
Preface

As was stated in [5], Mizar articles are being published in this periodical
using special technology. They are written in High Level Formalized Language
for Mathematics called Mizar. Their logical and mathematical correctness is
verified by the PC Mizar system (distributed by Mizar Users Group owing to
the grant received from the Philippe le Hodey Foundation). Mizar articles are
submitted to the Mizar Users Association. For the both addresses see the second
page of the cover. Articles form the Main Mizar Library (MML), which is
continually enlarged and updated. The power of the PC Mizar system lies in the
automatic processing of cross-references between articles. Main Mizar Library
together with PC Mizar system constitute a system for collecting, formalizing
and verifying mathematical knowledge. MML forms a basis of a Knowledge
Management System for Mathematics supplied with Mizar articles.

Programs have being written which process Mizar articles and translate them
automatically into English, and generate texts in TEX. Next LaTEX uses a special
format called MizTEX to produce them. While we do try to obtain such English
which would not resemble a machine language, for instance by making use of the
generator of random numbers to improve the style, obtaining good English is
not the main objective of our work. What we do aim at is to obtain a readable
text owing to which one can watch the development of MML, and also pub-
lish new mathematical results (for the time being in a small number). Another
interesting problem is how to develop mathematics formal enough to make it
verifiable by the computer. This accounts for certain peculiarities of the articles.
For instance, the conceptual apparatus is strongly developed, which can best be
illustrated by so-called casting functions, which without changing their respec-
tive arguments change their types. Other peculiarities include the occurrence
of minor propositions resulting from detailed formalization, and repetitions of
definitions in the form of so-called definitional theorems (see proposition 1 in
[1], page 265).

As was explained in [5], what is translated is not Mizar articles themselves
but so-called Mizar abstracts. An article includes certain elements which are
transferred to the data base, such as theorems and definitions. But it also
contains fragments which are not transferred there, such as proofs of theorems
and lemmas. Mizar abstracts contain only those parts of Mizar articles which
are transferred to the data base. This has been due to the fact that the material
published at first was intended to facilitate to the Mizar users the use of the
data base. In the future, as non-trivial proofs are offered, we plan to publish
the translations of full Mizar articles.

It must be explained at this point that both PC Mizar system and Main
Mizar Library are systematically developed. In the case of PC Mizar it is mainly
the Mizar language which is enriched, which makes it more convenient to write
articles; the same may by said of the proof-checker, which enables one to write
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shorter proofs. In the case of MML its development is linked above all to the
ever new enhancers of texts, put in operation, which automatically improve the
quality of the articles, usually by shortening them. As a simple example one can
mention the program Inacc (inaccessible fragments), which removes from the
text of the article those fragments which are not transferred to the data base
and are not used in the article (for instance, when the author writes a lemma
which she/he supposes to use later one but then changes the conception of the
proofs and makes no reference to that lemma). Another improvement is that
of Chkrprem (relevant premisses): it removes from the text the unnecessary
references in justifications of statements. Since both processes interact that
causes considerable changes in the articles. For instance, the strengthening of
the proof-checker may result in that certain items of information function are
understood by default and reference to a sentence A in the justification of a
statement B ceases to be necessary. Hence in the successive verifications of the
quality of the paper that reference is removed. We have to do with a special case
of such interaction when a theorem has become obvious for the proof-checker,
which is to say that when checking whether a given sentence is true the proof-
checker needs not refer to other theorems and lemmas. The improver Trivtheo
(trivial theorems) pin-points such theorems and eliminates them since as a rule
they are not useful. But the numbering of the propositions in a given article
is retained. Hence a gap in the numbering and the related information in the
footnote: ”The propositon (8) became obvious” (see [2], page 670).

Note also that in the present issue the symbol of multiplication of real func-
tions has been changed from · into � (see [4] and [3]).

Roman Matuszewski
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Summary. The classical sequence of implications which hold be-
tween Desargues and Pappus Axioms id proved. Formally Minor and
Major Desargues Axiom (as suitable properties - predicates - of an affine
plane) together with all its indirect forms are introduced; the same pro-
cedure is applied to Pappus Axioms. The so called Trapezium Desargues
Axiom is also considered.

MML Identifier: AFF 2.

The articles [1], and [2] provide the notation and terminology for this paper. We
follow the rules: AP will denote an affine plane, a, a′, b, b′, c, c′, o will denote
elements of the points of AP , and A, C, K, M , N , P will denote subsets of the
points of AP . Let us consider AP . We say that AP satisfies PPAP if and only
if:

Given M , N , a, b, c, a′, b′, c′. Then if M is a line and N is a line and a ∈M
and b ∈ M and c ∈ M and a′ ∈ N and b′ ∈ N and c′ ∈ N and a, b′ ‖ b, a′ and
b, c′ ‖ c, b′, then a, c′ ‖ c, a′.

We now state the proposition

(1) Given AP . Then AP satisfies PPAP if and only if for all M , N , a, b, c,
a′, b′, c′ such that M is a line and N is a line and a ∈M and b ∈M and
c ∈ M and a′ ∈ N and b′ ∈ N and c′ ∈ N and a, b′ ‖ b, a′ and b, c′ ‖ c, b′
holds a, c′ ‖ c, a′.

Let us consider AP . We say that AP satisfies PAP if and only if:
Given M , N , o, a, b, c, a′, b′, c′. Suppose that

(i) M is a line,
(ii) N is a line,

(iii) M 6= N ,
(iv) o ∈M ,
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(v) o ∈ N ,
(vi) o 6= a,

(vii) o 6= a′,
(viii) o 6= b,

(ix) o 6= b′,
(x) o 6= c,

(xi) o 6= c′,
(xii) a ∈M ,

(xiii) b ∈M ,
(xiv) c ∈M ,
(xv) a′ ∈ N ,

(xvi) b′ ∈ N ,
(xvii) c′ ∈ N ,

(xviii) a, b′ ‖ b, a′,
(xix) b, c′ ‖ c, b′.

Then a, c′ ‖ c, a′.
The following proposition is true

(2) Given AP . Then AP satisfies PAP if and only if for all M , N , o, a, b,
c, a′, b′, c′ such that M is a line and N is a line and M 6= N and o ∈M
and o ∈ N and o 6= a and o 6= a′ and o 6= b and o 6= b′ and o 6= c and
o 6= c′ and a ∈ M and b ∈ M and c ∈ M and a′ ∈ N and b′ ∈ N and
c′ ∈ N and a, b′ ‖ b, a′ and b, c′ ‖ c, b′ holds a, c′ ‖ c, a′.

Let us consider AP . We say that AP satisfies PAP1 if and only if:
Given M , N , o, a, b, c, a′, b′, c′. Suppose that

(i) M is a line,
(ii) N is a line,

(iii) M 6= N ,
(iv) o ∈M ,
(v) o ∈ N ,

(vi) o 6= a,
(vii) o 6= a′,

(viii) o 6= b,
(ix) o 6= b′,
(x) o 6= c,

(xi) o 6= c′,
(xii) a ∈M ,

(xiii) b ∈M ,
(xiv) c ∈M ,
(xv) b′ ∈ N ,

(xvi) c′ ∈ N ,
(xvii) a, b′ ‖ b, a′,

(xviii) b, c′ ‖ c, b′,
(xix) a, c′ ‖ c, a′,
(xx) b 6= c.
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Then a′ ∈ N .

One can prove the following proposition

(3) Given AP . Then AP satisfies PAP1 if and only if for all M , N , o, a,
b, c, a′, b′, c′ such that M is a line and N is a line and M 6= N and o ∈M
and o ∈ N and o 6= a and o 6= a′ and o 6= b and o 6= b′ and o 6= c and
o 6= c′ and a ∈ M and b ∈ M and c ∈ M and b′ ∈ N and c′ ∈ N and
a, b′ ‖ b, a′ and b, c′ ‖ c, b′ and a, c′ ‖ c, a′ and b 6= c holds a′ ∈ N .

Let us consider AP . We say that AP satisfies DES if and only if:
Given A, P , C, o, a, b, c, a′, b′, c′. Suppose that

(i) o ∈ A,
(ii) o ∈ P ,

(iii) o ∈ C,
(iv) o 6= a,
(v) o 6= b,

(vi) o 6= c,
(vii) a ∈ A,

(viii) a′ ∈ A,
(ix) b ∈ P ,
(x) b′ ∈ P ,

(xi) c ∈ C,
(xii) c′ ∈ C,

(xiii) A is a line,
(xiv) P is a line,
(xv) C is a line,

(xvi) A 6= P ,
(xvii) A 6= C,

(xviii) a, b ‖ a′, b′,
(xix) a, c ‖ a′, c′.

Then b, c ‖ b′, c′.
We now state the proposition

(4) Given AP . Then AP satisfies DES if and only if for all A, P , C, o, a,
b, c, a′, b′, c′ such that o ∈ A and o ∈ P and o ∈ C and o 6= a and o 6= b
and o 6= c and a ∈ A and a′ ∈ A and b ∈ P and b′ ∈ P and c ∈ C and
c′ ∈ C and A is a line and P is a line and C is a line and A 6= P and
A 6= C and a, b ‖ a′, b′ and a, c ‖ a′, c′ holds b, c ‖ b′, c′.

Let us consider AP . We say that AP satisfies DES1 if and only if:
Given A, P , C, o, a, b, c, a′, b′, c′. Suppose that

(i) o ∈ A,
(ii) o ∈ P ,

(iii) o 6= a,
(iv) o 6= b,
(v) o 6= c,

(vi) a ∈ A,
(vii) a′ ∈ A,
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(viii) b ∈ P ,
(ix) b′ ∈ P ,
(x) c ∈ C,

(xi) c′ ∈ C,
(xii) A is a line,

(xiii) P is a line,
(xiv) C is a line,
(xv) A 6= P ,

(xvi) A 6= C,
(xvii) a, b ‖ a′, b′,

(xviii) a, c ‖ a′, c′,
(xix) b, c ‖ b′, c′,
(xx) not L(a, b, c),

(xxi) c 6= c′.
Then o ∈ C.

One can prove the following proposition

(5) Given AP . Then AP satisfies DES1 if and only if for all A, P , C, o,
a, b, c, a′, b′, c′ such that o ∈ A and o ∈ P and o 6= a and o 6= b and
o 6= c and a ∈ A and a′ ∈ A and b ∈ P and b′ ∈ P and c ∈ C and c′ ∈ C
and A is a line and P is a line and C is a line and A 6= P and A 6= C
and a, b ‖ a′, b′ and a, c ‖ a′, c′ and b, c ‖ b′, c′ and not L(a, b, c) and c 6= c′

holds o ∈ C.

Let us consider AP . We say that AP satisfies DES2 if and only if:
Given A, P , C, o, a, b, c, a′, b′, c′. Suppose that

(i) o ∈ A,
(ii) o ∈ P ,

(iii) o ∈ C,
(iv) o 6= a,
(v) o 6= b,

(vi) o 6= c,
(vii) a ∈ A,

(viii) a′ ∈ A,
(ix) b ∈ P ,
(x) b′ ∈ P ,

(xi) c ∈ C,
(xii) A is a line,

(xiii) P is a line,
(xiv) C is a line,
(xv) A 6= P ,

(xvi) A 6= C,
(xvii) a, b ‖ a′, b′,

(xviii) a, c ‖ a′, c′,
(xix) b, c ‖ b′, c′.

Then c′ ∈ C.
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One can prove the following proposition

(6) Given AP . Then AP satisfies DES2 if and only if for all A, P , C, o,
a, b, c, a′, b′, c′ such that o ∈ A and o ∈ P and o ∈ C and o 6= a and
o 6= b and o 6= c and a ∈ A and a′ ∈ A and b ∈ P and b′ ∈ P and c ∈ C
and A is a line and P is a line and C is a line and A 6= P and A 6= C and
a, b ‖ a′, b′ and a, c ‖ a′, c′ and b, c ‖ b′, c′ holds c′ ∈ C.

Let us consider AP . We say that AP satisfies TDES if and only if:

Given K, o, a, b, c, a′, b′, c′. Suppose that

(i) K is a line,

(ii) o ∈ K,

(iii) c ∈ K,

(iv) c′ ∈ K,

(v) a /∈ K,

(vi) o 6= c,

(vii) a 6= b,

(viii) L(o, a, a′),
(ix) L(o, b, b′),
(x) a, b ‖ a′, b′,

(xi) a, c ‖ a′, c′,
(xii) a, b ‖ K.

Then b, c ‖ b′, c′.
We now state the proposition

(7) Given AP . Then AP satisfies TDES if and only if for all K, o, a, b,
c, a′, b′, c′ such that K is a line and o ∈ K and c ∈ K and c′ ∈ K and
a /∈ K and o 6= c and a 6= b and L(o, a, a′) and L(o, b, b′) and a, b ‖ a′, b′
and a, c ‖ a′, c′ and a, b ‖ K holds b, c ‖ b′, c′.

Let us consider AP . We say that AP satisfies TDES1 if and only if:

Given K, o, a, b, c, a′, b′, c′. Suppose that

(i) K is a line,

(ii) o ∈ K,

(iii) c ∈ K,

(iv) c′ ∈ K,

(v) a /∈ K,

(vi) o 6= c,

(vii) a 6= b,

(viii) L(o, a, a′),
(ix) a, b ‖ a′, b′,
(x) b, c ‖ b′, c′,

(xi) a, c ‖ a′, c′,
(xii) a, b ‖ K.

Then L(o, b, b′).

One can prove the following proposition
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(8) Given AP . Then AP satisfies TDES1 if and only if for all K, o, a, b,
c, a′, b′, c′ such that K is a line and o ∈ K and c ∈ K and c′ ∈ K and
a /∈ K and o 6= c and a 6= b and L(o, a, a′) and a, b ‖ a′, b′ and b, c ‖ b′, c′
and a, c ‖ a′, c′ and a, b ‖ K holds L(o, b, b′).

Let us consider AP . We say that AP satisfies TDES2 if and only if:
Given K, o, a, b, c, a′, b′, c′. Suppose that

(i) K is a line,
(ii) o ∈ K,

(iii) c ∈ K,
(iv) c′ ∈ K,
(v) a /∈ K,

(vi) o 6= c,
(vii) a 6= b,

(viii) L(o, a, a′),
(ix) L(o, b, b′),
(x) b, c ‖ b′, c′,

(xi) a, c ‖ a′, c′,
(xii) a, b ‖ K.

Then a, b ‖ a′, b′.
The following proposition is true

(9) Given AP . Then AP satisfies TDES2 if and only if for all K, o, a, b,
c, a′, b′, c′ such that K is a line and o ∈ K and c ∈ K and c′ ∈ K and
a /∈ K and o 6= c and a 6= b and L(o, a, a′) and L(o, b, b′) and b, c ‖ b′, c′
and a, c ‖ a′, c′ and a, b ‖ K holds a, b ‖ a′, b′.

Let us consider AP . We say that AP satisfies TDES3 if and only if:
Given K, o, a, b, c, a′, b′, c′. Suppose that

(i) K is a line,
(ii) o ∈ K,

(iii) c ∈ K,
(iv) a /∈ K,
(v) o 6= c,

(vi) a 6= b,
(vii) L(o, a, a′),

(viii) L(o, b, b′),
(ix) a, b ‖ a′, b′,
(x) a, c ‖ a′, c′,

(xi) b, c ‖ b′, c′,
(xii) a, b ‖ K.

Then c′ ∈ K.

We now state the proposition

(10) Given AP . Then AP satisfies TDES3 if and only if for all K, o, a, b, c,
a′, b′, c′ such that K is a line and o ∈ K and c ∈ K and a /∈ K and o 6= c
and a 6= b and L(o, a, a′) and L(o, b, b′) and a, b ‖ a′, b′ and a, c ‖ a′, c′ and
b, c ‖ b′, c′ and a, b ‖ K holds c′ ∈ K.
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Let us consider AP . We say that AP satisfies des if and only if:
Given A, P , C, a, b, c, a′, b′, c′. Suppose that

(i) A ‖ P ,
(ii) A ‖ C,

(iii) a ∈ A,
(iv) a′ ∈ A,
(v) b ∈ P ,

(vi) b′ ∈ P ,
(vii) c ∈ C,

(viii) c′ ∈ C,
(ix) A is a line,
(x) P is a line,

(xi) C is a line,
(xii) A 6= P ,

(xiii) A 6= C,
(xiv) a, b ‖ a′, b′,
(xv) a, c ‖ a′, c′.

Then b, c ‖ b′, c′.
The following proposition is true

(11) Given AP . Then AP satisfies des if and only if for all A, P , C, a, b, c,
a′, b′, c′ such that A ‖ P and A ‖ C and a ∈ A and a′ ∈ A and b ∈ P and
b′ ∈ P and c ∈ C and c′ ∈ C and A is a line and P is a line and C is a line
and A 6= P and A 6= C and a, b ‖ a′, b′ and a, c ‖ a′, c′ holds b, c ‖ b′, c′.

Let us consider AP . We say that AP satisfies des1 if and only if:
Given A, P , C, a, b, c, a′, b′, c′. Suppose that

(i) A ‖ P ,
(ii) a ∈ A,

(iii) a′ ∈ A,
(iv) b ∈ P ,
(v) b′ ∈ P ,

(vi) c ∈ C,
(vii) c′ ∈ C,

(viii) A is a line,
(ix) P is a line,
(x) C is a line,

(xi) A 6= P ,
(xii) A 6= C,

(xiii) a, b ‖ a′, b′,
(xiv) a, c ‖ a′, c′,
(xv) b, c ‖ b′, c′,

(xvi) not L(a, b, c),
(xvii) c 6= c′.

Then A ‖ C.

The following proposition is true
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(12) Given AP . Then AP satisfies des1 if and only if for all A, P , C, a, b,
c, a′, b′, c′ such that A ‖ P and a ∈ A and a′ ∈ A and b ∈ P and b′ ∈ P
and c ∈ C and c′ ∈ C and A is a line and P is a line and C is a line and
A 6= P and A 6= C and a, b ‖ a′, b′ and a, c ‖ a′, c′ and b, c ‖ b′, c′ and
not L(a, b, c) and c 6= c′ holds A ‖ C.

Let us consider AP . We say that AP satisfies pap if and only if:
Given M , N , a, b, c, a′, b′, c′. Suppose M is a line and N is a line and a ∈M

and b ∈ M and c ∈ M and M ‖ N and M 6= N and a′ ∈ N and b′ ∈ N and
c′ ∈ N and a, b′ ‖ b, a′ and b, c′ ‖ c, b′. Then a, c′ ‖ c, a′.

The following proposition is true

(13) Given AP . Then AP satisfies pap if and only if for all M , N , a, b, c,
a′, b′, c′ such that M is a line and N is a line and a ∈M and b ∈M and
c ∈ M and M ‖ N and M 6= N and a′ ∈ N and b′ ∈ N and c′ ∈ N and
a, b′ ‖ b, a′ and b, c′ ‖ c, b′ holds a, c′ ‖ c, a′.

Let us consider AP . We say that AP satisfies pap1 if and only if:
Given M , N , a, b, c, a′, b′, c′. Suppose that

(i) M is a line,
(ii) N is a line,

(iii) a ∈M ,
(iv) b ∈M ,
(v) c ∈M ,

(vi) M ‖ N ,
(vii) M 6= N ,

(viii) a′ ∈ N ,
(ix) b′ ∈ N ,
(x) a, b′ ‖ b, a′,

(xi) b, c′ ‖ c, b′,
(xii) a, c′ ‖ c, a′,

(xiii) a′ 6= b′.
Then c′ ∈ N .

We now state a number of propositions:

(14) Given AP . Then AP satisfies pap1 if and only if for all M , N , a, b, c,
a′, b′, c′ such that M is a line and N is a line and a ∈M and b ∈M and
c ∈ M and M ‖ N and M 6= N and a′ ∈ N and b′ ∈ N and a, b′ ‖ b, a′
and b, c′ ‖ c, b′ and a, c′ ‖ c, a′ and a′ 6= b′ holds c′ ∈ N .

(15) AP satisfies PAP if and only if AP satisfies PAP1.

(16) AP satisfies DES if and only if AP satisfies DES1.

(17) If AP satisfies TDES, then AP satisfies TDES1.

(18) If AP satisfies TDES1, then AP satisfies TDES2.

(19) If AP satisfies TDES2, then AP satisfies TDES3.

(20) If AP satisfies TDES3, then AP satisfies TDES.

(21) AP satisfies des if and only if AP satisfies des1.

(22) AP satisfies pap if and only if AP satisfies pap1.
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(23) If AP satisfies PAP, then AP satisfies pap.

(24) AP satisfies PPAP if and only if AP satisfies PAP and AP satisfies
pap.

(25) If AP satisfies PAP, then AP satisfies DES.

(26) If AP satisfies DES, then AP satisfies TDES.

(27) If AP satisfies TDES1, then AP satisfies des1.

(28) If AP satisfies TDES, then AP satisfies des.

(29) If AP satisfies des, then AP satisfies pap.
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Warsaw University

Bia lystok

Summary. Several affine localizations of Major Desargues Axiom
together with its indirect forms are introduced. Logical relationships
between these formulas and between them and the classical Desargues
Axiom are demonstrated.

MML Identifier: AFF 3.

The articles [1], [3], and [2] provide the notation and terminology for this paper.
We follow a convention: AP denotes an affine plane, a, a′, b, b′, c, c′, o, p, q
denote elements of the points of AP , and A, C, P denote subsets of the points
of AP . Let us consider AP . We say that AP satisfies DES1 if and only if:

Given A, P , C, o, a, a′, b, b′, c, c′, p, q. Suppose that
(i) A is a line,

(ii) P is a line,
(iii) C is a line,
(iv) P 6= A,
(v) P 6= C,

(vi) A 6= C,
(vii) o ∈ A,

(viii) a ∈ A,
(ix) a′ ∈ A,
(x) o ∈ P ,

(xi) b ∈ P ,
(xii) b′ ∈ P ,
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(xiii) o ∈ C,
(xiv) c ∈ C,
(xv) c′ ∈ C,

(xvi) o 6= a,
(xvii) o 6= b,

(xviii) o 6= c,
(xix) p 6= q,
(xx) not L(b, a, c),

(xxi) not L(b′, a′, c′),
(xxii) a 6= a′,

(xxiii) L(b, a, p),
(xxiv) L(b′, a′, p),
(xxv) L(b, c, q),

(xxvi) L(b′, c′, q),
(xxvii) a, c ‖ a′, c′.

Then a, c ‖ p, q.
We now state the proposition

(1) Given AP . Then AP satisfies DES1 if and only if for all A, P , C, o,
a, a′, b, b′, c, c′, p, q such that A is a line and P is a line and C is a line
and P 6= A and P 6= C and A 6= C and o ∈ A and a ∈ A and a′ ∈ A
and o ∈ P and b ∈ P and b′ ∈ P and o ∈ C and c ∈ C and c′ ∈ C and
o 6= a and o 6= b and o 6= c and p 6= q and not L(b, a, c) and not L(b′, a′, c′)
and a 6= a′ and L(b, a, p) and L(b′, a′, p) and L(b, c, q) and L(b′, c′, q) and
a, c ‖ a′, c′ holds a, c ‖ p, q.

Let us consider AP . We say that AP satisfies DES11 if and only if:
Given A, P , C, o, a, a′, b, b′, c, c′, p, q. Suppose that

(i) A is a line,
(ii) P is a line,

(iii) C is a line,
(iv) P 6= A,
(v) P 6= C,

(vi) A 6= C,
(vii) o ∈ A,

(viii) a ∈ A,
(ix) a′ ∈ A,
(x) o ∈ P ,

(xi) b ∈ P ,
(xii) b′ ∈ P ,

(xiii) o ∈ C,
(xiv) c ∈ C,
(xv) c′ ∈ C,

(xvi) o 6= a,
(xvii) o 6= b,

(xviii) o 6= c,
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(xix) p 6= q,
(xx) c 6= q,

(xxi) not L(b, a, c),
(xxii) not L(b′, a′, c′),

(xxiii) L(b, a, p),
(xxiv) L(b′, a′, p),
(xxv) L(b, c, q),

(xxvi) L(b′, c′, q),
(xxvii) a, c ‖ p, q.

Then a, c ‖ a′, c′.
The following proposition is true

(2) Given AP . Then AP satisfies DES11 if and only if for all A, P , C, o,
a, a′, b, b′, c, c′, p, q such that A is a line and P is a line and C is a line
and P 6= A and P 6= C and A 6= C and o ∈ A and a ∈ A and a′ ∈ A
and o ∈ P and b ∈ P and b′ ∈ P and o ∈ C and c ∈ C and c′ ∈ C and
o 6= a and o 6= b and o 6= c and p 6= q and c 6= q and not L(b, a, c) and
not L(b′, a′, c′) and L(b, a, p) and L(b′, a′, p) and L(b, c, q) and L(b′, c′, q)
and a, c ‖ p, q holds a, c ‖ a′, c′.

Let us consider AP . We say that AP satisfies DES12 if and only if:
Given A, P , C, o, a, a′, b, b′, c, c′, p, q. Suppose that

(i) A is a line,
(ii) P is a line,

(iii) C is a line,
(iv) P 6= A,
(v) P 6= C,

(vi) A 6= C,
(vii) o ∈ A,

(viii) a ∈ A,
(ix) a′ ∈ A,
(x) o ∈ P ,

(xi) b ∈ P ,
(xii) b′ ∈ P ,

(xiii) c ∈ C,
(xiv) c′ ∈ C,
(xv) o 6= a,

(xvi) o 6= b,
(xvii) o 6= c,

(xviii) p 6= q,
(xix) not L(b, a, c),
(xx) not L(b′, a′, c′),

(xxi) c 6= c′,
(xxii) L(b, a, p),

(xxiii) L(b′, a′, p),
(xxiv) L(b, c, q),
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(xxv) L(b′, c′, q),
(xxvi) a, c ‖ a′, c′,

(xxvii) a, c ‖ p, q.
Then o ∈ C.

Next we state the proposition

(3) Given AP . Then AP satisfies DES12 if and only if for all A, P , C, o,
a, a′, b, b′, c, c′, p, q such that A is a line and P is a line and C is a line
and P 6= A and P 6= C and A 6= C and o ∈ A and a ∈ A and a′ ∈ A and
o ∈ P and b ∈ P and b′ ∈ P and c ∈ C and c′ ∈ C and o 6= a and o 6= b
and o 6= c and p 6= q and not L(b, a, c) and not L(b′, a′, c′) and c 6= c′ and
L(b, a, p) and L(b′, a′, p) and L(b, c, q) and L(b′, c′, q) and a, c ‖ a′, c′ and
a, c ‖ p, q holds o ∈ C.

Let us consider AP . We say that AP satisfies DES13 if and only if:
Given A, P , C, o, a, a′, b, b′, c, c′, p, q. Suppose that

(i) A is a line,
(ii) P is a line,

(iii) C is a line,
(iv) P 6= A,
(v) P 6= C,

(vi) A 6= C,
(vii) o ∈ A,

(viii) a ∈ A,
(ix) a′ ∈ A,
(x) b ∈ P ,

(xi) b′ ∈ P ,
(xii) o ∈ C,

(xiii) c ∈ C,
(xiv) c′ ∈ C,
(xv) o 6= a,

(xvi) o 6= b,
(xvii) o 6= c,

(xviii) p 6= q,
(xix) not L(b, a, c),
(xx) not L(b′, a′, c′),

(xxi) b 6= b′,
(xxii) a 6= a′,

(xxiii) L(b, a, p),
(xxiv) L(b′, a′, p),
(xxv) L(b, c, q),

(xxvi) L(b′, c′, q),
(xxvii) a, c ‖ a′, c′,

(xxviii) a, c ‖ p, q.
Then o ∈ P .

Next we state the proposition
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(4) Given AP . Then AP satisfies DES13 if and only if for all A, P , C, o,
a, a′, b, b′, c, c′, p, q such that A is a line and P is a line and C is a line
and P 6= A and P 6= C and A 6= C and o ∈ A and a ∈ A and a′ ∈ A and
b ∈ P and b′ ∈ P and o ∈ C and c ∈ C and c′ ∈ C and o 6= a and o 6= b
and o 6= c and p 6= q and not L(b, a, c) and not L(b′, a′, c′) and b 6= b′

and a 6= a′ and L(b, a, p) and L(b′, a′, p) and L(b, c, q) and L(b′, c′, q) and
a, c ‖ a′, c′ and a, c ‖ p, q holds o ∈ P .

Let us consider AP . We say that AP satisfies DES2 if and only if:
Given A, P , C, a, a′, b, b′, c, c′, p, q. Suppose that

(i) A is a line,
(ii) P is a line,

(iii) C is a line,
(iv) A 6= P ,
(v) A 6= C,

(vi) P 6= C,
(vii) a ∈ A,

(viii) a′ ∈ A,
(ix) b ∈ P ,
(x) b′ ∈ P ,

(xi) c ∈ C,
(xii) c′ ∈ C,

(xiii) A ‖ P ,
(xiv) A ‖ C,
(xv) not L(b, a, c),

(xvi) not L(b′, a′, c′),
(xvii) p 6= q,

(xviii) a 6= a′,
(xix) L(b, a, p),
(xx) L(b′, a′, p),

(xxi) L(b, c, q),
(xxii) L(b′, c′, q),

(xxiii) a, c ‖ a′, c′.
Then a, c ‖ p, q.
We now state the proposition

(5) Given AP . Then AP satisfies DES2 if and only if for all A, P , C, a,
a′, b, b′, c, c′, p, q such that A is a line and P is a line and C is a line
and A 6= P and A 6= C and P 6= C and a ∈ A and a′ ∈ A and b ∈ P and
b′ ∈ P and c ∈ C and c′ ∈ C and A ‖ P and A ‖ C and not L(b, a, c) and
not L(b′, a′, c′) and p 6= q and a 6= a′ and L(b, a, p) and L(b′, a′, p) and
L(b, c, q) and L(b′, c′, q) and a, c ‖ a′, c′ holds a, c ‖ p, q.

Let us consider AP . We say that AP satisfies DES21 if and only if:
Given A, P , C, a, a′, b, b′, c, c′, p, q. Suppose that

(i) A is a line,
(ii) P is a line,
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(iii) C is a line,
(iv) A 6= P ,
(v) A 6= C,

(vi) P 6= C,
(vii) a ∈ A,

(viii) a′ ∈ A,
(ix) b ∈ P ,
(x) b′ ∈ P ,

(xi) c ∈ C,
(xii) c′ ∈ C,

(xiii) A ‖ P ,
(xiv) A ‖ C,
(xv) not L(b, a, c),

(xvi) not L(b′, a′, c′),
(xvii) p 6= q,

(xviii) L(b, a, p),
(xix) L(b′, a′, p),
(xx) L(b, c, q),

(xxi) L(b′, c′, q),
(xxii) a, c ‖ p, q.

Then a, c ‖ a′, c′.
We now state the proposition

(6) Given AP . Then AP satisfies DES21 if and only if for all A, P , C, a,
a′, b, b′, c, c′, p, q such that A is a line and P is a line and C is a line
and A 6= P and A 6= C and P 6= C and a ∈ A and a′ ∈ A and b ∈ P and
b′ ∈ P and c ∈ C and c′ ∈ C and A ‖ P and A ‖ C and not L(b, a, c) and
not L(b′, a′, c′) and p 6= q and L(b, a, p) and L(b′, a′, p) and L(b, c, q) and
L(b′, c′, q) and a, c ‖ p, q holds a, c ‖ a′, c′.

Let us consider AP . We say that AP satisfies DES22 if and only if:
Given A, P , C, a, a′, b, b′, c, c′, p, q. Suppose that

(i) A is a line,
(ii) P is a line,

(iii) C is a line,
(iv) A 6= P ,
(v) A 6= C,

(vi) P 6= C,
(vii) a ∈ A,

(viii) a′ ∈ A,
(ix) b ∈ P ,
(x) b′ ∈ P ,

(xi) c ∈ C,
(xii) c′ ∈ C,

(xiii) A ‖ C,
(xiv) not L(b, a, c),
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(xv) not L(b′, a′, c′),
(xvi) p 6= q,

(xvii) a 6= a′,
(xviii) L(b, a, p),

(xix) L(b′, a′, p),
(xx) L(b, c, q),

(xxi) L(b′, c′, q),
(xxii) a, c ‖ a′, c′,

(xxiii) a, c ‖ p, q.
Then A ‖ P .

Next we state the proposition

(7) Given AP . Then AP satisfies DES22 if and only if for all A, P , C,
a, a′, b, b′, c, c′, p, q such that A is a line and P is a line and C is a
line and A 6= P and A 6= C and P 6= C and a ∈ A and a′ ∈ A and
b ∈ P and b′ ∈ P and c ∈ C and c′ ∈ C and A ‖ C and not L(b, a, c) and
not L(b′, a′, c′) and p 6= q and a 6= a′ and L(b, a, p) and L(b′, a′, p) and
L(b, c, q) and L(b′, c′, q) and a, c ‖ a′, c′ and a, c ‖ p, q holds A ‖ P .

Let us consider AP . We say that AP satisfies DES23 if and only if:
Given A, P , C, a, a′, b, b′, c, c′, p, q. Suppose that

(i) A is a line,
(ii) P is a line,

(iii) C is a line,
(iv) A 6= P ,
(v) A 6= C,

(vi) P 6= C,
(vii) a ∈ A,

(viii) a′ ∈ A,
(ix) b ∈ P ,
(x) b′ ∈ P ,

(xi) c ∈ C,
(xii) c′ ∈ C,

(xiii) A ‖ P ,
(xiv) not L(b, a, c),
(xv) not L(b′, a′, c′),

(xvi) p 6= q,
(xvii) c 6= c′,

(xviii) L(b, a, p),
(xix) L(b′, a′, p),
(xx) L(b, c, q),

(xxi) L(b′, c′, q),
(xxii) a, c ‖ a′, c′,

(xxiii) a, c ‖ p, q.
Then A ‖ C.

We now state a number of propositions:
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(8) Given AP . Then AP satisfies DES23 if and only if for all A, P , C,
a, a′, b, b′, c, c′, p, q such that A is a line and P is a line and C is a
line and A 6= P and A 6= C and P 6= C and a ∈ A and a′ ∈ A and
b ∈ P and b′ ∈ P and c ∈ C and c′ ∈ C and A ‖ P and not L(b, a, c)
and not L(b′, a′, c′) and p 6= q and c 6= c′ and L(b, a, p) and L(b′, a′, p) and
L(b, c, q) and L(b′, c′, q) and a, c ‖ a′, c′ and a, c ‖ p, q holds A ‖ C.

(9) If AP satisfies DES1, then AP satisfies DES11.

(10) If AP satisfies DES11, then AP satisfies DES1.

(11) If AP satisfies DES, then AP satisfies DES1.

(12) If AP satisfies DES, then AP satisfies DES12.

(13) If AP satisfies DES12, then AP satisfies DES13.

(14) If AP satisfies DES12, then AP satisfies DES.

(15) If AP satisfies DES21, then AP satisfies DES2.

(16) AP satisfies DES21 if and only if AP satisfies DES23.

(17) AP satisfies DES2 if and only if AP satisfies DES22.

(18) If AP satisfies DES13, then AP satisfies DES21.
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Summary. The article contains some propositions and theorems
related to [7] and [4]. The notions introduced in [7] are extended to finite
sequences. A number additional propositions related to this notions are
proved. There are also proved some properties of distributive operations
and unary operations. The notation and propositions for inverses are
introduced.

MML Identifier: FINSEQOP.

The notation and terminology used in this paper are introduced in the following
articles: [9], [1], [5], [3], [2], [6], [7], [4], and [8]. For simplicity we adopt the
following convention: x, y will be arbitrary, C, C ′, D, D′, E will be non-empty
sets, c will be an element of C, c′ will be an element of C ′, d, d1, d2, d3, d4, e
will be elements of D, and d′ will be an element of D′. Next we state several
propositions:

(1) For every function f holds 〈 � , f〉 =
�

and 〈f, � 〉 =
�

.

(2) For every function f holds [:
�
, f :] =

�
and [: f,

�
:] =

�
.

(3) (C 7−→ d)(c) = d.

(4) For all functions F , f holds F ◦(
�
, f) =

�
and F ◦(f,

�
) =

�
.

(5) For every function F holds F ◦(
�
, x) =

�
.

(6) For every function F holds F ◦(x,
�

) =
�

.

(7) For every set X and for arbitrary x1, x2 holds 〈X 7−→ x1, X 7−→ x2〉 =
X 7−→ 〈〈x1, x2〉〉.

(8) For every function F and for every set X and for arbitrary x1, x2

such that 〈〈x1, x2〉〉 ∈ domF holds F ◦(X 7−→ x1, X 7−→ x2) = X 7−→
F (〈〈x1, x2〉〉).
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For simplicity we adopt the following rules: i, j will denote natural numbers,
F will denote a function from [:D, D′ :] into E, p, q will denote finite sequences
of elements of D, and p′, q′ will denote finite sequences of elements of D ′. Let
us consider D, D′, E, F , p, p′. Then F ◦(p, p′) is a finite sequence of elements
of E.

Let us consider D, D′, E, F , p, d′. Then F ◦(p, d′) is a finite sequence of
elements of E.

Let us consider D, D′, E, F , d, p′. Then F ◦(d, p′) is a finite sequence of
elements of E.

Let us consider D, i, d. Then i 7−→ d is an element of Di.

In the sequel f , f ′ are functions from C into D and h is a function from D
into E. Let us consider D, E, p, h. Then h · p is a finite sequence of elements
of E.

Next we state two propositions:

(9) h · (p � 〈d〉) = (h · p) � 〈h(d)〉.
(10) h · (p � q) = (h · p) � (h · q).

For simplicity we follow a convention: T , T1, T2, T3 denote elements of Di,
T ′ denotes an element of D′i, S denotes an element of Dj, and S′ denotes an
element of D′j . Next we state a number of propositions:

(11) F ◦(T � 〈d〉, T ′ � 〈d′〉) = F ◦(T, T ′) � 〈F (d, d′)〉.
(12) F ◦(T � S, T ′ � S′) = F ◦(T, T ′) � F ◦(S, S′).
(13) F ◦(d, p′ � 〈d′〉) = F ◦(d, p′) � 〈F (d, d′)〉.
(14) F ◦(d, p′ � q′) = F ◦(d, p′) � F ◦(d, q′).
(15) F ◦(p � 〈d〉, d′) = F ◦(p, d′) � 〈F (d, d′)〉.
(16) F ◦(p � q, d′) = F ◦(p, d′) � F ◦(q, d′).
(17) For every function h from D into E holds h · (i 7−→ d) = i 7−→ h(d).

(18) F ◦(i 7−→ d, i 7−→ d′) = i 7−→ F (d, d′).
(19) F ◦(d, i 7−→ d′) = i 7−→ F (d, d′).
(20) F ◦(i 7−→ d, d′) = i 7−→ F (d, d′).
(21) F ◦(i 7−→ d, T ′) = F ◦(d, T ′).
(22) F ◦(T, i 7−→ d) = F ◦(T, d).

(23) F ◦(d, T ′) = F ◦(d, idD′) · T ′.
(24) F ◦(T, d) = F ◦(idD, d) · T .

In the sequel F , G are binary operations on D, u is a unary operation on D,
and H is a binary operation on E. One can prove the following propositions:

(25) If F is associative, then F ◦(d, idD) · F ◦(f, f ′) = F ◦(F ◦(d, idD) · f, f ′).
(26) If F is associative, then F ◦(idD, d) · F ◦(f, f ′) = F ◦(f, F ◦(idD, d) · f ′).
(27) If F is associative, then F ◦(d, idD) · F ◦(T1, T2) = F ◦(F ◦(d, idD) · T1,

T2).

(28) If F is associative, then F ◦(idD, d)·F ◦(T1, T2) = F ◦(T1, F
◦(idD, d)·T2).
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(29) If F is associative, then F ◦(F ◦(T1, T2), T3) = F ◦(T1, F
◦(T2, T3)).

(30) If F is associative, then F ◦(F ◦(d1, T ), d2) = F ◦(d1, F
◦(T, d2)).

(31) If F is associative, then F ◦(F ◦(T1, d), T2) = F ◦(T1, F
◦(d, T2)).

(32) If F is associative, then F ◦(F (d1, d2), T ) = F ◦(d1, F
◦(d2, T )).

(33) If F is associative, then F ◦(T, F (d1, d2)) = F ◦(F ◦(T, d1), d2).

(34) If F is commutative, then F ◦(T1, T2) = F ◦(T2, T1).

(35) If F is commutative, then F ◦(d, T ) = F ◦(T, d).

(36) If F is distributive w.r.t. G, then F ◦(G(d1, d2), f) = G◦(F ◦(d1, f),
F ◦(d2, f)).

(37) If F is distributive w.r.t. G, then F ◦(f,G(d1, d2)) = G◦(F ◦(f, d1),
F ◦(f, d2)).

(38) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h · F ◦(f,
f ′) = H◦(h · f, h · f ′).

(39) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h·F ◦(d, f) =
H◦(h(d), h · f).

(40) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h·F ◦(f, d) =
H◦(h · f, h(d)).

(41) If u is distributive w.r.t. F , then u · F ◦(f, f ′) = F ◦(u · f, u · f ′).
(42) If u is distributive w.r.t. F , then u · F ◦(d, f) = F ◦(u(d), u · f).

(43) If u is distributive w.r.t. F , then u · F ◦(f, d) = F ◦(u · f, u(d)).

(44) If F has a unity, then F ◦(C 7−→ 1F , f) = f and F ◦(f, C 7−→ 1F ) = f .

(45) If F has a unity, then F ◦(1F , f) = f .

(46) If F has a unity, then F ◦(f,1F ) = f .

(47) If F is distributive w.r.t. G, then F ◦(G(d1, d2), T ) = G◦(F ◦(d1, T ),
F ◦(d2, T )).

(48) If F is distributive w.r.t. G, then F ◦(T,G(d1, d2)) = G◦(F ◦(T, d1),
F ◦(T, d2)).

(49) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h · F ◦(T1,
T2) = H◦(h · T1, h · T2).

(50) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h·F ◦(d, T ) =
H◦(h(d), h · T ).

(51) If for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)), then h·F ◦(T, d) =
H◦(h · T, h(d)).

(52) If u is distributive w.r.t. F , then u · F ◦(T1, T2) = F ◦(u · T1, u · T2).

(53) If u is distributive w.r.t. F , then u · F ◦(d, T ) = F ◦(u(d), u · T ).

(54) If u is distributive w.r.t. F , then u · F ◦(T, d) = F ◦(u · T, u(d)).

(55) If G is distributive w.r.t. F and u = G◦(d, idD), then u is distributive
w.r.t. F .

(56) If G is distributive w.r.t. F and u = G◦(idD, d), then u is distributive
w.r.t. F .
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(57) If F has a unity, then F ◦(i 7−→ 1F , T ) = T and F ◦(T, i 7−→ 1F ) = T .

(58) If F has a unity, then F ◦(1F , T ) = T .

(59) If F has a unity, then F ◦(T,1F ) = T .

Let us consider D, u, F . We say that u is an inverse operation w.r.t. F if
and only if:

for every d holds F (d, u(d)) = 1F and F (u(d), d) = 1F .

One can prove the following proposition

(60) u is an inverse operation w.r.t. F if and only if for every d holds F (d,
u(d)) = 1F and F (u(d), d) = 1F .

Let us consider D, F . We say that F has an inverse operation if and only if:
there exists u such that u is an inverse operation w.r.t. F .

Next we state the proposition

(61) F has an inverse operation if and only if there exists u such that u is
an inverse operation w.r.t. F .

Let us consider D, F . Let us assume that F has a unity and F is associative
and F has an inverse operation. The inverse operation w.r.t.F yields a unary
operation on D and is defined as follows:

the inverse operation w.r.t.F is an inverse operation w.r.t. F .

We now state a number of propositions:

(62) If F has a unity and F is associative and F has an inverse operation,
then for every u holds u = the inverse operation w.r.t.F if and only if u is
an inverse operation w.r.t. F .

(63) If F has a unity and F is associative and F has an inverse opera-
tion, then F ((the inverse operation w.r.t.F)(d), d) = 1F and F (d, (the in-
verse operation w.r.t.F)(d)) = 1F.

(64) If F has a unity and F is associative and F has an inverse operation
and F (d1, d2) = 1F , then d1 = (the inverse operation w.r.t.F)(d2) and
(the inverse operation w.r.t.F)(d1) = d2.

(65) If F has a unity and F is associative and F has an inverse operation,
then (the inverse operation w.r.t.F)(1F) = 1F.

(66) If F has a unity and F is associative and F has an inverse operation,
then (the inverse operation w.r.t.F)((the inverse operation w.r.t.F)(d)) = d.

(67) If F has a unity and F is associative and F is commutative and F
has an inverse operation, then the inverse operation w.r.t.F is distributive
w.r.t. F .

(68) If F has a unity and F is associative and F has an inverse operation
but F (d, d1) = F (d, d2) or F (d1, d) = F (d2, d), then d1 = d2.

(69) If F has a unity and F is associative and F has an inverse operation
but F (d1, d2) = d2 or F (d2, d1) = d2, then d1 = 1F .

(70) If F is associative and F has a unity and F has an inverse operation
and G is distributive w.r.t. F and e = 1F , then for every d holds G(e,
d) = e and G(d, e) = e.
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(71) If F has a unity and F is associative and F has an inverse operation
and u = the inverse operation w.r.t.F and G is distributive w.r.t. F , then
u(G(d1, d2)) = G(u(d1), d2) and u(G(d1, d2)) = G(d1, u(d2)).

(72) If F has a unity and F is associative and F has an inverse operation
and u = the inverse operation w.r.t.F and G is distributive w.r.t. F and
G has a unity, then G◦(u(1G), idD) = u.

(73) If F is associative and F has a unity and F has an inverse operation
and G is distributive w.r.t. F , then (G◦(d, idD))(1F ) = 1F .

(74) If F is associative and F has a unity and F has an inverse operation
and G is distributive w.r.t. F , then (G◦(idD, d))(1F ) = 1F .

(75) If F has a unity and F is associative and F has an inverse operation,
then F ◦(f, (the inverse operation w.r.t.F) · f) = C 7−→ 1F and F ◦((the in-
verse operation w.r.t.F) · f, f) = C 7−→ 1F.

(76) If F is associative and F has an inverse operation and F has a unity
and F ◦(f, f ′) = C 7−→ 1F , then f = (the inverse operation w.r.t.F) · f ′
and (the inverse operation w.r.t.F) · f = f ′.

(77) If F has a unity and F is associative and F has an inverse operation,
then F ◦(T, (the inverse operation w.r.t.F) · T) = i 7−→ 1F and F ◦((the in-
verse operation w.r.t.F) · T, T) = i 7−→ 1F.

(78) If F is associative and F has an inverse operation and F has a unity
and F ◦(T1, T2) = i 7−→ 1F , then T1 = (the inverse operation w.r.t.F) · T2

and (the inverse operation w.r.t.F) · T1 = T2.

(79) If F is associative and F has a unity and e = 1F and F has an inverse
operation and G is distributive w.r.t. F , then G◦(e, f) = C 7−→ e.

(80) If F is associative and F has a unity and e = 1F and F has an inverse
operation and G is distributive w.r.t. F , then G◦(e, T ) = i 7−→ e.

Let F , f , g be functions. The functor F ◦ (f, g) yielding a function is defined
by:

F ◦ (f, g) = F · [: f, g :].

Next we state several propositions:

(81) For all functions F , f , g holds F ◦ (f, g) = F · [: f, g :].

(82) For all functions F , f , g such that 〈〈x, y〉〉 ∈ dom(F ◦ (f, g)) holds (F ◦
(f, g))(〈〈x, y〉〉) = F (〈〈f(x), g(y)〉〉).

(83) For all functions F , f , g such that 〈〈x, y〉〉 ∈ dom(F ◦ (f, g)) holds (F ◦
(f, g))(x, y) = F (f(x), g(y)).

(84) For every function F from [:D, D ′ :] into E and for every function f
from C into D and for every function g from C ′ into D′ holds F ◦ (f, g)
is a function from [:C, C ′ :] into E.

(85) For all functions u, u′ from D into D holds F ◦ (u, u′) is a binary
operation on D.

Let us consider D, F , and let f , f ′ be functions from D into D. Then
F ◦ (f, f ′) is a binary operation on D.
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The following propositions are true:

(86) For every function F from [:D, D ′ :] into E and for every function f from
C into D and for every function g from C ′ into D′ holds (F ◦ (f, g))(c,
c′) = F (f(c), g(c′)).

(87) For every function u from D into D holds (F ◦ (idD, u))(d1, d2) = F (d1,
u(d2)) and (F ◦ (u, idD))(d1, d2) = F (u(d1), d2).

(88) (F ◦ (idD, u))◦(f, f ′) = F ◦(f, u · f ′).
(89) (F ◦ (idD, u))◦(T1, T2) = F ◦(T1, u · T2).

(90) Suppose F is associative and F has a unity and F is commutative and
F has an inverse operation and u = the inverse operation w.r.t.F. Then
u((F ◦ (idD, u))(d1, d2)) = (F ◦ (u, idD))(d1, d2) and (F ◦ (idD, u))(d1,
d2) = u((F ◦ (u, idD))(d1, d2)).

(91) If F is associative and F has a unity and F has an inverse operation,
then (F ◦ (idD, the inverse operation w.r.t.F))(d, d) = 1F.

(92) If F is associative and F has a unity and F has an inverse operation,
then (F ◦ (idD, the inverse operation w.r.t.F))(d, 1F) = d.

(93) If F is associative and F has a unity and F has an inverse operation
and u = the inverse operation w.r.t.F, then (F ◦ (idD, u))(1F , d) = u(d).

(94) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G = F ◦(idD, the inverse operation w.r.t.F), then
for all d1, d2, d3, d4 holds F (G(d1, d2), G(d3, d4)) = G(F (d1, d3), F (d2,
d4)).
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Summary. A continuation of [10]. The propositions and theorems
proved in [10] are extended to finite sequences. Several additional the-
orems related to semigroup operations of functions not included in [10]
are proved. The special notation for operations on finite sequences is
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The articles [11], [1], [9], [6], [2], [12], [7], [3], [13], [8], [10], [5], and [4] provide the
terminology and notation for this paper. For simplicity we adopt the following
rules: x will be arbitrary, C, C ′, D, E will denote non-empty sets, c, c1, c2,
c3 will denote elements of C, B, B1, B2 will denote elements of FinC, A will
denote an element of FinC ′, d, d1, d2, d3, d4, e will denote elements of D, F ,
G will denote binary operations on D, u will denote a unary operation on D,
f , f ′ will denote functions from C into D, g will denote a function from C ′ into
D, H will denote a binary operation on E, h will denote a function from D
into E, i, j will denote natural numbers, s will denote a function, p, p1, p2, q
will denote finite sequences of elements of D, and T1, T2 will denote elements
of Di. We now state a number of propositions:

(1) Seg i is an element of Fin � .

(2) i+ j 7−→ x = (i 7−→ x) � (j 7−→ x).

(3) If F is commutative and F is associative and c1 6= c2, then F -
∑
{c1,c2} f =

F (f(c1), f(c2)).

(4) If F is commutative and F is associative but B 6= ∅ or F has a unity
and c /∈ B, then F -

∑
B∪{c} f = F (F -

∑
B f, f(c)).

(5) If F is commutative and F is associative and c1 6= c2 and c1 6= c3 and
c2 6= c3, then F -

∑
{c1,c2,c3} f = F (F (f(c1), f(c2)), f(c3)).
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(6) If F is commutative and F is associative but B1 6= ∅ and B2 6= ∅ or F
has a unity and B1∩B2 = ∅, then F -

∑
B1∪B2

f = F (F -
∑
B1
f, F -

∑
B2
f).

(7) If F is commutative and F is associative but A 6= ∅ or F has a unity
and there exists s such that dom s = A and rng s = B and s is one-to-one
and g � A = f · s, then F -

∑
A g = F -

∑
B f .

(8) If H is commutative and H is associative but B 6= ∅ or H has a unity
and f is one-to-one, then H-

∑
f◦B h = H-

∑
B(h · f).

(9) If F is commutative and F is associative but B 6= ∅ or F has a unity
and f � B = f ′ � B, then F -

∑
B f = F -

∑
B f
′.

(10) If F is commutative and F is associative and F has a unity and e = 1F
and f ◦ B = {e}, then F -

∑
B f = e.

(11) Suppose F is commutative and F is associative and F has a unity and
e = 1F and G(e, e) = e and for all d1, d2, d3, d4 holds F (G(d1, d2),
G(d3, d4)) = G(F (d1, d3), F (d2, d4)). Then G(F -

∑
B f, F -

∑
B f
′) =

F -
∑
B G

◦(f, f ′).

(12) If F is commutative and F is associative and F has a unity, then
F (F -

∑
B f, F -

∑
B f
′) = F -

∑
B F

◦(f, f ′).

(13) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G = F ◦(idD, the inverse operation w.r.t.F), then
G(F -

∑
B f, F -

∑
B f
′) = F -

∑
B G

◦(f, f ′).

(14) If F is commutative and F is associative and F has a unity and e = 1F
and G is distributive w.r.t. F and G(d, e) = e, then G(d, F -

∑
B f) =

F -
∑
B(G◦(d, f)).

(15) If F is commutative and F is associative and F has a unity and e = 1F
and G is distributive w.r.t. F and G(e, d) = e, then G(F -

∑
B f, d) =

F -
∑
B(G◦(f, d)).

(16) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G is distributive w.r.t. F , then G(d, F -

∑
B f) =

F -
∑
B(G◦(d, f)).

(17) If F is commutative and F is associative and F has a unity and F
has an inverse operation and G is distributive w.r.t. F , then G(F -

∑
B f,

d) = F -
∑
B(G◦(f, d)).

(18) Suppose F is commutative and F is associative and F has a unity
and H is commutative and H is associative and H has a unity and
h(1F ) = 1H and for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)).
Then h(F -

∑
B f) = H-

∑
B(h · f).

(19) If F is commutative and F is associative and F has a unity and u(1F ) =

1F and u is distributive w.r.t. F , then u(F -
∑
B f) = F -

∑
B(u · f).

(20) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G is distributive w.r.t. F , then

(G◦(d, idD))(F -
∑
B f) = F -

∑
B(G◦(d, idD) · f).

(21) If F is commutative and F is associative and F has a unity and F
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has an inverse operation, then (the inverse operation w.r.t.F)(F-
∑

B f) =
F-
∑

B((the inverse operation w.r.t.F) · f).
Let us consider D, p, d. The functor Ωd(p) yields a function from � into D

and is defined by:

if i ∈ Seg(len p), then (Ωd(p))(i) = p(i) but if i /∈ Seg(len p), then (Ωd(p))(i) =
d.

Next we state several propositions:

(22) For every function h from � into D holds h = Ωd(p) if and only if for
every i holds if i ∈ Seg(len p), then h(i) = p(i) but if i /∈ Seg(len p), then
h(i) = d.

(23) Ωd(p) � Seg(len p) = p.

(24) Ωd((p � q)) � Seg(len p) = p.

(25) rng(Ωd(p)) = rng p ∪ {d}.
(26) h · Ωd(p) = Ωh(d)((h · p)).

Let us consider i. Then Seg i is an element of Fin � .

Let X be a non-empty subset of � , and let x be an element of X. Then {x}
is an element of FinX. Let y be an element of X. Then {x, y} is an element of
FinX. Let z be an element of X. Then {x, y, z} is an element of FinX.

Let us consider D, F , p. The functor F � p yielding an element of D is
defined by:

F � p = F -
∑

Seg(len p) Ω1F (p).

Next we state several propositions:

(27) F � p = F -
∑

Seg(len p) Ω1F (p).

(28) If F is commutative and F is associative and F has a unity, then F �
εD = 1F .

(29) If F is commutative and F is associative, then F � 〈d〉 = d.

(30) If F is commutative and F is associative but len p 6= 0 or F has a unity,
then F � (p � 〈d〉) = F (F � p, d).

(31) If F is commutative and F is associative but len p1 6= 0 and len p2 6= 0
or F has a unity, then F � (p1 � p2) = F (F � p1, F � p2).

(32) If F is commutative and F is associative but len p 6= 0 or F has a unity,
then F � (〈d〉 � p) = F (d, F � p).

Let us consider D, d1, d2. Then 〈d1, d2〉 is a finite sequence of elements of D.

One can prove the following proposition

(33) If F is commutative and F is associative, then F � 〈d1, d2〉 = F (d1, d2).

Let us consider D, d1, d2, d3. Then 〈d1, d2, d3〉 is a finite sequence of elements
of D.

We now state a number of propositions:

(34) If F is commutative and F is associative, then F � 〈d1, d2, d3〉 = F (F (d1,
d2), d3).
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(35) If F is commutative and F is associative and F has a unity and e = 1F ,
then F � (i 7−→ e) = e.

(36) If F is commutative and F is associative, then F � (1 7−→ d) = d.

(37) If F is commutative and F is associative but i 6= 0 and j 6= 0 or F has
a unity, then F � (i+ j 7−→ d) = F (F � (i 7−→ d), F � (j 7−→ d)).

(38) If F is commutative and F is associative but i 6= 0 and j 6= 0 or F has
a unity, then F � (i · j 7−→ d) = F � (j 7−→ F � (i 7−→ d)).

(39) Suppose F is commutative and F is associative and F has a unity and
H is commutative andH is associative andH has a unity and h(1F ) = 1H
and for all d1, d2 holds h(F (d1, d2)) = H(h(d1), h(d2)). Then h(F � p) =
H � (h · p).

(40) If F is commutative and F is associative and F has a unity and u(1F ) =

1F and u is distributive w.r.t. F , then u(F � p) = F � (u · p).
(41) If F is commutative and F is associative and F has a unity and F has

an inverse operation and G is distributive w.r.t. F , then (G◦(d, idD))(F �
p) = F � (G◦(d, idD) · p).

(42) If F is commutative and F is associative and F has a unity and F has an
inverse operation, then (the inverse operation w.r.t.F)(F � p) = F � ((the in-
verse operation w.r.t.F) · p).

(43) Suppose that

(i) F is commutative,

(ii) F is associative,

(iii) F has a unity,

(iv) e = 1F ,

(v) G(e, e) = e,

(vi) for all d1, d2, d3, d4 holds F (G(d1, d2), G(d3, d4)) = G(F (d1, d3),
F (d2, d4)),

(vii) len p = len q.

Then G(F � p, F � q) = F � G◦(p, q).
(44) Suppose F is commutative and F is associative and F has a unity and

e = 1F and G(e, e) = e and for all d1, d2, d3, d4 holds F (G(d1, d2), G(d3,
d4)) = G(F (d1, d3), F (d2, d4)). Then G(F � T1, F � T2) = F � G◦(T1,
T2).

(45) If F is commutative and F is associative and F has a unity and len p =
len q, then F (F � p, F � q) = F � F ◦(p, q).

(46) If F is commutative and F is associative and F has a unity, then F (F �
T1, F � T2) = F � F ◦(T1, T2).

(47) If F is commutative and F is associative and F has a unity, then F �
(i 7−→ F (d1, d2)) = F (F � (i 7−→ d1), F � (i 7−→ d2)).

(48) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G = F ◦(idD, the inverse operation w.r.t.F), then
G(F � T1, F � T2) = F � G◦(T1, T2).
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(49) If F is commutative and F is associative and F has a unity and e = 1F
and G is distributive w.r.t. F and G(d, e) = e, then G(d, F � p) =
F � (G◦(d, p)).

(50) If F is commutative and F is associative and F has a unity and e = 1F
and G is distributive w.r.t. F and G(e, d) = e, then G(F � p, d) =
F � (G◦(p, d)).

(51) If F is commutative and F is associative and F has a unity and F has
an inverse operation and G is distributive w.r.t. F , then G(d, F � p) =
F � (G◦(d, p)).

(52) If F is commutative and F is associative and F has a unity and F
has an inverse operation and G is distributive w.r.t. F , then G(F � p,
d) = F � (G◦(p, d)).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. For-
malized Mathematics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural num-
bers and finite sequences. Formalized Mathematics, 1(1):107–114, 1990.
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Summary. The text includes basic axioms and theorems concern-
ing the collinearity structure based on Wanda Szmielew [1], pp. 18-20.
Collinearity is defined as a relation on Cartesian product [:S, S, S:] of set
S. The basic text is preceeded with a few auxiliary theorems (e.g: ternary
relation). Then come the two basic axioms of the collinearity structure:
A1.1.1 and A1.1.2 and a few theorems. Another axiom: Aks dim, which
states that there exist at least 3 non-collinear points, excludes the trivial
structures ( i.e. pairs 〈〈S, [:S, S, S:]〉〉 ). Following it the notion of a line is
included and several additional theorems are appended.

MML Identifier: COLLSP.

The articles [3], and [2] provide the notation and terminology for this paper.
In the sequel R, X will denote sets. Let us consider X. A set is said to be a
ternary relation on X if:

it ⊆ [:X, X, X :].

Next we state two propositions:

(1) R is a ternary relation on X if and only if R ⊆ [:X, X, X :].

(2) X = ∅ or there exists arbitrary a such that {a} = X or there exist
arbitrary a, b such that a 6= b and a ∈ X and b ∈ X.

We consider collinearity structures which are systems
〈points, a collinearity relation〉,

where the points constitute a non-empty set and the collinearity relation is a
ternary relation on the points. In the sequel CS is a collinearity structure. Let
us consider CS. A point of CS is an element of the points of CS.

In the sequel a, b, c denote points of CS. Let us consider CS, a, b, c. We
say that a, b and c are collinear if and only if:
〈〈a, b, c〉〉 ∈ the collinearity relation of CS.

The following proposition is true
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(5)2 a, b and c are collinear if and only if 〈〈a, b, c〉〉 ∈ the collinearity relation
of CS.

A collinearity structure is said to be a collinearity space if:
Let a, b, c, p, q, r be points of it . Then

(i) if a = b or a = c or b = c, then 〈〈a, b, c〉〉 ∈ the collinearity relation of it,
(ii) if a 6= b and 〈〈a, b, p〉〉 ∈ the collinearity relation of it and 〈〈a, b, q〉〉 ∈ the
collinearity relation of it and 〈〈a, b, r〉〉 ∈ the collinearity relation of it, then
〈〈p, q, r〉〉 ∈ the collinearity relation of it.

Next we state the proposition

(6) CS is a collinearity space if and only if for all points a, b, c, p, q, r of CS
holds if a = b or a = c or b = c, then 〈〈a, b, c〉〉 ∈ the collinearity relation
of CS but if a 6= b and 〈〈a, b, p〉〉 ∈ the collinearity relation of CS and
〈〈a, b, q〉〉 ∈ the collinearity relation of CS and 〈〈a, b, r〉〉 ∈ the collinearity
relation of CS, then 〈〈p, q, r〉〉 ∈ the collinearity relation of CS.

We adopt the following rules: CLSP is a collinearity space and a, b, c, d, p,
q, r are points of CLSP . We now state several propositions:

(7) If a = b or a = c or b = c, then a, b and c are collinear.

(8) If a 6= b and a, b and p are collinear and a, b and q are collinear and a,
b and r are collinear, then p, q and r are collinear.

(9) If a, b and c are collinear, then b, a and c are collinear and a, c and b
are collinear.

(10) a, b and a are collinear.

(11) If a 6= b and a, b and c are collinear and a, b and d are collinear, then
a, c and d are collinear.

(12) If a, b and c are collinear, then b, a and c are collinear.

(13) If a, b and c are collinear, then b, c and a are collinear.

(14) If p 6= q and a, b and p are collinear and a, b and q are collinear and p,
q and r are collinear, then a, b and r are collinear.

Let us consider CLSP , a, b. The functor Line(a, b) yields a set and is defined
as follows:

Line(a, b) = {p : a, b and p are collinear }.
One can prove the following propositions:

(15) Line(a, b) = {p : a, b and p are collinear }.
(16) a ∈ Line(a, b) and b ∈ Line(a, b).

(17) a, b and r are collinear if and only if r ∈ Line(a, b).

A collinearity space is said to be a proper collinearity space if:
there exist points a, b, c of it such that a, b and c are not collinear.

The following proposition is true

(18) CLSP is a proper collinearity space if and only if there exist a, b, c
such that a, b and c are not collinear.

2The propositions (3)–(4) became obvious.
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We follow a convention: CLSP will be a proper collinearity space and a, b,
p, q, r will be points of CLSP . We now state the proposition

(19) For all p, q such that p 6= q there exists r such that p, q and r are not
collinear.

Let us consider CLSP . A set is called a line of CLSP if:
there exist a, b such that a 6= b and it = Line(a, b).

The following propositions are true:

(20) For every set X holds X is a line of CLSP if and only if there exist a,
b such that a 6= b and X = Line(a, b).

(21) If a 6= b, then Line(a, b) is a line of CLSP .

In the sequel P , Q are lines of CLSP . The following propositions are true:

(22) If a = b, then Line(a, b) = the points of CLSP .

(23) For every P there exist a, b such that a 6= b and a ∈ P and b ∈ P .

(24) If a 6= b, then there exists P such that a ∈ P and b ∈ P .

(25) If p ∈ P and q ∈ P and r ∈ P , then p, q and r are collinear.

(26) If P ⊆ Q, then P = Q.

(27) If p 6= q and p ∈ P and q ∈ P , then Line(p, q) ⊆ P .

(28) If p 6= q and p ∈ P and q ∈ P , then Line(p, q) = P .

(29) If p 6= q and p ∈ P and q ∈ P and p ∈ Q and q ∈ Q, then P = Q.

(30) P = Q or P ∩Q = ∅ or there exists p such that P ∩Q = {p}.
(31) If a 6= b, then Line(a, b) 6= the points of CLSP .
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‘
czkowska. Boolean properties of sets.

Formalized Mathematics, 1(1):17–23, 1990.

Received May 9, 1990



660



FORMALIZED MATHEMATICS

Vol.1, No.4, September–October 1990
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Summary. Some operations on the set of n-tuples of real numbers
are introduced. Addition, difference of such n-tuples, complement of a
n-tuple and multiplication of these by real numbers are defined. In these
definitions more general properties of binary operations applied to finite
sequences from [3] are used. Then the fact that certain properties are
satisfied by those operations is demonstrated directly from [3]. Moreover
some properties can be recognized as being those of real vector space.
Multiplication of n-tuples of real numbers and square power of n-tuple
of real numbers using for notation of some properties of finite sums and
products of real numbers are defined, followed by definitions of the finite
sum and product of n-tuples of real numbers using notions and proper-
ties introduced in [7]. A number of propositions and theorems on sum
and product of finite sequences of real numbers are proved. As a addi-
tional properties there are proved some properties of real numbers and
set representations of binary operations on real numbers.

MML Identifier: RVSUM 1.

The papers [8], [12], [5], [6], [1], [2], [13], [10], [9], [11], [4], [3], and [7] provide
the terminology and notation for this paper. For simplicity we follow the rules:
i, j, k are natural numbers, r, r′, r1, r2, r3 are real numbers, x is an element
of � , F , F1, F2 are finite sequences of elements of � , and R, R1, R2, R3 are
elements of � i . Next we state the proposition

(1) −(r1 + r2) = (−r1) + (−r2).

Let us consider x. The functor @x yields a real number and is defined by:
@x = x.

The following propositions are true:

(2) @x = x.

1Supported by RPBP.III-24.C1.
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(3) 0 is a unity w.r.t. + � .
(4) 1+ � = 0.

(5) + � has a unity.

(6) + � is commutative.

(7) + � is associative.

The binary operation − � on � is defined as follows:
− � = + � ◦ (id � ,− � ).
We now state two propositions:

(8) − � = + � ◦ (id � ,− � ).
(9) − � (r1, r2) = r1 − r2.

The unary operation sqr � on � is defined as follows:
for every r holds sqr � (r) = r2.

The following propositions are true:

(10) For every unary operation u on � holds u = sqr � if and only if for every
r holds u(r) = r2.

(11) · � is commutative.

(12) · � is associative.

(13) 1 is a unity w.r.t. · � .
(14) 1· � = 1.

(15) · � has a unity.

(16) · � is distributive w.r.t. + � .
(17) sqr � is distributive w.r.t. · � .

Let us consider x. The functor ·x� yielding a unary operation on � is defined
by:
·x� = · � ◦(x, id � ).
Next we state several propositions:

(18) ·x� = · � ◦(x, id � ).
(19) ·r� (x) = r · x.

(20) ·r� is distributive w.r.t. + � .
(21) − � is an inverse operation w.r.t. + � .
(22) + � has an inverse operation.

(23) The inverse operation w.r.t.+ � = − � .
(24) − � is distributive w.r.t. + � .

Let us consider F1, F2. The functor F1 + F2 yields a finite sequence of
elements of � and is defined by:

F1 + F2 = + � ◦(F1, F2).

We now state two propositions:

(25) F1 + F2 = + � ◦(F1, F2).

(26) If i ∈ Seg(len(F1 + F2)) and r1 = F1(i) and r2 = F2(i), then (F1 +
F2)(i) = r1 + r2.
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Let us consider i, R1, R2. Then R1 +R2 is an element of � i .
We now state several propositions:

(27) If j ∈ Seg i and r1 = R1(j) and r2 = R2(j), then (R1 +R2)(j) = r1 +r2.

(28) ε � + F = ε � and F + ε � = ε � .
(29) 〈r1〉+ 〈r2〉 = 〈r1 + r2〉.
(30) (i 7−→ r1) + (i 7−→ r2) = i 7−→ r1 + r2.

(31) R1 +R2 = R2 +R1.

(32) R1 + (R2 +R3) = (R1 +R2) +R3.

(33) R+ (i 7−→ (0 qua a real number)) = R and
R = (i 7−→ (0 qua a real number)) +R.

Let us consider F . The functor −F yields a finite sequence of elements of �
and is defined as follows:
−F = − � · F .

We now state two propositions:

(34) −F = − � · F .

(35) If i ∈ Seg(len(−F )) and r = F (i), then (−F )(i) = −r.
Let us consider i, R. Then −R is an element of � i .
The following propositions are true:

(36) If j ∈ Seg i and r = R(j), then (−R)(j) = −r.
(37) −ε � = ε � .
(38) −〈r〉 = 〈−r〉.
(39) −(i 7−→ r) = i 7−→ −r.
(40) R+ (−R) = i 7−→ 0 and (−R) +R = i 7−→ 0.

(41) If R1 +R2 = i 7−→ 0, then R1 = −R2 and R2 = −R1.

(42) −(−R) = R.

(43) If −R1 = −R2, then R1 = R2.

(44) If R1 +R = R2 +R or R1 +R = R+R2, then R1 = R2.

(45) −(R1 +R2) = (−R1) + (−R2).

Let us consider F1, F2. The functor F1 − F2 yielding a finite sequence of
elements of � is defined as follows:

F1 − F2 = − � ◦(F1, F2).

The following two propositions are true:

(46) F1 − F2 = − � ◦(F1, F2).

(47) If i ∈ Seg(len(F1 − F2)) and r1 = F1(i) and r2 = F2(i), then (F1 −
F2)(i) = r1 − r2.

Let us consider i, R1, R2. Then R1 −R2 is an element of � i .
One can prove the following propositions:

(48) If j ∈ Seg i and r1 = R1(j) and r2 = R2(j), then (R1−R2)(j) = r1−r2.

(49) ε � − F = ε � and F − ε � = ε � .
(50) 〈r1〉 − 〈r2〉 = 〈r1 − r2〉.
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(51) (i 7−→ r1)− (i 7−→ r2) = i 7−→ r1 − r2.

(52) R1 −R2 = R1 + (−R2).

(53) R− (i 7−→ (0 qua a real number)) = R.

(54) (i 7−→ (0 qua a real number))−R = −R.

(55) R1 − (−R2) = R1 +R2.

(56) −(R1 −R2) = R2 −R1.

(57) −(R1 −R2) = (−R1) +R2.

(58) R−R = i 7−→ 0.

(59) If R1 −R2 = i 7−→ 0, then R1 = R2.

(60) (R1 −R2)−R3 = R1 − (R2 +R3).

(61) R1 + (R2 −R3) = (R1 +R2)−R3.

(62) R1 − (R2 −R3) = (R1 −R2) +R3.

(63) R1 = (R1 +R)−R.

(64) R1 = (R1 −R) +R.

Let us consider r, F . The functor r · F yields a finite sequence of elements
of � and is defined by:

r · F = ·r� ·F .

We now state two propositions:

(65) r · F = ·r� ·F .

(66) If i ∈ Seg(len(r · F )) and r′ = F (i), then (r · F )(i) = r · r′.
Let us consider i, r, R. Then r · R is an element of � i .
Next we state a number of propositions:

(67) If j ∈ Seg i and r′ = R(j), then (r · R)(j) = r · r′.
(68) r · ε � = ε � .
(69) r · 〈r1〉 = 〈r · r1〉.
(70) r1 · (i 7−→ r2) = i 7−→ r1 · r2.

(71) (r1 · r2) · R = r1 · (r2 ·R).

(72) (r1 + r2) ·R = r1 ·R+ r2 ·R.

(73) r · (R1 +R2) = r ·R1 + r · R2.

(74) 1 · R = R.

(75) 0 · R = i 7−→ 0.

(76) (−1) ·R = −R.

Let us consider F . The functor 2F yielding a finite sequence of elements of
� is defined as follows:

2F = sqr � ·F .

Next we state two propositions:

(77) 2F = sqr � ·F .

(78) If i ∈ Seg(len(2F )) and r = F (i), then 2F (i) = r2.
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Let us consider i, R. Then 2R is an element of � i .
Next we state several propositions:

(79) If j ∈ Seg i and r = R(j), then 2R(j) = r2.

(80) 2ε � = ε � .
(81) 2〈r〉 = 〈r2〉.
(82) 2(i 7−→ r) = i 7−→ r2.

(83) 2(−R) = 2R.

(84) 2(r · R) = r2 · 2R.

Let us consider F1, F2. The functor F1•F2 yields a finite sequence of elements
of � and is defined by:

F1 • F2 = · � ◦(F1, F2).

One can prove the following two propositions:

(85) F1 • F2 = · � ◦(F1, F2).

(86) If i ∈ Seg(len(F1 •F2)) and r1 = F1(i) and r2 = F2(i), then F1 •F2(i) =
r1 · r2.

Let us consider i, R1, R2. Then R1 • R2 is an element of � i .
The following propositions are true:

(87) If j ∈ Seg i and r1 = R1(j) and r2 = R2(j), then R1 • R2(j) = r1 · r2.

(88) ε � • F = ε � and F • ε � = ε � .
(89) 〈r1〉 • 〈r2〉 = 〈r1 · r2〉.
(90) R1 •R2 = R2 •R1.

(91) R1 • (R2 • R3) = (R1 • R2) •R3.

(92) (i 7−→ r) •R = r ·R and R • (i 7−→ r) = r · R.

(93) (i 7−→ r1) • (i 7−→ r2) = i 7−→ r1 · r2.

(94) r ·R1 •R2 = (r · R1) •R2.

(95) r ·R1 •R2 = (r · R1) •R2 and r ·R1 •R2 = R1 • (r · R2).

(96) r ·R = (i 7−→ r) •R.

(97) 2R = R • R.

(98) 2(R1 +R2) = (2R1 + 2 · R1 • R2) + 2R2.

(99) 2(R1 −R2) = (2R1 − 2 · R1 • R2) + 2R2.

(100) 2(R1 • R2) = (2R1) • (2R2).

Let F be a finite sequence of elements of � . The functor
∑
F yields a real

number and is defined by:∑
F = + ��� F .

One can prove the following propositions:

(101)
∑
F = + �	� F .

(102)
∑
ε � = 0.

(103)
∑〈r〉 = r.

(104)
∑

(F � 〈r〉) =
∑
F + r.
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(105)
∑

(F1 � F2) =
∑
F1 +

∑
F2.

(106)
∑

(〈r〉 � F ) = r +
∑
F .

(107)
∑〈r1, r2〉 = r1 + r2.

(108)
∑〈r1, r2, r3〉 = (r1 + r2) + r3.

(109) For every element R of � 0 holds
∑
R = 0.

(110)
∑

(i 7−→ r) = i · r.
(111)

∑
(i 7−→ (0 qua a real number)) = 0.

(112) If for all j, r1, r2 such that j ∈ Seg i and r1 = R1(j) and r2 = R2(j)
holds r1 ≤ r2, then

∑
R1 ≤

∑
R2.

(113) Suppose for all j, r1, r2 such that j ∈ Seg i and r1 = R1(j) and r2 =
R2(j) holds r1 ≤ r2 and there exist j, r1, r2 such that j ∈ Seg i and
r1 = R1(j) and r2 = R2(j) and r1 < r2. Then

∑
R1 <

∑
R2.

(114) If for all i, r such that i ∈ Seg(lenF ) and r = F (i) holds 0 ≤ r, then
0 ≤∑F .

(115) If for all i, r such that i ∈ Seg(lenF ) and r = F (i) holds 0 ≤ r and
there exist i, r such that i ∈ Seg(lenF ) and r = F (i) and 0 < r, then
0 <

∑
F .

(116) 0 ≤∑(2F ).

(117)
∑

(r · F ) = r ·∑F .

(118)
∑

(−F ) = −∑F .

(119)
∑

(R1 +R2) =
∑
R1 +

∑
R2.

(120)
∑

(R1 −R2) =
∑
R1 −

∑
R2.

(121) If
∑

(2R) = 0, then R = i 7−→ 0.

(122) (
∑

(R1 •R2))2 ≤∑(2R1) ·∑(2R2).

Let F be a finite sequence of elements of � . The functor
∏
F yields a real

number and is defined as follows:∏
F = · ��� F .

Next we state a number of propositions:

(123)
∏
F = · ��� F .

(124)
∏
ε � = 1.

(125)
∏〈r〉 = r.

(126)
∏

(F � 〈r〉) =
∏
F · r.

(127)
∏

(F1 � F2) =
∏
F1 ·

∏
F2.

(128)
∏

(〈r〉 � F ) = r ·∏F .

(129)
∏〈r1, r2〉 = r1 · r2.

(130)
∏〈r1, r2, r3〉 = (r1 · r2) · r3.

(131) For every element R of � 0 holds
∏
R = 1.

(132)
∏

(i 7−→ (1 qua a real number)) = 1.

(133) There exists k such that k ∈ Seg(lenF ) and F (k) = 0 if and only if∏
F = 0.
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(134)
∏

(i+ j 7−→ r) =
∏

(i 7−→ r) ·∏(j 7−→ r).

(135)
∏

(i · j 7−→ r) =
∏

(j 7−→ ∏
(i 7−→ r)).

(136)
∏

(i 7−→ r1 · r2) =
∏

(i 7−→ r1) ·∏(i 7−→ r2).

(137)
∏

(R1 • R2) =
∏
R1 ·

∏
R2.

(138)
∏

(r · R) =
∏

(i 7−→ r) ·∏R.

(139)
∏

(2R) = (
∏
R)2.
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[13] Edmund Woronowicz. Relations and their basic properties. Formalized
Mathematics, 1(1):73–83, 1990.

Received May 11, 1990



FORMALIZED MATHEMATICS

Vol.1, No.4, September–October 1990
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Czes law Byliński1
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Summary. The aim is to construct a language for the classical
predicate calculus. The language is defined as a subset of the language
constructed in [8]. Well-formed formulas of this language are defined and
some usual connectives and quantifiers of [8,1] are accordingly. We prove
inductive and definitional schemes for formulas of our language. Substi-
tution for individual variables in formulas of the introduced language is
defined. This definition is borrowed from [7]. For such purpose some
auxiliary notation and propositions are introduced.

MML Identifier: CQC LANG.

The articles [10], [3], [4], [5], [9], [2], [8], [1], and [6] provide the notation and
terminology for this paper. In the sequel i, j, k will denote natural numbers.
One can prove the following proposition

(1) For every non-empty set D and for every finite sequence l of elements
of D such that k ∈ Seg(len l) holds l(k) ∈ D.

Let x, y, a, b be arbitrary. The functor (x = y → a, b) is defined as follows:
(x = y → a, b) = a if x = y, (x = y → a, b) = b, otherwise.

One can prove the following propositions:

(2) For arbitrary x, y, a, b such that x = y holds (x = y → a, b) = a.

(3) For arbitrary x, y, a, b such that x 6= y holds (x = y → a, b) = b.

Let x, y be arbitrary. The functor x7−→. y yields a function and is defined as
follows:

x7−→. y = {x} 7−→ y.

One can prove the following three propositions:

(4) For arbitrary x, y holds x7−→. y = {x} 7−→ y.

(5) For arbitrary x, y holds dom(x7−→. y) = {x} and rng(x7−→. y) = {y}.
(6) For arbitrary x, y holds (x7−→. y)(x) = y.

1Supported by RPBP.III-24.C1
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For simplicity we follow the rules: x, y are bound variables, a is a free
variable, p, q are elements of WFF, l, ll are finite sequences of elements of Var,
and P is a predicate symbol. Let F be a function from WFF into WFF, and
let us consider p. Then F (p) is an element of WFF.

One can prove the following proposition

(7) For an arbitrary x holds x ∈ Var if and only if x ∈ FixedVar or x ∈
FreeVar or x ∈ BoundVar.

A substitution is a partial function from FreeVar to Var.

In the sequel f will be a substitution. Let us consider l, f . The functor l[f ]
yielding a finite sequence of elements of Var is defined as follows:

len(l[f ]) = len l and for every k such that 1 ≤ k and k ≤ len l holds if
l(k) ∈ dom f , then (l[f ])(k) = f(l(k)) but if l(k) /∈ dom f , then (l[f ])(k) = l(k).

The following proposition is true

(9)2 ll = l[f ] if and only if the following conditions are satisfied:
(i) len ll = len l,

(ii) for every k such that 1 ≤ k and k ≤ len l holds if l(k) ∈ dom f , then
ll(k) = f(l(k)) but if l(k) /∈ dom f , then ll(k) = l(k).

Let us consider k, and let l be a list of variables of the length k, and let us
consider f . Then l[f ] is a list of variables of the length k.

One can prove the following proposition

(10) a7−→. x is a substitution.

Let us consider a, x. Then a7−→. x is a substitution.

We now state the proposition

(11) If f = a7−→. x and ll = l[f ] and 1 ≤ k and k ≤ len l, then if l(k) = a,
then ll(k) = x but if l(k) 6= a, then ll(k) = l(k).

Let A be a non-empty subset of WFF. We see that it makes sense to consider
the following mode for restricted scopes of arguments. Then all the objests of
the mode element of A are a formula.

The non-empty subset WFFCQC of WFF is defined as follows:
WFFCQC = {s : Fixed s = ∅ ∧ Free s = ∅}.
The following propositions are true:

(12) WFFCQC = {s : Fixed s = ∅ ∧ Free s = ∅}.
(13) p is an element of WFFCQC if and only if Fixed p = ∅ and Free p = ∅.

Let us consider k. A list of variables of the length k is said to be a variables
list of k if:
{it(i) : 1 ≤ i ∧ i ≤ len it} ⊆ BoundVar.

One can prove the following propositions:

(14) For every list of variables l of the length k holds l is a variables list of
k if and only if {l(i) : 1 ≤ i ∧ i ≤ len l} ⊆ BoundVar.

2The proposition (8) became obvious.
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(15) Let l be a list of variables of the length k. Then l is a variables list
of k if and only if {l(i) : 1 ≤ i ∧ i ≤ len l ∧ l(i) ∈ FreeVar} = ∅ and
{l(j) : 1 ≤ j ∧ j ≤ len l ∧ l(j) ∈ FixedVar} = ∅.

In the sequel r, s denote elements of WFFCQC. Next we state two proposi-
tions:

(16) VERUM is an element of WFFCQC.

(17) Let P be a k-ary predicate symbol. Let l be a list of variables of the
length k. Then P [l] is an element of WFFCQC if and only if {l(i) : 1 ≤
i ∧ i ≤ len l ∧ l(i) ∈ FreeVar} = ∅ and {l(j) : 1 ≤ j ∧ j ≤ len l ∧ l(j) ∈
FixedVar} = ∅.

Let us consider k, and let P be a k-ary predicate symbol, and let l be a
variables list of k. Then P [l] is an element of WFFCQC.

We now state two propositions:

(18) ¬p is an element of WFFCQC if and only if p is an element of WFFCQC.

(19) p∧q is an element of WFFCQC if and only if p is an element of WFFCQC

and q is an element of WFFCQC.

Let us note that it makes sense to consider the following constant. Then
VERUM is an element of WFFCQC. Let us consider r. Then ¬r is an element
of WFFCQC. Let us consider s. Then r ∧ s is an element of WFFCQC.

One can prove the following three propositions:

(20) r ⇒ s is an element of WFFCQC.

(21) r ∨ s is an element of WFFCQC.

(22) r ⇔ s is an element of WFFCQC.

Let us consider r, s. Then r ⇒ s is an element of WFFCQC. Then r ∨ s is
an element of WFFCQC. Then r⇔ s is an element of WFFCQC.

We now state the proposition

(23) ∀xp is an element of WFFCQC if and only if p is an element of WFFCQC.

Let us consider x, r. Then ∀xr is an element of WFFCQC.

We now state the proposition

(24) ∃xr is an element of WFFCQC.

Let us consider x, r. Then ∃xr is an element of WFFCQC.

Let D be a non-empty set, and let F be a function from WFFCQC into D,
and let us consider r. Then F (r) is an element of D.

In this article we present several logical schemes. The scheme CQC Ind
concerns a unary predicate P, and states that:

for every r holds P[r]

provided the parameter satisfies the following condition:

• for all r, s, x, k and for every variables list l of k and for every k-ary
predicate symbol P holds P[VERUM] and P[P [l]] but if P[r], then
P[¬r] but if P[r] and P[s], then P[r ∧ s] but if P[r], then P[∀xr].
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The scheme CQC Func Ex concerns a non-empty set A, an element B of A,
a ternary functor F yielding an element of A, a unary functor G yielding an
element of A, a binary functor H yielding an element of A, and a binary functor
I yielding an element of A and states that:

there exists a function F from WFFCQC into A such that for all r, s, x, k and
for every variables list l of k and for every k-ary predicate symbol P and for all
elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds F (VERUM) = B
and F (P [l]) = F(k, P, l) and F (¬r) = G(r ′) and F (r ∧ s) = H(r′, s′) and
F (∀xr) = I(x, r′)
for all values of the parameters.

The scheme CQC Func Uniq concerns a non-empty set A, a function B from
WFFCQC into A, a function C from WFFCQC into A, an element D of A, a
ternary functor F yielding an element of A, a unary functor G yielding an
element of A, a binary functor H yielding an element of A, and a binary functor
I yielding an element of A and states that:
B = C

provided the parameters satisfy the following conditions:
• Given r, s, x, k. Let l be a variables list of k. Let P be a k-ary

predicate symbol. Let r′, s′ be elements of A. Suppose r′ = B(r)
and s′ = B(s). Then B(VERUM) = D and B(P [l]) = F(k, P, l) and
B(¬r) = G(r′) and B(r ∧ s) = H(r′, s′) and B(∀xr) = I(x, r′),

• Given r, s, x, k. Let l be a variables list of k. Let P be a k-ary
predicate symbol. Let r′, s′ be elements of A. Suppose r′ = C(r)
and s′ = C(s). Then C(VERUM) = D and C(P [l]) = F(k, P, l) and
C(¬r) = G(r′) and C(r ∧ s) = H(r′, s′) and C(∀xr) = I(x, r′).

The scheme CQC Def correctn concerns a non-empty set A, an element B
of WFFCQC, an element C of A, a ternary functor F yielding an element of
A, a unary functor G yielding an element of A, a binary functor H yielding an
element of A, and a binary functor I yielding an element of A and states that:
(i) there exists an element d of A and there exists a function F from WFFCQC

into A such that d = F (B) and for all r, s, x, k and for every variables list l of
k and for every k-ary predicate symbol P and for all elements r ′, s′ of A such
that r′ = F (r) and s′ = F (s) holds F (VERUM) = C and F (P [l]) = F(k, P, l)
and F (¬r) = G(r′) and F (r ∧ s) = H(r′, s′) and F (∀xr) = I(x, r′),
(ii) for all elements d1, d2 of A such that there exists a function F from
WFFCQC into A such that d1 = F (B) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for all elements
r′, s′ of A such that r′ = F (r) and s′ = F (s) holds F (VERUM) = C and
F (P [l]) = F(k, P, l) and F (¬r) = G(r′) and F (r ∧ s) = H(r′, s′) and F (∀xr) =
I(x, r′) and there exists a function F from WFFCQC into A such that d2 = F (B)
and for all r, s, x, k and for every variables list l of k and for every k-ary
predicate symbol P and for all elements r ′, s′ of A such that r′ = F (r) and
s′ = F (s) holds F (VERUM) = C and F (P [l]) = F(k, P, l) and F (¬r) = G(r ′)
and F (r ∧ s) = H(r′, s′) and F (∀xr) = I(x, r′) holds d1 = d2

for all values of the parameters.



A Classical First Order Language 673

The scheme CQC Def VERUM concerns a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding an
element of A, a unary functor H yielding an element of A, a binary functor I
yielding an element of A, and a binary functor J yielding an element of A and
states that:
F(VERUM) = B

provided the parameters satisfy the following condition:
• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

The scheme CQC Def atomic concerns a non-empty set A, an element B of
A, a unary functor F yielding an element of A, a ternary functor G yielding an
element of A, a natural number C, a C-ary predicate symbol D, a variables list
E of C, a unary functor H yielding an element of A, a binary functor I yielding
an element of A, and a binary functor J yielding an element of A and states
that:
F(D[E ]) = G(C,D, E)

provided the following requirement is met:
• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

The scheme CQC Def negative deals with a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding
an element of A, a unary functor H yielding an element of A, an element C of
WFFCQC, a binary functor I yielding an element of A, and a binary functor J
yielding an element of A and states that:
F(¬C) = H(F(C))

provided the parameters satisfy the following condition:
• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

The scheme QC Def conjuncti concerns a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding an
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element of A, a unary functor H yielding an element of A, a binary functor I
yielding an element of A, an element C of WFFCQC, an element D of WFFCQC,
and a binary functor J yielding an element of A and states that:
F(C ∧ D) = I(F(C),F(D))

provided the following condition is satisfied:
• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

The scheme QC Def universal concerns a non-empty set A, a unary functor
F yielding an element of A, an element B of A, a ternary functor G yielding an
element of A, a unary functor H yielding an element of A, a binary functor I
yielding an element of A, a binary functor J yielding an element of A, a bound
variable C, and an element D of WFFCQC and states that:
F(∀CD) = J (C,F(D))

provided the following condition is satisfied:
• Let p be an element of WFFCQC. Let d be an element of A. Then
d = F(p) if and only if there exists a function F from WFFCQC

into A such that d = F (p) and for all r, s, x, k and for every
variables list l of k and for every k-ary predicate symbol P and for
all elements r′, s′ of A such that r′ = F (r) and s′ = F (s) holds
F (VERUM) = B and F (P [l]) = G(k, P, l) and F (¬r) = H(r ′) and
F (r ∧ s) = I(r′, s′) and F (∀xr) = J (x, r′).

We now state the proposition

(25) If Arity(P ) = len l, then P [l] = 〈P 〉 � l.
Let us consider x, y, p, q. Then (x = y → p, q) is an element of WFF.

Let us consider p, x. The functor p(x) yields an element of WFF and is
defined as follows:

there exists a function F from WFF into WFF such that p(x) = F (p) and
for every q holds F (VERUM) = VERUM but if q is atomic, then F (q) =
PredSym(q)[Args(q)[a0 7−→. x]] but if q is negative, then F (q) = ¬(F (Arg(q)))
but if q is conjunctive, then F (q) = (F (LeftArg(q))) ∧ (F (RightArg(q))) but if
q is universal, then F (q) = (Bound(q) = x→ q,∀Bound(q)(F (Scope(q)))).

We now state a number of propositions:

(27)3 Let r be an element of WFF. Then r = p(x) if and only if there
exists a function F from WFF into WFF such that r = F (p) and for
every q holds F (VERUM) = VERUM but if q is atomic, then F (q) =
PredSym(q)[Args(q)[a0 7−→. x]] but if q is negative, then F (q) = ¬(F (Arg(q)))
but if q is conjunctive, then F (q) = (F (LeftArg(q))) ∧ (F (RightArg(q)))
but if q is universal, then

3The proposition (26) became obvious.
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F (q) = (Bound(q) = x→ q,∀Bound(q)(F (Scope(q)))).

(28) VERUM(x) = VERUM.

(29) If p is atomic, then p(x) = PredSym(p)[Args(p)[a0 7−→. x]].

(30) For every k-ary predicate symbol P and for every list of variables l of
the length k holds (P [l])(x) = P [l[a0 7−→. x]].

(31) If p is negative, then p(x) = ¬(Arg(p)(x)).

(32) ¬p(x) = ¬(p(x)).

(33) If p is conjunctive, then p(x) = (LeftArg(p)(x)) ∧ (RightArg(p)(x)).

(34) p ∧ q(x) = (p(x)) ∧ (q(x)).

(35) If p is universal and Bound(p) = x, then p(x) = p.

(36) If p is universal and Bound(p) 6= x, then p(x) = ∀Bound(p)(Scope(p)(x)).

(37) ∀xp(x) = ∀xp.
(38) If x 6= y, then ∀xp(y) = ∀x(p(y)).

(39) If Free p = ∅, then p(x) = p.

(40) r(x) = r.

(41) Fixed(p(x)) = Fixed p.
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Summary. Several configuration axioms, which are commonly
called in the literature ”Pasch Axioms” are introduced; three of them were
investigated by Szmielew and concern invariantability of the betweenness
relation under parallel projections, and two other were introduced by
Tarski. It is demonstrated that they all are consequences of the trapezium
axiom, adopted to characterize ordered affine spaces.

MML Identifier: PASCH.

The papers [1] and [2] provide the notation and terminology for this paper. We
adopt the following rules: OAS will be an ordered affine space and a, a′, b, b′,
c, c′, d, d1, d2, p, p′, x, y, z, t, u will be elements of the points of OAS. Let
us consider OAS. We say that OAS satisfies inner invariancy of betweenness
relation under parallel projections if and only if:

for all a, b, c, d, p such that not L(p, b, c) and B(b, p, a) and L(p, c, d) and
b, c |||| d, a holds B(c, p, d).

We now state the proposition

(1) For every OAS holds OAS satisfies inner invariancy of betweenness
relation under parallel projections if and only if for all a, b, c, d, p such that
not L(p, b, c) and B(b, p, a) and L(p, c, d) and b, c |||| d, a holds B(c, p, d).
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Let us consider OAS. We say that OAS satisfies outer invariancy of be-
tweenness relation under parallel projections if and only if:

for all a, b, c, d, p such that B(p, b, c) and L(p, a, d) and a, b |||| c, d and
not L(p, a, b) holds B(p, a, d).

We now state the proposition

(2) For every OAS holds OAS satisfies outer invariancy of betweenness
relation under parallel projections if and only if for all a, b, c, d, p such that
B(p, b, c) and L(p, a, d) and a, b |||| c, d and not L(p, a, b) holds B(p, a, d).

Let us consider OAS. We say that OAS satisfies general invariancy of be-
tweenness relation under parallel projections if and only if:

for all a, b, c, a′, b′, c′ such that not L(a, b, a′) and a, a′ |||| b, b′ and a, a′ |||| c, c′
and B(a, b, c) and L(a′, b′, c′) holds B(a′, b′, c′).

We now state the proposition

(3) For every OAS holds OAS satisfies general invariancy of betweenness
relation under parallel projections if and only if for all a, b, c, a′, b′, c′

such that not L(a, b, a′) and a, a′ |||| b, b′ and a, a′ |||| c, c′ and B(a, b, c) and
L(a′, b′, c′) holds B(a′, b′, c′).

Let us consider OAS. We say that OAS satisfies outer form of Pasch’ Axiom
if and only if:

for all a, b, c, d, x, y such that B(a, b, d) and B(b, x, c) and not L(a, b, c)
there exists y such that B(a, y, c) and B(y, x, d).

The following proposition is true

(4) For every OAS holds OAS satisfies outer form of Pasch’ Axiom if and
only if for all a, b, c, d, x, y such that B(a, b, d) and B(b, x, c) and
not L(a, b, c) there exists y such that B(a, y, c) and B(y, x, d).

Let us consider OAS. We say that OAS satisfies inner form of Pasch’ Axiom
if and only if:

for all a, b, c, d, x, y such that B(a, b, d) and B(a, x, c) and not L(a, b, c)
there exists y such that B(b, y, c) and B(x, y, d).

The following proposition is true

(5) For every OAS holds OAS satisfies inner form of Pasch’ Axiom if and
only if for all a, b, c, d, x, y such that B(a, b, d) and B(a, x, c) and
not L(a, b, c) there exists y such that B(b, y, c) and B(x, y, d).

Let us consider OAS. We say that OAS satisfies Fano Axiom if and only if:
for all a, b, c, d such that a, b 
 �‖ c, d and a, c 
 �‖ b, d and not L(a, b, c) there

exists x such that B(a, x, d) and B(b, x, c).

We now state a number of propositions:

(6) For every OAS holds OAS satisfies Fano Axiom if and only if for all a,
b, c, d such that a, b 
 �‖ c, d and a, c 
 �‖ b, d and not L(a, b, c) there exists x
such that B(a, x, d) and B(b, x, c).

(7) If b, p 
 �‖ p, c and p 6= c and b 6= p, then there exists d such that a, p 
 �‖ p, d
and a, b |||| c, d and c 6= d and p 6= d.
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(8) If p, b 
 �‖ p, c and p 6= c and b 6= p, then there exists d such that p, a 
 �‖ p, d
and a, b |||| c, d and c 6= d.

(9) If p, b |||| p, c and p 6= b, then there exists d such that p, a |||| p, d and
a, b |||| c, d.

(10) If z, x |||| x, t and x 6= z, then there exists u such that y, x |||| x, u and
y, z |||| t, u.

(11) If not L(p, a, b) and L(p, b, c) and L(p, a, d1) and L(p, a, d2) and a, b ||||
c, d1 and a, b |||| c, d2, then d1 = d2.

(12) If not L(a, b, c) and a, b |||| c, d1 and a, b |||| c, d2 and a, c |||| b, d1 and
a, c |||| b, d2, then d1 = d2.

(13) If not L(p, b, c) and B(b, p, a) and L(p, c, d) and b, c |||| d, a, then B(c, p, d).

(14) OAS satisfies inner invariancy of betweenness relation under parallel
projections.

(15) If B(p, b, c) and L(p, a, d) and a, b |||| c, d and not L(p, a, b), then B(p, a, d).

(16) OAS satisfies outer invariancy of betweenness relation under parallel
projections.

(17) If not L(a, b, a′) and a, a′ |||| b, b′ and a, a′ |||| c, c′ and B(a, b, c) and
L(a′, b′, c′), then B(a′, b′, c′).

(18) OAS satisfies general invariancy of betweenness relation under parallel
projections.

(19) If not L(p, a, b) and a, p 
 �‖ p, a′ and b, p 
 �‖ p, b′ and a, b |||| a′, b′, then
a, b 
 �‖ b′, a′.

(20) If not L(p, a, a′) and p, a 
 �‖ p, b and p, a′ 
 �‖ p, b′ and a, a′ |||| b, b′, then
a, a′ 
 �‖ b, b′.

(21) If not L(p, a, b) and p, a |||| b, c and p, b |||| a, c, then p, a 
 �‖ b, c and
p, b 
 �‖ a, c.

(22) If B(p, c, b) and c, d 
 �‖ b, a and p, d 
 �‖ p, a and not L(p, a, b) and p 6= c,
then B(p, d, a).

(23) If B(p, d, a) and c, d 
 �‖ b, a and p, c 
 �‖ p, b and not L(p, a, b) and p 6= c,
then B(p, c, b).

(24) If not L(p, a, b) and p, b 
 �‖ p, c and b, a 
 �‖ c, d and L(a, p, d) and p 6= d,
then not B(a, p, d).

(25) If p, b 
 �‖ p, c and b 6= p, then there exists x such that p, a 
 �‖ p, x and
b, a 
 �‖ c, x.

(26) If B(p, c, b), then there exists x such that B(p, x, a) and b, a 
 �‖ c, x.

(27) If p 6= b and B(p, b, c), then there exists x such that B(p, a, x) and
b, a 
 �‖ c, x.

(28) If not L(p, a, b) and B(p, c, b), then there exists x such that B(p, x, a)
and a, b 
 �‖ x, c.

(29) There exists x such that a, x 
 �‖ b, c and a, b 
 �‖ x, c.
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(30) If a, b 
 �‖ c, d and not L(a, b, c), then there exists x such that B(a, x, d)
and B(b, x, c).

(31) If a, b 
 �‖ c, d and a, c 
 �‖ b, d and not L(a, b, c), then there exists x such
that B(a, x, d) and B(b, x, c).

(32) OAS satisfies Fano Axiom.

(33) If a, b |||| c, d and a, c |||| b, d and not L(a, b, c), then there exists x such
that L(x, a, d) and L(x, b, c).

(34) If a, b |||| c, d and a, c |||| b, d and not L(a, b, c) and L(p, a, d) and L(p, b, c),
then not L(p, a, b).

(35) If B(a, b, d) and B(b, x, c) and not L(a, b, c), then there exists y such
that B(a, y, c) and B(y, x, d).

(36) OAS satisfies outer form of Pasch’ Axiom.

(37) If B(a, b, d) and B(a, x, c) and not L(a, b, c), then there exists y such
that B(b, y, c) and B(x, y, d).

(38) OAS satisfies inner form of Pasch’ Axiom.

(39) If B(p, a, b) and p, a 
 �‖ p′, a′ and not L(p, a, p′) and L(p′, a′, b′) and
p, p′ 
 �‖ a, a′ and p, p′ 
 �‖ b, b′, then B(p′, a′, b′).
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Summary. A proof of the fact , that 〈〈 � , max,min〉〉 is a lattice (real
lattice). Some basic properties (real lattice is distributive and modular) of
it are proved. The same is done for the set � A with operations: max(f(A))
and min(f(A)), where � A means the set of all functions from A (being
non-empty set) to � , f is just such a function.

MML Identifier: REAL LAT.

The articles [4], [1], [3], and [2] provide the terminology and notation for this
paper. In the sequel x, y will denote real numbers. Let x be an element of � .
The functor @x yielding a real number is defined by:

@x = x.

We now state the proposition

(1) For every element x of � holds @x = x.

We now define two new functors. The binary operation min � on � is defined
by:

min � (x, y) = min(x, y).
The binary operation max � on � is defined by:

max � (x, y) = max(x, y).

The following propositions are true:

(2) min � (x, y) = min(x, y).

(3) max � (x, y) = max(x, y).

In the sequel p, q will denote elements of the carrier of 〈 � ,max � ,min � 〉. Let
x be an element of the carrier of 〈 � ,max � ,min � 〉. The functor @x yields a real
number and is defined by:

@x = x.
1Supported by RPBP.III-24.C1.
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Next we state three propositions:

(4) For every element x of the carrier of 〈 � ,max � ,min � 〉 holds @x = x.

(5) p t q = max � (p, q).
(6) p u q = min � (p, q).
The lattice � L is defined as follows:
� L = 〈 � ,max � ,min � 〉.
One can prove the following proposition

(7) � L = 〈 � ,max � ,min � 〉.
In the sequel p, q, r denote elements of the carrier of � L . One can prove the

following propositions:

(8) max � (p, q) = max � (q, p).
(9) min � (p, q) = min � (q, p).

(10) (i) max � (p, max � (q, r)) = max � (max � (q, r), p),
(ii) max � (p, max � (q, r)) = max � (max � (p, q), r),

(iii) max � (p, max � (q, r)) = max � (max � (q, p), r),
(iv) max � (p, max � (q, r)) = max � (max � (r, p), q),
(v) max � (p, max � (q, r)) = max � (max � (r, q), p),

(vi) max � (p, max � (q, r)) = max � (max � (p, r), q).
(11) (i) min � (p, min � (q, r)) = min � (min � (q, r), p),

(ii) min � (p, min � (q, r)) = min � (min � (p, q), r),
(iii) min � (p, min � (q, r)) = min � (min � (q, p), r),
(iv) min � (p, min � (q, r)) = min � (min � (r, p), q),
(v) min � (p, min � (q, r)) = min � (min � (r, q), p),

(vi) min � (p, min � (q, r)) = min � (min � (p, r), q).
(12) max � (min � (p, q), q) = q and max � (q, min � (p, q)) = q and max � (q,

min � (q, p)) = q and max � (min � (q, p), q) = q.

(13) min � (q, max � (q, p)) = q and min � (max � (p, q), q) = q and min � (q,
max � (p, q)) = q and min � (max � (q, p), q) = q.

(14) min � (q, max � (p, r)) = max � (min � (q, p), min � (q, r)).
(15) � L is a distributive lattice.

In the sequel L will be a distributive lattice. We now state the proposition

(16) L is a modular lattice.

In the sequel A will denote a non-empty set and f , g, h will denote elements
of � A . Let A be a non-empty set, and let x be an element of � A . The functor
@x yielding an element of � A qua a non-empty set is defined as follows:

@x = x.

We now state the proposition

(17) For every element f of � A holds @f = f .

We now define two new functors. Let us consider A. The functor max � A
yielding a binary operation on � A is defined by:

max � A(f, g) = max � ◦(f, g).
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The functor min � A yields a binary operation on � A and is defined as follows:
min � A(f, g) = min � ◦(f, g).
Next we state a number of propositions:

(18) max � A(f, g) = max � ◦(f, g).
(19) min � A(f, g) = min � ◦(f, g).
(20) max � A(f, g) = max � A(g, f).

(21) min � A(f, g) = min � A(g, f).

(22) max � A(max � A(f, g), h) = max � A(f, max � A(g, h)).

(23) min � A(min � A(f, g), h) = min � A(f, min � A(g, h)).

(24) max � A(f, min � A(f, g)) = f .

(25) max � A(min � A(f, g), f) = f .

(26) max � A(min � A(g, f), f) = f .

(27) max � A(f, min � A(g, f)) = f .

(28) min � A(f, max � A(f, g)) = f .

(29) min � A(f, max � A(g, f)) = f .

(30) min � A(max � A(g, f), f) = f .

(31) min � A(max � A(f, g), f) = f .

(32) min � A(f, max � A(g, h)) = max � A(min � A(f, g), min � A(f, h)).

We now define two new functors. Let us consider A. The functor max � A
yields a binary operation on � A and is defined by:

max � A(f, g) = max � A(f, g).
The functor min � A yields a binary operation on � A and is defined as follows:

min � A(f, g) = min � A(f, g).

The following two propositions are true:

(33) max � A(f, g) = max � A(f, g).

(34) min � A(f, g) = min � A(f, g).

In the sequel p, q are elements of the carrier of 〈 � A ,max � A,min � A〉. Let us
consider A, and let x be an element of the carrier of 〈 � A ,max � A ,min � A〉. The
functor @x yields an element of � A and is defined as follows:

@x = x.

The following propositions are true:

(35) p t q = max � A(p, q).

(36) p t q = max � A(p, q).

(37) p u q = min � A(p, q).

(38) p u q = min � A(p, q).

Let us consider A. The functor � AL yields a lattice and is defined by:
� AL = 〈 � A ,max � A ,min � A〉.
One can prove the following proposition

(39) � AL = 〈 � A ,max � A,min � A〉.
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In the sequel p, q, r will denote elements of the carrier of � AL . We now state
several propositions:

(40) max � A(p, q) = max � A(q, p).

(41) min � A(p, q) = min � A(q, p).

(42) (i) max � A(p, max � A(q, r)) = max � A(max � A(q, r), p),
(ii) max � A(p, max � A(q, r)) = max � A(max � A(p, q), r),

(iii) max � A(p, max � A(q, r)) = max � A(max � A(q, p), r),
(iv) max � A(p, max � A(q, r)) = max � A(max � A(r, p), q),
(v) max � A(p, max � A(q, r)) = max � A(max � A(r, q), p),

(vi) max � A(p, max � A(q, r)) = max � A(max � A(p, r), q).

(43) (i) min � A(p, min � A(q, r)) = min � A(min � A(q, r), p),
(ii) min � A(p, min � A(q, r)) = min � A(min � A(p, q), r),

(iii) min � A(p, min � A(q, r)) = min � A(min � A(q, p), r),
(iv) min � A(p, min � A(q, r)) = min � A(min � A(r, p), q),
(v) min � A(p, min � A(q, r)) = min � A(min � A(r, q), p),

(vi) min � A(p, min � A(q, r)) = min � A(min � A(p, r), q).

(44) max � A(min � A(p, q), q) = q and max � A(q, min � A(p, q)) = q and
max � A(q, min � A(q, p)) = q
and max � A(min � A(q, p), q) = q.

(45) min � A(q, max � A(q, p)) = q and min � A(max � A(p, q), q) = q and
min � A(q, max � A(p, q)) = q
and min � A(max � A(q, p), q) = q.

(46) min � A(q, max � A(p, r)) = max � A(min � A(q, p), min � A(q, r)).

(47) � AL is a distributive lattice.

In the sequel F will denote a distributive lattice. We now state the proposi-
tion

(48) F is a modular lattice.
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Summary. In the class of abelian groups a subclass of two-divisible-
groups is singled out, and in the latter, a subclass of uniquely-two-divisible-
groups. With every such a group a special geometrical structure, more
precisely the structure of ”congruence of vectors” is correlated. The no-
tion of ”affine vector space” (denoted by AffVect) is introduced. This
term is defined by means of suitable axiom system. It is proved that
every structure of the congruence of vectors determined by a non trivial
uniquely two divisible group is a affine vector space.

MML Identifier: TDGROUP.

The articles [5], [1], [4], [2], and [3] provide the notation and terminology for
this paper. In the sequel AG denotes an Abelian group and G denotes a group
structure. One can prove the following propositions:

(1) � G is an Abelian group.

(2) If G = � G , then for every element a of the carrier of G there exists an
element b of the carrier of G such that (the addition of G)(b, b) = a.

(3) If G = � G , then for every element a of the carrier of G such that (the
addition of G)(a, a) = 0G holds a = 0G.

An Abelian group is called a 2-divisible group if:
for every element a of the carrier of it there exists an element b of the carrier

of it such that (the addition of it)(b, b) = a.

The following two propositions are true:

(4) For every AG holds AG is a 2-divisible group if and only if for every
element a of the carrier of AG there exists an element b of the carrier of
AG such that (the addition of AG)(b, b) = a.

(5) � G is a 2-divisible group.

1Supported by RPBP.III-24.C3.
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A 2-divisible group is said to be a uniquely 2-divisible group if:
for every element a of the carrier of it such that (the addition of it)(a,

a) = 0it holds a = 0it.

One can prove the following three propositions:

(6) For every 2-divisible group AG holds AG is a uniquely 2-divisible group
if and only if for every element a of the carrier of AG such that (the
addition of AG)(a, a) = 0AG holds a = 0AG.

(7) For every AG holds AG is a uniquely 2-divisible group if and only if for
every element a of the carrier of AG there exists an element b of the carrier
of AG such that (the addition of AG)(b, b) = a and for every element a
of the carrier of AG such that (the addition of AG)(a, a) = 0AG holds
a = 0AG.

(8) � G is a uniquely 2-divisible group.

We adopt the following rules: ADG is a uniquely 2-divisible group and a, b,
c, d, a′, b′, c′, p, q are elements of the carrier of ADG. Let us consider ADG,
a, b. The functor a#b yielding an element of the carrier of ADG is defined as
follows:

a#b = (the addition of ADG)(a, b).

Let us consider ADG. The functor CongrADG yields a binary relation on [:
the carrier of ADG, the carrier of ADG :] and is defined as follows:

for all a, b, c, d holds 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ CongrADG if and only if a#d = b#c.

Let us consider ADG. The functor Vectors(ADG) yielding an affine structure
is defined by:

Vectors(ADG) = 〈 the carrier of ADG,CongrADG〉.
Next we state the proposition

(9) The points of Vectors(ADG) = the carrier of ADG and the congruence
of Vectors(ADG) = CongrADG.

Let us consider ADG, a, b, c, d. The predicate a, b � c, d is defined by:
〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the congruence of Vectors(ADG).

Next we state a number of propositions:

(10) a, b � c, d if and only if a#d = b#c.

(11) If G = � G , then there exist elements a, b of the carrier of G such that
a 6= b.

(12) There exists ADG and there exist a, b such that a 6= b.

(13) If a, b � c, c, then a = b.

(14) If a, b � p, q and c, d � p, q, then a, b � c, d.

(15) There exists d such that a, b � c, d.

(16) If a, b � a′, b′ and a, c � a′, c′, then b, c � b′, c′.
(17) There exists b such that a, b � b, c.

(18) If a, b � b, c and a, b′ � b′, c, then b = b′.
(19) If a, b � c, d, then a, c � b, d.
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In the sequel AS denotes an affine structure. Let us consider AS, and let a,
b, c, d be elements of the points of AS. The predicate a, b � c, d is defined by:
〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the congruence of AS.

One can prove the following proposition

(20) Suppose there exist elements a, b of the carrier of ADG such that a 6= b.
Then

(i) there exist elements a, b of the points of Vectors(ADG) such that a 6= b,
(ii) for all elements a, b, c of the points of Vectors(ADG) such that a, b �

c, c holds a = b,
(iii) for all elements a, b, c, d, p, q of the points of Vectors(ADG) such that

a, b � p, q and c, d � p, q holds a, b � c, d,
(iv) for every elements a, b, c of the points of Vectors(ADG) there exists

an element d of the points of Vectors(ADG) such that a, b � c, d,
(v) for all elements a, b, c, a′, b′, c′ of the points of Vectors(ADG) such

that a, b � a′, b′ and a, c � a′, c′ holds b, c � b′, c′,
(vi) for every elements a, c of the points of Vectors(ADG) there exists an

element b of the points of Vectors(ADG) such that a, b � b, c,
(vii) for all elements a, b, c, b′ of the points of Vectors(ADG) such that

a, b � b, c and a, b′ � b′, c holds b = b′,
(viii) for all elements a, b, c, d of the points of Vectors(ADG) such that

a, b � c, d holds a, c � b, d.

An affine structure is said to be a space of free vectors if:
(i) there exist elements a, b of the points of it such that a 6= b,

(ii) for all elements a, b, c of the points of it such that a, b � c, c holds a = b,
(iii) for all elements a, b, c, d, p, q of the points of it such that a, b � p, q and
c, d � p, q holds a, b � c, d,
(iv) for every elements a, b, c of the points of it there exists an element d of
the points of it such that a, b � c, d,
(v) for all elements a, b, c, a′, b′, c′ of the points of it such that a, b � a′, b′

and a, c � a′, c′ holds b, c � b′, c′,
(vi) for every elements a, c of the points of it there exists an element b of the
points of it such that a, b � b, c,

(vii) for all elements a, b, c, b′ of the points of it such that a, b � b, c and
a, b′ � b′, c holds b = b′,

(viii) for all elements a, b, c, d of the points of it such that a, b � c, d holds
a, c � b, d.

We now state several propositions:

(21) Given AS. Then the following conditions are equivalent:
(i) there exist elements a, b of the points of AS such that a 6= b and for all

elements a, b, c of the points of AS such that a, b � c, c holds a = b and
for all elements a, b, c, d, p, q of the points of AS such that a, b � p, q and
c, d � p, q holds a, b � c, d and for every elements a, b, c of the points of
AS there exists an element d of the points of AS such that a, b � c, d and
for all elements a, b, c, a′, b′, c′ of the points of AS such that a, b � a′, b′
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and a, c � a′, c′ holds b, c � b′, c′ and for every elements a, c of the points
of AS there exists an element b of the points of AS such that a, b � b, c
and for all elements a, b, c, b′ of the points of AS such that a, b � b, c and
a, b′ � b′, c holds b = b′ and for all elements a, b, c, d of the points of AS
such that a, b � c, d holds a, c � b, d,

(ii) AS is a space of free vectors.

(22) If there exist elements a, b of the carrier of ADG such that a 6= b, then
Vectors(ADG) is a space of free vectors.

(23) For every ADG and for all elements a, b of the carrier of ADG holds
a#b = (the addition of ADG)(a, b).

(24) For every ADG and for every binary relation R on [: the carrier of
ADG, the carrier of ADG :] holds R = CongrADG if and only if for all
elements a, b, c, d of the carrier of ADG holds 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ R if and
only if a#d = b#c.

(25) For every ADG and for every AS being an affine structure holds AS =
Vectors(ADG) if and only if AS = 〈 the carrier of ADG,CongrADG〉.

(26) For every ADG and for all elements a, b, c, d of the carrier of ADG holds
a, b � c, d if and only if 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the congruence of Vectors(ADG).

(27) For every AS being an affine structure and for all elements a, b, c, d
of the points of AS holds a, b � c, d if and only if 〈〈〈〈a, b〉〉, 〈〈c, d〉〉〉〉 ∈ the
congruence of AS.
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Summary. A continuation of [3], with an axiom system of first-
order predicate theory. The consequence Cn of a set of formulas X is
defined as the intersection of all theories containing X and some basic
properties of it has been proved (monotonicity, idempotency, completness
etc.). The notion of a proof of given formula is also introduced and it is
shown that CnX = { p : p has a proof w.r.t. X}. First 14 theorems are
rather simply facts. I just wanted them to be included in the data base.

MML Identifier: CQC THE1.

The papers [11], [10], [9], [8], [4], [6], [1], [5], [2], [7], and [3] provide the termi-
nology and notation for this paper. In the sequel i, j, n, k, l will be natural
numbers. One can prove the following propositions:

(1) If n ≤ 0, then n = 0.

(2) If n ≤ 1, then n = 0 or n = 1.

(3) If n ≤ 2, then n = 0 or n = 1 or n = 2.

(4) If n ≤ 3, then n = 0 or n = 1 or n = 2 or n = 3.

(5) If n ≤ 4, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4.

(6) If n ≤ 5, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5.

(7) If n ≤ 6, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6.

(8) If n ≤ 7, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6 or n = 7.

(9) If n ≤ 8, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6 or n = 7 or n = 8.

(10) If n ≤ 9, then n = 0 or n = 1 or n = 2 or n = 3 or n = 4 or n = 5 or
n = 6 or n = 7 or n = 8 or n = 9.
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Next we state two propositions:

(11) {k : k ≤ n+ 1} = {i : i ≤ n} ∪ {n+ 1}.
(12) For every n holds {k : k ≤ n} is finite.

In the sequel X, Y , Z denote sets. One can prove the following two propo-
sitions:

(13) If X is finite and X ⊆ [:Y, Z :], then there exist sets A, B such that A
is finite and A ⊆ Y and B is finite and B ⊆ Z and X ⊆ [:A, B :].

(14) If X is finite and Z is finite and X ⊆ [: Y, Z :], then there exists a set A
such that A is finite and A ⊆ Y and X ⊆ [:A, Z :].

For simplicity we adopt the following convention: T , S, X, Y will be subsets
of WFFCQC, p, q, r, t, F will be elements of WFFCQC, s will be a formula,
and x, y will be bound variables. Let us consider T . We say that T is a theory
if and only if:
(i) VERUM ∈ T ,

(ii) for all p, q, r, s, x, y holds (¬p⇒ p)⇒ p ∈ T and p⇒ (¬p⇒ q) ∈ T and
(p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)) ∈ T and p ∧ q ⇒ q ∧ p ∈ T but if p ∈ T and
p⇒ q ∈ T , then q ∈ T and ∀xp⇒ p ∈ T but if p⇒ q ∈ T and x /∈ snb(p), then
p ⇒ ∀xq ∈ T but if s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and
s(x) ∈ T , then s(y) ∈ T .

Next we state a number of propositions:

(15) Suppose that
(i) VERUM ∈ T ,

(ii) for all p, q, r, s, x, y holds (¬p⇒ p)⇒ p ∈ T and p⇒ (¬p⇒ q) ∈ T
and (p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)) ∈ T and p ∧ q ⇒ q ∧ p ∈ T
but if p ∈ T and p ⇒ q ∈ T , then q ∈ T and ∀xp ⇒ p ∈ T but if
p⇒ q ∈ T and x /∈ snb(p), then p⇒ ∀xq ∈ T but if s(x) ∈WFFCQC and
s(y) ∈WFFCQC and x /∈ snb(s) and s(x) ∈ T , then s(y) ∈ T .
Then T is a theory.

(16) If T is a theory, then VERUM ∈ T .

(17) If T is a theory, then (¬p⇒ p)⇒ p ∈ T .

(18) If T is a theory, then p⇒ (¬p⇒ q) ∈ T .

(19) If T is a theory, then (p⇒ q)⇒ (¬(q ∧ r)⇒ ¬(p ∧ r)) ∈ T .

(20) If T is a theory, then p ∧ q ⇒ q ∧ p ∈ T .

(21) If T is a theory and p ∈ T and p⇒ q ∈ T , then q ∈ T .

(22) If T is a theory, then ∀xp⇒ p ∈ T .

(23) If T is a theory and p⇒ q ∈ T and x /∈ snb(p), then p⇒ ∀xq ∈ T .

(24) If T is a theory and s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈
snb(s) and s(x) ∈ T , then s(y) ∈ T .

Let us consider T , S. Then T ∪ S is a subset of WFFCQC. Then T ∩ S is a
subset of WFFCQC. Then T \ S is a subset of WFFCQC.

Let us consider p. Then {p} is a subset of WFFCQC.

Next we state the proposition
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(25) If T is a theory and S is a theory, then T ∩ S is a theory.

Let us consider X. The functor CnX yielding a subset of WFFCQC is defined
as follows:

t ∈ CnX if and only if for every T such that T is a theory and X ⊆ T holds
t ∈ T .

We now state a number of propositions:

(26) Y = CnX if and only if for every t holds t ∈ Y if and only if for every
T such that T is a theory and X ⊆ T holds t ∈ T .

(27) VERUM ∈ CnX.

(28) (¬p⇒ p)⇒ p ∈ CnX.

(29) p⇒ (¬p⇒ q) ∈ CnX.

(30) (p⇒ q)⇒ (¬(q ∧ r)⇒ ¬(p ∧ r)) ∈ CnX.

(31) p ∧ q ⇒ q ∧ p ∈ CnX.

(32) If p ∈ CnX and p⇒ q ∈ CnX, then q ∈ CnX.

(33) ∀xp⇒ p ∈ CnX.

(34) If p⇒ q ∈ CnX and x /∈ snb(p), then p⇒ ∀xq ∈ CnX.

(35) If s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and s(x) ∈
CnX, then s(y) ∈ CnX.

(36) CnX is a theory.

(37) If T is a theory and X ⊆ T , then CnX ⊆ T .

(38) X ⊆ CnX.

(39) If X ⊆ Y , then CnX ⊆ CnY .

(40) Cn(CnX) = CnX.

(41) T is a theory if and only if CnT = T .

The non-empty set � is defined by:
� = {k : k ≤ 9}.
Next we state three propositions:

(42) � = {k : k ≤ 9}.
(43) 0 ∈ � and 1 ∈ � and 2 ∈ � and 3 ∈ � and 4 ∈ � and 5 ∈ � and 6 ∈ �

and 7 ∈ � and 8 ∈ � and 9 ∈ � .
(44) � is finite.

In the sequel f , g are finite sequences of elements of [: WFFCQC, � :]. The
following proposition is true

(45) Suppose 1 ≤ n and n ≤ len f . Then
(i) (f(n))2 = 0, or

(ii) (f(n))2 = 1, or
(iii) (f(n))2 = 2, or
(iv) (f(n))2 = 3, or
(v) (f(n))2 = 4, or

(vi) (f(n))2 = 5, or
(vii) (f(n))2 = 6, or
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(viii) (f(n))2 = 7, or
(ix) (f(n))2 = 8, or
(x) (f(n))2 = 9.

Let PR be a finite sequence of elements of [: WFFCQC, � :], and let us consider
n, X. Let us assume that 1 ≤ n and n ≤ lenPR. We say that PR(n) is a correct
proof step w.r.t. X if and only if:

(PR(n))1 ∈ X if (PR(n))2 = 0, (PR(n))1 = VERUM if (PR(n))2 = 1,
there exists p such that (PR(n))1 = (¬p⇒ p)⇒ p if (PR(n))2 = 2, there exist
p, q such that (PR(n))1 = p ⇒ (¬p ⇒ q) if (PR(n))2 = 3, there exist p, q,
r such that (PR(n))1 = (p ⇒ q) ⇒ (¬(q ∧ r) ⇒ ¬(p ∧ r)) if (PR(n))2 = 4,
there exist p, q such that (PR(n))1 = p ∧ q ⇒ q ∧ p if (PR(n))2 = 5, there
exist p, x such that (PR(n))1 = ∀xp ⇒ p if (PR(n))2 = 6, there exist i, j,
p, q such that 1 ≤ i and i < n and 1 ≤ j and j < i and p = (PR(j))1 and
q = (PR(n))1 and (PR(i))1 = p ⇒ q if (PR(n))2 = 7, there exist i, p, q,
x such that 1 ≤ i and i < n and (PR(i))1 = p ⇒ q and x /∈ snb(p) and
(PR(n))1 = p ⇒ ∀xq if (PR(n))2 = 8, there exist i, x, y, s such that 1 ≤ i
and i < n and s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and
s(x) = (PR(i))1 and s(y) = (PR(n))1 if (PR(n))2 = 9.

The following propositions are true:

(46) If 1 ≤ n and n ≤ len f and (f(n))2 = 0, then f(n) is a correct proof
step w.r.t. X if and only if (f(n))1 ∈ X.

(47) If 1 ≤ n and n ≤ len f and (f(n))2 = 1, then f(n) is a correct proof
step w.r.t. X if and only if (f(n))1 = VERUM.

(48) If 1 ≤ n and n ≤ len f and (f(n))2 = 2, then f(n) is a correct proof step
w.r.t. X if and only if there exists p such that (f(n))1 = (¬p⇒ p)⇒ p.

(49) If 1 ≤ n and n ≤ len f and (f(n))2 = 3, then f(n) is a correct proof step
w.r.t. X if and only if there exist p, q such that (f(n))1 = p⇒ (¬p⇒ q).

(50) If 1 ≤ n and n ≤ len f and (f(n))2 = 4, then f(n) is a correct proof
step w.r.t. X if and only if there exist p, q, r such that (f(n))1 = (p ⇒
q)⇒ (¬(q ∧ r)⇒ ¬(p ∧ r)).

(51) If 1 ≤ n and n ≤ len f and (f(n))2 = 5, then f(n) is a correct proof step
w.r.t. X if and only if there exist p, q such that (f(n))1 = p ∧ q ⇒ q ∧ p.

(52) If 1 ≤ n and n ≤ len f and (f(n))2 = 6, then f(n) is a correct proof
step w.r.t. X if and only if there exist p, x such that (f(n))1 = ∀xp⇒ p.

(53) Suppose 1 ≤ n and n ≤ len f and (f(n))2 = 7. Then f(n) is a correct
proof step w.r.t. X if and only if there exist i, j, p, q such that 1 ≤ i
and i < n and 1 ≤ j and j < i and p = (f(j))1 and q = (f(n))1 and
(f(i))1 = p⇒ q.

(54) Suppose 1 ≤ n and n ≤ len f and (f(n))2 = 8. Then f(n) is a correct
proof step w.r.t. X if and only if there exist i, p, q, x such that 1 ≤ i and
i < n and (f(i))1 = p⇒ q and x /∈ snb(p) and (f(n))1 = p⇒ ∀xq.

(55) Suppose 1 ≤ n and n ≤ len f and (f(n))2 = 9. Then f(n) is a correct
proof step w.r.t. X if and only if there exist i, x, y, s such that 1 ≤ i



A First-Order Predicate Calculus 693

and i < n and s(x) ∈WFFCQC and s(y) ∈WFFCQC and x /∈ snb(s) and
s(x) = (f(i))1 and (f(n))1 = s(y).

Let us consider X, f . We say that f is a proof w.r.t. X if and only if:
f 6= ε and for every n such that 1 ≤ n and n ≤ len f holds f(n) is a correct

proof step w.r.t. X.

The following propositions are true:

(56) f is a proof w.r.t. X if and only if f 6= ε and for every n such that
1 ≤ n and n ≤ len f holds f(n) is a correct proof step w.r.t. X.

(57) If f is a proof w.r.t. X, then rng f 6= ∅.
(58) If f is a proof w.r.t. X, then 1 ≤ len f .

(59) Suppose f is a proof w.r.t. X. Then (f(1))2 = 0 or (f(1))2 = 1 or
(f(1))2 = 2 or (f(1))2 = 3 or (f(1))2 = 4 or (f(1))2 = 5 or (f(1))2 = 6.

(60) If 1 ≤ n and n ≤ len f , then f(n) is a correct proof step w.r.t. X if and
only if f � g(n) is a correct proof step w.r.t. X.

(61) If 1 ≤ n and n ≤ len g and g(n) is a correct proof step w.r.t. X, then
f � g(n+ len f) is a correct proof step w.r.t. X.

(62) If f is a proof w.r.t. X and g is a proof w.r.t. X, then f � g is a proof
w.r.t. X.

(63) If f is a proof w.r.t. X and X ⊆ Y , then f is a proof w.r.t. Y .

(64) If f is a proof w.r.t. X and 1 ≤ l and l ≤ len f , then (f(l))1 ∈ CnX.

Let us consider f . Let us assume that f 6= ε. The functor Effect f yields an
element of WFFCQC and is defined as follows:

Effect f = (f(len f))1.

The following propositions are true:

(65) If f 6= ε, then Effect f = (f(len f))1.

(66) If f is a proof w.r.t. X, then Effect f ∈ CnX.

(67) X ⊆ {F :
∨
f [ f is a proof w.r.t. X ∧Effect f = F ]}.

(68) For every X such that Y = {p :
∨
f [ f is a proof w.r.t. X ∧Effect f = p]}

holds Y is a theory.

(69) For every X holds {p :
∨
f [ f is a proof w.r.t. X ∧Effect f = p]} =

CnX.

(70) p ∈ CnX if and only if there exists f such that f is a proof w.r.t. X
and Effect f = p.

(71) If p ∈ CnX, then there exists Y such that Y ⊆ X and Y is finite and
p ∈ CnY .

The subset ∅CQC of WFFCQC is defined by:
∅CQC = ∅WFFCQC

.

We now state the proposition

(72) ∅CQC = ∅WFFCQC
.

The subset Taut of WFFCQC is defined as follows:
Taut = Cn ∅CQC.
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One can prove the following propositions:

(73) Taut = Cn ∅CQC.

(74) If T is a theory, then Taut ⊆ T .

(75) Taut ⊆ CnX.

(76) Taut is a theory.

(77) VERUM ∈ Taut.

(78) (¬p⇒ p)⇒ p ∈ Taut.

(79) p⇒ (¬p⇒ q) ∈ Taut.

(80) (p⇒ q)⇒ (¬(q ∧ r)⇒ ¬(p ∧ r)) ∈ Taut.

(81) p ∧ q ⇒ q ∧ p ∈ Taut.

(82) If p ∈ Taut and p⇒ q ∈ Taut, then q ∈ Taut.

(83) ∀xp⇒ p ∈ Taut.

(84) If p⇒ q ∈ Taut and x /∈ snb(p), then p⇒ ∀xq ∈ Taut.

(85) If s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and s(x) ∈
Taut, then s(y) ∈ Taut.

Let us consider X, s. The predicate X ` s is defined as follows:
s ∈ CnX.

Next we state a number of propositions:

(86) X ` s if and only if s ∈ CnX.

(87) X ` VERUM.

(88) X ` (¬p⇒ p)⇒ p.

(89) X ` p⇒ (¬p⇒ q).

(90) X ` (p⇒ q)⇒ (¬(q ∧ r)⇒ ¬(p ∧ r)).
(91) X ` p ∧ q ⇒ q ∧ p.
(92) If X ` p and X ` p⇒ q, then X ` q.
(93) X ` ∀xp⇒ p.

(94) If X ` p⇒ q and x /∈ snb(p), then X ` p⇒ ∀xq.
(95) If s(x) ∈WFFCQC and s(y) ∈WFFCQC and x /∈ snb(s) and X ` s(x),

then X ` s(y).

Let us consider s. The predicate ` s is defined as follows:
∅CQC ` s.
Next we state two propositions:

(96) ` s if and only if ∅CQC ` s.
(97) ` s if and only if s ∈ Taut.

Let us consider s. Let us note that one can characterize the predicate ` s by
the following (equivalent) condition: s ∈ Taut.

We now state a number of propositions:

(98) If ` p, then X ` p.
(99) ` VERUM.
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(100) ` (¬p⇒ p)⇒ p.

(101) ` p⇒ (¬p⇒ q).

(102) ` (p⇒ q)⇒ (¬(q ∧ r)⇒ ¬(p ∧ r)).
(103) ` p ∧ q ⇒ q ∧ p.
(104) If ` p and ` p⇒ q, then ` q.
(105) ` ∀xp⇒ p.

(106) If ` p⇒ q and x /∈ snb(p), then ` p⇒ ∀xq.
(107) If s(x) ∈ WFFCQC and s(y) ∈ WFFCQC and x /∈ snb(s) and ` s(x),

then ` s(y).
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Summary. The value of a partial function from a domain to a
domain and a inverse partial function are introduced. The value and
inverse function were defined in the article [1], but new definitions are
introduced. The basic properties of the value, the inverse partial func-
tion, the identity partial function, the composition of partial funtion, the
1−1 partial function, the restriction of a partial function, the image, the
inverse image and the graph are proved. Constant partial function are
introduced, too.

MML Identifier: PARTFUN2.

The terminology and notation used here are introduced in the following papers:
[5], [1], [2], [6], [4], and [3]. For simplicity we follow the rules: x, y are arbitrary,
X, Y denote sets, C, D, E denote non-empty sets, SC denotes a subset of C,
SD denotes a subset of D, SE denotes a subset of E, c, c1, c2 denote elements
of C, d denotes an element of D, e denotes an element of E, f , f1, g denote
partial functions from C to D, t denotes a partial function from D to C, s
denotes a partial function from D to E, h denotes a partial function from C to
E, and F denotes a partial function from D to D. The following proposition is
true

(1) x is an element of E if and only if x ∈ E.

Let us consider C, D, f , c. Let us assume that c ∈ dom f . The functor f(c)
yielding an element of D is defined by:

f(c) = (f qua a function)(c).

Next we state four propositions:

(2) If c ∈ dom f , then f(c) = (f qua a function)(c).
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(3) If dom f = dom g and for every c such that c ∈ dom f holds f(c) = g(c),
then f = g.

(4) y ∈ rng f if and only if there exists c such that c ∈ dom f and y = f(c).

(5) If c ∈ dom f , then f(c) ∈ rng f .

Let us consider D, C, f . Then dom f is a subset of C. Then rng f is a subset
of D.

The following propositions are true:

(6) h = s · f if and only if for every c holds c ∈ domh if and only if
c ∈ dom f and f(c) ∈ dom s and for every c such that c ∈ domh holds
h(c) = s(f(c)).

(7) c ∈ dom(s · f) if and only if c ∈ dom f and f(c) ∈ dom s.

(8) If c ∈ dom(s · f), then (s · f)(c) = s(f(c)).

(9) If c ∈ dom f and f(c) ∈ dom s, then (s · f)(c) = s(f(c)).

(10) If rng f ⊆ dom s and c ∈ dom f , then (s · f)(c) = s(f(c)).

(11) If rng f = dom s and c ∈ dom f , then (s · f)(c) = s(f(c)).

Let us consider D, SD. Then idSD is a partial function from D to D.

Next we state several propositions:

(12) F = idSD if and only if domF = SD and for every d such that d ∈ SD
holds F (d) = d.

(13) If d ∈ SD, then idSD(d) = d.

(14) If d ∈ domF ∩ SD, then F (d) = (F · idSD)(d).

(15) d ∈ dom(idSD ·F ) if and only if d ∈ domF and F (d) ∈ SD.

(16) f is one-to-one if and only if for all c1, c2 such that c1 ∈ dom f and
c2 ∈ dom f and f(c1) = f(c2) holds c1 = c2.

Let us consider C, D, and let f be a partial function from C to D. Let us
assume that f is one-to-one. The functor f−1 yields a partial function from D
to C and is defined as follows:

f−1 = (f qua a function)−1.

One can prove the following propositions:

(17) If f is one-to-one, then for every partial function g from D to C holds
g = f−1 if and only if g = (f qua a function)−1.

(18) If f is one-to-one, then for every partial function g from D to C holds
g = f−1 if and only if dom g = rng f and for all d, c holds d ∈ rng f and
c = g(d) if and only if c ∈ dom f and d = f(c).

(19) If f is one-to-one, then rng f = dom(f−1) and dom f = rng(f−1).

(20) If f is one-to-one, then dom(f−1 ·f) = dom f and rng(f−1 ·f) = dom f .

(21) If f is one-to-one, then dom(f · f−1) = rng f and rng(f · f−1) = rng f .

(22) If f is one-to-one and c ∈ dom f , then c = f−1(f(c)) and c = (f−1·f)(c).

(23) If f is one-to-one and d ∈ rng f , then d = f(f−1(d)) and d = (f ·f−1)(d).
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(24) If f is one-to-one and dom f = rng t and rng f = dom t and for all c, d
such that c ∈ dom f and d ∈ dom t holds f(c) = d if and only if t(d) = c,
then t = f−1.

(25) If f is one-to-one, then f−1 · f = iddom f and f · f−1 = idrng f .

(26) If f is one-to-one, then f−1 is one-to-one.

(27) If f is one-to-one and rng f = dom s and s · f = iddom f , then s = f−1.

(28) If f is one-to-one and rng s = dom f and f · s = idrng f , then s = f−1.

(29) If f is one-to-one, then (f−1)−1 = f .

(30) If f is one-to-one and s is one-to-one, then (s · f)−1 = f−1 · s−1.

(31) (idSC)−1 = idSC .

Let us consider C, D, f , X. Then f � X is a partial function from C to D.

We now state several propositions:

(32) g = f � X if and only if dom g = dom f ∩X and for every c such that
c ∈ dom g holds g(c) = f(c).

(33) If c ∈ dom(f � X), then (f � X)(c) = f(c).

(34) If c ∈ dom f ∩X, then (f � X)(c) = f(c).

(35) If c ∈ dom f and c ∈ X, then (f � X)(c) = f(c).

(36) If c ∈ dom f and c ∈ X, then f(c) ∈ rng(f � X).

Let us consider C, D, X, f . Then X � f is a partial function from C to D.

The following three propositions are true:

(37) g = X � f if and only if for every c holds c ∈ dom g if and only if
c ∈ dom f and f(c) ∈ X and for every c such that c ∈ dom g holds
g(c) = f(c).

(38) c ∈ dom(X � f) if and only if c ∈ dom f and f(c) ∈ X.

(39) If c ∈ dom(X � f), then (X � f)(c) = f(c).

Let us consider C, D, f , X. Then f ◦ X is a subset of D.

The following propositions are true:

(40) SD = f ◦ X if and only if for every d holds d ∈ SD if and only if there
exists c such that c ∈ dom f and c ∈ X and d = f(c).

(41) d ∈ f ◦ X if and only if there exists c such that c ∈ dom f and c ∈ X
and d = f(c).

(42) If c ∈ dom f , then f ◦ {c} = {f(c)}.
(43) If c1 ∈ dom f and c2 ∈ dom f , then f ◦ {c1, c2} = {f(c1), f(c2)}.

Let us consider C, D, f , X. Then f −1 X is a subset of C.

The following propositions are true:

(44) SC = f −1 X if and only if for every c holds c ∈ SC if and only if
c ∈ dom f and f(c) ∈ X.

(45) c ∈ f −1 X if and only if c ∈ dom f and f(c) ∈ X.

(46) For every f there exists a function g from C into D such that for every
c such that c ∈ dom f holds g(c) = f(c).
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(47) f ≈ g if and only if for every c such that c ∈ dom f ∩ dom g holds
f(c) = g(c).

In this article we present several logical schemes. The scheme PartFuncExD
deals with a non-empty set A, a non-empty set B, and a binary predicate P,
and states that:

there exists a partial function f from A to B such that for every element d of
A holds d ∈ dom f if and only if there exists an element c of B such that P[d, c]
and for every element d of A such that d ∈ dom f holds P[d, f(d)]
provided the following condition is satisfied:
• for every element d of A and for all elements c1, c2 of B such that
P[d, c1] and P[d, c2] holds c1 = c2.

The scheme LambdaPFD concerns a non-empty set A, a non-empty set B, a
unary functor F yielding an element of B, and a unary predicate P, and states
that:

there exists a partial function f from A to B such that for every element d
of A holds d ∈ dom f if and only if P[d] and for every element d of A such that
d ∈ dom f holds f(d) = F(d)
for all values of the parameters.

The scheme UnPartFuncD deals with a non-empty set A, a non-empty set
B, a set C, and a unary functor F yielding an element of B and states that:

Let f , g be partial functions from A to B. Then if dom f = C and for every
element c of A such that c ∈ dom f holds f(c) = F(c) and dom g = C and for
every element c of A such that c ∈ dom g holds g(c) = F(c), then f = g
for all values of the parameters.

Let us consider C, D, SC, d. Then SC 7−→ d is a partial function from C
to D.

The following propositions are true:

(48) If c ∈ SC, then (SC 7−→ d)(c) = d.

(49) If for every c such that c ∈ dom f holds f(c) = d, then f = dom f 7−→ d.

(50) If c ∈ dom f , then f · (SE 7−→ c) = SE 7−→ f(c).

(51) idSC is total if and only if SC = C.

(52) If SC 7−→ d is total, then SC 6= ∅.
(53) SC 7−→ d is total if and only if SC = C.

Let us consider C, D, f , X. We say that f is a constant on X if and only if:
there exists d such that for every c such that c ∈ X ∩ dom f holds f(c) = d.

Next we state a number of propositions:

(54) f is a constant on X if and only if there exists d such that for every c
such that c ∈ X ∩ dom f holds f(c) = d.

(55) f is a constant on X if and only if for all c1, c2 such that c1 ∈ X∩dom f
and c2 ∈ X ∩ dom f holds f(c1) = f(c2).

(56) If X ∩ dom f 6= ∅, then f is a constant on X if and only if there exists
d such that rng(f � X) = {d}.

(57) If f is a constant on X and Y ⊆ X, then f is a constant on Y .
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(58) If X ∩ dom f = ∅, then f is a constant on X.

(59) If f � SC = dom(f � SC) 7−→ d, then f is a constant on SC.

(60) f is a constant on {x}.
(61) If f is a constant on X and f is a constant on Y and (X∩Y )∩dom f 6= ∅,

then f is a constant on X ∪ Y .

(62) If f is a constant on Y , then f � X is a constant on Y .

(63) SC 7−→ d is a constant on SC.

(64) graph f ⊆ graph g if and only if dom f ⊆ dom g and for every c such
that c ∈ dom f holds f(c) = g(c).

(65) c ∈ dom f and d = f(c) if and only if 〈〈c, d〉〉 ∈ graph f .

(66) If 〈〈c, e〉〉 ∈ graph(s · f), then 〈〈c, f(c)〉〉 ∈ graph f and 〈〈f(c), e〉〉 ∈ graph s.

(67) If graph f = {〈〈c, d〉〉}, then f(c) = d.

(68) If dom f = {c}, then graph f = {〈〈c, f(c)〉〉}.
(69) If graph f1 = graph f ∩ graph g and c ∈ dom f1, then f1(c) = f(c) and

f1(c) = g(c).

(70) If c ∈ dom f and graph f1 = graph f ∪ graph g, then f1(c) = f(c).

(71) If c ∈ dom g and graph f1 = graph f ∪ graph g, then f1(c) = g(c).

(72) If c ∈ dom f1 and graph f1 = graph f ∪ graph g, then f1(c) = f(c) or
f1(c) = g(c).

(73) c ∈ dom f and c ∈ SC if and only if 〈〈c, f(c)〉〉 ∈ graph(f � SC).

(74) c ∈ dom f and f(c) ∈ SD if and only if 〈〈c, f(c)〉〉 ∈ graph(SD � f).

(75) c ∈ f −1 SD if and only if 〈〈c, f(c)〉〉 ∈ graph f and f(c) ∈ SD.
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Summary. Basic operations in the set of partial functions which
map a domain to the set of all real numbers are introduced. They in-
clude adition, substraction, multiplication, division, multipication by a
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The papers [6], [3], [1], [7], [5], [2], and [4] provide the terminology and notation
for this paper. For simplicity we follow the rules: X, Y will be sets, C will be
a non-empty set, c will be an element of C, f , f1, f2, f3, g, g1 will be partial
functions from C to � , and r, r1, p, p1 will be real numbers. We now state two
propositions:

(1) (−1)−1 = −1.

(2) If 0 ≤ p and 0 ≤ r and p ≤ p1 and r ≤ r1, then p · r ≤ p1 · r1.

We now define four new functors. Let us consider C, f1, f2. The functor
f1 + f2 yields a partial function from C to � and is defined as follows:

dom(f1 + f2) = dom f1 ∩ dom f2 and for every c such that c ∈ dom(f1 + f2)
holds (f1 + f2)(c) = f1(c) + f2(c).
The functor f1− f2 yielding a partial function from C to � is defined as follows:

dom(f1 − f2) = dom f1 ∩ dom f2 and for every c such that c ∈ dom(f1 − f2)
holds (f1 − f2)(c) = f1(c)− f2(c).
The functor f1 � f2 yielding a partial function from C to � is defined by:
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dom(f1 � f2) = dom f1 ∩ dom f2 and for every c such that c ∈ dom(f1 � f2)
holds (f1 � f2)(c) = f1(c) · f2(c).

The functor f1

f2
yielding a partial function from C to � is defined by:

dom f1

f2
= dom f1 ∩ (dom f2 \ f2

−1 {0}) and for every c such that c ∈ dom f1

f2

holds f1

f2
(c) = f1(c) · (f2(c))−1.

Let us consider C, f , r. The functor r � f yields a partial function from C
to � and is defined by:

dom(r�f) = dom f and for every c such that c ∈ dom(r�f) holds (r�f)(c) =
r · f(c).

We now define three new functors. Let us consider C, f . The functor |f |
yields a partial function from C to � and is defined by:

dom |f | = dom f and for every c such that c ∈ dom |f | holds |f |(c) = |f(c)|.
The functor −f yields a partial function from C to � and is defined by:

dom(−f) = dom f and for every c such that c ∈ dom(−f) holds (−f)(c) =
−f(c).
The functor 1

f yielding a partial function from C to � is defined by:

dom 1
f = dom f \ f −1 {0} and for every c such that c ∈ dom 1

f holds 1
f (c) =

(f(c))−1.

One can prove the following propositions:

(3) f = f1 + f2 if and only if dom f = dom f1∩dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c) + f2(c).

(4) f = f1− f2 if and only if dom f = dom f1∩dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c)− f2(c).

(5) f = f1 � f2 if and only if dom f = dom f1 ∩ dom f2 and for every c such
that c ∈ dom f holds f(c) = f1(c) · f2(c).

(6) f = f1

f2
if and only if dom f = dom f1∩(dom f2 \f2

−1 {0}) and for every

c such that c ∈ dom f holds f(c) = f1(c) · (f2(c))−1.

(7) f = r � f1 if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = r · f1(c).

(8) f = |f1| if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = |f1(c)|.

(9) f = −f1 if and only if dom f = dom f1 and for every c such that
c ∈ dom f holds f(c) = −f1(c).

(10) f1 = 1
f if and only if dom f1 = dom f \ f −1 {0} and for every c such

that c ∈ dom f1 holds f1(c) = (f(c))−1.

(11) dom 1
g ⊆ dom g and dom g ∩ (dom g \ g −1 {0}) = dom g \ g −1 {0}.

(12) dom(f1 �f2)\(f1 �f2)−1 {0} = (dom f1 \f1
−1 {0})∩(dom f2 \f2

−1 {0}).
(13) If c ∈ dom 1

f , then f(c) 6= 0.

(14) 1
f
−1 {0} = ∅.

(15) |f | −1 {0} = f −1 {0} and (−f) −1 {0} = f −1 {0}.
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(16) dom 1
1
f

= dom(f � dom 1
f ).

(17) If r 6= 0, then (r � f) −1 {0} = f −1 {0}.
(18) f1 + f2 = f2 + f1.

(19) (f1 + f2) + f3 = f1 + (f2 + f3).

(20) f1 � f2 = f2 � f1.

(21) (f1 � f2) � f3 = f1 � (f2 � f3).

(22) (f1 + f2) � f3 = f1 � f3 + f2 � f3.

(23) f3 � (f1 + f2) = f3 � f1 + f3 � f2.

(24) r � (f1 � f2) = (r � f1) � f2.

(25) r � (f1 � f2) = f1 � (r � f2).

(26) (f1 − f2) � f3 = f1 � f3 − f2 � f3.

(27) f3 � f1 − f3 � f2 = f3 � (f1 − f2).

(28) r � (f1 + f2) = r � f1 + r � f2.

(29) (r · p) � f = r � (p � f).

(30) r � (f1 − f2) = r � f1 − r � f2.

(31) f1 − f2 = (−1) � (f2 − f1).

(32) f1 − (f2 + f3) = (f1 − f2)− f3.

(33) 1 � f = f .

(34) f1 − (f2 − f3) = (f1 − f2) + f3.

(35) f1 + (f2 − f3) = (f1 + f2)− f3.

(36) |f1 � f2| = |f1| � |f2|.
(37) |r � f | = |r| � |f |.
(38) −f = (−1) � f .

(39) −(−f) = f .

(40) f1 − f2 = f1 + (−f2).

(41) f1 − (−f2) = f1 + f2.

(42) 1
1
f

= f � dom 1
f .

(43) 1
f1�f2

= 1
f1
� 1
f2

.

(44) If r 6= 0, then 1
r�f = r−1 � 1

f .

(45) 1
−f = (−1) � 1

f .

(46) 1
|f | = | 1f |.

(47) f
g = f � 1

g .

(48) r � gf = r�g
f .

(49) f
g � g = f � dom 1

g .

(50) f
g �

f1

g1
= f�f1

g�g1
.
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(51) 1
f1
f2

=
f2  dom 1

f2
f1

.

(52) g � f1

f2
= g�f1

f2
.

(53) g
f1
f2

=
g�f2  dom 1

f2
f1

.

(54) − f
g = −f

g and f
−g = −f

g .

(55) f1

f + f2

f = f1+f2

f and f1

f −
f2

f = f1−f2

f .

(56) f1

f + g1

g = f1�g+g1�f
f�g .

(57)
f
g
f1
g1

=
f�g1  dom 1

g1
g�f1

.

(58) f1

f −
g1

g = f1�g−g1�f
f�g .

(59) | f1

f2
| = |f1|

|f2| .

(60) (f1 + f2) � X = f1 � X + f2 � X and (f1 + f2) � X = f1 � X + f2 and
(f1 + f2) � X = f1 + f2 � X.

(61) (f1 � f2) � X = f1 � X � f2 � X and (f1 � f2) � X = f1 � X � f2 and
(f1 � f2) � X = f1 � f2 � X.

(62) (−f) � X = −f � X and 1
f � X = 1

f X and |f | � X = |f � X|.
(63) (f1 − f2) � X = f1 � X − f2 � X and (f1 − f2) � X = f1 � X − f2 and

(f1 − f2) � X = f1 − f2 � X.

(64) f1

f2
� X = f1 X

f2 X and f1

f2
� X = f1 X

f2
and f1

f2
� X = f1

f2 X .

(65) (r � f) � X = r � f � X.

(66) f1 is total and f2 is total if and only if f1 + f2 is total but f1 is total
and f2 is total if and only if f1 − f2 is total but f1 is total and f2 is total
if and only if f1 � f2 is total.

(67) f is total if and only if r � f is total.

(68) f is total if and only if −f is total.

(69) f is total if and only if |f | is total.

(70) 1
f is total if and only if f −1 {0} = ∅ and f is total.

(71) f1 is total and f2
−1 {0} = ∅ and f2 is total if and only if f1

f2
is total.

(72) If f1 is total and f2 is total, then (f1 + f2)(c) = f1(c) + f2(c) and
(f1 − f2)(c) = f1(c)− f2(c) and (f1 � f2)(c) = f1(c) · f2(c).

(73) If f is total, then (r � f)(c) = r · f(c).

(74) If f is total, then (−f)(c) = −f(c) and |f |(c) = |f(c)|.
(75) If 1

f is total, then 1
f (c) = (f(c))−1.

(76) If f1 is total and 1
f2

is total, then f1
f2

(c) = f1(c) · (f2(c))−1.

Let us consider X, C. Then χX,C is a partial function from C to � .
Next we state a number of propositions:
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(77) f = χX,C if and only if dom f = C and for every c holds if c ∈ X, then
f(c) = 1 but if c /∈ X, then f(c) = 0.

(78) χX,C is total.

(79) c ∈ X if and only if χX,C(c) = 1.

(80) c /∈ X if and only if χX,C(c) = 0.

(81) c ∈ C \X if and only if χX,C(c) = 0.

(82) χ∅,C(c) = 0.

(83) χC,C(c) = 1.

(84) χX,C(c) 6= 1 if and only if χX,C(c) = 0.

(85) If X ∩ Y = ∅, then χX,C + χY,C = χX∪Y,C .

(86) χX,C � χY,C = χX∩Y,C .

We now define two new predicates. Let us consider C, f , Y . We say that f
is upper bounded on Y if and only if:

there exists r such that for every c such that c ∈ Y ∩ dom f holds f(c) ≤ r.
We say that f is lower bounded on Y if and only if:

there exists r such that for every c such that c ∈ Y ∩ dom f holds r ≤ f(c).

Let us consider C, f , Y . We say that f is bounded on Y if and only if:
f is upper bounded on Y and f is lower bounded on Y .

The following propositions are true:

(87) f is upper bounded on Y if and only if there exists r such that for every
c such that c ∈ Y ∩ dom f holds f(c) ≤ r.

(88) f is lower bounded on Y if and only if there exists r such that for every
c such that c ∈ Y ∩ dom f holds r ≤ f(c).

(89) f is bounded on Y if and only if f is upper bounded on Y and f is
lower bounded on Y .

(90) f is bounded on Y if and only if there exists r such that for every c
such that c ∈ Y ∩ dom f holds |f(c)| ≤ r.

(91) If Y ⊆ X and f is upper bounded on X, then f is upper bounded on
Y but if Y ⊆ X and f is lower bounded on X, then f is lower bounded
on Y but if Y ⊆ X and f is bounded on X, then f is bounded on Y .

(92) If f is upper bounded on X and f is lower bounded on Y , then f is
bounded on X ∩ Y .

(93) If X ∩ dom f = ∅, then f is bounded on X.

(94) If 0 = r, then r � f is bounded on Y .

(95) If f is upper bounded on Y and 0 ≤ r, then r � f is upper bounded on
Y but if f is upper bounded on Y and r ≤ 0, then r � f is lower bounded
on Y .

(96) If f is lower bounded on Y and 0 ≤ r, then r � f is lower bounded on
Y but if f is lower bounded on Y and r ≤ 0, then r � f is upper bounded
on Y .

(97) If f is bounded on Y , then r � f is bounded on Y .
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(98) |f | is lower bounded on X.

(99) If f is bounded on Y , then |f | is bounded on Y and −f is bounded on
Y .

(100) If f1 is upper bounded on X and f2 is upper bounded on Y , then f1 +f2

is upper bounded on X ∩ Y but if f1 is lower bounded on X and f2 is
lower bounded on Y , then f1 + f2 is lower bounded on X ∩ Y but if f1

is bounded on X and f2 is bounded on Y , then f1 + f2 is bounded on
X ∩ Y .

(101) If f1 is bounded on X and f2 is bounded on Y , then f1 � f2 is bounded
on X ∩ Y and f1 − f2 is bounded on X ∩ Y .

(102) If f is upper bounded on X and f is upper bounded on Y , then f is
upper bounded on X ∪ Y .

(103) If f is lower bounded on X and f is lower bounded on Y , then f is
lower bounded on X ∪ Y .

(104) If f is bounded on X and f is bounded on Y , then f is bounded on
X ∪ Y .

(105) If f1 is a constant on X and f2 is a constant on Y , then f1 + f2 is a
constant on X ∩ Y and f1 − f2 is a constant on X ∩ Y and f1 � f2 is a
constant on X ∩ Y .

(106) If f is a constant on Y , then p � f is a constant on Y .

(107) If f is a constant on Y , then |f | is a constant on Y and −f is a constant
on Y .

(108) If f is a constant on Y , then f is bounded on Y .

(109) If f is a constant on Y , then for every r holds r � f is bounded on Y
and −f is bounded on Y and |f | is bounded on Y .

(110) If f1 is upper bounded on X and f2 is a constant on Y , then f1 + f2

is upper bounded on X ∩ Y but if f1 is lower bounded on X and f2 is
a constant on Y , then f1 + f2 is lower bounded on X ∩ Y but if f1 is
bounded on X and f2 is a constant on Y , then f1 + f2 is bounded on
X ∩ Y .

(111) (i) If f1 is upper bounded on X and f2 is a constant on Y , then f1− f2

is upper bounded on X ∩ Y ,
(ii) if f1 is lower bounded on X and f2 is a constant on Y , then f1 − f2 is

lower bounded on X ∩ Y ,
(iii) if f1 is bounded on X and f2 is a constant on Y , then f1−f2 is bounded

on X ∩ Y and f2 − f1 is bounded on X ∩ Y and f1 � f2 is bounded on
X ∩ Y .
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Summary. Concatenation of two ordinal sequences, the mode of
all ordinals belonging to a universe and the mode of sequences of them
with length equal to the rank of the universe are introduced. Besides,
the increasing and continuous transfinite sequences, the limes of ordinal
sequences and the power of ordinals, and the fact that every increasing
and continuous transfinite sequence has critical numbers (fixed points)
are discussed.

MML Identifier: ORDINAL4.

The terminology and notation used here have been introduced in the following
papers: [6], [4], [2], [3], [1], and [5]. We adopt the following convention: phi, fi,
psi are sequences of ordinal numbers and A, B, C are ordinal numbers. The
following proposition is true

(1) If dom fi = succA, then (last fi) (as an ordinal) is the limit of fi and
lim fi = last fi.

Let us consider fi, psi. The functor fi � psi yields a sequence of ordinal
numbers and is defined as follows:

dom(fi � psi) = dom fi + dom psi and for every A such that A ∈ dom fi
holds (fi � psi)(A) = fi(A) and for every A such that A ∈ dom psi holds
(fi � psi)(dom fi+A) = psi(A).

The following propositions are true:

(2) Let chi be a sequence of ordinal numbers. Then chi = fi � psi if and
only if dom chi = dom fi+ dompsi and for every A such that A ∈ dom fi
holds chi(A) = fi(A) and for every A such that A ∈ dom psi holds
chi(dom fi+A) = psi(A).

(3) If A is the limit of psi, then A is the limit of fi � psi.
(4) If A is the limit of fi, then B +A is the limit of B + fi.
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(5) If A is the limit of fi, then A · B is the limit of fi · B.

(6) If dom fi = dom psi and B is the limit of fi and C is the limit of psi
but for every A such that A ∈ dom fi holds fi(A) ⊆ psi(A) or for every
A such that A ∈ dom fi holds fi(A) ∈ psi(A), then B ⊆ C.

In the sequel f1, f2 denote sequences of ordinal numbers. One can prove the
following propositions:

(7) If dom f1 = dom fi and dom fi = dom f2 and A is the limit of f1

and A is the limit of f2 and for every A such that A ∈ dom fi holds
f1(A) ⊆ fi(A) and fi(A) ⊆ f2(A), then A is the limit of fi.

(8) If dom fi 6= 0 and dom fi is a limit ordinal number and fi is increasing,
then sup fi is the limit of fi and lim fi = sup fi.

(9) If fi is increasing and A ⊆ B and B ∈ dom fi, then fi(A) ⊆ fi(B).

(10) If fi is increasing and A ∈ dom fi, then A ⊆ fi(A).

(11) If phi is increasing, then phi −1 A is an ordinal number.

(12) If f1 is increasing, then f2 · f1 is a sequence of ordinal numbers.

(13) If f1 is increasing and f2 is increasing, then there exists phi such that
phi = f1 · f2 and phi is increasing.

(14) If f1 is increasing and A is the limit of f2 and sup(rng f1) = dom f2 and
fi = f2 · f1, then A is the limit of fi.

(15) If phi is increasing, then phi � A is increasing.

(16) If phi is increasing and dom phi is a limit ordinal number, then sup phi
is a limit ordinal number.

(17) If fi is increasing and fi is continuous and psi is continuous and phi =
psi · fi, then phi is continuous.

(18) If for every A such that A ∈ dom fi holds fi(A) = C + A, then fi is
increasing.

(19) If C 6= 0 and for every A such that A ∈ dom fi holds fi(A) = A · C,
then fi is increasing.

(20) If A 6= 0, then 0A = 0.

(21) If A 6= 0 and A is a limit ordinal number, then for every fi such that
dom fi = A and for every B such that B ∈ A holds fi(B) = CB holds
CA is the limit of fi.

(22) If C 6= 0, then CA 6= 0.

(23) If 1 ∈ C, then CA ∈ CsuccA.

(24) If 1 ∈ C and A ∈ B, then CA ∈ CB.

(25) If 1 ∈ C and for every A such that A ∈ dom fi holds fi(A) = CA, then
fi is increasing.

(26) If 1 ∈ C and A 6= 0 and A is a limit ordinal number, then for every fi
such that dom fi = A and for every B such that B ∈ A holds fi(B) = CB

holds CA = sup fi.

(27) If C 6= 0 and A ⊆ B, then CA ⊆ CB.
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(28) If A ⊆ B, then AC ⊆ BC .

(29) If 1 ∈ C and A 6= 0, then 1 ∈ CA.

(30) CA+B = (CB) · (CA).

(31) (CA)
B

= CB·A.

(32) If 1 ∈ C, then A ⊆ CA.

The scheme CriticalNumber concerns a unary functor F yielding an ordinal
number and states that:

there exists A such that F(A) = A
provided the parameter meets the following conditions:
• for all A, B such that A ∈ B holds F(A) ∈ F(B),
• for every A such that A 6= 0 and A is a limit ordinal number for

every phi such that dom fi = A and for every B such that B ∈ A
holds phi(B) = F(B) holds F(A) is the limit of phi.

In the sequel W will be a universal class. We now define two new modes.
Let us consider W . An ordinal number is said to be an ordinal of W if:

it ∈W .
A sequence of ordinal numbers is called a transfinite sequence of ordinals of W
if:

dom it = OnW and rng it ⊆ OnW .

We now state two propositions:

(33) A is an ordinal of W if and only if A ∈W .

(34) phi is a transfinite sequence of ordinals of W if and only if dom phi =
OnW and rng phi ⊆ OnW .

In the sequel A1, B1 will be ordinals of W and phi will be a transfinite
sequence of ordinals of W . The scheme UOS Lambda concerns a universal class
A and a unary functor F yielding an ordinal of A and states that:

there exists a transfinite sequence phi of ordinals of A such that for every
ordinal a of A holds phi(a) = F(a)
for all values of the parameters.

We now define two new functors. Let us consider W . The functor 0W
yielding an ordinal of W is defined as follows:

0W = 0.
The functor 1W yields an ordinal of W and is defined by:

1W = 1.
Let us consider phi, A1. Then phi(A1) is an ordinal of W .

Let us consider W , and let p2, p1 be transfinite sequences of ordinals of W .
Then p1 · p2 is a transfinite sequence of ordinals of W .

We now state the proposition

(35) 0W = 0 and 1W = 1.

Let us consider W , A1. Then succA1 is an ordinal of W . Let us consider
B1. Then A1 +B1 is an ordinal of W .

Let us consider W , A1, B1. Then A1 ·B1 is an ordinal of W .
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The following propositions are true:

(36) A1 ∈ dom phi.

(37) If dom fi ∈W and rng fi ⊆W , then sup fi ∈W .

We now state the proposition

(38) If phi is increasing and phi is continuous and ω ∈W , then there exists
A such that A ∈ dom phi and phi(A) = A.
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Summary. Two classes of bijections of its point universe are cor-
related with every affine structure. The first class consists of the trans-
formations, called formal isometries, which map every segment onto con-
gruent segment, the second class consists of the automorphisms of such
a structure. Each of these two classes of bijections forms a group for a
given affine structure, if it satisfies a very weak axiom system (models
of these axioms are called congruence spaces); formal isometries form a
normal subgroup in the group of automorphism. In particular ordered
affine spaces and affine spaces are congruence spaces; therefore formal
isometries of these structures can be considered. They are called positive
dilatations and dilatations, resp. For convenience the class of negative
dilatations, transformations which map every ”vector” onto parallel ”vec-
tor”, but with opposite sense, is singled out. The class of translations is
distinguished as well. Basic facts concerning all these types of transforma-
tions are established, like rigidity, decomposition principle, introductory
group-theoretical properties. At the end collineations of affine spaces and
their properties are investigated; for affine planes it is proved that the
class of collineationms coincides with the class of bijections preserving
lines.

MML Identifier: TRANSGEO.

The papers [7], [1], [8], [2], [3], [4], [5], and [6] provide the notation and terminol-
ogy for this paper. We adopt the following convention: A denotes a non-empty
set, a, b, x, y, z, t denote elements of A, and f , f1, f2, g, h denote permutations
of A. Let us consider A, and let us consider f , and let x be an element of A.
Then f(x) is an element of A.

Let us consider A, and let us consider f , and let X be a subset of A. Then
f ◦ X is a subset of A.

Let us consider A, f , g. Then g · f is a permutation of A.

One can prove the following propositions:

1Supported by RPBP.III-24.C2.
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716 Henryk Oryszczyszyn et al.

(1) For all f1, f2 such that for every x holds f1(x) = f2(x) holds f1 = f2.

(2) There exists x such that f(x) = y.

(3) If f(x) = f(y), then x = y.

(4) f(x) = y if and only if f−1(y) = x.

(5) (f · g)(x) = f(g(x)).

Let us consider A, f , g. The functor f \ g yields a permutation of A and is
defined by:

f \ g = (g · f) · g−1.

One can prove the following proposition

(6) f \ g = (g · f) · g−1.

The scheme EXPermutation deals with a non-empty set A, and a binary
predicate P, and states that:

there exists a permutation f of A such that for all elements x, y of A holds
f(x) = y if and only if P[x, y]
provided the following requirements are met:
• for every element x of A there exists an element y of A such that
P[x, y],

• for every element y of A there exists an element x of A such that
P[x, y],

• for all elements x, y, x′ of A such that P[x, y] and P[x′, y] holds
x = x′,

• for all elements x, y, y′ of A such that P[x, y] and P[x, y′] holds
y = y′.

Next we state a number of propositions:

(7) (idA)−1 = idA.

(8) f · f−1 = idA and f−1 · f = idA.

(9) f(f−1(x)) = x and f−1(f(x)) = x.

(10) idA ·f = f and f · idA = f .

(11) f · idA = idA ·f .

(12) f · (g · h) = (f · g) · h.

(13) If g · f = h · f or f · g = f · h, then g = h.

(14) (f · g)−1 = g−1 · f−1.

(15) (f−1)−1 = f .

(16) f · g \ h = (f \ h) · (g \ h).

(17) f−1 \ g = (f \ g)−1.

(18) f \ g · h = (f \ h) \ g.
(19) idA \f = idA.

(20) f \ idA = f .

(21) If f(a) = a, then (f \ g)(g(a)) = g(a).

In the sequel R will denote a binary relation on [:A, A :]. Let us consider A,
f , R. We say that f is a formal isometry of R if and only if:
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for all x, y holds 〈〈〈〈x, y〉〉, 〈〈f(x), f(y)〉〉〉〉 ∈ R.

The following propositions are true:

(22) f is a formal isometry of R if and only if for all x, y holds
〈〈〈〈x, y〉〉, 〈〈f(x), f(y)〉〉〉〉 ∈ R.

(23) If R is reflexive in [:A, A :], then idA is a formal isometry of R.

(24) If R is symmetric in [:A, A :] and f is a formal isometry of R, then f−1

is a formal isometry of R.

(25) If R is transitive in [:A, A :] and f is a formal isometry of R and g is a
formal isometry of R, then f · g is a formal isometry of R.

(26) Suppose that
(i) for all a, b, x, y, z, t such that 〈〈〈〈x, y〉〉, 〈〈a, b〉〉〉〉 ∈ R and 〈〈〈〈a, b〉〉, 〈〈z, t〉〉〉〉 ∈ R

and a 6= b holds 〈〈〈〈x, y〉〉, 〈〈z, t〉〉〉〉 ∈ R,
(ii) for all x, y, z holds 〈〈〈〈x, x〉〉, 〈〈y, z〉〉〉〉 ∈ R,

(iii) f is a formal isometry of R,
(iv) g is a formal isometry of R.

Then f · g is a formal isometry of R.

Let us consider A, f , R. We say that f is an automorphism of R if and only
if:

for all x, y, z, t holds 〈〈〈〈x, y〉〉, 〈〈z, t〉〉〉〉 ∈ R if and only if
〈〈〈〈f(x), f(y)〉〉, 〈〈f(z), f(t)〉〉〉〉 ∈ R.

The following propositions are true:

(27) For all a, f , R holds f is an automorphism of R if and only if for all x, y,
z, t holds 〈〈〈〈x, y〉〉, 〈〈z, t〉〉〉〉 ∈ R if and only if 〈〈〈〈f(x), f(y)〉〉, 〈〈f(z), f(t)〉〉〉〉 ∈ R.

(28) idA is an automorphism of R.

(29) If f is an automorphism of R, then f−1 is an automorphism of R.

(30) If f is an automorphism of R and g is an automorphism of R, then g ·f
is an automorphism of R.

(31) If R is symmetric in [:A, A :] and R is transitive in [:A, A :] and f is a
formal isometry of R, then f is an automorphism of R.

(32) Suppose that
(i) for all a, b, x, y, z, t such that 〈〈〈〈x, y〉〉, 〈〈a, b〉〉〉〉 ∈ R and 〈〈〈〈a, b〉〉, 〈〈z, t〉〉〉〉 ∈ R

and a 6= b holds 〈〈〈〈x, y〉〉, 〈〈z, t〉〉〉〉 ∈ R,
(ii) for all x, y, z holds 〈〈〈〈x, x〉〉, 〈〈y, z〉〉〉〉 ∈ R,

(iii) R is symmetric in [:A, A :],
(iv) f is a formal isometry of R.

Then f is an automorphism of R.

(33) If f is a formal isometry of R and g is an automorphism of R, then f \g
is a formal isometry of R.

In the sequel AS will be an affine structure. Let us consider AS, and let f
be a permutation of the points of AS. We say that f is a dilatation of AS if
and only if:

f is a formal isometry of the congruence of AS.
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The following proposition is true

(34) For every permutation f of the points of AS holds f is a dilatation of
AS if and only if f is a formal isometry of the congruence of AS.

In the sequel a, b denote elements of the points of AS. Next we state the
proposition

(35) For every permutation f of the points of AS holds f is a dilatation of
AS if and only if for all a, b holds a, b 
 �‖ f(a), f(b).

An affine structure is said to be a congruence space if:
(i) for all elements x, y, z, t, a, b of the points of it such that x, y 
 �‖ a, b and
a, b 
 �‖ z, t and a 6= b holds x, y 
 �‖ z, t,
(ii) for all elements x, y, z of the points of it holds x, x 
 �‖ y, z,

(iii) for all elements x, y, z, t of the points of it such that x, y 
 �‖ z, t holds
z, t 
 �‖ x, y,
(iv) for all elements x, y of the points of it holds x, y 
 �‖ x, y.

One can prove the following proposition

(36) Let AS be an affine structure. Then AS is a congruence space if and
only if the following conditions are satisfied:

(i) for all elements x, y, z, t, a, b of the points of AS such that x, y 
 �‖ a, b
and a, b 
 �‖ z, t and a 6= b holds x, y 
 �‖ z, t,

(ii) for all elements x, y, z of the points of AS holds x, x 
 �‖ y, z,
(iii) for all elements x, y, z, t of the points of AS such that x, y 
 �‖ z, t holds

z, t 
 �‖ x, y,
(iv) for all elements x, y of the points of AS holds x, y 
 �‖ x, y.

In the sequel CS denotes a congruence space. One can prove the following
three propositions:

(37) idthe points of CS is a dilatation of CS.

(38) For every permutation f of the points of CS such that f is a dilatation
of CS holds f−1 is a dilatation of CS.

(39) For all permutations f , g of the points of CS such that f is a dilatation
of CS and g is a dilatation of CS holds f · g is a dilatation of CS.

We follow the rules: OAS denotes an ordered affine space and a, b, c, d, p,
q, x, y, z denote elements of the points of OAS. Next we state the proposition

(40) OAS is a congruence space.

In the sequel f , g are permutations of the points of OAS. Let us consider
OAS, and let f be a permutation of the points of OAS. We say that f is a
positive dilatation if and only if:

f is a dilatation of OAS.

We now state two propositions:

(41) For every permutation f of the points of OAS holds f is a positive
dilatation if and only if f is a dilatation of OAS.

(42) For every permutation f of the points of OAS holds f is a positive
dilatation if and only if for all a, b holds a, b 
 �‖ f(a), f(b).
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Let us consider OAS, and let f be a permutation of the points of OAS. We
say that f is a negative dilatation if and only if:

for all a, b holds a, b 
 �‖ f(b), f(a).

The following propositions are true:

(43) For every permutation f of the points of OAS holds f is a negative
dilatation if and only if for all a, b holds a, b 
 �‖ f(b), f(a).

(44) idthe points of OAS is a positive dilatation.

(45) For every permutation f of the points of OAS such that f is a positive
dilatation holds f−1 is a positive dilatation.

(46) For all permutations f , g of the points of OAS such that f is a positive
dilatation and g is a positive dilatation holds f · g is a positive dilatation.

(47) For no f holds f is a negative dilatation and f is a positive dilatation.

(48) If f is a negative dilatation, then f−1 is a negative dilatation.

(49) If f is a positive dilatation and g is a negative dilatation, then f · g is
a negative dilatation and g · f is a negative dilatation.

Let us consider OAS, and let f be a permutation of the points of OAS. We
say that f is a dilatation if and only if:

f is a formal isometry of λ( the congruence of OAS).

Next we state a number of propositions:

(50) For every permutation f of the points of OAS holds f is a dilatation if
and only if f is a formal isometry of λ( the congruence of OAS).

(51) For every permutation f of the points of OAS holds f is a dilatation if
and only if for all a, b holds a, b |||| f(a), f(b).

(52) If f is a positive dilatation or f is a negative dilatation, then f is a
dilatation.

(53) For every permutation f of the points of OAS such that f is a dilatation
there exists a permutation f ′ of the points of Λ(OAS) such that f = f ′

and f ′ is a dilatation of Λ(OAS).

(54) For every permutation f of the points of Λ(OAS) such that f is a
dilatation of Λ(OAS) there exists a permutation f ′ of the points of OAS
such that f = f ′ and f ′ is a dilatation.

(55) idthe points of OAS is a dilatation.

(56) If f is a dilatation, then f−1 is a dilatation.

(57) If f is a dilatation and g is a dilatation, then f · g is a dilatation.

(58) If f is a dilatation, then for all a, b, c, d holds a, b |||| c, d if and only if
f(a), f(b) |||| f(c), f(d).

(59) If f is a dilatation, then for all a, b, c holds L(a, b, c) if and only if
L(f(a), f(b), f(c)).

(60) If f is a dilatation and L(x, f(x), y), then L(x, f(x), f(y)).

(61) If a, b |||| c, d, then a, c |||| b, d or there exists x such that L(a, c, x) and
L(b, d, x).
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(62) If f is a dilatation, then f = idthe points of OAS or for every x holds
f(x) 6= x if and only if for all x, y holds x, f(x) |||| y, f(y).

(63) If f is a dilatation and a 6= b and f(a) = a and f(b) = b and not L(a, b, x),
then f(x) = x.

(64) If f is a dilatation and f(a) = a and f(b) = b and a 6= b, then f =
idthe points of OAS.

(65) If f is a dilatation and g is a dilatation and f(a) = g(a) and f(b) = g(b),
then a = b or f = g.

Let us consider OAS, and let f be a permutation of the points of OAS. We
say that f is a translation if and only if:

f is a dilatation but f = idthe points of OAS or for every a holds a 6= f(a).

One can prove the following propositions:

(66) For every permutation f of the points of OAS holds f is a translation
if and only if f is a dilatation but f = idthe points of OAS or for every a
holds a 6= f(a).

(67) If f is a dilatation, then f is a translation if and only if for all x, y holds
x, f(x) |||| y, f(y).

(68) If f is a translation and f(a) = a, then f = idthe points of OAS.

(69) If f is a translation and g is a translation and f(a) = g(a) and f(a) 6= a
and not L(a, f(a), x), then f(x) = g(x).

(70) If f is a translation and g is a translation and f(a) = g(a), then f = g.

(71) If f is a translation, then f−1 is a translation.

(72) If f is a translation and g is a translation, then f · g is a translation.

(73) If f is a translation, then f is a positive dilatation.

(74) If f is a dilatation and f(p) = p and B(q, p, f(q)) and not L(p, q, x),
then B(x, p, f(x)).

(75) If f is a dilatation and f(p) = p and B(q, p, f(q)) and q 6= p, then
B(x, p, f(x)).

(76) If f is a dilatation and f(p) = p and q 6= p and B(q, p, f(q)) and
not L(p, x, y), then x, y 
 �‖ f(y), f(x).

(77) If f is a dilatation and f(p) = p and q 6= p and B(q, p, f(q)) and
L(p, x, y), then x, y 
 �‖ f(y), f(x).

(78) If f is a dilatation and f(p) = p and q 6= p and B(q, p, f(q)), then f is
a negative dilatation.

(79) If f is a dilatation and f(p) = p and for every x holds p, x 
 �‖ p, f(x),
then for all y, z holds y, z 
 �‖ f(y), f(z).

(80) If f is a dilatation, then f is a positive dilatation or f is a negative
dilatation.

We follow the rules: AFS will be an affine space and a, b, c, d, d1, d2, x, y,
z, t will be elements of the points of AFS. The following propositions are true:

(81) For all a, b, c, d holds a, b 
 �‖ c, d if and only if a, b ‖ c, d.
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(82) AFS is a congruence space.

(83) Λ(OAS) is a congruence space.

In the sequel f , g denote permutations of the points of AFS. Let us consider
AFS, f . We say that f is a dilatation if and only if:

f is a dilatation of AFS.

Next we state a number of propositions:

(84) For every f holds f is a dilatation if and only if f is a dilatation of
AFS.

(85) f is a dilatation if and only if for all a, b holds a, b ‖ f(a), f(b).

(86) idthe points of AFS is a dilatation.

(87) If f is a dilatation, then f−1 is a dilatation.

(88) If f is a dilatation and g is a dilatation, then f · g is a dilatation.

(89) If f is a dilatation, then for all a, b, c, d holds a, b ‖ c, d if and only if
f(a), f(b) ‖ f(c), f(d).

(90) If f is a dilatation, then for all a, b, c holds L(a, b, c) if and only if
L(f(a), f(b), f(c)).

(91) If f is a dilatation and L(x, f(x), y), then L(x, f(x), f(y)).

(92) If a, b ‖ c, d, then a, c ‖ b, d or there exists x such that L(a, c, x) and
L(b, d, x).

(93) If f is a dilatation, then f = idthe points of AFS or for every x holds
f(x) 6= x if and only if for all x, y holds x, f(x) ‖ y, f(y).

(94) If f is a dilatation and a 6= b and f(a) = a and f(b) = b and not L(a, b, x),
then f(x) = x.

(95) If f is a dilatation and f(a) = a and f(b) = b and a 6= b, then f =
idthe points of AFS .

(96) If f is a dilatation and g is a dilatation and f(a) = g(a) and f(b) = g(b),
then a = b or f = g.

(97) If not L(a, b, c) and a, b ‖ c, d1 and a, b ‖ c, d2 and a, c ‖ b, d1 and
a, c ‖ b, d2, then d1 = d2.

Let us consider AFS, f . We say that f is a translation if and only if:
f is a dilatation but f = idthe points of AFS or for every a holds a 6= f(a).

One can prove the following propositions:

(98) For every f holds f is a translation if and only if f is a dilatation but
f = idthe points of AFS or for every a holds a 6= f(a).

(99) idthe points of AFS is a translation.

(100) If f is a dilatation, then f is a translation if and only if for all x, y holds
x, f(x) ‖ y, f(y).

(101) If f is a translation and f(a) = a, then f = idthe points of AFS .

(102) If f is a translation and g is a translation and f(a) = g(a) and f(a) 6= a
and not L(a, f(a), x), then f(x) = g(x).

(103) If f is a translation and g is a translation and f(a) = g(a), then f = g.
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(104) If f is a translation, then f−1 is a translation.

(105) If f is a translation and g is a translation, then f · g is a translation.

Let us consider AFS, f . We say that f is a collineation if and only if:
f is an automorphism of the congruence of AFS.

Next we state four propositions:

(106) f is a collineation if and only if f is an automorphism of the congruence
of AFS.

(107) f is a collineation if and only if for all x, y, z, t holds x, y ‖ z, t if and
only if f(x), f(y) ‖ f(z), f(t).

(108) If f is a collineation, then L(x, y, z) if and only if L(f(x), f(y), f(z)).

(109) If f is a collineation and g is a collineation, then f−1 is a collineation
and f · g is a collineation and idthe points of AFS is a collineation.

In the sequel A, C, K will denote subsets of the points of AFS. Next we
state several propositions:

(110) If a ∈ A, then f(a) ∈ f ◦ A.

(111) x ∈ f ◦ A if and only if there exists y such that y ∈ A and f(y) = x.

(112) If f ◦ A = f ◦ C, then A = C.

(113) If f is a collineation, then f ◦ Line(a, b) = Line(f(a), f(b)).

(114) If f is a collineation and K is a line, then f ◦ K is a line.

(115) If f is a collineation and A ‖ C, then f ◦ A ‖ f ◦ C.

For simplicity we follow the rules: AFP is an affine plane, A, K are subsets
of the points of AFP , p, x are elements of the points of AFP , and f is a
permutation of the points of AFP . We now state two propositions:

(116) If for every A such that A is a line holds f ◦ A is a line, then f is a
collineation.

(117) If f is a collineation and K is a line and for every x such that x ∈ K
holds f(x) = x and p /∈ K and f(p) = p, then f = idthe points of AFP .
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Subcategories and Products of Categories
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Summary. The subcategory of a category and product of cate-

gories is defined. The inclusion functor is the injection (inclusion) map E
↪→

which sends each object and each arrow of a Subcategory E of a category
C to itself (in C). The inclusion functor is faithful. Full subcategories of
C, that is, those subcategories E of C such that HomE(a, b) = HomC(b, b)
for any objects a, b of E, are defined. A subcategory E of C is full when
the inclusion functor E

↪→ is full. The proposition that a full subcategory is
determined by giving the set of objects of a category is proved. The prod-
uct of two categories B and C is constructed in the usual way. Moreover,
some simple facts on bifunctors (functors from a product category) are
proved. The final notions in this article are that of projection functors
and product of two functors (complex functors and product functors).

MML Identifier: CAT 2.

The terminology and notation used in this paper have been introduced in the
following articles: [10], [8], [3], [4], [7], [2], [6], [1], [11], [9], and [5]. For simplicity
we follow the rules: X denotes a set, C, D, E denote non-empty sets, c denotes
an element of C, and d denotes an element of D. Let us consider D, X, E, and
let F be a non-empty set of functions from X to E, and let f be a function from
D into F , and let d be an element of D. Then f(d) is an element of F .

In the sequel f denotes a function from [:C, D :] into E. The following propo-
sitions are true:

(1) curry f is a function from C into ED.

(2) curry′ f is a function from D into EC .

Let us consider C, D, E, f . Then curry f is a function from C into ED.
Then curry′ f is a function from D into EC .

The following two propositions are true:

(3) f(〈〈c, d〉〉) = (curry f(c))(d).
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(4) f(〈〈c, d〉〉) = (curry′ f(d))(c).

In the sequel B, C, D, C ′, D′ denote categories. Let us consider B, C, and
let c be an object of C. The functor B 7−→ c yielding a functor from B to C is
defined as follows:

B 7−→ c = (the morphisms of B) 7−→ idc.

One can prove the following propositions:

(5) For every object c of C holds B 7−→ c = (the morphisms of B) 7−→ idc.

(6) For every object c of C and for every morphism f of B holds (B 7−→
c)(f) = idc.

(7) For every object c of C and for every object b of B holds (Obj(B 7−→
c))(b) = c.

Let us consider C, D. The functor Funct(C,D) yields a non-empty set and
is defined by:

for an arbitrary x holds x ∈ Funct(C,D) if and only if x is a functor from C
to D.

Next we state two propositions:

(8) For every non-empty set F holds F = Funct(C,D) if and only if for an
arbitrary x holds x ∈ F if and only if x is a functor from C to D.

(9) For every element T of Funct(C,D) holds T is a functor from C to D.

Let us consider C, D. A non-empty set is called a non-empty set of functors
from C into D if:

for every element x of it holds x is a functor from C to D.

The following proposition is true

(10) For every non-empty set F holds F is a non-empty set of functors from
C into D if and only if for every element x of F holds x is a functor from
C to D.

Let us consider C, D, and let F be a non-empty set of functors from C into D.
We see that it makes sense to consider the following mode for restricted scopes
of arguments. Then all the objests of the mode element of F are a functor from
C to D.

Let A be a non-empty set, and let us consider C, D, and let F be a non-
empty set of functors from C into D, and let T be a function from A into F ,
and let x be an element of A. Then T (x) is an element of F .

Let us consider C, D. Then Funct(C,D) is a non-empty set of functors from
C into D.

Let us consider C. A category is said to be a subcategory of C if:
(i) the objects of it ⊆ the objects of C,

(ii) for all objects a, b of it and for all objects a′, b′ of C such that a = a′ and
b = b′ holds hom(a, b) ⊆ hom(a′, b′),
(iii) the composition of it ≤ the composition of C,
(iv) for every object a of it and for every object a′ of C such that a = a′ holds
ida = ida′ .
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Next we state the proposition

(11) Given C, D. Then D is a subcategory of C if and only if the following
conditions are satisfied:

(i) the objects of D ⊆ the objects of C,
(ii) for all objects a, b of D and for all objects a′, b′ of C such that a = a′

and b = b′ holds hom(a, b) ⊆ hom(a′, b′),
(iii) the composition of D ≤ the composition of C,
(iv) for every object a of D and for every object a′ of C such that a = a′

holds ida = ida′ .

In the sequel E will be a subcategory of C. We now state several propositions:

(12) For every object e of E holds e is an object of C.

(13) The morphisms of E ⊆ the morphisms of C.

(14) For every morphism f of E holds f is a morphism of C.

(15) For every morphism f of E and for every morphism f ′ of C such that
f = f ′ holds dom f = dom f ′ and cod f = cod f ′.

(16) For all objects a, b of E and for all objects a′, b′ of C and for every
morphism f from a to b such that a = a′ and b = b′ and hom(a, b) 6= ∅
holds f is a morphism from a′ to b′.

(17) For all morphisms f , g of E and for all morphisms f ′, g′ of C such that
f = f ′ and g = g′ and dom g = cod f holds g · f = g′ · f ′.

(18) C is a subcategory of C.

(19) idE is a functor from E to C.

Let us consider C, E. The functor E
↪→ yielding a functor from E to C is

defined as follows:
E
↪→ = idE.

The following propositions are true:

(20) E
↪→ = idE .

(21) For every morphism f of E holds E
↪→(f) = f .

(22) For every object a of E holds (Obj E
↪→)(a) = a.

(23) For every object a of E holds E
↪→(a) = a.

(24) E
↪→ is faithful.

(25) E
↪→ is full if and only if for all objects a, b of E and for all objects a′, b′

of C such that a = a′ and b = b′ holds hom(a, b) = hom(a′, b′).

Let C be a category structure, and let us consider D. We say that C is full
subcategory of D if and only if:

C is a subcategory of D and for all objects a, b of C and for all objects a′, b′

of D such that a = a′ and b = b′ holds hom(a, b) = hom(a′, b′).

The following propositions are true:

(26) For every C being a category structure and for every D holds C is full
subcategory of D if and only if C is a subcategory of D and for all objects
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a, b of C and for all objects a′, b′ of D such that a = a′ and b = b′ holds
hom(a, b) = hom(a′, b′).

(27) E is full subcategory of C if and only if E
↪→ is full.

(28) For every non-empty subset O of the objects of C holds
⋃{hom(a, b) :

a ∈ O ∧ b ∈ O} is a non-empty subset of the morphisms of C.

(29) Let O be a non-empty subset of the objects of C. Let M be a non-
empty set. Suppose M =

⋃{hom(a, b) : a ∈ O ∧ b ∈ O}. Then (the
dom-map of C) � M is a function from M into O and (the cod-map of
C) � M is a function from M into O and (the composition of C) � [:M,
M :] is a partial function from [:M, M :] to M and (the id-map of C) � O
is a function from O into M .

(30) Let O be a non-empty subset of the objects of C. Let M be a non-empty
set. Let d, c be functions from M into O. Let p be a partial function
from [:M, M :] to M . Let i be a function from O into M . Suppose
M =

⋃{hom(a, b) : a ∈ O∧ b ∈ O} and d = (the dom-map of C) � M and
c = (the cod-map of C) � M and p = (the composition of C) � [:M, M :]
and i = (the id-map of C) � O. Then 〈O,M, d, c, p, i〉 is full subcategory
of C.

(31) Let O be a non-empty subset of the objects of C. Let M be a non-empty
set. Let d, c be functions from M into O. Let p be a partial function
from [:M, M :] to M . Let i be a function from O into M . Suppose
〈O,M, d, c, p, i〉 is full subcategory of C. Then M =

⋃{hom(a, b) : a ∈
O ∧ b ∈ O} and d = (the dom-map of C) � M and c = (the cod-map of
C) � M and p = (the composition of C) � [:M, M :] and i = (the id-map
of C) � O.

Let X1, X2, Y1, Y2 be non-empty sets, and let f1 be a function from X1 into
Y1, and let f2 be a function from X2 into Y2. Then [: f1, f2 :] is a function from
[:X1, X2 :] into [: Y1, Y2 :].

Let A, B be non-empty sets, and let f be a partial function from [:A, A :] to
A, and let g be a partial function from [:B, B :] to B. Then |:f, g:| is a partial
function from [: [:A, B :], [:A, B :] :] to [:A, B :].

Let us consider C, D. The functor [:C, D :] yielding a category is defined as
follows:

[:C, D :] = 〈[: the objects of C, the objects of D :], [: the morphisms of C, the
morphisms of D :], [: the dom-map of C, the dom-map of D :], [: the cod-map of
C, the cod-map of D :], |: the composition of C, the composition of D:|, [: the
id-map of C, the id-map of D :]〉.

Next we state three propositions:

(32) [:C, D :] = 〈[: the objects of C, the objects of D :], [: the morphisms of
C, the morphisms of D :], [: the dom-map of C, the dom-map of D :], [: the
cod-map of C, the cod-map of D :], |: the composition of C, the composi-
tion of D:|, [: the id-map of C, the id-map of D :]〉.

(33) (i) The objects of [:C, D :] = [: the objects of C, the objects of D :],
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(ii) the morphisms of [:C, D :] = [: the morphisms of C, the morphisms of
D :],

(iii) the dom-map of [:C, D :] = [: the dom-map of C, the dom-map of D :],
(iv) the cod-map of [:C, D :] = [: the cod-map of C, the cod-map of D :],
(v) the composition of [:C, D :] = |: the composition of C, the composition

of D:|,
(vi) the id-map of [:C, D :] = [: the id-map of C, the id-map of D :].

(34) For every object c of C and for every object d of D holds 〈〈c, d〉〉 is an
object of [:C, D :].

Let us consider C, D, and let c be an object of C, and let d be an object of
D. Then 〈〈c, d〉〉 is an object of [:C, D :].

One can prove the following propositions:

(35) For every object cd of [:C, D :] there exists an object c of C and there
exists an object d of D such that cd = 〈〈c, d〉〉.

(36) For every morphism f of C and for every morphism g of D holds 〈〈f, g〉〉
is a morphism of [:C, D :].

Let us consider C, D, and let f be a morphism of C, and let g be a morphism
of D. Then 〈〈f, g〉〉 is a morphism of [:C, D :].

The following propositions are true:

(37) For every morphism fg of [:C, D :] there exists a morphism f of C and
there exists a morphism g of D such that fg = 〈〈f, g〉〉.

(38) For every morphism f of C and for every morphism g of D holds
dom 〈〈f, g〉〉 = 〈〈 dom f,dom g〉〉 and cod 〈〈f, g〉〉 = 〈〈 cod f, cod g〉〉.

(39) For all morphisms f , f ′ of C and for all morphisms g, g′ of D such that
dom f ′ = cod f and dom g′ = cod g holds 〈〈f ′, g′〉〉 · 〈〈f, g〉〉 = 〈〈f ′ · f, g′ · g〉〉.

(40) For all morphisms f , f ′ of C and for all morphisms g, g′ of D such that
dom 〈〈f ′, g′〉〉 = cod 〈〈f, g〉〉 holds 〈〈f ′, g′〉〉 · 〈〈f, g〉〉 = 〈〈f ′ · f, g′ · g〉〉.

(41) For every object c of C and for every object d of D holds id〈〈c,d〉〉 =

〈〈 idc, idd 〉〉.
(42) For all objects c, c′ of C and for all objects d, d′ of D holds

hom(〈〈c, d〉〉, 〈〈c′, d′〉〉) = [: hom(c, c′), hom(d, d′) :].

(43) For all objects c, c′ of C and for every morphism f from c to c′ and for
all objects d, d′ of D and for every morphism g from d to d′ such that
hom(c, c′) 6= ∅ and hom(d, d′) 6= ∅ holds 〈〈f, g〉〉 is a morphism from 〈〈c, d〉〉
to 〈〈c′, d′〉〉.

(44) For every functor S from [:C, C ′ :] to D and for every object c of C holds
curryS(idc) is a functor from C ′ to D.

(45) For every functor S from [:C, C ′ :] to D and for every object c′ of C ′

holds curry′ S(idc′) is a functor from C to D.

Let us consider C, C ′, D, and let S be a functor from [:C, C ′ :] to D, and let
c be an object of C. The functor S(c,−) yields a functor from C ′ to D and is
defined as follows:
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S(c,−) = curryS(idc).

The following three propositions are true:

(46) For every functor S from [:C, C ′ :] to D and for every object c of C holds
S(c,−) = curryS(idc).

(47) For every functor S from [:C, C ′ :] to D and for every object c of C and
for every morphism f of C ′ holds S(c,−)(f) = S(〈〈 idc, f〉〉).

(48) For every functor S from [:C, C ′ :] to D and for every object c of C and
for every object c′ of C ′ holds (ObjS(c,−))(c′) = (ObjS)(〈〈c, c′〉〉).

Let us consider C, C ′, D, and let S be a functor from [:C, C ′ :] to D, and let
c′ be an object of C ′. The functor S(−, c′) yielding a functor from C to D is
defined by:

S(−, c′) = curry′ S(idc′).

We now state several propositions:

(49) For every functor S from [:C, C ′ :] to D and for every object c′ of C ′

holds S(−, c′) = curry′ S(idc′).

(50) For every functor S from [:C, C ′ :] to D and for every object c′ of C ′

and for every morphism f of C holds S(−, c′)(f) = S(〈〈f, idc′ 〉〉).
(51) For every functor S from [:C, C ′ :] to D and for every object c of C and

for every object c′ of C ′ holds (ObjS(−, c′))(c) = (ObjS)(〈〈c, c′〉〉).
(52) Let L be a function from the objects of C into Funct(B,D). Let M be

a function from the objects of B into Funct(C,D). Suppose that
(i) for every object c of C and for every object b of B holds (M(b))(idc) =

(L(c))(idb),
(ii) for every morphism f of B and for every morphism g of C holds

(M(cod f))(g) · (L(dom g))(f) = (L(cod g))(f) · (M(dom f))(g).
Then there exists a functor S from [:B, C :] to D such that for every
morphism f of B and for every morphism g of C holds S(〈〈f, g〉〉) =
(L(cod g))(f) · (M(dom f))(g).

(53) Let L be a function from the objects of C into Funct(B,D). Let M
be a function from the objects of B into Funct(C,D). Suppose there
exists a functor S from [:B, C :] to D such that for every object c of C
and for every object b of B holds S(−, c) = L(c) and S(b,−) = M(b).
Then for every morphism f of B and for every morphism g of C holds
(M(cod f))(g) · (L(dom g))(f) = (L(cod g))(f) · (M(dom f))(g).

(54) π1( (the morphisms of C)× (the morphisms of D)) is a functor from
[:C, D :] to C.

(55) π2( (the morphisms of C)× (the morphisms of D)) is a functor from
[:C, D :] to D.

We now define two new functors. Let us consider C, D. The functor π1(C ×
D) yields a functor from [:C, D :] to C and is defined as follows:

π1(C ×D) = π1( (the morphisms of C)× (the morphisms of D)).
The functor π2(C×D) yielding a functor from [:C, D :] to D is defined as follows:

π2(C ×D) = π2( (the morphisms of C)× (the morphisms of D)).
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One can prove the following propositions:

(56) π1(C ×D) = π1( (the morphisms of C)× (the morphisms of D)).

(57) π2(C ×D) = π2( (the morphisms of C)× (the morphisms of D)).

(58) For every morphism f of C and for every morphism g of D holds π1(C×
D)(〈〈f, g〉〉) = f .

(59) For every object c of C and for every object d of D holds (Objπ1(C ×
D))(〈〈c, d〉〉) = c.

(60) For every morphism f of C and for every morphism g of D holds π2(C×
D)(〈〈f, g〉〉) = g.

(61) For every object c of C and for every object d of D holds (Objπ2(C ×
D))(〈〈c, d〉〉) = d.

(62) For every functor T from C to D and for every functor T ′ from C to
D′ holds 〈T, T ′〉 is a functor from C to [:D, D′ :].

Let us consider C, D, D′, and let T be a functor from C to D, and let T ′ be
a functor from C to D′. Then 〈T, T ′〉 is a functor from C to [:D, D′ :].

One can prove the following propositions:

(63) For every functor T from C to D and for every functor T ′ from C to
D′ and for every object c of C holds
(Obj〈T, T ′〉)(c) = 〈〈(ObjT )(c), (Obj T ′)(c)〉〉.

(64) For every functor T from C to D and for every functor T ′ from C ′ to
D′ holds [: T, T ′ :] = 〈T · π1(C × C ′), T ′ · π2(C × C ′)〉.

(65) For every functor T from C to D and for every functor T ′ from C ′ to
D′ holds [: T, T ′ :] is a functor from [:C, C ′ :] to [:D, D′ :].

Let us consider C, C ′, D, D′, and let T be a functor from C to D, and let
T ′ be a functor from C ′ to D′. Then [: T, T ′ :] is a functor from [:C, C ′ :] to [:D,
D′ :].

One can prove the following proposition

(66) For every functor T from C to D and for every functor T ′ from C ′ to
D′ and for every object c of C and for every object c′ of C ′ holds (Obj[: T,
T ′ :])(〈〈c, c′〉〉) = 〈〈(ObjT )(c), (Obj T ′)(c′)〉〉.
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The notation and terminology used in this paper have been introduced in the
following papers: [5], [2], [1], [3], and [4]. In the sequel x, y will be arbitrary, k
will denote a natural number, and D will denote a non-empty set. Let B, A be
non-empty sets, and let b be an element of B. Then A 7−→ b is an element of
BA.

A set is said to be a relation if:
for an arbitrary x such that x ∈ it holds x is a finite sequence and for all

finite sequences a, b such that a ∈ it and b ∈ it holds len a = len b.

We follow a convention: X denotes a set, p, r denote relations, and a, b
denote finite sequences. We now state several propositions:

(4)2 For every X such that for every x such that x ∈ X holds x is a finite
sequence and for all a, b such that a ∈ X and b ∈ X holds len a = len b
holds X is a relation.

(5) If x ∈ p, then x is a finite sequence.

(6) If a ∈ p and b ∈ p, then len a = len b.

(7) If X ⊆ p, then X is a relation.

(8) {a} is a relation.

(9) {〈x, y〉} is a relation.

The scheme rel exist concerns a set A, and a unary predicate P, and states
that:

1Supported by RPBP III.24 C1
2The propositions (1)–(3) became obvious.
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there exists r such that for every a holds a ∈ r if and only if a ∈ A and P[a]
provided the parameters satisfy the following condition:
• for all a, b such that P[a] and P[b] holds len a = len b.
Let us consider p, r. Let us note that one can characterize the predicate

p = r by the following (equivalent) condition: for every a holds a ∈ p if and
only if a ∈ r.

We now state the proposition

(10) p = r if and only if for every a holds a ∈ p if and only if a ∈ r.
The relation � is defined by:
a /∈ � .

One can prove the following propositions:

(11) a /∈ � .

(12) p = � if and only if for no a holds a ∈ p.
(13) � = ∅.

Let us consider p. Let us assume that p 6= � . The functor Arity(p) yielding
a natural number is defined by:

for every a such that a ∈ p holds Arity(p) = len a.

We now state two propositions:

(14) If p 6= � , then for every k holds k = Arity(p) if and only if for every a
such that a ∈ p holds k = len a.

(15) If a ∈ p and p 6= � , then Arity(p) = len a.

Let us consider k. A relation is called a k-ary relation if:
for every a such that a ∈ it holds len a = k.

One can prove the following two propositions:

(16) For all k, r such that for every a such that a ∈ r holds len a = k holds
r is a k-ary relation.

(17) For every k-ary relation r such that a ∈ r holds len a = k.

Let X be a set. A relation is called a relation on X if:
for every a such that a ∈ it holds rng a ⊆ X.

In the sequel X denotes a set. Next we state four propositions:

(18) For all X, r such that for every a such that a ∈ r holds rng a ⊆ X holds
r is a relation on X.

(19) For every relation r on X such that a ∈ r holds rng a ⊆ X.

(20) � is a relation on X.

(21) � is a k-ary relation.

Let us consider X, k. A relation is called a k-ary relation of X if:
it is a relation on X and it is a k-ary relation.

Next we state two propositions:

(22) For every relation r holds r is a k-ary relation of X if and only if r is a
relation on X and r is a k-ary relation.



Many-Argument Relations 735

(23) For every k-ary relation R of X holds R is a relation on X and R is a
k-ary relation.

Let us consider D. The functor Rel(D) yielding a non-empty family of sets
is defined as follows:

for every X holds X ∈ Rel(D) if and only if X ⊆ D∗ and for all finite
sequences a, b of elements of D such that a ∈ X and b ∈ X holds len a = len b.

The following propositions are true:

(24) For every non-empty set D and for every non-empty family S of sets
holds S = Rel(D) if and only if for every X holds X ∈ S if and only if
X ⊆ D∗ and for all finite sequences a, b of elements of D such that a ∈ X
and b ∈ X holds len a = len b.

(25) X ∈ Rel(D) if and only if X ⊆ D∗ and for all finite sequences a, b of
elements of D such that a ∈ X and b ∈ X holds len a = len b.

Let D be a non-empty set. A relation on D is an element of Rel(D).

In the sequel a will denote a finite sequence of elements of D and p, r will
denote elements of Rel(D). Next we state three propositions:

(26) If X ⊆ r, then X is an element of Rel(D).

(27) {a} is an element of Rel(D).

(28) For all elements x, y of D holds {〈x, y〉} is an element of Rel(D).

Let us consider D, p, r. Let us note that one can characterize the predicate
p = r by the following (equivalent) condition: for every a holds a ∈ p if and
only if a ∈ r.

One can prove the following proposition

(29) p = r if and only if for every a holds a ∈ p if and only if a ∈ r.
The scheme rel D exist deals with a non-empty set A, and a unary predicate

P, and states that:
there exists an element r of Rel(A) such that for every finite sequence a of

elements of A holds a ∈ r if and only if P[a]
provided the parameters satisfy the following condition:
• for all finite sequences a, b of elements of A such that P[a] and P[b]

holds len a = len b.
Let us consider D. The functor � D yielding an element of Rel(D) is defined

as follows:
a /∈ � D.

The following three propositions are true:

(30) r = � D if and only if for no a holds a ∈ r.
(31) a /∈ � D.

(32) � D = ∅.
Let us consider D, p. Let us assume that p 6= � D. The functor Arity(p)

yielding a natural number is defined by:
if a ∈ p, then Arity(p) = len a.

Next we state two propositions:
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(33) If p 6= � D, then for every k holds k = Arity(p) if and only if for every
a such that a ∈ p holds k = len a.

(34) If a ∈ p and p 6= � D, then Arity(p) = len a.

The scheme rel D exist2 concerns a non-empty set A, a natural number B,
and a unary predicate P, and states that:

there exists an element r of Rel(A) such that for every finite sequence a of
elements of A such that len a = B holds a ∈ r if and only if P[a]
for all values of the parameters.

The non-empty set Boolean is defined by:
Boolean = {0, 1}.
We now define two new functors. The element false of Boolean is defined by:
false = 0.

The element true of Boolean is defined as follows:
true = 1.

The following four propositions are true:

(35) Boolean = {0, 1}.
(36) false = 0 and true = 1.

(37) Boolean = {false , true}.
(38) false 6= true.

In the sequel u, v, w will denote elements of Boolean . Next we state the
proposition

(39) v = false or v = true.

We now define two new functors. Let us consider v. The functor ¬v yielding
an element of Boolean is defined by:
¬v = true if v = false , ¬v = false if v = true.

Let us consider w. The functor v ∧w yielding an element of Boolean is defined
by:

v ∧w = true if v = true and w = true, v ∧ w = false, otherwise.

The following propositions are true:

(40) ¬(¬v) = v.

(41) v = false if and only if ¬v = true but v = true if and only if ¬v = false.

(42) If v 6= false, then v = true but if v 6= true, then v = false.

(43) v 6= true if and only if v = false.

(44) It is not true that: v = true and w = true if and only if v = false or
w = false .

(45) v ∧ w = true if and only if v = true and w = true but v ∧ w = false if
and only if v = false or w = false.

(46) v ∧ ¬v = false .

(47) ¬(v ∧ ¬v) = true.

(48) v ∧ w = w ∧ v.

(49) false ∧ v = false.
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(50) true ∧ v = v.

(51) If v ∧ v = false, then v = false .

(52) v ∧ (w ∧ u) = (v ∧w) ∧ u.

Let us consider X. The functor Boolean(false /∈ X) yields an element of
Boolean and is defined as follows:

Boolean(false /∈ X) = true if false /∈ X, Boolean(false /∈ X) = false, other-
wise.

One can prove the following proposition

(53) false /∈ X if and only if Boolean(false /∈ X) = true but false ∈ X if and
only if Boolean(false /∈ X) = false.
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The articles [6], [3], [1], [5], [4], [2], and [7] provide the notation and terminology
for this paper. In the sequel i, k are natural numbers and A, D are non-empty
sets. Let us consider A. The functor V(A) yields a non-empty set of functions
and is defined by:

V(A) = ABoundVar.

The following propositions are true:

(1) V(A) = ABoundVar.

(2) For an arbitrary x such that x is an element of V(A) holds x is a function
from BoundVar into A.

Let us consider A. Then V(A) is a non-empty set of functions from BoundVar
to A.

In the sequel x, y will be bound variables and v, v1 will be elements of V(A).
Let us consider A, v, x. Then v(x) is an element of A.

We now define two new functors. Let us consider A, and let p be an element
of BooleanA. The functor ¬p yields an element of BooleanA and is defined by:

for every element x of A holds (¬p)(x) = ¬(p(x)).
Let q be an element of BooleanA. The functor p ∧ q yielding an element of
BooleanA is defined as follows:

for every element x of A holds (p ∧ q)(x) = (p(x)) ∧ (q(x)).

We now state two propositions:

1Supported by RPBP III.24 C1
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(4)2 For every element p of BooleanA and for every element x of A holds
¬p(x) = ¬(p(x)).

(5) For all elements p, q of BooleanA and for every element x of A holds
p ∧ q(x) = (p(x)) ∧ (q(x)).

Let us consider A, and let f be an element of Boolean V(A), and let us consider
v. Then f(v) is an element of Boolean .

Let us consider A, x, and let p be an element of Boolean V(A). The functor∧
x p yields an element of BooleanV(A) and is defined as follows:

for every v holds (
∧
x p)(v) = Boolean(false /∈ {p(v′) :

∧
y[x 6= y ⇒ v′(y) =

v(y)]}).
Next we state three propositions:

(6) For all x, v and for every element p of Boolean V(A) holds (
∧
x p)(v) =

Boolean(false /∈ {p(v′) :
∧

[x 6= y ⇒ v′(y) = v(y)]}).
(7) For every element p of BooleanV(A) holds (

∧
x p)(v) = false if and only

if there exists v1 such that p(v1) = false and for every y such that x 6= y
holds v1(y) = v(y).

(8) For every element p of BooleanV(A) holds (
∧
x p)(v) = true if and only

if for every v1 such that for every y such that x 6= y holds v1(y) = v(y)
holds p(v1) = true.

In the sequel ll is a variables list of k. Let us consider A, v, k, ll. The functor
ll[v] yielding a finite sequence of elements of A is defined as follows:

len(ll[v]) = k and for every i such that 1 ≤ i and i ≤ k holds (ll[v])(i) =
v(ll(i)).

We now state the proposition

(9) For all v, k, ll holds len(ll[v]) = k and for every natural number i such
that 1 ≤ i and i ≤ k holds ll[v](i) = v(ll(i)).

Let us consider A, k, ll, and let r be an element of Rel(A). The functor llεr

yields an element of BooleanV(A) and is defined by:
for every element v of V(A) holds if ll[v] ∈ r, then (llεr)(v) = true but if

ll[v] /∈ r, then (llεr)(v) = false.

Next we state the proposition

(10) For all k, ll, v and for every element r of Rel(A) holds if ll[v] ∈ r, then
llεr(v) = true but if ll[v] /∈ r, then llεr(v) = false.

Let us consider A, and let F be a function from WFFCQC into BooleanV(A),

and let p be an element of WFFCQC. Then F (p) is an element of BooleanV(A).

Let us consider D. A function from PredSym into Rel(D) is called an inter-
pretation of D if:

for every element P of PredSym and for every element r of Rel(D) such that
it(P ) = r holds r = � D or Arity(P ) = Arity(r).

2The proposition (3) became obvious.
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Next we state two propositions:

(11) For every non-empty set D and for every function F from PredSym into
Rel(D) such that for every element P of PredSym and for every element
r of Rel(D) such that F (P ) = r holds r = � D or Arity(P ) = Arity(r)
holds F is an interpretation of D.

(12) For every D and for every interpretation J of D and for every element
P of PredSym and for every element r of Rel(D) such that J(P ) = r
holds r = � D or Arity(P ) = Arity(r).

Let us consider A, and let J be an interpretation of A, and let p be an element
of PredSym. Then J(p) is a set.

For simplicity we adopt the following rules: p, q, t will be elements of
WFFCQC, J will be an interpretation of A, P will be a k-ary predicate symbol,
and r will be an element of Rel(A). Let us consider A, k, J , P . Then J(P ) is
an element of Rel(A).

Let us consider A, J , p. The functor Valid(p, J) yielding an element of

BooleanV(A) is defined by:

there exists a function F from WFFCQC into BooleanV(A) such that
Valid(p, J) = F (p) and for all elements p, q of WFFCQC and for every bound
variable x and for every natural number k and for every variables list ll of k and

for every k-ary predicate symbol P and for all elements p′, q′ of BooleanV(A)

such that p′ = F (p) and q′ = F (q) holds
F (VERUM) = V(A) 7−→ true
and F (P [ll]) = llε(J(P )) and F (¬p) = ¬p′ and F (p ∧ q) = p′ ∧ q′ and

F (∀xp) =
∧
x p
′.

We now state a number of propositions:

(13) Valid(VERUM, J) = V(A) 7−→ true.

(14) Valid(VERUM, J)(v) = true.

(15) Valid(P [ll], J) = llε(J(P )).

(16) If p = P [ll] and r = J(P ), then ll[v] ∈ r if and only if Valid(p, J)(v) =
true.

(17) If p = P [ll] and r = J(P ), then ll[v] /∈ r if and only if Valid(p, J)(v) =
false.

(18) If p = P [ll] and r = J(P ), then ll[v] /∈ r if and only if Valid(p, J)(v) =
false.

(19) Valid(¬p, J) = ¬Valid(p, J).

(20) Valid(¬p, J)(v) = ¬(Valid(p, J)(v)).

(21) Valid(p ∧ q, J) = Valid(p, J) ∧Valid(q, J).

(22) Valid(p ∧ q, J)(v) = (Valid(p, J)(v)) ∧ (Valid(q, J)(v)).

(23) Valid(∀xp, J) =
∧
x Valid(p, J).

(24) Valid(p ∧ ¬p, J)(v) = false.

(25) Valid(¬(p ∧ ¬p), J)(v) = true.
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Let us consider A, p, J , v. The predicate J, v |= p is defined by:
Valid(p, J)(v) = true.

The following propositions are true:

(26) J, v |= p if and only if Valid(p, J)(v) = true.

(27) J, v |= P [ll] if and only if llε(J(P ))(v) = true.

(28) J, v |= ¬p if and only if J, v 6|= p.

(29) J, v |= p ∧ q if and only if J, v |= p and J, v |= q.

(30) J, v |= ∀xp if and only if (
∧
x Valid(p, J))(v) = true.

(31) J, v |= ∀xp if and only if for every v1 such that for every y such that
x 6= y holds v1(y) = v(y) holds Valid(p, J)(v1) = true.

(32) Valid(¬(¬p), J) = Valid(p, J).

(33) Valid(p ∧ p, J) = Valid(p, J).

(34) Valid(p ∧ p, J)(v) = Valid(p, J)(v).

(35) J, v |= p ⇒ q if and only if Valid(p, J)(v) = false or Valid(q, J)(v) =
true.

(36) J, v |= p⇒ q if and only if if J, v |= p, then J, v |= q.

(37) For every element p of BooleanV(A) such that (
∧
x p)(v) = true holds

p(v) = true.

Let us consider A, J , p. The predicate J |= p is defined by:
for every v holds J, v |= p.

One can prove the following proposition

(38) J |= p if and only if for every v holds J, v |= p.

In the sequel w denotes an element of V(A). The scheme Lambda Val deals
with a non-empty set A, a bound variable B, a bound variable C, an element D
of V(A), and an element E of V(A) and states that:

there exists an element v of V(A) such that for every bound variable x such
that x 6= B holds v(x) = D(x) and v(B) = E(C)
for all values of the parameters.

One can prove the following three propositions:

(39) If x /∈ snb(p), then for all v, w such that for every y such that x 6= y
holds w(y) = v(y) holds Valid(p, J)(v) = Valid(p, J)(w).

(40) If J, v |= p and x /∈ snb(p), then for every w such that for every y such
that x 6= y holds w(y) = v(y) holds J,w |= p.

(41) J, v |= ∀xp if and only if for every w such that for every y such that
x 6= y holds w(y) = v(y) holds J,w |= p.

In the sequel s′ will be a formula. We now state a number of propositions:

(42) If x 6= y and p = s′(x) and q = s′(y), then for every v such that
v(x) = v(y) holds Valid(p, J)(v) = Valid(q, J)(v).

(43) If x 6= y and x /∈ snb(s′), then x /∈ snb(s′(y)).

(44) J, v |= VERUM.

(45) J, v |= p ∧ q ⇒ q ∧ p.
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(46) J, v |= (¬p⇒ p)⇒ p.

(47) J, v |= p⇒ (¬p⇒ q).

(48) J, v |= (p⇒ q)⇒ (¬(q ∧ t)⇒ ¬(p ∧ t)).
(49) If J, v |= p and J, v |= p⇒ q, then J, v |= q.

(50) J, v |= (∀xp)⇒ p.

(51) J |= VERUM.

(52) J |= p ∧ q ⇒ q ∧ p.
(53) J |= (¬p⇒ p)⇒ p.

(54) J |= p⇒ (¬p⇒ q).

(55) J |= (p⇒ q)⇒ (¬(q ∧ t)⇒ ¬(p ∧ t)).
(56) If J |= p and J |= p⇒ q, then J |= q.

(57) J |= (∀xp)⇒ p.

(58) If J |= p⇒ q and x /∈ snb(p), then J |= p⇒ (∀xq).
(59) For every formula s such that p = s(x) and q = s(y) and x /∈ snb(s)

and J |= p holds J |= q.
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Summary. Some further theorems concerning probability, among
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The notation and terminology used in this paper have been introduced in the
following papers: [8], [2], [4], [3], [6], [5], [9], [7], and [1]. For simplicity we
adopt the following convention: Omega denotes a non-empty set, f denotes
a function, m, n denote natural numbers, r, r1, r2, r3 denote real numbers,
seq, seq1 denote sequences of real numbers, Sigma denotes a σ-field of subsets
of Omega, ASeq, BSeq denote sequences of subsets of Sigma, P , P1 denote
probabilities on Sigma, and A, B, C, A1, A2, A3 denote events of Sigma. One
can prove the following propositions:

(1) (r − r1) + r2 = (r + r2)− r1.

(2) r ≤ r1 if and only if r < r1 or r = r1.

(3) For all r, r1, r2 such that 0 < r and r1 ≤ r2 holds r1
r ≤ r2

r .

(4) For all r, r1, r2, r3 such that r 6= 0 and r1 6= 0 holds r3
r1

= r2
r if and only

if r3 · r = r2 · r1.

(5) If seq is convergent and for every n holds seq1(n) = r − seq(n), then
seq1 is convergent and lim seq1 = r − lim seq.

(6) A∩Omega = A and Omega∩A = A and A∩ΩSigma = A and ΩSigma∩
A = A.

(7) If B misses C, then A ∩B misses A ∩C and B ∩A misses C ∩A.

The scheme SeqEx concerns a unary functor F and states that:
there exists f such that dom f = � and for every n holds f(n) = F(n)

1Supported by RPBP III.24
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for all values of the parameter.
Let us consider Omega, Sigma, ASeq, n. Then ASeq(n) is an event of

Sigma.

Let us consider Omega, Sigma, ASeq. The functor
⋂
ASeq yielding an event

of Sigma is defined by:⋂
ASeq = IntersectionASeq.

One can prove the following propositions:

(8)
⋂
ASeq = IntersectionASeq.

(9) For every B, ASeq there exists BSeq such that for every n holds
BSeq(n) = ASeq(n) ∩B.

(10) For all B, ASeq, BSeq such that ASeq is nonincreasing and for every
n holds BSeq(n) = ASeq(n) ∩B holds BSeq is nonincreasing.

(11) For every function f from Sigma into � and for all ASeq, n holds
(f · ASeq)(n) = f(ASeq(n)).

(12) For all ASeq, BSeq, B such that for every n holdsBSeq(n) = ASeq(n)∩
B holds (IntersectionASeq) ∩B = IntersectionBSeq.

(13) For all P , P1 such that for every A holds P (A) = P1(A) holds P = P1.

(14) For every Omega and for every sequence ASeq of subsets of Omega
holds ASeq is nonincreasing if and only if for every n holds ASeq(n+1) ⊆
ASeq(n).

(15) For every sequence ASeq of subsets of Omega holds ASeq is nonde-
creasing if and only if for every n holds ASeq(n) ⊆ ASeq(n+ 1).

(16) For all sequences ASeq, BSeq of subsets of Omega such that for every
n holds ASeq(n) = BSeq(n) holds ASeq = BSeq.

(17) For every sequence ASeq of subsets of Omega holds ASeq is nonin-
creasing if and only if ComplementASeq is nondecreasing.

Let us consider Omega, Sigma, ASeq. The functor ASeqc yields a sequence
of subsets of Sigma and is defined by:

ASeqc = ComplementASeq.

The following proposition is true

(18) ASeqc = ComplementASeq.

Let us consider Omega, Sigma, ASeq. We say that ASeq is pairwise disjoint
if and only if:

for all m, n such that m 6= n holds ASeq(m) misses ASeq(n).

We now state a number of propositions:

(19) ASeq is pairwise disjoint if and only if for all m, n such that m 6= n
holds ASeq(m) misses ASeq(n).

(20) Let P be a function from Sigma into � . Then P is a probability on
Sigma if and only if the following conditions are satisfied:

(i) for every A holds 0 ≤ P (A),
(ii) P (Omega) = 1,

(iii) for all A, B such that A misses B holds P (A ∪B) = P (A) + P (B),
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(iv) for every ASeq such that ASeq is nondecreasing holds P · ASeq is
convergent and lim(P · ASeq) = P (UnionASeq).

(21) P ((A ∪ B) ∪ C) = (((P (A) + P (B)) + P (C)) − ((P (A ∩ B) + P (B ∩
C)) + P (A ∩ C))) + P ((A ∩B) ∩ C).

(22) P (A \A ∩B) = P (A)− P (A ∩B).

(23) For all P , A, B holds P (A ∩B) ≤ P (B) and P (A ∩B) ≤ P (A).

(24) For all P , A, B, C such that C = Bc holds P (A) = P (A∩B)+P (A∩C).

(25) For all P , A, B holds (P (A) + P (B))− 1 ≤ P (A ∩B).

(26) For all P , A holds P (A) = 1− P (ΩSigma \A).

(27) For all P , A holds P (A) < 1 if and only if 0 < P (ΩSigma \ A).

(28) For all P , A holds P (ΩSigma \ A) < 1 if and only if 0 < P (A).

We now define two new predicates. Let us consider Omega, Sigma, P , A,
B. We say that A and B are independent w.r.t P if and only if:

P (A ∩B) = P (A) · P (B).
Let us consider C. We say that A, B and C are independent w.r.t P if and only
if:
(i) P ((A ∩B) ∩ C) = (P (A) · P (B)) · P (C),

(ii) P (A ∩B) = P (A) · P (B),
(iii) P (A ∩ C) = P (A) · P (C),
(iv) P (B ∩C) = P (B) · P (C).

We now state a number of propositions:

(29) A and B are independent w.r.t P if and only if P (A∩B) = P (A) ·P (B).

(30) A, B and C are independent w.r.t P if and only if the following condi-
tions are satisfied:

(i) P ((A ∩B) ∩ C) = (P (A) · P (B)) · P (C),
(ii) P (A ∩B) = P (A) · P (B),

(iii) P (A ∩ C) = P (A) · P (C),
(iv) P (B ∩ C) = P (B) · P (C).

(31) For all A, B, P holds A and B are independent w.r.t P if and only if
B and A are independent w.r.t P .

(32) For all A, B, C, P holds A, B and C are independent w.r.t P if and only
if P ((A∩B)∩C) = (P (A)·P (B))·P (C) andA andB are independent w.r.t
P and B and C are independent w.r.t P and A and C are independent
w.r.t P .

(33) For all A, B, C, P such that A, B and C are independent w.r.t P holds
B, A and C are independent w.r.t P .

(34) For all A, B, C, P such that A, B and C are independent w.r.t P holds
A, C and B are independent w.r.t P .

(35) A and ∅Sigma are independent w.r.t P .

(36) A and ΩSigma are independent w.r.t P .

(37) For all A, B, P such that A and B are independent w.r.t P holds A
and ΩSigma \ B are independent w.r.t P .
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(38) For all A, B, P such that A and B are independent w.r.t P holds
ΩSigma \ A and ΩSigma \B are independent w.r.t P .

(39) For all A, B, C, P such that A and B are independent w.r.t P and A
and C are independent w.r.t P and B misses C holds A and B ∪ C are
independent w.r.t P .

(40) For all P , A, B such that A and B are independent w.r.t P and P (A) <
1 and P (B) < 1 holds P (A ∪B) < 1.

Let us consider Omega, Sigma, P , B. Let us assume that 0 < P (B). The
functor P(P/B) yielding a probability on Sigma is defined by:

for every A holds (P(P/B))(A) = P (A∩B)
P (B) .

Next we state a number of propositions:

(41) For all P , B such that 0 < P (B) for every A holds P(P/B)(A) =
P (A∩B)
P (B) .

(42) For all P , B, A such that 0 < P (B) holds P (A∩B) = P(P/B)(A)·P (B).

(43) For all P , A, B, C such that 0 < P (A ∩ B) holds P ((A ∩ B) ∩ C) =
(P (A) · P(P/A)(B)) · P(P/(A ∩B))(C).

(44) For all P , A, B, C such that C = Bc and 0 < P (B) and 0 < P (C)
holds P (A) = P(P/B)(A) · P (B) + P(P/C)(A) · P (C).

(45) Given P , A, A1, A2, A3. Suppose A1 misses A2 and A3 = (A1∪A2)c and
0 < P (A1) and 0 < P (A2) and 0 < P (A3). Then P (A) = (P(P/A1)(A) ·
P (A1) + P(P/A2)(A) · P (A2)) + P(P/A3)(A) · P (A3).

(46) For all P , A, B such that 0 < P (B) holds P(P/B)(A) = P (A) if and
only if A and B are independent w.r.t P .

(47) For all P , A, B such that 0 < P (B) and P (B) < 1 and P(P/B)(A) =
P(P/(ΩSigma \ B))(A) holds A and B are independent w.r.t P .

(48) For all P , A, B such that 0 < P (B) holds (P (A)+P (B))−1
P (B) ≤ P(P/B)(A).

(49) For all A, B, P such that 0 < P (A) and 0 < P (B) holds P(P/B)(A) =
P(P/A)(B)·P (A)

P (B) .

(50) Given B, A1, A2, P . Suppose 0 < P (B) and A2 = A1
c and 0 < P (A1)

and 0 < P (A2). Then

(i) P(P/B)(A1) = P(P/A1)(B)·P (A1)
P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2) ,

(ii) P(P/B)(A2) = P(P/A2)(B)·P (A2)
P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2) .

(51) Given B, A1, A2, A3, P . Suppose 0 < P (B) and 0 < P (A1) and
0 < P (A2) and 0 < P (A3) and A1 misses A2 and A3 = (A1 ∪A2)c. Then

(i) P(P/B)(A1) = P(P/A1)(B)·P (A1)
(P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2))+P(P/A3)(B)·P (A3) ,

(ii) P(P/B)(A2) = P(P/A2)(B)·P (A2)
(P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2))+P(P/A3)(B)·P (A3) ,

(iii) P(P/B)(A3) = P(P/A3)(B)·P (A3)
(P(P/A1)(B)·P (A1)+P(P/A2)(B)·P (A2))+P(P/A3)(B)·P (A3) .

(52) For all A, B, P such that 0 < P (B) holds 1− P (ΩSigma\A)
P (B) ≤ P(P/B)(A).
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[3] Czes law Byliński. Functions from a set to a set. Formalized Mathematics,
1(1):153–164, 1990.

[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized
Mathematics, 1(1):35–40, 1990.

[5] Jaros law Kotowicz. Convergent sequences and the limit of sequences. For-
malized Mathematics, 1(2):273–275, 1990.

[6] Jaros law Kotowicz. Real sequences and basic operations on them. Formal-
ized Mathematics, 1(2):269–272, 1990.

[7] Andrzej Ne
‘
dzusiak. σ-fields and probability. Formalized Mathematics,

1(2):401–407, 1990.

[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathemat-
ics, 1(1):9–11, 1990.

[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–
71, 1990.

Received June 1, 1990



750



FORMALIZED MATHEMATICS

Vol.1, No.4, September–October 1990
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Summary. Connections between Minor Desargues Axiom and the
transitivity of translation groups are investigated. A formal proof of the
theorem which establishes the equivalence of these two properties of affine
planes is given. We also prove that, under additional requirement, the
plane in question satisfies Fano Axiom; its translation group is uniquely
two-divisible.

MML Identifier: TRANSLAC.

The terminology and notation used in this paper are introduced in the following
papers: [1], [3], [4], [2], and [5]. We adopt the following rules: AS is an affine
space and a, b, c, d, p, q, r, x are elements of the points of AS. Let us consider
AS. We say that AS satisfies Fano Axiom if and only if:

for all a, b, c, d such that a, b ‖ c, d and a, c ‖ b, d and a, d ‖ b, c holds
L(a, b, c).

The following propositions are true:

(1) AS satisfies Fano Axiom if and only if for all a, b, c, d such that a, b ‖ c, d
and a, c ‖ b, d and a, d ‖ b, c holds L(a, b, c).

(2) If there exist a, b, c such that L(a, b, c) and a 6= b and a 6= c and b 6= c,
then for all p, q such that p 6= q there exists r such that L(p, q, r) and
p 6= r and q 6= r.

(3) If there exist a, b such that a 6= b and for every x such that L(a, b, x)
holds x = a or x = b, then for all p, q, r such that p 6= q and L(p, q, r)
holds r = p or r = q.

We follow a convention: AFP is an affine plane, a, a′, b, b′, c, c′, d, p, q, r,
x, y are elements of the points of AFP , and f , g, f1, f2 are permutations of
the points of AFP . We now state a number of propositions:

1Supported by RPBP.III-24.C2.
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(4) If AFP satisfies Fano Axiom and a, b ‖ c, d and a, c ‖ b, d and
not L(a, b, c),
then there exists p such that L(b, c, p) and L(a, d, p).

(5) If f is a translation and not L(a, f(a), x) and a, f(a) ‖ x, y and a, x ‖
f(a), y, then y = f(x).

(6) AFP satisfies des if and only if for all a, a′, b, c, b′, c′ such that
not L(a, a′, b) and not L(a, a′, c) and a, a′ ‖ b, b′ and a, a′ ‖ c, c′ and a, b ‖
a′, b′ and a, c ‖ a′, c′ holds b, c ‖ b′, c′.

(7) There exists f such that f is a translation and f(a) = a.

(8) If for all p, q, r such that p 6= q and L(p, q, r) holds r = p or r = q and
a, b ‖ p, q and a, p ‖ b, q and not L(a, b, p), then a, q ‖ b, p.

(9) If AFP satisfies des, then there exists f such that f is a translation
and f(a) = b.

(10) If for every a, b there exists f such that f is a translation and f(a) = b,
then AFP satisfies des.

(11) If f is a translation and g is a translation and not L(a, f(a), g(a)), then
f · g = g · f .

(12) If AFP satisfies des and f is a translation and g is a translation, then
f · g = g · f .

(13) If f is a translation and g is a translation and p, f(p) ‖ p, g(p), then
p, f(p) ‖ p, (f · g)(p).

(14) If AFP satisfies Fano Axiom and AFP satisfies des and f is a trans-
lation, then there exists g such that g is a translation and g · g = f .

(15) If AFP satisfies Fano Axiom and f is a translation and
f · f = idthe points of AFP ,
then f = idthe points of AFP .

(16) If AFP satisfies des and AFP satisfies Fano Axiom and g is a trans-
lation and f1 is a translation and f2 is a translation and g = f1 · f1 and
g = f2 · f2, then f1 = f2.
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Summary. Definitions of Elementary Event and Event in any sam-
ple space E are given. Next, the probability of an Event when E is finite
is introduced and some properties of this function are investigated. Last
part of the paper is devoted to the conditional probability and essential
properties of this function (Bayes Theorem).

MML Identifier: RPR 1.

The articles [7], [8], [3], [6], [5], [2], [4], and [1] provide the terminology and
notation for this paper. For simplicity we follow the rules: E will denote a
non-empty set, a will denote an element of E, A, B, B1, B2, B3, C will denote
subsets of E, X, Y will denote sets, and p will denote a finite sequence. Let us
consider E. A subset of E is called an elementary event of E if:

it ⊆ E and it 6= ∅ but Y ⊆ it if and only if Y = ∅ or Y = it.

In the sequel e, e1, e2 will denote elementary events of E. One can prove the
following propositions:

(1) If e is an elementary event of E, then e ⊆ E.

(2) If e is an elementary event of E, then e 6= ∅.
(3) For every e such that e is an elementary event of E holds Y ⊆ e if and

only if Y = ∅ or Y = e.

(4) e is an elementary event of E if and only if e ⊆ E and e 6= ∅ but Y ⊆ e
if and only if Y = ∅ or Y = e.

(5) If e is an elementary event of E and e = A∪B and A 6= B, then A = ∅
and B = e or A = e and B = ∅.

(6) If e is an elementary event of E and e = A ∪B, then A = e and B = e
or A = e and B = ∅ or A = ∅ and B = e.

(7) If a ∈ E, then {a} is an elementary event of E.

(8) If {a} is an elementary event of E, then a ∈ E.

(9) a ∈ E if and only if {a} is an elementary event of E.
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(10) If e1 is an elementary event of E and e2 is an elementary event of E
and e1 ⊆ e2, then e1 = e2.

(11) If e is an elementary event of E, then there exists a such that a ∈ E
and e = {a}.

(12) For every E there exists e such that e is an elementary event of E.

(13) For every E such that e is an elementary event of E holds e is finite.

(14) If e is an elementary event of E, then there exists p such that p is a
finite sequence of elements of E and rng p = e and len p = 1.

Let us consider E. An event of E is a subset of E.

The following propositions are true:

(15) For every subset X of E holds X is an event of E.

(16) ∅ is an event of E.

(17) E is an event of E.

(18) If A is an event of E and B is an event of E, then A∩B is an event of
E.

(19) If A is an event of E and B is an event of E, then A∪B is an event of
E.

(20) If A ⊆ B and B is an event of E, then A is an event of E.

(21) If A is an event of E, then Ac is an event of E.

(22) If e is an elementary event of E and A is an event of E, then e∩A = ∅
or e ∩A = e.

(23) If A is an event of E and B is an event of E, then A \B is an event of
E.

(24) If e is an elementary event of E, then e is an event of E.

(25) If A is an event of E and A 6= ∅, then there exists e such that e is an
elementary event of E and e ⊆ A.

(26) If e is an elementary event of E and A is an event of E and e ⊆ A∪Ac,
then e ⊆ A or e ⊆ Ac.

(27) If e1 is an elementary event of E and e2 is an elementary event of E,
then e1 = e2 or e1 ∩ e2 = ∅.

Let us consider X, Y . We say that X exclude Y if and only if:
X ∩ Y = ∅.
Next we state several propositions:

(28) X exclude Y if and only if X ∩ Y = ∅.
(29) If X exclude Y , then Y exclude X.

(30) A exclude Ac.

(31) For every A holds A exclude ∅.
(32) A exclude B if and only if A \ B = A.

(33) A ∩B exclude A \B.

(34) A ∩B exclude A ∩Bc.
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(35) If A exclude B, then A exclude B ∩ C.

(36) If A exclude B, then A ∩C exclude B ∩C.

Let us consider E. Let us assume that E is finite. Let us consider A. The
functor P(A) yields a real number and is defined as follows:

P(A) = cardA
cardE .

Let us consider E. Then ΩE is an event of E. Then ∅E is an event of E.

The following propositions are true:

(37) If E is finite and A is an event of E, then P(A) = cardA
cardE .

(38) If E is finite and e is an elementary event of E, then P(e) = 1
cardE .

(39) If E is finite, then P(ΩE) = 1.

(40) If E is finite, then P(∅E) = 0.

(41) If E is finite and A is an event of E and B is an event of E and A
exclude B, then P(A ∩B) = 0.

(42) If E is finite and A is an event of E, then P(A) ≤ 1.

(43) If E is finite and A is an event of E, then 0 ≤ P(A).

(44) If E is finite and A is an event of E and B is an event of E and A ⊆ B,
then P(A) ≤ P(B).

(46)1 If E is finite and A is an event of E and B is an event of E, then
P(A ∪B) = (P(A) + P(B))− P(A ∩B).

(47) If E is finite and A is an event of E and B is an event of E and A
exclude B, then P(A ∪B) = P(A) + P(B).

(48) If E is finite and A is an event of E, then P(A) = 1 − P(Ac) and
P(Ac) = 1− P(A).

(49) If E is finite and A is an event of E and B is an event of E, then
P(A \ B) = P(A)− P(A ∩B).

(50) If E is finite and A is an event of E and B is an event of E and B ⊆ A,
then P(A \ B) = P(A)− P(B).

(51) If E is finite and A is an event of E and B is an event of E, then
P(A ∪B) ≤ P(A) + P(B).

(52) If E is finite and A is an event of E and B is an event of E, then
P(A \ B) = P(A ∩Bc).

(53) If E is finite and A is an event of E and B is an event of E, then
P(A) = P(A ∩B) + P(A ∩Bc).

(54) If E is finite and A is an event of E and B is an event of E, then
P(A) = P(A ∪B)− P(B \ A).

(55) If E is finite and A is an event of E and B is an event of E, then
P(A) + P(Ac ∩B) = P(B) + P(Bc ∩A).

(56) Suppose E is finite and A is an event of E and B is an event of E and
C is an event of E. Then P((A ∪ B) ∪ C) = (((P(A) + P(B)) + P(C))−
((P(A ∩B) + P(A ∩C)) + P(B ∩C))) + P((A ∩B) ∩ C).

1The proposition (45) became obvious.
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(57) If E is finite and A is an event of E and B is an event of E and C is
an event of E and A exclude B and A exclude C and B exclude C, then
P((A ∪B) ∪ C) = (P(A) + P(B)) + P(C).

(58) If E is finite and A is an event of E and B is an event of E, then
P(A)− P(B) ≤ P(A \ B).

Let us consider E. Let us assume that E is finite. Let us consider B. Let us
assume that 0 < P(B). Let us consider A. The functor P(A/B) yielding a real
number is defined by:

P(A/B) = P(A∩B)
P(B) .

One can prove the following propositions:

(59) If E is finite and A is an event of E and B is an event of E and 0 < P(B),

then P(A/B) = P(A∩B)
P(B) .

(60) If E is finite and A is an event of E and B is an event of E and 0 < P(B),
then P(A ∩B) = P(A/B) · P(B).

(61) If E is finite and A is an event of E, then P(A/ΩE) = P(A).

(62) If E is finite, then P(ΩE/ΩE) = 1.

(63) If E is finite, then P(∅E/ΩE) = 0.

(64) If E is finite and A is an event of E and B is an event of E and 0 < P(B),
then P(A/B) ≤ 1.

(65) If E is finite and A is an event of E and B is an event of E and 0 < P(B),
then 0 ≤ P(A/B).

(66) If E is finite and A is an event of E and B is an event of E and 0 < P(B),

then P(A/B) = 1− P(B\A)
P(B) .

(67) If E is finite and A is an event of E and B is an event of E and 0 < P(B)

and A ⊆ B, then P(A/B) = P(A)
P(B) .

(68) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and A exclude B, then P(A/B) = 0.

(69) If E is finite and A is an event of E and B is an event of E and 0 < P(A)
and 0 < P(B), then P(A) · P(B/A) = P(B) · P(A/B).

(70) If E is finite and A is an event of E and B is an event of E and 0 < P(B),
then P(A/B) = 1− P(Ac/B) and P(Ac/B) = 1− P(A/B).

(71) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and B ⊆ A, then P(A/B) = 1.

(72) If E is finite and B is an event of E and 0 < P(B), then P(ΩE/B) = 1.

(73) If E is finite and A is an event of E and 0 < P(A), then P(Ac/A) = 0.

(74) If E is finite and A is an event of E and P(A) < 1, then P(A/Ac) = 0.

(75) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and A exclude B, then P(Ac/B) = 1.

(76) If E is finite and A is an event of E and B is an event of E and 0 < P(A)

and P(B) < 1 and A exclude B, then P(A/Bc) = P(A)
1−P(B) .
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(77) If E is finite and A is an event of E and B is an event of E and 0 < P(A)

and P(B) < 1 and A exclude B, then P(Ac/Bc) = 1− P(A)
1−P(B) .

(78) If E is finite and A is an event of E and B is an event of E and C is
an event of E and 0 < P(B ∩ C) and 0 < P(C), then P((A ∩ B) ∩ C) =
(P(A/(B ∩ C)) · P(B/C)) · P(C).

(79) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and P(B) < 1, then P(A) = P(A/B) · P(B) + P(A/Bc) · P(Bc).

(80) Suppose E is finite and A is an event of E and B1 is an event of E and
B2 is an event of E and 0 < P(B1) and 0 < P(B2) and B1 ∪B2 = E and
B1 ∩B2 = ∅. Then P(A) = P(A/B1) · P(B1) + P(A/B2) · P(B2).

(81) Suppose that
(i) E is finite,

(ii) A is an event of E,
(iii) B1 is an event of E,
(iv) B2 is an event of E,
(v) B3 is an event of E,

(vi) 0 < P(B1),
(vii) 0 < P(B2),

(viii) 0 < P(B3),
(ix) (B1 ∪B2) ∪B3 = E,
(x) B1 ∩B2 = ∅,

(xi) B1 ∩B3 = ∅,
(xii) B2 ∩B3 = ∅.

Then P(A) = (P(A/B1) · P(B1) + P(A/B2) · P(B2)) + P(A/B3) · P(B3).

(82) Suppose E is finite and A is an event of E and B1 is an event of E and
B2 is an event of E and 0 < P(A) and 0 < P(B1) and 0 < P(B2) and B1∪
B2 = E and B1 ∩B2 = ∅. Then P(B1/A) = P(A/B1)·P(B1)

P(A/B1)·P(B1)+P(A/B2)·P(B2) .

(83) Suppose that
(i) E is finite,

(ii) A is an event of E,
(iii) B1 is an event of E,
(iv) B2 is an event of E,
(v) B3 is an event of E,

(vi) 0 < P(A),
(vii) 0 < P(B1),

(viii) 0 < P(B2),
(ix) 0 < P(B3),
(x) (B1 ∪B2) ∪B3 = E,

(xi) B1 ∩B2 = ∅,
(xii) B1 ∩B3 = ∅,

(xiii) B2 ∩B3 = ∅.
Then P(B1/A) = P(A/B1)·P(B1)

(P(A/B1)·P(B1)+P(A/B2)·P(B2))+P(A/B3)·P(B3) .
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Let us consider E, A, B. We say that A and B are independent if and only
if:

P(A ∩B) = P(A) · P(B).

The following propositions are true:

(84) A and B are independent if and only if P(A ∩B) = P(A) · P(B).

(85) If A and B are independent, then B and A are independent.

(86) If E is finite and A is an event of E and B is an event of E and 0 < P(B)
and A and B are independent, then P(A/B) = P(A).

(87) If E is finite and A is an event of E and B is an event of E and P(B) = 0,
then A and B are independent.

(88) If E is finite and A is an event of E and B is an event of E and A and
B are independent, then Ac and B are independent.

(89) If E is finite and A is an event of E and B is an event of E and A
exclude B and A and B are independent, then P(A) = 0 or P(B) = 0.
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Warsaw University
Bia lystok

Summary. The collinearity structure denoted by ProjectiveSpa-
ce(V) is correlated with a given vector space V (over the field of Reals).
It is a formalization of the standard construction of a projective space,
where points are interpreted as equivalence classes of the relation of pro-
portionality considered in the set of all non-zero vectors. Then the re-
lation of collinearity corresponds to the relation of linear dependence of
vectors. Several facts concerning vectors are proved, which correspond in
this language to some classical axioms of projective geometry.

MML Identifier: ANPROJ 1.

The notation and terminology used here are introduced in the following articles:
[7], [8], [6], [2], [3], [4], [5], [1], and [9]. We adopt the following rules: V is a real
linear space, p, q, r, u, v, w, y, u1, v1, w1 are vectors of V , and a, b, c, a1, b1,
c1, a2, b2, c2 are real numbers. Let us consider V , p. We say that p is a proper
vector if and only if:

p 6= 0V .

The following proposition is true

(1) p is a proper vector if and only if p 6= 0V .

Let us consider V , p, q. We say that p and q are proportional if and only if:
there exist a, b such that a · p = b · q and a 6= 0 and b 6= 0.

One can prove the following propositions:

(2) p and q are proportional if and only if there exist a, b such that a·p = b·q
and a 6= 0 and b 6= 0.

(3) p and p are proportional.

(4) If p and q are proportional, then q and p are proportional.
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(5) p and q are proportional if and only if there exists a such that a 6= 0
and p = a · q.

(6) If p and u are proportional and u and q are proportional, then p and q
are proportional.

(7) p and 0V are proportional if and only if p = 0V .

Let us consider V , u, v, w. We say that u, v and w are lineary dependent if
and only if:

there exist a, b, c such that (a · u+ b · v) + c · w = 0V but a 6= 0 or b 6= 0 or
c 6= 0.

We now state a number of propositions:

(8) u, v and w are lineary dependent if and only if there exist a, b, c such
that (a · u+ b · v) + c · w = 0V but a 6= 0 or b 6= 0 or c 6= 0.

(9) If u and u1 are proportional and v and v1 are proportional and w and
w1 are proportional and u, v and w are lineary dependent, then u1, v1

and w1 are lineary dependent.

(10) If u, v and w are lineary dependent, then u, w and v are lineary de-
pendent and v, u and w are lineary dependent and w, v and u are lineary
dependent and w, u and v are lineary dependent and v, w and u are
lineary dependent.

(11) If v is a proper vector and w is a proper vector and v and w are not
proportional, then v, w and u are lineary dependent if and only if there
exist a, b such that u = a · v + b · w.

(12) If p and q are not proportional and a1 · p+ b1 · q = a2 · p+ b2 · q and p
is a proper vector and q is a proper vector, then a1 = a2 and b1 = b2.

(13) If u, v and w are not lineary dependent and (a1 · u+ b1 · v) + c1 · w =
(a2 · u+ b2 · v) + c2 · w, then a1 = a2 and b1 = b2 and c1 = c2.

(14) Suppose p and q are not proportional and u = a1 · p + b1 · q and v =
a2 · p + b2 · q and a1 · b2 − a2 · b1 = 0 and p is a proper vector and q is a
proper vector. Then u and v are proportional or u = 0V or v = 0V .

(15) If u = 0V or v = 0V or w = 0V , then u, v and w are lineary dependent.

(16) If u and v are proportional or w and u are proportional or v and w are
proportional, then w, u and v are lineary dependent.

(17) If u, v and w are not lineary dependent, then u is a proper vector and v is
a proper vector and w is a proper vector and u and v are not proportional
and v and w are not proportional and w and u are not proportional.

(18) If p+ q = 0V , then p and q are proportional.

(19) If p and q are not proportional and p, q and u are lineary dependent and
p, q and v are lineary dependent and p, q and w are lineary dependent
and p is a proper vector and q is a proper vector, then u, v and w are
lineary dependent.

(20) If u, v and w are not lineary dependent and u, v and p are lineary
dependent and v, w and q are lineary dependent, then there exists y such
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that u, w and y are lineary dependent and p, q and y are lineary dependent
and y is a proper vector.

(21) If p and q are not proportional and p is a proper vector and q is a proper
vector, then for every u, v there exists y such that y is a proper vector
and u, v and y are lineary dependent and u and y are not proportional
and v and y are not proportional.

(22) If p, q and r are not lineary dependent, then for all u, v such that u is
a proper vector and v is a proper vector and u and v are not proportional
there exists y such that y is a proper vector and u, v and y are not lineary
dependent.

(23) Suppose u, v and q are lineary dependent and w, y and q are lineary
dependent and u, w and p are lineary dependent and v, y and p are lineary
dependent and u, y and r are lineary dependent and v, w and r are lineary
dependent and p, q and r are lineary dependent and p is a proper vector
and q is a proper vector and r is a proper vector. Then u, v and y are
lineary dependent or u, v and w are lineary dependent or u, w and y are
lineary dependent or v, w and y are lineary dependent.

In the sequel x, y, z are arbitrary and X denotes a set. Let us consider V .
The proper vectors ofV yields a set and is defined as follows:

for an arbitrary u holds u ∈ the proper vectors ofV if and only if u 6= 0V and
u is a vector of V .

Next we state three propositions:

(24) For every X holds X = the proper vectors ofV if and only if for an
arbitrary u holds u ∈ X if and only if u 6= 0V and u is a vector of V .

(25) For an arbitrary u such that u ∈ the proper vectors ofV holds u is a
vector of V .

(26) For every u holds u ∈ the proper vectors ofV if and only if u is a proper
vector.

Let us consider V . The proportionality inV yields an equivalence relation of
the proper vectors ofV and is defined as follows:

for all x, y holds 〈〈x, y〉〉 ∈ the proportionality inV if and only if x ∈ the pro-
per vectors ofV and y ∈ the proper vectors ofV and there exist vectors u, v of V
such that x = u and y = v and u and v are proportional.

We now state three propositions:

(27) For every equivalence relation R of the proper vectors ofV holds R =
the proportionality inV if and only if for all x, y holds 〈〈x, y〉〉 ∈ R if and
only if x ∈ the proper vectors ofV and y ∈ the proper vectors ofV and there
exist vectors u, v of V such that x = u and y = v and u and v are
proportional.

(28) If 〈〈x, y〉〉 ∈ the proportionality inV , then x is a vector of V and y is a
vector of V .

(29) 〈〈u, v〉〉 ∈ the proportionality inV if and only if u is a proper vector and
v is a proper vector and u and v are proportional.
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Let us consider V , v. Let us assume that v is a proper vector. The direction of v
yields a subset of the proper vectors ofV and is defined by:

the direction of v = [v]the proportionality inV .

We now state the proposition

(30) If v is a proper vector, then the direction of v = [v]the proportionality inV .

Let us consider V . The projective points overV yields a set and is defined as
follows:

there exists a family Y of subsets of the proper vectors ofV such that Y =
Classes(the proportionality inV ) and the projective points overV = Y.

The following proposition is true

(31) For every X holds X = the projective points overV if and only if there
exists a family Y of subsets of the proper vectors ofV such that Y =
Classes(the proportionality inV ) and X = Y .

A real linear space is said to be a non-trivial real linear space if:
there exists a vector u of it such that u 6= 0it.

The following two propositions are true:

(32) For every real linear space V holds V is a non-trivial real linear space
if and only if there exists a vector u of V such that u 6= 0V .

(33) For every real linear space V holds V is a non-trivial real linear space
if and only if there exists u such that u ∈ the proper vectors ofV.

We follow the rules: V will denote a non-trivial real linear space, p, q, r, u,
v, w will denote vectors of V , and y will be arbitrary. Let us consider V . Then
the proper vectors ofV is a non-empty set.

Let us consider V . Then the projective points overV is a non-empty set.

Next we state two propositions:

(34) If p is a proper vector, then the direction of p is an element of the pro-
jective points overV.

(35) If p is a proper vector and q is a proper vector, then the direction of p =
the direction of q if and only if p and q are proportional.

Let us consider V . The projective collinearity overV yielding a ternary rela-
tion on the projective points overV is defined by:

for arbitrary x, y, z holds 〈〈x, y, z〉〉 ∈ the projective collinearity overV if and
only if there exist p, q, r such that x = the direction of p and y = the direction of q
and z = the direction of r and p is a proper vector and q is a proper vector and
r is a proper vector and p, q and r are lineary dependent.

We now state the proposition

(36) Let R be a ternary relation on the projective points overV. Then R =
the projective collinearity overV if and only if for arbitrary x, y, z holds
〈〈x, y, z〉〉 ∈ R if and only if there exist p, q, r such that x = the direction of p
and y = the direction of q and z = the direction of r and p is a proper
vector and q is a proper vector and r is a proper vector and p, q and r
are lineary dependent.
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Let us consider V . The projective space over V yields a collinearity structure
and is defined by:

the projective space over V = 〈the projective points overV, the projective colli-
nearity overV〉.

In the sequel CS will be a collinearity structure. One can prove the following
propositions:

(37) For every CS holds CS = the projective space over V if and only if CS =
〈the projective points overV, the projective collinearity overV〉.

(38) The projective space over V = 〈the projective points overV, the projecti-
ve collinearity overV〉.

(39) For every V holds the points of
the projective space over V = the projective points overV
and the collinearity relation of the projective space over V = the projecti-
ve collinearity overV.

(40) If 〈〈x, y, z〉〉 ∈ the collinearity relation of the projective space over V , then
there exist p, q, r such that x = the direction of p and y = the direction of q
and z = the direction of r and p is a proper vector and q is a proper vector
and r is a proper vector and p, q and r are lineary dependent.

(41) If u is a proper vector and v is a proper vector and w is a proper
vector, then 〈〈 the direction of u, the direction of v, the direction of w〉〉 ∈ the
collinearity relation of the projective space over V if and only if u, v and
w are lineary dependent.

(42) x is an element of the points of the projective space over V if and only
if there exists u such that u is a proper vector and x = the direction of u.

(43) For every real linear space V and for every vector v of V such that
v is a proper vector for every subset X of the proper vectors ofV holds
X = the direction of v if and only if X = [v]the proportionality inV .
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Summary. In the class of all collinearity structures a subclass of
(dimension free) projective spaces, defined by means of a suitable axiom
system, is singled out. Whenever a real vector space V is at least 3-
dimensional, the structure ProjectiveSpace(V) is a projective space in the
above meaning. Some narrower classes of projective spaces are defined:
Fano projective spaces, projective planes, and Fano projective planes. For
any of the above classes an explicit axiom system is given, as well as an
analytical example. There is also a construction a of 3-dimensional and
a 4-dimensional real vector space; these are needed to show appropriate
examples of projective spaces.

MML Identifier: ANPROJ 2.

The notation and terminology used here are introduced in the following papers:
[1], [5], [7], [6], [3], [4], and [2]. For simplicity we adopt the following rules: V
will denote a real linear space, p, q, r, u, v, w, y, u1, v1 will denote vectors of
V , a, b, c, d, a1, b1 will denote real numbers, and z will be arbitrary. We now
state three propositions:

(1) Suppose for all a, b, c such that (a · u+ b · v) + c · w = 0V holds a = 0
and b = 0 and c = 0. Then u is a proper vector and v is a proper vector
and w is a proper vector and u, v and w are not lineary dependent and u
and v are not proportional.

(2) Given u, v, u1, v1. Suppose for all a, b, a1, b1 such that ((a · u + b ·
v) + a1 · u1) + b1 · v1 = 0V holds a = 0 and b = 0 and a1 = 0 and b1 = 0.
Then u is a proper vector and v is a proper vector and u and v are not
proportional and u1 is a proper vector and v1 is a proper vector and u1

and v1 are not proportional and u, v and u1 are not lineary dependent
and u1, v1 and u are not lineary dependent.
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(3) Suppose for every w there exist a, b, c such that w = (a · p+ b · q) + c · r
and for all a, b, c such that (a · p + b · q) + c · r = 0V holds a = 0 and
b = 0 and c = 0. Then for every u, u1 there exists y such that p, q and
y are lineary dependent and u, u1 and y are lineary dependent and y is a
proper vector.

We follow a convention: A is a non-empty set, f , g, h, f1 are elements of � A ,
and x1, x2, x3, x4 are elements of A. We now state a number of propositions:

(4) Suppose x1 ∈ A and x2 ∈ A and x3 ∈ A and x1 6= x2 and x1 6= x3 and
x2 6= x3. Then there exist f , g, h such that for every z such that z ∈ A
holds if z = x1, then f(z) = 1 but if z 6= x1, then f(z) = 0 and for every
z such that z ∈ A holds if z = x2, then g(z) = 1 but if z 6= x2, then
g(z) = 0 and for every z such that z ∈ A holds if z = x3, then h(z) = 1
but if z 6= x3, then h(z) = 0.

(5) Suppose that
(i) x1 ∈ A,

(ii) x2 ∈ A,
(iii) x3 ∈ A,
(iv) x1 6= x2,
(v) x1 6= x3,

(vi) x2 6= x3,
(vii) for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if z 6= x1,

then f(z) = 0,
(viii) for every z such that z ∈ A holds if z = x2, then g(z) = 1 but if z 6= x2,

then g(z) = 0,
(ix) for every z such that z ∈ A holds if z = x3, then h(z) = 1 but if z 6= x3,

then h(z) = 0.
Then for all a, b, c such that
+ � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)) = 0 � A
holds a = 0 and b = 0 and c = 0.

(6) Suppose x1 ∈ A and x2 ∈ A and x3 ∈ A and x1 6= x2 and x1 6= x3

and x2 6= x3. Then there exist f , g, h such that for all a, b, c such
that + � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)) = 0 � A holds a = 0
and b = 0 and c = 0.

(7) Suppose that
(i) A = {x1, x2, x3},

(ii) x1 6= x2,
(iii) x1 6= x3,
(iv) x2 6= x3,
(v) for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if z 6= x1,

then f(z) = 0,
(vi) for every z such that z ∈ A holds if z = x2, then g(z) = 1 but if z 6= x2,

then g(z) = 0,
(vii) for every z such that z ∈ A holds if z = x3, then h(z) = 1 but if z 6= x3,

then h(z) = 0.
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Then for every element h′ of � A there exist a, b, c such that h′ =
+ � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)).

(8) Suppose A = {x1, x2, x3} and x1 6= x2 and x1 6= x3 and x2 6= x3. Then
there exist f , g, h such that for every element h′ of � A there exist a, b, c
such that h′ = + � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)).

(9) Suppose A = {x1, x2, x3} and x1 6= x2 and x1 6= x3 and x2 6= x3. Then
there exist f , g, h such that for all a, b, c such that + � A(+ � A(· �� A(〈〈a, f〉〉),
· �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)) = 0 � A holds a = 0 and b = 0 and c = 0 and for ev-

ery element h′ of � A there exist a, b, c such that h′ = + � A(+ � A(· �� A(〈〈a, f〉〉),
· �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)).

(10) There exists a non-trivial real linear space V and there exist u, v, w such
that for all a, b, c such that (a ·u+b ·v)+c ·w = 0V holds a = 0 and b = 0
and c = 0 and for every y there exist a, b, c such that y = (a·u+b·v)+c·w.

(11) Suppose x1 ∈ A and x2 ∈ A and x3 ∈ A and x4 ∈ A and x1 6= x2 and
x1 6= x3 and x1 6= x4 and x2 6= x3 and x2 6= x4 and x3 6= x4. Then there
exist f , g, h, f1 such that for every z such that z ∈ A holds if z = x1,
then f(z) = 1 but if z 6= x1, then f(z) = 0 and for every z such that
z ∈ A holds if z = x2, then g(z) = 1 but if z 6= x2, then g(z) = 0 and for
every z such that z ∈ A holds if z = x3, then h(z) = 1 but if z 6= x3, then
h(z) = 0 and for every z such that z ∈ A holds if z = x4, then f1(z) = 1
but if z 6= x4, then f1(z) = 0.

(12) Suppose that

(i) x1 ∈ A,

(ii) x2 ∈ A,

(iii) x3 ∈ A,

(iv) x4 ∈ A,

(v) x1 6= x2,

(vi) x1 6= x3,

(vii) x1 6= x4,

(viii) x2 6= x3,

(ix) x2 6= x4,

(x) x3 6= x4,

(xi) for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if z 6= x1,
then f(z) = 0,

(xii) for every z such that z ∈ A holds if z = x2, then g(z) = 1 but if z 6= x2,
then g(z) = 0,

(xiii) for every z such that z ∈ A holds if z = x3, then h(z) = 1 but if z 6= x3,
then h(z) = 0,

(xiv) for every z such that z ∈ A holds if z = x4, then f1(z) = 1 but if
z 6= x4, then f1(z) = 0.

Given a, b, c, d. Suppose

+ � A(+ � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)), · �� A(〈〈d, f1〉〉)) = 0 � A.

Then a = 0 and b = 0 and c = 0 and d = 0.
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(13) Suppose x1 ∈ A and x2 ∈ A and x3 ∈ A and x4 ∈ A and x1 6=
x2 and x1 6= x3 and x1 6= x4 and x2 6= x3 and x2 6= x4 and x3 6=
x4. Then there exist f , g, h, f1 such that for all a, b, c, d such that
+ � A(+ � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)), · �� A(〈〈d, f1〉〉)) = 0 � A
holds a = 0 and b = 0 and c = 0 and d = 0.

(14) Suppose that
(i) A = {x1, x2, x3, x4},

(ii) x1 6= x2,
(iii) x1 6= x3,
(iv) x1 6= x4,
(v) x2 6= x3,

(vi) x2 6= x4,
(vii) x3 6= x4,

(viii) for every z such that z ∈ A holds if z = x1, then f(z) = 1 but if z 6= x1,
then f(z) = 0,

(ix) for every z such that z ∈ A holds if z = x2, then g(z) = 1 but if z 6= x2,
then g(z) = 0,

(x) for every z such that z ∈ A holds if z = x3, then h(z) = 1 but if z 6= x3,
then h(z) = 0,

(xi) for every z such that z ∈ A holds if z = x4, then f1(z) = 1 but if
z 6= x4, then f1(z) = 0.
Then for every element h′ of � A there exist a, b, c, d such that h′ =
+ � A(+ � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)), · �� A(〈〈d, f1〉〉)).

(15) Suppose A = {x1, x2, x3, x4} and x1 6= x2 and x1 6= x3 and x1 6= x4

and x2 6= x3 and x2 6= x4 and x3 6= x4. Then there exist f , g, h,
f1 such that for every element h′ of � A there exist a, b, c, d such that
h′ = + � A(+ � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)), · �� A(〈〈d, f1〉〉)).

(16) Suppose A = {x1, x2, x3, x4} and x1 6= x2 and x1 6= x3 and x1 6= x4

and x2 6= x3 and x2 6= x4 and x3 6= x4. Then there exist f , g, h, f1 such
that for all a, b, c, d such that + � A(+ � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)),
· �� A(〈〈c, h〉〉)), · �� A(〈〈d, f1〉〉)) = 0 � A holds a = 0 and b = 0 and c = 0 and

d = 0 and for every element h′ of � A there exist a, b, c, d such that
h′ = + � A(+ � A(+ � A(· �� A(〈〈a, f〉〉), · �� A(〈〈b, g〉〉)), · �� A(〈〈c, h〉〉)), · �� A(〈〈d, f1〉〉)).

(17) There exists a non-trivial real linear space V and there exist u, v, w,
u1 such that for all a, b, c, d such that ((a · u+ b · v) + c ·w) + d · u1 = 0V
holds a = 0 and b = 0 and c = 0 and d = 0 and for every y there exist a,
b, c, d such that y = ((a · u+ b · v) + c · w) + d · u1.

We follow the rules: V is a non-trivial real linear space, u, v, w, y, w1 are
vectors of V , and p, p1, p2, q, q1, r, r1, r2 are elements of the points of the
projective space over V . The following propositions are true:

(18) p, q and r are collinear if and only if there exist u, v, w such that
p = the direction of u and q = the direction of v and r = the direction of w
and u is a proper vector and v is a proper vector and w is a proper vector
and u, v and w are lineary dependent.
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(19) p, q and p are collinear and p, p and q are collinear and p, q and q are
collinear.

(20) If p 6= q and p, q and r are collinear and p, q and r1 are collinear and
p, q and r2 are collinear, then r, r1 and r2 are collinear.

(21) If p, q and r are collinear, then p, r and q are collinear and q, p and r
are collinear and r, q and p are collinear and r, p and q are collinear and
q, r and p are collinear.

(22) If p, p1 and p2 are collinear and p, p1 and r are collinear and p1, p2 and
r1 are collinear, then there exists r2 such that p, p2 and r2 are collinear
and r, r1 and r2 are collinear.

(23) If p, p1 and p2 are not collinear and p, p1 and r are collinear and p1,
p2 and r1 are collinear, then there exists r2 such that p, p2 and r2 are
collinear and r, r1 and r2 are collinear.

(24) If p, p1 and r are collinear and p1, p2 and r1 are collinear, then there
exists r2 such that p, p2 and r2 are collinear and r, r1 and r2 are collinear.

(25) Suppose p1, r2 and q are collinear and r1, q1 and q are collinear and p1,
r1 and p are collinear and r2, q1 and p are collinear and p1, q1 and r are
collinear and r2, r1 and r are collinear and p, q and r are collinear. Then
p1, r2 and q1 are collinear or p1, r2 and r1 are collinear or p1, r1 and q1

are collinear or r2, r1 and q1 are collinear.

(26) If there exist u, v, w such that for all a, b, c such that (a·u+b·v)+c·w =
0V holds a = 0 and b = 0 and c = 0, then there exist p, q, r such that p,
q and r are not collinear.

(27) Suppose there exist u, v, w1 such that for all a, b, c such that (a · u +
b · v) + c · w1 = 0V holds a = 0 and b = 0 and c = 0. Then for every p, q
there exists r such that p 6= r and q 6= r and p, q and r are collinear.

(28) Suppose that

(i) there exist u, v, w such that for all a, b, c such that (a·u+b·v)+c·w = 0V
holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such
that y = (a · u+ b · v) + c · w.

Then there exist elements x1, x2 of the points of the projective space over V
such that x1 6= x2 and for every r1, r2 there exists q such that x1, x2 and
q are collinear and r1, r2 and q are collinear.

(29) If there exist elements x1, x2 of the points of the projective space over V
such that x1 6= x2 and for every r1, r2 there exists q such that x1, x2

and q are collinear and r1, r2 and q are collinear, then for every p, p1, q,
q1 there exists r such that p, p1 and r are collinear and q, q1 and r are
collinear.

(30) Suppose that

(i) there exist u, v, w such that for all a, b, c such that (a·u+b·v)+c·w = 0V
holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such
that y = (a · u+ b · v) + c · w.
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Then for every p, p1, q, q1 there exists r such that p, p1 and r are collinear
and q, q1 and r are collinear.

(31) Suppose that
(i) there exist u, v, w such that for all a, b, c such that (a·u+b·v)+c·w = 0V

holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such
that y = (a · u+ b · v) + c · w.
Then there exist p, q, r such that p, q and r are not collinear and for
every p, p1, q, q1 there exists r such that p, p1 and r are collinear and q,
q1 and r are collinear.

A collinearity structure is said to be a projective space defined in terms of
collinearity if:
(i) for all elements p, q, r, r1, r2 of the points of it such that p 6= q and p,
q and r are collinear and p, q and r1 are collinear and p, q and r2 are collinear
holds r, r1 and r2 are collinear,
(ii) for all elements p, q, r of the points of it holds p, q and p are collinear
and p, p and q are collinear and p, q and q are collinear,
(iii) for all elements p, p1, p2, r, r1 of the points of it such that p, p1 and r are
collinear and p1, p2 and r1 are collinear there exists an element r2 of the points
of it such that p, p2 and r2 are collinear and r, r1 and r2 are collinear,
(iv) for every elements p, q of the points of it there exists an element r of the
points of it such that p 6= r and q 6= r and p, q and r are collinear,
(v) there exist elements p, q, r of the points of it such that p, q and r are not
collinear.

Next we state three propositions:

(32) Let CS be a collinearity structure. Then CS is a projective space
defined in terms of collinearity if and only if the following conditions are
satisfied:

(i) for all elements p, q, r, r1, r2 of the points of CS such that p 6= q and
p, q and r are collinear and p, q and r1 are collinear and p, q and r2 are
collinear holds r, r1 and r2 are collinear,

(ii) for all elements p, q, r of the points of CS holds p, q and p are collinear
and p, p and q are collinear and p, q and q are collinear,

(iii) for all elements p, p1, p2, r, r1 of the points of CS such that p, p1 and
r are collinear and p1, p2 and r1 are collinear there exists an element r2

of the points of CS such that p, p2 and r2 are collinear and r, r1 and r2

are collinear,
(iv) for every elements p, q of the points of CS there exists an element r of

the points of CS such that p 6= r and q 6= r and p, q and r are collinear,
(v) there exist elements p, q, r of the points of CS such that p, q and r

are not collinear.

(33) For every projective space CS defined in terms of collinearity holds CS
is a proper collinearity space.

(34) If there exist u, v, w such that for all a, b, c such that (a·u+b·v)+c·w =
0V holds a = 0 and b = 0 and c = 0, then the projective space over V is a
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projective space defined in terms of collinearity.

A projective space defined in terms of collinearity is called a Fanoian projec-
tive space defined in terms of collinearity if:

Let p1, r2, q, r1, q1, p, r be elements of the points of it . Suppose p1, r2 and
q are collinear and r1, q1 and q are collinear and p1, r1 and p are collinear and
r2, q1 and p are collinear and p1, q1 and r are collinear and r2, r1 and r are
collinear and p, q and r are collinear. Then p1, r2 and q1 are collinear or p1, r2

and r1 are collinear or p1, r1 and q1 are collinear or r2, r1 and q1 are collinear.

The following propositions are true:

(35) Let CS be a projective space defined in terms of collinearity. Then CS
is a Fanoian projective space defined in terms of collinearity if and only
if for all elements p1, r2, q, r1, q1, p, r of the points of CS such that p1,
r2 and q are collinear and r1, q1 and q are collinear and p1, r1 and p are
collinear and r2, q1 and p are collinear and p1, q1 and r are collinear and
r2, r1 and r are collinear and p, q and r are collinear holds p1, r2 and q1

are collinear or p1, r2 and r1 are collinear or p1, r1 and q1 are collinear or
r2, r1 and q1 are collinear.

(36) Let CS be a collinearity structure. Then CS is a Fanoian projective
space defined in terms of collinearity if and only if the following conditions
are satisfied:

(i) for all elements p, q, r, r1, r2 of the points of CS such that p 6= q and
p, q and r are collinear and p, q and r1 are collinear and p, q and r2 are
collinear holds r, r1 and r2 are collinear,

(ii) for all elements p, q, r of the points of CS holds p, q and p are collinear
and p, p and q are collinear and p, q and q are collinear,

(iii) for all elements p, p1, p2, r, r1 of the points of CS such that p, p1 and
r are collinear and p1, p2 and r1 are collinear there exists an element r2

of the points of CS such that p, p2 and r2 are collinear and r, r1 and r2

are collinear,
(iv) for every elements p, q of the points of CS there exists an element r of

the points of CS such that p 6= r and q 6= r and p, q and r are collinear,
(v) there exist elements p, q, r of the points of CS such that p, q and r

are not collinear,
(vi) for all elements p1, r2, q, r1, q1, p, r of the points of CS such that p1,

r2 and q are collinear and r1, q1 and q are collinear and p1, r1 and p are
collinear and r2, q1 and p are collinear and p1, q1 and r are collinear and
r2, r1 and r are collinear and p, q and r are collinear holds p1, r2 and q1

are collinear or p1, r2 and r1 are collinear or p1, r1 and q1 are collinear or
r2, r1 and q1 are collinear.

(37) If there exist u, v, w such that for all a, b, c such that (a·u+b·v)+c·w =
0V holds a = 0 and b = 0 and c = 0, then the projective space over V is a
Fanoian projective space defined in terms of collinearity.

A projective space defined in terms of collinearity is called a projective plane
defined in terms of collinearity if:
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for every elements p, p1, q, q1 of the points of it there exists an element r of
the points of it such that p, p1 and r are collinear and q, q1 and r are collinear.

We now state three propositions:

(38) For every projective space CPS defined in terms of collinearity holds
CPS is a projective plane defined in terms of collinearity if and only if for
every elements p, p1, q, q1 of the points of CPS there exists an element r
of the points of CPS such that p, p1 and r are collinear and q, q1 and r
are collinear.

(39) Let CS be a collinearity structure. Then CS is a projective plane
defined in terms of collinearity if and only if the following conditions are
satisfied:

(i) for all elements p, q, r, r1, r2 of the points of CS such that p 6= q and
p, q and r are collinear and p, q and r1 are collinear and p, q and r2 are
collinear holds r, r1 and r2 are collinear,

(ii) for all elements p, q, r of the points of CS holds p, q and p are collinear
and p, p and q are collinear and p, q and q are collinear,

(iii) for every elements p, q of the points of CS there exists an element r of
the points of CS such that p 6= r and q 6= r and p, q and r are collinear,

(iv) there exist elements p, q, r of the points of CS such that p, q and r
are not collinear,

(v) for every elements p, p1, q, q1 of the points of CS there exists an
element r of the points of CS such that p, p1 and r are collinear and q,
q1 and r are collinear.

(40) Suppose that

(i) there exist u, v, w such that for all a, b, c such that (a·u+b·v)+c·w = 0V
holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such
that y = (a · u+ b · v) + c · w.

Then the projective space over V is a projective plane defined in terms of
collinearity.

A projective plane defined in terms of collinearity is said to be a Fanoian
projective plane defined in terms of collinearity if:

Let p1, r2, q, r1, q1, p, r be elements of the points of it . Suppose p1, r2 and
q are collinear and r1, q1 and q are collinear and p1, r1 and p are collinear and
r2, q1 and p are collinear and p1, q1 and r are collinear and r2, r1 and r are
collinear and p, q and r are collinear. Then p1, r2 and q1 are collinear or p1, r2

and r1 are collinear or p1, r1 and q1 are collinear or r2, r1 and q1 are collinear.

Next we state four propositions:

(41) Let CS be a projective plane defined in terms of collinearity. Then CS
is a Fanoian projective plane defined in terms of collinearity if and only
if for all elements p1, r2, q, r1, q1, p, r of the points of CS such that p1,
r2 and q are collinear and r1, q1 and q are collinear and p1, r1 and p are
collinear and r2, q1 and p are collinear and p1, q1 and r are collinear and
r2, r1 and r are collinear and p, q and r are collinear holds p1, r2 and q1
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are collinear or p1, r2 and r1 are collinear or p1, r1 and q1 are collinear or
r2, r1 and q1 are collinear.

(42) Let CS be a collinearity structure. Then CS is a Fanoian projective
plane defined in terms of collinearity if and only if the following conditions
are satisfied:

(i) for all elements p, q, r, r1, r2 of the points of CS such that p 6= q and
p, q and r are collinear and p, q and r1 are collinear and p, q and r2 are
collinear holds r, r1 and r2 are collinear,

(ii) for all elements p, q, r of the points of CS holds p, q and p are collinear
and p, p and q are collinear and p, q and q are collinear,

(iii) for every elements p, q of the points of CS there exists an element r of
the points of CS such that p 6= r and q 6= r and p, q and r are collinear,

(iv) there exist elements p, q, r of the points of CS such that p, q and r
are not collinear,

(v) for every elements p, p1, q, q1 of the points of CS there exists an
element r of the points of CS such that p, p1 and r are collinear and q,
q1 and r are collinear,

(vi) for all elements p1, r2, q, r1, q1, p, r of the points of CS such that p1,
r2 and q are collinear and r1, q1 and q are collinear and p1, r1 and p are
collinear and r2, q1 and p are collinear and p1, q1 and r are collinear and
r2, r1 and r are collinear and p, q and r are collinear holds p1, r2 and q1

are collinear or p1, r2 and r1 are collinear or p1, r1 and q1 are collinear or
r2, r1 and q1 are collinear.

(43) Suppose that
(i) there exist u, v, w such that for all a, b, c such that (a·u+b·v)+c·w = 0V

holds a = 0 and b = 0 and c = 0 and for every y there exist a, b, c such
that y = (a · u+ b · v) + c · w.
Then the projective space over V is a Fanoian projective plane defined in
terms of collinearity.

(44) For every CS being a collinearity structure holds CS is a Fanoian pro-
jective plane defined in terms of collinearity if and only if CS is a Fanoian
projective space defined in terms of collinearity and for every elements p,
p1, q, q1 of the points of CS there exists an element r of the points of CS
such that p, p1 and r are collinear and q, q1 and r are collinear.
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Summary. The following notions for real subsets are defined: open
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The notation and terminology used in this paper have been introduced in the
following articles: [9], [3], [10], [1], [2], [7], [5], [6], [4], and [8]. For simplicity we
adopt the following convention: n, m are natural numbers, x is arbitrary, s, g,
g1, g2, r, p, q are real numbers, s1, s2 are sequences of real numbers, and X,
Y , Y1 are subsets of � . In this article we present several logical schemes. The
scheme SeqChoice concerns a non-empty set A, and a binary predicate P, and
states that:

there exists a function f from � into A such that for every element t of �
holds P[t, f(t)]
provided the following requirement is met:
• for every element t of � there exists an element ff of A such that
P[t, ff ].

The scheme RealSeqChoice concerns a binary predicate P, and states that:
there exists s1 such that for every n holds P[n, s1(n)]

provided the parameter meets the following requirement:
• for every n there exists r such that P[n, r].
We now state several propositions:

(1) X ⊆ Y if and only if for every r such that r ∈ X holds r ∈ Y .

(2) r ∈ X if and only if r /∈ Xc.
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(3) If there exists x such that x ∈ Y1 and Y1 ⊆ Y and Y is lower bounded,
then Y1 is lower bounded.

(4) If there exists x such that x ∈ Y1 and Y1 ⊆ Y and Y is upper bounded,
then Y1 is upper bounded.

(5) If there exists x such that x ∈ Y1 and Y1 ⊆ Y and Y is bounded, then
Y1 is bounded.

Let us consider g, s. The functor [g, s] yields a subset of � and is defined by:
[g, s] = {r : g ≤ r ∧ r ≤ s}.
Next we state the proposition

(6) [g, s] = {r : g ≤ r ∧ r ≤ s}.
Let us consider g, s. The functor ]g, s[ yields a subset of � and is defined as

follows:
]g, s[ = {r : g < r ∧ r < s}.
Next we state a number of propositions:

(7) ]g, s[ = {r : g < r ∧ r < s}.
(8) r ∈ ]p− g, p+ g[ if and only if |r − p| < g.

(9) r ∈ [p, g] if and only if |(p+ g)− 2 · r| ≤ g − p.
(10) r ∈ ]p, g[ if and only if |(p+ g)− 2 · r| < g − p.
(11) For all g, s such that g ≤ s holds [g, s] = ]g, s[ ∪ {g, s}.
(12) If p ≤ g, then ]g, p[ = ∅.
(13) If p < g, then [g, p] = ∅.
(14) If p = g, then [p, g] = {p} and [g, p] = {p} and ]p, g[ = ∅.
(15) If p < g, then ]p, g[ 6= ∅ but if p ≤ g, then p ∈ [p, g] and g ∈ [p, g] and

[p, g] 6= ∅ and ]p, g[ ⊆ [p, g].

(16) If r ∈ [p, g] and s ∈ [p, g], then [r, s] ⊆ [p, g].

(17) If r ∈ ]p, g[ and s ∈ ]p, g[, then [r, s] ⊆ ]p, g[.

(18) If p ≤ g, then [p, g] = [p, g] ∪ [g, p].

Let us consider X. We say that X is compact if and only if:
for every s1 such that rng s1 ⊆ X there exists s2 such that s2 is a subsequence

of s1 and s2 is convergent and lim s2 ∈ X.

Next we state the proposition

(19) X is compact if and only if for every s1 such that rng s1 ⊆ X there
exists s2 such that s2 is a subsequence of s1 and s2 is convergent and
lim s2 ∈ X.

Let us consider X. We say that X is closed if and only if:
for every s1 such that rng s1 ⊆ X and s1 is convergent holds lim s1 ∈ X.

The following proposition is true

(20) X is closed if and only if for every s1 such that rng s1 ⊆ X and s1 is
convergent holds lim s1 ∈ X.

Let A be a non-empty set, and let X be a subset of A. Then X c is a subset
of A.
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Let us consider X. We say that X is open if and only if:

Xc is closed.

One can prove the following propositions:

(21) X is open if and only if Xc is closed.

(22) For all s, g such that s ≤ g for every s1 such that rng s1 ⊆ [s, g] holds
s1 is bounded.

(23) For all s, g such that s ≤ g holds [s, g] is closed.

(24) For all s, g such that s ≤ g holds [s, g] is compact.

(25) For all p, q such that p < q holds ]p, q[ is open.

(26) If X is compact, then X is closed.

(27) Given X, s1. Suppose X 6= ∅ and rng s1 ⊆ X and for every p such that
p ∈ X there exist r, n such that 0 < r and for every m such that n < m
holds r < |s1(m)− p|. Then for every s2 such that s2 is a subsequence of
s1 holds it is not true that: s2 is convergent and lim s2 ∈ X.

(28) If there exists r such that r ∈ X and X is compact, then X is bounded.

(29) If there exists r such that r ∈ X, then X is compact if and only if X is
bounded and X is closed.

(30) For every X such that X 6= ∅ and X is closed and X is upper bounded
holds supX ∈ X.

(31) For every X such that X 6= ∅ and X is closed and X is lower bounded
holds infX ∈ X.

(32) For every X such that X 6= ∅ and X is compact holds supX ∈ X and
inf X ∈ X.

(33) If X is compact and for all g1, g2 such that g1 ∈ X and g2 ∈ X holds
[g1, g2] ⊆ X, then there exist p, g such that X = [p, g].

A subset of � is called a real open subset if:

it is open.

We now state the proposition

(34) For every subset X of � holds X is a real open subset if and only if X
is open.

Let us consider r. A real open subset is said to be a neighbourhood of r if:

there exists g such that 0 < g and it = ]r − g, r + g[.

One can prove the following propositions:

(35) For every r and for every real open subsetX holdsX is a neighbourhood
of r if and only if there exists g such that 0 < g and X = ]r − g, r + g[.

(36) For all r, X holds X is a neighbourhood of r if and only if there exists
g such that 0 < g and X = ]r − g, r + g[.

(37) For every r and for every neighbourhood N of r holds r ∈ N .

(38) For every r and for every neighbourhoods N1, N2 of r there exists a
neighbourhood N of r such that N ⊆ N1 and N ⊆ N2.
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(39) For every real open subset X and for every r such that r ∈ X there
exists a neighbourhood N of r such that N ⊆ X.

(40) For every real open subset X and for every r such that r ∈ X there
exists g such that 0 < g and ]r − g, r + g[ ⊆ X.

(41) For every X such that for every r such that r ∈ X there exists a
neighbourhood N of r such that N ⊆ X holds X is open.

(42) For every X holds for every r such that r ∈ X there exists a neighbour-
hood N of r such that N ⊆ X if and only if X is open.

(43) If X 6= ∅ and X is open and X is upper bounded, then supX /∈ X.

(44) If X 6= ∅ and X is open and X is lower bounded, then infX /∈ X.

(45) If X is open and X is bounded and for all g1, g2 such that g1 ∈ X and
g2 ∈ X holds [g1, g2] ⊆ X, then there exist p, g such that X = ]p, g[.
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Summary. The list of theorems concerning properties of real se-
quences and functions is enlarged. (See e.g. [9], [4], [8]). The monotone
real functions are introduced and their properties are discussed.
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The papers [11], [3], [1], [9], [5], [6], [4], [2], [7], [10], and [8] provide the ter-
minology and notation for this paper. For simplicity we follow a convention:
x is arbitrary, X, X1, Y denote sets, g, r, r1, r2, p denote real numbers, R
denotes a subset of � , seq, seq1, seq2, seq3 denote sequences of real numbers,
Ns denotes an increasing sequence of naturals, n denotes a natural number,
and h, h1, h2 denote partial functions from � to � . The following propositions
are true:

(1) For all functions F , G and for every X such that X ⊆ domF and
F ◦ X ⊆ domG holds X ⊆ dom(G · F ).

(2) For all functions F , G and for every X holds G � (F ◦ X) · F � X =
(G · F ) � X.

(3) For all functions F , G and for all X, X1 holds G � X1 ·F � X = (G·F ) �
(X ∩ F −1 X1).

(4) For all functions F , G and for every X holds X ⊆ dom(G · F ) if and
only if X ⊆ domF and F ◦ X ⊆ domG.

(5) For every function F and for every X holds (F � X) ◦ X = F ◦ X.

Let us consider seq. Then rng seq is a subset of � .
One can prove the following propositions:

(6) seq1 = seq2 − seq3 if and only if for every n holds seq1(n) = seq2(n)−
seq3(n).

(7) rng(seq � n) ⊆ rng seq.
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(8) If rng seq ⊆ domh, then seq(n) ∈ domh.

(9) x ∈ rng seq if and only if there exists n such that x = seq(n).

(10) seq(n) ∈ rng seq.

(11) If seq1 is a subsequence of seq, then rng seq1 ⊆ rng seq.

(12) If seq1 is a subsequence of seq and seq is non-zero, then seq1 is non-zero.

(13) (seq1 + seq2) · Ns = seq1 · Ns + seq2 · Ns and (seq1 − seq2) · Ns =
seq1 ·Ns− seq2 ·Ns and (seq1 � seq2) ·Ns = (seq1 ·Ns) � (seq2 ·Ns).

(14) (p � seq) ·Ns = p � (seq ·Ns).
(15) (−seq) ·Ns = −seq ·Ns and |seq| ·Ns = |seq ·Ns|.
(16) If seq is non-zero, then (seq ·Ns)−1 = seq−1 ·Ns.
(17) If seq is non-zero, then seq1

seq ·Ns = seq1·Ns
seq·Ns .

(18) If seq is convergent and for every n holds seq(n) ≤ 0, then lim seq ≤ 0.

(19) If for every n holds seq(n) ∈ Y , then rng seq ⊆ Y .

Let us consider h, seq. Let us assume that rng seq ⊆ domh. The functor
h · seq yields a sequence of real numbers and is defined by:

h · seq = (hqua a function) · seq.
The following propositions are true:

(20) If rng seq ⊆ domh, then h · seq = (hqua a function) · seq.
(21) If rng seq ⊆ domh, then (h · seq)(n) = h(seq(n)).

(22) If rng seq ⊆ domh, then (h · seq) � n = h · (seq � n).

(23) Suppose rng seq ⊆ domh1 ∩ domh2. Then (h1 + h2) · seq = h1 · seq +
h2 · seq and (h1 − h2) · seq = h1 · seq − h2 · seq and (h1 � h2) · seq =
(h1 · seq) � (h2 · seq).

(24) If rng seq ⊆ domh, then (r � h) · seq = r � (h · seq).
(25) If rng seq ⊆ domh, then |h · seq| = |h| · seq and −h · seq = (−h) · seq.
(26) If rng seq ⊆ dom 1

h , then h · seq is non-zero.

(27) If rng seq ⊆ dom 1
h , then 1

h · seq = (h · seq)−1.

(28) If rng seq ⊆ domh, then (h · seq) ·Ns = h · (seq ·Ns).
(29) If rng seq1 ⊆ domh and seq2 is a subsequence of seq1, then h · seq2 is a

subsequence of h · seq1.

(30) If h is total, then (h · seq)(n) = h(seq(n)).

(31) If h is total, then h · (seq � n) = (h · seq) � n.

(32) If h1 is total and h2 is total, then (h1 +h2) · seq = h1 · seq+h2 · seq and
(h1−h2) · seq = h1 · seq−h2 · seq and (h1 �h2) · seq = (h1 · seq)� (h2 · seq).

(33) If h is total, then (r � h) · seq = r � (h · seq).
(34) If rng seq ⊆ dom(h � X), then h � X · seq = h · seq.
(35) If rng seq ⊆ dom(h � X) but rng seq ⊆ dom(h � Y ) or X ⊆ Y , then

h � X · seq = h � Y · seq.
(36) If rng seq ⊆ dom(h � X), then |h � X · seq| = |h| � X · seq.
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(37) If rng seq ⊆ dom(h � X) and h −1 {0} = ∅, then 1
h � X · seq = (h �

X · seq)−1.

(38) If rng seq ⊆ domh, then h ◦ rng seq = rng(h · seq).
(39) If rng seq ⊆ dom(h2 · h1), then h2 · (h1 · seq) = (h2 · h1) · seq.
(40) If h is one-to-one, then (h � X)−1 = h−1 � (h ◦ X).

(41) If rng h is bounded and sup(rng h) = inf(rng h), then h is a constant on
domh.

(42) If Y ⊆ domh and h ◦ Y is bounded and sup(h ◦ Y ) = inf(h ◦ Y ), then h
is a constant on Y .

We now define four new predicates. Let us consider h, Y . We say that h is
increasing on Y if and only if:

for all r1, r2 such that r1 ∈ Y ∩ domh and r2 ∈ Y ∩ domh and r1 < r2 holds
h(r1) < h(r2).
We say that h is decreasing on Y if and only if:

for all r1, r2 such that r1 ∈ Y ∩ domh and r2 ∈ Y ∩ domh and r1 < r2 holds
h(r2) < h(r1).
We say that h is non-decreasing on Y if and only if:

for all r1, r2 such that r1 ∈ Y ∩ domh and r2 ∈ Y ∩ domh and r1 < r2 holds
h(r1) ≤ h(r2).
We say that h is non-increasing on Y if and only if:

for all r1, r2 such that r1 ∈ Y ∩ domh and r2 ∈ Y ∩ domh and r1 < r2 holds
h(r2) ≤ h(r1).

Let us consider h, Y . We say that h is monotone on Y if and only if:
h is non-decreasing on Y or h is non-increasing on Y .

Next we state a number of propositions:

(43) h is increasing on Y if and only if for all r1, r2 such that r1 ∈ Y ∩domh
and r2 ∈ Y ∩ domh and r1 < r2 holds h(r1) < h(r2).

(44) h is decreasing on Y if and only if for all r1, r2 such that r1 ∈ Y ∩domh
and r2 ∈ Y ∩ domh and r1 < r2 holds h(r2) < h(r1).

(45) h is non-decreasing on Y if and only if for all r1, r2 such that r1 ∈
Y ∩ domh and r2 ∈ Y ∩ domh and r1 < r2 holds h(r1) ≤ h(r2).

(46) h is non-increasing on Y if and only if for all r1, r2 such that r1 ∈
Y ∩ domh and r2 ∈ Y ∩ domh and r1 < r2 holds h(r2) ≤ h(r1).

(47) h is monotone on Y if and only if h is non-decreasing on Y or h is
non-increasing on Y .

(48) h is non-decreasing on Y if and only if for all r1, r2 such that r1 ∈
Y ∩ domh and r2 ∈ Y ∩ domh and r1 ≤ r2 holds h(r1) ≤ h(r2).

(49) h is non-increasing on Y if and only if for all r1, r2 such that r1 ∈
Y ∩ domh and r2 ∈ Y ∩ domh and r1 ≤ r2 holds h(r2) ≤ h(r1).

(50) h is increasing on X if and only if h � X is increasing on X.

(51) h is decreasing on X if and only if h � X is decreasing on X.

(52) h is non-decreasing on X if and only if h � X is non-decreasing on X.
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(53) h is non-increasing on X if and only if h � X is non-increasing on X.

(54) If Y ∩ domh = ∅, then h is increasing on Y and h is decreasing on
Y and h is non-decreasing on Y and h is non-increasing on Y and h is
monotone on Y .

(55) If h is increasing on Y , then h is non-decreasing on Y .

(56) If h is decreasing on Y , then h is non-increasing on Y .

(57) If h is a constant on Y , then h is non-decreasing on Y .

(58) If h is a constant on Y , then h is non-increasing on Y .

(59) If h is non-decreasing on Y and h is non-increasing on X, then h is a
constant on Y ∩X.

(60) If X ⊆ Y and h is increasing on Y , then h is increasing on X.

(61) If X ⊆ Y and h is decreasing on Y , then h is decreasing on X.

(62) If X ⊆ Y and h is non-decreasing on Y , then h is non-decreasing on X.

(63) If X ⊆ Y and h is non-increasing on Y , then h is non-increasing on X.

(64) If h is increasing on Y and 0 < r, then r � h is increasing on Y but if
r = 0, then r � h is a constant on Y but if h is increasing on Y and r < 0,
then r � h is decreasing on Y .

(65) If h is decreasing on Y and 0 < r, then r � h is decreasing on Y but if
h is decreasing on Y and r < 0, then r � h is increasing on Y .

(66) If h is non-decreasing on Y and 0 ≤ r, then r � h is non-decreasing on
Y but if h is non-decreasing on Y and r ≤ 0, then r � h is non-increasing
on Y .

(67) If h is non-increasing on Y and 0 ≤ r, then r � h is non-increasing on Y
but if h is non-increasing on Y and r ≤ 0, then r � h is non-decreasing on
Y .

(68) If r ∈ (X ∩Y )∩dom(h1 +h2), then r ∈ X∩domh1 and r ∈ Y ∩domh2.

(69) (i) If h1 is increasing on X and h2 is increasing on Y , then h1 + h2 is
increasing on X ∩ Y ,

(ii) if h1 is decreasing on X and h2 is decreasing on Y , then h1 + h2 is
decreasing on X ∩ Y ,

(iii) if h1 is non-decreasing on X and h2 is non-decreasing on Y , then h1+h2

is non-decreasing on X ∩ Y ,

(iv) if h1 is non-increasing on X and h2 is non-increasing on Y , then h1 +h2

is non-increasing on X ∩ Y .

(70) If h1 is increasing on X and h2 is a constant on Y , then h1 + h2 is
increasing on X ∩ Y but if h1 is decreasing on X and h2 is a constant on
Y , then h1 + h2 is decreasing on X ∩ Y .

(71) If h1 is increasing on X and h2 is non-decreasing on Y , then h1 + h2 is
increasing on X ∩ Y .

(72) If h1 is non-increasing on X and h2 is a constant on Y , then h1 + h2 is
non-increasing on X ∩ Y .
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(73) If h1 is decreasing on X and h2 is non-increasing on Y , then h1 + h2 is
decreasing on X ∩ Y .

(74) If h1 is non-decreasing on X and h2 is a constant on Y , then h1 + h2 is
non-decreasing on X ∩ Y .

(75) h is increasing on {x}.
(76) h is decreasing on {x}.
(77) h is non-decreasing on {x}.
(78) h is non-increasing on {x}.
(79) idR is increasing on R.

(80) If h is increasing on X, then −h is decreasing on X.

(81) If h is non-decreasing on X, then −h is non-increasing on X.

(82) If h is increasing on [p, g] or h is decreasing on [p, g], then h � [p, g] is
one-to-one.

(83) If h is increasing on [p, g], then (h � [p, g])−1 is increasing on h ◦ [p, g].

(84) If h is decreasing on [p, g], then (h � [p, g])−1 is decreasing on h ◦ [p, g].
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Summary. The continuity of real functions is discussed. There is a
function defined on some domain in real numbers which is continuous in a
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real continuous functions are proved. Among them there is the Weierstraß
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The papers [11], [2], [9], [8], [4], [3], [12], [1], [5], [6], [7], and [10] provide the
terminology and notation for this paper. For simplicity we adopt the following
rules: n is a natural number, X, X1, Z, Z1 are sets, s, g, r, p, x0, x1, x2 are
real numbers, s1 is a sequence of real numbers, Y is a subset of � , and f , f1,
f2 are partial functions from � to � . Let us consider f , x0. We say that f is
continuous in x0 if and only if:

x0 ∈ dom f and for every s1 such that rng s1 ⊆ dom f and s1 is convergent
and lim s1 = x0 holds f · s1 is convergent and f(x0) = lim(f · s1).

Next we state a number of propositions:

(1) For all f , x0 holds f is continuous in x0 if and only if x0 ∈ dom f and
for every s1 such that rng s1 ⊆ dom f and s1 is convergent and lim s1 = x0

holds f · s1 is convergent and f(x0) = lim(f · s1).

(2) f is continuous in x0 if and only if x0 ∈ dom f and for every s1 such
that rng s1 ⊆ dom f and s1 is convergent and lim s1 = x0 and for every n
holds s1(n) 6= x0 holds f · s1 is convergent and f(x0) = lim(f · s1).

(3) f is continuous in x0 if and only if x0 ∈ dom f and for every r such that
0 < r there exists s such that 0 < s and for every x1 such that x1 ∈ dom f
and |x1 − x0| < s holds |f(x1)− f(x0)| < r.
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(4) For all f , x0 holds f is continuous in x0 if and only if x0 ∈ dom f
and for every neighbourhood N1 of f(x0) there exists a neighbourhood
N of x0 such that for every x1 such that x1 ∈ dom f and x1 ∈ N holds
f(x1) ∈ N1.

(5) For all f , x0 holds f is continuous in x0 if and only if x0 ∈ dom f and
for every neighbourhood N1 of f(x0) there exists a neighbourhood N of
x0 such that f ◦ N ⊆ N1.

(6) If x0 ∈ dom f and there exists a neighbourhood N of x0 such that
dom f ∩N = {x0}, then f is continuous in x0.

(7) If f1 is continuous in x0 and f2 is continuous in x0, then f1 + f2 is
continuous in x0 and f1− f2 is continuous in x0 and f1 � f2 is continuous
in x0.

(8) If f is continuous in x0, then r � f is continuous in x0.

(9) If f is continuous in x0, then |f | is continuous in x0 and−f is continuous
in x0.

(10) If f is continuous in x0 and f(x0) 6= 0, then 1
f is continuous in x0.

(11) If f1 is continuous in x0 and f1(x0) 6= 0 and f2 is continuous in x0, then
f2

f1
is continuous in x0.

(12) If f1 is continuous in x0 and f2 is continuous in f1(x0), then f2 · f1 is
continuous in x0.

Let us consider f , X. We say that f is continuous on X if and only if:

X ⊆ dom f and for every x0 such that x0 ∈ X holds f � X is continuous in
x0.

One can prove the following propositions:

(13) For all f , X holds f is continuous on X if and only if X ⊆ dom f and
for every x0 such that x0 ∈ X holds f � X is continuous in x0.

(14) For all X, f holds f is continuous on X if and only if X ⊆ dom f and
for every s1 such that rng s1 ⊆ X and s1 is convergent and lim s1 ∈ X
holds f · s1 is convergent and f(lim s1) = lim(f · s1).

(15) f is continuous on X if and only if X ⊆ dom f and for all x0, r such
that x0 ∈ X and 0 < r there exists s such that 0 < s and for every x1

such that x1 ∈ X and |x1 − x0| < s holds |f(x1)− f(x0)| < r.

(16) f is continuous on X if and only if f � X is continuous on X.

(17) If f is continuous on X and X1 ⊆ X, then f is continuous on X1.

(18) If x0 ∈ dom f , then f is continuous on {x0}.
(19) For all X, f1, f2 such that f1 is continuous on X and f2 is continuous

on X holds f1 + f2 is continuous on X and f1 − f2 is continuous on X
and f1 � f2 is continuous on X.

(20) For allX, X1, f1, f2 such that f1 is continuous onX and f2 is continuous
on X1 holds f1 + f2 is continuous on X ∩X1 and f1− f2 is continuous on
X ∩X1 and f1 � f2 is continuous on X ∩X1.
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(21) For all r, X, f such that f is continuous on X holds r � f is continuous
on X.

(22) If f is continuous on X, then |f | is continuous on X and −f is contin-
uous on X.

(23) If f is continuous on X and f −1 {0} = ∅, then 1
f is continuous on X.

(24) If f is continuous on X and (f � X) −1 {0} = ∅, then 1
f is continuous

on X.

(25) If f1 is continuous on X and f1
−1 {0} = ∅ and f2 is continuous on X,

then f2

f1
is continuous on X.

(26) If f1 is continuous on X and f2 is continuous on f1
◦ X, then f2 · f1 is

continuous on X.

(27) If f1 is continuous on X and f2 is continuous on X1, then f2 · f1 is
continuous on X ∩ f1

−1 X1.

(28) If f is total and for all x1, x2 holds f(x1 + x2) = f(x1) + f(x2) and
there exists x0 such that f is continuous in x0, then f is continuous on � .

(29) For every f such that dom f is compact and f is continuous on dom f
holds rng f is compact.

(30) If Y ⊆ dom f and Y is compact and f is continuous on Y , then f ◦ Y
is compact.

(31) For every f such that dom f 6= ∅ and dom f is compact and f is con-
tinuous on dom f there exist x1, x2 such that x1 ∈ dom f and x2 ∈ dom f
and f(x1) = sup(rng f) and f(x2) = inf(rng f).

(32) For all f , Y such that Y 6= ∅ and Y ⊆ dom f and Y is compact and f
is continuous on Y there exist x1, x2 such that x1 ∈ Y and x2 ∈ Y and
f(x1) = sup(f ◦ Y ) and f(x2) = inf(f ◦ Y ).

Let us consider f , X. We say that f is Lipschitzian on X if and only if:
X ⊆ dom f and there exists r such that 0 < r and for all x1, x2 such that

x1 ∈ X and x2 ∈ X holds |f(x1)− f(x2)| ≤ r · |x1 − x2|.
One can prove the following propositions:

(33) For every f holds f is Lipschitzian on X if and only if X ⊆ dom f and
there exists r such that 0 < r and for all x1, x2 such that x1 ∈ X and
x2 ∈ X holds |f(x1)− f(x2)| ≤ r · |x1 − x2|.

(34) If f is Lipschitzian on X and X1 ⊆ X, then f is Lipschitzian on X1.

(35) If f1 is Lipschitzian on X and f2 is Lipschitzian on X1, then f1 + f2 is
Lipschitzian on X ∩X1.

(36) If f1 is Lipschitzian on X and f2 is Lipschitzian on X1, then f1 − f2 is
Lipschitzian on X ∩X1.

(37) If f1 is Lipschitzian on X and f2 is Lipschitzian on X1 and f1 is bounded
on Z and f2 is bounded on Z1, then f1 � f2 is Lipschitzian on ((X ∩Z)∩
X1) ∩ Z1.

(38) If f is Lipschitzian on X, then p � f is Lipschitzian on X.
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(39) If f is Lipschitzian on X, then −f is Lipschitzian on X and |f | is
Lipschitzian on X.

(40) If X ⊆ dom f and f is a constant on X, then f is Lipschitzian on X.

(41) idY is Lipschitzian on Y .

(42) If f is Lipschitzian on X, then f is continuous on X.

(43) For every f such that there exists r such that rng f = {r} holds f is
continuous on dom f .

(44) If X ⊆ dom f and f is a constant on X, then f is continuous on X.

(45) For every f such that for every x0 such that x0 ∈ dom f holds f(x0) =
x0 holds f is continuous on dom f .

(46) If f = iddom f , then f is continuous on dom f .

(47) If Y ⊆ dom f and f � Y = idY , then f is continuous on Y .

(48) If X ⊆ dom f and for every x0 such that x0 ∈ X holds f(x0) = r ·x0 +p,
then f is continuous on X.

(49) If for every x0 such that x0 ∈ dom f holds f(x0) = x0
2, then f is

continuous on dom f .

(50) If X ⊆ dom f and for every x0 such that x0 ∈ X holds f(x0) = x0
2,

then f is continuous on X.

(51) If for every x0 such that x0 ∈ dom f holds f(x0) = |x0|, then f is
continuous on dom f .

(52) If X ⊆ dom f and for every x0 such that x0 ∈ X holds f(x0) = |x0|,
then f is continuous on X.

(53) If X ⊆ dom f and f is monotone on X and there exist p, g such that
p ≤ g and f ◦ X = [p, g], then f is continuous on X.

(54) If p ≤ g and [p, g] ⊆ dom f but f is increasing on [p, g] or f is decreasing
on [p, g], then (f � [p, g])−1 is continuous on f ◦ [p, g].
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Summary. The uniform continuity for real functions is introduced.
More theorems concerning continuous functions are given. (See [10]) The
Darboux Theorem is exposed. Algebraic features for uniformly continu-
ous functions are presented. Various facts, e.g., a continuous function on
a compact set is uniformly continuous are proved.

MML Identifier: FCONT 2.

The notation and terminology used in this paper have been introduced in the
following articles: [12], [13], [3], [1], [9], [8], [4], [2], [5], [6], [7], [11], and [10]. For
simplicity we adopt the following convention: X, X1, Z, Z1 are sets, s, g, r, p,
x1, x2 are real numbers, Y is a subset of � , and f , f1, f2 are partial functions
from � to � . Let us consider f , X. We say that f is uniformly continuous on
X if and only if:

X ⊆ dom f and for every r such that 0 < r there exists s such that 0 < s
and for all x1, x2 such that x1 ∈ X and x2 ∈ X and |x1 − x2| < s holds
|f(x1)− f(x2)| < r.

We now state a number of propositions:

(1) Given f , X. Then f is uniformly continuous on X if and only if X ⊆
dom f and for every r such that 0 < r there exists s such that 0 < s
and for all x1, x2 such that x1 ∈ X and x2 ∈ X and |x1 − x2| < s holds
|f(x1)− f(x2)| < r.

(2) If f is uniformly continuous on X and X1 ⊆ X, then f is uniformly
continuous on X1.

(3) If f1 is uniformly continuous on X and f2 is uniformly continuous on
X1, then f1 + f2 is uniformly continuous on X ∩X1.

(4) If f1 is uniformly continuous on X and f2 is uniformly continuous on
X1, then f1 − f2 is uniformly continuous on X ∩X1.
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(5) If f is uniformly continuous on X, then p � f is uniformly continuous
on X.

(6) If f is uniformly continuous on X, then −f is uniformly continuous on
X.

(7) If f is uniformly continuous on X, then |f | is uniformly continuous on
X.

(8) If f1 is uniformly continuous on X and f2 is uniformly continuous on X1

and f1 is bounded on Z and f2 is bounded on Z1, then f1 �f2 is uniformly
continuous on ((X ∩ Z) ∩X1) ∩ Z1.

(9) If f is uniformly continuous on X, then f is continuous on X.

(10) If f is Lipschitzian on X, then f is uniformly continuous on X.

(11) For all f , Y such that Y is compact and f is continuous on Y holds f
is uniformly continuous on Y .

(12) For every f such that dom f is compact and f is continuous on dom f
holds f is uniformly continuous on dom f .

(13) If Y ⊆ dom f and Y is compact and f is uniformly continuous on Y ,
then f ◦ Y is compact.

(14) For all f , Y such that Y 6= ∅ and Y ⊆ dom f and Y is compact and
f is uniformly continuous on Y there exist x1, x2 such that x1 ∈ Y and
x2 ∈ Y and f(x1) = sup(f ◦ Y ) and f(x2) = inf(f ◦ Y ).

(15) If X ⊆ dom f and f is a constant on X, then f is uniformly continuous
on X.

(16) If p ≤ g and f is continuous on [p, g], then for every r such that r ∈
[f(p), f(g)] ∪ [f(g), f(p)] there exists s such that s ∈ [p, g] and r = f(s).

(17) If p ≤ g and f is continuous on [p, g], then for every r such that r ∈
[inf(f ◦ [p, g]), sup(f ◦ [p, g])] there exists s such that s ∈ [p, g] and r = f(s).

(18) If f is one-to-one and p ≤ g and f is continuous on [p, g], then f is
increasing on [p, g] or f is decreasing on [p, g].

(19) Suppose f is one-to-one and p ≤ g and f is continuous on [p, g]. Then
inf(f ◦ [p, g]) = f(p) and sup(f ◦ [p, g]) = f(g) or inf(f ◦ [p, g]) = f(g) and
sup(f ◦ [p, g]) = f(p).

(20) If p ≤ g and f is continuous on [p, g], then f ◦[p, g] = [inf(f ◦[p, g]), sup(f ◦

[p, g])].

(21) If f is one-to-one and p ≤ g and f is continuous on [p, g], then f−1 is
continuous on [inf(f ◦ [p, g]), sup(f ◦ [p, g])].
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Summary. For a real valued function defined on its domain in
real numbers the differentiability in a single point and on a subset of the
domain is presented. The main elements of differential calculus are de-
veloped. The algebraic properties of differential real functions are shown.

MML Identifier: FDIFF 1.

The terminology and notation used here have been introduced in the following
articles: [11], [2], [8], [3], [4], [1], [5], [6], [7], [10], and [9]. For simplicity we
follow the rules: x, x0, r, p will be real numbers, n will be a natural number,
Y will be a subset of � , Z will be a real open subset, X will be a set, s1 will
be a sequence of real numbers, and f , f1, f2 will be partial functions from � to
� . We now state the proposition

(1) For every r holds r ∈ Y if and only if r ∈ � if and only if Y = � .
A sequence of real numbers is called a real sequence convergent to 0 if:
it is non-zero and it is convergent and lim it = 0.

The following proposition is true

(2) For every s1 holds s1 is a real sequence convergent to 0 if and only if s1

is non-zero and s1 is convergent and lim s1 = 0.

A sequence of real numbers is called a constant real sequence if:
it is constant.

We now state the proposition

(3) For every s1 holds s1 is a constant real sequence if and only if s1 is
constant.

In the sequel h will be a real sequence convergent to 0 and c will be a constant
real sequence. A partial function from � to � is called a rest if:
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it is total and for every h holds h−1�(it·h) is convergent and lim(h−1�(it·h)) =
0.

One can prove the following proposition

(4) For every f holds f is a rest if and only if f is total and for every h
holds h−1 � (f · h) is convergent and lim(h−1 � (f · h)) = 0.

A partial function from � to � is called a linear function if:
it is total and there exists r such that for every p holds it(p) = r · p.
The following proposition is true

(5) For every f holds f is a linear function if and only if f is total and there
exists r such that for every p holds f(p) = r · p.

We follow the rules: R, R1, R2 are rests and L, L1, L2 are linear functions.
We now state several propositions:

(6) For all L1, L2 holds L1 +L2 is a linear function and L1 −L2 is a linear
function.

(7) For all r, L holds r � L is a linear function.

(8) For all R1, R2 holds R1 +R2 is a rest and R1−R2 is a rest and R1 �R2

is a rest.

(9) For all r, R holds r �R is a rest.

(10) L1 � L2 is a rest.

(11) R � L is a rest and L � R is a rest.

Let us consider f , x0. We say that f is differentiable in x0 if and only if:
there exists a neighbourhood N of x0 such that N ⊆ dom f and there exist

L, R such that for every x such that x ∈ N holds f(x)− f(x0) = L(x − x0) +
R(x− x0).

The following proposition is true

(12) For all f , x0 holds f is differentiable in x0 if and only if there exists a
neighbourhood N of x0 such that N ⊆ dom f and there exist L, R such
that for every x such that x ∈ N holds f(x)−f(x0) = L(x−x0)+R(x−x0).

Let us consider f , x0. Let us assume that f is differentiable in x0. The
functor f ′(x0) yields a real number and is defined as follows:

there exists a neighbourhood N of x0 such that N ⊆ dom f and there exist L,
R such that f ′(x0) = L(1) and for every x such that x ∈ N holds f(x)−f(x0) =
L(x− x0) +R(x− x0).

The following proposition is true

(13) Given r, f , x0. Suppose f is differentiable in x0. Then r = f ′(x0) if
and only if there exists a neighbourhood N of x0 such that N ⊆ dom f
and there exist L, R such that r = L(1) and for every x such that x ∈ N
holds f(x)− f(x0) = L(x− x0) +R(x− x0).

Let us consider f , X. We say that f is differentiable on X if and only if:
X ⊆ dom f and for every x such that x ∈ X holds f � X is differentiable in

x.

The following four propositions are true:
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(14) For all f , X holds f is differentiable on X if and only if X ⊆ dom f
and for every x such that x ∈ X holds f � X is differentiable in x.

(15) If f is differentiable on X, then X is a subset of � .
(16) f is differentiable on Z if and only if Z ⊆ dom f and for every x such

that x ∈ Z holds f is differentiable in x.

(17) If f is differentiable on Y , then Y is open.

Let us consider f , X. Let us assume that f is differentiable on X. The
functor f ′X yielding a partial function from � to � is defined by:

dom(f ′X ) = X and for every x such that x ∈ X holds (f ′X )(x) = f ′(x).

One can prove the following two propositions:

(18) For all f , X and for every partial function F from � to � such that f
is differentiable on X holds F = f ′X if and only if domF = X and for
every x such that x ∈ X holds F (x) = f ′(x).

(19) For all f , Z such that Z ⊆ dom f and there exists r such that rng f =
{r} holds f is differentiable on Z and for every x such that x ∈ Z holds
(f ′ Z )(x) = 0.

Let us consider h, n. Then h � n is a real sequence convergent to 0.

Let us consider c, n. Then c � n is a constant real sequence.

Next we state a number of propositions:

(20) Given f , x0. Let N be a neighbourhood of x0. Suppose f is differen-
tiable in x0 and N ⊆ dom f . Then for all h, c such that rng c = {x0}
and rng(h + c) ⊆ N holds h−1 � (f · (h + c) − f · c) is convergent and
f ′(x0) = lim(h−1 � (f · (h+ c)− f · c)).

(21) For all f1, f2, x0 such that f1 is differentiable in x0 and f2 is differ-
entiable in x0 holds f1 + f2 is differentiable in x0 and (f1 + f2)′(x0) =
f ′1(x0) + f ′2(x0).

(22) For all f1, f2, x0 such that f1 is differentiable in x0 and f2 is differ-
entiable in x0 holds f1 − f2 is differentiable in x0 and (f1 − f2)′(x0) =
f ′1(x0)− f ′2(x0).

(23) For all r, f , x0 such that f is differentiable in x0 holds r � f is differen-
tiable in x0 and (r � f)′(x0) = r · (f ′(x0)).

(24) For all f1, f2, x0 such that f1 is differentiable in x0 and f2 is differ-
entiable in x0 holds f1 � f2 is differentiable in x0 and (f1 � f2)′(x0) =
f2(x0) · (f ′1(x0)) + f1(x0) · (f ′2(x0)).

(25) For all f , Z such that Z ⊆ dom f and f � Z = idZ holds f is differen-
tiable on Z and for every x such that x ∈ Z holds (f ′ Z )(x) = 1.

(26) For all f1, f2, Z such that Z ⊆ dom(f1 + f2) and f1 is differentiable on
Z and f2 is differentiable on Z holds f1 + f2 is differentiable on Z and for
every x such that x ∈ Z holds ((f1 + f2)′ Z )(x) = f ′1(x) + f ′2(x).

(27) For all f1, f2, Z such that Z ⊆ dom(f1− f2) and f1 is differentiable on
Z and f2 is differentiable on Z holds f1− f2 is differentiable on Z and for
every x such that x ∈ Z holds ((f1 − f2)′ Z )(x) = f ′1(x)− f ′2(x).
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(28) For all r, f , Z such that Z ⊆ dom(r � f) and f is differentiable on Z
holds r � f is differentiable on Z and for every x such that x ∈ Z holds
((r � f)′ Z )(x) = r · (f ′(x)).

(29) Given f1, f2, Z. Then if Z ⊆ dom(f1 � f2) and f1 is differentiable on Z
and f2 is differentiable on Z, then f1�f2 is differentiable on Z and for every
x such that x ∈ Z holds ((f1 � f2)′ Z )(x) = f2(x) · (f ′1(x)) + f1(x) · (f ′2(x)).

(30) If Z ⊆ dom f and f is a constant on Z, then f is differentiable on Z
and for every x such that x ∈ Z holds (f ′ Z )(x) = 0.

(31) If Z ⊆ dom f and for every x such that x ∈ Z holds f(x) = r ·x+p, then
f is differentiable on Z and for every x such that x ∈ Z holds (f ′ Z )(x) = r.

(32) If f is differentiable in x0, then f is continuous in x0.

(33) If f is differentiable on X, then f is continuous on X.

(34) If f is differentiable on X and Z ⊆ X, then f is differentiable on Z.

(35) If f is differentiable in x0, then there exists R such that R(0) = 0 and
R is continuous in 0.
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Summary. Three basic theorems in differential calculus of one
variable functions are presented: Rolle Theorem, Lagrange Theorem and
Cauchy Theorem. There are also direct conclusions.

MML Identifier: ROLLE.

The terminology and notation used here have been introduced in the following
papers: [2], [1], [3], [4], [5], [8], [6], and [7]. We adopt the following rules: g,
r, s, p, t, x, x0, x1 will denote real numbers and f , f1, f2 will denote partial
functions from � to � . We now state a number of propositions:

(1) For all p, g such that p < g for every f such that f is continuous on
[p, g] and f(p) = f(g) and f is differentiable on ]p, g[ there exists x0 such
that x0 ∈ ]p, g[ and f ′(x0) = 0.

(2) Given x, t. Suppose 0 < t. Then for every f such that f is continuous
on [x, x+ t] and f(x) = f(x+ t) and f is differentiable on ]x, x+ t[ there
exists s such that 0 < s and s < 1 and f ′(x+ s · t) = 0.

(3) For all p, g such that p < g for every f such that f is continuous on
[p, g] and f is differentiable on ]p, g[ there exists x0 such that x0 ∈ ]p, g[

and f ′(x0) = f(g)−f(p)
g−p .

(4) Given x, t. Suppose 0 < t. Then for every f such that f is continuous
on [x, x + t] and f is differentiable on ]x, x + t[ there exists s such that
0 < s and s < 1 and f(x+ t) = f(x) + t · (f ′(x+ s · t)).

(5) Given p, g. Suppose p < g. Given f1, f2. Suppose f1 is continuous on
[p, g] and f1 is differentiable on ]p, g[ and f2 is continuous on [p, g] and f2

is differentiable on ]p, g[. Then there exists x0 such that x0 ∈ ]p, g[ and
(f1(g) − f1(p)) · (f ′2(x0)) = (f2(g) − f2(p)) · (f ′1(x0)).

1Supported by RPBP.III-24.C8.
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(6) Given x, t. Suppose 0 < t. Given f1, f2. Suppose f1 is continuous
on [x, x + t] and f1 is differentiable on ]x, x + t[ and f2 is continuous on
[x, x + t] and f2 is differentiable on ]x, x + t[ and for every x1 such that
x1 ∈ ]x, x+ t[ holds f ′2(x1) 6= 0. Then there exists s such that 0 < s and

s < 1 and f1(x+t)−f1(x)
f2(x+t)−f2(x) =

f ′1(x+s·t)
f ′2(x+s·t) .

(7) For all p, g such that p < g for every f such that f is differentiable
on ]p, g[ and for every x such that x ∈ ]p, g[ holds f ′(x) = 0 holds f is a
constant on ]p, g[.

(8) Given p, g. Suppose p < g. Given f1, f2. Suppose f1 is differentiable on
]p, g[ and f2 is differentiable on ]p, g[ and for every x such that x ∈ ]p, g[
holds f ′1(x) = f ′2(x). Then f1 − f2 is a constant on ]p, g[ and there exists
r such that for every x such that x ∈ ]p, g[ holds f1(x) = f2(x) + r.

(9) For all p, g such that p < g for every f such that f is differentiable
on ]p, g[ and for every x such that x ∈ ]p, g[ holds 0 < f ′(x) holds f is
increasing on ]p, g[.

(10) For all p, g such that p < g for every f such that f is differentiable
on ]p, g[ and for every x such that x ∈ ]p, g[ holds f ′(x) < 0 holds f is
decreasing on ]p, g[.

(11) For all p, g such that p < g for every f such that f is differentiable
on ]p, g[ and for every x such that x ∈ ]p, g[ holds 0 ≤ f ′(x) holds f is
non-decreasing on ]p, g[.

(12) For all p, g such that p < g for every f such that f is differentiable
on ]p, g[ and for every x such that x ∈ ]p, g[ holds f ′(x) ≤ 0 holds f is
non-increasing on ]p, g[.
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