Zermelo's Theorem ${ }^{1}$

Bogdan Nowak
Łódź University

Sławomir Białecki
Łódź University

Abstract

Summary. The article contains direct proof of Zermelo's theorem about the existence of a well ordering for any set and the lemma the proof depends on.

MML Identifier: WELLSET1.

The articles [4], [3], [5], [2], and [1] provide the notation and terminology for this paper. For simplicity we follow the rules: a, x, y will be arbitrary, B, D, N, X, Y will denote sets, R, S, T will denote relations, F will denote a function, and W will denote a relation. We now state several propositions:
(1) $\quad x \in$ field R if and only if there exists y such that $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$.
(2) $R \cup S$ is a relation.
(3) If $X \neq \emptyset$ and $Y \neq \emptyset$ and $W=\lceil X, Y:$, then field $W=X \cup Y$.
(4) If $y=R$, then y is a relation.
(5) For all a, T holds $x \in T-\operatorname{Seg}(a)$ if and only if $x \neq a$ and $\langle x, a\rangle \in T$.

In the article we present several logical schemes. The scheme R_Separation deals with a set \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
there exists B such that for every relation R holds $R \in B$ if and only if $R \in \mathcal{A}$ and $\mathcal{P}[R]$
for all values of the parameters.
The scheme $S_{\text {_Separation }}$ deals with a set \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
there exists B such that for every set X holds $X \in B$ if and only if $X \in \mathcal{A}$ and $\mathcal{P}[X]$
for all values of the parameters.
The following four propositions are true:
(6) For all x, y, W such that $x \in$ field W and $y \in$ field W and W is well ordering relation holds if $x \notin W-\operatorname{Seg}(y)$, then $\langle y, x\rangle \in W$.

[^0](7) For all x, y, W such that $x \in$ field W and $y \in$ field W and W is well ordering relation holds if $x \in W-\operatorname{Seg}(y)$, then $\langle y, x\rangle \notin W$.
(8) Given F, D. Suppose for every X such that $X \in D$ holds $F(X) \notin X$ and $F(X) \in \bigcup D$. Then there exists R such that field $R \subseteq \cup D$ and R is well ordering relation and field $R \notin D$ and for every y such that $y \in$ field R holds $R-\operatorname{Seg}(y) \in D$ and $F(R-\operatorname{Seg}(y))=y$.
(9) For every N there exists R such that R is well ordering relation and field $R=N$.

References

[1] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123-129, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[5] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Group and Field Definitions

Józef Białas ${ }^{1}$
Łódź University

Abstract

Summary. The article contains exactly the same definitions of group and field as those in [3]. These definitions were prepared without the help of the definitions and properties of Nat and Real modes icluded in the MML. This is the first of a series of articles in which we are going to introduce the concept of the set of real numbers in a elementary axiomatic way.

MML Identifier: REALSET1.

The terminology and notation used here are introduced in the following papers: [4], [1], and [2]. Let x be arbitrary. The functor single (x) yields a set and is defined as follows:
single $(x)=\{x\}$.
One can prove the following proposition
(1) For arbitrary x holds single $(x)=\{x\}$.

Let X, Y be sets. The functor $X \# Y$ yields a set and is defined by:
$X \# Y=[X, Y:]$.
We now state several propositions:
(2) For all sets X, Y holds $X \# Y=[X, Y:]$.
(3) For arbitrary z and for every set A holds $z \in A \# A$ if and only if there exist arbitrary x, y such that $x \in A$ and $y \in A$ and $z=\langle x, y\rangle$.
(4) For every set X and for every subset A of X holds $A \# A \subseteq X \# X$.
(5) For every set X such that $X=\emptyset$ holds $X \# X=\emptyset$.
(6) For every set X such that $X \# X=\emptyset$ holds $X=\emptyset$.
(7) For every set X holds $X \# X=\emptyset$ if and only if $X=\emptyset$.

Let X be a set. A binary operation of X is a function from $X \# X$ into X.
The following propositions are true:

[^1](8) For every set X and for every function F from $X \# X$ into X holds F is a binary operation of X.
(9) For every set X and for every function F holds F is a function from $X \# X$ into X if and only if F is a binary operation of X.
(10) For every set X and for every function F from $X \# X$ into X and for arbitrary x such that $x \in X \# X$ holds $F(x) \in X$.
(11) For every set X and for every binary operation F of X there exists a subset A of X such that for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
Let X be a set, and let F be a binary operation of X, and let A be a subset of X. We say that F is in A if and only if:
for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
Next we state a proposition
(12) For every set X and for every binary operation F of X and for every subset A of X holds F is in A if and only if for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
Let X be a set, and let F be a binary operation of X. A subset of X is said to be a set closed w.r.t. F if:
for arbitrary x such that $x \in$ it\#it holds $F(x) \in$ it.
The following propositions are true:
(13) For every set X and for every binary operation F of X and for every subset A of X holds A is a set closed w.r.t. F if and only if for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
(14) For every set X and for every binary operation F of X and for every set A closed w.r.t. F holds $F \upharpoonright(A \# A)$ is a binary operation of A.
Let X be a set, and let F be a binary operation of X, and let A be a set closed w.r.t. F. The functor $F \upharpoonright A$ yielding a binary operation of A, is defined by:
$F \upharpoonright A=F \upharpoonright(A \# A)$.
The following propositions are true:
(15) For every set X and for every binary operation F of X and for every set A closed w.r.t. F holds $F \upharpoonright A=F \upharpoonright(A \# A)$.
(16) For every set X and for every binary operation F of X and for every subset A of X such that A is a set closed w.r.t. F holds $F \upharpoonright(A \# A)$ is a binary operation of A.
(17) For every set X and for every binary operation F of X and for every set A closed w.r.t. F holds $F \upharpoonright A$ is a binary operation of A.
We consider group structures which are systems
〈 a carrier, an addition, a zero 〉
where the carrier is a non-empty set, the addition is a binary operation of the carrier, and the zero is an element of the carrier. Let A be a non-empty
set, and let $o g$ be a binary operation of A, and let $n g$ be an element of A. The functor $\operatorname{group}(A, o g, n g)$ yielding a group structure, is defined as follows:
$A=$ the carrier of $\operatorname{group}(A, o g, n g)$ and $o g=$ the addition of $\operatorname{group}(A, o g, n g)$ and $n g=$ the zero of $\operatorname{group}(A, o g, n g)$.

The following propositions are true:
(18) For every non-empty set A and for every binary operation $o g$ of A and for every element $n g$ of A and for every $G R$ being a group structure holds $G R=\operatorname{group}(A, o g, n g)$ if and only if $A=$ the carrier of $G R$ and $o g=$ the addition of $G R$ and $n g=$ the zero of $G R$.
(19) For every non-empty set A and for every binary operation $o g$ of A and for every element $n g$ of A holds group $(A, o g, n g)$ is a group structure and $A=$ the carrier of $\operatorname{group}(A, o g, n g)$ and $o g=$ the addition of $\operatorname{group}(A, o g$, $n g)$ and $n g=$ the zero of $\operatorname{group}(A, o g, n g)$.
A group structure is called a group if:
there exists a non-empty set A and there exists a binary operation og of A and there exists an element $n g$ of A such that it $=\operatorname{group}(A, o g, n g)$ and for all elements a, b, c of A holds $o g(\langle o g(\langle a, b\rangle), c\rangle)=o g(\langle a, o g(\langle b, c\rangle)\rangle)$ and for every element a of A holds $o g(\langle a, n g\rangle)=a$ and $o g(\langle n g, a\rangle)=a$ and for every element a of A there exists an element b of A such that $o g(\langle a, b\rangle)=n g$ and $o g(\langle b, a\rangle)=n g$ and for all elements a, b of A holds $o g(\langle a, b\rangle)=o g(\langle b, a\rangle)$.

Let D be a group. The carrier of D yields a non-empty set and is defined as follows:
there exists a binary operation od of the carrier of D and there exists an element $n d$ of the carrier of D such that $D=\operatorname{group}($ the carrier of $D, o d, n d)$.

The following two propositions are true:
(20) For every group D and for every non-empty set A holds
$A=$ the carrier of D
if and only if there exists a binary operation od of A and there exists an element $n d$ of A such that $D=\operatorname{group}(A, o d, n d)$.
(21) For every group D holds the carrier of D is a non-empty set and there exists a binary operation od of the carrier of D and there exists an element $n d$ of the carrier of D such that $D=\operatorname{group}($ the carrier of $D, o d, n d)$.
Let D be a group. The functor $+_{D}$ yielding a binary operation of the carrier of D, is defined as follows:
there exists an element $n d$ of the carrier of D such that
$D=\operatorname{group}\left(\right.$ the carrier of $\left.D,+_{D}, n d\right)$.
The following propositions are true:
(22) For every group D and for every binary operation od of the carrier of D holds $o d=+{ }_{D}$ if and only if there exists an element $n d$ of the carrier of D such that $D=\operatorname{group}($ the carrier of $D, o d, n d)$.
(23) For every group D holds $+_{D}$ is a binary operation of the carrier of D and there exists an element $n d$ of the carrier of D such that
$D=\operatorname{group}\left(\right.$ the carrier of $\left.D,{ }_{D}, n d\right)$.

Let D be a group. The functor $\mathbf{0}_{D}$ yielding an element of the carrier of D, is defined by:
$D=\operatorname{group}\left(\right.$ the carrier of $\left.D,+{ }_{D}, \mathbf{0}_{D}\right)$.
Next we state a number of propositions:
(24) For every group D and for every element $n g$ of the carrier of D holds $n g=\mathbf{0}_{D}$ if and only if $D=\operatorname{group}\left(\right.$ the carrier of $\left.D,+_{D}, n g\right)$.
(25) For every group D holds $\mathbf{0}_{D}$ is an element of the carrier of D and $D=$ group(the carrier of $D,+_{D}, \mathbf{0}_{D}$).
(26) For every group D holds $D=\operatorname{group}\left(\right.$ the carrier of $\left.D,+_{D}, \mathbf{0}_{D}\right)$.
(27) For every group D and for every non-empty set A and for every binary operation $o g$ of A and for every element $n g$ of A such that $D=\operatorname{group}(A$, $o g, n g$) holds the carrier of $D=A$ and $+_{D}=o g$ and $\mathbf{0}_{D}=n g$.
(28) For every group D and for all elements a, b, c of the carrier of D holds $+_{D}\left(\left\langle+_{D}(\langle a, b\rangle), c\right\rangle\right)=+_{D}\left(\left\langle a,+_{D}(\langle b, c\rangle)\right\rangle\right)$.
(29) For every group D and for every element a of the carrier of D holds $+_{D}\left(\left\langle a, \mathbf{0}_{D}\right\rangle\right)=a$ and $+_{D}\left(\left\langle\mathbf{0}_{D}, a\right\rangle\right)=a$.
(30) For every group D and for every element a of the carrier of D there exists an element b of the carrier of D such that $+_{D}(\langle a, b\rangle)=\mathbf{0}_{D}$ and $+_{D}(\langle b, a\rangle)=\mathbf{0}_{D}$.
(31) For every group D and for all elements a, b of the carrier of D holds $+_{D}(\langle a, b\rangle)=+_{D}(\langle b, a\rangle)$.
(32) There exist arbitrary x, y such that $x \neq y$.
(33) There exists a non-empty set A such that for every element z of A holds $A \backslash \operatorname{single}(z)$ is a non-empty set.
A non-empty set is said to be an at least 2-elements set if:
for every element x of it holds it $\backslash \operatorname{single}(x)$ is a non-empty set.
We now state two propositions:
(34) For every non-empty set A holds A is an at least 2 -elements set if and only if for every element x of A holds $A \backslash \operatorname{single}(x)$ is a non-empty set.
(35) For every non-empty set A such that for every element x of A holds $A \backslash \operatorname{single}(x)$ is a non-empty set holds A is an at least 2 -elements set.
We consider field structures which are systems
〈 a carrier, an addition, a multiplication, a zero, a unit 〉
where the carrier is an at least 2-elements set, the addition is a binary operation of the carrier, the multiplication is a binary operation of the carrier, the zero is an element of the carrier, and the unit is an element of the carrier. Let A be an at least 2-elements set, and let od, om be binary operations of A, and let $n d$ be an element of A, and let $n m$ be an element of $A \backslash \operatorname{single}(n d)$. The functor field $(A, o d, o m, n d, n m)$ yielding a field structure, is defined as follows:
$A=$ the carrier of field $(A, o d, o m, n d, n m)$ and $o d=$ the addition of field $(A$, $o d, o m, n d, n m)$ and $o m=$ the multiplication of field $(A, o d, o m, n d, n m)$ and
$n d=$ the zero of field $(A, o d, o m, n d, n m)$ and $n m=$ the unit of field $(A, o d$, $o m, n d, n m)$.

We now state two propositions:
(36) Let A be an at least 2-elements set. Let od, om be binary operations of A. Then for every element $n d$ of A and for every element $n m$ of $A \backslash \operatorname{single}(n d)$ and for every F being a field structure holds $F=\operatorname{field}(A$, $o d, o m, n d, n m)$ if and only if $A=$ the carrier of F and $o d=$ the addition of F and $o m=$ the multiplication of F and $n d=$ the zero of F and $n m=$ the unit of F.
(37) Let A be an at least 2 -elements set. Let od, om be binary operations of A. Let $n d$ be an element of A. Let $n m$ be an element of $A \backslash \operatorname{single}(n d)$. Then
(i) field $(A, o d, o m, n d, n m)$ is a field structure,
(ii) $\quad A=$ the carrier of field $(A, o d, o m, n d, n m)$,
(iii) $\quad o d=$ the addition of field $(A, o d, o m, n d, n m)$,
(iv) $\quad o m=$ the multiplication of field $(A, o d, o m, n d, n m)$,
(v) $n d=$ the zero of field $(A, o d, o m, n d, n m)$,
(vi) $n m=$ the unit of field $(A, o d, o m, n d, n m)$.

Let X be an at least 2-elements set, and let F be a binary operation of X, and let x be an element of X. We say that F is binary operation preserving x if and only if:
$X \backslash \operatorname{single}(x)$ is a set closed w.r.t. F and $F \upharpoonright((X \backslash \operatorname{single}(x)) \#(X \backslash \operatorname{single}(x)))$ is a binary operation of $X \backslash \operatorname{single}(x)$.

Next we state two propositions:
(38) For every at least 2 -elements set X and for every binary operation F of X and for every element x of X holds F is binary operation preserving x if and only if $X \backslash \operatorname{single}(x)$ is a set closed w.r.t. F and $F \upharpoonright((X \backslash$ $\operatorname{single}(x)) \#(X \backslash \operatorname{single}(x)))$ is a binary operation of $X \backslash \operatorname{single}(x)$.
(39) For every set X and for every subset A of X there exists a binary operation F of X such that for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
Let X be a set, and let A be a subset of X. A binary operation of X is said to be a binary operation of X preserving A if:
for arbitrary x such that $x \in A \# A$ holds it $(x) \in A$.
One can prove the following two propositions:
(40) For every set X and for every subset A of X and for every binary operation F of X holds F is a binary operation of X preserving A if and only if for arbitrary x such that $x \in A \# A$ holds $F(x) \in A$.
(41) For every set X and for every subset A of X and for every binary operation F of X preserving A holds $F \upharpoonright(A \# A)$ is a binary operation of A.
Let X be a set, and let A be a subset of X, and let F be a binary operation of X preserving A. The functor $F \upharpoonright A$ yielding a binary operation of A, is defined
as follows:
$F \upharpoonright A=F \upharpoonright(A \# A)$.
We now state two propositions:
(42) For every set X and for every subset A of X and for every binary operation F of X preserving A holds $F \upharpoonright A=F \upharpoonright(A \# A)$.
(43) For every at least 2-elements set A and for every element x of A there exists a binary operation F of A such that for arbitrary y such that $y \in(A \backslash \operatorname{single}(x)) \#(A \backslash \operatorname{single}(x))$ holds $F(y) \in A \backslash \operatorname{single}(x)$.
Let A be an at least 2 -elements set, and let x be an element of A. A binary operation of A is called a binary operation of A preserving $A \backslash\{x\}$ if:
for arbitrary y such that $y \in(A \backslash \operatorname{single}(x)) \#(A \backslash \operatorname{single}(x))$ holds $\operatorname{it}(y) \in$ $A \backslash \operatorname{single}(x)$.

One can prove the following two propositions:
(44) For every at least 2 -elements set A and for every element x of A and for every binary operation F of A holds F is a binary operation of A preserving $A \backslash\{x\}$ if and only if for arbitrary y such that $y \in(A \backslash$ single $(x)) \#(A \backslash \operatorname{single}(x))$ holds $F(y) \in A \backslash \operatorname{single}(x)$.
(45) For every at least 2-elements set A and for every element x of A and for every binary operation F of A preserving $A \backslash\{x\}$ holds $F \upharpoonright((A \backslash$ $\operatorname{single}(x)) \#(A \backslash \operatorname{single}(x)))$ is a binary operation of $A \backslash \operatorname{single}(x)$.
Let A be an at least 2-elements set, and let x be an element of A, and let F be a binary operation of A preserving $A \backslash\{x\}$. The functor $F \upharpoonright_{x} A$ yields a binary operation of $A \backslash \operatorname{single}(x)$ and is defined as follows:
$F \upharpoonright_{x} A=F \upharpoonright((A \backslash \operatorname{single}(x)) \#(A \backslash \operatorname{single}(x)))$.
One can prove the following proposition
(46) For every at least 2-elements set A and for every element x of A and for every binary operation F of A preserving $A \backslash\{x\}$ holds $F \upharpoonright_{x} A=F \upharpoonright$ $((A \backslash \operatorname{single}(x)) \#(A \backslash \operatorname{single}(x)))$.
A field structure is said to be a field if:
there exists an at least 2-elements set A and there exists a binary operation od of A and there exists an element $n d$ of A and there exists a binary operation om of A preserving $A \backslash\{n d\}$ and there exists an element $n m$ of $A \backslash \operatorname{single}(n d)$ such that it $=$ field $(A, o d, o m, n d, n m)$ and $\operatorname{group}(A, o d, n d)$ is a group and for every non-empty set B and for every binary operation P of B and for every element e of B such that $B=A \backslash \operatorname{single}(n d)$ and $e=n m$ and $P=o m \upharpoonright_{n d} A$ holds $\operatorname{group}(B$, $P, e)$ is a group and for all elements x, y, z of A holds $\operatorname{om}(\langle x, \operatorname{od}(\langle y, z\rangle)\rangle)=$ $\operatorname{od}(\langle o m(\langle x, y\rangle), o m(\langle x, z\rangle)\rangle)$.

We now state two propositions:
(47) Let F be a group structure. Then F is a group if and only if there exists a non-empty set A and there exists a binary operation og of A and there exists an element $n g$ of A such that $F=\operatorname{group}(A, o g, n g)$ and for all elements a, b, c of A holds $o g(\langle o g(\langle a, b\rangle), c\rangle)=o g(\langle a, o g(\langle b, c\rangle)\rangle)$ and for every element a of A holds $o g(\langle a, n g\rangle)=a$ and $o g(\langle n g, a\rangle)=a$
and for every element a of A there exists an element b of A such that $o g(\langle a, b\rangle)=n g$ and $o g(\langle b, a\rangle)=n g$ and for all elements a, b of A holds $o g(\langle a, b\rangle)=o g(\langle b, a\rangle)$.
(48) Let F be a field structure. Then F is a field if and only if there exists an at least 2-elements set A and there exists a binary operation od of A and there exists an element $n d$ of A and there exists a binary operation om of A preserving $A \backslash\{n d\}$ and there exists an element $n m$ of $A \backslash \operatorname{single}(n d)$ such that $F=\operatorname{field}(A, o d, o m, n d, n m)$ and $\operatorname{group}(A, o d, n d)$ is a group and for every non-empty set B and for every binary operation P of B and for every element e of B such that $B=A \backslash \operatorname{single}(n d)$ and $e=n m$ and $P=o m \upharpoonright_{n d} A$ holds $\operatorname{group}(B, P, e)$ is a group and for all elements x, y, z of A holds $\operatorname{om}(\langle x, \operatorname{od}(\langle y, z\rangle)\rangle)=\operatorname{od}(\langle o m(\langle x, y\rangle), \operatorname{om}(\langle x, z\rangle)\rangle)$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Jean Dieudonné. Foundations of Modern Analises. Academic Press, New York and London, 1960.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received October 27, 1989

Equivalence Relations and Classes of Abstraction ${ }^{1}$

Konrad Raczkowski
Warsaw University
Białystok

Paweł Sadowski
Warsaw University
Białystok

Summary. In this article we deal with the notion of equivalence relation. The main properties of equivalence relations are proved. Then we define the classes of abstraction determined by an equivalence relation. Finally, the connections between a partition of a set and an equivalence relation are presented. We introduce the following notation of modes: Equivalence Relation, a partition.

MML Identifier: EQREL_1.

The notation and terminology used in this paper are introduced in the following articles: [6], [7], [9], [8], [5], [3], [2], [4], and [1]. For simplicity we adopt the following rules: x, y, z are arbitrary, i, j are natural numbers, X, Y are sets, A, B are subsets of X, R, R_{1}, R_{2} are relations on X, and $S F X X$ is a family of subsets of $: X, X:$. The following two propositions are true:
(1) If $i<j$, then $j-i$ is a natural number.
(2) For every Y such that $Y \subseteq: X, X:$ holds Y is a relation on X.

Let us consider X. The functor ∇_{X} yielding a relation on X, is defined as follows:
$\nabla_{X}=[: X, X]$.
We now state a proposition
(3) $\nabla_{X}=[: X, X:]$.

Let us consider X, R_{1}, R_{2}. Then $R_{1} \cap R_{2}$ is a relation on X. Then $R_{1} \cup R_{2}$ is a relation on X.

Next we state a proposition
(4) \triangle_{X} is reflexive in X and \triangle_{X} is symmetric in X and \triangle_{X} is transitive in X.

[^2]Let us consider X. A relation on X is called an equivalence relation of X if: it is reflexive in X and it is symmetric in X and it is transitive in X.
The following three propositions are true:
(5) $\quad R$ is an equivalence relation of X if and only if R is reflexive in X and R is symmetric in X and R is transitive in X.
(6) Δ_{X} is an equivalence relation of X.
(7) $\quad \nabla_{X}$ is an equivalence relation of X.

Let us consider X. Then \triangle_{X} is an equivalence relation of X. Then ∇_{X} is an equivalence relation of X.

In the sequel $E q R, E q R_{1}, E q R_{2}$ will be equivalence relations of X. We now state several propositions:
(8) $E q R$ is reflexive in X.
(9) $E q R$ is symmetric in X.
(10) $E q R$ is transitive in X.
(11) If $x \in X$, then $\langle x, x\rangle \in E q R$.
(12) If $\langle x, y\rangle \in E q R$, then $\langle y, x\rangle \in E q R$.
(13) If $\langle x, y\rangle \in E q R$ and $\langle y, z\rangle \in E q R$, then $\langle x, z\rangle \in E q R$.
(14) If there exists x such that $x \in X$, then $E q R \neq \varnothing$.
(15) field $E q R=X$.
(16) $\quad R$ is an equivalence relation of X if and only if R is pseudo reflexive and R is symmetric and R is transitive and field $R=X$.
Let us consider $X, E q R_{1}, E q R_{2}$. Then $E q R_{1} \cap E q R_{2}$ is an equivalence relation of X.

We now state four propositions:

$$
\begin{align*}
& \triangle_{X} \cap E q R=\triangle_{X} \tag{17}\\
& \left(\nabla_{X}\right) \cap R=R .
\end{align*}
$$

(19) For every $S F X X$ such that $S F X X \neq \emptyset$ and for every Y such that $Y \in S F X X$ holds Y is an equivalence relation of X holds $\bigcap S F X X$ is an equivalence relation of X.
(20) For every R there exists $E q R$ such that $R \subseteq E q R$ and for every $E q R_{2}$ such that $R \subseteq E q R_{2}$ holds $E q R \subseteq E q R_{2}$.
Let us consider $X, E q R_{1}, E q R_{2}$. The functor $E q R_{1} \sqcup E q R_{2}$ yielding an equivalence relation of X, is defined by:
$E q R_{1} \cup E q R_{2} \subseteq E q R_{1} \sqcup E q R_{2}$ and for every $E q R$ such that $E q R_{1} \cup E q R_{2} \subseteq$ $E q R$ holds $E q R_{1} \sqcup E q R_{2} \subseteq E q R$.

Next we state several propositions:
(21) For every equivalence relation R of X holds $R=E q R_{1} \sqcup E q R_{2}$ if and only if $E q R_{1} \cup E q R_{2} \subseteq R$ and for every $E q R$ such that $E q R_{1} \cup E q R_{2} \subseteq$ $E q R$ holds $R \subseteq E q R$.
(22) $E q R \sqcup E q R=E q R$.

$$
\begin{equation*}
E q R_{1} \sqcup E q R_{2}=E q R_{2} \sqcup E q R_{1} . \tag{23}
\end{equation*}
$$

$$
\begin{align*}
& E q R_{1} \cap\left(E q R_{1} \sqcup E q R_{2}\right)=E q R_{1} . \tag{24}\\
& E q R_{1} \sqcup\left(E q R_{1} \cap E q R_{2}\right)=E q R_{1} . \tag{25}
\end{align*}
$$

The scheme $E x _E q_{-}$Rel concerns a set \mathcal{A}, and a binary predicate \mathcal{P}, and states that:
there exists an equivalence relation $E q R$ of \mathcal{A} such that for all x, y holds $\langle x, y\rangle \in E q R$ if and only if $x \in \mathcal{A}$ and $y \in \mathcal{A}$ and $\mathcal{P}[x, y]$
provided the parameters satisfy the following conditions:

- for every x such that $x \in \mathcal{A}$ holds $\mathcal{P}[x, x]$,
- for all x, y such that $\mathcal{P}[x, y]$ holds $\mathcal{P}[y, x]$,
- for all x, y, z such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.

Let us consider $X, E q R, x$. The functor $[x]_{E q R}$ yielding a subset of X, is defined by:
$[x]_{E q R}=E q R^{\circ}\{x\}$.
We now state a number of propositions:
(28) For every x such that $x \in X$ holds $x \in[x]_{E q R}$.
(29) For every x such that $x \in X$ there exists y such that $x \in[y]_{E q R}$.
(30) If $y \in[x]_{E q R}$ and $z \in[x]_{E q R}$, then $\langle y, z\rangle \in E q R$.
(31) For every x such that $x \in X$ holds $y \in[x]_{E q R}$ if and only if $[x]_{E q R}=$ $[y]_{E q R}$.
(32) For all x, y such that $x \in X$ and $y \in X$ holds $[x]_{E q R}=[y]_{E q R}$ or $[x]_{E q R}$ misses $[y]_{E q R}$.
(33) For every x such that $x \in X$ holds $[x]_{\triangle_{X}}=\{x\}$.

$$
\begin{equation*}
\text { For every } x \text { such that } x \in X \text { holds }[x]_{\nabla_{X}}=X \text {. } \tag{34}
\end{equation*}
$$

If there exists x such that $[x]_{E q R}=X$, then $E q R=\nabla_{X}$.
Suppose $x \in X$. Then $\langle x, y\rangle \in E q R_{1} \sqcup E q R_{2}$ if and only if there exists a finite sequence f such that $1 \leq \operatorname{len} f$ and $x=f(1)$ and $y=f(\operatorname{len} f)$ and for every i such that $1 \leq i$ and $i<\operatorname{len} f$ holds $\langle f(i), f(i+1)\rangle \in E q R_{1} \cup E q R_{2}$.
(37) For every equivalence relation E of X such that $E=E q R_{1} \cup E q R_{2}$ for every x such that $x \in X$ holds $[x]_{E}=[x]_{E q R_{1}}$ or $[x]_{E}=[x]_{E q R_{2}}$.
If $E q R_{1} \cup E q R_{2}=\nabla_{X}$, then $E q R_{1}=\nabla_{X}$ or $E q R_{2}=\nabla_{X}$.
Let us consider $X, E q R$. The functor Classes $E q R$ yields a family of subsets of X and is defined as follows:
$A \in$ Classes $E q R$ if and only if there exists x such that $x \in X$ and $A=[x]_{E q R}$. The following two propositions are true:
(39) $\quad A \in$ Classes $E q R$ if and only if there exists x such that $x \in X$ and $A=[x]_{E q R}$.
(40) If $X=\emptyset$, then Classes $E q R=\emptyset$.

Let us consider X. A family of subsets of X is said to be a partition of X if:
\cup it $=X$ and for every A such that $A \in$ it holds $A \neq \emptyset$ and for every B such that $B \in$ it holds $A=B$ or A misses B if $X \neq \emptyset$, it $=\emptyset$, otherwise.

We now state several propositions:
(41) If $X \neq \emptyset$, then for every family F of subsets of X holds F is a partition of X if and only if $\bigcup F=X$ and for every A such that $A \in F$ holds $A \neq \emptyset$ and for every B such that $B \in F$ holds $A=B$ or A misses B.
(42) Classes $E q R$ is a partition of X.
(43) For every partition P of X there exists $E q R$ such that $P=$ Classes $E q R$.
(44) For every x such that $x \in X$ holds $\langle x, y\rangle \in E q R$ if and only if $[x]_{E q R}=$ $\left.{ }_{[y]}\right]_{E q R}$.
(45) If $x \in$ Classes $E q R$, then there exists an element y of X such that $x=[y]_{E q R}$.
(46) For every x such that $x \in X$ holds $[x]_{E q R} \in$ Classes $E q R$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[8] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[9] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990.

Some Properties of Real Numbers ${ }^{1}$

Andrzej Trybulec
Warsaw University
Białystok
Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. We define the following operations on real numbers: $\max (x, y), \min (x, y), x^{2}, \sqrt{x}$. We prove basic properties of introduced operations. A number of auxiliary theorems absent in [1] and [2] is proved.

MML Identifier: SQUARE_1.

The terminology and notation used here are introduced in the papers [1] and [2]. In the sequel a, b, x, y, z will be real numbers. Next we state a number of propositions:
(1) $1<2$.
(2) If $1<x$, then $\frac{1}{x}<1$.
(3) $\frac{1}{2}<1$.
(4) $2^{-1}<1$.
(5) $2 \cdot a=a+a$.
(6) $a=(a-x)+x$.
(7) $a=(a+x)-x$.
(8) If $x-y=0$, then $x=y$.
(9) $x \leq y$ if and only if $z+x \leq z+y$.
(10) $a \leq a+1$.
(11) If $x<y$, then $0<y-x$.
(12) If $x \leq y$, then $0 \leq y-x$.
(13) $1^{-1}=1$.
(14) $\frac{x}{1}=x$.
(15) $\frac{x+x}{2}=x$.
(16) If $x \neq 0$, then $\frac{1}{\frac{1}{x}}=x$.

[^3](17) If $y \neq 0$ and $z \neq 0$, then $\frac{x}{y \cdot z}=\frac{\frac{x}{y}}{z}$.

If $z \neq 0$, then $x \cdot \frac{y}{z}=\frac{x \cdot y}{z}$.
(19) If $0 \leq x$ and $0 \leq y$, then $0 \leq x \cdot y$.
(20) If $x \leq 0$ and $y \leq 0$, then $0 \leq x \cdot y$.
(21) If $0<x$ and $0<y$, then $0<x \cdot y$.
(22) If $x<0$ and $y<0$, then $0<x \cdot y$.
(23) If $0 \leq x$ and $y \leq 0$, then $x \cdot y \leq 0$ and $y \cdot x \leq 0$.
(24) If $0<x$ and $y<0$, then $x \cdot y<0$ and $y \cdot x<0$.
(25) If $0 \leq x \cdot y$, then $0 \leq x$ and $0 \leq y$ or $x \leq 0$ and $y \leq 0$
(26) If $0<x \cdot y$, then $0<x$ and $0<y$ or $x<0$ and $y<0$.
(27) If $0 \leq a$ and $0<b$, then $0 \leq \frac{a}{b}$.
(28) If $0 \leq x$, then $y-x \leq y$.
(29) If $0<x$, then $y-x<y$.
(30) If $x \leq y$, then $z-y \leq z-x$.

The scheme RealContinuity deals with two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
there exists z such that for all x, y such that $\mathcal{P}[x]$ and $\mathcal{Q}[y]$ holds $x \leq z$ and $z \leq y$
provided the following requirements are met:

- there exists x such that $\mathcal{P}[x]$,
- there exists x such that $\mathcal{Q}[x]$,
- for all x, y such that $\mathcal{P}[x]$ and $\mathcal{Q}[y]$ holds $x \leq y$.

We now define two new functors. Let us consider x, y. The functor $\min (x, y)$ yields a real number and is defined by:
$\min (x, y)=x$ if $x \leq y, \min (x, y)=y$, otherwise.
The functor $\max (x, y)$ yielding a real number, is defined as follows:
$\max (x, y)=x$ if $y \leq x, \max (x, y)=y$, otherwise.
We now state a number of propositions:
(31) If $x \leq y$, then $z=x$ if and only if $z=\min (x, y)$ but $x \leq y$ or $z=y$ if and only if $z=\min (x, y)$.
(32) If $y \leq x$, then $\min (x, y)=y$.
(38) $\min (x, y)=x$ or $\min (x, y)=y$.

If $y \not 又 x$, then $\min (x, y)=x$.
$\min (x, y)=\frac{(x+y)-|x-y|}{2}$.
$\min (x, y) \leq x$ and $\min (y, x) \leq x$.
$\min (x, x)=x$.
$\min (x, y)=\min (y, x)$.
$x \leq y$ and $x \leq z$ if and only if $x \leq \min (y, z)$.
$\min (x, \min (y, z))=\min (\min (x, y), z)$.
If $z<x$ and $z<y$, then $z<\min (x, y)$.
(42) If $y \leq x$, then $z=x$ if and only if $z=\max (x, y)$ but $y \leq x$ or $z=y$ if and only if $z=\max (x, y)$.
(43) If $x \leq y$, then $\max (x, y)=y$.
(44) If $x \not \leq y$, then $\max (x, y)=x$.
(45) $\max (x, y)=\frac{(x+y)+|x-y|}{2}$.
(46) $x \leq \max (x, y)$ and $x \leq \max (y, x)$.
(47) $\max (x, x)=x$.
(48) $\max (x, y)=\max (y, x)$.
(49) $\max (x, y)=x$ or $\max (x, y)=y$.
(50) $y \leq x$ and $z \leq x$ if and only if $\max (y, z) \leq x$.
(51) $\max (x, \max (y, z))=\max (\max (x, y), z)$.
(52) If $0<x$ and $0<y$, then $0<\max (x, y)$.
(53) $\min (x, y)+\max (x, y)=x+y$.
(54) $\quad \max (x, \min (x, y))=x$ and $\max (\min (x, y), x)=x$ and $\max (\min (y, x), x)=x$
and $\max (x, \min (y, x))=x$.
(55) $\quad \min (x, \max (x, y))=x$ and $\min (\max (x, y), x)=x$ and $\min (\max (y, x), x)=x$
and $\min (x, \max (y, x))=x$.

$$
\begin{equation*}
\max (\min (y, x), \min (z, x)) \tag{56}
\end{equation*}
$$

(57) $\max (x, \min (y, z))=\min (\max (x, y), \max (x, z))$ and $\max (\min (y, z), x)=$ $\min (\max (y, x), \max (z, x))$.
Let us consider x. The functor x^{2} yields an element of \mathbb{R} and is defined by: $x^{2}=x \cdot x$.
The following proposition is true
(58) $x^{2}=x \cdot x$.

Let us consider a. Then a^{2} is a real number.
The following propositions are true:
(59) $1^{2}=1$.
(60) $0^{2}=0$.
(61) $a^{2}=(-a)^{2}$.
(62) $|a|^{2}=a^{2}$.
(63) $(a+b)^{2}=\left(a^{2}+(2 \cdot a) \cdot b\right)+b^{2}$.
(64) $(a-b)^{2}=\left(a^{2}-(2 \cdot a) \cdot b\right)+b^{2}$.
(65) $\quad(a+1)^{2}=\left(a^{2}+2 \cdot a\right)+1$.
(66) $(a-1)^{2}=\left(a^{2}-2 \cdot a\right)+1$.
(67) $(a-b) \cdot(a+b)=a^{2}-b^{2}$ and $(a+b) \cdot(a-b)=a^{2}-b^{2}$.
(68) $(a \cdot b)^{2}=a^{2} \cdot b^{2}$.
(69) If $0 \neq b$, then $\frac{a}{b}=\frac{a^{2}}{b^{2}}$.
(70) If $a^{2}-b^{2} \neq 0$, then $\frac{1}{a+b}=\frac{a-b}{a^{2}-b^{2}}$.
(71) If $a^{2}-b^{2} \neq 0$, then $\frac{1}{a-b}=\frac{a+b}{a^{2}-b^{2}}$.
(72) $0 \leq a^{2}$.
(73) If $a^{2}=0$, then $a=0$.
(74) If $0 \neq a$, then $0<a^{2}$.
(75) If $0<a$ and $a<1$, then $a^{2}<a$.
(76) If $1<a$, then $a<a^{2}$.
(77) If $0 \leq x$ and $x \leq y$, then $x^{2} \leq y^{2}$.
(78) If $0 \leq x$ and $x<y$, then $x^{2}<y^{2}$.
(79) If $0 \leq x$ and $0 \leq y$ and $x^{2} \leq y^{2}$, then $x \leq y$.
(80) If $0 \leq x$ and $0 \leq y$ and $x^{2}<y^{2}$, then $x<y$.

Let us consider a. Let us assume that $0 \leq a$. The functor \sqrt{a} yielding a real number, is defined by:
$0 \leq \sqrt{a}$ and $\sqrt{a}^{2}=a$.
We now state a number of propositions:
(81) If $0 \leq a$, then for every b holds $b=\sqrt{a}$ if and only if $0 \leq b$ and $b^{2}=a$.
(82) $\quad \sqrt{0}=0$.
(83) $\sqrt{1}=1$.
(84) $1<\sqrt{2}$.
(85) $\sqrt{4}=2$.
(86) $\sqrt{2}<2$.
(87) If $0 \leq a$, then $0 \leq \sqrt{a}$.
(88) If $0 \leq a$, then $\sqrt{a}^{2}=a$.
(89) If $0 \leq a$, then $\sqrt{a^{2}}=a$.
(90) If $a \leq 0$, then $\sqrt{a^{2}}=-a$.
(91) $\quad \sqrt{a^{2}}=|a|$.
(92) If $0 \leq a$ and $\sqrt{a}=0$, then $a=0$.
(93) If $0<a$, then $0<\sqrt{a}$.
(94) If $0 \leq x$ and $x \leq y$, then $\sqrt{x} \leq \sqrt{y}$.
(95) If $0 \leq x$ and $x<y$, then $\sqrt{x}<\sqrt{y}$.
(96) If $0 \leq x$ and $0 \leq y$ and $\sqrt{x}=\sqrt{y}$, then $x=y$.
(97) If $0 \leq a$ and $0 \leq b$, then $\sqrt{a \cdot b}=\sqrt{a} \cdot \sqrt{b}$.
(98) If $0 \leq a \cdot b$, then $\sqrt{a \cdot b}=\sqrt{|a|} \cdot \sqrt{|b|}$.
(99) If $0 \leq a$ and $0<b$, then $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$.
(100) If $0<\frac{a}{b}$ and $b \neq 0$, then $\sqrt{\frac{a}{b}}=\frac{\sqrt{|a|}}{\sqrt{|b|}}$.
(101) If $0<a$, then $\sqrt{\frac{1}{a}}=\frac{1}{\sqrt{a}}$.
(102) If $0<a$, then $\frac{\sqrt{a}}{a}=\frac{1}{\sqrt{a}}$.
(103) If $0<a$, then $\frac{a}{\sqrt{a}}=\sqrt{a}$.
(104) If $0 \leq a$ and $0 \leq b$, then $(\sqrt{a}-\sqrt{b}) \cdot(\sqrt{a}+\sqrt{b})=a-b$.
(105) If $0 \leq a$ and $0 \leq b$ and $a \neq b$, then $\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}}{a-b}$.
(106) If $0 \leq b$ and $b<a$, then $\frac{1}{\sqrt{a}+\sqrt{b}}=\frac{\sqrt{a}-\sqrt{b}}{a-b}$.
(107) If $0 \leq a$ and $0 \leq b$ and $a \neq b$, then $\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{a}+\sqrt{b}}{a-b}$.
(108) If $0 \leq b$ and $b<a$, then $\frac{1}{\sqrt{a}-\sqrt{b}}=\frac{\sqrt{a}+\sqrt{b}}{a-b}$.

References

[1] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[2] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.

Connectives and Subformulae of the First Order Language

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. In the article the development of the first order language defined in [5] is continued. The following connectives are introduced: implication (\Rightarrow), disjunction (\vee), and equivalence (\Leftrightarrow). We introduce also the existential quantifier (\exists) and FALSUM. Some theorems on disjunctive, conditional, biconditional and existential formulae are proved and their selector functors are introduced. The second part of the article deals with notions of subformula, proper subformula and immediate constituent of a QC-formula.

MML Identifier: QC_LANG2.

The papers [7], [6], [3], [4], [1], [2], and [5] provide the terminology and notation for this paper. We adopt the following convention: x, y, z will be bound variables and $p, q, p_{1}, p_{2}, q_{1}$ will be elements of WFF. One can prove the following propositions:
(1) If $\neg p=\neg q$, then $p=q$.
(2) $\operatorname{Arg}(\neg p)=p$.
(3) If $p \wedge q=p_{1} \wedge q_{1}$, then $p=p_{1}$ and $q=q_{1}$.
(4) If p is conjunctive, then $p=\operatorname{Left} \operatorname{Arg}(p) \wedge \operatorname{Right} \operatorname{Arg}(p)$.
(5) $\operatorname{Left} \operatorname{Arg}(p \wedge q)=p$ and $\operatorname{Right} \operatorname{Arg}(p \wedge q)=q$.
(6) If $\forall_{x} p=\forall_{y} q$, then $x=y$ and $p=q$.
(7) If p is universal, then $p=\forall_{\operatorname{Bound}(p)} \operatorname{Scope}(p)$.
(8) $\operatorname{Bound}\left(\forall_{x} p\right)=x$ and $\operatorname{Scope}\left(\forall_{x} p\right)=p$.

We now define three new functors. The formula FALSUM is defined as follows:

$$
\text { FALSUM }=\neg \text { VERUM. }
$$

[^4]Let p, q be elements of WFF. The functor $p \Rightarrow q$ yields a formula and is defined by:

$$
p \Rightarrow q=\neg(p \wedge \neg q) .
$$

The functor $p \vee q$ yields a formula and is defined as follows:
$p \vee q=\neg(\neg p \wedge \neg q)$.
Let p, q be elements of WFF. The functor $p \Leftrightarrow q$ yielding a formula, is defined as follows:
$p \Leftrightarrow q=(p \Rightarrow q) \wedge(q \Rightarrow p)$.
Let x be a bound variable, and let p be an element of WFF. The functor $\exists_{x} p$ yielding a formula, is defined as follows:
$\exists_{x} p=\neg\left(\forall_{x} \neg p\right)$.
The following propositions are true:
(9) FALSUM $=\neg$ VERUM.
(12) $p \Leftrightarrow q=(p \Rightarrow q) \wedge(q \Rightarrow p)$.
(13) FALSUM is negative and $\operatorname{Arg}($ FALSUM $)=$ VERUM.
(14) $p \vee q=\neg p \Rightarrow q$.
(15) $\quad \exists_{x} p=\neg\left(\forall_{x} \neg p\right)$.
(16) If $p \vee q=p_{1} \vee q_{1}$, then $p=p_{1}$ and $q=q_{1}$.
(17) If $p \Rightarrow q=p_{1} \Rightarrow q_{1}$, then $p=p_{1}$ and $q=q_{1}$.
(18) If $p \Leftrightarrow q=p_{1} \Leftrightarrow q_{1}$, then $p=p_{1}$ and $q=q_{1}$.
(19) If $\exists_{x} p=\exists_{y} q$, then $x=y$ and $p=q$.

We now define two new functors. Let x, y be bound variables, and let p be an element of WFF. The functor $\forall_{x, y} p$ yielding a formula, is defined by:
$\forall_{x, y} p=\forall_{x}\left(\forall_{y} p\right)$.
The functor $\exists_{x, y} p$ yields a formula and is defined by:
$\exists_{x, y} p=\exists_{x}\left(\exists_{y} p\right)$.
Next we state several propositions:

$$
\begin{equation*}
\forall_{x, y} p=\forall_{x}\left(\forall_{y} p\right) \text { and } \exists_{x, y} p=\exists_{x}\left(\exists_{y} p\right) . \tag{20}
\end{equation*}
$$

(21) For all bound variables $x_{1}, x_{2}, y_{1}, y_{2}$ such that $\forall_{x_{1}, y_{1}} p_{1}=\forall_{x_{2}, y_{2}} p_{2}$ holds $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and $p_{1}=p_{2}$.
(22) If $\forall_{x, y} p=\forall_{z} q$, then $x=z$ and $\forall_{y} p=q$.
(23) For all bound variables $x_{1}, x_{2}, y_{1}, y_{2}$ such that $\exists_{x_{1}, y_{1}} p_{1}=\exists_{x_{2}, y_{2}} p_{2}$ holds $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and $p_{1}=p_{2}$.
(24) If $\exists_{x, y} p=\exists_{z} q$, then $x=z$ and $\exists_{y} p=q$.
(25) $\forall_{x, y} p$ is universal and $\operatorname{Bound}\left(\forall_{x, y} p\right)=x$ and $\operatorname{Scope}\left(\forall_{x, y} p\right)=\forall_{y} p$.

We now define two new functors. Let x, y, z be bound variables, and let p be an element of WFF. The functor $\forall_{x, y, z} p$ yields a formula and is defined by:
$\forall_{x, y, z} p=\forall_{x}\left(\forall_{y, z} p\right)$.
The functor $\exists_{x, y, z} p$ yields a formula and is defined by:

$$
\begin{equation*}
\exists_{x, y, z} p=\exists_{x}\left(\exists_{y, z} p\right) . \tag{26}
\end{equation*}
$$

The following propositions are true:
$\forall_{x, y, z} p=\forall_{x}\left(\forall_{y, z} p\right)$ and $\exists_{x, y, z} p=\exists_{x}\left(\exists_{y, z} p\right)$.
(27) For all bound variables $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}$ such that $\forall_{x_{1}, y_{1}, z_{1}} p_{1}=$ $\forall_{x_{2}, y_{2}, z_{2}} p_{2}$ holds $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and $z_{1}=z_{2}$ and $p_{1}=p_{2}$.
In the sequel s, t will be bound variables. We now state several propositions:
(28) If $\forall_{x, y, z} p=\forall_{t} q$, then $x=t$ and $\forall_{y, z} p=q$.

$$
\begin{equation*}
\text { If } \forall_{x, y, z} p=\forall_{t, s} q \text {, then } x=t \text { and } y=s \text { and } \forall_{z} p=q . \tag{29}
\end{equation*}
$$

(30) For all bound variables $x_{1}, x_{2}, y_{1}, y_{2}, z_{1}, z_{2}$ such that $\exists_{x_{1}, y_{1}, z_{1}} p_{1}=$ $\exists_{x_{2}, y_{2}, z_{2}} p_{2}$ holds $x_{1}=x_{2}$ and $y_{1}=y_{2}$ and $z_{1}=z_{2}$ and $p_{1}=p_{2}$.

$$
\begin{equation*}
\text { If } \exists_{x, y, z} p=\exists_{t} q \text {, then } x=t \text { and } \exists_{y, z} p=q . \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } \exists_{x, y, z} p=\exists_{t, s} q \text {, then } x=t \text { and } y=s \text { and } \exists_{z} p=q \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
\forall_{x, y, z} p \text { is universal and } \operatorname{Bound}\left(\forall_{x, y, z} p\right)=x \text { and } \operatorname{Scope}\left(\forall_{x, y, z} p\right)=\forall_{y, z} p \tag{33}
\end{equation*}
$$

We now define four new predicates. Let H be an element of WFF. We say that H is disjunctive if and only if:
there exist elements p, q of WFF such that $H=p \vee q$.
We say that H is conditional if and only if:
there exist elements p, q of WFF such that $H=p \Rightarrow q$.
We say that H is biconditional if and only if:
there exist elements p, q of WFF such that $H=p \Leftrightarrow q$.
We say that H is existential if and only if:
there exists a bound variable x and there exists an element p of WFF such that $H=\exists_{x} p$.

We now state several propositions:
(34) For every element H of WFF holds H is disjunctive if and only if there exist elements p, q of WFF such that $H=p \vee q$.
(35) For every element H of WFF holds H is conditional if and only if there exist elements p, q of WFF such that $H=p \Rightarrow q$.
(36) For every element H of WFF holds H is biconditional if and only if there exist elements p, q of WFF such that $H=p \Leftrightarrow q$.
(37) For every element H of WFF holds H is existential if and only if there exists a bound variable x and there exists an element p of WFF such that $H=\exists_{x} p$.
(38) $\exists_{x, y} p$ is existential and $\exists_{x, y, z} p$ is existential.

We now define four new functors. Let H be an element of WFF. The functor LeftDisj (H) yields a formula and is defined by:
$\operatorname{LeftDisj}(H)=\operatorname{Arg}(\operatorname{Left} \operatorname{Arg}(\operatorname{Arg}(H)))$.
The functor RightDisj (H) yielding a formula, is defined as follows:
$\operatorname{RightDisj}(H)=\operatorname{Arg}(\operatorname{Right} \operatorname{Arg}(\operatorname{Arg}(H)))$.
The functor Antecedent (H) yields a formula and is defined by:
Antecedent $(H)=\operatorname{Left} \operatorname{Arg}(\operatorname{Arg}(H))$.
The functor Consequent (H) yields a formula and is defined by:
$\operatorname{Consequent}(H)=\operatorname{Arg}(\operatorname{Right} \operatorname{Arg}(\operatorname{Arg}(H)))$.
We now define two new functors. Let H be an element of WFF. The functor LeftSide (H) yields a formula and is defined by:

LeftSide $(H)=$ Antecedent $(\operatorname{Left} \operatorname{Arg}(H))$.
The functor RightSide (H) yielding a formula, is defined as follows:
$\operatorname{RightSide}(H)=\operatorname{Consequent}(\operatorname{Left} \operatorname{Arg}(H))$.
The following propositions are true:
(39) For every element H of WFF holds
$\operatorname{LeftDisj}(H)=\operatorname{Arg}(\operatorname{Left} \operatorname{Arg}(\operatorname{Arg}(H)))$.
(40) For every element H of WFF holds $\operatorname{RightDisj}(H)=\operatorname{Arg}(\operatorname{Right} \operatorname{Arg}(\operatorname{Arg}(H)))$.
(41) For every element H of WFF holds Antecedent $(H)=\operatorname{Left} \operatorname{Arg}(\operatorname{Arg}(H))$.
(42) For every element H of WFF holds

Consequent $(H)=\operatorname{Arg}(\operatorname{Right} \operatorname{Arg}(\operatorname{Arg}(H)))$.
(43) For every element H of WFF holds
$\operatorname{LeftSide}(H)=\operatorname{Antecedent}(\operatorname{Left} \operatorname{Arg}(H))$.
(44) For every element H of WFF holds
$\operatorname{RightSide}(H)=\operatorname{Consequent}(\operatorname{Left} \operatorname{Arg}(H))$.
In the sequel F, G, H will be elements of WFF. We now state a number of propositions:
(45) $\operatorname{LeftDisj}(F \vee G)=F$ and $\operatorname{RightDisj}(F \vee G)=G$ and $\operatorname{Arg}(F \vee G)=$ $\neg F \wedge \neg G$.
(46) Antecedent $(F \Rightarrow G)=F$ and $\operatorname{Consequent}(F \Rightarrow G)=G$ and $\operatorname{Arg}(F \Rightarrow$ $G)=F \wedge \neg G$.
(47) $\operatorname{LeftSide}(F \Leftrightarrow G)=F$ and $\operatorname{RightSide}(F \Leftrightarrow G)=G$ and $\operatorname{Left} \operatorname{Arg}(F \Leftrightarrow$ $G)=F \Rightarrow G$ and $\operatorname{Right} \operatorname{Arg}(F \Leftrightarrow G)=G \Rightarrow F$.
(48) $\operatorname{Arg}\left(\exists_{x} H\right)=\forall_{x} \neg H$.
(49) If H is disjunctive, then H is conditional and H is negative and $\operatorname{Arg}(H)$ is conjunctive and $\operatorname{Left} \operatorname{Arg}(\operatorname{Arg}(H))$ is negative and $\operatorname{Right} \operatorname{Arg}(\operatorname{Arg}(H))$ is negative.
(50) If H is conditional, then H is negative and $\operatorname{Arg}(H)$ is conjunctive and $\operatorname{Right} \operatorname{Arg}(\operatorname{Arg}(H))$ is negative.
(51) If H is biconditional, then H is conjunctive and $\operatorname{Left} \operatorname{Arg}(H)$ is conditional and $\operatorname{Right} \operatorname{Arg}(H)$ is conditional.
(52) If H is existential, then H is negative and $\operatorname{Arg}(H)$ is universal and Scope $(\operatorname{Arg}(H))$ is negative.
(53) If H is disjunctive, then $H=\operatorname{LeftDisj}(H) \vee \operatorname{RightDisj}(H)$.
(54) If H is conditional, then $H=\operatorname{Antecedent}(H) \Rightarrow \operatorname{Consequent(H).~}$
(55) If H is biconditional, then $H=\operatorname{LeftSide}(H) \Leftrightarrow \operatorname{RightSide}(H)$.
(56) If H is existential, then $H=\exists_{\operatorname{Bound}(\operatorname{Arg}(H))} \operatorname{Arg}(\operatorname{Scope}(\operatorname{Arg}(H)))$.

Let G, H be elements of WFF. We say that G is an immediate constituent of H if and only if:
$H=\neg G$ or there exists an element F of WFF such that $H=G \wedge F$ or $H=F \wedge G$ or there exists a bound variable x such that $H=\forall_{x} G$.

For simplicity we adopt the following convention: x is a bound variable, k, n are natural numbers, P is a k-ary predicate symbol, and V is a list of variables of the length k. One can prove the following propositions:
(57) G is an immediate constituent of H if and only if $H=\neg G$ or there exists F such that $H=G \wedge F$ or $H=F \wedge G$ or there exists x such that $H=\forall_{x} G$.
(58) H is not an immediate constituent of VERUM.
(59) $\quad H$ is not an immediate constituent of $P[V]$.
(60) $\quad F$ is an immediate constituent of $\neg H$ if and only if $F=H$.
(61) H is an immediate constituent of FALSUM if and only if $H=$ VERUM.
(62) F is an immediate constituent of $G \wedge H$ if and only if $F=G$ or $F=H$.
(63) F is an immediate constituent of $\forall_{x} H$ if and only if $F=H$.
(64) If H is atomic, then F is not an immediate constituent of H.
(65) If H is negative, then F is an immediate constituent of H if and only if $F=\operatorname{Arg}(H)$.
(66) If H is conjunctive, then F is an immediate constituent of H if and only if $F=\operatorname{Left} \operatorname{Arg}(H)$ or $F=\operatorname{Right} \operatorname{Arg}(H)$.
(67) If H is universal, then F is an immediate constituent of H if and only if $F=\operatorname{Scope}(H)$.
In the sequel L denotes a finite sequence. Let us consider G, H. We say that G is a subformula of H if and only if:
there exist n, L such that $1 \leq n$ and len $L=n$ and $L(1)=G$ and $L(n)=H$ and for every k such that $1 \leq k$ and $k<n$ there exist elements G_{1}, H_{1} of WFF such that $L(k)=G_{1}$ and $L(k+1)=H_{1}$ and G_{1} is an immediate constituent of H_{1}.

We now state two propositions:
(68) $\quad G$ is a subformula of H if and only if there exist n, L such that $1 \leq n$ and len $L=n$ and $L(1)=G$ and $L(n)=H$ and for every k such that $1 \leq k$ and $k<n$ there exist elements G_{1}, H_{1} of WFF such that $L(k)=G_{1}$ and $L(k+1)=H_{1}$ and G_{1} is an immediate constituent of H_{1}.
(69) H is a subformula of H.

Let us consider H, F. We say that H is a proper subformula of F if and only if:
H is a subformula of F and $H \neq F$.
One can prove the following propositions:
(70) H is a proper subformula of F if and only if H is a subformula of F and $H \neq F$.
(71) If H is an immediate constituent of F, then len $(@ H)<\operatorname{len}(@ F)$.
(72) If H is an immediate constituent of F, then H is a subformula of F.
(73) If H is an immediate constituent of F, then H is a proper subformula of F.
(74) If H is a proper subformula of F, then len $(@ H)<\operatorname{len}(@ F)$.
(75) If H is a proper subformula of F, then there exists G such that G is an immediate constituent of F.
(76) If F is a proper subformula of G and G is a proper subformula of H, then F is a proper subformula of H.
(77) If F is a subformula of G and G is a subformula of H, then F is a subformula of H.
(78) If G is a subformula of H and H is a subformula of G, then $G=H$.
(79) It is not true that: G is a proper subformula of H and H is a subformula of G.
(80) It is not true that: G is a proper subformula of H and H is a proper subformula of G.
(81) It is not true that: G is a subformula of H and H is an immediate constituent of G.
(82) It is not true that: G is a proper subformula of H and H is an immediate constituent of G.
(83) Suppose F is a proper subformula of G and G is a subformula of H or F is a subformula of G and G is a proper subformula of H or F is a subformula of G and G is an immediate constituent of H or F is an immediate constituent of G and G is a subformula of H or F is a proper subformula of G and G is an immediate constituent of H or F is an immediate constituent of G and G is a proper subformula of H. Then F is a proper subformula of H.
(84) $\quad F$ is not a proper subformula of VERUM.
(85) $\quad F$ is not a proper subformula of $P[V]$.
(86) $\quad F$ is a subformula of H if and only if F is a proper subformula of $\neg H$.
(87) If $\neg F$ is a subformula of H, then F is a proper subformula of H.
(88) F is a proper subformula of FALSUM if and only if F is a subformula of VERUM.
(89) $\quad F$ is a subformula of G or F is a subformula of H if and only if F is a proper subformula of $G \wedge H$.
(90) If $F \wedge G$ is a subformula of H, then F is a proper subformula of H and G is a proper subformula of H.
(91) $\quad F$ is a subformula of H if and only if F is a proper subformula of $\forall_{x} H$.
(92) If $\forall_{x} H$ is a subformula of F, then H is a proper subformula of F.
(93) $F \wedge \neg G$ is a proper subformula of $F \Rightarrow G$ and F is a proper subformula of $F \Rightarrow G$ and $\neg G$ is a proper subformula of $F \Rightarrow G$ and G is a proper subformula of $F \Rightarrow G$.
(94) $\neg F \wedge \neg G$ is a proper subformula of $F \vee G$ and $\neg F$ is a proper subformula of $F \vee G$ and $\neg G$ is a proper subformula of $F \vee G$ and F is a proper subformula of $F \vee G$ and G is a proper subformula of $F \vee G$.
(95) If H is atomic, then F is not a proper subformula of H.
(96) If H is negative, then $\operatorname{Arg}(H)$ is a proper subformula of H.
(97) If H is conjunctive, then $\operatorname{Left} \operatorname{Arg}(H)$ is a proper subformula of H and $\operatorname{Right} \operatorname{Arg}(H)$ is a proper subformula of H.
(98) If H is universal, then $\operatorname{Scope}(H)$ is a proper subformula of H.
(99) $\quad H$ is a subformula of VERUM if and only if $H=$ VERUM.
(100) $\quad H$ is a subformula of $P[V]$ if and only if $H=P[V]$.
(101) H is a subformula of FALSUM if and only if $H=$ FALSUM or $H=$ VERUM.
Let us consider H. The functor Subformulae H yields a set and is defined by:
for arbitrary a holds $a \in$ Subformulae H if and only if there exists F such that $F=a$ and F is a subformula of H.

Next we state a number of propositions:
(102) For arbitrary a holds $a \in$ Subformulae H if and only if there exists F such that $F=a$ and F is a subformula of H.
(103) If $G \in$ Subformulae H, then G is a subformula of H.
(104) If F is a subformula of H, then Subformulae $F \subseteq$ Subformulae H.
(105) If $G \in$ Subformulae H, then Subformulae $G \subseteq$ Subformulae H.
(106) $H \in$ Subformulae H.
(107) Subformulae VERUM $=\{$ VERUM $\}$.
(108) \quad Subformulae $(P[V])=\{P[V]\}$.
(109) Subformulae FALSUM $=\{$ VERUM, FALSUM $\}$.
(110) Subformulae $\neg H=$ Subformulae $H \cup\{\neg H\}$.
(111) Subformulae $H \wedge F=$ (Subformulae $H \cup$ Subformulae $F) \cup\{H \wedge F\}$.
(112) Subformulae $\forall_{x} H=$ Subformulae $H \cup\left\{\forall_{x} H\right\}$.
(113) Subformulae $F \Rightarrow G=$ (Subformulae $F \cup$ Subformulae $G) \cup\{\neg G, F \wedge$ $\neg G, F \Rightarrow G\}$.
(114) Subformulae $F \vee G=$ (Subformulae $F \cup$ Subformulae $G) \cup\{\neg G, \neg F, \neg F \wedge$ $\neg G, F \vee G\}$.
(115) Subformulae $F \Leftrightarrow G=$ (Subformulae $F \cup$ Subformulae $G) \cup\{\neg G, F \wedge$ $\neg G, F \Rightarrow G, \neg F, G \wedge \neg F, G \Rightarrow F, F \Leftrightarrow G\}$.
(116) $H=$ VERUM or H is atomic if and only if Subformulae $H=\{H\}$.
(117) If H is negative, then Subformulae $H=\operatorname{Subformulae~} \operatorname{Arg}(H) \cup\{H\}$.
(118) If H is conjunctive, then Subformulae $H=(\operatorname{Subformulae} \operatorname{Left} \operatorname{Arg}(H) \cup$ Subformulae $\operatorname{Right} \operatorname{Arg}(H)) \cup\{H\}$.
(119) If H is universal, then Subformulae $H=\operatorname{Subformulae} \operatorname{Scope}(H) \cup\{H\}$.
(120) If H is an immediate constituent of G or H is a proper subformula of G or H is a subformula of G but $G \in \operatorname{Subformulae} F$, then $H \in$ Subformulae F.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[6] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received November 23, 1989

Variables in Formulae of the First Order Language ${ }^{1}$

Czesław Byliński
Warsaw University
Białystok

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. We develop the first order language defined in [5]. We continue the work done in the article [1]. We prove some schemes of defining by structural induction. We deal with notions of closed subformulae and of still not bound variables in a formula. We introduce the concept of the set of all free variables and the set of all fixed variables occurring in a formula.

MML Identifier: QC_LANG3.

The notation and terminology used in this paper have been introduced in the following articles: [6], [3], [4], [2], [5], and [1]. For simplicity we follow the rules: i, j, k are natural numbers, x is a bound variable, a is a free variable, p, q are elements of WFF, l is a finite sequence of elements of Var, P is a predicate symbol, and V is a non-empty subset of Var. Let F be a function from WFF into WFF, and let us consider p. Then $F(p)$ is an element of WFF.

In the article we present several logical schemes. The scheme QC_Func_Uniq deals with a non-empty set \mathcal{A}, a function \mathcal{B} from WFF into \mathcal{A}, a function \mathcal{C} from WFF into \mathcal{A}, an element \mathcal{D} of \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:
$\mathcal{B}=\mathcal{C}$
provided the following conditions are satisfied:

- Given p. Let d_{1}, d_{2} be elements of \mathcal{A}. Then
(i) if $p=$ VERUM, then $\mathcal{B}(p)=\mathcal{D}$,
(ii) if p is atomic, then $\mathcal{B}(p)=\mathcal{F}(p)$,
(iii) if p is negative and $d_{1}=\mathcal{B}(\operatorname{Arg}(p))$, then $\mathcal{B}(p)=\mathcal{G}\left(d_{1}\right)$,
(iv) if p is conjunctive and $d_{1}=\mathcal{B}(\operatorname{Left} \operatorname{Arg}(p))$ and

[^5]$d_{2}=\mathcal{B}(\operatorname{Right} \operatorname{Arg}(p))$,
then $\mathcal{B}(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$,
(v) if p is universal and $d_{1}=\mathcal{B}(\operatorname{Scope}(p))$, then $\mathcal{B}(p)=\mathcal{I}\left(p, d_{1}\right)$,

- Given p. Let d_{1}, d_{2} be elements of \mathcal{A}. Then
(i) if $p=$ VERUM, then $\mathcal{C}(p)=\mathcal{D}$,
(ii) if p is atomic, then $\mathcal{C}(p)=\mathcal{F}(p)$,
(iii) if p is negative and $d_{1}=\mathcal{C}(\operatorname{Arg}(p))$, then $\mathcal{C}(p)=\mathcal{G}\left(d_{1}\right)$,
(iv) if p is conjunctive and $d_{1}=\mathcal{C}(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=\mathcal{C}(\operatorname{Right} \operatorname{Arg}(p))$, then $\mathcal{C}(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$,
(v) if p is universal and $d_{1}=\mathcal{C}(\operatorname{Scope}(p))$, then $\mathcal{C}(p)=\mathcal{I}\left(p, d_{1}\right)$.

The scheme $Q C_{-}$Def_ D deals with a non-empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, an element \mathcal{C} of WFF, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:
(i) there exists an element d of \mathcal{A} and there exists a function F from WFF into \mathcal{A} such that $d=F(\mathcal{C})$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
(ii) for all elements x_{1}, x_{2} of \mathcal{A} such that there exists a function F from WFF into \mathcal{A} such that $x_{1}=F(\mathcal{C})$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=$ $\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$ and there exists a function F from WFF into \mathcal{A} such that $x_{2}=F(\mathcal{C})$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=$ $F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$ holds $x_{1}=x_{2}$ for all values of the parameters.

The scheme $Q C_{-} D_{-}$Result'VERU deals with a non-empty set \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{F}($ VERUM $)=\mathcal{B}$
provided the parameters fulfill the following condition:

- Let p be a formula. Let d be an element of \mathcal{A}. Then $d=\mathcal{F}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=\mathrm{VERUM}$, then $F(p)=\mathcal{B}$ but if p is atomic,
then $F(p)=\mathcal{G}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{I}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{J}\left(p, d_{1}\right)$.
The scheme $Q C _D _$Result'atom concerns a non-empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a formula \mathcal{C}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{F}(\mathcal{C})=\mathcal{G}(\mathcal{C})$
provided the following conditions are fulfilled:
- Let p be a formula. Let d be an element of \mathcal{A}. Then $d=\mathcal{F}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{G}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{I}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{J}\left(p, d_{1}\right)$,
- \mathcal{C} is atomic.

The scheme $Q C_{-} D_{-}$Result'nega deals with a non-empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a formula \mathcal{C}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a unary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{J}(\mathcal{C})=\mathcal{G}(\mathcal{J}(\operatorname{Arg}(\mathcal{C})))$
provided the following requirements are met:

- Let p be a formula. Let d be an element of \mathcal{A}. Then $d=\mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- \mathcal{C} is negative.

The scheme $Q C_{-} D_{-}$Result'conj concerns a non-empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, a unary functor \mathcal{J} yielding an element of \mathcal{A}, and a formula \mathcal{C} and states that:
for all elements d_{1}, d_{2} of \mathcal{A} such that $d_{1}=\mathcal{J}(\operatorname{Left} \operatorname{Arg}(\mathcal{C}))$ and
$d_{2}=\mathcal{J}(\operatorname{Right} \operatorname{Arg}(\mathcal{C}))$
holds $\mathcal{J}(\mathcal{C})=\mathcal{H}\left(d_{1}, d_{2}\right)$
provided the parameters satisfy the following conditions:

- Let p be a formula. Let d be an element of \mathcal{A}. Then $d=\mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- \mathcal{C} is conjunctive.

The scheme $Q C_{-} D_{-}$Result'univ deals with a non-empty set \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a formula \mathcal{C}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a unary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{J}(\mathcal{C})=\mathcal{I}(\mathcal{C}, \mathcal{J}(\operatorname{Scope}(\mathcal{C})))$
provided the following requirements are fulfilled:

- Let p be a formula. Let d be an element of \mathcal{A}. Then $d=\mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=\mathrm{VERUM}$, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- \mathcal{C} is universal.

Let us consider V. The functor \emptyset_{V} yields an element of 2^{V} qua a non-empty set and is defined as follows:
$\emptyset_{V}=\emptyset$.
Next we state three propositions:
(1) $\emptyset_{V}=\emptyset$.
(2) For every k-ary predicate symbol P holds P is a predicate symbol.
(3) $\quad P$ is a $\operatorname{Arity}(P)$-ary predicate symbol.

Let us consider l, V. The functor variables $V(l)$ yielding an element of 2^{V}, is defined by:
$\operatorname{variables}_{V}(l)=\{l(k): 1 \leq k \wedge k \leq \operatorname{len} l \wedge l(k) \in V\}$.
One can prove the following propositions:

$$
\begin{equation*}
\operatorname{variables}_{V}(l)=\{l(k): 1 \leq k \wedge k \leq \operatorname{len} l \wedge l(k) \in V\} \tag{4}
\end{equation*}
$$

variables $_{V}(l) \subseteq V$.
$\operatorname{snb}(l)=$ variables $_{\text {BoundVar }}(l)$.
$\operatorname{snb}($ VERUM $)=\emptyset$.
(8) For every formula p such that p is atomic holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Args}(p))$.
(9) For every k-ary predicate symbol P and for every list of variables l of the length k holds $\operatorname{snb}(P[l])=\operatorname{snb}(l)$.
(13) For every formula p such that p is conjunctive holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Left} \operatorname{Arg}(p)) \cup \operatorname{snb}(\operatorname{Right} \operatorname{Arg}(p))$.
(14) For all formulae p, q holds $\operatorname{snb}(p \wedge q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(15) For every formula p such that p is universal holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{Scope}(p)) \backslash\{\operatorname{Bound}(p)\}$.
(16) For every formula p holds $\operatorname{snb}\left(\forall_{x} p\right)=\operatorname{snb}(p) \backslash\{x\}$.
(17) For every formula p such that p is disjunctive holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{LeftDisj}(p)) \cup \operatorname{snb}(\operatorname{RightDisj}(p))$.
(18) For all formulae p, q holds $\operatorname{snb}(p \vee q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(19) For every formula p such that p is conditional holds $\operatorname{snb}(p)=\operatorname{snb}($ Antecedent $(p)) \cup \operatorname{snb}(\operatorname{Consequent}(p))$.
(20) For all formulae p, q holds $\operatorname{snb}(p \Rightarrow q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(21) For every formula p such that p is biconditional holds $\operatorname{snb}(p)=\operatorname{snb}(\operatorname{LeftSide}(p)) \cup \operatorname{snb}(\operatorname{RightSide}(p))$.
(22) For all formulae p, q holds $\operatorname{snb}(p \Leftrightarrow q)=\operatorname{snb}(p) \cup \operatorname{snb}(q)$.
(23) For every formula p holds $\operatorname{snb}\left(\exists_{x} p\right)=\operatorname{snb}(p) \backslash\{x\}$.
(24) VERUM is closed and FALSUM is closed.
(25) For every formula p holds p is closed if and only if $\neg p$ is closed.
(26) For all formulae p, q holds p is closed and q is closed if and only if $p \wedge q$ is closed.
(27) For every formula p holds $\forall_{x} p$ is closed if and only if $\operatorname{snb}(p) \subseteq\{x\}$.
(28) For every formula p such that p is closed holds $\forall_{x} p$ is closed.
(29) For all formulae p, q holds p is closed and q is closed if and only if $p \vee q$ is closed.
(30) For all formulae p, q holds p is closed and q is closed if and only if $p \Rightarrow q$ is closed.
(31) For all formulae p, q holds p is closed and q is closed if and only if $p \Leftrightarrow q$ is closed.
(32) For every formula p holds $\exists_{x} p$ is closed if and only if $\operatorname{snb}(p) \subseteq\{x\}$.
(33) For every formula p such that p is closed holds $\exists_{x} p$ is closed.

Let us consider V, and let F be a function from WFF into 2^{V}, and let us consider p. Then $F(p)$ is an element of 2^{V}.

Let us consider k. The functor x_{k} yielding a bound variable, is defined as follows:
$x_{k}=\langle 4, k\rangle$.
One can prove the following propositions:

$$
\begin{equation*}
x_{k}=\langle 4, k\rangle \tag{34}
\end{equation*}
$$

If $x_{i}=x_{j}$, then $i=j$.
(36) There exists i such that $x_{i}=x$.

Let us consider k. The functor \mathbf{a}_{k} yields a free variable and is defined as follows:
$\mathbf{a}_{k}=\langle 6, k\rangle$.
One can prove the following propositions:
$\mathbf{a}_{k}=\langle 6, k\rangle$.
(40) For every element c of FixedVar and for every element a of FreeVar holds $c \neq a$.
(41) For every element c of FixedVar and for every element x of BoundVar holds $c \neq x$.
(42) For every element a of FreeVar and for every element x of BoundVar holds $a \neq x$.
Let us consider V, and let V_{1}, V_{2} be elements of 2^{V}. Then $V_{1} \cup V_{2}$ is an element of 2^{V}.

Let D be a non-empty family of sets, and let d be an element of D. The functor @d yields an element of D qua a non-empty set and is defined as follows:
$@ d=d$.
One can prove the following proposition
(43) For every non-empty family D of sets and for every element d of D holds @ $d=d$.
Let D be a non-empty family of sets, and let d be an element of D quaa non-empty set. The functor @ d yielding an element of D, is defined as follows:
$@ d=d$.
We now state a proposition
(44) For every non-empty family D of sets and for every element d of D qua a non-empty set holds $@ d=d$.
Now we present several schemes. The scheme QC_Def_SETD deals with a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A}, an element \mathcal{C} of WFF, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, and a binary functor \mathcal{I} yielding an element of \mathcal{A} and states that:
(i) there exists an element d of \mathcal{A} and there exists a function F from WFF into \mathcal{A} such that $d=F(\mathcal{C})$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
(ii) for all elements x_{1}, x_{2} of \mathcal{A} such that there exists a function F from WFF into \mathcal{A} such that $x_{1}=F(\mathcal{C})$ and for every element p of WFF and for all
elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=$ $\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$ and there exists a function F from WFF into \mathcal{A} such that $x_{2}=F(\mathcal{C})$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=$ $F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$ holds $x_{1}=x_{2}$
for all values of the parameters.
The scheme $Q C_{-}$SETD_Result' V concerns a non-empty family \mathcal{A} of sets, a unary functor \mathcal{F} yielding an element of \mathcal{A}, an element \mathcal{B} of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{F}($ VERUM $)=\mathcal{B}$
provided the parameters meet the following requirement:

- Let p be an element of WFF. Let d be an element of \mathcal{A}. Then $d=$ $\mathcal{F}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{G}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{I}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{J}\left(p, d_{1}\right)$.
The scheme QC_SETD_Result'a concerns a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, an element \mathcal{C} of WFF, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a unary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a binary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{F}(\mathcal{C})=\mathcal{G}(\mathcal{C})$
provided the parameters fulfill the following requirements:
- Let p be an element of WFF. Let d be an element of \mathcal{A}. Then $d=$ $\mathcal{F}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{G}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{I}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{J}\left(p, d_{1}\right)$,
- \mathcal{C} is atomic.

The scheme $Q C _S E T D _R e s u l t ' n$ deals with a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A}, an element \mathcal{C} of WFF, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an
element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a unary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{J}(\mathcal{C})=\mathcal{G}(\mathcal{J}(\operatorname{Arg}(\mathcal{C})))$
provided the following requirements are met:

- Let p be an element of WFF. Let d be an element of \mathcal{A}. Then $d=$ $\mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- \mathcal{C} is negative.

The scheme $Q C _S E T D _$Result' \mathcal{C} deals with a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A}, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, a unary functor \mathcal{J} yielding an element of \mathcal{A}, and an element \mathcal{C} of WFF and states that:
for all elements d_{1}, d_{2} of \mathcal{A} such that $d_{1}=\mathcal{J}(\operatorname{Left} \operatorname{Arg}(\mathcal{C}))$ and
$d_{2}=\mathcal{J}(\operatorname{Right} \operatorname{Arg}(\mathcal{C}))$
holds $\mathcal{J}(\mathcal{C})=\mathcal{H}\left(d_{1}, d_{2}\right)$
provided the parameters fulfill the following conditions:

- Let p be an element of WFF. Let d be an element of \mathcal{A}. Then $d=$ $\mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- \mathcal{C} is conjunctive.

The scheme $Q C _S E T D _R e s u l t$ ' u deals with a non-empty family \mathcal{A} of sets, an element \mathcal{B} of \mathcal{A}, an element \mathcal{C} of WFF, a unary functor \mathcal{F} yielding an element of \mathcal{A}, a unary functor \mathcal{G} yielding an element of \mathcal{A}, a binary functor \mathcal{H} yielding an element of \mathcal{A}, a binary functor \mathcal{I} yielding an element of \mathcal{A}, and a unary functor \mathcal{J} yielding an element of \mathcal{A} and states that:
$\mathcal{J}(\mathcal{C})=\mathcal{I}(\mathcal{C}, \mathcal{J}(\operatorname{Scope}(\mathcal{C})))$
provided the parameters meet the following requirements:

- Let p be an element of WFF. Let d be an element of \mathcal{A}. Then $d=$ $\mathcal{J}(p)$ if and only if there exists a function F from WFF into \mathcal{A} such that $d=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of \mathcal{A} holds if $p=$ VERUM, then $F(p)=\mathcal{B}$ but if p is atomic, then $F(p)=\mathcal{F}(p)$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=\mathcal{G}\left(d_{1}\right)$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and
$d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=\mathcal{H}\left(d_{1}, d_{2}\right)$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=\mathcal{I}\left(p, d_{1}\right)$,
- \mathcal{C} is universal.

Let us consider V, p. The functor $\operatorname{Vars}_{V}(p)$ yielding an element of 2^{V}, is defined as follows:
there exists a function F from WFF into 2^{V} such that $\operatorname{Vars}_{V}(p)=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of 2^{V} holds if $p=$ VERUM, then $F(p)=@\left(\emptyset_{V}\right)$ but if p is atomic, then $F(p)=\operatorname{variables}_{V}(\operatorname{Args}(p))$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=d_{1}$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=d_{1} \cup d_{2}$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=d_{1}$.

We now state a number of propositions:
(45) Let X be an element of 2^{V}. Then $X=\operatorname{Vars}_{V}(p)$ if and only if there exists a function F from WFF into 2^{V} such that $X=F(p)$ and for every element p of WFF and for all elements d_{1}, d_{2} of 2^{V} holds if $p=$ VERUM, then $F(p)=@\left(\emptyset_{V}\right)$ but if p is atomic, then $F(p)=$ variables $_{V}(\operatorname{Args}(p))$ but if p is negative and $d_{1}=F(\operatorname{Arg}(p))$, then $F(p)=d_{1}$ but if p is conjunctive and $d_{1}=F(\operatorname{Left} \operatorname{Arg}(p))$ and $d_{2}=F(\operatorname{Right} \operatorname{Arg}(p))$, then $F(p)=d_{1} \cup d_{2}$ but if p is universal and $d_{1}=F(\operatorname{Scope}(p))$, then $F(p)=d_{1}$.
(46) $\quad \operatorname{Vars}_{V}($ VERUM $)=\emptyset$.
(47) If p is atomic, then $\operatorname{Vars}_{V}(p)=\operatorname{variables}_{V}(\operatorname{Args}(p))$ and $\operatorname{Vars}_{V}(p)=$ $\{\operatorname{Args}(p)(k): 1 \leq k \wedge k \leq \operatorname{len} \operatorname{Args}(p) \wedge \operatorname{Args}(p)(k) \in V\}$.
(48) For every k-ary predicate symbol P and for every list of variables l of the length k holds $\operatorname{Vars}_{V}(P[l])=\operatorname{variables}_{V}(l)$ and $\operatorname{Vars}_{V}(P[l])=\{l(i):$
$1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in V\}$.
(49) If p is negative, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Arg}(p))$.
(50) $\operatorname{Vars}_{V}(\neg p)=\operatorname{Vars}_{V}(p)$.
(51) $\quad \operatorname{Vars}_{V}($ FALSUM $)=\emptyset$.
(52) If p is conjunctive, then
$\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Left} \operatorname{Arg}(p)) \cup \operatorname{Vars}_{V}(\operatorname{Right} \operatorname{Arg}(p))$.
(53) $\operatorname{Vars}_{V}(p \wedge q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(54) If p is universal, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Scope}(p))$.
(55) $\operatorname{Vars}_{V}\left(\forall_{x} p\right)=\operatorname{Vars}_{V}(p)$.
(56) If p is disjunctive, then
$\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{LeftDisj}(p)) \cup \operatorname{Vars}_{V}(\operatorname{RightDisj}(p))$.
$\operatorname{Vars}_{V}(p \vee q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
If p is conditional, then
$\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Antecedent}(p)) \cup \operatorname{Vars}_{V}(\operatorname{Consequent}(p))$.
(59) $\operatorname{Vars}_{V}(p \Rightarrow q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(60) If p is biconditional, then
$\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{LeftSide}(p)) \cup \operatorname{Vars}_{V}(\operatorname{RightSide}(p))$.
(61) $\operatorname{Vars}_{V}(p \Leftrightarrow q)=\operatorname{Vars}_{V}(p) \cup \operatorname{Vars}_{V}(q)$.
(62) If p is existential, then $\operatorname{Vars}_{V}(p)=\operatorname{Vars}_{V}(\operatorname{Arg}(\operatorname{Scope}(\operatorname{Arg}(p))))$.
(63) $\operatorname{Vars}_{V}\left(\exists_{x} p\right)=\operatorname{Vars}_{V}(p)$.

Let us consider p. The functor Free p yielding an element of $2^{\text {FreeVar }}$, is defined as follows:

Free $p=\operatorname{Vars}_{\text {FreeVar }}(p)$.
One can prove the following propositions:
(64) Free $p=\operatorname{VarsFreeVar}^{(p)}$.
(65) Free VERUM $=\emptyset$.
(66) For every k-ary predicate symbol P and for every list of variables l of the length k holds Free $(P[l])=\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FreeVar $\}$.
(67) Free $\neg p=$ Free p.
(68) Free FALSUM $=\emptyset$.
(69) Free $p \wedge q=$ Free $p \cup$ Free q.
(70) Free $\forall_{x} p=$ Free p.
(71) Free $p \vee q=$ Free $p \cup$ Free q.
(72) Free $p \Rightarrow q=$ Free $p \cup$ Free q.
(73) Free $p \Leftrightarrow q=$ Free $p \cup$ Free q.
(74) Free $\exists_{x} p=$ Free p.

Let us consider p. The functor Fixed p yielding an element of $2^{\text {FixedVar }}$, is defined as follows:

Fixed $p=\operatorname{Vars}_{\text {FixedVar }}(p)$.
Next we state a number of propositions:
(75) \quad Fixed $p=\operatorname{Vars}_{\text {FixedVar }}(p)$.
(76) Fixed VERUM $=\emptyset$.
(77) For every k-ary predicate symbol P and for every list of variables l of the length k holds Fixed $(P[l])=\{l(i): 1 \leq i \wedge i \leq \operatorname{len} l \wedge l(i) \in$ FixedVar $\}$.
(78) Fixed $\neg p=$ Fixed p.
(79) \quad Fixed FALSUM $=\emptyset$.
(80) Fixed $p \wedge q=$ Fixed $p \cup$ Fixed q.
(81) $\operatorname{Fixed}\left({ }_{x} p\right)=$ Fixed p.
(82) Fixed $p \vee q=$ Fixed $p \cup$ Fixed q.
(83) Fixed $p \Rightarrow q=$ Fixed $p \cup$ Fixed q.
(84) Fixed $p \Leftrightarrow q=$ Fixed $p \cup$ Fixed q.
(85) $\quad \operatorname{Fixed}\left(\exists_{x} p\right)=$ Fixed p.

References

[1] Grzegorz Bancerek. Connectives and subformulae of the first order language. Formalized Mathematics, 1(3):451-458, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Piotr Rudnicki and Andrzej Trybulec. A first order language. Formalized Mathematics, 1(2):303-311, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received November 23, 1989

Monotone Real Sequences. Subsequences

Jarosław Kotowicz ${ }^{1}$
Warsaw University, Białystok

Abstract

Summary. The article contains definitions of constant, increasing, decreasing, non decreasing, non increasing sequences, the definition of a subsequence and their basic properties.

MML Identifier: SEQM_3.

The articles [2], [4], [3], [1], and [5] provide the terminology and notation for this paper. We adopt the following convention: n, m, k will be natural numbers, r will be a real number, and $s e q, s e q_{1}, s e q_{2}$ will be sequences of real numbers. We now define five new predicates. Let us consider seq. We say that seq is increasing if and only if:
for every n holds $\operatorname{seq}(n)<\operatorname{seq}(n+1)$.
We say that seq is decreasing if and only if:
for every n holds $\operatorname{seq}(n+1)<\operatorname{seq}(n)$.
We say that seq is non-decreasing if and only if:
for every n holds $\operatorname{seq}(n) \leq \operatorname{seq}(n+1)$.
We say that seq is non-increasing if and only if:
for every n holds $\operatorname{seq}(n+1) \leq \operatorname{seq}(n)$.
We say that seq is constant if and only if:
there exists r such that for every n holds $\operatorname{seq}(n)=r$.
Let us consider seq. We say that seq is monotone if and only if:
seq is non-decreasing or seq is non-increasing.
We now state a number of propositions:
(1) seq is increasing if and only if for every n holds $\operatorname{seq}(n)<\operatorname{seq}(n+1)$.
(2) $s e q$ is decreasing if and only if for every n holds $\operatorname{seq}(n+1)<\operatorname{seq}(n)$.
(3) $s e q$ is non-decreasing if and only if for every n holds $\operatorname{seq}(n) \leq \operatorname{seq}(n+1)$.
(4) seq is non-increasing if and only if for every n holds $\operatorname{seq}(n+1) \leq \operatorname{seq}(n)$.

[^6](5) seq is constant if and only if there exists r such that for every n holds $\operatorname{seq}(n)=r$.
(6) seq is monotone if and only if seq is non-decreasing or seq is nonincreasing.
(7) seq is increasing if and only if for all n, m such that $n<m$ holds $\operatorname{seq}(n)<\operatorname{seq}(m)$.
(8) seq is increasing if and only if for all n, k holds $\operatorname{seq}(n)<\operatorname{seq}((n+1)+k)$.
(9) seq is decreasing if and only if for all n, k holds $\operatorname{seq}((n+1)+k)<\operatorname{seq}(n)$.
(10) seq is decreasing if and only if for all n, m such that $n<m$ holds $\operatorname{seq}(m)<\operatorname{seq}(n)$.
(11) seq is non-decreasing if and only if for all n, k holds $\operatorname{seq}(n) \leq \operatorname{seq}(n+k)$.
(12) seq is non-decreasing if and only if for all n, m such that $n \leq m$ holds $\operatorname{seq}(n) \leq s e q(m)$.
(13) $s e q$ is non-increasing if and only if for all n, k holds $\operatorname{seq}(n+k) \leq \operatorname{seq}(n)$.
(14) seq is non-increasing if and only if for all n, m such that $n \leq m$ holds $\operatorname{seq}(m) \leq \operatorname{seq}(n)$.
seq is constant if and only if there exists r such that rng seq $=\{r\}$.
$s e q$ is constant if and only if for every n holds $\operatorname{seq}(n)=\operatorname{seq}(n+1)$.
$s e q$ is constant if and only if for all n, k holds $\operatorname{seq}(n)=\operatorname{seq}(n+k)$.
(19) If seq is increasing, then for every n such that $0<n$ holds $\operatorname{seq}(0)<$ seq(n).
(20) If seq is decreasing, then for every n such that $0<n$ holds $\operatorname{seq}(n)<$ seq(0).
(21) If $s e q$ is non-decreasing, then for every n holds $\operatorname{seq}(0) \leq \operatorname{seq}(n)$.
(22) If $s e q$ is non-increasing, then for every n holds $\operatorname{seq}(n) \leq s e q(0)$.
(23) If seq is increasing, then seq is non-decreasing.
(24) If seq is decreasing, then seq is non-increasing.
(25) If $s e q$ is constant, then $s e q$ is non-decreasing.
(26) If seq is constant, then seq is non-increasing.
(27) If seq is non-decreasing and seq is non-increasing, then $s e q$ is constant.

A sequence of real numbers is said to be an increasing sequence of naturals if:
rng it $\subseteq \mathbb{N}$ and for every n holds $\operatorname{it}(n)<\operatorname{it}(n+1)$.
Let us consider seq, k. The functor $s e q^{\wedge} k$ yielding a sequence of real numbers, is defined as follows:
for every n holds $(s e q \wedge k)(n)=\operatorname{seq}(n+k)$.
In the sequel $N s e q, N s e q_{1}$ will be increasing sequences of naturals. Next we state four propositions:
(28) $s e q$ is an increasing sequence of naturals if and only if $r n g s e q \subseteq \mathbb{N}$ and for every n holds $\operatorname{seq}(n)<\operatorname{seq}(n+1)$.
(29) seq is an increasing sequence of naturals if and only if seq is increasing and for every n holds $\operatorname{seq}(n)$ is a natural number.
$s e q_{1}=s e q-k$ if and only if for every n holds $\operatorname{seq}_{1}(n)=\operatorname{seq}(n+k)$.
(31) For every n holds $(s e q \cdot N s e q)(n)=s e q(N s e q(n))$.

Let us consider $N s e q, n$. Then $N \operatorname{seq}(n)$ is a natural number.
Let us consider $N s e q$, seq. Then $s e q \cdot N s e q$ is a sequence of real numbers.
Let us consider $N s e q, N s e q_{1}$. Then $N s e q_{1} \cdot N s e q$ is an increasing sequence of naturals.

Let us consider $N s e q, k$. Then $N s e q-k$ is an increasing sequence of naturals.
Let us consider seq, seq. We say that seq is a subsequence of $s e q_{1}$ if and only if:
there exists $N s e q$ such that $s e q=s e q_{1} \cdot N s e q$.
Next we state a number of propositions:
(32) $s e q$ is a subsequence of $s e q_{1}$ if and only if there exists $N s e q$ such that $s e q=s e q_{1} \cdot N s e q$.
(33) For every n holds $n \leq N \operatorname{seq}(n)$.
(34) $\quad s e q q^{\wedge} 0=s e q$.
(35) $\quad\left(s e q q^{\wedge}\right)^{\wedge} m=\left(s e q^{\wedge} m\right)^{\wedge} k$.
(36) $\quad\left(s e q q^{\wedge} k\right)^{\wedge} m=s e q^{\wedge}(k+m)$.
(37) $\quad\left(s e q+s e q_{1}\right)^{\wedge} k=s e q \wedge k+s e q_{1} \wedge k$.
(38) $(-s e q)^{\wedge} k=-s e q^{\wedge} k$.
(39) $\quad\left(s e q-s e q_{1}\right) \wedge k=s e q \wedge k-s e q_{1} \curvearrowright k$.
(40) If seq is non-zero, then $s e q^{\wedge} k$ is non-zero.
(41) If seq is non-zero, then $s e q^{-1} \sim k=(s e q-k)^{-1}$.
(42) $\left(s e q \cdot s e q_{1}\right)^{\wedge} k=\left(s e q^{\wedge} k\right) \cdot\left(s e q_{1} \wedge k\right)$.
(43) If seq_{1} is non-zero, then $\frac{s e q}{s e q_{1}} \cap k=\frac{s e q^{\wedge} k}{s e q_{1} \wedge k}$.
(44) $\left.\quad(r \cdot s e q)^{\wedge} k=r \cdot(s e q)^{\wedge} k\right)$.
(45) $\quad(s e q \cdot N s e q)^{\wedge} k=s e q \cdot(N s e q \wedge k)$.
(46) seq is a subsequence of seq.
(47) $s e q^{\sim} k$ is a subsequence of seq.
(48) If $s e q$ is a subsequence of $s e q_{1}$ and $s e q_{1}$ is a subsequence of $s e q_{2}$, then $s e q$ is a subsequence of $s e q_{2}$.
(49) If $s e q$ is increasing and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is increasing.
(50) If $s e q$ is decreasing and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is decreasing.
(51) If $s e q$ is non-decreasing and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is non-decreasing.
(52) If $s e q$ is non-increasing and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is non-increasing.
(53) If $s e q$ is monotone and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is monotone.
(54) If $s e q$ is constant and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is constant.
(56) If $s e q$ is upper bounded and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is upper bounded.
(57) If $s e q$ is lower bounded and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is lower bounded.
(58) If $s e q$ is bounded and $s e q_{1}$ is a subsequence of $s e q$, then $s e q_{1}$ is bounded.

If seq is increasing and $0<r$, then $r \cdot s e q$ is increasing but if seq is increasing and $0=r$, then $r \cdot s e q$ is constant but if $s e q$ is increasing and $r<0$, then $r \cdot s e q$ is decreasing.
(60) If seq is decreasing and $0<r$, then $r \cdot s e q$ is decreasing but if seq is decreasing and $0=r$, then $r \cdot s e q$ is constant but if $s e q$ is decreasing and $r<0$, then $r \cdot s e q$ is increasing.
(61) If $s e q$ is non-decreasing and $0 \leq r$, then $r \cdot s e q$ is non-decreasing but if $s e q$ is non-decreasing and $r \leq 0$, then $r \cdot s e q$ is non-increasing.
(62) If $s e q$ is non-increasing and $0 \leq r$, then $r \cdot s e q$ is non-increasing but if $s e q$ is non-increasing and $r \leq 0$, then $r \cdot s e q$ is non-decreasing.
(63)

If $s e q$ is increasing and $s e q_{1}$ is increasing, then $s e q+s e q_{1}$ is increasing but if $s e q$ is decreasing and $s e q_{1}$ is decreasing, then $s e q+s e q_{1}$ is decreasing but if $s e q$ is non-decreasing and $s e q_{1}$ is non-decreasing, then $s e q+s e q_{1}$ is non-decreasing but if $s e q$ is non-increasing and $s e q_{1}$ is non-increasing, then $s e q+s e q_{1}$ is non-increasing.
(64) If $s e q$ is increasing and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is increasing but if $s e q$ is decreasing and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is decreasing but if $s e q$ is non-decreasing and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is nondecreasing but if $s e q$ is non-increasing and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is non-increasing.
(65) If $s e q$ is constant, then for every r holds $r \cdot s e q$ is constant and $-s e q$ is constant and $|s e q|$ is constant.
(66) If $s e q$ is constant and $s e q_{1}$ is constant, then $s e q \cdot s e q_{1}$ is constant and $s e q+s e q_{1}$ is constant.
(67) If $s e q$ is constant and $s e q_{1}$ is constant, then $s e q-s e q_{1}$ is constant.
(68) If $s e q$ is upper bounded and $0<r$, then $r \cdot s e q$ is upper bounded but if $s e q$ is upper bounded and $0=r$, then $r \cdot s e q$ is bounded but if $s e q$ is upper bounded and $r<0$, then $r \cdot s e q$ is lower bounded.
(69) If seq is lower bounded and $0<r$, then $r \cdot s e q$ is lower bounded but if $s e q$ is lower bounded and $0=r$, then $r \cdot s e q$ is bounded but if seq is lower bounded and $r<0$, then $r \cdot s e q$ is upper bounded.
(70) If $s e q$ is bounded, then for every r holds $r \cdot s e q$ is bounded and $-s e q$ is bounded and $|s e q|$ is bounded.
(71) If $s e q$ is upper bounded and $s e q_{1}$ is upper bounded, then $s e q+s e q_{1}$ is upper bounded but if $s e q$ is lower bounded and $s e q_{1}$ is lower bounded, then $s e q+s e q_{1}$ is lower bounded but if $s e q$ is bounded and $s e q_{1}$ is bounded, then $s e q+s e q_{1}$ is bounded.
(72) If $s e q$ is bounded and $s e q_{1}$ is bounded, then $s e q \cdot s e q_{1}$ is bounded and $s e q-s e q_{1}$ is bounded.
(73) If $s e q$ is constant, then seq is bounded.
(74) If seq is constant, then for every r holds $r \cdot s e q$ is bounded and $-s e q$ is bounded and \mid seq \mid is bounded.
(75) If $s e q$ is upper bounded and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is upper bounded but if $s e q$ is lower bounded and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is lower bounded but if $s e q$ is bounded and $s e q_{1}$ is constant, then $s e q+s e q_{1}$ is bounded.
(76) If $s e q$ is upper bounded and $s e q_{1}$ is constant, then $s e q-s e q_{1}$ is upper bounded but if seq is lower bounded and $s e q_{1}$ is constant, then $s e q-s e q_{1}$ is lower bounded but if $s e q$ is bounded and $s e q_{1}$ is constant, then $s e q-s e q_{1}$ is bounded and $s e q_{1}-s e q$ is bounded and $s e q \cdot s e q_{1}$ is bounded.
(77) If $s e q$ is upper bounded and $s e q_{1}$ is non-increasing, then $s e q+s e q_{1}$ is upper bounded.
(78) If $s e q$ is lower bounded and $s e q_{1}$ is non-decreasing, then $s e q+s e q_{1}$ is lower bounded.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[4] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received November 23, 1989

Convergent Real Sequences. Upper and Lower Bound of Sets of Real Numbers

Jarosław Kotowicz ${ }^{1}$
Warsaw University, Białystok

Abstract

Summary. The article contains theorems about convergent sequences and the limit of sequences occurring in [3] such as BolzanoWeirrstrass theorem, Cauchy theorem and others. Bounded sets of real numbers and lower and upper bound of subset of real numbers are defined.

MML Identifier: SEQ_4.

The papers [7], [2], [5], [3], [1], [4], [8], and [6] provide the notation and terminology for this paper. For simplicity we follow a convention: n, k, m will denote natural numbers, $r, r_{1}, p, g, g_{1}, g_{2}$, s will denote real numbers, seq, seq will denote sequences of real numbers, N seq will denote an increasing sequence of naturals, and X, Y will denote subsets of \mathbb{R}. One can prove the following propositions:
(1) If $0<r_{1}$ and $r_{1} \leq r$ and $0<g$, then $\frac{g}{r} \leq \frac{g}{r_{1}}$.
(2) If $r<p$, then $0<p-r$.
(3) $r-(r-s)=s$ and $r+(s-r)=s$ and $(r+s)-r=s$.
(4) If $0<s$, then $0<\frac{s}{3}$.
(5) $\left(\frac{s}{3}+\frac{s}{3}\right)+\frac{s}{3}=s$.
(6) If $0<g$ and $0<r$ and $g \leq g_{1}$ and $r<r_{1}$, then $g \cdot r<g_{1} \cdot r_{1}$ and $r \cdot g<r_{1} \cdot g_{1}$.
(7) If $0<g$ and $0<r$ and $g \leq g_{1}$ and $r \leq r_{1}$, then $g \cdot r \leq g_{1} \cdot r_{1}$ and $r \cdot g \leq r_{1} \cdot g_{1}$.
(8) Given X, Y. Then if there exists r such that $r \in X$ and there exists r such that $r \in Y$ and for all r, p such that $r \in X$ and $p \in Y$ holds $r<p$, then there exists g such that for all r, p such that $r \in X$ and $p \in Y$ holds $r \leq g$ and $g \leq p$.

[^7](9) If $0<p$ and there exists r such that $r \in X$ and for every r such that $r \in X$ holds $r+p \in X$, then for every g there exists r such that $r \in X$ and $g<r$.
(10) For every r there exists n such that $r<n$.

We now define two new predicates. Let us consider X. Let us assume that there exists r such that $r \in X$. We say that X is upper bounded if and only if:
there exists p such that for every r such that $r \in X$ holds $r \leq p$.
We say that X is lower bounded if and only if:
there exists p such that for every r such that $r \in X$ holds $p \leq r$.
Let us consider X. Let us assume that there exists r such that $r \in X$. We say that X is bounded if and only if:
X is lower bounded and X is upper bounded.
We now state several propositions:
(11) If there exists r such that $r \in X$, then X is upper bounded if and only if there exists p such that for every r such that $r \in X$ holds $r \leq p$.
(12) If there exists r such that $r \in X$, then X is lower bounded if and only if there exists p such that for every r such that $r \in X$ holds $p \leq r$.
(13) If there exists r such that $r \in X$, then X is bounded if and only if X is upper bounded and X is lower bounded.
(14) If there exists r such that $r \in X$, then X is bounded if and only if there exists s such that $0<s$ and for every r such that $r \in X$ holds $|r|<s$.
(15) If $X=\{r\}$, then X is bounded.
(16) If there exists r such that $r \in X$ and X is upper bounded, then there exists g such that for every r such that $r \in X$ holds $r \leq g$ and for every s such that $0<s$ there exists r such that $r \in X$ and $g-s<r$.
(17) Suppose that
(i) for every r such that $r \in X$ holds $r \leq g_{1}$,
(ii) for every s such that $0<s$ there exists r such that $r \in X$ and $g_{1}-s<r$,
(iii) for every r such that $r \in X$ holds $r \leq g_{2}$,
(iv) for every s such that $0<s$ there exists r such that $r \in X$ and $g_{2}-s<r$. Then $g_{1}=g_{2}$.
(18) If there exists r such that $r \in X$ and X is lower bounded, then there exists g such that for every r such that $r \in X$ holds $g \leq r$ and for every s such that $0<s$ there exists r such that $r \in X$ and $r<g+s$.
(19) Suppose that
(i) for every r such that $r \in X$ holds $g_{1} \leq r$,
(ii) for every s such that $0<s$ there exists r such that $r \in X$ and $r<g_{1}+s$,
(iii) for every r such that $r \in X$ holds $g_{2} \leq r$,
(iv) for every s such that $0<s$ there exists r such that $r \in X$ and $r<g_{2}+s$. Then $g_{1}=g_{2}$.
Let us consider X. Let us assume that there exists r such that $r \in X$ and X is upper bounded. The functor $\sup X$ yielding a real number, is defined as follows:
for every r such that $r \in X$ holds $r \leq \sup X$ and for every s such that $0<s$ there exists r such that $r \in X$ and $(\sup X)-s<r$.

Let us consider X. Let us assume that there exists r such that $r \in X$ and X is lower bounded. The functor $\inf X$ yields a real number and is defined by:
for every r such that $r \in X$ holds inf $X \leq r$ and for every s such that $0<s$ there exists r such that $r \in X$ and $r<(\inf X)+s$.

One can prove the following propositions:
(20) If there exists r such that $r \in X$ and X is upper bounded, then $\sup X=$ g if and only if for every r such that $r \in X$ holds $r \leq g$ and for every s such that $0<s$ there exists r such that $r \in X$ and $g-s<r$.
(21) If there exists r such that $r \in X$ and X is lower bounded, then inf $X=g$ if and only if for every r such that $r \in X$ holds $g \leq r$ and for every s such that $0<s$ there exists r such that $r \in X$ and $r<g+s$.
(22) If $X=\{r\}$, then $\inf X=r$ and $\sup X=r$.
(23) If $X=\{r\}$, then $\inf X=\sup X$.
(24) If X is bounded and there exists r such that $r \in X$, then $\inf X \leq \sup X$.
(25) If X is bounded and there exists r such that $r \in X$, then there exist r, p such that $r \in X$ and $p \in X$ and $p \neq r$ if and only if inf $X<\sup X$.
The scheme SepNat concerns a unary predicate \mathcal{P}, and states that:
there exists a X being sets of natural numbers such that for every n holds $n \in X$ if and only if $\mathcal{P}[n]$
for all values of the parameter.
We now state a number of propositions:
(26) If $s e q$ is convergent, then $|s e q|$ is convergent.
(27) If $s e q$ is convergent, then $\lim |s e q|=|\lim s e q|$.
(28) If $|s e q|$ is convergent and $\lim |s e q|=0$, then $s e q$ is convergent and $\lim s e q=0$.
(29) If $s e q_{1}$ is a subsequence of $s e q$ and $s e q$ is convergent, then $s e q_{1}$ is convergent.
(30) If $s e q_{1}$ is a subsequence of $s e q$ and $s e q$ is convergent, then lim $s e q_{1}=$ $\lim s e q$.
(31) If seq is convergent and there exists k such that for every n such that $k \leq n$ holds $s e q_{1}(n)=s e q(n)$, then $s e q_{1}$ is convergent.
(32) If seq is convergent and there exists k such that for every n such that $k \leq n$ holds $s e q_{1}(n)=s e q(n)$, then $\lim s e q=\lim s e q_{1}$.
(33) If $s e q$ is convergent, then $s e q^{\wedge} k$ is convergent and $\lim \left(s e q^{\wedge} k\right)=\lim s e q$.
(34) If seq is convergent and there exists k such that $s e q_{1}=s e q{ }^{\wedge} k$, then $s e q_{1}$ is convergent and $\lim s e q_{1}=\lim s e q$.
(35) If seq is convergent and there exists k such that $s e q=s e q_{1} \curvearrowleft k$, then $s e q_{1}$ is convergent.
(36) If $s e q$ is convergent and there exists k such that $s e q=s e q_{1}{ }^{\wedge} k$, then $\lim s e q_{1}=\lim s e q$.
(37) If $s e q$ is convergent and $\lim s e q \neq 0$, then there exists k such that $s e q^{\wedge} k$ is non-zero.
(38) If $s e q$ is convergent and $\lim s e q \neq 0$, then there exists $s e q_{1}$ such that $s e q_{1}$ is a subsequence of $s e q$ and $s e q_{1}$ is non-zero.
(39) If seq is constant, then seq is convergent.
(40) If $s e q$ is constant and $r \in \operatorname{rng} s e q$ or $s e q$ is constant and there exists n such that $\operatorname{seq}(n)=r$, then $\lim \operatorname{seq}=r$.
(41) If $s e q$ is constant, then for every n holds $\lim s e q=s e q(n)$.
(42) If $s e q$ is convergent and $\lim s e q \neq 0$, then for every $s e q_{1}$ such that $s e q_{1}$ is a subsequence of $s e q$ and $s e q_{1}$ is non-zero holds $\lim s e q_{1}^{-1}=(\lim s e q)^{-1}$.
(43) For all r, seq such that $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{1}{n+r}$ holds seq is convergent.
(44) For all r, seq such that $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{1}{n+r}$ holds $\lim s e q=0$.
(45) If for every n holds $\operatorname{seq}(n)=\frac{1}{n+1}$, then seq is convergent and lim seq= 0.
(46) If $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{g}{n+r}$, then seq is convergent and $\lim s e q=0$.
(47) For all r, seq such that $0<r$ and for every $n \operatorname{holds} \operatorname{seq}(n)=\frac{1}{n \cdot n+r}$ holds seq is convergent.
(48) For all r, seq such that $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{1}{n \cdot n+r}$ holds $\lim s e q=0$.
(49) If for every n holds $\operatorname{seq}(n)=\frac{1}{n \cdot n+1}$, then seq is convergent and lim seq $=$ 0.
(50) If $0<r$ and for every n holds $\operatorname{seq}(n)=\frac{g}{n \cdot n+r}$, then seq is convergent and $\lim s e q=0$.
(51) If $s e q$ is non-decreasing and $s e q$ is upper bounded, then $s e q$ is convergent.
(52) If $s e q$ is non-increasing and $s e q$ is lower bounded, then $s e q$ is convergent.
(53) If $s e q$ is monotone and $s e q$ is bounded, then seq is convergent.
(54) If $s e q$ is upper bounded and $s e q$ is non-decreasing, then for every n holds $\operatorname{seq}(n) \leq \lim s e q$.
(55) If $s e q$ is lower bounded and $s e q$ is non-increasing, then for every n holds $\lim s e q \leq \operatorname{seq}(n)$
(56) For every seq there exists $N s e q$ such that $s e q \cdot N s e q$ is monotone.
(57) If $s e q$ is bounded, then there exists $s e q_{1}$ such that $s e q_{1}$ is a subsequence of $s e q$ and $s e q_{1}$ is convergent.
(58) seq is convergent if and only if for every s such that $0<s$ there exists n such that for every m such that $n \leq m$ holds $|\operatorname{seq}(m)-s e q(n)|<s$.
(59) Suppose $s e q$ is constant and $s e q_{1}$ is convergent. Then $\lim \left(s e q+s e q_{1}\right)=$ $s e q(0)+\lim s e q_{1}$ and $\lim \left(s e q-s e q_{1}\right)=s e q(0)-\lim s e q_{1}$ and $\lim \left(s e q_{1}-\right.$
$s e q)=\lim s e q_{1}-s e q(0)$ and $\lim \left(s e q \cdot s e q_{1}\right)=s e q(0) \cdot\left(\lim s e q_{1}\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[4] Jarosław Kotowicz. Monotone real sequences. Subsequences. Formalized Mathematics, 1(3):471-475, 1990.
[5] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[6] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Midpoint algebras

Michał Muzalewski ${ }^{1}$
Warsaw University, Białystok

Abstract

Summary. In this article basic properties of midpoint algebras are proved. We define a congruence relation \equiv on bound vectors and free vectors as the equivalence classes of \equiv.

MML Identifier: MIDSP_1.

The notation and terminology used in this paper are introduced in the following articles: [5], [1], [2], [3], [4], and [6]. We consider midpoint algebra structures which are systems

〈 points, a midpoint operation 〉
where the points is a non-empty set and the midpoint operation is a binary operation on the points. In the sequel $M S$ is a midpoint algebra structure and a, b are elements of the points of $M S$. Let us consider $M S, a, b$. The functor $a \oplus b$ yielding an element of the points of $M S$, is defined by:
$a \oplus b=($ the midpoint operation of $M S)(a, b)$.
We now state a proposition
(1) $\quad a \oplus b=$ (the midpoint operation of $M S)(a, b)$.

Let x be arbitrary. Then $\{x\}$ is a non-empty set.
$z o$ is a binary operation on $\{0\}$.
One can prove the following propositions:
(2) $z o$ is a function from $:\{0\},\{0\}$: into $\{0\}$.
(3) For all elements x, y of $\{0\}$ holds $z o(x, y)=0$.

The midpoint algebra structure EX is defined by:
$\mathrm{EX}=\langle\{0\}, z o\rangle$.
The following propositions are true:
(4) $\mathrm{EX}=\langle\{0\}, z o\rangle$.
(5) The points of $\mathrm{EX}=\{0\}$.

[^8](6) The midpoint operation of $\mathrm{EX}=z o$.
(7) For every element a of the points of EX holds $a=0$.
(8) For all elements a, b of the points of EX holds $a \oplus b=z o(a, b)$.
(9) For all elements a, b of the points of EX holds $a \oplus b=0$.
(10) For all elements a, b, c, d of the points of EX holds $a \oplus a=a$ and $a \oplus b=b \oplus a$ and $(a \oplus b) \oplus(c \oplus d)=(a \oplus c) \oplus(b \oplus d)$ and there exists an element x of the points of EX such that $x \oplus a=b$.
A midpoint algebra structure is called a midpoint algebra if:
for all elements a, b, c, d of the points of it holds $a \oplus a=a$ and $a \oplus b=b \oplus a$ and $(a \oplus b) \oplus(c \oplus d)=(a \oplus c) \oplus(b \oplus d)$ and there exists an element x of the points of it such that $x \oplus a=b$.

We follow the rules: M denotes a midpoint algebra and $a, b, c, d, a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$, x, y, x^{\prime} denote elements of the points of M. Next we state several propositions:
(11) $a \oplus a=a$.
(12) $a \oplus b=b \oplus a$.
(13) $(a \oplus b) \oplus(c \oplus d)=(a \oplus c) \oplus(b \oplus d)$.
(14) There exists x such that $x \oplus a=b$.
(15) $(a \oplus b) \oplus c=(a \oplus c) \oplus(b \oplus c)$.
(16) $a \oplus(b \oplus c)=(a \oplus b) \oplus(a \oplus c)$.
(17) If $a \oplus b=a$, then $a=b$.
(18) If $x \oplus a=x^{\prime} \oplus a$, then $x=x^{\prime}$.
(19) If $a \oplus x=a \oplus x^{\prime}$, then $x=x^{\prime}$.

Let us consider M, a, b, c, d. The predicate $a, b \equiv c, d$ is defined by:
$a \oplus d=b \oplus c$.
The following propositions are true:
(20) $a, b \equiv c, d$ if and only if $a \oplus d=b \oplus c$.
(22) If $a, b \equiv c, d$, then $c, d \equiv a, b$.
(23) If $a, a \equiv b, c$, then $b=c$.
(24) If $a, b \equiv c, c$, then $a=b$.
(25) $a, b \equiv a, b$.
(26) There exists d such that $a, b \equiv c, d$.
(27) If $a, b \equiv c, d$ and $a, b \equiv c, d^{\prime}$, then $d=d^{\prime}$.
(28) If $x, y \equiv a, b$ and $x, y \equiv c, d$, then $a, b \equiv c, d$.
(29) If $a, b \equiv a^{\prime}, b^{\prime}$ and $b, c \equiv b^{\prime}, c^{\prime}$, then $a, c \equiv a^{\prime}, c^{\prime}$.

In the sequel p, q, r will denote elements of : the points of M, the points of M :]. Let us consider M, p. Then p_{1} is an element of the points of M.

Let us consider M, p. Then $p_{\mathbf{2}}$ is an element of the points of M.
Let us consider M, p, q. The predicate $p \equiv q$ is defined as follows:
$p_{1}, p_{2} \equiv q_{1}, q_{2}$.

One can prove the following proposition
(30) $\quad p \equiv q$ if and only if $p_{\mathbf{1}}, p_{\mathbf{2}} \equiv q_{1}, q_{2}$.

Let us consider M, a, b. Then $\langle a, b\rangle$ is an element of : the points of M, the points of M :.

One can prove the following propositions:
(31) If $a, b \equiv c, d$, then $\langle a, b\rangle \equiv\langle c, d\rangle$.
(32) If $\langle a, b\rangle \equiv\langle c, d\rangle$, then $a, b \equiv c, d$.
(33) $p \equiv p$.
(34) If $p \equiv q$, then $q \equiv p$.
(35) If $p \equiv q$ and $p \equiv r$, then $q \equiv r$.
(36) If $p \equiv r$ and $q \equiv r$, then $p \equiv q$.
(37) If $p \equiv q$ and $q \equiv r$, then $p \equiv r$.
(38) If $p \equiv q$, then $r \equiv p$ if and only if $r \equiv q$.
(39) For every p holds $\{q: q \equiv p\}$ is a non-empty subset of : the points of M, the points of M.
Let us consider M, p. The functor p^{\smile} yields a non-empty subset of : the points of M, the points of M : and is defined as follows:
$p^{\breve{ }}=\{q: q \equiv p\}$.
The following propositions are true:
(40) For every p holds $p^{\hookrightarrow}=\{q: q \equiv p\}$ and p^{\complement} is a non-empty subset of : the points of M, the points of $M:$.
(41) For every p holds $r \in p^{\smile}$ if and only if $r \equiv p$.
(42) If $p \equiv q$, then $p^{\breve{ }}=q^{\breve{ }}$.
(43) If $p^{\llcorner }=q^{\llcorner }$, then $p \equiv q$.
(44) If $\langle a, b\rangle^{\smile}=\langle c, d\rangle^{\smile}$, then $a \oplus d=b \oplus c$.
(45) $p \in p^{\breve{ }}$.

Let us consider M. A non-empty subset of : the points of M, the points of M : is said to be a vector of M if:
there exists p such that it $=p^{\leftrightharpoons}$.
The following proposition is true
(46) For every non-empty subset X of : the points of M, the points of M :] holds X is a vector of M if and only if there exists p such that $X=p^{\llcorner }$.
In the sequel u, v, w, w^{\prime} denote vectors of M. The following proposition is true
(47) $\quad p^{\smile}$ is a vector of M.

Let us consider M, p. Then p^{\smile} is a vector of M.
We now state a proposition
(48) There exists u such that for every p holds $p \in u$ if and only if $p_{\mathbf{1}}=p_{\mathbf{2}}$.

Let us consider M. The functor I_{M} yielding a vector of M, is defined by:
$\mathrm{I}_{M}=\left\{p: p_{\mathbf{1}}=p_{\mathbf{2}}\right\}$.

Next we state four propositions:
(49) $\mathrm{I}_{M}=\left\{p: p_{\mathbf{1}}=p_{\mathbf{2}}\right\}$.
(50) $\quad \mathrm{I}_{M}=\langle b, b\rangle^{\leftrightharpoons}$.
(51) There exist w, p, q such that $u=p^{\hookrightarrow}$ and $v=q^{\hookrightarrow}$ and $p_{2}=q_{1}$ and $w=\left\langle p_{1}, q_{2}\right\rangle^{\smile}$.
(52) Suppose that
(i) there exist p, q such that $u=p^{\smile}$ and $v=q^{\hookrightarrow}$ and $p_{\mathbf{2}}=q_{1}$ and $w=\left\langle p_{1}, q_{2}\right\rangle^{\wedge}$,
(ii) there exist p, q such that $u=p^{\complement}$ and $v=q^{\complement}$ and $p_{2}=q_{1}$ and $w^{\prime}=\left\langle p_{1}, q_{2}\right\rangle^{\nearrow}$.
Then $w=w^{\prime}$.
Let us consider M, u, v. The functor $u+v$ yields a vector of M and is defined by:
there exist p, q such that $u=p^{\smile}$ and $v=q^{\smile}$ and $p_{2}=q_{1}$ and $u+v=$ $\left\langle p_{1}, q_{2}\right\rangle^{\smile}$.

We now state a proposition
(53) There exists b such that $u=\langle a, b\rangle^{\smile}$.

Let us consider M, a, b. The functor $\overrightarrow{[a, b]}$ yields a vector of M and is defined by:

$$
\overrightarrow{[a, b]}=\langle a, b\rangle^{\smile} .
$$

Next we state a number of propositions:

$$
\begin{equation*}
\overrightarrow{[a, b]}=\langle a, b\rangle^{\smile} . \tag{54}
\end{equation*}
$$

(55) There exists b such that $u=\overrightarrow{[a, b]}$.
(56) If $\langle a, b\rangle \equiv\langle c, d\rangle$, then $\overrightarrow{[a, b]}=\overrightarrow{[c, d]}$.
(57) If $\overrightarrow{[a, b]}=\overrightarrow{[c, d]}$, then $a \oplus d=b \oplus c$.
(58) $\mathrm{I}_{M}=\overrightarrow{[b, b]}$.
(59) If $\overrightarrow{[a, b]}=\overrightarrow{[a, c]}$, then $b=c$.
(60) $\overrightarrow{[a, b]}+\overrightarrow{[b, c]}=\overrightarrow{[a, c]}$.
(61) $\langle a, a \oplus b\rangle \equiv\langle a \oplus b, b\rangle$.
(62) $\overrightarrow{[a, a \oplus b]}+\overrightarrow{[a, a \oplus b]}=\overrightarrow{[a, b]}$.
(63) $(u+v)+w=u+(v+w)$.
(64) $u+\mathrm{I}_{M}=u$.
(65) There exists v such that $u+v=\mathrm{I}_{M}$.
(66) $u+v=v+u$.
(67) If $u+v=u+w$, then $v=w$.

Let us consider M, u. The functor $-u$ yields a vector of M and is defined by:
$u+(-u)=\mathrm{I}_{M}$.
We now state a proposition
(68) $u+(-u)=\mathrm{I}_{M}$.

In the sequel X denotes an element of $2^{[\text {the points of } M \text {, the points of } M \text {. Let us }}$ consider M. The functor setvect M yields a set and is defined as follows:
setvect $M=\{X: X$ is a vector of $M\}$.
Next we state a proposition
(69) setvect $M=\{X: X$ is a vector of $M\}$.

In the sequel x is arbitrary. One can prove the following two propositions:
(70) u is an element of $2^{\text {: the points of } M \text {, the points of } M: . ~}$
(71) $\quad x$ is a vector of M if and only if $x \in \operatorname{setvect} M$.

Let us consider M. Then setvect M is a non-empty set.
The following proposition is true
(72) $\quad x$ is a vector of M if and only if x is an element of setvect M.

In the sequel $u_{1}, v_{1}, w_{1}, W, W_{1}, W_{2}, T$ will denote elements of setvect M. Let us consider M, u_{1}, v_{1}. The functor $u_{1}+v_{1}$ yields an element of setvect M and is defined as follows:
for all u, v such that $u_{1}=u$ and $v_{1}=v$ holds $u_{1}+v_{1}=u+v$.
One can prove the following propositions:

$$
\begin{align*}
& \text { If } u_{1}=u \text { and } v_{1}=v, \text { then } u_{1}+v_{1}=u+v . \tag{73}\\
& u_{1}+v_{1}=v_{1}+u_{1} \tag{74}\\
& \left(u_{1}+v_{1}\right)+w_{1}=u_{1}+\left(v_{1}+w_{1}\right) \tag{75}
\end{align*}
$$

Let us consider M. The functor addvect M yields a binary operation on setvect M and is defined as follows:
for all u_{1}, v_{1} holds (addvect $\left.M\right)\left(u_{1}, v_{1}\right)=u_{1}+v_{1}$.
The following three propositions are true:
(76) $\quad($ addvect $M)\left(u_{1}, v_{1}\right)=u_{1}+v_{1}$.
(77) For every W there exists T such that $W+T=\mathrm{I}_{M}$.
(78) For all W, W_{1}, W_{2} such that $W+W_{1}=\mathrm{I}_{M}$ and $W+W_{2}=\mathrm{I}_{M}$ holds $W_{1}=W_{2}$.
Let us consider M. The functor complvect M yielding a unary operation on setvect M, is defined by:
for every W holds $W+($ complvect $M)(W)=\mathrm{I}_{M}$.
One can prove the following proposition

$$
\begin{equation*}
W+(\operatorname{complvect} M)(W)=\mathrm{I}_{M} \tag{79}
\end{equation*}
$$

Let us consider M. The functor zerovect M yields an element of setvect M and is defined as follows:
zerovect $M=\mathrm{I}_{M}$.
The following proposition is true
(80) \quad zerovect $M=\mathrm{I}_{M}$.

Let us consider M. The functor vectgroup M yielding a group structure, is defined by:
vectgroup $M=\langle$ setvect M, addvect M, complvect M, zerovect $M\rangle$.
Next we state several propositions:
(81) $\quad \operatorname{vectgroup} M=\langle$ setvect M, addvect M, complvect M, zerovect $M\rangle$.
(82) The carrier of vectgroup $M=$ setvect M.
(83) The addition of vectgroup $M=$ addvect M.
(84) The reverse-map of vectgroup $M=$ complvect M.
(85) The zero of vectgroup $M=$ zerovect M.
(86) vectgroup M is an Abelian group.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received November 26, 1989

The Fundamental Logic Structure in Quantum Mechanics

Paweł Sadowski
Warsaw University
Białystok

Andrzej Trybulec Konrad Raczkowski
Warsaw University Warsaw University
Białystok
Białystok

Abstract

Summary. In this article we present the logical structure given by four axioms of Mackey [3] in the set of propositions of Quantum Mechanics. The equivalence relation $(\operatorname{PropRel}(\mathrm{Q}))$ in the set of propositions (Prop Q) for given Quantum Mechanics Q is considered. The main text for this article is [6] where the structure of quotient space and the properties of equivalence relations, classes and partitions are studied.

MML Identifier: QMAX_1.

The articles [10], [1], [4], [2], [9], [8], [7], [5], and [6] provide the notation and terminology for this paper. In the sequel x will be arbitrary, X will be a nonempty set, and X_{1} will be a set. Let us consider X, and let S be a σ-field of subsets of X. The functor probabilities S yields a non-empty set and is defined by:
$x \in$ probabilities S if and only if x is a probability on S.
We now state a proposition
(1) For every σ-field S of subsets of X holds $x \in$ probabilities S if and only if x is a probability on S.
We consider quantum mechanics structures which are systems
〈 observables, states, a probability 〉
where the observables, the states are non-empty sets and the probability is a function from : the observables, the states \ddagger into probabilities the Borel sets. In the sequel Q denotes a quantum mechanics structure. We now define two new functors. Let us consider Q. The functor $\operatorname{Obs} Q$ yields a non-empty set and is defined by:

Obs $Q=$ the observables of Q.
The functor $\operatorname{Sts} Q$ yields a non-empty set and is defined by:
Sts $Q=$ the states of Q.
The following propositions are true:
(2) $\operatorname{Obs} Q=$ the observables of Q.
(3) $\operatorname{Sts} Q=$ the states of Q.

We adopt the following convention: A_{1}, A_{2} will denote elements of Obs Q, s, s_{1}, s_{2} will denote elements of $\operatorname{Sts} Q$, and E will denote an event of the Borel sets. Let us consider Q, A_{1}, s. The functor Meas $\left(A_{1}, s\right)$ yielding a probability on the Borel sets, is defined as follows:
$\operatorname{Meas}\left(A_{1}, s\right)=($ the probability of $Q)\left(\left\langle A_{1}, s\right\rangle\right)$.
One can prove the following proposition
(4) $\operatorname{Meas}\left(A_{1}, s\right)=($ the probability of $Q)\left(\left\langle A_{1}, s\right\rangle\right)$.

A quantum mechanics structure is said to be a quantum mechanics if:
(i) for all elements A_{1}, A_{2} of Obsit such that for every element s of Stsit holds $\operatorname{Meas}\left(A_{1}, s\right)=\operatorname{Meas}\left(A_{2}, s\right)$ holds $A_{1}=A_{2}$,
(ii) for all elements s_{1}, s_{2} of Stsit such that for every element A of Obsit holds $\operatorname{Meas}\left(A, s_{1}\right)=\operatorname{Meas}\left(A, s_{2}\right)$ holds $s_{1}=s_{2}$,
(iii) for every elements s_{1}, s_{2} of Stsit there exists an element s of Stsit such that for every element A of Obsit and for every E there exists a real number t such that $0 \leq t$ and $t \leq 1$ and $\operatorname{Meas}(A, s)(E)=t \cdot \operatorname{Meas}\left(A, s_{1}\right)(E)+(1-t)$. $\operatorname{Meas}\left(A, s_{2}\right)(E)$.

Next we state a proposition
(5) $\quad Q$ is a quantum mechanics if and only if the following conditions are satisfied:
(i) for all A_{1}, A_{2} such that for every s holds $\operatorname{Meas}\left(A_{1}, s\right)=\operatorname{Meas}\left(A_{2}, s\right)$ holds $A_{1}=A_{2}$,
(ii) for all s_{1}, s_{2} such that for every $A_{1} \operatorname{holds} \operatorname{Meas}\left(A_{1}, s_{1}\right)=\operatorname{Meas}\left(A_{1}, s_{2}\right)$ holds $s_{1}=s_{2}$,
(iii) for every s_{1}, s_{2} there exists s such that for every A_{1}, E there exists a real number t such that $0 \leq t$ and $t \leq 1$ and $\operatorname{Meas}\left(A_{1}, s\right)(E)=t$. $\operatorname{Meas}\left(A_{1}, s_{1}\right)(E)+(1-t) \cdot \operatorname{Meas}\left(A_{1}, s_{2}\right)(E)$.
We follow the rules: Q denotes a quantum mechanics, A, A_{1}, A_{2} denote elements of $\operatorname{Obs} Q$, and s, s_{1}, s_{2} denote elements of $\operatorname{Sts} Q$. We now state three propositions:
(6) If for every s holds $\operatorname{Meas}\left(A_{1}, s\right)=\operatorname{Meas}\left(A_{2}, s\right)$, then $A_{1}=A_{2}$. If for every A holds $\operatorname{Meas}\left(A, s_{1}\right)=\operatorname{Meas}\left(A, s_{2}\right)$, then $s_{1}=s_{2}$.
(8) For every s_{1}, s_{2} there exists s such that for every A, E there exists a real number t such that $0 \leq t$ and $t \leq 1$ and $\operatorname{Meas}(A, s)(E)=t$. $\operatorname{Meas}\left(A, s_{1}\right)(E)+(1-t) \cdot \operatorname{Meas}\left(A, s_{2}\right)(E)$.
We consider POI structures which are systems
〈 a carrier, an ordering, an involution 〉
where the carrier is a set, the ordering is a relation on the carrier, and the involution is a function from the carrier into the carrier. In the sequel x_{1} will denote an element of X_{1}, Ord will denote a relation on X_{1}, and Inv will denote a function from X_{1} into X_{1}. Let us consider X_{1}. A POI structure is said to be a poset with involution over X_{1} if:
the carrier of it $=X_{1}$.
One can prove the following proposition
(9) For every poset W with involution over X_{1} holds the carrier of $W=X_{1}$.

Let us consider X_{1}, Ord, Inv. The functor LOG(Ord, Inv) yielding a poset with involution over X_{1}, is defined by:

LOG $($ Ord, Inv $)=\left\langle X_{1}, O r d, I n v\right\rangle$.
Next we state a proposition
(10) $\mathrm{LOG}($ Ord, Inv $)=\left\langle X_{1}\right.$, Ord, Inv \rangle.

Let us consider X_{1}, Inv. We say that $I n v$ is an involution in X_{1} if and only if:
$\operatorname{Inv}\left(\operatorname{Inv}\left(x_{1}\right)\right)=x_{1}$.
We now state a proposition
(11) $I n v$ is an involution in X_{1} if and only if for every x_{1} holds $\operatorname{Inv}\left(\operatorname{Inv}\left(x_{1}\right)\right)=x_{1}$.
Let us consider X_{1}, and let W be a poset with involution over X_{1}. We say that W is a quantum logic on X_{1} if and only if:
there exists a relation Ord on X_{1} and there exists a function Inv from X_{1} into X_{1} such that $W=\mathrm{LOG}($ Ord, Inv $)$ and Ord partially orders X_{1} and Inv is an involution in X_{1} and for all elements x, y of X_{1} such that $\langle x, y\rangle \in O r d$ holds $\langle\operatorname{Inv}(y), \operatorname{Inv}(x)\rangle \in \operatorname{Ord}$.

Next we state a proposition
(12) Let W be a poset with involution over X_{1}. Then W is a quantum logic on X_{1} if and only if there exists a relation $O r d$ on X_{1} and there exists a function Inv from X_{1} into X_{1} such that $W=\operatorname{LOG}($ Ord, Inv) and Ord partially orders X_{1} and $I n v$ is an involution in X_{1} and for all elements x, y of X_{1} such that $\langle x, y\rangle \in \operatorname{Ord}$ holds $\langle\operatorname{Inv}(y), \operatorname{Inv}(x)\rangle \in \operatorname{Ord}$.
Let us consider Q. The functor $\operatorname{Prop} Q$ yielding a non-empty set, is defined by:
$\operatorname{Prop} Q=$: Obs Q, the Borel sets $]$.
The following proposition is true
(13) $\operatorname{Prop} Q=:$ Obs Q, the Borel sets: .

In the sequel p, q, r, p_{1}, q_{1} are elements of $\operatorname{Prop} Q$. Let us consider Q, p. Then $p_{\mathbf{1}}$ is an element of $\operatorname{Obs} Q$. Then $p_{\mathbf{2}}$ is an event of the Borel sets.

The following propositions are true:

$$
\begin{equation*}
p=\left\langle p_{\mathbf{1}}, p_{\mathbf{2}}\right\rangle \tag{14}
\end{equation*}
$$

$$
\begin{equation*}
\left(E^{\mathrm{c}}\right)^{\mathrm{c}}=E . \tag{15}
\end{equation*}
$$

(16) For every E such that $E=p_{2}{ }^{\text {c }}$ holds $\operatorname{Meas}\left(p_{\mathbf{1}}, s\right)\left(p_{\mathbf{2}}\right)=1-\operatorname{Meas}\left(p_{\mathbf{1}}, s\right)(E)$.
Let us consider Q, p. The functor $\neg p$ yields an element of $\operatorname{Prop} Q$ and is defined as follows:
$\neg p=\left\langle p_{1}, p_{2}{ }^{\mathrm{c}}\right\rangle$.

The following proposition is true
(17) $\neg p=\left\langle p_{1}, p_{\mathbf{2}}{ }^{\mathrm{c}}\right\rangle$.

Let us consider Q, p, q. The predicate $p \vdash q$ is defined by:
for every s holds $\operatorname{Meas}\left(p_{1}, s\right)\left(p_{\mathbf{2}}\right) \leq \operatorname{Meas}\left(q_{1}, s\right)\left(q_{\mathbf{2}}\right)$.
We now state a proposition
(18) $p \vdash q$ if and only if for every s holds $\operatorname{Meas}\left(p_{\mathbf{1}}, s\right)\left(p_{\mathbf{2}}\right) \leq \operatorname{Meas}\left(q_{\mathbf{1}}, s\right)\left(q_{\mathbf{2}}\right)$.

Let us consider Q, p, q. The predicate $p \equiv q$ is defined as follows:
$p \vdash q$ and $q \vdash p$.
One can prove the following propositions:
(20) $\quad p \equiv q$ if and only if for every s holds $\operatorname{Meas}\left(p_{\mathbf{1}}, s\right)\left(p_{\mathbf{2}}\right)=\operatorname{Meas}\left(q_{\mathbf{1}}, s\right)\left(q_{\mathbf{2}}\right)$.
(22) If $p \vdash q$ and $q \vdash r$, then $p \vdash r$.
(23) $p \equiv p$.
(24) If $p \equiv q$, then $q \equiv p$.
(25) If $p \equiv q$ and $q \equiv r$, then $p \equiv r$.

$$
\begin{equation*}
(\neg p)_{\mathbf{1}}=p_{\mathbf{1}} \text { and }(\neg p)_{\mathbf{2}}=p_{\mathbf{2}}{ }^{\mathrm{c}} \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\neg(\neg p)=p \tag{27}
\end{equation*}
$$

(28) If $p \vdash q$, then $\neg q \vdash \neg p$.

Let us consider Q. The functor $\operatorname{PropRel} Q$ yields an equivalence relation of $\operatorname{Prop} Q$ and is defined as follows:
$\langle p, q\rangle \in \operatorname{PropRel} Q$ if and only if $p \equiv q$.
We now state a proposition
(29) $\langle p, q\rangle \in \operatorname{PropRel} Q$ if and only if $p \equiv q$.

In the sequel B, C will denote subsets of $\operatorname{Prop} Q$. Next we state a proposition
(30) For all B, C such that $B \in \operatorname{Classes}(\operatorname{PropRel} Q)$ and $C \in \operatorname{Classes}(\operatorname{PropRel} Q)$
for all elements a, b, c, d of $\operatorname{Prop} Q$ such that $a \in B$ and $b \in B$ and $c \in C$ and $d \in C$ and $a \vdash c$ holds $b \vdash d$.
Let us consider Q. The functor $\operatorname{OrdRel} Q$ yielding a relation on
Classes $(\operatorname{PropRel} Q)$,
is defined as follows:
$\langle B, C\rangle \in \operatorname{OrdRel} Q$ if and only if $B \in \operatorname{Classes}(\operatorname{PropRel} Q)$ and
$C \in \operatorname{Classes}(\operatorname{PropRel} Q)$
and for all p, q such that $p \in B$ and $q \in C$ holds $p \vdash q$.
Next we state four propositions:
(31) $\langle B, C\rangle \in \operatorname{OrdRel} Q$ if and only if $B \in \operatorname{Classes}(\operatorname{PropRel} Q)$ and $C \in$ Classes $(\operatorname{PropRel} Q)$ and for all p, q such that $p \in B$ and $q \in C$ holds $p \vdash q$.

$$
\begin{equation*}
p \vdash q \text { if and only if }\left\langle[p]_{\text {PropRel } Q},[q]_{\text {PropRel } Q}\right\rangle \in \operatorname{OrdRel} Q . \tag{32}
\end{equation*}
$$

(33) For all B, C such that $B \in \operatorname{Classes}(\operatorname{PropRel} Q)$ and $C \in \operatorname{Classes}(\operatorname{PropRel} Q)$
for all p_{1}, q_{1} such that $p_{1} \in B$ and $q_{1} \in B$ and $\neg p_{1} \in C$ holds $\neg q_{1} \in C$.
(34) For all B, C such that $B \in \operatorname{Classes}(\operatorname{PropRel} Q)$ and $C \in \operatorname{Classes}(\operatorname{PropRel} Q)$
for all p, q such that $\neg p \in C$ and $\neg q \in C$ and $p \in B$ holds $q \in B$.
Let us consider Q. The functor $\operatorname{InvRel} Q$ yielding a function from
Classes(PropRel Q)
into Classes $(\operatorname{PropRel} Q)$, is defined by:
$(\operatorname{InvRel} Q)\left([p]_{\text {PropRel } Q}\right)=[\neg p]_{\text {PropRel } Q}$.
One can prove the following two propositions:
(35) $\quad(\operatorname{InvRel} Q)\left([p]_{\text {PropRel } Q}\right)=[\neg p]_{\text {PropRel } Q}$.
(36) For every Q holds $\operatorname{LOG}(\operatorname{OrdRel} Q, \operatorname{InvRel} Q)$ is a quantum logic on Classes $(\operatorname{PropRel} Q)$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] G.W.Mackey. The Mathematical Foundations of Quantum Mechanics. North Holland, New York,Amsterdam, 1963.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Andrzej Nẹdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401-407, 1990.
[6] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[8] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[9] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990.
[10] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received December 18, 1989

Function Domains and Frænkel Operator

Andrzej Trybulec ${ }^{1}$
Warsaw University, Białystok

Abstract

Summary. We deal with a non-empty set of functions and a nonempty set of functions from a set A to a non-empty set B. In the case when B is a non-empty set, B^{A} is redefined. It yields a non-empty set of functions from A to B. An element of such a set is redefined as a function from A to B. Some theorems concerning these concepts are proved, as well as a number of schemes dealing with infinity and the Axiom of Choice. The article contains a number of schemes allowing for simple logical transformations related to terms constructed with the Frænkel Operator.

MML Identifier: FRAENKEL.

The articles [5], [4], [6], [1], [2], and [3] provide the notation and terminology for this paper. In the sequel A, B will be non-empty sets. We now state a proposition
(1) For arbitrary x holds $\{x\}$ is a non-empty set.

In the article we present several logical schemes. The scheme Fraenkel5' deals with a non-empty set \mathcal{A}, a unary functor \mathcal{F}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}\left(v^{\prime}\right): \mathcal{P}\left[v^{\prime}\right]\right\} \subseteq\left\{\mathcal{F}\left(u^{\prime}\right): \mathcal{Q}\left[u^{\prime}\right]\right\}$
provided the parameters enjoy the following property:

- for every element v of \mathcal{A} such that $\mathcal{P}[v]$ holds $\mathcal{Q}[v]$.

The scheme Fraenkel5" concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\} \subseteq\left\{\mathcal{F}\left(u_{2}, v_{2}\right): \mathcal{Q}\left[u_{2}, v_{2}\right]\right\}$
provided the following condition is fulfilled:

- for every element u of \mathcal{A} and for every element v of \mathcal{B} such that $\mathcal{P}[u, v]$ holds $\mathcal{Q}[u, v]$.
The scheme Fraenkel6' deals with a non-empty set \mathcal{A}, a unary functor \mathcal{F}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:

[^9]$$
\left\{\mathcal{F}\left(v_{1}\right): \mathcal{P}\left[v_{1}\right]\right\}=\left\{\mathcal{F}\left(v_{2}\right): \mathcal{Q}\left[v_{2}\right]\right\}
$$
provided the following requirement is fulfilled:

- for every element v of \mathcal{A} holds $\mathcal{P}[v]$ if and only if $\mathcal{Q}[v]$.

The scheme Fraenkel6" concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=\left\{\mathcal{F}\left(u_{2}, v_{2}\right): \mathcal{Q}\left[u_{2}, v_{2}\right]\right\}$
provided the parameters fulfill the following requirement:

- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{P}[u, v]$ if and only if $\mathcal{Q}[u, v]$.
The scheme FraenkelF' concerns a non-empty set \mathcal{A}, a unary functor \mathcal{F}, a unary functor \mathcal{G}, and a unary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(v_{1}\right): \mathcal{P}\left[v_{1}\right]\right\}=\left\{\mathcal{G}\left(v_{2}\right): \mathcal{P}\left[v_{2}\right]\right\}$ provided the following requirement is met:
- for every element v of \mathcal{A} holds $\mathcal{F}(v)=\mathcal{G}(v)$.

The scheme FraenkelF' R concerns a non-empty set \mathcal{A}, a unary functor \mathcal{F}, a unary functor \mathcal{G}, and a unary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(v_{1}\right): \mathcal{P}\left[v_{1}\right]\right\}=\left\{\mathcal{G}\left(v_{2}\right): \mathcal{P}\left[v_{2}\right]\right\}$
provided the parameters fulfill the following condition:

- for every element v of \mathcal{A} such that $\mathcal{P}[v]$ holds $\mathcal{F}(v)=\mathcal{G}(v)$.

The scheme FraenkelF" concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, a binary functor \mathcal{G}, and a binary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=\left\{\mathcal{G}\left(u_{2}, v_{2}\right): \mathcal{P}\left[u_{2}, v_{2}\right]\right\}$
provided the parameters meet the following requirement:

- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v)=$ $\mathcal{G}(u, v)$.
The scheme FraenkelF6"C deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and a binary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=\left\{\mathcal{F}\left(v_{2}, u_{2}\right): \mathcal{P}\left[u_{2}, v_{2}\right]\right\}$ provided the following requirement is met:
- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v)=$ $\mathcal{F}(v, u)$.
The scheme FraenkelF6" deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}\left(u_{1}, v_{1}\right): \mathcal{P}\left[u_{1}, v_{1}\right]\right\}=\left\{\mathcal{F}\left(v_{2}, u_{2}\right): \mathcal{Q}\left[u_{2}, v_{2}\right]\right\}$
provided the parameters meet the following requirements:
- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{P}[u, v]$ if and only if $\mathcal{Q}[u, v]$,
- for every element u of \mathcal{A} and for every element v of \mathcal{B} holds $\mathcal{F}(u, v)=$ $\mathcal{F}(v, u)$.
The following propositions are true:
(2) For all non-empty sets A, B and for every function F from A into B and for every set X and for every element x of A such that $x \in X$ holds $(F \upharpoonright X)(x)=F(x)$.
(3) For all non-empty sets A, B and for all functions F, G from A into B and for every set X such that $F \upharpoonright X=G \upharpoonright X$ for every element x of A such that $x \in X$ holds $F(x)=G(x)$.
(4) For every function f from A into B holds $f \in B^{A}$.
(5) For all sets A, B holds $B^{A} \subseteq 2^{〔 A, B ः}$.
(6) For all sets X, Y such that $Y^{X} \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$ for every element f of Y^{X} holds f is a partial function from A to B.
Now we present a number of schemes. The scheme RelevantArgs deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a set \mathcal{C}, a function \mathcal{D} from \mathcal{A} into \mathcal{B}, a function \mathcal{E} from \mathcal{A} into \mathcal{B}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{D}\left(u^{\prime}\right): \mathcal{P}\left[u^{\prime}\right] \wedge u^{\prime} \in \mathcal{C}\right\}=\left\{\mathcal{E}\left(v^{\prime}\right): \mathcal{Q}\left[v^{\prime}\right] \wedge v^{\prime} \in \mathcal{C}\right\}$
provided the following requirements are met:
- $\mathcal{D} \upharpoonright \mathcal{C}=\mathcal{E} \upharpoonright \mathcal{C}$,
- for every element u of \mathcal{A} such that $u \in \mathcal{C}$ holds $\mathcal{P}[u]$ if and only if $\mathcal{Q}[u]$.
The scheme $\mathcal{F r}$ _SetO deals with a non-empty set \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
$\{x x: \mathcal{P}[x x]\} \subseteq \mathcal{A}$
for all values of the parameters.
The scheme Gen 1 " concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, a unary predicate \mathcal{Q}, and a binary predicate \mathcal{P}, and states that:
for every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s, t]$ holds $\mathcal{Q}[\mathcal{F}(s, t)]$
provided the parameters meet the following requirement:
- for arbitrary s_{t} such that $s_{t} \in\left\{\mathcal{F}\left(s_{1}, t_{1}\right): \mathcal{P}\left[s_{1}, t_{1}\right]\right\}$ holds $\mathcal{Q}\left[s_{t}\right]$.

The scheme Gen1" A deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, a unary predicate \mathcal{Q}, and a binary predicate \mathcal{P}, and states that:
for arbitrary s_{t} such that $s_{t} \in\left\{\mathcal{F}\left(s_{1}, t_{1}\right): \mathcal{P}\left[s_{1}, t_{1}\right]\right\}$ holds $\mathcal{Q}\left[s_{t}\right]$
provided the following requirement is met:

- for every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s, t]$ holds $\mathcal{Q}[\mathcal{F}(s, t)]$.
The scheme Gen2" deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a nonempty set \mathcal{C}, a binary functor \mathcal{F} yielding an element of \mathcal{C}, a unary predicate \mathcal{Q}, and a binary predicate \mathcal{P}, and states that:
$\left\{s_{t}: s_{t} \in\left\{\mathcal{F}\left(s_{1}, t_{1}\right): \mathcal{P}\left[s_{1}, t_{1}\right]\right\} \wedge \mathcal{Q}\left[s_{t}\right]\right\}=\left\{\mathcal{F}\left(s_{2}, t_{2}\right): \mathcal{P}\left[s_{2}, t_{2}\right] \wedge \mathcal{Q}\left[\mathcal{F}\left(s_{2}, t_{2}\right)\right]\right\}$ for all values of the parameters.

The scheme Gen3' concerns a non-empty set \mathcal{A}, a unary functor \mathcal{F}, and two unary predicates \mathcal{P} and \mathcal{Q}, and states that:
$\left\{\mathcal{F}(s): s \in\left\{s_{1}: \mathcal{Q}\left[s_{1}\right]\right\} \wedge \mathcal{P}[s]\right\}=\left\{\mathcal{F}\left(s_{2}\right): \mathcal{Q}\left[s_{2}\right] \wedge \mathcal{P}\left[s_{2}\right]\right\}$
for all values of the parameters.
The scheme Gen3" concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, a unary predicate \mathcal{Q}, and a binary predicate \mathcal{P}, and states that:
$\left\{\mathcal{F}(s, t): s \in\left\{s_{1}: \mathcal{Q}\left[s_{1}\right]\right\} \wedge \mathcal{P}[s, t]\right\}=\left\{\mathcal{F}\left(s_{2}, t_{2}\right): \mathcal{Q}\left[s_{2}\right] \wedge \mathcal{P}\left[s_{2}, t_{2}\right]\right\}$
for all values of the parameters.
The scheme Gen4" deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:

$$
\{\mathcal{F}(s, t): \mathcal{P}[s, t]\} \subseteq\left\{\mathcal{F}\left(s_{1}, t_{1}\right): \mathcal{Q}\left[s_{1}, t_{1}\right]\right\}
$$

provided the following condition is satisfied:

- for every element s of \mathcal{A} and for every element t of \mathcal{B} such that $\mathcal{P}[s, t]$ there exists an element s^{\prime} of \mathcal{A} such that $\mathcal{Q}\left[s^{\prime}, t\right]$ and $\mathcal{F}(s, t)=$ $\mathcal{F}\left(s^{\prime}, t\right)$.
The scheme $\operatorname{FrSet} 1$ concerns a non-empty set \mathcal{A}, a set \mathcal{B}, a unary functor \mathcal{F}, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(y): \mathcal{F}(y) \in \mathcal{B} \wedge \mathcal{P}[y]\} \subseteq \mathcal{B}$ for all values of the parameters.

The scheme $\operatorname{FrSet} 2$ 2 deals with a non-empty set \mathcal{A}, a set \mathcal{B}, a unary functor \mathcal{F}, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(y): \mathcal{P}[y] \wedge \mathcal{F}(y) \notin \mathcal{B}\}$ misses \mathcal{B}
for all values of the parameters.
The scheme $\operatorname{FrEqua1}$ deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, an element \mathcal{C} of \mathcal{B}, and two binary predicates \mathcal{P} and \mathcal{Q}, and states that:

$$
\{\mathcal{F}(s, t): \mathcal{Q}[s, t]\}=\left\{\mathcal{F}\left(s^{\prime}, \mathcal{C}\right): \mathcal{P}\left[s^{\prime}, \mathcal{C}\right]\right\}
$$

provided the parameters meet the following requirement:

- for every element s of \mathcal{A} and for every element t of \mathcal{B} holds $\mathcal{Q}[s, t]$ if and only if $t=\mathcal{C}$ and $\mathcal{P}[s, t]$.
The scheme $\operatorname{FrEqua2}$ concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a binary functor \mathcal{F}, an element \mathcal{C} of \mathcal{B}, and a binary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(s, t): t=\mathcal{C} \wedge \mathcal{P}[s, t]\}=\left\{\mathcal{F}\left(s^{\prime}, \mathcal{C}\right): \mathcal{P}\left[s^{\prime}, \mathcal{C}\right]\right\}$
for all values of the parameters.
A non-empty set is said to be a non-empty set of functions if: for every element x of it holds x is a function.
Next we state two propositions:
(7) $\quad A$ is a non-empty set of functions if and only if for every element x of A holds x is a function.
(8) For every function f holds $\{f\}$ is a non-empty set of functions.

Let A be a set, and let B be a non-empty set. A non-empty set of functions is called a non-empty set of functions from A to B if:
for every element x of it holds x is a function from A into B.
Next we state three propositions:
(9) For every set A and for every non-empty set B and for every non-empty set C of functions holds C is a non-empty set of functions from A to B if and only if for every element x of C holds x is a function from A into B.
(10) For every function f from A into B holds $\{f\}$ is a non-empty set of functions from A to B.
(11) For every set A and for every non-empty set B holds B^{A} is a non-empty set of functions from A to B.
Let A be a set, and let B be a non-empty set. Then B^{A} is a non-empty set of functions from A to B. Let F be a non-empty set of functions from A to B. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objests of the mode element of F are a function from A into B.

In the sequel $p h i$ will be an element of B^{A}. The following propositions are true:
(12) For every function f from A into B holds f is an element of B^{A}.
(13) For every element f of B^{A} holds $\operatorname{dom} f=A$ and $\operatorname{rng} f \subseteq B$.
(14) For all sets X, Y such that $Y^{X} \neq \emptyset$ and $X \subseteq A$ and $Y \subseteq B$ for every element f of Y^{X} there exists an element phi of \bar{B}^{A} such that $p h i \upharpoonright X=f$.
(15) For every set X and for every $p h i$ holds $p h i \upharpoonright X=p h i \upharpoonright(A \cap X)$.

Now we present four schemes. The scheme FraenkelFin deals with a nonempty set \mathcal{A}, a set \mathcal{B}, and a unary functor \mathcal{F} and states that:
$\{\mathcal{F}(w): w \in \mathcal{B}\}$ is finite
provided the parameters meet the following requirement:

- \mathcal{B} is finite.

The scheme CartFin deals with a non-empty set \mathcal{A}, a set \mathcal{B}, a set \mathcal{C}, and a binary functor \mathcal{F} and states that:
$\left\{\mathcal{F}\left(u^{\prime}, v^{\prime}\right): u^{\prime} \in \mathcal{B} \wedge v^{\prime} \in \mathcal{C}\right\}$ is finite
provided the parameters fulfill the following requirements:

- \mathcal{B} is finite,
- \mathcal{C} is finite.

The scheme Finiteness deals with a non-empty set \mathcal{A}, an element \mathcal{B} of $\operatorname{Fin} \mathcal{A}$, and a binary predicate \mathcal{P}, and states that:
for every element x of \mathcal{A} such that $x \in \mathcal{B}$ there exists an element y of \mathcal{A} such that $y \in \mathcal{B}$ and $\mathcal{P}[y, x]$ and for every element z of \mathcal{A} such that $z \in \mathcal{B}$ and $\mathcal{P}[z, y]$ holds $\mathcal{P}[y, z]$
provided the following requirements are fulfilled:

- for every element x of \mathcal{A} holds $\mathcal{P}[x, x]$,
- for all elements x, y, z of \mathcal{A} such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.
The scheme Fin_Im deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of $\operatorname{Fin} \mathcal{B}$, a unary functor \mathcal{F} yielding an element of \mathcal{A}, and a binary predicate \mathcal{P}, and states that:
there exists an element c_{1} of $\operatorname{Fin} \mathcal{A}$ such that for every element t of \mathcal{A} holds $t \in c_{1}$ if and only if there exists an element t^{\prime} of \mathcal{B} such that $t^{\prime} \in \mathcal{C}$ and $t=\mathcal{F}\left(t^{\prime}\right)$ and $\mathcal{P}\left[t, t^{\prime}\right]$
for all values of the parameters.
The following proposition is true
(16) For all sets A, B such that A is finite and B is finite holds B^{A} is finite.

Now we present three schemes. The scheme ImFin concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, a set \mathcal{C}, a set \mathcal{D}, and a unary functor \mathcal{F} and states that:
$\left\{\mathcal{F}\left(p h i^{\prime}\right): p h i^{\prime}{ }^{\circ} \mathcal{C} \subseteq \mathcal{D}\right\}$ is finite provided the parameters fulfill the following conditions:

- \mathcal{C} is finite,
- \mathcal{D} is finite,
- for all elements phi, psi of $\mathcal{B}^{\mathcal{A}}$ such that phi $\upharpoonright \mathcal{C}=p s i \upharpoonright \mathcal{C}$ holds $\mathcal{F}(p h i)=\mathcal{F}(p s i)$.
The scheme FunctChoice concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of $\operatorname{Fin} \mathcal{A}$, and a binary predicate \mathcal{P}, and states that:
there exists a function $f f$ from \mathcal{A} into \mathcal{B} such that for every element t of \mathcal{A} such that $t \in \mathcal{C}$ holds $\mathcal{P}[t, f f(t)]$
provided the parameters fulfill the following condition:
- for every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element $f f$ of \mathcal{B} such that $\mathcal{P}[t, f f]$.
The scheme FuncsChoice concerns a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of $\operatorname{Fin} \mathcal{A}$, and a binary predicate \mathcal{P}, and states that:
there exists an element $f f$ of $\mathcal{B}^{\mathcal{A}}$ such that for every element t of \mathcal{A} such that $t \in \mathcal{C}$ holds $\mathcal{P}[t, f f(t)]$
provided the parameters meet the following requirement:
- for every element t of \mathcal{A} such that $t \in \mathcal{C}$ there exists an element $f f$ of \mathcal{B} such that $\mathcal{P}[t, f f]$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[4] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[6] Andrzej Trybulec and Agata Darmochwal. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.

Integers

Michał J. Trybulec
Białystok

Abstract

Summary. In the article the following concepts were introduced: the set of integers (\mathbb{Z}) and its elements (integers), congruences ($i_{1} \equiv$ $\left.i_{2}\left(\bmod i_{3}\right)\right)$, the ceiling and floor functors $(\lceil x\rceil$ and $\lfloor x\rfloor)$, also the fraction part of a real number (frac), the integer division (\div) and remainder of integer division (mod). The following schemes were also included: the separation scheme (SepInt), the schemes of integer induction (Int_Ind_Down, Int_Ind_Up, Int_Ind_Full), the minimum (Int_Min) and maximum (Int_Max) schemes (the existence of minimum and maximum integers enjoying a given property).

MML Identifier: INT_1.

The papers [2], and [1] provide the notation and terminology for this paper. For simplicity we follow a convention: x is arbitrary, k, n_{1}, n_{2} denote natural numbers, r, r_{1}, r_{2} denote real numbers, and D denotes a non-empty set. The following propositions are true:

$$
\begin{align*}
& \text { (1) }\left(r+r_{1}\right)-r_{2}=\left(r-r_{2}\right)+r_{1} . \tag{1}\\
& \text { (2) }\left(-r_{1}\right)+r_{2}=r_{2}-r_{1} . \tag{2}\\
& \text { (3) } r_{1}=\left(\left(-r_{2}\right)+r_{1}\right)+r_{2} \text { and } r_{1}=r_{2}+\left(\left(-r_{2}\right)+r_{1}\right) \text { and } r_{1}=r_{2}+\left(r_{1}-r_{2}\right) \tag{3}\\
& \text { and } r_{1}=\left(r_{2}+r_{1}\right)-r_{2} . \\
& \text { (4) }\left(r_{1}-r_{2}\right)+r_{2}=r_{1} \text { and }\left(r_{1}+r_{2}\right)-r_{2}=r_{1} . \\
& \text { (5) } r_{1} \leq r_{2} \text { if and only if } r_{1}<r_{2} \text { or } r_{1}=r_{2} .
\end{align*}
$$

The non-empty set \mathbb{Z} is defined by:
$x \in \mathbb{Z}$ if and only if there exists k such that $x=k$ or $x=-k$.
One can prove the following proposition
(6) For every x holds $x \in D$ if and only if there exists k such that $x=k$ or $x=-k$ if and only if $D=\mathbb{Z}$.
A real number is called an integer if: it is an element of \mathbb{Z}.
The following propositions are true:
(7) $\quad r$ is an integer if and only if r is an element of \mathbb{Z}.
(8) r is an integer if and only if there exists k such that $r=k$ or $r=-k$.
(9) If x is a natural number, then x is an integer.
(10) 0 is an integer and 1 is an integer.
(11) If $x \in \mathbb{Z}$, then $x \in \mathbb{R}$.
(12) $\quad x$ is an integer if and only if $x \in \mathbb{Z}$.
(13) x is an integer if and only if x is an element of \mathbb{Z}.
(14) $\mathbb{N} \subseteq \mathbb{Z}$.
(15) $\quad \mathbb{Z} \subseteq \mathbb{R}$.

In the sequel $i_{0}, i_{1}, i_{2}, i_{3}, i_{4}, i_{5}$ are integers. Let i_{1}, i_{2} be integers. Then $i_{1}+i_{2}$ is an integer. Then $i_{1} \cdot i_{2}$ is an integer.

Let i_{0} be an integer. Then $-i_{0}$ is an integer.
Let i_{1}, i_{2} be integers. Then $i_{1}-i_{2}$ is an integer.
Let n be a natural number. Then $-n$ is an integer. Let i_{1} be an integer. Then $n+i_{1}$ is an integer. Then $n \cdot i_{1}$ is an integer. Then $n-i_{1}$ is an integer.

Let i_{1} be an integer, and let n be a natural number. Then $i_{1}+n$ is an integer. Then $i_{1} \cdot n$ is an integer. Then $i_{1}-n$ is an integer.

Let us consider n_{1}, n_{2}. Then $n_{1}-n_{2}$ is an integer.
We now state a number of propositions:
(16) If $0 \leq i_{0}$, then i_{0} is a natural number.
(17) If r is an integer, then $r+1$ is an integer and $r-1$ is an integer.
(18) If $i_{2} \leq i_{1}$, then $i_{1}-i_{2}$ is a natural number.
(19) If $i_{1}+k=i_{2}$ or $k+i_{1}=i_{2}$, then $i_{1} \leq i_{2}$.
(20) If $i_{0}<i_{1}$, then $i_{0}+1 \leq i_{1}$ and $1+i_{0} \leq i_{1}$.
(21) If $i_{1}<0$, then $i_{1} \leq-1$.
(22) $\quad i_{1} \cdot i_{2}=1$ if and only if $i_{1}=1$ and $i_{2}=1$ or $i_{1}=-1$ and $i_{2}=-1$.
(23) $i_{1} \cdot i_{2}=-1$ if and only if $i_{1}=-1$ and $i_{2}=1$ or $i_{1}=1$ and $i_{2}=-1$.
(24) If $i_{0} \neq 0$, then $i_{1} \neq i_{1}+i_{0}$.
(25) $i_{1}<i_{1}+1$.
(26) $i_{1}-1<i_{1}$.
(27) For no i_{0} holds for every i_{1} holds $i_{0}<i_{1}$.
(28) For no i_{0} holds for every i_{1} holds $i_{1}<i_{0}$.

In the article we present several logical schemes. The scheme SepInt deals with a unary predicate \mathcal{P}, and states that:
there exists a subset X of \mathbb{Z} such that for every integer x holds $x \in X$ if and only if $\mathcal{P}[x]$
for all values of the parameter.
The scheme Int_Ind_Up concerns an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
for every i_{0} such that $\mathcal{A} \leq i_{0}$ holds $\mathcal{P}\left[i_{0}\right]$
provided the following conditions are fulfilled:

- $\mathcal{P}[\mathcal{A}]$,
- for every i_{2} such that $\mathcal{A} \leq i_{2}$ holds if $\mathcal{P}\left[i_{2}\right]$, then $\mathcal{P}\left[i_{2}+1\right]$.

The scheme Int_Ind_Down deals with an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
for every i_{0} such that $i_{0} \leq \mathcal{A}$ holds $\mathcal{P}\left[i_{0}\right]$
provided the parameters fulfill the following conditions:

- $\mathcal{P}[\mathcal{A}]$,
- for every i_{2} such that $i_{2} \leq \mathcal{A}$ holds if $\mathcal{P}\left[i_{2}\right]$, then $\mathcal{P}\left[i_{2}-1\right]$.

The scheme Int_Ind_Full deals with an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
for every i_{0} holds $\mathcal{P}\left[i_{0}\right]$
provided the following requirements are fulfilled:

- $\mathcal{P}[\mathcal{A}]$,
- for every i_{2} such that $\mathcal{P}\left[i_{2}\right]$ holds $\mathcal{P}\left[i_{2}-1\right]$ and $\mathcal{P}\left[i_{2}+1\right]$.

The scheme Int_Min concerns an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
there exists i_{0} such that $\mathcal{P}\left[i_{0}\right]$ and for every i_{1} such that $\mathcal{P}\left[i_{1}\right]$ holds $i_{0} \leq i_{1}$ provided the following conditions are satisfied:

- for every i_{1} such that $\mathcal{P}\left[i_{1}\right]$ holds $\mathcal{A} \leq i_{1}$,
- there exists i_{1} such that $\mathcal{P}\left[i_{1}\right]$.

The scheme Int_Max deals with an integer \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
there exists i_{0} such that $\mathcal{P}\left[i_{0}\right]$ and for every i_{1} such that $\mathcal{P}\left[i_{1}\right]$ holds $i_{1} \leq i_{0}$ provided the parameters satisfy the following conditions:

- for every i_{1} such that $\mathcal{P}\left[i_{1}\right]$ holds $i_{1} \leq \mathcal{A}$,
- there exists i_{1} such that $\mathcal{P}\left[i_{1}\right]$.

Let us consider r. Then $\operatorname{sgn} r$ is an integer.
We now state two propositions:

$$
\begin{align*}
& \operatorname{sgn} r=1 \text { or } \operatorname{sgn} r=-1 \text { or } \operatorname{sgn} r=0 . \tag{29}\\
& |r|=r \text { or }|r|=-r . \tag{30}
\end{align*}
$$

Let us consider i_{0}. Then $\left|i_{0}\right|$ is an integer.
Let i_{1}, i_{2}, i_{3} be integers. The predicate $i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$ is defined by:
there exists i_{4} such that $i_{3} \cdot i_{4}=i_{1}-i_{2}$.
We now state a number of propositions:
(31) $\quad i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$ if and only if there exists an integer i_{4} such that $i_{3} \cdot i_{4}=$ $i_{1}-i_{2}$.
(32) $\quad i_{1} \equiv i_{1}\left(\bmod i_{2}\right)$.
(33) If $i_{2}=0$, then $i_{1} \equiv i_{2}\left(\bmod i_{1}\right)$ and $i_{2} \equiv i_{1}\left(\bmod i_{1}\right)$.
(34) If $i_{3}=1$, then $i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$.
(35) If $i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$, then $i_{2} \equiv i_{1}\left(\bmod i_{3}\right)$.
(36) If $i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ and $i_{2} \equiv i_{3}\left(\bmod i_{5}\right)$, then $i_{1} \equiv i_{3}\left(\bmod i_{5}\right)$.

$$
\begin{equation*}
\text { If } i_{1} \equiv i_{2}\left(\bmod i_{5}\right) \text { and } i_{3} \equiv i_{4}\left(\bmod i_{5}\right) \text {, then } i_{1}+i_{3} \equiv i_{2}+i_{4}\left(\bmod i_{5}\right) . \tag{37}
\end{equation*}
$$

(38) If $i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ and $i_{3} \equiv i_{4}\left(\bmod i_{5}\right)$, then $i_{1}-i_{3} \equiv i_{2}-i_{4}\left(\bmod i_{5}\right)$.
(39) If $i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ and $i_{3} \equiv i_{4}\left(\bmod i_{5}\right)$, then $i_{1} \cdot i_{3} \equiv i_{2} \cdot i_{4}\left(\bmod i_{5}\right)$.
(40) $i_{1}+i_{2} \equiv i_{3}\left(\bmod i_{5}\right)$ if and only if $i_{1} \equiv i_{3}-i_{2}\left(\bmod i_{5}\right)$.
(41) If $i_{4} \cdot i_{5}=i_{3}$, then if $i_{1} \equiv i_{2}\left(\bmod i_{3}\right)$, then $i_{1} \equiv i_{2}\left(\bmod i_{4}\right)$.
(42) $\quad i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ if and only if $i_{1}+i_{5} \equiv i_{2}\left(\bmod i_{5}\right)$.
(43) $i_{1} \equiv i_{2}\left(\bmod i_{5}\right)$ if and only if $i_{1}-i_{5} \equiv i_{2}\left(\bmod i_{5}\right)$.
(44) If $i_{1} \leq r$ and $r-1<i_{1}$ and $i_{2} \leq r$ and $r-1<i_{2}$, then $i_{1}=i_{2}$.
(45) If $r \leq i_{1}$ and $i_{1}<r+1$ and $r \leq i_{2}$ and $i_{2}<r+1$, then $i_{1}=i_{2}$.

Let us consider r. The functor $\lfloor r\rfloor$ yielding an integer, is defined as follows:
$\lfloor r\rfloor \leq r$ and $r-1<\lfloor r\rfloor$.
The following propositions are true:
(46) $\quad i_{0} \leq r$ and $r-1<i_{0}$ if and only if $\lfloor r\rfloor=i_{0}$.
(47) $\lfloor r\rfloor=r$ if and only if r is an integer.
(48) $\lfloor r\rfloor<r$ if and only if r is not an integer.
(49) $\lfloor r\rfloor \leq r$.
(50) $\lfloor r\rfloor-1<r$ and $\lfloor r\rfloor<r+1$.
(51) $\lfloor r\rfloor+i_{0}=\left\lfloor r+i_{0}\right\rfloor$.
(52) $r \leq\lfloor r\rfloor+1$.

Let us consider r. The functor $\lceil r\rceil$ yields an integer and is defined as follows: $r \leq\lceil r\rceil$ and $\lceil r\rceil<r+1$.
We now state a number of propositions:
(53) $\quad r \leq i_{0}$ and $i_{0}<r+1$ if and only if $\lceil r\rceil=i_{0}$.
(54) $\quad\lceil r\rceil=r$ if and only if r is an integer.
(55) $r<\lceil r\rceil$ if and only if r is not an integer.
(56) $\quad r \leq\lceil r\rceil$.
(57) $r-1<\lceil r\rceil$ and $r<\lceil r\rceil+1$.
(58) $\quad\lceil r\rceil+i_{0}=\left\lceil r+i_{0}\right\rceil$.
(59) $\lfloor r\rfloor=\lceil r\rceil$ if and only if r is an integer.
(60) $\lfloor r\rfloor<\lceil r\rceil$ if and only if r is not an integer.
(61) $\lfloor r\rfloor \leq\lceil r\rceil$.
(62) $\lfloor\lceil r\rceil\rfloor=\lceil r\rceil$.
(63) $\lfloor\lfloor r\rfloor\rfloor=\lfloor r\rfloor$.
(64) $\lceil\lceil r\rceil\rceil=\lceil r\rceil$.
(65) $\lceil\lfloor r\rfloor\rceil=\lfloor r\rfloor$.
(66) $\lfloor r\rfloor=\lceil r\rceil$ if and only if $\lfloor r\rfloor+1 \neq\lceil r\rceil$.

Let us consider r. The functor frac r yielding a real number, is defined by: frac $r=r-\lfloor r\rfloor$.
One can prove the following propositions:

$$
\begin{equation*}
\text { frac } r=r-\lfloor r\rfloor . \tag{67}
\end{equation*}
$$

(68) $r=\lfloor r\rfloor+\operatorname{frac} r$.
(69) \quad frac $r<1$ and $0 \leq \operatorname{frac} r$.
(70) $\quad\lfloor\operatorname{frac} r\rfloor=0$.
(71) \quad frac $r=0$ if and only if r is an integer.
(72) $\quad 0<$ frac r if and only if r is not an integer.

Let i_{1}, i_{2} be integers. The functor $i_{1} \div i_{2}$ yields an integer and is defined by: $i_{1} \div i_{2}=\left\lfloor\frac{i_{1}}{i_{2}}\right\rfloor$.
One can prove the following proposition
(73) $\quad i_{1} \div i_{2}=\left\lfloor\frac{i_{1}}{i_{2}}\right\rfloor$.

Let i_{1}, i_{2} be integers. The functor $i_{1} \bmod i_{2}$ yielding an integer, is defined as follows:
$i_{1} \bmod i_{2}=i_{1}-\left(i_{1} \div i_{2}\right) \cdot i_{2}$.
Next we state a proposition
(74) $\quad i_{1} \bmod i_{2}=i_{1}-\left(i_{1} \div i_{2}\right) \cdot i_{2}$.

Let i_{1}, i_{2} be integers. The predicate $i_{1} \mid i_{2}$ is defined as follows:
there exists i_{3} such that $i_{2}=i_{1} \cdot i_{3}$.
The following proposition is true
(75) $\quad i_{1} \mid i_{2}$ if and only if there exists i_{3} such that $i_{1} \cdot i_{3}=i_{2}$.

References

[1] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received February 7, 1990

The Complex Numbers

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. We define the set \mathbb{C} of complex numbers as the set of all ordered pairs $z=\langle a, b\rangle$ where a and b are real numbers and where addition and multiplication are defined. We define the real and imaginary parts of z and denote this by $a=\Re(z), b=\Im(z)$. These definitions satisfy all the axioms for a field. $0_{\mathbb{C}}=0+0 i$ and $1_{\mathbb{C}}=1+0 i$ are identities for addition and multiplication respectively, and there are multiplicative inverses for each non zero element in \mathbb{C}. The difference and division of complex numbers are also defined. We do not interpret the set of all real numbers \mathbb{R} as a subset of \mathbb{C}. From here on we do not abandon the ordered pair notation for complex numbers. For example: $i^{2}=(0+1 i)^{2}=$ $-1+0 i \neq-1$. We conclude this article by introducing two operations on \mathbb{C} which are not field operations. We define the absolute value of z denoted by $|z|$ and the conjugate of z denoted by z^{*}.

MML Identifier: COMPLEX1.

The articles [1], [3], [2], and [4] provide the notation and terminology for this paper. In the sequel $a, b, a_{1}, b_{1}, a_{2}, b_{2}$ denote real numbers. The following two propositions are true:
(1) If $a \neq 0$, then $\frac{0}{a}=0$.
(2) $a^{2}+b^{2}=0$ if and only if $a=0$ and $b=0$.

The non-empty set \mathbb{C} is defined as follows:
$\mathbb{C}=: \mathbb{R}, \mathbb{R}:]$.
One can prove the following proposition
(3) $\mathbb{C}=\{\mathbb{R}, \mathbb{R}:]$.

In the sequel $z, z_{1}, z_{2}, z_{3}, z_{4}$ will denote elements of \mathbb{C}. We now define two new functors. Let us consider z. The functor $\Re(z)$ yielding a real number, is defined by:

$$
\Re(z)=z_{1} .
$$

[^10]The functor $\Im(z)$ yielding a real number, is defined as follows:

$$
\Im(z)=z_{2}
$$

We now state two propositions:
(4) $\Re(z)=z_{1}$.
(5) $\quad \Im(z)=z_{\mathbf{2}}$.

Let x, y be elements of \mathbb{R}. The functor $x+y i$ yields an element of \mathbb{C} and is defined as follows:
$x+y i=\langle x, y\rangle$.
Next we state several propositions:
(6) For all elements x, y of \mathbb{R} holds $x+y i=\langle x, y\rangle$.
(7) $\quad \Re(a+b i)=a$ and $\Im(a+b i)=b$.
(8) $\Re(z)+\Im(z) i=z$.
(9) If $\Re\left(z_{1}\right)=\Re\left(z_{2}\right)$ and $\Im\left(z_{1}\right)=\Im\left(z_{2}\right)$, then $z_{1}=z_{2}$.
(10) If $a_{1}+b_{1} i=a_{2}+b_{2} i$, then $a_{1}=a_{2}$ and $b_{1}=b_{2}$.

Let us consider z_{1}, z_{2}. Let us note that one can characterize the predicate $z_{1}=z_{2}$ by the following (equivalent) condition: $\Re\left(z_{1}\right)=\Re\left(z_{2}\right)$ and $\Im\left(z_{1}\right)=$ $\Im\left(z_{2}\right)$.

We now define three new functors. The element $0_{\mathbb{C}}$ of \mathbb{C} is defined as follows: $0_{\mathbb{C}}=0+0 i$.
The element $1_{\mathbb{C}}$ of \mathbb{C} is defined by:

$$
1_{\mathbb{C}}=1+0 i
$$

The element i of \mathbb{C} is defined as follows:

$$
i=0+1 i
$$

The following propositions are true:
(11) $0_{\mathbb{C}}=0+0 i$.
(12) $\Re\left(0_{\mathbb{C}}\right)=0$ and $\Im\left(0_{\mathbb{C}}\right)=0$.
(13) $z=0_{\mathbb{C}}$ if and only if $\Re(z)^{\mathbf{2}}+\Im(z)^{\mathbf{2}}=0$.
(14) $1_{\mathbb{C}}=1+0 i$.
(15) $\quad \Re\left(1_{\mathbb{C}}\right)=1$ and $\Im\left(1_{\mathbb{C}}\right)=0$.
(16) $\quad i=0+1 i$.
(17) $\quad \Re(i)=0$ and $\Im(i)=1$.

Let us consider z_{1}, z_{2}. The functor $z_{1}+z_{2}$ yields an element of \mathbb{C} and is defined as follows:

$$
\begin{equation*}
z_{1}+z_{2}=\Re\left(z_{1}\right)+\Re\left(z_{2}\right)+\Im\left(z_{1}\right)+\Im\left(z_{2}\right) i \tag{18}
\end{equation*}
$$

We now state several propositions:
(19) $\Re\left(z_{1}+z_{2}\right)=\Re\left(z_{1}\right)+\Re\left(z_{2}\right)$ and $\Im\left(z_{1}+z_{2}\right)=\Im\left(z_{1}\right)+\Im\left(z_{2}\right)$.
(20) $z_{1}+z_{2}=z_{2}+z_{1}$.
(21) $z_{1}+\left(z_{2}+z_{3}\right)=\left(z_{1}+z_{2}\right)+z_{3}$.
$0_{\mathbb{C}}+z=z$ and $z+0_{\mathbb{C}}=z$.

Let us consider z_{1}, z_{2}. The functor $z_{1} \cdot z_{2}$ yielding an element of \mathbb{C}, is defined as follows:
$z_{1} \cdot z_{2}=\Re\left(z_{1}\right) \cdot \Re\left(z_{2}\right)-\Im\left(z_{1}\right) \cdot \Im\left(z_{2}\right)+\Re\left(z_{1}\right) \cdot \Im\left(z_{2}\right)+\Re\left(z_{2}\right) \cdot \Im\left(z_{1}\right) i$.
Next we state a number of propositions:

$$
\begin{equation*}
z_{1} \cdot z_{2}=\Re\left(z_{1}\right) \cdot \Re\left(z_{2}\right)-\Im\left(z_{1}\right) \cdot \Im\left(z_{2}\right)+\Re\left(z_{1}\right) \cdot \Im\left(z_{2}\right)+\Re\left(z_{2}\right) \cdot \Im\left(z_{1}\right) i \tag{23}
\end{equation*}
$$

$$
\begin{equation*}
\Re\left(z_{1} \cdot z_{2}\right)=\Re\left(z_{1}\right) \cdot \Re\left(z_{2}\right)-\Im\left(z_{1}\right) \cdot \Im\left(z_{2}\right) \text { and } \Im\left(z_{1} \cdot z_{2}\right)=\Re\left(z_{1}\right) \cdot \Im\left(z_{2}\right)+ \tag{24}
\end{equation*}
$$

$$
\Re\left(z_{2}\right) \cdot \Im\left(z_{1}\right)
$$

(25) $z_{1} \cdot z_{2}=z_{2} \cdot z_{1}$.
(26) $z_{1} \cdot\left(z_{2} \cdot z_{3}\right)=\left(z_{1} \cdot z_{2}\right) \cdot z_{3}$.
(27) $z \cdot\left(z_{1}+z_{2}\right)=z \cdot z_{1}+z \cdot z_{2}$ and $\left(z_{1}+z_{2}\right) \cdot z=z_{1} \cdot z+z_{2} \cdot z$.
(28) $0_{\mathbb{C}} \cdot z=0_{\mathbb{C}}$ and $z \cdot 0_{\mathbb{C}}=0_{\mathbb{C}}$.
(29) $1_{\mathbb{C}} \cdot z=z$ and $z \cdot 1_{\mathbb{C}}=z$.
(30) If $\Im\left(z_{1}\right)=0$ and $\Im\left(z_{2}\right)=0$, then $\Re\left(z_{1} \cdot z_{2}\right)=\Re\left(z_{1}\right) \cdot \Re\left(z_{2}\right)$ and $\Im\left(z_{1} \cdot z_{2}\right)=$ 0.
(31) If $\Re\left(z_{1}\right)=0$ and $\Re\left(z_{2}\right)=0$, then $\Re\left(z_{1} \cdot z_{2}\right)=-\Im\left(z_{1}\right) \cdot \Im\left(z_{2}\right)$ and $\Im\left(z_{1} \cdot z_{2}\right)=0$.
(32) $\Re(z \cdot z)=\Re(z)^{2}-\Im(z)^{2}$ and $\Im(z \cdot z)=2 \cdot(\Re(z) \cdot \Im(z))$.

Let us consider z. The functor $-z$ yielding an element of \mathbb{C}, is defined by: $-z=-\Re(z)+-\Im(z) i$.
One can prove the following propositions:
(33) $-z=-\Re(z)+-\Im(z) i$.
(34) $\Re(-z)=-\Re(z)$ and $\Im(-z)=-\Im(z)$.
(35) $-0_{\mathbb{C}}=0_{\mathbb{C}}$.
(36) If $-z=0_{\mathbb{C}}$, then $z=0_{\mathbb{C}}$.
(37) $\quad i \cdot i=-1_{\mathbb{C}}$.
(38) $z+(-z)=0_{\mathbb{C}}$ and $(-z)+z=0_{\mathbb{C}}$.
(39) If $z_{1}+z_{2}=0_{\mathbb{C}}$, then $z_{2}=-z_{1}$ and $z_{1}=-z_{2}$.
(40) $-(-z)=z$.
(41) If $-z_{1}=-z_{2}$, then $z_{1}=z_{2}$.
(42) If $z_{1}+z=z_{2}+z$ or $z_{1}+z=z+z_{2}$, then $z_{1}=z_{2}$.
(44) $\left(-z_{1}\right) \cdot z_{2}=-z_{1} \cdot z_{2}$ and $z_{1} \cdot\left(-z_{2}\right)=-z_{1} \cdot z_{2}$.
(45) $\left(-z_{1}\right) \cdot\left(-z_{2}\right)=z_{1} \cdot z_{2}$.
(46) $-z=\left(-1_{\mathbb{C}}\right) \cdot z$.

Let us consider z_{1}, z_{2}. The functor $z_{1}-z_{2}$ yields an element of \mathbb{C} and is defined by:
$z_{1}-z_{2}=\Re\left(z_{1}\right)-\Re\left(z_{2}\right)+\Im\left(z_{1}\right)-\Im\left(z_{2}\right) i$.
We now state a number of propositions:

$$
\begin{align*}
& z_{1}-z_{2}=\Re\left(z_{1}\right)-\Re\left(z_{2}\right)+\Im\left(z_{1}\right)-\Im\left(z_{2}\right) i \tag{47}\\
& \Re\left(z_{1}-z_{2}\right)=\Re\left(z_{1}\right)-\Re\left(z_{2}\right) \text { and } \Im\left(z_{1}-z_{2}\right)=\Im\left(z_{1}\right)-\Im\left(z_{2}\right) . \tag{48}
\end{align*}
$$

(49) $z_{1}-z_{2}=z_{1}+\left(-z_{2}\right)$.
(50) If $z_{1}-z_{2}=0_{\mathbb{C}}$, then $z_{1}=z_{2}$.
(53) $0_{\mathbb{C}}-z=-z$.
(54) $z_{1}-\left(-z_{2}\right)=z_{1}+z_{2}$.
(55) $\quad-\left(z_{1}-z_{2}\right)=\left(-z_{1}\right)+z_{2}$.
(60) $z_{1}=\left(z_{1}+z\right)-z$.
(61) $z_{1}=\left(z_{1}-z\right)+z$.
(62) $z \cdot\left(z_{1}-z_{2}\right)=z \cdot z_{1}-z \cdot z_{2}$ and $\left(z_{1}-z_{2}\right) \cdot z=z_{1} \cdot z-z_{2} \cdot z$.

Let us consider z. The functor z^{-1} yields an element of \mathbb{C} and is defined by:

$$
z^{-1}=\frac{\Re(z)}{\Re(z)^{2}+\Im(z)^{2}}+\frac{-\Im(z)}{\Re(z)^{2}+\Im(z)^{2}} i
$$

Next we state a number of propositions:

$$
\begin{equation*}
z^{-1}=\frac{\Re(z)}{\Re(z)^{2}+\Im(z)^{2}}+\frac{-\Im(z)}{\Re(z)^{2}+\Im(z)^{2}} i . \tag{63}
\end{equation*}
$$

(64) $\Re\left(z^{-1}\right)=\frac{\Re(z)}{\Re(z)^{2}+\Im(z)^{2}}$ and $\Im\left(z^{-1}\right)=\frac{-\Im(z)}{\Re(z)^{2}+\Im(z)^{2}}$.
(65) If $z \neq 0_{\mathbb{C}}$, then $z \cdot z^{-1}=1_{\mathbb{C}}$ and $z^{-1} \cdot z=1_{\mathbb{C}}$.
(66) If $z_{1} \cdot z_{2}=0_{\mathbb{C}}$, then $z_{1}=0_{\mathbb{C}}$ or $z_{2}=0_{\mathbb{C}}$.
(67) If $z \neq 0_{\mathbb{C}}$, then $z^{-1} \neq 0_{\mathbb{C}}$.
(68) If $z_{1} \neq 0_{\mathbb{C}}$ and $z_{2} \neq 0_{\mathbb{C}}$ and $z_{1}^{-1}=z_{2}{ }^{-1}$, then $z_{1}=z_{2}$.
(69) If $z_{2} \neq 0_{\mathbb{C}}$ but $z_{1} \cdot z_{2}=1_{\mathbb{C}}$ or $z_{2} \cdot z_{1}=1_{\mathbb{C}}$, then $z_{1}=z_{2}^{-1}$.
(70) If $z_{2} \neq 0_{\mathbb{C}}$ but $z_{1} \cdot z_{2}=z_{3}$ or $z_{2} \cdot z_{1}=z_{3}$, then $z_{1}=z_{3} \cdot z_{2}^{-1}$ and $z_{1}=z_{2}^{-1} \cdot z_{3}$.

$$
\begin{equation*}
1_{\mathbb{C}}^{-1}=1_{\mathbb{C}} \tag{71}
\end{equation*}
$$

(72) $i^{-1}=-i$.
(73) If $z_{1} \neq 0_{\mathbb{C}}$ and $z_{2} \neq 0_{\mathbb{C}}$, then $\left(z_{1} \cdot z_{2}\right)^{-1}=z_{1}{ }^{-1} \cdot z_{2}{ }^{-1}$.
(74) If $z \neq 0_{\mathbb{C}}$, then $\left(z^{-1}\right)^{-1}=z$.
(75) If $z \neq 0_{\mathbb{C}}$, then $(-z)^{-1}=-z^{-1}$.
(76) If $z \neq 0_{\mathbb{C}}$ but $z_{1} \cdot z=z_{2} \cdot z$ or $z_{1} \cdot z=z \cdot z_{2}$, then $z_{1}=z_{2}$.
(77) If $z_{1} \neq 0_{\mathbb{C}}$ and $z_{2} \neq 0_{\mathbb{C}}$, then $z_{1}^{-1}+z_{2}^{-1}=\left(z_{1}+z_{2}\right) \cdot\left(z_{1} \cdot z_{2}\right)^{-1}$.
(78) If $z_{1} \neq 0_{\mathbb{C}}$ and $z_{2} \neq 0_{\mathbb{C}}$, then $z_{1}^{-1}-z_{2}{ }^{-1}=\left(z_{2}-z_{1}\right) \cdot\left(z_{1} \cdot z_{2}\right)^{-1}$.
(79) If $\Re(z) \neq 0$ and $\Im(z)=0$, then $\Re\left(z^{-1}\right)=\Re(z)^{-1}$ and $\Im\left(z^{-1}\right)=0$.
(80) If $\Re(z)=0$ and $\Im(z) \neq 0$, then $\Re\left(z^{-1}\right)=0$ and $\Im\left(z^{-1}\right)=-\Im(z)^{-1}$.

Let us consider z_{1}, z_{2}. The functor $\frac{z_{1}}{z_{2}}$ yields an element of \mathbb{C} and is defined by:

$$
\begin{equation*}
\frac{z_{1}}{z_{2}}=\frac{\Re\left(z_{1}\right) \cdot \Re\left(z_{2}\right)+\Im\left(z_{1}\right) \cdot \Im\left(z_{2}\right)}{\Re\left(z_{2}\right)^{2}+\Im\left(z_{2}\right)^{2}}+\frac{\Re\left(z_{2}\right) \cdot \Im\left(z_{1}\right)-\Re\left(z_{1}\right) \cdot \Im\left(z_{2}\right)}{\Re\left(z_{2}\right)^{2}+\Im\left(z_{2}\right)^{2}} i . \tag{81}
\end{equation*}
$$

Next we state a number of propositions:
(82) $\Re\left(\frac{z_{1}}{z_{2}}\right)=\frac{\Re\left(z_{1}\right) \cdot \Re\left(z_{2}\right)+\Im\left(z_{1}\right) \cdot \Im\left(z_{2}\right)}{\Re\left(z_{2}\right)^{2}+\Im\left(z_{2}\right)^{2}}$ and $\Im\left(\frac{z_{1}}{z_{2}}\right)=\frac{\Re\left(z_{2}\right) \cdot \Im\left(z_{1}\right)-\Re\left(z_{1}\right) \cdot \Im\left(z_{2}\right)}{\Re\left(z_{2}\right)^{2}+\Im\left(z_{2}\right)^{2}}$.
(83) If $z_{2} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z_{2}}=z_{1} \cdot z_{2}{ }^{-1}$.
(84) If $z \neq 0_{\mathbb{C}}$, then $z^{-1}=\frac{1_{\mathbb{C}}}{z}$.
(85) $\frac{z}{1_{\mathrm{c}}}=z$.
(86) If $z \neq 0_{\mathbb{C}}$, then $\frac{z}{z}=1_{\mathbb{C}}$.
(87) If $z \neq 0_{\mathbb{C}}$, then $\frac{0_{\mathbb{C}}}{z}=0_{\mathbb{C}}$.
(88) If $z_{2} \neq 0_{\mathbb{C}}$ and $\frac{z_{1}}{z_{2}}=0_{\mathbb{C}}$, then $z_{1}=0_{\mathbb{C}}$.
(89) If $z_{2} \neq 0_{\mathbb{C}}$ and $z_{4} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z_{2}} \cdot \frac{z_{3}}{z_{4}}=\frac{z_{1} \cdot z_{3}}{z_{2} \cdot z_{4}}$.
(90) If $z_{2} \neq 0_{\mathbb{C}}$, then $z \cdot \frac{z_{1}}{z_{2}}=\frac{z \cdot z_{1}}{z_{2}}$.
(91) If $z_{2} \neq 0_{\mathbb{C}}$ and $\frac{z_{1}}{z_{2}}=1_{\mathbb{C}}$, then $z_{1}=z_{2}$.
(92) If $z \neq 0_{\mathbb{C}}$, then $z_{1}=\frac{z_{1} \cdot z}{z}$.
(93) If $z_{1} \neq 0_{\mathbb{C}}$ and $z_{2} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}-1}{z_{2}}=\frac{z_{2}}{z_{1}}$.
(94) If $z_{1} \neq 0_{\mathbb{C}}$ and $z_{2} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}-1}{z_{2}-1}=\frac{z_{2}}{z_{1}}$.
(95) If $z_{2} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z_{2}^{-1}}=z_{1} \cdot z_{2}$.
(96) If $z_{1} \neq 0_{\mathbb{C}}$ and $z_{2} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}-1}{z_{2}}=\left(z_{1} \cdot z_{2}\right)^{-1}$.
(97) If $z_{1} \neq 0_{\mathbb{C}}$ and $z_{2} \neq 0_{\mathbb{C}}$, then $z_{1}^{-1} \cdot \frac{z}{z_{2}}=\frac{z}{z_{1} \cdot z_{2}}$.
(98) If $z \neq 0_{\mathbb{C}}$ and $z_{2} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z_{2}}=\frac{z_{1} \cdot z}{z_{2} \cdot z}$ and $\frac{z_{1}}{z_{2}}=\frac{z \cdot z_{1}}{z \cdot z_{2}}$.
(99) If $z_{2} \neq 0_{\mathbb{C}}$ and $z_{3} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z_{2} \cdot z_{3}}=\frac{\frac{z_{1}}{z_{2}}}{z_{3}}$.
(100) If $z_{2} \neq 0_{\mathbb{C}}$ and $z_{3} \neq 0_{\mathbb{C}}$, then $\frac{z_{1} \cdot z_{3}}{z_{2}}=\frac{z_{1}}{\frac{z_{2}}{z_{3}}}$.
(101) If $z_{2} \neq 0_{\mathbb{C}}$ and $z_{3} \neq 0_{\mathbb{C}}$ and $z_{4} \neq 0_{\mathbb{C}}$, then $\frac{\frac{z_{1}}{z_{2}}}{\frac{z_{3}}{z_{4}}}=\frac{z_{1} \cdot z_{4}}{z_{2} \cdot z_{3}}$.
(102) If $z_{2} \neq 0_{\mathbb{C}}$ and $z_{4} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z_{2}}+\frac{z_{3}}{z_{4}}=\frac{z_{1} \cdot z_{4}+z_{3} \cdot z_{2}}{z_{2} \cdot z_{4}}$.
(103) If $z \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z}+\frac{z_{2}}{z}=\frac{z_{1}+z_{2}}{z}$.
(104) If $z_{2} \neq 0_{\mathbb{C}}$, then $-\frac{z_{1}}{z_{2}}=\frac{-z_{1}}{z_{2}}$ and $-\frac{z_{1}}{z_{2}}=\frac{z_{1}}{-z_{2}}$.
(105) If $z_{2} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z_{2}}=\frac{-z_{1}}{-z_{2}}$.
(106) If $z_{2} \neq 0_{\mathbb{C}}$ and $z_{4} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z_{2}}-\frac{z_{3}}{z_{4}}=\frac{z_{1} \cdot z_{4}-z_{3} \cdot z_{2}}{z_{2} \cdot z_{4}}$.
(107) If $z \neq 0_{\mathbb{C}}$, then $\frac{z_{1}}{z}-\frac{z_{2}}{z}=\frac{z_{1}-z_{2}}{z}$.
(108) If $z_{2} \neq 0_{\mathbb{C}}$ but $z_{1} \cdot z_{2}=z_{3}$ or $z_{2} \cdot z_{1}=z_{3}$, then $z_{1}=\frac{z_{3}}{z_{2}}$.
(109) If $\Im\left(z_{1}\right)=0$ and $\Im\left(z_{2}\right)=0$ and $\Re\left(z_{2}\right) \neq 0$, then $\Re\left(\frac{z_{1}}{z_{2}}\right)=\frac{\Re\left(z_{1}\right)}{\Re\left(z_{2}\right)}$ and $\Im\left(\frac{z_{1}}{z_{2}}\right)=0$.
(110) If $\Re\left(z_{1}\right)=0$ and $\Re\left(z_{2}\right)=0$ and $\Im\left(z_{2}\right) \neq 0$, then $\Re\left(\frac{z_{1}}{z_{2}}\right)=\frac{\Im\left(z_{1}\right)}{\Im\left(z_{2}\right)}$ and $\Im\left(\frac{z_{1}}{z_{2}}\right)=0$.
Let us consider z. The functor z^{*} yielding an element of \mathbb{C}, is defined as follows:

$$
z^{*}=\Re(z)+-\Im(z) i .
$$

The following propositions are true:
(111) $z^{*}=\Re(z)+-\Im(z) i$.
(112) $\Re\left(z^{*}\right)=\Re(z)$ and $\Im\left(z^{*}\right)=-\Im(z)$.
(113) $0_{\mathbb{C}}{ }^{*}=0_{\mathbb{C}}$.
(114) If $z^{*}=0_{\mathbb{C}}$, then $z=0_{\mathbb{C}}$.
(115) $1_{\mathbb{C}}{ }^{*}=1_{\mathbb{C}}$.
(116) $i^{*}=-i$.
(117) $z^{* *}=z$.
(118) $\left(z_{1}+z_{2}\right)^{*}=z_{1}{ }^{*}+z_{2}{ }^{*}$.
(119) $(-z)^{*}=-z^{*}$.
(120) $\left(z_{1}-z_{2}\right)^{*}=z_{1}{ }^{*}-z_{2}{ }^{*}$.
(121) $\left(z_{1} \cdot z_{2}\right)^{*}=z_{1}{ }^{*} \cdot z_{2}{ }^{*}$.
(122) If $z \neq 0_{\mathbb{C}}$, then $\left(z^{-1}\right)^{*}=z^{*-1}$.
(123) If $z_{2} \neq 0_{\mathbb{C}}$, then $\frac{z_{1}{ }^{*}}{z_{2}}=\frac{z_{1}{ }^{*}}{z_{2}{ }^{*}}$.
(124) If $\Im(z)=0$, then $z^{*}=z$.
(125) If $\Re(z)=0$, then $z^{*}=-z$.
(126) $\Re\left(z \cdot z^{*}\right)=\Re(z)^{2}+\Im(z)^{2}$ and $\Im\left(z \cdot z^{*}\right)=0$.
(127) $\Re\left(z+z^{*}\right)=2 \cdot \Re(z)$ and $\Im\left(z+z^{*}\right)=0$.
(128) $\Re\left(z-z^{*}\right)=0$ and $\Im\left(z-z^{*}\right)=2 \cdot \Im(z)$.

Let us consider z. The functor $|z|$ yielding a real number, is defined as follows:
$|z|=\sqrt{\Re(z)^{2}+\Im(z)^{2}}$.
One can prove the following propositions:

$$
\begin{array}{ll}
(129) & |z|=\sqrt{\Re(z)^{2}+\Im(z)^{2}} . \tag{129}\\
(130) & \left|0_{\mathbb{C}}\right|=0 . \\
(131) & \text { If }|z|=0, \text { then } z=0_{\mathbb{C}} . \\
(132) & 0 \leq|z| . \\
(133) & z \neq 0_{\mathbb{C}} \text { if and only if } 0<|z| . \\
(134) & \left|1_{\mathbb{C}}\right|=1 . \\
(135) & |i|=1 . \\
(136) & \text { If } \Im(z)=0, \text { then }|z|=|\Re(z)| . \\
(137) & \text { If } \Re(z)=0, \text { then }|z|=|\Im(z)| . \\
(138) & |-z|=|z| .
\end{array}
$$

(139) $\quad\left|z^{*}\right|=|z|$.
(140) $\Re(z) \leq|z|$.
(141) $\Im(z) \leq|z|$.
(142) $\left|z_{1}+z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
(143) $\left|z_{1}-z_{2}\right| \leq\left|z_{1}\right|+\left|z_{2}\right|$.
(144) $\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}+z_{2}\right|$.
(145) $\left|z_{1}\right|-\left|z_{2}\right| \leq\left|z_{1}-z_{2}\right|$.
(146) $\quad\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{1}\right|$.
(147) $\left|z_{1}-z_{2}\right|=0$ if and only if $z_{1}=z_{2}$.
(148) $z_{1} \neq z_{2}$ if and only if $0<\left|z_{1}-z_{2}\right|$.
(149) $\left|z_{1}-z_{2}\right| \leq\left|z_{1}-z\right|+\left|z-z_{2}\right|$.
(150) $\quad\left|\left|z_{1}\right|-\left|z_{2}\right|\right| \leq\left|z_{1}-z_{2}\right|$.
(151) $\quad\left|z_{1} \cdot z_{2}\right|=\left|z_{1}\right| \cdot\left|z_{2}\right|$.
(152) If $z \neq 0_{\mathbb{C}}$, then $\left|z^{-1}\right|=|z|^{-1}$.
(153) If $z_{2} \neq 0_{\mathbb{C}}$, then $\frac{\left|z_{1}\right|}{\left|z_{2}\right|}=\left|\frac{z_{1}}{z_{2}}\right|$.
(154) $|z \cdot z|=\Re(z)^{2}+\Im(z)^{2}$.
(155) $\quad|z \cdot z|=\left|z \cdot z^{*}\right|$.

References

[1] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[2] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[3] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[4] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Ordinal Arithmetics

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. At the beginning the article contains some auxiliary theorems concerning the constructors defined in papers [1] and [2]. Next simple properties of addition and multiplication of ordinals are shown, e.g. associativity of addition. Addition and multiplication of a transfinite sequence of ordinals and a ordinal are also introduced here. The goal of the article is the proof that the distributivity of multiplication wrt addition and the associativity of multiplication hold. Additionally new binary functors of ordinals are introduced: subtraction, exact division, and remainder and some of their basic properties are presented.

MML Identifier: ORDINAL3.

The notation and terminology used here are introduced in the following papers: [5], [3], [1], [4], and [2]. For simplicity we adopt the following convention: fi, $p s i$ denote sequences of ordinal numbers, A, B, C, D denote ordinal numbers, X, Y denote sets, and x is arbitrary. We now state a number of propositions:
(1) $X \subseteq \operatorname{succ} X$.
(2) If succ $X \subseteq Y$, then $X \subseteq Y$.
(3) If $\operatorname{succ} A \subseteq B$, then $A \in B$.
(4) $A \subseteq B$ if and only if succ $A \subseteq \operatorname{succ} B$.
(5) $A \in B$ if and only if $\operatorname{succ} A \in \operatorname{succ} B$.
(6) If $X \subseteq A$, then $\bigcup X$ is an ordinal number.
(7) $\cup(\operatorname{On} X)$ is an ordinal number.
(8) If $X \subseteq A$, then On $X=X$.
(9) $\operatorname{On}\{A\}=\{A\}$.
(10) If $A \neq \mathbf{0}$, then $\mathbf{0} \in A$.
(11) $\inf A=\mathbf{0}$.
(12) $\inf \{A\}=A$.
(13) If $X \subseteq A$, then $\bigcap X$ is an ordinal number.

Let us consider x. Let us assume that x is an ordinal number. The functor x (as an ordinal) yielding an ordinal number, is defined as follows:
$x($ as an ordinal $)=x$.
The following proposition is true
(14) If x is an ordinal number, then x (as an ordinal) $=x$.

Let us consider A, B. Then $A \cup B$ is an ordinal number. Then $A \cap B$ is an ordinal number.

We now state a number of propositions:
(15) $A \cup B=A$ or $A \cup B=B$.
(16) $A \cap B=A$ or $A \cap B=B$.
(17) If $A \in \mathbf{1}$, then $A=\mathbf{0}$.
(18) $\mathbf{1}=\{\mathbf{0}\}$.
(19) If $A \subseteq \mathbf{1}$, then $A=\mathbf{0}$ or $A=\mathbf{1}$.
(20) If $A \subseteq B$ or $A \in B$ but $C \in D$, then $A+C \in B+D$.
(21) If $A \subseteq B$ and $C \subseteq D$, then $A+C \subseteq B+D$.
(22) If $A \in B$ but $C \subseteq D$ and $D \neq \mathbf{0}$ or $C \in D$, then $A \cdot C \in B \cdot D$.
(23) If $A \subseteq B$ and $C \subseteq D$, then $A \cdot C \subseteq B \cdot D$.
(24) If $B+C=B+D$, then $C=D$.
(25) If $B+C \in B+D$, then $C \in D$.
(26) If $B+C \subseteq B+D$, then $C \subseteq D$.
(27) $A \subseteq A+B$ and $B \subseteq A+B$.
(28) If $A \in B$, then $A \in B+C$ and $A \in C+B$.
(29) If $A+B=\mathbf{0}$, then $A=\mathbf{0}$ and $B=\mathbf{0}$.
(30) If $A \subseteq B$, then there exists C such that $B=A+C$.
(31) If $A \in B$, then there exists C such that $B=A+C$ and $C \neq \mathbf{0}$.
(32) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then $B+A$ is a limit ordinal number.
(33) $(A+B)+C=A+(B+C)$.
(34) If $A \cdot B=\mathbf{0}$, then $A=\mathbf{0}$ or $B=\mathbf{0}$.
(35) If $A \in B$ and $C \neq \mathbf{0}$, then $A \in B \cdot C$ and $A \in C \cdot B$.
(36) If $B \cdot A=C \cdot A$ and $A \neq \mathbf{0}$, then $B=C$.
(37) If $B \cdot A \in C \cdot A$, then $B \in C$.
(38) If $B \cdot A \subseteq C \cdot A$ and $A \neq \mathbf{0}$, then $B \subseteq C$.
(39) If $B \neq \mathbf{0}$, then $A \subseteq A \cdot B$ and $A \subseteq B \cdot A$.
(40) If $A \in B$ and $C \neq \mathbf{0}$, then $A \in B \cdot C$ and $A \in C \cdot B$.
(41) If $A \cdot B=\mathbf{1}$, then $A=\mathbf{1}$ and $B=\mathbf{1}$.
(42) If $A \in B+C$, then $A \in B$ or there exists D such that $D \in C$ and $A=B+D$.
We now define four new functors. Let us consider C, $f i$. The functor $C+f i$ yields a sequence of ordinal numbers and is defined by:
$\operatorname{dom}(C+f i)=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $(C+$ $f i)(A)=C+(f i(A))($ as an ordinal).
The functor $f i+C$ yields a sequence of ordinal numbers and is defined by:
$\operatorname{dom}(f i+C)=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $(f i+$ $C)(A)=(f i(A))($ as an ordinal $)+C$.
The functor $C \cdot f i$ yields a sequence of ordinal numbers and is defined as follows: $\operatorname{dom}(C \cdot f i)=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $(C$. $f i)(A)=C \cdot(f i(A))($ as an ordinal $)$.
The functor $f i \cdot C$ yields a sequence of ordinal numbers and is defined by:
$\operatorname{dom}(f i \cdot C)=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds ($f i$.
$C)(A)=(f i(A))($ as an ordinal $) \cdot C$.
The following propositions are true:
(43) $\quad p s i=C+f i$ if and only if dom $p s i=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $p s i(A)=C+(f i(A))$ (as an ordinal).
(44) $\quad p s i=f i+C$ if and only if dompsi= $\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $p s i(A)=(f i(A))($ as an ordinal $)+C$.
(45) $p s i=C \cdot f i$ if and only if $\operatorname{dom} p s i=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $p s i(A)=C \cdot(f i(A))$ (as an ordinal).
(46) $\quad p s i=f i \cdot C$ if and only if $\operatorname{dom} p s i=\operatorname{dom} f i$ and for every A such that $A \in \operatorname{dom} f i$ holds $p s i(A)=(f i(A))$ (as an ordinal) $\cdot C$.
(47) If $\mathbf{0} \neq \operatorname{dom} f i$ and $\operatorname{dom} f i=\operatorname{dom} p s i$ and for all A, B such that $A \in$ $\operatorname{dom} f i$ and $B=f i(A)$ holds $p s i(A)=C+B$, then $\sup p s i=C+\sup f i$.
(48) If A is a limit ordinal number, then $A \cdot B$ is a limit ordinal number.
(49) If $A \in B \cdot C$ and B is a limit ordinal number, then there exists D such that $D \in B$ and $A \in D \cdot C$.
(50) If $\mathbf{0} \neq \operatorname{dom} f i$ and $\operatorname{dom} f i=\operatorname{dom} p s i$ and $C \neq \mathbf{0}$ and $\sup f i$ is a limit ordinal number and for all A, B such that $A \in \operatorname{dom} f i$ and $B=f i(A)$ holds $p s i(A)=B \cdot C$, then $\sup p s i=\sup f i \cdot C$.
(51) If $\mathbf{0} \neq \operatorname{dom} f i$, then $\sup (C+f i)=C+\sup f i$.
(52) If $\mathbf{0} \neq \operatorname{dom} f i$ and $C \neq \mathbf{0}$ and $\sup f i$ is a limit ordinal number, then $\sup (f i \cdot C)=\sup f i \cdot C$.
(53) If $B \neq \mathbf{0}$, then $\bigcup(A+B)=A+\bigcup B$.
(54) $(A+B) \cdot C=A \cdot C+B \cdot C$.
(55) If $A \neq \mathbf{0}$, then there exist C, D such that $B=C \cdot A+D$ and $D \in A$.
(56) For all ordinal numbers $C_{1}, D_{1}, C_{2}, D_{2}$ such that $C_{1} \cdot A+D_{1}=C_{2} \cdot A+D_{2}$ and $D_{1} \in A$ and $D_{2} \in A$ holds $C_{1}=C_{2}$ and $D_{1}=D_{2}$.
(57) If $\mathbf{1} \in B$ and $A \neq \mathbf{0}$ and A is a limit ordinal number, then for every $f i$ such that $\operatorname{dom} f i=A$ and for every C such that $C \in A$ holds $f i(C)=C \cdot B$ holds $A \cdot B=\sup f i$.
(58) $\quad(A \cdot B) \cdot C=A \cdot(B \cdot C)$.

We now define two new functors. Let us consider A, B. The functor $A-B$ yields an ordinal number and is defined as follows:

$$
A=B+(A-B) \text { if } B \subseteq A, A-B=\mathbf{0} \text {, otherwise. }
$$

The functor $A \div B$ yielding an ordinal number, is defined by:
there exists C such that $A=(A \div B) \cdot B+C$ and $C \in B$ if $B \neq \mathbf{0}, A \div B=\mathbf{0}$, otherwise.

Let us consider A, B. The functor $A \bmod B$ yielding an ordinal number, is defined by:
$A \bmod B=A-(A \div B) \cdot B$.
The following propositions are true:
(59) If $A \subseteq B$, then $B=A+(B-A)$.
(60) If $A \in B$, then $B=A+(B-A)$.
(61) If $A \nsubseteq B$, then $B-A=\mathbf{0}$.
(62) If $B \neq \mathbf{0}$, then there exists C such that $A=(A \div B) \cdot B+C$ and $C \in B$.
(63) $A \div \mathbf{0}=\mathbf{0}$.
(64) $A \bmod B=A-(A \div B) \cdot B$.
(65) $(A+B)-A=B$.
(66) If $A \in B$ but $C \subseteq A$ or $C \in A$, then $A-C \in B-C$.
(67) $A-A=\mathbf{0}$.
(68) If $A \in B$, then $B-A \neq \mathbf{0}$ and $\mathbf{0} \in B-A$.
(69) $\quad A-\mathbf{0}=A$ and $\mathbf{0}-A=\mathbf{0}$.
(70) $A-(B+C)=(A-B)-C$.
(71) If $A \subseteq B$, then $C-B \subseteq C-A$.
(72) If $A \subseteq B$, then $A-C \subseteq B-C$.
(73) If $C \neq \mathbf{0}$ and $A \in B+C$, then $A-B \in C$.
(74) If $A+B \in C$, then $B \in C-A$.
(75) $A \subseteq B+(A-B)$.
(76) $A \cdot C-B \cdot C=(A-B) \cdot C$.
(77) $\quad(A \div B) \cdot B \subseteq A$.
(78) $A=(A \div B) \cdot B+(A \bmod B)$.
(79) If $A=B \cdot C+D$ and $D \in C$, then $B=A \div C$ and $D=A \bmod C$.
(80) If $A \in B \cdot C$, then $A \div C \in B$ and $A \bmod C \in C$.
(81) If $B \neq \mathbf{0}$, then $A \cdot B \div B=A$.
(82) $A \cdot B \bmod B=\mathbf{0}$.
(83) $\mathbf{0} \div A=\mathbf{0}$ and $\mathbf{0} \bmod A=\mathbf{0}$ and $A \bmod \mathbf{0}=A$.
(84) $A \div \mathbf{1}=A$ and $A \bmod \mathbf{1}=\mathbf{0}$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received March 1, 1990

The Modification of a Function by a Function and the Iteration of the Composition of a Function

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. In the article we introduce some operation on functions. We define the natural ordering relation on functions. The fact that a function f is less than a function g we denote by $f \leq g$ and we define by graph $f \subseteq \operatorname{graph} f$. In the sequel we define the modifications of a function f by a function g denoted $f+\cdot g$ and the n-th iteration of the composition of a function f denoted by f^{n}. We prove some propositions related to the introduced notions.

MML Identifier: FUNCT_4.

The papers [7], [1], [2], [3], [4], [5], and [6] provide the terminology and notation for this paper. For simplicity we adopt the following rules: $a, b, x, x^{\prime}, y, y^{\prime}, z$ will be arbitrary, $X, X^{\prime}, Y, Y^{\prime}, Z, Z^{\prime}$ will be sets, D, D^{\prime} will be non-empty sets, and f, g, h will be functions. We now state several propositions:
(1) If for every z such that $z \in Z$ there exist x, y such that $z=\langle x, y\rangle$, then there exist X, Y such that $Z \subseteq\{X, Y \rrbracket$.
(2) If rng $f \cap \operatorname{dom} g=\emptyset$, then $g \cdot f=\square$.
(3) $g \cdot f=g \upharpoonright \operatorname{rng} f \cdot f$.
(4) $\square=\emptyset \longmapsto a$.
(5) $\quad \operatorname{graph}\left(\mathrm{id}_{X}\right) \subseteq \operatorname{graph}^{\left(\mathrm{id}_{Y}\right)}$ if and only if $X \subseteq Y$.
(6) If $X \subseteq Y$, then $\operatorname{graph}(X \longmapsto a) \subseteq \operatorname{graph}(Y \longmapsto a)$.
(7) If $\operatorname{graph}(X \longmapsto a) \subseteq \operatorname{graph}(Y \longmapsto b)$, then $X \subseteq Y$.
(8) If $X \neq \emptyset$ and $\operatorname{graph}(X \longmapsto a) \subseteq \operatorname{graph}(Y \longmapsto b)$, then $a=b$.

[^11](9) If $x \in \operatorname{dom} f$, then $\operatorname{graph}(\{x\} \longmapsto f(x)) \subseteq \operatorname{graph} f$.

Let us consider f, g. The predicate $f \leq g$ is defined as follows:
$\operatorname{graph} f \subseteq \operatorname{graph} g$.
We now state a number of propositions:
(10) For all f, g holds $f \leq g$ if and only if graph $f \subseteq \operatorname{graph} g$.
(11) $f \leq g$ if and only if $\operatorname{dom} f \subseteq \operatorname{dom} g$ and for every x such that $x \in \operatorname{dom} f$ holds $f(x)=g(x)$.
(12) If $f \leq g$, then $f \approx g$.
(13) If $f \leq g$, then $\operatorname{dom} f \subseteq \operatorname{dom} g$ and $\operatorname{rng} f \subseteq \operatorname{rng} g$.
(14) If $f \leq g$ and $\operatorname{dom} f=\operatorname{dom} g$, then $f=g$.
(15) $\square \leq f$.
(16) $f \leq f$.
(17) If $f \leq g$ and $g \leq h$, then $f \leq h$.
(18) $f \leq g$ and $g \leq f$ if and only if $f=g$.
(19) $\quad \mathrm{id}_{X} \leq \mathrm{id}_{Y}$ if and only if $X \subseteq Y$.
(20) If $X \subseteq Y$, then $X \longmapsto a \leq Y \longmapsto a$.
(21) If $X \longmapsto a \leq Y \longmapsto b$, then $X \subseteq Y$.
(22) If $X \neq \emptyset$ and $X \longmapsto a \leq Y \longmapsto b$, then $a=b$.
(23) If $x \in \operatorname{dom} f$, then $\{x\} \longmapsto f(x) \leq f$.
(24) If $f \leq g$ and g is one-to-one, then f is one-to-one.
(25) If $f \leq g$, then $g \upharpoonright \operatorname{dom} f=f$.
(26) If $f \leq g$ and g is one-to-one, then $\operatorname{rng} f \upharpoonright g=f$.
(27) $f \upharpoonright X \leq f$.
(28) If $X \subseteq Y$, then $f \upharpoonright X \leq f \upharpoonright Y$.
(29) If $X \subseteq Y$, then $X \upharpoonright f \leq Y \upharpoonright f$.
(30) $\quad Y \upharpoonright f \leq f$.
(31) $(Y \upharpoonright f) \upharpoonright X \leq f$.
(32) $f_{\mid X \rightarrow Y} \leq f$.
(33) If $f \leq g$, then $f \cdot h \leq g \cdot h$.
(34) If $f \leq g$, then $h \cdot f \leq h \cdot g$.
(35) For all functions $f_{1}, f_{2}, g_{1}, g_{2}$ such that $f_{1} \leq g_{1}$ and $f_{2} \leq g_{2}$ holds $f_{1} \cdot f_{2} \leq g_{1} \cdot g_{2}$.
(36) If $f \leq g$, then $f \upharpoonright X \leq g \upharpoonright X$.
(37) If $f \leq g$, then $Y \upharpoonright f \leq Y \upharpoonright g$.
(38) If $f \leq g$, then $(Y \upharpoonright f) \upharpoonright X \leq(Y \upharpoonright g) \upharpoonright X$.
(39) If $f \leq g$, then $f_{\mid X\lrcorner Y} \leq g_{\mid X\lrcorner Y}$.
(40) If $f \leq h$ and $g \leq h$, then $f \approx g$.

Let us consider f, g. The functor $f+g$ yields a function and is defined by:
$\operatorname{dom}(f+g)=\operatorname{dom} f \cup \operatorname{dom} g$ and for every x such that $x \in \operatorname{dom} f \cup \operatorname{dom} g$ holds if $x \in \operatorname{dom} g$, then $(f+g)(x)=g(x)$ but if $x \notin \operatorname{dom} g$, then $(f+g)(x)=$ $f(x)$.

We now state a number of propositions:
(41) Let f, g, h be functions. Then $h=f+\cdot g$ if and only if the following conditions are satisfied:
(i) $\operatorname{dom} h=\operatorname{dom} f \cup \operatorname{dom} g$,
(ii) for every x such that $x \in \operatorname{dom} f \cup \operatorname{dom} g$ holds if $x \in \operatorname{dom} g$, then $h(x)=g(x)$ but if $x \notin \operatorname{dom} g$, then $h(x)=f(x)$.
(42) If $x \in \operatorname{dom}(f+\cdot g)$ and $x \notin \operatorname{dom} g$, then $(f+\cdot g)(x)=f(x)$.
(43) $\quad x \in \operatorname{dom}(f+\cdot g)$ if and only if $x \in \operatorname{dom} f$ or $x \in \operatorname{dom} g$.
(44) If $x \in \operatorname{dom} g$, then $(f+g)(x)=g(x)$.
(45) If $x \in \operatorname{dom} f \backslash \operatorname{dom} g$, then $(f+g)(x)=f(x)$.
(46) If $f \approx g$ and $x \in \operatorname{dom} f$, then $(f+g)(x)=f(x)$.
(47) If $\operatorname{dom} f \cap \operatorname{dom} g=\emptyset$ and $x \in \operatorname{dom} f$, then $(f+g)(x)=f(x)$.
(48) $\quad \operatorname{rng}(f+\cdot g) \subseteq \operatorname{rng} f \cup \operatorname{rng} g$.
(49) $\quad \operatorname{rng} g \subseteq \operatorname{rng}(f+\cdot g)$.
(50) If $\operatorname{dom} f \subseteq \operatorname{dom} g$, then $f+\cdot g=g$.
(51) If $\operatorname{dom} f=\operatorname{dom} g$, then $f+\cdot g=g$.
(52) $\quad f+f=f$.
(53) $\square+\cdot f=f$.
(54) $f+\cdot \square=f$.
(55) $\mathrm{id}_{X}+\cdot \mathrm{id}_{Y}=\mathrm{id}_{X \cup Y}$.
(56) $(f+\cdot g) \upharpoonright \operatorname{dom} g=g$.
(57) $\quad \operatorname{graph}((f+\cdot g) \upharpoonright(\operatorname{dom} f \backslash \operatorname{dom} g)) \subseteq \operatorname{graph} f$.
(58) $\quad(f+\cdot g) \upharpoonright(\operatorname{dom} f \backslash \operatorname{dom} g) \leq f$.
(59) $\quad \operatorname{graph} g \subseteq \operatorname{graph}(f+\cdot g)$.
(60) $g \leq f+g$.
(61) If $f \approx g+\cdot h$, then f 「 $(\operatorname{dom} f \backslash \operatorname{dom} h) \approx g$.
(62) If $f \approx g+h$, then $f \approx h$.
(63) $f \approx g$ if and only if graph $f \subseteq \operatorname{graph}(f+\cdot g)$.
(64) $f \approx g$ if and only if $f \leq f+g$.
(65) $\operatorname{graph}(f+\cdot g) \subseteq \operatorname{graph} f \cup \operatorname{graph} g$.
(66) $f \approx g$ if and only if graph $f \cup \operatorname{graph} g=\operatorname{graph}(f+\cdot g)$.
(67) If $\operatorname{dom} f \cap \operatorname{dom} g=\emptyset$, then graph $f \cup \operatorname{graph} g=\operatorname{graph}(f+\cdot g)$.
(68) If $\operatorname{dom} f \cap \operatorname{dom} g=\emptyset$, then $\operatorname{graph} f \subseteq \operatorname{graph}(f+\cdot g)$.
(69) If $\operatorname{dom} f \cap \operatorname{dom} g=\emptyset$, then $f \leq f+\cdot g$.
(70) If $\operatorname{dom} f \cap \operatorname{dom} g=\emptyset$, then $(f+\cdot g) \upharpoonright \operatorname{dom} f=f$.
(71) $\quad f \approx g$ if and only if $f+\cdot g=g+\cdot f$.
(72) If $\operatorname{dom} f \cap \operatorname{dom} g=\emptyset$, then $f+\cdot g=g+\cdot f$.
(73) For all partial functions f, g from X to Y such that g is total holds $f+g=g$.
For all functions f, g from X into Y such that if $Y=\emptyset$, then $X=\emptyset$ holds $f+\cdot g=g$.
(75) For all functions f, g from X into X holds $f+g=g$.
(76) For all functions f, g from X into D holds $f+g=g$.

For all partial functions f, g from X to Y holds $f+g$ is a partial function from X to Y.
Let us consider f. The functor $\curvearrowleft f$ yields a function and is defined by:
for every x holds $x \in \operatorname{dom}(\curvearrowleft f)$ if and only if there exist y, z such that $x=\langle z, y\rangle$ and $\langle y, z\rangle \in \operatorname{dom} f$ and for all y, z such that $\langle y, z\rangle \in \operatorname{dom} f$ holds $(\curvearrowleft f)(\langle z, y\rangle)=f(\langle y, z\rangle)$.

We now state a number of propositions:
(78) Let f, h be functions. Then $h=\curvearrowleft f$ if and only if for every z holds $z \in \operatorname{dom} h$ if and only if there exist x, y such that $z=\langle y, x\rangle$ and $\langle x, y\rangle \in$ $\operatorname{dom} f$ and for all x, y such that $\langle x, y\rangle \in \operatorname{dom} f$ holds $h(\langle y, x\rangle)=f(\langle x, y\rangle)$.
(79) $\quad \operatorname{rng}(\curvearrowleft f) \subseteq \operatorname{rng} f$.
(80) $\langle x, y\rangle \in \operatorname{dom} f$ if and only if $\langle y, x\rangle \in \operatorname{dom}(\curvearrowleft f)$.
(81) If $\langle y, x\rangle \in \operatorname{dom}(\curvearrowleft f)$, then $\curvearrowleft f(\langle y, x\rangle)=f(\langle x, y\rangle)$.
(82) There exist X, Y such that $\operatorname{dom}(\curvearrowleft f) \subseteq: X, Y:$.
(83) If $\operatorname{dom} f \subseteq: X, Y:$, then $\operatorname{dom}(\curvearrowleft f) \subseteq: Y, X:]$.
(84) If $\operatorname{dom} f=\{X, Y:$, then $\operatorname{dom}(\curvearrowleft f)=\{: Y, X:$.
(85) If $\operatorname{dom} f \subseteq[: X, Y:$, then $\operatorname{rng}(\curvearrowleft f)=\operatorname{rng} f$.
(86) If $\operatorname{dom} f=\{: X, Y:$, then $\operatorname{rng}(\curvearrowleft f)=\operatorname{rng} f$.
(87) For every partial function f from $: X, Y$: to Z holds $\curvearrowleft f$ is a partial function from $[Y, X:]$ to Z.
(88) For every function f from $: X, Y$: into Z such that $Z \neq \emptyset$ holds $\curvearrowleft f$ is a function from $: Y, X:$ into Z.
(89) For every function f from $: X, Y$: into D holds $\curvearrowleft f$ is a function from : Y, X : into D.
(90) $\quad \operatorname{graph}(\curvearrowleft(\curvearrowleft f)) \subseteq \operatorname{graph} f$.
(91) If $\operatorname{dom} f \subseteq: X, Y:$, then $\curvearrowleft(\curvearrowleft f)=f$.
(92) If $\operatorname{dom} f=\{X, Y:$, then $\curvearrowleft(\curvearrowleft f)=f$.
(93) For every partial function f from $[X, Y$: to Z holds $\curvearrowleft(\curvearrowleft f)=f$.
(94) For every function f from $: X, Y$: into Z such that $Z \neq \emptyset$ holds $\curvearrowleft(\curvearrowleft f)=f$.
(95) For every function f from $: X, Y$: into D holds $\curvearrowleft(\curvearrowleft f)=f$.

Let us consider f, g. The functor $|: f, g:|$ yielding a function, is defined as follows:
(i) for every z holds $z \in$ dom $|: f, g:|$ if and only if there exist $x, y, x^{\prime}, y^{\prime}$ such that $z=\left\langle\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle\right\rangle$ and $\langle x, y\rangle \in \operatorname{dom} f$ and $\left\langle x^{\prime}, y^{\prime}\right\rangle \in \operatorname{dom} g$,
(ii) for all $x, y, x^{\prime}, y^{\prime}$ such that $\langle x, y\rangle \in \operatorname{dom} f$ and $\left\langle x^{\prime}, y^{\prime}\right\rangle \in \operatorname{dom} g$ holds $|: f, g:|\left(\left\langle\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle\right\rangle\right)=\left\langle f(\langle x, y\rangle), g\left(\left\langle x^{\prime}, y^{\prime}\right\rangle\right)\right\rangle$.

The following propositions are true:
(96) Given f, g, h. Then $h=|: f, g:|$ if and only if the following conditions are satisfied:
(i) for every z holds $z \in \operatorname{dom} h$ if and only if there exist $x, y, x^{\prime}, y^{\prime}$ such that $z=\left\langle\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle\right\rangle$ and $\langle x, y\rangle \in \operatorname{dom} f$ and $\left\langle x^{\prime}, y^{\prime}\right\rangle \in \operatorname{dom} g$,
(ii) for all $x, y, x^{\prime}, y^{\prime}$ such that $\langle x, y\rangle \in \operatorname{dom} f$ and $\left\langle x^{\prime}, y^{\prime}\right\rangle \in \operatorname{dom} g$ holds $h\left(\left\langle\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle\right\rangle\right)=\left\langle f(\langle x, y\rangle), g\left(\left\langle x^{\prime}, y^{\prime}\right\rangle\right)\right\rangle$.
(97) $\left\langle\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle\right\rangle \in \operatorname{dom}|: f, g:|$ if and only if $\langle x, y\rangle \in \operatorname{dom} f$ and $\left\langle x^{\prime}, y^{\prime}\right\rangle \in$ $\operatorname{dom} g$.
(98) If $\left\langle\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle\right\rangle \in \operatorname{dom}|: f, g:|$, then $|: f, g:|\left(\left\langle\left\langle x, x^{\prime}\right\rangle,\left\langle y, y^{\prime}\right\rangle\right\rangle\right)=\left\langle f(\langle x, y\rangle), g\left(\left\langle x^{\prime}, y^{\prime}\right\rangle\right)\right\rangle$.
(99) $\quad \operatorname{rng}|: f, g:| \subseteq: \operatorname{rng} f, \operatorname{rng} g \ddagger$.
(100) If $\operatorname{dom} f \subseteq: X, Y:$ and $\operatorname{dom} g \subseteq\left[X^{\prime}, Y^{\prime}:\right]$, then $\operatorname{dom}|: f, g:| \subseteq:: X$, $X^{\prime}:,\left[Y, Y^{\prime} \vdots\right]$.
(101) If $\operatorname{dom} f=[: X, Y:]$ and $\operatorname{dom} g=\left\lceil X^{\prime}, Y^{\prime}:\right]$, then $\operatorname{dom}|: f, g:|=[: X$, $\left.\left.X^{\prime}:\right],: Y, Y^{\prime} \vdots\right]$.
(102) For every partial function f from $: X, Y$: to Z and for every partial function g from $: X^{\prime}, Y^{\prime}$: to Z^{\prime} holds $|: f, g:|$ is a partial function from

(103) For every function f from : X, Y : into Z and for every function g from : $\left.X^{\prime}, Y^{\prime}:\right]$ into Z^{\prime} such that $Z \neq \emptyset$ and $Z^{\prime} \neq \emptyset$ holds $|: f, g:|$ is a function from : : $X, X^{\prime}:$, $: Y, Y^{\prime}:$: into : Z, Z^{\prime}].
(104) For every function f from $: X, Y:$ into D and for every function g from $\left[: X^{\prime}, Y^{\prime}:\right]$ into D^{\prime} holds $|: f, g:|$ is a function from $:: X, X^{\prime}:,\left[: Y, Y^{\prime}:\right]$ into [: D, D^{\prime}].
Let f be a function, and let n be an element of \mathbb{N}. The functor f^{n} yields a function and is defined as follows:
there exists a function p from \mathbb{N} into $(\operatorname{dom} f \cup \operatorname{rng} f) \rightarrow(\operatorname{dom} f \cup \operatorname{rng} f)$ such that $f^{n}=p(n)$ and $p(0)=\operatorname{id}_{\text {dom }} f \cup \operatorname{rng} f$ and for every element k of \mathbb{N} there exists a function g such that $g=p(k)$ and $p(k+1)=g \cdot f$.

One can prove the following proposition
(105) Let f be a function. Let n be an element of \mathbb{N}. Suppose $\operatorname{rng} f \subseteq \operatorname{dom} f$. Let h be a function. Then $h=f^{n}$ if and only if there exists a function p from \mathbb{N} into $(\operatorname{dom} f \cup \operatorname{rng} f) \dot{\rightarrow}(\operatorname{dom} f \cup \operatorname{rng} f)$ such that $h=p(n)$ and $p(0)=\operatorname{id}_{\operatorname{dom} f \cup r n g} f$ and for every element k of \mathbb{N} there exists a function g such that $g=p(k)$ and $p(k+1)=g \cdot f$.
In the sequel m, n will be natural numbers. Next we state a number of propositions:

$$
\begin{align*}
& f^{0}=\operatorname{id}_{\mathrm{dom}} f \cup \mathrm{rng} f \tag{106}\\
& f^{n+1}=\left(f^{n}\right) \cdot f \tag{107}
\end{align*}
$$

(108) $f^{1}=f$.
(109) $f^{n+1}=f \cdot\left(f^{n}\right)$.
(110) $\operatorname{dom}\left(f^{n}\right) \subseteq \operatorname{dom} f \cup \operatorname{rng} f$ and $\operatorname{rng}\left(f^{n}\right) \subseteq \operatorname{dom} f \cup \operatorname{rng} f$.
(111) If $n \neq 0$, then $\operatorname{dom}\left(f^{n}\right) \subseteq \operatorname{dom} f$ and $\operatorname{rng}\left(f^{n}\right) \subseteq \operatorname{rng} f$.
(112) If $\operatorname{rng} f \subseteq \operatorname{dom} f$, then $\operatorname{dom}\left(f^{n}\right)=\operatorname{dom} f$ and $\operatorname{rng}\left(f^{n}\right) \subseteq \operatorname{dom} f$.
(113) $\quad\left(f^{n}\right) \cdot \operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f}=f^{n}$.
(114) $\quad \operatorname{id}_{\operatorname{dom} f \cup \operatorname{rng} f} \cdot\left(f^{n}\right)=f^{n}$.
(115) $\quad\left(f^{n}\right) \cdot\left(f^{m}\right)=f^{n+m}$.
(116) If $n \neq 0$, then $\left(f^{m}\right)^{n}=f^{m \cdot n}$.
(117) If $\operatorname{rng} f \subseteq \operatorname{dom} f$, then $\left(f^{m}\right)^{n}=f^{m \cdot n}$.
(118) $\quad \square^{n}=\square$.
(119) $\operatorname{id}_{X}{ }^{n}=\operatorname{id}_{X}$.
(120) If rng $f \cap \operatorname{dom} f=\emptyset$, then $f^{2}=\square$.
(121) For every function f from X into X holds f^{n} is a function from X into X.
(122) For every function f from X into X holds $f^{0}=\operatorname{id}_{X}$.
(123) For every function f from X into X holds $\left(f^{m}\right)^{n}=f^{m \cdot n}$.
(124) For every partial function f from X to X holds f^{n} is a partial function from X to X.
(125) If $n \neq 0$ and $a \in X$ and $f=X \longmapsto a$, then $f^{n}=f$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Graphs of functions. Formalized Mathematics, 1(1):169173, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[6] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

The Modification of a Function by a Function ...
Received March 1, 1990

Finite Sequences and Tuples of Elements of a Non-empty Sets

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The first part of the article is a continuation of [2]. Next, we define the identity sequence of natural numbers and the constant sequences. The main part of this article is the definition of tuples. The element of a set of all sequences of the length n of D is called a tuple of a non-empty set D and it is denoted by element of D^{n}. Also some basic facts about tuples of a non-empty set are proved.

MML Identifier: FINSEQ_2.

The notation and terminology used here have been introduced in the following articles: [9], [8], [6], [1], [10], [4], [5], [2], [3], and [7]. For simplicity we adopt the following rules: i, j, l denote natural numbers, $a, b, x_{1}, x_{2}, x_{3}$ are arbitrary, D, D^{\prime}, E denote non-empty sets, d, d_{1}, d_{2}, d_{3} denote elements of $D, d^{\prime}, d_{1}^{\prime}, d_{2}^{\prime}$, d_{3}^{\prime} denote elements of D^{\prime}, and p, q, r denote finite sequences. Next we state a number of propositions:
(1) $\min (i, j)$ is a natural number and $\max (i, j)$ is a natural number.
(2) If $l=\min (i, j)$, then $\operatorname{Seg} i \cap \operatorname{Seg} j=\operatorname{Seg} l$.
(3) If $i \leq j$, then $\max (0, i-j)=0$.
(4) If $j \leq i$, then $\max (0, i-j)=i-j$.
(5) $\max (0, i-j)$ is a natural number.
(6) $\min (0, i)=0$ and $\min (i, 0)=0$ and $\max (0, i)=i$ and $\max (i, 0)=i$.
(7) If $i \neq 0$, then $\operatorname{Seg} i$ is a non-empty subset of \mathbb{N}.
(8) If $i \in \operatorname{Seg}(l+1)$, then $i \in \operatorname{Seg} l$ or $i=l+1$.
(9) If $i \in \operatorname{Seg} l$, then $i \in \operatorname{Seg}(l+j)$.
(10) If len $p=i$ and len $q=i$ and for every j such that $j \in \operatorname{Seg} i$ holds $p(j)=q(j)$, then $p=q$.

[^12](11) If $b \in \operatorname{rng} p$, then there exists i such that $i \in \operatorname{Seg}(\operatorname{len} p)$ and $p(i)=b$.
(12) If $i \in \operatorname{Seg}(\operatorname{len} p)$, then $p(i) \in \operatorname{rng} p$.
(13) For every finite sequence p of elements of D such that $i \in \operatorname{Seg}(\operatorname{len} p)$ holds $p(i) \in D$.
(14) If for every i such that $i \in \operatorname{Seg}(\operatorname{len} p)$ holds $p(i) \in D$, then p is a finite sequence of elements of D.
(15) $\left\langle d_{1}, d_{2}\right\rangle$ is a finite sequence of elements of D.
(16) $\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ is a finite sequence of elements of D.
(17) If $i \in \operatorname{Seg}(\operatorname{len} p)$, then $\left(p^{\wedge} q\right)(i)=p(i)$.
(18) If $i \in \operatorname{Seg}(\operatorname{len} p)$, then $i \in \operatorname{Seg}\left(\operatorname{len}\left(p^{\wedge} q\right)\right)$.
(19) $\quad \operatorname{len}\left(p^{\wedge}\langle a\rangle\right)=\operatorname{len} p+1$.
(20) If $p^{\wedge}\langle a\rangle=q^{\wedge}\langle b\rangle$, then $p=q$ and $a=b$.
(21) If len $p=i+1$, then there exist q, a such that $p=q^{\wedge}\langle a\rangle$.
(22) For every finite sequence p of elements of D such that len $p \neq 0$ there exists a finite sequence q of elements of D and there exists d such that $p=q^{\curvearrowleft}\langle d\rangle$.
(23) If $q=p \upharpoonright \operatorname{Seg} i$ and len $p \leq i$, then $p=q$.
(25) If len $r=i+j$, then there exist p, q such that $\operatorname{len} p=i$ and $\operatorname{len} q=j$ and $r=p^{\wedge} q$.
(26) For every finite sequence r of elements of D such that len $r=i+j$ there exist finite sequences p, q of elements of D such that len $p=i$ and len $q=j$ and $r=p^{\wedge} q$.
In the article we present several logical schemes. The scheme SeqLambdaD concerns a natural number \mathcal{A}, a non-empty set \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:
there exists a finite sequence z of elements of \mathcal{B} such that len $z=\mathcal{A}$ and for every j such that $j \in \operatorname{Seg} \mathcal{A}$ holds $z(j)=\mathcal{F}(j)$ for all values of the parameters.

The scheme $\operatorname{IndSeq} D$ deals with a non-empty set \mathcal{A}, and a unary predicate \mathcal{P}, and states that:
for every finite sequence p of elements of \mathcal{A} holds $\mathcal{P}[p]$ provided the parameters meet the following requirements:

- $\mathcal{P}\left[\varepsilon_{\mathcal{A}}\right]$,
- for every finite sequence p of elements of \mathcal{A} and for every element x of \mathcal{A} such that $\mathcal{P}[p]$ holds $\mathcal{P}\left[p^{\wedge}\langle x\rangle\right]$.
We now state a number of propositions:
(27) For every non-empty subset D^{\prime} of D and for every finite sequence p of elements of D^{\prime} holds p is a finite sequence of elements of D.
(28) For every function f from $\operatorname{Seg} i$ into D holds f is a finite sequence of elements of D. p is a function from $\operatorname{Seg}(\operatorname{len} p)$ into $\operatorname{rng} p$.
(30) For every finite sequence p of elements of D holds p is a function from $\operatorname{Seg}(\operatorname{len} p)$ into D.
(31) For every function f from \mathbb{N} into D holds $f \upharpoonright \operatorname{Seg} i$ is a finite sequence of elements of D.
(32) For every function f from \mathbb{N} into D such that $q=f \upharpoonright \operatorname{Seg} i$ holds $\operatorname{len} q=i$.
(33) For every function f such that $\operatorname{rng} p \subseteq \operatorname{dom} f$ and $q=f \cdot p$ holds len $q=\operatorname{len} p$.
(34) If $D=\operatorname{Seg} i$, then for every finite sequence p and for every finite sequence q of elements of D such that $i \leq \operatorname{len} p$ holds $p \cdot q$ is a finite sequence.
(35) If $D=\operatorname{Seg} i$, then for every finite sequence p of elements of D^{\prime} and for every finite sequence q of elements of D such that $i \leq \operatorname{len} p$ holds $p \cdot q$ is a finite sequence of elements of D^{\prime}.
(36) For every finite sequence p of elements of D and for every function f from D into D^{\prime} holds $f \cdot p$ is a finite sequence of elements of D^{\prime}.
(37) For every finite sequence p of elements of D and for every function f from D into D^{\prime} such that $q=f \cdot p$ holds len $q=\operatorname{len} p$.
(38) For every function f from D into D^{\prime} holds $f \cdot \varepsilon_{D}=\varepsilon_{D^{\prime}}$.
(39) For every finite sequence p of elements of D and for every function f from D into D^{\prime} such that $p=\left\langle x_{1}\right\rangle$ holds $f \cdot p=\left\langle f\left(x_{1}\right)\right\rangle$.
(40) For every finite sequence p of elements of D and for every function f from D into D^{\prime} such that $p=\left\langle x_{1}, x_{2}\right\rangle$ holds $f \cdot p=\left\langle f\left(x_{1}\right), f\left(x_{2}\right)\right\rangle$.
(41) For every finite sequence p of elements of D and for every function f from D into D^{\prime} such that $p=\left\langle x_{1}, x_{2}, x_{3}\right\rangle$ holds $f \cdot p=\left\langle f\left(x_{1}\right), f\left(x_{2}\right)\right.$, $\left.f\left(x_{3}\right)\right\rangle$.
(42) For every function f from $\operatorname{Seg} i$ into $\operatorname{Seg} j$ such that if $j=0$, then $i=0$ but $j \leq \operatorname{len} p$ holds $p \cdot f$ is a finite sequence.
(43) For every function f from $\operatorname{Seg} i$ into $\operatorname{Seg} i$ such that $i \leq \operatorname{len} p$ holds $p \cdot f$ is a finite sequence.
(44) For every function f from $\operatorname{Seg}(\operatorname{len} p)$ into $\operatorname{Seg}(\operatorname{len} p)$ holds $p \cdot f$ is a finite sequence.
(45) For every function f from $\operatorname{Seg} i$ into $\operatorname{Seg} i$ such that $\operatorname{rng} f=\operatorname{Seg} i$ and $i \leq \operatorname{len} p$ and $q=p \cdot f$ holds len $q=i$.
(46) For every function f from $\operatorname{Seg}(\operatorname{len} p)$ into $\operatorname{Seg}(\operatorname{len} p)$ such that $\operatorname{rng} f=$ $\operatorname{Seg}(\operatorname{len} p)$ and $q=p \cdot f$ holds $\operatorname{len} q=\operatorname{len} p$.
(47) For every permutation f of $\operatorname{Seg} i$ such that $i \leq \operatorname{len} p$ and $q=p \cdot f$ holds len $q=i$.
(48) For every permutation f of $\operatorname{Seg}(\operatorname{len} p)$ such that $q=p \cdot f$ holds $\operatorname{len} q=$ len p.
(49) For every finite sequence p of elements of D and for every function f from Seg i into $\operatorname{Seg} j$ such that if $j=0$, then $i=0$ but $j \leq \operatorname{len} p$ holds $p \cdot f$ is a finite sequence of elements of D.
(50) For every finite sequence p of elements of D and for every function f from Seg i into Seg i such that $i \leq \operatorname{len} p$ holds $p \cdot f$ is a finite sequence of elements of D.
(51) For every finite sequence p of elements of D and for every function f from $\operatorname{Seg}(\operatorname{len} p)$ into $\operatorname{Seg}(\operatorname{len} p)$ holds $p \cdot f$ is a finite sequence of elements of D.
(52) $\quad \operatorname{id}_{\operatorname{Seg} i}$ is a finite sequence of elements of \mathbb{N}.

Let us consider i. The functor id_{i} yielding a finite sequence, is defined as follows:
$\mathrm{id}_{i}=\mathrm{id}_{\operatorname{Seg} i}$.
One can prove the following propositions:
(53) $\operatorname{id}_{i}=\operatorname{id}_{\operatorname{Seg}}^{i}$.
(54) $\operatorname{dom}\left(\mathrm{id}_{i}\right)=\operatorname{Seg} i$.
(55) $\quad \operatorname{len}\left(\mathrm{id}_{i}\right)=i$.
(56) If $j \in \operatorname{Seg} i$, then $\operatorname{id}_{i}(j)=j$.
(57) If $i \neq 0$, then for every element k of $\operatorname{Seg} i$ holds $\operatorname{id}_{i}(k)=k$.
(58) $\mathrm{id}_{0}=\varepsilon$.
(59) $\mathrm{id}_{1}=\langle 1\rangle$.
(60) $\operatorname{id}_{i+1}=\operatorname{id}_{i} \sim\langle i+1\rangle$.
(61) $\mathrm{id}_{2}=\langle 1,2\rangle$.
(62) $\mathrm{id}_{3}=\langle 1,2,3\rangle$.
(63) $p \cdot \operatorname{id}_{i}=p \upharpoonright \operatorname{Seg} i$.
(64) If len $p \leq i$, then $p \cdot \operatorname{id}_{i}=p$.
(65) id_{i} is a permutation of Seg i.
(66) $\operatorname{Seg} i \longmapsto a$ is a finite sequence.

Let us consider i, a. The functor $i \longmapsto a$ yielding a finite sequence, is defined as follows:
$i \longmapsto a=\operatorname{Seg} i \longmapsto a$.
We now state a number of propositions:
(67) $\quad i \longmapsto a=\operatorname{Seg} i \longmapsto a$.
(68) $\operatorname{dom}(i \longmapsto a)=\operatorname{Seg} i$.
(69) $\quad \operatorname{len}(i \longmapsto a)=i$.
(70) If $j \in \operatorname{Seg} i$, then $(i \longmapsto a)(j)=a$.
(71) If $i \neq 0$, then for every element k of $\operatorname{Seg} i$ holds $(i \longmapsto d)(k)=d$.
(72) $0 \longmapsto a=\varepsilon$.
(73) $1 \longmapsto a=\langle a\rangle$.
(74) $\quad i+1 \longmapsto a=(i \longmapsto a)^{\wedge}\langle a\rangle$.
(75) $2 \longmapsto a=\langle a, a\rangle$.
(76) $3 \longmapsto a=\langle a, a, a\rangle$.
(77) $\quad i \longmapsto d$ is a finite sequence of elements of D.
(78) For every function F such that $: \operatorname{rng} p, \operatorname{rng} q: \subseteq \operatorname{dom} F$ holds $F^{\circ}(p, q)$ is a finite sequence.
(79) For every function F such that $: \operatorname{rng} p, \operatorname{rng} q: \subseteq \operatorname{dom} F$ and $r=F^{\circ}(p, q)$ holds len $r=\min (\operatorname{len} p$, len $q)$.
(80) For every function F such that $:\{a\}$, rng $p: \subseteq \operatorname{dom} F$ holds $F^{\circ}(a, p)$ is a finite sequence.
(81) For every function F such that $:\{a\}, \operatorname{rng} p: \subseteq \operatorname{dom} F$ and $r=F^{\circ}(a, p)$ holds len $r=\operatorname{len} p$.
(82) For every function F such that $: \operatorname{rng} p,\{a\}: \subseteq \operatorname{dom} F$ holds $F^{\circ}(p, a)$ is a finite sequence.
(83) For every function F such that $: \operatorname{rng} p,\{a\}: \subseteq \operatorname{dom} F$ and $r=F^{\circ}(p, a)$ holds len $r=\operatorname{len} p$.
(84) For every function F from $: D, D^{\prime}: j$ into E and for every finite sequence p of elements of D and for every finite sequence q of elements of D^{\prime} holds $F^{\circ}(p, q)$ is a finite sequence of elements of E.
(85) For every function F from $: D, D^{\prime} \ddagger$ into E and for every finite sequence p of elements of D and for every finite sequence q of elements of D^{\prime} such that $r=F^{\circ}(p, q)$ holds len $r=\min (\operatorname{len} p$, len $q)$.
(86) For every function F from $: D, D^{\prime}: j$ into E and for every finite sequence p of elements of D and for every finite sequence q of elements of D^{\prime} such that len $p=\operatorname{len} q$ and $r=F^{\circ}(p, q)$ holds len $r=\operatorname{len} p$ and len $r=\operatorname{len} q$.
(87) For every function F from $: D, D^{\prime}: j$ into E and for every finite sequence p of elements of D and for every finite sequence p^{\prime} of elements of D^{\prime} holds $F^{\circ}\left(\varepsilon_{D}, p^{\prime}\right)=\varepsilon_{E}$ and $F^{\circ}\left(p, \varepsilon_{D^{\prime}}\right)=\varepsilon_{E}$.
(88) For every function F from $: D, D^{\prime}: j$ into E and for every finite sequence p of elements of D and for every finite sequence q of elements of D^{\prime} such that $p=\left\langle d_{1}\right\rangle$ and $q=\left\langle d_{1}^{\prime}\right\rangle$ holds $F^{\circ}(p, q)=\left\langle F\left(d_{1}, d_{1}^{\prime}\right)\right\rangle$.
(89) For every function F from : D, D^{\prime} : into E and for every finite sequence p of elements of D and for every finite sequence q of elements of D^{\prime} such that $p=\left\langle d_{1}, d_{2}\right\rangle$ and $q=\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle$ holds $F^{\circ}(p, q)=\left\langle F\left(d_{1}, d_{1}^{\prime}\right), F\left(d_{2}, d_{2}^{\prime}\right)\right\rangle$.
(90) For every function F from $: D, D^{\prime} \vdots$ into E and for every finite sequence p of elements of D and for every finite sequence q of elements of D^{\prime} such that $p=\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ and $q=\left\langle d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right\rangle$ holds $F^{\circ}(p, q)=\left\langle F\left(d_{1}, d_{1}^{\prime}\right)\right.$, $\left.F\left(d_{2}, d_{2}^{\prime}\right), F\left(d_{3}, d_{3}^{\prime}\right)\right\rangle$.
(91) For every function F from $: D, D^{\prime}: \ddagger$ into E and for every finite sequence p of elements of D^{\prime} holds $F^{\circ}(d, p)$ is a finite sequence of elements of E.
(92) For every function F from : $\left.D, D^{\prime}:\right]$ into E and for every finite sequence p of elements of D^{\prime} such that $r=F^{\circ}(d, p)$ holds len $r=\operatorname{len} p$.
(93) For every function F from $: D, D^{\prime}$: into E holds $F^{\circ}\left(d, \varepsilon_{D^{\prime}}\right)=\varepsilon_{E}$.
(94) For every function F from : $\left.D, D^{\prime}:\right]$ into E and for every finite sequence p of elements of D^{\prime} such that $p=\left\langle d_{1}^{\prime}\right\rangle$ holds $F^{\circ}(d, p)=\left\langle F\left(d, d_{1}^{\prime}\right)\right\rangle$.
(95) For every function F from $: D, D^{\prime}: j$ into E and for every finite sequence
p of elements of D^{\prime} such that $p=\left\langle d_{1}^{\prime}, d_{2}^{\prime}\right\rangle$ holds $F^{\circ}(d, p)=\left\langle F\left(d, d_{1}^{\prime}\right)\right.$, $\left.F\left(d, d_{2}^{\prime}\right)\right\rangle$.
(96) For every function F from $: D, D^{\prime}: j$ into E and for every finite sequence p of elements of D^{\prime} such that $p=\left\langle d_{1}^{\prime}, d_{2}^{\prime}, d_{3}^{\prime}\right\rangle$ holds $F^{\circ}(d, p)=\left\langle F\left(d, d_{1}^{\prime}\right)\right.$, $\left.F\left(d, d_{2}^{\prime}\right), F\left(d, d_{3}^{\prime}\right)\right\rangle$.
(97) For every function F from $: D, D^{\prime} \vdots$ into E and for every finite sequence p of elements of D holds $F^{\circ}\left(p, d^{\prime}\right)$ is a finite sequence of elements of E.
(98) For every function F from $: D, D^{\prime}: j$ into E and for every finite sequence p of elements of D such that $r=F^{\circ}\left(p, d^{\prime}\right)$ holds len $r=\operatorname{len} p$.
(99) For every function F from $: D, D^{\prime} ;$ into E holds $F^{\circ}\left(\varepsilon_{D}, d^{\prime}\right)=\varepsilon_{E}$.
(100) For every function F from $: D, D^{\prime} ;$ into E and for every finite sequence p of elements of D such that $p=\left\langle d_{1}\right\rangle$ holds $F^{\circ}\left(p, d^{\prime}\right)=\left\langle F\left(d_{1}, d^{\prime}\right)\right\rangle$.
(101) For every function F from $: D, D^{\prime}:$ into E and for every finite sequence p of elements of D such that $p=\left\langle d_{1}, d_{2}\right\rangle$ holds $F^{\circ}\left(p, d^{\prime}\right)=\left\langle F\left(d_{1}, d^{\prime}\right)\right.$, $\left.F\left(d_{2}, d^{\prime}\right)\right\rangle$.
(102) For every function F from $: D, D^{\prime} \ddagger$ into E and for every finite sequence p of elements of D such that $p=\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ holds $F^{\circ}\left(p, d^{\prime}\right)=\left\langle F\left(d_{1}, d^{\prime}\right)\right.$, $\left.F\left(d_{2}, d^{\prime}\right), F\left(d_{3}, d^{\prime}\right)\right\rangle$.
Let us consider D. A non-empty set is said to be a non-empty set of finite sequences of D if:
if $a \in$ it, then a is a finite sequence of elements of D.
We now state two propositions:
(103) For all D, D^{\prime} holds D^{\prime} is a non-empty set of finite sequences of D if and only if for every a such that $a \in D^{\prime}$ holds a is a finite sequence of elements of D.
D^{*} is a non-empty set of finite sequences of D.
Let us consider D. Then D^{*} is a non-empty set of finite sequences of D.
Next we state two propositions:
(105) For every non-empty set D^{\prime} of finite sequences of D holds $D^{\prime} \subseteq D^{*}$.
(106) For every non-empty set S of finite sequences of D and for every element s of S holds s is a finite sequence of elements of D.
Let us consider D, and let S be a non-empty set of finite sequences of D. We see that it makes sense to consider the following mode for restricted scopes of arguments. Then all the objests of the mode element of S are a finite sequence of elements of D.

One can prove the following proposition
(107) For every non-empty subset D^{\prime} of D and for every non-empty set S of finite sequences of D^{\prime} holds S is a non-empty set of finite sequences of D.
In the sequel s is an element of D^{*}. Let us consider i, D. The functor D^{i} yielding a non-empty set of finite sequences of D, is defined as follows:
$D^{i}=\{s: \operatorname{len} s=i\}$.
Next we state a number of propositions:
(108) $D^{i}=\{s: \operatorname{len} s=i\}$.
(109) For every element z of D^{i} holds len $z=i$.
(110) For every finite sequence z of elements of D holds z is an element of $D^{\operatorname{len} z}$.
(111) $\quad D^{i}=D^{\operatorname{Seg} i}$.
(112) $D^{0}=\left\{\varepsilon_{D}\right\}$.
(113) For every element z of D^{0} holds $z=\varepsilon_{D}$.
(114) ε_{D} is an element of D^{0}.
(115) For every element z of D^{0} and for every element t of D^{i} holds $z^{\wedge} t=t$ and $t^{\wedge} z=t$.
(116) $D^{1}=\{\langle d\rangle\}$.
(117) For every element z of D^{1} there exists d such that $z=\langle d\rangle$.
(118) $\langle d\rangle$ is an element of D^{1}.
(119) $D^{2}=\left\{\left\langle d_{1}, d_{2}\right\rangle\right\}$.
(120) For every element z of D^{2} there exist d_{1}, d_{2} such that $z=\left\langle d_{1}, d_{2}\right\rangle$.
(121) $\left\langle d_{1}, d_{2}\right\rangle$ is an element of D^{2}.
(122) $\quad D^{3}=\left\{\left\langle d_{1}, d_{2}, d_{3}\right\rangle\right\}$.
(123) For every element z of D^{3} there exist d_{1}, d_{2}, d_{3} such that $z=\left\langle d_{1}, d_{2}\right.$, $\left.d_{3}\right\rangle$.
$\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ is an element of D^{3}.
(125) $D^{i+j}=\left\{z^{\wedge} t\right\}$.
(126) For every element s of D^{i+j} there exists an element z of D^{i} and there exists an element t of D^{j} such that $s=z^{\wedge} t$.
(127) For every element z of D^{i} and for every element t of D^{j} holds $z^{\wedge} t$ is an element of D^{i+j}.
(128) $D^{*}=\bigcup\left\{D^{i}\right\}$.
(129) For every non-empty subset D^{\prime} of D and for every element z of $D^{\prime i}$ holds z is an element of D^{i}.
(130) If $D^{i}=D^{j}$, then $i=j$.
(131) id_{i} is an element of \mathbb{N}^{i}.
(132) $\quad i \longmapsto d$ is an element of D^{i}.
(133) For every element z of D^{i} and for every function f from D into D^{\prime} holds $f \cdot z$ is an element of $D^{\prime i}$.
(134) For every element z of D^{i} and for every function f from Seg i into $\operatorname{Seg} i$ such that $\operatorname{rng} f=\operatorname{Seg} i$ holds $z \cdot f$ is an element of D^{i}.
(135) For every element z of D^{i} and for every permutation f of $\operatorname{Seg} i$ holds $z \cdot f$ is an element of D^{i}.
(136) For every element z of D^{i} and for every d holds $\left(z^{\wedge}\langle d\rangle\right)(i+1)=d$.
(137) For every element z of D^{i+1} there exists an element t of D^{i} and there exists d such that $z=t^{\wedge}\langle d\rangle$.

For every element z of D^{i} holds $z \cdot \mathrm{id}_{i}=z$.
For all elements z_{1}, z_{2} of D^{i} such that for every j such that $j \in \operatorname{Seg} i$ holds $z_{1}(j)=z_{2}(j)$ holds $z_{1}=z_{2}$.
(140) For every function F from : D, D^{\prime} : into E and for every element z_{1} of D^{i} and for every element z_{2} of $D^{\prime i}$ holds $F^{\circ}\left(z_{1}, z_{2}\right)$ is an element of E^{i}.
(141) For every function F from $: D, D^{\prime} \vdots$ into E and for every element z of $D^{\prime i}$ holds $F^{\circ}(d, z)$ is an element of E^{i}.
(142) For every function F from : $\left.D, D^{\prime}\right\}$ into E and for every element z of D^{i} holds $F^{\circ}\left(z, d^{\prime}\right)$ is an element of E^{i}.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[8] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Curried and Uncurried Functions

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. In the article following functors are introduced: the projections of subsets of the Cartesian product, the functor which for every function $f: X \times Y \rightarrow Z$ gives some curried function $(X \rightarrow(Y \rightarrow Z)$), and the functor which from curried functions makes uncurried functions. Some of their properties and some properties of the set of all functions from a set into a set are also shown.

MML Identifier: FUNCT_5.

The papers [8], [3], [2], [4], [9], [1], [6], [7], and [5] provide the terminology and notation for this paper. We follow a convention: $X, Y, Z, X_{1}, X_{2}, Y_{1}, Y_{2}$ are sets, f, g, f_{1}, f_{2} are functions, and x, y, z, t are arbitrary. The scheme LambdaFS deals with a set \mathcal{A} and a unary functor \mathcal{F} and states that:
there exists f such that $\operatorname{dom} f=\mathcal{A}$ and for every g such that $g \in \mathcal{A}$ holds $f(g)=\mathcal{F}(g)$
for all values of the parameters.
We now state a proposition
(1)

We now define two new functors. Let us consider X. The functor $\pi_{1}(X)$ yields a set and is defined as follows:
$x \in \pi_{1}(X)$ if and only if there exists y such that $\langle x, y\rangle \in X$.
The functor $\pi_{2}(X)$ yields a set and is defined as follows:
$y \in \pi_{2}(X)$ if and only if there exists x such that $\langle x, y\rangle \in X$.
The following propositions are true:
(2) $\quad Z=\pi_{1}(X)$ if and only if for every x holds $x \in Z$ if and only if there exists y such that $\langle x, y\rangle \in X$.
(3) $\quad Z=\pi_{2}(X)$ if and only if for every y holds $y \in Z$ if and only if there exists x such that $\langle x, y\rangle \in X$.
(4) If $\langle x, y\rangle \in X$, then $x \in \pi_{1}(X)$ and $y \in \pi_{2}(X)$.
(5) If $X \subseteq Y$, then $\pi_{1}(X) \subseteq \pi_{1}(Y)$ and $\pi_{2}(X) \subseteq \pi_{2}(Y)$.

$$
\begin{equation*}
\text { If } Y \neq \emptyset \text { or }: X, Y: \neq \emptyset \text { or }\left[: Y, X: \neq \emptyset, \text { then } \pi_{1}([: X, Y:])=X\right. \text { and } \tag{11}
\end{equation*}
$$

$$
\pi_{2}([: Y, X:])=X
$$

$$
\begin{equation*}
\left.\pi_{1}(: X, Y:]\right) \subseteq X \text { and } \pi_{2}([: X, Y:]) \subseteq Y \tag{12}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } Z \subseteq[: X, Y:], \text { then } \pi_{1}(Z) \subseteq X \text { and } \pi_{2}(Z) \subseteq Y \tag{13}
\end{equation*}
$$

$$
\begin{align*}
& \pi_{1}(X \cup Y)=\pi_{1}(X) \cup \pi_{1}(Y) \text { and } \pi_{2}(X \cup Y)=\pi_{2}(X) \cup \pi_{2}(Y) \tag{6}\\
& \pi_{1}(X \cap Y) \subseteq \pi_{1}(X) \cap \pi_{1}(Y) \text { and } \pi_{2}(X \cap Y) \subseteq \pi_{2}(X) \cap \pi_{2}(Y) \tag{7}\\
& \pi_{1}(X) \backslash \pi_{1}(Y) \subseteq \pi_{1}(X \backslash Y) \text { and } \pi_{2}(X) \backslash \pi_{2}(Y) \subseteq \pi_{2}(X \backslash Y) \tag{8}\\
& \pi_{1}(X) \dot{-} \pi_{1}(Y) \subseteq \pi_{1}\left(X \dot{\dot{ }(Y) \text { and } \pi_{2}(X) \dot{-} \pi_{2}(Y) \subseteq \pi_{2}(X \dot{ }(Y)}\right. \tag{9}\\
& \pi_{1}(\emptyset)=\emptyset \text { and } \pi_{2}(\emptyset)=\emptyset \tag{10}
\end{align*}
$$

$$
\begin{equation*}
\left.\pi_{1}([: X,\{x\}:])=X \text { and } \pi_{2}(:\{x\}, X:]\right)=X \text { and } \pi_{1}([: X,\{x, y\}:])=X \tag{14}
\end{equation*}
$$

$$
\text { and } \pi_{2}(:\{x, y\}, X:)=X
$$

$$
\begin{equation*}
\pi_{1}(\{\langle x, y\rangle\})=\{x\} \text { and } \pi_{2}(\{\langle x, y\rangle\})=\{y\} \tag{15}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{1}(\{\langle x, y\rangle,\langle z, t\rangle\})=\{x, z\} \text { and } \pi_{2}(\{\langle x, y\rangle,\langle z, t\rangle\})=\{y, t\} \tag{16}
\end{equation*}
$$

$$
\begin{equation*}
\text { If for no } x, y \text { holds }\langle x, y\rangle \in X, \text { then } \pi_{1}(X)=\emptyset \text { and } \pi_{2}(X)=\emptyset \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\text { If } \pi_{1}(X)=\emptyset \text { or } \pi_{2}(X)=\emptyset, \text { then for no } x, y \text { holds }\langle x, y\rangle \in X \tag{18}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{1}(X)=\emptyset \text { if and only if } \pi_{2}(X)=\emptyset \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{1}(\operatorname{dom} f)=\pi_{2}(\operatorname{dom}(\curvearrowleft f)) \text { and } \pi_{2}(\operatorname{dom} f)=\pi_{1}(\operatorname{dom}(\curvearrowleft f)) \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\pi_{1}(\operatorname{graph} f)=\operatorname{dom} f \text { and } \pi_{2}(\operatorname{graph} f)=\operatorname{rng} f \tag{21}
\end{equation*}
$$

We now define two new functors. Let us consider f. The functor curry f yielding a function, is defined by:
(i) $\operatorname{dom}($ curry $f)=\pi_{1}(\operatorname{dom} f)$,
(ii) for every x such that $x \in \pi_{1}(\operatorname{dom} f)$ there exists g such that (curry $\left.f\right)(x)=$ g and $\left.\operatorname{dom} g=\pi_{2}\left(\operatorname{dom} f \cap:\{x\}, \pi_{2}(\operatorname{dom} f):\right]\right)$ and for every y such that $y \in$ dom g holds $g(y)=f(\langle x, y\rangle)$.
The functor uncurry f yields a function and is defined as follows:
(i) for every t holds $t \in \operatorname{dom}($ uncurry f) if and only if there exist x, g, y such that $t=\langle x, y\rangle$ and $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} g$,
(ii) for all x, g such that $x \in \operatorname{dom}\left(\right.$ uncurry f) and $g=f\left(x_{\mathbf{1}}\right)$ holds (uncurry f) $(x)=g\left(x_{\mathbf{2}}\right)$.
We now define two new functors. Let us consider f. The functor curry ${ }^{\prime} f$ yields a function and is defined as follows:
curry $^{\prime} f=\operatorname{curry}(\curvearrowleft f)$.
The functor uncurry ${ }^{\prime} f$ yielding a function, is defined by:
$u^{\prime} u^{\prime} f=\curvearrowleft($ uncurry $f)$.
The following propositions are true:
(22) Let F be a function. Then $F=$ curry f if and only if the following conditions are satisfied:
(i) $\quad \operatorname{dom} F=\pi_{1}(\operatorname{dom} f)$,
(ii) for every x such that $x \in \pi_{1}(\operatorname{dom} f)$ there exists g such that $F(x)=g$ and $\operatorname{dom} g=\pi_{2}\left(\operatorname{dom} f \cap\left[:\{x\}, \pi_{2}(\operatorname{dom} f):\right]\right)$ and for every y such that $y \in \operatorname{dom} g$ holds $g(y)=f(\langle x, y\rangle)$.
(24) Let F be a function. Then $F=$ uncurry f if and only if the following conditions are satisfied:
(i) for every t holds $t \in \operatorname{dom} F$ if and only if there exist x, g, y such that $t=\langle x, y\rangle$ and $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} g$,
(ii) for all x, g such that $x \in \operatorname{dom} F$ and $g=f\left(x_{\mathbf{1}}\right)$ holds $F(x)=g\left(x_{\mathbf{2}}\right)$.
(25) uncurry' $f=\curvearrowleft$ (uncurry f).
(26) If $\langle x, y\rangle \in \operatorname{dom} f$, then $x \in \operatorname{dom}($ curry $f)$ and curry $f(x)$ is a function.
(27) If $\langle x, y\rangle \in \operatorname{dom} f$ and $g=$ curry $f(x)$, then $y \in \operatorname{dom} g$ and $g(y)=$ $f(\langle x, y\rangle)$.
(28) If $\langle x, y\rangle \in \operatorname{dom} f$, then $y \in \operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)$ and curry ${ }^{\prime} f(y)$ is a function.
(29) If $\langle x, y\rangle \in \operatorname{dom} f$ and $g=$ curry $^{\prime} f(y)$, then $x \in \operatorname{dom} g$ and $g(x)=$ $f(\langle x, y\rangle)$.
(30) $\operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)=\pi_{2}(\operatorname{dom} f)$.
(31) If $: X, Y: \neq \emptyset$ and $\operatorname{dom} f=[: X, Y:]$, then $\operatorname{dom}($ curry $f)=X$ and $\operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)=Y$.
(32) If dom $f \subseteq[: X, Y:]$, then $\operatorname{dom}($ curry $f) \subseteq X$ and $\operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right) \subseteq Y$.
(33) If $\operatorname{rng} f \subseteq Y^{X}$, then $\operatorname{dom}($ uncurry $f)=[\operatorname{dom} f, X:]$ and $\operatorname{dom}\left(\right.$ uncurry $\left.^{\prime} f\right)=\{: X, \operatorname{dom} f:$.
(34) If for no x, y holds $\langle x, y\rangle \in \operatorname{dom} f$, then curry $f=\square$ and curry ${ }^{\prime} f=\square$.
(35) If for no x holds $x \in \operatorname{dom} f$ and $f(x)$ is a function, then uncurry $f=$ and uncurry' $f=\square$.
(36) Suppose $: X, Y: \neq \emptyset$ and $\operatorname{dom} f=[: X, Y:$ and $x \in X$. Then there exists g such that curry $f(x)=g$ and $\operatorname{dom} g=Y$ and $\operatorname{rng} g \subseteq \operatorname{rng} f$ and for every y such that $y \in Y$ holds $g(y)=f(\langle x, y\rangle)$.
(37) If $x \in \operatorname{dom}($ curry f), then curry $f(x)$ is a function.
(38) Suppose $x \in \operatorname{dom}($ curry f) and $g=$ curry $f(x)$. Then
(i) $\quad \operatorname{dom} g=\pi_{2}\left(\operatorname{dom} f \cap:\{x\}, \pi_{2}(\operatorname{dom} f) ;\right)$,
(ii) $\operatorname{dom} g \subseteq \pi_{2}(\operatorname{dom} f)$,
(iii) $\quad \operatorname{rng} g \subseteq \operatorname{rng} f$,
(iv) for every y such that $y \in \operatorname{dom} g$ holds $g(y)=f(\langle x, y\rangle)$ and $\langle x, y\rangle \in$ $\operatorname{dom} f$.
(39) Suppose $[: X, Y: \neq \emptyset$ and $\operatorname{dom} f=[X, Y:]$ and $y \in Y$. Then there exists g such that curry' $f(y)=g$ and $\operatorname{dom} g=X$ and $\operatorname{rng} g \subseteq \operatorname{rng} f$ and for every x such that $x \in X$ holds $g(x)=f(\langle x, y\rangle)$.
(40) If $x \in \operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)$, then curry ${ }^{\prime} f(x)$ is a function.
(41) Suppose $x \in \operatorname{dom}\left(\right.$ curry $\left.^{\prime} f\right)$ and $g=$ curry $^{\prime} f(x)$. Then
(i) $\quad \operatorname{dom} g=\pi_{1}\left(\operatorname{dom} f \cap\left[: \pi_{1}(\operatorname{dom} f),\{x\}: ;\right)\right.$,
(ii) $\operatorname{dom} g \subseteq \pi_{1}(\operatorname{dom} f)$,
(iii) $\operatorname{rng} g \subseteq \operatorname{rng} f$,
(iv) for every y such that $y \in \operatorname{dom} g$ holds $g(y)=f(\langle y, x\rangle)$ and $\langle y, x\rangle \in$ $\operatorname{dom} f$.
(45) If $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} g$, then $\langle x, y\rangle \in \operatorname{dom}$ (uncurry f) and uncurry $f(\langle x, y\rangle)=g(y)$ and $g(y) \in \operatorname{rng}$ (uncurry f).
(46) If $x \in \operatorname{dom} f$ and $g=f(x)$ and $y \in \operatorname{dom} g$, then $\langle y, x\rangle \in \operatorname{dom}\left(\right.$ uncurry $^{\prime} f$) and uncurry' $f(\langle y, x\rangle)=g(y)$ and $g(y) \in \operatorname{rng}\left(\right.$ uncurry $\left.^{\prime} f\right)$.
(51) If $\operatorname{dom} f_{1}=\left[: X, Y\right.$: and $\operatorname{dom} f_{2}=\left[X, Y\right.$: and curry $f_{1}=$ curry f_{2}, then $f_{1}=f_{2}$.
(52) If dom $f_{1}=[X, Y:]$ and $\operatorname{dom} f_{2}=[: X, Y:]$ and curry' $f_{1}=$ curry' $^{\prime} f_{2}$, then $f_{1}=f_{2}$.
(53) If rng $f_{1} \subseteq Y^{X}$ and $\operatorname{rng} f_{2} \subseteq Y^{X}$ and $X \neq \emptyset$ and uncurry $f_{1}=$ uncurry f_{2}, then $f_{1}=f_{2}$.
(54) If $\operatorname{rng} f_{1} \subseteq Y^{X}$ and $\operatorname{rng} f_{2} \subseteq Y^{X}$ and $X \neq \emptyset$ and uncurry' $f_{1}=$ uncurry' f_{2}, then $f_{1}=f_{2}$.
(55) If rng $f \subseteq Y^{X}$ and $X \neq \emptyset$, then curry(uncurry f) $=f$ and curry $^{\prime}\left(\right.$ uncurry' $\left.^{\prime} f\right)=f$.
If $\operatorname{dom} f=[: X, Y:$, then uncurry $($ curry $f)=f$ and uncurry' $\left(\right.$ curry' $\left.^{\prime} f\right)=f$.
If $\operatorname{dom} f \subseteq: X, Y:$, then uncurry $($ curry $f)=f$ and uncurry ${ }^{\prime}\left(\right.$ curry' $\left.^{\prime} f\right)=f$.
If $\operatorname{rng} f \subseteq X \dot{\rightarrow} Y$ and $\square \notin \operatorname{rng} f$, then curry(uncurry $f)=f$ and $\operatorname{curry}^{\prime}\left(\right.$ uncurry $\left.^{\prime} f\right)=f$.
If $\operatorname{dom} f_{1} \subseteq: X, Y:$ and $\left.\operatorname{dom} f_{2} \subseteq: X, Y:\right]$ and curry $f_{1}=\operatorname{curry} f_{2}$, then $f_{1}=f_{2}$.
(60) If $\left.\operatorname{dom} f_{1} \subseteq: X X, Y:\right]$ and $\operatorname{dom} f_{2} \subseteq: X, Y:$ and curry' $f_{1}=$ curry' $^{\prime} f_{2}$, then $f_{1}=f_{2}$.
(61) If rng $f_{1} \subseteq X \dot{\rightarrow} Y$ and $\operatorname{rng} f_{2} \subseteq X \dot{\rightarrow} Y$ and $\square \notin \operatorname{rng} f_{1}$ and $\square \notin \operatorname{rng} f_{2}$ and uncurry $f_{1}=$ uncurry f_{2}, then $f_{1}=f_{2}$.
If $\operatorname{rng} f_{1} \subseteq X \dot{\rightarrow} Y$ and $\operatorname{rng} f_{2} \subseteq X \dot{\rightarrow} Y$ and $\square \notin \operatorname{rng} f_{1}$ and $\square \notin \operatorname{rng} f_{2}$ and uncurry' $f_{1}=$ uncurry' f_{2}, then $f_{1}=f_{2}$.
If $X \subseteq Y$, then $X^{Z} \subseteq Y^{Z}$.
$X^{\emptyset}=\{\square\}$.

$$
X \approx X^{\{x\}} \text { and } \overline{\bar{X}}=\overline{\overline{X^{\{x\}}}}
$$

(67) If $X_{1} \approx Y_{1}$ and $X_{2} \approx Y_{2}$, then $X_{2}{ }^{X_{1}} \approx Y_{2}{ }^{Y_{1}}$ and $\overline{\overline{X_{2}{ }^{X_{1}}}}=\overline{\overline{{Y_{2}}^{Y_{1}}}}$.
(68) If $\overline{\overline{X_{1}}}=\overline{\overline{Y_{1}}}$ and $\overline{\overline{X_{2}}}=\overline{\overline{Y_{2}}}$, then $\overline{\overline{X_{2} X_{1}}}=\overline{\overline{Y_{2} Y_{1}}}$.
(69) $\frac{\text { If } X_{1} \cap}{\overline{X^{X_{1} \cup X_{2}}}}=\overline{\overline{X_{2}=\emptyset} X^{X_{1}}, X^{X_{2}}:}$.
(72) If $x \neq y$, then $\{x, y\}^{X} \approx 2^{X}$ and $\overline{\overline{\{x, y\}^{X}}}=\overline{\overline{2^{X}}}$.
(73) If $x \neq y$, then $X^{\{x, y\}} \approx\left\{X, X:\right.$ and $\overline{\overline{X^{\{x, y\}}}}=\overline{\overline{: X, X:}}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377382, 1990.
[2] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521527, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[7] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Cardinal Arithmetics

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. In the article addition, multiplication and power operation of cardinals are introduced. Presented are some properties of equipotence of Cartesian products, basic cardinal arithmetics laws (transformativity, associativity, distributivity), and some facts about finite sets.

MML Identifier: CARD_2.

The articles [12], [11], [7], [8], [3], [4], [5], [10], [2], [6], [9], and [1] provide the terminology and notation for this paper. For simplicity we follow a convention: A, B denote ordinal numbers, K, M, N denote cardinal numbers, x, x_{1}, x_{2}, y, y_{1}, y_{2} are arbitrary, $X, Y, Z, X_{1}, X_{2}, Y_{1}, Y_{2}$ denote sets, and f denotes a function. Let us consider x. The functor $[x]$ yielding a set, is defined by:
$[x]=x$.
Next we state several propositions:
(1) $[x]=x$.
(2) $\overline{\bar{X}} \leq \overline{\bar{Y}}$ if and only if there exists f such that $X=f^{\circ} Y$ or $X \subseteq f^{\circ} Y$.
(3) $\overline{\overline{f^{\circ} X}} \leq \overline{\bar{X}}$.
(4) If $\overline{\bar{X}}<\overline{\bar{Y}}$, then $Y \backslash X \neq \emptyset$.
(5) If $x \in X$ and $X \approx Y$, then $Y \neq \emptyset$ and there exists x such that $x \in Y$.
(6) $2^{X} \approx 2^{\bar{X}}$ and $\overline{\overline{2^{X}}}=\overline{\overline{\overline{\overline{\bar{X}}^{\prime}}}}$.
(7) If $Z \in Y^{X}$, then $Z \approx X$ and $\overline{\bar{Z}}=\overline{\bar{X}}$.

We now define three new functors. Let us consider M, N. The functor $M+N$ yielding a cardinal number, is defined as follows:
$M+N=\overline{\overline{\operatorname{ord}(M)+\operatorname{ord}(N)}}$.
The functor $M \cdot N$ yielding a cardinal number, is defined by:
$M \cdot N=\overline{\overline{\square M, N:]}}$.
The functor M^{N} yielding a cardinal number, is defined by:
$M^{N}=\overline{\overline{M^{N}}}$.
Next we state a number of propositions:
(8) $\quad M+N=\overline{\overline{\operatorname{ord}(M)+\operatorname{ord}(N)}}$.
(9) $M \cdot N=\overline{\overline{[M, N]}}$.
(10) $M^{N}=\overline{\overline{M^{N}}}$.
(11) $\quad: X, Y: \approx: Y, X:]$ and $\overline{\overline{: X, Y:}}=\overline{\overline{\{Y, X:]}}$.

(13) $X \approx\{X,\{x\}:$ and $\overline{\bar{X}}=\overline{\overline{\{X,\{x\}!}}$.
(14) (i) $: X, Y: \approx: \overline{\bar{X}}, Y:]$,
(ii) $[X, Y: \approx: X, \overline{\bar{Y}}:$,
(iii) $\quad: X, Y: \approx: \overline{\bar{X}}, \overline{\bar{Y}}:]$,
(iv) $\overline{\overline{\boxed{X X, Y}}}=\overline{\overline{\bar{X}}, Y:}$,
(v) $\overline{\overline{\vdots X, Y:}}=\overline{\overline{: X, \overline{\bar{Y}}:}}$,
(vi) $\overline{\overline{\lceil X, Y:}}=\overline{\overline{\bar{X}}, \overline{\bar{Y}}]}$.
(15)

$$
\frac{\text { If } X_{1} \approx Y_{1} \text { and } X_{2} \approx Y_{2} \text {, then }: X_{1}, X_{2}: \approx: Y_{1}, Y_{2}: \text { and } \overline{\overline{\left\{X_{1}, X_{2}\right.} \bar{j}}=}{\overline{\left\{Y_{1}, Y_{2}!\right.}}=
$$

$$
\left.\frac{\text { If } x_{1} \neq x_{2} \text {, then } A}{\overline{: A,\left\{x_{1}\right\}: \cup: B,\left\{x_{2}\right\}:}}+B \approx: A,\left\{x_{1}\right\}: \cup: B,\left\{x_{2}\right\}:\right] \text { and } \overline{\overline{A+B}}=
$$

$$
\begin{equation*}
\frac{\text { If } x_{1} \neq x_{2}, \text { then } K+M}{\overline{\left.: K,\left\{x_{1}\right\}:\right] \cup: M,\left\{x_{2}\right\}:}} \text {. } \tag{17}
\end{equation*}
$$

(18) $A \cdot B \approx\{A, B \vdots$ and $\overline{\overline{A \cdot B}}=\overline{\overline{\{A, B!}}$.

We now define three new functors. The cardinal number $\overline{\mathbf{0}}$ is defined by: $\overline{\mathbf{0}}=\overline{\overline{\mathbf{0}}}$.
The cardinal number $\overline{\mathbf{1}}$ is defined as follows:

$$
\overline{\mathbf{1}}=\overline{\overline{1}}
$$

The cardinal number $\overline{\mathbf{2}}$ is defined as follows:

$$
\overline{\mathbf{2}}=\overline{\overline{\operatorname{succ} 1}}
$$

The following propositions are true:
(19) $\overline{\mathbf{0}}=\overline{\overline{\mathbf{0}}}$ and $\overline{\mathbf{1}}=\overline{\overline{\mathbf{1}}}$ and $\overline{\mathbf{2}}=\overline{\overline{\operatorname{succ} \mathbf{1}}}$.
(20) $\overline{\mathbf{0}}=\mathbf{0}$ and $\overline{\mathbf{0}}=\emptyset$ and $\overline{\mathbf{1}}=\mathbf{1}$.
(21) $\overline{\mathbf{0}}=\overline{\overline{0}}$ and $\overline{\mathbf{1}}=\overline{\overline{1}}$ and $\overline{\mathbf{2}}=\overline{\overline{2}}$.
(22) $\overline{\mathbf{2}}=\{\mathbf{0}, \mathbf{1}\}$ and $\overline{\mathbf{2}}=\operatorname{succ} \mathbf{1}$.
(23) Suppose $X_{1} \approx Y_{1}$ and $X_{2} \approx Y_{2}$ and $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$. Then : X_{1}, $\frac{\left.\left\{x_{1}\right\}: \cup: X_{2},\left\{x_{2}\right\}:\right] \approx: Y_{1}}{\overline{: X_{1},\left\{x_{1}\right\}:\left\{y_{1}\right\}: \cup: \cup: X_{2},\left\{x_{2}\right\}:}}=\underline{\left.\left.\left.\overline{\mid: Y_{1},\left\{y_{1}\right\}}\right\}:\right] \cup: Y_{2},\left\{y_{2}\right\}:\right]}$.
(24) $\overline{\overline{A+B}}=\overline{\bar{A}}+\overline{\bar{B}}$.
(28) If $x \neq y$, then $\overline{\bar{X}}+\overline{\bar{Y}}=\overline{\overline{: X,\{x\}:] \cup: Y,\{y\}:]}}$.
(29) $M+\overline{\mathbf{0}}=M$ and $\overline{\mathbf{0}}+M=M$.
(30) $M+N=N+M$.
(31) $(K+M)+N=K+(M+N)$.
(32) $K \cdot \overline{\mathbf{0}}=\overline{\mathbf{0}}$ and $\overline{\mathbf{0}} \cdot K=\overline{\mathbf{0}}$.
(33) $K \cdot \overline{\mathbf{1}}=K$ and $\overline{\mathbf{1}} \cdot K=K$.
(34) $K \cdot M=M \cdot K$.
(35) $(K \cdot M) \cdot N=K \cdot(M \cdot N)$.
(36) $\overline{\mathbf{2}} \cdot K=K+K$ and $K \cdot \overline{\mathbf{2}}=K+K$.
(37) $K \cdot(M+N)=K \cdot M+K \cdot N$ and $(M+N) \cdot K=M \cdot K+N \cdot K$.
(38) $K^{\overline{\mathbf{0}}}=\overline{\mathbf{1}}$.
(39) If $K \neq \overline{\mathbf{0}}$, then $\overline{\mathbf{0}}^{K}=\overline{\mathbf{0}}$.
(40) $K^{\overline{\mathbf{1}}}=K$ and $\overline{\mathbf{1}}^{K}=\overline{\mathbf{1}}$.
(41) $K^{M+N}=\left(K^{M}\right) \cdot\left(K^{N}\right)$.
(42) $\quad(K \cdot M)^{N}=\left(K^{N}\right) \cdot\left(M^{N}\right)$.
(48) If $X \cap Y=\emptyset$, then $\overline{\overline{X \cup Y}}=\overline{\bar{X}}+\overline{\bar{Y}}$.

In the sequel m, n will denote natural numbers. Next we state a number of propositions:
(49) $\quad \operatorname{ord}(n+m)=\operatorname{ord}(n)+\operatorname{ord}(m)$.
(50) $\quad \operatorname{ord}(n \cdot m)=\operatorname{ord}(n) \cdot \operatorname{ord}(m)$.
(51) $\overline{\overline{n+m}}=\overline{\bar{n}}+\overline{\bar{m}}$.
(52) $\overline{\overline{n \cdot m}}=\overline{\bar{n}} \cdot \overline{\bar{m}}$.
(53) If X is finite and Y is finite and $X \cap Y=\emptyset$, then $\operatorname{card}(X \cup Y)=$ $\operatorname{card} X+\operatorname{card} Y$.
(54) If X is finite and $x \notin X$, then $\operatorname{card}(X \cup\{x\})=\operatorname{card} X+1$.
(55) If X is finite and Y is finite, then card $X=\operatorname{card} Y$ if and only if $X \approx Y$.
(56) If X is finite and Y is finite, then $\overline{\bar{X}}=\overline{\bar{Y}}$ if and only if $\operatorname{card} X=\operatorname{card} Y$.
(57) If X is finite and Y is finite, then $\overline{\bar{X}} \leq \overline{\bar{Y}}$ if and only if $\operatorname{card} X \leq \operatorname{card} Y$.
(58) If X is finite and Y is finite, then $\overline{\bar{X}}<\overline{\bar{Y}}$ if and only if $\operatorname{card} X<\operatorname{card} Y$.
(59) If X is finite, then $X=\emptyset$ if and only if card $X=0$.
(60) If X is finite, then $\operatorname{card} X=1$ if and only if there exists x such that $X=\{x\}$.
(61) If X is finite, then $X \approx \operatorname{ord}(\operatorname{card} X)$ and $X \approx \overline{\overline{\operatorname{card} X}}$ and $X \approx$ $\operatorname{Seg}(\operatorname{card} X)$.
(62) If X is finite and Y is finite, then $\operatorname{card}(X \cup Y) \leq \operatorname{card} X+\operatorname{card} Y$.
(63) If $Y \subseteq X$ and X is finite, then $\operatorname{card}(X \backslash Y)=\operatorname{card} X-\operatorname{card} Y$.
(64) If X is finite and Y is finite, then $\operatorname{card}(X \cup Y)=(\operatorname{card} X+\operatorname{card} Y)-$ $\operatorname{card}(X \cap Y)$.
(65) If X is finite and Y is finite, then $\operatorname{card}[X, Y:]=\operatorname{card} X \cdot \operatorname{card} Y$.
(66) If $X \subseteq Y$ and Y is finite, then $\operatorname{card} X \leq \operatorname{card} Y$.
(67) If $X \subseteq Y$ and $X \neq Y$ and Y is finite, then $\operatorname{card} X<\operatorname{card} Y$ and $\overline{\bar{X}}<\overline{\bar{Y}}$.
(68) If $\overline{\bar{X}} \leq \overline{\bar{Y}}$ or $\overline{\bar{X}}<\overline{\bar{Y}}$ but Y is finite, then X is finite.

In the sequel $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$ are arbitrary. One can prove the following propositions:
(75) $\quad \operatorname{card}\left\{x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}\right\} \leq 8$.
(76) If $x_{1} \neq x_{2}$, then $\operatorname{card}\left\{x_{1}, x_{2}\right\}=2$.
(77) If $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{2} \neq x_{3}$, then $\operatorname{card}\left\{x_{1}, x_{2}, x_{3}\right\}=3$.
(78) If $x_{1} \neq x_{2}$ and $x_{1} \neq x_{3}$ and $x_{1} \neq x_{4}$ and $x_{2} \neq x_{3}$ and $x_{2} \neq x_{3}$ and $x_{2} \neq x_{4}$ and $x_{3} \neq x_{4}$, then $\operatorname{card}\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}=4$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[5] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received March 6, 1990

Fano-Desargues Parallelity Spaces ${ }^{1}$

Eugeniusz Kusak
Warsaw University
Białystok

Wojciech Leończuk
Warsaw University
Białystok

Abstract

Summary. This article is the second part of Parallelity Space. It contain definition of a Fano-Desargues space, axioms of a Fano-Desargues parallelity space, definition of the relations: collinearity, parallelogram and directed congruence and some basic facts concerned with them.

MML Identifier: PARSP_2.

The papers [2], and [1] provide the notation and terminology for this paper. In the sequel F will denote a field. We now state a proposition
(1) $\quad \operatorname{Aff}_{F^{3}}$ is a parallelity space.

We follow the rules: a, b, c, d, p, q, r will denote elements of the universum of $\mathrm{Aff}_{F^{3}}, e, f, g, h$ will denote elements of : the carrier of F, the carrier of F, the carrier of F !, and K, L will denote elements of the carrier of F. One can prove the following propositions:
(2) $a, b \| c, d$ if and only if there exist e, f, g, h such that $\langle a, b, c, d\rangle=$ $\langle e, f, g, h\rangle$ but there exists K such that $K \cdot\left(e_{\mathbf{1}}-f_{\mathbf{1}}\right)=g_{\mathbf{1}}-h_{\mathbf{1}}$ and $K \cdot\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right)=g_{\mathbf{2}}-h_{\mathbf{2}}$ and $K \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=g_{\mathbf{3}}-h_{\mathbf{3}}$ or $e_{\mathbf{1}}-f_{\mathbf{1}}=0_{F}$ and $e_{\mathbf{2}}-f_{\mathbf{2}}=0_{F}$ and $e_{\mathbf{3}}-f_{\mathbf{3}}=0_{F}$.
(3) If $a, b \nmid a, c$ and $\langle a, b, a, c\rangle=\langle e, f, e, g\rangle$, then $e \neq f$ and $e \neq g$ and $f \neq g$.
(4) Suppose that
(i) $a, b \nmid a, c$,
(ii) $\langle a, b, a, c\rangle=\langle e, f, e, g\rangle$,
(iii) $K \cdot\left(e_{\mathbf{1}}-f_{\mathbf{1}}\right)=L \cdot\left(e_{\mathbf{1}}-g_{\mathbf{1}}\right)$,
(iv) $K \cdot\left(e_{\mathbf{2}}-f_{\mathbf{2}}\right)=L \cdot\left(e_{\mathbf{2}}-g_{\mathbf{2}}\right)$,
(v) $K \cdot\left(e_{\mathbf{3}}-f_{\mathbf{3}}\right)=L \cdot\left(e_{\mathbf{3}}-g_{\mathbf{3}}\right)$.

Then $K=0_{F}$ and $L=0_{F}$.

[^13](5) Suppose $a, b \nVdash a, c$ and $a, b \| c, d$ and $a, c \| b, d$ and $\langle a, b, c, d\rangle=$ $\langle e, f, g, h\rangle$. Then $h_{\mathbf{1}}=\left(f_{1}+g_{1}\right)-e_{\mathbf{1}}$ and $h_{\mathbf{2}}=\left(f_{\mathbf{2}}+g_{\mathbf{2}}\right)-e_{\mathbf{2}}$ and $h_{\mathbf{3}}=\left(f_{\mathbf{3}}+g_{\mathbf{3}}\right)-e_{\mathbf{3}}$.
(6) There exist a, b, c such that $a, b \nVdash a, c$.
(7) If $1_{F}+1_{F} \neq 0_{F}$ and $b, c \| a, d$ and $a, b \| c, d$ and $a, c \| b, d$, then $a, b \| a, c$.
(8) If $a, p \nmid a, b$ and $a, p \nmid a, c$ and $a, p \| b, q$ and $a, p \| c, r$ and $a, b \| p, q$ and $a, c \| p, r$, then $b, c \| q, r$.
A parallelity space is called a Fano-Desarques space if:
(i) there exist elements a, b, c of the universum of it such that $a, b \nmid a, c$,
(ii) for all elements a, b, c, d of the universum of it such that $b, c \| a, d$ and $a, b \| c, d$ and $a, c \| b, d$ holds $a, b \| a, c$,
(iii) for all elements a, b, c, p, q, r of the universum of it such that $a, p \nmid a, b$ and $a, p \nVdash a, c$ and $a, p \| b, q$ and $a, p \| c, r$ and $a, b \| p, q$ and $a, c \| p, r$ holds $b, c \| q, r$.

We now state a proposition
(9) Let $F d$ be a parallelity space. Then the following conditions are equivalent:
(i) there exist elements a, b, c of the universum of $F d$ such that $a, b \nVdash a, c$ and for all elements a, b, c, d of the universum of $F d$ such that $b, c \| a, d$ and $a, b \| c, d$ and $a, c \| b, d$ holds $a, b \| a, c$ and for all elements a, b, c, p, q, r of the universum of $F d$ such that $a, p \nVdash a, b$ and $a, p \nVdash a, c$ and $a, p \| b, q$ and $a, p \| c, r$ and $a, b \| p, q$ and $a, c \| p, r$ holds $b, c \| q, r$,
(ii) $F d$ is a Fano-Desarques space.

We adopt the following convention: $F d S p$ is a Fano-Desarques space and a, $b, c, d, p, q, r, s, o, x, y$ are elements of the universum of $F d S p$. The following propositions are true:
(10) There exist a, b, c such that $a, b \nmid a, c$.
(11) If $b, c \| a, d$ and $a, b \| c, d$ and $a, c \| b, d$, then $a, b \| a, c$.
(12) If $a, p \nVdash a, b$ and $a, p \nmid a, c$ and $a, p \| b, q$ and $a, p \| c, r$ and $a, b \| p, q$ and $a, c \| p, r$, then $b, c \| q, r$.
(13) If $p \neq q$, then there exists r such that $p, q \nVdash p, r$.

Let us consider $F d S p, a, b, c$. The predicate $\mathbf{L}(a, b, c)$ is defined as follows: $a, b \| a, c$.
The following propositions are true:
(14) $\mathbf{L}(a, b, c)$ if and only if $a, b \| a, c$.
(15) If $\mathbf{L}(a, b, c)$, then $\mathbf{L}(a, c, b)$ and $\mathbf{L}(c, b, a)$ and $\mathbf{L}(b, a, c)$ and $\mathbf{L}(b, c, a)$ and $\mathbf{L}(c, a, b)$.
(16) If not $\mathbf{L}(a, b, c)$, then not $\mathbf{L}(a, c, b)$ and not $\mathbf{L}(c, b, a)$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}(b, c, a)$ and $\operatorname{not} \mathbf{L}(c, a, b)$.
(17) If not $\mathbf{L}(a, b, c)$ and $a, b \| p, q$ and $a, c \| p, r$ and $p \neq q$ and $p \neq r$, then not $\mathbf{L}(p, q, r)$.
(18) If $a=b$ or $b=c$ or $c=a$, then $\mathbf{L}(a, b, c)$.
(19) If $a \neq b$ and $\mathbf{L}(a, b, p)$ and $\mathbf{L}(a, b, q)$ and $\mathbf{L}(a, b, r)$, then $\mathbf{L}(p, q, r)$.
(20) If $p \neq q$, then there exists r such that not $\mathbf{L}(p, q, r)$.
(21) If $\mathbf{L}(a, b, c)$ and $\mathbf{L}(a, b, d)$, then $a, b \| c, d$.
(22) If not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$, then not $\mathbf{L}(a, b, d)$.
(23) If not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$ and $c \neq d$, then not $\mathbf{L}(a, b, x)$ or $\operatorname{not} \mathbf{L}(c, d, x)$.
(24) If not $\mathbf{L}(o, a, b)$, then not $\mathbf{L}(o, a, x)$ or not $\mathbf{L}(o, b, x)$ or $o=x$.
(25) If $o \neq a$ and $o \neq b$ and $\mathbf{L}(o, a, b)$ and $\mathbf{L}(o, a, p)$ and $\mathbf{L}(o, b, q)$, then $a, b \| p, q$.
(26) If $a, b \nmid c, d$ and $\mathbf{L}(a, b, p)$ and $\mathbf{L}(a, b, q)$ and $\mathbf{L}(c, d, p)$ and $\mathbf{L}(c, d, q)$, then $p=q$.
(27) If $a \neq b$ and $\mathbf{L}(a, b, c)$ and $a, b \| c, d$, then $a, c \| b, d$.
(28) If $a \neq b$ and $\mathbf{L}(a, b, c)$ and $a, b \| c, d$, then $c, b \| c, d$.
(29) If not $\mathbf{L}(o, a, c)$ and $\mathbf{L}(o, a, b)$ and $\mathbf{L}(o, c, p)$ and $\mathbf{L}(o, c, q)$ and $a, c \| b, p$ and $a, c \| b, q$, then $p=q$.
(30) If $a \neq b$ and $\mathbf{L}(a, b, c)$ and $\mathbf{L}(a, b, d)$, then $\mathbf{L}(a, c, d)$.
(31) If $\mathbf{L}(a, b, c)$ and $\mathbf{L}(a, c, d)$ and $a \neq c$, then $\mathbf{L}(b, c, d)$.
(32) $\mathbf{L}(a, b, c)$ if and only if $a, b \| a, c$.

Let us consider $F d S p, a, b, c, d$. The predicate $\mathbf{P}(a, b, c, d)$ is defined by: not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$ and $a, c \| b, d$.
Next we state a number of propositions:
(33) $\mathbf{P}(a, b, c, d)$ if and only if not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$ and $a, c \| b, d$.
(34) If $\mathbf{P}(a, b, c, d)$, then $a \neq b$ and $b \neq c$ and $c \neq a$ and $a \neq d$ and $b \neq d$ and $c \neq d$.
(35) If $\mathbf{P}(a, b, c, d)$, then not $\mathbf{L}(a, b, c)$ and not $\mathbf{L}(b, a, d)$ and not $\mathbf{L}(c, d, a)$ and not $\mathbf{L}(d, c, b)$.
(36) Suppose $\mathbf{P}(a, b, c, d)$. Then not $\mathbf{L}(a, b, c)$ and not $\mathbf{L}(b, a, d)$ and not $\mathbf{L}(c, d, a)$
and not $\mathbf{L}(d, c, b)$ and $\operatorname{not} \mathbf{L}(a, c, b)$ and not $\mathbf{L}(b, a, c)$ and not $\mathbf{L}(b, c, a)$ and not $\mathbf{L}(c, a, b)$ and not $\mathbf{L}(c, b, a)$ and not $\mathbf{L}(b, d, a)$ and not $\mathbf{L}(a, b, d)$ and not $\mathbf{L}(a, d, b)$ and not $\mathbf{L}(d, a, b)$ and not $\mathbf{L}(d, b, a)$ and not $\mathbf{L}(c, a, d)$ and not $\mathbf{L}(a, c, d)$ and not $\mathbf{L}(a, d, c)$ and not $\mathbf{L}(d, a, c)$ and not $\mathbf{L}(d, c, a)$ and not $\mathbf{L}(d, b, c)$ and not $\mathbf{L}(b, c, d)$ and not $\mathbf{L}(b, d, c)$ and not $\mathbf{L}(c, b, d)$ and not $\mathbf{L}(c, d, b)$.
(37) If $\mathbf{P}(a, b, c, d)$, then not $\mathbf{L}(a, b, x)$ or not $\mathbf{L}(c, d, x)$.
(38) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(a, c, b, d)$.
(39) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(c, d, a, b)$.
(40) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(b, a, d, c)$.
(41) If $\mathbf{P}(a, b, c, d)$, then $\mathbf{P}(a, c, b, d)$ and $\mathbf{P}(c, d, a, b)$ and $\mathbf{P}(b, a, d, c)$ and $\mathbf{P}(c, a, d, b)$ and $\mathbf{P}(d, b, c, a)$ and $\mathbf{P}(b, d, a, c)$ and $\mathbf{P}(d, c, b, a)$.
(42) If not $\mathbf{L}(a, b, c)$, then there exists d such that $\mathbf{P}(a, b, c, d)$.
(43) If $\mathbf{P}(a, b, c, p)$ and $\mathbf{P}(a, b, c, q)$, then $p=q$.
(44) If $\mathbf{P}(a, b, c, d)$, then $a, d \nmid b, c$.
(45) If $\mathbf{P}(a, b, c, d)$, then not $\mathbf{P}(a, b, d, c)$.
(46) If $a \neq b$, then there exists c such that $\mathbf{L}(a, b, c)$ and $c \neq a$ and $c \neq b$.
(47) If $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$, then $b, c \| q, r$.
(48) If not $\mathbf{L}(b, q, c)$ and $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$, then $\mathbf{P}(b, q, c, r)$.
(49) If $\mathbf{L}(a, b, c)$ and $b \neq c$ and $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$, then $\mathbf{P}(b, q, c, r)$.
(50) If $\mathbf{P}(a, p, b, q)$ and $\mathbf{P}(a, p, c, r)$ and $\mathbf{P}(b, q, d, s)$, then $c, d \| r, s$.
(51) If $a \neq b$, then there exist c, d such that $\mathbf{P}(a, b, c, d)$.
(52) If $a \neq d$, then there exist b, c such that $\mathbf{P}(a, b, c, d)$.
(53) $\quad \mathbf{P}(a, b, c, d)$ if and only if not $\mathbf{L}(a, b, c)$ and $a, b \| c, d$ and $a, c \| b, d$.

Let us consider $F d S p, a, b, r, s$. The predicate $a, b \Rightarrow r, s$ is defined as follows:
$a=b$ and $r=s$ or there exist p, q such that $\mathbf{P}(p, q, a, b)$ and $\mathbf{P}(p, q, r, s)$.
One can prove the following propositions:
(54) $a, b \Rightarrow r, s$ if and only if $a=b$ and $r=s$ or there exist p, q such that $\mathbf{P}(p, q, a, b)$ and $\mathbf{P}(p, q, r, s)$.
(55) If $a, a \Rightarrow b, c$, then $b=c$.
(59) If $a, b \Rightarrow c, d$, then $a, c \| b, d$.
(60) If $a, b \Rightarrow c, d$ and not $\mathbf{L}(a, b, c)$, then $\mathbf{P}(a, b, c, d)$.
(61) If $\mathbf{P}(a, b, c, d)$, then $a, b \Rightarrow c, d$.
(62) If $a, b \Rightarrow c, d$ and $\mathbf{L}(a, b, c)$ and $\mathbf{P}(r, s, a, b)$, then $\mathbf{P}(r, s, c, d)$.
(63) If $a, b \Rightarrow c, x$ and $a, b \Rightarrow c, y$, then $x=y$.
(64) There exists d such that $a, b \Rightarrow c, d$.
(65) $a, a \Rightarrow b, b$.
(66) $a, b \Rightarrow a, b$
(67) If $r, s \Rightarrow a, b$ and $r, s \Rightarrow c, d$, then $a, b \Rightarrow c, d$.
(68) If $a, b \Rightarrow c, d$, then $c, d \Rightarrow a, b$.
(69) If $a, b \Rightarrow c, d$, then $b, a \Rightarrow d, c$.

References

[1] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Parallelity spaces. Formalized Mathematics, 1(2):343-348, 1990.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

Received March 23, 1990

Real Functions Spaces ${ }^{1}$

Henryk Oryszczyszyn
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Abstract

Summary. This abstract contains a construction of the domain of functions defined in an arbitrary nonempty set, with values being real numbers. In every such set of functions we introduce several algebraic operations, which yield in this set the structures of a real linear space, of a ring, and of a real algebra. Formal definitions of such concepts are given.

MML Identifier: FUNCSDOM.

The notation and terminology used in this paper are introduced in the following papers: [3], [9], [11], [2], [7], [12], [6], [1], [10], [4], [5], and [8]. We adopt the following convention: x_{1}, x_{2}, z are arbitrary and A, B denote non-empty sets. Let us consider A, B, and let F be a binary operation on B^{A}, and let f, g be elements of B^{A}. Then $F(f, g)$ is an element of B^{A}.

Let A, B, C, D be non-empty sets, and let F be a function from : C, D : into B^{A}, and let $c d$ be an element of $: C, D$. Then $F(c d)$ is an element of B^{A}.

Let A, B be non-empty sets, and let f be a function from A into B. The functor @ f yields an element of B^{A} and is defined by:
$@ f=f$.
We now state a proposition
(1) For all functions f, g from A into B holds $@ f=g$ if and only if $f=g$.

In the sequel f, g, h denote elements of \mathbb{R}^{A}. Let A, B be non-empty sets, and let x be an element of B^{A}. The functor $\rfloor x$ yields an element of B^{A} qua a non-empty set and is defined as follows:
$\downharpoonleft x=x$.
We now state a proposition
(2) For all elements f, g of B^{A} holds $\rfloor f=g$ if and only if $f=g$.

[^14]Let us consider A, B, and let f be an element of B^{A} qua a non-empty set. The functor $f l$ yielding an element of B^{A}, is defined by:
$f l=f$.
We now state two propositions:
(3) For all elements f, g of B^{A} qua non-empty sets holds $f \downharpoonright=g$ if and only if $f=g$.
(4) $f=(\downharpoonleft f) \downarrow$.

Let X, Z be non-empty sets, and let F be a binary operation on X, and let f, g be functions from Z into X. Then $F^{\circ}(f, g)$ is an element of X^{Z}.

Let X, Z be non-empty sets, and let F be a binary operation on X, and let a be an element of X, and let f be a function from Z into X. Then $F^{\circ}(a, f)$ is an element of X^{Z}.

Let us consider A. The functor $+_{\mathbb{R}^{A}}$ yields a binary operation on \mathbb{R}^{A} and is defined by:
for all elements f, g of \mathbb{R}^{A} holds $+_{\mathbb{R}^{A}}(f, g)=+_{\mathbb{R}^{\circ}}(f, g)$.
We now state a proposition
(5) For every binary operation F on \mathbb{R}^{A} holds $F=+_{\mathbb{R}^{A}}$ if and only if for all elements f, g of \mathbb{R}^{A} holds $F(f, g)=+_{\mathbb{R}}{ }^{\circ}(f, g)$.
Let us consider A. The functor ${ }_{\mathbb{R}^{A}}$ yields a binary operation on \mathbb{R}^{A} and is defined as follows:
for all elements f, g of \mathbb{R}^{A} holds $\cdot_{\mathbb{R}^{A}}(f, g)=\cdot_{\mathbb{R}}{ }^{\circ}(f, g)$.
Next we state a proposition
(6) For every binary operation F on \mathbb{R}^{A} holds $F=\cdot_{\mathbb{R}^{A}}$ if and only if for all elements f, g of \mathbb{R}^{A} holds $F(f, g)=\cdot_{\mathbb{R}}{ }^{\circ}(f, g)$.
Let us consider A, and let a be a real number, and let f be an element of \mathbb{R}^{A}. Then $\langle a, f\rangle$ is an element of $\left.: \mathbb{R}, \mathbb{R}^{A}:\right]$.

Let us consider A. The functor ${\underset{\mathbb{R}}{ } A}_{\mathbb{R}}$ yielding a function from $\left.: \mathbb{R}, \mathbb{R}^{A}:\right]$ into \mathbb{R}^{A}, is defined as follows:
for every real number a and for every element f of \mathbb{R}^{A} and for every element x of A holds $(\overbrace{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle))(x)=a \cdot f(x)$.

The following proposition is true
(7) For every function F from $: \mathbb{R}, \mathbb{R}^{A}:$ into \mathbb{R}^{A} holds $F=\mathscr{A}_{\mathbb{R}^{A}}^{\mathbb{R}}$ if and only if for every real number a and for every element f of \mathbb{R}^{A} and for every element x of A holds $(F(\langle a, f\rangle))(x)=a \cdot f(x)$.
Let us consider A. The functor $\mathbf{0}_{\mathbb{R}^{A}}$ yields an element of \mathbb{R}^{A} and is defined by:
$\mathbf{0}_{\mathbb{R}^{A}}=A \longmapsto 0$.
The following proposition is true
(8) For every element f of \mathbb{R}^{A} holds $f=\mathbf{0}_{\mathbb{R}^{A}}$ if and only if $f=A \longmapsto 0$.

Let us consider A. The functor $\mathbf{1}_{\mathbb{R}^{A}}$ yields an element of \mathbb{R}^{A} and is defined by:

$$
\mathbf{1}_{\mathbb{R}} A=A \longmapsto 1 .
$$

We now state several propositions:
(9) For every element f of \mathbb{R}^{A} holds $f=\mathbf{1}_{\mathbb{R}^{A}}$ if and only if $f=A \longmapsto 1$.
(10) $\quad h=+_{\mathbb{R}^{A}}(f, g)$ if and only if for every element x of A holds $h(x)=$ $f(x)+g(x)$.
(11) $h=\cdot_{\mathbb{R}^{A}}(f, g)$ if and only if for every element x of A holds $h(x)=$ $f(x) \cdot g(x)$.
(12) For every element x of A holds $\mathbf{1}_{\mathbb{R}^{A}}(x)=1$.
(13) For every element x of A holds $\mathbf{0}_{\mathbb{R}^{A}}(x)=0$.
(14) $\quad \mathbf{0}_{\mathbb{R}^{A}} \neq \mathbf{1}_{\mathbb{R}^{A}}$.

In the sequel a, b are real numbers. The following proposition is true
(15) $\quad h={ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle)$ if and only if for every element x of A holds $h(x)=$ $a \cdot f(x)$.
One can prove the following propositions:

$$
\begin{align*}
& +_{\mathbb{R}^{A}}(f, g)=+_{\mathbb{R}^{A}}(g, f) . \tag{16}\\
& +_{\mathbb{R}^{A}}\left(f,+_{\mathbb{R}^{A}}(g, h)\right)=+_{\mathbb{R}^{A}}\left(+_{\mathbb{R}^{A}}(f, g), h\right) . \tag{17}\\
& \cdot_{\mathbb{R}^{A}}(f, g)=\cdot_{\mathbb{R}^{A}}(g, f) . \tag{18}\\
& \cdot_{\mathbb{R}^{A}}\left(f,{ }_{\mathbb{R}^{A}}(g, h)\right)=\cdot_{\mathbb{R}^{A}}\left(\cdot_{\mathbb{R}^{A}}(f, g), h\right) . \tag{19}\\
& { }_{\mathbb{R}^{A}}\left(\mathbf{1}_{\mathbb{R}^{A}}, f\right)=f . \tag{20}\\
& +_{\mathbb{R}^{A}}\left(\mathbf{0}_{\mathbb{R}^{A}}, f\right)=f . \tag{21}\\
& +_{\mathbb{R}^{A}}\left(f,{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle-1, f\rangle)\right)=\mathbf{0}_{\mathbb{R}^{A}} . \tag{22}\\
& { }_{{ }_{\mathbb{R}}{ }^{\mathbb{R}}}(\langle 1, f\rangle)=f \text {. } \tag{23}\\
& { }_{\mathbb{R}^{A}}^{\mathbb{R}^{A}}\left(\left\langle a,{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, f\rangle)\right\rangle\right)={ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a \cdot b, f\rangle) . \tag{24}\\
& +_{\mathbb{R}^{A}}\left(\cdot{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, f\rangle)\right)={ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a+b, f\rangle) . \tag{25}\\
& \cdot_{\mathbb{R}^{A}}\left(f,+_{\mathbb{R}^{A}}(g, h)\right)=+_{\mathbb{R}^{A}}\left({ }_{\mathbb{R}^{A}}(f, g),{ }_{\mathbb{R}^{A}}(f, h)\right) . \tag{26}\\
& \cdot_{\mathbb{R}^{A}}\left(\cdot{ }_{\mathbb{R}^{A}}(\langle a, f\rangle), g\right)=\cdot{ }_{\mathbb{R}^{A}}^{\mathbb{R}}\left(\left\langle a,{ }_{\mathbb{R}^{A}}(f, g)\right\rangle\right) \text {. } \tag{27}
\end{align*}
$$

Suppose $x_{1} \in A$ and $x_{2} \in A$ and $x_{1} \neq x_{2}$. Then there exist f, g such that for every z such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1$ but if $z \neq x_{1}$, then $f(z)=0$ and for every z such that $z \in A$ holds if $z=x_{1}$, then $g(z)=0$ but if $z \neq x_{1}$, then $g(z)=1$.
(29) Suppose that
(i) $x_{1} \in A$,
(ii) $x_{2} \in A$,
(iii) $x_{1} \neq x_{2}$,
(iv) for every z such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1$ but if $z \neq x_{1}$, then $f(z)=0$,
(v) for every z such that $z \in A$ holds if $z=x_{1}$, then $g(z)=0$ but if $z \neq x_{1}$, then $g(z)=1$.
Then for all a, b such that $+_{\mathbb{R}^{A}}\left({\stackrel{\mathbb{R}}{\mathbb{R}^{A}}}(\langle a, f\rangle),{\stackrel{R}{\mathbb{R}^{A}}}^{\mathbb{R}^{\prime}}(\langle b, g\rangle)\right)=\mathbf{0}_{\mathbb{R}^{A}}$ holds $a=0$ and $b=0$.
(30) If $x_{1} \in A$ and $x_{2} \in A$ and $x_{1} \neq x_{2}$, then there exist f, g such that for all a, b such that $+_{\mathbb{R}^{A}}\left({ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g\rangle)\right)=\mathbf{0}_{\mathbb{R}^{A}}$ holds $a=0$ and $b=0$.
(31) Suppose that
(i) $A=\left\{x_{1}, x_{2}\right\}$,
(ii) $x_{1} \neq x_{2}$,
(iii) for every z such that $z \in A$ holds if $z=x_{1}$, then $f(z)=1$ but if $z \neq x_{1}$, then $f(z)=0$,
(iv) for every z such that $z \in A$ holds if $z=x_{1}$, then $g(z)=0$ but if $z \neq x_{1}$, then $g(z)=1$.
Then for every h there exist a, b such that
$h=+_{\mathbb{R}^{A}}\left({\stackrel{R}{\mathbb{R}^{A}}}^{\mathbb{R}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}(\langle b, g\rangle)\right)$.
(32) If $A=\left\{x_{1}, x_{2}\right\}$ and $x_{1} \neq x_{2}$, then there exist f, g such that for every h there exist a, b such that $h=+_{\mathbb{R}^{A}}\left({\stackrel{\mathbb{R}}{\mathbb{R}^{A}}}_{\mathbb{R}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle b, g\rangle)\right)$.
(33) Suppose $A=\left\{x_{1}, x_{2}\right\}$ and $x_{1} \neq x_{2}$. Then there exist f, g such that for all a, b such that $+_{\mathbb{R}^{A}}\left(\cdot_{\mathbb{R}^{A}}(\langle a, f\rangle),{ }_{\mathbb{R}^{A}}(\langle b, g\rangle)\right)=\mathbf{0}_{\mathbb{R}^{A}}$ holds $a=0$ and $b=0$ and for every h there exist a, b such that $h=+_{\mathbb{R}^{A}}\left(\cdot \cdot_{\mathbb{R}^{A}}^{\mathbb{R}}(\langle a, f\rangle), \stackrel{R}{\mathbb{R}}^{\mathbb{R}}(\langle b, g\rangle)\right)$.

$$
\begin{equation*}
\left\langle\mathbb{R}^{A}, \downharpoonleft \mathbf{0}_{\mathbb{R}^{A}},+_{\mathbb{R}^{A}},{ }_{\mathbb{R}^{A}}^{\mathbb{R}}\right\rangle \text { is a real linear space. } \tag{34}
\end{equation*}
$$

Let us consider A. The functor $\mathbb{R}_{\mathbb{R}}^{A}$ yields a real linear space and is defined by:
$\mathbb{R}_{\mathbb{R}}^{A}=\left\langle\mathbb{R}^{A}, \downharpoonleft \mathbf{0}_{\mathbb{R}^{A}},+_{\mathbb{R}^{A}},{ }_{\mathbb{R}^{A}}{ }^{\mathbb{R}}\right\rangle$.
We now state two propositions:

$$
\begin{equation*}
\mathbb{R}_{\mathbb{R}}^{A}=\left\langle\mathbb{R}^{A}, \downharpoonleft \mathbf{0}_{\mathbb{R}^{A}},+_{\mathbb{R}^{A}},{ }_{\mathbb{R}^{A}}{ }^{\mathbb{R}}\right\rangle . \tag{35}
\end{equation*}
$$

$\mathbb{R}_{\mathbb{R}}^{A}$ is a real linear space.
In the sequel V will denote a real linear space and u, v, w will denote vectors of V. The following proposition is true
(37) There exists V and there exist u, v such that for all a, b such that $a \cdot u+b \cdot v=0_{V}$ holds $a=0$ and $b=0$ and for every w there exist a, b such that $w=a \cdot u+b \cdot v$.
We consider ring structures which are systems
〈 a carrier, a multiplication, an addition, a unity, a zero 〉
where the carrier is a non-empty set, the multiplication, the addition are binary operations on the carrier, and the unity, the zero are elements of the carrier. In the sequel $R S$ will be a ring structure. We now define four new functors. Let us consider $R S$. The functor $1_{R S}$ yields an element of the carrier of $R S$ and is defined as follows:
$1_{R S}=$ the unity of $R S$.
The functor $0_{R S}$ yields an element of the carrier of $R S$ and is defined as follows:
$0_{R S}=$ the zero of $R S$.
Let x, y be elements of the carrier of $R S$. The functor $x \cdot y$ yielding an element of the carrier of $R S$, is defined by:
$x \cdot y=($ the multiplication of $R S)(x, y)$.
The functor $x+y$ yielding an element of the carrier of $R S$, is defined by:
$x+y=($ the addition of $R S)(x, y)$.
In the sequel x, y denote elements of the carrier of $R S$. One can prove the following four propositions:
(the multiplication of $R S)(x, y)=x \cdot y$.
(the addition of $R S)(x, y)=x+y$.
$1_{R S}=$ the unity of $R S$.
$0_{R S}=$ the zero of $R S$.
Let us consider A. The functor RRing A yielding a ring structure, is defined by:

RRing $A=\left\langle\mathbb{R}^{A},,_{\mathbb{R}^{A}},+_{\mathbb{R}^{A}}, \downharpoonleft \mathbf{1}_{\mathbb{R}^{A}}, \downharpoonleft \mathbf{0}_{\mathbb{R}^{A}}\right\rangle$.
Next we state a proposition
(42) Let x, y, z be elements of the carrier of RRing A. Then
(i) $x+y=y+x$,
(ii) $(x+y)+z=x+(y+z)$,
(iii) $x+0_{\text {RRing } A}=x$,
(iv) there exists an element t of the carrier of RRing A such that $x+t=$ $0_{\text {RRing } A}$,
(v) $x \cdot y=y \cdot x$,
(vi) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
(vii) $x \cdot\left(1_{\text {RRing } A}\right)=x$,
(viii) $x \cdot(y+z)=x \cdot y+x \cdot z$.

A ring structure is said to be a ring if:
Let x, y, z be elements of the carrier of it. Then
(i) $x+y=y+x$,
(ii) $(x+y)+z=x+(y+z)$,
(iii) $x+0_{\text {it }}=x$,
(iv) there exists an element t of the carrier of it such that $x+t=0_{\mathrm{it}}$,
(v) $x \cdot y=y \cdot x$,
(vi) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
(vii) $x \cdot\left(1_{\text {it }}\right)=x$,
(viii) $x \cdot(y+z)=x \cdot y+x \cdot z$.

One can prove the following proposition
(43) RRing A is a ring.

We consider algebra structures which are systems
〈 a carrier, a multiplication, an addition, a multiplication ${ }_{1}$, a unity, a zero 〉
where the carrier is a non-empty set, the multiplication, the addition are binary operations on the carrier, the multiplication ${ }_{1}$ is a function from $: \mathbb{R}$, the carrier: into the carrier, and the unity, the zero are elements of the carrier. In the sequel $A l S$ denotes an algebra structure. We now define four new functors. Let us consider $A l S$. The functor $1_{A l S}$ yielding an element of the carrier of $A l S$, is defined as follows:
$1_{A l S}=$ the unity of $A l S$.
The functor $0_{A l S}$ yielding an element of the carrier of $A l S$, is defined by:
$0_{A l S}=$ the zero of $A l S$.
Let x, y be elements of the carrier of $A l S$. The functor $x \cdot y$ yields an element of the carrier of $A l S$ and is defined by:
$x \cdot y=($ the multiplication of $A l S)(x, y)$.
The functor $x+y$ yielding an element of the carrier of $A l S$, is defined as follows:
$x+y=($ the addition of $A l S)(x, y)$.
Let us consider $A l S$, and let x be an element of the carrier of $A l S$, and let a be a real number. The functor $a \cdot x$ yields an element of the carrier of $A l S$ and is defined as follows:
$a \cdot x=\left(\right.$ the multiplication ${ }_{1}$ of $\left.A l S\right)(\langle a, x\rangle)$.
In the sequel x, y are elements of the carrier of $A l S$. Next we state several propositions:
(44) (the multiplication of $A l S)(x, y)=x \cdot y$.
(45) (the addition of $A l S)(x, y)=x+y$.
(46) (the multiplication ${ }_{1}$ of $\left.A l S\right)(\langle a, x\rangle)=a \cdot x$.
(48) $1_{A l S}=$ the unity of $A l S$.

Let us consider A. The functor RAlgebra A yielding an algebra structure, is defined as follows:

RAlgebra $A=\langle\mathbb{R}^{A}, \cdot_{\mathbb{R}^{A}},+_{\mathbb{R}^{A}}, \overbrace{\mathbb{R}^{A}}^{\mathbb{R}}, \downharpoonleft \mathbf{1}_{\mathbb{R}^{A}}, \downharpoonleft \mathbf{0}_{\mathbb{R}^{A}}\rangle$.
The following proposition is true
(49) Let x, y, z be elements of the carrier of RAlgebra A. Given a, b. Then
(i) $x+y=y+x$,
(ii) $(x+y)+z=x+(y+z)$,
(iii) $x+0_{\text {RAlgebra } A}=x$,
(iv) there exists an element t of the carrier of RAlgebra A such that $x+t=$
$0_{\text {RAlgebra } A}$,
(v) $x \cdot y=y \cdot x$,
(vi) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
(vii) $x \cdot\left(1_{\text {RAlgebra } A}\right)=x$,
(viii) $x \cdot(y+z)=x \cdot y+x \cdot z$,
(ix) $a \cdot(x \cdot y)=(a \cdot x) \cdot y$,
(x) $a \cdot(x+y)=a \cdot x+a \cdot y$,
(xi) $(a+b) \cdot x=a \cdot x+b \cdot x$,
(xii) $(a \cdot b) \cdot x=a \cdot(b \cdot x)$.

An algebra structure is said to be an algebra if:
Let x, y, z be elements of the carrier of it. Given a, b. Then
(i) $x+y=y+x$,
(ii) $(x+y)+z=x+(y+z)$,
(iii) $x+0_{\text {it }}=x$,
(iv) there exists an element t of the carrier of it such that $x+t=0_{\mathrm{it}}$,
(v) $x \cdot y=y \cdot x$,
(vi) $(x \cdot y) \cdot z=x \cdot(y \cdot z)$,
(vii) $x \cdot\left(1_{\mathrm{it}}\right)=x$,
(viii) $x \cdot(y+z)=x \cdot y+x \cdot z$,
(ix) $a \cdot(x \cdot y)=(a \cdot x) \cdot y$,
(x) $a \cdot(x+y)=a \cdot x+a \cdot y$,
(xi) $(a+b) \cdot x=a \cdot x+b \cdot x$,
(xii) $(a \cdot b) \cdot x=a \cdot(b \cdot x)$.

The following proposition is true
(50) RAlgebra A is an algebra.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[6] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[7] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[8] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[11] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[12] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, $1(1): 181-186,1990$.

Tarski's Classes and Ranks

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. In the article the Tarski's classes (non-empty families of sets satisfying Tarski's axiom A given in [9]) and the rank sets are introduced and some of their properties are shown. The transitive closure and the rank of a set is given here too.

MML Identifier: CLASSES1.

The terminology and notation used here have been introduced in the following articles: [9], [8], [7], [3], [4], [6], [5], [2], and [1]. For simplicity we adopt the following rules: W, X, Y, Z will denote sets, D will denote a non-empty set, f will denote a function, and x, y will be arbitrary. Let B be a set. We say that B is a Tarski-Class if and only if:
for all X, Y such that $X \in B$ and $Y \subseteq X$ holds $Y \in B$ and for every X such that $X \in B$ holds $2^{X} \in B$ and for every X such that $X \subseteq B$ holds $X \approx B$ or $X \in B$.

Let A, B be sets. We say that B is Tarski-Class of A if and only if:
$A \in B$ and B is a Tarski-Class.
Let A be a set. The functor $\mathbf{T}(A)$ yielding a non-empty family of sets, is defined as follows:
$\mathbf{T}(A)$ is Tarski-Class of A and for every D such that D is Tarski-Class of A holds $\mathbf{T}(A) \subseteq D$.

We now state several propositions:
(1) W is a Tarski-Class if and only if for all X, Y such that $X \in W$ and $Y \subseteq X$ holds $Y \in W$ and for every X such that $X \in W$ holds $2^{X} \in W$ and for every X such that $X \subseteq W$ holds $X \approx W$ or $X \in W$.
(2) W is a Tarski-Class if and only if for all X, Y such that $X \in W$ and $Y \subseteq X$ holds $Y \in W$ and for every X such that $X \in W$ holds $2^{X} \in W$ and for every X such that $X \subseteq W$ and $\overline{\bar{X}}<\overline{\bar{W}}$ holds $X \in W$.
(3) $\quad X$ is Tarski-Class of Y if and only if $Y \in X$ and X is a Tarski-Class.
(4) For every non-empty family W of sets holds $W=\mathbf{T}(X)$ if and only if W is Tarski-Class of X and for every D such that D is Tarski-Class of X holds $W \subseteq D$.

$$
\begin{equation*}
X \in \mathbf{T}(X) . \tag{5}
\end{equation*}
$$

(6) If $Y \in \mathbf{T}(X)$ and $Z \subseteq Y$, then $Z \in \mathbf{T}(X)$.
(7) If $Y \in \mathbf{T}(X)$, then $2^{Y} \in \mathbf{T}(X)$.
(8) If $Y \subseteq \mathbf{T}(X)$, then $Y \approx \mathbf{T}(X)$ or $Y \in \mathbf{T}(X)$.
(9) If $Y \subseteq \mathbf{T}(X)$ and $\overline{\bar{Y}}<\overline{\overline{\mathbf{T}(X)}}$, then $Y \in \mathbf{T}(X)$.

We follow a convention: u, v will denote elements of $\mathbf{T}(X), A, B, C$ will denote ordinal numbers, and L, L_{1} will denote transfinite sequences. Let us consider X, A. The functor $\mathbf{T}_{A}(X)$ is defined as follows:
there exists L such that $\mathbf{T}_{A}(X)=\operatorname{last} L$ and $\operatorname{dom} L=\operatorname{succ} A$ and $L(\mathbf{0})=$ $\{X\}$ and for all C, y such that succ $C \in \operatorname{succ} A$ and $y=L(C)$ holds $L(\operatorname{succ} C)=$ $\left(\left\{u: \bigvee_{v}[v \in[y] \wedge u \subseteq v]\right\} \cup\left\{2^{v}: v \in[y]\right\}\right) \cup 2^{[y]} \cap \mathbf{T}(X)$ and for all C, L_{1} such that $C \in \operatorname{succ} A$ and $C \neq \mathbf{0}$ and C is a limit ordinal number and $L_{1}=L \upharpoonright C$ holds $L(C)=\bigcup\left(\operatorname{rng} L_{1}\right) \cap \mathbf{T}(X)$.

Let us consider X, A. Then $\mathbf{T}_{A}(X)$ is a subset of $\mathbf{T}(X)$.
Next we state a number of propositions:
(11) $\quad \mathbf{T}_{\text {succ } A}(X)=\left(\left\{u: \bigvee_{v}\left[v \in \mathbf{T}_{A}(X) \wedge u \subseteq v\right]\right\} \cup\left\{2^{v}: v \in \mathbf{T}_{A}(X)\right\}\right) \cup$ $2^{\mathbf{T}_{A}(X)} \cap \mathbf{T}(X)$.
(12) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then $\mathbf{T}_{A}(X)=\left\{u: \bigvee_{B}[B \in\right.$ $\left.\left.A \wedge u \in \mathbf{T}_{B}(X)\right]\right\}$.
(13) $\quad Y \in \mathbf{T}_{\text {succ } A}(X)$ if and only if $Y \subseteq \mathbf{T}_{A}(X)$ and $Y \in \mathbf{T}(X)$ or there exists Z such that $Z \in \mathbf{T}_{A}(X)$ but $Y \subseteq Z$ or $Y=2^{Z}$.
(14) If $Y \subseteq Z$ and $Z \in \mathbf{T}_{A}(X)$, then $Y \in \mathbf{T}_{\text {succ } A}(X)$.

If $Y \in \mathbf{T}_{A}(X)$, then $2^{Y} \in \mathbf{T}_{\text {succ } A}(X)$.
(16) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then $x \in \mathbf{T}_{A}(X)$ if and only if there exists B such that $B \in A$ and $x \in \mathbf{T}_{B}(X)$.
(17) If $A \neq \mathbf{0}$ and A is a limit ordinal number and $Y \in \mathbf{T}_{A}(X)$ but $Z \subseteq Y$ or $Z=2^{Y}$, then $Z \in \mathbf{T}_{A}(X)$.
(18) $\quad \mathbf{T}_{A}(X) \subseteq \mathbf{T}_{\text {succ } A}(X)$.
(19) If $A \subseteq B$, then $\mathbf{T}_{A}(X) \subseteq \mathbf{T}_{B}(X)$.
(20) There exists A such that $\mathbf{T}_{A}(X)=\mathbf{T}_{\text {succ } A}(X)$.
(21) If $\mathbf{T}_{A}(X)=\mathbf{T}_{\text {succ } A}(X)$, then $\mathbf{T}_{A}(X)=\mathbf{T}(X)$.
(22) There exists A such that $\mathbf{T}_{A}(X)=\mathbf{T}(X)$.
(23) There exists A such that $\mathbf{T}_{A}(X)=\mathbf{T}(X)$ and for every B such that $B \in A$ holds $\mathbf{T}_{B}(X) \neq \mathbf{T}(X)$.
(24) If $Y \neq X$ and $Y \in \mathbf{T}(X)$, then there exists A such that $Y \notin \mathbf{T}_{A}(X)$ and $Y \in \mathbf{T}_{\text {succ } A}(X)$.
(25) If X is transitive, then for every A such that $A \neq \mathbf{0}$ holds $\mathbf{T}_{A}(X)$ is transitive.

$$
\begin{equation*}
\mathbf{T}_{\mathbf{0}}(X) \in \mathbf{T}_{\mathbf{1}}(X) \text { and } \mathbf{T}_{\mathbf{0}}(X) \neq \mathbf{T}_{\mathbf{1}}(X) \tag{26}
\end{equation*}
$$

If X is transitive, then $\mathbf{T}(X)$ is transitive.
If $Y \in \mathbf{T}(X)$, then $\overline{\bar{Y}}<\overline{\overline{\mathbf{T}(X)}}$.
If $Y \in \mathbf{T}(X)$, then $Y \not \approx \mathbf{T}(X)$.
If $x \in \mathbf{T}(X)$ and $y \in \mathbf{T}(X)$, then $\{x\} \in \mathbf{T}(X)$ and $\{x, y\} \in \mathbf{T}(X)$.
If $x \in \mathbf{T}(X)$ and $y \in \mathbf{T}(X)$, then $\langle x, y\rangle \in \mathbf{T}(X)$.
If $Y \subseteq \mathbf{T}(X)$ and $Z \subseteq \mathbf{T}(X)$, then $: Y, Z: \subseteq \mathbf{T}(X)$.
Let us consider A. The functor \mathbf{R}_{A} is defined as follows:
there exists L such that $\mathbf{R}_{A}=$ last L and $\operatorname{dom} L=\operatorname{succ} A$ and $L(\mathbf{0})=\emptyset$ and for all C, y such that $\operatorname{succ} C \in \operatorname{succ} A$ and $y=L(C)$ holds $L(\operatorname{succ} C)=2^{[y]}$ and for all C, L_{1} such that $C \in \operatorname{succ} A$ and $C \neq \mathbf{0}$ and C is a limit ordinal number and $L_{1}=L \upharpoonright C$ holds $L(C)=\bigcup\left(\operatorname{rng} L_{1}\right)$.

Let us consider A. Then \mathbf{R}_{A} is a set.
One can prove the following propositions:
$\mathbf{R}_{\mathbf{0}}=\emptyset$.
(34) $\quad \mathbf{R}_{\text {succ } A}=2^{\mathbf{R}_{A}}$.
(35) If $A \neq \mathbf{0}$ and A is a limit ordinal number, then for every x holds $x \in \mathbf{R}_{A}$ if and only if there exists B such that $B \in A$ and $x \in \mathbf{R}_{B}$.
(36) $\quad X \subseteq \mathbf{R}_{A}$ if and only if $X \in \mathbf{R}_{\text {succ } A}$.
(37) \mathbf{R}_{A} is transitive.
(38) If $X \in \mathbf{R}_{A}$, then $X \subseteq \mathbf{R}_{A}$.
$\mathbf{R}_{A} \subseteq \mathbf{R}_{\text {succ } A}$.
$\cup \mathbf{R}_{A} \subseteq \mathbf{R}_{A}$.
(41) If $X \in \mathbf{R}_{A}$, then $\bigcup X \in \mathbf{R}_{A}$.
(42) $\quad A \in B$ if and only if $\mathbf{R}_{A} \in \mathbf{R}_{B}$.
(43) $\quad A \subseteq B$ if and only if $\mathbf{R}_{A} \subseteq \mathbf{R}_{B}$.
(44) $\quad A \subseteq \mathbf{R}_{A}$.
(45) For all A, X such that $X \in \mathbf{R}_{A}$ holds $X \not \approx \mathbf{R}_{A}$ and $\overline{\bar{X}}<\overline{\overline{\mathbf{R}_{A}}}$.
(46) $\quad X \subseteq \mathbf{R}_{A}$ if and only if $2^{X} \subseteq \mathbf{R}_{\text {succ } A}$.
(47) If $X \subseteq Y$ and $Y \in \mathbf{R}_{A}$, then $X \in \mathbf{R}_{A}$.
(48) $\quad X \in \mathbf{R}_{A}$ if and only if $2^{X} \in \mathbf{R}_{\text {succ } A}$.
(49) $\quad x \in \mathbf{R}_{A}$ if and only if $\{x\} \in \mathbf{R}_{\text {succ } A}$.
(50) $\quad x \in \mathbf{R}_{A}$ and $y \in \mathbf{R}_{A}$ if and only if $\{x, y\} \in \mathbf{R}_{\text {succ } A}$.
(51) $\quad x \in \mathbf{R}_{A}$ and $y \in \mathbf{R}_{A}$ if and only if $\langle x, y\rangle \in \mathbf{R}_{\operatorname{succ}(\operatorname{succ} A)}$.
(52) If X is transitive and $\mathbf{R}_{A} \cap \mathbf{T}(X)=\mathbf{R}_{\text {succ } A} \cap \mathbf{T}(X)$, then $\mathbf{T}(X) \subseteq \mathbf{R}_{A}$.
(53) If X is transitive, then there exists A such that $\mathbf{T}(X) \subseteq \mathbf{R}_{A}$.
(54) If X is transitive, then $\bigcup X \subseteq X$.
(55) If X is transitive and Y is transitive, then $X \cup Y$ is transitive. If X is transitive and Y is transitive, then $X \cap Y$ is transitive.
In the sequel k, n denote natural numbers. Let us consider X. The functor $X^{* \epsilon}$ yielding a set, is defined by:
$x \in X^{*} \in$ if and only if there exist f, n, Y such that $x \in Y$ and $Y=f(n)$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=X$ and for all k, y such that $y=f(k)$ holds $f(k+1)=\bigcup[y]$.

Next we state a number of propositions:
(57) $Z=X^{* \in}$ if and only if for every x holds $x \in Z$ if and only if there exist f, n, Y such that $x \in Y$ and $Y=f(n)$ and $\operatorname{dom} f=\mathbb{N}$ and $f(0)=X$ and for all k, y such that $y=f(k)$ holds $f(k+1)=\bigcup[y]$.
(58) $X^{*} \in$ is transitive.
(59) $X \subseteq X^{* \epsilon}$.

(61) If for every Z such that $X \subseteq Z$ and Z is transitive holds $Y \subseteq Z$ and $X \subseteq Y$ and Y is transitive, then $X^{* \epsilon}=Y$.
(62) If X is transitive, then $X^{*} \epsilon=X$.
(63) $\emptyset^{* \in}=\emptyset$.
(64) $A^{*} \in=A$.
(65) If $X \subseteq Y$, then $X^{*} \subseteq \subseteq Y^{* \epsilon}$.
(66) $\left(X^{* \epsilon}\right)^{* \epsilon}=X^{* \epsilon}$.
(67) $(X \cup Y)^{* \epsilon}=X^{* \epsilon} \cup Y^{* \epsilon}$.
(68) $\quad(X \cap Y)^{* \epsilon} \subseteq X^{* \epsilon} \cap Y^{* \epsilon}$.
(69) There exists A such that $X \subseteq \mathbf{R}_{A}$.

Let us consider X. The functor $\operatorname{rk}(X)$ yielding an ordinal number, is defined by:
$X \subseteq \mathbf{R}_{\operatorname{rk}(X)}$ and for every B such that $X \subseteq \mathbf{R}_{B}$ holds $\operatorname{rk}(X) \subseteq B$.
We now state a number of propositions:
(70) $\quad A=\operatorname{rk}(X)$ if and only if $X \subseteq \mathbf{R}_{A}$ and for every B such that $X \subseteq \mathbf{R}_{B}$ holds $A \subseteq B$.
(71) $\quad \operatorname{rk}\left(2^{X}\right)=\operatorname{succ} \operatorname{rk}(X)$.
(72) $\quad \operatorname{rk}\left(\mathbf{R}_{A}\right)=A$.
(73) $\quad X \subseteq \mathbf{R}_{A}$ if and only if $\operatorname{rk}(X) \subseteq A$.
(74) $X \in \mathbf{R}_{A}$ if and only if $\operatorname{rk}(X) \in A$.
(75) If $X \subseteq Y$, then $\operatorname{rk}(X) \subseteq \operatorname{rk}(Y)$.
(76) If $X \in Y$, then $\operatorname{rk}(X) \in \operatorname{rk}(Y)$.
(77) $\quad \operatorname{rk}(X) \subseteq A$ if and only if for every Y such that $Y \in X$ holds $\operatorname{rk}(Y) \in A$.
(78) $\quad A \subseteq \operatorname{rk}(X)$ if and only if for every B such that $B \in A$ there exists Y such that $Y \in X$ and $B \subseteq \operatorname{rk}(Y)$.

$$
\begin{equation*}
\operatorname{rk}(X)=0 \text { if and only if } X=\emptyset \tag{79}
\end{equation*}
$$

(80) If $\operatorname{rk}(X)=\operatorname{succ} A$, then there exists Y such that $Y \in X$ and $\operatorname{rk}(Y)=A$.
(81) $\operatorname{rk}(A)=A$.
(82) $\quad \operatorname{rk}(\mathbf{T}(X)) \neq \mathbf{0}$ and $\operatorname{rk}(\mathbf{T}(X))$ is a limit ordinal number.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[6] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received March 23, 1990

Non-contiguous Substrings and One-to-one Finite Sequences

Wojciech A. Trybulec
Warsaw University

Summary. This text is a continuation of [3]. We prove a number of theorems concerning both notions introduced there and one-to-one finite sequences. We introduce a function that removes from a string elements of the string that belongs to a given set.

MML Identifier: FINSEQ_3.

The notation and terminology used here have been introduced in the following articles: [9], [8], [5], [3], [4], [7], [6], [1], [2], and [10]. For simplicity we follow a convention: p, q, r are finite sequences, u, v, x, y, z are arbitrary, i, j, k, l, m, n are natural numbers, A, X, Y are sets, and D is a non-empty set. The following propositions are true:
(1) $\operatorname{Seg} 3=\{1,2,3\}$.
(2) $\operatorname{Seg} 4=\{1,2,3,4\}$.
(3) $\operatorname{Seg} 5=\{1,2,3,4,5\}$.
(4) $\operatorname{Seg} 6=\{1,2,3,4,5,6\}$.
(5) $\operatorname{Seg} 7=\{1,2,3,4,5,6,7\}$.
(6) $\operatorname{Seg} 8=\{1,2,3,4,5,6,7,8\}$.
(7) $\operatorname{Seg} k=\emptyset$ if and only if $k \notin \operatorname{Seg} k$.
(8) $0 \notin \operatorname{Seg} k$.
(9) $k+1 \notin \operatorname{Seg} k$.
(10) If $k \neq 0$, then $k \in \operatorname{Seg}(k+n)$.
(11) If $k+n \in \operatorname{Seg} k$, then $n=0$.
(12) If $k \in \operatorname{Seg} n$ and $k<n$, then $k+1 \in \operatorname{Seg} n$.
(13) If $k \in \operatorname{Seg} n$ and $m<k$, then $k-m \in \operatorname{Seg} n$.
(14) $k-n \in \operatorname{Seg} k$ if and only if $n<k$.
(15) $\operatorname{Seg} k$ misses $\{k+1\}$.
(16) $\operatorname{Seg}(k+1) \backslash \operatorname{Seg} k=\{k+1\}$.
(17) $\operatorname{Seg} k \neq \operatorname{Seg}(k+1)$.
(18) If $\operatorname{Seg} k=\operatorname{Seg}(k+n)$, then $n=0$.
(19) $\operatorname{Seg} k \subseteq \operatorname{Seg}(k+n)$.
(20) $\operatorname{Seg} k \subseteq \operatorname{Seg} n$ or $\operatorname{Seg} n \subseteq \operatorname{Seg} k$.
(21) If $\operatorname{Seg} k=\emptyset$, then $k=0$.
(22) If $\operatorname{Seg} k=\{y\}$, then $k=1$ and $y=1$.
(23) If $\operatorname{Seg} k=\{x, y\}$ and $x \neq y$, then $k=2$ and $\{x, y\}=\{1,2\}$.
(24) If $x \in \operatorname{dom} p$, then $x \in \operatorname{dom}\left(p^{\wedge} q\right)$.
(25) If $x \in \operatorname{dom} p$, then x is a natural number.
(26) If $x \in \operatorname{dom} p$, then $x \neq 0$.
(27) $n \in \operatorname{dom} p$ if and only if $1 \leq n$ and $n \leq \operatorname{len} p$.
(28) $n \in \operatorname{dom} p$ if and only if $n-1$ is a natural number and len $p-n$ is a natural number.
(29) $\operatorname{dom}\langle x, y\rangle=\operatorname{Seg} 2$.
(30) $\operatorname{dom}\langle x, y, z\rangle=\operatorname{Seg} 3$.
(31) $\operatorname{len} p=\operatorname{len} q$ if and only if $\operatorname{dom} p=\operatorname{dom} q$.
(32) $\operatorname{len} p \leq \operatorname{len} q$ if and only if $\operatorname{dom} p \subseteq \operatorname{dom} q$.
(33) If $x \in \operatorname{rng} p$, then $1 \in \operatorname{dom} p$.
(34) If $\operatorname{rng} p \neq \emptyset$, then $1 \in \operatorname{dom} p$.
(35) $\operatorname{rng}\langle x, y\rangle=\{x, y\}$.
(36) $\operatorname{rng}\langle x, y, z\rangle=\{x, y, z\}$.
(37) $\varepsilon=\square$.
(38) $\varepsilon \neq\langle x, y\rangle$.
(39) $\varepsilon \neq\langle x, y, z\rangle$.
(40) $\langle x\rangle \neq\langle y, z\rangle$.
(41) $\langle u\rangle \neq\langle x, y, z\rangle$.
(42) $\langle u, v\rangle \neq\langle x, y, z\rangle$.
(43) If len $r=\operatorname{len} p+$ len q and for every k such that $k \in \operatorname{dom} p$ holds $r(k)=$ $p(k)$ and for every k such that $k \in \operatorname{dom} q$ holds $r(\operatorname{len} p+k)=q(k)$, then $r=p^{\wedge} q$.
(44) If $A \subseteq \operatorname{Seg} k$, then $\operatorname{len}(\operatorname{Sgm} A)=\operatorname{card} A$.
(45) If $A \subseteq \operatorname{Seg} k$, then $\operatorname{dom}(\operatorname{Sgm} A)=\operatorname{Seg}(\operatorname{card} A)$.
(46) If $X \subseteq \operatorname{Seg} i$ and $k<l$ and $1 \leq n$ and $m \leq \operatorname{len}(\operatorname{Sgm} X)$ and $\operatorname{Sgm} X(m)=$ k and $\operatorname{Sgm} X(n)=l$, then $m<n$.
(47) If $X \subseteq \operatorname{Seg} i$ and $k \leq l$ and $1 \leq n$ and $m \leq \operatorname{len}(\operatorname{Sgm} X)$ and $\operatorname{Sgm} X(m)=$ k and $\operatorname{Sgm} X(n)=l$, then $m \leq n$.
(48) If $X \subseteq \operatorname{Seg} i$ and $Y \subseteq \operatorname{Seg} j$, then for all m, n such that $m \in X$ and $n \in Y$ holds $m<n$ if and only if $\operatorname{Sgm}(X \cup Y)=\operatorname{Sgm} X^{\wedge} \operatorname{Sgm} Y$.
$\operatorname{Sgm} \emptyset=\varepsilon$.
（50）If $0 \neq n$ ，then $\operatorname{Sgm}\{n\}=\langle n\rangle$ ．
（51）If $0<n$ and $n<m$ ，then $\operatorname{Sgm}\{n, m\}=\langle n, m\rangle$ ．
（52） $\operatorname{len}(\operatorname{Sgm}(\operatorname{Seg} k))=k$ ．
（53） $\operatorname{Sgm}(\operatorname{Seg}(k+n)) \upharpoonright \operatorname{Seg} k=\operatorname{Sgm}(\operatorname{Seg} k)$ ．
（54） $\operatorname{Sgm}(\operatorname{Seg} k)=\operatorname{id}_{k}$ ．
（55）$\quad p \upharpoonright \operatorname{Seg} n=p$ if and only if len $p \leq n$ ．
（56） $\operatorname{id}_{n+k} \upharpoonright \operatorname{Seg} n=\operatorname{id}_{n}$ ．
（57）$\quad \operatorname{id}_{n} \upharpoonright \operatorname{Seg} m=\operatorname{id}_{m}$ if and only if $m \leq n$ ．
（58）$\quad \operatorname{id}_{n} \upharpoonright \operatorname{Seg} m=\mathrm{id}_{n}$ if and only if $n \leq m$ ．
（59）If len $p=k+l$ and $q=p$ 「 $\operatorname{Seg} k$ ，then len $q=k$ ．
（60）If len $p=k+l$ and $q=p$ 「 $\operatorname{Seg} k$ ，then $\operatorname{dom} q=\operatorname{Seg} k$ ．
（61）If len $p=k+1$ and $q=p$ 「Seg k ，then $p=q^{\wedge}\langle p(k+1)\rangle$ ．
（62）$p \upharpoonright X$ is a finite sequence if and only if there exists k such that $X \cap$ $\operatorname{dom} p=\operatorname{Seg} k$ ．
（63）$\quad \operatorname{card}\left(\left(p^{\wedge} q\right)^{-1} A\right)=\operatorname{card}\left(p^{-1} A\right)+\operatorname{card}\left(q^{-1} A\right)$ ．
（64）$p^{-1} A \subseteq\left(p^{\wedge} q\right)^{-1} A$ ．
Let us consider p, A ．The functor $p-A$ yields a finite sequence and is defined by：

$$
p-A=p \cdot \operatorname{Sgm}\left(\operatorname{Seg}(\operatorname{len} p) \backslash p^{-1} A\right)
$$

The following propositions are true：
（65）$\quad p-A=p \cdot \operatorname{Sgm}\left(\operatorname{Seg}(\operatorname{len} p) \backslash p^{-1} A\right)$ ．
（66） $\operatorname{len}(p-A)=\operatorname{len} p-\operatorname{card}\left(p^{-1} A\right)$ ．
（67） $\operatorname{len}(p-A) \leq \operatorname{len} p$ ．
（68）If len $(p-A)=\operatorname{len} p$ ，then A misses rng p ．
（69）If $n=\operatorname{len} p-\operatorname{card}\left(p^{-1} A\right)$ ，then $\operatorname{dom}(p-A)=\operatorname{Seg} n$ ．
（70）$\quad \operatorname{dom}(p-A) \subseteq \operatorname{dom} p$ ．
（71）If $\operatorname{dom}(p-A)=\operatorname{dom} p$ ，then A misses $\operatorname{rng} p$ ．
（72） $\operatorname{rng}(p-A)=\operatorname{rng} p \backslash A$ ．
（73）$\quad \operatorname{rng}(p-A) \subseteq \operatorname{rng} p$ ．
（74）If $\operatorname{rng}(p-A)=\operatorname{rng} p$ ，then A misses rng p ．
（75）$\quad p-A=\varepsilon$ if and only if $\operatorname{rng} p \subseteq A$ ．
（76）$p-A=p$ if and only if A misses $\operatorname{rng} p$ ．
（77）$p-\{x\}=p$ if and only if $x \notin \operatorname{rng} p$ ．
（78）$p-\emptyset=p$ ．
（79）$\quad p-\operatorname{rng} p=\varepsilon$ ．
（80）$\quad p^{\wedge} q-A=(p-A)^{\wedge}(q-A)$ ．
（81）$\varepsilon-A=\varepsilon$ ．
（82）$\langle x\rangle-A=\langle x\rangle$ if and only if $x \notin A$ ．
（83）$\langle x\rangle-A=\varepsilon$ if and only if $x \in A$ ．
(84) $\langle x, y\rangle-A=\varepsilon$ if and only if $x \in A$ and $y \in A$.
(85) If $x \in A$ and $y \notin A$, then $\langle x, y\rangle-A=\langle y\rangle$.
(86) If $\langle x, y\rangle-A=\langle y\rangle$ and $x \neq y$, then $x \in A$ and $y \notin A$.
(87) If $x \notin A$ and $y \in A$, then $\langle x, y\rangle-A=\langle x\rangle$.
(88) If $\langle x, y\rangle-A=\langle x\rangle$ and $x \neq y$, then $x \notin A$ and $y \in A$.
(89) $\langle x, y\rangle-A=\langle x, y\rangle$ if and only if $x \notin A$ and $y \notin A$.
(90) If len $p=k+1$ and $q=p \upharpoonright \operatorname{Seg} k$, then $p(k+1) \in A$ if and only if $p-A=q-A$.
(91) If len $p=k+1$ and $q=p$ 「 $\operatorname{Seg} k$, then $p(k+1) \notin A$ if and only if $p-A=(q-A)^{\wedge}\langle p(k+1)\rangle$.
(92) If $n \in \operatorname{dom} p$, then $p(n) \in A$ or $(p-A)(n-\operatorname{card}\{k: k \in \operatorname{dom} p \wedge k \leq$ $n \wedge p(k) \in A\})=p(n)$.
(93) If p is a finite sequence of elements of D, then $p-A$ is a finite sequence of elements of D.
(94) If p is one-to-one, then $p-A$ is one-to-one.
(95) If p is one-to-one, then $\operatorname{len}(p-A)=\operatorname{len} p-\operatorname{card}(A \cap \operatorname{rng} p)$.
(96) If p is one-to-one and $A \subseteq \operatorname{rng} p$, then $\operatorname{len}(p-A)=\operatorname{len} p-\operatorname{card} A$.
(97) If p is one-to-one and $x \in \operatorname{rng} p$, then $\operatorname{len}(p-\{x\})=\operatorname{len} p-1$.
(98) $\operatorname{rng} p$ misses $\operatorname{rng} q$ and p is one-to-one and q is one-to-one if and only if $p^{\wedge} q$ is one-to-one.
(99) If $A \subseteq \operatorname{Seg} k$, then $\operatorname{Sgm} A$ is one-to-one.
(100) $\quad \mathrm{id}_{n}$ is one-to-one.
(101) ε is one-to-one.
(102) $\langle x\rangle$ is one-to-one.
(103) $x \neq y$ if and only if $\langle x, y\rangle$ is one-to-one.
(104) $x \neq y$ and $y \neq z$ and $z \neq x$ if and only if $\langle x, y, z\rangle$ is one-to-one.
(105) If p is one-to-one and $\operatorname{rng} p=\{x\}$, then len $p=1$.
(106) If p is one-to-one and rng $p=\{x\}$, then $p=\langle x\rangle$.
(107) If p is one-to-one and $\operatorname{rng} p=\{x, y\}$ and $x \neq y$, then len $p=2$.
(108) If p is one-to-one and $\operatorname{rng} p=\{x, y\}$ and $x \neq y$, then $p=\langle x, y\rangle$ or $p=\langle y, x\rangle$.
(109) If p is one-to-one and $\operatorname{rng} p=\{x, y, z\}$ and $\langle x, y, z\rangle$ is one-to-one, then len $p=3$.
(110) If p is one-to-one and $\operatorname{rng} p=\{x, y, z\}$ and $x \neq y$ and $y \neq z$ and $x \neq z$, then len $p=3$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, $1(\mathbf{2}): 377-382,1990$.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

Received April 8, 1990

Pigeon Hole Principle

Wojciech A. Trybulec
Warsaw University

Abstract

Summary. We introduce the notion of a predicate that states that a function is one-to-one at a given element of it's domain (i.e. counter image of image of the element is equal to its singleton). We also introduce some rather technical functors concerning finite sequences: the lowest index of the given element of the range of the finite sequence, the substring preceding (and succeeding) the first occurrence of given element of the range. At the end of the article we prove the pigeon hole principle.

MML Identifier: FINSEQ_4.

The notation and terminology used here are introduced in the following papers: [8], [4], [3], [6], [7], [1], [5], [9], [2], and [10]. For simplicity we adopt the following convention: f is a function, p, q are finite sequences, x, y, z are arbitrary, i, k, n are natural numbers, and A, B are sets. Let us consider f, x. We say that f is one-to-one at x if and only if:
$f^{-1}\left(f^{\circ}\{x\}\right)=\{x\}$.
We now state several propositions:
(1) f is one-to-one at x if and only if $f^{-1}\left(f^{\circ}\{x\}\right)=\{x\}$.
(2) If f is one-to-one at x, then $x \in \operatorname{dom} f$.
(3) $\quad f$ is one-to-one at x if and only if $x \in \operatorname{dom} f$ and $f^{-1}\{f(x)\}=\{x\}$.
(4) f is one-to-one at x if and only if $x \in \operatorname{dom} f$ and for every z such that $z \in \operatorname{dom} f$ and $x \neq z$ holds $f(x) \neq f(z)$.
(5) For every x such that $x \in \operatorname{dom} f$ holds f is one-to-one at x if and only if f is one-to-one.
Let us consider f, y. We say that f yields y just once if and only if:
$f^{-1}\{y\}$ is finite and $\operatorname{card}\left(f^{-1}\{y\}\right)=1$.
Next we state several propositions:
(6) $\quad f$ yields y just once if and only if $f^{-1}\{y\}$ is finite and $\operatorname{card}\left(f^{-1}\{y\}\right)=1$.
(7) If f yields y just once, then $y \in \operatorname{rng} f$.
(8) $\quad f$ yields y just once if and only if there exists x such that $\{x\}=f^{-1}\{y\}$.
(9) $\quad f$ yields y just once if and only if there exists x such that $x \in \operatorname{dom} f$ and $y=f(x)$ and for every z such that $z \in \operatorname{dom} f$ and $z \neq x$ holds $f(z) \neq y$.
(10) $\quad f$ is one-to-one if and only if for every y such that $y \in \operatorname{rng} f$ holds f yields y just once.
(11) f is one-to-one at x if and only if $x \in \operatorname{dom} f$ and f yields $f(x)$ just once.
Let us consider f, y. Let us assume that f yields y just once. The functor $f^{-1}(y)$ is defined as follows:
$f^{-1}(y) \in \operatorname{dom} f$ and $f\left(f^{-1}(y)\right)=y$.
One can prove the following propositions:
(12) If f yields y just once and $x \in \operatorname{dom} f$ and $f(x)=y$, then $x=f^{-1}(y)$.
(13) If f yields y just once, then $f^{-1}(y) \in \operatorname{dom} f$.
(14) If f yields y just once, then $f\left(f^{-1}(y)\right)=y$.
(15) If f yields y just once, then for every x such that $x \in \operatorname{dom} f$ and $x \neq f^{-1}(y)$ holds $f(x) \neq y$.
(16) If f yields y just once, then $f^{\circ}\left\{f^{-1}(y)\right\}=\{y\}$.
(17) If f yields y just once, then $f^{-1}\{y\}=\left\{f^{-1}(y)\right\}$.
(18) If f is one-to-one and $y \in \operatorname{rng} f$, then $f^{-1}(y)=f^{-1}(y)$.
(19) If $x \in \operatorname{dom} f$ and f yields $f(x)$ just once, then $f^{-1}(f(x))=x$.
(20) If f is one-to-one at x, then $f^{-1}(f(x))=x$.
(21) If f yields y just once, then f is one-to-one at $f^{-1}(y)$.

We adopt the following convention: D will be a non-empty set, d, d_{1}, d_{2}, d_{3} will be elements of D, and P will be a finite sequence of elements of D. Let us consider D, d_{1}, d_{2}. Then $\left\langle d_{1}, d_{2}\right\rangle$ is a finite sequence of elements of D.

Let us consider D, d_{1}, d_{2}, d_{3}. Then $\left\langle d_{1}, d_{2}, d_{3}\right\rangle$ is a finite sequence of elements of D.

Let us consider D, P, i. Let us assume that $i \in \operatorname{dom} P$. The functor $\pi_{i} P$ yielding an element of D, is defined as follows:
$\pi_{i} P=P(i)$.
Next we state several propositions:
(22) If $i \in \operatorname{dom} P$, then $\pi_{i} P=P(i)$.
(23) If $i \in \operatorname{Seg}(\operatorname{len} P)$, then $\pi_{i} P=P(i)$.
(24) If $1 \leq i$ and $i \leq \operatorname{len} P$, then $\pi_{i} P=P(i)$.
(25) $\pi_{1}\langle d\rangle=d$.
(26) $\pi_{1}\left\langle d_{1}, d_{2}\right\rangle=d_{1}$ and $\pi_{2}\left\langle d_{1}, d_{2}\right\rangle=d_{2}$.
(27) $\pi_{1}\left\langle d_{1}, d_{2}, d_{3}\right\rangle=d_{1}$ and $\pi_{2}\left\langle d_{1}, d_{2}, d_{3}\right\rangle=d_{2}$ and $\pi_{3}\left\langle d_{1}, d_{2}, d_{3}\right\rangle=d_{3}$.

Let us consider p, x. Let us assume that $x \in \operatorname{rng} p$. The functor $x \leftrightarrow p$ yields a natural number and is defined by:
$x \leftrightarrow p=\operatorname{Sgm}\left(p^{-1}\{x\}\right)(1)$.
Next we state a number of propositions:
(28) If $x \in \operatorname{rng} p$, then $x \leftrightarrow p=\operatorname{Sgm}\left(p^{-1}\{x\}\right)(1)$.
(29) If $x \in \operatorname{rng} p$, then $p(x \leftarrow p)=x$.
(30) If $x \in \operatorname{rng} p$, then $x \leftrightarrow p \in \operatorname{dom} p$.
(31) If $x \in \operatorname{rng} p$, then $1 \leq x \leftarrow p$ and $x \leftrightarrow p \leq \operatorname{len} p$.
(32) If $x \in \operatorname{rng} p$, then $x \leftarrow p-1$ is a natural number and len $p-x \leftrightarrow p$ is a natural number.
(33) If $x \in \operatorname{rng} p$, then $x \leftrightarrow p \in p^{-1}\{x\}$.
(34) If $x \in \operatorname{rng} p$, then for every k such that $k \in \operatorname{dom} p$ and $k<x \leftrightarrow p$ holds $p(k) \neq x$.
(35) If p yields x just once, then $p^{-1}(x)=x \leftrightarrow p$.
(36) If p yields x just once, then for every k such that $k \in \operatorname{dom} p$ and $k \neq$ $x \leftrightarrow p$ holds $p(k) \neq x$.
(37) If $x \in \operatorname{rng} p$ and for every k such that $k \in \operatorname{dom} p$ and $k \neq x \leftarrow p$ holds $p(k) \neq x$, then p yields x just once.
(38) $\quad p$ yields x just once if and only if $x \in \operatorname{rng} p$ and $\{x \leftrightarrow p\}=p^{-1}\{x\}$.
(39) If p is one-to-one and $x \in \operatorname{rng} p$, then $\{x \hookleftarrow p\}=p^{-1}\{x\}$.
(40) $\quad p$ yields x just once if and only if $\operatorname{len}(p-\{x\})=\operatorname{len} p-1$.
(41) If p yields x just once, then for every k such that $k \in \operatorname{dom}(p-\{x\})$ holds if $k<x \leftarrow p$, then $(p-\{x\})(k)=p(k)$ but if $x \leftarrow p \leq k$, then $(p-\{x\})(k)=p(k+1)$.
(42) Suppose p is one-to-one and $x \in \operatorname{rng} p$. Then for every k such that $k \in \operatorname{dom}(p-\{x\})$ holds $(p-\{x\})(k)=p(k)$ if and only if $k<x \leftarrow p$ but $(p-\{x\})(k)=p(k+1)$ if and only if $x \leftarrow p \leq k$.
Let us consider p, x. Let us assume that $x \in \operatorname{rng} p$. The functor $p \leftarrow x$ yields a finite sequence and is defined as follows:
there exists n such that $n=x \leftarrow p-1$ and $p \leftarrow x=p \upharpoonright \operatorname{Seg} n$.
One can prove the following propositions:
(43) If $x \in \operatorname{rng} p$, then there exists n such that $n=x ↔ p-1$ and $p \upharpoonright \operatorname{Seg} n=$ $p \leftarrow x$.
(44) If $x \in \operatorname{rng} p$ and there exists n such that $n=x \leftrightarrow p-1$ and $p \upharpoonright \operatorname{Seg} n=q$, then $q=p \leftarrow x$.
(45) If $x \in \operatorname{rng} p$ and $n=x \leftarrow p-1$, then $p \upharpoonright \operatorname{Seg} n=p \leftarrow x$.
(46) If $x \in \operatorname{rng} p$, then $\operatorname{len}(p \leftarrow x)=x \leftarrow p-1$.
(47) If $x \in \operatorname{rng} p$ and $n=x \leftarrow p-1$, then $\operatorname{dom}(p \leftarrow x)=\operatorname{Seg} n$.
(48) If $x \in \operatorname{rng} p$ and $k \in \operatorname{dom}(p \leftarrow x)$, then $p(k)=(p \leftarrow x)(k)$.
(49) If $x \in \operatorname{rng} p$, then $x \notin \operatorname{rng}(p \leftarrow x)$.
(50) If $x \in \operatorname{rng} p$, then $\operatorname{rng}(p \leftarrow x)$ misses $\{x\}$.
(51) If $x \in \operatorname{rng} p$, then $\operatorname{rng}(p \leftarrow x) \subseteq \operatorname{rng} p$.
(52) If $x \in \operatorname{rng} p$, then $x \leftarrow p=1$ if and only if $p \leftarrow x=\varepsilon$.
(53) If $x \in \operatorname{rng} p$ and p is a finite sequence of elements of D, then $p \leftarrow x$ is a finite sequence of elements of D.

Let us consider p, x. Let us assume that $x \in \operatorname{rng} p$. The functor $p \rightarrow x$ yields a finite sequence and is defined as follows:
$\operatorname{len}(p \rightarrow x)=\operatorname{len} p-x \leftrightarrow p$ and for every k such that $k \in \operatorname{dom}(p \rightarrow x)$ holds $(p \rightarrow x)(k)=p(k+x \leftrightarrow p)$.

One can prove the following propositions:
(54) If $x \in \operatorname{rng} p$ and len $q=\operatorname{len} p-x \leftrightarrow p$ and for every k such that $k \in \operatorname{dom} q$ holds $q(k)=p(k+x \leftrightarrow p)$, then $q=p \rightarrow x$.
(55) If $x \in \operatorname{rng} p$, then $\operatorname{len}(p \rightarrow x)=\operatorname{len} p-x \leftrightarrow p$.
(56) If $x \in \operatorname{rng} p$, then for every k such that $k \in \operatorname{dom}(p \rightarrow x)$ holds ($p \rightarrow$ $x)(k)=p(k+x \leftrightarrow p)$.
(57) If $x \in \operatorname{rng} p$ and $n=\operatorname{len} p-x \leftrightarrow p$, then $\operatorname{dom}(p \rightarrow x)=\operatorname{Seg} n$.
(58) If $x \in \operatorname{rng} p$ and $n \in \operatorname{dom}(p \rightarrow x)$, then $n+x \leftrightarrow p \in \operatorname{dom} p$.
(59) If $x \in \operatorname{rng} p$, then $\operatorname{rng}(p \rightarrow x) \subseteq \operatorname{rng} p$.
(60) $\quad p$ yields x just once if and only if $x \in \operatorname{rng} p$ and $x \notin \operatorname{rng}(p \rightarrow x)$.
(61) If $x \in \operatorname{rng} p$ and p is one-to-one, then $x \notin \operatorname{rng}(p \rightarrow x)$.
(62) p yields x just once if and only if $x \in \operatorname{rng} p$ and $\operatorname{rng}(p \rightarrow x)$ misses $\{x\}$.
(63) If $x \in \operatorname{rng} p$ and p is one-to-one, then $\operatorname{rng}(p \rightarrow x)$ misses $\{x\}$.
(64) If $x \in \operatorname{rng} p$, then $x \leftrightarrow p=\operatorname{len} p$ if and only if $p \rightarrow x=\varepsilon$.
(65) If $x \in \operatorname{rng} p$ and p is a finite sequence of elements of D, then $p \rightarrow x$ is a finite sequence of elements of D.
(66) If $x \in \operatorname{rng} p$, then $p=\left((p \leftarrow x)^{\wedge}\langle x\rangle\right)^{\wedge}(p \rightarrow x)$. If $x \in \operatorname{rng} p$ and p is one-to-one, then $p \leftarrow x$ is one-to-one.
(68) If $x \in \operatorname{rng} p$ and p is one-to-one, then $p \rightarrow x$ is one-to-one. p yields x just once if and only if $x \in \operatorname{rng} p$ and $p-\{x\}=(p \leftarrow x)^{\wedge}(p \rightarrow$ $x)$.
(70) If $x \in \operatorname{rng} p$ and p is one-to-one, then $p-\{x\}=(p \leftarrow x)^{\wedge}(p \rightarrow x)$.
(71) If $x \in \operatorname{rng} p$ and $p-\{x\}$ is one-to-one and $p-\{x\}=(p \leftarrow x)^{\wedge}(p \rightarrow x)$, then p is one-to-one.
(72) If $x \in \operatorname{rng} p$ and p is one-to-one, then $\operatorname{rng}(p \leftarrow x)$ misses $\operatorname{rng}(p \rightarrow x)$.
(73) If A is finite, then there exists p such that $\operatorname{rng} p=A$ and p is one-to-one.
(74) If $\operatorname{rng} p \subseteq \operatorname{dom} p$ and p is one-to-one, then $\operatorname{rng} p=\operatorname{dom} p$.
(75) If $\operatorname{rng} p=\operatorname{dom} p$, then p is one-to-one.
(76) If $\operatorname{rng} p=\operatorname{rng} q$ and len $p=\operatorname{len} q$ and q is one-to-one, then p is one-toone.
(77) $\quad p$ is one-to-one if and only if $\operatorname{card}(\operatorname{rng} p)=\operatorname{len} p$.

In the sequel f denotes a function from A into B. The following propositions are true:
(78) If card $A=\operatorname{card} B$ and A is finite and B is finite and f is one-to-one, then $\operatorname{rng} f=B$.
(79) If card $A=\operatorname{card} B$ and A is finite and B is finite and $\operatorname{rng} f=B$, then f is one-to-one.
(80) If $\overline{\bar{B}}<\overline{\bar{A}}$ and $B \neq \emptyset$, then there exist x, y such that $x \in A$ and $y \in A$ and $x \neq y$ and $f(x)=f(y)$.
(81) If $\overline{\bar{A}}<\overline{\bar{B}}$, then there exists x such that $x \in B$ and for every y such that $y \in A$ holds $f(y) \neq x$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[10] Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.

Received April 8, 1990

Linear Combinations in Real Linear Space

Wojciech A. Trybulec
Warsaw University

Abstract

Summary. The article is continuation of [14]. At the beginning we prove some theorems concerning sums of finite sequence of vectors. We introduce the following notions: sum of finite subset of vectors, linear combination, carrier of linear combination, linear combination of elements of a given set of vectors, sum of linear combination. We also show that the set of linear combinations is a real linear space. At the end of article we prove some auxiliary theorems that should be proved in [16], [5], [7], [1] or [8].

MML Identifier: RLVECT_2.

The papers [16], [7], [5], [3], [6], [14], [8], [13], [15], [11], [9], [10], [4], [12], and [2] provide the notation and terminology for this paper. In the article we present several logical schemes. The scheme LambdaSep1 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of \mathcal{A}, an element \mathcal{D} of \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:
there exists a function f from \mathcal{A} into \mathcal{B} such that $f(\mathcal{C})=\mathcal{D}$ and for every element x of \mathcal{A} such that $x \neq \mathcal{C}$ holds $f(x)=\mathcal{F}(x)$ for all values of the parameters.

The scheme LambdaSep2 deals with a non-empty set \mathcal{A}, a non-empty set \mathcal{B}, an element \mathcal{C} of \mathcal{A}, an element \mathcal{D} of \mathcal{A}, an element \mathcal{E} of \mathcal{B}, an element \mathcal{F} of \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B} and states that:
there exists a function f from \mathcal{A} into \mathcal{B} such that $f(\mathcal{C})=\mathcal{E}$ and $f(\mathcal{D})=\mathcal{F}$ and for every element x of \mathcal{A} such that $x \neq \mathcal{C}$ and $x \neq \mathcal{D}$ holds $f(x)=\mathcal{F}(x)$ provided the following condition is satisfied:

- $\mathcal{C} \neq \mathcal{D}$.

Let D be a non-empty set. Then \emptyset_{D} is a subset of D.
For simplicity we follow the rules: X, Y are sets, x is arbitrary, i, k, n are natural numbers, S is an RLS structure, V is a real linear space, u, v, v_{1}, v_{2}, v_{3} are vectors of V, a, b, r are real numbers, F, G, H are finite sequences of elements of the vectors of V, A, B are subsets of the vectors of V, and f is a
function from the vectors of V into \mathbb{R}. Let us consider S, and let v be an element of the vectors of S. The functor $@ v$ yielding a vector of S, is defined as follows: $@ v=v$.
One can prove the following proposition
(1) For every element v of the vectors of V holds $v=@ v$.

Let us consider S, x. Let us assume that $x \in S$. The functor x^{S} yielding a vector of S, is defined as follows:

$$
x^{S}=x
$$

The following propositions are true:
(2) If $x \in S$, then $x^{S}=x$.
(3) For every vector v of S holds $v^{S}=v$.
(4) If $\operatorname{len} F=\operatorname{len} G$ and $\operatorname{len} F=\operatorname{len} H$ and for every k such that $k \in$ $\operatorname{Seg}(\operatorname{len} F)$ holds $H(k)=@\left(\pi_{k} F\right)+@\left(\pi_{k} G\right)$, then $\sum H=\sum F+\sum G$.
(5) If len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{Seg}(\operatorname{len} F)$ holds $G(k)=$ $a \cdot @\left(\pi_{k} F\right)$, then $\sum G=a \cdot \sum F$.
(6) If len $F=\operatorname{len} G$ and for every k such that $k \in \operatorname{Seg}(\operatorname{len} F)$ holds $G(k)=$ $-@\left(\pi_{k} F\right)$, then $\sum G=-\sum F$.
(7) If $\operatorname{len} F=\operatorname{len} G$ and $\operatorname{len} F=\operatorname{len} H$ and for every k such that $k \in$ $\operatorname{Seg}(\operatorname{len} F)$ holds $H(k)=@\left(\pi_{k} F\right)-@\left(\pi_{k} G\right)$, then $\sum H=\sum F-\sum G$.
(8) For all F, G and for every permutation f of $\operatorname{dom} F$ such that len $F=$ len G and for every i such that $i \in \operatorname{dom} G$ holds $G(i)=F(f(i))$ holds $\sum F=\sum G$.
(9) For every permutation f of dom F such that $G=F \cdot f$ holds $\sum F=\sum G$.

Let us consider V. A subset of the vectors of V is called a finite subset of V if:
it is finite.
One can prove the following proposition
(10) $\quad A$ is a finite subset of V if and only if A is finite.

In the sequel S, T will be finite subsets of V. Let us consider V, S, T. Then $S \cup T$ is a finite subset of V. Then $S \cap T$ is a finite subset of V. Then $S \backslash T$ is a finite subset of V. Then $S \subset T$ is a finite subset of V.

Let us consider V. The functor 0_{V} yielding a finite subset of V, is defined by:
$0_{V}=\emptyset$.
One can prove the following proposition
(11) $\quad 0_{V}=\emptyset$.

Let us consider V, T. The functor $\sum T$ yields a vector of V and is defined as follows:
there exists F such that $\operatorname{rng} F=T$ and F is one-to-one and $\sum T=\sum F$.
One can prove the following propositions: $\sum F$.
(13) If $\operatorname{rng} F=T$ and F is one-to-one and $v=\sum F$, then $v=\sum T$.

Let us consider V, v. Then $\{v\}$ is a finite subset of V.
Let us consider V, v_{1}, v_{2}. Then $\left\{v_{1}, v_{2}\right\}$ is a finite subset of V.
Let us consider V, v_{1}, v_{2}, v_{3}. Then $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a finite subset of V.
One can prove the following propositions:
(16) If $v_{1} \neq v_{2}$, then $\sum\left\{v_{1}, v_{2}\right\}=v_{1}+v_{2}$.
(17) If $v_{1} \neq v_{2}$ and $v_{2} \neq v_{3}$ and $v_{1} \neq v_{3}$, then $\sum\left\{v_{1}, v_{2}, v_{3}\right\}=\left(v_{1}+v_{2}\right)+v_{3}$.
(18) If T misses S, then $\sum(T \cup S)=\sum T+\sum S$.
(19) $\quad \sum(T \cup S)=\left(\sum T+\sum S\right)-\sum(T \cap S)$.
(20) $\quad \sum(T \cap S)=\left(\sum T+\sum S\right)-\sum(T \cup S)$.
(21) $\sum(T \backslash S)=\sum(T \cup S)-\sum S$.
(22) $\quad \sum(T \backslash S)=\sum T-\sum(T \cap S)$.
(23) $\quad \sum(T \dot{\bullet} S)=\sum(T \cup S)-\sum(T \cap S)$.
(24) $\quad \sum(T \dot{\circ})=\sum(T \backslash S)+\sum(S \backslash T)$.

Let us consider V. An element of $\mathbb{R}^{\text {the }}$ vectors of V is called a linear combination of V if:
there exists T such that for every v such that $v \notin T$ holds $\operatorname{it}(v)=0$.
In the sequel $K, L, L_{1}, L_{2}, L_{3}$ will be linear combinations of V. Next we state a proposition
(25) There exists T such that for every v such that $v \notin T$ holds $L(v)=0$.

In the sequel E denotes an element of $\mathbb{R}^{\text {the vectors of } V}$. We now state a proposition
(26) If there exists T such that for every v such that $v \notin T$ holds $E(v)=0$, then E is a linear combination of V.
Let us consider V, L. The functor support L yields a finite subset of V and is defined as follows:
support $L=\{v: L(v) \neq 0\}$.
We now state two propositions:
(27) $\operatorname{support} L=\{v: L(v) \neq 0\}$.
(28) $L(v)=0$ if and only if $v \notin$ support L.

Let us consider V. The functor $\mathbf{0}_{\mathrm{LC}_{V}}$ yields a linear combination of V and is defined as follows:
support $\mathbf{0}_{\mathrm{LC}_{V}}=\emptyset$.
The following propositions are true:
(29) $L=\mathbf{0}_{\mathrm{LC}_{V}}$ if and only if support $L=\emptyset$.

$$
\begin{equation*}
\mathbf{0}_{\mathrm{LC}_{V}}(v)=0 . \tag{30}
\end{equation*}
$$

Let us consider V, A. A linear combination of V is said to be a linear combination of A if:
support it $\subseteq A$.
One can prove the following proposition
(31) If support $L \subseteq A$, then L is a linear combination of A.

In the sequel l is a linear combination of A. The following propositions are true:
support $l \subseteq A$.
(33) If $A \subseteq B$, then l is a linear combination of B.
(34) $0_{\mathrm{LC}_{V}}$ is a linear combination of A.
(35) For every linear combination l of $\emptyset_{\text {the }}$ vectors of V holds $l=\mathbf{0}_{\mathrm{LC}_{V}}$.
(36) L is a linear combination of support L.

Let us consider V, F, f. The functor $f \cdot F$ yields a finite sequence of elements of the vectors of V and is defined as follows:
$\operatorname{len}(f \cdot F)=\operatorname{len} F$ and for every i such that $i \in \operatorname{dom}(f \cdot F)$ holds $(f \cdot F)(i)=$ $f\left(@\left(\pi_{i} F\right)\right) \cdot @\left(\pi_{i} F\right)$.

Next we state several propositions:
(37) $\operatorname{len}(f \cdot F)=\operatorname{len} F$.
(38) For every i such that $i \in \operatorname{dom}(f \cdot F)$ holds $(f \cdot F)(i)=f\left(@\left(\pi_{i} F\right)\right) \cdot @\left(\pi_{i} F\right)$.
(39) If len $G=\operatorname{len} F$ and for every i such that $i \in \operatorname{dom} G$ holds $G(i)=$ $f\left(@\left(\pi_{i} F\right)\right) \cdot @\left(\pi_{i} F\right)$, then $G=f \cdot F$.
(40) If $i \in \operatorname{dom} F$ and $v=F(i)$, then $(f \cdot F)(i)=f(v) \cdot v$.
(41) $f \cdot \varepsilon_{\text {the vectors of } V}=\varepsilon_{\text {the vectors of } V}$.
(42) $\quad f \cdot\langle v\rangle=\langle f(v) \cdot v\rangle$.
(43) $f \cdot\left\langle v_{1}, v_{2}\right\rangle=\left\langle f\left(v_{1}\right) \cdot v_{1}, f\left(v_{2}\right) \cdot v_{2}\right\rangle$.
(44) $f \cdot\left\langle v_{1}, v_{2}, v_{3}\right\rangle=\left\langle f\left(v_{1}\right) \cdot v_{1}, f\left(v_{2}\right) \cdot v_{2}, f\left(v_{3}\right) \cdot v_{3}\right\rangle$.

Let us consider V, L. The functor $\sum L$ yields a vector of V and is defined by:
there exists F such that F is one-to-one and $\operatorname{rng} F=\operatorname{support} L$ and $\sum L=$ $\sum(L \cdot F)$.

The following propositions are true:
(45) There exists F such that F is one-to-one and $\operatorname{rng} F=\operatorname{support} L$ and $\sum L=\sum(L \cdot F)$.
(46) If F is one-to-one and $\operatorname{rng} F=\operatorname{support} L$ and $u=\sum(L \cdot F)$, then $u=\sum L$.
(47) $\quad A \neq \emptyset$ and A is linearly closed if and only if for every l holds $\sum l \in A$.
(48) $\quad \sum \mathbf{0}_{\mathrm{LC}_{V}}=0_{V}$.
(49) For every linear combination l of $\emptyset_{\text {the }}$ vectors of V holds $\sum l=0_{V}$.
(50) For every linear combination l of $\{v\}$ holds $\sum l=l(v) \cdot v$.
(51) If $v_{1} \neq v_{2}$, then for every linear combination l of $\left\{v_{1}, v_{2}\right\}$ holds $\sum l=$ $l\left(v_{1}\right) \cdot v_{1}+l\left(v_{2}\right) \cdot v_{2}$.

$$
\begin{equation*}
\text { If support } L=\emptyset \text {, then } \sum L=0_{V} \text {. } \tag{52}
\end{equation*}
$$

(53) If support $L=\{v\}$, then $\sum L=L(v) \cdot v$.
(54) If support $L=\left\{v_{1}, v_{2}\right\}$ and $v_{1} \neq v_{2}$, then $\sum L=L\left(v_{1}\right) \cdot v_{1}+L\left(v_{2}\right) \cdot v_{2}$.

Let us consider V, L_{1}, L_{2}. Let us note that one can characterize the predicate $L_{1}=L_{2}$ by the following (equivalent) condition: for every v holds $L_{1}(v)=L_{2}(v)$.

One can prove the following proposition
(55) If for every v holds $L_{1}(v)=L_{2}(v)$, then $L_{1}=L_{2}$.

Let us consider V, L_{1}, L_{2}. The functor $L_{1}+L_{2}$ yields a linear combination of V and is defined as follows:
for every v holds $\left(L_{1}+L_{2}\right)(v)=L_{1}(v)+L_{2}(v)$.
The following propositions are true:
(56) If for every v holds $L(v)=L_{1}(v)+L_{2}(v)$, then $L=L_{1}+L_{2}$.
(58) $\quad \operatorname{support}\left(L_{1}+L_{2}\right) \subseteq \operatorname{support} L_{1} \cup \operatorname{support} L_{2}$.
(59) If L_{1} is a linear combination of A and L_{2} is a linear combination of A, then $L_{1}+L_{2}$ is a linear combination of A.
(60) $L_{1}+L_{2}=L_{2}+L_{1}$.
(61) $L_{1}+\left(L_{2}+L_{3}\right)=\left(L_{1}+L_{2}\right)+L_{3}$.
(62) $L+\mathbf{0}_{\mathrm{LC}_{V}}=L$ and $\mathbf{0}_{\mathrm{LC}_{V}}+L=L$.

Let us consider V, a, L. The functor $a \cdot L$ yielding a linear combination of V, is defined by:
for every v holds $(a \cdot L)(v)=a \cdot L(v)$.
The following propositions are true:
(63) If for every v holds $K(v)=a \cdot L(v)$, then $K=a \cdot L$.
(64) $(a \cdot L)(v)=a \cdot L(v)$.
(65) If $a \neq 0$, then $\operatorname{support}(a \cdot L)=\operatorname{support} L$.
(66) $0 \cdot L=\mathbf{0}_{\mathrm{LC}_{V}}$.
(67) If L is a linear combination of A, then $a \cdot L$ is a linear combination of A.
(68) $(a+b) \cdot L=a \cdot L+b \cdot L$.
(69) $a \cdot\left(L_{1}+L_{2}\right)=a \cdot L_{1}+a \cdot L_{2}$.
(70) $a \cdot(b \cdot L)=(a \cdot b) \cdot L$.
(71) $1 \cdot L=L$.

Let us consider V, L. The functor $-L$ yielding a linear combination of V, is defined as follows:
$-L=(-1) \cdot L$.
Next we state several propositions:
(72) $\quad-L=(-1) \cdot L$.
(73) $(-L)(v)=-L(v)$.
(74) If $L_{1}+L_{2}=\mathbf{0}_{\mathrm{LC}_{V}}$, then $L_{2}=-L_{1}$.

$$
\begin{align*}
& (75) \quad \text { support }(-L)=\operatorname{support} L . \\
& (76) \text { If } L \text { is a linear combination of } A \text {, then }-L \text { is a linear combination of } A . \tag{75}\\
& (77) \quad-(-L)=L . \tag{77}
\end{align*}
$$

Let us consider V, L_{1}, L_{2}. The functor $L_{1}-L_{2}$ yields a linear combination of V and is defined by:
$L_{1}-L_{2}=L_{1}+\left(-L_{2}\right)$.
The following propositions are true:

$$
\begin{align*}
& L_{1}-L_{2}=L_{1}+\left(-L_{2}\right) \tag{78}\\
& \left(L_{1}-L_{2}\right)(v)=L_{1}(v)-L_{2}(v) \tag{79}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{support}\left(L_{1}-L_{2}\right) \subseteq \operatorname{support} L_{1} \cup \operatorname{support} L_{2} \tag{80}
\end{equation*}
$$

(81) If L_{1} is a linear combination of A and L_{2} is a linear combination of A, then $L_{1}-L_{2}$ is a linear combination of A.
(82) $\quad L-L=\mathbf{0}_{\mathrm{LC}_{V}}$.

Let us consider V. The functor LC_{V} yields a non-empty set and is defined by:
$x \in \mathrm{LC}_{V}$ if and only if x is a linear combination of V.
In the sequel D denotes a non-empty set and e, e_{1}, e_{2} denote elements of LC_{V}. The following propositions are true:
(83) If for every x holds $x \in D$ if and only if x is a linear combination of V, then $D=\mathrm{LC}_{V}$.
(84) $L \in \mathrm{LC}_{V}$.

Let us consider V, e. The functor @e yields a linear combination of V and is defined by:
$@ e=e$.
The following proposition is true

$$
\begin{equation*}
@ e=e . \tag{85}
\end{equation*}
$$

Let us consider V, L. The functor $@ L$ yields an element of LC_{V} and is defined as follows:
$@ L=L$.
Next we state a proposition
(86) $@ L=L$.

Let us consider V. The functor $+_{\mathrm{LC}_{V}}$ yields a binary operation on LC_{V} and is defined by:
for all e_{1}, e_{2} holds $+_{\mathrm{LC}_{V}}\left(e_{1}, e_{2}\right)=@ e_{1}+@ e_{2}$.
In the sequel o is a binary operation on LC_{V}. Next we state two propositions:
(87) If for all e_{1}, e_{2} holds $o\left(e_{1}, e_{2}\right)=@ e_{1}+@ e_{2}$, then $o={ }_{{ }^{L C}}{ }_{V}$.
(88) $\quad+_{\mathrm{LC}_{V}}\left(e_{1}, e_{2}\right)=@ e_{1}+@ e_{2}$.

Let us consider V. The functor ${ }_{\mathrm{LC}_{V}}$ yields a function from $: \mathbb{R}, \mathrm{LC}_{V}$: into LC_{V} and is defined as follows:
for all a, e holds $\cdot{ }^{L_{V}}(\langle a, e\rangle)=a \cdot @ e$.

In the sequel g denotes a function from $: \mathbb{R}, \mathrm{LC}_{V}:$ into LC_{V}. We now state two propositions:
(89) If for all a, e holds $g(\langle a, e\rangle)=a \cdot @ e$, then $g=\cdot{ }^{L_{C}}{ }_{V}$.
(90) $\cdot{ }_{L_{V}}(\langle a, e\rangle)=a \cdot @ e$.

Let us consider V. The functor $\mathbb{C} \mathbb{C}_{V}$ yielding a real linear space, is defined as follows:
$\mathfrak{L C} \mathbb{C}_{V}=\left\langle\mathrm{LC}_{V}, @_{\mathbf{0}_{V}},+\mathrm{LC}_{V}, \cdot{ }_{\mathrm{LC}_{V}}\right\rangle$.
Next we state several propositions:
(91) $\quad \mathbb{C}_{V}=\left\langle\mathrm{LC}_{V}, @ \mathbf{0}_{\mathrm{LC}_{V}},+\mathrm{LC}_{V}, \cdot{ }_{\mathrm{LC}_{V}}\right\rangle$.
(92) The vectors of $\mathbb{L} \mathbb{C}_{V}=\mathrm{LC}_{V}$.
(93) The zero of $\mathbb{C} \mathbb{C}_{V}=\mathbf{0}_{\mathrm{LC}_{V}}$.
(94) The addition of $\mathbb{L} \mathbb{C}_{V}=+{ }_{\mathrm{LC}_{V}}$.
(95) The multiplication ${ }_{1}$ of $\mathbb{L} \mathbb{C}_{V}=\cdot{ }^{L_{C}}{ }_{V}$.
(96) $\quad L_{1}{ }^{\mathbb{L C}} V_{V}+L_{2}{ }^{\mathbb{L C}} V_{V}=L_{1}+L_{2}$.
(97) $\quad a \cdot L^{\mathbb{L C}}{ }_{V}=a \cdot L$.
(98) $\quad-L^{\mathbb{L C}_{V}}=-L$.
(99) $\quad L_{1}{ }^{\mathbb{L C}} V-L_{2}{ }^{\mathbb{L C}} C_{V}=L_{1}-L_{2}$.

Let us consider V, A. The functor $\mathbb{L} \mathbb{C}_{A}$ yielding a subspace of $\mathbb{C} \mathbb{C}_{V}$, is defined by:
the vectors of $\mathbb{C} \mathbb{C}_{A}=\{l\}$.
In the sequel W denotes a subspace of $\mathbb{C} \mathbb{C}_{V}$. Next we state two propositions:
(100) If the vectors of $W=\{l\}$, then $W=\mathbb{L} \mathbb{C}_{A}$.
(101) The vectors of $\mathbb{L} \mathbb{C}_{A}=\{l\}$.

We now state several propositions:
(102) $\quad X \backslash Y$ misses $Y \backslash X$.
(103) If $k<n$, then $n-1$ is a natural number.
(104) $\quad-1 \neq 0$.
(105) $\quad(-1) \cdot r=-r$.
(106) $r-1<r$.
(107) If X is finite and Y is finite, then $X \doteq Y$ is finite.
(108) For every function f such that $f^{-1} X=f^{-1} Y$ and $X \subseteq \operatorname{rng} f$ and $Y \subseteq \operatorname{rng} f$ holds $X=Y$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[10] Andrzej Trybulec. Function domains and frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[13] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[14] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

König's Theorem

Grzegorz Bancerek
Warsaw University
Białystok

Abstract

Summary. In the article the sum and product of any number of cardinals are introduced and their relationships to addition, multiplication and to other concepts are shown. Then the König's theorem is proved. The theorem that the cardinal of union of increasing family of sets of power less than some cardinal \mathbf{m} is not greater than \mathbf{m}, is given too.

MML Identifier: CARD_3.

The papers [12], [6], [7], [3], [14], [13], [4], [2], [11], [9], [8], [10], [1], and [5] provide the terminology and notation for this paper. For simplicity we adopt the following rules: A, B are ordinal numbers, K, M, N are cardinal numbers, x, y, z are arbitrary, X, Y, Z, Z_{1}, Z_{2} are sets, n is a natural number, and f, g are functions. A function is said to be a function yielding cardinal numbers if:
for every x such that $x \in$ dom it holds it (x) is a cardinal number.
Next we state a proposition
(1) $\quad f$ is a function yielding cardinal numbers if and only if for every x such that $x \in \operatorname{dom} f$ holds $f(x)$ is a cardinal number.
In the sequel $f f$ denotes a function yielding cardinal numbers. Let us consider $f f, X$. Then $f f \upharpoonright X$ is a function yielding cardinal numbers.

Let us consider $f f, x$. Then $f f(x)$ is a set.
Let us consider X, K. Then $X \longmapsto K$ is a function yielding cardinal numbers.
The following propositions are true:
(2) $\quad f f \upharpoonright X$ is a function yielding cardinal numbers and $X \longmapsto K$ is a function yielding cardinal numbers.
(3) \square is a function yielding cardinal numbers.

The scheme $C F_{-}$Lambda concerns a set \mathcal{A} and a unary functor \mathcal{F} yielding a cardinal number and states that:
there exists $f f$ such that $\operatorname{dom} f f=\mathcal{A}$ and for every x such that $x \in \mathcal{A}$ holds ff(x) $=\mathcal{F}(x)$
for all values of the parameters.
We now define four new functors. Let us consider f. The functor $\overline{\bar{f}}$ yields a function yielding cardinal numbers and is defined as follows:
$\operatorname{dom} \overline{\bar{f}}=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $\overline{\bar{f}}(x)=\overline{\overline{[f(x)]}}$.
The functor disjoin f yielding a function, is defined as follows:
$\operatorname{dom}(\operatorname{disjoin} f)=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds
$(\operatorname{disjoin} f)(x)=[:[f(x)],\{x\}:]$.
The functor $\cup f$ yields a set and is defined by:
$\bigcup f=\bigcup(\operatorname{rng} f)$.
The functor $\prod f$ yielding a set, is defined by:
$x \in \Pi f$ if and only if there exists g such that $x=g$ and $\operatorname{dom} g=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $g(x) \in[f(x)]$.

We now state a number of propositions:
(4) $\quad f f=\overline{\bar{f}}$ if and only if $\operatorname{dom} f f=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $f f(x)=\overline{\overline{[f(x)]}}$.
(5) $\quad g=\operatorname{disjoin} f$ if and only if $\operatorname{dom} g=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $g(x)=:[f(x)],\{x\}:]$.
(6) $\cup f=\bigcup(\operatorname{rng} f)$.
(7) $\quad X=\prod f$ if and only if for every x holds $x \in X$ if and only if there exists g such that $x=g$ and $\operatorname{dom} g=\operatorname{dom} f$ and for every x such that $x \in \operatorname{dom} f$ holds $g(x) \in[f(x)]$.
(8) $\overline{\overline{f f}}=f f$.
(9) $\overline{\bar{\square}}=\square$.

$$
\begin{equation*}
\overline{\bar{X} \longmapsto Y}=X \longmapsto \overline{\bar{Y}} . \tag{10}
\end{equation*}
$$

(11) disjoin $\square=\square$.
(12) $\quad \operatorname{disjoin}(\{x\} \longmapsto X)=\{x\} \longmapsto\{X,\{x\}:]$.
(13) If $x \in \operatorname{dom} f$ and $y \in \operatorname{dom} f$ and $x \neq y$, then
$[\operatorname{disjoin} f(x)] \cap[\operatorname{disjoin} f(y)]=\emptyset$.
(16) If $X \neq \emptyset$, then $\cup(X \longmapsto Y)=Y$.
(17) $\quad \cup(\{x\} \longmapsto Y)=Y$.
(18) $g \in \Pi f$ if and only if $\operatorname{dom} g=\operatorname{dom} f$ and for every x such that $x \in$ $\operatorname{dom} f$ holds $g(x) \in[f(x)]$.
(19) $\Pi \square=\{\square\}$.
(20) $\quad Y^{X}=\Pi(X \longmapsto Y)$.

Let us consider x, X. The functor $\pi_{x} X$ yields a set and is defined by: $y \in \pi_{x} X$ if and only if there exists f such that $f \in X$ and $y=f(x)$.

Next we state a number of propositions:
(21) $Y=\pi_{x} X$ if and only if for every y holds $y \in Y$ if and only if there exists f such that $f \in X$ and $y=f(x)$.
(22) If $x \in \operatorname{dom} f$ and $\Pi f \neq \emptyset$, then $\pi_{x}(\Pi f)=f(x)$.
(23) If $f \in X$, then $f(x) \in \pi_{x} X$.
(24) $\pi_{x} \emptyset=\emptyset$.
(25) $\pi_{x}\{g\}=\{g(x)\}$.
(26) $\pi_{x}\{f, g\}=\{f(x), g(x)\}$.
(27) $\pi_{x}(X \cup Y)=\pi_{x} X \cup \pi_{x} Y$.
(28) $\quad \pi_{x}(X \cap Y) \subseteq \pi_{x} X \cap \pi_{x} Y$.
(29) $\pi_{x} X \backslash \pi_{x} Y \subseteq \pi_{x}(X \backslash Y)$.
(30) $\pi_{x} X \dot{\succ} \pi_{x} Y \subseteq \pi_{x}(X \dot{\succ} Y)$.
(31) $\overline{\overline{\pi_{x} X}} \leq \overline{\bar{X}}$.
(32) If $x \in \bigcup(\operatorname{disjoin} f)$, then there exist y, z such that $x=\langle y, z\rangle$.
(33) $\quad x \in \bigcup(\operatorname{disjoin} f)$ if and only if $x_{\mathbf{2}} \in \operatorname{dom} f$ and $x_{\mathbf{1}} \in\left[f\left(x_{\mathbf{2}}\right)\right]$ and $x=$ $\left\langle x_{1}, x_{2}\right\rangle$.
(34) If $f \leq g$, then disjoin $f \leq \operatorname{disjoin} g$.
(35) If $f \leq g$, then $\cup f \subseteq \bigcup g$.
(36) $\quad \cup(\operatorname{disjoin}(Y \longmapsto X))=: X, Y:$.
(37) $\quad \Pi f=\emptyset$ if and only if $\emptyset \in \operatorname{rng} f$.
(38) If $\operatorname{dom} f=\operatorname{dom} g$ and for every x such that $x \in \operatorname{dom} f$ holds $[f(x)] \subseteq$ $[g(x)]$, then $\Pi f \subseteq \prod g$.
In the sequel F, G will denote functions yielding cardinal numbers. The following two propositions are true:
(39) For every x such that $x \in \operatorname{dom} F$ holds $\overline{\overline{F(x)}}=F(x)$.
(40) For every x such that $x \in \operatorname{dom} F$ holds $\overline{\overline{[\text { disjoin } F(x)]}}=F(x)$.

We now define two new functors. Let us consider F. The functor $\sum F$ yields a cardinal number and is defined as follows:
$\sum F=\overline{\overline{\mathrm{U}(\text { disjoin } F)}}$.
The functor ΠF yielding a cardinal number, is defined as follows:

$$
\begin{equation*}
\Pi F=\overline{\overline{\Pi F}} \tag{41}
\end{equation*}
$$

The following propositions are true:
$\sum F=\overline{\overline{\mathrm{U}(\text { disjoin } F)}}$.
(42) $\Pi F=\overline{\overline{\Pi F}}$.
(43) If $\operatorname{dom} F=\operatorname{dom} G$ and for every x such that $x \in \operatorname{dom} F$ holds $F(x) \subseteq$ $G(x)$, then $\sum F \leq \sum G$.
(44) $\emptyset \in \operatorname{rng} F$ if and only if $\Pi F=\overline{\mathbf{0}}$.
(45) If $\operatorname{dom} F=\operatorname{dom} G$ and for every x such that $x \in \operatorname{dom} F$ holds $F(x) \subseteq$ $G(x)$, then $\Pi F \leq \Pi G$.
(56) If $\operatorname{dom} F=\operatorname{dom} G$ and for every x such that $x \in \operatorname{dom} F$ holds $F(x) \in$ $G(x)$, then $\sum F<\Pi G$.
Now we present three schemes. The scheme FinRegularity deals with a set \mathcal{A}, and a binary predicate \mathcal{P}, and states that:
there exists x such that $x \in \mathcal{A}$ and for every y such that $y \in \mathcal{A}$ and $y \neq x$ holds not $\mathcal{P}[y, x]$
provided the following conditions are fulfilled:

- \mathcal{A} is finite and $\mathcal{A} \neq \emptyset$,
- for all x, y such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, x]$ holds $x=y$,
- for all x, y, z such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.

The scheme MaxFinSetElem concerns a set \mathcal{A}, and a binary predicate \mathcal{P}, and states that:
there exists x such that $x \in \mathcal{A}$ and for every y such that $y \in \mathcal{A}$ holds $\mathcal{P}[x, y]$ provided the following requirements are fulfilled:

- \mathcal{A} is finite and $\mathcal{A} \neq \emptyset$,
- for all x, y holds $\mathcal{P}[x, y]$ or $\mathcal{P}[y, x]$,
- for all x, y, z such that $\mathcal{P}[x, y]$ and $\mathcal{P}[y, z]$ holds $\mathcal{P}[x, z]$.

The scheme FuncSeparation deals with a set \mathcal{A}, a unary functor \mathcal{F} yielding a set, and a binary predicate \mathcal{P}, and states that:
there exists f such that $\operatorname{dom} f=\mathcal{A}$ and for every x such that $x \in \mathcal{A}$ for every y holds $y \in[f(x)]$ if and only if $y \in \mathcal{F}(x)$ and $\mathcal{P}[x, y]$
for all values of the parameters.
We now state several propositions:
$\mathbf{R}_{\text {ord }(n)}$ is finite.
If X is finite, then $\overline{\bar{X}}<\overline{\bar{\omega}}$.
If $\overline{\bar{A}}<\overline{\bar{B}}$, then $A \in B$.
If $\overline{\bar{A}}<M$, then $A \in M$.
(61) Suppose for all Z_{1}, Z_{2} such that $Z_{1} \in X$ and $Z_{2} \in X$ holds $Z_{1} \subseteq Z_{2}$ or $Z_{2} \subseteq Z_{1}$. Then there exists Y such that $Y \subseteq X$ and $\cup Y=\bigcup X$ and for every Z such that $Z \subseteq Y$ and $Z \neq \emptyset$ there exists Z_{1} such that $Z_{1} \in Z$ and for every Z_{2} such that $Z_{2} \in Z$ holds $Z_{1} \subseteq Z_{2}$.
(62) If for every Z such that $Z \in X$ holds $\overline{\bar{Z}}<M$ and for all Z_{1}, Z_{2} such that $Z_{1} \in X$ and $Z_{2} \in X$ holds $Z_{1} \subseteq Z_{2}$ or $Z_{2} \subseteq Z_{1}$, then $\overline{\overline{U X}} \leq M$.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[5] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czestaw Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357367, 1990.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Universal Classes

Bogdan Nowak
Łódź University

Grzegorz Bancerek

Warsaw University
Białystok

Abstract

Summary. In the article we have shown that there exist universal classes, i.e. there are sets which are closed w.r.t. basic set theory operations.

MML Identifier: CLASSES2.

The articles [11], [8], [4], [7], [10], [9], [5], [2], [1], [6], and [3] provide the terminology and notation for this paper. For simplicity we adopt the following convention: m is a cardinal number, A, B, C are ordinal numbers, x, y are arbitrary, and X, Y, W are sets. One can prove the following propositions:
(1) If W is a Tarski-Class and $X \in W$, then $X \not \approx W$ and $\overline{\bar{X}}<\overline{\bar{W}}$.
(2) If W is a Tarski-Class and $X \subseteq W$ and $\overline{\bar{X}}<\overline{\bar{W}}$, then $X \in W$.
(3) If W is a Tarski-Class and $x \in W$ and $y \in W$, then $\{x\} \in W$ and $\{x, y\} \in W$.
(4) If W is a Tarski-Class and $x \in W$ and $y \in W$, then $\langle x, y\rangle \in W$.
(5) If W is a Tarski-Class and $X \in W$, then $\mathbf{T}(X) \subseteq W$.

The scheme $T C$ deals with a unary predicate \mathcal{P}, and states that:
for every X holds $\mathcal{P}[\mathbf{T}(X)]$
provided the parameter fulfills the following condition:

- for every X such that X is a Tarski-Class holds $\mathcal{P}[X]$.

Next we state a number of propositions:
(6) If W is a Tarski-Class and $A \in W$, then succ $A \in W$ and $A \subseteq W$.
(7) If $A \in \mathbf{T}(W)$, then succ $A \in \mathbf{T}(W)$ and $A \subseteq \mathbf{T}(W)$.
(8) If W is a Tarski-Class and X is transitive and $X \in W$, then $X \subseteq W$.
(9) If X is transitive and $X \in \mathbf{T}(W)$, then $X \subseteq \mathbf{T}(W)$.
(10) If W is a Tarski-Class, then On $W=\overline{\bar{W}}$.
(11) On $\mathbf{T}(W)=\overline{\overline{\mathbf{T}(W)}}$.
(12) If W is a Tarski-Class and $X \in W$, then $\overline{\bar{X}} \in W$.
(13) If $X \in \mathbf{T}(W)$, then $\overline{\bar{X}} \in \mathbf{T}(W)$.
(14) If W is a Tarski-Class and $x \in \operatorname{ord}(\overline{\bar{W}})$, then $x \in W$.
(15) If $x \in \operatorname{ord}(\overline{\overline{\mathbf{T}(W)}})$, then $x \in \mathbf{T}(W)$.
(16) If W is a Tarski-Class and $m<\overline{\bar{W}}$, then $m \in W$.
(17) If $m<\overline{\overline{\mathbf{T}(W)}}$, then $m \in \mathbf{T}(W)$.
(18) If W is a Tarski-Class and $m \in W$, then $m \subseteq W$.
(19) If $m \in \mathbf{T}(W)$, then $m \subseteq \mathbf{T}(W)$.
(20) If W is a Tarski-Class, then $\operatorname{ord}(\overline{\bar{W}})$ is a limit ordinal number.

If W is a Tarski-Class and $W \neq \emptyset$, then $\overline{\bar{W}} \neq \overline{\mathbf{0}}$ and ord $(\overline{\bar{W}}) \neq \mathbf{0}$ and $\operatorname{ord}(\overline{\bar{W}})$ is a limit ordinal number.
(22) $\overline{\overline{\mathbf{T}(W)}} \neq \overline{\mathbf{0}}$ and $\operatorname{ord}(\overline{\overline{\mathbf{T}(W)}}) \neq \mathbf{0}$ and $\operatorname{ord}(\overline{\overline{\mathbf{T}(W)}})$ is a limit ordinal number.
In the sequel L, L_{1} are transfinite sequences. We now state a number of propositions:
(23) If W is a Tarski-Class but $X \in W$ and W is transitive or $X \in W$ and $X \subseteq W$ or $\overline{\bar{X}}<\overline{\bar{W}}$ and $X \subseteq W$, then $W^{X} \subseteq W$.
(24) If $X \in \mathbf{T}(W)$ and W is transitive or $X \in \mathbf{T}(W)$ and $X \subseteq \mathbf{T}(W)$ or $\overline{\bar{X}}<\overline{\overline{\mathbf{T}(W)}}$ and $X \subseteq \mathbf{T}(W)$, then $\mathbf{T}(W)^{X} \subseteq \mathbf{T}(W)$.
(25) If dom L is a limit ordinal number and for every A such that $A \in \operatorname{dom} L$ holds $L(A)=\mathbf{R}_{A}$, then $\mathbf{R}_{\text {dom } L}=\bigcup L$.
(26) If W is a Tarski-Class and $A \in$ On W, then $\overline{\overline{\mathbf{R}_{A}}}<\overline{\bar{W}}$ and $\mathbf{R}_{A} \in W$.
(27) If $A \in \operatorname{On} \mathbf{T}(W)$, then $\overline{\overline{\mathbf{R}_{A}}}<\overline{\overline{\mathbf{T}(W)}}$ and $\mathbf{R}_{A} \in \mathbf{T}(W)$.
(28) If W is a Tarski-Class, then $\mathbf{R}_{\text {ord }(\bar{W})}^{(\bar{W}} \subseteq W$.
$\mathbf{R}_{\text {ord }(\overline{\bar{T}(W)})} \subseteq \mathbf{T}(W)$.
(30) If W is a Tarski-Class and W is transitive and $X \in W$, then $\operatorname{rk}(X) \in W$.
(31) If W is a Tarski-Class and W is transitive, then $W \subseteq \mathbf{R}_{\text {ord }(\bar{W})}$.
(32) If W is a Tarski-Class and W is transitive, then $\mathbf{R}_{\operatorname{ord}(\overline{\bar{W}})}=W$.
(33) If W is a Tarski-Class and $A \in$ On W, then $\overline{\overline{\mathbf{R}_{A}}} \leq \overline{\bar{W}}$.
(34) If $A \in$ On $\mathbf{T}(W)$, then $\overline{\overline{\mathbf{R}_{A}}} \leq \overline{\overline{\mathbf{T}(W)}}$.
(35) If W is a Tarski-Class, then $\overline{\bar{W}}=\overline{\overline{\mathbf{R}_{\text {ord }(\bar{W})}}}$.
(37) If W is a Tarski-Class and $X \subseteq \mathbf{R}_{\text {ord }(\overline{\bar{W}})}$, then $X \approx \mathbf{R}_{\operatorname{ord}(\overline{\bar{W}})}$ or $X \in$ $\mathbf{R}_{\text {ord }(\overline{\bar{W}})}$.
(40) $\quad \mathbf{R}_{\text {ord }} \overline{\overline{\mathbf{T}(W)})}$ is a Tarski-Class.
(41) If X is transitive and $A \in \operatorname{rk}(X)$, then there exists Y such that $Y \in X$ and $\operatorname{rk}(Y)=A$.
(42) If X is transitive, then $\overline{\overline{\operatorname{rk}(X)}} \leq \overline{\bar{X}}$.
(43) If W is a Tarski-Class and X is transitive and $X \in W$, then $X \in$ $\mathbf{R}_{\text {ord }}(\overline{\bar{W}})$.
(44) If X is transitive and $X \in \mathbf{T}(W)$, then $X \in \mathbf{R}_{\text {ord }(\overline{\mathbf{T}(W)})}$.
(45) If W is transitive, then $\mathbf{R}_{\operatorname{ord}(\overline{\overline{\mathbf{T}(W)}})}$ is Tarski-Class of W.
(46) If W is transitive, then $\mathbf{R}_{\text {ord }} \overline{\overline{\mathbf{T}(W)})}=\mathbf{T}(W)$.

A non-empty family of sets is called a universal class if:
it is transitive and it is a Tarski-Class.
In the sequel M denotes a non-empty family of sets. The following proposition is true
(47) For every M holds M is a universal class if and only if M is transitive and M is a Tarski-Class.
In the sequel U_{1}, U_{2}, U_{3}, Universum will be universal classes. We now state several propositions:
(48) If $X \in$ Universum, then $X \subseteq$ Universum.
(49) If $X \in$ Universum and $Y \subseteq X$, then $Y \in$ Universum.
(50) On Universum is an ordinal number.
(51) If X is transitive, then $\mathbf{T}(X)$ is a universal class.
(52) \mathbf{T} (Universum) is a universal class.

Let us consider Universum. Then OnUniversum is an ordinal number. Then \mathbf{T} (Universum) is a universal class.

Next we state a proposition
(53) $\mathbf{T}(A)$ is a universal class.

Let us consider A. Then $\mathbf{T}(A)$ is a universal class.
Next we state a number of propositions:
(54) Universum $=\mathbf{R}_{\text {On Universum }}$.
(55) On Universum $\neq \mathbf{0}$ and OnUniversum is a limit ordinal number.
(56) $U_{1} \in U_{2}$ or $U_{1}=U_{2}$ or $U_{2} \in U_{1}$.
(57) $U_{1} \subseteq U_{2}$ or $U_{2} \in U_{1}$.
(58) $\quad U_{1} \subseteq U_{2}$ or $U_{2} \subseteq U_{1}$.
(59) If $U_{1} \in U_{2}$ and $U_{2} \in U_{3}$, then $U_{1} \in U_{3}$.
(60) If $U_{1} \subseteq U_{2}$ and $U_{2} \in U_{3}$, then $U_{1} \in U_{3}$.
(61) $U_{1} \cup U_{2}$ is a universal class and $U_{1} \cap U_{2}$ is a universal class.
(62) $\emptyset \in$ Universum.
(63) If $x \in$ Universum, then $\{x\} \in$ Universum.
(64) If $x \in$ Universum and $y \in$ Universum, then $\{x, y\} \in$ Universum and $\langle x, y\rangle \in$ Universum.
(65) If $X \in$ Universum, then $2^{X} \in$ Universum and $\cup X \in U$ niversum and $\cap X \in$ Universum.
(66) If $X \in$ Universum and $Y \in$ Universum, then $X \cup Y \in U n i v e r s u m$ and $X \cap Y \in$ Universum and $X \backslash Y \in$ Universum and $X \perp Y \in$ Universum.
(67) If $X \in$ Universum and $Y \in$ Universum, then $: X, Y: \in$ Universum and $Y^{X} \in$ Universum.
In the sequel u, v are elements of Universum. Let us consider Universum, u. Then $\{u\}$ is an element of Universum. Then 2^{u} is an element of Universum. Then $\cup u$ is an element of Universum. Then $\bigcap u$ is an element of Universum. Let us consider v. Then $\{u, v\}$ is an element of Universum. Then $\langle u, v\rangle$ is an element of Universum. Then $u \cup v$ is an element of Universum. Then $u \cap v$ is an element of Universum. Then $u \backslash v$ is an element of Universum. Then $u \dot{-} v$ is an element of Universum. Then $: u, v: \ddagger$ is an element of Universum. Then v^{u} is an element of Universum.

The universal class \mathbf{U}_{0} is defined as follows:
$\mathbf{U}_{0}=\mathbf{T}(\mathbf{0})$.
We now state four propositions:
(68) $\mathbf{U}_{0}=\mathbf{T}(\mathbf{0})$.

$$
\begin{align*}
& \overline{\overline{\mathbf{R}_{\omega}}}=\overline{\bar{\omega}} \tag{69}\\
& \mathbf{R}_{\omega} \text { is a Tarski-Class. } \tag{70}\\
& \mathbf{U}_{0}=\mathbf{R}_{\omega} \tag{71}
\end{align*}
$$

The universal class \mathbf{U}_{1} is defined by:
$\mathbf{U}_{1}=\mathbf{T}\left(\mathbf{U}_{0}\right)$.
The following proposition is true
(72) $\quad \mathbf{U}_{1}=\mathbf{T}\left(\mathbf{U}_{0}\right)$.

We now define three new constructions. A set of a finite rank is an element of \mathbf{U}_{0}.

A Set is an element of \mathbf{U}_{1}.
Let us consider A. The functor \mathbf{U}_{A} is defined as follows:
there exists L such that $\mathbf{U}_{A}=$ last L and dom $L=\operatorname{succ} A$ and $L(\mathbf{0})=\mathbf{U}_{0}$ and for all C, y such that succ $C \in \operatorname{succ} A$ and $y=L(C)$ holds $L(\operatorname{succ} C)=\mathbf{T}([y])$ and for all C, L_{1} such that $C \in \operatorname{succ} A$ and $C \neq \mathbf{0}$ and C is a limit ordinal number and $L_{1}=L \upharpoonright C$ holds $L(C)=\mathbf{T}\left(\cup L_{1}\right)$.

The following two propositions are true:
(73) For every element u of \mathbf{U}_{0} holds u is a set of a finite rank.
(74) For every element u of \mathbf{U}_{1} holds u is a Set.

Let u be a set of a finite rank. Then $\{u\}$ is a set of a finite rank. Then 2^{u} is a set of a finite rank. Then $\bigcup u$ is a set of a finite rank. Then $\bigcap u$ is a set of a finite rank. Let v be a set of a finite rank. Then $\{u, v\}$ is a set of a finite rank. Then $\langle u, v\rangle$ is a set of a finite rank. Then $u \cup v$ is a set of a finite rank. Then $u \cap v$ is a set of a finite rank. Then $u \backslash v$ is a set of a finite rank. Then $u \dot{-} v$ is a set of a finite rank. Then $: u, v \ddagger$ is a set of a finite rank. Then v^{u} is a set of a finite rank.

Let u be a Set. Then $\{u\}$ is a Set. Then 2^{u} is a Set. Then $\cup u$ is a Set. Then $\cap u$ is a Set. Let v be a Set. Then $\{u, v\}$ is a Set. Then $\langle u, v\rangle$ is a Set. Then $u \cup v$ is a Set. Then $u \cap v$ is a Set. Then $u \backslash v$ is a Set. Then $u \dot{-} v$ is a Set. Then $[u, v:]$ is a Set. Then v^{u} is a Set.

Let us consider A. Then \mathbf{U}_{A} is a universal class.
We now state several propositions:
(75) $\quad \mathbf{U}_{\mathbf{0}}=\mathbf{U}_{0}$.
(76) $\mathbf{U}_{\text {succ } A}=\mathbf{T}\left(\mathbf{U}_{A}\right)$.
(77) $\mathbf{U}_{\mathbf{1}}=\mathbf{U}_{1}$.
(78) If $A \neq \mathbf{0}$ and A is a limit ordinal number and $\operatorname{dom} L=A$ and for every B such that $B \in A$ holds $L(B)=\mathbf{U}_{B}$, then $\mathbf{U}_{A}=\mathbf{T}(\bigcup L)$.
(79) $\quad \mathbf{U}_{0} \subseteq$ Universum and $\mathbf{T}(\mathbf{0}) \subseteq$ Universum and $\mathbf{U}_{\mathbf{0}} \subseteq$ Universum.
(80) $A \in B$ if and only if $\mathbf{U}_{A} \in \mathbf{U}_{B}$.
(81) If $\mathbf{U}_{A}=\mathbf{U}_{B}$, then $A=B$.
(82) $\quad A \subseteq B$ if and only if $\mathbf{U}_{A} \subseteq \mathbf{U}_{B}$.

References

[1] Grzegorz Bancerek. Cardinal arithmetics. Formalized Mathematics, 1(3):543-547, 1990.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589593, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281-290, 1990.
[6] Grzegorz Bancerek. Tarski's classes and ranks. Formalized Mathematics, 1(3):563-567, 1990.
[7] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics, 1(2):265-267, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received April 10, 1990

Analytical Ordered Affine Spaces ${ }^{1}$

Henryk Oryszczyszyn
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Abstract

Summary. In the article with a given arbitrary real linear space we correlate the (ordered) affine space defined in terms of a directed parallelity of segments. The abstract contains a construction of the ordered affine structure associated with a vector space; this is a structure of the type which frequently occurs in geometry and consists of the set of points and a binary relation on segments. For suitable underlying vector spaces we prove that the corresponding affine structures are ordered affine spaces or ordered affine planes, i.e. that they satisfy appropriate axioms. A formal definition of an arbitrary ordered affine space and an arbitrary ordered affine plane is given.

MML Identifier: ANALOAF.

The notation and terminology used here have been introduced in the following articles: [4], [3], [2], [1], and [5]. We adopt the following rules: V will denote a real linear space, p, q, u, v, w, y will denote vectors of V, and a, b will denote real numbers. Let us consider V, u, v, w, y. The predicate $u, v \Uparrow w, y$ is defined by:
$u=v$ or $w=y$ or there exist a, b such that $0<a$ and $0<b$ and $a \cdot(v-u)=$ $b \cdot(y-w)$.

Next we state a number of propositions:
(1) $u, v \Uparrow w, y$ if and only if $u=v$ or $w=y$ or there exist a, b such that $0<a$ and $0<b$ and $a \cdot(v-u)=b \cdot(y-w)$.
(2) If $0<a$ and $0<b$, then $0<a+b$.
(3) If $a \neq b$, then $0<a-b$ or $0<b-a$.
(4) $(w-v)+(v-u)=w-u$.
(5) $-(u-v)=v-u$.
(6) $w-(u-v)=w+(v-u)$.
(7) $(w-u)+u=w$.

[^15]（8）$(w+u)-u=w$ ．
（9）If $y+u=v+w$ ，then $y-w=v-u$ ．
$a \cdot(u-v)=-a \cdot(v-u)$ ．
$(a-b) \cdot(u-v)=(b-a) \cdot(v-u)$.
If $a \neq 0$ and $a \cdot u=v$ ，then $u=a^{-1} \cdot v$ ．
（13）If $a \neq 0$ and $a \cdot u=v$ ，then $u=a^{-1} \cdot v$ but if $a \neq 0$ and $u=a^{-1} \cdot v$ ， then $a \cdot u=v$ ．
（14）If $u=v$ or $w=y$ ，then $u, v \Uparrow w, y$ ．
（15）If $a \cdot(v-u)=b \cdot(y-w)$ and $0<a$ and $0<b$ ，then $u, v \Uparrow w, y$ ．
（16）If $u, v \mathbb{w}, y$ and $u \neq v$ and $w \neq y$ ，then there exist a, b such that $a \cdot(v-u)=b \cdot(y-w)$ and $0<a$ and $0<b$ ．
$u, v \Uparrow u, v$.
$u, v \Uparrow w, w$ and $u, u \| v, w$.
If $u, v \Uparrow v, u$ ，then $u=v$ ．
If $p \neq q$ and $p, q \Uparrow u, v$ and $p, q \Uparrow w, y$ ，then $u, v \Uparrow w, y$ ．
If $u, v \Uparrow w, y$ ，then $v, u \Uparrow y, w$ and $w, y \Uparrow u, v$ ．
If $u, v \Uparrow v, w$ ，then $u, v \Uparrow u, w$ ．
If $u, v \Uparrow u, w$ ，then $u, v \Uparrow v, w$ or $u, w \Uparrow w, v$ ．
If $v-u=y-w$ ，then $u, v \Uparrow w, y$ ．
If $y=(v+w)-u$ ，then $u, v \Uparrow w, y$ and $u, w \Uparrow v, y$ ．
If there exist p, q such that $p \neq q$ ，then for every u, v, w there exists y such that $u, v \Uparrow w, y$ and $u, w \| v, y$ and $v \neq y$ ．
（27）If $p \neq v$ and $v, p \Uparrow p, w$ ，then there exists y such that $u, p \mathbb{\|} p, y$ and $u, v \| w, y$ ．
（28）If for all a, b such that $a \cdot u+b \cdot v=0_{V}$ holds $a=0$ and $b=0$ ，then $u \neq v$ and $u \neq 0_{V}$ and $v \neq 0_{V}$ ．
If there exist u, v such that for all a, b such that $a \cdot u+b \cdot v=0_{V}$ holds $a=0$ and $b=0$ ，then there exist u, v, w, y such that $u, v \quad \forall \quad w, y$ and $u, v \nmid y, w$ 。
\[

$$
\begin{equation*}
\text { If } a-b=0 \text {, then } a=b \tag{30}
\end{equation*}
$$

\]

Next we state a proposition
（31）Suppose there exist p, q such that for every w there exist a, b such that $a \cdot p+b \cdot q=w$ ．Then for all u, v, w, y such that $u, v \sharp w, y$ and $u, v \nVdash y, w$ there exists a vector z of V such that $u, v \Uparrow u, z$ or $u, v \Uparrow z, u$ but $w, y \| w, z$ or $w, y \Uparrow z, w$ ．
We consider affine structures which are systems
〈 points，a congruence 〉
where the points is a non－empty set and the congruence is a relation on ：the points，the points j ．We adopt the following convention：$A S$ will denote an affine structure and a, b, c, d will denote elements of the points of $A S$ ．Let us consider $A S, a, b, c, d$ ．The predicate $a, b \Uparrow c, d$ is defined by：
$\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.
We now state a proposition
(32) $a, b \Uparrow c, d$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.

In the sequel x, z are arbitrary. Let us consider V. The functor \Uparrow_{V} yields a relation on : the vectors of V, the vectors of V : and is defined as follows:
$\langle x, z\rangle \in \mathbb{1}_{V}$ if and only if there exist u, v, w, y such that $x=\langle u, v\rangle$ and $z=\langle w, y\rangle$ and $u, v \Uparrow w, y$.

One can prove the following proposition

$$
\begin{equation*}
\langle\langle u, v\rangle,\langle w, y\rangle\rangle \in \Uparrow_{V} \text { if and only if } u, v \mathbb{1}^{w} w, y \tag{33}
\end{equation*}
$$

Let us consider V. The functor OASpace V yields an affine structure and is defined as follows:

OASpace $V=\left\langle\right.$ the vectors of $\left.V, \Uparrow_{V}\right\rangle$.
Next we state three propositions:
(34) OASpace $V=\left\langle\right.$ the vectors of $\left.V, \prod_{V}\right\rangle$.
(35) Suppose there exist u, v such that for all real numbers a, b such that $a \cdot u+b \cdot v=0_{V}$ holds $a=0$ and $b=0$. Then
(i) there exist elements a, b of the points of OASpace V such that $a \neq b$,
(ii) for all elements a, b, c, d, p, q, r, s of the points of OASpace V holds $a, b \| c, c$ but if $a, b \| b, a$, then $a=b$ but if $a \neq b$ and $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ but if $a, b \| c, d$, then $b, a \| d, c$ but if $a, b \| b, c$, then $a, b \| a, c$ but if $a, b \Uparrow a, c$, then $a, b \Uparrow b, c$ or $a, c \| c, b$,
(iii) there exist elements a, b, c, d of the points of OASpace V such that $a, b \nmid c, d$ and $a, b \nmid d, c$,
(iv) for every elements a, b, c of the points of OASpace V there exists an element d of the points of OASpace V such that $a, b \Uparrow c, d$ and $a, c \Uparrow b, d$ and $b \neq d$,
(v) for all elements p, a, b, c of the points of OASpace V such that $p \neq b$ and $b, p \Uparrow p, c$ there exists an element d of the points of OASpace V such that $a, p \| p, d$ and $a, b \Uparrow c, d$.
(36) Suppose there exist vectors p, q of V such that for every vector w of V there exist real numbers a, b such that $a \cdot p+b \cdot q=w$. Let a, b, c, d be elements of the points of OASpace V. Then if $a, b \sharp c, d$ and $a, b \nVdash d, c$, then there exists an element t of the points of OASpace V such that $a, b \Uparrow a, t$ or $a, b \Uparrow t, a$ but $c, d \Uparrow c, t$ or $c, d \Uparrow t, c$.
An affine structure is called an ordered affine space if:
(i) there exist elements a, b of the points of it such that $a \neq b$,
(ii) for all elements a, b, c, d, p, q, r, s of the points of it holds $a, b \| c, c$ but if $a, b \Uparrow b, a$, then $a=b$ but if $a \neq b$ and $a, b \Uparrow p, q$ and $a, b \Uparrow r, s$, then $p, q \Uparrow r, s$ but if $a, b \| c, d$, then $b, a \| d, c$ but if $a, b \| b, c$, then $a, b \| a, c$ but if $a, b \Uparrow a, c$, then $a, b \| b, c$ or $a, c \| c, b$,
(iii) there exist elements a, b, c, d of the points of it such that $a, b \sharp c, d$ and $a, b \nmid d, c$,
(iv) for every elements a, b, c of the points of it there exists an element d of the points of it such that $a, b \| c, d$ and $a, c \| b, d$ and $b \neq d$,
(v) for all elements p, a, b, c of the points of it such that $p \neq b$ and $b, p \| p, c$ there exists an element d of the points of it such that $a, p \| p, d$ and $a, b \| c, d$.

One can prove the following propositions:
(37) The following conditions are equivalent:
(i) there exist elements a, b of the points of $A S$ such that $a \neq b$ and for all elements a, b, c, d, p, q, r, s of the points of $A S$ holds $a, b \| c, c$ but if $a, b \| b, a$, then $a=b$ but if $a \neq b$ and $a, b \| p, q$ and $a, b \| r, s$, then $p, q \| r, s$ but if $a, b \| c, d$, then $b, a \| d, c$ but if $a, b \| b, c$, then $a, b \Uparrow a, c$ but if $a, b \Uparrow a, c$, then $a, b \Uparrow b, c$ or $a, c \Uparrow c, b$ and there exist elements a, b, c, d of the points of $A S$ such that $a, b \nVdash c, d$ and $a, b \nVdash d, c$ and for every elements a, b, c of the points of $A S$ there exists an element d of the points of $A S$ such that $a, b \| c, d$ and $a, c \| b, d$ and $b \neq d$ and for all elements p, a, b, c of the points of $A S$ such that $p \neq b$ and $b, p \| p, c$ there exists an element d of the points of $A S$ such that $a, p \Uparrow p, d$ and $a, b \Uparrow c, d$,
(ii) $A S$ is an ordered affine space.
(38) If there exist u, v such that for all real numbers a, b such that $a \cdot u+b \cdot v=$ 0_{V} holds $a=0$ and $b=0$, then OASpace V is an ordered affine space.
We adopt the following rules: A will denote an ordered affine space and a, b, c, d, p, q, r, s will denote elements of the points of A. We now state a number of propositions:
(39) There exist a, b such that $a \neq b$.
$a, b \| c, c$.
If $a, b \| b, a$, then $a=b$.
If $a \neq b$ and $a, b \Uparrow p, q$ and $a, b \Uparrow r, s$, then $p, q \Uparrow r, s$.
If $a, b \| c, d$, then $b, a \| d, c$.
If $a, b \| b, c$, then $a, b \| a, c$.
If $a, b \| a, c$, then $a, b \| b, c$ or $a, c \| c, b$.
There exist a, b, c, d such that $a, b \nVdash c, d$ and $a, b \notin d, c$.
There exists d such that $a, b \| c, d$ and $a, c \| b, d$ and $b \neq d$.
(48) If $p \neq b$ and $b, p \| p, c$, then there exists d such that $a, p \| p, d$ and $a, b \| c, d$.
An ordered affine space is said to be an ordered affine plane if:
Let a, b, c, d be elements of the points of it. Then if $a, b \nVdash c, d$ and $a, b \nVdash d, c$, then there exists an element p of the points of it such that $a, b \| a, p$ or $a, b \Uparrow p, a$ but $c, d \| c, p$ or $c, d \| p, c$.

We now state three propositions:
(49) The following conditions are equivalent:
(i) for all elements a, b, c, d of the points of A such that $a, b \nVdash c, d$ and $a, b \nmid d, c$ there exists an element p of the points of A such that $a, b \| a, p$ or $a, b \| p, a$ but $c, d \Uparrow c, p$ or $c, d \Uparrow p, c$,
(ii) A is an ordered affine plane.
(50) The following conditions are equivalent:
(i) there exist elements a, b of the points of $A S$ such that $a \neq b$ and for all elements a, b, c, d, p, q, r, s of the points of $A S$ holds $a, b \| c, c$ but if $a, b \Uparrow b, a$, then $a=b$ but if $a \neq b$ and $a, b \Uparrow p, q$ and $a, b \Uparrow r, s$, then $p, q \Uparrow r, s$ but if $a, b \Uparrow c, d$, then $b, a \Uparrow d, c$ but if $a, b \| b, c$, then $a, b \Uparrow a, c$ but if $a, b \| a, c$, then $a, b \Uparrow b, c$ or $a, c \Uparrow c, b$ and there exist elements a, b, c, d of the points of $A S$ such that $a, b \nVdash c, d$ and $a, b \nmid d, c$ and for every elements a, b, c of the points of $A S$ there exists an element d of the points of $A S$ such that $a, b \Uparrow c, d$ and $a, c \Uparrow b, d$ and $b \neq d$ and for all elements p, a, b, c of the points of $A S$ such that $p \neq b$ and $b, p \Uparrow p, c$ there exists an element d of the points of $A S$ such that $a, p \Uparrow p, d$ and $a, b \Uparrow c, d$ and for all elements a, b, c, d of the points of $A S$ such that $a, b \nVdash c, d$ and $a, b \nmid d, c$ there exists an element p of the points of $A S$ such that $a, b \Uparrow a, p$ or $a, b \Uparrow p, a$ but $c, d \Uparrow c, p$ or $c, d \Uparrow p, c$,
(ii) $A S$ is an ordered affine plane.
(51) If there exist u, v such that for all real numbers a, b such that $a \cdot u+b \cdot v=$ 0_{V} holds $a=0$ and $b=0$ and for every w there exist real numbers a, b such that $w=a \cdot u+b \cdot v$, then OASpace V is an ordered affine plane.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, $1(\mathbf{1}): 153-164,1990$.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[5] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.

Received April 11, 1990

Metric Spaces ${ }^{1}$

Stanisława Kanas
Technical University in Rzeszów
Department of Mathematics

Adam Lecko
Technical University in Rzeszów
Department of Mathematics

Mariusz Startek
Technical University in Rzeszów
Department of Mathematics

Abstract

Summary．In this paper we define the metric spaces．Two exam－ ples of metric spaces are given．We define the discrete metric and the metric on the real axis．Moreover the open ball，the close ball and the sphere in metric spaces are introduced．We also prove some theorems concerning these concepts．

MML Identifier：METRIC＿1．

The papers［3］，［7］，［2］，［1］，［5］，［6］，and［4］provide the notation and terminology for this paper．We consider metric structures which are systems

〈 a carrier，a distance 〉
where the carrier is a non－empty set and the distance is a function from ：the carrier，the carrier：］into \mathbb{R} ．In the sequel M will be a metric structure．Let us consider M ．A point of M is an element of the carrier of M ．

Next we state a proposition
（1）For every element x of the carrier of M holds x is a point of M ．
Let us consider M ，and let a, b be elements of the carrier of M ．The functor $\rho(a, b)$ yielding a real number，is defined by：
$\rho(a, b)=($ the distance of $M)(a, b)$.
We now state a proposition
（2）For all elements x, y of the carrier of M holds $\rho(x, y)=$（the distance of $M)(x, y)$ ．

[^16]In the sequel x will be arbitrary. Let us consider x. Then $\{x\}$ is a non-empty set.

The function $\{[\emptyset, \emptyset]\} \mapsto 0$ from $:\{\emptyset\},\{\emptyset\}:$ into \mathbb{R} is defined by:
$\{[\emptyset, \emptyset]\} \mapsto 0=\square\{\emptyset\},\{\emptyset\}:] \longmapsto 0$.
Next we state a proposition

$$
\begin{equation*}
\{[\emptyset, \emptyset]\} \mapsto 0=[\{\emptyset\},\{\emptyset\}: 1 \longmapsto 0 . \tag{3}
\end{equation*}
$$

A metric structure is said to be a metric space if:
for all elements a, b, c of the carrier of it holds $\rho(a, b)=0$ if and only if $a=b$ but $\rho(a, b)=\rho(b, a)$ and $\rho(a, c) \leq \rho(a, b)+\rho(b, c)$.

We now state three propositions:
(4) For every M being a metric structure holds M is a metric space if and only if for all elements a, b, c of the carrier of M holds $\rho(a, b)=0$ if and only if $a=b$ but $\rho(a, b)=\rho(b, a)$ and $\rho(a, c) \leq \rho(a, b)+\rho(b, c)$.
(5) For every metric space M and for all elements a, b of the carrier of M holds $\rho(a, b)=\rho(b, a)$.
(6) For every metric space M and for all elements a, b, c of the carrier of M holds $\rho(a, c) \leq \rho(a, b)+\rho(b, c)$.
In the sequel $P M$ denotes a metric space and p_{1}, p_{2} denote elements of the carrier of $P M$. Next we state a proposition
(7) $0 \leq \rho\left(p_{1}, p_{2}\right)$.

Let A be a non-empty set. The discrete metric of A yielding a function from $[A, A:]$ into \mathbb{R}, is defined by:
for all elements x, y of A holds (the discrete metric of $A)(x, x)=0$ but if $x \neq y$, then (the discrete metric of $A)(x, y)=1$.

In the sequel A denotes a non-empty set and x, y denote elements of A. Next we state two propositions:
(8) (The discrete metric of $A)(x, x)=0$.
(9) If $x \neq y$, then (the discrete metric of $A)(x, y)=1$.

Let A be a non-empty set. The discrete space on A yielding a metric space, is defined as follows:
the discrete space on $A=\langle A$, the discrete metric of $A\rangle$.
In the sequel x will be an element of \mathbb{R}. Let us consider x. The functor @ x yielding a real number, is defined by:
$@ x=x$.
Next we state a proposition
(10) $\quad x=@ x$.

The function $\rho_{\mathbb{R}}$ from : $\left.\mathbb{R}, \mathbb{R}:\right]$ into \mathbb{R} is defined as follows:
for all elements x, y of \mathbb{R} holds $\rho_{\mathbb{R}}(x, y)=|@ x-@ y|$.
Next we state several propositions:
(11) For every function F from $: \mathbb{R}, \mathbb{R}:]$ into \mathbb{R} holds $F=\rho_{\mathbb{R}}$ if and only if for all elements x, y of \mathbb{R} holds $F(x, y)=|@ x-@ y|$.

For all real numbers x, y holds $\rho_{\mathbb{R}}(x, y)=|x-y|$.
For all elements x, y of \mathbb{R} holds $\rho_{\mathbb{R}}(x, y)=0$ if and only if $x=y$.
For all elements x, y of \mathbb{R} holds $\rho_{\mathbb{R}}(x, y)=\rho_{\mathbb{R}}(y, x)$.
For all elements x, y, z of \mathbb{R} holds $\rho_{\mathbb{R}}(x, y) \leq \rho_{\mathbb{R}}(x, z)+\rho_{\mathbb{R}}(z, y)$.
The metric space of real numbers a metric space is defined as follows:
the metric space of real numbers $=\left\langle\mathbb{R}, \rho_{\mathbb{R}}\right\rangle$.
Let M be a metric structure, and let p be an element of the carrier of M, and let r be a real number. The functor $\operatorname{Ball}(p, r)$ yielding a subset of the carrier of M, is defined as follows:
$\operatorname{Ball}(p, r)=\{q: \rho(p, q)<r\}$.
We now state a proposition
(16) For every M being a metric structure and for every element p of the carrier of M and for every real number $r \operatorname{holds} \operatorname{Ball}(p, r)=\{q: \rho(p, q)<$ $r\}$.
Let M be a metric structure, and let p be an element of the carrier of M, and let r be a real number. The functor $\overline{\operatorname{Ball}}(p, r)$ yields a subset of the carrier of M and is defined as follows:
$\overline{\operatorname{Ball}}(p, r)=\{q: \rho(p, q) \leq r\}$.
We now state a proposition
(17) For every M being a metric structure and for every element p of the carrier of M and for every real number r holds $\overline{\operatorname{Ball}}(p, r)=\{q: \rho(p, q) \leq$ $r\}$.
Let M be a metric structure, and let p be an element of the carrier of M, and let r be a real number. The functor $\operatorname{Sphere}(p, r)$ yielding a subset of the carrier of M, is defined by:
$\operatorname{Sphere}(p, r)=\{q: \rho(p, q)=r\}$.
Next we state several propositions:
(18) For every M being a metric structure and for every element p of the carrier of M and for every real number r holds $\operatorname{Sphere}(p, r)=\{q: \rho(p, q)=$ $r\}$.
(19) For every M being a metric structure and for all elements p, x of the carrier of M and for every real number $r \operatorname{holds} x \in \operatorname{Ball}(p, r)$ if and only if $\rho(p, x)<r$.
(20) For every M being a metric structure and for all elements p, x of the carrier of M and for every real number r holds $x \in \overline{\operatorname{Ball}}(p, r)$ if and only if $\rho(p, x) \leq r$.
(21) For every M being a metric structure and for all elements p, x of the carrier of M and for every real number r holds $x \in \operatorname{Sphere}(p, r)$ if and only if $\rho(p, x)=r$.
(22) For every M being a metric structure and for every element p of the carrier of M and for every real number $r \operatorname{holds} \operatorname{Ball}(p, r) \subseteq \overline{\operatorname{Ball}}(p, r)$.
(23) For every M being a metric structure and for every element p of the carrier of M and for every real number r holds $\operatorname{Sphere}(p, r) \subseteq \overline{\operatorname{Ball}}(p, r)$.
(24) For every M being a metric structure and for every element p of the carrier of M and for every real number r holds $\operatorname{Sphere}(p, r) \cup \operatorname{Ball}(p, r)=$ $\overline{\operatorname{Ball}}(p, r)$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175180, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[4] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[5] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[6] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[7] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Ordered Affine Spaces Defined in Terms of Directed Parallelity - part I ${ }^{1}$

Henryk Oryszczyszyn ${ }^{2}$
Warsaw University
Białystok

Krzysztof Prażmowski ${ }^{3}$
Warsaw University
Białystok

Abstract

Summary. In the article we consider several geometrical relations in given arbitrary ordered affine space defined in terms of directed parallelity. In particular we introduce the notions of the nondirected parallelity of segments, of collinearity, and the betweenness relation determined by the given relation of directed parallelity. The obtained structures satisfy commonly accepted axioms for affine spaces. At the end of the article we introduce a formal definition of affine space and affine plane (defined in terms of parallelity of segments).

MML Identifier: DIRAF.

The notation and terminology used in this paper are introduced in the articles [2] and [1]. In the sequel X is a non-empty set. Let us consider X, and let R be a relation on $: X, X:$. The functor $\lambda(R)$ yielding a relation on $: X, X:$, is defined as follows:
for all elements a, b, c, d of X holds $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in \lambda(R)$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in R$ or $\langle\langle a, b\rangle,\langle d, c\rangle\rangle \in R$.

One can prove the following two propositions:
(1) For all relations R, R^{\prime} on $\left\{X, X\right.$: holds $R^{\prime}=\lambda(R)$ if and only if for all elements a, b, c, d of X holds $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in R^{\prime}$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in R$ or $\langle\langle a, b\rangle,\langle d, c\rangle\rangle \in R$.
(2) For every relation R on $: X, X:$ and for all elements a, b, c, d of X holds $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in \lambda(R)$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in R$ or $\langle\langle a, b\rangle,\langle d, c\rangle\rangle \in$ R.

[^17]Let S be an affine structure. The functor $\Lambda(S)$ yielding an affine structure, is defined as follows:
$\Lambda(S)=\langle$ the points of $S, \lambda($ the congruence of $S)\rangle$.
One can prove the following proposition
(3) For all S, S^{\prime} being affine structures holds $\Lambda(S)=S^{\prime}$ if and only if $S^{\prime}=\langle$ the points of $S, \lambda($ the congruence of $S)\rangle$.
We adopt the following convention: S will be an ordered affine space and $a, b, c, d, x, y, z, t, u, w$ will be elements of the points of S. The following propositions are true:
(4) $x, y \Uparrow x, y$.
(5) If $x, y \Uparrow z, t$, then $y, x \Uparrow t, z$ and $z, t \Uparrow x, y$ and $t, z \Uparrow y, x$.
(6) If $z \neq t$ and $x, y \Uparrow z, t$ and $z, t \Uparrow u, w$, then $x, y \Uparrow u, w$.
(7) $\quad x, x \Uparrow y, z$ and $y, z \Uparrow x, x$.
(8) If $x, y \Uparrow z, t$ and $x, y \Uparrow t, z$, then $x=y$ or $z=t$.
(9) $\quad x, y \Uparrow x, z$ if and only if $x, y \Uparrow y, z$ or $x, z \Uparrow z, y$.

Let us consider S, a, b, c. The predicate $\mathbf{B}(a, b, c)$ is defined as follows:
$a, b \Uparrow b, c$.
The following propositions are true:
(10) $\mathbf{B}(a, b, c)$ if and only if $a, b \Uparrow b, c$.
(11) $x, y \Uparrow x, z$ if and only if $\mathbf{B}(x, y, z)$ or $\mathbf{B}(x, z, y)$.
(12) If $\mathbf{B}(a, b, a)$, then $a=b$.
(13) If $\mathbf{B}(a, b, c)$, then $\mathbf{B}(c, b, a)$.
(14) $\quad \mathbf{B}(x, x, y)$ and $\mathbf{B}(x, y, y)$.
(15) If $\mathbf{B}(a, b, c)$ and $\mathbf{B}(a, c, d)$, then $\mathbf{B}(b, c, d)$.
(16) If $b \neq c$ and $\mathbf{B}(a, b, c)$ and $\mathbf{B}(b, c, d)$, then $\mathbf{B}(a, c, d)$.
(17) There exists z such that $\mathbf{B}(x, y, z)$ and $y \neq z$.
(18) If $\mathbf{B}(x, y, z)$ and $\mathbf{B}(y, x, z)$, then $x=y$.
(19) If $x \neq y$ and $\mathbf{B}(x, y, z)$ and $\mathbf{B}(x, y, t)$, then $\mathbf{B}(y, z, t)$ or $\mathbf{B}(y, t, z)$.
(20) If $x \neq y$ and $\mathbf{B}(x, y, z)$ and $\mathbf{B}(x, y, t)$, then $\mathbf{B}(x, z, t)$ or $\mathbf{B}(x, t, z)$.
(21) If $\mathbf{B}(x, y, t)$ and $\mathbf{B}(x, z, t)$, then $\mathbf{B}(x, y, z)$ or $\mathbf{B}(x, z, y)$.

Let us consider S, a, b, c, d. The predicate $a, b \| c, d$ is defined as follows: $a, b \Uparrow c, d$ or $a, b \| d, c$.
One can prove the following propositions:
(22) $a, b \| c, d$ if and only if $a, b \| c, d$ or $a, b \| d, c$.
(23) $a, b \| c, d$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in \lambda($ the congruence of $S)$.
(24) $\quad x, y \| y, x$ and $x, y \| x, y$.
(26) If $x, y \| x, z$, then $y, x \| y, z$.

If $x, y \| z, t$, then $x, y \| t, z$ and $y, x \| z, t$ and $y, x \| t, z$ and $z, t \| x, y$ and $z, t \| y, x$ and $t, z \| x, y$ and $t, z \| y, x$.
(i) $a \neq b$,
(ii) $a, b \| x, y$ and $a, b \| z, t$ or $a, b \| x, y$ and $z, t \| a, b$ or $x, y \| a, b$ and $z, t \| a, b$ or $x, y \| a, b$ and $a, b \| z, t$.
Then $x, y \| z, t$.
(29) There exist x, y, z such that x, y 妆 x, z.
(30) There exists t such that $x, z \| y, t$ and $y \neq t$.
(31) There exists t such that $x, y \| z, t$ and $x, z \| y, t$.
(32) If $z, x \| x, t$ and $x \neq z$, then there exists u such that $y, x \| x, u$ and $y, z \| t, u$.
Let us consider S, a, b, c. The predicate $\mathbf{L}(a, b, c)$ is defined as follows:
$a, b \| a, c$.
One can prove the following propositions:
(33) $\mathbf{L}(a, b, c)$ if and only if $a, b \| a, c$.
(34) If $\mathbf{B}(a, b, c)$, then $\mathbf{L}(a, b, c)$.
(35) If $\mathbf{L}(a, b, c)$, then $\mathbf{B}(a, b, c)$ or $\mathbf{B}(b, a, c)$ or $\mathbf{B}(a, c, b)$.
(36) If $\mathbf{L}(x, y, z)$, then $\mathbf{L}(x, z, y)$ and $\mathbf{L}(y, x, z)$ and $\mathbf{L}(y, z, x)$ and $\mathbf{L}(z, x, y)$ and $\mathbf{L}(z, y, x)$.
(37) $\mathbf{L}(x, x, y)$ and $\mathbf{L}(x, y, y)$ and $\mathbf{L}(x, y, x)$.
(38) If $x \neq y$ and $\mathbf{L}(x, y, z)$ and $\mathbf{L}(x, y, t)$ and $\mathbf{L}(x, y, u)$, then $\mathbf{L}(z, t, u)$.
(39) If $x \neq y$ and $\mathbf{L}(x, y, z)$ and $x, y \| z, t$, then $\mathbf{L}(x, y, t)$.
(40) If $\mathbf{L}(x, y, z)$ and $\mathbf{L}(x, y, t)$, then $x, y \| z, t$.
(41) If $u \neq z$ and $\mathbf{L}(x, y, u)$ and $\mathbf{L}(x, y, z)$ and $\mathbf{L}(u, z, w)$, then $\mathbf{L}(x, y, w)$.
(42) There exist x, y, z such that not $\mathbf{L}(x, y, z)$.
(43) If $x \neq y$, then there exists z such that not $\mathbf{L}(x, y, z)$.

In the sequel $A S$ will denote an affine structure. Let us consider $A S$, and let a, b, c, d be elements of the points of $A S$. The predicate $a, b \| c, d$ is defined as follows:
$\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.
The following propositions are true:
(44) For all elements a, b, c, d of the points of $A S$ holds $a, b \| c, d$ if and only if $\langle\langle a, b\rangle,\langle c, d\rangle\rangle \in$ the congruence of $A S$.
(45) If $A S=\Lambda(S)$, then for all elements a, b, c, d of the points of S and for all elements $a^{\prime}, b^{\prime}, c^{\prime}, d^{\prime}$ of the points of $A S$ such that $a=a^{\prime}$ and $b=b^{\prime}$ and $c=c^{\prime}$ and $d=d^{\prime}$ holds $a^{\prime}, b^{\prime} \| c^{\prime}, d^{\prime}$ if and only if $a, b \| c, d$.
(46) Suppose $A S=\Lambda(S)$. Then
(i) there exist elements x, y of the points of $A S$ such that $x \neq y$,
(ii) for all elements x, y, z, t, u, w of the points of $A S$ holds $x, y \| y, x$ and $x, y \| z, z$ but if $x \neq y$ and $x, y \| z, t$ and $x, y \| u, w$, then $z, t \| u, w$ but if $x, y \| x, z$, then $y, x \| y, z$,
(iii) there exist elements x, y, z of the points of $A S$ such that $x, y \nVdash x, z$,
(iv) for every elements x, y, z of the points of $A S$ there exists an element t of the points of $A S$ such that $x, z \| y, t$ and $y \neq t$,
(v) for every elements x, y, z of the points of $A S$ there exists an element t of the points of $A S$ such that $x, y \| z, t$ and $x, z \| y, t$,
(vi) for all elements x, y, z, t of the points of $A S$ such that $z, x \| x, t$ and $x \neq z$ there exists an element u of the points of $A S$ such that $y, x \| x, u$ and $y, z \| t, u$.
An affine structure is said to be an affine space if:
(i) there exist elements x, y of the points of it such that $x \neq y$,
(ii) for all elements x, y, z, t, u, w of the points of it holds $x, y \| y, x$ and $x, y \| z, z$ but if $x \neq y$ and $x, y \| z, t$ and $x, y \| u, w$, then $z, t \| u, w$ but if $x, y \| x, z$, then $y, x \| y, z$,
(iii) there exist elements x, y, z of the points of it such that $x, y \nmid x, z$,
(iv) for every elements x, y, z of the points of it there exists an element t of the points of it such that $x, z \| y, t$ and $y \neq t$,
(v) for every elements x, y, z of the points of it there exists an element t of the points of it such that $x, y \| z, t$ and $x, z \| y, t$,
(vi) for all elements x, y, z, t of the points of it such that $z, x \| x, t$ and $x \neq z$ there exists an element u of the points of it such that $y, x \| x, u$ and $y, z \| t, u$.

The following three propositions are true:
(47) Let $A S$ be an affine space. Then
(i) there exist elements x, y of the points of $A S$ such that $x \neq y$,
(ii) for all elements x, y, z, t, u, w of the points of $A S$ holds $x, y \| y, x$ and $x, y \| z, z$ but if $x \neq y$ and $x, y \| z, t$ and $x, y \| u, w$, then $z, t \| u, w$ but if $x, y \| x, z$, then $y, x \| y, z$,
(iii) there exist elements x, y, z of the points of $A S$ such that $x, y \nVdash x, z$,
(iv) for every elements x, y, z of the points of $A S$ there exists an element t of the points of $A S$ such that $x, z \| y, t$ and $y \neq t$,
(v) for every elements x, y, z of the points of $A S$ there exists an element t of the points of $A S$ such that $x, y \| z, t$ and $x, z \| y, t$,
(vi) for all elements x, y, z, t of the points of $A S$ such that $z, x \| x, t$ and $x \neq z$ there exists an element u of the points of $A S$ such that $y, x \| x, u$ and $y, z \| t, u$.
(48) $\quad \Lambda(S)$ is an affine space.
(49) The following conditions are equivalent:
(i) there exist elements x, y of the points of $A S$ such that $x \neq y$ and for all elements x, y, z, t, u, w of the points of $A S$ holds $x, y \| y, x$ and $x, y \| z, z$ but if $x \neq y$ and $x, y \| z, t$ and $x, y \| u, w$, then $z, t \| u, w$ but if $x, y \| x, z$, then $y, x \| y, z$ and there exist elements x, y, z of the points of $A S$ such that $x, y \nmid x, z$ and for every elements x, y, z of the points of $A S$ there exists an element t of the points of $A S$ such that $x, z \| y, t$ and $y \neq t$ and for every elements x, y, z of the points of $A S$ there exists an element t of the points of $A S$ such that $x, y \| z, t$ and $x, z \| y, t$ and for all elements x, y, z, t of the points of $A S$ such that $z, x \| x, t$ and $x \neq z$
there exists an element u of the points of $A S$ such that $y, x \| x, u$ and $y, z \| t, u$,
(ii) $A S$ is an affine space.

We follow the rules: S will be an ordered affine plane and x, y, z, t, u will be elements of the points of S. We now state two propositions:
(50) If $x, y \nmid z, t$, then there exists u such that $x, y \| x, u$ and $z, t \| z, u$.
(51) If $A S=\Lambda(S)$, then for all elements x, y, z, t of the points of $A S$ such that $x, y \nVdash z, t$ there exists an element u of the points of $A S$ such that $x, y \| x, u$ and $z, t \| z, u$.
An affine space is said to be an affine plane if:
for all elements x, y, z, t of the points of it such that $x, y \nVdash z, t$ there exists an element u of the points of it such that $x, y \| x, u$ and $z, t \| z, u$.

In the sequel $A S P$ will denote an affine space. Next we state three propositions:
(52) $A S P$ is an affine plane if and only if for all elements x, y, z, t of the points of $A S P$ such that $x, y \nVdash z, t$ there exists an element u of the points of $A S P$ such that $x, y \| x, u$ and $z, t \| z, u$.
(53) $\quad \Lambda(S)$ is an affine plane.
(54) $A S$ is an affine plane if and only if the following conditions are satisfied:
(i) there exist elements x, y of the points of $A S$ such that $x \neq y$,
(ii) for all elements x, y, z, t, u, w of the points of $A S$ holds $x, y \| y, x$ and $x, y \| z, z$ but if $x \neq y$ and $x, y \| z, t$ and $x, y \| u, w$, then $z, t \| u, w$ but if $x, y \| x, z$, then $y, x \| y, z$,
(iii) there exist elements x, y, z of the points of $A S$ such that $x, y \nVdash x, z$,
(iv) for every elements x, y, z of the points of $A S$ there exists an element t of the points of $A S$ such that $x, z \| y, t$ and $y \neq t$,
(v) for every elements x, y, z of the points of $A S$ there exists an element t of the points of $A S$ such that $x, y \| z, t$ and $x, z \| y, t$,
(vi) for all elements x, y, z, t of the points of $A S$ such that $z, x \| x, t$ and $x \neq z$ there exists an element u of the points of $A S$ such that $y, x \| x, u$ and $y, z \| t, u$,
(vii) for all elements x, y, z, t of the points of $A S$ such that $x, y \nVdash z, t$ there exists an element u of the points of $A S$ such that $x, y \| x, u$ and $z, t \| z, u$.

References

[1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.

Parallelity and Lines in Affine Spaces ${ }^{1}$

Henryk Oryszczyszyn
Warsaw University
Białystok

Krzysztof Prażmowski
Warsaw University
Białystok

Abstract

Summary. In the article we introduce basic notions concerning affine spaces and investigate their fundamental properties. We define the function which to every nondegenerate pair of points assigns the line joining them and we extend the relation of parallelity to a relation between segments and lines, and between lines.

MML Identifier: AFF_1.

The papers [3], [1], and [2] provide the notation and terminology for this paper. We adopt the following convention: $A S$ will be an affine space and $a, a^{\prime}, b, b^{\prime}$, $c, d, o, p, q, x, y, z, t, u, w$ will be elements of the points of $A S$. One can prove the following propositions:
(1) There exist elements x, y of the points of $A S$ such that $x \neq y$.
(2) $x, y \| y, x$ and $x, y \| z, z$.
(3) If $x \neq y$ and $x, y \| z, t$ and $x, y \| u, w$, then $z, t \| u, w$.
(4) If $x, y \| x, z$, then $y, x \| y, z$.
(5) There exist x, y, z such that $x, y \nVdash x, z$.
(6) There exists t such that $x, z \| y, t$ and $y \neq t$.
(7) There exists t such that $x, y \| z, t$ and $x, z \| y, t$.
(8) If $z, x \| x, t$ and $x \neq z$, then there exists u such that $y, x \| x, u$ and $y, z \| t, u$.
Let us consider $A S, a, b, c$. The predicate $\mathbf{L}(a, b, c)$ is defined as follows:
$a, b \| a, c$.
The following propositions are true:
(9) $\mathbf{L}(a, b, c)$ if and only if $a, b \| a, c$.
(10) For every a there exists b such that $a \neq b$.
(11) $\quad x, y \| y, x$ and $x, y \| x, y$.

[^18]$x, y \| z, z$ and $z, z \| x, y$.
If $x, y \| z, t$, then $x, y \| t, z$ and $y, x \| z, t$ and $y, x \| t, z$ and $z, t \| x, y$ and $z, t \| y, x$ and $t, z \| x, y$ and $t, z \| y, x$.
(14) Suppose that
(i) $a \neq b$,
(ii) $\quad a, b \| x, y$ and $a, b \| z, t$ or $a, b \| x, y$ and $z, t \| a, b$ or $x, y \| a, b$ and $z, t \| a, b$ or $x, y \| a, b$ and $a, b \| z, t$. Then $x, y \| z, t$.
(15) If $\mathbf{L}(x, y, z)$, then $\mathbf{L}(x, z, y)$ and $\mathbf{L}(y, x, z)$ and $\mathbf{L}(y, z, x)$ and $\mathbf{L}(z, x, y)$ and $\mathbf{L}(z, y, x)$.
(17) If $x \neq y$ and $\mathbf{L}(x, y, z)$ and $\mathbf{L}(x, y, t)$ and $\mathbf{L}(x, y, u)$, then $\mathbf{L}(z, t, u)$. If $x \neq y$ and $\mathbf{L}(x, y, z)$ and $x, y \| z, t$, then $\mathbf{L}(x, y, t)$.
(19) If $\mathbf{L}(x, y, z)$ and $\mathbf{L}(x, y, t)$, then $x, y \| z, t$.
(20) If $u \neq z$ and $\mathbf{L}(x, y, u)$ and $\mathbf{L}(x, y, z)$ and $\mathbf{L}(u, z, w)$, then $\mathbf{L}(x, y, w)$.
(21) There exist x, y, z such that not $\mathbf{L}(x, y, z)$.
(22) If $x \neq y$, then there exists z such that not $\mathbf{L}(x, y, z)$.
(23) If not $\mathbf{L}(o, a, b)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $a, b \| a, b^{\prime}$, then $b=b^{\prime}$.

Let us consider $A S, a, b$. The functor Line (a, b) yielding a subset of the points of $A S$, is defined as follows:
for every x holds $x \in \operatorname{Line}(a, b)$ if and only if $\mathbf{L}(a, b, x)$.
In the sequel A, C, D, K are subsets of the points of $A S$. We now state several propositions:
(24) $\quad A=\operatorname{Line}(a, b)$ if and only if for every x holds $x \in A$ if and only if $\mathbf{L}(a, b, x)$.
(25) $\operatorname{Line}(a, b)=\operatorname{Line}(b, a)$.
(26) $\quad a \in \operatorname{Line}(a, b)$ and $b \in \operatorname{Line}(a, b)$.
(27) If $c \in \operatorname{Line}(a, b)$ and $d \in \operatorname{Line}(a, b)$ and $c \neq d$, then $\operatorname{Line}(c, d) \subseteq$ Line (a, b).
(28) If $c \in \operatorname{Line}(a, b)$ and $d \in \operatorname{Line}(a, b)$ and $a \neq b$, then $\operatorname{Line}(a, b) \subseteq$ Line (c, d).
Let us consider $A S, A$. We say that A is a line if and only if:
there exist a, b such that $a \neq b$ and $A=\operatorname{Line}(a, b)$.
One can prove the following propositions:
(29) A is a line if and only if there exist a, b such that $a \neq b$ and $A=$ Line (a, b).
(30) For all a, b, A, C such that A is a line and C is a line and $a \in A$ and $b \in A$ and $a \in C$ and $b \in C$ holds $a=b$ or $A=C$.
(31) If A is a line, then there exist a, b such that $a \in A$ and $b \in A$ and $a \neq b$.

$$
\begin{equation*}
\text { If } A \text { is a line and } a \in A \text {, then there exists } b \text { such that } a \neq b \text { and } b \in A \text {. } \tag{32}
\end{equation*}
$$

$\mathbf{L}(a, b, c)$ if and only if there exists A such that A is a line and $a \in A$ and $b \in A$ and $c \in A$.
Let us consider $A S, a, b, A$. The predicate $a, b \| A$ is defined by:
there exist c, d such that $c \neq d$ and $A=\operatorname{Line}(c, d)$ and $a, b \| c, d$.
The following proposition is true
(34) $a, b \| A$ if and only if there exist c, d such that $c \neq d$ and $A=\operatorname{Line}(c, d)$ and $a, b \| c, d$.
Let us consider $A S, A, C$. The predicate $A \| C$ is defined as follows:
there exist a, b such that $A=\operatorname{Line}(a, b)$ and $a \neq b$ and $a, b \| C$.
We now state a number of propositions:
(35) $\quad A \| C$ if and only if there exist a, b such that $A=\operatorname{Line}(a, b)$ and $a \neq b$ and $a, b \| C$.
(36) If $c \in \operatorname{Line}(a, b)$ and $a \neq b$, then $d \in \operatorname{Line}(a, b)$ if and only if $a, b \| c, d$.
(37) If A is a line and $a \in A$, then $b \in A$ if and only if $a, b \| A$.
(38) $a \neq b$ and $A=\operatorname{Line}(a, b)$ if and only if A is a line and $a \in A$ and $b \in A$ and $a \neq b$.
(39) If A is a line and $a \in A$ and $b \in A$ and $a \neq b$ and $\mathbf{L}(a, b, x)$, then $x \in A$.
(40) If there exist a, b such that $a, b \| A$, then A is a line.
(41) If $c \in A$ and $d \in A$ and A is a line and $c \neq d$, then $a, b \| A$ if and only if $a, b \| c, d$.
(42) If $c \neq d$ and $a, b \| c, d$, then $a, b \| \operatorname{Line}(c, d)$.
(43) If $a \neq b$, then $a, b \| \operatorname{Line}(a, b)$.
(44) If A is a line, then $a, b \| A$ if and only if there exist c, d such that $c \neq d$ and $c \in A$ and $d \in A$ and $a, b \| c, d$.
(45) If A is a line and $a, b \| A$ and $c, d \| A$, then $a, b \| c, d$.
(46) If $a, b \| A$ and $a, b \| p, q$ and $a \neq b$, then $p, q \| A$.
(47) If A is a line, then $a, a \| A$.
(48) If $a, b \| A$, then $b, a \| A$.
(49) If $a, b \| A$ and $a \notin A$, then $b \notin A$.
(50) If $A \| C$, then A is a line and C is a line.
(51) $\quad A \| C$ if and only if there exist a, b, c, d such that $a \neq b$ and $c \neq d$ and $a, b \| c, d$ and $A=\operatorname{Line}(a, b)$ and $C=\operatorname{Line}(c, d)$.
(52) If A is a line and C is a line and $a \in A$ and $b \in A$ and $c \in C$ and $d \in C$ and $a \neq b$ and $c \neq d$, then $A \| C$ if and only if $a, b \| c, d$.
(53) If $a \in A$ and $b \in A$ and $c \in C$ and $d \in C$ and $A \| C$, then $a, b \| c, d$.
(54) If $a \in A$ and $b \in A$ and $A \| C$, then $a, b \| C$.
(55) If A is a line, then $A \| A$.
(56) If $A \| C$, then $C \| A$.

$$
\begin{equation*}
\text { If } a, b \| A \text { and } A \| C \text {, then } a, b \| C \text {. } \tag{57}
\end{equation*}
$$

(58) If $A \| C$ and $C \| D$ or $A \| C$ and $D \| C$ or $C \| A$ and $C \| D$ or $C \| A$ and $D \| C$, then $A \| D$.
(59) If $A \| C$ and $p \in A$ and $p \in C$, then $A=C$.
(60) If $x \in K$ and $a \notin K$ and $a, b \| K$, then $a=b$ or not $\mathbf{L}(x, a, b)$.
(61) If $a, b \| K$ and $a^{\prime}, b^{\prime} \| K$ and $\mathbf{L}\left(p, a, a^{\prime}\right)$ and $\mathbf{L}\left(p, b, b^{\prime}\right)$ and $p \in K$ and $a \notin K$ and $a=b$, then $a^{\prime}=b^{\prime}$.
(62) If A is a line and $a \in A$ and $b \in A$ and $c \in A$ and $a \neq b$ and $a, b \| c, d$, then $d \in A$.
(63) For all a, A such that A is a line there exists C such that $a \in C$ and $A \| C$.
(64) If $A \| C$ and $A \| D$ and $p \in C$ and $p \in D$, then $C=D$.
(65) If A is a line and $a \in A$ and $b \in A$ and $c \in A$ and $d \in A$, then $a, b \| c, d$.
(66) If A is a line and $a \in A$ and $b \in A$, then $a, b \| A$.
(67) If $a, b \| A$ and $a, b \| C$ and $a \neq b$, then $A \| C$.
(68) If not $\mathbf{L}(o, a, b)$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $a, b \| a^{\prime}, b^{\prime}$ and $a^{\prime}=b^{\prime}$, then $a^{\prime}=o$ and $b^{\prime}=o$.
(69) If not $\mathbf{L}(o, a, b)$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $a, b \| a^{\prime}, b^{\prime}$ and $a^{\prime}=o$, then $b^{\prime}=o$.
(70) If not $\mathbf{L}(o, a, b)$ and $\mathbf{L}\left(o, a, a^{\prime}\right)$ and $\mathbf{L}\left(o, b, b^{\prime}\right)$ and $\mathbf{L}(o, b, x)$ and $a, b \|$ a^{\prime}, b^{\prime} and $a, b \| a^{\prime}, x$, then $b^{\prime}=x$.
(71) For all a, b, A such that A is a line and $a \in A$ and $b \in A$ and $a \neq b$ holds $A=\operatorname{Line}(a, b)$.
We adopt the following convention: $A P$ will be an affine plane, a, b, c, d, x, p will be elements of the points of $A P$, and A, C will be subsets of the points of $A P$. One can prove the following three propositions:
(72) If A is a line and C is a line and $A \nVdash C$, then there exists x such that $x \in A$ and $x \in C$.
(73) If A is a line and $a, b \nVdash A$, then there exists x such that $x \in A$ and $\mathbf{L}(a, b, x)$.
(74) If $a, b \nmid c, d$, then there exists p such that $\mathbf{L}(a, b, p)$ and $\mathbf{L}(c, d, p)$.

References

[1] Henryk Oryszczyszyn and Krzysztof Prażmowski. Analytical ordered affine spaces. Formalized Mathematics, 1(3):601-605, 1990.
[2] Henryk Oryszczyszyn and Krzysztof Prażmowski. Ordered affine spaces defined in terms of directed parallelity - part i. Formalized Mathematics, $1(\mathbf{3}): 611-615,1990$.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received May 4, 1990

Index of MML Identifiers

AFF_1 617
ANALOAF 601
CARD_2 543
CARD_3 589
CLASSES1 563
CLASSES2 595
COMPLEX1 507
DIRAF 611
EQREL_1 441
FINSEQ_2 529
FINSEQ_3 569
FINSEQ_4 575
FRAENKEL 495
FUNCSDOM 555
FUNCT_4 521
FUNCT_5 537
INT_1 501
METRIC_1 607
MIDSP_1 483
ORDINAL3 515
PARSP_2 549
QC_LANG2 451
QC_LANG3 459
QMAX_1 489
REALSET1 433
RLVECT_2 581
SEQ_4 477
SEQM_3 471
SQUARE_1 445
WELLSET1 431

Contents

Preface 429
Zermelo's Theorem
By Bogdan Nowak and SŁawomir BiaŁecki 431
Group and Field Definitions
By Józef BiaŁas 433
Equivalence Relations and Classes of Abstraction By Konrad Raczkowski and Pawee Sadowski 441
Some Properties of Real Numbers
By Andrzej Trybulec and Czeseaw Byliński 445
Connectives and Subformulae of the First Order Language By Grzegorz Bancerek 451
Variables in Formulae of the First Order Language
By Czestaw Byliński and Grzegorz Bancerek 459
Monotone Real Sequences. Subsequences
By JarosŁaw Kotowicz 471
Convergent Real Sequences. Upper and Lower Bound of Sets of Real Numbers
By JarosŁaw Kotowicz 477
Midpoint algebras
By Micha乇 Muzalewski 483
The Fundamental Logic Structure in Quantum Mechanics
By Pawee Sadowski et al. 489
Function Domains and Frænkel Operator
By Andrzej Trybulec 495
Integers
By Micha乇 J. Trybulec 501
The Complex Numbers
By CzesŁaw Byliński 507
Ordinal Arithmetics
By Grzegorz Bancerek 515
The Modification of a Function by a Function and the Iteration of the Composition of a Function
By Czeseaw Byliński 521
Finite Sequences and Tuples of Elements of a Non-empty Sets By CzesŁaw Byliński 529
Curried and Uncurried Functions By Grzegorz Bancerek 537
Cardinal Arithmetics
By Grzegorz Bancerek 543
Fano-Desargues Parallelity Spaces
By Eugeniusz Kusak and Wojciech Leończuk 549
Real Functions Spaces
By Henryk Oryszczyszyn et al. 555
Tarski's Classes and Ranks
By Grzegorz Bancerek 563
Non-contiguous Substrings and One-to-one Finite Sequences By Wojciech A. Trybulec 569
Pigeon Hole Principle
By Wojciech A. Trybulec 575
Linear Combinations in Real Linear Space
By Wojciech A. Trybulec 581
König's Theorem
By Grzegorz Bancerek 589
Universal Classes
By Bogdan Nowak and Grzegorz Bancerek 595
Analytical Ordered Affine SpacesBy Henryk Oryszczyszyn et al.601
Metric Spaces
By StanisŁawa Kanas et al. 607
Ordered Affine Spaces Defined in Terms of Directed Parallelity - part I
By Henryk Oryszczyszyn et al. 611
Parallelity and Lines in Affine Spaces
By Henryk Oryszczyszyn et al. 617
Index of MML Identifiers 622

[^0]: ${ }^{1}$ Supported by RPBP III. 24 C 9

[^1]: ${ }^{1}$ Supported by RPBP III. 24 C 9

[^2]: ${ }^{1}$ Supported by RPBP III. 24 C8

[^3]: ${ }^{1}$ Supported by RPBP III. 24 C 1

[^4]: ${ }^{1}$ Partially supported by RPBP III.24.C1

[^5]: ${ }^{1}$ Partially supported by RPBP III.24.C1

[^6]: ${ }^{1}$ Supported by RPBP III. 24

[^7]: ${ }^{1}$ Supported by RPBP III. 24

[^8]: ${ }^{1}$ Supported by RPBP.III-24.C6.

[^9]: ${ }^{1}$ Supported by RPBP III. 24 C1

[^10]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^11]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^12]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^13]: ${ }^{1}$ Supported by RPBP III. 24

[^14]: ${ }^{1}$ Supported by RPBP.III-24.C2

[^15]: ${ }^{1}$ Supported by RPBP.III.24-C6

[^16]: ${ }^{1}$ Supported by RPBP．III．24－B． 5

[^17]: ${ }^{1}$ Supported by RPBP.III.24-C. 2
 ${ }^{2}$ Supported by RPBP.III-24.C2.
 ${ }^{3}$ Supported by RPBP.III-24.C2.

[^18]: ${ }^{1}$ Supported by RPBP.III.24-C. 2

