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Summary. Concerned with a generalization of concepts intro- 
duced in [17], i.e. there are introduced the sum and the product of ma- 
trices of any dimension of elements of any field. 

MML Identifier: MATRIX-3. 

The articles [151, [28], [101, [ I l l ,  [ S ] ,  [71, [61, [121, P O ] ,  [271, [191, PI, [131, 
[ g ] ,  [8],  1211, [%l,  [ l ] ,  [ I T ] ,  [25], [ I s ] ,  [41, [31, [241, [291, [21, [221, and [l41 provide 
the notation and terminology for this paper. 

For simplicity we follow a convention: i, j ,  k ,  l ,  n, m denote natural numbers, 
I ,  J, D denote non empty sets, I! denotes a field, a denotes an element of D ,  
and p, q denote finite sequences of elements of D .  

We now state two propositions: 

(1) If n = n + k ,  then k = 0. 

( 2 )  For every natural number n holds n = 0 or n = 1 or n = 2 or n > 2. 
1 

In the sequel A, B will denote matrices over K of dimension n X m. 
nxm ... 0 

Let us consider I !  n, m. The functor ( -.  . ) yields a matrix 

. . . S 
over Ir' of dimension n X m and is defined as follows: 

nxm ... 0 

(~ef.11 ( E . ) = n - (m - o ~ . ) .  
, - 

. . . K 
Let us consider K and let A be a matrix over I<. The functor -A  yields a 

matrix over I! and is defined by: 
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(Def.2) len(-A) = lenA and width(-A) = widthA and for all i, j  such that 
(i, j )  E the indices of A holds (-A);,j = -Aij. 

Let us consider K and let A, B be matrices over K. Let us assume that 
len A = len B and width A = width B. The functor A + B yielding a matrix over 
K is defined as follows: 

I 1  
(Def.3) len(A + B) = lenA and width(A + B) = widthA and for all i, j  such 

that (i, j )  E the indices of A holds (A + B);,j = A;,j + B;,j. 
* $ -- The following proposition is true 

3 -X 

(3)  For all i, j  such that ( i ,  j )  E the indices of ( i  ::: :lnxm holds 

. . . K 
n x m  

. . . h' 

. , In the sequel A, B denote matrices over K. 
The following propositions are true: 

(4) For all matrices A, B over K such that len A = len B and widthA = 
width B holds A + B = B + A. 

( 5 )  For all matrices A, B,  C over K such that len A = len B and len A = 
len C and width A = width B and width A = width C holds (A+ B) + C = 
A + ( B + C ) .  

(6) For every matrix A over K of dimension n X m holds A + 

(7) For every matrix A over K of dimension n X m holds A + -A = 

Let us consider K and let A, B be matrices over K. Let us assume that 
widthA = len B. The functor A .  B yields a matrix over K and is defined as 
follows: 

(Def.4) len(A. B) = len A and width(A. B) = width B and for all i ,  j  such that 
(i, j )  E the indices of A . B holds (A . B); ,j = Line(A, i)  . BD,j. 

Let us consider n, L, m, let us consider K, let A be a matrix over K of 
dimension n X L, and let B be a matrix over K of dimension widthA X m. 
Then A .  B is a matrix over li of dimension len A X width B. 

Let us consider K, let M be a matrix over K, and let a be an element of the 
carrier of K. The functor a . M yields a matrix over K and is defined by: 
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(Def.5) len(a M )  = len M and width(a . M )  = width M and for all i, j such 
that (i, j )  E the indices of M holds ( a .  M);$ = a .  M; j. 

Let us consider K, let M be a matrix over K, and let a be an element of the 
carrier of K. The functor M .  a yields a matrix over K and is defined by: 

(Def.6) M . a = a M. 

One can prove the following propositions: 

(8) For all finite sequences p, q of elements of the carrier of I{ such that 
len p = len q holds len(p q) = len p and len(p q) = len q .  

1 

(9) For all i, l such that (i, l) E the indices of ( . 1 ) n x n a n d l = i  

IC 

holds Line( ( 1  ... l ) y , i ) ( + l K -  

1 

(10) For all i ,  1 such that (i, 1) E the indices of ( o  -.. : Inxn a n d l # i  

h- 
1 

holds Line( ( ... 1) nxn,i)(l)  = OK. 

h' 

(11) For all 1, j such that (1 ,  j )  E the indices of ( 1  -.. : ) y a n d l = j  

0 n X n  

holds(( :  ... l )  )0,~(1) = ~ I C .  

h- 

(12) For all l, j such that (l, j )  E the indices of ( :  ... l ) y a n d l # j  

1 0 n X n  

holds l ( ,  . - .  l )  )o,j(l) = OK. 

K 

(13) C(n H OK) = OK. 

(14) Let p be a finite sequence of elements -o-f -the cxziier -of K- a d  given i. 
Suppose i E Seglenp and for every L such that k E Seglenp and k # i 
holds p(k) = O K .  Then Cp = p(i). 

(15) For all finite sequences p, q of elements of the carrier of l< holds len(p 
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q) = min (len p, len q) . 
(16) Let p, q be finite sequences of elements of the carrier of K and given i. 

Suppose i E Seg len p and p(i) = lIc and for every k such that k E Seg len p 
and L # i holds p(k) = OK. Given j .  Suppose j E Seglen(p a q).  Then if 
i = j, then (p a q)(j) = q(i) and if i # j, then (p a q)(j) = OIi. 

a '  

S l 
(17) For all i, j such that (i, j) E the indices of 
,. -" 

t * b  

( 1 . . 1 ) 1:' holds 

n X n  
v 

if i = j then Line( ( 0 . . ) , i ) ( j )  = lK and if i # j, then 

K 

Line((: ... :Inxn , i> ( j )  = oh.. 
h' 

1 

(18) For all i, j such that (i, j )  E the indices of ( o  . : ) n x n h o l d s  

K 
n x n  

if i = j, then ( ( . .  " )n,j(i) = I I ~  and if i + j, then 

h' 
n X n  ( ( 1  . 1) 0 , )  = O K .  

h- 

(19) Let p, q be finite sequences of elements of the carrier of K and given 
i. Suppose i E Seglenp and i E Seglen q and p(i) = lK and for every k 
such that k E Segl'enp and k + i holds p(k) = OK. Then C ( p  a q) = q(i). 

(20) For every matrix A over K of dimension n holds ( 1  ... l):;.A= 
(21) For every matrix A over li of dimension n holds A.  ( . J n X n  = 

h- 
A. 

(22) For all elements a ,  b of the carrier of Ii holds ((a)) ( (b))  = ((a h).); 
(23) For all elements al, a2, bl, b2, cl, c2, dl, d2 of the carrier of K holds 

a2 + bl c2 a1 . b2'+'bi *.d2 
cl . a2 + dl C:! CI . by+idl 
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(24) For all matrices A, B over Ii such that width A = len B and width B # 0 
holds (A.  B ) ~  = BT AT. 

Let I, J be non empty sets, let X be an element of Fin I, and let Y be an 
element of Fin J. Then [:X, Y :] is an element of Fin1 I, J :]. 

Let I ,  J, D be non empty sets, let G be a binary operation on D, let f be a 
function from I into D, and let g be a function from J into D. Then G o (f, g) 
is a function from I, J :] into D. 

The following propositions are true: 

(25) Let I, J ,  D be non empty sets, and let F, G be binary operations on 
D,  and let f be a function from I into D, and let g be a function from 
J into D, and let X be an element of Fin I, and let Y be an element 
of Fin J. Suppose F is commutative and associative but [:Y, X :] # 0 or 
F has a unity but G is commutative. Then F -  (G o (f, g)) = 
F-  C E Y , X ~ ( G O  (9,f)) .  

(26) Let I, J be non empty sets, and let F, G be binary operations on D,  and 
let f be a function from I into D ,  and let g be a function from J into D. 
Suppose F is commutative and associative and has a unity. Let X be an 
element of I and let y be an element of J .  Then F -  CE {,), fy> (Go (f, g)) = 

F-  C{,) GO(f, F -  C{,} g). 
(27) Let I ,  J be non empty sets, and let F ,  G be binary operations on D, 

and let f be a function from I into D,  and let g be a function from J into 
D, and let X be an element of Fin I, and let Y be an element of Fin J. 
Suppose F is commutative and associative and has a unity and an inverse 
operation and G is distributive w.r.t. F. Let X be an element of I .  Then 
F -  CE{,},Y ](G ( f , ~ ) )  = F -  C{,}G0(f,F- CY 9). 

(28) Let I ,  J be non empty sets, and let F, G be binary operations on D,  
and let f be a function from I into D,  and let g be a function from J into 
D, and let X be an element of Fin I, and let Y be an element of Fin J. 
Suppose F is commutative and associative and has a unity and an inverse 
operation and G is distributive w.r.t. F. Then F -  CEX, ](G o (f, g)) = 
F - C x  G O ( f , F - C Y  g). 

(29) Let I, J be non empty sets, and let F, G be binary operations on D, 
and let f be a function from I into D, and let g be a function from J 
into D. Suppose F is commutative and associative and has a unity and 
G is commutative. Let X be an eleme~t  of I and let y be an element of 

J. Then F -  C~{x},{,}j(G (f ,g))  = F -  C{,} GO(F- C{,) f ,g) .  
(30) Let I, J be non empty sets, and let F ,  G be binary operations on D,  

and let f be a function from I into D, and let g be a function from J into 
D ,  and let X be an element of Fin I ,  and let Y be an element of Fin J. 
Suppose that 

(i) F is commutative and associative and has a unity . a u l  an iuverse 
operation, and A. 

(ii) G is distributive w.r.t. F and commutative. 
Then F -  C~x ,y  ](G 0 ( f ,g))  = F -  CY GO(F- Cx f,g) .  
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(31) Let I ,  J be non empty sets, and let F be a binary operation on D,  
and let f be a function from [:I, J :] into D, and let g be a function from 
I into D,  and let Y be an element of Fin J. Suppose F is commutative 
and associative and has a unity and an inverse operation. Let X be an 
element of I. If for every element i of I holds g(i) = F- Cy (curry f)(i) ,  
then F- C ~ { x ) , Y  j f = F- C{,) 9. 

I (32) Let I, J be non empty sets, and let F be a binary operation on D,  and 

* I  
let f be a function from 1 I, J :] into D, and let g be a function from I into 

%.V 

t -= D, and let X be an element of Fin I ,  and let Y be an element of Fin J. 
Suppose for every element i of I holds g(i) = F-  Cy(curry f)(i)  and F 
is commutative and associative and has a unity and an inverse operation. 
Then F - C [ x , r j f  = F - C x g .  

(33) Let I ,  J be non empty sets, and let F be a binary operation on D,  and 
let f be a function from [:I, J :] into D, and let g be a function from J 
into D ,  and let X be an element of Fin I. Suppose F is commutative and 
associative and has a unity and an inverse operation. Let y be an element 
of J. If for every element j of J holds g( j )  = F- Cx(curry1 f ) ( j ) ,  then 

F- Z x ,  {Y> j f = F- C{,) Y. 
(34) Let I, J be non empty sets, and let F be a binary operation on D, and 

let f be a function from [:I, J :] into D, and let g be a function from J into 
D,  and let X be an element of Fin I, and let Y be an element of Fin J. 
Suppose for every element j of J holds g( j )  = F- Ex (curry' f )(j)  and F 
is commutative and associative and has a unity and an inverse operation. 
Then F -  CEx,y j f = F- Cy g. 

(35) For all matrices A, B, C over K such that widthA = len B and 
w i d t h B = l e n C h o l d s ( A . B ) . C = A . ( B . C ) .  

In the sequel p will be an element of the permutations of n-element set. 
Let us consider n, Ii', let M be a matrix over K of dimension n,  and let p be 

an element of the permutations of n-element set. The functor p-Path M yields 
a finite sequence of elements of the carrier of K and is defined as follows: 

(Def.7) len(p-Path M )  = n and for all i, j such that i E dom(p-Path M )  and 
j = p(;) holds (p -Path M)(i) = Mi,j. 

Let us consider n', K and let M be a matrix over K of dimension n. The 
product on paths of M yields a function from the permutations of n-element set 
into the carrier of Ir' and is defined by the condition (Def.8). 

(Def.8) Let p be an element of the permutations of n-element set. Then 
(the product on paths of M)(p) = (-l)~@(p)(the multiplication of 
Ir' 8 (p -Path M)). 

Let us consider n, let us consider I i ,  and let M be a matrix over I{ of 
dimension n. The functor Det M yields an element of the carrier of K and is 
defined as follows: 

(Def.9) Det M = (the addition of I{)- C 
':he permutations of m-element set 

(the product 

on paths of M). 
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In the sequel a will be an element of the carrier of K. 
The following proposition is true 

(36) Det((a)) = a. 
Let us consider n, let us consider K, and let M be a matrix over K of 

dimension n. The diagonal of M yields a finite sequence of elements of the 
carrier of I{ and is defined as follows: 

(Def.10) len (the diagonal of M )  = n and for every i such that i E Seg n holds 
(the diagonal of M ) ( i )  = M;,;. 
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Summary. An introduction to the rearrangement theory for finite 
functions (e.g. with the finite domain and codomain). The notion of 
generators and cogenerators of finite sets (equivalent to the order in the 
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Let D be a non empty set, let F be a partial function from D to W,  and let 
r be a real number. Then r F is an element of D i R .  

A finite sequence has cardinality by index if: 

(Def.1) For every n such that 1 5 n and n 5 lenit holds cardit(n) = n. 

A finite sequence is ascending if: 

(Def.2) For every n such that 1 5 n and n 5 lenit - 1 holds it(n) E it(n + 1). 

Let X be a set. A finite sequence of elements of X has length by cardinality 
if: 

(Def.3) len it = card U X. 
Let D be a non empty finite set. Note that there exists a finite sequence of 

elements of 2D which is ascending and has cardinality by index and length by 
cardinality. 

Let D be a non empty finite set. A rearrangement generator of D is an 
ascending finite sequence of elements of 2D with cardinality by index and length 
by cardinality. a 

One can prove the following propositions: 

'Dedicated to Professor Tsuyoshi Ando on his sixtieth birthday. 
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(1) For every finite sequence a of elements of 2D holds a has length by 
cardinality iff len a = card D. 

(2) Let a be a finite sequence. Then a is ascending if and only if for all n, 
m such that n 5 m and n E doma and m E doma holds a(n) 5 a(m). 

(3) For every finite sequence a of elements of 2D with cardinality by index 
and length by cardinality holds a(1ena) = D. 

I 

(4) For every finite sequence a of elements of 2D with length by cardinality 
a i 

*. - holds len a # 0. 
. ( 5 )  Let a be an ascending finite sequence of elements of 2D with cardinality 

by index and given n, m. If n E dom a and m E dom a and n # m, then 

4.1 # a(m). 
(6) Let a be an ascending finite sequence of elements of 2D with cardinality 

by index and given n. If 1 5 n and n < len a - 1, then a(n) # a(n + 1). 

(7) For every finite sequence a of elements of 2D with cardinality by index 
such that n E doma holds a(n) # 0. 

(8) Let a be a finite sequence of elements of 2D with cardinality by index. 
If 1 5 n and n 5 len a - 1, then a(n + 1) \ a(n) # 0. 

(9) Let a be a finite sequence of elements of 2D with cardinality by index 
and length by cardinality. Then there exists an element d  of D such that 
a(1) = { d ) .  

(10) Let a be an ascending finite sequence of elements of 2D with cardinality 
by index. Suppose 1 5 n and n 5 len a - 1. Then there exists an element 
d  of D such that a(n + 1) \ a(n) = { d }  and a(n + 1) = a(n) U { d )  and 
a(. + 1) \ { d )  = a(n). 

Let D be a non empty finite set and let A be a rearrangement generator of 
D. The functor CO-Gen(A) yielding a rearrangement generator of D is defined 
by: 

(Def.4) For every m such that 1 < m and m 5 len CO-Gen(A) - l holds 
(CO-Gen(A))(m) = D \ A(1en A - m). 

One can prove the following two propositions: 

(11) For every rearrangement generator A of D holds CO-Gen(co-Gen(A)) = 
A. 

(12) Let F be a partial function from D to R and let A be a rear- 
rangement generator of C. If F is total and cardC = card D, then 
len MIM(FinS(F, D)) = len CHI(A, C). 

Let D, C be non empty finite set, let A be a rearrangement generator of C ,  
and let F be a partial function from D to R. The functor F2 yields a partial 
function from C to R and is defined by: 

(Def.5) F2 = E(MIM(FinS(J', D)) CHI(A, C)). 
The functor F1 yields a partial function from C to R'and is defined as follows: 

(Def.6) F1 = C(MIM(FinS(E, D)) CHI(co-Gen(A), C)). 
Next we state a number of propositions: 
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(13) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and card C = card D,  then dom F2 = C. 

(14) Let c be an element of C,  and let F be a partial function from D to 
R, and let A be a rearrangement generator of C. Suppose F is total and 
card C = card D. Then 

(i) if c E A(1), then (MIM(FinS(F, D)) CHI(A, C))#c = MIM(FinS(F, D)), 
and 

(ii) for every n such that 1 < n and n < len A and c E A(n + 1) \ A(n) 
holds (MIM(FinS(F, D)) CHI(A, C))#c = (n F-+ (0 qua real number)) 
^MIbi((FinS(F, D)) 

(15) Let c be an element of C ,  and let F be a partial function from D to 
R, and let A be a rearrangement generator of C. Suppose F is total and 
cardC = card D. Then if c E A(1), then ( F ~ ) ( c )  = (FinS(F, D))(l)  and 
for every n such that l < n and n < len A and c E A(n + 1) \ A(n) holds 
( F ~ ) ( c )  = (FinS(F, D))(n + 1). 

(16) Let F be a partial function from D to  R and let A be a rearrange- 
ment generator of C. If F is total and cardC = card D,  then rng F2 = 
rng Fins (F, D). 

(17) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. Suppose F is total and card C = card D. Then F2 and 
FinS(F, D) are fiberwise equipotent. 

(18) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and cardC = card D,  then FinS(F",C) = 
FinS(F, D). 

(19) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and cardC = card D, then F ~ ( K )  = 
CL F ( 4 .  

(20) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and cardC = cardD, then FinS((F2) - 
T ,  C )  = FinS(F - r ,  D)  and c:=,((F~) - T)(K) = c ~ = ~ ( F  - r ) ( ~ ) .  

(21) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and card C = card D,  then dom F: = C. 

(22) Let c be an element of C,  and let F be a partial function from 
D to R, and let A be a rearrangement .generator of C. Suppose 
F is total and cardC = card D. Then if c E (CO-Gen(A))(l), then 
(F:)(c) = (FinS(F, D))(l)  and for every n such that 1 5 n and 
n < len CO-Gen(A) and c E (CO-Gen(A))(n + 1) \ (CO-Gen(A))(n) holds 
( F ~ ) ( c )  = (FinS(F, D))(n + 1). 

(23) Let F be a partial function from D to R and let A be a rearrange- 
ment generator of C, If F is total and card C = card D $ then rng F2 = 
rng FinS(F, D). 

(24) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. Suppose F is total and cardC = card D. Then F: and 
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l! FinS(F, D) are fiberwise equipotent. 

~4 (25) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and cardC = card D, then FinS(F1,C) = 
FinS(F, D). 

(26) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and cardC = card D, then F ~ ( K )  = 

3 

c?=O F ( 4 .  

7 )  Let F be a partial function from D to R and let A be a rearrangement 
a 

generator of C. If F is total and card C = card D,  then FinS((F:) - 
r ,  C) = FinS(F - r, D) and c:=~((F') - T)(K) = c ~ = ~ ( F  - r ) ( ~ ) .  

(28) Let F be a partial function from D to R and let A be a rearrange- 
ment generator of C. Suppose F is total and card C = card D. Then 
F: and F$ are fiberwise equipotent and FinS (F:, C )  = FinS (F$, C) and 

cL0 F i ( 4  = c:=, F$(K). 

(29) Let F be a partial function from D to R and let A be a re- 
arrangement generator of C. Suppose F is total and cardC = 
card D.  Then max+((F$) - r )  and max+(F - r )  are fiberwise equipo- 
tent and FinS(max+((F$) - r) ,  C )  = FinS(max+(F - r) ,  D) and 

C 
C,=o max+((F$) - r ) ( 4  = CL0 m a x + ( ~  - r)(n). 

(30) Let F be a partial function from D to R and let A be a re- 
arrangement generator of C. Suppose F is total and cardC = 
card D. Then max-((Fi) - r )  and max-(F - r )  are fiberwise equipo- 
tent and FinS(max-((F$) - r) ,  C)  = FinS(max-(F - r) ,  D)  and 

C C,=o max- ((F;) - T)(K) = mm-  (F - r ) ( ~ ) .  

(31) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and card D = card C, then len FinS(F$, C )  = 
card C and 1 5 len FinS(F$, C). 

(32) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and cardD = cardC and n E domA, then 
FinS (F$, C)  1 n = FinS(F'$, A(n)). 

(33) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and card D = card C, then ( F - r ) i  = (F$)-r. 

(34) Let F be a partial function from D to R and let A be a re- 
arrangement generator of C. Suppose F is total and cardC = 
card D. Then max+((F:) - r )  and max+(F - r )  are fiberwise equipo- 
tent and FinS(max+((Fi) - r) ,  C)  = FinS(max+(F - r) ,  D) and 

C 
Cn=o mm+((F:) - T)(K) = C?=O m a x + ( ~  - r ) ( ~ ) .  

(35) Let F be a partial function from D to R and let A be a re- 
arrangement generator of C. Suppose F is total and cardC = 
card D. Then max-((F:) - r )  and max-(F - r )  are fiberwise equipo- 
tent and FinS(max-((F:) - r) ,  C) = FinS(max-(F - r) ,  D)  and 

max-((F:) - T)(K) = max-(F - ?-)(K). 
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(36) Let F be a partial function from D to R and let A be a rearrangenent 
generator of C.  If F is total and card D = card C, then len FinS(Fi,  C )  = 
card C. and 1 5 len FinS(F1, C). 

(37) Let F be a partial function from D to W and let A be a rearrangement 
generator of C. If F is total and card D = card C and n E dom A, then 
Fins (F:, C) f n = FinS(F,V, (CO-Gen(A))(n)). 

(38) Let F be a partial function from D to R and let A be a rearrangement 
generator of C. If F is total and card D = card C, then (F-r)): = (Fx)-r. 

(39). Let F be a partial function from D to R and let A be a rearrangement 
generator of C. Suppose F is total and card D = cardC. Then F$ and 
F are fiberwise equipotent and F: and F are fiberwise equipotent and 
rng F2 = rng F and rng F1 = rng F. 
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Many-sorted Sets 

Andrzej Trybulec 
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Bialystok 

Summary. The article deals with parameterized families of sets. 
When treated in a similar way as sets (due to systematic overloading 
notation used for sets) they are called many sorted sets. For instance, if 
X and X are two many-sorted sets (with the same set of indices I) then 
relation X E X is defined as V r E ~ x t  E X,.  

I was prompted by a remark in a paper by Tarlecki and Wirsing: 
"Throughout the paper we deal with many-sorted sets, functions, rela- 
tions etc. ... We feel free to use any standard set-theoretic notation 
without explicit use of indices" [3, p.971. The aim of this work was to 
check the feasibility of such approach in Mizar. I t  works. 

Let us observe some peculiarities: 
- empty set (i.e. the many sorted set with empty set of indices) be- 

lon-,:. .:to itself (theorem 133), 
- we get two different inclusions X C Y iff V,E~X,  5 E; and X 5 Y 

iff V,x E X + X E Y equivalent only for sets that yield non empty 
values. 

Therefore the care is advised. 

MML Identifier: PBOOLE. 

The articles [5], [l], [4], and [2] provide the terminology and notation for this 
paper. 

In the sequel i, e will be arbitrary. 
A function is empty yielding if: 

(Def.1) For every i such that i E domit holds it(i) is empty. 
A function is non empty set yielding if: 

(Def.2) For every i such that i E domit holds it(i) is non empty. 
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Next we state two propositions: 

(1) For every function f such that f is non empty yielding holds rng f has 
non empty elements. 

(2) For every function f holds f is empty yielding iff f = 0  or rng f = ( 0 ) .  
In the sequel I denotes a set. 
Let us consider I. A function is said to be a many sorted set of I if: 

(Def.3) domit = I. 
L / 

In the sequel X, y, z ,  X ,  Y, 2, V are many sorted sets of I. 
The scheme Kuratowski Function deals with a set A and a unary functor F 

yielding arbitrary, and states that: 
There exists a many sorted set f of A such that for every e such 
that e E A holds f (e) E F(e)  

provided the following requirement is met: 
For every e such that e E A holds F(e)  # 0.  

Let us consider I ,  X, Y. The predicate X E Y is defined by: 

- .(Def.4) For every i such that i E I holds X( i )  E Y(i). 
The predicate X C Y is defined by: 

(Def.5) For every i such that i E I holds X( i )  C_ Y(i). 

The scheme PSeparation deals with a set A, a many sorted set B of A, and 
a binary predicate 'P, and states that: 

There exists a many sorted set X of A such that for every set i 
holds if i E A, then for every e holds e E X( i )  iff e E B(i) and 
W, el 

for all values of the parameters. 
One can prove the following proposition 

(3) If for every i such that i E I holds X(i)  = Y(i), then X = Y. 

Let us consider I. The functor 01 yields a many sorted set of I and is defined 
by: 

(Def.6) 01 = I - 0.  
Let us consider X ,  Y. The functor X U Y yielding a many sorted set of I is 
defined by: 

(Def.7) For every i such that i E I holds ( X  U Y)(i) = X(i)  U Y(i). 
The functor X n Y yielding a many sorted set of I is defined by: 

(Def.8) For every i such that i E I holds ( X  n Y)(i) = X(i)  n Y (i) . 
C 

The functor X \ Y yields a many sorted set of I and is defined as follows: 

(Def.9) For every i such that i E I holds ( X  \ Y)(i) = X( i )  \ Y (i). 
We say that X overlaps Y if and only if: 

(Def.10) For every i such that i E I holds X( i )  meets Y (i). 

We say that X misses Y if and only if: 

(Def.11) For every i such that i E I holds X( i )  misses Y(i). 
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Let us consider I ,  X ,  Y. The functor X-Y yielding a many sorted set of 1 
is defined as follows: 

(Def.12) X-Y = ( X  \ Y) U (Y \ X ) .  
Next we state several propositions: 

(4) For every i such that i E I holds (X-Y)(i) = X(i ) lY( i ) .  

(5) For every i such that i E I holds gI(i) = 0. 
(6) If for every i such that i E I holds X( i )  = 0, then X = 01. 
(7) I f x ~ X o r x ~ Y , t h e n x ~ X U Y .  

(8) X E X n Y iff X E X and X E Y. 

(9) If X E X and X 5 Y, then X E Y. 

(10) If X E X and X E Y, then X overlaps Y. 

(11) If X overlaps Y, then there exists X such that X E X and X E Y. 

(12) If X E X \ Y, then X E X. 

One can prove the following proposition 
(13) X E. X. 

Let us consider I, X, Y. Let us observe that X = Y if and only if: 
(Def.13) X E Y and Y c X. 

Next we state a number of propositions: 

(14) If X C Y and Y C X, then X = Y. 

(15) If X C Y and Y C Z, then X C Z. 
(16) X G X U Y  a n d Y  G X U Y .  
(17) X n Y  G X a n d X n Y g Y .  

(18) If X C Z and Y C 2, then X UY C 2. 
(19) If Z E X and Z c Y, then Z c X n Y. 

(20) If X C Y, then X U Z C Y U Z and Z U X 2 Z U Y. 
(21) I f X C Y , t h e n X f l Z C Y f l Z a n d Z f l X C Z n Y .  

(22) If X C Y and Z C V, then X U Z S Y U V. 

(23) If X C Y and Z C V, then X n Z 5 Y n V. 

(24) If X C Y, then X U Y = Y and Y U X = Y. 

(25) If X C Y, then X n Y = X and Y n X = X. 
(26) X n Y G X U Z. 
(27) If X G Z, then X U Y n Z = (X U Y) n Z. 

(28) X = Y U Z iff Y 5 X and Z C X and for every V such that Y G V 
and Z C V holds X C V. 

(29) X = Y n Z i f f X C Y  a n d X C  Zandfo reve ryvsuch - tha t  V G Y  
and V Z holds V C X .  
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l 

(30) X U X = X. 
l 

(31) X n X = X .  
I (32) X U Y = Y U X .  
l 

(33) X n Y  = Y n X .  

(34) ( X U Y ) U Z = X U ( Y U Z ) .  

i (35) ( X n Y ) n z = x n ( Y n z ) .  

k i  (36) X n ( X  U Y) = X and ( X  U Y) n X = X and X n (Y U X )  = X and 
l '-C ( Y u X ) n X = X .  

(37) X U X n Y  = X and X n Y U X  = X and X U Y  n X  = X and 
Y n X u x = x .  

(38) X n ( Y u Z ) = X n Y u X n Z a n d ( Y u Z ) n X = Y n X u Z n X .  
9) XuYnZ=(XuY)n(XuZ)andYnZuX=(YuX)n(ZuX). 

40) If X n Y U X n Z = X,  then X 5 Y U 2. 

1) If ( X u Y ) n ( X u Z ) = X , t h e n Y n Z & X .  
2) X n Y u Y n Z u Z n X = ( X u Y ) n ( Y u Z ) n ( Z u X ) .  

(43) If X U Y C Z, then X c Z and Y C Z. 

(44) If X C Y n 2, then X C Y and X C Z. 

(45) ( X U Y ) U Z = X U Z U ( Y U Z )  a n d X u ( Y ~ Z )  = ( X U Y ) U ( X U Z ) .  
(46) ( X n Y ) n Z = x n z n ( Y n Z )  a n d X n ( Y n Z )  = ( X n Y ) n ( X n Z ) .  
(47) X U ( X U Y ) = X u Y  a n d X u Y ~ Y  = X U Y .  
(48) X n ( X n Y ) = X n Y  a n d X n Y n Y  = X n Y .  

Next we state several propositions: 

(49) 0 I L X .  

(50) If X c 01, then X = 01. 
(51) If X C Y and X C Z and Y f l  Z = 81, then X = 01. 

(52) If X C Y and Y n Z = 01, then X n Z = 01. 

(53) X U 01 = X and 01 U X = X. 

(54) If X U Y = 01, then X = 01 and Y = 01. 
(55) X n O I = O ~ a n d O ~ ~ X = O ~ .  

(56) If X C Y U Z and X n Z = 01, then X C Y. 

(57) If Y X and X n Y  = 01, then Y = 01. 
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We now state a  number of propositions: 
(58) x \ Y = @ ~ i f f X & Y .  

(59) If X  c Y, then X  \ Z  & Y  \ Z. 

(60) If X  c Y, then Z  \ Y  2 Z  \ X. 
If X  C Y  and Z  c V, then X \ V  c Y  \ Z. 
X \ Y C X .  
If X  c Y  \ X, then X  = 01. 
X  \ X  = gr. 
X  \ = X. 
01 \ X  = 01. 
X \ ( X U Y ) = ~ ~ ~ ~ ~ X \ ( Y U X ) = ~ ~ .  
X n ( Y \ Z ) = X n Y \ Z .  
( X \ Y ) n Y  =01 a n d Y n ( X \ Y ) = f l I .  
X \ ( Y \ Z ) = ( X \ Y ) u X n Z .  
( X \ Y ) u X n Y  = X a n d X n Y u ( X \ Y ) = X .  
I f X c Y , t h e n Y = X u ( Y \ X ) a n d Y = ( Y \ X ) u X .  
X U ( Y \ X ) = X U Y  and ( Y \ X ) U X = Y U X .  
X \ ( X \ Y ) = X n Y .  
X \ Y n Z = ( X \ Y ) u ( X \ Z ) .  
x \ x n Y = X \ Y  a n d X \ Y n X = X \ Y .  
x f 1 Y = 0 ~ i f f X \ Y = X .  
( X u Y ) \ Z = ( X \ Z ) u ( Y \ Z ) .  
X \ Y \ Z = X \ ( Y u Z ) .  
X n Y \ Z = ( X \ Z ) n ( Y \ Z ) .  
( X U Y ) \ Y  = X \ Y .  
I f X & Y U Z , t h e n X \ Y  & Z a n d X \ Z & Y .  
( X u Y ) \ X n Y  = ( X \ Y ) u ( Y \ X ) .  
X \ Y \ Y  = X \ Y .  
X \ ( Y u Z ) = ( X \ Y ) n ( X \ Z ) .  
If X  \ Y  = Y  \ X, then X  = Y. 
X n ( Y \ Z ) = X n Y \ X n Z a n d  ( Y \ Z ) n X = Y n X \ Z n X .  
If X  \ Y  Z, then X  2 Y  U Z. 
X \ Y  c XAY. 
XAY = ( X \ Y ) U ( Y \ X ) .  
X-01 = X  and g r ~ X  = X. 
X-X = @I. 
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X-Y = YLX. 
X u Y  = ( X - L Y ) U X ~ Y .  
X L Y  = ( X u Y ) \ X n Y .  
( X ~ Y ) \ Z = ( X \ ( Y U Z ) ) U ( Y \ ( X U Z ) ) .  
x \ ( Y ~ Z ) = ( X \ ( Y u Z ) ) u X n Y n z .  
(X..Y)-.Z = X-(Y-2). 
If X \ Y g Z and Y \ X 2 Z, then X-Y 2 Z. 
X U Y  =X-(Y \ X ) .  
x n Y  = X - ( X \ Y ) .  
X \ Y  = X - X n Y .  
Y \ X = X - ( X U Y ) .  
x u Y = x - ~ . Y ~ x n Y .  
X n~ = X-Y-(XUY). 

The following propositions are true: 

(106) If X overlaps Y or X overlaps Z, then X overlaps Y U Z. 

(107) If X overlaps Y, then Y overlaps X. 

(108) If X overlaps Y and Y C 2, then X overlaps 2. 

(109) If X overlaps Y and X C Z, then Z overlaps Y. 

(110) If X C Y and Z G V and X overlaps Z, then Y overlaps V. 

(111) If X overlaps Y n Z, then X overlaps Y and X overlaps Z. 

(112) If X overlaps Z and X c V, then X overlaps Z n V. 

(113) If X overlaps Y \ Z, then X overlaps Y. 

(1 14) If Y does not overlap Z, then X n Y does not overlap X n Z and Y n X 
does not overlap Z n X. 

(115) If X overlaps Y \ Z, then Y overlaps X \ Z. 

(116) If X meets Y and Y C Z, then X meets Z. 

(117) If X meets Y, then Y meets X .  

(118) Y misses X \ Y. 

(119) X fl Y misses X \ Y. 

(120) X n Y misses X-Y. 

(121) If X misses Y, then X n Y = BI. 
(122) If X + fJr, then X meets X .  

(123) If X C Y and X C Z and Y misses Z, then X = Or.  
(124) If Z U V = X U Y and X misses Z and Y misses V, then X = V and 

Y = 2. 
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(125) If Z U V = X U Y and Y misses Z and X misses V,  then X = Z and 
Y = v. 

(126) If X misses Y, then X \ Y = X and Y \ X = Y. 
(127) I f X m i s s e s Y , t h e n ( X U Y ) \ Y = X a n d ( X U Y ) \ X = Y .  

(128) If X \ Y = X,  then X misses Y and Y misses X. 

(129) X \ Y misses Y \ X. 

Let us consider I, X ,  Y. The predicate X L Y is defined as follows: 
(Def.14) For every X such that X E X holds X E Y. 

The following three propositions are true: 

(130) If X C Y, then X C Y. 
(131) X C X. 

(132) If X 5 Y and Y 5 Z ,  then X C Z. 

The following propositions are true: 

(133) 0@ € 0@. 
(134) For every many sorted set X of 0 holds X = 0. 1 

We follow a convention: I will be a non empty set and X, X, Y,  Z will be 
many sorted sets of I .  

The following propositions are true: 

(135) If X overlaps Y, then X meets Y. 

(136) It is not true that there exists X such that X E 01. 

(137) If X E X and X E Y, then X n Y # 81. 
(138) X does not overlap and 81 does not overlap X. 

(139) If X n Y = 01, then X does not overlap Y. 
(140) I f X ~ v e r l a p s X , t h e n X # @ ~ .  

Let I be a set. A many sorted set of I is empty yielding if: 
(Def.15) For every i such that i E I holds it(i) is empty. 

A many sorted set of I is non empty set yielding if: 
(Def.16) For every i such that i E I holds it(i) is non empty. 

Let I be a non empty set. Observe that every many sorted set of I which is 
non-empty is also non empty and every many sorted set of I which js empty is 
also non non-empty. 
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(141) X is empty iff X = g I .  
(142) If Y is empty and X C Y, then X is empty. 

(143) If X is non-empty and X C Y, then Y is non-empty. 

(144) If X is non-empty and X E Y, then X C Y. 

(145) If X is non-empty and X 5 Y, then Y is non-empty. 

In the sequel X denotes a non-empty many sorted set of I. 
> 

The following propositions are true: 
h i  -(146) There exists X such that X E X. 

> .. 
(147) If for every X holds X E X iff X E Y, then X = Y. 

(148) If for every X holds X E X iff X E Y and X E 2, then X = Y n 2. 
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Summary. Introduces a definition of a subalgebra of a universal 
algebra. A notion of similar algebras and basic operations on subalgebras 
such as a subalgebra generated by a set, the intersection and the sum of 
two subalgebras were introduced. Some basic facts concerning the above 
notions have been proved. The article also contains the definition of a 
lattice of subalgebras of a universal algebra. 

MML Identifier: UNIALG-2. 

The papers [7], [8], [4], [l], [ 5 ] ,  [3], [g], [2], and [6] provide the terminology and 
notation for this paper. 

One can prove the following propositions: 

(1) For every natural number n and for every non empty set D and for 
every non empty subset D1 of D holds Dn n Dln = Dln. 

(2) For every non empty set D and for every homogeneous quasi total non 
empty partial function h from D* to D holds dom h = D ~ ~ ~ ~ Y ~ .  

We follow a convention: Uo, Ul, U z ,  U3 denote universal algebras, n, i denote 
natural numbers, and a denotes an element of the carrier of Uo. 

Let D be a non empty set. A non empty set is called a set of universal 
functions on D if: 

(Def.l) Every element of it is a homogeneous quasi total non empty partial 
function from D* to D. 

Let D be a non empty set and let P be a set of universal functions on D. 
We see that the element of P is a homogeneous quasi total non emptg partial 
function from D* to  D. 

Let us consider Ul. A set of universal functions on Ul is a set of universal 
functions on the carrier of Ul. 
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Let Ul be a universal algebra structure. A partial function on Ul is a partial 
function from (the carrier of Ul)* to  the carrier of Ul. 

Let us consider Ul, U2. We say that Ul and U2 are similar if and only if: 

(Def.2) signature Ul = signature U2. 
Let us observe that  the predicate introduced above is reflexive symmetric. 

The following propositions are true: 
> 

(3) If Ul and U2 are similar, then len Opers Ul = len Opers U2. 
' - (4) If Ul and U2 are similar and U2 and U3 are similar, then Ul and U3 are 

similar. 

( 5 )  rng Opers U. is a non empty subset of (the carrier of U o ) * i t h e  carrier 
of Uo. 

Let us consider Uo. The functor Operations(Uo) yielding a set of universal 
functions on U. is defined as follows: 

(Def.3) Operations(Uo) = rng Opers UO. 
Let us consider Ul. A operation of Ul is an element of Operations(Ul). 
Let us consider Uo. A subset of U. is a subset of the carrier of Uo. 
In the sequel XI, yl will denote finite sequences of elements of A. 
One can prove the following proposition 

(6) If n E domOpers Uo, then (Opers Uo)(n) is a operation of Uo. 
Let U. be a universal algebra, let A be a subset of Uo, and let o be a operation 

of Uo. We say that  A is closed on o if and only if: 

(Def.4) For every finite sequence s of elements of A such that  lens  = arityo 
holds o(s) E A. 

Let U. be a universal algebra and let A be a subset of Uo. We say that  A is 
operations closed if and only iE: 

(Def.5) For every operation o of U. holds A is closed on o. 
Let us consider Uo, A, o. Let us assume that A is closed on o. The functor 

o~ yieIding a homogeneous quasi.tota1 non empty partial function from A* to  
A is defined as follows: 

(Def.6) o~ = o f Aarityo. 
Let us consider Uo, A. The functor Opers(Uo, A) yields a finite sequence of 

elements of A * i A  and is defined as follows: 

(Def.7) dom Opers(Uo,A) = domOpers U. and for all n ,  o such that  n E 
dom Opers(Uo, A) and o = (Opers Uo)(n) holds (Opers(Uo, A))(n) = o ~ .  

The following two propositions are true: 

(7) For every non empty subset B of U. such that  B = the carrier of U. 
holds B is operations closed and for every o holds OB = o. 

(8) Let Ul be a universal algebra, and let A be a non empty subset of Ul, 
and let o be a operation of Wl. If A is closed on o, then arity(oA) = arity o. 

Let us consider Uo. A universal algebra is said to  be a subalgebra of U. if i t  
satisfies the conditions (Def.8). 
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(Def.8) (i) The carrier of it is a subset of Uo, and 

(ii) for every non empty subset B of U. such that B = the carrier of it 
holds Opers it = Opers(Uo, B )  and B is operations closed. 

Let U. be a universal algebra. One can verify that  there exists a subalgebra 
of U. which is strict. 

One can prove the following propositions: 

(9) Let Uo, Ul be universal algebras, and let 00 be a operation of Uo, and 
let 01 be a operation of Ul, and let n be a natural number. Suppose U. 
is a subalgebra of Ul and n E dom Opers U0 and 00 = (Opers Uo)(n) and 
01 = (Opers Ul)(n). Then arityoo = arityol. 

(10) If U. is a subalgebra of Ul, then dom Opers U. = dom Opers Ul. 

(11) U. is a subalgebra of Uo. 

(12) If U. is a subalgebra of Ul and Ul is a subalgebra of U2, then U. is a 
subalgebra of U2. 

(13) If Ul is a strict subalgebra of U2 and U2 is a strict subalgebra of Ul, 
then Ul = U2. 

(14) For all subalgebras Ul, U2 of U. such that  the carrier of Ul c the carrier 
of U2 holds Ul is a subalgebra of U2. 

(15) For all strict subalgebra Ul, U2 of U0 such that the carrier of Ul = the 
carrier of U2 holds Ul = U2. 

(16) If Ul is a subalgebra of U2, then Ul and U2 are similar. 

(17) For every non empty subset A of Uo holds (A, Opers(Uo, A)) is a strict 
universal algebra. 

Let U. be a universal algebra and let A be a non empty subset of Uo. Let 
us assume that  A is operations closed. The functor (A, Ops) yielding a strict 
subalgebra of U. is defined as follows: 

(Def.9) ( A ,  Ops) = (A, Opers(Uo, A)). 
Let us consider U. and let Ul, U2 be subalgebras of Uo. Let us assume that  

(the carrier of Ul) n (the carrier of U2) # 8 .  The functor Ul n U2 yielding a strict 
subalgebra of U. is defined by the conditions (Def.10). 

(Def.10) (i) The carrier of Ul n U2 = (the carrier of Ul) n (the carrier of U2), and 

(ii) for every non empty subset B of U. such that B = the carrier of Ul n U2 
holds Opers(Ul n U2) = Opers(Uo, B )  and B is operations closed. 

Let us consider Uo. The functor Constants(Uo) yielding a subset of U. is 
defined by: 

(Def.11) Constants(Uo) = {a : a ranges over elements of the carrier of Uo, 
3, arity o = 0 A a E rng 0). 

A universal algebra has constants if: 

(Def.12) There exists a operation o of it such that arityo = 0. 
X% - 

Let us note that there exists a universal algebra which is strict and has 
constants. 
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Let U. be a universal algebra with constants. Then Constants(Uo) is a non 
empty subset of Uo. 

One can prove the following three propositions: 

(18) For every universal algebra U. and for every subalgebra Ul of U. holds 
Constants(Uo) is a subset of Ul. 

(19) For every universal algebra U. with constants and for every subalgebra 
j I , Ul of U. holds Constants(Uo) is a non empty subset of Ul. 

, (20) Let U. be a universal algebra with constants and let Ul, U2 be subal- 
r..."" 

..W gebras of Uo. Then (the carrier of Ul) n (the carrier of U2) # 0. 
Let U. be a universal algebra and let A be a subset of Uo. Let us assume that 

Constants(Uo) # 0 or A # 0. The functor ~ e n ' ~ ( A )  yields a strict subalgebra 
of U. and is defined by the conditions (Def.13). 

(Def.13) (i) A C the carrier of G e n U A ( ~ ) ,  and 

(ii) for every subalgebra Ul of U. such that A C the carrier of Ul holds 
GenUA(A) is a subalgebra of Ul. 

Next we state two propositions: 
.'* (21) For every strict universal algebra U. holds GenUA(athe carrier of uo) = 

U0 . 
(22) Let U. be a universal algebra, and let Ul be a strict subalgebra of Uo, 

and let B be a non empty subset of Uo. If B = the carrier of Ul, then 
~ e n ' ~ ( ~ )  = Ul. 

Let U. be a universal algebra and let Ul, U2 be subalgebras of Uo. The 
functor Ul U U2 yields a strict subalgebra of U. and is defined by: 

(Def.14) For every non empty subset A of U. such that A = (the carrier of 
Ul) U (the carrier of U2) holds Ul U U2 = G e n U A ( ~ ) .  

Next we state four propositions: 

(23) Let U. be a universal algebra, and let Ul be a subalgebra of Uo, and let 
A, B be subsets of Uo. If A # 0 or Constants(Uo) # 0 and if B = A U the 
carrier of Ul, then GenUA(A) U Ul = ~ e n ' ~ ( ~ ) .  

(24) For every universal algebra U. and for all subalgebras Ul, U2 of U. holds 
U1 U U2 = U2 U Ul. 

(25) For every universal algebra U. with constants and for all strict subal- 
gebra Ul, U2 of UO holds Ul n (Ul U U2) = Ul. 

(26) For every universal algebra U. with constants and for all strict subal- 
gebra Ul, U2 of U. holds Ul n U2 U U2 = U2. 

Let U. be a universal algebra. The functor Subalgebras(Uo) yields a non 
empty set and is defined as follows: 

(Def.15) For every X holds X E Subalgebras(Uo) iff X is a strict subalgebra of Uo. 
Let U. be a universal algebra. The functor UUo yielding a binary operation 

on Subalgebras(Uo) is defined by: 
(Def.16) For aU. elements X,  y of Subalgebras(Uo) and for all strict subalgebra 

Ul, Uz of U. such that X = Ul and y = U2 holds U(uo,(x, y) = Ul U U2. 
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Let U. be a universal algebra. The functor nu, yields a binary operation on 
Subalgebras(Uo) and is defined by: 

(Def.17) For all elements X, y of Subalgebras(Uo) and for all strict subalgebra 
Ul, U2 of U. such that X = Ul and y = U2 holds ncUo)(x, y) = U1 n U2. 

One can prove the following four propositions: 
(27) U(Uo) is commutative. 
(28) U p o )  is associative. 

(29) For every universal algebra U. with constants holds ntuo) is commuta- 
tive. 

(30) For every universal algebra U. with constants holds is associative. 
Let U. be a universal algebra with constants. The lattice of subalgebras of 

U. yielding a strict lattice is defined as follows: 
(Def.18) The lattice of subalgebras of U. = (Subalgebras(Uo), ntUo)). 
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The following propositions are true: 

(1) For arbitrary X, y and for every function f such that (X, y) E f holds 
Y E  m g f .  

(2) For every set X and for all functions f ,  g such that X c dom f and 
f E g holds f X = g t X. 

(3) For every non empty set A and for arbitrary b such that A # {b) there 
exists an element a of A such that a # b. 

Let B be a non empty functional set. Observe that every element of B is 
function-like. 

The following propositions are true: 

(4) For all sets X,  Y holds every non empty subset of X i Y  is a non empty 
functional set. 

(5) Let B be a non empty functional set and let f be a function. Suppose 
f = U B. Then dom f = U{domg : g ranges over elements of B; } and 
rng f = U{rngg : g ranges over elements of B ,  }. 

The scheme NonUniqExD' deals with a non empty set A, a non empty set 
B, and a binary predicate P ,  and states that: 
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There exists a function f from A into f? such that for every element 
e of A holds P [ e ,  f ( e ) ]  

provided the parameters satisfy the following condition: 
For every element e of A there exists an element u of B such that 
P[,, ,l. 

One can prove the following propositions: 
l 

(6)  For every non empty subset A of R such that for every Real number r 
S t such that r E A holds r 5 -W holds A = {-W). 

%.v 

. (7) For every non empty subset A of R such that for every Real number r 
such that r E A holds +W 5 r holds A = {+W). 

(8) Let A be a non empty subset of R and let r be a Real number. If 
r < sup A ,  then there exists a Real numbers such that s E A and r < S .  

(9) Let A be a non empty subset of R and let r be a Real number. If 
inf A < r ,  then there exists a Real numbers such that s E A and s < r.  

(10) Let A, B be non empty subset of R. Suppose that for all Real numbers 
r ,  s such that r E A and s E B holds r 5 S .  Then sup A 5 inf B. 

(12) l  Let X ,  y be real numbers and let X ' ,  y' be Real numbers. If X = X' and 
y = y', then X 5 y iff X' 5 y'. 

A set is C -linear if: 
(Def.1) For arbitrary X ,  y such that X E it and y E it holds X C y or y c X .  

Let A be a non empty set. Note that there exists a subset of A which is C 
-linear and non empty. 

We now state the proposition 

(13) For all sets X, Y and for every C_ -linear non empty subset B of X A Y  
holds P'J B E X i Y .  

In the sequel V will be a real linear space. 
One can prove the following propositions: 

(14) For all subspaces Wl, W2 of V holds the carrier of Wl C the carrier of 
W1 + W2. 

(15) Let Wl,  W2 be subspaces of V. Suppose V is the direct sum of Wl 
and W2. Let v ,  v l ,  v2 be vectors of V. If v1 E Wl and v2 E W2 and 
v = v1 + v2, then v 4 (Wl, W2) = ( v l ,  v2). 

'The proposition (11) has been removed. 
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(16) Let Wl, W2 be subspaces of V. Suppose V is the direct sum of Wl 
and W2. Let v, v1 , v2 be vectors of V. If v d (Wl, W2) = (v1, v2), then 
v = v1 +v2. 

(17) Let Wl, W2 be subspaces of V. Suppose V is the direct sum of Wl 
and W2. Let v, vl, v2 be vectors of V. If v a (Wl, W2) = (v1, v2), then 
v1 E Wl and v2 E W2. 

(18) Let Wl, W2 be subspaces of V. Suppose V is the direct sum of Wl 
and W2. Let v, vl, v2 be vectors of V. If v d (Wl, W2) = (vl, vs), then 
v 4 (W2, Wl) = ( ~ 2 ,  v1). 

(19) Let Wl, W2 be subspaces of V. Suppose V is the direct sum of Wl and 
W2. Let v be a vector of V. If v E Wl, then v a (WI, W2) = (v, Ov). 

(20) Let Wl, W2 be subspaces of V. Suppose V is the direct sum of Wl and 
W2. Let v be a vector of V. If v E W2, then v a (Wl, W2) = (Ov, v). 

(21) Let Vl be a subspace of V, and let Wl be a subspace of Vl, and let v I 

be a vector of V. If v E Wl, then v is a vector of Vl. 

(22) For all subspaces Vl, V2, W of V and for all subspaces Wl, W;! of W 
such that Wl = Vl and W2 = V2 holds Wl + W2 = Vl + V2. 

(23) For every subspace W of V and for every vector v of V and for every 
vector W of W such that v = W holds Lin({w)) = Lin({v}). 

(24) Let v be a vector of V and let X be a subspace of V. Suppose v $ X. Let 
y be a vector of X + Lin({v)) and let W be a subspace of X + Lin({v)). 
If v = y and W = X,  then X + Lin({v}) is the direct sum of W and 
Lin({y}). 

(25) Let v be a vector of V, and let X be a subspace of V, and let y be a 
vector of X + Lin({v)), and let W be a subspace of X + Lin({v)). If v = y 
and X = W and v 4 X,  then y Q (W, Lin({y))) = (Ow, y). 

(26) Let v be a vector of V, and let X be a subspace of V, and let y be a 
vector of X + Lin({v)), and let W be a subspace of X + Lin({v)). Suppose 
v = y and X = W and v 4 X. Let W be a vector of X+Lin({v)). If W E X,  
then W d (W,Lin({y))) = (W, Ov). 

(27) For every vector v of V and for all subspaces Wl, W2 of V there exist 
vectors vl, v2 of V such that v a (Wl, W2) = (v1, v2). 

(28) Let v be a vector of V, and let X be a subspace of V, and let y be a 
vector of X + Lin({v)), and let W be a subspace of X +Lin({v)). Suppose 
v = y and X = W and v 6 X. Let W be a vector of X + Lin({v)). Then 
there exists a vector X of X and there exists a real number r such that 
W a (W, Lin({y))) = (X,  r v). 

(29) Let v be a vector of V, and let X be a subspace of V, and let y be a 
vector of X + Lin({v)), and let W be a subspace of X + Lin({v)). Suppose 
v = y and X = W and v X. Let wl, w2 be vectors of X + Lin({v)), 
and let X I ,  2 2  be vectors of X ,  and let r l ,  7-2 be real numbers. If-wl d 
(W, Lin({y})) = (XI,  r l  v) and w2 d (W, Lin({y))) = (x2, r2 - v), then 
(W, + w2) a (W, Lin({~})) = (XI + x2, (rl + r2) a V). 



32 BOGDAN NOWAK A N D  ANDRZEJ  TRYBULEC 

(30) Let v be a vector of V, and let X be a subspace of V, and let y be a 
vector of X+Lin({v)), and let W be a subspace of X +Lin({v)). Suppose 
v = y and X = W and v X. Let W be a vector of X+Lin({v)), and let X 

be a vector of X, and let t ,  r be real numbers. If W a (W, Lin({y))) = (X,  
r . v), then (t - W) a (W, Lin({y))) = (t X ,  t r v). 

' , Lkt V be an RLS structure. 
(Def.2) A function from the carrier of V into R is called a functional in V. 

Let us consider V. A functional in V is subadditive if: 
(Def.3) For all vectors X ,  y of V holds it(x + y) 5 it(x) + it(y). 

A functional in V is additive if: 

Def.4) For all vectors X ,  y of V holds it(x + y) = it(%) + it(y). 
A functional in V is homogeneous if: 

Def.5) For every vector X of V and for every real number r holds it(r . X) = 
r .it(x). 

A functional in V is positively homogeneous if: 

(Def.6) For every vector X of V and for every real number r such that r > 0 
holds it ( r  - X) = r . it (X). 

A functional in V is semi-homogeneous if: 

(Def.7) For every vector X of V and for every real number r such that r 2 0 
holds it ( r  . X) = r it (X). l 

A functional in V is absolutely homogeneous if: 

(Def.8) For every vector X of V and for every real number r holds it(r - X) = 
Irl it(x). 

A functional in V is 0-preserving if: 

(Def.9) It(Ov)=O. 
Let us consider V. One can verify the following observations: 
* every functional in V which is additive is also subadditive, 
* every functional in V which is homogeneous is also positively homoge- 

neous, 
* every functional in V which is semi-homogeneous is also positively ho- 

mogeneous, 
* every functional in V which is semi-homogeneous is also 0-preserving, 
* every functional in V which is absolutely homogeneous is- also semi- 

homogeneous, and 
* every functional in V which is 0-preserving and positively homogeneous 

is also semi-homogeneous. 
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Let us consider V. Observe that there exists a functional in V which is 
additive absolutely homogeneous and homogeneous. 

Let us consider V. A Banach functional in V is a subadditive positively ho- 
mogeneous functional in V. A linear functional in V is an additive homogeneous 
functional in V. 

We now state four propositions: 

(31) For every homogeneous functional L in V and for every vector v of V 
holds L(-v)  = -L(v) .  

(32) For every linear functional L in V and for all vectors v l ,  v2 of V holds 
L(vl - v2)  = L(v l )  - L(v2).  

(33) For every additive functional L in V holds L(Ov) = 0. 

(34) Let X be a subspace of V, and let f l  be a linear functional in X, and 
let v be a vector of V, and let y be a vector of X + Lin({v)). Suppose 
v = y and v 4 X .  Let r be a real number. Then there exists a linear 
functional p1 in X + Lin({v}) such that pl 1 (the carrier of X )  = f l  and 
P ~ ( Y )  = r. 

One can prove the following three propositions: 

(35) Let V be a real linear space, and let X be a subspace of V, and let 
q be a Banach functional in V, and let f l  be a linear functional in X .  
Suppose that for every vector X of X and for every vector v of V such 
that X = v holds f l ( x )  5 q(v).  Then there exists a linear functional p1 in 
V such that p1 1 (the carrier of X) = fi and for every vector X of V holds 
P I ( X )  l q(x).  

(36) For every real normed space V holds the norm of V is an absolutely 
homogeneous subadditive functional in V. 

(37) Let V be a real normed space, and let X be a subspace of V, and let f l  
be a linear functional in X .  Suppose that for every vector X of X and for 
every vector v of V such that X = v holds f l ( x )  5 IlvII. Then there exists 
a linear functional pi in V such that p1 1 (the carrier of X )  = f l  and for 
every vector X of V holds pl ( X )  5 [ [ X  1 1 .  
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The articles [g], [4], [2], [3], [8], [10], [6], [l], [5], arid [7] provide the terminology 
and notation for this paper. 

We adopt the following convention: X ,  XI, X2, Y, Z will denote sets and X 
will be arbitrary. 

Next we state three propositions: 
(1) I f u Y C Z a n d X ~ Y , t h e n X c Z .  
(2) U(XliilY) = U X n  UY. 
(3) Given X .  Suppose that 

(i) X # 0 , a n d  
(ii) for every Z such that Z # 0 and Z c X and for all XI ,  X2 such that 

X1 E Z and X2 E Z holds X1 c X2 or X2 c X1 there exists Y such that 
Y E X and for every XI such that XI E Z holds XI C Y. 
Then there exists Y such that Y E X and for every Z such that Z E X 
and Z # Y holds Y g Z. 

We adopt the following convention: L denotes a lattice, F, H denote filters 
of L, and p, q, r denote elements of the carrier of L. 

One can prove the following propositions: 
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(4) [L) is prime. 

(5) F c [F U H )  and H C [F U H).  

(6) If p E [[q) U F), then there exists r such that r E F and q n r C p. 
We adopt the following rules: L1, L2 will be lattices, a l ,  bl will be elements 

of the carrier of L1, and a2 will be an element of the carrier of L2. 
Let us consider L1, La. A function from the carrier of L1 into the carrier of 

L2 is called a homomorphism from L1 to L2 if: 

(Def.1) .- It(al U bl) = i t ( ~ ~ )  U it(bl) and it(al n bl) = i t ( ~ ~ )  n it(bl). 
, IF- 

In the sequel f is a homomorphism from L1 to L2. 
We now state the proposition 

(7) If a1 L b l ,  then f (a1) L f(b1). 
Let us consider L1, La, f .  We say that f is monomorphism if and only if: 

(Def.2) f isone-to-one. 
We say that f is epimorphism if and only if: 

(Def.3) rng f = the carrier of La. 

- .  Next we state two propositions: 

(8) If f is monomorphism, then a1 L bl iff f (al) C f (bl). 

(9) If f is epimorphism, then for every a2 there exists a1 such that a2 = 

f (.l). 
Let us consider L1, LP, f .  We say that f is isomorphism if and only if: 

(Def.4) f is monomorphism and epimorphism. 

Let us consider L1, La. We say that L1 and L2 are isomorphic if and only if: 

(Def.5) There exists f which is isomorphism. 
Let us consider L1, La, f .  We say that f preserves implication if and only if: 

(Def.6) f(a1 * bl) = f(a1) =+ f(b1). 
We say that f preserves top if and only if: 

(Def.7) f (T(L,)) = 9 ~ 2 ) .  

We say that f preserves bottom if and only if: 

(Def.8) ~ ( L ( L ~ ) )  = L(L*). 
We say that f preserves complement if and only if: 

(Def.9) f (alC) = f (al)". 
Let us consider L. A non empty subset of the carrier of L is said to be a 

closed subset of L if: 

(Def.lO) I f p ~ i t  a n d q ~ i t ~ t h e n p f l q ~ i t  a n d p U q E i t .  
Next we state two propositions: 

(10) The carrier of L is a closed subset of L. 

(11) Every filter of L is a closed subset of L. 
Let L be a lattice. The functor idL yields a function from the carrier of L 

into the carrier of L and is defined as follows: 
(Def.ll)  id^ = id(the carrier of L). 
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Next we state two propositions: 

(12) For every element b of the carrier of L holds idL(b) = b. 

(13) For every function f from the carrier of L into the carrier of L holds 
f .idL = f and idL f = f .  

In the sequel B denotes a finite subset of the carrier of L. 
Let us consider L, B. The functor ufB yields an element of the carrier of L 

and is defined by: 

(Def.12) ufB = ufB(idL). 

The functor nfB yielding an element of the carrier of L is defined by: 

(Def.13) nfB = nfB(idL). 
The following propositions are true: 

(14) nfB = (the meet operation of L)- CB idL. 

(15) ufB = (the join operation of L)- CB idL. 

(16) U;,} = P .  

('7) Qp} = P. 

In the sequel D1 denotes a distributive lattice and f denotes a homomorphism 
from D1 to La. 

One can prove the following proposition 

(18) If f is epimorphism, then L2 is distributive. 

We adopt the following rules: tl is a lower-bounded lattice, B, B1, B2 are 
finite subsets of the carrier of 11, and b is an element of the carrier of ll. 

Next we state the proposition 

(19) Let f be a homomorphism from ll to L2. If f is epimorphism, then L2 
is lower-bounded and f preserves bottom. 

In the sequel f will be a unary operation on the carrier of l l .  
We now state several propositions: 

(20) uLu{a} f = ufB f U f (6). 

2 u ( s u { a ) = u L ~ b .  
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(24)  For every closed subset A of 11 such that I(e,) E A and for every B 
such that B C A holds E A. 

l We adopt the following rules: 1 2  will denote an upper-bounded lattice, B,  

, B1, B2 will denote finite subsets of the carrier of 1 2 ,  and b  will denote an element 
. 'Zf  the carrier of 1 2 .  

One can prove the following two propositions: 

(25)  For every homomorphism f from 1 2  to L2 such that f is epimorphism 
holds L2 is upper-bounded and f preserves top. 

( 2 6 )  Gthe carrier of i2 = T(e2). 
, In the sequel f ,  g will be unary operations on the carrier of 12. 

The following propositions are true: 

(27)  f fBurblf  = f f ~  f f ( b ) .  

(28)  rPB"{b) = W " b. 

(29 )  G O B S  = r 6 B b  f ). 
(30 )  q B 1 )  V B 2 )  ' ffBlUB2' 

(31 )  For every closed subset F of 1 2  such that T(e2) E F and for every B 
such that B C F holds nfB E F. 

In the sequel D1 will be a distributive upper-bounded lattice, B will be a 
finite subset of the carrier of D1, and p will be an element of the carrier of D1. 

Next we state the proposition 

(32 )  r 6 ~  U p = nf , t , ,  join operation ~t Dl)O(id(D,l,p))OB' 

For simplicity we adopt the following rules: Cl denotes a complemented 
lattice, Il denotes an implicative lattice, f denotes a homomorphism from Il to 
Cl, and i ,  j ,  k  denote elements of the carrier of 1;. 

The following propositions are true: 

(33 )  f ( i )  n f ( i  * j )  L f (d .  
(34)  If f is monomorphism, then if f (i) n f ( L )  5 f ( j ) ,  then f ( k )  5 f ( i  * j ) .  

(35)  If f is isomorphism, then Cl is implicative and f preserves implication. 
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For simplicity we adopt the following rules: B3 will be a Boolean lattice, f 
will be a homomorphism from B3 to Cl, A will be a non empty subset of the 
carrier of B3, a, b, c, p, q will be elements of the carrier of B3, and B,  B. will 
be finite subsets of the carrier of B3. 

One can prove the following propositions: 

(36) (T (~3) )C  = l(&)' 

(37) ( l ( ~ 3 ) ) ~  = T ( ~ 3 ) -  

(38) If f is epimorphism, then Cl is Boolean and f preserves complement. 
Let us consider B3. A non empty subset of the carrier of B3 is called a field 

of subsets of B3 if: 

(Def.14) If a E it and b E it, then a n b E it and aC E it. 
In the sequel F will denote a field of subsets of B3. 
Next we state four propositions: 

(39) If a E F and b E F, then a U b E F. 

(40) If a E F and b E F, then a + b E F. 

(41) The carrier of B3 is a field of subsets of B3. 

(42) F is a closed subset of B3. 
Let us consider B3, A. The field by A yielding a field of subsets of B3 is 

defined as follows: 
(Def.15) A c the field by A and for every F such that A E F holds the field by 

A c F. 
Let us consider B3, A. The functor SetImp(A) yielding a non empty subset 

of the carrier of B3 is defined by: 
(Def.16) SetImp(A) = {a  + b : a E A A b E A). 

The following two propositions are true: 

(43) X E SetImp(A) iff there exist p, q such that X = p q and p E A and 
q E A. 

(44) C E  SetImp(A)iff thereexist p, qsuchthat  c = p c U q a n d p E  A a n d  
q E A. 

Let us consider B3. The functor comp B3 yielding a function from the carrier 
of B3 into the carrier of B3 is defined by: 

(Def.17) (cornp B3)(a) = aC. 
We now state several propositions: 

(45) u ~ B " { ~ )  cornp B3 = ufS cornp B3 U bC. 

(46) = nf, comp B3. 

(47) nBUjb) comp B3 = nfS comp B3 n bc. 

(48) ( n b ) c  = ufS comp ~ 3 .  
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(49) Let A1 be a closed subset of B3. Suppose I(B3) E A1 and T(B3)  E Al. 
Given B. If B C SetImp(A1), then there exists B. such that B. c 
SetImp(A1) and U; comp B3 = 

(50) For every closed subset A1 of Bg such that I(B,) E AI and T(B3)  E A1 
holds {vB : B c SetImp(Al)} = the field by Al. 

I 

* l  z- [ l]  
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The articles [I l l ,  B 1 7  [S], PI, PI, [l017 [71, [l217 [l317 [g], [ l] ,  PI, and [G1 provide 
the notation and terminology for this paper. 

One can check that  every lower bound lattice which is Heyting is also im- 
plicative and every lattice which is implicative is also upper-bounded. 

In the sequel T will denote a topological space and A, B, C will denote 
subsets of the carrier of T. 

We now state two propositions: 

(1) A n Int(AC U B )  G B. 
(2) If C is open and A n C C B,  then C G Int(Ac U B). 
Let us consider T. The functor Topology(T) yields a non empty family of 

subsets of the carrier of T and is defined as follows: 

(Def.1) Topology(T) = the topology of T. 
In the sequel P, Q denote elements of Topology(T). 
The following proposition is true 

(3) A is open iff A E Topology(T). 
Let us consider T, P, Q. Then P U Q is an element of Topology(T). 
Let us consider T, P ,  Q. Then P n Q is an element of Topology(T). 
Let us consider T. The functor TopUnion(T) yields a binary operation on 

Topology(T) and is defined by: 

(Def.2) (TopUnion(T))(P, Q)  = P U Q. 
Let us consider T. The functor TopMeet(T) yielding a binary operation on 

Topology(T) is defined as follows: 

(Def.3) (TopMeet(T))(P, Q) = P n Q. 
The following proposition is true 
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(4) For every topological space T holds (Topology(T),TopUnion(T), 
TopMeet(T)) is a lattice. 

Let us consider T.  The functor OpenSetLatt(T) yields a lattice and is defined 
by: 

(Def.4) OpenSetLatt(T) = (Topology(T), TopUnion(T), TopMeet(T)). 
Next we state the proposition 

> (5) The carrier of OpenSetLatt(T) = Topology(T). 

i .. - In the sequel p, q will denote elements of the carrier of OpenSetLatt(T). 
" Next we state several propositions: 

(6) p U q = p U q a n d p n q = p n q .  

(7) P C q iff P C q. 

(8) For all elements p', q' of Topology(T) such that p = p' and q = q' holds 
p C q iff p' C q'. 

I (9) OpenSetLatt(T) is implicative. 

(10) OpenSetLatt(T) is lower-bounded and 10penSetLatt(T) = 0. 
(11) TOpenSetLatt(T) = the carrier of T.  

Let us consider T.  Then OpenSetLatt(T) is a Heyting lattice. 
For simplicity we adopt the following convention: L will denote a distributive 

lattice, F  will denote a filter of L, a, b will denote elements of the carrier of L, 
X will be arbitrary, and XI, X 2 ,  Y, Z will denote sets. 

Let us consider L. The functor PrimeFilters(L) yielding a set is defined as 
follows: 

(Def.5) PrimeFilters(L) = { F  : F  # the carrier of L A F  is prime). 
We now state the proposition 

(12) F  E PrimeFilters(L) iff F  # the carrier of L and F  is prime. 
Let us consider L. The functor StoneH(L) yielding a function is defined by: 

(Def.6) domStoneH(L) = the carrier of L and (StoneH(L))(a) = { F  : F  E 
PrimeFilters(L) A a E F). 

Next we state two propositions: 

(13) F  E (StoneH(L))(a) iff F  E PrimeFilters(L) and a E F. 

(14) X E (StoneH(L))(a) iff there exists F  such that F  = X and F  # the 
carrier of L and F  is prime and a E F. 

Let us consider L. The functor StoneS(L) yielding a non empty set is defined 
as follows: 

(Def.7) StoneS(L) = rng StoneH(L). 
The following propositions are true: 

(15) X E StoneS(L) iff there exists a such that X = (StoneH(L))(a). 

(16) (StoneH(L))(a U b) = (StoneH(L))(a) U (StoneH(L))(b). 

(17) (StoneH(L))(a II b) = (StoneH(L))(a) n (StoneH(L))(b). 
Let us consider L and let us consider a. The functor Filters(a) yields a non 

empty family of subsets of L and is defined by: 
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(Def.8) Filters(a) = {F : a E F). 
The following propositions are true: 

(18) X E Filters(a) iff X is a filter of L and a E X. 

(19) If X E Filters(b) \ Filters(a), then X is a filter of L and b E X and a X. 

(20) Given Z. Suppose Z # 0 and Z C Filters(b) \ Filters(a) and for all XI,  
X2 such that X1 E Z and X2 E Z holds XI C X2 or X;! C XI. Then 
there exists Y such that Y E Filters(b) \ Filters(a) and for every XI such 
that X1 E Z holds XI Y. 

(21) If b a, then [b) E Filters(b) \ Filters(a). 

(22) If b g a, then there exists F such that F E PrimeFilters(L) and a F 
and b E F. 

(23) If a # b, then there exists F such that F E PrimeFilters(L). 

(24) If a + b, then (StoneH(L))(a) # (StoneH(L))(b). 
(25) StoneH(L) is one-to-one. 

Let us consider L and let A, B be elements of StoneS(L). Then A U B is an 
element of StoneS(L). 

Let us consider L and let A, B be elements of StoneS(L). Then A n B is an 
element of S tones (L). 

Let us consider L. The functor SetUnion(L) yielding a binary operation on 
StoneS(L) is defined as follows: 

(Def.9) For all elements A, B of StoneS(L) holds (SetUnion(L))(A, B)  = AU B. 
Let us consider L. The functor SetMeet(L) yielding a binary operation on 

StoneS(L) is defined by: 

(Def.lO) For all elements A, B of StoneS(L) holds (SetMeet(L))(A, B)  = A n  B. 
The following proposition is true 

(26) (StoneS(L), SetUnion(L), SetMeet(L)) is a lattice. 

Let us consider L. The functor StoneLatt(L) yields a lattice and is defined 
by: 

(Def.ll) StoneLatt(L) = (StoneS(L), SetUnion(L), SetMeet(L)). 
In the sequel p, q are elements of the carrier of StoneLatt(L). 
We now state three propositions: 

(27) For every L holds the carrier of StoneLatt(L) = StoneS(L). 
(28) p U q = p U q a n d p f l q = p n q .  

(29) ~ L q i f f p E q .  
Let us consider L. Then StoneH(L) is a homomorphism from L to 

StoneLatt(L). 
One can prove the following propositio~s: 

(30) StoneH(L) is isomorphism. 

(31) S toneLatt(L) is distributive. 

(32) L and StoneLatt(L) are isomorphic. 



Let us note that there exists a Heyting lattice which is non trivial. 
In the sequel H denotes a non trivial Heyting lattice and p', q1 denote ele- 

ments of the carrier of H .  
The following three propositions are true: 

(33) ( S t o n e H ( H ) ) ( ~ ~ )  = PrimeFilters(H). 
(34) (StoneH(H))(lH) = 0. 

' (35) StoneS(H) C 2PrimeFi1tem(H). 

h -, Let us consider H. Then PrimeFilters(H) is a non empty set. 
Let us consider H .  The functor HTopSpace(H) yielding a strict topological 

'S space is defined as follows: 
(Def.12) The carrier of HTopSpace(H) = PrimeFilters(H) and the topology of 

HTopSpace(H) = {U A : A ranges over subsets of StoneS(H), }. 
One can prove the following propositions: 

(36) The carrier of OpenSetLatt(HTopSpace(H)) = {U A : A ranges over 
subsets of StoneS(H), ). 

(37) StoneS(H) C the carrier of OpenSetLatt(HTopSpace(H)). 

Let us consider H. Then StoneII(H) is a homomorphism from H to 
OpenSetLatt (HTopSpace(H)). 

The following propositions are true: 

(38) StoneH(H) is monomorphism. 

(39) (StoneH(H))(pl J ql) = (StoneH(H))(pl) J (StoneH(H))(ql). 
(40) StoneH(H) preserves implication. 
(41) StoneH(H) preserves top. 
(42) StoneH(H) preserves bottom. 
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The notation and terminology used in this paper are introduced in the following 
articles: [g17 PI, NI, [S], PI, [101, [ l 1 1 7  [g], l1217 [l], l217 and [G]. 

In the sequel T is a topological space, X, Y are subsets of T, and X is 
arbitrary. 

Let T be a topological space. The functor OpenClosedSet(T) yielding a non 
empty family of subsets of the carrier of T is defined as follows: 

(Def.1) OpenClosedSet(T) = {X : X ranges over subsets of T, X is open A X is 
closed}. 

The following propositions are true: 

(1) If X E OpenClosedSet(T), then there exists X such that X = X. 

(2) If X E OpenClosedSet(T), then X is open. 

(3) If X E OpenClosedSet(T), then X is closed. 

(4) If X is open and closed, then X E OpenClosedSet(T). 

Let X be a non empty set and let t be a non empty family of subsets of X .  
We see that the element of t is a subset of X .  

In the sequel X ,  y, .z will denote elements of OpenClosedSet(T). 
Let us consider T and let C, D be elements of OpenClosedSet(T). Then 

C U D is an element of OpenClosedSet(T). 
Let us consider T and let C, D be elements of OpenClosedSet(T). Then 

C f l  D is an element of OpenClosedSet(T). 
Let us consider T .  The functor join(T) yielding a binary operation on 

OpenClosedSet(T) is defined by: 

(Def.2) For all elements A, B of OpenClosedSet(T) holds (join(T))(A, B)  = 
A u  B. 
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Let us consider T. The fuactor meet(T) yields a binary operation on 
OpenClosedSet(T) and is defined by: 

(Def.3) For all elements A, B of OpenClosedSet(T) holds (meet(T))(A, B) = 
A n B .  

We now state several propositions: 

j (5) Let X ,  y be elements of the carrier of (OpenClosedSet(T),join(T), 
meet(T)) and let X', y' be elements of OpenClosedSet(T). If X = X' 

l 
+ - 
-> and y = y', then X U y = X' U y'. 

(6) Let X, y be elements of the carrier of (OpenClosedSet(T),join(T), 
meet(T)) and let X', y' be elements of OpenClosedSet(T). If X = X' 

and y = y', then X fl y = X' n y'. 

(7) flT is an element of OpenClosedSet(T). 

(8) QT is an element of OpenClosedSet(T). 

(9) For every element X of OpenClosedSet(T) holds xC is an element of 
OpenClosedSet (T). 

(10) (OpenClosedSet (T),  join(T), meet(T)) is a lattice. 
Let T be a topological space. The functor OpenClosedSetLatt(T) yields a 

lattice and is defined by: 

(Def.4) OpenClosedSetLatt(T) = (OpenClosedSet(T), join(T), meet(T)). 
Next we state two propositions: 

(11) For every topological space T and for all elements X, y of the carrier of 
OpenClosedSetLatt(T) holds X U y = X U y. 

(12) For every topological space T and for all elements X, y of the carrier of 
OpenClosedSetLatt(T) holds X fl y = X n y. 

We follow a convention: a,  b, c denote elements of the carrier 
of (OpenClosedSet(T),join(T),meet(T)) and X ,  y, a denote elements of 
OpenClosedSet (T). 

The following propositions are true: 

(13) The carrier of OpenClosedSetLatt(T) = OpenClosedSet(T). 
(14) OpenClosedSetLatt(T) is Boolean. 

(15) ClT is an element of the carrier of OpenClosedSetLatt(T). 

(16) gT is an element of the carrier of OpenClosedSetLatt(T). 

One can check that there exists a Boolean lattice which is non trivial. 
For simplicity we adopt the following convention: L1, La denote lattices, a, 

S p, q' denote elements of the carrier of B1, Ul denotes a filter of B1, B denotes 
a subset of the carrier of B1, and D denotes a non empty subset of the carrier 
of B1. 

Let us consider B1. The functor ultraset(BI) yields a non empty subset of 
2the carrier of B1 and is defined by: 

(Def.5) ultraset(B1) = {F : F is ultrafilter). 
Next we state two propositions: 
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(18)l X E ultraset(B1) iff there exists Ul such that Ul = X and Ul is ultrafilter. 
(19) For every a holds {F : F is ultrafilter A a E F) C ultraset(B1). 

Let us consider B1. The functor UFilter(B1) yielding a function is defined 
as follows: 

(Def.6) dom UFilter(B1) = the carrier of B1 and for every element a of the 
carrier of B1 holds (UFilter(Bl))(a) = {Ul : Ul is ultrafilter A a E Ul}. 

Next we state several propositions: 

(20) X E (UFilter(Bl))(a) iff there exists F such that F = X and F is 
ultrafilter and a E F. 

(21) F E (UFilter(Bl))(a) iff F is ultrafilter and a E F. 

(22) For every F such that  F is ultrafilter holds a U b E F iff a E F or b E F. 

(23) (UFilter(Bl))(a fl b) = (UFilter(Bl))(a) n (UFilter(Bl))(b). 

(24) (UFilter(B1))(a U b) = (UFilter(Bl))(a) U (UFilter(Bl))(b). 
Let us consider B1. Then UFilter(B1) is a function from the carrier of B1 

into 2ultraset(Bl) 

Let us consider B1. The functor StoneR(B1) yielding a non empty set is 
defined as follows: 

(Def.7) StoneR(B1) = rng UFilter(B1). 
The following propositions are true: 

(25) StoneR(B1) c 2U1traSet(B1). 

(26) X E StoneR(B1) iff there exists a such that (UFilter(Bl))(a) = X. 
Let us consider B1. The functor StoneSpace(B1) yielding a strict topological 

space is defined by: 

(Def.8) The carrier of StoneSpace(B1) = ultraset(B1) and the topology of 
StoneSpace(B1) = {UA : A ranges over subsets of 2u1traset(B1) ? A C - 
StoneR(B1)}. 

One can prove the following two propositions: 

(27) If F is ultrafilter and F @ (UFilter(Bl))(a), then a $ F. 

(28) ultraset (B1) \ (UFilter(Bl))(a) = (UFilter(Bl))(aC). 
Let us consider B1. The functor StoneBLattice(B1) yields a lattice and is 

defined as follows: 
(Def.9) StoneBLattice(B1) = OpenClosedSetLatt(StoneSpace(B1)). 

One can prove the following four propositions: 

(29) UFilter(B1) is one-to-one. 
(30) U StoneR(B1) = ultraset(B1). 

(31) For all sets A, B ,  X such that X C U(A U B )  and for arbitrary Y such 
that Y E B holds Y nX = 0 holds X 5 UA.  

(32) For every non empty set X holds there exists finite subset of X which 
is non empty. 

'The proposition (17) has been removed. 
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Let D be a non empty set. Note that there exists a finite subset of D which 
is non empty. 

The following propositions are true: 

(33) For every lattice L and for all elements a, b, c, d of the carrier of L such 
that a C c a n d b C d h o l d s a n b C c n d .  

(34) Let L be a non trivial Boolean lattice and let D be a non empty subset 
$ 1  of the carrier of L. Suppose IL E [D). Then there exists a non empty 

L l 
5. '. finite subset B of the carrier of L such that B E: D and nB = IL. 

: " (35) For every lower bound lattice L it is not true that there exists a filter 
F of L such that F is ultrafilter and IL E F. 

(36) (UFil ter(Bl))( l (~,))  = 0. 
(37) (UFilter(B1))(~(B,)) = ultraset(B1). 

(38) If ultraset(B1) = U X  and X is a subset of StoneR(B1), then there 
exists a finite subset Y of X such that ultraset(B1) = UY. 

(39) I f x ~ 2 ~ a n d y ~ 2 ~ ~ t h e n z f l y ~ 2 ~ .  
(40) StoneR(B1) = OpenClosedSet(StoneSpace(B1)). 

Let us consider B1. Then UFilter(B1) is a homomorphism from B1 to 
StoneBLattice(B1). 

Next we state four propositions: 

(41) rng UFilter(B1) = the carrier of StoneBLattice(B1). 
(42) UFilter(B1) is isomorphism. 

(43) B1 and StoneBLattice(B1) are isomorphic. 

(44) For every non trivial Boolean lattice B1 there exists a topological space 
T such that B1 and OpenClosedSetLatt(T) are isomorphic. 
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Summary. We prove some results on SCM needed for the proof 
of the correctness of Euclid's algorithm. We introduce the following con- 
cepts: 

- starting finite partial state (Start-At(l)), then assigns to the in- 
struction counter an instruction location (and consists only of this 
assignment), 

- programmed finite partial state, that consists of the instructions (to 
be more precise, a finite partial state with the domain consisting of 
instruction locations). 

We define for a total state s what it means that s starts at 1 (the value 
of the instruction counter in the state s is l) and s halts at 1 (the halt 
instruction is assigned to l in the state S ) .  Similar notions are defined for 
finite partial states. 
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One can prove the following proposition 
(1) For all integers m, j holds m .  j +O(modm). 
In the sequel i, j, k will denote nqtuga1,numbers. 
The scheme INDI concerns natural numbers A, B and a unary predicate P ,  

and states that: 
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p PI 
provided the following requirements are met: 

P[OI, 
A > O ,  
For all i ,  j such that P[A.i]  and j + 0 a n d j  2 A holds P [ A . i + j ] .  

In the sequel X will be arbitrary. 
Next we state a number of propositions: 

(2) Let X, Y be non empty set and let f ,  g be partial functions from X to 
Y. Suppose that for every element X of X and for every element y of Y 
holds ( X ,  y) E f iff (X,  y) E g. Then f = g. 

(3) For all functions f ,  g and for all sets A, B such that f 1 A = g 1 A and 
f r B = g r B h o l d s  f r ( A u B ) = g r ( A u B ) .  

(4) For every set X and for all functions f ,  g such that domg C X and 
g c f holds g G f 1 X. 

( 5 )  For every function f and for arbitrary X such that X E dorn f holds 

f r {X> = {(X, f(x))).  

(6) For every function f and for every set X such that X f l  dorn f = 0 holds 
f [X=@. 

(7) For all functions f ,  g and for arbitrary X such that dorn f = domg and 
f(.) = g(x) holds f r {X) = g r{xI. 

(8) For all functions f ,  g and for arbitrary X ,  y such that dorn f = domg 
and f (x)  = g(x) and f(y) = Y(Y) holds f t {X, Y) = g t {g, Y). 

(9) Let f ,  g be functions and let X ,  y, z be arbitrary. If dorn f = domg 
and f (x )  = g(x) and f(y) = g(y) and f ( z )  = g(z), then f t { x , Y , ~ }  = 
g F {X, Y,  21. 

(10) For arbitrary a ,  b and for every function f such that a E dorn f and 
f (a) = b holds a ~ b  (I f. 

(11) For arbitrary a, b, c, d such that a # c holds [a +--+ b,c +-+ d] = {(a, 

b ) ,  (c, d) ) .  

(12)  For arbitrary a, b, c, d and for every function f such that a E dorn f 
and c E dorn f and f(a)  = b and f(c) = d holds [a H b,c- d] G f. 

(13) For all functions f ,  g, h holds (f +. g) +- h = f +. (g +. h). 

In the sequel N denotes a non empty set with non empty elements. 
Next we state the proposition 

(14) For every AM1 S over N and for every finite partial state p of S holds 
p E FinPartSt(S). 

Let us consider N and let S be an AM1 over N. Then FinPartSt(S) is a non 
empty subset of n' (the object kind of S) .  
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Next we state two propositions: 

(15) For every AM1 S over N holds every element of FinPartSt(S) is a finite 
partial state of S. 

(16) Let S be an AM1 over N and let Fl, F2 be partial functions from 
FinPartSt(S) to FinPartSt(S). Suppose that for all finite partial states 
p, q of S holds (p, q) E Fl iff (p, q) E F2. Then Fl = F2. 

The scheme EqFPSFunc concerns a non empty set A with non empty 
elements, an AM1 B over A, partial functions C, V from FinPartSt(B) to 
FinPartSt(B), and a binary predicate P ,  and states that: 

C = V 
provided the parameters meet the following conditions: 

r For all finite partial states p, q of B holds (p, q) E C iff ?[p, q], 
r For all finite partial states p, q of B holds (p, q) E V iff %'[p, q]. 
Let us consider N ,  let S be a von Neumann definite AM1 over N ,  and let l 

be an instruction-location of S. The functor Start-At(1) yielding a finite partial 
state of S is defined by: 

(Def.1) Start-At(1) = I C s ~ l .  
One can prove the following proposition 

(17) For every von Neumann definite AM1 S over N and for every 
instruction-location 1 of S holds domstart-At(1) = {ICs). 

Let us consider N and let S be an AM1 over N .  A finite partial state of S is 
programmed if: 

(Def.2) domit c the instruction locations of S .  
We now state four propositions: 

(18) Let S be a steady-programmed von Neumann definite AM1 over N 
and let pl ,  p2 be programmed finite partial state of S .  Then p1 +-p2 is 
programmed. 

(19) For every AM1 S over N and for every state S of S holds doms = the 
objects of S. 

(20) For every AM1 S over N and for every finite partial state p of S holds 
domp c the objects of S. 

(21) Let S be a steady-programmed von Neumann definite AM1 over N, and 
let p be a programmed finite partial state of S ,  and let s be a state of S. 
If p c S, then for every L holds p c (Computation(s))(k). 

Let us consider N ,  let S be a von Neumann AM1 over N ,  let S be a state of 
S, and let 1 be an instruction-location of S .  We say that'slstarts at 1 if and only 
if: 

(Def.3) IC, = 1. 

We say that s halts at b 'TT and only if: 

(Def.4) s(1) = halts. 
The following proposition is true 
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(22) For every AM1 S over N and for every finite partial state p of S there 
exists a state S of S such that p c S. 

Let us consider N ,  let S be a definite von Neumann AM1 over N, and let p 
be a finite partial state of S. Let us assume that ICs E domp. The functor IC, 
yielding an instruction-location of S is defined by: 

(Def.5) IC, = p(ICs). 
i 

Let us consider N, let S be a definite von Neumann AM1 over N ,  let p be a 
-- W finite partial state of S, and let l be an instruction-location of S. We say that 

: p starts at l if and only if: 

' (Def.G) ICs E domp and IC, = 1. 

We say that p halts at  E if and only if: 

(Def.7) 1 E dom p and p(1) = halts.  

One can prove the following propositions: 

(23) Let S be a von Neumann definite steady-programmed AM1 over N and 
let S be a state of S. Then S is halting if and only if there exists k such 
that at IC(computation(s))(k). 

(24) Let S be a von Neumann definite steady-programmed AM1 over N ,  and 
let S be a state of S, and let p be a finite partial state of S, and let l be 
an instruction-location of S. If p C S and p halts at l, then S halts at l. 

(25) Let S be a halting steady-programmed von Neumann definite AM1 over 
N, and let S be a state of S, and given L. If S is halting, then Result(s) = 
(Computation(s))(k) iff S halts at IC(Computation(s))(k). 

(26) Let S be a steady-programmed von Neumann definite AM1 over N ,  and 
let S be a state of S, and let p be a programmed finite partial state of S ,  
and given k. Then p C S if and only if p C (Computation(s))(k). 

(27) Let S be a halting steady-programmed von Neumann definite AM1 over 
N ,  and let S be a state of S ,  and given L. If S halts at IC(Computation(s))(k)7 
then Result(s) = (Computation(s))(k). 

(28) Suppose i 5 j .  Let S be a halting steady-programmed von Neu- 
mann definite AM1 over N and let S be a state of S.  If S halts at 
IC(~omputation(s))(z), then S halts at IC(Computation(s))(j). 

(29) Suppose i _< j. Let S be a halting steady-programmed von Neu- 
mann definite AM1 over N and let S be a state of S. If S halts at 
IC(Compu,Utation(s))(i)7 then (Computation(s))(j) = (Computation(s))(i). 

(30) Let S be a steady-programmed von Neumann halting definite AM1 
over N and let S be a state of S .  If there exists k such that 
S halts at IC~computation(,))(~), then for every i holds Result(s) = 
Result ((Computation(s))(i)). 

(31) Let S be a steady-programmed von Neumann definite AM1 over N ,  and 
let S be a state of S, and let l be an instruction-location of S ,  and given 
b. Then S halts at 1 if and only if (Computation(s))(k) halts at l. 
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(32) Let S be a definite von Neumann AM1 over N ,  and let p be a finite 
partial state of S, and let l be an instruction-location of S. Suppose p 
starts at  1. Let s be a state of S. If p C S, then s starts at l. 

(33) For every von Neumann definite AM1 S over N and for every 
instruction-location l of S holds Start-At(l)(ICs) = 1. 

Let us consider N ,  let S be a definite von Neumann AM1 over N ,  let l be 
an instruction-location of S, and let I be an instruction of S. Then 1-I is a 
programmed finite partial state of S. 

We now state the proposition . 
(34) S C M  is realistic. 

S C M  is a steady-programmed halting realistic von Neumann data-oriented 
definite strict AM1 over {Z). 

Let us consider k. The functor d k  yields a data-location and is defined by: 
(Def.8) dk  = 2 . k + 1. 

The functor ik yielding an instruction-location of S C M  is defined by: 
(Def.9) ik = 2 k + 2. 

Next we state three propositions: 

(35) For all i, j such that i # j holds d; # dj.  

(36) For all i, j such that i # j holds i; # ij. 
(37) Next(ik) = ik+1. 

Let s be a state of S C M  and let a be a data-location. Then s(a) is an 
integer. 

Let us consider a, b. Then a:=b is an instruction of SCM. Then AddTo(a, b) 
is an instruction of SCM. Then SubFrom(a, b) is an instruction of SCM.  Then 
MultBy(a, b) is an instruction of SCM. Then Divide(a, b) is an instruction of 
SCM. 

Let us consider 11. Then goto l1 is an instruction of SCM. Let us consider 
a. Then if a = 0 goto ll is an instruction of SCM. Then if a > 0 goto ll is 
an instruction of SCM.  

Next we state the proposition 

(38) For every data-location 1 holds ObjectKind(1) = Z. 
Let Z2 be a data-location and let a be an integer. Then 12-a is a finite 

partial state of SCM.  
Let 12, l3 be data-locations and let a, b be integers. Then [l2 H a, l3 t-) b] 

is a finite partial state of SCM.  
Next we state two propositions: 

(39) For all i, j holds d; # ij. 
(40) For every i holds ICScM # d; and ICscM # i;. 
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Summary. The main goal of the paper is to prove the correctness 
of the Euclid's algorithm for SCM. We define the Euclid's algorithm 
and describe the natural semantics of it. Eventually we prove that the 
Euclid's algorithm computes the Euclid's function. Let us observe that 
the Euclid's function is defined as a function mapping finite partial states 
to finite partial states of SCM rather than pairs of integers to integers. 
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this paper. 

One can prove the following propositions: 

(1) For all integers i, j such that i > 0 and j > 0 holds i + j > 0. 

(2) For all integers i, j such that i > 0 and j > 0 holds lil mod JjJ = imod j 
and l i l i  ljl = i f  j. 

In the sequel i, j, k denote natural numbers. 
Next we state the proposition 

(3) For all i, j such that i > 0 and j > 0 holds gcd(i, j )  > 0. 
The scheme Eulclides' concerns a unary functor 3 yielding a natural number, 

a unary functor 6 yielding a natural number, a natural number A, and a natural 
number B ,  and states that: +. 

There exists k such that 3 ( k )  = gcd(A, B) and G(k) = 0 
provided the following requirements are met: 

a O < B ,  
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B < A ,  
r F(0)  = A' 

G(0) = B, 
r For every k such that G(k) > 0 holds F ( k + l )  = G(k) and G(k+l) = 

3 ( k )  mod G(k). 

i 

2. EUCLID'S ALGORITHM 
i .,. - 

-7 

The Euclid's algorithm is a programmed finite partial state of S C M  and is 
defined by: 

(Def.l) The Euclid's algorithm = ( i 0 h ( d 2 : = d l ) )  +- ((il*Divide(dO, dl)) C .  
((i2*(do:=d2)) +. ( ( i 3 h ( i f  d l  > 0 goto io)) f - (i4*haltSCM)))). 

Next we state the proposition 

(4) dom (the Euclid's algorithm) = {io, il , i2, i3, i4}. 

3. THE NATURAL SEMANTICS O F  T H E  EUCLID'S ALGORITHM 

We now state several propositions: 

(5) Let s be a state of SCM. Suppose the Euclid's algorithm S. Given 
Suppose IC(computation(s))(k) = i0. Then IC(computation(s))(k+1) = 

il and (Computation(s))(k + l)(do) = (Computation(s))(k)(do) 
and (Computation(s))(k + l)(dl) = (Computation(s))(k)(dl) and 
(Computation(s))(k + l)(d2) = (Computation(s))(k)(dl). 

(6) Let s be a state of SCM. Suppose the Euclid's algorithm C S. Given 
> ,  - Suppose IC(~om~utation(s))(k) = i l .  Then IC(~omputation(s))(k+l) - 

i2 and (Computation(s))(k + l)(do) = (Computation(s))(k)(do) -+ 
(Computation(s))(k)(dl) and (Computation(s))(k + l ) (d l )  = 
(Computation(s))(k)(do) mod (Computation(s))(k)(dl) and 
(Computation(s))(k + l)(d2) = (Computation(s))(k)(d2). 

(7) Let s be as ta teof  SCM. Suppose theEuclid's algorithm C S. Given 
- k. Suppose IC(~omputation(s))(k) = i2. Then IC(computation(s)) (k+l) - 

i3 and (Computation(s))(k + l ) (do)  = (Computation(s))(k)(dz) 
and (Computation(s))(k + l ) (dl)  = (Computation(s))(k)(dl) and 
(Computation(s))(k + l)(d2) = (Computation(s))(k)(dz). 

(8) Let s be a state of SCM. Suppose the Euclid's algorithm C_ S. Given 
Suppose IC(CornPutation(s))(k) = i3. Then 

(i) if (Com~utation(s))(k)(dl) > 0, then IC[~omputation(s))(k+l) = i ~ '  
(ii) if (Computation(s))(k)(dl) '5 0, then IC(~omputation(s))(k+l) = i4, 

(iii) (Computation(s))(k + l)(do) = (Computation(s))(k)(do), and 

(iv) (Computation(s))(k + l)(dl) = (Computation(s))(k)(dl) . 
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(9) For.every state s of S C M  such that the Euclid's algorithm C s and for 
all k, i such that IC~comp,,,,io,(,))~k) = i4 holds (Computation(s))(k+i) = 
(Computation(s))(k). 

(10) Let s be a state of SCM.  Suppose s starts at io and the Euclid's 
algorithm E S .  Let X, y be integers. If s(do) = X and s(dl) = y and X > 0 
and y > 0, then (Result (s))(do) = gcd(x, y). 

The Euclid's function is a partial function from FinPartSt(SCM) to 
FinPartSt(SCM) and is defined by the condition (Def.2). 

(Def.2) Let p, q be finite partial states of SCM.  Then (p, q )  E the Euclid's 
function if and only if there exist integers X, y such that X > 0 and y > 0 
and p = [do H X ,  d l  y] and q = do- gcd(x, y). 

The following three propositions are true: 

(11) Let p be arbitrary. Then p E dom(the Euclid's function) if and only 
if there exist integers X, y such that X > 0 and y > 0 and p = [do H 

X, dl Y]. 
(12) For all integers i ,  j such that i > 0 and j > 0 holds (the Euclid's 

function)([do H i, dl  H j]) = dot-"+ gcd(i, j). 

(13) S tart-At(io) + v  (the Euclid's algorithm) computes the Euclid's function. 
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Summary. We develop a higher level terminology for the SCM 
machine defined by Nakamura and Trybulec in [6]. Among numerous 
technical definitions and lemmas we define a complexity measure of a 
halting state of SCM and a loader for SCM for arbitrary finite sequence 
of instructions. In order to test the introduced terminology we discuss 
properties of eight shortest halting programs, one for each instruction. 

MML Identifier: SCM-1. 

The notation and terminology used in this paper have been introduced in the 
following articles: [l017 [ l 1 7  [l317 [Ill, [g17 P I 7  L517 P I 7  PI, [S17 [G], [717 and [121. 

Let i be an integer. Then (i) is a finite sequence of elements of Z. 
One can prove the following propositions: 

(1) For every state s of SCM holds IC, = s(0) and CurInstr(s) = s(s(0)). 

(2) For every state s of SCM and for every natural number k 
holds CurInstr((Computation(s))(k)) = s(IC(compUtation(s))(k)) and 
C~rInstr((Comp~tation(s))(k)) = s((Computation(s))(k)(O)). 

(3) For every state s of SCM such that there exists a natural number k 
such that s(IC~computation(,))(k)) = haltSCM holds s is halting. 

(4) For every state s of SCM and for every natural number k 
such that s(IC(c,mpUtation(s))(k)) = haltSCM holds Result(s) = 
(Computation(s))(k). 

( 5 )  For all natural numbers L, l such that L # l holds dk # dl. 
(6) For all natural numbers k7 l such that k # 1 holds ik # il. 
(7) For all natural numbers n7  m holds ICsCM # i, gnd ICscM # d, 

and in # d,. 
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Let I be a finite sequence of elements of the instructions of S C M ,  let D be 
a finite sequence of elements of Z, and let il,  p l ,  dl be natural numbers. A state 
of SCM is said to be a state with instruction counter on i l ,  with I located from 
pl ,  and D from dl  if it satisfies the conditions (Def.1). 

(Def.1) (i) ICit = i(il)7 

(ii) for every natural number k such that K < len I holds it(i,,+k) = 
i I(K + l), and 

l .. - (iii) for every natural number k such that < len D holds it(ddl+k) = 
% ?  D(k + l ) .  

One can prove the following propositions: 

(8) Let X I ,  22, 23, 24 be arbitrary and let p be a finite sequence. If p = 
( x l )  - (22) - (23) - ( x 4 ) ,  then lenp = 4 and ~ ( 1 )  = X I  and p(2) = x2 and 
p(3) = 23 and p(4) = 24. 

(9) Let X I ,  x2,x3,54,x5 be arbitrary and let p be a finite sequence. Suppose 
p = ( x l )  - ( x 2 )  - (23) - ( x 4 )  A ( x 5 ) .  Then lenp = 5 and p(1) = xl  and 
p(2) = 22 and p(3) = 23 and ~ ( 4 )  = x4 and p(5) = x5. 

(10) Let X I ,  22, 23, 24, 55, 26 be arbitrary and let p be a finite sequence. 
Suppose p = ( x l )  - ( x 2 )  ( x 3 )  - ( x 4 )  c' ( x 5 )  c' ( X 6 ) .  Then lenp = 6 and 
p(1) = x1 and p(2) = 22 and p(3) = x3 and p(4) = 24 and p(5) = 25 and 
~ ( 6 )  = 26. 

1 

(11) Let X I ,  x2, 23, 24, 25, 26, 27 be arbitrary and let p be a finite sequence. 

Suppose p = ( x l )  (22) - ( x 3 )  - (24) - ( x 5 )  - ( x g )  - ( x 7 ) .  Then lenp = 7 
and p(1) = xl  and ~ ( 2 )  = 22 and p(3) = 23 and p(4) = x4 and ~ ( 5 )  = 25 

and p(6) = 26 and p(7) = 27. 

(12) Let X I ,  x2, 23, 24, 55, 56, x7, 28 be arbitrary and let p be a finite 
sequence. Suppose p = ( x l )  (22) A (x3)  ( x4 )  A (25) - (26) - (27) - ($8) .  

Then lenp = 8 and p(1) = xl and p(2) = $2 and p(3) = 23 and p(4) = 24 

and p(5) = x5 and p(6) = x6 and p(7) = 27 and p(8) = xs. 

(13) Let X I ,  32, 23, 24, 25, 26, 27, x8, xg be arbitrary and let p be a finite 
sequence. Suppose p = ( x l ) - ( x2 ) - (23) -  ( 2 4 ) - ( ~ 5 ) - ( ~ 6 ) - ( ~ 7 ) - ( ~ 8 ) - ( ~ 9 ) .  

Then lenp = 9 and p(1) = xl  and p(2) = x2 and ~ ( 3 )  = 23 and p(4) = 24 

and p(5) = 25 and p(6) = x6 and p(7) = 27 and p(8) = $8 and p(9) = xg. 

(14) Let 11, 12, 13, 14, 15, 16, 17, Is,  Ig be instructions of S C M ,  and let i 2 ,  

i3, i4, i5 be integers, and let il be a natural number, and let s be a state 
with instruction counter on i l ,  with ( I l )  - ( I2 )  - (I3) - ( I4 )  c' ( 1 5 )  - ( 1 6 )  - 
( I7 )  ( I8 )  - ( I9 )  located from 0 ,  and ( i2)  - (i3) A ( i4)  - (i5) from 0. Then 

(i) ICS = i(il), 
(ii) s(io) = I1 , 
(iii) s(il ) = 1 2 ,  

(iv) s(iz) = 13, 
(v) 4 3 )  = 1 4 ,  

(vi) s(iq) = 15, 
(vii) s(i5) = 16, 
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(viii) s(i6) = 17, 
(ix) s(i7) = Is, 
(X) s(i8) = 19, 

(xi) s(do) = i2, 
(xii) s(dl) = i3, 

(xiii) s(d2) = i4, and 
(xiv) s(d3) = i5. 

(15) Let I;, I2 be instructions of SCM, and let i2, i3 be integers, and let il 
be a natural number, and let s be a state with instruction counter on il, 
with (Il) - (I2) located from 0, and (i2) (i3) from 0. Then IC, = i(;,) 
and s(io) = Il and s(il) = I2 and s(do) = i2 and s(dl) = i3. 

Let a, b be data-locations. Then a:=b is an instruction of SCM.  Then 
AddTo(a, b) is an instruction of SCM. Then SubFrom(a, b) is an instruction of 
SCM. Then MultBy(a, b) is an instruction of SCM. Then Divide(a, b) is an 
instruction of SCM. 

Let 11 be an instruction-location of SCM. Then goto ll is an instruction of 
SCM. Let a be a data-location. Then if a = 0 goto l1 is an instruction of 
SCM. Then if a > 0 goto l1 is an instruction of SCM. 

Let s be a state of SCM. Let us assume that s is halting. The complexity 
of s is a natural number and is defined by the conditions (Def.2). 

I (Def.2) (i) CurInstr((Computation(s))(the complexity of S)) = haltSCM, and 

(ii) for every natural number k such that CurInstr((Computation(s))(k)) = 
haltSCM holds the complexity of s 5 k .  

We now state a number of propositions: 

i (16) Let s be a state of S C M  and let 5 be a natural number. Then 
s(Ic(~omputation(s))(k)) # ~ ~ I ~ s c M  and s(IC(computation(s))(k+l)) = 
haltScM if and only if the complexity of s = k + 1 and s is halting. 

(17) Let s be a state of S C M  and let k be a natural number. If 
- IC(~omputation(s)) (k)  # IC(computation(s)) (k+l) and s(lC(~omputation(s)) (k+l) ) = 

1 haltSCM, then the complexity of s = b + 1. 

(18) Let k, n be natural numbers, and let s be a state of SCM,  and let a, 
b be data-locations. Suppose IC~Computation(s))(k) = in and s(in) = a:=b. 
Then IC(~o~utation(s))(k+l) = in+l and (Com~utation(s)) (k l )  (a) = 
(Computation(s))(k)(b) and for every data-location d such that d # a 
holds (Computation(s))(k + l)(d) = (Computation(s))(k)(d). 

(19) Let K, n be natural numbers, and let s be a state of S C M ,  
and let a,  b be data-locations. Suppose IC(Computation(s))(k) = 

in and s(in) = AddTo(a,b). Then IC(computation(s))(k+l) = 
in+, and (Computation(s))(k + l ) (a)  = (Computation(s))(k)(a) + 
(Computation(s))(k)(b) and for every data-location d such that d # a 
holds (Computation(s))(k + l)(d) = (Computation(s))(k)(d). 

(20) Let k,  n be natural numbers, and let s be a state of S C M ,  
and let a,  b be data-locations. Suppose IC~Computation(s))(k) = 
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in and s(in) = SubFrom(a, b) . Then IC(computation(s))(k+l) = 
in+1 and (Computation(s))(k + l)(a) = (Computation(s))(k)(a) - 
(Computation(s))(k)(b) and for every data-location d such that d # a 
holds (Computation(s))(k + l)(d) = (Computation(s))(k)(d). 

(21) Let k, n be natural numbers, and let s be a state of S C M ,  
A and let a,  b be data-locations. Suppose IC(Computation(s))(k) - 
A in and  in) = MultB~(a,b).  Then IC(computation(s))(k+l) - 

and (Computation(s))(k + l ) (a)  = (Computation(s))(k)(a) . 
(Computation(s))(k)(b) and for every data-location d such that d # a 
holds (Computation(s))(k + l )  (d) = (Computation(s))(k)(d). 

(22) Let k, n be natural numbers, and let s be a state of SCM,  and let a,  b be 
data-locations. Suppose IC~computation(s))(k) = in and s(in) = Divide(a, b) 
and a # b. Then 

(i) IC(~omputation(s))(k+l) = in+l, 
(ii) (Computation(s))(k + l)(a) = 

(Computation(s))(k) (a) f (Computation(s))(k)(b), 
(iii) (Computation(s))(k + l)(b) = 

(Computation(s))(k)(a) mod (Computation(s))(k)(b), and ' 
(iv) for every data-location d such that d # a and d # b holds 

(Computation(s))(k + l)(d) = (Computation(s))(k)(d). 

(23) Let k, n be natural numbers, and let s be a state of S C M ,  and let 
il be an instruction-location of SCM. Suppose IC~computation(s))(k) = in 
and s(in) = goto il. Then IC(Computation(s))(k+l) = il and for every data- 
location d holds (Computation(s))(k + l)(d) = (Computation(s))(k)(d). 

(24) Let k, n be natural numbers, and let s be a state of S C M ,  and let a be 
a data-location, and let il be an instruction-location of SCM.  Suppose 
IC(Computation(s))(k) = in and s(in) = if a = 0 goto il. Then 

(i) if (Com~utation(s))(k)(a) = 07 then IC(computation(s))(k+l) = i17 
(ii) if (Com~utation(s)) (b)(a) # 0 then IC(computation(s))(k+l) = in+l, and 
(iii) for every data-location d holds (Computation(s))(k + l)(d) = 

(Computation(s))(k)(d). 

(25) Let k, n be natural numbers, and let s be a state of S C M ,  and let a be 
a data-location, and let il be an instruction-location of SCM. Suppose 
IC~(Computati,(s))(k) = in and s(in) = if a > 0 goto il. Then 

(i) if (Com~utation(s)) (h) (a) > 0 then IC(computation(s)) (k+~) = il 7 

( )  if (Computation(s))(k)(a) < 0, then IC(computation(s))(k+l) = in+l, and 
(iii) for every data-location d holds (Computation(s))(k + l)(d) = 

(Computation(s))(k)(d). 

(26) (i) ( h a l t ~ ~ ~ ) l  = 0, 
(ii) for all data-locations a,  b holds (a:=b)i = 1, 

(iii) for all data-locations a, b holds (AddTo(a, b))l = 2, 

(iv) for all data-locations a,  b holds (SubFrom(a, b))l = 3, 

(v) for all data-locations a, b holds (MultBy(a, b))l = 4, 
(vi) for all data-locations a,  b holds (Divide(a, b))l = 5, 
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(vii) for every instruction-location i of S C M  holds (goto i)l = 6, 
(viii) for every data-location a and for every instruction-location i of S C M  

holds (if a = 0 goto i ) i  = 7 ,  and 

(ix) for every data-location a and for every instruction-location i of S C M  
holds (if a > 0 goto i ) i  = 8. 

(27) For all states s l ,  s2 of S C M  and for every natural number k such that 
5 2  = (Computation(sl))(k) and s 2  is halting holds sl is halting. 

(28) Let s l ,  s 2  be states of S C M  and let k, c be natural numbers. Suppose 
s2 = (Computation(sl))(k) and the complexity of s2 = c and s2 is halting 
and 0 < c. Then the complexity of s l  = k + c. 

(29) For all states sl, s2 of S C M  and for every natural number L such 
that s 2  = (Computation(sl))(k) and s 2  is halting holds Result(s2) = 
Result (sl ). 

(30) Let 11, 1 2 ,  13, Iq, 15, 16, 17, 18, I9 be instructions of S C M ,  and let i2, 
i3, i4, i5 be integers, and let il be a natural number, and let s be a state 
of SCM. Suppose that 

(i) ICS = i(il), 
(ii) s(io) = 11, 
(iii) s(il) = 1 2 ,  

(iv) s(i2) = 13, 
(v) 4 3 )  = I47 

(vi) s(i4) = Is, 
(vii) s(i5) = 16, 
(viii) s(is) = 17, 

(ix) s(i7) = Is, 
(X) 4 4 )  = 19, 

(xi) s(d0) = i 2 ,  

(xii) s(dl) = i3, 
(xiii) s(d2) = i4, and 
(xiv) s(d3) = i5. 

Then s is a state with instruction counter on il, with (Il) - (I2) (13) A 

(I4) c' (I5) (I6) - (I7) (I8) A (I9) located from 0, and (i2) (i3) A (i4) (i5) 
from 0. 

(31) Let s be a state with instruction counter on 0, with (haltSCM) located 
from 0, and E H  from 0. Then s is halting and the complexity of s = 0 and 
Result (S) = S. 

(32) Let i2, i3 be integers and let s be a state with instruction counter on 0, 
with (do:=dl) - (haltsCM) located from 0, and (i2) A (i3) from 0. Then 

(i) s is halting, 

(ii) the complexity of s = 1, 
(iii) (Result(s))(do) = is, and 

(iv) for every data-location d such that d # do holds (Result(s))(d) = s(d). 
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(33) Let in, i3 be integers and let s be a state with instruction counter on 0, 
with (AddTo(do, dl)) - (haltscM) located from 0, and (i2) - (i3) from 0. 
Then 

(i) sishalting, 

(ii) the complexity of s = 1, 

(iii) (Result (s))(do) = i2 + i3, and 
j (iv) for every data-location d such that d # do holds (Result(s))(d) = s(d). 

' 1  -134) Let ia, i3 be integers and let s be a state with instruction counter on 0, 
. *" with (SubFrom(do, dl)) - (haltscM) located from 0, and (i2) - (i3) from 

0. Then 
(i) s is halting, 

(ii) the complexity of s = 1, 

(iii) (Result(s))(do) = i2 - is, and 

(iv) for every data-location d such that d # do holds (Result(s))(d) = s(d). 

(35) Let i2, i3 be integers and let s be a state with instruction counter on 0, 
with (MultBy(do, dl))  - (haltscM) located from 0, and (i2) (i3) from 
0. Then 

(i) s is halting, 

(ii) the complexity of s = 1, 

(iii) (Result(s))(do) = i2 - is, and 

(iv) for every data-location d such that d # do holds (Result(s))(d) = s(d). 

(36) Let i2, i3 be integers and let s be a state with instruction counter on 0, 
with (Divide(d0, dl)) - (haltsCM) located from 0, and (i2) - (i3) from 0. 
Then 

(i) s is halting, 

(ii) the complexity of s = 1, 

(iii) (Result (s))(do) = i2 + is, 

(iv) (Result(s))(dl) = i2  mod is, and 

(v) for every data-location d such that d # do and d # dl  holds 
(Result (s))(d) = s(d). 

(37) Let i2, i3 be integers and let s be a state with instruction counter on 
0, with (goto (il)) - (haltsCM) located from 0, and (in) (i3) from 0. 
Then S is halting and the complexity of s = 1 and for every data-location 
d holds (Result(s))(d) = s(d). 

(38) Let i2, i3 be integers and let s be a state with instruction counter on 
0, with (if do = 0 goto il) - (haltscM) located from 0, and (i2) - (is) 
from 0. Then s is halting and the complexity of s = 1 and for every 
data-location d holds (Result(s))(d) = s(d). 

(39) Let i2, i3 be integers and let s be a state with instruction counter on 
0, with (if do > 0 goto il) 2 (haltSCM) located from 0, and (i2) - (i3) 
from 0. Then s is halting and the complexity of s = 1 and for every 
data-location d holds (Result(s))(d) = s(d). 
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Preliminaries 

Grzegorz Bancerek Piotr Rudnicki 
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Summary. In two articles (this one and [3]) we discuss correctness 
of two short programs for the SCM machine: one computes Fibonacci 
numbers and the other computes the fusc function of Dijkstra [7]. The 
limitations of current Mizar implementation rendered it impossible to 
present the correctness proofs for the programs in one article. This part 
is purely technical and contains a number of very specific lemmas about 
integer division, floor, exponentiation and logarithms. The formal defini- 
tions of the Fibonacci sequence and the fusc function may be of general 
interest. 

MML Identifier: PRE-FF. 

The terminology and notation used in this paper are introduced in the following 
papers: [l217 PI, 1141, PI, [l317 [Ill, [101, PI, [S], PI, PI, NI, and [IS]. 

Let XI, X2 be non empty set, let Yl be a non empty subset of XI, and let 
Y2 be a non empty subset of X2. Then [: Yl, Y2 :] is a non empty subset of [: XI,  
xz :]. 

Let XI,  X2 be non empty set, let Yl be a non empty subset of XI, let Y2 be 
a non empty subset of X2, and let X be an element of [: Yl, Y2 4. Then x l  is an 
element of Yl . Then 22 is an element of Y2. 

In the sequel n will denote a natural number. 
Let us consider n. The functor Fib(n) yielding a natural number is defined 

by the condition (Def.1). 
(Def.1) There exists a function fl from N into [: N, N :] such that 

(i) Fib(n)=f1(n)1, 
(ii) fl(0) = (0, l), and 

'This work was partially supported by NSERC Grant OGP9207 while the first author 
visited University of Alberta, May-June 1993. 
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(iii) for every natural number n and for every element X of 1 N, N :] such 
that X = fi(n) holds f l (n+ 1) = (22, X I  + x2). 

We now state a number of propositions: 

(1) Fib(0) = 0 and Fib(1) = 1 and for every natural number n holds Fib(n+ 
1 + 1) = Fib(n) + Fib(n + 1). 

(2) For every integer i holds i i +l = i. 
l 

(3) For all integers i, j such that j > 0 and i -F j = 0 holds i < j., 
' (4) For all integers i, j such that 0 5 i and i < j holds i i j = 0. 

' W  

( 5 )  For all integers i, j, k such that j > 0 and k > 0 holds i f  j i k  = i+ j-k. 

(6) For every integer i holds i mod +2 = 0 or i mod +2 = 1. 

(7 )  For every integer i such that i is a natural number holds i i +2 is a 
natural number. 

(8) For every natural number k such that k > 0 and for every natural 
number n holds kn > 0. 

For every natural number n holds 2n = 2n. 
l (10) For all real numbers a,  b, c such that a 5 b and c > 1 holds ca 5 cb. 
l 

Let a, n be natural numbers. Then an is a natural number. 
Next we state several propositions: 

(11) For all real numbers r ,  S such that r > S holds Lr] > [S]. 

(12) For all real numbers a, b, c such that a > 1 and b > 0 and c > b holds 
log, c > log, b. 

(13) For every natural number n such that n > 0 holds 110g2(2 n)] + 1 # 
llog2(2 - n + l)]. 

(14) For every natural number n such that n > 0 holds llog2(2 . n)] + 1 > 
110g2(2 . n + l)]. 

(15) For every natural number n such that n > 0 holds 110g2(2 . n)] = 
110g2(2 . n + l)]. 

(16) For every natural number n such that n > 0 holds [log2 nj + 1 = 

110g2(2 n + l )J  . 
Let f be a function from N into N* and let n be a natural number. Then 

f (n) is a finite sequence of elements of N. 
I Let n be a natural number. The functor Fusc(n) yields a natural number 
l and is defined by: 

(Def.2)(i) Fusc(n)=Oifn=O,  

(ii) there exists a natural number l and there exists a function f2 from N 
I into N* such that 1 + 1 = n and Fusc(n) = nn f2(1) and f2(0) = (1) and for 
S every natural number n holds for every natural number L such that n+2 = 

2 . k holds f2(n + 1) = f2(n) - (nk f2(n)) and for every natural number k 
such that n +  2 = 2. k + l holds f2(n+ l )  = f2(n)" (nk f2(n) + ~ k + l  fi(n)), 
otherwise. 

1 
2Both power functions in this theorem are different. The first is defined in [l01 and the 

second in [8]. i 
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The following propositions are true: 

(17) Fusc(0) = 0 and Fusc(1) = 1 and for every natural number n holds l 
Fusc(2 n) = Fusc(n) and Fusc(2. n + 1) = Fusc(n) + Fusc(n + 1). , 

1 (18) For all natural numbers nl ,  n i  such tkat n l  # 0 and n l  = 2 .  n i  holds 
ni < nl. 

(19) For all natural numbers nl ,  ni  such that nl = 2 .  ni  + 1 holds ni  < nl.  

(20) For all natural numbers A, B holds B = A .  Fusc(0) + B - Fusc(0 + 1). 

(21) For all natural numbers nl,  ni ,  A, B, N such that n l  = 2 ni  + 1 and 
Fusc(N) = A. Fusc(nl) + B . Fusc(nl + 1) holds Fusc(N) = A Fusc(n:) + 
( B  + A) . Fusc(ni + 1). 

(22) For all natural numbers nl ,  ni ,  A, B, N such that n l  = 2 . n i  and 
Fusc(N) = A . Fusc(nl) + B Fusc(nl + 1) holds Fusc(N) = (A + B) 
Fusc(ni) + B - Fusc(ni + 1). 

(23) 6 + 1 = 6 .  ([10g21] + 1) + 1. 

(24) For every natural number ni  such that ni  > 0 holds [log, niJ is a 
natural number and 6 . ([log, ni l  + 1) + 1 > 0. 

(25) For all natural numbers nl ,  ni such that nl = 2 .  n i  + 1 and ni  > 0 

l holds 6 + (6 . ( [log, ni  J + 1) + 1) = 6 . ( [log, nl J + 1) + 1. 

(26) For all natural numbers nl ,  ni  such that nl = 2 . n i  and ni  > 0 holds 
6 + (6 .  ([log, n',J + 1) + 1) = 6 - ([log2 + 1) + 1. 

(27) For every natural number N such that N # 0 holds 6 .  N - 4 > 0. 

(28) For every natural number N holds 6 + (6 . N - 4) = 6 . ( N  + 1) - 4. 

(29) For all natural numbers m, K, N such that m = (k + 1 + N )  - 1 holds 
m = ( k +  ( N  + 1)) - 1. 

(30) For every natural number N holds 2 + (6 .  N - 4) = 6 . N - 2. 
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Summary.  We prove the correctness of two short programs for the 
SCM machine: one computes Fibonacci numbers and the other computes 
the fusc function of Dijkstra [ll]. The formal definitions of these functions 
can be found in [5]. We prove the total correctness of the programs in 
two ways: by conducting inductions on computations and inductions on 
input data. In addition we characterize the concrete complexity of the 
programs as defined in [4]. 

MML Identifier: FIB-FUSC. 

The papers [l717 P I 7  [201, 11317 [l817 [l017 [l617 [l217 v 1 7  PI, L217 PI, L617 [2117 P I 7  

[14], [15], [4], [19], and [5] provide the terminology and notation for this paper. 
The program computing Fib is a finite sequence of elements of the instruc- 

tions of SCM and is defined as follows: 
(Def.1) The program computing Fib = (if d l  > 0 goto i2) - (haltSCM) - 

(d3:=do)-(SubFrom(d17 do))-(if d l  = 0 goto il)- (d4:=d2)- (d2:=d3)- 
(AddTo(d3, d4)) - (goto (i3)). 

The following proposition is true 

(1) Let N be a natural number and let s be a state with instruction counter 
on 0, with the program computing Fib located from 0, and (+l ) -  (+N)- 
(+0) - ( t o )  from 0. Then 

(i) s is halting, 

(ii) if N = 0, then the complexity of S = 1, 

(iii) if N > 0, then the complexity of s = 6 . N - 2, and 
(iv) (Result (s))(d3) = Fib(N). 
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visited University of Alberta, May-June 1993. 
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Let i be an integer. The functor Fusc(i) yields a natural number and is 
defined as follows: 

(Def.2) There exists a natural number n such that i = n and Fusc(i) = Fusc(n) 
or i is not a natural number and Fusc(i) = 0. 

Let a, n be natural numbers. Then an is an integer. 
The program computing Fusc is a finite sequence of elements of the instruc- 

tions of SCM and is defined by: 

(Def.3) The program computing Fusc = (if dl  = 0 goto is) - (d4:=do) - 
(Divide(dl, d4)) - (if d4  = 0 goto i6) - (AddTo(d3, d2)) - (goto (io)) - 
(AddTo(d2, d3)) (goto (io)) - ( h a l t s c ~ ) .  

We now state several propositions: 
(2) Let N be a natural number. Suppose N > 0. Let s be a state 

with instruction counter on 0, with the program computing Fusc located 
from 0, and (+2) A (+N) - (+l) - (+O)  from 0. Then S is halting and 
(Result (s))(d3) = Fusc(N) and the complexity of s = 6 - ( [log, NI + 1) + 1. 

(3) Let N be a natural number, and let L, Fl, F2 be natural numbers, and 
let s be a state with instruction counter on 3, with the program computing 
Fib located from 0, and (+ l )  - ( + N )  - (+Fl) - (+F2) from 0. Suppose 
N > 0 and Fl = Fib(k) and F2 = Fib(k + 1). Then 

(i) S is halting, 

(ii) the complexity of s = 6 . N - 4, and 

(iii) there exists a natural number m such that m = (L + N )  - 1 and 
(Result(s))(d2) = Fib(m) and (Result(s))(d3) = Fib(m + 1). 

(4) Let N be a natural number and let s be a state with instruction counter 
on 0, with the program computing Fib located from 0, and (+l)- (+N) -  
(SO) - ( + O )  from 0. Then 

(i) s is halting, 

(ii) if N = 0, then the complexity of s = 1, 

(iii) if N > 0, then the complexity of S = 6 . N - 2, and 
(iv) (Result (s))(d3) = Fib(N). 

(5) Let n be a natural number, and let N ,  A, B be natural numbers, and let 
S be a state with instruction counter on 0, with the program computing 
Fusc located from 0, and (+2) - (+n) - (+A) - (+B) from 0. Suppose 
N > 0 and Fusc(N) = A .  Fusc(n) + B . Fusc(n + 1). Then 

(i) s is halting, 
(ii) (Result (s))(d3) = Fusc(N), 

(iii) if n = 0, then the complexity of s = 1, and 

(iv) if n > 0, then the complexity of s = 6 . ([log2 n] + 1) + 1. 

(6) Let N be a natural number. Suppose N > 0. Let s be a state with 
instruction counter on 0, with the program computing Fusc located from 
0, and (+2) A (+N) - (+l) ( t o )  frdm 0. Then 

(i) s is halting, 
(ii) (Result (s))(d3) = Fusc(N), 
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(iii) if N = 0, then the complexity of s = 1, and 
(iv) if N > 0, then the complexity of s = 6 . ( 110g2 NJ + 1) + 1. 
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Summary. This is the continuation of the sequence of articles on 
trees (see [3,4,5]). The main goal is to introduce joining operations on 
decorated trees corresponding with operations introduced in [5]. We will 
also introduce the operation of substitution. In the last section we dealt 
with trees decorated by Cartesian product, i.e. we showed some lemmas 
on joining operations applied to such trees. 

MML Identifier: TREES-4. 

The notation and terminology used here are introduced in the following papers: 
[l517 PI, [g17 [161, [ l 1 1 7  [l417 [131, 11217 [1017 [717 PI, PI, [31, PI, [ l 1 7  and [S]. 

Let T be a decorated tree. A node of T is an element of domT. 
We adopt the following convention: X, y7 z are arbitrary, i 7  j ,  n denote 

natural numbers, and p, q denote finite sequences. 
Let Tl, T2 be decorated trees. Let us observe that Tl = T2 if and only if: 

(Def.l) dom Tl = dom T2 and for every node p of Tl holds Tl(p) = Tz(p). 
One can prove the following two propositions: 

(1) For all natural numbers i, j such that the elementary tree of i 5 the 
elementary tree of j holds i 5 j. 

(2) For all natural numbers i, j such that the elementary tree of i = the 
, elementary tree of j holds i = j. ' 1 I 

Let us consider X. The root tree of X is a decorated tree and is defined as 
' I l /  I 1  

follows: 
(Def.2) The root tree of X = (the elementary tree of 6) 'H X,. ". 

Let D be a non empty set and let,d be an element of D. Then the root tree 
, G 

of d is an element of FinTrees(D). ,, 
1 

, ! 

We now state four propositions: 
' l 
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(3) dom (the root tree of X) = the elementary tree of 0 and (the root tree 
of X)(&) = X. 

(4) If the root tree of X = the root tree of y, then X = y. 

(5) For every decorated tree T such that domT = the elementary tree of 0 
holds T = the root tree of T(E). 

(6) The root tree of X = {(E, X)). 
i 

Let us consider X and let p be a finite sequence. The flat tree of X and p is 
' l  ,,a decorated tree and is defined by the conditions (Def.3). 

3 (i) dom (the flat tree of X and p) = the elementary tree of lenp, 

(ii) (the flat tree of X and p)(&) = X, and 

(iii) for every n such that n < lenp holds (the flat tree of X and p)((n)) = 

+ 1). 
The following propositions are true: 

1 (7) If the flat tree of X and p = the flat tree of y and q, then X = y and j P = q. 

E (8) If j < i, then (the elementary tree of i)  I. (j) = the elementary tree of 0. 

(9) If i < len p, then (the flat tree of X and p) 1 (i) = the root tree of p(i + 1). 
Let us consider X, p. Let us assume that p is decorated tree yielding. The 

functor X-tree(p) yields a decorated tree and is defined by the conditions (Def.4). 
(Def.4) (i) There exists a decorated tree yielding finite sequence q such that - 

p = q and dom(x-tree(p)) = dom q ( ~ ) ,  
K 

(ii) (X-tree(p))(s) = X, and 

(iii) for every n such that n < lenp holds (X-tree(p)) 1 (n) = p(n + 1). 
Let us consider X and let T be a decorated tree. The functor X-tree(T) 

yielding a decorated tree is defined by: 

(Def.5) X-tree(T) = X-tree((T)). 
Let us consider X and let Tl, T2 be decorated trees. The functor X-tree(Tl, T2) 

yields a decorated tree and is defined as follows: 

(Def.6) X-tree(T17 T2) = X-tree((T1, T2)). 
We now state a number of propositions: 

(10) For every decorated tree yielding finite sequence p holds dom(x-tree(p)) = - 
domp(6) . 
n 

(11) Let p be a decorated tree yielding finite sequence. Then y E 
dom(x-tree(p)) if and only if one of the following conditions is satisfied: 

(i) y = ~ , o r  

(ii) there exists a natural number i and there exists a decorated tree T 
and there exists a node q of T such that i < lenp and T = p(i + 1) and 
y = (i) - q. 

(12) Let p be a decorated tree yielding finite sequence, and let i be a natural 
number, and let T be a decorated tree, and let q be a node of T. If 
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i < lenp and T = p(i + l ) ,  then (X-tree(p))((i) - q) = T(q). 

(13) For every decorated tree T holds dom(x-tree(T)) = dom T .  

(14) For all decorated trees Tl, T2 holds dom(x-tree(Tl,T2)) = - 
dom Tl , dom T2 . 

(15) For all decorated tree yielding finite sequence p, q such that X-tree(p) = 
y-tree(q) holds X = y and p = q. 

(16) If the root tree of X = the flat tree of y and p, then X = y and p = E. 

(17) If the root tree of X = y-tree(p) and p is decorated tree yielding, then 
X = y and p = E. 

(18) Suppose the flat tree of X and p = y-tree(q) and q is decorated tree 
yielding. Then X = y and lenp = len q and for every i such that i E domp 
holds q(i) = the root tree of p(i). 

(19) Let p be a decorated tree yielding finite sequence, and let n be a natural 
number, and let q be a finite sequence. If (n) - q E dom(x-tree(p)), then 
(x-tree(p))((n) - q) = p(n + l)(!?). 

(20) The flat tree of X and E = the root tree of X and X-tree(&) = the root 
tree of X. 

(21) The flat tree of X and (y) = ((the elementary tree of 1) I--+ x)((O)/(the 
root tree of y)). 

(22) For every decorated tree T holds X-tree((T)) = ((the elementary tree of 

1) x)((O)/T)- 
Let D be a non empty set, let d be an element of D,  and let p be a finite 

sequence of elements of D. Then the flat tree of d and p is a tree decorated by 
D. 

Let D be a non empty set, let F be a non empty set of trees decorated by D,  
let d be an element of D, and let p be a finite sequence of elements of F. Then 
d-tree(p) is a tree decorated by D. 

Let D be a non empty set, let d be an clement of D, and let T be a tree 
decorated by D. Then d-tree(T) is a tree decorated by D. 

1 Let D be a non empty set, let d be an element of D, and let Tl, T2 be trees 

l decorated by D. Then d-tree(Tl, T2) is a tree decorated by D. 
Let D be a non empty set and let p be a finite sequence of elements of 

FinTrees(D). Then dom, p ( ~ )  is a finite sequence of elements of FinTrees. 

E 
Let D be a non empty set, let d be an element of D,  and let p be a finite se- 

i quence of elements of FinTrees(D). Then d-tree(p) is an element of FinTrees(D). 
1 Let D be a non empty set and let X be a subset of D. We see that the finite 

sequence of elements of X is a finite sequence of elements of D. 

i Let D be a non empty constituted of decorated trees set and let X be a 
subset of D. Note that every finite sequence of elements of X is decorated tree 

- 

, yielding. 
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i 

The scheme ExpandTree concerns a tree A, a tree B, and a unary predicate 
P, and states that: 

There exists a tree T such that for every p holds p E T if and only 
/ l  if one of the following conditions is satisfied: 

'i  
%. - (i) p € A , o r  

b -." 
(ii) there exists an element q of A and there exists an element r 
of B such that P[q] and p = q - r 

for all values of the parameters. 
Let T ,  T' be decorated trees and let X be arbitrary. The functor TXcTi 

yielding a decorated tree is defined by the conditions (Def.7). 

(Def.7) (i) For every p holds p E dom(TZtTi) iff p E domT or there exists a 
node q of T and there exists a node r of T' such that q E LeavesdomT 
a n d T ( q ) = x a n d p = q n r ,  

(ii) for every node p of T such that p LeavesdomT or T(p)  # X holds 
T ~ ~ T I ( P )  = T(P) 7 and 

(iii) for every node p of T and foi  every node q of T' such that p E 
Leaves dom T and T(p) = X holds TxtTi(p - q) = T1(q). 

Let D be a non empty set, let T ,  T' be trees decorated by D,  and let X be 
arbitrary. Then TxtTi is a tree decorated by D. 

We follow a convention: T ,  T', Tl, T2 are decorated trees and X ,  y, z are 
arbitrary. 

One can prove the following proposition 

(23) If X 4 rngT or X 4 LeavesT, then TZcTi = T. 

For simplicity we adopt the following rules: D1, D2 are non empty set, T is 
a tree decorated by D1 and D2, F is a non empty set of trees decorated by D1 
and D2, and Fl is a non empty set of trees decorated by D1. 

The following propositions are true: 

(24) For all D1, D2, T holds dom(Tl) = domT and dom(T2) = domT. 

(25) (the root tree of (dl, d2))i  = the root tree of cll and (the root tree of 
(dl, d2))2 = the root tree of d2. 

(26) (the root tree of X, the root tree of y) = the root tree of (X, y). 

(27) Given D1, D2, dI, d2, F, Fl, -and let p be a finite sequence of elements 
of F, and let p1 be a finite sequence of elements of Fl. Suppose dompl = 
domp and for every i such that i E domp and for every T such that 
T = p(i) holds pl(i) = Tl. Then ((dl, d2)-tree(p))l = dl-tree(pl). 
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(28) Given D1, D2, dl, d2, F ,  F2, and let p be a finite sequence of elements 
of F, and let p2 be a finite sequence of elements of F2. Suppose domp2 = 
domp and for every i such that i E domp and for every T such that 
T = p(i) holds p2(i) = T2. Then ((dl, d2)-tree(p))2 = d2-tree(p2). 

(29) Given D1, D2, dl, d2, F and let p be a finite sequence of elements of F. 
Then there exists a finite sequence p1 of elements of Trees(D1) such that 
dompl = domp and for every i such that i E domp there exists an element 
T of F such that T = p(i) and pl(i) = Tl and ((dl, ~ l ~ ) - t r e e ( p ) ) ~  = 
dl-tree(pl). 

(30) Given D1, D2, dl, d2, F and let p be a finite sequence of elements of F. 
Then there exists a finite sequence p2 of elements of Trees(D2) such that 
dom p2 = dom p and for every i such that i E dom p there exists an element 
T of F such that T = p(i) and p2(i) = T2 and ((dl, d2)-tree(p))2 = 
d2-tree(p2). 

(31) Given D1, D2, dl, d2 and let p be a finite sequence of elements of 
FinTrees(1 D1, D2 4). Then there exists a finite sequence p1 of elements 
of FinTrees(D1) such that dompl = domp and for every i such that 
i E domp there exists an element T of FinTrees(1 D1, D2 :]) such that 
T = P (  i) and pl(i) = Tl and ((al, d2)-tree(p))l = dl-tree(pl). 

(32) Given D1, D2, dl, d2 and let p be a finite sequence of elements of 
FinTrees([: D1, D2 :I). Then there exists a finite sequence p2 of elements 
of FinTrees(D2) such that domp2 = domp and for every i such that 
i E domp there exists an element T of FinTrees(1 D1, D2 4) such that 
T = P( i)  and p2(i) = T2 and ((dl, ~d~) - t r ee (p ) )~  = Cl2-trce(p2). 
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Summary. Formalizes the basic concepts of binary arithmetic and 
its related operations. We present the definitions for the following logical 
operators: 'or' and 'xor' (exclusive or) and include in this article some 
theorems concerning these operators. We also introduce the concept of an 
n-bit register. Such registers are used in the definition of binary unsigned 
arithmetic presented in this article. Theorems on the relationships of 
such concepts to the operations of natural numbers are also given. 

MML Identifier: BINARITH. 

The notation and terminology used in this paper are introduced in the following 
papers: [l217 [ l 1 7  [l317 [l517 [717 181, [41, PI, 191, C1117 [l017 PI, PI, F 1 7  and [141. 

Let us observe that there exists a natural number which is non empty. 
One can prove the following proposition 

(1) For all natural numbers i, j holds +N(i,  j )  = i + j. 
Let n be a natural number and let X be a non empty set. A tuple of n and 

X is an element of Xn.  
One can prove the following propositions: 

(2) Let i, n be natural numbers, and let D be a non empty set, and let d  
be an element of D,  and let z be a tuple of n and D. If i E Segn, then 
ri(. - ( d ) )  = r;z. 

(3) Let n be a natural number, and let D be a non empty set, and let d  be 
an element of D, and let z be a tuple of n and D. Then rnSl(z- ( d ) )  = d. 

(4) For every non empty natural number n holds n > 1. 

(5)  For arnaturar  numbers i, n such that i ~ ' S e g n  holds i is non emptj. 
Let X, y be elements of Boolean. The functor X V y yields an element of 

Boolean and is defined by: 
(Def.1) X V y = l ( 1 x  A l y ) .  

@ 1993 F o n d a t i o n  P h i l i p p e  l e  Hodey 
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I 

Let X ,  y  be elements of Boolean. The functor X $ y  yielding an element of 
Boolean is defined by: 

(Def .2)  X $ y  = - X  A  y  V  X A  l y .  

In the sequel X ,  y ,  z will denote elements of Boolean. 
The following propositions are true: 

x v y =  y v x .  

X V  false = X and false V  X = X .  

X V  y  = i ( 1 x  A  i y ) .  

i ( x  A  y )  = T X  V  l y .  

l ( x  V  y )  = T X  A  i y .  

x $ y = y @ x .  

X A  y  = ~ ( T X  V  i y ) .  

true $ X = l x  and X $ true = i x  

false $ X = X and X $false = X .  

X $ X = false. 

x A x = x .  
I' p ( 1 7 )  X $  l x  = true and l x  $ X  = true. 

I 
jL ( 1 8 )  X V  l x  = true and l x  V  X = true. 

( 1 9 )  X V  true = true and true V  X = true. 

{ (20)  ( x v y ) v z = x v ( y v z ) .  
1 ( 2 1 )  x v x = x .  

X A  ( X  V  y )  = X .  

x V l x A y = x V y .  

X A  ( 1 3  V y )  = X A  y. 

X A  1% = false and l x  A  X = false. 
false A  X = false and X A  false = false. 

true $false = true and false $ true = true. 

x $ y $ z = x $ y $ z .  

x $ i x A y = x V y .  

x V x $ y = x V y :  
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In the sequel i, j, k will be natural numbers. 
Let us consider i, j. The functor i -'j yields a natural number and is defined 

as follows: 
(Def.3)(i) i - ' j = i - j i f i - j > 0 7  

(ii) i -l j = 0, otherwise. 
Next we state the proposition 

(39) (i  + j )  -' j = i. 
We adopt the following convention: n will denote a non empty natural num- 

ber and X ,  y,  z, zl, z2 will denote tuples of n and Boolean. 
Let us consider n, X. The functor l x  yields a tuple of n and Boolean and is 

defined as follows: 
(Def.4) For every i such that i E Segn holds n;lx = ?n;x. 

Let us consider y. The functor carry(x, y) yielding a tuple of n and Boolean is 
defined as follows: 

(Def.5) nl carry(x, y) = false and for every i such that 1 < i and i < n holds 
*;+l carry(x, y) = nix A n;y V nix A n; carry(x, Y)  L1 n;y A a; carry(x, y). 

Let us consider n, X. The functor Binary(x) yielding a tuple of n and N is 
defined by: 

(Def.6) For every i such that i E Segn holds n; Binary(x) = (nix = false + 
0, the i -l l - th  power of 2). 

Let us consider n, X. The functor Absval(x) yielding a natural number is 
defined by: 

(Def.7) Absval(x) = +N o Binary(x). 
Let us consider n, X ,  y. The functor X + y yielding a tuple of n and Boolean 

is defined by: 

(Def.8) For every i such that i E Seg n holds .rr;(x+y) = n;xCBn;yCBn; carry(x, y). 

Let us consider n, zl, 22.  The functor add-ovfl(zl, z2) yielding an element of 
Boolean is defined by: 

(Def.9) add-ovfl(zl, z2) = n,zl A nnz2 V n,zl A n, carry(z1,za) V n,z2 A 
K, carry ( a ,  z2) - 

Let us consider n, zl, z2. We say that zl and z2 are summable if and only if: 

(Def.10) add-ovfl(zl, z2) = false. 
Let us consider n, b. Then n + k is a non empty natural number. 
One can prove the following proposition 

(40) For every tuple zl of 1 and Boolean holds zl = (false) or zl = (true). 

Let nl  be a non empty natural number, let n2 be a natural number, let D 
be a non empty set, let zl be a tuple of nl  and D, -and let 2 2  be a tuple of n2 
and D. Then z l -  z2 is a tuple of n l  + n2 and D. 

Let D be a non empty set and let d be an element of D. Then (d) is a tuple 
of 1 and D. 

The following propositions are true: 
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(41) Given n, and let zl, z2 be tuples of n and Boolean, and let dl, d2 be 
elements of Boolean, and let i be a natural number. If i E Segn, then 
T; carry(zl - (dl), z2 - (d2)) = n; carry(zl, 22). 

(42) For every n and for all tuples zl, zt.2 of n and Boolean and for all elements 
dl, d2 of Boolean holds add-ovfl(zl , z2) = n,+l carry(zl - (dl), z2 (d2)). 

(43) For every n and for all tuples zl, a2 of n and Boolean and for all elements 
l dl, d2 of Boolean holds zl - (dl) + zz - (d2) = (zl + z2) - (dl $ d2 $ 

/ I  add-ovfl(zl, z2)). 
r -9(44) For every n and for every tuple z of n and Boolean and for every element 

d of Boolean holds Absval(zn (d)) = Absval(z) + (d = false -+ 0, the n-th 
power of 2). 

(45) For every n and for all tuples zl,z2 of n and Boolean holds Absval(zl + 
z2) + (add-ovfl(zl, z2) = false -t 0, the n-th power of 2) = Absval(zl) + 
Absval(z2). 

(46) For every n and for all tuples zl, z2 of n and Boolean such that z1 and 
2 2  are summable holds Absval(zl + z2) = Absval(zl) + Absval(z2). 

Many thanks to Professor Andrzej Trybulec for making this article a success. 
We really enjoyed working with you ... ARIGATOU GOZAIMASHITA. 
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Summary. Contains basic concepts for Petri nets with Boolean 
markings and the firabilitylfiring of single transitions as well as sequences 
of transitions [7]. The concept of a Boolean marking is introduced as a 
mapping of a Boolean TRUEIFALSE to each of the places in a place/ 
transition net. This simplifies the conventional definitions of the firabil- 
ity and firing of a transition. One note of caution in this article - the - 
definition of firing a transition does not require that the transition be 
firable. Therefore, it is advisable to check that transitions ARE firable 
before firing them. 

MML Identifier: BOOLMARK. 

The papers [l217 111, [l517 [l717 [l817 P I 7  1517 [l317 [101, [Ill, 191, l217 [S], [l417 [G], 
[16], and [a] provide the notation and terminology for this paper. 

The following four propositions are true: 

(1) Let A, B be non empty set, and let f be a function from A into B, and 
let C be a subset of A, and let v be an element of B. Then f +. (C W v) 
is a function from A into B. 

(2) Let X, Y be non empty set, and let A, B be subsets of X, and let f be 
a function from X into Y. If f O A n f O B = 0, then A n B = 0. 

(3) For all sets A, B and for every function f and for arbitrary X such that 
A n  B = 0  holds (f +.(A++x))O B = f O  B. 

(4) Let n be a natural number, and let D be a non empty set, and let d ' 
be an element of D,  and let z be a finite sequence of elements of D. If 
len z = n, then a,+l ( z  - ( d )  ) = d. 
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I 

Let Pl be a place/transition net structure. The functor Boolmarks-of PI 
yielding a non empty set of functions from the places of PI to Boolean is defined 
by: 

1 1  
(Def.1) Boolmarks-of PI = Booleanthe plaCemf '4 . 

t i . Let PI be a place/transition net structure. A Boolean marking of Pl is an 
element of Boolmarks-of PI. 

Let PI be a place/transition net structure, let MO be a Boolean marking of 
PI, and let t be a transition of PI. We say that t is firable on MO if and only if: 

(Def.2) MO " (*{t}) c {true}. 
Let PI be a place/transition net structure, let MO be a Boolean marking of 

PI, and let t be a transition of PI. The functor Firing(t, MO) yields a Boolean 
marking of PI-and is defined by: 

. (Def.3) Firing(t, MO) = MO +- (*{t} H false) f . (it)* I---+ true). 
Let PI be a place/transition net structure, let MO be a Boolean marking of 

PI, and let Q be a finite sequence of elements of the transitions of PI. We say 
that Q is firable on MO if and only if the conditions (Def.4) are satisfied. 

(Def.4)(i) Q = ~ , o r  

(ii) there exists a finite sequence M of elements of Boolmarks-of PI such 
that len Q = len M and T~ Q is firable on MO and nl M = Firing(n1 Q, MO) 
and for every natural number i such that i < len Q and i > 0 holds n;+lQ 
is firable on n;M and T ; + ~  M = Firing(~i+lQ, n;M). 

Let PI be a place/transition net structure, let MO be a Boolean marking of 
PI, and let Q be a finite sequence of elements of the transitions of PI. The 
functor Firing(Q, MO) yielding a Boolean marking of PI is defined as follows: 

(Def.5) (i) Firing(&, MO) = MO if Q = E ,  

(ii) there exists a finite sequence M of elements of Boolmarks-of PI 
such that len Q = len M and Firing(Q, MO) = nlenMM and n l M  = 
Firing(nlQ, MO) and for every natural number i such that i < len Q and 
i > 0 holds n;+lM = Fir ing(~;+~Q, n;M), otherwise. 

One can prove the following propositions: 

(5) For every non empty set A and for arbitrary y and for every function 
f holds (f +. (A - y)) " A = {y}. 

(6) Let PI be a place/transition net structure, and let MO be a Boolean 
marking of PI, and let t be a transition of PI, and let s be a place of PI. 
If s E {t}*, then (Firing(t, Mo))(s) = true. 

( 7 )  Let PI be a place/transition net structure and let S1 be a non empty set 
of places of PI. Then S1 is deadlock-like if and only if for every Boolean 
marking MO of PI such that MO O S1 = {false} and for every transition t 
of PI such that t is firable on MO holds (Firing(t, MO)) S1 = {false}. 
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(8) Let D be a non empty set, and let Qo, Q1 be finite sequences of elements 
of D ,  and let i be a natural number. If 1 5 i and i 5 lenQo, then 
ri(Q0 - Q1) = ~ , Q o .  

(9) Let D be a non empty set, and let Qo, Q1 be finite sequences of elements 
of D,  and let i be a natural number. If 1 < i and i 5 lenQ1, then 
rlenQo+z(Q0 - Q1) = riQ1. 

(10) Let PI be a place/transition net structure, and let MO be a Boolean 
marking of PI, and let Qo, Q1 be finite sequences of elements of the 
transitions of PI. Then Firing(QonQ1, MO) = Firing(Ql, Firing(Q0, MO)). 

(11) Let Pl be a place/transition net structure, and let MO be a Boolean 
marking of PI, and let Qo, Q1 be finite sequences of elements of the 
transitions of PI.  If Q. - Q1 is firable on MO, then Q1 is firable on 
Firing(Qo, MO) and Q. is firable on MO. 

(12) Let PI be a place/transition net structure, and let MO be a Boolean 
marking of PI, and let t be a transition of PI. Then t is firable on MO if 
and only if (t) is firable on MO. 

(13) Let PI be a place/transition net structure, and let MO be a Boolean 
marking of PI, and let t be a transition of PI, Then Firing(t, MO) = 
Firing((t), MO). 

(14) Let Pl be a place/transition net structure and let S1 be a non empty set 
of places of PI. Then S1 is deadlock-like if and only if for every Boolean 
marking MO of Pl such that Moo S1 = { fa l se}  and for every finite sequence 
Q of elements of the transitions of PI such that Q is firable on MO holds 
(Firing(Q, MO)) " S1 = { false} .  

The authors would like to thank Dr. Andrzej Trybulec for his patience and 
guidance in the writing of this article. 
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Summary. The continuation of the sequence of articles on trees 
(see [3,5,7,4]) and on context-free grammars ([15]). We define the set of 
complete parse trees for a given context-free grammar. Next we define 
the scheme of induction for the set and the scheme of defining functions 
by induction on the set. For each symbol of a context-free grammar we 
define the terminal, the pretraversal, and the posttraversal languages. 
The introduced terminology is tested on the example of Peano naturals. 
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The terminology and notation used in this paper are introduced in the following 
articles: [18], 121, [21], [121, [1317 [g], [l], [14l, PI7 [ill, [ W ,  [191, 161, [l?], [10], 1 
PO], [l517 L317 [S17 PI, and PI. 

The following propositions are true: 

(1) For every non empty set D holds every finite sequence of elements of 
FinTrees(D) is a finite sequence of elements of Trees(D). 

(2) For arbitrary X ,  y and for every finite sequence p of elements of X such 
that y E domp or y E Seglenp holds p(y) E X. 

Let X* be a set. Observe that every element of X *  is function-like. 
Let X be a set. Note that every element of X* is finite sequence-like. 
Let D be a set and let p, q be elements of D*. Then p - q is an element of 

D*. 
'This work was partially supported by NSERC Grant OGP9207 while the first author 

visited University of Alberta, May-June 1993. 
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Let D be a non empty set and let t be an element of FinTrees(D). Then 
dorn t is a finite tree. 

Let D be a non empty set and let T be a set of trees decorated by D. One 
can verify that every finite sequence of elements of T is decorated tree yielding. 

Let D be a non empty set, let F be a non empty set of trees decorated by 
D,  and let Tl be a non empty subset of F. We see that the element of Tl is an 

, I element of F. 
Let p be a finite sequence. Let us assume that p is decorated tree yielding. 

L %The roots of p constitute finite sequences and is defined by the conditions (Def.1). 

, ( D e f )  (i) dorn (the roots of p) = domp, and 

(ii) for every natural number i such that i E domp there exists a decorated 
tree T such that T = p(i) and (the roots of p)(i) = T(E). 

Let D be a non empty set, let T be a set of trees decorated by D,  and let p 
be a finite sequence of elements of T. Then the roots of p is a finite sequence of 
elements of D. 

One can prove the following propositions: 

^ (3) The roots of E = E. 

(4) For every decorated tree T holds the roots of (T) = (T(E)). 

( 5 )  Let D be a non empty set, and let F be a subset of FinTrees(D), and let 
p be a finite sequence of elements of F. Suppose len (the roots of p) = 1. 
Then there exists an element X of FinTrees(D) such that p = (X) and 
X E F. 

(6) For all decorated trees T2, T3 holds the roots of (T2,T3) = (T2(&), T3(&)). 

Let f be a function. The functor pr l (f)  yields a function and is defined by: 

(Def.2) domprl(f) = dorn f and for arbitrary X such that X E dorn f holds 
pr l ( f  )(X) = f(xI1. 

The functor pr2(f) yielding a function is defined by: 

(Def.3) dompr2(f) = dorn f and for arbitrary X such that X E dorn f holds 
pr2(f )(X) = f ( ~ 1 2 .  

Let X ,  Y be sets and let f be a finite sequence of elements of EX, Y 4. Then 
prl(f)  is a finite sequence of elements of X .  Then pr2(f) is a finite sequence of 
elements of Y. 

One can prove the following proposition 

( 7 )  p r l ( ~ )  = E and p r 2 ( ~ )  = E. 

The scheme MonoSetSeq concerns a function A, a set B, and a binary functor 
F yielding a set, and states that: 

For all natuPa1 numbers b,  S llolds A(k) C A(k + S )  

provided the parameters meet the following requirement: 
m For every natural number n and for arbitrary X such that X = d ( n )  

holds A(n $ 1) = X U F (n ,  X). 
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Now we present two schemes. The scheme DTConstrStrEx concerns a non 
empty set A and a binary predicate P ,  and states that: 

There exists a strict tree construction structure G such that 

(i) the carrier of G = A, and 

(ii) for every symbol X of G and for every finite sequence p of 
elements of the carrier of G holds X + p iff P[x,p] 

for all values of the parameters. 
The scheme DTConstrStrUniq deals with a non empty set A and a binary 

predicate P, and states that: 
Let G1, G2 be strict tree construction structure. Suppose that 

(i) the carrier of G1 = A, 

(ii) for every symbol X of G1 and for every finite sequence p of 
elements of the carrier of G1 holds X + p iff P[x,p], 

(iii) the carrier of G2 = A, and 

(iv) for every symbol X of G2 and for every finite sequence p of 
elements of the carrier of G2 holds X + p iff P[x,p]. 

Then G1 = G2 
for all values of the parameters. 

Next we state the proposition 

(8) For every tree construction structure G holds (the terminals of G)n (the 
nonterminals of G) = 0. 

Now we present four schemes. The scheme DTCMin concerns a function A, 
a tree construction structure B, a non empty set C, a unary functor F,yielding 
an element of C, and a ternary functor 6 yielding an element of C, and states 
that: 

There exists a subset X of FinTrees(1 the carrier of B, C j) such 
that 
(i) X = UA, 

(ii) for every symbol d of B such that d E the terminals of B 
holds the root tree of (d, F(d) )  E X ,  

(iii) for every symbol o of B and for every finite sequence p of 
elements of X such that o + prl(the roots of p) and for arbitrary 
S, v such that s = prl(the roots of p) and v = pr2(the roots of p) 
holds (0, G(o, S, v))-tree(p) E X, and 
(iv) for every subset F of FinTrees([: the carrier of B, C j) such 
that for every symbol d of B such that d E the terminals of B 
holds the root tree of (d, F(d) )  E F and for every symbol o of 
B and for every finite sequence p of elements of F such that o + 
prl(the roots of p) holds (0, G(o, prl(the roots of p), pr2(the roots 
of p)))-tree(p) E F holds X c F 

provided the following conditions are satisfied: 
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domA = N, 
A(0) = {the root tree of (t, d): t ranges over symbols of B, d ranges 
over elements of C, t E the terminals of B A d = F( t )  V t =+ &.A d = 
a t ,  E ,  41, 
Let n be a natural number and let X be arbitrary. Suppose X = 
A(n). Then A(n + 1) = X U {(o, G'(o,prl(the roots of p),pr2(the 

i roots of p)))-tree(p) : o ranges over symbols of B, p ranges over 
elements of X*, 3, p = q A o =+ prl(the roots of q)}. 

( i  --- The scheme DTCSymbols deals with a function A, a tree construction struc- 
5 

ture B, a non empty set C, a unary functor F yielding an element of C, and a 
ternary functor 6 yielding an element of C, and states that: 

There exists a subset X1 of FinTrees(the carrier of L?) such that 

(i) XI = {tl : t ranges over elements of FinTrees(1 the carrier of 
B, c 0, t E UA1, 
(ii) for every symbol d of B such that d E the terminals of B 
holds the root tree of d E XI ,  

(iii) for every symbol o of B and for every finite sequence p of 
elements of XI such that o + the roots of p holds o-tree(p) E XI, 
and 
(iv) for every subset F of FinTrees(the carrier of B) such that for 
every symbol d of B such that d E the terminals of B holds the 
root tree of d E F and for every symbol o of B and for every finite 
sequence p of elements of F such that o + the roots of p holds 
o-tree(p) E F holds XI C F 

provided the parameters meet the following requirements: 
domA = N, 
A(0) = {the root tree of (t, d): t ranges over symbols of B, d ranges 
over elements of C, t E the terminals of B A d = F( t )  V t + E A d = 
G(t, E ,  41, 
Let n be a natural number and let X be arbitrary. Suppose X = 
A(n). Then A(n + 1) = X U ((0, G(o,prl(the roots of p),pr2(the 
roots of p)))-treefp) : o ranges over symbols of B, p ranges over 
elements of X*, 3, p = q A o + prl(the roots of q)}. 

The scheme DTCHeight concerns a function A, a tree construction structure 
B, a non empty set C,  a unary functor F yielding an element of C, and a ternary 
functor B yielding an element of C, and states that: 

Let n be anatural number and let dl be an element of FinTrees(1 the 
carrier of B, C 1). If dl E U A, then dl E A(n) iff height dom dl < n 

provided the parameters meet the following conditions: 
d o m A = N ,  
A(0) = {the root tree of (t, d): t ranges over symbols of B, d ranges 
over elements of %;t E the terminals of B A d = F( t )  V t +- E A d = 
G(t7 E, 41, 
Let n be a natural number and let X be arbitrary. Suppose X = 
A(n). Then A(n + 1) = X U {(o, G'(o,prl(the roots of p),pr2(the 
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roots of p)))-tree(p) : o ranges over symbols of B, p ranges over 
elements of X*, 3, p = q A o + prl(the roots of q)}. 

The scheme DTCUniq concerns a function A, a tree construction structure 
B, a non empty set C, a unary functor 3 yielding an element of C, and a ternary 
functor G yielding an element of C, and states that: 

For all trees d2, d3 decorated by E the carrier of B, C :] such that 
dl E U A  and d3 E U A  and (dz)l = (d3)1 holds d2 = d3 

provided the following conditions are satisfied: 
a d o m d  = N, 
m A(0) = {the root tree of (t, d): t ranges over symbols of B, d ranges 

over elements of C, t E the terminals of B A d = 3 ( t )  V t + E A d = 
W 7  E ,  41, 

m Let n be a natural number and let X be arbitrary. Suppose X = 
A(n). Then A(n + 1) = X U {(o, G(o, prl(the roots of p), pr2(the 
roots of p)))-tree(p) : o ranges over symbols of B, p ranges over 
elements of X*, 3, p = q A o =+ prl(the roots of q)}. 

Let G be a tree construction structure. The functor TS(G) yields a subset 
of FinTrees(the carrier of G) and is defined by the conditions (Def.4). 

(Def.4) (i) For every symbol d of G such that d E the terminals of G holds the 
root tree of d E TS(G), 

(ii) for every symbol o of G and for every finite sequence p of elements of 
TS(G) such that o * the roots of p holds o-tree(p) E TS(G), and 

(iii) for every subset F of FinTrees(the carrier of G) such that for every 
symbol d of G such that d E the terminals of G holds the root tree of 
d E F and for every symbol o of G and for every finite sequence p of 
elements of F such that o * the roots of p holds o-tree(p) E F holds 
TS(G) 5 F. 

Now we present three schemes. The scheme DTConstrInd concerns a tree 
construction structure A and a unary predicate P, and states that: 

For every tree t decorated by the carrier of A such that t E TS(A) 
holds P[t] 

provided the parameters meet the following requirements: 
For every symbol S of A such that s E the terminals of A holds 
P[the root tree of S], 

Let nl be a symbol of A and let tl be a finite sequence of elements 
of TS(A). Suppose nl + the roots of tl and for every tree t dec- 
orated by the carrier of A such that t E rngtl holds P[t]. Then 
P[nl-tree(tl)]. 

The scheme DTConstrIndDefconcerns a tree construction structure A, a non 
empty set B, a unary functor 3 yielding an element of B, and a ternary functor 
G yielding an element of B, and states that: 

There exists a function f from TS(A) into B such that 

(i) for every symbol t of A such that t E the terminals of A holds 
f(the root tree of t) = 3( t ) ,  and a , 
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(ii) for every symbol nl of A and for every finite sequence tl 
of elements of TS(A) and for every finite sequence rl such that 
r l  = the roots of tl and nl + r l  and for every finite sequence X of 
elements of B such that X = f atl holds f (nl-tree(tl)) = G(nl, rl, X) 

for all values of the parameters. 
The scheme DTConstrUniqDef deals with a tree construction structure A, a 

non empty set B, a unary functor F yielding an element of B, a ternary functor 
G yielding an element of B, and functions C, V from TS(A) into B, and states 
that: 

C = V  
provided the parameters satisfy the following conditions: 

(i) For every symbol t of A such that t E the terminals of A 
holds C(the root tree of t )  = .F(t), and 

(ii) for every symbol nl of A and for every finite sequence ts 
of elements of TS(A) and for every finite sequence r l  such that 
r l  = the roots of tl and nl + r l  and for every finite sequence X of 
elements of B such that X = C.tl holds C(nl-tree(tl)) = G(nl, r l ,  X), 

(i) For every symbol t of A such that t E the terminals of A 
holds V(the root tree of t)  = F(t) ,  and 

(ii) for every symbol nl of A and for every finite sequence tl 
of elements of TS(A) and for every finite sequence r l  such that 
rl = the roots of tl and n l  + r l  and for every finite sequence 
X of elements of B such that X = V . tl holds V(nl-tree(tl)) = 
G(%, ~ 1 ,  X). 

3. AN EXAMPLE: PEANO NATURALS 

The strict tree construction structure Npeano is defined by the conditions 
(Def.5). 

(Def.5) (i) The carrier of Np,,, = (0, l ) ,  and 

(ii) for every symbol X of Np,,,, and for every finite sequence y of elements 
of the carrier of NPeano holds X + y iff X = 1 but y = (0) or y = (1). 

Let G be a tree construction structure. We say that G has terminals if and 
only if: 

(Def.6) The terminals of G # 8. 
We say that G has nonterminals if and only if: 

(Def.7) The nonterminals of G # 0. 
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We say that G has useful nonterminals if and only if the condition (Def.8) is 
satisfied. 

(Def.8) Let n l  be a symbol of G. Suppose nl E the nonterminals of G. Then 
there exists a finite sequence p of elements of TS(G) such that nl + the 
roots of p. 

Let us note that there exists a tree construction structure which is strict and 
has terminals, nonterminals, and useful nonterminals. 

Let G be a tree construction structure with terminals. Then the terminals of 
G is a non empty subset of the carrier of G. Then TS(G) is a non empty subset 
of FinTrees(the carrier of G). 

Let G be a tree construction structure with useful nonterminals. Then TS(G) 
is a non empty subset of FinTrees(the carrier of G). 

Let G be a tree construction structure with nonterminals. Then the nonter- 
minals of G is a non empty subset of the carrier of G. 

Let G be a tree construction structure with terminals. A terminal of G is an 
element of the terminals of G. 

Let G be a tree construction structure with nonterminals. A nonterminal of 
G is an element of the nonterminals of G. 

Let G be a tree construction structure with nonterminals and useful nonter- 
minals and let nl be a nonterminal of G. A finite sequence of elements of TS(G) 
is called a subtree sequence joinable by nl if: 

(Def.9) nl =+ the roots of it. 
Let G be a tree construction structure with terminals and let t be a terminal 

of G. Then the root tree of t is an element of TS(G). 
Let G be a tree construction structure with nonterminals and useful nonter- 

minals, let n l  be a nonterminal of G, and let p be a subtree sequence joinable 
by nl. Then nl-tree(p) is an element of TS(G). 

One can prove the following two propositions: 

(9) Let G be a tree construction structure with terminals, and let t2 be an 
element of TS(G), and let s be a terminal of G. If t2(&) = S ,  then tz = the 
root tree of S. 

(10) Let G be a tree construction structure with terminals and nonterminals, 
and let t2 be an element of TS(G), and let n l  be a nonterminal of G. 
Suppose t2(&) = nl. Then there exists a finite sequence tl of elements of 
TS(G) such that t2 = nl-tree(tl) and nl + the roots of tl. 

Np,,, is a strict tree construction structure with terminals, nonterminals, 
and useful nonterminals. ..~ . 

Let nl be a nonterminal of NPeano and let t be an element of TS(Npe,,). 
Then nl-tree(t) is an element of TS(Npe,,). 
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Let X be a finite sequence of elements of N. Let us assume that X # E .  The 
functor (x)(l+l) yielding a natural number is defined as follows: 

(Def.10) There exists a natural number n such that ( ~ ) ( ~ + l )  = n + l and x(1) = 
n. 

The function Npeano + N from TS(Npeano) into N is defined by the conditions 
(Def.11). 

I (Def.11) (i) For every symbol t of Npeano such that t E the terminals of Npeano 
holds (NPeano + N)(the root tree of t) = 0, and 

' t  ,. , (ii) for every symbol nl of Npeano and for every finite sequence tl of ele- 
ments of TS(Npeano) and for every finite sequence r l  such that r l  = the 
roots of tl and nl =+ r l  and for every finite sequence X of elements of 
N such that X = (Npeano + N) . tl holds (Npeano --+ N)(nl-tree(tl)) = 

(x>(1+1>. 
Let X be an element of TS(Npemo). The functor succ(x) yielding an element 

of TS(Npemo) is defined as follows: 
(Def.12) succ(x) = l-tree((x)). 

The function N --+ Npemo from N into TS(NpemO) is defined by the conditions 
(Def.13). 

(Def.13) (i) (N + Npean0)(O) = the root tree of 0, and 

(ii) for every natural number n and for every element X of TS(Npeano) such 
that X = (N + Npeano)(n) holds (N + Npeano)(n + 1) = succ(x). 

One can prove the following propositions: 

(11) For every element p1 of TS(Npeano) holds p1 = (N  -+ Npeano)((Npemo -+ 

N)(P~)).  
(12) For every natural number n holds n = (NPemo + N)((N + Npeano)(n)). 

Let D be a set and let F be a finite sequence of elements of D*. The functor 
Flat(F) yields an element of D* and is defined as follows: 

(Def.14) There exists a binary operation g on D* such that for all elements p, q 
of D* holds g(p, q) = p -  q and Flat(F) = g O F. 

Next we state the proposition 

(13) For every set D and for every element d of D* holds Flat((d)) = d. 
Let G be a tree construction structure and let t2 be a tree decorated by 

the carrier of G. Let us assume that t2 E TS(G). The terminals of t2 is a 
finite sequence of elements of the terminals of G and is defined by the condition 
(Def.15). 

(Def.15) There exists a function f from TS(G) into (the terminals of G)* such 
that 

(i) the terminals of t2  = f (t2), 
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(ii) for every symbol t of G such that t E the terminals of G holds f (the 
root tree of t) = (t) ,  and 

(iii) for every symbol n l  of G and for every finite sequence tl of ele- 
ments of TS(G) and for every finite sequence rl such that r l  = the 
roots of tl and nl +- r l  and for every finite sequence X of elements of 
(the terminals of G)* such that X = f - t l  holds f(nl-tree(tl)) = Flat(x). 

The pretraversal string of t2 is a finite sequence of elements of the carrier of G 
and is defined by the condition (Def.16). 

(Def.16) There exists a function f from TS(G) into (the carrier of G)* such that 

(i) the pretraversal string of t2 = f (t2), 

(ii) for every symbol t of G such that t E the terminals of G holds f (the 
root tree of t )  = (t), and 

(iii) for every symbol n l  of G and for every finite sequence tl of elements of 
TS(G) and for every finite sequence r l  such that r l  = the roots of t l  and 
nl r l  and for every finite sequence X of elements of (the carrier of G)* 
such that X = f . tl holds f (nl-tree(t1)) = (nl ) - Flat(x). 

The posttraversal string of t2 is a finite sequence of elements of the carrier of G 
and is defined by the condition (Def.17). 

(Def.17) There exists a function f from TS(G) into (the carrier of G)* such that 

(i) the posttraversal string of t2 = f (t2), 

(ii) for every symbol t of G such that t E the terminals of G holds f(the 
root tree of t)  = (t), and 

(iii) for every symbol nl of G and for every finite sequence tl of elements of 
TS(G) and for every finite sequence r l  such that r l  = the roots of tl and 
nl =+ r1 and for every finite sequence X of elements of (the carrier of G)* 
such that X = f . tl holds f (nl-tree(tl)) = Flat(x) ̂  (nl). 

Let G be a tree construction structure with nonterminals and let nl be a 
symbol of G. The language derivable from nl is a subset of (the terminals of G)* 
and is defined by the condition (Def.18). 

(Def.18) The language derivable from nl = {the terminals of t2: t2 ranges over 
elements of FinTrees(the carrier of G), t2 E TS(G) A t2(&) = nl}. 

The language of pretraversals derivable from nl is a subset of (the carrier of G)* 
and is defined by the condition (Def.19). 

(Def.19) The language of pretraversals derivable from nl = {the pretraversal 
string of t2: t2 ranges over elements of FinTrees(the carrier of G), t2 E 
TS(G) A t2(&) = nl). 

The language of posttraversals derivable from nl is a subset of (the carrier of G)* 
and is defined by the condition (Def.20). 

(Def.20) The language of posttraversals derivable from nl = {the posttraversal 
string of t2: t2 ranges over elements of FinTrees(the carrier of G), t2 E- 
TS(G) A t2(&) = nl). 

One can prove the following propositions: 
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l 
(14) For every tree t decorated by the carrier of NPeano such that  t E 

TS(Npeano) holds the terminals of t = (0). 

(15) For every symbol nl of Npeano holds the language derivable from nl = 

((0)). 
(16) For every element t of TS(Npeano) holds the pretraversal string of t = 

(height dom t F-+ 1) - (0). 

(17) Let nl be a symbol of NPeano. Then 

(i) if n1 = 0, then the language of pretraversals derivable from nl = {(O)}, 
and 

(ii) if nl = 1, then the language of pretraversals derivable from nl = 
{ ( n  - 1) - (0) : n ranges over natural numbers, n # 0). 

(18) For every element t of TS(Npeano) holds the posttraversal string of t = 
(0) - (height dom t - 1). 

(19) Let nl be a symbol of Npeano. Then 

(i) if nl = 0, then the language of post traversals derivable from nl = {(O)) ,  
and 

(ii) if nl = 1, then the language of posttraversals derivable from nl = 
((0) ( n  W 1) : n ranges over natural numbers, n # 0). 
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Summary. The product of two algebras, trivial algebra deter- 
mined by an empty set and product of a family of algebras are defined. 
Some basic properties are shown. 

MML Identifier: PRALG-1. 

The terminology and notation used in this paper have been introduced in the 
following articles: [l417 [G17 [317 [71, [ l 1 1 7  [IS], [l217 [g17 PI, [g], [ l 1 7  L217 [l017 PI, 
and [l 31 . 

The following proposition is true 

(1) For all non-empty set D1, D2 and for all natural numbers n, m such 
that Dln = D2m holds n = m. 

For simplicity we follow a convention: Ul, U2, U3 denote universal algebras, 
k, m, i denote natural numbers, z is arbitrary, and hl, ha denote finite sequences 
of elements of 1 A, B 4. 

Let us consider A, B and let us consider hl. The functor nl(hl) yielding a 
finite sequence of elements of A is defined as follows: 

(Def.1) lennl(hl) = len hl and for every n such that n E domnl(hl) holds 
(nl(hl))(n) = h1 ( 4 1 .  

The functor n2(hl) yielding a finite sequence of elements of B is defi-ned .> . as 
follows: 

(Def.2) lenn2(hl) = len hl and for every n such that n E dorn.lr2(hl) holds 
(82(h1))(n) = hi (n)a. 
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Let us consider A, B, let fl be a homogeneous quasi total non-empty partial 
function from A* to A, and let f2 be a homogeneous quasi total non-empty 
partial function from B* to B. Let us assume that arity fl = arity f2.  The 
functor 11 fl, f2  [[ yielding a homogeneous quasi total non-empty partial function 
from [:A, B :]* to [:A, B :] is defined by the conditions (Def.3). 

(Def.3) (i) dam]] fl, f2 [[= [: A, B :larity f1 , and 
I (ii) for every finite sequence h of elements of EA, B :] such that h E 

i .. - domll f17 f 2  holds 11 fl, f 2  [[(h) = ( f l ( ~ l ( ~ ) ) ,  f2(~2(h))).  
, % T  In the sequel hl will denote a homogeneous quasi total non-empty partial 
: function from (the carrier of Ul)* to the carrier of Ul. 

Let us consider Ul, U2. Let us assume that Ul and U2 are simi- 
lar. The functor Opers(Ul, U2) yielding a finite sequence of elements of 
[: the carrier of Ul , the carrier of U2 :]*A[: the carrier of Ul , the carrier of U2 :] 
is defined as follows: 

(Def.4) lenOpers(Ul, U2) = len0pers Ul and for every n such that n E 
domOpers(Ul, U2) and for all hl, h2 such that hl = (Opers Ul)(n) and 
h2 = (Opers U2)(n) holds (Opers(Ul, U2))(n) =l1 hl, h2 [[. 

The following proposition is true 

(2) If Ul and Uz are similar, then (1 the carrier of Ul, the carrier of U2 :], 
Opers(Ul, U2)) is a strict universal algebra. 

Let us consider Ul, U2. Let us assume that Ul and U2 are similar. The 
functor [: Ul, U2 :] yielding a strict universal algebra is defined as follows: 

(Def.5) [: Ul, U2 :] = ([: the carrier of Ul, the carrier of U2 :], Opers(Ul, U2)). 
Let A, B be non-empty set. The functor Inv(A, B) yielding a function from 

1 A, B :] into [:B, A :] is defined as follows: 

(Def.6) For every element a of [: A, B :] holds (Inv(A, B))(a) = (a2, al). 
One can prove the following propositions: 

(3) For all non-empty set A, B holds rngInv(A, B) = [: B,  A :]. 

(4) For all non-empty set A, B holds Inv(A, B) is one-to-one. 

(5) Suppose Ul and U2 are similar. Then Inv(the carrier of Ul, the carrier 
of U2) is a function from the carrier of [: Ul, U2 :] into the carrier of 1 U2, 
u1 :]. 

(6) Suppose Ul and U2 are similar. Let 01 be a operation of Ul, and let 02 

be a operation of U2, and let o be a operation of [: Ul, U2 :], and let n be a 
natural number. Suppose 01 = (Opers Ul)(n) and 0 2  = (Opers U2)(n) and 
o = (Opers[: Ul, U2 :])(n) and n E domOpers Ul. Then arityo = arityol 
and arity o = arity 0 2  and o =l1 0 1 , 0 2  [[. 

(7 )  If Ul and U2 are similar, then [: Ul, U2 :] and Ul are similar. 

(8) Let Ul, U2, U3, U4 be universal algebras. Suppose Ul is a subalgebra 
of U2 and U3 is a subalgebra df U4 and U2 and U4 are similar. Then [: Ul, 
U3 :] is a subalgebra of [: U2, U4 :]. 
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Let k be a natural number. The functor TrivOp(k) yields a homogeneous 
quasi total non-empty partial function from {g}* to (0) and is defined as follows: 

(Def.7) domTrivOp(k) = {k I-+ 0) and rngTrivOp(k) = (0). 
The following proposition is true 

(9) arity TrivOp(k) = k. 
Let f be a finite sequence of elements of N. The functor TrivOps(f) yielding 

a finite sequence of elements of {Q))*i{$} is defined as follows: 
(Def.8) len TrivOps(f) = len f and for every n such that n E dom TrivOps(f) 

and for every m such that m = f(n)  holds (TrivOps(f))(n) = TrivOp(m). 
We now state two propositions: 

(10) For every finite sequence f of elements of N holds TrivOps( f )  is homo- 
geneous quasi total and non-empty. 

(11) For every finite sequence f of elements of N such that f # E holds ({g}, 
TrivOps(f)) is a strict universal algebra. 

Let D be a non empty set. Observe that there exists a finite sequence of 
elements of D which is non empty and there exists an element of D* which is 
non empty. 

Let f be a non empty finite sequence of elements of N. The trivial algebra 
of f yielding a strict universal algebra is defined as follows: 

(Def.9) The trivial algebra of f = ((81, TrivOps(f)). 

A function is universal algebra yielding if: 

(Def.10) For every X such that X E domit holds it(x) is a universal algebra. 

A function is l-sorted yielding if: 

(Def.11) For every X such that X E domit holds it(x) is a l-sorted structure. 
One can check that there exists a function which is universal algebra yielding. 
One can verify that every function which is universal algebra yielding is also 

l-sorted yielding. 
Let I be a set. Observe that there exists a many sorted set of I which is 

l-sorted yielding. 
A function is equal signature if: 

(Def.12) For all X ,  y such that X E domit and y E domit and for all Ul, U2 such 
that Ul = it(x) and U2 = it(y) holds signature Ul = signature U2. -< 

Let J be a non-empty set. One can check that there exists a many sorted 
set of J which is equal signature and universal algebra yielding. 
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Let J be a non empty set, let A be a universal algebra yielding many sorted 
set of J, and let j be an element of J. Then A(j) is a universal algebra. 

Let J be a non-empty set and let A be a universal algebra yielding many 
sorted set of J. The functor support A yields a non-empty many sorted set of 
J  and is defined as follows: 

(Def.13) For every element j of J  holds (support A)(j) = the carrier of A(j). 
Let J be a non-empty set and let A be an equal signature universal algebra 

. yielding many sorted set of J .  The functor ComSign(A) yields a finite sequence - 
of elements of N and is defined as follows: 

(Def.14) For every element j of J holds ComSign(A) = signature A('). 
A function is function yielding if: 

(Def.15) For every X such that X E domit holds it(x) is a function. 
Let us note that there exists a function which is function yielding. 
Let I be a set. Note that there exists a many sorted set of I which is function 

yielding. 
Let I be a set. A many sorted function of I is a function yielding many 

sorted set of I. 
Let J be a non-empty set, let B be a many sorted function of J, and let j 

be an element of J. Then B( j )  is a function. 
Let J be a non-empty set, let B be a non-empty many sorted set of J, and 

let j be an element of J. Then B( j )  is a non-empty set. 
Let J  be a non-empty set and let B be a non-empty many sorted set of J. 

Then B is a non-empty set. 
Let J be a non-empty set and let B be a non-empty many sorted set of J. 

A many sorted function of J  is said to be a many sorted operation of B if: 
(Def.16) For every element j of J holds i t ( j )  is a homogeneous quasi total non- 

empty partial function from B(j)* to B(j). 
Let J  be a non-empty set, let B be a non-empty many sorted set of J ,  let 0 

be a many sorted operation of B,  and let j be an element of J. Then O( j )  is a 
homogeneous quasi total non-empty partial function from B(j)* to B(j) .  

A function is equal arity if satisfies the condition (Def.17). 

(Def.17) Let X, y be arbitrary. Suppose X E domit and y E domit. Let f ,  g be 
functions. Suppose it(x) = f and it(y) = g. Let n, m be natural numbers 
and let X ,  Y be non-empty set. Suppose dom f = X n  and domg = Ym. 
Let ol be a homogeneous quasi total non-empty partial function from X *  
to X and let 0 2  be a homogeneous quasi total non-empty partial function 
from Y* to Y. If f = 01 and g = 02, then arity 01 = arity 02. 

Let J  be a non-empty set and let B be a non-empty many sorted set of J. 
One can verify that there exists a many sorted operation of B which is equal 

' arity. 
The following proposition is true 

(12) Let J  be a non-empty set, and let B be a non-empty many sorted set 
of J ,  and let 0 be a many sorted operation of B. Then 0 is equal arity 
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if and only if for all elements i, j of J holds arity O(i) = arity O(j). 
Let I be a set, let f be a many sorted function of I, and let X be a many 

sorted set of I. The functor f +P X yields a many sorted set of I and is defined 
as follows: 

(Def.18) For arbitrary i such that i E I and for every function g such that 
g = f (i) holds (f +P x)(i) = g(x(i)). 

Let J be a non-empty set, let B be a non-empty many sorted set of J, and 
let p be a finite sequence of elements of n B. Then uncurryp is a many sorted 
set of f domp, J 3. 

Let I, J be sets and let X be a many sorted set of F I ,  J :]. Then s\X is a 
many sorted set of f J, I :]. 

Let X be a set, let Y be a non-empty set, and let f be a many sorted set of 
1 X, Y :]. Then curry f is a many sorted set of X .  

Let J be a non-empty set, let B be a non-empty many sorted set of J ,  and 
let 0 be an equal arity many sorted operation of B. The functor ComAr(0) 
yielding a natural number is defined as follows: 

(Def.19) For every element j of J holds ComAr(0) = arity O(j).  
Let I be a set and let A be a many sorted set of I. The functor EA yielding 

a many sorted set of I is defined as follows: 
(Def.20) For arbitrary i such that i E I holds EA(i) = &A(;). 

Let J be a non-empty set, let B be a non-empty many sorted set of J, and 
let 0 be an equal arity many sorted operation of B. The functor 11 0 [[ yielding 
a homogeneous quasi total non-empty partial function from ( n  B)* to n B is 
defined by the conditions (Def .21). 

(Def.21) (i) domllo [[= (IT B) Com*r(O), and 

(ii) for every element p of ( n  B)* such that p E domllO [[ holds if domp = 
0, then 11 0 [[(p) = 0 +P ( E ~ )  and if domp # 0, then for every non-empty 
set Z and for every many sorted set W of J ,  Z :] such that Z = domp 
and W = auncurryp holds 11 0 [[(p) = 0 +P curry W. 

Let J be a non-empty set, let A be an equal signature universal algebra 
yielding many sorted set of J, and let n be a natural number. Let us assume 
that n E Seglen ComSign(A). The functor ProdOp(A, n) yielding an equal arity 
many sorted operation of support A is defined by: 

(Def.22) For every element j of J and for every operation o of A(j) such that 
(Opers A(j))(n) = o holds (ProdOp(A, n))(j)  = o. 

Let J be a non-empty set and let A be an equal signature universal algebra 
yielding many sorted set of J. The functor ProdOpSeq(A) yielding a finite 
sequence of elements of ( n  support A)*> n support A is defined as follows: 

(Def.23) lenProdOpSeq(A) = len ComSign(A) and for every n such that n E 
dom ProdOpSeqlA) holds (ProdOpSeq(A))(n) =l1 ProdOp(A, n) I[. 

Let J be a non-empty set and let A be an equal signature universal algebra 
yielding many sorted set of J. The functor ProdUnivAlg(A) yields a strict 
universal algebra and is defined as follows: 
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(Def.24) ProdUnivAlg(A) = (n support A, ProdOpSeq(A)). 
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The articles [g], [10], [ l l ] ,  [4], [5], [l], [8], [3], [6], [7], and [2] provide the termi- 
nology and notation for this paper. 

For simplicity we adopt the following convention: Ul, U2, U3 will denote 
universal algebras, n will denote a natural number, 01 will denote a operation 
of Ul, 02  will denote a operation of U2, and X, y will be arbitrary. 

Let D1, D2 be non empty set, let p be a finite sequence of elements of D1, 
and let f be a function from D1 into D2. Then f p is a finite sequence of 
elements of D2. 

The following propositions are true: 

(1) Let D1, D2 be non empty set, and let p be a finite sequence of elements 
of D1, and let f be a function from D1 into Dz. Then dom(f .p) = domp 
and lencf p) = lenp and for every, n- such thst  n E dam(-f - p) holds 
( f  p)(n) = f (p(n)). 

(2) For every non empty subset B of Ul such that B = the carrier of U1 
holds Opers(Ul, B) = Opers Ul. 
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Let Ul be a universal algebra. A finite sequence of elements of Ul is a finite 
sequence of elements of the carrier of Ul. Let U2 be a universal algebra. A 
function from Ul into U2 is a function from the carrier of Ul into the carrier of 
U2 - 

In the sequel a, al, a2 denote finite sequences of elements of Ul and f denotes 
a function from Ul into U2. 

, , One can prove the following three propositions: 

(3) f &(the carrier of U l )  = &(the carrier of Uz). 

. ( 1  id(the carrier of U l )  a = a. 
( 5 )  Let hl be a function from Ul into U2, and let h2 be a function from U2 

into U3, and let a be a finite sequence of elements of Ul. Then h2.(hl.a) = 
(h2 hi) . U. 

Let us consider U17 U2, f .  We say that f is a homomorphism of Ul into U2 
if and only if the conditions (Def.1) are satisfied. 

(Def.1) (i) Ul and U2 are similar, and 

(ii) for every n such that n E dom Opers Ul and for all 01, 02 such that 
01 = (Opers Ul)(n) and 02 = (Opers U2)(n) and for every finite sequence 
X of elements of Ul such that X E dom ol holds f (ol(x)) = 02( f . X). 

Let us consider Ul, U2, f .  We say that f is a monomorphism of Ul into U2 
if and only if: 

(Def.2) f is a homomorphism of Ul into U2 and one-to-one. 

We say that f is an epimorphism of Ul onto U2 if and only if: 

(Def.3) f is a homomorphism of Ul into U2 and rng f = the carrier of U2. 
Let us consider Ul, U2, f .  We say that f is an isomorphism of Ul and U2 if 

and only if: 

(Def.4) f is a monomorphism of Ul into U2 and an epimorphism of Ul onto U2. 
Let us consider Ul, U2. We say that Ul and U2 are isomorphic if and only if: 

(Def.5) There exists f which is an isomorphism of Ul and U2. 
One can prove the following propositions: 

(6) id(the of v,) is a homomorphism of Ul into Ul. 

(7) Let hl be a function from Ul into U2 and let h2 be a function from 
U2 into U3. Suppose hl is a homomorphism of Ul into U2 and h2 is a 
homomorphism of U2 into U3. Then h2. hl is a homomorphism of Ul into 
u3. 

(8) f is an isomorphism of Ul and U2 if and only if f is a homomorphism 
of Ul into U2 and rng f = the carrier of U2 and f is one-to-one. 

(9) If f is an isomorphism of Ul and U2, then dom f = the carrier of Ul 
and rng f = the carrier of U2. 

(10) Let h be a function from Ul into U2 and let hl be a function from U2 
into Ul. Suppose h is an isomorphism of Ul and U2 and hl = h-'. Then 
hl is a homomorphism of U2 into Ul. 
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(11) Let h be a function from Ul into U2 and let hl be a function from U2 
into Ul. Suppose h is an isomorphism of Ul and U2 and hl = h-l. Then 
hl is an isomorphism of U2 and Ul. 

(12) Let h be a function from Ul into U2 and let hl be a function from U2 into 
U3. Suppose h is an isomorphism of Ul and U2 and hl is an isomorphism 
of U2 and U3. Then hl . h is an isomorphism of Ul and U3. 

(13) Ul and Ul are isomorphic. 

(14) If Ul and U2 are isomorphic, then U2 and Ul are isomorphic. 

(15) If Ul and U2 are isomorphic and U2 and U3 are isomorphic, then Ul 
and U3 are isomorphic. 

Let us consider Ul, U2, f .  Let us assume that f is a homomorphism of Ul 
into U2. The functor Im f yielding a strict subalgebra of U2 is defined as follows: 

(Def.6) The carrier of Im f = f O (the carrier of Ul). 
Next we state two propositions: 

(16) For every function h from Ul into U2 such that h is a homomorphism 
of Ul into U2 holds rng h = the carrier of Im h. 

(17) Let U2 be a strict universal algebra and let f be a function from Ul 
into U2. Suppose f is a homomorphism of Ul into U2. Then f is an 
epimorphism of Ul onto U2 if and only if Im f = U2. 

Let us consider Ul. A binary relation on Ul is a binary relation on the carrier 
of Ul. An equivalence relation of Ul is an equivalence relation of the carrier of 
U1 . 

Let D be a non empty set and let R be a binary relation on D. The functor 
R# yielding a binary relation on D* is defined by the condition (Def.7). 

(Def.7) Let X, y be finite sequences of elements of D. Then (X, y) E R# if and 
only if the following conditions are satisfied: 

(i) l enx= leny ,and  

(ii) for every n such that n E dom X holds (x(n), y(n)) E R. 
The following proposition is true 

(18) For every non empty set D holds (AD)# = AD*. 

Let us consider Ul. An equivalence relation of Ul is said to be a congruence 
of Ul if it satisfies the condition (Def.8). 

(Def.8) Given n, 01. Suppose n E domOpers Ul and 01 = (Opers Ul)(n). Let 
X, y be finite sequences of elements of Ul. If X E domol and y E domol 
and (X,  y) E it#, then (ol(x), ol(y)) E it. 

Let D be a non empty set and let R be an equivalence relation of D. Then 
Classes R is a non empty family of subsets of D. 
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Let D be a non empty set, let R be an equivalence relation of D, let y be a 
finite sequence of elements of Classes R, and let X be a finite sequence of elements 
of D. We say that X is a finite sequence of representatives of y if and only if: 

(Def.9) len X = len y and for every n such that n E domx holds [x(n)lR = y(n). 

We now state the proposition 

, (19) Let D be a non empty set, and let R be an equivalence relation of D, and 
let y be a finite sequence of elements of Classes R. Then there exists finite 

l /  .. - sequence of elements of D which is a finite sequence of representatives of 
Y. 

Let Ul be a universal algebra, let E be a congruence of Ul, and let o be a 
operation of Ul. The functor O/E yields a homogeneous quasi total non-empty 
partial function from (Classes E)* to Classes E and is defined by the conditions 
(Def.10). 

(Def.10) (i) dom(olE) = (Classes and 

(ii) for every finite sequence y of elements of Classes E such that y E 
dom(olE) and for every finite sequence X of elements of the carrier of Ul 
such that X is a finite sequence of representatives of y holds olE(y) = 

[o(x)IE. 
Let us consider Ul, E. The functor O p e r ~ ( U ~ ) / ~  yields a finite sequence of 

elements of (Classes E ) * 4  Classes E and is defined as follows: 

(Def.11) len(Opers((U1))lE) = len Opers Ul and for every n such that n E 
d ~ m ( o p e r ~ ( ( U ~ ) ) ~ ~ )  and for every ol such that (Opers Ul)(n) = 01 holds 
O ~ e r s ( ( U l ) ) / ~ ( n )  = (o~) /E .  

Next we state the proposition 

(20) For all Ul, E holds (Classes E, O p e r ~ ( ( U ~ ) ) / ~ )  is a strict universal al- 
gebra. 

Let us consider Ul, E. The functor UIIE yielding a strict universal algebra 
is defined by: 

(Def.12) (Ul)IE = (Classes E, Opers ( (U~)) /~) .  
Let us consider Ul, E. The natural homomorphism of Ul w.r.t. E yielding 

a function from Ul into (Ul)IE is defined as follows: 

(Def.13) For every element U of the carrier of Ul holds (the natural homomor- 
phism of Ul w.r.t. E)(u) = 

One can prove the following two propositions: 

(21) For all Ul, E holds the natural homomorphism of Ul w.r.t. E is a 
homomorphism of UI into ( U I ) / ~ .  

(22) For all Ul, E holds the natural homomorphism of Ul w.r.t. E is an 
epimorphism of Ul onto (Ul)IE. 

Let us consider Ul, U2 and let f be a function from Ul into U2. Let us 
assume that f is a homomorphism of Ul into U2. The functor Cng( f )  yielding 
a congruence of Ul is defined by: 
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(Def.14) For all elements a ,  b  of the carrier of Ul holds ( a ,  b) E C n g ( f )  iff 
f ( a )  = f (b) .  

Let Ul ,  U2 be universal algebras and let f  be a function from Ul into U2. 
Let us assume that f  is a homomorphism of Ul into U2. The functor 7 yielding 
a function from (Ul) /  Cng( f )  into U2 is defined by: 

(Def.15) For every element a  of the carrier of Ul holds ( f ) ([aIcngcf , )  = f ( a ) .  
We now state three propositions: 

(23)  Suppose f is a homomorphism of Ul into U2. Then 7 is a homomor- 
phism of (Ul ) /  C n g ( f )  into U2 and 7 is a monomorphism of (Ul ) /  cng(f)  into 
U2 

(24)  If f  is an epimorphism of Ul onto U2, then 7 is an isomorphism of 

(Ul ) /  Cng(f) and U2- 
( 25 )  If f is an epimorphism of Ul onto U2, then (Ul ) /  cng( f )  and U2 are 

isomorphic. 
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 he articles [171, [191, PO], PI, [131, [ ~ o I ,  [ill, [S], ~161, PI, ~ 8 1 ,  [l], PI, ~41, PI, 
[15], [7], [12], [6], and [l41 provide the terminology and notation for this paper. 

In the sequel X is arbitrary and n denotes a natural number. 
Let D be a non empty set and let X be a set. Then D U X is a non empty 

set. 
A set is missing N if: 

(Def.1) It  nN = 0. 
One can check that there exists a set which is non empty and missing N . 
A finite sequence has zero if: 

(Def.2) O ~ r n g i t .  
Let us observe that there exists a finite sequence of elements of N which is 

non empty and has zero and there exists a finite sequence of elements of N which 
is non empty and without zero, 

Let f be a non empty finite sequence. Then dom f is a non empty set. 
Let X be a set, let D be a non empty set, let f be a partial function from X 

to D, and let X 6e arbitrary. Let us assume that X E dom f. The functor- n, f 
yields an element of D and is defined as follows: 

(Def.3) n, f = f (X). 
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Let Ul be a universal algebra and let n be a natural number. Let us assume 
that n E dorn Opers Ul. The functor oper(n, Ul) yielding a operation of Ul is 
defined as follows: 

(Def.4) oper(n, Ul) = (Opers Ul)(n). 
Let U. be a universal algebra. A subset of U. is called a generator set of U. 

if: 
(Def.5) The carrier of GenUA(it) = the carrier of Uo. 

Let U. be a universal algebra. A generator set of U. is free if satisfies the 
condition (Def .G). 

(Def.6) Let Ul be a universal algebra. Suppose U. and Ul are similar. Let f 
be a function from it into the carrier of Ul. Then there exists a function 
h from U. into €71 such that h is a homomorphism of U. into Ul and 
h l i t  = f. 

A universal algebra is free if: 
(Def.7) There exists generator set of it which is free. 

Let us observe that there exists a universal algebra which is free and strict. 
Let U. be a free universal algebra. Observe that there exists a generator set 

of U. which is free. 
One can prove the following proposition 

(1) Let U. be a strict universal algebra and let A be a subset of Uo. Then 
A is a generator set of U. if and only if G e n U A ( ~ )  = Uo. 

Let f be a non empty finite sequence of elements of N and let X be a set. 
The functor REL( f ,  X )  yielding a relation between dorn f UX and (dom f U X)* 
is defined by: 

(Def.8) For every element a of dorn f U X and for every element b of 
(dom f U X)* holds ( a ,  b) E REL( f ,  X )  iff a E dorn f and f (a) = len b. 

Let f be a non empty finite sequence of elements of N and let X be a set. 
The functor DTConUA( f ,  X )  yields a strict tree construction structure and is 
defined as follows: 

(Def.9) DTConUA( f ,  X )  = (dom f U X ,  REL( f ,  X)) .  
Next we state two propositions: 

(2) Let f be anon  empty finite sequenceofelementsofN andlet X be a 
set. Then the terminals of DTConUA(f,X) X and the nonterminals 
of DTConUA( f ,  X )  = dorn f. 
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(3) Let f be a non empty finite sequence of elements of N and let X be a 
missing N set. Then the terminals of DTConUA(f, X )  = X. 

Let f be a non empty finite sequence of elements of N and let X be a set. 
Then DTConUA( f ,  X )  is a strict tree construction structure with nonterminals. 

Let f be a non empty finite sequence of elements of N with zero and let 
X be a set. Then DTConUA( f ,  X )  is a strict tree construction structure with 
nonterminals and useful nonterminals. 

Let f be a non empty finite sequence of elements of N and let D be a missing 
N non empty set. Then DTConUA(f, D)  is a strict tree construction structure 
with terminals, nonterminals, and useful nonterminals. 

Let f be a non empty finite sequence of elements of N, let X be a set, and let 
n be a natural number. Let us assume that n E dom f. The functor Sym(n, f ,  X )  
yielding a symbol of DTConUA( f ,  X )  is defined by: 

(Def.10) Sym(n, f,  X )  = n. 

4. CONSTRUCTION OF FREE UNIVERSAL ALGEBRA FOR NON-EMPTY SET OF 

GENERATORS A N D  GIVEN SIGNATURE 

Let f be a non empty finite sequence of elements of N, let D be a missing N 
non empty set, and let n be a natural number. Let us assume that n E dom f. 
The functor FreeOpNSG(n, f ,  D)  yields a homogeneous quasi total non empty 
partial function from TS(DTConUA( f ,  D))* to TS(DTConUA( f ,  D)) and is de- 
fined by the conditions (Def.11). 

(Def.11) (i) dom FreeOpNSG(n, f ,  D) = TS(DTConUA( f ,  D))nnf, and 

(ii) for every finite sequence p of elements of TS(DTConUA(f, D)) such 
that p E dom FreeOpNSG(n, f ,  D) holds (FreeOpNSG(n, f ,  D))(p) = 
(Sym(n, f, D))-tree(~).  

Let f be a non empty finite sequence of elements of N and let D be a missing 
N non empty set. The functor FreeOpSeqNSG(f, D) yielding a finite sequence of 
elements of TS(DTConUA( f ,  D))*+ TS(DTConUA( f ,  D)) is defined as follows: 

(Def.12) lenFreeOpSeqNSG(f,D) = len f and for every n such that 
n E dom FreeOpSeqNSG( f ,  D) holds (FreeOpSeqNSG( f ,  D))(n) = 
FreeOpNSG(n, f ,  D). 

Let f be a non empty finite sequence of elements of N and let D be a missing 
N non empty set. The functor FreeUnivAlgNSG(f, D)  yields a strict universal 
algebra and is defined as follows: 

(Def.13) FreeUnivAlgNSG( f ,  D) = (TS(DTConUA( f ,  D)), FreeOpSeqNSG( f ,  D)). 
One can prove the following proposition 

(4) For every non empty finite sequence f of elements of N and for every 
missing N non empty set D holds signature FreeUnivAlgNSG( f ,  D) = f. 
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Let f be a non empty finite sequence of elements of N and let D be a non 
empty missing N set. The functor FreeGenSetNSG( f ,  D) yielding a subset of 
FreeUnivAlgNSG( f ,  D)  is defined by: 

(Def.14) FreeGenSetNSG(f, D) = {the root tree of S: s ranges over symbols of 
DTConUA( f,  D), s E the terminals of DTConUA( f ,  D)). 

One can prove the following proposition 
l 

( 5 )  Let f be a non empty finite sequence of elements of N and let D be a 
'1  

+ .., non empty missing N set. Then FreeGenSetNSG( f ,  D) is non empty. 
1 Y 

Let f be a non empty finite sequence of elements of N and let D be a 
non empty missing N set. Then FreeGenSetNSG(f, D) is a generator set of 
FreeUnivAlgNSG( f ,  D). 

Let f be a non empty finite sequence of elements of N, let D be a non empty 
missing N set, let C be a non empty set, let s be a symbol of DTConUA(f, D),  
and let F be a function from FreeGenSetNSG(f, D) into C. Let us assume that 
s E the terminals of DTConUA(f, D). The functor n sF  yielding an element of 
C is defined as follows: 

(Def.15) rSF = F(the root tree of S). 
Let f be a non empty finite sequence of elements of N, let D be a non empty 

missing N set, and let s be a symbol of DTConUA(f, D). Let us assume that 
there exists a finite sequence p such that s +- p. The functor @S yielding a 
natural number is defined by: 

(Def.16) @S = S. 

Next we state the proposition 

(6) For every non empty finite sequence f of elements of N and for every 
non empty missing N set D holds FreeGenSetNSG(f, D) is free. 

Let f be a non empty finite sequence of elements of N and let D be a non 
empty missing N set. Then FreeUnivAlgNSG( f ,  D) is a strict free universal 
algebra. 

Let f be a non empty finite sequence of elements of N and let D be a non 
empty missing N set. Then FreeGenSetNSG(f, D) is a free generator set of 
FreeUnivAlgNS G( f ,  D). 

Let f be a non empty finite sequence of elements of N vith zero, let D be a 
missing N set, and let n be a natural number. Let us assume that n E dom f. The 
functor FreeOpZAO(n, f ,  D)  yields a homogeneous quasi total non empty partial 
function fro= TS(DTConUA( f ,  D))* to TS(DTConUA( f ,  D)) and is defined by 
the conditions (Def.17). 

(Def.17) (i) dom FreeOpZAO(n, f ,  D) = TS(DTConUA( f ,  D))"nf, and 
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(ii) for every finite sequence p of elements of TS(DTConUA(f, D)) such 
that p E dom FreeOpZAO(n, f ,  D)  holds (FreeOpZAO(n, f ,  D))(p) = 
(Sym(n, f ,  D))-tree(p). 

Let f be a non empty finite sequence of elements of N with zero and let D 
be a missing N set. The functor FreeOpSeqZAO( f ,  D)  yields a finite sequence 
of elements of TS(DTConUA(f, D ) ) * i  TS(DTConUA(f, D)) and is defined by: 

(Def.18) lenFreeOpSeqZAO(f,D) = len f and for every n such that 
n E dom FreeOpSeqZAO( f ,  D)  holds (FreeOpSeqZAO( f ,  D))(n) = 
FreeOpZAO(n, f ,  D). 

Let f be a non empty finite sequence of elements of N with zero and let D be 
a missing N set. The functor FreeUnivAlgZAO( f ,  D) yielding a strict universal 
algebra is defined by: 

(Def.19) FreeUnivAlgZAO( f ,  D)  = (TS(DTConUA( f ,  D)), FreeOpSeqZAO( f ,  D)) 
I I 

We now state three propositions: 
l ~ 

( 7 )  For every non empty finite sequence f of elements of N with zero and 
l 

for every missing N set D holds signature FreeUnivAlgZAO( f ,  D) = f. 

(8) Let f be a non empty finite sequence of elements of N with zero and let 
D be a missing N set. Then FreeUnivAlgZAO(f, D) has constants. i I 

(9) For every non empty finite sequence f of elements of N with zero and 1 
for every missing N set D holds Constants(FreeUnivAlgZAO( f ,  D)) + 0. I 

Let f be a non empty finite sequence of elements of N with zero and let 
D be a missing N set. The functor FreeGenSetZAO(f, D)  yielding a subset of 
FreeUnivAlgZAO( f ,  D)  is defined as follows: 1 

(Def.20) FreeGenSetZAO(f, D) = {the root tree of S: S ranges over symbols of I i 
DTConUA(f, D), S E the terminals of DTConUA(f, D)}. i 

l 
Let f be a non empty finite sequence of elements of N with zero and 

let D be a missing N set. Then FreeGenSetZAO(f, D) is a generator set of 
FreeUnivAlgZAO( f ,  D). 

Let f be a non empty finite sequence of elements of N with zero, let D be a 
missing N set, let C be a non empty set, let s be a symbol of DTConUA(f, D), 
and let F be a function from FreeGenSetZAO(f, D) into C. Let us assume that 
S E the terminals of DTConUA(f, D). The functor n,F yields an element of C 
and is defined by: 

(Def.21) n,F = F(the root tree of S). 
Let f be a non empty finite sequence of elements of N with zero, let D be a 

l 

l 

missing N set, and let S be a symbol of DTConUA(f, D). Let us assume that 
there exists a finite sequence p such that S + p. The functor @S yields a natural 
number and is defined by: 

(Def.22) @S = S. 

The following proposition is true 

(10) For every non empty finite sequence f of elements of N with zero and 
for every missing N set D holds FreeGenSetZAO( f ,  D )  is free. 
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Let f be a non empty finite sequence of elements of N with zero and let D be 
a missing N set. Then FreeUnivAlgZAO(f, D) is a strict free universal algebra. 

Let f be a non empty finite sequence of elements of N with zero and let 
D be a missing N set. Then FreeGenSetZAO(f, D) is a free generator set of 
FreeUnivAlgZAO( f ,  D). 

One can verify that there exists a universal algebra which is strict and free 
, 1 and has constants. 
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Summary. Definitions of complex sequence and operations on 
sequences (multiplication of sequences and multiplication by a complex 
number, addition, subtraction, division and absolute value of sequence) 
are given. We followed [3]. 

MML Identifier: COMSEQ-l. 

The terminology and notation used here are introduced in the following articles: 
PI, [l], P I 7  [41, and PI. 

For simplicity we follow a convention: f will denote a function, n will denote 
a natural number, r ,  p will denote elements of C, and X will be arbitrary. 

A complex sequence is a function from N into C. 
In the sequel s l ,  s2, SQ, sq, S:, S$ denote complex sequences. 
One can prove the following propositions: 

(1) f is a complex sequence iff dom f = N and for every X such that X E N 
holds f (X) is an element of C. 

(2) f is a complex sequence iff dom f = N and for every n holds f (n) is an 
element of C. 

Let us consider sl, n. Then sl(n) is an element of C. 
The scheme ExComplexSeq deals with a unary functor 3 yielding an element 

of C, and states that: 
There exists s l  such that for every n holds sl(n) = 3 ( n )  

for all values of the parameter. 
A complex sequence is non-zero if: 

(Def.1) rngit EC\{Oc). 
One can prove the following proposition 

(3) sl is non-zero iff for every X such that X E N holds sl(x) # Oc. ' 

Let us mention that there exists a complex sequence which is non-zero. 
Next we state four propositions: 
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(4 )  sl is non-zero iff for every n holds s l ( n )  # O c .  

( 5 )  For all s l ,  s2 such that for every X such that X E N holds s l ( x )  = s2 (x )  
holds sl = s2. 

( 6 )  For all s l ,  s2 such that for every n holds s l (n )  = s2(n)  holds sl = s2. 

( 7 )  For every r there exists sl such that rng sl = {r ) .  
Let us consider s2, S S .  The functor s2 + ss yielding a complex sequence is 

\ I defined as follows: 
'1  .,(Def.2) For every n holds ( s2  + s3) (n)  = s2 (n )  + s3(n).  

, -\  

The functor s2 ss yielding a complex sequence is defined by: 
(Def.3) For every n holds (s2 s3)(n)  = s z ( n )  . s3(n). 

Let us consider r ,  s l .  The functor r sl yielding a complex sequence is defined 
as follows: 

(Def.4) For every n holds ( r  s l ) (n )  = r - s l (n) .  
Let us consider sl .  The functor -sl yielding a complex sequence is defined 

as follows: 

(Def.5) For every n holds ( - s l ) ( n )  = -sl ( n ) .  
Let us consider s2, sg. The functor s2 - ss yields a complex sequence and is 

defined as follows: 

(Def.6) s2 - s3 = s2 + -ss. 
Let us consider s l .  The functor sl-l yields a complex sequence and is defined 

as follows: 

(Def.7) For every n holds s l - l (n )  = s l (n)- l .  
Let us consider s2, sl. The functor 2 yielding a complex sequence is defined 

as follows: 
(Def.8) 2 = s2 

Let us consider sl .  The functor lsll yields a sequence of real numbers and is 
defined by: 

(Def.9) For every n holds Isll(n) = Isl(n)l. 
The following propositions are true: 

( 8 )  ~ 2 + s 3 = ~ 3 + ~ 2 .  

( 9 )  ( 3 2  + ~ 3 )  + S4 = $2 + ( ~ 3  + ~ 4 ) .  

(10) S2 S3  = S 3  S 2 .  

(11) ( S 2  33)  S4  = S2  ( ~ 3  ~ 4 ) .  

(12) ( 3 2  + s3) S 4  = S 2  S 4  + S 3  34. 

(13) s4 (s2 + ~ 3 )  = s4 s2 + s4 ss. 
(14) -sl = (-l=) sl .  

(15) r (s2 33) = ( T  ~ 2 )  ss. 

(16) r (s2 ss)  = s2 ( r  ss). 

(17) ( s2  - ~ 3 )  ~4 = ~2 ~4 - ~3 ~ 4 .  

(18) ~4 ~2 - 34 ~3 = ~4 ( ~ 2  - S S ) .  
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r ( s 2  + s3) = rs2 + rs3. 

(r -p)sl = ~ ( ~ 3 1 ) .  

r ( s 2  - s3) = rs2 - rs3. 
If sl is non-zero, then r a = m. 

S1 S1 

S 2  - (s3 + s4)  = S 2  - S3 - s4. 

lC S 1  = S1. 

-- S 1  = S1. 

S 2  - -S3 = S 2  + S Q .  

S 2  - ( ~ 3  - ~ 4 )  = (s2 - 33) + S4. 

S2 + ( ~ 3  - ~ 4 )  = (s2 + s3) - S 4 .  

( -s2)s3 = -s2s3 and s2 -ss = -s2s3. 

If sl is non-zero, then sl-l is non-zero. 
If sl is non-zero, then (s lF1)- l  = sl .  

sl is non-zero and s2 is non-zero iff sl s2 is non-zero. 
If sl is non-zero and s2 is non-zero, then sl-l s2-l = (s l  s2)-l .  

If sl is non-zero, then 2 sl = s2. 

S )  S' 

(35 )  If sl is non-zero and s2 is non-zero, then $ 2 = E. 
(36 )  If sl is non-zero and s2 is non-zero, then 2 is non-zero. 

(37)  If sl is non-zero and s2 is non-zero, then ( Z ) - l  = 2. 
(38 )  If sl is non-zero, then s3 2 = B. 

S1 

(39)  If sl is non-zero and s2 is non-zero, then 4+- - = F. 
S 2  

(40) If sl is non-zero and s2 is non-zero, then 2 = S. 
(41)  If r # O c  and sl is non-zero, then r sl is non-zero. 

(42)  If sl is non-zero, then -sl is non-zero. 

(43) If r # Oc and sl is non-zero, then ( r  s l ) - l  = r-l s l - l .  

(44)  If sl is non-zero, then (-s l ) - l  = ( - l c )  sl-l. 

(45 )  If sl is non-zero, then -2 = and * = -a. 
- 8 1  .- S1 

(46)  If sl is non-zero, then 2 + 2 = and Q - 6 = d. 
S1 S1 S1 S1 

(47) If sl is non-zero and S;  is non-zero, then 2 + 2 = s2 "+"" 

S1 S: 
and 

- 
(48) If sl is non-zero and S ;  is non-zero and s2 is non-zero, then 3 = 3. 

I 

(49)  Is1 ~ $ 1  = Is11 Is:I, 

,(50) If s1 is noon-zero,  the^ Isl/ is non-zero. 
(51 )  Ifslisnon-zero,then Isll-'=Isl-'l. 

( 52 )  If sl is non-zero, then 121 = q. 
Is1 
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Summary. Let X be a topological space and let D be a subset of 
X. D is said to be discrete provided for every subset A of X such that 
A C D there is an open subset G of X such that A = D n G (comp. e.g., 
[7 ] ) .  A discrete subset M of X is said to be maximal discrete provided for 
every discrete subset D of X if M c D then M = D. A subspace of X 
is discrete (maximal discrete) iff its carrier is discrete (maximal discrete) 
in X. 

Our purpose is to list a number of properties of discrete and maximal 
discrete sets in Mizar formalism. In particular, we show here that if D 
is dense and discrete then D is maximal discrete; moreover, if D is open 
and maximal discrete then D is dense. We discuss also the problem of 
the existence of maximal discrete subsets in a topological space. 

To present the main results we first recall a definition of a class of 
topological spaces considered herein. A topological space X is called al- 
most discrete if every open subset of X is closed; equivalently, if every 
closed subset of X is open. Such spaces were investigated in Mizar for- 
malism in [4] and [5].  We show here that every almost discrete space 
contains a maximal discrete subspace and every such subspace is a retract 
of the enveloping space. Moreover, if Xo is a maximal discrete subspace 
of an almost discrete space X and T : X + X. is a continuous retraction, 
then r- ' (x)  = (2) for every point z of X belonging to  Xo. This fact is 
a specialization, in the case of almost discrete spaces, of the theorem of 
M.H. Stone that every topological space can be made into a To-space by 
suitable identification of points (see [g ] ) .  

MML Identifier: TEX-2. 

. ** 

The terminology and notation used in this paper are introduced in the following 
papers: [131, ~ 4 1 ,  PO], PI, PI,  [W, PI,  PI,  PSI, [ i l l ,  PI, and PI. 
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A non empty set is trivial if: 

(Def.1) There exists an element s of it such that it = {S). 

, Let us note that there exists a non empty set which is trivial and there exists 
a non empty set which is non trivial. 

g t 
, :; Next we state four propositions: 

(1) For every non empty set A and for every trivial non empty set B such 
that A C B holds A = B. 

(2) For every trivial non empty set A and for every set B such that A n B 
is non empty holds A G B. 

(3) For every l-sorted structure Y holds Y is trivial iff the carrier of Y is 
trivial. 

(4) Let Yo, Yl be l-sorted structures. Suppose the carrier of Yo = the 
carrier of Yl. If Yo is trivial, then Yl is trivial. 

Let S be a set. An element of S is proper if: 

Let S be a set. Observe that there exists a subset of S which is non proper. 
Next we state the proposition 

(5) For every set S and for every subset A of S holds A is proper iff A # S. 
Let S be a non empty set. Observe that every subset of S which is non 

proper is also non empty and every subset of S which is empty is also proper. 
Let S be a trivial non empty set. Observe that every subset of S which 

is proper is also empty and every subset of S which is non empty is also non 
proper. 

Let S be a non empty set. One can check that there exists a subset of S 
which is proper and there exists a subset of S which is non proper. 

Let S be a non empty set and let y  be an element of S. Then { y )  is a non 
empty subset of S. 

Let S be a non empty set. Observe that there exists a non empty subset of 
S which is trivial. 

Let S be a non empty set and let y  be an element of S. Then { y )  is a trivial 
non empty subset of S. 

We now state two propositions: 

(6) For every non empty set S and for every element y  of S such that { y )  
is proper holds S is non trivial. 

(7) For every non trivial non empty set S and for every element y  of S 
holds { y )  is proper. 

Let S be a trivial non empty set. Note that every non empty subset of S is 
non proper and every non empty subset of S which is non proper is also trivial. 



Let S be a non trivial non empty set. Observe that every non empty subset 
of S which is trivial is also proper and every non empty subset of S which is 
non proper is also non trivial. 

Let S be a non trivial non empty set. One can check that there exists a 
non empty subset of S which is trivial and proper and there exists a non empty 
subset of S which is non trivial and non proper. 

One can prove the following propositions: 

(8) Let Y be a l-sorted structure and let y  be an element of the carrier of 
Y. If { y )  is proper, then Y is non trivial. 

(9) For every non trivial l-sorted structure Y and for every element y  of 
the carrier of Y holds { y )  is proper. 

Let Y be a trivial l-sorted structure. Note that every non empty subset of 
Y is non proper and every non empty subset of Y which is non proper is also 
trivial. 

Let Y be a non trivial l-sorted structure. One can verify that every non 
empty subset of Y which is trivial is also proper and every non empty subset of 
Y which is non proper is also non trivial. 

Let Y be a non trivial l-sorted structure. One can check that there exists a 
non empty subset of Y which is trivial and proper and there exists a non empty 
subset of Y which is non trivial and non proper. 

The following three propositions are true: 

(10) Let X be a topological structure and let X. be a subspace of X .  Then 
the topological structure of X. is a strict subspace of X .  

(11) Let X be a topological structure and let XI,  X2 be subspaces of X .  
Suppose the carrier of X1 = the carrier of X2. Then the topological 
structure of X1 = the topological structure of X2. 

(12) Let Yo, Yl be topological structures. Suppose the topological structure 
of Yo = the topological structure of Yl. If Yo is topological space-like, 
then Yl is topological space-like. 

Let Y be a topological structure. A subspace of Y is proper if: 
(Def.3) For every subset A of Y such that A = the carrier of it holds A is 

proper. 
We now state three propositions: 

(13) Let Yo be a subspace of Y and let A be a subset of Y. If A = the carrier 
of Yo, then A is proper iff Yo is proper. 

(14) Let Yo, Yl be subspaces of Y. Suppose the topological structure of 
Yo = the topological structure of Yl. If Yo is proper, then Yl is proper. 

(15) For every subspace Yo of Y such that the carrier of Yo = the carrier of 
Y holds Yo is non proper. 
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Let Y be a trivial topological structure. Observe that every subspace of Y 
is non proper and every subspace of Y which is non proper is also trivial. 

Let Y be a non trivial topological structure. Observe that every subspace of 
Y which is trivial is also proper and every subspace of Y which is non proper is 
also non trivial. 

Let Y be a topological structure. Observe that there exists a subspace of Y 
a 1 which is non proper and strict. 

' /  
Next we state the proposition 

" ..:fl6) For every non proper subspace Yo of Y holds the topological structure 
of Yo = the topological structure of Y. 

Let Y be a topological structure. One can check the following observations: 

* every subspace of Y which is discrete is also topological space-like, 
* every subspace of Y which is anti-discrete is also topological space-like, 

* every subspace of Y which is non topological space-like is also non 
discrete, and 

* every subspace of Y which is non topological space-like is also non anti- 
discrete. 

One can prove the following propositions: 

(1 7) Let Yo , Yl be topological structures. Suppose the topological structure 
of Yo = the topological structure of Yl . If Yo is discrete, then Yl is discrete. 

(18) Let Yo, fi be topological structures. Suppose the topological structure 
of Yo = the topological structure of Yl. If Yo is anti-discrete, then Yl is 
anti-discrete. 

Let Y be a topological structure. One can verify the following observations: 
* every subspace of Y which is discrete is also almost discrete, 
* every subspace of Y which, is non almost discrete is also non discrete, 
* every subspace of Y which is anti-discrete is also almost discrete, and 
* every subspace of Y which is non almost discrete is also non anti- 

discrete. 
One can prove the following proposition 

(19) Let Yo, Yl be topological structures. Suppose the topological structure 
of Yo = the topological structure of Yl. If Yo is almost discrete, then Yl 
is almost discrete. 

Let Y be a topological structure. One can check the following observations: 

* every subspace of Y which is discrete and anti-discrete is also trivial, 
* every subspace of Y which is anti-discrete and non trivial is also non 

discrete, and 
* every subspace of Y which is discrete and non trivial is also non anti- 

discrete. 
Let Y be a topological structure and let y be a point of Y. The functor 

Sspace(y) yielding a strict subspace of Y is defined as follows: 
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(Def.4) The carrier of Sspace(y) = {y}. 
Let Y be a topological structure. Observe that there exists a subspace of Y 

which is trivial and strict. 
Let Y be a topological structure and let y be a point of Y. Then Sspace(y) 

is a trivial strict subspace of Y. 
We now state three propositions: 

(20) For every topological structure Y and for every point y of Y holds 
Sspace(y) is proper iff {y} is proper. 

(21) For every topological structure Y and for every point y of Y such that 
Sspace(y) is proper holds Y is non trivial. 

(22) For every non trivial topological structure Y and for every point y of 
Y holds Sspace(y) is proper. 

Let Y be a non trivial topological structure. One can verify that there exists 
a subspace of Y which is proper trivial and strict. 

We now state two propositions: 

(23) Let Y be a topological structure and let Yo be a trivial subspace of Y. 
Suppose Yo is topological space-like. Then there exists a point y of Y 
such that the topological structure of Yo = the topological structure of 
Sspace(y). 

(24) Let Y be a topological structure and let y be a point of Y. If Sspace(y) 
is topological space-like, then Sspace(y) is discrete and anti-discrete. 

Let Y be a topological structure. Note that every subspace of Y which is 
trivial and topological space-like is also discrete and anti-discrete. 

Let X be a topological space. Note that there exists a subspace of X which 
is trivial strict and topological space-like. 

Let X be a topological space and let X be a point of X. Then Sspace(x) is 
a trivial strict topological space-like subspace of X. 

Let X be a topological space. Observe that there exists a subspace of X 
which is discrete anti-discrete and strict. 

Let X be a topological space and let X be a point of X. Then Sspace(x) is 
a discrete anti-discrete strict subspace of X. 

Let X be a topological space. One can check the following observations: 

* every subspace of X which is non proper is also open and closed, 
* every subspace of X which is non open is also proper, and 
* every subspace of X which is non closed is also proper. 

Let X be a topological space. Note that there exists a subspace of X which 
is open closed and strict. 

Let X be a discrete topological space. Note that every subspace of X which 
is anti-discrete is also trivial and every subspace of X which is non trivial is also 
non anti-discrete. -V 

Let X be a discrete non trivial topological space. Observe that there exists 
a subspace of X which is discrete open closed proper and strict. 
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Let X be an anti-discrete topological space. One can check that every sub- 
space of X which is discrete is also trivial and every subspace of X which is non 
trivial is also non discrete. 

Let X be an anti-discrete non trivial topological space. One can verify that 
every proper subspace of X is non open and non closed and every discrete 
subspace of X is trivial and proper. 

Let X be an anti-discrete non trivial topological space. One can check that 
there exists a subspace of X which is anti-discrete non open non closed proper 

" ,, and strict. 
'D 

Let X be an almost discrete non trivial topological space. Observe that there 
exists a subspace of X which is almost discrete proper and strict. 

Let Y be a topological structure. A subset of Y is discrete if: 

(Def.5) For every subset D of Y such that D C it there exists a subset G of Y 
such that G is open and it nG = D. 

Let Y be a topological structure. Let us observe that a subset of Y is discrete 
if: 

(Def.6) For every subset D of Y such that D 5 it there exists a subset F of Y.  
such that F is closed and it n F  = D. 

We now state three propositions: 

(25) Let Yo, Yl be topological structures, and let Do be a subset of Yo, and 
let D1 be a subset of Yl. Suppose the topological structure of Yo = the 
topological structure of Yl and Do = D1. If Do is discrete, then D1 is 
discrete. 

(26) Let Y be a topological structure, and let Yo be a subspace of Y,  and let 
A be a subset of Y. Suppose A = the carrier of Yo. Then A is discrete if 
and only if Yo is discrete. 

(27) Let Y be a topological structure and let A be a subset of Y. Suppose 
A = the carrier of Y. Then A is discrete if and only if Y is discrete. 

In the sequel Y will denote a topological structure. 
We now state several propositions: 

(28) For all subsets A, B of Y such that B C A holds if A is discrete, then 
B is discrete. 

(29) For all subsets A, B of Y such that A is discrete or B is discrete holds 
A n  B is discrete. 

(30) Suppose that for all subsets P, Q of Y such that P is open and Q is 
open holds P n Q is open and P U Q is open. Let A, B be subsets of Y. 
Suppose A is open i n d  B is open. If A is discrete and B is discrete, then 
A U B is discrete. 
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(31) Suppose that for all subsets P, Q of Y such that P is closed and Q is 
closed holds P n Q is closed and P U Q is closed. Let A, B be subsets of 
Y. Suppose A is closed and B is closed. If A is discrete and B is discrete, 
then A U B is discrete. 

(32) Let A be a subset of Y. Suppose A is discrete. Let X be a point of 
Y. If X E A, then there exists a subset G of Y such that G is open and 
A n G  = {X). 

(33) Let A be a subset of Y. Suppose A is discrete. Let X be a point of 
Y. If X E A, then there exists a subset F of Y such that F is closed and 
A n F  = {X). 

In the sequel X denotes a topological space. 
The following propositions are true: 

(34) Let A. be a non empty subset of X. Suppose A. is discrete. Then there 
exists a discrete strict subspace X. of X such that A. = the carrier of 
X0 . 

(35) Every empty subset of X is discrete. 

(36) For every point X of X holds {X} is discrete. 

(37) Let A be a subset of X. Suppose that for every point X of X such that 
X E A there exists a subset G of X such that G is open and A n  G = {X). 

Then A is discrete. 

, (38) Let A, B be subsets of X. Suppose A is open and B is open. If A is 
discrete and B is discrete, then A U B is discrete. 

(39) Let A, B be subsets of X. Suppose A is closed and B is closed. If A is 
discrete and B is discrete, then A U B is discrete. 

(40) For every subset A of X such that A is everywhere dense holds if A is 
discrete, then A is open. 

(41) For every subset A of X holds A is discrete iff for every subset D of X 
such that D C A holds A n D = D. 

(42) For every subset A of X such that A is discrete and for every point X 

of X such that X E A holds A n (z) = {X). 

(43) For every discrete topological space X holds every subset of X is dis- 
crete. 

(44) Let X be an anti-discrete topological space and let A be a non empty 
subset of X .  Then A is discrete if and only if A is trivial. 

Let Y be a topological structure. A subset of Y is maximal discrete if: 

(Def.7) It is discrete and for every subset D of Y such that D is discrete and it 
C D holds it = D. 

The following proposition is true 

(45) Let Yo, Yl be topological structures, and let Do be a subset of Yo, and 
let D1 be a subset of Yl. Suppose the topological structure of Yi  F the 
topological structure of Yl and Do = Dl. If Do is maximal discrete, then 
D1 is maximal discrete. 
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In the sequel X will denote a topological space. 
Next we state several propositions: 

(46) Every empty subset of X is not maximal discrete. 

(47) For every subset A of X such that A is open holds if A is maximal 
discrete, then A is dense. 

(48) For every subset A of X such that A is dense holds if A is discrete, then 
A is maximal discrete. 

" . (49) Let X be a discrete topological space and let A be a subset of X .  Then 
-I 

A is maximal discrete if and only if A is non proper. 

(50) Let X be an anti-discrete topological space and let A be a non empty 
subset of X .  Then A is maximal discrete if and only if A is trivial. 

Let Y be a topological structure. A subspace of Y is maximal discrete if: 

(Def.8) For every subset A of Y such that A = the carrier of it holds A is 
maximal discrete. 

One can prove the following proposition 

(51) Let Y be a topological structure, and let Yo be a subspace of Y,  and let 
A be a subset of Y. Suppose A = the carrier of Yo. Then A is maximal 
discrete if and only if Yo is maximal discrete. 

Let Y be a topological structure. Note that every subspace of Y which is 
maximal discrete is also discrete and every subspace of Y which is non discrete 
is also non maximal discrete. 

Next we state two propositions: 

(52) Let X. be a subspace of X .  Then X. is maximal discrete if and only if 
the following conditions are satisfied: 

(i) X. is discrete, and 

(ii) for every discrete subspace Yo of X such that X. is a subspace of Yo 
holds the topological structure of X. = the topological structure of Yo. 

(53) Let A. be a non empty subset of X .  Suppose A. is maximal discrete. 
Then there exists a strict subspace X. of X such that X. is maximal 
discrete and A. = the carrier of Xo. 

Let X be a discrete topological space. One can verify the following observa- 
tions: 

* every subspace of X which is maximal discrete is also non proper, 

* every subspace of X which is proper is also non maximal discrete, 

* every subspace of X which is non proper is also maximal discrete, and 

* every subspace of X which is non maximal discrete is also proper. 
Let X be an anti-discrete topological space. One can check the following 

observations: 

* every subspace of X which is maximal discrete is also trivial, 

* every subspace of X which is non trivial .is also non maximal discrete, 

* every subspace of X which is trivial is also maximal discrete, and 
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* every subspace of X which is non maximal discrete is also non trivial. 
I 

l 

4. MAXIMAL DISCRETE SUBSPACES OF ALMOST DISCRETE SPACES 

The scheme ExChoiceFCol deals with a topological structure A, a family B 
of subsets of A, and a binary predicate P ,  and states that: 

There exists a function f from B into the carrier of A such that for 
every subset S of A such that S E B holds %'[S, f (S)] 

provided the following condition is met: 
a For every subset S of A such that S E B there exists a point X of 

A such that %'[S, X]. 

In the sequel X will denote an almost discrete topological space. 
We now state a number of propositions: 

(54) For every subset A of X holds = u{(CL) : a ranges over points of X ,  
a E A}. -- 

(55) For all points a,  b of X such that a E (b) holds {a} = {b}. 

(56) For all points a, b of X holds {a) n {b} = 0 or (a) = (b). 
(57) Let A be a subset of X. Suppose that for every point X of X such that 

X E A there exists a subset F of X such that F is closed and A n  F = {X}. 

Then A is discrete. 

(58) For every subset A of X such that for every point X of X such that 
X E A holds A n (2) = {X} holds A is discrete. 

(59) Let A be a subset of X. Then A is discrete if and only - -  if for all points 
a,  b of X such that a E A and b E A holds if a # b, then {a} n {b} = 0. 

(60) Let A be a subset of X. Then A is discrete if and only if for every point 
X of X such that X E there exists a point a of X such that a E A and 
~ n ( z ) =  {a}. 

(61) For every subset A of X such that A is open or closed holds if A is 
maximal discrete, then A is not proper. 

(62) For every subset A of X such that A is maximal discrete holds A is 
dense. 

(63) For every subset A of X such that A is maximal discrete holds ~{(a) : a 
ranges over points of X ,  a E A} = the carrier of X. 

(64) Let A be a subset of X .  Then A is maximal discrete if and only if 
for every point X of X there exists a point a of X such that a E A and 
A n ( z ) =  {a}. 

(65) For every subset A of X such that A is discrete there exists a subset M 
of X such that A c M and M is maximal discrete. 

(66) There exists subset of X which is maximal discrete. 

(67) Let Yo be a discrete subspace of X .  Then there exists a strict subspace 
X. of X such that Yo is a subspace of X. and X. is maximal discrete. 
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Let X be an almost discrete non discrete topological space. One can verify 
that every subspace of X which is maximal discrete is also proper and every 
subspace of X which is non proper is also non maximal discrete. 

Let X be an almost discrete non anti-discrete topological space. Observe 
that every subspace of X which is maximal discrete is also non trivial and every 
subspace of X which is trivial is also non maximal discrete. 

i Let X be an almost discrete topological space. Note that there exists a 

L l 
subspace of X which is maximal discrete and strict. 
-.. - 

b %V 

The scheme MapExChoiceF concerns a topological structure A, a topological 
structure B, and a binary predicate P, and states that: 

There exists a map f from A into B such that for every point X of 
A holds P[x, f ( X ) ]  

provided the parameters have the following property: 
r For every point X of A there exists a point y  of B such that P[x,  y ] .  

In the sequel X ,  Y are topological spaces. 
Next we state four propositions: 

( 6 8 )  For every discrete topological space X holds every mapping from X 
into Y is continuous. 

( 6 9 )  If for every topological space Y holds every mapping from X into Y is 
continuous, then X is discrete. 

( 7 0 )  For every anti-discrete topological space Y holds every mapping from 
X into Y is continuous. 

( 7 1 )  If for every topological space X holds every mapping from X into Y is 
continuous, then Y is anti-discrete. 

In the sequel X will be a discrete topological space and X. will be a subspace 
of X .  

One can prove the following two propositions: 

( 7 2 )  There exists continuous mapping from X into X. which is a retraction. 

( 7 3 )  X. is a retract of X .  

In the sequel X will be an almost discrete topological space and X. will be 
a maximal discrete subspace of X .  

Next we state four propositions: 

( 7 4 )  There exists continuous mapping from X into X. which is a retraction. 

( 7 5 )  X. is a retract of X .  

( 7 6 )  Let r be a continuous mapping from X into Xo. Suppose r is a retrac- 
tion. Let F be a subset of X. and let E be a subset of X .  If F = E, then 
r -l F = E. 
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(77) Let r be a continuous mapping from X into Xo. Suppose r is a retrac- 
tion. Let a be a point of X. and let b be a point of X .  If a = b,  then 
r -l { a )  = (b). 

In the sequel X. is a discrete subspace of X .  
The following two propositions are true: 

(78) There exists continuous mapping from X into X. which is a retraction. 

(79) X. is a retract of X .  
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In the sequel X denotes a topological space and A, B denote subsets of X .  
The following propositions are true: 

(1) If A and B constitute a decomposition, then A is non empty iff B is 
proper. 

(2) If A and B constitute a decomposition, then A is dense iff B is boundary. 

(3) If A and B constitute a decomposition, then A is boundary iff B is 
dense. 

(4) If A and B constitute a decomposition, then A is everywhere dense iff 
B is nowhere dense. 

( 5 )  If A and B constitute a decomposition, then A is nowhere dense iff B 
is everywhere dense. 

In the sequel Yl, Y2 will be subspaces of X .  
Next we state three propositions: 

(6) If Yl and Y2 constitute a decomposition, then Yl is proper and Y2 is 
proper. 

(7) Let X be a non trivial topological space and let D be a non empty 
proper subset of X. Then there exists a proper strict subspace Yo of X 
such that D = the carrier of Yo. 

(8) Let X be a non trivial topological space and let Yl be a proper subspace 
of X. Then there exists a proper strict subspace Y2 of X such that Yl 
and Y2 constitute a decomposition. 

Let X be a topological space. A subspace of X is dense if: 
(Def.1) For every subset A of X such that A = the carrier of it holds A is dense. 

The following proposition is true 

(9) Let X. be a subspace of X and let A be a subset of X. If A = the 
carrier of Xo, then X. is dense iff A is dense. 

Let X be a topological space. One can check the following observations: 
* every subspace of X which is dense and closed is also non proper, 
* every subspace of X which is dense and proper is also non closed, and 
* every subspace of X which is proper and closed is also non dense. 

Let X be a topological space. Note that there exists a subspace of X which 
is dense and strict. 

We now state seyerql propositions: 

(10) Let A. be a non empty subset of X. Suppose A. is dense. Then there 
exists a dense strict subspace X. of X such that A. = the carrier of Xo. 
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(11) Let X. be a dense subspace of X ,  and let A be a subset of X ,  and let 
B be a subset of Xo. If A = B, then B is dense iff A is dense. 

(12) For every dense subspace Xl of X and for every subspace X2 of X such 
that XI is a subspace of X2 holds X2 is dense. 

(13) Let X1 be a dense subspace of X and let X2 be a subspace of X .  If Xl 
is a subspace of X2, then XI is a dense subspace of X2. 

(14) For every dense subspace X1 of X holds every dense subspace of X1 is 
a dense subspace of X .  

(15) Let Yl , Y2 be topological spaces. Suppose Y2 = the topological structure 
of Yl. Then Yl is a dense subspace of X if and only if Y2 is a dense subspace 
of X .  

Let X be a topological space. A subspace of X is everywhere dense if: 
(Def.2) For every subset A of X such that A = the carrier of it holds A is 

everywhere dense. 
Next we state the proposition 

(16) Let X. be a subspace of X and let A be a subset of X. Suppose A = the 
carrier of Xo. Then X. is everywhere dense if and only if &A is everywhere 
dense. 

Let X be a topological space. One can check the following observations: 

* every subspace of X which is everywhere dense is also dense, 
* every subspace of X which is non dense is also non everywhere dense, 
* every subspace of X which is non proper is also everywhere dense, and 
* every subspace of X which is non everywhere dense is also proper. 

Let X be a topological space. Observe that there exists a subspace of X 
which is everywhere dense and strict. 

We now state several propositions: 

(17) Let A. be a non empty subset of X. Suppose A. is everywhere dense. 
Then there exists an everywhere dense strict subspace X. of X such that 
A. = the carrier of Xo. 

(18) Let X. be an everywhere dense subspace of X ,  and let A be a subset of 
X ,  and let B be a subset of Xo. Suppose A = B. Then B is everywhere 
dense if and only if A is everywhere dense. 

(19) Let X1 be an everywhere dense subspace of X and let X2 be a subspace 
of X .  If X1 is a subspace of X2, then X2 is everywhere dense. 

(20) Let X1 be an everywhere dense subspace of X and Jet X2  be a subspace 
of X .  Suppose X1 is a subspace of X2. Then X1 is an everywhere dense 
subspace of X2. 

(21) For every everywhere dense subspace X; of X holds every everywhere 
dense subspace of X1 is an everywhere dense subspace of X .  

(22) Let Yl , Y2 be topological spaces. Suppose Y2 = the topological structure 
of Yl. Then Yl is an everywhere dense subspace of X if and only if Y2 is 
an everywhere dense subspace of X .  
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Let X be a topological space. One can check the following observations: 
* every subspace of X which is dense and open is also everywhere dense, 
* every subspace of X which is dense and non everywhere dense is also 

non open, and 
* every subspace of X which is open and non everywhere dense is also 

non dense. 
Let X be a topological space. Note that there exists a subspace of X which 

' 1  +. is - dense open and strict. 
% We now state two propositions: 

(23) Let A. be a non empty subset of X. Suppose A. is dense and open. 
Then there exists a dense open strict subspace X. of X such that A. = the 
carrier of Xo. 

(24) For every subspace X. of X holds X. is everywhere dense iff there exists 
dense open strict subspace of X which is a subspace of Xo. 

In the sequel XI, X2 denote subspaces of X .  
One can prove the following four propositions: 

(25) If XI is dense or X2 is dense, then Xl U X2 is a dense subspace of X. 

(26) If X1 is everywhere dense or X2 is everywhere dense, then X1 U X2 is 
an everywhere dense subspace of X .  

(27) If X1 is everywhere dense and X2 is everywhere dense, then XI n X2 is 
an everywhere dense subspace of X. 

(28) Suppose X1 is everywhere dense and X2 is dense or XI is dense and X2 
is everywhere dense. Then X1 n X2 is a dense subspace of X .  

Let X be a topological space. A subspace of X is boundary if: 

(Def.3) For every subset A of X such that A = the carrier of it holds A is 
boundary. 

We now state the proposition 

(29) Let X. be a subspace of X and let A be a subset of X .  Suppose A = the 
carrier of Xo. Then X. is boundary if and only if A is boundary. 

Let X be a topological space. One can verify the following observations: 

* every subspace of X which is open is also non boundary, 

* every subspace of X which is boundary is also non open, 

* every subspace of X which is everywhere dense is also non boundary, 
and 

* every subspace of X which is boundary is also non everywhere dense. 
Next we state several propositions: 



O N  N O W H E R E  A N D  E V E R Y W H E R E  D E N S E  S U B S P A C E S  O F  . . . 141 

(30) Let A. be a non empty subset of X. Suppose A. is boundary. Then 
there exists a strict subspace X. of X such that X. is boundary and 
A. = the carrier of Xo. 

(31) Let XI, X2 be subspaces of X .  Suppose Xl and X2 constitute a de- 
composition. Then XI is dense if and only if X2 is boundary. 

(32) Let XI, X2 be subspaces of X .  Suppose X1 and X2 constitute a de- 
composition. Then X1 is boundary if and only if X2 is dense. 

(33) Let X. be a subspace of X .  Suppose X. is boundary. Let A be a subset 
of X .  If A C_ the carrier of Xo, then A is boundary. 

(34) For all subspaces XI, X2 of X such that XI is boundary holds if X2 is 
a subspace of XI,  then X2 is boundary. 

Let X be a topological space. A subspace of X is nowhere dense if: 

(Def.4) For every subset A of X such that A = the carrier of it holds A is 
nowhere dense. 

We now state the proposition 

(35) Let X. be a subspace of X and let A be a subset of X. Suppose A = the 
carrier of Xo. Then X. is nowhere dense if and only if A is nowhere dense. 

Let X be a topological space. One can verify the following observations: 

* every subspace of X which is nowhere dense is also boundary, 
* every subspace of X which is non boundary is also non nowhere dense, 
* every subspace of X which is nowhere dense is also non dense, and 
* every subspace of X which is dense is also non nowhere dense. 

In the sequel X will denote a topological space. 
One can prove the following propositions: 

(36) Let A. be a non empty subset of X. Suppose A. is nowhere dense. 
Then there exists a strict subspace X. of X such that X. is nowhere 
dense and A. = the carrier of Xo. 

(37) Let XI, X2  be subspaces of X .  Suppose X1 and X2  constitute a de- 
composition. Then X1 is everywhere dense if and only if X2  is nowhere 
dense. 

(38) Let XI, X2 be subspaces of X .  Suppose XI and X2 constitute a de- 
composition. Then Xl is nowhere dense if and only if X2 is everywhere 
dense. 

(39) Let X. be a subspace of X. Suppose X. is nowhere dense. Let A be a 
subset of X .  If A 5 the carrier of Xo, then A is nowhere dense. 

(40) Let XI ,  X2 be subspaces of X .  Suppose X1 is nowhere dense. If X2 is 
a subspace of XI ,  then X2 is nowhere dense. 

Let X be a topological space. One can verify the following observations: 
* every subspace of X which is boundary and closed is also nowhere dense, 
* every subspace of X which is boundary and non nowhere dense is also 

non closed, and 
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* every subspace of X which is closed and non nowhere dense is also non 
boundary. 

The following propositions are true: 

(41) Let A. be a non empty subset of X .  Suppose A. is boundary and 
closed. Then there exists a closed strict subspace X. of X such that X. 
is boundary and A. = the carrier of Xo. 

' 
(42) Let X. be a subspace of X. Then X. is nowhere dense if and only if 

( 1  
%.v- 

there exists a closed strict subspace X1 of X such that X1 is boundary 
- v  and X. is a subspace of XI. 

In the sequel XI, X2 will be subspaces of X. 
One can prove the following propositions: 

(43) If X1 is boundary or X2 is boundary and if Xl meets X2, then Xl fi X2 
is boundary. 

(44) If X1 is nowhere dense and X2 is nowhere dense, then X1UX2 is nowhere 
dense. 

(45) If X1 is nowhere dense and X2 is boundary or X1 is boundary and X2 
is nowhere dense, then X1 U X2 is boundary. 

(46) If Xl is nowhere dense or X2 is nowhere dense and if X1 meets X2, then 
X1 n X2 is nowhere dense. 

Next we state two propositions: 

(47) For every topological space X such that every subspace of X is non 
boundary holds X is discrete. 

(48) For every non trivial topological space X such that every proper sub- 
space of X is non dense holds X is discrete. 

Let X be a discrete topological space. One can check the following observa- 
tions: 

* every subspace of X is non boundary, 
* every subspace of X which is proper is also non dense, and 
* every subspace of X which is dense is also non proper. 

Let X be a discrete topological space. Observe that there exists a subspace 
of X which is non boundary and strict. 

Let X be a discrete non trivial topological space. Note that there exists a 
subspace of X which is non dense and strict. 

One can prove the following two propositions: 

(49) For every topological space X such that there exists subspace of X 
which is boundary holds X is non discrete. 

(50) For every topological space X such that there exists subspace of X 
which is dense and proper holds X is non discrete. 
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, Let X be a non discrete topological space. One can check that there exists 
a subspace of X which is boundary and strict and there exists a subspace of X 
which is dense proper and strict. 

In the sequel X will be a non discrete topological space. 
We now state several propositions: 

(51) Let A. be a non empty subset of X .  Suppose A. is boundary. Then 

I there exists a boundary strict subspace X. of X such that A. = the carrier 
of Xo. 

(52) Let A. be a non empty proper subset of X .  Suppose A. is dense. Then 
there exists a dense proper strict subspace X. of X such that A. = the 
carrier of Xo. 

(53) Let Xl be a boundary subspace of X .  Then there exists a dense proper 
strict subspace X2  of X such that XI and X2 constitute a decomposition. 

(54) Let XI be a dense proper subspace of X. Then there exists a boundary 
strict subspace X2 of X such that XI  and Xz constitute a decomposition. 

(55) Let Yl, Y2 be topological spaces. Suppose Y2 = the topological structure 
of Yl. Then Yl is a boundary subspace of X if and only if Y2 is a boundary 
subspace of X .  

Next we state two propositions: 

(56) For every topological space X such that every subspace of X is non 
nowhere dense holds X is almost discrete. 

(57) For every non trivial topological space X such that every proper sub- 
space of X is non everywhere dense holds X is almost discrete. 

Let X be an almost discrete topological space. One can verify the following 
observations: 

* every subspace of X is non nowhere dense, 
* every subspace of X which is proper is also non everywhere dense, 
* every subspace of X which is everywhere dense is also non proper, 
* every subspace of X which is boundary is also non closed, 
* every subspace of X which is closed is also non boundary, 
* every subspace of X which is dense and proper is also non open, 
* every subspace of X which is dense and open is also non proper, and 
* every subspace of X which is open and proper is also non dense. 

Let X be an almost discrete topological space. One can verify that there 
exists a subspace of X which is non nowhere dense and strict. 

Let X be an almost discrete non trivial topological space. Note that there 
exists a subspace of X which is non everywhere dense and strict. 
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The following four propositions are true: 

(58) For every topological space X such that there exists subspace of X 
which is nowhere dense holds X is non almost discrete. 

(59) For every topological space X such that there exists subspace of X 
which is boundary and closed holds X is non almost discrete. 

(60) For every topological space X such that there exists subspace of X 
1 which is everywhere dense and proper holds X is non almost discrete. 

( 6 1 )  For every topological space X such that there exists subspace of X 
%" 

which is dense and open and proper holds X is non almost discrete. 

Let X be a non almost discrete topological space. One can check that there 
exists a subspace of X which is nowhere dense and strict and there exists a 
subspace of X which is everywhere dense proper and strict. 

In the sequel X denotes a non almost discrete topological space. 
The following propositions are true: 

(62) Let A. be a non empty subset of X .  Suppose A. is nowhere dense. 
Then there exists a nowhere dense strict subspace X. of X such that 
A. = the carrier of Xo. 

(63) Let A. be a non empty proper subset of X .  Suppose A. is everywhere 
dense. Then there exists an everywhere dense proper strict subspace X. 
of X such that A. = the carrier of Xo. 

(64) Let X1 be a nowhere dense subspace of X. Then there exists an ev- 
erywhere dense proper strict subspace X2 of X such that X1 and X;! 
constitute a decomposition. 

(65) Let X1 be an everywhere dense proper subspace of X. Then there exists 
a nowhere dense strict subspace X2 of X such that Xl and X2 constitute 
a decomposition. 

(66) Let Yl, Y2 be topological spaces. Suppose Y2 = the topological structure 
of Yl. Then Yl is a nowhere dense subspace of X if and only if Y2 is a 
nowhere dense subspace of X .  

Let X be a non almost discrete topological space. One can verify that there 
exists a subspace of X which is boundary closed and strict and there exists a 
subspace of X which is dense open proper and strict. 

Next y e  state several propositions: 

(67) Let A. be a non empty subset of X .  Suppose A. is boundary and 
closed. Then there exists a boundary closed strict subspace X. of X such 
that A. = the carrier of Xo. 

(68) Let A. be a non empty proper subset of X .  Suppose A. is dense and 
open. Then there exists a dense open proper strict subspace X. of X such 
that A. = the carrier of Xo. 

(69) Let X1 be a boundary closed subspace of X .  Then there exists a dense 
open proper strict subspace X2 of X such that XI and X2  constitute a 
decomposition. 
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(70) Let XI be a dense open proper subspace of X .  Then there exists a 
boundary closed strict subspace X2 of X such that Xl and X2 constitute 
a decomposition. 

(71) Let X. be a subspace of X .  Then X. is nowhere dense if and only if 
there exists a boundary closed strict subspace XI of X such that X. is a 
subspace of XI. 

(72) Let X. be a nowhere dense subspace of X .  Then 
(i) X. is boundary or closed, or - 

(ii) there exists an everywhere dense proper strict subspace Xl of X and 
there exists a boundary closed strict subspace X2 of X such that XlnX2 = 
the topological structure of X. and XI U X2 = the topological structure 
of X .  

(73) Let X. be an everywhere dense subspace of X .  Then 

(i) X. is dense or open, or 

(ii) there exists a dense open proper strict subspace XI of X and there 
exists a nowhere dense strict subspace X2 of X such that XI misses X2 
and X1 U X2 = the topological structure of Xo. 

(74) Let X. be a nowhere dense subspace of X .  Then there exists a dense 
open proper strict subspace XI of X and there exists a boundary closed 
strict subspace X2 of X such that Xl and X2 constitute a decomposition 
and X. is a subspace of X2. 

(75) Let X. be an everywhere dense proper subspace of X .  Then there 
exists a dense open proper strict subspace X1 of X and there exists a 
boundary closed strict subspace X2 of X such that X1 and X2  constitute 
L decomposition and X1 is a subspace of Xo. 
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