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Summary. Let S be a subset of the topological Euclidean plane
E%. We say that S has Jordan’s property if there exist two non-empty,
disjoint and connected subsets GG1 and G2 of 5% such that ¢ = G171 UGa
and G1 \ G1 = G2 \ G2 (see [19], [10]). The aim is to prove that the
boundaries of some special polygons in £% have this property (see Section
3). Moreover, it is proved that both the interior and the exterior of the
boundary of any rectangle in £% is open and connected.

MML Identifier: JORDAN1.

The articles [22], [24], [11], [17], [1], [4], [5], [20], [3], [16], [7], [15], [23], [18], [12],
2], [21], [14], [13], [8], [6], and [9] provide the notation and terminology for this
paper.

1. SELECTED THEOREMS ON CONNECTED SPACES

In the sequel G1, G are topological spaces and A is a subset of G1. The following
propositions are true:

(1) If A#0, then the carrier of G; | A = A.
(2)  For every topological space G if for every points x, y of G there exists
G5 such that G9 is connected and there exists a map f from G5 into

(1 such that f is continuous and = € rng f and y € rng f, then G is
connected.

The following propositions are true:

!The article was written during my visit at Shinshu University in 1992.
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(3) For every topological space G if for all points x, y of G such that
x # y there exists a map h from [ into G such that h is continuous and
x = h(0) and y = h(1), then G; is connected.

(4) Let A be a subset of Gy. Then if A # (), and for all points x1, y; of
G such that z1 € A and y; € A and x1 # y; there exists a map h from [
into G1 | A such that h is continuous and x; = h(0) and y; = h(1), then
A is connected.

(5)  For every G; and for every subset Ay of G; and for every subset A; of
G such that Ag is connected and A; is connected and AgN Ay # 0 holds
Ap U A7 is connected.

(6) For every GG; and for all subsets Ay, Ay, Ay of G1 such that Ay is
connected and A; is connected and As is connected and AgN Ay # () and
A1 N Ay # 0 holds Ag U A U As is connected.

(7)  For every G and for all subsets Ag, Ay, A2, A3 of Gy such that Ay is
connected and A; is connected and A is connected and As is connected
and AgNA; # 0 and A; N A #* () and Ay N As * 0 holds AgU A1 UAsU As

is connected.

2. CERTAIN CONNECTED AND OPEN SUBSETS IN THE EUCLIDEAN PLANE

We follow a convention: P, Q, Py, P» denote subsets of €% and w;, wy denote
points of 2. One can prove the following proposition

(8)  For every P such that P # @&zr and for all wq, ws such that wy € P and
wg € P and wy # ws holds L(wy,ws) C P holds P is connected.
We adopt the following rules: pi, po will be points of 5% and si, t1, s9, to, s,
t, s3, t3, S4, t4, S5, ts, Sg, tg, [, S7, t7 will be real numbers. Next we state two
propositions:
(9) Ifs;<sgand sy <sgand 0<landl <1, then sy < (1—1)-s3+1-s4.
(10) Ifsz<syand sy <syand0<land!<1,then (1—1)-s3+1-54 < 57.
In the sequel sg, tg denote real numbers. The following propositions are true:
(11) {[S,t] 1851 < SAsS<s9Nt <tENT L tQ} = {[83,t3] 181 < 83} ﬂ{[54,
t4] 184 < 82} N {[S5,t5] 1 < t5} N {[86,t6] ttg < tg}.
(12) {[S,t] : —|(81 <sAs<soNt <tAt L tg)} = {[Sg,tg] 183 < 81} U {[84,
t4] 1ty < tl} U {[S5,t5] 189 < 85} @] {[86,t6] 1l < tﬁ}.
(13)  For all sy, t1, so, ta, P such that s; < sg and t; < t9 and P = {[s,
t]:s1 <sANs<syAtp <tAt<ty} holds P is connected.

(14)  For all sy, P such that P = {[s,t] : s; < s} holds P is connected.
(15)  For all sg, P such that P = {[s,t] : s < so} holds P is connected.
(16)  For all ¢;, P such that P = {[s,t] : t; < t} holds P is connected.
(17)  For all to, P such that P = {[s,t] : t < to} holds P is connected.
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(18)  For all sy, t1, S2, t2, P such that P = {[s,t] : =(s1 < sAs<sgAt; <
t At <t9)} holds P is connected.

(19)  For all s1, P such that P = {[s,t] : s1 < s} holds P is open.

(20)  For all s1, P such that P = {[s,t] : s1 > s} holds P is open.

(21)  For all s1, P such that P = {[s,t] : s1 <t} holds P is open.

(22)  For all s1, P such that P = {[s,t] : s; >t} holds P is open.

(23)  For all sy, t1, s9, ta, P such that P = {[s,t] : s1 < sAs < saAt1 <

t At <t} holds P is open.

(24)  For all s1, t1, so, ta, P such that P = {[s,t] : =(s1 < sAs<soAt; <
t At <t9)} holds P is open.

(25)  Given s1, t1, s9, ta, P, Q. Suppose P = {[s7,t7] : 81 < s7As7 < saAt1 <
tr Atr <t} and Q = {[ss, ts] : ~(s1 < 55 A sg < s9 Aty <ty Aty < ta)}.
Then PN Q = @g%.

(26)  For all real numbers s1, Sa, t1, t2 holds {p : s1 < p1 Ap1 < sa At1 <
p2 A\ pa < tg} = {[S7,t7] 181 < ST AST < S9Nt <ty Nip < tg}, where p
ranges over points of £3.

(27)  For all s1, s9, t1, t2 holds {q1 : =(s1 < q11 Aq11 < saAt1 < q1aAqig <
to)} = {[ss,ts] : 7(s1 < sgAsg < saAty <tgAtg <tg)}, where g ranges
over points of E%.

(28)  For all s1, s, t1, ta holds {po : 51 < po1 AP0y < S2At1 < PogApog < ta},
where pg ranges over points of S%, is a subset of E%.

(29)  For all s1, s2, t1, to holds {ps : =(s1 < p3g Aps1 < saAt1 < p3g Apsg <
t2)}, where ps ranges over points of 5%, is a subset of 5%.

(30)  For all sy, t1, so, ta, P such that s; < sy and t; < t3 and P = {pyg :
81 < po1 Apo1 < saAt1 < pog Apog < tg}, where pg ranges over points of
5% holds P is connected.

(31)  For all sy, t1, Sa, ta, P such that P = {ps : =(s1 < p3g Ap31 < saAty <
P32 ADp3g < t2)}, where ps ranges over points of S% holds P is connected.

(32)  For all s1, t1, s2, to, P such that P = {pg: s1 < po1 Apo1 < s2 At1 <
Po2 A pog < to}, where py ranges over points of 5% holds P is open.

(33)  For all sy, t1, Sa, ta, P such that P = {ps : =(s1 < p3g Ap31 < saAtg <
p3a A psg < t2)}, where ps ranges over points of S% holds P is open.

(34)  Given sy, t1, s2, ta, P, Q. Suppose P ={p:s1 <p1 Ap1 < sa At <
p2 A p2 < ta}, where p ranges over points of €% and Q = {q1 : ~(s1 <
11 AN qi1 < s2 Aty < qig Aqig < ta)}, where g; ranges over points of 8%.
Then PN Q = @g%.

(35)  Given s1, t1, so, ta, P, P;, P5. Suppose that

(i) S1 < 89,
(ii) t1 < ta,
(ili) P={p:p1=s1Ap2<taAp2>t1 V p1 <s2Ap1 >s1/Ap2=
t2 V p1 <saAp1>siApa=t1 V p1=s3Ap2 <tz Apz>t1}, where
p ranges over points of 5%,
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(iv) P ={p1:s1 <pi1 Api1 < s2 /Aty < pig Apig < ta}, where p; ranges
over points of 5%,

(v)  Py={p2: (51 < p21 Ap21 < sa At1 < pag Apag < t2)}, where py
ranges over points of 5%.

Then
(Vi) PC=P UP,,
(vii)  P¢#0,
(vii) P NP =0,
(ix) for all subsets P3, Py of (€2) 1 P° such that Py = P; and Py = P, holds

Py is a component of (£2) | P¢ and Py is a component of (£2) [ P°.
(36) Given sy, t1, so, ta, P, Py, P;. Suppose that

(i) S1 < 89,

(ii) t1 < ta,

(ili) P={p:pr=s1Apa<taApa>t V p1 <s2Ap1>s1Apy=
ts V p1 <saAp1>siAp2=t1 V p1=s2Apz2 <ty Apz >ti}, where
p ranges over points of 5%,

(iv)  Pr={p1:s1 <pi1 Ap11 < S2At1 < pig Apig < ta}, where p; ranges
over points of E%,

(v)  Py={p2:(s1 < pa1 Ap21 < s2aAt1 < pag Apag < ta)}, where py
ranges over points of £3.
Then P=P;\ P, and P = P, \ P».

(37)  Given sy, S, t1, ta, P, P;. Suppose that

(i) S1 < 89,

(ii) t1 < ta,

(ili) P={p:pr=s1Apa<taApa>t V p1 <s2Ap12>s1Apy=
ta V p1 <saAp1>81Apa=t1 V p1 =83 Apa <ty Apa >t1}, where
p ranges over points of 5%,

(iv)  Pr={p1:s1 <pi1 Ap11 < s2At1 < pig Apig < ta}, where p; ranges
over points of E%.
Then P1 g Q(g%)rpo.

(38)  Given s1, s9, t1, ta, P, P;. Suppose that
(i) 81 < 89,
(i) t1 <to,
(i) P={p:pr=s1Apa<taApz>t1 V p1 <saAp1>s1Ap2=
ta V p1 <s2Ap1>s1Apz=t1 V p1 =s2Apz <taApg >t1}, where
p ranges over points of £3,
(iv) P ={p1:s1 <pi1 Ap11 < s2 Aty < pig Apig < ta}, where p; ranges
over points of 5%.
Then P is a subset of (£2) | P°.
(39)  Given s1, s9, t1, ta, P, P5. Suppose that
(i) S1 < 89,
(i) t1 <to,
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(ili) P={p:pr=s1Apa<taApa>t1 V p1 <s2Ap12>s1Apy=
ta V p1 <s2Ap1=s1Apg=t1 V p1=s2Apz <laApg > ti}, where
p ranges over points of 5%,

(iv) Py = {p2: (51 < p21 Ap21 < s2 Aty < pag Apag < t2)}, where po
ranges over points of £3.
Then P2 - Q(c‘:%)fpc’

(40)  Given s1, sg, t1, t2, P, P,. Suppose that

(i) 81 < 89,

(i) t < to,

(i) P={p:pr=s1Apa<taAp2>t1 V p1 <saAp1 > 51 Ap2=
ty V p1 <saApr>s1Apz=t1 V p1 =52 Apa <loApg >ti}, where
p ranges over points of S%,

(iv)  Pr={p2: (51 < pag Apa1 < s2At1 < pag Apag < ta)}, where pa
ranges over points of 5%.
Then P is a subset of (£2) [ P°.

3. JORDAN’S PROPERTY

In the sequel S, Ay, As will be subsets of 8%. Let us consider S. We say that S
has Jordan’s property if and only if the conditions (Def.1) is satisfied.
(Def.1) (i) S¢# 0,
(ii)  there exist Ay, Ay such that S¢ = A; U A and Ay N Ay = 0 and
A;\ Ay = Ay \ Ay and for all subsets Cy, Cy of (£2) | S¢ such that
C1 = Ay and Cy = Ay holds C is a component of (5%) [ §¢ and Oy is a
component of (E2) | SC.

The following propositions are true:

(41)  Suppose S has Jordan’s property. Then

(i) S°#0,

(ii)  there exist subsets Aj, Ay of 5% and there exist subsets C7, Cy of
(5%) IS¢ such that S¢ = A; U Ay and A;N Ay =0 and A1\ A] = Ay \ Ay
and C1 = A1 and Cy = Ay and C is a component of (5%) I 'S¢ and Cs is
a component of (£2) | S¢ and for every subset C3 of (£2) | S¢ such that
Cs is a component of (£2) I S¢ holds C3 = Cy or C3 = Cs.

(42)  Given s1, s9, t1, t2, P. Suppose that

(i) S1 < 89,

(i) < to,

(i) P={p:pr=s1Apa<taApz>t1 V p1 <saAp1 > 51 Ap2=
ta V p1 <s2Ap1>s1Apz=t1 V p1 =s2Ap2 <taApz >t1}, where
p ranges over points of S%.

Then P has Jordan’s property.
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of an Extremally Disconnected Space '

Zbigniew Karno
Warsaw University
Biatystok

Summary. Let X be a topological space and let A be a subset of
X. Recall that A is said to be a domain in X provided Int A C A C Int A
(see [24], [11]). Recall also that A is said to be a(n) closed (open) domain
in X if A=TntA (A =IntA, resp.) (see e.g. [14], [24]). It is well-known
that for a given topological space all its closed domains form a Boolean
lattice, and similarly all its open domains form a Boolean lattice, too (see
e.g., [15], [3]). In [23] it is proved that all domains of a given topological
space form a complemented lattice. One may ask whether the lattice of
all domains is Boolean. The aim is to give an answer to this question.

To present the main results we first recall the definition of a class of
topological spaces which is important here. X is called extremally dis-
connected if for every open subset A of X the closure A is open in X [18]
(comp. [10]). It is shown here, using Mizar System, that the lattice of all
domains of a topological space X is modular iff X is extremally discon-
nected. Moreover, for every extremally disconnected space the lattice of
all its domains coincides with both the lattice of all its closed domains
and the lattice of all its open domains. From these facts it follows that
the lattice of all domains of a topological space X is Boolean iff X is
extremally disconnected.

Note that we also review some of the standard facts on discrete,
anti-discrete, almost discrete, extremally disconnected and hereditarily
extremally disconnected topological spaces (comp. [14], [10]).

MML Identifier: TDLAT_3.

The notation and terminology used in this paper are introduced in the following
articles: [20], [22], [21], [16], [6], [7], [17], [24], [9], [4], [19], [12], [5], [25], 8], [2],
[1], [23], and [13].

! Editor’s Note: This work has won the 1992 éleszyﬁski’s Award of the Mizar Society.
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1. SELECTED PROPERTIES OF SUBSETS OF A TOPOLOGICAL SPACE

In the sequel X will be a topological space. We now state the proposition

(1)  For every set B and for every subset A of X such that B C A holds B
is a subset of X.

In the sequel C denotes a subset of X. We now state three propositions:

(2) C = (Int(C))".

(3) Cc¢= (IntC)e.

(4)  Int(C°) = C°.

In the sequel A, B denote subsets of X. Next we state several propositions:

(5) If AN B = (), then if A is open, then AN B = () and also if B is open,
then AN B = 0.

(6) If AU B = the carrier of X, then if A is closed, then A UInt B = the
carrier of X and also if B is closed, then Int A U B = the carrier of X.

(7)  Ais open and A is closed if and only if A = Int A.
(8) If Ais open and A is closed, then Int A = Int A.

(9) If Ais a domain and Int A C Int A, then A is an open domain and A is
a closed domain.

(10) If Ais a domain and Int A C Int A, then A is open and A is closed.
(11)  If Ais a domain, then Int A = Int A and A = Int A.

2. DISCRETE TOPOLOGICAL STRUCTURES

We now define two new attributes. A topological structure is discrete if:
(Def.1)  the topology of it = 2the carrier of it

A topological structure is anti-discrete if:
(Def.2)  the topology of it = {0, the carrier of it}.

Next we state two propositions:

(12)  For every Y being a topological structure such that Y is discrete and
Y is anti-discrete holds 2the carrier of ¥ — 1) the carrier of Y'}.

(13)  For every Y being a topological structure such that () € the topology
of Y and the carrier of Y € the topology of Y holds if 2the carrier of ¥ _
{0, the carrier of Y}, then Y is discrete and Y is anti-discrete.

Let us mention that there exists a topological structure which is discrete
anti-discrete and strict.

Next we state two propositions:

(14)  For every Y being a discrete topological structure and for every subset
A of the carrier of Y holds (the carrier of Y') \ A € the topology of Y.
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(15)  For every Y being an anti-discrete topological structure and for every
subset A of the carrier of Y such that A € the topology of Y holds (the
carrier of Y') \ A € the topology of Y.

Let us observe that every topological structure which is discrete is also
topological space-like and every anti-discrete topological structure is topolog-
ical space-like.

One can prove the following proposition

(16) For every Y being a topological space-like topological structure such
that 2the carrier of Y — () the carrier of Y} holds Y is discrete and Y is
anti-discrete.

A topological structure is almost discrete if:

(Def.3)  for every subset A of the carrier of it such that A € the topology of it
holds (the carrier of it) \ A € the topology of it.

One can verify the following observations:
*  every topological structure which is discrete is also almost discrete,

% every topological structure which is anti-discrete is also almost discrete,
and

%  there exists an almost discrete strict topological structure.

3. DISCRETE TOPOLOGICAL SPACES

Let us mention that there exists a discrete anti-discrete strict topological space.
In the sequel X denotes a topological space. Next we state three propositions:
(17) X is discrete if and only if every subset of X is open.
(18) X is discrete if and only if every subset of X is closed.
(19)  If for every subset A of X and for every point = of X such that A = {z}
holds A is open, then X is discrete.
Let X be a discrete topological space. Note that every subspace of X is open
closed and discrete.
Let X be a discrete topological space. Observe that there exists a discrete
strict subspace of X.
Next we state three propositions:
(20) X is anti-discrete if and only if for every subset A of X such that A is
open holds A = () or A = the carrier of X.
(21) X is anti-discrete if and only if for every subset A of X such that A is
closed holds A = ) or A = the carrier of X.
(22)  If for every subset A of X and for every point z of X such that A = {z}
holds A = the carrier of X, then X is anti-discrete.
Let X be an anti-discrete topological space. Observe that every subspace of
X is anti-discrete.
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Let X be an anti-discrete topological space. Note that there exists an anti-
discrete subspace of X.
One can prove the following propositions:
(23) X is almost discrete if and only if for every subset A of X such that A
is open holds A is closed.
(24) X is almost discrete if and only if for every subset A of X such that A
is closed holds A is open.
(25) X is almost discrete if and only if for every subset A of X such that A
is open holds A = A.
(26) X is almost discrete if and only if for every subset A of X such that A
is closed holds Int A = A.
Let us observe that there exists an almost discrete strict topological space.
One can prove the following two propositions:
(27)  If for every subset A of X and for every point x of X such that A = {x}
holds A is open, then X is almost discrete.
(28) X is discrete if and only if X is almost discrete and for every subset A
of X and for every point  of X such that A = {z} holds A is closed.
Let us observe that every discrete topological space is almost discrete and
every anti-discrete topological space is almost discrete.
Let X be an almost discrete topological space. Observe that every subspace
of X is almost discrete.
Let X be an almost discrete topological space. One can verify that every
open subspace of X is closed and every closed subspace of X is open.
Let X be an almost discrete topological space. Note that there exists a
subspace of X which is almost discrete and strict.

4. EXTREMALLY DISCONNECTED TOPOLOGICAL SPACES

A topological space is extremally disconnected if:
(Def.4)  for every subset A of it such that A is open holds 4 is open.
Let us note that there exists a topological space which is extremally disconnected
and strict.
In the sequel X denotes a topological space. The following propositions are
true:
(29) X is extremally disconnected if and only if for every subset A of X such
that A is closed holds Int A is closed.
(30) X is extremally disconnected if and only if for all subsets A, B of X
such that A is open and B is open holds if AN B = (), then AN B = 0.

(31) X is extremally disconnected if and only if for all subsets A, B of X
such that A is closed and B is closed holds if AU B = the carrier of X,
then Int A U Int B = the carrier of X.
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(32) X is extremally disconnected if and only if for every subset A of X such
that A is open holds A = Int A.

(33) X is extremally disconnected if and only if for every subset A of X such
that A is closed holds Int A = Int A.

(34) X is extremally disconnected if and only if for every subset A of X such
that A is a domain holds A is closed and A is open.

(35) X is extremally disconnected if and only if for every subset A of X such
that A is a domain holds A is a closed domain and A is an open domain.

(36) X is extremally disconnected if and only if for every subset A of X such
that A is a domain holds Int A = Int A.

(37) X is extremally disconnected if and only if for every subset A of X such
that A is a domain holds Int A = A.

(38) X is extremally disconnected if and only if for every subset A of X
holds if A is an open domain, then A is a closed domain and also if A is
a closed domain, then A is an open domain.

A topological space is hereditarily extremally disconnected if:
(Def.5)  every subspace of it is extremally disconnected.
One can check the following observations:

*  there exists a hereditarily extremally disconnected strict topological
space,

% every hereditarily extremally disconnected topological space is extremally
disconnected, and

% every topological space which is almost discrete is also hereditarily ex-
tremally disconnected.

One can prove the following proposition
(39) For every extremally disconnected topological space X and for every
subspace X of X and for every subset A of X such that A = the carrier
of Xy and A is dense holds X is extremally disconnected.

Let X be an extremally disconnected topological space. One can check that
every open subspace of X is extremally disconnected.

Let X be an extremally disconnected topological space. Note that there
exists an extremally disconnected strict subspace of X.

Let X be a hereditarily extremally disconnected topological space. Note that
every subspace of X is hereditarily extremally disconnected.

Let X be a hereditarily extremally disconnected topological space. Note that
there exists a hereditarily extremally disconnected strict subspace of X.

One can prove the following proposition

(40)  If every closed subspace of X is extremally disconnected, then X is
hereditarily extremally disconnected.
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5. THE LATTICE OF DOMAINS OF EXTREMALLY DISCONNECTED SPACES

In the sequel Y is an extremally disconnected topological space. The following
propositions are true:

41)  The domains of Y = the closed domains of Y.
42)  D-Union(Y) = CLD-Union(Y) and D-Meet(Y) = CLD-Meet(Y).
3)
44)  The domains of Y = the open domains of Y.
)
)
)

N

The lattice of domains of Y = the lattice of closed domains of Y.

N

5)  D-Union(Y') = OPD-Union(Y) and D-Meet(Y') = OPD-Meet(Y').

46 The lattice of domains of Y = the lattice of open domains of Y.

47)  For all elements A, B of the domains of Y holds (D-Union(Y"))(4, B) =
AU B and (D-Meet(Y))(A4, B) = AN B.

(48)  For all elements a, b of the lattice of domains of Y and for all elements

A, B of the domains of Y such that a = A and b= B holds allb= AUB
and alMb=ANB.

(49)  For every family F' of subsets of Y such that F' is domains-family and
for every subset S of the lattice of domains of Y such that S = F holds
l_l(tho lattice of domains of Y) S=UF.

(50)  For every family F' of subsets of Y such that F' is domains-family and
for every subset S of the lattice of domains of Y such that S = F' holds if
S # 0, then [ Jihe lattice of domains of v)S = Int( F' and also if S = (), then

’_‘(the lattice of domains of Y) S =Qy.

A~ N N N N /N /N

In the sequel X will denote a topological space. One can prove the following
propositions:
(51) X is extremally disconnected if and only if the lattice of domains of X
is a modular lattice.

(52)  If the lattice of domains of X = the lattice of closed domains of X, then
X is extremally disconnected.

(53)  If the lattice of domains of X = the lattice of open domains of X, then
X is extremally disconnected.

(54)  If the lattice of closed domains of X = the lattice of open domains of
X, then X is extremally disconnected.

(55) X is extremally disconnected if and only if the lattice of domains of X
is a Boolean lattice.
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Summary. This paper is based on a previous work of the first
author [12] in which a mathematical model of the computer has been
presented. The model deals with random access memory, such as RASP
of C. C. Elgot and A. Robinson [11], however, it allows for a more re-
alistic modeling of real computers. This new model of computers has
been named by the author (Y. Nakamura, [12]) Architecture Model for
Instructions (AMI). It is more developed than previous models, both in
the description of hardware (e.g., the concept of the program counter, the
structure of memory) as well as in the description of instructions (instruc-
tion codes, addresses). The structure of AMI over an arbitrary collection
of mathematical domains N consists of:

- a non-empty set of objects,

- the instruction counter,

- a non-empty set of objects called instruction locations,
- a non-empty set of instruction codes,

- an instruction code for halting,

- a set of instructions that are ordered pairs with the first element
being an instruction code and the second a finite sequence in which
members are either objects of the AMI or elements of one of the
domains included in N,

- a function that assigns to every object of AMI its kind that is either
an instruction or an instruction location or an element of N,

- a function that assigns to every instruction its execution that is again
a function mapping states of AMI into the set of states.
By a state of AMI we mean a function that assigns to every object of
AMI an element of the same kind. In this paper we develop the theory
of AMI. Some properties of AMI are introduced ensuring it to have some
properties of real computers:
- a von Neumann AMI, in which only addresses to instruction locations
are stored in the program counter,
- data oriented, those in which instructions cannot be stored in data
locations,
- halting, in which the execution of the halt instruction is the identity
mapping of the states of an AMI,
- steady programmed, the condition in which the contents of the in-
struction locations do not change during execution,

!The work has been done while the second author was visiting Nagano in autumn 1992.
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- definite, a property in which only instructions may be stored in in-
struction locations.

We present an example of AMI called a Small Concrete Model which has
been constructed in [12]. The Small Concrete Model has only one kind of
data: integers and a set of instructions, small but sufficient to cope with
integers.

MML Identifier: AMI_1.

The terminology and notation used here have been introduced in the following
articles: [19], [5], [6], [15], [2], [20], [14], [3], [17], [16], [10], [1], [4], [18], [13], [7],
[9], [21], and [8].

1. PRELIMINARIES

In the sequel x is arbitrary. Next we state several propositions:

(1) N#Z.
(2)  For arbitrary a, b holds 1 # (a, b).
(3)  For arbitrary a, b holds 2 # (a, b).
(4)  For arbitrary a, b, ¢, d and for every function g such that dom g = {a, b}
and g(a) = c and g(b) = d holds g = [a — ¢, b — d].
(5)  For arbitrary a, b, ¢, d such that a # b holds [[[a — {c},b — {d}] =
{[a — ¢,b+— d]}.

Let A be a set, and let B be a non-empty set. Then AU B is a non-empty
set. Let A be a non-empty set, and let B be a set. Then AU B is a non-empty
set. A set has non-empty elements if:

(Def.1) 0 ¢ it.
One can verify that there exists a set which is non-empty with and non-empty
elements.

Let A be a non-empty set. Then {A} is a non-empty set with non-empty
elements. Let B be a non-empty set. Then {A, B} is a non-empty set with
non-empty elements. Let A, B be non-empty sets with non-empty elements.
Then AU B is a non-empty set with non-empty elements.

2. GENERAL CONCEPTS

In the sequel N will be a non-empty set with non-empty elements.
We now define several new constructions. Let us consider N. We consider
AMTI’s over N which are systems
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(objects, a instruction counter, instruction locations, instruction codes, a halt
instruction, instructions, a object kind, a execution),
where the objects constitute a non-empty set, the instruction counter is an el-
ement of the objects, the instruction locations constitute a non-empty subset
of the objects, the instruction codes constitute a non-empty set, the halt in-
struction is an element of the instruction codes, the instructions constitute a
non-empty subset of [the instruction codes, (|J N U the objects)* ], the object
kind is a function from the objects into N U {the instructions,the instruction
locations}, and the execution is a function from the instructions into (I](the
object kind))H (the object kind) T ot yi5 consider N, and let S be an AMI over N.
An object of S is an element of the objects of S.

An instruction of S is an element of the instructions of S.

An instruction-location of S is an element of the instruction locations of S.

Let us consider N, and let S be an AMI over N. The functor ICg yields an
object of S and is defined by:

(Def.2) ICg = the instruction counter of S.
Let us consider N, and let S be an AMI over N, and let o be an object of S.
The functor ObjectKind(o) yielding an element of N U{the instructions of S, the
instruction locations of S} is defined by:

(Def.3)  ObjectKind(o) = (the object kind of S)(0).
Let A be a set, and let B be a non-empty set with non-empty elements, and let
f be a function from A into B. Then [] f is a non-empty set of functions. Let
P be a non-empty set of functions. We see that the element of P is a function.
Let us consider N, and let S be an AMI over N. A state of S is an element of
[1 (the object kind of ).

Let us consider NV, and let S be an AMI over N, and let I be an instruction
of S, and let s be a state of S. The functor Exec(1, s) yielding a state of S is
defined by:

(Def.4)  Exec(I,s) = (the execution of S quaa function from the instructions
of S into ([] (the object kind of S’))H(the object kind of 8)y (1) ().
Let us consider N, and let S be an AMI over N satisfying the condition: (the
halt instruction of S, €) € the instructions of S. The functor haltg yields an
instruction of S and is defined as follows:
(Def.5)  haltg = (the halt instruction of S, ).
Let us consider N. An AMI over N is von Neumann if:
(Def.6)  ObjectKind(ICj;) = the instruction locations of it.
An AMI over N is data-oriented if:
(Def.7)  (the object kind of it) ~! {the instructions of it} C the instruction
locations of it.
An AMI over N is halting if:
(Def.8)  for every state s of it holds Exec(halt, s) = s.
An AMI over N is steady-programmed if:

153



154 YATSUKA NAKAMURA AND ANDRZEJ TRYBULEC

(Def.9)  for every state s of it and for every instruction i of it and for every
instruction-location [ of it holds (Exec(i, s))(l) = s(I).

An AMI over N is definite if:
(Def.10)  for every instruction-location [ of it holds ObjectKind(l) = the instruc-
tions of it.

Let us consider N. Note that there exists a von Neumann data-oriented halting
steady-programmed definite strict AMI over N.

Let us consider NV, and let S be a von Neumann AMI over IV, and let s be
a state of S. The functor IC; yields an instruction-location of S and is defined
as follows:

(Def.11)  IC, = s(ICg).

3. A SMALL CONCRETE MODEL

In the sequel 4, k will be natural numbers. We now define four new functors.
The non-empty subset Locgcn of N is defined by:

(Def.12)  Locgcm = N\ {0}.

The element Haltgcn of Zg is defined as follows:
(Def.13) Haltgon = 0.

The non-empty subset Data-Locgconm of Locscon is defined as follows:
(Def.14)  Data-Locgem = {2 -k + 1}.

The non-empty subset Instr-Locgen of N is defined by:
(Def.15)  Instr-Locgem = {2 - k : k > 0}.

We adopt the following convention: I, J, K are elements of Zg, a, a1, as are

elements of Instr-Locgcm, and b, by, ba, ¢, ¢1 are elements of Data-Locgay. The
non-empty subset Instrgcn of [ Zo, U{Z } UN* | is defined as follows:

(Def.16)  Instrsem = {(Haltsom, €)} U {{J, (a)) : J = 6} U{(K, (a1,b1)) : K €
{7,8}} U{{I, (b,c)) : I € {1,2,3,4,5}}.
The following propositions are true:
(6) Instrsom = {(Haltscm, )} U{(J, (a)) : J =6} U{(K, {(a1,b1)) : K €
{7, 8}y U{{I, (b,c)) : T € {1,2,3,4,5}}.

(7) (0, €) € Instrgom.
(8) {6, {az)) € Instrscm.
(9) If x € {7,8}, then (z, (az,b2)) € Instrgcnm.
(10) Ifxe{1,2,3,4,5}, then {(x, (b1,c1)) € Instrgom.

The function OKgcy from N into {Z } U {Instrgcw, Instr-Locgenm  is defined
by:
(Def.17)  OKgem(0) = Instr-Locscm and for every natural number & holds
OKSCM(2 -k + 1) = 7 and OKSCM(2 -k 4+ 2) = Instrgcom.
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The following four propositions are true:
(11)  Instr-Locsom # Z and Instrgonm # Z and Instr-Locgom # Instrgon.
(12)  For every i holds OKgcm (i) = Instr-Locgom if and only if ¢ = 0.
(13)  For every i holds OKgcom(i) = Z if and only if there exists k such that
i1=2-k+1.
(14)  For every i holds OKgcm(i) = Instrgenm if and only if there exists k
such that i =2 -k + 2.
A stategom is an element of [[(OKscom).
In the sequel s is a stategcn. We now state several propositions:
(15)  For every element a of Data-Locgonm holds OKgem(a) = Z.
(16)  For every element a of Instr-Locgcy holds OKgen(a) = Instrge.

(17)  For every element a of Instr-Locgcm
and for every element ¢ of Data-Locgcy holds a # t.

(18) 7o [[(OKscm) = Instr-Locgom.
(19)  For every element a of Data-Locgcy holds 7, [[(OKscm) = Z.
(20)  For every element a of Instr-Locgcy holds 7, [[(OKsonm) = Instrgen.

We now define two new functors. Let s be a statescy. The functor IC,
yielding an element of Instr-Locgcy is defined by:

(Def.18)  IC; = s(0).
Let s be a statescy, and let u be an element of Instr-Locgcym. The functor
Chggon (s, u) yields a stategem and is defined as follows:
(Def.19)  Chggom(s,u) = s +- (0——u).
The following three propositions are true:
(21)  For every statescm s and for every element w of Instr-Locgcn holds
(Chggcm(s, u))(0) = w.
(22)  For every stategscm s and for every element u of Instr-Locgcy and for
every element my of Data-Locgonm holds (Chggen (s, w))(my) = s(myq).
(23)  For every statescy s and for all elements u, v of Instr-Locgoy holds
(Chggom (s, u))(v) = s(v).
Let s be a statescm, and let ¢t be an element of Data-Locscy, and let u be
an integer. The functor Chggcy (s, t,u) yielding a stategcy is defined by:

(Def.20)  Chggom(s, t,u) = s+ (t—u).
The following four propositions are true:
(24)  For every statescm s and for every element ¢ of Data-Locgoym and for
every integer u holds (Chggc(s,t,u))(0) = s(0).
(25)  For every statesom s and for every element ¢ of Data-Locgonm and for
every integer u holds (Chggon (s, t,u))(t) = u.
(26)  For every statescnm s and for every element ¢ of Data-Locgonm and for

every integer u and for every element mi of Data-Locgcy such that my # ¢
holds (Chggeyi(s,t,u))(my) = s(mq).
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(27)  For every stategonm s and for every element t of Data-Locgcy and for
every integer u and for every element v of Instr-Locgcy holds
(Chgscm(s, t,u))(v) = s(v).

We now define two new functors. Let x be an element of Instrgcy. Let us
assume that there exist mq, mo of the type elements of Data-Locgcn; I such that
x = (I, (m1,ma)). The functor zaddress; yields an element of Data-Locgcy and
is defined by:
(Def.21)  there exists a finite sequence f of elements of Data-Locgonm such that
f = x9 and xaddress; = 7 f.
The functor zaddressy yields an element of Data-Locscy and is defined by:

(Def.22)  there exists a finite sequence f of elements of Data-Locgcnm such that
f = zo and raddresss = mo f.

One can prove the following proposition
(28)  For every element x of Instrgonm and for all elements my, mo of Data-
Locgom and for every I such that x = (I, (mqy,m2))
holds zaddress; = m; and raddressy = ms.

Let x be an element of Instrgcy. Let us assume that there exist my of
the type an element of Instr-Locgom; I such that @ = (I, (m3)). The functor
raddress; yielding an element of Instr-Locgcw is defined as follows:

(Def.23)  there exists a finite sequence f of elements of Instr-Locgom such that
f = x2 and zaddress; = m f.

We now state the proposition

(29)  For every element x of Instrgcy and for every element my of Instr-Locgcm
and for every I such that = (I, (m;)) holds zaddress; = m;.

We now define two new functors. Let x be an element of Instrgcy. Let us
assume that there exist mq of the type an element of Instr-Locgcm; meo of the
type an element of Data-Locgonm; I such that © = (I, (mq1,m3)). The functor
raddress; yields an element of Instr-Locscy and is defined as follows:

(Def.24)  there exists an element m; of Instr-Locgcm and there exists an element
mg of Data-Locgcm such that (mg,me) = z2 and zaddress; = m(my,
m2>.

The functor xaddress. yielding an element of Data-Locgcn is defined by:

(Def.25)  there exists an element m; of Instr-Locgcm and there exists an element
mgy of Data-Locgcnm such that (mq,mse) = z9 and zaddress. = ma(myq,
m2>.

The following proposition is true

(30)  For every element x of Instrgcy and for every element my of Instr-Locgcm
and for every element ms of Data-Locgcy and for every I such that
x = (I, (m1,m2)) holds zaddress; = m; and zaddress, = ma.

We now define five new functors. Let s be a statesca, and let a be an element
of Data-Locgcy. Then s(a) is an integer. Let D be a non-empty set, and let z,
y be arbitrary, and let a, b be elements of D. Then (x = y — a,b) is an element
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of D. Let D be a non-empty set, and let x, y be real numbers, and let a, b be
elements of D. The functor (x > y — a,b) yields an element of D and is defined

as follows:
(Def.26)

a, if x >y,

(m>y—>a,b):{

b, otherwise.

Let d be an element of Instr-Locgonm. The functor Next(d) yields an element of
Instr-Locgeonm and is defined as follows:

(Def.27)  Next(d) =d +2.

Let z be an element of Instrgcym, and let s be a stategcyr. The functor
Exec-Ressom(z, s) yielding a stategcn is defined as follows:

(Def.28) (i) Exec-Ressom(z, s) = Chggonm(Chggom (s, raddress, s(raddresss)),
Next(ICj)) if there exist elements mj, mgy of Data-Locgcy such that
= <17 <m17m2>>7

(ii) Exec-Resscom(z, s) = Chggonm (Chggom (s, zaddressy, s(raddress; )+
s(raddresss)), Next(ICy)) if there exist elements m1, mo of Data-Locscnm
such that z = (2, (mq1,m2)),

(iii)  Exec-Ressom(z, s) = Chggen(Chggon (s, xaddressy, s(xaddressy ) —
s(zaddresss)), Next(ICy)) if there exist elements m1, mo of Data-Locgcm
such that z = (3, (m1,m2)),

(iv)  Exec-Ressom(z, s) = Chggon (Chggon (s, zaddressy, s(zaddressy )-
s(zaddresss)), Next(ICy)) if there exist elements m1, mo of Data-Locgcm
such that z = (4, (m1,m2)),

(v)  Exec-Ressom(z, s) = Chggon(Chggon (Chggon (s, zaddressy, s(zaddress; )
+s(raddresss)), zaddresss, s(raddress; ) mod s(zaddresss)), Next (IC))
if there exist elements mj, my of Data-Locscy such that z = (5, (mq,
m2>>7

(vi)  Exec-Ressom(z, s) = Chggep(s, zaddress;) if there exists an element m;
of Instr-Locgom such that o = (6, (m1)),

(vii)  Exec-Resscom(,s) = Chgge(s, (s(zaddress.) = 0 — zaddress;,
Next(ICy))) if there exists an element m; of Instr-Locgom and there exists
an element mqy of Data-Locgcnm such that z = (7, (mq,ma)),

(viii)  Exec-Resscm(®,s) = Chggen (s, (s(raddress.) > 0 — xaddress;,
Next(ICy))) if there exists an element m of Instr-Locgonm and there exists
an element my of Data-Locgcy such that x = (8, (my,ma)),

(ix) Exec-Resgcm(z,s) = s, otherwise.

. K .
The function Execgeonm from Instrgon into ] OK%_[CI?/I SCM s defined by:

(Def.29)  for every element x of Instrgcy and for every stategon y holds

(Execscm () qua an element of (H(OKSCM))H(OKSCM))(Q/) =
Exec-Resscm(z, v).

The von Neumann strict AMI SCM is defined by:
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(Def.30) SCM = <N, 0, Instr-Locscowm, Z 9, Haltsowm, Instrson, OKsow, EXQCSCM>.

Next we state three propositions:
(31) SCM is data-oriented.
(32) SCM is definite.

(33)  The objects of SCM = N and the instruction counter of SCM = 0 and
the instruction locations of SCM = Instr-Locgcy and the instruction
codes of SCM = 7 g and the halt instruction of SCM = Haltgcy and the
instructions of SCM = Instrgcoym and the object kind of SCM = OKgcom
and the execution of SCM = Execgcm.

An object of SCM is said to be a data-location if:
(Def.31) it € Data-Locgcm.
Let s be a state of SCM, and let d be a data-location. Then s(d) is an integer.

We adopt the following convention: a, b, ¢ denote data-locations, [; denotes
an instruction-location of SCM, and I denotes an instruction of SCM. We
now define several new functors. Let us consider a, b. The functor a:=b yielding
an instruction of SCM is defined by:

(Def.32)  a:=b= (1, (a,b)).

The functor AddTo(a,b) yielding an instruction of SCM is defined by:
(Def.33)  AddTo(a,b) = (2, (a,b)).

The functor SubFrom(a,b) yielding an instruction of SCM is defined by:
(Def.34)  SubFrom(a,b) = (3, (a,b)).

The functor MultBy(a, b) yields an instruction of SCM and is defined by:
(Def.35)  MultBy(a,b) = (4, (a,b)).

The functor Divide(a, b) yields an instruction of SCM and is defined as follows:
(Def.36)  Divide(a,b) = (5, (a,b)).

Let us consider [;. The functor goto l; yields an instruction of SCM and is

defined by:
(Def.37)  goto I3 = (6, (I1)).

Let us consider a. The functor if @ = 0 goto [; yielding an instruction of SCM
is defined as follows:

(Def.38) if a =0 goto 11 = (7, (l1,a)).
The functor if a > 0 goto I; yields an instruction of SCM and is defined as
follows:
(Def.39) if a > 0 goto 1 = (8, (I1,a)).
In the sequel s will denote a state of SCM. Next we state two propositions:
(34) ICgcm =0.
(35)  For every stategom S such that S = s holds IC; = ICg.

Let [ be an instruction-location of SCM. The functor Next(l;) yielding an
instruction-location of SCM is defined by:
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(Def.40)  there exists an element ms of Instr-Locgoym such that mg = I3 and
Next(l;) = Next(ms).

Next we state two propositions:

(36)  For every instruction-location [y of SCM and for every element mg of
Instr-Locgcy such that mg = I3 holds Next(mg) = Next(ly).

(37)  For every element i of Instrgonm such that ¢ = I and for every statescm
S such that S = s holds Exec(I, s) = Exec-Resscm (4, 5).

4. USERS GUIDE

One can prove the following propositions:
(38)  (Exec(a:=b,s))(ICscm) = Next(IC;) and (Exec(a:=b,s))(a) = s(b)
and for every ¢ such that ¢ # a holds (Exec(a:=b, s))(c) = s(c).
(39) (Exec(AddTo(a,b),s))(ICgcm) = Next(ICy)
and (Exec(AddTo(a,b),s))(a) = s(a) + s(b) and for every c¢ such that
¢ # a holds (Exec(AddTo(a,b), s))(c) = s(c).
(40)  (Exec(SubFrom(a,b),s))(ICgcm) = Next(ICy)
and (Exec(SubFrom(a,b),s))(a) = s(a) — s(b) and for every c such that
¢ # a holds (Exec(SubFrom(a,b), s))(c) = s(c).
(41)  (Exec(MultBy(a,b), s))(ICscwm) = Next(ICy)
and (Exec(MultBy(a,b),s))(a) = s(a)-s(b) and for every c such that ¢ # a
holds (Exec(MultBy(a,b),s))(c) = s(c).
(42)  Suppose a # b. Then
(i)  (Exec(Divide(a,b), s))(ICscm) = Next(ICy),
(i)  (Exec(Divide(a,b),s))(a) = s(a) + s(b),

(iii)  (Exec(Divide(a,b), s))(b) = s(a) mod s(b),

(iv) for every ¢ such that ¢ # a and ¢ # b holds (Exec(Divide(a, b), s))(c) =
s(e).

(43)  (Exec(goto l1,5))(ICgcm) = l1 and (Exec(goto I3, s))(c) = s(c).

(44) If s(a) = 0, then (Exec(if a = 0 goto [1,s))(ICgcm) = {1 and also
if s(a) # 0, then (Exec(if a = 0 goto [1,s))(ICscm) = Next(ICy) and
(Exec(if a = 0 goto 11, 5))(c) = s(c).

(45)  If s(a) > 0, then (Exec(if a > 0 goto [1,s))(ICgcm) = U1 and also
if s(a) <0, then (Exec(if a > 0 goto l1,))(ICscm) = Next(IC;) and
(Exec(if a > 0 goto 11, s))(c) = s(c).

(46)  Exec(haltgcn, s) = s.

(47)  For every state s of SCM and for every instruction-location i of SCM
holds s(i) is an instruction of SCM.
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Summary. We define and prove some simple facts on Cartesian
categories and its duals co-Cartesian categories. The Cartesian category
is defined as a category with the fixed terminal object, the fixed projec-
tions, and the binary products. Category C has finite products if and
only if C has a terminal object and for every pair a, b of objects of C' the
product a X b exists. We say that a category C has a finite product if every
finite family of objects of C' has a product. Our work is based on ideas of
[13], where the algebraic properties of the proof theory are investigated.
The terminal object of a Cartesian category C is denoted by 1¢. The
binary product of a and b is written as a x b. The projections of the prod-
uct are written as pri(a,b) and as pra(a,b). We define the products f X g
of arrows f:a—a’ and g:b—b as < f-pri,g-pra >:axb—a xV

Co-Cartesian category is defined dually to the Cartesian category.
Dual to a terminal object is an initial object, and to products are co-
products. The initial object of a Cartesian category C' is written as Oc.
Binary coproduct of a and b is written as a+b. Injections of the coproduct
are written as inq(a,b) and as inz2(a,b).

MML Identifier: CAT_4.

The terminology and notation used in this paper are introduced in the following
papers: [16], [15], [11], [4], [5], [14], [9], [12], [2], 1], [3], [7], [6], [8], and [10].

1. PRELIMINARIES

In the sequel o, m, r will be arbitrary. We now define two new constructions.
Let us consider o, m, r. [(o,m) — r] is a function from [ {o}, {m} ] into {r}.
Let C be a category, and let a, b be objects of C'. Let us observe that a and
b are isomorphic if:
(Def.1)  hom(a,b) # () and hom(b,a) # () and there exists a morphism f from a
to b and there exists a morphism f’ from b to a such that f- f’ = id, and

f,'f:ida-
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2. CARTESIAN CATEGORIES

Let C be a category. We say that C has finite product if and only if:

(Def.2)  for every set I and for every function F' from I into the objects of C' such
that I is finite there exists an object a of C' and there exists a projections
family F’ from a onto I such that cod, F'(k) = F and a is a product
w.r.t. F’.

We now state the proposition

(1) Let C be a category. Then C has finite product if and only if there
exists an object of C' which is a terminal object and for every objects a, b
of C there exists an object ¢ of C' and there exist morphisms pi, ps of C
such that domp; = ¢ and dom ps = ¢ and codp; = a and cod po = b and
c is a product w.r.t. p; and ps.

We now define several new constructions. We consider Cartesian category
structures which are extension of category structures and are systems

(objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a
terminal, a product, a lst-projection, a 2nd-projection),
where the objects, the morphisms constitute non-empty sets, the dom-map, the
cod-map are functions from the morphisms into the objects, the composition is
a partial function from [ the morphisms, the morphisms | to the morphisms, the
id-map is a function from the objects into the morphisms, the terminal is an
element of the objects, the product is a function from [ the objects, the objects ]
into the objects, and the lst-projection, the 2nd-projection are functions from
F the objects, the objects ] into the morphisms. Let C' be a Cartesian category
structure. The functor 1¢ yielding an object of C' is defined by:

(Def.3)  1¢ = the terminal of C.

Let a, b be objects of C. The functor a x b yielding an object of C' is defined as
follows:

(Def.4)  a x b= (the product of C)({a, b}).
The functor 7 (a x b) yielding a morphism of C' is defined as follows:
(Def.5)  mi(a x b) = (the 1st-projection of C)({a, b)).
The functor ma2(a x b) yields a morphism of C' and is defined as follows:
(Def.6)  ma(a x b) = (the 2nd-projection of C')({a, b)).
Let us consider o, m. The functor O¢(0,m) yielding a strict Cartesian category
structure is defined by:
(Def.7)  ©clo,m) = ({o},{m},{m} — o, {m} — o, (m,m) —— m, {0} —— m,
Extract(o), [(0,0) — o], [{0,0) — m], [{0,0) — m]).
We now state the proposition
(2)  The category structure of Oc(0,m) = (0, m).
Let us note that there exists a Cartesian category structure which is strict
and category-like.
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Let o, m be arbitrary. Then O.(o,m) is a strict category-like Cartesian
category structure.

The following propositions are true:

3)  For every object a of O.(0,m) holds a = o.

For all objects a, b of ©c(0,m) holds a = b.

For every morphism f of O.(0,m) holds f = m.

W
N AN AN AN

6
7

For all morphisms f, g of Oc(0,m) holds f = g.

(
(
(5
( . .
( For all objects a, b of ©.(0,m) and for every morphism f of O.(o,m)
holds f € hom(a,b).
(8)  For all objects a, b of O¢(0,m) every morphism of (0, m) is a mor-
phism from a to b.
(9)  For all objects a, b of O.(0,m) holds hom(a,b) # 0.
(10)  Every object of O¢(0,m) is a terminal object.
(11)  For every object ¢ of O¢(0,m) and for all morphisms p1, pa of Oc(0,m)
holds ¢ is a product w.r.t. p; and ps.
A category-like Cartesian category structure is Cartesian if:

(Def.8)  the terminal of it is a terminal object and for all objects a, b of it holds
cod (the 1st-projection of it)({a, b)) = a and cod (the 2nd-projection of
it)({a, b)) = b and (the product of it)({a, b)) is a product w.r.t. (the
1st-projection of it)({a, b)) and (the 2nd-projection of it)({a, b)).

We now state the proposition
(12)  For arbitrary o, m holds O.(0,m) is Cartesian.

One can verify that there exists a strict Cartesian category-like Cartesian
category structure.
A Cartesian category is a category-like Cartesian category structure.

We adopt the following convention: C' denotes a Cartesian category and a,
b, ¢, d, e, s denote objects of C. We now state three propositions:

(13) 1¢ is a terminal object.
(14)  For all morphisms fi, fo from a to 1¢ holds f1 = fo.
(15)  hom(a,1¢) # 0.
Let us consider C, a. !, is a morphism from a to 1¢.
Next we state several propositions:

(16) o= [q.0

(17)  dom(!y) = a and cod(!,) = 1¢.

(18)  hom(a,1¢) = {l.}.

(19) dommi(a x b) =a x b and codmi(a X b) = a.
(20) domma(a x b) =a x b and cod me(a x b) = b.

Let us consider C, a, b. Then 71 (a x b) is a morphism from a X b to a. Then
ma(a X b) is a morphism from a x b to b.

The following four propositions are true:
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[\)
—

hom(a x b,a) # () and hom(a x b,b) # 0.
a x b is a product w.r.t. m1(a x b) and ma(a x b).
C has finite product.
If hom(a,b) # 0 and hom(b,a) # 0, then 71 (a x b) is retraction and
ma(a X b) is retraction.
Let us consider C, a, b, ¢, and let f be a morphism from ¢ to a, and let g be
a morphism from ¢ to b. Let us assume that hom(c,a) # () and hom(e, b) # 0.
The functor (f, g) yields a morphism from ¢ to a x b and is defined by:
(Defg) 7T1(CL><b)‘<f,g> :fand 7T2(CLXb)' <fag> =4g-
The following propositions are true:

(25)  If hom(c,a) # () and hom(c, b) # (), then hom(c,a x b) # 0.

(26) <7r1(a X b),ﬂ'g(a X b)) = id(axb)-

(27)  For every morphism f from ¢ to a and for every morphism ¢ from ¢
to b and for every morphism A from d to ¢ such that hom(c,a) # 0 and
hom(e, b) # 0 and hom(d,c) # () holds (f - h,g - h) = {(f,g) - h.

(28)  For all morphisms f, k from ¢ to a and for all morphisms g, h from ¢
to b such that hom(c,a) # () and hom(c,b) # 0 and (f,g) = (k,h) holds
f=kandg=h.

(29)  For every morphism f from ¢ to a and for every morphism g from ¢ to
b such that hom(c,a) # () and hom(c,b) # () and also f is monic or g is
monic holds (f, ¢g) is monic.

(30) hom(a,a x 1¢) # 0 and hom(a,1¢ X a) # 0.

We now define four new functors. Let us consider C, a. The functor A(a)
yielding a morphism from 1¢ X a to a is defined by:
(Def.10)  A(a) = m2(1c X a).
The functor A~!(a) yielding a morphism from a to 1¢ x a is defined as follows:
(Def.11) A 7(a) = (l4,idy).
(

~~ A/~~~
N NN
=W N
~— — ~— ~—

The functor p(a) yields a morphism from a x 1¢ to a and is defined as follows:
(Def.12)  p(a) = mi(a x 1¢).
The functor p~'(a) yielding a morphism from a to a x 1¢ is defined as follows:
(Def.13)  p~l(a) = (idg, 'a).
The following propositions are true:
(31)  Aa)-A"Ha) =id, and A7 (a) - Ma) = id(1,xq) and p(a) - p~'(a) = id,
and p~'(a) - p(a) = id(gx10)-
(32) aand a x 1¢ are isomorphic and a and 1¢ X a are isomorphic.

Let us consider C, a, b. The functor Switch(a) yielding a morphism from
a X bto b x a is defined as follows:

(Def.14)  Switch(a) = (ma(a x b),m1(a x b)).
One can prove the following three propositions:
(33)  hom(a x b,b x a) # 0.
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(34)  Switch(a) - Switch(b) = id(pxq)-
(35)  a xband b X a are isomorphic.

Let us consider C', a. The functor A(a) yielding a morphism from a to a X a
is defined by:

(Def.15)  A(a) = (idg,id,).
We now state two propositions:
(36)  hom(a,a x a) # 0.
(37)  For every morphism f from a to b such that hom(a, b) # 0 holds (f, f) =
A(D) - f.
We now define two new functors. Let us consider C, a, b, ¢. The functor
a((a,b), c) yielding a morphism from a x b x ¢ to a x (b x ¢) is defined by:
(Def.16)  a((a,b),c) = (m1(axb)-m1((axb)xc), (ma(axb) w1 ((axb)xc),m2((ax
b) x ¢))).
The functor a(a, (b,c)) yields a morphism from a X (b X ¢) to a X b X ¢ and is
defined as follows:
(Def.17)  a(a, (b,c)) = ((m1(ax (bxc)),m(bxc)-ma(ax (bxc))), me(bxc) ma(ax
(b x c))).
The following three propositions are true:
(38)  hom(a x b x ¢,a x (bx c)) # 0 and hom(a x (b x ¢),a X b x ¢) # (.
(39)  al(a,b), C) ~afa, (b, C)) = id(a><(b><c)) and
a(a7 (b7 C)) ’ a((av b): C) = id(axbxc)'
(40)  (a xb) x cand a x (b X ¢) are isomorphic.

Let us consider C, a, b, ¢, d, and let f be a morphism from a to b, and let g

be a morphism from ¢ to d. The functor f x g yields a morphism from a X ¢ to
b x d and is defined by:

(Def.18)  fxg=(f-m(axc),g-maxc)).
One can prove the following propositions:
(41)  If hom(a,c) # () and hom(b,d) # 0, then hom(a x b,c x d) # 0.
(42) id, X idp = id(axb)'
(43) Let f be a morphism from a to b. Let h be a morphism from ¢ to d.
Then for every morphism g from e to a and for every morphism & from
e to ¢ such that hom(a,b) # () and hom(c,d) # () and hom(e, a) # () and
hom(e,c) # 0 holds (f x h)-{g,k) = (f-g,h- k).
(44)  For every morphism f from ¢ to a and for every morphism ¢ from c to
b such that hom(c,a) # 0 and hom(c,b) # 0 holds (f,g) = (f x g) - A(e).
(45) Let f be a morphism from a to b. Let A be a morphism from ¢ to d.
Then for every morphism g from e to a and for every morphism & from
s to ¢ such that hom(a,b) # () and hom(c,d) # () and hom(e,a) # 0 and
hom(s,c) # (@ holds (f x h) - (g x k) = (f-g) x (h-k).
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3. Co-CARTESIAN CATEGORIES

Let C be a category. We say that C has finite coproduct if and only if:

(Def.19)  for every set I and for every function F' from I into the objects of C' such
that I is finite there exists an object a of C and there exists a injections
family F’ into a on I such that dom, F'(k) = F and a is a coproduct
w.r.t. F’.

Next we state the proposition
(46) Let C be a category. Then C has finite coproduct if and only if there
exists an object of C' which is an initial object and for every objects a, b
of C there exists an object ¢ of C and there exist morphisms iy, io of C
such that domi; = a and domiy = b and codi; = ¢ and codis = ¢ and ¢
is a coproduct w.r.t. 71 and is.

We now define several new constructions. We consider cocartesian category
structures which are extension of category structures and are systems

(objects, morphisms, a dom-map, a cod-map, a composition, an id-map, a
initial, a coproduct, a 1lst-coprojection, a 2nd-coprojection),
where the objects, the morphisms constitute non-empty sets, the dom-map, the
cod-map are functions from the morphisms into the objects, the composition is
a partial function from [ the morphisms, the morphisms | to the morphisms, the
id-map is a function from the objects into the morphisms, the initial is an ele-
ment of the objects, the coproduct is a function from [ the objects, the objects ]
into the objects, and the lst-coprojection, the 2nd-coprojection are functions
from [ the objects,the objects] into the morphisms. Let C be a cocartesian
category structure. The functor O¢ yields an object of C' and is defined as
follows:

(Def.20)  O¢ = the initial of C.

Let a, b be objects of C. The functor a + b yields an object of C' and is defined
as follows:

(Def.21)  a+ b= (the coproduct of C)({a, b)).

The functor inj (a + b) yields a morphism of C' and is defined as follows:
(Def.22)  inj(a + b) = (the Ist-coprojection of C')({a, b)).

The functor ing(a + b) yields a morphism of C' and is defined by:
(Def.23)  ing(a + b) = (the 2nd-coprojection of C')({a, b)).

Let us consider o, m. The functor é)gp (0, m) yielding a strict cocartesian category
structure is defined by:

(Def.24)  OF(0,m) = ({0}, {m},{m} — o,{m} — o, (m,m) — m, {o} —
m, Extract(0), [{0,0) — o} [{0,0) — m], [(0,0) = m]).
One can prove the following proposition
(47)  The category structure of O (0,m) = O(0,m).
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Let us note that there exists a strict category-like cocartesian category struc-
ture.
Let 0, m be arbitrary. Then O."(0,m) is a strict category-like cocartesian
category structure.
One can prove the following propositions:
(48)  For every object a of O (0,m) holds a = o.
(49)  For all objects a, b of O (0,m) holds a = b.
(50)  For every morphism f of O3 (0,m) holds f = m.
(51)  For all morphisms f, g of O (0,m) holds f = g.
(52)  For all objects a, b of . (0,m) and for every morphism f of O3 (0, m)
holds f € hom(a,b).
(53)  For all objects a, b of Oy (0,m) every morphism of O (0,m) is a
morphism from a to b.
(54)  For all objects a, b of Og" (0,m) holds hom(a,b) # 0.
(55)  Every object of Og" (0,/m) is an initial object.
(56)  For every object ¢ of O3 (0,/m) and for all morphisms iy, iy of O3 (0,m)
holds c is a coproduct w.r.t. i1 and i».
A category-like cocartesian category structure is cocartesian if:
(Def.25)  the initial of it is an initial object and for all objects a, b of it holds
dom (the 1st-coprojection of it)({a, b)) = a and dom (the 2nd-coprojection
of it)({a, b)) = b and (the coproduct of it)({a, b)) is a coproduct w.r.t.
(the 1st-coprojection of it)({a, b)) and (the 2nd-coprojection of it)({a, b}).
One can prove the following proposition
(57)  For arbitrary o, m holds O (0,m) is cocartesian.

One can check that there exists a category-like cocartesian category structure
which is strict and cocartesian.
A cocartesian category is a category-like cocartesian category structure.

We adopt the following rules: C' is a cocartesian category and a, b, ¢, d, e, s
are objects of C. Next we state two propositions:
(58)  Oc¢ is an initial object.
(59)  For all morphisms fi, fo from O¢ to a holds f; = f.
Let us consider C, a. !® is a morphism from O¢ to a.
We now state a number of propositions:
60) hom(0¢,a) # 0.
61) lo=|%g,
dom(!*) = 0¢ and cod(!?) = a.
hom(0¢, a) = {!*}.
domin;(a + b) = a and codin;(a +b) = a + b.
doming(a + b) = b and coding(a + b) = a + b.
hom(a, a + b) # () and hom(b, a + b) # (.

A~ N~~~ o~
S O O
=W N

D D O — T
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(67) a+bis a coproduct w.r.t. inj(a + b) and ing(a + b).

(68)  C has finite coproduct.

(69) If hom(a,b) # () and hom(b,a) # 0, then in;(a + b) is coretraction and
iny(a + b) is coretraction.

Let us consider C, a, b. Then inj(a+ b) is a morphism from a to a+b. Then
ing(a + b) is a morphism from b to a + b. Let us consider C, a, b, ¢, and let f be
a morphism from a to ¢, and let g be a morphism from b to c¢. Let us assume
that hom(a,c) # () and hom(b,c) # (. The functor (f,g) yielding a morphism
from a 4 b to c¢ is defined as follows:

(Def.26)  (f,g)-inj(a+b) = f and (f,g) -ing(a +b) = g.

Next we state several propositions:

(70)  If hom(a,c) # () and hom(b, ¢) # (), then hom(a + b, c) # 0.

(71)  (ini(a +b),inz(a + b)) = id(4s)-

(72)  For every morphism f from a to ¢ and for every morphism ¢ from b
to ¢ and for every morphism h from ¢ to d such that hom(a,c) # () and
hom(b, ¢) # () and hom(c,d) # () holds (h - f,h-g) = h - (f,g).

(73)  For all morphisms f, k from a to ¢ and for all morphisms g, h from b
to ¢ such that hom(a,c) # () and hom(b,c) # () and (f,g) = (k, h) holds
f=kand g=h.

(74)  For every morphism f from a to ¢ and for every morphism ¢ from b to
¢ such that hom(a,c) # () and hom(b,c) # () and also f is epi or g is epi
holds (f, g) is epi.

(75)  a and a + O¢ are isomorphic and a and O¢ + a are isomorphic.

(76) a+ b and b+ a are isomorphic.

(77)  (a+b)+ cand a+ (b+ c¢) are isomorphic.

We now define two new functors. Let us consider C, a. The functor V,
yields a morphism from a + a to a and is defined by:

(Def.27) Vg4 = (idg, id,).
Let us consider C, a, b, ¢, d, and let f be a morphism from a to ¢, and let g be
a morphism from b to d. The functor f 4+ g yielding a morphism from a + b to
¢+ d is defined as follows:

(Def.28)  f+4+ g = (ini(c+d)- f,ina(c+d) - g).

The following propositions are true:

(78)  If hom(a,c) # () and hom(b, d) # 0, then hom(a + b, c + d) # 0.

(79)  id, +1idp = id(a—i—b)'

(80) Let f be a morphism from a to ¢. Let h be a morphism from b to d.
Then for every morphism g from ¢ to e and for every morphism k from
d to e such that hom(a,c) # 0 and hom(b,d) # () and hom(c,e) # () and
hom(d, e) # () holds (g, k) - (f +h) = (g f, k- h).

(81)  For every morphism f from a to ¢ and for every morphism ¢ from b to
¢ such that hom(a, ¢) # () and hom(b,¢) # 0 holds V.- (f +¢) = ([, 9).
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Let f be a morphism from a to ¢. Let h be a morphism from b to d.
Then for every morphism g from ¢ to e and for every morphism k from
d to s such that hom(a,c) # 0 and hom(b, d) # () and hom(c,e) # () and
hom(d, s) # 0 holds (¢ + k) - (f+h)=g-f+k-h.
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The terminology and notation used in this paper have been introduced in the
following papers: [10], [5], [2], [3], [1], [12], [9], [4], [6], [11], [8], and [7]. For
simplicity we adopt the following rules: X, Y will denote sets, C will denote
a non-empty set, ¢ will denote an element of C'; V will denote a real normed
space, f, fi1, fo, f3 will denote partial functions from C' to the carrier of V,
and r, p will denote real numbers. We now define several new functors. Let us
consider C', V| f1, fa. The functor f; + f2 yielding a partial function from C' to
the carrier of V is defined as follows:

(Def.1)  dom(f; + f2) = dom f; Ndom f; and for every ¢ such that ¢ € dom(f; +
f2) holds (f1 + f2)(c) = fi(c) + fa(c).
The functor f; — fo yields a partial function from C to the carrier of V and is
defined as follows:
(Def.2)  dom(f; — f2) = dom f; Ndom f5 and for every ¢ such that ¢ € dom(f; —
f2) holds (f1 — f2)(c) = fi(c) — fa(c).
Let us consider C, and let us consider V, and let f; be a partial function from C

to R, and let us consider fo. The functor fi fo yielding a partial function from
C to the carrier of V is defined by:

(Def.3)  dom(f; f2) = dom f; N'dom f5 and for every ¢ such that ¢ € dom(f; f2)
holds (f1 f2)(¢) = fi(c) - fa(c).
Let us consider C, V, f, r. The functor r f yielding a partial function from C
to the carrier of V is defined as follows:
(Def.4)  dom(r f) = dom f and for every ¢ such that ¢ € dom(r f) holds (r f)(c) =
r- f(c).
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Let us consider C, V', f. The functor ||f|| yields a partial function from C' to R
and is defined by:
(Def.5)  doml||f|| = dom f and for every ¢ such that ¢ € dom|| f|| holds || f||(c) =
1 ()]-
The functor — f yielding a partial function from C' to the carrier of V is defined
as follows:
(Def.6) dom(—f) = dom f and for every ¢ such that ¢ € dom(—f) holds
(=f)e) = =f(c).

Next we state a number of propositions:

(1) f= fi+ f2if and only if dom f = dom f; Ndom f5 and for every ¢ such
that ¢ € dom f holds f(c) = fi(c) + fa(c).

(2) f=fi— f2if and only if dom f = dom f; Ndom f5 and for every ¢ such
that ¢ € dom f holds f(c) = fi(c) — fa(c).

(3) For every partial function fi from C to R holds f = fi fo if and only
if dom f = dom f; N dom f2 and for every c such that ¢ € dom f holds
fle) = file) - fa(e).

(4) f = rfi if and only if dom f = dom f; and for every ¢ such that
c € dom f holds f(c) =1 fi(c).

(5)  For every partial function f from C to R holds f = ||f1] if and only if
dom f = dom f; and for every ¢ such that ¢ € dom f holds f(c) = || f1(c)||-

(6) f = —f1 if and only if dom f = dom f; and for every ¢ such that
¢ € dom f holds f(c) = —fi(c).

(7)  For every partial function f; from C to R holds dom(f1 f2) \ (f1 f2) ~!
{0y} = (dom f1 \ f1 H {0}) N (dom f2 \ f2 ~" {Ov }).

8  Nf {0} =f 1 {oy} and (—f) 7 {Ov} = f "1 {Ov}.
(9) Ifr#0, then (r f) “1 {0y} = f L {0y ).
(10)  fi+fo=fot+ f1.
(A1) (fi+ f2) + f3 = f1+ (f2 + f3).
)

(12 For all partial functions f1, fo from C to R and for every partial function

f3 from C to the carrier of V holds (f1 f2) f3 = f1 (f2 f3).

(13)  For all partial functions fi, fo from C to R holds (f1 + f2) f3 = f1 fs +
f2 f3.

(14)  For every partial function f3 from C to R holds f3 (f1 + fo) = f3 f1 +
I3 fa.

(15)  For every partial function f; from C to R holds r (f1 f2) = (7 f1) fo.

(16)  For every partial function f from C to R holds r (f1 f2) = f1 (7 f2).

(17)  For all partial functions fi1, fo from C to R holds (f1 — f2) fs = f1 fs —
f2 f3.

(18)  For every partial function f3 from C to R holds f3 f1 — f3 fo = f3 (f1 —
f2)-

(19) r(fi+ fo)=7rfi+r fo
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(20) (r-p)f=r®f).

(21) r (fl — f2) = Tfl -Tr f2.

(22) fi—fo=(=1)(fa— f1)

(23) fi—(fatfa)=fi— fa— S
(24) 1f=f.

(25) fi—(fa—1f3)=(fr— f2) + fs.
(26)  fi+(fo—f3) = (fr + f2) — f3.
(27)  For every partial function fi from C to R holds || f1 f2|| = [f1] | f]l-
28) r £l = I 1If1-

29) —f=(1f

(30) ——f=1.

(B1)  fi—fo=fi+ —fo

We now state a number of propositions:

(32) fA——fo=hH+fo

33) (fi+f)1 X=HA1X+folXand (fi+fo)! X =fil X+ foand
(it )1 X=fi+f21 X,

(34) For every partial function f; from C to R holds (fi fo) | X =
X)(fo! X) and (f1 f2) I X = (f1 1 X) fo and (f1 f2) I X = f1 (f2 [ X).

(35) (NI X=—f1rXand|f][1X=]f1X]

(36) (fi—f)IX=fA1X-folXand (fi—fo) | X =fi| X~ foand
(i-f)1 X=fH—-foI X

@7 HIX=r(f1X).

(38)  fi1 is total and fy is total if and only if f; + fo is total and also f; is
total and fs is total if and only if f; — f2 is total.

(39) For every partial function f; from C to R holds f; is total and fy is
total if and only if fi f5 is total.

(40)  f is total if and only if r f is total.
(41)  f is total if and only if —f is total.
(42)  f is total if and only if || f|| is total.
(43) If f1 is total and fo is total, then (f1 + f2)(c) = fi(c) + f2(c) and

(fr = f2)(c) = file) = fa(o).

(44)  For every partial function f; from C to R such that f; is total and fo
is total holds (f1 f2)(c) = fi(c) - fa(c).

(45)  If f is total, then (r f)(c) =7 f(c).

(46)  If f is total, then (—f)(c) = —f(c) and [[f][(c) = [ f(c)]-

Let us consider C, V, f, Y. We say that f is bounded on Y if and only if:
(Def.7)  there exists r such that for every c¢ such that ¢ € Y N dom f holds

If )l <.

Next we state a number of propositions:
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(47)  f is bounded on Y if and only if there exists r such that for every c
such that ¢ € Y Ndom f holds || f(c)|| < 7.

(48) IfY C X and f is bounded on X, then f is bounded on Y.

(49) If X Ndom f =0, then f is bounded on X.

(50) If 0 =, then r f is bounded on Y.

(51) If f is bounded on Y, then r f is bounded on Y.

(52) If f is bounded on Y, then || f|| is bounded on Y and —f is bounded on
Y.

(563) If f1 is bounded on X and f, is bounded on Y, then fi + f5 is bounded
on XNY.

(54)  For every partial function f; from C to R such that f; is bounded on
X and f5 is bounded on Y holds f1 fo is bounded on X NY.

(55)  If f1 is bounded on X and f, is bounded on Y, then f; — f5 is bounded
on XNY.

(56) If f is bounded on X and f is bounded on Y, then f is bounded on
XUY.

(57) If f1 is a constant on X and fo is a constant on Y, then f; + fo is a
constant on X NY and f; — f2 is a constant on X NY.

(58)  For every partial function f; from C to R such that f; is a constant on
X and f, is a constant on Y holds f; f is a constant on X NY.

(59) If fis a constant on Y, then p f is a constant on Y.

(60) If fis a constant on Y, then || f|| is a constant on Y and — f is a constant
onY.

(61) If f is a constant on Y, then f is bounded on Y.

(62) If f is a constant on Y, then for every r holds r f is bounded on Y and
—f is bounded on Y and ||f|| is bounded on Y.

(63)  If f1 is bounded on X and fs is a constant on Y, then f;+ f3 is bounded
on XNY.

(64) If f1 is bounded on X and fs is a constant on Y, then f; — f3 is bounded
on X NY and fo — f1 is bounded on X NY.
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Summary. Let X be a topological space and let X; and X> be
subspaces of X with the carriers A; and Ag, respectively. Recall that X3
and X are weakly separated if A1\ A2 and Az \ A; are separated (see [2]
and also [1] for applications). Our purpose is to list a number of properties
of such subspaces, supplementary to those given in [2]. Note that in the
Mizar formalism the carrier of any topological space (hence the carrier
of any its subspace) is always non—empty, therefore for convenience we
list beforehand analogous properties of weakly separated subsets without
any additional conditions.

To present the main results we first formulate a useful definition. We
say that X; and X2 constitute a decomposition of X if A; and As are
disjoint and the union of A; and Aj covers the carrier of X (comp. [3]).
We are ready now to present the following duality property between pairs
of weakly separated subspaces : If each pair of subspaces X1, Y1 and Xo,
Y2 of X constitutes a decomposition of X, then X1 and X2 are weakly
separated iff Y1 and Ya are weakly separated. From this theorem we get
immediately that under the same hypothesis, X1 and X2 are separated
iff X1 misses X2 and Y1 and Yz are weakly separated. Moreover, we show
the following enlargement theorem : If X; and Y; are subspaces of X such
that Y; is a subspace of X; and Y1 UY2 = X1 U X2 and if Y1 and Y2 are
weakly separated, then X1 and X2 are weakly separated. We show also
the following dual extenuation theorem : If X; and Y; are subspaces of X
such that Y; is a subspace of X; and YiNYa = X1 NXe and if X1 and X2
are weakly separated, then Y1 and Y2 are weakly separated. At the end we
give a few properties of weakly separated subspaces in subspaces.
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this paper.
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ZBIGNIEW KARNO

1. CERTAIN SET-DECOMPOSITIONS OF A TOPOLOGICAL SPACE

In the sequel X denotes a topological space. Next we state the proposition

(1)

For all subsets A, B of X holds A°\ B¢ = B\ A.

Let X be a topological space, and let A1, As be subsets of X. We say that
Aq and As constitute a decomposition if and only if:

(Def.1)

A1 N Ay =0 and Ay U Ay = the carrier of X.

In the sequel A, A1, Ay, B1, By are subsets of X. We now state a number
of propositions:

(2)

A1 and As constitute a decomposition if and only if A; N Ay = (x and
AU Ay =Qx.

If A; and A5 constitute a decomposition, then A, and A constitute a
decomposition.

If A1 and A5 constitute a decomposition, then A1 = As¢ and Ay = A;°.

If Ay = As®or Ay = A€, then Ay and As constitute a decomposition.

A and A€ constitute a decomposition and A¢ and A constitute a de-
composition.

0x and Qx constitute a decomposition and Qx and @x constitute a
decomposition.

If A is non-empty, then A and A do not constitute a decomposition.

If Ay and A constitute a decomposition and A and As constitute a
decomposition, then 41 = As.

If A; and Ay constitute a decomposition, then A; and Int A5 constitute
a decomposition and Int A; and A, constitute a decomposition.

A and Int(A°) constitute a decomposition and A€ and Int A constitute a
decomposition and Int A and A€ constitute a decomposition and Int(A°)
and A constitute a decomposition.

If A1 and A, constitute a decomposition, then A; is open if and only if
As is closed.

If A1 and A, constitute a decomposition, then A; is closed if and only
if As is open.

If A; and Ay constitute a decomposition and By and By constitute a
decomposition, then A; N By and Ay U By constitute a decomposition.

If A7 and A, constitute a decomposition and B; and By constitute a
decomposition, then A; U B; and Ay N By constitute a decomposition.

2. DUALITY BETWEEN PAIRS OF WEAKLY SEPARATED SUBSETS

In the sequel X will denote a topological space and Aq, Ao will denote subsets

of X.

Next we state a number of propositions:
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(16)  For all subsets A1, As, Cq, Cy of X such that A; and Cy constitute a
decomposition and A and Cy constitute a decomposition holds A; and
Ay are weakly separated if and only if C; and Cy are weakly separated.

(17)  A; and Ay are weakly separated if and only if A;¢ and As¢ are weakly
separated.

(18)  For all subsets A;, Ag, C1, C2 of X such that A; and Cj constitute a
decomposition and As and Cy constitute a decomposition holds if A; and
Ao are separated, then C7 and Cy are weakly separated.

(19)  For all subsets Ay, A, Cy, Co of X such that A; and Cj consti-
tute a decomposition and Ay and C9 constitute a decomposition holds
if Ay N Ay =0 and Oy and Co are weakly separated, then A; and Ay are
separated.

(20)  For all subsets Ay, As, Cq, Cy of X such that A; and Cy constitute a
decomposition and As and Cy constitute a decomposition holds if Cq U
Cy = the carrier of X and C; and Csy are weakly separated, then A; and
Ay are separated.

(21) If A; and As constitute a decomposition, then A; and Ay are weakly
separated if and only if A; and As are separated.

(22) A; and A are weakly separated if and only if (A; U Az) \ A1 and
(A1 U Ag) \ Ag are separated.

(23)  For all subsets Ay, A, C1, Cy of X such that C; C Ay and Cy C Ay
and C1 UCy = A U Ay holds if C7 and Cs are weakly separated, then Ay
and A, are weakly separated.

(24)  Aj and As are weakly separated if and only if A1\ A1NAg and As\ A1NA,
are separated.

(25)  For all subsets Ay, A, Cq, Cy of X such that C; C Ay and Cy C Ay
and C1NCy = A1 N Ay holds if A1 and Ay are weakly separated, then Cy
and Cy are weakly separated.

In the sequel X will denote a subspace of X and By, By will denote subsets
of Xy. One can prove the following propositions:

(26) If B; = A; and By = Ag, then A; and Ay are separated if and only if
B; and B, are separated.

(27)  If By = (the carrier of Xo) N A; and By = (the carrier of X()N Az, then
if A; and Ay are separated, then By and By are separated.

(28) If By = Ay and By = Ag, then A; and A, are weakly separated if and
only if By and By are weakly separated.

(29) If By = (the carrier of Xp)N A; and By = (the carrier of X) N Ay, then
if A1 and Ay are weakly separated, then By and By are weakly separated.
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3. CERTAIN SUBSPACE—DECOMPOSITIONS OF A TOPOLOGICAL SPACE

Let X be a topological space, and let X1, X5 be subspaces of X. We say that
X1 and X9 constitute a decomposition if and only if:
(Def.2)  for all subsets Aj, Ay of X such that A; = the carrier of X; and
Ay = the carrier of X5 holds A; and Ay constitute a decomposition.

In the sequel Xg, X1, Xo, Y71, Y5 denote subspaces of X. The following
propositions are true:

(30) X; and X3 constitute a decomposition if and only if X; misses X and
the topological structure of X = X7 U Xs.

(31) If X; and X5 constitute a decomposition, then Xy and X; constitute a
decomposition.

(32) Xy and Xj do not constitute a decomposition.

(33) If X; and X constitute a decomposition and Xy and X, constitute
a decomposition, then the topological structure of X; = the topological
structure of X5.

(34)  For all subspaces X7, Xo, Y1, Y5 of X such that X; and Y7 constitute a
decomposition and X5 and Y5 constitute a decomposition holds Y1 UYs =
the topological structure of X if and only if X1 misses Xs.

(35) If X; and X5 constitute a decomposition, then X is open if and only
if X5 is closed.

(36) If Xy and X5 constitute a decomposition, then X is closed if and only
if X5 is open.

(37)  If X; meets Y7 and X; and X» constitute a decomposition and Y7 and
Y5 constitute a decomposition, then X; NY; and X5 U Y5 constitute a
decomposition.

(38) If X9 meets Y5 and X7 and X5 constitute a decomposition and Y7 and
Y5 constitute a decomposition, then X; U Y7 and X N Y5 constitute a
decomposition.

4. DUALITY BETWEEN PAIRS OF WEAKLY SEPARATED SUBSPACES

In the sequel X is a topological space. We now state several propositions:

(39) For all subspaces X1, Xo, Y1, Y2 of X such that X; and Y] constitute
a decomposition and X5 and Y5 constitute a decomposition holds X and
X, are weakly separated if and only if Y7 and Y5 are weakly separated.

(40)  For all subspaces X7, Xo, Y7, Y5 of X such that X; and Y7 constitute
a decomposition and Xs and Y5 constitute a decomposition holds if X7
and Xy are separated, then Y7 and Y, are weakly separated.

(41)  For all subspaces X7, Xo, Y7, Y5 of X such that X; and Y7 constitute
a decomposition and Xs and Y5 constitute a decomposition holds if X7
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misses Xo and Y7 and Yy are weakly separated, then X; and X, are
separated.

For all subspaces X1, Xs, Y1, Y5 of X such that X; and Y; constitute a
decomposition and X5 and Y> constitute a decomposition holds if YUYy =
the topological structure of X and Y; and Y, are weakly separated, then
X1 and Xy are separated.

For all subspaces X1, X5 of X such that X; and X5 constitute a de-
composition holds X; and X5 are weakly separated if and only if X; and
X are separated.

For all subspaces X1, Xo, Y7, Y5 of X such that Y7 is a subspace of X3
and Y5 is a subspace of X5 and Y7 UYs = X7 U X5 holds if Y7 and Y5 are
weakly separated, then X; and X, are weakly separated.

For all subspaces X1, Xo, Y7, Y5 of X such that Y7 is a subspace of X3
and Y5 is a subspace of X9 and Y7 meets Y5 and Y1 NY; = X7 N X5 holds
if X1 and X, are weakly separated, then Y7 and Y5 are weakly separated.

In the sequel X will denote a subspace of X. Next we state four propositions:

(46)

For all subspaces X7, X5 of X and for all subspaces Y7, Y5 of Xy such
that the carrier of X; = the carrier of Y; and the carrier of X9 = the
carrier of Y5 holds X7 and X, are separated if and only if Y7 and Y5 are
separated.

For all subspaces X1, Xo of X such that X; meets Xy and X5 meets X
and for all subspaces Y7, Y5 of X such that Y7 = X1NXp and Yy = XoNX
holds if X7 and X, are separated, then Y7 and Y5 are separated.

For all subspaces X7, Xo of X and for all subspaces Y7, Ys of Xy such
that the carrier of X; = the carrier of Y7 and the carrier of X9 = the
carrier of Y holds X; and Xy are weakly separated if and only if Y; and
Y, are weakly separated.

For all subspaces X7, X5 of X such that X; meets Xy and X5 meets
Xy and for all subspaces Y7, Y5 of Xy such that Y7 = X; N Xy and
Ys = X9 N Xg holds if X7 and X5 are weakly separated, then Y7 and Y5
are weakly separated.
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Summary. This article presents the basic place/transition net
structure definition for building various types of Petri nets. The basic
net structure fields include places, transitions, and arcs (place-transition,
transition-place) which may be supplemented with other fields (e.g., ca-
pacity, weight, marking, etc.) as needed. The theorems included in this
article are divided into the following categories: deadlocks, traps, and
dual net theorems. Here, a dual net is taken as the result of inverting all
arcs (place-transition arcs to transition-place arcs and vice-versa) in the
original net.

MML Identifier: PETRI.

The papers [3], [5], [6], [7], [1], [4], and [2] provide the terminology and notation
for this paper.

1. Basic PLACE/TRANSITION NET STRUCTURE DEFINITION

Let A, B be non-empty sets. Observe that there exists a non-empty relation
between A and B.

Let A, B be non-empty sets, and let r be a non-empty relation between A
and B. We see that the element of r is an element of [ A, B .

We consider place/transitions net structures which are systems

(places, transitions, S-T arcs, T-S arcs),
where the places, the transitions constitute non-empty sets, the S-T arcs consti-
tute a non-empty relation between the places and the transitions, and the T-S
arcs constitute a non-empty relation between the transitions and the places.

In the sequel P; will denote a place/transitions net structure. We now define

several new modes. Let us consider P;. A place of P is an element of the places
of P1 .
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A transition of P is an element of the transitions of P;.

An S-T arc of P; is an element of the S-T arcs of P;.

A T-S arc of P; is an element of the T-S arcs of P;.

Let us consider P, and let  be an S-T arc of P;. Then x7 is a place of P;.
Then x2 is a transition of P;. Let us consider P;, and let = be a T-S arc of P;.
Then 1 is a transition of P;. Then z9 is a place of P;.

The scheme Set_of Elements deals with a non-empty set A, and a unary
predicate P, and states that:

{z : Plz]}, where x ranges over elements of A, is a subset of A
for all values of the parameters.

In the sequel Sy will denote a set of places of P;. We now define two new
functors. Let us consider P, Sy. The functor *Sj yielding a set of transitions
of P is defined as follows:

(Def.1)  *So = {t: V;Vsls € So A f = (t, )]}, where t ranges over transitions
of P, and f ranges over T-S arcs of P;, and s ranges over places of P;.

The functor Sp* yielding a set of transitions of P is defined as follows:
(Def.2)  So* = {t: Vs Vs € So A f = (s, t)]}, where t ranges over transitions
of P, and f ranges over S-T arcs of P;, and s ranges over places of P;.
Next we state four propositions:
(1)  *Sop={f1: f2 € So}, where f ranges over T-S arcs of P;.

(2)  For an arbitrary « holds = € *Sj if and only if there exists a T-S arc f
of P, and there exists a place s of P; such that s € Sy and f = (z, s).

(3)  So*={f2:f1 € S0}, where f ranges over S-T arcs of P;.

(4)  For an arbitrary = holds z € Sp* if and only if there exists an S-T arc
f of P; and there exists a place s of P; such that s € Sy and f = (s, z).

In the sequel T} is a set of transitions of P;. We now define two new functors.
Let us consider P;, Ty. The functor *Tj yields a set of places of P; and is defined
by:
(Def.3)  *To ={s:V; V[t € To A f = (s, t)]}, where s ranges over places of Py,
and f ranges over S-T arcs of P;, and t ranges over transitions of P;.
The functor Tp* yielding a set of places of P; is defined by:
ef. 0 =1S5: tcilgNf={(t s)|j, where s ranges over places of Py,
Def.d) Tp* 7 Vi T h 1 f P
and f ranges over T-S arcs of Pj, and ¢ ranges over transitions of P;.
Next we state several propositions:
(5)  *To={f1: f2 € Tv}, where f ranges over S-T arcs of P;.
(6) For an arbitrary x holds x € *Tj if and only if there exists an S-T arc
f of Py and there exists a transition ¢ of P; such that ¢t € T and f = («,
t).
(7)  To* ={f2: f1 €Tv}, where f ranges over T-S arcs of P;.
(8)  For an arbitrary x holds = € Tp* if and only if there exists a T-S arc f
of P and there exists a transition ¢t of P; such that t € Ty and f = (¢, x).
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2. DEADLOCKS

We now define two new attributes. Let us consider P;. A set of places of P; is
deadlock-like if:

(Def.5)  *it is a subset of it*.
A place/transitions net structure has deadlocks if:
(Def.6)  there exists a set of places of it which is deadlock-like.

3. TRAPS

We now define two new attributes. Let us consider P;. A set of places of P; is
trap-like if:

(Def.7)  it* is a subset of *it.
A place/transitions net structure has traps if:

(Def.8)  there exists a set of places of it which is trap-like.

Let A, B be non-empty sets, and let r be a non-empty relation between A and
B. Then r~ is a non-empty relation between B and A.

4. DUALITY THEOREMS FOR PLACE/TRANSITION NETS

Let us consider P;. The functor P, ° yields a strict place/transitions net structure
and is defined by:

(Det.9)  P;° = (the places of Py, the transitions of Pj, (the T-S arcs of P;)~, (the
S-T arcs of Pp)~).

One can prove the following propositions:
(13)  (P1°)° = the place/transitions net structure of Pj.

(14)  The places of P; = the places of P;° and the transitions of P} = the
transitions of P;° and (the S-T arcs of P;)” = the T-S arcs of P;° and
(the T-S arcs of P;)~ = the S-T arcs of P;°.
We now define several new functors. Let us consider P;, and let Sy be a set
of places of P;. The functor Sy° yields a set of places of P;° and is defined as
follows:

(Def.10)  So° = So.
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Let us consider P;, and let s be a place of P;. The functor s° yields a place of
P;° and is defined by:

(Def.11)  s° =s.
Let us consider P, and let Sy be a set of places of P1°. The functor © Sy yields
a set of places of P; and is defined by:

(Def.12)  ° Sy = Sp.
Let us consider P, and let s be a place of P1°. The functor ° s yields a place of
P; and is defined by:

(Def.13)  °s=s.
Let us consider Pj, and let Ty be a set of transitions of P;. The functor Tj°
yielding a set of transitions of P;° is defined by:

(Def.14) TOO = T().
Let us consider Pj, and let t be a transition of P;. The functor t° yields a
transition of P;° and is defined as follows:

(Def.15) t° =t.
Let us consider P;, and let T be a set of transitions of P;°. The functor °Tj
yielding a set of transitions of P; is defined by:

(Def.16) © TO = T().
Let us consider P;, and let ¢ be a transition of P;°. The functor °¢ yielding a
transition of P; is defined by:

(Def.17)  °t=t.

In the sequel S will denote a set of places of P;. Next we state several

propositions:
(15)  (S°)*=*S.
16 *(S°) = S5*.

1
18
19

S is deadlock-like if and only if S° is trap-like.

S is trap-like if and only if S° is deadlock-like.

For every P; being a place/transitions net structure and for every tran-
sition t of P; and for every Sy being a set of places of P; holds t € Sp* if
and only if *{t} N Sy # 0.

(20)  For every P; being a place/transitions net structure and for every tran-

sition ¢ of P; and for every Sy being a set of places of P; holds t € *S if
and only if {¢t}* N Sy # 0.

~—~ ~~ —~
~
~— — ~— —
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Summary. By borrowing the concept of neighborhood from the
theory of topological space in continuous cases and extending it to a dis-
crete case such as a space of lattice points we have defined such concepts
as boundaries, closures, interiors, isolated points, and connected points
as in the case of continuity. We have proved various properties which are
satisfied by these concepts.

MML Identifier: FIN_TOPO.

The articles [15], [8], 2], [5], [16], [6], [14], [19], (10, [12], [17], [9], [11], [3]
[4], [13], [7], [18], and [1] provide the notation and terminology for this paper.
The scheme Set_of_Elements deals with a non-empty set A, a unary functor F
yielding an element of A, and a unary predicate P, and states that:
{F(z) : P[z]}, where x ranges over elements of A, is a subset of .4
for all values of the parameters.
One can prove the following propositions:
(1) Let Abeaset. Let f be a finite sequence of elements of 24. Then if for
every natural number ¢ such that 1 <4 and ¢ < len f holds m;f C m;41f,
then for all natural numbers 4, j such that ¢ < j and 1 <4i and j <len f
holds m; f C m; f.
(2) Let Abeaset. Let f be a finite sequence of elements of 24 Suppose for
every natural number ¢ such that 1 <4 and ¢ < len f holds m;f C m;41f.
Then for all natural numbers 4, j such that i < j and 1 <4 and j <len f
and m; f C m; f and for every natural number k such that ¢ <k and k < j
holds 7, f = m f.
(3)  For every set F such that F' is finite and F' # () and for all sets B, C
such that B € F and C € F holds B C C or C C B there exists a set m
such that m € F' and for every set C' such that C' € F holds C C m.

(4)  For all sets x, A holds x C A if and only if 2 € 24.
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(5)  For every function f if for every natural number 7 holds f(i) C f(i+1),
and for all natural numbers 4, j such that ¢ < j holds f(i) C f(j).

The scheme MaxFinSeqEx deals with a non-empty set A, a subset B of A, a
subset C of A, and a unary functor F yielding a subset of .4 and states that:

there exists a finite sequence f of elements of 24 such that len f > 0 and
mf = C and for every natural number 4 such that ¢ > 0 and ¢ < len f holds
Tit1f = F(mif) and F(Men £ f) = Men sf and for all natural numbers 4, j such
that ¢ >0 and 7 < j and j <len f holds m;f C B and m;f C 7, f and m;f # 7, f
provided the parameters meet the following requirements:

e 3 is finite,

e CCHB,

o for every subset A of A such that A C B holds A C F(A) and

F(A) C B.

We consider finite topology spaces which are extension of a 1-sorted structure
and are systems

(a carrier, a neighbour-map),
where the carrier is a non-empty set and the neighbour-map is a function from
the carrier into 2the carrier,

In the sequel F} denotes a finite topology space. We now define two new
modes. Let F} be a 1-sorted structure. An element of F) is an element of the
carrier of Fj.

A subset of I is a subset of the carrier of .

In the sequel z, y are elements of F;. Let F} be a finite topology space, and
let z be an element of Fj. The functor U(x) yields a subset of F; and is defined
as follows:

(Def.1)  U(x) = (the neighbour-map of F;)(x).
One can prove the following proposition

(6) For every F} being a finite topology space and for every element x of
Fy holds U(x) = (the neighbour-map of F;)(z).

We now define three new constructions. Let x be arbitrary, and let y be a
subset of {z}. Then z——y is a function from {z} into 2{#}. The strict finite
topology space FT ) is defined as follows:

(Def.2)  FTyp = ({0 quaany}, 00 quaany})-
A finite topology space is filled if:
(Def.3)  for every element x of it holds x € U(z).
A 1-sorted structure is finite if:
(Def.4)  the carrier of it is finite.
One can prove the following two propositions:
(7)  FTypy is filled.
(8) FTyp is finite.
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Let us observe that there exists a finite filled strict finite topology space.
Let T be a 1-sorted structure, and let F' be a set. We say that F' is a cover
of T' if and only if:

(Det.5)  the carrier of T C |J F.

Next we state the proposition

(9)  For every Fy being a filled finite topology space holds {U(z)}, where x
ranges over elements of Fy, is a cover of Fj.

In the sequel A is a subset of Fy. Let us consider Fi, and let A be a subset
of Fi. The functor A? yielding a subset of F is defined as follows:

(Def.6) A% ={x:U(x)NA#DAU(x)N A # ().
The following proposition is true
(10) x € A%if and only if U(z) N A # 0 and U(x) N A # 0.
We now define two new functors. Let us consider Fj, and let A be a subset
of Fy. The functor A% yielding a subset of F; is defined as follows:
(Def.7) A% = AN A%
The functor A% yields a subset of F} and is defined as follows:
(Def.8) A% = A°n A9,
Next we state the proposition
(11) A% = A% U A%,
We now define several new constructions. Let us consider F7, and let Abea
subset of F}. The functor A yielding a subset of F} is defined by:
(Def.9) A'={x:U(z) C A}.
The functor A® yielding a subset of F} is defined as follows:
(Def.10) A ={x:U(z) N A # 0}.
The functor A® yielding a subset of Fj is defined by:
(Def.11) A*={z:xz€ AANU(z)\{z})NnA=0}
Let us consider Fj, and let A be a subset of F;. The functor A™ yielding a
subset of [} is defined as follows:

(Def.12) A" = A\ A®.
The functor Af yields a subset of F} and is defined as follows:
(Def13) Al ={z:V,[ye AnzeU(y)}.
A finite topology space is symmetric if:
(Def.14)  for all elements x, y of the carrier of it such that y € U(x) holds
x € Uly).

The following propositions are true:

(12) x € A"if and only if U(z) C A.

(13) z € AP if and only if U(x) N A # 0.

(14) ze A®ifand only if x € A and (U(x) \ {z}) N A =0.
(15) z € A™if and only if z € A and (U(z) \ {z}) N A # 0.
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(16) x € Af if and only if there exists y such that y € A and = € U(y).
(17)  Fy is symmetric if and only if for every A holds A? = A7,

In the sequel F' will be a subset of F;. We now define five new constructions.
Let us consider Fy. A subset of F} is open if:

(Def.15) it = it’.

A subset of F} is closed if:

(Def.16) it = it?.

A subset of F} is connected if:

(Def.17)  for all subsets B, C' of F} such that it = BUC and B # () and C' # ()

and BN C = () holds B® N C # 0.

Let us consider Fy, and let A be a subset of F;. The functor A/t yields a subset
of F and is defined as follows:

(Def.18)  Afe =N{F: AC FAF is closed}.

The functor Afi yielding a subset of F} is defined by:

(Def.19)  Afi = U{F: AC F A F is open}.

Next we state a number of propositions:

(18)  For every Fj being a filled finite topology space and for every subset A
of Fy holds A C Ab.

(19)  For every F; being a finite topology space and for all subsets A, B of
F} such that A C B holds A® C B®.

(20) Let F} be a filled finite finite topology space. Let A be a subset of F}.
Then A is connected if and only if for every element x of F} such that
x € A there exists a finite sequence S of elements of 2the carrier of i gych
that len S > 0 and 7.5 = {z} and for every natural number ¢ such that
>0 and i <len S holds ;415 = (TFiS)b NAand A C mMensS.

(21)  For every non-empty set E and for every subset A of E and for every
element x of E holds = € A° if and only if = ¢ A.

((A)e = A

(AP = 4

A% = AP (A%,

(Ac)cS — Aé.

If + € A% then x ¢ (A\ {z})°.

If A% # () and card A > 1, then A is connected.

For every I being a filled finite topology space and for every subset A
of F} holds A" C A.
(29)  For every set E and for all subsets A, B of E holds A = B if and only
if A°= B°.
(30) If A is open, then A° is closed.
(31) If Ais closed, then A° is open.
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Summary. In the article we deal with sets of trees and functions
yielding trees. So, we introduce the sets of all trees, all finite trees and of
all trees decorated by elements from some set. Next, the functions and the
finite sequences yielding (finite, decorated) trees are introduced. There
are shown some convenient but technical lemmas and clusters concerning
with those concepts. In the fourth section we deal with trees decorated
by Cartesian product and we introduce the concept of a tree called a
substitution of structure of some finite tree. Finally, we introduce the
operations of joining trees, i.e. for the finite sequence of trees we define
the tree which is made by joining the trees from the sequence by common
root. For one and two trees there are introduced the same operations.

MML Identifier: TREES_3.

The notation and terminology used here are introduced in the following papers:
[17],[[1]3], 3], 9], [18], [6], [11], [16], [15], [19], [1], [10], [14], [7], [8], [4], [5], [12],
and [2].

1. FINITE SETS

For simplicity we adopt the following rules: x, y will be arbitrary, i, n will be
natural numbers, p, g will be finite sequences, X, Y will be sets, and f will be
a function. Let X be a set. Observe that there exists a finite subset of X and
every finite sequence-like function is finite.

Let X be a non-empty set. One can check that there exists a finite non-empty
subset of X.

Let X be a finite set. Observe that every subset of X is finite.
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Let us consider z. Then {x} is a finite non-empty set. Let us consider y.
Then {x,y} is a finite non-empty set. Let us consider n. Then Segn is a finite
set of natural numbers. Then the elementary tree of n is a finite tree.

2. SETS OF TREES

We now define five new constructions. The non-empty set Trees is defined by:
(Def.1)  Trees is the set of all trees.
The non-empty subset FinTrees of Trees is defined as follows:
(Def.2)  FinTrees is the set of all finite trees.
A set is constituted of trees if:
(Def.3)  for every z such that x € it holds z is a tree.
A set is constituted of finite trees if:
(Def.4)  for every x such that z € it holds z is a finite tree.
A set is constituted of decorated trees if:

(Def.5)  for every x such that x € it holds = is a decorated tree.

Next we state a number of propositions:

(1) X is constituted of trees if and only if X C Trees.

(2) X is constituted of finite trees if and only if X C FinTrees.

(3) X is constituted of trees and Y is constituted of trees if and only if
X UY is constituted of trees.

(4) If X is constituted of trees and Y is constituted of trees, then X =Y is
constituted of trees.

(5)  If X is constituted of trees, then X NY is constituted of trees and Y NX
is constituted of trees and X \ Y is constituted of trees.

(6) X is constituted of finite trees and Y is constituted of finite trees if and
only if X UY is constituted of finite trees.

(7) If X is constituted of finite trees and Y is constituted of finite trees,
then X =Y is constituted of finite trees.

(8) If X is constituted of finite trees, then X NY is constituted of finite
trees and Y N X is constituted of finite trees and X \ Y is constituted of
finite trees.

(9) X is constituted of decorated trees and Y is constituted of decorated
trees if and only if X UY is constituted of decorated trees.

(10) If X is constituted of decorated trees and Y is constituted of decorated
trees, then X =Y is constituted of decorated trees.

(11) If X is constituted of decorated trees, then X NY is constituted of
decorated trees and Y N X is constituted of decorated trees and X \ Y is
constituted of decorated trees.
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(12) 0 is constituted of trees, constituted of finite trees and constituted of
decorated trees.

{z} is constituted of trees if and only if x is a tree.
{z} is constituted of finite trees if and only if x is a finite tree.

(13)

(14)

(15)  {a} is constituted of decorated trees if and only if x is a decorated tree.
(16)  {x,y} is constituted of trees if and only if = is a tree and y is a tree.
(17)

{z,y} is constituted of finite trees if and only if = is a finite tree and y
is a finite tree.

(18)  {x,y} is constituted of decorated trees if and only if = is a decorated
tree and y is a decorated tree.

(19) If X is constituted of trees and Y C X, then Y is constituted of trees.

(20) If X is constituted of finite trees and Y C X, then Y is constituted of
finite trees.

(21) If X is constituted of decorated trees and Y C X, then Y is constituted
of decorated trees.

We now define three new constructions. One can verify the following obser-
vations:

*  there exists a finite constituted of trees constituted of finite trees non-
empty set,

% there exists a finite constituted of decorated trees non-empty set, and

%  every constituted of finite trees set is constituted of trees.

Let X be a constituted of trees set. One can check that every subset of X is
constituted of trees.

Let X be a constituted of finite trees set. One can check that every subset
of X is constituted of finite trees.

Let X be a constituted of decorated trees set. Note that every subset of X
is constituted of decorated trees.

Let D be a constituted of trees non-empty set. We see that the element of
D is a tree. Let D be a constituted of finite trees non-empty set. We see that
the element of D is a finite tree. Let D be a constituted of decorated trees non-
empty set. We see that the element of D is a decorated tree. Let us note that
it makes sense to consider the following constant. Then Trees is a constituted
of trees non-empty set. Let us observe that there exists a constituted of finite
trees non-empty subset of Trees.

Let us note that it makes sense to consider the following constant. Then
FinTrees is a constituted of finite trees non-empty subset of Trees. Let D be a
non-empty set. A set is called a set of trees decorated by D if:

(Def.6)  for every x such that = € it holds x is a tree decorated by D.
Let D be a non-empty set. Note that every set of trees decorated by D is
constituted of decorated trees.

Let D be a non-empty set. Note that there exists a set of trees decorated by
D which is finite and non-empty.
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Let D be a non-empty set, and let E be a non-empty set of trees decorated
by D. We see that the element of F is a tree decorated by D. Let T be a tree,
and let D be a non-empty set. Then D7 is a non-empty set of trees decorated
by D. We see that the function from 7T into D is a tree decorated by D. Let
D be a non-empty set. The functor Trees(D) yielding a non-empty set of trees
decorated by D is defined as follows:

(Det.7)  for every tree T' decorated by D holds T' € Trees(D).

Let D be a non-empty set. The functor FinTrees(D) yielding a non-empty set
of trees decorated by D is defined as follows:

(Def.8)  for every tree T decorated by D holds domT is finite if and only if
T € FinTrees(D).
The following proposition is true
(22)  For every non-empty set D holds FinTrees(D) C Trees(D).

3. FUNCTIONS YIELDING TREES

We now define three new attributes. A function is tree yielding if:
(Def.9)  rngit is constituted of trees.
A function is finite tree yielding if:
(Def.10)  rngit is constituted of finite trees.
A function is decorated tree yielding if:
(Def.11)  rngit is constituted of decorated trees.

One can prove the following propositions:
(23) ¢ is tree yielding, finite tree yielding and decorated tree yielding.

(24)  f is tree yielding if and only if for every x such that x € dom f holds
f(x) is a tree.

(25)  f is finite tree yielding if and only if for every x such that x € dom f
holds f(x) is a finite tree.

(26)  fis decorated tree yielding if and only if for every x such that = € dom f
holds f(x) is a decorated tree.

(27)  pis tree yielding and q is tree yielding if and only if p ™ ¢ is tree yielding.
(28) p is finite tree yielding and ¢ is finite tree yielding if and only if p ™ ¢ is
finite tree yielding.

(29)  pis decorated tree yielding and ¢ is decorated tree yielding if and only
if p ™ q is decorated tree yielding.
(x) is tree yielding if and only if z is a tree.
(x) is finite tree yielding if and only if z is a finite tree.
(x) is decorated tree yielding if and only if z is a decorated tree.
(

x,y) is tree yielding if and only if x is a tree and y is a tree.
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(34)  (z,y) is finite tree yielding if and only if x is a finite tree and y is a
finite tree.

(35)  (x,y) is decorated tree yielding if and only if z is a decorated tree and
y is a decorated tree.

(36) If i # 0, then i — x is tree yielding if and only if z is a tree.

(37) If i # 0, then i — x is finite tree yielding if and only if z is a finite
tree.

(38) If i # 0, then i — x is decorated tree yielding if and only if = is a
decorated tree.

One can verify the following observations:
x  there exists a tree yielding finite tree yielding non-empty finite sequence,
x  there exists a decorated tree yielding non-empty finite sequence,
x  there exists a tree yielding finite tree yielding non-empty function,
%  there exists a decorated tree yielding non-empty function, and
*  every function which is finite tree yielding is also tree yielding.

Let D be a constituted of trees non-empty set. Observe that every finite
sequence of elements of D is tree yielding.

Let p, g be tree yielding finite sequences. Then p ™ ¢ is a tree yielding finite
sequence. Let D be a constituted of finite trees non-empty set. Note that every
finite sequence of elements of D is finite tree yielding.

Let p, ¢ be finite tree yielding finite sequences. Then p ™ ¢ is a finite tree
yielding finite sequence. Let D be a constituted of decorated trees non-empty
set. One can check that every finite sequence of elements of D is decorated tree
yielding.

Let p, g be decorated tree yielding finite sequences. Then p ™ q is a decorated
tree yielding finite sequence. Let T" be a tree. Then (T) is a tree yielding non-
empty finite sequence. Let S be a tree. Then (T, S) is a tree yielding non-empty
finite sequence. Let n be a natural number, and let T be a tree. Then n— T
is a tree yielding finite sequence. Let T be a finite tree. Then (T') is a finite tree
yielding tree yielding non-empty finite sequence. Let S be a finite tree. Then
(T, S) is a finite tree yielding non-empty tree yielding finite sequence. Let n
be a natural number, and let T be a finite tree. Then n —— T is a finite tree
yielding finite sequence. Let T" be a decorated tree. Then (T') is a decorated tree
yielding non-empty finite sequence. Let S be a decorated tree. Then (T, S) is a
decorated tree yielding non-empty finite sequence. Let n be a natural number,
and let T" be a decorated tree. Then n —— T is a decorated tree yielding finite
sequence.

The following proposition is true
(39) For every decorated tree yielding function f holds dom(dom, f(k)) =
dom f and dom, f(k) is tree yielding.

Let p be a decorated tree yielding finite sequence. Then dom, p(k) is a tree
yielding finite sequence.
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One can prove the following proposition

(40)  For every decorated tree yielding finite sequence p holds len(dom,, p(k)) =
len p.

4. TREES DECORATED BY CARTESIAN PRODUCT AND STRUCTURE OF
SUBSTITUTION

We now define four new constructions. Let D, E be non-empty sets. A tree
decorated by D and F is a tree decorated by [ D, E].

A set of trees decorated by D and F is a set of trees decorated by [ D, E{.

Let Ty, T; be decorated trees. Then (T4, T3) is a decorated tree. Let Dy, Do
be non-empty sets, and let T} be a tree decorated by Di, and let 15 be a tree
decorated by Dy. Then (T7,T5) is a tree decorated by Dy and Dy. Let D, E
be non-empty sets, and let T be a tree decorated by D, and let f be a function
from D into E. Then f-T is a tree decorated by E. Let D1, Do be non-empty
sets. Then 71 (D1 X D3) is a function from [ Dy, Do ] into Dy. Then mo(D; X D3)
is a function from [ Dy, D9 ] into Ds. Let Dy, D2 be non-empty sets, and let T
be a tree decorated by Dy and Dy. The functor T4 yielding a tree decorated by
D is defined by:

(Def.12) T1 = 7['1(D1 X Dg) -T.

The functor T5 yielding a tree decorated by Ds is defined by:

(Def.lS) T2 = 7['2(D1 X Dg) -T.

The following propositions are true:

(41)  For all non-empty sets Dy, Do and for every tree T decorated by D,
and Dy and for every element t of dom 7T holds T'(t); = T1(t) and Ta(t) =
T(t)2.

(42)  For all non-empty sets D1, Do and for every tree T decorated by D1
and D2 holds <T1, T2> =T.

We now define two new modes. Let T be a finite tree. Then LeavesT is a
finite non-empty subset of T'. Let T be a tree, and let S be a non-empty subset
of T. We see that the element of S is an element of T'. Let T be a finite tree.
We see that the leaf of T is an element of LeavesT. Let T be a finite tree. A
tree is called a substitution of structure of T if:

(Def.14)  for every element t of it holds ¢t € T or there exists a leaf | of T' such

that [ < t.
Let T be a finite tree, and let t be a leaf of T', and let S be a tree. Then T'(¢/S)
is a substitution of structure of T'. Let T be a finite tree. Observe that there
exists a finite substitution of structure of 7.
Let us consider n. A substitution of structure of n is a substitution of struc-
ture of the elementary tree of n.

We now state two propositions:
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(43)  Every tree is a substitution of structure of 0.

(44)  For all trees 17, Ty such that Ti-level(1) C Ty-level(1) and for every n
such that (n) € T1 holds T3 | (n) = T | (n) holds 71 C T5.

5. JOINING OF TREES

Next we state several propositions:
(45)  For all trees T', T" and for every element p of T holds p € T'(p/T").

(46)  For all trees T', T" and for every finite sequence p of elements of N such
that p € Leaves T holds T C T'(p/T").

(47)  For all decorated trees T', T” and for every element p of dom T holds
T(p/T")(p) =T'(e)-

(48)  For all decorated trees T, T’ and for all elements p, ¢ of domT such
that p £ ¢ holds T'(p/T")(q) = T'(q).

(49)  For all decorated trees T', T” and for every element p of domT and for
every element g of domT” holds T'(p/T")(p "~ q) = T'(q).

Let 11, T be trees. Then T3 UT5 is a tree.
One can prove the following proposition
(50)  Let T4, T3 be trees. Let p be an element of 77 U Ts. Then
(i) ifpeTyand p€e Ty, then (THUT) I p=T11pUTyp,

(i) ifp ¢ T, then (T UT) Ip=T>1p,

(i) if p ¢ Ty, then (T3 UTL) Ip=T1 | p.

We now define three new functors. Let us consider p satisfying the condition:

p is tree yielding. The functor ? yielding a tree is defined as follows:

(Def.15) =z € ? if and only if z = ¢ or there exist n, ¢ such that n < lenp and
gep(n+1)and z = (n) " q.
=~
Let T be a tree. The functor T yields a tree and is defined by:
A~ N
(Def.16) T =(T).
—~ =
Let 17, T5 be trees. The functor 17,75 yields a tree and is defined by:
—— —
(Defl?) Tl, T2 = <T1, T2>
One can prove the following propositions:
(51) If p is tree yielding, then (n) ~ ¢ € ? if and only if n < lenp and
g€ p(n+1).
(52)  If p is tree yielding, then ?-level(l) = {(n) : n < lenp} and for every
n such that n < lenp holds “p~[{n) = p(n + 1).
(53)  For all tree yielding finite sequences p, ¢ such that ’? = ’Tq\ holds
pP=q.
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(54)  For all tree yielding finite sequences pi1, po and for every tree T holds
—_—

p € T if and only if (lenpy) “p € p1 = (T) ™ pa.

€ = the elementary tree of 0.

If p is tree yielding, then the elementary tree of lenp C " p .

(55)
(56)
(57)  The elementary tree of i = i — the elementary tree of 0.
(58)

For every tree T and for every tree yielding finite sequence p holds

— -
p~(T) = (" p "Uthe elementary tree of lenp + 1)((lenp)/T).
(59)  For every tree yielding finite sequence p holds

p ~ (the elementary tree of 0) =" p "U
the elementary tree of lenp + 1.

(60)  For all tree yielding finite sequences p, ¢ and for all trees T4, T holds
p~ (1) " q=p~ (Tz) " q({lenp)/T1).
A~
(61)  For every tree T' holds T = (the elementary tree of 1)((0)/T).

(62)  For all trees T7, T holds m = (the elementary tree of
2)({0)/T1)((1)/T2).
Let p be a finite tree yielding finite sequence. Then ’? is a finite tree. Let
T be a finite tree. Then /T\ is a finite tree. Let 77, 15 be finite trees. Then

e N X i
11,75 is a finite tree.

One can prove the following propositions:

~~
(63)  For every tree T' and for an arbitrary x holds x € T if and only if

~

x = ¢ or there exists p such that p € T and = = (0) " p.
(64)  For every tree T' and for every finite sequence p holds p € T' if and only

~~
if (0)~pe T .

~~
65 For every tree T holds the elementary tree of 1 C T .

66

A~ =
For all trees Ty, T such that 177 C 15 holds T3 C T5 .

A~ =
67 For all trees T7, 15 such that 77 = 15 holds T} = Ts.

~~
= T5.

~~
69)  For all trees T, T holds T3 ((0)/T3)

70

(65)

(66)

(67)

~~

(68)  For every tree T holds T [(0) =T.
(69)

(70)  the elementary tree of 0 = the elementary tree of 1.
(71)

— =
For all trees 11, T5 and for an arbitrary « holds x € 11,75 if and only
if z = € or there exists p such that p € 77 and x = (0) ~ p or p € Ty and

x=(1)"p.

71
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(72)  For all trees T4, T; and for every finite sequence p holds p € T3 if and

—~ =
only if (0) ~p € Ty, T5.
(73)  For all trees T4, T; and for every finite sequence p holds p € Ty if and
—~ =
only if (1) ~p € Ty, T5.
—~=
(74)  For all trees Ty, Ty holds the elementary tree of 2 C T1,T5.
(75)  For all trees Ty, To, Wi, Wy such that 77 C W and 7o € Ws holds
— =
T1,T5 € Wy, Wa.

—~ =
(76)  For all trees T, T, Wi, Wy such that 11,7y = Wi, Wy holds 17 = W,
and T2 = WQ.

— = — =
(77) For all trees Tl, T2 holds Tl, T2 [<0> = T1 and Tl, T2 r<1> = TQ.
— = ~ = — =
(78) For all trees T, Tl, T2 holds Tl,T2(<O>/T) == T, T2 and Tl,T2(<1>/T) ==
1, T
1,4

(79)  the elementary tree of 0, the elementary tree of 0 = the elementary tree
of 2.

In the sequel w is a finite tree yielding finite sequence. One can prove the
following propositions:

(80)  For every w if for every finite tree ¢ such that ¢ € rngw holds height t <
n, then height’ju\ <n+1

(81)  For every finite tree ¢ such that ¢ € rngw holds height @ > height ¢.

(82)  For every finite tree ¢ such that ¢ € rngw and for every finite tree ¢’ such
that ¢ € rngw holds height #' < height ¢ holds height "% = height ¢ + 1.

~~
(83)  For every finite tree T holds height 7' = height T' + 1.

— =
(84)  For all finite trees T7, T holds height T7, T» = max(height 77, height 75 )+
1.

REFERENCES

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.

[2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547—
552, 1991.

[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-
ematics, 1(1):41-46, 1990.

[4] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.

[5] Grzegorz Bancerek. Konig's lemma. Formalized Mathematics, 2(3):397-402, 1991.

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[7] Cgzestaw Byliriski. Basic functions and operations on functions. Formalized Mathematics,
1(1):245-254, 1990.

[8] Czestaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formal-
ized Mathematics, 1(3):529-536, 1990.



204

[9]
[10]

[11]
[12]

[13]
[14]
[15]

[16]
[17]

18]

[19]

GRZEGORZ BANCEREK

Czeslaw Bylinski. Functions and their basic properties. Formalized Mathematics,
1(1):55-65, 1990.

Czeslaw Byliniski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

Alicia de la Cruz. Introduction to modal propositional logic. Formalized Mathematics,
2(4):553-558, 1991.

Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,
1(1):35-40, 1990.

Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329-334, 1990.

Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115-122, 1990.

Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11,
1990.

Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97-105, 1990.

Andrzej Trybulec and Czestaw Byliniski. Some properties of real numbers. Formalized
Mathematics, 1(3):445-449, 1990.

Received November 27, 1992



FORMALIZED MATHEMATICS
Volume 3, Number 2, 1992
Université Catholique de Louvain

Sum and Product of Finite Sequences of
Elements of a Field
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Summary. This article is concerned with a generalization of con-
cepts introduced in [10], i.e., there are introduced the sum and the product
of finite number of elements of any field. Moreover, the product of vectors
which yields a vector is introduced. According to [10], some operations
on i-tuples of elements of field are introduced: addition, subtraction, and
complement. Some properties on the sum and the product of finite num-
ber of elements of a field are present.

MML Identifier: FVSUM_1.

The articles [17], [2], [18], [7], [8], [3], [4], [14], [13], [15], [19], [16], [6], [5], [9],
[1], [20], [22], [21], [11], and [12] provide the notation and terminology for this
paper.

1. AUXILIARY THEOREMS

For simplicity we adopt the following convention: i, j, k will denote natural
numbers, K will denote a field, a, a’, a1, a2, as will denote elements of the
carrier of K, p, p1, p2, ¢ will denote finite sequences of elements of the carrier
of K, and R, Ry, R, R3 will denote elements of (the carrier of K)*. We now
state a number of propositions:

1) -0 =0xk.

2)  The addition of K is commutative.

w

— — ~— ~—

The addition of K is associative.

N

The multiplication of K is commutative.
)
6

(
(
(
(
( The multiplication of K is associative.

( 1g is a unity w.r.t. the multiplication of K.
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(7)  Lthe multiplication of K = 1k
(8) Og is a unity w.r.t. the addition of K.
(9)  1the addition of K = Ok
(10)  The addition of K has a unity.
(11)  The multiplication of K has a unity.
(12)  The multiplication of K is distributive w.r.t. the addition of K.

We now define two new functors. Let us consider K, and let a be an element
of the carrier of K. The functor - yields a unary operation on the carrier of K
and is defined by:
(Def.1)  -* = (the multiplication of K)°(a,id(the carrier of K))-

Let us consider K. The functor — g yields a binary operation on the carrier of
K and is defined as follows:

(Def.2)  —g = (the addition of K) o (id(the carrier of k), the reverse-map of K).

We now state several propositions:
(13)  —x = (the addition of K)o (id(the carrier of K); the reverse-map of K).
( ) —K(al, ag) = a1 — ag.
(15) - is distributive w.r.t. the addition of K.
(16)  The reverse-map of K is an inverse operation w.r.t. the addition of K.
(17)  The addition of K has an inverse operation.
(18)  The inverse operation w.r.t.the addition of K = the reverse-map of K.
(19)  The reverse-map of K is distributive w.r.t. the addition of K.

Let us consider K, p1, po. The functor p; + po yielding a finite sequence of

elements of the carrier of K is defined as follows:

(Def.3)  p1 + p2 = (the addition of K)°(p1, p2).

Next we state two propositions:
(20)  p1 + p2 = (the addition of K)°(p1, p2).
(21) Ifi € Seglen(py +p2) and a1 = p1(i) and ag = p2(i), then (p1 +p2) (i) =
a1 + as.
Let us consider 7, and let us consider K, and let Ry, Ry be elements of (the
carrier of K)". Then Ry + Ry is an element of (the carrier of K)".

Next we state several propositions:
(22) Ifj € Segiand a; = R1(j) and as = Ra(j), then (R1+ R2)(j) = a1 +as.
(23) E(the carrier of K) +p= €(the carrier of K) and
p+ €(the carrier of K) = E(the carrier of K)-

<CL1> + <a2> = <CL1 + CL2>.

(i +—aq1) 4+ (i — a2) =i+ a1 + as.

Ri+ Ry = Ro+ R;.

Ry + (R2 + Rg) = (Rl + RQ) + Rs.

R+ (i+—0g)=Rand R= (i — Og) + R.

24
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Let us consider K, p. The functor —p yields a finite sequence of elements of
the carrier of K and is defined as follows:

(Def.4)  —p = (the reverse-map of K) - p.
The following two propositions are true:
(29)  —p = (the reverse-map of K) - p.
(30) If i € Seglen(—p) and a = p(i), then (—p)(i) = —a.
Let us consider i, K, R. Then —R is an element of (the carrier of K)®.
One can prove the following propositions:
31) Ifj € Segi and a = R(j), then (—R)(j) = —a.
32 —E€(the carrier of K) = €(the carrier of K)-
33) —(a) = (—a).
—(ir—a)=1ir— —a.
R+—-R=ir—0g and — R+ R =1+ Og.
If Ri + Ry =i+ 0k, then Ry = —Ry and Ry = —R;.
——R=R.
If —R1 = —Rg, then R1 = RQ.
39) If Ri+R=Rs+ Ror Ri + R= R+ Ry, then Ry = Rs.
40 —(R1+ Ry) = —R1 + —Ro.
Let us consider K, p1, po. The functor p; — po yielding a finite sequence of
elements of the carrier of K is defined as follows:
(Def.5)  p1—p2 = (—k)°(p1, P2)-
Next we state two propositions:
(41)  p1—p2=(—k)°(P1, P2)-
(42) If i € Seglen(p; — p2) and a; = p1(3) and ay = p2(i), then (p1 —p2) (i) =
al — ag.
Let us consider i, K, Ry, Re. Then Ry — Ry is an element of (the carrier of
K)'.
The following propositions are true:
(43) If j € Segi and a; = R1(j) and az = Ra(j), then (R —R2)(j) = a1 —ax.
(44) €(the carrier of K) — P = €(the carrier of K) and
P — E€(the carrier of K) = €(the carrier of K)-
(a1) — (az) = (a1 — az).
(i+—a1) — (i—ag) =i+ a; — as.
Ry — Ry = R+ —R>.
R—(i—0g)=R.
(i+—0g)— R=—R.
Ry — —Ry = R1 + Rs.
—(R1 — R2) = Ry — Ry.
—(Rl — RQ) =—R; + Rs.
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(53) R—R=i— 0g.

(54) If Ry — Ry = i+— Ok, then Ry = Rs.

(55)  R; — Ry — R3 = Ry — (R2 + R3).

(56) Ri+ (R — R3) = (R1+ R2) — Rs.

(57)  Ri— (R2— R3) = (R1 — R2) + Rs.

(58) Ry =(Ri+R)—R.

(59) Ry =(R1—R)+R.

(60)  For all elements a, b of the carrier of K holds ((the multiplication of

K)O(a7 id(thc carrier of K)))(b) =a-b.
(61)  For all elements a, b of the carrier of K holds -%(b) = a - b.

Let us consider K, and let p be a finite sequence of elements of the carrier
of K, and let a be an element of the carrier of K. The functor a - p yielding a
finite sequence of elements of the carrier of K is defined as follows:

(Def.6) a-p=-2-p.
Next we state the proposition
(62) If i € Seglen(a - p) and a’ = p(i), then (a-p)(i) =a-a’.
Let us consider i, K, R, a. Then a - R is an element of (the carrier of K)®.

The following propositions are true:

(63) If j € Segi and a’ = R(j), then (a- R)(j) =a-d'.
(64) a- €(the carrier of K) = E(the carrier of K)-

(65)  a-(a1) ={(a-a1).

(66) ai-(i—az) =1+ a-as.

(67) (al . CL2) -R = ai - (CL2 . R)

(68) (a1 +a2)-R=a;-R+az-R.

(69) a-(Ri+R2)=a-Ri+a-Ry.

(70) 1x-R=R.

(71) Ox-R=ir 0.

(72) (-1x)-R=—R.

Let us consider K, pi, po. The functor p; e ps yields a finite sequence of
elements of the carrier of K and is defined as follows:

(Def.7)  p1 @ po = (the multiplication of K)°(p1, p2).

One can prove the following proposition

(73) If i € Seglen(p; @ p2) and a1 = pi(i) and az = pa(i), then (p; @ p2)(i) =
aj - ag.
Let us consider i, K, Ry, Re. Then R; e Ry is an element of (the carrier of
K)'.
We now state a number of propositions:
(74) If j € Segi and a1 = R1(j) and ag = R2(j), then (R1 e R2)(j) = aq - as.
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(75) €(the carrier of K) ® P = €(the carrier of K) and
P ® E(the carrier of K) = €(the carrier of K)-

(76)  (a1) ® {az) = (a1 - az).
( ) R10R2=R20R1.
(78) peg=qep.
(79) R;e(Rye R3) = (R;eRy)eRs.
(80) (i——a)eR=a-Rand Re(i—a)=a-R.
(81) (i ay)e(ir—az) =1+ aj-as.
( ) a-(RloRg):a-RloRg.
(83) a-(RieRy)=a-RieRyanda-(R;eRy)=Rjea-Rs.
(84) a-R=(i—a)eR.
Let us consider K, and let p be a finite sequence of elements of the carrier of
K. The functor > p yielding an element of the carrier of K is defined as follows:
(Def.8) > p = the addition of K ® p.

The following propositions are true:

(85) Z( (the carrier of K)) =0k
(86)  >(a) =

87) Xp~(a >) >p+a.

(88) (P17 p2) =X p1+ Xpe.
(89)  X((a) "p)=a+>Xp.

(90)  3Z(a1,a2) = a1 + as.

(91)  >(a1,a2,a3) = a1 + az + as.
(92)  Xa-p)=a-p.

(93)  For every element R of (the carrier of K)° holds 3" R = Ok.
94)  X(-p)=-Xp

(95) (R + Rz) >R+ Ro.
(96)  (R1—R2) =3 Ri— X R

Let us consider K, and let p be a finite sequence of elements of the carrier of
K. The functor []p yielding an element of the carrier of K is defined by:

(Def.9)  [Ip = the multiplication of K ® p.

The following propositions are true:

(97)  TIp = the multiplication of K ® p.
(98) H(g(thc carrier of K)) = lk.
(99)  [a) =

(100) TI(p~ (a )) [Ip-a.

(101)  TI(p1 ~p2) = [Ip1 - I po-

(102)  TI({a) ~p) = a-Ilp.

(103) [l{a1,a2) = aq - as.

(104)  [I(a1,a2,a3) = ay - ag - as.
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(105)  For every element R of (the carrier of K)° holds [[R = 1.
(106) TI(i— 1g) = 1k.
(107)  There exists k such that k € Seglenp and p(k) = Ox if and only if
[Ip =0xk.
(108)  [I(i +j+—a) =TI(i — a) - T1(j — a).
(109) TG -j—a) =T1( — 11(i — a)).
(110)  II(i — a1 - a2) = [1(i = a1) - T1(i — a2).
(111)  [I(R1 e R2) =[] Ry - I Ro.
(112)  [l(a-R)=TI(i = a) -1 R.
Let us consider K, and let p, g be finite sequences of elements of the carrier
of K. The functor p - q yielding an element of the carrier of K is defined by:

(Def.10)  p-g=3(peq).
One can prove the following propositions:
(113)  For all elements a, b of the carrier of K holds (a) - (b) = a - b.
(114)  For all elements ay, ag, by, by of the carrier of K holds (aq,az) - (b1,
b2> =ai-b; +ag-by.
(115)  For all finite sequences p, g of elements of the carrier of K holds p-q =
q-p.
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Summary. The goal of the article is to define the concept of
monoid. In the preliminary section we introduce the notion of some
properties of binary operations. The second section is concerning with
structures with a set and a binary operation on this set: there is in-
troduced the notion corresponding to the notion of some properties of
binary operations and there are shown some useful clusters. Next, we are
concerning with the structure with a set, a binary operation on the set
and with an element of the set. Such a structure is called monoid iff the
operation is associative and the element is a unity of the operation. In
the fourth section the concept of subsystems of monoid (group) is intro-
duced. Subsystems are submonoids (subgroups) or other parts of monoid
(group) with are closed w.r.t. the operation. The are present facts on
inheritness of some properties by subsystems. Finally, there are construct
the examples of groups and monoids: the group )R, 4+( of real numbers
with addition, the group Z ™ of integers as the subsystem of the group
YR, +{, the semigroup )N, +( of natural numbers as the subsystem of Z *,
and the monoid )N, +, 0( of natural numbers with addition and zero as
monoidal extension of the semigroup )N, 4+(. The semigroups of real and
natural numbers with multiplication are also introduced. The monoid
of finite sequences over some set with concatenation as binary operation
and with empty sequence as neutral element is defined in sixth section.
Last section deals with monoids with the composition of functions as the
operation, i.e. with the monoid of partial and total functions and the
monoid of permutations.
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1. BINARY OPERATIONS PRELIMINARY

In the sequel z is arbitrary and X, Y denote sets. We now define several new
constructions. Let G be a 1-sorted structure. An element of G is an element of
the carrier of G.

A finite sequence of elements of G is a finite sequence of elements of the
carrier of G.

A binary operation on G is a binary operation on the carrier of G.

A subset of G is a subset of the carrier of G.

A 1-sorted structure is constituted functions if:

(Def.1)  every element of it is a function.
A 1-sorted structure is constituted finite sequences if:
(Def.2)  every element of it is a finite sequence.
Let X be a constituted functions 1-sorted structure. One can check the following
observations:
x  every element of X is function-like,
% every constituted finite sequences 1-sorted structure is constituted func-
tions, and
% every constituted finite sequences half group structure is constituted
functions.

Let X be a constituted finite sequences 1-sorted structure. Note that every
element of X is finite sequence-like.

Let D be a non-empty set, and let p, ¢ be finite sequences of elements of D.
Then p~ q is an element of D*. Let g, f be functions. We introduce the functor
fog as asynonym of f-g. Let X be a set, and let g, f be functions from X
into X. Then f - g is a function from X into X. Let X be a set, and let g, f
be permutations of X. Then f - g is a permutation of X. Let A be a set, and
let B, C be non-empty sets, and let ¢ be a function from A into B, and let f
be a function from B into C. Then f - g is a function from A into C. Let A, B,
C be sets, and let g be a partial function from A to B, and let f be a partial
function from B to C'. Then f - g is a partial function from A to C. Let D be a
non-empty set. A binary operation on D is left invertible if:

(Def.3)  for every elements a, b of D there exists an element [ of D such that
it(l, a) = b.
A binary operation on D is right invertible if:
(Def.4)  for every elements a, b of D there exists an element r of D such that
it(a, r) = b.
A binary operation on D is invertible if:
(Def.5)  for every elements a, b of D there exist elements r, [ of D such that
it(a, r) = b and it(l, a) = b.
A binary operation on D is left cancelable if:
(Def.6)  for all elements a, b, ¢ of D such that it(a, b) = it(a, ¢) holds b = c.
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A binary operation on D is right cancelable if:
(Detf.7)  for all elements a, b, ¢ of D such that it(b, a) = it(c, a) holds b = c.
A binary operation on D is cancelable if:
(Def.8)  for all elements a, b, ¢ of D such that it(a, b) = it(a, ¢) or it(b, a) = it(c,
a) holds b = c.
A binary operation on D has uniquely decomposable unity if:
(Def.9) it has a unity and for all elements a, b of D such that it(a, b) = 1
holds a = b and b = 1j;.
We now state three propositions:

(1)  For every non-empty set D and for every binary operation f on D holds
f is invertible if and only if f is left invertible and right invertible.

(2)  For every non-empty set D and for every binary operation f on D holds
f is cancelable if and only if f is left cancelable and right cancelable.

(3)  For every binary operation f on {z} holds f = {(z, )} — z and f
has a unity and f is commutative and f is associative and f is idempotent
and f is invertible and cancelable and has uniquely decomposable unity.

2. SEMIGROUPS

We adopt the following convention: G denotes a half group structure, D denotes
a non-empty set, and a, b, ¢, r, | denote elements of G. We now define several
new attributes. A half group structure is unital if:

(Def.10)  the operation of it has a unity.

A half group structure is commutative if:
(Def.11)  the operation of it is commutative.

A half group structure is associative if:
(Def.12)  the operation of it is associative.

A half group structure is idempotent if:
(Def.13)  the operation of it is idempotent.

A half group structure is left invertible if:
(Def.14)  the operation of it is left invertible.

A half group structure is right invertible if:
(Def.15)  the operation of it is right invertible.

A half group structure is invertible if:
(Def.16)  the operation of it is invertible.

A half group structure is left cancelable if:
(Def.17)  the operation of it is left cancelable.

A half group structure is right cancelable if:
(Def.18)  the operation of it is right cancelable.
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A half group structure is cancelable if:
(Def.19)  the operation of it is cancelable.

A half group structure has uniquely decomposable unity if:
(Def.20)  the operation of it has uniquely decomposable unity.

One can verify that there exists a unital commutative associative cancelable
idempotent invertible with uniquely decomposable unity constituted functions
constituted finite sequences strict half group structure.

We now state a number of propositions:
(4) If G is unital, then 1ihe operation of ¢ 1S @ unity w.r.t. the operation of

G.

(5) G is unital if and only if for every a holds 1the operation of ¢ -@ = @ and
a - 1the operation of G = G-

(6) G is unital if and only if there exists a such that for every b holds a-b = b
and b-a =b.

(7)

(8)

(9) G is idempotent if and only if for every a holds a - a = a.
(10)

G is commutative if and only if for all a, b holds a-b=1"b-a.
G is associative if and only if for all a, b, ¢ holds (a-b)-c=a- (b-c).

G is left invertible if and only if for every a, b there exists [ such that

l-a=b.
(11) G is right invertible if and only if for every a, b there exists r such that
a-r=>o.

(12) G is invertible if and only if for every a, b there exist 7, [ such that
a-r=band ! -a=0.
(13) @G is left cancelable if and only if for all a, b, ¢ such that a-b =a-c

holds b = c.
(14) @G is right cancelable if and only if for all a, b, ¢ such that b-a =c-a
holds b = c.

(15) G is cancelable if and only if for all a, b, ¢ such that a-b = a - c or
b-a=c-aholds b=c.

(16) G has uniquely decomposable unity if and only if the operation of G has
a unity and for all elements a, b of G such that a - b = 1the operation of G
holds @ = b and b = Lthe operation of G-

(17)  If G is associative, then G is invertible if and only if G is unital and the
operation of G has an inverse operation.

One can check the following observations:
x  every group-like half group structure is associative and invertible,
% every associative invertible half group structure is group-like,
% every half group structure which is invertible is also left invertible and
right invertible,
% every half group structure which is left invertible and right invertible is
also invertible,
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% every cancelable half group structure is left cancelable and right cance-
lable,

every left cancelable right cancelable half group structure is cancelable,

*

*

every half group structure which is associative and invertible is also
unital and cancelable,

*

every Abelian group is commutative, and

*

every commutative group is Abelian.

3. MONOIDS

We consider monoid structures which are extension of a half group structure
and are systems

(a carrier, an operation, a unity),
where the carrier is a non-empty set, the operation is a binary operation on the
carrier, and the unity is an element of the carrier.

In the sequel M will be a monoid structure. A monoid structure is well unital
if:

(Def.21)  the unity of it is a unity w.r.t. the operation of it.

Next we state the proposition
(18) M is well unital if and only if for every element a of M holds (the unity
of M) -a = a and a - the unity of M = a.
Let us mention that every monoid structure which is well unital is also unital.
We now state the proposition

(19)  For every M being a monoid structure such that M is well unital holds
the unity of M = Lthe operation of M -

We now define two new modes. Let us note that there exists a well unital
commutative associative cancelable idempotent invertible with uniquely decom-
posable unity unital constituted functions constituted finite sequences strict
monoid structure.

A monoid is a well unital associative monoid structure.

Let G be a half group structure. A monoid structure is called a monoidal
extension of G if:

(Def.22)  the half group structure of it = the half group structure of G.

One can prove the following proposition
(20)  For every monoidal extension M of G holds the carrier of M = the

carrier of G and the operation of M = the operation of G and for all
elements a, b of M and for all elements a’, b’ of G such that a = o/ and
b="b holdsa-b=ad -b.

Let G be a half group structure. Note that there exists a strict monoidal

extension of G.
The following proposition is true
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(21) Let G be a half group structure. Let M be a monoidal extension of
G. Then if G is unital, then M is unital and also if G is commutative,
then M is commutative and also if G is associative, then M is associative
and also if G is invertible, then M is invertible and also if G has uniquely
decomposable unity, then M has uniquely decomposable unity and also
if G is cancelable, then M is cancelable.

Let G be a constituted functions half group structure. One can check that
every monoidal extension of GG is constituted functions.

Let G be a constituted finite sequences half group structure. Note that every
monoidal extension of GG is constituted finite sequences.

Let G be a unital half group structure. Observe that every monoidal exten-
sion of GG is unital.

Let G be an associative half group structure. Omne can verify that every
monoidal extension of G is associative.

Let G be a commutative half group structure. One can verify that every
monoidal extension of G is commutative.

Let G be an invertible half group structure. Note that every monoidal ex-
tension of G is invertible.

Let G be a cancelable half group structure. One can check that every
monoidal extension of G is cancelable.

Let G be a half group structure with uniquely decomposable unity. Note
that every monoidal extension of G is with uniquely decomposable unity.

Let G be a unital half group structure. Note that there exists a well unital
strict monoidal extension of G.

The following proposition is true

(22)  For every G being a unital half group structure and for all well unital
strict monoidal extensions M7, Ms of G holds My = M.

4. SUBSYSTEMS

We now define two new modes. Let G be a half group structure. A half group
structure is said to be a subsystem of G if:

(Def.23)  the operation of it < the operation of G.

Let G be a half group structure. One can check that there exists a subsystem
of G which is strict.

Let G be a unital half group structure. Observe that there exists a subsystem
of G which is unital associative commutative cancelable idempotent invertible
with uniquely decomposable unity and strict.

Let G be a half group structure. A monoid structure is called a monoidal
subsystem of G if:

(Def.24)  the operation of it < the operation of G and for every M being a monoid

structure such that G = M holds the unity of it = the unity of M.
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Let G be a half group structure. Note that there exists a monoidal subsystem
of G which is strict.

Let M be a monoid structure. Let us note that the monoidal subsystem of
M can be characterized by the following (equivalent) condition:

(Def.25)  the operation of it < the operation of M and the unity of it = the unity
of M.

Let G be a well unital monoid structure. Observe that there exists a well
unital associative commutative cancelable idempotent invertible with uniquely
decomposable unity strict monoidal subsystem of G.

We now state the proposition

(23)  For every G being a half group structure every monoidal subsystem of
G is a subsystem of G.

Let G be a half group structure, and let M be a monoidal extension of G.
We see that the subsystem of M is a subsystem of G. Let G1 be a half group
structure, and let G5 be a subsystem of G;. We see that the subsystem of G5 is
a subsystem of G1. Let GG be a half group structure, and let G2 be a monoidal
subsystem of G1. We see that the subsystem of G5 is a subsystem of GG1. Let
G be a half group structure, and let M be a monoidal subsystem of G. We see
that the monoidal subsystem of M is a monoidal subsystem of G.

We now state the proposition

(24) G is a subsystem of G and M is a monoidal subsystem of M.

In the sequel H is a subsystem of G and N is a monoidal subsystem of G.
One can prove the following propositions:
(25)  The carrier of H C the carrier of G and the carrier of N C the carrier
of G.

(26)  For every G being a half group structure and for every subsystem H of
G holds the operation of H = (the operation of G) | [the carrier of H,
the carrier of H ].

(27)  For all elements a, b of H and for all elements a’, b" of G such that
a=a andb="0b holdsa-b=ad"-b".
(28)  For all subsystems H;, Hs of G such that the carrier of H; = the carrier

of Hs holds the half group structure of H; = the half group structure of
H,.
(29) For all monoidal subsystems H;, Hs of M such that the carrier of

H; = the carrier of H9 holds the monoid structure of H; = the monoid
structure of Hs.

(30)  For all subsystems H;, Hy of G such that the carrier of H; C the carrier
of Hs holds H; is a subsystem of Ho.

(31)  For all monoidal subsystems H;y, Hs of M such that the carrier of
Hy C the carrier of Hy holds H; is a monoidal subsystem of Ho.

(32) If G is unital and 1ihe operation of ¢ € the carrier of H, then H is unital
and Lthe operation of G = Lthe operation of H -
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(33)  For every M being a well unital monoid structure every monoidal sub-
system of M is well unital.

34
35

If G is commutative, then H is commutative.
If G is associative, then H is associative.
If G is idempotent, then H is idempotent.

w
J

If G is cancelable, then H is cancelable.

N N N S
w w
co D
~— — — ~— ~—

If 1the operation of ¢ € the carrier of H and G has uniquely decomposable
unity, then H has uniquely decomposable unity.

(39) For every M being a well unital monoid structure with uniquely decom-
posable unity every monoidal subsystem of M has uniquely decomposable
unity.

Let G be a constituted functions half group structure. Observe that every
subsystem of G is constituted functions and every monoidal subsystem of G is
constituted functions.

Let G be a constituted finite sequences half group structure. One can verify
that every subsystem of G is constituted finite sequences and every monoidal
subsystem of G is constituted finite sequences.

Let M be a well unital monoid structure. Note that every monoidal subsys-
tem of M is well unital.

Let G be a commutative half group structure. Observe that every subsystem
of GG is commutative and every monoidal subsystem of G is commutative.

Let G be an associative half group structure. One can verify that every
subsystem of GG is associative and every monoidal subsystem of (G is associative.

Let G be an idempotent half group structure. Observe that every subsystem
of GG is idempotent and every monoidal subsystem of G is idempotent.

Let G be a cancelable half group structure. Observe that every subsystem
of G is cancelable and every monoidal subsystem of G is cancelable.

Let M be a well unital monoid structure with uniquely decomposable unity.
Observe that every monoidal subsystem of M is with uniquely decomposable
unity.

In this article we present several logical schemes. The scheme SubStrEx1
deals with a half group structure A and a non-empty subset B of A and states
that:

there exists a strict subsystem H of A such that the carrier of H = B
provided the following condition is met:

o for all elements z, y of B holds x -y € B.

The scheme SubStrEx2 deals with a half group structure A, and a unary
predicate P, and states that:

there exists a strict subsystem H of A such that for every element x of A
holds z € the carrier of H if and only if P|x]
provided the following conditions are met:

e for all elements z, y of A such that P[x] and P[y] holds P[z - y],

e there exists an element x of A such that P[z].
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The scheme MonoidalSubStrEx1 concerns a monoid structure A and a non-
empty subset B of A and states that:

there exists a strict monoidal subsystem H of A such that the carrier of
H=B8
provided the parameters meet the following requirements:

e for all elements z, y of B holds =z -y € B,

e the unity of A € B.

The scheme MonoidalSubStrEx2 deals with a monoid structure A, and a
unary predicate P, and states that:

there exists a strict monoidal subsystem M of A such that for every element
x of A holds z € the carrier of M if and only if P|x]
provided the following requirements are met:

e for all elements z, y of A such that P[x] and P[y] holds P[z - y],

e P[the unity of A].

Let us consider G, a, b. Then a - b is an element of G. We introduce the
functor a ® b as a synonym of a - b.

5. THE EXAMPLES OF MONOIDS OF NUMBERS

The unital associative invertible commutative cancelable strict half group struc-
ture (R, +) is defined by:
(Def.26) (R, +) = (R, +r).
The following propositions are true:

(40)  The carrier of (R,+) = R and the operation of (R,+) = +g and for all
elements a, b of (R,+) and for all real numbers z, y such that a = x and
b=yholdsa-b=x+y.

(41)  x is an element of (R,+) if and only if z is a real number.

(42) Lthe operation of (R,4) — 0.

(43)  For every subsystem N of (R,+) and for all elements a, b of N and for
all real numbers x, y such that a =x and b=y holds a- b =x + y.

(44)  For every unital subsystem N of (R, +) holds 1the operation of N = O-

(45)  For every subsystem N of (R, +) such that 0 is an element of N holds
N is unital and 1the operation of N = 0.

Let G be a unital half group structure. Observe that every associative in-
vertible subsystem of GG is unital cancelable and group-like.

Let us note that it makes sense to consider the following constant. Then Z ©
is a unital invertible strict subsystem of (R, +).

The following two propositions are true:

(46)  For every strict subsystem G of (R,+) holds G = Z T if and only if the
carrier of G = Z.

(47)  z is an element of Z7 if and only if x is an integer.
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We now define three new functors. The unital strict subsystem (N, +) of Z*
with uniquely decomposable unity is defined by:
(Def.27)  the carrier of (N, 4) = N.
(N, +,0) is a well unital strict monoidal extension of (N, +).
The binary operation +y on N is defined by:
(Def.28) 4y = the operation of (N, +).
Next we state several propositions:

(48)  z is an element of (N, +) if and only if z is a natural number.

(49)  (N,+) = (N, +n).

(50)  x is an element of (N, +,0) if and only if x is a natural number.

(51)  For all natural numbers ny, ny and for all elements mq, ms of (N, +,0)

such that n; = my and ny = mg holds my - mg = ny + na.

(52)  (N,+,0) = (N, +y,0).

(63)  4An=4r[EN,NJand +y = (+2) I [N, N,

(54) 0 is a unity w.r.t. +y and +y has a unity and 14, = 0 and +y is
commutative and +y is associative and +y has uniquely decomposable
unity.

The unital commutative associative strict half group structure (R, -) is defined
by:
(Def.29)  (R,-) = (R, g).
Next we state several propositions:

(55)  The carrier of (R,-) = R and the operation of (R,-) = -g and for all
elements a, b of (R,-) and for all real numbers z, y such that a = x and
b=yholdsa-b=x-y.

(56)  x is an element of (R,-) if and only if z is a real number.

(57) Lthe operation of (R,) — L.

(58)  For every subsystem N of (R,-) and for all elements a, b of N and for
all real numbers x, y such that a =z and b=y holds a-b =z - y.

(59)  For every subsystem N of (R, -) such that 1 is an element of N holds N
is unital and 1¢he operation of N = 1.

(60)  For every unital subsystem N of (R,-) holds 1the operation of N = 0 or
Lthe operation of N — 1.

We now define three new functors. The unital strict subsystem (N, -) of (R, -)
with uniquely decomposable unity is defined by:
(Def.30)  the carrier of (N,-) = N.
(N, -, 1) is a well unital strict monoidal extension of (N, -).
The binary operation -y on N is defined by:
(Def.31) -y = the operation of (N,-).

One can prove the following propositions:
(61)  (N,-) = (N, n).
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(62)  For all natural numbers n1, ny and for all elements mi, ma of (N,-)
such that n; = my and ny = mg holds my - ma = nq - no.

(63) Lthe operation of N,y = L.

(64)  For all natural numbers ny, ne and for all elements my, mgy of (N,-, 1)
such that n; = my and ny = mg holds my - mg = nq - no.

(65)  (N,-,1) = (N, -y, 1).

(66) N =-r[EN, NJ.

(67) 1is a unity w.r.t. -y and -y has a unity and 1,, =1 and -y is commu-
tative and -y is associative and -y has uniquely decomposable unity.

6. THE MONOID OF FINITE SEQUENCES OVER THE SET

We now define three new functors. Let D be a non-empty set. The functor
(D*, ") yielding a unital associative cancelable constituted finite sequences strict
half group structure with uniquely decomposable unity is defined by:
(Def.32)  the carrier of (D*,”) = D* and for all elements p, ¢ of (D*,~) holds
P®qg=p~q.
Let us consider D. (D*, ", ¢) is a well unital strict monoidal extension of (D*, ™).
The concatenation of D yielding a binary operation on D* is defined as
follows:

(Def.33)  the concatenation of D = the operation of (D*, ™).

We now state several propositions:
(68) (D*,~) = (D*,the concatenation of D).

(69) Lthe operation of (D*,~) = €.

(70)  The carrier of (D*,~,e) = D* and the operation of (D*,”,¢) = the
concatenation of D and the unity of (D*, 7, ¢) = e.

(71)  For all elements a, b of (D*,~,¢) holds a® b= a " b.

(72)  For every subsystem F' of (D* ) and for all elements p, g of F' holds
p®qg=p~g.

(73)  For every unital subsystem F' of (D*,”) holds 1the operation of FF = €-

(74)  For every subsystem F of (D*,7) such that ¢ is an element of F' holds
F'is unital and 1the operation of F = €-

(75)  For all non-empty sets A, B such that A C B holds (A*,") is a subsys-
tem of (B*,7).

(76)  The concatenation of D has a unity and 1the concatenation of D = € and
the concatenation of D is associative.
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7. MONOIDS OF MAPPINGS

We now define three new functors. Let X be a set. The semigroup of partial
functions onto X yields a unital associative constituted functions strict half
group structure and is defined by:

(Def.34)  the carrier of the semigroup of partial functions onto X = XX and
for all elements f, g of the semigroup of partial functions onto X holds
f®g=Tfoy

Let X be a set. The monoid of partial functions onto X is a well unital strict
monoidal extension of the semigroup of partial functions onto X.

The composition of X yields a binary operation on X—X and is defined as
follows:

(Def.35)  the composition of X = the operation of the semigroup of partial func-
tions onto X.
We now state several propositions:
(77)  xis an element of the semigroup of partial functions onto X if and only
if x is a partial function from X to X.

(78) Lthe operation of the semigroup of partial functions onto X = ldX .

(79)  For every subsystem F' of the semigroup of partial functions onto X
and for all elements f, g of F holds f® g = fog.

(80)  For every subsystem F of the semigroup of partial functions onto X such
that idx is an element of F" holds F' is unital and 1¢he operation of 7 = idx-

(81) IfY C X, then the semigroup of partial functions onto Y is a subsystem
of the semigroup of partial functions onto X.

We now define two new functors. Let X be a set. The semigroup of functions
onto X yielding a unital strict subsystem of the semigroup of partial functions
onto X is defined as follows:

(Def.36)  the carrier of the semigroup of functions onto X = X X.
Let X be a set. The monoid of functions onto X is a well unital strict monoidal
extension of the semigroup of functions onto X.

The following four propositions are true:

(82) =z is an element of the semigroup of functions onto X if and only if x is
a function from X into X.

(83)  The operation of the semigroup of functions onto X = (the composition
of X) [ XX, XXJ.

(84) Lthe operation of the semigroup of functions onto X = idX-

(85)  The carrier of the monoid of functions onto X = X% and the operation
of the monoid of functions onto X = (the composition of X) | XX, XX ]
and the unity of the monoid of functions onto X = idx.

Let X be a set. The group of permutations onto X yields a unital invertible
strict subsystem of the semigroup of functions onto X and is defined by:
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for every element f of the semigroup of functions onto X holds f €
the carrier of the group of permutations onto X if and only if f is a
permutation of X.

One can prove the following three propositions:

(86)
(87)

(88)

1]
2]

3]
[4]

[5]
(6]
[7]
8]

[9]
[10]

[11]
[12]
[13]
[14]
[15]
[16]

[17]
18]

x is an element of the group of permutations onto X if and only if x is
a permutation of X.

Lthe operation of the group of permutations onto X — idX and
1the group of permutations onto X = idX .

For every element f of the group of permutations onto X holds f~! =
(f quaa function) .
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Summary. The monoid of functions yielding elements of a group
is introduced. The monoid of multisets over a set is constructed as such
monoid where the target group is the group of natural numbers with addi-
tion. Moreover, the generalization of group operation onto the operation
on subsets is present. That generalization is used to introduce the group
2% of subsets of a group G.

MML Identifier: MONOID_1.

The articles [21], [22], [15], (3], [17], [10], [5], [14], [11], [7], [16], [20], [9], [8], [19],
[6], [13], [1], [18], [23], [24], [12], [2], and [4] provide the notation and terminology
for this paper.

1. UPDATING

We adopt the following convention: x, y are arbitrary, X, Y, Z are sets, and
n is a natural number. We now define two new constructions. Let D be a non-
empty set, and let d be an element of D. Then {d} is a non-empty subset of
D. Let D be a non-empty set, and let X7, X5 be subsets of D. Then X7 U X5
is a subset of D. Let D be a non-empty set, and let X7 be a subset of D, and
let X5 be a non-empty subset of D. Then X; U X5 is a non-empty subset of D.
Let Dy, D2, D be non-empty sets. A binary function from D1, D into D is a
function from [ Dy, Dy into D.

Let f be a function, and let x1, z2, y be arbitrary. The functor f(x1,z2)(y)
is defined by:

(Def1)  f(z1,22)(y) = f({71, 22))(v)

The following proposition is true
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(1)  For all functions f, g and for arbitrary =1, x9, x such that (z, z2) €
dom f and g = f(x1, z2) and = € dom g holds f(x1,x2)(x) = g(x).

Let A, Dy, Dy, D be non-empty sets, and let f be a binary function from
D1, D5 into DA, and let z1 be an element of Dq, and let o be an element of
D5, and let x be an element of A. Then f(z1,z2)(x) is an element of D. Let A
be a set, and let Dy, Do, D be non-empty sets, and let f be a binary function
from Di, Dy into D, and let ¢g; be a function from A into D7, and let go be
a function from A into Dy. Then f°(gi, go) is an element of DA. Let A be a
non-empty set, and let n be a natural number, and let = be an element of A.
Then n —— =z is a finite sequence of elements of A. We introduce the functor
n——x as a synonym of n — x. Let D be a non-empty set, and let A be a set,
and let d be an element of D. Then A — d is an element of D#. Let A be a
set, and let D1, Dy, D be non-empty sets, and let f be a binary function from
D1, D5 into D, and let d be an element of Dy, and let g be a function from A
into Dy. Then f°(d,g) is an element of DA. Let A be a set, and let Dy, Dy, D
be non-empty sets, and let f be a binary function from D1, Dy into D, and let
g be a function from A into D1, and let d be an element of Dy. Then f°(g,d)
is an element of DA4.

We now state the proposition
(2)  For all functions f, g and for every set X holds (f| X)-g=f-(X|g).

The scheme NonUniqFuncDEx concerns a set A, a non-empty set B, and a
binary predicate P, and states that:
there exists a function f from A into B such that for every x such that x € A
holds Pz, f(x)]
provided the following condition is met:
e for every = such that x € A there exists an element y of B such
that P[z,y].

2. MONOID OF FUNCTIONS INTO A SEMIGROUP

Let Dy, Do, D be non-empty sets, and let f be a binary function from D1, D>
into D, and let A be a set. The functor f3 yields a binary function from D4,
Dy4 into DA and is defined by:

(Def.2)  for every element f; of D14 and for every element fo of Dy holds

(fa)(f1, f2) = fo(f1, f2)-

Next we state the proposition

(3)  For all non-empty sets D1, Do, D and for every binary function f from
D1, D5 into D and for every set A and for every function f; from A into
D; and for every function fs from A into Do and for every x such that

z € A holds (f3)(f1, f2)(z) = f(fi(z), fa(z)).
For simplicity we adopt the following convention: A will denote a set, D
will denote a non-empty set, a will denote an element of D, o, o’ will denote
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binary operations on D, and f, g, h will denote functions from A into D. The
following propositions are true:

(4)  If o is commutative, then 0°(f, g) = 0°(g, f).
5) If o is associative, then 0°(0°(f, g), h) = 0°(f, 0°(g, h)).
fra)=f.

(=)

If a is a unity w.r.t. o, then 0°(a, f) = f and 0°(
If 0 is idempotent, then o°(f, f) = f.
If 0 is commutative, then 0% is commutative.

O 0o

If o is associative, then 0% is associative.

=~~~ —~
-

(e}

If a is a unity w.r.t. o, then A —— a is a unity w.r.t. 0y.
If 0 has a unity, then loo, = A+ 1, and 0% has a unity.

—
DO

If 0 is idempotent, then 0% is idempotent.
If o is invertible, then 09 is invertible.
If o0 is cancelable, then 09 is cancelable.

AAA,_\/_\,_\
— —
w =
ol oo oo

[
ot

If 0 has uniquely decomposable unity, then 09 has uniquely decompos-
able unity.
(16)  If o absorbs o/, then 0% absorbs o'§.
(17)  For all non-empty sets Dy, Dy, D, Fy, FEy, E and for every binary
function o1 from Dy, D5 into D and for every binary function oo from FEj,
E5 into I such that o1 < 02 holds 014 < 02%.
Let G be a half group structure, and let A be a set. The functor G* yielding
a half group structure is defined by:
(Def.3) (i) G4 = ((the carrier of G)4, (the operation of
G)Za A — 1the operation of G
qua an element of (the carrier of G)A qua a non-empty set) if G is unital,
(ii) G4 = ((the carrier of G)4, (the operation of G)9), otherwise.

In the sequel G denotes a half group structure. We now state two proposi-
tions:
(18)  The carrier of GX = (the carrier of G)* and the operation of GX = (the
operation of G)%.
(19) =z is an element of G¥ if and only if z is a function from X into the
carrier of G.
Let G be a half group structure, and let A be a set. Then G is a constituted
functions half group structure.
We now state two propositions:
(20)  For every element f of GX holds dom f = X and rng f C the carrier of
G.
(21)  For all elements f, g of GX if for every z such that € X holds
f(x) = g(x), then f = g.
Let G be a half group structure, and let A be a non-empty set, and let f be

an element of GA. Then rng f is a non-empty subset of G. Let a be an element
of A. Then f(a) is an element of G.
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We now state the proposition
(22)  For all elements fi, fo of GP and for every element a of D holds (f; -
f2)(a) = fi(a) - fa(a).
Let G be a unital half group structure, and let A be a set. Then G4 is a well
unital constituted functions strict monoid structure.
One can prove the following propositions:
(23)  For every G being a unital half group structure holds the unity of GX =
X +— Lthe operation of G-
(24) Let G be a half group structure. Let A be a set. Then
(i) if G is commutative, then G* is commutative,
ii) if G is associative, then G is associative,

)
)
ii) if G is idempotent, then G4 is idempotent,
)
)
)

if G is invertible, then G4 is invertible,

if G is cancelable, then G4 is cancelable,

if G has uniquely decomposable unity, then G# has uniquely decom-
posable unity.
(25)  For every subsystem H of G holds H¥ is a subsystem of G*X.

(26)  For every G being a unital half group structure and for every subsystem
H of G such that 1the operation of G € the carrier of H holds H X is a
monoidal subsystem of GX.

Let G be a unital associative commutative cancelable half group structure
with uniquely decomposable unity, and let A be a set. Then G4 is a commuta-
tive cancelable constituted functions strict monoid with uniquely decomposable
unity.

3. MONOID OF MULTISETS OVER A SET

Let A be a set. The functor A% yields a commutative cancelable constituted
functions strict monoid with uniquely decomposable unity and is defined by:

(Def.4) A% = (N,+,0)4.
Next we state the proposition
(27)  The carrier of X = N* and the operation of X% = (+y)% and the
unity of X® = X 0.
Let A be a set. A multiset over A is an element of A%.
Next we state two propositions:
(28)  x is a multiset over X if and only if x is a function from X into N.
(29)  For every multiset m over X holds domm = X and rngm C N.

Let A be a non-empty set, and let m be a multiset over A. Then rngm is
a non-empty subset of N. Let a be an element of A. Then m(a) is a natural
number.

Next we state two propositions:
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(30)  For all multisets mq, mgy over D and for every element a of D holds
(m1 ® m2)(a) = mi(a) + ma(a).
(31)  Xy,x is a multiset over X.

Let us consider Y, X. Then Xy x is a multiset over X. Let us consider X,
and let n be a natural number. Then X —— n is a multiset over X. Let A be a
non-empty set, and let a be an element of A. The functor Xa yields a multiset
over A and is defined as follows:

(Def5) Xa = X{a},A-

One can prove the following proposition
(32)  For every non-empty set A and for all elements a, b of A holds (Xa)(a) =
1 and also if b # a, then (Xa)(b) = 0.

For simplicity we follow a convention: A denotes a non-empty set, a denotes
an element of A, p, ¢ denote finite sequences of elements of A, and mq, mo
denote multisets over A. Next we state the proposition

(33)  If for every a holds mq(a) = ma(a), then m; = mao.

Let A be a set. The functor A® yields a strict monoidal subsystem of A%
and is defined as follows:

(Def.6)  for every multiset f over A holds f € the carrier of A® if and only if
f (NN {0}) is finite.
The following three propositions are true:
(34)  Xa is an element of A®.
(35)  dom({z} I (p~ (x))) = dom({z} I p) U {lenp +1}.
(36) If x #y, then dom({z} I (p ~ (y))) = dom({z} [ p).

Let A be a non-empty set, and let p be a finite sequence of elements of A.
The functor |p| yields a multiset over A and is defined as follows:

(Def.7)  for every element a of A holds |p|(a) = card dom({a} | p).

We now state several propositions:

(37)  |eal(a) = 0.

(38) |eal=A+—0.

(39)  |{a)] = Xa.

(40)  |p~{a)| = |p| ® Xa.

(41)  [p~ql=pl ®|gl.

(42)  |n——al(a) = n and for every element b of A such that b # a holds

[n=—al(b) = 0.
Next we state two propositions:
(43)  |p| is an element of A®.
(44) If z is an element of A®, then there exists p such that z = |p|.
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4. MONOID OF SUBSETS OF A SEMIGROUP

In the sequel a, b will be elements of D. Let Dy, Dy, D be non-empty sets, and
let f be a binary function from Di, Dy into D. The functor ° f yields a binary
function from 2P1, 2P2 into 2P and is defined by:

(Def.8)  for every element x of [ 271, 272 ] holds (° f)(x) = f° [ 21, v2 .

One can prove the following propositions:

(45)  For all non-empty sets D1, Do, D and for every binary function f from
Dy, D5 into D and for every subset Xy of Dy and for every subset X5 of
D2 holds (O f)(Xl, Xg) = fo [:Xl, X2 ]
(46)  For all non-empty sets D1, Do, D and for every binary function f from
Dy, D5 into D and for every subset X7 of Dy and for every subset X5 of
Dy and for arbitrary x1, xo such that ;1 € X; and z9 € X3 holds f(x1,
z2) € (° f) (X1, X2).
(47)  For all non-empty sets D1, Do, D and for every binary function f from
D1, Dy into D and for every subset X7 of D; and for every subset Xo of
Dy holds (° f)(X1, X2) = {f(a,b) : a € X1 Ab € X3}, where a ranges
over elements of D1, and b ranges over elements of Ds.
If 0 is commutative, then 0° [ X, Y] =0°[Y, X ].
If o0 is associative, then 0° [0° [ X, Y ], Z]=0°[X,0°}Y, Z]].

If 0 is commutative, then ° o is commutative.

W
o

A~ N N N
(SR
=

~— ~— — — —

ot
—_

If o is associative, then ° o is associative.

52) If a is a unity w.r.t. o, then 0°[{a}, X]=DNX and 0° [ X, {a}] =
DnNnX.

(53) If ais a unity w.r.t. o, then {a} is a unity w.r.t. °o and ° o has a unity
and 10, = {a}.

(54)  If o0 has a unity, then ° o has a unity and {1,} is a unity w.r.t. °o and
1oy = {10}-

(55)  If o has uniquely decomposable unity, then ° o has uniquely decompos-
able unity.

Let G be a half group structure. The functor 2¢ yields a half group structure
and is defined by:

(Def.9) (i) 2G — <2th° carrier of G o (the operation of G),{1the operation of G }) if
G is unital,
(i) 2¢ = (gthe carrier of G o (the gperation of G)), otherwise.

Let G be a unital half group structure. Then 2¢ is a well unital strict monoid
structure.

One can prove the following three propositions:

(56)  The carrier of 2G = gthe carrier of G 3 the operation of 2¢ = °© (the
operation of G).



(57)

(58)
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For every G being a unital half group structure holds the unity of 2¢ =

{1the operation of G}-

For every G being a half group structure holds if G is commutative,
then 2¢ is commutative and also if G is associative, then 2¢ is associative
and also if G has uniquely decomposable unity, then 2¢ has uniquely
decomposable unity.
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Summary. In the first section we present properties of fields and
Abelian groups in terms of commutativity, associativity, etc. Next, we
are concerned with operations on n-tuples on some set which are gener-
alization of operations on this set. It is used in third section to introduce
the n-power of a group and the n-power of a field. Besides, we introduce a
concept of indexed family of binary (unary) operations over some indexed
family of sets and a product of such families which is binary (unary) oper-
ation on a product of family sets. We use that product in the last section
to introduce the product of a finite sequence of Abelian groups.

MML Identifier: PRVECT_1.

The notation and terminology used in this paper are introduced in the following
articles: [16], [9], [10], [13], [3], [17], [2], [5], [6], [12], [4], (8], [7], [14], [1], [11],
and [15].

1. ABELIAN GROUPS AND FIELDS

In the sequel G will denote an Abelian group. The following propositions are
true:

(1)  The addition of G is commutative.

(2)  The addition of G is associative.

(3)  The zero of G is a unity w.r.t. the addition of G.

(4)  The reverse-map of G is an inverse operation w.r.t. the addition of G.
In the sequel G will be a group structure. Next we state the proposition
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(5) If the addition of G is commutative and the addition of G is associative
and the zero of (71 is a unity w.r.t. the addition of G and the reverse-map
of (G; is an inverse operation w.r.t. the addition of G1, then G; is an
Abelian group.

In the sequel F is a field. We now state several propositions:

(6) The addition of F' is commutative.
(7)  The multiplication of F' is commutative.
(8)  The addition of F is associative.
(9)  The multiplication of F' is associative.
(10)  The zero of F' is a unity w.r.t. the addition of F'.
(11)  The unity of F' is a unity w.r.t. the multiplication of F.
(12)  The reverse-map of F is an inverse operation w.r.t. the addition of F'.
(13)  The multiplication of F' is distributive w.r.t. the addition of F'.

One can verify that every field-like field structure is Abelian group-like.

2. THE n-PRODUCT OF A BINARY AND A UNARY OPERATION

For simplicity we follow a convention: F'is a field, n is a natural number, D is
a non-empty set, d is an element of D, B is a binary operation on D, and C
is a unary operation on D. We now define three new functors. Let us consider
D, n, and let F' be a binary operation on D, and let z, y be elements of D".
Then F°(z, y) is an element of D™. Let D be a non-empty set, and let F' be a
binary operation on D, and let n be a natural number. The functor 7™ F yields
a binary operation on D" and is defined by:

(Def.1)  for all elements x, y of D™ holds (7" F)(x, y) = F°(z, y).

Let us consider D, and let F' be a unary operation on D, and let us consider n.
The functor n™F yields a unary operation on D™ and is defined as follows:

(Def.2)  for every element = of D™ holds (7" F)(z) = F - x.

Let D be a non-empty set, and let us consider n, and let = be an element of
D. Then n — x is an element of D™. We introduce the functor n——z as a
synonym of n — x.

The following four propositions are true:
(14)  If B is commutative, then 7B is commutative.
(15)
(16) If d is a unity w.r.t. B, then n——d is a unity w.r.t. 7" B.
(17)

If B is associative, then 7™ B is associative.

If B has a unity and B is associative and C is an inverse operation
w.r.t. B, then 7"C is an inverse operation w.r.t. 7" B.
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3. THE n-POWER OF A GROUP AND OF A FIELD

Let F' be an Abelian group, and let us consider n. The functor F'™ yielding a
strict Abelian group is defined as follows:
(Detf.3)  F™ = ((the carrier of F')", 7" (the addition of F'), 7" (the reverse-map of
F),n——the zero of F quaan element of (the carrier of F)™).

We now define two new functors. Let us consider F', n. The functor -% yields
a function from [ the carrier of F, (the carrier of F')" ] into (the carrier of F)"
and is defined by:
(Def.4)  for every element x of F' and for every element v of (the carrier of F)"
holds (-%)(z, v) = (the multiplication of F)°(x,v).
Let us consider F', n. The n-dimension vector space over F' yielding a strict
vector space structure over I is defined as follows:
(Def.5)  the group structure of the n-dimension vector space over F' = F" and
the multiplication of the n-dimension vector space over F' = -7.

For simplicity we follow a convention: D will be a non-empty set, H, G
will be binary operations on D, d will be an element of D, and tq, to will be
elements of D™. One can prove the following proposition

(18) If H is distributive w.r.t. G, then H°(d,G°(t1, t2)) = G°(H°(d,t1),
He(d,tq)).

Let D be a non-empty set, and let n be a natural number, and let F' be a
binary operation on D, and let z be an element of D, and let v be an element
of D"™. Then F°(z,v) is an element of D™. Let us consider F, n. Then the
n-dimension vector space over F' is a strict vector space over F'.

4. SEQUENCES OF NON-EMPTY SETS

In the sequel x will be arbitrary. We now define two new attributes. A function
is non-empty set yielding if:

(Def.6) 0 ¢ rngit.
A set is constituted functions if:

(Det.7) if x € it, then x is a function.

One can check that there exists a non-empty non-empty set yielding finite se-
quence and there exists a non-empty constituted functions set.

Let F' be a constituted functions non-empty set. We see that the element
of F' is a function. Let f be a non-empty set yielding function. Then [] f
is a constituted functions non-empty set. A sequence of non-empty sets is a
non-empty non-empty set yielding finite sequence.

Let a be a non-empty function. Then dom a is a non-empty set.

The scheme NEFinSeqLambda concerns a non-empty finite sequence A and
a unary functor F and states that:
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there exists a non-empty finite sequence p such that lenp = len A and for
every element i of dom.A holds p(i) = F (i)
for all values of the parameters.

Let a be a non-empty set yielding non-empty function, and let i be an element
of doma. Then a(i) is a non-empty set. Let a be a non-empty set yielding non-
empty function, and let f be an element of [[a, and let ¢ be an element of
doma. Then f(i) is an element of a(i).

5. THE ProbpuCT OF FAMILIES OF OPERATIONS

In the sequel a will denote a sequence of non-empty sets, ¢ will denote an element
of doma, and p will denote a finite sequence. We now define two new modes.
Let a be a non-empty set yielding non-empty function. A function is called a
family of binary operations of « if:
(Def.8)  domit = doma and for every element i of doma holds it(7) is a binary
operation on a(i).
A function is said to be a family of unary operations of a if:

(Def.9)  domit = doma and for every element i of doma holds it(7) is a unary
operation on a(i).
Let us consider a. Note that every family of binary operations of a is finite
sequence-like and every family of unary operations of a is finite sequence-like.

The following two propositions are true:

(19)  p is a family of binary operations of a if and only if lenp = lena and
for every i holds p(i) is a binary operation on a(%).

(20)  pis a family of unary operations of a if and only if lenp = lena and for
every 4 holds p(i) is a unary operation on a(i).

Let us consider a, and let b be a family of binary operations of a, and let us
consider i. Then b(7) is a binary operation on a(7). Let us consider a, and let u
be a family of unary operations of a, and let us consider i. Then u(i) is a unary
operation on a(i). Let F be a constituted functions non-empty set, and let u be
a unary operation on F', and let f be an element of F. Then u(f) is an element
of F.

In the sequel f is arbitrary. One can prove the following proposition

(21)  For all unary operations d, d’ on []a if for every element f of [Ja and
for every element i of doma holds d(f)(i) = d'(f)(i), then d = d'.
We now state the proposition
(22)  For every family u of unary operations of a holds dom, u(x) = a and
[1(rng, u(x)) € [1a.

Let us consider a, and let u be a family of unary operations of a. Then [[°u
is a unary operation on []a.

We now state the proposition
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(23)  For every family u of unary operations of a and for every element f of
[Ta and for every element i of doma holds (T]°w)(f)(7) = u(i)(f(7)).
Let F' be a constituted functions non-empty set, and let b be a binary op-
eration on F, and let f, g be elements of F. Then b(f, g) is an element of
F.
The following proposition is true

(24)  For all binary operations d, d’ on []a if for all elements f, g of [Ja and
for every element i of doma holds d(f, g)(i) = d'(f, g)(i), then d = d'.
In the sequel ¢ will denote an element of doma. Let us consider a, and let b
be a family of binary operations of a. The functor []° b yields a binary operation
on []a and is defined by:

(Def.10)  for all elements f, g of [[a and for every element i of doma holds
(IT°0)(f, 9)(i) = b()(f (i), g(3)).
The following propositions are true:

(25)  For every family b of binary operations of a if for every i holds b(4) is
commutative, then []°b is commutative.

(26)  For every family b of binary operations of a if for every 4 holds b(i) is
associative, then [[° b is associative.

(27)  For every family b of binary operations of a and for every element f of
[Ta if for every i holds f(7) is a unity w.r.t. b(7), then f is a unity w.r.t.
[1°b.

(28)  For every family b of binary operations of a and for every family u of
unary operations of a if for every i holds u(7) is an inverse operation w.r.t.
b(i) and b(i) has a unity, then [[°w is an inverse operation w.r.t. []°b.

6. THE PropucT OF FAMILIES OF GROUPS

We now define three new constructions. A function is Abelian group yielding if:
(Def.11)  if z € rngit, then = is an Abelian group.
One can check that there exists a non-empty Abelian group yielding finite se-
quence.
A sequence of groups is a non-empty Abelian group yielding finite sequence.
Let g be a sequence of groups, and let i be an element of domg. Then g(i)
is an Abelian group. Let g be a sequence of groups. The functor g yielding a
sequence of non-empty sets is defined as follows:
(Def.12)  leng = leng and for every element j of dom g holds g(j) = the carrier
of g(j).
In the sequel g is a sequence of groups and i is an element of domg. We now
define four new functors. Let us consider g, i. Then g(i) is an Abelian group.

Let us consider g. The functor (4,); yields a family of binary operations of g
and is defined by:
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(Def.13)
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len({+y,);) = leng and for every i holds (+g,);(i) = the addition of g(7).

The functor (—g,); yields a family of unary operations of g and is defined by:

(Def.14)

len({—4,)i) = leng and for every ¢ holds (—,);(i) = the reverse-map of

9(4).

The functor (04, ); yields an element of [][g and is defined by:

(Def.15)

for every i holds (0g,);(7) = the zero of g(i).

Let G be a sequence of groups. The functor [[ G yields a strict Abelian group
and is defined by:

(Def.16)

(1]
2]

3]
[4]

[5]

[6]
[7]

8]
[9]
[10]

[11]
[12]

[13]
[14]
[15]
[16]

[17]

[IG = <H 67 HO(<+Gi>i)7 HO(<_Gi>i)7 <0Gz>l>
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Summary. We continue the work on mathematical modeling of
hardware and software started in [17]. The main objective of this paper
is the definition of a program. We start with the concept of partial
product, i.e. the set of all partial functions f from I to Uie] A;, fulfilling
the condition f.i € A; for i € domf. The computation and the result of
a computation are defined in usual way. A finite partial state is called
autonomic if the result of a computation starting with it does not depend
on the remaining memory and an AMI is called programmable if it has
a non empty autonomic partial finite state. We prove the consistency of
the following set of properties of an AMI: data-oriented, halting, steady-
programmed, realistic and programmable. For this purpose we define
a trivial AMI. It has only the instruction counter and one instruction
location. The only instruction of it is the halt instruction. A preprogram
is a finite partial state that halts. We conclude with the definition of
a program of a partial function F' mapping the set of the finite partial
states into itself. It is a finite partial state s such that for every finite
partial state s’ € domF the result of any computation starting with s+ s’
includes F.s'.

MML Identifier: AMI_2.

The papers [24], [22], [28], [6], [7], [23], [14], [1], [19], [26], [25], [10], [3], [5], [15],
[29], [21], [2], [20], [8], [18], [4], [9], [12], [13], [27], [11], [16], and [17] provide the
notation and terminology for this paper.

1. PRELIMINARIES

For simplicity we follow the rules: A, B, C will denote sets, f, g, h will denote
functions, x, y, z will be arbitrary, and ¢, j, k£ will denote natural numbers.
The scheme UnigSet concerns a set A, a set BB, and a unary predicate P, and
states that:

A=B
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provided the following requirements are met:
e for every z holds = € A if and only if P[z],
e for every z holds x € B if and only if P[z].
The following propositions are true:
(1) A misses B\ C if and only if B misses A\ C.
(2)  For every function f holds 71 (dom f x rng f) ° f = dom f.
(3) If f~gand (x,y)e€ fand (z, 2) €g, then y = 2.
(4)  If for every x such that = € A holds x is a function and for all functions
f, g such that f € A and g € A holds f =~ g, then |J A is a function.
(5) IfdomfC AUB,then fI] A+ f| B=Ff.
(6) dom f C dom(f +-¢) and dom g C dom(f +- g).
(7)  For arbitrary x1, x2, y1, y2 holds [z1 — y1, 29 — yo| = (z1——y1) +-
(zo——1y2).

(8) For all z, y holds x——y = {{(z, y)}.

(9)  For arbitrary a, b, ¢ holds [a — b,a — ] = a——c.
(10)  For every function f holds dom f is finite if and only if f is finite.
(11) Ifz € ] f, then x is a function.

2. PARTIAL PRODUCTS

Let f be a function. The functor [] f yields a non-empty set of functions and
is defined by:

(Def.1) € [T fif and only if there exists g such that x = g and dom g C dom f
and for every x such that x € dom g holds g(x) € f(z).
Next we state a number of propositions:

(12) x €T fif and only if there exists g such that x = g and dom g C dom f
and for every x such that x € dom g holds g(x) € f(z).

(13) Ifdomg C dom f and for every x such that z € dom g holds g(z) € f(x),
then g € [T f.

(14) If g € IT f, then domg C dom f and for every x such that z € domg

holds g(x) € f(x).

(15) Dellf.

(16) TIIf<ITf

(17)  Ifx € IT f, then z is a partial function from dom f to |Jrng f.

(18) Ifgelfand h el f, theng+-he[]f.

(19) If[If #0, then g € [T f if and only if there exists h such that h € [] f

and g < h.

(20) IT f C dom f>Urng /.

(21) I fCg, then [I fC] g

(22) [I'0= {0}
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(23) ASB=][[(A+~— B).

(24)  For all non-empty sets A, B and for every function f from A into B
holds [T f =11 (f I {z: f(x) # 0}), where = ranges over elements of A.

(25) If x € dom f and y € f(x), then z——y € [] f.

(26) [T f = {0} if and only if for every = such that x € dom f holds f(z) = 0.

(27) If A C I f and for all functions hiy, hy such that hy € A and hg € A
holds hy &~ ho, then |JA € [] f.

(28) Ifgmhandgel] fand he]] f, thengUhe][] f.

(29) IfgChand he]] f,thengel]] f.

(30) Ifgell f,thenglAe]l f.

(31) Ifgell f,thengl Ae[[(fTA).

(32) Ifh eIl (f+ g), then there exist functions f’, ¢’ such that f' € [ f

and ¢ € [[gand h = f' +-¢'.

(33)  For all functions f’, ¢’ such that domg misses dom f’\ domg’ and
f eIl fand ¢ €[ g holds f' + ¢ € [T (f + g).

(34)  For all functions f’, ¢’ such that dom f’ misses domg \ domg’ and
frell fand g €[] gholds f'+-¢" € [T(f + 9).

(35) Ifgell fand he]] f,theng+-h e[ f.

(36)  For arbitrary xi, xe, y1, y2 such that 1 € dom f and y; € f(x1) and
x9 € dom f and yo € f(x2) holds [z1 — y1, 20— yo| € [T f.

3. COMPUTATIONS

In the sequel N is a non-empty set with non-empty elements.

We now define five new constructions. Let us consider N, and let S be a
von Neumann definite AMI over IV, and let s be a state of S. The functor
CurlInstr(s) yields an instruction of S and is defined as follows:

(Def.2)  Curlnstr(s) = s(ICs).

Let us consider NV, and let S be a von Neumann definite AMI over N, and let
s be a state of S. The functor Following(s) yielding a state of S is defined by:

(Def.3)  Following(s) = Exec(Curlnstr(s), s).

Let us consider NV, and let S be a von Neumann definite AMI over N, and let
s be a state of S. The functor Computation(s) yielding a function from N into
[ (the object kind of S) quaa non-empty set is defined by:

(Def.4)  (Computation(s))(0) = squaan element of [](the object kind of S)
qua a non-empty set and for every ¢ and for every element x of [](the
object kind of S) qua a non-empty set such that z = (Computation(s))(7)
holds (Computation(s))(i + 1) = Following(z).

Let us consider N, and let S be a von Neumann definite AMI over N. A state
of S is halting if:
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(Def.5)  there exists k such that Curlnstr((Computation(it))(k)) = haltg.

Let us consider NV, and let S be an AMI over N, and let f be a function from N
into [] (the object kind of S) qua a non-empty set, and let us consider k. Then
f(k) is a state of S. Let us consider N. An AMI over N is realistic if:

(Def.6)  the instructions of it # the instruction locations of it.

One can prove the following proposition

(37)  For every S being a von Neumann definite AMI over N such that S is
realistic holds for no instruction-location [ of S holds ICg = I.

In the sequel S denotes a von Neumann definite AMI over N and s denotes
a state of S. One can prove the following propositions:

(38)  (Computation(s))(0) = s.

(39) (Computation(s))(k + 1) = Following((Computation(s))(k)).

(40)  For every k holds
(Computation(s))(i + k) = (Computation((Computation(s))(z)))(k).

(41)  Ifi < j, then for every N and for every S being a halting von Neumann
definite AMI over N and for every state s of S such that
CurInstr((Computation(s))(i)) = haltg
holds (Computation(s))(j) = (Computation(s))(7).

Let us consider N, and let S be a halting von Neumann definite AMI over

N, and let s be a state of S satisfying the condition: s is halting. The functor
Result(s) yields a state of S and is defined as follows:

(Def.7)  there exists k such that Result(s) = (Computation(s))(k) and
Curlnstr(Result(s)) = haltg.

Next we state the proposition

(42)  For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S and for every instruction-
location ¢ of S holds s(i) = (Following(s))(7).

Let us consider N, and let S be a definite AMI over IV, and let s be a state
of S, and let [ be an instruction-location of S. Then s(I) is an instruction of S.

Next we state several propositions:

(43)  For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S and for every instruction-
location i of S and for every k holds s(i) = (Computation(s))(k)(7).

(44)  For every N and for every S being a steady-programmed von Neumann
definite AMI over N and for every state s of S holds (Computation(s))(k+
1) = EXGC(S(IC(Computation(s))(k:))7 (ComPUtation(S))(k))'

(45)  For every N and for every S being a steady-programmed von Neumann
halting definite AMI over N and for every state s of S and for every k
such that S(IC(Computation(s))(k)) = halts
holds Result(s) = (Computation(s))(k).
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(46)  For every N and for every S being a steady-programmed von Neumann
halting definite AMI over N and for every state s of S such that there
exists k such that s(IC(computation(s))(k)) = halts and for every i holds
Result(s) = Result((Computation(s))(7)).

(47)  For every S being an AMI over N and for every object o of S holds
ObjectKind(0) is non-empty.

4. FINITE PARTIAL STATES

We now define five new constructions. Let us consider N, and let S be an AMI
over N. The functor FinPartSt(S) yielding a subset of [] (the object kind of
S) is defined by:
(Def.8)  FinPartSt(S) = {p : p is finite}, where p ranges over elements of [] (the
object kind of S).
Let us consider N, and let S be an AMI over N. An element of [[ (the object
kind of S) is called a finite partial state of S if:
(Det.9) it is finite.
Let us consider NV, and let S be a von Neumann definite AMI over N. A finite
partial state of S is autonomic if:
(Def.10)  for all states sy, so of S such that it C s and it C s9 and for every 4
holds (Computation(s;))(i) | domit = (Computation(sg))(i) | domit.
A finite partial state of S is halting if:
(Def.11)  for every state s of S such that it C s holds s is halting.
Let us consider N. A von Neumann definite AMI over N is programmable if:

(Def.12)  there exists a finite partial state of it which is non-empty and autonomic.

We now state two propositions:

(48)  For every S being a von Neumann definite AMI over N and for all non-
empty sets A, B and for all objects I, I3 of S such that ObjectKind(l;) =
A and ObjectKind(l3) = B and for every element a of A and for every
element b of B holds [l; — a,lz — b] is a finite partial state of S.
(49)  For every S being a von Neumann definite AMI over N and for every
non-empty set A and for every object 11 of S such that ObjectKind(l1) = A
and for every element a of A holds l1——a is a finite partial state of S.
Let us consider N, and let S be a von Neumann definite AMI over N, and
let [; be an object of S, and let a be an element of ObjectKind(/;). Then
li1——a is a finite partial state of S. Let us consider N, and let S be a von
Neumann definite AMI over N, and let [1, I3 be objects of S, and let a be an
element of ObjectKind(l;), and let b be an element of ObjectKind(l3). Then
[l1 — a,ly — b] is a finite partial state of S.
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5. TRiviaL AMI

Let us consider N. The functor AMI; yields a strict AMI over N and is defined
by the conditions (Def.13).
(Def.13) (i) The objects of AMI; = {0,1},

(it the instruction counter of AMI; = 0,

)
(iii)  the instruction locations of AMI; = {1},
(iv)  the instruction codes of AMI; = {0},
(v)  the halt instruction of AMI; = 0,
(vi)  the instructions of AMI; = {(0, )},
(vii)  the object kind of AMI; = [0 — {1}, 1 — {{(0, €)}],
)

(viii)  the execution of AMI; = {(0, )} — idH[O»—»{l},lM{(O, )y
Next we state several propositions:

50 AMI; is von Neumann.

AMI, is data-oriented.

AMI; is halting.

For all states s1, so of AMI; holds s1 = s9.

AMLI, is steady-programmed.

AMI, is definite.

56 AMI, is realistic.

Let us consider N. Then AMI; is a von Neumann definite strict AMI over
N.

One can prove the following proposition
(57)  AMI, is programmable.

Let us consider N. Note that there exists a von Neumann definite strict
AMI over N which is data-oriented halting steady-programmed realistic and
programmable.

(@)
[\

ot
=

AN N N N N N
(@) ot
at w

— — — ' ' ~— —

One can prove the following two propositions:

(58)  For every S being an AMI over N and for every state s of S and for
every finite partial state p of S holds s [ domp is a finite partial state of
S.

(59)  For every S being an AMI over N holds ) is a finite partial state of S.

Let us consider N, and let S be a von Neumann definite AMI over N. Observe
that there exists a non-empty autonomic finite partial state of S.

Let us consider IV, and let S be an AMI over N, and let f, g be finite partial
states of S. Then f +- ¢ is a finite partial state of S.
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6. AUTONOMIC FINITE PARTIAL STATES

We now state four propositions:

(60)  For every S being a realistic von Neumann definite AMI over N and for
every instruction-location /3 of S and for every element [ of ObjectKind(ICg)
such that | = I3 and for every element h of ObjectKind(/3) such that
h = haltg and for every state s of S such that
[ICs +— l,l3 — h] C s holds Curlnstr(s) = haltg.

(61)  For every S being a realistic von Neumann definite AMI over N and for
every instruction-location /3 of S and for every element [ of ObjectKind(ICg)
such that [ = I3 and for every element h of ObjectKind(l3) such that
h = haltg holds [ICg —— [,l3 — h] is halting.

(62)  Let S be a realistic halting von Neumann definite AMI over N. Then for
every instruction-location /3 of S and for every element [ of ObjectKind(ICg)
such that [ = I3 and for every element h of ObjectKind(l3) such that
h = haltg and for every state s of S such that
[ICg +——1I,l3 — h] C s and for every i holds (Computation(s))(i) = s.

(63) For every S being a realistic halting von Neumann definite AMI over
N and for every instruction-location I3 of S and for every element [ of
ObjectKind(ICg) such that I = I3 and for every element h of ObjectKind(l3)
such that h = haltg holds [ICg — [,l3 — h] is autonomic.

We now define two new constructions. Let us consider N, and let S be a
realistic halting von Neumann definite AMI over N. One can check that there
exists a finite partial state of S which is autonomic and halting.

Let us consider N, and let S be a realistic halting von Neumann definite
AMI over N. A pre-program of S is an autonomic halting finite partial state of
S.

Let us consider N, and let S be a realistic halting von Neumann definite
AMI over N, and let s be a finite partial state of S. Let us assume that s is a
pre-program of S. The functor Result(s) yields a finite partial state of S and is
defined as follows:

(Def.14)  for every state s’ of S such that s C s’ holds Result(s) = Result(s’) |
dom s.

7. PRE-PROGRAMS AND PROGRAMS

Let us consider N, and let S be a realistic halting von Neumann definite AMI
over N, and let p be a finite partial state of S, and let F' be a function. We say
that p computes F' if and only if:
(Def.15)  for an arbitrary x such that x € dom F' there exists a finite partial state
s of S such that x = s and p +- s is a pre-program of S and F(s) C
Result(p +- s).
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The following three propositions are true:

(64) For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p computes O.

(65)  For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p is a pre-program of S
if and only if p computes P——Result(p).

(66) For every S being a realistic halting von Neumann definite AMI over
N and for every finite partial state p of S holds p is a pre-program of S
if and only if p computes Q——0.

Let us consider IV, and let S be a realistic halting von Neumann definite AMI
over N. A partial function from FinPartSt(S) to FinPartSt(S) is computable
if:

(Def.16)  there exists a finite partial state p of S such that p computes it.

Next we state three propositions:

(67) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F' from FinPartSt(.5)
to FinPartSt(S) such that F' = O holds F' is computable.

(68)  For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F from FinPartSt(S)
to FinPartSt(S) such that F' = 0——{ holds F is computable.

(69) For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every pre-program p of S and for every
partial function F' from FinPartSt(S) to FinPartSt(S) such that F' =
()=—Result(p) holds F' is computable.

Let us consider N, and let S be a realistic halting von Neumann definite
AMI over N, and let F' be a partial function from FinPartSt(S) to FinPartSt(.S)
satisfying the condition: F' is computable. A finite partial state of S is called a
program of F' if:

(Def.17) it computes F.

The following propositions are true:

(70)  For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F' from FinPartSt(S)
to FinPartSt(S) such that F = O every finite partial state of S is a
program of F.

(71)  For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every partial function F' from FinPartSt(S)
to FinPartSt(S) such that F' = ()=—{ every pre-program of S is a program
of F.

(72)  For every N and for every S being a realistic halting von Neumann
definite AMI over N and for every pre-program p of S and for every
partial function F' from FinPartSt(S) to FinPartSt(S) such that F' =
()=—Result(p) holds p is a program of F.
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The papers [6], [3], [1], [5], [4], and [2] provide the terminology and notation for
this paper. For simplicity we adopt the following convention: A denotes a non-
empty set, a denotes an element of A, x, y denote finite sequences of elements of
A, h denotes a partial function from A* to A, and n denotes a natural number.
We now define two new attributes. Let us consider A. A partial function from
A* to A is homogeneous if:

(Def.1)  for all z, y such that z € domit and y € dom it holds lenz = leny.
Let us consider A. A partial function from A* to A is quasi total if:

(Def.2)  for all z, y such that lenxz = leny and = € dom it holds y € dom it.

Let us consider A. Note that there exists a homogeneous quasi total non-empty
partial function from A* to A.

We now state three propositions:

(1)  his anon-empty partial function from A* to A if and only if dom h # (.

(2)  {ea} — a is a homogeneous quasi total non-empty partial function

from A* to A.

(3) {ea}r— ais an element of A*5A.

We now define four new constructions. We consider universal algebra struc-
tures which are extension of a 1-sorted structure and are systems

(a carrier, a characteristic),
where the carrier is a non-empty set and the characteristic is a finite sequence
of elements of (the carrier)”—the carrier. Let us consider A. A finite sequence
of elements of A*—- A is homogeneous if:
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(Def.3)  for all n, h such that n € domit and h = it(n) holds h is homogeneous.
Let us consider A. A finite sequence of elements of A*> A is quasi total if:

(Def.4)  for all n, h such that n € domit and h = it(n) holds h is quasi total.
Let us consider A. A finite sequence of elements of A*— A is non-empty if:

(Det.5)  for all n, h such that n € domit and h = it(n) holds h is non-empty.

In the sequel U will be a universal algebra structure. We now define four new
constructions. Let us consider U. The functor Opers U yielding a finite sequence
of elements of (the carrier of U)*—the carrier of U is defined as follows:

(Def.6)  OpersU = the characteristic of U.

A universal algebra structure is partial if:
(Def.7)  Opersit is homogeneous.

A universal algebra structure is quasi total if:
(Def.8)  Opersit is quasi total.

A universal algebra structure is non-empty if:
(Def.9)  Opersit # e and Opersit is non-empty.

We now state the proposition

(4) For every element x of A*A such that x = {e4} —— a holds (z) is
homogeneous, quasi total and non-empty.
Let us note that there exists a quasi total partial non-empty strict universal
algebra structure.
A universal algebra is a quasi total partial non-empty universal algebra struc-
ture.

In the sequel U will be a universal algebra. Let us consider A, and let f be a
homogeneous quasi total non-empty partial function from A* to A. The functor
arity f yielding a natural number is defined as follows:

(Def.10)  if € dom f, then arity f = lenx.

The following proposition is true

(5)  For every U and for every n such that n € dom Opers U holds (OpersU)
(n) is a homogeneous quasi total non-empty partial function from
(the carrier of U)* to the carrier of U.

Let U be a universal algebra. The functor signature U yields a finite sequence
of elements of N and is defined as follows:

(Def.11)  lensignature U = len Opers U
and for every n such that n € dom signature U and for every homogeneous

quasi total non-empty partial function h from (the carrier of U)* to the
carrier of U such that h = (OpersU)(n) holds (signature U)(n) = arity h.
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The articles [8], [10], [11], [1], [5], [9], [6], [2], [7], [4], and [3] provide the notation
and terminology for this paper. We follow a convention: x, y will be arbitrary
and a, b, X, A will be sets. Let F' be a non-empty set of functions. We see that
the element of F' is a function.

1. COHERENT SPACE AND WEB OF COHERENT SPACE

We now define three new constructions. A set is down-closed if:
(Def.1)  for all a, b such that a € it and b C a holds b € it.
A set is binary complete if:

(Def.2)  for every A such that A C it and for all a, b such that a € Aandbe A
holds a U b € it holds |J A € it.

Let us observe that there exists a down-closed binary complete non-empty set.
A coherent space is a down-closed binary complete non-empty set.

In the sequel C, D are coherent spaces. Next we state four propositions:

(1) odecC.

(2) 2% is a coherent space.

(3) {0} is a coherent space.

(4) IfzxeC, then {z} € C.

Let C be a coherent space. The functor Web(C') yields a tolerance of |JC
and is defined by:

© 1992 Fondation Philippe le Hodey
255 ISSN 0777-4028



256 JAROSEAW KOTOWICZ AND KONRAD RACZKOWSKI

(Def.3)  for all x, y holds (z, y) € Web(C) if and only if there exists X such
that X € C and x € X and y € X.

In the sequel T is a tolerance of |JC. One can prove the following proposi-

tions:
(5) T = Web(C) if and only if for all z, y holds (z, y) € T if and only if
{z,y} € C.
(6) a € C if and only if for all z, y such that z € a and y € a holds
{z,y} € C.
(7)  a € C if and only if for all x, y such that x € a and y € a holds (z,
y) € Web(C).

(8) If for all x, y such that x € a and y € a holds {z,y} € C, then a C |JC.
(9) If Web(C) = Web(D), then C' = D.
(10) IfUC € C, then C =2UC.

(11)  If ¢ = 2UC, then Web(C) = Ve

Let X be aset, and let E be a tolerance of X. The functor CohSp(F) yielding
a coherent space is defined by:

(Def.4)  for every a holds a € CohSp(E) if and only if for all z, y such that
x € aand y € a holds (z, y) € E.

In the sequel E denotes a tolerance of X. Next we state four propositions:

(12)  Web(CohSp(E)) = E.

(13)  CohSp(Web(C)) = C.

(14) a € CohSp(F) if and only if a is a set of mutually elements w.r.t. E.
(15)  CohSp(E) = TolSets E.

2. CATEGORY OF COHERENT SPACES

Let us consider X. The functor CSp(X) yielding a non-empty set is defined as
follows:
(Def.5) CSp(X) = {z : zisa coherent space}, where x ranges over subsets of
2%,

In the sequel C, Cy, Cy denote elements of CSp(X). Let us consider X, C.
The functor ®C yielding a coherent space is defined as follows:
(Def.6) ©C=C.
The following proposition is true
(16) If{z,y} € C,thenxe|JC and y € YC.
Let us consider X. The functor FuncscX yielding a non-empty set of func-
tions is defined by:

(Def.7)  FuncscX = UJ{(U y)Ux}, where z ranges over elements of CSp(X), and
y ranges over elements of CSp(X).
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In the sequel g is an element of FuncscX. The following proposition is true

(17)  z € FuncscX if and only if there exist C, Cy such that if |JCy = 0,
then |JC1 = () and also z is a function from |JC; into | Cs.

Let us consider X. The functor MapsX yielding a non-empty set is defined
by:
(Def.8)  MapscX = {{(C, Cs3), f): (UC3=0=UC =0)Afisa function from
UCinto UCs A A, [z, y} € C = {f(2), f(y)} € Csl},
where C' ranges over elements of CSp(X), and C3 ranges over elements of
CSp(X), and f ranges over elements of FuncscX.
In the sequel I, I, la, I3 will be elements of MapscX. The following two
propositions are true:

(18)  There exist g, C1, Co such that [ = ((Cy, Cs), g) and also if |JCo = 0,
then |JC; = 0 and ¢ is a function from |JC} into |JCy and for all z, y
such that {z,y} € C1 holds {g(x),g(y)} € Cs.

(19)  For every function f from |JC; into |JC9 such that if [JCo = (), then
UC1 = 0 and also for all z, y such that {x,y} € C1 holds {f(x), f(y)} €
Cs holds ((Cy, C2), f) € MapscX.

We now define three new functors. Let us consider X, [. The functor graph({)
yields a function and is defined by:
(Detf.9)  graph(l) = Ia.
The functor dom! yielding an element of CSp(X) is defined by:
(Def.10)  dom! = (I1)1.
The functor cod ! yielding an element of CSp(X) is defined by:
(Def.11)  codl = (11)2.

Next we state the proposition
(20) 1= ((doml, codl), graph(l)).
Let us consider X, C. The functor id(C) yields an element of Maps-X and
is defined by:
(Def.12) id(C) = ((C, C), idUC).

One can prove the following proposition
(21)  Ucodl # 0 or Jdom! = () and also graph(l) is a function from Jdom!
into Jcod! and for all z, y such that {z,y} € dom! holds
{(graph(1))(x), (graph(1))(y)} € cod!.
Let us consider X, [1, lo. Let us assume that codl; = domly. The functor
ly - 11 yielding an element of MapsX is defined as follows:
(Def.13) Iy -1 = ({domly, codls), graph(ls) - graph(ly)).
We now state four propositions:
(22) If domls = codly, then graph((l2 - l3)) = graph(ls) - graph(ly) and
dom(ly - I1) = dom!; and cod(ls - 1) = cod ls.
(23) If domly = codl; and domls = codls, then I3 - (I2 - 11) = (I3 - l2) - [5.
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(24) graph(id(C)) = idUC and domid(C) = C and codid(C) = C.
(25) [l-id(doml) =1 and id(codl) -1 =1.
We now define four new functors. Let us consider X. The functor Domcgp X
yields a function from MapscX into CSp(X) and is defined as follows:
(Def.14)  for every [ holds (Domcgp X) (1) = dom .
The functor Codcgp X yielding a function from Mapsc X into CSp(X) is defined
by:
(Def.15)  for every [ holds (Codcsp X)(I) = cod .
The functor -csp X yielding a partial function from [ MapscX, MapscX | to
MapscX is defined by:
(Def.16)  for all Iy, I; holds (I, [1) € dom-csp X if and only if domly = codl;
and for all Iy, [; such that domly = codl; holds (-csp X)(({l2, l1)) = l2- 1.
The functor Idcgp X yielding a function from CSp(X) into MapscX is defined
by:
(Def.17)  for every C holds (Idcsp, X)(C) = id(C).
Next we state the proposition
(26) (CSp(X),MapscX, Domcgp X, Codesp X, -csp X, Idcgp X) is a category.
Let us consider X. The X-coherent space category yields a category and is
defined by:

(Def.18)  the X-coherent space category
= <CSp(X), MapSCX, DOHlCSp X, COdCSp X, *CSp X, Idcsp X>

3. CATEGORY OF TOLERANCES

We now define two new functors. Let X be a set. The tolerances on X constitute
a non-empty set defined by:

(Def.19)  the tolerances on X is the set of all tolerances of X.

Let X be a set. The tolerances on subsets of X constitute a non-empty set
defined as follows:

(Def.20)  the tolerances on subsets of X = [J{the tolerances on Y}, where Y
ranges over subsets of X.

In the sequel ¢ denotes an element of the tolerances on subsets of X. The
following propositions are true:

(27)  x € the tolerances on subsets of X if and only if there exists A such

that A C X and =z is a tolerance of A.
28 V. € the tolerances on a.
29
30

31

A\, € the tolerances on a.
@ € the tolerances on subsets of X.
If a C X, then V, € the tolerances on subsets of X.

~~ I/~ —~
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(32) Ifa C X, then A, € the tolerances on subsets of X.
(33)  Vx € the tolerances on subsets of X.
(34)  Ax € the tolerances on subsets of X.

Let us consider X. The functor TOL(X) yields a non-empty set and is
defined by:

(Def.21)  TOL(X) = {(t,Y) : tisa tolerance of Y}, where ¢ ranges over ele-

ments of the tolerances on subsets of X, and Y ranges over elements of
2%,

In the sequel T, Ty, T will denote elements of TOL(X). Next we state
several propositions:
(35) (@, 0) € TOL(X).
(36) If a C X, then (A,, a) € TOL(X).
(37) If a C X, then (V,, a) € TOL(X).
(38) (Ax, X) € TOL(X).
(39) (Vx, X) € TOL(X).
Let us consider X, T. Then T5 is an element of 2X. Then 7} is a tolerance

of To. Let us consider X. The functor FuncstX yielding a non-empty set of
functions is defined as follows:

(Def.22)  FuncstX = U{(T32)"2}, where T ranges over elements of TOL(X),
and T3 ranges over elements of TOL(X).
In the sequel f denotes an element of FuncstX. We now state the proposition
(40)  x € FuncstX if and only if there exist T3, T, such that if Tho = ), then
T12 = () and also x is a function from T} into Ths.
Let us consider X. The functor Mapst X yielding a non-empty set is defined
by:
(Def.23)  MapstX = {((T, T3), f) : (Ts2 =0 = To = 0)Afisa function from To

into Tsg A Ay [{2, y) € Ty = (f(2), f(y)) € Tsal},
where T ranges over elements of TOL(X), and T3 ranges over elements

of TOL(X), and f ranges over elements of FuncstX.

In the sequel m, my, mgy, ms denote elements of MapspX. One can prove
the following two propositions:

(41)  There exist f, Ty, Ty such that m = ((T1, Tz), f) and also if The = 0,
then T19 = () and f is a function from T4 into Thg and for all z, y such
that (z, y) € T11 holds (f(z), f(y)) € To1.

(42)  For every function f from Tj9 into Thg such that if The = (), then Ty 9 =
() and also for all x, y such that {(z, y) € Ty11 holds (f(z), f(y)) € T»1
holds ((T1, T»), f) € MapstX.

We now define three new functors. Let us consider X, m. The functor
graph(m) yielding a function is defined by:
(Def.24)  graph(m) = ma.
The functor domm yields an element of TOL(X) and is defined by:



260 JAROSEAW KOTOWICZ AND KONRAD RACZKOWSKI

(Def.25)  domm = (mq)1.
The functor cod m yields an element of TOL(X) and is defined by:
(Def.26)  codm = (m1)a2.

One can prove the following proposition
(43)  m = ({domm, codm), graph(m)).
Let us consider X, T. The functor id(7") yields an element of MapspX and
is defined by:
(Def.27) id(T) = ((T, T), id(T2)).
One can prove the following proposition

(44)  (codm)g # 0 or (domm)g = @) and also graph(m) is a function from
(domm)g into (codm)g and for all x, y such that (z, y) € (domm)q

holds ((graph(m))(z), (graph(m))(y)) € (codm);.

Let us consider X, mq, mgy. Let us assume that cod m; = dommsy. The
functor mg - my yielding an element of MapstX is defined by:

(Def.28)  mgy - my = ({dommy, cod ms), graph(ms) - graph(my)).
The following propositions are true:
(45) If domms = codmy, then graph((ms - m1)) = graph(ms) - graph(mq)
and dom(mg - my) = domm; and cod(mg - my) = cod ma.
(46) If domms = codm; and dommg = codms, then mg - (mg - my) =
(m3 . mg) -ma.
(47)  graph(id(T)) = id(z,) and domid(T) =T and codid(T") =T
(48)  m-id(domm) = m and id(codm) - m = m.
We now define four new functors. Let us consider X. The functor Dom x
yields a function from MapstX into TOL(X) and is defined by:
(Def.29)  for every m holds Dom x(m) = domm.

The functor Cody yields a function from MapstX into TOL(X) and is defined
as follows:

(Def.30)  for every m holds Codx(m) = cod m.

The functor -y yields a partial function from [ MapsX, MapstX ] to MapstX
and is defined as follows:

(Def.31)  for all mg, my holds (mo, mi) € dom(-x) if and only if dommy =
codmy and for all mgy, my such that dommgy = codm; holds -x({ma,
m1>) =m9-Mmi.

The functor Idx yields a function from TOL(X) into MapstX and is defined
by:

(Def.32)  for every T holds Idx (T") = id(T).

Next we state the proposition
(49) (TOL(X),MapstX,Domy,Cody, x,Idx) is a category.
Let us consider X. The X-tolerance category is a category defined by:

(Def.33)  the X-tolerance category = (TOL(X), Maps1X, Domx, Codx, x,Idx).
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Summary. The paper contains definitions and basic properties of
the intervals of real numbers.

The article includes the text being a continuation of the paper [5].
Some theorems concerning basic properties of intervals are proved.

MML Identifier: MEASURES.

The notation and terminology used here are introduced in the following papers:
[16], [15], [11], [12], [9], [10], [1], [14], [2], [13], [4], [6], [8], [7], [3], [5], and [17].
The following propositions are true:
(1)  For all Real numbers z, y such that x # —oco and x # +o00 and x < y
holds O <y — .

(2)  For all Real numbers z, y such that it is not true that: z = —oco and
y = —oo and it is not true that: £ = +o0o0 and y = +o00 and x < y holds
Og<y—uz.

w

For all Real numbers x, y holds z <y or y < z.

N

For all Real numbers x, y such that x # y holds x < y or y < .

ot

For all Real numbers x, y holds © < y or y < x.
For all Real numbers x, y holds x < y if and only if y £ x.

N

For all Real numbers x, y, z such that x < y and y < z holds =z < z.

For all Real numbers a, b, ¢ such that b % —oco and b # 400 and it is
not true that: a = —oo and ¢ = —oo and it is not true that: a = 400 and
¢ =400 holds (¢c—b)+ (b—a) =c—a.

(9)  For all Real numbers ay, as holds inf{a;,as} < ay and inf{aq, a2} < as

and a; < sup{aj,as} and ay < sup{aj,as}.

(10)  For all Real numbers a, b, ¢ such that a < b and b < c or a < b and
b < cholds a < c.
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We now define several new constructions. Let a, b be Real numbers. The
functor [a, b] yielding a subset of R is defined as follows:

(Def.1)  for every Real number x holds x € [a,b] if and only if @ < x and < b
and x € R.

Let a, b be Real numbers. The functor |a, b[ yields a subset of R and is defined
as follows:

(Def.2)  for every Real number x holds z € |a,b[ if and only if @ < z and z < b
and z € R.

Let a, b be Real numbers. The functor ]a, b] yielding a subset of R is defined by:

(Def.3)  for every Real number x holds x € |a,b] if and only if a < z and x < b
and x € R.

Let a, b be Real numbers. The functor [a, b[ yields a subset of R and is defined
by:
(Def.4)  for every Real number x holds x € [a,b] if and only if @ < x and z < b
and x € R.
A subset of R is called an open interval if:
(Def.5)  there exist Real numbers a, b such that a < b and it = ]a, b].
A subset of R is said to be a closed interval if:
(Def.6)  there exist Real numbers a, b such that a < b and it = [a, b].
A subset of R is said to be a right-open interval if:
(Def.7)  there exist Real numbers a, b such that a < b and it = [a, b][.
A subset of R is called a left-open interval if:
(Def.8)  there exist Real numbers a, b such that a < b and it = ]a, b].
A subset of R is said to be an interval if:

(Def.9) it is an open interval or it is a closed interval or it is a right-open interval
or it is a left-open interval.

We see that the open interval is an interval. We see that the closed interval is
an interval. We see that the right-open interval is an interval. We see that the
left-open interval is an interval.

We now state a number of propositions:

(11)  For an arbitrary = and for all Real numbers a, b such that = € ]a,b] or
x € [a,b] or x € [a,b] or x € ]a,b] holds x is a Real number.

(12)  For all Real numbers a, b such that b < a holds |a,b[ = 0 and [a,b] = 0)
and [a,b] = 0 and ]a,b] = 0.

(13)  For every Real number a holds Ja,a] = 0 and [a,a] = () and ]a, a] = 0.

(14)  For every Real number a holds if a = —oco or a = +o00, then [a,a] = ()
and also if a # —oo and a # +o0, then [a,a] = {a}.

(15)  For all Real numbers a, b such that b < a holds |a,b[ = 0 and [a,b[ = 0
and Ja,b] = 0 and [a,b] C {a} and [a,b] C {b}.

(16)  For all Real numbers a, b, ¢ such that a < b and b < ¢ holds b € R.
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(17)  For all Real numbers a, b such that a < b there exists a Real number x
such that a <z and z < b and x € R.

(18)  For all Real numbers a, b, ¢ such that a < b and a < c there exists a
Real number x such that ¢ < x and x < b and z < c and z € R.

(19)  For all Real numbers a, b, ¢ such that a < ¢ and b < ¢ there exists a
Real number x such that a < x and b < z and z < cand z € R.

(20)  For all Real numbers aq, aa, by, b such that a; < ag and also a1 < by or
ay < by there exists a Real number x such that = € Jay, b1 and x ¢ |ag, b]
or x ¢ |ay,bi| and x € Jag, bal.

(21)  For all Real numbers ay, az, by, ba such that by < by and also a; < by or
ay < by there exists a Real number x such that = € Jai, b1 and = ¢ Jag, bo|
or x ¢ ]ai,bi[ and z € |ag, ba].

(22)  For all Real numbers a1, az, by, b2 such that a1 < ag and also a3 < by or
ay < by there exists a Real number x such that = € [a1,b1] and z ¢ Jag, bo|
or x ¢ [a1,b1] and z € |ag, ba].

(23)  For all Real numbers ay, az, by, b such that by < by and also a; < by or
ag < by there exists a Real number x such that = € [aq,b1] and x ¢ |ag, b]
or x ¢ [ay,b1] and z € |ag, ba|.

(24)  For all Real numbers aq, aa, by, ba such that a; < ag and also a1 < by or
ag < by there exists a Real number x such that = € Jay,bi[ and x ¢ [ag, bs]
or x ¢ |ay,bi| and z € [ag, be].

(25)  For all Real numbers ay, az, by, ba such that by < by and also a; < by or
ay < by there exists a Real number x such that z € Ja1,b1[ and = ¢ [az, bo]
or x ¢ ]ai,bi[ and z € [ag, ba].

(26)  For all Real numbers a1, aa, by, b such that a1 < ag and also a; < by or
ay < by there exists a Real number x such that « € Jaj, b1 and = ¢ [ag, bo|
or x ¢ ]ai,bi[ and z € [ag, ba].

(27)  For all Real numbers ay, az, by, b such that by < by and also ay < by or
ay < by there exists a Real number x such that = € Jaq,b1[ and x ¢ [a9, bo]
or x ¢ |ay,bi| and z € [ag, bel.

(28)  For all Real numbers ay, aa, by, b such that a1 < ag and also a3 < by or
ay < by there exists a Real number x such that = € [aq,b1] and x ¢ |ag, b]
or x ¢ [a1,b1] and z € Jag, ba|.

(29)  For all Real numbers ay, az, by, ba such that by < by and also a; < by or
ay < by there exists a Real number x such that « € [a1,b1] and = ¢ Jag, bo|
or x ¢ [a1,b1] and z € |ag, ba].

(30)  For all Real numbers aq, az, by, by such that a; < ag and also a1 < by or
ay < by there exists a Real number x such that = € Jay,bi[ and = ¢ |asg, bo]
or x ¢ ]ai,bi[ and z € |ag, ba].

(31)  For all Real numbers ay, az, by, ba such that by < by and also a; < by or
ay < by there exists a Real number x such that = € Jay,bi[ and = ¢ |asg, bo]
or x ¢ |ay,bi| and x € Jag, bo].
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(32)  For all Real numbers ay, ag, b, by such that a; < ag and also a; < by or
ag < by there exists a Real number x such that x € Jay,b1] and = ¢ |as, b]
or x ¢ |ay,b1] and x € Jag, bal.

(33)  For all Real numbers ay, aa, by, be such that by < be and also a; < by or
ay < by there exists a Real number x such that x € |a1,b1] and = ¢ Jag, bo|
or x ¢ lay,bi] and x € |ag, ba|.

(34)  For all Real numbers ay, ag, by, by such that a; < ag and also a; < by or
ag < by there exists a Real number x such that x € [a1,b1] and = ¢ [ag, bs]
or x ¢ [ay,b1] and z € [ag, bo].

(35)  For all Real numbers ay, aa, by, be such that by < be and also a; < by or
ay < by there exists a Real number x such that = € [a1,b1] and = ¢ [az, bs]
or x ¢ a1, b1] and x € [ag, be).

(36)  For all Real numbers ay, ag, by, by such that a; < ag and also a; < by or
ag < by there exists a Real number x such that x € [a1,b1] and = ¢ [ag, b]
or x ¢ [a1,b1] and x € [ag, bal.

(37)  For all Real numbers a1, aa, by, by such that by < be and also a; < by or
ag < by there exists a Real number x such that x € [a1,b1] and = ¢ [ag, b]
or x ¢ [ay,b1] and z € [ag, bs].

(38)  For all Real numbers ay, ag, by, b such that a1 < ay and also a; < by or
ay < by there exists a Real number x such that = € [a1,b1][ and = ¢ [az, bs]
or x ¢ [a1,bi| and x € [ag, be).

(39)  For all Real numbers ay, aa, by, by such that by < be and also a; < by or
ag < by there exists a Real number x such that x € [a1,b1[ and = ¢ [ag, bs]
or x ¢ [a1,b1] and z € [ag, bs].

(40)  For all Real numbers ay, ag, by, b such that a1 < ay and also a; < by or
ay < by there exists a Real number x such that « € [a1,b1] and = ¢ Jag, bo]
or x ¢ [a1,b1] and x € |ag, be).

(41)  For all Real numbers a1, az, by, by such that by < be and also a; < by or
ag < by there exists a Real number x such that x € [a1,b1] and = ¢ |asg, bo]
or x ¢ [a1,b1] and z € |ag, ba].

Next we state a number of propositions:

(42)  For all Real numbers ay, ag, by, by such that a; < ag and also a; < by or
ag < by there exists a Real number x such that x € Jaq,b1] and = ¢ [ag, bs]
or x ¢ |ay,b1] and z € [ag, be].

(43)  For all Real numbers ay, ag, by, be such that by < be and also a; < by or
ay < by there exists a Real number x such that x € Jay,b1] and = ¢ [ag, bo]
or x ¢ |ay,b1] and z € [ag, bs].

(44)  For all Real numbers ay, ag, by, b such that a1 < ay and also a; < by or
ay < by there exists a Real number x such that x € [a1,b1] and = ¢ [ag, bo|
or x ¢ [a1,bi| and x € [ag, bal.

(45)  For all Real numbers a1, az, by, by such that by < be and also a; < by or
ag < by there exists a Real number x such that x € [a1,b1] and = ¢ [ag, b]
or x ¢ [a1,b1] and z € [ag, bel.
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(46)  For all Real numbers aq, aa, by, b such that a1 < ag and also a1 < by or
ag < by there exists a Real number x such that = € [aq,b1[ and = ¢ |asg, bo]
or x ¢ [a1,b1] and z € |ag, bo].

(47)  For all Real numbers ay, az, by, ba such that by < by and also a; < by or
ay < by there exists a Real number x such that z € [a1,b1][ and = ¢ ]ag, bo]
or x ¢ [a1,bi] and z € |ag, ba].

(48)  For all Real numbers ay, aa, by, b such that a; < ag and also a1 < by or
ag < by there exists a Real number x such that = € Jay,b1] and x ¢ [a9, bo]
or x ¢ ]ai,bi] and z € [ag, ba].

(49)  For all Real numbers ay, az, by, ba such that by < by and also ay < by or
ag < by there exists a Real number x such that = € Jay,b1] and x ¢ [a9, bo]
or x ¢ |ay,b1] and z € [ag, bel.

(50)  For all Real numbers a1, aa, by, b such that a1 < ag and also a1 < by or
ay < by there exists a Real number x such that = € Ja1,b1] and = ¢ Jag, bs]
or x ¢ ]ai,bi] and x € |ag, ba].

(51)  For all Real numbers ay, az, by, b such that by < by and also ay < by or
ay < by there exists a Real number x such that = € Ja1,b1] and = ¢ ]ag, bs]
or x ¢ lai,bi] and z € |ag, ba].

(52) Let A be an interval. Let a1, ag, b1, by be Real numbers. Suppose that

(i) a1 < by or ag < by,
(i) A = Jai,bi] or A = [a1,b1] or A = [a1,b1] or A = Jay,b;1] and also
A =lag, b or A = [ag,bs] or A = [ag, b or A =]ag,bs].
Then a1 = as and by = bs.
Let A be an interval. The functor vol(A) yielding a Real number is defined
as follows:

(Def.10)  there exist Real numbers a, b such that A = ]a,b] or A = [a,b] or
A =[a,b[ or A =]a,b] and also if a < b, then vol(A) = b — a and also if
b < a, then vol(A4) = Og.

One can prove the following propositions:

(53)  For every open interval A and for all Real numbers a, b such that A =
la,b] holds if a < b, then vol(A) = b—a and also if b < a, then vol(A) = Og.

(54)  For every closed interval A and for all Real numbers a, b such that
A = [a,b] holds if a < b, then vol(A) = b — a and also if b < a, then
vol(A) = 0.

(55)  For every right-open interval A and for all Real numbers a, b such that
A = [a,b] holds if a < b, then vol(A) = b — a and also if b < a, then
vol(A) = Og.

(56)  For every left-open interval A and for all Real numbers a, b such that
A = Ja,b] holds if a < b, then vol(A) = b — a and also if b < a, then
VOI(A) = Oﬁ.

(57) Let A be an interval. Let a, b, ¢ be Real numbers. Suppose that

(1) a = —0o0,
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(i) beR,

(i) ¢=+oo,

(iv) A =]a,bfor A= ]bc[or A= [a,b] or A= [bc]orA=]ab]or
A= [b,c]or A=]a,b] or A=b,c|.
Then vol(A) = +o0.

(58)  For every interval A and for all Real numbers a, b such that a = —o0
and b = 400 and also A = ]a,b] or A = [a,b] or A = [a,b] or A = ]a,b]
holds vol(A) = +o0.

(59)  For every interval A and for every Real number a such that A = |a,a]
or A= [a,a] or A =[a,a] or A= ]a,a] holds vol(A4) = Og.
Let us note that there exists an empty interval.
Let us note that it makes sense to consider the following constant. Then ()
is an empty interval.
Next we state four propositions:
(60)  vol(0) = Og.
(61)  For all intervals A, B and for all Real numbers a, b such that A C B
and B = [a,b] and b < a holds vol(A) = O and vol(B) = 0.
(62)  For all intervals A, B such that A C B holds vol(A) < vol(B).
(63)  For every interval A holds Og < vol(A).
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The articles [7], [2], [1], [3], [4], [11], [10], [5], [6], [9], and [8] provide the notation
and terminology for this paper. For simplicity we adopt the following rules: z
is arbitrary, a, b, ¢ denote real numbers, V denotes a real linear space, u, v, v1,
V9, V3, W, W1, we, w3 denote vectors of V', and W, W7, W5 denote subspaces of
V. In this article we present several logical schemes. The scheme LambdaSep3
deals with a non-empty set A, a non-empty set B, an element C of A, an element
D of A, an element £ of A, an element F of B, an element G of B, an element
H of B, and a unary functor F yielding an element of B and states that:

there exists a function f from A into B such that f(C) = F and f(D) =G
and f(£) = H and for every element C' of A such that C' # C and C' # D and
C # & holds f(C) = F(C)
provided the parameters have the following properties:

« C#D,

.« C#E,

o D#E.

The scheme LinCFEzx1 deals with a real linear space A, a vector B of A, and
a real number C and states that:

there exists a linear combination [ of {B} such that I(B) =C
for all values of the parameters.

The scheme LinCEz2 deals with a real linear space A, a vector B of A, a
vector C of A, a real number D, and a real number £ and states that:

there exists a linear combination [ of {B,C} such that [(B) =D and I(C) = &
provided the following condition is satisfied:

o B+£C.
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The scheme LinCEx3 deals with a real linear space A, a vector B of A, a
vector C of A, a vector D of A, a real number £, a real number F, and a real
number G and states that:

there exists a linear combination [ of {B,C,D} such that I(B) = £ and
I(C)=Fand (D) =G
provided the parameters meet the following conditions:

« B£C,

« B#D,

e C#D.

We now state a number of propositions:

(1) (v+w)—v=wand (wW+v)—v =w and (v—v) +w = w and

(w—v)+v = w and v+ (w—v) = w and w+(v—v) = w and v—(v—w) = w.

(2) (w+u)—w=(v—w)+u.
(3)  If vy + w = v9 + w, then vy = vo.
(4) Ifvy —w=wvy—w, then v; = vy.
(5) v=wv1+ v if and only if vy =v — vy.
(6) —a-v=(—a)-wv.
(7)  If Wy is a subspace of Wa, then v+ Wy C v+ Wj.
8) IHfuecv+W,thenv+W =u+W.
(9)  For every linear combination ! of {u,v,w} such that u # v and u # w
and v # w holds Y Il =1l(u) - u+1(v) - v + l(w) - w.
(10)  uw# vandu# wand v # w and {u,v,w} is linearly independent if and

only if for all a, b, ¢ such that a-u+b- v+ ¢-w = 0y holds a = 0 and

b=0and c=0.

(11) € Lin({v}) if and only if there exists a such that z = a - v.

(12) v € Lin({v}).

(13) € v+ Lin({w}) if and only if there exists a such that z =v + a - w.

(14) =z € Lin({w1,ws}) if and only if there exist a, b such that =z = a-wq+b-ws.

(15)  w; € Lin({w1,wa}) and wy € Lin({w;, wa}).

(16) 2 € v+ Lin({w;,we}) if and only if there exist a, b such that z =

v+a-wy+b-ws.

(17) 2 € Lin({v1,ve,v3}) if and only if there exist a, b, ¢ such that z =
a-v1+b-vy+c-vs.

(18)  wy € Lin({wy,wq,ws}) and wy € Lin({wq, we, ws}) and
w3 € Lin({wy, we, ws}).

(19) =z € v+ Lin({wy,ws,ws3}) if and only if there exist a, b, ¢ such that
r=v+4a-wy+b-wy+c-ws.

(20)  If {u,v} is linearly independent and u # v, then {u,v — u} is linearly
independent.

(21)  If {u,v} is linearly independent and u # v, then {u,v + u} is linearly
independent.
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(22)  If {u, v} is linearly independent and u # v and a # 0, then {u,a - v} is
linearly independent.

(23) If {u,v} is linearly independent and u # v, then {u,—v} is linearly
independent.

(24) Ifa #b, then {a-v,b- v} is linearly dependent.

(25) If a #1, then {v,a - v} is linearly dependent.

(26) If {u,w,v} is linearly independent and u # v and v # w and v # w,
then {u,w,v — u} is linearly independent.

(27)  If {u,w,v} is linearly independent and u # v and v # w and v # w,
then {u,w — u,v — u} is linearly independent.

(28)  If {u,w,v} is linearly independent and u # v and v # w and v # w,
then {u,w,v + u} is linearly independent.

(29) If {u,w,v} is linearly independent and u # v and v # w and v # w,
then {u,w + u,v + u} is linearly independent.

(30)  If {u,w,v} is linearly independent and u # v and u # w and v # w and
a # 0, then {u,w,a - v} is linearly independent.

(31)  If {u,w,v} is linearly independent and u # v and u # w and v # w and
a # 0 and b # 0, then {u,a - w,b- v} is linearly independent.

The following propositions are true:

(32) If {u,w,v} is linearly independent and u # v and v # w and v # w,
then {u,w, —v} is linearly independent.

(33) If {u,w,v} is linearly independent and u # v and v # w and v # w,

then {u, —w, —v} is linearly independent.

(34) Ifa#b, then {a-v,b-v,w} is linearly dependent.

(35) If a # 1, then {v,a-v,w} is linearly dependent.

(36) If v € Lin({w}) and v # Oy, then Lin({v}) = Lin({w}).

(37)  If vy # ve and {vy,v2} is linearly independent and vy € Lin({wq,ws})

and vy € Lin({wy,ws}), then Lin({wy,ws}) = Lin({v1,v2}) and {wy,ws}

is linearly independent and wy # ws.

(38) If w # Oy and {v,w} is linearly dependent, then there exists a such
that v =a - w.

(39) If v # w and {v,w} is linearly independent and {u,v,w} is linearly
dependent, then there exist a, b such that u =a-v+b- w.
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The articles [11], [4], [5], [3], [1], [8], [10], [2], [12], [6], [7], and [9] provide
the notation and terminology for this paper. In the sequel n will be a natural
number. Let F', G be functions. We say that F' and G are fiwerwise equipotent
if and only if:

(Def.1)  for an arbitrary x holds F 1 {z} = G ! {z}.
Let us observe that the predicate defined above is reflexive and symmetric.

One can prove the following propositions:

(1)  For all functions F, G such that F' and G are fiwerwise equipotent holds
mg F =rngG.

(2)  For all functions F', G, H such that F' and G are fiwerwise equipo-
tent and F' and H are fiwerwise equipotent holds G and H are fiwerwise
equipotent.

(3)  For all functions F', G holds F and G are fiwerwise equipotent if and only
if there exists a function H such that dom H = dom F and rng H = dom G
and H is one-to-one and F'=G - H.

(4)  For all functions F', G holds F' and G are fiwerwise equipotent if and
only if for every set X holds F 1 X = G-l X.

(5)  For every non-empty set D and for all functions F', G such that rng F' C
D and rng G C D holds F and G are fiwerwise equipotent if and only if
for every element d of D holds F ~1 {d} = G~ {d}.
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(6) For all functions F, G such that dom FF = dom G holds F' and G are
fiwerwise equipotent if and only if there exists a permutation P of dom F'
such that FF =G - P.

(7)  For all functions F', G such that F' and G are fiwerwise equipotent holds
dom F' = dom G.

(8)  For all functions F, G such that dom F' is finite and dom G is finite
holds F' and G are fiwerwise equipotent if and only if for an arbitrary x
holds card(F ~! {z}) = card(G ~! {z}).

(9) For all functions F, G such that dom F' is finite and dom G is finite
holds F' and G are fiwerwise equipotent if and only if for every set X
holds card(F =1 X) = card(G ! X).

(10)  For all functions F', G such that dom F is finite and dom G is finite and
F and G are fiwerwise equipotent holds card dom F' = card dom G.

(11)  For every non-empty set D and for all functions F', G such that rng F' C
D and rngG € D and dom F' is finite and dom G is finite holds F' and
G are fiwerwise equipotent if and only if for every element d of D holds
card(F ~! {d}) = card(G ~! {d}).

(12)  For all finite sequences f, g holds f and g are fiwerwise equipotent if
and only if for an arbitrary = holds card(f ~! {z}) = card(g ~* {z}).

(13)  For all finite sequences f, g holds f and g are fiwerwise equipotent if
and only if for every set X holds card(f ~' X) = card(g ~' X).

(14)  For all finite sequences f, g, h holds f and g are fiwerwise equipotent
if and only if f ™~ h and g~ h are fiwerwise equipotent.

(15)  For all finite sequences f, g holds f~g and ¢~ f are fiwerwise equipotent.
(16)  For all finite sequences f, g such that f and g are fiwerwise equipotent
holds len f = len g and dom f = dom g.
(17)  For all finite sequences f, g holds f and g are fiwerwise equipotent if
and only if there exists a permutation P of dom g such that f =g¢- P.
(18)  For every function F' and for every finite set X there exists a finite
sequence f such that /'] X and f are fiwerwise equipotent.
Let D be a non-empty set, and let f be a finite sequence of elements of
D, and let n be a natural number. The functor f,, yields a finite sequence of
elements of D and is defined as follows:

(Det.2) (i) len(f,n) = lenf — n and for every natural number m such that
m € dom(f},,) holds f|,,(m) = f(m+n) if n <len f,
(ii)  fin = ep, otherwise.

The following propositions are true:

(19)  For every non-empty set D and for every finite sequence f of elements
of D and for all natural numbers n, m such that n € dom f and m € Segn
holds (f [ n)(m) = f(m) and m € dom f.

(20)  For every non-empty set D and for every finite sequence f of elements
of D and for every natural number n and for an arbitrary x such that
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lenf=n+1and x = f(n+1) holds f = (f I n) ™ (x).

(21)  For every non-empty set D and for every finite sequence f of elements
of D and for every natural number n holds (f [ n) ~ (fin) = f.

(22)  For all finite sequences Ri, Ry of elements of R such that R; and Rs
are fiwerwise equipotent holds Y R; = Y Rs.

Let R be a finite sequence of elements of R. The functor MIM(R) yielding a
finite sequence of elements of R is defined by the conditions (Def.3).

(Det.3) (i) lenMIM(R) = len R,
(i)  (MIM(R))(len MIM(R)) = R(len R),
(iii)  for every natural number n such that 1 < n and n <len MIM(R) — 1
and for all real numbers r, s such that R(n) = and R(n + 1) = s holds
(MIM(R))(n) =1 — s.

Next we state several propositions:

(23)  For every finite sequence R of elements of R and for every real number r
and for every natural number n such that len R=n+2and R(n+1) =r
holds MIM(R | (n+ 1)) = (MIM(R) | n) ~ (r).

(24)  For every finite sequence R of elements of R and for all real numbers r, s

and for every natural number n such that len R =n+2 and R(n+1) =r
and R(n +2) = s holds MIM(R) = (MIM(R) | n) ™ (r — s, s).

(25)  MIM(eg) = €.

(26)  For every real number r holds MIM((r)) = (r).

(27)  For all real numbers r, s holds MIM((r, s)) = (r — s, s).

(28)  For every finite sequence R of elements of R and for every natural num-

ber n holds (MIM(R)),, = MIM(R,;,).
(29)  For every finite sequence R of elements of R such that len R # 0 holds
> MIM(R) = R(1).
(30)  For every finite sequence R of elements of R and for every natural num-
ber n such that 1 <n and n <len R holds >~ MIM(R,,) = R(n+ 1).
A finite sequence of elements of R is non-increasing if:
(Def.4)  for every natural number n such that n € domit and n + 1 € domit
and for all real numbers 7, s such that r = it(n) and s = it(n + 1) holds
r > s.
One can check that there exists a non-increasing finite sequence of elements of
R.
We now state several propositions:
(31)  For every finite sequence R of elements of R such that len R = 0 or
len R = 1 holds R is non-increasing.
(32)  For every finite sequence R of elements of R holds R is non-increasing
if and only if for all natural numbers n, m such that n € dom R and

m € dom R and n < m and for all real numbers r, s such that R(n) =r
and R(m) = s holds r > s.
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For every non-increasing finite sequence R of elements of R and for
every natural number n holds R | n is a non-increasing finite sequence of
elements of R.

For every non-increasing finite sequence R of elements of R and for
every natural number n holds R}, is a non-increasing finite sequence of
elements of R.

For every finite sequence R of elements of R there exists a non-increasing
finite sequence R; of elements of R such that R and R; are fiwerwise
equipotent.

For all non-increasing finite sequences R, Ry of elements of R such that
R and Ry are fiwerwise equipotent holds R = Rs.

For every finite sequence R of elements of R and for all real numbers r,
s such that 7 # 0 holds R ~' {£} = (r- R) = {s}.
For every finite sequence R of elements of R holds (0-R) {0} = dom R.
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Summary. The article consists of two parties. In the first one we
consider notion of nonnegative and nonpositive part of a real numbers. In
the second we consider partial function from a domain to the set of real
numbers (or more general to a domain). We define a few new operations
for these functions and show connections between finite sequences of real
numbers and functions which domain is finite. We introduce integrations
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The articles [23], [25], [7], [21], [3], [4], [1], [11], [13], [2], [18], [20], [22], [6], [24],
8], [5], [9], [10], [19], [16], [17], [15], [12], and [14] provide the notation and
terminology for this paper.

1. NONNEGATIVE AND NONPOSITIVE PART OF A REAL NUMBER

In the sequel n is a natural number and r is a real number. We now define
two new functors. Let n, m be natural numbers. Then min(n,m) is a natural
number. Let r be a real number. The functor max, (r) yielding a real number
is defined as follows:

(Def.1)  maxy(r) = max(r,0).
The functor max_(r) yielding a real number is defined as follows:
(Def.2)  max_(r) = max(—r,0).
We now state several propositions:
(1)  For every real number r holds r = max, (r) — max_(r).
(2)  For every real number r holds |r| = max(r) + max_(r).
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(3)  For every real number r holds 2 - max, (r) = r + |r|.

(4)  For all real numbers r, s such that 0 < r holds max_(r-s) = r-max(s).
(5)  For all real numbers r, s holds max (r + s) < maxy (r) + max(s).
(6)  For every real number r holds 0 < max(r) and 0 < max_ (7).

(7)  For all real numbers r1, 79, s1, s2 such that 7 < s; and ry < s9 holds

max(ry,re) < max(sy, s2).

2. PROPERTIES OF REAL FUNCTION

One can prove the following propositions:

(8)  For every non-empty set D and for every partial function F' from D to R
and for all real numbers 7, s such that r # 0 holds F ' {2} = (r F/) ! {s}.
(9) For every non-empty set D and for every partial function F' from D to
R holds (0 F) ' {0} = dom F.
(10)  For every non-empty set D and for every partial function F' from D to R
and for every real number r such that 0 < r holds |F|~{r} = F~1{—r,r}.
(11)  For every non-empty set D and for every partial function F' from D to
R holds |F| ~1 {0} = F ~1 {0}.
(12)  For every non-empty set D and for every partial function F' from D to
R and for every real number r such that r < 0 holds |F| =1 {r} = 0.

(13)  For all non-empty sets D, C' and for every partial function F' from D to
R and for every partial function G from C' to R and for every real number
r such that r # 0 holds F' and G are fiwerwise equipotent if and only if
r F and r G are fiwerwise equipotent.

(14)  For all non-empty sets D, C' and for every partial function F' from D
to R and for every partial function G from C to R holds F' and G are
fiwerwise equipotent if and only if —F and —G are fiwerwise equipotent.

(15)  For all non-empty sets D, C' and for every partial function F' from D
to R and for every partial function G from C to R such that F' and G are
fiwerwise equipotent holds |F'| and |G| are fiwerwise equipotent.

We now define two new constructions. Let X, Y be sets. A non-empty set
of functions is said to be a non empty set of partial functions from X to Y if:

(Def.3)  every element of it is a partial function from X to Y.

Let X, Y be sets. Then XY is a non empty set of partial functions from X
to Y. Let P be a non empty set of partial functions from X to Y. We see that
the element of P is a partial function from X to Y. Let D, C' be non-empty
sets, and let X be a subset of D, and let ¢ be an element of C. Then X +—— ¢
is an element of D—-C. Let D be a non-empty set, and let Fy, F5 be elements
of D-5R. Then F} + F5 is an element of D->R. Then F} — F5 is an element
of D-5R. Then Fj Fy is an element of D->R. Then % is an element of D-SR.
Let D be a non-empty set, and let F' be an element of D-5R. Then |F| is an
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element of D—5R. Then —F is an element of D-—>R. Then % is an element of
D-5R. Let D be a non-empty set, and let F' be an element of DR, and let r
be a real number. Then r F' is an element of D-—-R. Let D be a non-empty set.
The functor +p_,g yielding a binary operation on DR is defined as follows:

(Def.4)  for all elements Fy, Fy of D-5R holds +p_.g(F1, Fa) = F1 + Fb.

The following propositions are true:
(16)  For every non-empty set D holds +p_-r is commutative.
(17)  For every non-empty set D holds +p_r is associative.
(18)  For every non-empty set D holds 2p —— 0 qua a real number is a unity
w.rt. +pop .
(19)  For every non-empty set D holds 14, ., = Qp — 0 qua a real number.
(20)  For every non-empty set D holds +p_r has a unity.
Let D be a non-empty set, and let f be a finite sequence of elements of D—>R.
The functor Y f yielding an element of DR is defined as follows:
(Def.5) > f=+4+p=r®f.
Next we state several propositions:
(21)  For every non-empty set D holds > (e(p-g)) = p +— Oquaa real
number.
(22)  For every non-empty set D and for every element G of DR holds
2(G) =G
(23)  For every non-empty set D and for every finite sequence f of elements
of D-5R and for every element G of DR holds > (f ~(G)) =X f+ G.

(24)  For every non-empty set D and for all finite sequences f1, f2 of elements
of D-5R holds >2(f1 7 f2) = X fi + X fo.

(25)  For every non-empty set D and for every finite sequence f of elements
of D-5R and for every element G of DR holds >((G) ~ f) =G+ f.

(26)  For every non-empty set D and for all elements G1, G2 of DR holds
Z(Gl, G2> =G+ Gs.

(27)  For every non-empty set D and for all elements G, G2, G3 of D-5R
holds Z(Gl, GQ, G3> = G1 + G2 + Gg.

(28)  For every non-empty set D and for all finite sequences f, g of elements
of DR such that f and g are fiwerwise equipotent holds Y f = > g.

We now define four new constructions. Let D be a non-empty set, and let
f be a finite sequence. The functor CHI(f, D) yielding a finite sequence of
elements of DR is defined by:

(Def.6) len CHI(f,D) = len f and for every n such that n € dom CHI(f, D)
holds (CHI(f, D))(n) = Xf(n),p-
Let D be a non-empty set, and let f be a finite sequence of elements of DR,
and let R be a finite sequence of elements of R. The functor R f yields a finite
sequence of elements of DR and is defined as follows:
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(Def.7)  len(R f) = min(len R,len f) and for every n such that n € dom(R f)
and for every partial function F' from D to R and for every r such that
r=R(n) and F = f(n) holds (R f)(n) =r F.

Let D, C' be non-empty sets, and let f be a finite sequence of elements of
D—=C, and let d be an element of D. The functor f#d yields a finite sequence
of elements of C' and is defined as follows:

(Def.8)  len(f#d) = len f and for every natural number n and for every element
G of D-C such that n € dom(f#d) and f(n) = G holds (f#d)(n) =
G(d).
Let D, C' be non-empty sets, and let f be a finite sequence of elements of D-C),
and let d be an element of D. We say that d is common for dom f if and only
if:
(Def.9)  for every element G of D—C' and for every natural number n such that
n € dom f and f(n) = G holds d € domG.

One can prove the following propositions:

(29)  For all non-empty sets D, C and for every finite sequence f of elements
of D5C and for every element d of D and for every natural number n
such that d is common for dom f and n # 0 holds d is common for dom

fin.

(30)  For all non-empty sets D, C and for every finite sequence f of elements
of D5C and for every element d of D and for every natural number n
such that d is common for dom f holds d is common for dom f,.

(31)  For every non-empty set D and for every element d of D and for every
finite sequence f of elements of DR such that len f # 0 holds d is
common for dom f if and only if d € dom }_ f.

(32)  For all non-empty sets D, C and for every finite sequence f of elements
of D5C and for every element d of D and for every natural number n
holds (f | n)déd = (f4d) | n.

(33)  For every non-empty set D and for every finite sequence f and for every
element d of D holds d is common for dom CHI(f, D).

(34)  For every non-empty set D and for every element d of D and for every
finite sequence f of elements of DR and for every finite sequence R of

elements of R such that d is common for dom f holds d is common for
dom R f.

(35)  For every non-empty set D and for every finite sequence f and for every
finite sequence R of elements of R and for every element d of D holds d is
common for dom R CHI(f, D).

(36)  For every non-empty set D and for every element d of D and for every
finite sequence f of elements of DR such that d is common for dom f
holds (32 f)(d) = 32(f#d).

We now define two new functors. Let D be a non-empty set, and let F be a
partial function from D to R. The functor max (F') yielding a partial function
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from D to R is defined as follows:

(Def.10)  dommaxy (F) = dom F' and for every element d of D such that d €
dom max (F') holds (max4(F))(d) = maxy(F(d)).
The functor max_(F') yielding a partial function from D to R is defined as
follows:

(Def.11)  dommax_(F) = dom F' and for every element d of D such that d €
dommax_ (F') holds (max_(F))(d) = max_(F(d)).

The following propositions are true:

(37)  For every non-empty set D and for every partial function F' from D to
R holds F' = maxy (F) — max_(F) and |F| = max4(F) + max_(F) and
2 max4 (F) = F + |F)|.

(38)  For every non-empty set D and for every partial function F' from D
to R and for every real number 7 such that 0 < r holds F ~! {r} =
(max (F)) ~* {r}.

(39)  For every non-empty set D and for every partial function F' from D to
R holds F ~!]—00,0] = (max, (F)) ~! {0}.

(40)  For every non-empty set D and for every partial function F' from D
to R and for every element d of D such that d € dom F holds 0 <
(max (F))(d).

(41)  For every non-empty set D and for every partial function F' from D
to R and for every real number r such that 0 < 7 holds F ' {—r} =
(max_(F)) ~* {r}.

(42)  For every non-empty set D and for every partial function F' from D to
R holds F ~! [0, +oo[ = (max_(F)) ~! {0}.

(43)  For every non-empty set D and for every partial function F' from D
to R and for every element d of D such that d € dom F holds 0 <
(max_ (F))(d).

(44)  For all non-empty sets D, C and for every partial function F' from
D to R and for every partial function G from C' to R such that F' and
G are fiwerwise equipotent holds max, (F') and maxy(G) are fiwerwise
equipotent.

(45)  For all non-empty sets D, C and for every partial function F' from
D to R and for every partial function G from C' to R such that F' and
G are fiwerwise equipotent holds max_(F') and max_(G) are fiwerwise
equipotent.

(46)  For all non-empty sets D, C' and for every partial function F' from D to
R and for every partial function G from C to R such that dom F' is finite
and dom G is finite and max (F') and maxy (G) are fiwerwise equipotent
and max_(F) and max_(G) are fiwerwise equipotent holds F' and G are
fiwerwise equipotent.

(47)  For every non-empty set D and for every partial function F' from D to
R and for every set X holds max (F) | X = maxy(F | X).
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(48)  For every non-empty set D and for every partial function F' from D to
R and for every set X holds max_(F) | X = max_(F | X).

(49)  For every non-empty set D and for every partial function F' from D to
R if for every element d of D such that d € dom F' holds F'(d) > 0, then
maxy (F) = F.

(50)  For every non-empty set D and for every partial function F' from D to
R if for every element d of D such that d € dom F' holds F(d) < 0, then
max_(F) = —F.

Let D be a non-empty set, and let F' be a partial function from D to R, and

let 7 be a real number. The functor F' — r yields a partial function from D to R
and is defined as follows:

(Def.12)  dom(F — r) = dom F and for every element d of D such that d €
dom(F —r) holds (F —r)(d) = F(d) — r.

We now state four propositions:

(51)  For every non-empty set D and for every partial function F' from D to
R holds F—0=F.

(52)  For every non-empty set D and for every partial function F' from D to
R and for every real number r and for every set X holds F'| X —r =
(F—r)] X.

(53)  For every non-empty set D and for every partial function F' from D to
R and for all real numbers r, s holds F ! {s +r} = (F —r) ~! {s}.

(54)  For all non-empty sets D, C and for every partial function F' from D to
R and for every partial function G from C' to R and for every real number
r holds F' and G are fiwerwise equipotent if and only if FF —r and G —r
are fiwerwise equipotent.

Let F be a partial function from R to R, and let X be a set. We say that F'
is convex on X if and only if the conditions (Def.13) is satisfied.

(Def.13) (i) X CdomF,
(ii)  for every real number p such that 0 < p and p < 1 and for all real
numbers r, s such that r € X and s € X and p-r+ (1 —p)-s € X holds
Fp-r+(1—p)-s)<p-F(r)+(1—p) F(s).

The following propositions are true:

(55)  Let a, b be real numbers. Let F' be a partial function from R to R. Then
F is convex on [a, b] if and only if the following conditions are satisfied:

(i) Ja,b] CdomF,

(ii)  for every real number p such that 0 < p and p < 1 and for all real
numbers r, s such that r € [a,b] and s € [a,b] holds F(p-r+ (1—p)-s) <
p-F(r)+ (1 —-p) F(s).

(56)  Let a, b be real numbers. Let F' be a partial function from R to R. Then
F is convex on [a, b] if and only if the following conditions are satisfied:
(i) Ja,b] CdomF,
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(ii)  for all real numbers x1, x2, x3 such that x; € [a,b] and x5 € [a,b] and
x3 € [a,b] and x1 < x2 and x5 < x3 holds F(Z‘;l):fz(l‘z) < F(x;g:g“).

(57)  For every partial function F' from R to R and for all sets X, Y such that
F is convex on X and Y C X holds F' is convex on Y.

(58)  For every partial function F' from R to R and for every set X and for
every real number 7 holds F' is convex on X if and only if F' —r is convex
on X.

(59)  For every partial function F' from R to R and for every set X and for
every real number r such that 0 < r holds F' is convex on X if and only
if » F' is convex on X.

(60)  For every partial function F' from R to R and for every set X such that
X C dom F holds 0 F' is convex on X.

(61)  For all partial functions F', G from R to R and for every set X such that
F is convex on X and G is convex on X holds F' + G is convex on X.

(62)  For every partial function F' from R to R and for every set X and for
every real number r such that F' is convex on X holds max (F —r) is
convex on X.

(63)  For every partial function F' from R to R and for every set X such that
F' is convex on X holds max (F) is convex on X.

(64) id(q,) is convex on R.

(65)  For every real number 7 holds max, (id(q,) — r) is convex on R.

Let D be a non-empty set, and let F' be a partial function from D to R, and
let X be a set. Let us assume that dom(F | X) is finite. The functor FinS(F, X)
yields a non-increasing finite sequence of elements of R and is defined by:

(Def.14)  F 1 X and FinS(F, X) are fiwerwise equipotent.

Next we state a number of propositions:

(66)  For every non-empty set D and for every partial function F' from D to R
and for every set X such that dom(F' | X) is finite holds FinS(F, dom(F' |
X)) = FinS(F, X).

(67)  For every non-empty set D and for every partial function F' from D to R
and for every set X such that dom(F'| X) is finite holds FinS(F'| X, X) =
FinS(F, X).

(68)  For every non-empty set D and for every element d of D and for every
set X and for every partial function F' from D to R such that X is finite
and d € dom(F | X) holds (FinS(F, X \ {d})) ~ (F(d)) and F | X are
fiwerwise equipotent.

(69)  For every non-empty set D and for every element d of D and for every
set X and for every partial function F' from D to R such that dom(F'| X)
is finite and d € dom(F' | X)) holds (FinS(F, X \ {d})) ~ (F'(d)) and F | X
are fiwerwise equipotent.

(70)  For every non-empty set D and for every partial function F' from D to R
and for every set X such that dom(F | X) is finite holds len FinS(F, X) =
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carddom(F | X).

(71)  For every non-empty set D and for every partial function F' from D to
R holds FinS(F, ) = eg.

(72)  For every non-empty set D and for every partial function F' from D to
R and for every element d of D such that d € dom F' holds FinS(F, {d}) =
(F(d)).

(73) Let D be a non-empty set. Let F' be a partial function from D to R.
Then for every set X and for every element d of D such that dom(F | X)
is finite and d € dom(F' | X) and (FinS(F, X))(len FinS(F, X)) = F(d)
holds FinS(F, X') = (FinS(F, X \ {d})) ~ (F(d)).

(74)  Let D be a non-empty set. Let F' be a partial function from D to R.
Let X, Y be sets. Suppose dom(F' | X) is finite and Y C X and for all
elements dj, dg of D such that dy € dom(F YY) and dy € dom(F' | (X\Y))
holds F'(dy) > F(dz). Then FinS(F, X) = (FinS(F,Y)) ~ FinS(F, X \Y).

(75) Let D be a non-empty set. Let F' be a partial function from D to R.
Let r be a real number. Let X be a set. Then for every element d of D
such that dom(F | X) is finite and d € dom(F | X) holds
(FinS(F — 7, X))(len FinS(F — r, X)) = (F' — r)(d)
if and only if (FinS(F, X))(len FinS(F, X)) = F(d).

(76)  For every non-empty set D and for every partial function F' from D to
R and for every real number r and for every set X such that dom(F | X)
is finite holds FinS(F — r, X)) = FinS(F, X) — (carddom(F' | X) — 7).

(77)  For every non-empty set D and for every partial function F from D to R
and for every set X such that dom(F'| X) is finite and for every element d
of D such that d € dom(F'| X) holds F(d) > 0 holds FinS(max (F'), X) =
FinS(F, X).

(78)  For every non-empty set D and for every partial function F' from D to
R and for every set X and for every real number r such that dom(F' | X)
is finite and rng(F' | X) = {r} holds FinS(F, X ) = carddom(F' | X) — r.

(79)  For every non-empty set D and for every partial function F' from D to
R and for all sets X, Y such that dom(F | (X UY)) is finite and X N
Y = 0 holds FinS(F, X UY) and (FinS(F, X)) ~ FinS(F,Y") are fiwerwise
equipotent.

Let D be a non-empty set, and let F' be a partial function from D to R, and
let X be a set. The functor Y.X_ F(k) yields a real number and is defined as
follows:

(Def.15) X o F(k) = Y FinS(F, X).

One can prove the following propositions:

(80)  For every non-empty set D and for every partial function F' from D to
R and for every set X and for every real number 7 such that dom(F' | X)
is finite holds "X o (r F)(k) = 7 - Y2n_o F(k).

(81)  For every non-empty set D and for all partial functions F', G from D to
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R and for every set X such that dom(F [ X) is finite and dom(F' | X) =
dom(G | X) holds Y23_0(F + G) (k) = X5 F (k) + izg G(#)-

(82)  For every non-empty set D and for all partial functions F', G from D to
R and for every set X such that dom(F' | X) is finite and dom(F' | X) =
dom(G | X) holds Y-3_o(F — G) (k) = X5 F (k) — izo G(#)-

(83)  For every non-empty set D and for every partial function F' from D to
R and for every set X and for every real number r such that dom(F | X)
is finite holds > (F — 7)(k) = Y F(k) — r - card dom(F | X).

(84)  For every non-empty set D and for every partial function F' from D to
R holds YX?_, F(k) = 0.

(85)  For every non-empty set D and for every partial function F' from D to

R and for every element d of D such that d € dom F' holds Zidz}o F(k) =
F(d).

(86)  For every non-empty set D and for every partial function F' from D to
R and for all sets X, Y such that dom(F | (XUY)) is finite and X NY =0
holds 375 F(k) = 3270 (k) + Xh_o F(x).

(87)  For every non-empty set D and for every partial function F' from D
to R and for all sets X, Y such that dom(F | (X UY)) is finite and
dom(F[X)Ndom(FY) = @ holds X9 F(k) = X F(k)+X)1_, F(k).

K=
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1. AUXILIARY THEOREMS ON FREE-MODULES

For simplicity we follow a convention: x is arbitrary, K is an associative ring, r
is a scalar of K, V', M, N are left modules over K, a, b, ay, as are vectors of V,
A, Ay, Ay are subsets of V', [ is a linear combination of A, W is a submodule
of V, and L; is a finite sequence of elements of Sub(V'). One can prove the
following propositions:

(1) If K is non-trivial and A is linearly independent, then Oy ¢ A.
2) Ifaé¢ A, then l(a) =0g.

w

(

(3) If K is trivial, then for every [ holds support! = () and Lin(A) is trivial.

(4) If V is non-trivial, then for every A such that A is base holds A # {).

(5) If Ay U Ay is linearly independent and Ay N Ay = (), then Lin(Ay) N
Lin(Ag) = Ov.

(6) If Ais base and A = A; U Ay and A; N Ay = (), then V is the direct

sum of Lin(A;) and Lin(As).

~—
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2. DOMAINS OF SUBMODULES

Let us consider K, V. A non-empty set is called a non empty set of submodules
of V if:

(Def.1) if z € it, then x is a strict submodule of V.

Let us consider K, V. Then Sub(V) is a non empty set of submodules of V.
Let us consider K, V, and let D be a non empty set of submodules of V. We
see that the element of D is a strict submodule of V. Let us consider K, V', and
let D be a non empty set of submodules of V. One can verify that there exists
a strict element of D.

We now state two propositions:

(7) If z is an element of Sub(V') qua a non-empty set, then z is an element
of Sub(V).

(8) If z € Sub(V), then x is an element of Sub(V).

We now define two new modes. Let us consider K, V. Let us assume that
V' is non-trivial. A strict submodule of V is called a line of V' if:

(Def.2)  there exists a such that a # 0y and it = [[" a.
Let us consider K, V. A non-empty set is said to be a non empty set of lines of
V if:
(Det.3) if x € it, then x is a line of V.
We now state two propositions:

(9) If W is strict and the group structure of W is strict, then W is an
element of Sub(V) quaa non-empty set.

(10)  If V is non-trivial, then every line of V' is an element of Sub(V).

We now define three new constructions. Let us consider K, V. Let us assume
that V' is non-trivial. The functor lines(V') yields a non empty set of lines of V
and is defined as follows:

(Def.4)  lines(V) is the set of all lines of V.

Let us consider K, V, and let D be a non empty set of lines of V. We see that
the element of D is a line of V. Let us consider K, V. Let us assume that V is
non-trivial and V is free. A strict submodule of V' is said to be a hiperplane of
V if:
(Def.5)  the group structure of it is strict and there exists a such that a # Oy
and V is the direct sum of [[*a and it.

Let us consider K, V. A non-empty set is called a non empty set of hiperplanes
of V if:

(Def.6) if x € it, then x is a hiperplane of V.

One can prove the following proposition

(11) IfV is non-trivial and V' is free, then every hiperplane of V' is an element
of Sub(V).
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Let us consider K, V. Let us assume that V is non-trivial and V' is free. The
functor hiperplanes(V') yielding a non empty set of hiperplanes of V' is defined
by:

(Def.7)  hiperplanes(V') is the set of all hiperplanes of V.

Let us consider K, V, and let D be a non empty set of hiperplanes of V. We
see that the element of D is a hiperplane of V.

3. JOIN AND MEET OF FINITE SEQUENCES OF SUBMODULES

We now define two new functors. Let us consider K, V', Li. The functor > L;
yielding an element of Sub(V) is defined as follows:

(Def.8) > Ly =SubJoinV ® L;.
The functor () Ly yields an element of Sub(V') and is defined as follows:
(Def.9) Ly =SubMeetV ® L.

The following propositions are true:

(12)  For every lattice G holds the join operation of G is commutative and
the join operation of GG is associative and the meet operation of G is
commutative and the meet operation of G is associative.

(13)  For every element a of Sub(V') holds the group structure of a is strict.

(14)  SubJoinV is commutative and SubJoin V' is associative and SubJoin V'
has a unity and Oy = 1subjoinV -

(15)  If the group structure of V is strict, then SubMeet V' is commutative and
SubMeet V' is associative and SubMeet V' has a unity and Qv = 1subMeet V-

4. SUM OF SUBSETS OF MODULE

Let us consider K, V, Ay, As. The functor A1 + As yields a subset of V' and is
defined by:

(Def.10)  x € A; + Ay if and only if there exist aj, ay such that a; € A; and
as € Ay and x = a1 + as.

5. VECTOR OF SUBSET

Let us consider K, V, A. Let us assume that A # (). A vector of V is said to
be a vector of A if:

(Def.11) it is an element of A.

One can prove the following propositions:
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(16) If A} # 0 and A; C As, then for every x such that z is a vector of A;
holds z is a vector of As.

(17) a9 € a; + W if and only if a3 — az € W.
(18) a1+ W =ag+ W ifand only if a; —as € W.
We now define two new functors. Let us consider K, V, W. The functor
V «p W yields a non-empty set and is defined by:
(Def.12)  x € V « W if and only if there exists a such that = a + W.

Let us consider K, V., W, a. The functor a «¢ W yields an element of V « W
and is defined as follows:

(Def13) a«p W =a+W.

We now state two propositions:
(19)  For every element x of V' «p W there exists a such that z = a «¢ W.
(20) a1 <P W =ag «¢ W if and only if a; —az € W.

In the sequel S1, Sy will denote elements of V' «p W. We now define five new

functors. Let us consider K, V, W, S;. The functor —S; yields an element of
V «p W and is defined by:

(Def.14) it Sy =a «¢ W, then —S; = (—a) «¢ W.
Let us consider S3. The functor S7 + S yields an element of V « W and is
defined by:

(Def.l5) if 51 =a1«P W and S2 = ag <P W, then Sl + Sg = ((11 + (12) ~+ W.
Let us consider K, V, W. The functor COMPL(W) yields a unary operation
on V «¢ W and is defined as follows:

(Def.16)  (COMPL(W))(S1) = —51.
The functor ADD(W) yields a binary operation on V'« W and is defined by:
(Def.l?) (ADD(W))(Sl, Sy) = S1 + Ss.

Let us consider K, V, W. The functor V(W) yields a strict group structure and
is defined by:

(Def.18) V(W) = (V «¢ W,ADD(W), COMPL(W), 0y « W).
One can prove the following proposition
(21) a«p W is an element of V(W).

Let us consider K, V, W, a. The functor a(W) yielding an element of V(W)
is defined by:

(Def19)  a(W)=a« W.
We now state four propositions:
(22)  For every element z of V(W) there exists a such that x = a(W).
(23) a1 (W) = ag(W) if and only if a3 —ag € W.
(24)  a(W) +b(W) = (a+b)(W) and —a(W) = (—a)(W) and Oygyy =
Oy (W).
(25) V(W) is a strict Abelian group.
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Let us consider K, V, W. Then V(W) is a strict Abelian group.

In the sequel S is an element of V(). We now define three new functors.
Let us consider K, V, W, r, S. The functor r - S yielding an element of V(W)
is defined by:

(Def.20) if S =a(W), then r-S = (r-a)(W).

Let us consider K, V, W. The functor LMULT(W) yielding a function from
fthe carrier of K, the carrier of V(W) ] into the carrier of V(W) is defined by:
(Def.21)  (LMULT(W))(r, S) =r-S.

Let us consider K, V', W. The functor % yielding a strict vector space structure
over K is defined as follows:

(Def.22) = (the carrier of V(W),the addition of V (W), the reverse-map of
V(W), the zero of V(W), LMULT(W)).

We now state two propositions:
: v
(26) a(W) is a vector of ;.
(27)  Every vector of % is an element of V().

Let us consider K, V, W, a. The functor {3 yields a vector of % and is
defined as follows:

(Def.23) 5 = a(W).

One can prove the following four propositions:

s=

31) % is a strict left module over K.

(28)  For every vector x of % there exists a such that x = .
(29) =12 ifand onlyifa; —ax € W.

(30) E+L=%%andr & =12

(

Let us consider K, V, W. Then % is a strict left module over K.

6. QUOTIENT MODULES

In this article we present several logical schemes. The scheme SetFq deals with
a unary predicate P, and states that:

for all sets X7, X5 such that for an arbitrary z holds = € X if and only if
Plz] and for an arbitrary z holds x € X» if and only if P[z] holds X; = X»
for all values of the parameter.

The scheme DomainFEq deals with a unary predicate P, and states that:

for all non-empty sets X1, X5 such that for an arbitrary « holds z € Xy if
and only if P[z] and for an arbitrary = holds x € X9 if and only if P[z] holds
X1 =X
for all values of the parameter.

The scheme ElementEq concerns a set A, and a unary predicate P, and states
that:
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for all elements X1, X5 of A such that for an arbitrary x holds x € X if
and only if P[z] and for an arbitrary z holds = € X3 if and only if P[z] holds
X =Xy
for all values of the parameters.

The scheme TypeFEq deals with a set A, a set B, and a unary predicate P,
and states that:

A=B
provided the parameters meet the following conditions:

e for an arbitrary x holds x € A if and only if P[z],

e for an arbitrary = holds z € B if and only if P[z].

The scheme FuncFEq concerns a non-empty set A, a non-empty set 13, and a
unary functor F and states that:

for all functions f1, fo from A into B such that for every element z of A holds
fi(z) = F(x) and for every element x of A holds fa(x) = F(z) holds f1 = fo
for all values of the parameters.

The scheme UnOpEq deals with a non-empty set A and a unary functor F
and states that:

for all unary operations f1, fo on A such that for every element a of A holds
fi(a) = F(a) and for every element a of A holds fa(a) = F(a) holds f1 = fo
for all values of the parameters.

The scheme BinOpEq concerns a non-empty set A and a binary functor F
and states that:

for all binary operations f1, fa on A such that for all elements a, b of A holds
fi(a, b) = F(a,b) and for all elements a, b of A holds fa(a, b) = F(a,b) holds
fi=fo
for all values of the parameters.

The scheme TriOpFEq deals with a non-empty set A and a ternary functor F
and states that:

for all ternary operations fi, fo on A such that for all elements a, b, ¢ of
A holds fi(a, b, ¢) = F(a,b,c) and for all elements a, b, ¢ of A holds fs(a, b,
¢) = F(a,b,c) holds f1 = fa
for all values of the parameters.

The scheme QuaOpEq deals with a non-empty set A and a 4-ary functor F
and states that:

for all quadrary operations f1, fo on A such that for all elements a, b, ¢, d
of A holds fi(a, b, ¢, d) = F(a,b,c,d) and for all elements a, b, ¢, d of A holds
fa(a, b, ¢, d) = F(a,b,c,d) holds f1 = fo
for all values of the parameters.

The scheme Fraenkell_Ex concerns a non-empty set A, a non-empty set B, a
unary functor F yielding an element of B, and a unary predicate P, and states
that:

there exists a subset S of B such that S = {F(z) : P[x]}, where z ranges
over elements of A
for all values of the parameters.
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The scheme Fr_0 concerns a non-empty set A, an element B of A, and a
unary predicate P, and states that:

P[B]
provided the parameters meet the following requirement:

e B € {a: Pla]}, where a ranges over elements of A.

The scheme Fr_1 deals with a set A, a non-empty set B, an element C of B,
and a unary predicate P, and states that:

C € A if and only if P[C]
provided the following condition is satisfied:

e A= {a:Pla]}, where a ranges over elements of B.

The scheme Fr_2 concerns a set A, a non-empty set B, an element C of B,
and a unary predicate P, and states that:

P[C]
provided the following conditions are met:

e Ce A,

e A ={a:Pla]}, where a ranges over elements of B.

The scheme Fr_3 concerns a constant A, a set B, a non-empty set C, and a
unary predicate P, and states that:

A € B if and only if there exists an element a of C such that A = a and Pla]
provided the parameters meet the following condition:

e B ={a:Pla]}, where a ranges over elements of C.

The scheme Fr_4 concerns a non-empty set A, a non-empty set B, a set C,
an element D of A, a unary functor F, and two binary predicates P and Q, and
states that:

D € F(C) if and only if for every element b of B such that b € C holds P[D,
0]
provided the parameters meet the following conditions:

e F(C)={a: Qla,C]}, where a ranges over elements of A,

e QO[D,(] if and only if for every element b of B such that b € C holds

P[D,b).
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Summary. Let X be a topological space and let A be a subset
of X. Recall that A is nowhere dense in X if its closure is a boundary
subset of X, i.e., if Int A = 0 (see [2]). We introduce here the concept of
everywhere dense subsets in X, which is dual to the above one. Namely,
A is said to be everywhere dense in X if its interior is a dense subset of
X, i.e., if Int A = the carrier of X.

Our purpose is to list a number of properties of such sets (comp.
[7]). As a sample we formulate their two dual characterizations. The first
one characterizes thin sets in X : A is nowhere dense iff for every open
nonempty subset G of X there is an open nonempty subset of X contained
i G and disjoint from A. The corresponding second one characterizes
thick sets in X : A is everywhere dense iff for every closed subset F of
X distinct from the carrier of X there is a closed subset of X distinct
from the carrier of X, which contains F' and together with A covers the
carrier of X. We also give some connections between both these concepts.
Of course, A is everywhere (nowhere) dense in X iff its complement is
nowhere (everywhere) dense. Moreover, A is nowhere dense iff there are
two subsets of X, C' boundary closed and B everywhere dense, such that
A=CnNDB and C U B covers the carrier of X. Dually, A is everywhere
dense iff there are two disjoint subsets of X, C' open dense and B nowhere
dense, such that A= C U B.

Note that some relationships between everywhere (nowhere) dense
sets in X and everywhere (nowhere) dense sets in subspaces of X are also
indicated.

MML Identifier: TOPS_3.

The notation and terminology used here are introduced in the following papers:
[5], [6], [3], [7], [4], and [1].
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1. SELECTED PROPERTIES OF SUBSETS OF A TOPOLOGICAL SPACE

In the sequel X will denote a topological space and A, B will denote subsets of
X. We now state several propositions:
(1) A =0x if and only if A° = Qx and also A = 0 if and only if A° = the
carrier of X.
(2) A= Qy if and only if A° = 0x and also A = the carrier of X if and
only if A¢=0.

(3) ImANBCANB.

(4) Int(AUB)C AUlIntB.

(5) If Ais closed, then Int(AU B) C AU Int B.

(6) If Ais closed, then Int(A U B) = Int(A U Int B).

(7) If AnIntA =0, then Int A = 0.

(8) If AUInt A = the carrier of X, then Int A = the carrier of X.

2. SPECIAL SUBSETS OF A TOPOLOGICAL SPACE

Let X be a topological space. Let us observe that a subset of X is boundary if:
(Def.1)  Intit = 0.

We now state several propositions:

(9)  @x is boundary.

(10) If A is boundary, then A # the carrier of X.

(11)  If B is boundary and A C B, then A is boundary.
)

(12 A is boundary if and only if for every subset C' of X such that A° C C
and C is closed holds C = the carrier of X.

(13) A is boundary if and only if for every subset G of X such that G # ()
and G is open holds A° NG # ().

(14) A is boundary if and only if for every subset F' of X such that F' is
closed holds Int F' = Int(F U A).

(15) If A is boundary or B is boundary, then A N B is boundary.
Let X be a topological space. Let us observe that a subset of X is dense if:
(Def.2) it = the carrier of X.

Next we state several propositions:
(16) Qx is dense.
(17) If A is dense, then A # ().
(18) A s dense if and only if A° is boundary.
(19)

19) A is dense if and only if for every subset C' of X such that A C C and
C is closed holds C = the carrier of X.
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(20) A is dense if and only if for every subset G of X such that G is open
holds G = G N A.

(21) If Ais dense or B is dense, then AU B is dense.

Let X be a topological space. Let us observe that a subset of X is nowhere
dense if:
(Def.3) Intit = 0.
The following propositions are true:
22) @y is nowhere dense.
If A is nowhere dense, then A # the carrier of X.

If A is nowhere dense, then A is nowhere dense.

[N )
- W

[\
(@)
—_ D DD =

If A is nowhere dense, then A is not dense.
If B is nowhere dense and A C B, then A is nowhere dense.

o~~~ o~~~

A is nowhere dense if and only if there exists a subset C' of X such that
A C C and C'is closed and C'is boundary.

(28) A is nowhere dense if and only if for every subset G of X such that
G # () and G is open there exists a subset H of X such that H C G and
H # () and H is open and AN H = (.

(29) If A is nowhere dense or B is nowhere dense, then A N B is nowhere
dense.

(30) If A is nowhere dense and B is boundary, then AU B is boundary.
Let X be a topological space. A subset of X is everywhere dense if:
(Def.4) m =0 X-
Let X be a topological space. Let us observe that a subset of X is everywhere
dense if:
(Def.5) Intit = the carrier of X.

One can prove the following propositions:

Qx is everywhere dense.

If A is everywhere dense, then Int A is everywhere dense.
If A is everywhere dense, then A is dense.

If A is everywhere dense, then A # ().

A is everywhere dense if and only if Int A is dense.

(31)

(32)

(33)

(34)

(35)

(36) If Ais open and A is dense, then A is everywhere dense.

(37) If Ais everywhere dense, then A is not boundary.

(38) If A is everywhere dense and A C B, then B is everywhere dense.
(39) A is everywhere dense if and only if A€ is nowhere dense.

(40) A is nowhere dense if and only if A° is everywhere dense.

(41)

A is everywhere dense if and only if there exists a subset C' of X such
that C C A and C is open and C' is dense.
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(42) A is everywhere dense if and only if for every subset F' of X such that
F # the carrier of X and F' is closed there exists a subset H of X such
that F' C H and H # the carrier of X and H is closed and AU H = the
carrier of X.

(43) If A is everywhere dense or B is everywhere dense, then A U B is ev-
erywhere dense.

(44) If A is everywhere dense and B is everywhere dense, then AN B is
everywhere dense.

(45)  If A is everywhere dense and B is dense, then A N B is dense.
(46) If A is dense and B is nowhere dense, then A\ B is dense.

(47)  If A is everywhere dense and B is boundary, then A\ B is dense.
(48)

48) If A is everywhere dense and B is nowhere dense, then A\ B is every-

where dense.
In the sequel D denotes a subset of X. We now state four propositions:

(49) If D is everywhere dense, then there exist subsets C', B of X such that
C is open and C is dense and B is nowhere dense and C U B = D and
CnNB=0.

(50) If D is everywhere dense, then there exist subsets C, B of X such
that C is open and C' is dense and B is closed and B is boundary and
CUDNB=Dand CNB={and CUB = the carrier of X.

(51)  If D is nowhere dense, then there exist subsets C, B of X such that C
is closed and C is boundary and B is everywhere dense and C N B = D
and C'U B = the carrier of X.

(52)  If D is nowhere dense, then there exist subsets C, B of X such that C is
closed and C'is boundary and B is open and B is dense and CN(DUB) =
D and CN B ={) and C' U B = the carrier of X.

3. PROPERTIES OF SUBSETS IN SUBSPACES

In the sequel Yy will denote a subspace of X. One can prove the following
propositions:
(53)  For every subset A of X and for every subset B of Yy such that B C A
holds B C A.
(54)  For all subsets C, A of X and for every subset B of Yy such that C' is
closed and C C the carrier of Yy and A C C and A = B holds A = B.

(55)  For every closed subspace Y of X and for every subset A of X and for
every subset B of Yy such that A = B holds A = B.

(56)  For every subset A of X and for every subset B of Yy such that A C B
holds Int A C Int B.

(57)  For all subsets C', A of X and for every subset B of Yy such that C is
open and C' C the carrier of Yo and A C C and A = B holds Int A = Int B.
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(58)  For every open subspace Yy of X and for every subset A of X and for
every subset B of Yj such that A = B holds Int A = Int B.

In the sequel X denotes a subspace of X. The following propositions are
true:

(59)  For every subset A of X and for every subset B of X such that A C B
holds if A is dense, then B is dense.

(60) For all subsets C, A of X and for every subset B of X, such that
C C the carrier of Xy and A C C and A = B holds C is dense and B is
dense if and only if A is dense.

(61)  For every subset A of X and for every subset B of X such that A C B
holds if A is everywhere dense, then B is everywhere dense.

(62)  For all subsets C, A of X and for every subset B of X such that C is
open and C C the carrier of Xy and A C C and A = B holds C is dense
and B is everywhere dense if and only if A is everywhere dense.

(63)  For every open subspace X of X and for all subsets A, C of X and for
every subset B of Xq such that C' = the carrier of Xg and A = B holds C
is dense and B is everywhere dense if and only if A is everywhere dense.

(64)  For all subsets C, A of X and for every subset B of Xy such that
C C the carrier of Xy and A C C' and A = B holds C' is everywhere dense
and B is everywhere dense if and only if A is everywhere dense.

(65)  For every subset A of X and for every subset B of X such that A C B
holds if B is boundary, then A is boundary.

(66) For all subsets C, A of X and for every subset B of X, such that C
is open and C C the carrier of Xy and A C C and A = B holds if A is
boundary, then B is boundary.

(67)  For every open subspace Xy of X and for every subset A of X and for
every subset B of X such that A = B holds A is boundary if and only if
B is boundary.

(68)  For every subset A of X and for every subset B of X such that A C B
holds if B is nowhere dense, then A is nowhere dense.

(69)  For all subsets C, A of X and for every subset B of X, such that C
is open and C' C the carrier of Xy and A C C and A = B holds if A is
nowhere dense, then B is nowhere dense.

(70)  For every open subspace Xy of X and for every subset A of X and for
every subset B of Xy such that A = B holds A is nowhere dense if and
only if B is nowhere dense.

4. SUBSETS IN TOPOLOGICAL SPACES WITH THE SAME TOPOLOGICAL
STRUCTURES

In the sequel X7, Xy will be topological spaces. Next we state several proposi-
tions:
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(71)  If the carrier of X; = the carrier of X5, then for every subset C; of X3
and for every subset Cy of X9 holds C7 = Cj if and only if C1¢ = Cs°.

(72)  If the carrier of X; = the carrier of X, and for every subset C; of X
and for every subset Cy of X5 such that Cy = C5 holds C is open if and
only if C5 is open, then the topological structure of X; = the topological
structure of Xs.

(73)  If the carrier of X; = the carrier of Xy and for every subset C7 of X3
and for every subset Cs of X5 such that C7; = C5 holds C is closed if and
only if C5 is closed, then the topological structure of X; = the topological
structure of Xo.

(74)  If the carrier of X; = the carrier of X, and for every subset C; of X,
and for every subset Cs of X5 such that C7; = C5 holds Int Cy = Int Cs,
then the topological structure of X; = the topological structure of X5.

(75)  If the carrier of X; = the carrier of Xy and for every subset C7 of X3
and for every subset Cy of X5 such that C; = C5 holds C; = C», then the
topological structure of X7 = the topological structure of Xs.

In the sequel D is a subset of X7 and Dy is a subset of X5. One can prove
the following propositions:

(76)  If D1 = D5 and the topological structure of X; = the topological struc-
ture of X, then if Dy is open, then D5 is open.

(77)  If D1 = D4 and the topological structure of X; = the topological struc-
ture of Xo, then Int D1 = Int Ds.

(78)  If Dy C Dy and the topological structure of X; = the topological struc-
ture of Xo, then Int Dy C Int Ds.

(79) If D1 = D5 and the topological structure of X; = the topological struc-
ture of Xo, then if Dy is closed, then Ds is closed.

(80)  If Dy = D5 and the topological structure of X; = the topological struc-
ture of Xy, then Dy = D».

(81) If Dy C D5 and the topological structure of X; = the topological struc-
ture of Xo, then D; C Ds.

(82) If Dy C D; and the topological structure of X; = the topological struc-
ture of X, then if Dy is boundary, then D is boundary.

(83) If Dy C D5 and the topological structure of X; = the topological struc-
ture of Xo, then if Dy is dense, then D5 is dense.

(84) If Dy C D; and the topological structure of X; = the topological struc-
ture of X, then if D; is nowhere dense, then D5 is nowhere dense.

(85) If Dy C D5 and the topological structure of X; = the topological struc-
ture of Xo, then if D; is everywhere dense, then D» is everywhere dense.
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On Discrete and Almost Discrete
Topological Spaces
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Biatystok

Summary. A topological space X is called almost discrete if ev-
ery open subset of X is closed; equivalently, if every closed subset of
X is open (comp. [6],[5]). Almost discrete spaces were investigated in
Mizar formalism in [2]. We present here a few properties of such spaces
supplementary to those given in [2].

Most interesting is the following characterization : A topological space
X is almost discrete iff every nonempty subset of X is not nowhere dense.
Hence, X is non almost discrete iff there is an everywhere dense subset of
X different from the carrier of X. We have an analogous characterization
of discrete spaces : A topological space X is discrete iff every nonempty
subset of X is not boundary. Hence, X is non discrete iff there is a
dense subset of X different from the carrier of X. It is well known that
the class of all almost discrete spaces contains both the class of discrete
spaces and the class of anti-discrete spaces (see e.g., [2]). Observations
presented here show that the class of all almost discrete non discrete
spaces is not contained in the class of anti-discrete spaces and the class of
all almost discrete non anti-discrete spaces is not contained in the class
of discrete spaces. Moreover, the class of almost discrete non discrete
non anti-discrete spaces is nonempty. To analyse these interdependencies
we use various examples of topological spaces constructed here in Mizar
formalism.

MML Identifier: TEX_1.

The papers [12], [14], [9], [11], [7), [13], [8], [15], [10], [4], [1], [2}, and [3] provide
the notation and terminology for this paper.

1. PROPERTIES OF SUBSETS OF A TOPOLOGICAL SPACE WITH MODIFIED
TOPOLOGY

In the sequel X will be a topological space and D will be a subset of X. One
can prove the following propositions:
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(1)  For every subset B of X and for every subset C of the X modified w.r.t.
D such that B = C holds if B is open, then C' is open.

(2)  For every subset B of X and for every subset C' of the X modified w.r.t.
D such that B = C holds if B is closed, then C' is closed.

(3)  For every subset C of the X modified w.r.t. D¢ such that C' = D holds
C is closed.

(4)  For every subset C of the X modified w.r.t. D such that C' = D holds
if D is dense, then C is dense and C' is open.

(5)  For every subset C' of the X modified w.r.t. D such that D C C holds
if D is dense, then C' is everywhere dense.

(6)  For every subset C of the X modified w.r.t. D¢ such that C'= D holds
if D is boundary, then C is boundary and C' is closed.

(7)  For every subset C of the X modified w.r.t. D¢ such that C' C D holds
if D is boundary, then C is nowhere dense.

2. TRIVIAL TOPOLOGICAL SPACES

Let us observe that a 1-sorted structure is trivial if:

(Def.1)  there exists an element d of the carrier of it such that the carrier of
it = {d}.
One can verify the following observations:
%  there exists a 1-sorted structure which is trivial and strict,
% there exists a 1-sorted structure which is non trivial and strict,
*  there exists a topological structure which is trivial and strict, and

%  there exists a non trivial strict topological structure.

One can prove the following proposition
(8) For every Y being a trivial topological structure such that the topology
of Y is non-empty holds if Y is almost discrete, then Y is topological
space-like.
One can verify the following observations:
*  there exists a trivial strict topological space,
*  every topological space which is trivial is also anti-discrete and discrete,
x  every discrete anti-discrete topological space is trivial,
*  there exists a topological space which is non trivial and strict,
%  every non discrete topological space is non trivial, and

% every non anti-discrete topological space is non trivial.
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3. EXAMPLES OF DISCRETE AND ANTI-DISCRETE TOPOLOGICAL SPACES

We now define two new functors. Let D be a set. The functor 2P yielding a
non-empty family of subsets of D is defined by:
(Def.2) 2P = {0, D}.
Let D be a non-empty set. The functor ADTS(D) yields an anti-discrete strict
topological space and is defined as follows:
(Def.3) ADTS(D) = (D,2P).
We now state several propositions:
(9) For every anti-discrete topological space X holds the topological struc-
ture of X = ADTS(the carrier of X).

(10)  For every topological space X such that the topological structure of
X = the topological structure of ADTS(the carrier of X) holds X is
anti-discrete.

(11)  For every anti-discrete topological space X and for every subset A of X
holds if A is empty, then A = () and also if A is non-empty, then A = the
carrier of X.

(12)  For every anti-discrete topological space X and for every subset A of X
holds if A # the carrier of X, then Int A = () and also if A = the carrier
of X, then Int A = the carrier of X.

(13)  For every topological space X if for every subset A of X such that A is
non-empty holds A = the carrier of X, then X is anti-discrete.

(14)  For every topological space X if for every subset A of X such that
A # the carrier of X holds Int A = (), then X is anti-discrete.

(15)  For every anti-discrete topological space X and for every subset A of
X holds if A # (), then A is dense and also if A # the carrier of X, then
A is boundary.

(16)  For every topological space X if for every subset A of X such that A # ()
holds A is dense, then X is anti-discrete.

(17)  For every topological space X if for every subset A of X such that
A # the carrier of X holds A is boundary, then X is anti-discrete.

Let D be a set. Then 2 is a non-empty family of subsets of D. Let D be a
non-empty set. The functor DTS(D) yielding a discrete strict topological space
is defined by:

(Def.4) DTS(D) = (D,2P).
One can prove the following propositions:
(18)  For every discrete topological space X holds the topological structure
of X = DTS(the carrier of X).
(19)  For every topological space X such that the topological structure of X =
the topological structure of DTS(the carrier of X) holds X is discrete.
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(20)  For every discrete topological space X and for every subset A of X
holds A = A and Int A = A.

(21)  For every topological space X if for every subset A of X holds A = A,
then X is discrete.

(22)  For every topological space X if for every subset A of X holds Int A = A,
then X is discrete.

(23)  For every non-empty set D holds ADTS(D) = DTS(D) if and only if
there exists an element dy of D such that D = {dy}.

Let us note that there exists a discrete non anti-discrete strict topological
space and there exists an anti-discrete non discrete strict topological space.

4. AN EXAMPLE OF A TOPOLOGICAL SPACE

Let D be a set, and let F' be a family of subsets of D, and let S be a set. Then
F\ S is a family of subsets of D. Let D be a non-empty set, and let dy be an
element of D. The functor STS(D, dy) yields a strict topological space and is
defined as follows:
(Def.5) STS(D,dy) = (D,2P \ {A :dy € AN A # D}), where A ranges over
subsets of D.

In the sequel D denotes a non-empty set and dy denotes an element of D.
One can prove the following propositions:

(24)  For every subset A of STS(D,dp) holds if {dy} C A, then A is closed
and also if A is non-empty and A is closed, then {dy} C A.

(25) If D\{dp} is non-empty, then for every subset A of STS(D,dy) holds if
A ={dp}, then A is closed and A is boundary and also if A is non-empty
and A is closed and A is boundary, then A = {dy}.

(26)  For every subset A of STS(D,dp) holds if A C D\ {dp}, then A is open
and also if A # D and A is open, then A C D\ {dp}.

(27)  If D\ {do} is non-empty, then for every subset A of STS(D,dy) holds
if A= D\ {do}, then A is open and A is dense and also if A # D and A
is open and A is dense, then A = D\ {dy}.

Let us observe that there exists a non anti-discrete non discrete strict topo-
logical space.

The following propositions are true:

(28)  For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, dy) if and only if the carrier of Y = D
and for every subset A of Y holds if {dg} C A, then A is closed and also
if A is non-empty and A is closed, then {dp} C A.

(29)  For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, dy) if and only if the carrier of Y = D
and for every subset A of Y holds if A C D\ {dp}, then A is open and
also if A # D and A is open, then A C D\ {dy}.
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(30)  For every topological space Y holds the topological structure of Y = the
topological structure of STS(D,dp) if and only if the carrier of Y = D
and for every non-empty subset A of Y holds A = AU {dp}.

(31)  For every topological space Y holds the topological structure of Y = the
topological structure of STS(D, dp) if and only if the carrier of Y = D
and for every subset A of Y such that A # D holds Int A = A\ {do}.

(32) STS(D,dy) = ADTS(D) if and only if D = {dp}.
(33)  STS(D,dy) = DTS(D) if and only if D = {dy}.
(34) For every non-empty set D and for every element dy of D and for

every subset A of STS(D,dy) such that A = {dp} holds DTS(D) = the
STS(D, dy) modified w.r.t. A.

5. DISCRETE AND ALMOST DISCRETE SPACES

Let us observe that a topological space is discrete if:

(Def.6)  for every non-empty subset A of it holds A is not boundary.

We now state the proposition

(35) X is discrete if and only if for every subset A of X such that A # the
carrier of X holds A is not dense.

One can verify that every non almost discrete topological space is non discrete
and non anti-discrete.
Let us observe that a topological space is almost discrete if:

(Def.7)  for every non-empty subset A of it holds A is not nowhere dense.

Next we state three propositions:

(36) X is almost discrete if and only if for every subset A of X such that
A # the carrier of X holds A is everywhere dense.

(37) X is non almost discrete if and only if there exists a non-empty subset
A of X such that A is boundary and A is closed.

(38) X is non almost discrete if and only if there exists a subset A of X such
that A # the carrier of X and A is dense and A is open.

One can verify that there exists an almost discrete non discrete non anti-
discrete strict topological space.

Next we state the proposition

(39)  For every non-empty set C' and for every element ¢ of C holds C'\ {co}
is non-empty if and only if STS(C, ¢p) is non almost discrete.

Let us observe that there exists a non almost discrete strict topological space.
We now state two propositions:

(40)  For every non-empty subset A of X such that A is boundary holds the
X modified w.r.t. A°is non almost discrete.
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(41)
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For every subset A of X such that A # the carrier of X and A is dense
holds the X modified w.r.t. A is non almost discrete.
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