
Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Tarski Grothendieck Set Theory

By Andrzej Trybulec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Built-in Concepts

By Andrzej Trybulec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Boolean Properties of Sets

By Zinaida Trybulec and Halina Świe
‘
czkowska . . . . . . . . . . . 17

Enumerated Sets

By Andrzej Trybulec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Basic Properties of Real Numbers

By Krzysztof Hryniewiecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

The Fundamental Properties of Natural Numbers

By Grzegorz Bancerek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Some Basic Properties of Sets

By Czes law Byliński . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Functions and Their Basic Properties

By Czes law Byliński . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Properties of Subsets

By Zinaida Trybulec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Relations and Their Basic Properties

By Edmund Woronowicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1



2 CONTENTS

Properties of Binary Relations

By Edmund Woronowicz and Anna Zalewska . . . . . . . . . . . . . . . 85

The Ordinal Numbers

By Grzegorz Bancerek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Tuples, Projections and Cartesian Products

By Andrzej Trybulec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Segments of Natural Numbers and Finite Sequences

By Grzegorz Bancerek and Krzysztof Hryniewiecki . . . . 107

Domains and Their Cartesian Products

By Andrzej Trybulec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

The Well Ordering Relations

By Grzegorz Bancerek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

A Model of ZF Set Theory Language

By Grzegorz Bancerek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

Families of Sets

By Beata Padlewska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Functions from a Set to a Set

By Czes law Byliński . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .153

Finite Sets

By Agata Darmochwa l . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Graphs of Functions.

By Czes law Byliński . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

Binary Operations

By Czes law Byliński . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

Relations Defined on Sets

By Edmund Woronowicz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

Boolean Domains

By Andrzej Trybulec and Agata Darmochwa l . . . . . . . . . . . . . . 187

Models and Satisfiability

By Grzegorz Bancerek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191



CONTENTS 3

The Contraction Lemma

By Grzegorz Bancerek . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

Axioms of Incidence

By Wojciech A. Trybulec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

Introduction to Lattice Theory

By Stanis law Żukowski . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Topological Spaces and Continuous Functions

By Beata Padlewska and Agata Darmochwa l . . . . . . . . . . . . . . . 223

Subsets of Topological Spaces

By Miros law Wysocki and Agata Darmochwa l . . . . . . . . . . . . . 231

Connected Spaces

By Beata Padlewska . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Basic Functions and Operations on Functions

By Czes law Byliński . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .245



4



Preface

In recent years, several projects have aimed at providing computer assistance for do-

ing mathematics. The project discussed here is called Mizar and concerns computer

oriented formalization of mathematics, begun in 1973. The author of the Mizar

language is Prof.Andrzej Trybulec (Warsaw University), who is also the leader of the

group which prepared the majority of implementations. The project original goal was to

design and implement a software environment to assist the process of preparing math-

ematical papers: the human writes mathematical texts and the machine verifies their

correctness.

Université Catholique de Louvain and Foundation Philippe le Hodey (both of Bel-

gium) has been conducting research related to the applications of the Mizar system since

1984. This research has involved an international group of mathematicians who first met

at the Mizar Summer Workshop in Louvain-la-Neuve (Belgium) in 1985. Of these, the

Polish group is the most active. These researchers cooperate within the framework of

the Mizar Users Group (MizUG).

The papers published in the consecutive issues of ”Formalized Mathematics (a com-

puter assisted approach)” constitute the Main Mizar Library (MML). The power of the

Mizar system lies in the automatic processing of cross–references among articles. This

is done by the continuous actualization of MML. Before the theorems and definitions

are included into the MML, they must be proved valid and correct. MML forms the

basis of a Knowledge Management System for Mathematics supplied with Mizar articles.

MML together with PC MIZAR are the systems for collecting, formalizing and verifying

mathematical knowledge. The latest, the most advanced version of Mizar is PC MIZAR

which together with MML runs on IBM PC under DOS 3.xx (implemented in Poland

under the direction of Prof.A.Trybulec).

In the current issue of ”Formalized Mathematics...” all the papers appear in chrono-

logical order, since they form the very beginning of MML. They concern both very general

and very specialized, narrow subjects. In the future we intend to classify the papers into

groups according to the mathematical domains i.e. foundations of mathematics, geome-

try, etc.

The MizTEX system, used for the automatic editing of this publication is constantly

being developed.

5



6

Finally, I would like to add that for MizUG members we also publish the technical

report ”Main Mizar Library”, containing the list of summaries of the articles; names of

the authors, titles of the articles and names of files; publicity – ranking of theorems and

articles as well as the list of contents of the articles so far published in the ”Formalized

Mathematics...”.

Roman Matuszewski



Introduction

The Mizar project started many years ago and, as it developed, the emphasis on its

different applications varied. It is therefore worthwhile to take this opportunity to recall

that one of the main applications originally considered was using Mizar articles as source

texts for mathematical publications. Of course, none of the following papers, or, rather,

their abstracts, fulfils that expectation. Neverthelless, they let us see how close or how

far are we still from our aim.In order to explain what exactly is published here it is

necessary to at least give an outline of the project itself.

The Mizar language is a strongly standarized mathematial language, or, if one prefers,

an extensively extended formalized language, for writing mathematical papers. Its struc-

ture allows for using a database; the final goal of the project is to provide a knowledge

management system for mathematics. Thus it is possible to write mathematical papers in

Mizar. They are usually 1000 - 2000 line texts corresponding to a short six- to nine-page

publication or to one chapter of a textbook.

An article consists of two parts. The first, usually very short, is the description of the

environment. It contains a list of publications where the notions used in the paper were

introduced or where the theorems we refer to were proved, and other similar information.

The second part is the text proper, where we define new notions, prove the correctness

of the proposed definitions and where we prove new theorems. From the construction of

the article follows that to write a new one we have to have access to the Mizar library

of papers we can refer to. Obviously, to write the first papers we have to start with

some axiomatics. The papers presented below make use of Main Mizar Library (MML),

which was first created at the beginning of 1989 owing to the financial help obtained

from the Ministry of National Education of the Republic Poland (grant RPBP III.24).

The axiomatic foundation of this library is the Tarski-Grothendieck set theory which is

quite a strong theory quaranteeing the existence of universal classes. To enable the Mizar

processor to perform natural number computations, several additional axioms were also

introduced, namely the axiomatics of strong real number arithmetic. So far the Main

Mizar Library comprises of about 80 papers but their number is growing fast.

However, to verify the correctness of a paper the PC Mizar system used to build the

library refers not to the library direct, but to a database automatically created from the

papers there included. The data introduced into the database from a paper pass through

an intermediate stage where the abstract of the paper is created. The abstractor program

removes from the paper all data which are not stored in the database, i.e. justification

of theorems, lemmas and private object definitions.

The evolution of the library requires writing many papers containing well-known

theorems with uninteresting proofs. It seemed to us, therefore, that publication of whole

papers is not justified. To tell the truth, only some of the authors were inclined to devote

7



8

their time to the systematic development of the database; others agreed to write down

only that part of mathematical folklore which makes work on an ambitious paper possible.

Some of the papers submitted to the library concern new, unpublished mathematical

results; thus the level of the papers varies.

As we prepared this collection, we wondered whether it should not be restricted

to chosen, more interesting papers. There were doubts concerning the publication of

such monotonous articles as, for example [2]. Actually, this paper was written mainly

because, while justifying some trivial facts, the checker (system module checking inference

correctness) exceeded certain quantitative limitations and we wanted to show how this

can be overcome. Those who write in Mizar may have found the proofs in this paper

interesting, they were removed, however, when the abstract was created.

Still, there are good reasons for publishing all papers. First, in this way we obtain a

true picture of what the library looks like. It does not seem fair to remove trivial papers,

even though the reader is warned that it’s been done. Second, this publication will serve

to write new papers, and Mizar authors need the information what has been proved and

where. This actually was our original aim, similar to [1].

The abstracts of Mizar papers do not look as well as the present publication would

lead to think, if only because they are ASCII files. These abstracts were automatically

converted into source files of the TEX language. Some fragments were automatically

translated into English, or to be precise, into a language which reminds English a little

and others were left in original Mizar form with slight modifications, for example the

keywords are in bold type. The obtained texts, with the exception of abstracts containing

axiomatics, were not post-edited. The programs used were implemented by the following

group: Grzegorz Bancerek, Czes law Byliński, Wojciech Leończuk, Krzysztof Prażmowski,

Micha l Muzalewski and the author. They include a program in Turbo Pascal converting

Mizar into TEX and a special TEX format (a set of TEX macros).

Andrzej Trybulec

References

[1] Piotr Rudnicki and Andrzej Trybulec. A Collection of TEXed Mizar Abstracts. Tech-

nical Report University of Alberta, 1989.

[2] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Tarski Grothendieck Set Theory

Andrzej Trybulec1

Warsaw University

Bia lystok

Summary. This is the first part of the axiomatics of the Mizar system. It
includes the axioms of the Tarski Grothendieck set theory. They are: the axiom
stating that everything is a set, the extensionality axiom, the definitional axiom of
the singleton, the definitional axiom of the pair, the definitional axiom of the union
of a family of sets, the definitional axiom of the boolean (the power set) of a set, the
regularity axiom, the definitional axiom of the ordered pair, the Tarski’s axiom A
introduced in [2] (see also [1]), and the Frænkel scheme. Also, the definition of
equinumerosity is introduced.

For simplicity we adopt the following convention: x, y, z, u will denote objects of the

type Any; N , M , X , Y , Z will denote objects of the type set. Next we state two

axioms:

(1) x is set ,

(2) (for x holds x ∈ X iff x ∈ Y ) implies X = Y.

We now introduce two functors. Let us consider y. The functor

{y},

with values of the type set, is defined by

x ∈ it iff x = y.

Let us consider z. The functor

{y, z},

with values of the type set, is defined by

x ∈ it iff x = y or x = z.

1Supported by RPBP.III-24.B1.

9
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



10 Andrzej Trybulec

The following axioms hold:

(3) X = {y} iff forx holds x ∈ X iff x = y,

(4) X = {y, z} iff forx holds x ∈ X iff x = y or x = z.

Let us consider X , Y . The predicate

X ⊆ Y is defined by x ∈ X implies x ∈ Y.

Let us consider X . The functor ⋃
X,

with values of the type set, is defined by

x ∈ it iff exY st x ∈ Y & Y ∈ X.

Then we get

(5) X =
⋃

Y iff forx holds x ∈ X iff exZ st x ∈ Z & Z ∈ Y,

(6) X = bool Y iff forZ holds Z ∈ X iff Z ⊆ Y,

The regularity axiom claims that

(7) x ∈ X implies exY st Y ∈ X & not exx st x ∈ X & x ∈ Y.

The scheme Fraenkel deals with a constant A that has the type set and a binary

predicate P and states that the following holds

exX st forx holds x ∈ X iff ex y st y ∈ A & P [y, x]

provided the parameters satisfy the following condition:

• for x,y,z st P [x, y] & P [x, z] holds y = z.

Let us consider x, y. The functor

〈x, y〉,

is defined by

it = {{x, y},{x}}.

According to the definition

(8) 〈x, y〉 = {{x, y},{x}}.

Let us consider X , Y . The predicate

X ≈ Y



Tarski Grothendieck Set Theory 11

is defined by

exZ st (for x st x ∈ X ex y st y ∈ Y & 〈x, y〉 ∈ Z) &

(for y st y ∈ Y exx st x ∈ X & 〈x, y〉 ∈ Z)

& forx,y,z,u st 〈x, y〉 ∈ Z & 〈z, u〉 ∈ Z holds x = z iff y = u.

The Tarski’s axiom A claims that

(9) exM st N ∈ M & (forX,Y holds X ∈ M & Y ⊆ X implies Y ∈ M) &

(forX holds X ∈ M implies bool X ∈ M)

& forX holds X ⊆ M implies X ≈ M or X ∈ M.

References

[1] Alfred Tarski. On well-ordered subsets of any set. Fundamenta Mathematicae,

32:176–183, 1939.

[2] Alfred Tarski. Über Unerreaichbare Kardinalzahlen. Fundamenta Mathematicae,

30:176–183, 1938.

Received January 1, 1989



12



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Built-in Concepts

Andrzej Trybulec1

Warsaw University

Bia lystok

Summary. This abstract contains the second part of the axiomatics of the
Mizar system (the first part is in abstract [1]). The axioms listed here characterize
the Mizar built-in concepts that are automatically attached to every Mizar article.
We give definitional axioms of the following concepts: element, subset, Cartesian
product, domain (non empty subset), subdomain (non empty subset of a domain),
set domain (domain consisting of sets). Axioms of strong arithmetics of real num-
bers are also included.

The notation and terminology used here have been introduced in the axiomatics [1]. For

simplicity we adopt the following convention: x, y, z denote objects of the type Any;

X , X1, X2, X3, X4, Y denote objects of the type set. The following axioms hold:

(1) (ex x st x ∈ X) implies (x is Element of X iff x ∈ X),

(2) X is Subset of Y iff X ⊆ Y,

(3) z ∈ [:X, Y :] iff exx,y st x ∈ X & y ∈ Y & z = 〈x, y〉,

(4) X is DOMAIN iff exx st x ∈ X,

(5) [:X1,X2,X3:] = [:[:X1,X2:],X3:],

(6) [:X1,X2,X3,X4:] = [:[:X1,X2,X3:],X4:].

In the sequel D1, D2, D3, D4 will denote objects of the type DOMAIN. Let us

introduce the consecutive axioms:

(7) forX being Element of [:D1,D2:] holds X is TUPLE of D1,D2,

(8) forX being Element of [:D1,D2,D3:] holds X is TUPLE of D1,D2,D3,

1Supported by RPBP.III-24.B1.

13
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



14 Andrzej Trybulec

(9) forX being Element of [:D1,D2,D3,D4:]

holds X is TUPLE of D1,D2,D3,D4.

In the sequel D has the type DOMAIN. The following axioms hold:

(10) D1 is SUBDOMAIN of D2 iff D1 ⊆ D2,

(11) D is SET DOMAIN .

In the sequel x, y, z denote objects of the type Element of REAL. The following

axioms are true:

(12) x + y = y + x,

(13) x + (y + z) = (x + y) + z,

(14) x + 0 = x,

(15) x · y = y · x,

(16) x · (y · z) = (x · y) · z,

(17) x · 1 = x,

(18) x · (y + z) = x · y + x · z,

(19) ex y st x + y = 0,

(20) x 6= 0 implies ex y st x · y = 1,

(21) x ≤ y & y ≤ x implies x = y,

(22) x ≤ y & y ≤ z implies x ≤ z,

(23) x ≤ y or y ≤ x,

(24) x ≤ y implies x + z ≤ y + z,

(25) x ≤ y & 0 ≤ z implies x · z ≤ y · z,

(26) forX,Y being Subset of REAL st

(exx st x ∈ X) & (ex x st x ∈ Y ) & forx,y st x ∈ X & y ∈ Y holds x ≤ y

ex z st forx,y st x ∈ X & y ∈ Y holds x ≤ z & z ≤ y,

(27) x is Real ,

(28) x ∈ NAT implies x + 1 ∈ NAT ,

(29) forA being set of Real

st 0 ∈ A & forx st x ∈ A holds x + 1 ∈ A holds NAT ⊆ A,

(30) x ∈ NAT implies x is Nat .



Built-in Concepts 15

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

Received January 1, 1989



16



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Boolean Properties of Sets

Zinaida Trybulec1

Warsaw University

Bia lystok

Halina Świe
‘
czkowska2

Warsaw University

Bia lystok

Summary. The text includes a number of theorems about Boolean opera-
tions on sets: union, intersection, difference, symmetric difference; and relations
on sets: meets (having non-empty intersection), misses (being disjoint) and subset
(inclusion).

The terminology and notation used here are introduced in the article [1]. For simplicity

we adopt the following convention: x will have the type Any; X , Y , Z, V will have

the type set. The scheme Separation concerns a constant A that has the type set and

a unary predicate P and states that the following holds

exX st forx holds x ∈ X iff x ∈ A & P [x]

for all values of the parameters.

We now define several new constructions. The constant ∅ has the type set, and is

defined by

not exx st x ∈ it .

Let us consider X , Y . The functor

X ∪ Y,

with values of the type set, is defined by

x ∈ it iff x ∈ X or x ∈ Y.

The functor

X ∩ Y,

1Supported by RPBP.III-24.C1.
2Supported by RPBP.III-24.C1.

17
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



18 Zinaida Trybulec and Halina Świe
‘
czkowska

with values of the type set, is defined by

x ∈ it iff x ∈ X & x ∈ Y.

The functor

X \ Y,

yields the type set and is defined by

x ∈ it iff x ∈ X & notx ∈ Y.

The predicate

X meets Y is defined by exx st x ∈ X & x ∈ Y.

The predicate

X misses Y is defined by forx holds x ∈ X implies notx ∈ Y.

Let us consider X , Y . The functor

X −. Y,

with values of the type set, is defined by

it = (X \ Y ) ∪ (Y \ X).

We now state several propositions:

(1) Z = ∅ iff notexx st x ∈ Z,

(2) Z = X ∪ Y iff forx holds x ∈ Z iff x ∈ X or x ∈ Y,

(3) Z = X ∩ Y iff forx holds x ∈ Z iff x ∈ X & x ∈ Y,

(4) Z = X \ Y iff forx holds x ∈ Z iff x ∈ X & notx ∈ Y,

(5) X ⊆ Y iff forx holds x ∈ X implies x ∈ Y,

(6) X meets Y iff exx st x ∈ X & x ∈ Y,

(7) X misses Y iff forx holds x ∈ X implies notx ∈ Y.

Let us consider X , Y . Let us note that one can characterize the predicate

X = Y

by the following (equivalent) condition:

X ⊆ Y & Y ⊆ X.

The following propositions are true:

(8) x ∈ X ∪ Y iff x ∈ X or x ∈ Y,



Boolean Properties of Sets 19

(9) x ∈ X ∩ Y iff x ∈ X & x ∈ Y,

(10) x ∈ X \ Y iff x ∈ X & notx ∈ Y,

(11) x ∈ X & X ⊆ Y implies x ∈ Y,

(12) x ∈ X & X misses Y implies notx ∈ Y,

(13) x ∈ X & x ∈ Y implies X meets Y,

(14) x ∈ X implies X 6= ∅,

(15) X meets Y implies exx st x ∈ X & x ∈ Y,

(16) (forx st x ∈ X holds x ∈ Y ) implies X ⊆ Y,

(17) (forx st x ∈ X holds notx ∈ Y ) implies X misses Y,

(18) (forx holds x ∈ X iff x ∈ Y or x ∈ Z) implies X = Y ∪ Z,

(19) (forx holds x ∈ X iff x ∈ Y & x ∈ Z) implies X = Y ∩ Z,

(20) (for x holds x ∈ X iff x ∈ Y & notx ∈ Z) implies X = Y \ Z,

(21) not (ex x st x ∈ X) implies X = ∅,

(22) (for x holds x ∈ X iff x ∈ Y ) implies X = Y,

(23) x ∈ X −. Y iff not (x ∈ X iff x ∈ Y ),

(24) x ∈ X & x ∈ Y implies X ∩ Y 6= ∅,

(25) (forx holds notx ∈ X iff (x ∈ Y iff x ∈ Z)) implies X = Y −. Z,

(26) X ⊆ X,

(27) ∅ ⊆ X,

(28) X ⊆ Y & Y ⊆ X implies X = Y,

(29) X ⊆ Y & Y ⊆ Z implies X ⊆ Z,

(30) X ⊆ ∅ implies X = ∅,

(31) X ⊆ X ∪ Y & Y ⊆ X ∪ Y,

(32) X ⊆ Z & Y ⊆ Z implies X ∪ Y ⊆ Z,

(33) X ⊆ Y implies X ∪ Z ⊆ Y ∪ Z & Z ∪ X ⊆ Z ∪ Y,



20 Zinaida Trybulec and Halina Świe
‘
czkowska

(34) X ⊆ Y & Z ⊆ V implies X ∪ Z ⊆ Y ∪ V,

(35) X ⊆ Y implies X ∪ Y = Y & Y ∪ X = Y,

(36) X ∪ Y = Y or Y ∪ X = Y implies X ⊆ Y,

(37) X ∩ Y ⊆ X & X ∩ Y ⊆ Y,

(38) X ∩ Y ⊆ X ∪ Z,

(39) Z ⊆ X & Z ⊆ Y implies Z ⊆ X ∩ Y,

(40) X ⊆ Y implies X ∩ Z ⊆ Y ∩ Z & Z ∩ X ⊆ Z ∩ Y,

(41) X ⊆ Y & Z ⊆ V implies X ∩ Z ⊆ Y ∩ V,

(42) X ⊆ Y implies X ∩ Y = X & Y ∩ X = X,

(43) X ∩ Y = X or Y ∩ X = X implies X ⊆ Y,

(44) X ⊆ Z implies X ∪ Y ∩ Z = (X ∪ Y ) ∩ Z,

(45) X \ Y = ∅ iff X ⊆ Y,

(46) X ⊆ Y implies X \ Z ⊆ Y \ Z,

(47) X ⊆ Y implies Z \ Y ⊆ Z \ X,

(48) X ⊆ Y & Z ⊆ V implies X \ V ⊆ Y \ Z,

(49) X \ Y ⊆ X,

(50) X ⊆ Y \ X implies X = ∅,

(51) X ⊆ Y & X ⊆ Z & Y ∩ Z = ∅ implies X = ∅,

(52) X ⊆ Y ∪ Z implies X \ Y ⊆ Z & X \ Z ⊆ Y,

(53) (X ∩ Y ) ∪ (X ∩ Z) = X implies X ⊆ Y ∪ Z,

(54) X ⊆ Y implies Y = X ∪ (Y \ X) & Y = (Y \ X) ∪ X,

(55) X ⊆ Y & Y ∩ Z = ∅ implies X ∩ Z = ∅,

(56) X = Y ∪ Z iff Y ⊆ X & Z ⊆ X & forV st Y ⊆ V & Z ⊆ V holds X ⊆ V,

(57) X = Y ∩ Z iff X ⊆ Y & X ⊆ Z & forV st V ⊆ Y & V ⊆ Z holds V ⊆ X,

(58) X \ Y ⊆ X −. Y,



Boolean Properties of Sets 21

(59) X ∪ Y = ∅ iff X = ∅ & Y = ∅,

(60) X ∪ ∅ = X & ∅ ∪ X = X,

(61) X ∩ ∅ = ∅ & ∅ ∩ X = ∅,

(62) X ∪ X = X,

(63) X ∪ Y = Y ∪ X,

(64) (X ∪ Y ) ∪ Z = X ∪ (Y ∪ Z),

(65) X ∩ X = X,

(66) X ∩ Y = Y ∩ X,

(67) (X ∩ Y ) ∩ Z = X ∩ (Y ∩ Z),

(68) X ∩ (X ∪ Y ) = X

& (X ∪ Y ) ∩ X = X & X ∩ (Y ∪ X) = X & (Y ∪ X) ∩ X = X,

(69) X ∪ (X ∩ Y ) = X

& (X ∩ Y ) ∪ X = X & X ∪ (Y ∩ X) = X & (Y ∩ X) ∪ X = X,

(70) X ∩ (Y ∪ Z) = X ∩ Y ∪ X ∩ Z & (Y ∪ Z) ∩ X = Y ∩ X ∪ Z ∩ X,

(71) X ∪ Y ∩ Z = (X ∪ Y ) ∩ (X ∪ Z) & Y ∩ Z ∪ X = (Y ∪ X) ∩ (Z ∪ X),

(72) (X ∩ Y ) ∪ (Y ∩ Z) ∪ (Z ∩ X) = (X ∪ Y ) ∩ (Y ∪ Z) ∩ (Z ∪ X),

(73) X \ X = ∅,

(74) X \ ∅ = X,

(75) ∅ \ X = ∅,

(76) X \ (X ∪ Y ) = ∅ & X \ (Y ∪ X) = ∅,

(77) X \ X ∩ Y = X \ Y & X \ Y ∩ X = X \ Y,

(78) (X \ Y ) ∩ Y = ∅ & Y ∩ (X \ Y ) = ∅,

(79) X ∪ (Y \ X) = X ∪ Y & (Y \ X) ∪ X = Y ∪ X,

(80) X ∩ Y ∪ (X \ Y ) = X & (X \ Y ) ∪ X ∩ Y = X,

(81) X \ (Y \ Z) = (X \ Y ) ∪ X ∩ Z,

(82) X \ (X \ Y ) = X ∩ Y,



22 Zinaida Trybulec and Halina Świe
‘
czkowska

(83) (X ∪ Y ) \ Y = X \ Y,

(84) X ∩ Y = ∅ iff X \ Y = X,

(85) X \ (Y ∪ Z) = (X \ Y ) ∩ (X \ Z),

(86) X \ (Y ∩ Z) = (X \ Y ) ∪ (X \ Z),

(87) (X ∪ Y ) \ (X ∩ Y ) = (X \ Y ) ∪ (Y \ X),

(88) (X \ Y ) \ Z = X \ (Y ∪ Z),

(89) (X ∪ Y ) \ Z = (X \ Z) ∪ (Y \ Z),

(90) X \ Y = Y \ X implies X = Y,

(91) X −. Y = (X \ Y ) ∪ (Y \ X),

(92) X −. ∅ = X & ∅ −. X = X,

(93) X −. X = ∅,

(94) X −. Y = Y −. X,

(95) X ∪ Y = (X −. Y ) ∪ X ∩ Y,

(96) X −. Y = (X ∪ Y ) \ X ∩ Y,

(97) (X −. Y ) \ Z = (X \ (Y ∪ Z)) ∪ (Y \ (X ∪ Z)),

(98) X \ (Y −. Z) = X \ (Y ∪ Z) ∪ X ∩ Y ∩ Z,

(99) (X −. Y ) −. Z = X −. (Y −. Z),

(100) X meets Y ∪ Z iff X meets Y or X meets Z,

(101) X meets Y & Y ⊆ Z implies X meets Z,

(102) X meets Y ∩ Z implies X meets Y & X meets Z,

(103) X meets Y implies Y meets X,

(104) not (X meets ∅ or ∅ meets X),

(105) X misses Y iff notX meets Y,

(106) X misses Y ∪ Z iff X misses Y & X misses Z,

(107) X misses Z & Y ⊆ Z implies X misses Y,



Boolean Properties of Sets 23

(108) X misses Y or X misses Z implies X misses Y ∩ Z,

(109) X misses ∅ & ∅ misses X,

(110) X meets X iff X 6= ∅,

(111) X ∩ Y misses X \ Y,

(112) X ∩ Y misses X −. Y,

(113) X meets Y \ Z implies X meets Y,

(114) X ⊆ Y & X ⊆ Z & Y misses Z implies X = ∅,

(115) X \ Y ⊆ Z & Y \ X ⊆ Z implies X −. Y ⊆ Z,

(116) X ∩ (Y \ Z) = (X ∩ Y ) \ Z,

(117) X ∩ (Y \ Z) = X ∩ Y \ X ∩ Z & (Y \ Z) ∩ X = Y ∩ X \ Z ∩ X,

(118) X misses Y iff X ∩ Y = ∅,

(119) X meets Y iff X ∩ Y 6= ∅,

(120) X ⊆ (Y ∪ Z) & X ∩ Z = ∅ implies X ⊆ Y,

(121) Y ⊆ X & X ∩ Y = ∅ implies Y = ∅,

(122) X misses Y implies Y misses X.

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

Received January 6, 1989



24



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Enumerated Sets

Andrzej Trybulec1

Warsaw University

Bia lystok

Summary. We prove basic facts about enumerated sets: definitional theorems
and their immediate consequences, some theorems related to the decomposition of
an enumerated set into union of two sets, facts about removing elements that occur
more than once, and facts about permutations of enumerated sets (with the length
≤ 4). The article includes also schemes enabling instantiation of up to nine universal
quantifiers.

The terminology and notation used in this paper have been introduced in the papers [1]

and [2]. For simplicity we adopt the following convention: x, x1, x2, x3, x4, x5, x6,

x7, x8 have the type Any; X has the type set. In the article we present several logical

schemes. The scheme UI1 concerns a constant A and a unary predicate P and states

that the following holds

P [A]

provided the parameters satisfy the following condition:

• forx1 holds P [x1].

The scheme UI2 deals with a constant A, a constant B and a binary predicate P

and states that the following holds

P [A,B]

provided the parameters satisfy the following condition:

• forx1,x2 holds P [x1,x2].

The scheme UI3 concerns a constant A, a constant B, a constant C and a ternary

predicate P and states that the following holds

P [A,B,C]

1Supported by RPBP.III-24.C1.

25
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



26 Andrzej Trybulec

provided the parameters satisfy the following condition:

• forx1,x2,x3 holds P [x1,x2,x3].

The scheme UI4 concerns a constant A, a constant B, a constant C, a constant D

and a 4-ary predicate P and states that the following holds

P [A,B,C,D]

provided the parameters satisfy the following condition:

• forx1,x2,x3,x4 holds P [x1,x2,x3,x4].

The scheme UI5 deals with a constant A, a constant B, a constant C, a constant D,

a constant E and a 5-ary predicate P and states that the following holds

P [A,B,C,D,E ]

provided the parameters satisfy the following condition:

• forx1,x2,x3,x4,x5 holds P [x1,x2,x3,x4,x5].

The scheme UI6 deals with a constant A, a constant B, a constant C, a constant D,

a constant E , a constant F and a 6-ary predicate P and states that the following holds

P [A,B,C,D,E ,F ]

provided the parameters satisfy the following condition:

• forx1,x2,x3,x4,x5,x6 holds P [x1,x2,x3,x4,x5,x6].

The scheme UI7 concerns a constant A, a constant B, a constant C, a constant D,

a constant E , a constant F , a constant G and a 7-ary predicate P and states that the

following holds

P [A,B,C,D,E ,F ,G]

provided the parameters satisfy the following condition:

• forx1,x2,x3,x4,x5,x6,x7 holds P [x1,x2,x3,x4,x5,x6,x7].

The scheme UI8 concerns a constant A, a constant B, a constant C, a constant D, a

constant E , a constant F , a constant G, a constant H and a 8-ary predicate P and states

that the following holds

P [A,B,C,D,E ,F ,G,H]

provided the parameters satisfy the following condition:

• forx1,x2,x3,x4,x5,x6,x7,x8 holds P [x1,x2,x3,x4,x5,x6,x7,x8].



Enumerated Sets 27

The scheme UI9 concerns a constant A, a constant B, a constant C, a constant D, a

constant E , a constant F , a constant G, a constant H, a constant I and a 9-ary predicate

P and states that the following holds

P [A,B,C,D,E ,F ,G,H,I]

provided the parameters satisfy the following condition:

• forx1,x2,x3,x4,x5,x6,x7,x8,x9 being Any

holds P [x1,x2,x3,x4,x5,x6,x7,x8,x9].

We now state a number of propositions:

(1) forx1,X holds X = {x1} iff forx holds x ∈ X iff x = x1,

(2) forx1,x holds x ∈ {x1} iff x = x1,

(3) x ∈ {x1} implies x = x1,

(4) x ∈ {x},

(5) forx1,X st forx holds x ∈ X iff x = x1 holds X = {x1},

(6) forx1,x2,X holds X = {x1,x2} iff forx holds x ∈ X iff x = x1 or x = x2,

(7) forx1,x2 forx holds x ∈ {x1,x2} iff x = x1 or x = x2,

(8) x ∈ {x1,x2} implies x = x1 or x = x2,

(9) x = x1 or x = x2 implies x ∈ {x1,x2},

(10) forx1,x2,X st forx holds x ∈ X iff x = x1 or x = x2 holds X = {x1,x2}.

Let us consider x1, x2, x3. The functor

{x1,x2,x3},

yields the type set and is defined by

x ∈ it iff x = x1 or x = x2 or x = x3.

One can prove the following propositions:

(11) for x1,x2,x3,X

holds X = {x1,x2,x3} iff for x holds x ∈ X iff x = x1 or x = x2 or x = x3,

(12) forx1,x2,x3 forx holds x ∈ {x1,x2,x3} iff x = x1 or x = x2 or x = x3,

(13) x ∈ {x1,x2,x3} implies x = x1 or x = x2 or x = x3,



28 Andrzej Trybulec

(14) x = x1 or x = x2 or x = x3 implies x ∈ {x1,x2,x3},

(15) forx1,x2,x3,X

st forx holds x ∈ X iff x = x1 or x = x2 or x = x3 holds X = {x1,x2,x3}.

Let us consider x1, x2, x3, x4. The functor

{x1,x2,x3,x4},

with values of the type set, is defined by

x ∈ it iff x = x1 or x = x2 or x = x3 or x = x4.

We now state several propositions:

(16) forx1,x2,x3,x4,X holds X = {x1,x2,x3,x4}

iff forx holds x ∈ X iff x = x1 or x = x2 or x = x3 or x = x4,

(17) forx1,x2,x3,x4

forx holds x ∈ {x1,x2,x3,x4} iff x = x1 or x = x2 or x = x3 or x = x4,

(18) x ∈ {x1,x2,x3,x4} implies x = x1 or x = x2 or x = x3 or x = x4,

(19) x = x1 or x = x2 or x = x3 or x = x4 implies x ∈ {x1,x2,x3,x4},

(20) forx1,x2,x3,x4,X st

forx holds x ∈ X iff x = x1 or x = x2 or x = x3 or x = x4

holds X = {x1,x2,x3,x4}.

Let us consider x1, x2, x3, x4, x5. The functor

{x1,x2,x3,x4,x5},

yields the type set and is defined by

x ∈ it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5.

Next we state several propositions:

(21) forx1,x2,x3,x4,x5 forX being set holds X = {x1,x2,x3,x4,x5}

iff forx holds x ∈ X iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5,

(22) x ∈ {x1,x2,x3,x4,x5} iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5,

(23) x ∈ {x1,x2,x3,x4,x5}

implies x = x1 or x = x2 or x = x3 or x = x4 or x = x5,

(24) x = x1 or x = x2 or x = x3 or x = x4 or x = x5

implies x ∈ {x1,x2,x3,x4,x5},



Enumerated Sets 29

(25) forX being set st

forx holds x ∈ X iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5

holds X = {x1,x2,x3,x4,x5}.

Let us consider x1, x2, x3, x4, x5, x6. The functor

{x1,x2,x3,x4,x5,x6},

with values of the type set, is defined by

x ∈ it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6.

We now state several propositions:

(26) forx1,x2,x3,x4,x5,x6 forX being set holds X = {x1,x2,x3,x4,x5,x6} iff

for x

holds x ∈ X iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6,

(27) x ∈ {x1,x2,x3,x4,x5,x6}

iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6,

(28) x ∈ {x1,x2,x3,x4,x5,x6}

implies x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6,

(29) x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6

implies x ∈ {x1,x2,x3,x4,x5,x6},

(30) forX being set st

for x

holds x ∈ X iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6

holds X = {x1,x2,x3,x4,x5,x6}.

Let us consider x1, x2, x3, x4, x5, x6, x7. The functor

{x1,x2,x3,x4,x5,x6,x7},

yields the type set and is defined by

x ∈ it iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7.

The following propositions are true:

(31) forx1,x2,x3,x4,x5,x6,x7 forX being set holds X = {x1,x2,x3,x4,x5,x6,x7}

iff forx holds x ∈ X

iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7,



30 Andrzej Trybulec

(32) x ∈ {x1,x2,x3,x4,x5,x6,x7}

iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7,

(33) x ∈ {x1,x2,x3,x4,x5,x6,x7} implies

x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7,

(34) x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7

implies x ∈ {x1,x2,x3,x4,x5,x6,x7},

(35) forX being set st

forx holds x ∈ X

iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7

holds X = {x1,x2,x3,x4,x5,x6,x7}.

Let us consider x1, x2, x3, x4, x5, x6, x7, x8. The functor

{x1,x2,x3,x4,x5,x6,x7,x8},

with values of the type set, is defined by

x ∈ it

iff x = x1 or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8.

Next we state a number of propositions:

(36) forx1,x2,x3,x4,x5,x6,x7,x8 forX being set holds

X = {x1,x2,x3,x4,x5,x6,x7,x8} iff forx holds x ∈ X iff x = x1

or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8,

(37) x ∈ {x1,x2,x3,x4,x5,x6,x7,x8} iff x = x1

or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8,

(38) x ∈ {x1,x2,x3,x4,x5,x6,x7,x8} implies x = x1

or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8,

(39) x = x1

or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8

implies x ∈ {x1,x2,x3,x4,x5,x6,x7,x8},

(40) forX being set st

forx holds x ∈ X iff x = x1

or x = x2 or x = x3 or x = x4 or x = x5 or x = x6 or x = x7 or x = x8

holds X = {x1,x2,x3,x4,x5,x6,x7,x8},



Enumerated Sets 31

(41) {x1,x2} = {x1} ∪ {x2},

(42) {x1,x2,x3} = {x1} ∪ {x2,x3},

(43) {x1,x2,x3} = {x1,x2} ∪ {x3},

(44) {x1,x2,x3,x4} = {x1} ∪ {x2,x3,x4},

(45) {x1,x2,x3,x4} = {x1,x2} ∪ {x3,x4},

(46) {x1,x2,x3,x4} = {x1,x2,x3} ∪ {x4},

(47) {x1,x2,x3,x4,x5} = {x1} ∪ {x2,x3,x4,x5},

(48) {x1,x2,x3,x4,x5} = {x1,x2} ∪ {x3,x4,x5},

(49) {x1,x2,x3,x4,x5} = {x1,x2,x3} ∪ {x4,x5},

(50) {x1,x2,x3,x4,x5} = {x1,x2,x3,x4} ∪ {x5},

(51) {x1,x2,x3,x4,x5,x6} = {x1} ∪ {x2,x3,x4,x5,x6},

(52) {x1,x2,x3,x4,x5,x6} = {x1,x2} ∪ {x3,x4,x5,x6},

(53) {x1,x2,x3,x4,x5,x6} = {x1,x2,x3} ∪ {x4,x5,x6},

(54) {x1,x2,x3,x4,x5,x6} = {x1,x2,x3,x4} ∪ {x5,x6},

(55) {x1,x2,x3,x4,x5,x6} = {x1,x2,x3,x4,x5} ∪ {x6},

(56) {x1,x2,x3,x4,x5,x6,x7} = {x1} ∪ {x2,x3,x4,x5,x6,x7},

(57) {x1,x2,x3,x4,x5,x6,x7} = {x1,x2} ∪ {x3,x4,x5,x6,x7},

(58) {x1,x2,x3,x4,x5,x6,x7} = {x1,x2,x3} ∪ {x4,x5,x6,x7},

(59) {x1,x2,x3,x4,x5,x6,x7} = {x1,x2,x3,x4} ∪ {x5,x6,x7},

(60) {x1,x2,x3,x4,x5,x6,x7} = {x1,x2,x3,x4,x5} ∪ {x6,x7},

(61) {x1,x2,x3,x4,x5,x6,x7} = {x1,x2,x3,x4,x5,x6} ∪ {x7},

(62) {x1,x2,x3,x4,x5,x6,x7,x8} = {x1} ∪ {x2,x3,x4,x5,x6,x7,x8},

(63) {x1,x2,x3,x4,x5,x6,x7,x8} = {x1,x2} ∪ {x3,x4,x5,x6,x7,x8},

(64) {x1,x2,x3,x4,x5,x6,x7,x8} = {x1,x2,x3} ∪ {x4,x5,x6,x7,x8},

(65) {x1,x2,x3,x4,x5,x6,x7,x8} = {x1,x2,x3,x4} ∪ {x5,x6,x7,x8},



32 Andrzej Trybulec

(66) {x1,x2,x3,x4,x5,x6,x7,x8} = {x1,x2,x3,x4,x5} ∪ {x6,x7,x8},

(67) {x1,x2,x3,x4,x5,x6,x7,x8} = {x1,x2,x3,x4,x5,x6} ∪ {x7,x8},

(68) {x1,x2,x3,x4,x5,x6,x7,x8} = {x1,x2,x3,x4,x5,x6,x7} ∪ {x8},

(69) {x1,x1} = {x1},

(70) {x1,x1,x2} = {x1,x2},

(71) {x1,x1,x2,x3} = {x1,x2,x3},

(72) {x1,x1,x2,x3,x4} = {x1,x2,x3,x4},

(73) {x1,x1,x2,x3,x4,x5} = {x1,x2,x3,x4,x5},

(74) {x1,x1,x2,x3,x4,x5,x6} = {x1,x2,x3,x4,x5,x6},

(75) {x1,x1,x2,x3,x4,x5,x6,x7} = {x1,x2,x3,x4,x5,x6,x7},

(76) {x1,x1,x1} = {x1},

(77) {x1,x1,x1,x2} = {x1,x2},

(78) {x1,x1,x1,x2,x3} = {x1,x2,x3},

(79) {x1,x1,x1,x2,x3,x4} = {x1,x2,x3,x4},

(80) {x1,x1,x1,x2,x3,x4,x5} = {x1,x2,x3,x4,x5},

(81) {x1,x1,x1,x2,x3,x4,x5,x6} = {x1,x2,x3,x4,x5,x6},

(82) {x1,x1,x1,x1} = {x1},

(83) {x1,x1,x1,x1,x2} = {x1,x2},

(84) {x1,x1,x1,x1,x2,x3} = {x1,x2,x3},

(85) {x1,x1,x1,x1,x2,x3,x4} = {x1,x2,x3,x4},

(86) {x1,x1,x1,x1,x2,x3,x4,x5} = {x1,x2,x3,x4,x5},

(87) {x1,x1,x1,x1,x1} = {x1},

(88) {x1,x1,x1,x1,x1,x2} = {x1,x2},

(89) {x1,x1,x1,x1,x1,x2,x3} = {x1,x2,x3},

(90) {x1,x1,x1,x1,x1,x2,x3,x4} = {x1,x2,x3,x4},



Enumerated Sets 33

(91) {x1,x1,x1,x1,x1,x1} = {x1},

(92) {x1,x1,x1,x1,x1,x1,x2} = {x1,x2},

(93) {x1,x1,x1,x1,x1,x1,x2,x3} = {x1,x2,x3},

(94) {x1,x1,x1,x1,x1,x1,x1} = {x1},

(95) {x1,x1,x1,x1,x1,x1,x1,x2} = {x1,x2},

(96) {x1,x1,x1,x1,x1,x1,x1,x1} = {x1},

(97) {x1,x2} = {x2,x1},

(98) {x1,x2,x3} = {x1,x3,x2},

(99) {x1,x2,x3} = {x2,x1,x3},

(100) {x1,x2,x3} = {x2,x3,x1},

(101) {x1,x2,x3} = {x3,x1,x2},

(102) {x1,x2,x3} = {x3,x2,x1},

(103) {x1,x2,x3,x4} = {x1,x2,x4,x3},

(104) {x1,x2,x3,x4} = {x1,x3,x2,x4},

(105) {x1,x2,x3,x4} = {x1,x3,x4,x2},

(106) {x1,x2,x3,x4} = {x1,x4,x2,x3},

(107) {x1,x2,x3,x4} = {x1,x4,x3,x2},

(108) {x1,x2,x3,x4} = {x2,x1,x3,x4},

(109) {x1,x2,x3,x4} = {x2,x1,x4,x3},

(110) {x1,x2,x3,x4} = {x2,x3,x1,x4},

(111) {x1,x2,x3,x4} = {x2,x3,x4,x1},

(112) {x1,x2,x3,x4} = {x2,x4,x1,x3},

(113) {x1,x2,x3,x4} = {x2,x4,x3,x1},

(114) {x1,x2,x3,x4} = {x3,x1,x2,x4},

(115) {x1,x2,x3,x4} = {x3,x1,x4,x2},



34 Andrzej Trybulec

(116) {x1,x2,x3,x4} = {x3,x2,x1,x4},

(117) {x1,x2,x3,x4} = {x3,x2,x4,x1},

(118) {x1,x2,x3,x4} = {x3,x4,x1,x2},

(119) {x1,x2,x3,x4} = {x3,x4,x2,x1},

(120) {x1,x2,x3,x4} = {x4,x1,x2,x3},

(121) {x1,x2,x3,x4} = {x4,x1,x3,x2},

(122) {x1,x2,x3,x4} = {x4,x2,x1,x3},

(123) {x1,x2,x3,x4} = {x4,x2,x3,x1},

(124) {x1,x2,x3,x4} = {x4,x3,x1,x2},

(125) {x1,x2,x3,x4} = {x4,x3,x2,x1}.

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[2] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received January 8, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Basic Properties of Real Numbers

Krzysztof Hryniewiecki1

Warsaw University

Summary. Basic facts of arithmetics of real numbers are presented: definitions
and properties of the complement element, the inverse element, subtraction and
division; some basic properties of the set REAL (e.g. density), and the scheme of
separation for sets of reals.

For simplicity we adopt the following convention: x, y, z, t will denote objects of the

type Real; r will denote an object of the type Any. Let us consider x, y. Let us note

that it makes sense to consider the following functors on restricted areas. Then

x + y is Real ,

x · y is Real .

One can prove the following propositions:

(1) r is Real iff r ∈ REAL ,

(2) x + y = y + x,

(3) x + (y + z) = (x + y) + z,

(4) x + 0 = x & 0 + x = x,

(5) x · y = y · x,

(6) x · (y · z) = (x · y) · z,

(7) x · 1 = x & 1 · x = x,

(8) (x + y) · z = x · z + y · z & z · (x + y) = z · x + z · y,

(9) z 6= 0 & x 6= y implies x · z 6= y · z & z · x 6= y · z & z · x 6= z · y & x · z 6= z · y,

1This work has been supported by RPBP III.24 C1

35
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



36 Krzysztof Hryniewiecki

(10) z + x = z + y or x + z = y + z or z + x = y + z or x + z = z + y

implies x = y,

(11) x 6= y iff x + z 6= y + z,

(12) z 6= 0 & (x · z = y · z or z · x = z · y or x · z = z · y or z · x = y · z)

implies x = y.

We now define two new functors. Let us consider x. The functor

−x,

with values of the type Real, is defined by

x + it = 0.

Assume that the following holds

x 6= 0.

The functor

x -1 ,

yields the type Real and is defined by

x · it = 1.

We now define two new functors. Let us consider x, y. The functor

x − y,

yields the type Real and is defined by

it = x + (− y).

Assume that the following holds

y 6= 0.

The functor

x/y,

yields the type Real and is defined by

it = x · y -1 .

The following propositions are true:

(13) x + − x = 0 & −x + x = 0,

(14) x − y = x + − y,



Basic Properties of Real Numbers 37

(15) x 6= 0 implies x · x -1 = 1 & x -1 · x = 1,

(16) y 6= 0 implies x/y = x · y -1 & x/y = y -1 · x,

(17) x + y − z = x + (y − z),

(18) − (−x) = x,

(19) 0 − x = − x,

(20) x · 0 = 0 & 0 · x = 0,

(21) (−x) · y = − (x · y) & x · (− y) = − (x · y) & (− x) · y = x · (− y),

(22) x 6= 0 iff −x 6= 0,

(23) x · y = 0 iff x = 0 or y = 0,

(24) x 6= 0 & y 6= 0 implies x -1 · y -1 = (x · y) -1 ,

(25) x − 0 = x,

(26) − 0 = 0,

(27) x − (y + z) = x − y − z,

(28) x − (y − z) = x − y + z,

(29) x · (y − z) = x · y − x · z & (y − z) · x = y · x − z · x,

(30) x + z = y implies x = y − z & z = y − x,

(31) x 6= 0 implies x -1 6= 0,

(32) x 6= 0 implies x -1 -1 = x,

(33) x 6= 0 implies 1/x = x -1 & 1/x -1 = x,

(34) x 6= 0 implies x · (1/x) = 1 & (1/x) · x = 1,

(35) y 6= 0 & t 6= 0 implies (x/y) · (z/t) = (x · z)/(y · t),

(36) x − x = 0,

(37) x 6= 0 implies x/x = 1,

(38) y 6= 0 & z 6= 0 implies x/y = (x · z)/(y · z),

(39) y 6= 0 implies −x/y = (−x)/y & x/(− y) = − x/y,



38 Krzysztof Hryniewiecki

(40) z 6= 0 implies x/z + y/z = (x + y)/z & x/z − y/z = (x − y)/z,

(41) y 6= 0 & t 6= 0

implies x/y + z/t = (x · t + z · y)/(y · t) & x/y − z/t = (x · t − z · y)/(y · t),

(42) y 6= 0 & z 6= 0 implies x/(y/z) = (x · z)/y,

(43) y 6= 0 implies x/y · y = x,

(44) forx,y ex z st x = y + z & x = z + y,

(45) forx,y st y 6= 0 ex z st x = y · z & x = z · y,

(46) x ≤ y & y ≤ x implies x = y,

(47) x ≤ y & y ≤ z implies x ≤ z,

(48) x ≤ y or y ≤ x,

(49) x ≤ y implies x + z ≤ y + z & x − z ≤ y − z,

(50) x ≤ y iff − y ≤ −x,

(51) x ≤ y & 0 ≤ z implies x · z ≤ y · z & z · x ≤ z · y & z · x ≤ y · z & x · z ≤ z · y,

(52) x ≤ y & z ≤ 0 implies y · z ≤ x · z & z · y ≤ z · x & y · z ≤ z · x & z · y ≤ x · z,

(53) x ≤ y iff x + z ≤ y + z,

(54) x ≤ y iff x − z ≤ y − z,

(55) x ≤ y & z ≤ t

implies x + z ≤ y + t & x + z ≤ t + y & z + x ≤ t + y & z + x ≤ y + t,

(56) x ≤ x.

Let us consider x, y. The predicate

x < y is defined by x ≤ y & x 6= y.

One can prove the following propositions:

(57) x < y iff x ≤ y & x 6= y,

(58) x ≤ y & y < z or x < y & y ≤ z or x < y & y < z implies x < z,

(59) x < y implies x + z < y + z

& x − z < y − z & z + x < z + y & x + z < z + y & z + x < y + z,



Basic Properties of Real Numbers 39

(60) x + z < y + z

or z + x < z + y or x + z < z + y or z + x < y + z or x − z < y − z

implies x < y,

(61) x 6= y implies x < y or y < x,

(62) notx < y iff y ≤ x,

(63) x < y or y < x or x = y,

(64) x < y implies not y < x,

(65) 0 < 1,

(66) x < 0 iff 0 < −x,

(67) x < y & z ≤ t or x ≤ y & z < t or x < y & z < t

implies x + z < y + t & z + x < y + t & z + x < t + y & x + z < t + y,

(68) x < y iff − y < − x,

(69) forx,y st 0 < x holds y < y + x,

(70) 0 < z & x < y implies x · z < y · z & z · x < z · y & x · z < z · y & z · x < y · z,

(71) z < 0 & x < y implies y · z < x · z & z · y < z · x & y · z < z · x & z · y < x · z,

(72) 0 < z implies 0 < z -1 ,

(73) 0 < z implies (x < y iff x/z < y/z),

(74) z < 0 implies (x < y iff y/z < x/z),

(75) x < y implies ex z st x < z & z < y,

(76) for x ex y st x < y,

(77) for x ex y st y < x,

(78) forX,Y being Subset of REAL st

(exx st x ∈ X) & (exx st x ∈ Y ) & forx,y st x ∈ X & y ∈ Y holds x ≤ y

ex z st forx,y st x ∈ X & y ∈ Y holds x ≤ z & z ≤ y.

The scheme SepReal concerns a unary predicate P states that the following holds

exX being set of Real st forx holds x ∈ X iff P [x]

for all values of the parameter.



40 Krzysztof Hryniewiecki

The following propositions are true:

(79) y = − x iff x + y = 0,

(80) forx,y st x 6= 0 holds y = x -1 iff x · y = 1,

(81) forx,y st x 6= 0 & y 6= 0 holds (x/y) -1 = y/x,

(82) forx,y,z,t st y 6= 0 & z 6= 0 & t 6= 0 holds (x/y)/(z/t) = (x · t)/(y · z),

(83) − (x − y) = y − x,

(84) x + y ≤ z iff x ≤ z − y,

(85) x + y ≤ z iff y ≤ z − x,

(86) x ≤ y + z iff x − y ≤ z,

(87) x ≤ y + z iff x − z ≤ y,

(88) x + y < z iff x < z − y,

(89) x + y < z iff y < z − x,

(90) x < z + y iff x − z < y,

(91) x < y + z iff x − z < y,

(92) (x ≤ y & z ≤ t implies x − t ≤ y − z)

& (x < y & z ≤ t or x ≤ y & z < t or x < y & z < t implies x − t < y − z),

(93) 0 ≤ x · x.

Received January 8, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

The Fundamental Properties of Natural

Numbers

Grzegorz Bancerek1

Warsaw University

Bia lystok

Summary. Some fundamental properties of addition, multiplication, order
relations, exact division, the remainder, divisibility, the least common multiple, the
greatest common divisor are presented. A proof of Euclid algorithm is also given.

The article [1] provides the terminology and notation for this paper. For simplicity we

adopt the following convention: x will denote an object of the type Real; k, l, m, n

will denote objects of the type Nat; X will denote an object of the type set of Real.

One can prove the following propositions:

(1) x is Nat implies x + 1 is Nat ,

(2) forX st 0 ∈ X & forx st x ∈ X holds x + 1 ∈ X for k holds k ∈ X,

(3) k + n = n + k,

(4) k + m + n = k + (m + n),

(5) k + 0 = k & 0 + k = k,

(6) k · n = n · k,

(7) k · (m · n) = (k · m) · n,

(8) k · 1 = k & 1 · k = k,

(9) k · (n + m) = k · n + k · m & (n + m) · k = n · k + m · k,

(10) k + m = n + m or k + m = m + n or m + k = m + n implies k = n,

1Supported by RPBP III.24 C1

41
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



42 Grzegorz Bancerek

(11) k · 0 = 0 & 0 · k = 0.

Let us consider n, k. Let us note that it makes sense to consider the following functor

on a restricted area. Then

n + k is Nat .

The scheme Ind deals with a unary predicate P states that the following holds

for k holds P [k]

provided the parameter satisfies the following conditions:

• P [0],

• for k st P [k] holds P [k + 1].

Let us consider n, k. Let us note that it makes sense to consider the following functor

on a restricted area. Then

n · k is Nat .

One can prove the following propositions:

(12) k ≤ n & n ≤ k implies k = n,

(13) k ≤ n & n ≤ m implies k ≤ m,

(14) k ≤ n or n ≤ k,

(15) k ≤ k,

(16) k ≤ n implies

k + m ≤ n + m & k + m ≤ m + n & m + k ≤ m + n & m + k ≤ n + m,

(17) k + m ≤ n + m or k + m ≤ m + n or m + k ≤ m + n or m + k ≤ n + m

implies k ≤ n,

(18) for k holds 0 ≤ k,

(19) 0 6= k implies 0 < k,

(20) k ≤ n implies k · m ≤ n · m & k · m ≤ m · n & m · k ≤ n · m & m · k ≤ m · n,

(21) 0 6= k + 1,

(22) k = 0 or exn st k = n + 1,

(23) k + n = 0 implies k = 0 & n = 0,

(24) k 6= 0 & (n · k = m · k or n · k = k · m or k · n = k · m) implies n = m,



The Fundamental Properties of Natural . . . 43

(25) k · n = 0 implies k = 0 or n = 0.

The scheme Def by Ind concerns a constant A that has the type Nat, a binary functor

F yielding values of the type Nat and a binary predicate P and states that the following

holds

(for k exn st P [k, n]) & for k,n,m st P [k, n] & P [k, m] holds n = m

provided the parameters satisfy the following condition:

• for k,n holds

P [k, n] iff k = 0 & n = A or exm,l st k = m + 1 & P [m, l] & n = F(k, l).

Next we state several propositions:

(26) for k,n st k ≤ n + 1 holds k ≤ n or k = n + 1,

(27) forn,k st n ≤ k & k ≤ n + 1 holds n = k or k = n + 1,

(28) for k,n st k ≤ n exm st n = k + m,

(29) k ≤ k + m,

(30) k < n iff k ≤ n & k 6= n,

(31) notk < 0.

Now we present three schemes. The scheme Comp Ind deals with a unary predicate

P states that the following holds

for k holds P [k]

provided the parameter satisfies the following condition:

• for k st forn st n < k holds P [n] holds P [k].

The scheme Min concerns a unary predicate P states that the following holds

ex k st P [k] & forn st P [n] holds k ≤ n

provided the parameter satisfies the following condition:

• ex k st P [k].

The scheme Max concerns a unary predicate P and a constant A that has the type

Nat, and states that the following holds

ex k st P [k] & forn st P [n] holds n ≤ k

provided the parameters satisfy the following conditions:

• for k st P [k] holds k ≤ A,



44 Grzegorz Bancerek

• ex k st P [k].

We now state a number of propositions:

(32) not (k < n & n < k),

(33) k < n & n < m implies k < m,

(34) k < n or k = n or n < k,

(35) not k < k,

(36) k < n implies

k + m < n + m & k + m < m + n & m + k < m + n & m + k < n + m,

(37) k ≤ n implies k ≤ n + m,

(38) k < n + 1 iff k ≤ n,

(39) k ≤ n & n < m or k < n & n ≤ m or k < n & n < m implies k < m,

(40) k · n = 1 implies k = 1 & n = 1,

(41) k + 1 ≤ n iff k < n.

The scheme Regr concerns a unary predicate P states that the following holds

P [0]

provided the parameter satisfies the following conditions:

• ex k st P [k],

• for k st k 6= 0 & P [k] exn st n < k & P [n].

In the sequel k1, t, t1 will denote objects of the type Nat. The following

propositions are true:

(42) form st 0 < m forn ex k,t st n = (m · k) + t & t < m,

(43) forn,m,k,k1,t,t1

st n = m · k + t & t < m & n = m · k1 + t1 & t1 < m holds k = k1 & t = t1.

We now define two new functors. Let k, l have the type Nat. The functor

k ÷ l,

yields the type Nat and is defined by

(ex t st k = l · it + t & t < l) or it = 0 & l = 0.



The Fundamental Properties of Natural . . . 45

The functor

k mod l,

yields the type Nat and is defined by

(ex t st k = l · t + it & it < l) or it = 0 & l = 0.

Next we state four propositions:

(44) for k,l,n being Nat

holds n = k ÷ l iff (ex t st k = l · n + t & t < l) or n = 0 & l = 0,

(45) for k,l,n being Nat

holds n = k mod l iff (ex t st k = l · t + n & n < l) or n = 0 & l = 0,

(46) form,n st 0 < m holds n mod m < m,

(47) forn,m st 0 < m holds n = m · (n ÷ m) + (n mod m).

Let k, l have the type Nat. The predicate

k | l is defined by ex t st l = k · t.

Next we state a number of propositions:

(48) for k,l being Nat holds k | l iff ex t st l = k · t,

(49) forn,m holds m | n iff n = m · (n ÷ m),

(50) forn holds n | n,

(51) forn,m,l st n | m & m | l holds n | l,

(52) forn,m st n | m & m | n holds n = m,

(53) k | 0 & 1 | k,

(54) forn,m st 0 < m & n | m holds n ≤ m,

(55) forn,m,l st n | m & n | l holds n | m + l,

(56) n | k implies n | k · m,

(57) forn,m,l st n | m & n | m + l holds n | l,

(58) n | m & n | k implies n | m mod k.

Let us consider k, n. The functor

k lcm n,



46 Grzegorz Bancerek

with values of the type Nat, is defined by

k | it & n | it & form st k | m & n | m holds it | m.

Next we state a proposition

(59) forM being Nat

holds M = k lcm n iff k | M & n | M & form st k | m & n | m holds M | m.

Let us consider k, n. The functor

k gcd n,

yields the type Nat and is defined by

it | k & it | n & form st m | k & m | n holds m | it .

We now state a proposition

(60) forM being Nat

holds M = k gcd n iff M | k & M | n & form st m | k & m | n holds m | M.

The scheme Euklides deals with a unary functor F yielding values of the type Nat,

a constant A that has the type Nat and a constant B that has the type Nat, and states

that the following holds

exn st F(n) = A gcd B & F(n + 1) = 0

provided the parameters satisfy the following conditions:

• 0 < B & B < A,

• F(0) = A & F(1) = B,

• forn holds F(n + 2) = F(n) mod F(n + 1).

References

[1] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1, 1990.

Received January 11, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Some Basic Properties of Sets

Czes law Byliński1

Warsaw University

Bia lystok

Summary. In this article some basic theorems about singletons, pairs, power
sets, unions of families of sets, and the cartesian product of two sets are proved.

The articles [1] and [2] provide the terminology and notation for this paper. One can

prove the following propositions:

(1) bool ∅ = {∅},

(2)
⋃

∅ = ∅.

For simplicity we adopt the following convention: x, x1, x2, y, y1, y2, z will denote

objects of the type Any; A, B, X , X1, X2, Y , Y 1, Y 2, Z will denote objects of the

type set. One can prove the following propositions:

(3) {x} 6= ∅,

(4) {x, y} 6= ∅,

(5) {x} = {x, x},

(6) {x} = {y} implies x = y,

(7) {x1,x2} = {x2,x1},

(8) {x} = {y1,y2} implies x = y1 & x = y2,

(9) {x} = {y1,y2} implies y1 = y2,

(10) {x1,x2} = {y1,y2} implies (x1 = y1 or x1 = y2) & (x2 = y1 or x2 = y2),

(11) {x1,x2} = {x1} ∪ {x2},

1Supported by RPBP.III-24.C1.

47
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



48 Czes law Byliński

(12) {x} ⊆ {x, y} & {y} ⊆ {x, y},

(13) {x} ∪ {y} = {x} or {x} ∪ {y} = {y} implies x = y,

(14) {x} ∪ {x, y} = {x, y} & {x, y} ∪ {x} = {x, y},

(15) {y} ∪ {x, y} = {x, y} & {x, y} ∪ {y} = {x, y},

(16) {x} ∩ {y} = ∅ or {y} ∩ {x} = ∅ implies x 6= y,

(17) x 6= y implies {x} ∩ {y} = ∅ & {y} ∩ {x} = ∅,

(18) {x} ∩ {y} = {x} or {x} ∩ {y} = {y} implies x = y,

(19) {x} ∩ {x, y} = {x}

& {y} ∩ {x, y} = {y} & {x, y} ∩ {x} = {x} & {x, y} ∩ {y} = {y},

(20) {x} \ {y} = {x} iff x 6= y,

(21) {x} \ {y} = ∅ implies x = y,

(22) {x} \ {x, y} = ∅ & {y} \ {x, y} = ∅,

(23) x 6= y implies {x, y} \ {y} = {x} & {x, y} \ {x} = {y},

(24) {x} ⊆ {y} implies {x} = {y},

(25) {z} ⊆ {x, y} implies z = x or z = y,

(26) {x, y} ⊆ {z} implies x = z & y = z,

(27) {x, y} ⊆ {z} implies {x, y} = {z},

(28) {x1,x2} ⊆ {y1,y2} implies (x1 = y1 or x1 = y2) & (x2 = y1 or x2 = y2),

(29) x 6= y implies {x} −. {y} = {x, y},

(30) bool{x} = {∅,{x}},

(31)
⋃

{x} = x,

(32)
⋃

{{x},{y}} = {x, y},

(33) 〈x1,x2〉 = 〈y1,y2〉 implies x1 = y1 & x2 = y2,

(34) 〈x, y〉 ∈ [:{x1},{y1}:] iff x = x1 & y = y1,

(35) [:{x},{y}:] = {〈x, y〉},



Some Basic Properties of Sets 49

(36) [:{x},{y, z}:] = {〈x, y〉,〈x, z〉} & [:{x, y},{z}:] = {〈x, z〉,〈y, z〉},

(37) {x} ⊆ X iff x ∈ X,

(38) {x1,x2} ⊆ Z iff x1 ∈ Z & x2 ∈ Z,

(39) Y ⊆ {x} iff Y = ∅ or Y = {x},

(40) Y ⊆ X & notx ∈ Y implies Y ⊆ X \ {x},

(41) X 6= {x} & x ∈ X implies ex y st y ∈ X & y 6= x,

(42) Z ⊆ {x1,x2} iff Z = ∅ or Z = {x1} or Z = {x2} or Z = {x1,x2},

(43) {z} = X ∪ Y

implies X = {z} & Y = {z} or X = ∅ & Y = {z} or X = {z} & Y = ∅,

(44) {z} = X ∪ Y & X 6= Y implies X = ∅ or Y = ∅,

(45) {x} ∪ X = X or X ∪ {x} = X implies x ∈ X,

(46) x ∈ X implies {x} ∪ X = X & X ∪ {x} = X,

(47) {x, y} ∪ Z = Z or Z ∪ {x, y} = Z implies x ∈ Z & y ∈ Z,

(48) x ∈ Z & y ∈ Z implies {x, y} ∪ Z = Z & Z ∪ {x, y} = Z,

(49) {x} ∪ X 6= ∅ & X ∪ {x} 6= ∅,

(50) {x, y} ∪ X 6= ∅ & X ∪ {x, y} 6= ∅,

(51) X ∩ {x} = {x} or {x} ∩ X = {x} implies x ∈ X,

(52) x ∈ X implies X ∩ {x} = {x} & {x} ∩ X = {x},

(53) x ∈ Z & y ∈ Z implies {x, y} ∩ Z = {x, y} & {x, y} = Z ∩ {x, y},

(54) {x} ∩ X = ∅ or X ∩ {x} = ∅ implies notx ∈ X,

(55) {x, y} ∩ Z = ∅ or Z ∩ {x, y} = ∅ implies notx ∈ Z & not y ∈ Z,

(56) notx ∈ X implies {x} ∩ X = ∅ & X ∩ {x} = ∅,

(57) notx ∈ Z & not y ∈ Z implies {x, y} ∩ Z = ∅ & Z ∩ {x, y} = ∅,

(58) {x} ∩ X = ∅ or {x} ∩ X = {x} & X ∩ {x} = {x},

(59) {x, y} ∩ X = {x} or X ∩ {x, y} = {x} implies not y ∈ X or x = y,



50 Czes law Byliński

(60) x ∈ X & (not y ∈ X or x = y) implies {x, y} ∩ X = {x} & X ∩ {x, y} = {x},

(61) {x, y} ∩ X = {y} or X ∩ {x, y} = {y} implies notx ∈ X or x = y,

(62) y ∈ X & (notx ∈ X or x = y) implies {x, y} ∩ X = {y} & X ∩ {x, y} = {y},

(63) {x, y} ∩ X = {x, y} or X ∩ {x, y} = {x, y} implies x ∈ X & y ∈ X,

(64) z ∈ X \ {x} iff z ∈ X & z 6= x,

(65) X \ {x} = X iff notx ∈ X,

(66) X \ {x} = ∅ implies X = ∅ or X = {x},

(67) {x} \ X = {x} iff notx ∈ X,

(68) {x} \ X = ∅ iff x ∈ X,

(69) {x} \ X = ∅ or {x} \ X = {x},

(70) {x, y} \ X = {x} iff notx ∈ X & (y ∈ X or x = y),

(71) {x, y} \ X = {y} iff (x ∈ X or x = y) & not y ∈ X,

(72) {x, y} \ X = {x, y} iff notx ∈ X & not y ∈ X,

(73) {x, y} \ X = ∅ iff x ∈ X & y ∈ X,

(74) {x, y} \ X = ∅

or {x, y} \ X = {x} or {x, y} \ X = {y} or {x, y} \ X = {x, y},

(75) X \ {x, y} = ∅ iff X = ∅ or X = {x} or X = {y} or X = {x, y},

(76) ∅ ∈ bool A,

(77) A ∈ bool A,

(78) bool A 6= ∅,

(79) A ⊆ B implies bool A ⊆ bool B,

(80) {A} ⊆ bool A,

(81) bool A ∪ bool B ⊆ bool(A ∪ B),

(82) bool A ∪ bool B = bool(A ∪ B) implies A ⊆ B or B ⊆ A,

(83) bool(A ∩ B) = bool A ∩ bool B,



Some Basic Properties of Sets 51

(84) bool(A \ B) ⊆ {∅} ∪ (bool A \ bool B),

(85) X ∈ bool(A \ B) iff X ⊆ A & X misses B,

(86) bool(A \ B) ∪ bool(B \ A) ⊆ bool(A −. B),

(87) X ∈ bool(A −. B) iff X ⊆ A ∪ B & X misses A ∩ B,

(88) X ∈ bool A & Y ∈ bool A implies X ∪ Y ∈ bool A,

(89) X ∈ bool A or Y ∈ bool A implies X ∩ Y ∈ bool A,

(90) X ∈ bool A implies X \ Y ∈ bool A,

(91) X ∈ bool A & Y ∈ bool A implies X −. Y ∈ bool A,

(92) X ∈ A implies X ⊆
⋃

A,

(93)
⋃

{X, Y } = X ∪ Y,

(94) (forX st X ∈ A holds X ⊆ Z) implies
⋃

A ⊆ Z,

(95) A ⊆ B implies
⋃

A ⊆
⋃

B,

(96)
⋃

(A ∪ B) =
⋃

A ∪
⋃

B,

(97)
⋃

(A ∩ B) ⊆
⋃

A ∩
⋃

B,

(98) (forX st X ∈ A holds X ∩ B = ∅) implies
⋃

(A) ∩ B = ∅,

(99)
⋃

bool A = A,

(100) A ⊆ bool
⋃

A,

(101) (forX,Y st X 6= Y & X ∈ A ∪ B & Y ∈ A ∪ B holds X ∩ Y = ∅)

implies
⋃

(A ∩ B) =
⋃

A ∩
⋃

B,

(102) z ∈ [:X, Y :] implies exx,y st 〈x, y〉 = z,

(103) A ⊆ [:X, Y :] & z ∈ A implies exx,y st x ∈ X & y ∈ Y & z = 〈x, y〉,

(104) z ∈ [:X1,Y 1:] ∩ [:X2,Y 2:]

implies exx,y st z = 〈x, y〉 & x ∈ X1 ∩ X2 & y ∈ Y 1 ∩ Y 2,

(105) [:X, Y :] ⊆ bool bool(X ∪ Y ),

(106) 〈x, y〉 ∈ [:X, Y :] iff x ∈ X & y ∈ Y,



52 Czes law Byliński

(107) 〈x, y〉 ∈ [:X, Y :] implies 〈y, x〉 ∈ [:Y, X :],

(108) (forx,y holds 〈x, y〉 ∈ [:X1,Y 1:] iff 〈x, y〉 ∈ [:X2,Y 2:])

implies [:X1,Y 1:] = [:X2,Y 2:],

(109) A ⊆ [:X, Y :] & (forx,y st 〈x, y〉 ∈ A holds 〈x, y〉 ∈ B) implies A ⊆ B,

(110) A ⊆ [:X1,Y 1:] & B ⊆ [:X2,Y 2:] & (for x,y holds 〈x, y〉 ∈ A iff 〈x, y〉 ∈ B)

implies A = B,

(111) (for z st z ∈ A exx,y st z = 〈x, y〉) & (forx,y st 〈x, y〉 ∈ A holds 〈x, y〉 ∈ B)

implies A ⊆ B,

(112) (for z st z ∈ A exx,y st z = 〈x, y〉) &

(for z st z ∈ B exx,y st z = 〈x, y〉) & (forx,y holds 〈x, y〉 ∈ A iff 〈x, y〉 ∈ B)

implies A = B,

(113) [:X, Y :] = ∅ iff X = ∅ or Y = ∅,

(114) X 6= ∅ & Y 6= ∅ & [:X, Y :] = [:Y, X :] implies X = Y,

(115) [:X, X :] = [:Y, Y :] implies X = Y,

(116) X ⊆ [:X, X :] implies X = ∅,

(117) Z 6= ∅ & ([:X, Z:] ⊆ [:Y, Z:] or [:Z, X :] ⊆ [:Z, Y :]) implies X ⊆ Y,

(118) X ⊆ Y implies [:X, Z:] ⊆ [:Y, Z:] & [:Z, X :] ⊆ [:Z, Y :],

(119) X1 ⊆ Y 1 & X2 ⊆ Y 2 implies [:X1,X2:] ⊆ [:Y 1,Y 2:],

(120) [:X ∪ Y,Z:] = [:X, Z:] ∪ [:Y, Z:] & [:Z, X ∪ Y :] = [:Z, X :] ∪ [:Z, Y :],

(121) [:X1 ∪ X2,Y 1 ∪ Y 2:] = [:X1,Y 1:] ∪ [:X1,Y 2:] ∪ [:X2,Y 1:] ∪ [:X2,Y 2:],

(122) [:X ∩ Y,Z:] = [:X, Z:] ∩ [:Y, Z:] & [:Z, X ∩ Y :] = [:Z, X :] ∩ [:Z, Y :],

(123) [:X1 ∩ X2,Y 1 ∩ Y 2:] = [:X1,Y 1:] ∩ [:X2,Y 2:],

(124) A ⊆ X & B ⊆ Y implies [:A, Y :] ∩ [:X, B:] = [:A, B:],

(125) [:X \ Y,Z:] = [:X, Z:] \ [:Y, Z:] & [:Z, X \ Y :] = [:Z, X :] \ [:Z, Y :],

(126) [:X1,X2:] \ [:Y 1,Y 2:] = [:X1 \ Y 1,X2:] ∪ [:X1,X2 \ Y 2:],

(127) X1 ∩ X2 = ∅ or Y 1 ∩ Y 2 = ∅ implies [:X1,Y 1:] ∩ [:X2,Y 2:] = ∅,



Some Basic Properties of Sets 53

(128) 〈x, y〉 ∈ [:{z},Y :] iff x = z & y ∈ Y,

(129) 〈x, y〉 ∈ [:X, {z}:] iff x ∈ X & y = z,

(130) X 6= ∅ implies [:{x},X :] 6= ∅ & [:X, {x}:] 6= ∅,

(131) x 6= y implies [:{x},X :] ∩ [:{y},Y :] = ∅ & [:X, {x}:] ∩ [:Y, {y}:] = ∅,

(132) [:{x, y},X :] = [:{x},X :] ∪ [:{y},X :] & [:X, {x, y}:] = [:X, {x}:] ∪ [:X, {y}:],

(133) Z = [:X, Y :] iff for z holds z ∈ Z iff exx,y st x ∈ X & y ∈ Y & z = 〈x, y〉,

(134) X1 6= ∅ & Y 1 6= ∅ & [:X1,Y 1:] = [:X2,Y 2:] implies X1 = X2 & Y 1 = Y 2,

(135) X ⊆ [:X, Y :] or X ⊆ [:Y, X :] implies X = ∅.

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[2] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received February 1, 1989



54



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Functions and Their Basic Properties

Czes law Byliński1

Warsaw University

Bia lystok

Summary. The definitions of the mode Function and the graph of a function
are introduced. The graph of a function is defined to be identical with the function.
The following concepts are also defined: the domain of a function, the range of
a function, the identity function, the composition of functions, the 1-1 function,
the inverse function, the restriction of a function, the image and the inverse image.
Certain basic facts about functions and the notions defined in the article are proved.

The notation and terminology used here are introduced in the papers [1] and [2]. For

simplicity we adopt the following convention: X , X1, X2, Y , Y 1, Y 2 have the type

set; p, x, x1, x2, y, y1, y2, z have the type Any. The mode

Function ,

which widens to the type Any, is defined by

exF being set st it = F & (for p st p ∈ F exx,y st 〈x, y〉 = p)

& forx,y1,y2 st 〈x, y1〉 ∈ F & 〈x, y2〉 ∈ F holds y1 = y2.

In the sequel f , g, h will have the type Function. Let us consider f . The functor

graph f,

yields the type set and is defined by

f = it .

Next we state several propositions:

(1) graph f = f,

1Supported by RPBP.III-24.C1.

55
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



56 Czes law Byliński

(2) forF being set st

(for p st p ∈ F exx,y st 〈x, y〉 = p)

& forx,y1,y2 st 〈x, y1〉 ∈ F & 〈x, y2〉 ∈ F holds y1 = y2

ex f being Function st graphf = F,

(3) p ∈ graphf implies exx,y st 〈x, y〉 = p,

(4) 〈x, y1〉 ∈ graphf & 〈x, y2〉 ∈ graph f implies y1 = y2,

(5) graph f = graph g implies f = g.

The scheme GraphFunc concerns a constant A that has the type set and a binary

predicate P and states that the following holds

ex f st forx,y holds 〈x, y〉 ∈ graph f iff x ∈ A & P [x, y]

provided the parameters satisfy the following condition:

• forx,y1,y2 st P [x, y1] & P [x, y2] holds y1 = y2.

Let us consider f . The functor

dom f,

yields the type set and is defined by

forx holds x ∈ it iff ex y st 〈x, y〉 ∈ graphf.

One can prove the following proposition

(6) X = dom f iff forx holds x ∈ X iff ex y st 〈x, y〉 ∈ graph f.

Let us consider f , x. Assume that the following holds

x ∈ dom f.

The functor

f .x,

yields the type Any and is defined by

〈x, it〉 ∈ graph f.

The following three propositions are true:

(7) x ∈ dom f implies (y = f .x iff 〈x, y〉 ∈ graph f),

(8) 〈x, y〉 ∈ graph f iff x ∈ dom f & y = f .x,

(9) X = dom f & X = dom g & (forx st x ∈ X holds f .x = g.x) implies f = g.



Functions and Their Basic Properties 57

Let us consider f . The functor

rng f,

with values of the type set, is defined by

for y holds y ∈ it iff exx st x ∈ dom f & y = f .x.

One can prove the following propositions:

(10) Y = rng f iff for y holds y ∈ Y iff exx st x ∈ dom f & y = f .x,

(11) y ∈ rng f iff exx st x ∈ dom f & y = f .x,

(12) x ∈ dom f implies f .x ∈ rng f,

(13) dom f = ∅ iff rng f = ∅,

(14) dom f = {x} implies rng f = {f .x}.

Now we present two schemes. The scheme FuncEx concerns a constant A that has

the type set and a binary predicate P and states that the following holds

ex f st dom f = A & forx st x ∈ A holds P [x, f .x]

provided the parameters satisfy the following conditions:

• forx,y1,y2 st x ∈ A & P [x, y1] & P [x, y2] holds y1 = y2,

• forx st x ∈ A ex y st P [x, y].

The scheme Lambda concerns a constant A that has the type set and a unary functor

F and states that the following holds

ex f being Function st dom f = A & forx st x ∈ A holds f .x = F(x)

for all values of the parameters.

Next we state several propositions:

(15) X 6= ∅ implies for y ex f st dom f = X & rng f = {y},

(16) (for f,g st dom f = X & dom g = X holds f = g) implies X = ∅,

(17) dom f = dom g & rng f = {y} & rng g = {y} implies f = g,

(18) Y 6= ∅ or X = ∅ implies ex f st X = dom f & rng f ⊆ Y,

(19) (for y st y ∈ Y exx st x ∈ dom f & y = f .x) implies Y ⊆ rng f.

Let us consider f , g. The functor

g · f,



58 Czes law Byliński

yields the type Function and is defined by

(for x holds x ∈ dom it iff x ∈ dom f & f .x ∈ dom g)

& forx st x ∈ dom it holds it.x = g.(f .x).

The following propositions are true:

(20) h = g · f iff (forx holds x ∈ dom h iff x ∈ dom f & f .x ∈ dom g)

& forx st x ∈ dom h holds h.x = g.(f .x),

(21) x ∈ dom (g · f) iff x ∈ dom f & f .x ∈ dom g,

(22) x ∈ dom (g · f) implies (g · f).x = g.(f .x),

(23) x ∈ dom f & f .x ∈ dom g implies (g · f).x = g.(f .x),

(24) dom (g · f) ⊆ dom f,

(25) z ∈ rng (g · f) implies z ∈ rng g,

(26) rng (g · f) ⊆ rng g,

(27) rng f ⊆ dom g iff dom (g · f) = dom f,

(28) dom g ⊆ rng f implies rng (g · f) = rng g,

(29) rng f = dom g implies dom (g · f) = dom f & rng (g · f) = rng g,

(30) h · (g · f) = (h · g) · f,

(31) rng f ⊆ dom g & x ∈ dom f implies (g · f).x = g.(f .x),

(32) rng f = dom g & x ∈ dom f implies (g · f).x = g.(f .x),

(33) rng f ⊆ Y & (for g,h st dom g = Y & dom h = Y & g · f = h · f holds g = h)

implies Y = rng f.

Let us consider X . The functor

id X,

with values of the type Function, is defined by

dom it = X & forx st x ∈ X holds it.x = x.

Next we state a number of propositions:

(34) f = id X iff dom f = X & forx st x ∈ X holds f .x = x,

(35) x ∈ X implies (id X).x = x,



Functions and Their Basic Properties 59

(36) dom id X = X & rng id X = X,

(37) dom (f · (id X)) = dom f ∩ X,

(38) x ∈ dom f ∩ X implies f .x = (f · (id X)).x,

(39) dom f ⊆ X implies f · (id X) = f,

(40) x ∈ dom ((id Y ) · f) iff x ∈ dom f & f .x ∈ Y,

(41) rng f ⊆ Y implies (id Y ) · f = f,

(42) f · (id dom f) = f & (id rng f) · f = f,

(43) (id X) · (id Y ) = id (X ∩ Y ),

(44) dom f = X & rng f = X & dom g = X & g · f = f implies g = id X.

Let us consider f . The predicate

f is one-to-one

is defined by

forx1,x2 st x1 ∈ dom f & x2 ∈ dom f & f .x1 = f .x2 holds x1 = x2.

One can prove the following propositions:

(45) f is one-to-one

iff for x1,x2 st x1 ∈ dom f & x2 ∈ dom f & f .x1 = f .x2 holds x1 = x2,

(46) f is one-to-one & g is one-to-one implies g · f is one-to-one ,

(47) g · f is one-to-one & rng f ⊆ dom g implies f is one-to-one ,

(48) g · f is one-to-one & rng f = dom g implies f is one-to-one & g is one-to-one ,

(49) f is one-to-one iff for g,h st

rng g ⊆ dom f & rng h ⊆ dom f & dom g = dom h & f · g = f · h holds g = h,

(50) dom f = X & dom g = X & rng g ⊆ X & f is one-to-one & f · g = f

implies g = id X,

(51) rng (g · f) = rng g & g is one-to-one implies dom g ⊆ rng f,

(52) id X is one-to-one ,

(53) (ex g st g · f = id dom f) implies f is one-to-one .



60 Czes law Byliński

Let us consider f . Assume that the following holds

f is one-to-one .

The functor

f -1 ,

with values of the type Function, is defined by

dom it = rng f & for y,x holds y ∈ rng f & x = it.y iff x ∈ dom f & y = f .x.

We now state a number of propositions:

(54) f is one-to-one implies (g = f -1 iff

dom g = rng f & for y,x holds y ∈ rng f & x = g.y iff x ∈ dom f & y = f .x),

(55) f is one-to-one implies rng f = dom (f -1) & dom f = rng (f -1),

(56) f is one-to-one & x ∈ dom f implies x = (f -1).(f .x) & x = (f -1 · f).x,

(57) f is one-to-one & y ∈ rng f implies y = f .((f -1).y) & y = (f · f -1).y,

(58) f is one-to-one implies dom (f -1 · f) = dom f & rng (f -1 · f) = dom f,

(59) f is one-to-one implies dom (f · f -1) = rng f & rng (f · f -1) = rng f,

(60) f is one-to-one & dom f = rng g & rng f = dom g

& (for x,y st x ∈ dom f & y ∈ dom g holds f .x = y iff g.y = x)

implies g = f -1 ,

(61) f is one-to-one implies f -1 · f = id dom f & f · f -1 = id rng f,

(62) f is one-to-one implies f -1 is one-to-one ,

(63) f is one-to-one & rng f = dom g & g · f = id dom f implies g = f -1 ,

(64) f is one-to-one & rng g = dom f & f · g = id rng f implies g = f -1 ,

(65) f is one-to-one implies (f -1) -1 = f,

(66) f is one-to-one & g is one-to-one implies (g · f) -1 = f -1 · g -1 ,

(67) (id X) -1 = (id X).

Let us consider f , X . The functor

f | X,

yields the type Function and is defined by

dom it = dom f ∩ X & forx st x ∈ dom it holds it.x = f .x.



Functions and Their Basic Properties 61

We now state a number of propositions:

(68) g = f | X iff dom g = dom f ∩ X & forx st x ∈ dom g holds g.x = f .x,

(69) dom (f | X) = dom f ∩ X,

(70) x ∈ dom (f | X) implies (f | X).x = f .x,

(71) x ∈ dom f ∩ X implies (f | X).x = f .x,

(72) x ∈ dom f & x ∈ X implies (f | X).x = f .x,

(73) x ∈ dom f & x ∈ X implies f .x ∈ rng (f | X),

(74) X ⊆ dom f implies dom (f | X) = X,

(75) dom (f | X) ⊆ X,

(76) dom (f | X) ⊆ dom f & rng (f | X) ⊆ rng f,

(77) f | X = f · (id X),

(78) dom f ⊆ X implies f | X = f,

(79) f | (dom f) = f,

(80) (f | X) | Y = f | (X ∩ Y ),

(81) (f | X) | X = f | X,

(82) X ⊆ Y implies (f | X) | Y = f | X & (f | Y ) | X = f | X,

(83) (g · f) | X = g · (f | X),

(84) f is one-to-one implies f | X is one-to-one .

Let us consider Y , f . The functor

Y | f,

with values of the type Function, is defined by

(forx holds x ∈ dom it iff x ∈ dom f & f .x ∈ Y )

& forx st x ∈ dom it holds it.x = f .x.

We now state a number of propositions:

(85) g = Y | f iff (for x holds x ∈ dom g iff x ∈ dom f & f .x ∈ Y )

& forx st x ∈ dom g holds g.x = f .x,



62 Czes law Byliński

(86) x ∈ dom (Y | f) iff x ∈ dom f & f .x ∈ Y,

(87) x ∈ dom (Y | f) implies (Y | f).x = f .x,

(88) rng (Y | f) ⊆ Y,

(89) dom (Y | f) ⊆ dom f & rng (Y | f) ⊆ rng f,

(90) rng (Y | f) = rng f ∩ Y,

(91) Y ⊆ rng f implies rng (Y | f) = Y,

(92) Y | f = (id Y ) · f,

(93) rng f ⊆ Y implies Y | f = f,

(94) (rng f) | f = f,

(95) Y | (X | f) = (Y ∩ X) | f,

(96) Y | (Y | f) = Y | f,

(97) X ⊆ Y implies Y | (X | f) = X | f & X | (Y | f) = X | f,

(98) Y | (g · f) = (Y | g) · f,

(99) f is one-to-one implies Y | f is one-to-one ,

(100) (Y | f) | X = Y | (f | X).

Let us consider f , X . The functor

f ◦ X,

yields the type set and is defined by

for y holds y ∈ it iff exx st x ∈ dom f & x ∈ X & y = f .x.

The following propositions are true:

(101) Y = f ◦ X iff for y holds y ∈ Y iff exx st x ∈ dom f & x ∈ X & y = f .x,

(102) y ∈ f ◦ X iff exx st x ∈ dom f & x ∈ X & y = f .x,

(103) f ◦ X ⊆ rng f,

(104) f ◦ (X) = f ◦ (dom f ∩ X),

(105) f ◦ (dom f) = rng f,

(106) f ◦ X ⊆ f ◦ (dom f),



Functions and Their Basic Properties 63

(107) rng (f | X) = f ◦ X,

(108) f ◦ X = ∅ iff dom f ∩ X = ∅,

(109) f ◦ ∅ = ∅,

(110) X 6= ∅ & X ⊆ dom f implies f ◦ X 6= ∅,

(111) X1 ⊆ X2 implies f ◦ X1 ⊆ f ◦ X2,

(112) f ◦ (X1 ∪ X2) = f ◦ X1 ∪ f ◦ X2,

(113) f ◦ (X1 ∩ X2) ⊆ f ◦ X1 ∩ f ◦ X2,

(114) f ◦ X1 \ f ◦ X2 ⊆ f ◦ (X1 \ X2),

(115) (g · f) ◦ X = g ◦ (f ◦ X),

(116) rng (g · f) = g ◦ (rng f),

(117) x ∈ dom f implies f ◦ {x} = {f .x},

(118) x1 ∈ dom f & x2 ∈ dom f implies f ◦ {x1,x2} = {f .x1,f .x2},

(119) (f | Y ) ◦ X ⊆ f ◦ X,

(120) (Y | f) ◦ X ⊆ f ◦ X,

(121) f is one-to-one implies f ◦ (X1 ∩ X2) = f ◦ X1 ∩ f ◦ X2,

(122) (forX1,X2 holds f ◦ (X1 ∩ X2) = f ◦ X1 ∩ f ◦ X2)

implies f is one-to-one ,

(123) f is one-to-one implies f ◦ (X1 \ X2) = f ◦ X1 \ f ◦ X2,

(124) (forX1,X2 holds f ◦ (X1 \ X2) = f ◦ X1 \ f ◦ X2) implies f is one-to-one ,

(125) X ∩ Y = ∅ & f is one-to-one implies f ◦ X ∩ f ◦ Y = ∅,

(126) (Y | f) ◦ X = Y ∩ f ◦ X.

Let us consider f , Y . The functor

f -1 Y,

yields the type set and is defined by

forx holds x ∈ it iff x ∈ dom f & f .x ∈ Y.



64 Czes law Byliński

We now state a number of propositions:

(127) X = f -1 Y iff forx holds x ∈ X iff x ∈ dom f & f .x ∈ Y,

(128) x ∈ f -1 Y iff x ∈ dom f & f .x ∈ Y,

(129) f -1 Y ⊆ dom f,

(130) f -1 Y = f -1 (rng f ∩ Y ),

(131) f -1 (rng f) = dom f,

(132) f -1 ∅ = ∅,

(133) f -1 Y = ∅ iff rng f ∩ Y = ∅,

(134) Y ⊆ rng f implies (f -1 Y = ∅ iff Y = ∅),

(135) Y 1 ⊆ Y 2 implies f -1 Y 1 ⊆ f -1 Y 2,

(136) f -1 (Y 1 ∪ Y 2) = f -1 Y 1 ∪ f -1 Y 2,

(137) f -1 (Y 1 ∩ Y 2) = f -1 Y 1 ∩ f -1 Y 2,

(138) f -1 (Y 1 \ Y 2) = f -1 Y 1 \ f -1 Y 2,

(139) (f | X) -1 Y = X ∩ (f -1 Y ),

(140) (g · f) -1 Y = f -1 (g -1 Y ),

(141) dom (g · f) = f -1 (dom g),

(142) y ∈ rng f iff f -1 {y} 6= ∅,

(143) (for y st y ∈ Y holds f -1 {y} 6= ∅) implies Y ⊆ rng f,

(144) (for y st y ∈ rng f exx st f -1 {y} = {x}) iff f is one-to-one ,

(145) f ◦ (f -1 Y ) ⊆ Y,

(146) X ⊆ dom f implies X ⊆ f -1 (f ◦ X),

(147) Y ⊆ rng f implies f ◦ (f -1 Y ) = Y,

(148) f ◦ (f -1 Y ) = Y ∩ f ◦ (dom f),

(149) f ◦ (X ∩ f -1 Y ) ⊆ (f ◦ X) ∩ Y,

(150) f ◦ (X ∩ f -1 Y ) = (f ◦ X) ∩ Y,



Functions and Their Basic Properties 65

(151) X ∩ f -1 Y ⊆ f -1 (f ◦ X ∩ Y ),

(152) f is one-to-one implies f -1 (f ◦ X) ⊆ X,

(153) (forX holds f -1 (f ◦ X) ⊆ X) implies f is one-to-one ,

(154) f is one-to-one implies f ◦ X = (f -1) -1 X,

(155) f is one-to-one implies f -1 Y = (f -1) ◦ Y,

(156) Y = rng f & dom g = Y & dom h = Y & g · f = h · f implies g = h,

(157) f ◦ X1 ⊆ f ◦ X2 & X1 ⊆ dom f & f is one-to-one implies X1 ⊆ X2,

(158) f -1 Y 1 ⊆ f -1 Y 2 & Y 1 ⊆ rng f implies Y 1 ⊆ Y 2,

(159) f is one-to-one iff for y exx st f -1 {y} ⊆ {x},

(160) rng f ⊆ dom g implies f -1 X ⊆ (g · f) -1 (g ◦ X).

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[2] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received March 3, 1989



66



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Properties of Subsets

Zinaida Trybulec1

Warsaw University

Bia lystok

Summary. The text includes theorems concerning properties of subsets, and
some operations on sets. The functions yielding improper subsets of a set, i.e. the
empty set and the set itself are introduced. Functions and predicates introduced
for sets are redefined. Some theorems about enumerated sets are proved.

The articles [2], [3], and [1] provide the terminology and notation for this paper. In

the sequel E, X denote objects of the type set; x denotes an object of the type Any.

One can prove the following propositions:

(1) E 6= ∅ implies (x is Element of E iff x ∈ E),

(2) x ∈ E implies x is Element of E,

(3) X is Subset of E iff X ⊆ E.

We now define two new functors. Let us consider E. The functor

∅E,

yields the type Subset of E and is defined by

it = ∅.

The functor

Ω E,

with values of the type Subset of E, is defined by

it = E.

We now state two propositions:

(4) ∅ is Subset of X,

1Supported by RPBP.III-24.C1.

67
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



68 Zinaida Trybulec

(5) X is Subset of X.

In the sequel A, B, C denote objects of the type Subset of E. Next we state

several propositions:

(6) x ∈ A implies x is Element of E,

(7) (forx being Element of E holds x ∈ A implies x ∈ B) implies A ⊆ B,

(8) (for x being Element of E holds x ∈ A iff x ∈ B) implies A = B,

(9) x ∈ A implies x ∈ E,

(10) A 6= ∅ iff exx being Element of E st x ∈ A.

Let us consider E, A. The functor

A c ,

yields the type Subset of E and is defined by

it = E \ A.

Let us consider B. Let us note that it makes sense to consider the following functors on

restricted areas. Then

A ∪ B is Subset of E,

A ∩ B is Subset of E,

A \ B is Subset of E,

A −. B is Subset of E.

One can prove the following propositions:

(11) x ∈ A ∩ B implies x is Element of A & x is Element of B,

(12) x ∈ A ∪ B implies x is Element of A or x is Element of B,

(13) x ∈ A \ B implies x is Element of A,

(14) x ∈ A −. B implies x is Element of A or x is Element of B,

(15) (forx being Element of E holds x ∈ A iff x ∈ B or x ∈ C)

implies A = B ∪ C,

(16) (for x being Element of E holds x ∈ A iff x ∈ B & x ∈ C)

implies A = B ∩ C,

(17) (forx being Element of E holds x ∈ A iff x ∈ B & notx ∈ C)

implies A = B \ C,



Properties of Subsets 69

(18) (forx being Element of E holds x ∈ A iff not (x ∈ B iff x ∈ C))

implies A = B −. C,

(19) ∅E = ∅,

(20) Ω E = E,

(21) ∅E = (Ω E) c ,

(22) Ω E = (∅E) c ,

(23) A c = E \ A,

(24) A c c = A,

(25) A ∪ A c = Ω E & A c ∪ A = Ω E,

(26) A ∩ A c = ∅E & A c ∩ A = ∅E,

(27) A ∩ ∅E = ∅E & ∅E ∩ A = ∅E,

(28) A ∪ Ω E = Ω E & Ω E ∪ A = Ω E,

(29) (A ∪ B) c = A c ∩ B c ,

(30) (A ∩ B) c = A c ∪ B c ,

(31) A ⊆ B iff B c ⊆ A c ,

(32) A \ B = A ∩ B c ,

(33) (A \ B) c = A c ∪ B,

(34) (A −. B) c = A ∩ B ∪ A c ∩ B c ,

(35) A ⊆ B c implies B ⊆ A c ,

(36) A c ⊆ B implies B c ⊆ A,

(37) ∅E ⊆ E,

(38) A ⊆ A c iff A = ∅E,

(39) A c ⊆ A iff A = Ω E,

(40) X ⊆ A & X ⊆ A c implies X = ∅,

(41) (A ∪ B) c ⊆ A c & (A ∪ B) c ⊆ B c ,



70 Zinaida Trybulec

(42) A c ⊆ (A ∩ B) c & B c ⊆ (A ∩ B) c ,

(43) A misses B iff A ⊆ B c ,

(44) A misses B c iff A ⊆ B,

(45) A misses A c ,

(46) A misses B & A c misses B c implies A = B c ,

(47) A ⊆ B & C misses B implies A ⊆ C c ,

(48) (for a being Element of A holds a ∈ B) implies A ⊆ B,

(49) (forx being Element of E holds x ∈ A) implies E = A,

(50) E 6= ∅ implies forA,B

holds A = B c iff forx being Element of E holds x ∈ A iff notx ∈ B,

(51) E 6= ∅ implies forA,B

holds A = B c iff forx being Element of E holds notx ∈ A iff x ∈ B,

(52) E 6= ∅ implies forA,B

holds A = B c iff forx being Element of E holds not (x ∈ A iff x ∈ B),

(53) x ∈ A c implies notx ∈ A.

In the sequel x1, x2, x3, x4, x5, x6, x7, x8 will have the type Element of X . One

can prove the following propositions:

(54) X 6= ∅ implies {x1} is Subset of X,

(55) X 6= ∅ implies {x1,x2} is Subset of X,

(56) X 6= ∅ implies {x1,x2,x3} is Subset of X,

(57) X 6= ∅ implies {x1,x2,x3,x4} is Subset of X,

(58) X 6= ∅ implies {x1,x2,x3,x4,x5} is Subset of X,

(59) X 6= ∅ implies {x1,x2,x3,x4,x5,x6} is Subset of X,

(60) X 6= ∅ implies {x1,x2,x3,x4,x5,x6,x7} is Subset of X,

(61) X 6= ∅ implies {x1,x2,x3,x4,x5,x6,x7,x8} is Subset of X.

In the sequel x1, x2, x3, x4, x5, x6, x7, x8 denote objects of the type Any. We

now state several propositions:

(62) x1 ∈ X implies {x1} is Subset of X,



Properties of Subsets 71

(63) x1 ∈ X & x2 ∈ X implies {x1,x2} is Subset of X,

(64) x1 ∈ X & x2 ∈ X & x3 ∈ X implies {x1,x2,x3} is Subset of X,

(65) x1 ∈ X & x2 ∈ X & x3 ∈ X & x4 ∈ X implies {x1,x2,x3,x4} is Subset of X,

(66) x1 ∈ X & x2 ∈ X & x3 ∈ X & x4 ∈ X & x5 ∈ X

implies {x1,x2,x3,x4,x5} is Subset of X,

(67) x1 ∈ X & x2 ∈ X & x3 ∈ X & x4 ∈ X & x5 ∈ X & x6 ∈ X

implies {x1,x2,x3,x4,x5,x6} is Subset of X,

(68) x1 ∈ X & x2 ∈ X & x3 ∈ X & x4 ∈ X & x5 ∈ X & x6 ∈ X & x7 ∈ X

implies {x1,x2,x3,x4,x5,x6,x7} is Subset of X,

(69) x1 ∈ X

& x2 ∈ X & x3 ∈ X & x4 ∈ X & x5 ∈ X & x6 ∈ X & x7 ∈ X & x8 ∈ X

implies {x1,x2,x3,x4,x5,x6,x7,x8} is Subset of X.

The scheme Subset Ex concerns a constant A that has the type set and a unary

predicate P and states that the following holds

exX being Subset of A st for x holds x ∈ X iff x ∈ A & P [x]

for all values of the parameters.

References

[1] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.

[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[3] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received March 4, 1989



72



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Relations and Their Basic Properties

Edmund Woronowicz1

Warsaw University

Bia lystok

Summary. We define here: mode Relation as a set of pairs, the domain,
the codomain, and the field of relation, the empty and the identity relations, the
composition of relations, the image and the inverse image of a set under a relation.
Two predicates = and ⊆ , and three functions ∪, ∩ and \ are redefined. Basic facts
about the above mentioned notions are presented.

The terminology and notation used in this paper have been introduced in the articles [1]

and [2]. For simplicity we adopt the following convention: A, B, X , Y , Y 1, Y 2 denote

objects of the type set; a, b, c, d, x, y, z denote objects of the type Any. The mode

Relation ,

which widens to the type set, is defined by

x ∈ it implies ex y,z st x = 〈y, z〉.

One can prove the following proposition

(1) forR being set st forx st x ∈ R ex y,z st x = 〈y, z〉 holds R is Relation .

In the sequel P , P1, P2, Q, R, S will have the type Relation. Next we state

several propositions:

(2) x ∈ R implies ex y,z st x = 〈y, z〉,

(3) A ⊆ R implies A is Relation ,

(4) {〈x, y〉} is Relation ,

(5) {〈a, b〉,〈c, d〉} is Relation ,

(6) [:X, Y :] is Relation .

1Supported by RPBP III.24 C1

73
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



74 Edmund Woronowicz

The scheme Rel Existence deals with a constant A that has the type set, a constant

B that has the type set and a binary predicate P and states that the following holds

exR being Relation st forx,y holds 〈x, y〉 ∈ R iff x ∈ A & y ∈ B & P [x, y]

for all values of the parameters.

Let us consider P , R. Let us note that one can characterize the predicate

P = R

by the following (equivalent) condition:

for a,b holds 〈a, b〉 ∈ P iff 〈a, b〉 ∈ R.

The following proposition is true

(7) P = R iff for a,b holds 〈a, b〉 ∈ P iff 〈a, b〉 ∈ R.

For convenience we may adopt another formulas defining notions considered in the

paper. From now on we shall treat them as new definitions.

Let us consider P , R. Let us note that it makes sense to consider the following

functors on restricted areas. Then

P ∩ R is Relation ,

P ∪ R is Relation ,

P \ R is Relation .

Let us note that one can characterize the predicate

P ⊆ R

by the following (equivalent) condition:

for a,b holds 〈a, b〉 ∈ P implies 〈a, b〉 ∈ R.

The following three propositions are true:

(8) P ⊆ R iff for a,b holds 〈a, b〉 ∈ P implies 〈a, b〉 ∈ R,

(9) X ∩ R is Relation & R ∩ X is Relation ,

(10) R \ X is Relation .

Let us consider R. The functor

dom R,

with values of the type set, is defined by

x ∈ it iff ex y st 〈x, y〉 ∈ R.



Relations and Their Basic Properties 75

We now state several propositions:

(11) X = dom R iff forx holds x ∈ X iff ex y st 〈x, y〉 ∈ R,

(12) x ∈ dom R iff ex y st 〈x, y〉 ∈ R,

(13) dom (P ∪ R) = dom P ∪ dom R,

(14) dom (P ∩ R) ⊆ dom P ∩ dom R,

(15) dom P \ dom R ⊆ dom (P \ R).

Let us consider R. The functor

rng R,

yields the type set and is defined by

y ∈ it iff exx st 〈x, y〉 ∈ R.

One can prove the following propositions:

(16) X = rng R iff for x holds x ∈ X iff ex y st 〈y, x〉 ∈ R,

(17) x ∈ rng R iff ex y st 〈y, x〉 ∈ R,

(18) x ∈ dom R implies ex y st y ∈ rng R,

(19) y ∈ rng R implies exx st x ∈ dom R,

(20) 〈x, y〉 ∈ R implies x ∈ dom R & y ∈ rng R,

(21) R ⊆ [:dom R,rng R:],

(22) R ∩ [:dom R,rng R:] = R,

(23) R = {〈x, y〉} implies dom R = {x} & rng R = {y},

(24) R = {〈a, b〉,〈x, y〉} implies dom R = {a, x} & rng R = {b, y},

(25) P ⊆ R implies dom P ⊆ dom R & rng P ⊆ rng R,

(26) rng (P ∪ R) = rng P ∪ rng R,

(27) rng (P ∩ R) ⊆ rng P ∩ rng R,

(28) rng P \ rng R ⊆ rng (P \ R).

Let us consider R. The functor

field R,



76 Edmund Woronowicz

yields the type set and is defined by

it = dom R ∪ rng R.

We now state several propositions:

(29) field R = dom R ∪ rng R,

(30) 〈a, b〉 ∈ R implies a ∈ field R & b ∈ field R,

(31) P ⊆ R implies field P ⊆ field R,

(32) R = {〈x, y〉} implies field R = {x, y},

(33) field (P ∪ R) = field P ∪ field R,

(34) field (P ∩ R) ⊆ field P ∩ field R.

Let us consider R. The functor

R˜,

yields the type Relation and is defined by

〈x, y〉 ∈ it iff 〈y, x〉 ∈ R.

One can prove the following propositions:

(35) R = P˜ iff forx,y holds 〈x, y〉 ∈ R iff 〈y, x〉 ∈ P,

(36) 〈x, y〉 ∈ P˜ iff 〈y, x〉 ∈ P,

(37) (R )̃˜= R,

(38) field R = field (R )̃,

(39) (P ∩ R)˜= P˜∩ R˜,

(40) (P ∪ R)˜= P˜∪ R˜,

(41) (P \ R)˜= P˜\ R˜.

Let us consider P , R. The functor

P · R,

with values of the type Relation, is defined by

〈x, y〉 ∈ it iff ex z st 〈x, z〉 ∈ P & 〈z, y〉 ∈ R.

We now state a number of propositions:

(42) Q = P · R iff forx,y holds 〈x, y〉 ∈ Q iff ex z st 〈x, z〉 ∈ P & 〈z, y〉 ∈ R,



Relations and Their Basic Properties 77

(43) 〈x, y〉 ∈ P · R iff ex z st 〈x, z〉 ∈ P & 〈z, y〉 ∈ R,

(44) dom (P · R) ⊆ dom P,

(45) rng (P · R) ⊆ rng R,

(46) rng R ⊆ dom P implies dom (R · P ) = dom R,

(47) dom P ⊆ rng R implies rng (R · P ) = rng P,

(48) P ⊆ R implies Q · P ⊆ Q · R,

(49) P ⊆ Q implies P · R ⊆ Q · R,

(50) P ⊆ R & Q ⊆ S implies P · Q ⊆ R · S,

(51) P · (R ∪ Q) = (P · R) ∪ (P · Q),

(52) P · (R ∩ Q) ⊆ (P · R) ∩ (P · Q),

(53) (P · R) \ (P · Q) ⊆ P · (R \ Q),

(54) (P · R)˜= R˜· P˜,

(55) (P · R) · Q = P · (R · Q).

The constant Ø has the type Relation, and is defined by

not 〈x, y〉 ∈ it .

One can prove the following propositions:

(56) R = Ø iff forx,y holds not 〈x, y〉 ∈ R,

(57) not 〈x, y〉 ∈ Ø ,

(58) Ø ⊆ [:A, B:],

(59) Ø ⊆ R,

(60) dom Ø = ∅ & rng Ø = ∅,

(61) Ø ∩ R = Ø & Ø ∪ R = R,

(62) Ø · R = Ø & R · Ø = Ø ,

(63) R · Ø = Ø · R,

(64) dom R = ∅ or rng R = ∅ implies R = Ø ,



78 Edmund Woronowicz

(65) dom R = ∅ iff rng R = ∅,

(66) Ø˜= Ø ,

(67) rng R ∩ dom P = ∅ implies R · P = Ø .

Let us consider X . The functor

4X,

with values of the type Relation, is defined by

〈x, y〉 ∈ it iff x ∈ X & x = y.

The following propositions are true:

(68) P = 4X iff forx,y holds 〈x, y〉 ∈ P iff x ∈ X & x = y,

(69) 〈x, y〉 ∈ 4X iff x ∈ X & x = y,

(70) x ∈ X iff 〈x, x〉 ∈ 4X,

(71) dom4X = X & rng4X = X,

(72) (4X)˜= 4X,

(73) (forx st x ∈ X holds 〈x, x〉 ∈ R) implies 4X ⊆ R,

(74) 〈x, y〉 ∈ (4X) · R iff x ∈ X & 〈x, y〉 ∈ R,

(75) 〈x, y〉 ∈ R · 4Y iff y ∈ Y & 〈x, y〉 ∈ R,

(76) R · (4X) ⊆ R & (4X) · R ⊆ R,

(77) dom R ⊆ X implies (4X) · R = R,

(78) (4 dom R) · R = R,

(79) rng R ⊆ Y implies R · (4Y ) = R,

(80) R · (4 rng R) = R,

(81) 4∅ = Ø ,

(82) dom R = X & rng P2 ⊆ X & P2 · R = 4 (dom P1) & R · P1 = 4X

implies P1 = P2,

(83) dom R = X & rng P2 = X & P2 · R = 4 (dom P1) & R · P1 = 4X

implies P1 = P2.



Relations and Their Basic Properties 79

Let us consider R, X . The functor

R | X,

with values of the type Relation, is defined by

〈x, y〉 ∈ it iff x ∈ X & 〈x, y〉 ∈ R.

We now state a number of propositions:

(84) P = R | X iff forx,y holds 〈x, y〉 ∈ P iff x ∈ X & 〈x, y〉 ∈ R,

(85) 〈x, y〉 ∈ R | X iff x ∈ X & 〈x, y〉 ∈ R,

(86) x ∈ dom (R | X) iff x ∈ X & x ∈ dom R,

(87) dom (R | X) ⊆ X,

(88) R | X ⊆ R,

(89) dom (R | X) ⊆ dom R,

(90) dom (R | X) = dom R ∩ X,

(91) X ⊆ dom R implies dom (R | X) = X,

(92) (R | X) · P ⊆ R · P,

(93) P · (R | X) ⊆ P · R,

(94) R | X = (4X) · R,

(95) R | X = Ø iff (dom R) ∩ X = ∅,

(96) R | X = R ∩ [:X, rngR:],

(97) dom R ⊆ X implies R | X = R,

(98) R | dom R = R,

(99) rng (R | X) ⊆ rng R,

(100) (R | X) | Y = R | (X ∩ Y ),

(101) (R | X) | X = R | X,

(102) X ⊆ Y implies (R | X) | Y = R | X,

(103) Y ⊆ X implies (R | X) | Y = R | Y,

(104) X ⊆ Y implies R | X ⊆ R | Y,



80 Edmund Woronowicz

(105) P ⊆ R implies P | X ⊆ R | X,

(106) P ⊆ R & X ⊆ Y implies P | X ⊆ R | Y,

(107) R | (X ∪ Y ) = (R | X) ∪ (R | Y ),

(108) R | (X ∩ Y ) = (R | X) ∩ (R | Y ),

(109) R | (X \ Y ) = R | X \ R | Y,

(110) R | ∅ = Ø ,

(111) Ø | X = Ø ,

(112) (P · R) | X = (P | X) · R.

Let us consider Y , R. The functor

Y | R,

yields the type Relation and is defined by

〈x, y〉 ∈ it iff y ∈ Y & 〈x, y〉 ∈ R.

The following propositions are true:

(113) P = Y | R iff forx,y holds 〈x, y〉 ∈ P iff y ∈ Y & 〈x, y〉 ∈ R,

(114) 〈x, y〉 ∈ Y | R iff y ∈ Y & 〈x, y〉 ∈ R,

(115) y ∈ rng (Y | R) iff y ∈ Y & y ∈ rng R,

(116) rng (Y | R) ⊆ Y,

(117) Y | R ⊆ R,

(118) rng (Y | R) ⊆ rng R,

(119) rng (Y | R) = rng R ∩ Y,

(120) Y ⊆ rng R implies rng (Y | R) = Y,

(121) (Y | R) · P ⊆ R · P,

(122) P · (Y | R) ⊆ P · R,

(123) Y | R = R · (4Y ),

(124) Y | R = R ∩ [:dom R,Y :],

(125) rng R ⊆ Y implies Y | R = R,



Relations and Their Basic Properties 81

(126) rng R | R = R,

(127) Y | (X | R) = (Y ∩ X) | R,

(128) Y | (Y | R) = Y | R,

(129) X ⊆ Y implies Y | (X | R) = X | R,

(130) Y ⊆ X implies Y | (X | R) = Y | R,

(131) X ⊆ Y implies X | R ⊆ Y | R,

(132) P1 ⊆ P2 implies Y | P1 ⊆ Y | P2,

(133) P1 ⊆ P2 & Y 1 ⊆ Y 2 implies Y 1 | P1 ⊆ Y 2 | P2,

(134) (X ∪ Y ) | R = (X | R) ∪ (Y | R),

(135) (X ∩ Y ) | R = X | R ∩ Y | R,

(136) (X \ Y ) | R = X | R \ Y | R,

(137) ∅ | R = Ø ,

(138) Y | Ø = Ø ,

(139) Y | (P · R) = P · (Y | R),

(140) (Y | R) | X = Y | (R | X).

Let us consider R, X . The functor

R ◦ X,

yields the type set and is defined by

y ∈ it iff exx st 〈x, y〉 ∈ R & x ∈ X.

One can prove the following propositions:

(141) Y = R ◦ X iff for y holds y ∈ Y iff exx st 〈x, y〉 ∈ R & x ∈ X,

(142) y ∈ R ◦ X iff exx st 〈x, y〉 ∈ R & x ∈ X,

(143) y ∈ R ◦ X iff exx st x ∈ dom R & 〈x, y〉 ∈ R & x ∈ X,

(144) R ◦ X ⊆ rng R,

(145) R ◦ X = R ◦ (dom R ∩ X),

(146) R ◦ dom R = rng R,



82 Edmund Woronowicz

(147) R ◦ X ⊆ R ◦ (dom R),

(148) rng (R | X) = R ◦ X,

(149) R ◦ ∅ = ∅,

(150) Ø ◦ X = ∅,

(151) R ◦ X = ∅ iff dom R ∩ X = ∅,

(152) X 6= ∅ & X ⊆ dom R implies R ◦ X 6= ∅,

(153) R ◦ (X ∪ Y ) = R ◦ X ∪ R ◦ Y,

(154) R ◦ (X ∩ Y ) ⊆ R ◦ X ∩ R ◦ Y,

(155) R ◦ X \ R ◦ Y ⊆ R ◦ (X \ Y ),

(156) X ⊆ Y implies R ◦ X ⊆ R ◦ Y,

(157) P ⊆ R implies P ◦ X ⊆ R ◦ X,

(158) P ⊆ R & X ⊆ Y implies P ◦ X ⊆ R ◦ Y,

(159) (P · R) ◦ X = R ◦ (P ◦ X),

(160) rng (P · R) = R ◦ (rng P ),

(161) (R | X) ◦ Y ⊆ R ◦ Y,

(162) R | X = Ø iff (dom R) ∩ X = ∅,

(163) (dom R) ∩ X ⊆ (R )̃ ◦ (R ◦ X).

Let us consider R, Y . The functor

R -1 Y,

with values of the type set, is defined by

x ∈ it iff ex y st 〈x, y〉 ∈ R & y ∈ Y.

Next we state a number of propositions:

(164) X = R -1 Y iff forx holds x ∈ X iff ex y st 〈x, y〉 ∈ R & y ∈ Y,

(165) x ∈ R -1 Y iff ex y st 〈x, y〉 ∈ R & y ∈ Y,

(166) x ∈ R -1 Y iff ex y st y ∈ rng R & 〈x, y〉 ∈ R & y ∈ Y,

(167) R -1 Y ⊆ dom R,



Relations and Their Basic Properties 83

(168) R -1 Y = R -1 (rng R ∩ Y ),

(169) R -1 rng R = dom R,

(170) R -1 Y ⊆ R -1 rng R,

(171) R -1 ∅ = ∅,

(172) Ø -1 Y = ∅,

(173) R -1 Y = ∅ iff rng R ∩ Y = ∅,

(174) Y 6= ∅ & Y ⊆ rng R implies R -1 Y 6= ∅,

(175) R -1 (X ∪ Y ) = R -1 X ∪ R -1 Y,

(176) R -1 (X ∩ Y ) ⊆ R -1 Y ∩ R -1 Y,

(177) R -1 X \ R -1 Y ⊆ R -1 (X \ Y ),

(178) X ⊆ Y implies R -1 X ⊆ R -1 Y,

(179) P ⊆ R implies P -1 Y ⊆ R -1 Y,

(180) P ⊆ R & X ⊆ Y implies P -1 X ⊆ R -1 Y,

(181) (P · R) -1 Y = P -1 (R -1 Y ),

(182) dom (P · R) = P -1 (dom R),

(183) (rng R) ∩ Y ⊆ (R )̃ -1 (R -1 Y ).

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[2] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received March 15, 1989



84



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Properties of Binary Relations

Edmund Woronowicz1

Warsaw University

Bia lystok

Anna Zalewska2

Warsaw University

Bia lystok

Summary. The paper contains definitions of some properties of binary rela-
tions: reflexivity, irreflexivity, symmetry, asymmetry, antisymmetry, connectedness,
strong connectedness, and transitivity. Basic theorems relating the above mentioned
notions are given.

The terminology and notation used here have been introduced in the following articles:

[1], [2], and [3]. For simplicity we adopt the following convention: X will have the type

set; x, y, z will have the type Any; P , R will have the type Relation. We now define

several new predicates. Let us consider R, X . The predicate

R is reflexive in X is defined by x ∈ X implies 〈x, x〉 ∈ R.

The predicate

R is irreflexive in X is defined by x ∈ X implies not 〈x, x〉 ∈ R.

The predicate

R is symmetric in X

is defined by

x ∈ X & y ∈ X & 〈x, y〉 ∈ R implies 〈y, x〉 ∈ R.

The predicate

R is antisymmetric in X

is defined by

x ∈ X & y ∈ X & 〈x, y〉 ∈ R & 〈y, x〉 ∈ R implies x = y.

1Supported by RPBP III.24 C1.
2Supported by RPBP III.24 C1.

85
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



86 Edmund Woronowicz and Anna Zalewska

The predicate

R is asymmetric in X

is defined by

x ∈ X & y ∈ X & 〈x, y〉 ∈ R implies not 〈y, x〉 ∈ R.

The predicate

R is connected in X

is defined by

x ∈ X & y ∈ X & x 6= y implies 〈x, y〉 ∈ R or 〈y, x〉 ∈ R.

The predicate

R is strongly connected in X

is defined by

x ∈ X & y ∈ X implies 〈x, y〉 ∈ R or 〈y, x〉 ∈ R.

The predicate

R is transitive in X

is defined by

x ∈ X & y ∈ X & z ∈ X & 〈x, y〉 ∈ R & 〈y, z〉 ∈ R implies 〈x, z〉 ∈ R.

We now state several propositions:

(1) R is reflexive in X iff forx st x ∈ X holds 〈x, x〉 ∈ R,

(2) R is irreflexive in X iff forx st x ∈ X holds not 〈x, x〉 ∈ R,

(3) R is symmetric in X

iff forx,y st x ∈ X & y ∈ X & 〈x, y〉 ∈ R holds 〈y, x〉 ∈ R,

(4) R is antisymmetric in X

iff for x,y st x ∈ X & y ∈ X & 〈x, y〉 ∈ R & 〈y, x〉 ∈ R holds x = y,

(5) R is asymmetric in X

iff forx,y st x ∈ X & y ∈ X & 〈x, y〉 ∈ R holds not 〈y, x〉 ∈ R,

(6) R is connected in X

iff forx,y st x ∈ X & y ∈ X & x 6= y holds 〈x, y〉 ∈ R or 〈y, x〉 ∈ R,

(7) R is strongly connected in X

iff for x,y st x ∈ X & y ∈ X holds 〈x, y〉 ∈ R or 〈y, x〉 ∈ R,



Properties of Binary Relations 87

(8) R is transitive in X iff forx,y,z

st x ∈ X & y ∈ X & z ∈ X & 〈x, y〉 ∈ R & 〈y, z〉 ∈ R holds 〈x, z〉 ∈ R.

We now define several new predicates. Let us consider R. The predicate

R is reflexive is defined by R is reflexive in field R.

The predicate

R is irreflexive is defined by R is irreflexive in field R.

The predicate

R is symmetric is defined by R is symmetric in field R.

The predicate

R is antisymmetric is defined by R is antisymmetric in field R.

The predicate

R is asymmetric is defined by R is asymmetric in field R.

The predicate

R is connected is defined by R is connected in field R.

The predicate

R is strongly connected is defined by R is strongly connected in field R.

The predicate

R is transitive is defined by R is transitive in field R.

We now state a number of propositions:

(9) R is reflexive iff R is reflexive in field R,

(10) R is irreflexive iff R is irreflexive in field R,

(11) R is symmetric iff R is symmetric in field R,

(12) R is antisymmetric iff R is antisymmetric in field R,

(13) R is asymmetric iff R is asymmetric in field R,

(14) R is connected iff R is connected in field R,

(15) R is strongly connected iff R is strongly connected in field R,

(16) R is transitive iff R is transitive in field R,



88 Edmund Woronowicz and Anna Zalewska

(17) R is reflexive iff 4 field R ⊆ R,

(18) R is irreflexive iff 4 (field R) ∩ R = Ø ,

(19) R is antisymmetric in X iff R \ 4X is asymmetric in X,

(20) R is asymmetric in X implies R ∪4X is antisymmetric in X,

(21) R is antisymmetric in X implies R \ 4X is asymmetric in X,

(22) R is symmetric & R is transitive implies R is reflexive ,

(23) 4X is symmetric & 4X is transitive ,

(24) 4X is antisymmetric & 4X is reflexive ,

(25) R is irreflexive & R is transitive implies R is asymmetric ,

(26) R is asymmetric implies R is irreflexive & R is antisymmetric ,

(27) R is reflexive implies R˜is reflexive ,

(28) R is irreflexive implies R˜is irreflexive ,

(29) R is reflexive implies dom R = dom (R )̃ & rng R = rng (R )̃,

(30) R is symmetric iff R = R˜,

(31) P is reflexive & R is reflexive implies P ∪ R is reflexive & P ∩ R is reflexive ,

(32) P is irreflexive & R is irreflexive

implies P ∪ R is irreflexive & P ∩ R is irreflexive ,

(33) P is irreflexive implies P \ R is irreflexive ,

(34) R is symmetric implies R˜is symmetric ,

(35) P is symmetric & R is symmetric

implies P ∪ R is symmetric & P ∩ R is symmetric & P \ R is symmetric ,

(36) R is asymmetric implies R˜is asymmetric ,

(37) P is asymmetric & R is asymmetric implies P ∩ R is asymmetric ,

(38) P is asymmetric implies P \ R is asymmetric ,

(39) R is antisymmetric iff R ∩ (R )̃ ⊆ 4 (dom R),

(40) R is antisymmetric implies R˜is antisymmetric ,



Properties of Binary Relations 89

(41) P is antisymmetric

implies P ∩ R is antisymmetric & P \ R is antisymmetric ,

(42) R is transitive implies R˜is transitive ,

(43) P is transitive & R is transitive implies P ∩ R is transitive ,

(44) R is transitive iff R · R ⊆ R,

(45) R is connected iff [:field R,field R:] \ 4 (field R) ⊆ R ∪ R˜,

(46) R is strongly connected implies R is connected & R is reflexive ,

(47) R is strongly connected iff [:field R,field R:] = R ∪ R˜.

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[2] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

[3] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1, 1990.

Received March 15, 1989



90



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

The Ordinal Numbers

Grzegorz Bancerek1

Warsaw University

Bia lystok

Summary. In the beginning of article we show some consequences of the
regularity axiom. In the second part we introduce the successor of a set and the
notions of transitivity and connectedness wrt membership relation. Then we define
ordinal numbers as transitive and connected sets, and we prove some theorems of
them and of their sets. Lastly we introduce the concept of a transfinite sequence
and we show transfinite induction and schemes of defining by transfinite induction.

The notation and terminology used in this paper have been introduced in the following

articles: [2], [3], and [1]. For simplicity we adopt the following convention: X , Y , Z,

A, B, X1, X2, X3, X4, X5, X6 will denote objects of the type set; x will denote an

object of the type Any. Next we state several propositions:

(1) notX ∈ X,

(2) not (X ∈ Y & Y ∈ X),

(3) not (X ∈ Y & Y ∈ Z & Z ∈ X),

(4) not (X1 ∈ X2 & X2 ∈ X3 & X3 ∈ X4 & X4 ∈ X1),

(5) not (X1 ∈ X2 & X2 ∈ X3 & X3 ∈ X4 & X4 ∈ X5 & X5 ∈ X1),

(6) not (X1 ∈ X2 & X2 ∈ X3 & X3 ∈ X4 & X4 ∈ X5 & X5 ∈ X6 & X6 ∈ X1),

(7) Y ∈ X implies notX ⊆ Y.

The scheme Comprehension deals with a constant A that has the type set and a

unary predicate P and states that the following holds

exB st forZ being set holds Z ∈ B iff Z ∈ A & P [Z]

1Supported by RPBP III.24 C1

91
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



92 Grzegorz Bancerek

for all values of the parameters.

One can prove the following proposition

(8) (forX holds X ∈ A iff X ∈ B) implies A = B.

Let us consider X . The functor

succ X,

with values of the type set, is defined by

it = X ∪ {X}.

Next we state several propositions:

(9) succ X = X ∪ {X},

(10) X ∈ succ X,

(11) succ X 6= ∅,

(12) succ X = succ Y implies X = Y,

(13) x ∈ succ X iff x ∈ X or x = X,

(14) X 6= succ X.

For simplicity we adopt the following convention: a has the type Any; X , Y , Z,

x, y have the type set. We now define two new predicates. Let us consider X . The

predicate

X is ∈-transitive is defined by forx st x ∈ X holds x ⊆ X.

The predicate

X is ∈-connected

is defined by

for x,y st x ∈ X & y ∈ X holds x ∈ y or x = y or y ∈ x.

One can prove the following two propositions:

(15) X is ∈-transitive iff forx st x ∈ X holds x ⊆ X,

(16) X is ∈-connected iff for x,y st x ∈ X & y ∈ X holds x ∈ y or x = y or y ∈ x.

The mode

Ordinal ,

which widens to the type set, is defined by

it is ∈-transitive & it is ∈-connected .



The Ordinal Numbers 93

In the sequel A, B, C will have the type Ordinal. The following propositions are

true:

(17) X is Ordinal iff X is ∈-transitive & X is ∈-connected ,

(18) x ∈ A implies x ⊆ A,

(19) A ∈ B & B ∈ C implies A ∈ C,

(20) x ∈ A & y ∈ A implies x ∈ y or x = y or y ∈ x,

(21) forx,A being Ordinal st x ⊆ A & x 6= A holds x ∈ A,

(22) A ⊆ B & B ∈ C implies A ∈ C,

(23) a ∈ A implies a is Ordinal ,

(24) A ∈ B or A = B or B ∈ A,

(25) A ⊆ B or B ⊆ A,

(26) A ⊆ B or B ∈ A,

(27) ∅ is Ordinal .

The constant 0 has the type Ordinal, and is defined by

it = ∅.

Next we state three propositions:

(28) 0 = ∅,

(29) x is Ordinal implies succ x is Ordinal ,

(30) x is Ordinal implies
⋃

x is Ordinal .

Let us consider A. Let us note that it makes sense to consider the following functors

on restricted areas. Then

succ A is Ordinal ,
⋃

A is Ordinal .

One can prove the following propositions:

(31) (forx st x ∈ X holds x is Ordinal & x ⊆ X) implies X is Ordinal ,

(32) X ⊆ A & X 6= ∅ implies exC st C ∈ X & forB st B ∈ X holds C ⊆ B,

(33) A ∈ B iff succ A ⊆ B,



94 Grzegorz Bancerek

(34) A ∈ succ C iff A ⊆ C.

Now we present two schemes. The scheme Ordinal Min concerns a unary predicate

P states that the following holds

exA st P [A] & forB st P [B] holds A ⊆ B

provided the parameter satisfies the following condition:

• exA st P [A].

The scheme Transfinite Ind concerns a unary predicate P states that the following

holds

forA holds P [A]

provided the parameter satisfies the following condition:

• forA st forC st C ∈ A holds P [C] holds P [A].

One can prove the following propositions:

(35) forX st for a st a ∈ X holds a is Ordinal holds
⋃

X is Ordinal ,

(36) forX st for a st a ∈ X holds a is Ordinal exA st X ⊆ A,

(37) not exX st forx holds x ∈ X iff x is Ordinal ,

(38) not exX st forA holds A ∈ X,

(39) forX exA st notA ∈ X & forB st notB ∈ X holds A ⊆ B.

Let us consider A. The predicate

A is limit ordinal is defined by A =
⋃

A.

One can prove the following three propositions:

(40) A is limit ordinal iff A =
⋃

A,

(41) forA holds A is limit ordinal iff forC st C ∈ A holds succ C ∈ A,

(42) notA is limit ordinal iff exB st A = succ B.

In the sequel F denotes an object of the type Function. The mode

Transfinite-Sequence ,

which widens to the type Function, is defined by

exA st dom it = A.



The Ordinal Numbers 95

Let us consider Z. The mode

Transfinite-Sequence of Z,

which widens to the type Transfinite-Sequence, is defined by

rng it ⊆ Z.

The following propositions are true:

(43) F is Transfinite-Sequence iff exA st dom F = A,

(44) F is Transfinite-Sequence of Z iff F is Transfinite-Sequence & rng F ⊆ Z,

(45) ∅ is Transfinite-Sequence of Z.

In the sequel L, L1, L2 will have the type Transfinite-Sequence. The following

proposition is true

(46) dom F is Ordinal implies F is Transfinite-Sequence of rng F.

Let us consider L. Let us note that it makes sense to consider the following functor

on a restricted area. Then

dom L is Ordinal .

We now state a proposition

(47) X ⊆ Y implies

forL being Transfinite-Sequence of X holds L is Transfinite-Sequence of Y.

Let us consider L, A. Let us note that it makes sense to consider the following functor

on a restricted area. Then

L | A is Transfinite-Sequence of rng L.

The following two propositions are true:

(48) forL being Transfinite-Sequence of X

forA holds L | A is Transfinite-Sequence of X,

(49) (for a st a ∈ X holds a is Transfinite-Sequence) & (forL1,L2

st L1 ∈ X & L2 ∈ X holds graphL1 ⊆ graph L2 or graphL2 ⊆ graph L1)

implies
⋃

X is Transfinite-Sequence .

Now we present three schemes. The scheme TS Uniq deals with a constant A that has

the type Ordinal, a unary functor F , a constant B that has the type Transfinite-Sequence

and a constant C that has the type Transfinite-Sequence, and states that the following

holds

B = C



96 Grzegorz Bancerek

provided the parameters satisfy the following conditions:

• domB = A & forB,L st B ∈ A & L = B | B holds B .B = F(L),

• dom C = A & forB,L st B ∈ A & L = C | B holds C .B = F(L).

The scheme TS Exist deals with a constant A that has the type Ordinal and a unary

functor F and states that the following holds

exL st dom L = A & forB,L1 st B ∈ A & L1 = L | B holds L.B = F(L1)

for all values of the parameters.

The scheme Func TS concerns a constant A that has the type Transfinite-Sequence,

a unary functor F and a unary functor G and states that the following holds

forB st B ∈ domA holds A.B = G(A | B)

provided the parameters satisfy the following conditions:

• forA,a holds a = F(A)

iff exL st a = G(L) & dom L = A & forB st B ∈ A holds L.B = G(L | B),

• forA st A ∈ domA holds A.A = F(A).

References

[1] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[3] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received March 20, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Tuples, Projections and Cartesian Products

Andrzej Trybulec1

Warsaw University

Bia lystok

Summary. The purpose of this article is to define projections of ordered pairs,
and to introduce triples and quadruples, and their projections. The theorems in this
paper may be roughly divided into two groups: theorems describing basic properties
of introduced concepts and theorems related to the regularity, analogous to those
proved for ordered pairs by Cz. Byliński [1]. Cartesian products of subsets are
redefined as subsets of Cartesian products.

The notation and terminology used here are introduced in the following papers: [3], [4],

and [2]. For simplicity we adopt the following convention: v, x, x1, x2, x3, x4, y, y1,

y2, y3, y4, z denote objects of the type Any; X , X1, X2, X3, X4, Y , Y 1, Y 2, Y 3, Y 4,

Y 5, Z denote objects of the type set. One can prove the following propositions:

(1) X 6= ∅ implies exY st Y ∈ X & Y misses X,

(2) X 6= ∅ implies exY st Y ∈ X & forY 1 st Y 1 ∈ Y holds Y 1 misses X,

(3) X 6= ∅ implies

exY st Y ∈ X & forY 1,Y 2 st Y 1 ∈ Y 2 & Y 2 ∈ Y holds Y 1 misses X,

(4) X 6= ∅ implies exY st Y ∈ X

& forY 1,Y 2,Y 3 st Y 1 ∈ Y 2 & Y 2 ∈ Y 3 & Y 3 ∈ Y holds Y 1 misses X,

(5) X 6= ∅ implies exY st Y ∈ X & forY 1,Y 2,Y 3,Y 4

st Y 1 ∈ Y 2 & Y 2 ∈ Y 3 & Y 3 ∈ Y 4 & Y 4 ∈ Y holds Y 1 misses X,

(6) X 6= ∅ implies exY st Y ∈ X & forY 1,Y 2,Y 3,Y 4,Y 5 st

Y 1 ∈ Y 2 & Y 2 ∈ Y 3 & Y 3 ∈ Y 4 & Y 4 ∈ Y 5 & Y 5 ∈ Y holds Y 1 misses X.

1Supported by RPBP.III-24.C1.

97
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



98 Andrzej Trybulec

We now define two new functors. Let us consider x. Assume there exist x1, x2, of

the type Any such that

x = 〈x1,x2〉.

The functor

x 1 ,

is defined by

x = 〈y1,y2〉 implies it = y1.

The functor

x 2 ,

is defined by

x = 〈y1,y2〉 implies it = y2.

We now state a number of propositions:

(7) 〈x, y〉 1 = x & 〈x, y〉 2 = y,

(8) (exx,y st z = 〈x, y〉) implies 〈z 1 ,z 2〉 = z,

(9) X 6= ∅ implies ex v st v ∈ X & not exx,y st (x ∈ X or y ∈ X) & v = 〈x, y〉,

(10) z ∈ [:X, Y :] implies z 1 ∈ X & z 2 ∈ Y,

(11) (exx,y st z = 〈x, y〉) & z 1 ∈ X & z 2 ∈ Y implies z ∈ [:X, Y :],

(12) z ∈ [:{x},Y :] implies z 1 = x & z 2 ∈ Y,

(13) z ∈ [:X, {y}:] implies z 1 ∈ X & z 2 = y,

(14) z ∈ [:{x},{y}:] implies z 1 = x & z 2 = y,

(15) z ∈ [:{x1,x2},Y :] implies (z 1 = x1 or z 1 = x2) & z 2 ∈ Y,

(16) z ∈ [:X, {y1,y2}:] implies z 1 ∈ X & (z 2 = y1 or z 2 = y2),

(17) z ∈ [:{x1,x2},{y}:] implies (z 1 = x1 or z 1 = x2) & z 2 = y,

(18) z ∈ [:{x},{y1,y2}:] implies z 1 = x & (z 2 = y1 or z 2 = y2),

(19) z ∈ [:{x1,x2},{y1,y2}:]

implies (z 1 = x1 or z 1 = x2) & (z 2 = y1 or z 2 = y2),

(20) (ex y,z st x = 〈y, z〉) implies x 6= x 1 & x 6= x 2 .



Tuples, Projections and Cartesian . . . 99

In the sequel xx will have the type Element of X ; yy will have the type Element

of Y . One can prove the following propositions:

(21) X 6= ∅ & Y 6= ∅ implies 〈xx,yy〉 ∈ [:X, Y :],

(22) X 6= ∅ & Y 6= ∅ implies 〈xx,yy〉 is Element of [:X, Y :],

(23) x ∈ [:X, Y :] implies x = 〈x 1 ,x 2〉,

(24) X 6= ∅ & Y 6= ∅ implies forx being Element of [:X, Y :] holds x = 〈x 1 ,x 2〉,

(25) [:{x1,x2},{y1,y2}:] = {〈x1,y1〉,〈x1,y2〉,〈x2,y1〉,〈x2,y2〉},

(26) X 6= ∅ & Y 6= ∅

implies forx being Element of [:X, Y :] holds x 6= x 1 & x 6= x 2 .

Let us consider x1, x2, x3. The functor

〈x1,x2,x3〉,

is defined by

it = 〈〈x1,x2〉,x3〉.

One can prove the following three propositions:

(27) 〈x1,x2,x3〉 = 〈〈x1,x2〉,x3〉,

(28) 〈x1,x2,x3〉 = 〈y1,y2,y3〉 implies x1 = y1 & x2 = y2 & x3 = y3,

(29) X 6= ∅

implies ex v st v ∈ X & not exx,y,z st (x ∈ X or y ∈ X) & v = 〈x, y, z〉.

Let us consider x1, x2, x3, x4. The functor

〈x1,x2,x3,x4〉,

is defined by

it = 〈〈x1,x2,x3〉,x4〉.

The following propositions are true:

(30) 〈x1,x2,x3,x4〉 = 〈〈x1,x2,x3〉,x4〉,

(31) 〈x1,x2,x3,x4〉 = 〈〈〈x1,x2〉,x3〉,x4〉,

(32) 〈x1,x2,x3,x4〉 = 〈〈x1,x2〉,x3,x4〉,

(33) 〈x1,x2,x3,x4〉 = 〈y1,y2,y3,y4〉

implies x1 = y1 & x2 = y2 & x3 = y3 & x4 = y4,



100 Andrzej Trybulec

(34) X 6= ∅ implies ex v

st v ∈ X & not exx1,x2,x3,x4 st (x1 ∈ X or x2 ∈ X) & v = 〈x1,x2,x3,x4〉,

(35) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ iff [:X1,X2,X3:] 6= ∅.

In the sequel xx1 has the type Element of X1; xx2 has the type Element of X2;

xx3 has the type Element of X3. One can prove the following propositions:

(36) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ implies

([:X1,X2,X3:] = [:Y 1,Y 2,Y 3:] implies X1 = Y 1 & X2 = Y 2 & X3 = Y 3),

(37) [:X1,X2,X3:] 6= ∅ & [:X1,X2,X3:] = [:Y 1,Y 2,Y 3:]

implies X1 = Y 1 & X2 = Y 2 & X3 = Y 3,

(38) [:X, X, X :] = [:Y, Y, Y :] implies X = Y,

(39) [:{x1},{x2},{x3}:] = {〈x1,x2,x3〉},

(40) [:{x1,y1},{x2},{x3}:] = {〈x1,x2,x3〉,〈y1,x2,x3〉},

(41) [:{x1},{x2,y2},{x3}:] = {〈x1,x2,x3〉,〈x1,y2,x3〉},

(42) [:{x1},{x2},{x3,y3}:] = {〈x1,x2,x3〉,〈x1,x2,y3〉},

(43) [:{x1,y1},{x2,y2},{x3}:] = {〈x1,x2,x3〉,〈y1,x2,x3〉,〈x1,y2,x3〉,〈y1,y2,x3〉},

(44) [:{x1,y1},{x2},{x3,y3}:] = {〈x1,x2,x3〉,〈y1,x2,x3〉,〈x1,x2,y3〉,〈y1,x2,y3〉},

(45) [:{x1},{x2,y2},{x3,y3}:] = {〈x1,x2,x3〉,〈x1,y2,x3〉,〈x1,x2,y3〉,〈x1,y2,y3〉},

(46) [:{x1,y1},{x2,y2},{x3,y3}:] = {〈x1,x2,x3〉,

〈x1,y2,x3〉,〈x1,x2,y3〉,〈x1,y2,y3〉,〈y1,x2,x3〉,〈y1,y2,x3〉,〈y1,x2,y3〉,〈y1,y2,y3〉}.

We now define three new functors. Let us consider X1, X2, X3. Assume that the

following holds

X1 6= ∅ & X2 6= ∅ & X3 6= ∅.

Let x have the type Element of [:X1,X2,X3:]. The functor

x 1 ,

with values of the type Element of X1, is defined by

x = 〈x1,x2,x3〉 implies it = x1.

The functor

x 2 ,



Tuples, Projections and Cartesian . . . 101

yields the type Element of X2 and is defined by

x = 〈x1,x2,x3〉 implies it = x2.

The functor

x 3 ,

with values of the type Element of X3, is defined by

x = 〈x1,x2,x3〉 implies it = x3.

One can prove the following propositions:

(47) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ implies forx being Element of [:X1,X2,X3:]

forx1,x2,x3 st x = 〈x1,x2,x3〉 holds x 1 = x1 & x 2 = x2 & x 3 = x3,

(48) X1 6= ∅ & X2 6= ∅ & X3 6= ∅

implies forx being Element of [:X1,X2,X3:] holds x = 〈x 1 ,x 2 ,x 3〉,

(49) X ⊆ [:X, Y, Z:] or X ⊆ [:Y, Z, X :] or X ⊆ [:Z, X, Y :] implies X = ∅,

(50) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ implies forx being Element of [:X1,X2,X3:]

holds x 1 = (x qua Any) 1 1 & x 2 = (x qua Any) 1 2 & x 3 = (x qua Any) 2 ,

(51) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ implies

forx being Element of [:X1,X2,X3:] holds x 6= x 1 & x 6= x 2 & x 6= x 3 ,

(52) [:X1,X2,X3:] meets [:Y 1,Y 2,Y 3:]

implies X1 meets Y 1 & X2 meets Y 2 & X3 meets Y 3,

(53) [:X1,X2,X3,X4:] = [:[:[:X1,X2:],X3:],X4:],

(54) [:[:X1,X2:],X3,X4:] = [:X1,X2,X3,X4:],

(55) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ & X4 6= ∅ iff [:X1,X2,X3,X4:] 6= ∅,

(56) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ & X4 6= ∅ implies

([:X1,X2,X3,X4:] = [:Y 1,Y 2,Y 3,Y 4:]

implies X1 = Y 1 & X2 = Y 2 & X3 = Y 3 & X4 = Y 4),

(57) [:X1,X2,X3,X4:] 6= ∅ & [:X1,X2,X3,X4:] = [:Y 1,Y 2,Y 3,Y 4:]

implies X1 = Y 1 & X2 = Y 2 & X3 = Y 3 & X4 = Y 4,

(58) [:X, X, X, X :] = [:Y, Y, Y, Y :] implies X = Y.

In the sequel xx4 will have the type Element of X4. We now define four new

functors. Let us consider X1, X2, X3, X4. Assume that the following holds

X1 6= ∅ & X2 6= ∅ & X3 6= ∅ & X4 6= ∅.



102 Andrzej Trybulec

Let x have the type Element of [:X1,X2,X3,X4:]. The functor

x 1 ,

yields the type Element of X1 and is defined by

x = 〈x1,x2,x3,x4〉 implies it = x1.

The functor

x 2 ,

with values of the type Element of X2, is defined by

x = 〈x1,x2,x3,x4〉 implies it = x2.

The functor

x 3 ,

yields the type Element of X3 and is defined by

x = 〈x1,x2,x3,x4〉 implies it = x3.

The functor

x 4 ,

with values of the type Element of X4, is defined by

x = 〈x1,x2,x3,x4〉 implies it = x4.

Next we state several propositions:

(59) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ & X4 6= ∅ implies

forx being Element of [:X1,X2,X3,X4:] forx1,x2,x3,x4

st x = 〈x1,x2,x3,x4〉 holds x 1 = x1 & x 2 = x2 & x 3 = x3 & x 4 = x4,

(60) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ & X4 6= ∅

implies forx being Element of [:X1,X2,X3,X4:] holds x = 〈x 1 ,x 2 ,x 3 ,x 4〉,

(61) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ & X4 6= ∅ implies

forx being Element of [:X1,X2,X3,X4:] holds x 1 = (x qua Any) 1 1 1

& x 2 = (x qua Any) 1 1 2 & x 3 = (x qua Any) 1 2 & x 4 = (x qua Any) 2 ,

(62) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ & X4 6= ∅ implies

forx being Element of [:X1,X2,X3,X4:]

holds x 6= x 1 & x 6= x 2 & x 6= x 3 & x 6= x 4 ,

(63) X1 ⊆ [:X1,X2,X3,X4:] or

X1 ⊆ [:X2,X3,X4,X1:] or X1 ⊆ [:X3,X4,X1,X2:] or X1 ⊆ [:X4,X1,X2,X3:]

implies X1 = ∅,



Tuples, Projections and Cartesian . . . 103

(64) [:X1,X2,X3,X4:] meets [:Y 1,Y 2,Y 3,Y 4:]

implies X1 meets Y 1 & X2 meets Y 2 & X3 meets Y 3 & X4 meets Y 4,

(65) [:{x1},{x2},{x3},{x4}:] = {〈x1,x2,x3,x4〉},

(66) [:X, Y :] 6= ∅ implies forx being Element of [:X, Y :] holds x 6= x 1 & x 6= x 2 ,

(67) x ∈ [:X, Y :] implies x 6= x 1 & x 6= x 2 .

For simplicity we adopt the following convention: A1 will denote an object of the

type Subset of X1; A2 will denote an object of the type Subset of X2; A3 will denote

an object of the type Subset of X3; A4 will denote an object of the type Subset of

X4; x will denote an object of the type Element of [:X1,X2,X3:]. We now state a

number of propositions:

(68) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ implies

forx1,x2,x3 st x = 〈x1,x2,x3〉 holds x 1 = x1 & x 2 = x2 & x 3 = x3,

(69) X1 6= ∅ &

X2 6= ∅ & X3 6= ∅ & (for xx1,xx2,xx3 st x = 〈xx1,xx2,xx3〉 holds y1 = xx1)

implies y1 = x 1 ,

(70) X1 6= ∅ &

X2 6= ∅ & X3 6= ∅ & (for xx1,xx2,xx3 st x = 〈xx1,xx2,xx3〉 holds y2 = xx2)

implies y2 = x 2 ,

(71) X1 6= ∅ &

X2 6= ∅ & X3 6= ∅ & (for xx1,xx2,xx3 st x = 〈xx1,xx2,xx3〉 holds y3 = xx3)

implies y3 = x 3 ,

(72) z ∈ [:X1,X2,X3:]

implies exx1,x2,x3 st x1 ∈ X1 & x2 ∈ X2 & x3 ∈ X3 & z = 〈x1,x2,x3〉,

(73) 〈x1,x2,x3〉 ∈ [:X1,X2,X3:] iff x1 ∈ X1 & x2 ∈ X2 & x3 ∈ X3,

(74) (for z holds

z ∈ Z iff exx1,x2,x3 st x1 ∈ X1 & x2 ∈ X2 & x3 ∈ X3 & z = 〈x1,x2,x3〉)

implies Z = [:X1,X2,X3:],

(75) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ & Y 1 6= ∅ & Y 2 6= ∅ & Y 3 6= ∅ implies

for x being Element of [:X1,X2,X3:], y being Element of [:Y 1,Y 2,Y 3:]

holds x = y implies x 1 = y 1 & x 2 = y 2 & x 3 = y 3 ,



104 Andrzej Trybulec

(76) forx being Element of [:X1,X2,X3:]

st x ∈ [:A1,A2,A3:] holds x 1 ∈ A1 & x 2 ∈ A2 & x 3 ∈ A3,

(77) X1 ⊆ Y 1 & X2 ⊆ Y 2 & X3 ⊆ Y 3 implies [:X1,X2,X3:] ⊆ [:Y 1,Y 2,Y 3:].

In the sequel x has the type Element of [:X1,X2,X3,X4:]. We now state a number

of propositions:

(78) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ & X4 6= ∅ implies forx1,x2,x3,x4

st x = 〈x1,x2,x3,x4〉 holds x 1 = x1 & x 2 = x2 & x 3 = x3 & x 4 = x4,

(79) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ &

X4 6= ∅ & (forxx1,xx2,xx3,xx4 st x = 〈xx1,xx2,xx3,xx4〉 holds y1 = xx1)

implies y1 = x 1 ,

(80) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ &

X4 6= ∅ & (forxx1,xx2,xx3,xx4 st x = 〈xx1,xx2,xx3,xx4〉 holds y2 = xx2)

implies y2 = x 2 ,

(81) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ &

X4 6= ∅ & (forxx1,xx2,xx3,xx4 st x = 〈xx1,xx2,xx3,xx4〉 holds y3 = xx3)

implies y3 = x 3 ,

(82) X1 6= ∅ & X2 6= ∅ & X3 6= ∅ &

X4 6= ∅ & (forxx1,xx2,xx3,xx4 st x = 〈xx1,xx2,xx3,xx4〉 holds y4 = xx4)

implies y4 = x 4 ,

(83) z ∈ [:X1,X2,X3,X4:] implies exx1,x2,x3,x4

st x1 ∈ X1 & x2 ∈ X2 & x3 ∈ X3 & x4 ∈ X4 & z = 〈x1,x2,x3,x4〉,

(84) 〈x1,x2,x3,x4〉 ∈ [:X1,X2,X3,X4:]

iff x1 ∈ X1 & x2 ∈ X2 & x3 ∈ X3 & x4 ∈ X4,

(85) (for z holds z ∈ Z iff exx1,x2,x3,x4

st x1 ∈ X1 & x2 ∈ X2 & x3 ∈ X3 & x4 ∈ X4 & z = 〈x1,x2,x3,x4〉)

implies Z = [:X1,X2,X3,X4:],

(86) X1 6= ∅

& X2 6= ∅ & X3 6= ∅ & X4 6= ∅ & Y 1 6= ∅ & Y 2 6= ∅ & Y 3 6= ∅ & Y 4 6= ∅

implies

forx being Element of [:X1,X2,X3,X4:], y being Element of [:Y 1,Y 2,Y 3,Y 4:]

holds x = y implies x 1 = y 1 & x 2 = y 2 & x 3 = y 3 & x 4 = y 4 ,



Tuples, Projections and Cartesian . . . 105

(87) forx being Element of [:X1,X2,X3,X4:]

st x ∈ [:A1,A2,A3,A4:] holds x 1 ∈ A1 & x 2 ∈ A2 & x 3 ∈ A3 & x 4 ∈ A4,

(88) X1 ⊆ Y 1 & X2 ⊆ Y 2 & X3 ⊆ Y 3 & X4 ⊆ Y 4

implies [:X1,X2,X3,X4:] ⊆ [:Y 1,Y 2,Y 3,Y 4:].

Let us consider X1, X2, A1, A2. Let us note that it makes sense to consider the

following functor on a restricted area. Then

[:A1,A2:] is Subset of [:X1,X2:].

Let us consider X1, X2, X3, A1, A2, A3. Let us note that it makes sense to consider

the following functor on a restricted area. Then

[:A1,A2,A3:] is Subset of [:X1,X2,X3:].

Let us consider X1, X2, X3, X4, A1, A2, A3, A4. Let us note that it makes sense

to consider the following functor on a restricted area. Then

[:A1,A2,A3,A4:] is Subset of [:X1,X2,X3,X4:].

References

[1] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1, 1990.

[2] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.

[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[4] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received March 30, 1989



106



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Segments of Natural Numbers and Finite

Sequences

Grzegorz Bancerek1

Warsaw University

Bia lystok

Krzysztof Hryniewiecki2

Warsaw University

Warsaw

Summary. We define the notion of an initial segment of natural numbers and
prove a number of their properties. Using this notion we introduce finite sequences,
subsequences, the empty sequence, a sequence of a domain, and the operation of
concatenation of two sequences.

The papers [4], [5], [2], [3], and [1] provide the notation and terminology for this paper.

For simplicity we adopt the following convention: k, l, m, n, k1, k2 denote objects of

the type Nat; X denotes an object of the type set; x, y, z, y1, y2 denote objects of the

type Any; f denotes an object of the type Function. Let us consider n. The functor

Seg n,

with values of the type set, is defined by

it = { k : 1 ≤ k & k ≤ n }.

Let us consider n. Let us note that it makes sense to consider the following functor

on a restricted area. Then

Seg n is set of Nat .

One can prove the following propositions:

(1) Seg n = { k : 1 ≤ k & k ≤ n },

(2) x ∈ Seg n implies x is Nat ,

(3) k ∈ Seg n iff 1 ≤ k & k ≤ n,

1Supported by RPBP III.24 C1
2Supported by RPBP III.24 C1

107
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



108 Grzegorz Bancerek and Krzysztof Hryniewiecki

(4) Seg 0 = ∅ & Seg 1 = {1} & Seg 2 = {1,2},

(5) n = 0 or n ∈ Seg n,

(6) n + 1 ∈ Seg (n + 1),

(7) n ≤ m iff Seg n ⊆ Seg m,

(8) Seg n = Seg m implies n = m,

(9) k ≤ n implies Seg k = Seg k ∩ Seg n & Seg k = Seg n ∩ Seg k,

(10) Seg k = Seg k ∩ Seg n or Seg k = Seg n ∩ Seg k implies k ≤ n,

(11) Seg n ∪ {n + 1} = Seg (n + 1).

The mode

FinSequence ,

which widens to the type Function, is defined by

exn st dom it = Seg n.

In the sequel p, q, r denote objects of the type FinSequence. Let us consider p.

The functor

len p,

with values of the type Nat, is defined by

Seg it = dom p.

Next we state four propositions:

(12) for f being Function holds f is FinSequence iff exn st dom f = Seg n,

(13) k = len p iff Seg k = dom p,

(14) ∅ is FinSequence ,

(15) (ex k st dom f ⊆ Seg k) implies ex p st graph f ⊆ graph p.

In the article we present several logical schemes. The scheme SeqEx concerns a

constant A that has the type Nat and a binary predicate P and states that the following

holds

ex p st dom p = SegA & for k st k ∈ SegA holds P [k, p.k]

provided the parameters satisfy the following conditions:

• for k,y1,y2 st k ∈ SegA & P [k, y1] & P [k, y2] holds y1 = y2,



Segments of Natural Numbers and Finite . . . 109

• for k st k ∈ SegA exx st P [k, x].

The scheme SeqLambda deals with a constant A that has the type Nat and a unary

functor F and states that the following holds

ex p being FinSequence st len p = A & for k st k ∈ SegA holds p.k = F(k)

for all values of the parameters.

We now state several propositions:

(16) z ∈ graph p implies ex k st k ∈ dom p & z = 〈k, p.k〉,

(17) X = dom p & X = dom q & (for k st k ∈ X holds p.k = q.k) implies p = q,

(18) for p,q

st len p = len q & for k st 1 ≤ k & k ≤ len p holds p.k = q.k holds p = q,

(19) p | (Seg n) is FinSequence ,

(20) rng p ⊆ dom f implies f · p is FinSequence ,

(21) k ≤ len p & q = p | (Seg k) implies len q = k & dom q = Seg k.

Let D have the type DOMAIN. The mode

FinSequence of D,

which widens to the type FinSequence, is defined by

rng it ⊆ D.

In the sequel D will have the type DOMAIN. The following three propositions

are true:

(22) p is FinSequence of D iff rng p ⊆ D,

(23) forD,k for p being FinSequence of D holds p | (Seg k) is FinSequence of D,

(24) ex p being FinSequence of D st len p = k.

The constant ε has the type FinSequence, and is defined by

len it = 0.

The following propositions are true:

(25) p = ε iff len p = 0,

(26) p = ε iff dom p = ∅,

(27) p = ε iff rng p = ∅,



110 Grzegorz Bancerek and Krzysztof Hryniewiecki

(28) graph ε = ∅,

(29) forD holds ε is FinSequence of D.

Let D have the type DOMAIN. The functor

εD,

yields the type FinSequence of D and is defined by

it = ε .

One can prove the following four propositions:

(30) p = ε (D) iff dom p = ∅,

(31) ε (D) = ε ,

(32) p = ε (D) iff len p = 0,

(33) p = ε (D) iff rng p = ∅.

Let us consider p, q. The functor

p _ q,

with values of the type FinSequence, is defined by

dom it = Seg (len p + len q) &

(for k st k ∈ dom p holds it.k = p.k) & for k st k ∈ dom q holds it.(len p + k) = q.k.

One can prove the following propositions:

(34) r = p _ q iff dom r = Seg (len p + len q) &

(for k st k ∈ dom p holds r.k = p.k)

& for k st k ∈ dom q holds r.(len p + k) = q.k,

(35) len (p _ q) = len p + len q,

(36) for k st len p + 1 ≤ k & k ≤ len p + len q holds (p _ q).k = q.(k − len p),

(37) len p < k & k ≤ len (p _ q) implies (p _ q).k = q.(k − len p),

(38) k ∈ dom (p _ q) implies k ∈ dom p or exn st n ∈ dom q & k = len p + n,

(39) dom p ⊆ dom (p _ q),

(40) x ∈ dom q implies ex k st k = x & len p + k ∈ dom (p _ q),

(41) k ∈ dom q implies len p + k ∈ dom (p _ q),



Segments of Natural Numbers and Finite . . . 111

(42) rng p ⊆ rng (p _ q),

(43) rng q ⊆ rng (p _ q),

(44) rng (p _ q) = rng p ∪ rng q,

(45) p _ q _ r = p _ (q _ r),

(46) p _ r = q _ r or r _ p = r _ q implies p = q,

(47) p _ ε = p & ε _ p = p,

(48) p _ q = ε implies p = ε & q = ε .

The arguments of the notions defined below are the following: D which is an object

of the type reserved above; p, q which are objects of the type FinSequence of D. Let

us note that it makes sense to consider the following functor on a restricted area. Then

p _ q is FinSequence of D.

One can prove the following proposition

(49) for p,q being FinSequence of D holds p _ q is FinSequence of D.

Let us consider x. The functor

<x>,

with values of the type FinSequence, is defined by

dom it = Seg 1 & it.1 = x.

The following proposition is true

(50) p _ q is FinSequence of D

implies p is FinSequence of D & q is FinSequence of D.

We now define two new functors. Let us consider x, y. The functor

<x, y>,

with values of the type FinSequence, is defined by

it = <x> _ <y>.

Let us consider z. The functor

<x, y, z>,

with values of the type FinSequence, is defined by

it = <x> _ <y> _ <z>.



112 Grzegorz Bancerek and Krzysztof Hryniewiecki

Next we state a number of propositions:

(51) p = <x> iff dom p = Seg 1 & p.1 = x,

(52) graph <x> = {〈1,x〉},

(53) <x, y> = <x> _ <y>,

(54) <x, y, z> = <x> _ <y> _ <z>,

(55) p = <x> iff dom p = Seg 1 & rng p = {x},

(56) p = <x> iff len p = 1 & rng p = {x},

(57) p = <x> iff len p = 1 & p.1 = x,

(58) (<x> _ p).1 = x,

(59) (p _ <x>).(len p + 1) = x,

(60) <x, y, z> = <x> _ <y, z> & <x, y, z> = <x, y> _ <z>,

(61) p = <x, y> iff len p = 2 & p.1 = x & p.2 = y,

(62) p = <x, y, z> iff len p = 3 & p.1 = x & p.2 = y & p.3 = z,

(63) for p st p 6= ε ex q,x st p = q _ <x>.

The arguments of the notions defined below are the following: D which is an object

of the type reserved above; x which is an object of the type Element of D. Let us note

that it makes sense to consider the following functor on a restricted area. Then

<x> is FinSequence of D.

The arguments of the notions defined below are the following: D which is an object

of the type reserved above; S which is an object of the type SUBDOMAIN of D; x

which is an object of the type Element of S. Let us note that it makes sense to consider

the following functor on a restricted area. Then

<x> is FinSequence of S.

The arguments of the notions defined below are the following: S which is an object

of the type SUBDOMAIN of REAL; x which is an object of the type Element of S.

Let us note that it makes sense to consider the following functor on a restricted area.

Then

<x> is FinSequence of S.

The scheme IndSeq concerns a unary predicate P states that the following holds

for p holds P [p]



Segments of Natural Numbers and Finite . . . 113

provided the parameter satisfies the following conditions:

• P [ε],

• for p,x st P [p] holds P [p _ <x>].

One can prove the following proposition

(64) for p,q,r,s being FinSequence

st p _ q = r _ s & len p ≤ len r ex t being FinSequence st p _ t = r.

Let us consider D. The functor

D * ,

yields the type DOMAIN and is defined by

x ∈ it iff x is FinSequence of D.

One can prove the following propositions:

(65) x ∈ D * iff x is FinSequence of D,

(66) ε ∈ D * .

The scheme SepSeq deals with a constant A that has the type DOMAIN and a unary

predicate P and states that the following holds

exX st forx holds x ∈ X iff ex p st p ∈ A * & P [p] & x = p

for all values of the parameters.

The mode

FinSubsequence ,

which widens to the type Function, is defined by

ex k st dom it ⊆ Seg k.

The following three propositions are true:

(67) f is FinSubsequence iff ex k st dom f ⊆ Seg k,

(68) for p being FinSequence holds p is FinSubsequence ,

(69) for p,X holds p | X is FinSubsequence & X | p is FinSubsequence .

In the sequel p′ has the type FinSubsequence. Let us consider X . Assume there

exists k, such that

X ⊆ Seg k.

The functor

Sgm X,



114 Grzegorz Bancerek and Krzysztof Hryniewiecki

with values of the type FinSequence of NAT, is defined by

rng it = X &

for l,m,k1,k2 st 1 ≤ l & l < m & m ≤ len it & k1 = it.l & k2 = it.m holds k1 < k2.

One can prove the following propositions:

(70) (ex k st X ⊆ Seg k) implies for p being FinSequence of NAT holds

p = Sgm X iff rng p = X & for l,m,k1,k2

st 1 ≤ l & l < m & m ≤ len p & k1 = p.l & k2 = p.m holds k1 < k2,

(71) rng Sgm dom p′ = dom p′.

Let us consider p′. The functor

Seq p′,

yields the type FinSequence and is defined by

it = p′ · Sgm (dom p′).

Next we state two propositions:

(72) forX st ex k st X ⊆ Seg k holds Sgm X = ε iff X = ∅,

(73) p = Seq p′ iff p = p′ · Sgm (dom p′).

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized

Mathematics, 1, 1990.

[2] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1, 1990.

[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[5] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 1, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Domains and Their Cartesian Products

Andrzej Trybulec1

Warsaw University

Bia lystok

Summary. The article includes: theorems related to domains, theorems re-
lated to Cartesian products presented earlier in various articles and simplified here
by substituting domains for sets and omitting the assumption that the sets involved
must not be empty. Several schemes and theorems related to Fraenkel operator are
given. We also redefine subset yielding functions such as the pair of elements of a
set and the union of two subsets of a set.

The terminology and notation used in this paper have been introduced in the following

articles: [2], [5], [1], [4], and [3]. For simplicity we adopt the following convention: a,

b, c, d will have the type Any; A, B will have the type set; D, X1, X2, X3, X4, Y 1,

Y 2, Y 3, Y 4 will have the type DOMAIN; x1, y1, z1 will have the type Element of

X1; x2 will have the type Element of X2; x3 will have the type Element of X3; x4

will have the type Element of X4. The following three propositions are true:

(1) A is DOMAIN iff A 6= ∅,

(2) D 6= ∅,

(3) a is Element of D implies a ∈ D.

In the sequel A1, B1 will denote objects of the type Subset of X1. One can prove

the following propositions:

(4) A1 = B1 c iff forx1 holds x1 ∈ A1 iff notx1 ∈ B1,

(5) A1 = B1 c iff forx1 holds notx1 ∈ A1 iff x1 ∈ B1,

(6) A1 = B1 c iff forx1 holds not (x1 ∈ A1 iff x1 ∈ B1),

(7) 〈x1,x2〉 ∈ [:X1,X2:],

1Supported by RPBP.III-24.C1.

115
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



116 Andrzej Trybulec

(8) 〈x1,x2〉 is Element of [:X1,X2:],

(9) a ∈ [:X1,X2:] implies exx1,x2 st a = 〈x1,x2〉.

In the sequel x denotes an object of the type Element of [:X1,X2:]. One can prove

the following propositions:

(10) x = 〈x 1 ,x 2〉,

(11) x 6= x 1 & x 6= x 2 ,

(12) forx,y being Element of [:X1,X2:] st x 1 = y 1 & x 2 = y 2 holds x = y,

(13) [:A, D:] ⊆ [:B, D:] or [:D, A:] ⊆ [:D, B:] implies A ⊆ B,

(14) [:X1,X2:] = [:A, B:] implies X1 = A & X2 = B.

Let us consider X1, X2, x1, x2. Let us note that it makes sense to consider the

following functor on a restricted area. Then

〈x1,x2〉 is Element of [:X1,X2:].

The arguments of the notions defined below are the following: X1, X2 which are

objects of the type reserved above; x which is an object of the type Element of [:X1,X2:].

Let us note that it makes sense to consider the following functors on restricted areas.

Then

x 1 is Element of X1,

x 2 is Element of X2.

One can prove the following propositions:

(15) a ∈ [:X1,X2,X3:] iff exx1,x2,x3 st a = 〈x1,x2,x3〉,

(16) (for a holds a ∈ D iff exx1,x2,x3 st a = 〈x1,x2,x3〉)

implies D = [:X1,X2,X3:],

(17) D = [:X1,X2,X3:] iff for a holds a ∈ D iff exx1,x2,x3 st a = 〈x1,x2,x3〉,

(18) [:X1,X2,X3:] = [:Y 1,Y 2,Y 3:] implies X1 = Y 1 & X2 = Y 2 & X3 = Y 3.

In the sequel x, y will have the type Element of [:X1,X2,X3:]. Next we state

several propositions:

(19) x = 〈a, b, c〉 implies x 1 = a & x 2 = b & x 3 = c,

(20) x = 〈x 1 ,x 2 ,x 3〉,

(21) x 1 = (x qua Any) 1 1 & x 2 = (x qua Any) 1 2 & x 3 = (x qua Any) 2 ,



Domains and Their Cartesian Products 117

(22) x 6= x 1 & x 6= x 2 & x 6= x 3 ,

(23) 〈x1,x2,x3〉 ∈ [:X1,X2,X3:].

Let us consider X1, X2, X3, x1, x2, x3. Let us note that it makes sense to consider

the following functor on a restricted area. Then

〈x1,x2,x3〉 is Element of [:X1,X2,X3:].

The arguments of the notions defined below are the following: X1, X2, X3 which

are objects of the type reserved above; x which is an object of the type Element of

[:X1,X2,X3:]. Let us note that it makes sense to consider the following functors on

restricted areas. Then

x 1 is Element of X1,

x 2 is Element of X2,

x 3 is Element of X3.

The following propositions are true:

(24) a = x 1 iff forx1,x2,x3 st x = 〈x1,x2,x3〉 holds a = x1,

(25) b = x 2 iff forx1,x2,x3 st x = 〈x1,x2,x3〉 holds b = x2,

(26) c = x 3 iff forx1,x2,x3 st x = 〈x1,x2,x3〉 holds c = x3,

(27) 〈x 1 ,x 2 ,x 3〉 = x,

(28) x 1 = y 1 & x 2 = y 2 & x 3 = y 3 implies x = y,

(29) 〈x1,x2,x3〉 1 = x1 & 〈x1,x2,x3〉 2 = x2 & 〈x1,x2,x3〉 3 = x3,

(30) forx being Element of [:X1,X2,X3:], y being Element of [:Y 1,Y 2,Y 3:]

holds x = y implies x 1 = y 1 & x 2 = y 2 & x 3 = y 3 ,

(31) a ∈ [:X1,X2,X3,X4:] iff exx1,x2,x3,x4 st a = 〈x1,x2,x3,x4〉,

(32) (for a holds a ∈ D iff exx1,x2,x3,x4 st a = 〈x1,x2,x3,x4〉)

implies D = [:X1,X2,X3,X4:],

(33) D = [:X1,X2,X3,X4:]

iff for a holds a ∈ D iff exx1,x2,x3,x4 st a = 〈x1,x2,x3,x4〉.

In the sequel x denotes an object of the type Element of [:X1,X2,X3,X4:]. The

following propositions are true:

(34) [:X1,X2,X3,X4:] = [:Y 1,Y 2,Y 3,Y 4:]

implies X1 = Y 1 & X2 = Y 2 & X3 = Y 3 & X4 = Y 4,



118 Andrzej Trybulec

(35) x = 〈a, b, c, d〉 implies x 1 = a & x 2 = b & x 3 = c & x 4 = d,

(36) x = 〈x 1 ,x 2 ,x 3 ,x 4〉,

(37) x 1 = (x qua Any) 1 1 1

& x 2 = (x qua Any) 1 1 2 & x 3 = (x qua Any) 1 2 & x 4 = (x qua Any) 2 ,

(38) x 6= x 1 & x 6= x 2 & x 6= x 3 & x 6= x 4 ,

(39) 〈x1,x2,x3,x4〉 ∈ [:X1,X2,X3,X4:].

Let us consider X1, X2, X3, X4, x1, x2, x3, x4. Let us note that it makes sense to

consider the following functor on a restricted area. Then

〈x1,x2,x3,x4〉 is Element of [:X1,X2,X3,X4:].

The arguments of the notions defined below are the following: X1, X2, X3, X4

which are objects of the type reserved above; x which is an object of the type Element

of [:X1,X2,X3,X4:]. Let us note that it makes sense to consider the following functors

on restricted areas. Then

x 1 is Element of X1,

x 2 is Element of X2,

x 3 is Element of X3,

x 4 is Element of X4.

The following propositions are true:

(40) a = x 1 iff forx1,x2,x3,x4 st x = 〈x1,x2,x3,x4〉 holds a = x1,

(41) b = x 2 iff forx1,x2,x3,x4 st x = 〈x1,x2,x3,x4〉 holds b = x2,

(42) c = x 3 iff forx1,x2,x3,x4 st x = 〈x1,x2,x3,x4〉 holds c = x3,

(43) d = x 4 iff forx1,x2,x3,x4 st x = 〈x1,x2,x3,x4〉 holds d = x4,

(44) forx being Element of [:X1,X2,X3,X4:] holds 〈x 1 ,x 2 ,x 3 ,x 4〉 = x,

(45) forx,y being Element of [:X1,X2,X3,X4:]

st x 1 = y 1 & x 2 = y 2 & x 3 = y 3 & x 4 = y 4 holds x = y,

(46) 〈x1,x2,x3,x4〉 1 = x1

& 〈x1,x2,x3,x4〉 2 = x2 & 〈x1,x2,x3,x4〉 3 = x3 & 〈x1,x2,x3,x4〉 4 = x4,

(47) forx being Element of [:X1,X2,X3,X4:], y being Element of [:Y 1,Y 2,Y 3,Y 4:]

holds x = y implies x 1 = y 1 & x 2 = y 2 & x 3 = y 3 & x 4 = y 4 .



Domains and Their Cartesian Products 119

In the sequel A2 will denote an object of the type Subset of X2; A3 will denote

an object of the type Subset of X3; A4 will denote an object of the type Subset of

X4. In the article we present several logical schemes. The scheme Fraenkel1 deals with

a unary predicate P states that the following holds

forX1 holds { x1 : P [x1] } is Subset of X1

for all values of the parameter.

The scheme Fraenkel2 deals with a binary predicate P states that the following holds

forX1,X2 holds { 〈x1,x2〉 : P [x1,x2] } is Subset of [:X1,X2:]

for all values of the parameter.

The scheme Fraenkel3 concerns a ternary predicate P states that the following holds

forX1,X2,X3 holds { 〈x1,x2,x3〉 : P [x1,x2,x3] } is Subset of [:X1,X2,X3:]

for all values of the parameter.

The scheme Fraenkel4 deals with a 4-ary predicate P states that the following holds

forX1,X2,X3,X4

holds { 〈x1,x2,x3,x4〉 : P [x1,x2,x3,x4] } is Subset of [:X1,X2,X3,X4:]

for all values of the parameter.

The scheme Fraenkel5 concerns a unary predicate P and a unary predicate Q and

states that the following holds

forX1 st forx1 holds P [x1] implies Q[x1] holds { y1 : P [y1] } ⊆ { z1 : Q[z1] }

for all values of the parameters.

The scheme Fraenkel6 deals with a unary predicate P and a unary predicate Q and

states that the following holds

forX1 st forx1 holds P [x1] iff Q[x1] holds { y1 : P [y1] } = { z1 : Q[z1] }

for all values of the parameters.

Next we state several propositions:

(48) X1 = { x1 : notcontradiction },

(49) [:X1,X2:] = { 〈x1,x2〉 : not contradiction },

(50) [:X1,X2,X3:] = { 〈x1,x2,x3〉 : not contradiction },

(51) [:X1,X2,X3,X4:] = { 〈x1,x2,x3,x4〉 : not contradiction },

(52) A1 = { x1 : x1 ∈ A1 }.



120 Andrzej Trybulec

Let us consider X1, X2, A1, A2. Let us note that it makes sense to consider the

following functor on a restricted area. Then

[:A1,A2:] is Subset of [:X1,X2:].

Next we state a proposition

(53) [:A1,A2:] = { 〈x1,x2〉 : x1 ∈ A1 & x2 ∈ A2 }.

Let us consider X1, X2, X3, A1, A2, A3. Let us note that it makes sense to consider

the following functor on a restricted area. Then

[:A1,A2,A3:] is Subset of [:X1,X2,X3:].

Next we state a proposition

(54) [:A1,A2,A3:] = { 〈x1,x2,x3〉 : x1 ∈ A1 & x2 ∈ A2 & x3 ∈ A3 }.

Let us consider X1, X2, X3, X4, A1, A2, A3, A4. Let us note that it makes sense

to consider the following functor on a restricted area. Then

[:A1,A2,A3,A4:] is Subset of [:X1,X2,X3,X4:].

Next we state a number of propositions:

(55) [:A1,A2,A3,A4:]

= { 〈x1,x2,x3,x4〉 : x1 ∈ A1 & x2 ∈ A2 & x3 ∈ A3 & x4 ∈ A4 },

(56) ∅X1 = { x1 : contradiction },

(57) A1 c = { x1 : notx1 ∈ A1 },

(58) A1 ∩ B1 = { x1 : x1 ∈ A1 & x1 ∈ B1 },

(59) A1 ∪ B1 = { x1 : x1 ∈ A1 or x1 ∈ B1 },

(60) A1 \ B1 = { x1 : x1 ∈ A1 & notx1 ∈ B1 },

(61) A1 −. B1 = { x1 : x1 ∈ A1 & notx1 ∈ B1 or notx1 ∈ A1 & x1 ∈ B1 },

(62) A1 −. B1 = { x1 : notx1 ∈ A1 iff x1 ∈ B1 },

(63) A1 −. B1 = { x1 : x1 ∈ A1 iff notx1 ∈ B1 },

(64) A1 −. B1 = { x1 : not (x1 ∈ A1 iff x1 ∈ B1) }.

In the sequel x1, x2, x3, x4, x5, x6, x7, x8 will have the type Element of D. We

now state several propositions:

(65) {x1} is Subset of D,



Domains and Their Cartesian Products 121

(66) {x1,x2} is Subset of D,

(67) {x1,x2,x3} is Subset of D,

(68) {x1,x2,x3,x4} is Subset of D,

(69) {x1,x2,x3,x4,x5} is Subset of D,

(70) {x1,x2,x3,x4,x5,x6} is Subset of D,

(71) {x1,x2,x3,x4,x5,x6,x7} is Subset of D,

(72) {x1,x2,x3,x4,x5,x6,x7,x8} is Subset of D.

Let us consider D. Let x1 have the type Element of D. Let us note that it makes

sense to consider the following functor on a restricted area. Then

{x1} is Subset of D.

Let x2 have the type Element of D. Let us note that it makes sense to consider the

following functor on a restricted area. Then

{x1,x2} is Subset of D.

Let x3 have the type Element of D. Let us note that it makes sense to consider the

following functor on a restricted area. Then

{x1,x2,x3} is Subset of D.

Let x4 have the type Element of D. Let us note that it makes sense to consider the

following functor on a restricted area. Then

{x1,x2,x3,x4} is Subset of D.

Let x5 have the type Element of D. Let us note that it makes sense to consider the

following functor on a restricted area. Then

{x1,x2,x3,x4,x5} is Subset of D.

Let x6 have the type Element of D. Let us note that it makes sense to consider the

following functor on a restricted area. Then

{x1,x2,x3,x4,x5,x6} is Subset of D.

Let x7 have the type Element of D. Let us note that it makes sense to consider the

following functor on a restricted area. Then

{x1,x2,x3,x4,x5,x6,x7} is Subset of D.



122 Andrzej Trybulec

Let x8 have the type Element of D. Let us note that it makes sense to consider the

following functor on a restricted area. Then

{x1,x2,x3,x4,x5,x6,x7,x8} is Subset of D.

Let us consider X1, A1. Let us note that it makes sense to consider the following

functor on a restricted area. Then

A1 c is Subset of X1.

Let us consider B1. Let us note that it makes sense to consider the following functors

on restricted areas. Then

A1 ∪ B1 is Subset of X1,

A1 ∩ B1 is Subset of X1,

A1 \ B1 is Subset of X1,

A1 −. B1 is Subset of X1.

References

[1] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.

[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[3] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathe-

matics, 1, 1990.

[4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.

[5] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 3, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

The Well Ordering Relations

Grzegorz Bancerek1

Warsaw University

Bia lystok

Summary. Some theorems about well ordering relations are proved. The goal
of the article is to prove that every two well ordering relations are either isomorphic
or one of them is isomorphic to a segment of the other. The following concepts are
defined: the segment of a relation induced by an element, well founded relations,
well ordering relations, the restriction of a relation to a set, and the isomorphism
of two relations. A number of simple facts is presented.

The terminology and notation used here are introduced in the following papers: [2], [3],

[4], [5], and [1]. For simplicity we adopt the following convention: a, b, c, x denote

objects of the type Any; X , Y , Z denote objects of the type set. The scheme

Extensionality concerns a constant A that has the type set, a constant B that has the

type set and a unary predicate P and states that the following holds

A = B

provided the parameters satisfy the following conditions:

• for a holds a ∈ A iff P [a],

• for a holds a ∈ B iff P [a].

In the sequel R, S, T will have the type Relation. Let us consider R, a. The

functor

R −Seg a,

with values of the type set, is defined by

x ∈ it iff x 6= a & 〈x, a〉 ∈ R.

One can prove the following propositions:

(1) forR,Y,a holds Y = R −Seg (a) iff for b holds b ∈ Y iff b 6= a & 〈b, a〉 ∈ R,

1Supported by RPBP III.24 C1.

123
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



124 Grzegorz Bancerek

(2) x ∈ field R or R −Seg (x) = ∅.

We now define two new predicates. Let us consider R. The predicate

R is well founded

is defined by

forY st Y ⊆ field R & Y 6= ∅ ex a st a ∈ Y & R −Seg (a) ∩ Y = ∅.

Let us consider X . The predicate

R is well founded in X

is defined by

forY st Y ⊆ X & Y 6= ∅ ex a st a ∈ Y & R −Seg (a) ∩ Y = ∅.

One can prove the following three propositions:

(3) forR holds R is well founded

iff for Y st Y ⊆ field R & Y 6= ∅ ex a st a ∈ Y & R −Seg (a) ∩ Y = ∅,

(4) forR,X holds R is well founded in X

iff forY st Y ⊆ X & Y 6= ∅ ex a st a ∈ Y & R −Seg (a) ∩ Y = ∅,

(5) R is well founded iff R is well founded in field R.

We now define two new predicates. Let us consider R. The predicate

R is well-ordering-relation

is defined by

R is reflexive

& R is transitive & R is antisymmetric & R is connected & R is well founded .

Let us consider X . The predicate

R well orders X

is defined by

R is reflexive in X & R is transitive in X

& R is antisymmetric in X & R is connected in X & R is well founded in X.

The following propositions are true:

(6) forR holds R is well-ordering-relation iff R is reflexive

& R is transitive & R is antisymmetric & R is connected & R is well founded ,



The Well Ordering Relations 125

(7) forR,X holds R well orders X iff R is reflexive in X & R is transitive in X

& R is antisymmetric in X & R is connected in X & R is well founded in X,

(8) R well orders field R iff R is well-ordering-relation ,

(9) R well orders X implies

forY st Y ⊆ X & Y 6= ∅ ex a st a ∈ Y & for b st b ∈ Y holds 〈a, b〉 ∈ R,

(10) R is well-ordering-relation implies

forY st Y ⊆ field R & Y 6= ∅ ex a st a ∈ Y & for b st b ∈ Y holds 〈a, b〉 ∈ R,

(11) forR st R is well-ordering-relation & field R 6= ∅

ex a st a ∈ field R & for b st b ∈ field R holds 〈a, b〉 ∈ R,

(12) forR st R is well-ordering-relation & field R 6= ∅ for a st a ∈ field R holds

(for b st b ∈ field R holds 〈b, a〉 ∈ R) or ex b st b ∈ field R

& 〈a, b〉 ∈ R & for c st c ∈ field R & 〈a, c〉 ∈ R holds c = a or 〈b, c〉 ∈ R.

In the sequel F , G have the type Function. Next we state a proposition

(13) R −Seg (a) ⊆ field R.

Let us consider R, Y . The functor

R |2 Y,

yields the type Relation and is defined by

it = R ∩ [:Y, Y :].

We now state a number of propositions:

(14) R |2 Y = R ∩ [:Y, Y :],

(15) R |2 X ⊆ R & R |2 X ⊆ [:X, X :],

(16) x ∈ R |2 X iff x ∈ R & x ∈ [:X, X :],

(17) R |2 X = X | R | X,

(18) R |2 X = X | (R | X),

(19) x ∈ field (R |2 X) implies x ∈ field R & x ∈ X,

(20) field (R |2 X) ⊆ field R & field (R |2 X) ⊆ X,

(21) (R |2 X) −Seg (a) ⊆ R −Seg (a),



126 Grzegorz Bancerek

(22) R is reflexive implies R |2 X is reflexive ,

(23) R is connected implies R |2 Y is connected ,

(24) R is transitive implies R |2 Y is transitive ,

(25) R is antisymmetric implies R |2 Y is antisymmetric ,

(26) (R |2 X) |2 Y = R |2 (X ∩ Y ),

(27) (R |2 X) |2 Y = (R |2 Y ) |2 X,

(28) (R |2 Y ) |2 Y = R |2 Y,

(29) Z ⊆ Y implies (R |2 Y ) |2 Z = R |2 Z,

(30) R |2 field R = R,

(31) R is well founded implies R |2 X is well founded ,

(32) R is well-ordering-relation implies R |2 Y is well-ordering-relation ,

(33) R is well-ordering-relation

implies R −Seg (a) ⊆ R −Seg (b) or R −Seg (b) ⊆ R −Seg (a),

(34) R is well-ordering-relation implies R |2 (R −Seg (a)) is well-ordering-relation ,

(35) R is well-ordering-relation & a ∈ field R & b ∈ R −Seg (a)

implies (R |2 (R −Seg (a))) −Seg (b) = R −Seg (b),

(36) R is well-ordering-relation & Y ⊆ field R implies

(Y = field R or (ex a st a ∈ field R & Y = R −Seg (a))

iff for a st a ∈ Y for b st 〈b, a〉 ∈ R holds b ∈ Y ),

(37) R is well-ordering-relation & a ∈ field R & b ∈ field R

implies (〈a, b〉 ∈ R iff R −Seg (a) ⊆ R −Seg (b)),

(38) R is well-ordering-relation & a ∈ field R & b ∈ field R

implies (R −Seg (a) ⊆ R −Seg (b) iff a = b or a ∈ R −Seg (b)),

(39) R is well-ordering-relation & X ⊆ field R implies field (R |2 X) = X,

(40) R is well-ordering-relation implies field (R |2 R −Seg (a)) = R −Seg (a),

(41) R is well-ordering-relation implies

forZ st for a st a ∈ field R & R −Seg (a) ⊆ Z holds a ∈ Z holds field R ⊆ Z,



The Well Ordering Relations 127

(42) R is well-ordering-relation &

a ∈ field R & b ∈ field R & (for c st c ∈ R −Seg (a) holds 〈c, b〉 ∈ R & c 6= b)

implies 〈a, b〉 ∈ R,

(43) R is well-ordering-relation & domF = field R & rngF ⊆ field R

& (for a,b st 〈a, b〉 ∈ R & a 6= b holds 〈F .a,F .b〉 ∈ R & F .a 6= F .b)

implies for a st a ∈ field R holds 〈a, F .a〉 ∈ R.

Let us consider R, S, F . The predicate

F is isomorphism of R, S

is defined by

dom F = field R & rng F = field S &

F is one-to-one & for a,b holds 〈a, b〉 ∈ R iff a ∈ field R & b ∈ field R & 〈F .a,F .b〉 ∈ S.

Next we state two propositions:

(44) F is isomorphism of R, S iff dom F = field R & rng F = field S &

F is one-to-one

& for a,b holds 〈a, b〉 ∈ R iff a ∈ field R & b ∈ field R & 〈F .a,F .b〉 ∈ S,

(45) F is isomorphism of R, S

implies for a,b st 〈a, b〉 ∈ R & a 6= b holds 〈F .a,F .b〉 ∈ S & F .a 6= F .b.

Let us consider R, S. The predicate

R, S are isomorphic is defined by exF st F is isomorphism of R, S.

We now state a number of propositions:

(46) R, S are isomorphic iff exF st F is isomorphism of R, S,

(47) id (field R) is isomorphism of R, R,

(48) R, R are isomorphic ,

(49) F is isomorphism of R, S implies F -1 is isomorphism of S, R,

(50) R, S are isomorphic implies S, R are isomorphic ,

(51) F is isomorphism of R, S & G is isomorphism of S, T

implies G · F is isomorphism of R, T,

(52) R, S are isomorphic & S, T are isomorphic implies R, T are isomorphic ,



128 Grzegorz Bancerek

(53) F is isomorphism of R, S implies (R is reflexive implies S is reflexive) &

(R is transitive implies S is transitive) &

(R is connected implies S is connected) &

(R is antisymmetric implies S is antisymmetric)

& (R is well founded implies S is well founded),

(54) R is well-ordering-relation & F is isomorphism of R, S

implies S is well-ordering-relation ,

(55) R is well-ordering-relation implies forF,G

st F is isomorphism of R, S & G is isomorphism of R, S holds F = G.

Let us consider R, S. Assume that the following holds

R is well-ordering-relation & R, S are isomorphic .

The functor

canonical isomorphism of (R, S),

yields the type Function and is defined by

it is isomorphism of R, S.

The following propositions are true:

(56) R is well-ordering-relation & R, S are isomorphic

implies (F = canonical isomorphism of (R, S) iff F is isomorphism of R, S),

(57) R is well-ordering-relation

implies for a st a ∈ field R holds notR, R |2 (R −Seg (a)) are isomorphic ,

(58) R is well-ordering-relation & a ∈ field R & b ∈ field R & a 6= b

implies notR |2 (R −Seg (a)),R |2 (R −Seg (b)) are isomorphic ,

(59) R is well-ordering-relation & Z ⊆ field R & F is isomorphism of R, S implies

F | Z is isomorphism of R |2 Z,S |2 (F ◦ Z)

& R |2 Z,S |2 (F ◦ Z) are isomorphic ,

(60) R is well-ordering-relation & F is isomorphism of R, S implies

for a st a ∈ field R ex b st b ∈ field S & F ◦ (R −Seg (a)) = S −Seg (b),

(61) R is well-ordering-relation & F is isomorphism of R, S implies for a st

a ∈ field R

ex b st b ∈ field S & R |2 (R −Seg (a)),S |2 (S −Seg (b)) are isomorphic ,



The Well Ordering Relations 129

(62) R is well-ordering-relation & S is well-ordering-relation & a ∈ field R &

b ∈ field S & c ∈ field S & R, S |2 (S −Seg (b)) are isomorphic

& R |2 (R −Seg (a)),S |2 (S −Seg (c)) are isomorphic

implies S −Seg (c) ⊆ S −Seg (b) & 〈c, b〉 ∈ S,

(63) R is well-ordering-relation & S is well-ordering-relation implies

R, S are isomorphic or

(ex a st a ∈ field R & R |2 (R −Seg (a)),S are isomorphic)

or ex a st a ∈ field S & R, S |2 (S −Seg (a)) are isomorphic ,

(64) Y ⊆ field R & R is well-ordering-relation implies R, R |2 Y are isomorphic

or ex a st a ∈ field R & R |2 (R −Seg (a)),R |2 Y are isomorphic .

References

[1] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[3] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

[4] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1, 1990.

[5] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized

Mathematics, 1, 1990.

Received April 4, 1989



130



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

A Model of ZF Set Theory Language

Grzegorz Bancerek1

Warsaw University

Bia lystok

Summary. The goal of this article is to construct a language of the ZF set the-
ory and to develop a notational and conceptual base which facilitates a convenient
usage of the language.

The articles [5], [6], [3], [4], [1], and [2] provide the terminology and notation for this

paper. For simplicity we adopt the following convention: k, n will have the type Nat;

D will have the type DOMAIN; a will have the type Any; p, q will have the type

FinSequence of NAT. The constant VAR has the type SUBDOMAIN of NAT, and is

defined by

it = { k : 5 ≤ k }.

The following proposition is true

(1) VAR = { k : 5 ≤ k }.

Variable stands for Element of VAR .

One can prove the following proposition

(2) a is Variable iff a is Element of VAR .

Let us consider n. The functor

ξ n,

with values of the type Variable, is defined by

it = 5 + n.

One can prove the following proposition

(3) ξ n = 5 + n.

1Supported by RPBP III.24 C1.

131
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



132 Grzegorz Bancerek

In the sequel x, y, z, t denote objects of the type Variable. Let us consider x. Let

us note that it makes sense to consider the following functor on a restricted area. Then

<x> is FinSequence of NAT .

We now define two new functors. Let us consider x, y. The functor

x -- y,

with values of the type FinSequence of NAT, is defined by

it = <0> _ <x> _ <y>.

The functor

x ε y,

yields the type FinSequence of NAT and is defined by

it = <1> _ <x> _ <y>.

Next we state four propositions:

(4) x -- y = <0> _ <x> _ <y>,

(5) x ε y = <1> _ <x> _ <y>,

(6) x -- y = z -- t implies x = z & y = t,

(7) x ε y = z ε t implies x = z & y = t.

We now define two new functors. Let us consider p. The functor

¬ p,

with values of the type FinSequence of NAT, is defined by

it = <2> _ p.

Let us consider q. The functor

p ∧ q,

with values of the type FinSequence of NAT, is defined by

it = <3> _ p _ q.

Next we state three propositions:

(8) ¬ p = <2> _ p,

(9) p ∧ q = <3> _ p _ q,

(10) ¬ p = ¬ q implies p = q.



A Model of ZF Set Theory Language 133

Let us consider x, p. The functor

∀ (x, p),

yields the type FinSequence of NAT and is defined by

it = <4> _ <x> _ p.

The following propositions are true:

(11) ∀ (x, p) = <4> _ <x> _ p,

(12) ∀ (x, p) = ∀ (y, q) implies x = y & p = q.

The constant WFF has the type DOMAIN, and is defined by

(for a st a ∈ it holds a is FinSequence of NAT) &

(for x,y holds x -- y ∈ it & x ε y ∈ it) & (for p st p ∈ it holds ¬ p ∈ it) &

(for p,q st p ∈ it & q ∈ it holds p ∧ q ∈ it) & (forx,p st p ∈ it holds ∀ (x, p) ∈ it) &

forD st

(for a st a ∈ D holds a is FinSequence of NAT) &

(for x,y holds x -- y ∈ D & x ε y ∈ D) & (for p st p ∈ D holds ¬ p ∈ D)

& (for p,q st p ∈ D & q ∈ D holds p ∧ q ∈ D) & forx,p st p ∈ D holds ∀ (x, p) ∈ D

holds it ⊆ D.

One can prove the following proposition

(13) (for a st a ∈ WFF holds a is FinSequence of NAT) &

(forx,y holds x -- y ∈ WFF & x ε y ∈ WFF) &

(for p st p ∈ WFF holds ¬ p ∈ WFF) &

(for p,q st p ∈ WFF & q ∈ WFF holds p ∧ q ∈ WFF) &

(forx,p st p ∈ WFF holds ∀ (x, p) ∈ WFF) & forD st

(for a st a ∈ D holds a is FinSequence of NAT) &

(for x,y holds x -- y ∈ D & x ε y ∈ D) & (for p st p ∈ D holds ¬ p ∈ D) &

(for p,q st p ∈ D & q ∈ D holds p ∧ q ∈ D)

& forx,p st p ∈ D holds ∀ (x, p) ∈ D

holds WFF ⊆ D.

The mode

ZF-formula ,

which widens to the type FinSequence of NAT, is defined by

it is Element of WFF .



134 Grzegorz Bancerek

We now state two propositions:

(14) a is ZF-formula iff a ∈ WFF ,

(15) a is ZF-formula iff a is Element of WFF .

In the sequel F , F1, G, G1, H , H1 denote objects of the type ZF-formula. Let

us consider x, y. Let us note that it makes sense to consider the following functors on

restricted areas. Then

x -- y is ZF-formula ,

x ε y is ZF-formula .

Let us consider H . Let us note that it makes sense to consider the following functor

on a restricted area. Then

¬H is ZF-formula .

Let us consider G. Let us note that it makes sense to consider the following functor on

a restricted area. Then

H ∧ G is ZF-formula .

Let us consider x, H . Let us note that it makes sense to consider the following functor

on a restricted area. Then

∀ (x, H) is ZF-formula .

We now define five new predicates. Let us consider H . The predicate

H is a equality is defined by exx,y st H = x -- y.

The predicate

H is a membership is defined by exx,y st H = x ε y.

The predicate

H is negative is defined by exH1 st H = ¬H1.

The predicate

H is conjunctive is defined by exF,G st H = F ∧ G.

The predicate

H is universal is defined by exx,H1 st H = ∀ (x, H1).

The following proposition is true

(16) (H is a equality iff exx,y st H = x -- y) &

(H is a membership iff exx,y st H = x ε y) &

(H is negative iff exH1 st H = ¬H1) &

(H is conjunctive iff exF,G st H = F ∧ G)

& (H is universal iff exx,H1 st H = ∀ (x, H1)).



A Model of ZF Set Theory Language 135

Let us consider H . The predicate

H is atomic is defined by H is a equality or H is a membership .

Next we state a proposition

(17) H is atomic iff H is a equality or H is a membership .

We now define two new functors. Let us consider F , G. The functor

F ∨ G,

yields the type ZF-formula and is defined by

it = ¬ (¬F ∧ ¬G).

The functor

F ⇒ G,

yields the type ZF-formula and is defined by

it = ¬ (F ∧ ¬G).

The following two propositions are true:

(18) F ∨ G = ¬ (¬F ∧ ¬G),

(19) F ⇒ G = ¬ (F ∧ ¬G).

Let us consider F , G. The functor

F ⇔ G,

yields the type ZF-formula and is defined by

it = (F ⇒ G) ∧ (G ⇒ F ).

We now state a proposition

(20) F ⇔ G = (F ⇒ G) ∧ (G ⇒ F ).

Let us consider x, H . The functor

∃ (x, H),

yields the type ZF-formula and is defined by

it = ¬∀ (x,¬H).

The following proposition is true

(21) ∃ (x, H) = ¬∀ (x,¬H).



136 Grzegorz Bancerek

We now define four new predicates. Let us consider H . The predicate

H is disjunctive is defined by exF,G st H = F ∨ G.

The predicate

H is conditional is defined by exF,G st H = F ⇒ G.

The predicate

H is biconditional is defined by exF,G st H = F ⇔ G.

The predicate

H is existential is defined by exx,H1 st H = ∃ (x, H1).

The following proposition is true

(22) (H is disjunctive iff exF,G st H = F ∨ G) &

(H is conditional iff exF,G st H = F ⇒ G) &

(H is biconditional iff exF,G st H = F ⇔ G)

& (H is existential iff exx,H1 st H = ∃ (x, H1)).

We now define two new functors. Let us consider x, y, H . The functor

∀ (x, y, H),

yields the type ZF-formula and is defined by

it = ∀ (x, ∀ (y, H)).

The functor

∃ (x, y, H),

yields the type ZF-formula and is defined by

it = ∃ (x, ∃ (y, H)).

The following proposition is true

(23) ∀ (x, y, H) = ∀ (x, ∀ (y, H)) & ∃ (x, y, H) = ∃ (x, ∃ (y, H)).

We now define two new functors. Let us consider x, y, z, H . The functor

∀ (x, y, z, H),

with values of the type ZF-formula, is defined by

it = ∀ (x, ∀ (y, z, H)).

The functor

∃ (x, y, z, H),



A Model of ZF Set Theory Language 137

with values of the type ZF-formula, is defined by

it = ∃ (x, ∃ (y, z, H)).

We now state several propositions:

(24) ∀ (x, y, z, H) = ∀ (x, ∀ (y, z, H)) & ∃ (x, y, z, H) = ∃ (x, ∃ (y, z, H)),

(25) H is a equality

or H is a membership or H is negative or H is conjunctive or H is universal ,

(26) H is atomic or H is negative or H is conjunctive or H is universal ,

(27) H is atomic implies len H = 3,

(28) H is atomic or exH1 st len H1 + 1 ≤ len H,

(29) 3 ≤ len H,

(30) len H = 3 implies H is atomic .

One can prove the following propositions:

(31) forx,y holds (x -- y).1 = 0 & (x ε y).1 = 1,

(32) forH holds (¬H).1 = 2,

(33) forF,G holds (F ∧ G).1 = 3,

(34) forx,H holds ∀ (x, H).1 = 4,

(35) H is a equality implies H.1 = 0,

(36) H is a membership implies H.1 = 1,

(37) H is negative implies H.1 = 2,

(38) H is conjunctive implies H.1 = 3,

(39) H is universal implies H.1 = 4,

(40) H is a equality & H.1 = 0 or H is a membership & H.1 = 1 or

H is negative & H.1 = 2

or H is conjunctive & H.1 = 3 or H is universal & H.1 = 4,

(41) H.1 = 0 implies H is a equality ,

(42) H.1 = 1 implies H is a membership ,



138 Grzegorz Bancerek

(43) H.1 = 2 implies H is negative ,

(44) H.1 = 3 implies H is conjunctive ,

(45) H.1 = 4 implies H is universal .

In the sequel sq denotes an object of the type FinSequence. We now state several

propositions:

(46) H = F _ sq implies H = F,

(47) H ∧ G = H1 ∧ G1 implies H = H1 & G = G1,

(48) F ∨ G = F1 ∨ G1 implies F = F1 & G = G1,

(49) F ⇒ G = F1 ⇒ G1 implies F = F1 & G = G1,

(50) F ⇔ G = F1 ⇔ G1 implies F = F1 & G = G1,

(51) ∃ (x, H) = ∃ (y, G) implies x = y & H = G.

We now define two new functors. Let us consider H . Assume that the following

holds

H is atomic .

The functor

Var1 H,

yields the type Variable and is defined by

it = H.2.

The functor

Var2 H,

yields the type Variable and is defined by

it = H.3.

One can prove the following three propositions:

(52) H is atomic implies Var1 H = H.2 & Var2 H = H.3,

(53) H is a equality implies H = (Var1 H) -- Var2 H,

(54) H is a membership implies H = (Var1 H) ε Var2 H.

Let us consider H . Assume that the following holds

H is negative .



A Model of ZF Set Theory Language 139

The functor

the argument of H,

with values of the type ZF-formula, is defined by

¬ it = H.

We now state a proposition

(55) H is negative implies H = ¬ the argument of H.

We now define two new functors. Let us consider H . Assume that the following

holds

H is conjunctive or H is disjunctive .

The functor

the left argument of H,

with values of the type ZF-formula, is defined by

exH1 st it ∧ H1 = H, if H is conjunctive ,

exH1 st it ∨ H1 = H, otherwise.

The functor

the right argument of H,

with values of the type ZF-formula, is defined by

exH1 st H1 ∧ it = H, if H is conjunctive ,

exH1 st H1 ∨ it = H, otherwise.

One can prove the following propositions:

(56) H is conjunctive implies (F = the left argument of H iff exG st F ∧ G = H)

& (F = the right argument of H iff exG st G ∧ F = H),

(57) H is disjunctive implies (F = the left argument of H iff exG st F ∨ G = H)

& (F = the right argument of H iff exG st G ∨ F = H),

(58) H is conjunctive

implies H = (the left argument of H) ∧ the right argument of H,

(59) H is disjunctive

implies H = (the left argument of H) ∨ the right argument of H.

We now define two new functors. Let us consider H . Assume that the following

holds

H is universal or H is existential .



140 Grzegorz Bancerek

The functor

bound in H,

with values of the type Variable, is defined by

exH1 st ∀ (it ,H1) = H, if H is universal ,

exH1 st ∃ (it ,H1) = H, otherwise.

The functor

the scope of H,

with values of the type ZF-formula, is defined by

exx st ∀ (x, it) = H, if H is universal ,

exx st ∃ (x, it) = H, otherwise.

Next we state four propositions:

(60) H is universal implies (x = bound in H iff exH1 st ∀ (x, H1) = H)

& (H1 = the scope of H iff exx st ∀ (x, H1) = H),

(61) H is existential implies (x = bound in H iff exH1 st ∃ (x, H1) = H)

& (H1 = the scope of H iff exx st ∃ (x, H1) = H),

(62) H is universal implies H = ∀ (bound in H,the scope of H),

(63) H is existential implies H = ∃ (bound in H,the scope of H).

We now define two new functors. Let us consider H . Assume that the following

holds

H is conditional .

The functor

the antecedent of H,

with values of the type ZF-formula, is defined by

exH1 st H = it⇒ H1.

The functor

the consequent ofH,

with values of the type ZF-formula, is defined by

exH1 st H = H1 ⇒ it .

The following propositions are true:

(64) H is conditional implies (F = the antecedent of H iff exG st H = F ⇒ G)

& (F = the consequent of H iff exG st H = G ⇒ F ),



A Model of ZF Set Theory Language 141

(65) H is conditional implies H = (the antecedent of H) ⇒ the consequent of H.

We now define two new functors. Let us consider H . Assume that the following

holds

H is biconditional .

The functor

the left side of H,

yields the type ZF-formula and is defined by

exH1 st H = it⇔ H1.

The functor

the right side of H,

with values of the type ZF-formula, is defined by

exH1 st H = H1 ⇔ it .

We now state two propositions:

(66) H is biconditional implies (F = the left side ofH iff exG st H = F ⇔ G)

& (F = the right side of H iff exG st H = G ⇔ F ),

(67) H is biconditional implies H = (the left side ofH) ⇔ the right side of H.

Let us consider H , F . The predicate

H is immediate constituent of F

is defined by

F = ¬H or (exH1 st F = H ∧ H1 or F = H1 ∧ H) or exx st F = ∀ (x, H).

We now state a number of propositions:

(68) H is immediate constituent of F iff

F = ¬H or (exH1 st F = H ∧ H1 or F = H1 ∧ H) or exx st F = ∀ (x, H),

(69) notH is immediate constituent of x -- y,

(70) notH is immediate constituent of x ε y,

(71) F is immediate constituent of ¬H iff F = H,

(72) F is immediate constituent of G ∧ H iff F = G or F = H,

(73) F is immediate constituent of ∀ (x, H) iff F = H,



142 Grzegorz Bancerek

(74) H is atomic implies notF is immediate constituent of H,

(75) H is negative

implies (F is immediate constituent of H iff F = the argument ofH),

(76) H is conjunctive implies (F is immediate constituent of H

iff F = the left argument of H or F = the right argument of H),

(77) H is universal

implies (F is immediate constituent of H iff F = the scope of H).

In the sequel L will denote an object of the type FinSequence. Let us consider H ,

F . The predicate

H is subformula of F

is defined by

exn,L st 1 ≤ n & len L = n & L.1 = H & L.n = F & for k st 1 ≤ k & k < n

exH1,F1 st L.k = H1 & L.(k + 1) = F1 & H1 is immediate constituent of F1.

Next we state two propositions:

(78) H is subformula of F iff exn,L st 1 ≤ n & len L = n & L.1 = H & L.n = F &

for k st 1 ≤ k & k < n exH1,F1

st L.k = H1 & L.(k + 1) = F1 & H1 is immediate constituent of F1,

(79) H is subformula of H.

Let us consider H , F . The predicate

H is proper subformula of F is defined by H is subformula of F & H 6= F.

We now state several propositions:

(80) H is proper subformula of F iff H is subformula of F & H 6= F,

(81) H is immediate constituent of F implies len H < len F,

(82) H is immediate constituent of F implies H is proper subformula of F,

(83) H is proper subformula of F implies len H < len F,

(84) H is proper subformula of F

implies exG st G is immediate constituent of F.

The following propositions are true:

(85) F is proper subformula of G & G is proper subformula of H

implies F is proper subformula of H,



A Model of ZF Set Theory Language 143

(86) F is subformula of G & G is subformula of H implies F is subformula of H,

(87) G is subformula of H & H is subformula of G implies G = H,

(88) notF is proper subformula of x -- y,

(89) notF is proper subformula of x ε y,

(90) F is proper subformula of ¬H implies F is subformula of H,

(91) F is proper subformula of G ∧ H

implies F is subformula of G or F is subformula of H,

(92) F is proper subformula of ∀ (x, H) implies F is subformula of H,

(93) H is atomic implies notF is proper subformula of H,

(94) H is negative implies the argument ofH is proper subformula of H,

(95) H is conjunctive implies the left argument of H is proper subformula of H

& the right argument ofH is proper subformula of H,

(96) H is universal implies the scope ofH is proper subformula of H,

(97) H is subformula of x -- y iff H = x -- y,

(98) H is subformula of x ε y iff H = x ε y.

Let us consider H . The functor

Subformulae H,

yields the type set and is defined by

a ∈ it iff exF st F = a & F is subformula of H.

We now state a number of propositions:

(99) a ∈ Subformulae H iff exF st F = a & F is subformula of H,

(100) G ∈ Subformulae H implies G is subformula of H,

(101) F is subformula of H implies Subformulae F ⊆ Subformulae H,

(102) Subformulae x -- y = {x -- y},

(103) Subformulae x ε y = {x ε y},

(104) Subformulae¬H = Subformulae H ∪ {¬H},



144 Grzegorz Bancerek

(105) Subformulae (H ∧ F ) = Subformulae H ∪ Subformulae F ∪ {H ∧ F},

(106) Subformulae∀ (x, H) = Subformulae H ∪ {∀ (x, H)},

(107) H is atomic iff Subformulae H = {H},

(108) H is negative

implies Subformulae H = Subformulae the argument of H ∪ {H},

(109) H is conjunctive implies Subformulae H = Subformulae

the left argument ofH ∪ Subformulae the right argument of H ∪ {H},

(110) H is universal implies Subformulae H = Subformulae the scope of H ∪ {H},

(111) (H is immediate constituent of G

or H is proper subformula of G or H is subformula of G)

& G ∈ Subformulae F

implies H ∈ Subformulae F.

In the article we present several logical schemes. The scheme ZF Ind deals with a

unary predicate P states that the following holds

forH holds P [H ]

provided the parameter satisfies the following conditions:

• forH st H is atomic holds P [H ],

• forH st H is negative & P [the argument of H ] holds P [H ],

• forH st

H is conjunctive & P [the left argument ofH ] & P [the right argument ofH ]

holds P [H ],

• forH st H is universal & P [the scope of H ] holds P [H ].

The scheme ZF CompInd deals with a unary predicate P states that the following

holds

forH holds P [H ]

provided the parameter satisfies the following condition:

• forH st forF st F is proper subformula of H holds P [F ] holds P [H ].



A Model of ZF Set Theory Language 145

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized

Mathematics, 1, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and

finite sequences. Formalized Mathematics, 1, 1990.

[3] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1, 1990.

[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[6] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 4, 1989



146



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Families of Sets

Beata Padlewska1

Warsaw University

Bia lystok

Summary. The article contains definitions of the following concepts: family
of sets, family of subsets of a set, the intersection of a family of sets. Functors ∪, ∩,
and \ are redefined for families of subsets of a set. Some properties of these notions
are presented.

The terminology and notation used in this paper are introduced in the following papers:

[1], [3], and [2]. For simplicity we adopt the following convention: X , Y , Z, Z1, D

will denote objects of the type set; x, y will denote objects of the type Any. Let us

consider X . The functor ⋂
X,

with values of the type set, is defined by

forx holds x ∈ it iff forY holds Y ∈ X implies x ∈ Y, if X 6= ∅,

it = ∅, otherwise.

The following propositions are true:

(1) X 6= ∅ implies forx holds x ∈
⋂

X iff forY st Y ∈ X holds x ∈ Y,

(2)
⋂

∅ = ∅,

(3)
⋂

X ⊆
⋃

X,

(4) Z ∈ X implies
⋂

X ⊆ Z,

(5) ∅ ∈ X implies
⋂

X = ∅,

(6) X 6= ∅ & (forZ1 st Z1 ∈ X holds Z ⊆ Z1) implies Z ⊆
⋂

X,

1Supported by RPBP.III-24.C1.

147
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



148 Beata Padlewska

(7) X 6= ∅ & X ⊆ Y implies
⋂

Y ⊆
⋂

X,

(8) X ∈ Y & X ⊆ Z implies
⋂

Y ⊆ Z,

(9) X ∈ Y & X ∩ Z = ∅ implies
⋂

Y ∩ Z = ∅,

(10) X 6= ∅ & Y 6= ∅ implies
⋂

(X ∪ Y ) =
⋂

X ∩
⋂

Y,

(11)
⋂

{x} = x,

(12)
⋂

{X, Y } = X ∩ Y.

Set-Family stands for set .

In the sequel SFX , SFY , SFZ will have the type Set-Family. One can prove

the following two propositions:

(13) x is Set-Family ,

(14) SFX = SFY iff forX holds X ∈ SFX iff X ∈ SFY.

We now define two new predicates. Let us consider SFX , SFY . The predicate

SFX is finer than SFY

is defined by

forX st X ∈ SFX exY st Y ∈ SFY & X ⊆ Y.

The predicate

SFX is coarser than SFY

is defined by

forY st Y ∈ SFY exX st X ∈ SFX & X ⊆ Y.

Next we state several propositions:

(15) SFX is finer than SFY iff forX st X ∈ SFX exY st Y ∈ SFY & X ⊆ Y,

(16) SFX is coarser than SFY

iff forY st Y ∈ SFY exX st X ∈ SFX & X ⊆ Y,

(17) SFX ⊆ SFY implies SFX is finer than SFY,

(18) SFX is finer than SFY implies
⋃

SFX ⊆
⋃

SFY,

(19) SFY 6= ∅ & SFX is coarser than SFY implies
⋂

SFX ⊆
⋂

SFY.



Families of Sets 149

Let us note that it makes sense to consider the following constant. Then ∅ is

Set-Family . Let us consider x. Let us note that it makes sense to consider the following

functor on a restricted area. Then

{x} is Set-Family .

Let us consider y. Let us note that it makes sense to consider the following functor on a

restricted area. Then

{x, y} is Set-Family .

One can prove the following propositions:

(20) ∅ is finer than SFX,

(21) SFX is finer than ∅ implies SFX = ∅,

(22) SFX is finer than SFX,

(23) SFX is finer than SFY & SFY is finer than SFZ

implies SFX is finer than SFZ,

(24) SFX is finer than {Y } implies forX st X ∈ SFX holds X ⊆ Y,

(25) SFX is finer than {X, Y }

implies forZ st Z ∈ SFX holds Z ⊆ X or Z ⊆ Y.

We now define three new functors. Let us consider SFX , SFY . The functor

UNION (SFX,SFY ),

yields the type Set-Family and is defined by

Z ∈ it iff exX,Y st X ∈ SFX & Y ∈ SFY & Z = X ∪ Y.

The functor

INTERSECTION (SFX,SFY ),

with values of the type Set-Family, is defined by

Z ∈ it iff exX,Y st X ∈ SFX & Y ∈ SFY & Z = X ∩ Y.

The functor

DIFFERENCE (SFX,SFY ),

with values of the type Set-Family, is defined by

Z ∈ it iff exX,Y st X ∈ SFX & Y ∈ SFY & Z = X \ Y.

One can prove the following propositions:

(26) Z ∈ UNION (SFX,SFY ) iff exX,Y st X ∈ SFX & Y ∈ SFY & Z = X ∪ Y,



150 Beata Padlewska

(27) Z ∈ INTERSECTION (SFX,SFY )

iff exX,Y st X ∈ SFX & Y ∈ SFY & Z = X ∩ Y,

(28) Z ∈ DIFFERENCE (SFX,SFY )

iff exX,Y st X ∈ SFX & Y ∈ SFY & Z = X \ Y,

(29) SFX is finer than UNION (SFX,SFX),

(30) INTERSECTION (SFX,SFX) is finer than SFX,

(31) DIFFERENCE (SFX,SFX) is finer than SFX,

(32) UNION (SFX,SFY ) = UNION (SFY,SFX),

(33) INTERSECTION (SFX,SFY ) = INTERSECTION (SFY,SFX),

(34) SFX ∩ SFY 6= ∅

implies
⋂

SFX ∩
⋂

SFY =
⋂

INTERSECTION (SFX,SFY ),

(35) SFY 6= ∅ implies X ∪
⋂

SFY =
⋂

UNION ({X},SFY ),

(36) X ∩
⋃

SFY =
⋃

INTERSECTION ({X},SFY ),

(37) SFY 6= ∅ implies X \
⋃

SFY =
⋂

DIFFERENCE ({X},SFY ),

(38) SFY 6= ∅ implies X \
⋂

SFY =
⋃

DIFFERENCE ({X},SFY ),

(39)
⋃

INTERSECTION (SFX,SFY ) ⊆
⋃

SFX ∩
⋃

SFY,

(40) SFX 6= ∅ & SFY 6= ∅ implies
⋂

SFX ∪
⋂

SFY ⊆
⋂

UNION (SFX,SFY ),

(41) SFX 6= ∅ & SFY 6= ∅

implies
⋂

DIFFERENCE (SFX,SFY ) ⊆
⋂

SFX \
⋂

SFY.

Let D have the type set.

Subset-Family of D stands for Subset of bool D.

We now state a proposition

(42) forF being Subset of bool D holds F is Subset-Family of D.

In the sequel F , G have the type Subset-Family of D; P has the type Subset of

D. Let us consider D, F , G. Let us note that it makes sense to consider the following

functors on restricted areas. Then

F ∪ G is Subset-Family of D,



Families of Sets 151

F ∩ G is Subset-Family of D,

F \ G is Subset-Family of D.

Next we state a proposition

(43) X ∈ F implies X is Subset of D.

Let us consider D, F . Let us note that it makes sense to consider the following functor

on a restricted area. Then

⋃
F is Subset of D.

Let us consider D, F . Let us note that it makes sense to consider the following functor

on a restricted area. Then

⋂
F is Subset of D.

The following proposition is true

(44) F = G iff forP holds P ∈ F iff P ∈ G.

The scheme SubFamEx deals with a constant A that has the type set and a unary

predicate P and states that the following holds

exF being Subset-Family of A st forB being Subset of A holds B ∈ F iff P [B]

for all values of the parameters.

Let us consider D, F . The functor

F c ,

yields the type Subset-Family of D and is defined by

forP being Subset of D holds P ∈ it iff P c ∈ F.

Next we state four propositions:

(45) forP holds P ∈ F c iff P c ∈ F,

(46) F 6= ∅ implies F c 6= ∅,

(47) F 6= ∅ implies Ω D \
⋃

F =
⋂

(F c),

(48) F 6= ∅ implies
⋃

F c = Ω D \
⋂

F.



152 Beata Padlewska

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[2] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.

[3] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 5, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Functions from a Set to a Set

Czes law Byliński1

Warsaw University

Bia lystok

Summary. The article is a continuation of [1]. We define the following con-
cepts: a function from a set X into a set Y , denoted by “Function of X,Y ”, the
set of all functions from a set X into a set Y , denoted by Funcs(X,Y ), and the
permutation of a set (mode Permutation of X, where X is a set). Theorems and
schemes included in the article are reformulations of the theorems of [1] in the new
terminology. Also some basic facts about functions of two variables are proved.

The notation and terminology used in this paper are introduced in the following articles:

[2], [3], and [1]. For simplicity we adopt the following convention: P , Q, X , Y , Y 1,

Y 2, Z will denote objects of the type set; x, x1, x2, y, y1, y2, z, z1, z2 will denote

objects of the type Any. Let us consider X , Y . Assume that the following holds

Y = ∅ implies X = ∅.

The mode

Function of X, Y,

which widens to the type Function, is defined by

X = dom it & rng it ⊆ Y.

Next we state several propositions:

(1) (Y = ∅ implies X = ∅) implies for f being Function

holds f is Function of X, Y iff X = dom f & rng f ⊆ Y,

(2) for f being Function of X, Y

st Y = ∅ implies X = ∅ holds X = dom f & rng f ⊆ Y,

(3) for f being Function holds f is Function of dom f,rng f,

1Supported by RPBP.III-24.C1.

153
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



154 Czes law Byliński

(4) for f being Function st rng f ⊆ Y holds f is Function of dom f,Y,

(5) for f being Function

st dom f = X & forx st x ∈ X holds f .x ∈ Y holds f is Function of X, Y,

(6) for f being Function of X, Y st Y 6= ∅ & x ∈ X holds f .x ∈ rng f,

(7) for f being Function of X, Y st Y 6= ∅ & x ∈ X holds f .x ∈ Y,

(8) for f being Function of X, Y

st (Y = ∅ implies X = ∅) & rng f ⊆ Z holds f is Function of X, Z,

(9) for f being Function of X, Y

st (Y = ∅ implies X = ∅) & Y ⊆ Z holds f is Function of X, Z.

In the article we present several logical schemes. The scheme FuncEx1 deals with

a constant A that has the type set, a constant B that has the type set and a binary

predicate P and states that the following holds

ex f being Function of A,B st forx st x ∈ A holds P [x, f .x]

provided the parameters satisfy the following conditions:

• forx st x ∈ A ex y st y ∈ B & P [x, y],

• forx,y1,y2 st x ∈ A & P [x, y1] & P [x, y2] holds y1 = y2.

The scheme Lambda1 concerns a constant A that has the type set, a constant B that

has the type set and a unary functor F and states that the following holds

ex f being Function of A,B st forx st x ∈ A holds f .x = F(x)

provided the parameters satisfy the following condition:

• forx st x ∈ A holds F(x) ∈ B.

Let us consider X , Y . The functor

Funcs (X, Y ),

yields the type set and is defined by

x ∈ it iff ex f being Function st x = f & dom f = X & rng f ⊆ Y.

We now state a number of propositions:

(10) forF being set holds F = Funcs (X, Y ) iff forx

holds x ∈ F iff ex f being Function st x = f & dom f = X & rng f ⊆ Y,



Functions from a Set to a Set 155

(11) for f being Function of X, Y

st Y = ∅ implies X = ∅ holds f ∈ Funcs (X, Y ),

(12) for f being Function of X, X holds f ∈ Funcs (X, X),

(13) for f being Function of ∅,X holds f ∈ Funcs (∅,X),

(14) X 6= ∅ implies Funcs (X, ∅) = ∅,

(15) Funcs (X, Y ) = ∅ implies X 6= ∅ & Y = ∅,

(16) for f being Function of X, Y

st Y 6= ∅ & for y st y ∈ Y exx st x ∈ X & y = f .x holds rng f = Y,

(17) for f being Function of X, Y st y ∈ Y & rng f = Y exx st x ∈ X & f .x = y,

(18) for f1,f2 being Function of X, Y

st Y 6= ∅ & forx st x ∈ X holds f1.x = f2.x holds f1 = f2,

(19) for f being Function of X, Y for g being Function of Y, Z st

(Z = ∅ implies Y = ∅) & (Y = ∅ implies X = ∅)

holds g · f is Function of X, Z,

(20) for f being Function of X, Y for g being Function of Y, Z

st Y 6= ∅ & Z 6= ∅ & rng f = Y & rng g = Z holds rng (g · f) = Z,

(21) for f being Function of X, Y for g being Function of Y, Z

st Y 6= ∅ & Z 6= ∅ & x ∈ X holds (g · f).x = g.(f .x),

(22) for f being Function of X, Y st Y 6= ∅ holds rng f = Y

iff forZ st Z 6= ∅ for g,h being Function of Y, Z st g · f = h · f holds g = h,

(23) for f being Function of X, Y

st Y = ∅ implies X = ∅ holds f · (id X) = f & (id Y ) · f = f,

(24) for f being Function of X, Y

for g being Function of Y, X st Y 6= ∅ & f · g = id Y holds rng f = Y,

(25) for f being Function of X, Y st Y = ∅ implies X = ∅ holds f is one-to-one

iff forx1,x2 st x1 ∈ X & x2 ∈ X & f .x1 = f .x2 holds x1 = x2,

(26) for f being Function of X, Y for g being Function of Y, Z st

(Z = ∅ implies Y = ∅) & (Y = ∅ implies X = ∅) & g · f is one-to-one

holds f is one-to-one ,



156 Czes law Byliński

(27) for f being Function of X, Y st X 6= ∅ & Y 6= ∅ holds f is one-to-one

iff forZ for g,h being Function of Z, X st f · g = f · h holds g = h,

(28) for f being Function of X, Y for g being Function of Y, Z

st Z 6= ∅ & Y 6= ∅ & rng (g · f) = Z & g is one-to-one holds rng f = Y,

(29) for f being Function of X, Y for g being Function of Y, X

st X 6= ∅ & Y 6= ∅ & g · f = id X holds f is one-to-one & rng g = X,

(30) for f being Function of X, Y for g being Function of Y, Z st

(Z = ∅ implies Y = ∅) & g · f is one-to-one & rng f = Y

holds f is one-to-one & g is one-to-one ,

(31) for f being Function of X, Y st

f is one-to-one & (X = ∅ iff Y = ∅) & rng f = Y

holds f -1 is Function of Y, X,

(32) for f being Function of X, Y

st Y 6= ∅ & f is one-to-one & x ∈ X holds (f -1).(f .x) = x,

(33) for f being Function of X, Y

st rng f = Y & f is one-to-one & y ∈ Y holds f .((f -1).y) = y,

(34) for f being Function of X, Y for g being Function of Y, X st

X 6= ∅ & Y 6= ∅ & rng f = Y

& f is one-to-one & for y,x holds y ∈ Y & g.y = x iff x ∈ X & f .x = y

holds g = f -1 ,

(35) for f being Function of X, Y

st Y 6= ∅ & rng f = Y & f is one-to-one holds f -1 · f = id X & f · f -1 = id Y,

(36) for f being Function of X, Y for g being Function of Y, X st

X 6= ∅ & Y 6= ∅ & rng f = Y & g · f = id X & f is one-to-one holds g = f -1 ,

(37) for f being Function of X, Y st

Y 6= ∅ & ex g being Function of Y, X st g · f = id X holds f is one-to-one ,

(38) for f being Function of X, Y

st (Y = ∅ implies X = ∅) & Z ⊆ X holds f | Z is Function of Z, Y,

(39) for f being Function of X, Y

st Y 6= ∅ & x ∈ X & x ∈ Z holds (f | Z).x = f .x,



Functions from a Set to a Set 157

(40) for f being Function of X, Y

st (Y = ∅ implies X = ∅) & X ⊆ Z holds f | Z = f,

(41) for f being Function of X, Y

st Y 6= ∅ & x ∈ X & f .x ∈ Z holds (Z | f).x = f .x,

(42) for f being Function of X, Y

st (Y = ∅ implies X = ∅) & Y ⊆ Z holds Z | f = f,

(43) for f being Function of X, Y

st Y 6= ∅ for y holds y ∈ f ◦ P iff exx st x ∈ X & x ∈ P & y = f .x,

(44) for f being Function of X, Y st Y = ∅ implies X = ∅ holds f ◦ P ⊆ Y,

(45) for f being Function of X, Y st Y = ∅ implies X = ∅ holds f ◦ X = rng f,

(46) for f being Function of X, Y

st Y 6= ∅ forx holds x ∈ f -1 Q iff x ∈ X & f .x ∈ Q,

(47) for f being Function of X, Y st Y = ∅ implies X = ∅ holds f -1 Q ⊆ X,

(48) for f being Function of X, Y st Y = ∅ implies X = ∅ holds f -1 Y = X,

(49) for f being Function of X, Y

st Y 6= ∅ holds (for y st y ∈ Y holds f -1 {y} 6= ∅) iff rng f = Y,

(50) for f being Function of X, Y

st (Y = ∅ implies X = ∅) & P ⊆ X holds P ⊆ f -1 (f ◦ P ),

(51) for f being Function of X, Y

st Y = ∅ implies X = ∅ holds f -1 (f ◦ X) = X,

(52) for f being Function of X, Y

st (Y = ∅ implies X = ∅) & rng f = Y holds f ◦ (f -1 Y ) = Y,

(53) for f being Function of X, Y for g being Function of Y, Z st

(Z = ∅ implies Y = ∅) & (Y = ∅ implies X = ∅)

holds f -1 Q ⊆ (g · f) -1 (g ◦ Q),

(54) for f being Function of ∅,Y holds dom f = ∅ & rng f = ∅,

(55) for f being Function st dom f = ∅ holds f is Function of ∅,Y,

(56) for f1 being Function of ∅,Y 1 for f2 being Function of ∅,Y 2 holds f1 = f2,



158 Czes law Byliński

(57) for f being Function of ∅,Y for g being Function of Y, Z

st Z = ∅ implies Y = ∅ holds g · f is Function of ∅,Z,

(58) for f being Function of ∅,Y holds f is one-to-one ,

(59) for f being Function of ∅,Y holds f ◦ P = ∅,

(60) for f being Function of ∅,Y holds f -1 Q = ∅,

(61) for f being Function of {x},Y st Y 6= ∅ holds f .x ∈ Y,

(62) for f being Function of {x},Y st Y 6= ∅ holds rng f = {f .x},

(63) for f being Function of {x},Y st Y 6= ∅ holds f is one-to-one ,

(64) for f being Function of {x},Y st Y 6= ∅ holds f ◦ P ⊆ {f .x},

(65) for f being Function of X, {y} st x ∈ X holds f .x = y,

(66) for f1,f2 being Function of X, {y} holds f1 = f2.

The arguments of the notions defined below are the following: X which is an object

of the type reserved above; f , g which are objects of the type Function of X , X . Let

us note that it makes sense to consider the following functor on a restricted area. Then

g · f is Function of X, X.

Let us consider X . Let us note that it makes sense to consider the following functor

on a restricted area. Then

id X is Function of X, X.

The following propositions are true:

(67) for f being Function of X, X holds dom f = X & rng f ⊆ X,

(68) for f being Function

st dom f = X & rng f ⊆ X holds f is Function of X, X,

(69) for f being Function of X, X st x ∈ X holds f .x ∈ X,

(70) for f,g being Function of X, X st x ∈ X holds (g · f).x = g.(f .x),

(71) for f being Function of X, X

for g being Function of X, Y st Y 6= ∅ & x ∈ X holds (g · f).x = g.(f .x),

(72) for f being Function of X, Y

for g being Function of Y, Y st Y 6= ∅ & x ∈ X holds (g · f).x = g.(f .x),



Functions from a Set to a Set 159

(73) for f,g being Function of X, X

st rng f = X & rng g = X holds rng (g · f) = X,

(74) for f being Function of X, X holds f · (id X) = f & (id X) · f = f,

(75) for f,g being Function of X, X st g · f = f & rng f = X holds g = id X,

(76) for f,g being Function of X, X st f · g = f & f is one-to-one holds g = id X,

(77) for f being Function of X, X holds f is one-to-one

iff forx1,x2 st x1 ∈ X & x2 ∈ X & f .x1 = f .x2 holds x1 = x2,

(78) for f being Function of X, X holds f ◦ P ⊆ X.

The arguments of the notions defined below are the following: X which is an object

of the type reserved above; f which is an object of the type Function of X , X ; P which

is an object of the type reserved above. Let us note that it makes sense to consider the

following functor on a restricted area. Then

f ◦ P is Subset of X.

One can prove the following propositions:

(79) for f being Function of X, X holds f ◦ X = rng f,

(80) for f being Function of X, X holds f -1 Q ⊆ X.

The arguments of the notions defined below are the following: X which is an object

of the type reserved above; f which is an object of the type Function of X , X ; Q which

is an object of the type reserved above. Let us note that it makes sense to consider the

following functor on a restricted area. Then

f -1 Q is Subset of X.

Next we state two propositions:

(81) for f being Function of X, X st rng f = X holds f ◦ (f -1 X) = X,

(82) for f being Function of X, X holds f -1 (f ◦ X) = X.

Let us consider X . The mode

Permutation of X,

which widens to the type Function of X , X , is defined by

it is one-to-one & rng it = X.



160 Czes law Byliński

Next we state three propositions:

(83) for f being Function of X, X

holds f is Permutation of X iff f is one-to-one & rng f = X,

(84) for f being Permutation of X holds f is one-to-one & rng f = X,

(85) for f being Permutation of X

forx1,x2 st x1 ∈ X & x2 ∈ X & f .x1 = f .x2 holds x1 = x2.

The arguments of the notions defined below are the following: X which is an object

of the type reserved above; f , g which are objects of the type Permutation of X . Let

us note that it makes sense to consider the following functor on a restricted area. Then

g · f is Permutation of X.

Let us consider X . Let us note that it makes sense to consider the following functor

on a restricted area. Then

id X is Permutation of X.

The arguments of the notions defined below are the following: X which is an object

of the type reserved above; f which is an object of the type Permutation of X . Let us

note that it makes sense to consider the following functor on a restricted area. Then

f -1 is Permutation of X.

The following propositions are true:

(86) for f,g being Permutation of X st g · f = g holds f = id X,

(87) for f,g being Permutation of X st g · f = id X holds g = f -1 ,

(88) for f being Permutation of X holds (f -1) · f = id X & f · (f -1) = id X,

(89) for f being Permutation of X holds (f -1) -1 = f,

(90) for f,g being Permutation of X holds (g · f) -1 = f -1 · g -1 ,

(91) for f being Permutation of X st P ∩ Q = ∅ holds f ◦ P ∩ f ◦ Q = ∅,

(92) for f being Permutation of X

st P ⊆ X holds f ◦ (f -1 P ) = P & f -1 (f ◦ P ) = P,

(93) for f being Permutation of X holds f ◦ P = (f -1) -1 P & f -1 P = (f -1) ◦ P.

In the sequel C, D, E denote objects of the type DOMAIN. The arguments of

the notions defined below are the following: X , D, E which are objects of the type



Functions from a Set to a Set 161

reserved above; f which is an object of the type Function of X , D; g which is an object

of the type Function of D, E. Let us note that it makes sense to consider the following

functor on a restricted area. Then

g · f is Function of X, E.

Let us consider X , D. Let us note that one can characterize the mode

Function of X, D

by the following (equivalent) condition:

X = dom it & rng it ⊆ D.

We now state a number of propositions:

(94) for f being Function of X, D holds dom f = X & rng f ⊆ D,

(95) for f being Function

st dom f = X & rng f ⊆ D holds f is Function of X, D,

(96) for f being Function of X, D st x ∈ X holds f .x ∈ D,

(97) for f being Function of {x},D holds f .x ∈ D,

(98) for f1,f2 being Function of X, D

st forx st x ∈ X holds f1.x = f2.x holds f1 = f2,

(99) for f being Function of X, D

for g being Function of D, E st x ∈ X holds (g · f).x = g.(f .x),

(100) for f being Function of X, D holds f · (id X) = f & (id D) · f = f,

(101) for f being Function of X, D holds f is one-to-one

iff forx1,x2 st x1 ∈ X & x2 ∈ X & f .x1 = f .x2 holds x1 = x2,

(102) for f being Function of X, D

for y holds y ∈ f ◦ P iff exx st x ∈ X & x ∈ P & y = f .x,

(103) for f being Function of X, D holds f ◦ P ⊆ D.

The arguments of the notions defined below are the following: X , D which are

objects of the type reserved above; f which is an object of the type Function of X ,

D; P which is an object of the type reserved above. Let us note that it makes sense to

consider the following functor on a restricted area. Then

f ◦ P is Subset of D.



162 Czes law Byliński

One can prove the following propositions:

(104) for f being Function of X, D holds f ◦ X = rng f,

(105) for f being Function of X, D st f ◦ X = D holds rng (f) = D,

(106) for f being Function of X, D forx holds x ∈ f -1 Q iff x ∈ X & f .x ∈ Q,

(107) for f being Function of X, D holds f -1 Q ⊆ X.

The arguments of the notions defined below are the following: X , D which are

objects of the type reserved above; f which is an object of the type Function of X ,

D; Q which is an object of the type reserved above. Let us note that it makes sense to

consider the following functor on a restricted area. Then

f -1 Q is Subset of X.

One can prove the following propositions:

(108) for f being Function of X, D holds f -1 D = X,

(109) for f being Function of X, D

holds (for y st y ∈ D holds f -1 {y} 6= ∅) iff rng f = D,

(110) for f being Function of X, D holds f -1 (f ◦ X) = X,

(111) for f being Function of X, D st rng f = D holds f ◦ (f -1 D) = D,

(112) for f being Function of X, D

for g being Function of D, E holds f -1 Q ⊆ (g · f) -1 (g ◦ Q).

In the sequel c denotes an object of the type Element of C; d denotes an object of

the type Element of D. The arguments of the notions defined below are the following:

C, D which are objects of the type reserved above; f which is an object of the type

Function of C, D; c which is an object of the type reserved above. Let us note that it

makes sense to consider the following functor on a restricted area. Then

f .c is Element of D.

Now we present two schemes. The scheme FuncExD concerns a constant A that has

the type DOMAIN, a constant B that has the type DOMAIN and a binary predicate P

and states that the following holds

ex f being Function of A,B st forx being Element of A holds P [x, f .x]

provided the parameters satisfy the following conditions:

• forx being Element of A ex y being Element of B st P [x, y],



Functions from a Set to a Set 163

• forx being Element of A, y1,y2 being Element of B

st P [x, y1] & P [x, y2] holds y1 = y2.

The scheme LambdaD concerns a constant A that has the type DOMAIN, a constant

B that has the type DOMAIN and a unary functor F yielding values of the type Element

of B and states that the following holds

ex f being Function of A,B st forx being Element of A holds f .x = F(x)

for all values of the parameters.

One can prove the following propositions:

(113) for f1,f2 being Function of C, D st for c holds f1.c = f2.c holds f1 = f2,

(114) (id C).c = c,

(115) for f being Function of C, D

for g being Function of D, E holds (g · f).c = g.(f .c),

(116) for f being Function of C, D

for d holds d ∈ f ◦ P iff ex c st c ∈ P & d = f .c,

(117) for f being Function of C, D for c holds c ∈ f -1 Q iff f .c ∈ Q,

(118) for f1,f2 being Function of [:X, Y :],Z st

Z 6= ∅ & forx,y st x ∈ X & y ∈ Y holds f1.〈x, y〉 = f2.〈x, y〉 holds f1 = f2,

(119) for f being Function of [:X, Y :],Z

st x ∈ X & y ∈ Y & Z 6= ∅ holds f .〈x, y〉 ∈ Z.

Now we present two schemes. The scheme FuncEx2 concerns a constant A that has

the type set, a constant B that has the type set, a constant C that has the type set and

a ternary predicate P and states that the following holds

ex f being Function of [:A,B:],C st forx,y st x ∈ A & y ∈ B holds P [x, y, f .〈x, y〉]

provided the parameters satisfy the following conditions:

• forx,y st x ∈ A & y ∈ B ex z st z ∈ C & P [x, y, z],

• forx,y,z1,z2 st x ∈ A & y ∈ B & P [x, y, z1] & P [x, y, z2] holds z1 = z2.

The scheme Lambda2 concerns a constant A that has the type set, a constant B that

has the type set, a constant C that has the type set and a binary functor F and states

that the following holds

ex f being Function of [:A,B:],C st forx,y st x ∈ A & y ∈ B holds f .〈x, y〉 = F(x, y)



164 Czes law Byliński

provided the parameters satisfy the following condition:

• for x,y st x ∈ A & y ∈ B holds F(x, y) ∈ C.

We now state a proposition

(120) for f1,f2 being Function of [:C, D:],E

st for c,d holds f1.〈c, d〉 = f2.〈c, d〉 holds f1 = f2.

Now we present two schemes. The scheme FuncEx2D deals with a constant A that

has the type DOMAIN, a constant B that has the type DOMAIN, a constant C that has

the type DOMAIN and a ternary predicate P and states that the following holds

ex f being Function of [:A,B:],C

st forx being Element of A for y being Element of B holds P [x, y, f .〈x, y〉]

provided the parameters satisfy the following conditions:

• forx being Element of A

for y being Element of B ex z being Element of C st P [x, y, z],

• forx being Element of A for y being Element of B

for z1,z2 being Element of C st P [x, y, z1] & P [x, y, z2] holds z1 = z2.

The scheme Lambda2D concerns a constant A that has the type DOMAIN, a constant

B that has the type DOMAIN, a constant C that has the type DOMAIN and a binary

functor F yielding values of the type Element of C and states that the following holds

ex f being Function of [:A,B:],C

st forx being Element of A for y being Element of B holds f .〈x, y〉 = F(x, y)

for all values of the parameters.

References

[1] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[3] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 6, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Finite Sets

Agata Darmochwa l1

Warsaw University

Bia lystok

Summary. The article contains the definition of a finite set based on the
notion of finite sequence. Some theorems about properties of finite sets and finite
families of sets are proved.

The terminology and notation used here are introduced in the following papers: [5], [6],

[4], [2], [1], and [3]. Let A have the type set. The predicate

A is finite is defined by ex p being FinSequence st rng p = A.

For simplicity we adopt the following convention: A, B, C, D, X , Y have the type

set; x, y, z, x1, x2, x3, x4, x5, x6, x7, x8 have the type Any; f has the type Function;

n has the type Nat. The following propositions are true:

(1) A is finite iff ex p being FinSequence st rng p = A,

(2) for p being FinSequence holds rng p is finite ,

(3) Seg n is finite ,

(4) ∅ is finite ,

(5) {x} is finite ,

(6) {x, y} is finite ,

(7) {x, y, z} is finite ,

(8) {x1,x2,x3,x4} is finite ,

(9) {x1,x2,x3,x4,x5} is finite ,

1Supported by RPBP.III-24.C1.

165
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



166 Agata Darmochwa l

(10) {x1,x2,x3,x4,x5,x6} is finite ,

(11) {x1,x2,x3,x4,x5,x6,x7} is finite ,

(12) {x1,x2,x3,x4,x5,x6,x7,x8} is finite ,

(13) A ⊆ B & B is finite implies A is finite ,

(14) A is finite & B is finite implies A ∪ B is finite ,

(15) A is finite implies A ∩ B is finite & B ∩ A is finite ,

(16) A is finite implies A \ B is finite ,

(17) A is finite implies f ◦ A is finite ,

(18) A is finite implies forX being Subset-Family of A st X 6= ∅ exx being set

st x ∈ X & forB being set st B ∈ X holds x ⊆ B implies B = x.

The scheme Finite deals with a constant A that has the type set and a unary predicate

P and states that the following holds

P [A]

provided the parameters satisfy the following conditions:

• A is finite ,

• P [∅],

• forx,B being set st x ∈ A & B ⊆ A & P [B] holds P [B ∪ {x}].

We now state several propositions:

(19) A is finite & B is finite implies [:A, B:] is finite ,

(20) A is finite & B is finite & C is finite implies [:A, B, C:] is finite ,

(21) A is finite & B is finite & C is finite & D is finite

implies [:A, B, C, D:] is finite ,

(22) B 6= ∅ & [:A, B:] is finite implies A is finite ,

(23) A 6= ∅ & [:A, B:] is finite implies B is finite ,

(24) A is finite iff bool A is finite ,

(25) A is finite & (forX st X ∈ A holds X is finite) iff
⋃

A is finite ,

(26) dom f is finite implies rng f is finite ,

(27) Y ⊆ rng f & f -1 Y is finite implies Y is finite .



Finite Sets 167

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and

finite sequences. Formalized Mathematics, 1, 1990.

[2] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.

[4] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.

[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[6] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 6, 1989



168



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Graphs of Functions.

Czes law Byliński1

Warsaw University

Bia lystok

Summary. The graph of a function is defined in [1]. In this paper the graph of
a function is redefined as a Relation. Operations on functions are interpreted as the
corresponding operations on relations. Some theorems about graphs of functions
are proved.

The terminology and notation used in this paper have been introduced in the following

papers: [2], [3], [1], and [4]. For simplicity we adopt the following convention: X , X1,

X2, Y , Y 1, Y 2 denote objects of the type set; x, x1, x2, y, y1, y2, z denote objects of

the type Any; f , f1, f2, g, g1, g2, h, h1 denote objects of the type Function. Let

us consider f . Let us note that it makes sense to consider the following functor on a

restricted area. Then

graph f is Relation .

Next we state a number of propositions:

(1) forR being Relation st

forx,y1,y2 st 〈x, y1〉 ∈ R & 〈x, y2〉 ∈ R holds y1 = y2 ex f st graph f = R,

(2) y ∈ rng f iff exx st 〈x, y〉 ∈ graph f,

(3) dom graph f = dom f & rng graph f = rng f,

(4) graph f ⊆ [:dom f,rng f :],

(5) (forx,y holds 〈x, y〉 ∈ graphf1 iff 〈x, y〉 ∈ graphf2) implies f1 = f2,

(6) forG being set st G ⊆ graph f ex g st graphg = G,

(7) graph f ⊆ graphg implies dom f ⊆ dom g & rng f ⊆ rng g,

1Supported by RPBP.III-24.C1.

169
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



170 Czes law Byliński

(8) graphf ⊆ graphg iff dom f ⊆ dom g & forx st x ∈ dom f holds f .x = g.x,

(9) dom f = dom g & graphf ⊆ graphg implies f = g,

(10) 〈x, z〉 ∈ graph (g · f) iff ex y st 〈x, y〉 ∈ graph f & 〈y, z〉 ∈ graphg,

(11) (graph f) · (graph g) = graph (g · f),

(12) 〈x, z〉 ∈ graph (g · f) implies 〈x, f .x〉 ∈ graph f & 〈f .x,z〉 ∈ graph g,

(13) graph h ⊆ graphf

implies graph (g · h) ⊆ graph (g · f) & graph (h · g) ⊆ graph (f · g),

(14) graphg2 ⊆ graph g1 & graph f2 ⊆ graphf1

implies graph (g2 · f2) ⊆ graph (g1 · f1),

(15) ex f st graph f = {〈x, y〉},

(16) graph f = {〈x, y〉} implies f .x = y,

(17) graph f = {〈x, y〉} implies dom f = {x} & rng f = {y},

(18) dom f = {x} implies graph f = {〈x, f .x〉},

(19) (ex f st graphf = {〈x1,y1〉,〈x2,y2〉}) iff (x1 = x2 implies y1 = y2),

(20) ex f st graph f = ∅,

(21) graph f = ∅ implies dom f = ∅ & rng f = ∅,

(22) rng f = ∅ or dom f = ∅ implies graph f = ∅,

(23) rng f ∩ dom g = ∅ implies graph (g · f) = ∅,

(24) graphg = ∅ implies graph (g · f) = ∅ & graph (f · g) = ∅,

(25) f is one-to-one

iff forx1,x2,y st 〈x1,y〉 ∈ graphf & 〈x2,y〉 ∈ graph f holds x1 = x2,

(26) graphg ⊆ graph f & f is one-to-one implies g is one-to-one ,

(27) (ex g st graphg = graphf ∩ X) & ex g st graph g = X ∩ graph f,

(28) graph h = graph f ∩ graphg

implies dom h ⊆ dom f ∩ dom g & rng h ⊆ rng f ∩ rng g,

(29) graph h = graph f ∩ graphg & x ∈ dom h implies h.x = f .x & h.x = g.x,



Graphs of Functions. 171

(30) (f is one-to-one or g is one-to-one) & graph h = graphf ∩ graph g

implies h is one-to-one ,

(31) dom f ∩ dom g = ∅ implies exh st graph h = graph f ∪ graphg,

(32) graph f ⊆ graph h & graph g ⊆ graph h

implies exh1 st graphh1 = graph f ∪ graphg,

(33) graphh = graph (f) ∪ graph (g)

implies dom h = dom f ∪ dom g & rng h = rng f ∪ rng g,

(34) x ∈ dom f & graph h = graph f ∪ graphg implies h.x = f .x,

(35) x ∈ dom g & graph h = graph f ∪ graphg implies h.x = g.x,

(36) x ∈ dom h & graph h = graph f ∪ graph g implies h.x = f .x or h.x = g.x,

(37) f is one-to-one

& g is one-to-one & graph h = graph f ∪ graphg & rng f ∩ rng g = ∅

implies h is one-to-one ,

(38) ex g st graph g = graph (f) \ X,

(39) 〈x, y〉 ∈ graph id (X) iff x ∈ X & x = y,

(40) graph id X = 4X,

(41) x ∈ X iff 〈x, x〉 ∈ graph id (X),

(42) 〈x, y〉 ∈ graph (f · id (X)) iff x ∈ X & 〈x, y〉 ∈ graph f,

(43) 〈x, y〉 ∈ graph (id (Y ) · f) iff 〈x, y〉 ∈ graph f & y ∈ Y,

(44) graph (f · id (X)) ⊆ graphf & graph (id (X) · f) ⊆ graph (f),

(45) graph id ∅ = ∅,

(46) graphf = ∅ implies f is one-to-one ,

(47) f is one-to-one implies forx,y holds 〈y, x〉 ∈ graph (f -1) iff 〈x, y〉 ∈ graphf,

(48) f is one-to-one implies graph (f -1) = (graph f)˜,

(49) graphf = ∅ implies graph (f -1) = ∅,

(50) 〈x, y〉 ∈ graph (f | X) iff x ∈ X & 〈x, y〉 ∈ graphf,



172 Czes law Byliński

(51) graph (f | X) = (graph f) | X,

(52) x ∈ dom f & x ∈ X iff 〈x, f .x〉 ∈ graph (f | X),

(53) graph (f | X) ⊆ graph f,

(54) graph ((f | X) · h) ⊆ graph (f · h) & graph (g · (f | X)) ⊆ graph (g · f),

(55) graph (f | X) = graph (f) ∩ [:X, rng f :],

(56) X ⊆ Y implies graph (f | X) ⊆ graph (f | Y ),

(57) graphf1 ⊆ graph f2 implies graph (f1 | X) ⊆ graph (f2 | X),

(58) graphf1 ⊆ graph f2 & X1 ⊆ X2 implies graph (f1 | X1) ⊆ graph (f2 | X2),

(59) graph (f | (X ∪ Y )) = graph (f | X) ∪ graph (f | Y ),

(60) graph (f | (X ∩ Y )) = graph (f | X) ∩ graph (f | Y ),

(61) graph (f | (X \ Y )) = graph (f | X) \ graph (f | Y ),

(62) graph (f | ∅) = ∅,

(63) graph f = ∅ implies graph (f | X) = ∅,

(64) graphg ⊆ graph f implies f | dom g = g,

(65) 〈x, y〉 ∈ graph (Y | f) iff y ∈ Y & 〈x, y〉 ∈ graph f,

(66) graph (Y | f) = Y | (graph f),

(67) x ∈ dom f & f .x ∈ Y iff 〈x, f .x〉 ∈ graph (Y | f),

(68) graph (Y | f) ⊆ graph (f),

(69) graph ((Y | f) · h) ⊆ graph (f · h) & graph (g · (Y | f)) ⊆ graph (g · f),

(70) graph (Y | f) = graph (f) ∩ [:dom f,Y :],

(71) X ⊆ Y implies graph (X | f) ⊆ graph (Y | f),

(72) graph f1 ⊆ graphf2 implies graph (Y | f1) ⊆ graph (Y | f2),

(73) graph f1 ⊆ graph f2 & Y 1 ⊆ Y 2 implies graph (Y 1 | f1) ⊆ graph (Y 2 | f2),

(74) graph ((X ∪ Y ) | f) = graph (X | f) ∪ graph (Y | f),

(75) graph ((X ∩ Y ) | f) = graph (X | f) ∩ graph (Y | f),



Graphs of Functions. 173

(76) graph ((X \ Y ) | f) = graph (X | f) \ graph (Y | f),

(77) graph (∅ | f) = ∅,

(78) graphf = ∅ implies graph (Y | f) = ∅,

(79) graph g ⊆ graph f & f is one-to-one implies rng g | f = g,

(80) y ∈ f ◦ X iff exx st 〈x, y〉 ∈ graphf & x ∈ X,

(81) f ◦ X = (graph f) ◦ X,

(82) graph f = ∅ implies f ◦ X = ∅,

(83) graphf1 ⊆ graph f2 implies f1 ◦ X ⊆ f2 ◦ X,

(84) graph f1 ⊆ graph f2 & X1 ⊆ X2 implies f1 ◦ X1 ⊆ f2 ◦ X2,

(85) x ∈ f -1 Y iff ex y st 〈x, y〉 ∈ graphf & y ∈ Y,

(86) f -1 Y = (graph f) -1 Y,

(87) x ∈ f -1 Y iff 〈x, f .x〉 ∈ graph f & f .x ∈ Y,

(88) graph f = ∅ implies f -1 Y = ∅,

(89) graphf1 ⊆ graph f2 implies f1 -1 Y ⊆ f2 -1 Y,

(90) graphf1 ⊆ graph f2 & Y 1 ⊆ Y 2 implies f1 -1 Y 1 ⊆ f2 -1 Y 2.

References

[1] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[3] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

[4] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1, 1990.

Received April 14, 1989



174



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Binary Operations

Czes law Byliński1

Warsaw University

Bia lystok

Summary. In this paper we define binary and unary operations on domains.
We also define the following predicates concerning the operations: . . . is commu-
tative, . . . is associative, . . . is the unity of . . ., and . . . is distributive wrt . . .. A
number of schemes useful in justifying the existence of the operations are proved.

The articles [3], [1], and [2] provide the notation and terminology for this paper. The

arguments of the notions defined below are the following: f which is an object of the

type Function; a, b which are objects of the type Any. The functor

f .(a, b),

with values of the type Any, is defined by

it = f .〈a, b〉.

One can prove the following proposition

(1) for f being Function for a,b being Any holds f .(a, b) = f .〈a, b〉.

In the sequel A, B, C will denote objects of the type DOMAIN. The arguments

of the notions defined below are the following: A, B, C which are objects of the type

reserved above; f which is an object of the type Function of [:A, B:], C; a which is an

object of the type Element of A; b which is an object of the type Element of B. Let

us note that it makes sense to consider the following functor on a restricted area. Then

f .(a, b) is Element of C.

The following proposition is true

(2) for f1,f2 being Function of [:A, B:],C st

for a being Element of A

1Supported by RPBP.III-24.C1.

175
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



176 Czes law Byliński

for b being Element of B holds f1.(a, b) = f2.(a, b)

holds f1 = f2.

We now define two new modes. Let us consider A.

Unary Operation of A stands for Function of A, A.

Binary Operation of A stands for Function of [:A, A:],A.

We now state a proposition

(3) for f being Function of A, A holds f is Unary Operation of A.

In the sequel u denotes an object of the type Unary Operation of A. Next we

state a proposition

(4) for f being Function of [:A, A:],A holds f is Binary Operation of A.

In the article we present several logical schemes. The scheme UnOpEx concerns a

constant A that has the type DOMAIN and a binary predicate P and states that the

following holds

exu being Unary Operation of A st for x being Element of A holds P [x, u.x]

provided the parameters satisfy the following conditions:

• forx being Element of A ex y being Element of A st P [x, y],

• forx,y1,y2 being Element of A st P [x, y1] & P [x, y2] holds y1 = y2.

The scheme UnOpLambda concerns a constant A that has the type DOMAIN and a

unary functor F yielding values of the type Element of A and states that the following

holds

exu being Unary Operation of A st forx being Element of A holds u.x = F(x)

for all values of the parameters.

For simplicity we adopt the following convention: o, o′ will have the type Binary Operation

of A; a, b, c, e, e1, e2 will have the type Element of A. Let us consider A, o, a, b. Let

us note that it makes sense to consider the following functor on a restricted area. Then

o.(a, b) is Element of A.

Now we present two schemes. The scheme BinOpEx concerns a constant A that has

the type DOMAIN and a ternary predicate P and states that the following holds

ex o being Binary Operation of A

st for a,b being Element of A holds P [a, b, o.(a, b)]



Binary Operations 177

provided the parameters satisfy the following conditions:

• forx,y being Element of A ex z being Element of A st P [x, y, z],

• forx,y being Element of A

for z1,z2 being Element of A st P [x, y, z1] & P [x, y, z2] holds z1 = z2.

The scheme BinOpLambda concerns a constant A that has the type DOMAIN and a

binary functor F yielding values of the type Element of A and states that the following

holds

ex o being Binary Operation of A

st for a,b being Element of A holds o.(a, b) = F(a, b)

for all values of the parameters.

We now define three new predicates. Let us consider A, o. The predicate

o is commutative is defined by for a,b holds o.(a, b) = o.(b, a).

The predicate

o is associative is defined by for a,b,c holds o.(a, o.(b, c)) = o.(o.(a, b),c).

The predicate

o is an idempotentOp is defined by for a holds o.(a, a) = a.

Next we state three propositions:

(5) o is commutative iff for a,b holds o.(a, b) = o.(b, a),

(6) o is associative iff for a,b,c holds o.(a, o.(b, c)) = o.(o.(a, b),c),

(7) o is an idempotentOp iff for a holds o.(a, a) = a.

We now define two new predicates. Let us consider A, e, o. The predicate

e is a left unity wrt o is defined by for a holds o.(e, a) = a.

The predicate

e is a right unity wrt o is defined by for a holds o.(a, e) = a.

Let us consider A, e, o. The predicate

e is a unity wrt o is defined by e is a left unity wrt o & e is a right unity wrt o.

We now state a number of propositions:

(8) e is a left unity wrt o iff for a holds o.(e, a) = a,



178 Czes law Byliński

(9) e is a right unity wrt o iff for a holds o.(a, e) = a,

(10) e is a unity wrt o iff e is a left unity wrt o & e is a right unity wrt o,

(11) e is a unity wrt o iff for a holds o.(e, a) = a & o.(a, e) = a,

(12) o is commutative implies (e is a unity wrt o iff for a holds o.(e, a) = a),

(13) o is commutative implies (e is a unity wrt o iff for a holds o.(a, e) = a),

(14) o is commutative implies (e is a unity wrt o iff e is a left unity wrt o),

(15) o is commutative implies (e is a unity wrt o iff e is a right unity wrt o),

(16) o is commutative implies (e is a left unity wrt o iff e is a right unity wrt o),

(17) e1 is a left unity wrt o & e2 is a right unity wrt o implies e1 = e2,

(18) e1 is a unity wrt o & e2 is a unity wrt o implies e1 = e2.

Let us consider A, o. Assume that the following holds

ex e st e is a unity wrt o.

The functor

the unity wrt o,

with values of the type Element of A, is defined by

it is a unity wrt o.

One can prove the following proposition

(19) (ex e st e is a unity wrt o)

implies for e holds e = the unity wrt o iff e is a unity wrt o.

We now define two new predicates. Let us consider A, o′, o. The predicate

o′ is left distributive wrt o

is defined by

for a,b,c holds o′ .(a, o.(b, c)) = o.(o′ .(a, b),o′ .(a, c)).

The predicate

o′ is right distributive wrt o

is defined by

for a,b,c holds o′ .(o.(a, b),c) = o.(o′ .(a, c),o′ .(b, c)).



Binary Operations 179

Let us consider A, o′, o. The predicate

o′ is distributive wrt o

is defined by

o′ is left distributive wrt o & o′ is right distributive wrt o.

We now state several propositions:

(20) o′ is left distributive wrt o

iff for a,b,c holds o′ .(a, o.(b, c)) = o.(o′ .(a, b),o′ .(a, c)),

(21) o′ is right distributive wrt o

iff for a,b,c holds o′ .(o.(a, b),c) = o.(o′ .(a, c),o′ .(b, c)),

(22) o′ is distributive wrt o

iff o′ is left distributive wrt o & o′ is right distributive wrt o,

(23) o′ is distributive wrt o iff for a,b,c holds

o′ .(a, o.(b, c)) = o.(o′ .(a, b),o′ .(a, c)) & o′ .(o.(a, b),c) = o.(o′ .(a, c),o′ .(b, c)),

(24) o′ is commutative implies (o′ is distributive wrt o

iff for a,b,c holds o′ .(a, o.(b, c)) = o.(o′ .(a, b),o′ .(a, c))),

(25) o′ is commutative implies (o′ is distributive wrt o

iff for a,b,c holds o′ .(o.(a, b),c) = o.(o′ .(a, c),o′ .(b, c))),

(26) o′ is commutative

implies (o′ is distributive wrt o iff o′ is left distributive wrt o),

(27) o′ is commutative

implies (o′ is distributive wrt o iff o′ is right distributive wrt o),

(28) o′ is commutative

implies (o′ is right distributive wrt o iff o′ is left distributive wrt o).

Let us consider A, u, o. The predicate

u is distributive wrt o is defined by for a,b holds u.(o.(a, b)) = o.((u.a),(u.b)).

The following proposition is true

(29) u is distributive wrt o iff for a,b holds u.(o.(a, b)) = o.((u.a),(u.b)).



180 Czes law Byliński

References

[1] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[2] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.

[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

Received April 14, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Relations Defined on Sets

Edmund Woronowicz1

Warsaw University

Bia lystok

Summary. The article includes theorems concerning properties of relations
defined as a subset of the Cartesian product of two sets (mode Relation of X,Y
where X,Y are sets). Some notions, introduced in [3] such as domain, codomain,
field of a relation, composition of relations, image and inverse image of a set under
a relation are redefined.

The articles [1], [2], and [3] provide the terminology and notation for this paper. For

simplicity we adopt the following convention: A, B, X , X1, Y , Y 1, Z will denote

objects of the type set; a, x, y will denote objects of the type Any. Let us consider

X , Y . The mode

Relation of X, Y,

which widens to the type Relation, is defined by

it ⊆ [:X, Y :].

The following proposition is true

(1) forR being Relation holds R ⊆ [:X, Y :] iff R is Relation of X, Y.

In the sequel P , R will denote objects of the type Relation of X , Y . The following

propositions are true:

(2) A ⊆ R implies A ⊆ [:X, Y :],

(3) A ⊆ [:X, Y :] implies A is Relation of X, Y,

(4) A ⊆ R implies A is Relation of X, Y,

(5) [:X, Y :] is Relation of X, Y,

1Supported by RPBP III.24 C1

181
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



182 Edmund Woronowicz

(6) a ∈ R implies exx,y st a = 〈x, y〉 & x ∈ X & y ∈ Y,

(7) 〈x, y〉 ∈ R implies x ∈ X & y ∈ Y,

(8) x ∈ X & y ∈ Y implies {〈x, y〉} is Relation of X, Y,

(9) forR being Relation st dom R ⊆ X holds R is Relation of X, rngR,

(10) forR being Relation st rng R ⊆ Y holds R is Relation of dom R,Y,

(11) forR being Relation

st dom R ⊆ X & rng R ⊆ Y holds R is Relation of X, Y,

(12) dom R ⊆ X & rng R ⊆ Y,

(13) dom R ⊆ X1 implies R is Relation of X1,Y,

(14) rng R ⊆ Y 1 implies R is Relation of X, Y 1,

(15) X ⊆ X1 implies R is Relation of X1,Y,

(16) Y ⊆ Y 1 implies R is Relation of X, Y 1,

(17) X ⊆ X1 & Y ⊆ Y 1 implies R is Relation of X1,Y 1.

Let us consider X , Y , P , R. Let us note that it makes sense to consider the following

functors on restricted areas. Then

P ∪ R is Relation of X, Y,

P ∩ R is Relation of X, Y,

P \ R is Relation of X, Y.

We now state a proposition

(18) R ∩ [:X, Y :] = R.

Let us consider X , Y , R. Let us note that it makes sense to consider the following

functors on restricted areas. Then

dom R is Subset of X,

rng R is Subset of Y.

Next we state several propositions:

(19) field R ⊆ X ∪ Y,

(20) forR being Relation holds R is Relation of dom R,rng R,



Relations Defined on Sets 183

(21) dom R ⊆ X1 & rng R ⊆ Y 1 implies R is Relation of X1,Y 1,

(22) (forx st x ∈ X ex y st 〈x, y〉 ∈ R) iff dom R = X,

(23) (for y st y ∈ Y exx st 〈x, y〉 ∈ R) iff rng R = Y.

Let us consider X , Y , R. Let us note that it makes sense to consider the following

functor on a restricted area. Then

R˜ is Relation of Y, X.

The arguments of the notions defined below are the following: X , Y , Z which are

objects of the type reserved above; P which is an object of the type Relation of X , Y ;

R which is an object of the type Relation of Y , Z. Let us note that it makes sense to

consider the following functor on a restricted area. Then

P · R is Relation of X, Z.

One can prove the following propositions:

(24) dom (R )̃ = rng R & rng (R )̃ = dom R,

(25) Ø is Relation of X, Y,

(26) R is Relation of ∅,Y implies R = Ø ,

(27) R is Relation of X, ∅ implies R = Ø ,

(28) 4X ⊆ [:X, X :],

(29) 4X is Relation of X, X,

(30) 4A ⊆ R implies A ⊆ dom R & A ⊆ rng R,

(31) 4X ⊆ R implies X = dom R & X ⊆ rng R,

(32) 4Y ⊆ R implies Y ⊆ dom R & Y = rng R.

Let us consider X , Y , R, A. Let us note that it makes sense to consider the following

functor on a restricted area. Then

R | A is Relation of X, Y.

Let us consider X , Y , B, R. Let us note that it makes sense to consider the following

functor on a restricted area. Then

B | R is Relation of X, Y.

The following four propositions are true:

(33) R | X1 is Relation of X1,Y,



184 Edmund Woronowicz

(34) X ⊆ X1 implies R | X1 = R,

(35) Y 1 | R is Relation of X, Y 1,

(36) Y ⊆ Y 1 implies Y 1 | R = R.

Let us consider X , Y , R, A. Let us note that it makes sense to consider the following

functors on restricted areas. Then

R ◦ A is Subset of Y,

R -1 A is Subset of X.

Next we state three propositions:

(37) R ◦ A ⊆ Y & R -1 A ⊆ X,

(38) R ◦ X = rng R & R -1 Y = dom R,

(39) R ◦ (R -1 Y ) = rng R & R -1 (R ◦ X) = dom R.

The scheme Rel On Set Ex deals with a constant A that has the type set, a constant

B that has the type set and a binary predicate P and states that the following holds

exR being Relation of A,B st forx,y holds 〈x, y〉 ∈ R iff x ∈ A & y ∈ B & P [x, y]

for all values of the parameters.

Let us consider X .

Relation of X stands for Relation of X, X.

We now state three propositions:

(40) forR being Relation of X, X holds R ⊆ [:X, X :] iff R is Relation of X,

(41) [:X, X :] is Relation of X,

(42) forR being Relation of X, X holds R is Relation of X.

In the sequel R denotes an object of the type Relation of X . One can prove the

following propositions:

(43) 4X is Relation of X,

(44) 4X ⊆ R implies X = dom R & X = rng R,

(45) R · (4X) = R & (4X) · R = R.

For simplicity we adopt the following convention: D, D1, D2, E, F denote objects

of the type DOMAIN; R denotes an object of the type Relation of D, E; x denotes



Relations Defined on Sets 185

an object of the type Element of D; y denotes an object of the type Element of E.

We now state a proposition

(46) 4D 6= Ø .

Let us consider D, E, R. Let us note that it makes sense to consider the following

functors on restricted areas. Then

dom R is Element of bool D,

rng R is Element of bool E.

Next we state several propositions:

(47) forx being Element of D

holds x ∈ dom R iff ex y being Element of E st 〈x, y〉 ∈ R,

(48) for y being Element of E

holds y ∈ rng R iff exx being Element of D st 〈x, y〉 ∈ R,

(49) forx being Element of D

holds x ∈ dom R implies ex y being Element of E st y ∈ rng R,

(50) for y being Element of E

holds y ∈ rng R implies exx being Element of D st x ∈ dom R,

(51) forP being Relation of D, E, R being Relation of E, F

forx being Element of D, z being Element of F

holds 〈x, z〉 ∈ P · R iff ex y being Element of E st 〈x, y〉 ∈ P & 〈y, z〉 ∈ R.

Let us consider D, E, R, D1. Let us note that it makes sense to consider the following

functors on restricted areas. Then

R ◦ D1 is Element of bool E,

R -1 D1 is Element of bool D.

We now state two propositions:

(52) y ∈ R ◦ D1 iff exx being Element of D st 〈x, y〉 ∈ R & x ∈ D1,

(53) x ∈ R -1 D2 iff ex y being Element of E st 〈x, y〉 ∈ R & y ∈ D2.

The scheme Rel On Dom Ex concerns a constant A that has the type DOMAIN, a

constant B that has the type DOMAIN and a binary predicate P and states that the

following holds

exR being Relation of A,B st forx being Element of A, y being Element of B

holds 〈x, y〉 ∈ R iff x ∈ A & y ∈ B & P [x, y]

for all values of the parameters.



186 Edmund Woronowicz

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[2] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

[3] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1, 1990.

Received April 14, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Boolean Domains

Andrzej Trybulec1

Warsaw University

Bia lystok

Agata Darmochwa l2

Warsaw University

Bia lystok

Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union
and difference. This condition is equivalent to being closed under symmetric dif-
ference and one of the following operations: union, intersection or difference. We
introduce the set of all finite subsets of a set A, denoted by Fin A. The mode Finite
Subset of a set A is introduced with the mother type: Element of Fin A. In con-
sequence, “Finite Subset of . . . ” is an elementary type, therefore one may use such
types as “set of Finite Subset of A”, “[(Finite Subset of A), Finite Subset of A]”,
and so on. The article begins with some auxiliary theorems that belong really to
[5] or [1] but are missing there. Moreover, bool A is redefined as a SET DOMAIN,
for an arbitrary set A.

The articles [4], [5], [3], and [2] provide the notation and terminology for this paper. In

the sequel X , Y will denote objects of the type set. The following propositions are

true:

(1) X misses Y implies X \ Y = X & Y \ X = Y,

(2) X misses Y implies (X ∪ Y ) \ Y = X & (X ∪ Y ) \ X = Y,

(3) X ∪ Y = X −. (Y \ X),

(4) X ∪ Y = X −. Y −. X ∩ Y,

(5) X \ Y = X −. (X ∩ Y ),

(6) X ∩ Y = X −. Y −. (X ∪ Y ),

(7) (forx being set st x ∈ X holds x ∈ Y ) implies X ⊆ Y.

1Supported by RPBP.III-24.C1.
2Supported by RPBP.III-24.C1.

187
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



188 Andrzej Trybulec and Agata Darmochwa l

Let us consider X . Let us note that it makes sense to consider the following functor

on a restricted area. Then

bool X is SET DOMAIN .

The following proposition is true

(8) forY being Element of bool X holds Y ⊆ X.

The mode

BOOLE DOMAIN ,

which widens to the type SET DOMAIN, is defined by

forX,Y being Element of it holds X ∪ Y ∈ it & X \ Y ∈ it .

The following proposition is true

(9) forA being SET DOMAIN holds A is BOOLE DOMAIN

iff forX,Y being Element of A holds X ∪ Y ∈ A & X \ Y ∈ A.

In the sequel A will denote an object of the type BOOLE DOMAIN. One can

prove the following propositions:

(10) X ∈ A & Y ∈ A implies X ∪ Y ∈ A & X \ Y ∈ A,

(11) X is Element of A & Y is Element of A implies X ∪ Y is Element of A,

(12) X is Element of A & Y is Element of A implies X \ Y is Element of A.

The arguments of the notions defined below are the following: A which is an object

of the type reserved above; X , Y which are objects of the type Element of A. Let us

note that it makes sense to consider the following functors on restricted areas. Then

X ∪ Y is Element of A,

X \ Y is Element of A.

The following propositions are true:

(13) X is Element of A & Y is Element of A implies X ∩ Y is Element of A,

(14) X is Element of A & Y is Element of A implies X −. Y is Element of A,

(15) forA being SET DOMAIN st

forX,Y being Element of A holds X −. Y ∈ A & X \ Y ∈ A

holds A is BOOLE DOMAIN ,



Boolean Domains 189

(16) forA being SET DOMAIN st

forX,Y being Element of A holds X −. Y ∈ A & X ∩ Y ∈ A

holds A is BOOLE DOMAIN ,

(17) forA being SET DOMAIN st

forX,Y being Element of A holds X −. Y ∈ A & X ∪ Y ∈ A

holds A is BOOLE DOMAIN .

The arguments of the notions defined below are the following: A which is an object

of the type reserved above; X , Y which are objects of the type Element of A. Let us

note that it makes sense to consider the following functors on restricted areas. Then

X ∩ Y is Element of A,

X −. Y is Element of A.

We now state four propositions:

(18) ∅ ∈ A,

(19) ∅ is Element of A,

(20) bool A is BOOLE DOMAIN ,

(21) forA,B being BOOLE DOMAIN holds A ∩ B is BOOLE DOMAIN .

In the sequel A, B will denote objects of the type set. Let us consider A. The

functor

Fin A,

with values of the type BOOLE DOMAIN, is defined by

forX being set holds X ∈ it iff X ⊆ A & X is finite .

The following propositions are true:

(22) B ∈ Fin A iff B ⊆ A & B is finite ,

(23) A ⊆ B implies Fin A ⊆ Fin B,

(24) Fin (A ∩ B) = Fin A ∩ Fin B,

(25) Fin A ∪ Fin B ⊆ Fin (A ∪ B),

(26) Fin A ⊆ bool A,

(27) A is finite implies Fin A = bool A,

(28) Fin ∅ = {∅}.



190 Andrzej Trybulec and Agata Darmochwa l

Let us consider A.

Finite Subset of A stands for Element of Fin A.

Next we state a proposition

(29) forX being Element of Fin A holds X is Finite Subset of A.

The arguments of the notions defined below are the following: A which is an object

of the type reserved above; X , Y which are objects of the type Finite Subset of A. Let

us note that it makes sense to consider the following functors on restricted areas. Then

X ∪ Y is Finite Subset of A,

X ∩ Y is Finite Subset of A,

X \ Y is Finite Subset of A,

X −. Y is Finite Subset of A.

One can prove the following propositions:

(30) forX being Finite Subset of A holds X is finite ,

(31) forX being Finite Subset of A holds X ⊆ A,

(32) forX being Finite Subset of A holds X is Subset of A,

(33) ∅ is Finite Subset of A,

(34) A is finite implies forX being Subset of A holds X is Finite Subset of A.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1, 1990.

[2] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1, 1990.

[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.

[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[5] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 14, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Models and Satisfiability

Grzegorz Bancerek1

Warsaw University

Bia lystok

Summary. The article includes schemes of defining by structural induction,
and definitions and theorems related to: the set of variables which have free occur-
rences in a ZF-formula, the set of all valuations of variables in a model, the set of all
valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula
in a model by a valuation, the validity of a ZF-formula in a model, the axioms of
ZF-language, the model of the ZF set theory.

The articles [6], [7], [3], [1], [4], [5], and [2] provide the notation and terminology for this

paper. For simplicity we adopt the following convention: H , H ′ will have the type

ZF-formula; x, y, z will have the type Variable; a, b, c will have the type Any; A, X

will have the type set. In the article we present several logical schemes. The scheme

ZFsch ex deals with a binary functor F , a binary functor G, a unary functor H, a binary

functor I, a binary functor J and a constant A that has the type ZF-formula, and states

that the following holds

ex a,A st (forx,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ε y,G(x, y)〉 ∈ A) & 〈A,a〉 ∈ A &

forH,a st 〈H, a〉 ∈ A holds (H is a equality implies a = F(Var1 H,Var2 H)) &

(H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument ofH,b〉 ∈ A) &

(H is conjunctive implies ex b,c

st a = I(b, c) & 〈the left argument of H,b〉 ∈ A & 〈the right argument ofH,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope of H,b〉 ∈ A)

for all values of the parameters.

1Supported by RPBP.III-24.C1.

191
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



192 Grzegorz Bancerek

The scheme ZFsch uniq deals with a binary functor F , a binary functor G, a unary

functor H, a binary functor I, a binary functor J , a constant A that has the type

ZF-formula, a constant B and a constant C and states that the following holds

B = C

provided the parameters satisfy the following conditions:

• exA st (for x,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ε y,G(x, y)〉 ∈ A) & 〈A,B〉 ∈ A

& forH,a st 〈H, a〉 ∈ A holds

(H is a equality implies a = F(Var1 H,Var2 H)) &

(H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument of H,b〉 ∈ A) &

(H is conjunctive implies ex b,c st a = I(b, c)

& 〈the left argument of H,b〉 ∈ A & 〈the right argument of H,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope of H,b〉 ∈ A),

• exA st (for x,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ε y,G(x, y)〉 ∈ A) & 〈A,C〉 ∈ A

& forH,a st 〈H, a〉 ∈ A holds

(H is a equality implies a = F(Var1 H,Var2 H)) &

(H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument of H,b〉 ∈ A) &

(H is conjunctive implies ex b,c st a = I(b, c)

& 〈the left argument of H,b〉 ∈ A & 〈the right argument of H,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope of H,b〉 ∈ A).

The scheme ZFsch result deals with a binary functor F , a binary functor G, a unary

functor H, a binary functor I, a binary functor J , a constant A that has the type

ZF-formula and a unary functor K and states that the following holds

(A is a equality implies K(A) = F(Var1 A,Var2 A)) &

(A is a membership implies K(A) = G(Var1 A,Var2 A)) &

(A is negative implies K(A) = H(K(the argument ofA))) &

(A is conjunctive implies for a,b st

a = K(the left argument ofA) & b = K(the right argument ofA)

holds K(A) = I(a, b))

& (A is universal implies K(A) = J (bound inA,K(the scope ofA)))



Models and Satisfiability 193

provided the parameters satisfy the following condition:

• forH ′,a holds a = K(H ′) iff exA st

(for x,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ε y,G(x, y)〉 ∈ A) & 〈H ′,a〉 ∈ A &

forH,a st 〈H, a〉 ∈ A holds (H is a equality implies a = F(Var1 H,Var2 H))

& (H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument ofH,b〉 ∈ A) &

(H is conjunctive implies ex b,c st a = I(b, c)

& 〈the left argument of H,b〉 ∈ A & 〈the right argument ofH,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope ofH,b〉 ∈ A).

The scheme ZFsch property concerns a binary functor F , a binary functor G, a unary

functor H, a binary functor I, a binary functor J , a unary functor K, a constant A that

has the type ZF-formula and a unary predicate P and states that the following holds

P [K(A)]

provided the parameters satisfy the following conditions:

• forH ′,a holds a = K(H ′) iff exA st

(for x,y holds 〈x -- y,F(x, y)〉 ∈ A & 〈x ε y,G(x, y)〉 ∈ A) & 〈H ′,a〉 ∈ A &

forH,a st 〈H, a〉 ∈ A holds (H is a equality implies a = F(Var1 H,Var2 H))

& (H is a membership implies a = G(Var1 H,Var2 H)) &

(H is negative implies ex b st a = H(b) & 〈the argument ofH,b〉 ∈ A) &

(H is conjunctive implies ex b,c st a = I(b, c)

& 〈the left argument of H,b〉 ∈ A & 〈the right argument ofH,c〉 ∈ A)

& (H is universal

implies ex b,x st x = bound in H & a = J (x, b) & 〈the scope ofH,b〉 ∈ A),

• forx,y holds P [F(x, y)] & P [G(x, y)],

• for a st P [a] holds P [H(a)],

• for a,b st P [a] & P [b] holds P [I(a, b)],

• for a,x st P [a] holds P [J (x, a)].

Let us consider H . The functor

Free H,



194 Grzegorz Bancerek

yields the type Any and is defined by

exA st (for x,y holds 〈x -- y,{x, y}〉 ∈ A & 〈x ε y,{x, y}〉 ∈ A) & 〈H, it〉 ∈ A &

forH ′,a st 〈H ′,a〉 ∈ A holds (H ′ is a equality implies a = {Var1 H ′,Var2 H ′}) &

(H ′ is a membership implies a = {Var1 H ′,Var2 H ′}) &

(H ′ is negative implies ex b st a = b & 〈the argument of H ′,b〉 ∈ A) &

(H ′ is conjunctive implies ex b,c

st a =
⋃

{b, c} & 〈the left argument ofH ′,b〉 ∈ A & 〈the right argument of H ′,c〉 ∈ A)

& (H ′ is universal

implies ex b,x st x = bound in H ′ & a = (
⋃

{b}) \ {x} & 〈the scope of H ′,b〉 ∈ A).

Let us consider H . Let us note that it makes sense to consider the following functor

on a restricted area. Then

Free H is set of Variable .

One can prove the following proposition

(1) forH holds (H is a equality implies Free H = {Var1 H,Var2 H}) &

(H is a membership implies Free H = {Var1 H,Var2 H}) &

(H is negative implies Free H = Free the argument ofH) &

(H is conjunctive implies

Free H = Free the left argument of H ∪ Free the right argument ofH)

& (H is universal implies Free H = (Free the scope ofH) \ {bound in H}).

Let D have the type SET DOMAIN. The functor

VAL D,

with values of the type DOMAIN, is defined by

a ∈ it iff a is Function of VAR ,D.

The arguments of the notions defined below are the following: D1 which is an object

of the type SET DOMAIN; f which is an object of the type Function of VAR, D1;

x which is an object of the type reserved above. Let us note that it makes sense to

consider the following functor on a restricted area. Then

f .x is Element of D1.

For simplicity we adopt the following convention: E will denote an object of the

type SET DOMAIN; f , g will denote objects of the type Function of VAR, E; v1,

v2, v3, v4, v5 will denote objects of the type Element of VAL E. Let us consider H ,

E. The functor

St (H, E),



Models and Satisfiability 195

yields the type Any and is defined by

exA st

(for x,y holds 〈x -- y,{ v1 : for f st f = v1 holds f .x = f .y }〉 ∈ A

& 〈x ε y,{ v2 : for f st f = v2 holds f .x ∈ f .y }〉 ∈ A)

& 〈H, it〉 ∈ A & forH ′,a st 〈H ′,a〉 ∈ A holds

(H ′ is a equality

implies a = { v3 : for f st f = v3 holds f .(Var1 H ′) = f .(Var2 H ′) })

&

(H ′ is a membership

implies a = { v4 : for f st f = v4 holds f .(Var1 H ′) ∈ f .(Var2 H ′) })

& (H ′ is negative implies ex b st a = (VAL E) \
⋃

{b} & 〈the argument of H ′,b〉 ∈ A)

&

(H ′ is conjunctive implies ex b,c st a = (
⋃

{b}) ∩
⋃

{c}

& 〈the left argument of H ′,b〉 ∈ A & 〈the right argument ofH ′,c〉 ∈ A)

& (H ′ is universal implies ex b,x st x = bound in H ′ &

a = { v5 :

forX,f st X = b & f = v5

holds f ∈ X & for g st for y st g.y 6= f .y holds x = y holds g ∈ X }

& 〈the scope of H ′,b〉 ∈ A).

Let us consider H , E. Let us note that it makes sense to consider the following

functor on a restricted area. Then

St (H, E) is Subset of VAL E.

We now state a number of propositions:

(2) forx,y,f holds f .x = f .y iff f ∈ St (x -- y,E),

(3) forx,y,f holds f .x ∈ f .y iff f ∈ St (x ε y,E),

(4) forH,f holds not f ∈ St (H, E) iff f ∈ St (¬H,E),

(5) forH,H ′,f holds f ∈ St (H, E) & f ∈ St (H ′,E) iff f ∈ St (H ∧ H ′,E),

(6) for x,H,f holds

f ∈ St (H, E) & (for g st for y st g.y 6= f .y holds x = y holds g ∈ St (H, E))

iff f ∈ St (∀ (x, H),E),

(7) H is a equality

implies for f holds f .(Var1 H) = f .(Var2 H) iff f ∈ St (H, E),



196 Grzegorz Bancerek

(8) H is a membership

implies for f holds f .(Var1 H) ∈ f .(Var2 H) iff f ∈ St (H, E),

(9) H is negative

implies for f holds not f ∈ St (the argument of H,E) iff f ∈ St (H, E),

(10) H is conjunctive implies for f holds

f ∈ St (the left argument ofH,E) & f ∈ St (the right argument of H,E)

iff f ∈ St (H, E),

(11) H is universal implies for f holds

f ∈ St (the scope of H,E) & (for g

st for y st g.y 6= f .y holds bound in H = y holds g ∈ St (the scope ofH,E))

iff f ∈ St (H, E).

The arguments of the notions defined below are the following: D which is an object

of the type SET DOMAIN; f which is an object of the type Function of VAR, D; H

which is an object of the type reserved above. The predicate

D, f |= H is defined by f ∈ St (H, D).

Next we state a number of propositions:

(12) forE,f,x,y holds E, f |= x -- y iff f .x = f .y,

(13) forE,f,x,y holds E, f |= x ε y iff f .x ∈ f .y,

(14) forE,f,H holds E, f |= H iff notE, f |= ¬H,

(15) forE,f,H,H ′ holds E, f |= H ∧ H ′ iff E, f |= H & E, f |= H ′,

(16) forE,f,H,x holds

E, f |= ∀ (x, H) iff for g st for y st g.y 6= f .y holds x = y holds E, g |= H,

(17) forE,f,H,H ′ holds E, f |= H ∨ H ′ iff E, f |= H or E, f |= H ′,

(18) forE,f,H,H ′ holds E, f |= H ⇒ H ′ iff (E, f |= H implies E, f |= H ′),

(19) forE,f,H,H ′ holds E, f |= H ⇔ H ′ iff (E, f |= H iff E, f |= H ′),

(20) forE,f,H,x holds

E, f |= ∃ (x, H) iff ex g st (for y st g.y 6= f .y holds x = y) & E, g |= H,

(21) forE,f,x

for e being Element of E ex g st g.x = e & for z st z 6= x holds g.z = f .z,



Models and Satisfiability 197

(22) E, f |= ∀ (x, y, H)

iff for g st for z st g.z 6= f .z holds x = z or y = z holds E, g |= H,

(23) E, f |= ∃ (x, y, H)

iff ex g st (for z st g.z 6= f .z holds x = z or y = z) & E, g |= H.

Let us consider E, H . The predicate

E |= H is defined by for f holds E, f |= H.

One can prove the following propositions:

(24) E |= H iff for f holds E, f |= H,

(25) E |= ∀ (x, H) iff E |= H.

We now define five new functors. The constant the axiom of extensionality has the

type ZF-formula, and is defined by

it = ∀ (ξ 0,ξ 1,∀ (ξ 2,ξ 2 ε ξ 0 ⇔ ξ 2 ε ξ 1) ⇒ ξ 0 -- ξ 1).

The constant the axiom of pairs has the type ZF-formula, and is defined by

it = ∀ (ξ 0,ξ 1,∃ (ξ 2,∀ (ξ 3,ξ 3 ε ξ 2 ⇔ (ξ 3 -- ξ 0 ∨ ξ 3 -- ξ 1)))).

The constant the axiom of unions has the type ZF-formula, and is defined by

it = ∀ (ξ 0,∃ (ξ 1,∀ (ξ 2,ξ 2 ε ξ 1 ⇔∃ (ξ 3,ξ 2 ε ξ 3 ∧ ξ 3 ε ξ 0)))).

The constant the axiom of infinity has the type ZF-formula, and is defined by

it = ∃ (ξ 0,

ξ 1, ξ 1 ε ξ 0 ∧ ∀ (ξ 2,ξ 2 ε ξ 0 ⇒∃ (ξ 3,ξ 3 ε ξ 0 ∧ ¬ ξ 3 -- ξ 2 ∧ ∀ (ξ 4,ξ 4 ε ξ 2 ⇒ ξ 4 ε ξ 3)))).

The constant the axiom of power sets has the type ZF-formula, and is defined by

it = ∀ (ξ 0,∃ (ξ 1,∀ (ξ 2,ξ 2 ε ξ 1 ⇔∀ (ξ 3,ξ 3 ε ξ 2 ⇒ ξ 3 ε ξ 0)))).

Let H have the type ZF-formula. Assume that the following holds

{ξ 0,ξ 1,ξ 2} misses Free H.

The functor

the axiom of substitution for H,

with values of the type ZF-formula, is defined by

it =

∀ (ξ 3,∃ (ξ 0,∀ (ξ 4,H ⇔ ξ 4 -- ξ 0))) ⇒∀ (ξ 1,∃ (ξ 2,∀ (ξ 4,ξ 4 ε ξ 2 ⇔∃ (ξ 3,ξ 3 ε ξ 1 ∧ H)))).



198 Grzegorz Bancerek

We now state several propositions:

(26) the axiom of extensionality = ∀ (ξ 0,ξ 1,∀ (ξ 2,ξ 2 ε ξ 0 ⇔ ξ 2 ε ξ 1) ⇒ ξ 0 -- ξ 1),

(27) the axiom of pairs = ∀ (ξ 0,ξ 1,∃ (ξ 2,∀ (ξ 3,ξ 3 ε ξ 2 ⇔ (ξ 3 -- ξ 0 ∨ ξ 3 -- ξ 1)))),

(28) the axiom of unions

= ∀ (ξ 0,∃ (ξ 1,∀ (ξ 2,ξ 2 ε ξ 1 ⇔∃ (ξ 3,ξ 2 ε ξ 3 ∧ ξ 3 ε ξ 0)))),

(29) the axiom of infinity = ∃ (ξ 0, ξ 1, ξ 1 ε ξ 0 ∧ ∀ (ξ 2,

ξ 2 ε ξ 0 ⇒∃ (ξ 3, ξ 3 ε ξ 0 ∧ ¬ ξ 3 -- ξ 2 ∧ ∀ (ξ 4,ξ 4 ε ξ 2 ⇒ ξ 4 ε ξ 3)))),

(30) the axiom of power sets

= ∀ (ξ 0,∃ (ξ 1,∀ (ξ 2,ξ 2 ε ξ 1 ⇔∀ (ξ 3,ξ 3 ε ξ 2 ⇒ ξ 3 ε ξ 0)))),

(31) {ξ 0,ξ 1,ξ 2} misses Free H implies the axiom of substitution for H =

∀ (ξ 3, ∃ (ξ 0,

∀ (ξ 4, H ⇔ ξ 4 -- ξ 0))) ⇒∀ (ξ 1,∃ (ξ 2,∀ (ξ 4,ξ 4 ε ξ 2 ⇔∃ (ξ 3,ξ 3 ε ξ 1 ∧ H)))).

Let us consider E. The predicate

E is a model of ZF

is defined by

E is ∈-transitive & E |= the axiom of pairs & E |= the axiom of unions &

E |= the axiom of infinity & E |= the axiom of power sets

& forH st {ξ 0,ξ 1,ξ 2} misses Free H holds E |= the axiom of substitution for H.

The following proposition is true

(32) E is a model of ZF iff E is ∈-transitive & E |= the axiom of pairs &

E |= the axiom of unions & E |= the axiom of infinity &

E |= the axiom of power sets & forH

st {ξ 0,ξ 1,ξ 2} misses Free H holds E |= the axiom of substitution for H.

References

[1] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1,

1990.

[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1, 1990.



Models and Satisfiability 199

[3] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[4] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.

[5] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.

[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[7] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 14, 1989



200



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

The Contraction Lemma

Grzegorz Bancerek1

Warsaw University

Bia lystok

Summary. The article includes the proof of the contraction lemma which
claims that every class in which the axiom of extensionality is valid is isomorphic
with a transitive class. In this article the isomorphism (wrt membership relation)
of two sets is defined. It is based on [6].

The articles [7], [8], [4], [1], [5], [3], and [2] provide the terminology and notation for this

paper. For simplicity we adopt the following convention: X , Y , Z denote objects of

the type set; x, y denote objects of the type Any; E denotes an object of the type

SET DOMAIN; A, B, C denote objects of the type Ordinal; L denotes an object of

the type Transfinite-Sequence; f denotes an object of the type Function; d, d1, d′

denote objects of the type Element of E. Let us consider E, A. The functor

Mµ (E, A),

with values of the type set, is defined by

exL st it = { d : for d1 st d1 ∈ d exB st B ∈ dom L & d1 ∈
⋃

{L.B} } & dom L = A

& forB st B ∈ A

holds L.B = { d1 : for d st d ∈ d1 exC st C ∈ dom (L | B) & d ∈
⋃

{L | B.C} }.

One can prove the following propositions:

(1) Mµ (E, A) = { d : for d1 st d1 ∈ d exB st B ∈ A & d1 ∈ Mµ (E, B) },

(2) not (ex d1 st d1 ∈ d) iff d ∈ Mµ (E,0),

(3) d ∩ E ⊆ Mµ (E, A) iff d ∈ Mµ (E, succ A),

(4) A ⊆ B implies Mµ (E, A) ⊆ Mµ (E, B),

1Supported by RPBP.III-24.C1.

201
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



202 Grzegorz Bancerek

(5) exA st d ∈ Mµ (E, A),

(6) d′ ∈ d & d ∈ Mµ (E, A)

implies d′ ∈ Mµ (E, A) & exB st B ∈ A & d′ ∈ Mµ (E, B),

(7) Mµ (E, A) ⊆ E,

(8) exA st E = Mµ (E, A),

(9) ex f st dom f = E & for d holds f .d = f ◦ d.

Let us consider f , X , Y . The predicate

f is ∈-isomorphism of X, Y

is defined by

dom f = X & rng f = Y & f is one-to-one & forx,y

st x ∈ X & y ∈ X holds (exZ st Z = y & x ∈ Z) iff exZ st f .y = Z & f .x ∈ Z.

Next we state a proposition

(10) f is ∈-isomorphism of X, Y iff dom f = X & rng f = Y & f is one-to-one &

forx,y st x ∈ X & y ∈ X

holds (exZ st Z = y & x ∈ Z) iff exZ st f .y = Z & f .x ∈ Z.

Let us consider X , Y . The predicate

X, Y are ∈-isomorphic is defined by ex f st f is ∈-isomorphism of X, Y.

Next we state two propositions:

(11) X, Y are ∈-isomorphic iff ex f st f is ∈-isomorphism of X, Y,

(12) dom f = E & (for d holds f .d = f ◦ d) implies rng f is ∈-transitive .

In the sequel u, v, w will denote objects of the type Element of E. Next we state

two propositions:

(13) E |= the axiom of extensionality

implies foru,v st forw holds w ∈ u iff w ∈ v holds u = v,

(14) E |= the axiom of extensionality

implies exX st X is ∈-transitive & E, X are ∈-isomorphic .



The Contraction Lemma 203

References

[1] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1,

1990.

[2] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1, 1990.

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1, 1990.

[4] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[5] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.

[6] Andrzej Mostowski. Constructible Sets. North Holland, 1970.

[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[8] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 14, 1989



204



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Axioms of Incidence

Wojciech A. Trybulec1

Warsaw University

Summary. This article is based on “Foundations of Geometry” by Karol
Borsuk and Wanda Szmielew ([1]). The fourth axiom of incidence is weakened.
In [1] it has the form for any plane there exist three non-collinear points in the

plane and in the article for any plane there exists one point in the plane. The
original axiom is proved. The article includes: theorems concerning collinearity
of points and coplanarity of points and lines, basic theorems concerning lines and
planes, fundamental existence theorems, theorems concerning intersection of lines
and planes.

The articles [3], [2], and [4] provide the terminology and notation for this paper. We

consider structures IncStruct, which are systems

〈〈Points , Lines , Planes , Inc1 , Inc2 , Inc3〉〉

where Points, Lines, Planes have the type DOMAIN, Inc1 has the type Relation of

the Points, theLines, Inc2 has the type Relation of the Points, the Planes, and Inc3

has the type Relation of theLines, the Planes. We now define three new modes. Let

S have the type IncStruct.

POINT of S stands for Element of the Points of S.

LINE of S stands for Element of the Lines of S.

PLANE of S stands for Element of thePlanes of S.

In the sequel S will have the type IncStruct; A will have the type Element of

the Points of S; L will have the type Element of the Lines of S; P will have the type

Element of thePlanes of S. The following propositions are true:

(1) A is POINT of S,

(2) L is LINE of S,

1Supported by RPBP.III-24.C1.

205
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



206 Wojciech A. Trybulec

(3) P is PLANE of S.

For simplicity we adopt the following convention: A, B, C, D will denote objects of

the type POINT of S; L will denote an object of the type LINE of S; P will denote

an object of the type PLANE of S; F , G will denote objects of the type Subset of

thePoints of S. The arguments of the notions defined below are the following: S which

is an object of the type reserved above; A which is an object of the type POINT of S;

L which is an object of the type LINE of S. The predicate

A on L is defined by 〈A, L〉 ∈ the Inc1 of S.

The arguments of the notions defined below are the following: S which is an object

of the type reserved above; A which is an object of the type POINT of S; P which is

an object of the type PLANE of S. The predicate

A on P is defined by 〈A, P 〉 ∈ the Inc2 of S.

The arguments of the notions defined below are the following: S which is an object

of the type reserved above; L which is an object of the type LINE of S; P which is an

object of the type PLANE of S. The predicate

L on P is defined by 〈L, P 〉 ∈ the Inc3 of S.

The arguments of the notions defined below are the following: S which is an object

of the type reserved above; F which is an object of the type set of POINT of S; L

which is an object of the type LINE of S. The predicate

F on L is defined by forA being POINT of S st A ∈ F holds A on L.

The arguments of the notions defined below are the following: S which is an object

of the type reserved above; F which is an object of the type set of POINT of S; P

which is an object of the type PLANE of S. The predicate

F on P is defined by forA st A ∈ F holds A on P.

The arguments of the notions defined below are the following: S which is an object

of the type reserved above; F which is an object of the type set of POINT of S. The

predicate

F is linear is defined by exL st F on L.

The arguments of the notions defined below are the following: S which is an object

of the type reserved above; F which is an object of the type set of POINT of S. The

predicate

F is planar is defined by exP st F on P.

Next we state a number of propositions:

(4) A on L iff 〈A, L〉 ∈ the Inc1 of S,



Axioms of Incidence 207

(5) A on P iff 〈A, P 〉 ∈ the Inc2 of S,

(6) L on P iff 〈L, P 〉 ∈ the Inc3 of S,

(7) F on L iff forA st A ∈ F holds A on L,

(8) F on P iff forA st A ∈ F holds A on P,

(9) F is linear iff exL st F on L,

(10) F is planar iff exP st F on P,

(11) {A, B} on L iff A on L & B on L,

(12) {A, B, C} on L iff A on L & B on L & C on L,

(13) {A, B} on P iff A on P & B on P,

(14) {A, B, C} on P iff A on P & B on P & C on P,

(15) {A, B, C, D} on P iff A on P & B on P & C on P & D on P,

(16) G ⊆ F & F on L implies G on L,

(17) G ⊆ F & F on P implies G on P,

(18) F on L & A on L iff F ∪ {A} on L,

(19) F on P & A on P iff F ∪ {A} on P,

(20) F ∪ G on L iff F on L & G on L,

(21) F ∪ G on P iff F on P & G on P,

(22) G ⊆ F & F is linear implies G is linear ,

(23) G ⊆ F & F is planar implies G is planar .

The mode

IncSpace ,

which widens to the type IncStruct, is defined by

(forL being LINE of it exA,B being POINT of it st A 6= B & {A, B} on L) &

(forA,B being POINT of it exL being LINE of it st {A, B} on L) &

(forA,B being POINT of it, K,L being LINE of it

st A 6= B & {A, B} on K & {A, B} on L holds K = L)

& (forP being PLANE of it exA being POINT of it st A on P ) &



208 Wojciech A. Trybulec

(forA,B,C being POINT of it exP being PLANE of it st {A, B, C} on P ) &

(forA,B,C being POINT of it, P,Q being PLANE of it

st not {A, B, C} is linear & {A, B, C} on P & {A, B, C} on Q holds P = Q)

&

(forL being LINE of it, P being PLANE of it

st exA,B being POINT of it st A 6= B & {A, B} on L & {A, B} on P holds L on P )

&

(forA being POINT of it, P,Q being PLANE of it

st A on P & A on Q exB being POINT of it st A 6= B & B on P & B on Q)

& (exA,B,C,D being POINT of it st not {A, B, C, D} is planar) &

forA being POINT of it, L being LINE of it, P being PLANE of it

st A on L & L on P holds A on P.

The following proposition is true

(24) (forL being LINE of S exA,B being POINT of S st A 6= B & {A, B} on L)

& (forA,B being POINT of S exL being LINE of S st {A, B} on L) &

(forA,B being POINT of S, K,L being LINE of S

st A 6= B & {A, B} on K & {A, B} on L holds K = L)

& (forP being PLANE of S exA being POINT of S st A on P ) &

(forA,B,C being POINT of S exP being PLANE of S st {A, B, C} on P )

&

(forA,B,C being POINT of S, P,Q being PLANE of S

st not {A, B, C} is linear & {A, B, C} on P & {A, B, C} on Q holds P = Q)

&

(forL being LINE of S, P being PLANE of S st

exA,B being POINT of S st A 6= B & {A, B} on L & {A, B} on P

holds L on P )

&

(forA being POINT of S, P,Q being PLANE of S

st A on P & A on Q exB being POINT of S st A 6= B & B on P & B on Q)

& (exA,B,C,D being POINT of S st not {A, B, C, D} is planar) & (

forA being POINT of S, L being LINE of S, P being PLANE of S

st A on L & L on P holds A on P )

implies S is IncSpace .



Axioms of Incidence 209

For simplicity we adopt the following convention: S will denote an object of the type

IncSpace; A, B, C, D will denote objects of the type POINT of S; K, L, L1, L2 will

denote objects of the type LINE of S; P , Q will denote objects of the type PLANE

of S; F will denote an object of the type Subset of the Points of S. The following

propositions are true:

(25) exA,B st A 6= B & {A, B} on L,

(26) exL st {A, B} on L,

(27) A 6= B & {A, B} on K & {A, B} on L implies K = L,

(28) exA st A on P,

(29) exP st {A, B, C} on P,

(30) not {A, B, C} is linear & {A, B, C} on P & {A, B, C} on Q implies P = Q,

(31) (exA,B st A 6= B & {A, B} on L & {A, B} on P ) implies L on P,

(32) A on P & A on Q implies exB st A 6= B & B on P & B on Q,

(33) exA,B,C,D st not {A, B, C, D} is planar ,

(34) A on L & L on P implies A on P,

(35) F on L & L on P implies F on P,

(36) {A, A, B} is linear ,

(37) {A, A, B, C} is planar ,

(38) {A, B, C} is linear implies {A, B, C, D} is planar ,

(39) A 6= B & {A, B} on L & notC on L implies not {A, B, C} is linear ,

(40) not {A, B, C} is linear & {A, B, C} on P & notD on P

implies not {A, B, C, D} is planar ,

(41) not (exP st K on P & L on P ) implies K 6= L,

(42) not (exP st L on P & L1 on P & L2 on P )

& (exA st A on L & A on L1 & A on L2)

implies L 6= L1,

(43) L1 on P & L2 on P & notL on P & L1 6= L2

implies not exQ st L on Q & L1 on Q & L2 on Q,



210 Wojciech A. Trybulec

(44) exP st A on P & L on P,

(45) (exA st A on K & A on L) implies exP st K on P & L on P,

(46) A 6= B implies exL st forK holds {A, B} on K iff K = L,

(47) not {A, B, C} is linear

implies exP st forQ holds {A, B, C} on Q iff P = Q,

(48) notA on L implies exP st forQ holds A on Q & L on Q iff P = Q,

(49) K 6= L & (exA st A on K & A on L)

implies exP st forQ holds K on Q & L on Q iff P = Q.

Let us consider S, A, B. Assume that the following holds

A 6= B.

The functor

Line (A, B),

with values of the type LINE of S, is defined by

{A, B} on it .

Let us consider S, A, B, C. Assume that the following holds

not {A, B, C} is linear .

The functor

Plane (A, B, C),

yields the type PLANE of S and is defined by

{A, B, C} on it .

Let us consider S, A, L. Assume that the following holds

notA on L.

The functor

Plane (A, L),

with values of the type PLANE of S, is defined by

A on it & L on it .

Let us consider S, K, L. Assume that the following holds

K 6= L.



Axioms of Incidence 211

Moreover we assume that

exA st A on K & A on L.

The functor

Plane (K, L),

with values of the type PLANE of S, is defined by

K on it & L on it .

Next we state a number of propositions:

(50) A 6= B implies {A, B} on Line (A, B),

(51) A 6= B & {A, B} on K implies K = Line (A, B),

(52) not {A, B, C} is linear implies {A, B, C} on Plane (A, B, C),

(53) not {A, B, C} is linear & {A, B, C} on Q implies Q = Plane (A, B, C),

(54) notA on L implies A on Plane (A, L) & L on Plane (A, L),

(55) notA on L & A on Q & L on Q implies Q = Plane (A, L),

(56) K 6= L & (exA st A on K & A on L)

implies K on Plane (K, L) & L on Plane (K, L),

(57) A 6= B implies Line (A, B) = Line (B, A),

(58) not {A, B, C} is linear implies Plane (A, B, C) = Plane (A, C, B),

(59) not {A, B, C} is linear implies Plane (A, B, C) = Plane (B, A, C),

(60) not {A, B, C} is linear implies Plane (A, B, C) = Plane (B, C, A),

(61) not {A, B, C} is linear implies Plane (A, B, C) = Plane (C, A, B),

(62) not {A, B, C} is linear implies Plane (A, B, C) = Plane (C, B, A),

(63) K 6= L & (exA st A on K & A on L) & K on Q & L on Q

implies Q = Plane (K, L),

(64) K 6= L & (exA st A on K & A on L) implies Plane (K, L) = Plane (L, K),

(65) A 6= B & C on Line (A, B) implies {A, B, C} is linear ,

(66) A 6= B & A 6= C & {A, B, C} is linear implies Line (A, B) = Line (A, C),

(67) not {A, B, C} is linear implies Plane (A, B, C) = Plane (C, Line (A, B)),



212 Wojciech A. Trybulec

(68) not {A, B, C} is linear & D on Plane (A, B, C)

implies {A, B, C, D} is planar ,

(69) notC on L & {A, B} on L & A 6= B implies Plane (C, L) = Plane (A, B, C),

(70) not {A, B, C} is linear

implies Plane (A, B, C) = Plane (Line (A, B),Line (A, C)),

(71) exA,B,C st {A, B, C} on P & not {A, B, C} is linear ,

(72) exA,B,C,D st A on P & not {A, B, C, D} is planar ,

(73) exB st A 6= B & B on L,

(74) A 6= B implies exC st C on P & not {A, B, C} is linear ,

(75) not {A, B, C} is linear implies exD st not {A, B, C, D} is planar ,

(76) exB,C st {B, C} on P & not {A, B, C} is linear ,

(77) A 6= B implies exC,D st not {A, B, C, D} is planar ,

(78) exB,C,D st not {A, B, C, D} is planar ,

(79) exL st notA on L & L on P,

(80) A on P implies exL,L1,L2 st L1 6= L2

& L1 on P & L2 on P & notL on P & A on L & A on L1 & A on L2,

(81) exL,L1,L2

st A on L & A on L1 & A on L2 & not exP st L on P & L1 on P & L2 on P,

(82) exP st A on P & notL on P,

(83) exA st A on P & notA on L,

(84) exK st not exP st L on P & K on P,

(85) exP,Q st P 6= Q & L on P & L on Q,

(86) K 6= L & {A, B} on K & {A, B} on L implies A = B,

(87) notL on P & {A, B} on L & {A, B} on P implies A = B,

(88) P 6= Q implies not (exA st A on P & A on Q)

or exL st forB holds B on P & B on Q iff B on L.



Axioms of Incidenc 213

References

[1] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland, 1960.

[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1, 1990.

[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[4] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1, 1990.

Received April 14, 1989

e



214



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Introduction to Lattice Theory

Stanis law Żukowski1

Warsaw University

Bia lystok

Summary. A lattice is defined as an algebra on a nonempty set with binary
operations join and meet which are commutative and associative, and satisfy the
absorption identities. The following kinds of lattices are considered: distributive,
modular, bounded (with zero and unit elements), complemented, and Boolean (with
complement). The article includes also theorems which immediately follow from
definitions.

The terminology and notation used in this paper are introduced in the papers [1] and

[2]. The scheme BooleDomBinOpLam deals with a constant A that has the type

BOOLE DOMAIN and a binary functor F yielding values of the type Element of A

and states that the following holds

ex o being Binary Operation of A

st for a,b being Element of A holds o.(a, b) = F(a, b)

for all values of the parameters.

We consider structures LattStr, which are systems

〈〈carrier , join , meet〉〉

where carrier has the type DOMAIN, and join, meet have the type Binary Operation

of the carrier. In the sequel G has the type LattStr; p, q, r have the type Element

of the carrier of G. We now define two new functors. Let us consider G, p, q. The

functor

p t q,

yields the type Element of the carrier of G and is defined by

it = (the join of G).(p, q).

1Supported by RPBP.III-24.C1.

215
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



216 Stanis law Żukowski

The functor

p u q,

with values of the type Element of the carrier of G, is defined by

it = (the meet of G).(p, q).

The following propositions are true:

(1) p t q = (the join of G).(p, q),

(2) p u q = (the meet of G).(p, q).

Let us consider G, p, q. The predicate

p v q is defined by p t q = q.

We now state a proposition

(3) p v q iff p t q = q.

The mode

Lattice ,

which widens to the type LattStr, is defined by

(for a,b being Element of the carrier of it holds a t b = b t a) &

(for a,b,c being Element of the carrier of it holds a t (b t c) = (a t b) t c) &

(for a,b being Element of the carrier of it holds (a u b) t b = b) &

(for a,b being Element of the carrier of it holds a u b = b u a) &

(for a,b,c being Element of the carrier of it holds a u (b u c) = (a u b) u c)

& for a,b being Element of the carrier of it holds a u (a t b) = a.

One can prove the following proposition

(4) (for p,q holds p t q = q t p) & (for p,q,r holds p t (q t r) = (p t q) t r) &

(for p,q holds (p u q) t q = q) & (for p,q holds p u q = q u p)

& (for p,q,r holds p u (q u r) = (p u q) u r) & (for p,q holds p u (p t q) = p)

implies G is Lattice .

In the sequel L has the type Lattice; a, b, c have the type Element of the carrier of L.

One can prove the following propositions:

(5) a t b = b t a,

(6) a u b = b u a,

(7) a t (b t c) = (a t b) t c,



Introduction to Lattice Theory 217

(8) a u (b u c) = (a u b) u c,

(9) (a u b) t b = b & b t (a u b) = b & b t (b u a) = b & (b u a) t b = b,

(10) a u (a t b) = a & (a t b) u a = a & (b t a) u a = a & a u (b t a) = a.

The mode

Distributive Lattice ,

which widens to the type Lattice, is defined by

for a,b,c being Element of the carrier of it holds a u (b t c) = (a u b) t (a u c).

Next we state a proposition

(11) (for a,b,c holds a u (b t c) = (a u b) t (a u c))

implies L is Distributive Lattice .

The mode

Modular Lattice ,

which widens to the type Lattice, is defined by

for a,b,c being Element of the carrier of it st a v c holds a t (b u c) = (a t b) u c.

One can prove the following proposition

(12) (for a,b,c st a v c holds a t (b u c) = (a t b) u c)

implies L is Modular Lattice .

The mode

Lower Bound Lattice ,

which widens to the type Lattice, is defined by

ex c being Element of the carrier of it

st for a being Element of the carrier of it holds c u a = c.

Next we state a proposition

(13) (ex c st for a holds c u a = c) implies L is Lower Bound Lattice .

The mode

Upper Bound Lattice ,

which widens to the type Lattice, is defined by

ex c being Element of the carrier of it

st for a being Element of the carrier of it holds c t a = c.



218 Stanis law Żukowski

One can prove the following proposition

(14) (ex c st for a holds c t a = c) implies L is Upper Bound Lattice .

The mode

Bound Lattice ,

which widens to the type Lattice, is defined by

it is Lower Bound Lattice & it is Upper Bound Lattice .

Next we state a proposition

(15) L is Lower Bound Lattice & L is Upper Bound Lattice

implies L is Bound Lattice .

Let us consider L. Assume that the following holds

ex c st for a holds c u a = c.

The functor

⊥L,

yields the type Element of the carrier of L and is defined by

it u a = it .

Let L have the type Lower Bound Lattice. Let us note that it makes sense to consider

the following functor on a restricted area. Then

⊥L is Element of the carrier of L.

Let us consider L. Assume that the following holds

ex c st for a holds c t a = c.

The functor

>L,

with values of the type Element of the carrier of L, is defined by

it t a = it .

Let L have the type Upper Bound Lattice. Let us note that it makes sense to consider

the following functor on a restricted area. Then

>L is Element of the carrier of L.

Let L have the type Bound Lattice. Let us note that it makes sense to consider the

following functors on restricted areas. Then

⊥L is Element of the carrier of L,



Introduction to Lattice Theory 219

>L is Element of the carrier of L.

Let us consider L, a, b. Assume that the following holds

L is Bound Lattice .

The predicate

a is a complement of b is defined by a t b = >L & a u b = ⊥L.

The mode

Lattice with Complement ,

which widens to the type Bound Lattice, is defined by

for b being Element of the carrier of it

ex a being Element of the carrier of it st a is a complement of b.

The mode

Boolean Lattice ,

which widens to the type Lattice with Complement, is defined by

it is Distributive Lattice .

The following propositions are true:

(16) a t b = b iff a u b = a,

(17) a t a = a,

(18) a u a = a,

(19) forL holds (for a,b,c holds a u (b t c) = (a u b) t (a u c))

iff for a,b,c holds a t (b u c) = (a t b) u (a t c),

(20) a v b iff a t b = b,

(21) a v b iff a u b = a,

(22) a v a t b,

(23) a u b v a,

(24) a v a,

(25) a v b & b v c implies a v c,

(26) a v b & b v a implies a = b,

(27) a v b implies a u c v b u c,



220 Stanis law Żukowski

(28) a v b implies c u a v c u b,

(29) (for a,b,c holds (a u b) t (b u c) t (c u a) = (a t b) u (b t c) u (c t a))

implies L is Distributive Lattice .

In the sequel L denotes an object of the type Distributive Lattice; a, b, c de-

note objects of the type Element of the carrier of L. One can prove the following

propositions:

(30) forL holds (for a,b,c holds a u (b t c) = (a u b) t (a u c))

& for a,b,c holds (b t c) u a = (b u a) t (c u a),

(31) forL holds (for a,b,c holds a t (b u c) = (a t b) u (a t c))

& for a,b,c holds (b u c) t a = (b t a) u (c t a),

(32) c u a = c u b & c t a = c t b implies a = b,

(33) a u c = b u c & a t c = b t c implies a = b,

(34) (a t b) u (b t c) u (c t a) = (a u b) t (b u c) t (c u a),

(35) L is Modular Lattice .

In the sequel L has the type Modular Lattice; a, b, c have the type Element of

the carrier of L. One can prove the following two propositions:

(36) a v c implies a t (b u c) = (a t b) u c,

(37) c v a implies a u (b t c) = (a u b) t c.

In the sequel L has the type Lower Bound Lattice; a, c have the type Element of

the carrier of L. We now state four propositions:

(38) ex c st for a holds c u a = c,

(39) ⊥L t a = a & a t ⊥L = a,

(40) ⊥L u a = ⊥L & a u ⊥L = ⊥L,

(41) ⊥L v a.

In the sequel L denotes an object of the type Upper Bound Lattice; a, c denote

objects of the type Element of the carrier of L. The following four propositions are

true:

(42) ex c st for a holds c t a = c,

(43) >L u a = a & a u >L = a,



Introduction to Lattice Theory 221

(44) >L t a = >L & a t >L = >L,

(45) a v >L.

In the sequel L has the type Lattice with Complement; a, b have the type Element

of the carrier of L. One can prove the following proposition

(46) ex a st a is a complement of b.

In the sequel L has the type Lattice. The arguments of the notions defined below

are the following: L which is an object of the type reserved above; x which is an object

of the type Element of the carrier of L. Assume that the following holds

L is Boolean Lattice .

The functor

x c ,

yields the type Element of the carrier of L and is defined by

it is a complement of x.

The arguments of the notions defined below are the following: L which is an object of

the type Boolean Lattice; x which is an object of the type Element of the carrier of L.

Let us note that it makes sense to consider the following functor on a restricted area.

Then

x c is Element of the carrier of L.

In the sequel L will denote an object of the type Boolean Lattice; a, b will denote

objects of the type Element of the carrier of L. We now state several propositions:

(47) a c u a = ⊥L & a u a c = ⊥L,

(48) a c t a = >L & a t a c = >L,

(49) a c c = a,

(50) (a u b) c = a c t b c ,

(51) (a t b) c = a c u b c ,

(52) b u a = ⊥L iff b v a c ,

(53) a v b implies b c v a c .

In the sequel L will have the type Bound Lattice; a, b will have the type Element

of the carrier of L. We now state three propositions:

(54) L is Lower Bound Lattice & L is Upper Bound Lattice ,



222 Stanis law Żukowski

(55) a is a complement of b iff a t b = >L & a u b = ⊥L,

(56) (for b ex a st a is a complement of b) implies L is Lattice with Complement .

In the sequel L has the type Lattice with Complement. One can prove the

following proposition

(57) L is Distributive Lattice implies L is Boolean Lattice .

In the sequel L has the type Boolean Lattice. The following two propositions are

true:

(58) L is Lattice with Complement ,

(59) L is Distributive Lattice .

References

[1] Czes law Byliński. Binary operations. Formalized Mathematics, 1, 1990.

[2] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized Mathemat-

ics, 1, 1990.

Received April 14, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Topological Spaces and Continuous

Functions

Beata Padlewska1

Warsaw University

Bia lystok

Agata Darmochwa l2

Warsaw University

Bia lystok

Summary. The paper contains a definition of topological space. The following
notions are defined: point of topological space, subset of topological space, subspace
of topological space, and continuous function.

The articles [5], [7], [6], [1], [4], [2], and [3] provide the terminology and notation for this

paper. We consider structures TopStruct, which are systems

〈〈carrier , topology〉〉

where carrier has the type DOMAIN, and topology has the type Subset-Family of

the carrier. In the sequel T has the type TopStruct. The mode

TopSpace ,

which widens to the type TopStruct, is defined by

the carrier of it ∈ the topology of it &

(for a being Subset-Family of the carrier of it

st a ⊆ the topology of it holds
⋃

a ∈ the topology of it)

& for a,b being Subset of the carrier of it

st a ∈ the topology of it & b ∈ the topology of it holds a ∩ b ∈ the topology of it .

We now state a proposition

(1) the carrier of T ∈ the topology of T &

(for a being Subset-Family of the carrier of T

1Supported by RPBP.III-24.C1.
2Supported by RPBP.III-24.C1.

223
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



224 Beata Padlewska and Agata Darmochwa l

st a ⊆ the topology of T holds
⋃

a ∈ the topology of T )

& (for p,q being Subset of the carrier of T st

p ∈ the topology of T & q ∈ the topology of T

holds p ∩ q ∈ the topology of T )

implies T is TopSpace .

In the sequel T , S, GX will have the type TopSpace. Let us consider T .

Point of T stands for Element of the carrier of T.

The following proposition is true

(2) forx being Element of the carrier of T holds x is Point of T.

Let us consider T .

Subset of T stands for set of Point of T.

We now state a proposition

(3) forP being Subset of the carrier of T holds P is Subset of T.

In the sequel P , Q will have the type Subset of T ; p will have the type Point of

T . Let us consider T .

Subset-Family of T stands for Subset-Family of the carrier of T.

Next we state a proposition

(4) forF being Subset-Family of the carrier of T

holds F is Subset-Family of T.

In the sequel F will denote an object of the type Subset-Family of T . The scheme

SubFamEx1 concerns a constant A that has the type TopSpace and a unary predicate

P and states that the following holds

exF being Subset-Family of A st forB being Subset of A holds B ∈ F iff P [B]

for all values of the parameters.

One can prove the following propositions:

(5) ∅ ∈ the topology of T,

(6) the carrier of T ∈ the topology of T,

(7) for a being Subset-Family of T

st a ⊆ the topology of T holds
⋃

a ∈ the topology of T,



Topological Spaces and Continuous . . . 225

(8) P ∈ the topology of T & Q ∈ the topology of T

implies P ∩ Q ∈ the topology of T.

We now define two new functors. Let us consider T . The functor

∅T,

with values of the type Subset of T , is defined by

it = ∅ the carrier of T.

The functor

Ω T,

with values of the type Subset of T , is defined by

it = Ω the carrier of T.

One can prove the following four propositions:

(9) ∅T = ∅ the carrier of T,

(10) Ω T = Ω the carrier of T,

(11) ∅(T ) = ∅,

(12) Ω (T ) = the carrier of T.

Let us consider T , P . The functor

P c ,

yields the type Subset of T and is defined by

it = P c .

Let us consider T , P , Q. Let us note that it makes sense to consider the following

functors on restricted areas. Then

P ∪ Q is Subset of T,

P ∩ Q is Subset of T,

P \ Q is Subset of T,

P −. Q is Subset of T.

The following propositions are true:

(13) p ∈ Ω (T ),

(14) P ⊆ Ω (T ),



226 Beata Padlewska and Agata Darmochwa l

(15) P ∩ Ω (T ) = P,

(16) forA being set holds A ⊆ Ω (T ) implies A is Subset of T,

(17) P c = Ω (T ) \ P,

(18) P ∪ P c = Ω (T ),

(19) P ⊆ Q iff Q c ⊆ P c ,

(20) P = P c c ,

(21) P ⊆ Q c iff P ∩ Q = ∅,

(22) Ω (T ) \ (Ω (T ) \ P ) = P,

(23) P 6= Ω (T ) iff Ω (T ) \ P 6= ∅,

(24) Ω (T ) \ P = Q implies Ω (T ) = P ∪ Q,

(25) Ω (T ) = P ∪ Q & P ∩ Q = ∅ implies Q = Ω (T ) \ P,

(26) P ∩ P c = ∅(T ),

(27) Ω (T ) = (∅T ) c ,

(28) P \ Q = P ∩ Q c ,

(29) P = Q implies Ω (T ) \ P = Ω (T ) \ Q.

Let us consider T , P . The predicate

P is open is defined by P ∈ the topology of T.

One can prove the following proposition

(30) P is open iff P ∈ the topology of T.

Let us consider T , P . The predicate

P is closed is defined by Ω (T ) \ P is open .

One can prove the following proposition

(31) P is closed iff Ω (T ) \ P is open .

Let us consider T , P . The predicate

P is open closed is defined by P is open & P is closed .



Topological Spaces and Continuous . . . 227

We now state a proposition

(32) P is open closed iff P is open & P is closed .

Let us consider T , F . Let us note that it makes sense to consider the following functor

on a restricted area. Then
⋃

F is Subset of T.

Let us consider T , F . Let us note that it makes sense to consider the following functor

on a restricted area. Then
⋂

F is Subset of T.

Let us consider T , F . The predicate

F is a cover of T is defined by Ω (T ) =
⋃

F.

The following proposition is true

(33) F is a cover of T iff Ω (T ) =
⋃

F.

Let us consider T . The mode

SubSpace of T,

which widens to the type TopSpace, is defined by

Ω (it) ⊆ Ω (T ) & forP being Subset of it holds P ∈ the topology of it

iff exQ being Subset of T st Q ∈ the topology of T & P = Q ∩ Ω (it).

Next we state two propositions:

(34) Ω (S) ⊆ Ω (T ) & (forP being Subset of S holds P ∈ the topology of S

iff exQ being Subset of T st Q ∈ the topology of T & P = Q ∩ Ω (S))

implies S is SubSpace of T,

(35) forV being SubSpace of T holds Ω (V ) ⊆ Ω (T ) & forP being Subset of V

holds P ∈ the topology of V

iff exQ being Subset of T st Q ∈ the topology of T & P = Q ∩ Ω (V ).

Let us consider T , P . Assume that the following holds

P 6= ∅(T ).

The functor

T | P,

with values of the type SubSpace of T , is defined by

Ω (it) = P.



228 Beata Padlewska and Agata Darmochwa l

One can prove the following proposition

(36) P 6= ∅(T ) implies forS being SubSpace of T holds S = T | P iff Ω (S) = P.

Let us consider T , S.

map of T, S stands for Function of (the carrier of T ),(the carrier of S).

Next we state a proposition

(37) for f being Function of the carrier of T,the carrier of S

holds f is map of T, S.

In the sequel f has the type map of T , S; P1 has the type Subset of S. Let us

consider T , S, f , P . Let us note that it makes sense to consider the following functor on

a restricted area. Then

f ◦ P is Subset of S.

Let us consider T , S, f , P1. Let us note that it makes sense to consider the following

functor on a restricted area. Then

f -1 P1 is Subset of T.

Let us consider T , S, f . The predicate

f is continuous

is defined by

forP1 holds P1 is closed implies f -1 P1 is closed .

The following proposition is true

(38) f is continuous iff forP1 holds P1 is closed implies f -1 P1 is closed .

The scheme TopAbstr concerns a constant A that has the type TopSpace and a unary

predicate P and states that the following holds

exP being Subset of A st forx being Point of A holds x ∈ P iff P [x]

for all values of the parameters.

One can prove the following propositions:

(39) forX ′ being SubSpace of GX

forA being Subset of X ′ holds A is Subset of GX,

(40) forA being Subset of GX, x being Any st x ∈ A holds x is Point of GX,

(41) forA being Subset of GX st A 6= ∅(GX) exx being Point of GX st x ∈ A,

(42) Ω (GX) is closed ,



Topological Spaces and Continuous . . . 229

(43) forX ′ being SubSpace of GX, B being Subset of X ′ holds

B is closed iff exC being Subset of GX st C is closed & C ∩ (Ω (X ′)) = B,

(44) forF being Subset-Family of GX st

F 6= ∅ & forA being Subset of GX st A ∈ F holds A is closed

holds
⋂

F is closed .

The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; A which is an object of the type Subset of GX . The functor

Cl A,

yields the type Subset of GX and is defined by

for p being Point of GX holds p ∈ it

iff forG being Subset of GX st G is open holds p ∈ G implies A ∩ G 6= ∅(GX).

We now state a number of propositions:

(45) forA being Subset of GX, p being Point of GX holds p ∈ Cl A

iff forC being Subset of GX st C is closed holds A ⊆ C implies p ∈ C,

(46) forA being Subset of GX exF being Subset-Family of GX st

(forC being Subset of GX holds C ∈ F iff C is closed & A ⊆ C)

& Cl A =
⋂

F,

(47) for

X ′ being SubSpace of GX, A being Subset of GX, A1 being Subset of X ′

st A = A1 holds Cl A1 = (Cl A) ∩ (Ω (X ′)),

(48) forA being Subset of GX holds A ⊆ Cl A,

(49) forA,B being Subset of GX st A ⊆ B holds Cl A ⊆ Cl B,

(50) forA,B being Subset of GX holds Cl (A ∪ B) = Cl A ∪ Cl B,

(51) forA,B being Subset of GX holds Cl (A ∩ B) ⊆ (Cl A) ∩ Cl B,

(52) forA being Subset of GX holds A is closed iff Cl A = A,

(53) forA being Subset of GX

holds A is open iff Cl (Ω (GX) \ A) = Ω (GX) \ A,

(54) forA being Subset of GX, p being Point of GX holds p ∈ Cl A iff

forG being Subset of GX

st G is open holds p ∈ G implies A ∩ G 6= ∅(GX).



230 Beata Padlewska and Agata Darmochwa l

References

[1] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[2] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.

[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.

[4] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1, 1990.

[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.

[7] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 14, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Subsets of Topological Spaces

Miros law Wysocki

Warsaw Uniwersity

Bia lystok

Agata Darmochwa l1

Warsaw University

Bia lystok

Summary. The article contains some theorems about open and closed sets.
The following topological operations on sets are defined: closure, interior and fron-
tier. The following notions are introduced: dense set, boundary set, nowheredense
set and set being domain (closed domain and open domain), and some basic facts
concerning them are proved.

The papers [4], [5], [3], [1], and [2] provide the notation and terminology for this paper.

For simplicity we adopt the following convention: TS denotes an object of the type

TopSpace; x denotes an object of the type Any; P , Q, G denote objects of the type

Subset of TS; p denotes an object of the type Point of TS. One can prove the

following propositions:

(1) x ∈ P implies x is Point of TS,

(2) P ∪ Ω TS = Ω TS & Ω TS ∪ P = Ω TS,

(3) P ∩ Ω TS = P & Ω TS ∩ P = P,

(4) P ∩ ∅TS = ∅TS & ∅TS ∩ P = ∅TS,

(5) P c = Ω TS \ P,

(6) P c = (P qua Subset of the carrier of TS) c ,

(7) p ∈ P c iff not p ∈ P,

(8) (Ω TS) c = ∅TS,

(9) Ω TS = (∅TS) c ,

(10) (P c) c = P,

1Supported by RPBP.III-24.C1.

231
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



232 Miros law Wysocki and Agata Darmochwa l

(11) P ∪ P c = Ω TS & P c ∪ P = Ω TS,

(12) P ∩ P c = ∅TS & P c ∩ P = ∅TS,

(13) (P ∪ Q) c = (P c) ∩ (Q c),

(14) (P ∩ Q) c = (P c) ∪ (Q c),

(15) P ⊆ Q iff Q c ⊆ P c ,

(16) P \ Q = P ∩ Q c ,

(17) (P \ Q) c = P c ∪ Q,

(18) P ⊆ Q c implies Q ⊆ P c ,

(19) P c ⊆ Q implies Q c ⊆ P,

(20) P ⊆ Q iff P ∩ Q c = ∅,

(21) P c = Q c implies P = Q,

(22) ∅TS is closed ,

(23) Cl (∅TS) = ∅TS,

(24) P ⊆ Cl P,

(25) P ⊆ Q implies Cl P ⊆ Cl Q,

(26) Cl (Cl P ) = Cl P,

(27) Cl (Ω TS) = Ω TS,

(28) Ω TS is closed ,

(29) P is closed iff P c is open ,

(30) P is open iff P c is closed ,

(31) Q is closed & P ⊆ Q implies Cl P ⊆ Q,

(32) Cl P \ Cl Q ⊆ Cl (P \ Q),

(33) Cl (P ∩ Q) ⊆ Cl P ∩ Cl Q,

(34) P is closed & Q is closed implies Cl (P ∩ Q) = Cl P ∩ Cl Q,

(35) P is closed & Q is closed implies P ∩ Q is closed ,



Subsets of Topological Spaces 233

(36) P is closed & Q is closed implies P ∪ Q is closed ,

(37) P is open & Q is open implies P ∪ Q is open ,

(38) P is open & Q is open implies P ∩ Q is open ,

(39) p ∈ Cl P iff forG st G is open holds p ∈ G implies P ∩ G 6= ∅,

(40) Q is open implies Q ∩ Cl P ⊆ Cl (Q ∩ P ),

(41) Q is open implies Cl (Q ∩ Cl P ) = Cl (Q ∩ P ).

Let us consider TS, P . The functor

Int P,

yields the type Subset of TS and is defined by

it = (Cl (P c)) c .

One can prove the following propositions:

(42) Int P = (Cl P c) c ,

(43) Int (Ω TS) = Ω TS,

(44) Int P ⊆ P,

(45) Int (Int P ) = Int P,

(46) Int P ∩ Int Q = Int (P ∩ Q),

(47) Int (∅TS) = ∅TS,

(48) P ⊆ Q implies Int P ⊆ Int Q,

(49) Int P ∪ Int Q ⊆ Int (P ∪ Q),

(50) Int (P \ Q) ⊆ Int P \ Int Q,

(51) Int P is open ,

(52) ∅TS is open ,

(53) Ω TS is open ,

(54) x ∈ Int P iff exQ st Q is open & Q ⊆ P & x ∈ Q,

(55) P is open iff Int P = P,

(56) Q is open & Q ⊆ P implies Q ⊆ Int P,



234 Miros law Wysocki and Agata Darmochwa l

(57) P is open iff forx holds x ∈ P iff exQ st Q is open & Q ⊆ P & x ∈ Q,

(58) Cl (Int P ) = Cl (Int (Cl (Int P ))),

(59) P is open implies Cl (Int (Cl P )) = Cl P.

Let us consider TS, P . The functor

Fr P,

yields the type Subset of TS and is defined by

it = Cl P ∩ Cl (P c).

We now state a number of propositions:

(60) Fr P = Cl P ∩ Cl (P c),

(61) p ∈ Fr P iff forQ st Q is open & p ∈ Q holds P ∩ Q 6= ∅ & P c ∩ Q 6= ∅,

(62) Fr P = Fr (P c),

(63) Fr P ⊆ Cl P,

(64) Fr P = Cl (P c) ∩ P ∪ (Cl P \ P ),

(65) Cl P = P ∪ Fr P,

(66) Fr (P ∩ Q) ⊆ Fr P ∪ Fr Q,

(67) Fr (P ∪ Q) ⊆ Fr P ∪ Fr Q,

(68) Fr (Fr P ) ⊆ Fr P,

(69) P is closed implies Fr P ⊆ P,

(70) Fr P ∪ Fr Q = Fr (P ∪ Q) ∪ Fr (P ∩ Q) ∪ (Fr P ∩ Fr Q),

(71) Fr (Int P ) ⊆ Fr P,

(72) Fr (Cl P ) ⊆ Fr P,

(73) Int P ∩ Fr P = ∅,

(74) Int P = P \ Fr P,

(75) Fr (Fr (Fr P )) = Fr (Fr P ),

(76) P is open iff Fr P = Cl P \ P,

(77) P is closed iff Fr P = P \ Int P.



Subsets of Topological Spaces 235

Let us consider TS, P . The predicate

P is dense is defined by Cl P = Ω TS.

We now state several propositions:

(78) P is dense iff Cl P = Ω TS,

(79) P is dense & P ⊆ Q implies Q is dense ,

(80) P is dense iff forQ st Q 6= ∅ & Q is open holds P ∩ Q 6= ∅,

(81) P is dense implies forQ holds Q is open implies Cl Q = Cl (Q ∩ P ),

(82) P is dense & Q is dense & Q is open implies P ∩ Q is dense .

Let us consider TS, P . The predicate

P is boundary is defined by P c is dense .

Next we state several propositions:

(83) P is boundary iff P c is dense ,

(84) P is boundary iff Int P = ∅,

(85) P is boundary & Q is boundary & Q is closed implies P ∪ Q is boundary ,

(86) P is boundary iff forQ st Q ⊆ P & Q is open holds Q = ∅,

(87) P is closed implies (P is boundary iff forQ

st Q 6= ∅ & Q is open exG st G ⊆ Q & G 6= ∅ & G is open & P ∩ G = ∅),

(88) P is boundary iff P ⊆ Fr P.

Let us consider TS, P . The predicate

P is nowheredense is defined by Cl P is boundary .

One can prove the following propositions:

(89) P is nowheredense iff Cl P is boundary ,

(90) P is nowheredense & Q is nowheredense implies P ∪ Q is nowheredense ,

(91) P is nowheredense implies P c is dense ,

(92) P is nowheredense implies P is boundary ,

(93) Q is boundary & Q is closed implies Q is nowheredense ,



236 Miros law Wysocki and Agata Darmochwa l

(94) P is closed implies (P is nowheredense iff P = Fr P ),

(95) P is open implies Fr P is nowheredense ,

(96) P is closed implies Fr P is nowheredense ,

(97) P is open & P is nowheredense implies P = ∅.

We now define three new predicates. Let us consider TS, P . The predicate

P is domain is defined by Int (Cl P ) ⊆ P & P ⊆ Cl (Int P ).

The predicate

P is closed domain is defined by P = Cl (Int P ).

The predicate

P is open domain is defined by P = Int (Cl P ).

The following propositions are true:

(98) P is domain iff Int (Cl P ) ⊆ P & P ⊆ Cl (Int P ),

(99) P is closed domain iff P = Cl (Int P ),

(100) P is open domain iff P = Int (Cl P ),

(101) P is open domain iff P c is closed domain ,

(102) P is closed domain implies Fr (Int P ) = Fr P,

(103) P is closed domain implies Fr P ⊆ Cl (Int P ),

(104) P is open domain implies Fr P = Fr (Cl P ) & Fr (Cl P ) = Cl P \ P,

(105) P is open & P is closed implies (P is closed domain iff P is open domain),

(106) P is closed & P is domain iff P is closed domain ,

(107) P is open & P is domain iff P is open domain ,

(108) P is closed domain & Q is closed domain implies P ∪ Q is closed domain ,

(109) P is open domain & Q is open domain implies P ∩ Q is open domain ,

(110) P is domain implies Int (Fr P ) = ∅,

(111) P is domain implies Int P is domain & Cl P is domain .



Subsets of Topological Spaces 237

References

[1] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.

[2] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous func-

tions. Formalized Mathematics, 1, 1990.

[3] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1, 1990.

[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[5] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received April 28, 1989



238



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Connected Spaces

Beata Padlewska1

Warsaw University

Bia lystok

Summary. The following notions are defined: separated sets, connected
spaces, connected sets, components of a topological space, the component of a
point. The definition of the boundary of a set is also included. The singleton of a
point of a topological space is redefined as a subset of the space. Some theorems
about these notions are proved.

The articles [3], [4], [1], [2], and [5] provide the notation and terminology for this paper.

For simplicity we adopt the following convention: GX , GY will have the type TopSpace;

A, A1, B, B1, C will have the type Subset of GX. The arguments of the notions defined

below are the following: GX which is an object of the type TopSpace; A, B which are

objects of the type Subset of GX . The predicate

A, B are separated is defined by Cl A ∩ B = ∅(GX) & A ∩ Cl B = ∅(GX).

The following propositions are true:

(1) A, B are separated implies B, A are separated ,

(2) A, B are separated implies A ∩ B = ∅(GX),

(3) Ω (GX) = A ∪ B & A is closed & B is closed & A ∩ B = ∅(GX)

implies A, B are separated ,

(4) Ω (GX) = A ∪ B & A is open & B is open & A ∩ B = ∅(GX)

implies A, B are separated ,

(5) Ω (GX) = A ∪ B & A, B are separated

implies A is open closed & B is open closed ,

1Supported by RPBP.III-24.C1.

239
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



240 Beata Padlewska

(6) forX ′

being SubSpace of GX, P1,Q1 being Subset of GX, P,Q being Subset of X ′

st P = P1 & Q = Q1 holds P, Q are separated implies P1,Q1 are separated ,

(7) forX ′

being SubSpace of GX, P,Q being Subset of GX, P1,Q1 being Subset of X ′

st P = P1 & Q = Q1 & P ∪ Q ⊆ Ω (X ′)

holds P, Q are separated implies P1,Q1 are separated ,

(8) A, B are separated & A1 ⊆ A & B1 ⊆ B implies A1,B1 are separated ,

(9) A, B are separated & A, C are separated implies A, B ∪ C are separated ,

(10) A is closed & B is closed or A is open & B is open

implies A \ B,B \ A are separated .

Let GX have the type TopSpace. The predicate

GX is connected

is defined by

forA,B being Subset of GX

st Ω (GX) = A ∪ B & A, B are separated holds A = ∅(GX) or B = ∅(GX).

One can prove the following propositions:

(11) GX is connected iff forA,B being Subset of GX st

Ω (GX) = A ∪ B & A 6= ∅(GX) & B 6= ∅(GX) & A is closed & B is closed

holds A ∩ B 6= ∅(GX),

(12) GX is connected iff forA,B being Subset of GX st

Ω (GX) = A ∪ B & A 6= ∅(GX) & B 6= ∅(GX) & A is open & B is open

holds A ∩ B 6= ∅(GX),

(13) GX is connected iff forA being Subset of GX

st A 6= ∅(GX) & A 6= Ω (GX) holds (Cl A) ∩ Cl (Ω (GX) \ A) 6= ∅(GX),

(14) GX is connected iff forA being Subset of GX

st A is open closed holds A = ∅(GX) or A = Ω (GX),

(15) forF being map of GX,GY st

F is continuous & F ◦ (Ω (GX)) = Ω (GY ) & GX is connected

holds GY is connected .



Connected Spaces 241

The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; A which is an object of the type Subset of GX. The predicate

A is connected is defined by GX | A is connected .

One can prove the following propositions:

(16) A 6= ∅(GX) implies (A is connected iff forP,Q being Subset of GX

st A = P ∪ Q & P, Q are separated holds P = ∅(GX) or Q = ∅(GX)),

(17) A is connected & A ⊆ B ∪ C & B, C are separated implies A ⊆ B or A ⊆ C,

(18) A is connected & B is connected & notA, B are separated

implies A ∪ B is connected ,

(19) C 6= ∅(GX) & C is connected & C ⊆ A & A ⊆ Cl C implies A is connected ,

(20) A 6= ∅(GX) & A is connected implies Cl A is connected ,

(21) GX is connected

& A 6= ∅(GX) & A is connected & Ω (GX) \ A = B ∪ C & B, C are separated

implies A ∪ B is connected & A ∪ C is connected ,

(22) Ω (GX) \ A = B ∪ C & B, C are separated & A is closed

implies A ∪ B is closed & A ∪ C is closed ,

(23) C is connected & C ∩ A 6= ∅(GX) & C \ A 6= ∅(GX)

implies C ∩ Fr A 6= ∅(GX),

(24) forX ′ being SubSpace of GX, A being Subset of GX, B being Subset of X ′

st A 6= ∅(GX) & A = B holds A is connected iff B is connected ,

(25) A ∩ B 6= ∅(GX) & A is closed & B is closed implies

(A ∪ B is connected & A ∩ B is connected

implies A is connected & B is connected),

(26) forF being Subset-Family of GX st

(forA being Subset of GX st A ∈ F holds A is connected) &

exA being Subset of GX st A 6= ∅(GX) & A ∈ F &

forB being Subset of GX st B ∈ F & B 6= A holds notA, B are separated

holds
⋃

F is connected ,

(27) forF being Subset-Family of GX st

(forA being Subset of GX st A ∈ F holds A is connected) &
⋂

F 6= ∅(GX)

holds
⋃

F is connected ,



242 Beata Padlewska

(28) Ω (GX) is connected iff GX is connected .

The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; x which is an object of the type Point of GX. Let us note that

it makes sense to consider the following functor on a restricted area. Then

{x} is Subset of GX.

We now state a proposition

(29) forx being Point of GX holds {x} is connected .

The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; x, y which are objects of the type Point of GX. The predicate

x, y are joined

is defined by

exC being Subset of GX st C is connected & x ∈ C & y ∈ C.

We now state four propositions:

(30) (ex x being Point of GX st for y being Point of GX holds x, y are joined)

implies GX is connected ,

(31) (ex x being Point of GX st for y being Point of GX holds x, y are joined)

iff for x,y being Point of GX holds x, y are joined ,

(32) (forx,y being Point of GX holds x, y are joined) implies GX is connected ,

(33) forx being Point of GX, F being Subset-Family of GX st

forA being Subset of GX holds A ∈ F iff A is connected & x ∈ A

holds F 6= ∅.

The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; A which is an object of the type Subset of GX . The predicate

A is a component of GX

is defined by

A is connected

& forB being Subset of GX st B is connected holds A ⊆ B implies A = B.

The following propositions are true:

(34) A is a component of GX implies A 6= ∅(GX),



Connected Spaces 243

(35) A is a component of GX implies A is closed ,

(36) A is a component of GX & B is a component of GX

implies A = B or (A 6= B implies A, B are separated),

(37) A is a component of GX & B is a component of GX

implies A = B or (A 6= B implies A ∩ B = ∅(GX)),

(38) C is connected implies forS being Subset of GX

st S is a component of GX holds C ∩ S = ∅(GX) or C ⊆ S.

The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; A, B which are objects of the type Subset of GX. The

predicate

B is a component of A

is defined by

exB1 being Subset of GX | A st B1 = B & B1 is a component of (GX | A).

We now state a proposition

(39) GX is connected & A 6= Ω (GX)

& A 6= ∅(GX) & A is connected & C is a component of (Ω (GX) \ A)

implies (Ω (GX) \ C) is connected .

The arguments of the notions defined below are the following: GX which is an object

of the type TopSpace; x which is an object of the type Point of GX. The functor

skl x,

with values of the type Subset of GX , is defined by

exF being Subset-Family of GX

st (forA being Subset of GX holds A ∈ F iff A is connected & x ∈ A) &
⋃

F = it .

In the sequel x has the type Point of GX . One can prove the following propositions:

(40) x ∈ skl x,

(41) skl x is connected ,

(42) C is connected implies (skl x ⊆ C implies C = skl x),

(43) A is a component of GX iff exx being Point of GX st A = skl x,

(44) A is a component of GX & x ∈ A implies A = skl x,



244 Beata Padlewska

(45) forS being Subset of GX

st S = skl x for p being Point of GX st p 6= x & p ∈ S holds skl p = S,

(46) forF being Subset-Family of GX st

forA being Subset of GX holds A ∈ F iff A is a component of GX

holds F is a cover of GX,

(47) A, B are separated iff Cl A ∩ B = ∅(GX) & A ∩ Cl B = ∅(GX),

(48) GX is connected iff forA,B being Subset of GX

st Ω (GX) = A ∪ B & A, B are separated holds A = ∅(GX) or B = ∅(GX),

(49) A is connected iff GX | A is connected ,

(50) A is a component of GX iff A is connected

& forB being Subset of GX st B is connected holds A ⊆ B implies A = B,

(51) B is a component of A iff

exB1 being Subset of GX | A st B1 = B & B1 is a component of (GX | A),

(52) B = skl x iff exF being Subset-Family of GX st

(forA being Subset of GX holds A ∈ F iff A is connected & x ∈ A)

&
⋃

F = B.

References

[1] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.

[2] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous func-

tions. Formalized Mathematics, 1, 1990.

[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[4] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

[5] Miros law Wysocki and Agata Darmochwa l. Subsets of topological spaces. Formalized

Mathematics, 1, 1990.

Received May 6, 1989



FORMALIZED MATHEMATICS

Number 1, January 1990

Université Catholique de Louvain

Basic Functions and Operations on

Functions

Czes law Byliński1

Warsaw University

Bia lystok

Summary. We define the following mappings: the characteristic function of a
subset of a set, the inclusion function (injection or embedding), the projections from
a Cartesian product onto its arguments and diagonal function (inclusion of a set into
its Cartesian square). Some operations on functions are also defined: the products
of two functions (the complex function and the more general product-function),
the function induced on power sets by the image and inverse-image. Some simple
propositions related to the introduced notions are proved.

The terminology and notation used in this paper are introduced in the following papers:

[3], [4], [1], and [2]. For simplicity we adopt the following convention: x, y, z, z1, z2

denote objects of the type Any; A, B, V , X , X1, X2, Y , Y 1, Y 2, Z denote objects of

the type set; C, C1, C2, D, D1, D2 denote objects of the type DOMAIN. We now

state several propositions:

(1) A ⊆ Y implies id A = (id Y ) | A,

(2) for f,g being Function st X ⊆ dom (g · f) holds f ◦ X ⊆ dom g,

(3) for f,g being Function

st X ⊆ dom f & f ◦ X ⊆ dom g holds X ⊆ dom (g · f),

(4) for f,g being Function

st Y ⊆ rng (g · f) & g is one-to-one holds g -1 Y ⊆ rng f,

(5) for f,g being Function st Y ⊆ rng g & g -1 Y ⊆ rng f holds Y ⊆ rng (g · f).

1Supported by RPBP.III-24.C1.

245
cf 1990 Fondation Philippe le Hodey

ISSN 0777-4028



246 Czes law Byliński

In the article we present several logical schemes. The scheme FuncEx 3 concerns a

constant A that has the type set, a constant B that has the type set and a ternary

predicate P and states that the following holds

ex f being Function

st dom f = [:A,B:] & forx,y st x ∈ A & y ∈ B holds P [x, y, f .〈x, y〉]

provided the parameters satisfy the following conditions:

• forx,y,z1,z2 st x ∈ A & y ∈ B & P [x, y, z1] & P [x, y, z2] holds z1 = z2,

• forx,y st x ∈ A & y ∈ B ex z st P [x, y, z].

The scheme Lambda 3 concerns a constant A that has the type set, a constant B

that has the type set and a binary functor F and states that the following holds

ex f being Function

st dom f = [:A,B:] & forx,y st x ∈ A & y ∈ B holds f .〈x, y〉 = F(x, y)

for all values of the parameters.

We now state a proposition

(6) for f,g being Function st

dom f = [:X, Y :]

& dom g = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds f .〈x, y〉 = g.〈x, y〉

holds f = g.

Let f have the type Function. The functor

◦ f,

yields the type Function and is defined by

dom it = bool dom f & forX st X ∈ bool dom f holds it.X = f ◦ X.

The following propositions are true:

(7) for f,g being Function holds g = ◦ f

iff dom g = bool dom f & forX st X ∈ bool dom f holds g.X = f ◦ X,

(8) for f being Function st X ∈ dom (◦ f) holds (◦ f).X = f ◦ X,

(9) for f being Function holds (◦ f).∅ = ∅,

(10) for f being Function holds rng (◦ f) ⊆ bool rng f,

(11) for f being Function

holds Y ∈ (◦ f) ◦ A iff exX st X ∈ dom (◦ f) & X ∈ A & Y = (◦ f).X,



Basic Functions and Operations on . . . 247

(12) for f being Function holds (◦ f) ◦ A ⊆ bool rng f,

(13) for f being Function holds (◦ f) -1 B ⊆ bool dom f,

(14) for f being Function of X, D holds (◦ f) -1 B ⊆ bool X,

(15) for f being Function holds
⋃

((◦ f) ◦ A) ⊆ f ◦ (
⋃

A),

(16) for f being Function st A ⊆ bool dom f holds f ◦ (
⋃

A) =
⋃

((◦ f) ◦ A),

(17) for f being Function of X, D st A ⊆ bool X holds f ◦ (
⋃

A) =
⋃

((◦ f) ◦ A),

(18) for f being Function holds
⋃

((◦ f) -1 B) ⊆ f -1 (
⋃

B),

(19) for f being Function st B ⊆ bool rng f holds f -1 (
⋃

B) =
⋃

((◦ f) -1 B),

(20) for f,g being Function holds ◦ (g · f) = ◦ g · ◦ f,

(21) for f being Function holds ◦ f is Function of bool dom f,bool rng f,

(22) for f being Function of X, Y

st Y = ∅ implies X = ∅ holds ◦ f is Function of bool X,bool Y.

The arguments of the notions defined below are the following: X , D which are

objects of the type reserved above; f which is an object of the type Function of X , D.

Let us note that it makes sense to consider the following functor on a restricted area.

Then
◦ f is Function of bool X,bool D.

Let f have the type Function. The functor

-1 f,

yields the type Function and is defined by

dom it = bool rng f & forY st Y ∈ bool rng f holds it.Y = f -1 Y.

We now state a number of propositions:

(23) for g,f being Function holds

g = -1 f iff dom g = bool rng f & forY st Y ∈ bool rng f holds g.Y = f -1 Y,

(24) for f being Function st Y ∈ dom (-1 f) holds (-1 f).Y = f -1 Y,

(25) for f being Function holds rng (-1 f) ⊆ bool dom f,

(26) for f being Function

holds X ∈ (-1 f) ◦ A iff exY st Y ∈ dom (-1 f) & Y ∈ A & X = (-1 f).Y,



248 Czes law Byliński

(27) for f being Function holds (-1 f) ◦ B ⊆ bool dom f,

(28) for f being Function holds (-1 f) -1 A ⊆ bool rng f,

(29) for f being Function holds
⋃

((-1 f) ◦ B) ⊆ f -1 (
⋃

B),

(30) for f being Function st B ⊆ bool rng f holds
⋃

((-1 f) ◦ B) = f -1 (
⋃

B),

(31) for f being Function holds
⋃

((-1 f) -1 A) ⊆ f ◦ (
⋃

A),

(32) for f being Function

st A ⊆ bool dom f & f is one-to-one holds
⋃

((-1 f) -1 A) = f ◦ (
⋃

A),

(33) for f being Function holds (-1 f) ◦ B ⊆ (◦ f) -1 B,

(34) for f being Function st f is one-to-one holds (-1 f) ◦ B = (◦ f) -1 B,

(35) for f being Function, A being set

st A ⊆ bool dom f holds (-1 f) -1 A ⊆ (◦ f) ◦ A,

(36) for f being Function, A being set

st f is one-to-one holds (◦ f) ◦ A ⊆ (-1 f) -1 A,

(37) for f being Function, A being set

st f is one-to-one & A ⊆ bool dom f holds (-1 f) -1 A = (◦ f) ◦ A,

(38) for f,g being Function st g is one-to-one holds -1 (g · f) = -1 f · -1 g,

(39) for f being Function holds -1 f is Function of bool rng f,bool dom f.

Let us consider A, X . The functor

χ (A, X),

yields the type Function and is defined by

dom it = X

& forx st x ∈ X holds (x ∈ A implies it.x = 1) & (notx ∈ A implies it.x = 0).

We now state a number of propositions:

(40) for f being Function holds f = χ (A, X) iff dom f = X & forx

st x ∈ X holds (x ∈ A implies f .x = 1) & (notx ∈ A implies f .x = 0),

(41) A ⊆ X & x ∈ A implies χ (A, X).x = 1,

(42) x ∈ X & χ (A, X).x = 1 implies x ∈ A,



Basic Functions and Operations on . . . 249

(43) x ∈ X \ A implies χ (A, X).x = 0,

(44) x ∈ X & χ (A, X).x = 0 implies notx ∈ A,

(45) x ∈ X implies χ (∅,X).x = 0,

(46) x ∈ X implies χ (X, X).x = 1,

(47) A ⊆ X & B ⊆ X & χ (A, X) = χ (B, X) implies A = B,

(48) rng χ (A, X) ⊆ {0,1},

(49) for f being Function of X, {0,1} holds f = χ (f -1 {1},X).

Let us consider A, X . Let us note that it makes sense to consider the following

functor on a restricted area. Then

χ (A, X) is Function of X, {0,1}.

One can prove the following propositions:

(50) for d being Element of D holds χ (A, D).d = 1 iff d ∈ A,

(51) for d being Element of D holds χ (A, D).d = 0 iff not d ∈ A.

The arguments of the notions defined below are the following: Y which is an object

of the type reserved above; A which is an object of the type Subset of Y . The functor

incl A,

yields the type Function of A, Y and is defined by

it = id A.

We now state several propositions:

(52) forA being Subset of Y holds incl A = id A,

(53) forA being Subset of Y holds incl A = (id Y ) | A,

(54) forA being Subset of Y holds dom incl A = A & rng incl A = A,

(55) forA being Subset of Y st x ∈ A holds (incl A).x = x,

(56) forA being Subset of Y st x ∈ A holds incl (A).x ∈ Y.

We now define two new functors. Let us consider X , Y . The functor

π1 (X, Y ),



250 Czes law Byliński

with values of the type Function, is defined by

dom it = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds it.〈x, y〉 = x.

The functor

π2 (X, Y ),

yields the type Function and is defined by

dom it = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds it.〈x, y〉 = y.

Next we state several propositions:

(57) for f being Function holds f = π1 (X, Y )

iff dom f = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds f .〈x, y〉 = x,

(58) for f being Function holds f = π2 (X, Y )

iff dom f = [:X, Y :] & forx,y st x ∈ X & y ∈ Y holds f .〈x, y〉 = y,

(59) rng π1 (X, Y ) ⊆ X,

(60) Y 6= ∅ implies rngπ1 (X, Y ) = X,

(61) rng π2 (X, Y ) ⊆ Y,

(62) X 6= ∅ implies rng π2 (X, Y ) = Y.

Let us consider X , Y . Let us note that it makes sense to consider the following

functors on restricted areas. Then

π1 (X, Y ) is Function of [:X, Y :],X,

π2 (X, Y ) is Function of [:X, Y :],Y.

We now state two propositions:

(63) for d1 being Element of D1

for d2 being Element of D2 holds π1 (D1,D2).〈d1,d2〉 = d1,

(64) for d1 being Element of D1

for d2 being Element of D2 holds π2 (D1,D2).〈d1,d2〉 = d2.

Let us consider X . The functor

δ X,

with values of the type Function, is defined by

dom it = X & forx st x ∈ X holds it.x = 〈x, x〉.



Basic Functions and Operations on . . . 251

The following two propositions are true:

(65) for f being Function

holds f = δ X iff dom f = X & forx st x ∈ X holds f .x = 〈x, x〉,

(66) rng δ X ⊆ [:X, X :].

Let us consider X . Let us note that it makes sense to consider the following functor

on a restricted area. Then

δ X is Function of X, [:X, X :].

Let f , g have the type Function. The functor

[(f, g)],

with values of the type Function, is defined by

dom it = dom f ∩ dom g & forx st x ∈ dom it holds it.x = 〈f .x,g.x〉.

We now state a number of propositions:

(67) for f,g,fg being Function holds fg = [(f, g)]

iff dom fg = dom f ∩ dom g & forx st x ∈ dom fg holds fg.x = 〈f .x,g.x〉,

(68) for f,g being Function st x ∈ dom f ∩ dom g holds [(f, g)].x = 〈f .x,g.x〉,

(69) for f,g being Function

st dom f = X & dom g = X & x ∈ X holds [(f, g)].x = 〈f .x,g.x〉,

(70) for f,g being Function st dom f = X & dom g = X holds dom [(f, g)] = X,

(71) for f,g being Function holds rng [(f, g)] ⊆ [:rng f,rng g:],

(72) for f,g being Function st dom f = dom g & rng f ⊆ Y & rng g ⊆ Z

holds π1 (Y, Z) · [(f, g)] = f & π2 (Y, Z) · [(f, g)] = g,

(73) [(π1 (X, Y ),π2 (X, Y ))] = id [:X, Y :],

(74) for f,g,h,k being Function

st dom f = dom g & dom k = dom h & [(f, g)] = [(k, h)] holds f = k & g = h,

(75) for f,g,h being Function holds [(f · h,g · h)] = [(f, g)] · h,

(76) for f,g being Function holds [(f, g)] ◦ A ⊆ [:f ◦ A,g ◦ A:],

(77) for f,g being Function holds [(f, g)] -1 [:B, C:] = f -1 B ∩ g -1 C,



252 Czes law Byliński

(78) for f being Function of X, Y for g being Function of X, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies X = ∅)

holds [(f, g)] is Function of X, [:Y, Z:].

The arguments of the notions defined below are the following: X , D1, D2 which are

objects of the type reserved above; f1 which is an object of the type Function of X ,

D1; f2 which is an object of the type Function of X , D2. Let us note that it makes

sense to consider the following functor on a restricted area. Then

[(f1,f2)] is Function of X, [:D1,D2:].

We now state several propositions:

(79) for f1 being Function of C, D1 for f2 being Function of C, D2

for c being Element of C holds [(f1,f2)].c = 〈f1.c,f2.c〉,

(80) for f being Function of X, Y for g being Function of X, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies X = ∅) holds rng [(f, g)] ⊆ [:Y, Z:],

(81) for f being Function of X, Y for g being Function of X, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies X = ∅)

holds π1 (Y, Z) · [(f, g)] = f & π2 (Y, Z) · [(f, g)] = g,

(82) for f being Function of X, D1 for g being Function of X, D2

holds π1 (D1,D2) · [(f, g)] = f & π2 (D1,D2) · [(f, g)] = g,

(83) for f1,f2 being Function of X, Y for g1,g2 being Function of X, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies X = ∅) & [(f1,g1)] = [(f2,g2)]

holds f1 = f2 & g1 = g2,

(84) for f1,f2 being Function of X, D1 for g1,g2 being Function of X, D2

st [(f1,g1)] = [(f2,g2)] holds f1 = f2 & g1 = g2.

Let f , g have the type Function. The functor

[:f, g:],

yields the type Function and is defined by

dom it = [:dom f,dom g:]

& forx,y st x ∈ dom f & y ∈ dom g holds it.〈x, y〉 = 〈f .x,g.y〉.

The following propositions are true:

(85) for f,g,fg being Function holds fg = [:f, g:] iff dom fg = [:dom f,dom g:]

& forx,y st x ∈ dom f & y ∈ dom g holds fg.〈x, y〉 = 〈f .x,g.y〉,



Basic Functions and Operations on . . . 253

(86) for f,g being Function, x,y

st 〈x, y〉 ∈ [:dom f,dom g:] holds [:f, g:].〈x, y〉 = 〈f .x,g.y〉,

(87) for f,g being Function

holds [:f, g:] = [(f · π1 (dom f,dom g),g · π2 (dom f,dom g))],

(88) for f,g being Function holds rng [:f, g:] = [:rng f,rng g:],

(89) for f,g being Function

st dom f = X & dom g = X holds [(f, g)] = [:f, g:] · (δ X),

(90) [:id X,id Y :] = id [:X, Y :],

(91) for f,g,h,k being Function holds [:f, h:] · [(g, k)] = [(f · g,h · k)],

(92) for f,g,h,k being Function holds [:f, h:] · [:g, k:] = [:f · g,h · k:],

(93) for f,g being Function holds [:f, g:] ◦ [:B, C:] = [:f ◦ B,g ◦ C:],

(94) for f,g being Function holds [:f, g:] -1 [:B, C:] = [:f -1 B,g -1 C:],

(95) for f being Function of X, Y for g being Function of V, Z st

(Y = ∅ implies X = ∅) & (Z = ∅ implies V = ∅)

holds [:f, g:] is Function of [:X, V :],[:Y, Z:].

The arguments of the notions defined below are the following: X1, X2, D1, D2 which

are objects of the type reserved above; f1 which is an object of the type Function of

X1, D1; f2 which is an object of the type Function of X2, D2. Let us note that it

makes sense to consider the following functor on a restricted area. Then

[:f1,f2:] is Function of [:X1,X2:],[:D1,D2:].

One can prove the following propositions:

(96) for f1 being Function of C1,D1 for f2 being Function of C2,D2

for c1 being Element of C1

for c2 being Element of C2 holds [:f1,f2:].〈c1,c2〉 = 〈f1.c1,f2.c2〉,

(97) for f1 being Function of X1,Y 1 for f2 being Function of X2,Y 2 st

(Y 1 = ∅ implies X1 = ∅) & (Y 2 = ∅ implies X2 = ∅)

holds [:f1,f2:] = [(f1 · π1 (X1,X2),f2 · π2 (X1,X2))],

(98) for f1 being Function of X1,D1 for f2 being Function of X2,D2

holds [:f1,f2:] = [(f1 · π1 (X1,X2),f2 · π2 (X1,X2))],



254 Czes law Byliński

(99) for f1 being Function of X, Y 1 for f2 being Function of X, Y 2 st

(Y 1 = ∅ implies X = ∅) & (Y 2 = ∅ implies X = ∅)

holds [(f1,f2)] = [:f1,f2:] · (δ X),

(100) for f1 being Function of X, D1

for f2 being Function of X, D2 holds [(f1,f2)] = [:f1,f2:] · (δ X).

References

[1] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1,

1990.

[2] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.

[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

[4] Zinaida Trybulec and Halina Świe
‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1, 1990.

Received May 9, 1989


