Preface

As was stated in [5], Mizar articles are being published in this periodical using special technology. They are written in High Level Formalized Language for Mathematics called Mizar. Their logical and mathematical correctness is verified by the PC Mizar system (distributed by Mizar Users Group owing to the grant received from the Philippe le Hodey Foundation). Mizar articles are submitted to the Mizar Users Association. For the both addresses see the second page of the cover. Articles form the Main Mizar Library (MML), which is continually enlarged and updated. The power of the PC Mizar system lies in the automatic processing of cross-references between articles. Main Mizar Library together with PC Mizar system constitute a system for collecting, formalizing and verifying mathematical knowledge. MML forms a basis of a Knowledge Management System for Mathematics supplied with Mizar articles.

Programs have being written which process Mizar articles and translate them automatically into English, and generate texts in $\mathrm{T}_{\mathrm{E}} \mathrm{X}$. Next $\mathrm{IAT}_{\mathrm{E}} \mathrm{X}$ uses a special format called $\mathrm{MizT}_{\mathrm{E}} \mathrm{X}$ to produce them. While we do try to obtain such English which would not resemble a machine language, for instance by making use of the generator of random numbers to improve the style, obtaining good English is not the main objective of our work. What we do aim at is to obtain a readable text owing to which one can watch the development of MML, and also publish new mathematical results (for the time being in a small number). Another interesting problem is how to develop mathematics formal enough to make it verifiable by the computer. This accounts for certain peculiarities of the articles. For instance, the conceptual apparatus is strongly developed, which can best be illustrated by so-called casting functions, which without changing their respective arguments change their types. Other peculiarities include the occurrence of minor propositions resulting from detailed formalization, and repetitions of definitions in the form of so-called definitional theorems (see proposition 1 in [1], page 265).

As was explained in [5], what is translated is not Mizar articles themselves but so-called Mizar abstracts. An article includes certain elements which are transferred to the data base, such as theorems and definitions. But it also contains fragments which are not transferred there, such as proofs of theorems and lemmas. Mizar abstracts contain only those parts of Mizar articles which are transferred to the data base. This has been due to the fact that the material published at first was intended to facilitate to the Mizar users the use of the data base. In the future, as non-trivial proofs are offered, we plan to publish the translations of full Mizar articles.

It must be explained at this point that both PC Mizar system and Main Mizar Library are systematically developed. In the case of PC Mizar it is mainly the Mizar language which is enriched, which makes it more convenient to write articles; the same may by said of the proof-checker, which enables one to write
shorter proofs. In the case of MML its development is linked above all to the ever new enhancers of texts, put in operation, which automatically improve the quality of the articles, usually by shortening them. As a simple example one can mention the program Inacc (inaccessible fragments), which removes from the text of the article those fragments which are not transferred to the data base and are not used in the article (for instance, when the author writes a lemma which she/he supposes to use later one but then changes the conception of the proofs and makes no reference to that lemma). Another improvement is that of Chkrprem (relevant premisses): it removes from the text the unnecessary references in justifications of statements. Since both processes interact that causes considerable changes in the articles. For instance, the strengthening of the proof-checker may result in that certain items of information function are understood by default and reference to a sentence A in the justification of a statement B ceases to be necessary. Hence in the successive verifications of the quality of the paper that reference is removed. We have to do with a special case of such interaction when a theorem has become obvious for the proof-checker, which is to say that when checking whether a given sentence is true the proofchecker needs not refer to other theorems and lemmas. The improver Trivtheo (trivial theorems) pin-points such theorems and eliminates them since as a rule they are not useful. But the numbering of the propositions in a given article is retained. Hence a gap in the numbering and the related information in the footnote: "The propositon (8) became obvious" (see [2], page 670).

Note also that in the present issue the symbol of multiplication of real functions has been changed from \cdot into \diamond (see [4] and [3]).

Roman Matuszewski

References

[1] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[2] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[3] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[5] Andrzej Trybulec. Introduction. Formalized Mathematics, 1(1):7-8, January 1990.

Classical Configurations in Affine Planes ${ }^{1}$

Henryk Oryszczyszyn
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Summary. The classical sequence of implications which hold between Desargues and Pappus Axioms id proved. Formally Minor and Major Desargues Axiom (as suitable properties - predicates - of an affine plane) together with all its indirect forms are introduced; the same procedure is applied to Pappus Axioms. The so called Trapezium Desargues Axiom is also considered.

MML Identifier: AFF_2.

The articles [1], and [2] provide the notation and terminology for this paper. We follow the rules: $A P$ will denote an affine plane, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, o$ will denote elements of the points of $A P$, and A, C, K, M, N, P will denote subsets of the points of $A P$. Let us consider $A P$. We say that $A P$ satisfies PPAP if and only if:

Given $M, N, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Then if M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$, then $a, c^{\prime} \| c, a^{\prime}$.

We now state the proposition
(1) Given $A P$. Then $A P$ satisfies PPAP if and only if for all M, N, a, b, c, $a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ holds $a, c^{\prime} \| c, a^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies PAP if and only if:
Given $M, N, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) M is a line,
(ii) N is a line,
(iii) $M \neq N$,
(iv) $o \in M$,

[^0]\[

$$
\begin{array}{ll}
\text { (v) } & o \in N, \\
\text { (vi) } & o \neq a, \\
\text { (vii) } & o \neq a^{\prime}, \\
\text { (viii) } & o \neq b, \\
\text { (ix) } & o \neq b^{\prime}, \\
\text { (x) } & o \neq c, \\
\text { (xi) } & o \neq c^{\prime}, \\
\text { (xii) } & a \in M, \\
\text { (xiii) } & b \in M, \\
\text { (xiv) } & c \in M, \\
\text { (xv) } & a^{\prime} \in N, \\
\text { (xvi) } & b^{\prime} \in N, \\
\text { (xvii) } & c^{\prime} \in N, \\
\text { (xviii) } & a, b^{\prime} \| b, a^{\prime}, \\
\text { (xix) } & b, c^{\prime} \| c, b^{\prime} .
\end{array}
$$
\]

Then $a, c^{\prime} \| c, a^{\prime}$.
The following proposition is true
(2) Given $A P$. Then $A P$ satisfies PAP if and only if for all M, N, o, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a^{\prime}$ and $o \neq b$ and $o \neq b^{\prime}$ and $o \neq c$ and $o \neq c^{\prime}$ and $a \in M$ and $b \in M$ and $c \in M$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ holds $a, c^{\prime} \| c, a^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{P A P}_{1}$ if and only if:
Given $M, N, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $\quad M$ is a line,
(ii) N is a line,
(iii) $M \neq N$,
(iv) $o \in M$,
(v) $o \in N$,
(vi) $o \neq a$,
(vii) $o \neq a^{\prime}$,
(viii) $o \neq b$,
(ix) $o \neq b^{\prime}$,
(x) $o \neq c$,
(xi) $o \neq c^{\prime}$,
(xii) $a \in M$,
(xiii) $b \in M$,
(xiv) $c \in M$,
(xv) $b^{\prime} \in N$,
(xvi) $c^{\prime} \in N$,
(xvii) $a, b^{\prime} \| b, a^{\prime}$,
(xviii) $\quad b, c^{\prime} \| c, b^{\prime}$,
(xix) $a, c^{\prime} \| c, a^{\prime}$,
(xx) $\quad b \neq c$.

Then $a^{\prime} \in N$.
One can prove the following proposition
(3) Given $A P$. Then $A P$ satisfies $\mathbf{P A P}_{1}$ if and only if for all M, N, o, a, $b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $M \neq N$ and $o \in M$ and $o \in N$ and $o \neq a$ and $o \neq a^{\prime}$ and $o \neq b$ and $o \neq b^{\prime}$ and $o \neq c$ and $o \neq c^{\prime}$ and $a \in M$ and $b \in M$ and $c \in M$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ and $a, c^{\prime} \| c, a^{\prime}$ and $b \neq c$ holds $a^{\prime} \in N$.
Let us consider $A P$. We say that $A P$ satisfies DES if and only if:
Given $A, P, C, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $o \in A$,
(ii) $o \in P$,
(iii) $o \in C$,
(iv) $o \neq a$,
(v) $\quad o \neq b$,
(vi) $\quad o \neq c$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $b^{\prime} \in P$,
(xi) $c \in C$,
(xii) $c^{\prime} \in C$,
(xiii) A is a line,
(xiv) P is a line,
(xv) C is a line,
(xvi) $\quad A \neq P$,
(xvii) $\quad A \neq C$,
(xviii) $a, b \| a^{\prime}, b^{\prime}$,
(xix) $a, c \| a^{\prime}, c^{\prime}$.

Then $b, c \| b^{\prime}, c^{\prime}$.
We now state the proposition
(4) Given $A P$. Then $A P$ satisfies DES if and only if for all A, P, C, o, a, $b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that $o \in A$ and $o \in P$ and $o \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ holds $b, c \| b^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{D E S}_{1}$ if and only if:
Given $A, P, C, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $o \in A$,
(ii) $o \in P$,
(iii) $o \neq a$,
(iv) $o \neq b$,
(v) $\quad o \neq c$,
(vi) $a \in A$,
(vii) $a^{\prime} \in A$,

```
(viii) \(b \in P\),
    (ix) \(b^{\prime} \in P\),
    (x) \(c \in C\),
    (xi) \(c^{\prime} \in C\),
    (xii) \(A\) is a line,
    (xiii) \(P\) is a line,
    (xiv) \(C\) is a line,
    (xv) \(A \neq P\),
    (xvi) \(A \neq C\),
(xvii) \(a, b \| a^{\prime}, b^{\prime}\),
(xviii) \(a, c \| a^{\prime}, c^{\prime}\),
    (xix) \(b, c \| b^{\prime}, c^{\prime}\),
    (xx) \(\operatorname{not} \mathbf{L}(a, b, c)\),
(xxi) \(c \neq c^{\prime}\).
```

 Then \(o \in C\).
 One can prove the following proposition
(5) Given $A P$. Then $A P$ satisfies $\mathbf{D E S}_{\mathbf{1}}$ if and only if for all A, P, C, o, $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that $o \in A$ and $o \in P$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ and not $\mathbf{L}(a, b, c)$ and $c \neq c^{\prime}$ holds $o \in C$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{D E S}_{\mathbf{2}}$ if and only if:
Given $A, P, C, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $o \in A$,
(ii) $o \in P$,
(iii) $o \in C$,
(iv) $o \neq a$,
(v) $o \neq b$,
(vi) $o \neq c$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $b^{\prime} \in P$,
(xi) $c \in C$,
(xii) A is a line,
(xiii) P is a line,
(xiv) C is a line,
(xv) $A \neq P$,
(xvi) $A \neq C$,
(xvii) $a, b \| a^{\prime}, b^{\prime}$,
(xviii) $\quad a, c \| a^{\prime}, c^{\prime}$,
(xix) $b, c \| b^{\prime}, c^{\prime}$.

Then $c^{\prime} \in C$.

One can prove the following proposition
(6) Given $A P$. Then $A P$ satisfies $\mathbf{D E S}_{\mathbf{2}}$ if and only if for all A, P, C, o, $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that $o \in A$ and $o \in P$ and $o \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ holds $c^{\prime} \in C$.
Let us consider $A P$. We say that $A P$ satisfies TDES if and only if:
Given $K, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) K is a line,
(ii) $o \in K$,
(iii) $c \in K$,
(iv) $c^{\prime} \in K$,
(v) $a \notin K$,
(vi) $o \neq c$,
(vii) $a \neq b$,
(viii) $\mathbf{L}\left(o, a, a^{\prime}\right)$,
(ix) $\mathbf{L}\left(o, b, b^{\prime}\right)$,
(x) $a, b \| a^{\prime}, b^{\prime}$,
(xi) $a, c \| a^{\prime}, c^{\prime}$,
(xii) $\quad a, b \| K$.

Then $b, c \| b^{\prime}, c^{\prime}$.
We now state the proposition
(7) Given $A P$. Then $A P$ satisfies TDES if and only if for all K, o, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that K is a line and $o \in K$ and $c \in K$ and $c^{\prime} \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, b \| K$ holds $b, c \| b^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{T D E S}_{1}$ if and only if:
Given $K, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) K is a line,
(ii) $o \in K$,
(iii) $c \in K$,
(iv) $c^{\prime} \in K$,
(v) $a \notin K$,
(vi) $o \neq c$,
(vii) $a \neq b$,
(viii) $\mathbf{L}\left(o, a, a^{\prime}\right)$,
(ix) $a, b \| a^{\prime}, b^{\prime}$,
(x) $b, c \| b^{\prime}, c^{\prime}$,
(xi) $a, c \| a^{\prime}, c^{\prime}$,
(xii) $a, b \| K$.

Then $\mathbf{L}\left(o, b, b^{\prime}\right)$.
One can prove the following proposition
(8) Given $A P$. Then $A P$ satisfies TDES $_{\mathbf{1}}$ if and only if for all K, o, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that K is a line and $o \in K$ and $c \in K$ and $c^{\prime} \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $a, b \| a^{\prime}, b^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, b \| K$ holds $\mathbf{L}\left(o, b, b^{\prime}\right)$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{T D E S}_{2}$ if and only if:
Given $K, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) K is a line,
(ii) $o \in K$,
(iii) $c \in K$,
(iv) $c^{\prime} \in K$,
(v) $a \notin K$,
(vi) $\quad o \neq c$,
(vii) $a \neq b$,
(viii) $\mathbf{L}\left(o, a, a^{\prime}\right)$,
(ix) $\mathbf{L}\left(o, b, b^{\prime}\right)$,
(x) $b, c \| b^{\prime}, c^{\prime}$,
(xi) $a, c \| a^{\prime}, c^{\prime}$,
(xii) $a, b \| K$.

Then $a, b \| a^{\prime}, b^{\prime}$.
The following proposition is true
(9) Given $A P$. Then $A P$ satisfies $\mathbf{T D E S}_{\mathbf{2}}$ if and only if for all K, o, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that K is a line and $o \in K$ and $c \in K$ and $c^{\prime} \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $b, c \| b^{\prime}, c^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, b \| K$ holds $a, b \| a^{\prime}, b^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{T D E S}_{\mathbf{3}}$ if and only if:
Given $K, o, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) K is a line,
(ii) $o \in K$,
(iii) $c \in K$,
(iv) $a \notin K$,
(v) $o \neq c$,
(vi) $a \neq b$,
(vii) $\mathbf{L}\left(o, a, a^{\prime}\right)$,
(viii) $\mathbf{L}\left(o, b, b^{\prime}\right)$,
(ix) $a, b \| a^{\prime}, b^{\prime}$,
(x) $a, c \| a^{\prime}, c^{\prime}$,
(xi) $b, c \| b^{\prime}, c^{\prime}$,
(xii) $\quad a, b \| K$.

Then $c^{\prime} \in K$.
We now state the proposition
(10) Given $A P$. Then $A P$ satisfies TDES $_{3}$ if and only if for all K, o, a, b, c, $a^{\prime}, b^{\prime}, c^{\prime}$ such that K is a line and $o \in K$ and $c \in K$ and $a \notin K$ and $o \neq c$ and $a \neq b$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ and $a, b \| K$ holds $c^{\prime} \in K$.

Let us consider $A P$. We say that $A P$ satisfies des if and only if:
Given $A, P, C, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $A \| P$,
(ii) $A \| C$,
(iii) $a \in A$,
(iv) $a^{\prime} \in A$,
(v) $b \in P$,
(vi) $b^{\prime} \in P$,
(vii) $c \in C$,
(viii) $c^{\prime} \in C$,
(ix) A is a line,
(x) P is a line,
(xi) C is a line,
(xii) $A \neq P$,
(xiii) $A \neq C$,
(xiv) $a, b \| a^{\prime}, b^{\prime}$,
(xv) $a, c \| a^{\prime}, c^{\prime}$.

Then $b, c \| b^{\prime}, c^{\prime}$.
The following proposition is true
(11) Given $A P$. Then $A P$ satisfies des if and only if for all A, P, C, a, b, c, $a^{\prime}, b^{\prime}, c^{\prime}$ such that $A \| P$ and $A \| C$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ holds $b, c \| b^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies des_{1} if and only if:
Given $A, P, C, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) $A \| P$,
(ii) $a \in A$,
(iii) $a^{\prime} \in A$,
(iv) $b \in P$,
(v) $b^{\prime} \in P$,
(vi) $c \in C$,
(vii) $c^{\prime} \in C$,
(viii) A is a line,
(ix) P is a line,
(x) C is a line,
(xi) $A \neq P$,
(xii) $A \neq C$,
(xiii) $a, b \| a^{\prime}, b^{\prime}$,
(xiv) $a, c \| a^{\prime}, c^{\prime}$,
(xv) $b, c \| b^{\prime}, c^{\prime}$,
(xvi) $\operatorname{not} \mathbf{L}(a, b, c)$,
(xvii) $\quad c \neq c^{\prime}$.

Then $A \| C$.
The following proposition is true
(12) Given $A P$. Then $A P$ satisfies des_{1} if and only if for all A, P, C, a, b, $c, a^{\prime}, b^{\prime}, c^{\prime}$ such that $A \| P$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and A is a line and P is a line and C is a line and $A \neq P$ and $A \neq C$ and $a, b \| a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ and $b, c \| b^{\prime}, c^{\prime}$ and not $\mathbf{L}(a, b, c)$ and $c \neq c^{\prime}$ holds $A \| C$.
Let us consider $A P$. We say that $A P$ satisfies pap if and only if:
Given $M, N, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \| N$ and $M \neq N$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$. Then $a, c^{\prime} \| c, a^{\prime}$.

The following proposition is true
(13) Given $A P$. Then $A P$ satisfies pap if and only if for all M, N, a, b, c, $a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \| N$ and $M \neq N$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $c^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ holds $a, c^{\prime} \| c, a^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{p a p}_{1}$ if and only if:
Given $M, N, a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$. Suppose that
(i) M is a line,
(ii) $\quad N$ is a line,
(iii) $a \in M$,
(iv) $b \in M$,
(v) $c \in M$,
(vi) $M \| N$,
(vii) $\quad M \neq N$,
(viii) $\quad a^{\prime} \in N$,
(ix) $b^{\prime} \in N$,
(x) $a, b^{\prime} \| b, a^{\prime}$,
(xi) $b, c^{\prime} \| c, b^{\prime}$,
(xii) $a, c^{\prime} \| c, a^{\prime}$,
(xiii) $\quad a^{\prime} \neq b^{\prime}$.

Then $c^{\prime} \in N$.
We now state a number of propositions:
 $a^{\prime}, b^{\prime}, c^{\prime}$ such that M is a line and N is a line and $a \in M$ and $b \in M$ and $c \in M$ and $M \| N$ and $M \neq N$ and $a^{\prime} \in N$ and $b^{\prime} \in N$ and $a, b^{\prime} \| b, a^{\prime}$ and $b, c^{\prime} \| c, b^{\prime}$ and $a, c^{\prime} \| c, a^{\prime}$ and $a^{\prime} \neq b^{\prime}$ holds $c^{\prime} \in N$.
(15) $\quad A P$ satisfies PAP if and only if $A P$ satisfies $\mathbf{P A P}_{\mathbf{1}}$.
(16) $A P$ satisfies DES if and only if $A P$ satisfies $\mathbf{D E S}_{\mathbf{1}}$.
(17) If $A P$ satisfies TDES, then $A P$ satisfies TDES $_{\mathbf{1}}$.
(18) If $A P$ satisfies $\mathbf{T D E S}_{\mathbf{1}}$, then $A P$ satisfies $\mathbf{T D E S}_{\mathbf{2}}$.
(19) If $A P$ satisfies $\mathbf{T D E S}_{\mathbf{2}}$, then $A P$ satisfies $\mathbf{T D E S}_{\mathbf{3}}$.
(20) If $A P$ satisfies $\mathbf{T D E S}_{\mathbf{3}}$, then $A P$ satisfies TDES.
(21) $A P$ satisfies des if and only if $A P$ satisfies des.
$A P$ satisfies pap if and only if $A P$ satisfies $\mathbf{p a p}_{1}$.
(23) If $A P$ satisfies PAP, then $A P$ satisfies pap.
(24) $A P$ satisfies PPAP if and only if $A P$ satisfies PAP and $A P$ satisfies pap.
(25) If $A P$ satisfies PAP, then $A P$ satisfies DES.
(26) If $A P$ satisfies DES, then $A P$ satisfies TDES.
(27) If $A P$ satisfies TDES $_{\mathbf{1}}$, then $A P$ satisfies des $_{\boldsymbol{1}}$.
(28) If $A P$ satisfies TDES, then $A P$ satisfies des.
(29) If $A P$ satisfies des, then $A P$ satisfies pap.

References

[1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617-621, 1990.

Affine Localizations of Desargues Axiom ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok
Henryk Oryszczyszyn
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Summary. Several affine localizations of Major Desargues Axiom together with its indirect forms are introduced. Logical relationships between these formulas and between them and the classical Desargues Axiom are demonstrated.

MML Identifier: AFF_3.

The articles [1], [3], and [2] provide the notation and terminology for this paper. We follow a convention: $A P$ denotes an affine plane, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, o, p, q$ denote elements of the points of $A P$, and A, C, P denote subsets of the points of $A P$. Let us consider $A P$. We say that $A P$ satisfies DES1 if and only if:

Given $A, P, C, o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) A is a line,
(ii) P is a line,
(iii) C is a line,
(iv) $P \neq A$,
(v) $P \neq C$,
(vi) $A \neq C$,
(vii) $o \in A$,
(viii) $a \in A$,
(ix) $a^{\prime} \in A$,
(x) $o \in P$,
(xi) $b \in P$,
(xii) $\quad b^{\prime} \in P$,

[^1]```
 (xiii) \(o \in C\),
 (xiv) \(c \in C\),
 (xv) \(c^{\prime} \in C\),
 (xvi) \(\quad o \neq a\),
(xvii) \(o \neq b\),
(xviii) \(\quad o \neq c\),
 (xix) \(p \neq q\),
 (xx) not \(\mathbf{L}(b, a, c)\),
 (xxi) not \(\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)\),
(xxii) \(\quad a \neq a^{\prime}\),
(xxiii) \(\mathbf{L}(b, a, p)\),
(xxiv) \(\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)\),
(xxv) \(\mathbf{L}(b, c, q)\),
(xxvi) \(\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)\),
(xxvii) \(\quad a, c \| a^{\prime}, c^{\prime}\).
```

Then $a, c \| p, q$.

We now state the proposition
(1) Given $A P$. Then $A P$ satisfies DES1 if and only if for all $A, P, C, o$, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $P \neq A$ and $P \neq C$ and $A \neq C$ and $o \in A$ and $a \in A$ and $a^{\prime} \in A$ and $o \in P$ and $b \in P$ and $b^{\prime} \in P$ and $o \in C$ and $c \in C$ and $c^{\prime} \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $p \neq q$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $a \neq a^{\prime}$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| a^{\prime}, c^{\prime}$ holds $a, c \| p, q$.
Let us consider $A P$. We say that $A P$ satisfies DES1 $_{1}$ if and only if:
Given $A, P, C, o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $P \neq A$,
(v) $P \neq C$,
(vi) $A \neq C$,
(vii) $o \in A$,
(viii) $a \in A$,
(ix) $a^{\prime} \in A$,
(x) $o \in P$,
(xi) $b \in P$,
(xii) $b^{\prime} \in P$,
(xiii) $o \in C$,
(xiv) $c \in C$,
(xv) $c^{\prime} \in C$,
(xvi) $\quad o \neq a$,
(xvii) $o \neq b$,
(xviii) $\quad o \neq c$,

$$
\begin{aligned}
& \text { (xix) } p \neq q \text {, } \\
& \text { (xx) } \quad c \neq q \text {, } \\
& \text { (xxi) } \operatorname{not} \mathbf{L}(b, a, c) \text {, } \\
& \text { (xxii) not } \mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right) \text {, } \\
& \text { (xxiii) } \mathbf{L}(b, a, p) \text {, } \\
& \text { (xxiv) } \mathbf{L}\left(b^{\prime}, a^{\prime}, p\right) \text {, } \\
& \text { (xxv) } \mathbf{L}(b, c, q) \text {, } \\
& \text { (xxvi) } \mathbf{L}\left(b^{\prime}, c^{\prime}, q\right), \\
& \text { (xxvii) } \quad a, c \| p, q \text {. } \\
& \text { Then } a, c \| a^{\prime}, c^{\prime} \text {. } \\
& \text { (i) } A \text { is a line, } \\
& \text { (ii) } P \text { is a line, } \\
& \text { (iii) } C \text { is a line, } \\
& \text { (iv) } P \neq A \text {, } \\
& \text { (v) } P \neq C \text {, } \\
& \text { (vi) } A \neq C \text {, } \\
& \text { (vii) } o \in A \text {, } \\
& \text { (viii) } a \in A \text {, } \\
& \text { (ix) } a^{\prime} \in A \text {, } \\
& \text { (x) } o \in P \text {, } \\
& \text { (xi) } b \in P \text {, } \\
& \text { (xii) } b^{\prime} \in P \text {, } \\
& \text { (xiii) } c \in C \text {, } \\
& \text { (xiv) } c^{\prime} \in C \text {, } \\
& \text { (xv) } o \neq a \text {, } \\
& \text { (xvi) } o \neq b \text {, } \\
& \text { (xvii) } o \neq c \text {, } \\
& \text { (xviii) } \quad p \neq q \text {, } \\
& \text { (xix) } \operatorname{not} \mathbf{L}(b, a, c) \text {, } \\
& \text { (xx) } \operatorname{not} \mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right) \text {, } \\
& \text { (xxi) } \quad c \neq c^{\prime}, \\
& \text { (xxii) } \mathbf{L}(b, a, p) \text {, } \\
& \text { (xxiii) } \mathbf{L}\left(b^{\prime}, a^{\prime}, p\right) \text {, } \\
& \text { (xxiv) } \mathbf{L}(b, c, q),
\end{aligned}
$$

The following proposition is true
(2) Given $A P$. Then $A P$ satisfies $\mathbf{D E S 1}_{\mathbf{1}}$ if and only if for all $A, P, C, o$, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $P \neq A$ and $P \neq C$ and $A \neq C$ and $o \in A$ and $a \in A$ and $a^{\prime} \in A$ and $o \in P$ and $b \in P$ and $b^{\prime} \in P$ and $o \in C$ and $c \in C$ and $c^{\prime} \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $p \neq q$ and $c \neq q$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| p, q$ holds $a, c \| a^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies $\mathbf{D E S 1}_{2}$ if and only if:
Given $A, P, C, o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that

$$
\begin{aligned}
& \text { (xxv) } \quad \mathbf{L}\left(b^{\prime}, c^{\prime}, q\right), \\
& \text { (xxvi) } \quad a, c \| a^{\prime}, c^{\prime}, \\
& \text { (xxvii) } \quad a, c \| p, q \text {. } \\
& \text { Then } o \in C \text {. } \\
& \text { Next we state the proposition } \\
& \text { (3) Given } A P \text {. Then } A P \text { satisfies } \mathbf{D E S 1 ~}_{2} \text { if and only if for all } A, P, C, o \text {, } \\
& a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q \text { such that } A \text { is a line and } P \text { is a line and } C \text { is a line } \\
& \text { and } P \neq A \text { and } P \neq C \text { and } A \neq C \text { and } o \in A \text { and } a \in A \text { and } a^{\prime} \in A \text { and } \\
& o \in P \text { and } b \in P \text { and } b^{\prime} \in P \text { and } c \in C \text { and } c^{\prime} \in C \text { and } o \neq a \text { and } o \neq b \\
& \text { and } o \neq c \text { and } p \neq q \text { and not } \mathbf{L}(b, a, c) \text { and not } \mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right) \text { and } c \neq c^{\prime} \text { and } \\
& \mathbf{L}(b, a, p) \text { and } \mathbf{L}\left(b^{\prime}, a^{\prime}, p\right) \text { and } \mathbf{L}(b, c, q) \text { and } \mathbf{L}\left(b^{\prime}, c^{\prime}, q\right) \text { and } a, c \| a^{\prime}, c^{\prime} \text { and } \\
& a, c \| p, q \text { holds } o \in C \text {. }
\end{aligned}
$$

Let us consider $A P$. We say that $A P$ satisfies $\mathrm{DES1}_{3}$ if and only if:
Given $A, P, C, o, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $P \neq A$,
(v) $P \neq C$,
(vi) $A \neq C$,
(vii) $o \in A$,
(viii) $a \in A$,
(ix) $a^{\prime} \in A$,
(x) $b \in P$,
(xi) $b^{\prime} \in P$,
(xii) $o \in C$,
(xiii) $c \in C$,
(xiv) $c^{\prime} \in C$,
(xv) $\quad o \neq a$,
(xvi) $o \neq b$,
(xvii) $\quad o \neq c$,
(xviii) $\quad p \neq q$,
(xix) $\operatorname{not} \mathbf{L}(b, a, c)$,
(xx) not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$,
(xxi) $b \neq b^{\prime}$,
(xxii) $\quad a \neq a^{\prime}$,
(xxiii) $\mathbf{L}(b, a, p)$,
(xxiv) $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$,
(xxv) $\mathbf{L}(b, c, q)$,
(xxvi) $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$,
(xxvii) $\quad a, c \| a^{\prime}, c^{\prime}$,
(xxviii) $\quad a, c \| p, q$.

Then $o \in P$.
Next we state the proposition
(4) Given $A P$. Then $A P$ satisfies $\mathbf{D E S 1}_{\mathbf{3}}$ if and only if for all $A, P, C, o$, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $P \neq A$ and $P \neq C$ and $A \neq C$ and $o \in A$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $o \in C$ and $c \in C$ and $c^{\prime} \in C$ and $o \neq a$ and $o \neq b$ and $o \neq c$ and $p \neq q$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $b \neq b^{\prime}$ and $a \neq a^{\prime}$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, c \| p, q$ holds $o \in P$.
Let us consider $A P$. We say that $A P$ satisfies DES2 if and only if:
Given $A, P, C, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $A \neq P$,
(v) $A \neq C$,
(vi) $P \neq C$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $\quad b^{\prime} \in P$,
(xi) $c \in C$,
(xii) $c^{\prime} \in C$,
(xiii) $A \| P$,
(xiv) $A \| C$,
(xv) $\operatorname{not} \mathbf{L}(b, a, c)$,
(xvi) not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$,
(xvii) $p \neq q$,
(xviii) $\quad a \neq a^{\prime}$,
(xix) $\mathbf{L}(b, a, p)$,
(xx) $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$,
(xxi) $\mathbf{L}(b, c, q)$,
(xxii) $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$,
(xxiii) $\quad a, c \| a^{\prime}, c^{\prime}$.

Then $a, c \| p, q$.
We now state the proposition
(5) Given $A P$. Then $A P$ satisfies DES2 if and only if for all $A, P, C, a$, $a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $A \neq P$ and $A \neq C$ and $P \neq C$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and $A \| P$ and $A \| C$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $p \neq q$ and $a \neq a^{\prime}$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| a^{\prime}, c^{\prime}$ holds $a, c \| p, q$.
Let us consider $A P$. We say that $A P$ satisfies DES2 ${ }_{1}$ if and only if:
Given $A, P, C, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $A \neq P$,
(v) $A \neq C$,
(vi) $P \neq C$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $b^{\prime} \in P$,
(xi) $c \in C$,
(xii) $c^{\prime} \in C$,
(xiii) $A \| P$,
(xiv) $A \| C$,
(xv) $\operatorname{not} \mathbf{L}(b, a, c)$,
(xvi) $\operatorname{not} \mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$,
(xvii) $\quad p \neq q$,
(xviii) $\quad \mathbf{L}(b, a, p)$,
(xix) $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$,
(xx) $\mathbf{L}(b, c, q)$,
(xxi) $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$,
(xxii) $\quad a, c \| p, q$.

Then $a, c \| a^{\prime}, c^{\prime}$.
We now state the proposition
(6) Given $A P$. Then $A P$ satisfies DES2 $_{1}$ if and only if for all $A, P, C, a$, $a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $A \neq P$ and $A \neq C$ and $P \neq C$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and $A \| P$ and $A \| C$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $p \neq q$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| p, q$ holds $a, c \| a^{\prime}, c^{\prime}$.
Let us consider $A P$. We say that $A P$ satisfies DES2 2 if and only if:
Given $A, P, C, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$. Suppose that
(i) $A$ is a line,
(ii) $P$ is a line,
(iii) $C$ is a line,
(iv) $A \neq P$,
(v) $A \neq C$,
(vi) $P \neq C$,
(vii) $a \in A$,
(viii) $a^{\prime} \in A$,
(ix) $b \in P$,
(x) $\quad b^{\prime} \in P$,
(xi) $c \in C$,
(xii) $c^{\prime} \in C$,
(xiii) $A \| C$,
(xiv) $\operatorname{not} \mathbf{L}(b, a, c)$,

```
 (xv) not L L (b', a', c'),
 (xvi) }p\not=q
 (xvii) a\not=\mp@subsup{a}{}{\prime},
(xviii) L
 (xix) \mathbf{L}(\mp@subsup{b}{}{\prime},\mp@subsup{a}{}{\prime},p),
 (xx) }\mathbf{L}(b,c,q)
 (xxi) }\mathbf{L}(\mp@subsup{b}{}{\prime},\mp@subsup{c}{}{\prime},q)
 (xxii) a,c| | ', c',
 (xxiii) a,c|p,q.
 Then }A|P\mathrm{ .
 Next we state the proposition
(7) Given \(A P\). Then \(A P\) satisfies DES2 \(_{2}\) if and only if for all \(A, P, C\), \(a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q\) such that \(A\) is a line and \(P\) is a line and \(C\) is a line and \(A \neq P\) and \(A \neq C\) and \(P \neq C\) and \(a \in A\) and \(a^{\prime} \in A\) and \(b \in P\) and \(b^{\prime} \in P\) and \(c \in C\) and \(c^{\prime} \in C\) and \(A \| C\) and not \(\mathbf{L}(b, a, c)\) and not \(\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)\) and \(p \neq q\) and \(a \neq a^{\prime}\) and \(\mathbf{L}(b, a, p)\) and \(\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)\) and \(\mathbf{L}(b, c, q)\) and \(\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)\) and \(a, c \| a^{\prime}, c^{\prime}\) and \(a, c \| p, q\) holds \(A \| P\).
Let us consider \(A P\). We say that \(A P\) satisfies DES2 \(_{3}\) if and only if:
Given \(A, P, C, a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q\). Suppose that
(i) \(A\) is a line,
(ii) \(P\) is a line,
(iii) \(C\) is a line,
(iv) \(A \neq P\),
(v) \(A \neq C\),
(vi) \(P \neq C\),
(vii) \(a \in A\),
(viii) \(a^{\prime} \in A\),
(ix) \(b \in P\),
(x) \(\quad b^{\prime} \in P\),
(xi) \(c \in C\),
(xii) \(c^{\prime} \in C\),
(xiii) \(A \| P\),
(xiv) \(\operatorname{not} \mathbf{L}(b, a, c)\),
(xv) \(\operatorname{not} \mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)\),
(xvi) \(p \neq q\),
(xvii) \(\quad c \neq c^{\prime}\),
(xviii) \(\mathbf{L}(b, a, p)\),
(xix) \(\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)\),
(xx) \(\mathbf{L}(b, c, q)\),
(xxi) \(\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)\),
(xxii) \(a, c \| a^{\prime}, c^{\prime}\),
(xxiii) \(\quad a, c \| p, q\).
Then \(A \| C\).
We now state a number of propositions:
```

(8) Given $A P$. Then $A P$ satisfies $\mathrm{DES2}_{3}$ if and only if for all $A, P, C$, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, p, q$ such that $A$ is a line and $P$ is a line and $C$ is a line and $A \neq P$ and $A \neq C$ and $P \neq C$ and $a \in A$ and $a^{\prime} \in A$ and $b \in P$ and $b^{\prime} \in P$ and $c \in C$ and $c^{\prime} \in C$ and $A \| P$ and $\operatorname{not} \mathbf{L}(b, a, c)$ and not $\mathbf{L}\left(b^{\prime}, a^{\prime}, c^{\prime}\right)$ and $p \neq q$ and $c \neq c^{\prime}$ and $\mathbf{L}(b, a, p)$ and $\mathbf{L}\left(b^{\prime}, a^{\prime}, p\right)$ and $\mathbf{L}(b, c, q)$ and $\mathbf{L}\left(b^{\prime}, c^{\prime}, q\right)$ and $a, c \| a^{\prime}, c^{\prime}$ and $a, c \| p, q$ holds $A \| C$.
(9) If $A P$ satisfies DES1, then $A P$ satisfies DES11.
(10) If $A P$ satisfies $\mathbf{D E S 1}_{\mathbf{1}}$, then $A P$ satisfies DES1.
(11) If $A P$ satisfies DES, then $A P$ satisfies DES1.
(12) If $A P$ satisfies DES, then $A P$ satisfies $\mathbf{D E S 1}_{2}$.
(13) If $A P$ satisfies $\mathbf{D E S 1}_{2}$, then $A P$ satisfies $\mathbf{D E S 1 ~}_{3}$.
(14) If $A P$ satisfies $\mathbf{D E S 1 ~}_{2}$, then $A P$ satisfies DES.
(15) If $A P$ satisfies DES2 $_{1}$, then $A P$ satisfies DES2.
(16) $A P$ satisfies DES2 $_{1}$ if and only if $A P$ satisfies DES2 ${ }_{3}$.
(17) $A P$ satisfies DES2 if and only if $A P$ satisfies DES2 2 .
(18) If $A P$ satisfies $\mathbf{D E S 1 3}_{3}$, then $A P$ satisfies $\mathbf{D E S 2} \mathbf{1}_{1}$.

## References

[1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Classical configurations in affine planes. Formalized Mathematics, 1(4):625-633, 1990.
[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617-621, 1990.

# Binary Operations Applied to Finite Sequences 

Czesław Byliński ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. The article contains some propositions and theorems related to [7] and [4]. The notions introduced in [7] are extended to finite sequences. A number additional propositions related to this notions are proved. There are also proved some properties of distributive operations and unary operations. The notation and propositions for inverses are introduced.


MML Identifier: FINSEQOP.

The notation and terminology used in this paper are introduced in the following articles: [9], [1], [5], [3], [2], [6], [7], [4], and [8]. For simplicity we adopt the following convention: $x, y$ will be arbitrary, $C, C^{\prime}, D, D^{\prime}, E$ will be non-empty sets, $c$ will be an element of $C, c^{\prime}$ will be an element of $C^{\prime}, d, d_{1}, d_{2}, d_{3}, d_{4}, e$ will be elements of $D$, and $d^{\prime}$ will be an element of $D^{\prime}$. Next we state several propositions:
(1) For every function $f$ holds $\langle\square, f\rangle=\square$ and $\langle f, \square\rangle=\square$.
(2) For every function $f$ holds $: \square, f:=\square$ and $: f, \square: \square=\square$.
(3) $\quad(C \longmapsto d)(c)=d$.
(4) For all functions $F$, $f$ holds $F^{\circ}(\square, f)=\square$ and $F^{\circ}(f, \square)=\square$.
(5) For every function $F$ holds $F^{\circ}(\square, x)=\square$.
(6) For every function $F$ holds $F^{\circ}(x, \square)=\square$.
(7) For every set $X$ and for arbitrary $x_{1}, x_{2}$ holds $\left\langle X \longmapsto x_{1}, X \longmapsto x_{2}\right\rangle=$ $X \longmapsto\left\langle x_{1}, x_{2}\right\rangle$.
(8) For every function $F$ and for every set $X$ and for arbitrary $x_{1}, x_{2}$ such that $\left\langle x_{1}, x_{2}\right\rangle \in \operatorname{dom} F$ holds $F^{\circ}\left(X \longmapsto x_{1}, X \longmapsto x_{2}\right)=X \longmapsto$ $F\left(\left\langle x_{1}, x_{2}\right\rangle\right)$.

[^2]For simplicity we adopt the following rules: $i, j$ will denote natural numbers, $F$ will denote a function from : $D, D^{\prime}$ ] into $E, p, q$ will denote finite sequences of elements of $D$, and $p^{\prime}, q^{\prime}$ will denote finite sequences of elements of $D^{\prime}$. Let us consider $D, D^{\prime}, E, F, p, p^{\prime}$. Then $F^{\circ}\left(p, p^{\prime}\right)$ is a finite sequence of elements of $E$.

Let us consider $D, D^{\prime}, E, F, p, d^{\prime}$. Then $F^{\circ}\left(p, d^{\prime}\right)$ is a finite sequence of elements of $E$.

Let us consider $D, D^{\prime}, E, F, d, p^{\prime}$. Then $F^{\circ}\left(d, p^{\prime}\right)$ is a finite sequence of elements of $E$.

Let us consider $D, i, d$. Then $i \longmapsto d$ is an element of $D^{i}$.
In the sequel $f, f^{\prime}$ are functions from $C$ into $D$ and $h$ is a function from $D$ into $E$. Let us consider $D, E, p, h$. Then $h \cdot p$ is a finite sequence of elements of $E$.

Next we state two propositions:
(9) $\quad h \cdot\left(p^{\wedge}\langle d\rangle\right)=(h \cdot p)^{\wedge}\langle h(d)\rangle$.
(10) $\quad h \cdot\left(p^{\wedge} q\right)=(h \cdot p)^{\wedge}(h \cdot q)$.

For simplicity we follow a convention: $T, T_{1}, T_{2}, T_{3}$ denote elements of $D^{i}$, $T^{\prime}$ denotes an element of $D^{\prime i}, S$ denotes an element of $D^{j}$, and $S^{\prime}$ denotes an element of $D^{\prime j}$. Next we state a number of propositions:

$$
\begin{align*}
& F^{\circ}\left(T^{\wedge}\langle d\rangle, T^{\prime} \wedge\left\langle d^{\prime}\right\rangle\right)=F^{\circ}\left(T, T^{\prime}\right)^{\wedge}\left\langle F\left(d, d^{\prime}\right)\right\rangle .  \tag{11}\\
& F^{\circ}\left(T \_S, T^{\prime} \wedge S^{\prime}\right)=F^{\circ}\left(T, T^{\prime}\right)^{\wedge} F^{\circ}\left(S, S^{\prime}\right) .  \tag{12}\\
& F^{\circ}\left(d, p^{\prime} \sim\left\langle d^{\prime}\right\rangle\right)=F^{\circ}\left(d, p^{\prime}\right)^{\wedge}\left\langle F\left(d, d^{\prime}\right)\right\rangle .  \tag{13}\\
& F^{\circ}\left(d, p^{\prime} \frown q^{\prime}\right)=F^{\circ}\left(d, p^{\prime}\right)^{\wedge} F^{\circ}\left(d, q^{\prime}\right) .  \tag{14}\\
& F^{\circ}\left(p^{\wedge}\langle d\rangle, d^{\prime}\right)=F^{\circ}\left(p, d^{\prime}\right)^{\wedge}\left\langle F\left(d, d^{\prime}\right)\right\rangle .  \tag{15}\\
& F^{\circ}\left(p^{\wedge} q, d^{\prime}\right)=F^{\circ}\left(p, d^{\prime}\right) \wedge F^{\circ}\left(q, d^{\prime}\right) .  \tag{16}\\
& \text { For every function } h \text { from } D \text { into } E \text { holds } h \cdot(i  \tag{18}\\
& F^{\circ}\left(i \longmapsto d, i \longmapsto d^{\prime}\right)=i \longmapsto F\left(d, d^{\prime}\right) .  \tag{19}\\
& F^{\circ}\left(d, i \longmapsto d^{\prime}\right)=i \longmapsto F\left(d, d^{\prime}\right) .  \tag{20}\\
& F^{\circ}\left(i \longmapsto d, d^{\prime}\right)=i \longmapsto F\left(d, d^{\prime}\right) .  \tag{21}\\
& F^{\circ}\left(i \longmapsto d, T^{\prime}\right)=F^{\circ}\left(d, T^{\prime}\right) .  \tag{22}\\
& F^{\circ}(T, i \longmapsto d)=F^{\circ}(T, d) .  \tag{23}\\
& F^{\circ}\left(d, T^{\prime}\right)=F^{\circ}\left(d, \operatorname{id}_{D^{\prime}}\right) \cdot T^{\prime} . \\
& F^{\circ}(T, d)=F^{\circ}\left(\operatorname{id}_{D}, d\right) \cdot T .
\end{align*}
$$

For every function $h$ from $D$ into $E$ holds $h \cdot(i \longmapsto d)=i \longmapsto h(d)$.

In the sequel $F, G$ are binary operations on $D, u$ is a unary operation on $D$, and $H$ is a binary operation on $E$. One can prove the following propositions:
(25) If $F$ is associative, then $F^{\circ}\left(d, \mathrm{id}_{D}\right) \cdot F^{\circ}\left(f, f^{\prime}\right)=F^{\circ}\left(F^{\circ}\left(d, \mathrm{id}_{D}\right) \cdot f, f^{\prime}\right)$.

If $F$ is associative, then $F^{\circ}\left(\mathrm{id}_{D}, d\right) \cdot F^{\circ}\left(f, f^{\prime}\right)=F^{\circ}\left(f, F^{\circ}\left(\mathrm{id}_{D}, d\right) \cdot f^{\prime}\right)$.
If $F$ is associative, then $F^{\circ}\left(d, \operatorname{id}_{D}\right) \cdot F^{\circ}\left(T_{1}, T_{2}\right)=F^{\circ}\left(F^{\circ}\left(d, \mathrm{id}_{D}\right) \cdot T_{1}\right.$, $T_{2}$ ).
(28) If $F$ is associative, then $F^{\circ}\left(\operatorname{id}_{D}, d\right) \cdot F^{\circ}\left(T_{1}, T_{2}\right)=F^{\circ}\left(T_{1}, F^{\circ}\left(\operatorname{id}_{D}, d\right) \cdot T_{2}\right)$.
(29) If $F$ is associative, then $F^{\circ}\left(F^{\circ}\left(T_{1}, T_{2}\right), T_{3}\right)=F^{\circ}\left(T_{1}, F^{\circ}\left(T_{2}, T_{3}\right)\right)$.
(30) If $F$ is associative, then $F^{\circ}\left(F^{\circ}\left(d_{1}, T\right), d_{2}\right)=F^{\circ}\left(d_{1}, F^{\circ}\left(T, d_{2}\right)\right)$.
(31) If $F$ is associative, then $F^{\circ}\left(F^{\circ}\left(T_{1}, d\right), T_{2}\right)=F^{\circ}\left(T_{1}, F^{\circ}\left(d, T_{2}\right)\right)$.
(32) If $F$ is associative, then $F^{\circ}\left(F\left(d_{1}, d_{2}\right), T\right)=F^{\circ}\left(d_{1}, F^{\circ}\left(d_{2}, T\right)\right)$.
(33) If $F$ is associative, then $F^{\circ}\left(T, F\left(d_{1}, d_{2}\right)\right)=F^{\circ}\left(F^{\circ}\left(T, d_{1}\right), d_{2}\right)$.
(34) If $F$ is commutative, then $F^{\circ}\left(T_{1}, T_{2}\right)=F^{\circ}\left(T_{2}, T_{1}\right)$.
(35) If $F$ is commutative, then $F^{\circ}(d, T)=F^{\circ}(T, d)$.
(36) If $F$ is distributive w.r.t. $G$, then $F^{\circ}\left(G\left(d_{1}, d_{2}\right), f\right)=G^{\circ}\left(F^{\circ}\left(d_{1}, f\right)\right.$, $\left.F^{\circ}\left(d_{2}, f\right)\right)$.
(37) If $F$ is distributive w.r.t. $G$, then $F^{\circ}\left(f, G\left(d_{1}, d_{2}\right)\right)=G^{\circ}\left(F^{\circ}\left(f, d_{1}\right)\right.$, $\left.F^{\circ}\left(f, d_{2}\right)\right)$.
(38) If for all $d_{1}, d_{2}$ holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$, then $h \cdot F^{\circ}(f$, $\left.f^{\prime}\right)=H^{\circ}\left(h \cdot f, h \cdot f^{\prime}\right)$.
(39) If for all $d_{1}, d_{2}$ holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$, then $h \cdot F^{\circ}(d, f)=$ $H^{\circ}(h(d), h \cdot f)$.
(40) If for all $d_{1}, d_{2}$ holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$, then $h \cdot F^{\circ}(f, d)=$ $H^{\circ}(h \cdot f, h(d))$.
(41) If $u$ is distributive w.r.t. $F$, then $u \cdot F^{\circ}\left(f, f^{\prime}\right)=F^{\circ}\left(u \cdot f, u \cdot f^{\prime}\right)$.
(42) If $u$ is distributive w.r.t. $F$, then $u \cdot F^{\circ}(d, f)=F^{\circ}(u(d), u \cdot f)$.
(43) If $u$ is distributive w.r.t. $F$, then $u \cdot F^{\circ}(f, d)=F^{\circ}(u \cdot f, u(d))$.
(44) If $F$ has a unity, then $F^{\circ}\left(C \longmapsto \mathbf{1}_{F}, f\right)=f$ and $F^{\circ}\left(f, C \longmapsto \mathbf{1}_{F}\right)=f$.
(45) If $F$ has a unity, then $F^{\circ}\left(\mathbf{1}_{F}, f\right)=f$.
(46) If $F$ has a unity, then $F^{\circ}\left(f, \mathbf{1}_{F}\right)=f$.
(47) If $F$ is distributive w.r.t. $G$, then $F^{\circ}\left(G\left(d_{1}, d_{2}\right), T\right)=G^{\circ}\left(F^{\circ}\left(d_{1}, T\right)\right.$, $\left.F^{\circ}\left(d_{2}, T\right)\right)$.
(48) If $F$ is distributive w.r.t. $G$, then $F^{\circ}\left(T, G\left(d_{1}, d_{2}\right)\right)=G^{\circ}\left(F^{\circ}\left(T, d_{1}\right)\right.$, $\left.F^{\circ}\left(T, d_{2}\right)\right)$.
(49) If for all $d_{1}, d_{2}$ holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$, then $h \cdot F^{\circ}\left(T_{1}\right.$, $\left.T_{2}\right)=H^{\circ}\left(h \cdot T_{1}, h \cdot T_{2}\right)$.
(50) If for all $d_{1}, d_{2}$ holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$, then $h \cdot F^{\circ}(d, T)=$ $H^{\circ}(h(d), h \cdot T)$.
(51) If for all $d_{1}, d_{2}$ holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$, then $h \cdot F^{\circ}(T, d)=$ $H^{\circ}(h \cdot T, h(d))$.
(52) If $u$ is distributive w.r.t. $F$, then $u \cdot F^{\circ}\left(T_{1}, T_{2}\right)=F^{\circ}\left(u \cdot T_{1}, u \cdot T_{2}\right)$.
(53) If $u$ is distributive w.r.t. $F$, then $u \cdot F^{\circ}(d, T)=F^{\circ}(u(d), u \cdot T)$.
(54) If $u$ is distributive w.r.t. $F$, then $u \cdot F^{\circ}(T, d)=F^{\circ}(u \cdot T, u(d))$.
(55) If $G$ is distributive w.r.t. $F$ and $u=G^{\circ}\left(d, \operatorname{id}_{D}\right)$, then $u$ is distributive w.r.t. $F$.
(56) If $G$ is distributive w.r.t. $F$ and $u=G^{\circ}\left(\operatorname{id}_{D}, d\right)$, then $u$ is distributive w.r.t. $F$.
(57) If $F$ has a unity, then $F^{\circ}\left(i \longmapsto \mathbf{1}_{F}, T\right)=T$ and $F^{\circ}\left(T, i \longmapsto \mathbf{1}_{F}\right)=T$.

If $F$ has a unity, then $F^{\circ}\left(\mathbf{1}_{F}, T\right)=T$.
If $F$ has a unity, then $F^{\circ}\left(T, \mathbf{1}_{F}\right)=T$.
Let us consider $D, u, F$. We say that $u$ is an inverse operation w.r.t. $F$ if and only if:
for every $d$ holds $F(d, u(d))=\mathbf{1}_{F}$ and $F(u(d), d)=\mathbf{1}_{F}$.
One can prove the following proposition
(60) $u$ is an inverse operation w.r.t. $F$ if and only if for every $d$ holds $F(d$, $u(d))=\mathbf{1}_{F}$ and $F(u(d), d)=\mathbf{1}_{F}$.
Let us consider $D, F$. We say that $F$ has an inverse operation if and only if: there exists $u$ such that $u$ is an inverse operation w.r.t. $F$.
Next we state the proposition
(61) $F$ has an inverse operation if and only if there exists $u$ such that $u$ is an inverse operation w.r.t. $F$.
Let us consider $D, F$. Let us assume that $F$ has a unity and $F$ is associative and $F$ has an inverse operation. The inverse operation w.r.t.F yields a unary operation on $D$ and is defined as follows:
the inverse operation w.r.t.F is an inverse operation w.r.t. $F$.
We now state a number of propositions:
(62) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation, then for every $u$ holds $u=$ the inverse operation w.r.t.F if and only if $u$ is an inverse operation w.r.t. $F$.
(63) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation, then $F(($ the inverse operation w.r.t.F $)(\mathrm{d}), \mathrm{d})=\mathbf{1}_{\mathrm{F}}$ and $F(d$, (the inverse operation w.r.t.F)(d)) $=\mathbf{1}_{\mathrm{F}}$.
(64) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation and $F\left(d_{1}, d_{2}\right)=\mathbf{1}_{F}$, then $d_{1}=$ (the inverse operation w.r.t.F) $\left(\mathrm{d}_{2}\right)$ and (the inverse operation w.r.t. $F$ ) $\left(\mathrm{d}_{1}\right)=\mathrm{d}_{2}$.
(65) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation, then (the inverse operation w.r.t.F) $\left(\mathbf{1}_{\mathrm{F}}\right)=\mathbf{1}_{\mathrm{F}}$.
(66) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation, then (the inverse operation w.r.t.F) $(($ the inverse operation w.r.t.F $)(\mathrm{d}))=\mathrm{d}$.
(67) If $F$ has a unity and $F$ is associative and $F$ is commutative and $F$ has an inverse operation, then the inverse operation w.r.t.F is distributive w.r.t. $F$.
(68) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation but $F\left(d, d_{1}\right)=F\left(d, d_{2}\right)$ or $F\left(d_{1}, d\right)=F\left(d_{2}, d\right)$, then $d_{1}=d_{2}$.
(69) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation but $F\left(d_{1}, d_{2}\right)=d_{2}$ or $F\left(d_{2}, d_{1}\right)=d_{2}$, then $d_{1}=\mathbf{1}_{F}$.
(70) If $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$ and $e=\mathbf{1}_{F}$, then for every $d$ holds $G(e$, $d)=e$ and $G(d, e)=e$.
(71) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation and $u=$ the inverse operation w.r.t.F and $G$ is distributive w.r.t. $F$, then $u\left(G\left(d_{1}, d_{2}\right)\right)=G\left(u\left(d_{1}\right), d_{2}\right)$ and $u\left(G\left(d_{1}, d_{2}\right)\right)=G\left(d_{1}, u\left(d_{2}\right)\right)$.
(72) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation and $u=$ the inverse operation w.r.t.F and $G$ is distributive w.r.t. $F$ and $G$ has a unity, then $G^{\circ}\left(u\left(\mathbf{1}_{G}\right), \mathrm{id}_{D}\right)=u$.
(73) If $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $\left(G^{\circ}\left(d, \operatorname{id}_{D}\right)\right)\left(\mathbf{1}_{F}\right)=\mathbf{1}_{F}$.
(74) If $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $\left(G^{\circ}\left(\mathrm{id}_{D}, d\right)\right)\left(\mathbf{1}_{F}\right)=\mathbf{1}_{F}$.
(75) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation, then $F^{\circ}(f$, (the inverse operation w.r.t.F $\left.) \cdot \mathrm{f}\right)=\mathrm{C} \longmapsto \mathbf{1}_{\mathrm{F}}$ and $F^{\circ}(($ the inverse operation w.r.t.F) $\cdot \mathrm{f}, \mathrm{f})=\mathrm{C} \longmapsto \mathbf{1}_{\mathrm{F}}$.
(76) If $F$ is associative and $F$ has an inverse operation and $F$ has a unity and $F^{\circ}\left(f, f^{\prime}\right)=C \longmapsto \mathbf{1}_{F}$, then $f=\left(\right.$ the inverse operation w.r.t.F) $\cdot \mathrm{f}^{\prime}$ and (the inverse operation w.r.t.F) $\cdot \mathrm{f}=\mathrm{f}^{\prime}$.
(77) If $F$ has a unity and $F$ is associative and $F$ has an inverse operation, then $F^{\circ}(T$, (the inverse operation w.r.t.F) $\cdot \mathrm{T})=\mathrm{i} \longmapsto \mathbf{1}_{\mathrm{F}}$ and $F^{\circ}(($ the inverse operation w.r.t.F) $\cdot \mathrm{T}, \mathrm{T})=\mathrm{i} \longmapsto \mathbf{1}_{\mathrm{F}}$.
(78) If $F$ is associative and $F$ has an inverse operation and $F$ has a unity and $F^{\circ}\left(T_{1}, T_{2}\right)=i \longmapsto \mathbf{1}_{F}$, then $T_{1}=$ (the inverse operation w.r.t.F) $\cdot \mathrm{T}_{2}$ and (the inverse operation w.r.t.F) $\cdot \mathrm{T}_{1}=\mathrm{T}_{2}$.
(79) If $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$ and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $G^{\circ}(e, f)=C \longmapsto e$.
(80) If $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$ and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $G^{\circ}(e, T)=i \longmapsto e$.
Let $F, f, g$ be functions. The functor $F \circ(f, g)$ yielding a function is defined by:
$F \circ(f, g)=F \cdot: f, g:$.
Next we state several propositions:
(81) For all functions $F, f, g$ holds $F \circ(f, g)=F \cdot[f, g:]$.
(82) For all functions $F, f, g$ such that $\langle x, y\rangle \in \operatorname{dom}(F \circ(f, g))$ holds $(F \circ$ $(f, g))(\langle x, y\rangle)=F(\langle f(x), g(y)\rangle)$.
(83) For all functions $F, f, g$ such that $\langle x, y\rangle \in \operatorname{dom}(F \circ(f, g))$ holds $(F \circ$ $(f, g))(x, y)=F(f(x), g(y))$.
(84) For every function $F$ from : $D, D^{\prime}$ : into $E$ and for every function $f$ from $C$ into $D$ and for every function $g$ from $C^{\prime}$ into $D^{\prime}$ holds $F \circ(f, g)$ is a function from $: C, C^{\prime} \ddagger$ into $E$.
(85) For all functions $u, u^{\prime}$ from $D$ into $D$ holds $F \circ\left(u, u^{\prime}\right)$ is a binary operation on $D$.
Let us consider $D, F$, and let $f, f^{\prime}$ be functions from $D$ into $D$. Then $F \circ\left(f, f^{\prime}\right)$ is a binary operation on $D$.

The following propositions are true:
(86) For every function $F$ from : $D, D^{\prime}$ : into $E$ and for every function $f$ from $C$ into $D$ and for every function $g$ from $C^{\prime}$ into $D^{\prime}$ holds $(F \circ(f, g))(c$, $\left.c^{\prime}\right)=F\left(f(c), g\left(c^{\prime}\right)\right)$.
(87) For every function $u$ from $D$ into $D$ holds $\left(F \circ\left(\operatorname{id}_{D}, u\right)\right)\left(d_{1}, d_{2}\right)=F\left(d_{1}\right.$, $\left.u\left(d_{2}\right)\right)$ and $\left(F \circ\left(u, \operatorname{id}_{D}\right)\right)\left(d_{1}, d_{2}\right)=F\left(u\left(d_{1}\right), d_{2}\right)$.
(88) $\quad\left(F \circ\left(\mathrm{id}_{D}, u\right)\right)^{\circ}\left(f, f^{\prime}\right)=F^{\circ}\left(f, u \cdot f^{\prime}\right)$.
(89) $\quad\left(F \circ\left(\mathrm{id}_{D}, u\right)\right)^{\circ}\left(T_{1}, T_{2}\right)=F^{\circ}\left(T_{1}, u \cdot T_{2}\right)$.
(90) Suppose $F$ is associative and $F$ has a unity and $F$ is commutative and $F$ has an inverse operation and $u=$ the inverse operation w.r.t.F. Then $u\left(\left(F \circ\left(\mathrm{id}_{D}, u\right)\right)\left(d_{1}, d_{2}\right)\right)=\left(F \circ\left(u, \mathrm{id}_{D}\right)\right)\left(d_{1}, d_{2}\right)$ and $\left(F \circ\left(\mathrm{id}_{D}, u\right)\right)\left(d_{1}\right.$, $\left.d_{2}\right)=u\left(\left(F \circ\left(u, \mathrm{id}_{D}\right)\right)\left(d_{1}, d_{2}\right)\right)$.
(91) If $F$ is associative and $F$ has a unity and $F$ has an inverse operation, then $\left(F \circ\left(\mathrm{id}_{D}\right.\right.$, the inverse operation w.r.t. F$)(\mathrm{d}, \mathrm{d})=\mathbf{1}_{\mathrm{F}}$.
(92) If $F$ is associative and $F$ has a unity and $F$ has an inverse operation, then $\left(F \circ\left(\mathrm{id}_{D}\right.\right.$, the inverse operation w.r.t. F$\left.)\right)\left(\mathrm{d}, \mathbf{1}_{\mathrm{F}}\right)=\mathrm{d}$.
(93) If $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $u=$ the inverse operation w.r.t.F, then $\left(F \circ\left(\mathrm{id}_{D}, u\right)\right)\left(\mathbf{1}_{F}, d\right)=u(d)$.
(94) If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G=F \circ\left(\operatorname{id}_{D}\right.$, the inverse operation w.r.t.F), then for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right), G\left(d_{3}, d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right), F\left(d_{2}\right.\right.$, $\left.d_{4}\right)$ ).

## References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, $1(\mathbf{1}): 153-164,1990$.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[7] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[8] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received May 4, 1990

# Semigroup operations on finite subsets 

Czesław Byliński ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. A continuation of [10]. The propositions and theorems proved in [10] are extended to finite sequences. Several additional theorems related to semigroup operations of functions not included in [10] are proved. The special notation for operations on finite sequences is introduced.


MML Identifier: SETWOP_2.

The articles [11], [1], [9], [6], [2], [12], [7], [3], [13], [8], [10], [5], and [4] provide the terminology and notation for this paper. For simplicity we adopt the following rules: $x$ will be arbitrary, $C, C^{\prime}, D, E$ will denote non-empty sets, $c, c_{1}, c_{2}$, $c_{3}$ will denote elements of $C, B, B_{1}, B_{2}$ will denote elements of Fin $C, A$ will denote an element of Fin $C^{\prime}, d, d_{1}, d_{2}, d_{3}, d_{4}, e$ will denote elements of $D, F$, $G$ will denote binary operations on $D, u$ will denote a unary operation on $D$, $f, f^{\prime}$ will denote functions from $C$ into $D, g$ will denote a function from $C^{\prime}$ into $D, H$ will denote a binary operation on $E, h$ will denote a function from $D$ into $E, i, j$ will denote natural numbers, $s$ will denote a function, $p, p_{1}, p_{2}, q$ will denote finite sequences of elements of $D$, and $T_{1}, T_{2}$ will denote elements of $D^{i}$. We now state a number of propositions:
(1) $\operatorname{Seg} i$ is an element of $\operatorname{Fin} \mathbb{N}$.
(2) $\quad i+j \longmapsto x=(i \longmapsto x)^{\wedge}(j \longmapsto x)$.
(3) If $F$ is commutative and $F$ is associative and $c_{1} \neq c_{2}$, then $F-\sum_{\left\{c_{1}, c_{2}\right\}} f=$ $F\left(f\left(c_{1}\right), f\left(c_{2}\right)\right)$.
(4) If $F$ is commutative and $F$ is associative but $B \neq \emptyset$ or $F$ has a unity and $c \notin B$, then $F-\sum_{B \cup\{c\}} f=F\left(F-\sum_{B} f, f(c)\right)$.
(5) If $F$ is commutative and $F$ is associative and $c_{1} \neq c_{2}$ and $c_{1} \neq c_{3}$ and $c_{2} \neq c_{3}$, then $F-\sum_{\left\{c_{1}, c_{2}, c_{3}\right\}} f=F\left(F\left(f\left(c_{1}\right), f\left(c_{2}\right)\right), f\left(c_{3}\right)\right)$.

[^3](6) If $F$ is commutative and $F$ is associative but $B_{1} \neq \emptyset$ and $B_{2} \neq \emptyset$ or $F$ has a unity and $B_{1} \cap B_{2}=\emptyset$, then $F-\sum_{B_{1} \cup B_{2}} f=F\left(F-\sum_{B_{1}} f, F-\sum_{B_{2}} f\right)$.
(7) If $F$ is commutative and $F$ is associative but $A \neq \emptyset$ or $F$ has a unity and there exists $s$ such that dom $s=A$ and $\operatorname{rng} s=B$ and $s$ is one-to-one and $g \upharpoonright A=f \cdot s$, then $F-\sum_{A} g=F-\sum_{B} f$.
(9) If $F$ is commutative and $F$ is associative but $B \neq \emptyset$ or $F$ has a unity and $f \upharpoonright B=f^{\prime} \upharpoonright B$, then $F-\sum_{B} f=F-\sum_{B} f^{\prime}$.
(10) If $F$ is commutative and $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$ and $f{ }^{\circ} B=\{e\}$, then $F-\sum_{B} f=e$.
Suppose $F$ is commutative and $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$ and $G(e, e)=e$ and for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right)\right.$, $\left.G\left(d_{3}, d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right), F\left(d_{2}, d_{4}\right)\right)$. Then $G\left(F-\sum_{B} f, F-\sum_{B} f^{\prime}\right)=$ $F-\sum_{B} G^{\circ}\left(f, f^{\prime}\right)$.
If $F$ is commutative and $F$ is associative and $F$ has a unity, then $F\left(F-\sum_{B} f, F-\sum_{B} f^{\prime}\right)=F-\sum_{B} F^{\circ}\left(f, f^{\prime}\right)$.

If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G=F \circ\left(\mathrm{id}_{D}\right.$, the inverse operation w.r.t.F $)$, then $G\left(F-\sum_{B} f, F-\sum_{B} f^{\prime}\right)=F-\sum_{B} G^{\circ}\left(f, f^{\prime}\right)$.
(14) If $F$ is commutative and $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$ and $G$ is distributive w.r.t. $F$ and $G(d, e)=e$, then $G\left(d, F-\sum_{B} f\right)=$ $F-\sum_{B}\left(G^{\circ}(d, f)\right)$.
(15) If $F$ is commutative and $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$ and $G$ is distributive w.r.t. $F$ and $G(e, d)=e$, then $G\left(F-\sum_{B} f, d\right)=$ $F-\sum_{B}\left(G^{\circ}(f, d)\right)$.
(16) If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $G\left(d, F-\sum_{B} f\right)=$ $F-\sum_{B}\left(G^{\circ}(d, f)\right)$.
If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $G\left(F-\sum_{B} f\right.$, $d)=F-\sum_{B}\left(G^{\circ}(f, d)\right)$.
(18) Suppose $F$ is commutative and $F$ is associative and $F$ has a unity and $H$ is commutative and $H$ is associative and $H$ has a unity and $h\left(\mathbf{1}_{F}\right)=\mathbf{1}_{H}$ and for all $d_{1}, d_{2}$ holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$. Then $h\left(F-\sum_{B} f\right)=H-\sum_{B}(h \cdot f)$.
(19) If $F$ is commutative and $F$ is associative and $F$ has a unity and $u\left(\mathbf{1}_{F}\right)=$ $\mathbf{1}_{F}$ and $u$ is distributive w.r.t. $F$, then $u\left(F-\sum_{B} f\right)=F-\sum_{B}(u \cdot f)$.
(20) If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $\left(G^{\circ}\left(d, \mathrm{id}_{D}\right)\right)\left(F-\sum_{B} f\right)=F-\sum_{B}\left(G^{\circ}\left(d, \mathrm{id}_{D}\right) \cdot f\right)$.
(21) If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$
has an inverse operation, then (the inverse operation w.r.t.F) $\left(F-\sum_{B} f\right)=$ $\mathrm{F}-\sum_{\mathrm{B}}(($ the inverse operation w.r.t.F $) \cdot \mathrm{f})$.
Let us consider $D, p, d$. The functor $\Omega_{d}(p)$ yields a function from $\mathbb{N}$ into $D$ and is defined by:
if $i \in \operatorname{Seg}(\operatorname{len} p)$, then $\left(\Omega_{d}(p)\right)(i)=p(i)$ but if $i \notin \operatorname{Seg}(\operatorname{len} p)$, then $\left(\Omega_{d}(p)\right)(i)=$ $d$.

Next we state several propositions:
(22) For every function $h$ from $\mathbb{N}$ into $D$ holds $h=\Omega_{d}(p)$ if and only if for every $i$ holds if $i \in \operatorname{Seg}(\operatorname{len} p)$, then $h(i)=p(i)$ but if $i \notin \operatorname{Seg}(\operatorname{len} p)$, then $h(i)=d$.
(24) $\quad \Omega_{d}\left(\left(p^{\wedge} q\right)\right) \upharpoonright \operatorname{Seg}(\operatorname{len} p)=p$.
(25) $\quad \operatorname{rng}\left(\Omega_{d}(p)\right)=\operatorname{rng} p \cup\{d\}$.
(26) $\quad h \cdot \Omega_{d}(p)=\Omega_{h(d)}((h \cdot p))$.

Let us consider $i$. Then $\operatorname{Seg} i$ is an element of $\operatorname{Fin} \mathbb{N}$.
Let $X$ be a non-empty subset of $\mathbb{R}$, and let $x$ be an element of $X$. Then $\{x\}$ is an element of Fin $X$. Let $y$ be an element of $X$. Then $\{x, y\}$ is an element of Fin $X$. Let $z$ be an element of $X$. Then $\{x, y, z\}$ is an element of Fin $X$.

Let us consider $D, F, p$. The functor $F \circledast p$ yielding an element of $D$ is defined by:
$F \circledast p=F-\sum_{\operatorname{Seg}(\operatorname{len} p)} \Omega_{\mathbf{1}_{F}}(p)$.
Next we state several propositions:
(27) $\quad F \circledast p=F-\sum_{\operatorname{Seg}(\operatorname{len} p)} \Omega_{\mathbf{1}_{F}}(p)$.
(28) If $F$ is commutative and $F$ is associative and $F$ has a unity, then $F \circledast$ $\varepsilon_{D}=1_{F}$.
(29) If $F$ is commutative and $F$ is associative, then $F \circledast\langle d\rangle=d$.
(30) If $F$ is commutative and $F$ is associative but len $p \neq 0$ or $F$ has a unity, then $F \circledast\left(p^{\frown}\langle d\rangle\right)=F(F \circledast p, d)$.
(31) If $F$ is commutative and $F$ is associative but len $p_{1} \neq 0$ and len $p_{2} \neq 0$ or $F$ has a unity, then $F \circledast\left(p_{1} \wedge p_{2}\right)=F\left(F \circledast p_{1}, F \circledast p_{2}\right)$.
(32) If $F$ is commutative and $F$ is associative but len $p \neq 0$ or $F$ has a unity, then $F \circledast\left(\langle d\rangle{ }^{\wedge} p\right)=F(d, F \circledast p)$.
Let us consider $D, d_{1}, d_{2}$. Then $\left\langle d_{1}, d_{2}\right\rangle$ is a finite sequence of elements of $D$.
One can prove the following proposition
(33) If $F$ is commutative and $F$ is associative, then $F \circledast\left\langle d_{1}, d_{2}\right\rangle=F\left(d_{1}, d_{2}\right)$.

Let us consider $D, d_{1}, d_{2}, d_{3}$. Then $\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ is a finite sequence of elements of $D$.

We now state a number of propositions:
(34) If $F$ is commutative and $F$ is associative, then $F \circledast\left\langle d_{1}, d_{2}, d_{3}\right\rangle=F\left(F\left(d_{1}\right.\right.$, $\left.\left.d_{2}\right), d_{3}\right)$.
(35) If $F$ is commutative and $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$, then $F \circledast(i \longmapsto e)=e$.
(36) If $F$ is commutative and $F$ is associative, then $F \circledast(1 \longmapsto d)=d$.
(37) If $F$ is commutative and $F$ is associative but $i \neq 0$ and $j \neq 0$ or $F$ has a unity, then $F \circledast(i+j \longmapsto d)=F(F \circledast(i \longmapsto d), F \circledast(j \longmapsto d))$.
(38) If $F$ is commutative and $F$ is associative but $i \neq 0$ and $j \neq 0$ or $F$ has a unity, then $F \circledast(i \cdot j \longmapsto d)=F \circledast(j \longmapsto F \circledast(i \longmapsto d))$.
(39) Suppose $F$ is commutative and $F$ is associative and $F$ has a unity and $H$ is commutative and $H$ is associative and $H$ has a unity and $h\left(\mathbf{1}_{F}\right)=\mathbf{1}_{H}$ and for all $d_{1}, d_{2}$ holds $h\left(F\left(d_{1}, d_{2}\right)\right)=H\left(h\left(d_{1}\right), h\left(d_{2}\right)\right)$. Then $h(F \circledast p)=$ $H \circledast(h \cdot p)$.
(40) If $F$ is commutative and $F$ is associative and $F$ has a unity and $u\left(\mathbf{1}_{F}\right)=$ $\mathbf{1}_{F}$ and $u$ is distributive w.r.t. $F$, then $u(F \circledast p)=F \circledast(u \cdot p)$.
(41) If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $\left(G^{\circ}\left(d, \mathrm{id}_{D}\right)\right)(F \circledast$ $p)=F \circledast\left(G^{\circ}\left(d, \mathrm{id}_{D}\right) \cdot p\right)$.
(42) If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation, then (the inverse operation w.r.t. F$)(\mathrm{F} \circledast \mathrm{p})=\mathrm{F} \circledast(($ the inverse operation w.r.t.F) • p).
(43) Suppose that
(i) $F$ is commutative,
(ii) $F$ is associative,
(iii) $F$ has a unity,
(iv) $e=\mathbf{1}_{F}$,
(v) $G(e, e)=e$,
(vi) for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right), G\left(d_{3}, d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right)\right.$, $F\left(d_{2}, d_{4}\right)$ ),
(vii) $\quad \operatorname{len} p=\operatorname{len} q$.

Then $G(F \circledast p, F \circledast q)=F \circledast G^{\circ}(p, q)$.
(44) Suppose $F$ is commutative and $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$ and $G(e, e)=e$ and for all $d_{1}, d_{2}, d_{3}, d_{4}$ holds $F\left(G\left(d_{1}, d_{2}\right), G\left(d_{3}\right.\right.$, $\left.\left.d_{4}\right)\right)=G\left(F\left(d_{1}, d_{3}\right), F\left(d_{2}, d_{4}\right)\right)$. Then $G\left(F \circledast T_{1}, F \circledast T_{2}\right)=F \circledast G^{\circ}\left(T_{1}\right.$, $T_{2}$ ).
(45) If $F$ is commutative and $F$ is associative and $F$ has a unity and len $p=$ len $q$, then $F(F \circledast p, F \circledast q)=F \circledast F^{\circ}(p, q)$.
(46) If $F$ is commutative and $F$ is associative and $F$ has a unity, then $F(F \circledast$ $\left.T_{1}, F \circledast T_{2}\right)=F \circledast F^{\circ}\left(T_{1}, T_{2}\right)$.
(47) If $F$ is commutative and $F$ is associative and $F$ has a unity, then $F \circledast$ $\left(i \longmapsto F\left(d_{1}, d_{2}\right)\right)=F\left(F \circledast\left(i \longmapsto d_{1}\right), F \circledast\left(i \longmapsto d_{2}\right)\right)$.
(48) If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G=F \circ\left(\operatorname{id}_{D}\right.$, the inverse operation w.r.t.F), then $G\left(F \circledast T_{1}, F \circledast T_{2}\right)=F \circledast G^{\circ}\left(T_{1}, T_{2}\right)$.
(49) If $F$ is commutative and $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$ and $G$ is distributive w.r.t. $F$ and $G(d, e)=e$, then $G(d, F \circledast p)=$ $F \circledast\left(G^{\circ}(d, p)\right)$.
(50) If $F$ is commutative and $F$ is associative and $F$ has a unity and $e=\mathbf{1}_{F}$ and $G$ is distributive w.r.t. $F$ and $G(e, d)=e$, then $G(F \circledast p, d)=$ $F \circledast\left(G^{\circ}(p, d)\right)$.
(51) If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $G(d, F \circledast p)=$ $F \circledast\left(G^{\circ}(d, p)\right)$.
(52) If $F$ is commutative and $F$ is associative and $F$ has a unity and $F$ has an inverse operation and $G$ is distributive w.r.t. $F$, then $G(F \circledast p$, $d)=F \circledast\left(G^{\circ}(p, d)\right)$.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[4] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[9] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[10] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[13] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received May 4, 1990

# The Collinearity Structure 

Wojciech Skaba ${ }^{1}$<br>Nicolaus Copernicus University<br>Toruń


#### Abstract

Summary. The text includes basic axioms and theorems concerning the collinearity structure based on Wanda Szmielew [1], pp. 18-20. Collinearity is defined as a relation on Cartesian product $: S, S, S$ : of set $S$. The basic text is preceeded with a few auxiliary theorems (e.g: ternary relation). Then come the two basic axioms of the collinearity structure: A1.1.1 and A1.1.2 and a few theorems. Another axiom: Aks dim, which states that there exist at least 3 non-collinear points, excludes the trivial structures ( i.e. pairs $\langle S,[: S, S, S:\rangle\rangle$ ). Following it the notion of a line is included and several additional theorems are appended.


MML Identifier: COLLSP.

The articles [3], and [2] provide the notation and terminology for this paper. In the sequel $R, X$ will denote sets. Let us consider $X$. A set is said to be a ternary relation on $X$ if:
it $\subseteq: X, X, X:]$.
Next we state two propositions:
(1) $\quad R$ is a ternary relation on $X$ if and only if $R \subseteq: X, X, X:$.
(2) $\quad X=\emptyset$ or there exists arbitrary $a$ such that $\{a\}=X$ or there exist arbitrary $a, b$ such that $a \neq b$ and $a \in X$ and $b \in X$.
We consider collinearity structures which are systems
〈points, a collinearity relation),
where the points constitute a non-empty set and the collinearity relation is a ternary relation on the points. In the sequel $C S$ is a collinearity structure. Let us consider $C S$. A point of $C S$ is an element of the points of $C S$.

In the sequel $a, b, c$ denote points of $C S$. Let us consider $C S, a, b, c$. We say that $a, b$ and $c$ are collinear if and only if:
$\langle a, b, c\rangle \in$ the collinearity relation of $C S$.
The following proposition is true

[^4]$(5)^{2} \quad a, b$ and $c$ are collinear if and only if $\langle a, b, c\rangle \in$ the collinearity relation of $C S$.

A collinearity structure is said to be a collinearity space if:
Let $a, b, c, p, q, r$ be points of it. Then
(i) if $a=b$ or $a=c$ or $b=c$, then $\langle a, b, c\rangle \in$ the collinearity relation of it,
(ii) if $a \neq b$ and $\langle a, b, p\rangle \in$ the collinearity relation of it and $\langle a, b, q\rangle \in$ the collinearity relation of it and $\langle a, b, r\rangle \in$ the collinearity relation of it, then $\langle p, q, r\rangle \in$ the collinearity relation of it.

Next we state the proposition
(6) $C S$ is a collinearity space if and only if for all points $a, b, c, p, q, r$ of $C S$ holds if $a=b$ or $a=c$ or $b=c$, then $\langle a, b, c\rangle \in$ the collinearity relation of $C S$ but if $a \neq b$ and $\langle a, b, p\rangle \in$ the collinearity relation of $C S$ and $\langle a, b, q\rangle \in$ the collinearity relation of $C S$ and $\langle a, b, r\rangle \in$ the collinearity relation of $C S$, then $\langle p, q, r\rangle \in$ the collinearity relation of $C S$.
We adopt the following rules: $C L S P$ is a collinearity space and $a, b, c, d, p$, $q, r$ are points of $C L S P$. We now state several propositions:
(7) If $a=b$ or $a=c$ or $b=c$, then $a, b$ and $c$ are collinear.
(8) If $a \neq b$ and $a, b$ and $p$ are collinear and $a, b$ and $q$ are collinear and $a$, $b$ and $r$ are collinear, then $p, q$ and $r$ are collinear.
(9) If $a, b$ and $c$ are collinear, then $b, a$ and $c$ are collinear and $a, c$ and $b$ are collinear.
(10) $a, b$ and $a$ are collinear.
(11) If $a \neq b$ and $a, b$ and $c$ are collinear and $a, b$ and $d$ are collinear, then $a, c$ and $d$ are collinear.
(12) If $a, b$ and $c$ are collinear, then $b, a$ and $c$ are collinear.
(13) If $a, b$ and $c$ are collinear, then $b, c$ and $a$ are collinear.
(14) If $p \neq q$ and $a, b$ and $p$ are collinear and $a, b$ and $q$ are collinear and $p$, $q$ and $r$ are collinear, then $a, b$ and $r$ are collinear.

Let us consider $C L S P, a, b$. The functor $\operatorname{Line}(a, b)$ yields a set and is defined as follows:

Line $(a, b)=\{p: a, b$ and $p$ are collinear $\}$.
One can prove the following propositions:
(15) $\operatorname{Line}(a, b)=\{p: a, b$ and $p$ are collinear $\}$.
(16) $\quad a \in \operatorname{Line}(a, b)$ and $b \in \operatorname{Line}(a, b)$.
(17) $\quad a, b$ and $r$ are collinear if and only if $r \in \operatorname{Line}(a, b)$.

A collinearity space is said to be a proper collinearity space if:
there exist points $a, b, c$ of it such that $a, b$ and $c$ are not collinear.
The following proposition is true
(18) $C L S P$ is a proper collinearity space if and only if there exist $a, b, c$ such that $a, b$ and $c$ are not collinear.

[^5]We follow a convention: $C L S P$ will be a proper collinearity space and $a, b$, $p, q, r$ will be points of $C L S P$. We now state the proposition
(19) For all $p, q$ such that $p \neq q$ there exists $r$ such that $p, q$ and $r$ are not collinear.
Let us consider $C L S P$. A set is called a line of $C L S P$ if:
there exist $a, b$ such that $a \neq b$ and it $=\operatorname{Line}(a, b)$.
The following propositions are true:
(20) For every set $X$ holds $X$ is a line of $C L S P$ if and only if there exist $a$, $b$ such that $a \neq b$ and $X=\operatorname{Line}(a, b)$.
(21) If $a \neq b$, then Line $(a, b)$ is a line of $C L S P$.

In the sequel $P, Q$ are lines of $C L S P$. The following propositions are true:
(22) If $a=b$, then $\operatorname{Line}(a, b)=$ the points of $C L S P$.
(23) For every $P$ there exist $a, b$ such that $a \neq b$ and $a \in P$ and $b \in P$.
(24) If $a \neq b$, then there exists $P$ such that $a \in P$ and $b \in P$.
(25) If $p \in P$ and $q \in P$ and $r \in P$, then $p, q$ and $r$ are collinear.
(26) If $P \subseteq Q$, then $P=Q$.
(27) If $p \neq q$ and $p \in P$ and $q \in P$, then $\operatorname{Line}(p, q) \subseteq P$.
(28) If $p \neq q$ and $p \in P$ and $q \in P$, then $\operatorname{Line}(p, q)=P$.
(29) If $p \neq q$ and $p \in P$ and $q \in P$ and $p \in Q$ and $q \in Q$, then $P=Q$.
(30) $P=Q$ or $P \cap Q=\emptyset$ or there exists $p$ such that $P \cap Q=\{p\}$.
(31) If $a \neq b$, then Line $(a, b) \neq$ the points of $C L S P$.

## References

[1] Wanda Szmielew. From Affine to Euclidean Geometry. Volume 27, PWN - D.Reidel Publ. Co., Warszawa - Dordrecht, 1983.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

# The Sum and Product of Finite Sequences of Real Numbers 

Czesław Byliński ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. Some operations on the set of n-tuples of real numbers are introduced. Addition, difference of such n-tuples, complement of a n -tuple and multiplication of these by real numbers are defined. In these definitions more general properties of binary operations applied to finite sequences from [3] are used. Then the fact that certain properties are satisfied by those operations is demonstrated directly from [3]. Moreover some properties can be recognized as being those of real vector space. Multiplication of n-tuples of real numbers and square power of n-tuple of real numbers using for notation of some properties of finite sums and products of real numbers are defined, followed by definitions of the finite sum and product of n-tuples of real numbers using notions and properties introduced in [7]. A number of propositions and theorems on sum and product of finite sequences of real numbers are proved. As a additional properties there are proved some properties of real numbers and set representations of binary operations on real numbers.


MML Identifier: RVSUM_1.

The papers [8], [12], [5], [6], [1], [2], [13], [10], [9], [11], [4], [3], and [7] provide the terminology and notation for this paper. For simplicity we follow the rules: $i, j, k$ are natural numbers, $r, r^{\prime}, r_{1}, r_{2}, r_{3}$ are real numbers, $x$ is an element of $\mathbb{R}, F, F_{1}, F_{2}$ are finite sequences of elements of $\mathbb{R}$, and $R, R_{1}, R_{2}, R_{3}$ are elements of $\mathbb{R}^{i}$. Next we state the proposition
(1) $\quad-\left(r_{1}+r_{2}\right)=\left(-r_{1}\right)+\left(-r_{2}\right)$.

Let us consider $x$. The functor @ $x$ yields a real number and is defined by:
$@ x=x$.
The following propositions are true:
(2) $@ x=x$.

[^6](3) 0 is a unity w.r.t. $+_{\mathbb{R}}$.
(4) $\mathbf{1}_{+\mathbb{R}}=0$.
(5) $\quad+_{\mathbb{R}}$ has a unity.
(6) $\quad+_{\mathbb{R}}$ is commutative.
(7) $\quad+_{\mathbb{R}}$ is associative.

The binary operation $-_{\mathbb{R}}$ on $\mathbb{R}$ is defined as follows:
$-_{\mathbb{R}}=+_{\mathbb{R}} \circ\left(\mathrm{id}_{\mathbb{R}},-_{\mathbb{R}}\right)$.
We now state two propositions:
(8) $-_{\mathbb{R}}=+_{\mathbb{R}} \circ\left(\mathrm{id}_{\mathbb{R}},-_{\mathbb{R}}\right)$.
(9) $\quad-_{\mathbb{R}}\left(r_{1}, r_{2}\right)=r_{1}-r_{2}$.

The unary operation $\operatorname{sqr}_{\mathbb{R}}$ on $\mathbb{R}$ is defined as follows:
for every $r$ holds $\operatorname{sqr}_{\mathbb{R}}(r)=r^{2}$.
The following propositions are true:
(10) For every unary operation $u$ on $\mathbb{R}$ holds $u=\operatorname{sqr}_{\mathbb{R}}$ if and only if for every $r$ holds $u(r)=r^{2}$.
(11) $\cdot_{\mathbb{R}}$ is commutative.
(12) $\cdot{ }_{\mathrm{R}}$ is associative.
(13) 1 is a unity w.r.t. ${ }_{\mathbb{R}}$.
(14) $\quad \mathbf{1}_{\cdot R}=1$.
(15) ${ }^{R}$ has a unity.
(16) $\cdot_{\mathbb{R}}$ is distributive w.r.t. $+_{\mathbb{R}}$.
(17) $\quad \operatorname{sqr}_{\mathbb{R}}$ is distributive w.r.t. ${ }_{\mathbb{R}}$.

Let us consider $x$. The functor $\cdot{ }_{\mathbb{R}}^{x}$ yielding a unary operation on $\mathbb{R}$ is defined by:

$$
\cdot_{\mathbb{R}}^{x}=\cdot_{\mathbb{R}}{ }^{\circ}\left(x, \mathrm{id}_{\mathbb{R}}\right) .
$$

Next we state several propositions:
(18) $\cdot_{\mathbb{R}}^{x}=\cdot_{\mathbb{R}}{ }^{\circ}\left(x, \mathrm{id}_{\mathbb{R}}\right)$.
(19) $\quad{ }_{\cdot R}^{r}(x)=r \cdot x$.
(20) $\cdot_{R}^{r}$ is distributive w.r.t. $+_{R}$.
(21) $\quad-_{\mathbb{R}}$ is an inverse operation w.r.t. $+_{\mathbb{R}}$.
(22) $+_{\mathbb{R}}$ has an inverse operation.
(23) The inverse operation w.r.t. $+_{\mathbb{R}}=-_{\mathbb{R}}$.
(24) $\quad-_{\mathbb{R}}$ is distributive w.r.t. $+_{\mathbb{R}}$.

Let us consider $F_{1}, F_{2}$. The functor $F_{1}+F_{2}$ yields a finite sequence of elements of $\mathbb{R}$ and is defined by:
$F_{1}+F_{2}=+_{\mathbb{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
We now state two propositions:
(25) $F_{1}+F_{2}=+_{\mathrm{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
(26) If $i \in \operatorname{Seg}\left(\operatorname{len}\left(F_{1}+F_{2}\right)\right)$ and $r_{1}=F_{1}(i)$ and $r_{2}=F_{2}(i)$, then $\left(F_{1}+\right.$ $\left.F_{2}\right)(i)=r_{1}+r_{2}$.

Let us consider $i, R_{1}, R_{2}$. Then $R_{1}+R_{2}$ is an element of $\mathbb{R}^{i}$.
We now state several propositions:
(27) If $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=R_{2}(j)$, then $\left(R_{1}+R_{2}\right)(j)=r_{1}+r_{2}$.
(28) $\quad \varepsilon_{\mathbb{R}}+F=\varepsilon_{\mathbb{R}}$ and $F+\varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}}$.
(29) $\left\langle r_{1}\right\rangle+\left\langle r_{2}\right\rangle=\left\langle r_{1}+r_{2}\right\rangle$.
(30) $\quad\left(i \longmapsto r_{1}\right)+\left(i \longmapsto r_{2}\right)=i \longmapsto r_{1}+r_{2}$.
(31) $\quad R_{1}+R_{2}=R_{2}+R_{1}$.
(32) $\quad R_{1}+\left(R_{2}+R_{3}\right)=\left(R_{1}+R_{2}\right)+R_{3}$.
(33) $\quad R+(i \longmapsto(0$ qua a real number $))=R$ and
$R=(i \longmapsto(0$ qua a real number $))+R$.
Let us consider $F$. The functor $-F$ yields a finite sequence of elements of $\mathbb{R}$ and is defined as follows:
$-F=-_{\mathbb{R}} \cdot F$.
We now state two propositions:
(34) $\quad-F=-_{\mathbb{R}} \cdot F$.
(35) If $i \in \operatorname{Seg}(\operatorname{len}(-F))$ and $r=F(i)$, then $(-F)(i)=-r$.

Let us consider $i, R$. Then $-R$ is an element of $\mathbb{R}^{i}$.
The following propositions are true:
(36) If $j \in \operatorname{Seg} i$ and $r=R(j)$, then $(-R)(j)=-r$.
(41) If $R_{1}+R_{2}=i \longmapsto 0$, then $R_{1}=-R_{2}$ and $R_{2}=-R_{1}$.
(42) $\quad-(-R)=R$.
(43) If $-R_{1}=-R_{2}$, then $R_{1}=R_{2}$.
(44) If $R_{1}+R=R_{2}+R$ or $R_{1}+R=R+R_{2}$, then $R_{1}=R_{2}$.
(45) $\quad-\left(R_{1}+R_{2}\right)=\left(-R_{1}\right)+\left(-R_{2}\right)$.

Let us consider $F_{1}, F_{2}$. The functor $F_{1}-F_{2}$ yielding a finite sequence of elements of $\mathbb{R}$ is defined as follows:
$F_{1}-F_{2}=-_{\mathbb{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
The following two propositions are true:
(46) $\quad F_{1}-F_{2}=-_{\mathbb{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
(47) If $i \in \operatorname{Seg}\left(\operatorname{len}\left(F_{1}-F_{2}\right)\right)$ and $r_{1}=F_{1}(i)$ and $r_{2}=F_{2}(i)$, then $\left(F_{1}-\right.$ $\left.F_{2}\right)(i)=r_{1}-r_{2}$.
Let us consider $i, R_{1}, R_{2}$. Then $R_{1}-R_{2}$ is an element of $\mathbb{R}^{i}$.
One can prove the following propositions:

$$
\begin{align*}
& \text { If } j \in \operatorname{Seg} i \text { and } r_{1}=R_{1}(j) \text { and } r_{2}=R_{2}(j), \text { then }\left(R_{1}-R_{2}\right)(j)=r_{1}-r_{2}  \tag{48}\\
& \varepsilon_{\mathbb{R}}-F=\varepsilon_{\mathbb{R}} \text { and } F-\varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}} \\
& \left\langle r_{1}\right\rangle-\left\langle r_{2}\right\rangle=\left\langle r_{1}-r_{2}\right\rangle
\end{align*}
$$

(52) $R_{1}-R_{2}=R_{1}+\left(-R_{2}\right)$.
(53) $\quad R-(i \longmapsto(0$ qua a real number $))=R$.
(54) $\quad(i \longmapsto(0$ qua a real number $))-R=-R$.
(55) $\quad R_{1}-\left(-R_{2}\right)=R_{1}+R_{2}$.
(56) $\quad-\left(R_{1}-R_{2}\right)=R_{2}-R_{1}$.
(57) $\quad-\left(R_{1}-R_{2}\right)=\left(-R_{1}\right)+R_{2}$.
(58) $\quad R-R=i \longmapsto 0$.
(59) If $R_{1}-R_{2}=i \longmapsto 0$, then $R_{1}=R_{2}$.
(60) $\quad\left(R_{1}-R_{2}\right)-R_{3}=R_{1}-\left(R_{2}+R_{3}\right)$.
(61) $\quad R_{1}+\left(R_{2}-R_{3}\right)=\left(R_{1}+R_{2}\right)-R_{3}$.
(62) $\quad R_{1}-\left(R_{2}-R_{3}\right)=\left(R_{1}-R_{2}\right)+R_{3}$.
(63) $\quad R_{1}=\left(R_{1}+R\right)-R$.
(64) $\quad R_{1}=\left(R_{1}-R\right)+R$.

Let us consider $r, F$. The functor $r \cdot F$ yields a finite sequence of elements of $\mathbb{R}$ and is defined by:

$$
r \cdot F=r_{R}^{r} \cdot F .
$$

We now state two propositions:
(65) $r \cdot F=\cdot_{\mathbb{R}}^{r} \cdot F$.
(66) If $i \in \operatorname{Seg}(\operatorname{len}(r \cdot F))$ and $r^{\prime}=F(i)$, then $(r \cdot F)(i)=r \cdot r^{\prime}$.

Let us consider $i, r, R$. Then $r \cdot R$ is an element of $\mathbb{R}^{i}$.
Next we state a number of propositions:
(67) If $j \in \operatorname{Seg} i$ and $r^{\prime}=R(j)$, then $(r \cdot R)(j)=r \cdot r^{\prime}$.
(68) $r \cdot \varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}}$.
(69) $r \cdot\left\langle r_{1}\right\rangle=\left\langle r \cdot r_{1}\right\rangle$.
(70) $\quad r_{1} \cdot\left(i \longmapsto r_{2}\right)=i \longmapsto r_{1} \cdot r_{2}$.
(71) $\left(r_{1} \cdot r_{2}\right) \cdot R=r_{1} \cdot\left(r_{2} \cdot R\right)$.
(72) $\quad\left(r_{1}+r_{2}\right) \cdot R=r_{1} \cdot R+r_{2} \cdot R$.
(73) $\quad r \cdot\left(R_{1}+R_{2}\right)=r \cdot R_{1}+r \cdot R_{2}$.
(74) $1 \cdot R=R$.
(75) $0 \cdot R=i \longmapsto 0$.
(76) $\quad(-1) \cdot R=-R$.

Let us consider $F$. The functor ${ }^{2} F$ yielding a finite sequence of elements of $\mathbb{R}$ is defined as follows:
${ }^{2} F=\mathrm{sqr}_{\mathrm{R}} \cdot F$.
Next we state two propositions:
(77) ${ }^{2} F=\operatorname{sqr}_{\mathbb{R}} \cdot F$.

$$
\begin{equation*}
\text { If } i \in \operatorname{Seg}\left(\operatorname{len}\left({ }^{2} F\right)\right) \text { and } r=F(i) \text {, then }{ }^{2} F(i)=r^{2} . \tag{78}
\end{equation*}
$$

Let us consider $i, R$. Then ${ }^{2} R$ is an element of $\mathbb{R}^{i}$.
Next we state several propositions:
(79) If $j \in \operatorname{Seg} i$ and $r=R(j)$, then ${ }^{2} R(j)=r^{2}$.
(80) ${ }^{2} \varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}}$.
(81) ${ }^{2}\langle r\rangle=\left\langle r^{2}\right\rangle$.
(82) $\quad{ }^{2}(i \longmapsto r)=i \longmapsto r^{2}$.
(83) ${ }^{2}(-R)={ }^{2} R$.
(84) $\quad{ }^{2}(r \cdot R)=r^{2} \cdot{ }^{2} R$.

Let us consider $F_{1}, F_{2}$. The functor $F_{1} \bullet F_{2}$ yields a finite sequence of elements of $\mathbb{R}$ and is defined by:
$F_{1} \bullet F_{2}=\cdot_{\mathrm{R}}{ }^{\circ}\left(F_{1}, F_{2}\right)$.
One can prove the following two propositions:

```
 \(F_{1} \bullet F_{2}=\cdot^{\circ}{ }^{\circ}\left(F_{1}, F_{2}\right)\).
 (86) If \(i \in \operatorname{Seg}\left(\operatorname{len}\left(F_{1} \bullet F_{2}\right)\right)\) and \(r_{1}=F_{1}(i)\) and \(r_{2}=F_{2}(i)\), then \(F_{1} \bullet F_{2}(i)=\)
 \(r_{1} \cdot r_{2}\).
```

    Let us consider \(i, R_{1}, R_{2}\). Then \(R_{1} \bullet R_{2}\) is an element of \(\mathbb{R}^{i}\).
    The following propositions are true:
(87) If $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=R_{2}(j)$, then $R_{1} \bullet R_{2}(j)=r_{1} \cdot r_{2}$.
(88) $\quad \varepsilon_{\mathbb{R}} \bullet F=\varepsilon_{\mathbb{R}}$ and $F \bullet \varepsilon_{\mathbb{R}}=\varepsilon_{\mathbb{R}}$.
(89) $\left\langle r_{1}\right\rangle \bullet\left\langle r_{2}\right\rangle=\left\langle r_{1} \cdot r_{2}\right\rangle$.
(90) $\quad R_{1} \bullet R_{2}=R_{2} \bullet R_{1}$.
(91) $\quad R_{1} \bullet\left(R_{2} \bullet R_{3}\right)=\left(R_{1} \bullet R_{2}\right) \bullet R_{3}$.
(92) $\quad(i \longmapsto r) \bullet R=r \cdot R$ and $R \bullet(i \longmapsto r)=r \cdot R$.
(93) $\quad\left(i \longmapsto r_{1}\right) \bullet\left(i \longmapsto r_{2}\right)=i \longmapsto r_{1} \cdot r_{2}$.
(94) $r \cdot R_{1} \bullet R_{2}=\left(r \cdot R_{1}\right) \bullet R_{2}$.
(95) $\quad r \cdot R_{1} \bullet R_{2}=\left(r \cdot R_{1}\right) \bullet R_{2}$ and $r \cdot R_{1} \bullet R_{2}=R_{1} \bullet\left(r \cdot R_{2}\right)$.
(96) $r \cdot R=(i \longmapsto r) \bullet R$.
(97) ${ }^{2} R=R \bullet R$.
(98) $\quad{ }^{2}\left(R_{1}+R_{2}\right)=\left({ }^{2} R_{1}+2 \cdot R_{1} \bullet R_{2}\right)+{ }^{2} R_{2}$.
(99) $\quad{ }^{2}\left(R_{1}-R_{2}\right)=\left({ }^{2} R_{1}-2 \cdot R_{1} \bullet R_{2}\right)+{ }^{2} R_{2}$.
(100) $\quad{ }^{2}\left(R_{1} \bullet R_{2}\right)=\left({ }^{2} R_{1}\right) \bullet\left({ }^{2} R_{2}\right)$.

Let $F$ be a finite sequence of elements of $\mathbb{R}$. The functor $\sum F$ yields a real number and is defined by:

$$
\sum F=+_{\mathbb{R}} \circledast F
$$

One can prove the following propositions:
(101) $\quad \sum F=+_{\mathbb{R}} \circledast F$.
(102) $\quad \sum \varepsilon_{\mathbb{R}}=0$.
(103) $\sum\langle r\rangle=r$.
(104) $\quad \sum\left(F^{\frown}\langle r\rangle\right)=\sum F+r$.
(106) $\quad \sum\left(\langle r\rangle^{\wedge} F\right)=r+\sum F$.
(107) $\quad \sum\left\langle r_{1}, r_{2}\right\rangle=r_{1}+r_{2}$.
(108) $\sum\left\langle r_{1}, r_{2}, r_{3}\right\rangle=\left(r_{1}+r_{2}\right)+r_{3}$.
(109) For every element $R$ of $\mathbb{R}^{0}$ holds $\sum R=0$.
(110) $\quad \sum(i \longmapsto r)=i \cdot r$.
(111) $\quad \sum(i \longmapsto(0$ qua a real number $))=0$.
(112) If for all $j, r_{1}, r_{2}$ such that $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=R_{2}(j)$ holds $r_{1} \leq r_{2}$, then $\sum R_{1} \leq \sum R_{2}$.
(113) Suppose for all $j, r_{1}, r_{2}$ such that $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=$ $R_{2}(j)$ holds $r_{1} \leq r_{2}$ and there exist $j, r_{1}, r_{2}$ such that $j \in \operatorname{Seg} i$ and $r_{1}=R_{1}(j)$ and $r_{2}=R_{2}(j)$ and $r_{1}<r_{2}$. Then $\sum R_{1}<\sum R_{2}$.
(114) If for all $i, r$ such that $i \in \operatorname{Seg}(\operatorname{len} F)$ and $r=F(i)$ holds $0 \leq r$, then $0 \leq \sum F$.
(115) If for all $i, r$ such that $i \in \operatorname{Seg}(\operatorname{len} F)$ and $r=F(i)$ holds $0 \leq r$ and there exist $i, r$ such that $i \in \operatorname{Seg}(\operatorname{len} F)$ and $r=F(i)$ and $0<r$, then $0<\sum F$.
(116) $0 \leq \sum\left({ }^{2} F\right)$.
(117) $\quad \sum(r \cdot F)=r \cdot \sum F$.
(118) $\sum(-F)=-\sum F$.
(119) $\quad \sum\left(R_{1}+R_{2}\right)=\sum R_{1}+\sum R_{2}$.
(121) If $\sum\left({ }^{2} R\right)=0$, then $R=i \longmapsto 0$.
(122) $\quad\left(\sum\left(R_{1} \bullet R_{2}\right)\right)^{2} \leq \sum\left({ }^{2} R_{1}\right) \cdot \sum\left({ }^{2} R_{2}\right)$.

Let $F$ be a finite sequence of elements of $\mathbb{R}$. The functor $\Pi F$ yields a real number and is defined as follows:
$\Pi F=\cdot_{\mathrm{R}} \circledast F$.
Next we state a number of propositions:
(123) $\quad \Pi F=\cdot_{\mathbb{R}} \circledast F$.
(124) $\quad \prod \varepsilon_{\mathbb{R}}=1$.
(125) $\Pi\langle r\rangle=r$.
(126) $\quad \Pi(F \frown\langle r\rangle)=\Pi F \cdot r$.
(127) $\quad \Pi\left(F_{1} \wedge F_{2}\right)=\Pi F_{1} \cdot \Pi F_{2}$.
(128) $\Pi(\langle r\rangle \sim F)=r \cdot \Pi F$.
(129) $\Pi\left\langle r_{1}, r_{2}\right\rangle=r_{1} \cdot r_{2}$.
(130) $\Pi\left\langle r_{1}, r_{2}, r_{3}\right\rangle=\left(r_{1} \cdot r_{2}\right) \cdot r_{3}$.
(131) For every element $R$ of $\mathbb{R}^{0}$ holds $\Pi R=1$.
(132) $\quad \Pi(i \longmapsto(1$ qua a real number $))=1$.
(133) There exists $k$ such that $k \in \operatorname{Seg}(\operatorname{len} F)$ and $F(k)=0$ if and only if $\Pi F=0$.

$$
\begin{align*}
& \Pi(i+j \longmapsto r)=\Pi(i \longmapsto r) \cdot \Pi(j \longmapsto r) .  \tag{134}\\
& \Pi(i \cdot j \longmapsto r)=\Pi(j \longmapsto \Pi(i \longmapsto r)) . \\
& \Pi\left(i \longmapsto r_{1} \cdot r_{2}\right)=\Pi\left(i \longmapsto r_{1}\right) \cdot \Pi\left(i \longmapsto r_{2}\right) . \\
& \Pi\left(R_{1} \bullet R_{2}\right)=\Pi R_{1} \cdot \Pi R_{2} . \\
& \Pi(r \cdot R)=\Pi(i \longmapsto r) \cdot \Pi R . \\
& \Pi\left({ }^{2} R\right)=(\Pi R)^{2} .
\end{align*}
$$

## References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[3] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[11] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 11, 1990

# A Classical First Order Language 

Czesław Byliński ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. The aim is to construct a language for the classical predicate calculus. The language is defined as a subset of the language constructed in [8]. Well-formed formulas of this language are defined and some usual connectives and quantifiers of $[8,1]$ are accordingly. We prove inductive and definitional schemes for formulas of our language. Substitution for individual variables in formulas of the introduced language is defined. This definition is borrowed from [7]. For such purpose some auxiliary notation and propositions are introduced.


MML Identifier: CQC_LANG.

The articles [10], [3], [4], [5], [9], [2], [8], [1], and [6] provide the notation and terminology for this paper. In the sequel $i, j, k$ will denote natural numbers. One can prove the following proposition
(1) For every non-empty set $D$ and for every finite sequence $l$ of elements of $D$ such that $k \in \operatorname{Seg}(\operatorname{len} l)$ holds $l(k) \in D$.
Let $x, y, a, b$ be arbitrary. The functor $(x=y \rightarrow a, b)$ is defined as follows: $(x=y \rightarrow a, b)=a$ if $x=y,(x=y \rightarrow a, b)=b$, otherwise.
One can prove the following propositions:
(2) For arbitrary $x, y, a, b$ such that $x=y$ holds $(x=y \rightarrow a, b)=a$.
(3) For arbitrary $x, y, a, b$ such that $x \neq y$ holds $(x=y \rightarrow a, b)=b$.

Let $x, y$ be arbitrary. The functor $x \longmapsto y$ yields a function and is defined as follows:
$x \longmapsto y=\{x\} \longmapsto y$.
One can prove the following three propositions:
(4) For arbitrary $x, y$ holds $x \longmapsto y=\{x\} \longmapsto y$.
(5) For arbitrary $x, y$ holds $\operatorname{dom}(x \longmapsto y)=\{x\}$ and $\operatorname{rng}(x \longmapsto y)=\{y\}$.
(6) For arbitrary $x, y$ holds $(x \longmapsto y)(x)=y$.

[^7]For simplicity we follow the rules: $x, y$ are bound variables, $a$ is a free variable, $p, q$ are elements of WFF, $l, l l$ are finite sequences of elements of Var, and $P$ is a predicate symbol. Let $F$ be a function from WFF into WFF, and let us consider $p$. Then $F(p)$ is an element of WFF.

One can prove the following proposition
(7) For an arbitrary $x$ holds $x \in \operatorname{Var}$ if and only if $x \in$ FixedVar or $x \in$ FreeVar or $x \in$ BoundVar.
A substitution is a partial function from FreeVar to Var.
In the sequel $f$ will be a substitution. Let us consider $l, f$. The functor $l[f]$ yielding a finite sequence of elements of Var is defined as follows:
$\operatorname{len}(l[f])=\operatorname{len} l$ and for every $k$ such that $1 \leq k$ and $k \leq \operatorname{len} l$ holds if $l(k) \in \operatorname{dom} f$, then $(l[f])(k)=f(l(k))$ but if $l(k) \notin \operatorname{dom} f$, then $(l[f])(k)=l(k)$.

The following proposition is true
$(9)^{2} \quad l l=l[f]$ if and only if the following conditions are satisfied:
(i) $\operatorname{len} l l=\operatorname{len} l$,
(ii) for every $k$ such that $1 \leq k$ and $k \leq \operatorname{len} l$ holds if $l(k) \in \operatorname{dom} f$, then $l l(k)=f(l(k))$ but if $l(k) \notin \operatorname{dom} f$, then $l l(k)=l(k)$.
Let us consider $k$, and let $l$ be a list of variables of the length $k$, and let us consider $f$. Then $l[f]$ is a list of variables of the length $k$.

One can prove the following proposition

$$
\begin{equation*}
a \longmapsto x \text { is a substitution. } \tag{10}
\end{equation*}
$$

Let us consider $a, x$. Then $a \longmapsto \rightharpoonup x$ is a substitution.
We now state the proposition
(11) If $f=a \longmapsto x$ and $l l=l[f]$ and $1 \leq k$ and $k \leq \operatorname{len} l$, then if $l(k)=a$, then $l l(k)=x$ but if $l(k) \neq a$, then $l l(k)=l(k)$.
Let $A$ be a non-empty subset of WFF. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objests of the mode element of $A$ are a formula.

The non-empty subset $\mathrm{WFF}_{\mathrm{CQC}}$ of WFF is defined as follows:
$\mathrm{WFF}_{\mathrm{CQC}}=\{s:$ Fixed $s=\emptyset \wedge$ Free $s=\emptyset\}$.
The following propositions are true:
(12) $\mathrm{WFF}_{\mathrm{CQC}}=\{s:$ Fixed $s=\emptyset \wedge$ Free $s=\emptyset\}$.
(13) $p$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if Fixed $p=\emptyset$ and Free $p=\emptyset$.

Let us consider $k$. A list of variables of the length $k$ is said to be a variables list of $k$ if:
$\{\operatorname{it}(i): 1 \leq i \wedge i \leq \operatorname{len} \operatorname{it}\} \subseteq$ BoundVar.
One can prove the following propositions:
(14) For every list of variables $l$ of the length $k$ holds $l$ is a variables list of $k$ if and only if $\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l\} \subseteq$ BoundVar.

[^8](15)

Let $l$ be a list of variables of the length $k$. Then $l$ is a variables list of $k$ if and only if $\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FreeVar $\}=\emptyset$ and $\{l(j): 1 \leq j \wedge j \leq \operatorname{len} l \wedge l(j) \in$ FixedVar $\}=\emptyset$.
In the sequel $r, s$ denote elements of $\mathrm{WFF}_{\mathrm{CQC}}$. Next we state two propositions:
(16) VERUM is an element of $\mathrm{WFF}_{\text {CQC }}$.
(17) Let $P$ be a $k$-ary predicate symbol. Let $l$ be a list of variables of the length $k$. Then $P[l]$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if $\{l(i): 1 \leq$ $i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FreeVar $\}=\emptyset$ and $\{l(j): 1 \leq j \wedge j \leq \operatorname{len} l \wedge l(j) \in$ FixedVar $\}=\emptyset$.
Let us consider $k$, and let $P$ be a $k$-ary predicate symbol, and let $l$ be a variables list of $k$. Then $P[l]$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

We now state two propositions:
(18) $\neg p$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if $p$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
(19) $p \wedge q$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if $p$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ and $q$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
Let us note that it makes sense to consider the following constant. Then VERUM is an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let us consider $r$. Then $\neg r$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let us consider $s$. Then $r \wedge s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

One can prove the following three propositions:
(20) $r \Rightarrow s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
(21) $r \vee s$ is an element of $W_{F F}^{C Q C}$.
(22) $r \Leftrightarrow s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

Let us consider $r, s$. Then $r \Rightarrow s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $r \vee s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $r \Leftrightarrow s$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

We now state the proposition
(23) $\forall_{x} p$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$ if and only if $p$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

Let us consider $x, r$. Then $\forall_{x} r$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
We now state the proposition
(24) $\exists_{x} r$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.

Let us consider $x, r$. Then $\exists_{x} r$ is an element of $\mathrm{WFF}_{\mathrm{CQC}}$.
Let $D$ be a non-empty set, and let $F$ be a function from $\mathrm{WFF}_{\mathrm{CQC}}$ into $D$, and let us consider $r$. Then $F(r)$ is an element of $D$.

In this article we present several logical schemes. The scheme CQC_Ind concerns a unary predicate $\mathcal{P}$, and states that:
for every $r$ holds $\mathcal{P}[r]$
provided the parameter satisfies the following condition:

- for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ holds $\mathcal{P}[$ VERUM $]$ and $\mathcal{P}[P[l]]$ but if $\mathcal{P}[r]$, then $\mathcal{P}[\neg r]$ but if $\mathcal{P}[r]$ and $\mathcal{P}[s]$, then $\mathcal{P}[r \wedge s]$ but if $\mathcal{P}[r]$, then $\mathcal{P}\left[\forall_{x} r\right]$.

The scheme CQC_Func_Ex concerns a non-empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a ternary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$ and states that:
there exists a function $F$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$ such that for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $r^{\prime}, s^{\prime}$ of $\mathcal{A}$ such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{B}$ and $F(P[l])=\mathcal{F}(k, P, l)$ and $F(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$ for all values of the parameters.

The scheme CQC_Func_Uniq concerns a non-empty set $\mathcal{A}$, a function $\mathcal{B}$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$, a function $\mathcal{C}$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$, an element $\mathcal{D}$ of $\mathcal{A}$, a ternary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{B}=\mathcal{C}$
provided the parameters satisfy the following conditions:

- Given $r, s, x, k$. Let $l$ be a variables list of $k$. Let $P$ be a $k$-ary predicate symbol. Let $r^{\prime}, s^{\prime}$ be elements of $\mathcal{A}$. Suppose $r^{\prime}=\mathcal{B}(r)$ and $s^{\prime}=\mathcal{B}(s)$. Then $\mathcal{B}($ VERUM $)=\mathcal{D}$ and $\mathcal{B}(P[l])=\mathcal{F}(k, P, l)$ and $\mathcal{B}(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $\mathcal{B}(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $\mathcal{B}\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$,
- Given $r, s, x, k$. Let $l$ be a variables list of $k$. Let $P$ be a $k$-ary predicate symbol. Let $r^{\prime}, s^{\prime}$ be elements of $\mathcal{A}$. Suppose $r^{\prime}=\mathcal{C}(r)$ and $s^{\prime}=\mathcal{C}(s)$. Then $\mathcal{C}($ VERUM $)=\mathcal{D}$ and $\mathcal{C}(P[l])=\mathcal{F}(k, P, l)$ and $\mathcal{C}(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $\mathcal{C}(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $\mathcal{C}\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$.
The scheme CQC_Def_correctn concerns a non-empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathrm{WFF}_{\mathrm{CQC}}$, an element $\mathcal{C}$ of $\mathcal{A}$, a ternary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$ and states that:
(i) there exists an element $d$ of $\mathcal{A}$ and there exists a function $F$ from WFF ${ }_{\mathrm{CQC}}$ into $\mathcal{A}$ such that $d=F(\mathcal{B})$ and for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $r^{\prime}, s^{\prime}$ of $\mathcal{A}$ such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F(\mathrm{VERUM})=\mathcal{C}$ and $F(P[l])=\mathcal{F}(k, P, l)$ and $F(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$,
(ii) for all elements $d_{1}, d_{2}$ of $\mathcal{A}$ such that there exists a function $F$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$ such that $d_{1}=F(\mathcal{B})$ and for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $r^{\prime}, s^{\prime}$ of $\mathcal{A}$ such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{C}$ and $F(P[l])=\mathcal{F}(k, P, l)$ and $F(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=$ $\mathcal{I}\left(x, r^{\prime}\right)$ and there exists a function $F$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$ such that $d_{2}=F(\mathcal{B})$ and for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $r^{\prime}, s^{\prime}$ of $\mathcal{A}$ such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F(\mathrm{VERUM})=\mathcal{C}$ and $F(P[l])=\mathcal{F}(k, P, l)$ and $F(\neg r)=\mathcal{G}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{H}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{I}\left(x, r^{\prime}\right)$ holds $d_{1}=d_{2}$ for all values of the parameters.

The scheme CQC_Def_VERUM concerns a non-empty set $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a ternary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{F}($ VERUM $)=\mathcal{B}$
provided the parameters satisfy the following condition:

- Let $p$ be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{F}(p)$ if and only if there exists a function $F$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$ such that $d=F(p)$ and for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $r^{\prime}, s^{\prime}$ of $\mathcal{A}$ such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F(\mathrm{VERUM})=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
The scheme CQC_Def_atomic concerns a non-empty set $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, a ternary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a natural number $\mathcal{C}$, a $\mathcal{C}$-ary predicate symbol $\mathcal{D}$, a variables list $\mathcal{E}$ of $\mathcal{C}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:

$$
\mathcal{F}(\mathcal{D}[\mathcal{E}])=\mathcal{G}(\mathcal{C}, \mathcal{D}, \mathcal{E})
$$

provided the following requirement is met:

- Let $p$ be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{F}(p)$ if and only if there exists a function $F$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$ such that $d=F(p)$ and for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $r^{\prime}, s^{\prime}$ of $\mathcal{A}$ such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
The scheme CQC_Def_negative deals with a non-empty set $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a ternary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, an element $\mathcal{C}$ of $\mathrm{WFF}_{\mathrm{CQC}}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, and a binary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{F}(\neg \mathcal{C})=\mathcal{H}(\mathcal{F}(\mathcal{C}))$
provided the parameters satisfy the following condition:
- Let $p$ be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{F}(p)$ if and only if there exists a function $F$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$ such that $d=F(p)$ and for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $r^{\prime}, s^{\prime}$ of $\mathcal{A}$ such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F(\mathrm{VERUM})=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
The scheme QC_Def_conjuncti concerns a non-empty set $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a ternary functor $\mathcal{G}$ yielding an
element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, an element $\mathcal{C}$ of $\mathrm{WFF}_{\mathrm{CQC}}$, an element $\mathcal{D}$ of $\mathrm{WFF}_{\mathrm{CQC}}$, and a binary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$ and states that:
$\mathcal{F}(\mathcal{C} \wedge \mathcal{D})=\mathcal{I}(\mathcal{F}(\mathcal{C}), \mathcal{F}(\mathcal{D}))$
provided the following condition is satisfied:
- Let $p$ be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{F}(p)$ if and only if there exists a function $F$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$ such that $d=F(p)$ and for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $r^{\prime}, s^{\prime}$ of $\mathcal{A}$ such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
The scheme QC_Def_universal concerns a non-empty set $\mathcal{A}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{A}$, an element $\mathcal{B}$ of $\mathcal{A}$, a ternary functor $\mathcal{G}$ yielding an element of $\mathcal{A}$, a unary functor $\mathcal{H}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{I}$ yielding an element of $\mathcal{A}$, a binary functor $\mathcal{J}$ yielding an element of $\mathcal{A}$, a bound variable $\mathcal{C}$, and an element $\mathcal{D}$ of $\mathrm{WFF}_{\mathrm{CQC}}$ and states that:
$\mathcal{F}\left(\forall_{\mathcal{C}} \mathcal{D}\right)=\mathcal{J}(\mathcal{C}, \mathcal{F}(\mathcal{D}))$
provided the following condition is satisfied:
- Let $p$ be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Let $d$ be an element of $\mathcal{A}$. Then $d=\mathcal{F}(p)$ if and only if there exists a function $F$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into $\mathcal{A}$ such that $d=F(p)$ and for all $r, s, x, k$ and for every variables list $l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $r^{\prime}$, $s^{\prime}$ of $\mathcal{A}$ such that $r^{\prime}=F(r)$ and $s^{\prime}=F(s)$ holds $F($ VERUM $)=\mathcal{B}$ and $F(P[l])=\mathcal{G}(k, P, l)$ and $F(\neg r)=\mathcal{H}\left(r^{\prime}\right)$ and $F(r \wedge s)=\mathcal{I}\left(r^{\prime}, s^{\prime}\right)$ and $F\left(\forall_{x} r\right)=\mathcal{J}\left(x, r^{\prime}\right)$.
We now state the proposition
(25) If $\operatorname{Arity}(P)=\operatorname{len} l$, then $P[l]=\langle P\rangle へ l$.

Let us consider $x, y, p, q$. Then $(x=y \rightarrow p, q)$ is an element of WFF.
Let us consider $p, x$. The functor $p(x)$ yields an element of WFF and is defined as follows:
there exists a function $F$ from WFF into WFF such that $p(x)=F(p)$ and for every $q$ holds $F$ (VERUM) $=$ VERUM but if $q$ is atomic, then $F(q)=$ $\operatorname{PredSym}(q)\left[\operatorname{Args}(q)\left[\mathbf{a}_{0} \longmapsto x\right]\right]$ but if $q$ is negative, then $F(q)=\neg(F(\operatorname{Arg}(q)))$ but if $q$ is conjunctive, then $F(q)=(F(\operatorname{Left} \operatorname{Arg}(q))) \wedge(F(\operatorname{Right} \operatorname{Arg}(q)))$ but if $q$ is universal, then $F(q)=\left(\operatorname{Bound}(q)=x \rightarrow q, \forall_{\operatorname{Bound}(q)}(F(\operatorname{Scope}(q)))\right)$.

We now state a number of propositions:
$(27)^{3}$ Let $r$ be an element of WFF. Then $r=p(x)$ if and only if there exists a function $F$ from WFF into WFF such that $r=F(p)$ and for every $q$ holds $F$ (VERUM) $=$ VERUM but if $q$ is atomic, then $F(q)=$ $\operatorname{PredSym}(q)\left[\operatorname{Args}(q)\left[\mathbf{a}_{0} \longmapsto x\right]\right]$ but if $q$ is negative, then $F(q)=\neg(F(\operatorname{Arg}(q)))$ but if $q$ is conjunctive, then $F(q)=(F(\operatorname{Left} \operatorname{Arg}(q))) \wedge(F(\operatorname{Right} \operatorname{Arg}(q)))$ but if $q$ is universal, then

[^9]$$
F(q)=\left(\operatorname{Bound}(q)=x \rightarrow q, \forall_{\operatorname{Bound}(q)}(F(\operatorname{Scope}(q)))\right) .
$$
(28) $\operatorname{VERUM}(x)=\operatorname{VERUM}$.
(29) If $p$ is atomic, then $p(x)=\operatorname{PredSym}(p)\left[\operatorname{Args}(p)\left[\mathbf{a}_{0} \longmapsto x\right]\right]$.
(30) For every $k$-ary predicate symbol $P$ and for every list of variables $l$ of the length $k$ holds $(P[l])(x)=P\left[l\left[\mathbf{a}_{0} \longmapsto x\right]\right]$.
(31) If $p$ is negative, then $p(x)=\neg(\operatorname{Arg}(p)(x))$.
(32) $\quad \neg p(x)=\neg(p(x))$.
(33) If $p$ is conjunctive, then $p(x)=(\operatorname{Left} \operatorname{Arg}(p)(x)) \wedge(\operatorname{Right} \operatorname{Arg}(p)(x))$.
(34) $p \wedge q(x)=(p(x)) \wedge(q(x))$.
(35) If $p$ is universal and $\operatorname{Bound}(p)=x$, then $p(x)=p$.
(36) If $p$ is universal and $\operatorname{Bound}(p) \neq x$, then $p(x)=\forall_{\operatorname{Bound}(p)}(\operatorname{Scope}(p)(x))$.
(37) $\forall_{x} p(x)=\forall_{x} p$.
(38) If $x \neq y$, then $\forall_{x} p(y)=\forall_{x}(p(y))$.
(39) If Free $p=\emptyset$, then $p(x)=p$.
(40) $r(x)=r$.
(41) $\operatorname{Fixed}(p(x))=\operatorname{Fixed} p$.

## References

[1] Grzegorz Bancerek. Connectives and subformulae of the first order language. Formalized Mathematics, 1(3):451-458, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[6] Czesław Byliński and Grzegorz Bancerek. Variables in formulae of the first order language. Formalized Mathematics, 1(3):459-469, 1990.
[7] Witold A. Pogorzelski and Tadeusz Prucnal. The substitution rule for predicate letters in the first-order predicate calculus. Reports on Mathematical Logic, (5), 1975.
[8] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[9] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received May 11, 1990

# Classical and Non-classical Pasch Configurations in Ordered Affine Planes ${ }^{1}$ 

Henryk Oryszczyszyn<br>Warsaw University<br>Białystok

Krzysztof Prażmowski<br>Warsaw University<br>Białystok

Małgorzata Prażmowska
Warsaw University
Białystok


#### Abstract

Summary. Several configuration axioms, which are commonly called in the literature "Pasch Axioms" are introduced; three of them were investigated by Szmielew and concern invariantability of the betweenness relation under parallel projections, and two other were introduced by Tarski. It is demonstrated that they all are consequences of the trapezium axiom, adopted to characterize ordered affine spaces.


MML Identifier: PASCH.

The papers [1] and [2] provide the notation and terminology for this paper. We adopt the following rules: $O A S$ will be an ordered affine space and $a, a^{\prime}, b, b^{\prime}$, $c, c^{\prime}, d, d_{1}, d_{2}, p, p^{\prime}, x, y, z, t, u$ will be elements of the points of $O A S$. Let us consider $O A S$. We say that $O A S$ satisfies inner invariancy of betweenness relation under parallel projections if and only if:
for all $a, b, c, d, p$ such that not $\mathbf{L}(p, b, c)$ and $\mathbf{B}(b, p, a)$ and $\mathbf{L}(p, c, d)$ and $b, c \| d, a$ holds $\mathbf{B}(c, p, d)$.

We now state the proposition
(1) For every $O A S$ holds $O A S$ satisfies inner invariancy of betweenness relation under parallel projections if and only if for all $a, b, c, d, p$ such that not $\mathbf{L}(p, b, c)$ and $\mathbf{B}(b, p, a)$ and $\mathbf{L}(p, c, d)$ and $b, c \| d, a$ holds $\mathbf{B}(c, p, d)$.

[^10]Let us consider $O A S$. We say that $O A S$ satisfies outer invariancy of betweenness relation under parallel projections if and only if:
for all $a, b, c, d, p$ such that $\mathbf{B}(p, b, c)$ and $\mathbf{L}(p, a, d)$ and $a, b \| c, d$ and not $\mathbf{L}(p, a, b)$ holds $\mathbf{B}(p, a, d)$.

We now state the proposition
(2) For every $O A S$ holds $O A S$ satisfies outer invariancy of betweenness relation under parallel projections if and only if for all $a, b, c, d, p$ such that $\mathbf{B}(p, b, c)$ and $\mathbf{L}(p, a, d)$ and $a, b \| c, d$ and not $\mathbf{L}(p, a, b)$ holds $\mathbf{B}(p, a, d)$.
Let us consider $O A S$. We say that $O A S$ satisfies general invariancy of betweenness relation under parallel projections if and only if:
for all $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that not $\mathbf{L}\left(a, b, a^{\prime}\right)$ and $a, a^{\prime} \| b, b^{\prime}$ and $a, a^{\prime} \| c, c^{\prime}$ and $\mathbf{B}(a, b, c)$ and $\mathbf{L}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ holds $\mathbf{B}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$.

We now state the proposition
(3) For every $O A S$ holds $O A S$ satisfies general invariancy of betweenness relation under parallel projections if and only if for all $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ such that not $\mathbf{L}\left(a, b, a^{\prime}\right)$ and $a, a^{\prime} \| b, b^{\prime}$ and $a, a^{\prime} \| c, c^{\prime}$ and $\mathbf{B}(a, b, c)$ and $\mathbf{L}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$ holds $\mathbf{B}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$.
Let us consider $O A S$. We say that $O A S$ satisfies outer form of Pasch' Axiom if and only if:
for all $a, b, c, d, x, y$ such that $\mathbf{B}(a, b, d)$ and $\mathbf{B}(b, x, c)$ and not $\mathbf{L}(a, b, c)$ there exists $y$ such that $\mathbf{B}(a, y, c)$ and $\mathbf{B}(y, x, d)$.

The following proposition is true
(4) For every $O A S$ holds $O A S$ satisfies outer form of Pasch' Axiom if and only if for all $a, b, c, d, x, y$ such that $\mathbf{B}(a, b, d)$ and $\mathbf{B}(b, x, c)$ and not $\mathbf{L}(a, b, c)$ there exists $y$ such that $\mathbf{B}(a, y, c)$ and $\mathbf{B}(y, x, d)$.
Let us consider $O A S$. We say that $O A S$ satisfies inner form of Pasch' Axiom if and only if:
for all $a, b, c, d, x, y$ such that $\mathbf{B}(a, b, d)$ and $\mathbf{B}(a, x, c)$ and not $\mathbf{L}(a, b, c)$ there exists $y$ such that $\mathbf{B}(b, y, c)$ and $\mathbf{B}(x, y, d)$.

The following proposition is true
(5) For every $O A S$ holds $O A S$ satisfies inner form of Pasch' Axiom if and only if for all $a, b, c, d, x, y$ such that $\mathbf{B}(a, b, d)$ and $\mathbf{B}(a, x, c)$ and not $\mathbf{L}(a, b, c)$ there exists $y$ such that $\mathbf{B}(b, y, c)$ and $\mathbf{B}(x, y, d)$.
Let us consider $O A S$. We say that $O A S$ satisfies Fano Axiom if and only if: for all $a, b, c, d$ such that $a, b \Uparrow c, d$ and $a, c \Uparrow b, d$ and not $\mathbf{L}(a, b, c)$ there exists $x$ such that $\mathbf{B}(a, x, d)$ and $\mathbf{B}(b, x, c)$.

We now state a number of propositions:
(6) For every $O A S$ holds $O A S$ satisfies Fano Axiom if and only if for all $a$, $b, c, d$ such that $a, b \| c, d$ and $a, c \| b, d$ and not $\mathbf{L}(a, b, c)$ there exists $x$ such that $\mathbf{B}(a, x, d)$ and $\mathbf{B}(b, x, c)$.
If $b, p \Uparrow p, c$ and $p \neq c$ and $b \neq p$, then there exists $d$ such that $a, p \Uparrow p, d$ and $a, b \| c, d$ and $c \neq d$ and $p \neq d$.
(8) If $p, b \Uparrow p, c$ and $p \neq c$ and $b \neq p$, then there exists $d$ such that $p, a \Uparrow p, d$ and $a, b \| c, d$ and $c \neq d$.
(9) If $p, b \| p, c$ and $p \neq b$, then there exists $d$ such that $p, a \| p, d$ and $a, b \| c, d$.
(10) If $z, x \| x, t$ and $x \neq z$, then there exists $u$ such that $y, x \| x, u$ and $y, z \| t, u$.
(11) If not $\mathbf{L}(p, a, b)$ and $\mathbf{L}(p, b, c)$ and $\mathbf{L}\left(p, a, d_{1}\right)$ and $\mathbf{L}\left(p, a, d_{2}\right)$ and $a, b \|$ $c, d_{1}$ and $a, b \| c, d_{2}$, then $d_{1}=d_{2}$.
(12) If not $\mathbf{L}(a, b, c)$ and $a, b \| c, d_{1}$ and $a, b \| c, d_{2}$ and $a, c \| b, d_{1}$ and $a, c \| b, d_{2}$, then $d_{1}=d_{2}$.
(13) If not $\mathbf{L}(p, b, c)$ and $\mathbf{B}(b, p, a)$ and $\mathbf{L}(p, c, d)$ and $b, c \| d, a$, then $\mathbf{B}(c, p, d)$.
(14) $O A S$ satisfies inner invariancy of betweenness relation under parallel projections.
(15) If $\mathbf{B}(p, b, c)$ and $\mathbf{L}(p, a, d)$ and $a, b \| c, d$ and not $\mathbf{L}(p, a, b)$, then $\mathbf{B}(p, a, d)$.
(16) $O A S$ satisfies outer invariancy of betweenness relation under parallel projections.
(17) If not $\mathbf{L}\left(a, b, a^{\prime}\right)$ and $a, a^{\prime} \| b, b^{\prime}$ and $a, a^{\prime} \| c, c^{\prime}$ and $\mathbf{B}(a, b, c)$ and $\mathbf{L}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$, then $\mathbf{B}\left(a^{\prime}, b^{\prime}, c^{\prime}\right)$.
(18) $O A S$ satisfies general invariancy of betweenness relation under parallel projections.
(19) If not $\mathbf{L}(p, a, b)$ and $a, p \Uparrow p, a^{\prime}$ and $b, p \| p, b^{\prime}$ and $a, b \| a^{\prime}, b^{\prime}$, then $a, b \| b^{\prime}, a^{\prime}$.
(20) If not $\mathbf{L}\left(p, a, a^{\prime}\right)$ and $p, a \Uparrow p, b$ and $p, a^{\prime} \Uparrow p, b^{\prime}$ and $a, a^{\prime} \| b, b^{\prime}$, then $a, a^{\prime} \| b, b^{\prime}$.
(21) If not $\mathbf{L}(p, a, b)$ and $p, a \| b, c$ and $p, b \| a, c$, then $p, a \| b, c$ and $p, b \| a, c$.
(22) If $\mathbf{B}(p, c, b)$ and $c, d \Uparrow b, a$ and $p, d \Uparrow p, a$ and $\operatorname{not} \mathbf{L}(p, a, b)$ and $p \neq c$, then $\mathbf{B}(p, d, a)$.
(23) If $\mathbf{B}(p, d, a)$ and $c, d \Uparrow b, a$ and $p, c \Uparrow p, b$ and not $\mathbf{L}(p, a, b)$ and $p \neq c$, then $\mathbf{B}(p, c, b)$.
(24) If not $\mathbf{L}(p, a, b)$ and $p, b \Uparrow p, c$ and $b, a \| c, d$ and $\mathbf{L}(a, p, d)$ and $p \neq d$, then $\operatorname{not} \mathbf{B}(a, p, d)$.
(25) If $p, b \Uparrow p, c$ and $b \neq p$, then there exists $x$ such that $p, a \Uparrow p, x$ and $b, a \| c, x$.
(26) If $\mathbf{B}(p, c, b)$, then there exists $x$ such that $\mathbf{B}(p, x, a)$ and $b, a \| c, x$.
(27) If $p \neq b$ and $\mathbf{B}(p, b, c)$, then there exists $x$ such that $\mathbf{B}(p, a, x)$ and $b, a \| c, x$.
(28) If not $\mathbf{L}(p, a, b)$ and $\mathbf{B}(p, c, b)$, then there exists $x$ such that $\mathbf{B}(p, x, a)$ and $a, b \| x, c$.
(29) There exists $x$ such that $a, x \Uparrow b, c$ and $a, b \Uparrow x, c$.
(30) If $a, b \Uparrow c, d$ and not $\mathbf{L}(a, b, c)$, then there exists $x$ such that $\mathbf{B}(a, x, d)$ and $\mathbf{B}(b, x, c)$.
(31) If $a, b \Uparrow c, d$ and $a, c \Uparrow b, d$ and not $\mathbf{L}(a, b, c)$, then there exists $x$ such that $\mathbf{B}(a, x, d)$ and $\mathbf{B}(b, x, c)$.
$O A S$ satisfies Fano Axiom.
(33) If $a, b \| c, d$ and $a, c \| b, d$ and not $\mathbf{L}(a, b, c)$, then there exists $x$ such that $\mathbf{L}(x, a, d)$ and $\mathbf{L}(x, b, c)$.
(34) If $a, b \| c, d$ and $a, c \| b, d$ and not $\mathbf{L}(a, b, c)$ and $\mathbf{L}(p, a, d)$ and $\mathbf{L}(p, b, c)$, then not $\mathbf{L}(p, a, b)$.
(35) If $\mathbf{B}(a, b, d)$ and $\mathbf{B}(b, x, c)$ and not $\mathbf{L}(a, b, c)$, then there exists $y$ such that $\mathbf{B}(a, y, c)$ and $\mathbf{B}(y, x, d)$.
(36) $O A S$ satisfies outer form of Pasch' Axiom.
(37) If $\mathbf{B}(a, b, d)$ and $\mathbf{B}(a, x, c)$ and not $\mathbf{L}(a, b, c)$, then there exists $y$ such that $\mathbf{B}(b, y, c)$ and $\mathbf{B}(x, y, d)$.
(38) $O A S$ satisfies inner form of Pasch' Axiom.
(39) If $\mathbf{B}(p, a, b)$ and $p, a \Uparrow p^{\prime}, a^{\prime}$ and not $\mathbf{L}\left(p, a, p^{\prime}\right)$ and $\mathbf{L}\left(p^{\prime}, a^{\prime}, b^{\prime}\right)$ and $p, p^{\prime} \Uparrow a, a^{\prime}$ and $p, p^{\prime} \Uparrow b, b^{\prime}$, then $\mathbf{B}\left(p^{\prime}, a^{\prime}, b^{\prime}\right)$.

## References

[1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity - part I. Formalized Mathematics, $1(\mathbf{3}): 611-615,1990$.

Received May 16, 1990

# The Lattice of Real Numbers. The Lattice of Real Functions 

Marek Chmur ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. A proof of the fact, that $\langle\mathbb{R}, \max , \min \rangle$ is a lattice (real lattice). Some basic properties (real lattice is distributive and modular) of it are proved. The same is done for the set $\mathbb{R}^{A}$ with operations: $\max (\mathrm{f}(\mathrm{A}))$ and $\min (f(A))$, where $\mathbb{R}^{A}$ means the set of all functions from A (being non-empty set) to $\mathbb{R}$, $f$ is just such a function.


MML Identifier: REAL_LAT.

The articles [4], [1], [3], and [2] provide the terminology and notation for this paper. In the sequel $x, y$ will denote real numbers. Let $x$ be an element of $\mathbb{R}$. The functor @ $x$ yielding a real number is defined by:
$@ x=x$.
We now state the proposition
(1) For every element $x$ of $\mathbb{R}$ holds $@ x=x$.

We now define two new functors. The binary operation $\min _{\mathbb{R}}$ on $\mathbb{R}$ is defined by:
$\min _{\mathbb{R}}(x, y)=\min (x, y)$.
The binary operation $\max _{\mathbb{R}}$ on $\mathbb{R}$ is defined by:
$\max _{\mathbb{R}}(x, y)=\max (x, y)$.
The following propositions are true:
(2) $\min _{\mathbb{R}}(x, y)=\min (x, y)$.
(3) $\max _{\mathbb{R}}(x, y)=\max (x, y)$.

In the sequel $p, q$ will denote elements of the carrier of $\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle$. Let $x$ be an element of the carrier of $\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle$. The functor $@ x$ yields a real number and is defined by:

$$
@ x=x .
$$

[^11]Next we state three propositions:
(4) For every element $x$ of the carrier of $\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle$ holds $@ x=x$.

$$
\begin{align*}
p \sqcup q & =\max _{\mathbb{R}}(p, q) .  \tag{5}\\
p \sqcap q & =\min _{\mathbb{R}}(p, q) .
\end{align*}
$$

The lattice $\mathbb{R}_{\mathrm{L}}$ is defined as follows:
$\mathbb{R}_{\mathrm{L}}=\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle$.
One can prove the following proposition

$$
\begin{equation*}
\mathbb{R}_{L}=\left\langle\mathbb{R}, \max _{\mathbb{R}}, \min _{\mathbb{R}}\right\rangle . \tag{7}
\end{equation*}
$$

In the sequel $p, q, r$ denote elements of the carrier of $\mathbb{R}_{\mathrm{L}}$. One can prove the following propositions:

$$
\begin{equation*}
\max _{\mathbb{R}}(p, q)=\max _{\mathbb{R}}(q, p) . \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\min _{\mathbb{R}}(p, q)=\min _{\mathbb{R}}(q, p) . \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(q, r), p\right) \tag{10}
\end{equation*}
$$

$\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(p, q), r\right)$,
(iiv) $\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(q, p), r\right)$,
(iv) $\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(r, p), q\right)$,
(v) $\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(r, q), p\right)$,
(vi) $\max _{\mathbb{R}}\left(p, \max _{\mathbb{R}}(q, r)\right)=\max _{\mathbb{R}}\left(\max _{\mathbb{R}}(p, r), q\right)$.

$$
\begin{equation*}
\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(q, r), p\right), \tag{11}
\end{equation*}
$$

(ii) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(p, q), r\right)$,
(iii) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(q, p), r\right)$,
(iv) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(r, p), q\right)$,
(v) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(r, q), p\right)$,
(vi) $\min _{\mathbb{R}}\left(p, \min _{\mathbb{R}}(q, r)\right)=\min _{\mathbb{R}}\left(\min _{\mathbb{R}}(p, r), q\right)$.
$\max _{\mathbb{R}}\left(\min _{\mathbb{R}}(p, q), q\right)=q$ and $\max _{\mathbb{R}}\left(q, \min _{\mathbb{R}}(p, q)\right)=q$ and $\max _{\mathbb{R}}(q$, $\left.\min _{\mathbb{R}}(q, p)\right)=q$ and $\max _{\mathbb{R}}\left(\min _{\mathbb{R}}(q, p), q\right)=q$.
(13) $\min _{\mathbb{R}}\left(q, \max _{\mathbb{R}}(q, p)\right)=q$ and $\min _{\mathbb{R}}\left(\max _{\mathbb{R}}(p, q), q\right)=q$ and $\min _{\mathbb{R}}(q$, $\left.\max _{\mathbb{R}}(p, q)\right)=q$ and $\min _{\mathbb{R}}\left(\max _{\mathbb{R}}(q, p), q\right)=q$.
(15) $\quad \mathbb{R}_{\mathrm{L}}$ is a distributive lattice.

In the sequel $L$ will be a distributive lattice. We now state the proposition
(16) $\quad L$ is a modular lattice.

In the sequel $A$ will denote a non-empty set and $f, g, h$ will denote elements of $\mathbb{R}^{A}$. Let $A$ be a non-empty set, and let $x$ be an element of $\mathbb{R}^{A}$. The functor $@ x$ yielding an element of $\mathbb{R}^{A}$ qua a non-empty set is defined as follows:
$@ x=x$.
We now state the proposition
(17) For every element $f$ of $\mathbb{R}^{A}$ holds @ $f=f$.

We now define two new functors. Let us consider $A$. The functor $\max _{\mathbb{R}^{A}}$ yielding a binary operation on $\mathbb{R}^{A}$ is defined by:

$$
\max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{\circ}}(f, g) .
$$

The functor $\min _{\mathbb{R}^{A}}$ yields a binary operation on $\mathbb{R}^{A}$ and is defined as follows:
$\min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{\circ}}(f, g)$.
Next we state a number of propositions:

$$
\begin{align*}
& \max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{\circ}}(f, g) .  \tag{18}\\
& \min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{\circ}}(f, g) .  \tag{19}\\
& \max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{A}}(g, f) .  \tag{20}\\
& \min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{A}}(g, f) .  \tag{21}\\
& \max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(f, g), h\right)=\max _{\mathbb{R}^{A}}\left(f, \max _{\mathbb{R}^{A}}(g, h)\right) .  \tag{22}\\
& \min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(f, g), h\right)=\min _{\mathbb{R}^{A}}\left(f, \min _{\mathbb{R}^{A}}(g, h)\right) .  \tag{23}\\
& \max _{\mathbb{R}^{A}}\left(f, \min _{\mathbb{R}^{A}}(f, g)\right)=f .  \tag{24}\\
& \left.\max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}} A, g\right), f\right)=f .  \tag{25}\\
& \max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(g, f), f\right)=f .  \tag{26}\\
& \max _{\mathbb{R}^{A}}\left(f, \min _{\mathbb{R}^{A}}(g, f)\right)=f .  \tag{27}\\
& \min _{\mathbb{R}^{A}}\left(f, \max _{\mathbb{R}^{A}}(f, g)\right)=f .  \tag{28}\\
& \min _{\mathbb{R}^{A}}\left(f, \max _{\mathbb{R}^{A}}(g, f)\right)=f .  \tag{29}\\
& \min _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(g, f), f\right)=f .  \tag{30}\\
& \left.\min _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}} A, g\right), f\right)=f .  \tag{31}\\
& \min _{\mathbb{R}^{A}}\left(f, \max _{\mathbb{R}^{A}}(g, h)\right)=\max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(f, g), \min _{\mathbb{R}^{A}}(f, h)\right) . \tag{32}
\end{align*}
$$

We now define two new functors. Let us consider $A$. The functor $\max _{\mathbb{R}^{A}}$ yields a binary operation on $\mathbb{R}^{A}$ and is defined by:
$\max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{A}}(f, g)$.
The functor $\min _{\mathbb{R}^{A}}$ yields a binary operation on $\mathbb{R}^{A}$ and is defined as follows:

$$
\min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{A}}(f, g)
$$

The following two propositions are true:

$$
\begin{align*}
& \max _{\mathbb{R}^{A}}(f, g)=\max _{\mathbb{R}^{A}}(f, g) .  \tag{33}\\
& \min _{\mathbb{R}^{A}}(f, g)=\min _{\mathbb{R}^{A}}(f, g) . \tag{34}
\end{align*}
$$

In the sequel $p, q$ are elements of the carrier of $\left\langle\mathbb{R}^{A}, \boldsymbol{m a x}_{\mathbb{R}^{A}}, \boldsymbol{m i n}_{\mathbb{R}^{A}}\right\rangle$. Let us consider $A$, and let $x$ be an element of the carrier of $\left\langle\mathbb{R}^{A}, \boldsymbol{m a x}_{\mathbb{R}^{A}}, \boldsymbol{m i n}_{\mathbb{R}^{A}}\right\rangle$. The functor @ $x$ yields an element of $\mathbb{R}^{A}$ and is defined as follows:
$@ x=x$.
The following propositions are true:
(35) $p \sqcup q=\max _{\mathbb{R}^{A}}(p, q)$.

$$
\begin{align*}
p \sqcup q & =\max _{\mathbb{R}^{A}}(p, q) .  \tag{36}\\
p \sqcap q & =\min _{\mathbb{R}^{A}}(p, q) .  \tag{37}\\
p \sqcap q & =\min _{\mathbb{R}^{A}}(p, q) . \tag{38}
\end{align*}
$$

Let us consider $A$. The functor $\mathbb{R}_{\mathrm{L}}^{A}$ yields a lattice and is defined by:

$$
\mathbb{R}_{\mathrm{L}}^{A}=\left\langle\mathbb{R}^{A}, \max _{\mathbb{R}^{A}}, \min _{\mathbb{R}^{A}}\right\rangle .
$$

One can prove the following proposition

$$
\begin{equation*}
\mathbb{R}_{\mathrm{L}}^{A}=\left\langle\mathbb{R}^{A}, \max _{\mathbb{R}^{A}}, \min _{\mathbb{R}^{A}}\right\rangle \tag{39}
\end{equation*}
$$

In the sequel $p, q, r$ will denote elements of the carrier of $\mathbb{R}_{\mathrm{L}}^{A}$. We now state several propositions:
$\max _{\mathbb{R}^{A}}(p, q)=\max _{\mathbb{R}^{A}}(q, p)$.
$\min _{\mathbb{R}^{A}}(p, q)=\min _{\mathbb{R}^{A}}(q, p)$.

$$
\begin{equation*}
\max _{\mathbb{R}^{A}}\left(p, \boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(q, r), p\right) \tag{41}
\end{equation*}
$$

(ii) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(p, q), r\right)$,
(iii) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(q, p), r\right)$,
(iv) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(r, p), q\right)$,
(v) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(r, q), p\right)$,
(vi) $\max _{\mathbb{R}^{A}}\left(p, \max _{\mathbb{R}^{A}}(q, r)\right)=\max _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(p, r), q\right)$.
(ii) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(p, q), r\right)$,
(iii) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(q, p), r\right)$,
(iv) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(r, p), q\right)$,
(v) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(r, q), p\right)$,
(vi) $\min _{\mathbb{R}^{A}}\left(p, \min _{\mathbb{R}^{A}}(q, r)\right)=\min _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(p, r), q\right)$.
$\boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(p, q), q\right)=q$ and $\boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}\left(q, \min _{\mathbb{R}^{A}}(p, q)\right)=q$ and
$\max _{\mathbb{R}^{A}}\left(q, \min _{\mathbb{R}^{A}}(q, p)\right)=q$
and $\max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(q, p), q\right)=q$.
$\min _{\mathbb{R}^{A}}\left(q, \boldsymbol{\operatorname { m a x }}_{\mathbb{R}^{A}}(q, p)\right)=q$ and $\min _{\mathbb{R}^{A}}\left(\boldsymbol{m a x}_{\mathbb{R}^{A}}(p, q), q\right)=q$ and
$\min _{\mathbb{R}^{A}}\left(q, \max _{\mathbb{R}^{A}}(p, q)\right)=q$
and $\min _{\mathbb{R}^{A}}\left(\max _{\mathbb{R}^{A}}(q, p), q\right)=q$.

$$
\begin{equation*}
\min _{\mathbb{R}^{A}}\left(q, \max _{\mathbb{R}^{A}}(p, r)\right)=\max _{\mathbb{R}^{A}}\left(\min _{\mathbb{R}^{A}}(q, p), \min _{\mathbb{R}^{A}}(q, r)\right) \tag{46}
\end{equation*}
$$

$\mathbb{R}_{\mathrm{L}}^{A}$ is a distributive lattice.
In the sequel $F$ will denote a distributive lattice. We now state the proposition
(48) $\quad F$ is a modular lattice.

## References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
[3] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[4] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received May 22, 1990

# A Construction of an Abstract Space of Congruence of Vectors ${ }^{1}$ 

Grzegorz Lewandowski<br>Agriculture and Education School<br>Siedlce

Krzysztof Prażmowski<br>Warsaw University<br>Białystok


#### Abstract

Summary. In the class of abelian groups a subclass of two-divisiblegroups is singled out, and in the latter, a subclass of uniquely-two-divisiblegroups. With every such a group a special geometrical structure, more precisely the structure of "congruence of vectors" is correlated. The notion of "affine vector space" (denoted by AffVect) is introduced. This term is defined by means of suitable axiom system. It is proved that every structure of the congruence of vectors determined by a non trivial uniquely two divisible group is a affine vector space.


MML Identifier: TDGROUP.

The articles [5], [1], [4], [2], and [3] provide the notation and terminology for this paper. In the sequel $A G$ denotes an Abelian group and $G$ denotes a group structure. One can prove the following propositions:
(1) $\mathbb{R}_{G}$ is an Abelian group.
(2) If $G=\mathbb{R}_{\mathrm{G}}$, then for every element $a$ of the carrier of $G$ there exists an element $b$ of the carrier of $G$ such that (the addition of $G)(b, b)=a$.
(3) If $G=\mathbb{R}_{\mathrm{G}}$, then for every element $a$ of the carrier of $G$ such that (the addition of $G)(a, a)=0_{G}$ holds $a=0_{G}$.
An Abelian group is called a 2-divisible group if:
for every element $a$ of the carrier of it there exists an element $b$ of the carrier of it such that (the addition of it) $(b, b)=a$.

The following two propositions are true:
(4) For every $A G$ holds $A G$ is a 2-divisible group if and only if for every element $a$ of the carrier of $A G$ there exists an element $b$ of the carrier of $A G$ such that (the addition of $A G)(b, b)=a$.
(5) $\mathbb{R}_{G}$ is a 2-divisible group.

[^12]A 2-divisible group is said to be a uniquely 2-divisible group if:
for every element $a$ of the carrier of it such that (the addition of it)( $a$, $a)=0_{\mathrm{it}}$ holds $a=0_{\mathrm{it}}$.

One can prove the following three propositions:
(6) For every 2 -divisible group $A G$ holds $A G$ is a uniquely 2-divisible group if and only if for every element $a$ of the carrier of $A G$ such that (the addition of $A G)(a, a)=0_{A G}$ holds $a=0_{A G}$.
(7) For every $A G$ holds $A G$ is a uniquely 2-divisible group if and only if for every element $a$ of the carrier of $A G$ there exists an element $b$ of the carrier of $A G$ such that (the addition of $A G)(b, b)=a$ and for every element $a$ of the carrier of $A G$ such that (the addition of $A G)(a, a)=0_{A G}$ holds $a=0_{A G}$.
(8) $\mathbb{R}_{G}$ is a uniquely 2-divisible group.

We adopt the following rules: $A D G$ is a uniquely 2-divisible group and $a, b$, $c, d, a^{\prime}, b^{\prime}, c^{\prime}, p, q$ are elements of the carrier of $A D G$. Let us consider $A D G$, $a, b$. The functor $a \# b$ yielding an element of the carrier of $A D G$ is defined as follows:
$a \# b=($ the addition of $A D G)(a, b)$.
Let us consider $A D G$. The functor $\operatorname{Congr}_{A D G}$ yields a binary relation on : the carrier of $A D G$, the carrier of $A D G$ : and is defined as follows:
for all $a, b, c, d$ holds $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in \operatorname{Congr}_{A D G}$ if and only if $a \# d=b \# c$.
Let us consider $A D G$. The functor Vectors $(A D G)$ yielding an affine structure is defined by:
$\operatorname{Vectors}(A D G)=\left\langle\right.$ the carrier of $\left.A D G, \operatorname{Congr}_{A D G}\right\rangle$.
Next we state the proposition
(9) The points of $\operatorname{Vectors}(A D G)=$ the carrier of $A D G$ and the congruence of Vectors $(A D G)=\operatorname{Congr}_{A D G}$.
Let us consider $A D G, a, b, c, d$. The predicate $a, b \Rightarrow c, d$ is defined by:
$\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of Vectors $(A D G)$.
Next we state a number of propositions:
(10) $a, b \Rightarrow c, d$ if and only if $a \# d=b \# c$.
(11) If $G=\mathbb{R}_{\mathrm{G}}$, then there exist elements $a, b$ of the carrier of $G$ such that $a \neq b$.
(12) There exists $A D G$ and there exist $a, b$ such that $a \neq b$.
(13) If $a, b \Rightarrow c, c$, then $a=b$.
(14) If $a, b \Rightarrow p, q$ and $c, d \Rightarrow p, q$, then $a, b \Rightarrow c, d$.
(15) There exists $d$ such that $a, b \Rightarrow c, d$.
(16) If $a, b \Rightarrow a^{\prime}, b^{\prime}$ and $a, c \Rightarrow a^{\prime}, c^{\prime}$, then $b, c \Rightarrow b^{\prime}, c^{\prime}$.
(17) There exists $b$ such that $a, b \Rightarrow b, c$.
(18) If $a, b \Rightarrow b, c$ and $a, b^{\prime} \Rightarrow b^{\prime}, c$, then $b=b^{\prime}$.
(19) If $a, b \Rightarrow c, d$, then $a, c \Rightarrow b, d$.

In the sequel $A S$ denotes an affine structure. Let us consider $A S$, and let $a$, $b, c, d$ be elements of the points of $A S$. The predicate $a, b \Rightarrow c, d$ is defined by:
$\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.
One can prove the following proposition
(20) Suppose there exist elements $a, b$ of the carrier of $A D G$ such that $a \neq b$. Then
(i) there exist elements $a, b$ of the points of $\operatorname{Vectors}(A D G)$ such that $a \neq b$,
(ii) for all elements $a, b, c$ of the points of Vectors $(A D G)$ such that $a, b \Rightarrow$ $c, c$ holds $a=b$,
(iii) for all elements $a, b, c, d, p, q$ of the points of Vectors $(A D G)$ such that $a, b \Rightarrow p, q$ and $c, d \Rightarrow p, q$ holds $a, b \Rightarrow c, d$,
(iv) for every elements $a, b, c$ of the points of Vectors $(A D G)$ there exists an element $d$ of the points of Vectors $(A D G)$ such that $a, b \Rightarrow c, d$,
(v) for all elements $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ of the points of $\operatorname{Vectors}(A D G)$ such that $a, b \Rightarrow a^{\prime}, b^{\prime}$ and $a, c \Rightarrow a^{\prime}, c^{\prime}$ holds $b, c \Rightarrow b^{\prime}, c^{\prime}$,
(vi) for every elements $a, c$ of the points of $\operatorname{Vectors}(A D G)$ there exists an element $b$ of the points of Vectors $(A D G)$ such that $a, b \Rightarrow b, c$,
(vii) for all elements $a, b, c, b^{\prime}$ of the points of Vectors $(A D G)$ such that $a, b \Rightarrow b, c$ and $a, b^{\prime} \Rightarrow b^{\prime}, c$ holds $b=b^{\prime}$,
(viii) for all elements $a, b, c, d$ of the points of $\operatorname{Vectors}(A D G)$ such that $a, b \Rightarrow c, d$ holds $a, c \Rightarrow b, d$.
An affine structure is said to be a space of free vectors if:
(i) there exist elements $a, b$ of the points of it such that $a \neq b$,
(ii) for all elements $a, b, c$ of the points of it such that $a, b \Rightarrow c, c$ holds $a=b$,
(iii) for all elements $a, b, c, d, p, q$ of the points of it such that $a, b \Rightarrow p, q$ and $c, d \Rightarrow p, q$ holds $a, b \Rightarrow c, d$,
(iv) for every elements $a, b, c$ of the points of it there exists an element $d$ of the points of it such that $a, b \Rightarrow c, d$,
(v) for all elements $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ of the points of it such that $a, b \Rightarrow a^{\prime}, b^{\prime}$ and $a, c \Rightarrow a^{\prime}, c^{\prime}$ holds $b, c \Rightarrow b^{\prime}, c^{\prime}$,
(vi) for every elements $a, c$ of the points of it there exists an element $b$ of the points of it such that $a, b \Rightarrow b, c$,
(vii) for all elements $a, b, c, b^{\prime}$ of the points of it such that $a, b \Rightarrow b, c$ and $a, b^{\prime} \Rightarrow b^{\prime}, c$ holds $b=b^{\prime}$,
(viii) for all elements $a, b, c, d$ of the points of it such that $a, b \Rightarrow c, d$ holds $a, c \Rightarrow b, d$.

We now state several propositions:
(21) Given $A S$. Then the following conditions are equivalent:
(i) there exist elements $a, b$ of the points of $A S$ such that $a \neq b$ and for all elements $a, b, c$ of the points of $A S$ such that $a, b \Rightarrow c, c$ holds $a=b$ and for all elements $a, b, c, d, p, q$ of the points of $A S$ such that $a, b \Rightarrow p, q$ and $c, d \Rightarrow p, q$ holds $a, b \Rightarrow c, d$ and for every elements $a, b, c$ of the points of $A S$ there exists an element $d$ of the points of $A S$ such that $a, b \Rightarrow c, d$ and for all elements $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$ of the points of $A S$ such that $a, b \Rightarrow a^{\prime}, b^{\prime}$
and $a, c \Rightarrow a^{\prime}, c^{\prime}$ holds $b, c \Rightarrow b^{\prime}, c^{\prime}$ and for every elements $a, c$ of the points of $A S$ there exists an element $b$ of the points of $A S$ such that $a, b \Rightarrow b, c$ and for all elements $a, b, c, b^{\prime}$ of the points of $A S$ such that $a, b \Rightarrow b, c$ and $a, b^{\prime} \Rightarrow b^{\prime}, c$ holds $b=b^{\prime}$ and for all elements $a, b, c, d$ of the points of $A S$ such that $a, b \Rightarrow c, d$ holds $a, c \Rightarrow b, d$,
(ii) $A S$ is a space of free vectors.
(22) If there exist elements $a, b$ of the carrier of $A D G$ such that $a \neq b$, then Vectors $(A D G)$ is a space of free vectors.
(23) For every $A D G$ and for all elements $a, b$ of the carrier of $A D G$ holds $a \# b=($ the addition of $A D G)(a, b)$.
(24) For every $A D G$ and for every binary relation $R$ on $:$ the carrier of $A D G$, the carrier of $A D G$ : holds $R=\operatorname{Congr}_{A D G}$ if and only if for all elements $a, b, c, d$ of the carrier of $A D G$ holds $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in R$ if and only if $a \# d=b \# c$.
(25) For every $A D G$ and for every $A S$ being an affine structure holds $A S=$ Vectors $(A D G)$ if and only if $A S=\left\langle\right.$ the carrier of $A D G$, Congr $\left.{ }_{A D G}\right\rangle$.
(26) For every $A D G$ and for all elements $a, b, c, d$ of the carrier of $A D G$ holds $a, b \Rightarrow c, d$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of Vectors $(A D G)$.
(27) For every $A S$ being an affine structure and for all elements $a, b, c, d$ of the points of $A S$ holds $a, b \Rightarrow c, d$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.

## References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[4] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

# A First-Order Predicate Calculus 

Agata Darmochwar ${ }^{1}$<br>Warsaw Uniwersity<br>Białystok


#### Abstract

Summary. A continuation of [3], with an axiom system of firstorder predicate theory. The consequence Cn of a set of formulas $X$ is defined as the intersection of all theories containing $X$ and some basic properties of it has been proved (monotonicity, idempotency, completness etc.). The notion of a proof of given formula is also introduced and it is shown that $\operatorname{Cn} X=\{p: p$ has a proof w.r.t. $X\}$. First 14 theorems are rather simply facts. I just wanted them to be included in the data base.


MML Identifier: CQC_THE1.

The papers [11], [10], [9], [8], [4], [6], [1], [5], [2], [7], and [3] provide the terminology and notation for this paper. In the sequel $i, j, n, k, l$ will be natural numbers. One can prove the following propositions:
(1) If $n \leq 0$, then $n=0$.
(2) If $n \leq 1$, then $n=0$ or $n=1$.
(3) If $n \leq 2$, then $n=0$ or $n=1$ or $n=2$.
(4) If $n \leq 3$, then $n=0$ or $n=1$ or $n=2$ or $n=3$.
(5) If $n \leq 4$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$.
(6) If $n \leq 5$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$.
(7) If $n \leq 6$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$.
(8) If $n \leq 7$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$ or $n=7$.
(9) If $n \leq 8$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$ or $n=7$ or $n=8$.
(10) If $n \leq 9$, then $n=0$ or $n=1$ or $n=2$ or $n=3$ or $n=4$ or $n=5$ or $n=6$ or $n=7$ or $n=8$ or $n=9$.

[^13]Next we state two propositions:

$$
\begin{equation*}
\{k: k \leq n+1\}=\{i: i \leq n\} \cup\{n+1\} . \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\text { For every } n \text { holds }\{k: k \leq n\} \text { is finite. } \tag{12}
\end{equation*}
$$

In the sequel $X, Y, Z$ denote sets. One can prove the following two propositions:
(13) If $X$ is finite and $X \subseteq: Y, Z:]$, then there exist sets $A, B$ such that $A$ is finite and $A \subseteq Y$ and $B$ is finite and $B \subseteq Z$ and $X \subseteq: A, B]$.
(14) If $X$ is finite and $Z$ is finite and $X \subseteq: Y, Z:$, then there exists a set $A$ such that $A$ is finite and $A \subseteq Y$ and $X \subseteq: A, Z \rrbracket$.
For simplicity we adopt the following convention: $T, S, X, Y$ will be subsets of $\mathrm{WFF}_{\mathrm{CQC}}, p, q, r, t, F$ will be elements of $\mathrm{WFF}_{\mathrm{CQC}}, s$ will be a formula, and $x, y$ will be bound variables. Let us consider $T$. We say that $T$ is a theory if and only if:
(i) VERUM $\in T$,
(ii) for all $p, q, r, s, x, y$ holds $(\neg p \Rightarrow p) \Rightarrow p \in T$ and $p \Rightarrow(\neg p \Rightarrow q) \in T$ and $(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in T$ and $p \wedge q \Rightarrow q \wedge p \in T$ but if $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$ and $\forall_{x} p \Rightarrow p \in T$ but if $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in T$ but if $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$.

Next we state a number of propositions:
(15) Suppose that
(i) $\operatorname{VERUM} \in T$,
(ii) for all $p, q, r, s, x, y$ holds $(\neg p \Rightarrow p) \Rightarrow p \in T$ and $p \Rightarrow(\neg p \Rightarrow q) \in T$ and $(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in T$ and $p \wedge q \Rightarrow q \wedge p \in T$ but if $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$ and $\forall_{x} p \Rightarrow p \in T$ but if $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in T$ but if $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$.
Then $T$ is a theory.
(16) If $T$ is a theory, then VERUM $\in T$.
(17) If $T$ is a theory, then $(\neg p \Rightarrow p) \Rightarrow p \in T$.
(18) If $T$ is a theory, then $p \Rightarrow(\neg p \Rightarrow q) \in T$.
(19) If $T$ is a theory, then $(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in T$.
(20) If $T$ is a theory, then $p \wedge q \Rightarrow q \wedge p \in T$.
(21) If $T$ is a theory and $p \in T$ and $p \Rightarrow q \in T$, then $q \in T$.
(22) If $T$ is a theory, then $\forall_{x} p \Rightarrow p \in T$.
(23) If $T$ is a theory and $p \Rightarrow q \in T$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in T$.
(24) If $T$ is a theory and $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin$ $\operatorname{snb}(s)$ and $s(x) \in T$, then $s(y) \in T$.
Let us consider $T, S$. Then $T \cup S$ is a subset of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $T \cap S$ is a subset of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $T \backslash S$ is a subset of $\mathrm{WFF}_{\mathrm{CQC}}$.

Let us consider $p$. Then $\{p\}$ is a subset of $\mathrm{WFF}_{\mathrm{CQC}}$.
Next we state the proposition
(25) If $T$ is a theory and $S$ is a theory, then $T \cap S$ is a theory.

Let us consider $X$. The functor $\mathrm{Cn} X$ yielding a subset of $\mathrm{WFF}_{\mathrm{CQC}}$ is defined as follows:
$t \in \mathrm{Cn} X$ if and only if for every $T$ such that $T$ is a theory and $X \subseteq T$ holds $t \in T$.

We now state a number of propositions:
(26) $Y=\mathrm{Cn} X$ if and only if for every $t$ holds $t \in Y$ if and only if for every $T$ such that $T$ is a theory and $X \subseteq T$ holds $t \in T$.
(27) VERUM $\in \operatorname{Cn} X$.
(28) $\quad(\neg p \Rightarrow p) \Rightarrow p \in \mathrm{Cn} X$.
(29) $\quad p \Rightarrow(\neg p \Rightarrow q) \in \operatorname{Cn} X$.
(30) $\quad(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in \operatorname{Cn} X$.
(31) $p \wedge q \Rightarrow q \wedge p \in \operatorname{Cn} X$.
(32) If $p \in \mathrm{Cn} X$ and $p \Rightarrow q \in \mathrm{Cn} X$, then $q \in \mathrm{Cn} X$.
(33) $\forall_{x} p \Rightarrow p \in \operatorname{Cn} X$.
(34) If $p \Rightarrow q \in \operatorname{Cn} X$ and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in \operatorname{Cn} X$.
(35) If $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in$ $\operatorname{Cn} X$, then $s(y) \in \operatorname{Cn} X$.
(36) $\operatorname{Cn} X$ is a theory.
(37) If $T$ is a theory and $X \subseteq T$, then $\operatorname{Cn} X \subseteq T$.
(38) $X \subseteq \operatorname{Cn} X$.
(39) If $X \subseteq Y$, then $\operatorname{Cn} X \subseteq \operatorname{Cn} Y$.
(40) $\operatorname{Cn}(\operatorname{Cn} X)=\operatorname{Cn} X$.
(41) $T$ is a theory if and only if $\operatorname{Cn} T=T$.

The non-empty set $\mathbb{K}$ is defined by:
$\mathbb{K}=\{k: k \leq 9\}$.
Next we state three propositions:
(42) $\mathbb{K}=\{k: k \leq 9\}$.
(43) $\quad 0 \in \mathbb{K}$ and $1 \in \mathbb{K}$ and $2 \in \mathbb{K}$ and $3 \in \mathbb{K}$ and $4 \in \mathbb{K}$ and $5 \in \mathbb{K}$ and $6 \in \mathbb{K}$ and $7 \in \mathbb{K}$ and $8 \in \mathbb{K}$ and $9 \in \mathbb{K}$.
(44) $\mathbb{K}$ is finite.

In the sequel $f, g$ are finite sequences of elements of $\left.: \mathrm{WFF}_{\mathrm{CQC}}, \mathbb{K}:\right]$. The following proposition is true
(45) Suppose $1 \leq n$ and $n \leq \operatorname{len} f$. Then
(i) $(f(n))_{2}=0$, or
(ii) $(f(n))_{2}=1$, or
(iii) $(f(n))_{\mathbf{2}}=2$, or
(iv) $(f(n))_{\mathbf{2}}=3$, or
(v) $(f(n))_{2}=4$, or
(vi) $(f(n))_{2}=5$, or
(vii) $\quad(f(n))_{2}=6$, or
(viii) $(f(n))_{2}=7$, or
(ix) $\quad(f(n))_{\mathbf{2}}=8$, or
(x) $\quad(f(n))_{2}=9$.

Let $P R$ be a finite sequence of elements of : $\left.\mathrm{WFF}_{\mathrm{CQC}}, \mathbb{K}:\right]$, and let us consider $n, X$. Let us assume that $1 \leq n$ and $n \leq$ len $P R$. We say that $P R(n)$ is a correct proof step w.r.t. $X$ if and only if:
$(P R(n))_{\mathbf{1}} \in X$ if $(P R(n))_{\mathbf{2}}=0,(P R(n))_{\mathbf{1}}=$ VERUM if $(P R(n))_{\mathbf{2}}=1$, there exists $p$ such that $(P R(n))_{\mathbf{1}}=(\neg p \Rightarrow p) \Rightarrow p$ if $(P R(n))_{\mathbf{2}}=2$, there exist $p, q$ such that $(P R(n))_{1}=p \Rightarrow(\neg p \Rightarrow q)$ if $(P R(n))_{2}=3$, there exist $p, q$, $r$ such that $(P R(n))_{1}=(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$ if $(P R(n))_{2}=4$, there exist $p, q$ such that $(P R(n))_{1}=p \wedge q \Rightarrow q \wedge p$ if $(P R(n))_{\mathbf{2}}=5$, there exist $p, x$ such that $(P R(n))_{1}=\forall_{x} p \Rightarrow p$ if $(P R(n))_{2}=6$, there exist $i, j$, $p, q$ such that $1 \leq i$ and $i<n$ and $1 \leq j$ and $j<i$ and $p=(P R(j))_{1}$ and $q=(P R(n))_{\mathbf{1}}$ and $(P R(i))_{1}=p \Rightarrow q$ if $(P R(n))_{\mathbf{2}}=7$, there exist $i, p, q$, $x$ such that $1 \leq i$ and $i<n$ and $(P R(i))_{1}=p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$ and $(P R(n))_{\mathbf{1}}=p \Rightarrow \forall_{x} q$ if $(P R(n))_{\mathbf{2}}=8$, there exist $i, x, y, s$ such that $1 \leq i$ and $i<n$ and $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x)=(P R(i))_{\mathbf{1}}$ and $s(y)=(P R(n))_{\mathbf{1}}$ if $(P R(n))_{\mathbf{2}}=9$.

The following propositions are true:
(46) If $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=0$, then $f(n)$ is a correct proof step w.r.t. $X$ if and only if $(f(n))_{1} \in X$. If $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{\mathbf{2}}=4$, then $f(n)$ is a correct proof step w.r.t. $X$ if and only if there exist $p, q, r$ such that $(f(n))_{1}=(p \Rightarrow$ $q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$.
If $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=5$, then $f(n)$ is a correct proof step w.r.t. $X$ if and only if there exist $p, q$ such that $(f(n))_{1}=p \wedge q \Rightarrow q \wedge p$. If $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=6$, then $f(n)$ is a correct proof step w.r.t. $X$ if and only if there exist $p, x$ such that $(f(n))_{1}=\forall_{x} p \Rightarrow p$. Suppose $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=7$. Then $f(n)$ is a correct proof step w.r.t. $X$ if and only if there exist $i, j, p, q$ such that $1 \leq i$ and $i<n$ and $1 \leq j$ and $j<i$ and $p=(f(j))_{1}$ and $q=(f(n))_{1}$ and $(f(i))_{\mathbf{1}}=p \Rightarrow q$.

Suppose $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=8$. Then $f(n)$ is a correct proof step w.r.t. $X$ if and only if there exist $i, p, q, x$ such that $1 \leq i$ and $i<n$ and $(f(i))_{\mathbf{1}}=p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$ and $(f(n))_{\mathbf{1}}=p \Rightarrow \forall_{x} q$.
(55) Suppose $1 \leq n$ and $n \leq \operatorname{len} f$ and $(f(n))_{2}=9$. Then $f(n)$ is a correct proof step w.r.t. $X$ if and only if there exist $i, x, y, s$ such that $1 \leq i$
and $i<n$ and $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x)=(f(i))_{\mathbf{1}}$ and $(f(n))_{\mathbf{1}}=s(y)$.
Let us consider $X, f$. We say that $f$ is a proof w.r.t. $X$ if and only if:
$f \neq \varepsilon$ and for every $n$ such that $1 \leq n$ and $n \leq \operatorname{len} f$ holds $f(n)$ is a correct proof step w.r.t. $X$.

The following propositions are true:
(56) $f$ is a proof w.r.t. $X$ if and only if $f \neq \varepsilon$ and for every $n$ such that $1 \leq n$ and $n \leq \operatorname{len} f$ holds $f(n)$ is a correct proof step w.r.t. $X$.
(57) If $f$ is a proof w.r.t. $X$, then $\operatorname{rng} f \neq \emptyset$.
(58) If $f$ is a proof w.r.t. $X$, then $1 \leq \operatorname{len} f$.
(59) Suppose $f$ is a proof w.r.t. $X$. Then $(f(1))_{2}=0$ or $(f(1))_{2}=1$ or $(f(1))_{\mathbf{2}}=2$ or $(f(1))_{\mathbf{2}}=3$ or $(f(1))_{\mathbf{2}}=4$ or $(f(1))_{\mathbf{2}}=5$ or $(f(1))_{\mathbf{2}}=6$.
(60) If $1 \leq n$ and $n \leq \operatorname{len} f$, then $f(n)$ is a correct proof step w.r.t. $X$ if and only if $f^{\wedge} g(n)$ is a correct proof step w.r.t. $X$.
(61) If $1 \leq n$ and $n \leq \operatorname{len} g$ and $g(n)$ is a correct proof step w.r.t. $X$, then $f \wedge g(n+\operatorname{len} f)$ is a correct proof step w.r.t. $X$.
(62) If $f$ is a proof w.r.t. $X$ and $g$ is a proof w.r.t. $X$, then $f \wedge g$ is a proof w.r.t. $X$.
(63) If $f$ is a proof w.r.t. $X$ and $X \subseteq Y$, then $f$ is a proof w.r.t. $Y$.
(64) If $f$ is a proof w.r.t. $X$ and $1 \leq l$ and $l \leq \operatorname{len} f$, then $(f(l))_{\mathbf{1}} \in \operatorname{Cn} X$.

Let us consider $f$. Let us assume that $f \neq \varepsilon$. The functor Effect $f$ yields an element of $\mathrm{WFF}_{\mathrm{CQC}}$ and is defined as follows:

Effect $f=(f(\operatorname{len} f))_{1}$.
The following propositions are true:
(65) If $f \neq \varepsilon$, then Effect $f=(f(\operatorname{len} f))_{\mathbf{1}}$.
(66) If $f$ is a proof w.r.t. $X$, then Effect $f \in \operatorname{Cn} X$.
(67) $X \subseteq\left\{F: \bigvee_{f}[f\right.$ is a proof w.r.t. $\left.X \wedge \operatorname{Effect} f=F]\right\}$.
(68) For every $X$ such that $Y=\left\{p: \bigvee_{f}[f\right.$ is a proof w.r.t. $X \wedge$ Effect $\left.f=p]\right\}$ holds $Y$ is a theory.
(69) For every $X$ holds $\left\{p: \bigvee_{f}[f\right.$ is a proof w.r.t. $X \wedge$ Effect $\left.f=p]\right\}=$ Cn $X$.
(70) $\quad p \in \operatorname{Cn} X$ if and only if there exists $f$ such that $f$ is a proof w.r.t. $X$ and Effect $f=p$.
(71) If $p \in \mathrm{Cn} X$, then there exists $Y$ such that $Y \subseteq X$ and $Y$ is finite and $p \in \operatorname{Cn} Y$.
The subset $\emptyset_{\mathrm{CQC}}$ of $\mathrm{WFF}_{\mathrm{CQC}}$ is defined by:
$\emptyset_{\mathrm{CQC}}=\emptyset_{\mathrm{WFF}_{\mathrm{CQC}}}$.
We now state the proposition
(72) $\quad \emptyset_{\mathrm{CQC}}=\emptyset_{\mathrm{WFF}_{\mathrm{CQC}}}$.

The subset Taut of $\mathrm{WFF}_{\mathrm{CQC}}$ is defined as follows:
Taut $=\mathrm{Cn} \emptyset_{\mathrm{CQC}}$.

One can prove the following propositions:
(73) $\quad$ Taut $=\mathrm{Cn} \emptyset_{\mathrm{CQC}}$.
(74) If $T$ is a theory, then Taut $\subseteq T$.
(75) Taut $\subseteq$ Cn $X$.
(76) Taut is a theory.
(77) $\quad$ VERUM $\in$ Taut.
(78) $\quad(\neg p \Rightarrow p) \Rightarrow p \in$ Taut.
(79) $\quad p \Rightarrow(\neg p \Rightarrow q) \in$ Taut.
(80) $\quad(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r)) \in$ Taut.
(81) $p \wedge q \Rightarrow q \wedge p \in$ Taut.
(82) If $p \in$ Taut and $p \Rightarrow q \in$ Taut, then $q \in$ Taut.
(83) $\forall_{x} p \Rightarrow p \in$ Taut.
(84) If $p \Rightarrow q \in$ Taut and $x \notin \operatorname{snb}(p)$, then $p \Rightarrow \forall_{x} q \in$ Taut.
(85) If $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $s(x) \in$ Taut, then $s(y) \in$ Taut.
Let us consider $X, s$. The predicate $X \vdash s$ is defined as follows:
$s \in \operatorname{Cn} X$.
Next we state a number of propositions:
(86) $\quad X \vdash s$ if and only if $s \in \operatorname{Cn} X$.
(87) $X \vdash$ VERUM.
(88) $\quad X \vdash(\neg p \Rightarrow p) \Rightarrow p$.
(89) $\quad X \vdash p \Rightarrow(\neg p \Rightarrow q)$.
(90) $\quad X \vdash(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$.
(91) $\quad X \vdash p \wedge q \Rightarrow q \wedge p$.
(92) If $X \vdash p$ and $X \vdash p \Rightarrow q$, then $X \vdash q$.
(93) $X \vdash \forall_{x} p \Rightarrow p$.
(94) If $X \vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $X \vdash p \Rightarrow \forall_{x} q$.
(95) If $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $X \vdash s(x)$, then $X \vdash s(y)$.
Let us consider $s$. The predicate $\vdash s$ is defined as follows:
$\emptyset_{\mathrm{CQC}} \vdash s$.
Next we state two propositions:
(96) $\vdash s$ if and only if $\emptyset_{\mathrm{CQC}} \vdash s$.
(97) $\vdash s$ if and only if $s \in$ Taut.

Let us consider $s$. Let us note that one can characterize the predicate $\vdash s$ by the following (equivalent) condition: $s \in$ Taut.

We now state a number of propositions:
(98) If $\vdash p$, then $X \vdash p$.
(99) $\vdash$ VERUM.
(100) $\vdash(\neg p \Rightarrow p) \Rightarrow p$.
(101) $\vdash p \Rightarrow(\neg p \Rightarrow q)$.
(102) $\vdash(p \Rightarrow q) \Rightarrow(\neg(q \wedge r) \Rightarrow \neg(p \wedge r))$.
(103) $\vdash p \wedge q \Rightarrow q \wedge p$.
(104) If $\vdash p$ and $\vdash p \Rightarrow q$, then $\vdash q$.
(105) $\vdash \forall_{x} p \Rightarrow p$.
(106) $\quad$ If $\vdash p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $\vdash p \Rightarrow \forall_{x} q$.
(107) If $s(x) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $s(y) \in \mathrm{WFF}_{\mathrm{CQC}}$ and $x \notin \operatorname{snb}(s)$ and $\vdash s(x)$, then $\vdash s(y)$.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

# Partial Functions from a Domain to a Domain 

Jarosław Kotowicz ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. The value of a partial function from a domain to a domain and a inverse partial function are introduced. The value and inverse function were defined in the article [1], but new definitions are introduced. The basic properties of the value, the inverse partial function, the identity partial function, the composition of partial funtion, the $1-1$ partial function, the restriction of a partial function, the image, the inverse image and the graph are proved. Constant partial function are introduced, too.


MML Identifier: PARTFUN2.

The terminology and notation used here are introduced in the following papers: [5], [1], [2], [6], [4], and [3]. For simplicity we follow the rules: $x, y$ are arbitrary, $X, Y$ denote sets, $C, D, E$ denote non-empty sets, $S C$ denotes a subset of $C$, $S D$ denotes a subset of $D, S E$ denotes a subset of $E, c, c_{1}, c_{2}$ denote elements of $C, d$ denotes an element of $D, e$ denotes an element of $E, f, f_{1}, g$ denote partial functions from $C$ to $D, t$ denotes a partial function from $D$ to $C, s$ denotes a partial function from $D$ to $E, h$ denotes a partial function from $C$ to $E$, and $F$ denotes a partial function from $D$ to $D$. The following proposition is true
(1) $\quad x$ is an element of $E$ if and only if $x \in E$.

Let us consider $C, D, f, c$. Let us assume that $c \in \operatorname{dom} f$. The functor $f(c)$ yielding an element of $D$ is defined by:
$f(c)=(f$ qua a function) $(c)$.
Next we state four propositions:
(2) If $c \in \operatorname{dom} f$, then $f(c)=(f$ qua a function $)(c)$.

[^14](3) If $\operatorname{dom} f=\operatorname{dom} g$ and for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=g(c)$, then $f=g$.
(4) $y \in \operatorname{rng} f$ if and only if there exists $c$ such that $c \in \operatorname{dom} f$ and $y=f(c)$. If $c \in \operatorname{dom} f$, then $f(c) \in \operatorname{rng} f$.
Let us consider $D, C, f$. Then $\operatorname{dom} f$ is a subset of $C$. Then $\operatorname{rng} f$ is a subset of $D$.

The following propositions are true:
(6) $h=s \cdot f$ if and only if for every $c$ holds $c \in \operatorname{dom} h$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in \operatorname{dom} s$ and for every $c$ such that $c \in \operatorname{dom} h$ holds $h(c)=s(f(c))$.
(7) $\quad c \in \operatorname{dom}(s \cdot f)$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in \operatorname{dom} s$.
(8) If $c \in \operatorname{dom}(s \cdot f)$, then $(s \cdot f)(c)=s(f(c))$.
(9) If $c \in \operatorname{dom} f$ and $f(c) \in \operatorname{dom} s$, then $(s \cdot f)(c)=s(f(c))$.
(10) If $\operatorname{rng} f \subseteq \operatorname{dom} s$ and $c \in \operatorname{dom} f$, then $(s \cdot f)(c)=s(f(c))$.
(11) If $\operatorname{rng} f=\operatorname{dom} s$ and $c \in \operatorname{dom} f$, then $(s \cdot f)(c)=s(f(c))$.

Let us consider $D, S D$. Then $\mathrm{id}_{S D}$ is a partial function from $D$ to $D$.
Next we state several propositions:
(12) $\quad F=\operatorname{id}_{S D}$ if and only if dom $F=S D$ and for every $d$ such that $d \in S D$ holds $F(d)=d$.
(13) If $d \in S D$, then $\operatorname{id}_{S D}(d)=d$.
(14) If $d \in \operatorname{dom} F \cap S D$, then $F(d)=\left(F \cdot \operatorname{id}_{S D}\right)(d)$.
(15) $\quad d \in \operatorname{dom}\left(\mathrm{id}_{S D} \cdot F\right)$ if and only if $d \in \operatorname{dom} F$ and $F(d) \in S D$.
(16) $f$ is one-to-one if and only if for all $c_{1}, c_{2}$ such that $c_{1} \in \operatorname{dom} f$ and $c_{2} \in \operatorname{dom} f$ and $f\left(c_{1}\right)=f\left(c_{2}\right)$ holds $c_{1}=c_{2}$.
Let us consider $C, D$, and let $f$ be a partial function from $C$ to $D$. Let us assume that $f$ is one-to-one. The functor $f^{-1}$ yields a partial function from $D$ to $C$ and is defined as follows:
$f^{-1}=(f \text { qua a function })^{-1}$.
One can prove the following propositions:
(17) If $f$ is one-to-one, then for every partial function $g$ from $D$ to $C$ holds $g=f^{-1}$ if and only if $g=(f \text { qua a function })^{-1}$.
(18) If $f$ is one-to-one, then for every partial function $g$ from $D$ to $C$ holds $g=f^{-1}$ if and only if $\operatorname{dom} g=\operatorname{rng} f$ and for all $d, c$ holds $d \in \operatorname{rng} f$ and $c=g(d)$ if and only if $c \in \operatorname{dom} f$ and $d=f(c)$.
(19) If $f$ is one-to-one, then $\operatorname{rng} f=\operatorname{dom}\left(f^{-1}\right)$ and $\operatorname{dom} f=\operatorname{rng}\left(f^{-1}\right)$.
(20) If $f$ is one-to-one, then $\operatorname{dom}\left(f^{-1} \cdot f\right)=\operatorname{dom} f$ and $\operatorname{rng}\left(f^{-1} \cdot f\right)=\operatorname{dom} f$.
(21) If $f$ is one-to-one, then $\operatorname{dom}\left(f \cdot f^{-1}\right)=\operatorname{rng} f$ and $\operatorname{rng}\left(f \cdot f^{-1}\right)=\operatorname{rng} f$.

If $f$ is one-to-one and $c \in \operatorname{dom} f$, then $c=f^{-1}(f(c))$ and $c=\left(f^{-1} \cdot f\right)(c)$. If $f$ is one-to-one and $d \in \operatorname{rng} f$, then $d=f\left(f^{-1}(d)\right)$ and $d=\left(f \cdot f^{-1}\right)(d)$.
(24) such that $c \in \operatorname{dom} f$ and $d \in \operatorname{dom} t$ holds $f(c)=d$ if and only if $t(d)=c$, then $t=f^{-1}$.
(29) If $f$ is one-to-one, then $\left(f^{-1}\right)^{-1}=f$.
(30) If $f$ is one-to-one and $s$ is one-to-one, then $(s \cdot f)^{-1}=f^{-1} \cdot s^{-1}$.
(31) $\quad\left(\mathrm{id}_{S C}\right)^{-1}=\mathrm{id}_{S C}$.

Let us consider $C, D, f, X$. Then $f \upharpoonright X$ is a partial function from $C$ to $D$.
We now state several propositions:
(32) $g=f \upharpoonright X$ if and only if $\operatorname{dom} g=\operatorname{dom} f \cap X$ and for every $c$ such that $c \in \operatorname{dom} g$ holds $g(c)=f(c)$.
(33) If $c \in \operatorname{dom}(f \upharpoonright X)$, then $(f \upharpoonright X)(c)=f(c)$.
(34) If $c \in \operatorname{dom} f \cap X$, then $(f \upharpoonright X)(c)=f(c)$.
(35) If $c \in \operatorname{dom} f$ and $c \in X$, then $(f \upharpoonright X)(c)=f(c)$.
(36) If $c \in \operatorname{dom} f$ and $c \in X$, then $f(c) \in \operatorname{rng}(f \upharpoonright X)$.

Let us consider $C, D, X, f$. Then $X \upharpoonright f$ is a partial function from $C$ to $D$.
The following three propositions are true:
(37) $g=X \upharpoonright f$ if and only if for every $c$ holds $c \in \operatorname{dom} g$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in X$ and for every $c$ such that $c \in \operatorname{dom} g$ holds $g(c)=f(c)$.
(38) $\quad c \in \operatorname{dom}(X \upharpoonright f)$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in X$.
(39) If $c \in \operatorname{dom}(X \upharpoonright f)$, then $(X \upharpoonright f)(c)=f(c)$.

Let us consider $C, D, f, X$. Then $f^{\circ} X$ is a subset of $D$.
The following propositions are true:
(40) $S D=f^{\circ} X$ if and only if for every $d$ holds $d \in S D$ if and only if there exists $c$ such that $c \in \operatorname{dom} f$ and $c \in X$ and $d=f(c)$.
(41) $d \in f^{\circ} X$ if and only if there exists $c$ such that $c \in \operatorname{dom} f$ and $c \in X$ and $d=f(c)$.
(42) If $c \in \operatorname{dom} f$, then $f^{\circ}\{c\}=\{f(c)\}$.
(43) If $c_{1} \in \operatorname{dom} f$ and $c_{2} \in \operatorname{dom} f$, then $f \circ\left\{c_{1}, c_{2}\right\}=\left\{f\left(c_{1}\right), f\left(c_{2}\right)\right\}$.

Let us consider $C, D, f, X$. Then $f^{-1} X$ is a subset of $C$.
The following propositions are true:
(44) $\quad S C=f^{-1} X$ if and only if for every $c$ holds $c \in S C$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in X$.
(45) $\quad c \in f^{-1} X$ if and only if $c \in \operatorname{dom} f$ and $f(c) \in X$.
(46) For every $f$ there exists a function $g$ from $C$ into $D$ such that for every $c$ such that $c \in \operatorname{dom} f$ holds $g(c)=f(c)$.

$$
\begin{align*}
& f \approx g \text { if and only if for every } c \text { such that } c \in \operatorname{dom} f \cap \operatorname{dom} g \text { holds }  \tag{47}\\
& f(c)=g(c) .
\end{align*}
$$

In this article we present several logical schemes. The scheme PartFuncExD deals with a non-empty set $\mathcal{A}$, a non-empty set $\mathcal{B}$, and a binary predicate $\mathcal{P}$, and states that:
there exists a partial function $f$ from $\mathcal{A}$ to $\mathcal{B}$ such that for every element $d$ of $\mathcal{A}$ holds $d \in \operatorname{dom} f$ if and only if there exists an element $c$ of $\mathcal{B}$ such that $\mathcal{P}[d, c]$ and for every element $d$ of $\mathcal{A}$ such that $d \in \operatorname{dom} f$ holds $\mathcal{P}[d, f(d)]$ provided the following condition is satisfied:

- for every element $d$ of $\mathcal{A}$ and for all elements $c_{1}, c_{2}$ of $\mathcal{B}$ such that $\mathcal{P}\left[d, c_{1}\right]$ and $\mathcal{P}\left[d, c_{2}\right]$ holds $c_{1}=c_{2}$.
The scheme LambdaPFD concerns a non-empty set $\mathcal{A}$, a non-empty set $\mathcal{B}$, a unary functor $\mathcal{F}$ yielding an element of $\mathcal{B}$, and a unary predicate $\mathcal{P}$, and states that:
there exists a partial function $f$ from $\mathcal{A}$ to $\mathcal{B}$ such that for every element $d$ of $\mathcal{A}$ holds $d \in \operatorname{dom} f$ if and only if $\mathcal{P}[d]$ and for every element $d$ of $\mathcal{A}$ such that $d \in \operatorname{dom} f$ holds $f(d)=\mathcal{F}(d)$ for all values of the parameters.

The scheme UnPartFuncD deals with a non-empty set $\mathcal{A}$, a non-empty set $\mathcal{B}$, a set $\mathcal{C}$, and a unary functor $\mathcal{F}$ yielding an element of $\mathcal{B}$ and states that:

Let $f, g$ be partial functions from $\mathcal{A}$ to $\mathcal{B}$. Then if $\operatorname{dom} f=\mathcal{C}$ and for every element $c$ of $\mathcal{A}$ such that $c \in \operatorname{dom} f$ holds $f(c)=\mathcal{F}(c)$ and $\operatorname{dom} g=\mathcal{C}$ and for every element $c$ of $\mathcal{A}$ such that $c \in \operatorname{dom} g$ holds $g(c)=\mathcal{F}(c)$, then $f=g$ for all values of the parameters.

Let us consider $C, D, S C, d$. Then $S C \longmapsto d$ is a partial function from $C$ to $D$.

The following propositions are true:
(48) If $c \in S C$, then $(S C \longmapsto d)(c)=d$.
(49) If for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=d$, then $f=\operatorname{dom} f \longmapsto d$.

If $c \in \operatorname{dom} f$, then $f \cdot(S E \longmapsto c)=S E \longmapsto f(c)$.
$\mathrm{id}_{S C}$ is total if and only if $S C=C$.
If $S C \longmapsto d$ is total, then $S C \neq \emptyset$.
$S C \longmapsto d$ is total if and only if $S C=C$.
Let us consider $C, D, f, X$. We say that $f$ is a constant on $X$ if and only if: there exists $d$ such that for every $c$ such that $c \in X \cap \operatorname{dom} f$ holds $f(c)=d$.
Next we state a number of propositions: and $c_{2} \in X \cap \operatorname{dom} f$ holds $f\left(c_{1}\right)=f\left(c_{2}\right)$.
If $X \cap \operatorname{dom} f \neq \emptyset$, then $f$ is a constant on $X$ if and only if there exists $d$ such that $\operatorname{rng}(f \upharpoonright X)=\{d\}$.
(57) If $f$ is a constant on $X$ and $Y \subseteq X$, then $f$ is a constant on $Y$.
(58) If $X \cap \operatorname{dom} f=\emptyset$, then $f$ is a constant on $X$.
(59) If $f \upharpoonright S C=\operatorname{dom}(f \upharpoonright S C) \longmapsto d$, then $f$ is a constant on $S C$.
(60) $f$ is a constant on $\{x\}$.
(61) If $f$ is a constant on $X$ and $f$ is a constant on $Y$ and $(X \cap Y) \cap \operatorname{dom} f \neq \emptyset$, then $f$ is a constant on $X \cup Y$.
(62) If $f$ is a constant on $Y$, then $f \upharpoonright X$ is a constant on $Y$.
(63) $\quad S C \longmapsto d$ is a constant on $S C$.
(64) graph $f \subseteq \operatorname{graph} g$ if and only if $\operatorname{dom} f \subseteq \operatorname{dom} g$ and for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=g(c)$.
(65) $\quad c \in \operatorname{dom} f$ and $d=f(c)$ if and only if $\langle c, d\rangle \in \operatorname{graph} f$.
(66) If $\langle c, e\rangle \in \operatorname{graph}(s \cdot f)$, then $\langle c, f(c)\rangle \in \operatorname{graph} f$ and $\langle f(c), e\rangle \in \operatorname{graph} s$.
(67) If graph $f=\{\langle c, d\rangle\}$, then $f(c)=d$.
(68) If $\operatorname{dom} f=\{c\}$, then graph $f=\{\langle c, f(c)\rangle\}$.
(69) If graph $f_{1}=\operatorname{graph} f \cap \operatorname{graph} g$ and $c \in \operatorname{dom} f_{1}$, then $f_{1}(c)=f(c)$ and $f_{1}(c)=g(c)$.
(70) If $c \in \operatorname{dom} f$ and graph $f_{1}=\operatorname{graph} f \cup \operatorname{graph} g$, then $f_{1}(c)=f(c)$.
(71) If $c \in \operatorname{dom} g$ and graph $f_{1}=\operatorname{graph} f \cup \operatorname{graph} g$, then $f_{1}(c)=g(c)$.
(72) If $c \in \operatorname{dom} f_{1}$ and graph $f_{1}=\operatorname{graph} f \cup \operatorname{graph} g$, then $f_{1}(c)=f(c)$ or $f_{1}(c)=g(c)$.
(73) $\quad c \in \operatorname{dom} f$ and $c \in S C$ if and only if $\langle c, f(c)\rangle \in \operatorname{graph}(f \upharpoonright S C)$.
(74) $\quad c \in \operatorname{dom} f$ and $f(c) \in S D$ if and only if $\langle c, f(c)\rangle \in \operatorname{graph}(S D \upharpoonright f)$.
(75) $\quad c \in f^{-1} S D$ if and only if $\langle c, f(c)\rangle \in \operatorname{graph} f$ and $f(c) \in S D$.

## References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[4] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):6771, 1990.

Received May 31, 1990

# Partial Functions from a Domain to the Set of Real Numbers 

Jarosław Kotowicz ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. Basic operations in the set of partial functions which map a domain to the set of all real numbers are introduced. They include adition, substraction, multiplication, division, multipication by a real number and also module. Main properties of these operations are proved. A definition of the partial function bounded on a set (bounded below and bounded above) is presented. There are theorems showing the laws of conservation of totality and boundeness for operations of partial functions. The characteristic function of a subset of a domain as a partial function is redefined and a few properties are proved.


MML Identifier: RFUNCT_1.

The papers [6], [3], [1], [7], [5], [2], and [4] provide the terminology and notation for this paper. For simplicity we follow the rules: $X, Y$ will be sets, $C$ will be a non-empty set, $c$ will be an element of $C, f, f_{1}, f_{2}, f_{3}, g$, $g_{1}$ will be partial functions from $C$ to $\mathbb{R}$, and $r, r_{1}, p, p_{1}$ will be real numbers. We now state two propositions:

$$
\begin{equation*}
(-1)^{-1}=-1 \tag{1}
\end{equation*}
$$

(2) If $0 \leq p$ and $0 \leq r$ and $p \leq p_{1}$ and $r \leq r_{1}$, then $p \cdot r \leq p_{1} \cdot r_{1}$.

We now define four new functors. Let us consider $C, f_{1}, f_{2}$. The functor $f_{1}+f_{2}$ yields a partial function from $C$ to $\mathbb{R}$ and is defined as follows:
$\operatorname{dom}\left(f_{1}+f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every $c$ such that $c \in \operatorname{dom}\left(f_{1}+f_{2}\right)$ holds $\left(f_{1}+f_{2}\right)(c)=f_{1}(c)+f_{2}(c)$.
The functor $f_{1}-f_{2}$ yielding a partial function from $C$ to $\mathbb{R}$ is defined as follows:
$\operatorname{dom}\left(f_{1}-f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every $c$ such that $c \in \operatorname{dom}\left(f_{1}-f_{2}\right)$ holds $\left(f_{1}-f_{2}\right)(c)=f_{1}(c)-f_{2}(c)$.
The functor $f_{1} \diamond f_{2}$ yielding a partial function from $C$ to $\mathbb{R}$ is defined by:

[^15]$\operatorname{dom}\left(f_{1} \diamond f_{2}\right)=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every $c$ such that $c \in \operatorname{dom}\left(f_{1} \diamond f_{2}\right)$ holds $\left(f_{1} \diamond f_{2}\right)(c)=f_{1}(c) \cdot f_{2}(c)$.
The functor $\frac{f_{1}}{f_{2}}$ yielding a partial function from $C$ to $\mathbb{R}$ is defined by:
$\operatorname{dom} \frac{f_{1}}{f_{2}}=\operatorname{dom} f_{1} \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}\{0\}\right)$ and for every $c$ such that $c \in \operatorname{dom} \frac{f_{1}}{f_{2}}$ holds $\frac{f_{1}}{f_{2}}(c)=f_{1}(c) \cdot\left(f_{2}(c)\right)^{-1}$.

Let us consider $C, f, r$. The functor $r \diamond f$ yields a partial function from $C$ to $\mathbb{R}$ and is defined by:
$\operatorname{dom}(r \diamond f)=\operatorname{dom} f$ and for every $c$ such that $c \in \operatorname{dom}(r \diamond f)$ holds $(r \diamond f)(c)=$ $r \cdot f(c)$.

We now define three new functors. Let us consider $C$, $f$. The functor $|f|$ yields a partial function from $C$ to $\mathbb{R}$ and is defined by:
$\operatorname{dom}|f|=\operatorname{dom} f$ and for every $c$ such that $c \in \operatorname{dom}|f|$ holds $|f|(c)=|f(c)|$. The functor $-f$ yields a partial function from $C$ to $\mathbb{R}$ and is defined by:
$\operatorname{dom}(-f)=\operatorname{dom} f$ and for every $c$ such that $c \in \operatorname{dom}(-f)$ holds $(-f)(c)=$ $-f(c)$.
The functor $\frac{1}{f}$ yielding a partial function from $C$ to $\mathbb{R}$ is defined by:
$\operatorname{dom} \frac{1}{f}=\operatorname{dom} f \backslash f^{-1}\{0\}$ and for every $c$ such that $c \in \operatorname{dom} \frac{1}{f}$ holds $\frac{1}{f}(c)=$ $(f(c))^{-1}$.

One can prove the following propositions:
(3) $\quad f=f_{1}+f_{2}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c)+f_{2}(c)$.
(4) $\quad f=f_{1}-f_{2}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c)-f_{2}(c)$.
(5) $\quad f=f_{1} \diamond f_{2}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap \operatorname{dom} f_{2}$ and for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c) \cdot f_{2}(c)$.
(6) $\quad f=\frac{f_{1}}{f_{2}}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1} \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}\{0\}\right)$ and for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=f_{1}(c) \cdot\left(f_{2}(c)\right)^{-1}$.
(7) $\quad f=r \diamond f_{1}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1}$ and for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=r \cdot f_{1}(c)$.
(8) $f=\left|f_{1}\right|$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1}$ and for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=\left|f_{1}(c)\right|$.
(9) $\quad f=-f_{1}$ if and only if $\operatorname{dom} f=\operatorname{dom} f_{1}$ and for every $c$ such that $c \in \operatorname{dom} f$ holds $f(c)=-f_{1}(c)$.

$$
\begin{equation*}
f_{1}=\frac{1}{f} \text { if and only if } \operatorname{dom} f_{1}=\operatorname{dom} f \backslash f^{-1}\{0\} \text { and for every } c \text { such } \tag{10}
\end{equation*}
$$ that $c \in \operatorname{dom} f_{1}$ holds $f_{1}(c)=(f(c))^{-1}$.

$$
\begin{align*}
& \operatorname{dom} \frac{1}{g} \subseteq \operatorname{dom} g \text { and } \operatorname{dom} g \cap\left(\operatorname{dom} g \backslash g^{-1}\{0\}\right)=\operatorname{dom} g \backslash g^{-1}\{0\}  \tag{11}\\
& \operatorname{dom}\left(f_{1} \diamond f_{2}\right) \backslash\left(f_{1} \diamond f_{2}\right)^{-1}\{0\}=\left(\operatorname{dom} f_{1} \backslash f_{1}^{-1}\{0\}\right) \cap\left(\operatorname{dom} f_{2} \backslash f_{2}^{-1}\{0\}\right) .  \tag{12}\\
& \text { If } c \in \operatorname{dom} \frac{1}{f} \text {, then } f(c) \neq 0 \text {. }  \tag{13}\\
& \frac{1}{f}-1\{0\}=\emptyset \text {. }  \tag{14}\\
& |f|^{-1}\{0\}=f^{-1}\{0\} \text { and }(-f)^{-1}\{0\}=f^{-1}\{0\} \text {. } \tag{15}
\end{align*}
$$

(16) $\operatorname{dom} \frac{1}{\frac{1}{f}}=\operatorname{dom}\left(f \upharpoonright \operatorname{dom} \frac{1}{f}\right)$.
(17) If $r \neq 0$, then $(r \diamond f)^{-1}\{0\}=f^{-1}\{0\}$.
(18) $f_{1}+f_{2}=f_{2}+f_{1}$.
(19) $\left(f_{1}+f_{2}\right)+f_{3}=f_{1}+\left(f_{2}+f_{3}\right)$.
(20) $f_{1} \diamond f_{2}=f_{2} \diamond f_{1}$.
(21) $\quad\left(f_{1} \diamond f_{2}\right) \diamond f_{3}=f_{1} \diamond\left(f_{2} \diamond f_{3}\right)$.
(22) $\left(f_{1}+f_{2}\right) \diamond f_{3}=f_{1} \diamond f_{3}+f_{2} \diamond f_{3}$.
(23) $f_{3} \diamond\left(f_{1}+f_{2}\right)=f_{3} \diamond f_{1}+f_{3} \diamond f_{2}$.
(24) $r \diamond\left(f_{1} \diamond f_{2}\right)=\left(r \diamond f_{1}\right) \diamond f_{2}$.
(25) $r \diamond\left(f_{1} \diamond f_{2}\right)=f_{1} \diamond\left(r \diamond f_{2}\right)$.
(26) $\quad\left(f_{1}-f_{2}\right) \diamond f_{3}=f_{1} \diamond f_{3}-f_{2} \diamond f_{3}$.
(27) $f_{3} \diamond f_{1}-f_{3} \diamond f_{2}=f_{3} \diamond\left(f_{1}-f_{2}\right)$.
(28) $\quad r \diamond\left(f_{1}+f_{2}\right)=r \diamond f_{1}+r \diamond f_{2}$.
(29) $(r \cdot p) \diamond f=r \diamond(p \diamond f)$.
(30) $\quad r \diamond\left(f_{1}-f_{2}\right)=r \diamond f_{1}-r \diamond f_{2}$.
(31) $f_{1}-f_{2}=(-1) \diamond\left(f_{2}-f_{1}\right)$.
(32) $f_{1}-\left(f_{2}+f_{3}\right)=\left(f_{1}-f_{2}\right)-f_{3}$.
(33) $1 \diamond f=f$.
(34) $f_{1}-\left(f_{2}-f_{3}\right)=\left(f_{1}-f_{2}\right)+f_{3}$.
(35) $f_{1}+\left(f_{2}-f_{3}\right)=\left(f_{1}+f_{2}\right)-f_{3}$.
(36) $\left|f_{1} \diamond f_{2}\right|=\left|f_{1}\right| \diamond\left|f_{2}\right|$.
(37) $|r \diamond f|=|r| \diamond|f|$.
(38) $-f=(-1) \diamond f$.
(39) $-(-f)=f$.
(40) $f_{1}-f_{2}=f_{1}+\left(-f_{2}\right)$.
(41) $f_{1}-\left(-f_{2}\right)=f_{1}+f_{2}$.
(42) $\frac{1}{\frac{1}{f}}=f \upharpoonright \operatorname{dom} \frac{1}{f}$.
(43) $\frac{1}{f_{1} \diamond f_{2}}=\frac{1}{f_{1}} \diamond \frac{1}{f_{2}}$.
(44) If $r \neq 0$, then $\frac{1}{r \diamond f}=r^{-1} \diamond \frac{1}{f}$.
(45) $\frac{1}{-f}=(-1) \diamond \frac{1}{f}$.
(46) $\frac{1}{|f|}=\left|\frac{1}{f}\right|$.
(47) $\frac{f}{g}=f \diamond \frac{1}{g}$.
(48) $r \diamond \frac{g}{f}=\frac{r \diamond g}{f}$.
(49) $\frac{f}{g} \diamond g=f \upharpoonright \operatorname{dom} \frac{1}{g}$.
(50) $\frac{f}{g} \diamond \frac{f_{1}}{g_{1}}=\frac{f \diamond f_{1}}{g \diamond g_{1}}$.

$$
\begin{align*}
& \frac{1}{\frac{f_{1}}{f_{2}}}=\frac{f_{2}\left\lceil\operatorname{dom} \frac{1}{f_{2}}\right.}{f_{1}}  \tag{51}\\
& g \diamond \frac{f_{1}}{f_{2}}=\frac{g \diamond f_{1}}{f_{2}} . \\
& \frac{g}{\frac{f_{1}}{f_{2}}}=\frac{g \circ f_{2} \operatorname{dom} \frac{1}{f_{2}}}{f_{1}} \text {. } \\
& \text { (54) }-\frac{f}{g}=\frac{-f}{g} \text { and } \frac{f}{-g}=-\frac{f}{g} \text {. } \\
& \text { (55) } \frac{f_{1}}{f}+\frac{f_{2}}{f}=\frac{f_{1}+f_{2}}{f} \text { and } \frac{f_{1}}{f}-\frac{f_{2}}{f}=\frac{f_{1}-f_{2}}{f} \text {. } \\
& \frac{f_{1}}{f}+\frac{g_{1}}{g}=\frac{f_{1} \vee g+g_{1} \triangleright f}{f \circ g} \text {. }  \tag{56}\\
& \frac{\frac{f}{g_{1}}}{\frac{f_{1}}{g_{1}}}=\frac{f \circ g_{1} \mathrm{dom} \frac{1}{g_{1}}}{g \circ f_{1}} .  \tag{57}\\
& \text { (58) } \frac{f_{1}}{f}-\frac{g_{1}}{g}=\frac{f_{1} \circ g-g_{1} \circ f}{f \circ g} \text {. } \tag{59}
\end{align*}
$$

(60) $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2} \upharpoonright X$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X+f_{2}$ and $\left(f_{1}+f_{2}\right) \upharpoonright X=f_{1}+f_{2} \upharpoonright X$.
(61) $\left(f_{1} \diamond f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X \diamond f_{2} \upharpoonright X$ and $\left(f_{1} \diamond f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X \diamond f_{2}$ and $\left(f_{1} \diamond f_{2}\right) \upharpoonright X=f_{1} \diamond f_{2} \upharpoonright X$.
(62) $\quad(-f) \upharpoonright X=-f \upharpoonright X$ and $\frac{1}{f} \upharpoonright X=\frac{1}{f \mid X}$ and $|f| \upharpoonright X=|f| X \mid$.
(63) $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X-f_{2} \upharpoonright X$ and $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1} \upharpoonright X-f_{2}$ and $\left(f_{1}-f_{2}\right) \upharpoonright X=f_{1}-f_{2} \upharpoonright X$.
(64) $\frac{f_{1}}{f_{2}} \upharpoonright X=\frac{f_{1} \mid X}{f_{2} \mid X}$ and $\frac{f_{1}}{f_{2}} \upharpoonright X=\frac{f_{1} \mid X}{f_{2}}$ and $\frac{f_{1}}{f_{2}} \upharpoonright X=\frac{f_{1}}{f_{2} \mid X}$.
(65) $(r \diamond f) \upharpoonright X=r \diamond f \upharpoonright X$.
(66) $\quad f_{1}$ is total and $f_{2}$ is total if and only if $f_{1}+f_{2}$ is total but $f_{1}$ is total and $f_{2}$ is total if and only if $f_{1}-f_{2}$ is total but $f_{1}$ is total and $f_{2}$ is total if and only if $f_{1} \diamond f_{2}$ is total.
(67) $f$ is total if and only if $r \diamond f$ is total.
(68) $f$ is total if and only if $-f$ is total.
(69) $f$ is total if and only if $|f|$ is total.
(70) $\frac{1}{f}$ is total if and only if $f^{-1}\{0\}=\emptyset$ and $f$ is total.
(71) $f_{1}$ is total and $f_{2}^{-1}\{0\}=\emptyset$ and $f_{2}$ is total if and only if $\frac{f_{1}}{f_{2}}$ is total.
(72) If $f_{1}$ is total and $f_{2}$ is total, then $\left(f_{1}+f_{2}\right)(c)=f_{1}(c)+f_{2}(c)$ and $\left(f_{1}-f_{2}\right)(c)=f_{1}(c)-f_{2}(c)$ and $\left(f_{1} \diamond f_{2}\right)(c)=f_{1}(c) \cdot f_{2}(c)$.
(73) If $f$ is total, then $(r \diamond f)(c)=r \cdot f(c)$.
(74) If $f$ is total, then $(-f)(c)=-f(c)$ and $|f|(c)=|f(c)|$.
(75) If $\frac{1}{f}$ is total, then $\frac{1}{f}(c)=(f(c))^{-1}$.
(76) If $f_{1}$ is total and $\frac{1}{f_{2}}$ is total, then $\frac{f_{1}}{f_{2}}(c)=f_{1}(c) \cdot\left(f_{2}(c)\right)^{-1}$.

Let us consider $X, C$. Then $\chi_{X, C}$ is a partial function from $C$ to $\mathbb{R}$.
Next we state a number of propositions:
(84) $\chi_{X, C}(c) \neq 1$ if and only if $\chi_{X, C}(c)=0$.
(85) If $X \cap Y=\emptyset$, then $\chi_{X, C}+\chi_{Y, C}=\chi_{X \cup Y, C}$.
(86) $\chi_{X, C} \diamond \chi_{Y, C}=\chi_{X \cap Y, C}$.

We now define two new predicates. Let us consider $C, f, Y$. We say that $f$ is upper bounded on $Y$ if and only if:
there exists $r$ such that for every $c$ such that $c \in Y \cap \operatorname{dom} f$ holds $f(c) \leq r$. We say that $f$ is lower bounded on $Y$ if and only if:
there exists $r$ such that for every $c$ such that $c \in Y \cap \operatorname{dom} f$ holds $r \leq f(c)$.
Let us consider $C, f, Y$. We say that $f$ is bounded on $Y$ if and only if:
$f$ is upper bounded on $Y$ and $f$ is lower bounded on $Y$.
The following propositions are true:
(87) $f$ is upper bounded on $Y$ if and only if there exists $r$ such that for every $c$ such that $c \in Y \cap \operatorname{dom} f$ holds $f(c) \leq r$.
(88) $\quad f$ is lower bounded on $Y$ if and only if there exists $r$ such that for every $c$ such that $c \in Y \cap \operatorname{dom} f$ holds $r \leq f(c)$.
(89) $f$ is bounded on $Y$ if and only if $f$ is upper bounded on $Y$ and $f$ is lower bounded on $Y$.
(90) $f$ is bounded on $Y$ if and only if there exists $r$ such that for every $c$ such that $c \in Y \cap \operatorname{dom} f$ holds $|f(c)| \leq r$.
(91) If $Y \subseteq X$ and $f$ is upper bounded on $X$, then $f$ is upper bounded on $Y$ but if $Y \subseteq X$ and $f$ is lower bounded on $X$, then $f$ is lower bounded on $Y$ but if $Y \subseteq X$ and $f$ is bounded on $X$, then $f$ is bounded on $Y$.
(92) If $f$ is upper bounded on $X$ and $f$ is lower bounded on $Y$, then $f$ is bounded on $X \cap Y$.
(93) If $X \cap \operatorname{dom} f=\emptyset$, then $f$ is bounded on $X$.
(94) If $0=r$, then $r \diamond f$ is bounded on $Y$.
(95) If $f$ is upper bounded on $Y$ and $0 \leq r$, then $r \diamond f$ is upper bounded on $Y$ but if $f$ is upper bounded on $Y$ and $r \leq 0$, then $r \diamond f$ is lower bounded on $Y$.
(96) If $f$ is lower bounded on $Y$ and $0 \leq r$, then $r \diamond f$ is lower bounded on $Y$ but if $f$ is lower bounded on $Y$ and $r \leq 0$, then $r \diamond f$ is upper bounded on $Y$.
(97) If $f$ is bounded on $Y$, then $r \diamond f$ is bounded on $Y$.
(98) $|f|$ is lower bounded on $X$.
(99) If $f$ is bounded on $Y$, then $|f|$ is bounded on $Y$ and $-f$ is bounded on $Y$.
(100) If $f_{1}$ is upper bounded on $X$ and $f_{2}$ is upper bounded on $Y$, then $f_{1}+f_{2}$ is upper bounded on $X \cap Y$ but if $f_{1}$ is lower bounded on $X$ and $f_{2}$ is lower bounded on $Y$, then $f_{1}+f_{2}$ is lower bounded on $X \cap Y$ but if $f_{1}$ is bounded on $X$ and $f_{2}$ is bounded on $Y$, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(101) If $f_{1}$ is bounded on $X$ and $f_{2}$ is bounded on $Y$, then $f_{1} \diamond f_{2}$ is bounded on $X \cap Y$ and $f_{1}-f_{2}$ is bounded on $X \cap Y$.
(102) If $f$ is upper bounded on $X$ and $f$ is upper bounded on $Y$, then $f$ is upper bounded on $X \cup Y$.
(103) If $f$ is lower bounded on $X$ and $f$ is lower bounded on $Y$, then $f$ is lower bounded on $X \cup Y$.
(104) If $f$ is bounded on $X$ and $f$ is bounded on $Y$, then $f$ is bounded on $X \cup Y$.
(105) If $f_{1}$ is a constant on $X$ and $f_{2}$ is a constant on $Y$, then $f_{1}+f_{2}$ is a constant on $X \cap Y$ and $f_{1}-f_{2}$ is a constant on $X \cap Y$ and $f_{1} \diamond f_{2}$ is a constant on $X \cap Y$.
(106) If $f$ is a constant on $Y$, then $p \diamond f$ is a constant on $Y$.
(107) If $f$ is a constant on $Y$, then $|f|$ is a constant on $Y$ and $-f$ is a constant on $Y$.
(108) If $f$ is a constant on $Y$, then $f$ is bounded on $Y$.
(109) If $f$ is a constant on $Y$, then for every $r$ holds $r \diamond f$ is bounded on $Y$ and $-f$ is bounded on $Y$ and $|f|$ is bounded on $Y$.
(110) If $f_{1}$ is upper bounded on $X$ and $f_{2}$ is a constant on $Y$, then $f_{1}+f_{2}$ is upper bounded on $X \cap Y$ but if $f_{1}$ is lower bounded on $X$ and $f_{2}$ is a constant on $Y$, then $f_{1}+f_{2}$ is lower bounded on $X \cap Y$ but if $f_{1}$ is bounded on $X$ and $f_{2}$ is a constant on $Y$, then $f_{1}+f_{2}$ is bounded on $X \cap Y$.
(111) (i) If $f_{1}$ is upper bounded on $X$ and $f_{2}$ is a constant on $Y$, then $f_{1}-f_{2}$ is upper bounded on $X \cap Y$,
(ii) if $f_{1}$ is lower bounded on $X$ and $f_{2}$ is a constant on $Y$, then $f_{1}-f_{2}$ is lower bounded on $X \cap Y$,
(iii) if $f_{1}$ is bounded on $X$ and $f_{2}$ is a constant on $Y$, then $f_{1}-f_{2}$ is bounded on $X \cap Y$ and $f_{2}-f_{1}$ is bounded on $X \cap Y$ and $f_{1} \diamond f_{2}$ is bounded on $X \cap Y$.

## References

[1] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[5] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):6771, 1990.

# Increasing and Continuous Ordinal Sequences 

Grzegorz Bancerek<br>Warsaw University<br>Białystok


#### Abstract

Summary. Concatenation of two ordinal sequences, the mode of all ordinals belonging to a universe and the mode of sequences of them with length equal to the rank of the universe are introduced. Besides, the increasing and continuous transfinite sequences, the limes of ordinal sequences and the power of ordinals, and the fact that every increasing and continuous transfinite sequence has critical numbers (fixed points) are discussed.


MML Identifier: ORDINAL4.

The terminology and notation used here have been introduced in the following papers: [6], [4], [2], [3], [1], and [5]. We adopt the following convention: phi, fi, $p s i$ are sequences of ordinal numbers and $A, B, C$ are ordinal numbers. The following proposition is true
(1) If $\operatorname{dom} f i=\operatorname{succ} A$, then (last $f i$ ) (as an ordinal) is the limit of $f i$ and $\lim f i=$ last $f i$.
Let us consider $f i, p s i$. The functor $f i \wedge p s i$ yields a sequence of ordinal numbers and is defined as follows:
$\operatorname{dom}\left(f i^{\sim} p s i\right)=\operatorname{dom} f i+\operatorname{dom} p s i$ and for every $A$ such that $A \in \operatorname{dom} f i$ holds $\left(f i{ }^{\wedge} p s i\right)(A)=f i(A)$ and for every $A$ such that $A \in \operatorname{dompsi}$ holds $\left(f i^{\wedge} p s i\right)(\operatorname{dom} f i+A)=p s i(A)$.

The following propositions are true:
(2) Let chi be a sequence of ordinal numbers. Then $c h i=f i \wedge p s i$ if and only if $\operatorname{dom}$ chi $=\operatorname{dom} f i+\operatorname{dom}$ psi and for every $A$ such that $A \in \operatorname{dom} f i$ holds $\operatorname{chi}(A)=f i(A)$ and for every $A$ such that $A \in \operatorname{dompsi}$ holds $\operatorname{chi}(\operatorname{dom} f i+A)=p s i(A)$.
(3) If $A$ is the limit of $p s i$, then $A$ is the limit of $f i^{\wedge} p s i$.
(4) If $A$ is the limit of $f i$, then $B+A$ is the limit of $B+f i$.
(5) If $A$ is the limit of $f i$, then $A \cdot B$ is the limit of $f i \cdot B$.
(6) If dom $f i=\operatorname{dom} p s i$ and $B$ is the limit of $f i$ and $C$ is the limit of $p s i$ but for every $A$ such that $A \in \operatorname{dom} f i$ holds $f i(A) \subseteq p s i(A)$ or for every $A$ such that $A \in \operatorname{dom} f i$ holds $f i(A) \in p s i(A)$, then $B \subseteq C$.
In the sequel $f_{1}, f_{2}$ denote sequences of ordinal numbers. One can prove the following propositions: and $A$ is the limit of $f_{2}$ and for every $A$ such that $A \in \operatorname{dom} f i$ holds $f_{1}(A) \subseteq f i(A)$ and $f i(A) \subseteq f_{2}(A)$, then $A$ is the limit of $f i$.
(8) If dom $f i \neq \mathbf{0}$ and $\operatorname{dom} f i$ is a limit ordinal number and $f i$ is increasing, then $\sup f i$ is the limit of $f i$ and $\lim f i=\sup f i$.
(9) If $f i$ is increasing and $A \subseteq B$ and $B \in \operatorname{dom} f i$, then $f i(A) \subseteq f i(B)$.
(10) If $f i$ is increasing and $A \in \operatorname{dom} f i$, then $A \subseteq f i(A)$.
(11) If $p h i$ is increasing, then $p h i^{-1} A$ is an ordinal number.
(12) If $f_{1}$ is increasing, then $f_{2} \cdot f_{1}$ is a sequence of ordinal numbers.
(13) If $f_{1}$ is increasing and $f_{2}$ is increasing, then there exists $p h i$ such that $p h i=f_{1} \cdot f_{2}$ and $p h i$ is increasing.
(14) If $f_{1}$ is increasing and $A$ is the limit of $f_{2}$ and $\sup \left(\operatorname{rng} f_{1}\right)=\operatorname{dom} f_{2}$ and $f i=f_{2} \cdot f_{1}$, then $A$ is the limit of $f i$.
(15) If $p h i$ is increasing, then $p h i \upharpoonright A$ is increasing.
(16) If $p h i$ is increasing and dom $p h i$ is a limit ordinal number, then sup $p h i$ is a limit ordinal number.
(17) If $f i$ is increasing and $f i$ is continuous and $p s i$ is continuous and $p h i=$ $p s i \cdot f i$, then $p h i$ is continuous.
(18) If for every $A$ such that $A \in \operatorname{dom} f i$ holds $f i(A)=C+A$, then $f i$ is increasing.
(19) If $C \neq \mathbf{0}$ and for every $A$ such that $A \in \operatorname{dom}$ fi holds $f i(A)=A \cdot C$, then $f i$ is increasing.
(20) If $A \neq \mathbf{0}$, then $\mathbf{0}^{A}=\mathbf{0}$.
(21) If $A \neq \mathbf{0}$ and $A$ is a limit ordinal number, then for every $f i$ such that $\operatorname{dom} f i=A$ and for every $B$ such that $B \in A$ holds $f i(B)=C^{B}$ holds $C^{A}$ is the limit of $f i$.
(22) If $C \neq \mathbf{0}$, then $C^{A} \neq \mathbf{0}$.
(23) If $\mathbf{1} \in C$, then $C^{A} \in C^{\operatorname{succ} A}$.
(24) If $1 \in C$ and $A \in B$, then $C^{A} \in C^{B}$.
(25) If $\mathbf{1} \in C$ and for every $A$ such that $A \in \operatorname{dom} f i$ holds $f i(A)=C^{A}$, then $f i$ is increasing.
(26) If $\mathbf{1} \in C$ and $A \neq \mathbf{0}$ and $A$ is a limit ordinal number, then for every $f i$ such that dom $f i=A$ and for every $B$ such that $B \in A$ holds $f i(B)=C^{B}$ holds $C^{A}=\sup f i$.

$$
\begin{equation*}
\text { If } C \neq \mathbf{0} \text { and } A \subseteq B, \text { then } C^{A} \subseteq C^{B} \tag{27}
\end{equation*}
$$

$$
\begin{align*}
& \text { (28) } \text { If } A \subseteq B \text {, then } A^{C} \subseteq B^{C} \text {. }  \tag{28}\\
& \text { (29) } \text { If } \mathbf{1} \in C \text { and } A \neq \mathbf{0} \text {, then } \mathbf{1} \in C^{A} \text {. }  \tag{29}\\
& \text { (30) } C^{A+B}=\left(C^{B}\right) \cdot\left(C^{A}\right) \text {. }  \tag{30}\\
& \text { (31) }\left(C^{A}\right)^{B}=C^{B \cdot A} \text {. }  \tag{31}\\
& \text { (32) } \text { If } \mathbf{1} \in C \text {, then } A \subseteq C^{A} \text {. }
\end{align*}
$$

The scheme CriticalNumber concerns a unary functor $\mathcal{F}$ yielding an ordinal number and states that:
there exists $A$ such that $\mathcal{F}(A)=A$
provided the parameter meets the following conditions:

- for all $A, B$ such that $A \in B$ holds $\mathcal{F}(A) \in \mathcal{F}(B)$,
- for every $A$ such that $A \neq \mathbf{0}$ and $A$ is a limit ordinal number for every phi such that dom $f i=A$ and for every $B$ such that $B \in A$ holds $\operatorname{phi}(B)=\mathcal{F}(B)$ holds $\mathcal{F}(A)$ is the limit of $p h i$.
In the sequel $W$ will be a universal class. We now define two new modes. Let us consider $W$. An ordinal number is said to be an ordinal of $W$ if:
it $\in W$.
A sequence of ordinal numbers is called a transfinite sequence of ordinals of $W$ if:
dom it $=\mathrm{On} W$ and rng it $\subseteq \mathrm{On} W$.
We now state two propositions:
(33) $\quad A$ is an ordinal of $W$ if and only if $A \in W$.
(34) $p h i$ is a transfinite sequence of ordinals of $W$ if and only if dom $p h i=$ On $W$ and $\operatorname{rng} p h i \subseteq$ On $W$.
In the sequel $A_{1}, B_{1}$ will be ordinals of $W$ and $p h i$ will be a transfinite sequence of ordinals of $W$. The scheme UOS_Lambda concerns a universal class $\mathcal{A}$ and a unary functor $\mathcal{F}$ yielding an ordinal of $\mathcal{A}$ and states that:
there exists a transfinite sequence phi of ordinals of $\mathcal{A}$ such that for every ordinal $a$ of $\mathcal{A}$ holds phi(a) $=\mathcal{F}(a)$
for all values of the parameters.
We now define two new functors. Let us consider $W$. The functor $\mathbf{0}_{W}$ yielding an ordinal of $W$ is defined as follows:
$0_{W}=0$.
The functor $\mathbf{1}_{W}$ yields an ordinal of $W$ and is defined by:
$1_{W}=1$.
Let us consider $p h i, A_{1}$. Then $p h i\left(A_{1}\right)$ is an ordinal of $W$.
Let us consider $W$, and let $p_{2}, p_{1}$ be transfinite sequences of ordinals of $W$. Then $p_{1} \cdot p_{2}$ is a transfinite sequence of ordinals of $W$.

We now state the proposition
(35) $\mathbf{0}_{W}=\mathbf{0}$ and $\mathbf{1}_{W}=\mathbf{1}$.

Let us consider $W, A_{1}$. Then succ $A_{1}$ is an ordinal of $W$. Let us consider $B_{1}$. Then $A_{1}+B_{1}$ is an ordinal of $W$.

Let us consider $W, A_{1}, B_{1}$. Then $A_{1} \cdot B_{1}$ is an ordinal of $W$.

The following propositions are true:
(36) $\quad A_{1} \in \operatorname{dom} p h i$.
(37) If $\operatorname{dom} f i \in W$ and $\operatorname{rng} f i \subseteq W$, then $\sup f i \in W$.

We now state the proposition
(38) If $p h i$ is increasing and $p h i$ is continuous and $\omega \in W$, then there exists $A$ such that $A \in \operatorname{dom} p h i$ and $p h i(A)=A$.

## References

[1] Grzegorz Bancerek. Ordinal arithmetics. Formalized Mathematics, 1(3):515-519, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics, 1(3):595-600, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received May 31, 1990

# Transformations in Affine Spaces ${ }^{1}$ 

Henryk Oryszczyszyn<br>Warsaw University<br>Białystok

Krzysztof Prażmowski<br>Warsaw University<br>Białystok


#### Abstract

Summary. Two classes of bijections of its point universe are correlated with every affine structure. The first class consists of the transformations, called formal isometries, which map every segment onto congruent segment, the second class consists of the automorphisms of such a structure. Each of these two classes of bijections forms a group for a given affine structure, if it satisfies a very weak axiom system (models of these axioms are called congruence spaces); formal isometries form a normal subgroup in the group of automorphism. In particular ordered affine spaces and affine spaces are congruence spaces; therefore formal isometries of these structures can be considered. They are called positive dilatations and dilatations, resp. For convenience the class of negative dilatations, transformations which map every "vector" onto parallel "vector", but with opposite sense, is singled out. The class of translations is distinguished as well. Basic facts concerning all these types of transformations are established, like rigidity, decomposition principle, introductory group-theoretical properties. At the end collineations of affine spaces and their properties are investigated; for affine planes it is proved that the class of collineationms coincides with the class of bijections preserving lines.


MML Identifier: TRANSGEO.

The papers [7], [1], [8], [2], [3], [4], [5], and [6] provide the notation and terminology for this paper. We adopt the following convention: $A$ denotes a non-empty set, $a, b, x, y, z, t$ denote elements of $A$, and $f, f_{1}, f_{2}, g, h$ denote permutations of $A$. Let us consider $A$, and let us consider $f$, and let $x$ be an element of $A$. Then $f(x)$ is an element of $A$.

Let us consider $A$, and let us consider $f$, and let $X$ be a subset of $A$. Then $f^{\circ} X$ is a subset of $A$.

Let us consider $A, f, g$. Then $g \cdot f$ is a permutation of $A$.
One can prove the following propositions:

[^16](1) For all $f_{1}, f_{2}$ such that for every $x$ holds $f_{1}(x)=f_{2}(x)$ holds $f_{1}=f_{2}$.
(2) There exists $x$ such that $f(x)=y$.
(3) If $f(x)=f(y)$, then $x=y$.
(4) $f(x)=y$ if and only if $f^{-1}(y)=x$.
(5) $(f \cdot g)(x)=f(g(x))$.

Let us consider $A, f, g$. The functor $f \backslash g$ yields a permutation of $A$ and is defined by:
$f \backslash g=(g \cdot f) \cdot g^{-1}$.
One can prove the following proposition
(6) $f \backslash g=(g \cdot f) \cdot g^{-1}$.

The scheme EXPermutation deals with a non-empty set $\mathcal{A}$, and a binary predicate $\mathcal{P}$, and states that:
there exists a permutation $f$ of $\mathcal{A}$ such that for all elements $x, y$ of $\mathcal{A}$ holds $f(x)=y$ if and only if $\mathcal{P}[x, y]$
provided the following requirements are met:

- for every element $x$ of $\mathcal{A}$ there exists an element $y$ of $\mathcal{A}$ such that $\mathcal{P}[x, y]$,
- for every element $y$ of $\mathcal{A}$ there exists an element $x$ of $\mathcal{A}$ such that $\mathcal{P}[x, y]$,
- for all elements $x, y, x^{\prime}$ of $\mathcal{A}$ such that $\mathcal{P}[x, y]$ and $\mathcal{P}\left[x^{\prime}, y\right]$ holds $x=x^{\prime}$,
- for all elements $x, y, y^{\prime}$ of $\mathcal{A}$ such that $\mathcal{P}[x, y]$ and $\mathcal{P}\left[x, y^{\prime}\right]$ holds $y=y^{\prime}$.
Next we state a number of propositions:
(7) $\left(\mathrm{id}_{A}\right)^{-1}=\mathrm{id}_{A}$.
(8) $f \cdot f^{-1}=\operatorname{id}_{A}$ and $f^{-1} \cdot f=\operatorname{id}_{A}$.
(9) $\quad f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.
(10) $\operatorname{id}_{A} \cdot f=f$ and $f \cdot \operatorname{id}_{A}=f$.
(11) $f \cdot \mathrm{id}_{A}=\mathrm{id}_{A} \cdot f$.
(12) $f \cdot(g \cdot h)=(f \cdot g) \cdot h$.
(13) If $g \cdot f=h \cdot f$ or $f \cdot g=f \cdot h$, then $g=h$.
(14) $(f \cdot g)^{-1}=g^{-1} \cdot f^{-1}$.
(15) $\left(f^{-1}\right)^{-1}=f$.
(16) $f \cdot g \backslash h=(f \backslash h) \cdot(g \backslash h)$.
(17) $f^{-1} \backslash g=(f \backslash g)^{-1}$.
(18) $f \backslash g \cdot h=(f \backslash h) \backslash g$.
(19) $\quad \operatorname{id}_{A} \backslash f=\mathrm{id}_{A}$.
(20) $f \backslash \mathrm{id}_{A}=f$.
(21) If $f(a)=a$, then $(f \backslash g)(g(a))=g(a)$.

In the sequel $R$ will denote a binary relation on : $A, A$ :]. Let us consider $A$, $f, R$. We say that $f$ is a formal isometry of $R$ if and only if:
for all $x, y$ holds $\langle\langle x, y\rangle,\langle f(x), f(y)\rangle\rangle \in R$.
The following propositions are true:
(22) $\quad f$ is a formal isometry of $R$ if and only if for all $x, y$ holds $\langle\langle x, y\rangle,\langle f(x), f(y)\rangle\rangle \in R$.
(23) If $R$ is reflexive in $: A, A:$, then $\operatorname{id}_{A}$ is a formal isometry of $R$.
(24) If $R$ is symmetric in $: A, A \vdots$ and $f$ is a formal isometry of $R$, then $f^{-1}$ is a formal isometry of $R$.
(25) If $R$ is transitive in $: A, A \vdots$ and $f$ is a formal isometry of $R$ and $g$ is a formal isometry of $R$, then $f \cdot g$ is a formal isometry of $R$.
(26) Suppose that
(i) for all $a, b, x, y, z, t$ such that $\langle\langle x, y\rangle,\langle a, b\rangle\rangle \in R$ and $\langle\langle a, b\rangle,\langle z, t\rangle\rangle \in R$ and $a \neq b$ holds $\langle\langle x, y\rangle,\langle z, t\rangle\rangle \in R$,
(ii) for all $x, y, z$ holds $\langle\langle x, x\rangle,\langle y, z\rangle\rangle \in R$,
(iii) $f$ is a formal isometry of $R$,
(iv) $g$ is a formal isometry of $R$.

Then $f \cdot g$ is a formal isometry of $R$.
Let us consider $A, f, R$. We say that $f$ is an automorphism of $R$ if and only if:
for all $x, y, z, t$ holds $\langle\langle x, y\rangle,\langle z, t\rangle\rangle \in R$ if and only if
$\langle\langle f(x), f(y)\rangle,\langle f(z), f(t)\rangle\rangle \in R$.
The following propositions are true:
(27) For all $a, f, R$ holds $f$ is an automorphism of $R$ if and only if for all $x, y$, $z, t$ holds $\langle\langle x, y\rangle,\langle z, t\rangle\rangle \in R$ if and only if $\langle\langle f(x), f(y)\rangle,\langle f(z), f(t)\rangle\rangle \in R$.
(28) $\quad \operatorname{id}_{A}$ is an automorphism of $R$.
(29) If $f$ is an automorphism of $R$, then $f^{-1}$ is an automorphism of $R$.
(30) If $f$ is an automorphism of $R$ and $g$ is an automorphism of $R$, then $g \cdot f$ is an automorphism of $R$.
(31) If $R$ is symmetric in $: A, A \ddagger$ and $R$ is transitive in $: A, A \vdots$ and $f$ is a formal isometry of $R$, then $f$ is an automorphism of $R$.
(32) Suppose that
(i) for all $a, b, x, y, z, t$ such that $\langle\langle x, y\rangle,\langle a, b\rangle\rangle \in R$ and $\langle\langle a, b\rangle,\langle z, t\rangle\rangle \in R$ and $a \neq b$ holds $\langle\langle x, y\rangle,\langle z, t\rangle\rangle \in R$,
(ii) for all $x, y, z$ holds $\langle\langle x, x\rangle,\langle y, z\rangle\rangle \in R$,
(iii) $R$ is symmetric in : $A, A:$,
(iv) $\quad f$ is a formal isometry of $R$.

Then $f$ is an automorphism of $R$.
(33) If $f$ is a formal isometry of $R$ and $g$ is an automorphism of $R$, then $f \backslash g$ is a formal isometry of $R$.
In the sequel $A S$ will be an affine structure. Let us consider $A S$, and let $f$ be a permutation of the points of $A S$. We say that $f$ is a dilatation of $A S$ if and only if:
$f$ is a formal isometry of the congruence of $A S$.

The following proposition is true
(34) For every permutation $f$ of the points of $A S$ holds $f$ is a dilatation of $A S$ if and only if $f$ is a formal isometry of the congruence of $A S$.
In the sequel $a, b$ denote elements of the points of $A S$. Next we state the proposition
(35) For every permutation $f$ of the points of $A S$ holds $f$ is a dilatation of $A S$ if and only if for all $a, b$ holds $a, b \Uparrow f(a), f(b)$.
An affine structure is said to be a congruence space if:
(i) for all elements $x, y, z, t, a, b$ of the points of it such that $x, y \Uparrow a, b$ and $a, b \Uparrow z, t$ and $a \neq b$ holds $x, y \Uparrow z, t$,
(ii) for all elements $x, y, z$ of the points of it holds $x, x \Uparrow y, z$,
(iii) for all elements $x, y, z, t$ of the points of it such that $x, y \Uparrow z, t$ holds $z, t \mathbb{\|} x, y$,
(iv) for all elements $x, y$ of the points of it holds $x, y \Uparrow x, y$.

One can prove the following proposition
(36) Let $A S$ be an affine structure. Then $A S$ is a congruence space if and only if the following conditions are satisfied:
(i) for all elements $x, y, z, t, a, b$ of the points of $A S$ such that $x, y \| a, b$ and $a, b \Uparrow z, t$ and $a \neq b$ holds $x, y \Uparrow z, t$,
(ii) for all elements $x, y, z$ of the points of $A S$ holds $x, x \Uparrow y, z$,
(iii) for all elements $x, y, z, t$ of the points of $A S$ such that $x, y \Uparrow z, t$ holds $z, t \Uparrow x, y$,
(iv) for all elements $x, y$ of the points of $A S$ holds $x, y \Uparrow x, y$.

In the sequel $C S$ denotes a congruence space. One can prove the following three propositions:
(37) $\mathrm{id}_{\text {the points of } C S}$ is a dilatation of $C S$.
(38) For every permutation $f$ of the points of $C S$ such that $f$ is a dilatation of $C S$ holds $f^{-1}$ is a dilatation of $C S$.
(39) For all permutations $f, g$ of the points of $C S$ such that $f$ is a dilatation of $C S$ and $g$ is a dilatation of $C S$ holds $f \cdot g$ is a dilatation of $C S$.
We follow the rules: $O A S$ denotes an ordered affine space and $a, b, c, d, p$, $q, x, y, z$ denote elements of the points of $O A S$. Next we state the proposition
(40) $O A S$ is a congruence space.

In the sequel $f, g$ are permutations of the points of $O A S$. Let us consider $O A S$, and let $f$ be a permutation of the points of $O A S$. We say that $f$ is a positive dilatation if and only if:
$f$ is a dilatation of $O A S$.
We now state two propositions:
(41) For every permutation $f$ of the points of $O A S$ holds $f$ is a positive dilatation if and only if $f$ is a dilatation of $O A S$.
(42) For every permutation $f$ of the points of $O A S$ holds $f$ is a positive dilatation if and only if for all $a, b$ holds $a, b \Uparrow f(a), f(b)$.

Let us consider $O A S$, and let $f$ be a permutation of the points of $O A S$. We say that $f$ is a negative dilatation if and only if:
for all $a, b$ holds $a, b \mathbb{\|} f(b), f(a)$.
The following propositions are true:
(43) For every permutation $f$ of the points of $O A S$ holds $f$ is a negative dilatation if and only if for all $a, b$ holds $a, b \Uparrow f(b), f(a)$.
(44) $\mathrm{id}_{\text {the points of } O A S}$ is a positive dilatation.
(45) For every permutation $f$ of the points of $O A S$ such that $f$ is a positive dilatation holds $f^{-1}$ is a positive dilatation.
(46) For all permutations $f, g$ of the points of $O A S$ such that $f$ is a positive dilatation and $g$ is a positive dilatation holds $f \cdot g$ is a positive dilatation.
(47) For no $f$ holds $f$ is a negative dilatation and $f$ is a positive dilatation.
(48) If $f$ is a negative dilatation, then $f^{-1}$ is a negative dilatation.
(49) If $f$ is a positive dilatation and $g$ is a negative dilatation, then $f \cdot g$ is a negative dilatation and $g \cdot f$ is a negative dilatation.
Let us consider $O A S$, and let $f$ be a permutation of the points of $O A S$. We say that $f$ is a dilatation if and only if:
$f$ is a formal isometry of $\lambda$ ( the congruence of $O A S$ ).
Next we state a number of propositions:
(50) For every permutation $f$ of the points of $O A S$ holds $f$ is a dilatation if and only if $f$ is a formal isometry of $\lambda$ ( the congruence of $O A S$ ).
(51) For every permutation $f$ of the points of $O A S$ holds $f$ is a dilatation if and only if for all $a, b$ holds $a, b \| f(a), f(b)$.
(52) If $f$ is a positive dilatation or $f$ is a negative dilatation, then $f$ is a dilatation.
(53) For every permutation $f$ of the points of $O A S$ such that $f$ is a dilatation there exists a permutation $f^{\prime}$ of the points of $\Lambda(O A S)$ such that $f=f^{\prime}$ and $f^{\prime}$ is a dilatation of $\Lambda(O A S)$.
(54) For every permutation $f$ of the points of $\Lambda(O A S)$ such that $f$ is a dilatation of $\Lambda(O A S)$ there exists a permutation $f^{\prime}$ of the points of $O A S$ such that $f=f^{\prime}$ and $f^{\prime}$ is a dilatation.
(55) $\mathrm{id}_{\text {the points of } O A S}$ is a dilatation.
(56) If $f$ is a dilatation, then $f^{-1}$ is a dilatation.
(57) If $f$ is a dilatation and $g$ is a dilatation, then $f \cdot g$ is a dilatation.
(58) If $f$ is a dilatation, then for all $a, b, c, d$ holds $a, b \| c, d$ if and only if $f(a), f(b) \| f(c), f(d)$.
(59) If $f$ is a dilatation, then for all $a, b, c$ holds $\mathbf{L}(a, b, c)$ if and only if $\mathbf{L}(f(a), f(b), f(c))$.
(60) If $f$ is a dilatation and $\mathbf{L}(x, f(x), y)$, then $\mathbf{L}(x, f(x), f(y))$.
(61) If $a, b \| c, d$, then $a, c \| b, d$ or there exists $x$ such that $\mathbf{L}(a, c, x)$ and $\mathbf{L}(b, d, x)$.
(62) If $f$ is a dilatation, then $f=\mathrm{id}_{\text {the points of } O A S}$ or for every $x$ holds $f(x) \neq x$ if and only if for all $x, y$ holds $x, f(x) \| y, f(y)$.
(63) If $f$ is a dilatation and $a \neq b$ and $f(a)=a$ and $f(b)=b$ and not $\mathbf{L}(a, b, x)$, then $f(x)=x$.
(64) If $f$ is a dilatation and $f(a)=a$ and $f(b)=b$ and $a \neq b$, then $f=$ $\mathrm{id}_{\text {the points of }} O A S$.
(65) If $f$ is a dilatation and $g$ is a dilatation and $f(a)=g(a)$ and $f(b)=g(b)$, then $a=b$ or $f=g$.
Let us consider $O A S$, and let $f$ be a permutation of the points of $O A S$. We say that $f$ is a translation if and only if:
$f$ is a dilatation but $f=\mathrm{id}_{\text {the points of }} O A S$ or for every $a$ holds $a \neq f(a)$.
One can prove the following propositions:
(66) For every permutation $f$ of the points of $O A S$ holds $f$ is a translation if and only if $f$ is a dilatation but $f=\operatorname{id}_{\text {the points of }} O A S$ or for every $a$ holds $a \neq f(a)$.
(67) If $f$ is a dilatation, then $f$ is a translation if and only if for all $x, y$ holds $x, f(x) \| y, f(y)$.
(68) If $f$ is a translation and $f(a)=a$, then $f=\mathrm{id}_{\text {the points of } O A S \text {. }}$
(69) If $f$ is a translation and $g$ is a translation and $f(a)=g(a)$ and $f(a) \neq a$ and not $\mathbf{L}(a, f(a), x)$, then $f(x)=g(x)$.
(70) If $f$ is a translation and $g$ is a translation and $f(a)=g(a)$, then $f=g$.
(71) If $f$ is a translation, then $f^{-1}$ is a translation.
(72) If $f$ is a translation and $g$ is a translation, then $f \cdot g$ is a translation.
(73) If $f$ is a translation, then $f$ is a positive dilatation.
(74) If $f$ is a dilatation and $f(p)=p$ and $\mathbf{B}(q, p, f(q))$ and not $\mathbf{L}(p, q, x)$, then $\mathbf{B}(x, p, f(x))$.
(75) If $f$ is a dilatation and $f(p)=p$ and $\mathbf{B}(q, p, f(q))$ and $q \neq p$, then $\mathbf{B}(x, p, f(x))$.
(76) If $f$ is a dilatation and $f(p)=p$ and $q \neq p$ and $\mathbf{B}(q, p, f(q))$ and $\operatorname{not} \mathbf{L}(p, x, y)$, then $x, y \| f(y), f(x)$.
(77) If $f$ is a dilatation and $f(p)=p$ and $q \neq p$ and $\mathbf{B}(q, p, f(q))$ and $\mathbf{L}(p, x, y)$, then $x, y \Uparrow f(y), f(x)$.
(78) If $f$ is a dilatation and $f(p)=p$ and $q \neq p$ and $\mathbf{B}(q, p, f(q))$, then $f$ is a negative dilatation.
(79) If $f$ is a dilatation and $f(p)=p$ and for every $x$ holds $p, x \Uparrow p, f(x)$, then for all $y, z$ holds $y, z \prod f(y), f(z)$.
(80) If $f$ is a dilatation, then $f$ is a positive dilatation or $f$ is a negative dilatation.

We follow the rules: $A F S$ will be an affine space and $a, b, c, d, d_{1}, d_{2}, x, y$, $z, t$ will be elements of the points of $A F S$. The following propositions are true:
(81) For all $a, b, c, d$ holds $a, b \Uparrow c, d$ if and only if $a, b \| c, d$.
$A F S$ is a congruence space.
(83) $\Lambda(O A S)$ is a congruence space.

In the sequel $f, g$ denote permutations of the points of $A F S$. Let us consider $A F S, f$. We say that $f$ is a dilatation if and only if:
$f$ is a dilatation of $A F S$.
Next we state a number of propositions:
(84) For every $f$ holds $f$ is a dilatation if and only if $f$ is a dilatation of $A F S$.
(85) $\quad f$ is a dilatation if and only if for all $a, b$ holds $a, b \| f(a), f(b)$.
(86) $\mathrm{id}_{\text {the points of } A F S}$ is a dilatation.
(87) If $f$ is a dilatation, then $f^{-1}$ is a dilatation.
(88) If $f$ is a dilatation and $g$ is a dilatation, then $f \cdot g$ is a dilatation.
(89) If $f$ is a dilatation, then for all $a, b, c, d$ holds $a, b \| c, d$ if and only if $f(a), f(b) \| f(c), f(d)$.
(90) If $f$ is a dilatation, then for all $a, b, c$ holds $\mathbf{L}(a, b, c)$ if and only if $\mathbf{L}(f(a), f(b), f(c))$.
(91) If $f$ is a dilatation and $\mathbf{L}(x, f(x), y)$, then $\mathbf{L}(x, f(x), f(y))$.
(92) If $a, b \| c, d$, then $a, c \| b, d$ or there exists $x$ such that $\mathbf{L}(a, c, x)$ and $\mathbf{L}(b, d, x)$.
(93) If $f$ is a dilatation, then $f=\mathrm{id}_{\text {the points of } A F S}$ or for every $x$ holds $f(x) \neq x$ if and only if for all $x, y$ holds $x, f(x) \| y, f(y)$.
(94) If $f$ is a dilatation and $a \neq b$ and $f(a)=a$ and $f(b)=b$ and not $\mathbf{L}(a, b, x)$, then $f(x)=x$.
(95) If $f$ is a dilatation and $f(a)=a$ and $f(b)=b$ and $a \neq b$, then $f=$ $\mathrm{id}_{\text {the }}$ points of AFS.
(96) If $f$ is a dilatation and $g$ is a dilatation and $f(a)=g(a)$ and $f(b)=g(b)$, then $a=b$ or $f=g$.
(97) If not $\mathbf{L}(a, b, c)$ and $a, b \| c, d_{1}$ and $a, b \| c, d_{2}$ and $a, c \| b, d_{1}$ and $a, c \| b, d_{2}$, then $d_{1}=d_{2}$.
Let us consider $A F S, f$. We say that $f$ is a translation if and only if: $f$ is a dilatation but $f=\mathrm{id}_{\text {the points of } A F S}$ or for every $a$ holds $a \neq f(a)$.
One can prove the following propositions:
(98) For every $f$ holds $f$ is a translation if and only if $f$ is a dilatation but $f=\mathrm{id}_{\text {the points of } A F S}$ or for every $a$ holds $a \neq f(a)$.
(99) $\mathrm{id}_{\text {the points of } A F S}$ is a translation.
(100) If $f$ is a dilatation, then $f$ is a translation if and only if for all $x, y$ holds $x, f(x) \| y, f(y)$.
(101) If $f$ is a translation and $f(a)=a$, then $f=\mathrm{id}_{\text {the points of } A F S \text {. }}$.
(102) If $f$ is a translation and $g$ is a translation and $f(a)=g(a)$ and $f(a) \neq a$ and not $\mathbf{L}(a, f(a), x)$, then $f(x)=g(x)$.
(103) If $f$ is a translation and $g$ is a translation and $f(a)=g(a)$, then $f=g$.
(104) If $f$ is a translation, then $f^{-1}$ is a translation.
(105) If $f$ is a translation and $g$ is a translation, then $f \cdot g$ is a translation.

Let us consider $A F S, f$. We say that $f$ is a collineation if and only if:
$f$ is an automorphism of the congruence of $A F S$.
Next we state four propositions:
(106) $f$ is a collineation if and only if $f$ is an automorphism of the congruence of $A F S$.
(107) $f$ is a collineation if and only if for all $x, y, z, t$ holds $x, y \| z, t$ if and only if $f(x), f(y) \| f(z), f(t)$.
(108) If $f$ is a collineation, then $\mathbf{L}(x, y, z)$ if and only if $\mathbf{L}(f(x), f(y), f(z))$.
(109) If $f$ is a collineation and $g$ is a collineation, then $f^{-1}$ is a collineation and $f \cdot g$ is a collineation and $\operatorname{id}_{\text {the points of } A F S}$ is a collineation.
In the sequel $A, C, K$ will denote subsets of the points of $A F S$. Next we state several propositions:
(110) If $a \in A$, then $f(a) \in f^{\circ} A$.
(111) $x \in f^{\circ} A$ if and only if there exists $y$ such that $y \in A$ and $f(y)=x$.
(112) If $f^{\circ} A=f^{\circ} C$, then $A=C$.
(113) If $f$ is a collineation, then $f^{\circ} \operatorname{Line}(a, b)=\operatorname{Line}(f(a), f(b))$.
(114) If $f$ is a collineation and $K$ is a line, then $f^{\circ} K$ is a line.
(115) If $f$ is a collineation and $A \| C$, then $f{ }^{\circ} A \| f{ }^{\circ} C$.

For simplicity we follow the rules: $A F P$ is an affine plane, $A, K$ are subsets of the points of $A F P, p, x$ are elements of the points of $A F P$, and $f$ is a permutation of the points of $A F P$. We now state two propositions:
(116) If for every $A$ such that $A$ is a line holds $f^{\circ} A$ is a line, then $f$ is a collineation.
(117) If $f$ is a collineation and $K$ is a line and for every $x$ such that $x \in K$ holds $f(x)=x$ and $p \notin K$ and $f(p)=p$, then $f=\operatorname{id}_{\text {the points of } A F P \text {. }}$

## References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[4] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[5] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity - part I. Formalized Mathematics, $1(3): 611-615,1990$.
[6] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617-621, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

# Subcategories and Products of Categories 

Czesław Byliński ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. The subcategory of a category and product of categories is defined. The inclusion functor is the injection (inclusion) map $\stackrel{E}{\hookrightarrow}$ which sends each object and each arrow of a Subcategory $E$ of a category $C$ to itself (in $C$ ). The inclusion functor is faithful. Full subcategories of $C$, that is, those subcategories $E$ of $C$ such that $\operatorname{Hom}_{E}(a, b)=\operatorname{Hom}_{C}(b, b)$ for any objects $a, b$ of $E$, are defined. A subcategory $E$ of $C$ is full when the inclusion functor $\underset{\hookrightarrow}{E}$ is full. The proposition that a full subcategory is determined by giving the set of objects of a category is proved. The product of two categories $B$ and $C$ is constructed in the usual way. Moreover, some simple facts on bifunctors (functors from a product category) are proved. The final notions in this article are that of projection functors and product of two functors (complex functors and product functors).


MML Identifier: CAT_2.

The terminology and notation used in this paper have been introduced in the following articles: [10], [8], [3], [4], [7], [2], [6], [1], [11], [9], and [5]. For simplicity we follow the rules: $X$ denotes a set, $C, D, E$ denote non-empty sets, $c$ denotes an element of $C$, and $d$ denotes an element of $D$. Let us consider $D, X, E$, and let $F$ be a non-empty set of functions from $X$ to $E$, and let $f$ be a function from $D$ into $F$, and let $d$ be an element of $D$. Then $f(d)$ is an element of $F$.

In the sequel $f$ denotes a function from $\{C, D \ddagger$ into $E$. The following propositions are true:
(1) curry $f$ is a function from $C$ into $E^{D}$.
(2) curry' $f$ is a function from $D$ into $E^{C}$.

Let us consider $C, D, E, f$. Then curry $f$ is a function from $C$ into $E^{D}$. Then curry' $f$ is a function from $D$ into $E^{C}$.

The following two propositions are true:
(3) $\quad f(\langle c, d\rangle)=(\operatorname{curry} f(c))(d)$.

[^17]\[

$$
\begin{equation*}
f(\langle c, d\rangle)=\left(\text { curry }^{\prime} f(d)\right)(c) . \tag{4}
\end{equation*}
$$

\]

In the sequel $B, C, D, C^{\prime}, D^{\prime}$ denote categories. Let us consider $B, C$, and let $c$ be an object of $C$. The functor $B \longmapsto c$ yielding a functor from $B$ to $C$ is defined as follows:
$B \longmapsto c=($ the morphisms of $B) \longmapsto \mathrm{id}_{c}$.
One can prove the following propositions:
(5) For every object $c$ of $C$ holds $B \longmapsto c=$ (the morphisms of $B) \longmapsto \mathrm{id}_{c}$.
(6) For every object $c$ of $C$ and for every morphism $f$ of $B$ holds ( $B \longmapsto$ $c)(f)=\mathrm{id}_{c}$.
(7) For every object $c$ of $C$ and for every object $b$ of $B$ holds $(\mathrm{Obj}(B \longmapsto$ c) $)(b)=c$.

Let us consider $C, D$. The functor Funct $(C, D)$ yields a non-empty set and is defined by:
for an arbitrary $x$ holds $x \in \operatorname{Funct}(C, D)$ if and only if $x$ is a functor from $C$ to $D$.

Next we state two propositions:
(8) For every non-empty set $F$ holds $F=\operatorname{Funct}(C, D)$ if and only if for an arbitrary $x$ holds $x \in F$ if and only if $x$ is a functor from $C$ to $D$.
(9) For every element $T$ of $\operatorname{Funct}(C, D)$ holds $T$ is a functor from $C$ to $D$.

Let us consider $C, D$. A non-empty set is called a non-empty set of functors from $C$ into $D$ if:
for every element $x$ of it holds $x$ is a functor from $C$ to $D$.
The following proposition is true
(10) For every non-empty set $F$ holds $F$ is a non-empty set of functors from $C$ into $D$ if and only if for every element $x$ of $F$ holds $x$ is a functor from $C$ to $D$.
Let us consider $C, D$, and let $F$ be a non-empty set of functors from $C$ into $D$. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objests of the mode element of $F$ are a functor from $C$ to $D$.

Let $A$ be a non-empty set, and let us consider $C, D$, and let $F$ be a nonempty set of functors from $C$ into $D$, and let $T$ be a function from $A$ into $F$, and let $x$ be an element of $A$. Then $T(x)$ is an element of $F$.

Let us consider $C, D$. Then $\operatorname{Funct}(C, D)$ is a non-empty set of functors from $C$ into $D$.

Let us consider $C$. A category is said to be a subcategory of $C$ if:
(i) the objects of it $\subseteq$ the objects of $C$,
(ii) for all objects $a, b$ of it and for all objects $a^{\prime}, b^{\prime}$ of $C$ such that $a=a^{\prime}$ and $b=b^{\prime}$ holds $\operatorname{hom}(a, b) \subseteq \operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$,
(iii) the composition of it $\leq$ the composition of $C$,
(iv) for every object $a$ of it and for every object $a^{\prime}$ of $C$ such that $a=a^{\prime}$ holds $\mathrm{id}_{a}=\mathrm{id}_{a^{\prime}}$.

Next we state the proposition
(11) Given $C, D$. Then $D$ is a subcategory of $C$ if and only if the following conditions are satisfied:
(i) the objects of $D \subseteq$ the objects of $C$,
(ii) for all objects $a, b$ of $D$ and for all objects $a^{\prime}, b^{\prime}$ of $C$ such that $a=a^{\prime}$ and $b=b^{\prime}$ holds hom $(a, b) \subseteq \operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$,
(iii) the composition of $D \leq$ the composition of $C$,
(iv) for every object $a$ of $D$ and for every object $a^{\prime}$ of $C$ such that $a=a^{\prime}$ holds $\mathrm{id}_{a}=\mathrm{id}_{a^{\prime}}$.
In the sequel $E$ will be a subcategory of $C$. We now state several propositions:
(12) For every object $e$ of $E$ holds $e$ is an object of $C$.
(13) The morphisms of $E \subseteq$ the morphisms of $C$.
(14) For every morphism $f$ of $E$ holds $f$ is a morphism of $C$.
(15) For every morphism $f$ of $E$ and for every morphism $f^{\prime}$ of $C$ such that $f=f^{\prime}$ holds $\operatorname{dom} f=\operatorname{dom} f^{\prime}$ and $\operatorname{cod} f=\operatorname{cod} f^{\prime}$.
(16) For all objects $a, b$ of $E$ and for all objects $a^{\prime}, b^{\prime}$ of $C$ and for every morphism $f$ from $a$ to $b$ such that $a=a^{\prime}$ and $b=b^{\prime}$ and $\operatorname{hom}(a, b) \neq \emptyset$ holds $f$ is a morphism from $a^{\prime}$ to $b^{\prime}$.
(17) For all morphisms $f, g$ of $E$ and for all morphisms $f^{\prime}, g^{\prime}$ of $C$ such that $f=f^{\prime}$ and $g=g^{\prime}$ and $\operatorname{dom} g=\operatorname{cod} f$ holds $g \cdot f=g^{\prime} \cdot f^{\prime}$.
(18) $C$ is a subcategory of $C$.
(19) $\operatorname{id}_{E}$ is a functor from $E$ to $C$.

Let us consider $C, E$. The functor $\stackrel{E}{\hookrightarrow}$ yielding a functor from $E$ to $C$ is defined as follows:
$\stackrel{E}{\hookrightarrow}=\mathrm{id}_{E}$.
The following propositions are true:
(21) $\quad$ For every morphism $f$ of $E$ holds $\underset{\hookrightarrow}{E}(f)=f$.
(22) For every object $a$ of $E$ holds $\left(\operatorname{Obj}_{\stackrel{E}{\leftrightarrows}}^{\leftrightarrows}\right)(a)=a$.
(21) For every morphism $f$ of $E$ holds $\underset{\hookrightarrow}{E}(f)=f$.
(22) For every object $a$ of $E$ holds $\left(\operatorname{Obj}_{\underset{\hookrightarrow}{E})}^{\leftrightarrows}(a)=a\right.$.

$$
\begin{equation*}
\stackrel{E}{\hookrightarrow}=\operatorname{id}_{E} . \tag{20}
\end{equation*}
$$

For every object $a$ of $E$ holds $\stackrel{E}{\hookrightarrow}(a)=a$.
$\xrightarrow[E]{E}$ is faithful.
$\stackrel{E}{\Delta}$ is full if and only if for all objects $a, b$ of $E$ and for all objects $a^{\prime}, b^{\prime}$ of $\vec{C}$ such that $a=a^{\prime}$ and $b=b^{\prime}$ holds hom $(a, b)=\operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$.
Let $C$ be a category structure, and let us consider $D$. We say that $C$ is full subcategory of $D$ if and only if:
$C$ is a subcategory of $D$ and for all objects $a, b$ of $C$ and for all objects $a^{\prime}, b^{\prime}$ of $D$ such that $a=a^{\prime}$ and $b=b^{\prime}$ holds hom $(a, b)=\operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$.

The following propositions are true:
(26) For every $C$ being a category structure and for every $D$ holds $C$ is full subcategory of $D$ if and only if $C$ is a subcategory of $D$ and for all objects
$a, b$ of $C$ and for all objects $a^{\prime}, b^{\prime}$ of $D$ such that $a=a^{\prime}$ and $b=b^{\prime}$ holds $\operatorname{hom}(a, b)=\operatorname{hom}\left(a^{\prime}, b^{\prime}\right)$.
$E$ is full subcategory of $C$ if and only if $\underset{\hookrightarrow}{E}$ is full.
For every non-empty subset $O$ of the objects of $C$ holds $\bigcup\{\operatorname{hom}(a, b)$ : $a \in O \wedge b \in O\}$ is a non-empty subset of the morphisms of $C$.
Let $O$ be a non-empty subset of the objects of $C$. Let $M$ be a nonempty set. Suppose $M=\bigcup\{\operatorname{hom}(a, b): a \in O \wedge b \in O\}$. Then (the dom-map of $C) \upharpoonright M$ is a function from $M$ into $O$ and (the cod-map of $C) \upharpoonright M$ is a function from $M$ into $O$ and (the composition of $C$ ) $\upharpoonright: M$, $M$ : is a partial function from : $M, M$ : to $M$ and (the id-map of $C$ ) $\upharpoonright O$ is a function from $O$ into $M$.
(30) Let $O$ be a non-empty subset of the objects of $C$. Let $M$ be a non-empty set. Let $d, c$ be functions from $M$ into $O$. Let $p$ be a partial function from $: M, M:$ to $M$. Let $i$ be a function from $O$ into $M$. Suppose $M=\bigcup\{\operatorname{hom}(a, b): a \in O \wedge b \in O\}$ and $d=$ (the dom-map of $C) \upharpoonright M$ and $c=($ the cod-map of $C) \upharpoonright M$ and $p=($ the composition of $C) \upharpoonright: M, M:$ and $i=($ the id-map of $C) \upharpoonright O$. Then $\langle O, M, d, c, p, i\rangle$ is full subcategory of $C$.
(31) Let $O$ be a non-empty subset of the objects of $C$. Let $M$ be a non-empty set. Let $d, c$ be functions from $M$ into $O$. Let $p$ be a partial function from $: M, M$ : to $M$. Let $i$ be a function from $O$ into $M$. Suppose $\langle O, M, d, c, p, i\rangle$ is full subcategory of $C$. Then $M=\bigcup\{\operatorname{hom}(a, b): a \in$ $O \wedge b \in O\}$ and $d=($ the dom-map of $C) \upharpoonright M$ and $c=$ (the cod-map of $C) \upharpoonright M$ and $p=($ the composition of $C) \upharpoonright: M, M:$ and $i=$ (the id-map of $C) \upharpoonright O$.
Let $X_{1}, X_{2}, Y_{1}, Y_{2}$ be non-empty sets, and let $f_{1}$ be a function from $X_{1}$ into $Y_{1}$, and let $f_{2}$ be a function from $X_{2}$ into $Y_{2}$. Then : $f_{1}, f_{2}$ : is a function from : $X_{1}, X_{2}$ ] into : $Y_{1}, Y_{2}$ ].

Let $A, B$ be non-empty sets, and let $f$ be a partial function from : $A, A$ : to $A$, and let $g$ be a partial function from $: B, B:]$ to $B$. Then $|: f, g:|$ is a partial function from $:: A, B!,[: A, B:]$ to $: A, B]$.

Let us consider $C, D$. The functor : $C, D$ : yielding a category is defined as follows:
: $C, D:=\langle:$ the objects of $C$, the objects of $D:], \equiv$ the morphisms of $C$, the morphisms of $D:]$,: the dom-map of $C$, the dom-map of $D:]$, : the cod-map of $C$, the cod-map of $D: \|, \mid$ the composition of $C$, the composition of $D: \mid,:$ the id-map of $C$, the id-map of $D: j\rangle$.

Next we state three propositions:
(32) $\quad \vdots C, D \vdots=\langle:$ the objects of $C$, the objects of $D:],:$ the morphisms of $C$, the morphisms of $D:$, , the dom-map of $C$, the dom-map of $D:,:$ the cod-map of $C$, the cod-map of $D: \ddagger$, |: the composition of $C$, the composition of $D: \mid$, : the id-map of $C$, the id-map of $D: j\rangle$.
(33) (i) The objects of $: C, D:=$ : the objects of $C$, the objects of $D:$,
(ii) the morphisms of : $C, D:=$ : the morphisms of $C$, the morphisms of D: ],
(iii) the dom-map of $: C, D:=$ : the dom-map of $C$, the dom-map of $D:]$,
(iv) the cod-map of $[: C, D:=[$ the cod-map of $C$, the cod-map of $D:]$,
(v) the composition of $: C, D:]=\mid$ : the composition of $C$, the composition of $D: \mid$,
(vi) the id-map of : $C, D:=$ : the id-map of $C$, the id-map of $D:$.
(34) For every object $c$ of $C$ and for every object $d$ of $D$ holds $\langle c, d\rangle$ is an object of $: C, D:$.
Let us consider $C, D$, and let $c$ be an object of $C$, and let $d$ be an object of $D$. Then $\langle c, d\rangle$ is an object of $: C, D:]$.

One can prove the following propositions:
(35) For every object $c d$ of : $C, D$ : there exists an object $c$ of $C$ and there exists an object $d$ of $D$ such that $c d=\langle c, d\rangle$.
(36) For every morphism $f$ of $C$ and for every morphism $g$ of $D$ holds $\langle f, g\rangle$ is a morphism of : $C, D:]$.
Let us consider $C, D$, and let $f$ be a morphism of $C$, and let $g$ be a morphism of $D$. Then $\langle f, g\rangle$ is a morphism of $: C, D:]$.

The following propositions are true:
(37) For every morphism $f g$ of $: C, D$ :] there exists a morphism $f$ of $C$ and there exists a morphism $g$ of $D$ such that $f g=\langle f, g\rangle$.
(38) For every morphism $f$ of $C$ and for every morphism $g$ of $D$ holds $\operatorname{dom}\langle f, g\rangle=\langle\operatorname{dom} f, \operatorname{dom} g\rangle$ and $\operatorname{cod}\langle f, g\rangle=\langle\operatorname{cod} f, \operatorname{cod} g\rangle$.
(39) For all morphisms $f, f^{\prime}$ of $C$ and for all morphisms $g, g^{\prime}$ of $D$ such that $\operatorname{dom} f^{\prime}=\operatorname{cod} f$ and dom $g^{\prime}=\operatorname{cod} g$ holds $\left\langle f^{\prime}, g^{\prime}\right\rangle \cdot\langle f, g\rangle=\left\langle f^{\prime} \cdot f, g^{\prime} \cdot g\right\rangle$.
(40) For all morphisms $f, f^{\prime}$ of $C$ and for all morphisms $g, g^{\prime}$ of $D$ such that $\operatorname{dom}\left\langle f^{\prime}, g^{\prime}\right\rangle=\operatorname{cod}\langle f, g\rangle$ holds $\left\langle f^{\prime}, g^{\prime}\right\rangle \cdot\langle f, g\rangle=\left\langle f^{\prime} \cdot f, g^{\prime} \cdot g\right\rangle$.
(41) For every object $c$ of $C$ and for every object $d$ of $D$ holds id ${ }_{\langle c, d\rangle}=$ $\left\langle\mathrm{id}_{c}, \mathrm{id}_{d}\right\rangle$.
(42) For all objects $c, c^{\prime}$ of $C$ and for all objects $d, d^{\prime}$ of $D$ holds $\operatorname{hom}\left(\langle c, d\rangle,\left\langle c^{\prime}, d^{\prime}\right\rangle\right)=\left[: \operatorname{hom}\left(c, c^{\prime}\right), \operatorname{hom}\left(d, d^{\prime}\right):\right]$.
(43) For all objects $c, c^{\prime}$ of $C$ and for every morphism $f$ from $c$ to $c^{\prime}$ and for all objects $d, d^{\prime}$ of $D$ and for every morphism $g$ from $d$ to $d^{\prime}$ such that $\operatorname{hom}\left(c, c^{\prime}\right) \neq \emptyset$ and $\operatorname{hom}\left(d, d^{\prime}\right) \neq \emptyset$ holds $\langle f, g\rangle$ is a morphism from $\langle c, d\rangle$ to $\left\langle c^{\prime}, d^{\prime}\right\rangle$.
(44) For every functor $S$ from : $C, C^{\prime}$ : to $D$ and for every object $c$ of $C$ holds curry $S\left(\mathrm{id}_{c}\right)$ is a functor from $C^{\prime}$ to $D$.
(45) For every functor $S$ from $: C, C^{\prime}$ : to $D$ and for every object $c^{\prime}$ of $C^{\prime}$ holds curry' $S\left(\mathrm{id}_{c^{\prime}}\right)$ is a functor from $C$ to $D$.
Let us consider $C, C^{\prime}, D$, and let $S$ be a functor from : $C, C^{\prime}$ : to $D$, and let $c$ be an object of $C$. The functor $S(c,-)$ yields a functor from $C^{\prime}$ to $D$ and is defined as follows:
$S(c,-)=$ curry $S\left(\mathrm{id}_{c}\right)$.
The following three propositions are true:
(46) For every functor $S$ from : $C, C^{\prime} \ddagger$ to $D$ and for every object $c$ of $C$ holds $S(c,-)=\operatorname{curry} S\left(\mathrm{id}_{c}\right)$.
(47) For every functor $S$ from $: C, C^{\prime}$ ] to $D$ and for every object $c$ of $C$ and for every morphism $f$ of $C^{\prime}$ holds $S(c,-)(f)=S\left(\left\langle\operatorname{id}_{c}, f\right\rangle\right)$.
(48) For every functor $S$ from $: C, C^{\prime}$ ] to $D$ and for every object $c$ of $C$ and for every object $c^{\prime}$ of $C^{\prime}$ holds $(\operatorname{Obj} S(c,-))\left(c^{\prime}\right)=(\operatorname{Obj} S)\left(\left\langle c, c^{\prime}\right\rangle\right)$.
Let us consider $C, C^{\prime}, D$, and let $S$ be a functor from $: C, C^{\prime}:$ to $D$, and let $c^{\prime}$ be an object of $C^{\prime}$. The functor $S\left(-, c^{\prime}\right)$ yielding a functor from $C$ to $D$ is defined by:
$S\left(-, c^{\prime}\right)=$ curry $^{\prime} S\left(\mathrm{id}_{c^{\prime}}\right)$.
We now state several propositions:
(49) For every functor $S$ from $\left\{C, C^{\prime} \ddagger\right.$ to $D$ and for every object $c^{\prime}$ of $C^{\prime}$ holds $S\left(-, c^{\prime}\right)=$ curry' $S\left(\mathrm{id}_{c^{\prime}}\right)$.
(50) For every functor $S$ from : $C, C^{\prime}$ : to $D$ and for every object $c^{\prime}$ of $C^{\prime}$ and for every morphism $f$ of $C$ holds $S\left(-, c^{\prime}\right)(f)=S\left(\left\langle f, \mathrm{id}_{c^{\prime}}\right\rangle\right)$.
(51) For every functor $S$ from : $C, C^{\prime}$ ] to $D$ and for every object $c$ of $C$ and for every object $c^{\prime}$ of $C^{\prime}$ holds $\left(\operatorname{Obj} S\left(-, c^{\prime}\right)\right)(c)=(\operatorname{Obj} S)\left(\left\langle c, c^{\prime}\right\rangle\right)$.
(52) Let $L$ be a function from the objects of $C$ into Funct $(B, D)$. Let $M$ be a function from the objects of $B$ into Funct $(C, D)$. Suppose that
(i) for every object $c$ of $C$ and for every object $b$ of $B$ holds $(M(b))\left(\mathrm{id}_{c}\right)=$ $(L(c))\left(\mathrm{id}_{b}\right)$,
(ii) for every morphism $f$ of $B$ and for every morphism $g$ of $C$ holds $(M(\operatorname{cod} f))(g) \cdot(L(\operatorname{dom} g))(f)=(L(\operatorname{cod} g))(f) \cdot(M(\operatorname{dom} f))(g)$.
Then there exists a functor $S$ from $: B, C$ : to $D$ such that for every morphism $f$ of $B$ and for every morphism $g$ of $C$ holds $S(\langle f, g\rangle)=$ $(L(\operatorname{cod} g))(f) \cdot(M(\operatorname{dom} f))(g)$.
(53) Let $L$ be a function from the objects of $C$ into $\operatorname{Funct}(B, D)$. Let $M$ be a function from the objects of $B$ into Funct $(C, D)$. Suppose there exists a functor $S$ from $: B, C$ 引 to $D$ such that for every object $c$ of $C$ and for every object $b$ of $B$ holds $S(-, c)=L(c)$ and $S(b,-)=M(b)$. Then for every morphism $f$ of $B$ and for every morphism $g$ of $C$ holds $(M(\operatorname{cod} f))(g) \cdot(L(\operatorname{dom} g))(f)=(L(\operatorname{cod} g))(f) \cdot(M(\operatorname{dom} f))(g)$.
(54) $\quad \pi_{1}(($ the morphisms of $C) \times($ the morphisms of $D))$ is a functor from : $C, D:]$ to $C$.
(55) $\quad \pi_{2}(($ the morphisms of $C) \times($ the morphisms of $D))$ is a functor from [: $C, D$ ] to $D$.
We now define two new functors. Let us consider $C, D$. The functor $\pi_{1}(C \times$ $D)$ yields a functor from : $C, D$ : to $C$ and is defined as follows:
$\pi_{1}(C \times D)=\pi_{1}(($ the morphisms of $C) \times($ the morphisms of $D))$.
The functor $\pi_{2}(C \times D)$ yielding a functor from $: C, D$ ] to $D$ is defined as follows: $\pi_{2}(C \times D)=\pi_{2}(($ the morphisms of $C) \times($ the morphisms of $D))$.

One can prove the following propositions:
(56) $\quad \pi_{1}(C \times D)=\pi_{1}(($ the morphisms of $C) \times($ the morphisms of $D))$.
(57) $\quad \pi_{2}(C \times D)=\pi_{2}(($ the morphisms of $C) \times($ the morphisms of $D))$.
(58) For every morphism $f$ of $C$ and for every morphism $g$ of $D$ holds $\pi_{1}(C \times$ $D)(\langle f, g\rangle)=f$.
(59) For every object $c$ of $C$ and for every object $d$ of $D$ holds $\left(\operatorname{Obj} \pi_{1}(C \times\right.$ $D)(\langle c, d\rangle)=c$.
(60) For every morphism $f$ of $C$ and for every morphism $g$ of $D$ holds $\pi_{2}(C \times$ $D)(\langle f, g\rangle)=g$.
(61) For every object $c$ of $C$ and for every object $d$ of $D$ holds $\left(\operatorname{Obj} \pi_{2}(C \times\right.$ $D)(\langle c, d\rangle)=d$.
(62) For every functor $T$ from $C$ to $D$ and for every functor $T^{\prime}$ from $C$ to $D^{\prime}$ holds $\left\langle T, T^{\prime}\right\rangle$ is a functor from $C$ to : $D, D^{\prime}$ ].
Let us consider $C, D, D^{\prime}$, and let $T$ be a functor from $C$ to $D$, and let $T^{\prime}$ be a functor from $C$ to $D^{\prime}$. Then $\left\langle T, T^{\prime}\right\rangle$ is a functor from $C$ to : $D, D^{\prime}$ :.

One can prove the following propositions:
(63) For every functor $T$ from $C$ to $D$ and for every functor $T^{\prime}$ from $C$ to $D^{\prime}$ and for every object $c$ of $C$ holds $\left(\operatorname{Obj}\left\langle T, T^{\prime}\right\rangle\right)(c)=\left\langle(\operatorname{Obj} T)(c),\left(\operatorname{Obj} T^{\prime}\right)(c)\right\rangle$.
(64) For every functor $T$ from $C$ to $D$ and for every functor $T^{\prime}$ from $C^{\prime}$ to $D^{\prime}$ holds : $T, T^{\prime}:=\left\langle T \cdot \pi_{1}\left(C \times C^{\prime}\right), T^{\prime} \cdot \pi_{2}\left(C \times C^{\prime}\right)\right\rangle$.
(65) For every functor $T$ from $C$ to $D$ and for every functor $T^{\prime}$ from $C^{\prime}$ to $D^{\prime}$ holds $: T, T^{\prime}$; is a functor from : $C, C^{\prime} \ddagger$ to $\left.: D, D^{\prime}:\right]$.
Let us consider $C, C^{\prime}, D, D^{\prime}$, and let $T$ be a functor from $C$ to $D$, and let $T^{\prime}$ be a functor from $C^{\prime}$ to $D^{\prime}$. Then $\left[T, T^{\prime}:\right.$ is a functor from $\left[C, C^{\prime}:\right]$ to $: D$, $D^{\prime}$;

One can prove the following proposition
(66) For every functor $T$ from $C$ to $D$ and for every functor $T^{\prime}$ from $C^{\prime}$ to $D^{\prime}$ and for every object $c$ of $C$ and for every object $c^{\prime}$ of $C^{\prime}$ holds (Objः $T$, $\left.T^{\prime} \vdots\right)\left(\left\langle c, c^{\prime}\right\rangle\right)=\left\langle(\operatorname{Obj} T)(c),\left(\operatorname{Obj} T^{\prime}\right)\left(c^{\prime}\right)\right\rangle$.

## References

[1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[2] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. Introduction to categories and functors. Formalized Mathematics, 1(2):409-420, 1990.
[6] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1 (3):521-527, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[9] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received May 31, 1990

# Many-Argument Relations 

Edmund Woronowicz ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. Definitions of relations based on finite sequences. The arity of relation, the set of logical values Boolean consisting of false and true and the operations of negation and conjunction on them are defined.


MML Identifier: MARGREL1.

The notation and terminology used in this paper have been introduced in the following papers: [5], [2], [1], [3], and [4]. In the sequel $x, y$ will be arbitrary, $k$ will denote a natural number, and $D$ will denote a non-empty set. Let $B, A$ be non-empty sets, and let $b$ be an element of $B$. Then $A \longmapsto b$ is an element of $B^{A}$.

A set is said to be a relation if:
for an arbitrary $x$ such that $x \in$ it holds $x$ is a finite sequence and for all finite sequences $a, b$ such that $a \in$ it and $b \in$ it holds len $a=\operatorname{len} b$.

We follow a convention: $X$ denotes a set, $p, r$ denote relations, and $a, b$ denote finite sequences. We now state several propositions:
(4) ${ }^{2}$ For every $X$ such that for every $x$ such that $x \in X$ holds $x$ is a finite sequence and for all $a, b$ such that $a \in X$ and $b \in X$ holds len $a=$ len $b$ holds $X$ is a relation.
(5) If $x \in p$, then $x$ is a finite sequence.
(6) If $a \in p$ and $b \in p$, then len $a=\operatorname{len} b$.
(7) If $X \subseteq p$, then $X$ is a relation.
(8) $\{a\}$ is a relation.
(9) $\{\langle x, y\rangle\}$ is a relation.

The scheme rel_exist concerns a set $\mathcal{A}$, and a unary predicate $\mathcal{P}$, and states that:

[^18]there exists $r$ such that for every $a$ holds $a \in r$ if and only if $a \in \mathcal{A}$ and $\mathcal{P}[a]$ provided the parameters satisfy the following condition:

- for all $a, b$ such that $\mathcal{P}[a]$ and $\mathcal{P}[b]$ holds len $a=\operatorname{len} b$.

Let us consider $p, r$. Let us note that one can characterize the predicate $p=r$ by the following (equivalent) condition: for every $a$ holds $a \in p$ if and only if $a \in r$.

We now state the proposition
(10) $p=r$ if and only if for every $a$ holds $a \in p$ if and only if $a \in r$.

The relation $\varnothing$ is defined by:
$a \notin \varnothing$.
One can prove the following propositions:
(13) $\varnothing=\emptyset$.

Let us consider $p$. Let us assume that $p \neq \varnothing$. The functor $\operatorname{Arity}(p)$ yielding a natural number is defined by:
for every $a$ such that $a \in p$ holds $\operatorname{Arity}(p)=\operatorname{len} a$.
We now state two propositions:
(14) If $p \neq \varnothing$, then for every $k$ holds $k=\operatorname{Arity}(p)$ if and only if for every $a$ such that $a \in p$ holds $k=\operatorname{len} a$.
(15) If $a \in p$ and $p \neq \varnothing$, then $\operatorname{Arity}(p)=\operatorname{len} a$.

Let us consider $k$. A relation is called a $k$-ary relation if:
for every $a$ such that $a \in$ it holds len $a=k$.
One can prove the following two propositions:
(16) For all $k, r$ such that for every $a$ such that $a \in r$ holds len $a=k$ holds $r$ is a $k$-ary relation.
(17) For every $k$-ary relation $r$ such that $a \in r$ holds len $a=k$.

Let $X$ be a set. A relation is called a relation on $X$ if:
for every $a$ such that $a \in$ it holds rng $a \subseteq X$.
In the sequel $X$ denotes a set. Next we state four propositions:
(18) For all $X, r$ such that for every $a$ such that $a \in r$ holds $\operatorname{rng} a \subseteq X$ holds $r$ is a relation on $X$.
(19) For every relation $r$ on $X$ such that $a \in r$ holds $\operatorname{rng} a \subseteq X$.
(20) $\varnothing$ is a relation on $X$.
(21) $\varnothing$ is a $k$-ary relation.

Let us consider $X, k$. A relation is called a $k$-ary relation of $X$ if:
it is a relation on $X$ and it is a $k$-ary relation.
Next we state two propositions:
(22) For every relation $r$ holds $r$ is a $k$-ary relation of $X$ if and only if $r$ is a relation on $X$ and $r$ is a $k$-ary relation.

For every $k$-ary relation $R$ of $X$ holds $R$ is a relation on $X$ and $R$ is a $k$-ary relation.
Let us consider $D$. The functor $\operatorname{Rel}(D)$ yielding a non-empty family of sets is defined as follows:
for every $X$ holds $X \in \operatorname{Rel}(D)$ if and only if $X \subseteq D^{*}$ and for all finite sequences $a, b$ of elements of $D$ such that $a \in X$ and $b \in X$ holds len $a=\operatorname{len} b$.

The following propositions are true:
(24) For every non-empty set $D$ and for every non-empty family $S$ of sets holds $S=\operatorname{Rel}(D)$ if and only if for every $X$ holds $X \in S$ if and only if $X \subseteq D^{*}$ and for all finite sequences $a, b$ of elements of $D$ such that $a \in X$ and $b \in X$ holds len $a=\operatorname{len} b$.
(25) $\quad X \in \operatorname{Rel}(D)$ if and only if $X \subseteq D^{*}$ and for all finite sequences $a, b$ of elements of $D$ such that $a \in X$ and $b \in X$ holds len $a=$ len $b$.
Let $D$ be a non-empty set. A relation on $D$ is an element of $\operatorname{Rel}(D)$.
In the sequel $a$ will denote a finite sequence of elements of $D$ and $p, r$ will denote elements of $\operatorname{Rel}(D)$. Next we state three propositions:
(26) If $X \subseteq r$, then $X$ is an element of $\operatorname{Rel}(D)$.
(27) $\{a\}$ is an element of $\operatorname{Rel}(D)$.
(28) For all elements $x$, $y$ of $D$ holds $\{\langle x, y\rangle\}$ is an element of $\operatorname{Rel}(D)$.

Let us consider $D, p, r$. Let us note that one can characterize the predicate $p=r$ by the following (equivalent) condition: for every $a$ holds $a \in p$ if and only if $a \in r$.

One can prove the following proposition
(29) $\quad p=r$ if and only if for every $a$ holds $a \in p$ if and only if $a \in r$.

The scheme rel_D_exist deals with a non-empty set $\mathcal{A}$, and a unary predicate $\mathcal{P}$, and states that:
there exists an element $r$ of $\operatorname{Rel}(\mathcal{A})$ such that for every finite sequence $a$ of elements of $\mathcal{A}$ holds $a \in r$ if and only if $\mathcal{P}[a]$
provided the parameters satisfy the following condition:

- for all finite sequences $a, b$ of elements of $\mathcal{A}$ such that $\mathcal{P}[a]$ and $\mathcal{P}[b]$ holds len $a=\operatorname{len} b$.
Let us consider $D$. The functor $\varnothing_{D}$ yielding an element of $\operatorname{Rel}(D)$ is defined as follows:
$a \notin \varnothing_{D}$.
The following three propositions are true:

$$
\begin{equation*}
r=\varnothing_{D} \text { if and only if for no } a \text { holds } a \in r . \tag{30}
\end{equation*}
$$

$a \notin \varnothing_{D}$.
(32) $\quad \varnothing_{D}=\emptyset$.

Let us consider $D, p$. Let us assume that $p \neq \varnothing_{D}$. The functor $\operatorname{Arity}(p)$ yielding a natural number is defined by:
if $a \in p$, then $\operatorname{Arity}(p)=\operatorname{len} a$.
Next we state two propositions:
(33) If $p \neq \varnothing_{D}$, then for every $k$ holds $k=\operatorname{Arity}(p)$ if and only if for every $a$ such that $a \in p$ holds $k=\operatorname{len} a$.
(34) If $a \in p$ and $p \neq \varnothing_{D}$, then $\operatorname{Arity}(p)=\operatorname{len} a$.

The scheme rel_D_exist2 concerns a non-empty set $\mathcal{A}$, a natural number $\mathcal{B}$, and a unary predicate $\mathcal{P}$, and states that:
there exists an element $r$ of $\operatorname{Rel}(\mathcal{A})$ such that for every finite sequence $a$ of elements of $\mathcal{A}$ such that len $a=\mathcal{B}$ holds $a \in r$ if and only if $\mathcal{P}[a]$
for all values of the parameters.
The non-empty set Boolean is defined by:
Boolean $=\{0,1\}$.
We now define two new functors. The element false of Boolean is defined by:
false $=0$.
The element true of Boolean is defined as follows:
true $=1$.
The following four propositions are true:
(35) Boolean $=\{0,1\}$.
(37) Boolean $=\{$ false, true $\}$.
(38) false $\neq$ true.

In the sequel $u, v, w$ will denote elements of Boolean. Next we state the proposition
(39) $\quad v=$ false or $v=$ true.

We now define two new functors. Let us consider $v$. The functor $\neg v$ yielding an element of Boolean is defined by:
$\neg v=$ true if $v=$ false, $\neg v=$ false if $v=$ true.
Let us consider $w$. The functor $v \wedge w$ yielding an element of Boolean is defined by:
$v \wedge w=$ true if $v=$ true and $w=$ true, $v \wedge w=$ false, otherwise.
The following propositions are true:
$\neg(\neg v)=v$.
(41) $v=$ false if and only if $\neg v=$ true but $v=$ true if and only if $\neg v=$ false.
(42) If $v \neq$ false, then $v=$ true but if $v \neq$ true, then $v=$ false.
(43) $\quad v \neq$ true if and only if $v=$ false.
(44) It is not true that: $v=$ true and $w=$ true if and only if $v=$ false or $w=$ false.
(45) $\quad v \wedge w=$ true if and only if $v=$ true and $w=$ true but $v \wedge w=$ false if and only if $v=$ false or $w=$ false.
(48) $v \wedge w=w \wedge v$.
$v \wedge \neg v=$ false.
$\neg(v \wedge \neg v)=$ true.
false $\wedge v=$ false.
(50) $\quad$ true $\wedge v=v$.
(51) If $v \wedge v=$ false, then $v=$ false.
(52) $\quad v \wedge(w \wedge u)=(v \wedge w) \wedge u$.

Let us consider $X$. The functor Boolean (false $\notin X)$ yields an element of Boolean and is defined as follows:

Boolean $($ false $\notin X)=$ true if false $\notin X$, Boolean $($ false $\notin X)=$ false, otherwise.

One can prove the following proposition
(53) false $\notin X$ if and only if Boolean (false $\notin X)=$ true but false $\in X$ if and only if Boolean(false $\notin X)=$ false.

## References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[4] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received June 1, 1990

# Interpretation and Satisfiability in the First Order Logic 

Edmund Woronowicz ${ }^{1}$<br>Warsaw University<br>Białystok

Summary. The main notion discussed is satisfiability. Interpretation and some auxiliary concepts are also introduced.

MML Identifier: VALUAT_1.

The articles [6], [3], [1], [5], [4], [2], and [7] provide the notation and terminology for this paper. In the sequel $i, k$ are natural numbers and $A, D$ are non-empty sets. Let us consider $A$. The functor $\boldsymbol{V}(A)$ yields a non-empty set of functions and is defined by:
$\boldsymbol{V}(A)=A^{\text {BoundVar }}$.
The following propositions are true:
(1) $\quad V(A)=A^{\text {BoundVar }}$.
(2) For an arbitrary $x$ such that $x$ is an element of $\boldsymbol{V}(A)$ holds $x$ is a function from BoundVar into $A$.
Let us consider $A$. Then $\boldsymbol{V}(A)$ is a non-empty set of functions from BoundVar to $A$.

In the sequel $x, y$ will be bound variables and $v, v_{1}$ will be elements of $\boldsymbol{V}(A)$. Let us consider $A, v, x$. Then $v(x)$ is an element of $A$.

We now define two new functors. Let us consider $A$, and let $p$ be an element of Boolean ${ }^{A}$. The functor $\neg p$ yields an element of Boolean ${ }^{A}$ and is defined by:
for every element $x$ of $A$ holds $(\neg p)(x)=\neg(p(x))$.
Let $q$ be an element of Boolean ${ }^{A}$. The functor $p \wedge q$ yielding an element of Boolean ${ }^{A}$ is defined as follows:
for every element $x$ of $A$ holds $(p \wedge q)(x)=(p(x)) \wedge(q(x))$.
We now state two propositions:

[^19](4) ${ }^{2}$ For every element $p$ of Boolean $^{A}$ and for every element $x$ of $A$ holds $\neg p(x)=\neg(p(x))$.
(5) For all elements $p, q$ of Boolean ${ }^{A}$ and for every element $x$ of $A$ holds $p \wedge q(x)=(p(x)) \wedge(q(x))$.
Let us consider $A$, and let $f$ be an element of Boolean $\boldsymbol{V}^{\boldsymbol{V}(A)}$, and let us consider $v$. Then $f(v)$ is an element of Boolean.

Let us consider $A, x$, and let $p$ be an element of Boolean $\boldsymbol{V}^{(A)}$. The functor $\wedge_{x} p$ yields an element of Boolean $\boldsymbol{V}(A)$ and is defined as follows:
for every $v$ holds $\left(\bigwedge_{x} p\right)(v)=$ Boolean $\left(\right.$ false $\notin\left\{p\left(v^{\prime}\right): \bigwedge_{y}\left[x \neq y \Rightarrow v^{\prime}(y)=\right.\right.$ $v(y)]\})$.

Next we state three propositions:
(6) For all $x, v$ and for every element $p$ of Boolean ${ }^{\boldsymbol{V}(A)}$ holds $\left(\bigwedge_{x} p\right)(v)=$ Boolean (false $\left.\notin\left\{p\left(v^{\prime}\right): \wedge\left[x \neq y \Rightarrow v^{\prime}(y)=v(y)\right]\right\}\right)$.
(7) For every element $p$ of Boolean $\boldsymbol{V}(A)$ holds $\left(\bigwedge_{x} p\right)(v)=$ false if and only if there exists $v_{1}$ such that $p\left(v_{1}\right)=$ false and for every $y$ such that $x \neq y$ holds $v_{1}(y)=v(y)$.
(8) For every element $p$ of Boolean $\boldsymbol{V}^{(A)}$ holds $\left(\bigwedge_{x} p\right)(v)=$ true if and only if for every $v_{1}$ such that for every $y$ such that $x \neq y$ holds $v_{1}(y)=v(y)$ holds $p\left(v_{1}\right)=$ true.
In the sequel $l l$ is a variables list of $k$. Let us consider $A, v, k, l l$. The functor $l l[v]$ yielding a finite sequence of elements of $A$ is defined as follows:
$\operatorname{len}(l l[v])=k$ and for every $i$ such that $1 \leq i$ and $i \leq k$ holds $(l l[v])(i)=$ $v(l l(i))$.

We now state the proposition
(9) For all $v, k, l l$ holds $\operatorname{len}(l l[v])=k$ and for every natural number $i$ such that $1 \leq i$ and $i \leq k$ holds $l l[v](i)=v(l l(i))$.
Let us consider $A, k, l l$, and let $r$ be an element of $\operatorname{Rel}(A)$. The functor $l l \epsilon r$ yields an element of Boolean $\boldsymbol{V}(A)$ and is defined by:
for every element $v$ of $\boldsymbol{V}(A)$ holds if $l l[v] \in r$, then $(l l \epsilon r)(v)=$ true but if $l l[v] \notin r$, then $(l l \epsilon r)(v)=$ false.

Next we state the proposition
(10) For all $k, l l, v$ and for every element $r$ of $\operatorname{Rel}(A)$ holds if $l l[v] \in r$, then $l l \epsilon r(v)=$ true but if $l l[v] \notin r$, then $l l \epsilon r(v)=$ false.
Let us consider $A$, and let $F$ be a function from $\mathrm{WFF}_{\mathrm{CQC}}$ into Boolean $\boldsymbol{V}(A)$, and let $p$ be an element of $\mathrm{WFF}_{\mathrm{CQC}}$. Then $F(p)$ is an element of Boolean $\boldsymbol{V}(A)$.

Let us consider $D$. A function from $\operatorname{PredSym}$ into $\operatorname{Rel}(D)$ is called an interpretation of $D$ if:
for every element $P$ of $\operatorname{PredSym}$ and for every element $r$ of $\operatorname{Rel}(D)$ such that $\operatorname{it}(P)=r \operatorname{holds} r=\varnothing_{D}$ or $\operatorname{Arity}(P)=\operatorname{Arity}(r)$.

[^20]Next we state two propositions:
(11) For every non-empty set $D$ and for every function $F$ from PredSym into $\operatorname{Rel}(D)$ such that for every element $P$ of PredSym and for every element $r$ of $\operatorname{Rel}(D)$ such that $F(P)=r$ holds $r=\varnothing_{D}$ or $\operatorname{Arity}(P)=\operatorname{Arity}(r)$ holds $F$ is an interpretation of $D$.
(12) For every $D$ and for every interpretation $J$ of $D$ and for every element $P$ of PredSym and for every element $r$ of $\operatorname{Rel}(D)$ such that $J(P)=r$ holds $r=\varnothing_{D}$ or $\operatorname{Arity}(P)=\operatorname{Arity}(r)$.
Let us consider $A$, and let $J$ be an interpretation of $A$, and let $p$ be an element of PredSym. Then $J(p)$ is a set.

For simplicity we adopt the following rules: $p, q, t$ will be elements of $\mathrm{WFF}_{\mathrm{CQC}}, J$ will be an interpretation of $A, P$ will be a $k$-ary predicate symbol, and $r$ will be an element of $\operatorname{Rel}(A)$. Let us consider $A, k, J, P$. Then $J(P)$ is an element of $\operatorname{Rel}(A)$.

Let us consider $A, J, p$. The functor $\operatorname{Valid}(p, J)$ yielding an element of Boolean ${ }^{\boldsymbol{V}(A)}$ is defined by:
there exists a function $F$ from $\mathrm{WFF}_{\mathrm{CQC}}$ into Boolean $\boldsymbol{V}^{(A)}$ such that $\operatorname{Valid}(p, J)=F(p)$ and for all elements $p, q$ of $\mathrm{WFF}_{\mathrm{CQC}}$ and for every bound variable $x$ and for every natural number $k$ and for every variables list $l l$ of $k$ and for every $k$-ary predicate symbol $P$ and for all elements $p^{\prime}, q^{\prime}$ of Boolean $\boldsymbol{V}^{(A)}$ such that $p^{\prime}=F(p)$ and $q^{\prime}=F(q)$ holds
$F($ VERUM $)=V(A) \longmapsto t r u e$
and $F(P[l l])=l l \epsilon(J(P))$ and $F(\neg p)=\neg p^{\prime}$ and $F(p \wedge q)=p^{\prime} \wedge q^{\prime}$ and $F\left(\forall_{x} p\right)=\bigwedge_{x} p^{\prime}$.

We now state a number of propositions:
(13) $\operatorname{Valid}($ VERUM,$J)=V(A) \longmapsto$ true.
(14) $\operatorname{Valid}(\operatorname{VERUM}, J)(v)=$ true.
(15) $\operatorname{Valid}(P[l l], J)=l l \epsilon(J(P))$.
(16) If $p=P[l l]$ and $r=J(P)$, then $l l[v] \in r$ if and only if $\operatorname{Valid}(p, J)(v)=$ true.
(17) If $p=P[l l]$ and $r=J(P)$, then $l l[v] \notin r$ if and only if $\operatorname{Valid}(p, J)(v)=$ false.
(18) If $p=P[l l]$ and $r=J(P)$, then $l l[v] \notin r$ if and only if $\operatorname{Valid}(p, J)(v)=$ false.
(19) $\operatorname{Valid}(\neg p, J)=\neg \operatorname{Valid}(p, J)$.
(20) $\operatorname{Valid}(\neg p, J)(v)=\neg(\operatorname{Valid}(p, J)(v))$.
(21) $\operatorname{Valid}(p \wedge q, J)=\operatorname{Valid}(p, J) \wedge \operatorname{Valid}(q, J)$.
(22) $\operatorname{Valid}(p \wedge q, J)(v)=(\operatorname{Valid}(p, J)(v)) \wedge(\operatorname{Valid}(q, J)(v))$.
(23) $\operatorname{Valid}\left(\forall_{x} p, J\right)=\wedge_{x} \operatorname{Valid}(p, J)$.
(24) $\operatorname{Valid}(p \wedge \neg p, J)(v)=$ false.
(25) $\operatorname{Valid}(\neg(p \wedge \neg p), J)(v)=$ true.

Let us consider $A, p, J, v$. The predicate $J, v \models p$ is defined by:
$\operatorname{Valid}(p, J)(v)=$ true.
The following propositions are true:
(31) $J, v \vDash \forall_{x} p$ if and only if for every $v_{1}$ such that for every $y$ such that $x \neq y$ holds $v_{1}(y)=v(y)$ holds $\operatorname{Valid}(p, J)\left(v_{1}\right)=$ true.
$\operatorname{Valid}(\neg(\neg p), J)=\operatorname{Valid}(p, J)$.
$\operatorname{Valid}(p \wedge p, J)=\operatorname{Valid}(p, J)$.
$\operatorname{Valid}(p \wedge p, J)(v)=\operatorname{Valid}(p, J)(v)$.
$J, v \vDash p \Rightarrow q$ if and only if $\operatorname{Valid}(p, J)(v)=$ false or $\operatorname{Valid}(q, J)(v)=$ true.
$J, v \vDash p \Rightarrow q$ if and only if if $J, v \models p$, then $J, v \models q$.
For every element $p$ of Boolean $\boldsymbol{V}(A)$ such that $\left(\bigwedge_{x} p\right)(v)=$ true holds $p(v)=$ true.
Let us consider $A, J, p$. The predicate $J \vDash p$ is defined by:
for every $v$ holds $J, v \models p$.
One can prove the following proposition
(38) $J \models p$ if and only if for every $v$ holds $J, v \models p$.

In the sequel $w$ denotes an element of $\boldsymbol{V}(A)$. The scheme $L a m b d a_{-} V a l$ deals with a non-empty set $\mathcal{A}$, a bound variable $\mathcal{B}$, a bound variable $\mathcal{C}$, an element $\mathcal{D}$ of $\boldsymbol{V}(\mathcal{A})$, and an element $\mathcal{E}$ of $\boldsymbol{V}(\mathcal{A})$ and states that:
there exists an element $v$ of $\boldsymbol{V}(\mathcal{A})$ such that for every bound variable $x$ such that $x \neq \mathcal{B}$ holds $v(x)=\mathcal{D}(x)$ and $v(\mathcal{B})=\mathcal{E}(\mathcal{C})$
for all values of the parameters.
One can prove the following three propositions:
(39) If $x \notin \operatorname{snb}(p)$, then for all $v, w$ such that for every $y$ such that $x \neq y$ holds $w(y)=v(y)$ holds $\operatorname{Valid}(p, J)(v)=\operatorname{Valid}(p, J)(w)$.
(40) If $J, v \models p$ and $x \notin \operatorname{snb}(p)$, then for every $w$ such that for every $y$ such that $x \neq y$ holds $w(y)=v(y)$ holds $J, w \models p$.
(41) $J, v \neq \forall_{x} p$ if and only if for every $w$ such that for every $y$ such that $x \neq y$ holds $w(y)=v(y)$ holds $J, w \models p$.
In the sequel $s^{\prime}$ will be a formula. We now state a number of propositions:
(42) If $x \neq y$ and $p=s^{\prime}(x)$ and $q=s^{\prime}(y)$, then for every $v$ such that $v(x)=v(y)$ holds $\operatorname{Valid}(p, J)(v)=\operatorname{Valid}(q, J)(v)$.
(44) $J, v \vDash$ VERUM.

$$
\begin{equation*}
J, v \vDash p \wedge q \Rightarrow q \wedge p \tag{45}
\end{equation*}
$$

(48) $J, v \models(p \Rightarrow q) \Rightarrow(\neg(q \wedge t) \Rightarrow \neg(p \wedge t))$.
(49) If $J, v \models p$ and $J, v \models p \Rightarrow q$, then $J, v \models q$.
(50) $J, v \models\left(\forall_{x} p\right) \Rightarrow p$.
(51) $J \models$ VERUM.
(52) $J \models p \wedge q \Rightarrow q \wedge p$.
(53) $J \models(\neg p \Rightarrow p) \Rightarrow p$.
(54) $J \models p \Rightarrow(\neg p \Rightarrow q)$.
(55) $J \models(p \Rightarrow q) \Rightarrow(\neg(q \wedge t) \Rightarrow \neg(p \wedge t))$.
(56) If $J \models p$ and $J \models p \Rightarrow q$, then $J \models q$.
(57) $J \models\left({ }_{x} p\right) \Rightarrow p$.
(58) If $J \models p \Rightarrow q$ and $x \notin \operatorname{snb}(p)$, then $J \models p \Rightarrow\left(\forall_{x} q\right)$.
(59) For every formula $s$ such that $p=s(x)$ and $q=s(y)$ and $x \notin \operatorname{snb}(s)$ and $J \models p$ holds $J \models q$.

## References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669-676, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[5] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[6] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[7] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Received June 1, 1990

# Probability 

Andrzej Needzusiak ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. Some further theorems concerning probability, among them the equivalent definition of probability are discussed, followed by notions of independence of events and conditional probability and basic theorems on them.


MML Identifier: PROB_2.

The notation and terminology used in this paper have been introduced in the following papers: [8], [2], [4], [3], [6], [5], [9], [7], and [1]. For simplicity we adopt the following convention: Omega denotes a non-empty set, $f$ denotes a function, $m, n$ denote natural numbers, $r, r_{1}, r_{2}, r_{3}$ denote real numbers, seq, $s e q_{1}$ denote sequences of real numbers, Sigma denotes a $\sigma$-field of subsets of Omega, ASeq, BSeq denote sequences of subsets of Sigma, $P, P_{1}$ denote probabilities on Sigma, and $A, B, C, A_{1}, A_{2}, A_{3}$ denote events of Sigma. One can prove the following propositions:
(1) $\left(r-r_{1}\right)+r_{2}=\left(r+r_{2}\right)-r_{1}$.
(2) $r \leq r_{1}$ if and only if $r<r_{1}$ or $r=r_{1}$.
(3) For all $r, r_{1}, r_{2}$ such that $0<r$ and $r_{1} \leq r_{2}$ holds $\frac{r_{1}}{r} \leq \frac{r_{2}}{r}$.
(4) For all $r, r_{1}, r_{2}, r_{3}$ such that $r \neq 0$ and $r_{1} \neq 0$ holds $\frac{r_{3}}{r_{1}}=\frac{r_{2}}{r}$ if and only if $r_{3} \cdot r=r_{2} \cdot r_{1}$.
(5) If seq is convergent and for every $n$ holds $\operatorname{seq}_{1}(n)=r-\operatorname{seq}(n)$, then $s e q_{1}$ is convergent and $\lim s e q_{1}=r-\lim s e q$.
(6) $\quad A \cap O$ mega $=A$ and Omega $\cap A=A$ and $A \cap \Omega_{\text {Sigma }}=A$ and $\Omega_{\text {Sigma }} \cap$ $A=A$.
(7) If $B$ misses $C$, then $A \cap B$ misses $A \cap C$ and $B \cap A$ misses $C \cap A$.

The scheme SeqEx concerns a unary functor $\mathcal{F}$ and states that:
there exists $f$ such that $\operatorname{dom} f=\mathbb{N}$ and for every $n$ holds $f(n)=\mathcal{F}(n)$

[^21]for all values of the parameter.
Let us consider Omega, Sigma, ASeq, $n$. Then $\operatorname{ASeq}(n)$ is an event of Sigma.

Let us consider Omega, Sigma, ASeq. The functor $\bigcap$ ASeq yielding an event of Sigma is defined by:
$\bigcap A S e q=$ Intersection $A S e q$.
One can prove the following propositions:
(8) $\cap$ ASeq $=$ Intersection ASeq.
(9) For every $B$, $A S e q$ there exists $B S e q$ such that for every $n$ holds $B S e q(n)=A S e q(n) \cap B$.
(10) For all $B$, ASeq, $B S e q$ such that $A S e q$ is nonincreasing and for every $n$ holds $B S e q(n)=A S e q(n) \cap B$ holds $B S e q$ is nonincreasing.
(11) For every function $f$ from Sigma into $\mathbb{R}$ and for all ASeq, $n$ holds $(f \cdot A S e q)(n)=f(A S e q(n))$.
(12) For all ASeq, BSeq, $B$ such that for every $n$ holds $B S e q(n)=A S e q(n) \cap$ $B$ holds (Intersection ASeq) $\cap B=$ Intersection $B S e q$.
(13) For all $P, P_{1}$ such that for every $A$ holds $P(A)=P_{1}(A)$ holds $P=P_{1}$.
(14) For every Omega and for every sequence ASeq of subsets of Omega holds $A S e q$ is nonincreasing if and only if for every $n$ holds $A S e q(n+1) \subseteq$ $A S e q(n)$.
(15) For every sequence $A S e q$ of subsets of Omega holds $A S e q$ is nondecreasing if and only if for every $n$ holds $A S e q(n) \subseteq A S e q(n+1)$.
(16) For all sequences $A S e q, B S e q$ of subsets of Omega such that for every $n$ holds $A S e q(n)=B S e q(n)$ holds $A S e q=B S e q$.
(17) For every sequence $A S e q$ of subsets of Omega holds $A S e q$ is nonincreasing if and only if Complement ASeq is nondecreasing.
Let us consider Omega, Sigma, ASeq. The functor $A S e q$ c yields a sequence of subsets of Sigma and is defined by:
$A S e q{ }^{\mathbf{c}}=$ Complement ASeq.
The following proposition is true
(18) $A S e q^{\mathbf{c}}=$ Complement ASeq.

Let us consider Omega, Sigma, ASeq. We say that ASeq is pairwise disjoint if and only if:
for all $m, n$ such that $m \neq n$ holds $\operatorname{ASeq}(m)$ misses $\operatorname{ASeq}(n)$.
We now state a number of propositions:
(19) ASeq is pairwise disjoint if and only if for all $m, n$ such that $m \neq n$ holds $A S e q(m)$ misses $A S e q(n)$.
(20) Let $P$ be a function from Sigma into $\mathbb{R}$. Then $P$ is a probability on Sigma if and only if the following conditions are satisfied:
(i) for every $A$ holds $0 \leq P(A)$,
(ii) $P($ Omega $)=1$,
(iii) for all $A, B$ such that $A$ misses $B$ holds $P(A \cup B)=P(A)+P(B)$,
(iv) for every ASeq such that ASeq is nondecreasing holds $P \cdot A S e q$ is convergent and $\lim (P \cdot A S e q)=P($ Union ASeq $)$.
(21) $\quad P((A \cup B) \cup C)=(((P(A)+P(B))+P(C))-((P(A \cap B)+P(B \cap$ $C))+P(A \cap C)))+P((A \cap B) \cap C)$.
(22) $\quad P(A \backslash A \cap B)=P(A)-P(A \cap B)$.
(23) For all $P, A, B$ holds $P(A \cap B) \leq P(B)$ and $P(A \cap B) \leq P(A)$.
(24) For all $P, A, B, C$ such that $C=B^{\mathrm{c}}$ holds $P(A)=P(A \cap B)+P(A \cap C)$.
(25) For all $P, A, B$ holds $(P(A)+P(B))-1 \leq P(A \cap B)$.
(26) For all $P, A$ holds $P(A)=1-P\left(\Omega_{\text {Sigma }} \backslash A\right)$.
(27) For all $P, A$ holds $P(A)<1$ if and only if $0<P\left(\Omega_{\text {Sigma }} \backslash A\right)$.
(28) For all $P, A$ holds $P\left(\Omega_{\text {Sigma }} \backslash A\right)<1$ if and only if $0<P(A)$.

We now define two new predicates. Let us consider Omega, Sigma, $P, A$, $B$. We say that $A$ and $B$ are independent w.r.t $P$ if and only if:
$P(A \cap B)=P(A) \cdot P(B)$.
Let us consider $C$. We say that $A, B$ and $C$ are independent w.r.t $P$ if and only if:
(i) $\quad P((A \cap B) \cap C)=(P(A) \cdot P(B)) \cdot P(C)$,
(ii) $\quad P(A \cap B)=P(A) \cdot P(B)$,
(iii) $\quad P(A \cap C)=P(A) \cdot P(C)$,
(iv) $\quad P(B \cap C)=P(B) \cdot P(C)$.

We now state a number of propositions:
(29) $\quad A$ and $B$ are independent w.r.t $P$ if and only if $P(A \cap B)=P(A) \cdot P(B)$.
(30) $A, B$ and $C$ are independent w.r.t $P$ if and only if the following conditions are satisfied:
(i) $\quad P((A \cap B) \cap C)=(P(A) \cdot P(B)) \cdot P(C)$,
(ii) $\quad P(A \cap B)=P(A) \cdot P(B)$,
(iii) $\quad P(A \cap C)=P(A) \cdot P(C)$,
(iv) $\quad P(B \cap C)=P(B) \cdot P(C)$.
(31) For all $A, B, P$ holds $A$ and $B$ are independent w.r.t $P$ if and only if $B$ and $A$ are independent w.r.t $P$.
(32) For all $A, B, C, P$ holds $A, B$ and $C$ are independent w.r.t $P$ if and only if $P((A \cap B) \cap C)=(P(A) \cdot P(B)) \cdot P(C)$ and $A$ and $B$ are independent w.r.t $P$ and $B$ and $C$ are independent w.r.t $P$ and $A$ and $C$ are independent w.r.t $P$.
(33) For all $A, B, C, P$ such that $A, B$ and $C$ are independent w.r.t $P$ holds $B, A$ and $C$ are independent w.r.t $P$.
(34) For all $A, B, C, P$ such that $A, B$ and $C$ are independent w.r.t $P$ holds $A, C$ and $B$ are independent w.r.t $P$.
(35) $\quad A$ and $\emptyset_{\text {Sigma }}$ are independent w.r.t $P$.
(36) $\quad A$ and $\Omega_{\text {Sigma }}$ are independent w.r.t $P$.
(37) For all $A, B, P$ such that $A$ and $B$ are independent w.r.t $P$ holds $A$ and $\Omega_{\text {Sigma }} \backslash B$ are independent w.r.t $P$.
(38) For all $A, B, P$ such that $A$ and $B$ are independent w.r.t $P$ holds $\Omega_{\text {Sigma }} \backslash A$ and $\Omega_{\text {Sigma }} \backslash B$ are independent w.r.t $P$.
(39) For all $A, B, C, P$ such that $A$ and $B$ are independent w.r.t $P$ and $A$ and $C$ are independent w.r.t $P$ and $B$ misses $C$ holds $A$ and $B \cup C$ are independent w.r.t $P$.
(40) For all $P, A, B$ such that $A$ and $B$ are independent w.r.t $P$ and $P(A)<$ 1 and $P(B)<1$ holds $P(A \cup B)<1$.
Let us consider Omega, Sigma, $P, B$. Let us assume that $0<P(B)$. The functor $\mathrm{P}(P / B)$ yielding a probability on Sigma is defined by:
for every $A$ holds $(\mathrm{P}(P / B))(A)=\frac{P(A \cap B)}{P(B)}$.
Next we state a number of propositions:
(41) For all $P, B$ such that $0<P(B)$ for every $A$ holds $\mathrm{P}(P / B)(A)=$ $\frac{P(A \cap B)}{P(B)}$.
(42) For all $P, B, A$ such that $0<P(B)$ holds $P(A \cap B)=\mathrm{P}(P / B)(A) \cdot P(B)$.
(43) For all $P, A, B, C$ such that $0<P(A \cap B)$ holds $P((A \cap B) \cap C)=$ $(P(A) \cdot \mathrm{P}(P / A)(B)) \cdot \mathrm{P}(P /(A \cap B))(C)$.
(44) For all $P, A, B, C$ such that $C=B^{\mathrm{c}}$ and $0<P(B)$ and $0<P(C)$ holds $P(A)=\mathrm{P}(P / B)(A) \cdot P(B)+\mathrm{P}(P / C)(A) \cdot P(C)$.
(45) Given $P, A, A_{1}, A_{2}, A_{3}$. Suppose $A_{1}$ misses $A_{2}$ and $A_{3}=\left(A_{1} \cup A_{2}\right)^{\mathrm{c}}$ and $0<P\left(A_{1}\right)$ and $0<P\left(A_{2}\right)$ and $0<P\left(A_{3}\right)$. Then $P(A)=\left(\mathrm{P}\left(P / A_{1}\right)(A)\right.$. $\left.P\left(A_{1}\right)+\mathrm{P}\left(P / A_{2}\right)(A) \cdot P\left(A_{2}\right)\right)+\mathrm{P}\left(P / A_{3}\right)(A) \cdot P\left(A_{3}\right)$.
(46) For all $P, A, B$ such that $0<P(B)$ holds $\mathrm{P}(P / B)(A)=P(A)$ if and only if $A$ and $B$ are independent w.r.t $P$.

For all $P, A, B$ such that $0<P(B)$ and $P(B)<1$ and $\mathrm{P}(P / B)(A)=$ $\mathrm{P}\left(P /\left(\Omega_{\text {Sigma }} \backslash B\right)\right)(A)$ holds $A$ and $B$ are independent w.r.t $P$.
(48) For all $P, A, B$ such that $0<P(B)$ holds $\frac{(P(A)+P(B))-1}{P(B)} \leq \mathrm{P}(P / B)(A)$.

For all $A, B, P$ such that $0<P(A)$ and $0<P(B)$ holds $\mathrm{P}(P / B)(A)=$ $\frac{P(P / A)(B) \cdot P(A)}{P(B)}$.
(50) Given $B, A_{1}, A_{2}, P$. Suppose $0<P(B)$ and $A_{2}=A_{1}{ }^{\mathrm{c}}$ and $0<P\left(A_{1}\right)$ and $0<P\left(A_{2}\right)$. Then
(i) $\mathrm{P}(P / B)\left(A_{1}\right)=\frac{\mathrm{P}\left(P / A_{1}\right)(B) \cdot P\left(A_{1}\right)}{\mathrm{P}\left(P / A_{1}\right)(B) \cdot P\left(A_{1}\right)+\mathrm{P}\left(P / A_{2}\right)(B) \cdot P\left(A_{2}\right)}$,
(ii) $\quad \mathrm{P}(P / B)\left(A_{2}\right)=\frac{\mathrm{P}\left(P / A_{2}\right)(B) \cdot P\left(A_{2}\right)}{\mathrm{P}\left(P / A_{1}\right)(B) \cdot P\left(A_{1}\right)+\mathrm{P}\left(P / A_{2}\right)(B) \cdot P\left(A_{2}\right)}$.
(51) Given $B, A_{1}, A_{2}, A_{3}, P$. Suppose $0<P(B)$ and $0<P\left(A_{1}\right)$ and $0<P\left(A_{2}\right)$ and $0<P\left(A_{3}\right)$ and $A_{1}$ misses $A_{2}$ and $A_{3}=\left(A_{1} \cup A_{2}\right)^{c}$. Then
(i) $\quad \mathrm{P}(P / B)\left(A_{1}\right)=\frac{\mathrm{P}\left(P / A_{1}\right)(B) \cdot P\left(A_{1}\right)}{\left(\mathrm{P}\left(P / A_{1}\right)(B) \cdot P\left(A_{1}\right)+\mathrm{P}\left(P / A_{2}\right)(B) \cdot P\left(A_{2}\right)\right)+\mathrm{P}\left(P / A_{3}\right)(B) \cdot P\left(A_{3}\right)}$,
(ii) $\quad \mathrm{P}(P / B)\left(A_{2}\right)=\frac{\mathrm{P}\left(P / A_{2}\right)(B) \cdot P\left(A_{2}\right)}{\left(\mathrm{P}\left(P / A_{1}\right)(B) \cdot P\left(A_{1}\right)+\mathrm{P}\left(P / A_{2}\right)(B) \cdot P\left(A_{2}\right)\right)+\mathrm{P}\left(P / A_{3}\right)(B) \cdot P\left(A_{3}\right)}$,
(iii) $\quad \mathrm{P}(P / B)\left(A_{3}\right)=\frac{\mathrm{P}\left(P / A_{3}\right)(B) \cdot P\left(A_{3}\right)}{\left(\mathrm{P}\left(P / A_{1}\right)(B) \cdot P\left(A_{1}\right)+\mathrm{P}\left(P / A_{2}\right)(B) \cdot P\left(A_{2}\right)\right)+\mathrm{P}\left(P / A_{3}\right)(B) \cdot P\left(A_{3}\right)}$.
(52) For all $A, B, P$ such that $0<P(B)$ holds $1-\frac{P\left(\Omega_{\text {Sigma }} \backslash A\right)}{P(B)} \leq \mathrm{P}(P / B)(A)$.

## References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, $1(\mathbf{1}): 153-164,1990$.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[7] Andrzej Nẹdzusiak. $\sigma$-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):6771, 1990.

Received June 1, 1990

# Translations in Affine Planes ${ }^{1}$ 

Henryk Oryszczyszyn<br>Warsaw University<br>Białystok

Krzysztof Prażmowski<br>Warsaw University<br>Białystok


#### Abstract

Summary. Connections between Minor Desargues Axiom and the transitivity of translation groups are investigated. A formal proof of the theorem which establishes the equivalence of these two properties of affine planes is given. We also prove that, under additional requirement, the plane in question satisfies Fano Axiom; its translation group is uniquely two-divisible.


MML Identifier: TRANSLAC.

The terminology and notation used in this paper are introduced in the following papers: [1], [3], [4], [2], and [5]. We adopt the following rules: $A S$ is an affine space and $a, b, c, d, p, q, r, x$ are elements of the points of $A S$. Let us consider $A S$. We say that $A S$ satisfies Fano Axiom if and only if:
for all $a, b, c, d$ such that $a, b \| c, d$ and $a, c \| b, d$ and $a, d \| b, c$ holds $\mathbf{L}(a, b, c)$.

The following propositions are true:
(1) $A S$ satisfies Fano Axiom if and only if for all $a, b, c, d$ such that $a, b \| c, d$ and $a, c \| b, d$ and $a, d \| b, c$ holds $\mathbf{L}(a, b, c)$.
(2) If there exist $a, b, c$ such that $\mathbf{L}(a, b, c)$ and $a \neq b$ and $a \neq c$ and $b \neq c$, then for all $p, q$ such that $p \neq q$ there exists $r$ such that $\mathbf{L}(p, q, r)$ and $p \neq r$ and $q \neq r$.
(3) If there exist $a, b$ such that $a \neq b$ and for every $x$ such that $\mathbf{L}(a, b, x)$ holds $x=a$ or $x=b$, then for all $p, q, r$ such that $p \neq q$ and $\mathbf{L}(p, q, r)$ holds $r=p$ or $r=q$.
We follow a convention: $A F P$ is an affine plane, $a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, d, p, q, r$, $x, y$ are elements of the points of $A F P$, and $f, g, f_{1}, f_{2}$ are permutations of the points of $A F P$. We now state a number of propositions:

[^22](4) If $A F P$ satisfies Fano Axiom and $a, b \| c, d$ and $a, c \| b, d$ and not $\mathbf{L}(a, b, c)$,
then there exists $p$ such that $\mathbf{L}(b, c, p)$ and $\mathbf{L}(a, d, p)$.
(5) If $f$ is a translation and not $\mathbf{L}(a, f(a), x)$ and $a, f(a) \| x, y$ and $a, x \|$ $f(a), y$, then $y=f(x)$.
(6) $A F P$ satisfies des if and only if for all $a, a^{\prime}, b, c, b^{\prime}, c^{\prime}$ such that not $\mathbf{L}\left(a, a^{\prime}, b\right)$ and not $\mathbf{L}\left(a, a^{\prime}, c\right)$ and $a, a^{\prime} \| b, b^{\prime}$ and $a, a^{\prime} \| c, c^{\prime}$ and $a, b \|$ $a^{\prime}, b^{\prime}$ and $a, c \| a^{\prime}, c^{\prime}$ holds $b, c \| b^{\prime}, c^{\prime}$.
(7) There exists $f$ such that $f$ is a translation and $f(a)=a$.
(8) If for all $p, q, r$ such that $p \neq q$ and $\mathbf{L}(p, q, r)$ holds $r=p$ or $r=q$ and $a, b \| p, q$ and $a, p \| b, q$ and not $\mathbf{L}(a, b, p)$, then $a, q \| b, p$.
(9) If $A F P$ satisfies des, then there exists $f$ such that $f$ is a translation and $f(a)=b$.
(10) If for every $a, b$ there exists $f$ such that $f$ is a translation and $f(a)=b$, then $A F P$ satisfies des.
(11) If $f$ is a translation and $g$ is a translation and not $\mathbf{L}(a, f(a), g(a))$, then $f \cdot g=g \cdot f$.
(12) If $A F P$ satisfies des and $f$ is a translation and $g$ is a translation, then $f \cdot g=g \cdot f$.
(13) If $f$ is a translation and $g$ is a translation and $p, f(p) \| p, g(p)$, then $p, f(p) \| p,(f \cdot g)(p)$.
(14) If $A F P$ satisfies Fano Axiom and $A F P$ satisfies des and $f$ is a translation, then there exists $g$ such that $g$ is a translation and $g \cdot g=f$.
(15) If $A F P$ satisfies Fano Axiom and $f$ is a translation and $f \cdot f=\mathrm{id}_{\text {the points of } A F P \text {, }}$ then $f=\mathrm{id}_{\text {the }}$ points of $A F P$.
(16) If $A F P$ satisfies des and $A F P$ satisfies Fano Axiom and $g$ is a translation and $f_{1}$ is a translation and $f_{2}$ is a translation and $g=f_{1} \cdot f_{1}$ and $g=f_{2} \cdot f_{2}$, then $f_{1}=f_{2}$.

## References

[1] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Classical configurations in affine planes. Formalized Mathematics, 1(4):625-633, 1990.
[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity - part I. Formalized Mathematics, 1(3):611-615, 1990.
[4] Henryk Oryszczyszyn and Krzysztof Prażmowski. Parallelity and lines in affine spaces. Formalized Mathematics, 1(3):617-621, 1990.
[5] Henryk Oryszczyszyn and Krzysztof Prażmowski. Transformations in affine spaces. Formalized Mathematics, 1(4):715-723, 1990.

Received June 12, 1990

# Introduction to Probability 

Jan Popiołek<br>Warsaw University<br>Białystok


#### Abstract

Summary. Definitions of Elementary Event and Event in any sample space E are given. Next, the probability of an Event when E is finite is introduced and some properties of this function are investigated. Last part of the paper is devoted to the conditional probability and essential properties of this function (Bayes Theorem).


MML Identifier: RPR_1.

The articles [7], [8], [3], [6], [5], [2], [4], and [1] provide the terminology and notation for this paper. For simplicity we follow the rules: $E$ will denote a non-empty set, $a$ will denote an element of $E, A, B, B_{1}, B_{2}, B_{3}, C$ will denote subsets of $E, X, Y$ will denote sets, and $p$ will denote a finite sequence. Let us consider $E$. A subset of $E$ is called an elementary event of $E$ if:
it $\subseteq E$ and it $\neq \emptyset$ but $Y \subseteq$ it if and only if $Y=\emptyset$ or $Y=$ it.
In the sequel $e, e_{1}, e_{2}$ will denote elementary events of $E$. One can prove the following propositions:
(1) If $e$ is an elementary event of $E$, then $e \subseteq E$.
(2) If $e$ is an elementary event of $E$, then $e \neq \emptyset$.
(3) For every $e$ such that $e$ is an elementary event of $E$ holds $Y \subseteq e$ if and only if $Y=\emptyset$ or $Y=e$.
(4) $e$ is an elementary event of $E$ if and only if $e \subseteq E$ and $e \neq \emptyset$ but $Y \subseteq e$ if and only if $Y=\emptyset$ or $Y=e$.
(5) If $e$ is an elementary event of $E$ and $e=A \cup B$ and $A \neq B$, then $A=\emptyset$ and $B=e$ or $A=e$ and $B=\emptyset$.
(6) If $e$ is an elementary event of $E$ and $e=A \cup B$, then $A=e$ and $B=e$ or $A=e$ and $B=\emptyset$ or $A=\emptyset$ and $B=e$.
(7) If $a \in E$, then $\{a\}$ is an elementary event of $E$.
(8) If $\{a\}$ is an elementary event of $E$, then $a \in E$.
(9) $\quad a \in E$ if and only if $\{a\}$ is an elementary event of $E$.
(10) If $e_{1}$ is an elementary event of $E$ and $e_{2}$ is an elementary event of $E$ and $e_{1} \subseteq e_{2}$, then $e_{1}=e_{2}$.
(11) If $e$ is an elementary event of $E$, then there exists $a$ such that $a \in E$ and $e=\{a\}$.
(12) For every $E$ there exists $e$ such that $e$ is an elementary event of $E$.
(13) For every $E$ such that $e$ is an elementary event of $E$ holds $e$ is finite.
(14) If $e$ is an elementary event of $E$, then there exists $p$ such that $p$ is a finite sequence of elements of $E$ and $\operatorname{rng} p=e$ and $\operatorname{len} p=1$.
Let us consider $E$. An event of $E$ is a subset of $E$.
The following propositions are true:
(15) For every subset $X$ of $E$ holds $X$ is an event of $E$.
(16) $\emptyset$ is an event of $E$.
(17) $E$ is an event of $E$.
(18) If $A$ is an event of $E$ and $B$ is an event of $E$, then $A \cap B$ is an event of $E$.
(19) If $A$ is an event of $E$ and $B$ is an event of $E$, then $A \cup B$ is an event of E.
(20) If $A \subseteq B$ and $B$ is an event of $E$, then $A$ is an event of $E$.
(21) If $A$ is an event of $E$, then $A^{\mathrm{c}}$ is an event of $E$.
(22) If $e$ is an elementary event of $E$ and $A$ is an event of $E$, then $e \cap A=\emptyset$ or $e \cap A=e$.
(23) If $A$ is an event of $E$ and $B$ is an event of $E$, then $A \backslash B$ is an event of E.
(24) If $e$ is an elementary event of $E$, then $e$ is an event of $E$.
(25) If $A$ is an event of $E$ and $A \neq \emptyset$, then there exists $e$ such that $e$ is an elementary event of $E$ and $e \subseteq A$.
(26) If $e$ is an elementary event of $E$ and $A$ is an event of $E$ and $e \subseteq A \cup A^{\mathrm{c}}$, then $e \subseteq A$ or $e \subseteq A^{\mathrm{c}}$.
(27) If $e_{1}$ is an elementary event of $E$ and $e_{2}$ is an elementary event of $E$, then $e_{1}=e_{2}$ or $e_{1} \cap e_{2}=\emptyset$.
Let us consider $X, Y$. We say that $X$ exclude $Y$ if and only if:
$X \cap Y=\emptyset$.
Next we state several propositions:
(28) $\quad X$ exclude $Y$ if and only if $X \cap Y=\emptyset$.
(29) If $X$ exclude $Y$, then $Y$ exclude $X$.
(30) $A$ exclude $A^{\mathrm{c}}$.
(31) For every $A$ holds $A$ exclude $\emptyset$.
(32) $A$ exclude $B$ if and only if $A \backslash B=A$.
(33) $A \cap B$ exclude $A \backslash B$.
(34) $A \cap B$ exclude $A \cap B^{\mathrm{c}}$.
(35) If $A$ exclude $B$, then $A$ exclude $B \cap C$.
(36) If $A$ exclude $B$, then $A \cap C$ exclude $B \cap C$.

Let us consider $E$. Let us assume that $E$ is finite. Let us consider $A$. The functor $\mathrm{P}(A)$ yields a real number and is defined as follows:
$\mathrm{P}(A)=\frac{\operatorname{card} A}{\operatorname{card} E}$.
Let us consider $E$. Then $\Omega_{E}$ is an event of $E$. Then $\emptyset_{E}$ is an event of $E$.
The following propositions are true:
(37) If $E$ is finite and $A$ is an event of $E$, then $\mathrm{P}(A)=\frac{\operatorname{card} A}{\operatorname{card} E}$.
(38) If $E$ is finite and $e$ is an elementary event of $E$, then $\mathrm{P}(e)=\frac{1}{\operatorname{card} E}$.
(39) If $E$ is finite, then $\mathrm{P}\left(\Omega_{E}\right)=1$.
(40) If $E$ is finite, then $\mathrm{P}\left(\emptyset_{E}\right)=0$.
(41) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $A$ exclude $B$, then $\mathrm{P}(A \cap B)=0$.
(42) If $E$ is finite and $A$ is an event of $E$, then $\mathrm{P}(A) \leq 1$.
(43) If $E$ is finite and $A$ is an event of $E$, then $0 \leq \mathrm{P}(A)$.
(44) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $A \subseteq B$, then $\mathrm{P}(A) \leq \mathrm{P}(B)$.
$(46)^{1}$ If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$, then $\mathrm{P}(A \cup B)=(\mathrm{P}(A)+\mathrm{P}(B))-\mathrm{P}(A \cap B)$.
(47) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $A$ exclude $B$, then $\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)$.
(48) If $E$ is finite and $A$ is an event of $E$, then $\mathrm{P}(A)=1-\mathrm{P}\left(A^{\mathrm{c}}\right)$ and $\mathrm{P}\left(A^{\mathrm{c}}\right)=1-\mathrm{P}(A)$.
(49) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$, then $\mathrm{P}(A \backslash B)=\mathrm{P}(A)-\mathrm{P}(A \cap B)$.
(50) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $B \subseteq A$, then $\mathrm{P}(A \backslash B)=\mathrm{P}(A)-\mathrm{P}(B)$.
(51) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$, then $\mathrm{P}(A \cup B) \leq \mathrm{P}(A)+\mathrm{P}(B)$.
(52) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$, then $\mathrm{P}(A \backslash B)=\mathrm{P}\left(A \cap B^{\mathrm{c}}\right)$.
(53) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$, then $\mathrm{P}(A)=\mathrm{P}(A \cap B)+\mathrm{P}\left(A \cap B^{\mathrm{c}}\right)$.
(54) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$, then $\mathrm{P}(A)=\mathrm{P}(A \cup B)-\mathrm{P}(B \backslash A)$.
(55) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$, then $\mathrm{P}(A)+\mathrm{P}\left(A^{\mathrm{c}} \cap B\right)=\mathrm{P}(B)+\mathrm{P}\left(B^{\mathrm{c}} \cap A\right)$.
(56) Suppose $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $C$ is an event of $E$. Then $\mathrm{P}((A \cup B) \cup C)=(((\mathrm{P}(A)+\mathrm{P}(B))+\mathrm{P}(C))-$ $((\mathrm{P}(A \cap B)+\mathrm{P}(A \cap C))+\mathrm{P}(B \cap C)))+\mathrm{P}((A \cap B) \cap C)$.

[^23](57) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $C$ is an event of $E$ and $A$ exclude $B$ and $A$ exclude $C$ and $B$ exclude $C$, then $\mathrm{P}((A \cup B) \cup C)=(\mathrm{P}(A)+\mathrm{P}(B))+\mathrm{P}(C)$.
(58) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$, then $\mathrm{P}(A)-\mathrm{P}(B) \leq \mathrm{P}(A \backslash B)$.
Let us consider $E$. Let us assume that $E$ is finite. Let us consider $B$. Let us assume that $0<\mathrm{P}(B)$. Let us consider $A$. The functor $\mathrm{P}(A / B)$ yielding a real number is defined by:
$\mathrm{P}(A / B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$.
One can prove the following propositions:
(59) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$, then $\mathrm{P}(A / B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$.
(60) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$, then $\mathrm{P}(A \cap B)=\mathrm{P}(A / B) \cdot \mathrm{P}(B)$.
(61) If $E$ is finite and $A$ is an event of $E$, then $\mathrm{P}\left(A / \Omega_{E}\right)=\mathrm{P}(A)$.
(62) If $E$ is finite, then $\mathrm{P}\left(\Omega_{E} / \Omega_{E}\right)=1$.
(63) If $E$ is finite, then $\mathrm{P}\left(\emptyset_{E} / \Omega_{E}\right)=0$.
(64) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$, then $\mathrm{P}(A / B) \leq 1$.
(65) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$, then $0 \leq \mathrm{P}(A / B)$.
(66) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$, then $\mathrm{P}(A / B)=1-\frac{\mathrm{P}(B \backslash A)}{\mathrm{P}(B)}$.
(67) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$ and $A \subseteq B$, then $\mathrm{P}(A / B)=\frac{\mathrm{P}(A)}{\mathrm{P}(B)}$.
(68) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$ and $A$ exclude $B$, then $\mathrm{P}(A / B)=0$.
(69) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(A)$ and $0<\mathrm{P}(B)$, then $\mathrm{P}(A) \cdot \mathrm{P}(B / A)=\mathrm{P}(B) \cdot \mathrm{P}(A / B)$.
(70) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$, then $\mathrm{P}(A / B)=1-\mathrm{P}\left(A^{\mathrm{c}} / B\right)$ and $\mathrm{P}\left(A^{\mathrm{c}} / B\right)=1-\mathrm{P}(A / B)$.
(71) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$ and $B \subseteq A$, then $\mathrm{P}(A / B)=1$.
(72) If $E$ is finite and $B$ is an event of $E$ and $0<\mathrm{P}(B)$, then $\mathrm{P}\left(\Omega_{E} / B\right)=1$.

If $E$ is finite and $A$ is an event of $E$ and $0<\mathrm{P}(A)$, then $\mathrm{P}\left(A^{\mathrm{c}} / A\right)=0$. If $E$ is finite and $A$ is an event of $E$ and $\mathrm{P}(A)<1$, then $\mathrm{P}\left(A / A^{\mathrm{c}}\right)=0$. If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$ and $A$ exclude $B$, then $\mathrm{P}\left(A^{\mathrm{c}} / B\right)=1$.
(76) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(A)$ and $\mathrm{P}(B)<1$ and $A$ exclude $B$, then $\mathrm{P}\left(A / B^{\mathrm{c}}\right)=\frac{\mathrm{P}(A)}{1-\mathrm{P}(B)}$.
(77) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(A)$ and $\mathrm{P}(B)<1$ and $A$ exclude $B$, then $\mathrm{P}\left(A^{\mathrm{c}} / B^{\mathrm{c}}\right)=1-\frac{\mathrm{P}(A)}{1-\mathrm{P}(B)}$.
(78) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $C$ is an event of $E$ and $0<\mathrm{P}(B \cap C)$ and $0<\mathrm{P}(C)$, then $\mathrm{P}((A \cap B) \cap C)=$ $(\mathrm{P}(A /(B \cap C)) \cdot \mathrm{P}(B / C)) \cdot \mathrm{P}(C)$.
(79) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$ and $\mathrm{P}(B)<1$, then $\mathrm{P}(A)=\mathrm{P}(A / B) \cdot \mathrm{P}(B)+\mathrm{P}\left(A / B^{\mathrm{c}}\right) \cdot \mathrm{P}\left(B^{\mathrm{c}}\right)$.
(80) Suppose $E$ is finite and $A$ is an event of $E$ and $B_{1}$ is an event of $E$ and $B_{2}$ is an event of $E$ and $0<\mathrm{P}\left(B_{1}\right)$ and $0<\mathrm{P}\left(B_{2}\right)$ and $B_{1} \cup B_{2}=E$ and $B_{1} \cap B_{2}=\emptyset$. Then $\mathrm{P}(A)=\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A / B_{2}\right) \cdot \mathrm{P}\left(B_{2}\right)$.
(81) Suppose that
(i) $E$ is finite,
(ii) $A$ is an event of $E$,
(iii) $\quad B_{1}$ is an event of $E$,
(iv) $\quad B_{2}$ is an event of $E$,
(v) $B_{3}$ is an event of $E$,
(vi) $0<\mathrm{P}\left(B_{1}\right)$,
(vii) $0<\mathrm{P}\left(B_{2}\right)$,
(viii) $0<\mathrm{P}\left(B_{3}\right)$,
(ix) $\left(B_{1} \cup B_{2}\right) \cup B_{3}=E$,
(x) $\quad B_{1} \cap B_{2}=\emptyset$,
(xi) $\quad B_{1} \cap B_{3}=\emptyset$,
(xii) $\quad B_{2} \cap B_{3}=\emptyset$.

Then $\mathrm{P}(A)=\left(\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A / B_{2}\right) \cdot \mathrm{P}\left(B_{2}\right)\right)+\mathrm{P}\left(A / B_{3}\right) \cdot \mathrm{P}\left(B_{3}\right)$.
(82) Suppose $E$ is finite and $A$ is an event of $E$ and $B_{1}$ is an event of $E$ and $B_{2}$ is an event of $E$ and $0<\mathrm{P}(A)$ and $0<\mathrm{P}\left(B_{1}\right)$ and $0<\mathrm{P}\left(B_{2}\right)$ and $B_{1} \cup$ $B_{2}=E$ and $B_{1} \cap B_{2}=\emptyset$. Then $\mathrm{P}\left(B_{1} / A\right)=\frac{\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)}{\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A / B_{2}\right) \cdot \mathrm{P}\left(B_{2}\right)}$.
(83) Suppose that
(i) $E$ is finite,
(ii) $A$ is an event of $E$,
(iii) $\quad B_{1}$ is an event of $E$,
(iv) $\quad B_{2}$ is an event of $E$,
(v) $\quad B_{3}$ is an event of $E$,
(vi) $0<\mathrm{P}(A)$,
(vii) $0<\mathrm{P}\left(B_{1}\right)$,
(viii) $0<\mathrm{P}\left(B_{2}\right)$,
(ix) $0<\mathrm{P}\left(B_{3}\right)$,
(x) $\left(B_{1} \cup B_{2}\right) \cup B_{3}=E$,
(xi) $\quad B_{1} \cap B_{2}=\emptyset$,
(xii) $\quad B_{1} \cap B_{3}=\emptyset$,
(xiii) $\quad B_{2} \cap B_{3}=\emptyset$.

Then $\mathrm{P}\left(B_{1} / A\right)=\frac{\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)}{\left(\mathrm{P}\left(A / B_{1}\right) \cdot \mathrm{P}\left(B_{1}\right)+\mathrm{P}\left(A / B_{2}\right) \cdot \mathrm{P}\left(B_{2}\right)\right)+\mathrm{P}\left(A / B_{3}\right) \cdot \mathrm{P}\left(B_{3}\right)}$.

Let us consider $E, A, B$. We say that $A$ and $B$ are independent if and only if:
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$.
The following propositions are true:
(84) $\quad A$ and $B$ are independent if and only if $\mathrm{P}(A \cap B)=\mathrm{P}(A) \cdot \mathrm{P}(B)$.
(85) If $A$ and $B$ are independent, then $B$ and $A$ are independent.
(86) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $0<\mathrm{P}(B)$ and $A$ and $B$ are independent, then $\mathrm{P}(A / B)=\mathrm{P}(A)$.
(87) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $\mathrm{P}(B)=0$, then $A$ and $B$ are independent.
(88) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $A$ and $B$ are independent, then $A^{\mathrm{c}}$ and $B$ are independent.
(89) If $E$ is finite and $A$ is an event of $E$ and $B$ is an event of $E$ and $A$ exclude $B$ and $A$ and $B$ are independent, then $\mathrm{P}(A)=0$ or $\mathrm{P}(B)=0$.

## References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377382, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):6771, 1990.

# A Construction of Analytical Projective Space 

Wojciech Leończuk ${ }^{1}$<br>Warsaw University<br>Białystok

Krzysztof Prażmowski ${ }^{2}$<br>Warsaw University<br>Białystok

Summary. The collinearity structure denoted by ProjectiveSpa$\mathrm{ce}(\mathrm{V})$ is correlated with a given vector space V (over the field of Reals). It is a formalization of the standard construction of a projective space, where points are interpreted as equivalence classes of the relation of proportionality considered in the set of all non-zero vectors. Then the relation of collinearity corresponds to the relation of linear dependence of vectors. Several facts concerning vectors are proved, which correspond in this language to some classical axioms of projective geometry.

MML Identifier: ANPROJ_1.

The notation and terminology used here are introduced in the following articles: [7], [8], [6], [2], [3], [4], [5], [1], and [9]. We adopt the following rules: $V$ is a real linear space, $p, q, r, u, v, w, y, u_{1}, v_{1}, w_{1}$ are vectors of $V$, and $a, b, c, a_{1}, b_{1}$, $c_{1}, a_{2}, b_{2}, c_{2}$ are real numbers. Let us consider $V, p$. We say that $p$ is a proper vector if and only if:
$p \neq 0_{V}$.
The following proposition is true
(1) $p$ is a proper vector if and only if $p \neq 0_{V}$.

Let us consider $V, p, q$. We say that $p$ and $q$ are proportional if and only if: there exist $a, b$ such that $a \cdot p=b \cdot q$ and $a \neq 0$ and $b \neq 0$.
One can prove the following propositions:
(2) $\quad p$ and $q$ are proportional if and only if there exist $a, b$ such that $a \cdot p=b \cdot q$ and $a \neq 0$ and $b \neq 0$.
(3) $p$ and $p$ are proportional.
(4) If $p$ and $q$ are proportional, then $q$ and $p$ are proportional.

[^24](5) $\quad p$ and $q$ are proportional if and only if there exists $a$ such that $a \neq 0$ and $p=a \cdot q$.
(6) If $p$ and $u$ are proportional and $u$ and $q$ are proportional, then $p$ and $q$ are proportional.
(7) $\quad p$ and $0_{V}$ are proportional if and only if $p=0_{V}$.

Let us consider $V, u, v, w$. We say that $u, v$ and $w$ are lineary dependent if and only if:
there exist $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ but $a \neq 0$ or $b \neq 0$ or $c \neq 0$.

We now state a number of propositions:
(8) $u, v$ and $w$ are lineary dependent if and only if there exist $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ but $a \neq 0$ or $b \neq 0$ or $c \neq 0$.
(9) If $u$ and $u_{1}$ are proportional and $v$ and $v_{1}$ are proportional and $w$ and $w_{1}$ are proportional and $u, v$ and $w$ are lineary dependent, then $u_{1}, v_{1}$ and $w_{1}$ are lineary dependent.
(10) If $u, v$ and $w$ are lineary dependent, then $u, w$ and $v$ are lineary dependent and $v, u$ and $w$ are lineary dependent and $w, v$ and $u$ are lineary dependent and $w, u$ and $v$ are lineary dependent and $v, w$ and $u$ are lineary dependent.

If $v$ is a proper vector and $w$ is a proper vector and $v$ and $w$ are not proportional, then $v, w$ and $u$ are lineary dependent if and only if there exist $a, b$ such that $u=a \cdot v+b \cdot w$.
(12) If $p$ and $q$ are not proportional and $a_{1} \cdot p+b_{1} \cdot q=a_{2} \cdot p+b_{2} \cdot q$ and $p$ is a proper vector and $q$ is a proper vector, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$.
(13) If $u, v$ and $w$ are not lineary dependent and $\left(a_{1} \cdot u+b_{1} \cdot v\right)+c_{1} \cdot w=$ $\left(a_{2} \cdot u+b_{2} \cdot v\right)+c_{2} \cdot w$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$ and $c_{1}=c_{2}$.
Suppose $p$ and $q$ are not proportional and $u=a_{1} \cdot p+b_{1} \cdot q$ and $v=$ $a_{2} \cdot p+b_{2} \cdot q$ and $a_{1} \cdot b_{2}-a_{2} \cdot b_{1}=0$ and $p$ is a proper vector and $q$ is a proper vector. Then $u$ and $v$ are proportional or $u=0_{V}$ or $v=0_{V}$.
(15) If $u=0_{V}$ or $v=0_{V}$ or $w=0_{V}$, then $u, v$ and $w$ are lineary dependent.
(16) If $u$ and $v$ are proportional or $w$ and $u$ are proportional or $v$ and $w$ are proportional, then $w, u$ and $v$ are lineary dependent.
(17) If $u, v$ and $w$ are not lineary dependent, then $u$ is a proper vector and $v$ is a proper vector and $w$ is a proper vector and $u$ and $v$ are not proportional and $v$ and $w$ are not proportional and $w$ and $u$ are not proportional.

If $p+q=0_{V}$, then $p$ and $q$ are proportional.
If $p$ and $q$ are not proportional and $p, q$ and $u$ are lineary dependent and $p, q$ and $v$ are lineary dependent and $p, q$ and $w$ are lineary dependent and $p$ is a proper vector and $q$ is a proper vector, then $u, v$ and $w$ are lineary dependent.
(20) If $u, v$ and $w$ are not lineary dependent and $u, v$ and $p$ are lineary dependent and $v, w$ and $q$ are lineary dependent, then there exists $y$ such
that $u, w$ and $y$ are lineary dependent and $p, q$ and $y$ are lineary dependent and $y$ is a proper vector.
(21) If $p$ and $q$ are not proportional and $p$ is a proper vector and $q$ is a proper vector, then for every $u, v$ there exists $y$ such that $y$ is a proper vector and $u, v$ and $y$ are lineary dependent and $u$ and $y$ are not proportional and $v$ and $y$ are not proportional.
(22) If $p, q$ and $r$ are not lineary dependent, then for all $u, v$ such that $u$ is a proper vector and $v$ is a proper vector and $u$ and $v$ are not proportional there exists $y$ such that $y$ is a proper vector and $u, v$ and $y$ are not lineary dependent.
Suppose $u, v$ and $q$ are lineary dependent and $w, y$ and $q$ are lineary dependent and $u, w$ and $p$ are lineary dependent and $v, y$ and $p$ are lineary dependent and $u, y$ and $r$ are lineary dependent and $v, w$ and $r$ are lineary dependent and $p, q$ and $r$ are lineary dependent and $p$ is a proper vector and $q$ is a proper vector and $r$ is a proper vector. Then $u, v$ and $y$ are lineary dependent or $u, v$ and $w$ are lineary dependent or $u, w$ and $y$ are lineary dependent or $v, w$ and $y$ are lineary dependent.
In the sequel $x, y, z$ are arbitrary and $X$ denotes a set. Let us consider $V$. The proper vectors ofV yields a set and is defined as follows:
for an arbitrary $u$ holds $u \in$ the proper vectors ofV if and only if $u \neq 0_{V}$ and $u$ is a vector of $V$.

Next we state three propositions:
(24) For every $X$ holds $X=$ the proper vectors ofV if and only if for an arbitrary $u$ holds $u \in X$ if and only if $u \neq 0_{V}$ and $u$ is a vector of $V$.
(25) For an arbitrary $u$ such that $u \in$ the proper vectors ofV holds $u$ is a vector of $V$.
(26) For every $u$ holds $u \in$ the proper vectors ofV if and only if $u$ is a proper vector.
Let us consider $V$. The proportionality in $V$ yields an equivalence relation of the proper vectors of $V$ and is defined as follows:
for all $x, y$ holds $\langle x, y\rangle \in$ the proportionality in $V$ if and only if $x \in$ the proper vectors of V and $y \in$ the proper vectors of V and there exist vectors $u, v$ of $V$ such that $x=u$ and $y=v$ and $u$ and $v$ are proportional.

We now state three propositions:
(27) For every equivalence relation $R$ of the proper vectors ofV holds $R=$ the proportionality in $V$ if and only if for all $x, y$ holds $\langle x, y\rangle \in R$ if and only if $x \in$ the proper vectors of $V$ and $y \in$ the proper vectors of $V$ and there exist vectors $u, v$ of $V$ such that $x=u$ and $y=v$ and $u$ and $v$ are proportional.
(28) If $\langle x, y\rangle \in$ the proportionality in $V$, then $x$ is a vector of $V$ and $y$ is a vector of $V$.
(29) $\langle u, v\rangle \in$ the proportionality in $V$ if and only if $u$ is a proper vector and $v$ is a proper vector and $u$ and $v$ are proportional.

Let us consider $V, v$. Let us assume that $v$ is a proper vector. The direction of $v$ yields a subset of the proper vectors of V and is defined by:
the direction of $v=[v]_{\text {the proportionality in } V}$.
We now state the proposition
(30) If $v$ is a proper vector, then the direction of $v=[v]_{\text {the proportionality in } V}$.

Let us consider $V$. The projective points overV yields a set and is defined as follows:
there exists a family $Y$ of subsets of the proper vectors ofV such that $Y=$ Classes(the proportionality in $V$ ) and the projective points overV $=\mathrm{Y}$.

The following proposition is true
(31) For every $X$ holds $X=$ the projective points overV if and only if there exists a family $Y$ of subsets of the proper vectors ofV such that $Y=$ Classes(the proportionality in $V$ ) and $X=Y$.
A real linear space is said to be a non-trivial real linear space if:
there exists a vector $u$ of it such that $u \neq 0_{\text {it }}$.
The following two propositions are true:
(32) For every real linear space $V$ holds $V$ is a non-trivial real linear space if and only if there exists a vector $u$ of $V$ such that $u \neq 0_{V}$.
(33) For every real linear space $V$ holds $V$ is a non-trivial real linear space if and only if there exists $u$ such that $u \in$ the proper vectors ofV.
We follow the rules: $V$ will denote a non-trivial real linear space, $p, q, r, u$, $v, w$ will denote vectors of $V$, and $y$ will be arbitrary. Let us consider $V$. Then the proper vectors of V is a non-empty set.

Let us consider $V$. Then the projective points overV is a non-empty set.
Next we state two propositions:
(34) If $p$ is a proper vector, then the direction of $p$ is an element of the projective points overV.
(35) If $p$ is a proper vector and $q$ is a proper vector, then the direction of $p=$ the direction of $q$ if and only if $p$ and $q$ are proportional.
Let us consider $V$. The projective collinearity overV yielding a ternary relation on the projective points overV is defined by:
for arbitrary $x, y, z$ holds $\langle x, y, z\rangle \in$ the projective collinearity overV if and only if there exist $p, q, r$ such that $x=$ the direction of $p$ and $y=$ the direction of $q$ and $z=$ the direction of $r$ and $p$ is a proper vector and $q$ is a proper vector and $r$ is a proper vector and $p, q$ and $r$ are lineary dependent.

We now state the proposition
(36) Let $R$ be a ternary relation on the projective points overV. Then $R=$ the projective collinearity overV if and only if for arbitrary $x, y, z$ holds $\langle x, y, z\rangle \in R$ if and only if there exist $p, q, r$ such that $x=$ the direction of $p$ and $y=$ the direction of $q$ and $z=$ the direction of $r$ and $p$ is a proper vector and $q$ is a proper vector and $r$ is a proper vector and $p, q$ and $r$ are lineary dependent.

Let us consider $V$. The projective space over $V$ yields a collinearity structure and is defined by:
the projective space over $V=\langle$ the projective points overV, the projective collinearity overV $V$.

In the sequel $C S$ will be a collinearity structure. One can prove the following propositions:
(37) For every $C S$ holds $C S=$ the projective space over $V$ if and only if $C S=$ $\langle$ the projective points overV, the projective collinearity overV $\rangle$.
(38) The projective space over $V=$ 〈the projective points overV, the projective collinearity overV $\rangle$.
(39) For every $V$ holds the points of the projective space over $V=$ the projective points overV and the collinearity relation of the projective space over $V=$ the projective collinearity overV.
(40) If $\langle x, y, z\rangle \in$ the collinearity relation of the projective space over $V$, then there exist $p, q, r$ such that $x=$ the direction of $p$ and $y=$ the direction of $q$ and $z=$ the direction of $r$ and $p$ is a proper vector and $q$ is a proper vector and $r$ is a proper vector and $p, q$ and $r$ are lineary dependent.
(41) If $u$ is a proper vector and $v$ is a proper vector and $w$ is a proper vector, then $\langle$ the direction of $u$, the direction of $v$, the direction of $w\rangle \in$ the collinearity relation of the projective space over $V$ if and only if $u, v$ and $w$ are lineary dependent.
(42) $\quad x$ is an element of the points of the projective space over $V$ if and only if there exists $u$ such that $u$ is a proper vector and $x=$ the direction of $u$.
(43) For every real linear space $V$ and for every vector $v$ of $V$ such that $v$ is a proper vector for every subset $X$ of the proper vectors of $V$ holds $X=$ the direction of $v$ if and only if $X=[v]_{\text {the proportionality in } V}$.

## References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[4] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[5] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.
[6] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[9] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

Received June 15, 1990

# Projective Spaces - Part I 

Wojciech Leończuk ${ }^{1}$<br>Warsaw University<br>Białystok

Krzysztof Prażmowski ${ }^{2}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. In the class of all collinearity structures a subclass of (dimension free) projective spaces, defined by means of a suitable axiom system, is singled out. Whenever a real vector space V is at least 3dimensional, the structure ProjectiveSpace $(V)$ is a projective space in the above meaning. Some narrower classes of projective spaces are defined: Fano projective spaces, projective planes, and Fano projective planes. For any of the above classes an explicit axiom system is given, as well as an analytical example. There is also a construction a of 3-dimensional and a 4-dimensional real vector space; these are needed to show appropriate examples of projective spaces.


MML Identifier: ANPROJ_2.

The notation and terminology used here are introduced in the following papers: [1], [5], [7], [6], [3], [4], and [2]. For simplicity we adopt the following rules: $V$ will denote a real linear space, $p, q, r, u, v, w, y, u_{1}, v_{1}$ will denote vectors of $V, a, b, c, d, a_{1}, b_{1}$ will denote real numbers, and $z$ will be arbitrary. We now state three propositions:
(1) Suppose for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$. Then $u$ is a proper vector and $v$ is a proper vector and $w$ is a proper vector and $u, v$ and $w$ are not lineary dependent and $u$ and $v$ are not proportional.
(2) Given $u, v, u_{1}, v_{1}$. Suppose for all $a, b, a_{1}, b_{1}$ such that $((a \cdot u+b$. $\left.v)+a_{1} \cdot u_{1}\right)+b_{1} \cdot v_{1}=0_{V}$ holds $a=0$ and $b=0$ and $a_{1}=0$ and $b_{1}=0$. Then $u$ is a proper vector and $v$ is a proper vector and $u$ and $v$ are not proportional and $u_{1}$ is a proper vector and $v_{1}$ is a proper vector and $u_{1}$ and $v_{1}$ are not proportional and $u, v$ and $u_{1}$ are not lineary dependent and $u_{1}, v_{1}$ and $u$ are not lineary dependent.

[^25](3) Suppose for every $w$ there exist $a, b, c$ such that $w=(a \cdot p+b \cdot q)+c \cdot r$ and for all $a, b, c$ such that $(a \cdot p+b \cdot q)+c \cdot r=0_{V}$ holds $a=0$ and $b=0$ and $c=0$. Then for every $u, u_{1}$ there exists $y$ such that $p, q$ and $y$ are lineary dependent and $u, u_{1}$ and $y$ are lineary dependent and $y$ is a proper vector.
We follow a convention: $A$ is a non-empty set, $f, g, h, f_{1}$ are elements of $\mathbb{R}^{A}$, and $x_{1}, x_{2}, x_{3}, x_{4}$ are elements of $A$. We now state a number of propositions:
(4) Suppose $x_{1} \in A$ and $x_{2} \in A$ and $x_{3} \in A$ and $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{2} \neq x_{3}$. Then there exist $f, g, h$ such that for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1$ but if $z \neq x_{1}$, then $f(z)=0$ and for every $z$ such that $z \in A$ holds if $z=x_{2}$, then $g(z)=1$ but if $z \neq x_{2}$, then $g(z)=0$ and for every $z$ such that $z \in A$ holds if $z=x_{3}$, then $h(z)=1$ but if $z \neq x_{3}$, then $h(z)=0$.
(5) Suppose that
(i) $x_{1} \in A$,
(ii) $x_{2} \in A$,
(iii) $x_{3} \in A$,
(iv) $\quad x_{1} \neq x_{2}$,
(v) $x_{1} \neq x_{3}$,
(vi) $\quad x_{2} \neq x_{3}$,
(vii) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1$ but if $z \neq x_{1}$, then $f(z)=0$,
(viii) for every $z$ such that $z \in A$ holds if $z=x_{2}$, then $g(z)=1$ but if $z \neq x_{2}$, then $g(z)=0$,
(ix) for every $z$ such that $z \in A$ holds if $z=x_{3}$, then $h(z)=1$ but if $z \neq x_{3}$, then $h(z)=0$.
Then for all $a, b, c$ such that
$+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(\cdot{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle), \cdot{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g\rangle)\right), \cdot_{\mathbb{R}^{A}}^{\mathbb{R}^{A}}(\langle c, h\rangle)\right)=\mathbf{0}_{\mathbb{R}^{A}}$
holds $a=0$ and $b=0$ and $c=0$.
(6) Suppose $x_{1} \in A$ and $x_{2} \in A$ and $x_{3} \in A$ and $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{2} \neq x_{3}$. Then there exist $f, g, h$ such that for all $a, b, c$ such that $+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left({\stackrel{\mathbb{R}}{\mathbb{R}^{A}}}_{\mathbb{R}}(\langle a, f\rangle),{\stackrel{\mathbb{R}}{\mathbb{R}^{A}}}_{\mathbb{R}}(\langle b, g\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h\rangle)\right)=\mathbf{0}_{\mathbb{R}^{A}}$ holds $a=0$ and $b=0$ and $c=0$.
(7) Suppose that
(i) $A=\left\{x_{1}, x_{2}, x_{3}\right\}$,
(ii) $x_{1} \neq x_{2}$,
(iii) $x_{1} \neq x_{3}$,
(iv) $\quad x_{2} \neq x_{3}$,
(v) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1$ but if $z \neq x_{1}$, then $f(z)=0$,
(vi) for every $z$ such that $z \in A$ holds if $z=x_{2}$, then $g(z)=1$ but if $z \neq x_{2}$, then $g(z)=0$,
(vii) for every $z$ such that $z \in A$ holds if $z=x_{3}$, then $h(z)=1$ but if $z \neq x_{3}$, then $h(z)=0$.

Then for every element $h^{\prime}$ of $\mathbb{R}^{A}$ there exist $a, b, c$ such that $h^{\prime}=$ $+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left({\stackrel{\mathbb{R}}{\mathbb{R}^{A}}}_{\mathbb{R}}(\langle a, f\rangle),{\stackrel{\mathbb{R}}{\mathbb{R}^{A}}}_{\mathbb{R}}(\langle b, g\rangle)\right), \cdot_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h\rangle)\right)$.
(8) Suppose $A=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{2} \neq x_{3}$. Then there exist $f, g, h$ such that for every element $h^{\prime}$ of $\mathbb{R}^{A}$ there exist $a, b, c$ such that $h^{\prime}=+_{\mathbb{R}^{A}}(+_{\mathbb{R}^{A}}\left(\cdot{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g\rangle)\right), \overbrace{\mathbb{R}^{A}}^{\mathbb{R}^{A}}(\langle c, h\rangle))$.
(9) Suppose $A=\left\{x_{1}, x_{2}, x_{3}\right\}$ and $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{2} \neq x_{3}$. Then there exist $f, g, h$ such that for all $a, b, c$ such that $+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(\cdot{ }_{\mathbb{R}} \mathbb{R}^{A}(\langle a, f\rangle)\right.\right.$, $\left.\left.\stackrel{\mathbb{R}}{ }_{\mathbb{R}}(\langle b, g\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h\rangle)\right)=\mathbf{0}_{\mathbb{R}^{A}}$ holds $a=0$ and $b=0$ and $c=0$ and for every element $h^{\prime}$ of $\mathbb{R}^{A}$ there exist $a, b, c$ such that $h^{\prime}=+_{\mathbb{R}^{A}}(+_{\mathbb{R}^{A}}(\overbrace{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle)$, $\left.\left.{ }_{\mathbb{R}^{\mathbb{R}}}^{\mathbb{R}^{A}}(\langle b, g\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h\rangle)\right)$.
There exists a non-trivial real linear space $V$ and there exist $u, v, w$ such that for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and for every $y$ there exist $a, b, c$ such that $y=(a \cdot u+b \cdot v)+c \cdot w$.

Suppose $x_{1} \in A$ and $x_{2} \in A$ and $x_{3} \in A$ and $x_{4} \in A$ and $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{1} \neq x_{4}$ and $x_{2} \neq x_{3}$ and $x_{2} \neq x_{4}$ and $x_{3} \neq x_{4}$. Then there exist $f, g, h, f_{1}$ such that for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1$ but if $z \neq x_{1}$, then $f(z)=0$ and for every $z$ such that $z \in A$ holds if $z=x_{2}$, then $g(z)=1$ but if $z \neq x_{2}$, then $g(z)=0$ and for every $z$ such that $z \in A$ holds if $z=x_{3}$, then $h(z)=1$ but if $z \neq x_{3}$, then $h(z)=0$ and for every $z$ such that $z \in A$ holds if $z=x_{4}$, then $f_{1}(z)=1$ but if $z \neq x_{4}$, then $f_{1}(z)=0$.
(12) Suppose that
(i) $x_{1} \in A$,
(ii) $x_{2} \in A$,
(iii) $x_{3} \in A$,
(iv) $x_{4} \in A$,
(v) $\quad x_{1} \neq x_{2}$,
(vi) $\quad x_{1} \neq x_{3}$,
(vii) $\quad x_{1} \neq x_{4}$,
(viii) $\quad x_{2} \neq x_{3}$,
(ix) $\quad x_{2} \neq x_{4}$,
(x) $\quad x_{3} \neq x_{4}$,
(xi) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1$ but if $z \neq x_{1}$, then $f(z)=0$,
(xii) for every $z$ such that $z \in A$ holds if $z=x_{2}$, then $g(z)=1$ but if $z \neq x_{2}$, then $g(z)=0$,
(xiii) for every $z$ such that $z \in A$ holds if $z=x_{3}$, then $h(z)=1$ but if $z \neq x_{3}$, then $h(z)=0$,
(xiv) for every $z$ such that $z \in A$ holds if $z=x_{4}$, then $f_{1}(z)=1$ but if $z \neq x_{4}$, then $f_{1}(z)=0$.
Given $a, b, c, d$. Suppose
$+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(\cdot{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle), \cdot_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}\left(\left\langle d, f_{1}\right\rangle\right)\right)=\mathbf{0}_{\mathbb{R}^{A}}$.
Then $a=0$ and $b=0$ and $c=0$ and $d=0$.
(13) Suppose $x_{1} \in A$ and $x_{2} \in A$ and $x_{3} \in A$ and $x_{4} \in A$ and $x_{1} \neq$ $x_{2}$ and $x_{1} \neq x_{3}$ and $x_{1} \neq x_{4}$ and $x_{2} \neq x_{3}$ and $x_{2} \neq x_{4}$ and $x_{3} \neq$ $x_{4}$. Then there exist $f, g, h, f_{1}$ such that for all $a, b, c, d$ such that $+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(\cdot{ }_{\mathbb{R}^{A}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h\rangle)\right),{ }_{\mathbb{R}^{A}}\left(\left\langle d, f_{1}\right\rangle\right)\right)=\mathbf{0}_{\mathbb{R}^{A}}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$.
(14) Suppose that
(i) $A=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$,
(ii) $x_{1} \neq x_{2}$,
(iii) $x_{1} \neq x_{3}$,
(iv) $x_{1} \neq x_{4}$,
(v) $x_{2} \neq x_{3}$,
(vi) $x_{2} \neq x_{4}$,
(vii) $\quad x_{3} \neq x_{4}$,
(viii) for every $z$ such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1$ but if $z \neq x_{1}$, then $f(z)=0$,
(ix) for every $z$ such that $z \in A$ holds if $z=x_{2}$, then $g(z)=1$ but if $z \neq x_{2}$, then $g(z)=0$,
(x) for every $z$ such that $z \in A$ holds if $z=x_{3}$, then $h(z)=1$ but if $z \neq x_{3}$, then $h(z)=0$,
(xi) for every $z$ such that $z \in A$ holds if $z=x_{4}$, then $f_{1}(z)=1$ but if $z \neq x_{4}$, then $f_{1}(z)=0$.
Then for every element $h^{\prime}$ of $\mathbb{R}^{A}$ there exist $a, b, c, d$ such that $h^{\prime}=$ $+_{\mathbb{R}^{A}}(+_{\mathbb{R}^{A}}(+_{\mathbb{R}^{A}}(\overbrace{\mathbb{R}^{A}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}(\langle b, g\rangle)),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h\rangle)),{ }_{\mathbb{R}^{A}}\left(\left\langle d, f_{1}\right\rangle\right))$.
(15) Suppose $A=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{1} \neq x_{4}$ and $x_{2} \neq x_{3}$ and $x_{2} \neq x_{4}$ and $x_{3} \neq x_{4}$. Then there exist $f, g, h$, $f_{1}$ such that for every element $h^{\prime}$ of $\mathbb{R}^{A}$ there exist $a, b, c, d$ such that $h^{\prime}=+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(\cdot{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}\left(\left\langle d, f_{1}\right\rangle\right)\right)$.
(16) Suppose $A=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{1} \neq x_{4}$ and $x_{2} \neq x_{3}$ and $x_{2} \neq x_{4}$ and $x_{3} \neq x_{4}$. Then there exist $f, g, h, f_{1}$ such that for all $a, b, c, d$ such that $+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left({\stackrel{\mathbb{R}}{\mathbb{R}^{A}}}^{\mathbb{R}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g\rangle)\right)\right.\right.$, \left.\left.${\stackrel{\mathbb{R}}{\mathbb{R}^{A}}}(\langle c, h\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}\left(\left\langle d, f_{1}\right\rangle\right)\right)=\mathbf{0}_{\mathbb{R}^{A}}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$ and for every element $h^{\prime}$ of $\mathbb{R}^{A}$ there exist $a, b, c, d$ such that $h^{\prime}=+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}\left({\stackrel{\mathbb{R}}{\mathbb{R}^{A}}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g\rangle)\right),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle c, h\rangle)\right), \stackrel{\mathbb{R}}{ }^{\mathbb{R}}\left(\left\langle d, f_{1}\right\rangle\right)\right)$.
(17) There exists a non-trivial real linear space $V$ and there exist $u, v, w$, $u_{1}$ such that for all $a, b, c, d$ such that $((a \cdot u+b \cdot v)+c \cdot w)+d \cdot u_{1}=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and $d=0$ and for every $y$ there exist $a$, $b, c, d$ such that $y=((a \cdot u+b \cdot v)+c \cdot w)+d \cdot u_{1}$.
We follow the rules: $V$ is a non-trivial real linear space, $u, v, w, y, w_{1}$ are vectors of $V$, and $p, p_{1}, p_{2}, q, q_{1}, r, r_{1}, r_{2}$ are elements of the points of the projective space over $V$. The following propositions are true:
$p, q$ and $r$ are collinear if and only if there exist $u, v, w$ such that $p=$ the direction of $u$ and $q=$ the direction of $v$ and $r=$ the direction of $w$ and $u$ is a proper vector and $v$ is a proper vector and $w$ is a proper vector and $u, v$ and $w$ are lineary dependent.
(19) $\quad p, q$ and $p$ are collinear and $p, p$ and $q$ are collinear and $p, q$ and $q$ are collinear.
(20) If $p \neq q$ and $p, q$ and $r$ are collinear and $p, q$ and $r_{1}$ are collinear and $p, q$ and $r_{2}$ are collinear, then $r, r_{1}$ and $r_{2}$ are collinear.
(21) If $p, q$ and $r$ are collinear, then $p, r$ and $q$ are collinear and $q, p$ and $r$ are collinear and $r, q$ and $p$ are collinear and $r, p$ and $q$ are collinear and $q, r$ and $p$ are collinear.
(22) If $p, p_{1}$ and $p_{2}$ are collinear and $p, p_{1}$ and $r$ are collinear and $p_{1}, p_{2}$ and $r_{1}$ are collinear, then there exists $r_{2}$ such that $p, p_{2}$ and $r_{2}$ are collinear and $r, r_{1}$ and $r_{2}$ are collinear.
(23) If $p, p_{1}$ and $p_{2}$ are not collinear and $p, p_{1}$ and $r$ are collinear and $p_{1}$, $p_{2}$ and $r_{1}$ are collinear, then there exists $r_{2}$ such that $p, p_{2}$ and $r_{2}$ are collinear and $r, r_{1}$ and $r_{2}$ are collinear.
(24) If $p, p_{1}$ and $r$ are collinear and $p_{1}, p_{2}$ and $r_{1}$ are collinear, then there exists $r_{2}$ such that $p, p_{2}$ and $r_{2}$ are collinear and $r, r_{1}$ and $r_{2}$ are collinear.
(25) Suppose $p_{1}, r_{2}$ and $q$ are collinear and $r_{1}, q_{1}$ and $q$ are collinear and $p_{1}$, $r_{1}$ and $p$ are collinear and $r_{2}, q_{1}$ and $p$ are collinear and $p_{1}, q_{1}$ and $r$ are collinear and $r_{2}, r_{1}$ and $r$ are collinear and $p, q$ and $r$ are collinear. Then $p_{1}, r_{2}$ and $q_{1}$ are collinear or $p_{1}, r_{2}$ and $r_{1}$ are collinear or $p_{1}, r_{1}$ and $q_{1}$ are collinear or $r_{2}, r_{1}$ and $q_{1}$ are collinear.
(26) If there exist $u, v, w$ such that for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=$ $0_{V}$ holds $a=0$ and $b=0$ and $c=0$, then there exist $p, q, r$ such that $p$, $q$ and $r$ are not collinear.
(27) Suppose there exist $u, v, w_{1}$ such that for all $a, b, c$ such that $(a \cdot u+$ $b \cdot v)+c \cdot w_{1}=0_{V}$ holds $a=0$ and $b=0$ and $c=0$. Then for every $p, q$ there exists $r$ such that $p \neq r$ and $q \neq r$ and $p, q$ and $r$ are collinear.
(28) Suppose that
(i) there exist $u, v, w$ such that for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and for every $y$ there exist $a, b, c$ such that $y=(a \cdot u+b \cdot v)+c \cdot w$.
Then there exist elements $x_{1}, x_{2}$ of the points of the projective space over $V$ such that $x_{1} \neq x_{2}$ and for every $r_{1}, r_{2}$ there exists $q$ such that $x_{1}, x_{2}$ and $q$ are collinear and $r_{1}, r_{2}$ and $q$ are collinear.
(29) If there exist elements $x_{1}, x_{2}$ of the points of the projective space over $V$ such that $x_{1} \neq x_{2}$ and for every $r_{1}, r_{2}$ there exists $q$ such that $x_{1}, x_{2}$ and $q$ are collinear and $r_{1}, r_{2}$ and $q$ are collinear, then for every $p, p_{1}, q$, $q_{1}$ there exists $r$ such that $p, p_{1}$ and $r$ are collinear and $q, q_{1}$ and $r$ are collinear.
(30) Suppose that
(i) there exist $u, v, w$ such that for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and for every $y$ there exist $a, b, c$ such that $y=(a \cdot u+b \cdot v)+c \cdot w$.

Then for every $p, p_{1}, q, q_{1}$ there exists $r$ such that $p, p_{1}$ and $r$ are collinear and $q, q_{1}$ and $r$ are collinear.
Suppose that
(i) there exist $u, v, w$ such that for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and for every $y$ there exist $a, b, c$ such that $y=(a \cdot u+b \cdot v)+c \cdot w$.
Then there exist $p, q, r$ such that $p, q$ and $r$ are not collinear and for every $p, p_{1}, q, q_{1}$ there exists $r$ such that $p, p_{1}$ and $r$ are collinear and $q$, $q_{1}$ and $r$ are collinear.
A collinearity structure is said to be a projective space defined in terms of collinearity if:
(i) for all elements $p, q, r, r_{1}, r_{2}$ of the points of it such that $p \neq q$ and $p$, $q$ and $r$ are collinear and $p, q$ and $r_{1}$ are collinear and $p, q$ and $r_{2}$ are collinear holds $r, r_{1}$ and $r_{2}$ are collinear,
(ii) for all elements $p, q, r$ of the points of it holds $p, q$ and $p$ are collinear and $p, p$ and $q$ are collinear and $p, q$ and $q$ are collinear,
(iii) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of it such that $p, p_{1}$ and $r$ are collinear and $p_{1}, p_{2}$ and $r_{1}$ are collinear there exists an element $r_{2}$ of the points of it such that $p, p_{2}$ and $r_{2}$ are collinear and $r, r_{1}$ and $r_{2}$ are collinear,
(iv) for every elements $p, q$ of the points of it there exists an element $r$ of the points of it such that $p \neq r$ and $q \neq r$ and $p, q$ and $r$ are collinear,
(v) there exist elements $p, q, r$ of the points of it such that $p, q$ and $r$ are not collinear.

Next we state three propositions:
(32) Let $C S$ be a collinearity structure. Then $C S$ is a projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements $p, q, r, r_{1}, r_{2}$ of the points of $C S$ such that $p \neq q$ and $p, q$ and $r$ are collinear and $p, q$ and $r_{1}$ are collinear and $p, q$ and $r_{2}$ are collinear holds $r, r_{1}$ and $r_{2}$ are collinear,
(ii) for all elements $p, q, r$ of the points of $C S$ holds $p, q$ and $p$ are collinear and $p, p$ and $q$ are collinear and $p, q$ and $q$ are collinear,
(iii) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of $C S$ such that $p, p_{1}$ and $r$ are collinear and $p_{1}, p_{2}$ and $r_{1}$ are collinear there exists an element $r_{2}$ of the points of $C S$ such that $p, p_{2}$ and $r_{2}$ are collinear and $r, r_{1}$ and $r_{2}$ are collinear,
(iv) for every elements $p, q$ of the points of $C S$ there exists an element $r$ of the points of $C S$ such that $p \neq r$ and $q \neq r$ and $p, q$ and $r$ are collinear,
(v) there exist elements $p, q, r$ of the points of $C S$ such that $p, q$ and $r$ are not collinear.
(33) For every projective space $C S$ defined in terms of collinearity holds $C S$ is a proper collinearity space.
(34) If there exist $u, v, w$ such that for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=$ $0_{V}$ holds $a=0$ and $b=0$ and $c=0$, then the projective space over $V$ is a
projective space defined in terms of collinearity.
A projective space defined in terms of collinearity is called a Fanoian projective space defined in terms of collinearity if:

Let $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ be elements of the points of it. Suppose $p_{1}, r_{2}$ and $q$ are collinear and $r_{1}, q_{1}$ and $q$ are collinear and $p_{1}, r_{1}$ and $p$ are collinear and $r_{2}, q_{1}$ and $p$ are collinear and $p_{1}, q_{1}$ and $r$ are collinear and $r_{2}, r_{1}$ and $r$ are collinear and $p, q$ and $r$ are collinear. Then $p_{1}, r_{2}$ and $q_{1}$ are collinear or $p_{1}, r_{2}$ and $r_{1}$ are collinear or $p_{1}, r_{1}$ and $q_{1}$ are collinear or $r_{2}, r_{1}$ and $q_{1}$ are collinear.

The following propositions are true:
(35) Let $C S$ be a projective space defined in terms of collinearity. Then $C S$ is a Fanoian projective space defined in terms of collinearity if and only if for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of $C S$ such that $p_{1}$, $r_{2}$ and $q$ are collinear and $r_{1}, q_{1}$ and $q$ are collinear and $p_{1}, r_{1}$ and $p$ are collinear and $r_{2}, q_{1}$ and $p$ are collinear and $p_{1}, q_{1}$ and $r$ are collinear and $r_{2}, r_{1}$ and $r$ are collinear and $p, q$ and $r$ are collinear holds $p_{1}, r_{2}$ and $q_{1}$ are collinear or $p_{1}, r_{2}$ and $r_{1}$ are collinear or $p_{1}, r_{1}$ and $q_{1}$ are collinear or $r_{2}, r_{1}$ and $q_{1}$ are collinear.
(36) Let $C S$ be a collinearity structure. Then $C S$ is a Fanoian projective space defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements $p, q, r, r_{1}, r_{2}$ of the points of $C S$ such that $p \neq q$ and $p, q$ and $r$ are collinear and $p, q$ and $r_{1}$ are collinear and $p, q$ and $r_{2}$ are collinear holds $r, r_{1}$ and $r_{2}$ are collinear,
(ii) for all elements $p, q, r$ of the points of $C S$ holds $p, q$ and $p$ are collinear and $p, p$ and $q$ are collinear and $p, q$ and $q$ are collinear,
(iii) for all elements $p, p_{1}, p_{2}, r, r_{1}$ of the points of $C S$ such that $p, p_{1}$ and $r$ are collinear and $p_{1}, p_{2}$ and $r_{1}$ are collinear there exists an element $r_{2}$ of the points of $C S$ such that $p, p_{2}$ and $r_{2}$ are collinear and $r, r_{1}$ and $r_{2}$ are collinear,
(iv) for every elements $p, q$ of the points of $C S$ there exists an element $r$ of the points of $C S$ such that $p \neq r$ and $q \neq r$ and $p, q$ and $r$ are collinear,
(v) there exist elements $p, q, r$ of the points of $C S$ such that $p, q$ and $r$ are not collinear,
(vi) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of $C S$ such that $p_{1}$, $r_{2}$ and $q$ are collinear and $r_{1}, q_{1}$ and $q$ are collinear and $p_{1}, r_{1}$ and $p$ are collinear and $r_{2}, q_{1}$ and $p$ are collinear and $p_{1}, q_{1}$ and $r$ are collinear and $r_{2}, r_{1}$ and $r$ are collinear and $p, q$ and $r$ are collinear holds $p_{1}, r_{2}$ and $q_{1}$ are collinear or $p_{1}, r_{2}$ and $r_{1}$ are collinear or $p_{1}, r_{1}$ and $q_{1}$ are collinear or $r_{2}, r_{1}$ and $q_{1}$ are collinear.
(37) If there exist $u, v, w$ such that for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=$ $0_{V}$ holds $a=0$ and $b=0$ and $c=0$, then the projective space over $V$ is a Fanoian projective space defined in terms of collinearity.
A projective space defined in terms of collinearity is called a projective plane defined in terms of collinearity if:
for every elements $p, p_{1}, q, q_{1}$ of the points of it there exists an element $r$ of the points of it such that $p, p_{1}$ and $r$ are collinear and $q, q_{1}$ and $r$ are collinear.

We now state three propositions:
(38) For every projective space $C P S$ defined in terms of collinearity holds $C P S$ is a projective plane defined in terms of collinearity if and only if for every elements $p, p_{1}, q, q_{1}$ of the points of $C P S$ there exists an element $r$ of the points of $C P S$ such that $p, p_{1}$ and $r$ are collinear and $q, q_{1}$ and $r$ are collinear.
(39) Let $C S$ be a collinearity structure. Then $C S$ is a projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements $p, q, r, r_{1}, r_{2}$ of the points of $C S$ such that $p \neq q$ and $p, q$ and $r$ are collinear and $p, q$ and $r_{1}$ are collinear and $p, q$ and $r_{2}$ are collinear holds $r, r_{1}$ and $r_{2}$ are collinear,
(ii) for all elements $p, q, r$ of the points of $C S$ holds $p, q$ and $p$ are collinear and $p, p$ and $q$ are collinear and $p, q$ and $q$ are collinear,
(iii) for every elements $p, q$ of the points of $C S$ there exists an element $r$ of the points of $C S$ such that $p \neq r$ and $q \neq r$ and $p, q$ and $r$ are collinear,
(iv) there exist elements $p, q, r$ of the points of $C S$ such that $p, q$ and $r$ are not collinear,
(v) for every elements $p, p_{1}, q, q_{1}$ of the points of $C S$ there exists an element $r$ of the points of $C S$ such that $p, p_{1}$ and $r$ are collinear and $q$, $q_{1}$ and $r$ are collinear.
(40) Suppose that
(i) there exist $u, v, w$ such that for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and for every $y$ there exist $a, b, c$ such that $y=(a \cdot u+b \cdot v)+c \cdot w$.
Then the projective space over $V$ is a projective plane defined in terms of collinearity.
A projective plane defined in terms of collinearity is said to be a Fanoian projective plane defined in terms of collinearity if:

Let $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ be elements of the points of it . Suppose $p_{1}, r_{2}$ and $q$ are collinear and $r_{1}, q_{1}$ and $q$ are collinear and $p_{1}, r_{1}$ and $p$ are collinear and $r_{2}, q_{1}$ and $p$ are collinear and $p_{1}, q_{1}$ and $r$ are collinear and $r_{2}, r_{1}$ and $r$ are collinear and $p, q$ and $r$ are collinear. Then $p_{1}, r_{2}$ and $q_{1}$ are collinear or $p_{1}, r_{2}$ and $r_{1}$ are collinear or $p_{1}, r_{1}$ and $q_{1}$ are collinear or $r_{2}, r_{1}$ and $q_{1}$ are collinear.

Next we state four propositions:
(41) Let $C S$ be a projective plane defined in terms of collinearity. Then $C S$ is a Fanoian projective plane defined in terms of collinearity if and only if for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of $C S$ such that $p_{1}$, $r_{2}$ and $q$ are collinear and $r_{1}, q_{1}$ and $q$ are collinear and $p_{1}, r_{1}$ and $p$ are collinear and $r_{2}, q_{1}$ and $p$ are collinear and $p_{1}, q_{1}$ and $r$ are collinear and $r_{2}, r_{1}$ and $r$ are collinear and $p, q$ and $r$ are collinear holds $p_{1}, r_{2}$ and $q_{1}$
are collinear or $p_{1}, r_{2}$ and $r_{1}$ are collinear or $p_{1}, r_{1}$ and $q_{1}$ are collinear or $r_{2}, r_{1}$ and $q_{1}$ are collinear.
(42) Let $C S$ be a collinearity structure. Then $C S$ is a Fanoian projective plane defined in terms of collinearity if and only if the following conditions are satisfied:
(i) for all elements $p, q, r, r_{1}, r_{2}$ of the points of $C S$ such that $p \neq q$ and $p, q$ and $r$ are collinear and $p, q$ and $r_{1}$ are collinear and $p, q$ and $r_{2}$ are collinear holds $r, r_{1}$ and $r_{2}$ are collinear,
(ii) for all elements $p, q, r$ of the points of $C S$ holds $p, q$ and $p$ are collinear and $p, p$ and $q$ are collinear and $p, q$ and $q$ are collinear,
(iii) for every elements $p, q$ of the points of $C S$ there exists an element $r$ of the points of $C S$ such that $p \neq r$ and $q \neq r$ and $p, q$ and $r$ are collinear,
(iv) there exist elements $p, q, r$ of the points of $C S$ such that $p, q$ and $r$ are not collinear,
(v) for every elements $p, p_{1}, q, q_{1}$ of the points of $C S$ there exists an element $r$ of the points of $C S$ such that $p, p_{1}$ and $r$ are collinear and $q$, $q_{1}$ and $r$ are collinear,
(vi) for all elements $p_{1}, r_{2}, q, r_{1}, q_{1}, p, r$ of the points of $C S$ such that $p_{1}$, $r_{2}$ and $q$ are collinear and $r_{1}, q_{1}$ and $q$ are collinear and $p_{1}, r_{1}$ and $p$ are collinear and $r_{2}, q_{1}$ and $p$ are collinear and $p_{1}, q_{1}$ and $r$ are collinear and $r_{2}, r_{1}$ and $r$ are collinear and $p, q$ and $r$ are collinear holds $p_{1}, r_{2}$ and $q_{1}$ are collinear or $p_{1}, r_{2}$ and $r_{1}$ are collinear or $p_{1}, r_{1}$ and $q_{1}$ are collinear or $r_{2}, r_{1}$ and $q_{1}$ are collinear.
(43) Suppose that
(i) there exist $u, v, w$ such that for all $a, b, c$ such that $(a \cdot u+b \cdot v)+c \cdot w=0_{V}$ holds $a=0$ and $b=0$ and $c=0$ and for every $y$ there exist $a, b, c$ such that $y=(a \cdot u+b \cdot v)+c \cdot w$.
Then the projective space over $V$ is a Fanoian projective plane defined in terms of collinearity.
(44) For every $C S$ being a collinearity structure holds $C S$ is a Fanoian projective plane defined in terms of collinearity if and only if $C S$ is a Fanoian projective space defined in terms of collinearity and for every elements $p$, $p_{1}, q, q_{1}$ of the points of $C S$ there exists an element $r$ of the points of $C S$ such that $p, p_{1}$ and $r$ are collinear and $q, q_{1}$ and $r$ are collinear.

## References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Wojciech Leończuk and Krzysztof Prażmowski. A construction of analytical projective space. Formalized Mathematics, 1(4):761-766, 1990.
[3] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
[4] Wojciech Skaba. The collinearity structure. Formalized Mathematics, 1(4):657-659, 1990.
[5] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[6] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[7] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

Received June 15, 1990

# Topological Properties of Subsets in Real Numbers ${ }^{1}$ 

Konrad Raczkowski<br>Warsaw University<br>Białystok

Paweł Sadowski<br>Warsaw University<br>Białystok


#### Abstract

Summary. The following notions for real subsets are defined: open set, closed set, compact set, intervals and neighbourhoods. In the sequel some theorems involving above mentioned notions are proved.


MML Identifier: RCOMP_1.

The notation and terminology used in this paper have been introduced in the following articles: [9], [3], [10], [1], [2], [7], [5], [6], [4], and [8]. For simplicity we adopt the following convention: $n, m$ are natural numbers, $x$ is arbitrary, $s, g$, $g_{1}, g_{2}, r, p, q$ are real numbers, $s_{1}, s_{2}$ are sequences of real numbers, and $X$, $Y, Y_{1}$ are subsets of $\mathbb{R}$. In this article we present several logical schemes. The scheme SeqChoice concerns a non-empty set $\mathcal{A}$, and a binary predicate $\mathcal{P}$, and states that:
there exists a function $f$ from $\mathbb{N}$ into $\mathcal{A}$ such that for every element $t$ of $\mathbb{N}$ holds $\mathcal{P}[t, f(t)]$
provided the following requirement is met:

- for every element $t$ of $\mathbb{N}$ there exists an element $f f$ of $\mathcal{A}$ such that $\mathcal{P}[t, f f]$.
The scheme RealSeqChoice concerns a binary predicate $\mathcal{P}$, and states that:
there exists $s_{1}$ such that for every $n$ holds $\mathcal{P}\left[n, s_{1}(n)\right]$
provided the parameter meets the following requirement:
- for every $n$ there exists $r$ such that $\mathcal{P}[n, r]$.

We now state several propositions:
(1) $X \subseteq Y$ if and only if for every $r$ such that $r \in X$ holds $r \in Y$.
(2) $r \in X$ if and only if $r \notin X^{\mathrm{c}}$.

[^26](3) If there exists $x$ such that $x \in Y_{1}$ and $Y_{1} \subseteq Y$ and $Y$ is lower bounded, then $Y_{1}$ is lower bounded.
(4) If there exists $x$ such that $x \in Y_{1}$ and $Y_{1} \subseteq Y$ and $Y$ is upper bounded, then $Y_{1}$ is upper bounded.
(5) If there exists $x$ such that $x \in Y_{1}$ and $Y_{1} \subseteq Y$ and $Y$ is bounded, then $Y_{1}$ is bounded.
Let us consider $g, s$. The functor $[g, s]$ yields a subset of $\mathbb{R}$ and is defined by: $[g, s]=\{r: g \leq r \wedge r \leq s\}$.
Next we state the proposition
(6) $[g, s]=\{r: g \leq r \wedge r \leq s\}$.

Let us consider $g, s$. The functor $] g, s[$ yields a subset of $\mathbb{R}$ and is defined as follows:
$] g, s[=\{r: g<r \wedge r<s\}$.
Next we state a number of propositions:

$$
\begin{equation*}
] g, s[=\{r: g<r \wedge r<s\} . \tag{7}
\end{equation*}
$$

(8) $r \in] p-g, p+g[$ if and only if $|r-p|<g$.
(9) $r \in[p, g]$ if and only if $|(p+g)-2 \cdot r| \leq g-p$.
(10) $r \in] p, g[$ if and only if $|(p+g)-2 \cdot r|<g-p$.
(11) For all $g, s$ such that $g \leq s$ holds $[g, s]=] g, s[\cup\{g, s\}$.
(12) If $p \leq g$, then $] g, p[=\emptyset$.
(13) If $p<g$, then $[g, p]=\emptyset$.
(14) If $p=g$, then $[p, g]=\{p\}$ and $[g, p]=\{p\}$ and $] p, g[=\emptyset$.
(15) If $p<g$, then $] p, g[\neq \emptyset$ but if $p \leq g$, then $p \in[p, g]$ and $g \in[p, g]$ and $[p, g] \neq \emptyset$ and $] p, g[\subseteq[p, g]$.
(16) If $r \in[p, g]$ and $s \in[p, g]$, then $[r, s] \subseteq[p, g]$.
(17) If $r \in] p, g[$ and $s \in] p, g[$, then $[r, s] \subseteq] p, g[$.
(18) If $p \leq g$, then $[p, g]=[p, g] \cup[g, p]$.

Let us consider $X$. We say that $X$ is compact if and only if:
for every $s_{1}$ such that rng $s_{1} \subseteq X$ there exists $s_{2}$ such that $s_{2}$ is a subsequence of $s_{1}$ and $s_{2}$ is convergent and $\lim s_{2} \in X$.

Next we state the proposition
(19) $X$ is compact if and only if for every $s_{1}$ such that rng $s_{1} \subseteq X$ there exists $s_{2}$ such that $s_{2}$ is a subsequence of $s_{1}$ and $s_{2}$ is convergent and $\lim s_{2} \in X$.
Let us consider $X$. We say that $X$ is closed if and only if:
for every $s_{1}$ such that $\operatorname{rng} s_{1} \subseteq X$ and $s_{1}$ is convergent holds $\lim s_{1} \in X$.
The following proposition is true
(20) $X$ is closed if and only if for every $s_{1}$ such that rng $s_{1} \subseteq X$ and $s_{1}$ is convergent holds $\lim s_{1} \in X$.
Let $A$ be a non-empty set, and let $X$ be a subset of $A$. Then $X^{\text {c }}$ is a subset of $A$.

Let us consider $X$. We say that $X$ is open if and only if:
$X^{\mathrm{c}}$ is closed.
One can prove the following propositions:
(21) $X$ is open if and only if $X^{\mathrm{c}}$ is closed.
(22) For all $s, g$ such that $s \leq g$ for every $s_{1}$ such that rng $s_{1} \subseteq[s, g]$ holds $s_{1}$ is bounded.
(23) For all $s, g$ such that $s \leq g$ holds $[s, g]$ is closed.
(24) For all $s, g$ such that $s \leq g$ holds $[s, g]$ is compact.
(25) For all $p, q$ such that $p<q$ holds $] p, q[$ is open.
(26) If $X$ is compact, then $X$ is closed.
(27) Given $X, s_{1}$. Suppose $X \neq \emptyset$ and rng $s_{1} \subseteq X$ and for every $p$ such that $p \in X$ there exist $r, n$ such that $0<r$ and for every $m$ such that $n<m$ holds $r<\left|s_{1}(m)-p\right|$. Then for every $s_{2}$ such that $s_{2}$ is a subsequence of $s_{1}$ holds it is not true that: $s_{2}$ is convergent and $\lim s_{2} \in X$.
(28) If there exists $r$ such that $r \in X$ and $X$ is compact, then $X$ is bounded.
(29) If there exists $r$ such that $r \in X$, then $X$ is compact if and only if $X$ is bounded and $X$ is closed.
(30) For every $X$ such that $X \neq \emptyset$ and $X$ is closed and $X$ is upper bounded holds $\sup X \in X$.
(31) For every $X$ such that $X \neq \emptyset$ and $X$ is closed and $X$ is lower bounded holds $\inf X \in X$.
(32) For every $X$ such that $X \neq \emptyset$ and $X$ is compact holds $\sup X \in X$ and $\inf X \in X$.
(33) If $X$ is compact and for all $g_{1}, g_{2}$ such that $g_{1} \in X$ and $g_{2} \in X$ holds $\left[g_{1}, g_{2}\right] \subseteq X$, then there exist $p, g$ such that $X=[p, g]$.
A subset of $\mathbb{R}$ is called a real open subset if:
it is open.
We now state the proposition
(34) For every subset $X$ of $\mathbb{R}$ holds $X$ is a real open subset if and only if $X$ is open.
Let us consider $r$. A real open subset is said to be a neighbourhood of $r$ if: there exists $g$ such that $0<g$ and it $=] r-g, r+g[$.
One can prove the following propositions:
(35) For every $r$ and for every real open subset $X$ holds $X$ is a neighbourhood of $r$ if and only if there exists $g$ such that $0<g$ and $X=] r-g, r+g[$.
(36) For all $r, X$ holds $X$ is a neighbourhood of $r$ if and only if there exists $g$ such that $0<g$ and $X=] r-g, r+g[$.
(37) For every $r$ and for every neighbourhood $N$ of $r$ holds $r \in N$.
(38) For every $r$ and for every neighbourhoods $N_{1}, N_{2}$ of $r$ there exists a neighbourhood $N$ of $r$ such that $N \subseteq N_{1}$ and $N \subseteq N_{2}$.
(39) For every real open subset $X$ and for every $r$ such that $r \in X$ there exists a neighbourhood $N$ of $r$ such that $N \subseteq X$.
(40) For every real open subset $X$ and for every $r$ such that $r \in X$ there exists $g$ such that $0<g$ and $] r-g, r+g[\subseteq X$.
(41) For every $X$ such that for every $r$ such that $r \in X$ there exists a neighbourhood $N$ of $r$ such that $N \subseteq X$ holds $X$ is open.
(42) For every $X$ holds for every $r$ such that $r \in X$ there exists a neighbourhood $N$ of $r$ such that $N \subseteq X$ if and only if $X$ is open.
(43) If $X \neq \emptyset$ and $X$ is open and $X$ is upper bounded, then $\sup X \notin X$.
(44) If $X \neq \emptyset$ and $X$ is open and $X$ is lower bounded, then $\inf X \notin X$.
(45) If $X$ is open and $X$ is bounded and for all $g_{1}, g_{2}$ such that $g_{1} \in X$ and $g_{2} \in X$ holds $\left[g_{1}, g_{2}\right] \subseteq X$, then there exist $p, g$ such that $\left.X=\right] p, g[$.

## References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[7] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[8] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received June 18, 1990

# Properties of Real Functions 

Jarosław Kotowicz ${ }^{1}$<br>Warsaw University<br>Białystok


#### Abstract

Summary. The list of theorems concerning properties of real sequences and functions is enlarged. (See e.g. [9], [4], [8]). The monotone real functions are introduced and their properties are discussed.


MML Identifier: RFUNCT_2.

The papers [11], [3], [1], [9], [5], [6], [4], [2], [7], [10], and [8] provide the terminology and notation for this paper. For simplicity we follow a convention: $x$ is arbitrary, $X, X_{1}, Y$ denote sets, $g, r, r_{1}, r_{2}, p$ denote real numbers, $R$ denotes a subset of $\mathbb{R}$, seq, seq $_{1}$, seq $q_{2}$, seq $q_{3}$ denote sequences of real numbers, $N s$ denotes an increasing sequence of naturals, $n$ denotes a natural number, and $h, h_{1}, h_{2}$ denote partial functions from $\mathbb{R}$ to $\mathbb{R}$. The following propositions are true:
(1) For all functions $F, G$ and for every $X$ such that $X \subseteq \operatorname{dom} F$ and $F^{\circ} X \subseteq \operatorname{dom} G$ holds $X \subseteq \operatorname{dom}(G \cdot F)$.
(2) For all functions $F, G$ and for every $X$ holds $G \upharpoonright\left(F^{\circ} X\right) \cdot F \upharpoonright X=$ $(G \cdot F) \upharpoonright X$.
(3) For all functions $F, G$ and for all $X, X_{1}$ holds $G \upharpoonright X_{1} \cdot F \upharpoonright X=(G \cdot F) \upharpoonright$ $\left(X \cap F^{-1} X_{1}\right)$.
(4) For all functions $F, G$ and for every $X$ holds $X \subseteq \operatorname{dom}(G \cdot F)$ if and only if $X \subseteq \operatorname{dom} F$ and $F^{\circ} X \subseteq \operatorname{dom} G$.
(5) For every function $F$ and for every $X$ holds $(F \upharpoonright X)^{\circ} X=F^{\circ} X$.

Let us consider seq. Then rng seq is a subset of $\mathbb{R}$.
One can prove the following propositions:
(6) $\quad s e q_{1}=s e q_{2}-s e q_{3}$ if and only if for every $n$ holds $s e q_{1}(n)=s e q_{2}(n)-$ $s e q_{3}(n)$.
(7) $\quad \operatorname{rng}\left(s e q^{\wedge} n\right) \subseteq \operatorname{rng} s e q$.

[^27](8) If rng seq $\subseteq \operatorname{dom} h$, then $\operatorname{seq}(n) \in \operatorname{dom} h$.
(9) $\quad x \in \operatorname{rng} \operatorname{seq}$ if and only if there exists $n$ such that $x=\operatorname{seq}(n)$.
$s e q(n) \in \operatorname{rng}$ seq.
(11) If $s e q_{1}$ is a subsequence of $s e q$, then rng $s e q_{1} \subseteq$ rng seq.
(12) If $s e q_{1}$ is a subsequence of seq and seq is non-zero, then $s e q_{1}$ is non-zero.
(13) $\quad\left(s e q_{1}+s e q_{2}\right) \cdot N s=s e q_{1} \cdot N s+s e q_{2} \cdot N s$ and $\left(s e q_{1}-s e q_{2}\right) \cdot N s=$ $s e q_{1} \cdot N s-s e q_{2} \cdot N s$ and $\left(s e q_{1} \diamond s e q_{2}\right) \cdot N s=\left(s e q_{1} \cdot N s\right) \diamond\left(s e q_{2} \cdot N s\right)$.
$(p \diamond s e q) \cdot N s=p \diamond(s e q \cdot N s)$.
$(-s e q) \cdot N s=-s e q \cdot N s$ and $|s e q| \cdot N s=|s e q \cdot N s|$.
If $s e q$ is non-zero, then $(s e q \cdot N s)^{-1}=s e q^{-1} \cdot N s$.
(18) If seq is convergent and for every $n$ holds $\operatorname{seq}(n) \leq 0$, then lim seq $\leq 0$.
(19) If for every $n$ holds seq $(n) \in Y$, then rng seq $\subseteq Y$.

Let us consider $h$, seq. Let us assume that rng seq $\subseteq \operatorname{dom} h$. The functor $h \cdot s e q$ yields a sequence of real numbers and is defined by:
$h \cdot s e q=(h$ qua a function $) \cdot$ seq.
The following propositions are true:
(20) If rng seq $\subseteq \operatorname{dom} h$, then $h \cdot s e q=(h$ qua a function) $\cdot$ seq.
(21) If rng seq $\subseteq \operatorname{dom} h$, then $(h \cdot$ seq) $(n)=h(\operatorname{seq}(n))$.
(22) If rng seq $\subseteq \operatorname{dom} h$, then $\left.(h \cdot s e q)^{\wedge} n=h \cdot(s e q)^{\wedge} n\right)$.
(23) Suppose rng seq $\subseteq \operatorname{dom} h_{1} \cap \operatorname{dom} h_{2}$. Then $\left(h_{1}+h_{2}\right) \cdot s e q=h_{1} \cdot s e q+$ $h_{2} \cdot s e q$ and $\left(h_{1}-h_{2}\right) \cdot s e q=h_{1} \cdot s e q-h_{2} \cdot s e q$ and $\left(h_{1} \diamond h_{2}\right) \cdot s e q=$ $\left(h_{1} \cdot s e q\right) \diamond\left(h_{2} \cdot s e q\right)$.
(24) If rng seq $\subseteq \operatorname{dom} h$, then $(r \diamond h) \cdot s e q=r \diamond(h \cdot s e q)$.
(25) If rng seq $\subseteq \operatorname{dom} h$, then $\mid h \cdot$ seq $|=|h| \cdot$ seq and $-h \cdot$ seq $=(-h) \cdot$ seq.
(26) If rng seq $\subseteq \operatorname{dom} \frac{1}{h}$, then $h \cdot$ seq is non-zero.
(27) If rng seq $\subseteq \operatorname{dom} \frac{1}{h}$, then $\frac{1}{h} \cdot s e q=(h \cdot s e q)^{-1}$.
(28) If rng seq $\subseteq \operatorname{dom} h$, then $(h \cdot s e q) \cdot N s=h \cdot(s e q \cdot N s)$.
(29) If rng $s e q_{1} \subseteq \operatorname{dom} h$ and $s e q_{2}$ is a subsequence of $s e q_{1}$, then $h \cdot s e q_{2}$ is a subsequence of $h \cdot$ seq $_{1}$.
(30) If $h$ is total, then $(h \cdot \operatorname{seq})(n)=h(\operatorname{seq}(n))$.
(31) If $h$ is total, then $h \cdot\left(s e q^{\wedge} n\right)=(h \cdot s e q)^{\wedge} n$.
(32) If $h_{1}$ is total and $h_{2}$ is total, then $\left(h_{1}+h_{2}\right) \cdot s e q=h_{1} \cdot s e q+h_{2} \cdot s e q$ and $\left(h_{1}-h_{2}\right) \cdot s e q=h_{1} \cdot s e q-h_{2} \cdot s e q$ and $\left(h_{1} \diamond h_{2}\right) \cdot s e q=\left(h_{1} \cdot s e q\right) \diamond\left(h_{2} \cdot s e q\right)$.
(33) If $h$ is total, then $(r \diamond h) \cdot s e q=r \diamond(h \cdot s e q)$.
(34) If rng seq $\subseteq \operatorname{dom}(h \upharpoonright X)$, then $h \upharpoonright X \cdot s e q=h \cdot s e q$.
(35) If rng seq $\subseteq \operatorname{dom}(h \upharpoonright X)$ but rng seq $\subseteq \operatorname{dom}(h \upharpoonright Y)$ or $X \subseteq Y$, then $h \upharpoonright X \cdot s e q=h \upharpoonright Y \cdot$ seq.
(36) If rng seq $\subseteq \operatorname{dom}(h \upharpoonright X)$, then $|h \upharpoonright X \cdot s e q|=|h| \upharpoonright X \cdot$ seq.
(37) If rng seq $\subseteq \operatorname{dom}(h \upharpoonright X)$ and $h^{-1}\{0\}=\emptyset$, then $\frac{1}{h} \upharpoonright X \cdot \operatorname{seq}=(h \upharpoonright$ $X \cdot s e q)^{-1}$.
(38) If rng seq $\subseteq \operatorname{dom} h$, then $h^{\circ}$ rng $s e q=\operatorname{rng}(h \cdot s e q)$.
(39) If rng seq $\subseteq \operatorname{dom}\left(h_{2} \cdot h_{1}\right)$, then $h_{2} \cdot\left(h_{1} \cdot s e q\right)=\left(h_{2} \cdot h_{1}\right) \cdot s e q$.
(40) If $h$ is one-to-one, then $(h \upharpoonright X)^{-1}=h^{-1} \upharpoonright\left(h^{\circ} X\right)$.
(41) If $\operatorname{rng} h$ is bounded and $\sup (\operatorname{rng} h)=\inf (\operatorname{rng} h)$, then $h$ is a constant on $\operatorname{dom} h$.
(42) If $Y \subseteq \operatorname{dom} h$ and $h^{\circ} Y$ is bounded and $\sup \left(h^{\circ} Y\right)=\inf \left(h^{\circ} Y\right)$, then $h$ is a constant on $Y$.
We now define four new predicates. Let us consider $h, Y$. We say that $h$ is increasing on $Y$ if and only if:
for all $r_{1}, r_{2}$ such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{1}\right)<h\left(r_{2}\right)$.
We say that $h$ is decreasing on $Y$ if and only if:
for all $r_{1}, r_{2}$ such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{2}\right)<h\left(r_{1}\right)$.
We say that $h$ is non-decreasing on $Y$ if and only if:
for all $r_{1}, r_{2}$ such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{1}\right) \leq h\left(r_{2}\right)$.
We say that $h$ is non-increasing on $Y$ if and only if:
for all $r_{1}, r_{2}$ such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{2}\right) \leq h\left(r_{1}\right)$.

Let us consider $h, Y$. We say that $h$ is monotone on $Y$ if and only if:
$h$ is non-decreasing on $Y$ or $h$ is non-increasing on $Y$.
Next we state a number of propositions:
(43) $\quad h$ is increasing on $Y$ if and only if for all $r_{1}, r_{2}$ such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{1}\right)<h\left(r_{2}\right)$.
(44) $h$ is decreasing on $Y$ if and only if for all $r_{1}, r_{2}$ such that $r_{1} \in Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{2}\right)<h\left(r_{1}\right)$.
(45) $h$ is non-decreasing on $Y$ if and only if for all $r_{1}, r_{2}$ such that $r_{1} \in$ $Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{1}\right) \leq h\left(r_{2}\right)$.
(46) $h$ is non-increasing on $Y$ if and only if for all $r_{1}, r_{2}$ such that $r_{1} \in$ $Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1}<r_{2}$ holds $h\left(r_{2}\right) \leq h\left(r_{1}\right)$.
(47) $h$ is monotone on $Y$ if and only if $h$ is non-decreasing on $Y$ or $h$ is non-increasing on $Y$.
(48) $h$ is non-decreasing on $Y$ if and only if for all $r_{1}, r_{2}$ such that $r_{1} \in$ $Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1} \leq r_{2}$ holds $h\left(r_{1}\right) \leq h\left(r_{2}\right)$.
(49) $h$ is non-increasing on $Y$ if and only if for all $r_{1}, r_{2}$ such that $r_{1} \in$ $Y \cap \operatorname{dom} h$ and $r_{2} \in Y \cap \operatorname{dom} h$ and $r_{1} \leq r_{2}$ holds $h\left(r_{2}\right) \leq h\left(r_{1}\right)$.
(50) $\quad h$ is increasing on $X$ if and only if $h \upharpoonright X$ is increasing on $X$.
(51) $h$ is decreasing on $X$ if and only if $h \upharpoonright X$ is decreasing on $X$.
(52) $h$ is non-decreasing on $X$ if and only if $h \upharpoonright X$ is non-decreasing on $X$.
(53) $\quad h$ is non-increasing on $X$ if and only if $h \upharpoonright X$ is non-increasing on $X$.
(54) If $Y \cap \operatorname{dom} h=\emptyset$, then $h$ is increasing on $Y$ and $h$ is decreasing on $Y$ and $h$ is non-decreasing on $Y$ and $h$ is non-increasing on $Y$ and $h$ is monotone on $Y$.
(55) If $h$ is increasing on $Y$, then $h$ is non-decreasing on $Y$.
(56) If $h$ is decreasing on $Y$, then $h$ is non-increasing on $Y$.
(57) If $h$ is a constant on $Y$, then $h$ is non-decreasing on $Y$.
(58) If $h$ is a constant on $Y$, then $h$ is non-increasing on $Y$.
(59) If $h$ is non-decreasing on $Y$ and $h$ is non-increasing on $X$, then $h$ is a constant on $Y \cap X$.
(60) If $X \subseteq Y$ and $h$ is increasing on $Y$, then $h$ is increasing on $X$.
(61) If $X \subseteq Y$ and $h$ is decreasing on $Y$, then $h$ is decreasing on $X$.
(62) If $X \subseteq Y$ and $h$ is non-decreasing on $Y$, then $h$ is non-decreasing on $X$.
(63) If $X \subseteq Y$ and $h$ is non-increasing on $Y$, then $h$ is non-increasing on $X$.
(64) If $h$ is increasing on $Y$ and $0<r$, then $r \diamond h$ is increasing on $Y$ but if $r=0$, then $r \diamond h$ is a constant on $Y$ but if $h$ is increasing on $Y$ and $r<0$, then $r \diamond h$ is decreasing on $Y$.
(65) If $h$ is decreasing on $Y$ and $0<r$, then $r \diamond h$ is decreasing on $Y$ but if $h$ is decreasing on $Y$ and $r<0$, then $r \diamond h$ is increasing on $Y$.
(66) If $h$ is non-decreasing on $Y$ and $0 \leq r$, then $r \diamond h$ is non-decreasing on $Y$ but if $h$ is non-decreasing on $Y$ and $r \leq 0$, then $r \diamond h$ is non-increasing on $Y$.
(67) If $h$ is non-increasing on $Y$ and $0 \leq r$, then $r \diamond h$ is non-increasing on $Y$ but if $h$ is non-increasing on $Y$ and $r \leq 0$, then $r \diamond h$ is non-decreasing on $Y$.
(68) If $r \in(X \cap Y) \cap \operatorname{dom}\left(h_{1}+h_{2}\right)$, then $r \in X \cap \operatorname{dom} h_{1}$ and $r \in Y \cap \operatorname{dom} h_{2}$.
(69) (i) If $h_{1}$ is increasing on $X$ and $h_{2}$ is increasing on $Y$, then $h_{1}+h_{2}$ is increasing on $X \cap Y$,
(ii) if $h_{1}$ is decreasing on $X$ and $h_{2}$ is decreasing on $Y$, then $h_{1}+h_{2}$ is decreasing on $X \cap Y$,
(iii) if $h_{1}$ is non-decreasing on $X$ and $h_{2}$ is non-decreasing on $Y$, then $h_{1}+h_{2}$ is non-decreasing on $X \cap Y$,
(iv) if $h_{1}$ is non-increasing on $X$ and $h_{2}$ is non-increasing on $Y$, then $h_{1}+h_{2}$ is non-increasing on $X \cap Y$.
(70) If $h_{1}$ is increasing on $X$ and $h_{2}$ is a constant on $Y$, then $h_{1}+h_{2}$ is increasing on $X \cap Y$ but if $h_{1}$ is decreasing on $X$ and $h_{2}$ is a constant on $Y$, then $h_{1}+h_{2}$ is decreasing on $X \cap Y$.
(71) If $h_{1}$ is increasing on $X$ and $h_{2}$ is non-decreasing on $Y$, then $h_{1}+h_{2}$ is increasing on $X \cap Y$.
(72) If $h_{1}$ is non-increasing on $X$ and $h_{2}$ is a constant on $Y$, then $h_{1}+h_{2}$ is non-increasing on $X \cap Y$.
(73) If $h_{1}$ is decreasing on $X$ and $h_{2}$ is non-increasing on $Y$, then $h_{1}+h_{2}$ is decreasing on $X \cap Y$.
(74) If $h_{1}$ is non-decreasing on $X$ and $h_{2}$ is a constant on $Y$, then $h_{1}+h_{2}$ is non-decreasing on $X \cap Y$.
(75) $h$ is increasing on $\{x\}$.
(76) $h$ is decreasing on $\{x\}$.
(77) $h$ is non-decreasing on $\{x\}$.
(78) $h$ is non-increasing on $\{x\}$.
(79) $\quad \operatorname{id}_{R}$ is increasing on $R$.
(80) If $h$ is increasing on $X$, then $-h$ is decreasing on $X$.
(81) If $h$ is non-decreasing on $X$, then $-h$ is non-increasing on $X$.
(82) If $h$ is increasing on $[p, g]$ or $h$ is decreasing on $[p, g]$, then $h \upharpoonright[p, g]$ is one-to-one.
(83) If $h$ is increasing on $[p, g]$, then $(h \upharpoonright[p, g])^{-1}$ is increasing on $h^{\circ}[p, g]$.
(84) If $h$ is decreasing on $[p, g]$, then $(h \upharpoonright[p, g])^{-1}$ is decreasing on $h^{\circ}[p, g]$.

## References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[5] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[6] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[7] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received June 18, 1990

# Real Function Continuity 

Konrad Raczkowski<br>Warsaw University<br>Białystok

Paweł Sadowski<br>Warsaw University<br>Białystok


#### Abstract

Summary. The continuity of real functions is discussed. There is a function defined on some domain in real numbers which is continuous in a single point and on a subset of domain of the function. Main properties of real continuous functions are proved. Among them there is the Weierstraß Theorem. Algebraic features for real continuous functions are shown. Lipschitzian functions are introduced. The Lipschitz condition entails continuity.


MML Identifier: FCONT_1.

The papers [11], [2], [9], [8], [4], [3], [12], [1], [5], [6], [7], and [10] provide the terminology and notation for this paper. For simplicity we adopt the following rules: $n$ is a natural number, $X, X_{1}, Z, Z_{1}$ are sets, $s, g, r, p, x_{0}, x_{1}, x_{2}$ are real numbers, $s_{1}$ is a sequence of real numbers, $Y$ is a subset of $\mathbb{R}$, and $f, f_{1}$, $f_{2}$ are partial functions from $\mathbb{R}$ to $\mathbb{R}$. Let us consider $f, x_{0}$. We say that $f$ is continuous in $x_{0}$ if and only if:
$x_{0} \in \operatorname{dom} f$ and for every $s_{1}$ such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and $s_{1}$ is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f\left(x_{0}\right)=\lim \left(f \cdot s_{1}\right)$.

Next we state a number of propositions:
(1) For all $f, x_{0}$ holds $f$ is continuous in $x_{0}$ if and only if $x_{0} \in \operatorname{dom} f$ and for every $s_{1}$ such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and $s_{1}$ is convergent and $\lim s_{1}=x_{0}$ holds $f \cdot s_{1}$ is convergent and $f\left(x_{0}\right)=\lim \left(f \cdot s_{1}\right)$.
(2) $\quad f$ is continuous in $x_{0}$ if and only if $x_{0} \in \operatorname{dom} f$ and for every $s_{1}$ such that $\operatorname{rng} s_{1} \subseteq \operatorname{dom} f$ and $s_{1}$ is convergent and $\lim s_{1}=x_{0}$ and for every $n$ holds $s_{1}(n) \neq x_{0}$ holds $f \cdot s_{1}$ is convergent and $f\left(x_{0}\right)=\lim \left(f \cdot s_{1}\right)$.
(3) $\quad f$ is continuous in $x_{0}$ if and only if $x_{0} \in \operatorname{dom} f$ and for every $r$ such that $0<r$ there exists $s$ such that $0<s$ and for every $x_{1}$ such that $x_{1} \in \operatorname{dom} f$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left|f\left(x_{1}\right)-f\left(x_{0}\right)\right|<r$.

[^28](4) For all $f, x_{0}$ holds $f$ is continuous in $x_{0}$ if and only if $x_{0} \in \operatorname{dom} f$ and for every neighbourhood $N_{1}$ of $f\left(x_{0}\right)$ there exists a neighbourhood $N$ of $x_{0}$ such that for every $x_{1}$ such that $x_{1} \in \operatorname{dom} f$ and $x_{1} \in N$ holds $f\left(x_{1}\right) \in N_{1}$.
(5) For all $f, x_{0}$ holds $f$ is continuous in $x_{0}$ if and only if $x_{0} \in \operatorname{dom} f$ and for every neighbourhood $N_{1}$ of $f\left(x_{0}\right)$ there exists a neighbourhood $N$ of $x_{0}$ such that $f^{\circ} N \subseteq N_{1}$.
(6) If $x_{0} \in \operatorname{dom} f$ and there exists a neighbourhood $N$ of $x_{0}$ such that dom $f \cap N=\left\{x_{0}\right\}$, then $f$ is continuous in $x_{0}$.
(7) If $f_{1}$ is continuous in $x_{0}$ and $f_{2}$ is continuous in $x_{0}$, then $f_{1}+f_{2}$ is continuous in $x_{0}$ and $f_{1}-f_{2}$ is continuous in $x_{0}$ and $f_{1} \diamond f_{2}$ is continuous in $x_{0}$.
(8) If $f$ is continuous in $x_{0}$, then $r \diamond f$ is continuous in $x_{0}$.
(9) If $f$ is continuous in $x_{0}$, then $|f|$ is continuous in $x_{0}$ and $-f$ is continuous in $x_{0}$.
(10) If $f$ is continuous in $x_{0}$ and $f\left(x_{0}\right) \neq 0$, then $\frac{1}{f}$ is continuous in $x_{0}$.
(11) If $f_{1}$ is continuous in $x_{0}$ and $f_{1}\left(x_{0}\right) \neq 0$ and $f_{2}$ is continuous in $x_{0}$, then $\frac{f_{2}}{f_{1}}$ is continuous in $x_{0}$.
(12) If $f_{1}$ is continuous in $x_{0}$ and $f_{2}$ is continuous in $f_{1}\left(x_{0}\right)$, then $f_{2} \cdot f_{1}$ is continuous in $x_{0}$.
Let us consider $f, X$. We say that $f$ is continuous on $X$ if and only if:
$X \subseteq \operatorname{dom} f$ and for every $x_{0}$ such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in $x_{0}$.

One can prove the following propositions:
(13) For all $f, X$ holds $f$ is continuous on $X$ if and only if $X \subseteq \operatorname{dom} f$ and for every $x_{0}$ such that $x_{0} \in X$ holds $f \upharpoonright X$ is continuous in $x_{0}$.
(14) For all $X, f$ holds $f$ is continuous on $X$ if and only if $X \subseteq \operatorname{dom} f$ and for every $s_{1}$ such that $\operatorname{rng} s_{1} \subseteq X$ and $s_{1}$ is convergent and $\lim s_{1} \in X$ holds $f \cdot s_{1}$ is convergent and $f\left(\lim s_{1}\right)=\lim \left(f \cdot s_{1}\right)$.
(15) $\quad f$ is continuous on $X$ if and only if $X \subseteq \operatorname{dom} f$ and for all $x_{0}, r$ such that $x_{0} \in X$ and $0<r$ there exists $s$ such that $0<s$ and for every $x_{1}$ such that $x_{1} \in X$ and $\left|x_{1}-x_{0}\right|<s$ holds $\left|f\left(x_{1}\right)-f\left(x_{0}\right)\right|<r$.
(16) $\quad f$ is continuous on $X$ if and only if $f \upharpoonright X$ is continuous on $X$.

If $f$ is continuous on $X$ and $X_{1} \subseteq X$, then $f$ is continuous on $X_{1}$.
If $x_{0} \in \operatorname{dom} f$, then $f$ is continuous on $\left\{x_{0}\right\}$.
For all $X, f_{1}, f_{2}$ such that $f_{1}$ is continuous on $X$ and $f_{2}$ is continuous on $X$ holds $f_{1}+f_{2}$ is continuous on $X$ and $f_{1}-f_{2}$ is continuous on $X$ and $f_{1} \diamond f_{2}$ is continuous on $X$.
(20) For all $X, X_{1}, f_{1}, f_{2}$ such that $f_{1}$ is continuous on $X$ and $f_{2}$ is continuous on $X_{1}$ holds $f_{1}+f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1}-f_{2}$ is continuous on $X \cap X_{1}$ and $f_{1} \diamond f_{2}$ is continuous on $X \cap X_{1}$.
(21) For all $r, X, f$ such that $f$ is continuous on $X$ holds $r \diamond f$ is continuous on $X$.
(22) If $f$ is continuous on $X$, then $|f|$ is continuous on $X$ and $-f$ is continuous on $X$.
(23) If $f$ is continuous on $X$ and $f^{-1}\{0\}=\emptyset$, then $\frac{1}{f}$ is continuous on $X$.
(24) If $f$ is continuous on $X$ and $(f \upharpoonright X)^{-1}\{0\}=\emptyset$, then $\frac{1}{f}$ is continuous on $X$.
(25) If $f_{1}$ is continuous on $X$ and $f_{1}^{-1}\{0\}=\emptyset$ and $f_{2}$ is continuous on $X$, then $\frac{f_{2}}{f_{1}}$ is continuous on $X$.
(26) If $f_{1}$ is continuous on $X$ and $f_{2}$ is continuous on $f_{1}{ }^{\circ} X$, then $f_{2} \cdot f_{1}$ is continuous on $X$.
(27) If $f_{1}$ is continuous on $X$ and $f_{2}$ is continuous on $X_{1}$, then $f_{2} \cdot f_{1}$ is continuous on $X \cap f_{1}^{-1} X_{1}$.
(28) If $f$ is total and for all $x_{1}, x_{2}$ holds $f\left(x_{1}+x_{2}\right)=f\left(x_{1}\right)+f\left(x_{2}\right)$ and there exists $x_{0}$ such that $f$ is continuous in $x_{0}$, then $f$ is continuous on $\mathbb{R}$.
(29) For every $f$ such that $\operatorname{dom} f$ is compact and $f$ is continuous on $\operatorname{dom} f$ holds $\operatorname{rng} f$ is compact.
(30) If $Y \subseteq \operatorname{dom} f$ and $Y$ is compact and $f$ is continuous on $Y$, then $f^{\circ} Y$ is compact.
(31) For every $f$ such that $\operatorname{dom} f \neq \emptyset$ and $\operatorname{dom} f$ is compact and $f$ is continuous on $\operatorname{dom} f$ there exist $x_{1}, x_{2}$ such that $x_{1} \in \operatorname{dom} f$ and $x_{2} \in \operatorname{dom} f$ and $f\left(x_{1}\right)=\sup (\operatorname{rng} f)$ and $f\left(x_{2}\right)=\inf (\operatorname{rng} f)$.
(32) For all $f, Y$ such that $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and $Y$ is compact and $f$ is continuous on $Y$ there exist $x_{1}, x_{2}$ such that $x_{1} \in Y$ and $x_{2} \in Y$ and $f\left(x_{1}\right)=\sup \left(f^{\circ} Y\right)$ and $f\left(x_{2}\right)=\inf \left(f^{\circ} Y\right)$.
Let us consider $f, X$. We say that $f$ is Lipschitzian on $X$ if and only if:
$X \subseteq \operatorname{dom} f$ and there exists $r$ such that $0<r$ and for all $x_{1}, x_{2}$ such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq r \cdot\left|x_{1}-x_{2}\right|$.

One can prove the following propositions:
(33) For every $f$ holds $f$ is Lipschitzian on $X$ if and only if $X \subseteq \operatorname{dom} f$ and there exists $r$ such that $0<r$ and for all $x_{1}, x_{2}$ such that $x_{1} \in X$ and $x_{2} \in X$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq r \cdot\left|x_{1}-x_{2}\right|$.
(34) If $f$ is Lipschitzian on $X$ and $X_{1} \subseteq X$, then $f$ is Lipschitzian on $X_{1}$.
(35) If $f_{1}$ is Lipschitzian on $X$ and $f_{2}$ is Lipschitzian on $X_{1}$, then $f_{1}+f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(36) If $f_{1}$ is Lipschitzian on $X$ and $f_{2}$ is Lipschitzian on $X_{1}$, then $f_{1}-f_{2}$ is Lipschitzian on $X \cap X_{1}$.
(37) If $f_{1}$ is Lipschitzian on $X$ and $f_{2}$ is Lipschitzian on $X_{1}$ and $f_{1}$ is bounded on $Z$ and $f_{2}$ is bounded on $Z_{1}$, then $f_{1} \diamond f_{2}$ is Lipschitzian on $((X \cap Z) \cap$ $\left.X_{1}\right) \cap Z_{1}$.
(38) If $f$ is Lipschitzian on $X$, then $p \diamond f$ is Lipschitzian on $X$.
(39) If $f$ is Lipschitzian on $X$, then $-f$ is Lipschitzian on $X$ and $|f|$ is Lipschitzian on $X$.
(40) If $X \subseteq \operatorname{dom} f$ and $f$ is a constant on $X$, then $f$ is Lipschitzian on $X$.
(41) $\operatorname{id}_{Y}$ is Lipschitzian on $Y$.
(42) If $f$ is Lipschitzian on $X$, then $f$ is continuous on $X$.
(43) For every $f$ such that there exists $r$ such that $\operatorname{rng} f=\{r\}$ holds $f$ is continuous on $\operatorname{dom} f$.
(44) If $X \subseteq \operatorname{dom} f$ and $f$ is a constant on $X$, then $f$ is continuous on $X$.
(45) For every $f$ such that for every $x_{0}$ such that $x_{0} \in \operatorname{dom} f$ holds $f\left(x_{0}\right)=$ $x_{0}$ holds $f$ is continuous on $\operatorname{dom} f$.
(46) If $f=\operatorname{id}_{\operatorname{dom} f}$, then $f$ is continuous on $\operatorname{dom} f$.
(47) If $Y \subseteq \operatorname{dom} f$ and $f \upharpoonright Y=\operatorname{id}_{Y}$, then $f$ is continuous on $Y$.
(48) If $X \subseteq \operatorname{dom} f$ and for every $x_{0}$ such that $x_{0} \in X$ holds $f\left(x_{0}\right)=r \cdot x_{0}+p$, then $f$ is continuous on $X$.
(49) If for every $x_{0}$ such that $x_{0} \in \operatorname{dom} f$ holds $f\left(x_{0}\right)=x_{0}{ }^{2}$, then $f$ is continuous on $\operatorname{dom} f$.
(50) If $X \subseteq \operatorname{dom} f$ and for every $x_{0}$ such that $x_{0} \in X$ holds $f\left(x_{0}\right)=x_{0}{ }^{2}$, then $f$ is continuous on $X$.
(51) If for every $x_{0}$ such that $x_{0} \in \operatorname{dom} f$ holds $f\left(x_{0}\right)=\left|x_{0}\right|$, then $f$ is continuous on $\operatorname{dom} f$.
(52) If $X \subseteq \operatorname{dom} f$ and for every $x_{0}$ such that $x_{0} \in X$ holds $f\left(x_{0}\right)=\left|x_{0}\right|$, then $f$ is continuous on $X$.
(53) If $X \subseteq \operatorname{dom} f$ and $f$ is monotone on $X$ and there exist $p, g$ such that $p \leq g$ and $f^{\circ} X=[p, g]$, then $f$ is continuous on $X$.
(54) If $p \leq g$ and $[p, g] \subseteq \operatorname{dom} f$ but $f$ is increasing on $[p, g]$ or $f$ is decreasing on $[p, g]$, then $(f \upharpoonright[p, g])^{-1}$ is continuous on $f^{\circ}[p, g]$.

## References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[4] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[5] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received June 18, 1990

# Real Function Uniform Continuity ${ }^{1}$ 

Jarosław Kotowicz<br>Warsaw University<br>Białystok

Konrad Raczkowski<br>Warsaw University<br>Białystok


#### Abstract

Summary. The uniform continuity for real functions is introduced. More theorems concerning continuous functions are given. (See [10]) The Darboux Theorem is exposed. Algebraic features for uniformly continuous functions are presented. Various facts, e.g., a continuous function on a compact set is uniformly continuous are proved.


MML Identifier: FCONT_2.

The notation and terminology used in this paper have been introduced in the following articles: [12], [13], [3], [1], [9], [8], [4], [2], [5], [6], [7], [11], and [10]. For simplicity we adopt the following convention: $X, X_{1}, Z, Z_{1}$ are sets, $s, g, r, p$, $x_{1}, x_{2}$ are real numbers, $Y$ is a subset of $\mathbb{R}$, and $f, f_{1}, f_{2}$ are partial functions from $\mathbb{R}$ to $\mathbb{R}$. Let us consider $f, X$. We say that $f$ is uniformly continuous on $X$ if and only if:
$X \subseteq \operatorname{dom} f$ and for every $r$ such that $0<r$ there exists $s$ such that $0<s$ and for all $x_{1}, x_{2}$ such that $x_{1} \in X$ and $x_{2} \in X$ and $\left|x_{1}-x_{2}\right|<s$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<r$.

We now state a number of propositions:
(1) Given $f, X$. Then $f$ is uniformly continuous on $X$ if and only if $X \subseteq$ dom $f$ and for every $r$ such that $0<r$ there exists $s$ such that $0<s$ and for all $x_{1}, x_{2}$ such that $x_{1} \in X$ and $x_{2} \in X$ and $\left|x_{1}-x_{2}\right|<s$ holds $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right|<r$.
(2) If $f$ is uniformly continuous on $X$ and $X_{1} \subseteq X$, then $f$ is uniformly continuous on $X_{1}$.
(3) If $f_{1}$ is uniformly continuous on $X$ and $f_{2}$ is uniformly continuous on $X_{1}$, then $f_{1}+f_{2}$ is uniformly continuous on $X \cap X_{1}$.
(4) If $f_{1}$ is uniformly continuous on $X$ and $f_{2}$ is uniformly continuous on $X_{1}$, then $f_{1}-f_{2}$ is uniformly continuous on $X \cap X_{1}$.

[^29](5) If $f$ is uniformly continuous on $X$, then $p \diamond f$ is uniformly continuous on $X$.
(6) If $f$ is uniformly continuous on $X$, then $-f$ is uniformly continuous on $X$.
(7) If $f$ is uniformly continuous on $X$, then $|f|$ is uniformly continuous on $X$.
(8) If $f_{1}$ is uniformly continuous on $X$ and $f_{2}$ is uniformly continuous on $X_{1}$ and $f_{1}$ is bounded on $Z$ and $f_{2}$ is bounded on $Z_{1}$, then $f_{1} \diamond f_{2}$ is uniformly continuous on $\left((X \cap Z) \cap X_{1}\right) \cap Z_{1}$.
(9) If $f$ is uniformly continuous on $X$, then $f$ is continuous on $X$.
(10) If $f$ is Lipschitzian on $X$, then $f$ is uniformly continuous on $X$.
(11) For all $f, Y$ such that $Y$ is compact and $f$ is continuous on $Y$ holds $f$ is uniformly continuous on $Y$.
(12) For every $f$ such that $\operatorname{dom} f$ is compact and $f$ is continuous on $\operatorname{dom} f$ holds $f$ is uniformly continuous on $\operatorname{dom} f$.
(13) If $Y \subseteq \operatorname{dom} f$ and $Y$ is compact and $f$ is uniformly continuous on $Y$, then $f^{\circ} Y$ is compact.
(14) For all $f, Y$ such that $Y \neq \emptyset$ and $Y \subseteq \operatorname{dom} f$ and $Y$ is compact and $f$ is uniformly continuous on $Y$ there exist $x_{1}, x_{2}$ such that $x_{1} \in Y$ and $x_{2} \in Y$ and $f\left(x_{1}\right)=\sup \left(f^{\circ} Y\right)$ and $f\left(x_{2}\right)=\inf \left(f^{\circ} Y\right)$.
(15) If $X \subseteq \operatorname{dom} f$ and $f$ is a constant on $X$, then $f$ is uniformly continuous on $X$.
(16) If $p \leq g$ and $f$ is continuous on $[p, g]$, then for every $r$ such that $r \in$ $[f(p), f(g)] \cup[f(g), f(p)]$ there exists $s$ such that $s \in[p, g]$ and $r=f(s)$.
(17) If $p \leq g$ and $f$ is continuous on $[p, g]$, then for every $r$ such that $r \in$ $\left[\inf \left(f^{\circ}[p, g]\right), \sup \left(f^{\circ}[p, g]\right)\right]$ there exists $s$ such that $s \in[p, g]$ and $r=f(s)$.
(18) If $f$ is one-to-one and $p \leq g$ and $f$ is continuous on $[p, g]$, then $f$ is increasing on $[p, g]$ or $f$ is decreasing on $[p, g]$.
(19) Suppose $f$ is one-to-one and $p \leq g$ and $f$ is continuous on $[p, g]$. Then $\inf \left(f^{\circ}[p, g]\right)=f(p)$ and $\sup \left(f^{\circ}[p, g]\right)=f(g)$ or $\inf \left(f^{\circ}[p, g]\right)=f(g)$ and $\sup \left(f^{\circ}[p, g]\right)=f(p)$.
(20) If $p \leq g$ and $f$ is continuous on $[p, g]$, then $f^{\circ}[p, g]=\left[\inf \left(f^{\circ}[p, g]\right), \sup \left(f^{\circ}\right.\right.$ $[p, g])]$.
(21) If $f$ is one-to-one and $p \leq g$ and $f$ is continuous on $[p, g]$, then $f^{-1}$ is continuous on $\left[\inf \left(f^{\circ}[p, g]\right), \sup \left(f^{\circ}[p, g]\right)\right]$.

## References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[5] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[11] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, $1(1): 67-71,1990$.

Received June 18, 1990

# Real Function Differentiability ${ }^{1}$ 

Konrad Raczkowski<br>Warsaw University<br>Białystok

Paweł Sadowski<br>Warsaw University<br>Białystok


#### Abstract

Summary. For a real valued function defined on its domain in real numbers the differentiability in a single point and on a subset of the domain is presented. The main elements of differential calculus are developed. The algebraic properties of differential real functions are shown.


MML Identifier: FDIFF_1.

The terminology and notation used here have been introduced in the following articles: [11], [2], [8], [3], [4], [1], [5], [6], [7], [10], and [9]. For simplicity we follow the rules: $x, x_{0}, r, p$ will be real numbers, $n$ will be a natural number, $Y$ will be a subset of $\mathbb{R}, Z$ will be a real open subset, $X$ will be a set, $s_{1}$ will be a sequence of real numbers, and $f, f_{1}, f_{2}$ will be partial functions from $\mathbb{R}$ to $\mathbb{R}$. We now state the proposition
(1) For every $r$ holds $r \in Y$ if and only if $r \in \mathbb{R}$ if and only if $Y=\mathbb{R}$.

A sequence of real numbers is called a real sequence convergent to 0 if:
it is non-zero and it is convergent and $\lim$ it $=0$.
The following proposition is true
(2) For every $s_{1}$ holds $s_{1}$ is a real sequence convergent to 0 if and only if $s_{1}$ is non-zero and $s_{1}$ is convergent and $\lim s_{1}=0$.
A sequence of real numbers is called a constant real sequence if:
it is constant.
We now state the proposition
(3) For every $s_{1}$ holds $s_{1}$ is a constant real sequence if and only if $s_{1}$ is constant.
In the sequel $h$ will be a real sequence convergent to 0 and $c$ will be a constant real sequence. A partial function from $\mathbb{R}$ to $\mathbb{R}$ is called a rest if:

[^30]it is total and for every $h$ holds $h^{-1} \diamond(\mathrm{it} \cdot h)$ is convergent and $\lim \left(h^{-1} \diamond(\mathrm{it} \cdot h)\right)=$ 0.

One can prove the following proposition
(4) For every $f$ holds $f$ is a rest if and only if $f$ is total and for every $h$ holds $h^{-1} \diamond(f \cdot h)$ is convergent and $\lim \left(h^{-1} \diamond(f \cdot h)\right)=0$.
A partial function from $\mathbb{R}$ to $\mathbb{R}$ is called a linear function if:
it is total and there exists $r$ such that for every $p$ holds it $(p)=r \cdot p$.
The following proposition is true
(5) For every $f$ holds $f$ is a linear function if and only if $f$ is total and there exists $r$ such that for every $p$ holds $f(p)=r \cdot p$.
We follow the rules: $R, R_{1}, R_{2}$ are rests and $L, L_{1}, L_{2}$ are linear functions. We now state several propositions:
(6) For all $L_{1}, L_{2}$ holds $L_{1}+L_{2}$ is a linear function and $L_{1}-L_{2}$ is a linear function.
(7) For all $r, L$ holds $r \diamond L$ is a linear function.
(8) For all $R_{1}, R_{2}$ holds $R_{1}+R_{2}$ is a rest and $R_{1}-R_{2}$ is a rest and $R_{1} \diamond R_{2}$ is a rest.
(9) For all $r, R$ holds $r \diamond R$ is a rest.
(10) $L_{1} \diamond L_{2}$ is a rest.
(11) $R \diamond L$ is a rest and $L \diamond R$ is a rest.

Let us consider $f, x_{0}$. We say that $f$ is differentiable in $x_{0}$ if and only if:
there exists a neighbourhood $N$ of $x_{0}$ such that $N \subseteq \operatorname{dom} f$ and there exist $L, R$ such that for every $x$ such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+$ $R\left(x-x_{0}\right)$.

The following proposition is true
(12) For all $f, x_{0}$ holds $f$ is differentiable in $x_{0}$ if and only if there exists a neighbourhood $N$ of $x_{0}$ such that $N \subseteq \operatorname{dom} f$ and there exist $L, R$ such that for every $x$ such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let us consider $f, x_{0}$. Let us assume that $f$ is differentiable in $x_{0}$. The functor $f^{\prime}\left(x_{0}\right)$ yields a real number and is defined as follows:
there exists a neighbourhood $N$ of $x_{0}$ such that $N \subseteq \operatorname{dom} f$ and there exist $L$, $R$ such that $f^{\prime}\left(x_{0}\right)=L(1)$ and for every $x$ such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=$ $L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.

The following proposition is true
(13) Given $r, f, x_{0}$. Suppose $f$ is differentiable in $x_{0}$. Then $r=f^{\prime}\left(x_{0}\right)$ if and only if there exists a neighbourhood $N$ of $x_{0}$ such that $N \subseteq \operatorname{dom} f$ and there exist $L, R$ such that $r=L(1)$ and for every $x$ such that $x \in N$ holds $f(x)-f\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let us consider $f, X$. We say that $f$ is differentiable on $X$ if and only if:
$X \subseteq \operatorname{dom} f$ and for every $x$ such that $x \in X$ holds $f \upharpoonright X$ is differentiable in $x$.

The following four propositions are true:
(17) If $f$ is differentiable on $Y$, then $Y$ is open.

Let us consider $f, X$. Let us assume that $f$ is differentiable on $X$. The functor $f_{\mid X}^{\prime}$ yielding a partial function from $\mathbb{R}$ to $\mathbb{R}$ is defined by:
$\operatorname{dom}\left(f_{\lceil X}^{\prime}\right)=X$ and for every $x$ such that $x \in X$ holds $\left(f_{\mid X}^{\prime}\right)(x)=f^{\prime}(x)$.
One can prove the following two propositions:
(18) For all $f, X$ and for every partial function $F$ from $\mathbb{R}$ to $\mathbb{R}$ such that $f$ is differentiable on $X$ holds $F=f_{\mid X}^{\prime}$ if and only if $\operatorname{dom} F=X$ and for every $x$ such that $x \in X$ holds $F(x)=f^{\prime}(x)$.
(19) For all $f, Z$ such that $Z \subseteq \operatorname{dom} f$ and there exists $r$ such that $\operatorname{rng} f=$ $\{r\}$ holds $f$ is differentiable on $Z$ and for every $x$ such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)(x)=0$.
Let us consider $h, n$. Then $h^{\wedge} n$ is a real sequence convergent to 0 .
Let us consider $c, n$. Then $c^{\wedge} n$ is a constant real sequence.
Next we state a number of propositions:
(20) Given $f, x_{0}$. Let $N$ be a neighbourhood of $x_{0}$. Suppose $f$ is differentiable in $x_{0}$ and $N \subseteq \operatorname{dom} f$. Then for all $h, c$ such that $\operatorname{rng} c=\left\{x_{0}\right\}$ and $\operatorname{rng}(h+c) \subseteq N$ holds $h^{-1} \diamond(f \cdot(h+c)-f \cdot c)$ is convergent and $f^{\prime}\left(x_{0}\right)=\lim \left(h^{-1} \diamond(f \cdot(h+c)-f \cdot c)\right)$.
(21) For all $f_{1}, f_{2}, x_{0}$ such that $f_{1}$ is differentiable in $x_{0}$ and $f_{2}$ is differentiable in $x_{0}$ holds $f_{1}+f_{2}$ is differentiable in $x_{0}$ and $\left(f_{1}+f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{1}^{\prime}\left(x_{0}\right)+f_{2}^{\prime}\left(x_{0}\right)$.
(22) For all $f_{1}, f_{2}, x_{0}$ such that $f_{1}$ is differentiable in $x_{0}$ and $f_{2}$ is differentiable in $x_{0}$ holds $f_{1}-f_{2}$ is differentiable in $x_{0}$ and $\left(f_{1}-f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{1}^{\prime}\left(x_{0}\right)-f_{2}^{\prime}\left(x_{0}\right)$.
(23) For all $r, f, x_{0}$ such that $f$ is differentiable in $x_{0}$ holds $r \diamond f$ is differentiable in $x_{0}$ and $(r \diamond f)^{\prime}\left(x_{0}\right)=r \cdot\left(f^{\prime}\left(x_{0}\right)\right)$.
(24) For all $f_{1}, f_{2}, x_{0}$ such that $f_{1}$ is differentiable in $x_{0}$ and $f_{2}$ is differentiable in $x_{0}$ holds $f_{1} \diamond f_{2}$ is differentiable in $x_{0}$ and $\left(f_{1} \diamond f_{2}\right)^{\prime}\left(x_{0}\right)=$ $f_{2}\left(x_{0}\right) \cdot\left(f_{1}^{\prime}\left(x_{0}\right)\right)+f_{1}\left(x_{0}\right) \cdot\left(f_{2}^{\prime}\left(x_{0}\right)\right)$.
(25) For all $f, Z$ such that $Z \subseteq \operatorname{dom} f$ and $f \upharpoonright Z=\operatorname{id}_{Z}$ holds $f$ is differentiable on $Z$ and for every $x$ such that $x \in Z$ holds $\left(f_{\mid}^{\prime}\right)(x)=1$.
(26) For all $f_{1}, f_{2}, Z$ such that $Z \subseteq \operatorname{dom}\left(f_{1}+f_{2}\right)$ and $f_{1}$ is differentiable on $Z$ and $f_{2}$ is differentiable on $Z$ holds $f_{1}+f_{2}$ is differentiable on $Z$ and for every $x$ such that $x \in Z$ holds $\left(\left(f_{1}+f_{2}\right)_{\vdash Z}^{\prime}\right)(x)=f_{1}^{\prime}(x)+f_{2}^{\prime}(x)$.
For all $f_{1}, f_{2}, Z$ such that $Z \subseteq \operatorname{dom}\left(f_{1}-f_{2}\right)$ and $f_{1}$ is differentiable on $Z$ and $f_{2}$ is differentiable on $Z$ holds $f_{1}-f_{2}$ is differentiable on $Z$ and for every $x$ such that $x \in Z$ holds $\left(\left(f_{1}-f_{2}\right)^{\prime} Z\right)(x)=f_{1}^{\prime}(x)-f_{2}^{\prime}(x)$.
(28) For all $r, f, Z$ such that $Z \subseteq \operatorname{dom}(r \diamond f)$ and $f$ is differentiable on $Z$ holds $r \diamond f$ is differentiable on $Z$ and for every $x$ such that $x \in Z$ holds $\left((r \diamond f)^{\prime} Z\right)(x)=r \cdot\left(f^{\prime}(x)\right)$.
(29) Given $f_{1}, f_{2}, Z$. Then if $Z \subseteq \operatorname{dom}\left(f_{1} \diamond f_{2}\right)$ and $f_{1}$ is differentiable on $Z$ and $f_{2}$ is differentiable on $Z$, then $f_{1} \diamond f_{2}$ is differentiable on $Z$ and for every $x$ such that $x \in Z$ holds $\left(\left(f_{1} \diamond f_{2}\right)^{\prime}{ }_{Z}\right)(x)=f_{2}(x) \cdot\left(f_{1}^{\prime}(x)\right)+f_{1}(x) \cdot\left(f_{2}^{\prime}(x)\right)$.
(30) If $Z \subseteq \operatorname{dom} f$ and $f$ is a constant on $Z$, then $f$ is differentiable on $Z$ and for every $x$ such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)(x)=0$.
(31) If $Z \subseteq \operatorname{dom} f$ and for every $x$ such that $x \in Z$ holds $f(x)=r \cdot x+p$, then $f$ is differentiable on $Z$ and for every $x$ such that $x \in Z$ holds $\left(f_{\mid Z}^{\prime}\right)(x)=r$.
(32) If $f$ is differentiable in $x_{0}$, then $f$ is continuous in $x_{0}$.
(33) If $f$ is differentiable on $X$, then $f$ is continuous on $X$.
(34) If $f$ is differentiable on $X$ and $Z \subseteq X$, then $f$ is differentiable on $Z$.
(35) If $f$ is differentiable in $x_{0}$, then there exists $R$ such that $R(0)=0$ and $R$ is continuous in 0 .

## References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[4] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[5] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[7] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, 1(4):781-786, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received June 18, 1990

# Average Value Theorems for Real Functions of One Variable ${ }^{1}$ 

Jarosław Kotowicz<br>Warsaw University<br>Białystok

Konrad Raczkowski<br>Warsaw University<br>Białystok

Paweł Sadowski
Warsaw University
Białystok


#### Abstract

Summary. Three basic theorems in differential calculus of one variable functions are presented: Rolle Theorem, Lagrange Theorem and Cauchy Theorem. There are also direct conclusions.


MML Identifier: ROLLE.

The terminology and notation used here have been introduced in the following papers: [2], [1], [3], [4], [5], [8], [6], and [7]. We adopt the following rules: $g$, $r, s, p, t, x, x_{0}, x_{1}$ will denote real numbers and $f, f_{1}, f_{2}$ will denote partial functions from $\mathbb{R}$ to $\mathbb{R}$. We now state a number of propositions:
(1) For all $p, g$ such that $p<g$ for every $f$ such that $f$ is continuous on [ $p, g]$ and $f(p)=f(g)$ and $f$ is differentiable on $] p, g\left[\right.$ there exists $x_{0}$ such that $\left.x_{0} \in\right] p, g\left[\right.$ and $f^{\prime}\left(x_{0}\right)=0$.
(2) Given $x, t$. Suppose $0<t$. Then for every $f$ such that $f$ is continuous on $[x, x+t]$ and $f(x)=f(x+t)$ and $f$ is differentiable on $] x, x+t[$ there exists $s$ such that $0<s$ and $s<1$ and $f^{\prime}(x+s \cdot t)=0$.
(3) For all $p, g$ such that $p<g$ for every $f$ such that $f$ is continuous on [ $p, g]$ and $f$ is differentiable on $] p, g\left[\right.$ there exists $x_{0}$ such that $\left.x_{0} \in\right] p, g[$ and $f^{\prime}\left(x_{0}\right)=\frac{f(g)-f(p)}{g-p}$.
(4) Given $x, t$. Suppose $0<t$. Then for every $f$ such that $f$ is continuous on $[x, x+t]$ and $f$ is differentiable on $] x, x+t[$ there exists $s$ such that $0<s$ and $s<1$ and $f(x+t)=f(x)+t \cdot\left(f^{\prime}(x+s \cdot t)\right)$.
(5) Given $p, g$. Suppose $p<g$. Given $f_{1}, f_{2}$. Suppose $f_{1}$ is continuous on [ $p, g]$ and $f_{1}$ is differentiable on $] p, g\left[\right.$ and $f_{2}$ is continuous on $[p, g]$ and $f_{2}$ is differentiable on $] p, g\left[\right.$. Then there exists $x_{0}$ such that $\left.x_{0} \in\right] p, g[$ and $\left(f_{1}(g)-f_{1}(p)\right) \cdot\left(f_{2}^{\prime}\left(x_{0}\right)\right)=\left(f_{2}(g)-f_{2}(p)\right) \cdot\left(f_{1}^{\prime}\left(x_{0}\right)\right)$.

[^31](6) Given $x, t$. Suppose $0<t$. Given $f_{1}, f_{2}$. Suppose $f_{1}$ is continuous on $[x, x+t]$ and $f_{1}$ is differentiable on $] x, x+t\left[\right.$ and $f_{2}$ is continuous on $[x, x+t]$ and $f_{2}$ is differentiable on $] x, x+t\left[\right.$ and for every $x_{1}$ such that $\left.x_{1} \in\right] x, x+t\left[\right.$ holds $f_{2}^{\prime}\left(x_{1}\right) \neq 0$. Then there exists $s$ such that $0<s$ and $s<1$ and $\frac{f_{1}(x+t)-f_{1}(x)}{f_{2}(x+t)-f_{2}(x)}=\frac{f_{1}^{\prime}(x+s \cdot t)}{f_{2}^{\prime}(x+s \cdot t)}$.
(7) For all $p, g$ such that $p<g$ for every $f$ such that $f$ is differentiable on $] p, g[$ and for every $x$ such that $x \in] p, g\left[\right.$ holds $f^{\prime}(x)=0$ holds $f$ is a constant on $] p, g[$.
(8) Given $p, g$. Suppose $p<g$. Given $f_{1}, f_{2}$. Suppose $f_{1}$ is differentiable on $] p, g\left[\right.$ and $f_{2}$ is differentiable on $] p, g[$ and for every $x$ such that $x \in] p, g[$ holds $f_{1}^{\prime}(x)=f_{2}^{\prime}(x)$. Then $f_{1}-f_{2}$ is a constant on $] p, g[$ and there exists $r$ such that for every $x$ such that $x \in] p, g\left[\right.$ holds $f_{1}(x)=f_{2}(x)+r$.
(9) For all $p, g$ such that $p<g$ for every $f$ such that $f$ is differentiable on $] p, g[$ and for every $x$ such that $x \in] p, g\left[\right.$ holds $0<f^{\prime}(x)$ holds $f$ is increasing on $] p, g[$.
(10) For all $p, g$ such that $p<g$ for every $f$ such that $f$ is differentiable on $] p, g[$ and for every $x$ such that $x \in] p, g\left[\right.$ holds $f^{\prime}(x)<0$ holds $f$ is decreasing on $] p, g[$.
(11) For all $p, g$ such that $p<g$ for every $f$ such that $f$ is differentiable on $] p, g[$ and for every $x$ such that $x \in] p, g\left[\right.$ holds $0 \leq f^{\prime}(x)$ holds $f$ is non-decreasing on $] p, g[$.
(12) For all $p, g$ such that $p<g$ for every $f$ such that $f$ is differentiable on $] p, g$ [ and for every $x$ such that $x \in] p, g\left[\right.$ holds $f^{\prime}(x) \leq 0$ holds $f$ is non-increasing on $] p, g[$.

## References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[4] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[5] Jarosław Kotowicz. Properties of real functions. Formalized Mathematics, $1(4): 781-786,1990$.
[6] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[7] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[8] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.

Received June 18, 1990

## Index of MML Identifiers

AFF 2 ..... 625
AFF_3 ..... 635
ANPROJ_1 ..... 761
ANPROJ_2 ..... 767
CAT_2 ..... 725
COLLSP ..... 657
CQC_LANG ..... 669
CQC_THE1 ..... 689
FCONT_1 ..... 787
FCONT_2 ..... 793
FDIFF_1 ..... 797
FINSEQOP ..... 643
MARGREL1 ..... 733
ORDINAL4 ..... 711
PARTFUN2 ..... 697
PASCH ..... 677
PROB_2 ..... 745
RCOMP_1 ..... 777
REAL_LAT ..... 681
RFUNCT_1 ..... 703
RFUNCT_2 ..... 781
ROLLE ..... 803
RPR_1 ..... 755
RVSUM_1 ..... 661
SETWOP_2 ..... 651
TDGROUP ..... 685
TRANSGEO ..... 715
TRANSLAC ..... 751
VALUAT_1 ..... 739

## Contents

Preface ..... 623
Classical Configurations in Affine Planes
By Henryk Oryszczyszyn et al. ..... 625
Affine Localizations of Desargues Axiom By Eugeniusz Kusak et al. ..... 635
Binary Operations Applied to Finite Sequences By CzesŁaw Byliński ..... 643
Semigroup operations on finite subsets By CzesŁaw Byliński ..... 651
The Collinearity Structure By Wojciech Skaba ..... 657
The Sum and Product of Finite Sequences of Real Numbers By Czestaw Byliński ..... 661
A Classical First Order Language
By CzesŁaw Byliński ..... 669
Classical and Non-classical Pasch Configurations in Ordered Affine PlanesBy Henryk Oryszczyszyn et al.677
The Lattice of Real Numbers. The Lattice of Real Functions By Marek Chmur ..... 681
A Construction of an Abstract Space of Congruence of Vectors By Grzegorz Lewandowski et al. ..... 685
A First-Order Predicate Calculus By Agata Darmochwa乇 ..... 689
Partial Functions from a Domain to a Domain By JarosŁaw Kotowicz ..... 697
Partial Functions from a Domain to the Set of Real Numbers By JarosŁaw Kotowicz ..... 703
Increasing and Continuous Ordinal Sequences By Grzegorz Bancerek ..... 711
Transformations in Affine Spaces By Henryk Oryszczyszyn et al. ..... 715
Subcategories and Products of Categories By CzesŁaw Byliński ..... 725
Many-Argument Relations By Edmund Woronowicz ..... 733
Interpretation and Satisfiability in the First Order Logic By Edmund Woronowicz ..... 739
Probability
By Andrzej Nędzusiak ..... 745
Translations in Affine Planes
By Henryk Oryszczyszyn et al. ..... 751
Introduction to Probability By Jan Popióek ..... 755
A Construction of Analytical Projective Space By Wojciech Leończuk et al. ..... 761
Projective Spaces - Part I By Wojciech Leończuk et al. ..... 767
Topological Properties of Subsets in Real Numbers By Konrad Raczkowski and PaweŁ Sadowski ..... 777
Properties of Real Functions
By JarosŁaw Kotowicz ..... 781
Real Function Continuity By Konrad Raczkowski and Pawee Sadowski ..... 787
Real Function Uniform Continuity By JarosŁaw Kotowicz and Konrad Raczkowski ..... 793
Real Function Differentiability
By Konrad Raczkowski and Pawe€ Sadowski ..... 797
Average Value Theorems for Real Functions of One Variable By JarosŁaw Kotowicz et al. ..... 803
Index of MML Identifiers ..... 806


[^0]:    ${ }^{1}$ Supported by RPBP.III-24.C2

[^1]:    ${ }^{1}$ Supported by RPBP.III-24.C2

[^2]:    ${ }^{1}$ Supported by RPBP.III-24.C1.

[^3]:    ${ }^{1}$ Supported by RPBP.III-24.C1.

[^4]:    ${ }^{1}$ Supported by RPBP.III-24.B5.

[^5]:    ${ }^{2}$ The propositions (3)-(4) became obvious.

[^6]:    ${ }^{1}$ Supported by RPBP.III-24.C1.

[^7]:    ${ }^{1}$ Supported by RPBP.III-24.C1

[^8]:    ${ }^{2}$ The proposition (8) became obvious.

[^9]:    ${ }^{3}$ The proposition (26) became obvious.

[^10]:    ${ }^{1}$ Supported by RPBP.III-24.C2.

[^11]:    ${ }^{1}$ Supported by RPBP.III-24.C1.

[^12]:    ${ }^{1}$ Supported by RPBP.III-24.C3.

[^13]:    ${ }^{1}$ Supported by RPBP.III-24.C1

[^14]:    ${ }^{1}$ Supported by RPBP.III-24.C8

[^15]:    ${ }^{1}$ Supported by RPBP.III-24.C8

[^16]:    ${ }^{1}$ Supported by RPBP.III-24.C2.

[^17]:    ${ }^{1}$ Supported by RPBP.III-24.C1.

[^18]:    ${ }^{1}$ Supported by RPBP III. 24 C1
    ${ }^{2}$ The propositions (1)-(3) became obvious.

[^19]:    ${ }^{1}$ Supported by RPBP III. 24 C 1

[^20]:    ${ }^{2}$ The proposition (3) became obvious.

[^21]:    ${ }^{1}$ Supported by RPBP III. 24

[^22]:    ${ }^{1}$ Supported by RPBP.III-24.C2.

[^23]:    ${ }^{1}$ The proposition (45) became obvious.

[^24]:    ${ }^{1}$ Supported by RPBP.III-24.C6.
    ${ }^{2}$ Supported by RPBP.III-24.C2.

[^25]:    ${ }^{1}$ Supported by RPBP.III-24.C6.
    ${ }^{2}$ Supported by RPBP.III-24.C2.

[^26]:    ${ }^{1}$ Supported by RPBP.III-24.C8.

[^27]:    ${ }^{1}$ Supported by RPBP.III-24.C.8.

[^28]:    ${ }^{1}$ Supported by RPBP.III-24.C8.

[^29]:    ${ }^{1}$ Supported by RPBP.III-24.C8.

[^30]:    ${ }^{1}$ Supported by RPBP.III-24.C8.

[^31]:    ${ }^{1}$ Supported by RPBP.III-24.C8.

