The Product and the Determinant of Matrices with Entries in a Field

Katarzyna Zawadzka
Warsaw University
Białystok

Summary. Concerned with a generalization of concepts introduced in [17], i.e. there are introduced the sum and the product of matrices of any dimension of elements of any field.

MML Identifier: MATRIX_3.

The articles [15], [28], [10], [11], [5], [7], [6], [12], [16], [20], [27], [19], [23], [13], [9], [8], [21], [26], [1], [17], [25], [18], [4], [3], [24], [29], [2], [22], and [14] provide the notation and terminology for this paper.

For simplicity we follow a convention: i, j, k, l, n, m denote natural numbers, I, J, D denote non empty sets, K denotes a field, a denotes an element of D, and p, q denote finite sequences of elements of D.

We now state two propositions:
(1) If $n=n+k$, then $k=0$.
(2) For every natural number n holds $n=0$ or $n=1$ or $n=2$ or $n>2$.

In the sequel A, B will denote matrices over K of dimension $n \times m$.
Let us consider K, n, m. The functor $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}$ yields a matrix over K of dimension $n \times m$ and is defined as follows:
(Def.1) $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}=n \longmapsto\left(m \longmapsto 0_{K}\right)$.
Let us consider K and let A be a matrix over K. The functor $-A$ yields a matrix over K and is defined by:
(Def.2) $\operatorname{len}(-A)=\operatorname{len} A$ and $\operatorname{width}(-A)=$ width A and for all i, j such that $\langle i, j\rangle \in$ the indices of A holds $(-A)_{i, j}=-A_{i, j}$.
Let us consider K and let A, B be matrices over K. Let us assume that len $A=\operatorname{len} B$ and width $A=$ width B. The functor $A+B$ yielding a matrix over K is defined as follows:
(Def.3) $\operatorname{len}(A+B)=\operatorname{len} A$ and $\operatorname{width}(A+B)=\operatorname{width} A$ and for all i, j such that $\langle i, j\rangle \in$ the indices of A holds $(A+B)_{i, j}=A_{i, j}+B_{i, j}$.
\ldots The following proposition is true
(3) For all i, j such that $\langle i, j\rangle \in$ the indices of $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}$ holds

$$
\left(\left(\begin{array}{ccc}
0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right)_{K}^{n \times m}\right)_{i, j}=0_{K} .
$$

In the sequel A, B denote matrices over K.
The following propositions are true:
(4) For all matrices A, B over K such that $\operatorname{len} A=\operatorname{len} B$ and width $A=$ width B holds $A+B=B+A$.
(5) For all matrices A, B, C over K such that len $A=\operatorname{len} B$ and len $A=$ len C and width $A=$ width B and width $A=$ width C holds $(A+B)+C=$ $A+(B+C)$.
(6) For every matrix A over K of dimension $n \times m$ holds $A+$ $\left(\begin{array}{ccc}0 & \ldots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \ldots & 0\end{array}\right)_{K}^{n \times m}=A$.
(7) For every matrix A over K of dimension $n \times m$ holds $A+-A=$ $\left(\begin{array}{ccc}0 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 0\end{array}\right)_{K}^{n \times m}$
Let us consider K and let A, B be matrices over K. Let us assume that width $A=\operatorname{len} B$. The functor $A \cdot B$ yields a matrix over K and is defined as follows:
(Def.4) $\quad \operatorname{len}(A \cdot B)=$ len A and width $(A \cdot B)=$ width B and for all i, j such that $\langle i, j\rangle \in$ the indices of $A \cdot B$ holds $(A \cdot B)_{i, j}=\operatorname{Line}(A, i) \cdot B_{\square, j}$.
Let us consider n, k, m, let us consider K, let A be a matrix over K of dimension $n \times k$, and let B be a matrix over K of dimension width $A \times m$. Then $A \cdot B$ is a matrix over K of dimension len $A \times$ width B.

Let us consider K, let M be a matrix over K, and let a be an element of the carrier of K. The functor $a \cdot M$ yields a matrix over K and is defined by:
(Def.5) $\quad \operatorname{len}(a \cdot M)=\operatorname{len} M$ and $\operatorname{width}(a \cdot M)=$ width M and for all i, j such that $\langle i, j\rangle \in$ the indices of M holds $(a \cdot M)_{i, j}=a \cdot M_{i, j}$.
Let us consider K, let M be a matrix over K, and let a be an element of the carrier of K. The functor $M \cdot a$ yields a matrix over K and is defined by:
(Def.6) $\quad M \cdot a=a \cdot M$.
One can prove the following propositions:
(8) For all finite sequences p, q of elements of the carrier of K such that len $p=\operatorname{len} q$ holds $\operatorname{len}(p \bullet q)=\operatorname{len} p$ and $\operatorname{len}(p \bullet q)=\operatorname{len} q$.
(9) For all i, l such that $\langle i, l\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and $l=i$ holds $\operatorname{Line}\left(\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}, i\right)(l)=1_{K}$.
(10) For all i, l such that $\langle i, l\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and $l \neq i$ holds $\operatorname{Line}\left(\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}, i\right)(l)=0_{K}$.
(11) For all l, j such that $\langle l, j\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and $l=j$ $\operatorname{holds}\left(\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)_{\square, j}(l)=1_{K}$. For all l, j such that $\langle l, j\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ and $l \neq j$.holds $\left.\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)_{\square, j}(l)=0_{K}$.
(13) $\quad \sum\left(n \longmapsto 0_{K}\right)=0_{K}$.
(14) Let p be a finite sequence of elements of the carrier of K and given i. Suppose $i \in \operatorname{Seg} \operatorname{len} p$ and for every k such that $k \in \operatorname{Seg} \operatorname{len} p$ and $k \neq i$ holds $p(k)=0_{K}$. Then $\sum p=p(i)$.
(15) For all finite sequences p, q of elements of the carrier of K holds len $(p \bullet$
$q)=\min (\operatorname{len} p, \operatorname{len} q)$.
(16) Let p, q be finite sequences of elements of the carrier of K and given i. Suppose $i \in \operatorname{Seg} \operatorname{len} p$ and $p(i)=1_{K}$ and for every k such that $k \in \operatorname{Seg} \operatorname{len} p$ and $k \neq i$ holds $p(k)=0_{K}$. Given j. Suppose $j \in \operatorname{Seg} \operatorname{len}(p \bullet q)$. Then if $i=j$, then $(p \bullet q)(j)=q(i)$ and if $i \neq j$, then $(p \bullet q)(j)=0_{K}$.
(17) For all i, j such that $\langle i, j\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ holds if $i=j$, then $\operatorname{Line}\left(\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}, i\right)(j)=1_{K}$ and if $i \neq j$, then $\operatorname{Line}\left(\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}, i\right)(j)=0_{K}$.
(18) For all i, j such that $\langle i, j\rangle \in$ the indices of $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}$ holds if $i=j$, then $\left(\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)_{\square, j}(i)=1_{K}$ and if $i \neq j$, then $\left(\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}\right)_{\square, j}(i)=0_{K}$.
(19) Let p, q be finite sequences of elements of the carrier of K and given i. Suppose $i \in \operatorname{Seg} \operatorname{len} p$ and $i \in \operatorname{Seg} \operatorname{len} q$ and $p(i)=1_{K}$ and for every k such that $k \in \operatorname{Seg}$ len p and $k \neq i$ holds $p(k)=0_{K}$. Then $\sum(p \bullet q)=q(i)$.
(20) For every matrix A over K of dimension n holds $\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n} \cdot A=$ A.
(21) For every matrix A over K of dimension n holds $A \cdot\left(\begin{array}{lll}1 & & 0 \\ & \ddots & \\ 0 & & 1\end{array}\right)_{K}^{n \times n}=$ A.
(22) For all elements a, b of the carrier of K holds $\langle\langle a\rangle\rangle \cdot\langle\langle b\rangle\rangle=\langle\langle a \cdot b\rangle\rangle ;$
(23) For all elements $a_{1}, a_{2}, b_{1}, b_{2}, c_{1}, c_{2}, d_{1}, d_{2}$ of the carrier of K holds $\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \cdot\left(\begin{array}{ll}a_{2} & b_{2} \\ c_{2} & d_{2}\end{array}\right)=\left(\begin{array}{cc}a_{1} \cdot a_{2}+b_{1} \cdot c_{2}: & a_{1} \cdot b_{2}+\cdot b_{1} \cdot d_{2} \\ c_{1} \cdot a_{2}+d_{1} \cdot c_{2} & c_{1} \cdot b_{2} \cdot t i d_{1}: d_{2}\end{array}\right)$.
(24) For all matrices A, B over K such that width $A=$ len B and width $B \neq 0$ holds $(A \cdot B)^{\mathrm{T}}=B^{\mathrm{T}} \cdot A^{\mathrm{T}}$.
Let I, J be non empty sets, let X be an element of $\operatorname{Fin} I$, and let Y be an element of Fin J. Then [: X, Y : is an element of Fin[: $I, J:]$.

Let I, J, D be non empty sets, let G be a binary operation on D, let f be a function from I into D, and let g be a function from J into D. Then $G \circ(f, g)$ is a function from $[: I, J:]$ into D.

The following propositions are true:
(25) Let I, J, D be non empty sets, and let F, G be binary operations on D, and let f be a function from I into D, and let g be a function from J into D, and let X be an element of Fin I, and let Y be an element of Fin J. Suppose F is commutative and associative but $[: Y, X: \neq \emptyset$ or F has a unity but G is commutative. Then $F-\sum_{f X, Y \mathfrak{q}}(G \circ(f, g))=$ $F-\sum_{[Y, X X}(G \circ(g, f))$.
(26) Let I, J be non empty sets, and let F, G be binary operations on D, and let f be a function from I into D, and let g be a function from J into D. Suppose F is commutative and associative and has a unity. Let x be an element of I and let y be an element of J. Then $F-\sum_{\{\{x\},\{y\}:}(G \circ(f, g))=$ $F-\sum_{\{x\}} G^{\circ}\left(f, F-\sum_{\{y\}} g\right)$.
(27) Let I, J be non empty sets, and let F, G be binary operations on D, and let f be a function from I into D, and let g be a function from J into D, and let X be an element of Fin I, and let Y be an element of Fin J. Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Let x be an element of I. Then $F-\sum_{\{\{x\}, Y \mathfrak{j}}(G \circ(f, g))=F-\sum_{\{x\}} G^{\circ}\left(f, F-\sum_{Y} g\right)$.
(28) Let I, J be non empty sets, and let F, G be binary operations on D, and let f be a function from I into D, and let g be a function from J into D, and let X be an element of Fin I, and let Y be an element of Fin J. Suppose F is commutative and associative and has a unity and an inverse operation and G is distributive w.r.t. F. Then $F-\sum_{[X, Y \sharp}(G \circ(f, g))=$ $F-\sum_{X} G^{0}\left(f, F-\sum_{Y} g\right)$.
(29) Let I, J be non empty sets, and let F, G be binary operations on D, and let f be a function from I into D, and let g be a function from J into D. Suppose F is commutative and associative and has a unity and G is commutative. Let x be an element of I and let y be an element of J. Then $F-\sum_{\{\{x\},\{y\} \mathfrak{Z}}(G \circ(f, g))=F-\sum_{\{y\}} G^{\circ}\left(F-\sum_{\{x\}} f, g\right)$.
(30) Let I, J be non empty sets, and let F, G be binary operations on D, and let f be a function from I into D, and let g be a function from J into D, and let X be an element of Fin I, and let Y be an element of Fin J. Suppose that
(i) F is commutative and associative and has a unity and an inverse operation, and
(ii) G is distributive w.r.t. F and commutative.

Then $F-\sum_{\lceil X, Y \nmid}(G \circ(f, g))=F-\sum_{Y} G^{\circ}\left(F-\sum_{X} f, g\right)$.
(31) Let I, J be non empty sets, and let F be a binary operation on D, and let f be a function from $[: I, J ;$ into D, and let g be a function from I into D, and let Y be an element of Fin J. Suppose F is commutative and associative and has a unity and an inverse operation. Let x be an element of I. If for every element i of I holds $g(i)=F-\sum_{Y}($ curry $f)(i)$, then $F-\sum_{[\{x\}, Y \nmid} f=F-\sum_{\{x\}} g$.
(32) Let I, J be non empty sets, and let F be a binary operation on D, and let f be a function from $[: I, J:$ into D, and let g be a function from I into D, and let X be an element of Fin I, and let Y be an element of Fin J. Suppose for every element i of I holds $g(i)=F-\sum_{Y}($ curry $f)(i)$ and F is commutative and associative and has a unity and an inverse operation. Then $F-\sum_{[X, Y\}} f=F-\sum_{X} g$.
(33) Let I, J be non empty sets, and let F be a binary operation on D, and let f be a function from $[: I, J:]$ into D, and let g be a function from J into D, and let X be an element of Fin I. Suppose F is commutative and associative and has a unity and an inverse operation. Let y be an element of J. If for every element j of J holds $g(j)=F-\sum_{X}\left(\right.$ curry $\left.^{\prime} f\right)(j)$, then $F-\sum_{\{X,\{y\}} f=F-\sum_{\{y\}} g$.
(34) Let I, J be non empty sets, and let F be a binary operation on D, and let f be a function from $[: I, J$: into D, and let g be a function from J into D, and let X be an element of Fin I, and let Y be an element of Fin J. Suppose for every element j of J holds $g(j)=F-\sum_{X}\left(\right.$ curry $\left.^{\prime} f\right)(j)$ and F is commutative and associative and has a unity and an inverse operation. Then $F-\sum_{F X, Y \neq} f=F-\sum_{Y} g$.
(35) For all matrices A, B, C over K such that width $A=\operatorname{len} B$ and width $B=\operatorname{len} C$ holds $(A \cdot B) \cdot C=A \cdot(B \cdot C)$.
In the sequel p will be an element of the permutations of n-element set.
Let us consider n, K, let M be a matrix over K of dimension n, and let p be an element of the permutations of n-element set. The functor p-Path M yields a finite sequence of elements of the carrier of K and is defined as follows:
(Def.7) $\quad \operatorname{len}(p-\mathrm{Path} M)=n$ and for all i, j such that $i \in \operatorname{dom}(p-\operatorname{Path} M)$ and $j=p(i)$ holds $(p-P a t h M)(i)=M_{i, j}$.
Let us consider n, K and let M be a matrix over K of dimension n. The product on paths of M yields a function from the permutations of n-element set into the carrier of K and is defined by the condition (Def.8).
(Def.8) Let p be an element of the permutations of n-element set. Then (the product on paths of $M)(p)=(-1)^{\operatorname{sgn}(p)}$ (the multiplication of $K \circledast(p-\mathrm{Path} M))$.
Let us consider n, let us consider K, and let M be a matrix over K of dimension n. The functor $\operatorname{Det} M$ yields an element of the carrier of K and is defined as follows:
(Def.9) $\operatorname{Det} M=($ the addition of $K)-\sum_{\Omega_{\text {the }}^{f}}$
(the product on paths of M).

In the sequel a will be an element of the carrier of K.
The following proposition is true
(36) $\operatorname{Det}\langle\langle a\rangle\rangle=a$.

Let us consider n, let us consider K, and let M be a matrix over K of dimension n. The diagonal of M yields a finite sequence of elements of the carrier of K and is defined as follows:
(Def.10) len (the diagonal of M) $=n$ and for every i such that $i \in \operatorname{Seg} n$ holds $($ the diagonal of $M)(i)=M_{i, i}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Czeslaw Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[7] Czeslaw Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[8] Czeslaw Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[9] Czeslaw Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[10] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[11] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[12] Czeslaw Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[13] Czeslaw Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[14] Czeslaw Byliński. Subcategories and products of categories. Formalized Mathematics, 1(4):725-732, 1990.
[15] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[16] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[17] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[18] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[19] Eugeniusz Kusak, Wojciech Leończuk, and Michal Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[20] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[21] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[22] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, $1(3): 495-500,1990$.
[23] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[24] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[25] Andrzej Trybulec and Agata Darmochwal. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[26] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[27] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[28] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[29] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.

Received May 17, 1993

Introduction to Theory of Rearrangement ${ }^{1}$

Yuji Sakai
Shinshu University
Nagano

Jarosław Kotowicz
Warsaw University
Białystok

Abstract

Summary. An introduction to the rearrangement theory for finite functions (e.g. with the finite domain and codomain). The notion of generators and cogenerators of finite sets (equivalent to the order in the language of finite sequences) has been defined. The notion of rearrangement for a function into finite set is presented. Some basic properties of these notions have been proved.

MML Identifier: REARRAN1.

The terminology and notation used here are introduced in the following articles: [15], [5], [3], [1], [8], [10], [2], [16], [6], [4], [7], [12], [13], [9], [11], and [14].

Let D be a non empty set, let F be a partial function from D to \mathbb{R}, and let r be a real number. Then $r F$ is an element of $D \dot{\rightarrow} \mathbb{R}$.

A finite sequence has cardinality by index if:
(Def.1) For every n such that $1 \leq n$ and $n \leq$ len it holds card $\operatorname{it}(n)=n$.
A finite sequence is ascending if:
(Def.2) For every n such that $1 \leq n$ and $n \leq$ len it -1 holds $\operatorname{it}(n) \subseteq \operatorname{it}(n+1)$.
Let X be a set. A finite sequence of elements of X has length by cardinality if:
(Def.3) lenit $=\operatorname{card} \cup X$.
Let D be a non empty finite set. Note that there exists a finite sequence of elements of 2^{D} which is ascending and has cardinality by index and length by cardinality.

Let D be a non empty finite set. A rearrangement generator of D is an ascending finite sequence of elements of 2^{D} with cardinality by index and length by cardinality.

One can prove the following propositions:

[^0](1) For every finite sequence a of elements of 2^{D} holds a has length by cardinality iff len $a=\operatorname{card} D$.
(2) Let a be a finite sequence. Then a is ascending if and only if for all n, m such that $n \leq m$ and $n \in \operatorname{dom} a$ and $m \in \operatorname{dom} a$ holds $a(n) \subseteq a(m)$.
(3) For every finite sequence a of elements of 2^{D} with cardinality by index and length by cardinality holds $a(\operatorname{len} a)=D$.
(4) For every finite sequence a of elements of 2^{D} with length by cardinality holds len $a \neq 0$.
(5) Let a be an ascending finite sequence of elements of 2^{D} with cardinality by index and given n, m. If $n \in \operatorname{dom} a$ and $m \in \operatorname{dom} a$ and $n \neq m$, then $a(n) \neq a(m)$.
(6) Let a be an ascending finite sequence of elements of 2^{D} with cardinality by index and given n. If $1 \leq n$ and $n \leq \operatorname{len} a-1$, then $a(n) \neq a(n+1)$.
(7) For every finite sequence a of elements of 2^{D} with cardinality by index such that $n \in \operatorname{dom} a$ holds $a(n) \neq \emptyset$.
(8) Let a be a finite sequence of elements of 2^{D} with cardinality by index. If $1 \leq n$ and $n \leq \operatorname{len} a-1$, then $a(n+1) \backslash a(n) \neq \emptyset$.
(9) Let a be a finite sequence of elements of 2^{D} with cardinality by index and length by cardinality. Then there exists an element d of D such that $a(1)=\{d\}$.
(10) Let a be an ascending finite sequence of elements of 2^{D} with cardinality by index. Suppose $1 \leq n$ and $n \leq \operatorname{len} a-1$. Then there exists an element d of D such that $a(n+1) \backslash a(n)=\{d\}$ and $a(n+1)=a(n) \cup\{d\}$ and $a(n+1) \backslash\{d\}=a(n)$.
Let D be a non empty finite set and let A be a rearrangement generator of D. The functor co-Gen (A) yielding a rearrangement generator of D is defined by:
(Def.4) For every m such that $1 \leq m$ and $m \leq \operatorname{len}$ co-Gen $(A)-1$ holds $(\operatorname{co-Gen}(A))(m)=D \backslash A(\operatorname{len} A-m)$.
One can prove the following two propositions:
(11) For every rearrangement generator A of D holds co-Gen(co-Gen $(A))=$ A.
(12) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} C=\operatorname{card} D$, then len $\operatorname{MIM}(\operatorname{FinS}(F, D))=$ len $\mathrm{CHI}(A, C)$.
Let D, C be non empty finite set, let A be a rearrangement generator of C, and let F be a partial function from D to \mathbb{R}. The functor F_{A} yields a partial function from C to \mathbb{R} and is defined by:
(Def.5) $\quad F_{A}=\sum(\operatorname{MIM}(\operatorname{FinS}(F, D)) \mathrm{CHI}(A, C))$.
The functor F_{A}^{\vee} yields a partial function from C to \mathbb{R} and is defined as follows:
(Def.6) $\quad F_{A}^{\vee}=\sum(\operatorname{MIM}(\operatorname{FinS}(F, D)) \mathrm{CHI}(\operatorname{co-Gen}(A), C))$.
Next we state a number of propositions:

Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} C=\operatorname{card} D$, then $\operatorname{dom} F_{A}^{\wedge}=C$.
(14) Let c be an element of C, and let F be a partial function from D to \mathbb{R}, and let A be a rearrangement generator of C. Suppose F is total and $\operatorname{card} C=\operatorname{card} D$. Then
(i) if $c \in A(1)$, then $(\operatorname{MIM}(\operatorname{FinS}(F, D)) \operatorname{CHI}(A, C)) \# c=\operatorname{MIM}(\operatorname{FinS}(F, D))$, and
(ii) for every n such that $1 \leq n$ and $n<\operatorname{len} A$ and $c \in A(n+1) \backslash A(n)$ holds $(\operatorname{MIM}(\operatorname{FinS}(F, D)) \mathrm{CHI}(A, C)) \# c=(n \longmapsto(0$ qua real number $))$ $-\operatorname{MINi}\left((\operatorname{FinS}(F, D))_{\llcorner n}\right)$.
(15) Let c be an element of C, and let F be a partial function from D to \mathbb{R}, and let A be a rearrangement generator of C. Suppose F is total and card $C=\operatorname{card} D$. Then if $c \in A(1)$, then $\left(F_{A}\right)(c)=(\operatorname{FinS}(F, D))(1)$ and for every n such that $1 \leq n$ and $n<$ len A and $c \in A(n+1) \backslash A(n)$ holds $\left(F_{A}^{\wedge}\right)(c)=(\operatorname{FinS}(F, D))(n+1)$.
(16) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} C=\operatorname{card} D$, then $\operatorname{rng} F_{A}^{\wedge}=$ rng FinS (F, D).
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. Suppose F is total and card $C=\operatorname{card} D$. Then F_{A}^{\wedge} and $\operatorname{FinS}(F, D)$ are fiberwise equipotent.
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and card $C=\operatorname{card} D$, then $\operatorname{FinS}\left(F_{A}^{\wedge}, C\right)=$ $\operatorname{FinS}(F, D)$.
(19) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and card $C=\operatorname{card} D$, then $\sum_{\kappa=0}^{C} F_{A}^{\wedge}(\kappa)=$ $\sum_{\kappa=0}^{D} F(\kappa)$.
(20) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and card $C=\operatorname{card} D$, then $\operatorname{Fin} S\left(\left(F_{A}^{\wedge}\right)-\right.$ $r, C)=\operatorname{FinS}(F-r, D)$ and $\sum_{\kappa=0}^{C}\left(\left(F_{A}^{\wedge}\right)-r\right)(\kappa)=\sum_{\kappa=0}^{D}(F-r)(\kappa)$.
(21) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} C=\operatorname{card} D$, then $\operatorname{dom} F_{A}^{\vee}=C$.
Let c be an element of C, and let F be a partial function from D to \mathbb{R}, and let A be a rearrangement generator of C. Suppose F is total and card $C=\operatorname{card} D$. Then if $c \in(\operatorname{co-Gen}(A))(1)$, then $\left(F_{A}^{\vee}\right)(c)=(\operatorname{FinS}(F, D))(1)$ and for every n such that $1 \leq n$ and $n<$ len $\operatorname{co-Gen}(A)$ and $c \in(\operatorname{co-Gen}(A))(n+1) \backslash(\operatorname{co-Gen}(A))(n)$ holds $\left(F_{A}^{\vee}\right)(c)=(\operatorname{FinS}(F, D))(n+1)$.
(23) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and card $C=\operatorname{card} D_{s}$ then $\operatorname{rng} F_{A}^{V}=$ rng $\operatorname{FinS}(F, D)$.
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. Suppose F is total and card $C=\operatorname{card} D$. Then F_{A}^{\vee} and

FinS (F, D) are fiberwise equipotent.
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} C=\operatorname{card} D$, then $\operatorname{FinS}\left(F_{A}^{\vee}, C\right)=$ FinS (F, D).
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} C=\operatorname{card} D$, then $\sum_{\kappa=0}^{C} F_{A}^{\vee}(\kappa)=$ $\sum_{\kappa=0}^{D} F(\kappa)$.
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} C=\operatorname{card} D$, then $\operatorname{FinS}\left(\left(F_{A}^{\vee}\right)-\right.$ $r, C)=\operatorname{FinS}(F-r, D)$ and $\sum_{\kappa=0}^{C}\left(\left(F_{A}^{\vee}\right)-r\right)(\kappa)=\sum_{k=0}^{D}(F-r)(\kappa)$.
(28) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. Suppose F is total and $\operatorname{card} C=\operatorname{card} D$. Then F_{A}^{\searrow} and F_{A}^{\wedge} are fiberwise equipotent and $\operatorname{FinS}\left(F_{A}^{\curlyvee}, C\right)=\operatorname{FinS}\left(F_{A}^{\wedge}, C\right)$ and $\sum_{\kappa=0}^{C} F_{A}^{\vee}(\kappa)=\sum_{\kappa=0}^{C} F_{A}^{\wedge}(\kappa)$.
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. Suppose F is total and $\operatorname{card} C=$ card D. Then $\max _{+}\left(\left(F_{A}^{\wedge}\right)-r\right)$ and $\max _{+}(F-r)$ are fiberwise equipotent and $\operatorname{Fin} S\left(\max _{+}\left(\left(F_{A}\right)-r\right), C\right)=F i n S\left(\max _{+}(F-r), D\right)$ and $\sum_{\kappa=0}^{C} \max _{+}\left(\left(F_{A}^{\wedge}\right)-r\right)(\kappa)=\sum_{\kappa=0}^{D} \max _{+}(F-r)(\kappa)$.
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. Suppose F is total and card $C=$ $\operatorname{card} D$. Then $\max _{-}\left(\left(F_{A}^{\wedge}\right)-r\right)$ and max_ $(F-r)$ are fiberwise equipotent and $\operatorname{FinS}\left(\max _{-}\left(\left(F_{A}\right)-r\right), C\right)=F i n S\left(\max _{-}(F-r), D\right)$ and $\sum_{\kappa=0}^{C} \max _{-}\left(\left(F_{A}\right)-r\right)(\kappa)=\sum_{\kappa=0}^{D} \max _{-}(F-r)(\kappa)$.
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} D=\operatorname{card} C$, then len $\operatorname{FinS}\left(F_{A}^{\wedge}, C\right)=$ $\operatorname{card} C$ and $1 \leq \operatorname{len} \operatorname{Fin} S\left(F_{A}^{\wedge}, C\right)$.

Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} D=\operatorname{card} C$ and $n \in \operatorname{dom} A$, then $\operatorname{FinS}\left(F_{A}, C\right) \dagger n=\operatorname{FinS}\left(F_{A}^{\wedge}, A(n)\right)$.
(33) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and card $D=\operatorname{card} C$, then $(F-r)_{A}=\left(F_{A}\right)-r$.
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. Suppose F is total and $\operatorname{card} C=$ card D. Then $\max _{+}\left(\left(F_{A}^{\vee}\right)-r\right)$ and $\max _{+}(F-r)$ are fiberwise equipotent and $\operatorname{FinS}\left(\max _{+}\left(\left(F_{A}^{\vee}\right)-r\right), C\right)=F i n S\left(\max _{+}(F-r), D\right)$ and $\sum_{\kappa=0}^{C} \max _{+}\left(\left(F_{A}^{\vee}\right)-r\right)(\kappa)=\sum_{\kappa=0}^{D} \max _{+}(F-r)(\kappa)$.
Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. Suppose F is total and $\operatorname{card} C=$ $\operatorname{card} D$. Then $\max _{-}\left(\left(F_{A}^{\vee}\right)-r\right)$ and $\max _{-}(F-r)$ are fiberwise equipotent and $\operatorname{FinS}\left(\max _{-}\left(\left(F_{A}^{\vee}\right)-r\right), C\right)=F i n S\left(\max _{-}(F-r), D\right)$ and $\sum_{\kappa=0}^{C} \max _{-}\left(\left(F_{A}^{\vee}\right)-r\right)(\kappa)=\sum_{\kappa=0}^{D} \max _{-}(F-r)(\kappa)$.
(36)

Let F be a partial function from D to \mathbb{R} and let A be a rearrangeinent generator of C. If F is total and $\operatorname{card} D:=\operatorname{card} C$, then len $\operatorname{FinS}\left(F_{A}^{\vee}, C\right)=$ $\operatorname{card} C$ and $1 \leq \operatorname{len} \operatorname{FinS}\left(F_{A}^{\vee}, C\right)$.
(37) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and $\operatorname{card} D=\operatorname{card} C$ and $n \in \operatorname{dom} A$, then $\operatorname{FinS}\left(F_{A}^{\vee}, C\right) \upharpoonright n=\operatorname{FinS}\left(F_{A}^{\vee},(\operatorname{co-Gen}(A))(n)\right)$.
(38) Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. If F is total and card $D=\operatorname{card} C$, then $(F-r)_{A}^{\vee}=\left(F_{A}^{\vee}\right)-r$.
(39). Let F be a partial function from D to \mathbb{R} and let A be a rearrangement generator of C. Suppose F is total and $\operatorname{card} D=\operatorname{card} C$. Then F_{A} and F are fiberwise equipotent and F_{A}^{\vee} and F are fiberwise equipotent and $\operatorname{rng} F_{A}=\operatorname{rng} F$ and $\operatorname{rng} F_{A}^{\vee}=\operatorname{rng} F$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czeslaw Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czeslaw Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Czeslaw Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[8] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Agata Darmochwat and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{r}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Jaroslaw Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[12] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[13] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[14] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Andrzej Trybulec and Czeslaw Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.

Received May 22, 1993

Many-sorted Sets

Andrzej Trybulec
Warsaw University
Białystok

Summary. The article deals with parameterized families of sets. When treated in a similar way as sets (due to systematic overloading notation used for sets) they are called many sorted sets. For instance, if x and X are two many-sorted sets (with the same set of indices I) then relation $x \in X$ is defined as $\forall_{i \in I} x_{i} \in X_{i}$.

I was prompted by a remark in a paper by Tarlecki and Wirsing: "Throughout the paper we deal with many-sorted sets, functions, relations etc. ... We feel free to use any standard set-theoretic notation without explicit use of indices" [3, p.97]. The aim of this work was to check the feasibility of such approach in Mizar. It works.

Let us observe some peculiarities:

- empty set (i.e. the many sorted set with empty set of indices) belongy to itself (theorem 133),
- we get two different inclusions $X \subseteq Y$ iff $\forall_{i \in I} X_{i} \subseteq Y_{i}$ and $X \subseteq Y$ iff $\forall_{x} x \in X \Rightarrow x \in Y$ equivalent only for sets that yield non empty values.
Therefore the care is advised.

MML Identifier: PBOOLE.

The articles [5], [1], [4], and [2] provide the terminology and notation for this paper.

1. Preliminaries

In the sequel i, e will be arbitrary.
A function is empty yielding if:
(Def.1) For every i such that $i \in$ dom it holds it (i) is empty.
A function is non empty set yielding if:
(Def.2) For every i such that $i \in \operatorname{dom}$ it holds $\operatorname{it}(i)$ is non empty.

Next we state two propositions:
(1) For every function f such that f is non empty yielding holds $\operatorname{rng} f$ has non empty elements.
(2) For every function f holds f is empty yielding iff $f=\emptyset$ or rng $f=\{\emptyset\}$.

In the sequel I denotes a set.
Let us consider I. A function is said to be a many sorted set of I if:
(Def.3) dom it $=I$.
In the sequel x, y, z, X, Y, Z, V are many sorted sets of I.
The scheme Kuratowski Function deals with a set \mathcal{A} and a unary functor \mathcal{F} yielding arbitrary, and states that:

There exists a many sorted set f of \mathcal{A} such that for every e such that $e \in \mathcal{A}$ holds $f(e) \in \mathcal{F}(e)$
provided the following requirement is met:

- For every e such that $e \in \mathcal{A}$ holds $\mathcal{F}(e) \neq \emptyset$.

Let us consider I, X, Y. The predicate $X \in Y$ is defined by:
(Def.4) For every i such that $i \in I$ holds $X(i) \in Y(i)$.
The predicate $X \subseteq Y$ is defined by:
(Def.5) For every i such that $i \in I$ holds $X(i) \subseteq Y(i)$.
The scheme PSeparation deals with a set \mathcal{A}, a many sorted set \mathcal{B} of \mathcal{A}, and a binary predicate \mathcal{P}, and states that:

There exists a many sorted set X of \mathcal{A} such that for every set i holds if $i \in \mathcal{A}$, then for every e holds $e \in X(i)$ iff $e \in \mathcal{B}(i)$ and $\mathcal{P}[i, e]$
for all values of the parameters.
One can prove the following proposition
(3) If for every i such that $i \in I$ holds $X(i)=Y(i)$, then $X=Y$.

Let us consider I. The functor \emptyset_{I} yields a many sorted set of I and is defined by:
(Def.6) $\quad \emptyset_{I}=I \longmapsto \emptyset$.
Let us consider X, Y. The functor $X \cup Y$ yielding a many sorted set of I is defined by:
(Def.7) For every i such that $i \in I$ holds $(X \cup Y)(i)=X(i) \cup Y(i)$.
The functor $X \cap Y$ yielding a many sorted set of I is defined by:
(Def.8) For every i such that $i \in I$ holds $(X \cap Y)(i)=X(i) \cap Y(i)$.
The functor $X \backslash Y$ yields a many sorted set of I and is defined as follows:
(Def.9) For every i such that $i \in I$ holds $(X \backslash Y)(i)=X(i) \backslash Y(i)$.
We say that X overlaps Y if and only if:
(Def.10) For every i such that $i \in I$ holds $X(i)$ meets $Y(i)$.
We say that X misses Y if and only if:
(Def.11) For every i such that $i \in I$ holds $X(i)$ misses $Y(i)$.

Let us consider I, X, Y. The functor $X \dot{-} Y$ yielding a many sorted set of I is defined as follows:
(Def.12) $\quad X \doteq Y=(X \backslash Y) \cup(Y \backslash X)$.
Next we state several propositions:
(4) For every i such that $i \in I$ holds $(X \dot{\oplus})(i)=X(i) \div Y(i)$.
(5) For every i such that $i \in I$ holds $\emptyset_{I}(i)=\emptyset$.
(6) If for every i such that $i \in I$ holds $X(i)=\emptyset$, then $X=\emptyset_{I}$.
(7) If $x \in X$ or $x \in Y$, then $x \in X \cup Y$.
(8) $x \in X \cap Y$ iff $x \in X$ and $x \in Y$.
(9) If $x \in X$ and $X \subseteq Y$, then $x \in Y$.
(10) If $x \in X$ and $x \in Y$, then X overlaps Y.
(11) If X overlaps Y, then there exists x such that $x \in X$ and $x \in Y$.
(12) If $x \in X \backslash Y$, then $x \in X$.

2. Lattice Properties of Many Sorted Sets

One can prove the following proposition
(13) $X \subseteq X$.

Let us consider I, X, Y. Let us observe that $X=Y$ if and only if:
(Def.13) $\quad X \subseteq Y$ and $Y \subseteq X$.
Next we state a number of propositions:
(14) If $X \subseteq Y$ and $Y \subseteq X$, then $X=Y$.
(15) If $X \subseteq Y$ and $Y \subseteq Z$, then $X \subseteq Z$.
(16) $X \subseteq X \cup Y$ and $Y \subseteq X \cup Y$.
(17) $X \cap Y \subseteq X$ and $X \cap Y \subseteq Y$.
(18) If $X \subseteq Z$ and $Y \subseteq Z$, then $X \cup Y \subseteq Z$.
(19) If $Z \subseteq X$ and $Z \subseteq Y$, then $Z \subseteq X \cap Y$.
(20) If $X \subseteq Y$, then $X \cup Z \subseteq Y \cup Z$ and $Z \cup X \subseteq Z \cup Y$.
(21) If $X \subseteq Y$, then $X \cap Z \subseteq Y \cap Z$ and $Z \cap X \subseteq Z \cap Y$.
(22) If $X \subseteq Y$ and $Z \subseteq V$, then $X \cup Z \subseteq Y \cup V$.
(23) If $X \subseteq Y$ and $Z \subseteq V$, then $X \cap Z \subseteq Y \cap V$.
(24) If $X \subseteq Y$, then $X \cup Y=Y$ and $Y \cup X=Y$.
(25) If $X \subseteq Y$, then $X \cap Y=X$ and $Y \cap X=X$.
(26) $X \cap Y \subseteq X \cup Z$.
(27) If $X \subseteq Z$, then $X \cup Y \cap Z=(X \cup Y) \cap Z$.
(28) $\quad X=Y \cup Z$ iff $Y \subseteq X$ and $Z \subseteq X$ and for every V such that $Y \subseteq V$ and $Z \subseteq V$ holds $X \subseteq V$.
(29) $X=Y \cap Z$ iff $X \subseteq Y$ and $X \subseteq Z$ and for every V such that $V \subseteq Y$ and $V \subseteq Z$ holds $V \subseteq X$.
(30) $X \cup X=X$.
(31) $X \cap X=X$.
(32) $X \cup Y=Y \cup X$.
(33) $X \cap Y=Y \cap X$.
(34) $(X \cup Y) \cup Z=X \cup(Y \cup Z)$.
(35) $(X \cap Y) \cap Z=X \cap(Y \cap Z)$.
(36). $X \cap(X \cup Y)=X$ and $(X \cup Y) \cap X=X$ and $X \cap(Y \cup X)=X$ and $(Y \cup X) \cap X=X$.
(37) $X \cup X \cap Y=X$ and $X \cap Y \cup X=X$ and $X \cup Y \cap X=X$ and $Y \cap X \cup X=X$.
(38) $X \cap(Y \cup Z)=X \cap Y \cup X \cap Z$ and $(Y \cup Z) \cap X=Y \cap X \cup Z \cap X$.
(39) $X \cup Y \cap Z=(X \cup Y) \cap(X \cup Z)$ and $Y \cap Z \cup X=(Y \cup X) \cap(Z \cup X)$.
(40) If $X \cap Y \cup X \cap Z=X$, then $X \subseteq Y \cup Z$.
(41) If $(X \cup Y) \cap(X \cup Z)=X$, then $Y \cap Z \subseteq X$.
(42) $X \cap Y \cup Y \cap Z \cup Z \cap X=(X \cup Y) \cap(Y \cup Z) \cap(Z \cup X)$.
(43) If $X \cup Y \subseteq Z$, then $X \subseteq Z$ and $Y \subseteq Z$.
(44) If $X \subseteq Y \cap Z$, then $X \subseteq Y$ and $X \subseteq Z$.
(45) $(X \cup Y) \cup Z=X \cup Z \cup(Y \cup Z)$ and $X \cup(Y \cup Z)=(X \cup Y) \cup(X \cup Z)$.
(46) $\quad(X \cap Y) \cap Z=X \cap Z \cap(Y \cap Z)$ and $X \cap(Y \cap Z)=(X \cap Y) \cap(X \cap Z)$.
(47) $X \cup(X \cup Y)=X \cup Y$ and $X \cup Y \cup Y=X \cup Y$.
(48) $\quad X \cap(X \cap Y)=X \cap Y$ and $X \cap Y \cap Y=X \cap Y$.

3. The Empty Many Sorted Set

Next we state several propositions:
(49) $\emptyset_{I} \subseteq X$.
(50) If $X \subseteq \emptyset_{I}$, then $X=\emptyset_{I}$.
(51) If $X \subseteq Y$ and $X \subseteq Z$ and $Y \cap Z=\emptyset_{I}$, then $X=\emptyset_{I}$.
(52) If $X \subseteq Y$ and $Y \cap Z=\emptyset_{I}$, then $X \cap Z=\emptyset_{I}$.
(53) $X \cup \emptyset_{I}=X$ and $\emptyset_{I} \cup X=X$.
(54) If $X \cup Y=\emptyset_{I}$, then $X=\emptyset_{I}$ and $Y=\emptyset_{I}$.
(55) $X \cap \emptyset_{I}=\emptyset_{I}$ and $\emptyset_{I} \cap X=\emptyset_{I}$.
(56) If $X \subseteq Y \cup Z$ and $X \cap Z=\emptyset_{i}$, thén $X \subseteq Y$.
(57) If $Y \subseteq X$ and $X \cap Y=\emptyset_{I}$, then $Y=\emptyset_{I}$.

4. The Difference and the Symmetric Difference

We now state a number of propositions:
(58) $X \backslash Y=\emptyset_{I}$ iff $X \subseteq Y$.
(59) If $X \subseteq Y$, then $X \backslash Z \subseteq Y \backslash Z$.
(60) If $X \subseteq Y$, then $Z \backslash Y \subseteq Z \backslash X$.
(61) If $X \subseteq Y$ and $Z \subseteq V$, then $X \backslash V \subseteq Y \backslash Z$.
(62) $X \backslash Y \subseteq X$.
(63) If $X \subseteq Y \backslash X$, then $X=\emptyset_{I}$.
(64) $X \backslash X=\emptyset_{I}$.
(65) $X \backslash \emptyset_{I}=X$.
(66) $\emptyset_{I} \backslash X=\emptyset_{I}$.
(67) $\quad X \backslash(X \cup Y)=\emptyset_{I}$ and $X \backslash(Y \cup X)=\emptyset_{I}$.
(68) $X \cap(Y \backslash Z)=X \cap Y \backslash Z$.
(69) $\quad(X \backslash Y) \cap Y=\emptyset_{I}$ and $Y \cap(X \backslash Y)=\emptyset_{I}$.
(70) $X \backslash(Y \backslash Z)=(X \backslash Y) \cup X \cap Z$.
(71) $\quad(X \backslash Y) \cup X \cap Y=X$ and $X \cap Y \cup(X \backslash Y)=X$.
(72) If $X \subseteq Y$, then $Y=X \cup(Y \backslash X)$ and $Y=(Y \backslash X) \cup X$.
(73) $X \cup(Y \backslash X)=X \cup Y$ and $(Y \backslash X) \cup X=Y \cup X$.
(74) $X \backslash(X \backslash Y)=X \cap Y$.
(75) $X \backslash Y \cap Z=(X \backslash Y) \cup(X \backslash Z)$.
(76) $X \backslash X \cap Y=X \backslash Y$ and $X \backslash Y \cap X=X \backslash Y$.
(77) $X \cap Y=\emptyset_{I}$ iff $X \backslash Y=X$.
(78) $(X \cup Y) \backslash Z=(X \backslash Z) \cup(Y \backslash Z)$.
(79) $X \backslash Y \backslash Z=X \backslash(Y \cup Z)$.
(80) $X \cap Y \backslash Z=(X \backslash Z) \cap(Y \backslash Z)$.
(81) $(X \cup Y) \backslash Y=X \backslash Y$.
(82) If $X \subseteq Y \cup Z$, then $X \backslash Y \subseteq Z$ and $X \backslash Z \subseteq Y$.
(83) $(X \cup Y) \backslash X \cap Y=(X \backslash Y) \cup(Y \backslash X)$.
(84) $X \backslash Y \backslash Y=X \backslash Y$.
(85) $\quad X \backslash(Y \cup Z)=(X \backslash Y) \cap(X \backslash Z)$.
(86) If $X \backslash Y=Y \backslash X$, then $X=Y$.
(87) $X \cap(Y \backslash Z)=X \cap Y \backslash X \cap Z$ and $(Y \backslash Z) \cap X=Y \cap X \backslash Z \cap X$.
(88) If $X \backslash Y \subseteq Z$, then $X \subseteq Y \cup Z$.
(89) $X \backslash Y \subseteq X \dot{-} Y$.
(90) $X \dot{-} Y=(X \backslash Y) \cup(Y \backslash X)$.
(91) $X \div \emptyset_{I}=X$ and $\emptyset_{I} \div X=X$.
(92) $X \dot{\circ} X=\emptyset_{I}$.
(93) $X \doteq Y=Y \doteq X$.
(94) $\quad X \cup Y=(X \doteq Y) \cup X \cap Y$.
(95) $\quad X \dot{-} Y=(X \cup Y) \backslash X \cap Y$.
(96) $\quad(X \doteq Y) \backslash Z=(X \backslash(Y \cup Z)) \cup(Y \backslash(X \cup Z))$.
(97) $\quad X \backslash(Y \doteq Z)=(X \backslash(Y \cup Z)) \cup X \cap Y \cap Z$.
(98) $(X \div Y) \div Z=X \dot{-}(Y \dot{-})$.
(99) If $X \backslash Y \subseteq Z$ and $Y \backslash X \subseteq Z$, then $X \dot{-} \subseteq Z$.
(100) $X \cup Y=X \doteq(Y \backslash X)$.
(101) $\quad X \cap Y=X \dot{\circ}(X \backslash Y)$.

(103) $Y \backslash X=X \doteq(X \cup Y)$.
(104) $X \cup Y=X \doteq Y \doteq X \cap Y$.
(105) $X \cap Y=X \doteq Y \dot{-}(X \cup Y)$.

5. Meeting and Overlapping

The following propositions are true:
(106) If X overlaps Y or X overlaps Z, then X overlaps $Y \cup Z$.
(107) If X overlaps Y, then Y overlaps X.
(108) If X overlaps Y and $Y \subseteq Z$, then X overlaps Z.
(109) If X overlaps Y and $X \subseteq Z$, then Z overlaps Y.
(110) If $X \subseteq Y$ and $Z \subseteq V$ and X overlaps Z, then Y overlaps V.
(111) If X overlaps $Y \cap Z$, then X overlaps Y and X overlaps Z.
(112) If X overlaps Z and $X \subseteq V$, then X overlaps $Z \cap V$.
(113) If X overlaps $Y \backslash Z$, then X overlaps Y.
(114) If Y does not overlap Z, then $X \cap Y$ does not overlap $X \cap Z$ and $Y \cap X$ does not overlap $Z \cap X$.
(115) If X overlaps $Y \backslash Z$, then Y overlaps $X \backslash Z$.
(116) If X meets Y and $Y \subseteq Z$, then X meets Z.
(117) If X meets Y, then Y meets X.
(118) $\quad Y$ misses $X \backslash Y$.
(119) $\quad X \cap Y$ misses $X \backslash Y$.
(120) $X \cap Y$ misses $X \doteq Y$.
(121) If X misses Y, then $X \cap Y=\emptyset_{I}$.
(122) If $X \neq \emptyset_{I}$, then X meets X.
(123) If $X \subseteq Y$ and $X \subseteq Z$ and Y misses Z, then $X=\emptyset_{I}$.
(124) If $Z \cup V=X \cup Y$ and X misses Z and Y misses V, then $X=V$ and $Y=Z$.

If $Z \cup V=X \cup Y$ and Y misses Z and X misses V, then $X=Z$ and $Y=V$.
If X misses Y, then $X \backslash Y=X$ and $Y \backslash X=Y$.
(127) If X misses Y, then $(X \cup Y) \backslash Y=X$ and $(X \cup Y) \backslash X=Y$.
(128) If $X \backslash Y=X$, then X misses Y and Y misses X.
(129) $\quad X \backslash Y$ misses $Y \backslash X$.

6. The Second Inclusion

Let us consider I, X, Y. The predicate $X \sqsubseteq Y$ is defined as follows:
(Def.14) For every x such that $x \in X$ holds $x \in Y$.
The following three propositions are true:
(130) If $X \subseteq Y$, then $X \sqsubseteq Y$.
(131) $X \sqsubseteq X$.
(132) If $X \sqsubseteq Y$ and $Y \sqsubseteq Z$, then $X \sqsubseteq Z$.

7. Non Empty and Non-empty Many Sorted Sets

The following propositions are true:
(133) $\emptyset_{\emptyset} \in \emptyset_{\emptyset}$.
(134) For every many sorted set X of \emptyset holds $X=\emptyset$.

We follow a convention: I will be a non empty set and x, X, Y, Z will be many sorted sets of I.

The following propositions are true:
(135) If X overlaps Y, then X meets Y.
(136) It is not true that there exists x such that $x \in \emptyset_{I}$.
(137) If $x \in X$ and $x \in Y$, then $X \cap Y \neq \emptyset_{I}$.
(138) X does not overlap \emptyset_{I} and \emptyset_{I} does not overlap X.
(139) If $X \cap Y=\emptyset_{I}$, then X does not overlap Y.
(140) If X overlaps X, then $X \neq \emptyset_{I}$.

Let I be a set. A many sorted set of I is empty yielding if:
(Def.15) For every i such that $i \in I$ holds $\operatorname{it}(i)$ is empty.
A many sorted set of I is non empty set yielding if:
(Def.16) For every i such that $i \in I$ holds it (i) is non empty.
Let I be a non empty set. Observe that every many sorted set of I which is non-empty is also non empty and every many sorted set of I which is empty is also non non-empty.

One can prove the following propositions:
(141) $\quad X$ is empty iff $X=\emptyset_{I}$.
(142) If Y is empty and $X \subseteq Y$, then X is empty.
(143) If X is non-empty and $X \subseteq Y$, then Y is non-empty.
(144) If X is non-empty and $X \sqsubseteq Y$, then $X \subseteq Y$.
(145) If X is non-empty and $X \sqsubseteq Y$, then Y is non-empty.

In the sequel X denotes a non-empty many sorted set of I.
The following propositions are true:
(146) There exists x such that $x \in X$.
(147) If for every x holds $x \in X$ iff $x \in Y$, then $X=Y$.
(148) If for every x holds $x \in X$ iff $x \in Y$ and $x \in Z$, then $X=Y \cap Z$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[3] Andrzej Tarlecki and Martin Wirsing. Continuous abstract data types. Fundamenta Informaticae, 9(1):95-125, 1986.
[4] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[5] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.

Received July 7, 1993

Subalgebras of the Universal Algebra. Lattices of Subalgebras

Ewa Burakowska
Warsaw University
Białystok

Summary. Introduces a definition of a subalgebra of a universal algebra. A notion of similar algebras and basic operations on subalgebras such as a subalgebra generated by a set, the intersection and the sum of two subalgebras were introduced. Some basic facts concerning the above notions have been proved. The article also contains the definition of a lattice of subalgebras of a universal algebra.

MML Identifier: UNIALG_2.

The papers [7], [8], [4], [1], [5], [3], [9], [2], and [6] provide the terminology and notation for this paper.

One can prove the following propositions:
(1) For every natural number n and for every non empty set D and for every non empty subset D_{1} of D holds $D^{n} \cap D_{1}^{n}=D_{1}{ }^{n}$.
(2) For every non empty set D and for every homogeneous quasi total non empty partial function h from D^{*} to D holds dom $h=D^{\text {arity } h}$.
We follow a convention: $U_{0}, U_{1}, U_{2}, U_{3}$ denote universal algebras, n, i denote natural numbers, and a denotes an element of the carrier of U_{0}.

Let D be a non empty set. A non empty set is called a set of universal functions on D if:
(Def.1) Every element of it is a homogeneous quasi total non empty partial function from D^{*} to D.
Let D be a non empty set and let P be a set of universal functions on D. We see that the element of P is a homogeneous quasi total non empty partial function from D^{*} to D.

Let us consider U_{1}. A set of universal functions on U_{1} is a set of universal functions on the carrier of U_{1}.

Let U_{1} be a universal algebra structure. A partial function on U_{1} is a partial function from (the carrier of $\left.U_{1}\right)^{*}$ to the carrier of U_{1}.

Let us consider U_{1}, U_{2}. We say that U_{1} and U_{2} are similar if and only if:
(Def.2) signature $U_{1}=$ signature U_{2}.
Let us observe that the predicate introduced above is reflexive symmetric.
The following propositions are true:
(3) If U_{1} and U_{2} are similar, then len Opers $U_{1}=$ len Opers U_{2}.
(4) If U_{1} and U_{2} are similar and U_{2} and U_{3} are similar, then U_{1} and U_{3} are similar.
(5) rng Opers U_{0} is a non empty subset of (the carrier of $\left.U_{0}\right)^{*} \rightarrow$ the carrier of U_{0}.
Let us consider U_{0}. The functor Operations $\left(U_{0}\right)$ yielding a set of universal functions on U_{0} is defined as follows:
(Def.3) Operations $\left(U_{0}\right)=$ rng Opers U_{0}.
Let us consider U_{1}. A operation of U_{1} is an element of Operations $\left(U_{1}\right)$.
Let us consider U_{0}. A subset of U_{0} is a subset of the carrier of U_{0}.
In the sequel x_{1}, y_{1} will denote finite sequences of elements of A.
One can prove the following proposition
(6) If $n \in \operatorname{dom}$ Opers U_{0}, then (Opers $\left.U_{0}\right)(n)$ is a operation of U_{0}.

Let U_{0} be a universal algebra, let A be a subset of U_{0}, and let o be a operation of U_{0}. We say that A is closed on o if and only if:
(Def.4) For every finite sequence s of elements of A such that len $s=$ arity o holds $o(s) \in A$.
Let U_{0} be a universal algebra and let A be a subset of U_{0}. We say that A is operations closed if and only if:
(Def.5) For every operation o of U_{0} holds A is closed on o.
Let us consider U_{0}, A, o. Let us assume that A is closed on o. The functor o_{A} yielding a homogeneous quasi total non empty partial function from A^{*} to A is defined as follows:
(Def.6) $o_{A}=o \upharpoonright A^{\text {arity } o . ~}$
Let us consider U_{0}, A. The functor Opers $\left(U_{0}, A\right)$ yields a finite sequence of elements of $A^{*} \dot{\rightarrow} A$ and is defined as follows:
(Def.7) dom Opers $\left(U_{0}, A\right)=\operatorname{dom}$ Opers U_{0} and for all n,o such that $n \in$ $\operatorname{dom} O \operatorname{Opers}\left(U_{0}, A\right)$ and $o=\left(\right.$ Opers $\left.U_{0}\right)(n)$ holds $\left(O p e r s\left(U_{0}, A\right)\right)(n)=o_{A}$.
The following two propositions are true:
(7) For every non empty subset B of U_{0} such that $B=$ the carrier of U_{0} holds B is operations closed and for every o holds $o_{B}=o$.
(8) Let U_{1} be a universal algebra, and let A be a non empty subset of U_{1}, and let o be a operation of U_{1}. If A is closed on o, then $\operatorname{arity}\left(o_{A}\right)=\operatorname{arity} o$.
Let us consider U_{0}. A universal algebra is said to be a subalgebra of U_{0} if it satisfies the conditions (Def.8).
(Def.8) (i) The carrier of it is a subset of U_{0}, and
(ii) for every non empty subset B of U_{0} such that $B=$ the carrier of it holds Opers it $=\operatorname{Opers}\left(U_{0}, B\right)$ and B is operations closed.
Let U_{0} be a universal algebra. One can verify that there exists a subalgebra of U_{0} which is strict.

One can prove the following propositions:
(9) Let U_{0}, U_{1} be universal algebras, and let o_{0} be a operation of U_{0}, and let o_{1} be a operation of U_{1}, and let n be a natural number. Suppose U_{0} is a subalgebra of U_{1} and $n \in$ dom Opers U_{0} and $o_{0}=\left(\right.$ Opers $\left.U_{0}\right)(n)$ and $o_{1}=\left(\right.$ Opers $\left.U_{1}\right)(n)$. Then arity $o_{0}=\operatorname{arity} o_{1}$.
(10) If U_{0} is a subalgebra of U_{1}, then dom Opers $U_{0}=\operatorname{dom}$ Opers U_{1}.
(11) U_{0} is a subalgebra of U_{0}.
(12) If U_{0} is a subalgebra of U_{1} and U_{1} is a subalgebra of U_{2}, then U_{0} is a subalgebra of U_{2}.
(13) If U_{1} is a strict subalgebra of U_{2} and U_{2} is a strict subalgebra of U_{1}, then $U_{1}=U_{2}$.
(14) For all subalgebras U_{1}, U_{2} of U_{0} such that the carrier of $U_{1} \subseteq$ the carrier of U_{2} holds U_{1} is a subalgebra of U_{2}.
(15) For all strict subalgebra U_{1}, U_{2} of U_{0} such that the carrier of $U_{1}=$ the carrier of U_{2} holds $U_{1}=U_{2}$.
(16) If U_{1} is a subalgebra of U_{2}, then U_{1} and U_{2} are similar.
(17) For every non empty subset A of U_{0} holds $\left\langle A, \operatorname{Opers}\left(U_{0}, A\right)\right\rangle$ is a strict universal algebra.
Let U_{0} be a universal algebra and let A be a non empty subset of U_{0}. Let us assume that A is operations closed. The functor $\langle A, \mathrm{Ops}\rangle$ yielding a strict subalgebra of U_{0} is defined as follows:
(Def.9) $\langle A, O p s\rangle=\left\langle A, \operatorname{Opers}\left(U_{0}, A\right)\right\rangle$.
Let us consider U_{0} and let U_{1}, U_{2} be subalgebras of U_{0}. Let us assume that (the carrier of $\left.U_{1}\right) \cap$ (the carrier of $\left.U_{2}\right) \neq \emptyset$. The functor $U_{1} \cap U_{2}$ yielding a strict subalgebra of U_{0} is defined by the conditions (Def.10).
(Def.10) (i) The carrier of $U_{1} \cap U_{2}=$ (the carrier of $\left.U_{1}\right) \cap$ (the carrier of U_{2}), and
(ii) for every non empty subset B of U_{0} such that $B=$ the carrier of $U_{1} \cap U_{2}$ holds Opers $\left(U_{1} \cap U_{2}\right)=\operatorname{Opers}\left(U_{0}, B\right)$ and B is operations closed.
Let us consider U_{0}. The functor Constants $\left(U_{0}\right)$ yielding a subset of U_{0} is defined by:
(Def.11) Constants $\left(U_{0}\right)=\left\{a: a\right.$ ranges over elements of the carrier of U_{0}, \exists_{o} arity $\left.o=0 \wedge a \in \operatorname{rng} o\right\}$.
A universal algebra has constants if:
(Def.12) There exists a operation o of it such that arity $o=0$.
Let us note that there exists a universal algebra which is strict and has constants.

Let U_{0} be a universal algebra with constants. Then Constants $\left(U_{0}\right)$ is a non empty subset of U_{0}.

One can prove the following three propositions:
(18) For every universal algebra U_{0} and for every subalgebra U_{1} of U_{0} holds Constants $\left(U_{0}\right)$ is a subset of U_{1}.
(19) For every universal algebra U_{0} with constants and for every subalgebra U_{1} of U_{0} holds Constants $\left(U_{0}\right)$ is a non empty subset of U_{1}.
(20) Let U_{0} be a universal algebra with constants and let U_{1}, U_{2} be subalgebras of U_{0}. Then (the carrier of $\left.U_{1}\right) \cap\left(\right.$ the carrier of $\left.U_{2}\right) \neq \emptyset$.
Let U_{0} be a universal algebra and let A be a subset of U_{0}. Let us assume that Constants $\left(U_{0}\right) \neq \emptyset$ or $A \neq \emptyset$. The functor Gen ${ }^{\mathrm{UA}}(A)$ yields a strict subalgebra of U_{0} and is defined by the conditions (Def.13).
(Def.13) (i) $A \subseteq$ the carrier of $\operatorname{Gen}^{\mathrm{UA}}(A)$, and
(ii) for every subalgebra U_{1} of U_{0} such that $A \subseteq$ the carrier of U_{1} holds Gen ${ }^{\mathrm{UA}}(A)$ is a subalgebra of U_{1}.
Next we state two propositions:
(21) For every strict universal algebra U_{0} holds $\operatorname{Gen}^{\mathrm{UA}}\left(\Omega_{\text {the carrier of } U_{0}}\right)=$ U_{0}.
(22) Let U_{0} be a universal algebra, and let U_{1} be a strict subalgebra of U_{0}, and let B be a non empty subset of U_{0}. If $B=$ the carrier of U_{1}, then $\operatorname{Gen}^{\mathrm{UA}}(B)=U_{1}$.
Let U_{0} be a universal algebra and let U_{1}, U_{2} be subalgebras of U_{0}. The functor $U_{1} \bigsqcup U_{2}$ yields a strict subalgebra of U_{0} and is defined by:
(Def.14) For every non empty subset A of U_{0} such that $A=$ (the carrier of $\left.U_{1}\right) \cup$ (the carrier of U_{2}) holds $U_{1} \sqcup U_{2}=\operatorname{Gen}^{\mathrm{UA}}(A)$.
Next we state four propositions:
(23) Let U_{0} be a universal algebra, and let U_{1} be a subalgebra of U_{0}, and let A, B be subsets of U_{0}. If $A \neq \emptyset$ or $\operatorname{Constants}\left(U_{0}\right) \neq \emptyset$ and if $B=A \cup$ the carrier of U_{1}, then $\mathrm{Gen}^{\mathrm{UA}}(A) \bigsqcup U_{1}=\mathrm{Gen}^{\mathrm{UA}}(B)$.
(24) For every universal algebra U_{0} and for all subalgebras U_{1}, U_{2} of U_{0} holds $U_{1} \bigsqcup U_{2}=U_{2} \bigsqcup U_{1}$.
(25) For every universal algebra U_{0} with constants and for all strict subalgebra U_{1}, U_{2} of U_{0} holds $U_{1} \cap\left(U_{1} \bigsqcup U_{2}\right)=U_{1}$.
(26) For every universal algebra U_{0} with constants and for all strict subalgebra U_{1}, U_{2} of U_{0} holds $U_{1} \cap U_{2} \sqcup U_{2}=U_{2}$.
Let U_{0} be a universal algebra. The functor Subalgebras $\left(U_{0}\right)$ yields a non empty set and is defined as follows:
(Def.15) For every x holds $x \in \operatorname{Subalgebras}\left(U_{0}\right)$ iff x is a strict subalgebra of U_{0}.
Let U_{0} be a universal algebra. The functor $\bigsqcup_{U_{0}}$ yielding a binary operation on Subalgebras $\left(U_{0}\right)$ is defined by:
(Def.16) For all elements x, y of $\operatorname{Subalgebras}\left(U_{0}\right)$ and for all strict subalgebra U_{1}, U_{2} of U_{0} such that $x=U_{1}$ and $y=U_{2}$ holds $\bigsqcup_{\left(U_{0}\right)}(x, y)=U_{1} \sqcup U_{2}$.

Let U_{0} be a universal algebra. The functor Πv_{0} yields a binary operation on Subalgebras $\left(U_{0}\right)$ and is defined by:
(Def.17) For all elements x, y of Subalgebras $\left(U_{0}\right)$ and for all strict subalgebra U_{1}, U_{2} of U_{0} such that $x=U_{1}$ and $y=U_{2}$ holds $\prod_{\left(U_{0}\right)}(x, y)=U_{1} \cap U_{2}$.
One can prove the following four propositions:
(27) $\bigsqcup_{\left(U_{0}\right)}$ is commutative.
(28) $\bigsqcup_{\left(U_{0}\right)}$ is associative.
(29) For every universal algebra U_{0} with constants holds $\prod_{\left(U_{0}\right)}$ is commutative.
(30) For every universal algebra U_{0} with constants holds $\prod_{\left(U_{0}\right)}$ is associative.

Let U_{0} be a universal algebra with constants. The lattice of subalgebras of U_{0} yielding a strict lattice is defined as follows:
(Def.18) The lattice of subalgebras of $U_{0}=\left\langle\operatorname{Subalgebras}\left(U_{0}\right), \bigsqcup_{\left(U_{0}\right)}, \prod_{\left(U_{0}\right)}\right\rangle$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[3] Czeslaw Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Jarosław Kotowicz, Beata Madras, and Malgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[9] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received July 8, 1993

Hahn-Banach Theorem

Bogdan Nowak
Lódź University

Andrzej Trybulec
Warsaw University
Bialystok

Summary. We prove a version of Hahn-Banach Theorem.

MML Identifier: HAHNBAN.

The notation and terminology used here are introduced in the following papers: [13], [5], [9], [2], [3], [17], [16], [15], [8], [4], [10], [6], [14], [12], [11], [1], and [7].

1. Preliminaries

The following propositions are true:
(1) For arbitrary x, y and for every function f such that $\langle x, y\rangle \in f$ holds $y \in \operatorname{rng} f$.
(2) For every set X and for all functions f, g such that $X \subseteq \operatorname{dom} f$ and $f \subseteq g$ holds $f \upharpoonright X=g \upharpoonright X$.
(3) For every non empty set A and for arbitrary b such that $A \neq\{b\}$ there exists an element a of A such that $a \neq b$.
Let B be a non empty functional set. Observe that every element of B is function-like.

The following propositions are true:
(4) For all sets X, Y holds every non empty subset of $X \dot{\rightarrow} Y$ is a non empty functional set.
(5) Let B be a non empty functional set and let f be a function. Suppose $f=\bigcup B$. Then $\operatorname{dom} f=\bigcup\{\operatorname{dom} g: g$ ranges over elements of B,$\} and$ $\mathrm{rng} f=\bigcup\{\operatorname{rng} g: g$ ranges over elements of B,$\} .$
The scheme NonUniqExD' deals with a non empty set \mathcal{A}, a non empty set \mathcal{B}, and a binary predicate \mathcal{P}, and states that:

There exists a function f from \mathcal{A} into \mathcal{B} such that for every element e of \mathcal{A} holds $\mathcal{P}[e, f(e)]$
provided the parameters satisfy the following condition:

- For every element e of \mathcal{A} there exists an element u of \mathcal{B} such that $\mathcal{P}[e, u]$.
One can prove the following propositions:
(6) For every non empty subset A of $\overline{\mathbb{R}}$ such that for every Real number r such that $r \in A$ holds $r \leq-\infty$ holds $A=\{-\infty\}$.
(7) For every non empty subset A of $\overline{\mathbb{R}}$ such that for every Real number r such that $r \in A$ holds $+\infty \leq r$ holds $A=\{+\infty\}$.
(8) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let r be a Real number. If $r<\sup A$, then there exists a Real number such that $s \in A$ and $r<s$.
(9) Let A be a non empty subset of $\overline{\bar{R}}$ and let r be a Real number. If $\inf A<r$, then there exists a Real number s such that $s \in A$ and $s<r$.
(10) Let A, B be non empty subset of $\overline{\mathbb{R}}$. Suppose that for all Real numbers r, s such that $r \in A$ and $s \in B$ holds $r \leq s$. Then $\sup A \leq \inf B$.
(12) ${ }^{1}$ Let x, y be real numbers and let x^{\prime}, y^{\prime} be Real numbers. If $x=x^{\prime}$ and $y=y^{\prime}$, then $x \leq y$ iff $x^{\prime} \leq y^{\prime}$.

2. Sets Linearly Ordered by the Inclusion

A set is \subseteq-linear if:
(Def.1) For arbitrary x, y such that $x \in$ it and $y \in$ it holds $x \subseteq y$ or $y \subseteq x$.
Let A be a non empty set. Note that there exists a subset of A which is \subseteq -linear and non empty.

We now state the proposition
(13) For all sets X, Y and for every \subseteq-linear non empty subset B of $X \dot{\rightarrow} Y$ holds $\uplus B \in X \dot{\rightarrow} Y$.

3. Subspaces of a Real Linear Space

In the sequel V will be a real linear space.
One can prove the following propositions:
(14) For all subspaces W_{1}, W_{2} of V holds the carrier of $W_{1} \subseteq$ the carrię of $W_{1}+W_{2}$.
(15) Let W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v, v_{1}, v_{2} be vectors of V. If $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$ and $v=v_{1}+v_{2}$, then $v \triangleleft\left(W_{1}, W_{2}\right)=\left\langle v_{1}, v_{2}\right\rangle$.

[^1](16) Let W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v, v_{1}, v_{2} be vectors of V. If $v \triangleleft\left(W_{1}, W_{2}\right)=\left\langle v_{1}, v_{2}\right\rangle$, then $v=v_{1}+v_{2}$.
(17) Let W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v, v_{1}, v_{2} be vectors of V. If $v \triangleleft\left(W_{1}, W_{2}\right)=\left\langle v_{1}, v_{2}\right\rangle$, then $v_{1} \in W_{1}$ and $v_{2} \in W_{2}$.
(18) Let W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v, v_{1}, v_{2} be vectors of V. If $v \triangleleft\left(W_{1}, W_{2}\right)=\left\langle v_{1}, v_{2}\right\rangle$, then $v \triangleleft\left(W_{2}, W_{1}\right)=\left\langle v_{2}, v_{1}\right\rangle$.
(19) Let W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v be a vector of V. If $v \in W_{1}$, then $v \triangleleft\left(W_{1}, W_{2}\right)=\left\langle v, 0_{V}\right\rangle$.
(20) Let W_{1}, W_{2} be subspaces of V. Suppose V is the direct sum of W_{1} and W_{2}. Let v be a vector of V. If $v \in W_{2}$, then $v \triangleleft\left(W_{1}, W_{2}\right)=\left\langle 0_{V}, v\right\rangle$.
(21) Let V_{1} be a subspace of V, and let W_{1} be a subspace of V_{1}, and let v be a vector of V. If $v \in W_{1}$, then v is a vector of V_{1}.
(22) For all subspaces V_{1}, V_{2}, W of V and for all subspaces W_{1}, W_{2} of W such that $W_{1}=V_{1}$ and $W_{2}=V_{2}$ holds $W_{1}+W_{2}=V_{1}+V_{2}$.
(23) For every subspace W of V and for every vector v of V and for every vector w of W such that $v=w$ holds $\operatorname{Lin}(\{w\})=\operatorname{Lin}(\{v\})$.
(24) Let v be a vector of V and let X be a subspace of V. Suppose $v \notin X$. Let y be a vector of $X+\operatorname{Lin}(\{v\})$ and let W be a subspace of $X+\operatorname{Lin}(\{v\})$. If $v=y$ and $W=X$, then $X+\operatorname{Lin}(\{v\})$ is the direct sum of W and $\operatorname{Lin}(\{y\})$.
(25) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X+\operatorname{Lin}(\{v\})$, and let W be a subspace of $X+\operatorname{Lin}(\{v\})$. If $v=y$ and $X=W$ and $v \notin X$, then $y \triangleleft(W, \operatorname{Lin}(\{y\}))=\left\langle 0_{W}, y\right\rangle$.
(26) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X+\operatorname{Lin}(\{v\})$, and let W be a subspace of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $X=W$ and $v \notin X$. Let w be a vector of $X+\operatorname{Lin}(\{v\})$. If $w \in X$, then $w \triangleleft(W, \operatorname{Lin}(\{y\}))=\left\langle w, 0_{V}\right\rangle$.
(27) For every vector v of V and for all subspaces W_{1}, W_{2} of V there exist vectors v_{1}, v_{2} of V such that $v \triangleleft\left(W_{1}, W_{2}\right)=\left\langle v_{1}, v_{2}\right\rangle$.
(28) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X+\operatorname{Lin}(\{v\})$, and let W be a subspace of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $X=W$ and $v \notin X$. Let w be a vector of $X+\operatorname{Lin}(\{v\})$. Then there exists a vector x of X and there exists a real number r such that $w \triangleleft(W, \operatorname{Lin}(\{y\}))=\langle x, r \cdot v\rangle$.
(29) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X+\operatorname{Lin}(\{v\})$, and let W be a subspace of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $X=W$ and $v \notin X$. Let w_{1}, w_{2} be vectors of $X+\operatorname{Lin}(\{v\})$, and let x_{1}, x_{2} be vectors of X, and let r_{1}, r_{2} be real numbers. If $w_{1} \triangleleft$ $(W, \operatorname{Lin}(\{y\}))=\left\langle x_{1}, r_{1} \cdot v\right\rangle$ and $w_{2} \triangleleft(W, \operatorname{Lin}(\{y\}))=\left\langle x_{2}, r_{2} \cdot v\right\rangle$, then $\left(w_{1}+w_{2}\right) \triangleleft(W, \operatorname{Lin}(\{y\}))=\left\langle x_{1}+x_{2},\left(r_{1}+r_{2}\right) \cdot v\right\rangle$.
(30) Let v be a vector of V, and let X be a subspace of V, and let y be a vector of $X+\operatorname{Lin}(\{v\})$, and let W be a subspace of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $X=W$ and $v \notin X$. Let w be a vector of $X+\operatorname{Lin}(\{v\})$, and let x be a vector of X, and let t, r be real numbers. If $w \triangleleft(W, \operatorname{Lin}(\{y\}))=\langle x$, $r \cdot v\rangle$, then $(t \cdot w) \triangleleft(W, \operatorname{Lin}(\{y\}))=\langle t \cdot x, t \cdot r \cdot v\rangle$.

4. Functionals

```
*
```

Let V be an RLS structure.
(Def.2) A function from the carrier of V into \mathbb{R} is called a functional in V.
Let us consider V. A functional in V is subadditive if:
(Def.3) For all vectors x, y of V holds $\operatorname{it}(x+y) \leq \operatorname{it}(x)+\operatorname{it}(y)$.
A functional in V is additive if:
(Def.4) For all vectors x, y of V holds $\operatorname{it}(x+y)=\operatorname{it}(x)+\operatorname{it}(y)$.
A functional in V is homogeneous if:
(Def.5) For every vector x of V and for every real number r holds it $(r \cdot x)=$ $r \cdot \operatorname{it}(x)$.
A functional in V is positively homogeneous if:
(Def.6) For every vector x of V and for every real number r such that $r>0$ holds $\operatorname{it}(r \cdot x)=r \cdot \operatorname{it}(x)$.
A functional in V is semi-homogeneous if:
(Def.7) For every vector x of V and for every real number r such that $r \geq 0$ holds $\operatorname{it}(r \cdot x)=r \cdot \operatorname{it}(x)$.
A functional in V is absolutely homogeneous if:
(Def.8) For every vector x of V and for every real number r holds $\operatorname{it}(r \cdot x)=$ $|r| \cdot \operatorname{it}(x)$.
A functional in V is 0 -preserving if:
(Def.9) $\quad \operatorname{It}\left(0_{V}\right)=0$.
Let us consider V. One can verify the following observations:

* every functional in V which is additive is also subadditive,
* every functional in V which is homogeneous is also positively homogeneous,
* every functional in V which is semi-homogeneous is also positively homogeneous,
* every functional in V which is semi-homogeneous is also 0 -preserving,
* every functional in V which is absolutely homogeneous is also semihomogeneous, and
* every functional in V which is 0-preserving and positively homogeneous is also semi-homogeneous.

Let us consider V. Observe that there exists a functional in V which is additive absolutely homogeneous and homogeneous.

Let us consider V. A Banach functional in V is a subadditive positively homogeneous functional in V. A linear functional in V is an additive homogeneous functional in V.

We now state four propositions:
(31) For every homogeneous functional L in V and for every vector v of V holds $L(-v)=-L(v)$.
(32) For every linear functional L in V and for all vectors v_{1}, v_{2} of V holds $L\left(v_{1}-v_{2}\right)=L\left(v_{1}\right)-L\left(v_{2}\right)$.
(33) For every additive functional L in V holds $L\left(0_{V}\right)=0$.
(34) Let X be a subspace of V, and let f_{1} be a linear functional in X, and let v be a vector of V, and let y be a vector of $X+\operatorname{Lin}(\{v\})$. Suppose $v=y$ and $v \notin X$. Let r be a real number. Then there exists a linear functional p_{1} in $X+\operatorname{Lin}(\{v\})$ such that $p_{1} \upharpoonright($ the carrier of $X)=f_{1}$ and $p_{1}(y)=r$.

5. Hahn-Banach Theorem

One can prove the following three propositions:
(35) Let V be a real linear space, and let X be a subspace of V, and let q be a Banach functional in V, and let f_{1} be a linear functional in X. Suppose that for every vector x of X and for every vector v of V such that $x=v$ holds $f_{1}(x) \leq q(v)$. Then there exists a linear functional p_{1} in V such that $p_{1} \upharpoonright$ (the carrier of $\left.X\right)=f_{1}$ and for every vector x of V holds $p_{1}(x) \leq q(x)$.
(36) For every real normed space V holds the norm of V is an absolutely homogeneous subadditive functional in V.
(37) Let V be a real normed space, and let X be a subspace of V, and let f_{1} be a linear functional in X. Suppose that for every vector x of X and for every vector v of V such that $x=v$ holds $f_{1}(x) \leq\|v\|$. Then there exists a linear functional p_{1} in V such that $p_{1} \upharpoonright($ the carrier of $X)=f_{1}$ and for every vector x of V holds $p_{1}(x) \leq\|x\|$.

References

[1] Józef Bialas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[2] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, $1(1): 55-65,1990$.
[3] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[5]. Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Jarosław Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.
[7] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[8] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111-115, 1991.
[9] Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[12] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
[15] Wojciech A. Trybulec. Operations on subspaces in real linear space. Formalized Mathematics, 1(2):395-399, 1990.
[16] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1(2):297-301, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.

Received July 8, 1993

Homomorphisms of Lattices, Finite Join and Finite Meet

Jolanta Kamieńska Jarosław Stanisław Walijewski
Warsaw University
Białystok
Warsaw University
Białystok

MML Identifier: LATTICE4.

The articles [9], [4], [2], [3], [8], [10], [6], [1], [5], and [7] provide the terminology and notation for this paper.

1. Preliminaries

We adopt the following convention: X, X_{1}, X_{2}, Y, Z will denote sets and x will be arbitrary.

Next we state three propositions:
(1) If $\cup Y \subseteq Z$ and $X \in Y$, then $X \subseteq Z$.
(2) $\cup(X \cap Y)=\bigcup X \cap \cup Y$.
(3) Given X. Suppose that
(i) $X \neq \emptyset$, and
(ii) for every Z such that $Z \neq \emptyset$ and $Z \subseteq X$ and for all X_{1}, X_{2} such that $X_{1} \in Z$ and $X_{2} \in Z$ holds $X_{1} \subseteq X_{2}$ or $X_{2} \subseteq X_{1}$ there exists Y such that $Y \in X$ and for every X_{1} such that $X_{1} \in Z$ holds $X_{1} \subseteq Y$.
Then there exists Y such that $Y \in X$ and for every Z such that $Z \in X$ and $Z \neq Y$ holds $Y \nsubseteq Z$.

2. Lattice Theory

We adopt the following convention: L denotes a lattice, F, H denote filters of L, and p, q, r denote elements of the carrier of L.

One can prove the following propositions:
(4) $[L)$ is prime.
(5) $F \subseteq[F \cup H)$ and $H \subseteq[F \cup H)$.
(6) If $p \in[[q) \cup F)$, then there exists r such that $r \in F$ and $q \sqcap r \sqsubseteq p$.

We adopt the following rules: L_{1}, L_{2} will be lattices, a_{1}, b_{1} will be elements of the carrier of L_{1}, and a_{2} will be an element of the carrier of L_{2}.

Let us consider L_{1}, L_{2}. A function from the carrier of L_{1} into the carrier of L_{2} is called a homomorphism from L_{1} to L_{2} if:
(Def.1) $\quad \operatorname{It}\left(a_{1} \sqcup b_{1}\right)=\operatorname{it}\left(a_{1}\right) \sqcup \operatorname{it}\left(b_{1}\right)$ and $\operatorname{it}\left(a_{1} \sqcap b_{1}\right)=\operatorname{it}\left(a_{1}\right) \sqcap \operatorname{it}\left(b_{1}\right)$.
In the sequel f is a homomorphism from L_{1} to L_{2}.
We now state the proposition
(7) If $a_{1} \sqsubseteq b_{1}$, then $f\left(a_{1}\right) \sqsubseteq f\left(b_{1}\right)$.

Let us consider L_{1}, L_{2}, f. We say that f is monomorphism if and only if:
(Def.2) f is one-to-one.
We say that f is epimorphism if and only if:
(Def.3) $\quad \operatorname{rng} f=$ the carrier of L_{2}.
Next we state two propositions:
(8) If f is monomorphism, then $a_{1} \sqsubseteq b_{1}$ iff $f\left(a_{1}\right) \sqsubseteq f\left(b_{1}\right)$.
(9) If f is epimorphism, then for every a_{2} there exists a_{1} such that $a_{2}=$ $f\left(a_{1}\right)$.
Let us consider L_{1}, L_{2}, f. We say that f is isomorphism if and only if:
(Def.4) f is monomorphism and epimorphism.
Let us consider L_{1}, L_{2}. We say that L_{1} and L_{2} are isomorphic if and only if: (Def.5) There exists f which is isomorphism.

Let us consider L_{1}, L_{2}, f. We say that f preserves implication if and only if: (Def.6) $\quad f\left(a_{1} \Rightarrow b_{1}\right)=f\left(a_{1}\right) \Rightarrow f\left(b_{1}\right)$.
We say that f preserves top if and only if:
(Def.7) $\quad f\left(T_{\left(L_{1}\right)}\right)=T_{\left(L_{2}\right)}$.
We say that f preserves bottom if and only if:
(Def.8) $\quad f\left(\perp_{\left(L_{1}\right)}\right)=\perp_{\left(L_{2}\right)}$.
We say that f preserves complement if and only if:
(Def.9) $\quad f\left(a_{1}{ }^{\mathrm{c}}\right)=f\left(a_{1}\right)^{\mathrm{c}}$.
Let us consider L. A non empty subset of the carrier of L is said to be a closed subset of L if:
(Def.10) If $p \in$ it and $q \in$ it, then $p \sqcap q \in$ it and $p \sqcup q \in$ it.
Next we state two propositions:
(10) The carrier of L is a closed subset of L.
(11) Every filter of L is a closed subset of L.

Let L be a lattice. The functor id_{L} yields a function from the carrier of L into the carrier of L and is defined as follows:
(Def.11) $\quad \mathrm{id}_{L}=\mathrm{id}_{\text {(the carrier of } L)}$.

Next we state two propositions:
(12) For every element b of the carrier of L holds $\operatorname{id}_{L}(b)=b$.
(13) For every function f from the carrier of L into the carrier of L holds $f \cdot \mathrm{id}_{L}=f$ and $\mathrm{id}_{L} \cdot f=f$.
In the sequel B denotes a finite subset of the carrier of L.
Let us consider L, B. The functor \bigsqcup_{B}^{f} yields an element of the carrier of L and is defined by:
(Def.12) $\quad \bigsqcup_{B}^{\mathrm{f}}=\bigsqcup_{B}^{\mathrm{f}}\left(\mathrm{id}_{L}\right)$.
The functor \prod_{B}^{f} yielding an element of the carrier of L is defined by:
(Def.13) $\quad \prod_{B}^{\mathrm{f}}=\prod_{B}^{\mathrm{f}}\left(\mathrm{id}_{L}\right)$.
The following propositions are true:
(14) $\nabla_{B}^{f}=($ the meet operation of $L)-\sum_{B} \mathrm{id}_{L}$.
(15) $\sqcup_{B}^{\mathrm{f}}=($ the join operation of $L)-\sum_{B} \mathrm{id}_{L}$.
(16) $\bigsqcup_{\{p\}}^{f}=p$.
(17) $\prod_{\{p\}}^{f}=p$.

3. Distributive Lattices

In the sequel D_{1} denotes a distributive lattice and f denotes a homomorphism from D_{1} to L_{2}.

One can prove the following proposition
(18) If f is epimorphism, then L_{2} is distributive.

4. Lower-bounded Lattices

We adopt the following rules: ℓ_{1} is a lower-bounded lattice, B, B_{1}, B_{2} are finite subsets of the carrier of ℓ_{1}, and b is an element of the carrier of ℓ_{1}.

Next we state the proposition
(19) Let f be a homomorphism from ℓ_{1} to L_{2}. If f is epimorphism, then L_{2} is lower-bounded and f preserves bottom.
In the sequel f will be a unary operation on the carrier of ℓ_{1}.
We now state several propositions:
(20) $\bigsqcup_{B \cup\{6\}}^{f} f=\bigsqcup_{B}^{f} f \sqcup f(b)$.
(21) $\bigsqcup_{B \cup\{b\}}^{f}=L_{B}^{f} \sqcup b$.
(22) $\bigsqcup_{\left(B_{1}\right)}^{f} \sqcup \bigsqcup_{\left(B_{2}\right)}^{f}=\bigsqcup_{B_{1} \cup B_{2}}^{f}$.

$$
\begin{equation*}
\bigsqcup_{\emptyset_{\text {the carrier of } \ell_{1}}^{\mathbb{f}}=\perp_{\left(\ell_{1}\right)} .} . \tag{23}
\end{equation*}
$$

(24) For every closed subset A of ℓ_{1} such that $\perp_{\left(\ell_{1}\right)} \in A$ and for every B such that $B \subseteq A$ holds $\bigsqcup_{B}^{\mathrm{f}} \in A$.

5. Upper-bounded Lattices

We adopt the following rules: ℓ_{2} will denote an upper-bounded lattice, B, B_{1}, B_{2} will denote finite subsets of the carrier of ℓ_{2}, and b will denote an element \pm of the carrier of ℓ_{2}.

One can prove the following two propositions:
(25) For every homomorphism f from ℓ_{2} to L_{2} such that f is epimorphism holds L_{2} is upper-bounded and f preserves top.

In the sequel f, g will be unary operations on the carrier of ℓ_{2}.
The following propositions are true:

$$
\begin{align*}
& \Gamma_{B \cup\{b\}}^{f} f=\Gamma_{B}^{f} f \sqcap f(b) . \tag{27}\\
& \Gamma_{B \cup\{b\}}^{\mathrm{f}}=\prod_{B}^{\mathrm{f}} \sqcap b \text {. } \tag{28}\\
& \prod_{f \circ B}^{f} g=\prod_{B}^{\mathrm{f}}(g \cdot f) . \tag{29}\\
& \Pi_{\left(B_{1}\right)}^{\mathrm{f}} \Pi \prod_{\left(B_{2}\right)}^{\mathrm{f}}=\prod_{B_{1} \cup B_{2}}^{\mathrm{f}} . \tag{30}
\end{align*}
$$

For every closed subset F of ℓ_{2} such that $\top_{\left(\ell_{2}\right)} \in F$ and for every B such that $B \subseteq F$ holds $\prod_{B}^{f} \in F$.

6. Distributive Upper-bounded Lattices

In the sequel D_{1} will be a distributive upper-bounded lattice, B will be a finite subset of the carrier of D_{1}, and p will be an element of the carrier of D_{1}.

Next we state the proposition

$$
\begin{equation*}
\Gamma_{B}^{\mathrm{f}} \sqcup p=\prod_{\left.\left(\text {(the join operation of } D_{1}\right)^{\circ}\left(\mathbf{i d}_{\left.\left(D_{1}\right), p\right)}\right)\right)^{\circ} B .} \tag{32}
\end{equation*}
$$

7. Implicative Lattices

For simplicity we adopt the following rules: C_{1} denotes a complemented lattice, I_{1} denotes an implicative lattice, f denotes a homomorphism from I_{1} to C_{1}, and i, j, k denote elements of the carrier of I_{1}.

The following propositions are true:

$$
\begin{equation*}
f(i) \sqcap f(i \Rightarrow j) \sqsubseteq f(j) . \tag{33}
\end{equation*}
$$

(34) If f is monomorphism, then if $f(i) \sqcap f(k) \sqsubseteq f(j)$, then $f(k) \sqsubseteq f(i \Rightarrow j)$.
(35) If f is isomorphism, then C_{1} is implicative and f preserves implication.

8. Boolean Lattices

For simplicity we adopt the following rules: B_{3} will be a Boolean lattice, f will be a homomorphism from B_{3} to C_{1}, A will be a non empty subset of the carrier of B_{3}, a, b, c, p, q will be elements of the carrier of B_{3}, and B, B_{0} will be finite subsets of the carrier of B_{3}.

One can prove the following propositions:
(38) If f is epimorphism, then C_{1} is Boolean and f preserves complement.

Let us consider B_{3}. A non empty subset of the carrier of B_{3} is called a field of subsets of B_{3} if:
(Def.14) If $a \in$ it and $b \in$ it, then $a \sqcap b \in$ it and $a^{c} \in$ it.
In the sequel F will denote a field of subsets of B_{3}.
Next we state four propositions:
(39) If $a \in F$ and $b \in F$, then $a \sqcup b \in F$.
(40) If $a \in F$ and $b \in F$, then $a \Rightarrow b \in F$.
(41) The carrier of B_{3} is a field of subsets of B_{3}.
(42) $\quad F$ is a closed subset of B_{3}.

Let us consider B_{3}, A. The field by A yielding a field of subsets of B_{3} is defined as follows:
(Def.15) $A \subseteq$ the field by A and for every F such that $A \subseteq F$ holds the field by $A \subseteq F$.
Let us consider B_{3}, A. The functor $\operatorname{SetImp}(A)$ yielding a non empty subset of the carrier of B_{3} is defined by:
(Def.16) $\operatorname{SetImp}(A)=\{a \Rightarrow b: a \in A \wedge b \in A\}$.
The following two propositions are true:
(43) $\quad x \in \operatorname{SetImp}(A)$ iff there exist p, q such that $x=p \Rightarrow q$ and $p \in A$ and $q \in A$.
(44) $c \in \operatorname{SetImp}(A)$ iff there exist p, q such that $c=p^{c} \sqcup q$ and $p \in A$ and $q \in A$.
Let us consider B_{3}. The functor comp B_{3} yielding a function from the carrier of B_{3} into the carrier of B_{3} is defined by:
$($ Def.17 $) \quad\left(\operatorname{comp} B_{3}\right)(a)=a^{\mathrm{c}}$.
We now state several propositions:
(45) $\bigsqcup_{B \cup\{b\}}^{\mathrm{f}} \operatorname{comp} B_{3}=\bigsqcup_{B}^{\mathrm{f}} \operatorname{comp} B_{3} \sqcup b^{c}$.
(46) $\quad\left(\bigsqcup_{B}^{\mathrm{f}}\right)^{\mathrm{c}}=\square_{B}^{\mathrm{f}} \operatorname{comp} B_{3}$.
(47) $\prod_{B \cup\{b\}}^{\mathrm{f}} \operatorname{comp} B_{3}=\prod_{B}^{\mathrm{f}} \operatorname{comp} B_{3} \sqcap b^{\mathrm{c}}$.
(48) $\quad\left(\prod_{B}^{\mathrm{f}}\right)^{\mathrm{c}}=\bigsqcup_{B}^{\mathrm{f}} \operatorname{comp} B_{3}$.
(49) Let A_{1} be a closed subset of B_{3}. Suppose $\perp_{\left(B_{3}\right)} \in A_{1}$ and $\top_{\left(B_{3}\right)} \in A_{1}$. Given B. If $B \subseteq \operatorname{Set} \operatorname{Imp}\left(A_{1}\right)$, then there exists B_{0} such that $B_{0} \subseteq$ $\operatorname{Set} \operatorname{Imp}\left(A_{1}\right)$ and $\bigsqcup_{B}^{\mathrm{f}} \operatorname{comp} B_{3}=\prod_{\left(B_{0}\right)}^{\mathrm{f}}$.
(50) For every closed subset A_{1} of B_{3} such that $\perp_{\left(B_{3}\right)} \in A_{1}$ and $T_{\left(B_{3}\right)} \in A_{1}$ holds $\left\{\prod_{B}^{f}: B \subseteq \operatorname{SetImp}\left(A_{1}\right)\right\}=$ the field by A_{1}.

References

- [1] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813-819, 1990.
[2] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[5] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[6] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics, 1(5):983-988, 1990.
[7] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[8] Andrzej Trybulec and Agata Darmochwal. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[9] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[10] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received July 14, 1993

Representation Theorem for Heyting Lattices

Jolanta Kamieńska
Warsaw University
Białystok

MML Identifier: OPENLATT.

The articles [11], [4], [5], [3], [9], [10], [7], [12], [13], [8], [1], [2], and [6] provide the notation and terminology for this paper.

One can check that every lower bound lattice which is Heyting is also implicative and every lattice which is implicative is also upper-bounded.

In the sequel T will denote a topological space and A, B, C will denote subsets of the carrier of T.

We now state two propositions:
(1) $A \cap \operatorname{Int}\left(A^{\mathrm{c}} \cup B\right) \subseteq B$.
(2) If C is open and $A \cap C \subseteq B$, then $C \subseteq \operatorname{Int}\left(A^{\mathrm{c}} \cup B\right)$.

Let us consider T. The functor Topology (T) yields a non empty family of subsets of the carrier of T and is defined as follows:
(Def.1) Topology $(T)=$ the topology of T.
In the sequel P, Q denote elements of Topology (T).
The following proposition is true
(3) A is open iff $A \in \operatorname{Topology}(T)$.

Let us consider T, P, Q. Then $P \cup Q$ is an element of $\operatorname{Topology}(T)$.
Let us consider T, P, Q. Then $P \cap Q$ is an element of $\operatorname{Topology}(T)$.
Let us consider T. The functor TopUnion (T) yields a binary operation on $\operatorname{Topology}(T)$ and is defined by:
(Def.2) $\quad(\operatorname{TopUnion}(T))(P, Q)=P \cup Q$.
Let us consider T. The functor $\operatorname{TopMeet}(T)$ yielding a binary operation on Topology (T) is defined as follows:
$($ Def.3) $\quad(\operatorname{TopMet}(T))(P, Q)=P \cap Q$.
The following proposition is true
(4) For every topological space T holds 〈Topology (T), TopUnion (T), $\operatorname{TopMet}(T)\rangle$ is a lattice.
Let us consider T. The functor OpenSetLatt(T) yields a lattice and is defined. by:
(Def.4) OpenSetLatt $(T)=\langle\operatorname{Topology}(T), \operatorname{TopUnion}(T), \operatorname{TopMeet}(T)\rangle$.
Next we state the proposition
(5) The carrier of OpenSetLatt $(T)=\operatorname{Topology}(T)$.

In the sequel p, q will denote elements of the carrier of OpenSetLatt (T).
Next we state several propositions:
(6) $p \sqcup q=p \cup q$ and $p \sqcap q=p \cap q$.
(7) $p \sqsubseteq q$ iff $p \subseteq q$.
(8) For all elements p^{\prime}, q^{\prime} of Topology (T) such that $p=p^{\prime}$ and $q=q^{\prime}$ holds $p \sqsubseteq q$ iff $p^{\prime} \subseteq q^{\prime}$.
(9) OpenSetLatt (T) is implicative.
(10) OpenSetLatt (T) is lower-bounded and $\perp_{\text {OpenSetLatt(}(T)}=\emptyset$.
(11) $\mathrm{T}_{\mathrm{openSetLatt}(T)}=$ the carrier of T.

Let us consider T. Then OpenSetLatt (T) is a Heyting lattice.
For simplicity we adopt the following convention: L will denote a distributive lattice, F will denote a filter of L, a, b will denote elements of the carrier of L, x will be arbitrary, and X_{1}, X_{2}, Y, Z will denote sets.

Let us consider L. The functor PrimeFilters (L) yielding a set is defined as follows:
(Def.5) PrimeFilters $(L)=\{F: F \neq$ the carrier of $L \wedge F$ is prime $\}$.
We now state the proposition
(12) $\quad F \in \operatorname{PrimeFilters}(L)$ iff $F \neq$ the carrier of L and F is prime.

Let us consider L. The functor StoneH (L) yielding a function is defined by: (Def.6) dom StoneH $(L)=$ the carrier of L and $(\operatorname{StoneH}(L))(a)=\{F: F \in$ PrimeFilters $(L) \wedge a \in F\}$.
Next we state two propositions:
(13) $\quad F \in(\operatorname{StoneH}(L))(a)$ iff $F \in \operatorname{PrimeFilters}(L)$ and $a \in F$.
(14) $\quad x \in(\operatorname{StoneH}(L))(a)$ iff there exists F such that $F=x$ and $F \neq$ the carrier of L and F is prime and $a \in F$.
Let us consider L. The functor StoneS(L) yielding a non empty set is defined as follows:
(Def.7) $\quad \operatorname{StoneS}(L)=\operatorname{rng} \operatorname{StoneH}(L)$.
The following propositions are true:
(15) $\quad x \in \operatorname{StoneS}(L)$ iff there exists a such that $x=(\operatorname{StoneH}(L))(a)$.
(16) $\quad(\operatorname{StoneH}(L))(a \sqcup b)=(\operatorname{StoneH}(L))(a) \cup(\operatorname{StoneH}(L))(b)$.
(17) $\quad(\operatorname{StoneH}(L))(a$ П $b)=(\operatorname{StoneH}(L))(a) \cap(\operatorname{StoneH}(L))(b)$.

Let us consider L and let us consider a. The functor Filters(a) yields a non empty family of subsets of L and is defined by:
(Def.8) , Filters $(a)=\{F: a \in F\}$.
The following propositions are true:
(18) $\quad x \in$ Filters (a) iff x is a filter of L and $a \in x$.
(19) If $x \in \operatorname{Filters}(b) \backslash$ Filters (a), then x is a filter of L and $b \in x$ and $a \notin x$.
(20) Given Z. Suppose $Z \neq \emptyset$ and $Z \subseteq$ Filters $(b) \backslash$ Filters (a) and for all X_{1}, X_{2} such that $X_{1} \in Z$ and $X_{2} \in Z$ holds $X_{1} \subseteq X_{2}$ or $X_{2} \subseteq X_{1}$. Then there exists Y such that $Y \in \operatorname{Filters}(b) \backslash \operatorname{Filters}(a)$ and for every X_{1} such that $X_{1} \in Z$ holds $X_{1} \subseteq Y$.
(21) If $b \nsubseteq a$, then $[b) \in$ Filters $(b) \backslash$ Filters (a).
(22) If $b \nsubseteq a$, then there exists F such that $F \in \operatorname{PrimeFilters}(L)$ and $a \notin F$ and $b \in F$.
(23) If $a \neq b$, then there exists F such that $F \in \operatorname{PrimeFilters}(L)$.
(24) If $a \neq b$, then $(\operatorname{StoneH}(L))(a) \neq(\operatorname{StoneH}(L))(b)$.
(25) StoneH (L) is one-to-one.

Let us consider L and let A, B be elements of $\operatorname{StoneS}(L)$. Then $A \cup B$ is an element of StoneS (L).

Let us consider L and let A, B be elements of $\operatorname{StoneS}(L)$. Then $A \cap B$ is an element of StoneS (L).

Let us consider L. The functor SetUnion (L) yielding a binary operation on StoneS (L) is defined as follows:
(Def.9) For all elements A, B of StoneS (L) holds $(\operatorname{SetUnion}(L))(A, B)=A \cup B$.
Let us consider L. The functor $\operatorname{SetMeet}(L)$ yielding a binary operation on StoneS(L) is defined by:
(Def.10) For all elements A, B of $\operatorname{StoneS}(L)$ holds $(\operatorname{SetMeet}(L))(A, B)=A \cap B$.
The following proposition is true
(26) $\langle\operatorname{StoneS}(L), \operatorname{Set} U n i o n(L), \operatorname{SetMeet}(L)\rangle$ is a lattice.

Let us consider L. The functor StoneLatt (L) yields a lattice and is defined by:
(Def.11) $\operatorname{StoneLatt}(L)=\langle\operatorname{StoneS}(L), \operatorname{SetUnion}(L), \operatorname{SetMeet}(L)\rangle$.
In the sequel p, q are elements of the carrier of $\operatorname{StoneLatt}(L)$.
We now state three propositions:
(27) For every L holds the carrier of $\operatorname{StoneLatt}(L)=\operatorname{StoneS}(L)$.
(28) $p \sqcup q=p \cup q$ and $p \sqcap q=p \cap q$.
(29) $p \sqsubseteq q$ iff $p \subseteq q$.

Let us consider L. Then $\operatorname{StoneH}(L)$ is a homomorphism from L to StoneLatt (L).

One can prove the following propositions:
(30) $\operatorname{StoneH}(L)$ is isomorphism.
(31) StoneLatt (L) is distributive.
(32) L and $\operatorname{StoneLatt}(L)$ are isomorphic.

Let us note that there exists a Heyting lattice which is non trivial.
In the sequel H denotes a non trivial Heyting lattice and p^{\prime}, q^{\prime} denote elements of the carrier of H.

The following three propositions are true:
(33) $\quad(\operatorname{StoneH}(H))\left(T_{H}\right)=\operatorname{PrimeFilters}(H)$.
(34) $\quad($ StoneH $(H))\left(\perp_{H}\right)=\emptyset$.
(35) StoneS $(H) \subseteq 2^{\text {PrimeFilters }(H)}$.

Let us consider H. Then PrimeFilters (H) is a non empty set.
Let us consider H. The functor HTopSpace (H) yielding a strict topological space is defined as follows:
(Def.12) The carrier of HTopSpace $(H)=\operatorname{PrimeFilters}(H)$ and the topology of HTopSpace $(H)=\{\bigcup A: A$ ranges over subsets of StoneS (H),$\} .$
One can prove the following propositions:
(36) The carrier of OpenSetLatt(HTopSpace $(H))=\{\bigcup A: A$ ranges over subsets of StoneS (H),$\} .$
(37) StoneS $(H) \subseteq$ the carrier of OpenSetLatt(HTopSpace (H)).

Let us consider H. Then $\operatorname{StoneH}(H)$ is a homomorphism from H to OpenSetLatt(HTopSpace(H)).

The following propositions are true:
(38) StoneH (H) is monomorphism.
(39) $\quad(\operatorname{StoneH}(H))\left(p^{\prime} \Rightarrow q^{\prime}\right)=(\operatorname{StoneH}(H))\left(p^{\prime}\right) \Rightarrow(\operatorname{StoneH}(H))\left(q^{\prime}\right)$.
(40) StoneH (H) preserves implication.
(41) StoneH (H) preserves top.
(42) StoneH (H) preserves bottom.

References

[1] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813-819, 1990.
[2] Józef Bialas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[3] Czeslaw Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czeslaw Byliniski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Jolanta Kamieńska and Jaroslaw Stanislaw Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35-40, 1993.
[7] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[8] Andrzej Trybulec. Finite join and finite meet and dual lattices. Formalized Mathematics, 1(5):983-988, 1990.
[9] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[12] Miroslaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.
[13] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received July 14, 1993

Representation Theorem for Boolean Algebras

Jarosław Stanisław Walijewski
Warsaw University
Białystok

MML Identifier: LOPCLSET.

The notation and terminology used in this paper are introduced in the following articles: [9], [7], [4], [5], [3], [10], [11], [8], [12], [1], [2], and [6].

In the sequel T is a topological space, X, Y are subsets of T, and x is arbitrary.

Let T be a topological space. The functor OpenClosedSet (T) yielding a non empty family of subsets of the carrier of T is defined as follows:
(Def.1) OpenClosedSet $(T)=\{x: x$ ranges over subsets of T, x is open $\wedge x$ is closed\}.
The following propositions are true:
(1) If $x \in \operatorname{OpenClosedSet}(T)$, then there exists X such that $X=x$.
(2) If $X \in \operatorname{OpenClosedSet}(T)$, then X is open.
(3) If $X \in \operatorname{OpenClosedSet}(T)$, then X is closed.
(4) If X is open and closed, then $X \in \operatorname{OpenClosedSet}(T)$.

Let X be a non empty set and let t be a non empty family of subsets of X. We see that the element of t is a subset of X.

In the sequel x, y, z will denote elements of OpenClosedSet(T).
Let us consider T and let C, D be elements of OpenClosedSet(T). Then $C \cup D$ is an element of $\operatorname{OpenClosedSet}(T)$.

Let us consider T and let C, D be elements of OpenClosedSet (T). Then $C \cap D$ is an element of OpenClosedSet(T).

Let us consider T. The functor join (T) yielding a binary operation on OpenClosedSet (T) is defined by:
(Def.2) For all elements A, B of OpenClosedSet (T) holds $(\operatorname{join}(T))(A, B)=$ $A \cup B$.

Let us consider T. The functor meet (T) yields a binary operation on OpenClosedSet (T) and is defined by:
(Def.3) For all elements A, B of OpenClosedSet (T) holds $(\operatorname{meet}(T))(A, B)=$ $A \cap B$.
We now state several propositions:
(5) Let x, y be elements of the carrier of $\langle\operatorname{OpenClosedSet}(T), \operatorname{join}(T)$, $\operatorname{meet}(T)\rangle$ and let x^{\prime}, y^{\prime} be elements of OpenClosedSet (T). If $x=x^{\prime}$ and $y=y^{\prime}$, then $x \sqcup y=x^{\prime} \cup y^{\prime}$.
(6) Let x, y be elements of the carrier of $\langle\operatorname{OpenClosedSet}(T), \operatorname{join}(T)$, $\operatorname{meet}(T)\rangle$ and let x^{\prime}, y^{\prime} be elements of OpenClosedSet (T). If $x=x^{\prime}$ and $y=y^{\prime}$, then $x \sqcap y=x^{\prime} \cap y^{\prime}$.
(7) \emptyset_{T} is an element of OpenClosedSet (T).
(8) Ω_{T} is an element of OpenClosedSet(T).
(9) For every element x of OpenClosedSet (T) holds x^{c} is an element of OpenClosedSet(T).
(10) $\left\langle\operatorname{OpenClosedSet}(T), \operatorname{join}(T), \operatorname{meet}\left(T^{\prime}\right)\right\rangle$ is a lattice.

Let T be a topological space. The functor OpenClosedSetLatt (T) yields a lattice and is defined by:
(Def.4) OpenClosedSetLatt $(T)=\langle\operatorname{OpenClosedSet}(T), \operatorname{join}(T), \operatorname{meet}(T)\rangle$.
Next we state two propositions:
(11) For every topological space T and for all elements x, y of the carrier of OpenClosedSetLatt (T) holds $x \sqcup y=x \cup y$.
(12) For every topological space T and for all elements x, y of the carrier of OpenClosedSetLatt (T) holds $x \sqcap y=x \cap y$.
We follow a convention: a, b, c denote elements of the carrier of $\langle\operatorname{OpenClosedSet}(T), \operatorname{join}(T), \operatorname{meet}(T)\rangle$ and x, y, z denote elements of OpenClosedSet(T).

The following propositions are true:
(13) The carrier of OpenClosedSetLatt $(T)=$ OpenClosedSet (T).
(14) OpenClosedSetLatt(T) is Boolean.
(15) Ω_{T} is an element of the carrier of OpenClosedSetLatt (T).
(16) \emptyset_{T} is an element of the carrier of OpenClosedSetLatt (T).

One can check that there exists a Boolean lattice which is non trivial.
For simplicity we adopt the following convention: L_{1}, L_{2} denote lattices, a, p, q^{\prime} denote elements of the carrier of B_{1}, U_{1} denotes a filter of B_{1}, B denotes a subset of the carrier of B_{1}, and D denotes a non empty subset of the carrier of B_{1}.

Let us consider B_{1}. The functor ultraset $\left(B_{1}\right)$ yields a non empty subset of $2^{\text {the carrier of } B_{1}}$ and is defined by:
(Def.5) ultraset $\left(B_{1}\right)=\{F: F$ is ultrafilter $\}$.
Next we state two propositions:
(18) ${ }^{1} \quad x \in \operatorname{ultraset}\left(B_{1}\right)$ iff there exists U_{1} such that $U_{1}=x$ and U_{1} is ultrafilter.
(19) For every a holds $\{F: F$ is ultrafilter $\wedge a \in F\} \subseteq \operatorname{ultraset}\left(B_{1}\right)$.

Let us consider B_{1}. The functor $\operatorname{UFilter}\left(B_{1}\right)$ yielding a function is defined as follows:
(Def.6) dom $\operatorname{UFilter}\left(B_{1}\right)=$ the carrier of B_{1} and for every element a of the carrier of B_{1} holds $\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a)=\left\{U_{1}: U_{1}\right.$ is ultrafilter $\left.\wedge a \in U_{1}\right\}$.
Next we state several propositions:
(20) $\quad x \in\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a)$ iff there exists F such that $F=x$ and F is ultrafilter and $a \in F$.
(21) $\quad F \in\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a)$ iff F is ultrafilter and $a \in F$.
(22) For every F such that F is ultrafilter holds $a \sqcup b \in F$ iff $a \in F$ or $b \in F$.
(23) $\quad\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a \sqcap b)=\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a) \cap\left(\operatorname{UFilter}\left(B_{1}\right)\right)(b)$.
(24) $\quad\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a \sqcup b)=\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a) \cup\left(\operatorname{UFilter}\left(B_{1}\right)\right)(b)$.

Let us consider B_{1}. Then $\operatorname{UFilter}\left(B_{1}\right)$ is a function from the carrier of B_{1} into $2^{\text {ultraset(}\left(B_{1}\right)}$.

Let us consider B_{1}. The functor $\operatorname{Stone}\left(B_{1}\right)$ yielding a non empty set is defined as follows:
(Def.7) $\quad \operatorname{StoneR}\left(B_{1}\right)=\operatorname{rng} \operatorname{UFilter}\left(B_{1}\right)$.
The following propositions are true:
(25) $\operatorname{StoneR}\left(B_{1}\right) \subseteq 2^{\text {ultraset }\left(B_{1}\right)}$.
(26) $\quad x \in \operatorname{StoneR}\left(B_{1}\right)$ iff there exists a such that $\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a)=x$.

Let us consider B_{1}. The functor StoneSpace $\left(B_{1}\right)$ yielding a strict topological space is defined by:
(Def.8) The carrier of StoneSpace $\left(B_{1}\right)=\operatorname{ultraset}\left(B_{1}\right)$ and the topology of StoneSpace $\left(B_{1}\right)=\left\{\bigcup A: A\right.$ ranges over subsets of $2^{\text {ultraset }\left(B_{1}\right)}, A \subseteq$ StoneR $\left(B_{1}\right)$ \}.
One can prove the following two propositions:
(27) If F is ultrafilter and $F \notin\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a)$, then $a \notin F$.
(28) $\quad \operatorname{ultraset}\left(B_{1}\right) \backslash\left(\operatorname{UFilter}\left(B_{1}\right)\right)(a)=\left(\operatorname{UFilter}\left(B_{1}\right)\right)\left(a^{\mathrm{c}}\right)$.

Let us consider B_{1}. The functor StoneBLattice $\left(B_{1}\right)$ yields a lattice and is defined as follows:
(Def.9) StoneBLattice $\left(B_{1}\right)=$ OpenClosedSetLatt(StoneSpace $\left.\left(B_{1}\right)\right)$.
One can prove the following four propositions:
(29) UFilter $\left(B_{1}\right)$ is one-to-one.
(30) $\cup \operatorname{StoneR}\left(B_{1}\right)=\operatorname{ultraset}\left(B_{1}\right)$.
(31) For all sets A, B, X such that $X \subseteq \bigcup(A \cup B)$ and for arbitrary Y such that $Y \in B$ holds $Y \cap X=\emptyset$ holds $X \subseteq \cup A$.
(32) For every non empty set X holds there exists finite subset of X which is non empty.

[^2]Let D be a non empty set. Note that there exists a finite subset of D which is non empty.

The following propositions are true:
(33) For every lattice L and for all elements a, b, c, d of the carrier of L such that $a \sqsubseteq c$ and $b \sqsubseteq d$ holds $a \Pi b \sqsubseteq c \sqcap d$.
(34) Let L be a non trivial Boolean lattice and let D be a non empty subset of the carrier of L. Suppose $\perp_{L} \in[D)$. Then there exists a non empty finite subset B of the carrier of L such that $B \subseteq D$ and $\prod_{B}^{\mathrm{f}}=\perp_{L}$.
(35) For every lower bound lattice L it is not true that there exists a filter F of L such that F is ultrafilter and $\perp_{L} \in F$.

$$
\begin{equation*}
\left(\operatorname{UFilter}\left(B_{1}\right)\right)\left(\perp_{\left(B_{1}\right)}\right)=\emptyset . \tag{36}
\end{equation*}
$$

$\left(\operatorname{UFilter}\left(B_{1}\right)\right)\left(T_{\left(B_{1}\right)}\right)=\operatorname{ultraset}\left(B_{1}\right)$.
(38) If ultraset $\left(B_{1}\right)=\bigcup X$ and X is a subset of $\operatorname{StoneR}\left(B_{1}\right)$, then there exists a finite subset Y of X such that $u l t r a s e t\left(B_{1}\right)=\bigcup Y$.
(39) If $x \in 2^{X}$ and $y \in 2^{X}$, then $x \cap y \in 2^{X}$.
(40) $\operatorname{StoneR}\left(B_{1}\right)=$ OpenClosedSet(StoneSpace $\left.\left(B_{1}\right)\right)$.

Let us consider B_{1}. Then $\operatorname{UFilter}\left(B_{1}\right)$ is a homomorphism from B_{1} to StoneBLattice $\left(B_{1}\right)$.

Next we state four propositions:
(41) $\operatorname{rng} \operatorname{UFilter}\left(B_{1}\right)=$ the carrier of StoneBLattice $\left(B_{1}\right)$.
(42) $\operatorname{UFilter}\left(B_{1}\right)$ is isomorphism.
(43) $\quad B_{1}$ and StoneBLattice $\left(B_{1}\right)$ are isomorphic.
(44) For every non trivial Boolean lattice B_{1} there exists a topological space T such that B_{1} and OpenClosedSetLatt (T) are isomorphic.

References

[1] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813-819, 1990.
[2] Józef Bialas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[3] Czeslaw Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czeshaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Jolanta Kamieńska and Jaroslaw Stanisław Walijewski. Homomorphisms of lattices, finite join and finite meet. Formalized Mathematics, 4(1):35-40, 1993.
[7] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[8] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Andrzej Trybulec and Agata Darmochwal. Boolean domains. Formalized Mathematics, $1(1): 187-190,1990$.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[12] Stanisław Zukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Some Remarks on the Simple Concrete Model of Computer

Andrzej Trybulec
Warsaw University
Białystok

Yatsuka Nakamura
Shinshu University
Nagano

Abstract

Summary. We prove some results on SCM needed for the proof of the correctness of Euclid's algorithm. We introduce the following concepts: - starting finite partial state (Start-At (l)), then assigns to the instruction counter an instruction location (and consists only of this assignment), - programmed finite partial state, that consists of the instructions (to be more precise, a finite partial state with the domain consisting of instruction locations). We define for a total state s what it means that s starts at l (the value of the instruction counter in the state s is l) and s halts at l (the halt instruction is assigned to l in the state s). Similar notions are defined for finite partial states.

MML Identifier: AMI_3.

The articles [22], [20], [5], [6], [21], [12], [1], [17], [23], [4], [13], [2], [18], [24], [7], [19], [8], [9], [11], [3], [10], [14], [15], and [16] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following proposition
(1) For all integers m, j holds $m \cdot j \equiv+0(\bmod m)$.

In the sequel i, j, k will denote natural numbers.
The scheme $I N D I$ concerns natural numbers \mathcal{A}, \mathcal{B} and a unary predicate \mathcal{P}, and states that:
$\mathcal{P}[\mathcal{B}]$
provided the following requirements are met:

- $\mathcal{P}[0]$,
- $\mathcal{A}>0$,
- For all i, j such that $\mathcal{P}[\mathcal{A} \cdot i]$ and $j \neq 0$ and $j \leq \mathcal{A}$ holds $\mathcal{P}[\mathcal{A} \cdot i+j]$.

In the sequel x will be arbitrary.
Next we state a number of propositions:
(2) Let X, Y be non empty set and let f, g be partial functions from X to Y. Suppose that for every element x of X and for every element y of Y holds $\langle x, y\rangle \in f$ iff $\langle x, y\rangle \in g$. Then $f=g$.
(3) For all functions f, g and for all sets A, B such that $f \upharpoonright A=g \upharpoonright A$ and $f \upharpoonright B=g \upharpoonright B$ holds $f \upharpoonright(A \cup B)=g \upharpoonright(A \cup B)$.
(4) For every set X and for all functions f, g such that $\operatorname{dom} g \subseteq X$ and $g \subseteq f$ holds $g \subseteq f \upharpoonright X$.
(5) For every function f and for arbitrary x such that $x \in \operatorname{dom} f$ holds $f \upharpoonright\{x\}=\{\langle x, f(x)\rangle\}$.
(6) For every function f and for every set X such that $X \cap \operatorname{dom} f=\emptyset$ holds $f \upharpoonright X=\emptyset$.
(7) For all functions f, g and for arbitrary x such that $\operatorname{dom} f=\operatorname{dom} g$ and $f(x)=g(x)$ holds $f \upharpoonright\{x\}=g \upharpoonright\{x\}$.
(8) For all functions f, g and for arbitrary x, y such that $\operatorname{dom} f=\operatorname{dom} g$ and $f(x)=g(x)$ and $f(y)=g(y)$ holds $f \upharpoonright\{x, y\}=g \upharpoonright\{x, y\}$.
(9) Let f, g be functions and let x, y, z be arbitrary. If $\operatorname{dom} f=\operatorname{dom} g$ and $f(x)=g(x)$ and $f(y)=g(y)$ and $f(z)=g(z)$, then $f \upharpoonright\{x, y, z\}=$ $g \\{x, y, z\}$.
(10) For arbitrary a, b and for every function f such that $a \in \operatorname{dom} f$ and $f(a)=b$ holds $a \longmapsto b \subseteq f$.
(11) For arbitrary a, b, c, d such that $a \neq c$ holds $[a \longmapsto b, c \longmapsto d]=\{\langle a$, $b\rangle,\langle c, d\rangle\}$.
(12) For arbitrary a, b, c, d and for every function f such that $a \in \operatorname{dom} f$ and $c \in \operatorname{dom} f$ and $f(a)=b$ and $f(c)=d$ holds $[a \longmapsto b, c \longmapsto d] \subseteq f$.
For all functions f, g, h holds $(f+\cdot g)+\cdot h=f+\cdot(g+\cdot h)$.

2. Computations

In the sequel N denotes a non empty set with non empty elements.
Next we state the proposition
(14) For every AMI S over N and for every finite partial state p of S holds $p \in \operatorname{FinPartSt}(S)$.
Let us consider N and let S be an AMI over N. Then FinPartSt (S) is a non empty subset of Π^{\prime} (the object kind of S).

Next we state two propositions:
(15) For every AMI S over N holds every element of $\operatorname{FinPartSt}(S)$ is a finite partial state of S.
(16) Let S be an AMI over N and let F_{1}, F_{2} be partial functions from FinPartSt (S) to $\operatorname{FinPartSt}(S)$. Suppose that for all finite partial states p, q of S holds $\langle p, q\rangle \in F_{1}$ iff $\langle p, q\rangle \in F_{2}$. Then $F_{1}=F_{2}$.
The scheme EqFPSFunc concerns a non empty set \mathcal{A} with non empty elements, an AMI \mathcal{B} over \mathcal{A}, partial functions \mathcal{C}, \mathcal{D} from $\operatorname{FinPartSt}(\mathcal{B})$ to FinPartSt (\mathcal{B}), and a binary predicate \mathcal{P}, and states that: $\mathcal{C}=\mathcal{D}$
provided the parameters meet the following conditions:

- For all finite partial states p, q of \mathcal{B} holds $\langle p, q\rangle \in \mathcal{C}$ iff $\mathcal{P}[p, q]$,
- For all finite partial states p, q of \mathcal{B} holds $\langle p, q\rangle \in \mathcal{D}$ iff $\mathcal{P}[p, q]$.

Let us consider N, let S be a von Neumann definite AMI over N, and let l be an instruction-location of S. The functor Start-At (l) yielding a finite partial state of S is defined by:
(Def.1) $\quad \operatorname{Start-At}(l)=\mathrm{IC}_{S} \longmapsto l$.
One can prove the following proposition
(17) For every von Neumann definite AMI S over N and for every instruction-location l of S holds dom Start- $\mathrm{At}(l)=\left\{\mathrm{IC}_{S}\right\}$.
Let us consider N and let S be an AMI over N. A finite partial state of S is programmed if:
(Def.2) dom it \subseteq the instruction locations of S.
We now state four propositions:
(18) Let S be a steady-programmed von Neumann definite AMI over N and let p_{1}, p_{2} be programmed finite partial state of S. Then $p_{1}+\cdot p_{2}$ is programmed.
(19) For every AMI S over N and for every state s of S holds $\operatorname{dom} s=$ the objects of S.
(20) For every AMI S over N and for every finite partial state p of S holds dom $p \subseteq$ the objects of S.
(21) Let S be a steady-programmed von Neumann definite AMI over N, and let p be a programmed finite partial state of S, and let s be a state of S. If $p \subseteq s$, then for every k holds $p \subseteq$ (Computation $(s))(k)$.
Let us consider N, let S be a von Neumann AMI over N, let s be a state of S, and let l be an instruction-location of S. We say that s^{\prime} starts at l if and only if:
(Def.3) $\quad \mathrm{IC}_{s}=l$.
We say that s halts at l if and only if:
(Def.4) $s(l)=$ halt $_{s}$.
The following proposition is true
(22) For every AMI S over N. and for every finite partial state p of S there exists a state s of S such that $p \subseteq s$.
Let us consider N, let S be a definite von Neumann AMI over N, and let p be a finite partial state of S. Let us assume that $\mathbf{I C}_{S} \in \operatorname{dom} p$. The functor $\mathbf{I C}_{p}$ yielding an instruction-location of S is defined by:
(Def.5) $\quad \mathbf{I C}_{p}=p\left(\mathbf{I} \mathbf{C}_{S}\right)$.
Let us consider N, let S be a definite von Neumann AMI over N, let p be a \sim finite partial state of S, and let l be an instruction-location of S. We say that p starts at l if and only if:
(Def.6) $\quad \mathrm{IC}_{S} \in \operatorname{dom} p$ and $\mathbf{I C}_{p}=l$.
We say that p halts at l if and only if:
(Def.7) $l \in \operatorname{dom} p$ and $p(l)=\operatorname{halt}_{S}$.
One can prove the following propositions:
(23) Let S be a von Neumann definite steady-programmed AMI over N and let s be a state of S. Then s is halting if and only if there exists k such that s halts at IC (Computation(s))(k).
(24) Let S be a von Neumann definite steady-programmed AMI over N, and let s be a state of S, and let p be a finite partial state of S, and let l be an instruction-location of S. If $p \subseteq s$ and p halts at l, then s halts at l.
(25) Let S be a halting steady-programmed von Neumann definite AMI over N, and let s be a state of S, and given k. If s is halting, then $\operatorname{Result}(s)=$ (Computation $(s))(k)$ iff s halts at $\mathbf{I C}_{(\text {Computation }(s))(k)}$.
(26) Let S be a steady-programmed von Neumann definite AMI over N, and let s be a state of S, and let p be a programmed finite partial state of S, and given k. Then $p \subseteq s$ if and only if $p \subseteq($ Computation $(s))(k)$.
(27) Let S be a halting steady-programmed von Neumann definite AMI over N, and let s be a state of S, and given k. If s halts at $\mathbf{I C}_{(\text {Computation }(s))(k),}$, then $\operatorname{Result}(s)=($ Computation $(s))(k)$.
(28) Suppose $i \leq j$. Let S be a halting steady-programmed von Neumann definite AMI over N and let s be a state of S. If s halts at IC (Computation $(s))(i)$, then s halts at $\mathbf{I C}_{(\text {Computation }(s))(j)}$.
(29) Suppose $i \leq j$. Let S be a halting steady-programmed von Neumann definite AMI over N and let s be a state of S. If s halts at $\mathrm{IC}_{(\text {Computation }(s))(i)}$, then $($ Computation $(s))(j)=(\operatorname{Computation}(s))(i)$.
(30) Let S be a steady-programmed von Neumann halting definite AMI over N and let s be a state of S. If there exists k such that s halts at $\mathbf{I C}_{(\text {Computation }(s))(k)}$, then for every i holds $\operatorname{Result}(s)=$ Result ((Computation $(s))(i))$.
(31) Let S be a steady-programmed von Neumann definite AMI over N, and let s be a state of S, and let l be an instruction-location of S, and given k. Then s halts at l if and only if (Computation $(s))(k)$ halts at l.
(32) Let S be a definite von Neumann AMI over N, and let p be a finite partial state of S, and let l be an instruction-location of S. Suppose p starts at l. Let s be a state of S. If $p \subseteq s$, then s starts at l.
(33) For every von Neumann definite AMI S over N and for every instruction-location l of S holds Start-At $(l)\left(\mathbf{I C}_{S}\right)=l$.
Let us consider N, let S be a definite von Neumann AMI over N, let l be an instruction-location of S, and let I be an instruction of S. Then $l \longmapsto I$ is a programmed finite partial state of S.

3. Instruction Locations and Data Locations

We now state the proposition SCM is realistic.
SCM is a steady-programmed halting realistic von Neumann data-oriented definite strict AMI over $\{\mathbb{Z}\}$.

Let us consider k. The functor \mathbf{d}_{k} yields a data-location and is defined by: (Def.8) $\quad \mathbf{d}_{k}=2 \cdot k+1$.
The functor \mathbf{i}_{k} yielding an instruction-location of SCM is defined by:
(Def.9) $\quad \mathbf{i}_{k}=2 \cdot k+2$.
Next we state three propositions:
(35) For all i, j such that $i \neq j$ holds $\mathbf{d}_{i} \neq \mathbf{d}_{j}$.
(36) For all i, j such that $i \neq j$ holds $\mathbf{i}_{i} \neq \mathbf{i}_{j}$.
(37) $\operatorname{Next}\left(\mathbf{i}_{k}\right)=\mathbf{i}_{k+1}$.

Let s be a state of SCM and let a be a data-location. Then $s(a)$ is an integer.

Let us consider a, b. Then $a:=b$ is an instruction of SCM. Then $\operatorname{AddTo}(a, b)$ is an instruction of SCM. Then $\operatorname{SubFrom}(a, b)$ is an instruction of SCM. Then $\operatorname{MultBy}(a, b)$ is an instruction of SCM. Then Divide (a, b) is an instruction of SCM.

Let us consider l_{1}. Then goto l_{1} is an instruction of SCM. Let us consider a. Then if $a=0$ goto l_{1} is an instruction of SCM. Then if $a>0$ goto l_{1} is an instruction of SCM.

Next we state the proposition
(38) For every data-location l holds ObjectKind $(l)=\mathbb{Z}$.

Let l_{2} be a data-location and let a be an integer. Then $l_{2} \mapsto a$ is a finite partial state of SCM.

Let l_{2}, l_{3} be data-locations and let a, b be integers. Then $\left[l_{2} \longmapsto a, l_{3} \longmapsto b\right]$ is a finite partial state of SCM.

Next we state two propositions:
(39) For all i, j holds $\mathbf{d}_{i} \neq \mathbf{i}_{j}$.
(40) For every i holds IC $_{\text {SCM }} \neq \mathbf{d}_{i}$ and $\mathbf{I C}_{\mathbf{S C M}} \neq \mathbf{i}_{i}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[5] Czeslaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Graphs of functions. Formalized Mathematics, 1(1):169-173, 1990.
[8] Czeslaw Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[9] Czeslaw Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czeslaw Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[11] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[13] Rafal Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[14] Michal Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579585, 1991.
[15] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[16] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[17] Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[18] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[19] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[20] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[21] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[22] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[23] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 8, 1993

Euclid's Algorithm

Andrzej Trybulec
Warsaw University
Białystok

Yatsuka Nakamura
Shinshu University
Nagano

Summary. The main goal of the paper is to prove the correctness of the Euclid's algorithm for SCM. We define the Euclid's algorithm and describe the natural semantics of it. Eventually we prove that the Euclid's algorithm computes the Euclid's function. Let us observe that the Euclid's function is defined as a function mapping finite partial states to finite partial states of SCM rather than pairs of integers to integers.

MML Identifier: AMI_4.

The papers [20], [18], [5], [6], [19], [11], [1], [15], [22], [4], [12], [2], [16], [23], [17], [7], [8], [10], [3], [9], [13], [14], and [21] provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:
(1) For all integers i, j such that $i \geq 0$ and $j>0$ holds $i \div j \geq 0$.
(2) For all integers i, j such that $i \geq 0$ and $j>0$ holds $|i| \bmod |j|=i \bmod j$ and $|i| \div|j|=i \div j$.
In the sequel i, j, k denote natural numbers.
Next we state the proposition
(3) For all i, j such that $i>0$ and $j>0$ holds $\operatorname{gcd}(i, j)>0$.

The scheme Euklides' concerns a unary functor \mathcal{F} yielding a natural number, a unary functor \mathcal{G} yielding a natural number, a natural number \mathcal{A}, and a natural number \mathcal{B}, and states that:

There exists k such that $\mathcal{F}(k)=\operatorname{gcd}(\mathcal{A}, \mathcal{B})$ and $\mathcal{G}(k)=0$ provided the following requirements are met:

- $0<\mathcal{B}$,
- $\mathcal{B}<\mathcal{A}$,
- $\mathcal{F}(0)=\mathcal{A}$,
- $\mathcal{G}(0)=\mathcal{B}$,
- For every k such that $\mathcal{G}(k)>0$ holds $\mathcal{F}(k+1)=\mathcal{G}(k)$ and $\mathcal{G}(k+1)=$ $\mathcal{F}(k) \bmod \mathcal{G}(k)$.

2. Euclid's Algorithm

The Euclid's algorithm is a programmed finite partial state of SCM and is defined by:
(Def.1) The Euclid's algorithm $=\left(\mathbf{i}_{0} \longmapsto\left(\mathbf{d}_{2}:=\mathbf{d}_{1}\right)\right)+\cdot\left(\left(\mathbf{i}_{1} \longmapsto \operatorname{Divide}\left(\mathbf{d}_{0}, \mathbf{d}_{1}\right)\right)+\right.$. $\left(\left(\mathbf{i}_{2} \longmapsto\left(\mathbf{d}_{0}:=\mathbf{d}_{2}\right)\right)+\left(\left(\mathbf{i}_{3} \longmapsto\left(\right.\right.\right.\right.$ if $\mathbf{d}_{1}>0$ goto $\left.\left.\mathbf{i}_{0}\right)\right)+\cdot\left(\mathbf{i}_{4} \longmapsto\right.$ halt $\left.\left.\left._{\mathbf{S C M}}\right)\right)\right)$.
Next we state the proposition
(4) dom (the Euclid's algorithm) $=\left\{\mathbf{i}_{0}, \mathbf{i}_{1}, \mathbf{i}_{2}, \mathbf{i}_{3}, \mathbf{i}_{4}\right\}$.

3. The Natural Semantics of the Euclid's Algorithm

We now state several propositions:
(5) Let s be a state of SCM. Suppose the Euclid's algorithm $\subseteq s$. Given k. Suppose $\mathbf{I C} \mathbf{C o m p u t a t i o n}(s))(k)=\mathbf{i}_{0}$. Then $\mathbf{I C}_{(\text {Computation }(s))(k+1)}=$ \mathbf{i}_{1} and $(\operatorname{Computation}(s))(k+1)\left(\mathbf{d}_{0}\right)=(\operatorname{Computation}(s))(k)\left(\mathbf{d}_{0}\right)$ and $(\operatorname{Computation}(s))(k+1)\left(\mathbf{d}_{1}\right)=(\operatorname{Computation}(s))(k)\left(\mathbf{d}_{1}\right)$ and $($ Computation $(s))(k+1)\left(\mathbf{d}_{2}\right)=($ Computation $(s))(k)\left(\mathbf{d}_{1}\right)$.
(6) Let s be a state of SCM. Suppose the Euclid's algorithm $\subseteq s$. Given k. Suppose $\mathrm{IC}_{(\operatorname{Computation}(s))(k)}=\mathbf{i}_{1}$. Then $\mathrm{IC}_{(\operatorname{Computation}(s))(k+1)}=$ \mathbf{i}_{2} and $($ Computation $(s))(k+1)\left(\mathbf{d}_{0}\right)=(C o m p u t a t i o n(s))(k)\left(\mathbf{d}_{0}\right) \div$ $(\operatorname{Computation}(s))(k)\left(\mathbf{d}_{1}\right)$ and $(\operatorname{Computation}(s))(k+1)\left(\mathbf{d}_{1}\right)=$ $($ Computation $(s))(k)\left(\mathbf{d}_{0}\right) \bmod (C o m p u t a t i o n(s))(k)\left(\mathbf{d}_{1}\right)$ and $($ Computation $(s))(k+1)\left(\mathbf{d}_{2}\right)=($ Computation $(s))(k)\left(\mathbf{d}_{2}\right)$.
(7) Let s be a state of SCM. Suppose the Euclid's algorithm $\subseteq s$. Given k. Suppose $\mathrm{IC}_{(\text {Computation }(s))(k)}=\mathbf{i}_{2}$. Then $\mathbf{I C}\left(\begin{array}{c}\text { Computation }(s))(k+1) \\ \\ = \\ \end{array}\right.$ \mathbf{i}_{3} and $(\operatorname{Computation}(s))(k+1)\left(\mathbf{d}_{0}\right)=(\operatorname{Computation}(s))(k)\left(\mathbf{d}_{2}\right)$ and $(\operatorname{Computation}(s))(k+1)\left(\mathbf{d}_{1}\right)=(\operatorname{Computation}(s))(k)\left(\mathbf{d}_{1}\right)$ and $($ Computation $(s))(k+1)\left(\mathbf{d}_{2}\right)=($ Computation $(s))(k)\left(\mathbf{d}_{2}\right)$.
(8) Let s be a state of SCM. Suppose the Euclid's algorithm $\subseteq s$. Given k. Suppose $\mathbf{I C}_{(\text {Computation }(s))(k)}=\mathbf{i}_{3}$. Then
(i) if $($ Computation $(s))(k)\left(\mathbf{d}_{1}\right)>0$, then $\mathbf{I C}_{(\text {Computation }(s))(k+1)}=\mathbf{i}_{0}$,
(ii) if $($ Computation $(s))(k)\left(\mathbf{d}_{1}\right) \leq 0$, then $\mathbf{I C}_{(\text {Computation }(s))(k+1)}=\mathbf{i}_{4}$,
(iii) $($ Computation $(s))(k+1)\left(\mathbf{d}_{0}\right)=($ Computation $(s))(k)\left(\mathbf{d}_{0}\right)$, and
(iv) $\quad($ Computation $(s))(k+1)\left(\mathrm{d}_{1}\right)=(\operatorname{Computation}(s))(k)\left(\mathrm{d}_{1}\right)$.
(9) For every state s of SCM such that the Euclid's algorithm $\subseteq s$ and for all k, i such that $\mathbf{I C}($ Computation $(s))(k)=\mathbf{i}_{\mathbf{4}}$ holds $($ Computation $(s))(k+i)=$ (Computation $(s))(k)$.
(10) Let s be a state of SCM. Suppose s starts at \mathbf{i}_{0} and the Euclid's algorithm $\subseteq s$. Let x, y be integers. If $s\left(\mathbf{d}_{0}\right)=x$ and $s\left(\mathbf{d}_{1}\right)=y$ and $x>0$ and $y>0$, then $(\operatorname{Result}(s))\left(\mathbf{d}_{0}\right)=\operatorname{gcd}(x, y)$.
The Euclid's function is a partial function from FinPartSt(SCM) to FinPartSt(SCM) and is defined by the condition (Def.2).
(Def.2) Let p, q be finite partial states of SCM. Then $\langle p, q\rangle \in$ the Euclid's function if and only if there exist integers x, y such that $x>0$ and $y>0$ and $p=\left[\mathbf{d}_{0} \longmapsto x, \mathbf{d}_{1} \longmapsto y\right]$ and $q=\mathbf{d}_{0} \longmapsto \operatorname{gcd}(x, y)$.
The following three propositions are true:
(11) Let p be arbitrary. Then $p \in \operatorname{dom}$ (the Euclid's function) if and only if there exist integers x, y such that $x>0$ and $y>0$ and $p=\left[\mathbf{d}_{0} \longmapsto\right.$ $\left.x, \mathbf{d}_{1} \longmapsto y\right]$.
(12) For all integers i, j such that $i>0$ and $j>0$ holds (the Euclid's function $)\left(\left[\mathbf{d}_{0} \longmapsto i, \mathbf{d}_{1} \longmapsto j\right]\right)=\mathbf{d}_{0} \longmapsto \operatorname{gcd}(i, j)$.
(13) Start-At $\left(\mathbf{i}_{0}\right)+$ (the Euclid's algorithm) computes the Euclid's function.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czeslaw Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[5] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czeslaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czeslaw Byliński. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Czeslaw Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Czeslaw Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[10] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[12] Rafal Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[14] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[15] Jan Popiolek. Some properties of functions modul and signum. Formalized Mathematics, 1(2):263-264, 1990.
[16] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[18] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[19] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[20] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[21] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[22] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[23] Edmund Woronowicz. Relations and their basic properties. Formalized Mathèmatics, 1(1):73-83, 1990.

Received October 8, 1993

Development of Terminology for SCM 1

Grzegorz Bancerek
Polish Academy of Sciences
Institute of Mathematics
Warsaw

Piotr Rudnicki
University of Alberta
Department of Computing Science
Edmonton

Summary. We develop a higher level terminology for the SCM machine defined by Nakamura and Trybulec in [6]. Among numerous technical definitions and lemmas we define a complexity measure of a halting state of SCM and a loader for SCM for arbitrary finite sequence of instructions. In order to test the introduced terminology we discuss properties of eight shortest halting programs, one for each instruction.

MML Identifier: SCM_1.

The notation and terminology used in this paper have been introduced in the following articles: [10], [1], [13], [11], [9], [4], [5], [2], [3], [8], [6], [7], and [12].

Let i be an integer. Then $\langle i\rangle$ is a finite sequence of elements of \mathbb{Z}.
One can prove the following propositions:
(1) For every state s of $\mathbf{S C M}$ holds $\mathbf{I C}_{s}=s(0)$ and CurInstr$(s)=s(s(0))$.
(2) For every state s of SCM and for every natural number k holds $\operatorname{CurInstr}((\operatorname{Computation}(s))(k))=s\left(\mathbf{I C}_{(\operatorname{Computation}(s))(k)}\right)$ and $\operatorname{CurInstr}((\operatorname{Computation}(s))(k))=s((\operatorname{Computation}(s))(k)(0))$.
(3) For every state s of SCM such that there exists a natural number k such that $s\left(\mathbf{I C}_{(\text {Computation }(s))(k)}\right)=$ halt $_{\text {SCM }}$ holds s is halting.
(4) For every state s of SCM and for every natural number k such that $s\left(\mathrm{IC}_{(\text {Computation }(s))(k)}\right)=$ halt $_{\mathrm{SCM}}$ holds Result $(s)=$ (Computation (s)) (k).
(5) For all natural numbers k, l such that $k \neq l$ holds $\mathbf{d}_{k} \neq \mathbf{d}_{l}$.
(6) For all natural numbers k, l such that $k \neq l$ holds $\mathbf{i}_{k} \neq \mathbf{i}_{l}$.
(7) For all natural numbers n, m holds $\mathbf{I C}_{\mathbf{S C M}} \neq \mathbf{i}_{n}$ and $\mathbf{I C}_{\mathbf{S C M}} \neq \mathbf{d}_{n}$. and $\mathbf{i}_{n} \neq \mathbf{d}_{m}$.

[^3]Let I be a finite sequence of elements of the instructions of SCM, let D be a finite sequence of elements of \mathbb{Z}, and let i_{1}, p_{1}, d_{1} be natural numbers. A state of SCM is said to be a state with instruction counter on i_{1}, with I located from p_{1}, and D from d_{1} if it satisfies the conditions (Def.1).
(Def.1) (i) $\quad \mathbf{I C}_{i t}=\mathbf{i}_{\left(i_{1}\right)}$,
(ii) for every natural number k such that $k<\operatorname{len} I$ holds $\mathrm{it}\left(\mathbf{i}_{p_{1}+k}\right)=$ $I(k+1)$, and
(iii) for every natural number k such that $k<\operatorname{len} D$ holds $\operatorname{it}\left(\mathbf{d}_{d_{1}+k}\right)=$ $D(k+1)$.
One can prove the following propositions:
(8) Let $x_{1}, x_{2}, x_{3}, x_{4}$ be arbitrary and let p be a finite sequence. If $p=$ $\left\langle x_{1}\right\rangle^{-}\left\langle x_{2}\right\rangle^{-}\left\langle x_{3}\right\rangle^{-}\left\langle x_{4}\right\rangle$, then len $p=4$ and $p(1)=x_{1}$ and $p(2)=x_{2}$ and $p(3)=x_{3}$ and $p(4)=x_{4}$.
(9) Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ be arbitrary and let p be a finite sequence. Suppose $p=\left\langle x_{1}\right\rangle^{\wedge}\left\langle x_{2}\right\rangle \wedge\left\langle x_{3}\right\rangle \wedge\left\langle x_{4}\right\rangle \sim\left\langle x_{5}\right\rangle$. Then len $p=5$ and $p(1)=x_{1}$ and $p(2)=x_{2}$ and $p(3)=x_{3}$ and $p(4)=x_{4}$ and $p(5)=x_{5}$.
(10) Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}$ be arbitrary and let p be a finite sequence. Suppose $p=\left\langle x_{1}\right\rangle^{\wedge}\left\langle x_{2}\right\rangle^{\wedge}\left\langle x_{3}\right\rangle^{\wedge}\left\langle x_{4}\right\rangle^{\wedge}\left\langle x_{5}\right\rangle^{\wedge}\left\langle x_{6}\right\rangle$. Then len $p=6$ and $p(1)=x_{1}$ and $p(2)=x_{2}$ and $p(3)=x_{3}$ and $p(4)=x_{4}$ and $p(5)=x_{5}$ and $p(6)=x_{6}$.
(11) Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ be arbitrary and let p be a finite sequence. Suppose $p=\left\langle x_{1}\right\rangle^{\wedge}\left\langle x_{2}\right\rangle^{\wedge}\left\langle x_{3}\right\rangle^{\wedge}\left\langle x_{4}\right\rangle^{\wedge}\left\langle x_{5}\right\rangle^{\wedge}\left\langle x_{6}\right\rangle^{\wedge}\left\langle x_{7}\right\rangle$. Then len $p=7$ and $p(1)=x_{1}$ and $p(2)=x_{2}$ and $p(3)=x_{3}$ and $p(4)=x_{4}$ and $p(5)=x_{5}$ and $p(6)=x_{6}$ and $p(7)=x_{7}$.
(12) Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}$ be arbitrary and let p be a finite sequence. Suppose $p=\left\langle x_{1}\right\rangle^{\wedge}\left\langle x_{2}\right\rangle^{\wedge}\left\langle x_{3}\right\rangle^{\wedge}\left\langle x_{4}\right\rangle^{\wedge}\left\langle x_{5}\right\rangle \sim\left\langle x_{6}\right\rangle^{\wedge}\left\langle x_{7}\right\rangle^{\wedge}\left\langle x_{8}\right\rangle$. Then len $p=8$ and $p(1)=x_{1}$ and $p(2)=x_{2}$ and $p(3)=x_{3}$ and $p(4)=x_{4}$ and $p(5)=x_{5}$ and $p(6)=x_{6}$ and $p(7)=x_{7}$ and $p(8)=x_{8}$.
(13) Let $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}$ be arbitrary and let p be a finite sequence. Suppose $p=\left\langle x_{1}\right\rangle \sim\left\langle x_{2}\right\rangle \sim\left\langle x_{3}\right\rangle \sim\left\langle x_{4}\right\rangle \sim\left\langle x_{5}\right\rangle \sim\left\langle x_{6}\right\rangle \sim\left\langle x_{7}\right\rangle \sim\left\langle x_{8}\right\rangle \sim\left\langle x_{9}\right\rangle$. Then len $p=9$ and $p(1)=x_{1}$ and $p(2)=x_{2}$ and $p(3)=x_{3}$ and $p(4)=x_{4}$ and $p(5)=x_{5}$ and $p(6)=x_{6}$ and $p(7)=x_{7}$ and $p(8)=x_{8}$ and $p(9)=x_{9}$.
(14) Let $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}, I_{7}, I_{8}, I_{9}$ be instructions of SCM, and let i_{2}, i_{3}, i_{4}, i_{5} be integers, and let i_{1} be a natural number, and let s be a state with instruction counter on i_{1}, with $\left\langle I_{1}\right\rangle^{\wedge}\left\langle I_{2}\right\rangle^{-}\left\langle I_{3}\right\rangle^{\wedge}\left\langle I_{4}\right\rangle^{-}\left\langle I_{5}\right\rangle^{\wedge}\left\langle I_{6}\right\rangle^{-}$ $\left\langle I_{7}\right\rangle^{\wedge}\left\langle I_{8}\right\rangle^{-}\left\langle I_{9}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle^{\wedge}\left\langle i_{3}\right\rangle^{\wedge}\left\langle i_{4}\right\rangle^{\wedge}\left\langle i_{5}\right\rangle$ from 0. Then
(i) $\mathrm{IC}_{s}=\mathbf{i}_{\left(i_{1}\right)}$,
(ii) $s\left(\mathbf{i}_{0}\right)=I_{1}$,
(iii) $s\left(\mathrm{i}_{1}\right)=I_{2}$,
(iv) $s\left(\mathbf{i}_{2}\right)=I_{3}$,
(v) $s\left(\mathbf{i}_{3}\right)=I_{4}$,
(vi) $s\left(\mathbf{i}_{4}\right)=I_{5}$,
(vii) $\quad s\left(\mathbf{i}_{5}\right)=I_{6}$,
(viii) $s\left(\mathbf{i}_{6}\right)=I_{7}$,
(ix) $s\left(\mathbf{i}_{7}\right)=I_{8}$,
(x) $s\left(\mathrm{i}_{8}\right)=I_{9}$,
(xi) $s\left(\mathrm{~d}_{0}\right)=i_{2}$,
(xii) $s\left(\mathbf{d}_{1}\right)=i_{3}$,
(xiii) $s\left(\mathbf{d}_{2}\right)=i_{4}$, and
(xiv) $s\left(\mathbf{d}_{3}\right)=i_{5}$.

Let I_{1}, I_{2} be instructions of SCM, and let i_{2}, i_{3} be integers, and let i_{1} be a natural number, and let s be a state with instruction counter on i_{1}, with $\left\langle I_{1}\right\rangle \sim\left\langle I_{2}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle \sim\left\langle i_{3}\right\rangle$ from 0 . Then $\mathbf{I C}_{s}=\mathbf{i}_{\left(i_{1}\right)}$ and $s\left(\mathbf{i}_{0}\right)=I_{1}$ and $s\left(\mathbf{i}_{1}\right)=I_{2}$ and $s\left(\mathbf{d}_{0}\right)=i_{2}$ and $s\left(\mathbf{d}_{1}\right)=i_{3}$.
Let a, b be data-locations. Then $a:=b$ is an instruction of SCM. Then $\operatorname{AddTo}(a, b)$ is an instruction of SCM. Then $\operatorname{SubFrom}(a, b)$ is an instruction of SCM. Then $\operatorname{MultBy}(a, b)$ is an instruction of SCM. Then Divide (a, b) is an instruction of SCM.

Let l_{1} be an instruction-location of SCM. Then goto l_{1} is an instruction of SCM. Let a be a data-location. Then if $a=0$ goto l_{1} is an instruction of SCM. Then if $a>0$ goto l_{1} is an instruction of SCM.

Let s be a state of SCM. Let us assume that s is halting. The complexity of s is a natural number and is defined by the conditions (Def.2).
(Def.2) (i) CurInstr((Computation $(s))($ the complexity of $s))=$ halt $_{\text {SCM }}$, and
(ii) for every natural number k such that $\operatorname{CurInstr}((\operatorname{Computation}(s))(k))=$ halt $_{\text {SCM }}$ holds the complexity of $s \leq k$.
We now state a number of propositions: $s\left(\mathbf{I C}_{(\text {Computation }(s))(k)}\right) \neq$ halt $_{\text {SCM }}$ and $s\left(\mathbf{I C}_{(\text {Computation }(s))(k+1)}\right)=$ halt $\mathbf{S C M}_{\mathbf{C M}}$ if and only if the complexity of $s=k+1$ and s is halting. $\mathbf{I C}_{(\text {Computation }(s))(k)} \neq \mathbf{I C}($ Computation $(s))(k+1)$ and $s\left(\mathbf{I C}_{(\text {Computation }(s))(k+1)}\right)=$ halt ${ }_{S C M}$, then the complexity of $s=k+1$.
(18) Let k, n be natural numbers, and let s be a state of SCM, and let a, b be data-locations. Suppose $\mathbf{I C}_{(\text {Computation }(s))(k)}=\mathbf{i}_{n}$ and $s\left(\mathbf{i}_{n}\right)=a:=b$. Then $\mathbf{I C}($ Computation $(s))(k+1)=\mathbf{i}_{n+1}$ and (Computation $\left.(s)\right)(k+1)(a)=$ (Computation $(s))(k)(b)$ and for every data-location d such that $d \neq a$ holds $(\operatorname{Computation}(s))(k+1)(d)=(\operatorname{Computation}(s))(k)(d)$.

Let k, n be natural numbers, and let s be a state of SCM, and let a, b be data-locations. Suppose $\mathbf{I C}_{(\text {Computation }(s))(k)}=$ \mathbf{i}_{n} and $s\left(\mathbf{i}_{n}\right)=\operatorname{AddTo}(a, b)$. Then $\mathbf{I C}_{(\text {Computation }(s))(k+1)}=$ \mathbf{i}_{n+1} and $($ Computation $(s))(k+1)(a)=($ Computation $(s))(k)(a)+$ (Computation $(s))(k)(b)$ and for every data-location d such that $d \neq a$ holds $($ Computation $(s))(k+1)(d)=(\operatorname{Computation}(s))(k)(d)$.
(20) Let k, n be natural numbers, and let s be a state of SCM, and let a, b be data-locations. Suppose $\mathbf{I C}_{(\text {Computation }(s))(k)}=$
\mathbf{i}_{n} and $s\left(\mathbf{i}_{n}\right)=\operatorname{SubFrom}(a, b)$. Then $\operatorname{IC}_{(\text {Computation }(s))(k+1)}=$ \mathbf{i}_{n+1} and $(\operatorname{Computation}(s))(k+1)(a)=(\operatorname{Computation}(s))(k)(a)-$ (Computation $(s))(k)(b)$ and for every data-location d such that $d \neq a$ holds $($ Computation $(s))(k+1)(d)=($ Computation $(s))(k)(d)$.
Let k, n be natural numbers, and let s be a state of SCM, and let a, b be data-locations. Suppose $\operatorname{IC}_{(\text {Computation }(s))(k)}=$ \mathbf{i}_{n} and $s\left(\mathbf{i}_{n}\right)=\operatorname{MultBy}(a, b)$. Then $\mathbf{I C}_{(\text {Computation }(s))(k+1)}=$ \mathbf{i}_{n+1} and (Computation $\left.(s)\right)(k+1)(a)=($ Computation $(s))(k)(a)$. (Computation $(s))(k)(b)$ and for every data-location d such that $d \neq a$ holds $(\operatorname{Computation}(s))(k+1)(d)=(\operatorname{Computation}(s))(k)(d)$.
(22) Let k, n be natural numbers, and let s be a state of SCM, and let a, b be data-locations. Suppose $\mathbf{I C}_{(\text {Computation }(s))(k)}=\mathbf{i}_{n}$ and $s\left(\mathbf{i}_{n}\right)=\operatorname{Divide}(a, b)$ and $a \neq b$. Then
(i) $\mathbf{I C}_{(\text {Computation }(s))(k+1)}=\mathbf{i}_{n+1}$,
(ii) $(\operatorname{Computation}(s))(k+1)(a)=$
(Computation $(s))(k)(a) \div($ Computation $(s))(k)(b)$,
(iii) $\quad(\operatorname{Computation}(s))(k+1)(b)=$
(Computation $(s))(k)(a) \bmod ($ Computation $(s))(k)(b)$, and
(iv) for every data-location d such that $d \neq a$ and $d \neq b$ holds $($ Computation $(s))(k+1)(d)=(\operatorname{Computation}(s))(k)(d)$.
(23) Let k, n be natural numbers, and let s be a state of SCM, and let i_{1} be an instruction-location of SCM. Suppose IC (Computation $\left.(s)\right)(k)=\mathbf{i}_{n}$ and $s\left(\mathbf{i}_{n}\right)=$ goto i_{1}. Then $\mathbf{I C}_{(\text {Computation }(s))(k+1)}=i_{1}$ and for every datalocation d holds (Computation $(s))(k+1)(d)=(\operatorname{Computation}(s))(k)(d)$.
(24) Let k, n be natural numbers, and let s be a state of SCM, and let a be a data-location, and let i_{1} be an instruction-location of SCM. Suppose $\mathbf{I C}_{(\text {Computation }(s))(k)}=\mathbf{i}_{n}$ and $s\left(\mathbf{i}_{n}\right)=$ if $a=0$ goto i_{1}. Then
(i) if $(\operatorname{Computation}(s))(k)(a)=0$, then $\mathrm{IC}_{(\text {Computation }(s))(k+1)}=i_{1}$,
(ii) if $($ Computation $(s))(k)(a) \neq 0$, then $\mathbf{I C}($ Computation $(s))(k+1)=\mathbf{i}_{n+1}$, and
(iii) for every data-location d holds (Computation $(s))(k+1)(d)=$ (Computation $(s))(k)(d)$.
(25) Let k, n be natural numbers, and let s be a state of SCM, and let a be a data-location, and let i_{1} be an instruction-location of SCM. Suppose $\mathbf{I C}_{\text {(Computation }(s))(k)}=\mathbf{i}_{n}$ and $s\left(\mathbf{i}_{n}\right)=$ if $a>0$ goto i_{1}. Then
(i) if $($ Computation $(s))(k)(a)>0$, then $\mathbf{I C}_{(\text {Computation }(s))(k+1)}=i_{1}$,
(ii) if $($ Computation $(s))(k)(a) \leq 0$, then $\mathbf{I C}_{(\text {Computation }(s))(k+1)}=\mathrm{i}_{n+1}$, and
(iii) for every data-location d holds (Computation $(s))(k+1)(d)=$ (Computation $(s))(k)(d)$.
(26) (i) $\quad\left(\text { halt }_{S C M}\right)_{1}=0$,
(ii) for all data-locations a, b holds $(a:=b)_{1}=1$,
(iii) for all data-locations a, b holds $(\operatorname{AddTo}(a, b))_{1}=2$,
(iv) for all data-locations a, b holds $(\operatorname{SubFrom}(a, b))_{1}=3$,
(v) for all data-locations a, b holds $(\operatorname{MultBy}(a, b))_{1}=4$,
(vi) for all data-locations a, b holds $(\operatorname{Divide}(a, b))_{1}=5$,
(vii) for every instruction-location i of SCM holds (goto $i)_{1}=6$,
(viii) for every data-location a and for every instruction-location i of SCM holds (if $a=0$ goto $i)_{1}=7$, and
(ix) for every data-location a and for every instruction-location i of SCM holds (if $a>0$ goto $i)_{1}=8$.
(27) For all states s_{1}, s_{2} of SCM and for every natural number k such that $s_{2}=\left(\right.$ Computation $\left.\left(s_{1}\right)\right)(k)$ and s_{2} is halting holds s_{1} is halting.
(28) Let s_{1}, s_{2} be states of SCM and let k, c be natural numbers. Suppose $s_{2}=\left(\right.$ Computation $\left.\left(s_{1}\right)\right)(k)$ and the complexity of $s_{2}=c$ and s_{2} is halting and $0<\boldsymbol{c}$. Then the complexity of $s_{1}=k+c$.
(29) For all states s_{1}, s_{2} of SCM and for every natural number k such that $s_{2}=\left(\right.$ Computation $\left.\left(s_{1}\right)\right)(k)$ and s_{2} is halting holds Result $\left(s_{2}\right)=$ Result $\left(s_{1}\right)$.
(30) Let $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}, I_{7}, I_{8}, I_{9}$ be instructions of SCM, and let i_{2}, i_{3}, i_{4}, i_{5} be integers, and let i_{1} be a natural number, and let s be a state of SCM. Suppose that
(i) $\mathbf{I C}_{s}=\mathbf{i}_{\left(i_{1}\right)}$,
(ii) $s\left(\mathbf{i}_{0}\right)=I_{1}$,
(iii) $s\left(\mathbf{i}_{1}\right)=I_{2}$,
(iv) $s\left(\mathbf{i}_{2}\right)=I_{3}$,
(v) $s\left(\mathbf{i}_{3}\right)=I_{4}$,
(vi) $s\left(\mathbf{i}_{4}\right)=I_{5}$,
(vii) $s\left(\mathbf{i}_{5}\right)=I_{6}$,
(viii) $s\left(\mathbf{i}_{6}\right)=I_{7}$,
(ix) $s\left(\mathrm{i}_{7}\right)=I_{8}$,
(x) $s\left(\mathrm{i}_{8}\right)=I_{9}$,
(xi) $s\left(\mathbf{d}_{0}\right)=i_{2}$,
(xii) $s\left(\mathbf{d}_{1}\right)=i_{3}$,
(xiii) $s\left(\mathbf{d}_{2}\right)=i_{4}$, and
(xiv) $s\left(\mathbf{d}_{3}\right)=i_{5}$.

Then s is a state with instruction counter on i_{1}, with $\left\langle I_{1}\right\rangle^{\wedge}\left\langle I_{2}\right\rangle^{\wedge}\left\langle I_{3}\right\rangle^{\text {- }}$ $\left\langle I_{4}\right\rangle^{\sim}\left\langle I_{5}\right\rangle^{\sim}\left\langle I_{6}\right\rangle^{\sim}\left\langle I_{7}\right\rangle^{\sim}\left\langle I_{8}\right\rangle^{\sim}\left\langle I_{9}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle^{\sim}\left\langle i_{3}\right\rangle^{\sim}\left\langle i_{4}\right\rangle^{\sim}\left\langle i_{5}\right\rangle$ from 0 .
(31) Let s be a state with instruction counter on 0 , with $\left\langle\right.$ halt $\left._{\text {SCM }}\right\rangle$ located from 0 , and $\varepsilon_{\mathbb{Z}}$ from 0 . Then s is halting and the complexity of $s=0$ and $\operatorname{Result}(s)=s$.
(32) Let i_{2}, i_{3} be integers and let s be a state with instruction counter on 0 , with $\left\langle\mathbf{d}_{0}:=\mathbf{d}_{1}\right\rangle-\left\langle\right.$ halt $\left._{\mathbf{S C M}}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle \sim\left\langle i_{3}\right\rangle$ from 0 . Then
(i) s is halting,
(ii) the complexity of $s=1$,
(iii) $(\operatorname{Result}(s))\left(\mathbf{d}_{0}\right)=i_{3}$, and
(iv) for every data-location d such that $d \neq \mathbf{d}_{0}$ holds $(\operatorname{Result}(s))(d)=s(d)$.
(33) Let i_{2}, i_{3} be integers and let s be a state with instruction counter on 0 , with $\left\langle\operatorname{AddTo}\left(\mathbf{d}_{\mathbf{0}}, \mathbf{d}_{1}\right)\right\rangle^{-}\left\langle\right.$halt $\left._{\mathbf{S C M}}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle^{-}\left\langle i_{3}\right\rangle$ from 0. Then
(i) s is halting,
(ii) the complexity of $s=1$,
(iii) $\quad(\operatorname{Result}(s))\left(\mathrm{d}_{0}\right)=i_{2}+i_{3}$, and
(iv) for every data-location d such that $d \neq \mathbf{d}_{0}$ holds $(\operatorname{Result}(s))(d)=s(d)$.
(34). Let i_{2}, i_{3} be integers and let s be a state with instruction counter on 0 , with $\left\langle\operatorname{SubFrom}\left(\mathbf{d}_{0}, \mathbf{d}_{1}\right)\right\rangle^{\sim}\left\langle\right.$ halt $\left._{\mathbf{S C M}}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle-\left\langle i_{3}\right\rangle$ from 0. Then
(i) s is halting,
(ii) the complexity of $s=1$,
(iii) $\quad(\operatorname{Result}(s))\left(\mathrm{d}_{0}\right)=i_{2}-i_{3}$, and
(iv) for every data-location d such that $d \neq \mathbf{d}_{0}$ holds $(\operatorname{Result}(s))(d)=s(d)$.
(35) Let i_{2}, i_{3} be integers and let s be a state with instruction counter on 0 , with $\left\langle\operatorname{MultBy}\left(\mathbf{d}_{0}, \mathbf{d}_{\mathbf{1}}\right)\right\rangle \sim\left\langle\right.$ halt $\left._{\mathbf{S C M}}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle \sim\left\langle i_{3}\right\rangle$ from 0 . Then
(i) s is halting,
(ii) the complexity of $s=1$,
(iii) $(\operatorname{Result}(s))\left(\mathbf{d}_{0}\right)=i_{2} \cdot i_{3}$, and
(iv) for every data-location d such that $d \neq \mathrm{d}_{0}$ holds $(\operatorname{Result}(s))(d)=s(d)$.
(36) Let i_{2}, i_{3} be integers and let s be a state with instruction counter on 0 , with $\left\langle\operatorname{Divide}\left(\mathbf{d}_{0}, \mathbf{d}_{1}\right)\right\rangle \sim\left\langle\right.$ halt $\left._{\mathbf{S C M}}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle^{\wedge}\left\langle i_{3}\right\rangle$ from 0. Then
(i) s is halting,
(ii) the complexity of $s=1$,
(iii) $\quad(\operatorname{Result}(s))\left(\mathbf{d}_{0}\right)=i_{2} \div i_{3}$,
(iv) $\quad(\operatorname{Result}(s))\left(\mathbf{d}_{1}\right)=i_{2} \bmod i_{3}$, and
(v) for every data-location d such that $d \neq \mathbf{d}_{0}$ and $d_{\mathrm{i}} \neq \mathbf{d}_{1}$ holds $(\operatorname{Result}(s))(d)=s(d)$.
(37) Let i_{2}, i_{3} be integers and let s be a state with instruction counter on 0 , with $\left\langle\right.$ goto $\left.\left(\mathrm{i}_{1}\right)\right\rangle$ ~ $\left\langle\right.$ halt $\left._{\mathbf{S C M}}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle$ ~ $\left\langle i_{3}\right\rangle$ from 0. Then s is halting and the complexity of $s=1$ and for every data-location d holds $(\operatorname{Result}(s))(d)=s(d)$.
(38) Let i_{2}, i_{3} be integers and let s be a state with instruction counter on 0 , with $\left\langle\text { if } \mathbf{d}_{0}=0 \text { goto } \mathbf{i}_{1}\right\rangle^{-}\left\langle\right.$halt $\left._{\mathbf{S C M}}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle{ }^{-}\left\langle i_{3}\right\rangle$ from 0 . Then s is halting and the complexity of $s=1$ and for every data-location d holds $(\operatorname{Result}(s))(d)=s(d)$.
(39) Let i_{2}, i_{3} be integers and let s be a state with instruction counter on 0 , with $\left\langle\right.$ if $\mathbf{d}_{0}>0$ goto $\left.\mathbf{i}_{1}\right\rangle$ - $\left\langle\right.$ halt $\left.\mathbf{S C M}^{\prime}\right\rangle$ located from 0 , and $\left\langle i_{2}\right\rangle$ - $\left\langle i_{3}\right\rangle$ from 0. Then s is halting and the complexity of $s=1$ and for every data-location d holds $(\operatorname{Result}(s))(d)=s(d)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysz tof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[7] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[8] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[9] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[12] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[13] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
Received October 8, 1993

Two Programs for SCM. Part I Preliminaries ${ }^{1}$

Grzegorz Bancerek
Polish Academy of Sciences
Institute of Mathematics Warsaw-

Piotr Rudnicki
University of Alberta
Department of Computing Science
Edmonton

Abstract

Summary. In two articles (this one and [3]) we discuss correctness of two short programs for the SCM machine: one computes Fibonacci numbers and the other computes the fusc function of Dijkstra [7]. The limitations of current Mizar implementation rendered it impossible to present the correctness proofs for the programs in one article. This part is purely technical and contains a number of very specific lemmas about integer division, floor, exponentiation and logarithms. The formal definitions of the Fibonacci sequence and the fusc function may be of general interest.

MML Identifier: PRE_FF.

The terminology and notation used in this paper are introduced in the following papers: [12], [1], [14], [9], [13], [11], [10], [8], [5], [6], [2], [4], and [15].

Let X_{1}, X_{2} be non empty set, let Y_{1} be a non empty subset of X_{1}, and let Y_{2} be a non empty subset of X_{2}. Then $\left[\left\{Y_{1}, Y_{2}\right]\right.$ is a non empty subset of $\left[X_{1}\right.$, X_{2}].

Let X_{1}, X_{2} be non empty set, let Y_{1} be a non empty subset of X_{1}, let Y_{2} be a non empty subset of X_{2}, and let x be an element of : $\left.Y_{1}, Y_{2}\right]$. Then x_{1} is an element of Y_{1}. Then x_{2} is an element of Y_{2}.

In the sequel n will denote a natural number.
Let us consider n. The functor $\operatorname{Fib}(n)$ yielding a natural number is defined by the condition (Def.1).
(Def.1) There exists a function f_{1} from \mathbb{N} into $: \mathbb{N}, \mathbb{N}:$ such that
(i) $\operatorname{Fib}(n)=f_{1}(n)_{1}$,
(ii) $f_{1}(0)=\langle 0,1\rangle$, and

[^4](iii) for every natural number n and for every element x of $[: \mathbb{N}, \mathbb{N}]$ such that $x=f_{1}(n)$ holds $f_{1}(n+1)=\left\langle x_{2}, x_{1}+x_{2}\right\rangle$.
We now state a number of propositions:
(1) $\operatorname{Fib}(0)=0$ and Fib(1) $=1$ and for every natural number n holds Fib($n+$ $1+1)=\operatorname{Fib}(n)+\operatorname{Fib}(n+1)$.
(2) For every integer i holds $i \div+1=i$.
(3) For all integers i, j such that $j>0$ and $i \div j=0$ holds $i<j$.
(4) For all integers i, j such that $0 \leq i$ and $i<j$ holds $i \div j=0$.
(5) For all integers i, j, k such that $j>0$ and $k>0$ holds $i \div j \div k=i \div j \cdot k$.
(6) For every integer i holds $i \bmod +2=0$ or $i \bmod +2=1$.
(7) For every integer i such that i is a natural number holds $i \div+2$ is a natural number.
(8) For every natural number k such that $k>0$ and for every natural number n holds $k^{n}>0$.
(9) ${ }^{2}$ For every natural number n holds $2^{n}=2^{n}$.
(10) For all real numbers a, b, c such that $a \leq b$ and $c>1$ holds $c^{a} \leq c^{b}$.

Let a, n be natural numbers. Then a^{n} is a natural number.
Next we state several propositions:
(11) For all real numbers r, s such that $r \geq s$ holds $\lfloor r\rfloor \geq\lfloor s\rfloor$.
(12) For all real numbers a, b, c such that $a>1$ and $b>0$ and $c \geq b$ holds $\log _{a} c \geq \log _{a} b$.
(13) For every natural number n such that $n>0$ holds $\left\lfloor\log _{2}(2 \cdot n)\right\rfloor+1 \neq$ $\left\lfloor\log _{2}(2 \cdot n+1)\right\rfloor$.
(14) For every natural number n such that $n>0$ holds $\left\lfloor\log _{2}(2 \cdot n)\right\rfloor+1 \geq$ $\left\lfloor\log _{2}(2 \cdot n+1)\right\rfloor$.
(15) For every natural number n such that $n>0$ holds $\left\lfloor\log _{2}(2 \cdot n)\right\rfloor=$ $\left\lfloor\log _{2}(2 \cdot n+1)\right\rfloor$.
(16) For every natural number n such that $n>0$ holds $\left\lfloor\log _{2} n\right\rfloor+1=$ $\left\lfloor\log _{2}(2 \cdot n+1)\right\rfloor$.
Let f be a function from \mathbb{N} into \mathbb{N}^{*} and let n be a natural number. Then $f(n)$ is a finite sequence of elements of \mathbb{N}.

Let n be a natural number. The functor $\operatorname{Fusc}(n)$ yields a natural number and is defined by:
(Def.2) (i) $\quad \operatorname{Fusc}(n)=0$ if $n=0$,
(ii) there exists a natural number l and there exists a function f_{2} from \mathbb{N} into \mathbb{N}^{*} such that $l+1=n$ and $\operatorname{Fusc}(n)=\pi_{n} f_{2}(l)$ and $f_{2}(0)=\langle 1\rangle$ and for every natural number n holds for every natural number k such that $n+2=$ $2 \cdot k$ holds $f_{2}(n+1)=f_{2}(n) \wedge\left\langle\pi_{k} f_{2}(n)\right\rangle$ and for every natural number k such that $n+2=2 \cdot k+1$ holds $f_{2}(n+1)=f_{2}(n)^{\wedge}\left\langle\pi_{k} f_{2}(n)+\pi_{k+1} f_{2}(n)\right\rangle$, otherwise.

[^5]The following propositions are true:
(17) $\operatorname{Fusc}(0)=0$ and $\operatorname{Fusc}(1)=1$ and for every natural number n holds $\operatorname{Fusc}(2 \cdot n)=\operatorname{Fusc}(n)$ and $\operatorname{Fusc}(2 \cdot n+1)=\operatorname{Fusc}(n)+\operatorname{Fusc}(n+1)$.
(18) For all natural numbers n_{1}, n_{1}^{\prime} such that $n_{1} \neq 0$ and $n_{1}=2 \cdot n_{1}^{\prime}$ holds $n_{1}^{\prime}<n_{1}$.
(19) For all natural numbers n_{1}, n_{1}^{\prime} such that $n_{1}=2 \cdot n_{1}^{\prime}+1$ holds $n_{1}^{\prime}<n_{1}$.
(20) For all natural numbers A, B holds $B=A \cdot \operatorname{Fusc}(0)+B \cdot \operatorname{Fusc}(0+1)$.
(21) For all natural numbers $n_{1}, n_{1}^{\prime}, A, B, N$ such that $n_{1}=2 \cdot n_{1}^{\prime}+1$ and $\operatorname{Fusc}(N)=A \cdot \operatorname{Fusc}\left(n_{1}\right)+B \cdot \operatorname{Fusc}\left(n_{1}+1\right)$ holds $\operatorname{Fusc}(N)=A \cdot \operatorname{Fusc}\left(n_{1}^{\prime}\right)+$ $(B+A) \cdot \operatorname{Fusc}\left(n_{1}^{\prime}+1\right)$.
(22) For all natural numbers $n_{1}, n_{1}^{\prime}, A, B, N$ such that $n_{1}=2 \cdot n_{1}^{\prime}$ and $\operatorname{Fusc}(N)=A \cdot \operatorname{Fusc}\left(n_{1}\right)+B \cdot \operatorname{Fusc}\left(n_{1}+1\right)$ holds $\operatorname{Fusc}(N)=(A+B)$. $\operatorname{Fusc}\left(n_{1}^{\prime}\right)+B \cdot \operatorname{Fusc}\left(n_{1}^{\prime}+1\right)$.
(23) $6+1=6 \cdot\left(\left\lfloor\log _{2} 1\right\rfloor+1\right)+1$.
(24) For every natural number n_{1}^{\prime} such that $n_{1}^{\prime}>0$ holds $\left\lfloor\log _{2} n_{1}^{\prime}\right\rfloor$ is a natural number and $6 \cdot\left(\left\lfloor\log _{2} n_{1}^{\prime}\right\rfloor+1\right)+1>0$.
(25) For all natural numbers n_{1}, n_{1}^{\prime} such that $n_{1}=2 \cdot n_{1}^{\prime}+1$ and $n_{1}^{\prime}>0$ holds $6+\left(6 \cdot\left(\left\lfloor\log _{2} n_{1}^{\prime}\right\rfloor+1\right)+1\right)=6 \cdot\left(\left\lfloor\log _{2} n_{1}\right\rfloor+1\right)+1$.
(26) For all natural numbers n_{1}, n_{1}^{\prime} such that $n_{1}=2 \cdot n_{1}^{\prime}$ and $n_{1}^{\prime}>0$ holds $6+\left(6 \cdot\left(\left\lfloor\log _{2} n_{1}^{\prime}\right\rfloor+1\right)+1\right)=6 \cdot\left(\left\lfloor\log _{2} n_{1}\right\rfloor+1\right)+1$.
(27) For every natural number N such that $N \neq 0$ holds $6 \cdot N-4>0$.
(28). For every natural number N holds $6+(6 \cdot N-4)=6 \cdot(N+1)-4$.
(29) For all natural numbers m, k, N such that $m=(k+1+N)-1$ holds $m=(k+(N+1))-1$.
(30) For every natural number N holds $2+(6 \cdot N-4)=6 \cdot N-2$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Grzegorz Bancerek and Piotr Rudnicki. Two programs for SCM. Part II - programs. Formalized Mathematics, 4(1):73-75, 1993.
[4] Czeslaw Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czeslaw Byliñski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Edsger W. Dijkstra. Selected Writings on Computing, a Personal Perspective.
[8] Rafal Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887890, 1990.
[9] Rafal Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[10] Konrad Raczkowski and Andrzej Nedzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[14] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[15] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.

Received October 8, 1993

Two Programs for SCM. Part II Programs ${ }^{1}$

Grzegorz Bancerek
Polish Academy of Sciences
Institute of Mathematics
Warsaw

Piotr Rudnicki
University of Alberta
Department of Computing Science
Edmonton

Abstract

Summary. We prove the correctness of two short programs for the SCM machine: one computes Fibonacci numbers and the other computes the fusc function of Dijkstra [11]. The formal definitions of these functions can be found in [5]. We prove the total correctness of the programs in two ways: by conducting inductions on computations and inductions on input data. In addition we characterize the concrete complexity of the programs as defined in [4].

MML Identifier: FIB_FUSC.

The papers [17], [1], [20], [13], [18], [10], [16], [12], [7], [8], [2], [3], [6], [21], [9], [14], [15], [4], [19], and [5] provide the terminology and notation for this paper.

The program computing Fib is a finite sequence of elements of the instructions of SCM and is defined as follows:
(Def.1) The program computing Fib $=\left\langle\mathbf{i f} \mathbf{d}_{1}>0 \text { goto } \mathbf{i}_{2}\right\rangle^{-}\left\langle\text {halt }_{\mathbf{S C M}}\right\rangle^{-}$ $\left\langle\mathbf{d}_{3}:=\mathrm{d}_{0}\right\rangle \sim\left\langle\operatorname{SubFrom}\left(\mathbf{d}_{1}, \mathbf{d}_{0}\right)\right\rangle \sim\left\langle\right.$ if $\mathbf{d}_{1}=0$ goto $\left.\mathrm{i}_{1}\right\rangle \sim\left\langle\mathbf{d}_{4}:=\mathbf{d}_{2}\right\rangle \sim\left\langle\mathbf{d}_{2}:=\mathbf{d}_{3}\right\rangle \sim$ $\left\langle\operatorname{AddTo}\left(\mathrm{d}_{3}, \mathrm{~d}_{4}\right)\right\rangle \sim\left\langle\right.$ goto $\left.\left(\mathrm{i}_{3}\right)\right\rangle$.
The following proposition is true
(1) Let N be a natural number and let s be a state with instruction counter on 0 , with the program computing Fib located from 0 , and $\langle+1\rangle \sim\langle+N\rangle^{-}$ $\langle+0\rangle-\langle+0\rangle$ from 0 . Then
(i) s is halting,
(ii) if $N=0$, then the complexity of $s=1$,
(iii) if $N>0$, then the complexity of $s=6 \cdot N-2$, and
(iv) $(\operatorname{Result}(s))\left(\mathbf{d}_{3}\right)=\operatorname{Fib}(N)$.

[^6]Let i be an integer. The functor $\operatorname{Fusc}(i)$ yields a natural number and is defined as follows:
(Def.2) There exists a natural number n such that $i=n$ and $\operatorname{Fusc}(i)=\operatorname{Fusc}(n)$ or i is not a natural number and $\operatorname{Fusc}(i)=0$.
Let a, n be natural numbers. Then a^{n} is an integer.
The program computing Fusc is a finite sequence of elements of the instructions of SCM and is defined by:
(Def.3) The program computing Fusc $=\left\langle\right.$ if $d_{1}=0$ goto $\left.i_{8}\right\rangle \sim\left\langle d_{4}:=d_{0}\right\rangle$ $\left\langle\operatorname{Divide}\left(\mathbf{d}_{1}, \mathbf{d}_{4}\right)\right\rangle \sim\left\langle\right.$ if $\mathbf{d}_{4}=0$ goto $\left.\mathbf{i}_{6}\right\rangle \sim\left\langle\operatorname{AddTo}\left(\mathbf{d}_{3}, \mathbf{d}_{2}\right)\right\rangle \sim\left\langle\right.$ goto $\left.\left(\mathbf{i}_{0}\right)\right\rangle \sim$ $\left\langle\operatorname{AddTo}\left(\mathbf{d}_{2}, \mathbf{d}_{3}\right)\right\rangle-\left\langle\right.$ goto $\left.\left(\mathbf{i}_{0}\right)\right\rangle-\left\langle\right.$ halt $\left._{\mathbf{S C M}}\right\rangle$.
We now state several propositions:
(2) Let N be a natural number. Suppose $N>0$. Let s be a state with instruction counter on 0 , with the program computing Fusc located from 0 , and $\langle+2\rangle \sim\langle+N\rangle \sim\langle+1\rangle \sim\langle+0\rangle$ from 0 . Then s is halting and $(\operatorname{Result}(s))\left(\mathrm{d}_{3}\right)=\operatorname{Fusc}(N)$ and the complexity of $s=6 \cdot\left(\left\lfloor\log _{2} N\right\rfloor+1\right)+1$.
(3) Let N be a natural number, and let k, F_{1}, F_{2} be natural numbers, and let s be a state with instruction counter on 3 , with the program computing Fib located from 0, and $\langle+1\rangle \sim\langle+N\rangle-\left\langle+F_{1}\right\rangle-\left\langle+F_{2}\right\rangle$ from 0. Suppose $N>0$ and $F_{1}=\operatorname{Fib}(k)$ and $F_{2}=\operatorname{Fib}(k+1)$. Then
(i) s is halting,
(ii) the complexity of $s=6 \cdot N-4$, and
(iii) there exists a natural number m such that $m=(k+N)-1$ and $(\operatorname{Result}(s))\left(\mathbf{d}_{2}\right)=\operatorname{Fib}(m)$ and $(\operatorname{Result}(s))\left(\mathbf{d}_{3}\right)=\operatorname{Fib}(m+1)$.
(4) Let N be a natural number and let s be a state with instruction counter on 0 , with the program computing Fib located from 0 , and $\langle+1\rangle^{-}\langle+N\rangle^{-}$ $\langle+0\rangle-\langle+0\rangle$ from 0 . Then
(i) s is halting,
(ii) if $N=0$, then the complexity of $s=1$,
(iii) if $N>0$, then the complexity of $s=6 \cdot N-2$, and
(iv) $(\operatorname{Result}(s))\left(\mathbf{d}_{3}\right)=\operatorname{Fib}(N)$.
(5) Let n be a natural number, and let N, A, B be natural numbers, and let s be a state with instruction counter on 0 , with the program computing Fusc located from 0, and $\langle+2\rangle \sim\langle+n\rangle \sim\langle+A\rangle-\langle+B\rangle$ from 0. Suppose $N>0$ and $\operatorname{Fusc}(N)=A \cdot \operatorname{Fusc}(n)+B \cdot \operatorname{Fusc}(n+1)$. Then
(i) s is halting,
(ii) $(\operatorname{Result}(s))\left(\mathbf{d}_{3}\right)=\operatorname{Fusc}(N)$,
(iii) if $n=0$, then the complexity of $s=1$, and
(iv) if $n>0$, then the complexity of $s=6 \cdot\left(\left\lfloor\log _{2} n\right\rfloor+1\right)+1$.
(6) Let N be a natural number. Suppose $N>0$. Let s be a state with instruction counter on 0 , with the program computing Fusc located from 0 , and $\langle+2\rangle \sim\langle+N\rangle-\langle+1\rangle$? $\langle+0\rangle$ from 0 . Then
(i) s is halting,
(ii) $(\operatorname{Result}(s))\left(\mathbf{d}_{3}\right)=\operatorname{Fusc}(N)$,

[^7](iii) if $N=0$, then the complexity of $s=1$, and
(iv) if $N>0$, then the complexity of $s=6 \cdot\left(\left\lfloor\log _{2} N\right\rfloor+1\right)+1$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formalized Mathematics, 4(1):61-67, 1993.
[5] Grzegorz Bancerek and Piotr Rudnicki. Two programs for SCM. Part I - preliminaries. Formalized Mathematics, 4(1):69-72, 1993.
[6] Czeslaw Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czeslaw Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[10] Agata Darmochwat. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Edsger W. Dijkstra. Selected Writings on Computing, a Personal Perspective.
[12] Rafal Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887890, 1990.
[13] Rafal Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[14] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[15] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[16] Konrad Raczkowski and Andrzej Nędzusiak. Real exponents and logarithms. Formalized Mathematics, 2(2):213-216, 1991.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[20] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[21] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.

Received October 8, 1993

Joining of Decorated Trees

Grzegorz Bancerek
Polish Academy of Sciences
Institute of Mathematics
Warsaw

Abstract

Summary. This is the continuation of the sequence of articles on trees (see $[3,4,5]$). The main goal is to introduce joining operations on decorated trees corresponding with operations introduced in [5]. We will also introduce the operation of substitution. In the last section we dealt with trees decorated by Cartesian product, i.e. we showed some lemmas on joining operations applied to such trees.

MML Identifier: TREES_4.
The notation and terminology used here are introduced in the following papers: [15], [2], [9], [16], [11], [14], [13], [12], [10], [7], [6], [8], [3], [4], [1], and [5].

1. Joining of Decorated Tree

Let T be a decorated tree. A node of T is an element of dom T.
We adopt the following convention: x, y, z are arbitrary, i, j, n denote natural numbers, and p, q denote finite sequences.

Let T_{1}, T_{2} be decorated trees. Let us observe that $T_{1}=T_{2}$ if and only if:
(Def.1) $\quad \operatorname{dom} T_{1}=\operatorname{dom} T_{2}$ and for every node p of T_{1} holds $T_{1}(p)=T_{2}(p)$.
One can prove the following two propositions:
(1) For all natural numbers i, j such that the elementary tree of $i \subseteq$ the elementary tree of j holds $i \leq j$.
(2) For all natural numbers i, j such that the elementary tree of $i=$ the elementary tree of j holds $i=j$.
Let us consider x. The root tree of x is a decorated tree and is defined as follows:
(Def.2) The root tree of $x=($ the elementary tree of 0$) \longmapsto x$.
Let D be a non empty set and let d be an element of D. Then the root tree of d is an element of FinTrees (D).

We now state four propositions:
(3) dom (the root tree of x) $=$ the elementary tree of 0 and (the root tree of $x)(\varepsilon)=x$.
(4) If the root tree of $x=$ the root tree of y, then $x=y$.
(5) For every decorated tree T such that $\operatorname{dom} T=$ the elementary tree of 0 holds $T=$ the root tree of $T(\varepsilon)$.
(6) The root tree of $x=\{\langle\varepsilon, x\rangle\}$.

Let us consider x and let p be a finite sequence. The flat tree of x and p is a decorated tree and is defined by the conditions (Def.3).
(Def.3) (i) dom (the flat tree of x and p) $=$ the elementary tree of len p,
(ii) (the flat tree of x and $p)(\varepsilon)=x$, and
(iii) for every n such that $n<\operatorname{len} p$ holds (the flat tree of x and $p)(\langle n\rangle)=$ $p(n+1)$.
The following propositions are true:
(7) If the flat tree of x and $p=$ the flat tree of y and q, then $x=y$ and $p=q$.
(8) If $j<i$, then (the elementary tree of $i) \upharpoonright\langle j\rangle=$ the elementary tree of 0 .
(9) If $i<\operatorname{len} p$, then (the flat tree of x and $p) \upharpoonright|i\rangle=$ the root tree of $p(i+1)$.

Let us consider x, p. Let us assume that p is decorated tree yielding. The functor x - $\operatorname{tree}(p)$ yields a decorated tree and is defined by the conditions (Def.4).
(Def.4) (i) There exists a decorated tree yielding finite sequence q such that $p=q$ and $\operatorname{dom}(x$-tree $(p))=\overbrace{\kappa}^{\operatorname{dom} q(\kappa)}$,
(ii) $\quad(x$-tree $(p))(\varepsilon)=x$, and
(iii) for every n such that $n<\operatorname{len} p$ holds $(x$-tree $(p)) \upharpoonright\langle n\rangle=p(n+1)$.

Let us consider x and let T be a decorated tree. The functor x - $\operatorname{tree}(T)$ yielding a decorated tree is defined by:
(Def.5) x-tree $(T)=x$-tree $(\langle T\rangle)$.
Let us consider x and let T_{1}, T_{2} be decorated trees. The functor x - $\operatorname{tree}\left(T_{1}, T_{2}\right)$ yields a decorated tree and is defined as follows:
(Def.6) $\quad x$-tree $\left(T_{1}, T_{2}\right)=x$-tree $\left(\left\langle T_{1}, T_{2}\right\rangle\right)$.
We now state a number of propositions:
(10) For every decorated tree yielding finite sequence p holds $\operatorname{dom}(x$-tree $(p))=$ $\overbrace{\kappa}^{\operatorname{dom} p(\kappa)}$.
(11) Let p be a decorated tree yielding finite sequence. Then $y \in$ $\operatorname{dom}(x-\operatorname{tree}(p))$ if and only if one of the following conditions is satisfied:
(i) $y=\varepsilon$, or
(ii) there exists a natural number i and there exists a decorated tree T and there exists a node q of T such that $i<\operatorname{len} p$ and $T=p(i+1)$ and $y=\langle i\rangle \wedge q$.
(12) Let p be a decorated tree yielding finite sequence, and let i be a natural number, and let T be a decorated tree, and let q be a node of T. If
$i<\operatorname{len} p$ and $T=p(i+1)$, then $(x-\operatorname{tree}(p))(\langle i\rangle-q)=T(q)$.
(13) For every decorated tree T holds $\operatorname{dom}(x$-tree $(T))=\overbrace{\operatorname{dom} T}$.
(14) For all decorated trees $T_{1}, \quad T_{2}$ holds $\operatorname{dom}\left(x-\operatorname{tree}\left(T_{1}, T_{2}\right)\right)=$ $\overbrace{\operatorname{dom} T_{1}, \operatorname{dom} T_{2}}$.
(15) For all decorated tree yielding finite sequence p, q such that x-tree $(p)=$ y-tree (q) holds $x=y$ and $p=q$.
(16) If the root tree of $x=$ the flat tree of y and p, then $x=y$ and $p=\varepsilon$.
(17) If the root tree of $x=y$-tree (p) and p is decorated tree yielding, then $x=y$ and $p=\varepsilon$.
(18) Suppose the flat tree of x and $p=y$-tree (q) and q is decorated tree yielding. Then $x=y$ and len $p=\operatorname{len} q$ and for every i such that $i \in \operatorname{dom} p$ holds $q(i)=$ the root tree of $p(i)$.
(19) Let p be a decorated tree yielding finite sequence, and let n be a natural number, and let q be a finite sequence. If $\langle n\rangle \wedge q \in \operatorname{dom}(x$-tree $(p))$, then $(x$-tree $(p))(\langle n\rangle$ - $q)=p(n+1)(q)$.
(20) The flat tree of x and $\varepsilon=$ the root tree of x and x-tree $(\varepsilon)=$ the root tree of x.
(21) The flat tree of x and $\langle y\rangle=(($ the elementary tree of 1$) \longmapsto x)(\langle 0\rangle /($ the root tree of y)).
(22) For every decorated tree T holds x-tree $(\langle T\rangle)=(($ the elementary tree of 1) $\longmapsto x)(\langle 0\rangle / T)$.

Let D be a non empty set, let d be an element of D, and let p be a finite sequence of elements of D. Then the flat tree of d and p is a tree decorated by D.

Let D be a non empty set, let F be a non empty set of trees decorated by D, let d be an element of D, and let p be a finite sequence of elements of F. Then d-tree (p) is a tree decorated by D.

Let D be a non empty set, let d be an element of D, and let T be a tree decorated by D. Then d-tree (T) is a tree decorated by D.

Let D be a non empty set, let d be an element of D, and let T_{1}, T_{2} be trees decorated by D. Then d-tree $\left(T_{1}, T_{2}\right)$ is a tree decorated by D.

Let D be a non empty set and let p be a finite sequence of elements of FinTrees (D). Then $\operatorname{dom}_{\kappa} p(\kappa)$ is a finite sequence of elements of FinTrees.

Let D be a non empty set, let d be an element of D, and let p be a finite sequence of elements of FinTrees (D). Then d-tree (p) is an element of FinTrees (D).

Let D be a non empty set and let x be a subset of D. We see that the finite sequence of elements of x is a finite sequence of elements of D.

Let D be a non empty constituted of decorated trees set and let X be a subset of D. Note that every finite sequence of elements of X is decorated tree yielding.

2. Expanding of Decorated Tree by Substitution

The scheme ExpandTree concerns a tree \mathcal{A}, a tree \mathcal{B}, and a unary predicate \mathcal{P}, and states that:

There exists a tree T such that for every p holds $p \in T$ if and only if one of the following conditions is satisfied:
(i) $p \in \mathcal{A}$, or
(ii) there exists an element q of \mathcal{A} and there exists an element r of \mathcal{B} such that $\mathcal{P}[q]$ and $p=q^{\wedge} r$
for all values of the parameters.
Let T, T^{\prime} be decorated trees and let x be arbitrary. The functor $T_{x \leftarrow T^{\prime}}$ yielding a decorated tree is defined by the conditions (Def.7).
(Def.7) (i) For every p holds $p \in \operatorname{dom}\left(T_{x \leftarrow T^{\prime}}\right)$ iff $p \in \operatorname{dom} T$ or there exists a node q of T and there exists a node r of T^{\prime} such that $q \in$ Leaves dom T and $T(q)=x$ and $p=q^{\wedge} r$,
(ii) for every node p of T such that $p \notin$ Leaves dom T or $T(p) \neq x$ holds $T_{x \leftarrow T^{\prime}}(p)=T(p)$, and
(iii) for every node p of T and for every node q of T^{\prime} such that $p \in$ Leaves dom T and $T(p)=x$ holds $T_{x \leftarrow T^{\prime}}\left(p^{\wedge} q\right)=T^{\prime}(q)$.
Let D be a non empty set, let T, T^{\prime} be trees decorated by D, and let x be arbitrary. Then $T_{x \leftarrow T^{\prime}}$ is a tree decorated by D.

We follow a convention: $T, T^{\prime}, T_{1}, T_{2}$ are decorated trees and x, y, z are arbitrary.

One can prove the following proposition If $x \notin \operatorname{rng} T$ or $x \notin$ Leaves T, then $T_{x \leftarrow T^{\prime}}=T$.

3. Double Decorated Trees

For simplicity we adopt the following rules: D_{1}, D_{2} are non empty set, T is a tree decorated by D_{1} and D_{2}, F is a non empty set of trees decorated by D_{1} and D_{2}, and F_{1} is a non empty set of trees decorated by D_{1}.

The following propositions are true:
(24) For all D_{1}, D_{2}, T holds $\operatorname{dom}\left(T_{1}\right)=\operatorname{dom} T$ and $\operatorname{dom}\left(T_{2}\right)=\operatorname{dom} T$.
(25) (the root tree of $\left.\left\langle d_{1}, d_{2}\right\rangle\right\rangle_{1}=$ the root tree of d_{1} and (the root tree of $\left.\left\langle d_{1}, d_{2}\right\rangle\right)_{2}=$ the root tree of d_{2}.
(26) \langle the root tree of x, the root tree of $y\rangle=$ the root tree of $\langle x, y\rangle$.
(27) Given $D_{1}, D_{2}, d_{1}, d_{2}, F, F_{1}$, and let p be a finite sequence of elements of F, and let p_{1} be a finite sequence of elements of F_{1}. Suppose dom $p_{1}=$ $\operatorname{dom} p$ and for every i such that $i \in \operatorname{dom} p$ and for every T such that $T=p(i)$ holds $p_{1}(i)=T_{1}$. Then $\left(\left\langle d_{1}, d_{2}\right\rangle-\operatorname{tree}(p)\right)_{1}=d_{1}-\operatorname{tree}\left(p_{1}\right)$.
(28) Given $D_{1}, D_{2}, d_{1}, d_{2}, F, F_{2}$, and let p be a finite sequence of elements of F, and let p_{2} be a finite sequence of elements of F_{2}. Suppose dom $p_{2}=$ $\operatorname{dom} p$ and for every i such that $i \in \operatorname{dom} p$ and for every T such that $T=p(i)$ holds $p_{2}(i)=T_{2}$. Then $\left(\left\langle d_{1}, d_{2}\right\rangle \text {-tree }(p)\right)_{2}=d_{2}$-tree $\left(p_{2}\right)$.
(29) Given $D_{1}, D_{2}, d_{1}, d_{2}, F$ and let p be a finite sequence of elements of F. Then there exists a finite sequence p_{1} of elements of $\operatorname{Trees}\left(D_{1}\right)$ such that $\operatorname{dom} p_{1}=\operatorname{dom} p$ and for every i such that $i \in \operatorname{dom} p$ there exists an element T of F such that $T=p(i)$ and $p_{1}(i)=T_{1}$ and $\left(\left\langle d_{1}, d_{2}\right\rangle \text {-tree }(p)\right)_{1}=$ d_{1}-tree $\left(p_{1}\right)$.
(30) Given $D_{1}, D_{2}, d_{1}, d_{2}, F$ and let p be a finite sequence of elements of F. Then there exists a finite sequence p_{2} of elements of Trees $\left(D_{2}\right)$ such that $\operatorname{dom} p_{2}=\operatorname{dom} p$ and for every i such that $i \in \operatorname{dom} p$ there exists an element T of F such that $T=p(i)$ and $p_{2}(i)=T_{2}$ and $\left(\left\langle d_{1}, d_{2}\right\rangle \text {-tree }(p)\right)_{2}=$ d_{2}-tree $\left(p_{2}\right)$.
(31) Given $D_{1}, D_{2}, d_{1}, d_{2}$ and let p be a finite sequence of elements of FinTrees ([: D_{1}, D_{2} !). Then there exists a finite sequence p_{1} of elements of FinTrees $\left(D_{1}\right)$ such that dom $p_{1}=\operatorname{dom} p$ and for every i such that $i \in \operatorname{dom} p$ there exists an element T of FinTrees $\left(\left[D_{1}, D_{2} ;\right)\right.$ such that $T=p(i)$ and $p_{1}(i)=T_{1}$ and $\left(\left\langle d_{1}, d_{2}\right\rangle \text {-tree }(p)\right)_{1}=d_{1}$-tree $\left(p_{1}\right)$.
(32) Given $D_{1}, D_{2}, d_{1}, d_{2}$ and let p be a finite sequence of elements of FinTrees $\left(\left[: D_{1}, D_{2}\right]\right)$. Then there exists a finite sequence p_{2} of elements of FinTrees $\left(D_{2}\right)$ such that $\operatorname{dom} p_{2}=\operatorname{dom} p$ and for every i such that $i \in \operatorname{dom} p$ there exists an element T of FinTrees $\left(\left[D_{1}, D_{2} ;\right)\right.$ such that $T=p(i)$ and $p_{2}(i)=T_{2}$ and $\left(\left\langle d_{1}, d_{2}\right\rangle \text {-tree }(p)\right)_{2}=d_{2}$-tree $\left(p_{2}\right)$.

References

[1] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[5] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[7] Czeslaw Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[8] Czeslaw Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[10] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[13] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received October 8, 1993

Binary Arithmetics

Takaya Nishiyama
Shinshu University
Information Engineering Dept.
Nagano

Yasuho Mizuhara
Shinshu University Information Engineering Dept.
Nagano

Abstract

Summary. Formalizes the basic concepts of binary arithmetic and its related operations. We present the definitions for the following logical operators: 'or' and 'xor' (exclusive or) and include in this article some theorems concerning these operators. We also introduce the concept of an n-bit register. Such registers are used in the definition of binary unsigned arithmetic presented in this article. Theorems on the relationships of such concepts to the operations of natural numbers are also given.

MML Identifier: BINARITH.

The notation and terminology used in this paper are introduced in the following papers: [12], [1], [13], [15], [7], [8], [4], [2], [9], [11], [10], [5], [3], [6], and [14].

Let us observe that there exists a natural number which is non empty.
One can prove the following proposition
(1) For all natural numbers i, j holds $+_{\mathbb{N}}(i, j)=i+j$.

Let n be a natural number and let X be a non empty set. A tuple of n and X is an element of X^{n}.

One can prove the following propositions:
(2) Let i, n be natural numbers, and let D be a non empty set, and let d be an element of D, and let z be a tuple of n and D. If $i \in \operatorname{Seg} n$, then $\pi_{i}\left(z^{\wedge}\langle d\rangle\right)=\pi_{i} z$.
(3) Let n be a natural number, and let D be a non empty set, and let d be an element of D, and let z be a tuple of n and D. Then $\pi_{n+1}\left(z^{\sim}\langle d\rangle\right)=d$.
(4) For every non empty natural number n holds $n \geq 1$.
(5) For all natural numbers i, n such that $i \in \operatorname{Seg} n$ holds i is non empty.

Let x, y be elements of Boolean. The functor $x \vee y$ yields an element of Boolean and is defined by:
(Def.1) $\quad x \vee y=\neg(\neg x \wedge \neg y)$.

Let x, y be elements of Boolean. The functor $x \oplus y$ yielding an element of Boolean is defined by:
(Def.2) $\quad x \oplus y=\neg x \wedge y \vee x \wedge \neg y$.
In the sequel x, y, z will denote elements of Boolean.
The following propositions are true:
(6) $x \vee y=y \vee x$.
(7) $\quad x \vee$ false $=x$ and false $\vee x=x$.
(8) $x \vee y=\neg(\neg x \wedge \neg y)$.
(9) $\neg(x \wedge y)=\neg x \vee \neg y$.
(10) $\neg(x \vee y)=\neg x \wedge \neg y$.
(11) $x \oplus y=y \oplus x$.
(12) $x \wedge y=\neg(\neg x \vee \neg y)$.
(13) true $\oplus x=\neg x$ and $x \oplus$ true $=\neg x$.
(14) false $\oplus x=x$ and $x \oplus$ false $=x$.
(15) $x \oplus x=$ false.
(16) $x \wedge x=x$.
(17) $x \oplus \neg x=$ true and $\neg x \oplus x=$ true.
(18) $x \vee \neg x=$ true and $\neg x \vee x=$ true.
(19) $x \vee$ true $=$ true and true $\vee x=$ true.
(20) $(x \vee y) \vee z=x \vee(y \vee z)$.
(21) $x \vee x=x$.
(22) $x \wedge(y \vee z)=x \wedge y \vee x \wedge z$.
(23) $x \vee y \wedge z=(x \vee y) \wedge(x \vee z)$.
(24) $x \vee x \wedge y=x$.
(25) $x \wedge(x \vee y)=x$.
(26) $x \vee \neg x \wedge y=x \vee y$.
(27) $x \wedge(\neg x \vee y)=x \wedge y$.
(28) $\quad x \wedge \neg x=$ false and $\neg x \wedge x=$ false.
(29) false $\wedge x=$ false and $x \wedge$ false $=$ false.
(30) $z \wedge x \wedge y=x \wedge y \wedge z$.
(31) $z \wedge y \wedge x=x \wedge y \wedge z$.
(32) $x \wedge z \wedge y=x \wedge y \wedge z$.
(33) \quad true \oplus false $=$ true and false \oplus true $=$ true.
(34) $x \oplus y \oplus z=x \oplus y \oplus z$.
(35) $x \oplus \neg x \wedge y=x \vee y$.
(36) $\quad x \vee x \oplus y=x \vee y$:
(37) $x \vee \neg x \oplus y=x \vee \neg y$.
(38) $\quad x \wedge y \oplus z=x \wedge y \oplus x \wedge z$.

In the sequel i, j, k will be natural numbers.
Let us consider i, j. The functor $i-^{\prime} j$ yields a natural number and is defined as follows:
(Def.3) (i) $i-^{\prime} j=i-j$ if $i-j \geq 0$,
(ii) $i-^{\prime} j=0$, otherwise.

Next we state the proposition

$$
\begin{equation*}
(i+j)--^{\prime} j=i \tag{39}
\end{equation*}
$$

We adopt the following convention: n will denote a non empty natural number and x, y, z, z_{1}, z_{2} will denote tuples of n and Boolean.

Let us consider n, x. The functor $\neg x$ yields a tuple of n and Boolean and is defined as follows:
(Def.4) For every i such that $i \in \operatorname{Seg} n$ holds $\pi_{i} \neg x=-\neg \pi_{i} x$.
Let us consider y. The functor carry (x, y) yielding a tuple of n and Boolean is defined as follows:
(Def.5) $\pi_{1} \operatorname{carry}(x, y)=$ false and for every i such that $1 \leq i$ and $i<n$ holds $\pi_{i+1} \operatorname{carry}(x, y)=\pi_{i} x \wedge \pi_{i} y \vee \pi_{i} x \wedge \pi_{i} \operatorname{carry}(x, y) \vee \pi_{i} y \wedge \pi_{i} \operatorname{carry}(x, y)$.
Let us consider n, x. The functor $\operatorname{Binary}(x)$ yielding a tuple of n and \mathbb{N} is defined by:
(Def.6) For every i such that $i \in \operatorname{Seg} n$ holds $\pi_{i} \operatorname{Binary}(x) \doteq\left(\pi_{i} x=\right.$ false \rightarrow 0 , the $i-^{\prime} 1$-th power of 2).
Let us consider n, x. The functor $\operatorname{Absval}(x)$ yielding a natural number is defined by:
(Def.7) $\quad \operatorname{Absval}(x)=+\mathbb{N} \circledast \operatorname{Binary}(x)$.
Let us consider n, x, y. The functor $x+y$ yielding a tuple of n and Boolean is defined by:
(Def.8) For every i such that $i \in \operatorname{Seg} n$ holds $\pi_{i}(x+y)=\pi_{i} x \oplus \pi_{i} y \oplus \pi_{i} \operatorname{carry}(x, y)$.
Let us consider n, z_{1}, z_{2}. The functor add_ovfl $\left(z_{1}, z_{2}\right)$ yielding an element of Boolean is defined by:
(Def.9) add_ovf($\left(z_{1}, z_{2}\right)=\pi_{n} z_{1} \wedge \pi_{n} z_{2} \vee \pi_{n} z_{1} \wedge \pi_{n} \operatorname{carry}\left(z_{1}, z_{2}\right) \vee \pi_{n} z_{2} \wedge$ $\pi_{n} \operatorname{carry}\left(z_{1}, z_{2}\right)$.
Let us consider n, z_{1}, z_{2}. We say that z_{1} and z_{2} are summable if and only if: (Def.10) add_ovfl $\left(z_{1}, z_{2}\right)=$ false.

Let us consider n, k. Then $n+k$ is a non empty natural number.
One can prove the following proposition
(40) For every tuple z_{1} of 1 and Boolean holds $z_{1}=\langle$ false \rangle or $z_{1}=\langle$ true \rangle.

Let n_{1} be a non empty natural number, let n_{2} be a natural number, let D be a non empty set, let z_{1} be a tuple of n_{1} and D, and let z_{2} be a tuple of n_{2} and D. Then $z_{1} \sim z_{2}$ is a tuple of $n_{1}+n_{2}$ and D.

Let D be a non empty set and let d be an element of D. Then $\langle d\rangle$ is a tuple of 1 and D.

The following propositions are true:
(41) Given n, and let z_{1}, z_{2} be tuples of n and Boolean, and let d_{1}, d_{2} be elements of Boolean, and let i be a natural number. If $i \in \operatorname{Seg} n$, then $\pi_{i} \operatorname{carry}\left(z_{1}-\left\langle d_{1}\right\rangle, z_{2} \wedge\left\langle d_{2}\right\rangle\right)=\pi_{i} \operatorname{carry}\left(z_{1}, z_{2}\right)$.
(42) For every n and for all tuples z_{1}, z_{2} of n and Boolean and for all elements d_{1}, d_{2} of Boolean holds add_ovf $\left(z_{1}, z_{2}\right)=\pi_{n+1} \operatorname{carry}\left(z_{1}-\left\langle d_{1}\right\rangle, z_{2} \sim\left\langle d_{2}\right\rangle\right)$.
For every n and for all tuples z_{1}, z_{2} of n and Boolean and for all elements d_{1}, d_{2} of Boolean holds $z_{1} \wedge\left\langle d_{1}\right\rangle+z_{2} \wedge\left\langle d_{2}\right\rangle=\left(z_{1}+z_{2}\right) \wedge\left\langle d_{1} \oplus d_{2} \oplus\right.$ add_ovf($\left.\left.z_{1}, z_{2}\right)\right\rangle$.
(44) For every n and for every tuple z of n and Boolean and for every element d of Boolean holds $\operatorname{Absval}\left(z^{\wedge}\langle d\rangle\right)=\operatorname{Absval}(z)+(d=$ false $\rightarrow 0$, the n-th power of 2).
(45) For every n and for all tuples z_{1}, z_{2} of n and Boolean holds $\operatorname{Absval}\left(z_{1}+\right.$ $\left.z_{2}\right)+\left(\right.$ add_ovfl $\left(z_{1}, z_{2}\right)=$ false $\rightarrow 0$, the n-th power of 2$)=\operatorname{Absval}\left(z_{1}\right)+$ Absval $\left(z_{2}\right)$.
(46) For every n and for all tuples z_{1}, z_{2} of n and Boolean such that z_{1} and z_{2} are summable holds $\operatorname{Absval}\left(z_{1}+z_{2}\right)=\operatorname{Absval}\left(z_{1}\right)+\operatorname{Absval}\left(z_{2}\right)$.

Acknowledgments

Many thanks to Professor Andrzej Trybulec for making this article a success. We really enjoyed working with you...ARIGATOU GOZAIMASHITA.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czestaw Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czeslaw Bylinski. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[6] Czestaw Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czestaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Semigroup operations on finite subsets. Formalized Mathematics, 1(4):651-656, 1990.
[10] Eugeniusz Kusak, Wojciech Leończuk, and Michal Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[11] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449-452, 1991.
[12] Andrzej Trybulec. Tarski Grothendieck set theory: Formalized Mathematics, 1(1):9-11, 1990.
[13] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[14] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[15] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733737, 1990.

Received October 8, 1993

Basic Concepts for Petri Nets with Boolean Markings

Pauline N. Kawamoto Shinshu University
Nagano

Yasushi Fuwa
Shinshu University
Nagano

Yatsuka Nakamura
Shinshu University
Nagano

Summary. Contains basic concepts for Petri nets with Boolean markings and the firability/firing of single transitions as well as sequences of transitions [7]. The concept of a Boolean marking is introduced as a mapping of a Boolean TRUE/FALSE to each of the places in a place/ transition net. This simplifies the conventional definitions of the firability and firing of a transition. One note of caution in this article - the definition of firing a transition does not require that the transition be firable. Therefore, it is advisable to check that transitions ARE firable before firing them.

MML Identifier: BOOLMARK.

The papers [12], [1], [15], [17], [18], [4], [5], [13], [10], [11], [9], [2], [3], [14], [6], [16], and [8] provide the notation and terminology for this paper.

1. Preliminaries

The following four propositions are true:
(1) Let A, B be non empty set, and let f be a function from A into B, and let C be a subset of A, and let v be an element of B. Then $f+\cdot(C \longmapsto v)$ is a function from A into B.
(2) Let X, Y be non empty set, and let A, B be subsets of X, and let f be a function from X into Y. If $f^{\circ} A \cap f^{\circ} B=\emptyset$, then $A \cap B=\emptyset$.
(3) For all sets A, B and for every function f and for arbitrary x such that $A \cap B=\emptyset$ holds $(f+\cdot(A \longmapsto x))^{\circ} B=f^{\circ} B$.
(4) Let n be a natural number, and let D be a non empty set, and let d be an element of D, and let z be a finite sequence of elements of D. If len $z=n$, then $\pi_{n+1}\left(z^{\wedge}\langle d\rangle\right)=d$.

2. Boolean Marking and Firability/Firing of Transitions

Let P_{1} be a place/transition net structure. The functor Bool_marks_of P_{1} yielding a non empty set of functions from the places of P_{1} to Boolean is defined by:
(Def.1) Bool_marks_of $P_{1}=$ Boolean $^{\text {the places of } P_{1}}$.
Let P_{1} be a place/transition net structure. A Boolean marking of P_{1} is an element of Bool_marks_of P_{1}.

Let P_{1} be a place/transition net structure, let M_{0} be a Boolean marking of P_{1}, and let t be a transition of P_{1}. We say that t is firable on M_{0} if and only if:
(Def.2) $\quad M_{0}{ }^{\circ}\left({ }^{*}\{t\}\right) \subseteq\{$ true $\}$.
Let P_{1} be a place/transition net structure, let M_{0} be a Boolean marking of P_{1}, and let t be a transition of P_{1}. The functor Firing $\left(t, M_{0}\right)$ yields a Boolean marking of P_{1} and is defined by:
(Def.3) Firing $\left(t, M_{0}\right)=M_{0}+\cdot\left({ }^{*}\{t\} \longmapsto\right.$ false $)+\cdot\left(\{t\}^{*} \longmapsto\right.$ true $)$.
Let P_{1} be a place/transition net structure, let M_{0} be a Boolean marking of P_{1}, and let Q be a finite sequence of elements of the transitions of P_{1}. We say that Q is firable on M_{0} if and only if the conditions (Def.4) are satisfied.
(Def.4) (i) $Q=\varepsilon$, or
(ii) there exists a finite sequence M of elements of Bool_marks_of P_{1} such that len $Q=\operatorname{len} M$ and $\pi_{1} Q$ is firable on M_{0} and $\pi_{1} M=\operatorname{Firing}\left(\pi_{1} Q, M_{0}\right)$ and for every natural number i such that $i<\operatorname{len} Q$ and $i>0$ holds $\pi_{i+1} Q$ is firable on $\pi_{i} M$ and $\pi_{i+1} M=\operatorname{Firing}\left(\pi_{i+1} Q, \pi_{i} M\right)$.
Let P_{1} be a place/transition net structure, let M_{0} be a Boolean marking of P_{1}, and let Q be a finite sequence of elements of the transitions of P_{1}. The functor Firing $\left(Q, M_{0}\right)$ yielding a Boolean marking of P_{1} is defined as follows:
(Def.5) (i) Firing $\left(Q, M_{0}\right)=M_{0}$ if $Q=\varepsilon$,
(ii) there exists a finite sequence M of elements of Bool_marks_of P_{1} such that len $Q=\operatorname{len} M$ and $\operatorname{Firing}\left(Q, M_{0}\right)=\pi_{\text {len }} M M$ and $\pi_{1} M=$ Firing $\left(\pi_{1} Q, M_{0}\right)$ and for every natural number i such that $i<\operatorname{len} Q$ and $i>0$ holds $\pi_{i+1} M=$ Firing $\left(\pi_{i+1} Q, \pi_{i} M\right)$, otherwise.
One can prove the following propositions:
(5) For every non empty set A and for arbitrary y and for every function f holds $(f+\cdot(A \longmapsto y))^{\circ} A=\{y\}$.
(6) Let P_{1} be a place/transition net structure, and let M_{0} be a Boolean marking of P_{1}, and let t be a transition of P_{1}, and let s be a place of P_{1}. If $s \in\{t\}^{*}$, then $\left(\right.$ Firing $\left.\left(t, M_{0}\right)\right)(s)=t r u e$.
(7) Let P_{1} be a place/transition net structure and let S_{1} be a non empty set of places of P_{1}. Then S_{1} is deadlock-like if and only if for every Boolean marking M_{0} of P_{1} such that $M_{0}{ }^{\circ} S_{1}=\{$ false $\}$ and for every transition t of P_{1} such that t is firable on M_{0} holds $\left(\text { Firing }\left(t, M_{0}\right)\right)^{\circ} S_{1}=\{$ false $\}$.
(8) Let D be a non empty set, and let Q_{0}, Q_{1} be finite sequences of elements of D, and let i be a natural number. If $1 \leq i$ and $i \leq \operatorname{len} Q_{0}$, then $\pi_{i}\left(Q_{0} \cap Q_{1}\right)=\pi_{i} Q_{0}$.
(9) Let D be a non empty set, and let Q_{0}, Q_{1} be finite sequences of elements of D, and let i be a natural number. If $1 \leq i$ and $i \leq \operatorname{len} Q_{1}$, then $\pi_{\operatorname{len} Q_{0}+i}\left(Q_{0}-Q_{1}\right)=\pi_{i} Q_{1}$.
(10) Let P_{1} be a place/transition net structure, and let M_{0} be a Boolean marking of P_{1}, and let Q_{0}, Q_{1} be finite sequences of elements of the transitions of P_{1}. Then Firing $\left(Q_{0} \wedge Q_{1}, M_{0}\right)=\operatorname{Firing}\left(Q_{1}, \operatorname{Firing}\left(Q_{0}, M_{0}\right)\right)$.
(11) Let P_{1} be a place/transition net structure, and let M_{0} be a Boolean marking of P_{1}, and let Q_{0}, Q_{1} be finite sequences of elements of the transitions of P_{1}. If $Q_{0}{ }^{\wedge} Q_{1}$ is firable on M_{0}, then Q_{1} is firable on Firing $\left(Q_{0}, M_{0}\right)$ and Q_{0} is firable on M_{0}.
(12) Let P_{1} be a place/transition net structure, and let M_{0} be a Boolean marking of P_{1}, and let t be a transition of P_{1}. Then t is firable on M_{0} if and only if $\langle t\rangle$ is firable on M_{0}.
(13) Let P_{1} be a place/transition net structure, and let M_{0} be a Boolean marking of P_{1}, and let t be a transition of P_{1}. Then Firing $\left(t, M_{0}\right)=$ Firing $\left(\langle t\rangle, M_{0}\right)$.
(14) Let P_{1} be a place/transition net structure and let S_{1} be a non empty set of places of P_{1}. Then S_{1} is deadlock-like if and only if for every Boolean marking M_{0} of P_{1} such that $M_{0}{ }^{\circ} S_{1}=\{$ false $\}$ and for every finite sequence Q of elements of the transitions of P_{1} such that Q is firable on M_{0} holds (Firing $\left.\left(Q, M_{0}\right)\right)^{\circ} S_{1}=\{$ false $\}$.

Acknowledgments

The authors would like to thank Dr. Andrzej Trybulec for his patience and guidance in the writing of this article.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czeslaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czeslaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czeslaw Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[7] Pauline N. Kawamoto, Masayoshi Eguchi, Yasushi Fuwa, and Yatsuka Nakamura. The detection of deadlocks in petri nets with ordered evaluation sequences. In Institute of Electronics, Information, and Communication Engineers (IEICE) Technical Report, pages 45-52, Institute of Electronics, Information, and Communication Engineers (IEICE), January 1993.
[8] Pauline N. Kawamoto, Yasushi Fuwa, and Yatsuka Nakamura. Basic Petri net concepts. Formalized Mathematics, 3(2):183-187, 1992.
[9] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[11] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[14] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[16] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733737, 1990.
[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 8, 1993

On Defining Functions on Trees ${ }^{1}$

Grzegorz Bancerek
Polish Academy of Sciences
Institute of Mathematics
Warsaw

Piotr Rudnicki
University of Alberta
Department of Computing Science
Edmonton

Summary. The continuation of the sequence of articles on trees (see [3,5,7,4]) and on context-free grammars ([15]). We define the set of complete parse trees for a given context-free grammar. Next we define the scheme of induction for the set and the scheme of defining functions by induction on the set. For each symbol of a context-free grammar we define the terminal, the pretraversal, and the posttraversal languages. The introduced terminology is tested on the example of Peano naturals.

MML Identifier: DTCONSTR.

The terminology and notation used in this paper are introduced in the following articles: [18], [2], [21], [12], [13], [9], [1], [14], [8], [11], [16], [19], [6], [17], [10], $[20],[15],[3],[5],[7]$, and [4].

1. Preliminaries

The following propositions are true:
(1) For every non empty set D holds every finite sequence of elements of FinTrees (D) is a finite sequence of elements of Trees (D).
(2) For arbitrary x, y and for every finite sequence p of elements of x such that $y \in \operatorname{dom} p$ or $y \in \operatorname{Seg} \operatorname{len} p$ holds $p(y) \in x$.
Let X be a set. Observe that every element of X^{*} is function-like.
Let X be a set. Note that every element of X^{*} is finite sequence-like.
Let D be a set and let p, q be elements of D^{*}. Then $p^{\sim} q$ is an element of D^{*}.

[^8]Let D be a non empty set and let t be an element of FinTrees (D). Then dom t is a finite tree.

Let D be a non empty set and let T be a set of trees decorated by D. One can verify that every finite sequence of elements of T is decorated tree yielding.

Let D be a non empty set, let F be a non empty set of trees decorated by D, and let T_{1} be a non empty subset of F. We see that the element of T_{1} is an element of F.

Let p be a finite sequence. Let us assume that p is decorated tree yielding. The roots of p constitute finite sequences and is defined by the conditions (Def.1).
(Def.1) (i) $\operatorname{dom}($ the roots of $p)=\operatorname{dom} p$, and
(ii) for every natural number i such that $i \in \operatorname{dom} p$ there exists a decorated tree T such that $T=p(i)$ and (the roots of $p)(i)=T(\varepsilon)$.
Let D be a non empty set, let T be a set of trees decorated by D, and let p be a finite sequence of elements of T. Then the roots of p is a finite sequence of elements of D.

One can prove the following propositions:
(3) The roots of $\varepsilon=\varepsilon$.
(4) For every decorated tree T holds the roots of $\langle T\rangle=\langle T(\varepsilon)\rangle$.
(5) Let D be a non empty set, and let F be a subset of FinTrees (D), and let p be a finite sequence of elements of F. Suppose len (the roots of p) $=1$. Then there exists an element x of $\operatorname{FinTrees}(D)$ such that $p=\langle x\rangle$ and $x \in F$.
(6) For all decorated trees T_{2}, T_{3} holds the roots of $\left\langle T_{2}, T_{3}\right\rangle=\left\langle T_{2}(\varepsilon), T_{3}(\varepsilon)\right\rangle$.

Let f be a function. The functor $\operatorname{pr} 1(f)$ yields a function and is defined by:
(Def.2) dom $\operatorname{pr} 1(f)=\operatorname{dom} f$ and for arbitrary x such that $x \in \operatorname{dom} f$ holds $\operatorname{pr} 1(f)(x)=f(x)_{1}$.
The functor $\operatorname{pr} 2(f)$ yielding a function is defined by:
(Def.3) $\operatorname{dom} \operatorname{pr} 2(f)=\operatorname{dom} f$ and for arbitrary x such that $x \in \operatorname{dom} f$ holds $\operatorname{pr} 2(f)(x)=f(x)_{2}$.
Let X, Y be sets and let f be a finite sequence of elements of $[: X, Y:$. Then $\operatorname{pr} 1(f)$ is a finite sequence of elements of X. Then $\operatorname{pr} 2(f)$ is a finite sequence of elements of Y.

One can prove the following proposition

$$
\begin{equation*}
\operatorname{pr} 1(\varepsilon)=\varepsilon \text { and } \operatorname{pr} 2(\varepsilon)=\varepsilon \tag{7}
\end{equation*}
$$

The scheme MonoSetSeq concerns a function \mathcal{A}, a set \mathcal{B}, and a binary functor \mathcal{F} yielding a set, and states that:

For all natural numbers k, s holds $\mathcal{A}(k) \subseteq \mathcal{A}(k+s)$
provided the parameters meet the following requirement:

- For every natural number n and for arbitrary x such that $x=\mathcal{A}(n)$ holds $\mathcal{A}(n+1)=x \cup \mathcal{F}(n, x)$.

2. The set of parse trees

Now we present two schemes. The scheme DTConstrStrEx concerns a non empty set \mathcal{A} and a binary predicate \mathcal{P}, and states that:

There exists a strict tree construction structure G such that
(i) the carrier of $G=\mathcal{A}$, and
(ii) for every symbol x of G and for every finite sequence p of elements of the carrier of G holds $x \Rightarrow p$ iff $\mathcal{P}[x, p]$ for all values of the parameters.

The scheme DTConstrStrUniq deals with a non empty set \mathcal{A} and a binary predicate \mathcal{P}, and states that:

Let G_{1}, G_{2} be strict tree construction structure. Suppose that
(i) the carrier of $G_{1}=\mathcal{A}$,
(ii) for every symbol x of G_{1} and for every finite sequence p of elements of the carrier of G_{1} holds $x \Rightarrow p$ iff $\mathcal{P}[x, p]$,
(iii) the carrier of $G_{2}=\mathcal{A}$, and
(iv) for every symbol x of G_{2} and for every finite sequence p of
elements of the carrier of G_{2} holds $x \Rightarrow p$ iff $\mathcal{P}[x, p]$.
Then $G_{1}=G_{2}$
for all values of the parameters.
Next we state the proposition
(8) For every tree construction structure G holds (the terminals of G) \cap (the nonterminals of G) $=\emptyset$.
Now we present four schemes. The scheme DTCMin concerns a function \mathcal{A}, a tree construction structure \mathcal{B}, a non empty set \mathcal{C}, a unary functor \mathcal{F} yielding an element of \mathcal{C}, and a ternary functor \mathcal{G} yielding an element of \mathcal{C}, and states that:

There exists a subset X of $\operatorname{Fin} \operatorname{Trees}([$ the carrier of $\mathcal{B}, \mathcal{C}])$ such that
(i) $X=\bigcup \mathcal{A}$,
(ii) for every symbol d of \mathcal{B} such that $d \in$ the terminals of \mathcal{B} holds the root tree of $\langle d, \mathcal{F}(d)\rangle \in X$,
(iii) for every symbol o of \mathcal{B} and for every finite sequence p of elements of X such that $o \Rightarrow \operatorname{pr1}($ the roots of p) and for arbitrary s, v such that $s=\operatorname{pr} 1$ (the roots of p) and $v=\operatorname{pr} 2$ (the roots of p) holds $\langle o, \mathcal{G}(o, s, v)\rangle$-tree $(p) \in X$, and
(iv) for every subset F of $\operatorname{FinTrees}($: the carrier of \mathcal{B}, \mathcal{C})) such that for every symbol d of \mathcal{B} such that $d \in$ the terminals of \mathcal{B} holds the root tree of $\langle d, \mathcal{F}(d)\rangle \in F$ and for every symbol o of \mathcal{B} and for every finite sequence p of elements of F such that $o \Rightarrow$ $\operatorname{pr} 1($ the roots of $p)$ holds $\langle o, \mathcal{G}(o, \operatorname{pr} 1$ (the roots of $p), \operatorname{pr2}($ the roots of $p))\rangle$-tree $(p) \in F$ holds $X \subseteq F$ provided the following conditions are satisfied:

- $\operatorname{dom} \mathcal{A}=\mathbb{N}$,
- $\mathcal{A}(0)=\{$ the root tree of $\langle t, d\rangle: t$ ranges over symbols of \mathcal{B}, d ranges over elements of $\mathcal{C}, t \in$ the terminals of $\mathcal{B} \wedge d=\mathcal{F}(t) \vee t \Rightarrow \varepsilon \wedge d=$ $\mathcal{G}(t, \varepsilon, \varepsilon)\}$,
- Let n be a natural number and let x be arbitrary. Suppose $x=$ $\mathcal{A}(n)$. Then $\mathcal{A}(n+1)=x \cup\{\langle o, \mathcal{G}(o, \operatorname{pr} 1$ (the roots of $p), \operatorname{pr} 2($ the roots of $p)$) \rangle-tree (p) :o ranges over symbols of \mathcal{B}, p ranges over elements of $x^{*}, \exists_{q} p=q \wedge o \Rightarrow \operatorname{pr} 1($ the roots of $\left.q)\right\}$.
- The scheme DTCSymbols deals with a function \mathcal{A}, a tree construction structure \mathcal{B}, a non empty set \mathcal{C}, a unary functor \mathcal{F} yielding an element of \mathcal{C}, and a ternary functor \mathcal{G} yielding an element of \mathcal{C}, and states that:

There exists a subset X_{1} of FinTrees(the carrier of \mathcal{B}) such that
(i) $X_{1}=\left\{t_{1}: t\right.$ ranges over elements of FinTrees([: the carrier of $\mathcal{B}, \mathcal{C}:$), $t \in \cup \mathcal{A}\}$,
(ii) for every symbol d of \mathcal{B} such that $d \in$ the terminals of \mathcal{B} holds the root tree of $d \in X_{1}$,
(iii) for every symbol o of \mathcal{B} and for every finite sequence p of elements of X_{1} such that $o \Rightarrow$ the roots of p holds o-tree $(p) \in X_{1}$, and
(iv) for every subset F of $F i n T r e e s($ the carrier of \mathcal{B}) such that for every symbol d of \mathcal{B} such that $d \in$ the terminals of \mathcal{B} holds the root tree of $d \in F$ and for every symbol o of \mathcal{B} and for every finite sequence p of elements of F such that $o \Rightarrow$ the roots of p holds o-tree $(p) \in F$ holds $X_{1} \subseteq F$
provided the parameters meet the following requirements:

- $\operatorname{dom} \mathcal{A}=\mathbb{N}$,
- $\mathcal{A}(0)=\{$ the root tree of $\langle t, d\rangle: t$ ranges over symbols of \mathcal{B}, d ranges over elements of $\mathcal{C}, t \in$ the terminals of $\mathcal{B} \wedge d=\mathcal{F}(t) \vee t \Rightarrow \varepsilon \wedge d=$ $\mathcal{G}(t, \varepsilon, \varepsilon)\}$,
- Let n be a natural number and let x be arbitrary. Suppose $x=$ $\mathcal{A}(n)$. Then $\mathcal{A}(n+1)=x \cup\{\langle o, \mathcal{G}(o, \operatorname{pr} 1$ (the roots of $p)$, $\operatorname{pr} 2$ (the roots of $p)$) \rangle-tree (p) :o ranges over symbols of \mathcal{B}, p ranges over elements of $x^{*}, \exists_{q} p=q \wedge o \Rightarrow \operatorname{prl}($ the roots of $\left.q)\right\}$.
The scheme $D T C H e i g h t$ concerns a function \mathcal{A}, a tree construction structure \mathcal{B}, a non empty set \mathcal{C}, a unary functor \mathcal{F} yielding an element of \mathcal{C}, and a ternary functor \mathcal{G} yielding an element of \mathcal{C}, and states that:

Let n be a natural number and let d_{1} be an element of FinTrees(: : the carrier of $\mathcal{B}, \mathcal{C}:)$. If $d_{1} \in \cup \mathcal{A}$, then $d_{1} \in \mathcal{A}(n)$ iff height dom $d_{1} \leq n$ provided the parameters meet the following conditions:

- $\operatorname{dom} \mathcal{A}=\mathbb{N}$,
- $\mathcal{A}(0)=\{$ the root tree of $\langle t, d\rangle: t$ ranges over symbols of \mathcal{B}, d ranges over elements of $\mathcal{C}, t \in$ the terminals of $\mathcal{B} \wedge d=\mathcal{F}(t) \vee t \Rightarrow \varepsilon \wedge d=$ $\mathcal{G}(t, \varepsilon, \varepsilon)\}$,
- Let n be a natural number and let x be arbitrary. Suppose $x=$ $\mathcal{A}(n)$. Then $\mathcal{A}(n+1)=x \cup\{\langle o, \mathcal{G}(o, \operatorname{pr} 1$ (the roots of $p)$, $\operatorname{pr} 2$ (the
roots of $p))\rangle$-tree (p) : o ranges over symbols of \mathcal{B}, p ranges over elements of $x^{*}, \exists_{q} p=q \wedge o \Rightarrow \operatorname{pr} 1($ the roots of $\left.q)\right\}$.
The scheme DTCUniq concerns a function \mathcal{A}, a tree construction structure \mathcal{B}, a non empty set \mathcal{C}, a unary functor \mathcal{F} yielding an element of \mathcal{C}, and a ternary functor \mathcal{G} yielding an element of \mathcal{C}, and states that:

For all trees d_{2}, d_{3} decorated by $:$ the carrier of \mathcal{B}, \mathcal{C} : such that $d_{2} \in \cup \mathcal{A}$ and $d_{3} \in \cup \mathcal{A}$ and $\left(d_{2}\right)_{1}=\left(d_{3}\right)_{1}$ holds $d_{2}=d_{3}$
provided the following conditions are satisfied:

- $\operatorname{dom} \mathcal{A}=\mathbb{N}$,
- $\mathcal{A}(0)=\{$ the root tree of $\langle t, d\rangle: t$ ranges over symbols of \mathcal{B}, d ranges over elements of $\mathcal{C}, t \in$ the terminals of $\mathcal{B} \wedge d=\mathcal{F}(t) \vee t \Rightarrow \varepsilon \wedge d=$ $\mathcal{G}(t, \varepsilon, \varepsilon)\}$,
- Let n be a natural number and let x be arbitrary. Suppose $x=$ $\mathcal{A}(n)$. Then $\mathcal{A}(n+1)=x \cup\{\langle o, \mathcal{G}(o, \operatorname{pr} 1$ (the roots of $p)$, $\operatorname{pr} 2($ the roots of $p)$) \rangle-tree $(p): o$ ranges over symbols of \mathcal{B}, p ranges over elements of $x^{*}, \exists_{q} p=q \wedge o \Rightarrow \operatorname{pr} 1$ (the roots of q) $\}$.
Let G be a tree construction structure. The functor $\operatorname{TS}(G)$ yields a subset of FinTrees(the carrier of G) and is defined by the conditions (Def.4).
(Def.4) (i) For every symbol d of G such that $d \in$ the terminals of G holds the root tree of $d \in \operatorname{TS}(G)$,
(ii) for every symbol o of G and for every finite sequence p of elements of $\operatorname{TS}(G)$ such that $o \Rightarrow$ the roots of p holds o-tree $(p) \in \operatorname{TS}(G)$, and
(iii) for every subset F of FinTrees(the carrier of G) such that for every symbol d of G such that $d \in$ the terminals of G holds the root tree of $d \in F$ and for every symbol o of G and for every finite sequence p of elements of F such that $o \Rightarrow$ the roots of p holds o-tree $(p) \in F$ holds $\mathrm{TS}(G) \subseteq F$.
Now we present three schemes. The scheme DTConstrInd concerns a tree construction structure \mathcal{A} and a unary predicate \mathcal{P}, and states that:

For every tree t decorated by the carrier of \mathcal{A} such that $t \in \operatorname{TS}(\mathcal{A})$ holds $\mathcal{P}[t]$
provided the parameters meet the following requirements:

- For every symbol s of \mathcal{A} such that $s \in$ the terminals of \mathcal{A} holds \mathcal{P} [the root tree of $s]$,
- Let n_{1} be a symbol of \mathcal{A} and let t_{1} be a finite sequence of elements of $\operatorname{TS}(\mathcal{A})$. Suppose $n_{1} \Rightarrow$ the roots of t_{1} and for every tree t decorated by the carrier of \mathcal{A} such that $t \in \operatorname{rng} t_{1}$ holds $\mathcal{P}[t]$. Then $\mathcal{P}\left[n_{1}\right.$-tree $\left.\left(t_{1}\right)\right]$.
The scheme $D T C o n s t r I n d D e f$ concerns a tree construction structure \mathcal{A}, a non empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, and a ternary functor \mathcal{G} yielding an element of \mathcal{B}, and states that:

There exists a function f from $\operatorname{TS}(\mathcal{A})$ into \mathcal{B} such that
(i) for every symbol t of \mathcal{A} such that $t \in$ the terminals of \mathcal{A} holds
$f($ the root tree of $t)=\mathcal{F}(t)$, and
(ii) for every symbol n_{1} of \mathcal{A} and for every finite sequence t_{1} of elements of $\operatorname{TS}(\mathcal{A})$ and for every finite sequence r_{1} such that $r_{1}=$ the roots of t_{1} and $n_{1} \Rightarrow r_{1}$ and for every finite sequence x of elements of \mathcal{B} such that $x=f \cdot t_{1}$ holds $f\left(n_{1}\right.$-tree $\left.\left(t_{1}\right)\right)=\mathcal{G}\left(n_{1}, r_{1}, x\right)$ for all values of the parameters.

The scheme $D T C o n s t r U n i q D e f$ deals with a tree construction structure \mathcal{A}, a non empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, a ternary functor \mathcal{G} yielding an element of \mathcal{B}, and functions \mathcal{C}, \mathcal{D} from $\operatorname{TS}(\mathcal{A})$ into \mathcal{B}, and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the parameters satisfy the following conditions:

- (i) For every symbol t of \mathcal{A} such that $t \in$ the terminals of \mathcal{A} holds $\mathcal{C}($ the root tree of $t)=\mathcal{F}(t)$, and
(ii) for every symbol n_{1} of \mathcal{A} and for every finite sequence t_{1} of elements of $\operatorname{TS}(\mathcal{A})$ and for every finite sequence r_{1} such that $r_{1}=$ the roots of t_{1} and $n_{1} \Rightarrow r_{1}$ and for every finite sequence x of elements of \mathcal{B} such that $x=\mathcal{C} \cdot t_{1}$ holds $\mathcal{C}\left(n_{1}\right.$-tree $\left.\left(t_{1}\right)\right)=\mathcal{G}\left(n_{1}, r_{1}, x\right)$,
- (i) For every symbol t of \mathcal{A} such that $t \in$ the terminals of \mathcal{A} holds \mathcal{D} (the root tree of $t)=\mathcal{F}(t)$, and
(ii) for every symbol n_{1} of \mathcal{A} and for every finite sequence t_{1} of elements of $\operatorname{TS}(\mathcal{A})$ and for every finite sequence r_{1} such that $r_{1}=$ the roots of t_{1} and $n_{1} \Rightarrow r_{1}$ and for every finite sequence x of elements of \mathcal{B} such that $x=\mathcal{D} \cdot t_{1}$ holds $\mathcal{D}\left(n_{1}\right.$-tree $\left.\left(t_{1}\right)\right)=$ $\mathcal{G}\left(n_{1}, r_{1}, x\right)$.

3. An example: Peano naturals

The strict tree construction structure $\mathbb{N}_{\text {Peano }}$ is defined by the conditions (Def.5).
(Def.5) (i) The carrier of $\mathbb{N}_{\text {Peano }}=\{0,1\}$, and
(ii) for every symbol x of $\mathbb{N}_{\text {Peano }}$ and for every finite sequence y of elements of the carrier of $\mathbb{N}_{\text {Peano }}$ holds $x \Rightarrow y$ iff $x=1$ but $y=\langle 0\rangle$ or $y=\langle 1\rangle$.

4. Properties of parse trees

Let G be a tree construction structure. We say that G has terminals if and only if:
(Def.6) The terminals of $G \neq \emptyset$.
We say that G has nonterminals if and only if:
(Def.7) The nonterminals of $G \neq \emptyset$.

We say that G has useful nonterminals if and only if the condition (Def.8) is satisfied.
(Def.8) Let n_{1} be a symbol of G. Suppose $n_{1} \in$ the nonterminals of G. Then there exists a finite sequence p of elements of $\operatorname{TS}(G)$ such that $n_{1} \Rightarrow$ the roots of p.
Let us note that there exists a tree construction structure which is strict and has terminals, nonterminals, and useful nonterminals.

Let G be a tree construction structure with terminals. Then the terminals of G is a non empty subset of the carrier of G. Then $\operatorname{TS}(G)$ is a non empty subset of FinTrees(the carrier of G).

Let G be a tree construction structure with useful nonterminals. Then $\operatorname{TS}(G)$ is a non empty subset of FinTrees(the carrier of G).

Let G be a tree construction structure with nonterminals. Then the nonterminals of G is a non empty subset of the carrier of G.

Let G be a tree construction structure with terminals. A terminal of G is an element of the terminals of G.

Let G be a tree construction structure with nonterminals. A nonterminal of G is an element of the nonterminals of G.

Let G be a tree construction structure with nonterminals and useful nonterminals and let n_{1} be a nonterminal of G. A finite sequence of elements of $\operatorname{TS}(G)$ is called a subtree sequence joinable by n_{1} if:
(Def.9) $\quad n_{1} \Rightarrow$ the roots of it.
Let G be a tree construction structure with terminals and let t be a terminal of G. Then the root tree of t is an element of $\operatorname{TS}(G)$.

Let G be a tree construction structure with nonterminals and useful nonterminals, let n_{1} be a nonterminal of G, and let p be a subtree sequence joinable by n_{1}. Then $n_{1}-\operatorname{tree}(p)$ is an element of $\operatorname{TS}(G)$.

One can prove the following two propositions:
(9) Let G be a tree construction structure with terminals, and let t_{2} be an element of $\operatorname{TS}(G)$, and let s be a terminal of G. If $t_{2}(\varepsilon)=s$, then $t_{2}=$ the root tree of s.
(10) Let G be a tree construction structure with terminals and nonterminals, and let t_{2} be an element of $\operatorname{TS}(G)$, and let n_{1} be a nonterminal of G. Suppose $t_{2}(\varepsilon)=n_{1}$. Then there exists a finite sequence t_{1} of elements of $\operatorname{TS}(G)$ such that $t_{2}=n_{1}$-tree $\left(t_{1}\right)$ and $n_{1} \Rightarrow$ the roots of t_{1}.

5. The example continued

$N_{\text {Peano }}$ is a strict tree construction structure with terminals, nonterminals, and useful nonterminals.

Let n_{1} be a nonterminal of $\mathbb{N}_{\text {Peano }}$ and let t be an element of $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$. Then $n_{1}-\operatorname{tree}(t)$ is an element of $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$.

Let x be a finite sequence of elements of \mathbb{N}. Let us assume that $x \neq \varepsilon$. The functor $(x)(1+1)$ yielding a natural number is defined as follows:
(Def.10) There exists a natural number n such that $(x)\left({ }_{1}+1\right)=n+1$ and $x(1)=$ n.
The function $\mathbb{N}_{\text {Peano }} \rightarrow \mathbb{N}$ from $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$ into \mathbb{N} is defined by the conditions (Def.11).
(Def.11) (i) For every symbol t of $\mathbb{N}_{\text {Peano }}$ such that $t \in$ the terminals of $\mathbb{N}_{\text {Peano }}$ holds $\left(\mathbb{N}_{\text {Peano }} \rightarrow \mathbb{N}\right)($ the root tree of $t)=0$, and
(ii) for every symbol n_{1} of $\mathbb{N}_{\text {Peano }}$ and for every finite sequence t_{1} of elements of $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$ and for every finite sequence r_{1} such that $r_{1}=$ the roots of t_{1} and $n_{1} \Rightarrow r_{1}$ and for every finite sequence x of elements of \mathbb{N} such that $x=\left(\mathbb{N}_{\text {Peano }} \rightarrow \mathbb{N}\right) \cdot t_{1}$ holds $\left(\mathbb{N}_{\text {Peano }} \rightarrow \mathbb{N}\right)\left(n_{1}\right.$-tree $\left.\left(t_{1}\right)\right)=$ $(x)(1+1)$.
Let x be an element of $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$. The functor $\operatorname{succ}(x)$ yielding an element of $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$ is defined as follows:
(Def.12) $\quad \operatorname{succ}(x)=1-\operatorname{tree}(\langle x\rangle)$.
The function $\mathbb{N} \rightarrow \mathbb{N}_{\text {Peano }}$ from \mathbb{N} into $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$ is defined by the conditions (Def.13).
(Def.13) (i) $\quad\left(\mathbb{N} \rightarrow \mathbb{N}_{\text {Peano }}\right)(0)=$ the root tree of 0 , and
(ii) for every natural number n and for every element x of $\operatorname{TS}\left(\mathbb{N}_{\text {peano }}\right)$ such that $x=\left(\mathbb{N} \rightarrow \mathbb{N}_{\text {Peano }}\right)(n)$ holds $\left(\mathbb{N} \rightarrow \mathbb{N}_{\text {Peano }}\right)(n+1)=\operatorname{succ}(x)$.
One can prove the following propositions:
(11) For every element p_{1} of $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$ holds $p_{1}=\left(\mathbb{N} \rightarrow \mathbb{N}_{\text {Peano }}\right)\left(\left(\mathbb{N}_{\text {Peano }} \rightarrow\right.\right.$ $\left.\mathbb{N})\left(p_{1}\right)\right)$.
(12) For every natural number n holds $n=\left(\mathbb{N}_{\text {Peano }} \rightarrow \mathbb{N}\right)\left(\left(\mathbb{N} \rightarrow \mathbb{N}_{\text {Peano }}\right)(n)\right)$.

6. Tree traversals and terminal language

Let D be a set and let F be a finite sequence of elements of D^{*}. The functor Flat (F) yields an element of D^{*} and is defined as follows:
(Def.14) There exists a binary operation g on D^{*} such that for all elements p, q of D^{*} holds $g(p, q)=p^{\wedge} q$ and $\operatorname{Flat}(F)=g \odot F$.
Next we state the proposition
(13) For every set D and for every element d of D^{*} holds Flat $(\langle d\rangle)=d$.

Let G be a tree construction structure and let t_{2} be a tree decorated by the carrier of G. Let us assume that $t_{2} \in \operatorname{TS}(G)$. The terminals of t_{2} is a finite sequence of elements of the terminals of G and is defined by the condition (Def.15).
(Def.15) There exists a function f from $\operatorname{TS}(G)$ into (the terminals of G) ${ }^{*}$ such that
(i) the terminals of $t_{2}=f\left(t_{2}\right)$,
(ii) for every symbol t of G such that $t \in$ the terminals of G holds f (the root tree of $t)=\langle t\rangle$, and
(iii) for every symbol n_{1} of G and for every finite sequence t_{1} of elements of $\operatorname{TS}(G)$ and for every finite sequence r_{1} such that $r_{1}=$ the roots of t_{1} and $n_{1} \Rightarrow r_{1}$ and for every finite sequence x of elements of (the terminals of $G)^{*}$ such that $x=f \cdot t_{1}$ holds $f\left(n_{1}\right.$-tree $\left.\left(t_{1}\right)\right)=\operatorname{Flat}(x)$.
The pretraversal string of t_{2} is a finite sequence of elements of the carrier of G and is defined by the condition (Def.16).
(Def.16) There exists a function f from $\operatorname{TS}(G)$ into (the carrier of $G)^{*}$ such that
(i) the pretraversal string of $t_{2}=f\left(t_{2}\right)$,
(ii) for every symbol t of G such that $t \in$ the terminals of G holds f (the root tree of $t)=\langle t\rangle$, and
(iii) for every symbol n_{1} of G and for every finite sequence t_{1} of elements of $\operatorname{TS}(G)$ and for every finite sequence r_{1} such that $r_{1}=$ the roots of t_{1} and $n_{1} \Rightarrow r_{1}$ and for every finite sequence x of elements of (the carrier of $\left.G\right)^{*}$ such that $x=f \cdot t_{1}$ holds $f\left(n_{1}\right.$-tree $\left.\left(t_{1}\right)\right)=\left\langle n_{1}\right\rangle$ ~ Flat (x).
The posttraversal string of t_{2} is a finite sequence of elements of the carrier of G and is defined by the condition (Def.17).
(Def.17) There exists a function f from $\operatorname{TS}(G)$ into (the carrier of $G)^{*}$ such that
(i) the posttraversal string of $t_{2}=f\left(t_{2}\right)$,
(ii) for every symbol t of G such that $t \in$ the terminals of G holds f (the root tree of $t\rangle=\langle t\rangle$, and
(iii) for every symbol n_{1} of G and for every finite sequence t_{1} of elements of $\operatorname{TS}(G)$ and for every finite sequence r_{1} such that $r_{1}=$ the roots of t_{1} and $n_{1} \Rightarrow r_{1}$ and for every finite sequence x of elements of (the carrier of $\left.G\right)^{*}$ such that $x=f \cdot t_{1}$ holds $f\left(n_{1}\right.$-tree $\left.\left(t_{1}\right)\right)=\operatorname{Flat}(x) \wedge\left\langle n_{1}\right\rangle$.
Let G be a tree construction structure with nonterminals and let n_{1} be a symbol of G. The language derivable from n_{1} is a subset of (the terminals of G)* and is defined by the condition (Def.18).
(Def.18) The language derivable from $n_{1}=\left\{\right.$ the terminals of $t_{2}: t_{2}$ ranges over elements of FinTrees(the carrier of G), $\left.t_{2} \in \operatorname{TS}(G) \wedge t_{2}(\varepsilon)=n_{1}\right\}$.
The language of pretraversals derivable from n_{1} is a subset of (the carrier of G)* and is defined by the condition (Def.19).
(Def.19) The language of pretraversals derivable from $n_{1}=$ \{the pretraversal string of t_{2} : t_{2} ranges over elements of FinTrees(the carrier of G), $t_{2} \in$ $\left.\operatorname{TS}(G) \wedge t_{2}(\varepsilon)=n_{1}\right\}$.
The language of posttraversals derivable from n_{1} is a subset of (the carrier of G)* and is defined by the condition (Def.20).
(Def.20) The language of posttraversals derivable from $n_{1}=\{$ the posttraversal string of $t_{2}: t_{2}$ ranges over elements of FinTrees(the carrier of G), $t_{2} \in-$ $\left.\operatorname{TS}(G) \wedge t_{2}(\varepsilon)=n_{1}\right\}$.
One can prove the following propositions:
(14) For every tree t decorated by the carrier of $\mathbb{N}_{\text {Peano }}$ such that $t \in$ $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$ holds the terminals of $t=\langle 0\rangle$.
(15) For every symbol n_{1} of $\mathbb{N}_{\text {Peano }}$ holds the language derivable from $n_{1}=$ $\{\langle 0\rangle\}$.
(16) For every element t of $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$ holds the pretraversal string of $t=$ (height $\operatorname{dom} t \longmapsto 1) \sim\langle 0\rangle$.
(17) Let n_{1} be a symbol of $\mathbb{N}_{\text {Peano. }}$ Then
(i) if $n_{1}=0$, then the language of pretraversals derivable from $n_{1}=\{\langle 0\rangle\}$, and
(ii) if $n_{1}=1$, then the language of pretraversals derivable from $n_{1}=$ $\left\{(n \longmapsto 1)^{-}\langle 0\rangle: n\right.$ ranges over natural numbers, $\left.n \neq 0\right\}$.
(18) For every element t of $\operatorname{TS}\left(\mathbb{N}_{\text {Peano }}\right)$ holds the posttraversal string of $t=$ $\langle 0\rangle^{\sim}$ (height dom $t \longmapsto 1$).
(19) Let n_{1} be a symbol of $\mathbb{N}_{\text {Peano }}$. Then
(i) if $n_{1}=0$, then the language of posttraversals derivable from $n_{1}=\{\langle 0\rangle\}$, and
(ii) if $n_{1}=1$, then the language of posttraversals derivable from $n_{1}=$ $\{\langle 0\rangle \sim(n \longmapsto 1): n$ ranges over natural numbers, $n \neq 0\}$.

References

[1] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[4] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[5] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[6] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[7] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[9] Czeslaw Byliński. Basic functions and operations on functions. Formalized Mathematics, $1(1): 245-254,1990$.
[10] Czeslaw Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[11] Czeslaw Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[12] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[13] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[14] Czeslaw Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[15] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):68,3-687, 1991.
[16] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[17] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[19] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[20] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[21] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 12, 1993

Product of Family of Universal Algebras

Beata Madras
Warsaw University
Białystok

Abstract

Summary. The product of two algebras, trivial algebra determined by an empty set and product of a family of algebras are defined. Some basic properties are shown.

MML Identifier: PRALG_1.

The terminology and notation used in this paper have been introduced in the following articles: [14], [6], [3], [7], [11], [15], [12], [9], [5], [8], [1], [2], [10], [4], and [13].

1. Product of Two Algebras

The following proposition is true
(1) For all non-empty set D_{1}, D_{2} and for all natural numbers n, m such that $D_{1}^{n}=D_{2}^{m}$ holds $n=m$.
For simplicity we follow a convention: U_{1}, U_{2}, U_{3} denote universal algebras, k, m, i denote natural numbers, z is arbitrary, and h_{1}, h_{2} denote finite sequences of elements of $[: A, B]$.

Let us consider A, B and let us consider h_{1}. The functor $\pi_{1}\left(h_{1}\right)$ yielding a finite sequence of elements of A is defined as follows:
(Def.1) len $\pi_{1}\left(h_{1}\right)=$ len h_{1} and for every n such that $n \in \operatorname{dom} \pi_{1}\left(h_{1}\right)$ holds $\left(\pi_{1}\left(h_{1}\right)\right)(n)=h_{1}(n)_{1}$.
The functor $\pi_{2}\left(h_{1}\right)$ yielding a finite sequence of elements of B is defined as follows:
(Def.2) len $\pi_{2}\left(h_{1}\right)=$ len h_{1} and for every n such that $n \in \operatorname{dom} \pi_{2}\left(h_{1}\right)$ holds $\left(\pi_{2}\left(h_{1}\right)\right)(n)=h_{1}(n)_{2}$.

Let us consider A, B, let f_{1} be a homogeneous quasi total non-empty partial function from A^{*} to A, and let f_{2} be a homogeneous quasi total non-empty partial function from B^{*} to B. Let us assume that arity $f_{1}=$ arity f_{2}. The functor $\Pi \nmid f_{1}, f_{2}\lceil$ yielding a homogeneous quasi total non-empty partial function from $[: A, B:]^{*}$ to $[: A, B \vdots$ is defined by the conditions (Def.3).
(Def.3) (i) $\operatorname{dom} \prod f_{1}, f_{2} \Pi=\left\lceil: A, B\right.$:arity $^{\text {ar }}$, and
(ii) for every finite sequence h of elements of $: A, B:$ such that $h \in$ $\operatorname{dom}\rceil\rceil f_{1}, f_{2} \prod$ holds $\left.\rceil\right\rceil f_{1}, f_{2}\left\lceil\left\lceil(h)=\left\langle f_{1}\left(\pi_{1}(h)\right), f_{2}\left(\pi_{2}(h)\right)\right\rangle\right.\right.$.
In the sequel h_{1} will denote a homogeneous quasi total non-empty partial function from (the carrier of U_{1})* to the carrier of U_{1}.

Let us consider U_{1}, U_{2}. Let us assume that U_{1} and U_{2} are similar. The functor $\operatorname{Opers}\left(U_{1}, U_{2}\right)$ yielding a finite sequence of elements of [: the carrier of U_{1}, the carrier of $\left.U_{2}\right]^{*} \rightarrow$ [the carrier of U_{1}, the carrier of U_{2} :] is defined as follows:
(Def.4) len Opers $\left(U_{1}, U_{2}\right)=$ len Opers U_{1} and for every n such that $n \in$ dom Opers $\left(U_{1}, U_{2}\right)$ and for all h_{1}, h_{2} such that $h_{1}=\left(\right.$ Opers $\left.U_{1}\right)(n)$ and $h_{2}=\left(\right.$ Opers $\left.U_{2}\right)(n)$ holds $\left.\left.\left(\operatorname{Opers}\left(U_{1}, U_{2}\right)\right)(n)=\right\rceil\right\rceil h_{1}, h_{2} \Pi$.
The following proposition is true
(2) If U_{1} and U_{2} are similar, then $\left\langle\right.$: the carrier of U_{1}, the carrier of U_{2} : , Opers $\left.\left(U_{1}, U_{2}\right)\right\rangle$ is a strict universal algebra.
Let us consider U_{1}, U_{2}. Let us assume that U_{1} and U_{2} are similar. The functor $\left[: U_{1}, U_{2}\right.$! yielding a strict universal algebra is defined as follows:
(Def.5) $\quad \ddagger U_{1}, U_{2} \ddagger=\left\langle\right.$: the carrier of U_{1}, the carrier of $U_{2} \ddagger$, $\left.\operatorname{Opers}\left(U_{1}, U_{2}\right)\right\rangle$.
Let A, B be non-empty set. The functor $\operatorname{Inv}(A, B)$ yielding a function from $[: A, B:]$ into $\lceil B, A:$ is defined as follows:
(Def.6) For every element a of $\left[: A, B\right.$: holds $(\operatorname{Inv}(A, B))(a)=\left\langle a_{2}, a_{1}\right\rangle$.
One can prove the following propositions:
(3) For all non-empty set A, B holds $\operatorname{rng} \operatorname{Inv}(A, B)=[: B, A \ddagger$.
(4) For all non-empty set A, B holds $\operatorname{Inv}(A, B)$ is one-to-one.
(5) Suppose U_{1} and U_{2} are similar. Then $\operatorname{Inv}\left(\right.$ the carrier of U_{1}, the carrier of U_{2}) is a function from the carrier of $\left[: U_{1}, U_{2}\right]$ into the carrier of $\left[: U_{2}\right.$, U_{1}].
(6) Suppose U_{1} and U_{2} are similar. Let o_{1} be a operation of U_{1}, and let o_{2} be a operation of U_{2}, and let o be a operation of : U_{1}, U_{2} : , and let n be a natural number. Suppose $o_{1}=\left(\right.$ Opers $\left.U_{1}\right)(n)$ and $o_{2}=\left(\right.$ Opers $\left.U_{2}\right)(n)$ and $o=\left(\right.$ Opers: $\left.U_{1}, U_{2} \sharp\right)(n)$ and $n \in \operatorname{dom}$ Opers U_{1}. Then arity $o=\operatorname{arity} o_{1}$ and arity $o=$ arity o_{2} and $\left.o=\right\rceil o_{1}, o_{2} \Pi$.
(7) If U_{1} and U_{2} are similar, then $\left[: U_{1}, U_{2}\right.$! and U_{1} are similar.
(8) Let $U_{1}, U_{2}, U_{3}, U_{4}$ be universal algebras. Suppose U_{1} is a subalgebra of U_{2} and U_{3} is a subalgebra of U_{4} and U_{2} and U_{4} are similar. Then ः U_{1}, U_{3}] is a subalgebra of $\left[U_{2}, U_{4}\right]$.

2. Trivial Algebra

Let k be a natural number. The functor $\operatorname{TrivOp}(k)$ yields a homogeneous quasi total non-empty partial function from $\{\emptyset\}^{*}$ to $\{\emptyset\}$ and is defined as follows:
(Def.7) dom $\operatorname{TrivOp}(k)=\{k \longmapsto \emptyset\}$ and $\operatorname{rng} \operatorname{TrivOp}(k)=\{\emptyset\}$.
The following proposition is true
(9) arity $\operatorname{Triv} \mathrm{Op}(k)=k$.

Let f be a finite sequence of elements of \mathbb{N}. The functor $\operatorname{TrivOps}(f)$ yielding a finite sequence of elements of $\{\emptyset\}^{*} \rightarrow\{\emptyset\}$ is defined as follows:
(Def.8) len TrivOps $(f)=\operatorname{len} f$ and for every n such that $n \in \operatorname{dom} \operatorname{TrivOps}(f)$ and for every m such that $m=f(n)$ holds $(\operatorname{TrivOps}(f))(n)=\operatorname{TrivOp}(m)$. We now state two propositions:
(10) For every finite sequence f of elements of \mathbb{N} holds TrivOps (f) is homogeneous quasi total and non-empty.
(11) For every finite sequence f of elements of \mathbb{N} such that $f \neq \varepsilon$ holds $\langle\{\emptyset\}$, TrivOps $(f)\rangle$ is a strict universal algebra.
Let D be a non empty set. Observe that there exists a finite sequence of elements of D which is non empty and there exists an element of D^{*} which is non empty.

Let f be a non empty finite sequence of elements of \mathbb{N}. The trivial algebra of f yielding a strict universal algebra is defined as follows:
(Def.9) The trivial algebra of $f=\langle\{\emptyset\}, \operatorname{TrivOps}(f)\rangle$.

3. Product of Universal Algebras

A function is universal algebra yielding if:
(Def.10) For every x such that $x \in$ domit holds $\operatorname{it}(x)$ is a universal algebra.
A function is 1 -sorted yielding if:
(Def.11) For every x such that $x \in$ domit holds $\operatorname{it}(x)$ is a 1 -sorted structure.
One can check that there exists a function which is universal algebra yielding.
One can verify that every function which is universal algebra yielding is also 1 -sorted yielding.

Let I be a set. Observe that there exists a many sorted set of I which is 1 -sorted yielding.

A function is equal signature if:
(Def.12) For all x, y such that $x \in$ domit and $y \in$ dom it and for all U_{1}, U_{2} such that $U_{1}=\operatorname{it}(x)$ and $U_{2}=\operatorname{it}(y)$ holds signature $U_{1}=$ signature U_{2}.
Let J be a non-empty set. One can check that there exists a many sorted set of J which is equal signature and universal algebra yielding.

Let J be a non empty set, let A be a universal algebra yielding many sorted set of J, and let j be an element of J. Then $A(j)$ is a universal algebra.

Let J be a non-empty set and let A be a universal algebra yielding many sorted set of J. The functor support A yields a non-empty many sorted set of J and is defined as follows:
(Def.13) For every element j of J holds (support $A)(j)=$ the carrier of $A(j)$.
Let J be a non-empty set and let A be an equal signature universal algebra yielding many sorted set of J. The functor $\operatorname{ComSign}(A)$ yields a finite sequence of elements of \mathbb{N} and is defined as follows:
(Def.14) For every element j of J holds ComSign $(A)=$ signature $A(j)$.
A function is function yielding if:
(Def.15) For every x such that $x \in$ domit holds it (x) is a function.
Let us note that there exists a function which is function yielding.
Let I be a set. Note that there exists a many sorted set of I which is function yielding.

Let I be a set. A many sorted function of I is a function yielding many sorted set of I.

Let J be a non-empty set, let B be a many sorted function of J, and let j be an element of J. Then $B(j)$ is a function.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and let j be an element of J. Then $B(j)$ is a non-empty set.

Let J be a non-empty set and let B be a non-empty many sorted set of J. Then ΠB is a non-empty set.

Let J be a non-empty set and let B be a non-empty many sorted set of J. A many sorted function of J is said to be a many sorted operation of B if:
(Def.16) For every element j of J holds $\operatorname{it}(j)$ is a homogeneous quasi total nonempty partial function from $B(j)^{*}$ to $B(j)$.
Let J be a non-empty set, let B be a non-empty many sorted set of J, let O be a many sorted operation of B, and let j be an element of J. Then $O(j)$ is a homogeneous quasi total non-empty partial function from $B(j)^{*}$ to $B(j)$.

A function is equal arity if satisfies the condition (Def.17).
(Def.17) Let x, y be arbitrary. Suppose $x \in$ domit and $y \in$ domit. Let f, g be functions. Suppose $\operatorname{it}(x)=f$ and $\operatorname{it}(y)=g$. Let n, m be natural numbers and let X, Y be non-empty set. Suppose $\operatorname{dom} f=X^{n}$ and $\operatorname{dom} g=Y^{m}$. Let \grave{o}_{1} be a homogeneous quasi total non-empty partial function from X^{*} to X and let o_{2} be a homogeneous quasi total non-empty partial function from Y^{*} to Y. If $f=o_{1}$ and $g=o_{2}$, then arity $o_{1}=$ arity o_{2}.
Let J be a non-empty set and let B be a non-empty many sorted set of J. One can verify that there exists a many sorted operation of B which is equal arity.

The following proposition is true
(12) Let J be a non-empty set, and let B be a non-empty many sorted set of J, and let O be a many sorted operation of B. Then O is equal arity
if and only if for all elements i, j of J holds arity $O(i)=\operatorname{arity} O(j)$.
Let I be a set, let f be a many sorted function of I, and let x be a many sorted set of I. The functor $f \leftrightarrow x$ yields a many sorted set of I and is defined as follows:
(Def.18) For arbitrary i such that $i \in I$ and for every function g such that $g=f(i)$ holds $(f+x)(i)=g(x(i))$.
Let J be a non-empty set, let B be a non-empty many sorted set of J, and let p be a finite sequence of elements of ΠB. Then uncurry p is a many sorted set of $[: \operatorname{dom} p, J$].

Let I, J be sets and let X be a many sorted set of $[I, J]$. Then $\cap X$ is a many sorted set of $[J, I \mathrm{]}$.

Let X be a set, let Y be a non-empty set, and let f be a many sorted set of [: X, Y]. Then curry f is a many sorted set of X.

Let J be a non-empty set, let B be a non-empty many sorted set of J, and let O be an equal arity many sorted operation of B. The functor $\operatorname{ComAr}(O)$ yielding a natural number is defined as follows:
(Def.19) For every element j of J holds $\operatorname{ComAr}(O)=\operatorname{arity} O(j)$.
Let I be a set and let A be a many sorted set of I. The functor ε_{A} yielding a many sorted set of I is defined as follows:
(Def.20) For arbitrary i such that $i \in I$ holds $\varepsilon_{A}(i)=\varepsilon_{A(i)}$.
Let J be a non-empty set, let B be a non-empty many sorted set of J, and let O be an equal arity many sorted operation of B. The functor $\Pi\rceil O\lceil$ yielding a homogeneous quasi total non-empty partial function from ($\Pi B)^{*}$ to ΠB is defined by the conditions (Def.21).
(Def.21) (i) $\operatorname{dom} \Pi \cap O=(\Pi B)^{\operatorname{ComAr}(O)}$, and
(ii) for every element p of $(\Pi B)^{*}$ such that $\left.p \in \operatorname{dom}\right\rceil \cap\lceil$ holds if $\operatorname{dom} p=$ \emptyset, then $\rceil \mid O \Pi(p)=O \leftrightarrow\left(\varepsilon_{B}\right)$ and if $\operatorname{dom} p \neq \emptyset$, then for every non-empty set Z and for every many sorted set w of $\{J, Z:$ such that $Z=\operatorname{dom} p$ and $w=$ nuncurry p holds $\prod O \Pi(p)=O+$ curry w.
Let J be a non-empty set, let A be an equal signature universal algebra yielding many sorted set of J, and let n be a natural number. Let us assume that $n \in \operatorname{Seg} \operatorname{len} \operatorname{ComSign}(A)$. The functor $\operatorname{ProdOp}(A, n)$ yielding an equal arity many sorted operation of support A is defined by:
(Def.22) For every element j of J and for every operation o of $A(j)$ such that $($ Opers $A(j))(n)=o$ holds $(\operatorname{ProdOp}(A, n))(j)=o$.
Let J be a non-empty set and let A be an equal signature universal algebra yielding many sorted set of J. The functor $\operatorname{ProdOpSeq}(A)$ yielding a finite

(Def.23) len $\operatorname{ProdOpSeq}(A)=$ len $\operatorname{ComSign}(A)$ and for every n such that $n \in$ dom $\operatorname{ProdOpSeq}(A)$ holds $(\operatorname{ProdOpSeq}(A))(n)=]] \operatorname{ProdOp}(A, n)[[$.
Let J be a non-empty set and let A be an equal signature universal algebra yielding many sorted set of J. The functor $\operatorname{ProdUnivAlg}(A)$ yields a strict universal algebra and is defined as follows:
(Def.24) ProdUnivAlg $(A)=\left\langle\prod\right.$ support $\left.A, \operatorname{ProdOpSeq}(A)\right\rangle$.

References

[1] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Formalized Mathematics, 4(1):23-27, 1993.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czeslaw Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[9] Czeslaw Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Jaroslaw Kotowicz, Beata Madras, and Małgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
[11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[12] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[13] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[14] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[15] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received October 12, 1993

Homomorphisms of Algebras. Quotient Universal Algebra

Małgorzata Korolkiewicz
Warsaw University
Białystok

Abstract

Summary. The first part introduces homomorphisms of universal algebras and their basic properties. The second is concerned with the construction of a quotient universal algebra. The first isomorphism theorem is proved.

MML Identifier: ALG_1.

The articles [9], [10], [11], [4], [5], [1], [8], [3], [6], [7], and [2] provide the terminology and notation for this paper.

1. Homomorphisms of Algebras

For simplicity we adopt the following convention: U_{1}, U_{2}, U_{3} will denote universal algebras, n will denote a natural number, o_{1} will denote a operation of U_{1}, o_{2} will denote a operation of U_{2}, and x, y will be arbitrary.

Let D_{1}, D_{2} be non empty set, let p be a finite sequence of elements of D_{1}, and let f be a function from D_{1} into D_{2}. Then $f \cdot p$ is a finite sequence of elements of D_{2}.

The following propositions are true:
(1) Let D_{1}, D_{2} be non empty set, and let p be a finite sequence of elements of D_{1}, and let f be a function from D_{1} into D_{2}. Then $\operatorname{dom}(f \cdot p)=\operatorname{dom} p$ and $\operatorname{len}(f \cdot p)=\operatorname{len} p$ and for every n such that $n \in \operatorname{dom}(f \cdot p)$ holds $(f \cdot p)(n)=f(p(n))$.
(2) For every non empty subset B of U_{1} such that $B=$ the carrier of U_{1} holds $\operatorname{Opers}\left(U_{1}, B\right)=$ Opers \dot{U}_{1}.

Let U_{1} be a universal algebra. A finite sequence of elements of U_{1} is a finite sequence of elements of the carrier of U_{1}. Let U_{2} be a universal algebra. A function from U_{1} into U_{2} is a function from the carrier of U_{1} into the carrier of U_{2}.

In the sequel a, a_{1}, a_{2} denote finite sequences of elements of U_{1} and f denotes a function from U_{1} into U_{2}.

One can prove the following three propositions:
(3) $f \cdot \varepsilon_{\left.\text {(the carrier of } U_{1}\right)}=\varepsilon_{\left.\text {(the carrier of } U_{2}\right)}$.
(4) $\mathrm{id}_{\left.\text {(the carrier of } U_{1}\right)} \cdot a=a$.
(5) Let h_{1} be a function from U_{1} into U_{2}, and let h_{2} be a function from U_{2} into U_{3}, and let a be a finite sequence of elements of U_{1}. Then $h_{2} \cdot\left(h_{1} \cdot a\right)=$ $\left(h_{2} \cdot h_{1}\right) \cdot a$.
Let us consider U_{1}, U_{2}, f. We say that f is a homomorphism of U_{1} into U_{2} if and only if the conditions (Def.1) are satisfied.
(Def.1) (i) $\quad U_{1}$ and U_{2} are similar, and
(ii) for every n such that $n \in \operatorname{dom}$ Opers U_{1} and for all o_{1}, o_{2} such that $o_{1}=\left(\right.$ Opers $\left.U_{1}\right)(n)$ and $o_{2}=\left(\right.$ Opers $\left.U_{2}\right)(n)$ and for every finite sequence x of elements of U_{1} such that $x \in \operatorname{dom} o_{1}$ holds $f\left(o_{1}(x)\right)=o_{2}(f \cdot x)$.
Let us consider U_{1}, U_{2}, f. We say that f is a monomorphism of U_{1} into U_{2} if and only if:
(Def.2) $\quad f$ is a homomorphism of U_{1} into U_{2} and one-to-one.
We say that f is an epimorphism of U_{1} onto U_{2} if and only if:
(Def.3) f is a homomorphism of U_{1} into U_{2} and $\operatorname{rng} f=$ the carrier of U_{2}.
Let us consider U_{1}, U_{2}, f. We say that f is an isomorphism of U_{1} and U_{2} if and only if:
(Def.4) f is a monomorphism of U_{1} into U_{2} and an epimorphism of U_{1} onto U_{2}. Let us consider U_{1}, U_{2}. We say that U_{1} and U_{2} are isomorphic if and only if:
(Def.5) There exists f which is an isomorphism of U_{1} and U_{2}.
One can prove the following propositions:
(6) $\mathrm{id}_{\left(\text {the carrier of } U_{1}\right)}$ is a homomorphism of U_{1} into U_{1}.
(7) Let h_{1} be a function from U_{1} into U_{2} and let h_{2} be a function from U_{2} into U_{3}. Suppose h_{1} is a homomorphism of U_{1} into U_{2} and h_{2} is a homomorphism of U_{2} into U_{3}. Then $h_{2} \cdot h_{1}$ is a homomorphism of U_{1} into U_{3}.
(8) f is an isomorphism of U_{1} and U_{2} if and only if f is a homomorphism of U_{1} into U_{2} and $\operatorname{rng} f=$ the carrier of U_{2} and f is one-to-one.
(9) If f is an isomorphism of U_{1} and U_{2}, then $\operatorname{dom} f=$ the carrier of U_{1} and $\operatorname{rng} f=$ the carrier of U_{2}.
(10) Let h be a function from U_{1} into U_{2} and let h_{1} be a function from U_{2} into U_{1}. Suppose h is an isomorphism of U_{1} and U_{2} and $h_{1}=h^{-1}$. Then h_{1} is a homomorphism of U_{2} into U_{1}.
(11) Let h be a function from U_{1} into U_{2} and let h_{1} be a function from U_{2} into U_{1}. Suppose h is an isomorphism of U_{1} and U_{2} and $h_{1}=h^{-1}$. Then h_{1} is an isomorphism of U_{2} and U_{1}.
(12) Let h be a function from U_{1} into U_{2} and let h_{1} be a function from U_{2} into U_{3}. Suppose h is an isomorphism of U_{1} and U_{2} and h_{1} is an isomorphism of U_{2} and U_{3}. Then $h_{1} \cdot h$ is an isomorphism of U_{1} and U_{3}.
(13) U_{1} and U_{1} are isomorphic.
(14) If U_{1} and U_{2} are isomorphic, then U_{2} and U_{1} are isomorphic.
(15) If U_{1} and U_{2} are isomorphic and U_{2} and U_{3} are isomorphic, then U_{1} and U_{3} are isomorphic.
Let us consider U_{1}, U_{2}, f. Let us assume that f is a homomorphism of U_{1} into U_{2}. The functor $\operatorname{Im} f$ yielding a strict subalgebra of U_{2} is defined as follows:
(Def.6) The carrier of $\operatorname{Im} f=f^{\circ}$ (the carrier of U_{1}).
Next we state two propositions:
(16) For every function h from U_{1} into U_{2} such that h is a homomorphism of U_{1} into U_{2} holds $\mathrm{rng} h=$ the carrier of $\operatorname{Im} h$.
(17) Let U_{2} be a strict universal algebra and let f be a function from U_{1} into U_{2}. Suppose f is a homomorphism of U_{1} into U_{2}. Then f is an epimorphism of U_{1} onto U_{2} if and only if $\operatorname{Im} f=U_{2}$.

2. Quotient Universal Algebra

Let us consider U_{1}. A binary relation on U_{1} is a binary relation on the carrier of U_{1}. An equivalence relation of U_{1} is an equivalence relation of the carrier of U_{1}.

Let D be a non empty set and let R be a binary relation on D. The functor $R^{\#}$ yielding a binary relation on D^{*} is defined by the condition (Def.7).
(Def.7) Let x, y be finite sequences of elements of D. Then $\langle x, y\rangle \in R^{\#}$ if and only if the following conditions are satisfied:
(i) len $x=\operatorname{len} y$, and
(ii) for every n such that $n \in \operatorname{dom} x$ holds $\langle x(n), y(n)\rangle \in R$.

The following proposition is true
(18) For every non empty set D holds $\left(\triangle_{D}\right)^{\#}=\triangle_{D^{*}}$.

Let us consider U_{1}. An equivalence relation of U_{1} is said to be a congruence of U_{1} if it satisfies the condition (Def.8).
(Def.8) Given n, o_{1}. Suppose $n \in$ dom Opers U_{1} and $o_{1}=\left(\right.$ Opers $\left.U_{1}\right)(n)$. Let x, y be finite sequences of elements of U_{1}. If $x \in \operatorname{dom} o_{1}$ and $y \in \operatorname{dom} o_{1}$ and $\langle x, y\rangle \in \mathrm{it}^{\#}$, then $\left\langle o_{1}(x), o_{1}(y)\right\rangle \in \mathrm{it}$.
Let D be a non empty set and let R be an equivalence relation of D. Then Classes R is a non empty family of subsets of D.

Let D be a non empty set, let R be an equivalence relation of D, let y be a finite sequence of elements of Classes R, and let x be a finite sequence of elements of D. We say that x is a finite sequence of representatives of y if and only if:
(Def.9) len $x=\operatorname{len} y$ and for every n such that $n \in \operatorname{dom} x$ holds $[x(n)]_{R}=y(n)$.
We now state the proposition
(19) Let D be a non empty set, and let R be an equivalence relation of D, and let y be a finite sequence of elements of Classes R. Then there exists finite sequence of elements of D which is a finite sequence of representatives of y.
Let U_{1} be a universal algebra, let E be a congruence of U_{1}, and let o be a operation of U_{1}. The functor $o_{/ E}$ yields a homogeneous quasi total non-empty partial function from (Classes E)* to Classes E and is defined by the conditions (Def.10).
(Def.10) (i) $\operatorname{dom}\left(o_{/ E}\right)=(\text { Classes } E)^{\text {arity o }}$, and
(ii) for every finite sequence y of elements of Classes E such that $y \in$ $\operatorname{dom}\left(o_{/ E}\right)$ and for every finite sequence x of elements of the carrier of U_{1} such that x is a finite sequence of representatives of y holds $o_{/ E}(y)=$ $[o(x)]_{E}$.
Let us consider U_{1}, E. The functor Opers $\left(U_{1}\right)_{/ E}$ yields a finite sequence of elements of (Classes $E)^{*} \dot{\rightarrow}$ Classes E and is defined as follows:
(Def.11) len $\left(\operatorname{Opers}\left(\left(U_{1}\right)\right)_{/ E}\right)=\operatorname{len}$ Opers U_{1} and for every n such that $n \in$ dom $\left(\right.$ Opers $\left.\left(\left(U_{1}\right)\right)_{/ E}\right)$ and for every o_{1} such that $\left(\right.$ Opers $\left.U_{1}\right)(n)=o_{1}$ holds $\operatorname{Opers}\left(\left(U_{1}\right)\right)_{/ E}(n)=\left(o_{1}\right)_{/ E}$.
Next we state the proposition
(20) For all U_{1}, E holds $\left\langle\right.$ Classes $\left.E, O \operatorname{pers}\left(\left(U_{1}\right)\right)_{/ E}\right\rangle$ is a strict universal algebra.
Let us consider U_{1}, E. The functor $U_{1 / E}$ yielding a strict universal algebra is defined by:
(Def.12) $\quad\left(U_{1}\right)_{/ E}=\left\langle\right.$ Classes $\left.E, O \operatorname{pers}\left(\left(U_{1}\right)\right)_{/ E}\right\rangle$.
Let us consider U_{1}, E. The natural homomorphism of U_{1} w.r.t. E yielding a function from U_{1} into $\left(U_{1}\right) / E$ is defined as follows:
(Def.13) For every element u of the carrier of U_{1} holds (the natural homomorphism of U_{1} w.r.t. $\left.E\right)(u)=[u]_{E}$.
One can prove the following two propositions:
(21) For all U_{1}, E holds the natural homomorphism of U_{1} w.r.t. E is a homomorphism of U_{1} into $\left(U_{1}\right)_{/ E}$.
(22) For all U_{1}, E holds the natural homomorphism of U_{1} w.r.t. E is an epimorphism of U_{1} onto $\left(U_{1}\right)_{/ E}$.
Let us consider U_{1}, U_{2} and let f be a function from U_{1} into U_{2}. Let us assume that f is a homomorphism of U_{1} into U_{2}. The functor $\operatorname{Cng}(f)$ yielding a congruence of U_{1} is defined by:
(Def.14) For all elements a, b of the carrier of U_{1} holds $\langle a, b\rangle \in \operatorname{Cng}(f)$ iff $f(a)=f(b)$.
Let U_{1}, U_{2} be universal algebras and let f be a function from U_{1} into U_{2}. Let us assume that f is a homomorphism of U_{1} into U_{2}. The functor \bar{f} yielding a function from $\left(U_{1}\right) / \operatorname{Cng}(f)$ into U_{2} is defined by:
(Def.15) For every element a of the carrier of U_{1} holds $(\bar{f})\left([a]_{\operatorname{Cng}(f)}\right)=f(a)$.
We now state three propositions:
(23) Suppose f is a homomorphism of U_{1} into U_{2}. Then \bar{f} is a homomorphism of $\left(U_{1}\right) / \operatorname{Cng}(f)$ into U_{2} and \bar{f} is a monomorphism of $\left(U_{1}\right) / \operatorname{Cng}(f)$ into U_{2}.
(24) If f is an epimorphism of U_{1} onto U_{2}, then \bar{f} is an isomorphism of $\left(U_{1}\right)_{/ \operatorname{Cng}(f)}$ and U_{2}.
(25) If f is an epimorphism of U_{1} onto U_{2}, then $\left(U_{1}\right)_{/ \operatorname{Cng}(f)}$ and U_{2} are isomorphic.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Formalized Mathematics, 4(1):23-27, 1993.
[3] Czeslaw Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Czestaw Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[7] Jaroslaw Kotowicz, Beata Madras, and Malgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
[8] Konrad Raczkowski and Pawel Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[9] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 12, 1993

Free Universal Algebra Construction

Beata Perkowska
Warsaw University
Białystok

Summary. A construction of the free universal algebra with fixed signature and a given set of generators.

MML Identifier: FREEALG.

The articles [17], [19], [20], [9], [13], [10], [11], [5], [16], [8], [18], [1], [3], [4], [2], [15], [7], [12], [6], and [14] provide the terminology and notation for this paper.

1. Preliminaries

In the sequel x is arbitrary and n denotes a natural number.
Let D be a non empty set and let X be a set. Then $D \cup X$ is a non empty set.

A set is missing \mathbb{N} if:
(Def.1) It $\cap \mathbb{N}=\emptyset$.
One can check that there exists a set which is non empty and missing \mathbb{N}.
A finite sequence has zero if:
(Def.2) $0 \in$ rngit.
Let us observe that there exists a finite sequence of elements of \mathbb{N} which is non empty and has zero and there exists a finite sequence of elements of \mathbb{N} which is non empty and without zero.

Let f be a non empty finite sequence. Then $\operatorname{dom} f$ is a non empty set.
Let X be a set, let D be a non empty set, let f be a partial function from X to D, and let x be arbitrary. Let us assume that $x \in \operatorname{dom} f$. The functor $\pi_{x} f$ yields an element of D and is defined as follows:
(Def.3) $\quad \pi_{x} f=f(x)$.

2. Free Universal Algebra - General Notions

Let U_{1} be a universal algebra and let n be a natural number. Let us assume that $n \in$ dom Opers U_{1}. The functor $\operatorname{oper}\left(n, U_{1}\right)$ yielding a operation of U_{1} is defined as follows:
(Def.4) oper $\left(n, U_{1}\right)=\left(\right.$ Opers $\left.U_{1}\right)(n)$.
Let U_{0} be a universal algebra. A subset of U_{0} is called a generator set of U_{0} 눈
(Def.5) The carrier of $\mathrm{Gen}^{\mathrm{UA}}(\mathrm{it})=$ the carrier of U_{0}.
Let U_{0} be a universal algebra. A generator set of U_{0} is free if satisfies the condition (Def.6).
(Def.6) Let U_{1} be a universal algebra. Suppose U_{0} and U_{1} are similar. Let f be a function from it into the carrier of U_{1}. Then there exists a function h from U_{0} into U_{1} such that h is a homomorphism of U_{0} into U_{1} and $h \upharpoonright i t=f$.
A universal algebra is free if:
(Def.7) There exists generator set of it which is free.
Let us observe that there exists a universal algebra which is free and strict.
Let U_{0} be a free universal algebra. Observe that there exists a generator set of U_{0} which is free.

One can prove the following proposition
(1) Let U_{0} be a strict universal algebra and let A be a subset of U_{0}. Then A is a generator set of U_{0} if and only if $\operatorname{Gen}^{\mathrm{UA}}(A)=U_{0}$.

3. Construction of Decorated Tree Structure for Free Universal Algebra

Let f be a non empty finite sequence of elements of \mathbb{N} and let X be a set. The functor $\operatorname{REL}(f, X)$ yielding a relation between $\operatorname{dom} f \cup X$ and $(\operatorname{dom} f \cup X)^{*}$ is defined by:
(Def.8) For every element a of $\operatorname{dom} f \cup X$ and for every element b of ($\operatorname{dom} f \cup X)^{*}$ holds $\langle a, b\rangle \in \operatorname{REL}(f, X)$ iff $a \in \operatorname{dom} f$ and $f(a)=\operatorname{len} b$.
Let f be a non empty finite sequence of elements of \mathbb{N} and let X be a set. The functor DTConUA (f, X) yields a strict tree construction structure and is defined as follows:
(Def.9) DTConUA $(f, X)=\langle\operatorname{dom} f \cup X, \operatorname{REL}(f, X)\rangle$.
Next we state two propositions:
(2) Let f be a non empty finite sequence of elements of \mathbb{N} and let X be a set. Then the terminals of DTConUA $(f, X) \subseteq X$ and the nonterminals of $\operatorname{DTConUA}(f, X)=\operatorname{dom} f$.
(3) Let f be a non empty finite sequence of elements of \mathbb{N} and let X be a missing \mathbb{N} set. Then the terminals of $\operatorname{DTConUA}(f, X)=X$.
Let f be a non empty finite sequence of elements of \mathbb{N} and let X be a set. Then DTConUA (f, X) is a strict tree construction structure with nonterminals.

Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let X be a set. Then DTConUA (f, X) is a strict tree construction structure with nonterminals and useful nonterminals.

Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a missing N non empty set. Then $\operatorname{DTConUA}(f, D)$ is a strict tree construction structure with terminals, nonterminals, and useful nonterminals.

Let f be a non empty finite sequence of elements of \mathbb{N}, let X be a set, and let n be a natural number. Let us assume that $n \in \operatorname{dom} f$. The functor $\operatorname{Sym}(n, f, X)$ yielding a symbol of DTConUA (f, X) is defined by:
(Def.10) $\operatorname{Sym}(n, f, X)=n$.

4. Construction of Free Universal Algebra for Non-empty Set of Generators and Given Signature

Let f be a non empty finite sequence of elements of \mathbb{N}, let D be a missing \mathbb{N} non empty set, and let n be a natural number. Let us assume that $n \in \operatorname{dom} f$. The functor FreeOpNSG(n, f, D) yields a homogeneous quasi total non empty partial function from $\operatorname{TS}(\operatorname{DTConUA}(f, D))^{*}$ to $\operatorname{TS}(\operatorname{DTConUA}(f, D))$ and is defined by the conditions (Def.11).
(Def.11) (i) dom FreeOpNSG($n, f, D)=\operatorname{TS}(\mathrm{DTConUA}(f, D))^{\pi_{n} f}$, and
(ii) for every finite sequence p of elements of $\operatorname{TS}(\operatorname{DTConUA}(f, D))$ such that $p \in \operatorname{dom} \operatorname{FreeOpNSG}(n, f, D)$ holds (FreeOpNSG($n, f, D))(p)=$ $(\operatorname{Sym}(n, f, D))$-tree (p).
Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a missing N non empty set. The functor FreeOpSeqNSG(f, D) yielding a finite sequence of elements of $\operatorname{TS}(\mathrm{DTConUA}(f, D))^{*} \dot{\operatorname{TS}}(\mathrm{DTConUA}(f, D))$ is defined as follows:
(Def.12) len FreeOpSeqNSG($f, D)=$ len f and for every n such that $n \in \operatorname{dom} \operatorname{FreeOpSeqNSG}(f, D)$ holds (FreeOpSeqNSG($f, D)$)(n) $=$ FreeOpNSG(n, f, D).
Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a missing N non empty set. The functor FreeUnivAlgNSG (f, D) yields a strict universal algebra and is defined as follows:
(Def.13) FreeUnivAlgNSG $(f, D)=\langle\operatorname{TS}(\mathrm{DTConUA}(f, D))$, FreeOpSeqNSG $(f, D)\rangle$.
One can prove the following proposition
(4) For every non empty finite sequence f of elements of \mathbb{N} and for every missing \mathbb{N} non empty set D holds signature FreeUnivAlgNSG $(f, D)=f$.

Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a non empty missing \mathbb{N} set. The functor FreeGenSetNSG (f, D) yielding a subset of FreeUnivAlgNSG (f, D) is defined by:
(Def.14) FreeGenSetNSG $(f, D)=\{$ the root tree of $s: s$ ranges over symbols of DTConUA $(f, D), s \in$ the terminals of DTConUA $(f, D)\}$.
One can prove the following proposition
(5) Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a non empty missing \mathbb{N} set. Then FreeGenSetNSG (f, D) is non empty.
Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a non empty missing \mathbb{N} set. Then FreeGenSetNSG (f, D) is a generator set of FreeUnivAlgNSG(f, D).

Let f be a non empty finite sequence of elements of \mathbb{N}, let D be a non empty missing \mathbb{N} set, let C be a non empty set, let s be a symbol of DTConUA (f, D), and let F be a function from FreeGenSetNSG (f, D) into C. Let us assume that $s \in$ the terminals of DTConUA (f, D). The functor $\pi_{s} F$ yielding an element of C is defined as follows:
(Def.15) $\quad \pi_{s} F=F$ (the root tree of s).
Let f be a non empty finite sequence of elements of \mathbb{N}, let D be a non empty missing \mathbb{N} set, and let s be a symbol of $\operatorname{DTConUA}(f, D)$. Let us assume that there exists a finite sequence p such that $s \Rightarrow p$. The functor ${ }^{@} s$ yielding a natural number is defined by:
(Def.16) ${ }^{@} s=s$.
Next we state the proposition
(6) For every non empty finite sequence f of elements of \mathbb{N} and for every non empty missing \mathbb{N} set D holds FreeGenSetNSG (f, D) is free.
Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a non empty missing \mathbb{N} set. Then FreeUnivAlgNSG (f, D) is a strict free universal algebra.

Let f be a non empty finite sequence of elements of \mathbb{N} and let D be a non empty missing \mathbb{N} set. Then FreeGenSetNSG (f, D) is a free generator set of FreeUnivAlgNSG(f, D).

5. Construction of Free Universal Algebra and Set of Generators

Let f be a non empty finite sequence of elements of \mathbb{N} with zero, let D be a missing \mathbb{N} set, and let n be a natural number. Let us assume that $n \in \operatorname{dom} f$. The functor FreeOpZAO (n, f, D) yields a homogeneous quasi total non empty partial function from $\operatorname{TS}(\mathrm{DTConUA}(f, D))^{*}$ to $\operatorname{TS}(\mathrm{DTConUA}(f, D))$ and is defined by the conditions (Def.17).
(Def.17) (i) dom FreeOpZAO $(n, f, D)=\operatorname{TS}(D T C o n U A(f, D))^{\pi_{n} f}$, and
(ii) for every finite sequence p of elements of $\operatorname{TS}(\operatorname{DTConUA}(f, D))$ such that $p \in$ dom FreeOpZAO (n, f, D) holds $(F r e e O p Z A O(n, f, D))(p)=$ $(\operatorname{Sym}(n, f, D))$-tree (p).
Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. The functor FreeOpSeqZAO (f, D) yields a finite sequence of elements of $\operatorname{TS}(\mathrm{DTConUA}(f, D))^{*} \rightarrow \operatorname{TS}(\mathrm{DTConUA}(f, D))$ and is defined by:
(Def.18) len FreeOpSeqZAO $(f, D)=\operatorname{len} f$ and for every n such that $n \in \operatorname{dom} \operatorname{FreeOpSeqZAO}(f, D)$ holds (FreeOpSeqZAO $(f, D))(n)=$ FreeOpZAO (n, f, D).
Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. The functor FreeUnivAlgZAO (f, D) yielding a strict universal algebra is defined by:
(Def.19) FreeUnivAlgZAO $(f, D)=\langle\operatorname{TS}(D T C o n U A(f, D))$, FreeOpSeqZAO $(f, D)\rangle$
We now state three propositions:
(7) For every non empty finite sequence f of elements of \mathbb{N} with zero and for every missing \mathbb{N} set D holds signature FreeUnivAlgZAO $(f, D)=f$.
(8) Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. Then FreeUnivAlgZAO (f, D) has constants.
(9) For every non empty finite sequence f of elements of \mathbb{N} with zero and for every missing \mathbb{N} set D holds Constants(FreeUnivAlgZAO $(f, D)) \neq \emptyset$.
Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. The functor FreeGenSetZAO (f, D) yielding a subset of FreeUnivAlgZAO (f, D) is defined as follows:
(Def.20) FreeGenSetZAO $(f, D)=\{$ the root tree of s : s ranges over symbols of DTConUA $(f, D), s \in$ the terminals of DTConUA $(f, D)\}$.
Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbb{N} set. Then FreeGenSetZAO (f, D) is a generator set of FreeUnivAlgZAO (f, D).

Let f be a non empty finite sequence of elements of \mathbb{N} with zero, let D be a missing \mathbb{N} set, let C be a non empty set, let s be a symbol of DTConUA (f, D), and let F be a function from FreeGenSetZAO (f, D) into C. Let us assume that $s \in$ the terminals of DTConUA (f, D). The functor $\pi_{s} F$ yields an element of C and is defined by:
(Def.21) $\quad \pi_{s} F=F$ (the root tree of s).
Let f be a non empty finite sequence of elements of \mathbb{N} with zero, let D be a missing \mathbb{N} set, and let s be a symbol of DTConUA (f, D). Let us assume that there exists a finite sequence p such that $s \Rightarrow p$. The functor ${ }^{@} s$ yields a natural number and is defined by:
(Def.22) ${ }^{@} s=s$.
The following proposition is true
(10) For every non empty finite sequence f of elements of \mathbb{N} with zero and for every missing \mathbb{N} set D holds FreeGenSetZAO (f, D) is free.

Let f be a non empty finite sequence of elements of \mathbf{N} with zero and let D be a missing \mathbb{N} set. Then FreeUnivAlgZAO (f, D) is a strict free universal algebra.

Let f be a non empty finite sequence of elements of \mathbb{N} with zero and let D be a missing \mathbf{N} set. Then FreeGenSetZAO (f, D) is a free generator set of FreeUnivAlgZAO (f, D).

One can verify that there exists a universal algebra which is strict and free and has constants.

References

[1] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[2] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[3] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[4] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[7] Ewa Burakowska. Subalgebras of the universal algebra. Lattices of subalgebras. Formalized Mathematics, 4(1):23-27, 1993.
[8] Czeslaw Bylíski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[10] Czeslaw Bylíski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czeslaw Bylíski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[12] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Malgorzata Korolkiewicz. Homomorphisms of algebras. Quotient universal algebra. Formalized Mathematics, 4(1):109-113, 1993.
[15] Jaroslaw Kotowicz, Beata Madras, and Malgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
[16] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received October 20, 1993

Complex Sequences

Agnieszka Banachowicz
Warsaw University
Białystok

Anna Winnicka
Warsaw University
Bialystok

Abstract

Summary. Definitions of complex sequence and operations on sequences (multiplication of sequences and multiplication by a complex number, addition, subtraction, division and absolute value of sequence) are given. We followed [3].

MML Identifier: COMSEQ_1.

The terminology and notation used here are introduced in the following articles: [5], [1], [2], [4], and [3].

For simplicity we follow a convention: f will denote a function, n will denote a natural number, r, p will denote elements of \mathbb{C}, and x will be arbitrary.

A complex sequence is a function from \mathbb{N} into \mathbb{C}.
In the sequel $s_{1}, s_{2}, s_{3}, s_{4}, s_{1}^{\prime}, s_{2}^{\prime}$ denote complex sequences.
One can prove the following propositions:
(1) f is a complex sequence iff $\operatorname{dom} f=\mathbb{N}$ and for every x such that $x \in \mathbb{N}$ holds $f(x)$ is an element of \mathbb{C}.
(2) $\quad f$ is a complex sequence iff $\operatorname{dom} f=\mathbb{N}$ and for every n holds $f(n)$ is an element of C .
Let us consider s_{1}, n. Then $s_{1}(n)$ is an element of \mathbb{C}.
The scheme ExComplexSeq deals with a unary functor \mathcal{F} yielding an element of \mathbb{C}, and states that:

There exists s_{1} such that for every n holds $s_{1}(n)=\mathcal{F}(n)$ for all values of the parameter.

A complex sequence is non-zero if:
(Def.1) rngit $\subseteq \mathbb{C} \backslash\left\{0_{\boldsymbol{c}}\right\}$.
One can prove the following proposition
(3) s_{1} is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_{1}(x) \neq 0_{\mathbf{c}}$.

Let us mention that there exists a complex sequence which is non-zero.
Next we state four propositions:
(4) s_{1} is non-zero iff for every n holds $s_{1}(n) \neq 0_{\mathbb{C}}$.
(5) For all s_{1}, s_{2} such that for every x such that $x \in \mathbb{N}$ holds $s_{1}(x)=s_{2}(x)$ holds $s_{1}=s_{2}$.
(6) For all s_{1}, s_{2} such that for every n holds $s_{1}(n)=s_{2}(n)$ holds $s_{1}=s_{2}$.
(7) For every r there exists s_{1} such that rng $s_{1}=\{r\}$.

Let us consider s_{2}, s_{3}. The functor $s_{2}+s_{3}$ yielding a complex sequence is defined as follows:
\therefore (Def.2) For every n holds $\left(s_{2}+s_{3}\right)(n)=s_{2}(n)+s_{3}(n)$.
The functor $s_{2} s_{3}$ yielding a complex sequence is defined by:
(Def.3) For every n holds $\left(s_{2} s_{3}\right)(n)=s_{2}(n) \cdot s_{3}(n)$.
Let us consider r, s_{1}. The functor $r s_{1}$ yielding a complex sequence is defined as follows:
(Def.4) For every n holds $\left(r s_{1}\right)(n)=r \cdot s_{\mathbf{1}}(n)$.
Let us consider s_{1}. The functor $-s_{1}$ yielding a complex sequence is defined as follows:
(Def.5) For every n holds $\left(-s_{1}\right)(n)=-s_{1}(n)$.
Let us consider s_{2}, s_{3}. The functor $s_{2}-s_{3}$ yields a complex sequence and is defined as follows:
(Def.6) $s_{2}-s_{3}=s_{2}+-s_{3}$.
Let us consider s_{1}. The functor s_{1}^{-1} yields a complex sequence and is defined as follows:
(Def.7) For every n holds $s_{1}^{-1}(n)=s_{1}(n)^{-1}$.
Let us consider s_{2}, s_{1}. The functor $\frac{s_{2}}{s_{1}}$ yielding a complex sequence is defined as follows:
(Def.8) $\quad \frac{s_{2}}{s_{1}}=s_{2} s_{1}^{-1}$.
Let us consider s_{1}. The functor $\left|s_{1}\right|$ yields a sequence of real numbers and is defined by:
(Def.9) For every n holds $\left|s_{1}\right|(n)=\left|s_{1}(n)\right|$.
The following propositions are true:
(8) $s_{2}+s_{3}=s_{3}+s_{2}$.
(9) $\left(s_{2}+s_{3}\right)+s_{4}=s_{2}+\left(s_{3}+s_{4}\right)$.
(10) $s_{2} s_{3}=s_{3} s_{2}$.
(11) $\quad\left(s_{2} s_{3}\right) s_{4}=s_{2}\left(s_{3} s_{4}\right)$.
(12) $\left(s_{2}+s_{3}\right) s_{4}=s_{2} s_{4}+s_{3} s_{4}$.
(13) $s_{4}\left(s_{2}+s_{3}\right)=s_{4} s_{2}+s_{4} s_{3}$.
(14) $-s_{1}=\left(-1_{\mathbb{C}}\right) s_{1}$.
(15) $\quad r\left(s_{2} s_{3}\right)=\left(r s_{2}\right) s_{3}$.
(16) $\quad r\left(s_{2} s_{3}\right)=s_{2}\left(r s_{3}\right)$.
(17) $\left(s_{2}-s_{3}\right) s_{4}=s_{2} s_{4}-s_{3} s_{4}$.
(18) $s_{4} s_{2}-s_{4} s_{3}=s_{4}\left(s_{2}-s_{3}\right)$.
(19) $r\left(s_{2}+s_{3}\right)=r s_{2}+r s_{3}$.
(20) $(r \cdot p) s_{1}=r\left(p s_{1}\right)$.
(21) $r\left(s_{2}-s_{3}\right)=r s_{2}-r s_{3}$.
(22) If s_{1} is non-zero, then $r \frac{s_{2}}{s_{1}}=\frac{r s_{2}}{s_{1}}$.
(23) $s_{2}-\left(s_{3}+s_{4}\right)=s_{2}-s_{3}-s_{4}$.
(24) $1_{\mathbb{C}} s_{1}=s_{1}$.
(25) $--s_{1}=s_{1}$.
(26) $s_{2}--s_{3}=s_{2}+s_{3}$.
(27) $s_{2}-\left(s_{3}-s_{4}\right)=\left(s_{2}-s_{3}\right)+s_{4}$.
(28) $s_{2}+\left(s_{3}-s_{4}\right)=\left(s_{2}+s_{3}\right)-s_{4}$.
(29) $\left(-s_{2}\right) s_{3}=-s_{2} s_{3}$ and $s_{2}-s_{3}=-s_{2} s_{3}$.
(30) If s_{1} is non-zero, then $s_{1}{ }^{-1}$ is non-zero.
(31) If s_{1} is non-zero, then $\left(s_{1}{ }^{-1}\right)^{-1}=s_{1}$.
(32) s_{1} is non-zero and s_{2} is non-zero iff $s_{1} s_{2}$ is non-zero.
(33) If s_{1} is non-zero and s_{2} is non-zero, then $s_{1}^{-1} s_{2}^{-1}=\left(s_{1} s_{2}\right)^{-1}$.
(34) If s_{1} is non-zero, then $\frac{s_{2}}{s_{1}} s_{1}=s_{2}$.
(35) If s_{1} is non-zero and s_{2} is non-zero, then $\frac{s_{1}^{\prime}}{s_{1}} \frac{s_{2}^{\prime}}{s_{2}}=\frac{s_{1}^{\prime} s_{2}^{\prime}}{s_{1} s_{2}}$.
(36) If s_{1} is non-zero and s_{2} is non-zero, then $\frac{s_{1}}{s_{2}}$ is non-zero.
(37) If s_{1} is non-zero and s_{2} is non-zero, then $\left(\frac{s_{1}}{s_{2}}\right)^{-1}=\frac{s_{2}}{s_{1}}$.
(38) If s_{1} is non-zero, then $s_{3} \frac{s_{2}}{s_{1}}=\frac{s_{3} s_{2}}{s_{1}}$.
(39) If s_{1} is non-zero and s_{2} is non-zero, then $\frac{s_{3}}{\frac{\delta_{1}}{s_{2}}}=\frac{s_{3} s_{2}}{s_{1}}$.
(40) If s_{1} is non-zero and s_{2} is non-zero, then $\frac{s_{3}}{s_{1}}=\frac{s_{3} s_{2}}{s_{1} s_{2}}$.
(41) If $r \neq 0_{\mathbb{C}}$ and s_{1} is non-zero, then $r s_{1}$ is non-zero.
(42) If s_{1} is non-zero, then $-s_{1}$ is non-zero.
(43) If $r \neq 0_{\mathbb{C}}$ and s_{1} is non-zero, then $\left(r s_{1}\right)^{-1}=r^{-1} s_{1}{ }^{-1}$.
(44) If s_{1} is non-zero, then $\left(-s_{1}\right)^{-1}=\left(-1_{\mathrm{C}}\right) s_{1}{ }^{-1}$.
(45) If s_{1} is non-zero, then $-\frac{s_{2}}{s_{1}}=\frac{-s_{2}}{s_{1}}$ and $\frac{s_{2}}{-s_{1}}=-\frac{s_{2}}{s_{1}}$.
(46) If s_{1} is non-zero, then $\frac{s_{2}}{s_{1}}+\frac{s_{2}^{\prime}}{s_{1}}=\frac{s_{2}+s_{2}^{\prime}}{s_{1}}$ and $\frac{s_{2}}{s_{1}}-\frac{s_{2}^{\prime}}{s_{1}}=\frac{s_{2}-s_{2}^{\prime}}{s_{1}}$.
(47) If s_{1} is non-zero and s_{1}^{\prime} is non-zero, then $\frac{s_{2}}{s_{1}}+\frac{s_{2}^{\prime}}{s_{1}^{\prime}}=\frac{s_{2} s_{1}^{\prime}+s_{2}^{\prime} s_{1}}{s_{1} s_{1}^{\prime}}$ and $\frac{s_{2}}{s_{1}}-\frac{s_{2}^{\prime}}{s_{1}^{\prime}}=\frac{s_{2} s_{1}^{\prime}-s_{2}^{\prime} s_{1}}{s_{1} s_{1}^{\prime}}$.
(48) If s_{1} is non-zero and s_{1}^{\prime} is non-zero and s_{2} is non-zero, then $\frac{\frac{s_{2}^{\prime}}{s_{1}}}{\frac{s_{1}^{\prime}}{s_{2}}}=\frac{s_{2}^{\prime} s_{2}}{s_{1} s_{1}^{\prime}}$.
(49) $\quad\left|s_{1} s_{1}^{\prime}\right|=\left|s_{1}\right|\left|s_{1}^{\prime}\right|$.
(50) If s_{1} is non-zere, then $\left|s_{1}\right|$ is non-zero.
(51) If s_{1} is non-zero, then $\left|s_{1}\right|^{-1}=\left|s_{1}^{-1}\right|$.
(52) If s_{1} is non-zero, then $\left|\frac{s_{1}^{\prime}}{s_{1}}\right|=\frac{\left|s_{1}^{\prime}\right|}{\left|s_{1}\right|}$.

$$
\begin{equation*}
\left|r s_{1}\right|=|r|\left|s_{1}\right| \tag{53}
\end{equation*}
$$

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Jaroslaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[4] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[5] Zinaida Trybulec and Halina Święczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received November 5, 1993

Maximal Discrete Subspaces of Almost Discrete Topological Spaces

Zbigniew Karno
Warsaw University
Białystok

Summary. Let X be a topological space and let D be a subset of $X . D$ is said to be discrete provided for every subset A of X such that $A \subseteq D$ there is an open subset G of X such that $A=D \cap G$ (comp. e.g., [7]). A discrete subset M of X is said to be maximal discrete provided for every discrete subset D of X if $M \subseteq D$ then $M=D$. A subspace of X is discrete (maximal discrete) iff its carrier is discrete (maximal discrete) in X.

Our purpose is to list a number of properties of discrete and maximal discrete sets in Mizar formalism. In particular, we show here that if D is dense and discrete then D is maximal discrete; moreover, if D is open and maximal discrete then D is dense. We discuss also the problem of the existence of maximal discrete subsets in a topological space.

To present the main results we first recall a definition of a class of topological spaces considered herein. A topological space X is called almost discrete if every open subset of X is closed; equivalently, if every closed subset of X is open. Such spaces were investigated in Mizar formalism in [4] and [5]. We show here that every almost discrete space contains a maximal discrete subspace and every such subspace is a retract of the enveloping space. Moreover, if X_{0} is a maximal discrete subspace of an almost discrete space X and $r: X \rightarrow X_{0}$ is a continuous retraction, then $r^{-1}(x)=\overline{\{x\}}$ for every point x of X belonging to X_{0}. This fact is a specialization, in the case of almost discrete spaces, of the theorem of M.H. Stone that every topological space can be made into a T_{0}-space by suitable identification of points (see [9]).

MML Identifier: TEX_2.

1. Proper Subsets of 1 -sorted Structures

A non empty set is trivial if:
(Def.1) There exists an element s of it such that it $=\{s\}$.
Let us note that there exists a non empty set which is trivial and there exists a non empty set which is non trivial.
$=$ Next we state four propositions:
(1) For every non empty set A and for every trivial non empty set B such that $A \subseteq B$ holds $A=B$.
(2) For every trivial non empty set A and for every set B such that $A \cap B$ is non empty holds $A \subseteq B$.
(3) For every 1-sorted structure Y holds Y is trivial iff the carrier of Y is trivial.
(4) Let Y_{0}, Y_{1} be 1-sorted structures. Suppose the carrier of $Y_{0}=$ the carrier of Y_{1}. If Y_{0} is trivial, then Y_{1} is trivial.
Let S be a set. An element of S is proper if:
(Def.2) It $\neq \cup S$.
Let S be a set. Observe that there exists a subset of S which is non proper. Next we state the proposition
(5) For every set S and for every subset A of S holds A is proper iff $A \neq S$.

Let S be a non empty set. Observe that every subset of S which is non proper is also non empty and every subset of S which is empty is also proper.

Let S be a trivial non empty set. Observe that every subset of S which is proper is also empty and every subset of S which is non empty is also non proper.

Let S be a non empty set. One can check that there exists a subset of S which is proper and there exists a subset of S which is non proper.

Let S be a non empty set and let y be an element of S. Then $\{y\}$ is a non empty subset of S.

Let S be a non empty set. Observe that there exists a non empty subset of S which is trivial.

Let S be a non empty set and let y be an element of S. Then $\{y\}$ is a trivial non empty subset of S.

We now state two propositions:
(6) For every non empty set S and for every element y of S such that $\{y\}$ is proper holds S is non trivial.
(7) For every non trivial non empty set S and for every element y of S holds $\{y\}$ is proper.
Let S be a trivial non empty set. Note that every non empty subset of S is non proper and every non empty subset of S which is non proper is also trivial.

Let S be a non trivial non empty set. Observe that every non empty subset of S which is trivial is also proper and every non empty subset of S which is non proper is also non trivial.

Let S be a non trivial non empty set. One can check that there exists a non empty subset of S which is trivial and proper and there exists a non empty subset of S which is non trivial and non proper.

One can prove the following propositions:
(8) Let Y be a 1-sorted structure and let y be an element of the carrier of Y. If $\{y\}$ is proper, then Y is non trivial.
(9) For every non trivial 1-sorted structure Y and for every element y of the carrier of Y holds $\{y\}$ is proper.
Let Y be a trivial 1-sorted structure. Note that every non empty subset of Y is non proper and every non empty subset of Y which is non proper is also trivial.

Let Y be a non trivial 1-sorted structure. One can verify that every non empty subset of Y which is trivial is also proper and every non empty subset of Y which is non proper is also non trivial.

Let Y be a non trivial 1-sorted structure. One can check that there exists a non empty subset of Y which is trivial and proper and there exists a non empty subset of Y which is non trivial and non proper.

2. Proper Subspaces of Topological Spaces

The following three propositions are true:
(10) Let X be a topological structure and let X_{0} be a subspace of X. Then the topological structure of X_{0} is a strict subspace of X.
(11) Let X be a topological structure and let X_{1}, X_{2} be subspaces of X. Suppose the carrier of $X_{1}=$ the carrier of X_{2}. Then the topological structure of $X_{1}=$ the topological structure of X_{2}.
(12) Let Y_{0}, Y_{1} be topological structures. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1}. If Y_{0} is topological space-like, then Y_{1} is topological space-like.
Let Y be a topological structure. A subspace of Y is proper if:
(Def.3) For every subset A of Y such that $A=$ the carrier of it holds A is proper.
We now state three propositions:
(13) Let Y_{0} be a subspace of Y and let A be a subset of Y. If $A=$ the carrier of Y_{0}, then A is proper iff Y_{0} is proper.
(14) Let Y_{0}, Y_{1} be subspaces of Y. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1}. If Y_{0} is proper, then Y_{1} is proper.
(15) For every subspace Y_{0} of Y such that the carrier of $Y_{0}=$ the carrier of Y holds Y_{0} is non proper.

Let Y be a trivial topological structure. Observe that every subspace of Y is non proper and every subspace of Y which is non proper is also trivial.

Let Y be a non trivial topological structure. Observe that every subspace of Y which is trivial is also proper and every subspace of Y which is non proper is also non trivial.

Let Y be a topological structure. Observe that there exists a subspace of Y which is non proper and strict.

Next we state the proposition
(716) For every non proper subspace Y_{0} of Y holds the topological structure of $Y_{0}=$ the topological structure of Y.
Let Y be a topological structure. One can check the following observations:

* every subspace of Y which is discrete is also topological space-like,
* every subspace of Y which is anti-discrete is also topological space-like,
* every subspace of Y which is non topological space-like is also non discrete, and
* every subspace of Y which is non topological space-like is also non antidiscrete.
One can prove the following propositions:
(17) Let Y_{0}, Y_{1} be topological structures. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1}. If Y_{0} is discrete, then Y_{1} is discrete.
(18) Let Y_{0}, Y_{1} be topological structures. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1}. If Y_{0} is anti-discrete, then Y_{1} is anti-discrete.
Let Y be a topological structure. One can verify the following observations:
* every subspace of Y which is discrete is also almost discrete,
* every subspace of Y which is non almost discrete is also non discrete,
* every subspace of Y which is anti-discrete is also almost discrete, and
* every subspace of Y which is non almost discrete is also non antidiscrete.
One can prove the following proposition
(19) Let Y_{0}, Y_{1} be topological structures. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1}. If Y_{0} is almost discrete, then Y_{1} is almost discrete.
Let Y be a topological structure. One can check the following observations:
* every subspace of Y which is discrete and anti-discrete is also trivial,
* every subspace of Y which is anti-discrete and non trivial is also non discrete, and
* every subspace of Y which is discrete and non trivial is also non antidiscrete.
Let Y be a topological structure and let y be a point of Y. The functor Sspace (y) yielding a strict subspace of Y is defined as follows:
(Def.4) The carrier of $\operatorname{Sspace}(y)=\{y\}$.
Let Y be a topological structure. Observe that there exists a subspace of Y which is trivial and strict.

Let Y be a topological structure and let y be a point of Y. Then Sspace (y) is a trivial strict subspace of Y.

We now state three propositions:
(20) For every topological structure Y and for every point y of Y holds Sspace (y) is proper iff $\{y\}$ is proper.
(21) For every topological structure Y and for every point y of Y such that Sspace (y) is proper holds Y is non trivial.
(22) For every non trivial topological structure Y and for every point y of Y holds Sspace (y) is proper.
Let Y be a non trivial topological structure. One can verify that there exists a subspace of Y which is proper trivial and strict.

We now state two propositions:
(23) Let Y be a topological structure and let Y_{0} be a trivial subspace of Y. Suppose Y_{0} is topological space-like. Then there exists a point y of Y such that the topological structure of $Y_{0}=$ the topological structure of Sspace (y).
(24) Let Y be a topological structure and let y be a point of Y. If Sspace (y) is topological space-like, then Sspace (y) is discrete and anti-discrete.
Let Y be a topological structure. Note that every subspace of Y which is trivial and topological space-like is also discrete and anti-discrete.

Let X be a topological space. Note that there exists a subspace of X which is trivial strict and topological space-like.

Let X be a topological space and let x be a point of X. Then Sspace (x) is a trivial strict topological space-like subspace of X.

Let X be a topological space. Observe that there exists a subspace of X which is discrete anti-discrete and strict.

Let X be a topological space and let x be a point of X. Then Sspace (x) is a discrete anti-discrete strict subspace of X.

Let X be a topological space. One can check the following observations:

* every subspace of X which is non proper is also open and closed,
* every subspace of X which is non open is also proper, and
* every subspace of X which is non closed is also proper.

Let X be a topological space. Note that there exists a subspace of X which is open closed and strict.

Let X be a discrete topological space. Note that every subspace of X which is anti-discrete is also trivial and every subspace of X which is non trivial is also non anti-discrete.

Let X be a discrete non trivial topological space. Observe that there exists a subspace of X which is discrete open closed proper and strict.

Let X be an anti-discrete topological space. One can check that every subspace of X which is discrete is also trivial and every subspace of X which is non trivial is also non discrete.

Let X be an anti-discrete non trivial topological space. One can verify that every proper subspace of X is non open and non closed and every discrete subspace of X is trivial and proper.

Let X be an anti-discrete non trivial topological space. One can check that there exists a subspace of X which is anti-discrete non open non closed proper and strict.

Let X be an almost discrete non trivial topological space. Observe that there exists a subspace of X which is almost discrete proper and strict.

3. Maximal Discrete Subsets and Subspaces

Let Y be a topological structure. A subset of Y is discrete if:
(Def.5) For every subset D of Y such that $D \subseteq$ it there exists a subset G of Y such that G is open and it $\cap G=D$.
Let Y be a topological structure. Let us observe that a subset of Y is discrete if:
(Def.6) For every subset D of Y such that $D \subseteq$ it there exists a subset F of Y, such that F is closed and it $\cap F=D$.
We now state three propositions:
(25) Let Y_{0}, Y_{1} be topological structures, and let D_{0} be a subset of Y_{0}, and let D_{1} be a subset of Y_{1}. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1} and $D_{0}=D_{1}$. If D_{0} is discrete, then D_{1} is discrete.
(26) Let Y be a topological structure, and let Y_{0} be a subspace of Y, and let A be a subset of Y. Suppose $A=$ the carrier of Y_{0}. Then A is discrete if and only if Y_{0} is discrete.
(27) Let Y be a topological structure and let A be a subset of Y. Suppose $A=$ the carrier of Y. Then A is discrete if and only if Y is discrete.
In the sequel Y will denote a topological structure.
We now state several propositions:
(28) For all subsets A, B of Y such that $B \subseteq A$ holds if A is discrete, then B is discrete.
(29) For all subsets A, B of Y such that A is discrete or B is discrete holds $A \cap B$ is discrete.
(30) Suppose that for all subsets P, Q of Y such that P is open and Q is open holds $P \cap Q$ is open and $P \cup Q$ is open. Let A, B be subsets of Y. Suppose A is open and B is open. If A is discrete and B is discrete, then $A \cup B$ is discrete.
(31) Suppose that for all subsets P, Q of Y such that P is closed and Q is closed holds $P \cap Q$ is closed and $P \cup Q$ is closed. Let A, B be subsets of Y. Suppose A is closed and B is closed. If A is discrete and B is discrete, then $A \cup B$ is discrete.
(32) Let A be a subset of Y. Suppose A is discrete. Let x be a point of Y. If $x \in A$, then there exists a subset G of Y such that G is open and $A \cap G=\{x\}$.
(33) Let A be a subset of Y. Suppose A is discrete. Let x be a point of Y. If $x \in A$, then there exists a subset F of Y such that F is closed and $A \cap F=\{x\}$.
In the sequel X denotes a topological space.
The following propositions are true:
(34) Let A_{0} be a non empty subset of X. Suppose A_{0} is discrete. Then there exists a discrete strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(35) Every empty subset of X is discrete.
(36) For every point x of X holds $\{x\}$ is discrete.
(37) Let A be a subset of X. Suppose that for every point x of X such that $x \in A$ there exists a subset G of X such that G is open and $A \cap G=\{x\}$. Then A is discrete.
(38) Let A, B be subsets of X. Suppose A is open and B is open. If A is discrete and B is discrete, then $A \cup B$ is discrete.
(39) Let A, B be subsets of X. Suppose A is closed and B is closed. If A is discrete and B is discrete, then $A \cup B$ is discrete.
(40) For every subset A of X such that A is everywhere dense holds if A is discrete, then A is open.
(41) For every subset A of X holds A is discrete iff for every subset D of X such that $D \subseteq A$ holds $A \cap \bar{D}=D$.
(42) For every subset A of X such that A is discrete and for every point x of X such that $x \in A$ holds $A \cap \overline{\{x\}}=\{x\}$.
(43) For every discrete topological space X holds every subset of X is discrete.
(44) Let X be an anti-discrete topological space and let A be a non empty subset of X. Then A is discrete if and only if A is trivial.
Let Y be a topological structure. A subset of Y is maximal discrete if:
(Def.7) It is discrete and for every subset D of Y such that D is discrete and it $\subseteq D$ holds it $=D$.
The following proposition is true
(45) Let Y_{0}, Y_{1} be topological structures, and let D_{0} be a subset of Y_{0}, and let D_{1} be a subset of Y_{1}. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1} and $D_{0}=D_{1}$. If D_{0} is maximal discrete, then D_{1} is maximal discrete.

In the sequel X will denote a topological space.
Next we state several propositions:
(46) Every empty subset of X is not maximal discrete.
(47) For every subset A of X such that A is open holds if A is maximal discrete, then A is dense.
(48) For every subset A of X such that A is dense holds if A is discrete, then A is maximal discrete.
(49) Let X be a discrete topological space and let A be a subset of X. Then A is maximal discrete if and only if A is non proper.
(50) Let X be an anti-discrete topological space and let A be a non empty subset of X. Then A is maximal discrete if and only if A is trivial.
Let Y be a topological structure. A subspace of Y is maximal discrete if:
(Def.8) For every subset A of Y such that $A=$ the carrier of it holds A is maximal discrete.
One can prove the following proposition
(51) Let Y be a topological structure, and let Y_{0} be a subspace of Y, and let A be a subset of Y. Suppose $A=$ the carrier of Y_{0}. Then A is maximal discrete if and only if Y_{0} is maximal discrete.
Let Y be a topological structure. Note that every subspace of Y which is maximal discrete is also discrete and every subspace of Y which is non discrete is also non maximal discrete.

Next we state two propositions:
(52) Let X_{0} be a subspace of X. Then X_{0} is maximal discrete if and only if the following conditions are satisfied:
(i) X_{0} is discrete, and
(ii) for every discrete subspace Y_{0} of X such that X_{0} is a subspace of Y_{0} holds the topological structure of $X_{0}=$ the topological structure of Y_{0}.
(53) Let A_{0} be a non empty subset of X. Suppose A_{0} is maximal discrete. Then there exists a strict subspace X_{0} of X such that X_{0} is maximal discrete and $A_{0}=$ the carrier of X_{0}.
Let X be a discrete topological space. One can verify the following observations:

* every subspace of X which is maximal discrete is also non proper,
* every subspace of X which is proper is also non maximal discrete,
* every subspace of X which is non proper is also maximal discrete, and
* every subspace of X which is non maximal discrete is also proper.

Let X be an anti-discrete topological space. One can check the following observations:

* every subspace of X which is maximal discrete is also trivial,
* every subspace of X which is non trivial is also non maximal discrete,
* every subspace of X which is trivial is also maximal discrete, and
* every subspace of X which is non maximal discrete is also non trivial.

4. Maximal Discrete Subspaces of Almost Discrete Spaces

The scheme ExChoiceFCol deals with a topological structure \mathcal{A}, a family \mathcal{B} of subsets of \mathcal{A}, and a binary predicate \mathcal{P}, and states that:

There exists a function f from \mathcal{B} into the carrier of \mathcal{A} such that for every subset S of \mathcal{A} such that $S \in \mathcal{B}$ holds $\mathcal{P}[S, f(S)]$
provided the following condition is met:

- For every subset S of \mathcal{A} such that $S \in \mathcal{B}$ there exists a point x of \mathcal{A} such that $\mathcal{P}[S, x]$.
In the sequel X will denote an almost discrete topological space.
We now state a number of propositions:
(54) For every subset A of X holds $\bar{A}=\bigcup\{\overline{\{a\}}: a$ ranges over points of X, $a \in A\}$.
(55) For all points a, b of X such that $a \in \overline{\{b\}}$ holds $\overline{\{a\}}=\overline{\{b\}}$.
(56) For all points a, b of X holds $\overline{\{a\}} \cap \overline{\{b\}}=\emptyset$ or $\overline{\{a\}}=\overline{\{b\}}$.
(57) Let A be a subset of X. Suppose that for every point x of X such that $x \in A$ there exists a subset F of X such that F is closed and $A \cap F=\{x\}$. Then A is discrete.
(58) For every subset A of X such that for every point x of X such that $x \in A$ holds $A \cap \overline{\{x\}}=\{x\}$ holds A is discrete.
(59) Let A be a subset of X. Then A is discrete if and only if for all points a, b of X such that $a \in A$ and $b \in A$ holds if $a \neq b$, then $\overline{\{a\}} \cap \overline{\{b\}}=\emptyset$.
(60) Let A be a subset of X. Then A is discrete if and only if for every point x of X such that $x \in \bar{A}$ there exists a point a of X such that $a \in A$ and $A \cap \overline{\{x\}}=\{a\}$.
(61) For every subset A of X such that A is open or closed holds if A is maximal discrete, then A is not proper.
(62). For every subset A of X such that A is maximal discrete holds A is dense.
(63) For every subset A of X such that A is maximal discrete holds $\bigcup\{\overline{\{a\}}: a$ ranges over points of $X, a \in A\}=$ the carrier of X.
(64) Let A be a subset of X. Then A is maximal discrete if and only if for every point x of X there exists a point a of X such that $a \in A$ and $A \cap \overline{\{x\}}=\{a\}$.
(65) For every subset A of X such that A is discrete there exists a subset M of X such that $A \subseteq M$ and M is maximal discrete.
(66) There exists subset of X which is maximal discrete.
(67) Let Y_{0} be a discrete subspace of X. Then there exists a strict subspace X_{0} of X such that Y_{0} is a subspace of X_{0} and X_{0} is maximal discrete.

Let X be an almost discrete non discrete topological space. One can verify that every subspace of X which is maximal discrete is also proper and every subspace of X which is non proper is also non maximal discrete.

Let X be an almost discrete non anti-discrete topological space. Observe that every subspace of X which is maximal discrete is also non trivial and every subspace of X which is trivial is also non maximal discrete.

Let X be an almost discrete topological space. Note that there exists a subspace of X which is maximal discrete and strict.

```
<
```

$\%$

5. Continuous Mappings and Almost Discrete Spaces

The scheme MapExChoice F concerns a topological structure \mathcal{A}, a topological structure \mathcal{B}, and a binary predicate \mathcal{P}, and states that:

There exists a map f from \mathcal{A} into \mathcal{B} such that for every point x of \mathcal{A} holds $\mathcal{P}[x, f(x)]$
provided the parameters have the following property:

- For every point x of \mathcal{A} there exists a point y of \mathcal{B} such that $\mathcal{P}[x, y]$.

In the sequel X, Y are topological spaces.
Next we state four propositions:
(68) For every discrete topological space X holds every mapping from X into Y is continuous.
(69) If for every topological space Y holds every mapping from X into Y is continuous, then X is discrete.
(70) For every anti-discrete topological space Y holds every mapping from X into Y is continuous.
(71) If for every topological space X holds every mapping from X into Y is continuous, then Y is anti-discrete.
In the sequel X will be a discrete topological space and X_{0} will be a subspace of X.

One can prove the following two propositions:
(72) There exists continuous mapping from X into X_{0} which is a retraction.
(73) $\quad X_{0}$ is a retract of X.

In the sequel X will be an almost discrete topological space and X_{0} will be a maximal discrete subspace of X.

Next we state four propositions:
(74) There exists continuous mapping from X into X_{0} which is a retraction.
(75) $\quad X_{0}$ is a retract of X.
(76) Let r be a continuous mapping from X into X_{0}. Suppose r is a retraction. Let F be a subset of X_{0} and let E be a subset of X. If $F=E$, then $r^{-1} F=\bar{E}$.
(77) Let r be a continuous mapping from X into X_{0}. Suppose r is a retraction. Let a be a point of X_{0} and let b be a point of X. If $a=b$, then $r^{-1}\{a\}=\overline{\{b\}}$.
In the sequel X_{0} is a discrete subspace of X.
The following two propositions are true:
(78) There exists continuous mapping from X into X_{0} which is a retraction. (79) $\quad X_{0}$ is a retract of X.

Acknowledgments

The author wishes to thank Professor A. Trybulec for many helpful conversations during the preparation of this paper. The author is also grateful to G. Bancerek for the definition of the clustered attribute proper.

References

[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Czeslaw Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czeslaw Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.
[5] Zbigniew Karno. On discrete and almost discrete topological spaces. Formalized Mathematics, 3(2):305-310, 1992.
[6] Zbigniew Karno. Remarks on special subsets of topological spaces. Formalized Mathematics, 3(2):297-303, 1992.
[7] Kazimierz Kuratowski. Topology. Volume I, PWN - Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
[8] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[9] M. H. Stone. Application of boolean algebras to topology. Math. Sb., 1:765-771, 1936.
[10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[11] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[12] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Miroslaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received November 5, 1993

On Nowhere and Everywhere Dense Subspaces of Topological Spaces

Zbigniew Karno
Warsaw University
Białystok

Summary. Let X be a topological space and let X_{0} be a subspace of X with the carrier $A . X_{0}$ is called boundary (dense) in X if A is boundary (dense), i.e., Int $A=\emptyset(\bar{A}=$ the carrier of $X) ; X_{0}$ is called nowhere dense (everywhere dense) in X if A is nowhere dense (everywhere dense), i.e., Int $\bar{A}=\emptyset(\overline{\operatorname{Int} A}=$ the carrier of X) (see [5] and comp. [8]).

Our purpose is to list, using Mizar formalism, a number of properties of such subspaces, mostly in non-discrete (non-almost-discrete) spaces (comp. [5]). Recall that X is called discrete if every subset of X is open (closed); X is called almost discrete if every open subset of X is closed; equivalently, if every closed subset of X is open (see [1], [4] and comp. $[8],[7])$. We have the following characterization of non-discrete spaces: X is non-discrete iff there exists a boundary subspace in X. Hence, X is non-discrete iff there exists a dense proper subspace in X. We have the following analogous characterization of non-almost-discrete spaces: X is non-almost-discrete iff there exists a nowhere dense subspace in X. Hence, X is non-almost-discrete iff there exists an everywhere dense proper subspace in X.

Note that some interdependencies between boundary, dense, nowhere and everywhere dense subspaces are also indicated. These have the form of observations in the text and they correspond to the existential and to the conditional clusters in the Mizar System. These clusters guarantee the existence and ensure the extension of types supported automatically by the Mizar System.

MML Identifier: TEX_3.

The terminology and notation used in this paper have been introduced in the following articles: [11], [9], [12], [10], [6], [3], [1], [5], and [2].

1. Some Properties of Subsets of a Topological Space

In the sequel X denotes a topological space and A, B denote subsets of X.
The following propositions are true:
(1) If A and B constitute a decomposition, then A is non empty iff B is proper.
(2) If A and B constitute a decomposition, then A is dense iff B is boundary.
(3) If A and B constitute a decomposition, then A is boundary iff B is dense.
(4) If A and B constitute a decomposition, then A is everywhere dense iff B is nowhere dense.
(5) If A and B constitute a decomposition, then A is nowhere dense iff B is everywhere dense.
In the sequel Y_{1}, Y_{2} will be subspaces of X.
Next we state three propositions:
(6) If Y_{1} and Y_{2} constitute a decomposition, then Y_{1} is proper and Y_{2} is proper.
-(7) Let X be a non trivial topological space and let D be a non empty proper subset of X. Then there exists a proper strict subspace Y_{0} of X such that $D=$ the carrier of Y_{0}.
(8) Let X be a non trivial topological space and let Y_{1} be a proper subspace of X. Then there exists a proper strict subspace Y_{2} of X such that Y_{1} and Y_{2} constitute a decomposition.

2. Dense and Everywhere Dense Subspaces

Let X be a topological space. A subspace of X is dense if:
(Def.1) For every subset A of X such that $A=$ the carrier of it holds A is dense.
The following proposition is true
(9) Let X_{0} be a subspace of X and let A be a subset of X. If $A=$ the carrier of X_{0}, then X_{0} is dense iff A is dense.
Let X be a topological space. One can check the following observations:

* every subspace of X which is dense and closed is also non proper,
* every subspace of X which is dense and proper is also non closed, and
* every subspace of X which is proper and closed is also non dense.

Let X be a topological space. Note that there exists a subspace of X which is dense and strict.

We now state several propositions:
(10) Let A_{0} be a non empty subset of X. Suppose A_{0} is dense. Then there exists a dense strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(11) Let X_{0} be a dense subspace of X, and let A be a subset of X, and let B be a subset of X_{0}. If $A=B$, then B is dense iff A is dense.
(12) For every dense subspace X_{1} of X and for every subspace X_{2} of X such that X_{1} is a subspace of X_{2} holds X_{2} is dense.
(13) Let X_{1} be a dense subspace of X and let X_{2} be a subspace of X. If X_{1} is a subspace of X_{2}, then X_{1} is a dense subspace of X_{2}.
(14) For every dense subspace X_{1} of X holds every dense subspace of X_{1} is a dense subspace of X.
(15) Let Y_{1}, Y_{2} be topological spaces. Suppose $Y_{2}=$ the topological structure of Y_{1}. Then Y_{1} is a dense subspace of X if and only if Y_{2} is a dense subspace of X.
Let X be a topological space. A subspace of X is everywhere dense if:
(Def.2) For every subset A of X such that $A=$ the carrier of it holds A is everywhere dense.
Next we state the proposition
(16) Let X_{0} be a subspace of X and let A be a subset of X. Suppose $A=$ the carrier of X_{0}. Then X_{0} is everywhere dense if and only if A is everywhere dense.
Let X be a topological space. One can check the following observations:

* every subspace of X which is everywhere dense is also dense, * every subspace of X which is non dense is also non everywhere dense,
* every subspace of X which is non proper is also everywhere dense, and
* every subspace of X which is non everywhere dense is also proper.

Let X be a topological space. Observe that there exists a subspace of X which is everywhere dense and strict.

We now state several propositions:
(17) Let A_{0} be a non empty subset of X. Suppose A_{0} is everywhere dense. Then there exists an everywhere dense strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(18) Let X_{0} be an everywhere dense subspace of X, and let A be a subset of X, and let B be a subset of X_{0}. Suppose $A=B$. Then B is everywhere dense if and only if A is everywhere dense.
(19) Let X_{1} be an everywhere dense subspace of X and let X_{2} be a subspace of X. If X_{1} is a subspace of X_{2}, then X_{2} is everywhere dense.
(20) Let X_{1} be an everywhere dense subspace of X and let X_{2} be a subspace of X. Suppose X_{1} is a subspace of X_{2}. Then X_{1} is an everywhere dense subspace of X_{2}.
(21) For every everywhere dense subspace X_{1} of X holds every everywhere dense subspace of X_{1} is an everywhere dense subspace of X.
(22) Let Y_{1}, Y_{2} be topological spaces. Suppose $Y_{2}=$ the topological structure of Y_{1}. Then Y_{1} is an everywhere dense subspace of X if and only if Y_{2} is an everywhere dense subspace of X.

Let X be a topological space. One can check the following observations:

* every subspace of X which is dense and open is also everywhere dense,
* every subspace of X which is dense and non everywhere dense is also non open, and
* every subspace of X which is open and non everywhere dense is also non dense.
Let X be a topological space. Note that there exists a subspace of X which is dense open and strict.

We now state two propositions:
(23) Let A_{0} be a non empty subset of X. Suppose A_{0} is dense and open. Then there exists a dense open strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(24) For every subspace X_{0} of X holds X_{0} is everywhere dense iff there exists dense open strict subspace of X which is a subspace of X_{0}.
In the sequel X_{1}, X_{2} denote subspaces of X.
One can prove the following four propositions:
(25) If X_{1} is dense or X_{2} is dense, then $X_{1} \cup X_{2}$ is a dense subspace of X.
(26) If X_{1} is everywhere dense or X_{2} is everywhere dense, then $X_{1} \cup X_{2}$ is an everywhere dense subspace of X.
(27) If X_{1} is everywhere dense and X_{2} is everywhere dense, then $X_{1} \cap X_{2}$ is an everywhere dense subspace of X.
(28) Suppose X_{1} is everywhere dense and X_{2} is dense or X_{1} is dense and X_{2} is everywhere dense. Then $X_{1} \cap X_{2}$ is a dense subspace of X.

3. Boundary and Nowhere Dense Subspaces

Let X be a topological space. A subspace of X is boundary if:
(Def.3) For every subset A of X such that $A=$ the carrier of it holds A is boundary.
We now state the proposition
(29) Let X_{0} be a subspace of X and let A be a subset of X. Suppose $A=$ the carrier of X_{0}. Then X_{0} is boundary if and only if A is boundary.
Let X be a topological space. One can verify the following observations:

* every subspace of X which is open is also non boundary,
* every subspace of X which is boundary is also non open,
* every subspace of X which is everywhere dense is also non boundary, and
* every subspace of X which is boundary is also non everywhere dense.

Next we state several propositions:
(30) Let A_{0} be a non empty subset of X. Suppose A_{0} is boundary. Then there exists a strict subspace X_{0} of X such that X_{0} is boundary and $A_{0}=$ the carrier of X_{0}.
(31) Let X_{1}, X_{2} be subspaces of X. Suppose X_{1} and X_{2} constitute a decomposition. Then X_{1} is dense if and only if X_{2} is boundary.
(32) Let X_{1}, X_{2} be subspaces of X. Suppose X_{1} and X_{2} constitute a decomposition. Then X_{1} is boundary if and only if X_{2} is dense.
(33) Let X_{0} be a subspace of X. Suppose X_{0} is boundary. Let A be a subset of X. If $A \subseteq$ the carrier of X_{0}, then A is boundary.
(34) For all subspaces X_{1}, X_{2} of X such that X_{1} is boundary holds if X_{2} is a subspace of X_{1}, then X_{2} is boundary.
Let X be a topological space. A subspace of X is nowhere dense if:
(Def.4) For every subset A of X such that $A=$ the carrier of it holds A is nowhere dense.
We now state the proposition
(35) Let X_{0} be a subspace of X and let A be a subset of X. Suppose $A=$ the carrier of X_{0}. Then X_{0} is nowhere dense if and only if A is nowhere dense.
Let X be a topological space. One can verify the following observations:

* every subspace of X which is nowhere dense is also boundary,
* every subspace of X which is non boundary is also non nowhere dense,
* every subspace of X which is nowhere dense is also non dense, and
* every subspace of X which is dense is also non nowhere dense.

In the sequel X will denote a topological space.
One can prove the following propositions:
Let A_{0} be a non empty subset of X. Suppose A_{0} is nowhere dense. Then there exists a strict subspace X_{0} of X such that X_{0} is nowhere dense and $A_{0}=$ the carrier of X_{0}.

Let X_{1}, X_{2} be subspaces of X. Suppose X_{1} and X_{2} constitute a decomposition. Then X_{1} is everywhere dense if and only if X_{2} is nowhere dense.
(38) Let X_{1}, X_{2} be subspaces of X. Suppose X_{1} and X_{2} constitute a decomposition. Then X_{1} is nowhere dense if and only if X_{2} is everywhere dense.
(39) Let X_{0} be a subspace of X. Suppose X_{0} is nowhere dense. Let A be a subset of X. If $A \subseteq$ the carrier of X_{0}, then A is nowhere dense.
(40) Let X_{1}, X_{2} be subspaces of X. Suppose X_{1} is nowhere dense. If X_{2} is a subspace of X_{1}, then X_{2} is nowhere dense.
Let X be a topological space. One can verify the following observations:

* every subspace of X which is boundary and closed is also nowhere dense,
* every subspace of X which is boundary and non nowhere dense is also non closed, and
* every subspace of X which is closed and non nowhere dense is also non boundary.
The following propositions are true:
(41) Let A_{0} be a non empty subset of X. Suppose A_{0} is boundary and closed. Then there exists a closed strict subspace X_{0} of X such that X_{0} is boundary and $A_{0}=$ the carrier of X_{0}.
(42) Let X_{0} be a subspace of X. Then X_{0} is nowhere dense if and only if there exists a closed strict subspace X_{1} of X such that X_{1} is boundary and X_{0} is a subspace of X_{1}.
In the sequel X_{1}, X_{2} will be subspaces of X.
One can prove the following propositions:
(43) If X_{1} is boundary or X_{2} is boundary and if X_{1} meets X_{2}, then $X_{1} \cap X_{2}$ is boundary.
(44) If X_{1} is nowhere dense and X_{2} is nowhere dense, then $X_{1} \cup X_{2}$ is nowhere dense.
(45) If X_{1} is nowhere dense and X_{2} is boundary or X_{1} is boundary and X_{2} is nowhere dense, then $X_{1} \cup X_{2}$ is boundary.
(46) If X_{1} is nowhere dense or X_{2} is nowhere dense and if X_{1} meets X_{2}, then $X_{1} \cap X_{2}$ is nowhere dense.

4. Dense and Boundary Subspaces of Non-discrete Spaces

Next we state two propositions:
(47) For every topological space X such that every subspace of X is non boundary holds X is discrete.
(48) For every non trivial topological space X such that every proper subspace of X is non dense holds X is discrete.
Let X be a discrete topological space. One can check the following observations:

* every subspace of X is non boundary,
* every subspace of X which is proper is also non dense, and
* every subspace of X which is dense is also non proper.

Let X be a discrete topological space. Observe that there exists a subspace of X which is non boundary and strict.

Let X be a discrete non trivial topological space. Note that there exists a subspace of X which is non dense and strict.

One can prove the following two propositions:
(49) For every topological space X such that there exists subspace of X which is boundary holds X is non discrete.
(50) For every topological space X such that there exists subspace of X which is dense and proper holds X is non discrete.

Let X be a non discrete topological space. One can check that there exists a subspace of X which is boundary and strict and there exists a subspace of X which is dense proper and strict.

In the sequel X will be a non discrete topological space.
We now state several propositions:
(51) Let A_{0} be a non empty subset of X. Suppose A_{0} is boundary. Then there exists a boundary strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(52) Let A_{0} be a non empty proper subset of X. Suppose A_{0} is dense. Then there exists a dense proper strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(53) Let X_{1} be a boundary subspace of X. Then there exists a dense proper strict subspace X_{2} of X such that X_{1} and X_{2} constitute a decomposition.
(54) Let X_{1} be a dense proper subspace of X. Then there exists a boundary strict subspace X_{2} of X such that X_{1} and X_{2} constitute a decomposition.
(55) Let Y_{1}, Y_{2} be topological spaces. Suppose $Y_{2}=$ the topological structure of Y_{1}. Then Y_{1} is a boundary subspace of X if and only if Y_{2} is a boundary subspace of X.

5. Everywhere and Nowhere Dense Subspaces of Non-almost-discrete Spaces

Next we state two propositions:
(56) For every topological space X such that every subspace of X is non nowhere dense holds X is almost discrete.
(57) For every non trivial topological space X such that every proper subspace of X is non everywhere dense holds X is almost discrete.
Let X be an almost discrete topological space. One can verify the following observations:

* every subspace of X is non nowhere dense,
* every subspace of X which is proper is also non everywhere dense,
* every subspace of X which is everywhere dense is also non proper,
* every subspace of X which is boundary is also non closed,
* every subspace of X which is closed is also non boundary,
* every subspace of X which is dense and proper is also non open,
* every subspace of X which is dense and open is also non proper, and
* every subspace of X which is open and proper is also non dense.

Let X be an almost discrete topological space. One can verify that there exists a subspace of X which is non nowhere dense and strict.

Let X be an almost discrete non trivial topological space. Note that there exists a subspace of X which is non everywhere dense and strict.

The following four propositions are true:
(58) For every topological space X such that there exists subspace of X which is nowhere dense holds X is non almost discrete.
(59) For every topological space X such that there exists subspace of X which is boundary and closed holds X is non almost discrete.
(60) For every topological space X such that there exists subspace of X which is everywhere dense and proper holds X is non almost discrete.
-(61) For every topological space X such that there exists subspace of X which is dense and open and proper holds X is non almost discrete.
Let X be a non almost discrete topological space. One can check that there exists a subspace of X which is nowhere dense and strict and there exists a subspace of X which is everywhere dense proper and strict.

In the sequel X denotes a non almost discrete topological space.
The following propositions are true:
(62) Let A_{0} be a non empty subset of X. Suppose A_{0} is nowhere dense. Then there exists a nowhere dense strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(63) Let A_{0} be a non empty proper subset of X. Suppose A_{0} is everywhere dense. Then there exists an everywhere dense proper strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(64) Let X_{1} be a nowhere dense subspace of X. Then there exists an everywhere dense proper strict subspace X_{2} of X such that X_{1} and X_{2} constitute a decomposition.
(65) Let X_{1} be an everywhere dense proper subspace of X. Then there exists a nowhere dense strict subspace X_{2} of X such that X_{1} and X_{2} constitute a decomposition.
(66) Let Y_{1}, Y_{2} be topological spaces. Suppose $Y_{2}=$ the topological structure of Y_{1}. Then Y_{1} is a nowhere dense subspace of X if and only if Y_{2} is a nowhere dense subspace of X.
Let X be a non almost discrete topological space. One can verify that there exists a subspace of X which is boundary closed and strict and there exists a subspace of X which is dense open proper and strict.

Next we state several propositions:
(67) Let A_{0} be a non empty subset of X. Suppose A_{0} is boundary and closed. Then there exists a boundary closed strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(68) Let A_{0} be a non empty proper subset of X. Suppose A_{0} is dense and open. Then there exists a dense open proper strict subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
(69) Let X_{1} be a boundary closed subspace of X. Then there exists a dense open proper strict subspace X_{2} of X such that X_{1} and X_{2} constitute a decomposition.
(70) Let X_{1} be a dense open proper subspace of X. Then there exists a boundary closed strict subspace X_{2} of X such that X_{1} and X_{2} constitute a decomposition.
(71) Let X_{0} be a subspace of X. Then X_{0} is nowhere dense if and only if there exists a boundary closed strict subspace X_{1} of X such that X_{0} is a subspace of X_{1}.
(72) Let X_{0} be a nowhere dense subspace of X. Then
(i) X_{0} is boundary or closed, or
(ii) there exists an everywhere dense proper strict subspace X_{1} of X and there exists a boundary closed strict subspace X_{2} of X such that $X_{1} \cap X_{2}=$ the topological structure of X_{0} and $X_{1} \cup X_{2}=$ the topological structure of X.
(73) Let X_{0} be an everywhere dense subspace of X. Then
(i) X_{0} is dense or open, or
(ii) there exists a dense open proper strict subspace X_{1} of X and there exists a nowhere dense strict subspace X_{2} of X such that X_{1} misses X_{2} and $X_{1} \cup X_{2}=$ the topological structure of X_{0}.
(74) Let X_{0} be a nowhere dense subspace of X. Then there exists a dense open proper strict subspace X_{1} of X and there exists a boundary closed strict subspace X_{2} of X such that X_{1} and X_{2} constitute a decomposition and X_{0} is a subspace of X_{2}.
(75) Let X_{0} be an everywhere dense proper subspace of X. Then there exists a dense open proper strict subspace X_{1} of X and there exists a boundary closed strict subspace X_{2} of X such that X_{1} and X_{2} constitute is decomposition and X_{1} is a subspace of X_{0}.

References

[1] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.
[2] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125-135, 1993.
[3] Zbigniew Karno. On a duality between weakly separated subspaces of topological spaces. Formalized Mathematics, 3(2):177-182, 1992.
[4] Zbigniew Karno. On discrete and almost discrete topological spaces. Formalized Mathematics, 3(2):305-310, 1992.
[5] Zbigniew Karno. Remarks on special subsets of topological spaces. Formalized Mathematics, 3(2):297-303, 1992.
[6] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.
[7] Kazimierz Kuratowski. Topology. Volume II, PWN - Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1968.
[8] Kazimierz Kuratowski. Topology. Volume I, PWN - Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
[9] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[10] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Miroslaw Wysocki and Agata Darmochwal. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received November 9, 1993

[^0]: ${ }^{1}$ Dedicated to Professor Tsuyoshi Ando on his sixtieth birthday.

[^1]: ${ }^{1}$ The proposition (11) has been removed.

[^2]: ${ }^{1}$ The proposition (17) has been removed.

[^3]: ${ }^{1}$ This work was partially supported by NSERC Grant OGP9207 while the first author visited University of Alberta, May-June 1993.

[^4]: ${ }^{1}$ This work was partially supported by NSERC Grant OGP9207 while the first author visited University of Alberta, May-June 1993.

[^5]: ${ }^{2}$ Both power functions in this theorem are different. The first is defined in [10] and the second in [8].

[^6]: ${ }^{1}$ This work was partially supported by NSERC Grant OGP9207 while the first author visited University of Alberta, May-June 1993.

[^7]: :ntanc ceet (a'.

[^8]: ${ }^{1}$ This work was partially supported by NSERC Grant OGP9207 while the first author visited University of Alberta, May-June 1993.

