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Summary. A continuation of the paper [8]. It deals with the
method of creation of the distance in the Cartesian product of metric
spaces. The distance of two points belonging to the Cartesian product
of metric spaces has been defined as the sum of distances of appriopriate
coordinates (or projections) of these points. It is shown that the product
of metric spaces with such a distance is a metric space.

MML Identifier: METRIC 3.

The articles [7], [12], [4], [5], [2], [6], [1], [9], [3], [8], [11], and [10] provide the
notation and terminology for this paper. We follow the rules: X, Y will denote
metric spaces, x1, y1, z1 will denote elements of the carrier of X, and x2, y2, z2

will denote elements of the carrier of Y . The scheme LambdaMCART concerns
a non-empty set A, a non-empty set B, a non-empty set C, and a 4-ary functor
F yielding an element of C and states that:

there exists a function f from [: [:A, B :], [:A, B :] :] into C such that for all
elements x1, y1 of A and for all elements x2, y2 of B and for all elements
x, y of [:A, B :] such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds f(〈〈x, y〉〉) =
F(x1, y1, x2, y2)
for all values of the parameters.

Let us consider X, Y . The functor ρX×Y yielding a function from [: [: the
carrier of X, the carrier of Y :], [: the carrier of X, the carrier of Y :] :] into

�
is

defined by:

(Def.1) for all elements x1, y1 of the carrier of X and for all elements x2, y2

of the carrier of Y and for all elements x, y of [: the carrier of X, the
carrier of Y :] such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds ρX×Y (x,
y) = ρ(x1, y1) + ρ(x2, y2).

The following proposition is true
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194 Stanis lawa Kanas and Jan Stankiewicz

(1) Let X be a metric space. Let Y be a metric space. Let F be a function
from [: [: the carrier of X, the carrier of Y :], [: the carrier of X, the carrier
of Y :] :] into

�
. Then F = ρX×Y if and only if for all elements x1, y1

of the carrier of X and for all elements x2, y2 of the carrier of Y and
for all elements x, y of [: the carrier of X, the carrier of Y :] such that
x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds F (x, y) = ρ(x1, y1) + ρ(x2, y2).

One can prove the following proposition

(2) For all elements a, b of
�

such that a+ b = 0 and 0 ≤ a and 0 ≤ b holds
a = 0 and b = 0.

We now state four propositions:

(3) For every metric space M and for all elements a, b of the carrier of M
holds ρ(a, b) = 0 if and only if a = b.

(5)2 For all elements x, y of [: the carrier of X, the carrier of Y :] such that
x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds ρX×Y (x, y) = 0 if and only if x = y.

(6) For all elements x, y of [: the carrier of X, the carrier of Y :] such that
x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds ρX×Y (x, y) = ρX×Y (y, x).

(7) For all elements x, y, z of [: the carrier of X, the carrier of Y :] such
that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 and z = 〈〈z1, z2〉〉 holds ρX×Y (x, z) ≤
ρX×Y (x, y) + ρX×Y (y, z).

Let us consider X, Y , and let x, y be elements of [: the carrier of X, the
carrier of Y :]. The functor ρ(x, y) yielding a real number is defined as follows:

(Def.2) ρ(x, y) = ρX×Y (x, y).

We now state the proposition

(8) For all elements x, y of [: the carrier of X, the carrier of Y :] holds
ρ(x, y) = ρX×Y (x, y).

Let X, Y be metric spaces. The functor [:X, Y :] yields a metric space and
is defined as follows:

(Def.3) [:X, Y :] = 〈[: the carrier of X, the carrier of Y :], ρX×Y 〉.
One can prove the following proposition

(9) For every metric space X and for every metric space Y holds 〈[: the
carrier of X, the carrier of Y :], ρX×Y 〉 is a metric space.

In the sequel Z will denote a metric space and x3, y3, z3 will denote elements
of the carrier of Z. The scheme LambdaMCART1 deals with a non-empty set A,
a non-empty set B, a non-empty set C, a non-empty set D, and a 6-ary functor
F yielding an element of D and states that:

there exists a function f from [: [:A, B, C :], [:A, B, C :] :] into D such that for
all elements x1, y1 of A and for all elements x2, y2 of B and for all elements x3,
y3 of C and for all elements x, y of [:A, B, C :] such that x = 〈〈x1, x2, x3〉〉 and
y = 〈〈y1, y2, y3〉〉 holds f(〈〈x, y〉〉) = F(x1, y1, x2, y2, x3, y3)
for all values of the parameters.

2The proposition (4) was either repeated or obvious.



Metrics in Cartesian Product 195

Let us consider X, Y , Z. The functor ρX×Y×Z yielding a function from [: [:
the carrier of X, the carrier of Y, the carrier of Z :], [: the carrier of X, the
carrier of Y, the carrier of Z :] :] into

�
is defined by:

(Def.4) Let x1, y1 be elements of the carrier of X. Let x2, y2 be elements of
the carrier of Y . Then for all elements x3, y3 of the carrier of Z and
for all elements x, y of [: the carrier of X, the carrier of Y, the carrier
of Z :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρX×Y×Z(x,
y) = ρ(x1, y1) + ρ(x2, y2) + ρ(x3, y3).

Next we state four propositions:

(10) Let X be a metric space. Let Y be a metric space. Let Z be a metric
space. Let F be a function from [: [: the carrier of X, the carrier of Y,
the carrier of Z :], [: the carrier of X, the carrier of Y, the carrier of Z :] :]
into

�
. Then F = ρX×Y×Z if and only if for all elements x1, y1 of the

carrier of X and for all elements x2, y2 of the carrier of Y and for all
elements x3, y3 of the carrier of Z and for all elements x, y of [: the
carrier of X, the carrier of Y, the carrier of Z :] such that x = 〈〈x1, x2, x3〉〉
and y = 〈〈y1, y2, y3〉〉 holds F (x, y) = ρ(x1, y1) + ρ(x2, y2) + ρ(x3, y3).

(12)3 For all elements x, y of [: the carrier of X, the carrier of Y, the carrier
of Z :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρX×Y×Z(x,
y) = 0 if and only if x = y.

(13) For all elements x, y of [: the carrier of X, the carrier of Y, the carrier
of Z :] such that x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 holds ρX×Y×Z(x,
y) = ρX×Y×Z(y, x).

(14) Let x, y, z be elements of [: the carrier of X, the carrier of Y, the carrier
of Z :]. Then if x = 〈〈x1, x2, x3〉〉 and y = 〈〈y1, y2, y3〉〉 and z = 〈〈z1, z2, z3〉〉,
then ρX×Y×Z(x, z) ≤ ρX×Y×Z(x, y) + ρX×Y×Z(y, z).

Let X, Y , Z be metric spaces. The functor [:X, Y, Z :] yields a metric space
and is defined by:

(Def.5) [:X, Y, Z :] = 〈[: the carrier of X, the carrier of Y, the carrier of
Z :], ρX×Y×Z〉.

Let us consider X, Y , Z, and let x, y be elements of [: the carrier of X, the
carrier of Y, the carrier of Z :]. The functor ρ(x, y) yielding a real number is
defined by:

(Def.6) ρ(x, y) = ρX×Y×Z(x, y).

The following propositions are true:

(15) For all elements x, y of [: the carrier of X, the carrier of Y, the carrier
of Z :] holds ρ(x, y) = ρX×Y×Z(x, y).

(16) For every metric space X and for every metric space Y and for every
metric space Z holds 〈[: the carrier of X, the carrier of Y, the carrier of
Z :], ρX×Y×Z〉 is a metric space.

3The proposition (11) was either repeated or obvious.
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In the sequel W is a metric space and x4, y4, z4 are elements of the carrier of
W . The scheme LambdaMCART2 deals with a non-empty set A, a non-empty
set B, a non-empty set C, a non-empty set D, a non-empty set E , and a 8-ary
functor F yielding an element of E and states that:

there exists a function f from [: [:A, B, C, D :], [:A, B, C, D :] :] into E such
that for all elements x1, y1 of A and for all elements x2, y2 of B and for all
elements x3, y3 of C and for all elements x4, y4 of D and for all elements x,
y of [:A, B, C, D :] such that x = 〈〈x1, x2, x3, x4〉〉 and y = 〈〈y1, y2, y3, y4〉〉 holds
f(〈〈x, y〉〉) = F(x1, y1, x2, y2, x3, y3, x4, y4)

for all values of the parameters.

Let us consider X, Y , Z, W . The functor ρX×Y×Z×W yielding a function
from [: [: the carrier of X, the carrier of Y, the carrier of Z, the carrier of W :],
[: the carrier of X, the carrier of Y, the carrier of Z, the carrier of W :] :] into

�
is defined as follows:

(Def.7) Let x1, y1 be elements of the carrier of X. Let x2, y2 be elements
of the carrier of Y . Let x3, y3 be elements of the carrier of Z. Let
x4, y4 be elements of the carrier of W . Then for all elements x, y of [:
the carrier of X, the carrier of Y, the carrier of Z, the carrier of W :]
such that x = 〈〈x1, x2, x3, x4〉〉 and y = 〈〈y1, y2, y3, y4〉〉 holds ρX×Y×Z×W (x,
y) = ρ(x1, y1) + ρ(x2, y2) + (ρ(x3, y3) + ρ(x4, y4)).

The following propositions are true:

(17) Let X be a metric space. Let Y be a metric space. Let Z be a metric
space. Let W be a metric space. Let F be a function from [: [: the carrier
of X, the carrier of Y, the carrier of Z, the carrier of W :], [: the carrier
of X, the carrier of Y, the carrier of Z, the carrier of W :] :] into

�
. Then

F = ρX×Y×Z×W if and only if for all elements x1, y1 of the carrier of X
and for all elements x2, y2 of the carrier of Y and for all elements x3, y3

of the carrier of Z and for all elements x4, y4 of the carrier of W and for
all elements x, y of [: the carrier of X, the carrier of Y, the carrier of Z,
the carrier of W :] such that x = 〈〈x1, x2, x3, x4〉〉 and y = 〈〈y1, y2, y3, y4〉〉
holds F (x, y) = ρ(x1, y1) + ρ(x2, y2) + (ρ(x3, y3) + ρ(x4, y4)).

(19)4 For all elements x, y of [: the carrier of X, the carrier of Y, the carrier of
Z, the carrier of W :] such that x = 〈〈x1, x2, x3, x4〉〉 and y = 〈〈y1, y2, y3, y4〉〉
holds ρX×Y×Z×W (x, y) = 0 if and only if x = y.

(20) For all elements x, y of [: the carrier of X, the carrier of Y, the carrier of
Z, the carrier of W :] such that x = 〈〈x1, x2, x3, x4〉〉 and y = 〈〈y1, y2, y3, y4〉〉
holds ρX×Y×Z×W (x, y) = ρX×Y×Z×W (y, x).

(21) Let x, y, z be elements of [: the carrier of X, the carrier of Y, the carrier
of Z, the carrier of W :]. Then if x = 〈〈x1, x2, x3, x4〉〉 and y = 〈〈y1, y2, y3, y4〉〉
and z = 〈〈z1, z2, z3, z4〉〉, then ρX×Y×Z×W (x, z) ≤ ρX×Y×Z×W (x, y) +
ρX×Y×Z×W (y, z).

4The proposition (18) was either repeated or obvious.
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Let X, Y , Z, W be metric spaces. The functor [:X, Y, Z, W :] yielding a
metric space is defined as follows:

(Def.8) [:X, Y, Z, W :] = 〈[: the carrier of X, the carrier of Y, the carrier of Z,
the carrier of W :], ρX×Y×Z×W 〉.

Let us consider X, Y , Z, W , and let x, y be elements of [: the carrier of X,
the carrier of Y, the carrier of Z, the carrier of W :]. The functor ρ(x, y) yields
a real number and is defined by:

(Def.9) ρ(x, y) = ρX×Y×Z×W (x, y).

One can prove the following propositions:

(22) For all elements x, y of [: the carrier of X, the carrier of Y, the carrier
of Z, the carrier of W :] holds ρ(x, y) = ρX×Y×Z×W (x, y).

(23) For every metric space X and for every metric space Y and for every
metric space Z and for every metric space W holds 〈[: the carrier of X,
the carrier of Y, the carrier of Z, the carrier of W :], ρX×Y ×Z×W 〉 is a
metric space.
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Summary. Definitions of pseudometric space, nonsymmetric met-
ric space, semimetric space and ultrametric space are introduced. We
find some relations between these spaces and prove that every ultramet-
ric space is a metric space. We define the relation is between. Moreover
we introduce the notions of the open segment and the closed segment.

MML Identifier: SUB METR.

The terminology and notation used here are introduced in the following articles:
[8], [2], [3], [1], [6], [4], [7], [9], and [5]. One can prove the following propositions:

(1) For all elements x, y of
�

such that 0 ≤ x and 0 ≤ y holds max(x, y) ≤
x+ y.

(2) For every metric space M and for all elements x, y of the carrier of M
such that x 6= y holds 0 < ρ(x, y).

(3) For every element x of {∅} holds x = ∅.
(4) For all elements x, y of {∅} such that x = y holds {[∅, ∅]} 7→ 0(x, y) = 0.

(5) For all elements x, y of {∅} such that x 6= y holds 0 < {[∅, ∅]} 7→ 0(x,
y).

(6) For all elements x, y of {∅} holds {[∅, ∅]} 7→ 0(x, y) = {[∅, ∅]} 7→ 0(y,
x).

(7) For all elements x, y, z of {∅} holds {[∅, ∅]} 7→ 0(x, z) ≤ {[∅, ∅]} 7→ 0(x,
y) + {[∅, ∅]} 7→ 0(y, z).

(8) For all elements x, y, z of {∅} holds {[∅, ∅]} 7→ 0(x, z) ≤ max({[∅, ∅]} 7→
0(x, y), {[∅, ∅]} 7→ 0(y, z)).

A metric structure is called a pseudo metric space if:

(Def.1) for all elements a, b, c of the carrier of it holds if a = b, then ρ(a, b) = 0
but ρ(a, b) = ρ(b, a) and ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

Next we state four propositions:

1Supported by RPBP-III.24.B3
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(10)2 For every pseudo metric space M and for all elements a, b of the carrier
of M such that a = b holds ρ(a, b) = 0.

(11) For every pseudo metric space M and for all elements a, b of the carrier
of M holds ρ(a, b) = ρ(b, a).

(12) For every pseudo metric space M and for all elements a, b, c of the
carrier of M holds ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

(13) For every pseudo metric space M and for all elements a, b of the carrier
of M holds 0 ≤ ρ(a, b).

A metric structure is said to be a semi metric space if:

(Def.2) for all elements a, b of the carrier of it holds if a = b, then ρ(a, b) = 0
but if a 6= b, then 0 < ρ(a, b) and ρ(a, b) = ρ(b, a).

One can prove the following four propositions:

(15)3 For every semi metric space M and for all elements a, b of the carrier
of M such that a = b holds ρ(a, b) = 0.

(16) For every semi metric space M and for all elements a, b of the carrier
of M such that a 6= b holds 0 < ρ(a, b).

(17) For every semi metric space M and for all elements a, b of the carrier
of M holds ρ(a, b) = ρ(b, a).

(18) For every semi metric space M and for all elements a, b of the carrier
of M holds 0 ≤ ρ(a, b).

A metric structure is called a non-symmetric metric space if:

(Def.3) for all elements a, b, c of the carrier of it holds if a = b, then ρ(a, b) = 0
but if a 6= b, then 0 < ρ(a, b) and ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

One can prove the following four propositions:

(20)4 For every non-symmetric metric space M and for all elements a, b of
the carrier of M such that a = b holds ρ(a, b) = 0.

(21) For every non-symmetric metric space M and for all elements a, b of
the carrier of M such that a 6= b holds 0 < ρ(a, b).

(22) For every non-symmetric metric space M and for all elements a, b, c of
the carrier of M holds ρ(a, c) ≤ ρ(a, b) + ρ(b, c).

(23) For every non-symmetric metric space M and for all elements a, b of
the carrier of M holds 0 ≤ ρ(a, b).

A metric structure is said to be a ultra metric space if:

(Def.4) for all elements a, b, c of the carrier of it holds if a = b, then ρ(a, b) =
0 but if a 6= b, then 0 < ρ(a, b) and ρ(a, b) = ρ(b, a) and ρ(a, c) ≤
max(ρ(a, b), ρ(b, c)).

We now state a number of propositions:

2The proposition (9) was either repeated or obvious.
3The proposition (14) was either repeated or obvious.
4The proposition (19) was either repeated or obvious.
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(25)5 For every ultra metric space M and for all elements a, b of the carrier
of M such that a = b holds ρ(a, b) = 0.

(26) For every ultra metric space M and for all elements a, b of the carrier
of M such that a 6= b holds 0 < ρ(a, b).

(27) For every ultra metric space M and for all elements a, b of the carrier
of M holds ρ(a, b) = ρ(b, a).

(28) For every ultra metric space M and for all elements a, b, c of the carrier
of M holds ρ(a, c) ≤ max(ρ(a, b), ρ(b, c)).

(29) For every ultra metric space M and for all elements a, b of the carrier
of M holds 0 ≤ ρ(a, b).

(30) For every metric space M holds M is a pseudo metric space.

(31) For every metric space M holds M is a semi metric space.

(32) For every metric space M holds M is a non-symmetric metric space.

(33) For every ultra metric space M holds M is a metric space.

(34) For every ultra metric space M holds M is a pseudo metric space.

(35) For every ultra metric space M holds M is a semi metric space.

(36) For every ultra metric space M holds M is a non-symmetric metric
space.

In the sequel x, y will be arbitrary. Let us consider x, y. Then {x, y} is a
non-empty set.

The function (22 → 0) from [: {∅, {∅}}, {∅, {∅}} :] into
�

is defined by:

(Def.5) (22 → 0) = [: {∅, {∅}}, {∅, {∅}} :] 7−→ 0.

Next we state several propositions:

(37) (22 → 0) = [: {∅, {∅}}, {∅, {∅}} :] 7−→ 0.

(38) For every element x of {∅, {∅}} holds x = ∅ or x = {∅}.
(39) (i) 〈〈∅, ∅〉〉 ∈ [: {∅, {∅}}, {∅, {∅}} :],

(ii) 〈〈∅, {∅}〉〉 ∈ [: {∅, {∅}}, {∅, {∅}} :],
(iii) 〈〈{∅}, ∅〉〉 ∈ [: {∅, {∅}}, {∅, {∅}} :],
(iv) 〈〈{∅}, {∅}〉〉 ∈ [: {∅, {∅}}, {∅, {∅}} :].

(40) For all elements x, y of {∅, {∅}} holds (22 → 0)(x, y) = 0.

(41) For all elements x, y of {∅, {∅}} such that x = y holds (22 → 0)(x,
y) = 0.

(42) For all elements x, y of {∅, {∅}} holds (22 → 0)(x, y) = (22 → 0)(y, x).

(43) For all elements x, y, z of {∅, {∅}} holds (22 → 0)(x, z) ≤ (22 → 0)(x,
y) + (22 → 0)(y, z).

The pseudo metric space � is defined as follows:

(Def.6) � = 〈{∅, {∅}}, (22 → 0)〉.
The following proposition is true

(44) � = 〈{∅, {∅}}, (22 → 0)〉.
5The proposition (24) was either repeated or obvious.
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Let S be a metric space, and let p, q, r be elements of the carrier of S. We
say that q is between p and r if and only if:

(Def.7) p 6= q and p 6= r and q 6= r and ρ(p, r) = ρ(p, q) + ρ(q, r).

Next we state three propositions:

(47)6 For every metric space S and for all elements p, q, r of the carrier of S
such that q is between p and r holds q is between r and p.

(48) For every metric space S and for all elements p, q, r of the carrier of S
such that q is between p and r holds p is not between q and r and r is
not between p and q.

(49) For every metric space S and for all elements p, q, r, s of the carrier
of S such that q is between p and r and r is between p and s holds q is
between p and s and r is between q and s.

Let M be a metric space, and let p, r be elements of the carrier of M . The
functor IntSeg(p, r) yielding a subset of the carrier of M is defined as follows:

(Def.8) IntSeg(p, r) = {q : q is between p and r }, where q ranges over elements
of the carrier of M .

One can prove the following two propositions:

(50) For every metric space M and for all elements p, r of the carrier of
M holds IntSeg(p, r) = {q : q is between p and r }, where q ranges over
elements of the carrier of M .

(51) For every metric space M and for all elements p, r, x of the carrier of
M holds x ∈ IntSeg(p, r) if and only if x is between p and r.

Let M be a metric space, and let p, r be elements of the carrier of M . The
functor ClSeg(p, r) yielding a subset of the carrier of M is defined by:

(Def.9) ClSeg(p, r) = {q : q is between p and r } ∪ {p, r}, where q ranges over
elements of the carrier of M .

We now state three propositions:

(52) For every metric space M and for all elements p, r of the carrier of M
holds ClSeg(p, r) = {q : q is between p and r } ∪ {p, r}, where q ranges
over elements of the carrier of M .

(53) For every metric space M and for all elements p, r, x of the carrier of
M holds x ∈ ClSeg(p, r) if and only if x is between p and r or x = p or
x = r.

(54) For every metric space M and for all elements p, r of the carrier of M
holds IntSeg(p, r) ⊆ ClSeg(p, r).
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Summary. We introduce the equivalence classes in a pseudometric
space. Next we prove that the set of the equivalence classes forms the
metric space with the special metric defined in the article.

MML Identifier: METRIC 2.

The terminology and notation used here have been introduced in the following
articles: [9], [4], [13], [12], [10], [8], [2], [3], [1], [14], [7], [11], [5], and [6]. Let
M be a metric structure, and let x, y be elements of the carrier of M . The
predicate x ≈ y is defined by:

(Def.1) ρ(x, y) = 0.

Let M be a metric structure, and let x be an element of the carrier of M .
The functor x

�
yielding a subset of the carrier of M is defined as follows:

(Def.2) x
�

= {y : x ≈ y}, where y ranges over elements of the carrier of M .

One can prove the following proposition

(2)2 For every M being a metric structure and for every element x of the
carrier of M holds x

�
= {y : x ≈ y}, where y ranges over elements of the

carrier of M .

Let M be a metric structure. A subset of the carrier of M is called a � -
equivalence class of M if:

(Def.3) there exists an element x of the carrier of M such that it = x
�

.

Next we state a number of propositions:

(4)3 For every pseudo metric space M and for every element x of the carrier
of M holds x ≈ x.

(5) For every pseudo metric space M and for all elements x, y of the carrier
of M such that x ≈ y holds y ≈ x.

1Supported by RPBP-III.24.B3
2The proposition (1) was either repeated or obvious.
3The proposition (3) was either repeated or obvious.
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(6) For every pseudo metric space M and for all elements x, y, z of the
carrier of M such that x ≈ y and y ≈ z holds x ≈ z.

(7) For every pseudo metric space M and for all elements x, y of the carrier
of M holds y ∈ x

�
if and only if y ≈ x.

(8) For every pseudo metric space M and for all elements x, p, q of the
carrier of M such that p ∈ x

�
and q ∈ x

�
holds p ≈ q.

(9) For every pseudo metric space M and for every element x of the carrier
of M holds x ∈ x

�
.

(10) For every pseudo metric space M and for all elements x, y of the carrier
of M holds x ∈ y

�
if and only if y ∈ x

�
.

(11) For every pseudo metric space M and for all elements p, x, y of the
carrier of M such that p ∈ x

�
and x ≈ y holds p ∈ y

�
.

(12) For every pseudo metric space M and for all elements x, y of the carrier
of M such that y ∈ x

�
holds x

�
= y

�
.

(13) For every pseudo metric space M and for all elements x, y of the carrier
of M holds x

�
= y

�
if and only if x ≈ y.

The following propositions are true:

(14) For every pseudo metric space M and for all elements x, y of the carrier
of M holds x

�
∩ y

�
6= ∅ if and only if x ≈ y.

(15) For every pseudo metric space M and for every element x of the carrier
of M holds x

�
is a non-empty set.

(16) For every pseudo metric space M and for every � -equivalence class V
of M holds V is a non-empty set.

(17) For every pseudo metric space M and for all elements x, p, q of the
carrier of M such that p ∈ x

�
and q ∈ x

�
holds ρ(p, q) = 0.

(18) For every metric space M and for all elements x, y of the carrier of M
holds x ≈ y if and only if x = y.

(19) For every metric space M and for all elements x, y of the carrier of M
holds y ∈ x

�
if and only if y = x.

One can prove the following two propositions:

(20) For every metric space M and for every element x of the carrier of M
holds x

�
= {x}.

(21) For every metric space M and for every subset V of the carrier of M
holds V is a � -equivalence class of M if and only if there exists an element
x of the carrier of M such that V = {x}.

Let M be a metric structure. The functor M
�

yields a non-empty set and is
defined by:

(Def.4) M
�

= {s :
∨
x x

�
= s}, where s ranges over elements of 2the carrier of M ,

and x ranges over elements of the carrier of M .

One can prove the following proposition
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(22) For every M being a metric structure holds M
�

= {s :
∨
x x

�
= s},

where s ranges over elements of 2the carrier of M , and x ranges over elements
of the carrier of M .

In the sequel V is arbitrary. The following two propositions are true:

(23) For every M being a metric structure holds V ∈M
�

if and only if there
exists an element x of the carrier of M such that V = x

�
.

(24) For every M being a metric structure and for every element x of the
carrier of M holds x

�
∈M

�
.

We now state the proposition

(26)4 For every M being a metric structure holds V ∈M
�

if and only if V is
a � -equivalence class of M .

We now state three propositions:

(27) For every metric space M and for every element x of the carrier of M
holds {x} ∈M

�
.

(28) For every metric space M holds V ∈ M
�

if and only if there exists an
element x of the carrier of M such that V = {x}.

(29) For every pseudo metric space M and for all elements V , Q of M
�

and
for all elements p1, p2, q1, q2 of the carrier of M such that p1 ∈ V and
q1 ∈ Q and p2 ∈ V and q2 ∈ Q holds ρ(p1, q1) = ρ(p2, q2).

Let M be a pseudo metric space, and let V , Q be elements of M
�

, and let v
be an element of

�
. We say that the distance between V and Q is v if and only

if:

(Def.5) for all elements p, q of the carrier of M such that p ∈ V and q ∈ Q
holds ρ(p, q) = v.

We now state two propositions:

(31)5 For every pseudo metric space M and for all elements V , Q of M
�

and
for every element v of

�
holds the distance between V and Q is v if and

only if there exist elements p, q of the carrier of M such that p ∈ V and
q ∈ Q and ρ(p, q) = v.

(32) For every pseudo metric space M and for all elements V , Q of M
�

and
for every element v of

�
holds the distance between V and Q is v if and

only if the distance between Q and V is v.

Let M be a pseudo metric space, and let V , Q be elements of M
�

. The
functor ρ◦(V,Q) yields a subset of

�
and is defined as follows:

(Def.6) ρ◦(V,Q) = {v : the distance between V and Q is v }, where v ranges
over elements of

�
.

The following two propositions are true:

4The proposition (25) was either repeated or obvious.
5The proposition (30) was either repeated or obvious.
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(33) For every pseudo metric space M and for all elements V , Q of M
�

holds
ρ◦(V,Q) = {v : the distance between V and Q is v }, where v ranges over
elements of

�
.

(34) For every pseudo metric space M and for all elements V , Q of M
�

and
for every element v of

�
holds v ∈ ρ◦(V,Q) if and only if the distance

between V and Q is v.

Let M be a pseudo metric space, and let v be an element of
�
. The functor

ρ
�
M
−1 (v) yields a subset of [:M

�
, M

�
:] and is defined as follows:

(Def.7) ρ
�
M
−1 (v) = {W :

∨
V,Q[W = 〈〈V,Q〉〉∧ the distance between V and Q is

v ]}, where W ranges over elements of [:M
�
, M

�
:], and V , Q range over

elements of M
�
.

One can prove the following two propositions:

(35) For every pseudo metric space M and for every element v of
�

holds
ρ

�
M
−1 (v) = {W :

∨
V,Q[W = 〈〈V,Q〉〉∧ the distance between V and Q is

v ]}, where W ranges over elements of [:M
�
, M

�
:], and V , Q range over

elements of M
�
.

(36) For every pseudo metric space M and for every element v of
�

and
for every element W of [:M

�
, M

�
:] holds W ∈ ρ

�
M
−1 (v) if and only if

there exist elements V , Q of M
�

such that W = 〈〈V,Q〉〉 and the distance
between V and Q is v.

Let M be a pseudo metric space. The functor ρ◦(M
�
,M

�
) yields a subset

of
�

and is defined by:

(Def.8) ρ◦(M
�
,M

�
) = {v :

∨
V,Q the distance between V and Q is v }, where

v ranges over elements of
�
, and V , Q range over elements of M

�
.

The following two propositions are true:

(37) For every pseudo metric space M holds ρ◦(M
�
,M

�
) = {v :

∨
V,Q the

distance between V and Q is v }, where v ranges over elements of
�
, and

V , Q range over elements of M
�

.

(38) For every pseudo metric space M and for every element v of
�

holds
v ∈ ρ◦(M

�
,M

�
) if and only if there exist elements V , Q of M

�
such that

the distance between V and Q is v.

Let M be a pseudo metric space. The functor dom1 ρ
�
M yields a subset of

M
�

and is defined as follows:

(Def.9) dom1 ρ
�
M = {V :

∨
Q

∨
v the distance between V and Q is v }, where V

ranges over elements of M
�

, and Q ranges over elements of M
�

, and v
ranges over elements of

�
.

We now state two propositions:

(39) For every pseudo metric space M holds dom1 ρ
�
M = {V :

∨
Q

∨
v the

distance between V and Q is v }, where V ranges over elements of M
�
,

and Q ranges over elements of M
�

, and v ranges over elements of
�
.
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(40) For every pseudo metric space M and for every element V of M
�

holds
V ∈ dom1 ρ

�
M if and only if there exists an element Q of M

�
and there

exists an element v of
�

such that the distance between V and Q is v.

Let M be a pseudo metric space. The functor dom2 ρ
�
M yields a subset of

M
�

and is defined by:

(Def.10) dom2 ρ
�
M = {Q :

∨
V

∨
v the distance between V and Q is v }, where Q

ranges over elements of M
�
, and V ranges over elements of M

�
, and v

ranges over elements of
�
.

One can prove the following two propositions:

(41) For every pseudo metric space M holds dom2 ρ
�
M = {Q :

∨
V

∨
v the

distance between V and Q is v }, where Q ranges over elements of M
�

,
and V ranges over elements of M

�
, and v ranges over elements of

�
.

(42) For every pseudo metric space M and for every element Q of M
�

holds
Q ∈ dom2 ρ

�
M if and only if there exists an element V of M

�
and there

exists an element v of
�

such that the distance between V and Q is v.

Let M be a pseudo metric space. The functor dom ρ
�
M yielding a subset of

[:M
�
, M

�
:] is defined as follows:

(Def.11) dom ρ
�
M = {V1 :

∨
V,Q

∨
v[V1 = 〈〈V,Q〉〉∧ the distance between V and Q

is v ]}, where V1 ranges over elements of [:M
�
, M

�
:], and V , Q range over

elements of M
�

, and v ranges over elements of
�
.

We now state two propositions:

(43) For every pseudo metric space M holds dom ρ
�
M = {V1 :

∨
V,Q

∨
v[V1 =

〈〈V,Q〉〉∧ the distance between V and Q is v ]}, where V1 ranges over
elements of [:M

�
, M

�
:], and V , Q range over elements of M

�
, and v

ranges over elements of
�
.

(44) For every pseudo metric space M and for every element V1 of [:M
�
,

M
�

:] holds V1 ∈ domρ
�
M if and only if there exist elements V , Q of M

�
and there exists an element v of

�
such that V1 = 〈〈V,Q〉〉 and the distance

between V and Q is v.

Let M be a pseudo metric space. The functor graphρ
�
M yielding a subset of

[:M
�
, M

�
,

�
:] is defined by:

(Def.12) graph ρ
�
M = {V2 :

∨
V,Q

∨
v[V2 = 〈〈V,Q, v〉〉∧ the distance between V and

Q is v ]}, where V2 ranges over elements of [:M
�
, M

�
,

�
:], and V , Q range

over elements of M
�

, and v ranges over elements of
�
.

The following propositions are true:

(45) For every pseudo metric space M holds graphρ
�
M = {V2 :

∨
V,Q

∨
v[V2 =

〈〈V,Q, v〉〉∧ the distance between V and Q is v ]}, where V2 ranges over
elements of [:M

�
, M

�
,

�
:], and V , Q range over elements of M

�
, and v

ranges over elements of
�
.

(46) For every pseudo metric space M and for every element V2 of [:M
�
,

M
�
,

�
:] holds V2 ∈ graph ρ

�
M if and only if there exist elements V , Q of
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M
�

and there exists an element v of
�

such that V2 = 〈〈V,Q, v〉〉 and the
distance between V and Q is v.

(47) For every pseudo metric space M holds dom1 ρ
�
M = dom2 ρ

�
M .

(48) For every pseudo metric spaceM holds graph ρ
�
M ⊆ [: dom1 ρ

�
M , dom2 ρ

�
M ,

ρ◦(M
�
,M

�
) :].

(49) Let M be a pseudo metric space. Then for all elements V , Q of M
�

and for all elements p1, q1, p2, q2 of the carrier of M and for all elements
v1, v2 of

�
such that p1 ∈ V and q1 ∈ Q and ρ(p1, q1) = v1 and p2 ∈ V

and q2 ∈ Q and ρ(p2, q2) = v2 holds v1 = v2.

The following two propositions are true:

(50) For every pseudo metric space M and for all elements V , Q of M
�

and
for all elements v1, v2 of

�
such that the distance between V and Q is v1

and the distance between V and Q is v2 holds v1 = v2.

(52)6 For every pseudo metric space M and for every elements V , Q of M
�

there exists an element v of
�

such that the distance between V and Q is
v.

Let M be a pseudo metric space. The functor ρ
�
M yielding a function from

[:M
�
, M

�
:] into

�
is defined as follows:

(Def.13) for all elements V , Q of M
�

and for all elements p, q of the carrier of
M such that p ∈ V and q ∈ Q holds ρ

�
M (V, Q) = ρ(p, q).

One can prove the following propositions:

(53) For every pseudo metric space M and for every function F from [:M
�
,

M
�

:] into
�

holds F = ρ
�
M if and only if for all elements V , Q of M

�
and

for all elements p, q of the carrier of M such that p ∈ V and q ∈ Q holds
F (V, Q) = ρ(p, q).

(54) For every pseudo metric space M and for all elements V , Q of M
�

holds
ρ

�
M (V, Q) = 0 if and only if V = Q.

(55) For every pseudo metric space M and for all elements V , Q of M
�

holds
ρ

�
M (V, Q) = ρ

�
M (Q, V ).

(56) For every pseudo metric space M and for all elements V , Q, W of M
�

holds ρ
�
M (V, W ) ≤ ρ

�
M (V, Q) + ρ

�
M (Q, W ).

Let M be a pseudo metric space. The functor M/
� yields a metric space and

is defined as follows:

(Def.14) M/
� = 〈M

�
, ρ

�
M 〉.

We now state the proposition

(57) For every pseudo metric space M holds M/
� = 〈M

�
, ρ

�
M 〉.
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[11] Andrzej Trybulec and Czes law Byliński. Some properties of real numbers. Formalized
Mathematics, 1(3):445–449, 1990.

[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[13] Zinaida Trybulec and Halina Świe
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Summary. Definitions and properties of the following concepts:
root, real exponent and logarithm. Also the number e is defined.

MML Identifier: POWER.

The papers [11], [2], [9], [1], [7], [5], [6], [13], [12], [4], [3], [8], and [10] provide
the notation and terminology for this paper. For simplicity we follow the rules:
a, b, c, d denote real numbers, m, n, m1, m2 denote natural numbers, k, l
denote integers, and p denotes a rational number. One can prove the following
propositions:

(1) If there exists m such that n = 2 ·m, then (−a)n� = an� .

(2) If there exists m such that n = 2 ·m+ 1, then (−a)n� = −an� .

(3) If a ≥ 0 or there exists m such that n = 2 ·m, then an� ≥ 0.

Let us consider n, a. The functor n
√
a yields a real number and is defined by:

(Def.1) (i) n
√
a = rootn(a) if a ≥ 0 and n ≥ 1,

(ii) n
√
a = − rootn(−a) if a < 0 and there exists m such that n = 2 ·m+ 1.

One can prove the following propositions:

(4) For all a, n holds if a ≥ 0 and n ≥ 1, then n
√
a = rootn(a) but if a < 0

and there exists m such that n = 2 ·m+ 1, then n
√
a = − rootn(−a).

(5) If n ≥ 1 and a ≥ 0 or there exists m such that n = 2 · m + 1, then
n
√
an� = a and n

√
an� = a.

(6) If n ≥ 1, then n
√

0 = 0.

(7) If n ≥ 1, then n
√

1 = 1.

(8) If a ≥ 0 and n ≥ 1, then n
√
a ≥ 0.

(9) If there exists m such that n = 2 ·m+ 1, then n
√
−1 = −1.

(10) 1
√
a = a.

1Supported by RPBP-III.24.C8
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(11) If there exists m such that n = 2 ·m+ 1, then n
√
a = − n

√−a.

(12) If n ≥ 1 and a ≥ 0 and b ≥ 0 or there exists m such that n = 2 ·m+ 1,
then n

√
a · b = n

√
a · n
√
b.

(13) If a > 0 and n ≥ 1 or a 6= 0 and there exists m such that n = 2 ·m+ 1,

then n

√
1
a = 1

n
√
a
.

(14) If a ≥ 0 and b > 0 and n ≥ 1 or b 6= 0 and there exists m such that

n = 2 ·m+ 1, then n

√
a
b =

n√a
n√
b
.

(15) If a ≥ 0 and n ≥ 1 and m ≥ 1 or there exist m1, m2 such that

n = 2 ·m1 + 1 and m = 2 ·m2 + 1, then n

√
m
√
a = n·m√a.

(16) If a ≥ 0 and n ≥ 1 and m ≥ 1 or there exist m1, m2 such that

n = 2 ·m1 + 1 and m = 2 ·m2 + 1, then n
√
a · m√a = n·m

√
an+m� .

(17) If a ≤ b but 0 ≤ a and n ≥ 1 or there exists m such that n = 2 ·m+ 1,
then n

√
a ≤ n

√
b.

(18) If a < b but a ≥ 0 and n ≥ 1 or there exists m such that n = 2 ·m+ 1,
then n

√
a < n

√
b.

(19) If a ≥ 1 and n ≥ 1, then n
√
a ≥ 1 and a ≥ n

√
a.

(20) If a ≤ −1 and there exists m such that n = 2 ·m + 1, then n
√
a ≤ −1

and a ≤ n
√
a.

(21) If a ≥ 0 and a < 1 and n ≥ 1, then a ≤ n
√
a and n

√
a < 1.

(22) If a > −1 and a ≤ 0 and there exists m such that n = 2 ·m+ 1, then
a ≥ n

√
a and n

√
a > −1.

(23) If a > 0 and n ≥ 1, then n
√
a− 1 ≤ a−1

n .

(24) For every sequence of real numbers s and for every a such that a > 0
and for every n such that n ≥ 1 holds s(n) = n

√
a holds s is convergent

and lim s = 1.

Let us consider a, b. The functor ab yielding a real number is defined as
follows:

(Def.2) (i) ab = ab� if a > 0,
(ii) ab = 0 if a = 0 and b > 0,
(iii) there exists k such that k = b and ab = ak� if a < 0 and b is an integer.

One can prove the following propositions:

(25) Given a, b. Then if a > 0, then ab = ab� but if a = 0 and b > 0, then
ab = 0 but if a < 0 and b is an integer, then there exists k such that k = b
and ab = ak� .

(26) If a > 0, then ab = ab� .

(27) If b > 0, then 0b = 0.

(28) If a < 0, then ak = ak� .

(29) If a 6= 0, then a0 = 1.

(30) a1 = a.
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(31) 1a = 1.

(32) If a > 0, then ab+c = ab · ac.
(33) If a > 0, then a−c = 1

ac .

(34) If a > 0, then ab−c = ab

ac .

(35) If a > 0 and b > 0, then (a · b)c = ac · bc.
(36) If a > 0 and b > 0, then a

b
c = ac

bc .

(37) If a > 0, then 1
a

b
= a−b.

(38) If a > 0, then (ab)
c

= ab·c.
(39) If a > 0, then ab > 0.

(40) If a > 1 and b > 0, then ab > 1.

(41) If a > 1 and b < 0, then ab < 1.

(42) If a > 0 and a < b and c > 0, then ac < bc.

(43) If a > 0 and a < b and c < 0, then ac > bc.

(44) If a < b and c > 1, then ca < cb.

(45) If a < b and c > 0 and c < 1, then ca > cb.

(46) If a 6= 0, then an = an� .

(47) If n ≥ 1, then an = an� .

(48) If a 6= 0, then an = an.

(49) If n ≥ 1, then an = an.

(50) If a 6= 0, then ak = ak� .

(51) If a > 0, then ap = ap� .

(52) If a ≥ 0 and n ≥ 1, then a
1
n = n

√
a.

(53) a2 = a2.

(54) If a 6= 0 and there exists l such that k = 2 · l, then (−a)k = ak.

(55) If a 6= 0 and there exists l such that k = 2 · l + 1, then (−a)k = −ak.
Next we state two propositions:

(56) If −1 < a, then (1 + a)n ≥ 1 + n · a.

(57) If a > 0 and a 6= 1 and c 6= d, then ac 6= ad.

Let us consider a, b. Let us assume that a > 0 and a 6= 1 and b > 0. The
functor loga b yields a real number and is defined by:

(Def.3) aloga b = b.

The following propositions are true:

(58) For all a, b, c such that a > 0 and a 6= 1 and b > 0 holds c = loga b if
and only if ac = b.

(59) If a > 0 and a 6= 1, then loga 1 = 0.

(60) If a > 0 and a 6= 1, then loga a = 1.

(61) If a > 0 and a 6= 1 and b > 0 and c > 0, then loga b+ loga c = loga(b · c).
(62) If a > 0 and a 6= 1 and b > 0 and c > 0, then loga b− loga c = loga

b
c .
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(63) If a > 0 and a 6= 1 and b > 0, then loga(b
c) = c · loga b.

(64) If a > 0 and a 6= 1 and b > 0 and b 6= 1 and c > 0, then loga c =
loga b · logb c.

(65) If a > 1 and b > 0 and c > b, then loga c > loga b.

(66) If a > 0 and a < 1 and b > 0 and c > b, then loga c < loga b.

(67) For every sequence of real numbers s such that for every n holds s(n) =

(1 + 1
n+1)

n+1
holds s is convergent.

The real number e is defined as follows:

(Def.4) for every sequence of real numbers s such that for every n holds s(n) =

(1 + 1
n+1)

n+1
holds e = lim s.
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Summary. We prove the Hessenberg theorem which states that
every Pappian projective space is Desarguesian.

MML Identifier: HESSENBE.

The terminology and notation used in this paper are introduced in the following
articles: [7], [1], [2], [3], [4], [5], and [6]. We follow a convention: P1 denotes a
projective space defined in terms of collinearity and a, a′, a1, a2, a3, b, b′, b1,
b2, c, c′, c1, c3, d, d′, e, o, p, p1, p2, p3, q, q1, q2, q3, r, s, x, y, z denote elements
of the points of P1. One can prove the following propositions:

(1) If a, b and c are collinear, then b, a and c are collinear.

(2) If a, b and c are collinear, then a, c and b are collinear.

(3) If a, b and c are collinear, then b, c and a are collinear and c, a and b
are collinear and b, a and c are collinear and a, c and b are collinear and
c, b and a are collinear.

(4) If a 6= b and a, b and c are collinear and a, b and d are collinear, then
a, c and d are collinear.

(5) If p 6= q and a, b and p are collinear and a, b and q are collinear and p,
q and r are collinear, then a, b and r are collinear.

(6) If p 6= q, then there exists r such that p, q and r are not collinear.

(7) There exist q, r such that p, q and r are not collinear.

(8) If a, b and c are not collinear and a, b and b′ are collinear and a 6= b′,
then a, b′ and c are not collinear.

(9) If a, b and c are not collinear and a, b and d are collinear and a, c and
d are collinear, then a = d.

1Supported by RPBP.III-24.C6
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(10) If o, a and d are not collinear and o, d and d′ are collinear and a, d and
s are collinear and d 6= d′ and a′, d′ and s are collinear and o, a and a′

are collinear and o 6= a′, then s 6= d.

(11) If a, b and c are not collinear and a, b and b′ are collinear and a, c and
c′ are collinear and a 6= b′, then b′ 6= c′.

(12) If a1, a2 and a3 are not collinear and a1, a2 and c3 are collinear and a2,
a3 and c1 are collinear and a1, a3 and z are collinear and c1, c3 and z are
collinear and c3 6= a1 and c3 6= a2 and c1 6= a2 and c1 6= a3, then a1 6= z
and a3 6= z.

(13) If a, b and c are not collinear and a, b and d are collinear and c, e and
d are collinear and e 6= c and d 6= a, then e, a and c are not collinear.

(14) If p1, p2 and q1 are not collinear and p1, p2 and q2 are collinear and q1,
q2 and q3 are collinear and p1 6= q2 and q2 6= q3, then p2, p1 and q3 are
not collinear.

(15) If p1, p2 and q1 are not collinear and p1, p2 and p3 are collinear and q1,
q2 and p3 are collinear and p3 6= q2 and p2 6= p3, then p3, p2 and q2 are
not collinear.

(16) If p1, p2 and q1 are not collinear and p1, p2 and p3 are collinear and q1,
q2 and p1 are collinear and p1 6= p3 and p1 6= q2, then p3, p1 and q2 are
not collinear.

(17) If a1 6= a2 and b1 6= b2 and b1, b2 and x are collinear and b1, b2 and y
are collinear and a1, a2 and x are collinear and a1, a2 and y are collinear
and a1, a2 and b1 are not collinear, then x = y.

(19)2 If o, a1 and a2 are not collinear and o, a1 and b1 are collinear and o,
a2 and b2 are collinear and o 6= b1 and o 6= b2, then o, b1 and b2 are not
collinear.

We follow a convention: P1 denotes a Pappian projective plane defined in
terms of collinearity and a1, a2, a3, b1, b2, b3, c1, c2, c3, o, p1, p2, p3, q1, q2, q3,
r1, r2, r3 denote elements of the points of P1. We now state two propositions:

(20) Suppose that
(i) p2 6= p3,

(ii) p1 6= p3,
(iii) q2 6= q3,
(iv) q1 6= q2,
(v) q1 6= q3,
(vi) p1, p2 and q1 are not collinear,

(vii) p1, p2 and p3 are collinear,
(viii) q1, q2 and q3 are collinear,

(ix) p1, q2 and r3 are collinear,
(x) q1, p2 and r3 are collinear,
(xi) p1, q3 and r2 are collinear,

(xii) p3, q1 and r2 are collinear,

2The proposition (18) was either repeated or obvious.
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(xiii) p2, q3 and r1 are collinear,
(xiv) p3, q2 and r1 are collinear.

Then r1, r2 and r3 are collinear.

(21) Suppose that
(i) o 6= b1,
(ii) a1 6= b1,

(iii) o 6= b2,
(iv) a2 6= b2,
(v) o 6= b3,
(vi) a3 6= b3,
(vii) o, a1 and a2 are not collinear,

(viii) o, a1 and a3 are not collinear,
(ix) o, a2 and a3 are not collinear,
(x) a1, a2 and c3 are collinear,
(xi) b1, b2 and c3 are collinear,
(xii) a2, a3 and c1 are collinear,

(xiii) b2, b3 and c1 are collinear,
(xiv) a1, a3 and c2 are collinear,
(xv) b1, b3 and c2 are collinear,
(xvi) o, a1 and b1 are collinear,
(xvii) o, a2 and b2 are collinear,

(xviii) o, a3 and b3 are collinear.
Then c1, c2 and c3 are collinear.

We see that the Pappian projective plane defined in terms of collinearity is
a Desarguesian projective plane defined in terms of collinearity.

We see that the Pappian projective space defined in terms of collinearity is
a Desarguesian projective space defined in terms of collinearity.
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Summary. The article contains the definition of three- and four-
argument operations. The article is also introduces a few operation re-
lated schemes: FuncEx3D, TriOpEx, Lambda3D, TriOpLambda, FuncEx4D,
QuaOpEx, Lambda4D, QuaOpLambda.

MML Identifier: MULTOP 1.

The terminology and notation used in this paper have been introduced in the
following articles: [4], [1], [2], [5], and [3]. Let f be a function, and let a, b, c be
arbitrary. The functor f(a, b, c) is defined by:

(Def.1) f(a, b, c) = f(〈〈a, b, c〉〉).
We now state the proposition

(1) For every function f and for arbitrary a, b, c holds f(a, b, c) = f(〈〈a, b, c〉〉).
For simplicity we adopt the following rules: A, B, C, D are non-empty sets,

a is an element of A, b is an element of B, and c is an element of C. Let us
consider A, B, C, D, and let f be a function from [:A, B, C :] into D, and let
us consider a, b, c. Then f(a, b, c) is an element of D.

We adopt the following rules: X, Y , Z denote sets, T denotes a non-empty
set, and x, y, z are arbitrary. One can prove the following propositions:

(2) For all functions f1, f2 from [:X, Y, Z :] into T such that T 6= ∅ and for
all x, y, z such that x ∈ X and y ∈ Y and z ∈ Z holds f1(〈〈x, y, z〉〉) =
f2(〈〈x, y, z〉〉) holds f1 = f2.

(3) For all functions f1, f2 from [:A, B, C :] into D such that for all a, b, c
holds f1(〈〈a, b, c〉〉) = f2(〈〈a, b, c〉〉) holds f1 = f2.

1Supported by RPBP.III-24.C6
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(4) For all functions f1, f2 from [:A, B, C :] into D such that for every
element a of A and for every element b of B and for every element c of C
holds f1(a, b, c) = f2(a, b, c) holds f1 = f2.

Let us consider A. A ternary operation on A is a function from [:A, A, A :]
into A.

In this article we present several logical schemes. The scheme FuncEx3D
concerns a non-empty set A, a non-empty set B, a non-empty set C, a non-
empty set D, and a 4-ary predicate P, and states that:

there exists a function f from [:A, B, C :] into D such that for every ele-
ment x of A and for every element y of B and for every element z of C holds
P[x, y, z, f(〈〈x, y, z〉〉)]
provided the following requirements are met:
• for every element x of A and for every element y of B and for every

element z of C there exists an element t of D such that P[x, y, z, t],
• for every element x of A and for every element y of B and for every

element z of C and for all elements t1, t2 of D such that P[x, y, z, t1]
and P[x, y, z, t2] holds t1 = t2.

The scheme TriOpEx concerns a non-empty set A, and a 4-ary predicate P,
and states that:

there exists a ternary operation o on A such that for all elements a, b, c of
A holds P[a, b, c, o(a, b, c)]
provided the parameters meet the following requirements:
• for every elements x, y, z of A there exists an element t of A such

that P[x, y, z, t],
• for all elements x, y, z of A and for all elements t1, t2 of A such

that P[x, y, z, t1] and P[x, y, z, t2] holds t1 = t2.
The scheme Lambda3D concerns a non-empty set A, a non-empty set B,

a non-empty set C, a non-empty set D, and a ternary functor F yielding an
element of D and states that:

there exists a function f from [:A, B, C :] into D such that for every element x
ofA and for every element y of B and for every element z of C holds f(〈〈x, y, z〉〉) =
F(x, y, z)
for all values of the parameters.

The scheme TriOpLambda concerns a non-empty set A and a ternary functor
F yielding an element of A and states that:

there exists a ternary operation o on A such that for all elements a, b, c of
A holds o(a, b, c) = F(a, b, c)
for all values of the parameters.

Let f be a function, and let a, b, c, d be arbitrary. The functor f(a, b, c, d)
is defined as follows:

(Def.2) f(a, b, c, d) = f(〈〈a, b, c, d〉〉).
One can prove the following proposition

(5) For every function f and for arbitrary a, b, c, d holds f(a, b, c, d) =
f(〈〈a, b, c, d〉〉).
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For simplicity we adopt the following rules: A, B, C, D, E will be non-empty
sets, a will be an element of A, b will be an element of B, c will be an element
of C, and d will be an element of D. Let us consider A, B, C, D, E, and let
f be a function from [:A, B, C, D :] into E, and let us consider a, b, c, d. Then
f(a, b, c, d) is an element of E.

We adopt the following rules: X, Y , Z, S will be sets, T will be a non-empty
set, and x, y, z, s will be arbitrary. The following three propositions are true:

(6) Let f1, f2 be functions from [:X, Y, Z, S :] into T . Then if T 6= ∅ and
for all x, y, z, s such that x ∈ X and y ∈ Y and z ∈ Z and s ∈ S holds
f1(〈〈x, y, z, s〉〉) = f2(〈〈x, y, z, s〉〉), then f1 = f2.

(7) For all functions f1, f2 from [:A, B, C, D :] into E such that for all a,
b, c, d holds f1(〈〈a, b, c, d〉〉) = f2(〈〈a, b, c, d〉〉) holds f1 = f2.

(8) For all functions f1, f2 from [:A, B, C, D :] into E such that for every
element a of A and for every element b of B and for every element c of
C and for every element d of D holds f1(a, b, c, d) = f2(a, b, c, d) holds
f1 = f2.

Let us consider A. A quadrary operation on A is a function from [:A, A, A,
A :] into A.

Now we present four schemes. The scheme FuncEx4D concerns a non-empty
set A, a non-empty set B, a non-empty set C, a non-empty set D, a non-empty
set E , and a 5-ary predicate P, and states that:

there exists a function f from [:A, B, C, D :] into E such that for every element
x of A and for every element y of B and for every element z of C and for every
element s of D holds P[x, y, z, s, f(〈〈x, y, z, s〉〉)]
provided the parameters have the following properties:

• for every element x of A and for every element y of B and for every
element z of C and for every element s of D there exists an element
t of E such that P[x, y, z, s, t],

• for every element x of A and for every element y of B and for every
element z of C and for every element s of D and for all elements t1,
t2 of E such that P[x, y, z, s, t1] and P[x, y, z, s, t2] holds t1 = t2.

The scheme QuaOpEx deals with a non-empty set A, and a 5-ary predicate
P, and states that:

there exists a quadrary operation o on A such that for all elements a, b, c, d
of A holds P[a, b, c, d, o(a, b, c, d)]

provided the parameters meet the following requirements:

• for every elements x, y, z, s of A there exists an element t of A
such that P[x, y, z, s, t],

• for all elements x, y, z, s of A and for all elements t1, t2 of A such
that P[x, y, z, s, t1] and P[x, y, z, s, t2] holds t1 = t2.

The scheme Lambda4D concerns a non-empty set A, a non-empty set B, a
non-empty set C, a non-empty set D, a non-empty set E , and a 4-ary functor F
yielding an element of E and states that:
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there exists a function f from [:A, B, C, D :] into E such that for every element
x of A and for every element y of B and for every element z of C and for every
element s of D holds f(〈〈x, y, z, s〉〉) = F(x, y, z, s)
for all values of the parameters.

The scheme QuaOpLambda deals with a non-empty set A and a 4-ary functor
F yielding an element of A and states that:

there exists a quadrary operation o on A such that for all elements a, b, c, d
of A holds o(a, b, c, d) = F(a, b, c, d)
for all values of the parameters.
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Summary. A basis for investigations on incidence projective spaces.
With every projective space defined in terms of collinearity relation we as-
sociate the incidence structure consisting of points and lines of the given
space. We introduce the general notion of projective space defined in
terms of incidence and define several properties of such structures (like
satisfability of the Desargues Axiom and conditions on the dimension).

MML Identifier: INCPROJ.

The papers [7], [8], [6], [1], [2], [3], [4], and [5] provide the notation and ter-
minology for this paper. We consider projective incidence structures which are
systems
〈points, lines, an incidence〉,

where the points constitute a non-empty set, the lines constitute a non-empty
set, and the incidence is a relation between the points and the lines.

We see that the projective space defined in terms of collinearity is a proper
collinearity space.

For simplicity we follow a convention: C1 will be a proper collinearity space,
x, y will be arbitrary, Y will be a set, andB will be an element of 2the points of C1 .
Let us consider C1. We see that the line of C1 is an element of 2the points of C1 .

Let us consider C1. The functor L(C1) yielding a non-empty set is defined
by:

(Def.1) L(C1) = {B : B is a line of C1}.
We now state two propositions:

(1) L(C1) = {B : B is a line of C1}.
(2) For every x holds x is a line of C1 if and only if x is an element of L(C1).

1Supported by RPBP.III-24.C6
2Supported by RPBP.III-24.C2
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Let us consider C1. The functor IC1 yields a relation between the points of
C1 and L(C1) and is defined by:

(Def.2) for all x, y holds 〈〈x, y〉〉 ∈ IC1 if and only if x ∈ the points of C1 and
y ∈ L(C1) and there exists Y such that y = Y and x ∈ Y .

Let us consider C1. The functor Inc-ProjSp(C1) yields a projective incidence
structure and is defined by:

(Def.3) Inc-ProjSp(C1) = 〈 the points of C1, L(C1), IC1〉.
Next we state four propositions:

(3) Inc-ProjSp(C1) = 〈 the points of C1, L(C1), IC1〉.
(4) For every C1 holds the points of Inc-ProjSp(C1) = the points of

C1 and the lines of Inc-ProjSp(C1) = L(C1) and the incidence of
Inc-ProjSp(C1) = IC1 .

(5) For every x holds x is a line of C1 if and only if x is an element of the
lines of Inc-ProjSp(C1).

(6) For every x holds x is an element of the points of Inc-ProjSp(C1) if and
only if x is an element of the points of C1.

For simplicity we adopt the following rules: a, b, c, p, q, s will be ele-
ments of the points of Inc-ProjSp(C1), P , Q, S will be elements of the lines of
Inc-ProjSp(C1), P ′ will be a line of C1, and a′, b′, c′, p′ will be elements of the
points of C1. Let I1 be a projective incidence structure, and let s be an element
of the points of I1, and let S be an element of the lines of I1. The predicate
s | S is defined as follows:

(Def.4) 〈〈s, S〉〉 ∈ the incidence of I1.

One can prove the following propositions:

(7) s | S if and only if 〈〈s, S〉〉 ∈ IC1 .

(8) If p = p′ and P = P ′, then p | P if and only if p′ ∈ P ′.
(9) There exist a′, b′, c′ such that a′ 6= b′ and b′ 6= c′ and c′ 6= a′.

(10) For every a′ there exists b′ such that a′ 6= b′.
(11) If p | P and q | P and p | Q and q | Q, then p = q or P = Q.

(12) For every p, q there exists P such that p | P and q | P .

(13) If a = a′ and b = b′ and c = c′, then a′, b′ and c′ are collinear if and
only if there exists P such that a | P and b | P and c | P .

(14) There exist p, P such that p � P .

For simplicity we follow the rules: C1 is a projective space defined in terms
of collinearity, a, b, c, d, p, q are elements of the points of Inc-ProjSp(C1), P ,
Q, S, M , N are elements of the lines of Inc-ProjSp(C1), and a′, b′, c′, d′, p′ are
elements of the points of C1. One can prove the following propositions:

(15) For every P there exist a, b, c such that a 6= b and b 6= c and c 6= a and
a | P and b | P and c | P .

(16) Suppose that
(i) a |M ,
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(ii) b |M ,
(iii) c | N ,
(iv) d | N ,
(v) p |M ,
(vi) p | N ,
(vii) a | P ,

(viii) c | P ,
(ix) b | Q,
(x) d | Q,
(xi) p � P ,
(xii) p � Q,

(xiii) M 6= N .
Then there exists q such that q | P and q | Q.

(17) If for every a′, b′, c′, d′ there exists p′ such that a′, b′ and p′ are collinear
and c′, d′ and p′ are collinear, then for every M , N there exists q such
that q |M and q | N .

(18) If there exist elements p, p1, r, r1 of the points of C1 such that for no
element s of the points of C1 holds p, p1 and s are collinear and r, r1 and
s are collinear, then there exist M , N such that for no q holds q |M and
q | N .

(19) Suppose for every elements p, p1, q, q1, r2 of the points of C1 there exist
elements r, r1 of the points of C1 such that p, q and r are collinear and
p1, q1 and r1 are collinear and r2, r and r1 are collinear. Then for every
a, M , N there exist b, c, S such that a | S and b | S and c | S and b |M
and c | N .

We now define two new predicates. Let x, y, z be arbitrary. We say that x,
y, z are mutually different if and only if:

(Def.5) x 6= y and y 6= z and z 6= x.

Let u be arbitrary. We say that x, y, z, u are mutually different if and only if:

(Def.6) x 6= y and y 6= z and z 6= x and u 6= x and u 6= y and u 6= z.

We now define two new predicates. Let C2 be a projective incidence structure,
and let a, b be elements of the points of C2, and let M be an element of the
lines of C2. The predicate a, b |M is defined as follows:

(Def.7) a |M and b |M .

Let c be an element of the points of C2. The predicate a, b, c |M is defined by:

(Def.8) a |M and b |M and c |M .

We now state three propositions:

(20) Suppose that
(i) for all elements p1, r2, q, r1, q1, p, r of the points of C1 such that p1,
r2 and q are collinear and r1, q1 and q are collinear and p1, r1 and p are
collinear and r2, q1 and p are collinear and p1, q1 and r are collinear and
r2, r1 and r are collinear and p, q and r are collinear holds p1, r2 and q1
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are collinear or p1, r2 and r1 are collinear or p1, r1 and q1 are collinear or
r2, r1 and q1 are collinear.
Let p, q, r, s, a, b, c be elements of the points of Inc-ProjSp(C1). Let L,
Q, R, S, A, B, C be elements of the lines of Inc-ProjSp(C1). Suppose
that

(ii) q � L,
(iii) r � L,
(iv) p � Q,
(v) s � Q,
(vi) p � R,

(vii) r � R,
(viii) q � S,

(ix) s � S,
(x) a, p, s | L,
(xi) a, q, r | Q,

(xii) b, q, s | R,
(xiii) b, p, r | S,
(xiv) c, p, q | A,
(xv) c, r, s | B,
(xvi) a, b | C.

Then c � C.

(21) Suppose that
(i) for all elements o, p1, p2, p3, q1, q2, q3, r1, r2, r3 of the points of C1 such

that o 6= q1 and p1 6= q1 and o 6= q2 and p2 6= q2 and o 6= q3 and p3 6= q3

and o, p1 and p2 are not collinear and o, p1 and p3 are not collinear and
o, p2 and p3 are not collinear and p1, p2 and r3 are collinear and q1, q2

and r3 are collinear and p2, p3 and r1 are collinear and q2, q3 and r1 are
collinear and p1, p3 and r2 are collinear and q1, q3 and r2 are collinear
and o, p1 and q1 are collinear and o, p2 and q2 are collinear and o, p3 and
q3 are collinear holds r1, r2 and r3 are collinear.
Let o, b1, a1, b2, a2, b3, a3, r, s, t be elements of the points of Inc-ProjSp(C1).
Let C3, C4, C5, A1, A2, A3, B1, B2, B3 be elements of the lines of
Inc-ProjSp(C1). Suppose that

(ii) o, b1, a1 | C3,
(iii) o, a2, b2 | C4,
(iv) o, a3, b3 | C5,
(v) a3, a2, t | A1,
(vi) a3, r, a1 | A2,

(vii) a2, s, a1 | A3,
(viii) t, b2, b3 | B1,

(ix) b1, r, b3 | B2,
(x) b1, s, b2 | B3,
(xi) C3, C4, C5 are mutually different,

(xii) o 6= a1,
(xiii) o 6= a2,
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(xiv) o 6= a3,

(xv) o 6= b1,

(xvi) o 6= b2,

(xvii) o 6= b3,

(xviii) a1 6= b1,

(xix) a2 6= b2,

(xx) a3 6= b3.

Then there exists an element O of the lines of Inc-ProjSp(C1) such that
r, s, t | O.

(22) Suppose that

(i) for all elements o, p1, p2, p3, q1, q2, q3, r1, r2, r3 of the points of C1

such that o 6= p2 and o 6= p3 and p2 6= p3 and p1 6= p2 and p1 6= p3 and
o 6= q2 and o 6= q3 and q2 6= q3 and q1 6= q2 and q1 6= q3 and o, p1 and
q1 are not collinear and o, p1 and p2 are collinear and o, p1 and p3 are
collinear and o, q1 and q2 are collinear and o, q1 and q3 are collinear and
p1, q2 and r3 are collinear and q1, p2 and r3 are collinear and p1, q3 and r2

are collinear and p3, q1 and r2 are collinear and p2, q3 and r1 are collinear
and p3, q2 and r1 are collinear holds r1, r2 and r3 are collinear.

Let o, a1, a2, a3, b1, b2, b3, c1, c2, c3 be elements of the points of
Inc-ProjSp(C1). Let A1, A2, A3, B1, B2, B3, C3, C4, C5 be elements
of the lines of Inc-ProjSp(C1). Suppose that

(ii) o, a1, a2, a3 are mutually different,

(iii) o, b1, b2, b3 are mutually different,

(iv) A3 6= B3,

(v) o | A3,

(vi) o | B3,

(vii) a2, b3, c1 | A1,

(viii) a3, b1, c2 | B1,

(ix) a1, b2, c3 | C3,

(x) a1, b3, c2 | A2,

(xi) a3, b2, c1 | B2,

(xii) a2, b1, c3 | C4,

(xiii) b1, b2, b3 | A3,

(xiv) a1, a2, a3 | B3,

(xv) c1, c2 | C5.

Then c3 | C5.

A projective incidence structure is called a projective space defined in terms
of incidence if:

(Def.9) (i) for all elements p, q of the points of it and for all elements P , Q of
the lines of it such that p | P and q | P and p | Q and q | Q holds p = q
or P = Q,

(ii) for every elements p, q of the points of it there exists an element P of
the lines of it such that p | P and q | P ,
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(iii) there exists an element p of the points of it and there exists an element
P of the lines of it such that p � P ,

(iv) for every element P of the lines of it there exist elements a, b, c of the
points of it such that a 6= b and b 6= c and c 6= a and a | P and b | P and
c | P ,

(v) for all elements a, b, c, d, p, q of the points of it and for all elements
M , N , P , Q of the lines of it such that a | M and b | M and c | N and
d | N and p | M and p | N and a | P and c | P and b | Q and d | Q and
p � P and p � Q and M 6= N there exists an element q of the points of it
such that q | P and q | Q.

Let C1 be a projective space defined in terms of collinearity.
Then Inc-ProjSp(C1) is a projective space defined in terms of incidence.

A projective space defined in terms of incidence is 2-dimensional if:

(Def.10) for every elements M , N of the lines of it there exists an element q of
the points of it such that q |M and q | N .

A projective space defined in terms of incidence is at least 3-dimensional if:

(Def.11) there exist elements M , N of the lines of it such that for no element q
of the points of it holds q |M and q | N .

A projective space defined in terms of incidence is at most 3-dimensional if:

(Def.12) for every element a of the points of it and for every elements M , N of
the lines of it there exist elements b, c of the points of it and there exists
an element S of the lines of it such that a | S and b | S and c | S and
b |M and c | N .

A projective space defined in terms of incidence is 3-dimensional if:

(Def.13) it is at most 3-dimensional and it is at least 3-dimensional.

A projective space defined in terms of incidence is Fanoian if:

(Def.14) Let p, q, r, s, a, b, c be elements of the points of it . Let L, Q, R, S,
A, B, C be elements of the lines of it . Suppose that

(i) q � L,
(ii) r � L,
(iii) p � Q,
(iv) s � Q,
(v) p � R,
(vi) r � R,

(vii) q � S,
(viii) s � S,

(ix) a, p, s | L,
(x) a, q, r | Q,
(xi) b, q, s | R,

(xii) b, p, r | S,
(xiii) c, p, q | A,
(xiv) c, r, s | B,
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(xv) a, b | C.
Then c � C.

A projective space defined in terms of incidence is Desarguesian if:

(Def.15) Let o, b1, a1, b2, a2, b3, a3, r, s, t be elements of the points of it . Let
C3, C4, C5, A1, A2, A3, B1, B2, B3 be elements of the lines of it . Suppose
that

(i) o, b1, a1 | C3,
(ii) o, a2, b2 | C4,

(iii) o, a3, b3 | C5,
(iv) a3, a2, t | A1,
(v) a3, r, a1 | A2,
(vi) a2, s, a1 | A3,
(vii) t, b2, b3 | B1,

(viii) b1, r, b3 | B2,
(ix) b1, s, b2 | B3,
(x) C3, C4, C5 are mutually different,
(xi) o 6= a1,
(xii) o 6= a2,

(xiii) o 6= a3,
(xiv) o 6= b1,
(xv) o 6= b2,
(xvi) o 6= b3,
(xvii) a1 6= b1,

(xviii) a2 6= b2,
(xix) a3 6= b3.

Then there exists an element O of the lines of it such that r, s, t | O.

A projective space defined in terms of incidence is Pappian if:

(Def.16) Let o, a1, a2, a3, b1, b2, b3, c1, c2, c3 be elements of the points of it .
Let A1, A2, A3, B1, B2, B3, C3, C4, C5 be elements of the lines of it .
Suppose that

(i) o, a1, a2, a3 are mutually different,
(ii) o, b1, b2, b3 are mutually different,

(iii) A3 6= B3,
(iv) o | A3,
(v) o | B3,
(vi) a2, b3, c1 | A1,
(vii) a3, b1, c2 | B1,

(viii) a1, b2, c3 | C3,
(ix) a1, b3, c2 | A2,
(x) a3, b2, c1 | B2,
(xi) a2, b1, c3 | C4,
(xii) b1, b2, b3 | A3,

(xiii) a1, a2, a3 | B3,
(xiv) c1, c2 | C5.



232 Wojciech Leończuk et al.

Then c3 | C5.
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Summary. We study the theory of one-dimensional congruence of
segments. The theory is characterized by a suitable formal axiom system;
as a model of this system one can take the structure obtained from any
weak directed geometrical bundle, with the congruence interpreted as in
the case of ”classical” vectors. Preliminary consequences of our axiom
system are proved, basic relations of maximal distance and of midpoint
are defined, and several fundamental properties of them are established.

MML Identifier: AFVECT01.

The papers [8], [2], [3], [10], [7], [4], [1], [5], [6], and [9] provide the terminology
and notation for this paper. In the sequel A1 will be a weak affine vector space.
Let us consider A1, and let a, b, c, d be elements of the points of A1. The
predicate a, b 	 
 c, d is defined as follows:

(Def.1) a, b 
 c, d or a, b 
 d, c.

An affine structure is called a weak segment-congruence space if:

(Def.2) (i) there exist elements a, b of the points of it such that a 6= b,
(ii) for all elements a, b of the points of it holds a, b 
 b, a,
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(iii) for all elements a, b of the points of it such that a, b 
 a, a holds a = b,
(iv) for all elements a, b, c, d, p, q of the points of it such that a, b 
 p, q

and c, d 
 p, q holds a, b 
 c, d,
(v) for every elements a, c of the points of it there exists an element b of

the points of it such that a, b 
 b, c,
(vi) for all elements a, a′, b, b′, p of the points of it such that a 6= a′ and

b 6= b′ and p, a 
 p, a′ and p, b 
 p, b′ holds a, b 
 a′, b′,
(vii) for all elements a, b of the points of it holds a = b or there exists an

element c of the points of it such that a 6= c and a, b 
 b, c or there exist
elements p, p′ of the points of it such that p 6= p′ and a, b 
 p, p′ and
a, p 
 p, b and a, p′ 
 p′, b,

(viii) for all elements a, b, b′, p, p′, c of the points of it such that a, b 
 b, c
and b, b′ 
 p, p′ and b, p 
 p, b′ and b, p′ 
 p′, b′ holds a, b′ 
 b′, c,

(ix) for all elements a, b, b′, c of the points of it such that a 6= c and b 6= b′

and a, b 
 b, c and a, b′ 
 b′, c there exist elements p, p′ of the points of
it such that p 6= p′ and b, b′ 
 p, p′ and b, p 
 p, b′ and b, p′ 
 p′, b′,

(x) for all elements a, b, c, p, p′, q, q′ of the points of it such that a, b 
 p, p′

and a, c 
 q, q′ and a, p 
 p, b and a, q 
 q, c and a, p′ 
 p′, b and
a, q′ 
 q′, c there exist elements r, r′ of the points of it such that b, c 
 r, r′

and b, r 
 r, c and b, r′ 
 r′, c.

We adopt the following rules: A1 is a weak segment-congruence space and a,
b, b′, b′′, c, d, p, p′ are elements of the points of A1. Let us consider A1, and let
a, b, c, d be elements of the points of A1. The predicate a, b 	 
 c, d is defined by:

(Def.3) a, b 
 c, d.

We now state several propositions:

(1) a, b 	 
 a, b.

(2) If a, b 	 
 c, d, then c, d 	 
 a, b.

(3) If a, b 	 
 c, d, then a, b 	 
 d, c.

(4) If a, b 	 
 c, d, then b, a 	 
 c, d.

(5) For all a, b holds a, a 	 
 b, b.

(6) If a, b 	 
 c, c, then a = b.

(7) If a, b 	 
 p, p′ and p, p′ 	 
 b, c and a, b 	 
 b, c and a, p 	 
 p, b and a, p′ 	 
 p′, b,
then a = c.

(8) If a, b 	 
 a, b′ and a, b′ 	 
 a, b′′ and a, b 	 
 a, b′′, then b = b′ or b = b′′ or
b′ = b′′.

Let us consider A1, a, b. We say that a, b are in a maximal distance if and
only if:

(Def.4) there exist p, p′ such that p 6= p′ and a, b 	 
 p, p′ and a, p 	 
 p, b and
a, p′ 	 
 p′, b.

Let us consider A1, a, b, c. We say that b is a midpoint of a, c if and only if:

(Def.5) a = b and b = c and a = c or a = c and a, b are in a maximal distance
or a 6= c and a, b 	 
 b, c.
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Next we state three propositions:

(11)2 If a 6= b and a, b are not in a maximal distance, then there exists c such
that a 6= c and a, b 	 
 b, c.

(12) If a, b are in a maximal distance and a, b 	 
 b, c, then a = c.

(13) If a, b are in a maximal distance, then a 6= b.
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metrical bundles and their analytical representation. Formalized Mathematics, 2(1):135–
141, 1991.
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Université Catholique de Louvain

Algebra of Normal Forms

Andrzej Trybulec
Warsaw University

Bia lystok

Summary. We mean by a normal form a finite set of ordered
pairs of subsets of a fixed set that fulfils two conditions: elements of it
consist of disjoint sets and elements of it are incomparable w.r.t. inclu-
sion. The underlying set corresponds to a set of propositional variables
but is arbitrary. The correspodents to a normal form of a formula, e.g.
a disjunctive normal form, is as follows. The normal form is the set of
disjuncts and a disjunct is an ordered pair consisting of the sets of propos-
tional variables that occur in the non-negated and negated disjunct. The
requirement that the element of a normal form consists of disjoint sets
means that contradictory disjuncts have been removed, and the second
condition means that the absorption law has been used to shorten the
normal form. We construct a lattice 〈 � , t,u〉 , where atb = µ(a∪b) and
a u b = µc, c being the set of all pairs 〈X1 ∪ Y1, X2 ∪ Y2〉, 〈X1, X2〉 ∈ a
and 〈Y1, Y2〉 ∈ b, which consist of disjoint sets. µa denotes here the set
of all minimal, w.r.t. inclusion, elements of a. We prove that the lattice
of normal forms over a set defined in this way is distributive and that ∅
is the minimal element of it.

MML Identifier: NORMFORM.

The terminology and notation used here have been introduced in the following
articles: [8], [9], [3], [4], [1], [5], [2], [6], [10], [7], and [11]. In the sequel A, B,
C, D will be sets. We now state two propositions:

(1) If A ⊆ B and C ⊆ D and B misses D, then A misses C.

(2) If A \ B ⊆ C, then A ⊆ B ∪ C.

In the sequel A, B will denote Boolean domains and x, y will denote elements
of [:A, B :]. We now define five new constructions. Let us consider A, B, x, y.
The predicate x ⊆ y is defined by:

(Def.1) x1 ⊆ y1 and x2 ⊆ y2.

The functor x ∪ y yielding an element of [:A, B :] is defined as follows:

(Def.2) x ∪ y = 〈〈x1 ∪ y1, x2 ∪ y2〉〉.
The functor x ∩ y yielding an element of [:A, B :] is defined as follows:
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(Def.3) x ∩ y = 〈〈x1 ∩ y1, x2 ∩ y2〉〉.
The functor x \ y yields an element of [:A, B :] and is defined as follows:

(Def.4) x \ y = 〈〈x1 \ y1, x2 \ y2〉〉.
The functor x−. y yields an element of [:A, B :] and is defined as follows:

(Def.5) x−. y = 〈〈x1−. y1, x2−. y2〉〉.
In the sequel X will be a set and a, b, c will be elements of [:A, B :]. We now

state a number of propositions:

(3) a ⊆ a.

(4) If a ⊆ b and b ⊆ a, then a = b.

(5) If a ⊆ b and b ⊆ c, then a ⊆ c.
(6) a ∪ b = 〈〈a1 ∪ b1, a2 ∪ b2〉〉.
(7) a ∩ b = 〈〈a1 ∩ b1, a2 ∩ b2〉〉.
(8) a \ b = 〈〈a1 \ b1, a2 \ b2〉〉.
(9) a−. b = 〈〈a1−. b1, a2−. b2〉〉.

(10) (a ∪ b)1 = a1 ∪ b1 and (a ∪ b)2 = a2 ∪ b2.

(11) (a ∩ b)1 = a1 ∩ b1 and (a ∩ b)2 = a2 ∩ b2.

(12) (a \ b)1 = a1 \ b1 and (a \ b)2 = a2 \ b2.

(13) (a−. b)1 = a1−. b1 and (a−. b)2 = a2−. b2.

(14) a ∪ a = a.

(15) a ∪ b = b ∪ a.

(16) a ∪ b ∪ c = a ∪ (b ∪ c).
(17) a ∩ a = a.

(18) a ∩ b = b ∩ a.

(19) a ∩ b ∩ c = a ∩ (b ∩ c).
(20) a ∩ (b ∪ c) = a ∩ b ∪ a ∩ c.
(21) a ∪ b ∩ a = a.

(22) a ∩ (b ∪ a) = a.

(24)1 a ∪ b ∩ c = (a ∪ b) ∩ (a ∪ c).
(25) If a ⊆ c and b ⊆ c, then a ∪ b ⊆ c.
(26) a ⊆ a ∪ b and b ⊆ a ∪ b.
(27) If a = a ∪ b, then b ⊆ a.

(28) If a ⊆ b, then c ∪ a ⊆ c ∪ b and a ∪ c ⊆ b ∪ c.
(29) (a \ b) ∪ b = a ∪ b.
(30) If a \ b ⊆ c, then a ⊆ b ∪ c.
(31) If a ⊆ b ∪ c, then a \ c ⊆ b.

In the sequel a will be an element of [: FinX, FinX :]. Let A be a set. The
functor FinUnionA yields a binary operation on [: FinA, FinA :] and is defined
by:

1The proposition (23) was either repeated or obvious.
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(Def.6) for all elements x, y of [: FinA, FinA :] holds FinUnionA(x, y) = x ∪ y.

In the sequel A will denote a set. Let X be a non-empty set, and let A
be a set, and let B be an element of FinX, and let f be a function from X
into [: FinA, FinA :]. The functor FinUnion(B, f) yields an element of [: FinA,
FinA :] and is defined as follows:

(Def.7) FinUnion(B, f) = FinUnionA -
∑
B f .

The following propositions are true:

(32) FinUnionA is idempotent.

(33) FinUnionA is commutative.

(34) FinUnionA is associative.

(35) For every non-empty set X and for every function f fromX into [: FinA,
FinA :] and for every element B of FinX and for every element x of X
such that x ∈ B holds f(x) ⊆ FinUnion(B, f).

(36) 〈〈0A, 0A〉〉 is a unity w.r.t. FinUnionA.

(37) FinUnionA has a unity.

(38) 1FinUnionA = 〈〈0A, 0A〉〉.
(39) For every element x of [: FinA, FinA :] holds 1FinUnionA ⊆ x.

(40) For every non-empty set X and for every function f fromX into [: FinA,
FinA :] and for every element B of FinX and for every element c of [: FinA,
FinA :] such that for every element x of X such that x ∈ B holds f(x) ⊆ c
holds FinUnion(B, f) ⊆ c.

(41) For every non-empty set X and for every element B of FinX and for
all functions f , g from X into [: FinA, FinA :] such that f � B = g � B
holds FinUnion(B, f) = FinUnion(B, g).

Let us consider X. The functor DP(X) yields a non-empty subset of [: FinX,
FinX :] and is defined as follows:

(Def.8) DP(X) = {a : a1 misses a2 }.
The following proposition is true

(42) For every element y of [: FinX, FinX :] holds y ∈ DP(X) if and only if
y1 ∩ y2 = ∅.

In the sequel x, y will denote elements of [: FinX, FinX :] and a, b will denote
elements of DP(X). We now state several propositions:

(43) If y ∈ DP(X) and x ∈ DP(X), then y ∪ x ∈ DP(X) if and only if
y1 ∩ x2 ∪ x1 ∩ y2 = ∅.

(44) a1 ∩ a2 = ∅.
(45) If x ⊆ b, then x is an element of DP(X).

(46) For no arbitrary x holds x ∈ a1 and x ∈ a2.

(47) If a∪ b /∈ DP(X), then there exists an element p of X such that p ∈ a1
and p ∈ b2 or p ∈ b1 and p ∈ a2.

(48) a1 misses a2.
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(49) If x1 misses x2, then x is an element of DP(X).

(50) For all sets V , W such that V ⊆ a1 and W ⊆ a2 holds 〈〈V,W 〉〉 is an
element of DP(X).

In this article we present several logical schemes. The scheme LambdaX
concerns a non-empty set A, a non-empty set B, a non-empty subset C of A,
and a unary functor F yielding an element of C and states that:

there exists a function f from B into C such that for every element x of B
holds f(x) = F(x)
for all values of the parameters.

The scheme BinOpLambdaX deals with a non-empty set A, a non-empty
subset B of A, and a binary functor F yielding an element of B and states that:

there exists a binary operation o on B such that for all elements a, b of B
holds o(a, b) = F(a, b)
for all values of the parameters.

For simplicity we follow a convention: A will be a set, x will be an element
of [: FinA, FinA :], a, b, c, s, t will be elements of DP(A), and B, C, D will be
elements of Fin DP(A). Let us consider A. The normal forms overA yields a
non-empty subset of Fin DP(A) and is defined as follows:

(Def.9) the normal forms overA = {B : a ∈ B ∧ b ∈ B ∧ a ⊆ b⇒ a = b}.
In the sequel K, L, M are elements of the normal forms overA. Next we

state three propositions:

(51) ∅ ∈ the normal forms overA.

(52) If B ∈ the normal forms overA and a ∈ B and b ∈ B and a ⊆ b, then
a = b.

(53) If for all a, b such that a ∈ B and b ∈ B and a ⊆ b holds a = b, then
B ∈ the normal forms overA.

We now define two new functors. Let us consider A, B. The functor µB
yielding an element of the normal forms overA is defined by:

(Def.10) µB = {t : s ∈ B ∧ s ⊆ t⇔ s = t}.
Let us consider C. The functor B  C yielding an element of Fin DP(A) is
defined as follows:

(Def.11) B  C = DP(A) ∩ {s ∪ t : s ∈ B ∧ t ∈ C}.
The following propositions are true:

(54) B  C = DP(A) ∩ {s ∪ t : s ∈ B ∧ t ∈ C}.
(55) If x ∈ B  C, then there exist b, c such that b ∈ B and c ∈ C and

x = b ∪ c.
(56) If b ∈ B and c ∈ C and b ∪ c ∈ DP(A), then b ∪ c ∈ B  C.

(57) If b ∈ B and c ∈ C and a = b ∪ c, then a ∈ B  C.

(58) If a ∈ µB, then a ∈ B but if b ∈ B and b ⊆ a, then b = a.

(59) If a ∈ µB, then a ∈ B.

(60) If a ∈ µB and b ∈ B and b ⊆ a, then b = a.
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(61) If a ∈ B and for every b such that b ∈ B and b ⊆ a holds b = a, then
a ∈ µB.

We now define two new functors. Let us consider A. The functor tA yields
a binary operation on the normal forms overA and is defined by:

(Def.12) tA(K, L) = µ(K ∪ L).

The functor uA yielding a binary operation on the normal forms overA is de-
fined by:

(Def.13) uA(K, L) = µ(K  L).

One can prove the following propositions:

(62) tA(K, L) = µ(K ∪ L).

(63) uA(K, L) = µ(K  L).

Let A be a non-empty set, and let B be a non-empty subset of A, and let O
be a binary operation on B, and let a, b be elements of B. Then O(a, b) is an
element of B.

One can prove the following propositions:

(64) µB ⊆ B.

(65) If b ∈ B, then there exists c such that c ⊆ b and c ∈ µB.

(66) µK = K.

(67) µ(B ∪ C) ⊆ µB ∪ C.

(68) µ(µB ∪ C) = µ(B ∪ C).

(69) µ(B ∪ µC) = µ(B ∪ C).

(70) If B ⊆ C, then B  D ⊆ C  D.

(71) µ(B  C) ⊆ µB  C.

(72) B  C = C  B.

(73) If B ⊆ C, then D  B ⊆ D  C.

(74) µ(µB  C) = µ(B  C).

(75) µ(B  µC) = µ(B  C).

(76) K  (L  M) = K  L  M .

(77) K  (L ∪M) = K  L ∪K  M .

(78) B ⊆ B  B.

(79) µ(K  K) = µK.

Let us consider A. The lattice of normal forms overA yields a lower bound
lattice and is defined as follows:

(Def.14) the lattice of normal forms overA = 〈the normal forms overA,tA,uA〉.
The following propositions are true:

(80) The lattice of normal forms overA = 〈the normal forms overA,tA,uA〉.
(81) The lattice of normal forms overA is a distributive lattice.

(82) The carrier of the lattice of normal forms overA =
the normal forms overA.
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(83) The join operation of the lattice of normal forms overA = tA.

(84) The meet operation of the lattice of normal forms overA = uA.

(85) ∅ is an element of the carrier of the lattice of normal forms overA.

(86) ⊥The lattice of normal forms overA = ∅.
(87) The join operation of the lattice of normal forms overA has a unity.
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Summary. This series of papers is devoted to the notion of the
ordered ring, and one of its most important cases: the notion of ordered
field. It follows the results of [5]. The idea of the notion of order in
the ring is based on that of positive cone i.e. the set of positive elements.
Positive cone has to contain at least squares of all elements, and has to be
closed under sum and product. Therefore the key notions of this theory
are that of square, sum of squares, product of squares, etc. and finally
elements generated from squares by means of sums and products. Part I
contains definitions of all those key notions and inclusions between them.

MML Identifier: O RING 1.

The papers [1], [2], [6], [3], and [4] provide the notation and terminology for
this paper. For simplicity we adopt the following convention: i, j, k, n will be
natural numbers, R will be a field structure, x, y will be scalars of R, and f
will be a finite sequence of elements of the carrier of R. Let us consider R, f ,
k. Let us assume that 0 6= k and k ≤ len f . The functor f ◦ k yields a scalar of
R and is defined by:

(Def.1) f ◦ k = f(k).

Let us consider R, x. The functor x2 yields a scalar of R and is defined as
follows:

(Def.2) x2 = x · x.

Let us consider R, x. We say that x is a square if and only if:

(Def.3) there exists a scalar y of R such that x = y2.

Let us consider R, f . We say that f is a sequence of sums of squares if and
only if:

(Def.4) len f 6= 0 and f ◦ 1 is a square and for every n such that n 6= 0 and
n < len f there exists y such that y is a square and f ◦ (n+ 1) = f ◦ n+ y.

Let us consider R, x. We say that x is a sum of squares if and only if:
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(Def.5) there exists f such that f is a sequence of sums of squares and x =
f ◦ len f .

Let us consider R, f . We say that f is a sequence of products of squares if
and only if:

(Def.6) len f 6= 0 and f ◦ 1 is a square and for every n such that n 6= 0 and
n < len f there exists y such that y is a square and f ◦ (n+ 1) = f ◦ n · y.

Let us consider R, x. We say that x is a product of squares if and only if:

(Def.7) there exists f such that f is a sequence of products of squares and
x = f ◦ len f .

Let us consider R, f . We say that f is a sequence of sums of products of
squares if and only if:

(Def.8) len f 6= 0 and f ◦ 1 is a product of squares and for every n such that
n 6= 0 and n < len f there exists y such that y is a product of squares and
f ◦ (n+ 1) = f ◦ n+ y.

Let us consider R, x. We say that x is a sum of products of squares if and
only if:

(Def.9) there exists f such that f is a sequence of sums of products of squares
and x = f ◦ len f .

Let us consider R, f . We say that f is a sequence of amalgams of squares if
and only if:

(Def.10) (i) len f 6= 0,

(ii) for every n such that n 6= 0 and n ≤ len f holds f ◦ n is a product of
squares or there exist i, j such that f ◦ n = f ◦ i · f ◦ j and i 6= 0 and i < n
and j 6= 0 and j < n.

Let us consider R, x. We say that x is a amalgam of squares if and only if:

(Def.11) there exists f such that f is a sequence of amalgams of squares and
x = f ◦ len f .

Let us consider R, f . We say that f is a sequence of sums of amalgams of
squares if and only if:

(Def.12) len f 6= 0 and f ◦ 1 is a amalgam of squares and for every n such that
n 6= 0 and n < len f there exists y such that y is a amalgam of squares
and f ◦ (n+ 1) = f ◦ n+ y.

Let us consider R, x. We say that x is a sum of amalgams of squares if and
only if:

(Def.13) there exists f such that f is a sequence of sums of amalgams of squares
and x = f ◦ len f .

Let us consider R, f . We say that f is a generation from squares if and only
if:
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(Def.14) (i) len f 6= 0,
(ii) for every n such that n 6= 0 and n ≤ len f holds f ◦ n is a amalgam of

squares or there exist i, j such that f ◦n = f ◦ i ·f ◦ j or f ◦n = f ◦ i+f ◦ j
but i 6= 0 and i < n and j 6= 0 and j < n.

Let us consider R, x. We say that x is generated from squares if and only if:

(Def.15) there exists f such that f is a generation from squares and x = f ◦ len f .

The following propositions are true:

(1) If x is a square, then x is a sum of squares and x is a product of squares
and x is a sum of products of squares and x is a amalgam of squares and
x is a sum of amalgams of squares and x is generated from squares.

(2) If x is a sum of squares, then x is a sum of products of squares and x
is a sum of amalgams of squares and x is generated from squares.

(3) If x is a product of squares, then x is a sum of products of squares and
x is a amalgam of squares and x is a sum of amalgams of squares and x
is generated from squares.

(4) If x is a sum of products of squares, then x is a sum of amalgams of
squares and x is generated from squares.

(5) If x is a amalgam of squares, then x is a sum of amalgams of squares
and x is generated from squares.

(6) If x is a sum of amalgams of squares, then x is generated from squares.
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[3] Eugeniusz Kusak, Wojciech Leończuk, and Micha l Muzalewski. Abelian groups, fields
and vector spaces. Formalized Mathematics, 1(2):335–342, 1990.

[4] Micha l Muzalewski. Construction of rings and left-, right-, and bi-modules over a ring.
Formalized Mathematics, 2(1):3–11, 1991.

[5] Wanda Szmielew. From Affine to Euclidean Geometry. Volume 27, PWN – D.Reidel
Publ. Co., Warszawa – Dordrecht, 1983.

[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

Received October 11, 1990



246



FORMALIZED MATHEMATICS

Vol.2, No.2, March–April 1991
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Summary. This series of papers is devoted to the notion of the
ordered ring, and one of its most important cases: the notion of ordered
field. It follows the results of [6]. The idea of the notion of order in
the ring is based on that of positive cone i.e. the set of positive elements.
Positive cone has to contain at least squares of all elements, and has to be
closed under sum and product. Therefore the key notions of this theory
are that of square, sum of squares, product of squares, etc. and finally
elements generated from squares by means of sums and products. Part
II contains the classification of sums of such elements.

MML Identifier: O RING 2.

The terminology and notation used here are introduced in the following articles:
[1], [2], [7], [3], [4], and [5]. In the sequel R is a field structure and x, y are
scalars of R. One can prove the following propositions:

(1) If x is a square and y is a square or x is a sum of squares and y is a
square, then x+ y is a sum of squares.

(2) If x is a sum of products of squares and y is a square or x is a sum of
products of squares and y is a product of squares, then x+ y is a sum of
products of squares.

(3) If x is a amalgam of squares and y is a product of squares or x is
a amalgam of squares and y is a amalgam of squares or x is a sum of
amalgams of squares and y is a square or x is a sum of amalgams of
squares and y is a product of squares or x is a sum of amalgams of
squares and y is a amalgam of squares, then x+ y is a sum of amalgams
of squares.

(4) If x is a square and y is a sum of squares or x is a square and y is a
product of squares or x is a square and y is a sum of products of squares
or x is a square and y is a amalgam of squares or x is a square and y is
a sum of amalgams of squares or x is a square and y is generated from
squares, then x+ y is generated from squares.
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(5) If x is a sum of squares and y is a sum of squares or x is a sum of
squares and y is a product of squares or x is a sum of squares and y is a
sum of products of squares or x is a sum of squares and y is a amalgam
of squares or x is a sum of squares and y is a sum of amalgams of squares
or x is a sum of squares and y is generated from squares, then x + y is
generated from squares.

(6) If x is a product of squares and y is a square or x is a product of squares
and y is a sum of squares or x is a product of squares and y is a product
of squares or x is a product of squares and y is a sum of products of
squares or x is a product of squares and y is a amalgam of squares or
x is a product of squares and y is a sum of amalgams of squares or x
is a product of squares and y is generated from squares, then x + y is
generated from squares.

(7) If x is a sum of products of squares and y is a sum of squares or x is
a sum of products of squares and y is a sum of products of squares or x
is a sum of products of squares and y is a amalgam of squares or x is a
sum of products of squares and y is a sum of amalgams of squares or x is
a sum of products of squares and y is generated from squares, then x+ y
is generated from squares.

(8) If x is a amalgam of squares and y is a square or x is a amalgam of
squares and y is a sum of squares or x is a amalgam of squares and y is a
sum of products of squares or x is a amalgam of squares and y is a sum
of amalgams of squares or x is a amalgam of squares and y is generated
from squares, then x+ y is generated from squares.

(9) If x is a sum of amalgams of squares and y is a sum of squares or x is a
sum of amalgams of squares and y is a sum of products of squares or x is
a sum of amalgams of squares and y is a sum of amalgams of squares or
x is a sum of amalgams of squares and y is generated from squares, then
x+ y is generated from squares.

(10) If x is generated from squares and y is a square or x is generated from
squares and y is a sum of squares or x is generated from squares and y
is a product of squares or x is generated from squares and y is a sum of
products of squares or x is generated from squares and y is a amalgam
of squares or x is generated from squares and y is a sum of amalgams of
squares or x is generated from squares and y is generated from squares,
then x+ y is generated from squares.
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Summary. This series of papers is devoted to the notion of the
ordered ring, and one of its most important cases: the notion of ordered
field. It follows the results of [6]. The idea of the notion of order in
the ring is based on that of positive cone i.e. the set of positive elements.
Positive cone has to contain at least squares of all elements, and has to be
closed under sum and product. Therefore the key notions of this theory
are that of square, sum of squares, product of squares, etc. and finally
elements generated from squares by means of sums and products. Part
III contains the classification of products of such elements.

MML Identifier: O RING 3.

The papers [1], [2], [7], [3], [4], and [5] provide the terminology and notation for
this paper. In the sequel R will denote a field structure and x, y will denote
scalars of R. Next we state a number of propositions:

(1) If x is a square and y is a square, then x · y is a product of squares.

(2) If x is a product of squares and y is a square, then x · y is a product of
squares.

(3) If x is a square and y is a product of squares or x is a square and y is
a amalgam of squares, then x · y is a amalgam of squares.

(4) If x is a product of squares and y is a product of squares or x is a
product of squares and y is a amalgam of squares, then x ·y is a amalgam
of squares.

(5) If x is a amalgam of squares and y is a square or x is a amalgam of
squares and y is a product of squares or x is a amalgam of squares and y
is a amalgam of squares, then x · y is a amalgam of squares.

(6) If x is a square and y is a sum of squares or x is a square and y is a
sum of products of squares or x is a square and y is a sum of amalgams
of squares or x is a square and y is generated from squares, then x · y is
generated from squares.
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(7) If x is a sum of squares and y is a square or x is a sum of squares and y
is a sum of squares or x is a sum of squares and y is a product of squares
or x is a sum of squares and y is a sum of products of squares or x is a
sum of squares and y is a amalgam of squares or x is a sum of squares
and y is a sum of amalgams of squares or x is a sum of squares and y is
generated from squares, then x · y is generated from squares.

(8) If x is a product of squares and y is a sum of squares or x is a product of
squares and y is a sum of products of squares or x is a product of squares
and y is a sum of amalgams of squares or x is a product of squares and y
is generated from squares, then x · y is generated from squares.

(9) If x is a sum of products of squares and y is a square or x is a sum of
products of squares and y is a sum of squares or x is a sum of products of
squares and y is a product of squares or x is a sum of products of squares
and y is a sum of products of squares or x is a sum of products of squares
and y is a amalgam of squares or x is a sum of products of squares and y
is a sum of amalgams of squares or x is a sum of products of squares and
y is generated from squares, then x · y is generated from squares.

(10) If x is a amalgam of squares and y is a sum of squares or x is a amalgam
of squares and y is a sum of products of squares or x is a amalgam of
squares and y is a sum of amalgams of squares or x is a amalgam of
squares and y is generated from squares, then x · y is generated from
squares.

(11) If x is a sum of amalgams of squares and y is a square or x is a sum of
amalgams of squares and y is a sum of squares or x is a sum of amalgams
of squares and y is a product of squares or x is a sum of amalgams of
squares and y is a sum of products of squares or x is a sum of amalgams
of squares and y is a amalgam of squares or x is a sum of amalgams of
squares and y is a sum of amalgams of squares or x is a sum of amalgams
of squares and y is generated from squares, then x · y is generated from
squares.

(12) If x is generated from squares and y is a square or x is generated from
squares and y is a sum of squares or x is generated from squares and y
is a product of squares or x is generated from squares and y is a sum of
products of squares or x is generated from squares and y is a amalgam
of squares or x is generated from squares and y is a sum of amalgams of
squares or x is generated from squares and y is generated from squares,
then x · y is generated from squares.
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Summary. This article defines ordered n-tuples, projections and
Cartesian products for n=5. We prove many theorems concerning the
basic properties of the n-tuples and Cartesian products that may be uti-
lized in several further, more challenging applications. A few of these
theorems are a strightforward consequence of the regularity axiom. The
article originated as an upgrade of the article [5].

MML Identifier: MCART 2.

The notation and terminology used in this paper are introduced in the following
articles: [4], [3], [6], [2], [1], and [5]. For simplicity we follow a convention: v
will be arbitrary, x1, x2, x3, x4, x5 will be arbitrary, y1, y2, y3, y4, y5 will be
arbitrary, z will be arbitrary, X, X1, X2, X3, X4, X5 will denote sets, Y , Y1,
Y2, Y3, Y4, Y5, Y6, Y7 will denote sets, Z will denote a set, x6 will denote an
element of X1, x7 will denote an element of X2, x8 will denote an element of
X3, and x9 will denote an element of X4. We now state two propositions:

(1) If X 6= ∅, then there exists Y such that Y ∈ X and for all Y1, Y2, Y3,
Y4, Y5, Y6 such that Y1 ∈ Y2 and Y2 ∈ Y3 and Y3 ∈ Y4 and Y4 ∈ Y5 and
Y5 ∈ Y6 and Y6 ∈ Y holds Y1 misses X.

(2) If X 6= ∅, then there exists Y such that Y ∈ X and for all Y1, Y2, Y3,
Y4, Y5, Y6, Y7 such that Y1 ∈ Y2 and Y2 ∈ Y3 and Y3 ∈ Y4 and Y4 ∈ Y5

and Y5 ∈ Y6 and Y6 ∈ Y7 and Y7 ∈ Y holds Y1 misses X.

Let us consider x1, x2, x3, x4, x5. The functor 〈〈x1, x2, x3, x4, x5〉〉 is defined
as follows:

(Def.1) 〈〈x1, x2, x3, x4, x5〉〉 = 〈〈〈〈x1, x2, x3, x4〉〉, x5〉〉.
One can prove the following propositions:

(3) 〈〈x1, x2, x3, x4, x5〉〉 = 〈〈〈〈〈〈〈〈x1, x2〉〉, x3〉〉, x4〉〉, x5〉〉.
(4) 〈〈x1, x2, x3, x4, x5〉〉 = 〈〈〈〈x1, x2, x3, x4〉〉, x5〉〉.
1Supported by RPBP.III-24.C6
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(5) 〈〈x1, x2, x3, x4, x5〉〉 = 〈〈〈〈x1, x2, x3〉〉, x4, x5〉〉.
(6) 〈〈x1, x2, x3, x4, x5〉〉 = 〈〈〈〈x1, x2〉〉, x3, x4, x5〉〉.
(7) If 〈〈x1, x2, x3, x4, x5〉〉 = 〈〈y1, y2, y3, y4, y5〉〉, then x1 = y1 and x2 = y2 and

x3 = y3 and x4 = y4 and x5 = y5.

(8) If X 6= ∅, then there exists v such that v ∈ X and for no x1, x2, x3, x4,
x5 holds x1 ∈ X or x2 ∈ X but v = 〈〈x1, x2, x3, x4, x5〉〉.

Let us consider X1, X2, X3, X4, X5. The functor [:X1, X2, X3, X4, X5 :]
yields a set and is defined as follows:

(Def.2) [:X1, X2, X3, X4, X5 :] = [: [:X1, X2, X3, X4 :], X5 :].

The following propositions are true:

(9) [:X1, X2, X3, X4, X5 :] = [: [: [: [:X1, X2 :], X3 :], X4 :], X5 :].

(10) [:X1, X2, X3, X4, X5 :] = [: [:X1, X2, X3, X4 :], X5 :].

(11) [:X1, X2, X3, X4, X5 :] = [: [:X1, X2, X3 :], X4, X5 :].

(12) [:X1, X2, X3, X4, X5 :] = [: [:X1, X2 :], X3, X4, X5 :].

(13) X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅ if and only if
[:X1, X2, X3, X4, X5 :] 6= ∅.

(14) Suppose X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅.
Then if [:X1, X2, X3, X4, X5 :] = [: Y1, Y2, Y3, Y4, Y5 :], then X1 = Y1 and
X2 = Y2 and X3 = Y3 and X4 = Y4 and X5 = Y5.

(15) If [:X1, X2, X3, X4, X5 :] 6= ∅ and [:X1, X2, X3, X4, X5 :] = [:Y1, Y2,
Y3, Y4, Y5 :], then X1 = Y1 and X2 = Y2 and X3 = Y3 and X4 = Y4 and
X5 = Y5.

(16) If [:X, X, X, X, X :] = [: Y, Y, Y, Y, Y :], then X = Y .

In the sequel x10 will be an element of X5. We now state the proposition

(17) If X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅, then for
every element x of [:X1, X2, X3, X4, X5 :] there exist x6, x7, x8, x9, x10

such that x = 〈〈x6, x7, x8, x9, x10〉〉.
We now define five new functors. Let us consider X1, X2, X3, X4, X5. Let

us assume that X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅. Let
x be an element of [:X1, X2, X3, X4, X5 :]. The functor x1 yields an element of
X1 and is defined as follows:

(Def.3) if x = 〈〈x1, x2, x3, x4, x5〉〉, then x1 = x1.

The functor x2 yields an element of X2 and is defined as follows:

(Def.4) if x = 〈〈x1, x2, x3, x4, x5〉〉, then x2 = x2.

The functor x3 yielding an element of X3 is defined as follows:

(Def.5) if x = 〈〈x1, x2, x3, x4, x5〉〉, then x3 = x3.

The functor x4 yielding an element of X4 is defined as follows:

(Def.6) if x = 〈〈x1, x2, x3, x4, x5〉〉, then x4 = x4.

The functor x5 yields an element of X5 and is defined by:

(Def.7) if x = 〈〈x1, x2, x3, x4, x5〉〉, then x5 = x5.
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One can prove the following propositions:

(18) Suppose X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅.
Then for every element x of [:X1, X2, X3, X4, X5 :] and for all x1, x2, x3,
x4, x5 such that x = 〈〈x1, x2, x3, x4, x5〉〉 holds x1 = x1 and x2 = x2 and
x3 = x3 and x4 = x4 and x5 = x5.

(19) If X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅, then for
every element x of [:X1, X2, X3, X4, X5 :] holds x = 〈〈x1, x2, x3, x4, x5〉〉.

(20) Suppose X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅. Let x
be an element of [:X1, X2, X3, X4, X5 :]. Then x1 = xqua any1111 and
x2 = xqua any1112 and x3 = xqua any112 and x4 = xqua any12 and
x5 = xqua any2.

(21) If X1 ⊆ [:X1, X2, X3, X4, X5 :] or X1 ⊆ [:X2, X3, X4, X5, X1 :] or X1 ⊆
[:X3, X4, X5, X1, X2 :] or X1 ⊆ [:X4, X5, X1, X2, X3 :] or X1 ⊆ [:X5, X1,
X2, X3, X4 :], then X1 = ∅.

(22) If [:X1, X2, X3, X4, X5 :] meets [: Y1, Y2, Y3, Y4, Y5 :], then X1 meets Y1

and X2 meets Y2 and X3 meets Y3 and X4 meets Y4 and X5 meets Y5.

(23) [: {x1}, {x2}, {x3}, {x4}, {x5} :] = {〈〈x1, x2, x3, x4, x5〉〉}.
For simplicity we adopt the following rules: A1 is a subset of X1, A2 is a

subset of X2, A3 is a subset of X3, A4 is a subset of X4, A5 is a subset of
X5, and x is an element of [:X1, X2, X3, X4, X5 :]. One can prove the following
propositions:

(24) Suppose X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅. Then
for all x1, x2, x3, x4, x5 such that x = 〈〈x1, x2, x3, x4, x5〉〉 holds x1 = x1

and x2 = x2 and x3 = x3 and x4 = x4 and x5 = x5.

(25) If X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅ and for all
x6, x7, x8, x9, x10 such that x = 〈〈x6, x7, x8, x9, x10〉〉 holds y1 = x6, then
y1 = x1.

(26) If X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅ and for all
x6, x7, x8, x9, x10 such that x = 〈〈x6, x7, x8, x9, x10〉〉 holds y2 = x7, then
y2 = x2.

(27) If X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅ and for all
x6, x7, x8, x9, x10 such that x = 〈〈x6, x7, x8, x9, x10〉〉 holds y3 = x8, then
y3 = x3.

(28) If X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅ and for all
x6, x7, x8, x9, x10 such that x = 〈〈x6, x7, x8, x9, x10〉〉 holds y4 = x9, then
y4 = x4.

(29) If X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅ and for all
x6, x7, x8, x9, x10 such that x = 〈〈x6, x7, x8, x9, x10〉〉 holds y5 = x10, then
y5 = x5.

(30) If z ∈ [:X1, X2, X3, X4, X5 :], then there exist x1, x2, x3, x4, x5 such
that x1 ∈ X1 and x2 ∈ X2 and x3 ∈ X3 and x4 ∈ X4 and x5 ∈ X5 and
z = 〈〈x1, x2, x3, x4, x5〉〉.
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(31) 〈〈x1, x2, x3, x4, x5〉〉 ∈ [:X1, X2, X3, X4, X5 :] if and only if x1 ∈ X1 and
x2 ∈ X2 and x3 ∈ X3 and x4 ∈ X4 and x5 ∈ X5.

(32) If for every z holds z ∈ Z if and only if there exist x1, x2, x3, x4, x5

such that x1 ∈ X1 and x2 ∈ X2 and x3 ∈ X3 and x4 ∈ X4 and x5 ∈ X5

and z = 〈〈x1, x2, x3, x4, x5〉〉, then Z = [:X1, X2, X3, X4, X5 :].

(33) Suppose X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅ and X5 6= ∅ and
Y1 6= ∅ and Y2 6= ∅ and Y3 6= ∅ and Y4 6= ∅ and Y5 6= ∅. Let x be an
element of [:X1, X2, X3, X4, X5 :]. Then for every element y of [:Y1, Y2,
Y3, Y4, Y5 :] such that x = y holds x1 = y1 and x2 = y2 and x3 = y3 and
x4 = y4 and x5 = y5.

(34) For every element x of [:X1, X2, X3, X4, X5 :] such that x ∈ [:A1, A2,
A3, A4, A5 :] holds x1 ∈ A1 and x2 ∈ A2 and x3 ∈ A3 and x4 ∈ A4 and
x5 ∈ A5.

(35) If X1 ⊆ Y1 and X2 ⊆ Y2 and X3 ⊆ Y3 and X4 ⊆ Y4 and X5 ⊆ Y5, then
[:X1, X2, X3, X4, X5 :] ⊆ [:Y1, Y2, Y3, Y4, Y5 :].

Let us consider X1, X2, X3, X4, X5, A1, A2, A3, A4, A5. Then [:A1, A2, A3,
A4, A5 :] is a subset of [:X1, X2, X3, X4, X5 :].

The following three propositions are true:

(36) If X1 6= ∅ and X2 6= ∅, then for every element x11 of [:X1, X2 :] there
exists an element x6 of X1 and there exists an element x7 of X2 such that
x11 = 〈〈x6, x7〉〉.

(37) If X1 6= ∅ and X2 6= ∅ and X3 6= ∅, then for every element x11 of [:X1,
X2, X3 :] there exist x6, x7, x8 such that x11 = 〈〈x6, x7, x8〉〉.

(38) If X1 6= ∅ and X2 6= ∅ and X3 6= ∅ and X4 6= ∅, then for every
element x11 of [:X1, X2, X3, X4 :] there exist x6, x7, x8, x9 such that
x11 = 〈〈x6, x7, x8, x9〉〉.
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Summary. The article contains part 3 of the set of papers con-
cerning the theory of algebraic structures, based on the book [11] pp.
13-15 (pages 6-8 for English edition).

First the basic structure (F, 0, 1, T) is defined, where T is a ternary
operation on F (three-argument operations have been introduced in the
article [9]). Following it, the basic axioms of a Ternary Field are displayed,
the mode is defined and its existence proved. The basic properties of a
Ternary Field are also contemplated there.

MML Identifier: ALGSTR 3.

The articles [13], [12], [3], [4], [1], [2], [6], [5], [7], [8], [10], and [9] provide the
notation and terminology for this paper. We consider ternary field structures
which are systems
〈a carrier, a zero, a unity, a operation〉,

where the carrier is a non-empty set, the zero is an element of the carrier, the
unity is an element of the carrier, and the operation is a ternary operation on
the carrier.

In the sequel F denotes a ternary field structure. Let us consider F . A scalar
of F is an element of the carrier of F .

In the sequel a, b, c are scalars of F . Let us consider F , a, b, c. The functor

T(a, b, c) yields a scalar of F and is defined by:

(Def.1) T(a, b, c) = (the operation of F )(a, b, c).

Let us consider F . The functor 0F yielding a scalar of F is defined as follows:

(Def.2) 0F = the zero of F .

Let us consider F . The functor 1F yields a scalar of F and is defined by:

(Def.3) 1F = the unity of F .

The ternary operation T � on
�

is defined as follows:

1Supported by RPBP.III-24.C6
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(Def.4) for all real numbers a, b, c holds T � (a, b, c) = a · b+ c.

The ternary field structure
�

t is defined by:

(Def.5)
�

t = 〈 �
, 0, 1,T � 〉.

Let a, b, c be scalars of
�

t. The functor Te(a, b, c) yields a scalar of
�

t and
is defined by:

(Def.6) Te(a, b, c) = (the operation of
�

t)(a, b, c).

We now state several propositions:

(1) For every scalar a of
�

t holds a is a real number.

(2) For every real number a holds a is a scalar of
�

t.

(3) For all real numbers u, u′, v, v′ such that u 6= u′ there exists a real
number x such that u · x+ v = u′ · x+ v′.

(5)2 For all scalars u, a, v of
�

t and for all real numbers z, x, y such that
u = z and a = x and v = y holds T(u, a, v) = z · x+ y.

(6) 0 = 0 �
t .

(7) 1 = 1 �
t .

A ternary field structure is called a ternary field if:

(Def.7) (i) 0it 6= 1it,
(ii) for every scalar a of it holds T(a, 1it, 0it) = a,
(iii) for every scalar a of it holds T(1it, a, 0it) = a,
(iv) for all scalars a, b of it holds T(a, 0it, b) = b,
(v) for all scalars a, b of it holds T(0it, a, b) = b,
(vi) for every scalars u, a, b of it there exists a scalar v of it such that

T(u, a, v) = b,
(vii) for all scalars u, a, v, v′ of it such that T(u, a, v) = T(u, a, v′) holds

v = v′,
(viii) for all scalars a, a′ of it such that a 6= a′ for every scalars b, b′ of it

there exist scalars u, v of it such that T(u, a, v) = b and T(u, a′, v) = b′,
(ix) for all scalars u, u′ of it such that u 6= u′ for every scalars v, v′ of it

there exists a scalar a of it such that T(u, a, v) = T(u′, a, v′),
(x) for all scalars a, a′, u, u′, v, v′ of it such that T(u, a, v) = T(u′, a, v′)

and T(u, a′, v) = T(u′, a′, v′) holds a = a′ or u = u′.

We adopt the following convention: F is a ternary field and a, a′, b, c, x, x′,
u, u′, v, v′ are scalars of F . We now state several propositions:

(8) If a 6= a′ and T(u, a, v) = T(u′, a, v′) and T(u, a′, v) = T(u′, a′, v′), then
u = u′ and v = v′.

(9) For every a, b, c there exists x such that T(a, b, x) = c.

(10) If T(a, b, x) = T(a, b, x′), then x = x′.
(11) If a 6= 0F , then for every b, c there exists x such that T(a, x, b) = c.

(12) If a 6= 0F and T(a, x, b) = T(a, x′, b), then x = x′.
(13) If a 6= 0F , then for every b, c there exists x such that T(x, a, b) = c.

2The proposition (4) was either repeated or obvious.
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(14) If a 6= 0F and T(x, a, b) = T(x′, a, b), then x = x′.
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Summary. The article contains a definition and basic properties

of a σ-additive, nonnegative measure, with values in
�

, the enlarged set

of real numbers, where
�

denotes set
�

=
� ∪ {−∞,+∞} - by [11]. We

present definitions of σ-field of sets, σ-additive measure, measurable sets,
measure zero sets and the basic theorems describing relationships between
the notions mentioned above. The work is the third part of the series of
articles concerning the Lebesgue measure theory.

MML Identifier: MEASURE1.

The papers [13], [12], [7], [8], [5], [6], [1], [10], [2], [9], [3], and [4] provide the
terminology and notation for this paper. One can prove the following four
propositions:

(1) For all sets X, Y holds
⋃{X,Y, ∅} =

⋃{X,Y }.
(2) For every natural number n holds n = 0 or n = 1 or 1 < n.

(4)1 For all Real numbers x, y, s, t such that 0 � ≤ x and 0 � ≤ s and x ≤ y
and s ≤ t holds x+ s ≤ y + t.

(5) For all Real numbers x, y, z such that 0 � ≤ y and 0 � ≤ z and x = y+ z
and y < +∞ holds z = x− y.

Let X be a set. A set is called a non-empty family of subsets of X if:

(Def.1) it 6= ∅ and for an arbitrary A such that A ∈ it holds A ∈ 2X .

One can prove the following propositions:

(6) For every set X and for every subset A of X holds {A} is a non-empty
family of subsets of X.

(7) For every set X and for all subsets A, B of X holds {A,B} is a non-
empty family of subsets of X.

(8) For every set X and for all subsets A, B, C of X holds {A,B,C} is a
non-empty family of subsets of X.

1The proposition (3) was either repeated or obvious.
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(9) For every set X holds {∅} is a non-empty family of subsets of X.

(10) For every set X holds {∅, X} is a non-empty family of subsets of X.

(12)2 For every set X holds 2X is a non-empty family of subsets of X.

The scheme DomsetFamEx concerns a set A, and a unary predicate P, and
states that:

there exists a non-empty family F of subsets of A such that for every set B
holds B ∈ F if and only if B ⊆ A and P[B]
provided the following condition is satisfied:
• there exists a set B such that B ⊆ A and P[B].
Let X be a set, and let S be a non-empty family of subsets of X. The functor

X \ S yielding a non-empty family of subsets of X is defined as follows:

(Def.2) for every set A holds A ∈ X \ S if and only if there exists a set B such
that B ∈ S and A = X \ B.

We now state three propositions:

(13) For every set X and for every non-empty family S of subsets of X and
for every set A holds A ∈ X \ S if and only if there exists a set B such
that B ∈ S and A = X \ B.

(14) For every set X and for every non-empty family S of subsets of X holds
S = X \ (X \ S).

(15) For every set X and for every non-empty family S of subsets of X holds⋂
S = X \⋃(X \ S) and

⋃
S = X \ ⋂(X \ S).

Let X be a set. A non-empty family of subsets of X is said to be a field of
subsets of X if:

(Def.3) for every set A such that A ∈ it holds X \ A ∈ it and for all sets A, B
such that A ∈ it and B ∈ it holds A ∪B ∈ it.

The following propositions are true:

(17)3 For every set X and for every field S of subsets of X holds S = X \ S.

(18) For every set X and for an arbitrary M holds M is a field of subsets of
X if and only if there exists a non-empty family S of subsets of X such
that M = S and for every set A such that A ∈ S holds X \A ∈ S and for
all sets A, B such that A ∈ S and B ∈ S holds A ∪B ∈ S.

(19) For every set X and for every non-empty family S of subsets of X holds
S is a field of subsets of X if and only if for every set A such that A ∈ S
holds X \ A ∈ S and for all sets A, B such that A ∈ S and B ∈ S holds
A ∩B ∈ S.

(20) For every set X and for every field S of subsets of X and for all sets A,
B such that A ∈ S and B ∈ S holds A \ B ∈ S.

(21) For every set X and for every field S of subsets of X holds ∅ ∈ S and
X ∈ S.

2The proposition (11) was either repeated or obvious.
3The proposition (16) was either repeated or obvious.
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Let X be a set, and let S be a non-empty family of subsets of X, and let F
be a function from S into

�
, and let A be an element of S. Then F (A) is a Real

number.

Let F be a function from � into
�
, and let n be a natural number. Then

F (n) is a Real number.

Let X be a set, and let S be a non-empty family of subsets of X, and let F
be a function from S into

�
. We say that F is non-negative if and only if:

(Def.4) for every element A of S holds 0 � ≤ F (A).

We now state the proposition

(23)4 For every set X and for every field S of subsets of X there exists a
function M from S into

�
such that M is non-negative and M(∅) = 0 �

and for all elements A, B of S such that A ∩ B = ∅ holds M(A ∪ B) =
M(A) +M(B).

Let X be a set, and let S be a field of subsets of X. A function from S into�
is called a measure on S if:

(Def.5) it is non-negative and it(∅) = 0 � and for all elements A, B of S such
that A ∩B = ∅ holds it(A ∪B) = it(A) + it(B).

Next we state two propositions:

(25)5 For every set X and for every field S of subsets of X and for every
measure M on S and for all elements A, B of S such that A ⊆ B holds
M(A) ≤M(B).

(26) For every set X and for every field S of subsets of X and for every
measure M on S and for all elements A, B of S such that A ⊆ B and
M(A) < +∞ holds M(B \ A) = M(B)−M(A).

Let X be a set, and let S be a field of subsets of X, and let A, B be elements
of S. Then A ∪B is an element of S.

Let X be a set, and let S be a field of subsets of X, and let A, B be elements
of S. Then A ∩B is an element of S.

Let X be a set, and let S be a field of subsets of X, and let A, B be elements
of S. Then A \B is an element of S.

The following proposition is true

(27) For every set X and for every field S of subsets of X and for every
measure M on S and for all elements A, B of S holds M(A ∪ B) ≤
M(A) +M(B).

Let X be a set, and let S be a field of subsets of X, and let M be a measure
on S, and let A be a set. We say that A is measurable w.r.t. M if and only if:

(Def.6) A ∈ S.

The following proposition is true

4The proposition (22) was either repeated or obvious.
5The proposition (24) was either repeated or obvious.
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(29)6 For every set X and for every field S of subsets of X and for every
measure M on S holds ∅ is measurable w.r.t. M and X is measurable
w.r.t. M and for all sets A, B such that A is measurable w.r.t. M and B
is measurable w.r.t. M holds X \A is measurable w.r.t. M and A ∪B is
measurable w.r.t. M and A ∩B is measurable w.r.t. M .

Let X be a set, and let S be a field of subsets of X, and let M be a measure
on S. An element of S is called a set of measure zero w.r.t. M if:

(Def.7) M(it) = 0 � .

The following propositions are true:

(31)7 For every set X and for every field S of subsets of X and for every
measure M on S and for every element A of S and for every set B of
measure zero w.r.t. M such that A ⊆ B holds A is a set of measure zero
w.r.t. M .

(32) For every set X and for every field S of subsets of X and for every
measure M on S and for all sets A, B of measure zero w.r.t. M holds
A ∪ B is a set of measure zero w.r.t. M and A ∩ B is a set of measure
zero w.r.t. M and A \ B is a set of measure zero w.r.t. M .

(33) For every set X and for every field S of subsets of X and for every
measure M on S and for every element A of S and for every set B of
measure zero w.r.t. M holds M(A∪B) = M(A) and M(A∩B) = 0 � and
M(A \ B) = M(A).

(34) For every set X and for every subset A of X there exists a function F
from � into 2X such that rngF = {A}.

(35) For every set X and for every subset A of X there exists a function F
from � into {A} such that for every natural number n holds F (n) = A.

Let X be a set. A non-empty family of subsets of X is said to be a denu-
merable family of subsets of X if:

(Def.8) there exists a function F from � into 2X such that it = rngF .

We now state several propositions:

(37)8 For every set X and for every denumerable family S of subsets of X
there exists a function F from � into 2X such that S = rngF .

(38) For every set X and for every subsets A, B, C of X there exists a
function F from � into 2X such that rngF = {A,B,C} and F (0) = A
and F (1) = B and for every natural number n such that 1 < n holds
F (n) = C.

(39) For every set X and for all subsets A, B of X holds {A,B, ∅} is a
denumerable family of subsets of X.

6The proposition (28) was either repeated or obvious.
7The proposition (30) was either repeated or obvious.
8The proposition (36) was either repeated or obvious.
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(40) For every set X and for every subsets A, B of X there exists a function
F from � into 2X such that rngF = {A,B} and F (0) = A and for every
natural number n such that 0 < n holds F (n) = B.

(41) For every set X and for all subsets A, B of X holds {A,B} is a denu-
merable family of subsets of X.

(42) For every set X and for every denumerable family S of subsets of X
holds X \ S is a denumerable family of subsets of X.

Let X be a set. A non-empty family of subsets of X is said to be a σ-field
of subsets of X if:

(Def.9) for every set A such that A ∈ it holds X \ A ∈ it and for every denu-
merable family M of subsets of X such that M ⊆ it holds

⋃
M ∈ it.

One can prove the following propositions:

(44)9 For every set X and for every non-empty family S of subsets of X such
that S is a σ-field of subsets of X holds S is a field of subsets of X.

(45) For every set X and for every σ-field S of subsets of X holds ∅ ∈ S and
X ∈ S.

(46) For every set X and for every σ-field S of subsets of X and for all sets
A, B such that A ∈ S and B ∈ S holds A ∪B ∈ S and A ∩B ∈ S.

(47) For every set X and for every σ-field S of subsets of X and for all sets
A, B such that A ∈ S and B ∈ S holds A \ B ∈ S.

(48) For every set X and for every σ-field S of subsets of X holds S = X \S.

(49) For every set X and for every non-empty family S of subsets of X holds
S is a σ-field of subsets of X if and only if for every set A such that A ∈ S
holds X \ A ∈ S and for every denumerable family M of subsets of X
such that M ⊆ S holds

⋂
M ∈ S.

Let X be a set, and let S be a σ-field of subsets of X. A function from �
into S is said to be a sequence of separated subsets of S if:

(Def.10) for all natural numbers n, m such that n 6= m holds it(n) ∩ it(m) = ∅.
We now state the proposition

(51)10 For every set X and for every σ-field S of subsets of X and for every
function F from � into S and for every function M from S into

�
holds

M · F is a function from � into
�
.

Let X be a set, and let S be a σ-field of subsets of X, and let F be a function
from � into S. Then rngF is a non-empty family of subsets of X.

Let X be a set, and let S be a σ-field of subsets of X, and let F be a function
from � into S, and let M be a function from S into

�
. Then M ·F is a function

from � into
�
.

Next we state several propositions:

9The proposition (43) was either repeated or obvious.
10The proposition (50) was either repeated or obvious.
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(52) For every set X and for every σ-field S of subsets of X and for every
function F from � into S holds rngF is a denumerable family of subsets
of X.

(53) For every set X and for every σ-field S of subsets of X and for every
function F from � into S holds

⋃
rngF is an element of S.

(54) For every set X and for every σ-field S of subsets of X and for every
function F from � into S and for every function M from S into

�
such

that M is non-negative holds M · F is non-negative.

(55) For every set X and for every σ-field S of subsets of X and for every
Real numbers a, b there exists a function M from S into

�
such that for

every element A of S holds if A = ∅, then M(A) = a but if A 6= ∅, then
M(A) = b.

(56) For every set X and for every σ-field S of subsets of X there exists a
function M from S into

�
such that for every element A of S holds if

A = ∅, then M(A) = 0 � but if A 6= ∅, then M(A) = +∞.

(57) For every set X and for every σ-field S of subsets of X there exists
a function M from S into

�
such that for every element A of S holds

M(A) = 0 � .

(58) For every set X and for every σ-field S of subsets of X there exists a
function M from S into

�
such that M is non-negative and M(∅) = 0 �

and for every sequence F of separated subsets of S holds
∑

(M · F ) =
M(

⋃
rngF ).

Let X be a set, and let S be a σ-field of subsets of X. A function from S
into

�
is said to be a σ-measure on S if:

(Def.11) it is non-negative and it(∅) = 0 � and for every sequence F of separated
subsets of S holds

∑
(it · F ) = it(

⋃
rngF ).

Let X be a set. We see that the σ-field of subsets of X is a field of subsets
of X.

One can prove the following propositions:

(60)11 For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S holds M is a measure on S.

(61) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all elements A, B of S such that A ∩ B = ∅
holds M(A ∪B) = M(A) +M(B).

(62) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all elements A, B of S such that A ⊆ B holds
M(A) ≤M(B).

(63) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all elements A, B of S such that A ⊆ B and
M(A) < +∞ holds M(B \A) = M(B)−M(A).

11The proposition (59) was either repeated or obvious.
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(64) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all elements A, B of S holds M(A ∪ B) ≤
M(A) +M(B).

Let X be a set, and let S be a σ-field of subsets of X, and let M be a σ-
measure on S, and let A be a set. We say that A is measurable w.r.t. M if and
only if:

(Def.12) A ∈ S.

Next we state two propositions:

(66)12 For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S holds ∅ is measurable w.r.t. M and X is measurable
w.r.t. M and for all sets A, B such that A is measurable w.r.t. M and B
is measurable w.r.t. M holds X \A is measurable w.r.t. M and A ∪B is
measurable w.r.t. M and A ∩B is measurable w.r.t. M .

(67) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every denumerable family T of subsets of X
such that for every set A such that A ∈ T holds A is measurable w.r.t.
M holds

⋃
T is measurable w.r.t. M and

⋂
T is measurable w.r.t. M .

Let X be a set, and let S be a σ-field of subsets of X, and let M be a
σ-measure on S. An element of S is called a set of measure zero w.r.t. M if:

(Def.13) M(it) = 0 � .

Next we state three propositions:

(69)13 For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every element A of S and for every set B of
measure zero w.r.t. M such that A ⊆ B holds A is a set of measure zero
w.r.t. M .

(70) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for all sets A, B of measure zero w.r.t. M holds
A ∪ B is a set of measure zero w.r.t. M and A ∩ B is a set of measure
zero w.r.t. M and A \ B is a set of measure zero w.r.t. M .

(71) For every set X and for every σ-field S of subsets of X and for every
σ-measure M on S and for every element A of S and for every set B of
measure zero w.r.t. M holds M(A∪B) = M(A) and M(A∩B) = 0 � and
M(A \B) = M(A).
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Summary. The article begins with basic facts concernig arbitrary
projective spaces. Further we are concerned with Fano projective spaces
(we prove it has a rank of at least four). Finally we confine ourselves to
Desarguesian planes; we define the notion of perspectivity and we prove
the reduction theorem for projectivities with concurrent axes.

MML Identifier: PROJRED1.

The articles [6], [8], [5], [7], [9], [10], [4], [3], [1], and [2] provide the terminology
and notation for this paper. We adopt the following convention: I1 will be a
projective space defined in terms of incidence, a, b, c, d, p, q, o, r, s will be
elements of the points of I1, and A, B, C, P , Q will be elements of the lines of
I1. We now state a number of propositions:

(1) There exists a such that a � A.

(2) There exists A such that a � A.

(3) If A 6= B, then there exist a, b such that a | A and a � B and b | B and
b � A.

(4) If a 6= b, then there exist A, B such that a | A and a � B and b | B and
b � A.

(5) There exist A, B, C such that a | A and a | B and a | C and A 6= B
and B 6= C and C 6= A.

(6) There exists a such that a � A and a � B.

(7) There exists a such that a | A.

(8) If a | A and b | A, then there exists c such that c | A and c 6= a and
c 6= b.

1Supported by RPBP.III-24.C6
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(9) There exists A such that a � A and b � A.

(10) If A 6= B and o | A and o | B and p | A and p 6= o and q | B, then p 6= q.

(11) If o 6= a and o 6= b and A 6= B and o | A and o | B and a | A and a | C
and b | B and b | C, then A 6= C.

(12) Suppose o | A and o | B and A 6= B and a | A and o 6= a and b | B and
c | B and b 6= c and a | P and b | P and a | Q and c | Q. Then P 6= Q.

(13) If a, b, c | A, then a, c, b | A and b, a, c | A and b, c, a | A and c, a, b | A
and c, b, a | A.

(14) Let I1 be a Desarguesian projective space defined in terms of incidence.
Let o, b1, a1, b2, a2, b3, a3, r, s, t be elements of the points of I1. Let C1,
C2, C3, A1, A2, A3, B1, B2, B3 be elements of the lines of I1. Suppose
that

(i) o, b1, a1 | C1,
(ii) o, a2, b2 | C2,
(iii) o, a3, b3 | C3,
(iv) a3, a2, t | A1,
(v) a3, r, a1 | A2,
(vi) a2, s, a1 | A3,

(vii) t, b2, b3 | B1,
(viii) b1, r, b3 | B2,

(ix) b1, s, b2 | B3,
(x) C1, C2, C3 are mutually different,
(xi) o 6= a3,

(xii) o 6= b1,
(xiii) o 6= b2,
(xiv) a2 6= b2.

Then there exists an element O of the lines of I1 such that r, s, t | O.

(15) Suppose there exist A, a, b, c, d such that a | A and b | A and c | A and
d | A and a, b, c, d are mutually different. Then for every B there exist
p, q, r, s such that p | B and q | B and r | B and s | B and p, q, r, s are
mutually different.

We follow a convention: I1 will be a Fanoian projective space defined in terms
of incidence, a, b, c, d, p, q, r, s will be elements of the points of I1, and A, B,
C, D, L, Q, R, S will be elements of the lines of I1. The following propositions
are true:

(16) There exist p, q, r, s, a, b, c, A, B, C, Q, L, R, S, D such that q � L
and r � L and p � Q and s � Q and p � R and r � R and q � S and s � S
and a, p, s | L and a, q, r | Q and b, q, s | R and b, p, r | S and c, p, q | A
and c, r, s | B and a, b | C and c � C.

(17) There exist a, A, B, C, D such that a | A and a | B and a | C and
a | D and A, B, C, D are mutually different.

(18) There exist a, b, c, d, A such that a | A and b | A and c | A and d | A
and a, b, c, d are mutually different.
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(19) There exist p, q, r, s such that p | B and q | B and r | B and s | B and
p, q, r, s are mutually different.

We follow a convention: I1 will denote a Desarguesian 2-dimensional projec-
tive space defined in terms of incidence, c, p, q, x, y will denote elements of
the points of I1, and K, L, R, X will denote elements of the lines of I1. Let
us consider I1, K, L, p. Let us assume that p � K and p � L. The functor
πp(K → L) yields a partial function from the points of I1 to the points of I1

and is defined as follows:

(Def.1) domπp(K → L) ⊆ the points of I1 and for every x holds x ∈ domπp(K →
L) if and only if x | K and for all x, y such that x | K and y | L holds
πp(K → L)(x) = y if and only if there exists X such that p | X and x | X
and y | X.

One can prove the following propositions:

(20) Suppose p � K and p � L. Then
(i) domπp(K → L) ⊆ the points of I1,
(ii) for every x holds x ∈ domπp(K → L) if and only if x | K,

(iii) for all x, y such that x | K and y | L holds πp(K → L)(x) = y if and
only if there exists X such that p | X and x | X and y | X.

(21) If p � K, then for every x such that x | K holds πp(K → K)(x) = x.

(22) If p � K and p � L and x | K, then πp(K → L)(x) is an element of the
points of I1.

(23) If p � K and p � L and x | K and y = πp(K → L)(x), then y | L.

(24) If p � K and p � L and y ∈ rng πp(K → L), then y | L.

(25) Suppose p � K and p � L and q � L and q � R. Then dom(πq(L →
R) · πp(K → L)) = domπp(K → L) and rng(πq(L→ R) · πp(K → L)) =
rng πq(L→ R).

(26) Let a1, b1, a2, b2 be elements of the points of I1. Then if p � K and p � L
and a1 | K and b1 | K and πp(K → L)(a1) = a2 and πp(K → L)(b1) = b2
and a2 = b2, then a1 = b1.

(27) If p � K and p � L and x | K and x | L, then πp(K → L)(x) = x.

We now state the proposition

(28) Suppose p � K and p � L and q � L and q � R and c | K and c | L and
c | R and K 6= R. Then there exists an element o of the points of I1 such
that o � K and o � R and πq(L→ R) · πp(K → L) = πo(K → R).
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The articles [11], [10], [13], [3], [1], [12], [9], [4], [2], [5], [6], [7], and [8] provide
the notation and terminology for this paper. A group structure is called a group
if:

(Def.1) for all elements x, y, z of it holds x+y+ z = x+ (y+ z) and x+ 0it = x
and x+−x = 0it.

In the sequel G denotes a group structure and x, y denote elements of G.
We see that the Abelian group is a group.

Let us consider G, x, y. The functor x−′y yielding an element of G is defined
by:

(Def.2) x−′ y = x+−y.

In the sequel G denotes a group and u, v, w denote elements of G. One can
prove the following propositions:

(1) (−v) + v = 0G.

(2) 0G + v = v.

(3) v + w = 0G if and only if −v = w.

(4) −0G = 0G.

(5) (i) −(v + w) = (−w)−′ v,
(ii) −− v = v,

(iii) −((−v) + w) = (−w) + v,
(iv) −(v −′ w) = w −′ v,
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(v) −((−v)−′ w) = w + v,
(vi) u−′ (v + w) = u−′ w −′ v.

(6) 0G −′ v = −v and v −′ 0G = v.

In the sequel G denotes an Abelian group and u, v, w denote elements of G.
The following four propositions are true:

(7) (i) −(v + w) = (−w) − v,
(ii) −− v = v,
(iii) −((−v) + w) = (−w) + v,
(iv) −(v − w) = w − v,
(v) −((−v)− w) = w + v,
(vi) u− (v + w) = u− w − v.

(8) 0G − v = −v and v − 0G = v.

(9) (−u)− v = (−v) − u and (−u) + v = v − u and u− v = (−v) + u and
u− v − w = u− w − v.

(10) (i) −(v + w) = (−v)− w,
(ii) −((−v) + w) = v − w,
(iii) −(v − w) = (−v) + w,
(iv) −((−v)− w) = v + w,
(v) u− (v + w) = u− v −w.

For simplicity we adopt the following convention: R will denote an associative
ring, a, b will denote scalars of R, V will denote a left module over R, and v,
w will denote vectors of V . We now state several propositions:

(11) −(a− b) = (−a) + b.

(12) a+ 0R = a and 0R + a = a.

(13) If a = 0R or b = 0R, then a · b = 0R.

(14) (−1R) · a = −a and a · −1R = −a.

(15) a = 0R if and only if −a = 0R.

(16) v +−v = ΘV and (−v) + v = ΘV .

(17) −ΘV = ΘV .

(18) v + w = ΘV if and only if −v = w.

(19) ΘV + v = v and v + ΘV = v and ΘV − v = −v and v −ΘV = v.

In the sequel x, y denote scalars of R. Next we state several propositions:

(20) 0R · v = ΘV and (−1R) · v = −v and x · (ΘV ) = ΘV .

(21) −x · v = (−x) · v and w − x · v = w + (−x) · v.

(22) x · −v = −x · v.

(23) x · (v − w) = x · v − x · w.

(24) v − x · (y · w) = v − x · y · w.

In the sequel F will be a skew field, x will be a scalar of F , V will be a left
module over F , and v will be a vector of V . The following two propositions are
true:

(25) x · v = ΘV if and only if x = 0F or v = ΘV .



Groups, Rings, Left- and Right-Modules 277

(26) If x 6= 0F , then x−1 · (x · v) = v.

We adopt the following rules: V will denote a left module over R and v, v1,
v2, u, w will denote vectors of V . The following propositions are true:

(27) v − v = ΘV .

(28) (i) −− v = v,
(ii) −(v + w) = (−v) +−w,

(iii) −((−v) + w) = v +−w,
(iv) −(v + w) = (−v)−w,
(v) −(v − w) = (−v) +w,
(vi) −((−v) + w) = v −w,
(vii) −((−v)− w) = v +w.

(29) (u+ v)− w = u+ (v − w).

(30) v = v1 + v2 if and only if v1 = v − v2.

(31) v − (u− w) = (v − u) + w.

(32) If v + u = v or u+ v = v, then u = ΘV .

In the sequel R denotes an associative ring, V denotes a right module over
R, and v, w denote vectors of V . We now state four propositions:

(33) v +−v = ΘV and (−v) + v = ΘV .

(34) −ΘV = ΘV .

(35) v + w = ΘV if and only if −v = w.

(36) ΘV + v = v and v + ΘV = v and ΘV − v = −v and v −ΘV = v.

In the sequel x, y are scalars of R. We now state several propositions:

(37) v · 0R = ΘV and v · −1R = −v and (ΘV ) · x = ΘV .

(38) −v · x = v · −x and w − v · x = w + v · −x.

(39) (−v) · x = −v · x.

(40) (v − w) · x = v · x− w · x.

(41) v − w · y · x = v − w · (y · x).

In the sequel F denotes a skew field, x denotes a scalar of F , V denotes a
right module over F , and v denotes a vector of V . One can prove the following
two propositions:

(42) v · x = ΘV if and only if x = 0F or v = ΘV .

(43) If x 6= 0F , then v · x · x−1 = v.

We follow the rules: V will denote a right module over R and v, v1, v2, u, w
will denote vectors of V . The following propositions are true:

(44) v − v = ΘV .

(45) (i) −− v = v,
(ii) −(v + w) = (−v) +−w,

(iii) −((−v) + w) = v +−w,
(iv) −(v + w) = (−v)−w,
(v) −(v − w) = (−v) +w,
(vi) −((−v) + w) = v −w,
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(vii) −((−v)− w) = v + w.

(46) (u+ v)− w = u+ (v − w).

(47) v = v1 + v2 if and only if v1 = v − v2.

(48) v − (u− w) = (v − u) + w.

(49) If v + u = v or u+ v = v, then u = ΘV .
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The terminology and notation used here have been introduced in the following
papers: [10], [3], [2], [4], [6], [12], [9], [5], [1], [7], and [8]. For simplicity we adopt
the following convention: x is arbitrary, R is an associative ring, a is a scalar
of R, V is a left module over R, and v, v1, v2, w, u are vectors of V . Let us
consider R, V , x. The predicate x ∈ V is defined by:

(Def.1) x ∈ the carrier of the carrier of V .

The following two propositions are true:

(1) x ∈ V if and only if x ∈ the carrier of the carrier of V .

(2) v ∈ V .

We adopt the following convention: F , G, H will denote finite sequences of
elements of the carrier of the carrier of V , f will denote a function from � into
the carrier of the carrier of V , and i, j, k, n will denote natural numbers. Let
us consider R, V , F . The functor

∑
F yielding a vector of V is defined by:

(Def.2) there exists f such that
∑
F = f(lenF ) and f(0) = ΘV and for all j,

v such that j < lenF and v = F (j + 1) holds f(j + 1) = f(j) + v.

One can prove the following propositions:

(3) If there exists f such that u = f(lenF ) and f(0) = ΘV and for all j,
v such that j < lenF and v = F (j + 1) holds f(j + 1) = f(j) + v, then
u =

∑
F .
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(4) There exists f such that
∑
F = f(lenF ) and f(0) = ΘV and for all j,

v such that j < lenF and v = F (j + 1) holds f(j + 1) = f(j) + v.

(5) If k ∈ Seg n and lenF = n, then F (k) is a vector of V .

(6) If lenF = lenG + 1 and G = F � Seg lenG and v = F (lenF ), then∑
F =

∑
G+ v.

(7)
∑

(F  G) =
∑
F +

∑
G.

(8) If lenF = lenG and lenF = lenH and for every k such that k ∈
Seg lenF holds H(k) = πkF + πkG, then

∑
H =

∑
F +

∑
G.

(9) If lenF = lenG and for all k, v such that k ∈ Seg lenF and v = G(k)
holds F (k) = a · v, then

∑
F = a ·∑G.

(10) If lenF = lenG and for every k such that k ∈ Seg lenF holds G(k) =
a · πkF , then

∑
G = a ·∑F .

(11) If lenF = lenG and for all k, v such that k ∈ Seg lenF and v = G(k)
holds F (k) = −v, then

∑
F = −∑G.

(12) If lenF = lenG and for every k such that k ∈ Seg lenF holds G(k) =
−πkF , then

∑
G = −∑F .

(13) If lenF = lenG and lenF = lenH and for every k such that k ∈
Seg lenF holds H(k) = πkF − πkG, then

∑
H =

∑
F −∑G.

(14) If rngF = rngG and F is one-to-one and G is one-to-one, then
∑
F =∑

G.

(15) For all F , G and for every permutation f of domF such that lenF =
lenG and for every i such that i ∈ domG holds G(i) = F (f(i)) holds∑
F =

∑
G.

(16) For every permutation f of domF such thatG = F ·f holds
∑
F =

∑
G.

(17)
∑
εthe carrier of the carrier of V = ΘV .

(18)
∑〈v〉 = v.

(19)
∑〈v, u〉 = v + u.

(20)
∑〈v, u, w〉 = v + u+w.

(21) a ·∑ εthe carrier of the carrier of V = ΘV .

(22) a ·∑〈v〉 = a · v.

(23) a ·∑〈v, u〉 = a · v + a · u.

(24) a ·∑〈v, u, w〉 = a · v + a · u+ a · w.

(25) −∑ εthe carrier of the carrier of V = ΘV .

(26) −∑〈v〉 = −v.

(27) −∑〈v, u〉 = (−v)− u.

(28) −∑〈v, u, w〉 = (−v)− u− w.

(29)
∑〈v, w〉 =

∑〈w, v〉.
(30)

∑〈v, w〉 =
∑〈v〉+

∑〈w〉.
(31)

∑〈ΘV ,ΘV 〉 = ΘV .

(32)
∑〈ΘV , v〉 = v and

∑〈v,ΘV 〉 = v.
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(33)
∑〈v,−v〉 = ΘV and

∑〈−v, v〉 = ΘV .

We now state a number of propositions:

(34)
∑〈v,−w〉 = v − w and

∑〈−w, v〉 = v − w.

(35)
∑〈−v,−w〉 = −(v + w) and

∑〈−w,−v〉 = −(v + w).

(36)
∑〈u, v, w〉 =

∑〈u〉+
∑〈v〉+

∑〈w〉.
(37)

∑〈u, v, w〉 =
∑〈u, v〉+ w.

(38)
∑〈u, v, w〉 =

∑〈v, w〉 + u.

(39)
∑〈u, v, w〉 =

∑〈u,w〉 + v.

(40)
∑〈u, v, w〉 =

∑〈u,w, v〉.
(41)

∑〈u, v, w〉 =
∑〈v, u, w〉.

(42)
∑〈u, v, w〉 =

∑〈v, w, u〉.
(43)

∑〈u, v, w〉 =
∑〈w, u, v〉.

(44)
∑〈u, v, w〉 =

∑〈w, v, u〉.
(45)

∑〈ΘV ,ΘV ,ΘV 〉 = ΘV .

(46)
∑〈ΘV ,ΘV , v〉 = v and

∑〈ΘV , v,ΘV 〉 = v and
∑〈v,ΘV ,ΘV 〉 = v.

(47)
∑〈ΘV , u, v〉 = u+ v and

∑〈u, v,ΘV 〉 = u+ v and
∑〈u,ΘV , v〉 = u+ v.

(48) If lenF = 0, then
∑
F = ΘV .

(49) If lenF = 1, then
∑
F = F (1).

(50) If lenF = 2 and v1 = F (1) and v2 = F (2), then
∑
F = v1 + v2.

(51) If lenF = 3 and v1 = F (1) and v2 = F (2) and v = F (3), then
∑
F =

v1 + v2 + v.
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The notation and terminology used here are introduced in the following articles:
[8], [2], [14], [13], [10], [11], [7], [1], [3], [9], [4], [6], and [5]. For simplicity we
follow a convention: x will be arbitrary, R will be an associative ring, a will
be a scalar of R, V , X, Y will be left modules over R, and u, v, v1, v2 will be
vectors of V . Let us consider R, V . A subset of V is a subset of the carrier of
the carrier of V .

In the sequel V1, V2, V3 will denote subsets of V . Let us consider R, V , V1.
We say that V1 is linearly closed if and only if:

(Def.1) for all v, u such that v ∈ V1 and u ∈ V1 holds v + u ∈ V1 and for all a,
v such that v ∈ V1 holds a · v ∈ V1.

We now state a number of propositions:

(1) If for all v, u such that v ∈ V1 and u ∈ V1 holds v + u ∈ V1 and for all
a, v such that v ∈ V1 holds a · v ∈ V1, then V1 is linearly closed.

(2) If V1 is linearly closed, then for all v, u such that v ∈ V1 and u ∈ V1

holds v + u ∈ V1.

(3) If V1 is linearly closed, then for all a, v such that v ∈ V1 holds a ·v ∈ V1.

(4) If V1 6= ∅ and V1 is linearly closed, then ΘV ∈ V1.

(5) If V1 is linearly closed, then for every v such that v ∈ V1 holds −v ∈ V1.
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(6) If V1 is linearly closed, then for all v, u such that v ∈ V1 and u ∈ V1

holds v − u ∈ V1.

(7) {ΘV } is linearly closed.

(8) If the carrier of the carrier of V = V1, then V1 is linearly closed.

(9) If V1 is linearly closed and V2 is linearly closed and V3 = {v + u : v ∈
V1 ∧ u ∈ V2}, then V3 is linearly closed.

(10) If V1 is linearly closed and V2 is linearly closed, then V1 ∩ V2 is linearly
closed.

Let us consider R, V . A left module over R is called a submodule of V if:

(Def.2) the carrier of the carrier of it ⊆ the carrier of the carrier of V and the
zero of the carrier of it = the zero of the carrier of V and the addition of
the carrier of it = (the addition of the carrier of V ) � [: the carrier of the
carrier of it, the carrier of the carrier of it :] and the left multiplication
of it = (the left multiplication of V ) � [: the carrier of R, the carrier of
the carrier of it :].

We now state the proposition

(11) If the carrier of the carrier of X ⊆ the carrier of the carrier of V
and the zero of the carrier of X = the zero of the carrier of V and the
addition of the carrier of X = (the addition of the carrier of V ) � [: the
carrier of the carrier of X, the carrier of the carrier of X :] and the left
multiplication of X = (the left multiplication of V ) � [: the carrier of R,
the carrier of the carrier of X :], then X is a submodule of V .

We follow a convention: W , W1, W2 denote submodules of V and w, w1, w2

denote vectors of W . The following propositions are true:

(12) The carrier of the carrier of W ⊆ the carrier of the carrier of V .

(13) The zero of the carrier of W = the zero of the carrier of V .

(14) The addition of the carrier of W = (the addition of the carrier of V ) � [:
the carrier of the carrier of W, the carrier of the carrier of W :].

(15) The left multiplication of W = (the left multiplication of V ) � [: the
carrier of R, the carrier of the carrier of W :].

(16) If x ∈W1 and W1 is a submodule of W2, then x ∈W2.

(17) If x ∈W , then x ∈ V .

(18) w is a vector of V .

(19) ΘW = ΘV .

(20) ΘW1 = ΘW2 .

(21) If w1 = v and w2 = u, then w1 + w2 = v + u.

(22) If w = v, then a · w = a · v.

(23) If w = v, then −v = −w.

(24) If w1 = v and w2 = u, then w1 − w2 = v − u.

(25) ΘV ∈W .

(26) ΘW1 ∈W2.



Submodules and Cosets of Submodules in Left . . . 285

(27) ΘW ∈ V .

(28) If u ∈W and v ∈W , then u+ v ∈W .

(29) If v ∈W , then a · v ∈W .

(30) If v ∈W , then −v ∈W .

(31) If u ∈W and v ∈W , then u− v ∈W .

(32) V is a submodule of V .

(33) If V is a submodule of X and X is a submodule of V , then V = X.

(34) If V is a submodule of X and X is a submodule of Y , then V is a
submodule of Y .

(35) If the carrier of the carrier of W1 ⊆ the carrier of the carrier of W2,
then W1 is a submodule of W2.

(36) If for every v such that v ∈ W1 holds v ∈ W2, then W1 is a submodule
of W2.

(37) If the carrier of the carrier of W1 = the carrier of the carrier of W2,
then W1 = W2.

(38) If for every v holds v ∈W1 if and only if v ∈W2, then W1 = W2.

(39) If the carrier of the carrier of W = the carrier of the carrier of V ,
then W = V .

(40) If for every v holds v ∈W , then W = V .

(41) If the carrier of the carrier of W = V1, then V1 is linearly closed.

(42) If V1 6= ∅ and V1 is linearly closed, then there exists W such that V1 =
the carrier of the carrier of W .

Let us consider R, V . The functor 0V yields a submodule of V and is defined
as follows:

(Def.3) the carrier of the carrier of 0V = {ΘV }.
Let us consider R, V . The functor ΩV yielding a submodule of V is defined

by:

(Def.4) ΩV = V .

The following propositions are true:

(43) The carrier of the carrier of 0V = {ΘV }.
(44) If the carrier of the carrier of W = {ΘV }, then W = 0V .

(45) ΩV = V .

(46) x ∈ 0V if and only if x = ΘV .

(47) 0W = 0V .

(48) 0W1 = 0W2 .

(49) 0W is a submodule of V .

(50) 0V is a submodule of W .

(51) 0W1 is a submodule of W2.

(52) W is a submodule of ΩV .

(53) V is a submodule of ΩV .
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Let us consider R, V , v, W . The functor v +W yields a subset of V and is
defined by:

(Def.5) v +W = {v + u : u ∈W}.
Let us consider R, V , W . A subset of V is said to be a coset of W if:

(Def.6) there exists v such that it = v +W .

In the sequel B, C are cosets of W . One can prove the following propositions:

(54) v +W = {v + u : u ∈W}.
(55) There exists v such that C = v +W .

(56) If V1 = v +W , then V1 is a coset of W .

(57) x ∈ v+W if and only if there exists u such that u ∈W and x = v+ u.

(58) ΘV ∈ v +W if and only if v ∈W .

(59) v ∈ v +W .

(60) ΘV +W = the carrier of the carrier of W .

(61) v + 0V = {v}.
(62) v + ΩV = the carrier of the carrier of V .

(63) ΘV ∈ v +W if and only if v +W = the carrier of the carrier of W .

(64) v ∈W if and only if v +W = the carrier of the carrier of W .

(65) If v ∈W , then a · v +W = the carrier of the carrier of W .

(66) u ∈W if and only if v +W = v + u+W .

(67) u ∈W if and only if v +W = (v − u) +W .

(68) v ∈ u+W if and only if u+W = v +W .

(69) If u ∈ v1 +W and u ∈ v2 +W , then v1 +W = v2 +W .

(70) If v ∈W , then a · v ∈ v +W .

(71) If v ∈W , then −v ∈ v +W .

(72) u+ v ∈ v +W if and only if u ∈W .

(73) v − u ∈ v +W if and only if u ∈W .

(74) u ∈ v+W if and only if there exists v1 such that v1 ∈W and u = v+v1.

(75) u ∈ v+W if and only if there exists v1 such that v1 ∈W and u = v−v1.

(76) There exists v such that v1 ∈ v + W and v2 ∈ v + W if and only if
v1 − v2 ∈W .

(77) If v+W = u+W , then there exists v1 such that v1 ∈W and v+v1 = u.

(78) If v+W = u+W , then there exists v1 such that v1 ∈W and v−v1 = u.

(79) v +W1 = v +W2 if and only if W1 = W2.

(80) If v +W1 = u+W2, then W1 = W2.

In the sequel C1 denotes a coset of W1 and C2 denotes a coset of W2. Next
we state a number of propositions:

(81) There exists C such that v ∈ C.

(82) C is linearly closed if and only if C = the carrier of the carrier of W .

(83) If C1 = C2, then W1 = W2.
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(84) {v} is a coset of 0V .

(85) If V1 is a coset of 0V , then there exists v such that V1 = {v}.
(86) The carrier of the carrier of W is a coset of W .

(87) The carrier of the carrier of V is a coset of ΩV .

(88) If V1 is a coset of ΩV , then V1 = the carrier of the carrier of V .

(89) ΘV ∈ C if and only if C = the carrier of the carrier of W .

(90) u ∈ C if and only if C = u+W .

(91) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈W and u+v1 = v.

(92) If u ∈ C and v ∈ C, then there exists v1 such that v1 ∈W and u−v1 = v.

(93) There exists C such that v1 ∈ C and v2 ∈ C if and only if v1− v2 ∈W .

(94) If u ∈ B and u ∈ C, then B = C.
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The terminology and notation used here are introduced in the following papers:
[1], [12], [14], [9], [8], [13], [2], [11], [7], [3], [4], [5], and [6]. For simplicity we
adopt the following rules: R denotes an associative ring, V denotes a left module
over R, W , W1, W2, W3 denote submodules of V , u, u1, u2, v, v1, v2 denote
vectors of V , and x is arbitrary. Let us consider R, V , W1, W2. The functor
W1 +W2 yields a submodule of V and is defined by:

(Def.1) the carrier of the carrier of W1 +W2 = {v + u : v ∈W1 ∧ u ∈W2}.
Let us consider R, V , W1, W2. The functor W1 ∩W2 yielding a submodule

of V is defined by:

(Def.2) the carrier of the carrier of W1 ∩W2 = (the carrier of the carrier of
W1)∩ (the carrier of the carrier of W2).

One can prove the following propositions:

(1) The carrier of the carrier of W1 +W2 = {v + u : v ∈W1 ∧ u ∈W2}.
(2) If the carrier of the carrier of W = {v + u : v ∈ W1 ∧ u ∈ W2}, then

W = W1 +W2.

(3) The carrier of the carrier of W1 ∩W2 = (the carrier of the carrier of
W1)∩ (the carrier of the carrier of W2).

(4) If the carrier of the carrier of W = (the carrier of the carrier of W1)∩
(the carrier of the carrier of W2), then W = W1 ∩W2.
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(5) x ∈ W1 + W2 if and only if there exist v1, v2 such that v1 ∈ W1 and
v2 ∈W2 and x = v1 + v2.

(6) If v ∈W1 or v ∈W2, then v ∈W1 +W2.

(7) x ∈W1 ∩W2 if and only if x ∈W1 and x ∈W2.

(8) W +W = W .

(9) W1 +W2 = W2 +W1.

(10) W1 + (W2 +W3) = W1 +W2 +W3.

(11) W1 is a submodule of W1 +W2 and W2 is a submodule of W1 +W2.

(12) W1 is a submodule of W2 if and only if W1 +W2 = W2.

(13) 0V +W = W and W + 0V = W .

(14) 0V + ΩV = V and ΩV + 0V = V .

(15) ΩV +W = V and W + ΩV = V .

(16) ΩV + ΩV = V .

(17) W ∩W = W .

(18) W1 ∩W2 = W2 ∩W1.

(19) W1 ∩ (W2 ∩W3) = W1 ∩W2 ∩W3.

(20) W1 ∩W2 is a submodule of W1 and W1 ∩W2 is a submodule of W2.

(21) W1 is a submodule of W2 if and only if W1 ∩W2 = W1.

(22) If W1 is a submodule of W2, then W1 ∩W3 is a submodule of W2 ∩W3.

(23) If W1 is a submodule of W3, then W1 ∩W2 is a submodule of W3.

(24) If W1 is a submodule of W2 and W1 is a submodule of W3, then W1 is
a submodule of W2 ∩W3.

(25) 0V ∩W = 0V and W ∩ 0V = 0V .

(26) 0V ∩ ΩV = 0V and ΩV ∩ 0V = 0V .

(27) ΩV ∩W = W and W ∩ ΩV = W .

(28) ΩV ∩ ΩV = V .

(29) W1 ∩W2 is a submodule of W1 +W2.

(30) W1 ∩W2 +W2 = W2.

(31) W1 ∩ (W1 +W2) = W1.

One can prove the following propositions:

(32) W1 ∩W2 +W2 ∩W3 is a submodule of W2 ∩ (W1 +W3).

(33) If W1 is a submodule of W2, then W2∩(W1 +W3) = W1∩W2 +W2∩W3.

(34) W2 +W1 ∩W3 is a submodule of (W1 +W2) ∩ (W2 +W3).

(35) IfW1 is a submodule of W2, thenW2+W1∩W3 = (W1+W2)∩(W2+W3).

(36) If W1 is a submodule of W3, then W1 +W2 ∩W3 = (W1 +W2) ∩W3.

(37) W1 +W2 = W2 if and only if W1 ∩W2 = W1.

(38) If W1 is a submodule of W2, then W1 +W3 is a submodule of W2 +W3.

(39) If W1 is a submodule of W2, then W1 is a submodule of W2 +W3.
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(40) If W1 is a submodule of W3 and W2 is a submodule of W3, then W1+W2

is a submodule of W3.

(41) There exists W such that the carrier of the carrier of W = (the carrier
of the carrier of W1)∪ (the carrier of the carrier of W2) if and only if W1

is a submodule of W2 or W2 is a submodule of W1.

Let us consider R, V . The functor Sub(V ) yields a non-empty set and is
defined by:

(Def.3) for every x holds x ∈ Sub(V ) if and only if x is a submodule of V .

In the sequel D denotes a non-empty set. One can prove the following three
propositions:

(42) If for every x holds x ∈ D if and only if x is a submodule of V , then
D = Sub(V ).

(43) x ∈ Sub(V ) if and only if x is a submodule of V .

(44) V ∈ Sub(V ).

Let us consider R, V , W1, W2. We say that V is the direct sum of W1 and
W2 if and only if:

(Def.4) V = W1 +W2 and W1 ∩W2 = 0V .

One can prove the following two propositions:

(46)2 If V is the direct sum of W1 and W2, then V is the direct sum of W2

and W1.

(47) V is the direct sum of 0V and ΩV and V is the direct sum of ΩV and
0V .

In the sequel C1 will denote a coset of W1 and C2 will denote a coset of W2.
Next we state several propositions:

(48) If C1 ∩ C2 6= ∅, then C1 ∩ C2 is a coset of W1 ∩W2.

(49) V is the direct sum of W1 and W2 if and only if for every C1, C2 there
exists v such that C1 ∩ C2 = {v}.

(50) W1 + W2 = V if and only if for every v there exist v1, v2 such that
v1 ∈W1 and v2 ∈W2 and v = v1 + v2.

(51) If V is the direct sum of W1 and W2 and v = v1 + v2 and v = u1 + u2

and v1 ∈ W1 and u1 ∈ W1 and v2 ∈ W2 and u2 ∈ W2, then v1 = u1 and
v2 = u2.

(52) Suppose V = W1 + W2 and there exists v such that for all v1, v2, u1,
u2 such that v = v1 + v2 and v = u1 + u2 and v1 ∈ W1 and u1 ∈ W1 and
v2 ∈ W2 and u2 ∈ W2 holds v1 = u1 and v2 = u2. Then V is the direct
sum of W1 and W2.

In the sequel t will be an element of [: the carrier of the carrier of V, the
carrier of the carrier of V :]. Let us consider R, V , v, W1, W2. Let us assume
that V is the direct sum of W1 and W2. The functor v < (W1,W2) yielding an

2The proposition (45) was either repeated or obvious.
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element of [: the carrier of the carrier of V, the carrier of the carrier of V :] is
defined as follows:

(Def.5) v = (v < (W1,W2))1 +(v < (W1,W2))2 and (v < (W1,W2))1 ∈W1 and
(v < (W1,W2))2 ∈W2.

The following propositions are true:

(53) If V is the direct sum of W1 and W2 and t1 + t2 = v and t1 ∈W1 and
t2 ∈W2, then t = v < (W1,W2).

(54) If V is the direct sum of W1 and W2, then
(v < (W1,W2))1 + (v < (W1,W2))2 = v.

(55) If V is the direct sum of W1 and W2, then (v < (W1,W2))1 ∈W1.

(56) If V is the direct sum of W1 and W2, then (v < (W1,W2))2 ∈W2.

(57) If V is the direct sum of W1 and W2, then
(v < (W1,W2))1 = (v < (W2,W1))2.

(58) If V is the direct sum of W1 and W2, then
(v < (W1,W2))2 = (v < (W2,W1))1.

In the sequel A1, A2 will denote elements of Sub(V ). Let us consider R, V .
The functor SubJoinV yields a binary operation on Sub(V ) and is defined as
follows:

(Def.6) for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubJoinV )(A1, A2) = W1 +W2.

Let us consider R, V . The functor SubMeetV yielding a binary operation
on Sub(V ) is defined as follows:

(Def.7) for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubMeetV )(A1, A2) = W1 ∩W2.

In the sequel o is a binary operation on Sub(V ). Next we state several
propositions:

(59) If A1 = W1 and A2 = W2, then SubJoinV (A1, A2) = W1 +W2.

(60) If for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds o(A1,
A2) = W1 +W2, then o = SubJoinV .

(61) If A1 = W1 and A2 = W2, then SubMeet V (A1, A2) = W1 ∩W2.

(62) If for all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds o(A1,
A2) = W1 ∩W2, then o = SubMeetV .

(63) 〈Sub(V ),SubJoinV,SubMeet V 〉 is a lattice.

(64) 〈Sub(V ),SubJoinV,SubMeet V 〉 is a lower bound lattice.

(65) 〈Sub(V ),SubJoinV,SubMeet V 〉 is an upper bound lattice.

(66) 〈Sub(V ),SubJoinV,SubMeet V 〉 is a bound lattice.

(67) 〈Sub(V ),SubJoinV,SubMeet V 〉 is a modular lattice.
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Summary. Notion of linear combination of vectors in Left Mod-
ule over Associative Ring, defined as a function from the carrier of Left
Module over Associative Ring to the carrier of this Ring. The following
operations are included: addition, subtraction of combinations and mul-
tiplication of a combination by a scalar of the Ring. Following it, the sum
of a finite set of vectors and the sum of linear combinations is defined.
Many theorems are proved. This article originated as a generalization of
the article [19].
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The articles [22], [7], [5], [3], [6], [8], [21], [17], [15], [16], [2], [4], [18], [20], [1],
[9], [10], [11], [13], [12], and [14] provide the terminology and notation for this
paper. For simplicity we follow a convention: R will be an associative ring, V
will be a left module over R, a, b will be scalars of R, x will be arbitrary, i will
be a natural number, u, v, v1, v2, v3 will be vectors of V , F , G will be finite
sequences of elements of the carrier of the carrier of V , A, B will be subsets of
V , and f will be a function from the carrier of the carrier of V into the carrier
of R. Let D be a non-empty set. Then ∅D is a subset of D.

Let us consider R, V . A subset of V is said to be a finite subset of V if:

(Def.1) it is finite.

In the sequel S, T denote finite subsets of V . Let us consider R, V , S, T .
Then S ∪ T is a finite subset of V . Then S ∩ T is a finite subset of V . Then
S \ T is a finite subset of V . Then S−. T is a finite subset of V .

Let us consider R, V . The functor 0V yields a finite subset of V and is
defined as follows:

(Def.2) 0V = ∅.
1Supported by RPBP.III-24.C6
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One can prove the following proposition

(2)2 0V = ∅.
Let us consider R, V , T . The functor

∑
T yields a vector of V and is defined

as follows:

(Def.3) there exists F such that rngF = T and F is one-to-one and
∑
T =

∑
F .

One can prove the following two propositions:

(3) There exists F such that rngF = T and F is one-to-one and
∑
T =∑

F .

(4) If rngF = T and F is one-to-one and v =
∑
F , then v =

∑
T .

Let us consider R, V , v. Then {v} is a finite subset of V .

Let us consider R, V , v1, v2. Then {v1, v2} is a finite subset of V .

Let us consider R, V , v1, v2, v3. Then {v1, v2, v3} is a finite subset of V .

We now state a number of propositions:

(5)
∑

(0V ) = ΘV .

(6)
∑{v} = v.

(7) If v1 6= v2, then
∑{v1, v2} = v1 + v2.

(8) If v1 6= v2 and v2 6= v3 and v1 6= v3, then
∑{v1, v2, v3} = v1 + v2 + v3.

(9) If T misses S, then
∑

(T ∪ S) =
∑
T +

∑
S.

(10)
∑

(T ∪ S) = (
∑
T +

∑
S)−∑(T ∩ S).

(11)
∑

(T ∩ S) = (
∑
T +

∑
S)−∑(T ∪ S).

(12)
∑

(T \ S) =
∑

(T ∪ S)−∑S.

(13)
∑

(T \ S) =
∑
T −∑(T ∩ S).

(14)
∑

(T−. S) =
∑

(T ∪ S)−∑(T ∩ S).

(15)
∑

(T−. S) =
∑

(T \ S) +
∑

(S \ T ).

Let us consider R, V . An element of (the carrier ofR)the carrier of the carrier of V

is called a linear combination of V if:

(Def.4) there exists T such that for every v such that v /∈ T holds it(v) = 0R.

In the sequel K, L, L1, L2, L3 are linear combinations of V . We now state
the proposition

(16) There exists T such that for every v such that v /∈ T holds L(v) = 0R.

In the sequel E is an element of (the carrier of R)the carrier of the carrier of V .
Next we state the proposition

(17) If there exists T such that for every v such that v /∈ T holds E(v) = 0R,
then E is a linear combination of V .

Let us consider R, V , L. The functor supportL yields a finite subset of V
and is defined as follows:

(Def.5) supportL = {v : L(v) 6= 0R}.
The following propositions are true:

2The proposition (1) was either repeated or obvious.
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(18) supportL = {v : L(v) 6= 0R}.
(19) x ∈ supportL if and only if there exists v such that x = v and L(v) 6=

0R.

(20) L(v) = 0R if and only if v /∈ supportL.

Let us consider R, V . The functor 0LCV yielding a linear combination of V
is defined by:

(Def.6) support0LCV = ∅.
We now state two propositions:

(21) L = 0LCV if and only if supportL = ∅.
(22) 0LCV (v) = 0R.

Let us consider R, V , A. A linear combination of V is called a linear combi-
nation of A if:

(Def.7) support it ⊆ A.

We now state the proposition

(23) If supportL ⊆ A, then L is a linear combination of A.

In the sequel l will denote a linear combination of A. We now state several
propositions:

(24) support l ⊆ A.

(25) If A ⊆ B, then l is a linear combination of B.

(26) 0LCV is a linear combination of A.

(27) For every linear combination l of ∅the carrier of the carrier of V holds l =
0LCV .

(28) L is a linear combination of supportL.

Let us consider R, V , F , f . The functor fF yields a finite sequence of
elements of the carrier of the carrier of V and is defined by:

(Def.8) len(fF ) = lenF and for every i such that i ∈ dom(fF ) holds (fF )(i) =
f(πiF ) · πiF .

We now state several propositions:

(29) len(fF ) = lenF .

(30) For every i such that i ∈ dom(fF ) holds (fF )(i) = f(πiF ) · πiF .

(31) If lenG = lenF and for every i such that i ∈ domG holds G(i) =
f(πiF ) · πiF , then G = fF .

(32) If i ∈ domF and v = F (i), then (fF )(i) = f(v) · v.

(33) fεthe carrier of the carrier of V = εthe carrier of the carrier of V .

(34) f〈v〉 = 〈f(v) · v〉.
(35) f〈v1, v2〉 = 〈f(v1) · v1, f(v2) · v2〉.
(36) f〈v1, v2, v3〉 = 〈f(v1) · v1, f(v2) · v2, f(v3) · v3〉.
(37) f(F  G) = (fF )  (fG).

Let us consider R, V , L. The functor
∑
L yields a vector of V and is defined

as follows:
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(Def.9) there exists F such that F is one-to-one and rngF = supportL and∑
L =

∑
(LF ).

The following propositions are true:

(38) There exists F such that F is one-to-one and rngF = supportL and∑
L =

∑
(LF ).

(39) If F is one-to-one and rngF = supportL and u =
∑

(LF ), then u =∑
L.

(40) If 0R 6= 1R, then A 6= ∅ and A is linearly closed if and only if for every
l holds

∑
l ∈ A.

(41)
∑

0LCV = ΘV .

(42) For every linear combination l of ∅the carrier of the carrier of V holds
∑
l =

ΘV .

(43) For every linear combination l of {v} holds
∑
l = l(v) · v.

(44) If v1 6= v2, then for every linear combination l of {v1, v2} holds
∑
l =

l(v1) · v1 + l(v2) · v2.

(45) If supportL = ∅, then
∑
L = ΘV .

(46) If supportL = {v}, then
∑
L = L(v) · v.

(47) If supportL = {v1, v2} and v1 6= v2, then
∑
L = L(v1) · v1 + L(v2) · v2.

Let us consider R, V , L1, L2. Let us note that one can characterize the
predicate L1 = L2 by the following (equivalent) condition:

(Def.10) for every v holds L1(v) = L2(v).

Next we state the proposition

(48) If for every v holds L1(v) = L2(v), then L1 = L2.

Let us consider R, V , L1, L2. The functor L1 + L2 yielding a linear combi-
nation of V is defined by:

(Def.11) for every v holds (L1 + L2)(v) = L1(v) + L2(v).

The following propositions are true:

(49) If for every v holds L(v) = L1(v) + L2(v), then L = L1 + L2.

(50) (L1 + L2)(v) = L1(v) + L2(v).

(51) support(L1 + L2) ⊆ supportL1 ∪ supportL2.

(52) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 + L2 is a linear combination of A.

(53) For every commutative ring R and for every left module V over R and
for all linear combinations L1, L2 of V holds L1 + L2 = L2 + L1.

(54) L1 + (L2 + L3) = L1 + L2 + L3.

(55) For every commutative ring R and for every left module V over R and
for every linear combination L of V holds L+0LCV = L and 0LCV +L = L.

Let us consider R, V , a, L. The functor a · L yielding a linear combination
of V is defined as follows:

(Def.12) for every v holds (a · L)(v) = a · L(v).



Linear Combinations in Left Module over . . . 299

One can prove the following propositions:

(56) If for every v holds K(v) = a · L(v), then K = a · L.

(57) (a · L)(v) = a · L(v).

(58) support(a · L) ⊆ supportL.

In the sequel R1 denotes an integral domain, V1 denotes a left module over
R1, L4 denotes a linear combination of V1, and a1 denotes a scalar of R1. Next
we state several propositions:

(59) If a1 6= 0R1 , then support(a1 · L4) = supportL4.

(60) 0R · L = 0LCV .

(61) If L is a linear combination of A, then a · L is a linear combination of
A.

(62) (a+ b) · L = a · L+ b · L.

(63) a · (L1 + L2) = a · L1 + a · L2.

(64) a · (b · L) = a · b · L.

(65) (1R) · L = L.

Let us consider R, V , L. The functor −L yields a linear combination of V
and is defined as follows:

(Def.13) −L = (−1R) · L.

One can prove the following propositions:

(66) −L = (−1R) · L.

(67) (−L)(v) = −L(v).

(68) If L1 + L2 = 0LCV , then L2 = −L1.

(69) support−L = supportL.

(70) If L is a linear combination of A, then −L is a linear combination of A.

(71) −− L = L.

Let us consider R, V , L1, L2. The functor L1−L2 yields a linear combination
of V and is defined by:

(Def.14) L1 − L2 = L1 +−L2.

One can prove the following propositions:

(72) L1 − L2 = L1 +−L2.

(73) (L1 − L2)(v) = L1(v)− L2(v).

(74) support(L1 − L2) ⊆ supportL1 ∪ supportL2.

(75) If L1 is a linear combination of A and L2 is a linear combination of A,
then L1 − L2 is a linear combination of A.

(76) L− L = 0LCV .

(77)
∑

(L1 + L2) =
∑
L1 +

∑
L2.

For simplicity we adopt the following convention: R will be an integral do-
main, V will be a left module over R, L, L1, L2 will be linear combinations of
V , and a will be a scalar of R. We now state three propositions:

(78)
∑

(a · L) = a ·∑L.
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(79)
∑−L = −∑L.

(80)
∑

(L1 − L2) =
∑
L1 −

∑
L2.
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[4] Czes law Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
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Summary. Notion of submodule generated by a set of vectors and
linear independence of a set of vectors. A few theorems originated as a
generalization of the theorems from the article [18].
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The articles [22], [5], [3], [2], [4], [6], [21], [16], [14], [15], [1], [17], [19], [20],
[7], [8], [9], [12], [11], [10], and [13] provide the terminology and notation for
this paper. For simplicity we adopt the following rules: x is arbitrary, R is an
associative ring, V is a left module over R, v, v1, v2 are vectors of V , A, B
are subsets of V , and l is a linear combination of A. We now define two new
predicates. Let us consider R, V , A. We say that A is linearly independent if
and only if:

(Def.1) for every l such that
∑
l = ΘV holds support l = ∅.

A is linearly dependent stands for A is not linearly independent.

One can prove the following propositions:

(2)2 If A ⊆ B and B is linearly independent, then A is linearly independent.

(3) If 0R 6= 1R and A is linearly independent, then ΘV /∈ A.

(4) ∅the carrier of the carrier of V is linearly independent.

(5) If 0R 6= 1R and {v1, v2} is linearly independent, then v1 6= ΘV and
v2 6= ΘV .

(6) If 0R 6= 1R, then {v,ΘV } is linearly dependent and {ΘV , v} is linearly
dependent.

1Supported by RPBP.III-24.C6
2The proposition (1) was either repeated or obvious.
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For simplicity we follow the rules: R will be an integral domain, V will be
a left module over R, W will be a submodule of V , A, B will be subsets of V ,
and l will be a linear combination of A. Let us consider R, V , A. The functor
Lin(A) yields a submodule of V and is defined as follows:

(Def.2) the carrier of the carrier of Lin(A) = {∑ l}.
One can prove the following propositions:

(7) If the carrier of the carrier of W = {∑ l}, then W = Lin(A).

(8) The carrier of the carrier of Lin(A) = {∑ l}.
(9) x ∈ Lin(A) if and only if there exists l such that x =

∑
l.

(10) If x ∈ A, then x ∈ Lin(A).

We now state several propositions:

(11) Lin(∅the carrier of the carrier of V ) = 0V .

(12) If Lin(A) = 0V , then A = ∅ or A = {ΘV }.
(13) If 0R 6= 1R and A = the carrier of the carrier of W , then Lin(A) = W .

(14) If 0R 6= 1R and A = the carrier of the carrier of V , then Lin(A) = V .

(15) If A ⊆ B, then Lin(A) is a submodule of Lin(B).

(16) If Lin(A) = V and A ⊆ B, then Lin(B) = V .

(17) Lin(A ∪B) = Lin(A) + Lin(B).

(18) Lin(A ∩B) is a submodule of Lin(A) ∩ Lin(B).
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Summary. Continues the analysis of the classical language of first
order (see [6], [1], [3], [4], [2]). Three connectives : truth, negation and
conjuction are primary (see [6]). The others (alternative, implication and
equivalence) are defined with respect to them (see [1]). We prove some
important tautologies of the calculus of propositions. Most of them are
given as axioms of the classical logical calculus (see [5]). In the last part
of our article we give some basic rules of inference.

MML Identifier: PROCAL 1.

The notation and terminology used here have been introduced in the papers [3]
and [4]. In the sequel p, q, r, s are elements of CQC−WFF. One can prove the
following propositions:

(1) ¬(p ∧ ¬p) ∈ Taut.

(2) p ∨ ¬p ∈ Taut.

(3) p⇒ p ∨ q ∈ Taut.

(4) q ⇒ p ∨ q ∈ Taut.

(5) p ∨ q ⇒ (¬p⇒ q) ∈ Taut.

(6) ¬(p ∨ q)⇒ ¬p ∧ ¬q ∈ Taut.

(7) ¬p ∧ ¬q ⇒ ¬(p ∨ q) ∈ Taut.

(8) p ∨ q ⇒ q ∨ p ∈ Taut.

(9) ¬p ∨ p ∈ Taut.

(10) ¬(p ∨ q)⇒ ¬p ∈ Taut.

(11) p ∨ p⇒ p ∈ Taut.

(12) p⇒ p ∨ p ∈ Taut.

(13) p ∧ ¬p⇒ q ∈ Taut.

(14) (p⇒ q)⇒ ¬p ∨ q ∈ Taut.

1Supported by RPBP.III-24
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(15) p ∧ q ⇒ ¬(p⇒ ¬q) ∈ Taut.

(16) ¬(p⇒ ¬q)⇒ p ∧ q ∈ Taut.

(17) ¬(p ∧ q)⇒ ¬p ∨ ¬q ∈ Taut.

(18) ¬p ∨ ¬q ⇒ ¬(p ∧ q) ∈ Taut.

(19) p ∧ q ⇒ p ∈ Taut.

(20) p ∧ q ⇒ p ∨ q ∈ Taut.

(21) p ∧ q ⇒ q ∈ Taut.

(22) p⇒ p ∧ p ∈ Taut.

(23) (p⇔ q)⇒ (p⇒ q) ∈ Taut.

(24) (p⇔ q)⇒ (q ⇒ p) ∈ Taut.

(25) p ∨ q ∨ r ⇒ p ∨ (q ∨ r) ∈ Taut.

(26) p ∧ q ∧ r ⇒ p ∧ (q ∧ r) ∈ Taut.

(27) p ∨ (q ∨ r)⇒ p ∨ q ∨ r ∈ Taut.

(28) p⇒ (q ⇒ p ∧ q) ∈ Taut.

(29) (p⇒ q)⇒ ((q ⇒ p)⇒ (p⇔ q)) ∈ Taut.

(30) p ∨ q ⇔ q ∨ p ∈ Taut.

(31) (p ∧ q ⇒ r)⇒ (p⇒ (q ⇒ r)) ∈ Taut.

The following propositions are true:

(32) (p⇒ (q ⇒ r))⇒ (p ∧ q ⇒ r) ∈ Taut.

(33) (r ⇒ p)⇒ ((r ⇒ q)⇒ (r ⇒ p ∧ q)) ∈ Taut.

(34) (p ∨ q ⇒ r)⇒ (p⇒ r) ∨ (q ⇒ r) ∈ Taut.

(35) (p⇒ r)⇒ ((q ⇒ r)⇒ (p ∨ q ⇒ r)) ∈ Taut.

(36) (p⇒ r) ∧ (q ⇒ r)⇒ (p ∨ q ⇒ r) ∈ Taut.

(37) (p⇒ q ∧ ¬q)⇒ ¬p ∈ Taut.

(38) (p ∨ q) ∧ (p ∨ r)⇒ p ∨ q ∧ r ∈ Taut.

(39) p ∧ (q ∨ r)⇒ p ∧ q ∨ p ∧ r ∈ Taut.

(40) (p ∨ r) ∧ (q ∨ r)⇒ p ∧ q ∨ r ∈ Taut.

(41) (p ∨ q) ∧ r ⇒ p ∧ r ∨ q ∧ r ∈ Taut.

(42) If p ∈ Taut, then p ∨ q ∈ Taut.

(43) If q ∈ Taut, then p ∨ q ∈ Taut.

(44) If p ∧ q ∈ Taut, then p ∈ Taut.

(45) If p ∧ q ∈ Taut, then q ∈ Taut.

(46) If p ∧ q ∈ Taut, then p ∨ q ∈ Taut.

(47) If p ∈ Taut and q ∈ Taut, then p ∧ q ∈ Taut.

(48) If p⇒ q ∈ Taut, then p ∨ r ⇒ q ∨ r ∈ Taut.

(49) If p⇒ q ∈ Taut, then r ∨ p⇒ r ∨ q ∈ Taut.

(50) If p⇒ q ∈ Taut, then r ∧ p⇒ r ∧ q ∈ Taut.

(51) If p⇒ q ∈ Taut, then p ∧ r ⇒ q ∧ r ∈ Taut.

(52) If r⇒ p ∈ Taut and r ⇒ q ∈ Taut, then r ⇒ p ∧ q ∈ Taut.
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(53) If p⇒ r ∈ Taut and q ⇒ r ∈ Taut, then p ∨ q ⇒ r ∈ Taut.

(54) If p ∨ q ∈ Taut and ¬p ∈ Taut, then q ∈ Taut.

(55) If p ∨ q ∈ Taut and ¬q ∈ Taut, then p ∈ Taut.

(56) If p⇒ q ∈ Taut and r ⇒ s ∈ Taut, then p ∧ r ⇒ q ∧ s ∈ Taut.

(57) If p⇒ q ∈ Taut and r ⇒ s ∈ Taut, then p ∨ r ⇒ q ∨ s ∈ Taut.

(58) If p ∧ ¬q⇒ ¬p ∈ Taut, then p⇒ q ∈ Taut.
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Summary. Some tautologies of the Classical Quantifier Calculus.
The deduction theorem is also proved.

MML Identifier: CQC THE2.

The papers [11], [13], [8], [2], [5], [3], [12], [10], [9], [1], [6], [4], and [7] provide the
terminology and notation for this paper. For simplicity we adopt the following
convention: X will denote a subset of CQC−WFF, F , G, p, q, r will denote
elements of CQC−WFF, s, h will denote formulae, and x, y will denote bound
variables. Next we state a number of propositions:

(1) If ` p⇒ (q ⇒ r), then ` p ∧ q ⇒ r.

(2) If ` p⇒ (q ⇒ r), then ` q ∧ p⇒ r.

(3) If ` p ∧ q ⇒ r, then ` p⇒ (q ⇒ r).

(4) If ` p ∧ q ⇒ r, then ` q ⇒ (p⇒ r).

(5) y ∈ snb(∀xs) if and only if y ∈ snb(s) and y 6= x.

(6) y ∈ snb(∃xs) if and only if y ∈ snb(s) and y 6= x.

(7) y ∈ snb(s⇒ h) if and only if y ∈ snb(s) or y ∈ snb(h).

(8) y ∈ snb(¬s) if and only if y ∈ snb(s).

(9) y ∈ snb(s ∧ h) if and only if y ∈ snb(s) or y ∈ snb(h).

(10) y ∈ snb(s ∨ h) if and only if y ∈ snb(s) or y ∈ snb(h).

(11) x /∈ snb(∀x,ys) and y /∈ snb(∀x,ys).
(12) x /∈ snb(∃x,ys) and y /∈ snb(∃x,ys).
(13) If F is closed, then x /∈ snb(F ).

(14) s⇒ h(x) = (s(x))⇒ (h(x)).

(15) s ∨ h(x) = (s(x)) ∨ (h(x)).
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(16) ∃xp(x) = ∃xp.
(17) If x 6= y, then ∃xp(y) = ∃x(p(y)).

(18) ` p⇒ ∃xp.
(19) If ` p, then ` ∃xp.
(20) ` ∀xp⇒ ∃xp.
(21) ` ∀xp⇒ ∃yp.
(22) If ` p⇒ q and x /∈ snb(q), then ` (∃xp)⇒ q.

(23) If x /∈ snb(p), then ` (∃xp)⇒ p.

(24) If x /∈ snb(p) and ` ∃xp, then ` p.
(25) If p = h(x) and q = h(y) and y /∈ snb(h), then ` p⇒ ∃yq.
(26) If ` p, then ` ∀xp.
(27) If x /∈ snb(p), then ` p⇒ ∀xp.
(28) If p = h(x) and q = h(y) and x /∈ snb(h), then ` ∀xp⇒ q.

(29) If y /∈ snb(p), then ` ∀xp⇒ ∀yp.
(30) If p = h(x) and q = h(y) and x /∈ snb(h) and y /∈ snb(p), then ` ∀xp⇒

∀yq.
(31) If x /∈ snb(p), then ` (∃xp)⇒ ∃yp.

One can prove the following propositions:

(32) If p = h(x) and q = h(y) and x /∈ snb(q) and y /∈ snb(h), then `
(∃xp)⇒ ∃yq.

(34)1 ` ∀x(p⇒ q)⇒ (∀xp⇒ ∀xq).
(35) If ` ∀x(p⇒ q), then ` ∀xp⇒ ∀xq.
(36) ` ∀x(p⇔ q)⇒ (∀xp⇔ ∀xq).
(37) If ` ∀x(p⇔ q), then ` ∀xp⇔ ∀xq.
(38) ` ∀x(p⇒ q)⇒ ((∃xp)⇒ ∃xq).
(39) If ` ∀x(p⇒ q), then ` (∃xp)⇒ ∃xq.
(40) ` ∀x(p ∧ q)⇒ ∀xp ∧ ∀xq and ` ∀xp ∧ ∀xq ⇒ ∀x(p ∧ q).
(41) ` ∀x(p ∧ q)⇔ ∀xp ∧ ∀xq.
(42) ` ∀x(p ∧ q) if and only if ` ∀xp ∧ ∀xq.
(43) ` ∀xp ∨ ∀xq ⇒ ∀x(p ∨ q).
(44) ` (∃xp ∨ q)⇒ (∃xp) ∨ ∃xq and ` (∃xp) ∨ ∃xq ⇒ ∃xp ∨ q.
(45) ` (∃xp ∨ q)⇔ (∃xp) ∨ ∃xq.
(46) ` ∃xp ∨ q if and only if ` (∃xp) ∨ ∃xq.
(47) ` (∃xp ∧ q)⇒ (∃xp) ∧ ∃xq.
(48) If ` ∃xp ∧ q, then ` (∃xp) ∧ ∃xq.
(49) ` ∀x¬¬p⇒ ∀xp and ` ∀xp⇒ ∀x¬¬p.
(50) ` ∀x¬¬p⇔ ∀xp.
(51) ` (∃x¬¬p)⇒ ∃xp and ` (∃xp)⇒ ∃x¬¬p.

1The proposition (33) was either repeated or obvious.
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(52) ` (∃x¬¬p)⇔ ∃xp.
(53) ` ¬∃x¬p⇒ ∀xp and ` ∀xp⇒ ¬∃x¬p.
(54) ` ¬∃x¬p⇔ ∀xp.
(55) ` ¬∀xp⇒ ∃x¬p and ` (∃x¬p)⇒ ¬∀xp.
(56) ` ¬∀xp⇔ ∃x¬p.
(57) ` ¬∃xp⇒ ∀x¬p and ` ∀x¬p⇒ ¬∃xp.
(58) ` ∀x¬p⇔ ¬∃xp.
(59) ` ∀x∀yp⇒ ∀y∀xp and ` ∀x,yp⇒ ∀y,xp.
(60) If p = h(x) and q = h(y) and y /∈ snb(h), then ` ∀x∀yq ⇒ ∀xp.
(61) ` (∃x∃yp)⇒ ∃y∃xp and ` (∃x,yp)⇒ (∃y,xp).
(62) If p = h(x) and q = h(y) and y /∈ snb(h), then ` (∃xp)⇒ (∃x,yq).

We now state a number of propositions:

(63) ` (∃x∀yp)⇒ ∀y∃xp.
(64) ` ∃xp⇔ p.

(65) ` (∃xp⇒ q)⇒ (∀xp⇒ ∃xq) and ` (∀xp⇒ ∃xq)⇒ ∃xp⇒ q.

(66) ` (∃xp⇒ q)⇔ (∀xp⇒ ∃xq).
(67) ` ∃xp⇒ q if and only if ` ∀xp⇒ ∃xq.
(68) ` ∀x(p ∧ q)⇒ p ∧ ∀xq.
(69) ` ∀x(p ∧ q)⇒ ∀xp ∧ q.
(70) If x /∈ snb(p), then ` p ∧ ∀xq ⇒ ∀x(p ∧ q).
(71) If x /∈ snb(p) and ` p ∧ ∀xq, then ` ∀x(p ∧ q).
(72) If x /∈ snb(p), then ` p ∨ ∀xq ⇒ ∀x(p ∨ q) and ` ∀x(p ∨ q)⇒ p ∨ ∀xq.
(73) If x /∈ snb(p), then ` p ∨ ∀xq ⇔ ∀x(p ∨ q).
(74) If x /∈ snb(p), then ` p ∨ ∀xq if and only if ` ∀x(p ∨ q).
(75) If x /∈ snb(p), then ` p ∧ ∃xq ⇒ ∃xp ∧ q and ` (∃xp ∧ q)⇒ p ∧ ∃xq.
(76) If x /∈ snb(p), then ` p ∧ ∃xq ⇔ ∃xp ∧ q.
(77) If x /∈ snb(p), then ` p ∧ ∃xq if and only if ` ∃xp ∧ q.
(78) If x /∈ snb(p), then ` ∀x(p ⇒ q) ⇒ (p ⇒ ∀xq) and ` (p ⇒ ∀xq) ⇒

∀x(p⇒ q).

(79) If x /∈ snb(p), then ` (p⇒ ∀xq)⇔ ∀x(p⇒ q).

(80) If x /∈ snb(p), then ` ∀x(p⇒ q) if and only if ` p⇒ ∀xq.
(81) If x /∈ snb(q), then ` (∃xp⇒ q)⇒ (∀xp⇒ q).

(82) ` (∀xp⇒ q)⇒ ∃xp⇒ q.

(83) If x /∈ snb(q), then ` ∀xp⇒ q if and only if ` ∃xp⇒ q.

(84) If x /∈ snb(q), then ` ((∃xp) ⇒ q) ⇒ ∀x(p ⇒ q) and ` ∀x(p ⇒ q) ⇒
((∃xp)⇒ q).

(85) If x /∈ snb(q), then ` ((∃xp)⇒ q)⇔ ∀x(p⇒ q).

(86) If x /∈ snb(q), then ` (∃xp)⇒ q if and only if ` ∀x(p⇒ q).

(87) If x /∈ snb(p), then ` (∃xp⇒ q)⇒ (p⇒ ∃xq).



312 Agata Darmochwa l

(88) ` (p⇒ ∃xq)⇒ ∃xp⇒ q.

(89) If x /∈ snb(p), then ` (p⇒ ∃xq)⇔ ∃xp⇒ q.

(90) If x /∈ snb(p), then ` p⇒ ∃xq if and only if ` ∃xp⇒ q.

(91) {p} ` p.
(92) Cn({p} ∪ {q}) = Cn{p ∧ q}.
(93) {p, q} ` r if and only if {p ∧ q} ` r.

The following propositions are true:

(94) If X ` p, then X ` ∀xp.
(95) If x /∈ snb(p), then X ` ∀x(p⇒ q)⇒ (p⇒ ∀xq).
(96) If F is closed and X ∪ {F} ` G, then X ` F ⇒ G.
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