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Summary. In the three preliminary sections to the article we
define two operations on finite sequences which seem to be of general
interest. The first is the cut operation that extracts a contiguous chunk
of a finite sequence from a position to a position. The second operation is
a glueing catenation that given two finite sequences catenates them with
removal of the first element of the second sequence. The main topic of the
article is to define an operation which for a given chain in a graph returns
the sequence of vertices through which the chain passes. We define the
exact conditions when such an operation is uniquely definable. This is
done with the help of the so called two-valued alternating finite sequences.
We also prove theorems about the existence of simple chains which are
subchains of a given chain. In order to do this we define the notion of a
finite subsequence of a typed finite sequence.
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The articles [16], [20], [9], [21], [6], [7], [4], [5], [19], [15], [8], [3], [1], [14], [10],
[11], [2], [18], [17], [12], and [13] provide the notation and terminology for this
paper.

1This work was partially supported by Shinshu Endowment for Information Science, NSERC
Grant OGP9207 and JSTF award 651-93-S009.

297
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630



298 yatsuka nakamura and piotr rudnicki

1. Preliminaries

We adopt the following convention: p, q are finite sequences, X, Y are sets,
and i, k, l, m, n, r are natural numbers.

The scheme FinSegRng deals with natural numbers A, B, a unary functor F
yielding a set, and a unary predicate P, and states that:

{F(i) : A ≤ i ∧ i ≤ B ∧ P[i]} is finite
for all values of the parameters.

One can prove the following propositions:

(1) m+1 ≤ k and k ≤ n iff there exists a natural number i such that m ≤ i
and i < n and k = i+ 1.

(2) If q = p
�
Seg n, then len q ≤ len p and for every i such that 1 ≤ i and

i ≤ len q holds p(i) = q(i).

(3) If X ⊆ Seg k and Y ⊆ dom SgmX, then SgmX · SgmY =
Sgm rng(SgmX

�
Y ).

(4) For all natural numbers m, n holds {k : m ≤ k ∧ k ≤ m+ n} = n+1.

(5) For every l such that 1 ≤ l and l ≤ n holds (Sgm{k1 : k1 ranges over
natural numbers, m+ 1 ≤ k1 ∧ k1 ≤ m+ n})(l) = m+ l.

2. The cut operation for finite sequences

Let p be a finite sequence and let m, n be natural numbers. The functor
〈p(m), . . . , p(n)〉 yields a finite sequence and is defined by:

(Def.1) (i) len〈p(m), . . . , p(n)〉+m = n+1 and for every natural number i such
that i < len〈p(m), . . . , p(n)〉 holds 〈p(m), . . . , p(n)〉(i + 1) = p(m + i) if
1 ≤ m and m ≤ n+ 1 and n ≤ len p,

(ii) 〈p(m), . . . , p(n)〉 = ε, otherwise.

We now state several propositions:

(6) If 1 ≤ m and m ≤ len p, then 〈p(m), . . . , p(m)〉 = 〈p(m)〉.
(7) 〈p(1), . . . , p(len p)〉 = p.

(8) If m ≤ n and n ≤ r and r ≤ len p, then 〈p(m + 1), . . . , p(n)〉 � 〈p(n +
1), . . . , p(r)〉 = 〈p(m+ 1), . . . , p(r)〉.

(9) If 1 ≤ m andm ≤ len p, then 〈p(1), . . . , p(m)〉 � 〈p(m+1), . . . , p(len p)〉 =
p.

(10) If 1 ≤ m and m ≤ n and n ≤ len p, then 〈p(1), . . . , p(m)〉 � 〈p(m +
1), . . . , p(n)〉 � 〈p(n+ 1), . . . , p(len p)〉 = p.

(11) rng〈p(m), . . . , p(n)〉 ⊆ rng p.

Let D be a set, let p be a finite sequence of elements of D, and let m, n be
natural numbers. Then 〈p(m), . . . , p(n)〉 is a finite sequence of elements of D.

Next we state the proposition
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(12) If p 6= ε and 1 ≤ m andm ≤ n and n ≤ len p, then 〈p(m), . . . , p(n)〉(1) =
p(m) and 〈p(m), . . . , p(n)〉(len〈p(m), . . . , p(n)〉) = p(n).

3. The glueing catenation of finite sequences

Let p, q be finite sequences. The functor p ��� q yielding a finite sequence is
defined as follows:

(Def.2) p ��� q = p � 〈q(2), . . . , q(len q)〉.
Next we state several propositions:

(13) If q 6= ε, then len(p ��� q) + 1 = len p+ len q.

(14) If 1 ≤ k and k ≤ len p, then (p ��� q)(k) = p(k).

(15) If 1 ≤ k and k < len q, then (p ��� q)(len p+ k) = q(k + 1).

(16) If 1 < len q, then (p ��� q)(len(p ��� q)) = q(len q).

(17) rng(p ��� q) ⊆ rng p ∪ rng q.

Let D be a set and let p, q be finite sequences of elements of D. Then p ��� q
is a finite sequence of elements of D.

Next we state the proposition

(18) If p 6= ε and q 6= ε and p(len p) = q(1), then rng(p ��� q) = rng p∪ rng q.

4. Two valued alternating finite sequences

A finite sequence is two-valued if:

(Def.3) card rng it = 2.

The following proposition is true

(19) p is two-valued iff len p > 1 and there exist arbitrary x, y such that
x 6= y and rng p = {x, y}.

A finite sequence is alternating if:

(Def.4) For every natural number i such that 1 ≤ i and i + 1 ≤ len it holds
it(i) 6= it(i+ 1).

One can check that there exists a finite sequence which is two-valued and
alternating.

In the sequel a, a1, a2 are two-valued alternating finite sequences.
One can prove the following propositions:

(20) If len a1 = len a2 and rng a1 = rng a2 and a1(1) = a2(1), then a1 = a2.

(21) If a1 6= a2 and len a1 = len a2 and rng a1 = rng a2, then for every i such
that 1 ≤ i and i ≤ len a1 holds a1(i) 6= a2(i).

(22) If a1 6= a2 and len a1 = len a2 and rng a1 = rng a2, then for every a such
that len a = len a1 and rng a = rng a1 holds a = a1 or a = a2.
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(23) If X 6= Y and n > 1, then there exists a1 such that rng a1 = {X,Y }
and len a1 = n and a1(1) = X.

5. Finite subsequence of finite sequences

Let us consider X and let f1 be a finite sequence of elements of X. A finite
subsequence is called a FinSubsequence of f1 if:

(Def.5) It ⊆ f1.

In the sequel s1 will denote a finite subsequence.
The following propositions are true:

(24) If s1 is a finite sequence, then Seq s1 = s1.

(25) If rng p ⊆ dom s1, then s1 · p is a finite sequence.

(26) Let f be a finite subsequence and let g, h, f2, f3, f4 be finite sequences.
If rng g ⊆ dom f and rng h ⊆ dom f and f2 = f · g and f3 = f · h and
f4 = f · (g � h), then f4 = f2 � f3.

We follow the rules: f1, f5, f6 will be finite sequences of elements of X and
f7, f8 will be FinSubsequence of f1.

We now state four propositions:

(27) dom f7 ⊆ dom f1 and rng f7 ⊆ rng f1.

(28) f1 is a FinSubsequence of f1.

(29) f7
�
Y is a FinSubsequence of f1.

(30) For every FinSubsequence f9 of f5 such that Seq f7 = f5 and Seq f9 = f6

and f8 = f7
�
rng(Sgm dom f7

�
dom f9) holds Seq f8 = f6.

6. Vertex sequences induced by chains

In the sequel G is a graph.
Let us consider G. One can verify that the vertices of G is non empty.
We follow the rules: v, v1, v2, v3, v4 will denote elements of the vertices of

G and e will be arbitrary.
We now state two propositions:

(31) If e joins v1 with v2, then e joins v2 with v1.

(32) If e joins v1 with v2 and e joins v3 with v4, then v1 = v3 and v2 = v4 or
v1 = v4 and v2 = v3.

Let us consider G. We see that the chain of G is a finite sequence of elements
of the edges of G.

Let us consider G. A path of G is a path-like chain of G.
We follow the rules: v5, v6, v7 will denote finite sequences of elements of the

vertices of G and c, c1, c2 will denote chains of G.
The following proposition is true
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(33) ε is a chain of G.

Let us consider G. One can check that there exists a chain of G which is
empty.

Let us consider G, X. The functor (G) -VSet(X) yields a set and is defined
as follows:

(Def.6) (G) -VSet(X) = {v :
∨
e : element of the edges of G e ∈ X ∧ (v = (the source

of G)(e) ∨ v = (the target of G)(e))}.
Let us consider G, v5 and let c be a finite sequence. We say that v5 is vertex

sequence of c if and only if:

(Def.7) len v5 = len c + 1 and for every n such that 1 ≤ n and n ≤ len c holds
c(n) joins πnv5 with πn+1v5.

One can prove the following four propositions:

(34) If c 6= ε and v5 is vertex sequence of c, then (G) -VSet(rng c) = rng v5.

(35) 〈v〉 is vertex sequence of ε.

(36) There exists v5 which is vertex sequence of c.

(37) Suppose c 6= ε and v6 is vertex sequence of c and v7 is vertex sequence
of c and v6 6= v7. Then v6(1) 6= v7(1) and for every v5 such that v5 is
vertex sequence of c holds v5 = v6 or v5 = v7.

Let us consider G and let c be a finite sequence. We say that c alternates
vertices in G if and only if:

(Def.8) len c ≥ 1 and (G) -VSet(rng c) = 2 and for every n such that n ∈ dom c
holds (the source of G)(c(n)) 6= (the target of G)(c(n)).

One can prove the following propositions:

(38) If c alternates vertices in G and v5 is vertex sequence of c, then for every
k such that k ∈ dom c holds v5(k) 6= v5(k + 1).

(39) Suppose c alternates vertices in G and v5 is vertex sequence of c. Then
rng v5 = {(the source of G)(c(1)), (the target of G)(c(1))}.

(40) Suppose c alternates vertices in G and v5 is vertex sequence of c. Then
v5 is a two-valued alternating finite sequence.

(41) Suppose c alternates vertices in G. Then there exist v6, v7 such that
(i) v6 6= v7,
(ii) v6 is vertex sequence of c,

(iii) v7 is vertex sequence of c, and
(iv) for every v5 such that v5 is vertex sequence of c holds v5 = v6 or

v5 = v7.

(42) Suppose v5 is vertex sequence of c. Then the vertices of G = 1 or c 6= ε
and c does not alternate vertices in G if and only if for every v6 such that
v6 is vertex sequence of c holds v6 = v5.

Let us consider G, c. Let us assume that the vertices of G = 1 or c 6= ε and
c does not alternate vertices in G. The functor vertex-seq(c) yielding a finite
sequence of elements of the vertices of G is defined as follows:
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(Def.9) vertex-seq(c) is vertex sequence of c.

We now state several propositions:

(43) If v5 is vertex sequence of c and c1 = c
�
Seg n and v6 = v5

�
Seg(n+ 1),

then v6 is vertex sequence of c1.

(44) If 1 ≤ m and m ≤ n and n ≤ len c and q = 〈c(m), . . . , c(n)〉, then q is a
chain of G.

(45) If 1 ≤ m and m ≤ n and n ≤ len c and c1 = 〈c(m), . . . , c(n)〉 and v5

is vertex sequence of c and v6 = 〈v5(m), . . . , v5(n+ 1)〉, then v6 is vertex
sequence of c1.

(46) If v6 is vertex sequence of c1 and v7 is vertex sequence of c2 and
v6(len v6) = v7(1), then c1 � c2 is a chain of G.

(47) Suppose v6 is vertex sequence of c1 and v7 is vertex sequence of c2 and
v6(len v6) = v7(1) and c = c1 � c2 and v5 = v6 ��� v7. Then v5 is vertex
sequence of c.

7. Vertex sequences induced by simple chains, paths and ordered
chains

Let us consider G. A chain of G is simple if it satisfies the condition (Def.10).

(Def.10) There exists v5 such that v5 is vertex sequence of it and for all n, m
such that 1 ≤ n and n < m and m ≤ len v5 and v5(n) = v5(m) holds
n = 1 and m = len v5.

Let us consider G. One can check that there exists a chain of G which is
simple.

In the sequel s2 denotes a simple chain of G.
Next we state several propositions:

(49)2 s2
�
Seg n is a simple chain of G.

(50) If 2 < len s2 and v6 is vertex sequence of s2 and v7 is vertex sequence
of s2, then v6 = v7.

(51) If v5 is vertex sequence of s2, then for all n, m such that 1 ≤ n and
n < m and m ≤ len v5 and v5(n) = v5(m) holds n = 1 and m = len v5.

(52) Suppose c is not a simple chain of G and v5 is vertex sequence of c. Then
there exists a FinSubsequence f10 of c and there exists a FinSubsequence
f11 of v5 and there exist c1, v6 such that len c1 < len c and v6 is vertex
sequence of c1 and len v6 < len v5 and v5(1) = v6(1) and v5(len v5) =
v6(len v6) and Seq f10 = c1 and Seq f11 = v6.

(53) Suppose v5 is vertex sequence of c. Then there exists a FinSubsequence
f10 of c and there exists a FinSubsequence f11 of v5 and there exist s2, v6

such that Seq f10 = s2 and Seq f11 = v6 and v6 is vertex sequence of s2

and v5(1) = v6(1) and v5(len v5) = v6(len v6).

2The proposition (48) has been removed.
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Let us consider G. One can check that every chain of G which is empty is
also path-like.

We now state the proposition

(54) If p is a path of G, then p
�
Seg n is a path of G.

Let us consider G. One can verify that there exists a path of G which is
simple.

We now state two propositions:

(55) If 2 < len s2, then s2 is a path of G.

(56) s2 is a path of G iff len s2 = 0 or len s2 = 1 or s2(1) 6= s2(2).

Let us consider G. Observe that every chain of G which is empty is also
oriented.

Let us consider G and let o1 be an oriented chain of G. Let us assume that
o1 6= ε. The functor vertex-seq(o1) yields a finite sequence of elements of the
vertices of G and is defined as follows:

(Def.11) vertex-seq(o1) is vertex sequence of o1 and (vertex-seq(o1))(1) = (the
source of G)(o1(1)).
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In this paper F denotes a field and V1 denotes a strict vector space over F .
Let us consider F , V1. The functor � (V1 ) yields a strict bounded lattice and

is defined as follows:

(Def.1) � (V1 ) = 〈SubspacesV1,SubJoinV1,SubMeetV1〉.
Let us consider F , V1. Family of subspaces of V1 is defined as follows:

(Def.2) For arbitrary x such that x ∈ it holds x is a subspace of V1.

Let us consider F , V1. Note that there exists a family of subspaces of V1

which is non empty.
Let us consider F , V1. Then SubspacesV1 is a non empty family of subspaces

of V1. Let X be a non empty family of subspaces of V1. We see that the element
of X is a subspace of V1.

Let us consider F , V1 and let x be an element of SubspacesV1. The functor
x yielding a subset of the carrier of V1 is defined as follows:

(Def.3) There exists a subspace X of V1 such that x = X and x = the carrier
of X.

Let us consider F , V1. The functor V1 yielding a function from SubspacesV1

into 2the carrier of V1 is defined by:

(Def.4) For every element h of SubspacesV1 and for every subspace H of V1

such that h = H holds V1(h) = the carrier of H.

We now state two propositions:

(1) For every strict vector space V1 over F and for every non empty subset
H of SubspacesV1 holds V1

◦
H is non empty.
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(2) For every strict vector space V1 over F and for every strict subspace H
of V1 holds 0(V1) ∈ V1(H).

Let us consider F , V1 and let G be a non empty subset of SubspacesV1. The
functor

⋂
G yielding a strict subspace of V1 is defined by:

(Def.5) The carrier of
⋂
G =

⋂
(V1
◦
G).

Next we state several propositions:

(3) SubspacesV1 = the carrier of � (V1 ).

(4) The meet operation of � (V1 ) = SubMeet V1.

(5) The join operation of � (V1 ) = SubJoinV1.

(6) Let V1 be a strict vector space over F , and let p, q be elements of the
carrier of � (V1 ), and let H1, H2 be strict subspaces of V1. Suppose p = H1

and q = H2. Then p v q if and only if the carrier of H1 ⊆ the carrier of
H2.

(7) Let V1 be a strict vector space over F , and let p, q be elements of the
carrier of � (V1 ), and let H1, H2 be subspaces of V1. If p = H1 and q = H2,
then p t q = H1 +H2.

(8) Let V1 be a strict vector space over F , and let p, q be elements of the
carrier of � (V1 ), and let H1, H2 be subspaces of V1. If p = H1 and q = H2,
then p u q = H1 ∩H2.

Let us observe that a non empty lattice structure is complete if it satisfies
the condition (Def.6).

(Def.6) Let X be a subset of the carrier of it. Then there exists an element a
of the carrier of it such that a v X and for every element b of the carrier
of it such that b v X holds b v a.

The following propositions are true:

(9) For every V1 holds � (V1 ) is complete.

(10) Let x be arbitrary, and let V1 be a strict vector space over F , and let
S be a subset of the carrier of V1. If S is non empty and linearly closed,
then if x ∈ Lin(S), then x ∈ S.

Let F be a field, let A, B be strict vector spaces over F , and let f be a
function from the carrier of A into the carrier of B. The functor FuncLatt(f)
yields a function from the carrier of � A into the carrier of � B and is defined by
the condition (Def.7).

(Def.7) Let S be a strict subspace of A and let B0 be a subset of the carrier of
B. If B0 = f◦(the carrier of S), then (FuncLatt(f))(S) = Lin(B0).

Let L1, L2 be lattices. A function from the carrier of L1 into the carrier of
L2 is called a lower homomorphism between L1 and L2 if:

(Def.8) For all elements a, b of the carrier of L1 holds it(a u b) = it(a) u it(b).

Let L1, L2 be lattices. A function from the carrier of L1 into the carrier of
L2 is called an upper homomorphism between L1 and L2 if:

(Def.9) For all elements a, b of the carrier of L1 holds it(a t b) = it(a) t it(b).
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One can prove the following propositions:

(11) Let L1, L2 be lattices and let f be a function from the carrier of L1

into the carrier of L2. Then f is a homomorphism from L1 to L2 if and
only if f is an upper homomorphism between L1 and L2 and a lower
homomorphism between L1 and L2.

(12) Let F be a field, and let A, B be strict vector spaces over F , and let f
be a function from the carrier of A into the carrier of B. If f is linear,
then FuncLatt(f) is an upper homomorphism between � A and � B .

(13) Let F be a field, and let A, B be strict vector spaces over F , and let
f be a function from the carrier of A into the carrier of B. Suppose f is
one-to-one and linear. Then FuncLatt(f) is a homomorphism from � A to
� B .

(14) Let A, B be strict vector spaces over F and let f be a function from
the carrier of A into the carrier of B. If f is linear and one-to-one, then
FuncLatt(f) is one-to-one.

(15) Let A be a strict vector space over F and let f be a function from
the carrier of A into the carrier of A. If f = id(the carrier of A), then
FuncLatt(f) = id(the carrier of � A) .
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The articles [15], [3], [16], [8], [4], [2], [17], [13], [7], [10], [12], [9], [11], [14], [1],
[6], and [5] provide the terminology and notation for this paper.

The following propositions are true:

(1) Let G be a group and let H1, H2 be subgroups of G. Then the carrier
of H1 ∩H2 = (the carrier of H1) ∩ (the carrier of H2).

(2) For every group G and for arbitrary h holds h ∈ SubGrG iff there exists
a strict subgroup H of G such that h = H.

(3) Let G be a group, and let A be a subset of the carrier of G, and let H
be a strict subgroup of G. If A = the carrier of H, then gr(A) = H.

(4) Let G be a group, and let H1, H2 be subgroups of G, and let A be a
subset of the carrier of G. If A = (the carrier of H1)∪ (the carrier of H2),
then H1 tH2 = gr(A).

(5) Let G be a group, and let H1, H2 be subgroups of G, and let g be an
element of the carrier of G. If g ∈ H1 or g ∈ H2, then g ∈ H1 tH2.

(6) Let G1, G2 be groups, and let f be a homomorphism from G1 to G2,
and let H1 be a subgroup of G1. Then there exists a strict subgroup H2

of G2 such that the carrier of H2 = f◦(the carrier of H1).

(7) Let G1, G2 be groups, and let f be a homomorphism from G1 to G2,
and let H2 be a subgroup of G2. Then there exists a strict subgroup H1

of G1 such that the carrier of H1 = f −1 (the carrier of H2).

(8) Let G1, G2 be groups, and let f be a homomorphism from G1 to G2,
and let H1, H2 be subgroups of G1. Suppose the carrier of H1 ⊆ the
carrier of H2. Then f ◦(the carrier of H1) ⊆ f◦(the carrier of H2).

(9) Let G1, G2 be groups, and let f be a homomorphism from G1 to G2,
and let H1, H2 be subgroups of G2. Suppose the carrier of H1 ⊆ the
carrier of H2. Then f −1 (the carrier of H1) ⊆ f −1 (the carrier of H2).
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(10) Let G1, G2 be groups, and let f be a homomorphism from G1 to G2,
and let H1, H2 be subgroups of G1, and let H3, H4 be subgroups of
G2. Suppose the carrier of H3 = f◦(the carrier of H1) and the carrier
of H4 = f◦(the carrier of H2). If H1 is a subgroup of H2, then H3 is a
subgroup of H4.

(11) Let G1, G2 be groups, and let f be a homomorphism from G1 to G2,
and let H1, H2 be subgroups of G2, and let H3, H4 be subgroups of G1.
Suppose the carrier of H3 = f −1 (the carrier of H1) and the carrier of
H4 = f −1 (the carrier of H2). If H1 is a subgroup of H2, then H3 is a
subgroup of H4.

(12) Let G1, G2 be groups, and let f be a function from the carrier of G1

into the carrier of G2, and let A be a subset of the carrier of G1. Then
f◦A ⊆ f◦(the carrier of gr(A)).

(13) Let G1, G2 be groups, and let H1, H2 be subgroups of G1, and let f be
a function from the carrier of G1 into the carrier of G2, and let A be a
subset of the carrier of G1. Suppose A = (the carrier of H1)∪ (the carrier
of H2). Then f ◦(the carrier of H1 tH2) = f◦(the carrier of gr(A)).

(14) For every group G and for every subset A of the carrier of G such that
A = {1G} holds gr(A) = {1}G.

(15) For all non empty sets X, Y and for all subsets A1, A2 of Y and for
every function f from X into Y holds f −1 (A1 ∪A2) = f −1 A1 ∪ f −1 A2.

(16) For all non empty sets X, Y and for all subsets A1, A2 of X and for
every function f from X into Y holds f ◦(A1 ∪A2) = f◦A1 ∪ f◦A2.

Let G be a group. The functor G yields a function from SubGrG into
2the carrier of G and is defined as follows:

(Def.1) For every element h of SubGrG and for every subgroup H of G such
that h = H holds G(h) = the carrier of H.

Next we state several propositions:

(17) Let G be a group, and let h be an element of SubGrG, and let H be a
subgroup of G. If h = H, then G(h) = the carrier of H.

(18) Let G be a group, and let H be a strict subgroup of G, and let x be an
element of the carrier of G. Then x ∈ G(H) if and only if x ∈ H.

(19) For every group G and for every strict subgroup H of G holds 1G ∈
G(H).

(20) For every groupG and for every strict subgroupH ofG holdsG(H) 6= ∅.
(21) Let G be a group, and let H be a strict subgroup of G, and let g1,

g2 be elements of the carrier of G. If g1 ∈ G(H) and g2 ∈ G(H), then
g1 · g2 ∈ G(H).

(22) Let G be a group, and let H be a strict subgroup of G, and let g be an
element of the carrier of G. If g ∈ G(H), then g−1 ∈ G(H).

(23) For every group G and for all strict subgroups H1, H2 of G holds the
carrier of H1 ∩H2 = G(H1) ∩G(H2).
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(24) For every group G and for all strict subgroupsH1, H2 of G holds G(H1∩
H2) = G(H1) ∩G(H2).

Let G be a group and let F be a non empty subset of SubGrG. The functor⋂
F yielding a strict subgroup of G is defined by:

(Def.2) The carrier of
⋂
F =

⋂
(G
◦
F ).

Next we state several propositions:

(25) For every group G and for every non empty subset F of SubGrG such
that {1}G ∈ F holds

⋂
F = {1}G.

(26) For every group G and for every element h of SubGrG and for every
non empty subset F of SubGrG such that F = {h} holds

⋂
F = h.

(27) Let G be a group, and let H1, H2 be subgroups of G, and let h1,
h2 be elements of the carrier of � G . If h1 = H1 and h2 = H2, then
h1 t h2 = H1 tH2.

(28) Let G be a group, and let H1, H2 be subgroups of G, and let h1,
h2 be elements of the carrier of � G . If h1 = H1 and h2 = H2, then
h1 u h2 = H1 ∩H2.

(29) Let G be a group, and let p be an element of the carrier of � G , and let
H be a subgroup of G. If p = H, then H is a strict subgroup of G.

(30) Let G be a group, and let H1, H2 be subgroups of G, and let p, q be
elements of the carrier of � G . Suppose p = H1 and q = H2. Then p v q
if and only if the carrier of H1 ⊆ the carrier of H2.

(31) Let G be a group, and let H1, H2 be subgroups of G, and let p, q be
elements of the carrier of � G . If p = H1 and q = H2, then p v q iff H1 is
a subgroup of H2.

(32) For every group G holds � G is complete.

Let G1, G2 be groups and let f be a function from the carrier of G1 into the
carrier of G2. The functor FuncLatt(f) yielding a function from the carrier of
� (G1 ) into the carrier of � (G2 ) is defined by the condition (Def.3).

(Def.3) Let H be a strict subgroup of G1 and let A be a subset of the carrier
of G2. If A = f ◦(the carrier of H), then (FuncLatt(f))(H) = gr(A).

One can prove the following propositions:

(33) Let G be a group and let f be a function from the carrier of G
into the carrier of G. If f = id(the carrier of G), then FuncLatt(f) =
id(the carrier of � G) .

(34) For all groups G1, G2 and for every homomorphism f from G1 to G2

such that f is one-to-one holds FuncLatt(f) is one-to-one.

(35) For all groups G1, G2 and for every homomorphism f from G1 to G2

holds (FuncLatt(f))({1}(G1)) = {1}(G2).

(36) Let G1, G2 be groups and let f be a homomorphism from G1 to G2.
Suppose f is one-to-one. Then FuncLatt(f) is a lower homomorphism
between � (G1 ) and � (G2 ).
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(37) Let G1, G2 be groups and let f be a homomorphism from G1 to G2.
Then FuncLatt(f) is an upper homomorphism between � (G1 ) and � (G2 ).

(38) Let G1, G2 be groups and let f be a homomorphism from G1 to G2.
If f is one-to-one, then FuncLatt(f) is a homomorphism from � (G1 ) to
� (G2 ).
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[6] Jolanta Kamieńska and Jaros law Stanis law Walijewski. Homomorphisms of lattices,

finite join and finite meet. Formalized Mathematics, 4(1):35–40, 1993.
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The papers [13], [16], [15], [12], [17], [6], [7], [2], [8], [5], [4], [18], [1], [10], [11],
[9], [14], and [3] provide the terminology and notation for this paper.

In this paper U0 is a universal algebra, H is a non empty subset of the carrier
of U0, and o is an operation of U0.

Let us consider U0. Family of subalgebras of U0 is defined by:

(Def.1) For arbitrary U1 such that U1 ∈ it holds U1 is a subalgebra of U0.

Let us consider U0. One can check that there exists a family of subalgebras
of U0 which is non empty.

Let us consider U0. Then Subalgebras(U0) is a non empty family of subal-
gebras of U0. Let U2 be a non empty family of subalgebras of U0. We see that
the element of U2 is a subalgebra of U0.

Let us consider U0. Then
⊔

(U0) is a binary operation on Subalgebras(U0).
Then d−e(U0) is a binary operation on Subalgebras(U0).

Let us consider U0 and let u be an element of Subalgebras(U0). The functor
u yielding a subset of the carrier of U0 is defined as follows:

(Def.2) There exists a subalgebra U1 of U0 such that u = U1 and u = the carrier
of U1.

Let us consider U0. The functor Carr(U0) yields a function from Subalgebras(U0)
into 2the carrier of U0 and is defined by:

(Def.3) For every element u of Subalgebras(U0) holds (Carr(U0))(u) = u.

We now state several propositions:

(1) For arbitrary u holds u ∈ Subalgebras(U0) iff there exists a strict sub-
algebra U1 of U0 such that u = U1.

(2) Let H be a non empty subset of the carrier of U0 and given o. If
arity o = 0, then H is closed on o iff o(ε) ∈ H.
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(3) For every subalgebra U1 of U0 holds the carrier of U1 ⊆ the carrier of
U0.

(4) For every non empty subset H of the carrier of U0 and for every o such
that H is closed on o and arity o = 0 holds oH = o.

(5) If U0 has constants, then Constants(U0) = {o(ε) : o ranges over opera-
tion of U0, arity o = 0}.

(6) For every universal algebra U0 with constants and for every subalgebra
U1 of U0 holds Constants(U0) = Constants(U1).

Let U0 be a universal algebra with constants. Note that every subalgebra of
U0 has constants.

The following proposition is true

(7) For every universal algebra U0 with constants and for all subalgebras
U1, U3 of U0 holds Constants(U1) = Constants(U3).

Let us consider U0. Then Carr(U0) is a function from Subalgebras(U0) into
2the carrier of U0 and it can be characterized by the condition:

(Def.4) For every element u of Subalgebras(U0) and for every subalgebra U1 of
U0 such that u = U1 holds (Carr(U0))(u) = the carrier of U1.

One can prove the following propositions:

(8) For every strict subalgebra H of U0 and for every element u of U0 holds
u ∈ (Carr(U0))(H) iff u ∈ H.

(9) For every non empty subset H of Subalgebras(U0) holds (Carr(U0))◦H
is non empty.

(10) For every universal algebra U0 with constants and for every strict sub-
algebra U1 of U0 holds Constants(U0) ⊆ (Carr(U0))(U1).

(11) Let U0 be a universal algebra with constants, and let U1 be a subalgebra
of U0, and let a be arbitrary. If a is an element of Constants(U0), then
a ∈ the carrier of U1.

(12) Let U0 be a universal algebra with constants and let H be a non empty
subset of Subalgebras(U0). Then

⋂
((Carr(U0))◦H) is a non empty subset

of the carrier of U0.

(13) For every universal algebra U0 with constants holds the carrier of the
lattice of subalgebras of U0 = Subalgebras(U0).

(14) Let U0 be a universal algebra with constants, and let H be a non empty
subset of Subalgebras(U0), and let S be a non empty subset of the carrier
of U0. If S =

⋂
((Carr(U0))◦H), then S is operations closed.

Let U0 be a strict universal algebra with constants and let H be a non empty
subset of Subalgebras(U0). The functor

⋂
H yielding a strict subalgebra of U0

is defined as follows:

(Def.5) The carrier of
⋂
H =

⋂
((Carr(U0))◦H).

One can prove the following propositions:
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(15) Let U0 be a universal algebra with constants, and let l1, l2 be elements
of the carrier of the lattice of subalgebras of U0, and let U1, U3 be strict
subalgebras of U0. If l1 = U1 and l2 = U3, then l1 t l2 = U1

⊔
U3.

(16) Let U0 be a universal algebra with constants, and let l1, l2 be elements
of the carrier of the lattice of subalgebras of U0, and let U1, U3 be strict
subalgebras of U0. If l1 = U1 and l2 = U3, then l1 u l2 = U1 ∩ U3.

(17) Let U0 be a universal algebra with constants, and let l1, l2 be elements
of the carrier of the lattice of subalgebras of U0, and let U1, U3 be strict
subalgebras of U0. Suppose l1 = U1 and l2 = U3. Then l1 v l2 if and only
if the carrier of U1 ⊆ the carrier of U3.

(18) Let U0 be a universal algebra with constants, and let l1, l2 be elements
of the carrier of the lattice of subalgebras of U0, and let U1, U3 be strict
subalgebras of U0. If l1 = U1 and l2 = U3, then l1 v l2 iff U1 is a
subalgebra of U3.

(19) For every strict universal algebra U0 with constants holds the lattice of
subalgebras of U0 is bounded.

(20) For every strict universal algebra U0 with constants and for ev-
ery strict subalgebra U1 of U0 holds GenUA(Constants(U0)) ∩ U1 =
GenUA(Constants(U0)).

(21) For every strict universal algebra U0 with constants holds
⊥the lattice of subalgebras of U0 = GenUA(Constants(U0)).

(22) Let U0 be a strict universal algebra with constants, and let U1 be a
subalgebra of U0, and let H be a subset of the carrier of U0. If H = the
carrier of U0, then GenUA(H)

⊔
U1 = GenUA(H).

(23) Let U0 be a strict universal algebra with constants and let H be a
subset of the carrier of U0. Suppose H = the carrier of U0. Then
>the lattice of subalgebras of U0 = GenUA(H).

(24) For every strict universal algebra U0 with constants holds
>the lattice of subalgebras of U0 = U0.

(25) For every strict universal algebra U0 with constants holds the lattice of
subalgebras of U0 is complete.

Let U4, U5 be universal algebras with constants and let F be a function from
the carrier of U4 into the carrier of U5. The functor FuncLatt(F ) yielding a
function from the carrier of the lattice of subalgebras of U4 into the carrier of
the lattice of subalgebras of U5 is defined by the condition (Def.6).

(Def.6) Let U1 be a strict subalgebra of U4 and let H be a subset of the carrier of
U5. If H = F ◦(the carrier of U1), then (FuncLatt(F ))(U1) = GenUA(H).

We now state the proposition

(26) Let U0 be a strict universal algebra with constants and let
F be a function from the carrier of U0 into the carrier of
U0. Suppose F = id(the carrier of U0). Then FuncLatt(F ) =
id(the carrier of the lattice of subalgebras of U0).
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The notation and terminology used here are introduced in the following papers:
[10], [12], [9], [7], [1], [13], [4], [2], [11], [8], [5], [3], and [6].

1. Preliminaries

We introduce degenerated as a synonym of trivial.
Let us observe that every set which is non trivial is also non empty.
In the sequel x, y, z will be arbitrary.
Let us consider x, y. Observe that 〈x, y〉 is non trivial.
Let us consider x, y, z. Note that 〈x, y, z〉 is non trivial.
Let f be a non empty finite sequence. One can check that Rev(f) is non

empty.

2. Decomposing a finite sequence

For simplicity we adopt the following rules: f1, f2, f3 will denote finite
sequences, p, p1, p2, p3 will be arbitrary, f will denote a finite sequence, and i,
k will denote natural numbers.

Next we state a number of propositions:

(3)1 For every set X and for every i such that X ⊆ Seg i and 1 ∈ X holds
(SgmX)(1) = 1.

(4) For every finite sequence f such that k ∈ dom f and for every i such
that 1 ≤ i and i < k holds f(i) 6= f(k) holds f(k) � f = k.

1The propositions (1) and (2) have been removed.
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(5) 〈p1, p2〉
�
Seg 1 = 〈p1〉.

(6) 〈p1, p2, p3〉
�
Seg 1 = 〈p1〉.

(7) 〈p1, p2, p3〉
�
Seg 2 = 〈p1, p2〉.

(8) If p ∈ rng f1, then p � (f1 � f2) = p � f1.

(9) If p ∈ rng f2 \ rng f1, then p � (f1 � f2) = len f1 + p � f2.

(10) If p ∈ rng f1, then f1 � f2 → p = (f1 → p) � f2.

(11) If p ∈ rng f2 \ rng f1, then f1 � f2 → p = f2 → p.

(12) f1 ⊆ f1 � f2.

(13) For every set A such that A ⊆ dom f1 holds (f1 � f2)
�
A = f1

�
A.

(14) If p ∈ rng f1, then f1 � f2 ← p = f1 ← p.

Let us consider f1, i. Observe that f1
�
Seg i is finite sequence-like.

The following propositions are true:

(15) If f1 ⊆ f2, then f3 � f1 ⊆ f3 � f2.

(16) (f1 � f2)
�
Seg(len f1 + i) = f1 � (f2

�
Seg i).

(17) If p ∈ rng f2 \ rng f1, then f1 � f2 ← p = f1 � (f2 ← p).

(18) For every finite sequence f and for arbitrary p, q such that p ∈ rng f
and q ∈ rng f and p � f = q � f holds p = q.

(19) If f1 � f2 yields p just once, then p ∈ rng f1−. rng f2.

(20) If f1 � f2 yields p just once and p ∈ rng f1, then f1 yields p just once.

(21) If rng f is non trivial, then f is non trivial.

(22) p � 〈p〉 = 1.

(23) p1 � 〈p1, p2〉 = 1.

(24) If p1 6= p2, then p2 � 〈p1, p2〉 = 2.

(25) p1 � 〈p1, p2, p3〉 = 1.

(26) If p1 6= p2, then p2 � 〈p1, p2, p3〉 = 2.

(27) If p1 6= p3 and p2 6= p3, then p3 � 〈p1, p2, p3〉 = 3.

(28) For every finite sequence f holds Rev(〈p〉 � f) = (Rev(f)) � 〈p〉.
(29) For every finite sequence f holds Rev(Rev(f)) = f.

(30) If x 6= y, then 〈x, y〉 ← y = 〈x〉.
(31) If x 6= y, then 〈x, y, z〉 ← y = 〈x〉.
(32) If x 6= z and y 6= z, then 〈x, y, z〉 ← z = 〈x, y〉.
(33) 〈x, y〉 → x = 〈y〉.
(34) If x 6= y, then 〈x, y, z〉 → y = 〈z〉.
(35) 〈x, y, z〉 → x = 〈y, z〉.
(36) 〈z〉 → z = ε and 〈z〉 ← z = ε.

(37) If x 6= y, then 〈x, y〉 → y = ε.

(38) If x 6= z and y 6= z, then 〈x, y, z〉 → z = ε.

(39) If x ∈ rng f and y ∈ rng(f ← x), then (f ← x)← y = f ← y.

(40) If x /∈ rng f1, then x � (f1 � 〈x〉 � f2) = len f1 + 1.
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(41) If f yields x just once, then x � f + x � Rev(f) = len f + 1.

(42) If f yields x just once, then Rev(f ← x) = Rev(f)→ x.

(43) If f yields x just once, then Rev(f) yields x just once.

3. Finite sequences with elements from a non empty set

We adopt the following convention: D will denote a non empty set, p, p1,
p2, p3 will denote elements of D, and f , f1, f2 will denote finite sequences of
elements of D.

One can prove the following propositions:

(44) If p ∈ rng f, then f −: p = (f ← p) � 〈p〉.
(45) If p ∈ rng f, then f :− p = 〈p〉 � (f → p).

(46) If f 6= ε, then π1f ∈ rng f.

(47) If f 6= ε, then (π1f) � f = 1.

(48) If f 6= ε and π1f = p, then f −: p = 〈p〉 and f :− p = f.

(49) (〈p1〉 � f) � 1 = f.

(50) 〈p1, p2〉 � 1 = 〈p2〉.
(51) 〈p1, p2, p3〉 � 1 = 〈p2, p3〉.
(52) If k ∈ dom f and for every i such that 1 ≤ i and i < k holds πif 6= πkf,

then (πkf) � f = k.

(53) If p1 6= p2, then 〈p1, p2〉 −: p2 = 〈p1, p2〉.
(54) If p1 6= p2, then 〈p1, p2, p3〉 −: p2 = 〈p1, p2〉.
(55) If p1 6= p3 and p2 6= p3, then 〈p1, p2, p3〉 −: p3 = 〈p1, p2, p3〉.
(56) 〈p〉 :− p = 〈p〉 and 〈p〉 −: p = 〈p〉.
(57) If p1 6= p2, then 〈p1, p2〉 :− p2 = 〈p2〉.
(58) If p1 6= p2, then 〈p1, p2, p3〉 :− p2 = 〈p2, p3〉.
(59) If p1 6= p3 and p2 6= p3, then 〈p1, p2, p3〉 :− p3 = 〈p3〉.
(60) If x ∈ rng f and p ∈ rng f and x � f ≤ p � f, then x ∈ rng(f −: p).

(61) If p ∈ rng f and p � f > k, then p � f = k + p � (f � k ).

(62) If p ∈ rng f and p � f > k, then p ∈ rng(f � k ).

(63) If k < i and i ∈ dom f, then πif ∈ rng(f � k ).

(64) If p ∈ rng f and p � f > k, then f � k −: p = (f −: p) � k .
(65) If p ∈ rng f and p � f 6= 1, then f � 1 −: p = (f −: p) � 1 .
(66) p ∈ rng(f :− p).
(67) If x ∈ rng f and p ∈ rng f and x � f ≥ p � f, then x ∈ rng(f :− p).
(68) If p ∈ rng f and k ≤ len f and k ≥ p � f, then πkf ∈ rng(f :− p).
(69) If p ∈ rng f1, then f1 � f2 :− p = (f1 :− p) � f2.

(70) If p ∈ rng f2 \ rng f1, then f1 � f2 :− p = f2 :− p.
(71) If p ∈ rng f1, then f1 � f2 −: p = f1 −: p.
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(72) If p ∈ rng f2 \ rng f1, then f1 � f2 −: p = f1 � (f2 −: p).

(73) f :− p :− p = f :− p.
(74) If p1 ∈ rng f and p2 ∈ rng f\rng(f−:p1), then f → p2 = (f → p1)→ p2.

(75) If p ∈ rng f, then rng f = rng(f −: p) ∪ rng(f :− p).
(76) If p1 ∈ rng f and p2 ∈ rng f \ rng(f −: p1), then f :− p1 :− p2 = f :− p2.

(77) If p ∈ rng f, then p � (f −: p) = p � f.

(78) f
�
i
�
i = f

�
i.

(79) If p ∈ rng f, then f −: p−: p = f −: p.

(80) If p1 ∈ rng f and p2 ∈ rng(f −: p1), then f −: p1 −: p2 = f −: p2.

(81) If p ∈ rng f, then (f −: p) � ((f :− p) � 1 ) = f.

(82) If f1 6= ε, then (f1 � f2) � 1 = ((f1) � 1 ) � f2.

(83) If p2 ∈ rng f and p2 � f 6= 1, then p2 ∈ rng(f � 1).

(84) If p ∈ rng f, then p � (f :− p) = 1.

(86)2 (εD) � k = εD.

(87) f � i+k = (f � i) � k .
(88) If p ∈ rng f and p � f > k, then f � k :− p = f :− p.
(89) If p ∈ rng f and p � f 6= 1, then f � 1 :− p = f :− p.
(90) If i+ k = len f, then Rev(f � k ) = Rev(f)

�
i.

(91) If i+ k = len f, then Rev(f
�
k) = (Rev(f)) � i .

(92) If f yields p just once, then Rev(f → p) = Rev(f)← p.

(93) If f yields p just once, then Rev(f :− p) = Rev(f)−: p.

(94) If f yields p just once, then Rev(f −: p) = Rev(f) :− p.

4. Rotating a finite sequence

Let D be a non empty set. A finite sequence of elements of D is circular if:

(Def.1) π1it = πlen itit.

Let us consider D, f , p. The functor f p� yielding a finite sequence of elements
of D is defined by:

(Def.2) (i) f p� = (f :− p) � ((f −: p) � 1 ) if p ∈ rng f,
(ii) fp� = f, otherwise.

Let us consider D, let f be a non empty finite sequence of elements of D,
and let p be an element of D. One can verify that f p� is non empty.

Let us consider D. Observe that there exists a finite sequence of elements of
D which is circular non empty and trivial and there exists a finite sequence of
elements of D which is circular non empty and non trivial.

The following proposition is true

(95) fπ1f� = f.

2The proposition (85) has been removed.
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Let us consider D, p and let f be a circular non empty finite sequence of
elements of D. Observe that f p� is circular.

We now state a number of propositions:

(96) If f is circular and p ∈ rng f, then rng(f p� ) = rng f.

(97) If p ∈ rng f, then p ∈ rng(f p� ).

(98) If p ∈ rng f, then π1f
p� = p.

(99) (fp� )p� = fp� .
(100) 〈p〉p� = 〈p〉.
(101) 〈p1, p2〉p1� = 〈p1, p2〉.
(102) 〈p1, p2〉p2� = 〈p2, p2〉.
(103) 〈p1, p2, p3〉p1� = 〈p1, p2, p3〉.
(104) If p1 6= p2, then 〈p1, p2, p3〉p2� = 〈p2, p3, p2〉.
(105) If p2 6= p3, then 〈p1, p2, p3〉p3� = 〈p3, p2, p3〉.
(106) For every circular non trivial finite sequence f of elements of D holds

rng(f � 1) = rng f.

(107) rng(f � 1) ⊆ rng(fp� ).

(108) If p2 ∈ rng f \ rng(f −: p1), then (fp1� )p2� = fp2� .
(109) If p2 � f 6= 1 and p2 ∈ rng f \ rng(f :− p1), then (fp1� )p2� = fp2� .
(110) If p2 ∈ rng(f � 1) and f yields p2 just once, then (f p1� )p2� = fp2� .
(111) If f is circular and f yields p2 just once, then (f p1� )p2� = fp2� .
(112) If f is circular and f yields p just once, then Rev(f p� ) = (Rev(f))p� .
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The articles [20], [23], [6], [22], [9], [2], [14], [17], [18], [24], [1], [5], [3], [4], [21],
[10], [11], [16], [15], [7], [8], [12], [13], and [19] provide the terminology and
notation for this paper.

For simplicity we follow a convention: q will be a point of E 2
T, i, i1, i2, j,

j1, j2, k will be natural numbers, r, s will be real numbers, and G will be a
Go-board.

We now state the proposition

(1) Let M be a tabular finite sequence and given i, j. If 〈〈i, j〉〉 ∈ the indices
of M , then 1 ≤ i and i ≤ lenM and 1 ≤ j and j ≤ widthM.

Let us consider G, i. The functor vstrip(G, i) yielding a subset of the carrier
of E2

T is defined as follows:

(Def.1) (i) vstrip(G, i) = {[r, s] : (Gi,1)1 ≤ r ∧ r ≤ (Gi+1,1)1} if 1 ≤ i and
i < lenG,

(ii) vstrip(G, i) = {[r, s] : (Gi,1)1 ≤ r} if i ≥ lenG,
(iii) vstrip(G, i) = {[r, s] : r ≤ (Gi+1,1)1}, otherwise.

The functor hstrip(G, i) yields a subset of the carrier of E 2
T and is defined by:

(Def.2) (i) hstrip(G, i) = {[r, s] : (G1,i)2 ≤ s ∧ s ≤ (G1,i+1)2} if 1 ≤ i and
i < widthG,

(ii) hstrip(G, i) = {[r, s] : (G1,i)2 ≤ s} if i ≥ widthG,
(iii) hstrip(G, i) = {[r, s] : s ≤ (G1,i+1)2}, otherwise.

We now state a number of propositions:

(2) If 1 ≤ j and j ≤ widthG and 1 ≤ i and i ≤ lenG, then (Gi,j)2 =
(G1,j)2.

(3) If 1 ≤ j and j ≤ widthG and 1 ≤ i and i ≤ lenG, then (Gi,j)1 =
(Gi,1)1.

(4) If 1 ≤ j and j ≤ widthG and 1 ≤ i1 and i1 < i2 and i2 ≤ lenG, then
(Gi1,j)1 < (Gi2 ,j)1.
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(5) If 1 ≤ j1 and j1 < j2 and j2 ≤ widthG and 1 ≤ i and i ≤ lenG, then
(Gi,j1)2 < (Gi,j2)2.

(6) If 1 ≤ j and j < widthG and 1 ≤ i and i ≤ lenG, then hstrip(G, j) =
{[r, s] : (Gi,j)2 ≤ s ∧ s ≤ (Gi,j+1)2}.

(7) If 1 ≤ i and i ≤ lenG, then hstrip(G,widthG) = {[r, s] : (Gi,widthG)2 ≤
s}.

(8) If 1 ≤ i and i ≤ lenG, then hstrip(G, 0) = {[r, s] : s ≤ (Gi,1)2}.
(9) If 1 ≤ i and i < lenG and 1 ≤ j and j ≤ widthG, then vstrip(G, i) =
{[r, s] : (Gi,j)1 ≤ r ∧ r ≤ (Gi+1,j)1}.

(10) If 1 ≤ j and j ≤ widthG, then vstrip(G, lenG) = {[r, s] : (GlenG,j)1 ≤
r}.

(11) If 1 ≤ j and j ≤ widthG, then vstrip(G, 0) = {[r, s] : r ≤ (G1,j)1}.
Let G be a Go-board and let us consider i, j. The functor cell(G, i, j) yields

a subset of the carrier of E2
T and is defined as follows:

(Def.3) cell(G, i, j) = vstrip(G, i) ∩ hstrip(G, j).

A finite sequence of elements of E2
T is s.c.c. if:

(Def.4) For all i, j such that i+ 1 < j but i > 1 and j < len it or j + 1 < len it
holds L(it, i) ∩ L(it, j) = ∅.

A non empty finite sequence of elements of E 2
T is standard if:

(Def.5) It is a sequence which elements belong to the Go-board of it.

One can verify that there exists a non empty finite sequence of elements of
E2

T which is non constant special unfolded circular s.c.c. and standard.
We now state two propositions:

(12) Let f be a standard non empty finite sequence of elements of E 2
T. Sup-

pose k ∈ dom f. Then there exist i, j such that 〈〈i, j〉〉 ∈ the indices of the
Go-board of f and πkf = (the Go-board of f)i,j.

(13) Let f be a standard non empty finite sequence of elements of E 2
T and

let n be a natural number. Suppose n ∈ dom f and n + 1 ∈ dom f. Let
m, k, i, j be natural numbers. Suppose that

(i) 〈〈m, k〉〉 ∈ the indices of the Go-board of f ,
(ii) 〈〈i, j〉〉 ∈ the indices of the Go-board of f ,
(iii) πnf = (the Go-board of f)m,k, and
(iv) πn+1f = (the Go-board of f)i,j.

Then |m− i|+ |k − j| = 1.

A special circular sequence is a special unfolded circular s.c.c. non empty
finite sequence of elements of E2

T.
In the sequel f is a standard special circular sequence.
Let us consider f , k. Let us assume that 1 ≤ k and k+1 ≤ len f. The functor

rightcell(f, k) yielding a subset of the carrier of E 2
T is defined by the condition

(Def.6).

(Def.6) Let i1, j1, i2, j2 be natural numbers. Suppose that
(i) 〈〈i1, j1〉〉 ∈ the indices of the Go-board of f ,
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(ii) 〈〈i2, j2〉〉 ∈ the indices of the Go-board of f ,
(iii) πkf = (the Go-board of f)i1,j1 , and
(iv) πk+1f = (the Go-board of f)i2,j2 .

Then
(v) i1 = i2 and j1 + 1 = j2 and rightcell(f, k) = cell(the Go-board of f ,

i1, j1), or
(vi) i1 + 1 = i2 and j1 = j2 and rightcell(f, k) = cell(the Go-board of f ,

i1, j1 −′ 1), or
(vii) i1 = i2 + 1 and j1 = j2 and rightcell(f, k) = cell(the Go-board of f ,

i2, j2), or
(viii) i1 = i2 and j1 = j2 + 1 and rightcell(f, k) = cell(the Go-board of f ,

i1 −′ 1, j2).

The functor leftcell(f, k) yielding a subset of the carrier of E 2
T is defined by the

condition (Def.7).

(Def.7) Let i1, j1, i2, j2 be natural numbers. Suppose that
(i) 〈〈i1, j1〉〉 ∈ the indices of the Go-board of f ,
(ii) 〈〈i2, j2〉〉 ∈ the indices of the Go-board of f ,

(iii) πkf = (the Go-board of f)i1,j1 , and
(iv) πk+1f = (the Go-board of f)i2,j2 .

Then
(v) i1 = i2 and j1 + 1 = j2 and leftcell(f, k) = cell(the Go-board of f ,

i1 −′ 1, j1), or
(vi) i1 + 1 = i2 and j1 = j2 and leftcell(f, k) = cell(the Go-board of f ,

i1, j1), or
(vii) i1 = i2 + 1 and j1 = j2 and leftcell(f, k) = cell(the Go-board of f ,

i2, j2 −′ 1), or
(viii) i1 = i2 and j1 = j2 + 1 and leftcell(f, k) = cell(the Go-board of f ,

i1, j2).

Next we state a number of propositions:

(14) If i < lenG and 1 ≤ j and j < widthG, then L(Gi+1,j , Gi+1,j+1) ⊆
vstrip(G, i).

(15) If 1 ≤ i and i ≤ lenG and 1 ≤ j and j < widthG, then L(Gi,j , Gi,j+1) ⊆
vstrip(G, i).

(16) If j < widthG and 1 ≤ i and i < lenG, then L(Gi,j+1, Gi+1,j+1) ⊆
hstrip(G, j).

(17) If 1 ≤ j and j ≤ widthG and 1 ≤ i and i < lenG, then L(Gi,j , Gi+1,j) ⊆
hstrip(G, j).

(18) If 1 ≤ i and i ≤ lenG and 1 ≤ j and j + 1 ≤ widthG, then
L(Gi,j , Gi,j+1) ⊆ hstrip(G, j).

(19) If i < lenG and 1 ≤ j and j < widthG, then L(Gi+1,j , Gi+1,j+1) ⊆
cell(G, i, j).

(20) If 1 ≤ i and i ≤ lenG and 1 ≤ j and j < widthG, then L(Gi,j , Gi,j+1) ⊆
cell(G, i, j).
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(21) If 1 ≤ j and j ≤ widthG and 1 ≤ i and i + 1 ≤ lenG, then
L(Gi,j, Gi+1,j) ⊆ vstrip(G, i).

(22) If j < widthG and 1 ≤ i and i < lenG, then L(Gi,j+1, Gi+1,j+1) ⊆
cell(G, i, j).

(23) If 1 ≤ i and i < lenG and 1 ≤ j and j ≤ widthG, then L(Gi,j , Gi+1,j) ⊆
cell(G, i, j).

(24) If i+1 ≤ lenG, then vstrip(G, i)∩vstrip(G, i+1) = {q : q1 = (Gi+1,1)1}.
(25) If j + 1 ≤ widthG, then hstrip(G, j) ∩ hstrip(G, j + 1) = {q : q2 =

(G1,j+1)2}.
(26) For every Go-board G such that i < lenG and 1 ≤ j and j < widthG

holds cell(G, i, j) ∩ cell(G, i + 1, j) = L(Gi+1,j , Gi+1,j+1).

(27) For every Go-board G such that j < widthG and 1 ≤ i and i < lenG
holds cell(G, i, j) ∩ cell(G, i, j + 1) = L(Gi,j+1, Gi+1,j+1).

(28) Suppose that
(i) 1 ≤ k,

(ii) k + 1 ≤ len f,
(iii) 〈〈i+ 1, j〉〉 ∈ the indices of the Go-board of f ,
(iv) 〈〈i+ 1, j + 1〉〉 ∈ the indices of the Go-board of f ,
(v) πkf = (the Go-board of f)i+1,j, and
(vi) πk+1f = (the Go-board of f)i+1,j+1.

Then leftcell(f, k) = cell(the Go-board of f , i, j) and rightcell(f, k) =
cell(the Go-board of f , i+ 1, j).

(29) Suppose that
(i) 1 ≤ k,

(ii) k + 1 ≤ len f,
(iii) 〈〈i, j + 1〉〉 ∈ the indices of the Go-board of f ,
(iv) 〈〈i+ 1, j + 1〉〉 ∈ the indices of the Go-board of f ,
(v) πkf = (the Go-board of f)i,j+1, and
(vi) πk+1f = (the Go-board of f)i+1,j+1.

Then leftcell(f, k) = cell(the Go-board of f , i, j + 1) and rightcell(f, k) =
cell(the Go-board of f , i, j).

(30) Suppose that
(i) 1 ≤ k,

(ii) k + 1 ≤ len f,
(iii) 〈〈i, j + 1〉〉 ∈ the indices of the Go-board of f ,
(iv) 〈〈i+ 1, j + 1〉〉 ∈ the indices of the Go-board of f ,
(v) πkf = (the Go-board of f)i+1,j+1, and
(vi) πk+1f = (the Go-board of f)i,j+1.

Then leftcell(f, k) = cell(the Go-board of f , i, j) and rightcell(f, k) =
cell(the Go-board of f , i, j + 1).

(31) Suppose that
(i) 1 ≤ k,

(ii) k + 1 ≤ len f,
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(iii) 〈〈i+ 1, j + 1〉〉 ∈ the indices of the Go-board of f ,
(iv) 〈〈i+ 1, j〉〉 ∈ the indices of the Go-board of f ,
(v) πkf = (the Go-board of f)i+1,j+1, and
(vi) πk+1f = (the Go-board of f)i+1,j.

Then leftcell(f, k) = cell(the Go-board of f , i+ 1, j) and rightcell(f, k) =
cell(the Go-board of f , i, j).

(32) If 1 ≤ k and k + 1 ≤ len f, then leftcell(f, k) ∩ rightcell(f, k) = L(f, k).
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Summary. The concept of indexing of a category (a part of in-
dexed category, see [18]) is introduced as a pair formed by a many sorted
category and a many sorted functor. The indexing of a category C against
to [18] is not a functor but it can be treated as a functor from C into
some categorial category (see [1]). The goal of the article is to work out
the notation necessary to define institutions (see [13]).

MML Identifier: INDEX 1.

The articles [23], [25], [11], [24], [26], [4], [5], [19], [9], [7], [22], [20], [21], [15], [16],
[14], [3], [6], [12], [8], [2], [10], [17], and [1] provide the notation and terminology
for this paper.

1. Category-yielding Functions

Let A be a non empty set. One can check that there exists a many sorted
set indexed by A which is non empty yielding.

Let A be a non empty set. One can verify that every many sorted set indexed
by A which is non-empty is also non empty yielding.

Let C be a categorial category and let f be a morphism of C. Then f2 is a
functor from f1,1 to f1,2.

We now state two propositions:

(1) For every categorial category C and for all morphisms f , g of C such
that dom g = cod f holds g · f = 〈〈〈〈 dom f, cod g〉〉, g2 · f2〉〉.

(2) Let C be a category, and let D, E be categorial categories, and let F
be a functor from C to D, and let G be a functor from C to E. If F = G,
then ObjF = ObjG.

A function is category-yielding if:
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(Def.1) For arbitrary x such that x ∈ dom it holds it(x) is a category.

Let us note that there exists a function which is category-yielding.
Let X be a set. Observe that there exists a many sorted set indexed by X

which is category-yielding.
Let A be a set. A many sorted category indexed by A is a category-yielding

many sorted set indexed by A.
Let C be a category. A many sorted set indexed by C is a many sorted set

indexed by the objects of C. A many sorted category indexed by C is a many
sorted category indexed by the objects of C.

Let X be a set and let x be a category. One can verify that X 7−→ x is
category-yielding.

Let X be a set and let x be a function. One can check that X 7−→ x is
function yielding.

Let X be a non empty set. One can check that every many sorted set indexed
by X is non empty.

Let f be a non empty function. One can check that rng f is non empty.
Let f be a category-yielding function. Observe that rng f is categorial.
Let X be a non empty set, let f be a many sorted category indexed by X,

and let x be an element of X. Then f(x) is a category.
Let B be a set, let A be a non empty set, let f be a function from B into

A, and let g be a many sorted category indexed by A. Observe that g · f is
category-yielding.

Let F be a category-yielding function. The functor Objs(F ) yields a non-
empty function and is defined by the conditions (Def.2).

(Def.2) (i) dom Objs(F ) = domF, and
(ii) for every set x such that x ∈ domF and for every category C such

that C = F (x) holds (Objs(F ))(x) = the objects of C.

The functor Mphs(F ) yields a non-empty function and is defined by the condi-
tions (Def.3).

(Def.3) (i) dom Mphs(F ) = domF, and
(ii) for every set x such that x ∈ domF and for every category C such

that C = F (x) holds (Mphs(F ))(x) = the morphisms of C.

Let A be a non empty set and let F be a many sorted category indexed by A.
Then Objs(F ) is a non-empty many sorted set indexed by A. Then Mphs(F ) is
a non-empty many sorted set indexed by A.

The following proposition is true

(3) For every set X and for every category C holds Objs(X 7−→ C) =
X 7−→ the objects of C and Mphs(X 7−→ C) = X 7−→ the morphisms of
C.
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2. Pairs of Many Sorted Sets

Let A, B be sets. Pair of many sorted sets indexed by A and B is defined
by:

(Def.4) There exists a many sorted set f indexed by A and there exists a many
sorted set g indexed by B such that it = 〈〈f, g〉〉.

Let A, B be sets, let f be a many sorted set indexed by A, and let g be a
many sorted set indexed by B. Then 〈〈f, g〉〉 is a pair of many sorted sets indexed
by A and B.

Let A, B be sets and let X be a pair of many sorted sets indexed by A and
B. Then X1 is a many sorted set indexed by A. Then X2 is a many sorted set
indexed by B.

Let A, B be sets. A pair of many sorted sets indexed by A and B is category-
yielding on first if:

(Def.5) it1 is category-yielding.

A pair of many sorted sets indexed by A and B is function-yielding on second
if:

(Def.6) it2 is function yielding.

Let A, B be sets. One can check that there exists a pair of many sorted sets
indexed by A and B which is category-yielding on first and function-yielding on
second.

Let A, B be sets and let X be a category-yielding on first pair of many sorted
sets indexed by A and B. Then X1 is a many sorted category indexed by A.

Let A, B be sets and let X be a function-yielding on second pair of many
sorted sets indexed by A and B. Then X2 is a many sorted function of B.

Let f be a function yielding function. One can check that rng f is functional.
Let A, B be sets, let f be a many sorted category indexed by A, and let

g be a many sorted function of B. Then 〈〈f, g〉〉 is a category-yielding on first
function-yielding on second pair of many sorted sets indexed by A and B.

Let A be a non empty set and let F , G be many sorted categories indexed
by A. A many sorted function of A is called a many sorted functor from F to
G if:

(Def.7) For every element a of A holds it(a) is a functor from F (a) to G(a).

The scheme LambdaMSFr deals with a non empty set A, many sorted cat-
egories B, C indexed by A, and a unary functor F yielding a set, and states
that:

There exists a many sorted functor F from B to C such that for
every element a of A holds F (a) = F(a)

provided the parameters meet the following requirement:
• For every element a of A holds F(a) is a functor from B(a) to C(a).
Let A be a non empty set, let F , G be many sorted categories indexed by

A, let f be a many sorted functor from F to G, and let a be an element of A.
Then f(a) is a functor from F (a) to G(a).
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3. Indexing

Let A, B be non empty sets and let F , G be functions from B into A. A
category-yielding on first pair of many sorted sets indexed by A and B is said
to be an indexing of F and G if:

(Def.8) it2 is a many sorted functor from it1 · F to it1 ·G.
Next we state two propositions:

(4) Let A, B be non empty sets, and let F , G be functions from B into A,
and let I be an indexing of F and G, and let m be an element of B. Then
I2(m) is a functor from I1(F (m)) to I1(G(m)).

(5) Let C be a category, and let I be an indexing of the dom-map of C
and the cod-map of C, and let m be a morphism of C. Then I2(m) is a
functor from I1(domm) to I1(codm).

Let A, B be non empty sets, let F , G be functions from B into A, and let
I be an indexing of F and G. Then I2 is a many sorted functor from I1 · F to
I1 ·G.

Let A, B be non empty sets, let F , G be functions from B into A, and let I
be an indexing of F and G. A categorial category is called a target category of
I if it satisfies the conditions (Def.9).

(Def.9) (i) For every element a of A holds I1(a) is an object of it, and
(ii) for every element b of B holds 〈〈〈〈I1(F (b)), I1(G(b))〉〉, I2(b)〉〉 is a mor-

phism of it.

Let A, B be non empty sets, let F , G be functions from B into A, and let I
be an indexing of F and G. One can verify that there exists a target category
of I which is full and strict.

Let A, B be non empty sets, let F , G be functions from B into A, let c be
a partial function from [:B, B :] to B, and let i be a function from A into B.
Let us assume that there exists a category C such that C = 〈A,B, F,G, c, i〉.
An indexing of F and G is called an indexing of F , G, c and i if it satisfies the
conditions (Def.10).

(Def.10) (i) For every element a of A holds it2(i(a)) = idit1(a), and

(ii) for all elements m1, m2 of B such that F (m2) = G(m1) holds it2(c(〈〈m2,
m1〉〉)) = it2(m2) · it2(m1).

Let C be a category. An indexing of C is an indexing of the dom-map of C,
the cod-map of C, the composition of C and the id-map of C. A coindexing of
C is an indexing of the cod-map of C, the dom-map of C, 	 (the composition
of C) and the id-map of C.

One can prove the following propositions:

(6) Let C be a category and let I be an indexing of the dom-map of C and
the cod-map of C. Then I is an indexing of C if and only if the following
conditions are satisfied:

(i) for every object a of C holds I2(ida) = idI1(a), and
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(ii) for all morphisms m1, m2 of C such that domm2 = codm1 holds
I2(m2 ·m1) = I2(m2) · I2(m1).

(7) Let C be a category and let I be an indexing of the cod-map of C and
the dom-map of C. Then I is a coindexing of C if and only if the following
conditions are satisfied:

(i) for every object a of C holds I2(ida) = idI1(a), and

(ii) for all morphisms m1, m2 of C such that domm2 = codm1 holds
I2(m2 ·m1) = I2(m1) · I2(m2).

(8) For every category C and for every set x holds x is a coindexing of C
iff x is an indexing of Cop.

(9) Let C be a category, and let I be an indexing of C, and let c1, c2 be
objects of C. Suppose hom(c1, c2) is non empty. Let m be a morphism
from c1 to c2. Then I2(m) is a functor from I1(c1) to I1(c2).

(10) Let C be a category, and let I be a coindexing of C, and let c1, c2 be
objects of C. Suppose hom(c1, c2) is non empty. Let m be a morphism
from c1 to c2. Then I2(m) is a functor from I1(c2) to I1(c1).

Let C be a category, let I be an indexing of C, and let T be a target category
of I. The functor I -functor(C, T ) yielding a functor from C to T is defined as
follows:

(Def.11) For every morphism f of C holds (I -functor(C, T ))(f) = 〈〈〈〈I1(dom f),
I1(cod f)〉〉, I2(f)〉〉.

We now state three propositions:

(11) Let C be a category, and let I be an indexing of C, and let T1, T2

be target categories of I. Then I -functor(C, T1) = I -functor(C, T2) and
Obj(I -functor(C, T1)) = Obj(I -functor(C, T2)).

(12) For every category C and for every indexing I of C and for every target
category T of I holds Obj(I -functor(C, T )) = I1.

(13) Let C be a category, and let I be an indexing of C, and let T be a target
category of I, and let x be an object of C. Then (I -functor(C, T ))(x) =
I1(x).

Let C be a category and let I be an indexing of C. The functor rng I yielding
a strict target category of I is defined by:

(Def.12) For every target category T of I holds rng I = Im(I -functor(C, T )).

Next we state the proposition

(14) Let C be a category, and let I be an indexing of C, and let D be a
categorial category. Then rng I is a subcategory of D if and only if D is
a target category of I.

Let C be a category, let I be an indexing of C, and let m be a morphism of
C. The functor I(m) yielding a functor from I1(domm) to I1(codm) is defined
by:

(Def.13) I(m) = I2(m).
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Let C be a category, let I be a coindexing of C, and let m be a morphism of
C. The functor I(m) yielding a functor from I1(codm) to I1(domm) is defined
as follows:

(Def.14) I(m) = I2(m).

The following proposition is true

(15) Let C, D be categories. Then
(i) 〈〈(the objects of C) 7−→ (D), (the morphisms of C) 7−→ idD〉〉 is an

indexing of C, and
(ii) 〈〈(the objects of C) 7−→ (D), (the morphisms of C) 7−→ idD〉〉 is a

coindexing of C.

4. Indexing vs Functors

Let A be a set and let B be a non empty set. We see that the function from
A into B is a many sorted set indexed by A.

Let C, D be categories and let F be a function from the morphisms of C
into the morphisms of D. Then ObjF is a function from the objects of C into
the objects of D.

Let C be a category, let D be a categorial category, and let F be a functor
from C to D. Note that ObjF is category-yielding.

Let C be a category, let D be a categorial category, and let F be a functor
from C to D. Then pr2(F ) is a many sorted functor from ObjF · (the dom-map
of C) to ObjF · (the cod-map of C).

Next we state the proposition

(16) Let C be a category, and let D be a categorial category, and let F be a
functor from C to D. Then 〈〈ObjF, pr2(F )〉〉 is an indexing of C.

Let C be a category, let D be a categorial category, and let F be a functor
from C to D. The functor F -indexing of C yields an indexing of C and is
defined by:

(Def.15) F -indexing of C = 〈〈ObjF, pr2(F )〉〉.
One can prove the following propositions:

(17) Let C be a category, and let D be a categorial category, and let F be a
functor from C to D. Then D is a target category of F -indexing of C.

(18) Let C be a category, and let D be a categorial category, and let F be a
functor from C to D, and let T be a target category of F -indexing of C.
Then F = F -indexing of C -functor(C, T ).

(19) Let C be a category, and let D, E be categorial categories, and let F
be a functor from C to D, and let G be a functor from C to E. If F = G,
then F -indexing of C = G-indexing of C.

(20) For every category C and for every indexing I of C and for every target
category T of I holds pr2(I -functor(C, T )) = I2.
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(21) For every category C and for every indexing I of C and for every target
category T of I holds (I -functor(C, T ))-indexing of C = I.

5. Composing Indexings and Functors

Let C, D, E be categories, let F be a functor from C to D, and let I be an
indexing of E. Let us assume that ImF is a subcategory of E. The functor I ·F
yielding an indexing of C is defined by:

(Def.16) For every functor F ′ from C to E such that F ′ = F holds I · F =
((I -functor(E, rng I)) · F ′)-indexing of C.

Next we state several propositions:

(22) Let C, D1, D2, E be categories, and let I be an indexing of E, and
let F be a functor from C to D1, and let G be a functor from C to D2.
Suppose ImF is a subcategory of E and ImG is a subcategory of E and
F = G. Then I · F = I ·G.

(23) Let C, D be categories, and let F be a functor from C to D, and
let I be an indexing of D, and let T be a target category of I. Then
I · F = ((I -functor(D,T )) · F )-indexing of C.

(24) Let C, D be categories, and let F be a functor from C to D, and let I
be an indexing of D. Then every target category of I is a target category
of I · F.

(25) Let C, D be categories, and let F be a functor from C to D, and let I
be an indexing of D, and let T be a target category of I. Then rng(I ·F )
is a subcategory of T .

(26) Let C, D, E be categories, and let F be a functor from C to D, and
let G be a functor from D to E, and let I be an indexing of E. Then
(I ·G) · F = I · (G · F ).

Let C be a category, let I be an indexing of C, and let D be a categorial
category. Let us assume that D is a target category of I. Let E be a categorial
category and let F be a functor from D to E. The functor F · I yielding an
indexing of C is defined as follows:

(Def.17) For every target category T of I and for every functor G from
T to E such that T = D and G = F holds F · I = (G ·
(I -functor(C, T )))-indexing of C.

One can prove the following propositions:

(27) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D, E be categorial categories, and let F be
a functor from T to D, and let G be a functor from T to E. If F = G,
then F · I = G · I.

(28) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F be a
functor from T to D. Then ImF is a target category of F · I.
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(29) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F be a
functor from T to D. Then D is a target category of F · I.

(30) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D be a categorial category, and let F be a
functor from T to D. Then rng(F · I) is a subcategory of ImF.

(31) Let C be a category, and let I be an indexing of C, and let T be a
target category of I, and let D, E be categorial categories, and let F
be a functor from T to D, and let G be a functor from D to E. Then
(G · F ) · I = G · (F · I).

Let C, D be categories, let I1 be an indexing of C, and let I2 be an indexing
of D. The functor I2 · I1 yielding an indexing of C is defined as follows:

(Def.18) I2 · I1 = I2 · (I1 -functor(C, rng I1)).

We now state several propositions:

(32) Let C be a category, and let D be a categorial category, and let I1

be an indexing of C, and let I2 be an indexing of D, and let T be a
target category of I1. If D is a target category of I1, then I2 · I1 =
I2 · (I1 -functor(C, T )).

(33) Let C be a category, and let D be a categorial category, and let I1

be an indexing of C, and let I2 be an indexing of D, and let T be a
target category of I2. If D is a target category of I1, then I2 · I1 =
(I2 -functor(D,T )) · I1.

(34) Let C, D be categories, and let F be a functor from C to D, and let
I be an indexing of D, and let T be a target category of I, and let E
be a categorial category, and let G be a functor from T to E. Then
(G · I) · F = G · (I · F ).

(35) Let C be a category, and let I be an indexing of C, and let T be a target
category of I, and let D be a categorial category, and let F be a functor
from T to D, and let J be an indexing of D. Then (J ·F ) · I = J · (F · I).

(36) Let C be a category, and let I be an indexing of C, and let T1 be a
target category of I, and let J be an indexing of T1, and let T2 be a target
category of J , and let D be a categorial category, and let F be a functor
from T2 to D. Then (F · J) · I = F · (J · I).

(37) Let C, D be categories, and let F be a functor from C to D, and let I
be an indexing of D, and let T be a target category of I, and let J be an
indexing of T . Then (J · I) · F = J · (I · F ).

(38) Let C be a category, and let I be an indexing of C, and let D be a
target category of I, and let J be an indexing of D, and let E be a target
category of J , and let K be an indexing of E. Then (K ·J) ·I = K ·(J ·I).
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[6] Czes law Byliński. Introduction to categories and functors. Formalized Mathematics,
1(2):409–420, 1990.
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The notation and terminology used in this paper are introduced in the following
articles: [13], [2], [11], [17], [18], [33], [21], [32], [3], [34], [8], [9], [4], [14], [15],
[35], [36], [23], [31], [16], [30], [26], [24], [12], [29], [19], [27], [1], [7], [25], [6], [10],
[5], [22], [28], and [20].

1. Preliminaries

For simplicity we follow the rules: k, t, i, j, m, n are natural numbers, x is
arbitrary, A is a set, and D is a non empty set.

We now state two propositions:

(1) For every finite sequence p of elements of D and for every i holds p 
 i is
a finite sequence of elements of D.

(2) For every i and for every finite sequence p holds rng(p 
 i) ⊆ rng p.

Let D be a non empty set. A matrix over D is a tabular finite sequence of
elements of D∗.

Let K be a field. A matrix over K is a matrix over the carrier of K.
Let D be a non empty set, let us consider k, and let M be a matrix over D.

Then M 
 k is a matrix over D.
Next we state four propositions:

(3) For every finite sequence M of elements of D such that lenM = n+ 1
holds len(M 
 n+1 ) = n.

(4) Let M be a matrix over D of dimension n + 1 × m and let M1 be a
matrix over D. Then if n > 0, then widthM = width(M 
 n+1) and if
M1 = 〈M(n+ 1)〉, then widthM = widthM1.

(5) For every matrix M over D of dimension n+ 1 × m holds M 
 n+1 is a
matrix over D of dimension n × m.
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(6) For every finite sequence M of elements of D such that lenM = n+ 1
holds M = (M 
 lenM ) � 〈M(lenM)〉.

Let us consider D and let P be a finite sequence of elements of D. Then 〈P 〉
is a matrix over D of dimension 1 × lenP.

2. More on Finite Sequence

One can prove the following propositions:

(7) For every set A and for every finite sequence F holds (Sgm(F −1 A)) �
Sgm(F −1 (rngF \ A)) is a permutation of domF.

(8) Let F be a finite sequence and let A be a subset of rngF. Suppose
F is one-to-one. Then there exists a permutation p of domF such that
(F −Ac) � (F −A) = F · p.

A function is finite sequence yielding if:

(Def.1) For every x such that x ∈ dom it holds it(x) is a finite sequence.

Let us observe that there exists a function which is finite sequence yielding.
Let F , G be finite sequence yielding functions. The functor F _ G yields a

finite sequence yielding function and is defined by the conditions (Def.2).

(Def.2) (i) dom(F _ G) = domF ∩ domG, and
(ii) for arbitrary i such that i ∈ dom(F _ G) and for all finite sequences

f , g such that f = F (i) and g = G(i) holds (F _ G)(i) = f � g.

3. Matrices and Finite Sequences in Vector Space

For simplicity we adopt the following convention: K denotes a field, V de-
notes a vector space over K, a denotes an element of the carrier of K, W denotes
an element of the carrier of V , K1, K2, K3 denote linear combinations of V ,
and X denotes a subset of the carrier of V .

Next we state four propositions:

(9) If X is linearly independent and supportK1 ⊆ X and supportK2 ⊆ X
and

∑
K1 =

∑
K2, then K1 = K2.

(10) If X is linearly independent and supportK1 ⊆ X and supportK2 ⊆ X
and supportK3 ⊆ X and

∑
K1 =

∑
K2 +

∑
K3, then K1 = K2 +K3.

(11) If X is linearly independent and supportK1 ⊆ X and supportK2 ⊆ X
and a 6= 0K and

∑
K1 = a ·∑K2, then K1 = a ·K2.

(12) For every basis b2 of V there exists a linear combination K4 of V such
that W =

∑
K4 and supportK4 ⊆ b2.

Let K be a field and let V be a vector space over K. We say that V is finite
dimensional if and only if:

(Def.3) There exists finite subset of the carrier of V which is a basis of V .
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Let K be a field. Note that there exists a vector space over K which is strict
and finite dimensional.

Let K be a field and let V be a finite dimensional vector space over K. A
finite sequence of elements of the carrier of V is called an ordered basis of V if:

(Def.4) It is one-to-one and rng it is a basis of V .

For simplicity we adopt the following convention: p will denote a finite se-
quence, M1 will denote a matrix over D of dimension n × m, M2 will denote
a matrix over D of dimension k × m, V1, V2, V3 will denote finite dimensional
vector spaces over K, f , f1, f2 will denote maps from V1 into V2, g will denote
a map from V2 into V3, b1 will denote an ordered basis of V1, b2 will denote an
ordered basis of V2, b3 will denote an ordered basis of V3, b will denote a basis
of V1, v1, v2 will denote vectors of V2, v will denote an element of the carrier
of V1, p2, F will denote finite sequences of elements of the carrier of V1, p1, d
will denote finite sequences of elements of the carrier of K, and K4 will denote
a linear combination of V1.

Let us consider K, let us consider V1, V2, and let us consider f1, f2. The
functor f1 + f2 yielding a map from V1 into V2 is defined as follows:

(Def.5) For every element v of the carrier of V1 holds (f1+f2)(v) = f1(v)+f2(v).

Let us consider K, let us consider V1, V2, let us consider f , and let a be an
element of the carrier of K. The functor a · f yielding a map from V1 into V2 is
defined as follows:

(Def.6) For every element v of the carrier of V1 holds (a · f)(v) = a · f(v).

The following propositions are true:

(13) Let a be an element of the carrier of V1, and let F be a finite sequence
of elements of the carrier of V1, and let G be a finite sequence of elements
of the carrier of K. Suppose lenF = lenG and for every k and for every
element v of the carrier of K such that k ∈ domF and v = G(k) holds
F (k) = v · a. Then

∑
F =

∑
G · a.

(14) Let a be an element of the carrier of V1, and let F be a finite sequence
of elements of the carrier of K, and let G be a finite sequence of elements
of the carrier of V1. If lenF = lenG and for every k such that k ∈ domF
holds G(k) = πkF · a, then

∑
G =

∑
F · a.

(15) If for every k such that k ∈ domF holds πkF = 0(V1), then
∑
F = 0(V1).

Let us consider K, let us consider V1, and let us consider p1, p2. The functor
lmlt(p1, p2) yielding a finite sequence of elements of the carrier of V1 is defined
as follows:

(Def.7) lmlt(p1, p2) = (the left multiplication of V1)◦(p1, p2).

Next we state the proposition

(16) If dom p1 = dom p2, then dom lmlt(p1, p2) = dom p1 and
dom lmlt(p1, p2) = dom p2.

Let us consider K, let us consider V1, and let M be a matrix over the carrier
of V1. The functor

∑
M yields a finite sequence of elements of the carrier of V1

and is defined as follows:
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(Def.8) len
∑
M = lenM and for every k such that k ∈ dom

∑
M holds

πk
∑
M =

∑
Line(M,k).

The following propositions are true:

(17) For every matrix M over the carrier of V1 such that lenM = 0 holds∑∑
M = 0(V1).

(18) For every matrix M over the carrier of V1 of dimension m+ 1 × 0 holds∑∑
M = 0(V1).

(19) For every element x of the carrier of V1 holds 〈〈x〉〉 = 〈〈x〉〉T.
(20) For every finite sequence p of elements of the carrier of V1 such that f

is linear holds f(
∑
p) =

∑
(f · p).

(21) Let a be a finite sequence of elements of the carrier of K and let p be
a finite sequence of elements of the carrier of V1. If len p = len a, then if
f is linear, then f · lmlt(a, p) = lmlt(a, f · p).

(22) Let a be a finite sequence of elements of the carrier of K. If len a =
len b2, then if g is linear, then g(

∑
lmlt(a, b2)) =

∑
lmlt(a, g · b2).

(23) Let F , F1 be finite sequences of elements of the carrier of V1, and let
K4 be a linear combination of V1, and let p be a permutation of domF.
If F1 = F · p, then K4 F1 = (K4 F ) · p.

(24) If F is one-to-one and supportK4 ⊆ rngF, then
∑

(K4 F ) =
∑
K4.

(25) Let A be a set and let p be a finite sequence of elements of the carrier
of V1. Suppose rng p ⊆ A. Suppose f1 is linear and f2 is linear and for
every v such that v ∈ A holds f1(v) = f2(v). Then f1(

∑
p) = f2(

∑
p).

(26) If f1 is linear and f2 is linear, then for every ordered basis b1 of V1 such
that len b1 > 0 holds if f1 · b1 = f2 · b1, then f1 = f2.

LetD be a non empty set. Observe that every matrix over D is finite sequence
yielding.

Let D be a non empty set and let F , G be matrices over D. Then F _ G is
a matrix over D.

Let D be a non empty set, let us consider n, m, k, let M1 be a matrix over
D of dimension n × k, and let M2 be a matrix over D of dimension m × k.
Then M1 � M2 is a matrix over D of dimension n+m × k.

One can prove the following propositions:

(27) Given i, and let M1 be a matrix over D of dimension n × k, and
let M2 be a matrix over D of dimension m × k. If i ∈ domM1, then
Line(M1 � M2, i) = Line(M1, i).

(28) Let M1 be a matrix over D of dimension n × k and let M2 be a matrix
over D of dimension m × k. If widthM1 = widthM2, then width(M1 �
M2) = widthM1 and width(M1 � M2) = widthM2.

(29) Given i, n, and let M1 be a matrix over D of dimension t × k, and
let M2 be a matrix over D of dimension m × k. If n ∈ domM2 and
i = lenM1 + n, then Line(M1 � M2, i) = Line(M2, n).
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(30) Let M1 be a matrix over D of dimension n × k and let M2 be a matrix
over D of dimension m × k. If widthM1 = widthM2, then for every i
such that i ∈ Seg widthM1 holds (M1 � M2) � ,i = ((M1) � ,i) � ((M2) � ,i).

(31) Let M1 be a matrix over the carrier of V1 of dimension n × k and
let M2 be a matrix over the carrier of V1 of dimension m × k. Then∑

(M1 � M2) = (
∑
M1) � ∑M2.

(32) Let M1 be a matrix over D of dimension n × k and let M2 be a matrix
over D of dimension m × k. If widthM1 = widthM2, then (M1 � M2)T =
(M1

T) _M2
T.

(33) For all matrices M1, M2 over the carrier of V1 holds (the addition of
V1)◦(

∑
M1,

∑
M2) =

∑
(M1

_M2).

Let D be a non empty set, let F be a binary operation on D, and let P1,
P2 be finite sequences of elements of D. Then F ◦(P1, P2) is a finite sequence of
elements of D.

Next we state several propositions:

(34) Let P1, P2 be finite sequences of elements of the carrier of V1. If lenP1 =
lenP2, then

∑
((the addition of V1)◦(P1, P2)) =

∑
P1 +

∑
P2.

(35) For all matrices M1, M2 over the carrier of V1 such that lenM1 = lenM2

holds
∑∑

M1 +
∑∑

M2 =
∑∑

(M1
_M2).

(36) For every finite sequence P of elements of the carrier of V1 holds∑∑〈P 〉 =
∑∑

(〈P 〉T).

(37) For every n and for every matrix M over the carrier of V1 such that
lenM = n holds

∑∑
M =

∑∑
(MT).

(38) Let M be a matrix over the carrier of K of dimension n × m. Suppose
n > 0 and m > 0. Let p, d be finite sequences of elements of the carrier of
K. Suppose len p = n and len d = m and for every j such that j ∈ dom d
holds πjd =

∑
(p •M � ,j). Let b, c be finite sequences of elements of the

carrier of V1. Suppose len b = m and len c = n and for every i such
that i ∈ dom c holds πic =

∑
lmlt(Line(M, i), b). Then

∑
lmlt(p, c) =∑

lmlt(d, b).

4. Decomposition of a Vector in Basis

Let K be a field, let V be a finite dimensional vector space over K, let b1 be
an ordered basis of V , and let W be an element of the carrier of V . The functor
W → b1 yielding a finite sequence of elements of the carrier of K is defined by
the conditions (Def.9).

(Def.9) (i) len(W → b1) = len b1, and
(ii) there exists a linear combination K4 of V such that W =

∑
K4 and

supportK4 ⊆ rng b1 and for every k such that 1 ≤ k and k ≤ len(W → b1)
holds πk(W → b1) = K4(πkb1).
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The following four propositions are true:

(39) If v1 → b2 = v2 → b2, then v1 = v2.

(40) v =
∑

lmlt(v → b1, b1).

(41) If len d = len b1, then d =
∑

lmlt(d, b1)→ b1.

(42) Let a be a finite sequence of elements of the carrier of K. Suppose
len a = len b2. Let j be a natural number. Suppose j ∈ dom b3. Let d be
a finite sequence of elements of the carrier of K. Suppose len d = len b2

and for every k such that k ∈ dom b2 holds d(k) = πj(g(πkb2) → b3). If
len b2 > 0 and len b3 > 0, then πj(

∑
lmlt(a, g · b2)→ b3) =

∑
(a • d).

5. Associated Matrix of Linear Map

Let K be a field, let V1, V2 be finite dimensional vector spaces over K, let
f be a function from the carrier of V1 into the carrier of V2, let b1 be a finite
sequence of elements of the carrier of V1, and let b2 be an ordered basis of V2.
The functor AutMt(f, b1, b2) yielding a matrix over K is defined as follows:

(Def.10) len AutMt(f, b1, b2) = len b1 and for every k such that k ∈ dom b1 holds
πk AutMt(f, b1, b2) = f(πkb1)→ b2.

One can prove the following propositions:

(43) If len b1 = 0, then AutMt(f, b1, b2) = ε.

(44) If len b1 > 0, then width AutMt(f, b1, b2) = len b2.

(45) If f1 is linear and f2 is linear, then if AutMt(f1, b1, b2) =
AutMt(f2, b1, b2) and len b1 > 0, then f1 = f2.

(46) If f is linear and g is linear and len b1 > 0 and len b2 > 0 and len b3 > 0,
then AutMt(g · f, b1, b3) = AutMt(f, b1, b2) · AutMt(g, b2, b3).

(47) AutMt(f1 + f2, b1, b2) = AutMt(f1, b1, b2) + AutMt(f2, b1, b2).

(48) If a 6= 0K , then AutMt(a · f, b1, b2) = a ·AutMt(f, b1, b2).
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[11] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[12] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[13] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[14] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics,

2(4):475–480, 1991.
[15] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized

Mathematics, 2(5):711–717, 1991.
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The articles [15], [17], [7], [1], [14], [16], [12], [4], [2], [8], [9], [13], [18], [3], [5],
[6], [10], and [11] provide the notation and terminology for this paper.

For simplicity we follow the rules: i, j, n will be natural numbers, r, s, r1,
s1, r2, s2 will be real numbers, p will be a point of E 2

T, G will be a Go-board,
M will be a metric space, and u will be a point of E 2.

One can prove the following propositions:

(4)1 For every metric space M and for every point u of M such that r > 0
holds u ∈ Ball(u, r).

(6)2 For every subset B of the carrier of EnT and for every point u of En such
that B = Ball(u, r) holds B is open.

(7) Let M be a metric space, and let u be a point of M , and let P be a
subset of the carrier of Mtop. Then u ∈ IntP if and only if there exists r
such that r > 0 and Ball(u, r) ⊆ P.

(8) Let u be a point of En and let P be a subset of the carrier of EnT. Then
u ∈ IntP if and only if there exists r such that r > 0 and Ball(u, r) ⊆ P.

(9) For all points u, v of E2 such that u = [r1, s1] and v = [r2, s2] holds

ρ(u, v) =
√

(r1 − r2)2 + (s1 − s2)2.

(10) For every point u of E2 such that u = [r, s] holds if 0 ≤ r2 and r2 < r1,
then [r + r2, s] ∈ Ball(u, r1).

(11) For every point u of E2 such that u = [r, s] holds if 0 ≤ s2 and s2 < s1,
then [r, s+ s2] ∈ Ball(u, s1).

(12) For every point u of E2 such that u = [r, s] holds if 0 ≤ r2 and r2 < r1,
then [r − r2, s] ∈ Ball(u, r1).

1The propositions (1)–(3) have been removed.
2The proposition (5) has been removed.
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(13) For every point u of E2 such that u = [r, s] holds if 0 ≤ s2 and s2 < s1,
then [r, s− s2] ∈ Ball(u, s1).

(14) If 1 ≤ i and i < lenG and 1 ≤ j and j < widthG, then Gi,j+Gi+1,j+1 =
Gi,j+1 +Gi+1,j.

(15) Int vstrip(G, 0) = {[r, s] : r < (G1,1)1}.
(16) Int vstrip(G, lenG) = {[r, s] : (GlenG,1)1 < r}.
(17) If 1 ≤ i and i < lenG, then Int vstrip(G, i) = {[r, s] : (Gi,1)1 < r ∧ r <

(Gi+1,1)1}.
(18) Int hstrip(G, 0) = {[r, s] : s < (G1,1)2}.
(19) Int hstrip(G,widthG) = {[r, s] : (G1,widthG)2 < s}.
(20) If 1 ≤ j and j < widthG, then Int hstrip(G, j) = {[r, s] : (G1,j)2 <

s ∧ s < (G1,j+1)2}.
(21) Int cell(G, 0, 0) = {[r, s] : r < (G1,1)1 ∧ s < (G1,1)2}.
(22) Int cell(G, 0,widthG) = {[r, s] : r < (G1,1)1 ∧ (G1,widthG)2 < s}.
(23) If 1 ≤ j and j < widthG, then Int cell(G, 0, j) = {[r, s] : r < (G1,1)1 ∧

(G1,j)2 < s ∧ s < (G1,j+1)2}.
(24) Int cell(G, lenG, 0) = {[r, s] : (GlenG,1)1 < r ∧ s < (G1,1)2}.
(25) Int cell(G, lenG,widthG) = {[r, s] : (GlenG,1)1 < r ∧ (G1,widthG)2 <

s}.
(26) If 1 ≤ j and j < widthG, then Int cell(G, lenG, j) = {[r, s] :

(GlenG,1)1 < r ∧ (G1,j)2 < s ∧ s < (G1,j+1)2}.
(27) If 1 ≤ i and i < lenG, then Int cell(G, i, 0) = {[r, s] : (Gi,1)1 < r ∧ r <

(Gi+1,1)1 ∧ s < (G1,1)2}.
(28) If 1 ≤ i and i < lenG, then Int cell(G, i,widthG) = {[r, s] : (Gi,1)1 <

r ∧ r < (Gi+1,1)1 ∧ (G1,widthG)2 < s}.
(29) If 1 ≤ i and i < lenG and 1 ≤ j and j < widthG, then Int cell(G, i, j) =

{[r, s] : (Gi,1)1 < r ∧ r < (Gi+1,1)1 ∧ (G1,j)2 < s ∧ s < (G1,j+1)2}.
(30) If 1 ≤ j and j ≤ widthG and p ∈ Int hstrip(G, j), then p2 > (G1,j)2.

(31) If j < widthG and p ∈ Int hstrip(G, j), then p2 < (G1,j+1)2.

(32) If 1 ≤ i and i ≤ lenG and p ∈ Int vstrip(G, i), then p1 > (Gi,1)1.

(33) If i < lenG and p ∈ Int vstrip(G, i), then p1 < (Gi+1,1)1.

(34) If 1 ≤ i and i + 1 ≤ lenG and 1 ≤ j and j + 1 ≤ widthG, then
1
2 · (Gi,j +Gi+1,j+1) ∈ Int cell(G, i, j).

(35) If 1 ≤ i and i + 1 ≤ lenG, then 1
2 · (Gi,widthG + Gi+1,widthG) + [0,

1] ∈ Int cell(G, i,widthG).

(36) If 1 ≤ i and i+1 ≤ lenG, then 1
2 ·(Gi,1+Gi+1,1)−[0, 1] ∈ Int cell(G, i, 0).

(37) If 1 ≤ j and j + 1 ≤ widthG, then 1
2 · (GlenG,j + GlenG,j+1) + [1,

0] ∈ Int cell(G, lenG, j).

(38) If 1 ≤ j and j + 1 ≤ widthG, then 1
2 · (G1,j + G1,j+1) − [1, 0] ∈

Int cell(G, 0, j).

(39) G1,1 − [1, 1] ∈ Int cell(G, 0, 0).
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(40) GlenG,widthG + [1, 1] ∈ Int cell(G, lenG,widthG).

(41) G1,widthG + [−1, 1] ∈ Int cell(G, 0,widthG).

(42) GlenG,1 + [1,−1] ∈ Int cell(G, lenG, 0).

(43) If 1 ≤ i and i < lenG and 1 ≤ j and j < widthG, then L( 1
2 · (Gi,j +

Gi+1,j+1), 1
2 · (Gi,j +Gi,j+1)) ⊆ Int cell(G, i, j) ∪ { 1

2 · (Gi,j +Gi,j+1)}.
(44) Suppose 1 ≤ i and i < lenG and 1 ≤ j and j < widthG. Then L( 1

2 ·
(Gi,j +Gi+1,j+1), 1

2 · (Gi,j+1 +Gi+1,j+1)) ⊆ Int cell(G, i, j) ∪ { 1
2 · (Gi,j+1 +

Gi+1,j+1)}.
(45) Suppose 1 ≤ i and i < lenG and 1 ≤ j and j < widthG. Then L( 1

2 ·
(Gi,j +Gi+1,j+1), 1

2 · (Gi+1,j +Gi+1,j+1)) ⊆ Int cell(G, i, j) ∪ { 1
2 · (Gi+1,j +

Gi+1,j+1)}.
(46) If 1 ≤ i and i < lenG and 1 ≤ j and j < widthG, then L( 1

2 · (Gi,j +

Gi+1,j+1), 1
2 · (Gi,j +Gi+1,j)) ⊆ Int cell(G, i, j) ∪ { 1

2 · (Gi,j +Gi+1,j)}.
(47) If 1 ≤ j and j < widthG, then L( 1

2 · (G1,j +G1,j+1)− [1, 0], 1
2 · (G1,j +

G1,j+1)) ⊆ Int cell(G, 0, j) ∪ { 1
2 · (G1,j +G1,j+1)}.

(48) If 1 ≤ j and j < widthG, then L( 1
2 · (GlenG,j + GlenG,j+1) + [1, 0], 1

2 ·
(GlenG,j +GlenG,j+1)) ⊆ Int cell(G, lenG, j) ∪ { 1

2 · (GlenG,j +GlenG,j+1)}.
(49) If 1 ≤ i and i < lenG, then L( 1

2 · (Gi,1 + Gi+1,1) − [0, 1], 1
2 · (Gi,1 +

Gi+1,1)) ⊆ Int cell(G, i, 0) ∪ { 1
2 · (Gi,1 +Gi+1,1)}.

(50) If 1 ≤ i and i < lenG, then L( 1
2 · (Gi,widthG + Gi+1,widthG) + [0,

1], 1
2 · (Gi,widthG+Gi+1,widthG)) ⊆ Int cell(G, i,widthG)∪{ 1

2 · (Gi,widthG+
Gi+1,widthG)}.

(51) If 1 ≤ j and j < widthG, then L( 1
2 · (G1,j +G1,j+1) − [1, 0], G1,j − [1,

0]) ⊆ Int cell(G, 0, j) ∪ {G1,j − [1, 0]}.
(52) If 1 ≤ j and j < widthG, then L( 1

2 · (G1,j +G1,j+1)− [1, 0], G1,j+1 − [1,
0]) ⊆ Int cell(G, 0, j) ∪ {G1,j+1 − [1, 0]}.

(53) If 1 ≤ j and j < widthG, then L( 1
2 · (GlenG,j + GlenG,j+1) + [1,

0], GlenG,j + [1, 0]) ⊆ Int cell(G, lenG, j) ∪ {GlenG,j + [1, 0]}.
(54) If 1 ≤ j and j < widthG, then L( 1

2 · (GlenG,j + GlenG,j+1) + [1,
0], GlenG,j+1 + [1, 0]) ⊆ Int cell(G, lenG, j) ∪ {GlenG,j+1 + [1, 0]}.

(55) If 1 ≤ i and i < lenG, then L( 1
2 · (Gi,1 + Gi+1,1) − [0, 1], Gi,1 − [0,

1]) ⊆ Int cell(G, i, 0) ∪ {Gi,1 − [0, 1]}.
(56) If 1 ≤ i and i < lenG, then L( 1

2 · (Gi,1 + Gi+1,1) − [0, 1], Gi+1,1 − [0,
1]) ⊆ Int cell(G, i, 0) ∪ {Gi+1,1 − [0, 1]}.

(57) If 1 ≤ i and i < lenG, then L( 1
2 · (Gi,widthG + Gi+1,widthG) + [0,

1], Gi,widthG + [0, 1]) ⊆ Int cell(G, i,widthG) ∪ {Gi,widthG + [0, 1]}.
(58) If 1 ≤ i and i < lenG, then L( 1

2 · (Gi,widthG + Gi+1,widthG) + [0,
1], Gi+1,widthG + [0, 1]) ⊆ Int cell(G, i,widthG) ∪ {Gi+1,widthG + [0, 1]}.

(59) L(G1,1 − [1, 1], G1,1 − [1, 0]) ⊆ Int cell(G, 0, 0) ∪ {G1,1 − [1, 0]}.
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(60) L(GlenG,1 +[1,−1], GlenG,1 +[1, 0]) ⊆ Int cell(G, lenG, 0)∪{GlenG,1 +[1,
0]}.

(61) L(G1,widthG + [−1, 1], G1,widthG − [1, 0]) ⊆ Int cell(G, 0,widthG) ∪
{G1,widthG − [1, 0]}.

(62) L(GlenG,widthG+[1, 1], GlenG,widthG+[1, 0]) ⊆ Int cell(G, lenG,widthG)∪
{GlenG,widthG + [1, 0]}.

(63) L(G1,1 − [1, 1], G1,1 − [0, 1]) ⊆ Int cell(G, 0, 0) ∪ {G1,1 − [0, 1]}.
(64) L(GlenG,1 +[1,−1], GlenG,1− [0, 1]) ⊆ Int cell(G, lenG, 0)∪{GlenG,1− [0,

1]}.
(65) L(G1,widthG + [−1, 1], G1,widthG + [0, 1]) ⊆ Int cell(G, 0,widthG) ∪

{G1,widthG + [0, 1]}.
(66) L(GlenG,widthG+[1, 1], GlenG,widthG+[0, 1]) ⊆ Int cell(G, lenG,widthG)∪

{GlenG,widthG + [0, 1]}.
(67) Suppose 1 ≤ i and i < lenG and 1 ≤ j and j+ 1 < widthG. Then L( 1

2 ·
(Gi,j+Gi+1,j+1), 1

2 ·(Gi,j+1+Gi+1,j+2)) ⊆ Int cell(G, i, j)∪Int cell(G, i, j+

1) ∪ {1
2 · (Gi,j+1 +Gi+1,j+1)}.

(68) Suppose 1 ≤ j and j < widthG and 1 ≤ i and i+ 1 < lenG. Then L( 1
2 ·

(Gi,j +Gi+1,j+1), 1
2 · (Gi+1,j +Gi+2,j+1)) ⊆ Int cell(G, i, j) ∪ Int cell(G, i+

1, j) ∪ { 1
2 · (Gi+1,j +Gi+1,j+1)}.

(69) If 1 ≤ i and i < lenG and 1 < widthG, then L( 1
2 · (Gi,1 +Gi+1,1)− [0,

1], 1
2 ·(Gi,1+Gi+1,2)) ⊆ Int cell(G, i, 0)∪Int cell(G, i, 1)∪{ 1

2 ·(Gi,1+Gi+1,1)}.
(70) Suppose 1 ≤ i and i < lenG and 1 < widthG. Then L( 1

2 ·
(Gi,widthG + Gi+1,widthG) + [0, 1], 1

2 · (Gi,widthG + Gi+1,widthG−′1)) ⊆
Int cell(G, i,widthG −′ 1) ∪ Int cell(G, i,widthG) ∪ { 1

2 · (Gi,widthG +
Gi+1,widthG)}.

(71) If 1 ≤ j and j < widthG and 1 < lenG, then L( 1
2 · (G1,j +G1,j+1)− [1,

0], 1
2 · (G1,j + G2,j+1)) ⊆ Int cell(G, 0, j) ∪ Int cell(G, 1, j) ∪ { 1

2 · (G1,j +
G1,j+1)}.

(72) Suppose 1 ≤ j and j < widthG and 1 < lenG. Then L( 1
2 · (GlenG,j +

GlenG,j+1)+ [1, 0], 1
2 · (GlenG,j +GlenG−′1,j+1)) ⊆ Int cell(G, lenG−′ 1, j)∪

Int cell(G, lenG, j) ∪ { 1
2 · (GlenG,j +GlenG,j+1)}.

(73) If 1 < lenG and 1 ≤ j and j+1 < widthG, then L( 1
2 ·(G1,j+G1,j+1)−[1,

0], 1
2 · (G1,j+1 + G1,j+2) − [1, 0]) ⊆ Int cell(G, 0, j) ∪ Int cell(G, 0, j + 1) ∪

{G1,j+1 − [1, 0]}.
(74) Suppose 1 < lenG and 1 ≤ j and j+1 < widthG. Then L( 1

2 ·(GlenG,j+

GlenG,j+1)+[1, 0], 1
2 ·(GlenG,j+1+GlenG,j+2)+[1, 0]) ⊆ Int cell(G, lenG, j)∪

Int cell(G, lenG, j + 1) ∪ {GlenG,j+1 + [1, 0]}.
(75) If 1 < widthG and 1 ≤ i and i+1 < lenG, then L( 1

2 ·(Gi,1 +Gi+1,1)−[0,

1], 1
2 · (Gi+1,1 + Gi+2,1) − [0, 1]) ⊆ Int cell(G, i, 0) ∪ Int cell(G, i + 1, 0) ∪

{Gi+1,1 − [0, 1]}.
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(76) Suppose 1 < widthG and 1 ≤ i and i + 1 < lenG. Then L( 1
2 ·

(Gi,widthG + Gi+1,widthG) + [0, 1], 1
2 · (Gi+1,widthG + Gi+2,widthG) + [0,

1]) ⊆ Int cell(G, i,widthG)∪ Int cell(G, i+ 1,widthG)∪{Gi+1,widthG+ [0,
1]}.

(77) If 1 < lenG and 1 < widthG, then L(G1,1− [1, 1], 1
2 · (G1,1 +G1,2)− [1,

0]) ⊆ Int cell(G, 0, 0) ∪ Int cell(G, 0, 1) ∪ {G1,1 − [1, 0]}.
(78) If 1 < lenG and 1 < widthG, then L(GlenG,1 + [1,−1], 1

2 · (GlenG,1 +
GlenG,2)+[1, 0]) ⊆ Int cell(G, lenG, 0)∪Int cell(G, lenG, 1)∪{GlenG,1 +[1,
0]}.

(79) If 1 < lenG and 1 < widthG, then L(G1,widthG+[−1, 1], 1
2 ·(G1,widthG+

G1,widthG−′1)−[1, 0]) ⊆ Int cell(G, 0,widthG)∪Int cell(G, 0,widthG−′1)∪
{G1,widthG − [1, 0]}.

(80) If 1 < lenG and 1 < widthG, then L(GlenG,widthG + [1, 1], 1
2 ·

(GlenG,widthG + GlenG,widthG−′1) + [1, 0]) ⊆ Int cell(G, lenG,widthG) ∪
Int cell(G, lenG,widthG−′ 1) ∪ {GlenG,widthG + [1, 0]}.

(81) If 1 < widthG and 1 < lenG, then L(G1,1− [1, 1], 1
2 · (G1,1 +G2,1)− [0,

1]) ⊆ Int cell(G, 0, 0) ∪ Int cell(G, 1, 0) ∪ {G1,1 − [0, 1]}.
(82) If 1 < widthG and 1 < lenG, then L(G1,widthG+[−1, 1], 1

2 ·(G1,widthG+
G2,widthG) + [0, 1]) ⊆ Int cell(G, 0,widthG) ∪ Int cell(G, 1,widthG) ∪
{G1,widthG + [0, 1]}.

(83) If 1 < widthG and 1 < lenG, then L(GlenG,1 + [1,−1], 1
2 · (GlenG,1 +

GlenG−′1,1) − [0, 1]) ⊆ Int cell(G, lenG, 0) ∪ Int cell(G, lenG −′ 1, 0) ∪
{GlenG,1 − [0, 1]}.

(84) If 1 < widthG and 1 < lenG, then L(GlenG,widthG + [1, 1], 1
2 ·

(GlenG,widthG + GlenG−′1,widthG) + [0, 1]) ⊆ Int cell(G, lenG,widthG) ∪
Int cell(G, lenG−′ 1,widthG) ∪ {GlenG,widthG + [0, 1]}.

(85) If 1 ≤ i and i + 1 ≤ lenG and 1 ≤ j and j + 1 ≤ widthG, then
L(1

2 · (Gi,j +Gi+1,j+1), p) meets Int cell(G, i, j).

(86) If 1 ≤ i and i + 1 ≤ lenG, then L(p, 1
2 · (Gi,widthG +Gi+1,widthG) + [0,

1]) meets Int cell(G, i,widthG).

(87) If 1 ≤ i and i + 1 ≤ lenG, then L( 1
2 · (Gi,1 + Gi+1,1) − [0, 1], p) meets

Int cell(G, i, 0).

(88) If 1 ≤ j and j+ 1 ≤ widthG, then L( 1
2 · (G1,j +G1,j+1)− [1, 0], p) meets

Int cell(G, 0, j).

(89) If 1 ≤ j and j + 1 ≤ widthG, then L(p, 1
2 · (GlenG,j + GlenG,j+1) + [1,

0]) meets Int cell(G, lenG, j).

(90) L(p,G1,1 − [1, 1]) meets Int cell(G, 0, 0).

(91) L(p,GlenG,widthG + [1, 1]) meets Int cell(G, lenG,widthG).

(92) L(p,G1,widthG + [−1, 1]) meets Int cell(G, 0,widthG).

(93) L(p,GlenG,1 + [1,−1]) meets Int cell(G, lenG, 0).
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Summary. The basic purpose of this article is to prove the im-
portant Weierstrass’ theorem which states that a real valued continuous
function f on a topological space T assumes a maximum and a minimum
value on the compact subset S of T , i.e., there exist points x1, x2 of T
being elements of S, such that f(x1) and f(x2) are the supremum and the
infimum, respectively, of f(S), which is the image of S under the func-
tion f . The paper is divided into three parts. In the first part, we prove
some auxiliary theorems concerning properties of balls in metric spaces
and define special families of subsets of topological spaces. These con-
cepts are used in the next part of the paper which contains the essential
part of the article, namely the formalization of the proof of Weierstrass’
theorem. Here, we also prove a theorem concerning the compactness of
images of compact sets of T under a continuous function. The final part
of this work is developed for the purpose of defining some measures of
the distance between compact subsets of topological metric spaces. Some
simple theorems about these measures are also proved.

MML Identifier: WEIERSTR.

The papers [31], [36], [9], [32], [30], [35], [29], [37], [7], [8], [5], [6], [27], [2], [15],
[1], [14], [17], [10], [21], [19], [20], [18], [25], [33], [34], [3], [13], [22], [24], [38],
[12], [26], [11], [4], [23], [28], and [16] provide the notation and terminology for
this paper.

1. Preliminaries

One can prove the following propositions:

(1) Let M be a metric space, and let x1, x2 be points of M , and let r1, r2

be real numbers. Then there exists a point x of M and there exists a real
number r such that Ball(x1, r1) ∪ Ball(x2, r2) ⊆ Ball(x, r).
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(2) Let M be a metric space, and let n be a natural number, and let F be
a family of subsets of M , and let p be a finite sequence. Suppose F is
finite and a family of balls and rng p = F and dom p = Seg(n+ 1). Then
there exists a family G of subsets of M such that

(i) G is finite and a family of balls, and
(ii) there exists a finite sequence q such that rng q = G and dom q = Seg n

and there exists a point x of M and there exists a real number r such
that

⋃
F ⊆ ⋃G ∪ Ball(x, r).

(3) Let M be a metric space and let F be a family of subsets of M . Suppose
F is finite and a family of balls. Then there exists a point x of M and
there exists a real number r such that

⋃
F ⊆ Ball(x, r).

Let T , S be topological spaces, let f be a map from T into S, and let G be
a family of subsets of S. The functor f −1 G yields a family of subsets of T and
is defined by the condition (Def.1).

(Def.1) Let A be a subset of the carrier of T . Then A ∈ f −1 G if and only if
there exists a subset B of the carrier of S such that B ∈ G and A = f −1B.

Next we state two propositions:

(4) Let T , S be topological spaces, and let f be a map from T into S, and
let A, B be families of subsets of S. If A ⊆ B, then f −1 A ⊆ f −1 B.

(5) Let T , S be topological spaces, and let f be a map from T into S, and
let B be a family of subsets of S. If f is continuous and B is open, then
f −1 B is open.

Let T , S be topological spaces, let f be a map from T into S, and let G be
a family of subsets of T . The functor f ◦G yields a family of subsets of S and is
defined by the condition (Def.2).

(Def.2) Let A be a subset of the carrier of S. Then A ∈ f ◦G if and only if there
exists a subset B of the carrier of T such that B ∈ G and A = f ◦B.

One can prove the following propositions:

(6) Let T , S be topological spaces, and let f be a map from T into S, and
let A, B be families of subsets of T . If A ⊆ B, then f ◦A ⊆ f◦B.

(7) Let T , S be topological spaces, and let f be a map from T into S, and
let B be a family of subsets of S, and let P be a subset of the carrier of
S. If f◦f −1 B is a cover of P , then B is a cover of P .

(8) Let T , S be topological spaces, and let f be a map from T into S, and
let B be a family of subsets of T , and let P be a subset of the carrier of
T . If B is a cover of P , then f −1 f◦B is a cover of P .

(9) Let T , S be topological spaces, and let f be a map from T into S, and
let Q be a family of subsets of S. Then

⋃
(f◦f −1 Q) ⊆ ⋃Q.

(10) Let T , S be topological spaces, and let f be a map from T into S, and
let P be a family of subsets of T . Then

⋃
P ⊆ ⋃(f −1 f◦P ).

(11) Let T , S be topological spaces, and let f be a map from T into S, and
let Q be a family of subsets of S. If Q is finite, then f −1 Q is finite.



the theorem of weierstrass 355

(12) Let T , S be topological spaces, and let f be a map from T into S, and
let P be a family of subsets of T . If P is finite, then f ◦P is finite.

(13) Let T , S be topological spaces, and let f be a map from T into S, and
let P be a subset of the carrier of T , and let F be a family of subsets of
S. Given a family B of subsets of T such that B ⊆ f −1 F and B is a
cover of P and finite. Then there exists a family G of subsets of S such
that G ⊆ F and G is a cover of f ◦P and finite.

2. The Weierstrass’ Theorem

One can prove the following three propositions:

(14) Let T , S be topological spaces, and let f be a map from T into S, and
let P be a subset of the carrier of T . If P is compact and f is continuous,
then f◦P is compact.

(15) Let T be a topological space, and let f be a map from T into � 1 , and
let P be a subset of the carrier of T . If P is compact and f is continuous,
then f◦P is compact.

(16) Let f be a map from E2
T into � 1 and let P be a subset of the carrier of

E2
T. If P is compact and f is continuous, then f ◦P is compact.

Let P be a subset of the carrier of � 1 . The functor ΩP yields a subset of �
and is defined as follows:

(Def.3) ΩP = P.

Next we state three propositions:

(17) For every subset P of the carrier of � 1 such that P is compact holds
ΩP is bounded.

(18) For every subset P of the carrier of � 1 such that P is compact holds
ΩP is closed.

(19) For every subset P of the carrier of � 1 such that P is compact holds
ΩP is compact.

Let P be a subset of the carrier of � 1 . The functor supP yields a real number
and is defined as follows:

(Def.4) supP = sup(ΩP ).

The functor inf P yielding a real number is defined by:

(Def.5) inf P = inf(ΩP ).

We now state two propositions:

(20) Let T be a topological space, and let f be a map from T into � 1 , and
let P be a subset of the carrier of T . Suppose P 6= ∅ and P is compact
and f is continuous. Then there exists a point x1 of T such that x1 ∈ P
and f(x1) = sup(f ◦P ).
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(21) Let T be a topological space, and let f be a map from T into � 1 , and
let P be a subset of the carrier of T . Suppose P 6= ∅ and P is compact
and f is continuous. Then there exists a point x2 of T such that x2 ∈ P
and f(x2) = inf(f ◦P ).

3. The Measure of the Distance Between Compact Sets

Let M be a metric space and let x be a point of M . The functor dist(x)
yielding a map from Mtop into � 1 is defined by:

(Def.6) For every point y of M holds (dist(x))(y) = ρ(y, x).

The following three propositions are true:

(22) For every metric space M and for every point x of M holds dist(x) is
continuous.

(23) LetM be a metric space, and let x be a point of M , and let P be a subset
of the carrier of Mtop. Suppose P 6= ∅ and P is compact. Then there exists
a point x1 of Mtop such that x1 ∈ P and (dist(x))(x1) = sup((dist(x))◦P ).

(24) LetM be a metric space, and let x be a point of M , and let P be a subset
of the carrier of Mtop. Suppose P 6= ∅ and P is compact. Then there exists
a point x2 of Mtop such that x2 ∈ P and (dist(x))(x2) = inf((dist(x))◦P ).

Let M be a metric space and let P be a subset of the carrier of Mtop. Let us
assume that P 6= ∅ and P is compact. The functor distmax(P ) yielding a map
from Mtop into � 1 is defined by:

(Def.7) For every point x of M holds (distmax(P ))(x) = sup((dist(x))◦P ).

The functor distmin(P ) yields a map from Mtop into � 1 and is defined by:

(Def.8) For every point x of M holds (distmin(P ))(x) = inf((dist(x))◦P ).

One can prove the following propositions:

(25) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M . If p1 ∈ P,
then ρ(p1, p2) ≤ sup((dist(p2))◦P ) and inf((dist(p2))◦P ) ≤ ρ(p1, p2).

(26) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M . Then
| sup((dist(p1))◦P )− sup((dist(p2))◦P )| ≤ ρ(p1, p2).

(27) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M and let x1,
x2 be real numbers. If x1 = (distmax(P ))(p1) and x2 = (distmax(P ))(p2),
then |x1 − x2| ≤ ρ(p1, p2).

(28) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M . Then
| inf((dist(p1))◦P )− inf((dist(p2))◦P )| ≤ ρ(p1, p2).

(29) Let M be a metric space and let P be a subset of the carrier of Mtop.
Suppose P 6= ∅ and P is compact. Let p1, p2 be points of M and let x1,
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x2 be real numbers. If x1 = (distmin(P ))(p1) and x2 = (distmin(P ))(p2),
then |x1 − x2| ≤ ρ(p1, p2).

(30) Let M be a metric space and let X be a subset of the carrier of Mtop.
If X 6= ∅ and X is compact, then distmax(X) is continuous.

(31) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Then
there exists a point x1 of Mtop such that x1 ∈ Q and (distmax(P ))(x1) =
sup((distmax(P ))◦Q).

(32) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Then
there exists a point x2 of Mtop such that x2 ∈ Q and (distmax(P ))(x2) =
inf((distmax(P ))◦Q).

(33) Let M be a metric space and let X be a subset of the carrier of Mtop.
If X 6= ∅ and X is compact, then distmin(X) is continuous.

(34) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Then
there exists a point x1 of Mtop such that x1 ∈ Q and (distmin(P ))(x1) =
sup((distmin(P ))◦Q).

(35) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Then
there exists a point x2 of Mtop such that x2 ∈ Q and (distmin(P ))(x2) =
inf((distmin(P ))◦Q).

Let M be a metric space and let P , Q be subsets of the carrier of Mtop. Let
us assume that P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. The
functor distmin

min(P,Q) yields a real number and is defined as follows:

(Def.9) distmin
min(P,Q) = inf((distmin(P ))◦Q).

The functor distmax
min (P,Q) yielding a real number is defined as follows:

(Def.10) distmax
min (P,Q) = sup((distmin(P ))◦Q).

The functor distmin
max(P,Q) yielding a real number is defined as follows:

(Def.11) distmin
max(P,Q) = inf((distmax(P ))◦Q).

The functor distmax
max(P,Q) yielding a real number is defined as follows:

(Def.12) distmax
max(P,Q) = sup((distmax(P ))◦Q).

One can prove the following propositions:

(36) Let M be a metric space and let P , Q be subsets of the carrier of
Mtop. Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact.
Then there exist points x1, x2 of M such that x1 ∈ P and x2 ∈ Q and
ρ(x1, x2) = distmin

min(P,Q).

(37) Let M be a metric space and let P , Q be subsets of the carrier of
Mtop. Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact.
Then there exist points x1, x2 of M such that x1 ∈ P and x2 ∈ Q and
ρ(x1, x2) = distmin

max(P,Q).
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(38) Let M be a metric space and let P , Q be subsets of the carrier of
Mtop. Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact.
Then there exist points x1, x2 of M such that x1 ∈ P and x2 ∈ Q and
ρ(x1, x2) = distmax

min (P,Q).

(39) Let M be a metric space and let P , Q be subsets of the carrier of
Mtop. Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact.
Then there exist points x1, x2 of M such that x1 ∈ P and x2 ∈ Q and
ρ(x1, x2) = distmax

max(P,Q).

(40) Let M be a metric space and let P , Q be subsets of the carrier of Mtop.
Suppose P 6= ∅ and P is compact and Q 6= ∅ and Q is compact. Let x1,
x2 be points of M . If x1 ∈ P and x2 ∈ Q, then distmin

min(P,Q) ≤ ρ(x1, x2)
and ρ(x1, x2) ≤ distmax

max(P,Q).
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Summary. This article is the first part of a paper proving the fun-
damental Urysohn’s Theorem concerning the existence of a real valued
continuous function on a normal topological space. The paper is divided
into four parts. In the first part, we prove some auxiliary theorems con-
cerning properties of natural numbers and prove two useful schemes about
recurrently defined functions; in the second part, we define a special set
of rational numbers, which we call dyadic, and prove some of its prop-
erties. The next part of the paper contains the definitions of T1 space
and normal space, and we prove related theorems used in later parts of
the paper. The final part of this work is developed for proving the theo-
rem about the existence of some special family of subsets of a topological
space. This theorem is essential in proving Urysohn’s Lemma.
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The notation and terminology used in this paper have been introduced in the
following articles: [24], [30], [9], [25], [23], [22], [31], [6], [7], [4], [2], [16], [3], [5],
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1. Preliminaries

The following propositions are true:

(1) 0 6= 1
2 and 1 6= 1

2 .

(2) 0 < 1
2 and 1

2 < 1.

(3) For every natural number n holds 1 ≤ 2n.

(4) For every natural number n holds 0 < 2n.

In this article we present several logical schemes. The scheme
FuncEx2DChoice deals with a non empty set A, a non empty set B, a non
empty set C, and a ternary predicate P, and states that:
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There exists a function F from [:A, B :] into C such that for every
element x of A and for every element y of B holds P[x, y, F (〈〈x, y〉〉)]

provided the parameters meet the following requirement:
• For every element x of A and for every element y of B there exists

an element z of C such that P[x, y, z].
The scheme RecExDN RD concerns a non empty set A, an element B of A,

and a ternary predicate P, and states that:
There exists a function F from  into A such that F (0) = B and
for every element n of  holds P[n, F (n), F (n + 1)]

provided the parameters satisfy the following condition:
• For every natural number n and for every element x of A there

exists an element y of A such that P[n, x, y].

2. Dyadic Numbers

The subset � <0 of � is defined by:

(Def.1) For every real number x holds x ∈ � <0 iff x < 0.

The subset � >1 of � is defined by:

(Def.2) For every real number x holds x ∈ � >1 iff 1 < x.

Let n be a natural number. The functor dyadic(n) yields a subset of � and
is defined by:

(Def.3) For every real number x holds x ∈ dyadic(n) iff there exists a natural
number i such that 0 ≤ i and i ≤ 2n and x = i

2n .

The subset DYADIC of � is defined by:

(Def.4) For every real number a holds a ∈ DYADIC iff there exists a natural
number n such that a ∈ dyadic(n).

The subset DOM of � is defined by:

(Def.5) DOM = � <0 ∪DYADIC∪ � >1 .

Let T be a topological space, let A be a non empty subset of � , let F be a
function from A into 2the carrier of T , and let r be an element of A. Then F (r) is
a subset of the carrier of T .

One can prove the following three propositions:

(5) For every natural number n and for every real number x such that
x ∈ dyadic(n) holds 0 ≤ x and x ≤ 1.

(6) dyadic(0) = {0, 1}.
(7) dyadic(1) = {0, 1

2 , 1}.
Let n be a natural number. Note that dyadic(n) is non empty.
Next we state the proposition

(8) For every natural number x and for every natural number n holds xn

is a natural number.
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Let x, n be natural numbers. Then xn is a natural number.

The following proposition is true

(9) Let n be a natural number. Then there exists a finite sequence F1 such
that domF1 = Seg(2n + 1) and for every natural number i such that
i ∈ domF1 holds F1(i) = i−1

2n .

Let n be a natural number. The functor dyad(n) yielding a finite sequence
is defined by:

(Def.6) dom dyad(n) = Seg(2n + 1) and for every natural number i such that
i ∈ dom dyad(n) holds (dyad(n))(i) = i−1

2n .

We now state the proposition

(10) For every natural number n holds dom dyad(n) = Seg(2n + 1) and
rng dyad(n) = dyadic(n).

Let us note that DYADIC is non empty.

Let us observe that DOM is non empty.

One can prove the following propositions:

(11) For every natural number n holds dyadic(n) ⊆ dyadic(n+ 1).

(12) For every natural number n holds 0 ∈ dyadic(n) and 1 ∈ dyadic(n).

(13) For every natural number n and for every natural number i such that
0 < i and i ≤ 2n holds i·2−1

2n+1 ∈ dyadic(n+ 1) \ dyadic(n).

(14) For every natural number n and for every natural number i such that
0 ≤ i and i < 2n holds i·2+1

2n+1 ∈ dyadic(n+ 1) \ dyadic(n).

(15) For every natural number n holds 1
2n+1 ∈ dyadic(n+ 1) \ dyadic(n).

Let n be a natural number and let x be an element of dyadic(n). The functor
axis(x, n) yields a natural number and is defined by:

(Def.7) x = axis(x,n)
2n .

One can prove the following propositions:

(16) For every natural number n and for every element x of dyadic(n) holds

x = axis(x,n)
2n and 0 ≤ axis(x, n) and axis(x, n) ≤ 2n.

(17) For every natural number n and for every element x of dyadic(n) holds
axis(x,n)−1

2n < x and x < axis(x,n)+1
2n .

(18) For every natural number n and for every element x of dyadic(n) holds
axis(x,n)−1

2n < axis(x,n)+1
2n .

(19) For every natural number n there exists a natural number k such that
n = k · 2 or n = k · 2 + 1.

(20) Let n be a natural number and let x be an element of dyadic(n +

1). If x /∈ dyadic(n), then axis(x,n+1)−1
2n+1 ∈ dyadic(n) and axis(x,n+1)+1

2n+1 ∈
dyadic(n).

(21) For every natural number n and for all elements x1, x2 of dyadic(n)
such that x1 < x2 holds axis(x1, n) < axis(x2, n).
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(22) For every natural number n and for all elements x1, x2 of dyadic(n)

such that x1 < x2 holds x1 ≤ axis(x2,n)−1
2n and axis(x1,n)+1

2n ≤ x2.

(23) Let n be a natural number and let x1, x2 be elements of dyadic(n+ 1).

If x1 < x2 and x1 /∈ dyadic(n) and x2 /∈ dyadic(n), then axis(x1,n+1)+1
2n+1 ≤

axis(x2,n+1)−1
2n+1 .

3. Normal Spaces

Let T be a topological space and let x be a point of T . A subset of the carrier
of T is said to be a neighbourhood of x in T if:

(Def.8) There exists a subset A of the carrier of T such that A is open and
x ∈ A and A ⊆ it.

One can prove the following propositions:

(24) Let T be a topological space and let A be a subset of the carrier of T .
Then A is open if and only if for every point x of T such that x ∈ A there
exists a neighbourhood B of x in T such that B ⊆ A.

(25) Let T be a topological space, and let A be a subset of the carrier of
T , and let x be a point of T . If A is open and x ∈ A, then A is a
neighbourhood of x in T .

(26) Let T be a topological space and let A be a subset of the carrier of
T . Suppose that for every point x of T such that x ∈ A holds A is a
neighbourhood of x in T . Then A is open.

Let T be a topological space. We say that T is a T1 space if and only if the
condition (Def.9) is satisfied.

(Def.9) Let p, q be points of T . Suppose p 6= q. Then there exist subsets W , V
of the carrier of T such that W is open and V is open and p ∈ W and
q /∈W and q ∈ V and p /∈ V.

Next we state the proposition

(27) For every topological space T holds T is a T1 space iff for every point
p of T holds {p} is closed.

Let T be a topological space, let F be a map from T into � 1 , and let x be a
point of T . Then F (x) is a real number.

The following four propositions are true:

(28) Let T be a topological space. Suppose T is a T4 space. Let A, B be
subsets of the carrier of T . Suppose A 6= ∅ and A is open and B is open
and A ⊆ B. Then there exists a subset C of the carrier of T such that
C 6= ∅ and C is open and A ⊆ C and C ⊆ B.

(29) Let T be a topological space. Then T is a T3 space if and only if for
every subset A of the carrier of T and for every point p of T such that A
is open and p ∈ A there exists a subset B of the carrier of T such that
p ∈ B and B is open and B ⊆ A.
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(30) Let T be a topological space. Suppose T is a T4 space and a T1 space.
Let A be a subset of the carrier of T . Suppose A is open and A 6= ∅. Then
there exists a subset B of the carrier of T such that B 6= ∅ and B ⊆ A.

(31) Let T be a topological space. Suppose T is a T4 space. Let A be a
subset of the carrier of T . Suppose A is open and A 6= ∅. Let B be a
subset of the carrier of T . Suppose B is closed and B 6= ∅ and B ⊆ A.
Then there exists a subset C of the carrier of T such that C is open and
B ⊆ C and C ⊆ A.

4. Some Increasing Family of Sets in Normal Space

Let T be a topological space and let A, B, C be subsets of the carrier of T .
We say that C is between A and B if and only if:

(Def.10) C 6= ∅ and C is open and A ⊆ C and C ⊆ B.
One can prove the following proposition

(32) Let T be a topological space. Suppose T is a T4 space. Let A, B be
subsets of the carrier of T . Suppose A 6= ∅ and A is closed and B is
closed and A∩B = ∅. Let n be a natural number and let G be a function
from dyadic(n) into 2the carrier of T . Suppose that for all elements r1, r2 of
dyadic(n) such that r1 < r2 holds G(r1) is open and G(r2) is open and
G(r1) ⊆ G(r2) and A ⊆ G(0) and B = ΩT \ G(1). Then there exists a
function F from dyadic(n+1) into 2the carrier of T such that for all elements
r1, r2, r of dyadic(n+ 1) if r1 < r2, then F (r1) is open and F (r2) is open
and F (r1) ⊆ F (r2) and A ⊆ F (0) and B = ΩT \F (1) and if r ∈ dyadic(n),
then F (r) = G(r).
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Summary. We continue the formalisation of circuits started by
Piotr Rudnicki, Andrzej Trybulec, Pauline Kawamoto, and the second
author in [16,17,14,15]. The first step in proving properties of full n-bit
adder circuit, i.e. 1-bit adder, is presented. We employ the notation of
combining circuits introduced in [13].
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The terminology and notation used in this paper are introduced in the following
papers: [23], [25], [20], [1], [24], [27], [7], [8], [5], [11], [6], [19], [9], [26], [18], [3],
[2], [4], [10], [12], [22], [21], [16], [17], [14], [15], and [13].

1. Combining of Many Sorted Signatures

A set is pair if:

(Def.1) There exist sets x, y such that it = 〈〈x, y〉〉.
Let us mention that every set which is pair is also non empty.
Let x, y be sets. Observe that 〈〈x, y〉〉 is pair.
Let us mention that there exists a set which is pair and there exists a set

which is non pair.
Let us observe that every natural number is non pair.
A set has a pair if:

(Def.2) There exists a pair set x such that x ∈ it.

Note that every set which is empty has no pairs. Let x be a non pair set.
Note that {x} has no pairs. Let y be a non pair set. Observe that {x, y} has no
pairs. Let z be a non pair set. One can check that {x, y, z} has no pairs.

1This work was written while the first author visited Shinshu University, July–August 1994.
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Let us note that there exists a non empty set which has no pairs.

Let X, Y be sets with no pairs. One can verify that X ∪ Y has no pairs.
Let X be a set with no pairs and let Y be a set. One can verify the following

observations:

∗ X \ Y has no pairs,

∗ X ∩ Y has no pairs, and

∗ Y ∩X has no pairs.

One can verify that every set which is empty is also relation-like. Let x be a
pair set. One can check that {x} is relation-like. Let y be a pair set. Observe
that {x, y} is relation-like. Let z be a pair set. One can check that {x, y, z} is
relation-like.

Let us note that every set which is relation-like and has no pairs is also empty.
A function is nonpair yielding if:

(Def.3) For every set x such that x ∈ dom it holds it(x) is non pair.

Let x be a non pair set. Observe that 〈x〉 is nonpair yielding. Let y be a non
pair set. One can check that 〈x, y〉 is nonpair yielding. Let z be a non pair set.
Observe that 〈x, y, z〉 is nonpair yielding.

One can prove the following proposition

(1) For every function f such that f is nonpair yielding holds rng f has no
pairs.

Let n be a natural number. Observe that there exists a finite sequence with
length n which is one-to-one and nonpair yielding.

One can check that there exists a finite sequence which is one-to-one and
nonpair yielding.

Let f be a nonpair yielding function. Note that rng f has no pairs.
The following propositions are true:

(2) Let S1, S2 be non empty many sorted signatures. Suppose S1 ≈ S2 and
InnerVertices(S1) is a binary relation and InnerVertices(S2) is a binary
relation. Then InnerVertices(S1+·S2) is a binary relation.

(3) Let S1, S2 be unsplit non empty many sorted signatures with ar-
ity held in gates. Suppose InnerVertices(S1) is a binary relation and
InnerVertices(S2) is a binary relation. Then InnerVertices(S1+·S2) is a
binary relation.

(4) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2

and InnerVertices(S2) misses InputVertices(S1) holds InputVertices(S1) ⊆
InputVertices(S1+·S2) and InputVertices(S1+·S2) = InputVertices(S1) ∪
(InputVertices(S2) \ InnerVertices(S1)).

(5) For all sets X, R such that X has no pairs and R is a binary relation
holds X misses R.

(6) Let S1, S2 be unsplit non empty many sorted signatures with arity held
in gates. Suppose InputVertices(S1) has no pairs and InnerVertices(S2)
is a binary relation. Then InputVertices(S1) ⊆ InputVertices(S1+·S2)
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and InputVertices(S1+·S2) = InputVertices(S1) ∪ (InputVertices(S2) \
InnerVertices(S1)).

(7) Let S1, S2 be unsplit non empty many sorted signatures with arity held
in gates. Suppose InputVertices(S1) has no pairs and InnerVertices(S1) is
a binary relation and InputVertices(S2) has no pairs and InnerVertices(S2)
is a binary relation. Then InputVertices(S1+·S2) = InputVertices(S1) ∪
InputVertices(S2).

(8) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2 and
InputVertices(S1) has no pairs and InputVertices(S2) has no pairs holds
InputVertices(S1+·S2) has no pairs.

(9) Let S1, S2 be unsplit non empty many sorted signatures with arity held
in gates. If InputVertices(S1) has no pairs and InputVertices(S2) has no
pairs, then InputVertices(S1+·S2) has no pairs.

2. Combinig of Circuits

In this article we present several logical schemes. The scheme 2AryBooleDef
concerns a binary functor F yielding an element of Boolean , and states that:

(i) There exists a function f from Boolean 2 into Boolean such
that for all elements x, y of Boolean holds f(〈x, y〉) = F(x, y), and
(ii) for all functions f1, f2 from Boolean2 into Boolean such that
for all elements x, y of Boolean holds f1(〈x, y〉) = F(x, y) and for
all elements x, y of Boolean holds f2(〈x, y〉) = F(x, y) holds f1 = f2

for all values of the parameter.
The scheme 3AryBooleDef deals with a ternary functor F yielding an element

of Boolean , and states that:
(i) There exists a function f from Boolean 3 into Boolean such

that for all elements x, y, z of Boolean holds f(〈x, y, z〉) =
F(x, y, z), and
(ii) for all functions f1, f2 from Boolean3 into Boolean such that
for all elements x, y, z of Boolean holds f1(〈x, y, z〉) = F(x, y, z)
and for all elements x, y, z of Boolean holds f2(〈x, y, z〉) = F(x, y, z)
holds f1 = f2

for all values of the parameter.
The function xor from Boolean 2 into Boolean is defined by:

(Def.4) For all elements x, y of Boolean holds xor(〈x, y〉) = x⊕ y.
The function or from Boolean 2 into Boolean is defined by:

(Def.5) For all elements x, y of Boolean holds or(〈x, y〉) = x ∨ y.
The function & from Boolean 2 into Boolean is defined as follows:

(Def.6) For all elements x, y of Boolean holds &(〈x, y〉) = x ∧ y.
The function or3 from Boolean3 into Boolean is defined by:

(Def.7) For all elements x, y, z of Boolean holds or3(〈x, y, z〉) = x ∨ y ∨ z.
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Let x be a set. Then 〈x〉 is a finite sequence with length 1. Let y be a set.
Then 〈x, y〉 is a finite sequence with length 2. Let z be a set. Then 〈x, y, z〉 is
a finite sequence with length 3.

Let n, m be natural numbers, let p be a finite sequence with length n, and
let q be a finite sequence with length m. Then p � q is a finite sequence with
length n+m.

3. Signatures with One Operation

The following proposition is true

(10) Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let g be
a gate of S. Then (Following(s))(the result sort of g) = (Den(g,A))(s ·
Arity(g)).

Let S be a non void circuit-like non empty many sorted signature, let A be a
non-empty circuit of S, let s be a state of A, and let n be a natural number. The
functor Following(s, n) yielding a state of A is defined by the condition (Def.8).

(Def.8) There exists a function f from  into
∏

(the sorts of A) such that
Following(s, n) = f(n) and f(0) = s and for every natural number n and
for every state x of A such that x = f(n) holds f(n+ 1) = Following(x).

The following propositions are true:

(11) Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A. Then
Following(s, 0) = s.

(12) Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let n be a
natural number. Then Following(s, n+ 1) = Following(Following(s, n)).

(13) Let S be a circuit-like non void non empty many sorted signa-
ture, and let A be a non-empty circuit of S, and let s be a state of
A, and let n, m be natural numbers. Then Following(s, n + m) =
Following(Following(s, n),m).

(14) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A. Then
Following(s, 1) = Following(s).

(15) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A. Then
Following(s, 2) = Following(Following(s)).

(16) Let S be a circuit-like non void non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let n be a
natural number. Then Following(s, n+ 1) = Following(Following(s), n).
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Let S be a non void circuit-like non empty many sorted signature, let A be
a non-empty circuit of S, let s be a state of A, and let x be a set. We say that
s is stable at x if and only if:

(Def.9) For every natural number n holds (Following(s, n))(x) = s(x).

The following propositions are true:

(17) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let
x be a set. If s is stable at x, then for every natural number n holds
Following(s, n) is stable at x.

(18) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let x be
a set. If x ∈ InputVertices(S), then s is stable at x.

(19) Let S be a non void circuit-like non empty many sorted signature, and
let A be a non-empty circuit of S, and let s be a state of A, and let g be
a gate of S. Suppose that for every set x such that x ∈ rng Arity(g) holds
s is stable at x. Then Following(s) is stable at the result sort of g.

4. Unsplit Condition

The following propositions are true:

(20) Let S1, S2 be non empty many sorted signatures and let v be a vertex
of S1. Then v ∈ the carrier of S1+·S2 and v ∈ the carrier of S2+·S1.

(21) Let S1, S2 be unsplit non empty many sorted signatures with arity
held in gates and let x be a set. If x ∈ InnerVertices(S1), then x ∈
InnerVertices(S1+·S2) and x ∈ InnerVertices(S2+·S1).

(22) For all non empty many sorted signatures S1, S2 and for every set x
such that x ∈ InnerVertices(S2) holds x ∈ InnerVertices(S1+·S2).

(23) For all unsplit non empty many sorted signatures S1, S2 with arity held
in gates holds S1+·S2 = S2+·S1.

(24) Let S1, S2 be unsplit non void non empty many sorted signatures with
arity held in gates and Boolean denotation held in gates, and let A1 be
a Boolean circuit of S1 with denotation held in gates, and let A2 be a
Boolean circuit of S2 with denotation held in gates. Then A1+·A2 =
A2+·A1.

(25) Let S1, S2, S3 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates, and let A1

be a Boolean circuit of S1, and let A2 be a Boolean circuit of S2, and let
A3 be a Boolean circuit of S3. Then (A1+·A2)+·A3 = A1+·(A2+·A3).

(26) Let S1, S2 be unsplit non void non empty many sorted signatures with
arity held in gates and Boolean denotation held in gates, and let A1 be
a Boolean non-empty circuit of S1 with denotation held in gates, and let
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A2 be a Boolean non-empty circuit of S2 with denotation held in gates,
and let s be a state of A1+·A2. Then s

�
(the carrier of S1) is a state of

A1 and s
�
(the carrier of S2) is a state of A2.

(27) For all unsplit non empty many sorted signatures S1, S2 with ar-
ity held in gates holds InnerVertices(S1+·S2) = InnerVertices(S1) ∪
InnerVertices(S2).

(28) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S2) misses InputVertices(S1). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of S2

with denotation held in gates, and let s be a state of A1+·A2, and let s1

be a state of A1. If s1 = s
�
(the carrier of S1), then Following(s)

�
(the

carrier of S1) = Following(s1).

(29) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S1) misses InputVertices(S2). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of S2

with denotation held in gates, and let s be a state of A1+·A2, and let s2

be a state of A2. If s2 = s
�
(the carrier of S2), then Following(s)

�
(the

carrier of S2) = Following(s2).

(30) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S2) misses InputVertices(S1). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of S2

with denotation held in gates, and let s be a state of A1+·A2, and let s1

be a state of A1. Suppose s1 = s
�
(the carrier of S1). Let n be a natural

number. Then Following(s, n)
�
(the carrier of S1) = Following(s1, n).

(31) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S1) misses InputVertices(S2). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of S2

with denotation held in gates, and let s be a state of A1+·A2, and let s2

be a state of A2. Suppose s2 = s
�
(the carrier of S2). Let n be a natural

number. Then Following(s, n)
�
(the carrier of S2) = Following(s2, n).

(32) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
InnerVertices(S2) misses InputVertices(S1). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of
S2 with denotation held in gates, and let s be a state of A1+·A2, and
let s1 be a state of A1. Suppose s1 = s

�
(the carrier of S1). Let v be

a set. Suppose v ∈ the carrier of S1. Let n be a natural number. Then
(Following(s, n))(v) = (Following(s1, n))(v).

(33) Let S1, S2 be unsplit non void non empty many sorted signatures
with arity held in gates and Boolean denotation held in gates. Suppose
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InnerVertices(S1) misses InputVertices(S2). Let A1 be a Boolean circuit
of S1 with denotation held in gates, and let A2 be a Boolean circuit of
S2 with denotation held in gates, and let s be a state of A1+·A2, and
let s2 be a state of A2. Suppose s2 = s

�
(the carrier of S2). Let v be

a set. Suppose v ∈ the carrier of S2. Let n be a natural number. Then
(Following(s, n))(v) = (Following(s2, n))(v).

Let S be a non void non empty many sorted signature with denotation held
in gates and let g be a gate of S. One can verify that g2 is function-like and
relation-like.

Next we state four propositions:

(34) Let S be a circuit-like non void non empty many sorted signature with
denotation held in gates and let A be a non-empty circuit of S. Suppose
A has denotation held in gates. Let s be a state of A and let g be a gate
of S. Then (Following(s))(the result sort of g) = g2(s ·Arity(g)).

(35) Let S be an unsplit non void non empty many sorted signature with
arity held in gates and Boolean denotation held in gates, and let A be a
Boolean non-empty circuit of S with denotation held in gates, and let s be
a state of A, and let p be a finite sequence, and let f be a function. If 〈〈p,
f〉〉 ∈ the operation symbols of S, then (Following(s))(〈〈p, f〉〉) = f(s · p).

(36) Let S be an unsplit non void non empty many sorted signature with
arity held in gates and Boolean denotation held in gates, and let A be a
Boolean non-empty circuit of S with denotation held in gates, and let s
be a state of A, and let p be a finite sequence, and let f be a function.
Suppose 〈〈p, f〉〉 ∈ the operation symbols of S and for every set x such that
x ∈ rng p holds s is stable at x. Then Following(s) is stable at 〈〈p, f〉〉.

(37) For every unsplit non empty many sorted signature S holds
InnerVertices(S) = the operation symbols of S.

5. One Gate Circuits

We now state a number of propositions:

(38) For every set f and for every finite sequence p holds
InnerVertices(1GateCircStr(p, f)) is a binary relation.

(39) For every set f and for every nonpair yielding finite sequence p holds
InputVertices(1GateCircStr(p, f)) has no pairs.

(40) For every set f and for all sets x, y holds InputVertices(1GateCircStr(〈x,
y〉, f)) = {x, y}.

(41) For every set f and for all non pair sets x, y holds
InputVertices(1GateCircStr(〈x, y〉, f)) has no pairs.

(42) For every set f and for all sets x, y, z holds
InputVertices(1GateCircStr(〈x, y, z〉, f)) = {x, y, z}.
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(43) Let x, y, f be sets. Then x ∈ the carrier of 1GateCircStr(〈x, y〉, f) and
y ∈ the carrier of 1GateCircStr(〈x, y〉, f) and 〈〈〈x, y〉, f〉〉 ∈ the carrier of
1GateCircStr(〈x, y〉, f).

(44) Let x, y, z, f be sets. Then x ∈ the carrier of 1GateCircStr(〈x, y, z〉, f)
and y ∈ the carrier of 1GateCircStr(〈x, y, z〉, f) and z ∈ the carrier of
1GateCircStr(〈x, y, z〉, f).

(45) Let f , x be sets and let p be a finite sequence. Then x ∈ the carrier of
1GateCircStr(p, f, x) and for every set y such that y ∈ rng p holds y ∈ the
carrier of 1GateCircStr(p, f, x).

(46) For all sets f , x and for every finite sequence p holds
1GateCircStr(p, f, x) is circuit-like and has arity held in gates.

(47) For every finite sequence p and for every set f holds 〈〈p, f〉〉 ∈
InnerVertices(1GateCircStr(p, f)).

Let x, y be sets and let f be a function from Boolean 2 into Boolean . The func-
tor 1GateCircuit(x, y, f) yielding a Boolean strict circuit of 1GateCircStr(〈x,
y〉, f) with denotation held in gates is defined by:

(Def.10) 1GateCircuit(x, y, f) = 1GateCircuit(〈x, y〉, f).

We adopt the following convention: x, y, z, c denote sets and f denotes a
function from Boolean 2 into Boolean .

We now state four propositions:

(48) Let X be a finite non empty set, and let f be a function from
X2 into X, and let s be a state of 1GateCircuit(〈x, y〉, f). Then
(Following(s))(〈〈〈x, y〉, f〉〉) = f(〈s(x), s(y)〉) and (Following(s))(x) = s(x)
and (Following(s))(y) = s(y).

(49) Let X be a finite non empty set, and let f be a function from X 2 into
X, and let s be a state of 1GateCircuit(〈x, y〉, f). Then Following(s) is
stable.

(50) For every state s of 1GateCircuit(x, y, f) holds (Following(s))(〈〈〈x,
y〉, f〉〉) = f(〈s(x), s(y)〉) and (Following(s))(x) = s(x) and
(Following(s))(y) = s(y).

(51) For every state s of 1GateCircuit(x, y, f) holds Following(s) is stable.

Let x, y, z be sets and let f be a function from Boolean 3 into
Boolean . The functor 1GateCircuit(x, y, z, f) yields a Boolean strict circuit
of 1GateCircStr(〈x, y, z〉, f) with denotation held in gates and is defined by:

(Def.11) 1GateCircuit(x, y, z, f) = 1GateCircuit(〈x, y, z〉, f).

We now state four propositions:

(52) Let X be a finite non empty set, and let f be a function from X 3 into X,
and let s be a state of 1GateCircuit(〈x, y, z〉, f). Then (Following(s))(〈〈〈x,
y, z〉, f〉〉) = f(〈s(x), s(y), s(z)〉) and (Following(s))(x) = s(x) and
(Following(s))(y) = s(y) and (Following(s))(z) = s(z).

(53) Let X be a finite non empty set, and let f be a function from X 3 into
X, and let s be a state of 1GateCircuit(〈x, y, z〉, f). Then Following(s) is
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stable.

(54) Let f be a function from Boolean 3 into Boolean and let s be a state
of 1GateCircuit(x, y, z, f). Then (Following(s))(〈〈〈x, y, z〉, f〉〉) = f(〈s(x),
s(y), s(z)〉) and (Following(s))(x) = s(x) and (Following(s))(y) = s(y)
and (Following(s))(z) = s(z).

(55) For every function f from Boolean 3 into Boolean and for every state s
of 1GateCircuit(x, y, z, f) holds Following(s) is stable.

6. Boolean Circuits

Let x, y, c be sets and let f be a function from Boolean 2 into Boolean . The
functor 2GatesCircStr(x, y, c, f) yielding an unsplit non void strict non empty
many sorted signature with arity held in gates and Boolean denotation held in
gates is defined as follows:

(Def.12) 2GatesCircStr(x, y, c, f) = 1GateCircStr(〈x, y〉, f)+· 1GateCircStr(〈〈〈〈x,
y〉, f〉〉, c〉, f).

Let x, y, c be sets and let f be a function from Boolean 2 into
Boolean . The functor 2GatesCircOutput(x, y, c, f) yields an element of
InnerVertices(2GatesCircStr(x, y, c, f)) and is defined as follows:

(Def.13) 2GatesCircOutput(x, y, c, f) = 〈〈〈〈〈〈x, y〉, f〉〉, c〉, f〉〉.
Let x, y, c be sets and let f be a function from Boolean 2 into Boolean . One

can verify that 2GatesCircOutput(x, y, c, f) is pair.
One can prove the following two propositions:

(56) InnerVertices(2GatesCircStr(x, y, c, f)) = {〈〈〈x, y〉, f〉〉,
2GatesCircOutput(x, y, c, f)}.

(57) If c 6= 〈〈〈x, y〉, f〉〉, then InputVertices(2GatesCircStr(x, y, c, f)) =
{x, y, c}.

Let x, y, c be sets and let f be a function from Boolean 2 into
Boolean . The functor 2GatesCircuit(x, y, c, f) yields a strict Boolean circuit
of 2GatesCircStr(x, y, c, f) with denotation held in gates and is defined by:

(Def.14) 2GatesCircuit(x, y, c, f) = 1GateCircuit(x, y, f)+· 1GateCircuit(〈〈〈x,
y〉, f〉〉, c, f).

We now state four propositions:

(58) InnerVertices(2GatesCircStr(x, y, c, f)) is a binary relation.

(59) For all non pair sets x, y, c holds InputVertices(2GatesCircStr(x, y, c, f))
has no pairs.

(60) x ∈ the carrier of 2GatesCircStr(x, y, c, f) and y ∈ the carrier of
2GatesCircStr(x, y, c, f) and c ∈ the carrier of 2GatesCircStr(x, y, c, f).

(61) 〈〈〈x, y〉, f〉〉 ∈ the carrier of 2GatesCircStr(x, y, c, f) and 〈〈〈〈〈〈x, y〉, f〉〉, c〉,
f〉〉 ∈ the carrier of 2GatesCircStr(x, y, c, f).
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Let S be an unsplit non void non empty many sorted signature, let A be a
Boolean circuit of S, let s be a state of A, and let v be a vertex of S. Then s(v)
is an element of Boolean .

In the sequel s will be a state of 2GatesCircuit(x, y, c, f).
One can prove the following propositions:

(62) Suppose c 6= 〈〈〈x, y〉, f〉〉. Then (Following(s, 2))(2GatesCircOutput(x, y, c,
f)) = f(〈f(〈s(x), s(y)〉), s(c)〉) and (Following(s, 2))(〈〈〈x, y〉, f〉〉) =
f(〈s(x), s(y)〉) and (Following(s, 2))(x) = s(x) and (Following(s, 2))(y) =
s(y) and (Following(s, 2))(c) = s(c).

(63) If c 6= 〈〈〈x, y〉, f〉〉, then Following(s, 2) is stable.

(64) Suppose c 6= 〈〈〈x, y〉, xor 〉〉. Let s be a state of 2GatesCircuit(x, y, c, xor)
and let a1, a2, a3 be elements of Boolean . If a1 = s(x) and a2 = s(y)
and a3 = s(c), then (Following(s, 2))(2GatesCircOutput(x, y, c, xor)) =
a1 ⊕ a2 ⊕ a3.

(65) Suppose c 6= 〈〈〈x, y〉, or 〉〉. Let s be a state of 2GatesCircuit(x, y, c, or)
and let a1, a2, a3 be elements of Boolean . If a1 = s(x) and a2 = s(y) and
a3 = s(c), then (Following(s, 2))(2GatesCircOutput(x, y, c, or)) = a1 ∨
a2 ∨ a3.

(66) Suppose c 6= 〈〈〈x, y〉, &〉〉. Let s be a state of 2GatesCircuit(x, y, c,&) and
let a1, a2, a3 be elements of Boolean . If a1 = s(x) and a2 = s(y) and a3 =
s(c), then (Following(s, 2))(2GatesCircOutput(x, y, c,&)) = a1 ∧ a2 ∧ a3.

7. One Bit Adder

Let x, y, c be sets. The functor BitAdderOutput(x, y, c) yields an element
of InnerVertices(2GatesCircStr(x, y, c, xor)) and is defined as follows:

(Def.15) BitAdderOutput(x, y, c) = 2GatesCircOutput(x, y, c, xor).

Let x, y, c be sets. The functor BitAdderCirc(x, y, c) yields a strict Boolean
circuit of 2GatesCircStr(x, y, c, xor) with denotation held in gates and is defined
as follows:

(Def.16) BitAdderCirc(x, y, c) = 2GatesCircuit(x, y, c, xor).

Let x, y, c be sets. The functor MajorityIStr(x, y, c) yielding an unsplit
non void strict non empty many sorted signature with arity held in gates and
Boolean denotation held in gates is defined by:

(Def.17) MajorityIStr(x, y, c) = 1GateCircStr(〈x, y〉,&)+· 1GateCircStr(〈y,
c〉,&)+· 1GateCircStr(〈c, x〉,&).

Let x, y, c be sets. The functor MajorityStr(x, y, c) yields an unsplit non void
strict non empty many sorted signature with arity held in gates and Boolean
denotation held in gates and is defined as follows:

(Def.18) MajorityStr(x, y, c) = MajorityIStr(x, y, c)+· 1GateCircStr(〈〈〈〈x, y〉,
&〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉〉, or3).
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Let x, y, c be sets. The functor MajorityICirc(x, y, c) yields a strict Boolean
circuit of MajorityIStr(x, y, c) with denotation held in gates and is defined as
follows:

(Def.19) MajorityICirc(x, y, c) = 1GateCircuit(x, y,&)+· 1GateCircuit(y, c,&)
+· 1GateCircuit(c, x,&).

Next we state several propositions:

(67) InnerVertices(MajorityStr(x, y, c)) is a binary relation.

(68) For all non pair sets x, y, c holds InputVertices(MajorityStr(x, y, c))
has no pairs.

(69) For every state s of MajorityICirc(x, y, c) and for all elements a, b of
Boolean such that a = s(x) and b = s(y) holds (Following(s))(〈〈〈x, y〉,
&〉〉) = a ∧ b.

(70) For every state s of MajorityICirc(x, y, c) and for all elements a, b of
Boolean such that a = s(y) and b = s(c) holds (Following(s))(〈〈〈y, c〉,
&〉〉) = a ∧ b.

(71) For every state s of MajorityICirc(x, y, c) and for all elements a, b of
Boolean such that a = s(c) and b = s(x) holds (Following(s))(〈〈〈c, x〉,
&〉〉) = a ∧ b.

Let x, y, c be sets. The functor MajorityOutput(x, y, c) yields an element of
InnerVertices(MajorityStr(x, y, c)) and is defined by:

(Def.20) MajorityOutput(x, y, c) = 〈〈〈〈〈〈x, y〉, &〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉〉, or3 〉〉.
Let x, y, c be sets. The functor MajorityCirc(x, y, c) yielding a strict Boolean

circuit of MajorityStr(x, y, c) with denotation held in gates is defined by:

(Def.21) MajorityCirc(x, y, c) = MajorityICirc(x, y, c)+· 1GateCircuit(〈〈〈x, y〉,
&〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉, or3).

Next we state a number of propositions:

(72) x ∈ the carrier of MajorityStr(x, y, c) and y ∈ the carrier of
MajorityStr(x, y, c) and c ∈ the carrier of MajorityStr(x, y, c).

(73) 〈〈〈x, y〉, &〉〉 ∈ InnerVertices(MajorityStr(x, y, c)) and 〈〈〈y, c〉, &〉〉 ∈
InnerVertices(MajorityStr(x, y, c)) and 〈〈〈c, x〉, &〉〉
∈ InnerVertices(MajorityStr(x, y, c)).

(74) For all non pair sets x, y, c holds x ∈ InputVertices(MajorityStr(x, y, c))
and y ∈ InputVertices(MajorityStr(x, y, c)) and
c ∈ InputVertices(MajorityStr(x, y, c)).

(75) For all non pair sets x, y, c holds InputVertices(MajorityStr(x, y, c)) =
{x, y, c} and InnerVertices(MajorityStr(x, y, c)) = {〈〈〈x, y〉, &〉〉, 〈〈〈y, c〉,
&〉〉, 〈〈〈c, x〉, &〉〉} ∪ {MajorityOutput(x, y, c)}.

(76) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(y), then
(Following(s))(〈〈〈x, y〉, &〉〉) = a1 ∧ a2.

(77) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a2, a3 be elements of Boolean . If a2 = s(y) and a3 = s(c), then
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(Following(s))(〈〈〈y, c〉, &〉〉) = a2 ∧ a3.

(78) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a3 be elements of Boolean . If a1 = s(x) and a3 = s(c), then
(Following(s))(〈〈〈c, x〉, &〉〉) = a3 ∧ a1.

(79) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a2, a3 be elements of Boolean . If a1 = s(〈〈〈x,
y〉, &〉〉) and a2 = s(〈〈〈y, c〉, &〉〉) and a3 = s(〈〈〈c, x〉, &〉〉), then
(Following(s))(MajorityOutput(x, y, c)) = a1 ∨ a2 ∨ a3.

(80) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a2 be elements of Boolean . If a1 = s(x) and a2 = s(y), then
(Following(s, 2))(〈〈〈x, y〉, &〉〉) = a1 ∧ a2.

(81) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a2, a3 be elements of Boolean . If a2 = s(y) and a3 = s(c), then
(Following(s, 2))(〈〈〈y, c〉, &〉〉) = a2 ∧ a3.

(82) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a3 be elements of Boolean . If a1 = s(x) and a3 = s(c), then
(Following(s, 2))(〈〈〈c, x〉, &〉〉) = a3 ∧ a1.

(83) Let x, y, c be non pair sets, and let s be a state of MajorityCirc(x, y, c),
and let a1, a2, a3 be elements of Boolean . If a1 = s(x) and a2 = s(y) and
a3 = s(c), then (Following(s, 2))(MajorityOutput(x, y, c)) = a1∧a2∨a2∧
a3 ∨ a3 ∧ a1.

(84) For all non pair sets x, y, c and for every state s of MajorityCirc(x, y, c)
holds Following(s, 2) is stable.

Let x, y, c be sets. The functor BitAdderWithOverflowStr(x, y, c) yields an
unsplit non void strict non empty many sorted signature with arity held in gates
and Boolean denotation held in gates and is defined as follows:

(Def.22) BitAdderWithOverflowStr(x, y, c) = 2GatesCircStr(x, y, c, xor)
+·MajorityStr(x, y, c).

The following three propositions are true:

(85) For all non pair sets x, y, c holds InputVertices(BitAdderWithOverflowStr
(x, y, c)) = {x, y, c}.

(86) For all non pair sets x, y, c holds InnerVertices(BitAdderWithOverflowStr
(x, y, c)) = {〈〈〈x, y〉, xor 〉〉, 2GatesCircOutput(x, y, c, xor)} ∪ {〈〈〈x, y〉,
&〉〉, 〈〈〈y, c〉, &〉〉, 〈〈〈c, x〉, &〉〉} ∪ {MajorityOutput(x, y, c)}.

(87) Let S be a non empty many sorted signature. Suppose S =
BitAdderWithOverflowStr(x, y, c). Then x ∈ the carrier of S and y ∈ the
carrier of S and c ∈ the carrier of S.

Let x, y, c be sets. The functor BitAdderWithOverflowCirc(x, y, c) yielding a
strict Boolean circuit of BitAdderWithOverflowStr(x, y, c) with denotation held
in gates is defined as follows:

(Def.23) BitAdderWithOverflowCirc(x, y, c) = BitAdderCirc(x, y, c)
+·MajorityCirc(x, y, c).
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We now state several propositions:

(88) InnerVertices(BitAdderWithOverflowStr(x, y, c)) is a binary relation.

(89) For all non pair sets x, y, c holds InputVertices(BitAdderWithOverflowStr
(x, y, c)) has no pairs.

(90) BitAdderOutput(x, y, c) ∈ InnerVertices(BitAdderWithOverflowStr(x,
y, c)) and MajorityOutput(x, y, c) ∈ InnerVertices(BitAdderWithOverflow
Str(x, y, c)).

(91) Let x, y, c be non pair sets, and let s be a state of
BitAdderWithOverflowCirc(x, y, c), and let a1, a2, a3 be elements of
Boolean . Suppose a1 = s(x) and a2 = s(y) and a3 = s(c).
Then (Following(s, 2))(BitAdderOutput(x, y, c)) = a1 ⊕ a2 ⊕ a3 and
(Following(s, 2))(MajorityOutput(x, y, c)) = a1 ∧ a2 ∨ a2 ∧ a3 ∨ a3 ∧ a1.

(92) For all non pair sets x, y, c and for every state s of
BitAdderWithOverflowCirc(x, y, c) holds Following(s, 2) is stable.
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[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
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1. Directed Sets

One can check that there exists a coherent space which is finite. Let us
observe that a set is binary complete if:

(Def.1) For every set A such that for all sets a, b such that a ∈ A and b ∈ A
holds a ∪ b ∈ it holds

⋃
A ∈ it.

Let X be a set. The functor FlatCoh(X) yielding a set is defined as follows:

(Def.2) FlatCoh(X) = CohSp(4X).

The functor SubFin(X) yielding a subset of X is defined by:

(Def.3) For every set x holds x ∈ SubFin(X) iff x ∈ X and x is finite.

One can prove the following three propositions:

(1) For all sets X, x holds x ∈ FlatCoh(X) iff x = ∅ or there exists a set y
such that x = {y} and y ∈ X.

(2) For every set X holds
⋃

FlatCoh(X) = X.

(3) For every finite down-closed set X holds SubFin(X) = X.

One can check that {∅} is down-closed and binary complete. Let X be a set.
One can check that 2X is down-closed and binary complete and FlatCoh(X) is
non empty down-closed and binary complete.
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Let C be a non empty down-closed set. Observe that SubFin(C) is non
empty and down-closed.

We now state the proposition

(4) Web({∅}) = ∅.
The scheme MinimalElement wrt Incl concerns sets A, B and a unary pred-

icate P, and states that:
There exists a set a such that a ∈ B and P[a] and for every set b
such that b ∈ B and P[b] and b ⊆ a holds b = a

provided the following requirements are met:
• A ∈ B,
• P[A],
• A is finite.
Let X be a set. One can check that there exists a subset of X which is finite.
Let C be a coherent space. Observe that there exists an element of C which

is finite.
Let X be a set. We say that X is ∪-directed if and only if:

(Def.4) For every finite subset Y of X there exists a set a such that
⋃
Y ⊆ a

and a ∈ X.
We say that X is ∩-directed if and only if:

(Def.5) For every finite subset Y of X there exists a set a such that for every
set y such that y ∈ Y holds a ⊆ y and a ∈ X.

Let us note that every set which is ∪-directed is also non empty and every
set which is ∩-directed is also non empty.

We now state several propositions:

(5) Let X be a set. Suppose X is ∪-directed. Let a, b be sets. If a ∈ X
and b ∈ X, then there exists a set c such that a ∪ b ⊆ c and c ∈ X.

(6) Let X be a non empty set. Suppose that for all sets a, b such that
a ∈ X and b ∈ X there exists a set c such that a∪ b ⊆ c and c ∈ X. Then
X is ∪-directed.

(7) Let X be a set. Suppose X is ∩-directed. Let a, b be sets. If a ∈ X
and b ∈ X, then there exists a set c such that c ⊆ a ∩ b and c ∈ X.

(8) Let X be a non empty set. Suppose that for all sets a, b such that
a ∈ X and b ∈ X there exists a set c such that c ⊆ a∩ b and c ∈ X. Then
X is ∩-directed.

(9) For every set x holds {x} is ∪-directed and ∩-directed.

(10) For all sets x, y holds {x, y, x ∪ y} is ∪-directed.

(11) For all sets x, y holds {x, y, x ∩ y} is ∩-directed.

Let us observe that there exists a set which is ∪-directed ∩-directed and
finite.

Let C be a non empty set. Observe that there exists a subset of C which is
∪-directed ∩-directed and finite.

We now state the proposition
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(12) For every set X holds FinX is ∪-directed and ∩-directed.

Let X be a set. Observe that FinX is ∪-directed and ∩-directed.
Let C be a down-closed non empty set. Note that there exists a subset of C

which is preboolean and non empty.
Let C be a down-closed non empty set and let a be an element of C. Then

Fin a is a preboolean non empty subset of C.
One can prove the following proposition

(13) Let X be a non empty set and let Y be a set. Suppose X is ∪-directed
and Y ⊆ ⋃X and Y is finite. Then there exists a set Z such that Z ∈ X
and Y ⊆ Z.

Let X be a set. We say that X is ∩-closed if and only if:

(Def.6) For all sets x, y such that x ∈ X and y ∈ X holds x ∩ y ∈ X.
We say that X is closed under directed unions if and only if:

(Def.7) For every subset A of X such that A is ∪-directed holds
⋃
A ∈ X.

One can check that every set which is down-closed is also ∩-closed.
Next we state two propositions:

(14) For every coherent space C and for all elements x, y of C holds x∩y ∈ C.
(15) For every coherent space C and for every ∪-directed subset A of C holds⋃

A ∈ C.
Let us note that every coherent space is closed under directed unions.
Let us note that there exists a coherent space which is ∩-closed and closed

under directed unions.
Let C be a closed under directed unions non empty set and let A be a ∪-

directed subset of C. Then
⋃
A is an element of C.

Let X, Y be sets. We say that X includes lattice of Y if and only if:

(Def.8) For all sets a, b such that a ∈ Y and b ∈ Y holds a∩b ∈ X and a∪b ∈ X.
The following proposition is true

(16) For every non empty set X such that X includes lattice of X holds X
is ∪-directed and ∩-directed.

Let X, x, y be sets. We say that X includes lattice of x, y if and only if:

(Def.9) X includes lattice of {x, y}.
One can prove the following proposition

(17) For all sets X, x, y holds X includes lattice of x, y iff x ∈ X and y ∈ X
and x ∩ y ∈ X and x ∪ y ∈ X.

2. Continuous, Stable, and Linear Functions

Let f be a function. We say that f is preserving arbitrary unions if and only
if:

(Def.10) For every subset A of dom f such that
⋃
A ∈ dom f holds f(

⋃
A) =⋃

(f◦A).
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We say that f is preserving directed unions if and only if:

(Def.11) For every subset A of dom f such that A is ∪-directed and
⋃
A ∈ dom f

holds f(
⋃
A) =

⋃
(f◦A).

Let f be a function. We say that f is ⊆-monotone if and only if:

(Def.12) For all sets a, b such that a ∈ dom f and b ∈ dom f and a ⊆ b holds
f(a) ⊆ f(b).

We say that f is preserving binary intersections if and only if:

(Def.13) For all sets a, b such that dom f includes lattice of a, b holds f(a∩ b) =
f(a) ∩ f(b).

Let us note that every function which is preserving directed unions is also
⊆-monotone and every function which is preserving arbitrary unions is also
preserving directed unions.

Next we state two propositions:

(18) Let f be a function. Suppose f is preserving arbitrary unions. Let
x, y be sets. If x ∈ dom f and y ∈ dom f and x ∪ y ∈ dom f, then
f(x ∪ y) = f(x) ∪ f(y).

(19) For every function f such that f is preserving arbitrary unions holds
f(∅) = ∅.

Let C1, C2 be coherent spaces. Note that there exists a function from C1 into
C2 which is preserving arbitrary unions and preserving binary intersections.

Let C be a coherent space. One can verify that there exists a many sorted
set indexed by C which is preserving arbitrary unions and preserving binary
intersections.

Let f be a function. We say that f is continuous if and only if:

(Def.14) dom f is closed under directed unions and f is preserving directed
unions.

Let f be a function. We say that f is stable if and only if:

(Def.15) dom f is ∩-closed and f is continuous and preserving binary intersec-
tions.

Let f be a function. We say that f is linear if and only if:

(Def.16) f is stable and preserving arbitrary unions.

One can check the following observations:

∗ every function which is continuous is also preserving directed unions,

∗ every function which is stable is also preserving binary intersections and
continuous, and

∗ every function which is linear is also preserving arbitrary unions and
stable.

Let X be a closed under directed unions set. Note that every many sorted
set indexed by X which is preserving directed unions is also continuous.

Let X be a ∩-closed set. Observe that every many sorted set indexed by X
which is continuous and preserving binary intersections is also stable.
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Let us note that every function which is stable and preserving arbitrary
unions is also linear.

Note that there exists a function which is linear. Let C be a coherent space.
One can check that there exists a many sorted set indexed by C which is linear.
Let B be a coherent space. One can check that there exists a function from B
into C which is linear.

Let f be a continuous function. One can verify that dom f is closed under
directed unions.

Let f be a stable function. One can verify that dom f is ∩-closed.
We now state several propositions:

(20) For every set X holds
⋃

FinX = X.

(21) For every continuous function f such that dom f is down-closed and for
every set a such that a ∈ dom f holds f(a) =

⋃
(f◦ Fin a).

(22) Let f be a function. Suppose dom f is down-closed. Then f is contin-
uous if and only if the following conditions are satisfied:

(i) dom f is closed under directed unions,
(ii) f is ⊆-monotone, and

(iii) for all sets a, y such that a ∈ dom f and y ∈ f(a) there exists a set b
such that b is finite and b ⊆ a and y ∈ f(b).

(23) Let f be a function. Suppose dom f is down-closed and closed under
directed unions. Then f is stable if and only if the following conditions
are satisfied:

(i) f is ⊆-monotone, and
(ii) for all sets a, y such that a ∈ dom f and y ∈ f(a) there exists a set b

such that b is finite and b ⊆ a and y ∈ f(b) and for every set c such that
c ⊆ a and y ∈ f(c) holds b ⊆ c.

(24) Let f be a function. Suppose dom f is down-closed and closed under
directed unions. Then f is linear if and only if the following conditions
are satisfied:

(i) f is ⊆-monotone, and
(ii) for all sets a, y such that a ∈ dom f and y ∈ f(a) there exists a set x

such that x ∈ a and y ∈ f({x}) and for every set b such that b ⊆ a and
y ∈ f(b) holds x ∈ b.

3. Graph of Continuous Function

Let f be a function. The functor graph(f) yielding a set is defined as follows:

(Def.17) For every set x holds x ∈ graph(f) iff there exists a finite set y and
there exists a set z such that x = 〈〈y, z〉〉 and y ∈ dom f and z ∈ f(y).

Let C1, C2 be non empty sets and let f be a function from C1 into C2. Then
graph(f) is a subset of [:C1,

⋃
C2 :].

Let f be a function. Note that graph(f) is relation-like.
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Next we state several propositions:

(25) For every function f and for all sets x, y holds 〈〈x, y〉〉 ∈ graph(f) iff x
is finite and x ∈ dom f and y ∈ f(x).

(26) Let f be a ⊆-monotone function and let a, b be sets. Suppose b ∈ dom f
and a ⊆ b and b is finite. Let y be a set. If 〈〈a, y〉〉 ∈ graph(f), then 〈〈b,
y〉〉 ∈ graph(f).

(27) Let C1, C2 be coherent spaces, and let f be a function from C1 into C2,
and let a be an element of C1, and let y1, y2 be sets. If 〈〈a, y1〉〉 ∈ graph(f)
and 〈〈a, y2〉〉 ∈ graph(f), then {y1, y2} ∈ C2.

(28) Let C1, C2 be coherent spaces, and let f be a ⊆-monotone function
from C1 into C2, and let a, b be elements of C1. Suppose a ∪ b ∈ C1.
Let y1, y2 be sets. If 〈〈a, y1〉〉 ∈ graph(f) and 〈〈b, y2〉〉 ∈ graph(f), then
{y1, y2} ∈ C2.

(29) For all coherent spaces C1, C2 and for all continuous functions f , g from
C1 into C2 such that graph(f) = graph(g) holds f = g.

(30) Let C1, C2 be coherent spaces and let X be a subset of [:C1,
⋃
C2 :].

Suppose that
(i) for every set x such that x ∈ X holds x1 is finite,

(ii) for all finite elements a, b of C1 such that a ⊆ b and for every set y
such that 〈〈a, y〉〉 ∈ X holds 〈〈b, y〉〉 ∈ X, and

(iii) for every finite element a of C1 and for all sets y1, y2 such that 〈〈a,
y1〉〉 ∈ X and 〈〈a, y2〉〉 ∈ X holds {y1, y2} ∈ C2.
Then there exists a continuous function f from C1 into C2 such that
X = graph(f).

(31) Let C1, C2 be coherent spaces, and let f be a continuous function from
C1 into C2, and let a be an element of C1. Then f(a) = (graph(f))◦ Fin a.

4. Trace of Stable Function

Let f be a function. The functor Trace(f) yields a set and is defined by the
condition (Def.18).

(Def.18) Let x be a set. Then x ∈ Trace(f) if and only if there exist sets a, y
such that x = 〈〈a, y〉〉 and a ∈ dom f and y ∈ f(a) and for every set b such
that b ∈ dom f and b ⊆ a and y ∈ f(b) holds a = b.

Next we state the proposition

(32) Let f be a function and let a, y be sets. Then 〈〈a, y〉〉 ∈ Trace(f) if and
only if the following conditions are satisfied:

(i) a ∈ dom f,
(ii) y ∈ f(a), and
(iii) for every set b such that b ∈ dom f and b ⊆ a and y ∈ f(b) holds a = b.

Let C1, C2 be non empty sets and let f be a function from C1 into C2. Then
Trace(f) is a subset of [:C1,

⋃
C2 :].
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Let f be a function. One can check that Trace(f) is relation-like.

Next we state a number of propositions:

(33) For every continuous function f such that dom f is down-closed holds
Trace(f) ⊆ graph(f).

(34) Let f be a continuous function. Suppose dom f is down-closed. Let a,
y be sets. If 〈〈a, y〉〉 ∈ Trace(f), then a is finite.

(35) Let C1, C2 be coherent spaces, and let f be a ⊆-monotone function from
C1 into C2, and let a1, a2 be sets. Suppose a1 ∪ a2 ∈ C1. Let y1, y2 be
sets. If 〈〈a1, y1〉〉 ∈ Trace(f) and 〈〈a2, y2〉〉 ∈ Trace(f), then {y1, y2} ∈ C2.

(36) Let C1, C2 be coherent spaces, and let f be a preserving binary inter-
sections function from C1 into C2, and let a1, a2 be sets. If a1 ∪ a2 ∈ C1,
then for every set y such that 〈〈a1, y〉〉 ∈ Trace(f) and 〈〈a2, y〉〉 ∈ Trace(f)
holds a1 = a2.

(37) Let C1, C2 be coherent spaces and let f , g be stable functions from C1

into C2. If Trace(f) ⊆ Trace(g), then for every element a of C1 holds
f(a) ⊆ g(a).

(38) For all coherent spaces C1, C2 and for all stable functions f , g from C1

into C2 such that Trace(f) = Trace(g) holds f = g.

(39) Let C1, C2 be coherent spaces and let X be a subset of [:C1,
⋃
C2 :].

Suppose that

(i) for every set x such that x ∈ X holds x1 is finite,

(ii) for all elements a, b of C1 such that a ∪ b ∈ C1 and for all sets y1, y2

such that 〈〈a, y1〉〉 ∈ X and 〈〈b, y2〉〉 ∈ X holds {y1, y2} ∈ C2, and

(iii) for all elements a, b of C1 such that a∪ b ∈ C1 and for every set y such
that 〈〈a, y〉〉 ∈ X and 〈〈b, y〉〉 ∈ X holds a = b.

Then there exists a stable function f from C1 into C2 such that X =
Trace(f).

(40) Let C1, C2 be coherent spaces, and let f be a stable function from C1

into C2, and let a be an element of C1. Then f(a) = (Trace(f))◦ Fin a.

(41) Let C1, C2 be coherent spaces, and let f be a stable function from C1

into C2, and let a be an element of C1, and let y be a set. Then y ∈ f(a)
if and only if there exists an element b of C1 such that 〈〈b, y〉〉 ∈ Trace(f)
and b ⊆ a.

(42) For all coherent spaces C1, C2 there exists a stable function f from C1

into C2 such that Trace(f) = ∅.
(43) Let C1, C2 be coherent spaces, and let a be a finite element of C1, and

let y be a set. If y ∈ ⋃C2, then there exists a stable function f from C1

into C2 such that Trace(f) = {〈〈a, y〉〉}.
(44) Let C1, C2 be coherent spaces, and let a be an element of C1, and let y

be a set. Suppose y ∈ ⋃C2. Let f be a stable function from C1 into C2.
Suppose Trace(f) = {〈〈a, y〉〉}. Let b be an element of C1. Then if a ⊆ b,
then f(b) = {y} and if a 6⊆ b, then f(b) = ∅.
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(45) Let C1, C2 be coherent spaces, and let f be a stable function from C1

into C2, and let X be a subset of Trace(f). Then there exists a stable
function g from C1 into C2 such that Trace(g) = X.

(46) Let C1, C2 be coherent spaces and let A be a set. Suppose that for all
sets x, y such that x ∈ A and y ∈ A there exists a stable function f from
C1 into C2 such that x∪y = Trace(f). Then there exists a stable function
f from C1 into C2 such that

⋃
A = Trace(f).

Let C1, C2 be coherent spaces. The functor StabCoh(C1, C2) yielding a set
is defined as follows:

(Def.19) For every set x holds x ∈ StabCoh(C1, C2) iff there exists a stable
function f from C1 into C2 such that x = Trace(f).

Let C1, C2 be coherent spaces. Note that StabCoh(C1, C2) is non empty
down-closed and binary complete.

We now state three propositions:

(47) For all coherent spaces C1, C2 and for every stable function f from C1

into C2 holds Trace(f) ⊆ [: SubFin(C1),
⋃
C2 :].

(48) For all coherent spaces C1, C2 holds
⋃

StabCoh(C1, C2) = [: SubFin(C1),⋃
C2 :].

(49) Let C1, C2 be coherent spaces, and let a, b be finite elements of C1, and
let y1, y2 be sets. Then 〈〈〈〈a, y1〉〉, 〈〈b, y2〉〉〉〉 ∈Web(StabCoh(C1, C2)) if and
only if one of the following conditions is satisfied:

(i) a ∪ b /∈ C1 and y1 ∈
⋃
C2 and y2 ∈

⋃
C2, or

(ii) 〈〈y1, y2〉〉 ∈Web(C2) and if y1 = y2, then a = b.

5. Trace of Linear Function

The following proposition is true

(50) Let C1, C2 be coherent spaces and let f be a stable function from C1

into C2. Then f is linear if and only if for all sets a, y such that 〈〈a,
y〉〉 ∈ Trace(f) there exists a set x such that a = {x}.

Let f be a function. The functor LinTrace(f) yielding a set is defined as
follows:

(Def.20) For every set x holds x ∈ LinTrace(f) iff there exist sets y, z such that
x = 〈〈y, z〉〉 and 〈〈{y}, z〉〉 ∈ Trace(f).

Next we state three propositions:

(51) For every function f and for all sets x, y holds 〈〈x, y〉〉 ∈ LinTrace(f) iff
〈〈{x}, y〉〉 ∈ Trace(f).

(52) For every function f such that f(∅) = ∅ and for all sets x, y such that
{x} ∈ dom f and y ∈ f({x}) holds 〈〈x, y〉〉 ∈ LinTrace(f).

(53) For every function f and for all sets x, y such that 〈〈x, y〉〉 ∈ LinTrace(f)
holds {x} ∈ dom f and y ∈ f({x}).
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Let C1, C2 be non empty sets and let f be a function from C1 into C2. Then
LinTrace(f) is a subset of [:

⋃
C1,

⋃
C2 :].

Let f be a function. One can verify that LinTrace(f) is relation-like.

Let C1, C2 be coherent spaces. The functor LinCoh(C1, C2) yielding a set is
defined as follows:

(Def.21) For every set x holds x ∈ LinCoh(C1, C2) iff there exists a linear function
f from C1 into C2 such that x = LinTrace(f).

Next we state a number of propositions:

(54) Let C1, C2 be coherent spaces, and let f be a ⊆-monotone function
from C1 into C2, and let x1, x2 be sets. Suppose {x1, x2} ∈ C1. Let y1,
y2 be sets. If 〈〈x1, y1〉〉 ∈ LinTrace(f) and 〈〈x2, y2〉〉 ∈ LinTrace(f), then
{y1, y2} ∈ C2.

(55) Let C1, C2 be coherent spaces, and let f be a preserving binary
intersections function from C1 into C2, and let x1, x2 be sets. If
{x1, x2} ∈ C1, then for every set y such that 〈〈x1, y〉〉 ∈ LinTrace(f) and
〈〈x2, y〉〉 ∈ LinTrace(f) holds x1 = x2.

(56) For all coherent spaces C1, C2 and for all linear functions f , g from C1

into C2 such that LinTrace(f) = LinTrace(g) holds f = g.

(57) Let C1, C2 be coherent spaces and let X be a subset of [:
⋃
C1,

⋃
C2 :].

Suppose that

(i) for all sets a, b such that {a, b} ∈ C1 and for all sets y1, y2 such that
〈〈a, y1〉〉 ∈ X and 〈〈b, y2〉〉 ∈ X holds {y1, y2} ∈ C2, and

(ii) for all sets a, b such that {a, b} ∈ C1 and for every set y such that 〈〈a,
y〉〉 ∈ X and 〈〈b, y〉〉 ∈ X holds a = b.

Then there exists a linear function f from C1 into C2 such that X =
LinTrace(f).

(58) Let C1, C2 be coherent spaces, and let f be a linear function from C1

into C2, and let a be an element of C1. Then f(a) = (LinTrace(f))◦a.

(59) For all coherent spaces C1, C2 there exists a linear function f from C1

into C2 such that LinTrace(f) = ∅.
(60) Let C1, C2 be coherent spaces, and let x be a set, and let y be a set.

Suppose x ∈ ⋃C1 and y ∈ ⋃C2. Then there exists a linear function f
from C1 into C2 such that LinTrace(f) = {〈〈x, y〉〉}.

(61) Let C1, C2 be coherent spaces, and let x be a set, and let y be a set.
Suppose x ∈ ⋃C1 and y ∈ ⋃C2. Let f be a linear function from C1 into
C2. Suppose LinTrace(f) = {〈〈x, y〉〉}. Let a be an element of C1. Then if
x ∈ a, then f(a) = {y} and if x /∈ a, then f(a) = ∅.

(62) Let C1, C2 be coherent spaces, and let f be a linear function from C1

into C2, and let X be a subset of LinTrace(f). Then there exists a linear
function g from C1 into C2 such that LinTrace(g) = X.

(63) Let C1, C2 be coherent spaces and let A be a set. Suppose that for
all sets x, y such that x ∈ A and y ∈ A there exists a linear function f
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from C1 into C2 such that x∪y = LinTrace(f). Then there exists a linear
function f from C1 into C2 such that

⋃
A = LinTrace(f).

Let C1, C2 be coherent spaces. One can check that LinCoh(C1, C2) is non
empty down-closed and binary complete.

One can prove the following propositions:

(64) For all coherent spaces C1, C2 holds
⋃

LinCoh(C1, C2) = [:
⋃
C1,

⋃
C2 :].

(65) Let C1, C2 be coherent spaces, and let x1, x2 be sets, and let y1, y2 be
sets. Then 〈〈〈〈x1, y1〉〉, 〈〈x2, y2〉〉〉〉 ∈Web(LinCoh(C1, C2)) if and only if the
following conditions are satisfied:

(i) x1 ∈
⋃
C1,

(ii) x2 ∈
⋃
C1, and

(iii) 〈〈x1, x2〉〉 /∈ Web(C1) and y1 ∈
⋃
C2 and y2 ∈

⋃
C2 or 〈〈y1, y2〉〉 ∈

Web(C2) and if y1 = y2, then x1 = x2.

6. Negation of Coherence Spaces

Let C be a coherent space. The functor ¬C yielding a set is defined by:

(Def.22) ¬C = {a : a ranges over subsets of
⋃
C,
∧
b : element of C

∨
x : set a ∩ b ⊆

{x}}.
One can prove the following proposition

(66) Let C be a coherent space and let x be a set. Then x ∈ ¬C if and only
if the following conditions are satisfied:

(i) x ⊆ ⋃C, and

(ii) for every element a of C there exists a set z such that x ∩ a ⊆ {z}.
Let C be a coherent space. Observe that ¬C is non empty down-closed and

binary complete.

Next we state several propositions:

(67) For every coherent space C holds
⋃¬C =

⋃
C.

(68) For every coherent space C and for all sets x, y such that x 6= y and
{x, y} ∈ C holds {x, y} /∈ ¬C.

(69) For every coherent space C and for all sets x, y such that {x, y} ⊆ ⋃C
and {x, y} /∈ C holds {x, y} ∈ ¬C.

(70) For every coherent space C and for all sets x, y holds 〈〈x, y〉〉 ∈Web(¬C)
iff x ∈ ⋃C but y ∈ ⋃C but x = y or 〈〈x, y〉〉 /∈Web(C).

(71) For every coherent space C holds ¬¬C = C.

(72) ¬{∅} = {∅}.
(73) For every set X holds ¬FlatCoh(X) = 2X and ¬(2X) = FlatCoh(X).



continuous, stable, and linear maps of . . . 391

7. Product and Coproduct on Coherence Spaces

Let x, y be sets. The functor x ] y yielding a set is defined by:

(Def.23) x ] y =
⋃

disjoint〈x, y〉.
We now state a number of propositions:

(74) For all sets x, y holds x ] y = [:x, {1} :] ∪ [: y, {2} :].

(75) For every set x holds x ] ∅ = [:x, {1} :] and ∅ ] x = [: x, {2} :].

(76) For all sets x, y, z such that z ∈ x ] y holds z = 〈〈z1, z2〉〉 but z2 = 1
and z1 ∈ x or z2 = 2 and z1 ∈ y.

(77) For all sets x, y, z holds 〈〈z, 1〉〉 ∈ x ] y iff z ∈ x.
(78) For all sets x, y, z holds 〈〈z, 2〉〉 ∈ x ] y iff z ∈ y.
(79) For all sets x1, y1, x2, y2 holds x1]y1 ⊆ x2]y2 iff x1 ⊆ x2 and y1 ⊆ y2.

(80) For all sets x, y, z such that z ⊆ x ] y there exist sets x1, y1 such that
z = x1 ] y1 and x1 ⊆ x and y1 ⊆ y.

(81) For all sets x1, y1, x2, y2 holds x1]y1 = x2]y2 iff x1 = x2 and y1 = y2.

(82) For all sets x1, y1, x2, y2 holds (x1 ] y1)∪ (x2 ] y2) = x1 ∪ x2 ] y1 ∪ y2.

(83) For all sets x1, y1, x2, y2 holds (x1 ] y1)∩ (x2 ] y2) = x1 ∩ x2 ] y1 ∩ y2.

Let C1, C2 be coherent spaces. The functor C1uC2 yields a set and is defined
by:

(Def.24) C1 uC2 = {a ] b : a ranges over elements of C1, b ranges over elements
of C2}.

The functor C1 t C2 yielding a set is defined as follows:

(Def.25) C1 tC2 = {a] ∅ : a ranges over elements of C1} ∪ {∅ ] b : b ranges over
elements of C2}.

The following propositions are true:

(84) Let C1, C2 be coherent spaces and let x be a set. Then x ∈ C1 u C2 if
and only if there exists an element a of C1 and there exists an element b
of C2 such that x = a ] b.

(85) For all coherent spaces C1, C2 and for all sets x, y holds x]y ∈ C1uC2

iff x ∈ C1 and y ∈ C2.

(86) For all coherent spaces C1, C2 holds
⋃

(C1 u C2) =
⋃
C1 ]

⋃
C2.

(87) For all coherent spaces C1, C2 and for all sets x, y holds x]y ∈ C1tC2

iff x ∈ C1 and y = ∅ or x = ∅ and y ∈ C2.

(88) Let C1, C2 be coherent spaces and let x be a set. Suppose x ∈ C1 tC2.
Then there exists an element a of C1 and there exists an element b of C2

such that x = a ] b but a = ∅ or b = ∅.
(89) For all coherent spaces C1, C2 holds

⋃
(C1 t C2) =

⋃
C1 ]

⋃
C2.

Let C1, C2 be coherent spaces. Observe that C1 u C2 is non empty down-
closed and binary complete and C1 t C2 is non empty down-closed and binary
complete.
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In the sequel C1, C2 will be coherent spaces.
We now state several propositions:

(90) For all sets x, y holds 〈〈〈〈x, 1〉〉, 〈〈y, 1〉〉〉〉 ∈ Web(C1 u C2) iff 〈〈x, y〉〉 ∈
Web(C1).

(91) For all sets x, y holds 〈〈〈〈x, 2〉〉, 〈〈y, 2〉〉〉〉 ∈ Web(C1 u C2) iff 〈〈x, y〉〉 ∈
Web(C2).

(92) For all sets x, y such that x ∈ ⋃C1 and y ∈ ⋃C2 holds 〈〈〈〈x, 1〉〉, 〈〈y,
2〉〉〉〉 ∈Web(C1 u C2) and 〈〈〈〈y, 2〉〉, 〈〈x, 1〉〉〉〉 ∈Web(C1 u C2).

(93) For all sets x, y holds 〈〈〈〈x, 1〉〉, 〈〈y, 1〉〉〉〉 ∈ Web(C1 t C2) iff 〈〈x, y〉〉 ∈
Web(C1).

(94) For all sets x, y holds 〈〈〈〈x, 2〉〉, 〈〈y, 2〉〉〉〉 ∈ Web(C1 t C2) iff 〈〈x, y〉〉 ∈
Web(C2).

(95) For all sets x, y such that x ∈ ⋃C1 and y ∈ ⋃C2 holds 〈〈〈〈x, 1〉〉, 〈〈y,
2〉〉〉〉 /∈Web(C1 t C2) and 〈〈〈〈y, 2〉〉, 〈〈x, 1〉〉〉〉 /∈Web(C1 t C2).

(96) ¬(C1 u C2) = ¬C1 t ¬C2.

Let C1, C2 be coherent spaces. The functor C1⊗C2 yielding a set is defined
as follows:

(Def.26) C1 ⊗ C2 =
⋃{2[: a, b :] : a ranges over elements of C1, b ranges over

elements of C2}.
We now state the proposition

(97) Let C1, C2 be coherent spaces and let x be a set. Then x ∈ C1 ⊗ C2 if
and only if there exists an element a of C1 and there exists an element b
of C2 such that x ⊆ [: a, b :].

Let C1, C2 be coherent spaces. One can check that C1 ⊗ C2 is non empty.
Next we state the proposition

(98) For all coherent spaces C1, C2 and for every element a of C1⊗C2 holds
π1(a) ∈ C1 and π2(a) ∈ C2 and a ⊆ [: π1(a), π2(a) :].

Let C1, C2 be coherent spaces. One can check that C1 ⊗ C2 is down-closed
and binary complete.

Next we state two propositions:

(99) For all coherent spaces C1, C2 holds
⋃

(C1 ⊗ C2) = [:
⋃
C1,

⋃
C2 :].

(100) For all sets x1, y1, x2, y2 holds 〈〈〈〈x1, x2〉〉, 〈〈y1, y2〉〉〉〉 ∈Web(C1 ⊗ C2) iff
〈〈x1, y1〉〉 ∈Web(C1) and 〈〈x2, y2〉〉 ∈Web(C2).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics,

1(3):537–541, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[4] Grzegorz Bancerek. Indexed category. Formalized Mathematics, 5(3):329–337, 1996.
[5] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.



continuous, stable, and linear maps of . . . 393

[6] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.
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[8] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.
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The notation and terminology used here are introduced in the following papers:
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1. Preliminaries

For simplicity we follow a convention: i will be arbitrary, I will be a set, f
will be a function, x, x1, x2, y, A, B, X, Y , Z will be many sorted sets indexed
by I, J will be a non empty set, and N1 will be a many sorted set indexed by
J .

We now state three propositions:

(1) For every set X and for every many sorted set M indexed by I such
that i ∈ I holds dom(M+·(i7−→. X)) = I.

(2) If f = ∅, then f is a many sorted set indexed by ∅.
(3) If I is non empty, then there exists no X which is empty yielding and

non-empty.

2. Singelton and unordered pairs

Let us consider I, A. The functor {A} yielding a many sorted set indexed
by I is defined as follows:

(Def.1) For every i such that i ∈ I holds {A}(i) = {A(i)}.
Let us consider I, A. Observe that {A} is non-empty and locally-finite.
Let us consider I, A, B. The functor {A,B} yields a many sorted set indexed

by I and is defined as follows:
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(Def.2) For every i such that i ∈ I holds {A,B}(i) = {A(i), B(i)}.
Let us consider I, A, B. One can verify that {A,B} is non-empty and

locally-finite.
We now state a number of propositions:

(4) X = {y} iff for every x holds x ∈ X iff x = y.

(5) If for every x holds x ∈ X iff x = x1 or x = x2, then X = {x1, x2}.
(6) If X = {x1, x2}, then for every x such that x = x1 or x = x2 holds

x ∈ X.
(7) {N1} 6= ∅I .
(8) If x ∈ {A}, then x = A.

(9) x ∈ {x}.
(10) If x = A or x = B, then x ∈ {A,B}.
(11) {A} ∪ {B} = {A,B}.
(12) {x, x} = {x}.
(13) {A,B} = {B,A}.
(14) If {A} ⊆ {B}, then A = B.

(15) If {x} = {y}, then x = y.

(16) If {x} = {A,B}, then x = A and x = B.

(17) If {x} = {A,B}, then A = B.

(18) {x} ⊆ {x, y} and {y} ⊆ {x, y}.
(19) If {x} ∪ {y} = {x} or {x} ∪ {y} = {y}, then x = y.

(20) {x} ∪ {x, y} = {x, y}.
(21) {y} ∪ {x, y} = {x, y}.
(22) If I is non empty and {x} ∩ {y} = ∅I , then x 6= y.

(23) If {x} ∩ {y} = {x} or {x} ∩ {y} = {y}, then x = y.

(24) {x} ∩ {x, y} = {x} and {y} ∩ {x, y} = {y}.
(25) If I is non empty and {x} \ {y} = {x}, then x 6= y.

(26) If {x} \ {y} = ∅I , then x = y.

(27) {x} \ {x, y} = ∅I and {y} \ {x, y} = ∅I .
(28) If {x} ⊆ {y}, then {x} = {y}.
(29) If {x, y} ⊆ {A}, then x = A and y = A.

(30) If {x, y} ⊆ {A}, then {x, y} = {A}.
(31) 2{x} = {∅I , {x}}.
(32) {A} ⊆ 2A.

(33)
⋃{x} = x.

(34)
⋃{{x}, {y}} = {x, y}.

(35)
⋃{A,B} = A ∪B.

(36) {x} ⊆ X iff x ∈ X.
(37) {x1, x2} ⊆ X iff x1 ∈ X and x2 ∈ X.
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(38) If A = ∅I or A = {x1} or A = {x2} or A = {x1, x2}, then A ⊆ {x1, x2}.

3. Sum of unordered pairs (or a singelton) and a set

One can prove the following propositions:

(39) If x ∈ A or x = B, then x ∈ A ∪ {B}.
(40) A ∪ {x} ⊆ B iff x ∈ B and A ⊆ B.
(41) If {x} ∪X = X, then x ∈ X.
(42) If x ∈ X, then {x} ∪X = X.

(43) {x, y} ∪A = A iff x ∈ A and y ∈ A.
(44) If I is non empty, then {x} ∪X 6= ∅I .
(45) If I is non empty, then {x, y} ∪X 6= ∅I .

4. Intersection of unordered pairs (or a singelton) and a set

We now state several propositions:

(46) If X ∩ {x} = {x}, then x ∈ X.
(47) If x ∈ X, then X ∩ {x} = {x}.
(48) x ∈ X and y ∈ X iff {x, y} ∩X = {x, y}.
(49) If I is non empty and {x} ∩X = ∅I , then x /∈ X.
(50) If I is non empty and {x, y} ∩X = ∅I , then x /∈ X and y /∈ X.

5. Difference of unordered pairs (or a singelton) and a set

The following propositions are true:

(51) If y ∈ X \ {x}, then y ∈ X.
(52) If I is non empty and y ∈ X \ {x}, then y 6= x.

(53) If I is non empty and X \ {x} = X, then x /∈ X.
(54) If I is non empty and {x} \X = {x}, then x /∈ X.
(55) {x} \X = ∅I iff x ∈ X.
(56) If I is non empty and {x, y} \X = {x}, then x /∈ X.
(57) If I is non empty and {x, y} \X = {y}, then y /∈ X.
(58) If I is non empty and {x, y} \X = {x, y}, then x /∈ X and y /∈ X.
(59) {x, y} \X = ∅I iff x ∈ X and y ∈ X.
(60) If X = ∅I or X = {x} or X = {y} or X = {x, y}, then X \ {x, y} = ∅I .
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6. Cartesian product

One can prove the following propositions:

(61) If X = ∅I or Y = ∅I , then [[X,Y ]] = ∅I .
(62) If X is non-empty and Y is non-empty and [[X,Y ]] = [[Y,X]], then

X = Y.

(63) If [[X,X]] = [[Y, Y ]], then X = Y.

(64) If Z is non-empty and if [[X,Z]] ⊆ [[Y,Z]] or [[Z,X]] ⊆ [[Z, Y ]], then
X ⊆ Y.

(65) If X ⊆ Y, then [[X,Z]] ⊆ [[Y,Z]] and [[Z,X]] ⊆ [[Z, Y ]].

(66) If x1 ⊆ A and x2 ⊆ B, then [[x1, x2]] ⊆ [[A,B]].

(67) [[X ∪ Y,Z]] = [[X,Z]] ∪ [[Y,Z]] and [[Z,X ∪ Y ]] = [[Z,X]] ∪ [[Z, Y ]].

(68) [[x1 ∪ x2, A ∪B]] = [[x1, A]] ∪ [[x1, B]] ∪ [[x2, A]] ∪ [[x2, B]].

(69) [[X ∩ Y,Z]] = [[X,Z]] ∩ [[Y,Z]] and [[Z,X ∩ Y ]] = [[Z,X]] ∩ [[Z, Y ]].

(70) [[x1 ∩ x2, A ∩B]] = [[x1, A]] ∩ [[x2, B]].

(71) If A ⊆ X and B ⊆ Y, then [[A, Y ]] ∩ [[X,B]] = [[A,B]].

(72) [[X \ Y,Z]] = [[X,Z]] \ [[Y,Z]] and [[Z,X \ Y ]] = [[Z,X]] \ [[Z, Y ]].

(73) [[x1, x2]] \ [[A,B]] = [[x1 \ A, x2]] ∪ [[x1, x2 \ B]].

(74) If x1 ∩ x2 = ∅I or A ∩B = ∅I , then [[x1, A]] ∩ [[x2, B]] = ∅I .
(75) If X is non-empty, then [[{x}, X]] is non-empty and [[X, {x}]] is non-

empty.

(76) [[{x, y}, X]] = [[{x}, X]]∪ [[{y}, X]] and [[X, {x, y}]] = [[X, {x}]]∪ [[X, {y}]].
(77) If x1 is non-empty and A is non-empty and [[x1, A]] = [[x2, B]], then

x1 = x2 and A = B.

(78) If X ⊆ [[X,Y ]] or X ⊆ [[Y,X]], then X = ∅I .
(79) If A ∈ [[x, y]] and A ∈ [[X,Y ]], then A ∈ [[x ∩X, y ∩ Y ]].

(80) If [[x,X]] ⊆ [[y, Y ]] and [[x,X]] is non-empty, then x ⊆ y and X ⊆ Y.
(81) If A ⊆ X, then [[A,A]] ⊆ [[X,X]].

(82) If X ∩ Y = ∅I , then [[X,Y ]] ∩ [[Y,X]] = ∅I .
(83) If A is non-empty and if [[A,B]] ⊆ [[X,Y ]] or [[B,A]] ⊆ [[Y,X]], then

B ⊆ Y.
(84) If x ⊆ [[A,B]] and y ⊆ [[X,Y ]], then x ∪ y ⊆ [[A ∪X,B ∪ Y ]].
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Summary. This paper is based on previous works [1], [3] in which
the operation replacement of subtree in a tree has been defined. We
extend this notion for arbitrary non empty antichain.

MML Identifier: TREES A.

The notation and terminology used in this paper are introduced in the following
papers: [8], [9], [6], [10], [5], [7], [4], [1], [3], and [2].

We follow the rules: T , T1 will denote trees, P will denote an antichain of
prefixes of T , and p, q, r will denote finite sequences of elements of  .

We now state the proposition

(1) For all finite sequences p, q, r, s such that p � q = s � r holds p and s
are comparable.

Let us consider T , T1 and let us consider P . Let us assume that P 6= ∅. The
functor T (P/T1) yields a tree and is defined as follows:

(Def.1) q ∈ T (P/T1) iff q ∈ T and for every p such that p ∈ P holds p � q or
there exist p, r such that p ∈ P and r ∈ T1 and q = p � r.

One can prove the following propositions:

(2) Suppose P 6= ∅. Then T (P/T1) = {t1 : t1 ranges over elements of T ,∧
p p ∈ P ⇒ p � t1}∪ {p � s : p ranges over elements of T , s ranges over

elements of T1, p ∈ P}.
(3) {t1 : t1 ranges over elements of T ,

∧
p p ∈ P ⇒ p � t1} ⊆ {t1 : t1

ranges over elements of T ,
∧
p p ∈ P ⇒ p � t1}.

(4) P ⊆ {t1 : t1 ranges over elements of T ,
∧
p p ∈ P ⇒ p � t1}.

(5) {t1 : t1 ranges over elements of T ,
∧
p p ∈ P ⇒ p � t1}\{t1 : t1 ranges

over elements of T ,
∧
p p ∈ P ⇒ p � t1} = P.

(6) For all T , T1, P holds P ⊆ {p � s : p ranges over elements of T , s ranges
over elements of T1, p ∈ P}.
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(7) Suppose P 6= ∅. Then T (P/T1) = {t1 : t1 ranges over elements of T ,∧
p p ∈ P ⇒ p � t1} ∪ {p � s : p ranges over elements of T , s ranges over

elements of T1, p ∈ P}.
(8) If p ∈ P and q ∈ T1, then p � q ∈ T (P/T1).

(9) If p ∈ P, then T1 = T (P/T1)
�
p.

Let us consider T . Observe that there exists an antichain of prefixes of T
which is non empty.

Let us consider T and let t be an element of T . Then {t} is a non empty
antichain of prefixes of T .

In the sequel t will be an element of T .
We now state the proposition

(10) T ({t}/T1) = T (t/T1).

In the sequel T , T1 denote decorated trees, P denotes an antichain of prefixes
of domT, and t denotes an element of domT.

Let us consider T , P , T1. Let us assume that P 6= ∅. The functor T (P/T1)
yields a decorated tree and is defined by the conditions (Def.2).

(Def.2) (i) dom(T (P/T1)) = (domT )(P/dom T1), and
(ii) for every q such that q ∈ (domT )(P/dom T1) holds for every p such

that p ∈ P holds p � q and T (P/T1)(q) = T (q) or there exist p, r such
that p ∈ P and r ∈ domT1 and q = p � r and T (P/T1)(q) = T1(r).

We now state several propositions:

(11) If P 6= ∅, then dom(T (P/T1)) = (domT )(P/dom T1).

(12) If p ∈ domT, then dom(T (p/T1)) = (dom T )(p/domT1).

(13) Suppose P 6= ∅. Given q. Suppose q ∈ dom(T (P/T1)). Then for every
p such that p ∈ P holds p � q and T (P/T1)(q) = T (q) or there exist p, r
such that p ∈ P and r ∈ domT1 and q = p � r and T (P/T1)(q) = T1(r).

(14) Suppose p ∈ domT. Given q. Suppose q ∈ dom(T (p/T1)). Then p � q
and T (p/T1)(q) = T (q) or there exists r such that r ∈ domT1 and q = p � r
and T (p/T1)(q) = T1(r).

(15) Suppose P 6= ∅. Given q. Suppose q ∈ dom(T (P/T1)) and q ∈ {t1 : t1
ranges over elements of domT,

∧
p p ∈ P ⇒ p � t1}. Then T (P/T1)(q) =

T (q).

(16) If p ∈ domT, then for every q such that q ∈ dom(T (p/T1)) and q ∈ {t1 :
t1 ranges over elements of domT, p � t1} holds T (p/T1)(q) = T (q).

(17) Suppose P 6= ∅. Given q. Suppose q ∈ dom(T (P/T1)) and q ∈ {p � s : p
ranges over elements of domT, s ranges over elements of domT1, p ∈ P}.
Then there exists an element p′ of domT and there exists an element r of
domT1 such that q = p′ � r and p′ ∈ P and T (P/T1)(q) = T1(r).

(18) Suppose p ∈ domT. Given q. Suppose q ∈ dom(T (p/T1)) and q ∈
{p � s : s ranges over elements of domT1, s = s}. Then there exists an
element r of domT1 such that q = p � r and T (p/T1)(q) = T1(r).

(19) T ({t}/T1) = T (t/T1).
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In the sequel D will denote a non empty set, T , T1 will denote trees decorated
with elements of D, and P will denote an antichain of prefixes of domT.

Let us consider D, T , P , T1. Let us assume that P 6= ∅. The functor T (P/T1)
yields a tree decorated with elements of D and is defined by:

(Def.3) T (P/T1) = T (P/T1).
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Summary. The concept of characterizing of partial algebras by
many sorted signature is introduced, i.e. we say that a signature S char-
acterizes a partial algebra A if there is an S-algebra whose sorts form
a partition of the carrier of algebra A and operations are formed from
operations of A by the partition. The main result is that for any partial
algebra there is the minimal many sorted signature which characterizes
the algebra. The minimality means that there are signature endomor-
phisms from any signature which characterizes the algebra A onto the
minimal one.

MML Identifier: PUA2MSS1.

The papers [16], [18], [9], [1], [12], [19], [20], [6], [17], [3], [5], [7], [21], [13], [8],
[11], [2], [4], [15], [14], and [10] provide the notation and terminology for this
paper.

1. Preliminary

Let f be a non empty binary relation. Observe that dom f is non empty and
rng f is non empty.

Let f be a non-empty function. One can verify that rng f has non empty
elements.

Let X, Y be non empty sets. One can verify that there exists a partial
function from X to Y which is non empty.

Let X be a set with non empty elements. Note that every finite sequence of
elements of X is non-empty.

Let A be a non empty set. One can verify that there exists a finite sequence
of operational functions of A which is homogeneous quasi total non-empty and
non empty.
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Let us observe that every universal algebra structure which is non-empty is
also non empty.

Let X be a non empty set with non empty elements. One can verify that
every element of X is non empty.

Next we state two propositions:

(1) For all non-empty functions f , g such that
∏
f ⊆ ∏ g holds dom f =

dom g and for every set x such that x ∈ dom f holds f(x) ⊆ g(x).

(2) For all non-empty functions f , g such that
∏
f =

∏
g holds f = g.

Let A be a non empty set and let f be a finite sequence of operational
functions of A. Then rng f is a subset of A∗→̇A.

Let A, B be non empty sets and let S be a non empty subset of A→̇B. We
see that the element of S is a partial function from A to B.

Let A be a non-empty universal algebra structure. An operation symbol of A
is an element of dom (the characteristic of A). An operation of A is an element
of rng (the characteristic of A).

Let A be a non-empty universal algebra structure and let o be an operation
symbol of A. The functor Den(o,A) yielding an operation of A is defined by:

(Def.1) Den(o,A) = (the characteristic of A)(o).

2. Partitions

Let X be a set. Note that every partition of X has non empty elements.
Let X be a non empty set. One can verify that every partition of X is non

empty.
Let X be a set and let R be an equivalence relation of X. Then ClassesR is

a partition of X.
Next we state a number of propositions:

(3) Let X be a set, and let P be a partition of X, and let x, a, b be sets.
If x ∈ a and a ∈ P and x ∈ b and b ∈ P, then a = b.

(4) Let X, Y be sets. Suppose X is finer than Y . Let p be a finite sequence
of elements of X. Then there exists a finite sequence q of elements of Y
such that

∏
p ⊆ ∏ q.

(5) Let X be a set, and let P , Q be partitions of X, and let f be a function
from P into Q. Suppose that for every set a such that a ∈ P holds
a ⊆ f(a). Let p be a finite sequence of elements of P and let q be a finite
sequence of elements of Q. Then

∏
p ⊆ ∏ q if and only if f · p = q.

(6) For every set P and for every function f such that rng f ⊆ ⋃
P there

exists a function p such that dom p = dom f and rng p ⊆ P and f ∈ ∏ p.

(7) Let X be a set, and let P be a partition of X, and let f be a finite se-
quence of elements of X. Then there exists a finite sequence p of elements
of P such that f ∈ ∏ p.
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(8) Let X, Y be non empty sets, and let P be a partition of X, and let Q
be a partition of Y . Then {[: p, q :] : p ranges over elements of P , q ranges
over elements of Q} is a partition of [:X, Y :].

(9) For every non empty set X and for every partition P of X holds {∏ p : p
ranges over elements of P ∗} is a partition of X∗.

(10) Let X be a non empty set, and let n be a natural number, and let P be
a partition of X. Then {∏ p : p ranges over elements of P n} is a partition
of Xn.

(11) Let X be a non empty set and let Y be a set. Suppose Y ⊆ X. Let P
be a partition of X. Then {a ∩ Y : a ranges over elements of P , a meets
Y } is a partition of Y .

(12) Let f be a non empty function and let P be a partition of dom f. Then
{f �

a : a ranges over elements of P} is a partition of f .

Let X be a set. The functor SmallestPartition(X) yielding a partition of X
is defined as follows:

(Def.2) SmallestPartition(X) = Classes(4X).

One can prove the following propositions:

(13) For every non empty set X holds SmallestPartition(X) = {{x} : x
ranges over elements of X}.

(14) Let X be a set and let p be a finite sequence of elements of
SmallestPartition(X). Then there exists a finite sequence q of elements
of X such that

∏
p = {q}.

Let X be a set. A function is said to be an indexed partition of X if:

(Def.3) rng it is a partition of X and it is one-to-one.

Let X be a set. Note that every indexed partition of X is one-to-one and
non-empty. Let P be an indexed partition of X. Then rngP is a partition of
X.

Let X be a non empty set. Observe that every indexed partition of X is non
empty.

Let X be a set and let P be a partition of X. Then 4P is an indexed
partition of X.

Let X be a set, let P be an indexed partition of X, and let x be a set. Let
us assume that x ∈ X. The P -index of x is a set and is defined by:

(Def.4) The P -index of x ∈ domP and x ∈ P (the P -index of x).

Next we state two propositions:

(15) Let X be a set and let P be a non-empty function. Suppose
⋃
P = X

and for all sets x, y such that x ∈ domP and y ∈ domP and x 6= y holds
P (x) misses P (y). Then P is an indexed partition of X.

(16) Let X, Y be non empty sets, and let P be a partition of Y , and let f
be a function from X into P . If P ⊆ rng f and f is one-to-one, then f is
an indexed partition of Y .
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3. Relations Generated by Operations of Partial Algebra

In this article we present several logical schemes. The scheme RelationEx
concerns non empty sets A, B and a binary predicate P, and states that:

There exists a relation R between A and B such that for every
element x of A and for every element y of B holds 〈〈x, y〉〉 ∈ R if and
only if P[x, y]

for all values of the parameters.
The scheme IndRelationEx concerns non empty sets A, B, a natural number

C, a relation D between A and B, and a binary functor F yielding a relation
between A and B, and states that:

There exists a relation R between A and B and there exists a many
sorted set F indexed by  such that
(i) R = F (C),
(ii) F (0) = D, and
(iii) for every natural number i and for every relation R between
A and B such that R = F (i) holds F (i+ 1) = F(R, i)

for all values of the parameters.
The scheme RelationUniq concerns non empty sets A, B and a binary pred-

icate P, and states that:
Let R1, R2 be relations between A and B. Suppose that
(i) for every element x of A and for every element y of B holds
〈〈x, y〉〉 ∈ R1 iff P[x, y], and
(ii) for every element x of A and for every element y of B holds
〈〈x, y〉〉 ∈ R2 iff P[x, y].

Then R1 = R2

for all values of the parameters.
The scheme IndRelationUniq concerns non empty setsA, B, a natural number

C, a relation D between A and B, and a binary functor F yielding a relation
between A and B, and states that:

Let R1, R2 be relations between A and B. Suppose that
(i) there exists a many sorted set F indexed by  such that
R1 = F (C) and F (0) = D and for every natural number i and
for every relation R between A and B such that R = F (i) holds
F (i+ 1) = F(R, i), and
(ii) there exists a many sorted set F indexed by  such that
R2 = F (C) and F (0) = D and for every natural number i and
for every relation R between A and B such that R = F (i) holds
F (i+ 1) = F(R, i).

Then R1 = R2

for all values of the parameters.
Let A be a partial non-empty universal algebra structure. The functor

DomRel(A) yields a binary relation on the carrier of A and is defined by the
condition (Def.5).
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(Def.5) Let x, y be elements of the carrier of A. Then 〈〈x, y〉〉 ∈ DomRel(A)
if and only if for every operation f of A and for all finite sequences p, q
holds p � 〈x〉 � q ∈ dom f iff p � 〈y〉 � q ∈ dom f.

Let A be a partial non-empty universal algebra structure. Note that
DomRel(A) is equivalence relation-like.

Let A be a non-empty partial universal algebra structure and let R be a
binary relation on the carrier of A. The functor RA yielding a binary relation
on the carrier of A is defined by the condition (Def.6).

(Def.6) Let x, y be elements of the carrier of A. Then 〈〈x, y〉〉 ∈ RA if and only
if the following conditions are satisfied:

(i) 〈〈x, y〉〉 ∈ R, and

(ii) for every operation f of A and for all finite sequences p, q such that
p � 〈x〉 � q ∈ dom f and p � 〈y〉 � q ∈ dom f holds 〈〈f(p � 〈x〉 � q), f(p � 〈y〉 � q)〉〉 ∈
R.

Let A be a non-empty partial universal algebra structure, let R be a binary
relation on the carrier of A, and let i be a natural number. The functor RA,i

yielding a binary relation on the carrier of A is defined by the condition (Def.7).

(Def.7) There exists a many sorted set F indexed by  such that

(i) RA,i = F (i),

(ii) F (0) = R, and

(iii) for every natural number i and for every binary relation R on the
carrier of A such that R = F (i) holds F (i+ 1) = RA.

Next we state several propositions:

(17) Let A be a non-empty partial universal algebra structure and let R be
a binary relation on the carrier of A. Then RA,0 = R and RA,1 = RA.

(18) Let A be a non-empty partial universal algebra structure, and let i be a
natural number, and let R be a binary relation on the carrier of A. Then
RA,i+1 = (RA,i)A.

(19) Let A be a non-empty partial universal algebra structure, and let i, j
be natural numbers, and let R be a binary relation on the carrier of A.
Then RA,i+j = (RA,i)A,j.

(20) Let A be a non-empty partial universal algebra structure and let R be
an equivalence relation of the carrier of A. If R ⊆ DomRel(A), then RA

is equivalence relation-like.

(21) Let A be a non-empty partial universal algebra structure and let R be
a binary relation on the carrier of A. Then RA ⊆ R.

(22) Let A be a non-empty partial universal algebra structure and let R be
an equivalence relation of the carrier of A. Suppose R ⊆ DomRel(A). Let
i be a natural number. Then RA,i is equivalence relation-like.

Let A be a non-empty partial universal algebra structure. The functor
LimDomRel(A) yields a binary relation on the carrier of A and is defined by the
condition (Def.8).
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(Def.8) Let x, y be elements of the carrier of A. Then 〈〈x, y〉〉 ∈ LimDomRel(A)
if and only if for every natural number i holds 〈〈x, y〉〉 ∈ (DomRel(A))A,i.

The following proposition is true

(23) For every non-empty partial universal algebra structure A holds
LimDomRel(A) ⊆ DomRel(A).

Let A be a non-empty partial universal algebra structure. Note that
LimDomRel(A) is equivalence relation-like.

4. Partitability

Let X be a non empty set, let f be a partial function from X ∗ to X, and let
P be a partition of X. We say that f is partitable w.r.t. P if and only if:

(Def.9) For every finite sequence p of elements of P there exists an element a
of P such that f ◦

∏
p ⊆ a.

Let X be a non empty set, let f be a partial function from X ∗ to X, and let
P be a partition of X. We say that f is exactly partitable w.r.t. P if and only
if:

(Def.10) f is partitable w.r.t. P and for every finite sequence p of elements of P
such that

∏
p meets dom f holds

∏
p ⊆ dom f.

We now state the proposition

(24) Let A be a non-empty partial universal algebra structure. Then every
operation of A is exactly partitable w.r.t. SmallestPartition(the carrier
of A).

The scheme FiniteTransitivity concerns finite sequences A, B, a unary pred-
icate P, and a binary predicate Q, and states that:

P[B]
provided the following conditions are met:
• P[A],
• lenA = lenB,
• For all finite sequences p, q and for all sets z1, z2 such that P[p �
〈z1〉 � q] and Q[z1, z2] holds P[p � 〈z2〉 � q],

• For every natural number i such that i ∈ domA holdsQ[A(i),B(i)].
One can prove the following proposition

(25) For every non-empty partial universal algebra structure A holds every
operation of A is exactly partitable w.r.t. Classes LimDomRel(A).

Let A be a partial non-empty universal algebra structure. A partition of the
carrier of A is said to be a partition of A if:

(Def.11) Every operation of A is exactly partitable w.r.t. it.

Let A be a partial non-empty universal algebra structure. An indexed par-
tition of the carrier of A is called an indexed partition of A if:

(Def.12) rng it is a partition of A.
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Let A be a partial non-empty universal algebra structure and let P be an
indexed partition of A. Then rngP is a partition of A.

One can prove the following propositions:

(26) For every non-empty partial universal algebra structure A holds
Classes LimDomRel(A) is a partition of A.

(27) Let X be a non empty set, and let P be a partition of X, and let p be
a finite sequence of elements of P , and let q1, q2 be finite sequences, and
let x, y be sets. Suppose q1 � 〈x〉 � q2 ∈

∏
p and there exists an element

a of P such that x ∈ a and y ∈ a. Then q1 � 〈y〉 � q2 ∈
∏
p.

(28) For every partial non-empty universal algebra structure A holds every
partition of A is finer than Classes LimDomRel(A).

5. Signature Morphisms

Let S1, S2 be many sorted signatures and let f , g be functions. We say that
f and g form morphism between S1 and S2 if and only if the conditions (Def.13)
are satisfied.

(Def.13) (i) dom f = the carrier of S1,
(ii) dom g = the operation symbols of S1,

(iii) rng f ⊆ the carrier of S2,
(iv) rng g ⊆ the operation symbols of S2,
(v) f · (the result sort of S1) = (the result sort of S2) · (g), and
(vi) for every set o and for every function p such that o ∈ the operation

symbols of S1 and p = (the arity of S1)(o) holds f · p = (the arity of
S2)(g(o)).

Next we state two propositions:

(29) Let S be a non void non empty many sorted signature. Then
id(the carrier of S) and id(the operation symbols of S) form morphism between S
and S.

(30) Let S1, S2, S3 be many sorted signatures and let f1, f2, g1, g2 be
functions. Suppose f1 and g1 form morphism between S1 and S2 and f2

and g2 form morphism between S2 and S3. Then f2 · f1 and g2 · g1 form
morphism between S1 and S3.

Let S1, S2 be many sorted signatures. We say that S1 is rougher than S2 if
and only if the condition (Def.14) is satisfied.

(Def.14) There exist functions f , g such that f and g form morphism between S2

and S1 and rng f = the carrier of S1 and rng g = the operation symbols
of S1.

Let S1, S2 be non void non empty many sorted signatures. Let us observe
that the predicate defined above is reflexive.

One can prove the following proposition
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(31) For all many sorted signatures S1, S2, S3 such that S1 is rougher than
S2 and S2 is rougher than S3 holds S1 is rougher than S3.

6. Many Sorted Signature of Partial Algebra

Let A be a partial non-empty universal algebra structure and let P be a
partition of A. The functor MSSign(A,P ) yields a strict many sorted signature
and is defined by the conditions (Def.15).

(Def.15) (i) The carrier of MSSign(A,P ) = P,
(ii) the operation symbols of MSSign(A,P ) = {〈〈o, p〉〉 : o ranges over

operation symbols of A, p ranges over elements of P ∗,
∏
p meets

dom Den(o,A)}, and
(iii) for every operation symbol o of A and for every element p of P ∗ such

that
∏
p meets dom Den(o,A) holds (the arity of MSSign(A,P ))(〈〈o, p〉〉) =

p and (Den(o,A))◦
∏
p ⊆ (the result sort of MSSign(A,P ))(〈〈o, p〉〉).

Let A be a partial non-empty universal algebra structure and let P be a
partition of A. One can verify that MSSign(A,P ) is non empty and non void.

Let A be a partial non-empty universal algebra structure, let P be a partition
of A, and let o be an operation symbol of MSSign(A,P ). Then o1 is an operation
symbol of A. Then o2 is an element of P ∗.

Let A be a partial non-empty universal algebra structure, let S be a non
void non empty many sorted signature, let G be an algebra over S, and let P
be an indexed partition of the operation symbols of S. We say that A can be
characterized by S, G, and P if and only if the conditions (Def.16) are satisfied.

(Def.16) (i) The sorts of G is an indexed partition of A,
(ii) domP = dom (the characteristic of A), and
(iii) for every operation symbol o of A holds (the characteristics of G)

�
P (o)

is an indexed partition of Den(o,A).

Let A be a partial non-empty universal algebra structure and let S be a non
void non empty many sorted signature. We say that A can be characterized by
S if and only if the condition (Def.17) is satisfied.

(Def.17) There exists an algebra G over S and there exists an indexed partition
P of the operation symbols of S such that A can be characterized by S,
G, and P .

One can prove the following propositions:

(32) Let A be a partial non-empty universal algebra structure and let P be
a partition of A. Then A can be characterized by MSSign(A,P ).

(33) Let A be a partial non-empty universal algebra structure, and let S be
a non void non empty many sorted signature, and let G be an algebra
over S, and let Q be an indexed partition of the operation symbols of S.
Suppose A can be characterized by S, G, and Q. Let o be an operation
symbol of A and let r be a finite sequence of elements of rng (the sorts of
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G). Suppose
∏
r ⊆ dom Den(o,A). Then there exists an operation symbol

s of S such that (the sorts of G) ·Arity(s) = r and s ∈ Q(o).

(34) Let A be a partial non-empty universal algebra structure and let P be
a partition of A. Suppose P = Classes LimDomRel(A). Let S be a non
void non empty many sorted signature. If A can be characterized by S,
then MSSign(A,P ) is rougher than S.
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1. Preliminaries

The following propositions are true:

(1) For all real numbers x, y, z such that x ≤ y and y < z holds x < z.

(2) For all natural numbers m, k holds m+ 1 ≤ k iff m < k.

(3) For every finite sequence r holds r = r
�
Seg len r.

(4) For every natural number n and for every finite sequence r there exists
a finite sequence q such that q = r

�
Seg n and q � r.

(5) For all finite sequences p, q, r such that q � r holds p � q � p � r.
(6) Let D be a non empty set, and let r be a finite sequence of elements

of D, and let r1, r2 be finite sequences, and let k be a natural number.
Suppose k + 1 ≤ len r and r1 = r

�
Seg(k + 1) and r2 = r

�
Seg k. Then

there exists an element x of D such that r1 = r2 � 〈x〉.
(7) Let D be a non empty set, and let r be a finite sequence of elements of

D, and let r1 be a finite sequence. If 1 ≤ len r and r1 = r
�
Seg 1, then

there exists an element x of D such that r1 = 〈x〉.
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Let D be a non empty set and let T be a tree decorated with elements of D.
Observe that every element of domT is function-like and relation-like.

Let D be a non empty set and let T be a tree decorated with elements of D.
One can verify that every element of domT is finite sequence-like.

Let D be a non empty set. One can check that there exists a tree decorated
with elements of D which is finite.

In the sequel T will be a decorated tree and p will be a finite sequence of
elements of  .

Next we state the proposition

(8) If p ∈ domT, then T (p) = (T
�
p)(ε).

In the sequel T is a finite-branching decorated tree, t is an element of domT,
x is a finite sequence, and n is a natural number.

The following propositions are true:

(9) succ(T, t) = T · Succ t.

(10) dom(T · Succ t) = dom Succ t.

(11) dom succ(T, t) = dom Succ t.

(12) t � 〈n〉 ∈ domT iff n+ 1 ∈ dom Succ t.

(13) For all T , x, n such that x � 〈n〉 ∈ domT holds T (x � 〈n〉) =
(succ(T, x))(n+ 1).

In the sequel x, x′ will be elements of domT and y′ will be arbitrary.
One can prove the following two propositions:

(14) If x′ ∈ succx, then T (x′) ∈ rng succ(T, x).

(15) If y′ ∈ rng succ(T, x), then there exists x′ such that y′ = T (x′) and
x′ ∈ succx.

In the sequel n, k, m will denote natural numbers.
The scheme ExDecTrees deals with a non empty set A, an element B of A,

and a unary functor F yielding a finite sequence of elements of A, and states
that:

There exists a finite-branching tree T decorated with elements of A
such that T (ε) = B and for every element t of domT and for every
element w of A such that w = T (t) holds succ(T, t) = F(w)

for all values of the parameters.
The following propositions are true:

(16) For every tree T and for every element t of T holds Seg�(t) is a finite
chain of T .

(17) For every tree T holds T -level(0) = {ε}.
(18) For every tree T holds T -level(n + 1) =

⋃{succw : w ranges over ele-
ments of T , lenw = n}.

(19) For every finite-branching tree T and for every natural number n holds
T -level(n) is finite.

(20) For every finite-branching tree T holds T is finite iff there exists a
natural number n such that T -level(n) = ∅.
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(21) For every finite-branching tree T such that T is not finite holds there
exists chain of T which is not finite.

(22) For every finite-branching tree T such that T is not finite holds there
exists branch of T which is not finite.

(23) Let T be a tree, and let C be a chain of T , and let t be an element of
T . If t ∈ C and C is not finite, then there exists an element t′ of T such
that t′ ∈ C and t ≺ t′.

(24) Let T be a tree, and let B be a branch of T , and let t be an element of
T . Suppose t ∈ B and B is not finite. Then there exists an element t′ of
T such that t′ ∈ B and t′ ∈ succ t.

(25) Let f be a function from  into  . Suppose that for every n holds
f(n + 1) qua natural number ≤ f(n) qua natural number. Then there
exists m such that for every n such that m ≤ n holds f(n) = f(m).

The scheme FinDecTree concerns a non empty set A, a finite-branching tree
B decorated with elements of A, and a unary functor F yielding a natural
number, and states that:

B is finite
provided the parameters meet the following requirement:
• For all elements t, t′ of domB and for every element d of A such

that t′ ∈ succ t and d = B(t′) holds F(d) < F(B(t)).
In the sequelD will denote a non empty set and T will denote a tree decorated

with elements of D.
Next we state two propositions:

(26) For arbitrary y such that y ∈ rng T holds y is an element of D.

(27) For arbitrary x such that x ∈ domT holds T (x) is an element of D.

2. Subformula tree

In the sequel F , G, H will denote elements of WFF.
One can prove the following propositions:

(28) If F is a subformula of G, then len(@F ) ≤ len(@G).

(29) If F is a subformula of G and len(@F ) = len(@G), then F = G.

Let p be an element of WFF. The list of immediate constituents of p yields
a finite sequence of elements of WFF and is defined by:

(Def.1) (i) The list of immediate constituents of p = εWFF if p = VERUM or p
is atomic,

(ii) the list of immediate constituents of p = 〈Arg(p)〉 if p is negative,
(iii) the list of immediate constituents of p = 〈LeftArg(p),RightArg(p)〉 if

p is conjunctive,
(iv) the list of immediate constituents of p = 〈Scope(p)〉, otherwise.

Next we state two propositions:
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(30) Suppose k ∈ dom (the list of immediate constituents of F ) and G =
(the list of immediate constituents of F )(k). Then G is an immediate
constituent of F .

(31) rng (the list of immediate constituents of F ) = {G : G ranges over
elements of WFF, G is an immediate constituent of F}.

Let p be an element of WFF. The tree of subformulae of p yields a finite tree
decorated with elements of WFF and is defined by the conditions (Def.2).

(Def.2) (i) (The tree of subformulae of p)(ε) = p, and
(ii) for every element x of dom (the tree of subformulae of p) holds succ(the

tree of subformulae of p, x) = the list of immediate constituents of (the
tree of subformulae of p)(x).

In the sequel t, t′ will be elements of dom (the tree of subformulae of F ).
One can prove the following propositions:

(32) (The tree of subformulae of F )(ε) = F.

(33) succ(the tree of subformulae of F , t) = the list of immediate con-
stituents of (the tree of subformulae of F )(t).

(34) F ∈ rng (the tree of subformulae of F ).

(35) Suppose t � 〈n〉 ∈ dom (the tree of subformulae of F ). Then there exists
G such that

(i) G = (the tree of subformulae of F )(t � 〈n〉), and
(ii) G is an immediate constituent of (the tree of subformulae of F )(t).

(36) The following statements are equivalent
(i) H is an immediate constituent of (the tree of subformulae of F )(t),

(ii) there exists n such that t � 〈n〉 ∈ dom (the tree of subformulae of F )
and H = (the tree of subformulae of F )(t � 〈n〉).

(37) Suppose G ∈ rng (the tree of subformulae of F ) and H is an immediate
constituent of G. Then H ∈ rng (the tree of subformulae of F ).

(38) If G ∈ rng (the tree of subformulae of F ) and H is a subformula of G,
then H ∈ rng (the tree of subformulae of F ).

(39) G ∈ rng (the tree of subformulae of F ) iff G is a subformula of F .

(40) rng (the tree of subformulae of F ) = SubformulaeF.

(41) Suppose t′ ∈ succ t. Then (the tree of subformulae of F )(t′) is an im-
mediate constituent of (the tree of subformulae of F )(t).

(42) If t � t′, then (the tree of subformulae of F )(t′) is a subformula of (the
tree of subformulae of F )(t).

(43) If t ≺ t′, then len(@(the tree of subformulae of F )(t′)) < len(@(the tree
of subformulae of F )(t)).

(44) If t ≺ t′, then (the tree of subformulae of F )(t′) 6= (the tree of subfor-
mulae of F )(t).

(45) If t ≺ t′, then (the tree of subformulae of F )(t′) is a proper subformula
of (the tree of subformulae of F )(t).

(46) (The tree of subformulae of F )(t) = F iff t = ε.
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(47) Suppose t 6= t′ and (the tree of subformulae of F )(t) = (the tree of
subformulae of F )(t′). Then t and t′ are not comparable.

Let F , G be elements of WFF. The F -entry points in subformula tree of
G yields an antichain of prefixes of dom (the tree of subformulae of F ) and is
defined by the condition (Def.3).

(Def.3) Let t be an element of dom (the tree of subformulae of F ). Then t ∈
the F -entry points in subformula tree of G if and only if (the tree of
subformulae of F )(t) = G.

We now state several propositions:

(48) t ∈ the F -entry points in subformula tree of G iff (the tree of subfor-
mulae of F )(t) = G.

(49) The F -entry points in subformula tree of G = {t : t ranges over elements
of dom (the tree of subformulae of F ), (the tree of subformulae of F )(t) =
G}.

(50) G is a subformula of F iff the F -entry points in subformula tree of
G 6= ∅.

(51) Suppose t′ = t � 〈m〉 and (the tree of subformulae of F )(t) is negative.
Then (the tree of subformulae of F )(t′) = Arg((the tree of subformulae
of F )(t)) and m = 0.

(52) Suppose t′ = t � 〈m〉 and (the tree of subformulae of F )(t) is conjunctive.
Then

(i) (the tree of subformulae of F )(t′) = LeftArg((the tree of subformulae
of F )(t)) and m = 0, or

(ii) (the tree of subformulae of F )(t′) = RightArg((the tree of subformulae
of F )(t)) and m = 1.

(53) Suppose t′ = t � 〈m〉 and (the tree of subformulae of F )(t) is universal.
Then (the tree of subformulae of F )(t′) = Scope((the tree of subformulae
of F )(t)) and m = 0.

(54) Suppose (the tree of subformulae of F )(t) is negative. Then
(i) t � 〈0〉 ∈ dom (the tree of subformulae of F ), and
(ii) (the tree of subformulae of F )(t � 〈0〉) = Arg((the tree of subformulae

of F )(t)).

(55) Suppose (the tree of subformulae of F )(t) is conjunctive. Then
(i) t � 〈0〉 ∈ dom (the tree of subformulae of F ),
(ii) (the tree of subformulae of F )(t � 〈0〉) = LeftArg((the tree of subfor-

mulae of F )(t)),
(iii) t � 〈1〉 ∈ dom (the tree of subformulae of F ), and
(iv) (the tree of subformulae of F )(t � 〈1〉) = RightArg((the tree of subfor-

mulae of F )(t)).

(56) Suppose (the tree of subformulae of F )(t) is universal. Then
(i) t � 〈0〉 ∈ dom (the tree of subformulae of F ), and
(ii) (the tree of subformulae of F )(t � 〈0〉) = Scope((the tree of subformulae

of F )(t)).
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In the sequel t will be an element of dom (the tree of subformulae of F ) and
s will be an element of dom (the tree of subformulae of G).

Next we state the proposition

(57) Suppose t ∈ the F -entry points in subformula tree of G and s ∈ the
G-entry points in subformula tree of H. Then t � s ∈ the F -entry points
in subformula tree of H.

In the sequel t will be an element of dom (the tree of subformulae of F ) and
s will be a finite sequence.

Next we state several propositions:

(58) Suppose t ∈ the F -entry points in subformula tree of G and t � s ∈ the
F -entry points in subformula tree of H. Then s ∈ the G-entry points in
subformula tree of H.

(59) Given F , G, H. Then {t � s : t ranges over elements of dom (the tree of
subformulae of F ), s ranges over elements of dom (the tree of subformulae
of G), t ∈ the F -entry points in subformula tree of G ∧ s ∈ the G-entry
points in subformula tree of H} ⊆ the F -entry points in subformula tree
of H.

(60) (The tree of subformulae of F )
�
t = the tree of subformulae of (the tree

of subformulae of F )(t).

(61) t ∈ the F -entry points in subformula tree of G if and only if (the tree
of subformulae of F )

�
t = the tree of subformulae of G.

(62) The F -entry points in subformula tree of G = {t : t ranges over elements
of dom (the tree of subformulae of F ), (the tree of subformulae of F )

�
t =

the tree of subformulae of G}.
In the sequel C is a chain of dom (the tree of subformulae of F ).

Next we state the proposition

(63) Given F , G, H, C. Suppose that

(i) G ∈ {(the tree of subformulae of F )(t) : t ranges over elements of
dom (the tree of subformulae of F ), t ∈ C}, and

(ii) H ∈ {(the tree of subformulae of F )(t) : t ranges over elements of
dom (the tree of subformulae of F ), t ∈ C}.
Then G is a subformula of H or H is a subformula of G.

Let F be an element of WFF. An element of WFF is said to be a subformula
of F if:

(Def.4) It is a subformula of F .

Let F be an element of WFF and let G be a subformula of F . An element
of dom (the tree of subformulae of F ) is said to be an entry point in subformula
tree of G if:

(Def.5) (The tree of subformulae of F )(it) = G.

In the sequel G will denote a subformula of F .

Next we state the proposition
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(64) t is an entry point in subformula tree of G iff (the tree of subformulae
of F )(t) = G.

In the sequel t, t′ are entry points in subformula tree of G.

The following proposition is true

(65) If t 6= t′, then t and t′ are not comparable.

Let F be an element of WFF and let G be a subformula of F . The en-
try points in subformula tree of G yields a non empty antichain of prefixes of
dom (the tree of subformulae of F ) and is defined as follows:

(Def.6) The entry points in subformula tree of G = the F -entry points in sub-
formula tree of G.

We now state three propositions:

(66) The entry points in subformula tree of G = the F -entry points in sub-
formula tree of G.

(67) t ∈ the entry points in subformula tree of G.

(68) The entry points in subformula tree of G = {t : t ranges over entry
points in subformula tree of G, t = t}.

In the sequel G1, G2 will denote subformulae of F , t1 will denote an entry
point in subformula tree of G1, and s will denote an element of dom (the tree of
subformulae of G1).

We now state the proposition

(69) If s ∈ the G1-entry points in subformula tree of G2, then t1 � s is an
entry point in subformula tree of G2.

In the sequel s will be a finite sequence.

Next we state three propositions:

(70) If t1 � s is an entry point in subformula tree of G2, then s ∈ the G1-entry
points in subformula tree of G2.

(71) Given F , G1, G2. Then {t � s : t ranges over entry points in subformula
tree of G1, s ranges over elements of dom (the tree of subformulae of G1),
s ∈ the G1-entry points in subformula tree of G2} = {t � s : t ranges over
elements of dom (the tree of subformulae of F ), s ranges over elements of
dom (the tree of subformulae of G1), t ∈ the F -entry points in subformula
tree of G1 ∧ s ∈ the G1-entry points in subformula tree of G2}.

(72) Given F , G1, G2. Then {t � s : t ranges over entry points in subformula
tree of G1, s ranges over elements of dom (the tree of subformulae of G1),
s ∈ the G1-entry points in subformula tree of G2} ⊆ the entry points in
subformula tree of G2.

In the sequel G1, G2 will denote subformulae of F , t1 will denote an entry
point in subformula tree of G1, and t2 will denote an entry point in subformula
tree of G2.

The following two propositions are true:

(73) If there exist t1, t2 such that t1 � t2, then G2 is a subformula of G1.
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(74) If G2 is a subformula of G1, then for every t1 there exists t2 such that
t1 � t2.
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[9] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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Summary. The main purpose of the paper is to define the dimen-
sion of an abstract vector space. The dimension of a finite-dimensional
vector space is, by the most common definition, the number of vectors in
a basis. Obviously, each basis contains the same number of vectors. We
prove the Steinitz Theorem together with Exchange Lemma in the second
section. The Steinitz Theorem says that each linearly-independent subset
of a vector space has cardinality less than any subset that generates the
space, moreover it can be extended to a basis. Further we review some of
the standard facts involving the dimension of a vector space. Addition-
ally, in the last section, we introduce two notions: the family of subspaces
of a fixed dimension and the pencil of subspaces. Both of them can be
applied in the algebraic representation of several geometries.

MML Identifier: VECTSP 9.

The terminology and notation used in this paper have been introduced in the
following articles: [13], [23], [12], [8], [2], [6], [24], [4], [5], [22], [1], [7], [3], [17],
[19], [9], [21], [15], [10], [20], [16], [18], [14], and [11].

1. Preliminaries

For simplicity we follow the rules: G1 is a field, V is a vector space over G1,
W is a subspace of V , x is arbitrary, and n is a natural number.

Let S be a non empty 1-sorted structure. Observe that there exists a subset
of S which is non empty.

One can prove the following proposition

(1) For every finite set X such that n ≤ X there exists a finite subset A of

X such that A = n.
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In the sequel f , g will be functions.
We now state a number of propositions:

(2) For every f such that f is one-to-one holds if x ∈ rng f, then f −1 {x} =
1.

(3) For every f such that x /∈ rng f holds f −1 {x} = 0.

(4) For all f , g such that rng f = rng g and f is one-to-one and g is one-to-
one holds f and g are fiberwise equipotent.

(5) Let L be a linear combination of V , and let F , G be finite sequences
of elements of the carrier of V , and let P be a permutation of domF. If
G = F · P, then

∑
(LF ) =

∑
(LG).

(6) Let L be a linear combination of V and let F be a finite sequence of
elements of the carrier of V . If supportL misses rngF, then

∑
(LF ) = 0V .

(7) Let F be a finite sequence of elements of the carrier of V . Suppose F
is one-to-one. Let L be a linear combination of V . If supportL ⊆ rngF,
then

∑
(LF ) =

∑
L.

(8) Let L be a linear combination of V and let F be a finite sequence of
elements of the carrier of V . Then there exists a linear combination K of
V such that supportK = rngF ∩ supportL and LF = K F.

(9) Let L be a linear combination of V , and let A be a subset of V , and let F
be a finite sequence of elements of the carrier of V . Suppose rngF ⊆ the
carrier of Lin(A). Then there exists a linear combination K of A such
that

∑
(LF ) =

∑
K.

(10) Let L be a linear combination of V and let A be a subset of V . Suppose
supportL ⊆ the carrier of Lin(A). Then there exists a linear combination
K of A such that

∑
L =

∑
K.

(11) Let L be a linear combination of V . Suppose supportL ⊆ the carrier of
W . Let K be a linear combination of W . If K = L

�
(the carrier of W ),

then supportL = supportK and
∑
L =

∑
K.

(12) For every linear combination K of W there exists a linear combination
L of V such that supportK = supportL and

∑
K =

∑
L.

(13) Let L be a linear combination of V . Suppose supportL ⊆ the carrier of
W . Then there exists a linear combination K of W such that supportK =
supportL and

∑
K =

∑
L.

(14) For every basis I of V and for every vector v of V holds v ∈ Lin(I).

(15) Let A be a subset of W . Suppose A is linearly independent. Then there
exists a subset B of V such that B is linearly independent and B = A.

(16) Let A be a subset of V . Suppose A is linearly independent and A ⊆ the
carrier of W . Then there exists a subset B of W such that B is linearly
independent and B = A.

(17) For every basis A of W there exists a basis B of V such that A ⊆ B.
(18) Let A be a subset of V . Suppose A is linearly independent. Let v be a

vector of V . If v ∈ A, then for every subset B of V such that B = A\{v}
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holds v /∈ Lin(B).

(19) Let I be a basis of V and let A be a non empty subset of V . Suppose
A misses I. Let B be a subset of V . If B = I ∪ A, then B is linearly-
dependent.

(20) For every subset A of V such that A ⊆ the carrier of W holds Lin(A)
is a subspace of W .

(21) For every subset A of V and for every subset B of W such that A = B
holds Lin(A) = Lin(B).

2. The Steinitz Theorem

The following two propositions are true:

(22) Let A, B be finite subsets of V and let v be a vector of V . Suppose
v ∈ Lin(A ∪ B) and v /∈ Lin(B). Then there exists a vector w of V such
that w ∈ A and w ∈ Lin(((A ∪B) \ {w}) ∪ {v}).

(23) Let A, B be finite subsets of V . Suppose the vector space structure of

V = Lin(A) and B is linearly independent. Then B ≤ A and there exists

a finite subset C of V such that C ⊆ A and C = A − B and the vector
space structure of V = Lin(B ∪ C).

3. Finite-Dimensional Vector Spaces

Let G1 be a field and let V be a vector space over G1. Let us observe that
V is finite dimensional if and only if:

(Def.1) There exists finite subset of V which is a basis of V .

Next we state several propositions:

(24) If V is finite dimensional, then every basis of V is finite.

(25) If V is finite dimensional, then for every subset A of V such that A is
linearly independent holds A is finite.

(26) If V is finite dimensional, then for all bases A, B of V holds A = B.

(27) 0V is finite dimensional.

(28) If V is finite dimensional, then W is finite dimensional.

Let G1 be a field and let V be a vector space over G1. Observe that there
exists a subspace of V which is strict and finite dimensional.

Let G1 be a field and let V be a finite dimensional vector space over G1.
Note that every subspace of V is finite dimensional.

Let G1 be a field and let V be a finite dimensional vector space over G1. One
can check that there exists a subspace of V which is strict.



426 mariusz żynel

4. The Dimension of a Vector Space

Let G1 be a field and let V be a vector space over G1. Let us assume that
V is finite dimensional. The functor dim(V ) yields a natural number and is
defined by:

(Def.2) For every basis I of V holds dim(V ) = I .

We adopt the following rules: V denotes a finite dimensional vector space
over G1, W , W1, W2 denote subspaces of V , and u, v denote vectors of V .

The following propositions are true:

(29) dim(W ) ≤ dim(V ).

(30) For every subset A of V such that A is linearly independent holds

A = dim(Lin(A)).

(31) dim(V ) = dim(ΩV ).

(32) dim(V ) = dim(W ) iff ΩV = ΩW .

(33) dim(V ) = 0 iff ΩV = 0V .

(34) dim(V ) = 1 iff there exists v such that v 6= 0V and ΩV = Lin({v}).
(35) dim(V ) = 2 iff there exist u, v such that u 6= v and {u, v} is linearly

independent and ΩV = Lin({u, v}).
(36) dim(W1 +W2) + dim(W1 ∩W2) = dim(W1) + dim(W2).

(37) dim(W1 ∩W2) ≥ (dim(W1) + dim(W2))− dim(V ).

(38) If V is the direct sum of W1 and W2, then dim(V ) = dim(W1) +
dim(W2).

5. The Fixed-Dimensional Subspace Family and the Pencil of
Subspaces

One can prove the following proposition

(39) n ≤ dim(V ) iff there exists a strict subspace W of V such that
dim(W ) = n.

Let G1 be a field, let V be a finite dimensional vector space over G1, and
let n be a natural number. The functor Subn(V ) yields a set and is defined as
follows:

(Def.3) x ∈ Subn(V ) iff there exists a strict subspace W of V such that W = x
and dim(W ) = n.

We now state three propositions:

(40) If n ≤ dim(V ), then Subn(V ) is non empty.

(41) If dim(V ) < n, then Subn(V ) = ∅.
(42) Subn(W ) ⊆ Subn(V ).
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Let G1 be a field, let V be a finite dimensional vector space over G1, let W2

be a subspace of V , and let W1 be a strict subspace of W2. Let us assume that
dim(W2) = dim(W1) + 2. The functor p(W1,W2) yields a non empty set and is
defined by:

(Def.4) x ∈ p(W1,W2) iff there exists a strict subspace W of W2 such that
W = x and dim(W ) = dim(W1) + 1 and W1 is a subspace of W .

We now state two propositions:

(43) Let W1 be a strict subspace of W2. Suppose dim(W2) = dim(W1) + 2.
Then x ∈ p(W1,W2) if and only if there exists a strict subspace W of V
such that W = x and dim(W ) = dim(W1) + 1 and W1 is a subspace of W
and W is a subspace of W2.

(44) For every strict subspace W1 of W2 such that dim(W2) = dim(W1) + 2
holds p(W1,W2) ⊆ Subdim(W1)+1(V ).

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Math-

ematics, 1(1):41–46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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The articles [21], [24], [5], [23], [9], [2], [19], [17], [1], [4], [3], [7], [22], [10], [11],
[18], [25], [6], [8], [12], [13], [15], [20], [16], and [14] provide the terminology and
notation for this paper.

1. Preliminaries

For simplicity we adopt the following convention: f will denote a standard
special circular sequence, i, j, k, n, i1, i2, j1, j2 will denote natural numbers, r,
s, r1, r2 will denote real numbers, p, q, p1 will denote points of E2

T, and G will
denote a Go-board.

The following propositions are true:

(1) If |r1 − r2| > s, then r1 + s < r2 or r2 + s < r1.

(2) |r − s| = 0 iff r = s.

(3) For all points p, p1, q of EnT such that p+ p1 = q + p1 holds p = q.

(4) For all points p, p1, q of EnT such that p1 + p = p1 + q holds p = q.

(5) If p1 ∈ L(p, q) and p1 = q1, then (p1)1 = q1.

(6) If p1 ∈ L(p, q) and p2 = q2, then (p1)2 = q2.

(7) 1
2 · (p+ q) ∈ L(p, q).

(8) If p1 = q1 and q1 = (p1)1 and p2 ≤ q2 and q2 ≤ (p1)2, then q ∈ L(p, p1).

(9) If p1 ≤ q1 and q1 ≤ (p1)1 and p2 = q2 and q2 = (p1)2, then q ∈ L(p, p1).

(10) Let D be a non empty set, and given i, j, and let M be a matrix over
D. If 1 ≤ i and i ≤ lenM and 1 ≤ j and j ≤ widthM, then 〈〈i, j〉〉 ∈ the
indices of M .
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(11) If 1 ≤ i and i + 1 ≤ lenG and 1 ≤ j and j + 1 ≤ widthG, then
1
2 · (Gi,j +Gi+1,j+1) = 1

2 · (Gi,j+1 +Gi+1,j).

(12) Suppose L(f, k) is horizontal. Then there exists j such that 1 ≤ j and
j ≤ width the Go-board of f and for every p such that p ∈ L(f, k) holds
p2 = ((the Go-board of f)1,j)2.

(13) Suppose L(f, k) is vertical. Then there exists i such that 1 ≤ i and
i ≤ len the Go-board of f and for every p such that p ∈ L(f, k) holds
p1 = ((the Go-board of f)i,1)1.

(14) If i ≤ len the Go-board of f and j ≤ width the Go-board of f , then

Int cell(the Go-board of f , i, j) misses L̃(f).

2. Segments on a Go-Board

Next we state a number of propositions:

(15) If 1 ≤ i and i ≤ lenG and 1 ≤ j and j + 2 ≤ widthG, then
L(Gi,j, Gi,j+1) ∩ L(Gi,j+1, Gi,j+2) = {Gi,j+1}.

(16) If 1 ≤ i and i + 2 ≤ lenG and 1 ≤ j and j ≤ widthG, then
L(Gi,j, Gi+1,j) ∩ L(Gi+1,j , Gi+2,j) = {Gi+1,j}.

(17) If 1 ≤ i and i + 1 ≤ lenG and 1 ≤ j and j + 1 ≤ widthG, then
L(Gi,j, Gi,j+1) ∩ L(Gi,j+1, Gi+1,j+1) = {Gi,j+1}.

(18) If 1 ≤ i and i + 1 ≤ lenG and 1 ≤ j and j + 1 ≤ widthG, then
L(Gi,j+1, Gi+1,j+1) ∩ L(Gi+1,j , Gi+1,j+1) = {Gi+1,j+1}.

(19) If 1 ≤ i and i + 1 ≤ lenG and 1 ≤ j and j + 1 ≤ widthG, then
L(Gi,j, Gi+1,j) ∩ L(Gi,j , Gi,j+1) = {Gi,j}.

(20) If 1 ≤ i and i + 1 ≤ lenG and 1 ≤ j and j + 1 ≤ widthG, then
L(Gi,j, Gi+1,j) ∩ L(Gi+1,j , Gi+1,j+1) = {Gi+1,j}.

(21) Let i1, j1, i2, j2 be natural numbers. Suppose 1 ≤ i1 and i1 ≤ lenG
and 1 ≤ j1 and j1 +1 ≤ widthG and 1 ≤ i2 and i2 ≤ lenG and 1 ≤ j2 and
j2 + 1 ≤ widthG and L(Gi1,j1 , Gi1,j1+1) meets L(Gi2,j2 , Gi2 ,j2+1). Then
i1 = i2 and |j1 − j2| ≤ 1.

(22) Let i1, j1, i2, j2 be natural numbers. Suppose 1 ≤ i1 and i1 + 1 ≤ lenG
and 1 ≤ j1 and j1 ≤ widthG and 1 ≤ i2 and i2 + 1 ≤ lenG and 1 ≤ j2
and j2 ≤ widthG and L(Gi1,j1 , Gi1+1,j1) meets L(Gi2,j2 , Gi2+1,j2). Then
j1 = j2 and |i1 − i2| ≤ 1.

(23) Let i1, j1, i2, j2 be natural numbers. Suppose 1 ≤ i1 and i1 ≤ lenG
and 1 ≤ j1 and j1 + 1 ≤ widthG and 1 ≤ i2 and i2 + 1 ≤ lenG and 1 ≤ j2
and j2 ≤ widthG and L(Gi1,j1 , Gi1,j1+1) meets L(Gi2,j2 , Gi2+1,j2). Then
i1 = i2 or i1 = i2 + 1 but j1 = j2 or j1 + 1 = j2.

(24) Let i1, j1, i2, j2 be natural numbers. Suppose 1 ≤ i1 and i1 ≤ lenG
and 1 ≤ j1 and j1 +1 ≤ widthG and 1 ≤ i2 and i2 ≤ lenG and 1 ≤ j2 and
j2 + 1 ≤ widthG and L(Gi1,j1 , Gi1 ,j1+1) meets L(Gi2,j2 , Gi2,j2+1). Then



on the go-board of a standard special . . . 431

(i) j1 = j2 and L(Gi1,j1 , Gi1 ,j1+1) = L(Gi2,j2 , Gi2 ,j2+1), or
(ii) j1 = j2 + 1 and L(Gi1,j1 , Gi1,j1+1) ∩ L(Gi2,j2 , Gi2,j2+1) = {Gi1,j1}, or

(iii) j1 + 1 = j2 and L(Gi1,j1 , Gi1,j1+1) ∩ L(Gi2,j2 , Gi2,j2+1) = {Gi2,j2}.
(25) Let i1, j1, i2, j2 be natural numbers. Suppose 1 ≤ i1 and i1 + 1 ≤ lenG

and 1 ≤ j1 and j1 ≤ widthG and 1 ≤ i2 and i2 + 1 ≤ lenG and 1 ≤ j2
and j2 ≤ widthG and L(Gi1,j1 , Gi1+1,j1) meets L(Gi2,j2 , Gi2+1,j2). Then

(i) i1 = i2 and L(Gi1,j1 , Gi1+1,j1) = L(Gi2,j2 , Gi2+1,j2), or
(ii) i1 = i2 + 1 and L(Gi1 ,j1, Gi1+1,j1) ∩ L(Gi2,j2 , Gi2+1,j2) = {Gi1,j1}, or

(iii) i1 + 1 = i2 and L(Gi1 ,j1, Gi1+1,j1) ∩ L(Gi2,j2 , Gi2+1,j2) = {Gi2,j2}.
(26) Let i1, j1, i2, j2 be natural numbers. Suppose 1 ≤ i1 and i1 ≤ lenG

and 1 ≤ j1 and j1 + 1 ≤ widthG and 1 ≤ i2 and i2 + 1 ≤ lenG and 1 ≤ j2
and j2 ≤ widthG and L(Gi1,j1 , Gi1,j1+1) meets L(Gi2,j2 , Gi2+1,j2). Then
j1 = j2 and L(Gi1,j1 , Gi1 ,j1+1)∩L(Gi2 ,j2 , Gi2+1,j2) = {Gi1,j1} or j1+1 = j2
and L(Gi1,j1 , Gi1,j1+1) ∩ L(Gi2,j2 , Gi2+1,j2) = {Gi1,j1+1}.

(27) Suppose 1 ≤ i1 and i1 ≤ lenG and 1 ≤ j1 and j1 + 1 ≤ widthG and
1 ≤ i2 and i2 ≤ lenG and 1 ≤ j2 and j2 + 1 ≤ widthG and 1

2 · (Gi1,j1 +
Gi1,j1+1) ∈ L(Gi2 ,j2, Gi2 ,j2+1). Then i1 = i2 and j1 = j2.

(28) Suppose 1 ≤ i1 and i1 + 1 ≤ lenG and 1 ≤ j1 and j1 ≤ widthG and
1 ≤ i2 and i2 + 1 ≤ lenG and 1 ≤ j2 and j2 ≤ widthG and 1

2 · (Gi1,j1 +
Gi1+1,j1) ∈ L(Gi2 ,j2, Gi2+1,j2). Then i1 = i2 and j1 = j2.

(29) Suppose 1 ≤ i1 and i1 + 1 ≤ lenG and 1 ≤ j1 and j1 ≤ widthG. Then
it is not true that there exist i2, j2 such that 1 ≤ i2 and i2 ≤ lenG and
1 ≤ j2 and j2 +1 ≤ widthG and 1

2 ·(Gi1 ,j1 +Gi1+1,j1) ∈ L(Gi2,j2 , Gi2 ,j2+1).

(30) Suppose 1 ≤ i1 and i1 ≤ lenG and 1 ≤ j1 and j1 +1 ≤ widthG. Then it
is not true that there exist i2, j2 such that 1 ≤ i2 and i2 + 1 ≤ lenG and
1 ≤ j2 and j2 ≤ widthG and 1

2 · (Gi1 ,j1 +Gi1,j1+1) ∈ L(Gi2 ,j2, Gi2+1,j2).

3. Standard Special Circular Sequences

In the sequel f will be a non constant standard special circular sequence.
The following propositions are true:

(31) For every standard non empty finite sequence f of elements of E 2
T such

that i ∈ dom f and i+ 1 ∈ dom f holds πif 6= πi+1f.

(32) There exists i such that i ∈ dom f and (πif)1 6= (π1f)1.

(33) There exists i such that i ∈ dom f and (πif)2 6= (π1f)2.

(34) len the Go-board of f > 1.

(35) width the Go-board of f > 1.

(36) len f > 4.

(37) Let f be a circular s.c.c. finite sequence of elements of E 2
T. Suppose

len f > 4. Let i, j be natural numbers. If 1 ≤ i and i < j and j < len f,
then πif 6= πjf.
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(38) For all natural numbers i, j such that 1 ≤ i and i < j and j < len f
holds πif 6= πjf.

(39) For all natural numbers i, j such that 1 < i and i < j and j ≤ len f
holds πif 6= πjf.

(40) For every natural number i such that 1 < i and i ≤ len f and πif = π1f
holds i = len f.

(41) Suppose that
(i) 1 ≤ i,

(ii) i ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f , and

(v) 1
2 · ((the Go-board of f)i,j + (the Go-board of f)i,j+1) ∈ L̃(f).

Then there exists k such that 1 ≤ k and k+1 ≤ len f and L((the Go-board
of f)i,j, (the Go-board of f)i,j+1) = L(f, k).

(42) Suppose that
(i) 1 ≤ i,

(ii) i+ 1 ≤ len the Go-board of f
(iii) 1 ≤ j,
(iv) j ≤ width the Go-board of f and

(v) 1
2 · ((the Go-board of f)i,j + (the Go-board of f)i+1,j) ∈ L̃(f).

Then there exists k such that 1 ≤ k and k+1 ≤ len f and L((the Go-board
of f)i,j, (the Go-board of f)i+1,j) = L(f, k).

(43) Suppose that
(i) 1 ≤ i,

(ii) i+ 1 ≤ len the Go-board of f
(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f
(v) 1 ≤ k,
(vi) k + 1 < len f,

(vii) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) = L(f, k), and
(viii) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) = L(f, k + 1).

Then πkf = (the Go-board of f)i,j+1 and πk+1f = (the Go-board of
f)i+1,j+1 and πk+2f = (the Go-board of f)i+1,j.

(44) Suppose that
(i) 1 ≤ i,

(ii) i ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 1 < width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,

(vii) L((the Go-board of f)i,j+1, (the Go-board of f)i,j+2) = L(f, k), and
(viii) L((the Go-board of f)i,j, (the Go-board of f)i,j+1) = L(f, k + 1).

Then πkf = (the Go-board of f)i,j+2 and πk+1f = (the Go-board of
f)i,j+1 and πk+2f = (the Go-board of f)i,j.
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(45) Suppose that
(i) 1 ≤ i,
(ii) i+ 1 ≤ len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,
(vii) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) = L(f, k), and

(viii) L((the Go-board of f)i,j, (the Go-board of f)i,j+1) = L(f, k + 1).
Then πkf = (the Go-board of f)i+1,j+1 and πk+1f = (the Go-board of
f)i,j+1 and πk+2f = (the Go-board of f)i,j.

(46) Suppose that
(i) 1 ≤ i,
(ii) i+ 1 ≤ len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,
(vii) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) = L(f, k), and

(viii) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) = L(f, k + 1).
Then πkf = (the Go-board of f)i+1,j and πk+1f = (the Go-board of
f)i+1,j+1 and πk+2f = (the Go-board of f)i,j+1.

(47) Suppose that
(i) 1 ≤ i,
(ii) i+ 1 < len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j ≤ width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,
(vii) L((the Go-board of f)i+1,j, (the Go-board of f)i+2,j) = L(f, k), and

(viii) L((the Go-board of f)i,j, (the Go-board of f)i+1,j) = L(f, k + 1).
Then πkf = (the Go-board of f)i+2,j and πk+1f = (the Go-board of
f)i+1,j and πk+2f = (the Go-board of f)i,j.

(48) Suppose that
(i) 1 ≤ i,
(ii) i+ 1 ≤ len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,
(vii) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) = L(f, k), and

(viii) L((the Go-board of f)i,j, (the Go-board of f)i+1,j) = L(f, k + 1).
Then πkf = (the Go-board of f)i+1,j+1 and πk+1f = (the Go-board of
f)i+1,j and πk+2f = (the Go-board of f)i,j.
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(49) Suppose that
(i) 1 ≤ i,

(ii) i+ 1 ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,

(vii) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) = L(f, k), and
(viii) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) = L(f, k + 1).

Then πkf = (the Go-board of f)i+1,j and πk+1f = (the Go-board of
f)i+1,j+1 and πk+2f = (the Go-board of f)i,j+1.

(50) Suppose that
(i) 1 ≤ i,

(ii) i ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 1 < width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,

(vii) L((the Go-board of f)i,j, (the Go-board of f)i,j+1) = L(f, k), and
(viii) L((the Go-board of f)i,j+1, (the Go-board of f)i,j+2) = L(f, k + 1).

Then πkf = (the Go-board of f)i,j and πk+1f = (the Go-board of f)i,j+1

and πk+2f = (the Go-board of f)i,j+2.

(51) Suppose that
(i) 1 ≤ i,

(ii) i+ 1 ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,

(vii) L((the Go-board of f)i,j, (the Go-board of f)i,j+1) = L(f, k), and
(viii) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) = L(f, k + 1).

Then πkf = (the Go-board of f)i,j and πk+1f = (the Go-board of f)i,j+1

and πk+2f = (the Go-board of f)i+1,j+1.

(52) Suppose that
(i) 1 ≤ i,

(ii) i+ 1 ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,

(vii) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) = L(f, k), and
(viii) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) = L(f, k + 1).

Then πkf = (the Go-board of f)i,j+1 and πk+1f = (the Go-board of
f)i+1,j+1 and πk+2f = (the Go-board of f)i+1,j.
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(53) Suppose that
(i) 1 ≤ i,
(ii) i+ 1 < len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j ≤ width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,
(vii) L((the Go-board of f)i,j, (the Go-board of f)i+1,j) = L(f, k), and

(viii) L((the Go-board of f)i+1,j, (the Go-board of f)i+2,j) = L(f, k + 1).
Then πkf = (the Go-board of f)i,j and πk+1f = (the Go-board of f)i+1,j

and πk+2f = (the Go-board of f)i+2,j.

(54) Suppose that
(i) 1 ≤ i,
(ii) i+ 1 ≤ len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,
(v) 1 ≤ k,
(vi) k + 1 < len f,
(vii) L((the Go-board of f)i,j, (the Go-board of f)i+1,j) = L(f, k), and

(viii) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) = L(f, k + 1).
Then πkf = (the Go-board of f)i,j and πk+1f = (the Go-board of f)i+1,j

and πk+2f = (the Go-board of f)i+1,j+1.

(55) Suppose that
(i) 1 ≤ i,
(ii) i ≤ len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j + 1 < width the Go-board of f ,

(v) L((the Go-board of f)i,j, (the Go-board of f)i,j+1) ⊆ L̃(f), and

(vi) L((the Go-board of f)i,j+1, (the Go-board of f)i,j+2) ⊆ L̃(f).
Then

(vii) π1f = (the Go-board of f)i,j+1 but π2f = (the Go-board of f)i,j and
πlen f−′1f = (the Go-board of f)i,j+2 or π2f = (the Go-board of f)i,j+2

and πlen f−′1f = (the Go-board of f)i,j, or
(viii) there exists k such that 1 ≤ k and k + 1 < len f and πk+1f = (the

Go-board of f)i,j+1 and πkf = (the Go-board of f)i,j and πk+2f = (the
Go-board of f)i,j+2 or πkf = (the Go-board of f)i,j+2 and πk+2f = (the
Go-board of f)i,j.

(56) Suppose that
(i) 1 ≤ i,
(ii) i+ 1 ≤ len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,

(v) L((the Go-board of f)i,j, (the Go-board of f)i,j+1) ⊆ L̃(f), and

(vi) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) ⊆ L̃(f).
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Then
(vii) π1f = (the Go-board of f)i,j+1 but π2f = (the Go-board of f)i,j

and πlen f−′1f = (the Go-board of f)i+1,j+1 or π2f = (the Go-board of
f)i+1,j+1 and πlen f−′1f = (the Go-board of f)i,j, or

(viii) there exists k such that 1 ≤ k and k+ 1 < len f and πk+1f = (the Go-
board of f)i,j+1 and πkf = (the Go-board of f)i,j and πk+2f = (the Go-
board of f)i+1,j+1 or πkf = (the Go-board of f)i+1,j+1 and πk+2f = (the
Go-board of f)i,j.

(57) Suppose that
(i) 1 ≤ i,

(ii) i+ 1 ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,

(v) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) ⊆ L̃(f), and

(vi) L((the Go-board of f)i+1,j+1, (the Go-board of f)i+1,j) ⊆ L̃(f).
Then

(vii) π1f = (the Go-board of f)i+1,j+1 but π2f = (the Go-board of f)i,j+1

and πlen f−′1f = (the Go-board of f)i+1,j or π2f = (the Go-board of
f)i+1,j and πlen f−′1f = (the Go-board of f)i,j+1, or

(viii) there exists k such that 1 ≤ k and k+ 1 < len f and πk+1f = (the Go-
board of f)i+1,j+1 and πkf = (the Go-board of f)i,j+1 and πk+2f = (the
Go-board of f)i+1,j or πkf = (the Go-board of f)i+1,j and πk+2f = (the
Go-board of f)i,j+1.

(58) Suppose that
(i) 1 ≤ i,

(ii) i+ 1 < len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j ≤ width the Go-board of f ,

(v) L((the Go-board of f)i,j, (the Go-board of f)i+1,j) ⊆ L̃(f), and

(vi) L((the Go-board of f)i+1,j, (the Go-board of f)i+2,j) ⊆ L̃(f).
Then

(vii) π1f = (the Go-board of f)i+1,j but π2f = (the Go-board of f)i,j and
πlen f−′1f = (the Go-board of f)i+2,j or π2f = (the Go-board of f)i+2,j

and πlen f−′1f = (the Go-board of f)i,j, or
(viii) there exists k such that 1 ≤ k and k + 1 < len f and πk+1f = (the

Go-board of f)i+1,j and πkf = (the Go-board of f)i,j and πk+2f = (the
Go-board of f)i+2,j or πkf = (the Go-board of f)i+2,j and πk+2f = (the
Go-board of f)i,j.

(59) Suppose that
(i) 1 ≤ i,

(ii) i+ 1 ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,

(v) L((the Go-board of f)i,j, (the Go-board of f)i+1,j) ⊆ L̃(f), and
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(vi) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) ⊆ L̃(f).
Then

(vii) π1f = (the Go-board of f)i+1,j but π2f = (the Go-board of f)i,j
and πlen f−′1f = (the Go-board of f)i+1,j+1 or π2f = (the Go-board of
f)i+1,j+1 and πlen f−′1f = (the Go-board of f)i,j, or

(viii) there exists k such that 1 ≤ k and k+ 1 < len f and πk+1f = (the Go-
board of f)i+1,j and πkf = (the Go-board of f)i,j and πk+2f = (the Go-
board of f)i+1,j+1 or πkf = (the Go-board of f)i+1,j+1 and πk+2f = (the
Go-board of f)i,j.

(60) Suppose that
(i) 1 ≤ i,
(ii) i+ 1 ≤ len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j + 1 ≤ width the Go-board of f ,

(v) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) ⊆ L̃(f), and

(vi) L((the Go-board of f)i+1,j+1, (the Go-board of f)i,j+1) ⊆ L̃(f).
Then

(vii) π1f = (the Go-board of f)i+1,j+1 but π2f = (the Go-board of f)i+1,j

and πlen f−′1f = (the Go-board of f)i,j+1 or π2f = (the Go-board of
f)i,j+1 and πlen f−′1f = (the Go-board of f)i+1,j, or

(viii) there exists k such that 1 ≤ k and k+ 1 < len f and πk+1f = (the Go-
board of f)i+1,j+1 and πkf = (the Go-board of f)i+1,j and πk+2f = (the
Go-board of f)i,j+1 or πkf = (the Go-board of f)i,j+1 and πk+2f = (the
Go-board of f)i+1,j.

(61) Suppose 1 ≤ i and i < len the Go-board of f and 1 ≤ j and j + 1 <
width the Go-board of f . Then

(i) L((the Go-board of f)i,j, (the Go-board of f)i,j+1) 6⊆ L̃(f), or

(ii) L((the Go-board of f)i,j+1, (the Go-board of f)i,j+2) 6⊆ L̃(f), or

(iii) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) 6⊆ L̃(f).

(62) Suppose 1 ≤ i and i < len the Go-board of f and 1 ≤ j and j + 1 <
width the Go-board of f . Then

(i) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) 6⊆ L̃(f), or

(ii) L((the Go-board of f)i+1,j+1, (the Go-board of f)i+1,j+2) 6⊆ L̃(f), or

(iii) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) 6⊆ L̃(f).

(63) Suppose 1 ≤ j and j < width the Go-board of f and 1 ≤ i and i+ 1 <
len the Go-board of f . Then

(i) L((the Go-board of f)i,j, (the Go-board of f)i+1,j) 6⊆ L̃(f), or

(ii) L((the Go-board of f)i+1,j, (the Go-board of f)i+2,j) 6⊆ L̃(f), or

(iii) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) 6⊆ L̃(f).

(64) Suppose 1 ≤ j and j < width the Go-board of f and 1 ≤ i and i+ 1 <
len the Go-board of f . Then

(i) L((the Go-board of f)i,j+1, (the Go-board of f)i+1,j+1) 6⊆ L̃(f), or

(ii) L((the Go-board of f)i+1,j+1, (the Go-board of f)i+2,j+1) 6⊆ L̃(f), or
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(iii) L((the Go-board of f)i+1,j, (the Go-board of f)i+1,j+1) 6⊆ L̃(f).
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The articles [17], [7], [18], [5], [6], [4], [14], [16], [1], [12], [3], [10], [11], [8], [9],
[2], [13], and [15] provide the terminology and notation for this paper.

In this paper U1 is a universal algebra and f is a function from U1 into U1.
Let us consider U1. The functor end(U1) yields a non empty set of functions

from the carrier of U1 to the carrier of U1 and is defined as follows:

(Def.1) For every function h from U1 into U1 holds h ∈ end(U1) iff h is a
homomorphism of U1 into U1.

Next we state four propositions:

(1) end(U1) ⊆ (the carrier of U1)the carrier of U1 .

(2) For every f holds f ∈ end(U1) iff f is a homomorphism of U1 into U1.

(3) id(the carrier of U1) ∈ end(U1).

(4) For all elements f1, f2 of end(U1) holds f1 · f2 ∈ end(U1).

Let us consider U1. The functor Comp(U1) yielding a binary operation on
end(U1) is defined as follows:

(Def.2) For all elements x, y of end(U1) holds (Comp(U1))(x, y) = y · x.
Let us consider U1. The functor End(U1) yields a strict multiplicative loop

structure and is defined by:

(Def.3) The carrier of End(U1) = end(U1) and the multiplication of End(U1) =
Comp(U1) and the unity of End(U1) = id(the carrier of U1).

Let us consider U1. One can check that End(U1) is non empty.
Let us consider U1. One can verify that End(U1) is left unital well unital and

associative.
Next we state two propositions:
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(5) Let x, y be elements of the carrier of End(U1) and let f , g be elements
of end(U1). If x = f and y = g, then x · y = g · f.

(6) id(the carrier of U1) = 1End(U1).

In the sequel S will be a non void non empty many sorted signature and U2

will be a non-empty algebra over S.
Let us consider S, U2. The functor end(U2) yields a set of many sorted

functions from the sorts of U2 into the sorts of U2 and is defined by the conditions
(Def.4).

(Def.4) (i) Every element of end(U2) is a many sorted function from U2 into U2,
and

(ii) for every many sorted function h from U2 into U2 holds h ∈ end(U2)
iff h is a homomorphism of U2 into U2.

One can prove the following propositions:

(7) For every many sorted function F from U2 into U2 holds F ∈ end(U2)
iff F is a homomorphism of U2 into U2.

(8) For every element f of end(U2) holds f ∈ ∏MSFuncs(the sorts of U2,
the sorts of U2).

(9) end(U2) ⊆ ∏MSFuncs(the sorts of U2, the sorts of U2).

(10) id(the sorts of U2) ∈ end(U2).

(11) For all elements f1, f2 of end(U2) holds f1 ◦ f2 ∈ end(U2).

(12) For every many sorted function F from MSAlg(U1) into MSAlg(U1)
and for every element f of end(U1) such that F = {0} 7−→ f holds
F ∈ end(MSAlg(U1)).

Let us consider S, U2. The functor Comp(U2) yielding a binary operation
on end(U2) is defined as follows:

(Def.5) For all elements x, y of end(U2) holds (Comp(U2))(x, y) = y ◦ x.
Let us consider S, U2. The functor End(U2) yields a strict multiplicative

loop structure and is defined by:

(Def.6) The carrier of End(U2) = end(U2) and the multiplication of End(U2) =
Comp(U2) and the unity of End(U2) = id(the sorts of U2).

Let us consider S, U2. Note that End(U2) is non empty.
Let us consider S, U2. Note that End(U2) is left unital well unital and

associative.
The following four propositions are true:

(13) Let x, y be elements of the carrier of End(U2) and let f , g be elements
of end(U2). If x = f and y = g, then x · y = g ◦ f.

(14) id(the sorts of U2) = 1End(U2).

(15) Let U3, U4 be universal algebras. Suppose U3 and U4 are sim-
ilar. Let F be a many sorted function from MSAlg(U3) into
(MSAlg(U4) over MSSign(U3)). Then F (0) is a function from U3 into U4.

(16) For every element f of end(U1) holds {0} 7−→ f is a many sorted func-
tion from MSAlg(U1) into MSAlg(U1).
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Let G, H be multiplicative loop structures.

(Def.7) A function from the carrier of G into the carrier of H is called a map
from G into H.

Let G, H be non empty multiplicative loop structures. A map from G into
H is multiplicative if:

(Def.8) For all elements x, y of the carrier of G holds it(x · y) = it(x) · it(y).

A map from G into H is unity-preserving if:

(Def.9) It(1G) = 1H .

Let us mention that there exists a non empty multiplicative loop structure
which is left unital.

Let G, H be left unital non empty multiplicative loop structures. Observe
that there exists a map from G into H which is multiplicative and unity-
preserving.

Let G, H be left unital non empty multiplicative loop structures. A homo-
morphism from G to H is a multiplicative unity-preserving map from G into
H.

Let G, H be left unital non empty multiplicative loop structures and let h
be a map from G into H. We say that h is a monomorphism if and only if:

(Def.10) h is one-to-one.

We say that h is an epimorphism if and only if:

(Def.11) rng h = the carrier of H.

Let G, H be left unital non empty multiplicative loop structures and let h
be a map from G into H. We say that h is an isomorphism if and only if:

(Def.12) h is an epimorphism and a monomorphism.

We now state the proposition

(17) Let G be a left unital non empty multiplicative loop structure. Then
id(the carrier of G) is a homomorphism from G to G.

Let G, H be left unital non empty multiplicative loop structures. We say
that G and H are isomorphic if and only if:

(Def.13) There exists homomorphism from G to H which is an isomorphism.

Let us observe that this predicate is reflexive.

One can prove the following propositions:

(18) Let h be a function. Suppose domh = end(U1) and for arbitrary x such
that x ∈ end(U1) holds h(x) = {0} 7−→ x. Then h is a homomorphism
from End(U1) to End(MSAlg(U1)).

(19) Let h be a homomorphism from End(U1) to End(MSAlg(U1)). Suppose
that for arbitrary x such that x ∈ end(U1) holds h(x) = {0} 7−→ x. Then
h is an isomorphism.

(20) End(U1) and End(MSAlg(U1)) are isomorphic.
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The terminology and notation used here are introduced in the following articles:
[20], [23], [22], [8], [2], [18], [16], [1], [4], [3], [6], [21], [9], [10], [17], [24], [5], [7],
[11], [12], [14], [19], [15], and [13].

We adopt the following rules: i, j, k will be natural numbers, p will be a
point of E2

T, and f will be a non constant standard special circular sequence.
One can prove the following propositions:

(1) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i, j. Suppose that
(i) 1 ≤ i,
(ii) i+ 1 ≤ len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j + 2 ≤ width the Go-board of f ,
(v) πk+1f = (the Go-board of f)i+1,j+1, and
(vi) πkf = (the Go-board of f)i+1,j and πk+2f = (the Go-board of

f)i+1,j+2 or πk+2f = (the Go-board of f)i+1,j and πkf = (the Go-board
of f)i+1,j+2.
Then L( 1

2 · ((the Go-board of f)i,j + (the Go-board of f)i+1,j+1), 1
2 · ((the

Go-board of f)i,j+1 + (the Go-board of f)i+1,j+2)) misses L̃(f).

(2) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i, j. Suppose that
(i) 1 ≤ i,
(ii) i+ 2 ≤ len the Go-board of f ,

(iii) 1 ≤ j,
(iv) j + 2 ≤ width the Go-board of f ,
(v) πk+1f = (the Go-board of f)i+1,j+1, and
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(vi) πkf = (the Go-board of f)i+2,j+1 and πk+2f = (the Go-board of
f)i+1,j+2 or πk+2f = (the Go-board of f)i+2,j+1 and πkf = (the Go-
board of f)i+1,j+2.
Then L( 1

2 · ((the Go-board of f)i,j + (the Go-board of f)i+1,j+1), 1
2 · ((the

Go-board of f)i,j+1 + (the Go-board of f)i+1,j+2)) misses L̃(f).

(3) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i, j. Suppose that
(i) 1 ≤ i,

(ii) i+ 2 ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 2 ≤ width the Go-board of f ,
(v) πk+1f = (the Go-board of f)i+1,j+1, and
(vi) πkf = (the Go-board of f)i+2,j+1 and πk+2f = (the Go-board of

f)i+1,j or πk+2f = (the Go-board of f)i+2,j+1 and πkf = (the Go-board
of f)i+1,j.
Then L( 1

2 · ((the Go-board of f)i,j + (the Go-board of f)i+1,j+1), 1
2 · ((the

Go-board of f)i,j+1 + (the Go-board of f)i+1,j+2)) misses L̃(f).

(4) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i, j. Suppose that
(i) 1 ≤ i,

(ii) i+ 1 ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 2 ≤ width the Go-board of f ,
(v) πk+1f = (the Go-board of f)i,j+1, and
(vi) πkf = (the Go-board of f)i,j and πk+2f = (the Go-board of f)i,j+2 or

πk+2f = (the Go-board of f)i,j and πkf = (the Go-board of f)i,j+2.
Then L( 1

2 · ((the Go-board of f)i,j + (the Go-board of f)i+1,j+1), 1
2 · ((the

Go-board of f)i,j+1 + (the Go-board of f)i+1,j+2)) misses L̃(f).

(5) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i, j. Suppose that
(i) 1 ≤ i,

(ii) i+ 2 ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 2 ≤ width the Go-board of f ,
(v) πk+1f = (the Go-board of f)i+1,j+1, and
(vi) πkf = (the Go-board of f)i,j+1 and πk+2f = (the Go-board of

f)i+1,j+2 or πk+2f = (the Go-board of f)i,j+1 and πkf = (the Go-board
of f)i+1,j+2.
Then L( 1

2 ·((the Go-board of f)i+1,j+(the Go-board of f)i+2,j+1), 1
2 ·((the

Go-board of f)i+1,j+1 + (the Go-board of f)i+2,j+2)) misses L̃(f).

(6) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i, j. Suppose that
(i) 1 ≤ i,

(ii) i+ 2 ≤ len the Go-board of f ,
(iii) 1 ≤ j,
(iv) j + 2 ≤ width the Go-board of f ,
(v) πk+1f = (the Go-board of f)i+1,j+1, and



more on segments on a go-board 445

(vi) πkf = (the Go-board of f)i,j+1 and πk+2f = (the Go-board of f)i+1,j

or πk+2f = (the Go-board of f)i,j+1 and πkf = (the Go-board of f)i+1,j.
Then L( 1

2 ·((the Go-board of f)i+1,j+(the Go-board of f)i+2,j+1), 1
2 ·((the

Go-board of f)i+1,j+1 + (the Go-board of f)i+2,j+2)) misses L̃(f).

(7) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i. Suppose that
(i) 1 ≤ i,
(ii) i+ 2 ≤ len the Go-board of f ,

(iii) πk+1f = (the Go-board of f)i+1,1, and
(iv) πkf = (the Go-board of f)i+2,1 and πk+2f = (the Go-board of f)i+1,2

or πk+2f = (the Go-board of f)i+2,1 and πkf = (the Go-board of f)i+1,2.
Then L( 1

2 · ((the Go-board of f)i,1 + (the Go-board of f)i+1,1)− [0, 1], 1
2 ·

((the Go-board of f)i,1 + (the Go-board of f)i+1,2)) misses L̃(f).

(8) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i. Suppose that
(i) 1 ≤ i,
(ii) i+ 2 ≤ len the Go-board of f ,

(iii) πk+1f = (the Go-board of f)i+1,1, and
(iv) πkf = (the Go-board of f)i,1 and πk+2f = (the Go-board of f)i+1,2 or

πk+2f = (the Go-board of f)i,1 and πkf = (the Go-board of f)i+1,2.
Then L( 1

2 · ((the Go-board of f)i+1,1 + (the Go-board of f)i+2,1) − [0,

1], 1
2 · ((the Go-board of f)i+1,1 + (the Go-board of f)i+2,2)) misses L̃(f).

(9) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i. Suppose that
(i) 1 ≤ i,
(ii) i+ 2 ≤ len the Go-board of f ,

(iii) πk+1f = (the Go-board of f)i+1,width the Go-board of f , and
(iv) πkf = (the Go-board of f)i+2,width the Go-board of f and πk+2f =

(the Go-board of f)i+1,width the Go-board of f−′1 or πk+2f = (the Go-
board of f)i+2,width the Go-board of f and πkf = (the Go-board of
f)i+1,width the Go-board of f−′1.
Then L( 1

2 ·((the Go-board of f)i,width the Go-board of f−′1 +(the Go-board of

f)i+1,width the Go-board of f ), 1
2 · ((the Go-board of f)i,width the Go-board of f +

(the Go-board of f)i+1,width the Go-board of f ) + [0, 1]) misses L̃(f).

(10) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i. Suppose that
(i) 1 ≤ i,
(ii) i+ 2 ≤ len the Go-board of f ,

(iii) πk+1f = (the Go-board of f)i+1,width the Go-board of f , and
(iv) πkf = (the Go-board of f)i,width the Go-board of f and πk+2f =

(the Go-board of f)i+1,width the Go-board of f−′1 or πk+2f = (the Go-
board of f)i,width the Go-board of f and πkf = (the Go-board of
f)i+1,width the Go-board of f−′1.
Then L( 1

2 · ((the Go-board of f)i+1,width the Go-board of f−′1 +(the Go-board

of f)i+2,width the Go-board of f ), 1
2 ·((the Go-board of f)i+1,width the Go-board of f+

(the Go-board of f)i+2,width the Go-board of f ) + [0, 1]) misses L̃(f).

(11) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given i, j. Suppose that
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(i) 1 ≤ j,
(ii) j + 1 ≤ width the Go-board of f ,
(iii) 1 ≤ i,
(iv) i+ 2 ≤ len the Go-board of f ,
(v) πk+1f = (the Go-board of f)i+1,j+1, and
(vi) πkf = (the Go-board of f)i,j+1 and πk+2f = (the Go-board of

f)i+2,j+1 or πk+2f = (the Go-board of f)i,j+1 and πkf = (the Go-board
of f)i+2,j+1.
Then L( 1

2 · ((the Go-board of f)i,j + (the Go-board of f)i+1,j+1), 1
2 · ((the

Go-board of f)i+1,j + (the Go-board of f)i+2,j+1)) misses L̃(f).

(12) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given j, i. Suppose that
(i) 1 ≤ j,

(ii) j + 2 ≤ width the Go-board of f ,
(iii) 1 ≤ i,
(iv) i+ 2 ≤ len the Go-board of f ,
(v) πk+1f = (the Go-board of f)i+1,j+1, and
(vi) πkf = (the Go-board of f)i+1,j+2 and πk+2f = (the Go-board of

f)i+2,j+1 or πk+2f = (the Go-board of f)i+1,j+2 and πkf = (the Go-
board of f)i+2,j+1.
Then L( 1

2 · ((the Go-board of f)i,j + (the Go-board of f)i+1,j+1), 1
2 · ((the

Go-board of f)i+1,j + (the Go-board of f)i+2,j+1)) misses L̃(f).

(13) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given j, i. Suppose that
(i) 1 ≤ j,

(ii) j + 2 ≤ width the Go-board of f ,
(iii) 1 ≤ i,
(iv) i+ 2 ≤ len the Go-board of f ,
(v) πk+1f = (the Go-board of f)i+1,j+1, and
(vi) πkf = (the Go-board of f)i+1,j+2 and πk+2f = (the Go-board of

f)i,j+1 or πk+2f = (the Go-board of f)i+1,j+2 and πkf = (the Go-board
of f)i,j+1.
Then L( 1

2 · ((the Go-board of f)i,j + (the Go-board of f)i+1,j+1), 1
2 · ((the

Go-board of f)i+1,j + (the Go-board of f)i+2,j+1)) misses L̃(f).

(14) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given j, i. Suppose that
(i) 1 ≤ j,

(ii) j + 1 ≤ width the Go-board of f ,
(iii) 1 ≤ i,
(iv) i+ 2 ≤ len the Go-board of f ,
(v) πk+1f = (the Go-board of f)i+1,j, and
(vi) πkf = (the Go-board of f)i,j and πk+2f = (the Go-board of f)i+2,j or

πk+2f = (the Go-board of f)i,j and πkf = (the Go-board of f)i+2,j.
Then L( 1

2 · ((the Go-board of f)i,j + (the Go-board of f)i+1,j+1), 1
2 · ((the

Go-board of f)i+1,j + (the Go-board of f)i+2,j+1)) misses L̃(f).

(15) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given j, i. Suppose that
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(i) 1 ≤ j,
(ii) j + 2 ≤ width the Go-board of f ,

(iii) 1 ≤ i,
(iv) i+ 2 ≤ len the Go-board of f ,

(v) πk+1f = (the Go-board of f)i+1,j+1, and

(vi) πkf = (the Go-board of f)i+1,j and πk+2f = (the Go-board of
f)i+2,j+1 or πk+2f = (the Go-board of f)i+1,j and πkf = (the Go-board
of f)i+2,j+1.

Then L( 1
2 ·((the Go-board of f)i,j+1+(the Go-board of f)i+1,j+2), 1

2 ·((the

Go-board of f)i+1,j+1 + (the Go-board of f)i+2,j+2)) misses L̃(f).

(16) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given j, i. Suppose that

(i) 1 ≤ j,
(ii) j + 2 ≤ width the Go-board of f ,

(iii) 1 ≤ i,
(iv) i+ 2 ≤ len the Go-board of f ,

(v) πk+1f = (the Go-board of f)i+1,j+1, and

(vi) πkf = (the Go-board of f)i+1,j and πk+2f = (the Go-board of f)i,j+1

or πk+2f = (the Go-board of f)i+1,j and πkf = (the Go-board of f)i,j+1.

Then L( 1
2 ·((the Go-board of f)i,j+1+(the Go-board of f)i+1,j+2), 1

2 ·((the

Go-board of f)i+1,j+1 + (the Go-board of f)i+2,j+2)) misses L̃(f).

(17) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given j. Suppose that

(i) 1 ≤ j,
(ii) j + 2 ≤ width the Go-board of f ,

(iii) πk+1f = (the Go-board of f)1,j+1, and

(iv) πkf = (the Go-board of f)1,j+2 and πk+2f = (the Go-board of f)2,j+1

or πk+2f = (the Go-board of f)1,j+2 and πkf = (the Go-board of f)2,j+1.

Then L( 1
2 · ((the Go-board of f)1,j + (the Go-board of f)1,j+1)− [1, 0], 1

2 ·
((the Go-board of f)1,j + (the Go-board of f)2,j+1)) misses L̃(f).

(18) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given j. Suppose that

(i) 1 ≤ j,
(ii) j + 2 ≤ width the Go-board of f ,

(iii) πk+1f = (the Go-board of f)1,j+1, and

(iv) πkf = (the Go-board of f)1,j and πk+2f = (the Go-board of f)2,j+1

or πk+2f = (the Go-board of f)1,j and πkf = (the Go-board of f)2,j+1.

Then L( 1
2 · ((the Go-board of f)1,j+1 + (the Go-board of f)1,j+2) − [1,

0], 1
2 · ((the Go-board of f)1,j+1 + (the Go-board of f)2,j+2)) misses L̃(f).

(19) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given j. Suppose that

(i) 1 ≤ j,
(ii) j + 2 ≤ width the Go-board of f ,

(iii) πk+1f = (the Go-board of f)len the Go-board of f , j+1, and

(iv) πkf = (the Go-board of f)len the Go-board of f , j+2 and πk+2f =
(the Go-board of f)len the Go-board of f−′1,j+1 or πk+2f = (the Go-
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board of f)len the Go-board of f , j+2 and πkf = (the Go-board of
f)len the Go-board of f−′1,j+1.
Then L( 1

2 · ((the Go-board of f)len the Go-board of f−′1,j + (the Go-board of

f)len the Go-board of f , j+1), 1
2 · ((the Go-board of f)len the Go-board of f , j +(the

Go-board of f)len the Go-board of f , j+1) + [1, 0]) misses L̃(f).

(20) Given k. Suppose 1 ≤ k and k + 2 ≤ len f. Given j. Suppose that
(i) 1 ≤ j,

(ii) j + 2 ≤ width the Go-board of f ,
(iii) πk+1f = (the Go-board of f)len the Go-board of f , j+1, and
(iv) πkf = (the Go-board of f)len the Go-board of f , j and πk+2f =

(the Go-board of f)len the Go-board of f−′1,j+1 or πk+2f = (the Go-
board of f)len the Go-board of f , j and πkf = (the Go-board of
f)len the Go-board of f−′1,j+1.
Then L( 1

2 · ((the Go-board of f)len the Go-board of f−′1,j+1 + (the Go-board

of f)len the Go-board of f , j+2), 1
2 ·((the Go-board of f)len the Go-board of f , j+1 +

(the Go-board of f)len the Go-board of f , j+2) + [1, 0]) misses L̃(f).

In the sequel P will be a subset of the carrier of E 2
T.

We now state a number of propositions:

(21) If for every p such that p ∈ P holds p1 < ((the Go-board of f)1,1)1,

then P misses L̃(f).

(22) If for every p such that p ∈ P holds

p1 > ((the Go-board of f)len the Go-board of f , 1)1, then P misses L̃(f).

(23) If for every p such that p ∈ P holds p2 < ((the Go-board of f)1,1)2,

then P misses L̃(f).

(24) If for every p such that p ∈ P holds

p2 > ((the Go-board of f)1,width the Go-board of f )2, then P misses L̃(f).

(25) Given i. Suppose 1 ≤ i and i + 2 ≤ len the Go-board of f . Then
L(1

2 · ((the Go-board of f)i,1 + (the Go-board of f)i+1,1)− [0, 1], 1
2 · ((the

Go-board of f)i+1,1 + (the Go-board of f)i+2,1)− [0, 1]) misses L̃(f).

(26) L((the Go-board of f)1,1 − [1, 1], 1
2 · ((the Go-board of f)1,1 + (the Go-

board of f)2,1)− [0, 1]) misses L̃(f).

(27) L( 1
2 · ((the Go-board of f)len the Go-board of f−′1,1 + (the Go-board of

f)len the Go-board of f , 1)− [0, 1], (the Go-board of f)len the Go-board of f , 1 + [1,

−1]) misses L̃(f).

(28) Given i. Suppose 1 ≤ i and i + 2 ≤ len the Go-board
of f . Then L( 1

2 · ((the Go-board of f)i,width the Go-board of f + (the

Go-board of f)i+1,width the Go-board of f ) + [0, 1], 1
2 · ((the Go-board of

f)i+1,width the Go-board of f+(the Go-board of f)i+2,width the Go-board of f )+[0,

1]) misses L̃(f).

(29) L((the Go-board of f)1,width the Go-board of f + [−1, 1], 1
2 · ((the Go-board

of f)1,width the Go-board of f + (the Go-board of f)2,width the Go-board of f ) + [0,
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1]) misses L̃(f).

(30) L( 1
2 · ((the Go-board of f)len the Go-board of f−′1,width the Go-board of f + (the

Go-board of f)len the Go-board of f , width the Go-board of f ) + [0, 1], (the Go-

board of f)len the Go-board of f , width the Go-board of f + [1, 1]) misses L̃(f).

(31) Given j. Suppose 1 ≤ j and j + 2 ≤ width the Go-board of f . Then
L(1

2 · ((the Go-board of f)1,j + (the Go-board of f)1,j+1)− [1, 0], 1
2 · ((the

Go-board of f)1,j+1 + (the Go-board of f)1,j+2)− [1, 0]) misses L̃(f).

(32) L((the Go-board of f)1,1 − [1, 1], 1
2 · ((the Go-board of f)1,1 + (the Go-

board of f)1,2)− [1, 0]) misses L̃(f).

(33) L( 1
2 · ((the Go-board of f)1,width the Go-board of f−′1 + (the Go-board of

f)1,width the Go-board of f )− [1, 0], (the Go-board of f)1,width the Go-board of f +

[−1, 1]) misses L̃(f).

(34) Given j. Suppose 1 ≤ j and j + 2 ≤ width the Go-board
of f . Then L( 1

2 · ((the Go-board of f)len the Go-board of f , j + (the

Go-board of f)len the Go-board of f , j+1) + [1, 0], 1
2 · ((the Go-board of

f)len the Go-board of f , j+1 + (the Go-board of f)len the Go-board of f , j+2) + [1,

0]) misses L̃(f).

(35) L((the Go-board of f)len the Go-board of f , 1 + [1,−1], 1
2 · ((the Go-board

of f)len the Go-board of f , 1 + (the Go-board of f)len the Go-board of f , 2) + [1, 0])

misses L̃(f).

(36) L( 1
2 · ((the Go-board of f)len the Go-board of f , width the Go-board of f−′1 +

(the Go-board of f)len the Go-board of f , width the Go-board of f )+[1, 0], (the Go-

board of f)len the Go-board of f , width the Go-board of f + [1, 1]) misses L̃(f).

(37) If 1 ≤ k and k + 1 ≤ len f, then Int leftcell(f, k) misses L̃(f).

(38) If 1 ≤ k and k + 1 ≤ len f, then Int rightcell(f, k) misses L̃(f).
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1. Preliminaries

For simplicity we follow the rules: I, G, H will denote sets, i will be arbitrary,
A, B, M will denote many sorted sets indexed by I, s1, s2, s3 will denote families
of subsets of I, v, w will denote subsets of I, and F will denote a many sorted
function of I.

The scheme MSFExFunc deals with a set A, a many sorted set B indexed
by A, a many sorted set C indexed by A, and a ternary predicate P, and states
that:

There exists a many sorted function F from B into C such that for
arbitrary i if i ∈ A, then there exists a function f from B(i) into
C(i) such that f = F (i) and for arbitrary x such that x ∈ B(i)
holds P[f(x), x, i]

provided the following condition is satisfied:
• Let i be arbitrary. Suppose i ∈ A. Let x be arbitrary. If x ∈ B(i),

then there exists arbitrary y such that y ∈ C(i) and P[y, x, i].
We now state a number of propositions:

(1) If s1 6= ∅, then Intersect(s1) ⊆ ⋃ s1.

(2) If G ∈ s1, then Intersect(s1) ⊆ G.
(3) If ∅ ∈ s1, then Intersect(s1) = ∅.
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(4) For every subset Z of I such that for arbitrary Z1 such that Z1 ∈ s1

holds Z ⊆ Z1 holds Z ⊆ Intersect(s1).

(5) If s1 6= ∅ and for every set Z1 such that Z1 ∈ s1 holds G ⊆ Z1, then
G ⊆ Intersect(s1).

(6) If G ∈ s1 and G ⊆ H, then Intersect(s1) ⊆ H.
(7) If G ∈ s1 and G ∩H = ∅, then Intersect(s1) ∩H = ∅.
(8) If s3 = s1 ∪ s2, then Intersect(s3) = Intersect(s1) ∩ Intersect(s2).

(9) If s1 = {v}, then Intersect(s1) = v.

(10) If s1 = {v, w}, then Intersect(s1) = v ∩ w.
(11) If A ∈ B, then A is an element of B.

(12) For every non-empty many sorted set B indexed by I such that A is an
element of B holds A ∈ B.

(13) For every function f such that i ∈ I and f = F (i) holds
(rngκ F (κ))(i) = rng f.

(14) For every function f such that i ∈ I and f = F (i) holds
(domκ F (κ))(i) = dom f.

(15) For all many sorted functions F , G of I holds G ◦ F is a many sorted
function of I.

(16) Let A be a non-empty many sorted set indexed by I and let F be a
many sorted function from A into ∅I . Then F = ∅I .

(17) If A is transformable to B and F is a many sorted function from A into
B, then domκ F (κ) = A and rngκ F (κ) ⊆ B.

2. Finite Many Sorted Sets

Let us consider I. Note that every many sorted set indexed by I which is
empty yielding is also locally-finite.

Let us consider I. Note that ∅I is empty yielding and locally-finite.
Let us consider I, A. Note that there exists a many sorted subset of A which

is empty yielding and locally-finite.
Next we state the proposition

(18) If A ⊆ B and B is locally-finite, then A is locally-finite.

Let us consider I and let A be a locally-finite many sorted set indexed by I.
One can check that every many sorted subset of A is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by
I. Note that A ∪B is locally-finite.

Let us consider I, A and let B be a locally-finite many sorted set indexed by
I. Note that A ∩B is locally-finite.

Let us consider I, B and let A be a locally-finite many sorted set indexed by
I. Observe that A ∩B is locally-finite.
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Let us consider I, B and let A be a locally-finite many sorted set indexed by
I. Note that A \B is locally-finite.

Let us consider I, F and let A be a locally-finite many sorted set indexed by
I. Observe that F ◦ A is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by
I. Observe that [[A,B]] is locally-finite.

The following propositions are true:

(19) If B is non-empty and [[A,B]] is locally-finite, then A is locally-finite.

(20) If A is non-empty and [[A,B]] is locally-finite, then B is locally-finite.

(21) A is locally-finite iff 2A is locally-finite.

Let us consider I and let M be a locally-finite many sorted set indexed by
I. Observe that 2M is locally-finite.

The following propositions are true:

(22) Let A be a non-empty many sorted set indexed by I. Suppose A is
locally-finite and for every many sorted set M indexed by I such that
M ∈ A holds M is locally-finite. Then

⋃
A is locally-finite.

(23) If
⋃
A is locally-finite, then A is locally-finite and for every M such that

M ∈ A holds M is locally-finite.

(24) If domκ F (κ) is locally-finite, then rngκ F (κ) is locally-finite.

(25) SupposeA ⊆ rngκ F (κ) and for arbitrary i and for every function f such
that i ∈ I and f = F (i) holds f −1 A(i) is finite. Then A is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by
I. Observe that MSFuncs(A,B) is locally-finite.

Let us consider I and let A, B be locally-finite many sorted sets indexed by
I. Note that A−. B is locally-finite.

In the sequel X, Y , Z denote many sorted sets indexed by I.

One can prove the following propositions:

(26) Suppose X is locally-finite and X ⊆ [[Y,Z]]. Then there exist A, B such
that A is locally-finite and A ⊆ Y and B is locally-finite and B ⊆ Z and
X ⊆ [[A,B]].

(27) Suppose X is locally-finite and Z is locally-finite and X ⊆ [[Y,Z]]. Then
there exists A such that A is locally-finite and A ⊆ Y and X ⊆ [[A,Z]].

(28) Let M be a non-empty locally-finite many sorted set indexed by I.
Suppose that for all many sorted sets A, B indexed by I such that A ∈M
and B ∈ M holds A ⊆ B or B ⊆ A. Then there exists a many sorted
set m indexed by I such that m ∈ M and for every many sorted set K
indexed by I such that K ∈M holds m ⊆ K.

(29) Let M be a non-empty locally-finite many sorted set indexed by I.
Suppose that for all many sorted sets A, B indexed by I such that A ∈M
and B ∈ M holds A ⊆ B or B ⊆ A. Then there exists a many sorted
set m indexed by I such that m ∈ M and for every many sorted set K
indexed by I such that K ∈M holds K ⊆ m.
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(30) If Z is locally-finite and Z ⊆ rngκ F (κ), then there exists Y such that
Y ⊆ domκ F (κ) and Y is locally-finite and F ◦ Y = Z.

3. A Family of Subsets of Many Sorted Sets

Let us consider I, M .

(Def.1) A many sorted subset of 2M is said to be a subset family of M .

Let us consider I, M . Note that there exists a subset family of M which is
non-empty.

Let us consider I, M . Then 2M is a subset family of M .
Let us consider I, M . One can check that there exists a subset family of M

which is empty yielding and locally-finite.
One can prove the following proposition

(31) ∅I is an empty yielding locally-finite subset family of M .

Let us consider I and let M be a locally-finite many sorted set indexed by
I. Note that there exists a subset family of M which is non-empty and locally-
finite.

We follow the rules: S1, S2, S3 will be subset families of M , S4 will be a
non-empty subset family of M , and V , W will be many sorted subsets of M .

Let I be a non empty set, let M be a many sorted set indexed by I, let S1

be a subset family of M , and let i be an element of I. Then S1(i) is a family of
subsets of M(i).

The following propositions are true:

(32) If i ∈ I, then S1(i) is a family of subsets of M(i).

(33) If A ∈ S1, then A is a many sorted subset of M .

(34) S1 ∪ S2 is a subset family of M .

(35) S1 ∩ S2 is a subset family of M .

(36) S1 \ A is a subset family of M .

(37) S1−. S2 is a subset family of M .

(38) If A ⊆M, then {A} is a subset family of M .

(39) If A ⊆M and B ⊆M, then {A,B} is a subset family of M .

(40)
⋃
S1 ⊆M.

4. Intersection of a Family of Many Sorted Sets

Let us consider I, M , S1. The functor
⋂
S1 yields a many sorted set indexed

by I and is defined by:

(Def.2) For arbitrary i such that i ∈ I there exists a family Q of subsets of
M(i) such that Q = S1(i) and (

⋂
S1)(i) = Intersect(Q).
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Let us consider I, M , S1. Then
⋂
S1 is a many sorted subset of M .

We now state a number of propositions:

(41) If S1 = ∅I , then
⋂
S1 = M.

(42)
⋂
S4 ⊆

⋃
S4.

(43) If A ∈ S1, then
⋂
S1 ⊆ A.

(44) If ∅I ∈ S1, then
⋂
S1 = ∅I .

(45) Let Z, M be many sorted sets indexed by I and let S1 be a non-empty
subset family of M . Suppose that for every many sorted set Z1 indexed
by I such that Z1 ∈ S1 holds Z ⊆ Z1. Then Z ⊆ ⋂S1.

(46) If S1 ⊆ S2, then
⋂
S2 ⊆

⋂
S1.

(47) If A ∈ S1 and A ⊆ B, then
⋂
S1 ⊆ B.

(48) If A ∈ S1 and A ∩B = ∅I , then
⋂
S1 ∩B = ∅I .

(49) If S3 = S1 ∪ S2, then
⋂
S3 =

⋂
S1 ∩

⋂
S2.

(50) If S1 = {V }, then
⋂
S1 = V.

(51) If S1 = {V,W}, then
⋂
S1 = V ∩W.

(52) If A ∈ ⋂S1, then for every B such that B ∈ S1 holds A ∈ B.
(53) Let A, M be many sorted sets indexed by I and let S1 be a non-empty

subset family of M . Suppose A ∈ M and for every many sorted set B
indexed by I such that B ∈ S1 holds A ∈ B. Then A ∈ ⋂S1.

Let us consider I, M . A subset family of M is additive if:

(Def.3) For all A, B such that A ∈ it and B ∈ it holds A ∪B ∈ it.

A subset family of M is absolutely-additive if:

(Def.4) For every subset family F of M such that F ⊆ it holds
⋃
F ∈ it.

A subset family of M is multiplicative if:

(Def.5) For all A, B such that A ∈ it and B ∈ it holds A ∩B ∈ it.

A subset family of M is absolutely-multiplicative if:

(Def.6) For every subset family F of M such that F ⊆ it holds
⋂
F ∈ it.

A subset family of M is properly-upper-bound if:

(Def.7) M ∈ it.

A subset family of M is properly-lower-bound if:

(Def.8) ∅I ∈ it.

Let us consider I, M . Observe that there exists a subset family of M which is
non-empty additive absolutely-additive multiplicative absolutely-multiplicative
properly-upper-bound and properly-lower-bound.

Let us consider I, M . Then 2M is an additive absolutely-additive multi-
plicative absolutely-multiplicative properly-upper-bound properly-lower-bound
subset family of M .

Let us consider I, M . Note that every subset family of M which is absolutely-
additive is also additive.

Let us consider I, M . Note that every subset family of M which is absolutely-
multiplicative is also multiplicative.



456 artur korni lowicz

Let us consider I, M . One can check that every subset family of M which is
absolutely-multiplicative is also properly-upper-bound.

Let us consider I, M . Observe that every subset family of M which is
properly-upper-bound is also non-empty.

Let us consider I, M . Note that every subset family of M which is absolutely-
additive is also properly-lower-bound.

Let us consider I, M . Note that every subset family of M which is properly-
lower-bound is also non-empty.
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1. Introduction

In this paper A will be a set and k, m, n will be natural numbers.
The scheme Regr1 concerns a natural number A and a unary predicate P,

and states that:
For every k such that k ≤ A holds P[k]

provided the parameters meet the following conditions:
• P[A],
• For every k such that k < A and P[k + 1] holds P[k].
Let n be a natural number. Observe that Seg(n+ 1) is non empty.
Let X be a non empty set and let R be an order in X. Note that 〈X,R〉 is

non empty.
One can prove the following proposition

(1) ∅ |2 A = ∅.
Let X be a set. Note that there exists a subset of FinX which is non empty.
Let X be a non empty set. Note that there exists a subset of FinX which is

non empty and has non empty elements.
Let X be a non empty set and let F be a non empty subset of FinX with

non empty elements. Observe that there exists an element of F which is non
empty.

A set has a non-empty element if:
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(Def.1) There exists a non empty set X such that X ∈ it.

Let us mention that there exists a set which has a non-empty element.
Let X be a set with a non-empty element. Note that there exists an element

of X which is non empty.
One can check that every set which has a non-empty element is non empty.
Let X be a non empty set. Note that there exists a subset of FinX which

has a non-empty element.
Let X be a non empty set, let F be a subset of FinX with a non-empty

element, let R be an order in X, and let A be an element of F . Then R |2 A is
an order in A.

The scheme SubFinite concerns a set A, a subset B of A, and a unary pred-
icate P, and states that:

P[B]
provided the following conditions are satisfied:
• B is finite,
• P[∅A],
• For every element x of A and for every subset B of A such that
x ∈ B and B ⊆ B and P[B] holds P[B ∪ {x}].

We now state the proposition

(2) Let F be a non empty poset and let A be a subset of F . Suppose A
is finite and A 6= ∅ and for all elements B, C of F such that B ∈ A and
C ∈ A holds B ≤ C or C ≤ B. Then there exists an element m of F such
that m ∈ A and for every element C of F such that C ∈ A holds m ≤ C.

Let X be a non empty set and let F be a subset of FinX with a non-empty
element. Observe that there exists an element of F which is finite and non
empty.

Let A be a non empty poset and let a1, a2 be elements of A. We introduce
a2 ≥ a1 as a synonym of a1 ≤ a2 We introduce a2 > a1 as a synonym of a1 < a2.

Let P be a non empty poset. Note that there exists a subset of P which is
non empty and finite.

Let P be a non empty poset, let A be a non empty finite subset of P , and
let x be an element of P . One can check that InitSegm(A, x) is finite.

The following proposition is true

(3) For all finite sets A, B such that A ⊆ B and cardA = cardB holds
A = B.

Let A, B be non empty sets, let f be a function from A into B, and let x be
an element of A. Then f(x) is an element of B.

Let F be a non empty poset and let A be a non empty subset of F . We see
that the element of A is an element of F .

Let X be a non empty set, let F be a subset of FinX with a non-empty
element, let A be a non empty element of F , and let R be an order in X. Let
us assume that R linearly orders A. The functor SgmX(R,A) yields a finite
sequence of elements of the carrier of 〈A,R |2A〉 and is defined by the conditions
(Def.2).
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(Def.2) (i) rng SgmX(R,A) = A, and
(ii) for all natural numbers n, m and for all elements p, q of 〈A,R |2 A〉

such that n ∈ dom SgmX(R,A) and m ∈ dom SgmX(R,A) and n < m
and p = πn SgmX(R,A) and q = πm SgmX(R,A) holds p > q.

Next we state the proposition

(4) Let X be a non empty set, and let F be a subset of FinX with a non-
empty element, and let A be a non empty element of F , and let R be an
order in X, and let f be a finite sequence of elements of the carrier of
〈X,R〉. Suppose that

(i) rng f = A, and
(ii) for all natural numbers n, m and for all elements p, q of 〈X,R〉 such

that n ∈ dom f and m ∈ dom f and n < m and p = πnf and q = πmf
holds p > q.
Then f = SgmX(R,A).

2. Abstract Complexes

Let C be a non empty poset. The functor symplexes(C) yields a subset of
Fin (the carrier of C) and is defined by:

(Def.3) symplexes(C) = {A : A ranges over elements of Fin (the carrier of C),
the internal relation of C linearly orders A}.

Let C be a non empty poset. Note that symplexes(C) has a non-empty
element.

In the sequel C denotes a non empty poset.
Next we state three propositions:

(5) For every element x of C holds {x} ∈ symplexes(C).

(6) ∅ ∈ symplexes(C).

(7) For arbitrary x, s such that x ⊆ s and s ∈ symplexes(C) holds x ∈
symplexes(C).

Let us consider C. Observe that every element of symplexes(C) is finite.
One can prove the following propositions:

(8) For every non empty poset C and for every non empty element A of
symplexes(C) holds SgmX(the internal relation of C, A) is one-to-one.

(9) Let C be a non empty poset and let A be a non empty element of

symplexes(C). If A = n, then len SgmX(the internal relation of C, A) =
n.

(10) Let C be a non empty poset and let A be a non empty element of

symplexes(C). If A = n, then dom SgmX(the internal relation of C,
A) = Segn.

Let C be a non empty poset. One can verify that there exists an element of
symplexes(C) which is non empty.
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3. Triangulations

A set sequence is a many sorted set indexed by  .

A set sequence is lower non-empty if:

(Def.4) For every n such that it(n) is non empty and for every m such that
m < n holds it(m) is non empty.

Let us observe that there exists a set sequence which is lower non-empty.

Let X be a set sequence. The functor FuncsSeq(X) yields a set sequence and
is defined by:

(Def.5) For every natural number n holds (FuncsSeq(X))(n) = X(n)X(n+1).

Let X be a lower non-empty set sequence and let n be a natural number.
Observe that (FuncsSeq(X))(n) is non empty.

Let us consider n and let f be an element of (Seg(n+ 1))Seg n. The functor
@f yields a finite sequence of elements of � and is defined as follows:

(Def.6) @f = f.

The set sequence NatEmbSeq is defined by:

(Def.7) For every natural number n holds (NatEmbSeq)(n) = {f : f ranges
over elements of (Seg(n+ 1))Seg n, @f is increasing}.

Let us consider n. Observe that (NatEmbSeq)(n) is non empty.

Let n be a natural number. Note that every element of NatEmbSeq(n) is
function-like and relation-like.

Let X be a set sequence.

(Def.8) A many sorted function from NatEmbSeq into FuncsSeq(X) is called a
triangulation of X.

We consider triangulation structures as systems

〈 a skeleton sequence, a faces assignment 〉,
where the skeleton sequence is a set sequence and the faces assignment is a many
sorted function from NatEmbSeq into FuncsSeq(the skeleton sequence).

Let T be a triangulation structure. We say that T is lower non-empty if and
only if:

(Def.9) The skeleton sequence of T is lower non-empty.

Let us note that there exists a triangulation structure which is lower non-
empty and strict.

Let T be a lower non-empty triangulation structure. Note that the skeleton
sequence of T is lower non-empty.

Let S be a lower non-empty set sequence and let F be a many sorted function
from NatEmbSeq into FuncsSeq(S). Note that 〈S, F 〉 is lower non-empty.



on the concept of the triangulation 461

4. Relationship Between Abstract Complexes and Triangulations

Let T be a triangulation structure and let n be a natural number. A symplex
of T and n is an element of (the skeleton sequence of T )(n).

Let n be a natural number. A face of n is an element of (NatEmbSeq)(n).
Let T be a lower non-empty triangulation structure, let n be a natural num-

ber, let x be a symplex of T and n+ 1, and let f be a face of n. Let us assume
that (the skeleton sequence of T )(n + 1) 6= ∅. The functor face(x, f) yields a
symplex of T and n and is defined by:

(Def.10) For all functions F , G such that F = (the faces assignment of T )(n)
and G = F (f) holds face(x, f) = G(x).

Let C be a non empty poset. The functor Triang(C) yielding a lower non-
empty strict triangulation structure is defined by the conditions (Def.11).

(Def.11) (i) (The skeleton sequence of Triang(C))(0) = {∅},
(ii) for every natural number n such that n > 0 holds (the skeleton sequence

of Triang(C))(n) = {SgmX(the internal relation of C, A) : A ranges over

non empty elements of symplexes(C), A = n}, and
(iii) for every natural number n and for every face f of n and for every

element s of (the skeleton sequence of Triang(C))(n+1) such that s ∈ (the
skeleton sequence of Triang(C))(n+ 1) and for every non empty element
A of symplexes(C) such that SgmX(the internal relation of C, A) = s
holds face(s, f) = SgmX(the internal relation of C, A) · f.
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