Contents

Preface 5
Introduction 7
Tarski Grothendieck Set Theory
By Andrzej Trybulec 9
Built-in Concepts
By Andrzej Trybulec 13
Boolean Properties of Sets
By Zinaida Trybulec and Halina Świéczkowska 17
Enumerated Sets
By Andrzej Trybulec 25
Basic Properties of Real Numbers
By Krzysztof Hryniewiecki 35
The Fundamental Properties of Natural Numbers
By Grzegorz Bancerek 41
Some Basic Properties of Sets
By CzEsŁAW Byliński 47
Functions and Their Basic Properties
By CzesŁaw Byliński 55
Properties of Subsets
By Zinaida Trybulec 67
Relations and Their Basic Properties
By Edmund Woronowicz 73
Properties of Binary Relations
By Edmund Woronowicz and Anna Zalewska 85
The Ordinal Numbers
By Grzegorz Bancerek 91
Tuples, Projections and Cartesian Products By Andrzej Trybulec 97
Segments of Natural Numbers and Finite Sequences By Grzegorz Bancerek and Krzysztof Hryniewiecki 107
Domains and Their Cartesian Products
By Andrzej Trybulec 115
The Well Ordering Relations
By Grzegorz Bancerek 123
A Model of ZF Set Theory Language
By Grzegorz Bancerek 131
Families of Sets
By Beata Padlewska 147
Functions from a Set to a Set
By Czeseaw Byliński 153
Finite Sets
By Agata Darmochwa乇 165
Graphs of Functions.
By CzesŁaw Byliński 169
Binary Operations
By Czesław Byliński 175
Relations Defined on Sets
By Edmund Woronowicz 181
Boolean Domains
By Andrzej Trybulec and Agata Darmochwae 187
Models and Satisfiability
By Grzegorz Bancerek 191
The Contraction Lemma
By Grzegorz Bancerek 201
Axioms of Incidence
By Wojciech A. Trybulec 205
Introduction to Lattice Theory
By STANIS£AW ŻUKOWSKI 215
Topological Spaces and Continuous Functions
By Beata Padlewska and Agata Darmochwa乇 223
Subsets of Topological Spaces
By Miros£aw Wysocki and Agata Darmochwa乇 231
Connected Spaces
By Beata Padlewska 239
Basic Functions and Operations on Functions By Czeseaw Byliński 245

Preface

In recent years, several projects have aimed at providing computer assistance for doing mathematics. The project discussed here is called Mizar and concerns computer oriented formalization of mathematics, begun in 1973. The author of the Mizar language is Prof.Andrzej Trybulec (Warsaw University), who is also the leader of the group which prepared the majority of implementations. The project original goal was to design and implement a software environment to assist the process of preparing mathematical papers: the human writes mathematical texts and the machine verifies their correctness.

Université Catholique de Louvain and Foundation Philippe le Hodey (both of Belgium) has been conducting research related to the applications of the Mizar system since 1984. This research has involved an international group of mathematicians who first met at the Mizar Summer Workshop in Louvain-la-Neuve (Belgium) in 1985. Of these, the Polish group is the most active. These researchers cooperate within the framework of the Mizar Users Group (MizUG).

The papers published in the consecutive issues of "Formalized Mathematics (a computer assisted approach)" constitute the Main Mizar Library (MML). The power of the Mizar system lies in the automatic processing of cross-references among articles. This is done by the continuous actualization of MML. Before the theorems and definitions are included into the MML, they must be proved valid and correct. MML forms the basis of a Knowledge Management System for Mathematics supplied with Mizar articles. MML together with PC MIZAR are the systems for collecting, formalizing and verifying mathematical knowledge. The latest, the most advanced version of Mizar is PC MIZAR which together with MML runs on IBM PC under DOS 3.xx (implemented in Poland under the direction of Prof.A.Trybulec).

In the current issue of "Formalized Mathematics..." all the papers appear in chronological order, since they form the very beginning of MML. They concern both very general and very specialized, narrow subjects. In the future we intend to classify the papers into groups according to the mathematical domains i.e. foundations of mathematics, geometry, etc.

The MizTEX system, used for the automatic editing of this publication is constantly being developed.

Finally, I would like to add that for MizUG members we also publish the technical report "Main Mizar Library", containing the list of summaries of the articles; names of the authors, titles of the articles and names of files; publicity - ranking of theorems and articles as well as the list of contents of the articles so far published in the "Formalized Mathematics...".

Introduction

The Mizar project started many years ago and, as it developed, the emphasis on its different applications varied. It is therefore worthwhile to take this opportunity to recall that one of the main applications originally considered was using Mizar articles as source texts for mathematical publications. Of course, none of the following papers, or, rather, their abstracts, fulfils that expectation. Neverthelless, they let us see how close or how far are we still from our aim.In order to explain what exactly is published here it is necessary to at least give an outline of the project itself.

The Mizar language is a strongly standarized mathematial language, or, if one prefers, an extensively extended formalized language, for writing mathematical papers. Its structure allows for using a database; the final goal of the project is to provide a knowledge management system for mathematics. Thus it is possible to write mathematical papers in Mizar. They are usually 1000-2000 line texts corresponding to a short six- to nine-page publication or to one chapter of a textbook.

An article consists of two parts. The first, usually very short, is the description of the environment. It contains a list of publications where the notions used in the paper were introduced or where the theorems we refer to were proved, and other similar information. The second part is the text proper, where we define new notions, prove the correctness of the proposed definitions and where we prove new theorems. From the construction of the article follows that to write a new one we have to have access to the Mizar library of papers we can refer to. Obviously, to write the first papers we have to start with some axiomatics. The papers presented below make use of Main Mizar Library (MML), which was first created at the beginning of 1989 owing to the financial help obtained from the Ministry of National Education of the Republic Poland (grant RPBP III.24). The axiomatic foundation of this library is the Tarski-Grothendieck set theory which is quite a strong theory quaranteeing the existence of universal classes. To enable the Mizar processor to perform natural number computations, several additional axioms were also introduced, namely the axiomatics of strong real number arithmetic. So far the Main Mizar Library comprises of about 80 papers but their number is growing fast.

However, to verify the correctness of a paper the PC Mizar system used to build the library refers not to the library direct, but to a database automatically created from the papers there included. The data introduced into the database from a paper pass through an intermediate stage where the abstract of the paper is created. The abstractor program removes from the paper all data which are not stored in the database, i.e. justification of theorems, lemmas and private object definitions.

The evolution of the library requires writing many papers containing well-known theorems with uninteresting proofs. It seemed to us, therefore, that publication of whole papers is not justified. To tell the truth, only some of the authors were inclined to devote
their time to the systematic development of the database; others agreed to write down only that part of mathematical folklore which makes work on an ambitious paper possible. Some of the papers submitted to the library concern new, unpublished mathematical results; thus the level of the papers varies.

As we prepared this collection, we wondered whether it should not be restricted to chosen, more interesting papers. There were doubts concerning the publication of such monotonous articles as, for example [2]. Actually, this paper was written mainly because, while justifying some trivial facts, the checker (system module checking inference correctness) exceeded certain quantitative limitations and we wanted to show how this can be overcome. Those who write in Mizar may have found the proofs in this paper interesting, they were removed, however, when the abstract was created.

Still, there are good reasons for publishing all papers. First, in this way we obtain a true picture of what the library looks like. It does not seem fair to remove trivial papers, even though the reader is warned that it's been done. Second, this publication will serve to write new papers, and Mizar authors need the information what has been proved and where. This actually was our original aim, similar to [1].

The abstracts of Mizar papers do not look as well as the present publication would lead to think, if only because they are ASCII files. These abstracts were automatically converted into source files of the $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ language. Some fragments were automatically translated into English, or to be precise, into a language which reminds English a little and others were left in original Mizar form with slight modifications, for example the keywords are in bold type. The obtained texts, with the exception of abstracts containing axiomatics, were not post-edited. The programs used were implemented by the following group: Grzegorz Bancerek, Czesław Byliński, Wojciech Leończuk, Krzysztof Prażmowski, Michał Muzalewski and the author. They include a program in Turbo Pascal converting Mizar into $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ and a special $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ format (a set of $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ macros).

References

[1] Piotr Rudnicki and Andrzej Trybulec. A Collection of $T_{E} X e d$ Mizar Abstracts. Technical Report University of Alberta, 1989.
[2] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.

Tarski Grothendieck Set Theory

Andrzej Trybulec ${ }^{1}$
Warsaw University
Białystok

Summary. This is the first part of the axiomatics of the Mizar system. It includes the axioms of the Tarski Grothendieck set theory. They are: the axiom stating that everything is a set, the extensionality axiom, the definitional axiom of the singleton, the definitional axiom of the pair, the definitional axiom of the union of a family of sets, the definitional axiom of the boolean (the power set) of a set, the regularity axiom, the definitional axiom of the ordered pair, the Tarski's axiom A introduced in [2] (see also [1]), and the Frænkel scheme. Also, the definition of equinumerosity is introduced.

For simplicity we adopt the following convention: x, y, z, u will denote objects of the type Any; N, M, X, Y, Z will denote objects of the type set. Next we state two axioms:
x is set ,

$$
\begin{equation*}
(\text { for } x \text { holds } x \in X \text { iff } x \in Y) \text { implies } X=Y \text {. } \tag{1}
\end{equation*}
$$

We now introduce two functors. Let us consider y. The functor

$$
\{y\},
$$

with values of the type set, is defined by

$$
x \in \mathbf{i t} \mathbf{i f f} x=y .
$$

Let us consider z. The functor

$$
\{y, z\},
$$

with values of the type set, is defined by

$$
x \in \text { it iff } x=y \text { or } x=z .
$$

[^0]The following axioms hold:

$$
\begin{gather*}
X=\{y\} \text { iff for } x \text { holds } x \in X \text { iff } x=y \tag{3}\\
X=\{y, z\} \text { iff for } x \text { holds } x \in X \text { iff } x=y \text { or } x=z
\end{gather*}
$$

Let us consider X, Y. The predicate

$$
X \subseteq Y \quad \text { is defined by } \quad x \in X \text { implies } x \in Y
$$

Let us consider X. The functor

$$
\bigcup X
$$

with values of the type set, is defined by

$$
x \in \text { it iff ex } Y \text { st } x \in Y \& Y \in X
$$

Then we get

$$
\begin{equation*}
X=\bigcup Y \text { iff for } x \text { holds } x \in X \text { iff ex } Z \text { st } x \in Z \& Z \in Y \tag{5}
\end{equation*}
$$

The regularity axiom claims that

$$
\begin{equation*}
x \in X \text { implies ex } Y \text { st } Y \in X \& \operatorname{not} \text { ex } x \text { st } x \in X \& x \in Y \tag{7}
\end{equation*}
$$

The scheme Fraenkel deals with a constant \mathcal{A} that has the type set and a binary predicate \mathcal{P} and states that the following holds

$$
\text { ex } X \text { st for } x \text { holds } x \in X \text { iff ex } y \text { st } y \in \mathcal{A} \& \mathcal{P}[y, x]
$$

provided the parameters satisfy the following condition:

- for x, y, z st $\mathcal{P}[x, y] \& \mathcal{P}[x, z]$ holds $y=z$.

Let us consider x, y. The functor

$$
\langle x, y\rangle
$$

is defined by

$$
\mathbf{i t}=\{\{x, y\},\{x\}\} .
$$

According to the definition

$$
\begin{equation*}
\langle x, y\rangle=\{\{x, y\},\{x\}\} \tag{8}
\end{equation*}
$$

Let us consider X, Y. The predicate

$$
X \approx Y
$$

is defined by

$$
\begin{gathered}
\text { ex } Z \text { st }(\text { for } x \text { st } x \in X \text { ex } y \text { st } y \in Y \&\langle x, y\rangle \in Z) \& \\
(\text { for } y \text { st } y \in Y \text { ex } x \text { st } x \in X \&\langle x, y\rangle \in Z) \\
\& \text { for } x, y, z, u \text { st }\langle x, y\rangle \in Z \&\langle z, u\rangle \in Z \text { holds } x=z \text { iff } y=u .
\end{gathered}
$$

The Tarski's axiom A claims that
(9) ex M st $N \in M \&($ for X, Y holds $X \in M \& Y \subseteq X$ implies $Y \in M) \&$
(for X holds $X \in M$ implies bool $X \in M$)
\& for X holds $X \subseteq M$ implies $X \approx M$ or $X \in M$.

References

[1] Alfred Tarski. On well-ordered subsets of any set. Fundamenta Mathematicae, 32:176-183, 1939.
[2] Alfred Tarski. Über Unerreaichbare Kardinalzahlen. Fundamenta Mathematicae, 30:176-183, 1938.

Received January 1, 1989

Built-in Concepts

Andrzej Trybulec ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. This abstract contains the second part of the axiomatics of the Mizar system (the first part is in abstract [1]). The axioms listed here characterize the Mizar built-in concepts that are automatically attached to every Mizar article. We give definitional axioms of the following concepts: element, subset, Cartesian product, domain (non empty subset), subdomain (non empty subset of a domain), set domain (domain consisting of sets). Axioms of strong arithmetics of real numbers are also included.

The notation and terminology used here have been introduced in the axiomatics [1]. For simplicity we adopt the following convention: x, y, z denote objects of the type Any; $X, X 1, X 2, X 3, X 4, Y$ denote objects of the type set. The following axioms hold:

$$
\begin{equation*}
(\mathbf{e x} x \text { st } x \in X) \text { implies }(x \text { is Element of } X \text { iff } x \in X) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
X \text { is Subset of } Y \text { iff } X \subseteq Y \tag{2}
\end{equation*}
$$

$$
\begin{gather*}
z \in[: X, Y: \text { iff ex } x, y \text { st } x \in X \& y \in Y \& z=\langle x, y\rangle, \tag{3}\\
X \text { is DOMAIN iff ex } x \text { st } x \in X, \tag{4}\\
{[: X 1, X 2, X 3:]=[:[X 1, X 2], X 3:],} \tag{5}\\
[: X 1, X 2, X 3, X 4]=[:: X 1, X 2, X 3], X 4] \tag{6}
\end{gather*}
$$

In the sequel $D 1, D 2, D 3, D 4$ will denote objects of the type DOMAIN. Let us introduce the consecutive axioms:
(7) for X being Element of $: D 1, D 2]$ holds X is TUPLE of $D 1, D 2$,
(8) for X being Element of $: D 1, D 2, D 3]$ holds X is TUPLE of $D 1, D 2, D 3$,

[^1]
for X being Element of : $D 1, D 2, D 3, D 4$:

holds X is TUPLE of $D 1, D 2, D 3, D 4$.
In the sequel D has the type DOMAIN. The following axioms hold:

$$
\begin{gather*}
D 1 \text { is SUBDOMAIN of } D 2 \text { iff } D 1 \subseteq D 2, \tag{10}\\
D \text { is SET_DOMAIN } .
\end{gather*}
$$

In the sequel x, y, z denote objects of the type Element of REAL. The following axioms are true:

$$
\begin{align*}
& (\text { ex } x \text { st } x \in X) \&(\text { ex } x \text { st } x \in Y) \& \text { for } x, y \text { st } x \in X \& y \in Y \text { holds } x \leq y \\
& \text { ex } z \text { st for } x, y \text { st } x \in X \& y \in Y \text { holds } x \leq z \& z \leq y, \\
& x+y=y+x, \tag{12}\\
& x+(y+z)=(x+y)+z, \tag{13}\\
& x+0=x, \tag{14}\\
& x \cdot y=y \cdot x, \tag{15}\\
& x \cdot(y \cdot z)=(x \cdot y) \cdot z, \tag{16}\\
& x \cdot 1=x, \tag{17}\\
& x \cdot(y+z)=x \cdot y+x \cdot z, \tag{18}\\
& \text { ex } y \text { st } x+y=0, \tag{19}\\
& x \neq 0 \text { implies ex } y \text { st } x \cdot y=1, \tag{20}\\
& x \leq y \& y \leq x \text { implies } x=y, \tag{21}\\
& x \leq y \& y \leq z \text { implies } x \leq z, \tag{22}\\
& x \leq y \text { or } y \leq x, \tag{23}\\
& x \leq y \text { implies } x+z \leq y+z, \tag{24}\\
& x \leq y \& 0 \leq z \text { implies } x \cdot z \leq y \cdot z, \tag{25}\\
& \text { for } X, Y \text { being Subset of REAL st } \tag{26}\\
& x \text { is Real, } \tag{27}\\
& x \in \text { NAT implies } x+1 \in \text { NAT, } \tag{28}\\
& \text { for } A \text { being set of Real } \tag{29}\\
& \text { st } 0 \in A \& \text { for } x \text { st } x \in A \text { holds } x+1 \in A \text { holds NAT } \subseteq A \text {, } \\
& x \in \text { NAT implies } x \text { is Nat } . \tag{30}
\end{align*}
$$

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

Received January 1, 1989

Boolean Properties of Sets

Zinaida Trybulec ${ }^{1}$
Halina Świẹczkowska ${ }^{2}$
Warsaw University Warsaw University
Białystok Białystok

Summary. The text includes a number of theorems about Boolean operations on sets: union, intersection, difference, symmetric difference; and relations on sets: meets (having non-empty intersection), misses (being disjoint) and subset (inclusion).

The terminology and notation used here are introduced in the article [1]. For simplicity we adopt the following convention: x will have the type Any; X, Y, Z, V will have the type set. The scheme Separation concerns a constant \mathcal{A} that has the type set and a unary predicate \mathcal{P} and states that the following holds

$$
\text { ex } X \text { st for } x \text { holds } x \in X \text { iff } x \in \mathcal{A} \& \mathcal{P}[x]
$$

for all values of the parameters.
We now define several new constructions. The constant \emptyset has the type set, and is defined by

$$
\operatorname{not} \mathbf{e x} x \text { st } x \in \mathbf{i t} .
$$

Let us consider X, Y. The functor

$$
X \cup Y
$$

with values of the type set, is defined by

$$
x \in \text { it iff } x \in X \text { or } x \in Y
$$

The functor

$$
X \cap Y,
$$

[^2](C) 1990 Fondation Philippe le Hodey ISSN 0777-4028
with values of the type set, is defined by
$$
x \in \mathbf{i t} \mathbf{i f f} x \in X \& x \in Y
$$

The functor

$$
X \backslash Y
$$

yields the type set and is defined by

$$
x \in \mathbf{i t} \text { iff } x \in X \& \operatorname{not} x \in Y
$$

The predicate

$$
X \text { meets } Y \quad \text { is defined by } \quad \text { ex } x \text { st } x \in X \& x \in Y
$$

The predicate

$$
X \text { misses } Y \quad \text { is defined by } \quad \text { for } x \text { holds } x \in X \text { implies not } x \in Y \text {. }
$$

Let us consider X, Y. The functor

$$
X \doteq Y
$$

with values of the type set, is defined by

$$
\mathbf{i t}=(X \backslash Y) \cup(Y \backslash X)
$$

We now state several propositions:

$$
\begin{gather*}
Z=\emptyset \text { iff not ex } x \text { st } x \in Z, \tag{1}\\
Z=X \cup Y \text { iff for } x \text { holds } x \in Z \text { iff } x \in X \text { or } x \in Y, \tag{2}\\
Z=X \cap Y \text { iff for } x \text { holds } x \in Z \text { iff } x \in X \& x \in Y, \tag{3}\\
Z=X \backslash Y \text { iff for } x \text { holds } x \in Z \text { iff } x \in X \& \text { not } x \in Y, \tag{4}\\
X \subseteq Y \text { iff for } x \text { holds } x \in X \text { implies } x \in Y, \tag{5}\\
X \text { meets } Y \text { iff ex } x \text { st } x \in X \& x \in Y, \tag{6}\\
X \text { misses } Y \text { iff for } x \text { holds } x \in X \text { implies not } x \in Y . \tag{7}
\end{gather*}
$$

Let us consider X, Y. Let us note that one can characterize the predicate

$$
X=Y
$$

by the following (equivalent) condition:

$$
X \subseteq Y \& Y \subseteq X
$$

The following propositions are true:

$$
\begin{equation*}
x \in X \cup Y \text { iff } x \in X \text { or } x \in Y \tag{8}
\end{equation*}
$$

$$
\begin{gathered}
x \in X \cap Y \text { iff } x \in X \& x \in Y, \\
x \in X \backslash Y \text { iff } x \in X \& \operatorname{not} x \in Y, \\
x \in X \& X \subseteq Y \text { implies } x \in Y, \\
x \in X \& X \text { misses } Y \text { implies not } x \in Y, \\
x \in X \& x \in Y \text { implies } X \text { meets } Y,
\end{gathered}
$$

$x \in X$ implies $X \neq \emptyset$, X meets Y implies ex x st $x \in X \& x \in Y$, (for x st $x \in X$ holds $x \in Y$) implies $X \subseteq Y$,
(for x st $x \in X$ holds not $x \in Y$) implies $X \operatorname{misses} Y$,
(for x holds $x \in X$ iff $x \in Y$ or $x \in Z$) implies $X=Y \cup Z$, (for x holds $x \in X$ iff $x \in Y \& x \in Z$) implies $X=Y \cap Z$, (for x holds $x \in X$ iff $x \in Y$ \& not $x \in Z$) implies $X=Y \backslash Z$, $\operatorname{not}($ ex x st $x \in X)$ implies $X=\emptyset$, (for x holds $x \in X$ iff $x \in Y$) implies $X=Y$, $x \in X \doteq Y$ iff $\operatorname{not}(x \in X$ iff $x \in Y)$, $x \in X \& x \in Y$ implies $X \cap Y \neq \emptyset$,
(for x holds not $x \in X$ iff $(x \in Y$ iff $x \in Z))$ implies $X=Y \doteq Z$,
$X \subseteq X$,
$\emptyset \subseteq X$,
$X \subseteq Y \& Y \subseteq X$ implies $X=Y$,
$X \subseteq Y \& Y \subseteq Z$ implies $X \subseteq Z$,
$X \subseteq \emptyset$ implies $X=\emptyset$,
$X \subseteq X \cup Y \& Y \subseteq X \cup Y$, $X \subseteq Z \& Y \subseteq Z$ implies $X \cup Y \subseteq Z$,
$X \subseteq Y$ implies $X \cup Z \subseteq Y \cup Z \& Z \cup X \subseteq Z \cup Y$,

$$
\begin{equation*}
X \backslash Y \subseteq X \doteq Y \tag{57}
\end{equation*}
$$

$$
X \cup Y=\emptyset \mathbf{i f f} X=\emptyset \& Y=\emptyset,
$$

$$
X \cup \emptyset=X \& \emptyset \cup X=X
$$

$$
X \cap \emptyset=\emptyset \& \emptyset \cap X=\emptyset,
$$

$$
X \cup X=X
$$

$$
X \cup Y=Y \cup X
$$

$$
(X \cup Y) \cup Z=X \cup(Y \cup Z)
$$

$$
X \cap X=X
$$

$$
\begin{gathered}
X \cap Y=Y \cap X, \\
(X \cap Y) \cap Z=X \cap(Y \cap Z), \\
X \cap(X \cup Y)=X \\
\&(X \cup Y) \cap X=X \& X \cap(Y \cup X)=X \&(Y \cup X) \cap X=X, \\
X \cup(X \cap Y)=X \\
\&(X \cap Y) \cup X=X \& X \cup(Y \cap X)=X \&(Y \cap X) \cup X=X, \\
X \cap(Y \cup Z)=X \cap Y \cup X \cap Z \&(Y \cup Z) \cap X=Y \cap X \cup Z \cap X, \\
X \cup Y \cap Z=(X \cup Y) \cap(X \cup Z) \& Y \cap Z \cup X=(Y \cup X) \cap(Z \cup X), \\
(X \cap Y) \cup(Y \cap Z) \cup(Z \cap X)=(X \cup Y) \cap(Y \cup Z) \cap(Z \cup X), \\
X \backslash X=\emptyset, \\
X \backslash \emptyset=X, \\
\emptyset \backslash X=\emptyset,
\end{gathered}
$$

$$
X \backslash(X \cup Y)=\emptyset \& X \backslash(Y \cup X)=\emptyset
$$

$$
X \backslash X \cap Y=X \backslash Y \& X \backslash Y \cap X=X \backslash Y
$$

$$
(X \backslash Y) \cap Y=\emptyset \& Y \cap(X \backslash Y)=\emptyset
$$

$$
X \cup(Y \backslash X)=X \cup Y \&(Y \backslash X) \cup X=Y \cup X
$$

$$
X \cap Y \cup(X \backslash Y)=X \&(X \backslash Y) \cup X \cap Y=X
$$

$$
X \backslash(Y \backslash Z)=(X \backslash Y) \cup X \cap Z
$$

$$
X \backslash(X \backslash Y)=X \cap Y
$$

$$
\begin{aligned}
& (X \cup Y) \backslash Y=X \backslash Y, \\
& X \cap Y=\emptyset \text { iff } X \backslash Y=X, \\
& X \backslash(Y \cup Z)=(X \backslash Y) \cap(X \backslash Z), \\
& X \backslash(Y \cap Z)=(X \backslash Y) \cup(X \backslash Z), \\
& (X \cup Y) \backslash(X \cap Y)=(X \backslash Y) \cup(Y \backslash X), \\
& (X \backslash Y) \backslash Z=X \backslash(Y \cup Z), \\
& (X \cup Y) \backslash Z=(X \backslash Z) \cup(Y \backslash Z), \\
& X \backslash Y=Y \backslash X \text { implies } X=Y, \\
& X \dot{-} Y=(X \backslash Y) \cup(Y \backslash X), \\
& X \doteq \emptyset=X \& \emptyset \doteq X=X, \\
& X \dot{-}=\emptyset, \\
& X \dot{-} Y=Y \dot{\perp}, \\
& X \cup Y=(X \doteq Y) \cup X \cap Y, \\
& X \doteq Y=(X \cup Y) \backslash X \cap Y, \\
& (X \doteq Y) \backslash Z=(X \backslash(Y \cup Z)) \cup(Y \backslash(X \cup Z)), \\
& X \backslash(Y \doteq Z)=X \backslash(Y \cup Z) \cup X \cap Y \cap Z, \\
& (X \doteq Y) \doteq Z=X \doteq(Y \doteq Z), \\
& X \text { meets } Y \cup Z \text { iff } X \text { meets } Y \text { or } X \text { meets } Z, \\
& X \text { meets } Y \& Y \subseteq Z \text { implies } X \text { meets } Z, \\
& X \text { meets } Y \cap Z \text { implies } X \text { meets } Y \& X \text { meets } Z, \\
& X \text { meets } Y \text { implies } Y \text { meets } X \text {, } \\
& \operatorname{not}(X \text { meets } \emptyset \text { or } \emptyset \text { meets } X), \\
& X \text { misses } Y \text { iff not } X \text { meets } Y \text {, } \\
& X \text { misses } Y \cup Z \text { iff } X \text { misses } Y \& X \text { misses } Z, \\
& X \text { misses } Z \& Y \subseteq Z \text { implies } X \text { misses } Y \text {, }
\end{aligned}
$$

(108)

$$
\begin{aligned}
& X \text { misses } Y \text { or } X \text { misses } Z \text { implies } X \text { misses } Y \cap Z \text {, } \\
& X \text { misses } \emptyset \& \emptyset \text { misses } X, \\
& X \text { meets } X \text { iff } X \neq \emptyset, \\
& X \cap Y \text { misses } X \backslash Y, \\
& X \cap Y \text { misses } X \doteq Y, \\
& X \text { meets } Y \backslash Z \text { implies } X \text { meets } Y \text {, } \\
& X \subseteq Y \& X \subseteq Z \& Y \text { misses } Z \text { implies } X=\emptyset, \\
& X \backslash Y \subseteq Z \& Y \backslash X \subseteq Z \text { implies } X \doteq Y \subseteq Z, \\
& X \cap(Y \backslash Z)=(X \cap Y) \backslash Z, \\
& X \cap(Y \backslash Z)=X \cap Y \backslash X \cap Z \&(Y \backslash Z) \cap X=Y \cap X \backslash Z \cap X, \\
& X \text { misses } Y \text { iff } X \cap Y=\emptyset, \\
& X \text { meets } Y \text { iff } X \cap Y \neq \emptyset, \\
& X \subseteq(Y \cup Z) \& X \cap Z=\emptyset \text { implies } X \subseteq Y, \\
& Y \subseteq X \& X \cap Y=\emptyset \text { implies } Y=\emptyset, \\
& X \text { misses } Y \text { implies } Y \text { misses } X \text {. }
\end{aligned}
$$

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

Received January 6, 1989

Enumerated Sets

Andrzej Trybulec ${ }^{1}$
Warsaw University
Białystok

Summary. We prove basic facts about enumerated sets: definitional theorems and their immediate consequences, some theorems related to the decomposition of an enumerated set into union of two sets, facts about removing elements that occur more than once, and facts about permutations of enumerated sets (with the length ≤ 4). The article includes also schemes enabling instantiation of up to nine universal quantifiers.

The terminology and notation used in this paper have been introduced in the papers [1] and [2]. For simplicity we adopt the following convention: $x, x 1, x 2, x 3, x 4, x 5, x 6$, $x 7, x 8$ have the type Any; X has the type set. In the article we present several logical schemes. The scheme UI1 concerns a constant \mathcal{A} and a unary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}]
$$

provided the parameters satisfy the following condition:

- for $x 1$ holds $\mathcal{P}[x 1]$.

The scheme UI2 deals with a constant \mathcal{A}, a constant \mathcal{B} and a binary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}, \mathcal{B}]
$$

provided the parameters satisfy the following condition:

- for $x 1, x 2$ holds $\mathcal{P}[x 1, x 2]$.

The scheme UI3 concerns a constant \mathcal{A}, a constant \mathcal{B}, a constant \mathcal{C} and a ternary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}, \mathcal{B}, \mathcal{C}]
$$

[^3]provided the parameters satisfy the following condition:

- for $x 1, x 2, x 3$ holds $\mathcal{P}[x 1, x 2, x 3]$.

The scheme UI4 concerns a constant \mathcal{A}, a constant \mathcal{B}, a constant \mathcal{C}, a constant \mathcal{D} and a 4 -ary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}]
$$

provided the parameters satisfy the following condition:

- for $x 1, x 2, x 3, x 4$ holds $\mathcal{P}[x 1, x 2, x 3, x 4]$.

The scheme UI5 deals with a constant \mathcal{A}, a constant \mathcal{B}, a constant \mathcal{C}, a constant \mathcal{D}, a constant \mathcal{E} and a 5 -ary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}]
$$

provided the parameters satisfy the following condition:

- for $x 1, x 2, x 3, x 4, x 5$ holds $\mathcal{P}[x 1, x 2, x 3, x 4, x 5]$.

The scheme UI6 deals with a constant \mathcal{A}, a constant \mathcal{B}, a constant \mathcal{C}, a constant \mathcal{D}, a constant \mathcal{E}, a constant \mathcal{F} and a 6 -ary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}]
$$

provided the parameters satisfy the following condition:

- for $x 1, x 2, x 3, x 4, x 5, x 6$ holds $\mathcal{P}[x 1, x 2, x 3, x 4, x 5, x 6]$.

The scheme $U I 7$ concerns a constant \mathcal{A}, a constant \mathcal{B}, a constant \mathcal{C}, a constant \mathcal{D}, a constant \mathcal{E}, a constant \mathcal{F}, a constant \mathcal{G} and a 7 -ary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}]
$$

provided the parameters satisfy the following condition:

- for $x 1, x 2, x 3, x 4, x 5, x 6, x 7$ holds $\mathcal{P}[x 1, x 2, x 3, x 4, x 5, x 6, x 7]$.

The scheme $U I 8$ concerns a constant \mathcal{A}, a constant \mathcal{B}, a constant \mathcal{C}, a constant \mathcal{D}, a constant \mathcal{E}, a constant \mathcal{F}, a constant \mathcal{G}, a constant \mathcal{H} and a 8 -ary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}]
$$

provided the parameters satisfy the following condition:

- \quad for $x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8$ holds $\mathcal{P}[x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8]$.

The scheme $U I 9$ concerns a constant \mathcal{A}, a constant \mathcal{B}, a constant \mathcal{C}, a constant \mathcal{D}, a constant \mathcal{E}, a constant \mathcal{F}, a constant \mathcal{G}, a constant \mathcal{H}, a constant \mathcal{I} and a 9 -ary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}, \mathcal{E}, \mathcal{F}, \mathcal{G}, \mathcal{H}, \mathcal{I}]
$$

provided the parameters satisfy the following condition:

- for $x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9$ being Any holds $\mathcal{P}[x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8, x 9]$.

We now state a number of propositions:
(1) for $x 1, X$ holds $X=\{x 1\}$ iff for x holds $x \in X$ iff $x=x 1$,

$$
\begin{gather*}
\text { for } x 1, x \text { holds } x \in\{x 1\} \text { iff } x=x 1, \tag{2}\\
x \in\{x 1\} \text { implies } x=x 1, \tag{3}
\end{gather*}
$$

$$
\begin{equation*}
x \in\{x\}, \tag{4}
\end{equation*}
$$

for $x 1, X$ st for x holds $x \in X$ iff $x=x 1$ holds $X=\{x 1\}$,
(6) for $x 1, x 2, X$ holds $X=\{x 1, x 2\}$ iff for x holds $x \in X$ iff $x=x 1$ or $x=x 2$,
for $x 1, x 2$ for x holds $x \in\{x 1, x 2\}$ iff $x=x 1$ or $x=x 2$, $x \in\{x 1, x 2\}$ implies $x=x 1$ or $x=x 2$, $x=x 1$ or $x=x 2$ implies $x \in\{x 1, x 2\}$,
(10) for $x 1, x 2, X$ st for x holds $x \in X$ iff $x=x 1$ or $x=x 2$ holds $X=\{x 1, x 2\}$.

Let us consider $x 1, x 2, x 3$. The functor

$$
\{x 1, x 2, x 3\}
$$

yields the type set and is defined by

$$
x \in \text { it iff } x=x 1 \text { or } x=x 2 \text { or } x=x 3
$$

One can prove the following propositions:

$$
\begin{equation*}
\text { for } x 1, x 2, x 3, X \tag{11}
\end{equation*}
$$

holds $X=\{x 1, x 2, x 3\}$ iff for x holds $x \in X$ iff $x=x 1$ or $x=x 2$ or $x=x 3$,

$$
\begin{align*}
& \text { for } x 1, x 2, x 3 \text { for } x \text { holds } x \in\{x 1, x 2, x 3\} \text { iff } x=x 1 \text { or } x=x 2 \text { or } x=x 3, \tag{12}\\
& \qquad x \in\{x 1, x 2, x 3\} \text { implies } x=x 1 \text { or } x=x 2 \text { or } x=x 3 \tag{13}
\end{align*}
$$

$$
\begin{gather*}
x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { implies } x \in\{x 1, x 2, x 3\}, \tag{14}\\
\text { for } x 1, x 2, x 3, X \tag{15}
\end{gather*}
$$

st for x holds $x \in X$ iff $x=x 1$ or $x=x 2$ or $x=x 3$ holds $X=\{x 1, x 2, x 3\}$.
Let us consider $x 1, x 2, x 3, x 4$. The functor

$$
\{x 1, x 2, x 3, x 4\}
$$

with values of the type set, is defined by

$$
x \in \text { it iff } x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4
$$

We now state several propositions:

$$
\begin{equation*}
\text { for } x 1, x 2, x 3, x 4 \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
\text { for } x 1, x 2, x 3, x 4, X \text { holds } X=\{x 1, x 2, x 3, x 4\} \tag{16}
\end{equation*}
$$

$$
\text { iff for } x \text { holds } x \in X \text { iff } x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4
$$

for x holds $x \in\{x 1, x 2, x 3, x 4\}$ iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$,

$$
\begin{align*}
& x \in\{x 1, x 2, x 3, x 4\} \text { implies } x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \tag{18}\\
& x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { implies } x \in\{x 1, x 2, x 3, x 4\} \tag{19}
\end{align*}
$$

$$
\begin{equation*}
\text { for } x 1, x 2, x 3, x 4, X \mathbf{s t} \tag{20}
\end{equation*}
$$

for x holds $x \in X$ iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$

$$
\text { holds } X=\{x 1, x 2, x 3, x 4\} .
$$

Let us consider $x 1, x 2, x 3, x 4, x 5$. The functor

$$
\{x 1, x 2, x 3, x 4, x 5\}
$$

yields the type set and is defined by

$$
x \in \text { it iff } x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { or } x=x 5
$$

Next we state several propositions:

$$
\begin{equation*}
\text { for } x 1, x 2, x 3, x 4, x 5 \text { for } X \text { being set holds } X=\{x 1, x 2, x 3, x 4, x 5\} \tag{21}
\end{equation*}
$$

iff for x holds $x \in X$ iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$,
$x \in\{x 1, x 2, x 3, x 4, x 5\}$ iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$,

$$
\begin{equation*}
x \in\{x 1, x 2, x 3, x 4, x 5\} \tag{22}
\end{equation*}
$$

implies $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$,

$$
\begin{gather*}
x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { or } x=x 5 \tag{24}\\
\text { implies } x \in\{x 1, x 2, x 3, x 4, x 5\},
\end{gather*}
$$

for X being set st
for x holds $x \in X$ iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ holds $X=\{x 1, x 2, x 3, x 4, x 5\}$.

Let us consider $x 1, x 2, x 3, x 4, x 5, x 6$. The functor

$$
\{x 1, x 2, x 3, x 4, x 5, x 6\}
$$

with values of the type set, is defined by

$$
x \in \text { it iff } x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { or } x=x 5 \text { or } x=x 6
$$

We now state several propositions:
for $x 1, x 2, x 3, x 4, x 5, x 6$ for X being set holds $X=\{x 1, x 2, x 3, x 4, x 5, x 6\}$ iff for x
holds $x \in X$ iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ or $x=x 6$,

$$
\begin{equation*}
x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { or } x=x 5 \text { or } x=x 6 \tag{29}
\end{equation*}
$$

implies $x \in\{x 1, x 2, x 3, x 4, x 5, x 6\}$,

for X being set st

for x
holds $x \in X$ iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ or $x=x 6$
holds $X=\{x 1, x 2, x 3, x 4, x 5, x 6\}$.
Let us consider $x 1, x 2, x 3, x 4, x 5, x 6, x 7$. The functor

$$
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\},
$$

yields the type set and is defined by

$$
x \in \text { it iff } x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { or } x=x 5 \text { or } x=x 6 \text { or } x=x 7
$$

The following propositions are true:
(31) for $x 1, x 2, x 3, x 4, x 5, x 6, x 7$ for X being set holds $X=\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\}$
iff for x holds $x \in X$
iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ or $x=x 6$ or $x=x 7$,

$$
\begin{equation*}
x \in\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} \tag{32}
\end{equation*}
$$

$$
\text { iff } x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { or } x=x 5 \text { or } x=x 6 \text { or } x=x 7
$$

$x \in\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\}$ implies

$$
\begin{align*}
& x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { or } x=x 5 \text { or } x=x 6 \text { or } x=x 7, \tag{33}\\
& x=x 1 \text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { or } x=x 5 \text { or } x=x 6 \text { or } x=x 7 \tag{34}
\end{align*}
$$

implies $x \in\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\}$,
for X being set st
for x holds $x \in X$
iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ or $x=x 6$ or $x=x 7$
holds $X=\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\}$.
Let us consider $x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8$. The functor

$$
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\}
$$

with values of the type set, is defined by

$$
x \in \mathbf{i t}
$$

iff $x=x 1$ or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ or $x=x 6$ or $x=x 7$ or $x=x 8$.
Next we state a number of propositions:

$$
\begin{gather*}
\text { for } x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8 \text { for } X \text { being set holds } \tag{36}\\
X=\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} \text { iff for } x \text { holds } x \in X \text { iff } x=x 1 \\
\text { or } x=x 2 \text { or } x=x 3 \text { or } x=x 4 \text { or } x=x 5 \text { or } x=x 6 \text { or } x=x 7 \text { or } x=x 8,
\end{gather*}
$$

$$
\begin{equation*}
x \in\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} \text { iff } x=x 1 \tag{37}
\end{equation*}
$$

or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ or $x=x 6$ or $x=x 7$ or $x=x 8$,

$$
\begin{equation*}
x \in\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} \text { implies } x=x 1 \tag{38}
\end{equation*}
$$

or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ or $x=x 6$ or $x=x 7$ or $x=x 8$,

$$
\begin{equation*}
x=x 1 \tag{39}
\end{equation*}
$$

or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ or $x=x 6$ or $x=x 7$ or $x=x 8$
implies $x \in\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\}$,
for X being set st
for x holds $x \in X$ iff $x=x 1$
or $x=x 2$ or $x=x 3$ or $x=x 4$ or $x=x 5$ or $x=x 6$ or $x=x 7$ or $x=x 8$
holds $X=\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\}$,
(41)

$$
\begin{aligned}
\{x 1, x 2\} & =\{x 1\} \cup\{x 2\}, \\
\{x 1, x 2, x 3\} & =\{x 1\} \cup\{x 2, x 3\}, \\
\{x 1, x 2, x 3\} & =\{x 1, x 2\} \cup\{x 3\}, \\
\{x 1, x 2, x 3, x 4\} & =\{x 1\} \cup\{x 2, x 3, x 4\}, \\
\{x 1, x 2, x 3, x 4\} & =\{x 1, x 2\} \cup\{x 3, x 4\}, \\
\{x 1, x 2, x 3, x 4\} & =\{x 1, x 2, x 3\} \cup\{x 4\}, \\
\{x 1, x 2, x 3, x 4, x 5\} & =\{x 1\} \cup\{x 2, x 3, x 4, x 5\}, \\
\{x 1, x 2, x 3, x 4, x 5\} & =\{x 1, x 2\} \cup\{x 3, x 4, x 5\}, \\
\{x 1, x 2, x 3, x 4, x 5\} & =\{x 1, x 2, x 3\} \cup\{x 4, x 5\}, \\
\{x 1, x 2, x 3, x 4, x 5\} & =\{x 1, x 2, x 3, x 4\} \cup\{x 5\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6\} & =\{x 1\} \cup\{x 2, x 3, x 4, x 5, x 6\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6\} & =\{x 1, x 2\} \cup\{x 3, x 4, x 5, x 6\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6\} & =\{x 1, x 2, x 3\} \cup\{x 4, x 5, x 6\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6\} & =\{x 1, x 2, x 3, x 4\} \cup\{x 5, x 6\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6\} & =\{x 1, x 2, x 3, x 4, x 5\} \cup\{x 6\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} & =\{x 1\} \cup\{x 2, x 3, x 4, x 5, x 6, x 7\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} & =\{x 1, x 2\} \cup\{x 3, x 4, x 5, x 6, x 7\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} & =\{x 1, x 2, x 3\} \cup\{x 4, x 5, x 6, x 7\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} & =\{x 1, x 2, x 3, x 4\} \cup\{x 5, x 6, x 7\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} & =\{x 1, x 2, x 3, x 4, x 5\} \cup\{x 6, x 7\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} & =\{x 1, x 2, x 3, x 4, x 5, x 6\} \cup\{x 7\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} & =\{x 1\} \cup\{x 2, x 3, x 4, x 5, x 6, x 7, x 8\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\}\} & =\{x 1, x 2, x 3\} \cup\{x 4, x 5, x 6, x 7, x 8\}, \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} & =\{x 1, x 2, x 3, x 4\} \cup\{x 5, x 6, x 7, x 8\},
\end{aligned}
$$

$$
\begin{align*}
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} & =\{x 1, x 2, x 3, x 4, x 5\} \cup\{x 6, x 7, x 8\} \tag{66}\\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} & =\{x 1, x 2, x 3, x 4, x 5, x 6\} \cup\{x 7, x 8\} \\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} & =\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} \cup\{x 8\} \\
\{x 1, x 1\} & =\{x 1\} \tag{69}\\
\{x 1, x 1, x 2\} & =\{x 1, x 2\} \tag{70}
\end{align*}
$$

$$
\begin{align*}
& \{x 1, x 1\}=\{x 1\}, \\
& \{x 1, x 1, x 2\}=\{x 1, x 2\}, \\
& \{x 1, x 1, x 2, x 3\}=\{x 1, x 2, x 3\}, \tag{71}\\
& \{x 1, x 1, x 2, x 3, x 4\}=\{x 1, x 2, x 3, x 4\}, \tag{72}\\
& \{x 1, x 1, x 2, x 3, x 4, x 5\}=\{x 1, x 2, x 3, x 4, x 5\}, \tag{73}\\
& \{x 1, x 1, x 2, x 3, x 4, x 5, x 6\}=\{x 1, x 2, x 3, x 4, x 5, x 6\}, \tag{74}\\
& \{x 1, x 1, x 2, x 3, x 4, x 5, x 6, x 7\}=\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\}, \tag{75}\\
& \{x 1, x 1, x 1\}=\{x 1\}, \tag{76}\\
& \{x 1, x 1, x 1, x 2\}=\{x 1, x 2\}, \tag{77}\\
& \{x 1, x 1, x 1, x 2, x 3\}=\{x 1, x 2, x 3\}, \tag{78}\\
& \{x 1, x 1, x 1, x 2, x 3, x 4\}=\{x 1, x 2, x 3, x 4\}, \tag{79}\\
& \{x 1, x 1, x 1, x 2, x 3, x 4, x 5\}=\{x 1, x 2, x 3, x 4, x 5\}, \tag{80}\\
& \{x 1, x 1, x 1, x 2, x 3, x 4, x 5, x 6\}=\{x 1, x 2, x 3, x 4, x 5, x 6\}, \tag{81}\\
& \{x 1, x 1, x 1, x 1\}=\{x 1\}, \tag{82}\\
& \{x 1, x 1, x 1, x 1, x 2\}=\{x 1, x 2\}, \tag{83}\\
& \{x 1, x 1, x 1, x 1, x 2, x 3\}=\{x 1, x 2, x 3\}, \tag{84}\\
& \{x 1, x 1, x 1, x 1, x 2, x 3, x 4\}=\{x 1, x 2, x 3, x 4\}, \tag{85}\\
& \{x 1, x 1, x 1, x 1, x 2, x 3, x 4, x 5\}=\{x 1, x 2, x 3, x 4, x 5\}, \tag{86}\\
& \{x 1, x 1, x 1, x 1, x 1\}=\{x 1\}, \tag{87}\\
& \{x 1, x 1, x 1, x 1, x 1, x 2\}=\{x 1, x 2\}, \tag{88}\\
& \{x 1, x 1, x 1, x 1, x 1, x 2, x 3\}=\{x 1, x 2, x 3\}, \tag{89}\\
& \{x 1, x 1, x 1, x 1, x 1, x 2, x 3, x 4\}=\{x 1, x 2, x 3, x 4\}, \tag{90}
\end{align*}
$$

(91)

$$
\begin{aligned}
\{x 1, x 1, x 1, x 1, x 1, x 1\} & =\{x 1\}, \\
\{x 1, x 1, x 1, x 1, x 1, x 1, x 2\} & =\{x 1, x 2\}, \\
\{x 1, x 1, x 1, x 1, x 1, x 1, x 2, x 3\} & =\{x 1, x 2, x 3\}, \\
\{x 1, x 1, x 1, x 1, x 1, x 1, x 1\} & =\{x 1\}, \\
\{x 1, x 2\} & =\{x 1, x 2\},
\end{aligned}
$$

$$
\{x 1, x 1\}=\{x 1\}
$$

$$
\{x 1, x 2\}=\{x 2, x 1\}
$$

$$
\{x 1, x 2, x 3\}=\{x 1, x 3, x 2\},
$$

$$
\{x 1, x 2, x 3\}=\{x 2, x 1, x 3\},
$$

$$
\{x 1, x 2, x 3\}=\{x 2, x 3, x 1\},
$$

$$
\{x 1, x 2, x 3\}=\{x 3, x 1, x 2\},
$$

$$
\{x 1, x 2, x 3\}=\{x 3, x 2, x 1\},
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 1, x 2, x 4, x 3\}
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 1, x 3, x 2, x 4\}
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 1, x 3, x 4, x 2\},
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 1, x 4, x 2, x 3\}
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 1, x 4, x 3, x 2\},
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 2, x 1, x 3, x 4\}
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 2, x 1, x 4, x 3\},
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 2, x 3, x 1, x 4\}
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 2, x 3, x 4, x 1\}
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 2, x 4, x 1, x 3\},
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 2, x 4, x 3, x 1\}
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 3, x 1, x 2, x 4\}
$$

$$
\{x 1, x 2, x 3, x 4\}=\{x 3, x 1, x 4, x 2\}
$$

$$
\begin{aligned}
& \{x 1, x 2, x 3, x 4\}=\{x 3, x 2, x 1, x 4\} \\
& \{x 1, x 2, x 3, x 4\}=\{x 3, x 2, x 4, x 1\} \\
& \{x 1, x 2, x 3, x 4\}=\{x 3, x 4, x 1, x 2\} \\
& \{x 1, x 2, x 3, x 4\}=\{x 3, x 4, x 2, x 1\} \\
& \{x 1, x 2, x 3, x 4\}=\{x 4, x 1, x 2, x 3\} \\
& \{x 1, x 2, x 3, x 4\}=\{x 4, x 1, x 3, x 2\} \\
& \{x 1, x 2, x 3, x 4\}=\{x 4, x 2, x 1, x 3\} \\
& \{x 1, x 2, x 3, x 4\}=\{x 4, x 2, x 3, x 1\} \\
& \{x 1, x 2, x 3, x 4\}=\{x 4, x 3, x 1, x 2\} \\
& \{x 1, x 2, x 3, x 4\}=\{x 4, x 3, x 2, x 1\}
\end{aligned}
$$

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received January 8, 1989

Basic Properties of Real Numbers

Krzysztof Hryniewiecki ${ }^{1}$
Warsaw University

Summary. Basic facts of arithmetics of real numbers are presented: definitions and properties of the complement element, the inverse element, subtraction and division; some basic properties of the set REAL (e.g. density), and the scheme of separation for sets of reals.

For simplicity we adopt the following convention: x, y, z, t will denote objects of the type Real; r will denote an object of the type Any. Let us consider x, y. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{ll}
x+y & \text { is } \quad \text { Real, } \\
x \cdot y & \text { is } \quad \text { Real. }
\end{array}
$$

One can prove the following propositions:

$$
\begin{equation*}
r \text { is Real iff } r \in \text { REAL } \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
x+y=y+x \tag{2}\\
x+(y+z)=(x+y)+z \tag{3}\\
x+0=x \& 0+x=x \tag{4}
\end{gather*}
$$

$$
\begin{equation*}
(x+y) \cdot z=x \cdot z+y \cdot z \& z \cdot(x+y)=z \cdot x+z \cdot y \tag{7}
\end{equation*}
$$

(9) $z \neq 0 \& x \neq y$ implies $x \cdot z \neq y \cdot z \& z \cdot x \neq y \cdot z \& z \cdot x \neq z \cdot y \& x \cdot z \neq z \cdot y$,

[^4]\[

$$
\begin{gather*}
z+x=z+y \text { or } x+z=y+z \text { or } z+x=y+z \text { or } x+z=z+y \tag{10}\\
\text { implies } x=y \\
x \neq y \text { iff } x+z \neq y+z \tag{11}\\
z \neq 0 \&(x \cdot z=y \cdot z \text { or } z \cdot x=z \cdot y \text { or } x \cdot z=z \cdot y \text { or } z \cdot x=y \cdot z) \tag{12}\\
\text { implies } x=y
\end{gather*}
$$
\]

We now define two new functors. Let us consider x. The functor

$$
-x
$$

with values of the type Real, is defined by

$$
x+\mathbf{i t}=0
$$

Assume that the following holds

$$
x \neq 0
$$

The functor

$$
x^{-1}
$$

yields the type Real and is defined by

$$
x \cdot \mathbf{i t}=1
$$

We now define two new functors. Let us consider x, y. The functor

$$
x-y
$$

yields the type Real and is defined by

$$
\mathbf{i t}=x+(-y)
$$

Assume that the following holds

$$
y \neq 0
$$

The functor

$$
x / y
$$

yields the type Real and is defined by

$$
\mathbf{i t}=x \cdot y^{-1}
$$

The following propositions are true:

$$
\begin{gather*}
x+-x=0 \&-x+x=0 \tag{13}\\
x-y=x+-y \tag{14}
\end{gather*}
$$

$$
x \cdot(y-z)=x \cdot y-x \cdot z \&(y-z) \cdot x=y \cdot x-z \cdot x
$$

$$
x+z=y \text { implies } x=y-z \& z=y-x
$$

$$
x \neq 0 \text { implies } x^{-1} \neq 0
$$

$$
x \neq 0 \text { implies } x^{-1-1}=x
$$

$$
x \neq 0 \text { implies } 1 / x=x^{-1} \& 1 / x^{-1}=x
$$

$$
x \neq 0 \text { implies } x \cdot(1 / x)=1 \&(1 / x) \cdot x=1
$$

$$
y \neq 0 \& t \neq 0 \text { implies }(x / y) \cdot(z / t)=(x \cdot z) /(y \cdot t)
$$

$$
x-x=0
$$

$$
x \neq 0 \text { implies } x / x=1
$$

$$
y \neq 0 \& z \neq 0 \text { implies } x / y=(x \cdot z) /(y \cdot z)
$$

$$
y \neq 0 \text { implies }-x / y=(-x) / y \& x /(-y)=-x / y
$$

$$
\begin{aligned}
& x \neq 0 \text { implies } x \cdot x^{-1}=1 \& x^{-1} \cdot x=1, \\
& y \neq 0 \text { implies } x / y=x \cdot y^{-1} \& x / y=y^{-1} \cdot x, \\
& x+y-z=x+(y-z), \\
& -(-x)=x, \\
& 0-x=-x, \\
& x \cdot 0=0 \& 0 \cdot x=0, \\
& (-x) \cdot y=-(x \cdot y) \& x \cdot(-y)=-(x \cdot y) \&(-x) \cdot y=x \cdot(-y), \\
& x \neq 0 \text { iff }-x \neq 0, \\
& x \cdot y=0 \text { iff } x=0 \text { or } y=0, \\
& x \neq 0 \& y \neq 0 \text { implies } x^{-1} \cdot y^{-1}=(x \cdot y)^{-1}, \\
& x-0=x, \\
& -0=0, \\
& x-(y+z)=x-y-z, \\
& x-(y-z)=x-y+z,
\end{aligned}
$$

$$
\begin{gather*}
y \neq 0 \& t \neq 0 \tag{41}\\
\text { implies } x / y+z / t=(x \cdot t+z \cdot y) /(y \cdot t) \& x / y-z / t=(x \cdot t-z \cdot y) /(y \cdot t), \\
y \neq 0 \& z \neq 0 \text { implies } x /(y / z)=(x \cdot z) / y \tag{42}\\
y \neq 0 \text { implies } x / y \cdot y=x \tag{43}\\
\text { for } x, y \text { ex } z \text { st } x=y+z \& x=z+y, \tag{44}\\
\text { for } x, y \text { st } y \neq 0 \text { ex } z \text { st } x=y \cdot z \& x=z \cdot y, \tag{45}\\
x \leq y \& y \leq x \text { implies } x=y \tag{46}\\
x \leq y \& y \leq z \text { implies } x \leq z \tag{47}\\
x \leq y \text { or } y \leq x \tag{48}\\
x \leq y \leq y \text { iff } y \leq y \leq x \tag{49}
\end{gather*}
$$

(51) $x \leq y \& 0 \leq z$ implies $x \cdot z \leq y \cdot z \& z \cdot x \leq z \cdot y \& z \cdot x \leq y \cdot z \& x \cdot z \leq z \cdot y$,
(52) $x \leq y \& z \leq 0$ implies $y \cdot z \leq x \cdot z \& z \cdot y \leq z \cdot x \& y \cdot z \leq z \cdot x \& z \cdot y \leq x \cdot z$,

$$
\begin{gather*}
x \leq y \text { iff } x+z \leq y+z \tag{53}\\
x \leq y \text { iff } x-z \leq y-z \tag{54}\\
x \leq y \& z \leq t \tag{55}
\end{gather*}
$$

$$
\text { implies } x+z \leq y+t \& x+z \leq t+y \& z+x \leq t+y \& z+x \leq y+t
$$

$$
\begin{equation*}
x \leq x \tag{56}
\end{equation*}
$$

Let us consider x, y. The predicate

$$
x<y \quad \text { is defined by } \quad x \leq y \& x \neq y
$$

One can prove the following propositions:

$$
\begin{gather*}
x<y \text { iff } x \leq y \& x \neq y \tag{57}\\
x \leq y \& y<z \text { or } x<y \& y \leq z \text { or } x<y \& y<z \text { implies } x<z \tag{58}\\
x<y \text { implies } x+z<y+z \tag{59}\\
\& x-z<y-z \& z+x<z+y \& x+z<z+y \& z+x<y+z
\end{gather*}
$$

$$
\begin{gather*}
x+z<y+z \tag{60}\\
\text { or } z+x<z+y \text { or } x+z<z+y \text { or } z+x<y+z \text { or } x-z<y-z \\
\text { implies } x<y, \\
x \neq y \text { implies } x<y \text { or } y<x, \\
\text { not } x<y \text { iff } y \leq x, \\
x<y \text { or } y<x \text { or } x=y, \\
x<y \text { implies not } y<x, \\
0<1, \\
x<0 \text { iff } 0<-x, \\
x<y \& z \leq t \text { or } x \leq y \& z<t \text { or } x<y \& z<t \\
\text { implies } x+z<y+t \& z+x<y+t \& z+x<t+y \& x+z<t+y, \\
x<y \text { iff }-y<-x \\
x+y
\end{gather*}
$$

(70) $0<z \& x<y$ implies $x \cdot z<y \cdot z \& z \cdot x<z \cdot y \& x \cdot z<z \cdot y \& z \cdot x<y \cdot z$,
(71) $z<0 \& x<y$ implies $y \cdot z<x \cdot z \& z \cdot y<z \cdot x \& y \cdot z<z \cdot x \& z \cdot y<x \cdot z$,

$$
\begin{gather*}
0<z \text { implies } 0<z^{-1} \tag{72}\\
0<z \operatorname{implies}(x<y \text { iff } x / z<y / z), \tag{73}\\
z<0 \text { implies }(x<y \text { iff } y / z<x / z) \tag{74}\\
x<y \text { implies ex } z \text { st } x<z \& z<y, \tag{75}\\
\text { for } x \text { ex } y \text { st } x<y \tag{76}\\
\text { for } x \text { ex } y \text { st } y<x \tag{77}\\
\text { for } X, Y \text { being Subset of REAL st } \tag{78}
\end{gather*}
$$

$($ ex x st $x \in X) \&(\mathbf{e x} x$ st $x \in Y) \&$ for x, y st $x \in X \& y \in Y$ holds $x \leq y$ $\mathbf{e x} z$ st for x, y st $x \in X \& y \in Y$ holds $x \leq z \& z \leq y$.

The scheme SepReal concerns a unary predicate \mathcal{P} states that the following holds

$$
\text { ex } X \text { being set of Real st for } x \text { holds } x \in X \text { iff } \mathcal{P}[x]
$$

for all values of the parameter.

The following propositions are true:

$$
\begin{align*}
& \text { for } x, y \text { st } x \neq 0 \text { holds } y=x^{-1} \text { iff } x \cdot y=1 \text {, } \tag{80}\\
& \text { for } x, y \text { st } x \neq 0 \& y \neq 0 \text { holds }(x / y)^{-1}=y / x, \tag{81}\\
& \text { for } x, y, z, t \text { st } y \neq 0 \& z \neq 0 \& t \neq 0 \text { holds }(x / y) /(z / t)=(x \cdot t) /(y \cdot z), \tag{82}\\
& -(x-y)=y-x, \tag{83}\\
& x+y \leq z \text { iff } x \leq z-y, \tag{84}\\
& x+y \leq z \text { iff } y \leq z-x, \tag{85}\\
& x \leq y+z \text { iff } x-y \leq z, \tag{86}\\
& x \leq y+z \text { iff } x-z \leq y, \tag{87}\\
& x+y<z \text { iff } x<z-y, \tag{88}\\
& x+y<z \text { iff } y<z-x, \tag{89}\\
& x<z+y \text { iff } x-z<y, \tag{90}\\
& x<y+z \text { iff } x-z<y, \tag{91}\\
& (x \leq y \& z \leq t \text { implies } x-t \leq y-z) \tag{92}\\
& \&(x<y \& z \leq t \text { or } x \leq y \& z<t \text { or } x<y \& z<t \text { implies } x-t<y-z), \\
& 0 \leq x \cdot x . \tag{93}
\end{align*}
$$

Received January 8, 1989

The Fundamental Properties of Natural Numbers

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Summary. Some fundamental properties of addition, multiplication, order relations, exact division, the remainder, divisibility, the least common multiple, the greatest common divisor are presented. A proof of Euclid algorithm is also given.

The article [1] provides the terminology and notation for this paper. For simplicity we adopt the following convention: x will denote an object of the type Real; k, l, m, n will denote objects of the type Nat; X will denote an object of the type set of Real. One can prove the following propositions:

$$
\begin{equation*}
x \text { is Nat implies } x+1 \text { is Nat }, \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\text { for } X \text { st } 0 \in X \& \text { for } x \text { st } x \in X \text { holds } x+1 \in X \text { for } k \text { holds } k \in X, \tag{2}\\
k+n=n+k, \tag{3}\\
k+m+n=k+(m+n), \tag{4}\\
k+0=k \& 0+k=k, \tag{5}\\
k \cdot n=n \cdot k, \tag{6}\\
k \cdot(m \cdot n)=(k \cdot m) \cdot n, \tag{7}\\
k \cdot 1=k \& 1 \cdot k=k, \tag{8}\\
k \cdot(n+m)=k \cdot n+k \cdot m \&(n+m) \cdot k=n \cdot k+m \cdot k, \tag{9}\\
k+m=n+m \text { or } k+m=m+n \text { or } m+k=m+n \text { implies } k=n, \tag{10}
\end{gather*}
$$

[^5]\[

$$
\begin{equation*}
k \cdot 0=0 \& 0 \cdot k=0 \tag{11}
\end{equation*}
$$

\]

Let us consider n, k. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
n+k \quad \text { is } \quad \text { Nat. }
$$

The scheme Ind deals with a unary predicate \mathcal{P} states that the following holds

$$
\text { for } k \text { holds } \mathcal{P}[k]
$$

provided the parameter satisfies the following conditions:

- $\mathcal{P}[0]$,
\bullet

$$
\text { for } k \text { st } \mathcal{P}[k] \text { holds } \mathcal{P}[k+1]
$$

Let us consider n, k. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
n \cdot k \quad \text { is } \quad \text { Nat. }
$$

One can prove the following propositions:

$$
\begin{gather*}
k \leq n \& n \leq k \text { implies } k=n \tag{12}\\
k \leq n \& n \leq m \text { implies } k \leq m \tag{13}\\
k \leq n \text { or } n \leq k \tag{14}\\
k \leq k \tag{15}\\
k \leq n \text { implies } \tag{16}\\
k+m \leq n+m \& k+m \leq m+n \& m+k \leq m+n \& m+k \leq n+m \\
k+m \leq n+m \text { or } k+m \leq m+n \text { or } m+k \leq m+n \text { or } m+k \leq n+m \tag{17}\\
\text { implies } k \leq n \\
 \tag{18}\\
\text { for } k \text { holds } 0 \leq k \tag{19}\\
0 \neq k \text { implies } 0<k
\end{gather*}
$$

(20) $k \leq n$ implies $k \cdot m \leq n \cdot m \& k \cdot m \leq m \cdot n \& m \cdot k \leq n \cdot m \& m \cdot k \leq m \cdot n$,

$$
\begin{gather*}
0 \neq k+1, \tag{21}\\
k=0 \text { or ex } n \text { st } k=n+1, \tag{22}\\
k+n=0 \text { implies } k=0 \& n=0 \tag{23}\\
k \neq 0 \&(n \cdot k=m \cdot k \text { or } n \cdot k=k \cdot m \text { or } k \cdot n=k \cdot m) \text { implies } n=m, \tag{24}
\end{gather*}
$$

$$
\begin{equation*}
k \cdot n=0 \text { implies } k=0 \text { or } n=0 \tag{25}
\end{equation*}
$$

The scheme Def_by_Ind concerns a constant \mathcal{A} that has the type Nat, a binary functor \mathcal{F} yielding values of the type Nat and a binary predicate \mathcal{P} and states that the following holds
$($ for k ex n st $\mathcal{P}[k, n]) \&$ for k, n, m st $\mathcal{P}[k, n] \& \mathcal{P}[k, m]$ holds $n=m$
provided the parameters satisfy the following condition:

- for k, n holds

$$
\mathcal{P}[k, n] \text { iff } k=0 \& n=\mathcal{A} \text { or ex } m, l \text { st } k=m+1 \& \mathcal{P}[m, l] \& n=\mathcal{F}(k, l)
$$

Next we state several propositions:

$$
\begin{gather*}
\text { for } k, n \text { st } k \leq n+1 \text { holds } k \leq n \text { or } k=n+1, \tag{26}\\
\text { for } n, k \text { st } n \leq k \& k \leq n+1 \text { holds } n=k \text { or } k=n+1, \tag{27}\\
\qquad \begin{array}{c}
\text { for } k, n \text { st } k \leq n \text { ex } m \text { st } n=k+m, \\
k \leq k+m, \\
k<n \text { iff } k \leq n \& k \neq n, \\
\operatorname{not} k<0 .
\end{array} \tag{28}
\end{gather*}
$$

Now we present three schemes. The scheme Comp_Ind deals with a unary predicate \mathcal{P} states that the following holds

for k holds $\mathcal{P}[k]$

provided the parameter satisfies the following condition:

- for k st for n st $n<k$ holds $\mathcal{P}[n]$ holds $\mathcal{P}[k]$.

The scheme Min concerns a unary predicate \mathcal{P} states that the following holds

$$
\text { ex } k \text { st } \mathcal{P}[k] \& \text { for } n \text { st } \mathcal{P}[n] \text { holds } k \leq n
$$

provided the parameter satisfies the following condition:

- \quad ex k st $\mathcal{P}[k]$.

The scheme Max concerns a unary predicate \mathcal{P} and a constant \mathcal{A} that has the type Nat, and states that the following holds

$$
\text { ex } k \text { st } \mathcal{P}[k] \& \text { for } n \text { st } \mathcal{P}[n] \text { holds } n \leq k
$$

provided the parameters satisfy the following conditions:

- for k st $\mathcal{P}[k]$ holds $k \leq \mathcal{A}$,
\bullet
ex k st $\mathcal{P}[k]$.
We now state a number of propositions:

$$
\begin{gather*}
\operatorname{not}(k<n \& n<k), \tag{32}\\
k<n \& n<m \text { implies } k<m, \tag{33}\\
k<n \text { or } k=n \text { or } n<k, \tag{34}\\
\operatorname{not} k<k, \tag{35}\\
k<n \text { implies } \tag{36}\\
k+m<n+m \& k+m<m+n \& m+k<m+n \& m+k<n+m, \\
k \leq n \text { implies } k \leq n+m, \\
k<n+1 \text { iff } k \leq n, \\
k \leq n \& n<m \text { or } k<n \& n \leq m \text { or } k<n \& n<m \text { implies } k<m, \\
k \cdot n=1 \text { implies } k=1 \& n=1, \\
k+1 \leq n \text { iff } k<n .
\end{gather*}
$$

The scheme Regr concerns a unary predicate \mathcal{P} states that the following holds

$$
\mathcal{P}[0]
$$

provided the parameter satisfies the following conditions:

- ex k st $\mathcal{P}[k]$,
- for k st $k \neq 0 \& \mathcal{P}[k]$ ex n st $n<k \& \mathcal{P}[n]$.

In the sequel $k 1, t$, $t 1$ will denote objects of the type Nat. The following propositions are true:

$$
\begin{gather*}
\text { for } m \text { st } 0<m \text { for } n \text { ex } k, t \text { st } n=(m \cdot k)+t \& t<m, \tag{42}\\
\qquad \text { for } n, m, k, k 1, t, t 1 \tag{43}
\end{gather*}
$$

st $n=m \cdot k+t \& t<m \& n=m \cdot k 1+t 1 \& t 1<m$ holds $k=k 1 \& t=t 1$.
We now define two new functors. Let k, l have the type Nat. The functor

$$
k \div l
$$

yields the type Nat and is defined by

$$
(\mathbf{e x} t \text { st } k=l \cdot \mathbf{i t}+t \& t<l) \text { or } \mathbf{i t}=0 \& l=0
$$

The functor

$$
k \bmod l,
$$

yields the type Nat and is defined by

$$
(\mathbf{e x} t \text { st } k=l \cdot t+\mathbf{i t} \& \mathbf{i t}<l) \text { or it }=0 \& l=0 .
$$

Next we state four propositions:
for k, l, n being Nat
holds $n=k \div l$ iff (ex t st $k=l \cdot n+t \& t<l)$ or $n=0 \& l=0$,
for k, l, n being Nat
holds $n=k \bmod l \mathbf{i f f}(\mathbf{e x} t \mathbf{s t} k=l \cdot t+n \& n<l)$ or $n=0 \& l=0$,
for m, n st $0<m$ holds $n \bmod m<m$,
for n, m st $0<m$ holds $n=m \cdot(n \div m)+(n \bmod m)$.

Let k, l have the type Nat. The predicate

$$
k \mid l \quad \text { is defined by } \quad \text { ex } t \text { st } l=k \cdot t
$$

Next we state a number of propositions:

$$
\begin{align*}
& \text { for } k, l \text { being Nat holds } k \mid l \text { iff ex } t \text { st } l=k \cdot t, \tag{48}\\
& \text { for } n, m \text { holds } m \mid n \text { iff } n=m \cdot(n \div m), \tag{49}\\
& \text { for } n \text { holds } n \mid n, \tag{50}\\
& \text { for } n, m, l \text { st } n|m \& m| l \text { holds } n \mid l, \tag{51}\\
& \text { for } n, m \text { st } n|m \& m| n \text { holds } n=m, \tag{52}\\
& \qquad k|0 \& 1| k, \tag{53}\\
& \text { for } n, m \text { st } 0<m \& n \mid m \text { holds } n \leq m, \tag{54}\\
& \text { for } n, m, l \text { st } n|m \& n| l \text { holds } n \mid m+l, \tag{55}\\
& n \mid k \text { implies } n \mid k \cdot m, \tag{56}\\
& \text { for } n, m, l \text { st } n|m \& n| m+l \text { holds } n \mid l, \tag{57}\\
& n|m \& n| k \text { implies } n \mid m \bmod k . \tag{58}
\end{align*}
$$

Let us consider k, n. The functor
with values of the type Nat, is defined by
$k \mid$ it $\& n \mid$ it \& for m st $k|m \& n| m$ holds it $\mid m$.
Next we state a proposition
for M being Nat
holds $M=k \operatorname{lcm} n \mathbf{i f f} k|M \& n| M \&$ for m st $k|m \& n| m$ holds $M \mid m$.
Let us consider k, n. The functor

$$
k \operatorname{gcd} n
$$

yields the type Nat and is defined by

$$
\text { it } \mid k \& \text { it } \mid n \& \text { for } m \text { st } m|k \& m| n \text { holds } m \mid \text { it . }
$$

We now state a proposition

for M being Nat

holds $M=k \operatorname{gcd} n$ iff $M|k \& M| n \&$ for m st $m|k \& m| n$ holds $m \mid M$.
The scheme Euklides deals with a unary functor \mathcal{F} yielding values of the type Nat, a constant \mathcal{A} that has the type Nat and a constant \mathcal{B} that has the type Nat, and states that the following holds

$$
\text { ex } n \text { st } \mathcal{F}(n)=\mathcal{A} \operatorname{gcd} \mathcal{B} \& \mathcal{F}(n+1)=0
$$

provided the parameters satisfy the following conditions:
-

$$
0<\mathcal{B} \& \mathcal{B}<\mathcal{A}
$$

-

$\mathcal{F}(0)=\mathcal{A} \& \mathcal{F}(1)=\mathcal{B}$,

- for n holds $\mathcal{F}(n+2)=\mathcal{F}(n) \bmod \mathcal{F}(n+1)$.

References

[1] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1, 1990.

Some Basic Properties of Sets

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Summary. In this article some basic theorems about singletons, pairs, power sets, unions of families of sets, and the cartesian product of two sets are proved.

The articles [1] and [2] provide the terminology and notation for this paper. One can prove the following propositions:

$$
\begin{align*}
\operatorname{bool} \emptyset & =\{\emptyset\}, \tag{1}\\
\bigcup \emptyset & =\emptyset . \tag{2}
\end{align*}
$$

For simplicity we adopt the following convention: $x, x 1, x 2, y, y 1, y 2, z$ will denote objects of the type Any; $A, B, X, X 1, X 2, Y, Y 1, Y 2, Z$ will denote objects of the type set. One can prove the following propositions:

$$
\begin{gather*}
\{x\} \neq \emptyset \tag{3}\\
\{x, y\} \neq \emptyset \tag{4}
\end{gather*}
$$

$$
\{x\}=\{x, x\},
$$

$$
\begin{gather*}
\{x\}=\{y\} \text { implies } x=y, \tag{6}\\
\{x 1, x 2\}=\{x 2, x 1\}, \tag{7}
\end{gather*}
$$

$$
\begin{equation*}
\{x\}=\{y 1, y 2\} \text { implies } x=y 1 \& x=y 2, \tag{8}
\end{equation*}
$$

$$
\begin{gather*}
\{x\}=\{y 1, y 2\} \text { implies } y 1=y 2, \tag{9}\\
\text { mplies }(x 1=y 1 \text { or } x 1=y 2) \&(x \tag{10}\\
\{x 1, x 2\}=\{x 1\} \cup\{x 2\},
\end{gather*}
$$

[^6]$$
\{x\} \subseteq\{x, y\} \&\{y\} \subseteq\{x, y\}
$$
$$
\{x\} \cup\{y\}=\{x\} \text { or }\{x\} \cup\{y\}=\{y\} \text { implies } x=y
$$
$$
\{x\} \cup\{x, y\}=\{x, y\} \&\{x, y\} \cup\{x\}=\{x, y\}
$$
$$
\{y\} \cup\{x, y\}=\{x, y\} \&\{x, y\} \cup\{y\}=\{x, y\}
$$
$$
\{x\} \cap\{y\}=\emptyset \text { or }\{y\} \cap\{x\}=\emptyset \text { implies } x \neq y
$$
$$
x \neq y \text { implies }\{x\} \cap\{y\}=\emptyset \&\{y\} \cap\{x\}=\emptyset
$$
$$
\{x\} \cap\{y\}=\{x\} \text { or }\{x\} \cap\{y\}=\{y\} \text { implies } x=y
$$
$$
\{x\} \cap\{x, y\}=\{x\}
$$
$$
\&\{y\} \cap\{x, y\}=\{y\} \&\{x, y\} \cap\{x\}=\{x\} \&\{x, y\} \cap\{y\}=\{y\}
$$
$$
\{x\} \backslash\{y\}=\{x\} \text { iff } x \neq y
$$
$$
\{x\} \backslash\{y\}=\emptyset \text { implies } x=y
$$
$$
\{x\} \backslash\{x, y\}=\emptyset \&\{y\} \backslash\{x, y\}=\emptyset
$$
$$
x \neq y \text { implies }\{x, y\} \backslash\{y\}=\{x\} \&\{x, y\} \backslash\{x\}=\{y\}
$$
$$
\{x\} \subseteq\{y\} \text { implies }\{x\}=\{y\}
$$
$$
\{z\} \subseteq\{x, y\} \text { implies } z=x \text { or } z=y
$$
$$
\{x, y\} \subseteq\{z\} \text { implies } x=z \& y=z
$$
$$
\{x, y\} \subseteq\{z\} \text { implies }\{x, y\}=\{z\}
$$
$\{x 1, x 2\} \subseteq\{y 1, y 2\}$ implies $(x 1=y 1$ or $x 1=y 2) \&(x 2=y 1$ or $x 2=y 2)$,
$x \neq y$ implies $\{x\} \sqcup\{y\}=\{x, y\}$,
$$
\operatorname{bool}\{x\}=\{\emptyset,\{x\}\}
$$
$$
\bigcup\{x\}=x
$$
$$
\bigcup\{\{x\},\{y\}\}=\{x, y\}
$$
$$
\langle x 1, x 2\rangle=\langle y 1, y 2\rangle \text { implies } x 1=y 1 \& x 2=y 2
$$
$$
\langle x, y\rangle \in::\{x 1\},\{y 1\}:] \text { iff } x=x 1 \& y=y 1
$$
$$
[:\{x\},\{y\}:]=\{\langle x, y\rangle\}
$$
\[

$$
\begin{gathered}
:\{x\},\{y, z\}:\}=\{\langle x, y\rangle,\langle x, z\rangle\} \&:\{x, y\},\{z\}:=\{\langle x, z\rangle,\langle y, z\rangle\}, \\
\{x\} \subseteq X \text { iff } x \in X, \\
\{x 1, x 2\} \subseteq Z \text { iff } x 1 \in Z \& x 2 \in Z, \\
Y \subseteq\{x\} \text { iff } Y=\emptyset \text { or } Y=\{x\}, \\
Y \subseteq X \& \operatorname{not} x \in Y \text { implies } Y \subseteq X \backslash\{x\}, \\
X \neq\{x\} \& x \in X \text { implies ex } y \text { st } y \in X \& y \neq x, \\
Z \subseteq\{x 1, x 2\} \text { iff } Z=\emptyset \text { or } Z=\{x 1\} \text { or } Z=\{x 2\} \text { or } Z=\{x 1, x 2\}, \\
\{z\}=X \cup Y
\end{gathered}
$$
\]

implies $X=\{z\} \& Y=\{z\}$ or $X=\emptyset \& Y=\{z\}$ or $X=\{z\} \& Y=\emptyset$,
$\{z\}=X \cup Y \& X \neq Y$ implies $X=\emptyset$ or $Y=\emptyset$,
$\{x\} \cup X=X$ or $X \cup\{x\}=X$ implies $x \in X$,
$x \in X$ implies $\{x\} \cup X=X \& X \cup\{x\}=X$,
$\{x, y\} \cup Z=Z$ or $Z \cup\{x, y\}=Z$ implies $x \in Z \& y \in Z$,
$x \in Z \& y \in Z$ implies $\{x, y\} \cup Z=Z \& Z \cup\{x, y\}=Z$,
$\{x\} \cup X \neq \emptyset \& X \cup\{x\} \neq \emptyset$,
$\{x, y\} \cup X \neq \emptyset \& X \cup\{x, y\} \neq \emptyset$,
$X \cap\{x\}=\{x\}$ or $\{x\} \cap X=\{x\}$ implies $x \in X$,
$x \in X$ implies $X \cap\{x\}=\{x\} \&\{x\} \cap X=\{x\}$,
$x \in Z \& y \in Z$ implies $\{x, y\} \cap Z=\{x, y\} \&\{x, y\}=Z \cap\{x, y\}$,
$\{x\} \cap X=\emptyset$ or $X \cap\{x\}=\emptyset$ implies not $x \in X$,
$\{x, y\} \cap Z=\emptyset$ or $Z \cap\{x, y\}=\emptyset$ implies $\operatorname{not} x \in Z \& \boldsymbol{n o t} y \in Z$,
not $x \in X$ implies $\{x\} \cap X=\emptyset \& X \cap\{x\}=\emptyset$,
not $x \in Z \& \operatorname{not} y \in Z$ implies $\{x, y\} \cap Z=\emptyset \& Z \cap\{x, y\}=\emptyset$,
$\{x\} \cap X=\emptyset$ or $\{x\} \cap X=\{x\} \& X \cap\{x\}=\{x\}$,
$\{x, y\} \cap X=\{x\}$ or $X \cap\{x, y\}=\{x\}$ implies not $y \in X$ or $x=y$,
(60) $x \in X \&(\operatorname{not} y \in X$ or $x=y)$ implies $\{x, y\} \cap X=\{x\} \& X \cap\{x, y\}=\{x\}$,

$$
\begin{equation*}
\{x, y\} \cap X=\{y\} \text { or } X \cap\{x, y\}=\{y\} \text { implies not } x \in X \text { or } x=y \tag{61}
\end{equation*}
$$

(62) $y \in X \&(\operatorname{not} x \in X$ or $x=y)$ implies $\{x, y\} \cap X=\{y\} \& X \cap\{x, y\}=\{y\}$,

$$
\begin{align*}
& \{x, y\} \cap X=\{x, y\} \text { or } X \cap\{x, y\}=\{x, y\} \text { implies } x \in X \& y \in X, \tag{63}\\
& z \in X \backslash\{x\} \text { iff } z \in X \& z \neq x, \tag{64}\\
& X \backslash\{x\}=X \text { iff } \operatorname{not} x \in X, \tag{65}\\
& X \backslash\{x\}=\emptyset \text { implies } X=\emptyset \text { or } X=\{x\}, \tag{66}\\
& \{x\} \backslash X=\{x\} \text { iff not } x \in X, \tag{67}\\
& \{x\} \backslash X=\emptyset \text { iff } x \in X, \tag{68}\\
& \{x\} \backslash X=\emptyset \text { or }\{x\} \backslash X=\{x\}, \tag{69}\\
& \{x, y\} \backslash X=\{x\} \text { iff } \operatorname{not} x \in X \&(y \in X \text { or } x=y), \tag{70}\\
& \{x, y\} \backslash X=\{y\} \text { iff }(x \in X \text { or } x=y) \& \operatorname{not} y \in X, \tag{71}\\
& \{x, y\} \backslash X=\{x, y\} \text { iff not } x \in X \& \operatorname{not} y \in X, \tag{72}\\
& \{x, y\} \backslash X=\emptyset \text { iff } x \in X \& y \in X, \tag{73}\\
& \{x, y\} \backslash X=\emptyset \tag{74}\\
& \text { or }\{x, y\} \backslash X=\{x\} \text { or }\{x, y\} \backslash X=\{y\} \text { or }\{x, y\} \backslash X=\{x, y\} \text {, } \\
& X \backslash\{x, y\}=\emptyset \text { iff } X=\emptyset \text { or } X=\{x\} \text { or } X=\{y\} \text { or } X=\{x, y\}, \tag{75}\\
& \emptyset \in \operatorname{bool} A, \tag{76}\\
& A \in \operatorname{bool} A, \tag{77}\\
& \text { bool } A \neq \emptyset, \tag{78}\\
& A \subseteq B \text { implies bool } A \subseteq \text { bool } B, \tag{79}\\
& \{A\} \subseteq \operatorname{bool} A, \tag{80}\\
& \text { bool } A \cup \operatorname{bool} B \subseteq \operatorname{bool}(A \cup B), \tag{81}\\
& \text { bool } A \cup \text { bool } B=\operatorname{bool}(A \cup B) \text { implies } A \subseteq B \text { or } B \subseteq A \text {, } \tag{82}\\
& \operatorname{bool}(A \cap B)=\operatorname{bool} A \cap \operatorname{bool} B, \tag{83}
\end{align*}
$$

$$
\begin{aligned}
& \operatorname{bool}(A \backslash B) \subseteq\{\emptyset\} \cup(\operatorname{bool} A \backslash \operatorname{bool} B), \\
& X \in \operatorname{bool}(A \backslash B) \text { iff } X \subseteq A \& X \text { misses } B, \\
& \operatorname{bool}(A \backslash B) \cup \operatorname{bool}(B \backslash A) \subseteq \operatorname{bool}(A \dot{-}), \\
& X \in \operatorname{bool}(A \dot{-}) \text { iff } X \subseteq A \cup B \& X \text { misses } A \cap B, \\
& X \in \operatorname{bool} A \& Y \in \operatorname{bool} A \text { implies } X \cup Y \in \operatorname{bool} A \text {, } \\
& X \in \operatorname{bool} A \text { or } Y \in \operatorname{bool} A \text { implies } X \cap Y \in \operatorname{bool} A \text {, } \\
& X \in \operatorname{bool} A \text { implies } X \backslash Y \in \operatorname{bool} A, \\
& X \in \operatorname{bool} A \& Y \in \operatorname{bool} A \text { implies } X \dot{\lrcorner} Y \in \operatorname{bool} A \text {, } \\
& X \in A \text { implies } X \subseteq \bigcup A, \\
& \bigcup\{X, Y\}=X \cup Y, \\
& \text { (for } X \text { st } X \in A \text { holds } X \subseteq Z \text {) implies } \bigcup A \subseteq Z \text {, } \\
& A \subseteq B \text { implies } \bigcup A \subseteq \bigcup B, \\
& \bigcup(A \cup B)=\bigcup A \cup \bigcup B, \\
& \bigcup(A \cap B) \subseteq \bigcup A \cap \bigcup B, \\
& \text { (for } X \text { st } X \in A \text { holds } X \cap B=\emptyset \text {) implies } \bigcup(A) \cap B=\emptyset \text {, } \\
& \bigcup \text { bool } A=A \text {, } \\
& A \subseteq \text { bool } \bigcup A, \\
& \text { (for } X, Y \text { st } X \neq Y \& X \in A \cup B \& Y \in A \cup B \text { holds } X \cap Y=\emptyset \text {) } \\
& \text { implies } \bigcup(A \cap B)=\bigcup A \cap \bigcup B \text {, } \\
& z \in[X, Y: \text { implies ex } x, y \text { st }\langle x, y\rangle=z, \\
& A \subseteq: X, Y: \nexists \& z \in A \text { implies ex } x, y \text { st } x \in X \& y \in Y \& z=\langle x, y\rangle, \\
& z \in: X 1, Y 1: \cap: X 2, Y 2: \\
& \text { implies ex } x, y \text { st } z=\langle x, y\rangle \& x \in X 1 \cap X 2 \& y \in Y 1 \cap Y 2 \text {, } \\
& : X, Y:] \subseteq \text { bool bool }(X \cup Y), \\
& \langle x, y\rangle \in: X, Y:] \text { iff } x \in X \& y \in Y,
\end{aligned}
$$

$$
\begin{align*}
& \begin{array}{c}
(\text { for } z \text { st } z \in A \text { ex } x, y \text { st } z=\langle x, y\rangle) \& \\
(\text { for } z \text { st } z \in B \text { ex } x, y \text { st } z=\langle x, y\rangle) \&(\text { for } x, y \text { holds }\langle x, y\rangle \in A \text { iff }\langle x, y\rangle \in B)
\end{array} \tag{112}\\
& \begin{array}{c}
(\text { for } z \text { st } z \in A \text { ex } x, y \text { st } z=\langle x, y\rangle) \& \\
(\text { for } z \text { st } z \in B \text { ex } x, y \text { st } z=\langle x, y\rangle) \&(\text { for } x, y \text { holds }\langle x, y\rangle \in A \text { iff }\langle x, y\rangle \in B)
\end{array} \\
& \text { implies } A=B \text {, } \\
& {[: X, Y:]=\emptyset \text { iff } X=\emptyset \text { or } Y=\emptyset,} \tag{113}\\
& X \neq \emptyset \& Y \neq \emptyset \&[: X, Y:=[: Y, X: \text { implies } X=Y, \tag{114}\\
& {[: X, X:]=[: Y, Y: \text { implies } X=Y,} \tag{115}\\
& X \subseteq[: X, X: \text { implies } X=\emptyset, \tag{116}\\
& Z \neq \emptyset \&(: X, Z: \subseteq: Y, Z: \text { or }: Z, X: \subseteq[: Z, Y \vdots) \text { implies } X \subseteq Y, \tag{117}\\
& X \subseteq Y \text { implies }[: X, Z: \subseteq: Y, Z: \&: Z, X: \subseteq: Z, Y:], \tag{118}\\
& X 1 \subseteq Y 1 \& X 2 \subseteq Y 2 \text { implies }: X 1, X 2] \subseteq[: Y 1, Y 2], \tag{119}\\
& [: X \cup Y, Z:]=[: X, Z:] \cup[Y, Z:] \&: Z, X \cup Y:]=[Z, X:] \cup[Z, Y:, \tag{120}\\
& {[: X 1 \cup X 2, Y 1 \cup Y 2:]=[: X 1, Y 1:] \cup[: X 1, Y 2] \cup[: X 2, Y 1:] \cup[: X 2, Y 2],} \tag{121}\\
& {[: X \cap Y, Z:=[: X, Z: \cap[: Y, Z: \&[: Z, X \cap Y:]=[: Z, X:] \cap: Z, Y:],} \tag{122}\\
& {[: X 1 \cap X 2, Y 1 \cap Y 2]=[: X 1, Y 1:] \cap: X 2, Y 2 ;,} \tag{123}\\
& A \subseteq X \& B \subseteq Y \text { implies }: A, Y: \cap[: X, B:]=[: A, B:], \tag{124}\\
& {[: X \backslash Y, Z:]=[: X, Z: \backslash: Y, Z: \&[: Z, X \backslash Y:]=[: Z, X: \backslash[: Z, Y:],} \tag{125}\\
& [: X 1, X 2] \backslash: Y 1, Y 2]=[: X 1 \backslash Y 1, X 2 ;] \cup: X 1, X 2 \backslash Y 2 ; \text {, } \tag{126}\\
& X 1 \cap X 2=\emptyset \text { or } Y 1 \cap Y 2=\emptyset \text { implies }: X 1, Y 1: \cap \cap: X 2, Y 2:]=\emptyset, \tag{127}\\
& A \subseteq:: X, Y: \&(\text { for } x, y \text { st }\langle x, y\rangle \in A \text { holds }\langle x, y\rangle \in B) \text { implies } A \subseteq B, \tag{109}\\
& A \subseteq[: X 1, Y 1:] \& B \subseteq[: X 2, Y 2:] \text { (for } x, y \text { holds }\langle x, y\rangle \in A \text { iff }\langle x, y\rangle \in B) \tag{110}\\
& \text { implies } A=B \text {, } \\
& (\text { for } z \text { st } z \in A \text { ex } x, y \text { st } z=\langle x, y\rangle) \&(\text { for } x, y \text { st }\langle x, y\rangle \in A \text { holds }\langle x, y\rangle \in B) \tag{111}\\
& \text { implies } A \subseteq B,
\end{align*}
$$

$$
\begin{align*}
& \langle x, y\rangle \in[\{z\}, Y:] \text { iff } x=z \& y \in Y, \tag{128}\\
& \langle x, y\rangle \in[: X,\{z\}: \text { iff } x \in X \& y=z, \tag{129}\\
& X \neq \emptyset \text { implies }:\{x\}, X: \neq \emptyset \&\{X,\{x\}: \neq \emptyset, \tag{130}\\
& x \neq y \text { implies }:\{x\}, X: \cap \cap\{y\}, Y:=\emptyset \&\{X,\{x\}: \cap\{Y,\{y\}:]=\emptyset, \tag{131}\\
& :\{x, y\}, X:=\{\{x\}, X: \cup \cup\{\{y\}, X: \&: X X,\{x, y\}:=\{X,\{x\}: \cup \cup: X,\{y\}:, \tag{132}\\
& Z=[X, Y:] \text { iff for } z \text { holds } z \in Z \text { iff ex } x, y \text { st } x \in X \& y \in Y \& z=\langle x, y\rangle, \tag{133}\\
& X 1 \neq \emptyset \& Y 1 \neq \emptyset \&: X 1, Y 1:]=: X 2, Y 2:] \text { implies } X 1=X 2 \& Y 1=Y 2, \tag{134}\\
& X \subseteq: X, Y: \text { or } X \subseteq\{Y, X:] \text { implies } X=\emptyset . \tag{135}
\end{align*}
$$

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Functions and Their Basic Properties

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Summary. The definitions of the mode Function and the graph of a function are introduced. The graph of a function is defined to be identical with the function. The following concepts are also defined: the domain of a function, the range of a function, the identity function, the composition of functions, the 1-1 function, the inverse function, the restriction of a function, the image and the inverse image. Certain basic facts about functions and the notions defined in the article are proved.

The notation and terminology used here are introduced in the papers [1] and [2]. For simplicity we adopt the following convention: $X, X 1, X 2, Y, Y 1, Y 2$ have the type set; $p, x, x 1, x 2, y, y 1, y 2, z$ have the type Any. The mode

Function,
which widens to the type Any, is defined by

$$
\begin{gathered}
\text { ex } F \text { being set st it }=F \&(\text { for } p \text { st } p \in F \text { ex } x, y \text { st }\langle x, y\rangle=p) \\
\quad \& \text { for } x, y 1, y 2 \text { st }\langle x, y 1\rangle \in F \&\langle x, y 2\rangle \in F \text { holds } y 1=y 2
\end{gathered}
$$

In the sequel f, g, h will have the type Function. Let us consider f. The functor

$$
\operatorname{graph} f
$$

yields the type set and is defined by

$$
f=\mathbf{i t}
$$

Next we state several propositions:

$$
\begin{equation*}
\operatorname{graph} f=f \tag{1}
\end{equation*}
$$

[^7]> for F being set st
> $($ for p st $p \in F$ ex x, y st $\langle x, y\rangle=p)$ $\&$ for $x, y 1, y 2$ st $\langle x, y 1\rangle \in F \&\langle x, y 2\rangle \in F$ holds $y 1=y 2$
ex f being Function st graph $f=F$,
$p \in \operatorname{graph} f$ implies ex x, y st $\langle x, y\rangle=p$,

$$
\begin{equation*}
\text { graph } f=\operatorname{graph} g \operatorname{implies} f=g \tag{4}
\end{equation*}
$$

The scheme GraphFunc concerns a constant \mathcal{A} that has the type set and a binary predicate \mathcal{P} and states that the following holds

$$
\text { ex } f \text { st for } x, y \text { holds }\langle x, y\rangle \in \operatorname{graph} f \text { iff } x \in \mathcal{A} \& \mathcal{P}[x, y]
$$

provided the parameters satisfy the following condition:

- for $x, y 1, y 2$ st $\mathcal{P}[x, y 1] \& \mathcal{P}[x, y 2]$ holds $y 1=y 2$.

Let us consider f. The functor

$$
\operatorname{dom} f
$$

yields the type set and is defined by

$$
\text { for } x \text { holds } x \in \text { it iff ex } y \text { st }\langle x, y\rangle \in \operatorname{graph} f
$$

One can prove the following proposition

$$
\begin{equation*}
X=\operatorname{dom} f \text { iff for } x \text { holds } x \in X \text { iff ex } y \text { st }\langle x, y\rangle \in \operatorname{graph} f \tag{6}
\end{equation*}
$$

Let us consider f, x. Assume that the following holds

$$
x \in \operatorname{dom} f
$$

The functor

$$
f . x
$$

yields the type Any and is defined by

$$
\langle x, \mathbf{i t}\rangle \in \operatorname{graph} f
$$

The following three propositions are true:

$$
\begin{gather*}
x \in \operatorname{dom} f \text { implies }(y=f . x \text { iff }\langle x, y\rangle \in \operatorname{graph} f), \tag{7}\\
\langle x, y\rangle \in \operatorname{graph} f \text { iff } x \in \operatorname{dom} f \& y=f . x
\end{gather*}
$$

(9) $X=\operatorname{dom} f \& X=\operatorname{dom} g \&($ for x st $x \in X$ holds $f . x=g \cdot x)$ implies $f=g$.

Let us consider f. The functor

$$
\operatorname{rng} f
$$

with values of the type set, is defined by

$$
\text { for } y \text { holds } y \in \operatorname{it} \operatorname{iff} \operatorname{ex} x \text { st } x \in \operatorname{dom} f \& y=f . x
$$

One can prove the following propositions:

$$
\begin{gather*}
Y=\operatorname{rng} f \text { iff for } y \text { holds } y \in Y \text { iff ex } x \text { st } x \in \operatorname{dom} f \& y=f . x, \tag{10}\\
y \in \operatorname{rng} f \text { iff ex } x \text { st } x \in \operatorname{dom} f \& y=f . x, \tag{11}\\
x \in \operatorname{dom} f \text { implies } f \cdot x \in \operatorname{rng} f, \tag{12}\\
\operatorname{dom} f=\emptyset \text { iff } \operatorname{rng} f=\emptyset \tag{13}\\
\operatorname{dom} f=\{x\} \text { implies } \operatorname{rng} f=\{f \cdot x\} . \tag{14}
\end{gather*}
$$

Now we present two schemes. The scheme FuncEx concerns a constant \mathcal{A} that has the type set and a binary predicate \mathcal{P} and states that the following holds

$$
\text { ex } f \text { st } \operatorname{dom} f=\mathcal{A} \& \text { for } x \text { st } x \in \mathcal{A} \text { holds } \mathcal{P}[x, f . x]
$$

provided the parameters satisfy the following conditions:

- for $x, y 1, y 2$ st $x \in \mathcal{A} \& \mathcal{P}[x, y 1] \& \mathcal{P}[x, y 2]$ holds $y 1=y 2$,
- for x st $x \in \mathcal{A}$ ex y st $\mathcal{P}[x, y]$.

The scheme Lambda concerns a constant \mathcal{A} that has the type set and a unary functor \mathcal{F} and states that the following holds

$$
\text { ex } f \text { being Function st } \operatorname{dom} f=\mathcal{A} \& \text { for } x \text { st } x \in \mathcal{A} \text { holds } f . x=\mathcal{F}(x)
$$

for all values of the parameters.
Next we state several propositions:

$$
\begin{gather*}
X \neq \emptyset \operatorname{implies} \text { for } y \operatorname{ex} f \text { st } \operatorname{dom} f=X \& \operatorname{rng} f=\{y\} \tag{15}\\
(\text { for } f, g \text { st } \operatorname{dom} f=X \& \operatorname{dom} g=X \text { holds } f=g) \text { implies } X=\emptyset, \tag{16}\\
\operatorname{dom} f=\operatorname{dom} g \& \operatorname{rng} f=\{y\} \& \operatorname{rng} g=\{y\} \text { implies } f=g \tag{17}\\
\quad Y \neq \emptyset \text { or } X=\emptyset \text { implies ex } f \text { st } X=\operatorname{dom} f \& \operatorname{rng} f \subseteq Y \tag{18}\\
(\text { for } y \text { st } y \in Y \text { ex } x \text { st } x \in \operatorname{dom} f \& y=f . x) \operatorname{implies} Y \subseteq \operatorname{rng} f . \tag{19}
\end{gather*}
$$

Let us consider f, g. The functor

$$
g \cdot f
$$

yields the type Function and is defined by

$$
\begin{gathered}
(\text { for } x \text { holds } x \in \operatorname{dom} \text { it iff } x \in \operatorname{dom} f \& f \cdot x \in \operatorname{dom} g) \\
\quad \& \text { for } x \text { st } x \in \operatorname{dom} \text { it holds it. } x=g \cdot(f \cdot x)
\end{gathered}
$$

The following propositions are true:

$$
\begin{align*}
& h=g \cdot f \text { iff (for } x \text { holds } x \in \operatorname{dom} h \text { iff } x \in \operatorname{dom} f \& f . x \in \operatorname{dom} g \text {) } \tag{20}\\
& \& \text { for } x \text { st } x \in \operatorname{dom} h \text { holds } h . x=g \cdot(f . x), \\
& x \in \operatorname{dom}(g \cdot f) \mathbf{i f f} x \in \operatorname{dom} f \& f . x \in \operatorname{dom} g, \tag{21}\\
& x \in \operatorname{dom}(g \cdot f) \text { implies }(g \cdot f) \cdot x=g \cdot(f \cdot x), \tag{22}\\
& x \in \operatorname{dom} f \& f . x \in \operatorname{dom} g \text { implies }(g \cdot f) . x=g \cdot(f \cdot x), \tag{23}\\
& \operatorname{dom}(g \cdot f) \subseteq \operatorname{dom} f, \tag{24}\\
& z \in \operatorname{rng}(g \cdot f) \text { implies } z \in \operatorname{rng} g, \tag{25}\\
& \operatorname{rng}(g \cdot f) \subseteq \operatorname{rng} g, \tag{26}\\
& \operatorname{rng} f \subseteq \operatorname{dom} g \operatorname{iff} \operatorname{dom}(g \cdot f)=\operatorname{dom} f, \tag{27}\\
& \operatorname{dom} g \subseteq \operatorname{rng} f \text { implies } \operatorname{rng}(g \cdot f)=\operatorname{rng} g, \tag{28}\\
& \operatorname{rng} f=\operatorname{dom} g \text { implies } \operatorname{dom}(g \cdot f)=\operatorname{dom} f \& \operatorname{rng}(g \cdot f)=\operatorname{rng} g, \tag{29}\\
& h \cdot(g \cdot f)=(h \cdot g) \cdot f, \tag{30}\\
& \operatorname{rng} f \subseteq \operatorname{dom} g \& x \in \operatorname{dom} f \text { implies }(g \cdot f) . x=g \cdot(f \cdot x), \tag{31}\\
& \operatorname{rng} f=\operatorname{dom} g \& x \in \operatorname{dom} f \text { implies }(g \cdot f) \cdot x=g \cdot(f \cdot x), \tag{32}\\
& \text { (33) } \operatorname{rng} f \subseteq Y \&(\text { for } g, h \text { st } \operatorname{dom} g=Y \& \operatorname{dom} h=Y \& g \cdot f=h \cdot f \text { holds } g=h)
\end{align*}
$$

$$
\text { implies } Y=\operatorname{rng} f
$$

Let us consider X. The functor

$$
\text { id } X
$$

with values of the type Function, is defined by

$$
\operatorname{dom} \text { it }=X \& \text { for } x \text { st } x \in X \text { holds it } x=x
$$

Next we state a number of propositions:

$$
\begin{gather*}
f=\operatorname{id} X \text { iff } \operatorname{dom} f=X \& \text { for } x \text { st } x \in X \text { holds } f \cdot x=x \tag{34}\\
x \in X \text { implies }(\operatorname{id} X) \cdot x=x \tag{35}
\end{gather*}
$$

$$
\begin{gather*}
\operatorname{domid} X=X \& \operatorname{rng} \operatorname{id} X=X, \tag{36}\\
\operatorname{dom}(f \cdot(\operatorname{id} X))=\operatorname{dom} f \cap X, \tag{37}\\
x \in \operatorname{dom} f \cap X \operatorname{implies} f \cdot x=(f \cdot(\operatorname{id} X)) \cdot x, \tag{38}\\
\operatorname{dom} f \subseteq X \operatorname{implies} f \cdot(\operatorname{id} X)=f, \tag{39}\\
x \in \operatorname{dom}((\operatorname{id} Y) \cdot f) \operatorname{iff} x \in \operatorname{dom} f \& f \cdot x \in Y, \tag{40}\\
\operatorname{rng} f \subseteq Y \operatorname{implies}(\operatorname{id} Y) \cdot f=f, \tag{41}\\
f \cdot(\operatorname{id} \operatorname{dom} f)=f \&(\operatorname{id} \operatorname{rng} f) \cdot f=f, \tag{42}\\
(\operatorname{id} X) \cdot(\operatorname{id} Y)=\operatorname{id}(X \cap Y), \tag{43}\\
\operatorname{dom} f=X \& \operatorname{rng} f=X \& \operatorname{dom} g=X \& g \cdot f=f \operatorname{implies} g=\operatorname{id} X . \tag{44}
\end{gather*}
$$

Let us consider f. The predicate
f is_one-to-one
is defined by

$$
\text { for } x 1, x 2 \text { st } x 1 \in \operatorname{dom} f \& x 2 \in \operatorname{dom} f \& f . x 1=f . x 2 \text { holds } x 1=x 2
$$

One can prove the following propositions:
f is_one-to-one
iff for $x 1, x 2$ st $x 1 \in \operatorname{dom} f \& x 2 \in \operatorname{dom} f \& f . x 1=f . x 2$ holds $x 1=x 2$,
f is_one-to-one \& g is_one-to-one implies $g \cdot f$ is_one-to-one, $g \cdot f$ is_one-to-one $\& \operatorname{rng} f \subseteq \operatorname{dom} g$ implies f is_one-to-one,
(48) $g \cdot f$ is_one-to-one $\& \operatorname{rng} f=\operatorname{dom} g$ implies f is_one-to-one $\& g$ is_one-to-one,
$\operatorname{rng} g \subseteq \operatorname{dom} f \& \operatorname{rng} h \subseteq \operatorname{dom} f \& \operatorname{dom} g=\operatorname{dom} h \& f \cdot g=f \cdot h$ holds $g=h$,

$$
\begin{equation*}
\operatorname{dom} f=X \& \operatorname{dom} g=X \& \operatorname{rng} g \subseteq X \& f \text { is_one-to-one } \& f \cdot g=f \tag{50}
\end{equation*}
$$

implies $g=\mathrm{id} X$,
$\operatorname{rng}(g \cdot f)=\operatorname{rng} g \& g$ is_one-to-one implies $\operatorname{dom} g \subseteq \operatorname{rng} f$, id X is_one-to-one,
(ex g st $g \cdot f=\operatorname{id} \operatorname{dom} f) \operatorname{implies} f$ is_one-to-one.

Let us consider f. Assume that the following holds

$$
f \text { is_one-to-one. }
$$

The functor

$$
f^{-1}
$$

with values of the type Function, is defined by

$$
\operatorname{dom} \mathbf{i t}=\operatorname{rng} f \& \text { for } y, x \text { holds } y \in \operatorname{rng} f \& x=\mathbf{i t} . y \operatorname{iff} x \in \operatorname{dom} f \& y=f . x
$$

We now state a number of propositions:
$\operatorname{dom} g=\operatorname{rng} f \&$ for y, x holds $y \in \operatorname{rng} f \& x=g . y \operatorname{iff} x \in \operatorname{dom} f \& y=f . x)$,

$$
\begin{equation*}
f \text { is_one-to-one } \& x \in \operatorname{dom} f \text { implies } x=\left(f^{-1}\right) \cdot(f \cdot x) \& x=\left(f^{-1} \cdot f\right) \cdot x \tag{56}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is_one-to-one } \& y \in \operatorname{rng} f \text { implies } y=f .\left(\left(f^{-1}\right) \cdot y\right) \& y=\left(f \cdot f^{-1}\right) \cdot y \tag{57}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is_one-to-one implies } \operatorname{dom}\left(f^{-1} \cdot f\right)=\operatorname{dom} f \& \operatorname{rng}\left(f^{-1} \cdot f\right)=\operatorname{dom} f \tag{58}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is_one-to-one implies } \operatorname{dom}\left(f \cdot f^{-1}\right)=\operatorname{rng} f \& \operatorname{rng}\left(f \cdot f^{-1}\right)=\operatorname{rng} f \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
f \text { is_one-to-one implies } \operatorname{rng} f=\operatorname{dom}\left(f^{-1}\right) \& \operatorname{dom} f=\operatorname{rng}\left(f^{-1}\right) \tag{55}
\end{equation*}
$$

f is_one-to-one \& $\operatorname{dom} f=\operatorname{rng} g \& \operatorname{rng} f=\operatorname{dom} g$ $\&($ for x, y st $x \in \operatorname{dom} f \& y \in \operatorname{dom} g$ holds $f . x=y$ iff $g . y=x)$ implies $g=f^{-1}$,
f is_one-to-one implies $f^{-1} \cdot f=\operatorname{id} \operatorname{dom} f \& f \cdot f^{-1}=\operatorname{idrng} f$,
f is_one-to-one implies f^{-1} is_one-to-one,

$$
\begin{aligned}
& f \text { is_one-to-one } \& \operatorname{rng} f=\operatorname{dom} g \& g \cdot f=\operatorname{id} \operatorname{dom} f \operatorname{implies} g=f^{-1} \\
& f \text { is_one-to-one } \& \operatorname{rng} g=\operatorname{dom} f \& f \cdot g=\operatorname{id} \operatorname{rng} f \operatorname{implies} g=f^{-1}
\end{aligned}
$$

$$
f \text { is_one-to-one implies }\left(f^{-1}\right)^{-1}=f
$$

$$
f \text { is_one-to-one \& } g \text { is_one-to-one implies }(g \cdot f)^{-1}=f^{-1} \cdot g^{-1}
$$

$$
(\mathrm{id} X)^{-1}=(\mathrm{id} X)
$$

Let us consider f, X. The functor

$$
f \mid X
$$

yields the type Function and is defined by

$$
\operatorname{dom} \mathbf{i t}=\operatorname{dom} f \cap X \& \text { for } x \text { st } x \in \operatorname{dom} \text { it holds it. } x=f . x
$$

We now state a number of propositions:

$$
\begin{gather*}
g=f \mid X \text { iff } \operatorname{dom} g=\operatorname{dom} f \cap X \& \text { for } x \text { st } x \in \operatorname{dom} g \text { holds } g \cdot x=f . x, \tag{68}\\
\operatorname{dom}(f \mid X)=\operatorname{dom} f \cap X, \tag{69}\\
x \in \operatorname{dom}(f \mid X) \operatorname{implies}(f \mid X) \cdot x=f \cdot x, \tag{70}\\
x \in \operatorname{dom} f \cap X \operatorname{implies}(f \mid X) \cdot x=f \cdot x, \tag{71}\\
x \in \operatorname{dom} f \& x \in X \operatorname{implies}(f \mid X) \cdot x=f \cdot x, \tag{72}\\
x \in \operatorname{dom} f \& x \in X \operatorname{implies} f . x \in \operatorname{rng}(f \mid X), \tag{73}\\
X \subseteq \operatorname{dom} f \text { implies dom }(f \mid X)=X, \tag{74}\\
\operatorname{dom}(f \mid X) \subseteq X, \tag{75}\\
\operatorname{dom}(f \mid X) \subseteq \operatorname{dom} f \& \operatorname{rng}(f \mid X) \subseteq \operatorname{rng} f, \tag{76}\\
f \mid X=f \cdot(\operatorname{id} X), \tag{77}\\
\operatorname{dom} f \subseteq X \operatorname{implies} f \mid X=f, \tag{78}\\
f \mid(\operatorname{dom} f)=f, \tag{79}\\
(f \mid X)|Y=f|(X \cap Y), \tag{80}\\
(f \mid X)|X=f| X, \tag{81}\\
X \subseteq Y \operatorname{implies}(f \mid X)|Y=f| X \&(f \mid Y)|X=f| X \tag{82}\\
(g \cdot f) \mid X=g \cdot(f \mid X), \tag{83}
\end{gather*}
$$

f is_one-to-one $\operatorname{implies} f \mid X$ is_one-to-one.
Let us consider Y, f. The functor

$$
Y \mid f
$$

with values of the type Function, is defined by
(for x holds $x \in \operatorname{dom}$ it iff $x \in \operatorname{dom} f \& f . x \in Y$)
$\&$ for x st $x \in \operatorname{dom}$ it holds it. $x=f . x$.
We now state a number of propositions:

$$
\begin{gather*}
g=Y \mid f \text { iff }(\text { for } x \text { holds } x \in \operatorname{dom} g \text { iff } x \in \operatorname{dom} f \& f . x \in Y) \tag{85}\\
\& \text { for } x \text { st } x \in \operatorname{dom} g \text { holds } g \cdot x=f . x
\end{gather*}
$$

$$
\begin{gather*}
x \in \operatorname{dom}(Y \mid f) \operatorname{iff} x \in \operatorname{dom} f \& f . x \in Y, \tag{86}\\
x \in \operatorname{dom}(Y \mid f) \operatorname{implies}(Y \mid f) \cdot x=f \cdot x, \tag{87}\\
\operatorname{rng}(Y \mid f) \subseteq Y, \tag{88}\\
\operatorname{dom}(Y \mid f) \subseteq \operatorname{dom} f \& \operatorname{rng}(Y \mid f) \subseteq \operatorname{rng} f, \tag{89}\\
\operatorname{rng}(Y \mid f)=\operatorname{rng} f \cap Y, \tag{90}\\
Y \subseteq \operatorname{rng} f \text { implies rng }(Y \mid f)=Y, \tag{91}\\
Y \mid f=(\operatorname{id} Y) \cdot f, \tag{92}\\
(\operatorname{rng} f) \mid f=f, \tag{93}\\
Y|(X \mid f)=(Y \cap X)| f, \tag{94}\\
Y|(Y \mid f)=Y| f, \tag{95}\\
X \subseteq Y \text { implies } Y|(X \mid f)=X| f \& X|(Y \mid f)=X| f, \tag{96}\\
Y \mid(g \cdot f)=(Y \mid g) \cdot f, \tag{97}\\
(Y \mid f)|X=Y|(f \mid X) \tag{98}
\end{gather*}
$$

Let us consider f, X. The functor

$$
f^{\circ} X
$$

yields the type set and is defined by
for y holds $y \in$ it iff ex x st $x \in \operatorname{dom} f \& x \in X \& y=f . x$.
The following propositions are true:
(101) $\quad Y=f^{\circ} X$ iff for y holds $y \in Y$ iff ex x st $x \in \operatorname{dom} f \& x \in X \& y=f . x$,

$$
\begin{equation*}
y \in f^{\circ} X \text { iff ex } x \text { st } x \in \operatorname{dom} f \& x \in X \& y=f . x \tag{102}
\end{equation*}
$$

$$
\begin{gather*}
f^{\circ} X \subseteq \operatorname{rng} f \tag{103}\\
f^{\circ}(X)=f^{\circ}(\operatorname{dom} f \cap X) \tag{104}\\
f^{\circ}(\operatorname{dom} f)=\operatorname{rng} f \tag{105}\\
f^{\circ} X \subseteq f^{\circ}(\operatorname{dom} f) \tag{106}
\end{gather*}
$$

(107)
(124) (for $X 1, X 2$ holds $\left.f^{\circ}(X 1 \backslash X 2)=f^{\circ} X 1 \backslash f^{\circ} X 2\right)$ implies f is_one-to-one,

$$
\begin{equation*}
X \cap Y=\emptyset \& f \text { is_one-to-one implies } f^{\circ} X \cap f^{\circ} Y=\emptyset \tag{125}
\end{equation*}
$$

$$
\begin{equation*}
(Y \mid f)^{\circ} X=Y \cap f^{\circ} X \tag{126}
\end{equation*}
$$

Let us consider f, Y. The functor

$$
f^{-1} Y,
$$

yields the type set and is defined by

$$
\text { for } x \text { holds } x \in \text { it iff } x \in \operatorname{dom} f \& f . x \in Y \text {. }
$$

We now state a number of propositions:

$$
\begin{align*}
& X=f^{-1} Y \text { iff for } x \text { holds } x \in X \text { iff } x \in \operatorname{dom} f \& f . x \in Y, \tag{127}\\
& x \in f^{-1} Y \text { iff } x \in \operatorname{dom} f \& f . x \in Y, \tag{128}\\
& f^{-1} Y \subseteq \operatorname{dom} f, \tag{129}\\
& f^{-1} Y=f^{-1}(\operatorname{rng} f \cap Y), \tag{130}\\
& f^{-1}(\operatorname{rng} f)=\operatorname{dom} f, \tag{131}\\
& f^{-1} \emptyset=\emptyset, \tag{132}\\
& f^{-1} Y=\emptyset \text { iff } \operatorname{rng} f \cap Y=\emptyset, \tag{133}\\
& Y \subseteq \operatorname{rng} f \text { implies }\left(f^{-1} Y=\emptyset \text { iff } Y=\emptyset\right), \tag{134}\\
& Y 1 \subseteq Y 2 \text { implies } f^{-1} Y 1 \subseteq f^{-1} Y 2, \tag{135}\\
& f^{-1}(Y 1 \cup Y 2)=f^{-1} Y 1 \cup f^{-1} Y 2, \tag{136}\\
& f^{-1}(Y 1 \cap Y 2)=f^{-1} Y 1 \cap f^{-1} Y 2, \tag{137}\\
& f^{-1}(Y 1 \backslash Y 2)=f^{-1} Y 1 \backslash f^{-1} Y 2, \tag{138}\\
& (f \mid X)^{-1} Y=X \cap\left(f^{-1} Y\right), \tag{139}\\
& (g \cdot f)^{-1} Y=f^{-1}\left(g^{-1} Y\right), \tag{140}\\
& \operatorname{dom}(g \cdot f)=f^{-1}(\operatorname{dom} g), \tag{141}\\
& y \in \operatorname{rng} f \text { iff } f^{-1}\{y\} \neq \emptyset, \tag{142}\\
& \text { (for } y \text { st } y \in Y \text { holds } f^{-1}\{y\} \neq \emptyset \text {) implies } Y \subseteq \operatorname{rng} f, \tag{143}\\
& \text { (for } y \text { st } y \in \operatorname{rng} f \text { ex } x \text { st } f^{-1}\{y\}=\{x\} \text {) iff } f \text { is_one-to-one, } \tag{144}\\
& f^{\circ}\left(f^{-1} Y\right) \subseteq Y, \tag{145}\\
& X \subseteq \operatorname{dom} f \text { implies } X \subseteq f^{-1}\left(f^{\circ} X\right), \tag{146}\\
& Y \subseteq \operatorname{rng} f \text { implies } f^{\circ}\left(f^{-1} Y\right)=Y, \tag{147}\\
& f^{\circ}\left(f^{-1} Y\right)=Y \cap f^{\circ}(\operatorname{dom} f), \tag{148}\\
& f^{\circ}\left(X \cap f^{-1} Y\right) \subseteq\left(f^{\circ} X\right) \cap Y, \tag{149}\\
& f^{\circ}\left(X \cap f^{-1} Y\right)=\left(f^{\circ} X\right) \cap Y, \tag{150}
\end{align*}
$$

$$
X \cap f^{-1} Y \subseteq f^{-1}\left(f^{\circ} X \cap Y\right),
$$

f is_one-to-one implies $f^{-1}\left(f^{\circ} X\right) \subseteq X$, (for X holds $\left.f^{-1}\left(f^{\circ} X\right) \subseteq X\right)$ implies f is_one-to-one, f is_one-to-one implies $f^{\circ} X=\left(f^{-1}\right)^{-1} X$, f is_one-to-one implies $f^{-1} Y=\left(f^{-1}\right)^{\circ} Y$,

$$
Y=\operatorname{rng} f \& \operatorname{dom} g=Y \& \operatorname{dom} h=Y \& g \cdot f=h \cdot f \text { implies } g=h,
$$

$$
f^{\circ} X 1 \subseteq f^{\circ} X 2 \& X 1 \subseteq \operatorname{dom} f \& f \text { is_one-to-one implies } X 1 \subseteq X 2,
$$

$$
f^{-1} Y 1 \subseteq f^{-1} Y 2 \& Y 1 \subseteq \operatorname{rng} f \text { implies } Y 1 \subseteq Y 2
$$

$$
f \text { is_one-to-one iff for } y \text { ex } x \text { st } f^{-1}\{y\} \subseteq\{x\},
$$

$$
\operatorname{rng} f \subseteq \operatorname{dom} g \text { implies } f^{-1} X \subseteq(g \cdot f)^{-1}\left(g^{\circ} X\right) .
$$

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Properties of Subsets

Zinaida Trybulec ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The text includes theorems concerning properties of subsets, and some operations on sets. The functions yielding improper subsets of a set, i.e. the empty set and the set itself are introduced. Functions and predicates introduced for sets are redefined. Some theorems about enumerated sets are proved.

The articles [2], [3], and [1] provide the terminology and notation for this paper. In the sequel E, X denote objects of the type set; x denotes an object of the type Any. One can prove the following propositions:

$$
\begin{equation*}
E \neq \emptyset \text { implies }(x \text { is Element of } E \text { iff } x \in E) \tag{1}
\end{equation*}
$$

$x \in E$ implies x is Element of E,
X is Subset of E iff $X \subseteq E$.
We now define two new functors. Let us consider E. The functor

$$
\emptyset E
$$

yields the type Subset of E and is defined by

$$
\mathbf{i t}=\emptyset
$$

The functor

$$
\Omega E
$$

with values of the type Subset of E, is defined by

$$
\mathbf{i t}=E
$$

We now state two propositions:
\emptyset is Subset of X,

[^8](C) 1990 Fondation Philippe le Hodey ISSN 0777-4028

In the sequel A, B, C denote objects of the type Subset of E. Next we state several propositions:

$$
\begin{equation*}
x \in A \text { implies } x \text { is Element of } E \tag{6}
\end{equation*}
$$

(7) (for x being Element of E holds $x \in A$ implies $x \in B)$ implies $A \subseteq B$,
(8) (for x being Element of E holds $x \in A$ iff $x \in B)$ implies $A=B$,

$$
\begin{equation*}
x \in A \text { implies } x \in E \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
A \neq \emptyset \text { iff ex } x \text { being Element of } E \text { st } x \in A \tag{10}
\end{equation*}
$$

Let us consider E, A. The functor

$$
A^{\mathrm{c}}
$$

yields the type Subset of E and is defined by

$$
\mathbf{i t}=E \backslash A
$$

Let us consider B. Let us note that it makes sense to consider the following functors on restricted areas. Then

$A \cup B$	is	Subset of E,
$A \cap B$	is	Subset of E,
$A \backslash B$	is	Subset of E,
$A-B$	is	Subset of E.

One can prove the following propositions:

$$
\begin{align*}
& x \in A \cap B \text { implies } x \text { is Element of } A \& x \text { is Element of } B, \tag{11}\\
& x \in A \cup B \text { implies } x \text { is Element of } A \text { or } x \text { is Element of } B, \tag{12}\\
& \qquad x \in A \backslash B \text { implies } x \text { is Element of } A, \tag{13}\\
& x \in A-B \text { implies } x \text { is Element of } A \text { or } x \text { is Element of } B, \tag{14}\\
& (\text { for } x \text { being Element of } E \text { holds } x \in A \text { iff } x \in B \text { or } x \in C \text {) } \tag{15}\\
& \text { implies } A=B \cup C, \\
& \text { (for } x \text { being Element of } E \text { holds } x \in A \text { iff } x \in B \& x \in C) \tag{16}\\
& \quad \operatorname{implies} A=B \cap C, \\
& (\text { for } x \text { being Element of } E \text { holds } x \in A \text { iff } x \in B \& \operatorname{not} x \in C) \tag{17}\\
& \operatorname{implies} A=B \backslash C,
\end{align*}
$$

(18) \quad (for x being Element of E holds $x \in A$ iff not $(x \in B$ iff $x \in C))$

$$
\text { implies } A=B \doteq C \text {, }
$$

$$
\begin{align*}
& \emptyset E=\emptyset, \tag{19}\\
& \Omega E=E, \tag{20}\\
& \emptyset E=(\Omega E)^{c}, \tag{21}\\
& \Omega E=(\emptyset E)^{c}, \tag{22}\\
& A^{\mathrm{c}}=E \backslash A, \tag{23}\\
& A^{\mathrm{c} \mathrm{c}}=A, \tag{24}\\
& A \cup A^{\mathrm{c}}=\Omega E \& A^{\mathrm{c}} \cup A=\Omega E, \tag{25}\\
& A \cap A^{\mathrm{c}}=\emptyset E \& A^{\mathrm{c}} \cap A=\emptyset E, \tag{26}\\
& A \cap \emptyset E=\emptyset E \& \emptyset E \cap A=\emptyset E, \tag{27}\\
& A \cup \Omega E=\Omega E \& \Omega E \cup A=\Omega E, \tag{28}\\
& (A \cup B)^{\mathrm{c}}=A^{\mathrm{c}} \cap B^{\mathrm{c}}, \tag{29}\\
& (A \cap B)^{\mathrm{c}}=A^{\mathrm{c}} \cup B^{\mathrm{c}}, \tag{30}\\
& A \subseteq B \text { iff } B^{\mathrm{c}} \subseteq A^{\mathrm{c}}, \tag{31}\\
& A \backslash B=A \cap B^{\mathrm{c}}, \tag{32}\\
& (A \backslash B)^{\mathrm{c}}=A^{\mathrm{c}} \cup B, \tag{33}\\
& (A \subset B)^{\mathrm{c}}=A \cap B \cup A^{\mathrm{c}} \cap B^{\mathrm{c}}, \tag{34}\\
& A \subseteq B^{\mathrm{c}} \text { implies } B \subseteq A^{\mathrm{c}}, \tag{35}\\
& A^{\mathrm{c}} \subseteq B \text { implies } B^{\mathrm{c}} \subseteq A, \tag{36}\\
& \emptyset E \subseteq E, \tag{37}\\
& A \subseteq A^{\mathrm{c}} \text { iff } A=\emptyset E, \tag{38}\\
& A^{\mathrm{c}} \subseteq A \text { iff } A=\Omega E, \tag{39}\\
& X \subseteq A \& X \subseteq A^{\mathrm{c}} \text { implies } X=\emptyset, \tag{40}\\
& (A \cup B)^{\mathrm{c}} \subseteq A^{\mathrm{c}} \&(A \cup B)^{\mathrm{c}} \subseteq B^{\mathrm{c}}, \tag{41}
\end{align*}
$$

In the sequel $x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8$ will have the type Element of X. One can prove the following propositions:

$$
\begin{gather*}
X \neq \emptyset \text { implies }\{x 1\} \text { is Subset of } X, \tag{54}\\
X \neq \emptyset \text { implies }\{x 1, x 2\} \text { is Subset of } X, \tag{55}\\
X \neq \emptyset \text { implies }\{x 1, x 2, x 3\} \text { is Subset of } X, \tag{56}\\
X \neq \emptyset \text { implies }\{x 1, x 2, x 3, x 4\} \text { is Subset of } X, \tag{57}\\
X \neq \emptyset \text { implies }\{x 1, x 2, x 3, x 4, x 5\} \text { is Subset of } X, \tag{58}\\
X \neq \emptyset \text { implies }\{x 1, x 2, x 3, x 4, x 5, x 6\} \text { is Subset of } X, \tag{59}\\
X \neq \emptyset \text { implies }\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} \text { is Subset of } X, \tag{60}\\
X \neq \emptyset \text { implies }\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} \text { is Subset of } X . \tag{61}
\end{gather*}
$$

In the sequel $x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8$ denote objects of the type Any. We now state several propositions:

$$
\begin{equation*}
x 1 \in X \text { implies }\{x 1\} \text { is Subset of } X \tag{62}
\end{equation*}
$$

$$
\begin{equation*}
x 1 \in X \& x 2 \in X \& x 3 \in X \text { implies }\{x 1, x 2, x 3\} \text { is Subset of } X \tag{63}
\end{equation*}
$$

(65) $x 1 \in X \& x 2 \in X \& x 3 \in X \& x 4 \in X$ implies $\{x 1, x 2, x 3, x 4\}$ is Subset of X,

$$
\begin{gather*}
x 1 \in X \& x 2 \in X \& x 3 \in X \& x 4 \in X \& x 5 \in X \tag{66}\\
\text { implies }\{x 1, x 2, x 3, x 4, x 5\} \text { is Subset of } X, \\
x 1 \in X \& x 2 \in X \& x 3 \in X \& x 4 \in X \& x 5 \in X \& x 6 \in X \tag{67}\\
\text { implies }\{x 1, x 2, x 3, x 4, x 5, x 6\} \text { is Subset of } X, \\
x 1 \in X \& x 2 \in X \& x 3 \in X \& x 4 \in X \& x 5 \in X \& x 6 \in X \& x 7 \in X \tag{68}\\
\text { implies }\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} \text { is Subset of } X, \\
x 1 \in X \tag{69}\\
\& x 2 \in X \& x 3 \in X \& x 4 \in X \& x 5 \in X \& x 6 \in X \& x 7 \in X \& x 8 \in X \\
\text { implies }\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} \text { is Subset of } X
\end{gather*}
$$

The scheme Subset_Ex concerns a constant \mathcal{A} that has the type set and a unary predicate \mathcal{P} and states that the following holds

$$
\text { ex } X \text { being Subset of } \mathcal{A} \text { st for } x \text { holds } x \in X \text { iff } x \in \mathcal{A} \& \mathcal{P}[x]
$$

for all values of the parameters.

References

[1] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received March 4, 1989

Relations and Their Basic Properties

Edmund Woronowicz ${ }^{1}$
Warsaw University
Białystok

Summary. We define here: mode Relation as a set of pairs, the domain, the codomain, and the field of relation, the empty and the identity relations, the composition of relations, the image and the inverse image of a set under a relation. Two predicates $=$ and \subseteq, and three functions \cup, \cap and \backslash are redefined. Basic facts about the above mentioned notions are presented.

The terminology and notation used in this paper have been introduced in the articles [1] and [2]. For simplicity we adopt the following convention: $A, B, X, Y, Y 1, Y 2$ denote objects of the type set; a, b, c, d, x, y, z denote objects of the type Any. The mode

Relation,
which widens to the type set, is defined by

$$
x \in \text { it implies ex } y, z \text { st } x=\langle y, z\rangle
$$

One can prove the following proposition
(1) for R being set st for x st $x \in R$ ex y, z st $x=\langle y, z\rangle$ holds R is Relation.

In the sequel $P, P 1, P 2, Q, R, S$ will have the type Relation. Next we state several propositions:

$$
\begin{equation*}
x \in R \text { implies ex } y, z \text { st } x=\langle y, z\rangle, \tag{2}
\end{equation*}
$$

$$
A \subseteq R \text { implies } A \text { is Relation }
$$

$\{\langle x, y\rangle\}$ is Relation,

$$
\begin{equation*}
\{\langle a, b\rangle,\langle c, d\rangle\} \text { is Relation } \tag{5}
\end{equation*}
$$

: $: X, Y$] is Relation.

[^9]The scheme Rel_Existence deals with a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a binary predicate \mathcal{P} and states that the following holds
ex R being Relation st for x, y holds $\langle x, y\rangle \in R$ iff $x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y]$
for all values of the parameters.
Let us consider P, R. Let us note that one can characterize the predicate

$$
P=R
$$

by the following (equivalent) condition:

$$
\text { for } a, b \text { holds }\langle a, b\rangle \in P \text { iff }\langle a, b\rangle \in R
$$

The following proposition is true

$$
\begin{equation*}
P=R \text { iff for } a, b \text { holds }\langle a, b\rangle \in P \text { iff }\langle a, b\rangle \in R . \tag{7}
\end{equation*}
$$

For convenience we may adopt another formulas defining notions considered in the paper. From now on we shall treat them as new definitions.

Let us consider P, R. Let us note that it makes sense to consider the following functors on restricted areas. Then

$P \cap R$	is	Relation,
$P \cup R$	is	Relation,
$P \backslash R$	is	Relation.

Let us note that one can characterize the predicate

$$
P \subseteq R
$$

by the following (equivalent) condition:

$$
\text { for } a, b \text { holds }\langle a, b\rangle \in P \text { implies }\langle a, b\rangle \in R \text {. }
$$

The following three propositions are true:

$$
\begin{equation*}
P \subseteq R \text { iff for } a, b \text { holds }\langle a, b\rangle \in P \text { implies }\langle a, b\rangle \in R \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
X \cap R \text { is Relation \& } R \cap X \text { is Relation } \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
R \backslash X \text { is Relation } \tag{10}
\end{equation*}
$$

Let us consider R. The functor

$$
\operatorname{dom} R
$$

with values of the type set, is defined by

$$
x \in \text { it iff ex } y \text { st }\langle x, y\rangle \in R .
$$

We now state several propositions:

$$
\begin{equation*}
X=\operatorname{dom} R \text { iff for } x \text { holds } x \in X \text { iff ex } y \text { st }\langle x, y\rangle \in R, \tag{11}
\end{equation*}
$$

$$
\begin{align*}
& x \in \operatorname{dom} R \text { iff ex } y \text { st }\langle x, y\rangle \in R, \tag{12}\\
& \operatorname{dom}(P \cup R)=\operatorname{dom} P \cup \operatorname{dom} R, \tag{13}\\
& \operatorname{dom}(P \cap R) \subseteq \operatorname{dom} P \cap \operatorname{dom} R, \tag{14}\\
& \operatorname{dom} P \backslash \operatorname{dom} R \subseteq \operatorname{dom}(P \backslash R) \tag{15}
\end{align*}
$$

Let us consider R. The functor

$$
\operatorname{rng} R
$$

yields the type set and is defined by

$$
y \in \text { it iff ex } x \text { st }\langle x, y\rangle \in R .
$$

One can prove the following propositions:

$$
\begin{gather*}
X=\operatorname{rng} R \text { iff for } x \text { holds } x \in X \text { iff ex } y \text { st }\langle y, x\rangle \in R, \tag{16}\\
x \in \operatorname{rng} R \text { iff ex } y \text { st }\langle y, x\rangle \in R, \tag{17}\\
x \in \operatorname{dom} R \text { implies ex } y \text { st } y \in \operatorname{rng} R, \tag{18}\\
y \in \operatorname{rng} R \text { implies ex } x \text { st } x \in \operatorname{dom} R, \tag{19}\\
\langle x, y\rangle \in R \text { implies } x \in \operatorname{dom} R \& y \in \operatorname{rng} R, \tag{20}\\
R \subseteq[\operatorname{dom} R, \operatorname{rng} R:], \tag{21}\\
R \cap: \operatorname{dom} R, \operatorname{rng} R:]=R, \tag{22}\\
R=\{\langle a, b\rangle,\langle x, y\rangle\} \operatorname{implies} \operatorname{dom} R=\{a, x\} \& \operatorname{rng} R=\{b, y\}, \tag{23}\\
P \subseteq R \operatorname{implies} \operatorname{dom} P \subseteq \operatorname{dom} R \& \operatorname{rng} P \subseteq \operatorname{rng} R, \tag{24}\\
\operatorname{rng}(P \cup R)=\operatorname{rng} P \cup \operatorname{rng} R, \tag{25}\\
\operatorname{rng}(P \cap R) \subseteq \operatorname{rng} P \cap \operatorname{rng} R, \tag{26}\\
\operatorname{rng} P \backslash \operatorname{rng} R \subseteq \operatorname{rng}(P \backslash R) . \tag{27}
\end{gather*}
$$

Let us consider R. The functor
yields the type set and is defined by

$$
\mathbf{i t}=\operatorname{dom} R \cup \operatorname{rng} R
$$

We now state several propositions:

$$
\begin{gather*}
\text { field } R=\operatorname{dom} R \cup \operatorname{rng} R \tag{29}\\
\langle a, b\rangle \in R \text { implies } a \in \text { field } R \& b \in \text { field } R \tag{30}\\
P \subseteq R \text { implies field } P \subseteq \text { field } R \tag{31}\\
R=\{\langle x, y\rangle\} \text { implies field } R=\{x, y\}, \tag{32}\\
\text { field }(P \cup R)=\text { field } P \cup \text { field } R \tag{33}\\
\text { field }(P \cap R) \subseteq \text { field } P \cap \text { field } R \tag{34}
\end{gather*}
$$

Let us consider R. The functor

$$
R^{\sim}
$$

yields the type Relation and is defined by

$$
\langle x, y\rangle \in \text { it iff }\langle y, x\rangle \in R .
$$

One can prove the following propositions:

$$
\begin{gather*}
R=P^{\sim} \text { iff for } x, y \text { holds }\langle x, y\rangle \in R \text { iff }\langle y, x\rangle \in P, \tag{35}\\
\langle x, y\rangle \in P^{\sim} \mathbf{i f f}\langle y, x\rangle \in P \tag{36}\\
\left(R^{\sim}\right)^{\sim}=R \tag{37}\\
\text { field } R=\text { field }\left(R^{\sim}\right) \tag{38}\\
(P \cap R)^{\sim}=P^{\sim} \cap R^{\sim} \tag{39}\\
(P \cup R)^{\sim}=P^{\sim} \cup R^{\sim} \tag{40}\\
(P \backslash R)^{\sim}=P^{\sim} \backslash R^{\sim} \tag{41}
\end{gather*}
$$

Let us consider P, R. The functor

$$
P \cdot R
$$

with values of the type Relation, is defined by

$$
\langle x, y\rangle \in \text { it iff ex } z \text { st }\langle x, z\rangle \in P \&\langle z, y\rangle \in R .
$$

We now state a number of propositions:

$$
\begin{equation*}
Q=P \cdot R \text { iff for } x, y \text { holds }\langle x, y\rangle \in Q \text { iff ex } z \text { st }\langle x, z\rangle \in P \&\langle z, y\rangle \in R \tag{42}
\end{equation*}
$$

$$
\begin{gather*}
\langle x, y\rangle \in P \cdot R \text { iff ex } z \mathbf{s t}\langle x, z\rangle \in P \&\langle z, y\rangle \in R, \tag{43}\\
\operatorname{dom}(P \cdot R) \subseteq \operatorname{dom} P, \tag{44}\\
\operatorname{rng}(P \cdot R) \subseteq \operatorname{rng} R, \tag{45}\\
\text { rng } R \subseteq \operatorname{dom} P \text { implies dom }(R \cdot P)=\operatorname{dom} R, \tag{46}\\
\operatorname{dom} P \subseteq \operatorname{rng} R \text { implies rng }(R \cdot P)=\operatorname{rng} P, \tag{47}\\
P \subseteq R \text { implies } Q \cdot P \subseteq Q \cdot R, \tag{48}\\
P \subseteq Q \text { implies } P \cdot R \subseteq Q \cdot R, \tag{49}\\
P \subseteq R \& Q \subseteq S \text { implies } P \cdot Q \subseteq R \cdot S, \tag{50}\\
P \cdot(R \cup Q)=(P \cdot R) \cup(P \cdot Q), \tag{51}\\
P \cdot(R \cap Q) \subseteq(P \cdot R) \cap(P \cdot Q), \tag{52}\\
(P \cdot R) \backslash(P \cdot Q) \subseteq P \cdot(R \backslash Q), \tag{53}\\
(P \cdot R)^{\sim}=R^{\sim} \cdot P^{\sim}, \tag{54}\\
(P \cdot R) \cdot Q=P \cdot(R \cdot Q) \tag{55}
\end{gather*}
$$

The constant \varnothing has the type Relation, and is defined by

$$
\operatorname{not}\langle x, y\rangle \in \mathbf{i t}
$$

One can prove the following propositions:

$$
\begin{equation*}
\operatorname{dom} \emptyset=\emptyset \& \operatorname{rng} \emptyset=\emptyset \tag{60}
\end{equation*}
$$

$$
\begin{equation*}
\emptyset \cap R=\varnothing \& \emptyset \cup R=R \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
\emptyset \cdot R=\emptyset \& R \cdot \emptyset=\varnothing \tag{62}
\end{equation*}
$$

$$
\begin{equation*}
R \cdot \emptyset=\varnothing \cdot R \tag{63}
\end{equation*}
$$

$$
\begin{gather*}
R=\varnothing \text { iff for } x, y \text { holds not }\langle x, y\rangle \in R, \tag{56}\\
\operatorname{not}\langle x, y\rangle \in \emptyset \tag{57}\\
\emptyset \subseteq: A, B: \tag{58}\\
\emptyset \subseteq R \tag{59}
\end{gather*}
$$

$$
\begin{equation*}
\operatorname{dom} R=\emptyset \text { or } \operatorname{rng} R=\emptyset \text { implies } R=\emptyset \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom} R=\emptyset \text { iff rng } R=\emptyset \tag{65}
\end{equation*}
$$

$$
\begin{equation*}
\varnothing^{\sim}=\varnothing, \tag{66}
\end{equation*}
$$

$\operatorname{rng} R \cap \operatorname{dom} P=\emptyset$ implies $R \cdot P=\emptyset$.
Let us consider X. The functor

$$
\triangle X
$$

with values of the type Relation, is defined by

$$
\langle x, y\rangle \in \text { it iff } x \in X \& x=y
$$

The following propositions are true:

$$
\begin{equation*}
P=\triangle X \text { iff for } x, y \text { holds }\langle x, y\rangle \in P \text { iff } x \in X \& x=y \tag{68}
\end{equation*}
$$

$$
\begin{gather*}
\langle x, y\rangle \in \triangle X \text { iff } x \in X \& x=y, \tag{69}\\
x \in X \text { iff }\langle x, x\rangle \in \triangle X, \tag{70}\\
\text { dom } \triangle X=X \& \operatorname{rng} \triangle X=X, \tag{71}\\
(\triangle X)^{\sim}=\triangle X, \tag{72}\\
\text { for } x \text { st } x \in X \text { holds }\langle x, x\rangle \in R) \text { implies } \triangle X \subseteq R, \tag{73}\\
\langle x, y\rangle \in(\triangle X) \cdot R \text { iff } x \in X \&\langle x, y\rangle \in R, \tag{74}\\
\langle x, y\rangle \in R \cdot \triangle Y \text { iff } y \in Y \&\langle x, y\rangle \in R, \tag{75}\\
R \cdot(\triangle X) \subseteq R \&(\triangle X) \cdot R \subseteq R, \tag{76}\\
\operatorname{dom} R \subseteq X \operatorname{implies}(\triangle X) \cdot R=R, \tag{77}\\
(\triangle \operatorname{dom} R) \cdot R=R, \tag{78}\\
\operatorname{dng} R \subseteq Y \operatorname{implies} R \cdot(\triangle Y)=R, \tag{79}\\
R \cdot(\triangle \operatorname{rng} R)=R, \tag{80}\\
\triangle \emptyset=\emptyset, \tag{81}
\end{gather*}
$$

$$
\begin{align*}
\operatorname{dom} R=X \& \operatorname{rng} P 2 \subseteq & X \& P 2 \cdot R=\triangle(\operatorname{dom} P 1) \& R \cdot P 1=\triangle X \tag{82}\\
& \quad \text { implies } P 1=P 2 \\
\operatorname{dom} R=X \& \operatorname{rng} P 2= & X \& P 2 \cdot R=\triangle(\operatorname{dom} P 1) \& R \cdot P 1=\triangle X \tag{83}\\
& \text { implies } P 1=P 2
\end{align*}
$$

Let us consider R, X. The functor

$$
R \mid X
$$

with values of the type Relation, is defined by

$$
\langle x, y\rangle \in \text { it iff } x \in X \&\langle x, y\rangle \in R .
$$

We now state a number of propositions:

$$
\begin{equation*}
\operatorname{dom}(R \mid X) \subseteq \operatorname{dom} R, \tag{89}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom}(R \mid X)=\operatorname{dom} R \cap X \tag{90}
\end{equation*}
$$

$$
\begin{equation*}
X \subseteq \operatorname{dom} R \text { implies } \operatorname{dom}(R \mid X)=X \tag{91}
\end{equation*}
$$

$$
\begin{equation*}
(R \mid X) \cdot P \subseteq R \cdot P \tag{92}
\end{equation*}
$$

$$
\begin{equation*}
P \cdot(R \mid X) \subseteq P \cdot R, \tag{93}
\end{equation*}
$$

$$
\begin{equation*}
R \mid X=(\triangle X) \cdot R \tag{94}
\end{equation*}
$$

$$
\begin{equation*}
R \mid X=\emptyset \text { iff }(\operatorname{dom} R) \cap X=\emptyset \tag{95}
\end{equation*}
$$

$$
\begin{equation*}
R \mid X=R \cap: X, \operatorname{rng} R:, \tag{96}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{dom} R \subseteq X \text { implies } R \mid X=R \tag{97}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rng}(R \mid X) \subseteq \operatorname{rng} R, \tag{99}
\end{equation*}
$$

$$
\begin{equation*}
P=R \mid X \text { iff for } x, y \text { holds }\langle x, y\rangle \in P \text { iff } x \in X \&\langle x, y\rangle \in R, \tag{84}
\end{equation*}
$$

$$
\begin{gather*}
\langle x, y\rangle \in R \mid X \text { iff } x \in X \&\langle x, y\rangle \in R, \tag{85}\\
x \in \operatorname{dom}(R \mid X) \text { iff } x \in X \& x \in \operatorname{dom} R, \tag{86}
\end{gather*}
$$

$$
\begin{gather*}
\operatorname{dom}(R \mid X) \subseteq X, \tag{87}\\
R \mid X \subseteq R \tag{88}
\end{gather*}
$$

$$
\begin{equation*}
R \mid \operatorname{dom} R=R \tag{98}
\end{equation*}
$$

$$
\begin{equation*}
(R \mid X)|Y=R|(X \cap Y) \tag{100}
\end{equation*}
$$

$$
\begin{equation*}
(R \mid X)|X=R| X \tag{101}
\end{equation*}
$$

$$
\begin{align*}
& X \subseteq Y \text { implies }(R \mid X)|Y=R| X, \tag{102}\\
& Y \subseteq X \text { implies }(R \mid X)|Y=R| Y \tag{103}\\
& \quad X \subseteq Y \text { implies } R|X \subseteq R| Y \tag{104}
\end{align*}
$$

$$
\begin{gathered}
P \subseteq R \text { implies } P|X \subseteq R| X, \\
P \subseteq R \& X \subseteq Y \text { implies } P|X \subseteq R| Y, \\
R \mid(X \cup Y)=(R \mid X) \cup(R \mid Y) \\
R \mid(X \cap Y)=(R \mid X) \cap(R \mid Y) \\
R|(X \backslash Y)=R| X \backslash R \mid Y, \\
R \mid \emptyset=\emptyset \\
\emptyset \mid X=\emptyset \\
(P \cdot R) \mid X=(P \mid X) \cdot R
\end{gathered}
$$

Let us consider Y, R. The functor

$$
Y \mid R
$$

yields the type Relation and is defined by

$$
\langle x, y\rangle \in \text { it iff } y \in Y \&\langle x, y\rangle \in R .
$$

The following propositions are true:

$$
\begin{gather*}
P=Y \mid R \text { iff for } x, y \text { holds }\langle x, y\rangle \in P \text { iff } y \in Y \&\langle x, y\rangle \in R, \tag{113}\\
\langle x, y\rangle \in Y \mid R \text { iff } y \in Y \&\langle x, y\rangle \in R, \tag{114}\\
y \in \operatorname{rng}(Y \mid R) \text { iff } y \in Y \& y \in \operatorname{rng} R, \tag{115}\\
\operatorname{rng}(Y \mid R) \subseteq Y, \tag{116}\\
Y \mid R \subseteq R \tag{117}\\
\operatorname{rng}(Y \mid R) \subseteq \operatorname{rng} R \tag{118}\\
\operatorname{rng}(Y \mid R)=\operatorname{rng} R \cap Y, \tag{119}\\
Y \subseteq \operatorname{rng} R \text { implies rng }(Y \mid R)=Y, \tag{120}\\
(Y \mid R) \cdot P \subseteq R \cdot P \tag{121}\\
P \cdot(Y \mid R) \subseteq P \cdot R \tag{122}\\
Y \mid R=R \cdot(\triangle Y), \tag{123}\\
Y \mid R=R \cap: \operatorname{dom} R, Y: \tag{124}\\
\operatorname{rng} R \subseteq Y \text { implies } Y \mid R=R \tag{125}
\end{gather*}
$$

(126)

$$
\begin{gather*}
\text { rng } R \mid R=R, \\
Y|(X \mid R)=(Y \cap X)| R, \tag{127}\\
Y|(Y \mid R)=Y| R, \tag{128}\\
X \subseteq Y \text { implies } Y|(X \mid R)=X| R, \tag{129}\\
Y \subseteq X \text { implies } Y|(X \mid R)=Y| R, \tag{130}\\
P 1 \subseteq P 2 \& Y 1 \subseteq Y 2 \text { implies } Y 1|P 1 \subseteq Y 2| P 2, \tag{131}\\
X \subseteq Y \text { implies } X|R \subseteq Y| R, \tag{132}\\
(X \cup Y) \mid R=(X \mid R) \cup(Y \mid R), \tag{133}\\
(X \cap Y)|R=X| R \cap Y \mid R, \tag{134}\\
(X \backslash Y)|R=X| R \backslash Y \mid R, \tag{135}\\
(X) \text { implies } Y|P 1 \subseteq Y| P 2, \tag{136}\\
\emptyset \mid R=\emptyset, \tag{137}\\
Y \mid \emptyset=\emptyset, \tag{138}\\
Y \mid(P \cdot R)=P \cdot(Y \mid R), \tag{139}\\
(Y \mid R)|X=Y|(R \mid X) \tag{140}
\end{gather*}
$$

Let us consider R, X. The functor

$$
R^{\circ} X
$$

yields the type set and is defined by

$$
y \in \text { it iff ex } x \text { st }\langle x, y\rangle \in R \& x \in X
$$

One can prove the following propositions:

$$
\begin{gather*}
Y=R^{\circ} X \text { iff for } y \text { holds } y \in Y \text { iff ex } x \text { st }\langle x, y\rangle \in R \& x \in X, \tag{141}\\
y \in R^{\circ} X \text { iff ex } x \text { st }\langle x, y\rangle \in R \& x \in X, \tag{142}\\
y \in R^{\circ} X \text { iff ex } x \text { st } x \in \operatorname{dom} R \&\langle x, y\rangle \in R \& x \in X, \tag{143}\\
R^{\circ} X \subseteq \operatorname{rng} R, \tag{144}\\
R^{\circ} X=R^{\circ}(\operatorname{dom} R \cap X), \tag{145}\\
R^{\circ} \operatorname{dom} R=\operatorname{rng} R, \tag{146}
\end{gather*}
$$

$$
\begin{aligned}
& R^{\circ} X \subseteq R^{\circ}(\operatorname{dom} R), \\
& \operatorname{rng}(R \mid X)=R^{\circ} X, \\
& R^{\circ} \emptyset=\emptyset, \\
& \emptyset^{\circ} X=\emptyset, \\
& R^{\circ} X=\emptyset \text { iff } \operatorname{dom} R \cap X=\emptyset, \\
& X \neq \emptyset \& X \subseteq \operatorname{dom} R \text { implies } R^{\circ} X \neq \emptyset, \\
& R^{\circ}(X \cup Y)=R^{\circ} X \cup R^{\circ} Y, \\
& R^{\circ}(X \cap Y) \subseteq R^{\circ} X \cap R^{\circ} Y, \\
& R^{\circ} X \backslash R^{\circ} Y \subseteq R^{\circ}(X \backslash Y), \\
& X \subseteq Y \text { implies } R^{\circ} X \subseteq R^{\circ} Y, \\
& P \subseteq R \text { implies } P^{\circ} X \subseteq R^{\circ} X, \\
& P \subseteq R \& X \subseteq Y \text { implies } P^{\circ} X \subseteq R^{\circ} Y, \\
& (P \cdot R)^{\circ} X=R^{\circ}\left(P^{\circ} X\right), \\
& \operatorname{rng}(P \cdot R)=R^{\circ}(\operatorname{rng} P), \\
& (R \mid X)^{\circ} Y \subseteq R^{\circ} Y, \\
& R \mid X=\emptyset \text { iff }(\operatorname{dom} R) \cap X=\emptyset, \\
& (\operatorname{dom} R) \cap X \subseteq\left(R^{\sim}\right)^{\circ}\left(R^{\circ} X\right) .
\end{aligned}
$$

Let us consider R, Y. The functor

$$
R^{-1} Y
$$

with values of the type set, is defined by

$$
x \in \text { it iff ex } y \text { st }\langle x, y\rangle \in R \& y \in Y
$$

Next we state a number of propositions:

$$
\begin{gather*}
X=R^{-1} Y \text { iff for } x \text { holds } x \in X \text { iff ex } y \text { st }\langle x, y\rangle \in R \& y \in Y, \tag{164}\\
x \in R^{-1} Y \text { iff ex } y \text { st }\langle x, y\rangle \in R \& y \in Y \tag{165}\\
x \in R^{-1} Y \text { iff ex } y \text { st } y \in \operatorname{rng} R \&\langle x, y\rangle \in R \& y \in Y \tag{166}\\
R^{-1} Y \subseteq \operatorname{dom} R \tag{167}
\end{gather*}
$$

$R^{-1} Y=R^{-1}(\operatorname{rng} R \cap Y)$, $R^{-1} \operatorname{rng} R=\operatorname{dom} R$, $R^{-1} Y \subseteq R^{-1} \operatorname{rng} R$, $R^{-1} \emptyset=\emptyset$,
$\emptyset^{-1} Y=\emptyset$,
$R^{-1} Y=\emptyset$ iff $\operatorname{rng} R \cap Y=\emptyset$, $Y \neq \emptyset \& Y \subseteq \operatorname{rng} R$ implies $R^{-1} Y \neq \emptyset$, $R^{-1}(X \cup Y)=R^{-1} X \cup R^{-1} Y$, $R^{-1}(X \cap Y) \subseteq R^{-1} Y \cap R^{-1} Y$, $R^{-1} X \backslash R^{-1} Y \subseteq R^{-1}(X \backslash Y)$, $X \subseteq Y$ implies $R^{-1} X \subseteq R^{-1} Y$, $P \subseteq R$ implies $P^{-1} Y \subseteq R^{-1} Y$, $P \subseteq R \& X \subseteq Y$ implies $P^{-1} X \subseteq R^{-1} Y$, $(P \cdot R)^{-1} Y=P^{-1}\left(R^{-1} Y\right)$, $\operatorname{dom}(P \cdot R)=P^{-1}(\operatorname{dom} R)$, $(\operatorname{rng} R) \cap Y \subseteq\left(R^{\sim}\right)^{-1}\left(R^{-1} Y\right)$.

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received March 15, 1989

Properties of Binary Relations

Edmund Woronowicz ${ }^{1}$
Warsaw University
Białystok

Anna Zalewska ${ }^{2}$
Warsaw University
Białystok

Abstract

Summary. The paper contains definitions of some properties of binary relations: reflexivity, irreflexivity, symmetry, asymmetry, antisymmetry, connectedness, strong connectedness, and transitivity. Basic theorems relating the above mentioned notions are given.

The terminology and notation used here have been introduced in the following articles: [1], [2], and [3]. For simplicity we adopt the following convention: X will have the type set; x, y, z will have the type Any; P, R will have the type Relation. We now define several new predicates. Let us consider R, X. The predicate

$$
R \text { is_reflexive_in } X \quad \text { is defined by } \quad x \in X \text { implies }\langle x, x\rangle \in R \text {. }
$$

The predicate

$$
R \text { is_irreflexive_in } X \quad \text { is defined by } \quad x \in X \text { implies not }\langle x, x\rangle \in R \text {. }
$$

The predicate

$$
R \text { is_symmetric_in } X
$$

is defined by

$$
x \in X \& y \in X \&\langle x, y\rangle \in R \text { implies }\langle y, x\rangle \in R .
$$

The predicate

$$
R \text { is_antisymmetric_in } X
$$

is defined by

$$
x \in X \& y \in X \&\langle x, y\rangle \in R \&\langle y, x\rangle \in R \text { implies } x=y
$$

[^10]The predicate

$$
R \text { is_asymmetric_in } X
$$

is defined by

$$
x \in X \& y \in X \&\langle x, y\rangle \in R \text { implies not }\langle y, x\rangle \in R
$$

The predicate

$$
R \text { is_connected_in } X
$$

is defined by

$$
x \in X \& y \in X \& x \neq y \text { implies }\langle x, y\rangle \in R \text { or }\langle y, x\rangle \in R
$$

The predicate

$$
R \text { is_strongly_connected_in } X
$$

is defined by

$$
x \in X \& y \in X \text { implies }\langle x, y\rangle \in R \text { or }\langle y, x\rangle \in R
$$

The predicate

$$
R \text { is_transitive_in } X
$$

is defined by

$$
x \in X \& y \in X \& z \in X \&\langle x, y\rangle \in R \&\langle y, z\rangle \in R \text { implies }\langle x, z\rangle \in R .
$$

We now state several propositions:
R is_connected_in X
iff for x, y st $x \in X \& y \in X \& x \neq y$ holds $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$,
R is_strongly_connected_in X
iff for x, y st $x \in X \& y \in X$ holds $\langle x, y\rangle \in R$ or $\langle y, x\rangle \in R$,
R is_transitive_in X iff for x, y, z
st $x \in X \& y \in X \& z \in X \&\langle x, y\rangle \in R \&\langle y, z\rangle \in R$ holds $\langle x, z\rangle \in R$.
We now define several new predicates. Let us consider R. The predicate
R is_reflexive \quad is defined by $\quad R$ is_reflexive_in field R.
The predicate
R is_irreflexive \quad is defined by $\quad R$ is_irreflexive_in field R.
The predicate
R is_symmetric \quad is defined by $\quad R$ is_symmetric_in field R.
The predicate

$$
R \text { is_antisymmetric } \quad \text { is defined by } \quad R \text { is_antisymmetric_in field } R \text {. }
$$

The predicate

$$
R \text { is_asymmetric } \quad \text { is defined by } \quad R \text { is_asymmetric_in field } R \text {. }
$$

The predicate
R is_connected \quad is defined by $\quad R$ is_connected_in field R.
The predicate
R is_strongly_connected \quad is defined by $\quad R$ is_strongly_connected_in field R.
The predicate
R is_transitive \quad is defined by $\quad R$ is_transitive_in field R.
We now state a number of propositions: R is_reflexive iff R is_reflexive_in field R, R is_irreflexive iff R is_irreflexive_in field R, R is_symmetric $\mathbf{i f f} R$ is_symmetric_in field R, R is_antisymmetric iff R is_antisymmetric_in field R, R is_asymmetric $\mathbf{i f f} R$ is_asymmetric_in field R, R is_connected iff R is_connected_in field R, R is_strongly_connected iff R is_strongly_connected_in field R, R is_transitive iff R is_transitive_in field R,
R is_reflexive iff \triangle field $R \subseteq R$, R is_irreflexive iff $\triangle($ field $R) \cap R=\emptyset$, R is_antisymmetric_in X iff $R \backslash \triangle X$ is_asymmetric_in X, R is_asymmetric_in X implies $R \cup \triangle X$ is_antisymmetric_in X, R is_antisymmetric_in X implies $R \backslash \triangle X$ is_asymmetric_in X, R is_symmetric \& R is_transitive implies R is_reflexive, $\triangle X$ is_symmetric \& $\triangle X$ is_transitive, $\triangle X$ is_antisymmetric $\& \triangle X$ is_reflexive, R is_irreflexive \& R is_transitive implies R is_asymmetric, R is_asymmetric implies R is_irreflexive $\& R$ is_antisymmetric, R is_reflexive implies R^{\sim} is_reflexive, R is_irreflexive implies R^{\sim} is_irreflexive, R is_reflexive implies $\operatorname{dom} R=\operatorname{dom}\left(R^{\sim}\right) \& \operatorname{rng} R=\operatorname{rng}\left(R^{\sim}\right)$, R is_symmetric iff $R=R^{\sim}$,
P is_reflexive \& R is_reflexive implies $P \cup R$ is_reflexive \& $P \cap R$ is_reflexive, P is_irreflexive \& R is_irreflexive implies $P \cup R$ is_irreflexive \& $P \cap R$ is_irreflexive, P is_irreflexive implies $P \backslash R$ is_irreflexive, R is_symmetric implies R^{\sim} is_symmetric, P is_symmetric \& R is_symmetric implies $P \cup R$ is_symmetric \& $P \cap R$ is_symmetric \& $P \backslash R$ is_symmetric, R is_asymmetric implies R^{\sim} is_asymmetric ,
P is_asymmetric \& R is_asymmetric implies $P \cap R$ is_asymmetric,
P is_asymmetric implies $P \backslash R$ is_asymmetric, R is_antisymmetric iff $R \cap\left(R^{\sim}\right) \subseteq \triangle(\operatorname{dom} R)$, R is_antisymmetric implies R^{\sim} is_antisymmetric ,
(41)

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
[3] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1, 1990.

Received March 15, 1989

The Ordinal Numbers

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. In the beginning of article we show some consequences of the regularity axiom. In the second part we introduce the successor of a set and the notions of transitivity and connectedness wrt membership relation. Then we define ordinal numbers as transitive and connected sets, and we prove some theorems of them and of their sets. Lastly we introduce the concept of a transfinite sequence and we show transfinite induction and schemes of defining by transfinite induction.

The notation and terminology used in this paper have been introduced in the following articles: [2], [3], and [1]. For simplicity we adopt the following convention: X, Y, Z, $A, B, X 1, X 2, X 3, X 4, X 5, X 6$ will denote objects of the type set; x will denote an object of the type Any. Next we state several propositions:

$$
\begin{gather*}
\operatorname{not} X \in X, \tag{1}\\
\operatorname{not}(X \in Y \& Y \in X), \\
\operatorname{not}(X \in Y \& Y \in Z \& Z \in X), \\
\operatorname{not}(X 1 \in X 2 \& X 2 \in X 3 \& X 3 \in X 4 \& X 4 \in X 1), \\
\operatorname{not}(X 1 \in X 2 \& X 2 \in X 3 \& X 3 \in X 4 \& X 4 \in X 5 \& X 5 \in X 1),
\end{gather*}
$$

(6) $\operatorname{not}(X 1 \in X 2 \& X 2 \in X 3 \& X 3 \in X 4 \& X 4 \in X 5 \& X 5 \in X 6 \& X 6 \in X 1)$,

$$
\begin{equation*}
Y \in X \text { implies not } X \subseteq Y \tag{7}
\end{equation*}
$$

The scheme Comprehension deals with a constant \mathcal{A} that has the type set and a unary predicate \mathcal{P} and states that the following holds
ex B st for Z being set holds $Z \in B$ iff $Z \in \mathcal{A} \& \mathcal{P}[Z]$

[^11]for all values of the parameters.
One can prove the following proposition
\[

$$
\begin{equation*}
\text { (for } X \text { holds } X \in A \text { iff } X \in B \text {) implies } A=B \tag{8}
\end{equation*}
$$

\]

Let us consider X. The functor

$$
\operatorname{succ} X
$$

with values of the type set, is defined by

$$
\mathbf{i t}=X \cup\{X\} .
$$

Next we state several propositions:

$$
\begin{gather*}
\operatorname{succ} X=X \cup\{X\}, \tag{9}\\
X \in \operatorname{succ} X, \tag{10}\\
\operatorname{succ} X \neq \emptyset, \tag{11}\\
\operatorname{succ} X=\operatorname{succ} Y \text { implies } X=Y, \tag{12}\\
x \in \operatorname{succ} X \text { iff } x \in X \text { or } x=X, \tag{13}\\
X \neq \operatorname{succ} X, \tag{14}
\end{gather*}
$$

For simplicity we adopt the following convention: a has the type Any; X, Y, Z, x, y have the type set. We now define two new predicates. Let us consider X. The predicate

$$
X \text { is_є-transitive } \quad \text { is defined by } \quad \text { for } x \text { st } x \in X \text { holds } x \subseteq X .
$$

The predicate

$$
X \text { is_є-connected }
$$

is defined by

$$
\text { for } x, y \text { st } x \in X \& y \in X \text { holds } x \in y \text { or } x=y \text { or } y \in x
$$

One can prove the following two propositions:

$$
\begin{equation*}
X \text { is_Є-transitive iff for } x \text { st } x \in X \text { holds } x \subseteq X \tag{15}
\end{equation*}
$$

(16) X is_ \in-connected iff for x, y st $x \in X \& y \in X$ holds $x \in y$ or $x=y$ or $y \in x$.

The mode
Ordinal,
which widens to the type set, is defined by
it is_ \in-transitive \& it is_ \in-connected .

In the sequel A, B, C will have the type Ordinal. The following propositions are true:

$$
\begin{equation*}
X \text { is Ordinal iff } X \text { is_ } \in \text {-transitive \& } X \text { is_ } \in \text {-connected, } \tag{17}
\end{equation*}
$$

$$
\begin{gather*}
x \in A \text { implies } x \subseteq A, \tag{18}\\
A \in B \& B \in C \text { implies } A \in C, \tag{19}\\
x \in A \& y \in A \text { implies } x \in y \text { or } x=y \text { or } y \in x, \tag{20}\\
\text { for } x, A \text { being Ordinal st } x \subseteq A \& x \neq A \text { holds } x \in A, \tag{21}\\
A \subseteq B \& B \in C \text { implies } A \in C, \tag{22}\\
a \in A \text { implies } a \text { is Ordinal, } \tag{23}\\
A \in B \text { or } A=B \text { or } B \in A, \tag{24}\\
A \subseteq B \text { or } B \subseteq A, \tag{25}\\
A \subseteq B \text { or } B \in A, \tag{26}\\
\emptyset \text { is Ordinal } \tag{27}
\end{gather*}
$$

The constant $\mathbf{0}$ has the type Ordinal, and is defined by

$$
\mathbf{i t}=\emptyset
$$

Next we state three propositions:

$$
\begin{gather*}
0=\emptyset \tag{28}\\
x \text { is Ordinal implies succ } x \text { is Ordinal } \tag{29}\\
x \text { is Ordinal implies } \bigcup x \text { is Ordinal. } \tag{30}
\end{gather*}
$$

Let us consider A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{lll}
\operatorname{succ} A & \text { is } \quad \text { Ordinal, } \\
\bigcup A & \text { is } \quad \text { Ordinal. }
\end{array}
$$

One can prove the following propositions:
(for x st $x \in X$ holds x is Ordinal $\& x \subseteq X$) implies X is Ordinal,

$$
\begin{equation*}
A \in B \text { iff } \operatorname{succ} A \subseteq B \tag{32}
\end{equation*}
$$

$$
\begin{equation*}
A \in \operatorname{succ} C \operatorname{iff} A \subseteq C \tag{34}
\end{equation*}
$$

Now we present two schemes. The scheme Ordinal_Min concerns a unary predicate \mathcal{P} states that the following holds

$$
\text { ex } A \text { st } \mathcal{P}[A] \& \text { for } B \text { st } \mathcal{P}[B] \text { holds } A \subseteq B
$$

provided the parameter satisfies the following condition:

- ex A st $\mathcal{P}[A]$.

The scheme Transfinite_Ind concerns a unary predicate \mathcal{P} states that the following holds

$$
\text { for } A \text { holds } \mathcal{P}[A]
$$

provided the parameter satisfies the following condition:

- for A st for C st $C \in A$ holds $\mathcal{P}[C]$ holds $\mathcal{P}[A]$.

One can prove the following propositions:

$$
\begin{align*}
& \text { for } X \text { st for } a \text { st } a \in X \text { holds } a \text { is Ordinal holds } \bigcup X \text { is Ordinal, } \tag{35}\\
& \text { for } X \text { st for } a \text { st } a \in X \text { holds } a \text { is Ordinal ex } A \text { st } X \subseteq A, \tag{36}\\
& \text { not ex } X \text { st for } x \text { holds } x \in X \text { iff } x \text { is Ordinal, } \tag{37}\\
& \text { not ex } X \text { st for } A \text { holds } A \in X, \tag{38}\\
& \text { for } X \text { ex } A \text { st not } A \in X \& \text { for } B \text { st not } B \in X \text { holds } A \subseteq B . \tag{39}
\end{align*}
$$

Let us consider A. The predicate

$$
A \text { is_limit_ordinal } \quad \text { is defined by } \quad A=\bigcup A .
$$

One can prove the following three propositions:

$$
\begin{equation*}
A \text { is_limit_ordinal iff } A=\bigcup A \tag{40}
\end{equation*}
$$

for A holds A is_limit_ordinal iff for C st $C \in A$ holds $\operatorname{succ} C \in A$, $\operatorname{not} A$ is_limit_ordinal $\operatorname{iff} \operatorname{ex} B$ st $A=\operatorname{succ} B$.

In the sequel F denotes an object of the type Function. The mode Transfinite-Sequence,
which widens to the type Function, is defined by

$$
\text { ex } A \text { st domit }=A
$$

Let us consider Z. The mode

$$
\text { Transfinite-Sequence of } Z,
$$

which widens to the type Transfinite-Sequence, is defined by

$$
\text { rng it } \subseteq Z
$$

The following propositions are true:

$$
\begin{equation*}
F \text { is Transfinite-Sequence iff ex } A \text { st } \operatorname{dom} F=A \tag{43}
\end{equation*}
$$

F is Transfinite-Sequence of Z iff F is Transfinite-Sequence \& $\operatorname{rng} F \subseteq Z$,
\emptyset is Transfinite-Sequence of Z.
In the sequel $L, L 1, L 2$ will have the type Transfinite-Sequence. The following proposition is true

$$
\begin{equation*}
\operatorname{dom} F \text { is Ordinal implies } F \text { is Transfinite-Sequence of } \operatorname{rng} F \text {. } \tag{46}
\end{equation*}
$$

Let us consider L. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\operatorname{dom} L \quad \text { is } \quad \text { Ordinal. }
$$

We now state a proposition

$$
\begin{equation*}
X \subseteq Y \text { implies } \tag{47}
\end{equation*}
$$

for L being Transfinite-Sequence of X holds L is Transfinite-Sequence of Y.
Let us consider L, A. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
L \mid A \quad \text { is } \quad \text { Transfinite-Sequence of } \operatorname{rng} L
$$

The following two propositions are true:
for L being Transfinite-Sequence of X
for A holds $L \mid A$ is Transfinite-Sequence of X,
(for a st $a \in X$ holds a is Transfinite-Sequence) $\&$ (for $L 1, L 2$
st $L 1 \in X \& L 2 \in X$ holds graph $L 1 \subseteq$ graph $L 2$ or graph $L 2 \subseteq$ graph $L 1$) implies $\bigcup X$ is Transfinite-Sequence.

Now we present three schemes. The scheme TS_Uniq deals with a constant \mathcal{A} that has the type Ordinal, a unary functor \mathcal{F}, a constant \mathcal{B} that has the type Transfinite-Sequence and a constant \mathcal{C} that has the type Transfinite-Sequence, and states that the following holds

$$
\mathcal{B}=\mathcal{C}
$$

provided the parameters satisfy the following conditions:

- $\quad \operatorname{dom} \mathcal{B}=\mathcal{A} \&$ for B, L st $B \in \mathcal{A} \& L=\mathcal{B} \mid B$ holds $\mathcal{B} \cdot B=\mathcal{F}(L)$,
- $\quad \operatorname{dom} \mathcal{C}=\mathcal{A} \&$ for B, L st $B \in \mathcal{A} \& L=\mathcal{C} \mid B$ holds $\mathcal{C} . B=\mathcal{F}(L)$.

The scheme TS_Exist deals with a constant \mathcal{A} that has the type Ordinal and a unary functor \mathcal{F} and states that the following holds
ex L st $\operatorname{dom} L=\mathcal{A} \&$ for $B, L 1$ st $B \in \mathcal{A} \& L 1=L \mid B$ holds $L \cdot B=\mathcal{F}(L 1)$
for all values of the parameters.
The scheme Func_TS concerns a constant \mathcal{A} that has the type Transfinite-Sequence, a unary functor \mathcal{F} and a unary functor \mathcal{G} and states that the following holds

$$
\text { for } B \text { st } B \in \operatorname{dom} \mathcal{A} \text { holds } \mathcal{A} \cdot B=\mathcal{G}(\mathcal{A} \mid B)
$$

provided the parameters satisfy the following conditions:

- for A, a holds $a=\mathcal{F}(A)$
iff ex L st $a=\mathcal{G}(L) \& \operatorname{dom} L=A \&$ for B st $B \in A$ holds $L . B=\mathcal{G}(L \mid B)$,
- for A st $A \in \operatorname{dom} \mathcal{A}$ holds $\mathcal{A} . A=\mathcal{F}(A)$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Tuples, Projections and Cartesian Products

Andrzej Trybulec ${ }^{1}$
Warsaw University
Białystok

Summary. The purpose of this article is to define projections of ordered pairs, and to introduce triples and quadruples, and their projections. The theorems in this paper may be roughly divided into two groups: theorems describing basic properties of introduced concepts and theorems related to the regularity, analogous to those proved for ordered pairs by Cz. Byliński [1]. Cartesian products of subsets are redefined as subsets of Cartesian products.

The notation and terminology used here are introduced in the following papers: [3], [4], and $[2]$. For simplicity we adopt the following convention: $v, x, x 1, x 2, x 3, x 4, y, y 1$, $y 2, y 3, y 4, z$ denote objects of the type Any; $X, X 1, X 2, X 3, X 4, Y, Y 1, Y 2, Y 3, Y 4$, $Y 5, Z$ denote objects of the type set. One can prove the following propositions:

$$
\begin{equation*}
X \neq \emptyset \text { implies ex } Y \text { st } Y \in X \& Y \text { misses } X, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
X \neq \emptyset \text { implies } \tag{2}
\end{equation*}
$$

ex Y st $Y \in X \&$ for $Y 1, Y 2$ st $Y 1 \in Y 2 \& Y 2 \in Y$ holds $Y 1$ misses X,

$$
\begin{equation*}
X \neq \emptyset \text { implies ex } Y \text { st } Y \in X \tag{4}
\end{equation*}
$$

\& for $Y 1, Y 2, Y 3$ st $Y 1 \in Y 2 \& Y 2 \in Y 3 \& Y 3 \in Y$ holds $Y 1$ misses X,

$$
\begin{equation*}
X \neq \emptyset \text { implies ex } Y \text { st } Y \in X \& \text { for } Y 1, Y 2, Y 3, Y 4 \tag{5}
\end{equation*}
$$

st $Y 1 \in Y 2 \& Y 2 \in Y 3 \& Y 3 \in Y 4 \& Y 4 \in Y$ holds $Y 1$ misses X,

$$
\begin{equation*}
X \neq \emptyset \text { implies ex } Y \text { st } Y \in X \& \text { for } Y 1, Y 2, Y 3, Y 4, Y 5 \text { st } \tag{6}
\end{equation*}
$$

$Y 1 \in Y 2 \& Y 2 \in Y 3 \& Y 3 \in Y 4 \& Y 4 \in Y 5 \& Y 5 \in Y$ holds $Y 1$ misses X.

[^12]We now define two new functors. Let us consider x. Assume there exist $x 1, x 2$, of the type Any such that

$$
x=\langle x 1, x 2\rangle .
$$

The functor

$$
x_{1}
$$

is defined by

$$
x=\langle y 1, y 2\rangle \text { implies it }=y 1
$$

The functor

$$
x_{\mathbf{2}}
$$

is defined by

$$
x=\langle y 1, y 2\rangle \text { implies it }=y 2
$$

We now state a number of propositions:

$$
\begin{equation*}
\langle x, y\rangle_{\mathbf{1}}=x \&\langle x, y\rangle_{\mathbf{2}}=y \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
(\mathbf{e x} x, y \text { st } z=\langle x, y\rangle) \text { implies }\left\langle z_{\mathbf{1}}, z_{\mathbf{2}}\right\rangle=z \tag{8}
\end{equation*}
$$

(9) $X \neq \emptyset$ implies ex v st $v \in X \&$ not ex x, y st $(x \in X$ or $y \in X) \& v=\langle x, y\rangle$,

$$
\begin{gather*}
z \in\left[X, Y: \text { implies } z_{\mathbf{1}} \in X \& z_{\mathbf{2}} \in Y,\right. \tag{10}\\
(\text { ex } x, y \text { st } z=\langle x, y\rangle) \& z_{\mathbf{1}} \in X \& z_{\mathbf{2}} \in Y \text { implies } z \in[: X, Y:], \tag{11}\\
z \in\left[:\{x\}, Y: \text { implies } z_{\mathbf{1}}=x \& z_{\mathbf{2}} \in Y,\right. \tag{12}\\
z \in\left[: X,\{y\}: \text { implies } z_{\mathbf{1}} \in X \& z_{\mathbf{2}}=y,\right. \tag{13}\\
z \in\left[:\{x\},\{y\}: \text { implies } z_{\mathbf{1}}=x \& z_{\mathbf{2}}=y,\right. \tag{14}\\
z \in\left[:\{x 1, x 2\}, Y: \text { implies }\left(z_{\mathbf{1}}=x 1 \text { or } z_{\mathbf{1}}=x 2\right) \& z_{\mathbf{2}} \in Y,\right. \tag{15}\\
z \in\left[: X,\{y 1, y 2\}: \text { implies } z_{\mathbf{1}} \in X \&\left(z_{\mathbf{2}}=y 1 \text { or } z_{\mathbf{2}}=y 2\right),\right. \tag{16}\\
z \in\left[:\{x 1, x 2\},\{y\}: \text { implies }\left(z_{\mathbf{1}}=x 1 \text { or } z_{\mathbf{1}}=x 2\right) \& z_{\mathbf{2}}=y,\right. \tag{17}\\
z \in\left[:\{x\},\{y 1, y 2\}: \text { implies } z_{\mathbf{1}}=x \&\left(z_{\mathbf{2}}=y 1 \text { or } z_{\mathbf{2}}=y 2\right),\right. \tag{18}\\
\quad z \in[:\{x 1, x 2\},\{y 1, y 2\}: \tag{19}\\
\text { implies }\left(z_{\mathbf{1}}=x 1 \text { or } z_{\mathbf{1}}=x 2\right) \&\left(z_{\mathbf{2}}=y 1 \text { or } z_{\mathbf{2}}=y 2\right), \\
(\text { ex } y, z \text { st } x=\langle y, z\rangle) \text { implies } x \neq x_{\mathbf{1}} \& x \neq x x_{\mathbf{2}} . \tag{20}
\end{gather*}
$$

In the sequel $x x$ will have the type Element of $X ; y y$ will have the type Element of Y. One can prove the following propositions:

$$
\begin{equation*}
X \neq \emptyset \& Y \neq \emptyset \text { implies }\langle x x, y y\rangle \text { is Element of }: X, Y:] \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
X \neq \emptyset \& Y \neq \emptyset \text { implies }\langle x x, y y\rangle \in[: X, Y:] \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
x \in\left[: X, Y: \text { implies } x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}\right\rangle,\right. \tag{23}
\end{equation*}
$$

(24) $\quad X \neq \emptyset \& Y \neq \emptyset$ implies for x being Element of $\left[: X, Y:\right.$ holds $x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}\right\rangle$,

$$
\begin{gather*}
:\{x 1, x 2\},\{y 1, y 2\}:=\{\langle x 1, y 1\rangle,\langle x 1, y 2\rangle,\langle x 2, y 1\rangle,\langle x 2, y 2\rangle\}, \tag{25}\\
 \tag{26}\\
X \neq \emptyset \& Y \neq \emptyset
\end{gather*}
$$

implies for x being Element of $: X, Y:$ holds $x \neq x_{1} \& x \neq x_{2}$.
Let us consider $x 1, x 2, x 3$. The functor

$$
\langle x 1, x 2, x 3\rangle,
$$

is defined by

$$
\text { it }=\langle\langle x 1, x 2\rangle, x 3\rangle .
$$

One can prove the following three propositions:

$$
\begin{equation*}
\langle x 1, x 2, x 3\rangle=\langle\langle x 1, x 2\rangle, x 3\rangle, \tag{27}
\end{equation*}
$$

$$
\begin{equation*}
\langle x 1, x 2, x 3\rangle=\langle y 1, y 2, y 3\rangle \text { implies } x 1=y 1 \& x 2=y 2 \& x 3=y 3 \tag{28}
\end{equation*}
$$

$$
\begin{equation*}
X \neq \emptyset \tag{29}
\end{equation*}
$$

implies ex v st $v \in X \& \operatorname{not} \operatorname{ex} x, y, z$ st $(x \in X$ or $y \in X) \& v=\langle x, y, z\rangle$.
Let us consider $x 1, x 2, x 3, x 4$. The functor

$$
\langle x 1, x 2, x 3, x 4\rangle,
$$

is defined by

$$
\mathbf{i t}=\langle\langle x 1, x 2, x 3\rangle, x 4\rangle .
$$

The following propositions are true:

$$
\begin{gather*}
\langle x 1, x 2, x 3, x 4\rangle=\langle\langle x 1, x 2, x 3\rangle, x 4\rangle, \tag{30}\\
\langle x 1, x 2, x 3, x 4\rangle=\langle\langle\langle x 1, x 2\rangle, x 3\rangle, x 4\rangle, \tag{31}\\
\langle x 1, x 2, x 3, x 4\rangle=\langle\langle x 1, x 2\rangle, x 3, x 4\rangle, \tag{32}\\
\langle x 1, x 2, x 3, x 4\rangle=\langle y 1, y 2, y 3, y 4\rangle \tag{33}\\
\text { implies } x 1=y 1 \& x 2=y 2 \& x 3=y 3 \& x 4=y 4
\end{gather*}
$$

$X \neq \emptyset$ implies ex v
st $v \in X \&$ not ex $x 1, x 2, x 3, x 4$ st $(x 1 \in X$ or $x 2 \in X) \& v=\langle x 1, x 2, x 3, x 4\rangle$,

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \text { iff }: X 1, X 2, X 3:] \neq \emptyset \tag{35}
\end{equation*}
$$

In the sequel $x x 1$ has the type Element of $X 1 ; x x 2$ has the type Element of $X 2$; $x x 3$ has the type Element of $X 3$. One can prove the following propositions:

$$
\begin{align*}
& X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \text { implies } \tag{36}\\
& \text { (: }: X 1, X 2, X 3:]=[Y 1, Y 2, Y 3 \text {; implies } X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \text {), } \\
& [: X 1, X 2, X 3:] \neq \emptyset: X 1, X 2, X 3:]=[Y 1, Y 2, Y 3] \tag{37}\\
& \text { implies } X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \text {, } \\
& {[: X, X, X:]=[: Y, Y, Y: \text { implies } X=Y,} \tag{38}\\
& {[:\{x 1\},\{x 2\},\{x 3\}:]=\{\langle x 1, x 2, x 3\rangle\},} \tag{39}\\
& {[:\{x 1, y 1\},\{x 2\},\{x 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle y 1, x 2, x 3\rangle\},} \tag{40}\\
& {[:\{x 1\},\{x 2, y 2\},\{x 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle x 1, y 2, x 3\rangle\},} \tag{41}\\
& {[:\{x 1\},\{x 2\},\{x 3, y 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle x 1, x 2, y 3\rangle\},} \tag{42}\\
& :\{x 1, y 1\},\{x 2, y 2\},\{x 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle y 1, x 2, x 3\rangle,\langle x 1, y 2, x 3\rangle,\langle y 1, y 2, x 3\rangle\}, \tag{43}\\
& :\{x 1, y 1\},\{x 2\},\{x 3, y 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle y 1, x 2, x 3\rangle,\langle x 1, x 2, y 3\rangle,\langle y 1, x 2, y 3\rangle\}, \tag{44}\\
& :\{x 1\},\{x 2, y 2\},\{x 3, y 3\}:]=\{\langle x 1, x 2, x 3\rangle,\langle x 1, y 2, x 3\rangle,\langle x 1, x 2, y 3\rangle,\langle x 1, y 2, y 3\rangle\}, \tag{45}\\
& :\{x 1, y 1\},\{x 2, y 2\},\{x 3, y 3\}:]=\{\langle x 1, x 2, x 3\rangle, \tag{46}\\
& \langle x 1, y 2, x 3\rangle,\langle x 1, x 2, y 3\rangle,\langle x 1, y 2, y 3\rangle,\langle y 1, x 2, x 3\rangle,\langle y 1, y 2, x 3\rangle,\langle y 1, x 2, y 3\rangle,\langle y 1, y 2, y 3\rangle\} .
\end{align*}
$$

We now define three new functors. Let us consider $X 1, X 2, X 3$. Assume that the following holds

$$
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset
$$

Let x have the type Element of $: X 1, X 2, X 3]$. The functor

$$
x_{\mathbf{1}}
$$

with values of the type Element of $X 1$, is defined by

$$
x=\langle x 1, x 2, x 3\rangle \text { implies it }=x 1 .
$$

The functor
yields the type Element of $X 2$ and is defined by

$$
x=\langle x 1, x 2, x 3\rangle \text { implies it }=x 2 .
$$

The functor

$$
x_{3}
$$

with values of the type Element of $X 3$, is defined by

$$
x=\langle x 1, x 2, x 3\rangle \text { implies it }=x 3 .
$$

One can prove the following propositions:
(47) $\quad X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset$ implies for x being Element of $: X 1, X 2, X 3$:

$$
\text { for } x 1, x 2, x 3 \text { st } x=\langle x 1, x 2, x 3\rangle \text { holds } x_{\mathbf{1}}=x 1 \& x_{\mathbf{2}}=x 2 \& x_{\mathbf{3}}=x 3
$$

$$
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset
$$

implies for x being Element of $: X 1, X 2, X 3$: holds $x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}\right\rangle$,

$$
\begin{equation*}
X \subseteq[: X, Y, Z: \text { or } X \subseteq[: Y, Z, X: \text { or } X \subseteq[: Z, X, Y: \text { implies } X=\emptyset \tag{49}
\end{equation*}
$$

$X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset$ implies for x being Element of $: X 1, X 2, X 3$:
holds $x_{1}=(x \text { qua Any })_{11} \& x_{2}=(x \text { qua Any })_{12} \& x_{3}=(x \text { qua Any })_{2}$,

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \text { implies } \tag{51}
\end{equation*}
$$

for x being Element of $[: X 1, X 2, X 3]$ holds $x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} \& x \neq x_{\mathbf{3}}$,
[: $X 1, X 2, X 3$:] meets $: Y 1, Y 2, Y 3$:
implies $X 1$ meets $Y 1 \& X 2$ meets $Y 2 \& X 3$ meets $Y 3$,

$$
\begin{gather*}
[: X 1, X 2, X 3, X 4]=[:: X 1, X 2], X 3], X 4], \tag{53}\\
[: X 1, X 2], X 3, X 4:]=[: X 1, X 2, X 3, X 4], \tag{54}\\
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { iff }[: X 1, X 2, X 3, X 4:] \neq \emptyset, \tag{55}\\
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { implies } \tag{56}\\
(: X 1, X 2, X 3, X 4:]=[: Y 1, Y 2, Y 3, Y 4:] \\
\text { implies } X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \& X 4=Y 4), \\
{[X 1, X 2, X 3, X 4:] \neq \emptyset \&[X 1, X 2, X 3, X 4:]=[Y 1, Y 2, Y 3, Y 4:]} \tag{57}\\
\text { implies } X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \& X 4=Y 4
\end{gather*}
$$

$$
\begin{equation*}
[: X, X, X, X:]=[: Y, Y, Y, Y:] \text { implies } X=Y \tag{58}
\end{equation*}
$$

In the sequel $x x 4$ will have the type Element of $X 4$. We now define four new functors. Let us consider $X 1, X 2, X 3, X 4$. Assume that the following holds

$$
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset
$$

Let x have the type Element of $: X 1, X 2, X 3, X 4]$. The functor

$$
x_{1},
$$

yields the type Element of $X 1$ and is defined by

$$
x=\langle x 1, x 2, x 3, x 4\rangle \text { implies it }=x 1 .
$$

The functor

$$
x_{2},
$$

with values of the type Element of $X 2$, is defined by

$$
x=\langle x 1, x 2, x 3, x 4\rangle \text { implies it }=x 2 .
$$

The functor

$$
x_{3},
$$

yields the type Element of $X 3$ and is defined by

$$
x=\langle x 1, x 2, x 3, x 4\rangle \text { implies it }=x 3 .
$$

The functor

$$
x_{4},
$$

with values of the type Element of $X 4$, is defined by

$$
x=\langle x 1, x 2, x 3, x 4\rangle \text { implies it }=x 4 .
$$

Next we state several propositions:

$$
\begin{equation*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \tag{60}
\end{equation*}
$$

implies for x being Element of $: X 1, X 2, X 3, X 4$: holds $x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}, x_{\mathbf{4}}\right\rangle$,

$$
\begin{gather*}
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { implies } \tag{61}\\
\text { for } x \text { being Element of }: X 1, X 2, X 3, X 4:] \text { holds } x_{\mathbf{1}}=(x \text { qua Any })_{\mathbf{1} \mathbf{1} \mathbf{1}} \\
\& x_{\mathbf{2}}=(x \text { qua Any })_{\mathbf{1} \mathbf{1} \mathbf{2}} \& x_{\mathbf{3}}=(x \text { qua Any })_{\mathbf{1} \mathbf{2}} \& x_{\mathbf{4}}=(x \text { qua Any })_{\mathbf{2}}, \\
X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { implies } \tag{62}\\
\text { for } x \text { being Element of }: X 1, X 2, X 3, X 4: \\
\text { holds } x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} \& x \neq x_{\mathbf{3}} \& x \neq x_{\mathbf{4}}, \\
X 1 \subseteq: X 1, X 2, X 3, X 4: \text { or } \tag{63}\\
X 1 \subseteq: X 2, X 3, X 4, X 1: \text { or } X 1 \subseteq[: X 3, X 4, X 1, X 2: \text { or } X 1 \subseteq[: X 4, X 1, X 2, X 3:] \\
\text { implies } X 1=\emptyset,
\end{gather*}
$$

$$
\begin{equation*}
[: X 1, X 2, X 3, X 4] \text { meets }[Y 1, Y 2, Y 3, Y 4] \tag{64}
\end{equation*}
$$

implies $X 1$ meets $Y 1 \& X 2$ meets $Y 2 \& X 3$ meets $Y 3 \& X 4$ meets $Y 4$,

$$
\begin{equation*}
:\{x 1\},\{x 2\},\{x 3\},\{x 4\}:]=\{\langle x 1, x 2, x 3, x 4\rangle\}, \tag{65}
\end{equation*}
$$

(66) $\left[: X, Y: \neq \emptyset\right.$ implies for x being Element of $: X, Y:$ holds $x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}}$,

$$
\begin{equation*}
x \in\left[: X, Y: \text { implies } x \neq x_{1} \& x \neq x_{2} .\right. \tag{67}
\end{equation*}
$$

For simplicity we adopt the following convention: $A 1$ will denote an object of the type Subset of $X 1$; $A 2$ will denote an object of the type Subset of $X 2$; $A 3$ will denote an object of the type Subset of $X 3 ; A 4$ will denote an object of the type Subset of $X 4 ; \quad x$ will denote an object of the type Element of $[: X 1, X 2, X 3]$. We now state a number of propositions:

$$
\begin{gather*}
X 1 \neq \emptyset \& \tag{69}\\
X 2 \neq \emptyset \& X 3 \neq \emptyset \&(\text { for } x x 1, x x 2, x x 3 \text { st } x=\langle x x 1, x x 2, x x 3\rangle \text { holds } y 1=x x 1) \\
\text { implies } y 1=x_{\mathbf{1}}, \\
X 1 \neq \emptyset \&
\end{gather*}
$$

$X 2 \neq \emptyset \& X 3 \neq \emptyset \&($ for $x x 1, x x 2, x x 3$ st $x=\langle x x 1, x x 2, x x 3\rangle$ holds $y 2=x x 2)$
implies $y 2=x_{2}$,
$X 1 \neq \emptyset \&$
$X 2 \neq \emptyset \& X 3 \neq \emptyset \&($ for $x x 1, x x 2, x x 3$ st $x=\langle x x 1, x x 2, x x 3\rangle$ holds $y 3=x x 3)$ implies $y 3=x_{3}$,
$z \in[: X 1, X 2, X 3 ;$
implies ex $x 1, x 2, x 3$ st $x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& z=\langle x 1, x 2, x 3\rangle$,

$$
\begin{equation*}
\langle x 1, x 2, x 3\rangle \in[: X 1, X 2, X 3] \text { iff } x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3, \tag{73}
\end{equation*}
$$

(for z holds
$z \in Z$ iff ex $x 1, x 2, x 3$ st $x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& z=\langle x 1, x 2, x 3\rangle)$
implies $Z=[: X 1, X 2, X 3:]$, $X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& Y 1 \neq \emptyset \& Y 2 \neq \emptyset \& Y 3 \neq \emptyset$ implies for x being Element of $: X 1, X 2, X 3:], y$ being Element of $: Y 1, Y 2, Y 3:]$
holds $x=y$ implies $x_{1}=y_{1} \& x_{\mathbf{2}}=y_{2} \& x_{\mathbf{3}}=y_{3}$,
for x being Element of $: X 1, X 2, X 3$:
st $x \in[: A 1, A 2, A 3]$ holds $x_{1} \in A 1 \& x_{\mathbf{2}} \in A 2 \& x_{\mathbf{3}} \in A 3$,
$X 1 \subseteq Y 1 \& X 2 \subseteq Y 2 \& X 3 \subseteq Y 3$ implies $: X 1, X 2, X 3: \subseteq[Y 1, Y 2, Y 3]$.
In the sequel x has the type Element of $: X 1, X 2, X 3, X 4$: We now state a number of propositions:

$$
\begin{align*}
& X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \text { implies for } x 1, x 2, x 3, x 4 \tag{78}\\
& \text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } x_{\mathbf{1}}=x 1 \& x_{\mathbf{2}}=x 2 \& x_{\mathbf{3}}=x 3 \& x_{\mathbf{4}}=x 4 \text {, } \\
& X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& \tag{79}\\
& X 4 \neq \emptyset \&(\text { for } x x 1, x x 2, x x 3, x x 4 \text { st } x=\langle x x 1, x x 2, x x 3, x x 4\rangle \text { holds } y 1=x x 1) \\
& \text { implies } y 1=x_{1}, \\
& X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& \tag{80}\\
& X 4 \neq \emptyset \&(\text { for } x x 1, x x 2, x x 3, x x 4 \text { st } x=\langle x x 1, x x 2, x x 3, x x 4\rangle \text { holds } y 2=x x 2) \\
& \text { implies } y 2=x_{2}, \\
& X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& \tag{81}\\
& X 4 \neq \emptyset \&(\text { for } x x 1, x x 2, x x 3, x x 4 \text { st } x=\langle x x 1, x x 2, x x 3, x x 4\rangle \text { holds } y 3=x x 3) \\
& \text { implies } y 3=x_{3}, \\
& X 1 \neq \emptyset \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& \tag{82}\\
& X 4 \neq \emptyset \&(\text { for } x x 1, x x 2, x x 3, x x 4 \text { st } x=\langle x x 1, x x 2, x x 3, x x 4\rangle \text { holds } y 4=x x 4) \\
& \text { implies } y 4=x_{4}, \\
& z \in[: X 1, X 2, X 3, X 4] \text { implies ex } x 1, x 2, x 3, x 4 \tag{83}\\
& \text { st } x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& x 4 \in X 4 \& z=\langle x 1, x 2, x 3, x 4\rangle \text {, } \\
& \langle x 1, x 2, x 3, x 4\rangle \in[: X 1, X 2, X 3, X 4 ; \tag{84}\\
& \text { iff } x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& x 4 \in X 4 \text {, } \\
& \text { (for } z \text { holds } z \in Z \text { iff ex } x 1, x 2, x 3, x 4 \tag{85}\\
& \text { st } x 1 \in X 1 \& x 2 \in X 2 \& x 3 \in X 3 \& x 4 \in X 4 \& z=\langle x 1, x 2, x 3, x 4\rangle) \\
& \text { implies } Z=[: X 1, X 2, X 3, X 4], \\
& X 1 \neq \emptyset \tag{86}\\
& \& X 2 \neq \emptyset \& X 3 \neq \emptyset \& X 4 \neq \emptyset \& Y 1 \neq \emptyset \& Y 2 \neq \emptyset \& Y 3 \neq \emptyset \& Y 4 \neq \emptyset \\
& \text { for } x \text { being Element of }: X 1, X 2, X 3, X 4] \text {, } y \text { being Element of }: Y 1, Y 2, Y 3, Y 4:] \\
& \text { holds } x=y \text { implies } x_{1}=y_{1} \& x_{2}=y_{2} \& x_{3}=y_{3} \& x_{4}=y_{4},
\end{align*}
$$

$$
\begin{gather*}
\text { for } x \text { being Element of }[: X 1, X 2, X 3, X 4:] \tag{87}\\
\text { st } x \in[: A 1, A 2, A 3, A 4] \text { holds } x_{\mathbf{1}} \in A 1 \& x_{\mathbf{2}} \in A 2 \& x_{\mathbf{3}} \in A 3 \& x_{\mathbf{4}} \in A 4, \\
X 1 \subseteq Y 1 \& X 2 \subseteq Y 2 \& X 3 \subseteq Y 3 \& X 4 \subseteq Y 4 \tag{88}\\
\text { implies }[: X 1, X 2, X 3, X 4: \subseteq[Y 1, Y 2, Y 3, Y 4] .
\end{gather*}
$$

Let us consider $X 1, X 2, A 1, A 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2] \quad \text { is } \quad \text { Subset of }: X 1, X 2] .
$$

Let us consider $X 1, X 2, X 3, A 1, A 2, A 3$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2, A 3] \quad \text { is } \quad \text { Subset of }[: X 1, X 2, X 3:] .
$$

Let us consider $X 1, X 2, X 3, X 4, A 1, A 2, A 3, A 4$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2, A 3, A 4: \quad \text { is } \quad \text { Subset of }[: X 1, X 2, X 3, X 4:] .
$$

References

[1] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[4] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Segments of Natural Numbers and Finite Sequences

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok
Krzysztof Hryniewiecki ${ }^{2}$
Warsaw University
Warsaw

Abstract

Summary. We define the notion of an initial segment of natural numbers and prove a number of their properties. Using this notion we introduce finite sequences, subsequences, the empty sequence, a sequence of a domain, and the operation of concatenation of two sequences.

The papers [4], [5], [2], [3], and [1] provide the notation and terminology for this paper. For simplicity we adopt the following convention: $k, l, m, n, k 1, k 2$ denote objects of the type Nat; X denotes an object of the type set; $x, y, z, y 1, y 2$ denote objects of the type Any; f denotes an object of the type Function. Let us consider n. The functor

$$
\operatorname{Seg} n
$$

with values of the type set, is defined by

$$
\mathbf{i t}=\{k: 1 \leq k \& k \leq n\}
$$

Let us consider n. Let us note that it makes sense to consider the following functor on a restricted area. Then
$\operatorname{Seg} n \quad$ is \quad set of Nat.
One can prove the following propositions:

$$
\begin{equation*}
\operatorname{Seg} n=\{k: 1 \leq k \& k \leq n\} \tag{1}
\end{equation*}
$$

$x \in \operatorname{Seg} n$ implies x is Nat,
$k \in \operatorname{Seg} n$ iff $1 \leq k \& k \leq n$,

[^13]\[

$$
\begin{gather*}
\operatorname{Seg} 0=\emptyset \& \operatorname{Seg} 1=\{1\} \& \operatorname{Seg} 2=\{1,2\}, \tag{4}\\
n=0 \text { or } n \in \operatorname{Seg} n, \tag{5}\\
n+1 \in \operatorname{Seg}(n+1), \tag{6}\\
n \leq m \text { iff } \operatorname{Seg} n \subseteq \operatorname{Seg} m \tag{7}\\
\operatorname{Seg} n=\operatorname{Seg} m \text { implies } n=m, \tag{8}\\
k \leq n \text { implies } \operatorname{Seg} k=\operatorname{Seg} k \cap \operatorname{Seg} n \& \operatorname{Seg} k=\operatorname{Seg} n \cap \operatorname{Seg} k, \tag{9}\\
\operatorname{Seg} k=\operatorname{Seg} k \cap \operatorname{Seg} n \text { or } \operatorname{Seg} k=\operatorname{Seg} n \cap \operatorname{Seg} k \operatorname{implies} k \leq n, \tag{10}\\
\operatorname{Seg} n \cup\{n+1\}=\operatorname{Seg}(n+1) . \tag{11}
\end{gather*}
$$
\]

The mode
FinSequence,
which widens to the type Function, is defined by

$$
\text { ex } n \text { st dom it }=\operatorname{Seg} n
$$

In the sequel p, q, r denote objects of the type FinSequence. Let us consider p. The functor

$$
\operatorname{len} p
$$

with values of the type Nat, is defined by

$$
\operatorname{Seg} \mathbf{i t}=\operatorname{dom} p
$$

Next we state four propositions:
for f being Function holds f is FinSequence iff ex n st $\operatorname{dom} f=\operatorname{Seg} n$,

$$
\begin{gather*}
k=\operatorname{len} p \operatorname{iff} \operatorname{Seg} k=\operatorname{dom} p \tag{13}\\
\emptyset \text { is FinSequence }
\end{gather*}
$$

$($ ex k st $\operatorname{dom} f \subseteq \operatorname{Seg} k)$ implies ex p st graph $f \subseteq$ graph p.
In the article we present several logical schemes. The scheme SeqEx concerns a constant \mathcal{A} that has the type Nat and a binary predicate \mathcal{P} and states that the following holds

$$
\operatorname{ex} p \text { st } \operatorname{dom} p=\operatorname{Seg} \mathcal{A} \& \text { for } k \text { st } k \in \operatorname{Seg} \mathcal{A} \text { holds } \mathcal{P}[k, p . k]
$$

provided the parameters satisfy the following conditions:

- \quad for $k, y 1, y 2$ st $k \in \operatorname{Seg} \mathcal{A} \& \mathcal{P}[k, y 1] \& \mathcal{P}[k, y 2]$ holds $y 1=y 2$,
- for k st $k \in \operatorname{Seg} \mathcal{A} \operatorname{ex} x$ st $\mathcal{P}[k, x]$.

The scheme SeqLambda deals with a constant \mathcal{A} that has the type Nat and a unary functor \mathcal{F} and states that the following holds
$\operatorname{ex} p$ being FinSequence st len $p=\mathcal{A} \&$ for k st $k \in \operatorname{Seg} \mathcal{A}$ holds $p . k=\mathcal{F}(k)$
for all values of the parameters.
We now state several propositions:

$$
\begin{equation*}
z \in \operatorname{graph} p \text { implies ex } k \text { st } k \in \operatorname{dom} p \& z=\langle k, p . k\rangle \tag{16}
\end{equation*}
$$

(17) $X=\operatorname{dom} p \& X=\operatorname{dom} q \&($ for k st $k \in X$ holds $p . k=q . k) \operatorname{implies} p=q$,
for p, q st len $p=\operatorname{len} q \&$ for k st $1 \leq k \& k \leq \operatorname{len} p$ holds $p . k=q . k$ holds $p=q$,

$$
\begin{equation*}
k \leq \operatorname{len} p \& q=p \mid(\operatorname{Seg} k) \operatorname{implies} \operatorname{len} q=k \& \operatorname{dom} q=\operatorname{Seg} k \tag{20}
\end{equation*}
$$

Let D have the type DOMAIN. The mode

$$
\text { FinSequence of } D,
$$

which widens to the type FinSequence, is defined by

$$
\text { rng it } \subseteq D
$$

In the sequel D will have the type DOMAIN. The following three propositions are true:

$$
\begin{align*}
& \quad p \text { is FinSequence of } D \text { iff } \operatorname{rng} p \subseteq D \tag{22}\\
& \text { ing FinSequence of } D \text { holds } p \mid(\operatorname{Seg} k) \text { is Fi } \tag{23}\\
& \text { ex } p \text { being FinSequence of } D \text { st len } p=k
\end{align*}
$$

The constant ε has the type FinSequence, and is defined by

$$
\text { len it }=0 .
$$

The following propositions are true:

$$
\begin{align*}
& p=\varepsilon \mathbf{i f f} \operatorname{len} p=0 \tag{25}\\
& p=\varepsilon \mathbf{i f f} \operatorname{dom} p=\emptyset \tag{26}\\
& p=\varepsilon \mathbf{i f f} \operatorname{rng} p=\emptyset \tag{27}
\end{align*}
$$

$$
\begin{equation*}
\operatorname{graph} \varepsilon=\emptyset \tag{28}
\end{equation*}
$$

for D holds ε is FinSequence of D.
Let D have the type DOMAIN. The functor

$$
\varepsilon D
$$

yields the type FinSequence of D and is defined by

$$
\mathbf{i t}=\varepsilon
$$

One can prove the following four propositions:

$$
\begin{gather*}
p=\varepsilon(D) \text { iff } \operatorname{dom} p=\emptyset, \tag{30}\\
\varepsilon(D)=\varepsilon \tag{31}\\
p=\varepsilon(D) \text { iff } \operatorname{len} p=0 \tag{32}\\
p=\varepsilon(D) \text { iff } \operatorname{rng} p=\emptyset \tag{33}
\end{gather*}
$$

Let us consider p, q. The functor

$$
p^{\frown} q
$$

with values of the type FinSequence, is defined by

$$
\operatorname{domit}=\operatorname{Seg}(\operatorname{len} p+\operatorname{len} q) \&
$$

$($ for k st $k \in \operatorname{dom} p$ holds it. $k=p . k) \&$ for k st $k \in \operatorname{dom} q$ holds it. (len $p+k)=q . k$.
One can prove the following propositions:

$$
\begin{equation*}
r=p^{\frown} q \mathbf{i f f} \operatorname{dom} r=\operatorname{Seg}(\operatorname{len} p+\operatorname{len} q) \& \tag{34}
\end{equation*}
$$

$($ for k st $k \in \operatorname{dom} p$ holds $r . k=p . k)$
\& for k st $k \in \operatorname{dom} q$ holds $r .(\operatorname{len} p+k)=q . k$,

$$
\begin{equation*}
\operatorname{len}(p \frown q)=\operatorname{len} p+\operatorname{len} q \tag{35}
\end{equation*}
$$

for k st len $p+1 \leq k \& k \leq \operatorname{len} p+\operatorname{len} q$ holds $\left(p^{\frown} q\right) \cdot k=q \cdot(k-\operatorname{len} p)$,

$$
\begin{equation*}
\operatorname{len} p<k \& k \leq \operatorname{len}\left(p^{\frown} q\right) \operatorname{implies}\left(p^{\frown} q\right) \cdot k=q \cdot(k-\operatorname{len} p), \tag{36}
\end{equation*}
$$

$k \in \operatorname{dom}(p \frown q)$ implies $k \in \operatorname{dom} p$ or ex n st $n \in \operatorname{dom} q \& k=\operatorname{len} p+n$, $\operatorname{dom} p \subseteq \operatorname{dom}\left(p^{\frown} q\right)$, $x \in \operatorname{dom} q$ implies ex k st $k=x \& \operatorname{len} p+k \in \operatorname{dom}\left(p^{\frown} q\right)$, $k \in \operatorname{dom} q$ implies len $p+k \in \operatorname{dom}(p \frown q)$,

$$
\begin{gather*}
\operatorname{rng} p \subseteq \operatorname{rng}(p \frown q), \tag{42}\\
\operatorname{rng} q \subseteq \operatorname{rng}(p \frown q), \tag{43}\\
\operatorname{rng}(p \frown q)=\operatorname{rng} p \cup \operatorname{rng} q, \tag{44}\\
p \frown q \frown r=p \frown(q \frown r), \tag{45}\\
p \frown r=q \frown r \text { or } r \frown p=r \frown q \text { implies } p=q, \tag{46}\\
p \frown \varepsilon=p \& \varepsilon \frown p=p, \tag{47}\\
p \frown q=\varepsilon \text { implies } p=\varepsilon \& q=\varepsilon . \tag{48}
\end{gather*}
$$

The arguments of the notions defined below are the following: D which is an object of the type reserved above; p, q which are objects of the type FinSequence of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
p \frown q \quad \text { is } \quad \text { FinSequence of } D .
$$

One can prove the following proposition
for p, q being FinSequence of D holds $p \frown q$ is FinSequence of D.
Let us consider x. The functor

$$
<x>
$$

with values of the type FinSequence, is defined by

$$
\operatorname{dom} \mathbf{i t}=\operatorname{Seg} 1 \& \mathbf{i t} .1=x
$$

The following proposition is true

$$
\begin{gather*}
p \frown q \text { is FinSequence of } D \tag{50}\\
\text { implies } p \text { is FinSequence of } D \& q \text { is FinSequence of } D .
\end{gather*}
$$

We now define two new functors. Let us consider x, y. The functor

$$
<x, y>
$$

with values of the type FinSequence, is defined by

$$
\text { it }=\langle x\rangle \frown<y>
$$

Let us consider z. The functor

$$
<x, y, z>
$$

with values of the type FinSequence, is defined by

$$
\mathbf{i t}=<x\rangle^{\frown}<y>\frown<z>
$$

Next we state a number of propositions:

$$
\begin{gather*}
p=<x>\text { iff } \operatorname{dom} p=\operatorname{Seg} 1 \& p .1=x, \tag{51}\\
\operatorname{graph}<x>=\{\langle 1, x\rangle\}, \tag{52}\\
<x, y>=<x>\frown<y>, \tag{53}\\
<x, y, z>=<x>\frown<y>\frown<z>, \tag{54}\\
p=<x>\text { iff dom } p=\operatorname{Seg} 1 \& \operatorname{rng} p=\{x\}, \tag{55}\\
p=<x>\text { iff len } p=1 \& \operatorname{rng} p=\{x\}, \tag{56}\\
p=<x>\text { iff len } p=1 \& p .1=x, \tag{57}\\
(<x>\frown p) \cdot 1=x, \tag{58}\\
(p \frown<x>) \cdot(\operatorname{len} p+1)=x, \tag{59}\\
<x, y, z>=<x>\frown<y, z>\&<x, y, z>=<x, y>\frown<z>, \tag{60}\\
p=<x, y>\mathbf{i f f} \text { len } p=2 \& p .1=x \& p .2=y, \tag{61}\\
p=<x, y, z>\text { iff len } p=3 \& p .1=x \& p .2=y \& p .3=z, \tag{62}\\
\text { for } p \text { st } p \neq \varepsilon \text { ex } q, x \text { st } p=q \frown<x>. \tag{63}
\end{gather*}
$$

The arguments of the notions defined below are the following: D which is an object of the type reserved above; x which is an object of the type Element of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
<x>\quad \text { is } \quad \text { FinSequence of } D
$$

The arguments of the notions defined below are the following: D which is an object of the type reserved above; S which is an object of the type SUBDOMAIN of $D ; x$ which is an object of the type Element of S. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
<x>\quad \text { is } \quad \text { FinSequence of } S
$$

The arguments of the notions defined below are the following: S which is an object of the type SUBDOMAIN of REAL; x which is an object of the type Element of S. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
<x>\quad \text { is } \quad \text { FinSequence of } S
$$

The scheme IndSeq concerns a unary predicate \mathcal{P} states that the following holds

$$
\text { for } p \text { holds } \mathcal{P}[p]
$$

provided the parameter satisfies the following conditions:

- $\mathcal{P}[\varepsilon]$,
- for p, x st $\mathcal{P}[p]$ holds $\mathcal{P}\left[p^{\frown}<x>\right]$.

One can prove the following proposition

$$
\begin{equation*}
\text { for } p, q, r, s \text { being FinSequence } \tag{64}
\end{equation*}
$$

$$
\text { st } p \frown q=r \frown s \& \text { len } p \leq \operatorname{len} r \text { ex } t \text { being FinSequence st } p \frown t=r \text {. }
$$

Let us consider D. The functor

$$
D^{*}
$$

yields the type DOMAIN and is defined by

$$
x \in \text { it iff } x \text { is FinSequence of } D
$$

One can prove the following propositions:

$$
\begin{gather*}
x \in D^{*} \text { iff } x \text { is FinSequence of } D, \tag{65}\\
\varepsilon \in D^{*} \tag{66}
\end{gather*}
$$

The scheme SepSeq deals with a constant \mathcal{A} that has the type DOMAIN and a unary predicate \mathcal{P} and states that the following holds

$$
\text { ex } X \text { st for } x \text { holds } x \in X \text { iff ex } p \text { st } p \in \mathcal{A}^{*} \& \mathcal{P}[p] \& x=p
$$

for all values of the parameters.
The mode

> FinSubsequence,
which widens to the type Function, is defined by

$$
\text { ex } k \text { st dom it } \subseteq \operatorname{Seg} k
$$

The following three propositions are true:

$$
\begin{gather*}
f \text { is FinSubsequence iff ex } k \text { st } \operatorname{dom} f \subseteq \operatorname{Seg} k, \tag{67}\\
\text { for } p \text { being FinSequence holds } p \text { is FinSubsequence, } \tag{68}\\
\text { for } p, X \text { holds } p \mid X \text { is FinSubsequence } \& X \mid p \text { is FinSubsequence. } \tag{69}
\end{gather*}
$$

In the sequel p^{\prime} has the type FinSubsequence. Let us consider X. Assume there exists k, such that

$$
X \subseteq \operatorname{Seg} k
$$

The functor
$\operatorname{Sgm} X$,
with values of the type FinSequence of NAT, is defined by
rng it $=X \&$
for $l, m, k 1, k 2$ st $1 \leq l \& l<m \& m \leq$ len $\mathbf{i t} \& k 1=$ it. $l \& k 2=$ it. m holds $k 1<k 2$.

One can prove the following propositions:

$$
\begin{gather*}
(\text { ex } k \text { st } X \subseteq \operatorname{Seg} k) \text { implies for } p \text { being FinSequence of NAT holds } \tag{70}\\
p=\operatorname{Sgm} X \text { iff } \operatorname{rng} p=X \& \text { for } l, m, k 1, k 2 \\
\text { st } 1 \leq l \& l<m \& m \leq \operatorname{len} p \& k 1=p . l \& k 2=p . m \text { holds } k 1<k 2 \\
\text { rng Sgm dom } p^{\prime}=\operatorname{dom} p^{\prime}
\end{gather*}
$$

Let us consider p^{\prime}. The functor

$$
\operatorname{Seq} p^{\prime}
$$

yields the type FinSequence and is defined by

$$
\mathbf{i t}=p^{\prime} \cdot \operatorname{Sgm}\left(\operatorname{dom} p^{\prime}\right)
$$

Next we state two propositions:

$$
\begin{gather*}
\text { for } X \text { st ex } k \text { st } X \subseteq \operatorname{Seg} k \text { holds } \operatorname{Sgm} X=\varepsilon \text { iff } X=\emptyset, \tag{72}\\
p=\operatorname{Seq} p^{\prime} \text { iff } p=p^{\prime} \cdot \operatorname{Sgm}\left(\operatorname{dom} p^{\prime}\right) . \tag{73}
\end{gather*}
$$

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[3] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[5] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 1, 1989

Domains and Their Cartesian Products

Andrzej Trybulec ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article includes: theorems related to domains, theorems related to Cartesian products presented earlier in various articles and simplified here by substituting domains for sets and omitting the assumption that the sets involved must not be empty. Several schemes and theorems related to Fraenkel operator are given. We also redefine subset yielding functions such as the pair of elements of a set and the union of two subsets of a set.

The terminology and notation used in this paper have been introduced in the following articles: [2], [5], [1], [4], and [3]. For simplicity we adopt the following convention: a, b, c, d will have the type Any; A, B will have the type set; $D, X 1, X 2, X 3, X 4, Y 1$, $Y 2, Y 3, Y 4$ will have the type DOMAIN; $x 1, y 1, z 1$ will have the type Element of $X 1 ; x 2$ will have the type Element of $X 2 ; x 3$ will have the type Element of $X 3 ; x 4$ will have the type Element of $X 4$. The following three propositions are true:
A is DOMAIN iff $A \neq \emptyset$,

$$
\begin{equation*}
D \neq \emptyset, \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
a \text { is Element of } D \text { implies } a \in D . \tag{3}
\end{equation*}
$$

In the sequel $A 1, B 1$ will denote objects of the type Subset of $X 1$. One can prove the following propositions:

$$
\begin{gather*}
A 1=B 1^{\mathrm{c}} \text { iff for } x 1 \text { holds } x 1 \in A 1 \text { iff not } x 1 \in B 1, \tag{4}\\
A 1=B 1^{\mathrm{c}} \text { iff for } x 1 \text { holds not } x 1 \in A 1 \text { iff } x 1 \in B 1, \tag{5}\\
A 1=B 1^{\mathrm{c}} \text { iff for } x 1 \text { holds not }(x 1 \in A 1 \text { iff } x 1 \in B 1), \tag{6}\\
\qquad\langle x 1, x 2\rangle \in: X 1, X 2], \tag{7}
\end{gather*}
$$

[^14]$\langle x 1, x 2\rangle$ is Element of $: X 1, X 2]$, $a \in[: X 1, X 2]$ implies ex $x 1, x 2$ st $a=\langle x 1, x 2\rangle$.

In the sequel x denotes an object of the type Element of $: X 1, X 2]$. One can prove the following propositions:
for x, y being Element of $: X 1, X 2\}$ st $x_{1}=y_{1} \& x_{2}=y_{2}$ holds $x=y$,

$$
\begin{gather*}
{[: A, D:] \subseteq[: B, D:] \text { or }: D, A: \subseteq[: D, B: \text { implies } A \subseteq B,} \tag{13}\\
{[: X 1, X 2:]=[: A, B: \text { implies } X 1=A \& X 2=B .}
\end{gather*}
$$

Let us consider $X 1, X 2, x 1, x 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\langle x 1, x 2\rangle \quad \text { is } \quad \text { Element of }[: X 1, X 2] .
$$

The arguments of the notions defined below are the following: $X 1, X 2$ which are objects of the type reserved above; x which is an object of the type Element of $[: X 1, X 2$; . Let us note that it makes sense to consider the following functors on restricted areas. Then

| $x_{\mathbf{1}}$ | is \quad Element of $X 1$, |
| :--- | :--- | :--- |
| $x_{\mathbf{2}}$ | is \quad Element of $X 2$. |

One can prove the following propositions:

$$
\begin{gather*}
a \in[: X 1, X 2, X 3] \text { iff ex } x 1, x 2, x 3 \text { st } a=\langle x 1, x 2, x 3\rangle, \tag{15}\\
(\text { for } a \text { holds } a \in D \text { iff ex } x 1, x 2, x 3 \text { st } a=\langle x 1, x 2, x 3\rangle) \tag{16}\\
\text { implies } D=[: X 1, X 2, X 3]
\end{gather*}
$$

$$
\begin{equation*}
D=[: X 1, X 2, X 3 ; \text { iff for } a \text { holds } a \in D \text { iff ex } x 1, x 2, x 3 \text { st } a=\langle x 1, x 2, x 3\rangle \tag{17}
\end{equation*}
$$

$$
\begin{equation*}
[: X 1, X 2, X 3]=[: Y 1, Y 2, Y 3] \text { implies } X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \tag{18}
\end{equation*}
$$

In the sequel x, y will have the type Element of $: X 1, X 2, X 3]$. Next we state several propositions:

$$
\begin{gather*}
x=\langle a, b, c\rangle \text { implies } x_{\mathbf{1}}=a \& x_{\mathbf{2}}=b \& x_{\mathbf{3}}=c \tag{19}\\
x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}\right\rangle^{\prime} \tag{20}\\
x_{\mathbf{1}}=(x \text { qua Any })_{1 \mathbf{1}} \& x_{\mathbf{2}}=(x \text { qua Any })_{12} \& x_{\mathbf{3}}=(x \text { qua Any })_{\mathbf{2}} \tag{21}
\end{gather*}
$$

$$
\begin{gather*}
x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} \& x \neq x_{\mathbf{3}}, \tag{22}\\
\langle x 1, x 2, x 3\rangle \in[: X 1, X 2, X 3] \tag{23}
\end{gather*}
$$

Let us consider $X 1, X 2, X 3, x 1, x 2, x 3$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\langle x 1, x 2, x 3\rangle \quad \text { is } \quad \text { Element of }:: X 1, X 2, X 3:]
$$

The arguments of the notions defined below are the following: $X 1, X 2, X 3$ which are objects of the type reserved above; x which is an object of the type Element of : $: X 1, X 2, X 3$]. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $x_{\mathbf{1}}$ | is \quad Element of $X 1$, |
| :--- | :--- | :--- |
| $x_{\mathbf{2}}$ | is \quad Element of $X 2$, |
| $x_{\mathbf{3}}$ | is \quad Element of $X 3$. |

The following propositions are true:

$$
\begin{gather*}
a=x_{\mathbf{1}} \text { iff for } x 1, x 2, x 3 \text { st } x=\langle x 1, x 2, x 3\rangle \text { holds } a=x 1, \tag{24}\\
b=x_{\mathbf{2}} \text { iff for } x 1, x 2, x 3 \text { st } x=\langle x 1, x 2, x 3\rangle \text { holds } b=x 2, \tag{25}\\
c=x_{\mathbf{3}} \text { iff for } x 1, x 2, x 3 \text { st } x=\langle x 1, x 2, x 3\rangle \text { holds } c=x 3, \tag{26}\\
\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}\right\rangle=x, \tag{27}\\
x_{\mathbf{1}}=y_{\mathbf{1}} \& x_{\mathbf{2}}=y_{\mathbf{2}} \& x_{\mathbf{3}}=y_{\mathbf{3}} \text { implies } x=y \tag{28}\\
\langle x 1, x 2, x 3\rangle_{\mathbf{1}}=x 1 \&\langle x 1, x 2, x 3\rangle_{\mathbf{2}}=x 2 \&\langle x 1, x 2, x 3\rangle_{\mathbf{3}}=x 3, \tag{29}
\end{gather*}
$$

for x being Element of $: X 1, X 2, X 3]$, y being Element of $: Y 1, Y 2, Y 3$:
holds $x=y$ implies $x_{1}=y_{1} \& x_{2}=y_{2} \& x_{3}=y_{3}$,
$a \in[: X 1, X 2, X 3, X 4]$ iff ex $x 1, x 2, x 3, x 4$ st $a=\langle x 1, x 2, x 3, x 4\rangle$,
(for a holds $a \in D$ iff ex $x 1, x 2, x 3, x 4$ st $a=\langle x 1, x 2, x 3, x 4\rangle$)

$$
\begin{gather*}
\text { implies } D=[: X 1, X 2, X 3, X 4] \tag{32}\\
D=[: X 1, X 2, X 3, X 4 \tag{33}
\end{gather*}
$$

iff for a holds $a \in D$ iff ex $x 1, x 2, x 3, x 4$ st $a=\langle x 1, x 2, x 3, x 4\rangle$.
In the sequel x denotes an object of the type Element of : $X 1, X 2, X 3, X 4$]. The following propositions are true:

$$
\begin{equation*}
[: X 1, X 2, X 3, X 4:]=[Y 1, Y 2, Y 3, Y 4:] \tag{34}
\end{equation*}
$$

implies $X 1=Y 1 \& X 2=Y 2 \& X 3=Y 3 \& X 4=Y 4$,

$$
\begin{gather*}
x=\langle a, b, c, d\rangle \text { implies } x_{\mathbf{1}}=a \& x_{\mathbf{2}}=b \& x_{\mathbf{3}}=c \& x_{\mathbf{4}}=d, \tag{35}\\
x=\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}, x_{\mathbf{4}}\right\rangle \tag{36}\\
x_{\mathbf{1}}=(x \text { qua Any })_{\mathbf{1} \mathbf{1} 1} \tag{37}\\
\& x_{\mathbf{2}}=(x \text { qua Any })_{\mathbf{1} \mathbf{1} 2} \& x_{\mathbf{3}}=(x \text { qua Any })_{\mathbf{1} 2} \& x_{\mathbf{4}}=(x \text { qua Any })_{\mathbf{2}}, \\
x \neq x_{\mathbf{1}} \& x \neq x_{\mathbf{2}} \& x \neq x_{\mathbf{3}} \& x \neq x_{\mathbf{4}} \\
\langle x 1, x 2, x 3, x 4\rangle \in[: X 1, X 2, X 3, X 4]
\end{gather*}
$$

Let us consider $X 1, X 2, X 3, X 4, x 1, x 2, x 3, x 4$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\langle x 1, x 2, x 3, x 4\rangle \quad \text { is } \quad \text { Element of }: X 1, X 2, X 3, X 4] .
$$

The arguments of the notions defined below are the following: $X 1, X 2, X 3, X 4$ which are objects of the type reserved above; x which is an object of the type Element of $: X 1, X 2, X 3, X 4]$. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $x_{\mathbf{1}}$ | is \quad Element of $X 1$, |
| :--- | :--- | :--- |
| $x_{\mathbf{2}}$ | is \quad Element of $X 2$, |
| $x_{\mathbf{3}}$ | is \quad Element of $X 3$, |
| $x_{\mathbf{4}}$ | is \quad Element of $X 4$. |

The following propositions are true:

$$
\begin{gather*}
a=x_{\mathbf{1}} \text { iff for } x 1, x 2, x 3, x 4 \text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } a=x 1, \tag{40}\\
b=x_{\mathbf{2}} \text { iff for } x 1, x 2, x 3, x 4 \text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } b=x 2, \tag{41}\\
c=x_{\mathbf{3}} \text { iff for } x 1, x 2, x 3, x 4 \text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } c=x 3, \tag{42}\\
d=x_{\mathbf{4}} \text { iff for } x 1, x 2, x 3, x 4 \text { st } x=\langle x 1, x 2, x 3, x 4\rangle \text { holds } d=x 4, \tag{43}\\
\text { for } x \text { being Element of }[X 1, X 2, X 3, X 4] \text { holds }\left\langle x_{\mathbf{1}}, x_{\mathbf{2}}, x_{\mathbf{3}}, x_{\mathbf{4}}\right\rangle=x, \tag{44}\\
\text { for } x, y \text { being Element of }: X 1, X 2, X 3, X 4:] \tag{45}\\
\text { st } x_{\mathbf{1}}=y_{\mathbf{1}} \& x_{\mathbf{2}}=y_{\mathbf{2}} \& x_{\mathbf{3}}=y_{\mathbf{3}} \& x_{\mathbf{4}}=y_{\mathbf{4}} \text { holds } x=y, \\
\qquad\langle x 1, x 2, x 3, x 4\rangle_{\mathbf{1}}=x 1 \tag{46}\\
\&\langle x 1, x 2, x 3, x 4\rangle_{\mathbf{2}}=x 2 \&\langle x 1, x 2, x 3, x 4\rangle_{\mathbf{3}}=x 3 \&\langle x 1, x 2, x 3, x 4\rangle_{\mathbf{4}}=x 4
\end{gather*}
$$

(47) for x being Element of $[: X 1, X 2, X 3, X 4], y$ being Element of $: Y 1, Y 2, Y 3, Y 4$:
holds $x=y$ implies $x_{1}=y_{1} \& x_{2}=y_{2} \& x_{3}=y_{3} \& x_{4}=y_{4}$.

In the sequel $A 2$ will denote an object of the type Subset of $X 2 ; A 3$ will denote an object of the type Subset of $X 3 ; A 4$ will denote an object of the type Subset of $X 4$. In the article we present several logical schemes. The scheme Fraenkel1 deals with a unary predicate \mathcal{P} states that the following holds

$$
\text { for } X 1 \text { holds }\{x 1: \mathcal{P}[x 1]\} \text { is Subset of } X 1
$$

for all values of the parameter.
The scheme Fraenkel2 deals with a binary predicate \mathcal{P} states that the following holds

$$
\text { for } X 1, X 2 \text { holds }\{\langle x 1, x 2\rangle: \mathcal{P}[x 1, x 2]\} \text { is Subset of }: X 1, X 2 \text {; }
$$

for all values of the parameter.
The scheme Fraenkel3 concerns a ternary predicate \mathcal{P} states that the following holds
for $X 1, X 2, X 3$ holds $\{\langle x 1, x 2, x 3\rangle: \mathcal{P}[x 1, x 2, x 3]\}$ is Subset of $: X 1, X 2, X 3$:
for all values of the parameter.
The scheme Fraenkel4 deals with a 4-ary predicate \mathcal{P} states that the following holds

$$
\text { for } X 1, X 2, X 3, X 4
$$

holds $\{\langle x 1, x 2, x 3, x 4\rangle: \mathcal{P}[x 1, x 2, x 3, x 4]\}$ is Subset of $: X 1, X 2, X 3, X 4$:
for all values of the parameter.
The scheme Fraenkel5 concerns a unary predicate \mathcal{P} and a unary predicate \mathcal{Q} and states that the following holds

```
for X1 st for }x1\mathrm{ holds }\mathcal{P}[x1]\mathrm{ implies }\mathcal{Q}[x1] holds {y1:\mathcal{P}[y1]}\subseteq{z1:\mathcal{Q}[z1]
```

for all values of the parameters.
The scheme Fraenkel6 deals with a unary predicate \mathcal{P} and a unary predicate \mathcal{Q} and states that the following holds

```
for }X1\mathrm{ st for }x1\mathrm{ holds }\mathcal{P}[x1]\mathrm{ iff }\mathcal{Q}[x1] holds {y1:\mathcal{P}[y1]}={z1:\mathcal{Q}[z1]
```

for all values of the parameters.
Next we state several propositions:

$$
\begin{align*}
X 1= & \{x 1: \text { not contradiction }\} \tag{48}\\
{[: X 1, X 2]=} & \{\langle x 1, x 2\rangle: \text { not contradiction }\} \tag{49}\\
{[: X 1, X 2, X 3]=} & \{\langle x 1, x 2, x 3\rangle: \text { not contradiction }\} \tag{50}\\
{[: X 1, X 2, X 3, X 4:]=} & \{\langle x 1, x 2, x 3, x 4\rangle: \text { not contradiction }\}, \tag{51}\\
& A 1=\{x 1: x 1 \in A 1\} \tag{52}
\end{align*}
$$

Let us consider $X 1, X 2, A 1, A 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2] \quad \text { is } \quad \text { Subset of }[: X 1, X 2] \text {. }
$$

Next we state a proposition

$$
\begin{equation*}
[: A 1, A 2:]=\{\langle x 1, x 2\rangle: x 1 \in A 1 \& x 2 \in A 2\} \tag{53}
\end{equation*}
$$

Let us consider $X 1, X 2, X 3, A 1, A 2, A 3$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2, A 3: \quad \text { is } \quad \text { Subset of }[: X 1, X 2, X 3]
$$

Next we state a proposition

$$
\begin{equation*}
[: A 1, A 2, A 3:=\{\langle x 1, x 2, x 3\rangle: x 1 \in A 1 \& x 2 \in A 2 \& x 3 \in A 3\} \tag{54}
\end{equation*}
$$

Let us consider $X 1, X 2, X 3, X 4, A 1, A 2, A 3, A 4$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: A 1, A 2, A 3, A 4: \quad \text { is } \quad \text { Subset of }[: X 1, X 2, X 3, X 4]] .
$$

Next we state a number of propositions:

$$
\begin{gather*}
{[: A 1, A 2, A 3, A 4:} \tag{55}\\
=\{\langle x 1, x 2, x 3, x 4\rangle: x 1 \in A 1 \& x 2 \in A 2 \& x 3 \in A 3 \& x 4 \in A 4\} \\
\emptyset X 1=\{x 1: \text { contradiction }\} \tag{56}\\
A 1^{\mathrm{c}}=\{x 1: \operatorname{not} x 1 \in A 1\}, \tag{57}\\
A 1 \cap B 1=\{x 1: x 1 \in A 1 \& x 1 \in B 1\}, \tag{58}\\
A 1 \cup B 1=\{x 1: x 1 \in A 1 \text { or } x 1 \in B 1\}, \tag{59}\\
A 1-B 1=\{x 1: x 1 \in A 1 \& \operatorname{not} x 1 \in B 1 \operatorname{or} \operatorname{not} x 1 \in A 1 \& x 1 \in B 1\}, \tag{60}\\
A 1-B 1=\{x 1: \operatorname{not} x 1 \in A 1 \text { iff } x 1 \in B 1\}, \tag{61}\\
A 1-B 1=\{x 1: x 1 \in A 1 \text { iff } \operatorname{not} x 1 \in B 1\}, \tag{62}\\
A 1-B 1=\{x 1: \operatorname{not}(x 1 \in A 1 \text { iff } x 1 \in B 1)\} \tag{63}
\end{gather*}
$$

In the sequel $x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8$ will have the type Element of D. We now state several propositions:
$\{x 1\}$ is Subset of D,

$$
\begin{gather*}
\{x 1, x 2\} \text { is Subset of } D, \tag{66}\\
\{x 1, x 2, x 3\} \text { is Subset of } D, \tag{67}\\
\{x 1, x 2, x 3, x 4\} \text { is Subset of } D, \tag{68}\\
\{x 1, x 2, x 3, x 4, x 5\} \text { is Subset of } D, \tag{69}\\
\{x 1, x 2, x 3, x 4, x 5, x 6\} \text { is Subset of } D, \tag{70}\\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} \text { is Subset of } D, \tag{71}\\
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} \text { is Subset of } D . \tag{72}
\end{gather*}
$$

Let us consider D. Let $x 1$ have the type Element of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1\} \quad \text { is } \quad \text { Subset of } D
$$

Let $x 2$ have the type Element of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 3$ have the type Element of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 4$ have the type Element of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 5$ have the type Element of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4, x 5\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 6$ have the type Element of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4, x 5, x 6\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 7$ have the type Element of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7\} \quad \text { is } \quad \text { Subset of } D .
$$

Let $x 8$ have the type Element of D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8\} \quad \text { is } \quad \text { Subset of } D .
$$

Let us consider $X 1, A 1$. Let us note that it makes sense to consider the following functor on a restricted area. Then
$A 1^{\mathrm{c}} \quad$ is \quad Subset of $X 1$.

Let us consider $B 1$. Let us note that it makes sense to consider the following functors on restricted areas. Then

$A 1 \cup B 1$	is	Subset of $X 1$,
$A 1 \cap B 1$	is	Subset of $X 1$,
$A 1 \backslash B 1$	is	Subset of $X 1$,
$A 1-B 1$	is	Subset of $X 1$.

References

[1] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1, 1990.
[4] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.
[5] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

The Well Ordering Relations

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. Some theorems about well ordering relations are proved. The goal of the article is to prove that every two well ordering relations are either isomorphic or one of them is isomorphic to a segment of the other. The following concepts are defined: the segment of a relation induced by an element, well founded relations, well ordering relations, the restriction of a relation to a set, and the isomorphism of two relations. A number of simple facts is presented.

The terminology and notation used here are introduced in the following papers: [2], [3], [4], [5], and [1]. For simplicity we adopt the following convention: a, b, c, x denote objects of the type Any; X, Y, Z denote objects of the type set. The scheme Extensionality concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a unary predicate \mathcal{P} and states that the following holds

$$
\mathcal{A}=\mathcal{B}
$$

provided the parameters satisfy the following conditions:

- for a holds $a \in \mathcal{A}$ iff $\mathcal{P}[a]$,
- for a holds $a \in \mathcal{B}$ iff $\mathcal{P}[a]$.

In the sequel R, S, T will have the type Relation. Let us consider R, a. The functor

$$
R-\operatorname{Seg} a,
$$

with values of the type set, is defined by

$$
x \in \mathbf{i t} \mathbf{i f f} x \neq a \&\langle x, a\rangle \in R .
$$

One can prove the following propositions:
(1) for R, Y, a holds $Y=R-\operatorname{Seg}(a)$ iff for b holds $b \in Y$ iff $b \neq a \&\langle b, a\rangle \in R$,

[^15]\[

$$
\begin{equation*}
x \in \text { field } R \text { or } R-\operatorname{Seg}(x)=\emptyset \tag{2}
\end{equation*}
$$

\]

We now define two new predicates. Let us consider R. The predicate R is_well_founded
is defined by

$$
\text { for } Y \text { st } Y \subseteq \text { field } R \& Y \neq \emptyset \text { ex } a \text { st } a \in Y \& R-\operatorname{Seg}(a) \cap Y=\emptyset
$$

Let us consider X. The predicate R is_well_founded_in X
is defined by

$$
\text { for } Y \text { st } Y \subseteq X \& Y \neq \emptyset \operatorname{ex} a \text { st } a \in Y \& R-\operatorname{Seg}(a) \cap Y=\emptyset
$$

One can prove the following three propositions:
for R holds R is_well_founded
iff for Y st $Y \subseteq$ field $R \& Y \neq \emptyset$ ex a st $a \in Y \& R-\operatorname{Seg}(a) \cap Y=\emptyset$,
for R, X holds R is_well_founded_in X
iff for Y st $Y \subseteq X \& Y \neq \emptyset$ ex a st $a \in Y \& R-\operatorname{Seg}(a) \cap Y=\emptyset$,
R is_well_founded $\mathbf{i f f} R$ is_well_founded_in field R.
We now define two new predicates. Let us consider R. The predicate R is_well-ordering-relation
is defined by

$$
R \text { is_reflexive }
$$

$\& R$ is_transitive $\& R$ is_antisymmetric \& R is_connected $\& R$ is_well_founded.
Let us consider X. The predicate

$$
R \text { well_orders } X
$$

is defined by

$$
R \text { is_reflexive_in } X \& R \text { is_transitive_in } X
$$

$\& R$ is_antisymmetric_in $X \& R$ is_connected_in $X \& R$ is_well_founded_in X.
The following propositions are true:
for R holds R is_well-ordering-relation iff R is_reflexive
$\& R$ is_transitive \& R is_antisymmetric \& R is_connected $\& R$ is_well_founded,
(7) for R, X holds R well_orders X iff R is_reflexive_in $X \& R$ is_transitive_in X $\& R$ is_antisymmetric_in $X \& R$ is_connected_in $X \& R$ is_well_founded_in X,
R well_orders field R iff R is_well-ordering-relation, R well_orders X implies
for Y st $Y \subseteq X \& Y \neq \emptyset$ ex a st $a \in Y \&$ for b st $b \in Y$ holds $\langle a, b\rangle \in R$,
R is_well-ordering-relation implies
for Y st $Y \subseteq$ field $R \& Y \neq \emptyset$ ex a st $a \in Y \&$ for b st $b \in Y$ holds $\langle a, b\rangle \in R$,

$$
\begin{equation*}
\text { for } R \text { st } R \text { is_well-ordering-relation \& field } R \neq \emptyset \tag{11}
\end{equation*}
$$

ex a st $a \in$ field $R \&$ for b st $b \in$ field R holds $\langle a, b\rangle \in R$,
for R st R is_well-ordering-relation $\&$ field $R \neq \emptyset$ for a st $a \in$ field R holds
(for b st $b \in$ field R holds $\langle b, a\rangle \in R$) or ex b st $b \in$ field R
$\&\langle a, b\rangle \in R \&$ for c st $c \in$ field $R \&\langle a, c\rangle \in R$ holds $c=a$ or $\langle b, c\rangle \in R$.
In the sequel F, G have the type Function. Next we state a proposition

$$
\begin{equation*}
R-\operatorname{Seg}(a) \subseteq \text { field } R \tag{13}
\end{equation*}
$$

Let us consider R, Y. The functor

$$
\left.R\right|^{2} Y
$$

yields the type Relation and is defined by

$$
\mathbf{i t}=R \cap: Y, Y:] .
$$

We now state a number of propositions:

$$
\begin{gather*}
\left.R\right|^{2} Y=R \cap: Y, Y: \tag{14}\\
\left.\left.R\right|^{2} X \subseteq R \& R\right|^{2} X \subseteq: X, X:, \tag{15}\\
\left.x \in R\right|^{2} X \text { iff } x \in R \& x \in[: X, X:, \tag{16}\\
\left.R\right|^{2} X=X|R| X, \tag{17}\\
\left.R\right|^{2} X=X \mid(R \mid X), \tag{18}\\
x \in \text { field }\left(\left.R\right|^{2} X\right) \text { implies } x \in \text { field } R \& x \in X, \tag{19}\\
\text { field }\left(\left.R\right|^{2} X\right) \subseteq \text { field } R \& \text { field }\left(\left.R\right|^{2} X\right) \subseteq X, \tag{20}\\
\left(\left.R\right|^{2} X\right)-\operatorname{Seg}(a) \subseteq R-\operatorname{Seg}(a), \tag{21}
\end{gather*}
$$

(34) R is_well-ordering-relation implies $\left.R\right|^{2}(R-\operatorname{Seg}(a))$ is_well-ordering-relation,
R is_reflexive implies $\left.R\right|^{2} X$ is_reflexive, R is_connected implies $\left.R\right|^{2} Y$ is_connected, R is_transitive implies $\left.R\right|^{2} Y$ is_transitive, R is_antisymmetric implies $\left.R\right|^{2} Y$ is_antisymmetric,

$$
\begin{gather*}
\left.\left(\left.R\right|^{2} X\right)\right|^{2} Y=\left.R\right|^{2}(X \cap Y), \tag{26}\\
\left.\left(\left.R\right|^{2} X\right)\right|^{2} Y=\left.\left(\left.R\right|^{2} Y\right)\right|^{2} X, \tag{27}\\
\left.\left(\left.R\right|^{2} Y\right)\right|^{2} Y=\left.R\right|^{2} Y, \tag{28}\\
Z \subseteq Y \text { implies }\left.\left(\left.R\right|^{2} Y\right)\right|^{2} Z=\left.R\right|^{2} Z, \tag{29}\\
\left.R\right|^{2} \text { field } R=R,
\end{gather*}
$$

R is_well_founded implies $\left.R\right|^{2} X$ is_well_founded, R is_well-ordering-relation implies $\left.R\right|^{2} Y$ is_well-ordering-relation,
R is_well-ordering-relation
implies $R-\operatorname{Seg}(a) \subseteq R-\operatorname{Seg}(b)$ or $R-\operatorname{Seg}(b) \subseteq R-\operatorname{Seg}(a)$,

$$
\begin{equation*}
R \text { is_well-ordering-relation } \& a \in \text { field } R \& b \in R-\operatorname{Seg}(a) \tag{35}
\end{equation*}
$$

implies $\left(\left.R\right|^{2}(R-\operatorname{Seg}(a))\right)-\operatorname{Seg}(b)=R-\operatorname{Seg}(b)$,
R is_well-ordering-relation \& $Y \subseteq$ field R implies
($Y=$ field R or (ex a st $a \in$ field $R \& Y=R-\operatorname{Seg}(a))$
iff for a st $a \in Y$ for b st $\langle b, a\rangle \in R$ holds $b \in Y)$,
R is_well-ordering-relation \& $a \in$ field $R \& b \in$ field R
implies $(\langle a, b\rangle \in R$ iff $R-\operatorname{Seg}(a) \subseteq R-\operatorname{Seg}(b))$,
R is_well-ordering-relation \& $a \in$ field $R \& b \in$ field R
implies $(R-\operatorname{Seg}(a) \subseteq R-\operatorname{Seg}(b)$ iff $a=b$ or $a \in R-\operatorname{Seg}(b))$,
R is_well-ordering-relation $\& X \subseteq$ field R implies field $\left(\left.R\right|^{2} X\right)=X$,
R is_well-ordering-relation implies field $\left(\left.R\right|^{2} R-\operatorname{Seg}(a)\right)=R-\operatorname{Seg}(a)$,
R is_well-ordering-relation implies
for Z st for a st $a \in$ field $R \& R-\operatorname{Seg}(a) \subseteq Z$ holds $a \in Z$ holds field $R \subseteq Z$,
implies $\langle a, b\rangle \in R$,
R is_well-ordering-relation $\& \operatorname{dom} F=$ field $R \& \operatorname{rng} F \subseteq$ field R
$\&($ for a, b st $\langle a, b\rangle \in R \& a \neq b$ holds $\langle F . a, F . b\rangle \in R \& F . a \neq F . b)$
implies for a st $a \in$ field R holds $\langle a, F . a\rangle \in R$.

Let us consider R, S, F. The predicate

$$
F \text { is_isomorphism_of } R, S
$$

is defined by

$$
\operatorname{dom} F=\text { field } R \& \operatorname{rng} F=\text { field } S \&
$$

F is_one-to-one $\&$ for a, b holds $\langle a, b\rangle \in R$ iff $a \in$ field $R \& b \in$ field $R \&\langle F . a, F . b\rangle \in S$.
Next we state two propositions:

$$
\begin{equation*}
F \text { is_isomorphism_of } R, S \text { iff dom } F=\text { field } R \& \operatorname{rng} F=\text { field } S \& \tag{44}
\end{equation*}
$$

F is_one-to-one
$\&$ for a, b holds $\langle a, b\rangle \in R$ iff $a \in$ field $R \& b \in$ field $R \&\langle F . a, F . b\rangle \in S$,
F is_isomorphism_of R, S
implies for a, b st $\langle a, b\rangle \in R \& a \neq b$ holds $\langle F . a, F . b\rangle \in S \& F . a \neq F . b$.
Let us consider R, S. The predicate
R, S are_isomorphic \quad is defined by \quad ex F st F is_isomorphism_of R, S.
We now state a number of propositions:
R, S are_isomorphic iff ex F st F is_isomorphism_of R, S,
id (field R) is_isomorphism_of R, R, R, R are_isomorphic ,
F is_isomorphism_of R, S implies F^{-1} is_isomorphism_of S, R, R, S are_isomorphic implies S, R are_isomorphic, F is_isomorphism_of $R, S \& G$ is_isomorphism_of S, T
implies $G \cdot F$ is_isomorphism_of R, T,
R, S are_isomorphic $\& S, T$ are_isomorphic implies R, T are_isomorphic,
(53) $\quad F$ is_isomorphism_of R, S implies (R is_reflexive implies S is_reflexive) \&
(R is_transitive implies S is_transitive) \& (R is_connected implies S is_connected) \& (R is_antisymmetric implies S is_antisymmetric) $\&(R$ is_well_founded implies S is_well_founded),
R is_well-ordering-relation \& F is_isomorphism_of R, S
implies S is_well-ordering-relation, R is_well-ordering-relation implies for F, G
st F is_isomorphism_of $R, S \& G$ is_isomorphism_of R, S holds $F=G$.
Let us consider R, S. Assume that the following holds
R is_well-ordering-relation $\& R, S$ are_isomorphic .
The functor

$$
\text { canonical_isomorphism_of }(R, S)
$$

yields the type Function and is defined by

$$
\text { it is_isomorphism_of } R, S \text {. }
$$

The following propositions are true:
implies $(F=$ canonical_isomorphism_of (R, S) iff F is_isomorphism_of $R, S)$,
R is_well-ordering-relation
implies for a st $a \in$ field R holds not $R,\left.R\right|^{2}(R-\operatorname{Seg}(a))$ are_isomorphic,
R is_well-ordering-relation \& $a \in$ field $R \& b \in$ field $R \& a \neq b$
implies not $\left.R\right|^{2}(R-\operatorname{Seg}(a)),\left.R\right|^{2}(R-\operatorname{Seg}(b))$ are_isomorphic,
(59) R is_well-ordering-relation $\& Z \subseteq$ field $R \& F$ is_isomorphism_of R, S implies

$$
\begin{align*}
& F \mid Z \text { is_isomorphism_of }\left.R\right|^{2} Z,\left.S\right|^{2}\left(F^{\circ} Z\right) \\
& \left.\quad \& R\right|^{2} Z,\left.S\right|^{2}\left(F^{\circ} Z\right) \text { are_isomorphic } \tag{60}
\end{align*}
$$

R is_well-ordering-relation \& F is_isomorphism_of R, S implies for a st $a \in$ field R ex b st $b \in$ field $S \& F^{\circ}(R-\operatorname{Seg}(a))=S-\operatorname{Seg}(b)$,
(61) $\quad R$ is_well-ordering-relation $\& F$ is_isomorphism_of R, S implies for a st $a \in$ field R
ex b st $b \in$ field $\left.S \& R\right|^{2}(R-\operatorname{Seg}(a)),\left.S\right|^{2}(S-\operatorname{Seg}(b))$ are_isomorphic,
R is_well-ordering-relation $\& S$ is_well-ordering-relation $\& a \in$ field $R \&$ $b \in$ field $S \& c \in$ field $S \& R,\left.S\right|^{2}(S-\operatorname{Seg}(b))$ are_isomorphic $\left.\& R\right|^{2}(R-\operatorname{Seg}(a)),\left.S\right|^{2}(S-\operatorname{Seg}(c))$ are_isomorphic implies $S-\operatorname{Seg}(c) \subseteq S-\operatorname{Seg}(b) \&\langle c, b\rangle \in S$, R is_well-ordering-relation $\& S$ is_well-ordering-relation implies

$$
\begin{equation*}
R, S \text { are_isomorphic or } \tag{63}
\end{equation*}
$$

(ex a st $a \in$ field $\left.R \& R\right|^{2}(R-\operatorname{Seg}(a)), S$ are_isomorphic) or ex a st $a \in$ field $S \& R,\left.S\right|^{2}(S-\operatorname{Seg}(a))$ are_isomorphic,
(64) $Y \subseteq$ field $R \& R$ is_well-ordering-relation implies $R,\left.R\right|^{2} Y$ are_isomorphic or ex a st $a \in$ field $\left.R \& R\right|^{2}(R-\operatorname{Seg}(a)),\left.R\right|^{2} Y$ are_isomorphic .

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
[4] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1, 1990.
[5] Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1, 1990.

Received April 4, 1989

A Model of ZF Set Theory Language

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Summary. The goal of this article is to construct a language of the ZF set theory and to develop a notational and conceptual base which facilitates a convenient usage of the language.

The articles [5], [6], [3], [4], [1], and [2] provide the terminology and notation for this paper. For simplicity we adopt the following convention: k, n will have the type Nat; D will have the type DOMAIN; a will have the type Any; p, q will have the type FinSequence of NAT. The constant VAR has the type SUBDOMAIN of NAT, and is defined by

$$
\mathbf{i t}=\{k: 5 \leq k\} .
$$

The following proposition is true

$$
\begin{equation*}
\mathrm{VAR}=\{k: 5 \leq k\} \tag{1}
\end{equation*}
$$

Variable stands for Element of VAR .
One can prove the following proposition

$$
\begin{equation*}
a \text { is Variable iff } a \text { is Element of VAR . } \tag{2}
\end{equation*}
$$

Let us consider n. The functor

$$
\xi n
$$

with values of the type Variable, is defined by

$$
\text { it }=5+n
$$

One can prove the following proposition

$$
\begin{equation*}
\xi n=5+n \tag{3}
\end{equation*}
$$

[^16]In the sequel x, y, z, t denote objects of the type Variable. Let us consider x. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
<x>\quad \text { is } \quad \text { FinSequence of NAT }
$$

We now define two new functors. Let us consider x, y. The functor

$$
x=y
$$

with values of the type FinSequence of NAT, is defined by

$$
\text { it }=<0>\frown<x>\frown<y>
$$

The functor

$$
x \in y
$$

yields the type FinSequence of NAT and is defined by

$$
\text { it } \left.=<1\rangle^{\frown}<x\right\rangle^{\frown}<y>
$$

Next we state four propositions:

$$
\begin{align*}
& x=y=<0>\frown<x>\frown<y> \tag{4}\\
& x \in y=<1>\frown<x>\frown<y> \tag{5}
\end{align*}
$$

$$
\begin{align*}
& x=y=z=t \text { implies } x=z \& y=t, \tag{6}\\
& x \in y=z \in t \text { implies } x=z \& y=t . \tag{7}
\end{align*}
$$

We now define two new functors. Let us consider p. The functor

$$
\neg p,
$$

with values of the type FinSequence of NAT, is defined by

$$
\mathbf{i t}=<2>\frown p .
$$

Let us consider q. The functor

$$
p \wedge q
$$

with values of the type FinSequence of NAT, is defined by

$$
\mathbf{i t}=<3>\frown p^{\frown} q .
$$

Next we state three propositions:

$$
\begin{gather*}
\neg p=<2>\frown p, \tag{8}\\
p \wedge q=<3>\frown p \frown q, \tag{9}\\
\neg p=\neg q \text { implies } p=q . \tag{10}
\end{gather*}
$$

Let us consider x, p. The functor

$$
\forall(x, p)
$$

yields the type FinSequence of NAT and is defined by

$$
\text { it }=<4>\frown<x>\frown p .
$$

The following propositions are true:

$$
\begin{gather*}
\forall(x, p)=<4>\frown<x>\frown p \tag{11}\\
\forall(x, p)=\forall(y, q) \text { implies } x=y \& p=q \tag{12}
\end{gather*}
$$

The constant WFF has the type DOMAIN, and is defined by
(for a st $a \in$ it holds a is FinSequence of NAT) \&
(for x, y holds $x=y \in \mathbf{i t} \& x \in y \in \mathbf{i t}) \&($ for p st $p \in \mathbf{i t}$ holds $\neg p \in \mathbf{i t}) \&$
$($ for p, q st $p \in \mathbf{i t} \& q \in \mathbf{i t}$ holds $p \wedge q \in \mathbf{i t}) \&($ for x, p st $p \in \mathbf{i t}$ holds $\forall(x, p) \in \mathbf{i t}) \&$
for D st
(for a st $a \in D$ holds a is FinSequence of NAT) \&
$($ for x, y holds $x=y \in D \& x \in y \in D) \&($ for p st $p \in D$ holds $\neg p \in D)$
$\&($ for p, q st $p \in D \& q \in D$ holds $p \wedge q \in D) \&$ for x, p st $p \in D$ holds $\forall(x, p) \in D$

$$
\text { holds it } \subseteq D
$$

One can prove the following proposition
(for a st $a \in$ WFF holds a is FinSequence of NAT) \&
(for x, y holds $x=y \in \mathrm{WFF} \& x \epsilon y \in \mathrm{WFF}) \&$
(for p st $p \in \mathrm{WFF}$ holds $\neg p \in \mathrm{WFF}) \&$
(for p, q st $p \in \mathrm{WFF} \& q \in \mathrm{WFF}$ holds $p \wedge q \in \mathrm{WFF}) \&$
(for x, p st $p \in \mathrm{WFF}$ holds $\forall(x, p) \in \mathrm{WFF}) \&$ for D st
(for a st $a \in D$ holds a is FinSequence of NAT) \&
(for x, y holds $x=y \in D \& x \in y \in D) \&($ for p st $p \in D$ holds $\neg p \in D) \&$
$($ for p, q st $p \in D \& q \in D$ holds $p \wedge q \in D)$
$\quad \&$ for x, p st $p \in D$ holds $\forall(x, p) \in D$
holds $\mathrm{WFF} \subseteq D$.

The mode
ZF-formula,
which widens to the type FinSequence of NAT, is defined by it is Element of WFF .

We now state two propositions:
a is ZF-formula iff $a \in \mathrm{WFF}$
a is ZF-formula iff a is Element of WFF .

In the sequel $F, F 1, G, G 1, H, H 1$ denote objects of the type ZF-formula. Let us consider x, y. Let us note that it makes sense to consider the following functors on restricted areas. Then

$x=y$	is \quad ZF-formula,
$x \in y \quad$ is \quad ZF-formula.	

Let us consider H. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\neg H \quad \text { is } \quad \text { ZF-formula. }
$$

Let us consider G. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
H \wedge G \quad \text { is } \quad \text { ZF-formula }
$$

Let us consider x, H. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\forall(x, H) \quad \text { is } \quad \text { ZF-formula }
$$

We now define five new predicates. Let us consider H. The predicate

$$
H \text { is_a_equality } \quad \text { is defined by } \quad \text { ex } x, y \text { st } H=x=y \text {. }
$$

The predicate

$$
H \text { is_a_membership } \quad \text { is defined by } \quad \text { ex } x, y \text { st } H=x \in y .
$$

The predicate

$$
H \text { is_negative } \quad \text { is defined by } \quad \text { ex } H 1 \text { st } H=\neg H 1 .
$$

The predicate

$$
H \text { is_conjunctive } \quad \text { is defined by } \quad \text { ex } F, G \text { st } H=F \wedge G .
$$

The predicate

$$
H \text { is_universal } \quad \text { is defined by } \quad \text { ex } x, H 1 \text { st } H=\forall(x, H 1) \text {. }
$$

The following proposition is true

$$
\begin{gather*}
(H \text { is_a_equality iff ex } x, y \text { st } H=x=y) \& \tag{16}\\
(H \text { is_a_membership iff ex } x, y \text { st } H=x \in y) \& \\
(H \text { is_negative iff ex } H 1 \text { st } H=\neg H 1) \& \\
(H \text { is_conjunctive iff ex } F, G \text { st } H=F \wedge G) \\
\&(H \text { is_universal iff ex } x, H 1 \text { st } H=\forall(x, H 1)) .
\end{gather*}
$$

Let us consider H. The predicate
H is_atomic is defined by $\quad H$ is_a_equality or H is_a_membership .
Next we state a proposition

$$
\begin{equation*}
H \text { is_atomic iff } H \text { is_a_equality or } H \text { is_a_membership . } \tag{17}
\end{equation*}
$$

We now define two new functors. Let us consider F, G. The functor

$$
F \vee G,
$$

yields the type ZF-formula and is defined by

$$
\mathbf{i t}=\neg(\neg F \wedge \neg G) .
$$

The functor

$$
F \Rightarrow G
$$

yields the type ZF-formula and is defined by

$$
\text { it }=\neg(F \wedge \neg G)
$$

The following two propositions are true:

$$
\begin{gather*}
F \vee G=\neg(\neg F \wedge \neg G), \tag{18}\\
F \Rightarrow G=\neg(F \wedge \neg G) . \tag{19}
\end{gather*}
$$

Let us consider F, G. The functor

$$
F \Leftrightarrow G,
$$

yields the type ZF-formula and is defined by

$$
\mathbf{i t}=(F \Rightarrow G) \wedge(G \Rightarrow F)
$$

We now state a proposition

$$
\begin{equation*}
F \Leftrightarrow G=(F \Rightarrow G) \wedge(G \Rightarrow F) \tag{20}
\end{equation*}
$$

Let us consider x, H. The functor

$$
\exists(x, H)
$$

yields the type ZF-formula and is defined by

$$
\mathbf{i t}=\neg \forall(x, \neg H) .
$$

The following proposition is true

$$
\begin{equation*}
\exists(x, H)=\neg \forall(x, \neg H) \tag{21}
\end{equation*}
$$

We now define four new predicates. Let us consider H. The predicate

$$
H \text { is_disjunctive } \quad \text { is defined by } \quad \text { ex } F, G \text { st } H=F \vee G \text {. }
$$

The predicate

$$
H \text { is_conditional } \quad \text { is defined by } \quad \text { ex } F, G \text { st } H=F \Rightarrow G \text {. }
$$

The predicate

$$
H \text { is_biconditional } \quad \text { is defined by } \quad \text { ex } F, G \text { st } H=F \Leftrightarrow G \text {. }
$$

The predicate
H is_existential \quad is defined by \quad ex $x, H 1$ st $H=\exists(x, H 1)$.
The following proposition is true

$$
\begin{align*}
& (H \text { is_disjunctive iff ex } F, G \text { st } H=F \vee G) \& \tag{22}\\
& (H \text { is_conditional iff ex } F, G \text { st } H=F \Rightarrow G) \& \\
& (H \text { is_biconditional iff ex } F, G \text { st } H=F \Leftrightarrow G) \\
\& & (H \text { is_existential iff ex } x, H 1 \text { st } H=\exists(x, H 1)) .
\end{align*}
$$

We now define two new functors. Let us consider x, y, H. The functor

$$
\forall(x, y, H)
$$

yields the type ZF-formula and is defined by

$$
\mathbf{i t}=\forall(x, \forall(y, H))
$$

The functor

$$
\exists(x, y, H)
$$

yields the type ZF-formula and is defined by

$$
\mathbf{i t}=\exists(x, \exists(y, H))
$$

The following proposition is true

$$
\begin{equation*}
\forall(x, y, H)=\forall(x, \forall(y, H)) \& \exists(x, y, H)=\exists(x, \exists(y, H)) \tag{23}
\end{equation*}
$$

We now define two new functors. Let us consider x, y, z, H. The functor

$$
\forall(x, y, z, H)
$$

with values of the type ZF-formula, is defined by

$$
\mathbf{i t}=\forall(x, \forall(y, z, H))
$$

The functor

$$
\exists(x, y, z, H)
$$

with values of the type ZF-formula, is defined by

$$
\mathbf{i t}=\exists(x, \exists(y, z, H))
$$

We now state several propositions:

$$
\begin{equation*}
\forall(x, y, z, H)=\forall(x, \forall(y, z, H)) \& \exists(x, y, z, H)=\exists(x, \exists(y, z, H)), \tag{24}
\end{equation*}
$$

H is_a_equality
or H is_a_membership or H is_negative or H is_conjunctive or H is_universal,
H is_atomic or H is_negative or H is_conjunctive or H is_universal,
H is_atomic implies len $H=3$, H is_atomic or ex $H 1$ st len $H 1+1 \leq$ len H,

$$
\begin{gather*}
3 \leq \text { len } H \tag{29}\\
\text { len } H=3 \text { implies } H \text { is_atomic . }
\end{gather*}
$$

One can prove the following propositions:

$$
\begin{gather*}
\text { for } x, y \text { holds }(x=y) .1=0 \&(x \in y) \cdot 1=1, \tag{31}\\
\text { for } H \text { holds }(\neg H) .1=2, \tag{32}\\
\text { for } F, G \text { holds }(F \wedge G) .1=3, \tag{33}\\
\text { for } x, H \text { holds } \forall(x, H) .1=4, \tag{34}\\
H \text { is_a_equality implies } H .1=0, \tag{35}\\
H \text { is_a_membership implies } H .1=1, \tag{36}\\
H \text { is_negative implies } H .1=2, \tag{37}\\
H \text { is_conjunctive implies } H .1=3 \tag{38}
\end{gather*}
$$ H is_universal implies $H .1=4$, H is_a_equality $\& H .1=0$ or H is_a_membership $\& H .1=1$ or H is_negative \& $H .1=2$ or H is_conjunctive $\& H .1=3$ or H is_universal $\& H .1=4$,

$$
\begin{gather*}
H .1=0 \text { implies } H \text { is_a_equality, } \tag{41}\\
H .1=1 \text { implies } H \text { is_a_membership } \tag{42}
\end{gather*}
$$

$H .1=2$ implies H is_negative,
$H .1=3$ implies H is_conjunctive
$H .1=4$ implies H is_universal.

In the sequel $s q$ denotes an object of the type FinSequence. We now state several propositions:

$$
\begin{gather*}
H=F \frown s q \text { implies } H=F, \tag{46}\\
H \wedge G=H 1 \wedge G 1 \text { implies } H=H 1 \& G=G 1, \tag{47}\\
F \vee G=F 1 \vee G 1 \text { implies } F=F 1 \& G=G 1, \tag{48}\\
F \Rightarrow G=F 1 \Rightarrow G 1 \text { implies } F=F 1 \& G=G 1, \tag{49}\\
F \Leftrightarrow G=F 1 \Leftrightarrow G 1 \text { implies } F=F 1 \& G=G 1, \tag{50}\\
\exists(x, H)=\exists(y, G) \text { implies } x=y \& H=G . \tag{51}
\end{gather*}
$$

We now define two new functors. Let us consider H. Assume that the following holds

$$
H \text { is_atomic. }
$$

The functor

$$
\operatorname{Var}_{1} H
$$

yields the type Variable and is defined by

$$
\mathbf{i t}=H .2
$$

The functor

$$
\operatorname{Var}_{2} H
$$

yields the type Variable and is defined by

$$
\text { it }=H .3 .
$$

One can prove the following three propositions:

$$
\begin{gather*}
H \text { is_atomic implies } \operatorname{Var}_{1} H=H .2 \& \operatorname{Var}_{2} H=H .3 \tag{52}\\
H \text { is_a_equality implies } H=\left(\operatorname{Var}_{1} H\right)=\operatorname{Var}_{2} H \tag{53}\\
H \text { is_a_membership implies } H=\left(\operatorname{Var}_{1} H\right) \epsilon \operatorname{Var}_{2} H \tag{54}
\end{gather*}
$$

Let us consider H. Assume that the following holds

$$
H \text { is_negative . }
$$

The functor

$$
\text { the_argument_of } H \text {, }
$$

with values of the type ZF-formula, is defined by

$$
\neg \mathbf{i t}=H .
$$

We now state a proposition

$$
\begin{equation*}
H \text { is_negative implies } H=\neg \text { the_argument_of } H . \tag{55}
\end{equation*}
$$

We now define two new functors. Let us consider H. Assume that the following holds
H is_conjunctive or H is_disjunctive .
The functor

$$
\text { the_left_argument_of } H \text {, }
$$

with values of the type ZF -formula, is defined by
ex $H 1$ st it $\wedge H 1=H, \quad$ if $\quad H$ is_conjunctive, ex $H 1$ st it $\vee H 1=H, \quad$ otherwise.

The functor

$$
\text { the_right_argument_of } H \text {, }
$$

with values of the type ZF-formula, is defined by
ex $H 1$ st $H 1 \wedge$ it $=H, \quad$ if $\quad H$ is_conjunctive, ex $H 1$ st $H 1 \vee \mathbf{i t}=H$, otherwise.

One can prove the following propositions:
(56) H is_conjunctive implies $(F=$ the_left_argument_of H iff ex G st $F \wedge G=H$)

$$
\&(F=\text { the_right_argument_of } H \text { iff ex } G \text { st } G \wedge F=H)
$$

(57) H is_disjunctive implies ($F=$ the_left_argument_of H iff ex G st $F \vee G=H$)

$$
\&(F=\text { the_right_argument_of } H \text { iff ex } G \text { st } G \vee F=H),
$$

H is_conjunctive
implies $H=($ the_left_argument_of $H) \wedge$ the_right_argument_of H,
H is_disjunctive
implies $H=($ the_left_argument_of $H) \vee$ the_right_argument_of H.
We now define two new functors. Let us consider H. Assume that the following holds

The functor

$$
\text { bound_in } H \text {, }
$$

with values of the type Variable, is defined by
ex $H 1$ st $\forall($ it,$H 1)=H$, if $\quad H$ is_universal, ex $H 1$ st $\exists($ it,$H 1)=H, \quad$ otherwise.

The functor
the_scope_of H,
with values of the type ZF -formula, is defined by
ex x st $\forall(x$, it $)=H, \quad$ if $\quad H$ is_universal, ex x st $\exists(x, \mathbf{i t})=H, \quad$ otherwise.

Next we state four propositions:

$$
\begin{gather*}
H \text { is_universal implies }(x=\text { bound_in } H \text { iff ex } H 1 \text { st } \forall(x, H 1)=H) \tag{60}\\
\&(H 1=\text { the_scope_of } H \text { iff ex } x \text { st } \forall(x, H 1)=H), \\
(61) \quad H \text { is_existential implies }(x=\text { bound_in } H \text { iff ex } H 1 \text { st } \exists(x, H 1)=H) \\
\&(H 1=\text { the_scope_of } H \text { iff ex } x \text { st } \exists(x, H 1)=H), \tag{62}
\end{gather*}
$$

H is_universal implies $H=\forall$ (bound_in H,the_scope_of H),
H is_existential implies $H=\exists$ (bound_in H,the_scope_of H).
We now define two new functors. Let us consider H. Assume that the following holds

$$
H \text { is_conditional. }
$$

The functor

$$
\text { the_antecedent_of } H \text {, }
$$

with values of the type ZF-formula, is defined by

$$
\text { ex } H 1 \text { st } H=\text { it } \Rightarrow H 1
$$

The functor

$$
\text { the_consequent_of } H \text {, }
$$

with values of the type ZF-formula, is defined by

$$
\text { ex } H 1 \text { st } H=H 1 \Rightarrow \mathbf{i t}
$$

The following propositions are true:
(64) H is_conditional implies ($F=$ the_antecedent_of H iff ex G st $H=F \Rightarrow G$)

$$
\&(F=\text { the_consequent_of } H \text { iff ex } G \text { st } H=G \Rightarrow F)
$$

(65) H is_conditional implies $H=$ (the_antecedent_of $H) \Rightarrow$ the_consequent_of H.

We now define two new functors. Let us consider H. Assume that the following holds

$$
H \text { is_biconditional. }
$$

The functor

$$
\text { the_left_side_of } H
$$

yields the type ZF-formula and is defined by

$$
\text { ex } H 1 \text { st } H=\mathbf{i t} \Leftrightarrow H 1
$$

The functor

$$
\text { the_right_side_of } H
$$

with values of the type ZF-formula, is defined by

$$
\text { ex } H 1 \text { st } H=H 1 \Leftrightarrow \mathbf{i t .}
$$

We now state two propositions:
(66) H is_biconditional implies $(F=$ the_left_side_of H iff ex G st $H=F \Leftrightarrow G$)

$$
\&(F=\text { the_right_side_of } H \text { iff ex } G \text { st } H=G \Leftrightarrow F),
$$

(67) H is_biconditional implies $H=$ (the_left_side_of $H) \Leftrightarrow$ the_right_side_of H.

Let us consider H, F. The predicate

$$
H \text { is_immediate_constituent_of } F
$$

is defined by

$$
F=\neg H \text { or }(\text { ex } H 1 \text { st } F=H \wedge H 1 \text { or } F=H 1 \wedge H) \text { or ex } x \text { st } F=\forall(x, H)
$$

We now state a number of propositions:
H is_immediate_constituent_of F iff
$F=\neg H$ or $($ ex $H 1$ st $F=H \wedge H 1$ or $F=H 1 \wedge H)$ or ex x st $F=\forall(x, H)$,

$$
\begin{gather*}
\text { not } H \text { is_immediate_constituent_of } x=y, \tag{69}\\
\text { not } H \text { is_immediate_constituent_of } x \epsilon y, \tag{70}\\
F \text { is_immediate_constituent_of } \neg H \text { iff } F=H, \tag{71}\\
F \text { is_immediate_constituent_of } G \wedge H \text { iff } F=G \text { or } F=H, \tag{72}\\
F \text { is_immediate_constituent_of } \forall(x, H) \text { iff } F=H, \tag{73}
\end{gather*}
$$

implies $(F$ is_immediate_constituent_of H iff $F=$ the_argument_of H),
H is_conjunctive implies (F is_immediate_constituent_of H

$$
\begin{equation*}
\text { iff } F=\text { the_left_argument_of } H \text { or } F=\text { the_right_argument_of } H) \text {, } \tag{76}
\end{equation*}
$$

H is_universal
implies $(F$ is_immediate_constituent_of H iff $F=$ the_scope_of $H)$.
In the sequel L will denote an object of the type FinSequence. Let us consider H, F. The predicate

$$
H \text { is_subformula_of } F
$$

is defined by
ex n, L st $1 \leq n \&$ len $L=n \& L .1=H \& L . n=F \&$ for k st $1 \leq k \& k<n$ ex $H 1, F 1$ st $L . k=H 1 \& L .(k+1)=F 1 \& H 1$ is_immediate_constituent_of $F 1$.

Next we state two propositions:
(78) H is_subformula_of F iff ex n, L st $1 \leq n \&$ len $L=n \& L .1=H \& L . n=F \&$
for k st $1 \leq k \& k<n$ ex $H 1, F 1$

$$
\begin{equation*}
\text { st } L . k=H 1 \& L .(k+1)=F 1 \& H 1 \text { is_immediate_constituent_of } F 1, \tag{79}
\end{equation*}
$$

H is_subformula_of H.
Let us consider H, F. The predicate
H is_proper_subformula_of $F \quad$ is defined by $\quad H$ is_subformula_of $F \& H \neq F$.
We now state several propositions:

$$
\begin{gather*}
H \text { is_proper_subformula_of } F \text { iff } H \text { is_subformula_of } F \& H \neq F, \tag{80}\\
H \text { is_immediate_constituent_of } F \text { implies len } H<\text { len } F, \tag{81}\\
H \text { is_immediate_constituent_of } F \text { implies } H \text { is_proper_subformula_of } F \text {, } \tag{82}\\
H \text { is_proper_subformula_of } F \text { implies len } H<\operatorname{len} F, \tag{83}\\
H \text { is_proper_subformula_of } F \tag{84}\\
\text { implies ex } G \text { st } G \text { is_immediate_constituent_of } F \text {. }
\end{gather*}
$$

The following propositions are true:
F is_proper_subformula_of $G \& G$ is_proper_subformula_of H
implies F is_proper_subformula_of H,
(86) F is_subformula_of $G \& G$ is_subformula_of H implies F is_subformula_of H, G is_subformula_of $H \& H$ is_subformula_of $G \operatorname{implies} G=H$,
H is_negative implies the_argument_of H is_proper_subformula_of H,
H is_conjunctive implies the_left_argument_of H is_proper_subformula_of H
\& the_right_argument_of H is_proper_subformula_of H,
H is_universal implies the_scope_of H is_proper_subformula_of H,
H is_subformula_of $x=y$ iff $H=x=y$,
H is_subformula_of $x \epsilon y$ iff $H=x \epsilon y$.
Let us consider H. The functor

$$
\text { Subformulae } H \text {, }
$$

yields the type set and is defined by

$$
a \in \text { it iff ex } F \text { st } F=a \& F \text { is_subformula_of } H
$$

We now state a number of propositions:

$$
\begin{gather*}
a \in \text { Subformulae } H \text { iff ex } F \text { st } F=a \& F \text { is_subformula_of } H, \tag{99}\\
G \in \text { Subformulae } H \text { implies } G \text { is_subformula_of } H, \tag{100}\\
F \text { is_subformula_of } H \text { implies Subformulae } F \subseteq \text { Subformulae } H, \tag{101}\\
\text { Subformulae } x=y=\{x=y\}, \tag{102}\\
\text { Subformulae } x \epsilon y=\{x \epsilon y\}, \tag{103}\\
\text { Subformulae } \neg H=\text { Subformulae } H \cup\{\neg H\}, \tag{104}
\end{gather*}
$$

$$
\text { Subformulae }(H \wedge F)=\text { Subformulae } H \cup \text { Subformulae } F \cup\{H \wedge F\}
$$

Subformulae $\forall(x, H)=$ Subformulae $H \cup\{\forall(x, H)\}$, H is_atomic iff Subformulae $H=\{H\}$, H is_negative
implies Subformulae $H=$ Subformulae the_argument_of $H \cup\{H\}$,
H is_conjunctive implies Subformulae $H=$ Subformulae the_left_argument_of $H \cup$ Subformulae the_right_argument_of $H \cup\{H\}$, H is_universal implies Subformulae $H=$ Subformulae the_scope_of $H \cup\{H\}$,
(H is_immediate_constituent_of G
or H is_proper_subformula_of G or H is_subformula_of G)
$\& G \in$ Subformulae F
implies $H \in$ Subformulae F.
In the article we present several logical schemes. The scheme $Z F_{-}$Ind deals with a unary predicate \mathcal{P} states that the following holds

$$
\text { for } H \text { holds } \mathcal{P}[H]
$$

provided the parameter satisfies the following conditions:

- for H st H is_atomic holds $\mathcal{P}[H]$,
- for H st H is_negative $\& \mathcal{P}[$ the_argument_of $H]$ holds $\mathcal{P}[H]$,
- for H st
H is_conjunctive $\& \mathcal{P}[$ the_left_argument_of $H] \& \mathcal{P}[$ the_right_argument_of $H]$
holds $\mathcal{P}[H]$,
- for H st H is_universal \& $\mathcal{P}[$ the_scope_of $H]$ holds $\mathcal{P}[H]$.

The scheme ZF_CompInd deals with a unary predicate \mathcal{P} states that the following holds
for H holds $\mathcal{P}[H]$
provided the parameter satisfies the following condition:

- for H st for F st F is_proper_subformula_of H holds $\mathcal{P}[F]$ holds $\mathcal{P}[H]$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[6] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 4, 1989

Families of Sets

Beata Padlewska ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article contains definitions of the following concepts: family of sets, family of subsets of a set, the intersection of a family of sets. Functors \cup, \cap, and \backslash are redefined for families of subsets of a set. Some properties of these notions are presented.

The terminology and notation used in this paper are introduced in the following papers: [1], [3], and [2]. For simplicity we adopt the following convention: $X, Y, Z, Z 1, D$ will denote objects of the type set; x, y will denote objects of the type Any. Let us consider X. The functor

$$
\bigcap X,
$$

with values of the type set, is defined by
for x holds $x \in$ it iff for Y holds $Y \in X$ implies $x \in Y, \quad$ if $\quad X \neq \emptyset$,

$$
\text { it }=\emptyset, \quad \text { otherwise } .
$$

The following propositions are true:
(1) $\quad X \neq \emptyset$ implies for x holds $x \in \bigcap X$ iff for Y st $Y \in X$ holds $x \in Y$,
(6) $\quad X \neq \emptyset \&($ for $Z 1$ st $Z 1 \in X$ holds $Z \subseteq Z 1$) implies $Z \subseteq \bigcap X$,

[^17]\[

$$
\begin{gather*}
X \neq \emptyset \& X \subseteq Y \text { implies } \bigcap Y \subseteq \bigcap X, \tag{7}\\
X \in Y \& X \subseteq Z \text { implies } \bigcap Y \subseteq Z, \tag{8}\\
X \in Y \& X \cap Z=\emptyset \text { implies } \bigcap Y \cap Z=\emptyset \tag{9}\\
X \neq \emptyset \& Y \neq \emptyset \text { implies } \bigcap(X \cup Y)=\bigcap X \cap \bigcap Y, \tag{10}\\
\bigcap\{x\}=x \tag{11}\\
\bigcap\{X, Y\}=X \cap Y . \tag{12}
\end{gather*}
$$
\]

Set-Family stands for set.
In the sequel $S F X, S F Y, S F Z$ will have the type Set-Family. One can prove the following two propositions:

$$
\begin{gather*}
x \text { is Set-Family } \tag{13}\\
S F X=S F Y \text { iff for } X \text { holds } X \in S F X \text { iff } X \in S F Y . \tag{14}
\end{gather*}
$$

We now define two new predicates. Let us consider $S F X, S F Y$. The predicate $S F X$ is_finer_than $S F Y$
is defined by

$$
\text { for } X \text { st } X \in S F X \text { ex } Y \text { st } Y \in S F Y \& X \subseteq Y
$$

The predicate

$$
S F X \text { is_coarser_than } S F Y
$$

is defined by

$$
\text { for } Y \text { st } Y \in S F Y \text { ex } X \text { st } X \in S F X \& X \subseteq Y
$$

Next we state several propositions:
(15) $S F X$ is_finer_than $S F Y$ iff for X st $X \in S F X$ ex Y st $Y \in S F Y \& X \subseteq Y$,
$S F X$ is_coarser_than $S F Y$

$$
\begin{array}{r}
\text { iff for } Y \text { st } Y \in S F Y \text { ex } X \text { st } X \in S F X \& X \subseteq Y, \tag{16}\\
S F X \subseteq S F Y \text { implies } S F X \text { is_finer_than } S F Y, \\
S F X \text { is_finer_than } S F Y \text { implies } \bigcup S F X \subseteq \bigcup S F Y, \\
S F Y \neq \emptyset \& S F X \text { is_coarser_than } S F Y \text { implies } \bigcap S F X \subseteq \bigcap S F Y .
\end{array}
$$

Let us note that it makes sense to consider the following constant. Then \emptyset is Set-Family. Let us consider x. Let us note that it makes sense to consider the following functor on a restricted area. Then
$\{x\} \quad$ is \quad Set-Family.
Let us consider y. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x, y\} \quad \text { is } \quad \text { Set-Family. }
$$

One can prove the following propositions:

$$
\begin{gather*}
\emptyset \text { is_finer_than } S F X, \tag{20}\\
S F X \text { is_finer_than } \emptyset \text { implies } S F X=\emptyset, \tag{21}\\
S F X \text { is_finer_than } S F X, \tag{22}\\
S F X \text { is_finer_than } S F Y \& S F Y \text { is_finer_than } S F Z \tag{23}\\
\text { implies } S F X \text { is_finer_than } S F Z, \\
S F X \text { is_finer_than }\{Y\} \text { implies for } X \text { st } X \in S F X \text { holds } X \subseteq Y, \tag{24}\\
S F X \text { is_finer_than }\{X, Y\} \tag{25}\\
\text { implies for } Z \text { st } Z \in S F X \text { holds } Z \subseteq X \text { or } Z \subseteq Y .
\end{gather*}
$$

We now define three new functors. Let us consider $S F X, S F Y$. The functor

$$
\text { UNION }(S F X, S F Y)
$$

yields the type Set-Family and is defined by

$$
Z \in \text { it iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \cup Y
$$

The functor

$$
\text { INTERSECTION }(S F X, S F Y),
$$

with values of the type Set-Family, is defined by

$$
Z \in \text { it iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \cap Y
$$

The functor
DIFFERENCE (SFX,SFY),
with values of the type Set-Family, is defined by

$$
Z \in \text { it iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \backslash Y
$$

One can prove the following propositions:
(26) $Z \in \operatorname{UNION}(S F X, S F Y)$ iff ex X, Y st $X \in S F X \& Y \in S F Y \& Z=X \cup Y$,

$$
\begin{align*}
& Z \in \operatorname{INTERSECTION}(S F X, S F Y) \tag{27}\\
& \text { iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \cap Y \text {, } \\
& Z \in \text { DIFFERENCE (SFX,SFY) } \tag{28}\\
& \text { iff ex } X, Y \text { st } X \in S F X \& Y \in S F Y \& Z=X \backslash Y \text {, } \\
& S F X \text { is_finer_than UNION }(S F X, S F X) \text {, } \tag{29}\\
& \text { INTERSECTION }(S F X, S F X) \text { is_finer_than } S F X \text {, } \tag{30}\\
& \text { DIFFERENCE (} S F X, S F X \text {) is_finer_than } S F X \text {, } \tag{31}\\
& \operatorname{UNION}(S F X, S F Y)=\mathrm{UNION}(S F Y, S F X), \tag{32}\\
& \text { INTERSECTION }(S F X, S F Y)=\operatorname{INTERSECTION}(S F Y, S F X) \text {, } \tag{33}\\
& S F X \cap S F Y \neq \emptyset \tag{34}\\
& \text { implies } \bigcap S F X \cap \bigcap S F Y=\bigcap \text { INTERSECTION }(S F X, S F Y), \\
& S F Y \neq \emptyset \text { implies } X \cup \bigcap S F Y=\bigcap \text { UNION }(\{X\}, S F Y), \tag{35}\\
& X \cap \bigcup S F Y=\bigcup \text { INTERSECTION }(\{X\}, S F Y), \tag{36}\\
& S F Y \neq \emptyset \text { implies } X \backslash \bigcup S F Y=\bigcap \text { DIFFERENCE }(\{X\}, S F Y), \tag{37}\\
& S F Y \neq \emptyset \text { implies } X \backslash \bigcap S F Y=\bigcup \text { DIFFERENCE }(\{X\}, S F Y), \tag{38}\\
& \bigcup \operatorname{INTERSECTION}(S F X, S F Y) \subseteq \bigcup S F X \cap \bigcup S F Y, \tag{39}\\
& \text { (40) } S F X \neq \emptyset \& S F Y \neq \emptyset \text { implies } \bigcap S F X \cup \bigcap S F Y \subseteq \bigcap \operatorname{UNION}(S F X, S F Y) \text {, } \\
& S F X \neq \emptyset \& S F Y \neq \emptyset \tag{41}\\
& \text { implies } \bigcap \text { DIFFERENCE }(S F X, S F Y) \subseteq \bigcap S F X \backslash \bigcap S F Y \text {. }
\end{align*}
$$

Let D have the type set.
Subset-Family of D stands for Subset of bool D.

We now state a proposition
for F being Subset of bool D holds F is Subset-Family of D.
In the sequel F, G have the type Subset-Family of $D ; P$ has the type Subset of D. Let us consider D, F, G. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
F \cup G \quad \text { is } \quad \text { Subset-Family of } D,
$$

$F \cap G \quad$ is \quad Subset-Family of D,
$F \backslash G \quad$ is \quad Subset-Family of D.

Next we state a proposition

$$
\begin{equation*}
X \in F \text { implies } X \text { is Subset of } D \tag{43}
\end{equation*}
$$

Let us consider D, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\bigcup F \quad \text { is } \quad \text { Subset of } D .
$$

Let us consider D, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\bigcap F \quad \text { is } \quad \text { Subset of } D .
$$

The following proposition is true

$$
\begin{equation*}
F=G \text { iff for } P \text { holds } P \in F \text { iff } P \in G \tag{44}
\end{equation*}
$$

The scheme SubFamEx deals with a constant \mathcal{A} that has the type set and a unary predicate \mathcal{P} and states that the following holds
ex F being Subset-Family of \mathcal{A} st for B being Subset of \mathcal{A} holds $B \in F$ iff $\mathcal{P}[B]$
for all values of the parameters.
Let us consider D, F. The functor

$$
F^{\mathrm{c}}
$$

yields the type Subset-Family of D and is defined by

$$
\text { for } P \text { being Subset of } D \text { holds } P \in \text { it iff } P^{c} \in F \text {. }
$$

Next we state four propositions:

$$
\begin{gather*}
\text { for } P \text { holds } P \in F^{\mathrm{c}} \text { iff } P^{\mathrm{c}} \in F, \tag{45}\\
F \neq \emptyset \text { implies } F^{\mathrm{c}} \neq \emptyset, \tag{46}\\
F \neq \emptyset \text { implies } \Omega D \backslash \bigcup F=\bigcap\left(F^{\mathrm{c}}\right), \tag{47}\\
F \neq \emptyset \text { implies } \bigcup F^{\mathrm{c}}=\Omega D \backslash \bigcap F \tag{48}
\end{gather*}
$$

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 5, 1989

Functions from a Set to a Set

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article is a continuation of [1]. We define the following concepts: a function from a set X into a set Y, denoted by "Function of X, Y ", the set of all functions from a set X into a set Y, denoted by $\operatorname{Funcs}(X, Y)$, and the permutation of a set (mode Permutation of X, where X is a set). Theorems and schemes included in the article are reformulations of the theorems of [1] in the new terminology. Also some basic facts about functions of two variables are proved.

The notation and terminology used in this paper are introduced in the following articles: [2], [3], and [1]. For simplicity we adopt the following convention: $P, Q, X, Y, Y 1$, $Y 2, Z$ will denote objects of the type set; $x, x 1, x 2, y, y 1, y 2, z, z 1, z 2$ will denote objects of the type Any. Let us consider X, Y. Assume that the following holds

$$
Y=\emptyset \text { implies } X=\emptyset
$$

The mode

$$
\text { Function of } X, Y
$$

which widens to the type Function, is defined by

$$
X=\operatorname{dom} \text { it } \& \mathrm{rng} \text { it } \subseteq Y
$$

Next we state several propositions:

$$
\begin{equation*}
(Y=\emptyset \text { implies } X=\emptyset) \text { implies for } f \text { being Function } \tag{1}
\end{equation*}
$$

holds f is Function of X, Y iff $X=\operatorname{dom} f \& \operatorname{rng} f \subseteq Y$,
for f being Function of X, Y
st $Y=\emptyset$ implies $X=\emptyset$ holds $X=\operatorname{dom} f \& \operatorname{rng} f \subseteq Y$,
(3)
for f being Function holds f is Function of $\operatorname{dom} f, \operatorname{rng} f$,

[^18]\[

$$
\begin{equation*}
\text { for } f \text { being Function st } \operatorname{rng} f \subseteq Y \text { holds } f \text { is Function of dom } f, Y \text {, } \tag{4}
\end{equation*}
$$

\]

for f being Function
st dom $f=X \&$ for x st $x \in X$ holds $f . x \in Y$ holds f is Function of X, Y,

$$
\begin{align*}
& \text { for } f \text { being Function of } X, Y \text { st } Y \neq \emptyset \& x \in X \text { holds } f . x \in \operatorname{rng} f, \tag{6}\\
& \text { for } f \text { being Function of } X, Y \text { st } Y \neq \emptyset \& x \in X \text { holds } f . x \in Y, \tag{7}\\
& \text { for } f \text { being Function of } X, Y \tag{8}\\
& \text { st }(Y=\emptyset \text { implies } X=\emptyset) \& \operatorname{rng} f \subseteq Z \text { holds } f \text { is Function of } X, Z, \\
& \text { for } f \text { being Function of } X, Y \tag{9}\\
& \text { st }(Y=\emptyset \text { implies } X=\emptyset) \& Y \subseteq Z \text { holds } f \text { is Function of } X, Z .
\end{align*}
$$

In the article we present several logical schemes. The scheme FuncEx1 deals with a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a binary predicate \mathcal{P} and states that the following holds

$$
\text { ex } f \text { being Function of } \mathcal{A}, \mathcal{B} \text { st for } x \text { st } x \in \mathcal{A} \text { holds } \mathcal{P}[x, f . x]
$$

provided the parameters satisfy the following conditions:

- for x st $x \in \mathcal{A}$ ex y st $y \in \mathcal{B} \& \mathcal{P}[x, y]$,
- for $x, y 1, y 2$ st $x \in \mathcal{A} \& \mathcal{P}[x, y 1] \& \mathcal{P}[x, y 2]$ holds $y 1=y 2$.

The scheme Lambda1 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a unary functor \mathcal{F} and states that the following holds

$$
\text { ex } f \text { being Function of } \mathcal{A}, \mathcal{B} \text { st for } x \text { st } x \in \mathcal{A} \text { holds } f . x=\mathcal{F}(x)
$$

provided the parameters satisfy the following condition:

$$
\text { - for } x \text { st } x \in \mathcal{A} \text { holds } \mathcal{F}(x) \in \mathcal{B}
$$

Let us consider X, Y. The functor

$$
\text { Funcs }(X, Y) \text {, }
$$

yields the type set and is defined by

$$
x \in \text { it iff ex } f \text { being Function st } x=f \& \operatorname{dom} f=X \& \operatorname{rng} f \subseteq Y
$$

We now state a number of propositions:
for F being set holds $F=$ Funcs (X, Y) iff for x
holds $x \in F$ iff ex f being Function st $x=f \& \operatorname{dom} f=X \& \operatorname{rng} f \subseteq Y$,
iff for Z st $Z \neq \emptyset$ for g, h being Function of Y, Z st $g \cdot f=h \cdot f$ holds $g=h$,
for f being Function of X, Y st $Y=\emptyset$ implies $X=\emptyset$ holds f is_one-to-one iff for $x 1, x 2$ st $x 1 \in X \& x 2 \in X \& f . x 1=f . x 2$ holds $x 1=x 2$, for f being Function of X, Y for g being Function of Y, Z st $(Z=\emptyset$ implies $Y=\emptyset) \&(Y=\emptyset$ implies $X=\emptyset) \& g \cdot f$ is_one-to-one holds f is_one-to-one,
for f being Function of X, Y st $X \neq \emptyset \& Y \neq \emptyset$ holds f is_one-to-one iff for Z for g, h being Function of Z, X st $f \cdot g=f \cdot h$ holds $g=h$,
for f being Function of X, Y for g being Function of Y, Z st $Z \neq \emptyset \& Y \neq \emptyset \& \operatorname{rng}(g \cdot f)=Z \& g$ is_one-to-one holds rng $f=Y$,
for f being Function of X, Y for g being Function of Y, X st $X \neq \emptyset \& Y \neq \emptyset \& g \cdot f=\operatorname{id} X$ holds f is_one-to-one $\& \operatorname{rng} g=X$,
for f being Function of X, Y for g being Function of Y, Z st $(Z=\emptyset$ implies $Y=\emptyset) \& g \cdot f$ is_one-to-one \& $\operatorname{rng} f=Y$
holds f is_one-to-one \& g is_one-to-one, for f being Function of X, Y st f is_one-to-one \& $(X=\emptyset$ iff $Y=\emptyset) \& \operatorname{rng} f=Y$
holds f^{-1} is Function of Y, X,
for f being Function of X, Y
st $Y \neq \emptyset \& f$ is_one-to-one $\& x \in X$ holds $\left(f^{-1}\right) \cdot(f . x)=x$,
for f being Function of X, Y
st $\operatorname{rng} f=Y \& f$ is_one-to-one $\& y \in Y$ holds $f .\left(\left(f^{-1}\right) \cdot y\right)=y$,
for f being Function of X, Y for g being Function of Y, X st
$X \neq \emptyset \& Y \neq \emptyset \& \operatorname{rng} f=Y$
$\& f$ is_one-to-one \& for y, x holds $y \in Y \& g . y=x$ iff $x \in X \& f . x=y$

$$
\text { holds } g=f^{-1}
$$

for f being Function of X, Y
st $Y \neq \emptyset \& \operatorname{rng} f=Y \& f$ is_one-to-one holds $f^{-1} \cdot f=\operatorname{id} X \& f \cdot f^{-1}=\operatorname{id} Y$,
for f being Function of X, Y for g being Function of Y, X st
$X \neq \emptyset \& Y \neq \emptyset \& \operatorname{rng} f=Y \& g \cdot f=\operatorname{id} X \& f$ is_one-to-one holds $g=f^{-1}$,
for f being Function of X, Y st
$Y \neq \emptyset \& \operatorname{ex} g$ being Function of Y, X st $g \cdot f=\operatorname{id} X$ holds f is_one-to-one,
for f being Function of X, Y
st $(Y=\emptyset$ implies $X=\emptyset) \& Z \subseteq X$ holds $f \mid Z$ is Function of Z, Y,
for f being Function of X, Y
st $Y \neq \emptyset \& x \in X \& x \in Z$ holds $(f \mid Z) . x=f . x$,
(56) for $f 1$ being Function of $\emptyset, Y 1$ for $f 2$ being Function of $\emptyset, Y 2$ holds $f 1=f 2$,
for f being Function of \emptyset, Y for g being Function of Y, Z
st $Z=\emptyset$ implies $Y=\emptyset$ holds $g \cdot f$ is Function of \emptyset, Z, for f being Function of \emptyset, Y holds f is_one-to-one, for f being Function of \emptyset, Y holds $f^{\circ} P=\emptyset$, for f being Function of \emptyset, Y holds $f^{-1} Q=\emptyset$, for f being Function of $\{x\}, Y$ st $Y \neq \emptyset$ holds $f . x \in Y$, for f being Function of $\{x\}, Y$ st $Y \neq \emptyset$ holds $\operatorname{rng} f=\{f . x\}$, for f being Function of $\{x\}, Y$ st $Y \neq \emptyset$ holds f is_one-to-one, for f being Function of $\{x\}, Y$ st $Y \neq \emptyset$ holds $f^{\circ} P \subseteq\{f \cdot x\}$, for f being Function of $X,\{y\}$ st $x \in X$ holds $f . x=y$, for $f 1, f 2$ being Function of $X,\{y\}$ holds $f 1=f 2$.

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f, g which are objects of the type Function of X, X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
g \cdot f \quad \text { is } \quad \text { Function of } X, X
$$

Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\text { id } X \quad \text { is } \quad \text { Function of } X, X .
$$

The following propositions are true:

$$
\begin{align*}
& \text { for } f \text { being Function of } X, X \text { holds } \operatorname{dom} f=X \& \operatorname{rng} f \subseteq X, \tag{67}\\
& \text { for } f \text { being Function } \tag{68}\\
& \text { st dom } f=X \& \operatorname{rng} f \subseteq X \text { holds } f \text { is Function of } X, X, \\
& \text { for } f \text { being Function of } X, X \text { st } x \in X \text { holds } f \cdot x \in X, \tag{69}\\
& \text { for } f, g \text { being Function of } X, X \text { st } x \in X \text { holds }(g \cdot f) \cdot x=g \cdot(f \cdot x), \tag{70}\\
& \text { for } f \text { being Function of } X, X \tag{71}\\
& \text { for } g \text { being Function of } X, Y \text { st } Y \neq \emptyset \& x \in X \text { holds }(g \cdot f) \cdot x=g \cdot(f \cdot x), \\
& \text { for } f \text { being Function of } X, Y \tag{72}\\
& \text { for } g \text { being Function of } Y, Y \text { st } Y \neq \emptyset \& x \in X \text { holds }(g \cdot f) \cdot x=g \cdot(f \cdot x),
\end{align*}
$$

$$
\begin{equation*}
\text { for } f \text { being Function of } X, X \text { holds } f \cdot(\operatorname{id} X)=f \&(\operatorname{id} X) \cdot f=f \tag{74}
\end{equation*}
$$

for f, g being Function of X, X st $g \cdot f=f \& \operatorname{rng} f=X$ holds $g=\operatorname{id} X$,
(76) for f, g being Function of X, X st $f \cdot g=f \& f$ is_one-to-one holds $g=\operatorname{id} X$,
for f being Function of X, X holds f is_one-to-one

$$
\begin{equation*}
\text { iff for } x 1, x 2 \text { st } x 1 \in X \& x 2 \in X \& f . x 1=f . x 2 \text { holds } x 1=x 2 \tag{77}
\end{equation*}
$$

for f being Function of X, X holds $f^{\circ} P \subseteq X$.
The arguments of the notions defined below are the following: X which is an object of the type reserved above; f which is an object of the type Function of $X, X ; P$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{\circ} P \quad \text { is } \quad \text { Subset of } X
$$

One can prove the following propositions:

$$
\begin{align*}
& \text { for } f \text { being Function of } X, X \text { holds } f^{\circ} X=\operatorname{rng} f, \tag{79}\\
& \text { for } f \text { being Function of } X, X \text { holds } f^{-1} Q \subseteq X \text {. } \tag{80}
\end{align*}
$$

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f which is an object of the type Function of $X, X ; Q$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{-1} Q \quad \text { is } \quad \text { Subset of } X
$$

Next we state two propositions:
(81) for f being Function of X, X st $\operatorname{rng} f=X$ holds $f^{\circ}\left(f^{-1} X\right)=X$,

$$
\begin{equation*}
\text { for } f \text { being Function of } X, X \text { holds } f^{-1}\left(f^{\circ} X\right)=X \tag{82}
\end{equation*}
$$

Let us consider X. The mode

$$
\text { Permutation of } X
$$

which widens to the type Function of X, X, is defined by

$$
\text { it is_one-to-one } \& \text { rng it }=X
$$

Next we state three propositions:
for f being Function of X, X
holds f is Permutation of X iff f is_one-to-one \& $\operatorname{rng} f=X$,
for f being Permutation of X holds f is_one-to-one $\& \operatorname{rng} f=X$,
for f being Permutation of X
for $x 1, x 2$ st $x 1 \in X \& x 2 \in X \& f . x 1=f . x 2$ holds $x 1=x 2$.
The arguments of the notions defined below are the following: X which is an object of the type reserved above; f, g which are objects of the type Permutation of X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
g \cdot f \quad \text { is } \quad \text { Permutation of } X
$$

Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\text { id } X \quad \text { is } \quad \text { Permutation of } X .
$$

The arguments of the notions defined below are the following: X which is an object of the type reserved above; f which is an object of the type Permutation of X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{-1} \quad \text { is } \quad \text { Permutation of } X \text {. }
$$

The following propositions are true:

$$
\begin{align*}
& \text { for } f, g \text { being Permutation of } X \text { st } g \cdot f=g \text { holds } f=\operatorname{id} X, \tag{86}\\
& \text { for } f, g \text { being Permutation of } X \text { st } g \cdot f=\operatorname{id} X \text { holds } g=f^{-1}, \tag{87}\\
& \text { for } f \text { being Permutation of } X \text { holds }\left(f^{-1}\right) \cdot f=\operatorname{id} X \& f \cdot\left(f^{-1}\right)=\operatorname{id} X, \tag{88}\\
& \text { for } f \text { being Permutation of } X \text { holds }\left(f^{-1}\right)^{-1}=f, \tag{89}\\
& \text { for } f, g \text { being Permutation of } X \text { holds }(g \cdot f)^{-1}=f^{-1} \cdot g^{-1}, \tag{90}\\
& \text { for } f \text { being Permutation of } X \text { st } P \cap Q=\emptyset \text { holds } f^{\circ} P \cap f^{\circ} Q=\emptyset, \tag{91}\\
& \text { for } f \text { being Permutation of } X \tag{92}\\
& \text { st } P \subseteq X \text { holds } f^{\circ}\left(f^{-1} P\right)=P \& f^{-1}\left(f^{\circ} P\right)=P,
\end{align*}
$$

(93) for f being Permutation of X holds $f^{\circ} P=\left(f^{-1}\right)^{-1} P \& f^{-1} P=\left(f^{-1}\right)^{\circ} P$.

In the sequel C, D, E denote objects of the type DOMAIN. The arguments of the notions defined below are the following: $\quad X, D, E$ which are objects of the type
reserved above; f which is an object of the type Function of $X, D ; g$ which is an object of the type Function of D, E. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
g \cdot f \quad \text { is } \quad \text { Function of } X, E .
$$

Let us consider X, D. Let us note that one can characterize the mode

$$
\text { Function of } X, D
$$

by the following (equivalent) condition:

$$
X=\operatorname{dom} \text { it } \& \text { rng it } \subseteq D
$$

We now state a number of propositions:

$$
\begin{align*}
& \text { for } f \text { being Function of } X, D \text { holds dom } f=X \& \operatorname{rng} f \subseteq D, \tag{94}\\
& \text { for } f \text { being Function } \tag{95}\\
& \text { st dom } f=X \& \operatorname{rng} f \subseteq D \text { holds } f \text { is Function of } X, D, \\
& \text { for } f \text { being Function of } X, D \text { st } x \in X \text { holds } f . x \in D, \tag{96}\\
& \text { for } f \text { being Function of }\{x\}, D \text { holds } f \cdot x \in D, \tag{97}\\
& \text { for } f 1, f 2 \text { being Function of } X, D \tag{98}\\
& \text { ft for } x \text { st } x \in X \text { holds } f 1 . x=f 2 \cdot x \text { holds } f 1=f 2, \\
& \text { for } g \text { being Function of } D, E \text { being Function of } x \in X \text { holds }(g \cdot f) \cdot x=g \cdot(f \cdot x), \tag{99}\\
& \text { for } f \text { being Function of } X, D \text { holds } f \cdot(\operatorname{id} X)=f \&(\text { id } D) \cdot f=f, \\
& \text { for } f \text { being Function of } X, D \text { holds } f \text { is_one-to-one } \tag{100}\\
& \text { iff for } x 1, x 2 \text { st } x 1 \in X \& x 2 \in X \& f \cdot x 1=f . x 2 \text { holds } x 1=x 2, \tag{101}\\
& \text { for } f \text { being Function of } X, D \\
& \text { for } y \text { holds } y \in f \circ P \text { iff ex } x \text { st } x \in X \& x \in P \& y=f \cdot x, \tag{102}\\
& \text { for } f \text { being Function of } X, D \text { holds } f \circ P \subseteq D .
\end{align*}
$$

The arguments of the notions defined below are the following: X, D which are objects of the type reserved above; f which is an object of the type Function of X, $D ; P$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{\circ} P \quad \text { is } \quad \text { Subset of } D
$$

One can prove the following propositions:

$$
\begin{gather*}
\text { for } f \text { being Function of } X, D \text { holds } f^{\circ} X=\operatorname{rng} f, \tag{104}\\
\text { for } f \text { being Function of } X, D \text { st } f^{\circ} X=D \text { holds } \operatorname{rng}(f)=D, \tag{105}\\
\text { for } f \text { being Function of } X, D \text { for } x \text { holds } x \in f^{-1} Q \text { iff } x \in X \& f . x \in Q, \tag{106}\\
\text { for } f \text { being Function of } X, D \text { holds } f^{-1} Q \subseteq X \tag{107}
\end{gather*}
$$

The arguments of the notions defined below are the following: X, D which are objects of the type reserved above; f which is an object of the type Function of X, $D ; Q$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{-1} Q \quad \text { is } \quad \text { Subset of } X
$$

One can prove the following propositions:

$$
\begin{gather*}
\text { for } f \text { being Function of } X, D \text { holds } f^{-1} D=X, \tag{108}\\
\text { for } f \text { being Function of } X, D \tag{109}\\
\text { holds (for } \left.y \text { st } y \in D \text { holds } f^{-1}\{y\} \neq \emptyset\right) \text { iff } \operatorname{rng} f=D, \\
\text { for } f \text { being Function of } X, D \text { holds } f^{-1}\left(f^{\circ} X\right)=X, \tag{110}\\
\text { for } f \text { being Function of } X, D \text { st } \operatorname{rng} f=D \text { holds } f^{\circ}\left(f^{-1} D\right)=D, \tag{111}\\
\text { for } f \text { being Function of } X, D \tag{112}\\
\text { for } g \text { being Function of } D, E \text { holds } f^{-1} Q \subseteq(g \cdot f)^{-1}\left(g^{\circ} Q\right)
\end{gather*}
$$

In the sequel c denotes an object of the type Element of $C ; d$ denotes an object of the type Element of D. The arguments of the notions defined below are the following: C, D which are objects of the type reserved above; f which is an object of the type Function of $C, D ; c$ which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f . c \quad \text { is } \quad \text { Element of } D .
$$

Now we present two schemes. The scheme FuncExD concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN and a binary predicate \mathcal{P} and states that the following holds
ex f being Function of \mathcal{A}, \mathcal{B} st for x being Element of \mathcal{A} holds $\mathcal{P}[x, f . x]$
provided the parameters satisfy the following conditions:

- for x being Element of \mathcal{A} ex y being Element of \mathcal{B} st $\mathcal{P}[x, y]$,
- for x being Element of $\mathcal{A}, y 1, y 2$ being Element of \mathcal{B}

$$
\text { st } \mathcal{P}[x, y 1] \& \mathcal{P}[x, y 2] \text { holds } y 1=y 2
$$

The scheme LambdaD concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN and a unary functor \mathcal{F} yielding values of the type Element of \mathcal{B} and states that the following holds
ex f being Function of \mathcal{A}, \mathcal{B} st for x being Element of \mathcal{A} holds $f . x=\mathcal{F}(x)$
for all values of the parameters.
One can prove the following propositions:

$$
\begin{align*}
& \text { for } f 1, f 2 \text { being Function of } C, D \text { st for } c \text { holds } f 1 . c=f 2 . c \text { holds } f 1=f 2, \tag{113}\\
& \qquad(\operatorname{id} C) . c=c, \tag{114}\\
& \text { for } f \text { being Function of } C, D \tag{115}\\
& \text { for } g \text { being Function of } D, E \text { holds }(g \cdot f) \cdot c=g \cdot(f . c), \\
& \text { for } f \text { being Function of } C, D \tag{116}\\
& \text { for } d \text { holds } d \in f^{\circ} P \text { iff ex } c \text { st } c \in P \& d=f . c, \\
& \text { for } f \text { being Function of } C, D \text { for } c \text { holds } c \in f^{-1} Q \text { iff } f . c \in Q, \tag{117}\\
& \text { for } f 1, f 2 \text { being Function of }: X, Y:], Z \text { st } \tag{118}\\
& Z \neq \emptyset \& \text { for } x, y \text { st } x \in X \& y \in Y \text { holds } f 1 .\langle x, y\rangle=f 2 .\langle x, y\rangle \text { holds } f 1=f 2, \\
& \text { for } f \text { being Function of }[: X, Y:, Z \tag{119}
\end{align*}
$$

Now we present two schemes. The scheme FuncEx2 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set, a constant \mathcal{C} that has the type set and a ternary predicate \mathcal{P} and states that the following holds

$$
\text { ex } f \text { being Function of }[: \mathcal{A}, \mathcal{B}], \mathcal{C} \text { st for } x, y \text { st } x \in \mathcal{A} \& y \in \mathcal{B} \text { holds } \mathcal{P}[x, y, f .\langle x, y\rangle]
$$

provided the parameters satisfy the following conditions:

$$
\text { - for } x, y \text { st } x \in \mathcal{A} \& y \in \mathcal{B} \mathbf{e x} z \text { st } z \in \mathcal{C} \& \mathcal{P}[x, y, z]
$$

- for $x, y, z 1, z 2$ st $x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y, z 1] \& \mathcal{P}[x, y, z 2]$ holds $z 1=z 2$.

The scheme Lambda2 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set, a constant \mathcal{C} that has the type set and a binary functor \mathcal{F} and states that the following holds

```
ex f being Function of [:\mathcal{A,B}\],\mathcal{C}\mathrm{ st for }x,y\mathrm{ st }x\in\mathcal{A}&y\in\mathcal{B}\mathrm{ holds }f.\langlex,y\rangle=\mathcal{F}(x,y)
```

provided the parameters satisfy the following condition:

- for x, y st $x \in \mathcal{A} \& y \in \mathcal{B}$ holds $\mathcal{F}(x, y) \in \mathcal{C}$.

We now state a proposition

$$
\begin{gather*}
\text { for } f 1, f 2 \text { being Function of }[: C, D:], E \tag{120}\\
\text { st for } c, d \text { holds } f 1 .\langle c, d\rangle=f 2 \cdot\langle c, d\rangle \text { holds } f 1=f 2
\end{gather*}
$$

Now we present two schemes. The scheme FuncEx2D deals with a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN, a constant \mathcal{C} that has the type DOMAIN and a ternary predicate \mathcal{P} and states that the following holds
ex f being Function of $: \mathcal{A}, \mathcal{B}:], \mathcal{C}$
st for x being Element of \mathcal{A} for y being Element of \mathcal{B} holds $\mathcal{P}[x, y, f .\langle x, y\rangle]$
provided the parameters satisfy the following conditions:

- for x being Element of \mathcal{A}
for y being Element of $\mathcal{B} \mathbf{e x} z$ being Element of \mathcal{C} st $\mathcal{P}[x, y, z]$,
- for x being Element of \mathcal{A} for y being Element of \mathcal{B}

$$
\text { for } z 1, z 2 \text { being Element of } \mathcal{C} \text { st } \mathcal{P}[x, y, z 1] \& \mathcal{P}[x, y, z 2] \text { holds } z 1=z 2
$$

The scheme Lambda2D concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN, a constant \mathcal{C} that has the type DOMAIN and a binary functor \mathcal{F} yielding values of the type Element of \mathcal{C} and states that the following holds
ex f being Function of $:\{\mathcal{A}, \mathcal{B}:], \mathcal{C}$
st for x being Element of \mathcal{A} for y being Element of \mathcal{B} holds $f .\langle x, y\rangle=\mathcal{F}(x, y)$
for all values of the parameters.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Finite Sets

Agata Darmochwal ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article contains the definition of a finite set based on the notion of finite sequence. Some theorems about properties of finite sets and finite families of sets are proved.

The terminology and notation used here are introduced in the following papers: [5], [6], [4], [2], [1], and [3]. Let A have the type set. The predicate

$$
A \text { is_finite } \quad \text { is defined by } \quad \operatorname{ex} p \text { being FinSequence st rng } p=A \text {. }
$$

For simplicity we adopt the following convention: A, B, C, D, X, Y have the type set; $x, y, z, x 1, x 2, x 3, x 4, x 5, x 6, x 7, x 8$ have the type Any; f has the type Function; n has the type Nat. The following propositions are true:

$$
\begin{equation*}
A \text { is_finite iff ex } p \text { being FinSequence st rng } p=A \tag{1}
\end{equation*}
$$

for p being FinSequence holds rng p is_finite,
$\operatorname{Seg} n$ is_finite,

$$
\begin{gather*}
\emptyset \text { is_finite }, \tag{4}\\
\{x\} \text { is_finite }, \tag{5}\\
\{x, y\} \text { is_finite, } \tag{6}\\
\{x, y, z\} \text { is_finite, } \tag{7}\\
\{x 1, x 2, x 3, x 4\} \text { is_finite }, \tag{8}\\
\{x 1, x 2, x 3, x 4, x 5\} \text { is_finite }
\end{gather*}
$$

[^19]A is_finite implies for X being Subset-Family of A st $X \neq \emptyset$ ex x being set st $x \in X \&$ for B being set st $B \in X$ holds $x \subseteq B$ implies $B=x$.

The scheme Finite deals with a constant \mathcal{A} that has the type set and a unary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{A}]
$$

provided the parameters satisfy the following conditions:

- \mathcal{A} is_finite,
-
- for x, B being set st $x \in \mathcal{A} \& B \subseteq \mathcal{A} \& \mathcal{P}[B]$ holds $\mathcal{P}[B \cup\{x\}]$.

We now state several propositions:

$$
\begin{gather*}
A \text { is_finite } \& B \text { is_finite implies }[: A, B:] \text { is_finite, } \tag{19}\\
A \text { is_finite } \& B \text { is_finite } \& C \text { is_finite implies }: A, B, C \text { : is_finite, } \tag{20}\\
A \text { is_finite } \& B \text { is_finite } \& C \text { is_finite } \& D \text { is_finite } \tag{21}\\
\text { implies }: A, B, C, D:] \text { is_finite, } \\
B \neq \emptyset \&[A, B:] \text { is_finite implies } A \text { is_finite, } \tag{22}\\
A \neq \emptyset \&[A, B:] \text { is_finite implies } B \text { is_finite, } \tag{23}\\
A \text { is_finite iff bool } A \text { is_finite, } \tag{24}\\
A \text { is_finite \& (for } X \text { st } X \in A \text { holds } X \text { is_finite) iff } \bigcup A \text { is_finite, } \tag{25}\\
\operatorname{dom} f \text { is_finite implies rng } f \text { is_finite, } \tag{26}\\
Y \subseteq \operatorname{rng} f \& f^{-1} Y \text { is_finite implies } Y \text { is_finite } . \tag{27}
\end{gather*}
$$

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1, 1990.
[2] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.
[4] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[6] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 6, 1989

Graphs of Functions.

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Summary. The graph of a function is defined in [1]. In this paper the graph of a function is redefined as a Relation. Operations on functions are interpreted as the corresponding operations on relations. Some theorems about graphs of functions are proved.

The terminology and notation used in this paper have been introduced in the following papers: [2], [3], [1], and [4]. For simplicity we adopt the following convention: $X, X 1$, $X 2, Y, Y 1, Y 2$ denote objects of the type set; $x, x 1, x 2, y, y 1, y 2, z$ denote objects of the type Any; $f, f 1, f 2, g, g 1, g 2, h, h 1$ denote objects of the type Function. Let us consider f. Let us note that it makes sense to consider the following functor on a restricted area. Then
graph f is Relation.
Next we state a number of propositions:
for R being Relation st
for $x, y 1, y 2$ st $\langle x, y 1\rangle \in R \&\langle x, y 2\rangle \in R$ holds $y 1=y 2$ ex f st graph $f=R$,

$$
\begin{gather*}
y \in \operatorname{rng} f \text { iff ex } x \text { st }\langle x, y\rangle \in \operatorname{graph} f \tag{2}\\
\operatorname{dom} \operatorname{graph} f=\operatorname{dom} f \& \operatorname{rng} \operatorname{graph} f=\operatorname{rng} f \tag{3}
\end{gather*}
$$

$\operatorname{graph} f \subseteq: \operatorname{dom} f, \operatorname{rng} f:$,
(5) (for x, y holds $\langle x, y\rangle \in \operatorname{graph} f 1$ iff $\langle x, y\rangle \in \operatorname{graph} f 2)$ implies $f 1=f 2$,

$$
\begin{gather*}
\text { for } G \text { being set st } G \subseteq \operatorname{graph} f \text { ex } g \text { st graph } g=G, \tag{6}\\
\text { graph } f \subseteq \operatorname{graph} g \text { implies dom } f \subseteq \operatorname{dom} g \& \operatorname{rng} f \subseteq \operatorname{rng} g, \tag{7}
\end{gather*}
$$

[^20](8) graph $f \subseteq$ graph g iff $\operatorname{dom} f \subseteq \operatorname{dom} g \&$ for x st $x \in \operatorname{dom} f$ holds $f . x=g . x$,
(29) graph $h=\operatorname{graph} f \cap \operatorname{graph} g \& x \in \operatorname{dom} h$ implies $h . x=f . x \& h . x=g . x$,
(47) f is_one-to-one implies for x, y holds $\langle y, x\rangle \in \operatorname{graph}\left(f^{-1}\right)$ iff $\langle x, y\rangle \in \operatorname{graph} f$,
\[

$$
\begin{gather*}
f \text { is_one-to-one implies } \operatorname{graph}\left(f^{-1}\right)=(\operatorname{graph} f)^{\sim} \tag{48}\\
\operatorname{graph} f=\emptyset \operatorname{implies} \operatorname{graph}\left(f^{-1}\right)=\emptyset \tag{49}\\
\langle x, y\rangle \in \operatorname{graph}(f \mid X) \operatorname{iff} x \in X \&\langle x, y\rangle \in \operatorname{graph} f \tag{50}
\end{gather*}
$$
\]

$$
\begin{align*}
& \text { (58) graph } f 1 \subseteq \operatorname{graph} f 2 \& X 1 \subseteq X 2 \text { implies graph }(f 1 \mid X 1) \subseteq \operatorname{graph}(f 2 \mid X 2) \text {, } \\
& \operatorname{graph}(f \mid X)=(\operatorname{graph} f) \mid X, \tag{51}\\
& x \in \operatorname{dom} f \& x \in X \mathbf{i f f}\langle x, f . x\rangle \in \operatorname{graph}(f \mid X), \tag{52}\\
& \operatorname{graph}(f \mid X) \subseteq \operatorname{graph} f, \tag{53}\\
& \operatorname{graph}((f \mid X) \cdot h) \subseteq \operatorname{graph}(f \cdot h) \& \operatorname{graph}(g \cdot(f \mid X)) \subseteq \operatorname{graph}(g \cdot f), \tag{54}\\
& \operatorname{graph}(f \mid X)=\operatorname{graph}(f) \cap[: X, \operatorname{rng} f:], \tag{55}\\
& X \subseteq Y \text { implies graph }(f \mid X) \subseteq \operatorname{graph}(f \mid Y), \tag{56}\\
& \text { graph } f 1 \subseteq \text { graph } f 2 \text { implies graph }(f 1 \mid X) \subseteq \operatorname{graph}(f 2 \mid X), \tag{57}\\
& \operatorname{graph}(f \mid(X \cup Y))=\operatorname{graph}(f \mid X) \cup \operatorname{graph}(f \mid Y), \tag{59}\\
& \operatorname{graph}(f \mid(X \cap Y))=\operatorname{graph}(f \mid X) \cap \operatorname{graph}(f \mid Y), \tag{60}\\
& \operatorname{graph}(f \mid(X \backslash Y))=\operatorname{graph}(f \mid X) \backslash \operatorname{graph}(f \mid Y), \tag{61}\\
& \operatorname{graph}(f \mid \emptyset)=\emptyset, \tag{62}\\
& \text { graph } f=\emptyset \text { implies graph }(f \mid X)=\emptyset, \tag{63}\\
& \text { graph } g \subseteq \text { graph } f \text { implies } f \mid \operatorname{dom} g=g \text {, } \tag{64}\\
& \langle x, y\rangle \in \operatorname{graph}(Y \mid f) \operatorname{iff} y \in Y \&\langle x, y\rangle \in \operatorname{graph} f, \tag{65}\\
& \operatorname{graph}(Y \mid f)=Y \mid(\operatorname{graph} f), \tag{66}\\
& x \in \operatorname{dom} f \& f . x \in Y \text { iff }\langle x, f . x\rangle \in \operatorname{graph}(Y \mid f), \tag{67}\\
& \operatorname{graph}(Y \mid f) \subseteq \operatorname{graph}(f), \tag{68}\\
& \operatorname{graph}((Y \mid f) \cdot h) \subseteq \operatorname{graph}(f \cdot h) \& \operatorname{graph}(g \cdot(Y \mid f)) \subseteq \operatorname{graph}(g \cdot f), \tag{69}\\
& \operatorname{graph}(Y \mid f)=\operatorname{graph}(f) \cap: \operatorname{dom} f, Y:], \tag{70}\\
& X \subseteq Y \text { implies graph }(X \mid f) \subseteq \operatorname{graph}(Y \mid f), \tag{71}\\
& \operatorname{graph} f 1 \subseteq \operatorname{graph} f 2 \text { implies graph }(Y \mid f 1) \subseteq \operatorname{graph}(Y \mid f 2), \tag{72}\\
& \operatorname{graph} f 1 \subseteq \operatorname{graph} f 2 \& Y 1 \subseteq Y 2 \text { implies } \operatorname{graph}(Y 1 \mid f 1) \subseteq \operatorname{graph}(Y 2 \mid f 2), \tag{73}\\
& \operatorname{graph}((X \cup Y) \mid f)=\operatorname{graph}(X \mid f) \cup \operatorname{graph}(Y \mid f), \tag{74}\\
& \operatorname{graph}((X \cap Y) \mid f)=\operatorname{graph}(X \mid f) \cap \operatorname{graph}(Y \mid f), \tag{75}
\end{align*}
$$

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[3] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
[4] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1, 1990.

Received April 14, 1989

Binary Operations

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Summary. In this paper we define binary and unary operations on domains. We also define the following predicates concerning the operations: ... is commutative, ... is associative, ... is the unity of and ... is distributive wrt A number of schemes useful in justifying the existence of the operations are proved.

The articles [3], [1], and [2] provide the notation and terminology for this paper. The arguments of the notions defined below are the following: f which is an object of the type Function; $\quad a, b$ which are objects of the type Any. The functor

$$
f .(a, b),
$$

with values of the type Any, is defined by

$$
\mathbf{i t}=f \cdot\langle a, b\rangle .
$$

One can prove the following proposition

$$
\begin{equation*}
\text { for } f \text { being Function for } a, b \text { being Any holds } f .(a, b)=f .\langle a, b\rangle \text {. } \tag{1}
\end{equation*}
$$

In the sequel A, B, C will denote objects of the type DOMAIN. The arguments of the notions defined below are the following: A, B, C which are objects of the type reserved above; f which is an object of the type Function of $: A, B \rrbracket, C ; a$ which is an object of the type Element of $A ; b$ which is an object of the type Element of B. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f .(a, b) \quad \text { is } \quad \text { Element of } C .
$$

The following proposition is true

$$
\begin{equation*}
\text { for } f 1, f 2 \text { being Function of }: A, B!, C \text { st } \tag{2}
\end{equation*}
$$

for a being Element of A

[^21]$$
\text { for } b \text { being Element of } B \text { holds } f 1 .(a, b)=f 2 \cdot(a, b)
$$
$$
\text { holds } f 1=f 2
$$

We now define two new modes. Let us consider A.

$$
\text { Unary_Operation of } A \text { stands for Function of } A, A \text {. }
$$

$$
\text { Binary_Operation of } A \text { stands for Function of }: A, A:, A \text {. }
$$

We now state a proposition
for f being Function of A, A holds f is Unary_Operation of A.

In the sequel u denotes an object of the type Unary_Operation of A. Next we state a proposition for f being Function of $: A, A:, A$ holds f is Binary_Operation of A.

In the article we present several logical schemes. The scheme UnOpEx concerns a constant \mathcal{A} that has the type DOMAIN and a binary predicate \mathcal{P} and states that the following holds
ex u being Unary_Operation of \mathcal{A} st for x being Element of \mathcal{A} holds $\mathcal{P}[x, u . x]$
provided the parameters satisfy the following conditions:

- for x being Element of \mathcal{A} ex y being Element of \mathcal{A} st $\mathcal{P}[x, y]$,
- \quad for $x, y 1, y 2$ being Element of \mathcal{A} st $\mathcal{P}[x, y 1] \& \mathcal{P}[x, y 2]$ holds $y 1=y 2$.

The scheme UnOpLambda concerns a constant \mathcal{A} that has the type DOMAIN and a unary functor \mathcal{F} yielding values of the type Element of \mathcal{A} and states that the following holds
ex u being Unary_Operation of \mathcal{A} st for x being Element of \mathcal{A} holds $u . x=\mathcal{F}(x)$
for all values of the parameters.
For simplicity we adopt the following convention: o, o^{\prime} will have the type Binary_Operation of $A ; a, b, c, e, e 1, e 2$ will have the type Element of A. Let us consider A, o, a, b. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
o .(a, b) \quad \text { is } \quad \text { Element of } A
$$

Now we present two schemes. The scheme $\operatorname{Bin} O p E x$ concerns a constant \mathcal{A} that has the type DOMAIN and a ternary predicate \mathcal{P} and states that the following holds
ex o being Binary_Operation of \mathcal{A}
st for a, b being Element of \mathcal{A} holds $\mathcal{P}[a, b, o .(a, b)]$
provided the parameters satisfy the following conditions:

- for x, y being Element of \mathcal{A} ex z being Element of \mathcal{A} st $\mathcal{P}[x, y, z]$,
- for x, y being Element of \mathcal{A}
for $z 1, z 2$ being Element of \mathcal{A} st $\mathcal{P}[x, y, z 1] \& \mathcal{P}[x, y, z 2]$ holds $z 1=z 2$.
The scheme BinOpLambda concerns a constant \mathcal{A} that has the type DOMAIN and a binary functor \mathcal{F} yielding values of the type Element of \mathcal{A} and states that the following holds
ex o being Binary_Operation of \mathcal{A}
st for a, b being Element of \mathcal{A} holds $o .(a, b)=\mathcal{F}(a, b)$
for all values of the parameters.
We now define three new predicates. Let us consider A, o. The predicate o is_commutative \quad is defined by for a, b holds $o .(a, b)=o .(b, a)$.

The predicate
o is_associative is defined by for a, b, c holds $o .(a, o .(b, c))=o .(o \cdot(a, b), c)$.
The predicate

$$
o \text { is_an_idempotentOp } \quad \text { is defined by } \quad \text { for } a \text { holds } o .(a, a)=a \text {. }
$$

Next we state three propositions:

$$
\begin{gather*}
o \text { is_commutative iff for } a, b \text { holds } o .(a, b)=o .(b, a), \tag{5}\\
o \text { is_associative iff for } a, b, c \text { holds } o .(a, o .(b, c))=o .(o .(a, b), c), \\
o \text { is_an_idempotentOp iff for } a \text { holds } o .(a, a)=a .
\end{gather*}
$$

We now define two new predicates. Let us consider A, e, o. The predicate

$$
e \text { is_a_left_unity_wrt } o \quad \text { is defined by } \quad \text { for } a \text { holds } o .(e, a)=a \text {. }
$$

The predicate

$$
e \text { is_a_right_unity_wrt } o \quad \text { is defined by } \quad \text { for } a \text { holds } o .(a, e)=a
$$

Let us consider A, e, o. The predicate
e is_a_unity_wrt $o \quad$ is defined by $\quad e$ is_a_left_unity_wrt $o \& e$ is_a_right_unity_wrt o.
We now state a number of propositions:

$$
\begin{equation*}
e \text { is_a_left_unity_wrt } o \text { iff for } a \text { holds } o .(e, a)=a \tag{8}
\end{equation*}
$$

Let us consider A, o. Assume that the following holds

$$
\text { ex } e \text { st } e \text { is_a_unity_wrt } o .
$$

The functor

$$
\text { the_unity_wrt } o,
$$

with values of the type Element of A, is defined by

$$
\text { it is_a_unity_wrt } o .
$$

One can prove the following proposition

$$
\begin{equation*}
(\mathbf{e x} e \mathbf{s t} e \text { is_a_unity_wrt } o) \tag{19}
\end{equation*}
$$

implies for e holds $e=$ the_unity_wrt o iff e is_a_unity_wrt o.
We now define two new predicates. Let us consider A, o^{\prime}, o. The predicate

$$
o^{\prime} \text { is_left_distributive_wrt } o
$$

is defined by

$$
\text { for } a, b, c \text { holds } o^{\prime} .(a, o .(b, c))=o \cdot\left(o^{\prime} .(a, b), o^{\prime} .(a, c)\right)
$$

The predicate

$$
o^{\prime} \text { is_right_distributive_wrt } o
$$

is defined by

$$
\text { for } a, b, c \text { holds } o^{\prime} .(o \cdot(a, b), c)=o \cdot\left(o^{\prime} \cdot(a, c), o^{\prime} .(b, c)\right)
$$

Let us consider A, o^{\prime}, o. The predicate
o^{\prime} is_distributive_wrt o
is defined by
o^{\prime} is_left_distributive_wrt $o \& o^{\prime}$ is_right_distributive_wrt o.
We now state several propositions:

$$
\begin{align*}
& o^{\prime} \text { is_left_distributive_wrt } o \tag{20}\\
& \text { iff for } a, b, c \text { holds } o^{\prime} .(a, o .(b, c))=o .\left(o^{\prime} .(a, b), o^{\prime} .(a, c)\right) \text {, } \\
& o^{\prime} \text { is_right_distributive_wrt } o \tag{21}\\
& \text { iff for } a, b, c \text { holds } o^{\prime} .(o .(a, b), c)=o \cdot\left(o^{\prime} .(a, c), o^{\prime} .(b, c)\right), \\
& o^{\prime} \text { is_distributive_wrt } o \tag{22}\\
& \text { iff } o^{\prime} \text { is_left_distributive_wrt } o \& o^{\prime} \text { is_right_distributive_wrt } o \text {, } \\
& o^{\prime} \text { is_distributive_wrt } o \text { iff for } a, b, c \text { holds } \tag{23}\\
& o^{\prime} .(a, o .(b, c))=o .\left(o^{\prime} .(a, b), o^{\prime} .(a, c)\right) \& o^{\prime} .(o .(a, b), c)=o .\left(o^{\prime} .(a, c), o^{\prime} .(b, c)\right), \\
& o^{\prime} \text { is_commutative implies (} o^{\prime} \text { is_distributive_wrt } o \tag{24}\\
& \text { iff for } \left.a, b, c \text { holds } o^{\prime} .(a, o .(b, c))=o \cdot\left(o^{\prime} .(a, b), o^{\prime} .(a, c)\right)\right) \text {, } \\
& o^{\prime} \text { is_commutative implies (} o^{\prime} \text { is_distributive_wrt } o \tag{25}\\
& \text { iff for } \left.a, b, c \text { holds } o^{\prime} .(o .(a, b), c)=o \cdot\left(o^{\prime} .(a, c), o^{\prime} .(b, c)\right)\right) \text {, } \\
& o^{\prime} \text { is_commutative } \tag{26}\\
& \text { implies (} o^{\prime} \text { is_distributive_wrt } o \text { iff } o^{\prime} \text { is_left_distributive_wrt } o \text {), } \\
& o^{\prime} \text { is_commutative } \tag{27}\\
& \text { implies (} o^{\prime} \text { is_distributive_wrt } o \text { iff } o^{\prime} \text { is_right_distributive_wrt } o \text {), } \\
& o^{\prime} \text { is_commutative } \tag{28}\\
& \text { implies (} o^{\prime} \text { is_right_distributive_wrt } o \text { iff } o^{\prime} \text { is_left_distributive_wrt } o \text {). }
\end{align*}
$$

Let us consider A, u, o. The predicate
u is_distributive_wrt $o \quad$ is defined by for a, b holds $u \cdot(o .(a, b))=o \cdot((u . a),(u . b))$.

The following proposition is true

$$
\begin{equation*}
u \text { is_distributive_wrt } o \text { iff for } a, b \text { holds } u .(o .(a, b))=o .((u . a),(u . b)) . \tag{29}
\end{equation*}
$$

References

[1] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.

Received April 14, 1989

Relations Defined on Sets

Edmund Woronowicz ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article includes theorems concerning properties of relations defined as a subset of the Cartesian product of two sets (mode Relation of X, Y where X, Y are sets). Some notions, introduced in [3] such as domain, codomain, field of a relation, composition of relations, image and inverse image of a set under a relation are redefined.

The articles [1], [2], and [3] provide the terminology and notation for this paper. For simplicity we adopt the following convention: $A, B, X, X 1, Y, Y 1, Z$ will denote objects of the type set; a, x, y will denote objects of the type Any. Let us consider X, Y. The mode

$$
\text { Relation of } X, Y \text {, }
$$

which widens to the type Relation, is defined by

$$
\text { it } \subseteq[X, Y] \text {. }
$$

The following proposition is true

$$
\begin{equation*}
\text { for } R \text { being Relation holds } R \subseteq[X, Y: \text { iff } R \text { is Relation of } X, Y \text {. } \tag{1}
\end{equation*}
$$

In the sequel P, R will denote objects of the type Relation of X, Y. The following propositions are true:

$$
\begin{gather*}
A \subseteq R \text { implies } A \subseteq[X, Y:, \tag{2}\\
A \subseteq: X, Y: \text { implies } A \text { is Relation of } X, Y, \tag{3}\\
A \subseteq R \text { implies } A \text { is Relation of } X, Y, \tag{4}\\
\quad: X, Y: Y \text { is Relation of } X, Y, \tag{5}
\end{gather*}
$$

[^22]Let us consider X, Y, P, R. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{lll}
P \cup R & \text { is } & \text { Relation of } X, Y, \\
P \cap R & \text { is } & \text { Relation of } X, Y \\
P \backslash R & \text { is } & \text { Relation of } X, Y .
\end{array}
$$

We now state a proposition

$$
\begin{equation*}
R \cap[: X, Y:]=R . \tag{18}
\end{equation*}
$$

Let us consider X, Y, R. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{rll}
\operatorname{dom} R & \text { is } & \text { Subset of } X \\
\operatorname{rng} R & \text { is } & \text { Subset of } Y .
\end{array}
$$

Next we state several propositions:

$$
\begin{equation*}
\text { field } R \subseteq X \cup Y \tag{19}
\end{equation*}
$$

for R being Relation holds R is Relation of $\operatorname{dom} R, \operatorname{rng} R$,

$$
\begin{gather*}
\operatorname{dom} R \subseteq X 1 \text { \& } \operatorname{rng} R \subseteq Y 1 \text { implies } R \text { is Relation of } X 1, Y 1, \tag{21}\\
\quad(\text { for } x \text { st } x \in X \text { ex } y \text { st }\langle x, y\rangle \in R) \text { iff } \operatorname{dom} R=X, \tag{22}\\
\quad(\text { for } y \text { st } y \in Y \text { ex } x \text { st }\langle x, y\rangle \in R) \text { iff } \operatorname{rng} R=Y . \tag{23}
\end{gather*}
$$

Let us consider X, Y, R. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
R^{\sim} \quad \text { is } \quad \text { Relation of } Y, X
$$

The arguments of the notions defined below are the following: X, Y, Z which are objects of the type reserved above; P which is an object of the type Relation of X, Y; R which is an object of the type Relation of Y, Z. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
P \cdot R \quad \text { is } \quad \text { Relation of } X, Z
$$

One can prove the following propositions:

$$
\begin{gather*}
\operatorname{dom}\left(R^{\sim}\right)=\operatorname{rng} R \& \operatorname{rng}\left(R^{\sim}\right)=\operatorname{dom} R, \tag{24}\\
\emptyset \text { is Relation of } X, Y, \tag{25}\\
R \text { is Relation of } \emptyset, Y \text { implies } R=\emptyset, \tag{26}\\
R \text { is Relation of } X, \emptyset \text { implies } R=\emptyset, \tag{27}\\
\triangle X \subseteq: X, X: \tag{28}\\
\triangle X \text { is Relation of } X, X, \tag{29}\\
\triangle A \subseteq R \text { implies } A \subseteq \operatorname{dom} R \& A \subseteq \operatorname{rng} R \tag{30}\\
\triangle X \subseteq R \text { implies } X=\operatorname{dom} R \& X \subseteq \operatorname{rng} R, \tag{31}\\
\triangle Y \subseteq R \text { implies } Y \subseteq \operatorname{dom} R \& Y=\operatorname{rng} R \tag{32}
\end{gather*}
$$

Let us consider X, Y, R, A. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
R \mid A \quad \text { is } \quad \text { Relation of } X, Y
$$

Let us consider X, Y, B, R. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
B \mid R \quad \text { is } \quad \text { Relation of } X, Y
$$

The following four propositions are true:

$$
\begin{equation*}
R \mid X 1 \text { is Relation of } X 1, Y \tag{33}
\end{equation*}
$$

$$
\begin{align*}
& X \subseteq X 1 \text { implies } R \mid X 1=R \tag{34}\\
& Y 1 \mid R \text { is Relation of } X, Y 1 \tag{35}\\
& Y \subseteq Y 1 \text { implies } Y 1 \mid R=R \tag{36}
\end{align*}
$$

Let us consider X, Y, R, A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{lll}
R^{\circ} A & \text { is } & \text { Subset of } Y \\
R^{-1} A & \text { is } & \text { Subset of } X
\end{array}
$$

Next we state three propositions:

$$
\begin{gather*}
R^{\circ} A \subseteq Y \& R^{-1} A \subseteq X \tag{37}\\
R^{\circ} X=\operatorname{rng} R \& R^{-1} Y=\operatorname{dom} R \tag{38}\\
R^{\circ}\left(R^{-1} Y\right)=\operatorname{rng} R \& R^{-1}\left(R^{\circ} X\right)=\operatorname{dom} R \tag{39}
\end{gather*}
$$

The scheme Rel_On_Set_Ex deals with a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a binary predicate \mathcal{P} and states that the following holds
ex R being Relation of \mathcal{A}, \mathcal{B} st for x, y holds $\langle x, y\rangle \in R$ iff $x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y]$
for all values of the parameters.
Let us consider X.

$$
\text { Relation of } X \quad \text { stands for } \quad \text { Relation of } X, X
$$

We now state three propositions:
(40) for R being Relation of X, X holds $R \subseteq[X, X:$ iff R is Relation of X,

$$
\begin{equation*}
[: X, X:] \text { is Relation of } X \tag{41}
\end{equation*}
$$

for R being Relation of X, X holds R is Relation of X.
In the sequel R denotes an object of the type Relation of X. One can prove the following propositions:

$$
\begin{gather*}
\triangle X \text { is Relation of } X \tag{43}\\
\triangle X \subseteq R \text { implies } X=\operatorname{dom} R \& X=\operatorname{rng} R \tag{44}\\
R \cdot(\triangle X)=R \&(\triangle X) \cdot R=R \tag{45}
\end{gather*}
$$

For simplicity we adopt the following convention: $D, D 1, D 2, E, F$ denote objects of the type DOMAIN; R denotes an object of the type Relation of $D, E ; x$ denotes
an object of the type Element of $D ; y$ denotes an object of the type Element of E. We now state a proposition

$$
\begin{equation*}
\triangle D \neq \varnothing \tag{46}
\end{equation*}
$$

Let us consider D, E, R. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{cc}
\operatorname{dom} R & \text { is } \quad \text { Element of bool } D, \\
\operatorname{rng} R & \text { is } \quad \text { Element of bool } E .
\end{array}
$$

Next we state several propositions:

$$
\begin{equation*}
\text { for } x \text { being Element of } D \tag{47}
\end{equation*}
$$

holds $x \in \operatorname{dom} R$ iff ex y being Element of E st $\langle x, y\rangle \in R$,
for y being Element of E
holds $y \in \operatorname{rng} R$ iff ex x being Element of D st $\langle x, y\rangle \in R$,
for x being Element of D
holds $x \in \operatorname{dom} R$ implies ex y being Element of E st $y \in \operatorname{rng} R$,
for y being Element of E
holds $y \in \operatorname{rng} R$ implies ex x being Element of D st $x \in \operatorname{dom} R$,
for P being Relation of D, E, R being Relation of E, F
for x being Element of D, z being Element of F
holds $\langle x, z\rangle \in P \cdot R$ iff ex y being Element of E st $\langle x, y\rangle \in P \&\langle y, z\rangle \in R$.
Let us consider $D, E, R, D 1$. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{lll}
R^{\circ} D 1 & \text { is } & \text { Element of bool } E \\
R^{-1} D 1 & \text { is } & \text { Element of bool } D
\end{array}
$$

We now state two propositions:

$$
\begin{align*}
& y \in R^{\circ} D 1 \text { iff ex } x \text { being Element of } D \text { st }\langle x, y\rangle \in R \& x \in D 1 \tag{52}\\
& x \in R^{-1} D 2 \text { iff ex } y \text { being Element of } E \text { st }\langle x, y\rangle \in R \& y \in D 2 \tag{53}
\end{align*}
$$

The scheme Rel_On_Dom_Ex concerns a constant \mathcal{A} that has the type DOMAIN, a constant \mathcal{B} that has the type DOMAIN and a binary predicate \mathcal{P} and states that the following holds
ex R being Relation of \mathcal{A}, \mathcal{B} st for x being Element of \mathcal{A}, y being Element of \mathcal{B}

$$
\text { holds }\langle x, y\rangle \in R \text { iff } x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y]
$$

for all values of the parameters.

References

[1] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[2] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
[3] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1, 1990.

Boolean Domains

Andrzej Trybulec ${ }^{1}$
Warsaw University
Białystok

Agata Darmochwat ${ }^{2}$
Warsaw University
Białystok

Summary. BOOLE DOMAIN is a SET DOMAIN that is closed under union and difference. This condition is equivalent to being closed under symmetric difference and one of the following operations: union, intersection or difference. We introduce the set of all finite subsets of a set A, denoted by Fin A. The mode Finite Subset of a set A is introduced with the mother type: Element of Fin A. In consequence, "Finite Subset of ..." is an elementary type, therefore one may use such types as "set of Finite Subset of A ", "[(Finite Subset of $A)$, Finite Subset of $A]$ ", and so on. The article begins with some auxiliary theorems that belong really to [5] or [1] but are missing there. Moreover, bool A is redefined as a SET DOMAIN, for an arbitrary set A.

The articles [4], [5], [3], and [2] provide the notation and terminology for this paper. In the sequel X, Y will denote objects of the type set. The following propositions are true:

$$
\begin{gather*}
X \text { misses } Y \text { implies } X \backslash Y=X \& Y \backslash X=Y, \tag{1}\\
X \text { misses } Y \text { implies }(X \cup Y) \backslash Y=X \&(X \cup Y) \backslash X=Y, \\
X \cup Y=X \doteq(Y \backslash X), \\
X \cup Y=X \doteq Y \doteq X \cap Y, \\
X \backslash Y=X \doteq(X \cap Y), \\
X \cap Y=X \doteq Y \doteq(X \cup Y), \\
(\text { for } x \text { being set st } x \in X \text { holds } x \in Y) \text { implies } X \subseteq Y \text {. } \tag{7}
\end{gather*}
$$

[^23]Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\text { bool } X \quad \text { is } \quad \text { SET_DOMAIN . }
$$

The following proposition is true

$$
\begin{equation*}
\text { for } Y \text { being Element of bool } X \text { holds } Y \subseteq X \text {. } \tag{8}
\end{equation*}
$$

The mode
BOOLE_DOMAIN ,
which widens to the type SET_DOMAIN, is defined by

$$
\text { for } X, Y \text { being Element of it holds } X \cup Y \in \text { it \& } X \backslash Y \in \mathbf{i t} .
$$

The following proposition is true
for A being SET_DOMAIN holds A is BOOLE_DOMAIN
iff for X, Y being Element of A holds $X \cup Y \in A \& X \backslash Y \in A$.
In the sequel A will denote an object of the type BOOLE_DOMAIN. One can prove the following propositions:

$$
\begin{equation*}
X \in A \& Y \in A \text { implies } X \cup Y \in A \& X \backslash Y \in A \tag{10}
\end{equation*}
$$

(11) X is Element of $A \& Y$ is Element of A implies $X \cup Y$ is Element of A,
(12) $\quad X$ is Element of $A \& Y$ is Element of A implies $X \backslash Y$ is Element of A.

The arguments of the notions defined below are the following: A which is an object of the type reserved above; X, Y which are objects of the type Element of A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{ll}
X \cup Y & \text { is } \quad \text { Element of } A \\
X \backslash Y & \text { is } \quad \text { Element of } A
\end{array}
$$

The following propositions are true:
(13) $\quad X$ is Element of $A \& Y$ is Element of A implies $X \cap Y$ is Element of A,
(14) $\quad X$ is Element of $A \& Y$ is Element of A implies $X \perp Y$ is Element of A,
for A being SET_DOMAIN st
for X, Y being Element of A holds $X \dot{-} Y \in A \& X \backslash Y \in A$
holds A is BOOLE_DOMAIN,

$$
\begin{align*}
& \text { for } A \text { being SET_DOMAIN st } \tag{16}\\
& \text { for } X, Y \text { being Element of } A \text { holds } X \dot{-Y \in A \& X \cap Y \in A} \\
& \text { holds } A \text { is BOOLE_DOMAIN }, \\
& \text { for } A \text { being SET_DOMAIN st } \tag{17}\\
& \text { for } X, Y \text { being Element of } A \text { holds } X \dot{-Y \in A \& X \cup Y \in A} \\
& \text { holds } A \text { is BOOLE_DOMAIN } .
\end{align*}
$$

The arguments of the notions defined below are the following: A which is an object of the type reserved above; X, Y which are objects of the type Element of A. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{ll}
X \cap Y & \text { is } \\
X-Y & \text { is }
\end{array} \quad \text { Element of } A
$$

We now state four propositions:

$$
\begin{gather*}
\emptyset \in A, \tag{18}\\
\emptyset \text { is Element of } A, \\
\text { bool } A \text { is BOOLE_DOMAIN, }
\end{gather*}
$$ for A, B being BOOLE_DOMAIN holds $A \cap B$ is BOOLE_DOMAIN .

In the sequel A, B will denote objects of the type set. Let us consider A. The functor

Fin A,

with values of the type BOOLE_DOMAIN, is defined by

$$
\text { for } X \text { being set holds } X \in \text { it iff } X \subseteq A \& X \text { is_finite . }
$$

The following propositions are true:

$$
\begin{gather*}
B \in \operatorname{Fin} A \text { iff } B \subseteq A \& B \text { is_finite, } \tag{22}\\
A \subseteq B \text { implies Fin } A \subseteq \operatorname{Fin} B \tag{23}\\
\operatorname{Fin}(A \cap B)=\operatorname{Fin} A \cap \operatorname{Fin} B \tag{24}\\
\operatorname{Fin} A \cup \operatorname{Fin} B \subseteq \operatorname{Fin}(A \cup B) \tag{25}\\
\operatorname{Fin} A \subseteq \operatorname{bool} A \tag{26}\\
A \text { is_finite implies } \operatorname{Fin} A=\operatorname{bool} A \tag{27}
\end{gather*}
$$

$$
\begin{equation*}
\operatorname{Fin} \emptyset=\{\emptyset\} . \tag{28}
\end{equation*}
$$

Let us consider A.
Finite_Subset of A stands for Element of Fin A.

Next we state a proposition

$$
\begin{equation*}
\text { for } X \text { being Element of Fin } A \text { holds } X \text { is Finite_Subset of } A \text {. } \tag{29}
\end{equation*}
$$

The arguments of the notions defined below are the following: A which is an object of the type reserved above; X, Y which are objects of the type Finite_Subset of A. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $X \cup Y$ | is \quad Finite_Subset of A, |
| :--- | :--- | :--- |
| $X \cap Y$ | is \quad Finite_Subset of A, |
| $X \backslash Y$ | is \quad Finite_Subset of A, |
| $X-Y$ | is \quad Finite_Subset of A. |

One can prove the following propositions:

> for X being Finite_Subset of A holds X is_finite, for X being Finite_Subset of A holds $X \subseteq A$, for X being Finite_Subset of A holds X is Subset of A, \emptyset is Finite_Subset of A,
(34) A is_finite implies for X being Subset of A holds X is Finite_Subset of A.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1, 1990.
[2] Agata Darmochwał. Finite sets. Formalized Mathematics, 1, 1990.
[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[5] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Models and Satisfiability

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. The article includes schemes of defining by structural induction, and definitions and theorems related to: the set of variables which have free occurrences in a ZF-formula, the set of all valuations of variables in a model, the set of all valuations which satisfy a ZF-formula in a model, the satisfiability of a ZF-formula in a model by a valuation, the validity of a ZF-formula in a model, the axioms of ZF-language, the model of the ZF set theory.

The articles [6], [7], [3], [1], [4], [5], and [2] provide the notation and terminology for this paper. For simplicity we adopt the following convention: H, H^{\prime} will have the type ZF-formula; x, y, z will have the type Variable; a, b, c will have the type Any; A, X will have the type set. In the article we present several logical schemes. The scheme ZFsch_ex deals with a binary functor \mathcal{F}, a binary functor \mathcal{G}, a unary functor \mathcal{H}, a binary functor \mathcal{I}, a binary functor \mathcal{J} and a constant \mathcal{A} that has the type ZF-formula, and states that the following holds

```
ex \(a, A\) st (for \(x, y\) holds \(\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\langle\mathcal{A}, a\rangle \in A \&\)
    for \(H, a\) st \(\langle H, a\rangle \in A\) holds \(\left(H\right.\) is_a_equality implies \(\left.a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&\)
            \(\left(H\right.\) is_a_membership implies \(\left.a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&\)
        ( \(H\) is_negative implies ex \(b\) st \(a=\mathcal{H}(b) \&\langle\) the_argument_of \(H, b\rangle \in A\) ) \&
            ( \(H\) is_conjunctive implies ex \(b, c\)
st \(a=\mathcal{I}(b, c) \&\langle\) the_left_argument_of \(H, b\rangle \in A \&\langle\) the_right_argument_of \(H, c\rangle \in A\) )
    \(\&(H\) is_universal
    implies ex \(b, x\) st \(x=\) bound_in \(H \& a=\mathcal{J}(x, b) \&\langle\) the_scope_of \(H, b\rangle \in A)\)
for all values of the parameters.
```

[^24]The scheme ZFsch_uniq deals with a binary functor \mathcal{F}, a binary functor \mathcal{G}, a unary functor \mathcal{H}, a binary functor \mathcal{I}, a binary functor \mathcal{J}, a constant \mathcal{A} that has the type ZF-formula, a constant \mathcal{B} and a constant \mathcal{C} and states that the following holds

$$
\mathcal{B}=\mathcal{C}
$$

provided the parameters satisfy the following conditions:

- ex A st (for x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\langle\mathcal{A}, \mathcal{B}\rangle \in A$

$$
\& \text { for } H, a \text { st }\langle H, a\rangle \in A \text { holds }
$$

(H is_a_equality implies $a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)$) \&
$\left(H\right.$ is_a_membership implies $\left.a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&$
(H is_negative implies ex b st $a=\mathcal{H}(b) \&\langle$ the_argument_of $H, b\rangle \in A$) \&
(H is_conjunctive implies ex b, c st $a=\mathcal{I}(b, c)$
$\&\langle$ the_left_argument_of $H, b\rangle \in A \&\langle$ the_right_argument_of $H, c\rangle \in A$)
$\&(H$ is_universal
implies ex b, x st $x=$ bound_in $H \& a=\mathcal{J}(x, b) \&\langle$ the_scope_of $H, b\rangle \in A)$,

- ex A st (for x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\langle\mathcal{A}, \mathcal{C}\rangle \in A$
$\&$ for H, a st $\langle H, a\rangle \in A$ holds
(H is_a_equality implies $a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)$) \&
$\left(H\right.$ is_a_membership implies $\left.a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&$
(H is_negative implies ex b st $a=\mathcal{H}(b) \&\langle$ the_argument_of $H, b\rangle \in A$) \&
(H is_conjunctive implies ex b, c st $a=\mathcal{I}(b, c)$
$\&\langle$ the_left_argument_of $H, b\rangle \in A \&\langle$ the_right_argument_of $H, c\rangle \in A$)
$\&(H$ is_universal
implies ex b, x st $x=$ bound_in $H \& a=\mathcal{J}(x, b) \&\langle$ the_scope_of $H, b\rangle \in A)$.

The scheme ZFsch_result deals with a binary functor \mathcal{F}, a binary functor \mathcal{G}, a unary functor \mathcal{H}, a binary functor \mathcal{I}, a binary functor \mathcal{J}, a constant \mathcal{A} that has the type ZF-formula and a unary functor \mathcal{K} and states that the following holds
$\left(\mathcal{A}\right.$ is_a_equality implies $\left.\mathcal{K}(\mathcal{A})=\mathcal{F}\left(\operatorname{Var}_{1} \mathcal{A}, \operatorname{Var}_{2} \mathcal{A}\right)\right) \&$
$\left(\mathcal{A}\right.$ is_a_membership implies $\left.\mathcal{K}(\mathcal{A})=\mathcal{G}\left(\operatorname{Var}_{1} \mathcal{A}, \operatorname{Var}_{2} \mathcal{A}\right)\right) \&$
$(\mathcal{A}$ is_negative implies $\mathcal{K}(\mathcal{A})=\mathcal{H}(\mathcal{K}($ the_argument_of $\mathcal{A}))) \&$
(\mathcal{A} is_conjunctive implies for a, b st
$a=\mathcal{K}($ the_left_argument_of $\mathcal{A}) \& b=\mathcal{K}($ the_right_argument_of $\mathcal{A})$

$$
\text { holds } \mathcal{K}(\mathcal{A})=\mathcal{I}(a, b))
$$

$\&(\mathcal{A}$ is_universal implies $\mathcal{K}(\mathcal{A})=\mathcal{J}($ bound_in $\mathcal{A}, \mathcal{K}($ the_scope_of $\mathcal{A})))$
provided the parameters satisfy the following condition:

- for H^{\prime}, a holds $a=\mathcal{K}\left(H^{\prime}\right)$ iff ex A st
$($ for x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\left\langle H^{\prime}, a\right\rangle \in A \&$ for H, a st $\langle H, a\rangle \in A$ holds $\left(H\right.$ is_a_equality implies $\left.a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right)$
$\&\left(H\right.$ is_a_membership implies $\left.a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&$
(H is_negative implies ex b st $a=\mathcal{H}(b) \&\langle$ the_argument_of $H, b\rangle \in A$) \&
(H is_conjunctive implies ex b, c st $a=\mathcal{I}(b, c)$
$\&\langle$ the_left_argument_of $H, b\rangle \in A \&\langle$ the_right_argument_of $H, c\rangle \in A$)

$$
\&(H \text { is_universal }
$$

implies ex b, x st $x=$ bound_in $H \& a=\mathcal{J}(x, b) \&\langle$ the_scope_of $H, b\rangle \in A)$.

The scheme ZFsch_property concerns a binary functor \mathcal{F}, a binary functor \mathcal{G}, a unary functor \mathcal{H}, a binary functor \mathcal{I}, a binary functor \mathcal{J}, a unary functor \mathcal{K}, a constant \mathcal{A} that has the type ZF-formula and a unary predicate \mathcal{P} and states that the following holds

$$
\mathcal{P}[\mathcal{K}(\mathcal{A})]
$$

provided the parameters satisfy the following conditions:

- for H^{\prime}, a holds $a=\mathcal{K}\left(H^{\prime}\right)$ iff ex A st
$($ for x, y holds $\langle x=y, \mathcal{F}(x, y)\rangle \in A \&\langle x \in y, \mathcal{G}(x, y)\rangle \in A) \&\left\langle H^{\prime}, a\right\rangle \in A \&$ for H, a st $\langle H, a\rangle \in A$ holds $\left(H\right.$ is_a_equality implies $\left.a=\mathcal{F}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right)$
$\&\left(H\right.$ is_a_membership implies $\left.a=\mathcal{G}\left(\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right)\right) \&$
(H is_negative implies ex b st $a=\mathcal{H}(b) \&\langle$ the_argument_of $H, b\rangle \in A$) \& (H is_conjunctive implies ex b, c st $a=\mathcal{I}(b, c)$
$\&\langle$ the_left_argument_of $H, b\rangle \in A \&\langle$ the_right_argument_of $H, c\rangle \in A$)
$\&(H$ is_universal
implies ex b, x st $x=$ bound_in $H \& a=\mathcal{J}(x, b) \&\langle$ the_scope_of $H, b\rangle \in A)$,
- for x, y holds $\mathcal{P}[\mathcal{F}(x, y)] \& \mathcal{P}[\mathcal{G}(x, y)]$,
- for a st $\mathcal{P}[a]$ holds $\mathcal{P}[\mathcal{H}(a)]$,
- for a, b st $\mathcal{P}[a] \& \mathcal{P}[b]$ holds $\mathcal{P}[\mathcal{I}(a, b)]$,
- for a, x st $\mathcal{P}[a]$ holds $\mathcal{P}[\mathcal{J}(x, a)]$.

Let us consider H. The functor
Free H,
yields the type Any and is defined by

$$
\text { ex } A \text { st }(\text { for } x, y \text { holds }\langle x=y,\{x, y\}\rangle \in A \&\langle x \in y,\{x, y\}\rangle \in A) \&\langle H, \text { it }\rangle \in A \&
$$

for H^{\prime}, a st $\left\langle H^{\prime}, a\right\rangle \in A$ holds $\left(H^{\prime}\right.$ is_a_equality implies $\left.a=\left\{\operatorname{Var}_{1} H^{\prime}, \operatorname{Var}_{2} H^{\prime}\right\}\right) \&$ $\left(H^{\prime}\right.$ is_a_membership implies $\left.a=\left\{\operatorname{Var}_{1} H^{\prime}, \operatorname{Var}_{2} H^{\prime}\right\}\right) \&$
$\left(H^{\prime}\right.$ is_negative implies ex b st $a=b \&\left\langle\right.$ the_argument_of $\left.\left.H^{\prime}, b\right\rangle \in A\right) \&$
(H^{\prime} is_conjunctive implies ex b, c
st $a=\bigcup\{b, c\} \&\left\langle\right.$ the_left_argument_of $\left.H^{\prime}, b\right\rangle \in A \&\left\langle\right.$ the_right_argument_of $\left.H^{\prime}, c\right\rangle \in A$)

$$
\&\left(H^{\prime}\right. \text { is_universal }
$$

implies ex b, x st $x=$ bound_in $H^{\prime} \& a=(\bigcup\{b\}) \backslash\{x\} \&\left\langle\right.$ the_scope_of $\left.\left.H^{\prime}, b\right\rangle \in A\right)$.
Let us consider H. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\text { Free } H \quad \text { is } \quad \text { set of Variable. }
$$

One can prove the following proposition
for H holds (H is_a_equality implies Free $H=\left\{\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right\}$) \&
(H is_a_membership implies Free $H=\left\{\operatorname{Var}_{1} H, \operatorname{Var}_{2} H\right\}$) \&
(H is_negative implies Free $H=$ Free the_argument_of H) \&
(H is_conjunctive implies
Free $H=$ Free the_left_argument_of $H \cup$ Free the_right_argument_of H)
$\&(H$ is_universal implies Free $H=($ Free the_scope_of $H) \backslash\{$ bound_in $H\})$.
Let D have the type SET_DOMAIN. The functor
VAL D,
with values of the type DOMAIN, is defined by

$$
a \in \text { it iff } a \text { is Function of VAR , } D
$$

The arguments of the notions defined below are the following: $D 1$ which is an object of the type SET_DOMAIN; f which is an object of the type Function of VAR, $D 1$; x which is an object of the type reserved above. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f . x \quad \text { is } \quad \text { Element of } D 1
$$

For simplicity we adopt the following convention: E will denote an object of the type SET_DOMAIN; f, g will denote objects of the type Function of VAR, $E ; v 1$, $v 2, v 3, v 4, v 5$ will denote objects of the type Element of VAL E. Let us consider H, E. The functor

$$
\operatorname{St}(H, E)
$$

yields the type Any and is defined by
ex A st
(for x, y holds $\langle x=y,\{v 1$: for f st $f=v 1$ holds $f . x=f . y\}\rangle \in A$

$$
\&\langle x \in y,\{v 2: \text { for } f \mathbf{s t} f=v 2 \text { holds } f . x \in f . y\}\rangle \in A)
$$

$\&\langle H$, it $\rangle \in A \&$ for H^{\prime}, a st $\left\langle H^{\prime}, a\right\rangle \in A$ holds
(H^{\prime} is_a_equality
implies $a=\left\{v 3:\right.$ for f st $f=v 3$ holds $\left.\left.f .\left(\operatorname{Var}_{1} H^{\prime}\right)=f .\left(\operatorname{Var}_{2} H^{\prime}\right)\right\}\right)$
\&
(H^{\prime} is_a_membership
implies $a=\left\{v 4:\right.$ for f st $f=v 4$ holds $\left.\left.f \cdot\left(\operatorname{Var}_{1} H^{\prime}\right) \in f \cdot\left(\operatorname{Var}_{2} H^{\prime}\right)\right\}\right)$
$\&\left(H^{\prime}\right.$ is_negative implies ex b st $a=(\operatorname{VAL} E) \backslash \bigcup\{b\} \&\left\langle\right.$ the_argument_of $\left.\left.H^{\prime}, b\right\rangle \in A\right)$ \&
(H^{\prime} is_conjunctive implies ex b, c st $a=(\bigcup\{b\}) \cap \bigcup\{c\}$
$\&\left\langle\right.$ the_left_argument_of $\left.H^{\prime}, b\right\rangle \in A \&\left\langle\right.$ the_right_argument_of $\left.H^{\prime}, c\right\rangle \in A$)
$\&\left(H^{\prime}\right.$ is_universal implies ex b, x st $x=$ bound_in $H^{\prime} \&$

$$
\begin{gathered}
a=\{v 5: \\
\text { for } X, f \text { st } X=b \& f=v 5
\end{gathered}
$$

holds $f \in X \&$ for g st for y st $g . y \neq f . y$ holds $x=y$ holds $g \in X\}$

$$
\left.\&\left\langle\text { the_scope_of } H^{\prime}, b\right\rangle \in A\right)
$$

Let us consider H, E. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\operatorname{St}(H, E) \quad \text { is } \quad \text { Subset of VAL } E .
$$

We now state a number of propositions:

$$
\begin{gather*}
\text { for } x, y, f \text { holds } f . x=f . y \text { iff } f \in \operatorname{St}(x=y, E) \text {, } \tag{2}\\
\text { for } x, y, f \text { holds } f . x \in f . y \text { iff } f \in \operatorname{St}(x \in y, E) \text {, } \tag{3}\\
\text { for } H, f \text { holds not } f \in \operatorname{St}(H, E) \operatorname{iff} f \in \operatorname{St}(\neg H, E) \text {, } \tag{4}
\end{gather*}
$$

for H, H^{\prime}, f holds $f \in \operatorname{St}(H, E) \& f \in \operatorname{St}\left(H^{\prime}, E\right) \operatorname{iff} f \in \operatorname{St}\left(H \wedge H^{\prime}, E\right)$,

$$
\begin{gather*}
\text { for } x, H, f \text { holds } \tag{6}\\
f \in \operatorname{St}(H, E) \&(\text { for } g \text { st for } y \text { st } g \cdot y \neq f . y \text { holds } x=y \text { holds } g \in \operatorname{St}(H, E)) \\
\text { iff } f \in \operatorname{St}(\forall(x, H), E),
\end{gather*}
$$

$$
\begin{equation*}
H \text { is_a_equality } \tag{7}
\end{equation*}
$$

implies for f holds $f \cdot\left(\operatorname{Var}_{1} H\right)=f \cdot\left(\operatorname{Var}_{2} H\right)$ iff $f \in \operatorname{St}(H, E)$,
H is_a_membership
implies for f holds $f \cdot\left(\operatorname{Var}_{1} H\right) \in f \cdot\left(\operatorname{Var}_{2} H\right)$ iff $f \in \operatorname{St}(H, E)$,
H is_negative
implies for f holds not $f \in \operatorname{St}$ (the_argument_of $H, E)$ iff $f \in \operatorname{St}(H, E)$,
H is_conjunctive implies for f holds
$f \in \operatorname{St}($ the_left_argument_of $H, E) \& f \in \operatorname{St}($ the_right_argument_of $H, E)$
iff $f \in \operatorname{St}(H, E)$,
H is_universal implies for f holds
$f \in \operatorname{St}$ (the_scope_of H, E) \& (for g
st for y st $g . y \neq f . y$ holds bound_in $H=y$ holds $g \in \operatorname{St}($ the_scope_of $H, E)$)

$$
\text { iff } f \in \operatorname{St}(H, E)
$$

The arguments of the notions defined below are the following: D which is an object of the type SET_DOMAIN; f which is an object of the type Function of VAR, $D ; H$ which is an object of the type reserved above. The predicate

$$
D, f \models H \quad \text { is defined by } \quad f \in \mathrm{St}(H, D) \text {. }
$$

Next we state a number of propositions:

$$
\begin{align*}
& \text { for } E, f, x, y \text { holds } E, f \models x=y \text { iff } f . x=f . y, \tag{12}\\
& \text { for } E, f, x, y \text { holds } E, f \models x \in y \text { iff } f . x \in f . y, \tag{13}\\
& \text { for } E, f, H \text { holds } E, f \models H \text { iff } \operatorname{not} E, f \models \neg H, \tag{14}
\end{align*}
$$

for E, f, H, H^{\prime} holds $E, f \models H \wedge H^{\prime}$ iff $E, f \models H \& E, f \models H^{\prime}$, for E, f, H, x holds
$E, f \models \forall(x, H)$ iff for g st for y st $g . y \neq f . y$ holds $x=y$ holds $E, g \models H$,
for E, f, H, H^{\prime} holds $E, f \models H \vee H^{\prime}$ iff $E, f \models H$ or $E, f \models H^{\prime}$,
for E, f, H, H^{\prime} holds $E, f \models H \Rightarrow H^{\prime}$ iff $\left(E, f \models H\right.$ implies $\left.E, f \models H^{\prime}\right)$,
for E, f, H, H^{\prime} holds $E, f \models H \Leftrightarrow H^{\prime}$ iff $\left(E, f \models H\right.$ iff $\left.E, f \models H^{\prime}\right)$,
for E, f, H, x holds
$E, f \models \exists(x, H)$ iff ex g st (for y st $g . y \neq f . y$ holds $x=y) \& E, g \models H$,

$$
\begin{equation*}
\text { for } E, f, x \tag{21}
\end{equation*}
$$

for e being Element of E ex g st $g . x=e \&$ for z st $z \neq x$ holds $g . z=f . z$,

$$
\begin{equation*}
E, f \models \forall(x, y, H) \tag{22}
\end{equation*}
$$

iff for g st for z st $g . z \neq f . z$ holds $x=z$ or $y=z$ holds $E, g \models H$,

$$
\begin{equation*}
E, f \models \exists(x, y, H) \tag{23}
\end{equation*}
$$

iff ex g st (for z st $g . z \neq f . z$ holds $x=z$ or $y=z) \& E, g \models H$.
Let us consider E, H. The predicate

$$
E \models H \quad \text { is defined by } \quad \text { for } f \text { holds } E, f \models H \text {. }
$$

One can prove the following propositions:

$$
\begin{gather*}
E \models H \text { iff for } f \text { holds } E, f \models H, \tag{24}\\
E \models \forall(x, H) \text { iff } E \models H . \tag{25}
\end{gather*}
$$

We now define five new functors. The constant the_axiom_of_extensionality has the type ZF-formula, and is defined by

$$
\mathbf{i t}=\forall(\xi 0, \xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 0 \Leftrightarrow \xi 2 \epsilon \xi 1) \Rightarrow \xi 0=\xi 1)
$$

The constant the_axiom_of_pairs has the type ZF-formula, and is defined by

$$
\text { it }=\forall(\xi 0, \xi 1, \exists(\xi 2, \forall(\xi 3, \xi 3 \in \xi 2 \Leftrightarrow(\xi 3=\xi 0 \vee \xi 3=\xi 1)))) .
$$

The constant the_axiom_of_unions has the type ZF-formula, and is defined by

$$
\mathbf{i t}=\forall(\xi 0, \exists(\xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \exists(\xi 3, \xi 2 \epsilon \xi 3 \wedge \xi 3 \epsilon \xi 0)))) .
$$

The constant the_axiom_of_infinity has the type ZF-formula, and is defined by

$$
\begin{gathered}
\text { it }=\exists(\xi 0, \\
\xi 1, \xi 1 \epsilon \xi 0 \wedge \forall(\xi 2, \xi 2 \epsilon \xi 0 \Rightarrow \exists(\xi 3, \xi 3 \epsilon \xi 0 \wedge \neg \xi 3=\xi 2 \wedge \forall(\xi 4, \xi 4 \epsilon \xi 2 \Rightarrow \xi 4 \epsilon \xi 3)))) .
\end{gathered}
$$

The constant the_axiom_of_power_sets has the type ZF-formula, and is defined by

$$
\mathbf{i t}=\forall(\xi 0, \exists(\xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \forall(\xi 3, \xi 3 \epsilon \xi 2 \Rightarrow \xi 3 \epsilon \xi 0)))) .
$$

Let H have the type ZF-formula. Assume that the following holds

$$
\{\xi 0, \xi 1, \xi 2\} \text { misses Free } H
$$

The functor

$$
\text { the_axiom_of_substitution_for } H \text {, }
$$

with values of the type ZF -formula, is defined by

$$
\begin{gathered}
\mathbf{i t}= \\
\forall(\xi 3, \exists(\xi 0, \forall(\xi 4, H \Leftrightarrow \xi 4=\xi 0))) \Rightarrow \forall(\xi 1, \exists(\xi 2, \forall(\xi 4, \xi 4 \epsilon \xi 2 \Leftrightarrow \exists(\xi 3, \xi 3 \in \xi 1 \wedge H)))) .
\end{gathered}
$$

We now state several propositions:
(26) the_axiom_of_extensionality $=\forall(\xi 0, \xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 0 \Leftrightarrow \xi 2 \epsilon \xi 1) \Rightarrow \xi 0=\xi 1)$,

$$
\begin{align*}
& \text { the_axiom_of_pairs }=\forall(\xi 0, \xi 1, \exists(\xi 2, \forall(\xi 3, \xi 3 \epsilon \xi 2 \Leftrightarrow(\xi 3=\xi 0 \vee \xi 3=\xi 1)))) \text {, } \tag{27}\\
& \text { the_axiom_of_unions } \tag{28}\\
& =\forall(\xi 0, \exists(\xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \exists(\xi 3, \xi 2 \epsilon \xi 3 \wedge \xi 3 \epsilon \xi 0)))) \\
& \text { the_axiom_of_infinity }=\exists(\xi 0, \xi 1, \xi 1 \epsilon \xi 0 \wedge \forall(\xi 2 \tag{29}\\
& \qquad 2 \epsilon \xi 0 \Rightarrow \exists(\xi 3, \xi 3 \epsilon \xi 0 \wedge \neg \xi 3=\xi 2 \wedge \forall(\xi 4, \xi 4 \epsilon \xi 2 \Rightarrow \xi 4 \epsilon \xi 3)))) \\
& \text { the_axiom_of_power_sets } \tag{30}\\
& =\forall(\xi 0, \exists(\xi 1, \forall(\xi 2, \xi 2 \epsilon \xi 1 \Leftrightarrow \forall(\xi 3, \xi 3 \epsilon \xi 2 \Rightarrow \xi 3 \epsilon \xi 0))))
\end{align*}
$$

$$
\begin{gather*}
\{\xi 0, \xi 1, \xi 2\} \text { misses Free } H \text { implies the_axiom_of_substitution_for } H= \tag{31}\\
\forall(\xi 3, \exists(\xi 0, \\
\forall(\xi 4, H \Leftrightarrow \xi 4=\xi 0))) \Rightarrow \forall(\xi 1, \exists(\xi 2, \forall(\xi 4, \xi 4 \epsilon \xi 2 \Leftrightarrow \exists(\xi 3, \xi 3 \epsilon \xi 1 \wedge H)))) .
\end{gather*}
$$

Let us consider E. The predicate

$$
E \text { is_a_model_of_ZF }
$$

is defined by
E is_є-transitive $\& E \models$ the_axiom_of_pairs $\& E \models$ the_axiom_of_unions $\&$

$$
E \models \text { the_axiom_of_infinity } \& E \models \text { the_axiom_of_power_sets }
$$

$\&$ for H st $\{\xi 0, \xi 1, \xi 2\}$ misses Free H holds $E \models$ the_axiom_of_substitution_for H.
The following proposition is true
E is_a_model_of_ZF iff E is_ \in-transitive $\& E \models$ the_axiom_of_pairs $\&$

$$
\begin{equation*}
E \text { the_axiom_of_unions } \& E \models \text { the_axiom_of_infinity } \&
$$

$$
E \models \text { the_axiom_of_power_sets } \& \text { for } H \tag{32}
\end{equation*}
$$

st $\{\xi 0, \xi 1, \xi 2\}$ misses Free H holds $E \models$ the_axiom_of_substitution_for H.

References

[1] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1, 1990.
[3] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
[5] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[7] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 14, 1989

The Contraction Lemma

Grzegorz Bancerek ${ }^{1}$
Warsaw University
Białystok

Summary. The article includes the proof of the contraction lemma which claims that every class in which the axiom of extensionality is valid is isomorphic with a transitive class. In this article the isomorphism (wrt membership relation) of two sets is defined. It is based on [6].

The articles [7], [8], [4], [1], [5], [3], and [2] provide the terminology and notation for this paper. For simplicity we adopt the following convention: X, Y, Z denote objects of the type set; x, y denote objects of the type Any; E denotes an object of the type SET_DOMAIN; A, B, C denote objects of the type Ordinal; L denotes an object of the type Transfinite-Sequence; f denotes an object of the type Function; $d, d 1, d^{\prime}$ denote objects of the type Element of E. Let us consider E, A. The functor

$$
\mathrm{M}_{\mu}(E, A)
$$

with values of the type set, is defined by

$$
\begin{gathered}
\text { ex } L \text { st it }=\{d: \text { for } d 1 \text { st } d 1 \in d \text { ex } B \text { st } B \in \operatorname{dom} L \& d 1 \in \bigcup\{L . B\}\} \& \operatorname{dom} L=A \\
\& \text { for } B \text { st } B \in A
\end{gathered}
$$

holds $L . B=\{d 1$: for d st $d \in d 1 \mathbf{e x} C$ st $C \in \operatorname{dom}(L \mid B) \& d \in \bigcup\{L \mid B . C\}\}$.
One can prove the following propositions:

$$
\begin{equation*}
\mathrm{M}_{\mu}(E, A)=\left\{d: \text { for } d 1 \text { st } d 1 \in d \text { ex } B \text { st } B \in A \& d 1 \in \mathrm{M}_{\mu}(E, B)\right\} \tag{1}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{not}(\mathbf{e x} d 1 \text { st } d 1 \in d) \text { iff } d \in \mathrm{M}_{\mu}(E, \mathbf{0}) \tag{2}\\
d \cap E \subseteq \mathrm{M}_{\mu}(E, A) \text { iff } d \in \mathrm{M}_{\mu}(E, \operatorname{succ} A) \tag{3}\\
A \subseteq B \text { implies } \mathrm{M}_{\mu}(E, A) \subseteq \mathrm{M}_{\mu}(E, B) \tag{4}
\end{gather*}
$$

[^25]\[

$$
\begin{gather*}
\text { ex } A \text { st } d \in \mathrm{M}_{\mu}(E, A), \tag{5}\\
d^{\prime} \in d \& d \in \mathrm{M}_{\mu}(E, A) \tag{6}\\
\text { implies } d^{\prime} \in \mathrm{M}_{\mu}(E, A) \& \text { ex } B \text { st } B \in A \& d^{\prime} \in \mathrm{M}_{\mu}(E, B), \\
\mathrm{M}_{\mu}(E, A) \subseteq E \tag{7}\\
\text { ex } A \text { st } E=\mathrm{M}_{\mu}(E, A) \tag{8}\\
\text { ex } f \text { st } \operatorname{dom} f=E \& \text { for } d \text { holds } f . d=f^{\circ} d \tag{9}
\end{gather*}
$$
\]

Let us consider f, X, Y. The predicate

$$
f \text { is_є-isomorphism_of } X, Y
$$

is defined by

$$
\operatorname{dom} f=X \& \operatorname{rng} f=Y \& f \text { is_one-to-one \& for } x, y
$$

$$
\text { st } x \in X \& y \in X \text { holds }(\text { ex } Z \text { st } Z=y \& x \in Z) \text { iff ex } Z \text { st } f . y=Z \& f . x \in Z
$$

Next we state a proposition
(10) f is_ \in-isomorphism_of X, Y iff dom $f=X \& \operatorname{rng} f=Y \& f$ is_one-to-one \&

$$
\text { for } x, y \text { st } x \in X \& y \in X
$$

holds $(\operatorname{ex} Z$ st $Z=y \& x \in Z)$ iff ex Z st $f . y=Z \& f . x \in Z$.
Let us consider X, Y. The predicate
X, Y are_є-isomorphic \quad is defined by \quad ex f st f is_ \in-isomorphism_of X, Y.

Next we state two propositions:

$$
\begin{equation*}
X, Y \text { are_є-isomorphic iff ex } f \text { st } f \text { is_є-isomorphism_of } X, Y, \tag{11}
\end{equation*}
$$

$\operatorname{dom} f=E \&\left(\right.$ for d holds $\left.f . d=f^{\circ} d\right)$ implies rng f is_ \in-transitive.
In the sequel u, v, w will denote objects of the type Element of E. Next we state two propositions:

$$
\begin{equation*}
E \models \text { the_axiom_of_extensionality } \tag{13}
\end{equation*}
$$

implies for u, v st for w holds $w \in u$ iff $w \in v$ holds $u=v$,

$$
\begin{equation*}
E \models \text { the_axiom_of_extensionality } \tag{14}
\end{equation*}
$$

implies ex X st X is_є-transitive \& E, X are_є-isomorphic .

References

[1] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1, 1990.
[2] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1, 1990.
[4] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
[6] Andrzej Mostowski. Constructible Sets. North Holland, 1970.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[8] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Axioms of Incidence

Wojciech A. Trybulec ${ }^{1}$
Warsaw University

Summary. This article is based on "Foundations of Geometry" by Karol Borsuk and Wanda Szmielew ([1]). The fourth axiom of incidence is weakened. In [1] it has the form for any plane there exist three non-collinear points in the plane and in the article for any plane there exists one point in the plane. The original axiom is proved. The article includes: theorems concerning collinearity of points and coplanarity of points and lines, basic theorems concerning lines and planes, fundamental existence theorems, theorems concerning intersection of lines and planes.

The articles [3], [2], and [4] provide the terminology and notation for this paper. We consider structures IncStruct, which are systems

$$
\left\langle\left\langle\text { Points , Lines , Planes }, \operatorname{Inc}_{1}, \operatorname{Inc}_{2}, \operatorname{Inc}_{3}\right\rangle\right\rangle
$$

where Points, Lines, Planes have the type DOMAIN, Inc_{1} has the type Relation of the Points, the Lines, Inc_{2} has the type Relation of the Points, the Planes, and Inc_{3} has the type Relation of the Lines, the Planes. We now define three new modes. Let S have the type IncStruct.

> POINT of S stands for LINE of S stands for PLANE of S stament of the Lines of S. stants of S. Element of the Planes of S.

In the sequel S will have the type IncStruct; A will have the type Element of the Points of $S ; L$ will have the type Element of the Lines of $S ; P$ will have the type Element of the Planes of S. The following propositions are true:
A is POINT of S,
L is LINE of S,

[^26]For simplicity we adopt the following convention: A, B, C, D will denote objects of the type POINT of $S ; L$ will denote an object of the type LINE of $S ; P$ will denote an object of the type PLANE of $S ; F, G$ will denote objects of the type Subset of the Points of S. The arguments of the notions defined below are the following: S which is an object of the type reserved above; A which is an object of the type POINT of S; L which is an object of the type LINE of S. The predicate

$$
A \text { on } L \quad \text { is defined by } \quad\langle A, L\rangle \in \text { the } \operatorname{Inc}_{1} \text { of } S .
$$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; A which is an object of the type POINT of $S ; P$ which is an object of the type PLANE of S. The predicate
A on $P \quad$ is defined by $\quad\langle A, P\rangle \in$ the Inc_{2} of S.
The arguments of the notions defined below are the following: S which is an object of the type reserved above; L which is an object of the type LINE of $S ; P$ which is an object of the type PLANE of S. The predicate

$$
L \text { on } P \quad \text { is defined by } \quad\langle L, P\rangle \in \text { the } \operatorname{Inc}_{3} \text { of } S .
$$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of $S ; L$ which is an object of the type LINE of S. The predicate
F on $L \quad$ is defined by \quad for A being POINT of S st $A \in F$ holds A on L.
The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of $S ; P$ which is an object of the type PLANE of S. The predicate

$$
F \text { on } P \quad \text { is defined by } \quad \text { for } A \text { st } A \in F \text { holds } A \text { on } P .
$$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of S. The predicate

$$
F \text { is_linear } \quad \text { is defined by } \quad \text { ex } L \text { st } F \text { on } L .
$$

The arguments of the notions defined below are the following: S which is an object of the type reserved above; F which is an object of the type set of POINT of S. The predicate

$$
F \text { is_planar } \quad \text { is defined by } \quad \text { ex } P \text { st } F \text { on } P .
$$

Next we state a number of propositions:

$$
\begin{equation*}
A \text { on } L \operatorname{iff}\langle A, L\rangle \in \text { the } \operatorname{Inc}_{1} \text { of } S \tag{4}
\end{equation*}
$$

The mode
IncSpace,
which widens to the type IncStruct, is defined by
(for L being LINE of it ex A, B being POINT of it st $A \neq B \&\{A, B\}$ on L) \&
(for A, B being POINT of it ex L being LINE of it st $\{A, B\}$ on L) \&
(for A, B being POINT of it, K, L being LINE of it
st $A \neq B \&\{A, B\}$ on $K \&\{A, B\}$ on L holds $K=L$)
$\&($ for P being PLANE of it ex A being POINT of it st A on $P) \&$
(for A, B, C being POINT of it ex P being PLANE of it st $\{A, B, C\}$ on P) \& (for A, B, C being POINT of it, P, Q being PLANE of it st not $\{A, B, C\}$ is_linear $\&\{A, B, C\}$ on $P \&\{A, B, C\}$ on Q holds $P=Q$) \&
(for L being LINE of it, P being PLANE of it
st ex A, B being POINT of it st $A \neq B \&\{A, B\}$ on $L \&\{A, B\}$ on P holds L on P)
\&
(for A being POINT of it, P, Q being PLANE of it
st A on $P \& A$ on Q ex B being POINT of it st $A \neq B \& B$ on $P \& B$ on Q) $\&(\operatorname{ex} A, B, C, D$ being POINT of it st not $\{A, B, C, D\}$ is_planar) $\&$ for A being POINT of it, L being LINE of it, P being PLANE of it
st A on $L \& L$ on P holds A on P.

The following proposition is true
(24) (for L being LINE of S ex A, B being POINT of S st $A \neq B \&\{A, B\}$ on L) $\&($ for A, B being POINT of S ex L being LINE of S st $\{A, B\}$ on $L) \&$ (for A, B being POINT of S, K, L being LINE of S
st $A \neq B \&\{A, B\}$ on $K \&\{A, B\}$ on L holds $K=L$)
$\&($ for P being PLANE of S ex A being POINT of S st A on P) \& (for A, B, C being POINT of S ex P being PLANE of S st $\{A, B, C\}$ on P)
\&
(for A, B, C being POINT of S, P, Q being PLANE of S
st not $\{A, B, C\}$ is_linear $\&\{A, B, C\}$ on $P \&\{A, B, C\}$ on Q holds $P=Q$)
\&
(for L being LINE of S, P being PLANE of S st
ex A, B being POINT of S st $A \neq B \&\{A, B\}$ on $L \&\{A, B\}$ on P
holds L on P)
\&
(for A being POINT of S, P, Q being PLANE of S
st A on $P \& A$ on Q ex B being POINT of S st $A \neq B \& B$ on $P \& B$ on Q)
$\&(\mathbf{e x} A, B, C, D$ being POINT of S st not $\{A, B, C, D\}$ is_planar) $\&($
for A being POINT of S, L being LINE of S, P being PLANE of S
st A on $L \& L$ on P holds A on P)
implies S is IncSpace.

For simplicity we adopt the following convention: S will denote an object of the type IncSpace; A, B, C, D will denote objects of the type POINT of $S ; K, L, L 1, L 2$ will denote objects of the type LINE of $S ; P, Q$ will denote objects of the type PLANE of $S ; F$ will denote an object of the type Subset of the Points of S. The following propositions are true:

$$
\begin{gather*}
\text { ex } A, B \text { st } A \neq B \&\{A, B\} \text { on } L, \tag{25}\\
\text { ex } L \text { st }\{A, B\} \text { on } L, \tag{26}\\
A \neq B \&\{A, B\} \text { on } K \&\{A, B\} \text { on } L \text { implies } K=L \tag{27}\\
\text { ex } A \text { st } A \text { on } P \tag{28}\\
\text { ex } P \text { st }\{A, B, C\} \text { on } P \tag{29}
\end{gather*}
$$

not $\{A, B, C\}$ is_linear $\&\{A, B, C\}$ on $P \&\{A, B, C\}$ on Q implies $P=Q$, $($ ex A, B st $A \neq B \&\{A, B\}$ on $L \&\{A, B\}$ on $P)$ implies L on P, A on $P \& A$ on Q implies ex B st $A \neq B \& B$ on $P \& B$ on Q, ex A, B, C, D st not $\{A, B, C, D\}$ is_planar, A on $L \& L$ on P implies A on P, F on $L \& L$ on P implies F on P, $\{A, A, B\}$ is_linear, $\{A, A, B, C\}$ is_planar, $\{A, B, C\}$ is_linear implies $\{A, B, C, D\}$ is_planar, $A \neq B \&\{A, B\}$ on $L \& \operatorname{not} C$ on L implies not $\{A, B, C\}$ is_linear, $\boldsymbol{\operatorname { n o t }}\{A, B, C\}$ is_linear $\&\{A, B, C\}$ on $P \& \operatorname{not} D$ on P implies not $\{A, B, C, D\}$ is_planar, $\operatorname{not}(\operatorname{ex} P$ st K on $P \& L$ on $P) \operatorname{implies} K \neq L$, $\operatorname{not}(\operatorname{ex} P$ st L on $P \& L 1$ on $P \& L 2$ on $P)$ $\&(\operatorname{ex} A$ st A on $L \& A$ on $L 1 \& A$ on $L 2)$
implies $L \neq L 1$, $L 1$ on $P \& L 2$ on $P \& \operatorname{not} L$ on $P \& L 1 \neq L 2$ implies not ex Q st L on $Q \& L 1$ on $Q \& L 2$ on Q, not A on L implies ex P st for Q holds A on $Q \& L$ on Q iff $P=Q$,

$$
\begin{equation*}
K \neq L \&(\mathbf{e x} A \text { st } A \text { on } K \& A \text { on } L) \tag{48}
\end{equation*}
$$

implies ex P st for Q holds K on $Q \& L$ on Q iff $P=Q$.

Let us consider S, A, B. Assume that the following holds

$$
A \neq B .
$$

The functor

$$
\text { Line }(A, B)
$$

with values of the type LINE of S, is defined by

$$
\{A, B\} \text { on it. }
$$

Let us consider S, A, B, C. Assume that the following holds

$$
\operatorname{not}\{A, B, C\} \text { is_linear. }
$$

The functor

$$
\text { Plane }(A, B, C)
$$

yields the type PLANE of S and is defined by

$$
\{A, B, C\} \text { on it. }
$$

Let us consider S, A, L. Assume that the following holds

$$
\boldsymbol{\operatorname { n o t }} A \text { on } L \text {. }
$$

The functor

$$
\text { Plane }(A, L),
$$

with values of the type PLANE of S, is defined by

$$
A \text { on it } \& L \text { on it. }
$$

Let us consider S, K, L. Assume that the following holds

$$
K \neq L
$$

Moreover we assume that ex A st A on $K \& A$ on L.

The functor

$$
\text { Plane }(K, L)
$$

with values of the type PLANE of S, is defined by

$$
K \text { on it \& } L \text { on it. }
$$

Next we state a number of propositions:

$$
\begin{align*}
& A \neq B \text { implies }\{A, B\} \text { on Line }(A, B), \tag{50}\\
& A \neq B \&\{A, B\} \text { on } K \text { implies } K=\operatorname{Line}(A, B), \tag{51}\\
& \text { not }\{A, B, C\} \text { is_linear implies }\{A, B, C\} \text { on Plane }(A, B, C) \text {, } \tag{52}\\
& \text { not }\{A, B, C\} \text { is_linear } \&\{A, B, C\} \text { on } Q \text { implies } Q=\operatorname{Plane}(A, B, C) \text {, } \tag{53}\\
& \operatorname{not} A \text { on } L \text { implies } A \text { on Plane }(A, L) \& L \text { on Plane }(A, L) \text {, } \tag{54}\\
& \text { not } A \text { on } L \& A \text { on } Q \& L \text { on } Q \text { implies } Q=\operatorname{Plane}(A, L), \tag{55}\\
& K \neq L \&(\text { ex } A \text { st } A \text { on } K \& A \text { on } L) \tag{56}\\
& \text { implies } K \text { on Plane }(K, L) \& L \text { on Plane }(K, L) \text {, } \\
& A \neq B \text { implies Line }(A, B)=\operatorname{Line}(B, A), \tag{57}\\
& \text { not }\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(A, C, B) \text {, } \tag{58}\\
& \operatorname{not}\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(B, A, C) \text {, } \tag{59}\\
& \text { not }\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(B, C, A) \text {, } \tag{60}\\
& \operatorname{not}\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(C, A, B) \text {, } \tag{61}\\
& \text { not }\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(C, B, A) \text {, } \tag{62}\\
& K \neq L \&(\text { ex } A \text { st } A \text { on } K \& A \text { on } L) \& K \text { on } Q \& L \text { on } Q \tag{63}\\
& \text { implies } Q=\operatorname{Plane}(K, L) \text {, } \\
& K \neq L \&(\text { ex } A \text { st } A \text { on } K \& A \text { on } L) \text { implies Plane }(K, L)=\operatorname{Plane}(L, K), \tag{64}\\
& A \neq B \& C \text { on Line }(A, B) \text { implies }\{A, B, C\} \text { is_linear }, \tag{65}\\
& A \neq B \& A \neq C \&\{A, B, C\} \text { is_linear implies Line }(A, B)=\operatorname{Line}(A, C), \tag{66}\\
& \operatorname{not}\{A, B, C\} \text { is_linear implies Plane }(A, B, C)=\operatorname{Plane}(C, \text { Line }(A, B)) \text {, } \tag{67}
\end{align*}
$$

$\operatorname{not}\{A, B, C\}$ is_linear $\& D$ on Plane (A, B, C)
implies $\{A, B, C, D\}$ is_planar,
(69) $\operatorname{not} C$ on $L \&\{A, B\}$ on $L \& A \neq B$ implies Plane $(C, L)=\operatorname{Plane}(A, B, C)$,
$\operatorname{not}\{A, B, C\}$ is_linear implies ex D st not $\{A, B, C, D\}$ is_planar,
ex B, C st $\{B, C\}$ on $P \& \operatorname{not}\{A, B, C\}$ is_linear,
$A \neq B$ implies ex C, D st not $\{A, B, C, D\}$ is_planar , ex B, C, D st not $\{A, B, C, D\}$ is_planar, ex L st not A on $L \& L$ on P,
A on P implies ex $L, L 1, L 2$ st $L 1 \neq L 2$ $\& L 1$ on $P \& L 2$ on $P \& \operatorname{not} L$ on $P \& A$ on $L \& A$ on $L 1 \& A$ on $L 2$,
ex $L, L 1, L 2$
st A on $L \& A$ on $L 1 \& A$ on $L 2 \&$ not ex P st L on $P \& L 1$ on $P \& L 2$ on P,
ex P st A on $P \& \operatorname{not} L$ on P, $\operatorname{ex} A$ st A on $P \& \operatorname{not} A$ on L, ex K st notex P st L on $P \& K$ on P, ex P, Q st $P \neq Q \& L$ on $P \& L$ on Q,
$K \neq L \&\{A, B\}$ on $K \&\{A, B\}$ on L implies $A=B$,
not L on $P \&\{A, B\}$ on $L \&\{A, B\}$ on P implies $A=B$,
$P \neq Q$ implies not (ex A st A on $P \& A$ on Q)
or ex L st for B holds B on $P \& B$ on Q iff B on L.

References

[1] Karol Borsuk and Wanda Szmielew. Foundations of Geometry. North Holland, 1960.
[2] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[4] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1, 1990.

Introduction to Lattice Theory

Stanisław Żukowski ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. A lattice is defined as an algebra on a nonempty set with binary operations join and meet which are commutative and associative, and satisfy the absorption identities. The following kinds of lattices are considered: distributive, modular, bounded (with zero and unit elements), complemented, and Boolean (with complement). The article includes also theorems which immediately follow from definitions.

The terminology and notation used in this paper are introduced in the papers [1] and [2]. The scheme BooleDomBinOpLam deals with a constant \mathcal{A} that has the type BOOLE_DOMAIN and a binary functor \mathcal{F} yielding values of the type Element of \mathcal{A} and states that the following holds

> ex o being Binary_Operation of \mathcal{A}
> st for a, b being Element of \mathcal{A} holds $o \cdot(a, b)=\mathcal{F}(a, b)$
for all values of the parameters.
We consider structures LattStr, which are systems

$$
\langle\langle\text { carrier , join , meet }\rangle\rangle
$$

where carrier has the type DOMAIN, and join, meet have the type Binary_Operation of the carrier. In the sequel G has the type LattStr; p, q, r have the type Element of the carrier of G. We now define two new functors. Let us consider G, p, q. The functor

$$
p \sqcup q,
$$

yields the type Element of the carrier of G and is defined by

$$
\text { it }=(\text { the join of } G) \cdot(p, q)
$$

[^27]The functor

$$
p \sqcap q
$$

with values of the type Element of the carrier of G, is defined by

$$
\text { it }=(\text { the meet of } G) \cdot(p, q)
$$

The following propositions are true:

$$
\begin{align*}
& p \sqcup q=(\text { the join of } G) \cdot(p, q), \tag{1}\\
& p \sqcap q=(\text { the meet of } G) \cdot(p, q) . \tag{2}
\end{align*}
$$

Let us consider G, p, q. The predicate

$$
p \sqsubseteq q \quad \text { is defined by } \quad p \sqcup q=q
$$

We now state a proposition

$$
\begin{equation*}
p \sqsubseteq q \text { iff } p \sqcup q=q . \tag{3}
\end{equation*}
$$

The mode

> Lattice,
which widens to the type LattStr, is defined by
(for a, b being Element of the carrier of it holds $a \sqcup b=b \sqcup a$) \&
(for a, b, c being Element of the carrier of it holds $a \sqcup(b \sqcup c)=(a \sqcup b) \sqcup c$) \&
(for a, b being Element of the carrier of it holds $(a \sqcap b) \sqcup b=b$) \&
(for a, b being Element of the carrier of it holds $a \sqcap b=b \sqcap a$) \&
(for a, b, c being Element of the carrier of it holds $a \sqcap(b \sqcap c)=(a \sqcap b) \sqcap c$)
$\&$ for a, b being Element of the carrier of it holds $a \sqcap(a \sqcup b)=a$.
One can prove the following proposition
(4) (for p, q holds $p \sqcup q=q \sqcup p) \&($ for p, q, r holds $p \sqcup(q \sqcup r)=(p \sqcup q) \sqcup r) \&$ $($ for p, q holds $(p \sqcap q) \sqcup q=q) \&($ for p, q holds $p \sqcap q=q \sqcap p)$
\& (for p, q, r holds $p \sqcap(q \sqcap r)=(p \sqcap q) \sqcap r) \&($ for p, q holds $p \sqcap(p \sqcup q)=p)$ implies G is Lattice.

In the sequel L has the type Lattice; a, b, c have the type Element of the carrier of L. One can prove the following propositions:

$$
\begin{gather*}
a \sqcup b=b \sqcup a, \tag{5}\\
a \sqcap b=b \sqcap a, \tag{6}\\
a \sqcup(b \sqcup c)=(a \sqcup b) \sqcup c, \tag{7}
\end{gather*}
$$

$$
\begin{gather*}
a \sqcap(b \sqcap c)=(a \sqcap b) \sqcap c, \tag{8}\\
(a \sqcap b) \sqcup b=b \& b \sqcup(a \sqcap b)=b \& b \sqcup(b \sqcap a)=b \&(b \sqcap a) \sqcup b=b, \\
a \sqcap(a \sqcup b)=a \&(a \sqcup b) \sqcap a=a \&(b \sqcup a) \sqcap a=a \& a \sqcap(b \sqcup a)=a .
\end{gather*}
$$

The mode
Distributive_Lattice,
which widens to the type Lattice, is defined by
for a, b, c being Element of the carrier of it holds $a \sqcap(b \sqcup c)=(a \sqcap b) \sqcup(a \sqcap c)$.
Next we state a proposition

$$
\begin{equation*}
(\text { for } a, b, c \text { holds } a \sqcap(b \sqcup c)=(a \sqcap b) \sqcup(a \sqcap c)) \tag{11}
\end{equation*}
$$

implies L is Distributive_Lattice.

The mode

> Modular_Lattice,
which widens to the type Lattice, is defined by
for a, b, c being Element of the carrier of it st $a \sqsubseteq c$ holds $a \sqcup(b \sqcap c)=(a \sqcup b) \sqcap c$.

One can prove the following proposition

$$
\begin{equation*}
(\text { for } a, b, c \text { st } a \sqsubseteq c \text { holds } a \sqcup(b \sqcap c)=(a \sqcup b) \sqcap c) \tag{12}
\end{equation*}
$$

implies L is Modular_Lattice.

The mode
Lower_Bound_Lattice,
which widens to the type Lattice, is defined by
ex c being Element of the carrier of it
st for a being Element of the carrier of it holds $c \sqcap a=c$.

Next we state a proposition
(13) (ex c st for a holds $c \sqcap a=c)$ implies L is Lower_Bound_Lattice.

The mode
Upper_Bound_Lattice,
which widens to the type Lattice, is defined by
ex c being Element of the carrier of it
st for a being Element of the carrier of it holds $c \sqcup a=c$.

One can prove the following proposition

$$
\begin{equation*}
\text { (ex } c \text { st for } a \text { holds } c \sqcup a=c \text {) implies } L \text { is Upper_Bound_Lattice. } \tag{14}
\end{equation*}
$$

The mode
Bound_Lattice,
which widens to the type Lattice, is defined by
it is Lower_Bound_Lattice \& it is Upper_Bound_Lattice.

Next we state a proposition
L is Lower_Bound_Lattice \& L is Upper_Bound_Lattice
implies L is Bound_Lattice.

Let us consider L. Assume that the following holds

$$
\text { ex } c \text { st for } a \text { holds } c \sqcap a=c
$$

The functor

$$
\perp L
$$

yields the type Element of the carrier of L and is defined by

$$
\text { it } \sqcap a=\mathbf{i t}
$$

Let L have the type Lower_Bound_Lattice. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\perp L \quad \text { is } \quad \text { Element of the carrier of } L
$$

Let us consider L. Assume that the following holds

$$
\text { ex } c \text { st for } a \text { holds } c \sqcup a=c .
$$

The functor

$$
\top L
$$

with values of the type Element of the carrier of L, is defined by

$$
\text { it } \sqcup a=\text { it }
$$

Let L have the type Upper_Bound_Lattice. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\top L \quad \text { is } \quad \text { Element of the carrier of } L
$$

Let L have the type Bound_Lattice. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\perp L \quad \text { is } \quad \text { Element of the carrier of } L
$$

$\top L \quad$ is \quad Element of the carrier of L.

Let us consider L, a, b. Assume that the following holds

$$
L \text { is Bound_Lattice. }
$$

The predicate
a is_a_complement_of $b \quad$ is defined by $\quad a \sqcup b=\top L \& a \sqcap b=\perp L$.

The mode
Lattice_with_Complement,
which widens to the type Bound_Lattice, is defined by

for b being Element of the carrier of it

ex a being Element of the carrier of it st a is_a_complement_of b.
The mode

Boolean_Lattice,

which widens to the type Lattice_with_Complement, is defined by
it is Distributive_Lattice.

The following propositions are true:

$$
\begin{gather*}
a \sqcup b=b \text { iff } a \sqcap b=a, \tag{16}\\
a \sqcup a=a, \tag{17}\\
a \sqcap a=a, \tag{18}\\
\text { for } L \text { holds }(\text { for } a, b, c \text { holds } a \sqcap(b \sqcup c)=(a \sqcap b) \sqcup(a \sqcap c)) \tag{19}\\
\text { iff for } a, b, c \text { holds } a \sqcup(b \sqcap c)=(a \sqcup b) \sqcap(a \sqcup c), \\
a \sqsubseteq b \text { iff } a \sqcup b=b, \tag{20}\\
a \sqsubseteq b \text { iff } a \sqcap b=a, \tag{21}\\
a \sqsubseteq a \sqcup b, \tag{22}\\
a \sqcap b \sqsubseteq a, \tag{23}\\
a \sqsubseteq a, \tag{24}\\
a \sqsubseteq b \& b \sqsubseteq c \text { implies } a \sqsubseteq c, \tag{25}\\
a \sqsubseteq b \& b \sqsubseteq a \text { implies } a=b, \tag{26}\\
a \sqsubseteq b \text { implies } a \sqcap c \sqsubseteq b \sqcap c, \tag{27}
\end{gather*}
$$

$a \sqsubseteq b$ implies $c \sqcap a \sqsubseteq c \sqcap b$,

$$
\begin{equation*}
(\text { for } a, b, c \text { holds }(a \sqcap b) \sqcup(b \sqcap c) \sqcup(c \sqcap a)=(a \sqcup b) \sqcap(b \sqcup c) \sqcap(c \sqcup a)) \tag{28}
\end{equation*}
$$

implies L is Distributive_Lattice.
In the sequel L denotes an object of the type Distributive_Lattice; a, b, c denote objects of the type Element of the carrier of L. One can prove the following propositions:

$$
\begin{gather*}
\text { for } L \text { holds (for } a, b, c \text { holds } a \sqcap(b \sqcup c)=(a \sqcap b) \sqcup(a \sqcap c)) \tag{30}\\
\text { \& for } a, b, c \text { holds }(b \sqcup c) \sqcap a=(b \sqcap a) \sqcup(c \sqcap a), \tag{31}
\end{gather*}
$$

for L holds (for a, b, c holds $a \sqcup(b \sqcap c)=(a \sqcup b) \sqcap(a \sqcup c))$
\& for a, b, c holds $(b \sqcap c) \sqcup a=(b \sqcup a) \sqcap(c \sqcup a)$,
$c \sqcap a=c \sqcap b \& c \sqcup a=c \sqcup b$ implies $a=b$,
$a \sqcap c=b \sqcap c \& a \sqcup c=b \sqcup c$ implies $a=b$, $(a \sqcup b) \sqcap(b \sqcup c) \sqcap(c \sqcup a)=(a \sqcap b) \sqcup(b \sqcap c) \sqcup(c \sqcap a)$, L is Modular_Lattice .

In the sequel L has the type Modular_Lattice; a, b, c have the type Element of the carrier of L. One can prove the following two propositions:

$$
\begin{align*}
& a \sqsubseteq c \text { implies } a \sqcup(b \sqcap c)=(a \sqcup b) \sqcap c, \tag{36}\\
& c \sqsubseteq a \text { implies } a \sqcap(b \sqcup c)=(a \sqcap b) \sqcup c . \tag{37}
\end{align*}
$$

In the sequel L has the type Lower_Bound_Lattice; a, c have the type Element of the carrier of L. We now state four propositions:

$$
\begin{gather*}
\text { ex } c \text { st for } a \text { holds } c \sqcap a=c, \tag{38}\\
\perp L \sqcup a=a \& a \sqcup \perp L=a \tag{39}\\
\perp L \sqcap a=\perp L \& a \sqcap \perp L=\perp L \tag{40}\\
\perp L \sqsubseteq a \tag{41}
\end{gather*}
$$

In the sequel L denotes an object of the type Upper_Bound_Lattice; a, c denote objects of the type Element of the carrier of L. The following four propositions are true:

$$
\begin{align*}
& \text { ex } c \text { st for } a \text { holds } c \sqcup a=c, \tag{42}\\
& \top L \sqcap a=a \& a \sqcap \top L=a, \tag{43}
\end{align*}
$$

$$
\begin{gather*}
\top L \sqcup a=\top L \& a \sqcup \top L=\top L, \tag{44}\\
a \sqsubseteq \top L . \tag{45}
\end{gather*}
$$

In the sequel L has the type Lattice_with_Complement; a, b have the type Element of the carrier of L. One can prove the following proposition

$$
\begin{equation*}
\text { ex } a \text { st } a \text { is_a_complement_of } b . \tag{46}
\end{equation*}
$$

In the sequel L has the type Lattice. The arguments of the notions defined below are the following: L which is an object of the type reserved above; x which is an object of the type Element of the carrier of L. Assume that the following holds

L is Boolean_Lattice .

The functor

$$
x^{\mathrm{c}}
$$

yields the type Element of the carrier of L and is defined by

$$
\text { it is_a_complement_of } x \text {. }
$$

The arguments of the notions defined below are the following: L which is an object of the type Boolean_Lattice; x which is an object of the type Element of the carrier of L. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
x^{\mathrm{c}} \quad \text { is } \quad \text { Element of the carrier of } L .
$$

In the sequel L will denote an object of the type Boolean_Lattice; a, b will denote objects of the type Element of the carrier of L. We now state several propositions:

$$
\begin{gather*}
a^{\mathrm{c}} \sqcap a=\perp L \& a \sqcap a^{\mathrm{c}}=\perp L, \tag{47}\\
a^{\mathrm{c}} \sqcup a=\top L \& a \sqcup a^{\mathrm{c}}=\top L, \tag{48}\\
a^{\mathrm{c} \mathrm{c}}=a, \tag{49}\\
(a \sqcap b)^{\mathrm{c}}=a^{\mathrm{c}} \sqcup b^{\mathrm{c}}, \tag{50}\\
(a \sqcup b)^{\mathrm{c}}=a^{\mathrm{c}} \sqcap b^{\mathrm{c}}, \tag{51}\\
b \sqcap a=\perp L \text { iff } b \sqsubseteq a^{\mathrm{c}}, \tag{52}\\
a \sqsubseteq b \text { implies } b^{\mathrm{c}} \sqsubseteq a^{\mathrm{c}} . \tag{53}
\end{gather*}
$$

In the sequel L will have the type Bound_Lattice; a, b will have the type Element of the carrier of L. We now state three propositions:
L is Lower_Bound_Lattice \& L is Upper_Bound_Lattice,
a is_a_complement_of b iff $a \sqcup b=\top L \& a \sqcap b=\perp L$,
(56) (for b ex a st a is_a_complement_of b) implies L is Lattice_with_Complement.

In the sequel L has the type Lattice_with_Complement. One can prove the following proposition
L is Distributive_Lattice implies L is Boolean_Lattice .
In the sequel L has the type Boolean_Lattice. The following two propositions are true:
L is Lattice_with_Complement, L is Distributive_Lattice.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1, 1990.
[2] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1, 1990.

Topological Spaces and Continuous Functions

Beata Padlewska ${ }^{1}$
Warsaw University
Białystok

Agata Darmochwat ${ }^{2}$
Warsaw University
Białystok

Abstract

Summary. The paper contains a definition of topological space. The following notions are defined: point of topological space, subset of topological space, subspace of topological space, and continuous function.

The articles [5], [7], [6], [1], [4], [2], and [3] provide the terminology and notation for this paper. We consider structures TopStruct, which are systems

$$
\langle\langle\text { carrier , topology }\rangle\rangle
$$

where carrier has the type DOMAIN, and topology has the type Subset-Family of the carrier. In the sequel T has the type TopStruct. The mode
TopSpace,
which widens to the type TopStruct, is defined by
the carrier of it \in the topology of it \&
(for a being Subset-Family of the carrier of it
st $a \subseteq$ the topology of it holds $\bigcup a \in$ the topology of it)
$\&$ for a, b being Subset of the carrier of it
st $a \in$ the topology of it $\& b \in$ the topology of it holds $a \cap b \in$ the topology of it .

We now state a proposition
the carrier of $T \in$ the topology of $T \&$
(for a being Subset-Family of the carrier of T

[^28]\[

$$
\begin{gathered}
\text { st } a \subseteq \text { the topology of } T \text { holds } \bigcup a \in \text { the topology of } T) \\
\&(\text { for } p, q \text { being Subset of the carrier of } T \text { st } \\
p \in \text { the topology of } T \& q \in \text { the topology of } T \\
\text { holds } p \cap q \in \text { the topology of } T) \\
\text { implies } T \text { is TopSpace. }
\end{gathered}
$$
\]

In the sequel $T, S, G X$ will have the type TopSpace. Let us consider T.
Point of T stands for Element of the carrier of T.

The following proposition is true
(2) for x being Element of the carrier of T holds x is Point of T.

Let us consider T.
Subset of T stands for set of Point of T.

We now state a proposition
for P being Subset of the carrier of T holds P is Subset of T.
In the sequel P, Q will have the type Subset of $T ; p$ will have the type Point of T. Let us consider T.

$$
\text { Subset-Family of } T \quad \text { stands for } \quad \text { Subset-Family of the carrier of } T \text {. }
$$

Next we state a proposition

for F being Subset-Family of the carrier of T

holds F is Subset-Family of T.

In the sequel F will denote an object of the type Subset-Family of T. The scheme SubFamEx1 concerns a constant \mathcal{A} that has the type TopSpace and a unary predicate \mathcal{P} and states that the following holds
ex F being Subset-Family of \mathcal{A} st for B being Subset of \mathcal{A} holds $B \in F$ iff $\mathcal{P}[B]$
for all values of the parameters.
One can prove the following propositions:

$$
\begin{gather*}
\emptyset \in \text { the topology of } T, \tag{5}\\
\text { the carrier of } T \in \text { the topology of } T, \\
\text { for } a \text { being Subset-Family of } T \\
\text { st } a \subseteq \text { the topology of } T \text { holds } \bigcup a \in \text { the topology of } T,
\end{gather*}
$$

$$
\begin{gather*}
P \in \text { the topology of } T \& Q \in \text { the topology of } T \tag{8}\\
\text { implies } P \cap Q \in \text { the topology of } T .
\end{gather*}
$$

We now define two new functors. Let us consider T. The functor $\emptyset T$,
with values of the type Subset of T, is defined by

$$
\text { it }=\emptyset \text { the carrier of } T
$$

The functor

$$
\Omega T
$$

with values of the type Subset of T, is defined by

$$
\mathbf{i t}=\Omega \text { the carrier of } T .
$$

One can prove the following four propositions:

$$
\begin{align*}
& \emptyset T=\emptyset \text { the carrier of } T, \tag{9}\\
& \Omega T=\Omega \text { the carrier of } T, \tag{10}\\
& \emptyset(T)=\emptyset \tag{11}\\
& \Omega(T)=\text { the carrier of } T . \tag{12}
\end{align*}
$$

Let us consider T, P. The functor

$$
P^{\mathrm{c}}
$$

yields the type Subset of T and is defined by

$$
\mathbf{i t}=P^{\mathrm{c}}
$$

Let us consider T, P, Q. Let us note that it makes sense to consider the following functors on restricted areas. Then

| $P \cup Q$ | is \quad Subset of T, |
| :--- | :--- | :--- |
| $P \cap Q$ | is \quad Subset of T, |
| $P \backslash Q$ | is \quad Subset of T, |
| $P \subset Q$ | is \quad Subset of T. |

The following propositions are true:

$$
\begin{gather*}
p \in \Omega(T) \tag{13}\\
P \subseteq \Omega(T) \tag{14}
\end{gather*}
$$

$$
\begin{equation*}
P \cap \Omega(T)=P, \tag{15}
\end{equation*}
$$

for A being set holds $A \subseteq \Omega(T)$ implies A is Subset of T,

$$
\begin{gather*}
P^{\mathrm{c}}=\Omega(T) \backslash P, \tag{17}\\
P \cup P^{\mathrm{c}}=\Omega(T), \tag{18}\\
P \subseteq Q \text { iff } Q^{\mathrm{c}} \subseteq P^{\mathrm{c}}, \tag{19}\\
P=P^{\mathrm{c} \mathrm{c}}, \tag{20}\\
P \subseteq Q^{\mathrm{c}} \text { iff } P \cap Q=\emptyset, \tag{21}\\
\Omega(T) \backslash(\Omega(T) \backslash P)=P, \tag{22}\\
P \neq \Omega(T) \text { iff } \Omega(T) \backslash P \neq \emptyset, \tag{23}\\
\Omega(T) \backslash P=Q \text { implies } \Omega(T)=P \cup Q, \tag{24}\\
P \cap P^{\mathrm{c}}=\emptyset(T), \tag{25}\\
\Omega(T)=(\emptyset T)^{\mathrm{c}}, \tag{26}\\
P \backslash Q=P \cap Q^{\mathrm{c}}, \tag{27}\\
P=Q \text { implies } \Omega(T) \backslash P=\Omega(T) \backslash Q . \tag{28}
\end{gather*}
$$

Let us consider T, P. The predicate

$$
P \text { is_open } \quad \text { is defined by } \quad P \in \text { the topology of } T \text {. }
$$

One can prove the following proposition

$$
\begin{equation*}
P \text { is_open iff } P \in \text { the topology of } T \text {. } \tag{30}
\end{equation*}
$$

Let us consider T, P. The predicate

$$
P \text { is_closed } \quad \text { is defined by } \quad \Omega(T) \backslash P \text { is_open . }
$$

One can prove the following proposition

$$
\begin{equation*}
P \text { is_closed iff } \Omega(T) \backslash P \text { is_open. } \tag{31}
\end{equation*}
$$

Let us consider T, P. The predicate

We now state a proposition
P is_open_closed iff P is_open $\& P$ is_closed .
Let us consider T, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\bigcup F \quad \text { is } \quad \text { Subset of } T
$$

Let us consider T, F. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\bigcap F \quad \text { is } \quad \text { Subset of } T
$$

Let us consider T, F. The predicate

$$
F \text { is_a_cover_of } T \quad \text { is defined by } \quad \Omega(T)=\bigcup F .
$$

The following proposition is true

$$
\begin{equation*}
F \text { is_a_cover_of } T \text { iff } \Omega(T)=\bigcup F \text {. } \tag{33}
\end{equation*}
$$

Let us consider T. The mode

$$
\text { SubSpace of } T
$$

which widens to the type TopSpace, is defined by $\Omega($ it $) \subseteq \Omega(T) \&$ for P being Subset of it holds $P \in$ the topology of it iff ex Q being Subset of T st $Q \in$ the topology of $T \& P=Q \cap \Omega$ (it).

Next we state two propositions:
(34) $\quad \Omega(S) \subseteq \Omega(T) \&$ (for P being Subset of S holds $P \in$ the topology of S iff ex Q being Subset of T st $Q \in$ the topology of $T \& P=Q \cap \Omega(S))$
implies S is SubSpace of T,
(35) for V being SubSpace of T holds $\Omega(V) \subseteq \Omega(T)$ \& for P being Subset of V holds $P \in$ the topology of V
iff ex Q being Subset of T st $Q \in$ the topology of $T \& P=Q \cap \Omega(V)$.
Let us consider T, P. Assume that the following holds

$$
P \neq \emptyset(T)
$$

The functor

$$
T \mid P
$$

with values of the type SubSpace of T, is defined by

$$
\Omega(\mathbf{i t})=P
$$

One can prove the following proposition
(36) $P \neq \emptyset(T)$ implies for S being SubSpace of T holds $S=T \mid P$ iff $\Omega(S)=P$.

Let us consider T, S.
map of $T, S \quad$ stands for \quad Function of $($ the carrier of $T),($ the carrier of $S)$.
Next we state a proposition

for f being Function of the carrier of T, the carrier of S

holds f is map of T, S.
In the sequel f has the type map of $T, S ; P 1$ has the type Subset of S. Let us consider T, S, f, P. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{\circ} P \quad \text { is } \quad \text { Subset of } S
$$

Let us consider $T, S, f, P 1$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
f^{-1} P 1 \quad \text { is } \quad \text { Subset of } T
$$

Let us consider T, S, f. The predicate
f is_continuous
is defined by
for $P 1$ holds $P 1$ is_closed implies $f^{-1} P 1$ is_closed.
The following proposition is true
f is_continuous iff for $P 1$ holds $P 1$ is_closed implies $f^{-1} P 1$ is_closed.
The scheme TopAbstr concerns a constant \mathcal{A} that has the type TopSpace and a unary predicate \mathcal{P} and states that the following holds
ex P being Subset of \mathcal{A} st for x being Point of \mathcal{A} holds $x \in P$ iff $\mathcal{P}[x]$
for all values of the parameters.
One can prove the following propositions:
for X^{\prime} being SubSpace of $G X$
for A being Subset of X^{\prime} holds A is Subset of $G X$,
(40) for A being Subset of $G X, x$ being Any st $x \in A$ holds x is Point of $G X$,
(41) for A being Subset of $G X$ st $A \neq \emptyset(G X)$ ex x being Point of $G X$ st $x \in A$,

$$
\begin{equation*}
\Omega(G X) \text { is_closed } \tag{42}
\end{equation*}
$$

for X^{\prime} being SubSpace of $G X, B$ being Subset of X^{\prime} holds B is_closed iff ex C being Subset of $G X$ st C is_closed $\& C \cap\left(\Omega\left(X^{\prime}\right)\right)=B$,
for F being Subset-Family of $G X$ st
$F \neq \emptyset \&$ for A being Subset of $G X$ st $A \in F$ holds A is_closed holds $\bigcap F$ is_closed.

The arguments of the notions defined below are the following: $G X$ which is an object of the type TopSpace; A which is an object of the type Subset of $G X$. The functor

$$
\mathrm{Cl} A,
$$

yields the type Subset of $G X$ and is defined by

$$
\text { for } p \text { being Point of } G X \text { holds } p \in \text { it }
$$

iff for G being Subset of $G X$ st G is_open holds $p \in G$ implies $A \cap G \neq \emptyset(G X)$.
We now state a number of propositions:
X^{\prime} being SubSpace of $G X, A$ being Subset of $G X, A 1$ being Subset of X^{\prime}
st $A=A 1$ holds $\mathrm{Cl} A 1=(\mathrm{Cl} A) \cap\left(\Omega\left(X^{\prime}\right)\right)$,
for A being Subset of $G X$ holds $A \subseteq \mathrm{Cl} A$,
for A being Subset of $G X, p$ being Point of $G X$ holds $p \in \mathrm{Cl} A$
iff for C being Subset of $G X$ st C is_closed holds $A \subseteq C$ implies $p \in C$,
for A being Subset of $G X$ ex F being Subset-Family of $G X$ st
(for C being Subset of $G X$ holds $C \in F$ iff C is_closed \& $A \subseteq C$)

$$
\begin{equation*}
\& \mathrm{Cl} A=\bigcap F \tag{47}
\end{equation*}
$$

for for A, B being Subset of $G X$ st $A \subseteq B$ holds $\mathrm{Cl} A \subseteq \mathrm{Cl} B$,
for A, B being Subset of $G X$ holds $\mathrm{Cl}(A \cup B)=\mathrm{Cl} A \cup \mathrm{Cl} B$,
for A, B being Subset of $G X$ holds $\mathrm{Cl}(A \cap B) \subseteq(\mathrm{Cl} A) \cap \mathrm{Cl} B$, for A being Subset of $G X$ holds A is_closed iff $\mathrm{Cl} A=A$,
for A being Subset of $G X$
holds A is_open $\operatorname{iff} \mathrm{Cl}(\Omega(G X) \backslash A)=\Omega(G X) \backslash A$,
for A being Subset of $G X, p$ being Point of $G X$ holds $p \in \mathrm{Cl} A$ iff
for G being Subset of $G X$
st G is_open holds $p \in G$ implies $A \cap G \neq \emptyset(G X)$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
[3] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.
[4] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[6] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1, 1990.
[7] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Received April 14, 1989

Subsets of Topological Spaces

Mirosław Wysocki Agata Darmochwal ${ }^{1}$
Warsaw Uniwersity Warsaw University
Białystok
Białystok

Abstract

Summary. The article contains some theorems about open and closed sets. The following topological operations on sets are defined: closure, interior and frontier. The following notions are introduced: dense set, boundary set, nowheredense set and set being domain (closed domain and open domain), and some basic facts concerning them are proved.

The papers [4], [5], [3], [1], and [2] provide the notation and terminology for this paper. For simplicity we adopt the following convention: $T S$ denotes an object of the type TopSpace; x denotes an object of the type Any; P, Q, G denote objects of the type Subset of $T S ; \quad p$ denotes an object of the type Point of $T S$. One can prove the following propositions:

$$
\begin{equation*}
x \in P \text { implies } x \text { is Point of } T S, \tag{1}
\end{equation*}
$$

$$
P \cup \Omega T S=\Omega T S \& \Omega T S \cup P=\Omega T S
$$

$$
P \cap \Omega T S=P \& \Omega T S \cap P=P
$$

$$
\begin{equation*}
P \cap \emptyset T S=\emptyset T S \& \emptyset T S \cap P=\emptyset T S \tag{4}
\end{equation*}
$$

$$
\begin{equation*}
P^{\mathrm{c}}=\Omega T S \backslash P, \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
P^{\mathrm{c}}=(P \text { qua Subset of the carrier of } T S)^{\mathrm{c}}, \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
p \in P^{\mathrm{c}} \mathbf{i f f} \operatorname{not} p \in P, \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
\Omega T S=(\emptyset T S)^{\mathrm{c}} \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
(\Omega T S)^{\mathrm{c}}=\emptyset T S \tag{8}
\end{equation*}
$$

[^29]$P \cup P^{\mathrm{c}}=\Omega T S \& P^{\mathrm{c}} \cup P=\Omega T S$,
$P \cap P^{\mathrm{c}}=\emptyset T S \& P^{\mathrm{c}} \cap P=\emptyset T S$,
$(P \cup Q)^{\mathrm{c}}=\left(P^{\mathrm{c}}\right) \cap\left(Q^{\mathrm{c}}\right)$,
$(P \cap Q)^{\mathrm{c}}=\left(P^{\mathrm{c}}\right) \cup\left(Q^{\mathrm{c}}\right)$,
$P \subseteq Q$ iff $Q^{\mathrm{c}} \subseteq P^{\mathrm{c}}$,
$P \backslash Q=P \cap Q^{\mathrm{c}}$,
$(P \backslash Q)^{\mathrm{c}}=P^{\mathrm{c}} \cup Q$,
$P \subseteq Q^{\mathrm{c}}$ implies $Q \subseteq P^{\mathrm{c}}$,
$P^{\mathrm{c}} \subseteq Q$ implies $Q^{\mathrm{c}} \subseteq P$,
$P \subseteq Q$ iff $P \cap Q^{\mathrm{c}}=\emptyset$,
$P^{\mathrm{c}}=Q^{\mathrm{c}}$ implies $P=Q$,
$\emptyset T S$ is_closed,
$\mathrm{Cl}(\emptyset T S)=\emptyset T S$,
$P \subseteq \mathrm{Cl} P$,
$P \subseteq Q$ implies $\mathrm{Cl} P \subseteq \mathrm{Cl} Q$,
$\mathrm{Cl}(\mathrm{Cl} P)=\mathrm{Cl} P$,
$\mathrm{Cl}(\Omega T S)=\Omega T S$,
$\Omega T S$ is_closed,
P is_closed iff P^{c} is_open,
P is_open iff P^{c} is_closed,
Q is_closed $\& P \subseteq Q$ implies $\mathrm{Cl} P \subseteq Q$,
$\mathrm{Cl} P \backslash \mathrm{Cl} Q \subseteq \mathrm{Cl}(P \backslash Q)$,
$\mathrm{Cl}(P \cap Q) \subseteq \mathrm{Cl} P \cap \mathrm{Cl} Q$,
P is_closed \& Q is_closed implies $\mathrm{Cl}(P \cap Q)=\mathrm{Cl} P \cap \mathrm{Cl} Q$,
P is_closed \& Q is_closed implies $P \cap Q$ is_closed,
\[

$$
\begin{gather*}
P \text { is_closed } \& Q \text { is_closed implies } P \cup Q \text { is_closed, } \tag{36}\\
P \text { is_open } \& Q \text { is_open implies } P \cup Q \text { is_open, } \tag{37}\\
P \text { is_open } \& Q \text { is_open implies } P \cap Q \text { is_open, } \tag{38}\\
p \in \mathrm{Cl} P \text { iff for } G \text { st } G \text { is_open holds } p \in G \text { implies } P \cap G \neq \emptyset, \tag{39}\\
Q \text { is_open implies } Q \cap \mathrm{Cl} P \subseteq \mathrm{Cl}(Q \cap P), \tag{40}\\
Q \text { is_open implies } \mathrm{Cl}(Q \cap \mathrm{Cl} P)=\mathrm{Cl}(Q \cap P) . \tag{41}
\end{gather*}
$$
\]

Let us consider $T S, P$. The functor

$$
\text { Int } P
$$

yields the type Subset of $T S$ and is defined by

$$
\mathbf{i t}=\left(\mathrm{Cl}\left(P^{\mathrm{c}}\right)\right)^{\mathrm{c}}
$$

One can prove the following propositions:

$$
\begin{gather*}
\text { Int } P=\left(\mathrm{Cl} P^{\mathrm{c}}\right)^{\mathrm{c}}, \tag{42}\\
\operatorname{Int}(\Omega T S)=\Omega T S, \tag{43}\\
\operatorname{Int} P \subseteq P, \tag{44}\\
\text { Int }(\operatorname{Int} P)=\operatorname{Int} P, \tag{45}\\
\text { Int } P \cap \operatorname{Int} Q=\operatorname{Int}(P \cap Q), \tag{46}\\
\operatorname{Int}(\emptyset T S)=\emptyset T S, \tag{47}\\
P \subseteq Q \text { implies Int } P \subseteq \operatorname{Int} Q, \tag{48}\\
\text { Int } P \cup \operatorname{Int} Q \subseteq \operatorname{Int}(P \cup Q), \tag{49}\\
\text { Int }(P \backslash Q) \subseteq \operatorname{Int} P \backslash \operatorname{Int} Q, \tag{50}\\
\operatorname{Int} P \text { is_open }, \tag{51}\\
\emptyset T S \text { is_open }, \tag{52}\\
\Omega T S \text { is_open }, \tag{53}\\
x \in \operatorname{Int} P \text { iff ex } Q \text { st } Q \text { is_open } \& Q \subseteq P \& x \in Q, \tag{54}\\
P \text { is_open iff Int } P=P, \tag{55}\\
Q \text { is_open } \& Q \subseteq P \text { implies } Q \subseteq \operatorname{Int} P, \tag{56}
\end{gather*}
$$

P is_open iff for x holds $x \in P$ iff ex Q st Q is_open $\& Q \subseteq P \& x \in Q$,

$$
\begin{equation*}
\mathrm{Cl}(\operatorname{Int} P)=\mathrm{Cl}(\operatorname{Int}(\mathrm{Cl}(\operatorname{Int} P))) \tag{57}
\end{equation*}
$$

P is_open implies $\mathrm{Cl}(\operatorname{Int}(\mathrm{Cl} P))=\mathrm{Cl} P$.
Let us consider $T S, P$. The functor

$$
\operatorname{Fr} P
$$

yields the type Subset of $T S$ and is defined by

$$
\mathbf{i t}=\mathrm{Cl} P \cap \mathrm{Cl}\left(P^{\mathrm{c}}\right)
$$

We now state a number of propositions:

$$
\begin{equation*}
\operatorname{Fr} P=\mathrm{Cl} P \cap \mathrm{Cl}\left(P^{\mathrm{c}}\right) \tag{60}
\end{equation*}
$$

(61) $\quad p \in \operatorname{Fr} P$ iff for Q st Q is_open $\& p \in Q$ holds $P \cap Q \neq \emptyset \& P^{\mathrm{c}} \cap Q \neq \emptyset$,

$$
\begin{equation*}
\operatorname{Fr} P=\mathrm{Cl}\left(P^{\mathrm{c}}\right) \cap P \cup(\mathrm{Cl} P \backslash P) \tag{63}
\end{equation*}
$$

Let us consider $T S, P$. The predicate

$$
P \text { is_dense } \quad \text { is defined by } \quad \mathrm{Cl} P=\Omega T S \text {. }
$$

We now state several propositions: P is_dense implies for Q holds Q is_open implies $\mathrm{Cl} Q=\mathrm{Cl}(Q \cap P)$, P is_dense \& Q is_dense \& Q is_open implies $P \cap Q$ is_dense .

Let us consider $T S, P$. The predicate P is_boundary is defined by $\quad P^{\mathrm{c}}$ is_dense .

Next we state several propositions:

$$
\begin{gather*}
P \text { is_boundary iff } P^{\mathrm{c}} \text { is_dense }, \tag{83}\\
P \text { is_boundary iff } \operatorname{Int} P=\emptyset \tag{84}
\end{gather*}
$$

P is_boundary $\& Q$ is_boundary $\& Q$ is_closed implies $P \cup Q$ is_boundary, P is_boundary iff for Q st $Q \subseteq P \& Q$ is_open holds $Q=\emptyset$, P is_closed implies (P is_boundary iff for Q st $Q \neq \emptyset \& Q$ is_open ex G st $G \subseteq Q \& G \neq \emptyset \& G$ is_open \& $P \cap G=\emptyset$),
P is_boundary iff $P \subseteq \operatorname{Fr} P$.
Let us consider $T S, P$. The predicate

$$
P \text { is_nowheredense } \quad \text { is defined by } \quad \mathrm{Cl} P \text { is_boundary . }
$$

One can prove the following propositions:
P is_nowheredense $\mathbf{i f f} \mathrm{Cl} P$ is_boundary,
(90) P is_nowheredense \& Q is_nowheredense $\operatorname{implies} P \cup Q$ is_nowheredense,
P is_nowheredense implies P^{c} is_dense,
P is_nowheredense implies P is_boundary,
Q is_boundary \& Q is_closed implies Q is_nowheredense,

$$
\begin{equation*}
P \text { is_closed implies }(P \text { is_nowheredense iff } P=\operatorname{Fr} P), \tag{94}
\end{equation*}
$$

P is_open implies Fr P is_nowheredense, P is_closed implies Fr P is_nowheredense, P is_open $\& P$ is_nowheredense implies $P=\emptyset$.

We now define three new predicates. Let us consider $T S, P$. The predicate P is_domain \quad is defined by $\quad \operatorname{Int}(\mathrm{Cl} P) \subseteq P \& P \subseteq \mathrm{Cl}(\operatorname{Int} P)$.

The predicate

$$
P \text { is_closed_domain } \quad \text { is defined by } \quad P=\mathrm{Cl}(\operatorname{Int} P) \text {. }
$$

The predicate

$$
P \text { is_open_domain } \quad \text { is defined by } \quad P=\operatorname{Int}(\mathrm{Cl} P) \text {. }
$$

The following propositions are true:

$$
\begin{equation*}
P \text { is_domain iff } \operatorname{Int}(\mathrm{Cl} P) \subseteq P \& P \subseteq \mathrm{Cl}(\operatorname{Int} P), \tag{98}
\end{equation*}
$$

$$
\begin{align*}
& P \text { is_closed_domain iff } P=\mathrm{Cl}(\operatorname{Int} P), \tag{99}\\
& P \text { is_open_domain iff } P=\operatorname{Int}(\mathrm{Cl} P) \text {, } \tag{100}\\
& P \text { is_open_domain iff } P^{\mathrm{c}} \text { is_closed_domain, } \tag{101}\\
& P \text { is_closed_domain implies } \operatorname{Fr}(\operatorname{Int} P)=\operatorname{Fr} P \text {, } \tag{102}\\
& P \text { is_closed_domain implies } \operatorname{Fr} P \subseteq \mathrm{Cl}(\operatorname{Int} P), \tag{103}\\
& P \text { is_open_domain implies } \operatorname{Fr} P=\mathrm{Fr}(\mathrm{Cl} P) \& \mathrm{Fr}(\mathrm{Cl} P)=\mathrm{Cl} P \backslash P, \tag{104}\\
& P \text { is_open \& } P \text { is_closed implies }(P \text { is_closed_domain } \mathbf{i f f} P \text { is_open_domain), } \tag{105}\\
& P \text { is_closed \& } P \text { is_domain iff } P \text { is_closed_domain, } \tag{106}\\
& P \text { is_open \& } P \text { is_domain iff } P \text { is_open_domain, } \tag{107}\\
& P \text { is_closed_domain \& } Q \text { is_closed_domain implies } P \cup Q \text { is_closed_domain, } \tag{108}\\
& P \text { is_open_domain } \& Q \text { is_open_domain implies } P \cap Q \text { is_open_domain, } \tag{109}\\
& P \text { is_domain implies } \operatorname{Int}(\operatorname{Fr} P)=\emptyset, \tag{110}\\
& P \text { is_domain implies Int } P \text { is_domain } \& \mathrm{Cl} P \text { is_domain . } \tag{111}
\end{align*}
$$

References

[1] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.
[2] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[5] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

Connected Spaces

Beata Padlewska ${ }^{1}$
Warsaw University
Białystok

Summary. The following notions are defined: separated sets, connected spaces, connected sets, components of a topological space, the component of a point. The definition of the boundary of a set is also included. The singleton of a point of a topological space is redefined as a subset of the space. Some theorems about these notions are proved.

The articles [3], [4], [1], [2], and [5] provide the notation and terminology for this paper. For simplicity we adopt the following convention: $G X, G Y$ will have the type TopSpace; $A, A 1, B, B 1, C$ will have the type Subset of $G X$. The arguments of the notions defined below are the following: $G X$ which is an object of the type TopSpace; A, B which are objects of the type Subset of $G X$. The predicate

$$
A, B \text { are_separated } \quad \text { is defined by } \quad \mathrm{Cl} A \cap B=\emptyset(G X) \& A \cap \mathrm{Cl} B=\emptyset(G X)
$$

The following propositions are true:

$$
\begin{gather*}
A, B \text { are_separated implies } B, A \text { are_separated, } \tag{1}\\
A, B \text { are_separated implies } A \cap B=\emptyset(G X), \tag{2}\\
\Omega(G X)=A \cup B \& A \text { is_closed } \& B \text { is_closed } \& A \cap B=\emptyset(G X) \tag{3}\\
\text { implies } A, B \text { are_separated, } \\
\Omega(G X)=A \cup B \& A \text { is_open } \& B \text { is_open } \& A \cap B=\emptyset(G X) \tag{4}\\
\text { implies } A, B \text { are_separated, } \\
\Omega(G X)=A \cup B \& A, B \text { are_separated } \tag{5}\\
\text { implies } A \text { is_open_closed } \& B \text { is_open_closed },
\end{gather*}
$$

[^30](6)
for X^{\prime}
being SubSpace of $G X, P 1, Q 1$ being Subset of $G X, P, Q$ being Subset of X^{\prime} st $P=P 1 \& Q=Q 1$ holds P, Q are_separated implies $P 1, Q 1$ are_separated,
for X^{\prime}
being SubSpace of $G X, P, Q$ being Subset of $G X, P 1, Q 1$ being Subset of X^{\prime} st $P=P 1 \& Q=Q 1 \& P \cup Q \subseteq \Omega\left(X^{\prime}\right)$
holds P, Q are_separated implies $P 1, Q 1$ are_separated,
(8) A, B are_separated $\& A 1 \subseteq A \& B 1 \subseteq B$ implies $A 1, B 1$ are_separated,
(9) A, B are_separated \& A, C are_separated implies $A, B \cup C$ are_separated, A is_closed \& B is_closed or A is_open $\& B$ is_open
implies $A \backslash B, B \backslash A$ are_separated.
Let $G X$ have the type TopSpace. The predicate
$$
G X \text { is_connected }
$$
is defined by
for A, B being Subset of $G X$
st $\Omega(G X)=A \cup B \& A, B$ are_separated holds $A=\emptyset(G X)$ or $B=\emptyset(G X)$.
One can prove the following propositions:
$G X$ is_connected iff for A, B being Subset of $G X$ st
$\Omega(G X)=A \cup B \& A \neq \emptyset(G X) \& B \neq \emptyset(G X) \& A$ is_closed \& B is_closed
holds $A \cap B \neq \emptyset(G X)$,
$G X$ is_connected iff for A, B being Subset of $G X$ st $\Omega(G X)=A \cup B \& A \neq \emptyset(G X) \& B \neq \emptyset(G X) \& A$ is_open $\& B$ is_open holds $A \cap B \neq \emptyset(G X)$,
$G X$ is_connected iff for A being Subset of $G X$ st $A \neq \emptyset(G X) \& A \neq \Omega(G X)$ holds $(\mathrm{Cl} A) \cap \mathrm{Cl}(\Omega(G X) \backslash A) \neq \emptyset(G X)$,
$G X$ is_connected iff for A being Subset of $G X$
st A is_open_closed holds $A=\emptyset(G X)$ or $A=\Omega(G X)$, for F being map of $G X, G Y$ st
F is_continuous \& $F^{\circ}(\Omega(G X))=\Omega(G Y) \& G X$ is_connected holds $G Y$ is_connected .

The arguments of the notions defined below are the following: $G X$ which is an object of the type TopSpace; A which is an object of the type Subset of $G X$. The predicate A is_connected is defined by $\quad G X \mid A$ is_connected.

One can prove the following propositions:

$$
\begin{gather*}
A \neq \emptyset(G X) \text { implies }(A \text { is_connected iff for } P, Q \text { being Subset of } G X \tag{16}\\
\text { st } A=P \cup Q \& P, Q \text { are_separated holds } P=\emptyset(G X) \text { or } Q=\emptyset(G X))
\end{gather*}
$$

(17) A is_connected $\& A \subseteq B \cup C \& B, C$ are_separated implies $A \subseteq B$ or $A \subseteq C$,
A is_connected $\& B$ is_connected $\&$ not A, B are_separated
implies $A \cup B$ is_connected,
$\& A \neq \emptyset(G X) \& A$ is_connected $\& \Omega(G X) \backslash A=B \cup C \& B, C$ are_separated
implies $A \cup B$ is_connected $\& A \cup C$ is_connected,
$\Omega(G X) \backslash A=B \cup C \& B, C$ are_separated $\& A$ is_closed
implies $A \cup B$ is_closed $\& A \cup C$ is_closed,
C is_connected $\& C \cap A \neq \emptyset(G X) \& C \backslash A \neq \emptyset(G X)$
implies $C \cap$ Fr $A \neq \emptyset(G X)$,
for X^{\prime} being SubSpace of $G X, A$ being Subset of $G X, B$ being Subset of X^{\prime} st $A \neq \emptyset(G X) \& A=B$ holds A is_connected iff B is_connected, $A \cap B \neq \emptyset(G X) \& A$ is_closed $\& B$ is_closed implies
$(A \cup B$ is_connected $\& A \cap B$ is_connected
implies A is_connected \& B is_connected),
for F being Subset-Family of $G X$ st
(for A being Subset of $G X$ st $A \in F$ holds A is_connected) \&
ex A being Subset of $G X$ st $A \neq \emptyset(G X) \& A \in F \&$
for B being Subset of $G X$ st $B \in F \& B \neq A$ holds not A, B are_separated holds $\bigcup F$ is_connected,
for F being Subset-Family of $G X$ st
(for A being Subset of $G X$ st $A \in F$ holds A is_connected) $\& \bigcap F \neq \emptyset(G X)$ holds $\bigcup F$ is_connected,

$$
\begin{equation*}
\Omega(G X) \text { is_connected iff } G X \text { is_connected . } \tag{28}
\end{equation*}
$$

The arguments of the notions defined below are the following: $G X$ which is an object of the type TopSpace; x which is an object of the type Point of $G X$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\{x\} \quad \text { is } \quad \text { Subset of } G X
$$

We now state a proposition

$$
\begin{equation*}
\text { for } x \text { being Point of } G X \text { holds }\{x\} \text { is_connected. } \tag{29}
\end{equation*}
$$

The arguments of the notions defined below are the following: $G X$ which is an object of the type TopSpace; x, y which are objects of the type Point of $G X$. The predicate

$$
x, y \text { are_joined }
$$

is defined by

$$
\text { ex } C \text { being Subset of } G X \text { st } C \text { is_connected } \& x \in C \& y \in C
$$

We now state four propositions:
(30) (ex x being Point of $G X$ st for y being Point of $G X$ holds x, y are_joined)
implies $G X$ is_connected,
(31) (ex x being Point of $G X$ st for y being Point of $G X$ holds x, y are_joined)
iff for x, y being Point of $G X$ holds x, y are_joined,
(32) (for x, y being Point of $G X$ holds x, y are_joined) implies $G X$ is_connected, for x being Point of $G X, F$ being Subset-Family of $G X$ st for A being Subset of $G X$ holds $A \in F$ iff A is_connected $\& x \in A$
holds $F \neq \emptyset$.

The arguments of the notions defined below are the following: $G X$ which is an object of the type TopSpace; A which is an object of the type Subset of $G X$. The predicate

$$
A \text { is_a_component_of } G X
$$

is defined by
A is_connected
\& for B being Subset of $G X$ st B is_connected holds $A \subseteq B$ implies $A=B$.
The following propositions are true:

$$
\begin{equation*}
A \text { is_a_component_of } G X \text { implies } A \neq \emptyset(G X) \tag{34}
\end{equation*}
$$

A is_a_component_of $G X$ implies A is_closed,
A is_a_component_of $G X \& B$ is_a_component_of $G X$
implies $A=B$ or $(A \neq B$ implies A, B are_separated $)$,
A is_a_component_of $G X \& B$ is_a_component_of $G X$
implies $A=B$ or $(A \neq B$ implies $A \cap B=\emptyset(G X))$,
C is_connected implies for S being Subset of $G X$
st S is_a_component_of $G X$ holds $C \cap S=\emptyset(G X)$ or $C \subseteq S$.

The arguments of the notions defined below are the following: $G X$ which is an object of the type TopSpace; A, B which are objects of the type Subset of $G X$. The predicate

$$
B \text { is_a_component_of } A
$$

is defined by
ex $B 1$ being Subset of $G X \mid A$ st $B 1=B \& B 1$ is_a_component_of $(G X \mid A)$.
We now state a proposition
$G X$ is_connected $\& A \neq \Omega(G X)$
$\& A \neq \emptyset(G X) \& A$ is_connected $\& C$ is_a_component_of $(\Omega(G X) \backslash A)$
implies $(\Omega(G X) \backslash C)$ is_connected .
The arguments of the notions defined below are the following: $G X$ which is an object of the type TopSpace; x which is an object of the type Point of $G X$. The functor

$$
\operatorname{skl} x
$$

with values of the type Subset of $G X$, is defined by
ex F being Subset-Family of $G X$
st (for A being Subset of $G X$ holds $A \in F$ iff A is_connected $\& x \in A$) \& $\bigcup F=\mathbf{i t}$.
In the sequel x has the type Point of $G X$. One can prove the following propositions:

$$
\begin{gather*}
x \in \operatorname{skl} x, \tag{41}\\
\text { skl } x \text { is_connected }, \\
C \text { is_connected implies (skl } x \subseteq C \text { implies } C=\mathrm{skl} x), \tag{40}\\
A \text { is_a_component_of } G X \text { iff ex } x \text { being Point of } G X \text { st } A=\operatorname{skl} x, \tag{43}\\
A \text { is_a_component_of } G X \& x \in A \text { implies } A=\operatorname{skl} x \tag{44}
\end{gather*}
$$

$\&$ for B being Subset of $G X$ st B is_connected holds $A \subseteq B$ implies $A=B$,
ex $B 1$ being Subset of $G X \mid A$ st $B 1=B \& B 1$ is_a_component_of $(G X \mid A)$,

$$
\begin{equation*}
B=\operatorname{skl} x \text { iff ex } F \text { being Subset-Family of } G X \text { st } \tag{52}
\end{equation*}
$$

(for A being Subset of $G X$ holds $A \in F$ iff A is_connected $\& x \in A$)

$$
\& \bigcup F=B
$$

References

[1] Beata Padlewska. Families of sets. Formalized Mathematics, 1, 1990.
[2] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[4] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.
[5] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1, 1990.

Basic Functions and Operations on Functions

Czesław Byliński ${ }^{1}$
Warsaw University
Białystok

Abstract

Summary. We define the following mappings: the characteristic function of a subset of a set, the inclusion function (injection or embedding), the projections from a Cartesian product onto its arguments and diagonal function (inclusion of a set into its Cartesian square). Some operations on functions are also defined: the products of two functions (the complex function and the more general product-function), the function induced on power sets by the image and inverse-image. Some simple propositions related to the introduced notions are proved.

The terminology and notation used in this paper are introduced in the following papers: [3], [4], [1], and [2]. For simplicity we adopt the following convention: $x, y, z, z 1, z 2$ denote objects of the type Any; $A, B, V, X, X 1, X 2, Y, Y 1, Y 2, Z$ denote objects of the type set; $C, C 1, C 2, D, D 1, D 2$ denote objects of the type DOMAIN. We now state several propositions:

$$
\begin{equation*}
A \subseteq Y \text { implies id } A=(\operatorname{id} Y) \mid A \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\text { for } f, g \text { being Function st } X \subseteq \operatorname{dom}(g \cdot f) \text { holds } f^{\circ} X \subseteq \operatorname{dom} g \tag{2}
\end{equation*}
$$

> for f, g being Function
> st $X \subseteq \operatorname{dom} f \& f^{\circ} X \subseteq \operatorname{dom} g$ holds $X \subseteq \operatorname{dom}(g \cdot f)$,
> for f, g being Function
> st $Y \subseteq \operatorname{rng}(g \cdot f) \& g$ is_one-to-one holds $g^{-1} Y \subseteq \operatorname{rng} f$,
(5) for f, g being Function st $Y \subseteq \operatorname{rng} g \& g^{-1} Y \subseteq \operatorname{rng} f$ holds $Y \subseteq \operatorname{rng}(g \cdot f)$.

[^31]In the article we present several logical schemes. The scheme FuncEx_3 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a ternary predicate \mathcal{P} and states that the following holds
ex f being Function
st $\operatorname{dom} f=[: \mathcal{A}, \mathcal{B}:]$ for x, y st $x \in \mathcal{A} \& y \in \mathcal{B}$ holds $\mathcal{P}[x, y, f .\langle x, y\rangle]$
provided the parameters satisfy the following conditions:

- for $x, y, z 1, z 2$ st $x \in \mathcal{A} \& y \in \mathcal{B} \& \mathcal{P}[x, y, z 1] \& \mathcal{P}[x, y, z 2]$ holds $z 1=z 2$,
- for x, y st $x \in \mathcal{A} \& y \in \mathcal{B}$ ex z st $\mathcal{P}[x, y, z]$.

The scheme Lambda_3 concerns a constant \mathcal{A} that has the type set, a constant \mathcal{B} that has the type set and a binary functor \mathcal{F} and states that the following holds
ex f being Function
st $\operatorname{dom} f=[: \mathcal{A}, \mathcal{B}:]$ for x, y st $x \in \mathcal{A} \& y \in \mathcal{B}$ holds $f .\langle x, y\rangle=\mathcal{F}(x, y)$
for all values of the parameters.
We now state a proposition

$$
\begin{align*}
& \text { for } f, g \text { being Function st } \tag{6}\\
& \quad \operatorname{dom} f=[: X, Y:
\end{align*}
$$

$\& \operatorname{dom} g=[: X, Y: \&$ for x, y st $x \in X \& y \in Y$ holds $f .\langle x, y\rangle=g .\langle x, y\rangle$

$$
\text { holds } f=g
$$

Let f have the type Function. The functor

$$
{ }^{\circ} f
$$

yields the type Function and is defined by

$$
\text { domit }=\text { bool dom } f \& \text { for } X \text { st } X \in \operatorname{bool} \operatorname{dom} f \text { holds it. } X=f^{\circ} X
$$

The following propositions are true:
for f, g being Function holds $g={ }^{\circ} f$
iff $\operatorname{dom} g=$ bool dom $f \&$ for X st $X \in$ bool dom f holds $g \cdot X=f^{\circ} X$,
for f being Function st $X \in \operatorname{dom}\left({ }^{\circ} f\right)$ holds $\left({ }^{\circ} f\right) \cdot X=f^{\circ} X$,
for f being Function holds $\left({ }^{\circ} f\right) . \emptyset=\emptyset$, for f being Function holds $\operatorname{rng}\left({ }^{\circ} f\right) \subseteq$ bool rng f, for f being Function
holds $Y \in\left({ }^{\circ} f\right)^{\circ} A$ iff ex X st $X \in \operatorname{dom}\left({ }^{\circ} f\right) \& X \in A \& Y=\left({ }^{\circ} f\right) \cdot X$,
(17) for f being Function of X, D st $A \subseteq$ bool X holds $f^{\circ}(\bigcup A)=\bigcup\left(\left({ }^{\circ} f\right)^{\circ} A\right)$,

$$
\begin{equation*}
\text { for } f \text { being Function holds } \bigcup\left(\left(^{\circ} f\right)^{-1} B\right) \subseteq f^{-1}(\bigcup B) \tag{18}
\end{equation*}
$$

for f being Function st $B \subseteq$ bool $\operatorname{rng} f$ holds $f^{-1}(\bigcup B)=\bigcup\left(\left(^{\circ} f\right)^{-1} B\right)$,

$$
\begin{equation*}
\text { for } f, g \text { being Function holds }{ }^{\circ}(g \cdot f)={ }^{\circ} g \cdot{ }^{\circ} f, \tag{19}
\end{equation*}
$$

for f being Function holds ${ }^{\circ} f$ is Function of bool dom f, bool rng f,
for f being Function of X, Y
st $Y=\emptyset$ implies $X=\emptyset$ holds ${ }^{\circ} f$ is Function of bool X, bool Y.
The arguments of the notions defined below are the following: X, D which are objects of the type reserved above; f which is an object of the type Function of X, D. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
{ }^{\circ} f \quad \text { is } \quad \text { Function of bool } X \text {, bool } D .
$$

Let f have the type Function. The functor

$$
{ }^{-1} f
$$

yields the type Function and is defined by

$$
\operatorname{dom} \text { it }=\operatorname{bool} \operatorname{rng} f \& \text { for } Y \text { st } Y \in \text { bool } \operatorname{rng} f \text { holds it. } Y=f^{-1} Y
$$

We now state a number of propositions:

$$
\begin{gather*}
\text { for } g, f \text { being Function holds } \tag{23}\\
g={ }^{-1} f \text { iff } \operatorname{dom} g=\operatorname{bool} \operatorname{rng} f \& \text { for } Y \text { st } Y \in \operatorname{bool} \operatorname{rng} f \text { holds } g . Y=f^{-1} Y, \\
\text { for } f \text { being Function st } Y \in \operatorname{dom}\left(\left(^{-1} f\right) \text { holds }\left({ }^{-1} f\right) . Y=f^{-1} Y,\right. \\
\text { for } f \text { being Function holds } \operatorname{rng}\left({ }^{-1} f\right) \subseteq \operatorname{bool} \operatorname{dom} f, \\
\text { for } f \text { being Function }
\end{gather*}
$$

holds $X \in\left({ }^{-1} f\right)^{\circ} A$ iff ex Y st $Y \in \operatorname{dom}\left(^{-1} f\right) \& Y \in A \& X=\left({ }^{-1} f\right) . Y$,

Let us consider A, X. The functor

$$
\chi(A, X)
$$

yields the type Function and is defined by

$$
\operatorname{dom} \mathbf{i t}=X
$$

$\&$ for x st $x \in X$ holds $(x \in A$ implies it. $x=1) \&(\operatorname{not} x \in A$ implies it. $x=0)$.
We now state a number of propositions:

$$
\begin{align*}
& A \subseteq X \& x \in A \text { implies } \chi(A, X) \cdot x=1 \tag{41}\\
& x \in X \& \chi(A, X) \cdot x=1 \text { implies } x \in A \tag{42}
\end{align*}
$$

$$
\begin{gather*}
x \in X \backslash A \text { implies } \chi(A, X) \cdot x=0 \tag{43}\\
x \in X \& \chi(A, X) \cdot x=0 \text { implies not } x \in A \tag{44}\\
x \in X \text { implies } \chi(\emptyset, X) \cdot x=0 \tag{45}\\
x \in X \text { implies } \chi(X, X) \cdot x=1 \tag{46}\\
A \subseteq X \& B \subseteq X \& \chi(A, X)=\chi(B, X) \text { implies } A=B, \tag{47}\\
\operatorname{rng} \chi(A, X) \subseteq\{0,1\} \tag{48}
\end{gather*}
$$

for f being Function of $X,\{0,1\}$ holds $f=\chi\left(f^{-1}\{1\}, X\right)$.

Let us consider A, X. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
\chi(A, X) \quad \text { is } \quad \text { Function of } X,\{0,1\}
$$

One can prove the following propositions:

$$
\begin{align*}
& \text { for } d \text { being Element of } D \text { holds } \chi(A, D) \cdot d=1 \text { iff } d \in A \text {, } \tag{50}\\
& \text { for } d \text { being Element of } D \text { holds } \chi(A, D) . d=0 \text { iff } \operatorname{not} d \in A \text {. } \tag{51}
\end{align*}
$$

The arguments of the notions defined below are the following: Y which is an object of the type reserved above; A which is an object of the type Subset of Y. The functor

$$
\operatorname{incl} A,
$$

yields the type Function of A, Y and is defined by

$$
\text { it }=\mathrm{id} A
$$

We now state several propositions:

$$
\begin{gather*}
\text { for } A \text { being Subset of } Y \text { holds incl } A=\operatorname{id} A, \tag{52}\\
\text { for } A \text { being Subset of } Y \text { holds } \operatorname{incl} A=(\operatorname{id} Y) \mid A, \tag{53}\\
\text { for } A \text { being Subset of } Y \text { holds domincl } A=A \& \operatorname{rng} \operatorname{incl} A=A, \tag{54}\\
\text { for } A \text { being Subset of } Y \text { st } x \in A \text { holds }(\operatorname{incl} A) \cdot x=x, \tag{55}\\
\text { for } A \text { being Subset of } Y \text { st } x \in A \text { holds incl }(A) \cdot x \in Y . \tag{56}
\end{gather*}
$$

We now define two new functors. Let us consider X, Y. The functor

$$
\pi_{1}(X, Y)
$$

with values of the type Function, is defined by

$$
\text { dom it }=[: X, Y: \& \text { for } x, y \text { st } x \in X \& y \in Y \text { holds it. }\langle x, y\rangle=x
$$

The functor

$$
\pi_{2}(X, Y)
$$

yields the type Function and is defined by

$$
\text { domit }=[: X, Y:] \text { for } x, y \text { st } x \in X \& y \in Y \text { holds it. }\langle x, y\rangle=y
$$

Next we state several propositions:

$$
\begin{equation*}
\text { for } f \text { being Function holds } f=\pi_{1}(X, Y) \tag{57}
\end{equation*}
$$

iff $\operatorname{dom} f=[: X, Y: \&$ for x, y st $x \in X \& y \in Y$ holds $f .\langle x, y\rangle=x$,
for f being Function holds $f=\pi_{2}(X, Y)$
iff $\operatorname{dom} f=[: X, Y: \&$ for x, y st $x \in X \& y \in Y$ holds $f .\langle x, y\rangle=y$,

$$
\begin{equation*}
Y \neq \emptyset \text { implies } \operatorname{rng} \pi_{1}(X, Y)=X \tag{60}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rng} \pi_{1}(X, Y) \subseteq X \tag{59}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{rng} \pi_{2}(X, Y) \subseteq Y \tag{61}
\end{equation*}
$$

$$
\begin{equation*}
X \neq \emptyset \text { implies rng } \pi_{2}(X, Y)=Y \tag{62}
\end{equation*}
$$

Let us consider X, Y. Let us note that it makes sense to consider the following functors on restricted areas. Then

$$
\begin{array}{ll}
\pi_{1}(X, Y) & \text { is } \quad \text { Function of }[: X, Y:], X, \\
\pi_{2}(X, Y) & \text { is } \quad \text { Function of }[: X, Y:], Y .
\end{array}
$$

We now state two propositions: for $d 1$ being Element of $D 1$
for $d 2$ being Element of $D 2$ holds $\pi_{1}(D 1, D 2) .\langle d 1, d 2\rangle=d 1$, for $d 1$ being Element of $D 1$
for $d 2$ being Element of $D 2$ holds $\pi_{2}(D 1, D 2) .\langle d 1, d 2\rangle=d 2$.
Let us consider X. The functor

$$
\delta X
$$

with values of the type Function, is defined by

$$
\operatorname{dom} \text { it }=X \& \text { for } x \text { st } x \in X \text { holds it. } x=\langle x, x\rangle
$$

The following two propositions are true:

$$
\begin{equation*}
\text { for } f \text { being Function } \tag{65}
\end{equation*}
$$

holds $f=\delta X$ iff $\operatorname{dom} f=X$ \& for x st $x \in X$ holds $f . x=\langle x, x\rangle$,

$$
\begin{equation*}
\operatorname{rng} \delta X \subseteq:: X, X:] \tag{66}
\end{equation*}
$$

Let us consider X. Let us note that it makes sense to consider the following functor on a restricted area. Then
$\delta X \quad$ is \quad Function of $X,[X, X:]$.
Let f, g have the type Function. The functor

$$
[(f, g)]
$$

with values of the type Function, is defined by

$$
\operatorname{dom} \mathbf{i t}=\operatorname{dom} f \cap \operatorname{dom} g \& \text { for } x \text { st } x \in \operatorname{dom} \text { it holds it. } x=\langle f \cdot x, g \cdot x\rangle
$$

We now state a number of propositions:

$$
\begin{equation*}
\text { for } f, g, f g \text { being Function holds } f g=[(f, g)] \tag{67}
\end{equation*}
$$

iff dom $f g=\operatorname{dom} f \cap \operatorname{dom} g \&$ for x st $x \in \operatorname{dom} f g$ holds $f g \cdot x=\langle f \cdot x, g \cdot x\rangle$,
for f, g being Function st $x \in \operatorname{dom} f \cap \operatorname{dom} g$ holds $[(f, g)] . x=\langle f . x, g . x\rangle$,
for f, g being Function
st $\operatorname{dom} f=X \& \operatorname{dom} g=X \& x \in X$ holds $[(f, g)] \cdot x=\langle f \cdot x, g \cdot x\rangle$,
for f, g being Function st $\operatorname{dom} f=X \& \operatorname{dom} g=X$ holds $\operatorname{dom}[(f, g)]=X$,
for f, g being Function holds $\operatorname{rng}[(f, g)] \subseteq[\operatorname{rng} f, \operatorname{rng} g]$,
for f, g being Function st $\operatorname{dom} f=\operatorname{dom} g \& \operatorname{rng} f \subseteq Y \& \operatorname{rng} g \subseteq Z$ holds $\pi_{1}(Y, Z) \cdot[(f, g)]=f \& \pi_{2}(Y, Z) \cdot[(f, g)]=g$,
$\left[\left(\pi_{1}(X, Y), \pi_{2}(X, Y)\right)\right]=\operatorname{id}[: X, Y:]$,
for f, g, h, k being Function
st $\operatorname{dom} f=\operatorname{dom} g \& \operatorname{dom} k=\operatorname{dom} h \&[(f, g)]=[(k, h)]$ holds $f=k \& g=h$,

$$
\begin{gather*}
\text { for } f, g, h \text { being Function holds }[(f \cdot h, g \cdot h)]=[(f, g)] \cdot h, \tag{75}\\
\text { for } f, g \text { being Function holds }[(f, g)]^{\circ} A \subseteq\left[: f^{\circ} A, g^{\circ} A:\right. \tag{76}\\
\text { for } f, g \text { being Function holds }[(f, g)]^{-1}\left[: B, C:=f^{-1} B \cap g^{-1} C\right. \text {, } \tag{77}
\end{gather*}
$$

for f being Function of X, Y for g being Function of X, Z st

$$
\begin{gather*}
(Y=\emptyset \text { implies } X=\emptyset) \&(Z=\emptyset \text { implies } X=\emptyset) \tag{78}\\
\quad \text { holds }[(f, g)] \text { is Function of } X,[: Y, Z:] .
\end{gather*}
$$

The arguments of the notions defined below are the following: $X, D 1, D 2$ which are objects of the type reserved above; $f 1$ which is an object of the type Function of X, $D 1 ; f 2$ which is an object of the type Function of $X, D 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[(f 1, f 2)] \quad \text { is } \quad \text { Function of } X,[: D 1, D 2]
$$

We now state several propositions:
for f being Function of X, Y for g being Function of X, Z st

$$
\begin{equation*}
(Y=\emptyset \text { implies } X=\emptyset) \&(Z=\emptyset \text { implies } X=\emptyset) \tag{81}
\end{equation*}
$$

holds $\pi_{1}(Y, Z) \cdot[(f, g)]=f \& \pi_{2}(Y, Z) \cdot[(f, g)]=g$,
for f being Function of $X, D 1$ for g being Function of $X, D 2$

$$
\begin{equation*}
\text { holds } \pi_{1}(D 1, D 2) \cdot[(f, g)]=f \& \pi_{2}(D 1, D 2) \cdot[(f, g)]=g \tag{82}
\end{equation*}
$$

for $f 1, f 2$ being Function of X, Y for $g 1, g 2$ being Function of X, Z st $(Y=\emptyset$ implies $X=\emptyset) \&(Z=\emptyset$ implies $X=\emptyset) \&[(f 1, g 1)]=[(f 2, g 2)]$

$$
\text { holds } f 1=f 2 \& g 1=g 2
$$

for $f 1, f 2$ being Function of $X, D 1$ for $g 1, g 2$ being Function of $X, D 2$

$$
\begin{equation*}
\mathbf{s t}[(f 1, g 1)]=[(f 2, g 2)] \text { holds } f 1=f 2 \& g 1=g 2 \tag{84}
\end{equation*}
$$

Let f, g have the type Function. The functor

$$
: f, g:]
$$

yields the type Function and is defined by

$$
\begin{gathered}
\operatorname{domit}=[: \operatorname{dom} f, \operatorname{dom} g: \\
\& \text { for } x, y \text { st } x \in \operatorname{dom} f \& y \in \operatorname{dom} g \text { holds it. }\langle x, y\rangle=\langle f . x, g . y\rangle
\end{gathered}
$$

The following propositions are true:
for $f, g, f g$ being Function holds $f g=[: f, g]$ iff $\operatorname{dom} f g=[\operatorname{dom} f, \operatorname{dom} g$:
$\&$ for x, y st $x \in \operatorname{dom} f \& y \in \operatorname{dom} g$ holds $f g .\langle x, y\rangle=\langle f . x, g . y\rangle$,
for f, g being Function
holds $: f, g:=\left[\left(f \cdot \pi_{1}(\operatorname{dom} f, \operatorname{dom} g), g \cdot \pi_{2}(\operatorname{dom} f, \operatorname{dom} g)\right)\right]$, for f, g being Function holds rng $[: f, g:]=[\operatorname{rng} f, \operatorname{rng} g:]$,
for f, g being Function
st $\operatorname{dom} f=X \& \operatorname{dom} g=X$ holds $[(f, g)]=[: f, g: \cdot(\delta X)$,

$$
\begin{equation*}
[: i d X, i d Y:]=\operatorname{id}[: X, Y:] \tag{90}
\end{equation*}
$$

for f, g, h, k being Function holds $: f, h:] \cdot[(g, k)]=[(f \cdot g, h \cdot k)]$,
for f, g, h, k being Function holds $: f, h:] \cdot: g, k:=[: f \cdot g, h \cdot k:]$,
for f, g being Function holds $: f, g:]^{\circ}[: B, C:]=\left[: f^{\circ} B, g^{\circ} C:\right]$,
for f, g being Function holds $[: f, g]^{-1}[: B, C:]=\left[: f^{-1} B, g^{-1} C:\right]$,
for f being Function of X, Y for g being Function of V, Z st

$$
\begin{gather*}
(Y=\emptyset \text { implies } X=\emptyset) \&(Z=\emptyset \text { implies } V=\emptyset) \tag{95}\\
\text { holds }: f, g:] \text { is Function of }[: X, V:,[: Y, Z \ddagger .
\end{gather*}
$$

The arguments of the notions defined below are the following: $X 1, X 2, D 1, D 2$ which are objects of the type reserved above; $f 1$ which is an object of the type Function of $X 1, D 1 ; f 2$ which is an object of the type Function of $X 2, D 2$. Let us note that it makes sense to consider the following functor on a restricted area. Then

$$
[: f 1, f 2: \quad \text { is } \quad \text { Function of }: X 1, X 2],[: D 1, D 2]
$$

One can prove the following propositions:
for $f 1$ being Function of $C 1, D 1$ for $f 2$ being Function of $C 2, D 2$
for $c 1$ being Element of $C 1$
for $c 2$ being Element of $C 2$ holds : $: f 1, f 2] \cdot\langle c 1, c 2\rangle=\langle f 1 . c 1, f 2 . c 2\rangle$,
for $f 1$ being Function of $X 1, Y 1$ for $f 2$ being Function of $X 2, Y 2$ st $(Y 1=\emptyset$ implies $X 1=\emptyset) \&(Y 2=\emptyset$ implies $X 2=\emptyset)$
holds ::f1,f2: $=\left[\left(f 1 \cdot \pi_{1}(X 1, X 2), f 2 \cdot \pi_{2}(X 1, X 2)\right)\right]$,
(98) for $f 1$ being Function of $X 1, D 1$ for $f 2$ being Function of $X 2, D 2$
holds : $f 1, f 2:]=\left[\left(f 1 \cdot \pi_{1}(X 1, X 2), f 2 \cdot \pi_{2}(X 1, X 2)\right)\right]$,
(99) for $f 1$ being Function of $X, Y 1$ for $f 2$ being Function of $X, Y 2$ st $(Y 1=\emptyset$ implies $X=\emptyset) \&(Y 2=\emptyset$ implies $X=\emptyset)$
holds $[(f 1, f 2)]=[: f 1, f 2] \cdot(\delta X)$, for $f 1$ being Function of $X, D 1$
for $f 2$ being Function of $X, D 2$ holds $[(f 1, f 2)]=[: f 1, f 2] \cdot(\delta X)$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1, 1990.
[3] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1, 1990.
[4] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1, 1990.

[^0]: ${ }^{1}$ Supported by RPBP.III-24.B1.

[^1]: ${ }^{1}$ Supported by RPBP.III-24.B1.

[^2]: ${ }^{1}$ Supported by RPBP.III-24.C1.
 ${ }^{2}$ Supported by RPBP.III-24.C1.

[^3]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^4]: ${ }^{1}$ This work has been supported by RPBP III. 24 C 1

[^5]: ${ }^{1}$ Supported by RPBP III. 24 C1

[^6]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^7]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^8]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^9]: ${ }^{1}$ Supported by RPBP III. 24 C1

[^10]: ${ }^{1}$ Supported by RPBP III. 24 C 1.
 ${ }^{2}$ Supported by RPBP III. 24 C1.

[^11]: ${ }^{1}$ Supported by RPBP III. 24 C1

[^12]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^13]: ${ }^{1}$ Supported by RPBP III. 24 C 1
 ${ }^{2}$ Supported by RPBP III. 24 C1

[^14]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^15]: ${ }^{1}$ Supported by RPBP III. 24 C1.

[^16]: ${ }^{1}$ Supported by RPBP III. 24 C1.

[^17]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^18]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^19]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^20]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^21]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^22]: ${ }^{1}$ Supported by RPBP III. 24 C 1

[^23]: ${ }^{1}$ Supported by RPBP.III-24.C1.
 ${ }^{2}$ Supported by RPBP.III-24.C1.

[^24]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^25]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^26]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^27]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^28]: ${ }^{1}$ Supported by RPBP.III-24.C1.
 ${ }^{2}$ Supported by RPBP.III-24.C1.

[^29]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^30]: ${ }^{1}$ Supported by RPBP.III-24.C1.

[^31]: ${ }^{1}$ Supported by RPBP.III-24.C1.

