1. We now define two new functors.

Let us consider P1, T0. The functor ∗T0 yields a set of places of P1 and is defined
by:

(Def.3) ∗T0 = {s :
∨
f

∨
t[t ∈ T0 ∧ f = 〈〈s, t〉〉]}, where s ranges over places of P1,

and f ranges over S-T arcs of P1, and t ranges over transitions of P1.

The functor T0
∗ yielding a set of places of P1 is defined by:

(Def.4) T0
∗ = {s :

∨
f

∨
t[t ∈ T0 ∧ f = 〈〈t, s〉〉]}, where s ranges over places of P1,

and f ranges over T-S arcs of P1, and t ranges over transitions of P1.

Next we state several propositions:

(5) ∗T0 = {f1 : f2 ∈ T0}, where f ranges over S-T arcs of P1.

(6) For an arbitrary x holds x ∈ ∗T0 if and only if there exists an S-T arc
f of P1 and there exists a transition t of P1 such that t ∈ T0 and f = 〈〈x,
t〉〉.

(7) T0
∗ = {f2 : f1 ∈ T0}, where f ranges over T-S arcs of P1.

(8) For an arbitrary x holds x ∈ T0
∗ if and only if there exists a T-S arc f

of P1 and there exists a transition t of P1 such that t ∈ T0 and f = 〈〈t, x〉〉.
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(9) ∗(∅the places of P1) = ∅.
(10) (∅the places of P1)∗ = ∅.
(11) ∗(∅the transitions of P1) = ∅.
(12) (∅the transitions of P1)∗ = ∅.

2. Deadlocks

We now define two new attributes. Let us consider P1. A set of places of P1 is
deadlock-like if:

(Def.5) ∗it is a subset of it∗.
A place/transitions net structure has deadlocks if:

(Def.6) there exists a set of places of it which is deadlock-like.

3. Traps

We now define two new attributes. Let us consider P1. A set of places of P1 is
trap-like if:

(Def.7) it∗ is a subset of ∗it.
A place/transitions net structure has traps if:

(Def.8) there exists a set of places of it which is trap-like.

Let A, B be non-empty sets, and let r be a non-empty relation between A and
B. Then r � is a non-empty relation between B and A.

4. Duality Theorems for Place/Transition Nets

Let us consider P1. The functor P1
◦ yields a strict place/transitions net structure

and is defined by:

(Def.9) P1
◦ = 〈the places of P1, the transitions of P1, (the T-S arcs of P1) � , (the

S-T arcs of P1) � 〉.
One can prove the following propositions:

(13) (P1
◦)◦ = the place/transitions net structure of P1.

(14) The places of P1 = the places of P1
◦ and the transitions of P1 = the

transitions of P1
◦ and (the S-T arcs of P1) � = the T-S arcs of P1

◦ and
(the T-S arcs of P1) � = the S-T arcs of P1

◦.
We now define several new functors. Let us consider P1, and let S0 be a set

of places of P1. The functor S0
◦ yields a set of places of P1

◦ and is defined as
follows:

(Def.10) S0
◦ = S0.
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Let us consider P1, and let s be a place of P1. The functor s◦ yields a place of
P1
◦ and is defined by:

(Def.11) s◦ = s.

Let us consider P1, and let S0 be a set of places of P1
◦. The functor ◦ S0 yields

a set of places of P1 and is defined by:

(Def.12) ◦ S0 = S0.

Let us consider P1, and let s be a place of P1
◦. The functor ◦ s yields a place of

P1 and is defined by:

(Def.13) ◦ s = s.

Let us consider P1, and let T0 be a set of transitions of P1. The functor T0
◦

yielding a set of transitions of P1
◦ is defined by:

(Def.14) T0
◦ = T0.

Let us consider P1, and let t be a transition of P1. The functor t◦ yields a
transition of P1

◦ and is defined as follows:

(Def.15) t◦ = t.

Let us consider P1, and let T0 be a set of transitions of P1
◦. The functor ◦ T0

yielding a set of transitions of P1 is defined by:

(Def.16) ◦ T0 = T0.

Let us consider P1, and let t be a transition of P1
◦. The functor ◦ t yielding a

transition of P1 is defined by:

(Def.17) ◦ t = t.

In the sequel S will denote a set of places of P1. Next we state several
propositions:

(15) (S◦)∗ = ∗S.

(16) ∗(S◦) = S∗.
(17) S is deadlock-like if and only if S◦ is trap-like.

(18) S is trap-like if and only if S◦ is deadlock-like.

(19) For every P1 being a place/transitions net structure and for every tran-
sition t of P1 and for every S0 being a set of places of P1 holds t ∈ S0

∗ if
and only if ∗{t} ∩ S0 6= ∅.

(20) For every P1 being a place/transitions net structure and for every tran-
sition t of P1 and for every S0 being a set of places of P1 holds t ∈ ∗S0 if
and only if {t}∗ ∩ S0 6= ∅.
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Summary. By borrowing the concept of neighborhood from the
theory of topological space in continuous cases and extending it to a dis-
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as in the case of continuity. We have proved various properties which are
satisfied by these concepts.

MML Identifier: FIN TOPO.

The articles [15], [8], [2], [5], [16], [6], [14], [19], [10], [12], [17], [9], [11], [3],
[4], [13], [7], [18], and [1] provide the notation and terminology for this paper.
The scheme Set of Elements deals with a non-empty set A, a unary functor F
yielding an element of A, and a unary predicate P, and states that:
{F(x) : P[x]}, where x ranges over elements of A, is a subset of A

for all values of the parameters.
One can prove the following propositions:

(1) Let A be a set. Let f be a finite sequence of elements of 2A. Then if for
every natural number i such that 1 ≤ i and i < len f holds πif ⊆ πi+1f ,
then for all natural numbers i, j such that i ≤ j and 1 ≤ i and j ≤ len f
holds πif ⊆ πjf .

(2) Let A be a set. Let f be a finite sequence of elements of 2A. Suppose for
every natural number i such that 1 ≤ i and i < len f holds πif ⊆ πi+1f .
Then for all natural numbers i, j such that i < j and 1 ≤ i and j ≤ len f
and πjf ⊆ πif and for every natural number k such that i ≤ k and k ≤ j
holds πjf = πkf .

(3) For every set F such that F is finite and F 6= ∅ and for all sets B, C
such that B ∈ F and C ∈ F holds B ⊆ C or C ⊆ B there exists a set m
such that m ∈ F and for every set C such that C ∈ F holds C ⊆ m.

(4) For all sets x, A holds x ⊆ A if and only if x ∈ 2A.
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(5) For every function f if for every natural number i holds f(i) ⊆ f(i+1),
and for all natural numbers i, j such that i ≤ j holds f(i) ⊆ f(j).

The scheme MaxFinSeqEx deals with a non-empty set A, a subset B of A, a
subset C of A, and a unary functor F yielding a subset of A and states that:

there exists a finite sequence f of elements of 2A such that len f > 0 and
π1f = C and for every natural number i such that i > 0 and i < len f holds
πi+1f = F(πif) and F(πlen ff) = πlen ff and for all natural numbers i, j such
that i > 0 and i < j and j ≤ len f holds πif ⊆ B and πif ⊆ πjf and πif 6= πjf

provided the parameters meet the following requirements:

• B is finite,

• C ⊆ B,

• for every subset A of A such that A ⊆ B holds A ⊆ F(A) and
F(A) ⊆ B.

We consider finite topology spaces which are extension of a 1-sorted structure
and are systems

〈a carrier, a neighbour-map〉,
where the carrier is a non-empty set and the neighbour-map is a function from
the carrier into 2the carrier.

In the sequel F1 denotes a finite topology space. We now define two new
modes. Let F1 be a 1-sorted structure. An element of F1 is an element of the
carrier of F1.

A subset of F1 is a subset of the carrier of F1.

In the sequel x, y are elements of F1. Let F1 be a finite topology space, and
let x be an element of F1. The functor U(x) yields a subset of F1 and is defined
as follows:

(Def.1) U(x) = (the neighbour-map of F1)(x).

One can prove the following proposition

(6) For every F1 being a finite topology space and for every element x of
F1 holds U(x) = (the neighbour-map of F1)(x).

We now define three new constructions. Let x be arbitrary, and let y be a
subset of {x}. Then x7−→. y is a function from {x} into 2{x}. The strict finite
topology space FT{0} is defined as follows:

(Def.2) FT{0} = 〈{0 qua any}, 07−→. Ω{0 qua any}〉.
A finite topology space is filled if:

(Def.3) for every element x of it holds x ∈ U(x).

A 1-sorted structure is finite if:

(Def.4) the carrier of it is finite.

One can prove the following two propositions:

(7) FT{0} is filled.

(8) FT{0} is finite.



finite topological spaces 191

Let us observe that there exists a finite filled strict finite topology space.
Let T be a 1-sorted structure, and let F be a set. We say that F is a cover

of T if and only if:

(Def.5) the carrier of T ⊆ ⋃F .

Next we state the proposition

(9) For every F1 being a filled finite topology space holds {U(x)}, where x
ranges over elements of F1, is a cover of F1.

In the sequel A is a subset of F1. Let us consider F1, and let A be a subset
of F1. The functor Aδ yielding a subset of F1 is defined as follows:

(Def.6) Aδ = {x : U(x) ∩A 6= ∅ ∧ U(x) ∩Ac 6= ∅}.
The following proposition is true

(10) x ∈ Aδ if and only if U(x) ∩A 6= ∅ and U(x) ∩Ac 6= ∅.
We now define two new functors. Let us consider F1, and let A be a subset

of F1. The functor Aδi yielding a subset of F1 is defined as follows:

(Def.7) Aδi = A ∩Aδ.
The functor Aδo yields a subset of F1 and is defined as follows:

(Def.8) Aδo = Ac ∩Aδ.
Next we state the proposition

(11) Aδ = Aδi ∪Aδo .
We now define several new constructions. Let us consider F1, and let A be a

subset of F1. The functor Ai yielding a subset of F1 is defined by:

(Def.9) Ai = {x : U(x) ⊆ A}.
The functor Ab yielding a subset of F1 is defined as follows:

(Def.10) Ab = {x : U(x) ∩A 6= ∅}.
The functor As yielding a subset of F1 is defined by:

(Def.11) As = {x : x ∈ A ∧ (U(x) \ {x}) ∩A = ∅}.
Let us consider F1, and let A be a subset of F1. The functor An yielding a
subset of F1 is defined as follows:

(Def.12) An = A \As.
The functor Af yields a subset of F1 and is defined as follows:

(Def.13) Af = {x :
∨
y[y ∈ A ∧ x ∈ U(y)]}.

A finite topology space is symmetric if:

(Def.14) for all elements x, y of the carrier of it such that y ∈ U(x) holds
x ∈ U(y).

The following propositions are true:

(12) x ∈ Ai if and only if U(x) ⊆ A.

(13) x ∈ Ab if and only if U(x) ∩A 6= ∅.
(14) x ∈ As if and only if x ∈ A and (U(x) \ {x}) ∩A = ∅.
(15) x ∈ An if and only if x ∈ A and (U(x) \ {x}) ∩A 6= ∅.
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(16) x ∈ Af if and only if there exists y such that y ∈ A and x ∈ U(y).

(17) F1 is symmetric if and only if for every A holds Ab = Af .

In the sequel F will be a subset of F1. We now define five new constructions.
Let us consider F1. A subset of F1 is open if:

(Def.15) it = iti.

A subset of F1 is closed if:

(Def.16) it = itb.

A subset of F1 is connected if:

(Def.17) for all subsets B, C of F1 such that it = B ∪ C and B 6= ∅ and C 6= ∅
and B ∩ C = ∅ holds Bb ∩ C 6= ∅.

Let us consider F1, and let A be a subset of F1. The functor Afb yields a subset
of F1 and is defined as follows:

(Def.18) Afb =
⋂{F : A ⊆ F ∧ F is closed}.

The functor Afi yielding a subset of F1 is defined by:

(Def.19) Afi =
⋃{F : A ⊆ F ∧ F is open}.

Next we state a number of propositions:

(18) For every F1 being a filled finite topology space and for every subset A
of F1 holds A ⊆ Ab.

(19) For every F1 being a finite topology space and for all subsets A, B of
F1 such that A ⊆ B holds Ab ⊆ Bb.

(20) Let F1 be a filled finite finite topology space. Let A be a subset of F1.
Then A is connected if and only if for every element x of F1 such that
x ∈ A there exists a finite sequence S of elements of 2the carrier of F1 such
that lenS > 0 and π1S = {x} and for every natural number i such that
i > 0 and i < lenS holds πi+1S = (πiS)b ∩A and A ⊆ πlenSS.

(21) For every non-empty set E and for every subset A of E and for every
element x of E holds x ∈ Ac if and only if x /∈ A.

(22) ((Ac)i)c = Ab.

(23) ((Ac)b)c = Ai.

(24) Aδ = Ab ∩ (Ac)b.

(25) (Ac)δ = Aδ.

(26) If x ∈ As, then x /∈ (A \ {x})b.
(27) If As 6= ∅ and cardA > 1, then A is connected.

(28) For every F1 being a filled finite topology space and for every subset A
of F1 holds Ai ⊆ A.

(29) For every set E and for all subsets A, B of E holds A = B if and only
if Ac = Bc.

(30) If A is open, then Ac is closed.

(31) If A is closed, then Ac is open.
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Université Catholique de Louvain

Sets and Functions of Trees and

Joining Operations of Trees

Grzegorz Bancerek
Polish Academy of Sciences

Institute of Mathematics
Warszawa

Summary. In the article we deal with sets of trees and functions
yielding trees. So, we introduce the sets of all trees, all finite trees and of
all trees decorated by elements from some set. Next, the functions and the
finite sequences yielding (finite, decorated) trees are introduced. There
are shown some convenient but technical lemmas and clusters concerning
with those concepts. In the fourth section we deal with trees decorated
by Cartesian product and we introduce the concept of a tree called a
substitution of structure of some finite tree. Finally, we introduce the
operations of joining trees, i.e. for the finite sequence of trees we define
the tree which is made by joining the trees from the sequence by common
root. For one and two trees there are introduced the same operations.

MML Identifier: TREES 3.

The notation and terminology used here are introduced in the following papers:
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and [2].

1. Finite sets

For simplicity we adopt the following rules: x, y will be arbitrary, i, n will be
natural numbers, p, q will be finite sequences, X, Y will be sets, and f will be
a function. Let X be a set. Observe that there exists a finite subset of X and
every finite sequence-like function is finite.

Let X be a non-empty set. One can check that there exists a finite non-empty
subset of X.

Let X be a finite set. Observe that every subset of X is finite.
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Let us consider x. Then {x} is a finite non-empty set. Let us consider y.
Then {x, y} is a finite non-empty set. Let us consider n. Then Seg n is a finite
set of natural numbers. Then the elementary tree of n is a finite tree.

2. Sets of trees

We now define five new constructions. The non-empty set Trees is defined by:

(Def.1) Trees is the set of all trees.

The non-empty subset FinTrees of Trees is defined as follows:

(Def.2) FinTrees is the set of all finite trees.

A set is constituted of trees if:

(Def.3) for every x such that x ∈ it holds x is a tree.

A set is constituted of finite trees if:

(Def.4) for every x such that x ∈ it holds x is a finite tree.

A set is constituted of decorated trees if:

(Def.5) for every x such that x ∈ it holds x is a decorated tree.

Next we state a number of propositions:

(1) X is constituted of trees if and only if X ⊆ Trees.

(2) X is constituted of finite trees if and only if X ⊆ FinTrees.

(3) X is constituted of trees and Y is constituted of trees if and only if
X ∪ Y is constituted of trees.

(4) If X is constituted of trees and Y is constituted of trees, then X−. Y is
constituted of trees.

(5) If X is constituted of trees, then X∩Y is constituted of trees and Y ∩X
is constituted of trees and X \ Y is constituted of trees.

(6) X is constituted of finite trees and Y is constituted of finite trees if and
only if X ∪ Y is constituted of finite trees.

(7) If X is constituted of finite trees and Y is constituted of finite trees,
then X−. Y is constituted of finite trees.

(8) If X is constituted of finite trees, then X ∩ Y is constituted of finite
trees and Y ∩X is constituted of finite trees and X \ Y is constituted of
finite trees.

(9) X is constituted of decorated trees and Y is constituted of decorated
trees if and only if X ∪ Y is constituted of decorated trees.

(10) If X is constituted of decorated trees and Y is constituted of decorated
trees, then X−. Y is constituted of decorated trees.

(11) If X is constituted of decorated trees, then X ∩ Y is constituted of
decorated trees and Y ∩X is constituted of decorated trees and X \ Y is
constituted of decorated trees.
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(12) ∅ is constituted of trees, constituted of finite trees and constituted of
decorated trees.

(13) {x} is constituted of trees if and only if x is a tree.

(14) {x} is constituted of finite trees if and only if x is a finite tree.

(15) {x} is constituted of decorated trees if and only if x is a decorated tree.

(16) {x, y} is constituted of trees if and only if x is a tree and y is a tree.

(17) {x, y} is constituted of finite trees if and only if x is a finite tree and y
is a finite tree.

(18) {x, y} is constituted of decorated trees if and only if x is a decorated
tree and y is a decorated tree.

(19) If X is constituted of trees and Y ⊆ X, then Y is constituted of trees.

(20) If X is constituted of finite trees and Y ⊆ X, then Y is constituted of
finite trees.

(21) If X is constituted of decorated trees and Y ⊆ X, then Y is constituted
of decorated trees.

We now define three new constructions. One can verify the following obser-
vations:

∗ there exists a finite constituted of trees constituted of finite trees non-
empty set,

∗ there exists a finite constituted of decorated trees non-empty set, and

∗ every constituted of finite trees set is constituted of trees.

Let X be a constituted of trees set. One can check that every subset of X is
constituted of trees.

Let X be a constituted of finite trees set. One can check that every subset
of X is constituted of finite trees.

Let X be a constituted of decorated trees set. Note that every subset of X
is constituted of decorated trees.

Let D be a constituted of trees non-empty set. We see that the element of
D is a tree. Let D be a constituted of finite trees non-empty set. We see that
the element of D is a finite tree. Let D be a constituted of decorated trees non-
empty set. We see that the element of D is a decorated tree. Let us note that
it makes sense to consider the following constant. Then Trees is a constituted
of trees non-empty set. Let us observe that there exists a constituted of finite
trees non-empty subset of Trees.

Let us note that it makes sense to consider the following constant. Then
FinTrees is a constituted of finite trees non-empty subset of Trees. Let D be a
non-empty set. A set is called a set of trees decorated by D if:

(Def.6) for every x such that x ∈ it holds x is a tree decorated by D.

Let D be a non-empty set. Note that every set of trees decorated by D is
constituted of decorated trees.

Let D be a non-empty set. Note that there exists a set of trees decorated by
D which is finite and non-empty.
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Let D be a non-empty set, and let E be a non-empty set of trees decorated
by D. We see that the element of E is a tree decorated by D. Let T be a tree,
and let D be a non-empty set. Then DT is a non-empty set of trees decorated
by D. We see that the function from T into D is a tree decorated by D. Let
D be a non-empty set. The functor Trees(D) yielding a non-empty set of trees
decorated by D is defined as follows:

(Def.7) for every tree T decorated by D holds T ∈ Trees(D).

Let D be a non-empty set. The functor FinTrees(D) yielding a non-empty set
of trees decorated by D is defined as follows:

(Def.8) for every tree T decorated by D holds domT is finite if and only if
T ∈ FinTrees(D).

The following proposition is true

(22) For every non-empty set D holds FinTrees(D) ⊆ Trees(D).

3. Functions yielding trees

We now define three new attributes. A function is tree yielding if:

(Def.9) rng it is constituted of trees.

A function is finite tree yielding if:

(Def.10) rng it is constituted of finite trees.

A function is decorated tree yielding if:

(Def.11) rng it is constituted of decorated trees.

One can prove the following propositions:

(23) ε is tree yielding, finite tree yielding and decorated tree yielding.

(24) f is tree yielding if and only if for every x such that x ∈ dom f holds
f(x) is a tree.

(25) f is finite tree yielding if and only if for every x such that x ∈ dom f
holds f(x) is a finite tree.

(26) f is decorated tree yielding if and only if for every x such that x ∈ dom f
holds f(x) is a decorated tree.

(27) p is tree yielding and q is tree yielding if and only if p � q is tree yielding.

(28) p is finite tree yielding and q is finite tree yielding if and only if p � q is
finite tree yielding.

(29) p is decorated tree yielding and q is decorated tree yielding if and only
if p � q is decorated tree yielding.

(30) 〈x〉 is tree yielding if and only if x is a tree.

(31) 〈x〉 is finite tree yielding if and only if x is a finite tree.

(32) 〈x〉 is decorated tree yielding if and only if x is a decorated tree.

(33) 〈x, y〉 is tree yielding if and only if x is a tree and y is a tree.
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(34) 〈x, y〉 is finite tree yielding if and only if x is a finite tree and y is a
finite tree.

(35) 〈x, y〉 is decorated tree yielding if and only if x is a decorated tree and
y is a decorated tree.

(36) If i 6= 0, then i 7−→ x is tree yielding if and only if x is a tree.

(37) If i 6= 0, then i 7−→ x is finite tree yielding if and only if x is a finite
tree.

(38) If i 6= 0, then i 7−→ x is decorated tree yielding if and only if x is a
decorated tree.

One can verify the following observations:

∗ there exists a tree yielding finite tree yielding non-empty finite sequence,

∗ there exists a decorated tree yielding non-empty finite sequence,

∗ there exists a tree yielding finite tree yielding non-empty function,

∗ there exists a decorated tree yielding non-empty function, and

∗ every function which is finite tree yielding is also tree yielding.

Let D be a constituted of trees non-empty set. Observe that every finite
sequence of elements of D is tree yielding.

Let p, q be tree yielding finite sequences. Then p � q is a tree yielding finite
sequence. Let D be a constituted of finite trees non-empty set. Note that every
finite sequence of elements of D is finite tree yielding.

Let p, q be finite tree yielding finite sequences. Then p � q is a finite tree
yielding finite sequence. Let D be a constituted of decorated trees non-empty
set. One can check that every finite sequence of elements of D is decorated tree
yielding.

Let p, q be decorated tree yielding finite sequences. Then p � q is a decorated
tree yielding finite sequence. Let T be a tree. Then 〈T 〉 is a tree yielding non-
empty finite sequence. Let S be a tree. Then 〈T, S〉 is a tree yielding non-empty
finite sequence. Let n be a natural number, and let T be a tree. Then n 7−→ T
is a tree yielding finite sequence. Let T be a finite tree. Then 〈T 〉 is a finite tree
yielding tree yielding non-empty finite sequence. Let S be a finite tree. Then
〈T, S〉 is a finite tree yielding non-empty tree yielding finite sequence. Let n
be a natural number, and let T be a finite tree. Then n 7−→ T is a finite tree
yielding finite sequence. Let T be a decorated tree. Then 〈T 〉 is a decorated tree
yielding non-empty finite sequence. Let S be a decorated tree. Then 〈T, S〉 is a
decorated tree yielding non-empty finite sequence. Let n be a natural number,
and let T be a decorated tree. Then n 7−→ T is a decorated tree yielding finite
sequence.

The following proposition is true

(39) For every decorated tree yielding function f holds dom(domκ f(κ)) =
dom f and domκ f(κ) is tree yielding.

Let p be a decorated tree yielding finite sequence. Then domκ p(κ) is a tree
yielding finite sequence.
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One can prove the following proposition

(40) For every decorated tree yielding finite sequence p holds len(domκ p(κ)) =
len p.

4. Trees decorated by Cartesian product and structure of
substitution

We now define four new constructions. Let D, E be non-empty sets. A tree
decorated by D and E is a tree decorated by [:D, E :].

A set of trees decorated by D and E is a set of trees decorated by [:D, E :].
Let T1, T2 be decorated trees. Then 〈T1, T2〉 is a decorated tree. Let D1, D2

be non-empty sets, and let T1 be a tree decorated by D1, and let T2 be a tree
decorated by D2. Then 〈T1, T2〉 is a tree decorated by D1 and D2. Let D, E
be non-empty sets, and let T be a tree decorated by D, and let f be a function
from D into E. Then f · T is a tree decorated by E. Let D1, D2 be non-empty
sets. Then π1(D1×D2) is a function from [:D1, D2 :] into D1. Then π2(D1×D2)
is a function from [:D1, D2 :] into D2. Let D1, D2 be non-empty sets, and let T
be a tree decorated by D1 and D2. The functor T1 yielding a tree decorated by
D1 is defined by:

(Def.12) T1 = π1(D1 ×D2) · T .

The functor T2 yielding a tree decorated by D2 is defined by:

(Def.13) T2 = π2(D1 ×D2) · T .

The following propositions are true:

(41) For all non-empty sets D1, D2 and for every tree T decorated by D1

and D2 and for every element t of domT holds T (t)1 = T1(t) and T2(t) =
T (t)2.

(42) For all non-empty sets D1, D2 and for every tree T decorated by D1

and D2 holds 〈T1, T2〉 = T .

We now define two new modes. Let T be a finite tree. Then Leaves T is a
finite non-empty subset of T . Let T be a tree, and let S be a non-empty subset
of T . We see that the element of S is an element of T . Let T be a finite tree.
We see that the leaf of T is an element of Leaves T . Let T be a finite tree. A
tree is called a substitution of structure of T if:

(Def.14) for every element t of it holds t ∈ T or there exists a leaf l of T such
that l ≺ t.

Let T be a finite tree, and let t be a leaf of T , and let S be a tree. Then T (t/S)
is a substitution of structure of T . Let T be a finite tree. Observe that there
exists a finite substitution of structure of T .

Let us consider n. A substitution of structure of n is a substitution of struc-
ture of the elementary tree of n.

We now state two propositions:
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(43) Every tree is a substitution of structure of 0.

(44) For all trees T1, T2 such that T1-level(1) ⊆ T2-level(1) and for every n
such that 〈n〉 ∈ T1 holds T1

� 〈n〉 = T2
� 〈n〉 holds T1 ⊆ T2.

5. Joining of trees

Next we state several propositions:

(45) For all trees T , T ′ and for every element p of T holds p ∈ T (p/T ′).
(46) For all trees T , T ′ and for every finite sequence p of elements of � such

that p ∈ Leaves T holds T ⊆ T (p/T ′).
(47) For all decorated trees T , T ′ and for every element p of domT holds

T (p/T ′)(p) = T ′(ε).
(48) For all decorated trees T , T ′ and for all elements p, q of domT such

that p 	 q holds T (p/T ′)(q) = T (q).

(49) For all decorated trees T , T ′ and for every element p of domT and for
every element q of domT ′ holds T (p/T ′)(p � q) = T ′(q).

Let T1, T2 be trees. Then T1 ∪ T2 is a tree.

One can prove the following proposition

(50) Let T1, T2 be trees. Let p be an element of T1 ∪ T2. Then
(i) if p ∈ T1 and p ∈ T2, then (T1 ∪ T2)

�
p = T1

�
p ∪ T2

�
p,

(ii) if p /∈ T1, then (T1 ∪ T2)
�
p = T2

�
p,

(iii) if p /∈ T2, then (T1 ∪ T2)
�
p = T1

�
p.

We now define three new functors. Let us consider p satisfying the condition:

p is tree yielding. The functor
︷︸︸︷
p yielding a tree is defined as follows:

(Def.15) x ∈ ︷︸︸︷p if and only if x = ε or there exist n, q such that n < len p and
q ∈ p(n+ 1) and x = 〈n〉 � q.

Let T be a tree. The functor
︷︸︸︷
T yields a tree and is defined by:

(Def.16)
︷︸︸︷
T =

︷︸︸︷
〈T 〉.

Let T1, T2 be trees. The functor
︷ ︸︸ ︷
T1, T2 yields a tree and is defined by:

(Def.17)
︷ ︸︸ ︷
T1, T2 =

︷ ︸︸ ︷
〈T1, T2〉.

One can prove the following propositions:

(51) If p is tree yielding, then 〈n〉 � q ∈ ︷︸︸︷p if and only if n < len p and
q ∈ p(n+ 1).

(52) If p is tree yielding, then
︷︸︸︷
p -level(1) = {〈n〉 : n < len p} and for every

n such that n < len p holds
︷︸︸︷
p

� 〈n〉 = p(n+ 1).

(53) For all tree yielding finite sequences p, q such that
︷︸︸︷
p =

︷︸︸︷
q holds

p = q.
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(54) For all tree yielding finite sequences p1, p2 and for every tree T holds

p ∈ T if and only if 〈len p1〉 � p ∈
︷ ︸︸ ︷
p1 � 〈T 〉 � p2.

(55)
︷︸︸︷
ε = the elementary tree of 0.

(56) If p is tree yielding, then the elementary tree of len p ⊆ ︷︸︸︷p .

(57) The elementary tree of i =
︷ ︸︸ ︷
i 7−→ the elementary tree of 0.

(58) For every tree T and for every tree yielding finite sequence p holds
︷ ︸︸ ︷
p � 〈T 〉 = (

︷︸︸︷
p ∪the elementary tree of len p+ 1)(〈len p〉/T ).

(59) For every tree yielding finite sequence p holds
︷ ︸︸ ︷
p � 〈the elementary tree of 0〉 =

︷︸︸︷
p ∪

the elementary tree of len p+ 1.

(60) For all tree yielding finite sequences p, q and for all trees T1, T2 holds
︷ ︸︸ ︷
p � 〈T1〉 � q =

︷ ︸︸ ︷
p � 〈T2〉 � q(〈len p〉/T1).

(61) For every tree T holds
︷︸︸︷
T = (the elementary tree of 1)(〈0〉/T ).

(62) For all trees T1, T2 holds
︷ ︸︸ ︷
T1, T2 = (the elementary tree of

2)(〈0〉/T1)(〈1〉/T2).

Let p be a finite tree yielding finite sequence. Then
︷︸︸︷
p is a finite tree. Let

T be a finite tree. Then
︷︸︸︷
T is a finite tree. Let T1, T2 be finite trees. Then︷ ︸︸ ︷

T1, T2 is a finite tree.

One can prove the following propositions:

(63) For every tree T and for an arbitrary x holds x ∈
︷︸︸︷
T if and only if

x = ε or there exists p such that p ∈ T and x = 〈0〉 � p.
(64) For every tree T and for every finite sequence p holds p ∈ T if and only

if 〈0〉 � p ∈
︷︸︸︷
T .

(65) For every tree T holds the elementary tree of 1 ⊆
︷︸︸︷
T .

(66) For all trees T1, T2 such that T1 ⊆ T2 holds
︷︸︸︷
T1 ⊆

︷︸︸︷
T2 .

(67) For all trees T1, T2 such that
︷︸︸︷
T1 =

︷︸︸︷
T2 holds T1 = T2.

(68) For every tree T holds
︷︸︸︷
T

� 〈0〉 = T .

(69) For all trees T1, T2 holds
︷︸︸︷
T1 (〈0〉/T2) =

︷︸︸︷
T2 .

(70)
︷ ︸︸ ︷
the elementary tree of 0 = the elementary tree of 1.

(71) For all trees T1, T2 and for an arbitrary x holds x ∈
︷ ︸︸ ︷
T1, T2 if and only

if x = ε or there exists p such that p ∈ T1 and x = 〈0〉 � p or p ∈ T2 and
x = 〈1〉 � p.
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(72) For all trees T1, T2 and for every finite sequence p holds p ∈ T1 if and

only if 〈0〉 � p ∈
︷ ︸︸ ︷
T1, T2.

(73) For all trees T1, T2 and for every finite sequence p holds p ∈ T2 if and

only if 〈1〉 � p ∈
︷ ︸︸ ︷
T1, T2.

(74) For all trees T1, T2 holds the elementary tree of 2 ⊆
︷ ︸︸ ︷
T1, T2.

(75) For all trees T1, T2, W1, W2 such that T1 ⊆ W1 and T2 ⊆ W2 holds
︷ ︸︸ ︷
T1, T2 ⊆

︷ ︸︸ ︷
W1,W2.

(76) For all trees T1, T2, W1, W2 such that
︷ ︸︸ ︷
T1, T2 =

︷ ︸︸ ︷
W1,W2 holds T1 = W1

and T2 = W2.

(77) For all trees T1, T2 holds
︷ ︸︸ ︷
T1, T2

� 〈0〉 = T1 and
︷ ︸︸ ︷
T1, T2

� 〈1〉 = T2.

(78) For all trees T , T1, T2 holds
︷ ︸︸ ︷
T1, T2(〈0〉/T ) =

︷ ︸︸ ︷
T, T2 and

︷ ︸︸ ︷
T1, T2(〈1〉/T ) =

︷ ︸︸ ︷
T1, T .

(79)
︷ ︸︸ ︷
the elementary tree of 0, the elementary tree of 0 = the elementary tree

of 2.

In the sequel w is a finite tree yielding finite sequence. One can prove the
following propositions:

(80) For every w if for every finite tree t such that t ∈ rngw holds height t ≤
n, then height

︷︸︸︷
w ≤ n+ 1.

(81) For every finite tree t such that t ∈ rngw holds height
︷︸︸︷
w > height t.

(82) For every finite tree t such that t ∈ rngw and for every finite tree t′ such

that t′ ∈ rngw holds height t′ ≤ height t holds height
︷︸︸︷
w = height t+ 1.

(83) For every finite tree T holds height
︷︸︸︷
T = height T + 1.

(84) For all finite trees T1, T2 holds height
︷ ︸︸ ︷
T1, T2 = max(height T1,height T2)+

1.
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Summary. This article is concerned with a generalization of con-
cepts introduced in [10], i.e., there are introduced the sum and the product
of finite number of elements of any field. Moreover, the product of vectors
which yields a vector is introduced. According to [10], some operations
on i-tuples of elements of field are introduced: addition, subtraction, and
complement. Some properties on the sum and the product of finite num-
ber of elements of a field are present.
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The articles [17], [2], [18], [7], [8], [3], [4], [14], [13], [15], [19], [16], [6], [5], [9],
[1], [20], [22], [21], [11], and [12] provide the notation and terminology for this
paper.

1. Auxiliary theorems

For simplicity we adopt the following convention: i, j, k will denote natural
numbers, K will denote a field, a, a′, a1, a2, a3 will denote elements of the
carrier of K, p, p1, p2, q will denote finite sequences of elements of the carrier
of K, and R, R1, R2, R3 will denote elements of (the carrier of K)i. We now
state a number of propositions:

(1) −0K = 0K .

(2) The addition of K is commutative.

(3) The addition of K is associative.

(4) The multiplication of K is commutative.

(5) The multiplication of K is associative.

(6) 1K is a unity w.r.t. the multiplication of K.
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(7) 1the multiplication of K = 1K .

(8) 0K is a unity w.r.t. the addition of K.

(9) 1the addition of K = 0K .

(10) The addition of K has a unity.

(11) The multiplication of K has a unity.

(12) The multiplication of K is distributive w.r.t. the addition of K.

We now define two new functors. Let us consider K, and let a be an element
of the carrier of K. The functor ·a yields a unary operation on the carrier of K
and is defined by:

(Def.1) ·a = (the multiplication of K)◦(a, id(the carrier of K)).

Let us consider K. The functor −K yields a binary operation on the carrier of
K and is defined as follows:

(Def.2) −K = (the addition of K) ◦ (id(the carrier of K), the reverse-map of K).

We now state several propositions:

(13) −K = (the addition of K) ◦ (id(the carrier of K), the reverse-map of K).

(14) −K(a1, a2) = a1 − a2.

(15) ·a is distributive w.r.t. the addition of K.

(16) The reverse-map of K is an inverse operation w.r.t. the addition of K.

(17) The addition of K has an inverse operation.

(18) The inverse operation w.r.t. the addition of K = the reverse-map of K.

(19) The reverse-map of K is distributive w.r.t. the addition of K.

Let us consider K, p1, p2. The functor p1 + p2 yielding a finite sequence of
elements of the carrier of K is defined as follows:

(Def.3) p1 + p2 = (the addition of K)◦(p1, p2).

Next we state two propositions:

(20) p1 + p2 = (the addition of K)◦(p1, p2).

(21) If i ∈ Seg len(p1 +p2) and a1 = p1(i) and a2 = p2(i), then (p1 +p2)(i) =
a1 + a2.

Let us consider i, and let us consider K, and let R1, R2 be elements of (the
carrier of K)i. Then R1 +R2 is an element of (the carrier of K)i.

Next we state several propositions:

(22) If j ∈ Seg i and a1 = R1(j) and a2 = R2(j), then (R1+R2)(j) = a1+a2.

(23) ε(the carrier of K) + p = ε(the carrier of K) and
p+ ε(the carrier of K) = ε(the carrier of K).

(24) 〈a1〉+ 〈a2〉 = 〈a1 + a2〉.
(25) (i 7−→ a1) + (i 7−→ a2) = i 7−→ a1 + a2.

(26) R1 +R2 = R2 +R1.

(27) R1 + (R2 +R3) = (R1 +R2) +R3.

(28) R+ (i 7−→ 0K) = R and R = (i 7−→ 0K) +R.
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Let us consider K, p. The functor −p yields a finite sequence of elements of
the carrier of K and is defined as follows:

(Def.4) −p = (the reverse-map of K) · p.
The following two propositions are true:

(29) −p = (the reverse-map of K) · p.
(30) If i ∈ Seg len(−p) and a = p(i), then (−p)(i) = −a.

Let us consider i, K, R. Then −R is an element of (the carrier of K)i.

One can prove the following propositions:

(31) If j ∈ Seg i and a = R(j), then (−R)(j) = −a.

(32) −ε(the carrier of K) = ε(the carrier of K).

(33) −〈a〉 = 〈−a〉.
(34) −(i 7−→ a) = i 7−→ −a.

(35) R+−R = i 7−→ 0K and −R+R = i 7−→ 0K .

(36) If R1 +R2 = i 7−→ 0K , then R1 = −R2 and R2 = −R1.

(37) −−R = R.

(38) If −R1 = −R2, then R1 = R2.

(39) If R1 +R = R2 +R or R1 +R = R+R2, then R1 = R2.

(40) −(R1 +R2) = −R1 +−R2.

Let us consider K, p1, p2. The functor p1 − p2 yielding a finite sequence of
elements of the carrier of K is defined as follows:

(Def.5) p1 − p2 = (−K)◦(p1, p2).

Next we state two propositions:

(41) p1 − p2 = (−K)◦(p1, p2).

(42) If i ∈ Seg len(p1−p2) and a1 = p1(i) and a2 = p2(i), then (p1−p2)(i) =
a1 − a2.

Let us consider i, K, R1, R2. Then R1 −R2 is an element of (the carrier of
K)i.

The following propositions are true:

(43) If j ∈ Seg i and a1 = R1(j) and a2 = R2(j), then (R1−R2)(j) = a1−a2.

(44) ε(the carrier of K) − p = ε(the carrier of K) and
p− ε(the carrier of K) = ε(the carrier of K).

(45) 〈a1〉 − 〈a2〉 = 〈a1 − a2〉.
(46) (i 7−→ a1)− (i 7−→ a2) = i 7−→ a1 − a2.

(47) R1 −R2 = R1 +−R2.

(48) R− (i 7−→ 0K) = R.

(49) (i 7−→ 0K)−R = −R.

(50) R1 −−R2 = R1 +R2.

(51) −(R1 −R2) = R2 −R1.

(52) −(R1 −R2) = −R1 +R2.
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(53) R−R = i 7−→ 0K .

(54) If R1 −R2 = i 7−→ 0K , then R1 = R2.

(55) R1 −R2 −R3 = R1 − (R2 +R3).

(56) R1 + (R2 −R3) = (R1 +R2)−R3.

(57) R1 − (R2 −R3) = (R1 −R2) +R3.

(58) R1 = (R1 +R)−R.

(59) R1 = (R1 −R) +R.

(60) For all elements a, b of the carrier of K holds ((the multiplication of
K)◦(a, id(the carrier of K)))(b) = a · b.

(61) For all elements a, b of the carrier of K holds ·a(b) = a · b.
Let us consider K, and let p be a finite sequence of elements of the carrier

of K, and let a be an element of the carrier of K. The functor a · p yielding a
finite sequence of elements of the carrier of K is defined as follows:

(Def.6) a · p = ·a ·p.
Next we state the proposition

(62) If i ∈ Seg len(a · p) and a′ = p(i), then (a · p)(i) = a · a′.
Let us consider i, K, R, a. Then a ·R is an element of (the carrier of K)i.

The following propositions are true:

(63) If j ∈ Seg i and a′ = R(j), then (a · R)(j) = a · a′.
(64) a · ε(the carrier of K) = ε(the carrier of K).

(65) a · 〈a1〉 = 〈a · a1〉.
(66) a1 · (i 7−→ a2) = i 7−→ a1 · a2.

(67) (a1 · a2) · R = a1 · (a2 ·R).

(68) (a1 + a2) ·R = a1 ·R+ a2 ·R.

(69) a · (R1 +R2) = a ·R1 + a ·R2.

(70) 1K ·R = R.

(71) 0K ·R = i 7−→ 0K .

(72) (−1K) · R = −R.

Let us consider K, p1, p2. The functor p1 • p2 yields a finite sequence of
elements of the carrier of K and is defined as follows:

(Def.7) p1 • p2 = (the multiplication of K)◦(p1, p2).

One can prove the following proposition

(73) If i ∈ Seg len(p1 • p2) and a1 = p1(i) and a2 = p2(i), then (p1 • p2)(i) =
a1 · a2.

Let us consider i, K, R1, R2. Then R1 • R2 is an element of (the carrier of
K)i.

We now state a number of propositions:

(74) If j ∈ Seg i and a1 = R1(j) and a2 = R2(j), then (R1 •R2)(j) = a1 · a2.
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(75) ε(the carrier of K) • p = ε(the carrier of K) and
p • ε(the carrier of K) = ε(the carrier of K).

(76) 〈a1〉 • 〈a2〉 = 〈a1 · a2〉.
(77) R1 •R2 = R2 •R1.

(78) p • q = q • p.
(79) R1 • (R2 • R3) = (R1 • R2) •R3.

(80) (i 7−→ a) • R = a ·R and R • (i 7−→ a) = a · R.

(81) (i 7−→ a1) • (i 7−→ a2) = i 7−→ a1 · a2.

(82) a · (R1 •R2) = a ·R1 •R2.

(83) a · (R1 •R2) = a ·R1 •R2 and a · (R1 •R2) = R1 • a ·R2.

(84) a · R = (i 7−→ a) •R.

Let us consider K, and let p be a finite sequence of elements of the carrier of
K. The functor

∑
p yielding an element of the carrier of K is defined as follows:

(Def.8)
∑
p = the addition of K 
 p.

The following propositions are true:

(85)
∑

(ε(the carrier of K)) = 0K .

(86)
∑〈a〉 = a.

(87)
∑

(p � 〈a〉) =
∑
p+ a.

(88)
∑

(p1 � p2) =
∑
p1 +

∑
p2.

(89)
∑

(〈a〉 � p) = a+
∑
p.

(90)
∑〈a1, a2〉 = a1 + a2.

(91)
∑〈a1, a2, a3〉 = a1 + a2 + a3.

(92)
∑

(a · p) = a ·∑ p.

(93) For every element R of (the carrier of K)0 holds
∑
R = 0K .

(94)
∑

(−p) = −∑ p.

(95)
∑

(R1 +R2) =
∑
R1 +

∑
R2.

(96)
∑

(R1 −R2) =
∑
R1 −

∑
R2.

Let us consider K, and let p be a finite sequence of elements of the carrier of
K. The functor

∏
p yielding an element of the carrier of K is defined by:

(Def.9)
∏
p = the multiplication of K 
 p.

The following propositions are true:

(97)
∏
p = the multiplication of K 
 p.

(98)
∏

(ε(the carrier of K)) = 1K .

(99)
∏〈a〉 = a.

(100)
∏

(p � 〈a〉) =
∏
p · a.

(101)
∏

(p1 � p2) =
∏
p1 ·

∏
p2.

(102)
∏

(〈a〉 � p) = a ·∏ p.

(103)
∏〈a1, a2〉 = a1 · a2.

(104)
∏〈a1, a2, a3〉 = a1 · a2 · a3.
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(105) For every element R of (the carrier of K)0 holds
∏
R = 1K .

(106)
∏

(i 7−→ 1K) = 1K .

(107) There exists k such that k ∈ Seg len p and p(k) = 0K if and only if∏
p = 0K .

(108)
∏

(i+ j 7−→ a) =
∏

(i 7−→ a) ·∏(j 7−→ a).

(109)
∏

(i · j 7−→ a) =
∏

(j 7−→ ∏
(i 7−→ a)).

(110)
∏

(i 7−→ a1 · a2) =
∏

(i 7−→ a1) ·∏(i 7−→ a2).

(111)
∏

(R1 • R2) =
∏
R1 ·

∏
R2.

(112)
∏

(a ·R) =
∏

(i 7−→ a) ·∏R.

Let us consider K, and let p, q be finite sequences of elements of the carrier
of K. The functor p · q yielding an element of the carrier of K is defined by:

(Def.10) p · q =
∑

(p • q).
One can prove the following propositions:

(113) For all elements a, b of the carrier of K holds 〈a〉 · 〈b〉 = a · b.
(114) For all elements a1, a2, b1, b2 of the carrier of K holds 〈a1, a2〉 · 〈b1,

b2〉 = a1 · b1 + a2 · b2.

(115) For all finite sequences p, q of elements of the carrier of K holds p · q =
q · p.
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[4] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
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Summary. The goal of the article is to define the concept of
monoid. In the preliminary section we introduce the notion of some
properties of binary operations. The second section is concerning with
structures with a set and a binary operation on this set: there is in-
troduced the notion corresponding to the notion of some properties of
binary operations and there are shown some useful clusters. Next, we are
concerning with the structure with a set, a binary operation on the set
and with an element of the set. Such a structure is called monoid iff the
operation is associative and the element is a unity of the operation. In
the fourth section the concept of subsystems of monoid (group) is intro-
duced. Subsystems are submonoids (subgroups) or other parts of monoid
(group) with are closed w.r.t. the operation. The are present facts on
inheritness of some properties by subsystems. Finally, there are construct
the examples of groups and monoids: the group 〉 � , +〈 of real numbers
with addition, the group � + of integers as the subsystem of the group
〉 � , +〈, the semigroup 〉 � , +〈 of natural numbers as the subsystem of � +,
and the monoid 〉 � , +, 0〈 of natural numbers with addition and zero as
monoidal extension of the semigroup 〉 � , +〈. The semigroups of real and
natural numbers with multiplication are also introduced. The monoid
of finite sequences over some set with concatenation as binary operation
and with empty sequence as neutral element is defined in sixth section.
Last section deals with monoids with the composition of functions as the
operation, i.e. with the monoid of partial and total functions and the
monoid of permutations.
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1. Binary operations preliminary

In the sequel x is arbitrary and X, Y denote sets. We now define several new
constructions. Let G be a 1-sorted structure. An element of G is an element of
the carrier of G.

A finite sequence of elements of G is a finite sequence of elements of the
carrier of G.

A binary operation on G is a binary operation on the carrier of G.
A subset of G is a subset of the carrier of G.
A 1-sorted structure is constituted functions if:

(Def.1) every element of it is a function.

A 1-sorted structure is constituted finite sequences if:

(Def.2) every element of it is a finite sequence.

Let X be a constituted functions 1-sorted structure. One can check the following
observations:

∗ every element of X is function-like,

∗ every constituted finite sequences 1-sorted structure is constituted func-
tions, and

∗ every constituted finite sequences half group structure is constituted
functions.

Let X be a constituted finite sequences 1-sorted structure. Note that every
element of X is finite sequence-like.

Let D be a non-empty set, and let p, q be finite sequences of elements of D.
Then p � q is an element of D∗. Let g, f be functions. We introduce the functor
f ◦ g as a synonym of f · g. Let X be a set, and let g, f be functions from X
into X. Then f · g is a function from X into X. Let X be a set, and let g, f
be permutations of X. Then f · g is a permutation of X. Let A be a set, and
let B, C be non-empty sets, and let g be a function from A into B, and let f
be a function from B into C. Then f · g is a function from A into C. Let A, B,
C be sets, and let g be a partial function from A to B, and let f be a partial
function from B to C. Then f · g is a partial function from A to C. Let D be a
non-empty set. A binary operation on D is left invertible if:

(Def.3) for every elements a, b of D there exists an element l of D such that
it(l, a) = b.

A binary operation on D is right invertible if:

(Def.4) for every elements a, b of D there exists an element r of D such that
it(a, r) = b.

A binary operation on D is invertible if:

(Def.5) for every elements a, b of D there exist elements r, l of D such that
it(a, r) = b and it(l, a) = b.

A binary operation on D is left cancelable if:

(Def.6) for all elements a, b, c of D such that it(a, b) = it(a, c) holds b = c.
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A binary operation on D is right cancelable if:

(Def.7) for all elements a, b, c of D such that it(b, a) = it(c, a) holds b = c.

A binary operation on D is cancelable if:

(Def.8) for all elements a, b, c of D such that it(a, b) = it(a, c) or it(b, a) = it(c,
a) holds b = c.

A binary operation on D has uniquely decomposable unity if:

(Def.9) it has a unity and for all elements a, b of D such that it(a, b) = 1it

holds a = b and b = 1it.

We now state three propositions:

(1) For every non-empty set D and for every binary operation f on D holds
f is invertible if and only if f is left invertible and right invertible.

(2) For every non-empty set D and for every binary operation f on D holds
f is cancelable if and only if f is left cancelable and right cancelable.

(3) For every binary operation f on {x} holds f = {〈〈x, x〉〉} 7−→ x and f
has a unity and f is commutative and f is associative and f is idempotent
and f is invertible and cancelable and has uniquely decomposable unity.

2. Semigroups

We adopt the following convention: G denotes a half group structure, D denotes
a non-empty set, and a, b, c, r, l denote elements of G. We now define several
new attributes. A half group structure is unital if:

(Def.10) the operation of it has a unity.

A half group structure is commutative if:

(Def.11) the operation of it is commutative.

A half group structure is associative if:

(Def.12) the operation of it is associative.

A half group structure is idempotent if:

(Def.13) the operation of it is idempotent.

A half group structure is left invertible if:

(Def.14) the operation of it is left invertible.

A half group structure is right invertible if:

(Def.15) the operation of it is right invertible.

A half group structure is invertible if:

(Def.16) the operation of it is invertible.

A half group structure is left cancelable if:

(Def.17) the operation of it is left cancelable.

A half group structure is right cancelable if:

(Def.18) the operation of it is right cancelable.
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A half group structure is cancelable if:

(Def.19) the operation of it is cancelable.

A half group structure has uniquely decomposable unity if:

(Def.20) the operation of it has uniquely decomposable unity.

One can verify that there exists a unital commutative associative cancelable
idempotent invertible with uniquely decomposable unity constituted functions
constituted finite sequences strict half group structure.

We now state a number of propositions:

(4) If G is unital, then 1the operation of G is a unity w.r.t. the operation of
G.

(5) G is unital if and only if for every a holds 1the operation of G ·a = a and
a · 1the operation of G = a.

(6) G is unital if and only if there exists a such that for every b holds a·b = b
and b · a = b.

(7) G is commutative if and only if for all a, b holds a · b = b · a.

(8) G is associative if and only if for all a, b, c holds (a · b) · c = a · (b · c).
(9) G is idempotent if and only if for every a holds a · a = a.

(10) G is left invertible if and only if for every a, b there exists l such that
l · a = b.

(11) G is right invertible if and only if for every a, b there exists r such that
a · r = b.

(12) G is invertible if and only if for every a, b there exist r, l such that
a · r = b and l · a = b.

(13) G is left cancelable if and only if for all a, b, c such that a · b = a · c
holds b = c.

(14) G is right cancelable if and only if for all a, b, c such that b · a = c · a
holds b = c.

(15) G is cancelable if and only if for all a, b, c such that a · b = a · c or
b · a = c · a holds b = c.

(16) G has uniquely decomposable unity if and only if the operation of G has
a unity and for all elements a, b of G such that a · b = 1the operation of G

holds a = b and b = 1the operation of G.

(17) If G is associative, then G is invertible if and only if G is unital and the
operation of G has an inverse operation.

One can check the following observations:

∗ every group-like half group structure is associative and invertible,

∗ every associative invertible half group structure is group-like,

∗ every half group structure which is invertible is also left invertible and
right invertible,

∗ every half group structure which is left invertible and right invertible is
also invertible,
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∗ every cancelable half group structure is left cancelable and right cance-
lable,

∗ every left cancelable right cancelable half group structure is cancelable,

∗ every half group structure which is associative and invertible is also
unital and cancelable,

∗ every Abelian group is commutative, and

∗ every commutative group is Abelian.

3. Monoids

We consider monoid structures which are extension of a half group structure
and are systems
〈a carrier, an operation, a unity〉,

where the carrier is a non-empty set, the operation is a binary operation on the
carrier, and the unity is an element of the carrier.

In the sequel M will be a monoid structure. A monoid structure is well unital
if:

(Def.21) the unity of it is a unity w.r.t. the operation of it.

Next we state the proposition

(18) M is well unital if and only if for every element a of M holds (the unity
of M) · a = a and a · the unity of M = a.

Let us mention that every monoid structure which is well unital is also unital.

We now state the proposition

(19) For every M being a monoid structure such that M is well unital holds
the unity of M = 1the operation of M .

We now define two new modes. Let us note that there exists a well unital
commutative associative cancelable idempotent invertible with uniquely decom-
posable unity unital constituted functions constituted finite sequences strict
monoid structure.

A monoid is a well unital associative monoid structure.
Let G be a half group structure. A monoid structure is called a monoidal

extension of G if:

(Def.22) the half group structure of it = the half group structure of G.

One can prove the following proposition

(20) For every monoidal extension M of G holds the carrier of M = the
carrier of G and the operation of M = the operation of G and for all
elements a, b of M and for all elements a′, b′ of G such that a = a′ and
b = b′ holds a · b = a′ · b′.

Let G be a half group structure. Note that there exists a strict monoidal
extension of G.

The following proposition is true
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(21) Let G be a half group structure. Let M be a monoidal extension of
G. Then if G is unital, then M is unital and also if G is commutative,
then M is commutative and also if G is associative, then M is associative
and also if G is invertible, then M is invertible and also if G has uniquely
decomposable unity, then M has uniquely decomposable unity and also
if G is cancelable, then M is cancelable.

Let G be a constituted functions half group structure. One can check that
every monoidal extension of G is constituted functions.

Let G be a constituted finite sequences half group structure. Note that every
monoidal extension of G is constituted finite sequences.

Let G be a unital half group structure. Observe that every monoidal exten-
sion of G is unital.

Let G be an associative half group structure. One can verify that every
monoidal extension of G is associative.

Let G be a commutative half group structure. One can verify that every
monoidal extension of G is commutative.

Let G be an invertible half group structure. Note that every monoidal ex-
tension of G is invertible.

Let G be a cancelable half group structure. One can check that every
monoidal extension of G is cancelable.

Let G be a half group structure with uniquely decomposable unity. Note
that every monoidal extension of G is with uniquely decomposable unity.

Let G be a unital half group structure. Note that there exists a well unital
strict monoidal extension of G.

The following proposition is true

(22) For every G being a unital half group structure and for all well unital
strict monoidal extensions M1, M2 of G holds M1 = M2.

4. Subsystems

We now define two new modes. Let G be a half group structure. A half group
structure is said to be a subsystem of G if:

(Def.23) the operation of it ≤ the operation of G.

Let G be a half group structure. One can check that there exists a subsystem
of G which is strict.

Let G be a unital half group structure. Observe that there exists a subsystem
of G which is unital associative commutative cancelable idempotent invertible
with uniquely decomposable unity and strict.

Let G be a half group structure. A monoid structure is called a monoidal
subsystem of G if:

(Def.24) the operation of it ≤ the operation of G and for every M being a monoid
structure such that G = M holds the unity of it = the unity of M .
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Let G be a half group structure. Note that there exists a monoidal subsystem
of G which is strict.

Let M be a monoid structure. Let us note that the monoidal subsystem of
M can be characterized by the following (equivalent) condition:

(Def.25) the operation of it ≤ the operation of M and the unity of it = the unity
of M .

Let G be a well unital monoid structure. Observe that there exists a well
unital associative commutative cancelable idempotent invertible with uniquely
decomposable unity strict monoidal subsystem of G.

We now state the proposition

(23) For every G being a half group structure every monoidal subsystem of
G is a subsystem of G.

Let G be a half group structure, and let M be a monoidal extension of G.
We see that the subsystem of M is a subsystem of G. Let G1 be a half group
structure, and let G2 be a subsystem of G1. We see that the subsystem of G2 is
a subsystem of G1. Let G1 be a half group structure, and let G2 be a monoidal
subsystem of G1. We see that the subsystem of G2 is a subsystem of G1. Let
G be a half group structure, and let M be a monoidal subsystem of G. We see
that the monoidal subsystem of M is a monoidal subsystem of G.

We now state the proposition

(24) G is a subsystem of G and M is a monoidal subsystem of M .

In the sequel H is a subsystem of G and N is a monoidal subsystem of G.
One can prove the following propositions:

(25) The carrier of H ⊆ the carrier of G and the carrier of N ⊆ the carrier
of G.

(26) For every G being a half group structure and for every subsystem H of
G holds the operation of H = (the operation of G)

�
[: the carrier of H,

the carrier of H :].

(27) For all elements a, b of H and for all elements a′, b′ of G such that
a = a′ and b = b′ holds a · b = a′ · b′.

(28) For all subsystems H1, H2 of G such that the carrier of H1 = the carrier
of H2 holds the half group structure of H1 = the half group structure of
H2.

(29) For all monoidal subsystems H1, H2 of M such that the carrier of
H1 = the carrier of H2 holds the monoid structure of H1 = the monoid
structure of H2.

(30) For all subsystems H1, H2 of G such that the carrier of H1 ⊆ the carrier
of H2 holds H1 is a subsystem of H2.

(31) For all monoidal subsystems H1, H2 of M such that the carrier of
H1 ⊆ the carrier of H2 holds H1 is a monoidal subsystem of H2.

(32) If G is unital and 1the operation of G ∈ the carrier of H, then H is unital
and 1the operation of G = 1the operation of H .
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(33) For every M being a well unital monoid structure every monoidal sub-
system of M is well unital.

(34) If G is commutative, then H is commutative.

(35) If G is associative, then H is associative.

(36) If G is idempotent, then H is idempotent.

(37) If G is cancelable, then H is cancelable.

(38) If 1the operation of G ∈ the carrier of H and G has uniquely decomposable
unity, then H has uniquely decomposable unity.

(39) For every M being a well unital monoid structure with uniquely decom-
posable unity every monoidal subsystem of M has uniquely decomposable
unity.

Let G be a constituted functions half group structure. Observe that every
subsystem of G is constituted functions and every monoidal subsystem of G is
constituted functions.

Let G be a constituted finite sequences half group structure. One can verify
that every subsystem of G is constituted finite sequences and every monoidal
subsystem of G is constituted finite sequences.

Let M be a well unital monoid structure. Note that every monoidal subsys-
tem of M is well unital.

Let G be a commutative half group structure. Observe that every subsystem
of G is commutative and every monoidal subsystem of G is commutative.

Let G be an associative half group structure. One can verify that every
subsystem of G is associative and every monoidal subsystem of G is associative.

Let G be an idempotent half group structure. Observe that every subsystem
of G is idempotent and every monoidal subsystem of G is idempotent.

Let G be a cancelable half group structure. Observe that every subsystem
of G is cancelable and every monoidal subsystem of G is cancelable.

Let M be a well unital monoid structure with uniquely decomposable unity.
Observe that every monoidal subsystem of M is with uniquely decomposable
unity.

In this article we present several logical schemes. The scheme SubStrEx1
deals with a half group structure A and a non-empty subset B of A and states
that:

there exists a strict subsystem H of A such that the carrier of H = B
provided the following condition is met:
• for all elements x, y of B holds x · y ∈ B.
The scheme SubStrEx2 deals with a half group structure A, and a unary

predicate P, and states that:
there exists a strict subsystem H of A such that for every element x of A

holds x ∈ the carrier of H if and only if P[x]
provided the following conditions are met:
• for all elements x, y of A such that P[x] and P[y] holds P[x · y],
• there exists an element x of A such that P[x].
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The scheme MonoidalSubStrEx1 concerns a monoid structure A and a non-
empty subset B of A and states that:

there exists a strict monoidal subsystem H of A such that the carrier of
H = B
provided the parameters meet the following requirements:
• for all elements x, y of B holds x · y ∈ B,
• the unity of A ∈ B.
The scheme MonoidalSubStrEx2 deals with a monoid structure A, and a

unary predicate P, and states that:
there exists a strict monoidal subsystem M of A such that for every element

x of A holds x ∈ the carrier of M if and only if P[x]
provided the following requirements are met:
• for all elements x, y of A such that P[x] and P[y] holds P[x · y],
• P[the unity of A].
Let us consider G, a, b. Then a · b is an element of G. We introduce the

functor a⊗ b as a synonym of a · b.

5. The examples of monoids of numbers

The unital associative invertible commutative cancelable strict half group struc-
ture 〈 � ,+〉 is defined by:

(Def.26) 〈 � ,+〉 = 〈 � ,+ � 〉.
The following propositions are true:

(40) The carrier of 〈 � ,+〉 = � and the operation of 〈 � ,+〉 = + � and for all
elements a, b of 〈 � ,+〉 and for all real numbers x, y such that a = x and
b = y holds a · b = x+ y.

(41) x is an element of 〈 � ,+〉 if and only if x is a real number.

(42) 1the operation of 〈 � ,+〉 = 0.

(43) For every subsystem N of 〈 � ,+〉 and for all elements a, b of N and for
all real numbers x, y such that a = x and b = y holds a · b = x+ y.

(44) For every unital subsystem N of 〈 � ,+〉 holds 1the operation of N = 0.

(45) For every subsystem N of 〈 � ,+〉 such that 0 is an element of N holds
N is unital and 1the operation of N = 0.

Let G be a unital half group structure. Observe that every associative in-
vertible subsystem of G is unital cancelable and group-like.

Let us note that it makes sense to consider the following constant. Then � +

is a unital invertible strict subsystem of 〈 � ,+〉.
The following two propositions are true:

(46) For every strict subsystem G of 〈 � ,+〉 holds G = � + if and only if the
carrier of G = � .

(47) x is an element of � + if and only if x is an integer.
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We now define three new functors. The unital strict subsystem 〈 � ,+〉 of � +

with uniquely decomposable unity is defined by:

(Def.27) the carrier of 〈 � ,+〉 = � .

〈 � ,+, 0〉 is a well unital strict monoidal extension of 〈 � ,+〉.
The binary operation + � on � is defined by:

(Def.28) + � = the operation of 〈 � ,+〉.
Next we state several propositions:

(48) x is an element of 〈 � ,+〉 if and only if x is a natural number.

(49) 〈 � ,+〉 = 〈 � ,+ � 〉.
(50) x is an element of 〈 � ,+, 0〉 if and only if x is a natural number.

(51) For all natural numbers n1, n2 and for all elements m1, m2 of 〈 � ,+, 0〉
such that n1 = m1 and n2 = m2 holds m1 ·m2 = n1 + n2.

(52) 〈 � ,+, 0〉 = 〈 � ,+ � , 0〉.
(53) + � = + � �

[: � , � :] and + � = (+ 
 )
�
[: � , � :].

(54) 0 is a unity w.r.t. + � and + � has a unity and 1+ � = 0 and + � is
commutative and + � is associative and + � has uniquely decomposable
unity.

The unital commutative associative strict half group structure 〈 � , ·〉 is defined
by:

(Def.29) 〈 � , ·〉 = 〈 � , · � 〉.
Next we state several propositions:

(55) The carrier of 〈 � , ·〉 = � and the operation of 〈 � , ·〉 = · � and for all
elements a, b of 〈 � , ·〉 and for all real numbers x, y such that a = x and
b = y holds a · b = x · y.

(56) x is an element of 〈 � , ·〉 if and only if x is a real number.

(57) 1the operation of 〈 � ,·〉 = 1.

(58) For every subsystem N of 〈 � , ·〉 and for all elements a, b of N and for
all real numbers x, y such that a = x and b = y holds a · b = x · y.

(59) For every subsystem N of 〈 � , ·〉 such that 1 is an element of N holds N
is unital and 1the operation of N = 1.

(60) For every unital subsystem N of 〈 � , ·〉 holds 1the operation of N = 0 or

1the operation of N = 1.

We now define three new functors. The unital strict subsystem 〈 � , ·〉 of 〈 � , ·〉
with uniquely decomposable unity is defined by:

(Def.30) the carrier of 〈 � , ·〉 = � .

〈 � , ·, 1〉 is a well unital strict monoidal extension of 〈 � , ·〉.
The binary operation · � on � is defined by:

(Def.31) · � = the operation of 〈 � , ·〉.
One can prove the following propositions:

(61) 〈 � , ·〉 = 〈 � , · � 〉.
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(62) For all natural numbers n1, n2 and for all elements m1, m2 of 〈 � , ·〉
such that n1 = m1 and n2 = m2 holds m1 ·m2 = n1 · n2.

(63) 1the operation of 〈 � ,·〉 = 1.

(64) For all natural numbers n1, n2 and for all elements m1, m2 of 〈 � , ·, 1〉
such that n1 = m1 and n2 = m2 holds m1 ·m2 = n1 · n2.

(65) 〈 � , ·, 1〉 = 〈 � , · � , 1〉.
(66) · � = · � �

[: � , � :].

(67) 1 is a unity w.r.t. · � and · � has a unity and 1· � = 1 and · � is commu-
tative and · � is associative and · � has uniquely decomposable unity.

6. The monoid of finite sequences over the set

We now define three new functors. Let D be a non-empty set. The functor
〈D∗, � 〉 yielding a unital associative cancelable constituted finite sequences strict
half group structure with uniquely decomposable unity is defined by:

(Def.32) the carrier of 〈D∗, � 〉 = D∗ and for all elements p, q of 〈D∗, � 〉 holds
p⊗ q = p � q.

Let us consider D. 〈D∗, � , ε〉 is a well unital strict monoidal extension of 〈D∗, � 〉.
The concatenation of D yielding a binary operation on D∗ is defined as

follows:

(Def.33) the concatenation of D = the operation of 〈D∗, � 〉.
We now state several propositions:

(68) 〈D∗, � 〉 = 〈D∗, the concatenation of D〉.
(69) 1the operation of 〈D∗, � 〉 = ε.

(70) The carrier of 〈D∗, � , ε〉 = D∗ and the operation of 〈D∗, � , ε〉 = the
concatenation of D and the unity of 〈D∗, � , ε〉 = ε.

(71) For all elements a, b of 〈D∗, � , ε〉 holds a⊗ b = a � b.
(72) For every subsystem F of 〈D∗, � 〉 and for all elements p, q of F holds

p⊗ q = p � q.
(73) For every unital subsystem F of 〈D∗, � 〉 holds 1the operation of F = ε.

(74) For every subsystem F of 〈D∗, � 〉 such that ε is an element of F holds
F is unital and 1the operation of F = ε.

(75) For all non-empty sets A, B such that A ⊆ B holds 〈A∗, � 〉 is a subsys-
tem of 〈B∗, � 〉.

(76) The concatenation of D has a unity and 1the concatenation of D = ε and
the concatenation of D is associative.
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7. Monoids of mappings

We now define three new functors. Let X be a set. The semigroup of partial
functions onto X yields a unital associative constituted functions strict half
group structure and is defined by:

(Def.34) the carrier of the semigroup of partial functions onto X = X→̇X and
for all elements f , g of the semigroup of partial functions onto X holds
f ⊗ g = f ◦ g.

Let X be a set. The monoid of partial functions onto X is a well unital strict
monoidal extension of the semigroup of partial functions onto X.

The composition of X yields a binary operation on X→̇X and is defined as
follows:

(Def.35) the composition of X = the operation of the semigroup of partial func-
tions onto X.

We now state several propositions:

(77) x is an element of the semigroup of partial functions onto X if and only
if x is a partial function from X to X.

(78) 1the operation of the semigroup of partial functions onto X = idX .

(79) For every subsystem F of the semigroup of partial functions onto X
and for all elements f , g of F holds f ⊗ g = f ◦ g.

(80) For every subsystem F of the semigroup of partial functions onto X such
that idX is an element of F holds F is unital and 1the operation of F = idX .

(81) If Y ⊆ X, then the semigroup of partial functions onto Y is a subsystem
of the semigroup of partial functions onto X.

We now define two new functors. Let X be a set. The semigroup of functions
onto X yielding a unital strict subsystem of the semigroup of partial functions
onto X is defined as follows:

(Def.36) the carrier of the semigroup of functions onto X = XX .

Let X be a set. The monoid of functions onto X is a well unital strict monoidal
extension of the semigroup of functions onto X.

The following four propositions are true:

(82) x is an element of the semigroup of functions onto X if and only if x is
a function from X into X.

(83) The operation of the semigroup of functions onto X = (the composition
of X)

�
[:XX , XX :].

(84) 1the operation of the semigroup of functions onto X = idX .

(85) The carrier of the monoid of functions onto X = XX and the operation
of the monoid of functions onto X = (the composition of X)

�
[:XX , XX :]

and the unity of the monoid of functions onto X = idX .

Let X be a set. The group of permutations onto X yields a unital invertible
strict subsystem of the semigroup of functions onto X and is defined by:
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(Def.37) for every element f of the semigroup of functions onto X holds f ∈
the carrier of the group of permutations onto X if and only if f is a
permutation of X.

One can prove the following three propositions:

(86) x is an element of the group of permutations onto X if and only if x is
a permutation of X.

(87) 1the operation of the group of permutations onto X = idX and
1the group of permutations onto X = idX .

(88) For every element f of the group of permutations onto X holds f−1 =
(f qua a function)−1.
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Summary. The monoid of functions yielding elements of a group
is introduced. The monoid of multisets over a set is constructed as such
monoid where the target group is the group of natural numbers with addi-
tion. Moreover, the generalization of group operation onto the operation
on subsets is present. That generalization is used to introduce the group
2G of subsets of a group G.

MML Identifier: MONOID 1.

The articles [21], [22], [15], [3], [17], [10], [5], [14], [11], [7], [16], [20], [9], [8], [19],
[6], [13], [1], [18], [23], [24], [12], [2], and [4] provide the notation and terminology
for this paper.

1. Updating

We adopt the following convention: x, y are arbitrary, X, Y , Z are sets, and
n is a natural number. We now define two new constructions. Let D be a non-
empty set, and let d be an element of D. Then {d} is a non-empty subset of
D. Let D be a non-empty set, and let X1, X2 be subsets of D. Then X1 ∪X2

is a subset of D. Let D be a non-empty set, and let X1 be a subset of D, and
let X2 be a non-empty subset of D. Then X1 ∪X2 is a non-empty subset of D.
Let D1, D2, D be non-empty sets. A binary function from D1, D2 into D is a
function from [:D1, D2 :] into D.

Let f be a function, and let x1, x2, y be arbitrary. The functor f(x1, x2)(y)
is defined by:

(Def.1) f(x1, x2)(y) = f(〈〈x1, x2〉〉)(y).

The following proposition is true
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(1) For all functions f , g and for arbitrary x1, x2, x such that 〈〈x1, x2〉〉 ∈
dom f and g = f(x1, x2) and x ∈ dom g holds f(x1, x2)(x) = g(x).

Let A, D1, D2, D be non-empty sets, and let f be a binary function from
D1, D2 into DA, and let x1 be an element of D1, and let x2 be an element of
D2, and let x be an element of A. Then f(x1, x2)(x) is an element of D. Let A
be a set, and let D1, D2, D be non-empty sets, and let f be a binary function
from D1, D2 into D, and let g1 be a function from A into D1, and let g2 be
a function from A into D2. Then f ◦(g1, g2) is an element of DA. Let A be a
non-empty set, and let n be a natural number, and let x be an element of A.
Then n 7−→ x is a finite sequence of elements of A. We introduce the functor
n7−→. x as a synonym of n 7−→ x. Let D be a non-empty set, and let A be a set,
and let d be an element of D. Then A 7−→ d is an element of DA. Let A be a
set, and let D1, D2, D be non-empty sets, and let f be a binary function from
D1, D2 into D, and let d be an element of D1, and let g be a function from A
into D2. Then f ◦(d, g) is an element of DA. Let A be a set, and let D1, D2, D
be non-empty sets, and let f be a binary function from D1, D2 into D, and let
g be a function from A into D1, and let d be an element of D2. Then f ◦(g, d)
is an element of DA.

We now state the proposition

(2) For all functions f , g and for every set X holds (f
�
X) · g = f · (X �

g).

The scheme NonUniqFuncDEx concerns a set A, a non-empty set B, and a
binary predicate P, and states that:

there exists a function f from A into B such that for every x such that x ∈ A
holds P[x, f(x)]
provided the following condition is met:
• for every x such that x ∈ A there exists an element y of B such

that P[x, y].

2. Monoid of functions into a semigroup

Let D1, D2, D be non-empty sets, and let f be a binary function from D1, D2

into D, and let A be a set. The functor f ◦A yields a binary function from D1
A,

D2
A into DA and is defined by:

(Def.2) for every element f1 of D1
A and for every element f2 of D2

A holds
(f◦A)(f1, f2) = f◦(f1, f2).

Next we state the proposition

(3) For all non-empty sets D1, D2, D and for every binary function f from
D1, D2 into D and for every set A and for every function f1 from A into
D1 and for every function f2 from A into D2 and for every x such that
x ∈ A holds (f ◦A)(f1, f2)(x) = f(f1(x), f2(x)).

For simplicity we adopt the following convention: A will denote a set, D
will denote a non-empty set, a will denote an element of D, o, o′ will denote
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binary operations on D, and f , g, h will denote functions from A into D. The
following propositions are true:

(4) If o is commutative, then o◦(f, g) = o◦(g, f).

(5) If o is associative, then o◦(o◦(f, g), h) = o◦(f, o◦(g, h)).

(6) If a is a unity w.r.t. o, then o◦(a, f) = f and o◦(f, a) = f .

(7) If o is idempotent, then o◦(f, f) = f .

(8) If o is commutative, then o◦A is commutative.

(9) If o is associative, then o◦A is associative.

(10) If a is a unity w.r.t. o, then A 7−→ a is a unity w.r.t. o◦A.

(11) If o has a unity, then 1o◦
A

= A 7−→ 1o and o◦A has a unity.

(12) If o is idempotent, then o◦A is idempotent.

(13) If o is invertible, then o◦A is invertible.

(14) If o is cancelable, then o◦A is cancelable.

(15) If o has uniquely decomposable unity, then o◦A has uniquely decompos-
able unity.

(16) If o absorbs o′, then o◦A absorbs o′◦A.

(17) For all non-empty sets D1, D2, D, E1, E2, E and for every binary
function o1 from D1, D2 into D and for every binary function o2 from E1,
E2 into E such that o1 ≤ o2 holds o1

◦
A ≤ o2

◦
A.

Let G be a half group structure, and let A be a set. The functor GA yielding
a half group structure is defined by:

(Def.3) (i) GA = 〈(the carrier of G)A, (the operation of
G)◦A, A 7−→ 1the operation of G

qua an element of (the carrier of G)A qua a non-empty set〉 if G is unital,
(ii) GA = 〈(the carrier of G)A, (the operation of G)◦A〉, otherwise.

In the sequel G denotes a half group structure. We now state two proposi-
tions:

(18) The carrier of GX = (the carrier of G)X and the operation of GX = (the
operation of G)◦X .

(19) x is an element of GX if and only if x is a function from X into the
carrier of G.

Let G be a half group structure, and let A be a set. Then GA is a constituted
functions half group structure.

We now state two propositions:

(20) For every element f of GX holds dom f = X and rng f ⊆ the carrier of
G.

(21) For all elements f , g of GX if for every x such that x ∈ X holds
f(x) = g(x), then f = g.

Let G be a half group structure, and let A be a non-empty set, and let f be
an element of GA. Then rng f is a non-empty subset of G. Let a be an element
of A. Then f(a) is an element of G.
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We now state the proposition

(22) For all elements f1, f2 of GD and for every element a of D holds (f1 ·
f2)(a) = f1(a) · f2(a).

Let G be a unital half group structure, and let A be a set. Then GA is a well
unital constituted functions strict monoid structure.

One can prove the following propositions:

(23) For every G being a unital half group structure holds the unity of GX =
X 7−→ 1the operation of G.

(24) Let G be a half group structure. Let A be a set. Then
(i) if G is commutative, then GA is commutative,

(ii) if G is associative, then GA is associative,
(iii) if G is idempotent, then GA is idempotent,
(iv) if G is invertible, then GA is invertible,
(v) if G is cancelable, then GA is cancelable,

(vi) if G has uniquely decomposable unity, then GA has uniquely decom-
posable unity.

(25) For every subsystem H of G holds HX is a subsystem of GX .

(26) For every G being a unital half group structure and for every subsystem
H of G such that 1the operation of G ∈ the carrier of H holds HX is a
monoidal subsystem of GX .

Let G be a unital associative commutative cancelable half group structure
with uniquely decomposable unity, and let A be a set. Then GA is a commuta-
tive cancelable constituted functions strict monoid with uniquely decomposable
unity.

3. Monoid of multisets over a set

Let A be a set. The functor A⊗ω yields a commutative cancelable constituted
functions strict monoid with uniquely decomposable unity and is defined by:

(Def.4) A⊗ω = 〈 � ,+, 0〉A.

Next we state the proposition

(27) The carrier of X⊗ω = � X and the operation of X⊗ω = (+ � )◦X and the
unity of X⊗ω = X 7−→ 0.

Let A be a set. A multiset over A is an element of A⊗ω .

Next we state two propositions:

(28) x is a multiset over X if and only if x is a function from X into � .

(29) For every multiset m over X holds domm = X and rngm ⊆ � .

Let A be a non-empty set, and let m be a multiset over A. Then rngm is
a non-empty subset of � . Let a be an element of A. Then m(a) is a natural
number.

Next we state two propositions:
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(30) For all multisets m1, m2 over D and for every element a of D holds
(m1 ⊗m2)(a) = m1(a) +m2(a).

(31) χY,X is a multiset over X.

Let us consider Y , X. Then χY,X is a multiset over X. Let us consider X,
and let n be a natural number. Then X 7−→ n is a multiset over X. Let A be a
non-empty set, and let a be an element of A. The functor χa yields a multiset
over A and is defined as follows:

(Def.5) χa = χ{a},A.

One can prove the following proposition

(32) For every non-empty set A and for all elements a, b of A holds (χa)(a) =
1 and also if b 6= a, then (χa)(b) = 0.

For simplicity we follow a convention: A denotes a non-empty set, a denotes
an element of A, p, q denote finite sequences of elements of A, and m1, m2

denote multisets over A. Next we state the proposition

(33) If for every a holds m1(a) = m2(a), then m1 = m2.

Let A be a set. The functor A⊗ yields a strict monoidal subsystem of A⊗ω
and is defined as follows:

(Def.6) for every multiset f over A holds f ∈ the carrier of A⊗ if and only if
f −1 ( � \ {0}) is finite.

The following three propositions are true:

(34) χa is an element of A⊗.

(35) dom({x} �
(p � 〈x〉)) = dom({x} �

p) ∪ {len p+ 1}.
(36) If x 6= y, then dom({x} �

(p � 〈y〉)) = dom({x} �
p).

Let A be a non-empty set, and let p be a finite sequence of elements of A.
The functor |p| yields a multiset over A and is defined as follows:

(Def.7) for every element a of A holds |p|(a) = card dom({a} �
p).

We now state several propositions:

(37) |εA|(a) = 0.

(38) |εA| = A 7−→ 0.

(39) |〈a〉| = χa.

(40) |p � 〈a〉| = |p| ⊗ χa.

(41) |p � q| = |p| ⊗ |q|.
(42) |n7−→. a|(a) = n and for every element b of A such that b 6= a holds

|n7−→. a|(b) = 0.

Next we state two propositions:

(43) |p| is an element of A⊗.

(44) If x is an element of A⊗, then there exists p such that x = |p|.
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4. Monoid of subsets of a semigroup

In the sequel a, b will be elements of D. Let D1, D2, D be non-empty sets, and
let f be a binary function from D1, D2 into D. The functor ◦ f yields a binary
function from 2D1 , 2D2 into 2D and is defined by:

(Def.8) for every element x of [: 2D1 , 2D2 :] holds (◦ f)(x) = f ◦ [: x1, x2 :].

One can prove the following propositions:

(45) For all non-empty sets D1, D2, D and for every binary function f from
D1, D2 into D and for every subset X1 of D1 and for every subset X2 of
D2 holds (◦ f)(X1, X2) = f ◦ [:X1, X2 :].

(46) For all non-empty sets D1, D2, D and for every binary function f from
D1, D2 into D and for every subset X1 of D1 and for every subset X2 of
D2 and for arbitrary x1, x2 such that x1 ∈ X1 and x2 ∈ X2 holds f(x1,
x2) ∈ (◦ f)(X1, X2).

(47) For all non-empty sets D1, D2, D and for every binary function f from
D1, D2 into D and for every subset X1 of D1 and for every subset X2 of
D2 holds (◦ f)(X1, X2) = {f(a, b) : a ∈ X1 ∧ b ∈ X2}, where a ranges
over elements of D1, and b ranges over elements of D2.

(48) If o is commutative, then o ◦ [:X, Y :] = o ◦ [:Y, X :].

(49) If o is associative, then o ◦ [: o ◦ [:X, Y :], Z :] = o ◦ [:X, o ◦ [: Y, Z :] :].

(50) If o is commutative, then ◦ o is commutative.

(51) If o is associative, then ◦ o is associative.

(52) If a is a unity w.r.t. o, then o ◦ [: {a}, X :] = D ∩X and o ◦ [:X, {a} :] =
D ∩X.

(53) If a is a unity w.r.t. o, then {a} is a unity w.r.t. ◦ o and ◦ o has a unity
and 1◦ o = {a}.

(54) If o has a unity, then ◦ o has a unity and {1o} is a unity w.r.t. ◦ o and

1◦ o = {1o}.
(55) If o has uniquely decomposable unity, then ◦ o has uniquely decompos-

able unity.

Let G be a half group structure. The functor 2G yields a half group structure
and is defined by:

(Def.9) (i) 2G = 〈2the carrier of G, ◦ (the operation of G), {1the operation of G}〉 if
G is unital,

(ii) 2G = 〈2the carrier of G, ◦ (the operation of G)〉, otherwise.

Let G be a unital half group structure. Then 2G is a well unital strict monoid
structure.

One can prove the following three propositions:

(56) The carrier of 2G = 2the carrier of G and the operation of 2G = ◦ (the
operation of G).
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(57) For every G being a unital half group structure holds the unity of 2G =
{1the operation of G}.

(58) For every G being a half group structure holds if G is commutative,
then 2G is commutative and also if G is associative, then 2G is associative
and also if G has uniquely decomposable unity, then 2G has uniquely
decomposable unity.
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[9] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
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Summary. In the first section we present properties of fields and
Abelian groups in terms of commutativity, associativity, etc. Next, we
are concerned with operations on n-tuples on some set which are gener-
alization of operations on this set. It is used in third section to introduce
the n-power of a group and the n-power of a field. Besides, we introduce a
concept of indexed family of binary (unary) operations over some indexed
family of sets and a product of such families which is binary (unary) oper-
ation on a product of family sets. We use that product in the last section
to introduce the product of a finite sequence of Abelian groups.

MML Identifier: PRVECT 1.

The notation and terminology used in this paper are introduced in the following
articles: [16], [9], [10], [13], [3], [17], [2], [5], [6], [12], [4], [8], [7], [14], [1], [11],
and [15].

1. Abelian Groups and Fields

In the sequel G will denote an Abelian group. The following propositions are
true:

(1) The addition of G is commutative.

(2) The addition of G is associative.

(3) The zero of G is a unity w.r.t. the addition of G.

(4) The reverse-map of G is an inverse operation w.r.t. the addition of G.

In the sequel G1 will be a group structure. Next we state the proposition
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(5) If the addition ofG1 is commutative and the addition ofG1 is associative
and the zero of G1 is a unity w.r.t. the addition of G1 and the reverse-map
of G1 is an inverse operation w.r.t. the addition of G1, then G1 is an
Abelian group.

In the sequel F is a field. We now state several propositions:

(6) The addition of F is commutative.

(7) The multiplication of F is commutative.

(8) The addition of F is associative.

(9) The multiplication of F is associative.

(10) The zero of F is a unity w.r.t. the addition of F .

(11) The unity of F is a unity w.r.t. the multiplication of F .

(12) The reverse-map of F is an inverse operation w.r.t. the addition of F .

(13) The multiplication of F is distributive w.r.t. the addition of F .

One can verify that every field-like field structure is Abelian group-like.

2. The n-Product of a Binary and a Unary Operation

For simplicity we follow a convention: F is a field, n is a natural number, D is
a non-empty set, d is an element of D, B is a binary operation on D, and C
is a unary operation on D. We now define three new functors. Let us consider
D, n, and let F be a binary operation on D, and let x, y be elements of Dn.
Then F ◦(x, y) is an element of Dn. Let D be a non-empty set, and let F be a
binary operation on D, and let n be a natural number. The functor πnF yields
a binary operation on Dn and is defined by:

(Def.1) for all elements x, y of Dn holds (πnF )(x, y) = F ◦(x, y).

Let us consider D, and let F be a unary operation on D, and let us consider n.
The functor πnF yields a unary operation on Dn and is defined as follows:

(Def.2) for every element x of Dn holds (πnF )(x) = F · x.

Let D be a non-empty set, and let us consider n, and let x be an element of
D. Then n 7−→ x is an element of Dn. We introduce the functor n 7−→. x as a
synonym of n 7−→ x.

The following four propositions are true:

(14) If B is commutative, then πnB is commutative.

(15) If B is associative, then πnB is associative.

(16) If d is a unity w.r.t. B, then n7−→. d is a unity w.r.t. πnB.

(17) If B has a unity and B is associative and C is an inverse operation
w.r.t. B, then πnC is an inverse operation w.r.t. πnB.
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3. The n-Power of a Group and of a Field

Let F be an Abelian group, and let us consider n. The functor F n yielding a
strict Abelian group is defined as follows:

(Def.3) F n = 〈(the carrier of F )n, πn(the addition of F ), πn(the reverse-map of
F ), n7−→. the zero of F qua an element of (the carrier of F )n〉.

We now define two new functors. Let us consider F , n. The functor ·nF yields
a function from [: the carrier of F, (the carrier of F )n :] into (the carrier of F )n

and is defined by:

(Def.4) for every element x of F and for every element v of (the carrier of F )n

holds (·nF )(x, v) = (the multiplication of F )◦(x, v).

Let us consider F , n. The n-dimension vector space over F yielding a strict
vector space structure over F is defined as follows:

(Def.5) the group structure of the n-dimension vector space over F = F n and
the multiplication of the n-dimension vector space over F = ·nF .

For simplicity we follow a convention: D will be a non-empty set, H, G
will be binary operations on D, d will be an element of D, and t1, t2 will be
elements of Dn. One can prove the following proposition

(18) If H is distributive w.r.t. G, then H◦(d,G◦(t1, t2)) = G◦(H◦(d, t1),
H◦(d, t2)).

Let D be a non-empty set, and let n be a natural number, and let F be a
binary operation on D, and let x be an element of D, and let v be an element
of Dn. Then F ◦(x, v) is an element of Dn. Let us consider F , n. Then the
n-dimension vector space over F is a strict vector space over F .

4. Sequences of Non-empty Sets

In the sequel x will be arbitrary. We now define two new attributes. A function
is non-empty set yielding if:

(Def.6) ∅ /∈ rng it.

A set is constituted functions if:

(Def.7) if x ∈ it, then x is a function.

One can check that there exists a non-empty non-empty set yielding finite se-
quence and there exists a non-empty constituted functions set.

Let F be a constituted functions non-empty set. We see that the element
of F is a function. Let f be a non-empty set yielding function. Then

∏
f

is a constituted functions non-empty set. A sequence of non-empty sets is a
non-empty non-empty set yielding finite sequence.

Let a be a non-empty function. Then dom a is a non-empty set.

The scheme NEFinSeqLambda concerns a non-empty finite sequence A and
a unary functor F and states that:
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there exists a non-empty finite sequence p such that len p = lenA and for
every element i of domA holds p(i) = F(i)
for all values of the parameters.

Let a be a non-empty set yielding non-empty function, and let i be an element
of dom a. Then a(i) is a non-empty set. Let a be a non-empty set yielding non-
empty function, and let f be an element of

∏
a, and let i be an element of

dom a. Then f(i) is an element of a(i).

5. The Product of Families of Operations

In the sequel a will denote a sequence of non-empty sets, i will denote an element
of doma, and p will denote a finite sequence. We now define two new modes.
Let a be a non-empty set yielding non-empty function. A function is called a
family of binary operations of a if:

(Def.8) dom it = dom a and for every element i of dom a holds it(i) is a binary
operation on a(i).

A function is said to be a family of unary operations of a if:

(Def.9) dom it = doma and for every element i of dom a holds it(i) is a unary
operation on a(i).

Let us consider a. Note that every family of binary operations of a is finite
sequence-like and every family of unary operations of a is finite sequence-like.

The following two propositions are true:

(19) p is a family of binary operations of a if and only if len p = len a and
for every i holds p(i) is a binary operation on a(i).

(20) p is a family of unary operations of a if and only if len p = len a and for
every i holds p(i) is a unary operation on a(i).

Let us consider a, and let b be a family of binary operations of a, and let us
consider i. Then b(i) is a binary operation on a(i). Let us consider a, and let u
be a family of unary operations of a, and let us consider i. Then u(i) is a unary
operation on a(i). Let F be a constituted functions non-empty set, and let u be
a unary operation on F , and let f be an element of F . Then u(f) is an element
of F .

In the sequel f is arbitrary. One can prove the following proposition

(21) For all unary operations d, d′ on
∏
a if for every element f of

∏
a and

for every element i of dom a holds d(f)(i) = d′(f)(i), then d = d′.
We now state the proposition

(22) For every family u of unary operations of a holds domκ u(κ) = a and∏
(rngκ u(κ)) ⊆ ∏ a.

Let us consider a, and let u be a family of unary operations of a. Then
∏◦ u

is a unary operation on
∏
a.

We now state the proposition
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(23) For every family u of unary operations of a and for every element f of∏
a and for every element i of dom a holds (

∏◦ u)(f)(i) = u(i)(f(i)).

Let F be a constituted functions non-empty set, and let b be a binary op-
eration on F , and let f , g be elements of F . Then b(f, g) is an element of
F .

The following proposition is true

(24) For all binary operations d, d′ on
∏
a if for all elements f , g of

∏
a and

for every element i of dom a holds d(f, g)(i) = d′(f, g)(i), then d = d′.
In the sequel i will denote an element of dom a. Let us consider a, and let b

be a family of binary operations of a. The functor
∏◦ b yields a binary operation

on
∏
a and is defined by:

(Def.10) for all elements f , g of
∏
a and for every element i of dom a holds

(
∏◦ b)(f, g)(i) = b(i)(f(i), g(i)).

The following propositions are true:

(25) For every family b of binary operations of a if for every i holds b(i) is
commutative, then

∏◦ b is commutative.

(26) For every family b of binary operations of a if for every i holds b(i) is
associative, then

∏◦ b is associative.

(27) For every family b of binary operations of a and for every element f of∏
a if for every i holds f(i) is a unity w.r.t. b(i), then f is a unity w.r.t.∏◦ b.

(28) For every family b of binary operations of a and for every family u of
unary operations of a if for every i holds u(i) is an inverse operation w.r.t.
b(i) and b(i) has a unity, then

∏◦ u is an inverse operation w.r.t.
∏◦ b.

6. The Product of Families of Groups

We now define three new constructions. A function is Abelian group yielding if:

(Def.11) if x ∈ rng it, then x is an Abelian group.

One can check that there exists a non-empty Abelian group yielding finite se-
quence.

A sequence of groups is a non-empty Abelian group yielding finite sequence.
Let g be a sequence of groups, and let i be an element of dom g. Then g(i)

is an Abelian group. Let g be a sequence of groups. The functor g yielding a
sequence of non-empty sets is defined as follows:

(Def.12) len g = len g and for every element j of dom g holds g(j) = the carrier
of g(j).

In the sequel g is a sequence of groups and i is an element of dom g. We now
define four new functors. Let us consider g, i. Then g(i) is an Abelian group.
Let us consider g. The functor 〈+gi〉i yields a family of binary operations of g
and is defined by:
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(Def.13) len(〈+gi〉i) = len g and for every i holds 〈+gi〉i(i) = the addition of g(i).

The functor 〈−gi〉i yields a family of unary operations of g and is defined by:

(Def.14) len(〈−gi〉i) = len g and for every i holds 〈−gi〉i(i) = the reverse-map of
g(i).

The functor 〈0gi〉i yields an element of
∏
g and is defined by:

(Def.15) for every i holds 〈0gi〉i(i) = the zero of g(i).

Let G be a sequence of groups. The functor
∏
G yields a strict Abelian group

and is defined by:

(Def.16)
∏
G = 〈∏G,

∏◦(〈+Gi〉i),
∏◦(〈−Gi〉i), 〈0Gi〉i〉.
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Summary. We continue the work on mathematical modeling of
hardware and software started in [17]. The main objective of this paper
is the definition of a program. We start with the concept of partial
product, i.e. the set of all partial functions f from I to

⋃
i∈I Ai, fulfilling

the condition f.i ∈ Ai for i ∈ domf . The computation and the result of
a computation are defined in usual way. A finite partial state is called
autonomic if the result of a computation starting with it does not depend
on the remaining memory and an AMI is called programmable if it has
a non empty autonomic partial finite state. We prove the consistency of
the following set of properties of an AMI: data-oriented, halting, steady-
programmed, realistic and programmable. For this purpose we define
a trivial AMI. It has only the instruction counter and one instruction
location. The only instruction of it is the halt instruction. A preprogram
is a finite partial state that halts. We conclude with the definition of
a program of a partial function F mapping the set of the finite partial
states into itself. It is a finite partial state s such that for every finite
partial state s′ ∈ domF the result of any computation starting with s+s′

includes F.s′.

MML Identifier: AMI 2.

The papers [24], [22], [28], [6], [7], [23], [14], [1], [19], [26], [25], [10], [3], [5], [15],
[29], [21], [2], [20], [8], [18], [4], [9], [12], [13], [27], [11], [16], and [17] provide the
notation and terminology for this paper.

1. Preliminaries

For simplicity we follow the rules: A, B, C will denote sets, f , g, h will denote
functions, x, y, z will be arbitrary, and i, j, k will denote natural numbers.
The scheme UniqSet concerns a set A, a set B, and a unary predicate P, and
states that:
A = B
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provided the following requirements are met:
• for every x holds x ∈ A if and only if P[x],
• for every x holds x ∈ B if and only if P[x].
The following propositions are true:

(1) A misses B \ C if and only if B misses A \ C.

(2) For every function f holds π1(dom f × rng f) ◦ f = dom f .

(3) If f ≈ g and 〈〈x, y〉〉 ∈ f and 〈〈x, z〉〉 ∈ g, then y = z.

(4) If for every x such that x ∈ A holds x is a function and for all functions
f , g such that f ∈ A and g ∈ A holds f ≈ g, then

⋃
A is a function.

(5) If dom f ⊆ A ∪B, then f
�
A+· f �

B = f .

(6) dom f ⊆ dom(f +· g) and dom g ⊆ dom(f +· g).
(7) For arbitrary x1, x2, y1, y2 holds [x1 7−→ y1, x2 7−→ y2] = (x1 7−→. y1) +·

(x2 7−→. y2).

(8) For all x, y holds x7−→. y = {〈〈x, y〉〉}.
(9) For arbitrary a, b, c holds [a 7−→ b, a 7−→ c] = a7−→. c.

(10) For every function f holds dom f is finite if and only if f is finite.

(11) If x ∈ ∏ f , then x is a function.

2. Partial products

Let f be a function. The functor
∏· f yields a non-empty set of functions and

is defined by:

(Def.1) x ∈ ∏· f if and only if there exists g such that x = g and dom g ⊆ dom f
and for every x such that x ∈ dom g holds g(x) ∈ f(x).

Next we state a number of propositions:

(12) x ∈ ∏· f if and only if there exists g such that x = g and dom g ⊆ dom f
and for every x such that x ∈ dom g holds g(x) ∈ f(x).

(13) If dom g ⊆ dom f and for every x such that x ∈ dom g holds g(x) ∈ f(x),
then g ∈ ∏· f .

(14) If g ∈ ∏· f , then dom g ⊆ dom f and for every x such that x ∈ dom g
holds g(x) ∈ f(x).

(15) � ∈ ∏· f .

(16)
∏
f ⊆ ∏· f .

(17) If x ∈ ∏· f , then x is a partial function from dom f to
⋃

rng f .

(18) If g ∈ ∏ f and h ∈ ∏· f , then g +· h ∈ ∏ f .

(19) If
∏
f 6= ∅, then g ∈ ∏· f if and only if there exists h such that h ∈ ∏ f

and g ≤ h.

(20)
∏· f ⊆ dom f→̇⋃

rng f .

(21) If f ⊆ g, then
∏· f ⊆ ∏· g.

(22)
∏· � = { � }.
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(23) A→̇B =
∏·(A 7−→ B).

(24) For all non-empty sets A, B and for every function f from A into B
holds

∏· f =
∏·(f � {x : f(x) 6= ∅}), where x ranges over elements of A.

(25) If x ∈ dom f and y ∈ f(x), then x7−→. y ∈ ∏· f .

(26)
∏· f = { � } if and only if for every x such that x ∈ dom f holds f(x) = ∅.

(27) If A ⊆ ∏· f and for all functions h1, h2 such that h1 ∈ A and h2 ∈ A
holds h1 ≈ h2, then

⋃
A ∈ ∏· f .

(28) If g ≈ h and g ∈ ∏· f and h ∈ ∏· f , then g ∪ h ∈ ∏· f .

(29) If g ⊆ h and h ∈ ∏· f , then g ∈ ∏· f .

(30) If g ∈ ∏· f , then g
�
A ∈ ∏· f .

(31) If g ∈ ∏· f , then g
�
A ∈ ∏·(f �

A).

(32) If h ∈ ∏·(f +· g), then there exist functions f ′, g′ such that f ′ ∈ ∏· f
and g′ ∈ ∏· g and h = f ′ +· g′.

(33) For all functions f ′, g′ such that dom g misses dom f ′ \ dom g′ and
f ′ ∈ ∏· f and g′ ∈ ∏· g holds f ′ +· g′ ∈ ∏·(f +· g).

(34) For all functions f ′, g′ such that dom f ′ misses dom g \ dom g′ and
f ′ ∈ ∏· f and g′ ∈ ∏· g holds f ′ +· g′ ∈ ∏·(f +· g).

(35) If g ∈ ∏· f and h ∈ ∏· f , then g +· h ∈ ∏· f .

(36) For arbitrary x1, x2, y1, y2 such that x1 ∈ dom f and y1 ∈ f(x1) and
x2 ∈ dom f and y2 ∈ f(x2) holds [x1 7−→ y1, x2 7−→ y2] ∈ ∏· f .

3. Computations

In the sequel N is a non-empty set with non-empty elements.
We now define five new constructions. Let us consider N , and let S be a

von Neumann definite AMI over N , and let s be a state of S. The functor
CurInstr(s) yields an instruction of S and is defined as follows:

(Def.2) CurInstr(s) = s(ICs).

Let us consider N , and let S be a von Neumann definite AMI over N , and let
s be a state of S. The functor Following(s) yielding a state of S is defined by:

(Def.3) Following(s) = Exec(CurInstr(s), s).

Let us consider N , and let S be a von Neumann definite AMI over N , and let
s be a state of S. The functor Computation(s) yielding a function from � into∏

(the object kind of S) qua a non-empty set is defined by:

(Def.4) (Computation(s))(0) = s qua an element of
∏

(the object kind of S)
qua a non-empty set and for every i and for every element x of

∏
(the

object kind of S) qua a non-empty set such that x = (Computation(s))(i)
holds (Computation(s))(i + 1) = Following(x).

Let us consider N , and let S be a von Neumann definite AMI over N . A state
of S is halting if:
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(Def.5) there exists k such that CurInstr((Computation(it))(k)) = haltS .

Let us consider N , and let S be an AMI over N , and let f be a function from �
into

∏
(the object kind of S) qua a non-empty set, and let us consider k. Then

f(k) is a state of S. Let us consider N . An AMI over N is realistic if:

(Def.6) the instructions of it 6= the instruction locations of it.

One can prove the following proposition

(37) For every S being a von Neumann definite AMI over N such that S is
realistic holds for no instruction-location l of S holds ICS = l.

In the sequel S denotes a von Neumann definite AMI over N and s denotes
a state of S. One can prove the following propositions:

(38) (Computation(s))(0) = s.

(39) (Computation(s))(k + 1) = Following((Computation(s))(k)).

(40) For every k holds

(Computation(s))(i + k) = (Computation((Computation(s))(i)))(k).

(41) If i ≤ j, then for every N and for every S being a halting von Neumann
definite AMI over N and for every state s of S such that

CurInstr((Computation(s))(i)) = haltS
holds (Computation(s))(j) = (Computation(s))(i).

Let us consider N , and let S be a halting von Neumann definite AMI over
N , and let s be a state of S satisfying the condition: s is halting. The functor
Result(s) yields a state of S and is defined as follows:

(Def.7) there exists k such that Result(s) = (Computation(s))(k) and

CurInstr(Result(s)) = haltS.

Next we state the proposition

(42) For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S and for every instruction-
location i of S holds s(i) = (Following(s))(i).

Let us consider N , and let S be a definite AMI over N , and let s be a state
of S, and let l be an instruction-location of S. Then s(l) is an instruction of S.

Next we state several propositions:

(43) For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S and for every instruction-
location i of S and for every k holds s(i) = (Computation(s))(k)(i).

(44) For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S holds (Computation(s))(k+
1) = Exec(s(IC(Computation(s))(k)), (Computation(s))(k)).

(45) For every N and for every S being a steady-programmed von Neumann
halting definite AMI over N and for every state s of S and for every k
such that s(IC(Computation(s))(k)) = haltS
holds Result(s) = (Computation(s))(k).
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(46) For every N and for every S being a steady-programmed von Neumann
halting definite AMI over N and for every state s of S such that there
exists k such that s(IC(Computation(s))(k)) = haltS and for every i holds
Result(s) = Result((Computation(s))(i)).

(47) For every S being an AMI over N and for every object o of S holds
ObjectKind(o) is non-empty.

4. Finite partial states

We now define five new constructions. Let us consider N , and let S be an AMI
over N . The functor FinPartSt(S) yielding a subset of

∏· (the object kind of
S) is defined by:

(Def.8) FinPartSt(S) = {p : p is finite}, where p ranges over elements of
∏· (the

object kind of S).

Let us consider N , and let S be an AMI over N . An element of
∏· (the object

kind of S) is called a finite partial state of S if:

(Def.9) it is finite.

Let us consider N , and let S be a von Neumann definite AMI over N . A finite
partial state of S is autonomic if:

(Def.10) for all states s1, s2 of S such that it ⊆ s1 and it ⊆ s2 and for every i
holds (Computation(s1))(i)

�
dom it = (Computation(s2))(i)

�
dom it.

A finite partial state of S is halting if:

(Def.11) for every state s of S such that it ⊆ s holds s is halting.

Let us consider N . A von Neumann definite AMI over N is programmable if:

(Def.12) there exists a finite partial state of it which is non-empty and autonomic.

We now state two propositions:

(48) For every S being a von Neumann definite AMI over N and for all non-
empty sets A, B and for all objects l1, l2 of S such that ObjectKind(l1) =
A and ObjectKind(l2) = B and for every element a of A and for every
element b of B holds [l1 7−→ a, l2 7−→ b] is a finite partial state of S.

(49) For every S being a von Neumann definite AMI over N and for every
non-empty set A and for every object l1 of S such that ObjectKind(l1) = A
and for every element a of A holds l1 7−→. a is a finite partial state of S.

Let us consider N , and let S be a von Neumann definite AMI over N , and
let l1 be an object of S, and let a be an element of ObjectKind(l1). Then
l1 7−→. a is a finite partial state of S. Let us consider N , and let S be a von
Neumann definite AMI over N , and let l1, l2 be objects of S, and let a be an
element of ObjectKind(l1), and let b be an element of ObjectKind(l2). Then
[l1 7−→ a, l2 7−→ b] is a finite partial state of S.
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5. Trivial AMI

Let us consider N . The functor AMIt yields a strict AMI over N and is defined
by the conditions (Def.13).

(Def.13) (i) The objects of AMIt = {0, 1},
(ii) the instruction counter of AMIt = 0,

(iii) the instruction locations of AMIt = {1},
(iv) the instruction codes of AMIt = {0},
(v) the halt instruction of AMIt = 0,

(vi) the instructions of AMIt = {〈〈0, ε〉〉},
(vii) the object kind of AMIt = [0 7−→ {1}, 1 7−→ {〈〈0, ε〉〉}],

(viii) the execution of AMIt = {〈〈0, ε〉〉} 7−→ id∏
[07−→{1},17−→{〈〈0, ε〉〉}].

Next we state several propositions:

(50) AMIt is von Neumann.

(51) AMIt is data-oriented.

(52) AMIt is halting.

(53) For all states s1, s2 of AMIt holds s1 = s2.

(54) AMIt is steady-programmed.

(55) AMIt is definite.

(56) AMIt is realistic.

Let us consider N . Then AMIt is a von Neumann definite strict AMI over
N .

One can prove the following proposition

(57) AMIt is programmable.

Let us consider N . Note that there exists a von Neumann definite strict
AMI over N which is data-oriented halting steady-programmed realistic and
programmable.

One can prove the following two propositions:

(58) For every S being an AMI over N and for every state s of S and for
every finite partial state p of S holds s

�
dom p is a finite partial state of

S.

(59) For every S being an AMI over N holds ∅ is a finite partial state of S.

Let us considerN , and let S be a von Neumann definite AMI over N . Observe
that there exists a non-empty autonomic finite partial state of S.

Let us consider N , and let S be an AMI over N , and let f , g be finite partial
states of S. Then f +· g is a finite partial state of S.
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6. Autonomic finite partial states

We now state four propositions:

(60) For every S being a realistic von Neumann definite AMI over N and for
every instruction-location l3 of S and for every element l of ObjectKind(ICS)
such that l = l3 and for every element h of ObjectKind(l3) such that
h = haltS and for every state s of S such that
[ICS 7−→ l, l3 7−→ h] ⊆ s holds CurInstr(s) = haltS.

(61) For every S being a realistic von Neumann definite AMI over N and for
every instruction-location l3 of S and for every element l of ObjectKind(ICS)
such that l = l3 and for every element h of ObjectKind(l3) such that
h = haltS holds [ICS 7−→ l, l3 7−→ h] is halting.

(62) Let S be a realistic halting von Neumann definite AMI over N . Then for
every instruction-location l3 of S and for every element l of ObjectKind(ICS)
such that l = l3 and for every element h of ObjectKind(l3) such that
h = haltS and for every state s of S such that
[ICS 7−→ l, l3 7−→ h] ⊆ s and for every i holds (Computation(s))(i) = s.

(63) For every S being a realistic halting von Neumann definite AMI over
N and for every instruction-location l3 of S and for every element l of
ObjectKind(ICS) such that l = l3 and for every element h of ObjectKind(l3)
such that h = haltS holds [ICS 7−→ l, l3 7−→ h] is autonomic.

We now define two new constructions. Let us consider N , and let S be a
realistic halting von Neumann definite AMI over N . One can check that there
exists a finite partial state of S which is autonomic and halting.

Let us consider N , and let S be a realistic halting von Neumann definite
AMI over N . A pre-program of S is an autonomic halting finite partial state of
S.

Let us consider N , and let S be a realistic halting von Neumann definite
AMI over N , and let s be a finite partial state of S. Let us assume that s is a
pre-program of S. The functor Result(s) yields a finite partial state of S and is
defined as follows:

(Def.14) for every state s′ of S such that s ⊆ s′ holds Result(s) = Result(s′)
�

dom s.

7. Pre-programs and programs

Let us consider N , and let S be a realistic halting von Neumann definite AMI
over N , and let p be a finite partial state of S, and let F be a function. We say
that p computes F if and only if:

(Def.15) for an arbitrary x such that x ∈ domF there exists a finite partial state
s of S such that x = s and p +· s is a pre-program of S and F (s) ⊆
Result(p+· s).
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The following three propositions are true:

(64) For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p computes � .

(65) For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p is a pre-program of S
if and only if p computes ∅7−→. Result(p).

(66) For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p is a pre-program of S
if and only if p computes ∅7−→. ∅.

Let us consider N , and let S be a realistic halting von Neumann definite AMI
over N . A partial function from FinPartSt(S) to FinPartSt(S) is computable
if:

(Def.16) there exists a finite partial state p of S such that p computes it.

Next we state three propositions:

(67) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F from FinPartSt(S)
to FinPartSt(S) such that F = � holds F is computable.

(68) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F from FinPartSt(S)
to FinPartSt(S) such that F = ∅7−→. ∅ holds F is computable.

(69) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every pre-program p of S and for every
partial function F from FinPartSt(S) to FinPartSt(S) such that F =
∅7−→. Result(p) holds F is computable.

Let us consider N , and let S be a realistic halting von Neumann definite
AMI over N , and let F be a partial function from FinPartSt(S) to FinPartSt(S)
satisfying the condition: F is computable. A finite partial state of S is called a
program of F if:

(Def.17) it computes F .

The following propositions are true:

(70) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F from FinPartSt(S)
to FinPartSt(S) such that F = � every finite partial state of S is a
program of F .

(71) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F from FinPartSt(S)
to FinPartSt(S) such that F = ∅7−→. ∅ every pre-program of S is a program
of F .

(72) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every pre-program p of S and for every
partial function F from FinPartSt(S) to FinPartSt(S) such that F =
∅7−→. Result(p) holds p is a program of F .
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The papers [6], [3], [1], [5], [4], and [2] provide the terminology and notation for
this paper. For simplicity we adopt the following convention: A denotes a non-
empty set, a denotes an element of A, x, y denote finite sequences of elements of
A, h denotes a partial function from A∗ to A, and n denotes a natural number.
We now define two new attributes. Let us consider A. A partial function from
A∗ to A is homogeneous if:

(Def.1) for all x, y such that x ∈ dom it and y ∈ dom it holds lenx = len y.

Let us consider A. A partial function from A∗ to A is quasi total if:

(Def.2) for all x, y such that lenx = len y and x ∈ dom it holds y ∈ dom it.

Let us consider A. Note that there exists a homogeneous quasi total non-empty
partial function from A∗ to A.

We now state three propositions:

(1) h is a non-empty partial function from A∗ to A if and only if domh 6= ∅.
(2) {εA} 7−→ a is a homogeneous quasi total non-empty partial function

from A∗ to A.

(3) {εA} 7−→ a is an element of A∗→̇A.

We now define four new constructions. We consider universal algebra struc-
tures which are extension of a 1-sorted structure and are systems
〈a carrier, a characteristic〉,

where the carrier is a non-empty set and the characteristic is a finite sequence
of elements of (the carrier)∗→̇the carrier. Let us consider A. A finite sequence
of elements of A∗→̇A is homogeneous if:
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(Def.3) for all n, h such that n ∈ dom it and h = it(n) holds h is homogeneous.

Let us consider A. A finite sequence of elements of A∗→̇A is quasi total if:

(Def.4) for all n, h such that n ∈ dom it and h = it(n) holds h is quasi total.

Let us consider A. A finite sequence of elements of A∗→̇A is non-empty if:

(Def.5) for all n, h such that n ∈ dom it and h = it(n) holds h is non-empty.

In the sequel U will be a universal algebra structure. We now define four new
constructions. Let us consider U . The functor OpersU yielding a finite sequence
of elements of (the carrier of U)∗→̇the carrier of U is defined as follows:

(Def.6) OpersU = the characteristic of U .

A universal algebra structure is partial if:

(Def.7) Opers it is homogeneous.

A universal algebra structure is quasi total if:

(Def.8) Opers it is quasi total.

A universal algebra structure is non-empty if:

(Def.9) Opers it 6= ε and Opers it is non-empty.

We now state the proposition

(4) For every element x of A∗→̇A such that x = {εA} 7−→ a holds 〈x〉 is
homogeneous, quasi total and non-empty.

Let us note that there exists a quasi total partial non-empty strict universal
algebra structure.

A universal algebra is a quasi total partial non-empty universal algebra struc-
ture.

In the sequel U will be a universal algebra. Let us consider A, and let f be a
homogeneous quasi total non-empty partial function from A∗ to A. The functor
arity f yielding a natural number is defined as follows:

(Def.10) if x ∈ dom f , then arity f = lenx.

The following proposition is true

(5) For every U and for every n such that n ∈ dom OpersU holds (OpersU)

(n) is a homogeneous quasi total non-empty partial function from

(the carrier of U)∗ to the carrier of U .

Let U be a universal algebra. The functor signatureU yields a finite sequence
of elements of � and is defined as follows:

(Def.11) len signatureU = len OpersU

and for every n such that n ∈ dom signatureU and for every homogeneous
quasi total non-empty partial function h from (the carrier of U)∗ to the
carrier of U such that h = (OpersU)(n) holds (signatureU)(n) = arity h.
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Summary. Coherent Space web of coherent space and two cate-
gories: category of coherent spaces and category of tolerances on same
fixed set.

MML Identifier: COH SP.

The articles [8], [10], [11], [1], [5], [9], [6], [2], [7], [4], and [3] provide the notation
and terminology for this paper. We follow a convention: x, y will be arbitrary
and a, b, X, A will be sets. Let F be a non-empty set of functions. We see that
the element of F is a function.

1. Coherent Space and Web of Coherent Space

We now define three new constructions. A set is down-closed if:

(Def.1) for all a, b such that a ∈ it and b ⊆ a holds b ∈ it.

A set is binary complete if:

(Def.2) for every A such that A ⊆ it and for all a, b such that a ∈ A and b ∈ A
holds a ∪ b ∈ it holds

⋃
A ∈ it.

Let us observe that there exists a down-closed binary complete non-empty set.
A coherent space is a down-closed binary complete non-empty set.

In the sequel C, D are coherent spaces. Next we state four propositions:

(1) ∅ ∈ C.

(2) 2X is a coherent space.

(3) {∅} is a coherent space.

(4) If x ∈ ⋃C, then {x} ∈ C.

Let C be a coherent space. The functor Web(C) yields a tolerance of
⋃
C

and is defined by:
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(Def.3) for all x, y holds 〈〈x, y〉〉 ∈ Web(C) if and only if there exists X such
that X ∈ C and x ∈ X and y ∈ X.

In the sequel T is a tolerance of
⋃
C. One can prove the following proposi-

tions:

(5) T = Web(C) if and only if for all x, y holds 〈〈x, y〉〉 ∈ T if and only if
{x, y} ∈ C.

(6) a ∈ C if and only if for all x, y such that x ∈ a and y ∈ a holds
{x, y} ∈ C.

(7) a ∈ C if and only if for all x, y such that x ∈ a and y ∈ a holds 〈〈x,
y〉〉 ∈Web(C).

(8) If for all x, y such that x ∈ a and y ∈ a holds {x, y} ∈ C, then a ⊆ ⋃C.

(9) If Web(C) = Web(D), then C = D.

(10) If
⋃
C ∈ C, then C = 2

⋃
C .

(11) If C = 2
⋃
C , then Web(C) = ∇⋃C .

Let X be a set, and let E be a tolerance of X. The functor CohSp(E) yielding
a coherent space is defined by:

(Def.4) for every a holds a ∈ CohSp(E) if and only if for all x, y such that
x ∈ a and y ∈ a holds 〈〈x, y〉〉 ∈ E.

In the sequel E denotes a tolerance of X. Next we state four propositions:

(12) Web(CohSp(E)) = E.

(13) CohSp(Web(C)) = C.

(14) a ∈ CohSp(E) if and only if a is a set of mutually elements w.r.t. E.

(15) CohSp(E) = TolSetsE.

2. Category of Coherent Spaces

Let us consider X. The functor CSp(X) yielding a non-empty set is defined as
follows:

(Def.5) CSp(X) = {x : x is a coherent space}, where x ranges over subsets of
2X .

In the sequel C, C1, C2 denote elements of CSp(X). Let us consider X, C.
The functor @C yielding a coherent space is defined as follows:

(Def.6) @C = C.

The following proposition is true

(16) If {x, y} ∈ C, then x ∈ ⋃C and y ∈ ⋃C.

Let us consider X. The functor FuncsCX yielding a non-empty set of func-
tions is defined by:

(Def.7) FuncsCX =
⋃{(⋃ y)

⋃
x}, where x ranges over elements of CSp(X), and

y ranges over elements of CSp(X).
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In the sequel g is an element of FuncsCX. The following proposition is true

(17) x ∈ FuncsCX if and only if there exist C1, C2 such that if
⋃
C2 = ∅,

then
⋃
C1 = ∅ and also x is a function from

⋃
C1 into

⋃
C2.

Let us consider X. The functor MapsCX yielding a non-empty set is defined
by:

(Def.8) MapsCX = {〈〈〈〈C, C3〉〉, f〉〉 : (
⋃
C3 = ∅ ⇒ ⋃

C = ∅)∧f is a function from⋃
C into

⋃
C3 ∧

∧
x,y[{x, y} ∈ C ⇒ {f(x), f(y)} ∈ C3]},

where C ranges over elements of CSp(X), and C3 ranges over elements of
CSp(X), and f ranges over elements of FuncsCX.

In the sequel l, l1, l2, l3 will be elements of MapsCX. The following two
propositions are true:

(18) There exist g, C1, C2 such that l = 〈〈〈〈C1, C2〉〉, g〉〉 and also if
⋃
C2 = ∅,

then
⋃
C1 = ∅ and g is a function from

⋃
C1 into

⋃
C2 and for all x, y

such that {x, y} ∈ C1 holds {g(x), g(y)} ∈ C2.

(19) For every function f from
⋃
C1 into

⋃
C2 such that if

⋃
C2 = ∅, then⋃

C1 = ∅ and also for all x, y such that {x, y} ∈ C1 holds {f(x), f(y)} ∈
C2 holds 〈〈〈〈C1, C2〉〉, f〉〉 ∈ MapsCX.

We now define three new functors. Let us consider X, l. The functor graph(l)
yields a function and is defined by:

(Def.9) graph(l) = l2.

The functor dom l yielding an element of CSp(X) is defined by:

(Def.10) dom l = (l1)1.

The functor cod l yielding an element of CSp(X) is defined by:

(Def.11) cod l = (l1)2.

Next we state the proposition

(20) l = 〈〈〈〈dom l, cod l〉〉, graph(l)〉〉.
Let us consider X, C. The functor id(C) yields an element of MapsCX and

is defined by:

(Def.12) id(C) = 〈〈〈〈C, C〉〉, id⋃C〉〉.
One can prove the following proposition

(21)
⋃

cod l 6= ∅ or
⋃

dom l = ∅ and also graph(l) is a function from
⋃

dom l
into

⋃
cod l and for all x, y such that {x, y} ∈ dom l holds

{(graph(l))(x), (graph(l))(y)} ∈ cod l.

Let us consider X, l1, l2. Let us assume that cod l1 = dom l2. The functor
l2 · l1 yielding an element of MapsCX is defined as follows:

(Def.13) l2 · l1 = 〈〈〈〈 dom l1, cod l2〉〉, graph(l2) · graph(l1)〉〉.
We now state four propositions:

(22) If dom l2 = cod l1, then graph((l2 · l1)) = graph(l2) · graph(l1) and
dom(l2 · l1) = dom l1 and cod(l2 · l1) = cod l2.

(23) If dom l2 = cod l1 and dom l3 = cod l2, then l3 · (l2 · l1) = (l3 · l2) · l1.
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(24) graph(id(C)) = id⋃C and dom id(C) = C and cod id(C) = C.

(25) l · id(dom l) = l and id(cod l) · l = l.

We now define four new functors. Let us consider X. The functor DomCSp X
yields a function from MapsCX into CSp(X) and is defined as follows:

(Def.14) for every l holds (DomCSp X)(l) = dom l.

The functor CodCSp X yielding a function from MapsCX into CSp(X) is defined
by:

(Def.15) for every l holds (CodCSpX)(l) = cod l.

The functor ·CSpX yielding a partial function from [: MapsCX, MapsCX :] to
MapsCX is defined by:

(Def.16) for all l2, l1 holds 〈〈l2, l1〉〉 ∈ dom ·CSp X if and only if dom l2 = cod l1
and for all l2, l1 such that dom l2 = cod l1 holds (·CSp X)(〈〈l2, l1〉〉) = l2 · l1.

The functor IdCSp X yielding a function from CSp(X) into MapsCX is defined
by:

(Def.17) for every C holds (IdCSp X)(C) = id(C).

Next we state the proposition

(26) 〈CSp(X),MapsCX,DomCSp X,CodCSpX, ·CSp X, IdCSp X〉 is a category.

Let us consider X. The X-coherent space category yields a category and is
defined by:

(Def.18) the X-coherent space category
= 〈CSp(X),MapsCX,DomCSp X,CodCSpX, ·CSp X, IdCSp X〉.

3. Category of Tolerances

We now define two new functors. Let X be a set. The tolerances on X constitute
a non-empty set defined by:

(Def.19) the tolerances on X is the set of all tolerances of X.

Let X be a set. The tolerances on subsets of X constitute a non-empty set
defined as follows:

(Def.20) the tolerances on subsets of X =
⋃{the tolerances on Y }, where Y

ranges over subsets of X.

In the sequel t denotes an element of the tolerances on subsets of X. The
following propositions are true:

(27) x ∈ the tolerances on subsets of X if and only if there exists A such
that A ⊆ X and x is a tolerance of A.

(28) ∇a ∈ the tolerances on a.

(29) 4a ∈ the tolerances on a.

(30) � ∈ the tolerances on subsets of X.

(31) If a ⊆ X, then ∇a ∈ the tolerances on subsets of X.
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(32) If a ⊆ X, then 4a ∈ the tolerances on subsets of X.

(33) ∇X ∈ the tolerances on subsets of X.

(34) 4X ∈ the tolerances on subsets of X.

Let us consider X. The functor TOL(X) yields a non-empty set and is
defined by:

(Def.21) TOL(X) = {〈〈t, Y 〉〉 : t is a tolerance of Y }, where t ranges over ele-
ments of the tolerances on subsets of X, and Y ranges over elements of
2X .

In the sequel T , T1, T2 will denote elements of TOL(X). Next we state
several propositions:

(35) 〈〈 � , ∅〉〉 ∈ TOL(X).

(36) If a ⊆ X, then 〈〈4a, a〉〉 ∈ TOL(X).

(37) If a ⊆ X, then 〈〈∇a, a〉〉 ∈ TOL(X).

(38) 〈〈4X , X〉〉 ∈ TOL(X).

(39) 〈〈∇X , X〉〉 ∈ TOL(X).

Let us consider X, T . Then T2 is an element of 2X . Then T1 is a tolerance
of T2. Let us consider X. The functor FuncsTX yielding a non-empty set of
functions is defined as follows:

(Def.22) FuncsTX =
⋃{(T32)T2}, where T ranges over elements of TOL(X),

and T3 ranges over elements of TOL(X).

In the sequel f denotes an element of FuncsTX. We now state the proposition

(40) x ∈ FuncsTX if and only if there exist T1, T2 such that if T22 = ∅, then
T12 = ∅ and also x is a function from T12 into T22.

Let us consider X. The functor MapsTX yielding a non-empty set is defined
by:

(Def.23) MapsTX = {〈〈〈〈T, T3〉〉, f〉〉 : (T32 = ∅ ⇒ T2 = ∅)∧f is a function from T2
into T32 ∧

∧
x,y[〈〈x, y〉〉 ∈ T1 ⇒ 〈〈f(x), f(y)〉〉 ∈ T31]},

where T ranges over elements of TOL(X), and T3 ranges over elements
of TOL(X), and f ranges over elements of FuncsTX.

In the sequel m, m1, m2, m3 denote elements of MapsTX. One can prove
the following two propositions:

(41) There exist f , T1, T2 such that m = 〈〈〈〈T1, T2〉〉, f〉〉 and also if T22 = ∅,
then T12 = ∅ and f is a function from T12 into T22 and for all x, y such
that 〈〈x, y〉〉 ∈ T11 holds 〈〈f(x), f(y)〉〉 ∈ T21.

(42) For every function f from T12 into T22 such that if T22 = ∅, then T12 =
∅ and also for all x, y such that 〈〈x, y〉〉 ∈ T11 holds 〈〈f(x), f(y)〉〉 ∈ T21
holds 〈〈〈〈T1, T2〉〉, f〉〉 ∈ MapsTX.

We now define three new functors. Let us consider X, m. The functor
graph(m) yielding a function is defined by:

(Def.24) graph(m) = m2.

The functor domm yields an element of TOL(X) and is defined by:
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(Def.25) domm = (m1)1.

The functor codm yields an element of TOL(X) and is defined by:

(Def.26) codm = (m1)2.

One can prove the following proposition

(43) m = 〈〈〈〈 domm, codm〉〉, graph(m)〉〉.
Let us consider X, T . The functor id(T ) yields an element of MapsTX and

is defined by:

(Def.27) id(T ) = 〈〈〈〈T, T 〉〉, id(T2)〉〉.
One can prove the following proposition

(44) (codm)2 6= ∅ or (domm)2 = ∅ and also graph(m) is a function from
(domm)2 into (codm)2 and for all x, y such that 〈〈x, y〉〉 ∈ (domm)1
holds 〈〈(graph(m))(x), (graph(m))(y)〉〉 ∈ (codm)1.

Let us consider X, m1, m2. Let us assume that codm1 = domm2. The
functor m2 ·m1 yielding an element of MapsTX is defined by:

(Def.28) m2 ·m1 = 〈〈〈〈domm1, codm2〉〉, graph(m2) · graph(m1)〉〉.
The following propositions are true:

(45) If domm2 = codm1, then graph((m2 · m1)) = graph(m2) · graph(m1)
and dom(m2 ·m1) = domm1 and cod(m2 ·m1) = codm2.

(46) If domm2 = codm1 and domm3 = codm2, then m3 · (m2 · m1) =
(m3 ·m2) ·m1.

(47) graph(id(T )) = id(T2) and dom id(T ) = T and cod id(T ) = T .

(48) m · id(domm) = m and id(codm) ·m = m.

We now define four new functors. Let us consider X. The functor DomX

yields a function from MapsTX into TOL(X) and is defined by:

(Def.29) for every m holds DomX(m) = domm.

The functor CodX yields a function from MapsTX into TOL(X) and is defined
as follows:

(Def.30) for every m holds CodX(m) = codm.

The functor ·X yields a partial function from [: MapsTX, MapsTX :] to MapsTX
and is defined as follows:

(Def.31) for all m2, m1 holds 〈〈m2, m1〉〉 ∈ dom(·X) if and only if domm2 =
codm1 and for all m2, m1 such that domm2 = codm1 holds ·X(〈〈m2,
m1〉〉) = m2 ·m1.

The functor IdX yields a function from TOL(X) into MapsTX and is defined
by:

(Def.32) for every T holds IdX(T ) = id(T ).

Next we state the proposition

(49) 〈TOL(X),MapsTX,DomX ,CodX , ·X , IdX〉 is a category.

Let us consider X. The X-tolerance category is a category defined by:

(Def.33) theX-tolerance category = 〈TOL(X),MapsTX,DomX ,CodX , ·X , IdX〉.
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The article includes the text being a continuation of the paper [5].
Some theorems concerning basic properties of intervals are proved.

MML Identifier: MEASURE5.

The notation and terminology used here are introduced in the following papers:
[16], [15], [11], [12], [9], [10], [1], [14], [2], [13], [4], [6], [8], [7], [3], [5], and [17].
The following propositions are true:

(1) For all Real numbers x, y such that x 6= −∞ and x 6= +∞ and x ≤ y
holds 0 � ≤ y − x.

(2) For all Real numbers x, y such that it is not true that: x = −∞ and
y = −∞ and it is not true that: x = +∞ and y = +∞ and x ≤ y holds
0 � ≤ y − x.

(3) For all Real numbers x, y holds x ≤ y or y ≤ x.

(4) For all Real numbers x, y such that x 6= y holds x < y or y < x.

(5) For all Real numbers x, y holds x < y or y ≤ x.

(6) For all Real numbers x, y holds x < y if and only if y � x.

(7) For all Real numbers x, y, z such that x < y and y < z holds x < z.

(8) For all Real numbers a, b, c such that b 6= −∞ and b 6= +∞ and it is
not true that: a = −∞ and c = −∞ and it is not true that: a = +∞ and
c = +∞ holds (c− b) + (b− a) = c− a.

(9) For all Real numbers a1, a2 holds inf{a1, a2} ≤ a1 and inf{a1, a2} ≤ a2

and a1 ≤ sup{a1, a2} and a2 ≤ sup{a1, a2}.
(10) For all Real numbers a, b, c such that a ≤ b and b < c or a < b and

b ≤ c holds a < c.
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We now define several new constructions. Let a, b be Real numbers. The
functor [a, b] yielding a subset of � is defined as follows:

(Def.1) for every Real number x holds x ∈ [a, b] if and only if a ≤ x and x ≤ b
and x ∈ � .

Let a, b be Real numbers. The functor ]a, b[ yields a subset of � and is defined
as follows:

(Def.2) for every Real number x holds x ∈ ]a, b[ if and only if a < x and x < b
and x ∈ � .

Let a, b be Real numbers. The functor ]a, b] yielding a subset of � is defined by:

(Def.3) for every Real number x holds x ∈ ]a, b] if and only if a < x and x ≤ b
and x ∈ � .

Let a, b be Real numbers. The functor [a, b[ yields a subset of � and is defined
by:

(Def.4) for every Real number x holds x ∈ [a, b[ if and only if a ≤ x and x < b
and x ∈ � .

A subset of � is called an open interval if:

(Def.5) there exist Real numbers a, b such that a ≤ b and it = ]a, b[.

A subset of � is said to be a closed interval if:

(Def.6) there exist Real numbers a, b such that a ≤ b and it = [a, b].

A subset of � is said to be a right-open interval if:

(Def.7) there exist Real numbers a, b such that a ≤ b and it = [a, b[.

A subset of � is called a left-open interval if:

(Def.8) there exist Real numbers a, b such that a ≤ b and it = ]a, b].

A subset of � is said to be an interval if:

(Def.9) it is an open interval or it is a closed interval or it is a right-open interval
or it is a left-open interval.

We see that the open interval is an interval. We see that the closed interval is
an interval. We see that the right-open interval is an interval. We see that the
left-open interval is an interval.

We now state a number of propositions:

(11) For an arbitrary x and for all Real numbers a, b such that x ∈ ]a, b[ or
x ∈ [a, b] or x ∈ [a, b[ or x ∈ ]a, b] holds x is a Real number.

(12) For all Real numbers a, b such that b < a holds ]a, b[ = ∅ and [a, b] = ∅
and [a, b[ = ∅ and ]a, b] = ∅.

(13) For every Real number a holds ]a, a[ = ∅ and [a, a[ = ∅ and ]a, a] = ∅.
(14) For every Real number a holds if a = −∞ or a = +∞, then [a, a] = ∅

and also if a 6= −∞ and a 6= +∞, then [a, a] = {a}.
(15) For all Real numbers a, b such that b ≤ a holds ]a, b[ = ∅ and [a, b[ = ∅

and ]a, b] = ∅ and [a, b] ⊆ {a} and [a, b] ⊆ {b}.
(16) For all Real numbers a, b, c such that a < b and b < c holds b ∈ � .
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(17) For all Real numbers a, b such that a < b there exists a Real number x
such that a < x and x < b and x ∈ � .

(18) For all Real numbers a, b, c such that a < b and a < c there exists a
Real number x such that a < x and x < b and x < c and x ∈ � .

(19) For all Real numbers a, b, c such that a < c and b < c there exists a
Real number x such that a < x and b < x and x < c and x ∈ � .

(20) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1[ and x /∈ ]a2, b2[
or x /∈ ]a1, b1[ and x ∈ ]a2, b2[.

(21) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1[ and x /∈ ]a2, b2[
or x /∈ ]a1, b1[ and x ∈ ]a2, b2[.

(22) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1] and x /∈ ]a2, b2[
or x /∈ [a1, b1] and x ∈ ]a2, b2[.

(23) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1] and x /∈ ]a2, b2[
or x /∈ [a1, b1] and x ∈ ]a2, b2[.

(24) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1[ and x /∈ [a2, b2]
or x /∈ ]a1, b1[ and x ∈ [a2, b2].

(25) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1[ and x /∈ [a2, b2]
or x /∈ ]a1, b1[ and x ∈ [a2, b2].

(26) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1[ and x /∈ [a2, b2[
or x /∈ ]a1, b1[ and x ∈ [a2, b2[.

(27) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1[ and x /∈ [a2, b2[
or x /∈ ]a1, b1[ and x ∈ [a2, b2[.

(28) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1[ and x /∈ ]a2, b2[
or x /∈ [a1, b1[ and x ∈ ]a2, b2[.

(29) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1[ and x /∈ ]a2, b2[
or x /∈ [a1, b1[ and x ∈ ]a2, b2[.

(30) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1[ and x /∈ ]a2, b2]
or x /∈ ]a1, b1[ and x ∈ ]a2, b2].

(31) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1[ and x /∈ ]a2, b2]
or x /∈ ]a1, b1[ and x ∈ ]a2, b2].
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(32) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1] and x /∈ ]a2, b2[
or x /∈ ]a1, b1] and x ∈ ]a2, b2[.

(33) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1] and x /∈ ]a2, b2[
or x /∈ ]a1, b1] and x ∈ ]a2, b2[.

(34) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1] and x /∈ [a2, b2]
or x /∈ [a1, b1] and x ∈ [a2, b2].

(35) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1] and x /∈ [a2, b2]
or x /∈ [a1, b1] and x ∈ [a2, b2].

(36) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1] and x /∈ [a2, b2[
or x /∈ [a1, b1] and x ∈ [a2, b2[.

(37) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1] and x /∈ [a2, b2[
or x /∈ [a1, b1] and x ∈ [a2, b2[.

(38) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1[ and x /∈ [a2, b2]
or x /∈ [a1, b1[ and x ∈ [a2, b2].

(39) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1[ and x /∈ [a2, b2]
or x /∈ [a1, b1[ and x ∈ [a2, b2].

(40) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1] and x /∈ ]a2, b2]
or x /∈ [a1, b1] and x ∈ ]a2, b2].

(41) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1] and x /∈ ]a2, b2]
or x /∈ [a1, b1] and x ∈ ]a2, b2].

Next we state a number of propositions:

(42) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1] and x /∈ [a2, b2]
or x /∈ ]a1, b1] and x ∈ [a2, b2].

(43) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1] and x /∈ [a2, b2]
or x /∈ ]a1, b1] and x ∈ [a2, b2].

(44) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1[ and x /∈ [a2, b2[
or x /∈ [a1, b1[ and x ∈ [a2, b2[.

(45) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1[ and x /∈ [a2, b2[
or x /∈ [a1, b1[ and x ∈ [a2, b2[.
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(46) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1[ and x /∈ ]a2, b2]
or x /∈ [a1, b1[ and x ∈ ]a2, b2].

(47) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ [a1, b1[ and x /∈ ]a2, b2]
or x /∈ [a1, b1[ and x ∈ ]a2, b2].

(48) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1] and x /∈ [a2, b2[
or x /∈ ]a1, b1] and x ∈ [a2, b2[.

(49) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1] and x /∈ [a2, b2[
or x /∈ ]a1, b1] and x ∈ [a2, b2[.

(50) For all Real numbers a1, a2, b1, b2 such that a1 < a2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1] and x /∈ ]a2, b2]
or x /∈ ]a1, b1] and x ∈ ]a2, b2].

(51) For all Real numbers a1, a2, b1, b2 such that b1 < b2 and also a1 < b1 or
a2 < b2 there exists a Real number x such that x ∈ ]a1, b1] and x /∈ ]a2, b2]
or x /∈ ]a1, b1] and x ∈ ]a2, b2].

(52) Let A be an interval. Let a1, a2, b1, b2 be Real numbers. Suppose that
(i) a1 < b1 or a2 < b2,

(ii) A = ]a1, b1[ or A = [a1, b1] or A = [a1, b1[ or A = ]a1, b1] and also
A = ]a2, b2[ or A = [a2, b2] or A = [a2, b2[ or A = ]a2, b2].
Then a1 = a2 and b1 = b2.

Let A be an interval. The functor vol(A) yielding a Real number is defined
as follows:

(Def.10) there exist Real numbers a, b such that A = ]a, b[ or A = [a, b] or
A = [a, b[ or A = ]a, b] and also if a < b, then vol(A) = b− a and also if
b ≤ a, then vol(A) = 0 � .

One can prove the following propositions:

(53) For every open interval A and for all Real numbers a, b such that A =
]a, b[ holds if a < b, then vol(A) = b−a and also if b ≤ a, then vol(A) = 0 � .

(54) For every closed interval A and for all Real numbers a, b such that
A = [a, b] holds if a < b, then vol(A) = b − a and also if b ≤ a, then
vol(A) = 0 � .

(55) For every right-open interval A and for all Real numbers a, b such that
A = [a, b[ holds if a < b, then vol(A) = b − a and also if b ≤ a, then
vol(A) = 0 � .

(56) For every left-open interval A and for all Real numbers a, b such that
A = ]a, b] holds if a < b, then vol(A) = b − a and also if b ≤ a, then
vol(A) = 0 � .

(57) Let A be an interval. Let a, b, c be Real numbers. Suppose that
(i) a = −∞,
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(ii) b ∈ � ,
(iii) c = +∞,
(iv) A = ]a, b[ or A = ]b, c[ or A = [a, b] or A = [b, c] or A = [a, b[ or

A = [b, c[ or A = ]a, b] or A = ]b, c].
Then vol(A) = +∞.

(58) For every interval A and for all Real numbers a, b such that a = −∞
and b = +∞ and also A = ]a, b[ or A = [a, b] or A = [a, b[ or A = ]a, b]
holds vol(A) = +∞.

(59) For every interval A and for every Real number a such that A = ]a, a[
or A = [a, a] or A = [a, a[ or A = ]a, a] holds vol(A) = 0 � .

Let us note that there exists an empty interval.
Let us note that it makes sense to consider the following constant. Then ∅

is an empty interval.

Next we state four propositions:

(60) vol(∅) = 0 � .

(61) For all intervals A, B and for all Real numbers a, b such that A ⊆ B
and B = [a, b] and b ≤ a holds vol(A) = 0 � and vol(B) = 0 � .

(62) For all intervals A, B such that A ⊆ B holds vol(A) ≤ vol(B).

(63) For every interval A holds 0 � ≤ vol(A).
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The articles [7], [2], [1], [3], [4], [11], [10], [5], [6], [9], and [8] provide the notation
and terminology for this paper. For simplicity we adopt the following rules: x
is arbitrary, a, b, c denote real numbers, V denotes a real linear space, u, v, v1,
v2, v3, w, w1, w2, w3 denote vectors of V , and W , W1, W2 denote subspaces of
V . In this article we present several logical schemes. The scheme LambdaSep3
deals with a non-empty set A, a non-empty set B, an element C of A, an element
D of A, an element E of A, an element F of B, an element G of B, an element
H of B, and a unary functor F yielding an element of B and states that:

there exists a function f from A into B such that f(C) = F and f(D) = G
and f(E) = H and for every element C of A such that C 6= C and C 6= D and
C 6= E holds f(C) = F(C)

provided the parameters have the following properties:

• C 6= D,
• C 6= E ,

• D 6= E .

The scheme LinCEx1 deals with a real linear space A, a vector B of A, and
a real number C and states that:

there exists a linear combination l of {B} such that l(B) = C
for all values of the parameters.

The scheme LinCEx2 deals with a real linear space A, a vector B of A, a
vector C of A, a real number D, and a real number E and states that:

there exists a linear combination l of {B, C} such that l(B) = D and l(C) = E
provided the following condition is satisfied:

• B 6= C.
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The scheme LinCEx3 deals with a real linear space A, a vector B of A, a
vector C of A, a vector D of A, a real number E , a real number F , and a real
number G and states that:

there exists a linear combination l of {B, C,D} such that l(B) = E and
l(C) = F and l(D) = G
provided the parameters meet the following conditions:
• B 6= C,
• B 6= D,
• C 6= D.
We now state a number of propositions:

(1) (v + w) − v = w and (w + v) − v = w and (v − v) + w = w and
(w−v)+v = w and v+(w−v) = w and w+(v−v) = w and v−(v−w) = w.

(2) (v + u)− w = (v −w) + u.

(3) If v1 + w = v2 + w, then v1 = v2.

(4) If v1 − w = v2 − w, then v1 = v2.

(5) v = v1 + v2 if and only if v2 = v − v1.

(6) −a · v = (−a) · v.

(7) If W1 is a subspace of W2, then v +W1 ⊆ v +W2.

(8) If u ∈ v +W , then v +W = u+W .

(9) For every linear combination l of {u, v, w} such that u 6= v and u 6= w
and v 6= w holds

∑
l = l(u) · u+ l(v) · v + l(w) · w.

(10) u 6= v and u 6= w and v 6= w and {u, v, w} is linearly independent if and
only if for all a, b, c such that a · u + b · v + c · w = 0V holds a = 0 and
b = 0 and c = 0.

(11) x ∈ Lin({v}) if and only if there exists a such that x = a · v.

(12) v ∈ Lin({v}).
(13) x ∈ v + Lin({w}) if and only if there exists a such that x = v + a · w.

(14) x ∈ Lin({w1, w2}) if and only if there exist a, b such that x = a·w1+b·w2.

(15) w1 ∈ Lin({w1, w2}) and w2 ∈ Lin({w1, w2}).
(16) x ∈ v + Lin({w1, w2}) if and only if there exist a, b such that x =

v + a · w1 + b · w2.

(17) x ∈ Lin({v1, v2, v3}) if and only if there exist a, b, c such that x =
a · v1 + b · v2 + c · v3.

(18) w1 ∈ Lin({w1, w2, w3}) and w2 ∈ Lin({w1, w2, w3}) and
w3 ∈ Lin({w1, w2, w3}).

(19) x ∈ v + Lin({w1, w2, w3}) if and only if there exist a, b, c such that
x = v + a · w1 + b · w2 + c · w3.

(20) If {u, v} is linearly independent and u 6= v, then {u, v − u} is linearly
independent.

(21) If {u, v} is linearly independent and u 6= v, then {u, v + u} is linearly
independent.
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(22) If {u, v} is linearly independent and u 6= v and a 6= 0, then {u, a · v} is
linearly independent.

(23) If {u, v} is linearly independent and u 6= v, then {u,−v} is linearly
independent.

(24) If a 6= b, then {a · v, b · v} is linearly dependent.

(25) If a 6= 1, then {v, a · v} is linearly dependent.

(26) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w, v − u} is linearly independent.

(27) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w − u, v − u} is linearly independent.

(28) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w, v + u} is linearly independent.

(29) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w + u, v + u} is linearly independent.

(30) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w and
a 6= 0, then {u,w, a · v} is linearly independent.

(31) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w and
a 6= 0 and b 6= 0, then {u, a · w, b · v} is linearly independent.

The following propositions are true:

(32) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,w,−v} is linearly independent.

(33) If {u,w, v} is linearly independent and u 6= v and u 6= w and v 6= w,
then {u,−w,−v} is linearly independent.

(34) If a 6= b, then {a · v, b · v, w} is linearly dependent.

(35) If a 6= 1, then {v, a · v, w} is linearly dependent.

(36) If v ∈ Lin({w}) and v 6= 0V , then Lin({v}) = Lin({w}).
(37) If v1 6= v2 and {v1, v2} is linearly independent and v1 ∈ Lin({w1, w2})

and v2 ∈ Lin({w1, w2}), then Lin({w1, w2}) = Lin({v1, v2}) and {w1, w2}
is linearly independent and w1 6= w2.

(38) If w 6= 0V and {v, w} is linearly dependent, then there exists a such
that v = a · w.

(39) If v 6= w and {v, w} is linearly independent and {u, v, w} is linearly
dependent, then there exist a, b such that u = a · v + b · w.
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The articles [11], [4], [5], [3], [1], [8], [10], [2], [12], [6], [7], and [9] provide
the notation and terminology for this paper. In the sequel n will be a natural
number. Let F , G be functions. We say that F and G are fiwerwise equipotent
if and only if:

(Def.1) for an arbitrary x holds F −1 {x} = G −1 {x} .

Let us observe that the predicate defined above is reflexive and symmetric.

One can prove the following propositions:

(1) For all functions F , G such that F and G are fiwerwise equipotent holds
rngF = rngG.

(2) For all functions F , G, H such that F and G are fiwerwise equipo-
tent and F and H are fiwerwise equipotent holds G and H are fiwerwise
equipotent.

(3) For all functions F , G holds F andG are fiwerwise equipotent if and only
if there exists a function H such that domH = domF and rngH = domG
and H is one-to-one and F = G ·H.

(4) For all functions F , G holds F and G are fiwerwise equipotent if and

only if for every set X holds F −1 X = G −1 X .

(5) For every non-empty set D and for all functions F , G such that rngF ⊆
D and rngG ⊆ D holds F and G are fiwerwise equipotent if and only if

for every element d of D holds F −1 {d} = G −1 {d} .
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(6) For all functions F , G such that domF = domG holds F and G are
fiwerwise equipotent if and only if there exists a permutation P of domF
such that F = G · P .

(7) For all functions F , G such that F and G are fiwerwise equipotent holds

domF = domG .

(8) For all functions F , G such that domF is finite and domG is finite
holds F and G are fiwerwise equipotent if and only if for an arbitrary x
holds card(F −1 {x}) = card(G −1 {x}).

(9) For all functions F , G such that domF is finite and domG is finite
holds F and G are fiwerwise equipotent if and only if for every set X
holds card(F −1 X) = card(G −1 X).

(10) For all functions F , G such that domF is finite and domG is finite and
F and G are fiwerwise equipotent holds card domF = card domG.

(11) For every non-empty set D and for all functions F , G such that rngF ⊆
D and rngG ⊆ D and domF is finite and domG is finite holds F and
G are fiwerwise equipotent if and only if for every element d of D holds
card(F −1 {d}) = card(G −1 {d}).

(12) For all finite sequences f , g holds f and g are fiwerwise equipotent if
and only if for an arbitrary x holds card(f −1 {x}) = card(g −1 {x}).

(13) For all finite sequences f , g holds f and g are fiwerwise equipotent if
and only if for every set X holds card(f −1 X) = card(g −1 X).

(14) For all finite sequences f , g, h holds f and g are fiwerwise equipotent
if and only if f � h and g � h are fiwerwise equipotent.

(15) For all finite sequences f , g holds f � g and g � f are fiwerwise equipotent.

(16) For all finite sequences f , g such that f and g are fiwerwise equipotent
holds len f = len g and dom f = dom g.

(17) For all finite sequences f , g holds f and g are fiwerwise equipotent if
and only if there exists a permutation P of dom g such that f = g · P .

(18) For every function F and for every finite set X there exists a finite
sequence f such that F

�
X and f are fiwerwise equipotent.

Let D be a non-empty set, and let f be a finite sequence of elements of
D, and let n be a natural number. The functor f � n yields a finite sequence of
elements of D and is defined as follows:

(Def.2) (i) len(f � n) = len f − n and for every natural number m such that
m ∈ dom(f � n) holds f � n(m) = f(m+ n) if n ≤ len f ,

(ii) f � n = εD, otherwise.

The following propositions are true:

(19) For every non-empty set D and for every finite sequence f of elements
of D and for all natural numbers n, m such that n ∈ dom f and m ∈ Seg n
holds (f

�
n)(m) = f(m) and m ∈ dom f .

(20) For every non-empty set D and for every finite sequence f of elements
of D and for every natural number n and for an arbitrary x such that
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len f = n+ 1 and x = f(n+ 1) holds f = (f
�
n) � 〈x〉.

(21) For every non-empty set D and for every finite sequence f of elements
of D and for every natural number n holds (f

�
n) � (f � n) = f .

(22) For all finite sequences R1, R2 of elements of � such that R1 and R2

are fiwerwise equipotent holds
∑
R1 =

∑
R2.

Let R be a finite sequence of elements of � . The functor MIM(R) yielding a
finite sequence of elements of � is defined by the conditions (Def.3).

(Def.3) (i) len MIM(R) = lenR,
(ii) (MIM(R))(len MIM(R)) = R(lenR),

(iii) for every natural number n such that 1 ≤ n and n ≤ len MIM(R)− 1
and for all real numbers r, s such that R(n) = r and R(n+ 1) = s holds
(MIM(R))(n) = r − s.

Next we state several propositions:

(23) For every finite sequence R of elements of � and for every real number r
and for every natural number n such that lenR = n+ 2 and R(n+ 1) = r
holds MIM(R

�
(n+ 1)) = (MIM(R)

�
n) � 〈r〉.

(24) For every finite sequence R of elements of � and for all real numbers r, s
and for every natural number n such that lenR = n+ 2 and R(n+ 1) = r
and R(n+ 2) = s holds MIM(R) = (MIM(R)

�
n) � 〈r − s, s〉.

(25) MIM(ε � ) = ε � .

(26) For every real number r holds MIM(〈r〉) = 〈r〉.
(27) For all real numbers r, s holds MIM(〈r, s〉) = 〈r − s, s〉.
(28) For every finite sequence R of elements of � and for every natural num-

ber n holds (MIM(R)) � n = MIM(R � n ).

(29) For every finite sequence R of elements of � such that lenR 6= 0 holds∑
MIM(R) = R(1).

(30) For every finite sequence R of elements of � and for every natural num-
ber n such that 1 ≤ n and n < lenR holds

∑
MIM(R � n) = R(n+ 1).

A finite sequence of elements of � is non-increasing if:

(Def.4) for every natural number n such that n ∈ dom it and n + 1 ∈ dom it
and for all real numbers r, s such that r = it(n) and s = it(n+ 1) holds
r ≥ s.

One can check that there exists a non-increasing finite sequence of elements of
� .

We now state several propositions:

(31) For every finite sequence R of elements of � such that lenR = 0 or
lenR = 1 holds R is non-increasing.

(32) For every finite sequence R of elements of � holds R is non-increasing
if and only if for all natural numbers n, m such that n ∈ domR and
m ∈ domR and n < m and for all real numbers r, s such that R(n) = r
and R(m) = s holds r ≥ s.
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(33) For every non-increasing finite sequence R of elements of � and for
every natural number n holds R

�
n is a non-increasing finite sequence of

elements of � .

(34) For every non-increasing finite sequence R of elements of � and for
every natural number n holds R � n is a non-increasing finite sequence of
elements of � .

(35) For every finite sequence R of elements of � there exists a non-increasing
finite sequence R1 of elements of � such that R and R1 are fiwerwise
equipotent.

(36) For all non-increasing finite sequences R1, R2 of elements of � such that
R1 and R2 are fiwerwise equipotent holds R1 = R2.

(37) For every finite sequence R of elements of � and for all real numbers r,
s such that r 6= 0 holds R −1 { sr} = (r · R) −1 {s}.

(38) For every finite sequence R of elements of � holds (0·R)−1{0} = domR.
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Summary. The article consists of two parties. In the first one we
consider notion of nonnegative and nonpositive part of a real numbers. In
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The articles [23], [25], [7], [21], [3], [4], [1], [11], [13], [2], [18], [20], [22], [6], [24],
[8], [5], [9], [10], [19], [16], [17], [15], [12], and [14] provide the notation and
terminology for this paper.

1. Nonnegative and Nonpositive Part of a Real Number

In the sequel n is a natural number and r is a real number. We now define
two new functors. Let n, m be natural numbers. Then min(n,m) is a natural
number. Let r be a real number. The functor max+(r) yielding a real number
is defined as follows:

(Def.1) max+(r) = max(r, 0).

The functor max−(r) yielding a real number is defined as follows:

(Def.2) max−(r) = max(−r, 0).

We now state several propositions:

(1) For every real number r holds r = max+(r)−max−(r).

(2) For every real number r holds |r| = max+(r) + max−(r).
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(3) For every real number r holds 2 ·max+(r) = r + |r|.
(4) For all real numbers r, s such that 0 ≤ r holds max+(r ·s) = r ·max+(s).

(5) For all real numbers r, s holds max+(r + s) ≤ max+(r) + max+(s).

(6) For every real number r holds 0 ≤ max+(r) and 0 ≤ max−(r).

(7) For all real numbers r1, r2, s1, s2 such that r1 ≤ s1 and r2 ≤ s2 holds
max(r1, r2) ≤ max(s1, s2).

2. Properties of Real Function

One can prove the following propositions:

(8) For every non-empty set D and for every partial function F from D to �
and for all real numbers r, s such that r 6= 0 holds F −1{ sr} = (r F )−1 {s}.

(9) For every non-empty set D and for every partial function F from D to
� holds (0F ) −1 {0} = domF .

(10) For every non-empty set D and for every partial function F from D to �
and for every real number r such that 0 < r holds |F |−1{r} = F−1{−r, r}.

(11) For every non-empty set D and for every partial function F from D to
� holds |F | −1 {0} = F −1 {0}.

(12) For every non-empty set D and for every partial function F from D to
� and for every real number r such that r < 0 holds |F | −1 {r} = ∅.

(13) For all non-empty sets D, C and for every partial function F from D to
� and for every partial function G from C to � and for every real number
r such that r 6= 0 holds F and G are fiwerwise equipotent if and only if
r F and r G are fiwerwise equipotent.

(14) For all non-empty sets D, C and for every partial function F from D
to � and for every partial function G from C to � holds F and G are
fiwerwise equipotent if and only if −F and −G are fiwerwise equipotent.

(15) For all non-empty sets D, C and for every partial function F from D
to � and for every partial function G from C to � such that F and G are
fiwerwise equipotent holds |F | and |G| are fiwerwise equipotent.

We now define two new constructions. Let X, Y be sets. A non-empty set
of functions is said to be a non empty set of partial functions from X to Y if:

(Def.3) every element of it is a partial function from X to Y .

Let X, Y be sets. Then X→̇Y is a non empty set of partial functions from X
to Y . Let P be a non empty set of partial functions from X to Y . We see that
the element of P is a partial function from X to Y . Let D, C be non-empty
sets, and let X be a subset of D, and let c be an element of C. Then X 7−→ c
is an element of D→̇C. Let D be a non-empty set, and let F1, F2 be elements
of D→̇ � . Then F1 + F2 is an element of D→̇ � . Then F1 − F2 is an element
of D→̇ � . Then F1 F2 is an element of D→̇ � . Then F1

F2
is an element of D→̇ � .

Let D be a non-empty set, and let F be an element of D→̇ � . Then |F | is an
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element of D→̇ � . Then −F is an element of D→̇ � . Then 1
F is an element of

D→̇ � . Let D be a non-empty set, and let F be an element of D→̇ � , and let r
be a real number. Then r F is an element of D→̇ � . Let D be a non-empty set.
The functor +D→̇ � yielding a binary operation on D→̇ � is defined as follows:

(Def.4) for all elements F1, F2 of D→̇ � holds +D→̇ � (F1, F2) = F1 + F2.

The following propositions are true:

(16) For every non-empty set D holds +D→̇ � is commutative.

(17) For every non-empty set D holds +D→̇ � is associative.

(18) For every non-empty set D holds ΩD 7−→ 0 qua a real number is a unity
w.r.t. +D→̇ � .

(19) For every non-empty set D holds 1+D→̇ � = ΩD 7−→ 0 qua a real number.

(20) For every non-empty set D holds +D→̇ � has a unity.

Let D be a non-empty set, and let f be a finite sequence of elements of D→̇ � .
The functor

∑
f yielding an element of D→̇ � is defined as follows:

(Def.5)
∑
f = +D→̇ � 
 f .

Next we state several propositions:

(21) For every non-empty set D holds
∑

(ε(D→̇ � )) = ΩD 7−→ 0 qua a real
number.

(22) For every non-empty set D and for every element G of D→̇ � holds∑〈G〉 = G.

(23) For every non-empty set D and for every finite sequence f of elements
of D→̇ � and for every element G of D→̇ � holds

∑
(f � 〈G〉) =

∑
f +G.

(24) For every non-empty set D and for all finite sequences f1, f2 of elements
of D→̇ � holds

∑
(f1 � f2) =

∑
f1 +

∑
f2.

(25) For every non-empty set D and for every finite sequence f of elements
of D→̇ � and for every element G of D→̇ � holds

∑
(〈G〉 � f) = G+

∑
f .

(26) For every non-empty set D and for all elements G1, G2 of D→̇ � holds∑〈G1, G2〉 = G1 +G2.

(27) For every non-empty set D and for all elements G1, G2, G3 of D→̇ �
holds

∑〈G1, G2, G3〉 = G1 +G2 +G3.

(28) For every non-empty set D and for all finite sequences f , g of elements
of D→̇ � such that f and g are fiwerwise equipotent holds

∑
f =

∑
g.

We now define four new constructions. Let D be a non-empty set, and let
f be a finite sequence. The functor CHI(f,D) yielding a finite sequence of
elements of D→̇ � is defined by:

(Def.6) len CHI(f,D) = len f and for every n such that n ∈ dom CHI(f,D)
holds (CHI(f,D))(n) = χ

f(n),D.

Let D be a non-empty set, and let f be a finite sequence of elements of D→̇ � ,
and let R be a finite sequence of elements of � . The functor Rf yields a finite
sequence of elements of D→̇ � and is defined as follows:
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(Def.7) len(Rf) = min(lenR, len f) and for every n such that n ∈ dom(R f)
and for every partial function F from D to � and for every r such that
r = R(n) and F = f(n) holds (R f)(n) = r F .

Let D, C be non-empty sets, and let f be a finite sequence of elements of
D→̇C, and let d be an element of D. The functor f#d yields a finite sequence
of elements of C and is defined as follows:

(Def.8) len(f#d) = len f and for every natural number n and for every element
G of D→̇C such that n ∈ dom(f#d) and f(n) = G holds (f#d)(n) =
G(d).

Let D, C be non-empty sets, and let f be a finite sequence of elements of D→̇C,
and let d be an element of D. We say that d is common for dom f if and only
if:

(Def.9) for every element G of D→̇C and for every natural number n such that
n ∈ dom f and f(n) = G holds d ∈ domG.

One can prove the following propositions:

(29) For all non-empty sets D, C and for every finite sequence f of elements
of D→̇C and for every element d of D and for every natural number n
such that d is common for dom f and n 6= 0 holds d is common for dom
f

�
n.

(30) For all non-empty sets D, C and for every finite sequence f of elements
of D→̇C and for every element d of D and for every natural number n
such that d is common for dom f holds d is common for dom f � n .

(31) For every non-empty set D and for every element d of D and for every
finite sequence f of elements of D→̇ � such that len f 6= 0 holds d is
common for dom f if and only if d ∈ dom

∑
f .

(32) For all non-empty sets D, C and for every finite sequence f of elements
of D→̇C and for every element d of D and for every natural number n
holds (f

�
n)#d = (f#d)

�
n.

(33) For every non-empty set D and for every finite sequence f and for every
element d of D holds d is common for dom CHI(f,D).

(34) For every non-empty set D and for every element d of D and for every
finite sequence f of elements of D→̇ � and for every finite sequence R of
elements of � such that d is common for dom f holds d is common for
dom Rf .

(35) For every non-empty set D and for every finite sequence f and for every
finite sequence R of elements of � and for every element d of D holds d is
common for dom RCHI(f,D).

(36) For every non-empty set D and for every element d of D and for every
finite sequence f of elements of D→̇ � such that d is common for dom f
holds (

∑
f)(d) =

∑
(f#d).

We now define two new functors. Let D be a non-empty set, and let F be a
partial function from D to � . The functor max+(F ) yielding a partial function
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from D to � is defined as follows:

(Def.10) dom max+(F ) = domF and for every element d of D such that d ∈
dom max+(F ) holds (max+(F ))(d) = max+(F (d)).

The functor max−(F ) yielding a partial function from D to � is defined as
follows:

(Def.11) dom max−(F ) = domF and for every element d of D such that d ∈
dom max−(F ) holds (max−(F ))(d) = max−(F (d)).

The following propositions are true:

(37) For every non-empty set D and for every partial function F from D to
� holds F = max+(F ) −max−(F ) and |F | = max+(F ) + max−(F ) and
2 max+(F ) = F + |F |.

(38) For every non-empty set D and for every partial function F from D
to � and for every real number r such that 0 < r holds F −1 {r} =
(max+(F )) −1 {r}.

(39) For every non-empty set D and for every partial function F from D to
� holds F −1 ]−∞, 0] = (max+(F )) −1 {0}.

(40) For every non-empty set D and for every partial function F from D
to � and for every element d of D such that d ∈ domF holds 0 ≤
(max+(F ))(d).

(41) For every non-empty set D and for every partial function F from D
to � and for every real number r such that 0 < r holds F −1 {−r} =
(max−(F )) −1 {r}.

(42) For every non-empty set D and for every partial function F from D to
� holds F −1 [0,+∞[ = (max−(F )) −1 {0}.

(43) For every non-empty set D and for every partial function F from D
to � and for every element d of D such that d ∈ domF holds 0 ≤
(max−(F ))(d).

(44) For all non-empty sets D, C and for every partial function F from
D to � and for every partial function G from C to � such that F and
G are fiwerwise equipotent holds max+(F ) and max+(G) are fiwerwise
equipotent.

(45) For all non-empty sets D, C and for every partial function F from
D to � and for every partial function G from C to � such that F and
G are fiwerwise equipotent holds max−(F ) and max−(G) are fiwerwise
equipotent.

(46) For all non-empty sets D, C and for every partial function F from D to
� and for every partial function G from C to � such that domF is finite
and domG is finite and max+(F ) and max+(G) are fiwerwise equipotent
and max−(F ) and max−(G) are fiwerwise equipotent holds F and G are
fiwerwise equipotent.

(47) For every non-empty set D and for every partial function F from D to
� and for every set X holds max+(F )

�
X = max+(F

�
X).
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(48) For every non-empty set D and for every partial function F from D to
� and for every set X holds max−(F )

�
X = max−(F

�
X).

(49) For every non-empty set D and for every partial function F from D to
� if for every element d of D such that d ∈ domF holds F (d) ≥ 0, then
max+(F ) = F .

(50) For every non-empty set D and for every partial function F from D to
� if for every element d of D such that d ∈ domF holds F (d) ≤ 0, then
max−(F ) = −F .

Let D be a non-empty set, and let F be a partial function from D to � , and
let r be a real number. The functor F − r yields a partial function from D to �
and is defined as follows:

(Def.12) dom(F − r) = domF and for every element d of D such that d ∈
dom(F − r) holds (F − r)(d) = F (d)− r.

We now state four propositions:

(51) For every non-empty set D and for every partial function F from D to
� holds F − 0 = F .

(52) For every non-empty set D and for every partial function F from D to
� and for every real number r and for every set X holds F

�
X − r =

(F − r) �
X.

(53) For every non-empty set D and for every partial function F from D to
� and for all real numbers r, s holds F −1 {s+ r} = (F − r) −1 {s}.

(54) For all non-empty sets D, C and for every partial function F from D to
� and for every partial function G from C to � and for every real number
r holds F and G are fiwerwise equipotent if and only if F − r and G − r
are fiwerwise equipotent.

Let F be a partial function from � to � , and let X be a set. We say that F
is convex on X if and only if the conditions (Def.13) is satisfied.

(Def.13) (i) X ⊆ domF ,

(ii) for every real number p such that 0 ≤ p and p ≤ 1 and for all real
numbers r, s such that r ∈ X and s ∈ X and p · r + (1− p) · s ∈ X holds
F (p · r + (1− p) · s) ≤ p · F (r) + (1− p) · F (s).

The following propositions are true:

(55) Let a, b be real numbers. Let F be a partial function from � to � . Then
F is convex on [a, b] if and only if the following conditions are satisfied:

(i) [a, b] ⊆ domF ,

(ii) for every real number p such that 0 ≤ p and p ≤ 1 and for all real
numbers r, s such that r ∈ [a, b] and s ∈ [a, b] holds F (p · r+ (1− p) · s) ≤
p · F (r) + (1− p) · F (s).

(56) Let a, b be real numbers. Let F be a partial function from � to � . Then
F is convex on [a, b] if and only if the following conditions are satisfied:

(i) [a, b] ⊆ domF ,
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(ii) for all real numbers x1, x2, x3 such that x1 ∈ [a, b] and x2 ∈ [a, b] and

x3 ∈ [a, b] and x1 < x2 and x2 < x3 holds F (x1)−F (x2)
x1−x2

≤ F (x2)−F (x3)
x2−x3

.

(57) For every partial function F from � to � and for all sets X, Y such that
F is convex on X and Y ⊆ X holds F is convex on Y .

(58) For every partial function F from � to � and for every set X and for
every real number r holds F is convex on X if and only if F − r is convex
on X.

(59) For every partial function F from � to � and for every set X and for
every real number r such that 0 < r holds F is convex on X if and only
if r F is convex on X.

(60) For every partial function F from � to � and for every set X such that
X ⊆ domF holds 0F is convex on X.

(61) For all partial functions F , G from � to � and for every set X such that
F is convex on X and G is convex on X holds F +G is convex on X.

(62) For every partial function F from � to � and for every set X and for
every real number r such that F is convex on X holds max+(F − r) is
convex on X.

(63) For every partial function F from � to � and for every set X such that
F is convex on X holds max+(F ) is convex on X.

(64) id(Ω � ) is convex on � .

(65) For every real number r holds max+(id(Ω � ) − r) is convex on � .

Let D be a non-empty set, and let F be a partial function from D to � , and
let X be a set. Let us assume that dom(F

�
X) is finite. The functor FinS(F,X)

yields a non-increasing finite sequence of elements of � and is defined by:

(Def.14) F
�
X and FinS(F,X) are fiwerwise equipotent.

Next we state a number of propositions:

(66) For every non-empty set D and for every partial function F from D to �
and for every set X such that dom(F

�
X) is finite holds FinS(F,dom(F

�
X)) = FinS(F,X).

(67) For every non-empty set D and for every partial function F from D to �
and for every set X such that dom(F

�
X) is finite holds FinS(F

�
X,X) =

FinS(F,X).

(68) For every non-empty set D and for every element d of D and for every
set X and for every partial function F from D to � such that X is finite
and d ∈ dom(F

�
X) holds (FinS(F,X \ {d})) � 〈F (d)〉 and F

�
X are

fiwerwise equipotent.

(69) For every non-empty set D and for every element d of D and for every
set X and for every partial function F from D to � such that dom(F

�
X)

is finite and d ∈ dom(F
�
X) holds (FinS(F,X \ {d})) � 〈F (d)〉 and F

�
X

are fiwerwise equipotent.

(70) For every non-empty set D and for every partial function F from D to �
and for every set X such that dom(F

�
X) is finite holds len FinS(F,X) =
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card dom(F
�
X).

(71) For every non-empty set D and for every partial function F from D to
� holds FinS(F, ∅) = ε � .

(72) For every non-empty set D and for every partial function F from D to
� and for every element d of D such that d ∈ domF holds FinS(F, {d}) =
〈F (d)〉.

(73) Let D be a non-empty set. Let F be a partial function from D to � .
Then for every set X and for every element d of D such that dom(F

�
X)

is finite and d ∈ dom(F
�
X) and (FinS(F,X))(len FinS(F,X)) = F (d)

holds FinS(F,X) = (FinS(F,X \ {d})) � 〈F (d)〉.
(74) Let D be a non-empty set. Let F be a partial function from D to � .

Let X, Y be sets. Suppose dom(F
�
X) is finite and Y ⊆ X and for all

elements d1, d2 of D such that d1 ∈ dom(F
�
Y ) and d2 ∈ dom(F

�
(X \Y ))

holds F (d1) ≥ F (d2). Then FinS(F,X) = (FinS(F, Y )) � FinS(F,X \ Y ).

(75) Let D be a non-empty set. Let F be a partial function from D to � .
Let r be a real number. Let X be a set. Then for every element d of D
such that dom(F

�
X) is finite and d ∈ dom(F

�
X) holds

(FinS(F − r,X))(len FinS(F − r,X)) = (F − r)(d)
if and only if (FinS(F,X))(len FinS(F,X)) = F (d).

(76) For every non-empty set D and for every partial function F from D to
� and for every real number r and for every set X such that dom(F

�
X)

is finite holds FinS(F − r,X) = FinS(F,X) − (card dom(F
�
X) 7−→ r).

(77) For every non-empty set D and for every partial function F from D to �
and for every set X such that dom(F

�
X) is finite and for every element d

of D such that d ∈ dom(F
�
X) holds F (d) ≥ 0 holds FinS(max+(F ), X) =

FinS(F,X).

(78) For every non-empty set D and for every partial function F from D to
� and for every set X and for every real number r such that dom(F

�
X)

is finite and rng(F
�
X) = {r} holds FinS(F,X) = card dom(F

�
X) 7−→ r.

(79) For every non-empty set D and for every partial function F from D to
� and for all sets X, Y such that dom(F

�
(X ∪ Y )) is finite and X ∩

Y = ∅ holds FinS(F,X ∪ Y ) and (FinS(F,X)) � FinS(F, Y ) are fiwerwise
equipotent.

Let D be a non-empty set, and let F be a partial function from D to � , and
let X be a set. The functor

∑X
κ=0 F (κ) yields a real number and is defined as

follows:

(Def.15)
∑X
κ=0 F (κ) =

∑
FinS(F,X).

One can prove the following propositions:

(80) For every non-empty set D and for every partial function F from D to
� and for every set X and for every real number r such that dom(F

�
X)

is finite holds
∑X
κ=0(r F )(κ) = r ·∑X

κ=0 F (κ).

(81) For every non-empty set D and for all partial functions F , G from D to
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� and for every set X such that dom(F
�
X) is finite and dom(F

�
X) =

dom(G
�
X) holds

∑X
κ=0(F +G)(κ) =

∑X
κ=0 F (κ) +

∑X
κ=0G(κ).

(82) For every non-empty set D and for all partial functions F , G from D to
� and for every set X such that dom(F

�
X) is finite and dom(F

�
X) =

dom(G
�
X) holds

∑X
κ=0(F −G)(κ) =

∑X
κ=0 F (κ) −∑X

κ=0G(κ).

(83) For every non-empty set D and for every partial function F from D to
� and for every set X and for every real number r such that dom(F

�
X)

is finite holds
∑X
κ=0(F − r)(κ) =

∑X
κ=0 F (κ)− r · card dom(F

�
X).

(84) For every non-empty set D and for every partial function F from D to

� holds
∑∅
κ=0 F (κ) = 0.

(85) For every non-empty set D and for every partial function F from D to

� and for every element d of D such that d ∈ domF holds
∑{d}
κ=0 F (κ) =

F (d).

(86) For every non-empty set D and for every partial function F from D to
� and for all sets X, Y such that dom(F

�
(X∪Y )) is finite and X∩Y = ∅

holds
∑X∪Y
κ=0 F (κ) =

∑X
κ=0 F (κ) +

∑Y
κ=0 F (κ).

(87) For every non-empty set D and for every partial function F from D
to � and for all sets X, Y such that dom(F

�
(X ∪ Y )) is finite and

dom(F
�
X)∩dom(F

�
Y ) = ∅ holds

∑X∪Y
κ=0 F (κ) =

∑X
κ=0 F (κ)+

∑Y
κ=0 F (κ).
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[6] Czes law Byliński. Finite sequences and tuples of elements of a non-empty sets. Formal-

ized Mathematics, 1(3):529–536, 1990.
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Summary. Notions of domains of submodules, join and meet of
finite sequences of submodules and quotient modules. A few basic theo-
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[18], [7], [6], [8], [26], [23], [22], [19], [14], [13], [11], [12], [9], and [10] provide the
terminology and notation for this paper.

1. Auxiliary theorems on free-modules

For simplicity we follow a convention: x is arbitrary, K is an associative ring, r
is a scalar of K, V , M , N are left modules over K, a, b, a1, a2 are vectors of V ,
A, A1, A2 are subsets of V , l is a linear combination of A, W is a submodule
of V , and L1 is a finite sequence of elements of Sub(V ). One can prove the
following propositions:

(1) If K is non-trivial and A is linearly independent, then 0V /∈ A.

(2) If a /∈ A, then l(a) = 0K .

(3) If K is trivial, then for every l holds support l = ∅ and Lin(A) is trivial.

(4) If V is non-trivial, then for every A such that A is base holds A 6= ∅.
(5) If A1 ∪ A2 is linearly independent and A1 ∩ A2 = ∅, then Lin(A1) ∩

Lin(A2) = 0V .

(6) If A is base and A = A1 ∪ A2 and A1 ∩ A2 = ∅, then V is the direct
sum of Lin(A1) and Lin(A2).
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2. Domains of submodules

Let us consider K, V . A non-empty set is called a non empty set of submodules
of V if:

(Def.1) if x ∈ it, then x is a strict submodule of V .

Let us consider K, V . Then Sub(V ) is a non empty set of submodules of V .
Let us consider K, V , and let D be a non empty set of submodules of V . We
see that the element of D is a strict submodule of V . Let us consider K, V , and
let D be a non empty set of submodules of V . One can verify that there exists
a strict element of D.

We now state two propositions:

(7) If x is an element of Sub(V ) qua a non-empty set, then x is an element
of Sub(V ).

(8) If x ∈ Sub(V ), then x is an element of Sub(V ).

We now define two new modes. Let us consider K, V . Let us assume that
V is non-trivial. A strict submodule of V is called a line of V if:

(Def.2) there exists a such that a 6= 0V and it =
∏∗ a.

Let us consider K, V . A non-empty set is said to be a non empty set of lines of
V if:

(Def.3) if x ∈ it, then x is a line of V .

We now state two propositions:

(9) If W is strict and the group structure of W is strict, then W is an
element of Sub(V ) qua a non-empty set.

(10) If V is non-trivial, then every line of V is an element of Sub(V ).

We now define three new constructions. Let us consider K, V . Let us assume
that V is non-trivial. The functor lines(V ) yields a non empty set of lines of V
and is defined as follows:

(Def.4) lines(V ) is the set of all lines of V .

Let us consider K, V , and let D be a non empty set of lines of V . We see that
the element of D is a line of V . Let us consider K, V . Let us assume that V is
non-trivial and V is free. A strict submodule of V is said to be a hiperplane of
V if:

(Def.5) the group structure of it is strict and there exists a such that a 6= 0V
and V is the direct sum of

∏∗ a and it.

Let us consider K, V . A non-empty set is called a non empty set of hiperplanes
of V if:

(Def.6) if x ∈ it, then x is a hiperplane of V .

One can prove the following proposition

(11) If V is non-trivial and V is free, then every hiperplane of V is an element
of Sub(V ).
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Let us consider K, V . Let us assume that V is non-trivial and V is free. The
functor hiperplanes(V ) yielding a non empty set of hiperplanes of V is defined
by:

(Def.7) hiperplanes(V ) is the set of all hiperplanes of V .

Let us consider K, V , and let D be a non empty set of hiperplanes of V . We
see that the element of D is a hiperplane of V .

3. Join and meet of finite sequences of submodules

We now define two new functors. Let us consider K, V , L1. The functor
∑
L1

yielding an element of Sub(V ) is defined as follows:

(Def.8)
∑
L1 = SubJoinV 
 L1.

The functor
⋂
L1 yields an element of Sub(V ) and is defined as follows:

(Def.9)
⋂
L1 = SubMeetV 
 L1.

The following propositions are true:

(12) For every lattice G holds the join operation of G is commutative and
the join operation of G is associative and the meet operation of G is
commutative and the meet operation of G is associative.

(13) For every element a of Sub(V ) holds the group structure of a is strict.

(14) SubJoinV is commutative and SubJoinV is associative and SubJoinV
has a unity and 0V = 1SubJoinV .

(15) If the group structure of V is strict, then SubMeetV is commutative and
SubMeetV is associative and SubMeetV has a unity and ΩV = 1SubMeet V .

4. Sum of subsets of module

Let us consider K, V , A1, A2. The functor A1 +A2 yields a subset of V and is
defined by:

(Def.10) x ∈ A1 + A2 if and only if there exist a1, a2 such that a1 ∈ A1 and
a2 ∈ A2 and x = a1 + a2.

5. Vector of subset

Let us consider K, V , A. Let us assume that A 6= ∅. A vector of V is said to
be a vector of A if:

(Def.11) it is an element of A.

One can prove the following propositions:
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(16) If A1 6= ∅ and A1 ⊆ A2, then for every x such that x is a vector of A1

holds x is a vector of A2.

(17) a2 ∈ a1 +W if and only if a1 − a2 ∈W .

(18) a1 +W = a2 +W if and only if a1 − a2 ∈W .

We now define two new functors. Let us consider K, V , W . The functor
V � W yields a non-empty set and is defined by:

(Def.12) x ∈ V � W if and only if there exists a such that x = a+W .

Let us consider K, V , W , a. The functor a � W yields an element of V � W
and is defined as follows:

(Def.13) a � W = a+W .

We now state two propositions:

(19) For every element x of V � W there exists a such that x = a � W .

(20) a1 � W = a2 � W if and only if a1 − a2 ∈W .

In the sequel S1, S2 will denote elements of V � W . We now define five new
functors. Let us consider K, V , W , S1. The functor −S1 yields an element of
V � W and is defined by:

(Def.14) if S1 = a � W , then −S1 = (−a) � W .

Let us consider S2. The functor S1 + S2 yields an element of V � W and is
defined by:

(Def.15) if S1 = a1 � W and S2 = a2 � W , then S1 + S2 = (a1 + a2) � W .

Let us consider K, V , W . The functor COMPL(W ) yields a unary operation
on V � W and is defined as follows:

(Def.16) (COMPL(W ))(S1) = −S1.

The functor ADD(W ) yields a binary operation on V � W and is defined by:

(Def.17) (ADD(W ))(S1, S2) = S1 + S2.

Let us consider K, V , W . The functor V (W ) yields a strict group structure and
is defined by:

(Def.18) V (W ) = 〈V � W,ADD(W ),COMPL(W ), 0V � W 〉.
One can prove the following proposition

(21) a � W is an element of V (W ).

Let us consider K, V , W , a. The functor a(W ) yielding an element of V (W )
is defined by:

(Def.19) a(W ) = a � W .

We now state four propositions:

(22) For every element x of V (W ) there exists a such that x = a(W ).

(23) a1(W ) = a2(W ) if and only if a1 − a2 ∈W .

(24) a(W ) + b(W ) = (a + b)(W ) and −a(W ) = (−a)(W ) and 0V (W ) =
0V (W ).

(25) V (W ) is a strict Abelian group.



domains of submodules, join and meet . . . 293

Let us consider K, V , W . Then V (W ) is a strict Abelian group.

In the sequel S is an element of V (W ). We now define three new functors.
Let us consider K, V , W , r, S. The functor r · S yielding an element of V (W )
is defined by:

(Def.20) if S = a(W ), then r · S = (r · a)(W ).

Let us consider K, V , W . The functor LMULT(W ) yielding a function from
[: the carrier of K, the carrier of V (W ) :] into the carrier of V (W ) is defined by:

(Def.21) (LMULT(W ))(r, S) = r · S.

Let us consider K, V , W . The functor V
W yielding a strict vector space structure

over K is defined as follows:

(Def.22) V
W = 〈the carrier of V (W ), the addition of V (W ), the reverse-map of

V (W ), the zero of V (W ),LMULT(W )〉.
We now state two propositions:

(26) a(W ) is a vector of V
W .

(27) Every vector of V
W is an element of V (W ).

Let us consider K, V , W , a. The functor a
W yields a vector of V

W and is
defined as follows:

(Def.23) a
W = a(W ).

One can prove the following four propositions:

(28) For every vector x of V
W there exists a such that x = a

W .

(29) a1
W = a2

W if and only if a1 − a2 ∈W .

(30) a
W + b

W = a+b
W and r · aW = r·a

W .

(31) V
W is a strict left module over K.

Let us consider K, V , W . Then V
W is a strict left module over K.

6. Quotient modules

In this article we present several logical schemes. The scheme SetEq deals with
a unary predicate P, and states that:

for all sets X1, X2 such that for an arbitrary x holds x ∈ X1 if and only if
P[x] and for an arbitrary x holds x ∈ X2 if and only if P[x] holds X1 = X2

for all values of the parameter.
The scheme DomainEq deals with a unary predicate P, and states that:
for all non-empty sets X1, X2 such that for an arbitrary x holds x ∈ X1 if

and only if P[x] and for an arbitrary x holds x ∈ X2 if and only if P[x] holds
X1 = X2

for all values of the parameter.
The scheme ElementEq concerns a set A, and a unary predicate P, and states

that:
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for all elements X1, X2 of A such that for an arbitrary x holds x ∈ X1 if
and only if P[x] and for an arbitrary x holds x ∈ X2 if and only if P[x] holds
X1 = X2

for all values of the parameters.
The scheme TypeEq deals with a set A, a set B, and a unary predicate P,

and states that:
A = B

provided the parameters meet the following conditions:
• for an arbitrary x holds x ∈ A if and only if P[x],
• for an arbitrary x holds x ∈ B if and only if P[x].

The scheme FuncEq concerns a non-empty set A, a non-empty set B, and a
unary functor F and states that:

for all functions f1, f2 from A into B such that for every element x of A holds
f1(x) = F(x) and for every element x of A holds f2(x) = F(x) holds f1 = f2

for all values of the parameters.

The scheme UnOpEq deals with a non-empty set A and a unary functor F
and states that:

for all unary operations f1, f2 on A such that for every element a of A holds
f1(a) = F(a) and for every element a of A holds f2(a) = F(a) holds f1 = f2

for all values of the parameters.

The scheme BinOpEq concerns a non-empty set A and a binary functor F
and states that:

for all binary operations f1, f2 on A such that for all elements a, b of A holds
f1(a, b) = F(a, b) and for all elements a, b of A holds f2(a, b) = F(a, b) holds
f1 = f2

for all values of the parameters.

The scheme TriOpEq deals with a non-empty set A and a ternary functor F
and states that:

for all ternary operations f1, f2 on A such that for all elements a, b, c of
A holds f1(a, b, c) = F(a, b, c) and for all elements a, b, c of A holds f2(a, b,
c) = F(a, b, c) holds f1 = f2

for all values of the parameters.

The scheme QuaOpEq deals with a non-empty set A and a 4-ary functor F
and states that:

for all quadrary operations f1, f2 on A such that for all elements a, b, c, d
of A holds f1(a, b, c, d) = F(a, b, c, d) and for all elements a, b, c, d of A holds
f2(a, b, c, d) = F(a, b, c, d) holds f1 = f2

for all values of the parameters.
The scheme Fraenkel1 Ex concerns a non-empty set A, a non-empty set B, a

unary functor F yielding an element of B, and a unary predicate P, and states
that:

there exists a subset S of B such that S = {F(x) : P[x]}, where x ranges
over elements of A
for all values of the parameters.



domains of submodules, join and meet . . . 295

The scheme Fr 0 concerns a non-empty set A, an element B of A, and a
unary predicate P, and states that:
P[B]

provided the parameters meet the following requirement:
• B ∈ {a : P[a]}, where a ranges over elements of A.
The scheme Fr 1 deals with a set A, a non-empty set B, an element C of B,

and a unary predicate P, and states that:
C ∈ A if and only if P[C]

provided the following condition is satisfied:
• A = {a : P[a]}, where a ranges over elements of B.
The scheme Fr 2 concerns a set A, a non-empty set B, an element C of B,

and a unary predicate P, and states that:
P[C]

provided the following conditions are met:
• C ∈ A,
• A = {a : P[a]}, where a ranges over elements of B.
The scheme Fr 3 concerns a constant A, a set B, a non-empty set C, and a

unary predicate P, and states that:
A ∈ B if and only if there exists an element a of C such that A = a and P[a]

provided the parameters meet the following condition:
• B = {a : P[a]}, where a ranges over elements of C.
The scheme Fr 4 concerns a non-empty set A, a non-empty set B, a set C,

an element D of A, a unary functor F , and two binary predicates P and Q, and
states that:
D ∈ F(C) if and only if for every element b of B such that b ∈ C holds P[D,

b]
provided the parameters meet the following conditions:
• F(C) = {a : Q[a, C]}, where a ranges over elements of A,
• Q[D, C] if and only if for every element b of B such that b ∈ C holds
P[D, b].
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Summary. Let X be a topological space and let A be a subset
of X. Recall that A is nowhere dense in X if its closure is a boundary
subset of X, i.e., if IntA = ∅ (see [2]). We introduce here the concept of
everywhere dense subsets in X, which is dual to the above one. Namely,
A is said to be everywhere dense in X if its interior is a dense subset of
X, i.e., if IntA = the carrier of X.

Our purpose is to list a number of properties of such sets (comp.
[7]). As a sample we formulate their two dual characterizations. The first
one characterizes thin sets in X : A is nowhere dense iff for every open
nonempty subset G of X there is an open nonempty subset of X contained
in G and disjoint from A. The corresponding second one characterizes
thick sets in X : A is everywhere dense iff for every closed subset F of
X distinct from the carrier of X there is a closed subset of X distinct
from the carrier of X, which contains F and together with A covers the
carrier of X. We also give some connections between both these concepts.
Of course, A is everywhere (nowhere) dense in X iff its complement is
nowhere (everywhere) dense. Moreover, A is nowhere dense iff there are
two subsets of X, C boundary closed and B everywhere dense, such that
A = C ∩ B and C ∪ B covers the carrier of X. Dually, A is everywhere
dense iff there are two disjoint subsets of X, C open dense and B nowhere
dense, such that A = C ∪B.

Note that some relationships between everywhere (nowhere) dense
sets in X and everywhere (nowhere) dense sets in subspaces of X are also
indicated.

MML Identifier: TOPS 3.

The notation and terminology used here are introduced in the following papers:
[5], [6], [3], [7], [4], and [1].
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1. Selected Properties of Subsets of a Topological Space

In the sequel X will denote a topological space and A, B will denote subsets of
X. We now state several propositions:

(1) A = ∅X if and only if Ac = ΩX and also A = ∅ if and only if Ac = the
carrier of X.

(2) A = ΩX if and only if Ac = ∅X and also A = the carrier of X if and
only if Ac = ∅.

(3) IntA ∩B ⊆ A ∩B.

(4) Int(A ∪B) ⊆ A ∪ IntB.

(5) If A is closed, then Int(A ∪B) ⊆ A ∪ IntB.

(6) If A is closed, then Int(A ∪B) = Int(A ∪ IntB).

(7) If A ∩ IntA = ∅, then IntA = ∅.
(8) If A ∪ IntA = the carrier of X, then IntA = the carrier of X.

2. Special Subsets of a Topological Space

Let X be a topological space. Let us observe that a subset of X is boundary if:

(Def.1) Int it = ∅.
We now state several propositions:

(9) ∅X is boundary.

(10) If A is boundary, then A 6= the carrier of X.

(11) If B is boundary and A ⊆ B, then A is boundary.

(12) A is boundary if and only if for every subset C of X such that Ac ⊆ C
and C is closed holds C = the carrier of X.

(13) A is boundary if and only if for every subset G of X such that G 6= ∅
and G is open holds Ac ∩G 6= ∅.

(14) A is boundary if and only if for every subset F of X such that F is
closed holds IntF = Int(F ∪A).

(15) If A is boundary or B is boundary, then A ∩B is boundary.

Let X be a topological space. Let us observe that a subset of X is dense if:

(Def.2) it = the carrier of X.

Next we state several propositions:

(16) ΩX is dense.

(17) If A is dense, then A 6= ∅.
(18) A is dense if and only if Ac is boundary.

(19) A is dense if and only if for every subset C of X such that A ⊆ C and
C is closed holds C = the carrier of X.
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(20) A is dense if and only if for every subset G of X such that G is open
holds G = G ∩A.

(21) If A is dense or B is dense, then A ∪B is dense.

Let X be a topological space. Let us observe that a subset of X is nowhere
dense if:

(Def.3) Int it = ∅.
The following propositions are true:

(22) ∅X is nowhere dense.

(23) If A is nowhere dense, then A 6= the carrier of X.

(24) If A is nowhere dense, then A is nowhere dense.

(25) If A is nowhere dense, then A is not dense.

(26) If B is nowhere dense and A ⊆ B, then A is nowhere dense.

(27) A is nowhere dense if and only if there exists a subset C of X such that
A ⊆ C and C is closed and C is boundary.

(28) A is nowhere dense if and only if for every subset G of X such that
G 6= ∅ and G is open there exists a subset H of X such that H ⊆ G and
H 6= ∅ and H is open and A ∩H = ∅.

(29) If A is nowhere dense or B is nowhere dense, then A ∩ B is nowhere
dense.

(30) If A is nowhere dense and B is boundary, then A ∪B is boundary.

Let X be a topological space. A subset of X is everywhere dense if:

(Def.4) Int it = ΩX .

Let X be a topological space. Let us observe that a subset of X is everywhere
dense if:

(Def.5) Int it = the carrier of X.

One can prove the following propositions:

(31) ΩX is everywhere dense.

(32) If A is everywhere dense, then IntA is everywhere dense.

(33) If A is everywhere dense, then A is dense.

(34) If A is everywhere dense, then A 6= ∅.
(35) A is everywhere dense if and only if IntA is dense.

(36) If A is open and A is dense, then A is everywhere dense.

(37) If A is everywhere dense, then A is not boundary.

(38) If A is everywhere dense and A ⊆ B, then B is everywhere dense.

(39) A is everywhere dense if and only if Ac is nowhere dense.

(40) A is nowhere dense if and only if Ac is everywhere dense.

(41) A is everywhere dense if and only if there exists a subset C of X such
that C ⊆ A and C is open and C is dense.
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(42) A is everywhere dense if and only if for every subset F of X such that
F 6= the carrier of X and F is closed there exists a subset H of X such
that F ⊆ H and H 6= the carrier of X and H is closed and A ∪H = the
carrier of X.

(43) If A is everywhere dense or B is everywhere dense, then A ∪ B is ev-
erywhere dense.

(44) If A is everywhere dense and B is everywhere dense, then A ∩ B is
everywhere dense.

(45) If A is everywhere dense and B is dense, then A ∩B is dense.

(46) If A is dense and B is nowhere dense, then A \ B is dense.

(47) If A is everywhere dense and B is boundary, then A \B is dense.

(48) If A is everywhere dense and B is nowhere dense, then A \ B is every-
where dense.

In the sequel D denotes a subset of X. We now state four propositions:

(49) If D is everywhere dense, then there exist subsets C, B of X such that
C is open and C is dense and B is nowhere dense and C ∪ B = D and
C ∩B = ∅.

(50) If D is everywhere dense, then there exist subsets C, B of X such
that C is open and C is dense and B is closed and B is boundary and
C ∪D ∩B = D and C ∩B = ∅ and C ∪B = the carrier of X.

(51) If D is nowhere dense, then there exist subsets C, B of X such that C
is closed and C is boundary and B is everywhere dense and C ∩ B = D
and C ∪B = the carrier of X.

(52) If D is nowhere dense, then there exist subsets C, B of X such that C is
closed and C is boundary and B is open and B is dense and C∩(D∪B) =
D and C ∩B = ∅ and C ∪B = the carrier of X.

3. Properties of Subsets in Subspaces

In the sequel Y0 will denote a subspace of X. One can prove the following
propositions:

(53) For every subset A of X and for every subset B of Y0 such that B ⊆ A
holds B ⊆ A.

(54) For all subsets C, A of X and for every subset B of Y0 such that C is
closed and C ⊆ the carrier of Y0 and A ⊆ C and A = B holds A = B.

(55) For every closed subspace Y0 of X and for every subset A of X and for
every subset B of Y0 such that A = B holds A = B.

(56) For every subset A of X and for every subset B of Y0 such that A ⊆ B
holds IntA ⊆ IntB.

(57) For all subsets C, A of X and for every subset B of Y0 such that C is
open and C ⊆ the carrier of Y0 and A ⊆ C and A = B holds IntA = IntB.
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(58) For every open subspace Y0 of X and for every subset A of X and for
every subset B of Y0 such that A = B holds IntA = IntB.

In the sequel X0 denotes a subspace of X. The following propositions are
true:

(59) For every subset A of X and for every subset B of X0 such that A ⊆ B
holds if A is dense, then B is dense.

(60) For all subsets C, A of X and for every subset B of X0 such that
C ⊆ the carrier of X0 and A ⊆ C and A = B holds C is dense and B is
dense if and only if A is dense.

(61) For every subset A of X and for every subset B of X0 such that A ⊆ B
holds if A is everywhere dense, then B is everywhere dense.

(62) For all subsets C, A of X and for every subset B of X0 such that C is
open and C ⊆ the carrier of X0 and A ⊆ C and A = B holds C is dense
and B is everywhere dense if and only if A is everywhere dense.

(63) For every open subspace X0 of X and for all subsets A, C of X and for
every subset B of X0 such that C = the carrier of X0 and A = B holds C
is dense and B is everywhere dense if and only if A is everywhere dense.

(64) For all subsets C, A of X and for every subset B of X0 such that
C ⊆ the carrier of X0 and A ⊆ C and A = B holds C is everywhere dense
and B is everywhere dense if and only if A is everywhere dense.

(65) For every subset A of X and for every subset B of X0 such that A ⊆ B
holds if B is boundary, then A is boundary.

(66) For all subsets C, A of X and for every subset B of X0 such that C
is open and C ⊆ the carrier of X0 and A ⊆ C and A = B holds if A is
boundary, then B is boundary.

(67) For every open subspace X0 of X and for every subset A of X and for
every subset B of X0 such that A = B holds A is boundary if and only if
B is boundary.

(68) For every subset A of X and for every subset B of X0 such that A ⊆ B
holds if B is nowhere dense, then A is nowhere dense.

(69) For all subsets C, A of X and for every subset B of X0 such that C
is open and C ⊆ the carrier of X0 and A ⊆ C and A = B holds if A is
nowhere dense, then B is nowhere dense.

(70) For every open subspace X0 of X and for every subset A of X and for
every subset B of X0 such that A = B holds A is nowhere dense if and
only if B is nowhere dense.

4. Subsets in Topological Spaces with the same Topological
Structures

In the sequel X1, X2 will be topological spaces. Next we state several proposi-
tions:
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(71) If the carrier of X1 = the carrier of X2, then for every subset C1 of X1

and for every subset C2 of X2 holds C1 = C2 if and only if C1
c = C2

c.

(72) If the carrier of X1 = the carrier of X2 and for every subset C1 of X1

and for every subset C2 of X2 such that C1 = C2 holds C1 is open if and
only if C2 is open, then the topological structure of X1 = the topological
structure of X2.

(73) If the carrier of X1 = the carrier of X2 and for every subset C1 of X1

and for every subset C2 of X2 such that C1 = C2 holds C1 is closed if and
only if C2 is closed, then the topological structure of X1 = the topological
structure of X2.

(74) If the carrier of X1 = the carrier of X2 and for every subset C1 of X1

and for every subset C2 of X2 such that C1 = C2 holds IntC1 = IntC2,
then the topological structure of X1 = the topological structure of X2.

(75) If the carrier of X1 = the carrier of X2 and for every subset C1 of X1

and for every subset C2 of X2 such that C1 = C2 holds C1 = C2, then the
topological structure of X1 = the topological structure of X2.

In the sequel D1 is a subset of X1 and D2 is a subset of X2. One can prove
the following propositions:

(76) If D1 = D2 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is open, then D2 is open.

(77) If D1 = D2 and the topological structure of X1 = the topological struc-
ture of X2, then IntD1 = IntD2.

(78) If D1 ⊆ D2 and the topological structure of X1 = the topological struc-
ture of X2, then IntD1 ⊆ IntD2.

(79) If D1 = D2 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is closed, then D2 is closed.

(80) If D1 = D2 and the topological structure of X1 = the topological struc-
ture of X2, then D1 = D2.

(81) If D1 ⊆ D2 and the topological structure of X1 = the topological struc-
ture of X2, then D1 ⊆ D2.

(82) If D2 ⊆ D1 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is boundary, then D2 is boundary.

(83) If D1 ⊆ D2 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is dense, then D2 is dense.

(84) If D2 ⊆ D1 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is nowhere dense, then D2 is nowhere dense.

(85) If D1 ⊆ D2 and the topological structure of X1 = the topological struc-
ture of X2, then if D1 is everywhere dense, then D2 is everywhere dense.
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Summary. A topological space X is called almost discrete if ev-
ery open subset of X is closed; equivalently, if every closed subset of
X is open (comp. [6],[5]). Almost discrete spaces were investigated in
Mizar formalism in [2]. We present here a few properties of such spaces
supplementary to those given in [2].

Most interesting is the following characterization : A topological space
X is almost discrete iff every nonempty subset of X is not nowhere dense.
Hence, X is non almost discrete iff there is an everywhere dense subset of
X different from the carrier of X. We have an analogous characterization
of discrete spaces : A topological space X is discrete iff every nonempty
subset of X is not boundary. Hence, X is non discrete iff there is a
dense subset of X different from the carrier of X. It is well known that
the class of all almost discrete spaces contains both the class of discrete
spaces and the class of anti-discrete spaces (see e.g., [2]). Observations
presented here show that the class of all almost discrete non discrete
spaces is not contained in the class of anti-discrete spaces and the class of
all almost discrete non anti-discrete spaces is not contained in the class
of discrete spaces. Moreover, the class of almost discrete non discrete
non anti-discrete spaces is nonempty. To analyse these interdependencies
we use various examples of topological spaces constructed here in Mizar
formalism.

MML Identifier: TEX 1.

The papers [12], [14], [9], [11], [7], [13], [8], [15], [10], [4], [1], [2], and [3] provide
the notation and terminology for this paper.

1. Properties of Subsets of a Topological Space with Modified
Topology

In the sequel X will be a topological space and D will be a subset of X. One
can prove the following propositions:
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(1) For every subset B of X and for every subset C of the X modified w.r.t.
D such that B = C holds if B is open, then C is open.

(2) For every subset B of X and for every subset C of the X modified w.r.t.
D such that B = C holds if B is closed, then C is closed.

(3) For every subset C of the X modified w.r.t. Dc such that C = D holds
C is closed.

(4) For every subset C of the X modified w.r.t. D such that C = D holds
if D is dense, then C is dense and C is open.

(5) For every subset C of the X modified w.r.t. D such that D ⊆ C holds
if D is dense, then C is everywhere dense.

(6) For every subset C of the X modified w.r.t. Dc such that C = D holds
if D is boundary, then C is boundary and C is closed.

(7) For every subset C of the X modified w.r.t. Dc such that C ⊆ D holds
if D is boundary, then C is nowhere dense.

2. Trivial Topological Spaces

Let us observe that a 1-sorted structure is trivial if:

(Def.1) there exists an element d of the carrier of it such that the carrier of
it = {d}.

One can verify the following observations:

∗ there exists a 1-sorted structure which is trivial and strict,

∗ there exists a 1-sorted structure which is non trivial and strict,

∗ there exists a topological structure which is trivial and strict, and

∗ there exists a non trivial strict topological structure.

One can prove the following proposition

(8) For every Y being a trivial topological structure such that the topology
of Y is non-empty holds if Y is almost discrete, then Y is topological
space-like.

One can verify the following observations:

∗ there exists a trivial strict topological space,

∗ every topological space which is trivial is also anti-discrete and discrete,

∗ every discrete anti-discrete topological space is trivial,

∗ there exists a topological space which is non trivial and strict,

∗ every non discrete topological space is non trivial, and

∗ every non anti-discrete topological space is non trivial.
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3. Examples of Discrete and Anti-discrete Topological Spaces

We now define two new functors. Let D be a set. The functor 2D∗ yielding a
non-empty family of subsets of D is defined by:

(Def.2) 2D∗ = {∅, D}.
Let D be a non-empty set. The functor ADTS(D) yields an anti-discrete strict
topological space and is defined as follows:

(Def.3) ADTS(D) = 〈D, 2D∗ 〉.
We now state several propositions:

(9) For every anti-discrete topological space X holds the topological struc-
ture of X = ADTS(the carrier of X).

(10) For every topological space X such that the topological structure of
X = the topological structure of ADTS(the carrier of X) holds X is
anti-discrete.

(11) For every anti-discrete topological space X and for every subset A of X
holds if A is empty, then A = ∅ and also if A is non-empty, then A = the
carrier of X.

(12) For every anti-discrete topological space X and for every subset A of X
holds if A 6= the carrier of X, then IntA = ∅ and also if A = the carrier
of X, then IntA = the carrier of X.

(13) For every topological space X if for every subset A of X such that A is
non-empty holds A = the carrier of X, then X is anti-discrete.

(14) For every topological space X if for every subset A of X such that
A 6= the carrier of X holds IntA = ∅, then X is anti-discrete.

(15) For every anti-discrete topological space X and for every subset A of
X holds if A 6= ∅, then A is dense and also if A 6= the carrier of X, then
A is boundary.

(16) For every topological space X if for every subset A of X such that A 6= ∅
holds A is dense, then X is anti-discrete.

(17) For every topological space X if for every subset A of X such that
A 6= the carrier of X holds A is boundary, then X is anti-discrete.

Let D be a set. Then 2D is a non-empty family of subsets of D. Let D be a
non-empty set. The functor DTS(D) yielding a discrete strict topological space
is defined by:

(Def.4) DTS(D) = 〈D, 2D〉.
One can prove the following propositions:

(18) For every discrete topological space X holds the topological structure
of X = DTS(the carrier of X).

(19) For every topological spaceX such that the topological structure ofX =
the topological structure of DTS(the carrier of X) holds X is discrete.
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(20) For every discrete topological space X and for every subset A of X
holds A = A and IntA = A.

(21) For every topological space X if for every subset A of X holds A = A,
then X is discrete.

(22) For every topological space X if for every subsetA ofX holds IntA = A,
then X is discrete.

(23) For every non-empty set D holds ADTS(D) = DTS(D) if and only if
there exists an element d0 of D such that D = {d0}.

Let us note that there exists a discrete non anti-discrete strict topological
space and there exists an anti-discrete non discrete strict topological space.

4. An Example of a Topological Space

Let D be a set, and let F be a family of subsets of D, and let S be a set. Then
F \ S is a family of subsets of D. Let D be a non-empty set, and let d0 be an
element of D. The functor STS(D, d0) yields a strict topological space and is
defined as follows:

(Def.5) STS(D, d0) = 〈D, 2D \ {A : d0 ∈ A ∧ A 6= D}〉, where A ranges over
subsets of D.

In the sequel D denotes a non-empty set and d0 denotes an element of D.
One can prove the following propositions:

(24) For every subset A of STS(D, d0) holds if {d0} ⊆ A, then A is closed
and also if A is non-empty and A is closed, then {d0} ⊆ A.

(25) If D \{d0} is non-empty, then for every subset A of STS(D, d0) holds if
A = {d0}, then A is closed and A is boundary and also if A is non-empty
and A is closed and A is boundary, then A = {d0}.

(26) For every subset A of STS(D, d0) holds if A ⊆ D \{d0}, then A is open
and also if A 6= D and A is open, then A ⊆ D \ {d0}.

(27) If D \ {d0} is non-empty, then for every subset A of STS(D, d0) holds
if A = D \ {d0}, then A is open and A is dense and also if A 6= D and A
is open and A is dense, then A = D \ {d0}.

Let us observe that there exists a non anti-discrete non discrete strict topo-
logical space.

The following propositions are true:

(28) For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, d0) if and only if the carrier of Y = D
and for every subset A of Y holds if {d0} ⊆ A, then A is closed and also
if A is non-empty and A is closed, then {d0} ⊆ A.

(29) For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, d0) if and only if the carrier of Y = D
and for every subset A of Y holds if A ⊆ D \ {d0}, then A is open and
also if A 6= D and A is open, then A ⊆ D \ {d0}.
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(30) For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, d0) if and only if the carrier of Y = D
and for every non-empty subset A of Y holds A = A ∪ {d0}.

(31) For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, d0) if and only if the carrier of Y = D
and for every subset A of Y such that A 6= D holds IntA = A \ {d0}.

(32) STS(D, d0) = ADTS(D) if and only if D = {d0}.
(33) STS(D, d0) = DTS(D) if and only if D = {d0}.
(34) For every non-empty set D and for every element d0 of D and for

every subset A of STS(D, d0) such that A = {d0} holds DTS(D) = the
STS(D, d0) modified w.r.t. A.

5. Discrete and Almost Discrete Spaces

Let us observe that a topological space is discrete if:

(Def.6) for every non-empty subset A of it holds A is not boundary.

We now state the proposition

(35) X is discrete if and only if for every subset A of X such that A 6= the
carrier of X holds A is not dense.

One can verify that every non almost discrete topological space is non discrete
and non anti-discrete.

Let us observe that a topological space is almost discrete if:

(Def.7) for every non-empty subset A of it holds A is not nowhere dense.

Next we state three propositions:

(36) X is almost discrete if and only if for every subset A of X such that
A 6= the carrier of X holds A is everywhere dense.

(37) X is non almost discrete if and only if there exists a non-empty subset
A of X such that A is boundary and A is closed.

(38) X is non almost discrete if and only if there exists a subset A of X such
that A 6= the carrier of X and A is dense and A is open.

One can verify that there exists an almost discrete non discrete non anti-
discrete strict topological space.

Next we state the proposition

(39) For every non-empty set C and for every element c0 of C holds C \{c0}
is non-empty if and only if STS(C, c0) is non almost discrete.

Let us observe that there exists a non almost discrete strict topological space.

We now state two propositions:

(40) For every non-empty subset A of X such that A is boundary holds the
X modified w.r.t. Ac is non almost discrete.
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(41) For every subset A of X such that A 6= the carrier of X and A is dense
holds the X modified w.r.t. A is non almost discrete.
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