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Summary. The dual concept to filters (see [2,3]) i.e. ideals of a
lattice is introduced.
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The articles [12], [14], [13], [4], [15], [6], [10], [9], [7], [5], [16], [8], [2], [11], [3],
and [1] provide the notation and terminology for this paper.

1. Some Properties of the Restriction of Binary Operations

In this paper D is a non empty set.
We now state several propositions:

(1) Let D be a non empty set, and let S be a non empty subset of D, and
let f be a binary operation on D, and let g be a binary operation on S.
Suppose g = f

�
[:S, S :]. Then

(i) if f is commutative, then g is commutative,
(ii) if f is idempotent, then g is idempotent, and

(iii) if f is associative, then g is associative.

(2) Let D be a non empty set, and let S be a non empty subset of D, and
let f be a binary operation on D, and let g be a binary operation on S,
and let d be an element of D, and let d′ be an element of S. Suppose
g = f

�
[:S, S :] and d′ = d. Then

(i) if d is a left unity w.r.t. f , then d′ is a left unity w.r.t. g,
(ii) if d is a right unity w.r.t. f , then d′ is a right unity w.r.t. g, and

(iii) if d is a unity w.r.t. f , then d′ is a unity w.r.t. g.

(3) Let D be a non empty set, and let S be a non empty subset of D, and
let f1, f2 be binary operations on D, and let g1, g2 be binary operations
on S. Suppose g1 = f1

�
[:S, S :] and g2 = f2

�
[:S, S :]. Then
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(i) if f1 is left distributive w.r.t. f2, then g1 is left distributive w.r.t. g2,
and

(ii) if f1 is right distributive w.r.t. f2, then g1 is right distributive w.r.t.
g2.

(4) Let D be a non empty set, and let S be a non empty subset of D, and
let f1, f2 be binary operations on D, and let g1, g2 be binary operations
on S. Suppose g1 = f1

�
[:S, S :] and g2 = f2

�
[:S, S :]. If f1 is distributive

w.r.t. f2, then g1 is distributive w.r.t. g2.

(5) Let D be a non empty set, and let S be a non empty subset of D, and
let f1, f2 be binary operations on D, and let g1, g2 be binary operations
on S. If g1 = f1

�
[:S, S :] and g2 = f2

�
[:S, S :], then if f1 absorbs f2, then

g1 absorbs g2.

2. Closed Subsets of a Lattice

Let D be a non empty set and let X1, X2 be subsets of D. Let us observe
that X1 = X2 if and only if:

(Def.1) For every element x of D holds x ∈ X1 iff x ∈ X2.

For simplicity we follow the rules: L will denote a lattice, p, q, r will denote
elements of the carrier of L, p′, q′ will denote elements of the carrier of L◦, and
x will be arbitrary.

Next we state several propositions:

(6) Let L1, L2 be lattice structures. Suppose the lattice structure of L1 =
the lattice structure of L2. Then L1

◦ = L2
◦.

(7) (L◦)◦ = the lattice structure of L.

(8) Let L1, L2 be non empty lattice structures. Suppose the lattice struc-
ture of L1 = the lattice structure of L2. Let a1, b1 be elements of the
carrier of L1 and let a2, b2 be elements of the carrier of L2. Suppose
a1 = a2 and b1 = b2. Then a1 t b1 = a2 t b2 and a1 u b1 = a2 u b2 and
a1 v b1 iff a2 v b2.

(9) Let L1, L2 be lower bound lattices. Suppose the lattice structure of
L1 = the lattice structure of L2. Then ⊥(L1) = ⊥(L2).

(10) Let L1, L2 be upper bound lattices. Suppose the lattice structure of
L1 = the lattice structure of L2. Then >(L1) = >(L2).

(11) Let L1, L2 be complemented lattices. Suppose the lattice structure of
L1 = the lattice structure of L2. Let a1, b1 be elements of the carrier of
L1 and let a2, b2 be elements of the carrier of L2. If a1 = a2 and b1 = b2
and a1 is a complement of b1, then a2 is a complement of b2.

(12) Let L1, L2 be Boolean lattices. Suppose the lattice structure of L1 = the
lattice structure of L2. Let a be an element of the carrier of L1 and let b
be an element of the carrier of L2. If a = b, then ac = bc.
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Let us consider L. A subset of the carrier of L is said to be a closed subset
of L if:

(Def.2) For all p, q such that p ∈ it and q ∈ it holds p u q ∈ it and p t q ∈ it.

Let us consider L. Observe that there exists a closed subset of L which is
non empty.

The following two propositions are true:

(13) Let X be a subset of the carrier of L. Suppose that for all p, q holds
p ∈ X and q ∈ X iff p u q ∈ X. Then X is a closed subset of L.

(14) Let X be a subset of the carrier of L. Suppose that for all p, q holds
p ∈ X and q ∈ X iff p t q ∈ X. Then X is a closed subset of L.

Let us consider L. Then [L) is a filter of L. Let p be an element of the carrier
of L. Then [p) is a filter of L.

Let us consider L and let D be a non empty subset of the carrier of L. Then
[D) is a filter of L.

Let L be a distributive lattice and let F1, F2 be filters of L. Then F1 uF2 is
a filter of L.

Let us consider L. A non empty closed subset of L is called an ideal of L if:

(Def.3) p ∈ it and q ∈ it iff p t q ∈ it.

Next we state three propositions:

(15) Let X be a non empty subset of the carrier of L. Suppose that for all
p, q holds p ∈ X and q ∈ X iff p t q ∈ X. Then X is an ideal of L.

(16) Let L1, L2 be lattices. Suppose the lattice structure of L1 = the lattice
structure of L2. Given x. If x is a filter of L1, then x is a filter of L2.

(17) Let L1, L2 be lattices. Suppose the lattice structure of L1 = the lattice
structure of L2. Given x. If x is an ideal of L1, then x is an ideal of L2.

Let us consider L, p. The functor p◦ yielding an element of the carrier of L◦

is defined by:

(Def.4) p◦ = p.

Let us consider L and let p be an element of the carrier of L◦. The functor
◦p yields an element of the carrier of L and is defined as follows:

(Def.5) ◦p = p.

Next we state four propositions:

(18) ◦p◦ = p and (◦p′)◦ = p′.
(19) puq = p◦tq◦ and ptq = p◦uq◦ and p′uq′ = ◦p′t◦q′ and p′tq′ = ◦p′u◦q′.
(20) p v q iff q◦ v p◦ and p′ v q′ iff ◦q′ v ◦p′.
(21) x is an ideal of L iff x is a filter of L◦.

Let us consider L and let X be a subset of the carrier of L. The functor X ◦

yielding a subset of the carrier of L◦ is defined as follows:

(Def.6) X◦ = X.

Let us consider L and let X be a subset of the carrier of L◦. The functor ◦X
yielding a subset of the carrier of L is defined by:
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(Def.7) ◦X = X.

Let us consider L and let D be a non empty subset of the carrier of L.
Observe that D◦ is non empty.

Let us consider L and let D be a non empty subset of the carrier of L◦.
Observe that ◦D is non empty.

Let us consider L and let S be a closed subset of L. Then S◦ is a closed
subset of L◦.

Let us consider L and let S be a non empty closed subset of L. Then S◦ is
a non empty closed subset of L◦.

Let us consider L and let S be a closed subset of L◦. Then ◦S is a closed
subset of L.

Let us consider L and let S be a non empty closed subset of L◦. Then ◦S is
a non empty closed subset of L.

Let us consider L and let F be a filter of L. Then F ◦ is an ideal of L◦.
Let us consider L and let F be a filter of L◦. Then ◦F is an ideal of L.
Let us consider L and let I be an ideal of L. Then I ◦ is a filter of L◦.
Let us consider L and let I be an ideal of L◦. Then ◦I is a filter of L.
We now state the proposition

(22) Let D be a non empty subset of the carrier of L. Then D is an ideal of
L if and only if the following conditions are satisfied:

(i) for all p, q such that p ∈ D and q ∈ D holds p t q ∈ D, and
(ii) for all p, q such that p ∈ D and q v p holds q ∈ D.
In the sequel I, J will be ideals of L and F will be a filter of L.
One can prove the following propositions:

(23) If p ∈ I, then p u q ∈ I and q u p ∈ I.
(24) There exists p such that p ∈ I.
(25) If L is lower-bounded, then ⊥L ∈ I.
(26) If L is lower-bounded, then {⊥L} is an ideal of L.

(27) If {p} is an ideal of L, then L is lower-bounded.

3. Ideals Generated by Subsets of a Lattice

Next we state the proposition

(28) The carrier of L is an ideal of L.

Let us consider L. The functor (L] yielding an ideal of L is defined as follows:

(Def.8) (L] = the carrier of L.

Let us consider L, p. The functor (p] yields an ideal of L and is defined as
follows:

(Def.9) (p] = {q : q v p}.
We now state four propositions:

(29) q ∈ (p] iff q v p.
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(30) (p] = [p◦) and (p◦] = [p).

(31) p ∈ (p] and p u q ∈ (p] and q u p ∈ (p].

(32) If L is upper-bounded, then (L] = (>L].

Let us consider L, I. We say that I is maximal if and only if:

(Def.10) I 6= the carrier of L and for every J such that I ⊆ J and J 6= the carrier
of L holds I = J.

One can prove the following four propositions:

(33) I is maximal iff I◦ is an ultrafilter.

(34) If L is upper-bounded, then for every I such that I 6= the carrier of L
there exists J such that I ⊆ J and J is maximal.

(35) If there exists r such that p t r 6= p, then (p] 6= the carrier of L.

(36) If L is upper-bounded and p 6= >L, then there exists I such that p ∈ I
and I is maximal.

In the sequel D denotes a non empty subset of the carrier of L and D ′ denotes
a non empty subset of the carrier of L◦.

Let us consider L, D. The functor (D] yields an ideal of L and is defined as
follows:

(Def.11) D ⊆ (D] and for every I such that D ⊆ I holds (D] ⊆ I.
We now state two propositions:

(37) [D◦) = (D] and [D) = (D◦] and [◦D′) = (D′] and [D′) = (◦D′].

(38) (I] = I.

In the sequel D1, D2 are non empty subsets of the carrier of L and D ′1, D′2
are non empty subsets of the carrier of L◦.

The following propositions are true:

(39) If D1 ⊆ D2, then (D1] ⊆ (D2] and ((D]] ⊆ (D].

(40) If p ∈ D, then (p] ⊆ (D].

(41) If D = {p}, then (D] = (p].

(42) If L is upper-bounded and >L ∈ D, then (D] = (L] and (D] = the
carrier of L.

(43) If L is upper-bounded and >L ∈ I, then I = (L] and I = the carrier of
L.

Let us consider L, I. We say that I is prime if and only if:

(Def.12) p u q ∈ I iff p ∈ I or q ∈ I.
The following proposition is true

(44) I is prime iff I◦ is prime.

Let us consider L, D1, D2. The functor D1tD2 yielding a non empty subset
of the carrier of L is defined by:

(Def.13) D1 tD2 = {p t q : p ∈ D1 ∧ q ∈ D2}.
We now state four propositions:
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(45) D1tD2 = D1
◦uD2

◦ and D1
◦tD2

◦ = D1uD2 and D′1tD′2 = ◦D′1u◦D′2
and ◦D′1 t ◦D′2 = D′1 uD′2.

(46) If p ∈ D1 and q ∈ D2, then p t q ∈ D1 tD2 and q t p ∈ D1 tD2.

(47) If x ∈ D1 t D2, then there exist p, q such that x = p t q and p ∈ D1

and q ∈ D2.

(48) D1 tD2 = D2 tD1.

Let L be a distributive lattice and let I1, I2 be ideals of L. Then I1 t I2 is
an ideal of L.

The following four propositions are true:

(49) (D1 ∪D2] = ((D1] ∪D2] and (D1 ∪D2] = (D1 ∪ (D2]].

(50) (I ∪ J ] = {r :
∨
p,q r v p t q ∧ p ∈ I ∧ q ∈ J}.

(51) I ⊆ I t J and J ⊆ I t J.
(52) (I ∪ J ] = (I t J ].

We follow the rules: B denotes a Boolean lattice, I3, J1 denote ideals of B,
and a, b denote elements of the carrier of B.

The following propositions are true:

(53) L is a complemented lattice iff L◦ is a complemented lattice.

(54) L is a Boolean lattice iff L◦ is a Boolean lattice.

Let B be a Boolean lattice. One can verify that B◦ is Boolean and lattice-like.
In the sequel a′ will denote an element of the carrier of (B qua lattice)◦ .
The following propositions are true:

(55) (a◦)c = ac and (◦a′)c = a′c.
(56) (I3 ∪ J1] = I3 t J1.

(57) I3 is maximal iff I3 6= the carrier of B and for every a holds a ∈ I3 or
ac ∈ I3.

(58) I3 6= (B] and I3 is prime iff I3 is maximal.

(59) If I3 is maximal, then for every a holds a ∈ I3 iff ac /∈ I3.

(60) If a 6= b, then there exists I3 such that I3 is maximal but a ∈ I3 and
b /∈ I3 or a /∈ I3 and b ∈ I3.

In the sequel P denotes a non empty closed subset of L and o1, o2 denote
binary operations on P .

One can prove the following two propositions:

(61) (i) (The join operation of L)
�
[:P, P :] is a binary operation on P , and

(ii) (the meet operation of L)
�
[:P, P :] is a binary operation on P .

(62) Suppose o1 = (the join operation of L)
�

[:P, P :] and o2 = (the meet
operation of L)

�
[:P, P :]. Then o1 is commutative and associative and o2

is commutative and associative and o1 absorbs o2 and o2 absorbs o1.

Let us consider L, p, q. Let us assume that p v q. The functor [p, q] yielding
a non empty closed subset of L is defined by:

(Def.14) [p, q] = {r : p v r ∧ r v q}.
We now state several propositions:
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(63) If p v q, then r ∈ [p, q] iff p v r and r v q.
(64) If p v q, then p ∈ [p, q] and q ∈ [p, q].

(65) [p, p] = {p}.
(66) If L is upper-bounded, then [p) = [p,>L].

(67) If L is lower-bounded, then (p] = [⊥L, p].
(68) Let L1, L2 be lattices, and let F1 be a filter of L1, and let F2 be a filter

of L2. Suppose the lattice structure of L1 = the lattice structure of L2

and F1 = F2. Then � (F1 ) = � (F2 ).

4. Sublattices

Let us consider L. Let us note that the sublattice of L can be characterized
by the following (equivalent) condition:

(Def.15) There exist P , o1, o2 such that
(i) o1 = (the join operation of L)

�
[:P, P :],

(ii) o2 = (the meet operation of L)
�
[:P, P :], and

(iii) the lattice structure of it = 〈P, o1, o2〉.
The following proposition is true

(69) For every sublattice K of L holds every element of the carrier of K is
an element of the carrier of L.

Let us consider L, P . The functor � LP yields a strict sublattice of L and is
defined as follows:

(Def.16) There exist o1, o2 such that o1 = (the join operation of L)
�
[:P, P :] and

o2 = (the meet operation of L)
�
[:P, P :] and � LP = 〈P, o1, o2〉.

Let us consider L and let l be a sublattice of L. Then l◦ is a strict sublattice
of L◦.

Next we state a number of propositions:

(70) � F = � LF .
(71) � LP = ( � L◦P ◦ )◦.
(72) � L(L] = the lattice structure of L and � L[L) = the lattice structure of L.

(73) (i) The carrier of � LP = P,
(ii) the join operation of � LP = (the join operation of L)

�
[:P, P :], and

(iii) the meet operation of � LP = (the meet operation of L)
�
[:P, P :].

(74) For all p, q and for all elements p′, q′ of the carrier of � LP such that
p = p′ and q = q′ holds p t q = p′ t q′ and p u q = p′ u q′.

(75) For all p, q and for all elements p′, q′ of the carrier of � LP such that
p = p′ and q = q′ holds p v q iff p′ v q′.

(76) If L is lower-bounded, then � LI is lower-bounded.

(77) If L is modular, then � LP is modular.

(78) If L is distributive, then � LP is distributive.
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(79) If L is implicative and p v q, then � L[p,q] is implicative.

(80) � L(p] is upper-bounded.

(81) > � L
(p]

= p.

(82) If L is lower-bounded, then � L(p] is lower-bounded and ⊥ � L
(p]

= ⊥L.
(83) If L is lower-bounded, then � L(p] is bounded.

(84) If p v q, then � L[p,q] is bounded and > � L
[p,q]

= q and ⊥ � L
[p,q]

= p.

(85) If L is a complemented lattice and modular, then � L(p] is a complemented

lattice.

(86) If L is a complemented lattice and modular and p v q, then � L[p,q] is a

complemented lattice.

(87) If L is a Boolean lattice and p v q, then � L[p,q] is a Boolean lattice.
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[16] Stanis law Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215–
222, 1990.

Received October 24, 1994



FORMALIZED MATHEMATICS

Volume 5, Number 2, 1996

Warsaw University - Bia lystok

Categorial Categories and Slice Categories

Grzegorz Bancerek
Institute of Mathematics

Polish Academy of Sciences

Summary. By categorial categories we mean categories with cat-
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The terminology and notation used here are introduced in the following articles:
[14], [16], [9], [15], [11], [17], [2], [3], [5], [12], [10], [7], [6], [4], [8], [1], and [13].

1. Categories with Triple-like Morphisms

Let D1, D2, D be non empty sets and let x be an element of [: [:D1, D2 :],
D :]. Then x1,1 is an element of D1. Then x1,2 is an element of D2.

Let D1, D2 be non empty sets and let x be an element of [:D1, D2 :]. Then
x2 is an element of D2.

Next we state the proposition

(1) Let C, D be category structures. Suppose the category structure of
C = the category structure of D. If C is category-like, then D is category-
like.

A category structure has triple-like morphisms if:

(Def.1) For every morphism f of it there exists a set x such that f = 〈〈〈〈dom f,
cod f〉〉, x〉〉.

One can verify that there exists a strict category has triple-like morphisms.
Next we state the proposition

(2) Let C be a category structure with triple-like morphisms and let f be a
morphism of C. Then dom f = f1,1 and cod f = f1,2 and f = 〈〈〈〈dom f,
cod f〉〉, f2〉〉.
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Let C be a category structure with triple-like morphisms and let f be a
morphism of C. Then f1,1 is an object of C. Then f1,2 is an object of C.

In this article we present several logical schemes. The scheme CatEx concerns
non empty sets A, B, a binary functor F yielding arbitrary, and a ternary
predicate P, and states that:

There exists a strict category C with triple-like morphisms such
that
(i) the objects of C = A,
(ii) for all elements a, b of A and for every element f of B such
that P[a, b, f ] holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of C,
(iii) for every morphism m of C there exist elements a, b of A
and there exists an element f of B such that m = 〈〈〈〈a, b〉〉, f〉〉 and
P[a, b, f ], and
(iv) for all morphisms m1, m2 of C and for all elements a1, a2, a3

of A and for all elements f1, f2 of B such that m1 = 〈〈〈〈a1, a2〉〉, f1〉〉
and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 ·m1 = 〈〈〈〈a1, a3〉〉, F(f2, f1)〉〉

provided the parameters meet the following requirements:
• For all elements a, b, c of A and for all elements f , g of B such that
P[a, b, f ] and P[b, c, g] holds F(g, f) ∈ B and P[a, c,F(g, f)],

• Let a be an element of A. Then there exists an element f of B such
that
(i) P[a, a, f ], and
(ii) for every element b of A and for every element g of B holds
if P[a, b, g], then F(g, f) = g and if P[b, a, g], then F(f, g) = g,

• Let a, b, c, d be elements of A and let f , g, h be elements of
B. If P[a, b, f ] and P[b, c, g] and P[c, d, h], then F(h,F(g, f)) =
F(F(h, g), f).

The scheme CatUniq deals with non empty sets A, B, a binary functor F
yielding arbitrary, and a ternary predicate P, and states that:

Let C1, C2 be strict categories with triple-like morphisms. Suppose
that
(i) the objects of C1 = A,
(ii) for all elements a, b of A and for every element f of B such
that P[a, b, f ] holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of C1,
(iii) for every morphism m of C1 there exist elements a, b of A
and there exists an element f of B such that m = 〈〈〈〈a, b〉〉, f〉〉 and
P[a, b, f ],
(iv) for all morphisms m1, m2 of C1 and for all elements a1, a2,
a3 of A and for all elements f1, f2 of B such that m1 = 〈〈〈〈a1, a2〉〉,
f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 ·m1 = 〈〈〈〈a1, a3〉〉, F(f2, f1)〉〉,
(v) the objects of C2 = A,
(vi) for all elements a, b of A and for every element f of B such
that P[a, b, f ] holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of C2,

(vii) for every morphism m of C2 there exist elements a, b of A
and there exists an element f of B such that m = 〈〈〈〈a, b〉〉, f〉〉 and
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P[a, b, f ], and
(viii) for all morphisms m1, m2 of C2 and for all elements a1, a2,
a3 of A and for all elements f1, f2 of B such that m1 = 〈〈〈〈a1, a2〉〉,
f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 ·m1 = 〈〈〈〈a1, a3〉〉, F(f2, f1)〉〉.

Then C1 = C2

provided the parameters meet the following requirement:
• Let a be an element of A. Then there exists an element f of B such

that
(i) P[a, a, f ], and
(ii) for every element b of A and for every element g of B holds
if P[a, b, g], then F(g, f) = g and if P[b, a, g], then F(f, g) = g.

The scheme FunctorEx concerns categories A, B, a unary functor F yielding
an object of B, and a unary functor G yielding a set, and states that:

There exists a functor F from A to B such that for every morphism
f of A holds F (f) = G(f)

provided the following conditions are met:
• Let f be a morphism of A. Then G(f) is a morphism of B and for

every morphism g of B such that g = G(f) holds dom g = F(dom f)
and cod g = F(cod f),

• For every object a of A holds G(ida) = idF(a),
• For all morphisms f1, f2 of A and for all morphisms g1, g2 of B

such that g1 = G(f1) and g2 = G(f2) and dom f2 = cod f1 holds
G(f2 · f1) = g2 · g1.

We now state two propositions:

(3) Let C1 be a category and let C2 be a subcategory of C1. Suppose C1 is
a subcategory of C2. Then the category structure of C1 = the category
structure of C2.

(4) For every category C and for every subcategory D of C holds every
subcategory of D is a subcategory of C.

Let C1, C2 be categories. Let us assume that there exists a category C such
that C1 is a subcategory of C and C2 is a subcategory of C. And let us assume
that there exists an object o1 of C1 such that o1 is an object of C2. The functor
C1 ∩ C2 yields a strict category and is defined by the conditions (Def.2).

(Def.2) (i) The objects of C1 ∩ C2 = (the objects of C1) ∩ (the objects of C2),
(ii) the morphisms of C1 ∩C2 = (the morphisms of C1) ∩ (the morphisms

of C2),
(iii) the dom-map of C1 ∩ C2 = (the dom-map of C1)

�
(the morphisms of

C2),
(iv) the cod-map of C1 ∩ C2 = (the cod-map of C1)

�
(the morphisms of

C2),
(v) the composition of C1∩C2 = (the composition of C1)

�
([: the morphisms

of C2, the morphisms of C2 :] qua set), and
(vi) the id-map of C1 ∩ C2 = (the id-map of C1)

�
(the objects of C2).

In the sequel C is a category and C1, C2 are subcategories of C.
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The following propositions are true:

(5) If (the objects of C1)∩ (the objects of C2) 6= ∅, then C1∩C2 = C2∩C1.

(6) If (the objects of C1) ∩ (the objects of C2) 6= ∅, then C1 ∩ C2 is a
subcategory of C1 and C1 ∩ C2 is a subcategory of C2.

Let C, D be categories and let F be a functor from C to D. The functor
ImF yields a strict subcategory of D and is defined by the conditions (Def.3).

(Def.3) (i) The objects of ImF = rng ObjF,
(ii) rngF ⊆ the morphisms of ImF, and
(iii) for every subcategory E of D such that the objects of E = rng ObjF

and rngF ⊆ the morphisms of E holds ImF is a subcategory of E.

Next we state three propositions:

(7) Let C, D be categories, and let E be a subcategory of D, and let F
be a functor from C to D. If rngF ⊆ the morphisms of E, then F is a
functor from C to E.

(8) For all categories C, D holds every functor from C to D is a functor
from C to ImF.

(9) Let C, D be categories, and let E be a subcategory of D, and let F be
a functor from C to E, and let G be a functor from C to D. If F = G,
then ImF = ImG.

2. Categorial Categories

A set is categorial if:

(Def.4) For every set x such that x ∈ it holds x is a category.

One can check that there exists a non empty set which is categorial. Let us
observe that a non empty set is categorial if:

(Def.5) Every element of it is a category.

A category is categorial if it satisfies the conditions (Def.6).

(Def.6) (i) The objects of it is categorial,
(ii) for every object a of it and for every category A such that a = A holds

ida = 〈〈〈〈A, A〉〉, idA〉〉,
(iii) for every morphism m of it and for all categories A, B such that

A = domm and B = codm there exists a functor F from A to B such
that m = 〈〈〈〈A, B〉〉, F 〉〉, and

(iv) for all morphisms m1, m2 of it and for all categories A, B, C and for
every functor F from A to B and for every functor G from B to C such
that m1 = 〈〈〈〈A, B〉〉, F 〉〉 and m2 = 〈〈〈〈B, C〉〉, G〉〉 holds m2 ·m1 = 〈〈〈〈A, C〉〉,
G · F 〉〉.

Let us mention that every category which is categorial has triple-like mor-
phisms.

One can prove the following two propositions:
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(10) Let C, D be categories. Suppose the category structure of C = the
category structure of D. If C is categorial, then D is categorial.

(11) For every category C holds ˙�
(C, 〈〈〈〈C, C〉〉, idC〉〉) is categorial.

Let us note that there exists a strict category which is categorial.

We now state two propositions:

(12) For every categorial category C holds every object of C is a category.

(13) For every categorial category C and for every morphism f of C holds
dom f = f1,1 and cod f = f1,2.

Let C be a categorial category and let m be a morphism of C. Then m1,1 is
a category. Then m1,2 is a category.

We now state the proposition

(14) Let C1, C2 be categorial categories. Suppose the objects of C1 = the
objects of C2 and the morphisms of C1 = the morphisms of C2. Then the
category structure of C1 = the category structure of C2.

Let C be a categorial category. One can check that every subcategory of C
is categorial.

We now state the proposition

(15) Let C, D be categorial categories. Suppose the morphisms of C ⊆ the
morphisms of D. Then C is a subcategory of D.

Let a be a set. Let us assume that a is a category. The functor cat a yields
a category and is defined by:

(Def.7) cat a = a.

One can prove the following proposition

(16) For every categorial category C and for every object c of C holds cat c =
c.

Let C be a categorial category and let m be a morphism of C. Then m2 is
a functor from cat domm to cat codm.

Next we state two propositions:

(17) Let X be a categorial non empty set and let Y be a non empty set.
Suppose that

(i) for all elements A, B, C of X and for every functor F from A to B
and for every functor G from B to C such that F ∈ Y and G ∈ Y holds
G · F ∈ Y, and

(ii) for every element A of X holds idA ∈ Y.
Then there exists a strict categorial category C such that

(iii) the objects of C = X, and

(iv) for all elements A, B of X and for every functor F from A to B holds
〈〈〈〈A, B〉〉, F 〉〉 is a morphism of C iff F ∈ Y.

(18) Let X be a categorial non empty set, and let Y be a non empty set,
and let C1, C2 be strict categorial categories. Suppose that

(i) the objects of C1 = X,
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(ii) for all elements A, B of X and for every functor F from A to B holds
〈〈〈〈A, B〉〉, F 〉〉 is a morphism of C1 iff F ∈ Y,

(iii) the objects of C2 = X, and
(iv) for all elements A, B of X and for every functor F from A to B holds
〈〈〈〈A, B〉〉, F 〉〉 is a morphism of C2 iff F ∈ Y.
Then C1 = C2.

A categorial category is full if it satisfies the condition (Def.8).

(Def.8) Let a, b be categories. Suppose a is an object of it and b is an object of
it. Let F be a functor from a to b. Then 〈〈〈〈a, b〉〉, F 〉〉 is a morphism of it.

Let us note that there exists a categorial strict category which is full.
The following propositions are true:

(19) Let C1, C2 be full categorial categories. Suppose the objects of C1 = the
objects of C2. Then the category structure of C1 = the category structure
of C2.

(20) For every categorial non empty set A there exists a full categorial strict
category C such that the objects of C = A.

(21) Let C be a categorial category and let D be a full categorial category.
Suppose the objects of C ⊆ the objects of D. Then C is a subcategory of
D.

(22) Let C be a category, and let D1, D2 be categorial categories, and let
F1 be a functor from C to D1, and let F2 be a functor from C to D2. If
F1 = F2, then ImF1 = ImF2.

3. Slice Categories

Let C be a category and let o be an object of C. The functor Hom(o) yielding
a non empty subset of the morphisms of C is defined by:

(Def.9) Hom(o) = (the cod-map of C) −1 {o}.
The functor hom(o, � ) yields a non empty subset of the morphisms of C and is
defined by:

(Def.10) hom(o, � ) = (the dom-map of C) −1 {o}.
We now state several propositions:

(23) For every category C and for every object a of C and for every morphism
f of C holds f ∈ Hom(a) iff cod f = a.

(24) For every category C and for every object a of C and for every morphism
f of C holds f ∈ hom(a, � ) iff dom f = a.

(25) For every category C and for all objects a, b of C holds hom(a, b) =
hom(a, � ) ∩Hom(b).

(26) For every category C and for every morphism f of C holds f ∈
hom(dom f, � ) and f ∈ Hom(cod f).
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(27) For every category C and for every morphism f of C and for every
element g of Hom(dom f) holds f · g ∈ Hom(cod f).

(28) For every category C and for every morphism f of C and for every
element g of hom(cod f, � ) holds g · f ∈ hom(dom f, � ).

Let C be a category and let o be an object of C. The functor SliceCat(C, o)
yields a strict category with triple-like morphisms and is defined by the condi-
tions (Def.11).

(Def.11) (i) The objects of SliceCat(C, o) = Hom(o),
(ii) for all elements a, b of Hom(o) and for every morphism f of C such

that dom b = cod f and a = b · f holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of
SliceCat(C, o),

(iii) for every morphism m of SliceCat(C, o) there exist elements a, b of
Hom(o) and there exists a morphism f of C such that m = 〈〈〈〈a, b〉〉, f〉〉
and dom b = cod f and a = b · f, and

(iv) for all morphisms m1, m2 of SliceCat(C, o) and for all elements a1, a2,
a3 of Hom(o) and for all morphisms f1, f2 of C such that m1 = 〈〈〈〈a1, a2〉〉,
f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 ·m1 = 〈〈〈〈a1, a3〉〉, f2 · f1〉〉.

The functor SliceCat(o, C) yielding a strict category with triple-like morphisms
is defined by the conditions (Def.12).

(Def.12) (i) The objects of SliceCat(o, C) = hom(o, � ),
(ii) for all elements a, b of hom(o, � ) and for every morphism f of C such

that dom f = cod a and f · a = b holds 〈〈〈〈a, b〉〉, f〉〉 is a morphism of
SliceCat(o, C),

(iii) for every morphism m of SliceCat(o, C) there exist elements a, b of
hom(o, � ) and there exists a morphism f of C such that m = 〈〈〈〈a, b〉〉, f〉〉
and dom f = cod a and f · a = b, and

(iv) for all morphisms m1, m2 of SliceCat(o, C) and for all elements a1, a2,
a3 of hom(o, � ) and for all morphisms f1, f2 of C such that m1 = 〈〈〈〈a1,
a2〉〉, f1〉〉 and m2 = 〈〈〈〈a2, a3〉〉, f2〉〉 holds m2 ·m1 = 〈〈〈〈a1, a3〉〉, f2 · f1〉〉.

Let C be a category, let o be an object of C, and let m be a morphism
of SliceCat(C, o). Then m2 is a morphism of C. Then m1,1 is an element of
Hom(o). Then m1,2 is an element of Hom(o).

We now state two propositions:

(29) Let C be a category, and let a be an object of C, and let m be
a morphism of SliceCat(C, a). Then m = 〈〈〈〈m1,1, m1,2〉〉, m2〉〉 and
dom(m1,2) = cod(m2) and m1,1 = m1,2 · m2 and domm = m1,1 and
codm = m1,2.

(30) Let C be a category, and let o be an object of C, and let f be an
element of Hom(o), and let a be an object of SliceCat(C, o). If a = f,
then ida = 〈〈〈〈a, a〉〉, iddom f 〉〉.

Let C be a category, let o be an object of C, and let m be a morphism
of SliceCat(o, C). Then m2 is a morphism of C. Then m1,1 is an element of
hom(o, � ). Then m1,2 is an element of hom(o, � ).
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We now state two propositions:

(31) Let C be a category, and let a be an object of C, and let m be
a morphism of SliceCat(a,C). Then m = 〈〈〈〈m1,1, m1,2〉〉, m2〉〉 and
dom(m2) = cod(m1,1) and m2 · m1,1 = m1,2 and domm = m1,1 and
codm = m1,2.

(32) Let C be a category, and let o be an object of C, and let f be an
element of hom(o, � ), and let a be an object of SliceCat(o, C). If a = f,
then ida = 〈〈〈〈a, a〉〉, idcod f 〉〉.

4. Functors Between Slice Categories

Let C be a category and let f be a morphism of C. The functor SliceFunctor(f)
yielding a functor from SliceCat(C,dom f) to SliceCat(C, cod f) is defined by:

(Def.13) For every morphismm of SliceCat(C,dom f) holds (SliceFunctor(f))(m) =
〈〈〈〈f ·m1,1, f ·m1,2〉〉, m2〉〉.

The functor SliceContraFunctor(f) yields a functor from SliceCat(cod f, C) to
SliceCat(dom f, C) and is defined as follows:

(Def.14) For every morphism m of SliceCat(cod f, C) holds
(SliceContraFunctor(f))(m) = 〈〈〈〈m1,1 · f, m1,2 · f〉〉, m2〉〉.

We now state two propositions:

(33) For every category C and for all morphisms f , g of C such that dom g =
cod f holds SliceFunctor(g · f) = SliceFunctor(g) · SliceFunctor(f).

(34) For every category C and for all morphisms f , g of C such that
dom g = cod f holds SliceContraFunctor(g · f) = SliceContraFunctor(f) ·
SliceContraFunctor(g).
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[4] Czes law Byliński. Introduction to categories and functors. Formalized Mathematics,
1(2):409–420, 1990.
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1. Varia

One can prove the following proposition

(1) For all sets X, Y holds X \ Y misses Y .
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and a unary predicate P, and states that:

{F(x) : x ranges over elements of A, P[x]} is a subset of B
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{F(x) : x ranges over elements of A, P[x]} is finite
for all values of the parameters.

The following three propositions are true:

(2) For every function f and for arbitrary x, y such that dom f = {x} and
rng f = {y} holds f = {〈〈x, y〉〉}.

(3) For all functions f , g, h such that f ⊆ g holds f +· h ⊆ g +· h.
(4) For all functions f , g, h such that f ⊆ g and dom f misses domh holds

f ⊆ g +· h.
Let X be a finite non empty subset of � . The functor maxX yields a real

number and is defined as follows:

(Def.1) maxX ∈ X and for every real number k such that k ∈ X holds k ≤
maxX.

Let X be a finite non empty subset of � . The functor maxX yielding a
natural number is defined by:

(Def.2) There exists a finite non empty subset Y of � such that Y = X and
maxX = maxY.

2. Many Sorted Sets and Functions

One can prove the following proposition

(5) For every set I and for every many sorted set M1 indexed by I holds
M1

#(εI) = {ε}.
The scheme MSSLambda2Part deals with a set A, two unary functors F and

G yielding arbitrary, and a unary predicate P, and states that:
There exists a many sorted set f indexed by A such that for every
element i of A holds if i ∈ A, then if P[i], then f(i) = F(i) and if
not P[i], then f(i) = G(i)

for all values of the parameters.
Let I be a set. A many sorted set indexed by I is locally-finite if:

(Def.3) For arbitrary i such that i ∈ I holds it(i) is finite.

Let I be a set. Observe that there exists a many sorted set indexed by I
which is non-empty and locally-finite.

Let I, A be sets. Then I 7−→ A is a many sorted set indexed by I.
Let I be a set, let M be a many sorted set indexed by I, and let A be a

subset of I. Then M
�
A is a many sorted set indexed by A.

Let M be a non-empty function and let A be a set. One can check that M
�
A

is non-empty.
One can prove the following three propositions:

(6) For every non empty set I and for every non-empty many sorted set B
indexed by I holds

⋃
rngB is non empty.

(7) For every set I holds uncurry(I 7−→ ∅) = ∅.



preliminaries to circuits, i 169

(8) Let I be a non empty set, and let A be a set, and let B be a non-empty
many sorted set indexed by I, and let F be a many sorted function from
I 7−→ A into B. Then dom commute(F ) = A.

Now we present two schemes. The scheme LambdaRecCorrD concerns a non
empty set A, an element B of A, and a binary functor F yielding an element of
A, and states that:

(i) There exists a function f from � into A such that f(0) = B
and for every natural number i and for every element x of A such
that x = f(i) holds f(i+ 1) = F(i, x), and

(ii) for all functions f1, f2 from � into A such that f1(0) = B
and for every natural number i and for every element x of A such
that x = f1(i) holds f1(i+1) = F(i, x) and f2(0) = B and for every
natural number i and for every element x of A such that x = f2(i)
holds f2(i+ 1) = F(i, x) holds f1 = f2

for all values of the parameters.

The scheme LambdaMSFD concerns a non empty set A, a subset B of A,
many sorted sets C, D indexed by B, and a unary functor F yielding arbitrary,
and states that:

There exists a many sorted function f from C into D such that for
every element i of A such that i ∈ B holds f(i) = F(i)

provided the following requirement is met:

• For every element i of A such that i ∈ B holds F(i) is a function
from C(i) into D(i).

Let F be a non-empty function and let f be a function. Observe that F · f
is non-empty.

Let I be a set and let M1 be a non-empty many sorted set indexed by I.
Note that every element of

∏
M1 is function-like and relation-like.

One can prove the following propositions:

(9) Let I be a set, and let f be a non-empty many sorted set indexed
by I, and let g be a function, and let s be an element of

∏
f. Suppose

dom g ⊆ dom f and for arbitrary x such that x ∈ dom g holds g(x) ∈ f(x).
Then s+· g is an element of

∏
f.

(10) Let A, B be non empty sets, and let C be a non-empty many sorted set
indexed by A, and let I1 be a many sorted function from A 7−→ B into
C, and let b be an element of B. Then there exists a many sorted set c
indexed by A such that c = (commute(I1))(b) and c ∈ C.

(11) Let I be a set, and let M be a many sorted set indexed by I, and let
x, g be functions. If x ∈ ∏M, then x · g ∈ ∏(M · g).

(12) For every natural number n and for arbitrary a holds
∏

(n 7→ {a}) =
{n 7→ a}.
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3. Trees

We follow the rules: T , T1 will denote finite trees, t, p will denote elements
of T , and t1 will denote an element of T1.

Let D be a non empty set. Note that every element of FinTrees(D) is finite.
Let T be a finite decorated tree and let t be an element of domT. Observe

that T
�
t is finite.

We now state the proposition

(13) T
�
p ≈ {t : p � t}.

Let T be a finite decorated tree, let t be an element of domT, and let T1 be
a finite decorated tree. Note that T (t/T1) is finite.

Next we state a number of propositions:

(14) T (p/T1) = {t : p � t} ∪ {p � t1}.
(15) For every finite sequence f of elements of � such that f ∈ T (p/T1) and

p � f there exists t1 such that f = p � t1.
(16) For every tree yielding finite sequence p and for every natural number

k such that k + 1 ∈ dom p holds
︷︸︸︷
p

� 〈k〉 = p(k + 1).

(17) Let q be a decorated tree yielding finite sequence and let k be a natural

number. If k + 1 ∈ dom q, then 〈k〉 ∈
︷ ︸︸ ︷
dom
κ

q(κ) .

(18) Let p, q be tree yielding finite sequences and let k be a natural number.
Suppose len p = len q and k + 1 ∈ dom p and for every natural number i
such that i ∈ dom p and i 6= k + 1 holds p(i) = q(i). Let t be a tree. If

q(k + 1) = t, then
︷︸︸︷
q =

︷︸︸︷
p (〈k〉/t).

(19) Let e1, e2 be finite decorated trees, and let x be arbitrary, and let k be
a natural number, and let p be a decorated tree yielding finite sequence.
Suppose 〈k〉 ∈ dom e1 and e1 = x-tree(p). Then there exists a decorated
tree yielding finite sequence q such that e1(〈k〉/e2) = x-tree(q) and len q =
len p and q(k+1) = e2 and for every natural number i such that i ∈ dom p
and i 6= k + 1 holds q(i) = p(i).

(20) For every finite tree T and for every element p of T such that p 6= ε
holds card(T

�
p) < cardT.

(21) For every finite function f holds card f = card dom f.

(22) For all finite trees T , T1 and for every element p of T holds
card(T (p/T1)) + card(T

�
p) = cardT + cardT1.

(23) For all finite decorated trees T , T1 and for every element p of domT
holds card(T (p/T1)) + card(T

�
p) = cardT + cardT1.

Let x be arbitrary. One can check that the root tree of x is finite.

We now state the proposition

(24) For arbitrary x holds card (the root tree of x) = 1.
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Summary. We have formalized deterministic finite state machines
closely following the textbook [9], pp. 88–119 up to the minimization the-
orem. In places, we have changed the approach presented in the book as
it turned out to be too specific and inconvenient. Our work also revealed
several minor mistakes in the book. After defining a structure for an
outputless finite state machine, we have derived the structures for the
transition assigned output machine (Mealy) and state assigned output
machine (Moore). The machines are then proved similar, in the sense
that for any Mealy (Moore) machine there exists a Moore (Mealy) ma-
chine producing essentially the same response for the same input. The
rest of work is then done for Mealy machines. Next, we define equivalence
of machines, equivalence and k-equivalence of states, and characterize a
process of constructing for a given Mealy machine, the machine equiva-
lent to it in which no two states are equivalent. The final, minimization
theorem states:

Theorem 4.5: Let M1 and M2 be reduced, con-
nected finite-state machines. Then the state graphs
of M1 and M2 are isomorphic if and only if M1 and
M2 are equivalent.

and it is the last theorem in this article.
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1. Preliminaries

For simplicity we adopt the following convention: m, n, i, k will denote
natural numbers, D will denote a non empty set, d will denote an element of D,
and d1, d2 will denote finite sequences of elements of D.

Next we state several propositions:

(1) If m < n, then there exists a natural number p such that n = m + p
and 1 ≤ p.

(2) If i ∈ Seg n, then i+m ∈ Seg(n+m).

(3) If i > 0 and i+m ∈ Seg(n+m), then i ∈ Seg n and i ∈ Seg(n+m).

(4) If k < i, then there exists a natural number j such that j = i− k and
1 ≤ j.

(5) If 1 ≤ len d1, then there exist d, d2 such that d = d1(1) and d1 = 〈d〉 � d2.

(6) If i ∈ dom d1, then (〈d〉 � d1)(i+ 1) = d1(i).

For simplicity we adopt the following rules: S is a set, D1, D2 are non empty
sets, f1 is a function from S into D1, and f2 is a function from D1 into D2.

One can prove the following propositions:

(7) If f1 is bijective and f2 is bijective, then f2 · f1 is bijective.

(8) For every set Y and for all equivalence relations E1, E2 of Y such that
ClassesE1 = ClassesE2 holds E1 = E2.

(9) For every non empty set W holds every partition of W is non empty.

(10) For every finite set Z holds every partition of Z is finite.

Let W be a non empty set. Note that every partition of W is non empty.

Let Z be a finite set. Note that every partition of Z is finite.

Let X be a non empty finite set. Observe that there exists a partition of X
which is non empty and finite.

We adopt the following rules: X, A will be non empty finite sets, P1 will be
a partition of X, and P2, P3 will be partitions of A.

We now state several propositions:

(11) For every set P4 such that P4 ∈ P1 there exists an element x of X such
that x ∈ P4.

(12) cardP1 ≤ cardX.

(13) If P2 is finer than P3, then cardP3 ≤ cardP2.

(14) If P2 is finer than P3, then for every element p2 of P3 there exists an
element p1 of P2 such that p1 ⊆ p2.

(15) If P2 is finer than P3 and cardP2 = cardP3, then P2 = P3.
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2. Definitions and Terminology

Let I1 be a non empty set. We consider FSM over I1 as systems
〈 states, a Tran, a InitS 〉,

where the states constitute a finite non empty set, the Tran is a function from
[: the states, I1 :] into the states, and the InitS is an element of the states.

Let I1 be a non empty set and let f3 be a FSM over I1. A state of f3 is an
element of the states of f3.

For simplicity we follow a convention: I1, O1 are non empty sets, f3 is a FSM
over I1, s is an element of I1, w, w1, w2 are finite sequences of elements of I1,
q, q′, q1, q2 are states of f3, and q3 is a finite sequence of elements of the states
of f3.

Let us consider I1, f3, s, q. The functor s-succ(q) yielding a state of f3 is
defined by:

(Def.1) s-succ(q) = (the Tran of f3)(〈〈q, s〉〉).
Let us consider I1, f3, q, w. The functor (q, w)-admissible yields a finite

sequence of elements of the states of f3 and is defined by the conditions (Def.2).

(Def.2) (i) (q, w)-admissible(1) = q,
(ii) len((q, w)-admissible) = lenw + 1, and

(iii) for every i such that 1 ≤ i and i ≤ lenw there exists an element w3

of I1 and there exist states q4, q5 of f3 such that w3 = w(i) and q4 =
(q, w)-admissible(i) and q5 = (q, w)-admissible(i + 1) and w3-succ(q4) =
q5.

The following proposition is true

(16) (q, ε(I1))-admissible = 〈q〉.
Let us consider I1, f3, w, q1, q2. The predicate q1

w−→ q2 is defined as follows:

(Def.3) (q1, w)-admissible(lenw + 1) = q2.

We now state the proposition

(17) q
ε(I1)−→ q.

Let us consider I1, f3, w, q3. We say that q3 is admissible for w if and only
if:

(Def.4) There exists q1 such that q1 = q3(1) and (q1, w)-admissible = q3.

We now state the proposition

(18) 〈q〉 is admissible for ε(I1).

Let us consider I1, f3, q, w. The functor w-succ(q) yields a state of f3 and
is defined by:

(Def.5) q
w−→ w-succ(q).

One can prove the following propositions:

(19) (q, w)-admissible(len((q, w)-admissible)) = q ′ iff q
w−→ q′.

(20) For every k such that 1 ≤ k and k ≤ lenw1 holds (q1, w1 �
w2)-admissible(k) = (q1, w1)-admissible(k).
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(21) If q1
w1−→ q2, then (q1, w1 � w2)-admissible(lenw1 + 1) = q2.

(22) If q1
w1−→ q2, then for every k such that 1 ≤ k and k ≤ lenw2 + 1 holds

(q1, w1 � w2)-admissible(lenw1 + k) = (q2, w2)-admissible(k).

(23) If q1
w1−→ q2, then (q1, w1 � w2)-admissible = ((q1, w1)-admissible 	 lenw1+1 ) �

(q2, w2)-admissible.

3. Mealy and Moore Machines

Let I1, O1 be non empty sets. We consider Mealy-FSM over I1, O1 as
extensions of FSM over I1 as systems
〈 states, a Tran, a OFun, a InitS 〉,

where the states constitute a finite non empty set, the Tran is a function from
[: the states, I1 :] into the states, the OFun is a function from [: the states, I1 :]
into O1, and the InitS is an element of the states. We introduce Moore-FSM
over I1, O1 which are extensions of FSM over I1 and are systems
〈 states, a Tran, a OFun, a InitS 〉,

where the states constitute a finite non empty set, the Tran is a function from
[: the states, I1 :] into the states, the OFun is a function from the states into O1,
and the InitS is an element of the states.

For simplicity we adopt the following convention: t1, t2, t3, t4 will denote
Mealy-FSM over I1, O1, s1 will denote a Moore-FSM over I1, O1, q6 will denote
a state of s1, q, q1, q2, q7, q8, q9, q10, q′1, q11, q12, q13 will denote states of t1,
q14, q15 will denote states of t2, and q21, q22 will denote states of t3.

Let us consider I1, O1, t1, q11, w. The functor (q11, w)-response yields a finite
sequence of elements of O1 and is defined as follows:

(Def.6) len((q11, w)-response) = lenw and for every i such that i ∈ domw holds
(q11, w)-response(i) = (the OFun of t1)(〈〈(q11, w)-admissible(i), w(i)〉〉).

The following proposition is true

(24) (q11, ε(I1))-response = ε(O1).

Let us consider I1, O1, s1, q6, w. The functor (q6, w)-response yields a finite
sequence of elements of O1 and is defined by:

(Def.7) len((q6, w)-response) = lenw + 1 and for every i such that
i ∈ Seg(lenw + 1) holds (q6, w)-response(i) = (the OFun of
s1)((q6, w)-admissible(i)).

One can prove the following propositions:

(25) (q6, w)-response(1) = (the OFun of s1)(q6).

(26) If q12
w1−→ q13, then (q12, w1 � w2)-response = (q12, w1)-response �

(q13, w2)-response.

(27) If q14
w1−→ q15 and q21

w1−→ q22 and (q15, w2)-response 6=
(q22, w2)-response, then (q14, w1 � w2)-response 6= (q21, w1 � w2)-response.
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In the sequel O2 is a finite non empty set, t5 is a Mealy-FSM over I1, O2,
and s2 is a Moore-FSM over I1, O2.

Let us consider I1, O1, t1, s1. We say that t1 is similar to s1 if and only if
the condition (Def.8) is satisfied.

(Def.8) Let t6 be a finite sequence of elements of I1. Then 〈(the OFun of s1)(the
InitS of s1)〉 � (the InitS of t1, t6)-response = (the InitS of s1, t6)-response.

The following propositions are true:

(28) There exists t1 which is similar to s1.

(29) There exists s2 such that t5 is similar to s2.

4. Equivalence of States and Machines

Let us consider I1, O1, t2, t3. We say that t2 and t3 are equivalent if and
only if:

(Def.9) For every w holds (the InitS of t2, w)-response = (the InitS of t3,
w)-response.

Let us observe that the predicate introduced above is reflexive and symmetric.
We now state the proposition

(30) If t2 and t3 are equivalent and t3 and t4 are equivalent, then t2 and t4
are equivalent.

Let us consider I1, O1, t1, q8, q9. We say that q8 and q9 are equivalent if and
only if:

(Def.10) For every w holds (q8, w)-response = (q9, w)-response.

We now state several propositions:

(31) q and q are equivalent.

(32) If q1 and q2 are equivalent, then q2 and q1 are equivalent.

(33) If q1 and q2 are equivalent and q2 and q7 are equivalent, then q1 and q7

are equivalent.

(34) If q′1 = (the Tran of t1)(〈〈q8, s〉〉), then for every i such that i ∈
Seg(lenw+ 1) holds (q8, 〈s〉 � w)-admissible(i+ 1) = (q′1, w)-admissible(i).

(35) If q′1 = (the Tran of t1)(〈〈q8, s〉〉), then (q8, 〈s〉 � w)-response = 〈(the
OFun of t1)(〈〈q8, s〉〉)〉 � (q′1, w)-response.

(36) q8 and q9 are equivalent if and only if for every s holds (the OFun of
t1)(〈〈q8, s〉〉) = (the OFun of t1)(〈〈q9, s〉〉) and (the Tran of t1)(〈〈q8, s〉〉) and
(the Tran of t1)(〈〈q9, s〉〉) are equivalent.

(37) Suppose q8 and q9 are equivalent. Given w, i. Suppose i ∈ domw.
Then there exist states q16, q17 of t1 such that q16 = (q8, w)-admissible(i)
and q17 = (q9, w)-admissible(i) and q16 and q17 are equivalent.

Let us consider I1, O1, t1, q8, q9, k. We say that q8 and q9 are k-equivalent
if and only if:
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(Def.11) For every w such that lenw ≤ k holds (q8, w)-response =
(q9, w)-response.

One can prove the following propositions:

(38) q8 and q8 are k-equivalent.

(39) If q8 and q9 are k-equivalent, then q9 and q8 are k-equivalent.

(40) If q8 and q9 are k-equivalent and q9 and q10 are k-equivalent, then q8

and q10 are k-equivalent.

(41) If q8 and q9 are equivalent, then q8 and q9 are k-equivalent.

(42) q8 and q9 are 0-equivalent.

(43) If q8 and q9 are k +m-equivalent, then q8 and q9 are k-equivalent.

(44) Suppose 1 ≤ k. Then q8 and q9 are k-equivalent if and only if the
following conditions are satisfied:

(i) q8 and q9 are 1-equivalent, and
(ii) for every element s of I1 and for every natural number k1 such that

k1 = k−1 holds (the Tran of t1)(〈〈q8, s〉〉) and (the Tran of t1)(〈〈q9, s〉〉) are
k1-equivalent.

Let us consider I1, O1, t1, i. The functor i-EqS-Rel(t1) yielding an equiva-
lence relation of the states of t1 is defined as follows:

(Def.12) For all q8, q9 holds 〈〈q8, q9〉〉 ∈ i-EqS-Rel(t1) iff q8 and q9 are i-equivalent.

Let us consider I1, O1, t1, i. The functor i-EqS-Part(t1) yields a non empty
finite partition of the states of t1 and is defined by:

(Def.13) i-EqS-Part(t1) = Classes(i-EqS-Rel(t1)).

One can prove the following propositions:

(45) (k + 1)-EqS-Part(t1) is finer than k-EqS-Part(t1).

(46) If Classes(k-EqS-Rel(t1)) = Classes((k+1)-EqS-Rel(t1)), then for every
m holds Classes((k +m)-EqS-Rel(t1)) = Classes(k-EqS-Rel(t1)).

(47) If k-EqS-Part(t1) = (k + 1)-EqS-Part(t1), then for every m holds (k +
m)-EqS-Part(t1) = k-EqS-Part(t1).

(48) If (k + 1)-EqS-Part(t1) 6= k-EqS-Part(t1), then for every i such that
i ≤ k holds (i+ 1)-EqS-Part(t1) 6= i-EqS-Part(t1).

(49) k-EqS-Part(t1) = (k + 1)-EqS-Part(t1) or card(k-EqS-Part(t1)) <
card((k + 1)-EqS-Part(t1)).

(50) [q]0-EqS-Rel(t1) = the states of t1.

(51) 0-EqS-Part(t1) = {the states of t1}.
(52) If n + 1 = card (the states of t1), then (n + 1)-EqS-Part(t1) =

n-EqS-Part(t1).

Let us consider I1, O1, t1. A partition of the states of t1 is final if:

(Def.14) For all q8, q9 holds q8 and q9 are equivalent iff there exists an element
X of it such that q8 ∈ X and q9 ∈ X.

Next we state three propositions:

(53) If k-EqS-Part(t1) is final, then (k + 1)-EqS-Rel(t1) = k-EqS-Rel(t1).
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(54) k-EqS-Part(t1) = (k + 1)-EqS-Part(t1) iff k-EqS-Part(t1) is final.

(55) If n+ 1 = card (the states of t1), then there exists a natural number k
such that k ≤ n and k-EqS-Part(t1) is final.

Let us consider I1, O1, t1. The functor final-Partition(t1) yields a partition
of the states of t1 and is defined by:

(Def.15) final-Partition(t1) is final.

We now state the proposition

(56) If n + 1 = card (the states of t1), then final-Partition(t1) =
n-EqS-Part(t1).

5. The Reduction of a Mealy Machine

In the sequel r1 will be a Mealy-FSM over I1, O1, q18 will be a state of r1,
and q19 will be an element of final-Partition(t1).

Let us consider I1, O1, t1, q19, s. The functor (s, q19)-C-succ yields an element
of final-Partition(t1) and is defined by:

(Def.16) There exist q, n such that q ∈ q19 and n + 1 = card (the states of t1)
and (s, q19)-C-succ = [(the Tran of t1)(〈〈q, s〉〉)]n-EqS-Rel(t1).

Let us consider I1, O1, t1, q19, s. The functor (q19, s)-C-response yielding an
element of O1 is defined by:

(Def.17) There exists q such that q ∈ q19 and (q19, s)-C-response = (the OFun
of t1)(〈〈q, s〉〉).

Let us consider I1, O1, t1. The reduction of t1 yielding a strict Mealy-FSM
over I1, O1 is defined by the conditions (Def.18).

(Def.18) (i) The states of the reduction of t1 = final-Partition(t1),
(ii) for every state Q of the reduction of t1 and for all s, q such that q ∈ Q

holds (the Tran of t1)(〈〈q, s〉〉) ∈ (the Tran of the reduction of t1)(〈〈Q, s〉〉)
and (the OFun of t1)(〈〈q, s〉〉) = (the OFun of the reduction of t1)(〈〈Q, s〉〉),
and

(iii) the InitS of t1 ∈ the InitS of the reduction of t1.

The following two propositions are true:

(57) If r1 = the reduction of t1 and q ∈ q18, then for every k such that
k ∈ Seg(lenw + 1) holds (q, w)-admissible(k) ∈ (q18, w)-admissible(k).

(58) t1 and the reduction of t1 are equivalent.

6. Machine Isomorphism

In the sequel q20, q23 will denote states of r1 and T1 will denote a function
from the states of t2 into the states of t3.
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Let us consider I1, O1, t2, t3. We say that t2 and t3 are isomorphic if and
only if the condition (Def.19) is satisfied.

(Def.19) There exists T1 such that
(i) T1 is bijective,

(ii) T1(the InitS of t2) = the InitS of t3, and
(iii) for all q14, s holds T1((the Tran of t2)(〈〈q14, s〉〉)) = (the Tran

of t3)(〈〈T1(q14), s〉〉) and (the OFun of t2)(〈〈q14, s〉〉) = (the OFun of
t3)(〈〈T1(q14), s〉〉).

Let us observe that the predicate introduced above is reflexive and symmetric.
We now state four propositions:

(59) If t2 and t3 are isomorphic and t3 and t4 are isomorphic, then t2 and t4
are isomorphic.

(60) Suppose that for every state q of t2 and for every s holds T1((the Tran
of t2)(〈〈q, s〉〉)) = (the Tran of t3)(〈〈T1(q), s〉〉). Given k. If 1 ≤ k and k ≤
lenw + 1, then T1((q14, w)-admissible(k)) = (T1(q14), w)-admissible(k).

(61) Suppose that
(i) T1(the InitS of t2) = the InitS of t3, and

(ii) for every state q of t2 and for every s holds T1((the Tran of t2)(〈〈q,
s〉〉)) = (the Tran of t3)(〈〈T1(q), s〉〉) and (the OFun of t2)(〈〈q, s〉〉) = (the
OFun of t3)(〈〈T1(q), s〉〉).
Then q14 and q15 are equivalent if and only if T1(q14) and T1(q15) are
equivalent.

(62) If r1 = the reduction of t1 and q20 6= q23, then q20 and q23 are not
equivalent.

7. Reduced and Connected Machines

Let I1, O1 be non empty sets. A Mealy-FSM over I1, O1 is reduced if:

(Def.20) For all states q8, q9 of it such that q8 6= q9 holds q8 and q9 are not
equivalent.

One can prove the following proposition

(63) The reduction of t1 is reduced.

Let us consider I1, O1. Note that there exists a Mealy-FSM over I1, O1

which is reduced.
In the sequel R1 will denote a reduced Mealy-FSM over I1, O1.
Next we state two propositions:

(64) R1 and the reduction of R1 are isomorphic.

(65) t1 is reduced iff there exists a Mealy-FSM M over I1, O1 such that t1
and the reduction of M are isomorphic.

Let us consider I1, O1, t1. A state of t1 is accessible if:

(Def.21) There exists w such that the InitS of t1
w−→ it.
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Let us consider I1, O1. A Mealy-FSM over I1, O1 is connected if:

(Def.22) Every state of it is accessible.

Let us consider I1, O1. One can check that there exists a Mealy-FSM over
I1, O1 which is connected.

In the sequel C1, C2, C3 will be connected Mealy-FSM over I1, O1.
We now state the proposition

(66) The reduction of C1 is connected.

Let us consider I1, O1. Note that there exists a Mealy-FSM over I1, O1

which is connected and reduced.
Let us consider I1, O1, t1. The functor accessible-States(t1) yields a finite

non empty set and is defined as follows:

(Def.23) accessible-States(t1) = {q : q ranges over states of t1, q is accessible}.
The following propositions are true:

(67) accessible-States(t1) ⊆ the states of t1 and for every q holds q ∈
accessible-States(t1) iff q is accessible.

(68) (The Tran of t1)
�

[: accessible-States(t1), I1 :] is a function from
[: accessible-States(t1), I1 :] into accessible-States(t1).

(69) Let c1 be a function from [: accessible-States(t1), I1 :] into
accessible-States(t1), and let c2 be a function from [: accessible-States(t1),
I1 :] into O1, and let c3 be an element of accessible-States(t1). Suppose
c1 = (the Tran of t1)

�
[: accessible-States(t1), I1 :] and c2 = (the OFun

of t1)
�
[: accessible-States(t1), I1 :] and c3 = the InitS of t1. Then t1 and

Mealy-FSM〈accessible-States(t1), c1, c2, c3〉 are equivalent.

(70) There exists C1 such that
(i) the Tran of C1 = (the Tran of t1)

�
[: accessible-States(t1), I1 :],

(ii) the OFun of C1 = (the OFun of t1)
�
[: accessible-States(t1), I1 :],

(iii) the InitS of C1 = the InitS of t1, and
(iv) t1 and C1 are equivalent.

8. Machine Union

Let us consider I1, O1, t2, t3. The functor Mealy-U(t2, t3) yields a strict
Mealy-FSM over I1, O1 and is defined by the conditions (Def.24).

(Def.24) (i) The states of Mealy-U(t2, t3) = (the states of t2)∪ (the states of t3),
(ii) the Tran of Mealy-U(t2, t3) = (the Tran of t2) +· (the Tran of t3),

(iii) the OFun of Mealy-U(t2, t3) = (the OFun of t2) +· (the OFun of t3),
and

(iv) the InitS of Mealy-U(t2, t3) = the InitS of t2.

One can prove the following propositions:

(71) If t1 = Mealy-U(t2, t3) and (the states of t2)∩ (the states of t3) = ∅ and
q14 = q, then (q14, w)-admissible = (q, w)-admissible.
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(72) If t1 = Mealy-U(t2, t3) and (the states of t2)∩ (the states of t3) = ∅ and
q14 = q, then (q14, w)-response = (q, w)-response.

(73) If t1 = Mealy-U(t2, t3) and (the states of t2)∩ (the states of t3) = ∅ and
q21 = q, then (q21, w)-admissible = (q, w)-admissible.

(74) If t1 = Mealy-U(t2, t3) and (the states of t2)∩ (the states of t3) = ∅ and
q21 = q, then (q21, w)-response = (q, w)-response.

In the sequel R2, R3 will be reduced Mealy-FSM over I1, O1.
The following proposition is true

(75) Suppose t1 = Mealy-U(R2, R3) and (the states of R2) ∩ (the states of
R3) = ∅ and R2 and R3 are equivalent. Then there exists a state Q of
the reduction of t1 such that the InitS of R2 ∈ Q and the InitS of R3 ∈ Q
and Q = the InitS of the reduction of t1.

For simplicity we follow a convention: C4, C5 will denote connected reduced
Mealy-FSM over I1, O1, c11, c12 will denote states of C4, c21, c22 will denote
states of C5, and q24, q25 will denote states of t1.

The following propositions are true:

(76) Suppose that
(i) c11 = q24,

(ii) c12 = q25,
(iii) (the states of C4) ∩ (the states of C5) = ∅,
(iv) C4 and C5 are equivalent,
(v) t1 = Mealy-U(C4, C5), and
(vi) c11 and c12 are not equivalent.

Then q24 and q25 are not equivalent.

(77) Suppose that
(i) c21 = q24,

(ii) c22 = q25,
(iii) (the states of C4) ∩ (the states of C5) = ∅,
(iv) C4 and C5 are equivalent,
(v) t1 = Mealy-U(C4, C5), and
(vi) c21 and c22 are not equivalent.

Then q24 and q25 are not equivalent.

(78) Suppose (the states of C4) ∩ (the states of C5) = ∅ and C4 and C5 are
equivalent and t1 = Mealy-U(C4, C5). Let Q be a state of the reduction of
t1. Then there do not exist elements q1, q2 of Q such that q1 ∈ the states
of C4 and q2 ∈ the states of C4 and q1 6= q2.

(79) Suppose (the states of C4) ∩ (the states of C5) = ∅ and C4 and C5 are
equivalent and t1 = Mealy-U(C4, C5). Let Q be a state of the reduction of
t1. Then there do not exist elements q1, q2 of Q such that q1 ∈ the states
of C5 and q2 ∈ the states of C5 and q1 6= q2.

(80) Suppose (the states of C4) ∩ (the states of C5) = ∅ and C4 and C5 are
equivalent and t1 = Mealy-U(C4, C5). Let Q be a state of the reduction
of t1. Then there exist elements q1, q2 of Q such that q1 ∈ the states of



minimization of finite state machines 183

C4 and q2 ∈ the states of C5 and for every element q of Q holds q = q1 or
q = q2.

9. The Minimization Theorem

We now state several propositions:

(81) There exist Mealy-FSM f4, f5 over I1, O1 such that (the states of
f4) ∩ (the states of f5) = ∅ and f4 and t2 are isomorphic and f5 and t3
are isomorphic.

(82) If t2 and t3 are isomorphic, then t2 and t3 are equivalent.

(83) If (the states of C4)∩(the states of C5) = ∅ andC4 and C5 are equivalent,
then C4 and C5 are isomorphic.

(84) If C2 and C3 are equivalent, then the reduction of C2 and the reduction
of C3 are isomorphic.

(85) Let M1, M2 be connected reduced Mealy-FSM over I1, O1. Then M1

and M2 are isomorphic if and only if M1 and M2 are equivalent.
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The notation and terminology used here are introduced in the following papers:
[16], [17], [15], [3], [18], [12], [13], [9], [14], [11], [7], [2], [1], [4], [6], [8], [5], and
[10].

1. Root Tree and Successors of Node in Decorated Tree

One can check that every tree which is finite is also finite-order.
The following propositions are true:

(1) For every decorated tree t holds t
�
ε 
 = t.

(2) For every tree t and for all finite sequences p, q of elements of � such
that p � q ∈ t holds t

�
(p � q) = t

�
p

�
q.

(3) Let t be a decorated tree and let p, q be finite sequences of elements of
� . If p � q ∈ dom t, then t

�
(p � q) = t

�
p

�
q.

A decorated tree is root if:

(Def.1) dom it = the elementary tree of 0.

Let us note that every decorated tree which is root is also finite.
The following three propositions are true:

(4) For every decorated tree t holds t is root iff ε ∈ Leaves(dom t).

(5) For every tree t and for every element p of t holds t
�
p = the elementary

tree of 0 iff p ∈ Leaves(t).

1This article has been worked out during the visit of the author in Nagano in Summer 1994.

185
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630



186 grzegorz bancerek

(6) For every decorated tree t and for every node p of t holds t
�
p is root

iff p ∈ Leaves(dom t).

Let us mention that there exists a decorated tree which is root and there
exists a decorated tree which is finite and non root.

Let x be a set. Note that the root tree of x is finite and root.
A tree is finite-branching if:

(Def.2) For every element x of it holds succ x is finite.

Let us mention that every tree which is finite-order is also finite-branching.
Let us note that there exists a tree which is finite.
A decorated tree is finite-order if:

(Def.3) dom it is finite-order.

A decorated tree is finite-branching if:

(Def.4) dom it is finite-branching.

One can check that every decorated tree which is finite is also finite-order
and every decorated tree which is finite-order is also finite-branching.

Let us observe that there exists a decorated tree which is finite.
Let t be a finite-order decorated tree. One can verify that dom t is finite-

order.
Let t be a finite-branching decorated tree. Note that dom t is finite-branching.
Let t be a finite-branching tree and let p be an element of t. Note that succ p

is finite.
The scheme FinOrdSet concerns a unary functor F yielding a set and a finite

set A, and states that:
For every natural number n holds F(n) ∈ A iff n < cardA

provided the parameters have the following properties:
• For every set x such that x ∈ A there exists a natural number n

such that x = F(n),
• For all natural numbers i, j such that i < j and F(j) ∈ A holds
F(i) ∈ A,

• For all natural numbers i, j such that F(i) = F(j) holds i = j.
Let X be a set. One can verify that there exists a finite sequence of elements

of X which is one-to-one and empty.
The following proposition is true

(7) Let t be a finite-branching tree, and let p be an element of t, and let n
be a natural number. Then p � 〈n〉 ∈ succ p if and only if n < card succ p.

Let t be a finite-branching tree and let p be an element of t. The functor
Succ p yielding an one-to-one finite sequence of elements of t is defined by:

(Def.5) len Succ p = card succ p and rng Succ p = succ p and for every natural
number i such that i < len Succ p holds (Succ p)(i+ 1) = p � 〈i〉.

Let t be a finite-branching decorated tree and let p be a finite sequence. Let
us assume that p ∈ dom t. The functor succ(t, p) yielding a finite sequence is
defined by:
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(Def.6) There exists an element q of dom t such that q = p and succ(t, p) =
t · Succ q.

One can prove the following two propositions:

(8) Let t be a finite-branching decorated tree. Then there exists a set
x and there exists a decorated tree yielding finite sequence p such that
t = x-tree(p).

(9) For every finite decorated tree t and for every node p of t holds t
�
p is

finite.

Let t be a finite decorated tree and let p be a node of t. Observe that t
�
p

is finite.
The following proposition is true

(10) For every finite tree t and for every element p of t such that t = t
�
p

holds p = ε.

Let D be a non empty set and let S be a non empty subset of FinTrees(D).
One can verify that every element of S is finite.

2. Set of Subtrees of Decorated Tree

Let t be a decorated tree. The functor Subtrees(t) yielding a constituted of
decorated trees non empty set is defined by:

(Def.7) Subtrees(t) = {t �
p : p ranges over nodes of t}.

Let D be a non empty set and let t be a tree decorated with elements of D.
Then Subtrees(t) is a non empty subset of Trees(D).

Let D be a non empty set and let t be a finite tree decorated with elements
of D. Then Subtrees(t) is a non empty subset of FinTrees(D).

Let t be a finite decorated tree. One can verify that every element of
Subtrees(t) is finite.

In the sequel x denotes a set and t, t1, t2 denote decorated trees.
One can prove the following propositions:

(11) x ∈ Subtrees(t) iff there exists a node n of t such that x = t
�
n.

(12) t ∈ Subtrees(t).

(13) If t1 is finite and Subtrees(t1) = Subtrees(t2), then t1 = t2.

(14) For every node n of t holds Subtrees(t
�
n) ⊆ Subtrees(t).

Let t be a decorated tree. The functor FixedSubtrees(t) yields a non empty
subset of [: dom t, Subtrees(t) :] and is defined as follows:

(Def.8) FixedSubtrees(t) = {〈〈p, t �
p〉〉 : p ranges over nodes of t}.

Next we state three propositions:

(15) x ∈ FixedSubtrees(t) iff there exists a node n of t such that x = 〈〈n,
t

�
n〉〉.

(16) 〈〈ε, t〉〉 ∈ FixedSubtrees(t).

(17) If FixedSubtrees(t1) = FixedSubtrees(t2), then t1 = t2.
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Let t be a decorated tree and let C be a set. The functor C -Subtrees(t)
yielding a subset of Subtrees(t) is defined as follows:

(Def.9) C -Subtrees(t) = {t �
p : p ranges over nodes of t, p /∈ Leaves(dom t) ∨

t(p) ∈ C}.
In the sequel C denotes a set.
We now state two propositions:

(18) x ∈ C -Subtrees(t) iff there exists a node n of t such that x = t
�
n but

n /∈ Leaves(dom t) or t(n) ∈ C.
(19) C -Subtrees(t) is empty iff t is root and t(ε) /∈ C.

Let t be a finite decorated tree and let C be a set. The functor C-Immedia-
teSubtrees(t) yields a function from C -Subtrees(t) into (Subtrees(t))∗ and is
defined by the condition (Def.10).

(Def.10) Let d be a decorated tree. Suppose d ∈ C -Subtrees(t). Let p be a finite
sequence of elements of Subtrees(t). If p = (C -ImmediateSubtrees(t))(d),
then d = d(ε)-tree(p).

3. Set of Subtrees of Set of Decorated Tree

Let X be a constituted of decorated trees non empty set. The functor
Subtrees(X) yielding a constituted of decorated trees non empty set is defined
by:

(Def.11) Subtrees(X) = {t �
p : t ranges over elements of X, p ranges over nodes

of t}.
Let D be a non empty set and let X be a non empty subset of Trees(D).

Then Subtrees(X) is a non empty subset of Trees(D).
Let D be a non empty set and let X be a non empty subset of FinTrees(D).

Then Subtrees(X) is a non empty subset of FinTrees(D).
In the sequel X, Y will be non empty constituted of decorated trees sets.
We now state three propositions:

(20) x ∈ Subtrees(X) iff there exists an element t of X and there exists a
node n of t such that x = t

�
n.

(21) If t ∈ X, then t ∈ Subtrees(X).

(22) If X ⊆ Y, then Subtrees(X) ⊆ Subtrees(Y ).

Let t be a decorated tree. Observe that {t} is non empty and constituted of
decorated trees.

Next we state two propositions:

(23) Subtrees({t}) = Subtrees(t).

(24) Subtrees(X) =
⋃{Subtrees(t) : t ranges over elements of X}.

Let X be a constituted of decorated trees non empty set and let C be a set.
The functor C -Subtrees(X) yields a subset of Subtrees(X) and is defined as
follows:
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(Def.12) C -Subtrees(X) = {t �
p : t ranges over elements of X, p ranges over

nodes of t, p /∈ Leaves(dom t) ∨ t(p) ∈ C}.
We now state four propositions:

(25) x ∈ C -Subtrees(X) iff there exists an element t of X and there exists
a node n of t such that x = t

�
n but n /∈ Leaves(dom t) or t(n) ∈ C.

(26) C -Subtrees(X) is empty iff for every element t of X holds t is root and
t(ε) /∈ C.

(27) C -Subtrees({t}) = C -Subtrees(t).

(28) C -Subtrees(X) =
⋃{C -Subtrees(t) : t ranges over elements of X}.

Let X be a non empty constituted of decorated trees set. Let us assume that
every element ofX is finite. Let C be a set. The functor C -ImmediateSubtrees(X)
yields a function from C -Subtrees(X) into (Subtrees(X))∗ and is defined by the
condition (Def.13).

(Def.13) Let d be a decorated tree. Suppose d ∈ C -Subtrees(X). Let
p be a finite sequence of elements of Subtrees(X). If p =
(C -ImmediateSubtrees(X))(d), then d = d(ε)-tree(p).

Let t be a tree. Observe that there exists an element of t which is empty.
We now state four propositions:

(29) For every finite decorated tree t and for every element p of dom t holds
len succ(t, p) = len Succ p and dom succ(t, p) = dom Succ p.

(30) For every finite tree yielding finite sequence p and for every empty

element n of
︷︸︸︷
p holds card succn = len p.

(31) Let t be a finite decorated tree, and let x be a set, and let p be a
decorated tree yielding finite sequence. Suppose t = x-tree(p). Let n be
an empty element of dom t. Then succ(t, n) = the roots of p.

(32) For every finite decorated tree t and for every node p of t and for every
node q of t

�
p holds succ(t, p � q) = succ(t

�
p, q).
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The articles [19], [22], [2], [20], [23], [11], [9], [12], [14], [3], [5], [6], [21], [1], [13],
[7], [4], [8], [18], [17], [10], [15], and [16] provide the terminology and notation
for this paper.

1. Terms over a Signature and over an Algebra

Let I be a non empty set, let X be a non-empty many sorted set indexed by
I, and let i be an element of I. Note that X(i) is non empty.

In the sequel S will be a non void non empty many sorted signature and V
will be a non-empty many sorted set indexed by the carrier of S.

Let us consider S, V . The functor S -Terms(V ) yielding a non empty subset
of FinTrees(the carrier of DTConMSA(V )) is defined as follows:

(Def.1) S -Terms(V ) = TS(DTConMSA(V )).

Let us consider S, V . A term of S over V is an element of S -Terms(V ).
In the sequel A denotes an algebra over S and t denotes a term of S over V .
Let us consider S, V and let o be an operation symbol of S. Then Sym(o, V )

is a nonterminal of DTConMSA(V ).
Let us consider S, V and let s1 be a nonterminal of DTConMSA(V ). A finite

sequence of elements of S -Terms(V ) is called an argument sequence of s1 if:

1This article has been prepared during the visit of the author in Nagano in Summer 1994.
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(Def.2) It is a subtree sequence joinable by s1.

We now state the proposition

(1) Let o be an operation symbol of S and let a be a finite sequence. Then
〈〈o, the carrier of S〉〉-tree(a) ∈ S -Terms(V ) and a is decorated tree yielding
if and only if a is an argument sequence of Sym(o, V ).

The scheme TermInd concerns a non void non empty many sorted signature
A, a non-empty many sorted set B indexed by the carrier of A, and a unary
predicate P, and states that:

For every term t of A over B holds P[t]
provided the parameters satisfy the following conditions:
• For every sort symbol s of A and for every element v of B(s) holds
P[the root tree of 〈〈v, s〉〉],

• Let o be an operation symbol of A and let p be an argument se-
quence of Sym(o,B). Suppose that for every term t of A over B such
that t ∈ rng p holds P[t]. Then P[〈〈o, the carrier of A〉〉-tree(p)].

Let us consider S, A, V . A term of A over V is a term of S over (the sorts
of A) ∪ (V ).

Let us consider S, A, V and let o be an operation symbol of S. An argument
sequence of o, A, and V is an argument sequence of Sym(o, (the sorts of A)∪(V )).

The scheme CTermInd concerns a non void non empty many sorted signature
A, a non-empty algebra B over A, a non-empty many sorted set C indexed by
the carrier of A, and a unary predicate P, and states that:

For every term t of B over C holds P[t]
provided the following requirements are met:
• For every sort symbol s of A and for every element x of (the sorts

of B)(s) holds P[the root tree of 〈〈x, s〉〉],
• For every sort symbol s of A and for every element v of C(s) holds
P[the root tree of 〈〈v, s〉〉],

• Let o be an operation symbol of A and let p be an argument se-
quence of o, B, and C. Suppose that for every term t of B over
C such that t ∈ rng p holds P[t]. Then P[Sym(o, (the sorts of
B) ∪ C)-tree(p)].

Let us consider S, V , t and let p be a node of t. Then t(p) is a symbol of
DTConMSA(V ).

Let us consider S, V . Observe that every term of S over V is finite.
Next we state several propositions:

(2) (i) There exists a sort symbol s of S and there exists an element v of
V (s) such that t(ε) = 〈〈v, s〉〉, or

(ii) t(ε) ∈ [: the operation symbols of S, {the carrier of S} :].

(3) Let t be a term of A over V . Then
(i) there exists a sort symbol s of S and there exists a set x such that
x ∈ (the sorts of A)(s) and t(ε) = 〈〈x, s〉〉, or

(ii) there exists a sort symbol s of S and there exists an element v of V (s)
such that t(ε) = 〈〈v, s〉〉, or
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(iii) t(ε) ∈ [: the operation symbols of S, {the carrier of S} :].

(4) For every sort symbol s of S and for every element v of V (s) holds the
root tree of 〈〈v, s〉〉 is a term of S over V .

(5) For every sort symbol s of S and for every element v of V (s) such that
t(ε) = 〈〈v, s〉〉 holds t = the root tree of 〈〈v, s〉〉.

(6) Let s be a sort symbol of S and let x be a set. Suppose x ∈ (the sorts
of A)(s). Then the root tree of 〈〈x, s〉〉 is a term of A over V .

(7) Let t be a term of A over V , and let s be a sort symbol of S, and let x
be a set. If x ∈ (the sorts of A)(s) and t(ε) = 〈〈x, s〉〉, then t = the root
tree of 〈〈x, s〉〉.

(8) For every sort symbol s of S and for every element v of V (s) holds the
root tree of 〈〈v, s〉〉 is a term of A over V .

(9) Let t be a term of A over V , and let s be a sort symbol of S, and let v
be an element of V (s). If t(ε) = 〈〈v, s〉〉, then t = the root tree of 〈〈v, s〉〉.

(10) Let o be an operation symbol of S. Suppose t(ε) = 〈〈o, the carrier of S〉〉.
Then there exists an argument sequence a of Sym(o, V ) such that t = 〈〈o,
the carrier of S〉〉-tree(a).

Let us consider S, let A be a non-empty algebra over S, let us consider V ,
let s be a sort symbol of S, and let x be an element of (the sorts of A)(s). The
functor xA,V yielding a term of A over V is defined as follows:

(Def.3) xA,V = the root tree of 〈〈x, s〉〉.
Let us consider S, A, V , let s be a sort symbol of S, and let v be an element

of V (s). The functor vA yields a term of A over V and is defined as follows:

(Def.4) vA = the root tree of 〈〈v, s〉〉.
Let us consider S, V , let s1 be a nonterminal of DTConMSA(V ), and let p

be an argument sequence of s1. Then s1-tree(p) is a term of S over V .

The scheme TermInd2 concerns a non void non empty many sorted signature
A, a non-empty algebra B over A, a non-empty many sorted set C indexed by
the carrier of A, and a unary predicate P, and states that:

For every term t of B over C holds P[t]

provided the following conditions are satisfied:

• For every sort symbol s of A and for every element x of (the sorts
of B)(s) holds P[xB,C ],

• For every sort symbol s of A and for every element v of C(s) holds
P[vB],

• Let o be an operation symbol of A and let p be an argument se-
quence of Sym(o, (the sorts of B)∪C). Suppose that for every term
t of B over C such that t ∈ rng p holds P[t]. Then P[Sym(o, (the
sorts of B) ∪ C)-tree(p)].
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2. Sort of a Term

One can prove the following three propositions:

(11) For every term t of S over V there exists a sort symbol s of S such that
t ∈ FreeSort(V, s).

(12) For every sort symbol s of S holds FreeSort(V, s) ⊆ S -Terms(V ).

(13) S -Terms(V ) =
⋃

FreeSorts(V ).

Let us consider S, V , t. The sort of t yields a sort symbol of S and is defined
by:

(Def.5) t ∈ FreeSort(V, the sort of t).

One can prove the following propositions:

(14) Let s be a sort symbol of S and let v be an element of V (s). If t = the
root tree of 〈〈v, s〉〉, then the sort of t = s.

(15) Let t be a term of A over V , and let s be a sort symbol of S, and let x
be a set. Suppose x ∈ (the sorts of A)(s) and t = the root tree of 〈〈x, s〉〉.
Then the sort of t = s.

(16) Let t be a term of A over V , and let s be a sort symbol of S, and let
v be an element of V (s). If t = the root tree of 〈〈v, s〉〉, then the sort of
t = s.

(17) Let o be an operation symbol of S. Suppose t(ε) = 〈〈o, the carrier of
S〉〉. Then the sort of t = the result sort of o.

(18) Let A be a non-empty algebra over S, and let s be a sort symbol of S,
and let x be an element of (the sorts of A)(s). Then the sort of xA,V = s.

(19) For every sort symbol s of S and for every element v of V (s) holds the
sort of vA = s.

(20) Let o be an operation symbol of S and let p be an argument sequence
of Sym(o, V ). Then the sort of ( Sym(o, V )-tree(p) qua term of S over
V ) = the result sort of o.

3. Argument Sequence

We now state several propositions:

(21) Let o be an operation symbol of S and let a be a finite sequence of
elements of S -Terms(V ). Then a is an argument sequence of Sym(o, V )
if and only if Sym(o, V )⇒ the roots of a.

(22) Let o be an operation symbol of S and let a be an argument sequence
of Sym(o, V ). Then len a = len Arity(o) and dom a = dom Arity(o) and
for every natural number i such that i ∈ doma holds a(i) is a term of S
over V .
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(23) Let o be an operation symbol of S, and let a be an argument sequence
of Sym(o, V ), and let i be a natural number. Suppose i ∈ dom a. Let t be
a term of S over V . Suppose t = a(i). Then

(i) t = πi(a qua finite sequence of elements of S -Terms(V ) qua non
empty set),

(ii) the sort of t = Arity(o)(i), and
(iii) the sort of t = πi Arity(o).

(24) Let o be an operation symbol of S and let a be a finite sequence. Sup-
pose that

(i) len a = len Arity(o) or dom a = dom Arity(o), and
(ii) for every natural number i such that i ∈ dom a there exists a term t

of S over V such that t = a(i) and the sort of t = Arity(o)(i) or for every
natural number i such that i ∈ dom a there exists a term t of S over V
such that t = a(i) and the sort of t = πi Arity(o).
Then a is an argument sequence of Sym(o, V ).

(25) Let o be an operation symbol of S and let a be a finite sequence of
elements of S -Terms(V ). Suppose that

(i) len a = len Arity(o) or dom a = dom Arity(o), and
(ii) for every natural number i such that i ∈ dom a and for every term t of

S over V such that t = a(i) holds the sort of t = Arity(o)(i) or for every
natural number i such that i ∈ dom a and for every term t of S over V
such that t = a(i) holds the sort of t = πi Arity(o).
Then a is an argument sequence of Sym(o, V ).

(26) Let S be a non void non empty many sorted signature and let V1, V2

be non-empty many sorted sets indexed by the carrier of S. If V1 ⊆ V2,
then every term of S over V1 is a term of S over V2.

(27) Let S be a non void non empty many sorted signature, and let A be
an algebra over S, and let V be a non-empty many sorted set indexed by
the carrier of S. Then every term of S over V is a term of A over V .

4. Compound Terms

Let S be a non void non empty many sorted signature and let V be a non-
empty many sorted set indexed by the carrier of S. A term of S over V is said
to be a compound term of S over V if:

(Def.6) It(ε) ∈ [: the operation symbols of S, {the carrier of S} :].

Let S be a non void non empty many sorted signature and let V be a non-
empty many sorted set indexed by the carrier of S. A non empty subset of
S -Terms(V ) is called a set with a compound term of S over V if:

(Def.7) There exists a compound term t of S over V such that t ∈ it.

Next we state two propositions:

(28) If t is not root, then t is a compound term of S over V .
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(29) For every node p of t holds t
�
p is a term of S over V .

Let S be a non void non empty many sorted signature, let V be a non-empty
many sorted set indexed by the carrier of S, let t be a term of S over V , and
let p be a node of t. Then t

�
p is a term of S over V .

5. Evaluation of Terms

Let S be a non void non empty many sorted signature and let A be an algebra
over S. A non-empty many sorted set indexed by the carrier of S is said to be
a variables family of A if:

(Def.8) It misses the sorts of A.

We now state the proposition

(30) Let V be a variables family of A, and let s be a sort symbol of S, and
let x be a set. If x ∈ (the sorts of A)(s), then for every element v of V (s)
holds x 6= v.

Let S be a non void non empty many sorted signature, let A be a non-empty
algebra over S, let V be a non-empty many sorted set indexed by the carrier of
S, let t be a term of A over V , let f be a many sorted function from V into the
sorts of A, and let v1 be a finite decorated tree. We say that v1 is an evaluation
of t w.r.t. f if and only if the conditions (Def.9) are satisfied.

(Def.9) (i) dom v1 = dom t, and
(ii) for every node p of v1 holds for every sort symbol s of S and for every el-

ement v of V (s) such that t(p) = 〈〈v, s〉〉 holds v1(p) = f(s)(v) and for every
sort symbol s of S and for every element x of (the sorts of A)(s) such that
t(p) = 〈〈x, s〉〉 holds v1(p) = x and for every operation symbol o of S such
that t(p) = 〈〈o, the carrier of S〉〉 holds v1(p) = (Den(o,A))(succ(v1, p)).

For simplicity we follow the rules: S will be a non void non empty many
sorted signature, A will be a non-empty algebra over S, V will be a variables
family of A, t will be a term of A over V , and f will be a many sorted function
from V into the sorts of A.

We now state several propositions:

(31) Let s be a sort symbol of S and let x be an element of (the sorts of
A)(s). Suppose t = the root tree of 〈〈x, s〉〉. Then the root tree of x is an
evaluation of t w.r.t. f .

(32) Let s be a sort symbol of S and let v be an element of V (s). Suppose
t = the root tree of 〈〈v, s〉〉. Then the root tree of f(s)(v) is an evaluation
of t w.r.t. f .

(33) Let o be an operation symbol of S, and let p be an argument sequence
of o, A, and V , and let q be a decorated tree yielding finite sequence.
Suppose that

(i) len q = len p, and
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(ii) for every natural number i and for every term t of A over V such that
i ∈ dom p and t = p(i) there exists a finite decorated tree v1 such that
v1 = q(i) and v1 is an evaluation of t w.r.t. f .
Then there exists a finite decorated tree v1 such that v1 = (Den(o,A))(the
roots of q)-tree(q) and v1 is an evaluation of Sym(o, (the sorts of A) ∪
(V ))-tree(p) qua term of A over V w.r.t. f .

(34) Let t be a term of A over V and let e be a finite decorated tree. Suppose
e is an evaluation of t w.r.t. f . Let p be a node of t and let n be a node
of e. If n = p, then e

�
n is an evaluation of t

�
p w.r.t. f .

(35) Let o be an operation symbol of S, and let p be an argument sequence
of o, A, and V , and let v1 be a finite decorated tree. Suppose v1 is an
evaluation of Sym(o, (the sorts of A) ∪ (V ))-tree(p) qua term of A over
V w.r.t. f . Then there exists a decorated tree yielding finite sequence q
such that

(i) len q = len p,
(ii) v1 = (Den(o,A))(the roots of q)-tree(q), and

(iii) for every natural number i and for every term t of A over V such that
i ∈ dom p and t = p(i) there exists a finite decorated tree v1 such that
v1 = q(i) and v1 is an evaluation of t w.r.t. f .

(36) There exists finite decorated tree which is an evaluation of t w.r.t. f .

(37) Let e1, e2 be finite decorated trees. Suppose e1 is an evaluation of t
w.r.t. f and e2 is an evaluation of t w.r.t. f . Then e1 = e2.

(38) Let v1 be a finite decorated tree. Suppose v1 is an evaluation of t w.r.t.
f . Then v1(ε) ∈ (the sorts of A)(the sort of t).

Let S be a non void non empty many sorted signature, let A be a non-empty
algebra over S, let V be a variables family of A, let t be a term of A over V , and
let f be a many sorted function from V into the sorts of A. The functor t @ f
yields an element of (the sorts of A)(the sort of t) and is defined as follows:

(Def.10) There exists a finite decorated tree v1 such that v1 is an evaluation of
t w.r.t. f and t @ f = v1(ε).

In the sequel t denotes a term of A over V .
We now state several propositions:

(39) For every finite decorated tree v1 such that v1 is an evaluation of t w.r.t.
f holds t @ f = v1(ε).

(40) Let v1 be a finite decorated tree. Suppose v1 is an evaluation of t w.r.t.
f . Let p be a node of t. Then v1(p) = t

�
p @ f.

(41) For every sort symbol s of S and for every element x of (the sorts of
A)(s) holds xA,V

@ f = x.

(42) For every sort symbol s of S and for every element v of V (s) holds
vA

@ f = f(s)(v).

(43) Let o be an operation symbol of S, and let p be an argument sequence
of o, A, and V , and let q be a finite sequence. Suppose that

(i) len q = len p, and
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(ii) for every natural number i such that i ∈ dom p and for every term t of
A over V such that t = p(i) holds q(i) = t @ f.
Then (Sym(o, (the sorts of A)∪(V ))-tree(p) qua term of A over V )@(f) =
(Den(o,A))(q).
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Summary. This article is devoted to functions of general topolog-
ical spaces. A function from X to Y is A-continuous if the counterimage
of every open set V of Y belongs to A, where A is a collection of subsets
of X. We give the following characteristics of the continuity, called de-
composition of continuity: A function f is continuous if and only if it is
both A-continuous and B-continuous.

MML Identifier: DECOMP 1.

The articles [14], [12], [2], [1], [3], [10], [6], [8], [11], [5], [13], [9], [15], [7], and [4]
provide the notation and terminology for this paper.

Let T be a topological space. A subset of the carrier of T is called an α-set
of T if:

(Def.1) It ⊆ Int Int it.

A subset of the carrier of T is semi-open if:

(Def.2) It ⊆ Int it.

A subset of the carrier of T is pre-open if:

(Def.3) It ⊆ Int it.

A subset of the carrier of T is pre-semi-open if:

(Def.4) It ⊆ Int it.

A subset of the carrier of T is semi-pre-open if:

(Def.5) It ⊆ Int it ∪ Int it.

Let T be a topological space and let B be a subset of the carrier of T . The
functor sInt(B) yielding a subset of the carrier of T is defined as follows:

(Def.6) sInt(B) = B ∩ IntB.

The functor pInt(B) yielding a subset of the carrier of T is defined as follows:

(Def.7) pInt(B) = B ∩ IntB.

The functor αInt(B) yielding a subset of the carrier of T is defined as follows:
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(Def.8) αInt(B) = B ∩ Int IntB.

The functor psInt(B) yields a subset of the carrier of T and is defined as follows:

(Def.9) psInt(B) = B ∩ IntB.

Let T be a topological space and let B be a subset of the carrier of T . The
functor spInt(B) yields a subset of the carrier of T and is defined by:

(Def.10) spInt(B) = sInt(B) ∪ pInt(B).

Let T be a topological space. The functor T α yields a family of subsets of
the carrier of T and is defined as follows:

(Def.11) T α = {B : B ranges over subsets of the carrier of T , B is anα-set of
T}.

The functor SO(T ) yielding a family of subsets of the carrier of T is defined by:

(Def.12) SO(T ) = {B : B ranges over subsets of the carrier of T , B is semi-open}.
The functor PO(T ) yielding a family of subsets of the carrier of T is defined as
follows:

(Def.13) PO(T ) = {B : B ranges over subsets of the carrier of T , B is pre-open}.
The functor SPO(T ) yielding a family of subsets of the carrier of T is defined
as follows:

(Def.14) SPO(T ) = {B : B ranges over subsets of the carrier of T , B is semi-
pre-open}.

The functor PSO(T ) yields a family of subsets of the carrier of T and is defined
by:

(Def.15) PSO(T ) = {B : B ranges over subsets of the carrier of T , B is pre-semi-
open}.

The functor D(c, α)(T ) yielding a family of subsets of the carrier of T is defined
as follows:

(Def.16) D(c, α)(T ) = {B : B ranges over subsets of the carrier of T , IntB =
αInt(B)}.

The functor D(c, p)(T ) yielding a family of subsets of the carrier of T is defined
by:

(Def.17) D(c, p)(T ) = {B : B ranges over subsets of the carrier of T , IntB =
pInt(B)}.

The functor D(c, s)(T ) yielding a family of subsets of the carrier of T is defined
by:

(Def.18) D(c, s)(T ) = {B : B ranges over subsets of the carrier of T , IntB =
sInt(B)}.

The functor D(c, ps)(T ) yielding a family of subsets of the carrier of T is defined
as follows:

(Def.19) D(c, ps)(T ) = {B : B ranges over subsets of the carrier of T , IntB =
psInt(B)}.

The functor D(α, p)(T ) yields a family of subsets of the carrier of T and is
defined as follows:
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(Def.20) D(α, p)(T ) = {B : B ranges over subsets of the carrier of T , αInt(B) =
pInt(B)}.

The functor D(α, s)(T ) yielding a family of subsets of the carrier of T is defined
as follows:

(Def.21) D(α, s)(T ) = {B : B ranges over subsets of the carrier of T , αInt(B) =
sInt(B)}.

The functor D(α, ps)(T ) yields a family of subsets of the carrier of T and is
defined as follows:

(Def.22) D(α, ps)(T ) = {B : B ranges over subsets of the carrier of T , αInt(B) =
psInt(B)}.

The functor D(p, sp)(T ) yielding a family of subsets of the carrier of T is defined
by:

(Def.23) D(p, sp)(T ) = {B : B ranges over subsets of the carrier of T , pInt(B) =
spInt(B)}.

The functor D(p, ps)(T ) yielding a family of subsets of the carrier of T is defined
by:

(Def.24) D(p, ps)(T ) = {B : B ranges over subsets of the carrier of T , pInt(B) =
psInt(B)}.

The functor D(sp, ps)(T ) yields a family of subsets of the carrier of T and is
defined as follows:

(Def.25) D(sp, ps)(T ) = {B : B ranges over subsets of the carrier of T ,
spInt(B) = psInt(B)}.

In the sequel T will be a topological space and B will be a subset of the
carrier of T .

One can prove the following propositions:

(1) αInt(B) = pInt(B) iff sInt(B) = psInt(B).

(2) B is an α-set of T iff B = αInt(B).

(3) B is semi-open iff B = sInt(B).

(4) B is pre-open iff B = pInt(B).

(5) B is pre-semi-open iff B = psInt(B).

(6) B is semi-pre-open iff B = spInt(B).

(7) Tα ∩D(c, α)(T ) = the topology of T .

(8) SO(T ) ∩D(c, s)(T ) = the topology of T .

(9) PO(T ) ∩D(c, p)(T ) = the topology of T .

(10) PSO(T ) ∩D(c, ps)(T ) = the topology of T .

(11) PO(T ) ∩D(α, p)(T ) = T α.

(12) SO(T ) ∩D(α, s)(T ) = T α.

(13) PSO(T ) ∩D(α, ps)(T ) = T α.

(14) SPO(T ) ∩D(p, sp)(T ) = PO(T ).

(15) PSO(T ) ∩D(p, ps)(T ) = PO(T ).

(16) PSO(T ) ∩D(α, p)(T ) = SO(T ).
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(17) PSO(T ) ∩D(sp, ps)(T ) = SPO(T ).

Let X, Y be topological spaces and let f be a mapping from X into Y . We
say that f is s -continuous if and only if:

(Def.26) For every subset G of the carrier of Y such that G is open holds f −1G ∈
SO(X).

We say that f is p -continuous if and only if:

(Def.27) For every subset G of the carrier of Y such that G is open holds f −1G ∈
PO(X).

We say that f is α -continuous if and only if:

(Def.28) For every subset G of the carrier of Y such that G is open holds f −1G ∈
Xα.

We say that f is ps -continuous if and only if:

(Def.29) For every subset G of the carrier of Y such that G is open holds f −1G ∈
PSO(X).

We say that f is sp -continuous if and only if:

(Def.30) For every subset G of the carrier of Y such that G is open holds f −1G ∈
SPO(X).

We say that f is (c, α) -continuous if and only if:

(Def.31) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(c, α)(X).

We say that f is (c, s) -continuous if and only if:

(Def.32) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(c, s)(X).

We say that f is (c, p) -continuous if and only if:

(Def.33) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(c, p)(X).

We say that f is (c, ps) -continuous if and only if:

(Def.34) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(c, ps)(X).

We say that f is (α, p) -continuous if and only if:

(Def.35) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(α, p)(X).

We say that f is (α, s) -continuous if and only if:

(Def.36) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(α, s)(X).

We say that f is (α, ps) -continuous if and only if:

(Def.37) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(α, ps)(X).

We say that f is (p, ps) -continuous if and only if:

(Def.38) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(p, ps)(X).
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We say that f is (p, sp) -continuous if and only if:

(Def.39) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(p, sp)(X).

We say that f is (sp, ps) -continuous if and only if:

(Def.40) For every subset G of the carrier of Y such that G is open holds f −1G ∈
D(sp, ps)(X).

In the sequel X, Y will denote topological spaces and f will denote a mapping
from X into Y .

The following propositions are true:

(18) f is α -continuous iff f is p -continuous and (α, p) -continuous.

(19) f is α -continuous iff f is s -continuous and (α, s) -continuous.

(20) f is α -continuous iff f is ps -continuous and (α, ps) -continuous.

(21) f is p -continuous iff f is sp -continuous and (p, sp) -continuous.

(22) f is p -continuous iff f is ps -continuous and (p, ps) -continuous.

(23) f is s -continuous iff f is ps -continuous and (α, p) -continuous.

(24) f is sp -continuous iff f is ps -continuous and (sp, ps) -continuous.

(25) f is continuous iff f is α -continuous and (c, α) -continuous.

(26) f is continuous iff f is s -continuous and (c, s) -continuous.

(27) f is continuous iff f is p -continuous and (c, p) -continuous.

(28) f is continuous iff f is ps -continuous and (c, ps) -continuous.
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[3] Czes law Byliński. The modification of a function by a function and the iteration of the
composition of a function. Formalized Mathematics, 1(3):521–527, 1990.

[4] Zbigniew Karno. Continuity of mappings over the union of subspaces. Formalized Math-
ematics, 3(1):1–16, 1992.

[5] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. For-
malized Mathematics, 2(5):665–674, 1991.

[6] Beata Padlewska. Connected spaces. Formalized Mathematics, 1(1):239–244, 1990.
[7] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.
[8] Beata Padlewska. Locally connected spaces. Formalized Mathematics, 2(1):93–96, 1991.
[9] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.

Formalized Mathematics, 1(1):223–230, 1990.
[10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[11] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics,

2(4):535–545, 1991.



204 marian przemski

[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[14] Zinaida Trybulec and Halina Świe
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Summary. The aim of this workis to provide a bridge between the
theory of context-free grammars developed in [11], [6] and universally free
manysorted algebras([17]. The third scheme proved in the article allows
to prove that two homomorphisms equal on the set of free generators are
equal. The first scheme is a slight modification of the scheme in [6] and
the second is rather technical, but since it was useful for me, perhaps it
might be useful for somebody else. The concept of flattening of a many
sorted function F between two manysorted sets A and B (with common
set of indices I) is introduced for A with mutually disjoint components
(pairwise disjoint function – the concept introduced in [16]). This is a
function on the union of A, that is equal to F on every component of
A. A trivial many sorted algebra over a signature S is defined with sorts
being singletons of corresponding sort symbols. It has mutually disjoint
sorts.

MML Identifier: MSAFREE1.

The notation and terminology used in this paper are introduced in the following
articles: [20], [23], [24], [8], [9], [21], [5], [7], [14], [16], [3], [22], [2], [4], [1], [15],
[11], [6], [10], [19], [13], [18], [17], and [12].

One can prove the following proposition

(1) For all functions f , g such that g ∈ ∏ f holds rng g ⊆ ⋃ f.
The scheme DTConstrUniq concerns a non empty tree construction structure

A, a non empty set B, a unary functor F yielding an element of B, a ternary
functor G yielding an element of B, and functions C, D from TS(A) into B, and
states that:

C = D
provided the parameters meet the following conditions:
• For every symbol t of A such that t ∈ the terminals of A holds
C(the root tree of t) = F(t),
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• Let n1 be a symbol of A and let t1 be a finite sequence of elements
of TS(A). Suppose n1 ⇒ the roots of t1. Let x be a finite sequence
of elements of B. If x = C · t1, then C(n1-tree(t1)) = G(n1, t1, x),

• For every symbol t of A such that t ∈ the terminals of A holds
D(the root tree of t) = F(t),

• Let n1 be a symbol of A and let t1 be a finite sequence of elements
of TS(A). Suppose n1 ⇒ the roots of t1. Let x be a finite sequence
of elements of B. If x = D · t1, then D(n1-tree(t1)) = G(n1, t1, x).

The following two propositions are true:

(2) Let S be a non void non empty many sorted signature, and let X be
a many sorted set indexed by the carrier of S, and let o, b be arbitrary.
Suppose 〈〈o, b〉〉 ∈ REL(X). Then

(i) o ∈ [: the operation symbols of S, {the carrier of S} :], and
(ii) b ∈ ([: the operation symbols of S, {the carrier of S} :] ∪ ⋃ coprod(X))∗.

(3) Let S be a non void non empty many sorted signature, and let X be
a many sorted set indexed by the carrier of S, and let o be an operation
symbol of S, and let b be a finite sequence. Suppose 〈〈〈〈o, the carrier of
S〉〉, b〉〉 ∈ REL(X). Then

(i) len b = len Arity(o), and
(ii) for arbitrary x such that x ∈ dom b holds if b(x) ∈ [: the operation sym-

bols of S, {the carrier of S} :], then for every operation symbol o1 of S such
that 〈〈o1, the carrier of S〉〉 = b(x) holds the result sort of o1 = Arity(o)(x)
and if b(x) ∈ ⋃ coprod(X), then b(x) ∈ coprod(Arity(o)(x), X).

Let I be a non empty set and let M be a non-empty many sorted set indexed
by I. Observe that rngM is non empty and has non empty elements.

Let D be a non empty set with non empty elements. Note that
⋃
D is non

empty.
Let I be a set. One can check that every many sorted set indexed by I which

is empty is also pairwise disjoint.
Let I be a set. Observe that there exists a many sorted set indexed by I

which is pairwise disjoint.
Let I be a non empty set, let X be a pairwise disjoint many sorted set indexed

by I, let D be a non-empty many sorted set indexed by I, and let F be a many
sorted function from X into D. The functor Flatten(F ) yields a function from⋃
X into

⋃
D and is defined by:

(Def.1) For every element i of I and for arbitrary x such that x ∈ X(i) holds
(Flatten(F ))(x) = F (i)(x).

The following proposition is true

(4) Let I be a non empty set, and let X be a pairwise disjoint many sorted
set indexed by I, and let D be a non-empty many sorted set indexed by I,
and let F1, F2 be many sorted functions from X into D. If Flatten(F1) =
Flatten(F2), then F1 = F2.

Let S be a non empty many sorted signature and let A be an algebra over
S. We say that A is pairwise disjoint if and only if:
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(Def.2) The sorts of A is pairwise disjoint.

Let S be a non empty many sorted signature. The functor SingleAlg(S)
yields a strict algebra over S and is defined by:

(Def.3) For arbitrary i such that i ∈ the carrier of S holds (the sorts of
SingleAlg(S))(i) = {i}.

Let S be a non empty many sorted signature. Note that there exists an
algebra over S which is non-empty and pairwise disjoint.

Let S be a non empty many sorted signature. Observe that SingleAlg(S) is
non-empty and pairwise disjoint.

Let S be a non empty many sorted signature and let A be a pairwise disjoint
algebra over S. Observe that the sorts of A is pairwise disjoint.

The following proposition is true

(5) Let S be a non void non empty many sorted signature, and let o be
an operation symbol of S, and let A1 be a non-empty pairwise disjoint
algebra over S, and let A2 be a non-empty algebra over S, and let f
be a many sorted function from A1 into A2, and let a be an element of
Args(o,A1). Then Flatten(f) · a = f#a.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of S. Observe that FreeSorts(X)
is pairwise disjoint.

The scheme FreeSortUniq deals with a non void non empty many sorted
signature A, non-empty many sorted sets B, C indexed by the carrier of A, a
unary functor F yielding an element of

⋃ C, a ternary functor G yielding an
element of

⋃ C, and many sorted functions D, E from FreeSorts(B) into C, and
states that:

D = E
provided the following conditions are satisfied:
• Let o be an operation symbol of A, and let t1 be an element of

Args(o,Free(B)), and let x be a finite sequence of elements of
⋃ C. If

x = Flatten(D)·t1, thenD(the result sort of o)((Den(o,Free(B)))(t1)) =
G(o, t1, x),

• For every sort symbol s of A and for arbitrary y such that y ∈
FreeGenerator(s,B) holds D(s)(y) = F(y),

• Let o be an operation symbol of A, and let t1 be an element of
Args(o,Free(B)), and let x be a finite sequence of elements of

⋃ C. If
x = Flatten(E)·t1, then E(the result sort of o)((Den(o,Free(B)))(t1)) =
G(o, t1, x),

• For every sort symbol s of A and for arbitrary y such that y ∈
FreeGenerator(s,B) holds E(s)(y) = F(y).

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of S. Note that Free(X) is non-
empty.

Let S be a non void non empty many sorted signature, let o be an operation
symbol of S, and let A be a non-empty algebra over S. Note that Args(o,A) is
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non empty and Result(o,A) is non empty.
Let S be a non void non empty many sorted signature and let X be a non-

empty many sorted set indexed by the carrier of S. Note that the sorts of
Free(X) is pairwise disjoint.

Let S be a non void non empty many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of S. One can verify that Free(X)
is pairwise disjoint.

The scheme ExtFreeGen deals with a non void non empty many sorted signa-
ture A, a non-empty many sorted set B indexed by the carrier of A, a non-empty
algebra C over A, many sorted functions D, E from Free(B) into C, and a ternary
predicate P, and states that:

D = E
provided the following conditions are satisfied:
• D is a homomorphism of Free(B) into C,
• For every sort symbol s of A and for arbitrary x, y such that y ∈

FreeGenerator(s,B) holds D(s)(y) = x iff P[s, x, y],
• E is a homomorphism of Free(B) into C,
• For every sort symbol s of A and for arbitrary x, y such that y ∈

FreeGenerator(s,B) holds E(s)(y) = x iff P[s, x, y].
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Summary. The aim of the article is to check the compatibility
of the homomorphism of universal algebras introduced in [13] and the
corresponding concept for many sorted algebras introduced in [14].

MML Identifier: MSUHOM 1.

The articles [22], [25], [26], [28], [8], [9], [11], [21], [23], [3], [12], [10], [1], [19],
[6], [27], [18], [15], [2], [5], [4], [16], [7], [24], [13], [14], [17], and [20] provide the
notation and terminology for this paper.

For simplicity we follow the rules: U1, U2, U3 denote universal algebras, n
denotes a natural number, A denotes a non empty set, and h denotes a function
from U1 into U2.

The following propositions are true:

(1) For all functions f , g and for every set C such that rng f ⊆ C holds
(g

�
C) · f = g · f.

(2) For every set I and for every subset C of I holds C ∗ ⊆ I∗.
(3) For every function f and for every set C such that f is function yielding

holds f
�
C is function yielding.

(4) For every set I and for every subset C of I and for every many sorted
set M indexed by I holds (M

�
C)# = M# �

C∗.

Let us consider A, n and let a be an element of A. Then n 7→ a is a finite
sequence of elements of A.

Let S, S′ be non empty many sorted signatures. The predicate S ≤ S ′ is
defined by the conditions (Def.1).
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(Def.1) (i) The carrier of S ⊆ the carrier of S ′,
(ii) the operation symbols of S ⊆ the operation symbols of S ′,
(iii) (the arity of S ′)

�
(the operation symbols of S) = the arity of S, and

(iv) (the result sort of S ′)
�
(the operation symbols of S) = the result sort

of S.

Let us note that this predicate is reflexive.

Next we state four propositions:

(5) For all non empty many sorted signatures S, S ′, S′′ such that S ≤ S ′

and S′ ≤ S′′ holds S ≤ S ′′.
(6) For all strict non empty many sorted signatures S, S ′ such that S ≤ S ′

and S′ ≤ S holds S = S ′.

(7) Let g be a function, and let a be an element of A, and let k be a natural
number. If 1 ≤ k and k ≤ n, then (a7−→. g)(πk(n 7→ a)) = g.

(8) Let I be a set, and let I0 be a subset of I, and let A, B be many sorted
sets indexed by I, and let F be a many sorted function from A into B,
and let A0, B0 be many sorted sets indexed by I0. Suppose A0 = A

�
I0

and B0 = B
�
I0. Then F

�
I0 is a many sorted function from A0 into B0.

Let S, S′ be strict non void non empty many sorted signatures and let A be
a non-empty strict algebra over S ′. Let us assume that S ≤ S ′. The functor
(A over S) yielding a non-empty strict algebra over S is defined by the conditions
(Def.2).

(Def.2) (i) The sorts of (A over S) = (the sorts of A)
�
(the carrier of S), and

(ii) the characteristics of (A over S) = (the characteristics of A)
�

(the
operation symbols of S).

We now state two propositions:

(9) For every strict non void non empty many sorted signature S and for
every non-empty strict algebra A over S holds A = (A over S).

(10) For all U1, U2 such that U1 and U2 are similar holds MSSign(U1) =
MSSign(U2).

Let U1, U2 be universal algebras and let h be a function from U1 into U2.
Let us assume that MSSign(U1) = MSSign(U2). The functor MSAlg(h) yielding
a many sorted function from MSAlg(U1) into (MSAlg(U2) over MSSign(U1)) is
defined by:

(Def.3) MSAlg(h) = {0} 7−→ h.

The following propositions are true:

(11) Given U1, U2, h. Suppose U1 and U2 are similar. Let o be an operation
symbol of MSSign(U1). Then (MSAlg(h))(the result sort of o) = h.

(12) For every operation symbol o of MSSign(U1) holds Den(o,MSAlg(U1)) =
(the characteristic of U1)(o).

(13) For every operation symbol o of MSSign(U1) holds Den(o,MSAlg(U1))
is an operation of U1.
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(14) For every operation symbol o of MSSign(U1) holds every element of
Args(o,MSAlg(U1)) is a finite sequence of elements of the carrier of U1.

(15) Given U1, U2, h. Suppose U1 and U2 are similar. Let o be an operation
symbol of MSSign(U1) and let y be an element of Args(o,MSAlg(U1)).
Then MSAlg(h)#y = h · y.

(16) If h is a homomorphism of U1 into U2, then MSAlg(h) is a homomor-
phism of MSAlg(U1) into (MSAlg(U2) over MSSign(U1)).

(17) If U1 and U2 are similar, then MSAlg(h) is a many sorted set indexed
by {0}.

(18) If h is an epimorphism of U1 onto U2, then MSAlg(h) is an epimorphism
of MSAlg(U1) onto (MSAlg(U2) over MSSign(U1)).

(19) If h is a monomorphism of U1 into U2, then MSAlg(h) is a monomor-
phism of MSAlg(U1) into (MSAlg(U2) over MSSign(U1)).

(20) If h is an isomorphism of U1 and U2, then MSAlg(h) is an isomorphism
of MSAlg(U1) and (MSAlg(U2) over MSSign(U1)).

(21) Given U1, U2, h. Suppose U1 and U2 are similar. Suppose MSAlg(h) is a
homomorphism of MSAlg(U1) into (MSAlg(U2) over MSSign(U1)). Then
h is a homomorphism of U1 into U2.

(22) Given U1, U2, h. Suppose U1 and U2 are similar. Suppose MSAlg(h) is
an epimorphism of MSAlg(U1) onto (MSAlg(U2) over MSSign(U1)). Then
h is an epimorphism of U1 onto U2.

(23) Given U1, U2, h. Suppose U1 and U2 are similar. Suppose MSAlg(h) is a
monomorphism of MSAlg(U1) into (MSAlg(U2) over MSSign(U1)). Then
h is a monomorphism of U1 into U2.

(24) Given U1, U2, h. Suppose U1 and U2 are similar. Suppose MSAlg(h) is
an isomorphism of MSAlg(U1) and (MSAlg(U2) over MSSign(U1)). Then
h is an isomorphism of U1 and U2.

(25) MSAlg(id(the carrier of U1)) = id(the sorts of MSAlg(U1)).

(26) Given U1, U2, U3. Suppose U1 and U2 are similar and U2 and U3 are
similar. Let h1 be a function from U1 into U2 and let h2 be a function
from U2 into U3. Then MSAlg(h2) ◦MSAlg(h1) = MSAlg(h2 · h1).
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Summary. This article is the second in a series of four articles
(started with [20] and continued in [19,18]) about modelling circuits by
many sorted algebras.

First, we introduce some additional terminology for many sorted sig-
natures. The vertices of such signatures are divided into input vertices
and inner vertices. A many sorted signature is called circuit like if each
sort is a result sort of at most one operation. Next, we introduce some
notions for many sorted algebras and many sorted free algebras. Free
envelope of an algebra is a free algebra generated by the sorts of the al-
gebra. Evaluation of an algebra is defined as a homomorphism from the
free envelope of the algebra into the algebra. We define depth of elements
of free many sorted algebras.

A many sorted signature is said to be monotonic if every finitely gen-
erated algebra over it is locally finite (finite in each sort). Monotonic
signatures are used (see [19,18]) in modelling backbones of circuits with-
out directed cycles.

MML Identifier: MSAFREE2.

The papers [24], [28], [25], [1], [29], [12], [15], [7], [13], [5], [2], [4], [6], [3], [23],
[17], [22], [11], [21], [9], [10], [8], [14], [26], [30], [16], [27], and [20] provide the
notation and terminology for this paper.

1. Many Sorted Signatures

Let S be a many sorted signature. A vertex of S is an element of the carrier
of S.

1Partial funding for this work has been provided by: Shinshu Endowment Fund for Infor-
mation Science, NSERC Grant OGP9207, JSTF award 651-93-S009.
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Let S be a non empty many sorted signature.

The functor SortsWithConstants(S) yielding a subset of the carrier of S is
defined as follows:

(Def.1) (i) SortsWithConstants(S) = {v : v ranges over sort symbols of S, v
has constants} if S is non void,

(ii) SortsWithConstants(S) = ∅, otherwise.

Let G be a non empty many sorted signature. The functor InputVertices(G)
yields a subset of the carrier of G and is defined by:

(Def.2) InputVertices(G) = (the carrier of G) \ rng (the result sort of G).

The functor InnerVertices(G) yielding a subset of the carrier of G is defined by:

(Def.3) InnerVertices(G) = rng (the result sort of G).

Next we state several propositions:

(1) For every void non empty many sorted signature G holds
InputVertices(G) = the carrier of G.

(2) Let G be a non void non empty many sorted signature and let v be a
vertex of G. Suppose v ∈ InputVertices(G). Then it is not true that there
exists an operation symbol o of G such that the result sort of o = v.

(3) For every non empty many sorted signature G holds InputVertices(G)∪
InnerVertices(G) = the carrier of G.

(4) For every non empty many sorted signature G holds InputVertices(G)
misses InnerVertices(G).

(5) For every non empty many sorted signature G holds

SortsWithConstants(G) ⊆ InnerVertices(G).

(6) For every non empty many sorted signature G holds InputVertices(G)
misses SortsWithConstants(G).

A non empty many sorted signature has input vertices if:

(Def.4) InputVertices(it) 6= ∅.
Let us note that there exists a non empty many sorted signature which is

non void and has input vertices.

Let G be a non empty many sorted signature with input vertices. Note that
InputVertices(G) is non empty.

LetG be a non void non empty many sorted signature. Then InnerVertices(G)
is a non empty subset of the carrier of G.

Let S be a non empty many sorted signature and let M1 be a non-empty
algebra over S. A many sorted set indexed by InputVertices(S) is said to be an
input assignment of M1 if:

(Def.5) For every vertex v of S such that v ∈ InputVertices(S) holds it(v) ∈ (the
sorts of M1)(v).

Let S be a non empty many sorted signature. We say that S is circuit-like
if and only if the condition (Def.6) is satisfied.
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(Def.6) Let S ′ be a non void non empty many sorted signature. Suppose S ′ = S.
Let o1, o2 be operation symbols of S ′. If the result sort of o1 = the result
sort of o2, then o1 = o2.

Let us observe that every non empty many sorted signature which is void is
also circuit-like.

Let us note that there exists a non empty many sorted signature which is
non void circuit-like and strict.

Let I1 be a circuit-like non void non empty many sorted signature and let
v be a vertex of I1. Let us assume that v ∈ InnerVertices(I1). The action at v
yielding an operation symbol of I1 is defined as follows:

(Def.7) The result sort of the action at v = v.

2. Free Many Sorted Algebras

Next we state the proposition

(7) Let S be a non void non empty many sorted signature, and let A be an
algebra over S, and let o be an operation symbol of S, and let p be a finite
sequence. Suppose len p = len Arity(o) and for every natural number k
such that k ∈ dom p holds p(k) ∈ (the sorts of A)(πk Arity(o)). Then
p ∈ Args(o,A).

Let S be a non void non empty many sorted signature and let M1 be a
non-empty algebra over S. The functor FreeEnvelope(M1) yielding a free strict
non-empty algebra over S is defined as follows:

(Def.8) FreeEnvelope(M1) = Free(the sorts of M1).

One can prove the following proposition

(8) Let S be a non void non empty many sorted signature and let M1 be a
non-empty algebra over S. Then FreeGenerator(the sorts of M1) is a free
generator set of FreeEnvelope(M1).

Let S be a non void non empty many sorted signature and let M1 be a non-
empty algebra over S. The functor Eval(M1) yielding a many sorted function
from FreeEnvelope(M1) into M1 is defined by the conditions (Def.9).

(Def.9) (i) Eval(M1) is a homomorphism of FreeEnvelope(M1) into M1, and

(ii) for every sort symbol s of S and for arbitrary x, y such that y ∈
FreeSort(the sorts of M1, s) and y = the root tree of 〈〈x, s〉〉 and x ∈ (the
sorts of M1)(s) holds (Eval(M1))(s)(y) = x.

One can prove the following proposition

(9) Let S be a non void non empty many sorted signature and let A be a
non-empty algebra over S. Then the sorts of A is a generator set of A.

Let S be a non empty many sorted signature. An algebra over S is finitely-
generated if:
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(Def.10) (i) For every non void non empty many sorted signature S ′ such that
S′ = S and for every algebra A over S ′ such that A = it holds there exists
generator set of A which is locally-finite if S is not void,

(ii) the sorts of it is locally-finite, otherwise.

Let S be a non empty many sorted signature. An algebra over S is locally-
finite if:

(Def.11) The sorts of it is locally-finite.

Let S be a non empty many sorted signature. Observe that every non-empty
algebra over S which is locally-finite is also finitely-generated.

Let S be a non empty many sorted signature. The trivial algebra of S yields
a strict algebra over S and is defined by:

(Def.12) The sorts of the trivial algebra of S = (the carrier of S) 7−→ {0}.
Let S be a non empty many sorted signature. Observe that there exists an

algebra over S which is locally-finite non-empty and strict.

A non empty many sorted signature is monotonic if:

(Def.13) Every finitely-generated non-empty algebra over it is locally-finite.

One can verify that there exists a non empty many sorted signature which
is non void finite monotonic and circuit-like.

The following propositions are true:

(10) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v be a
sort symbol of S. Then every element of the sorts of Free(X)(v) is a finite
decorated tree.

(11) Let S be a non void non empty many sorted signature and let X be
a non-empty locally-finite many sorted set indexed by the carrier of S.
Then Free(X) is finitely-generated.

(12) Let S be a non void non empty many sorted signature, and let A be a
non-empty algebra over S, and let v be a vertex of S, and let e be an ele-
ment of (the sorts of FreeEnvelope(A))(v). Suppose v ∈ InputVertices(S).
Then there exists an element x of (the sorts of A)(v) such that e = the
root tree of 〈〈x, v〉〉.

(13) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set indexed by the carrier of S, and let o be an
operation symbol of S, and let p be a decorated tree yielding finite se-
quence. Suppose 〈〈o, the carrier of S〉〉-tree(p) ∈ (the sorts of Free(X))(the
result sort of o). Then len p = len Arity(o).

(14) Let S be a non void non empty many sorted signature, and let X be a
non-empty many sorted set indexed by the carrier of S, and let o be an
operation symbol of S, and let p be a decorated tree yielding finite se-
quence. Suppose 〈〈o, the carrier of S〉〉-tree(p) ∈ (the sorts of Free(X))(the
result sort of o). Let i be a natural number. If i ∈ dom Arity(o), then
p(i) ∈ (the sorts of Free(X))(Arity(o)(i)).
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Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of S, and let v be a vertex of S. One
can check that every element of the sorts of Free(X)(v) is finite non empty
function-like and relation-like.

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of S, and let v be a vertex of S. Note
that there exists an element of the sorts of Free(X)(v) which is function-like and
relation-like.

Let S be a non void non empty many sorted signature, let X be a non-
empty many sorted set indexed by the carrier of S, and let v be a vertex of S.
Observe that every function-like relation-like element of the sorts of Free(X)(v)
is decorated tree-like.

Let I1 be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of I1, and let v be a vertex of I1. Observe
that there exists an element of the sorts of Free(X)(v) which is finite.

We now state the proposition

(15) Let S be a non void non empty many sorted signature, and let X be
a non-empty many sorted set indexed by the carrier of S, and let v be a
vertex of S, and let o be an operation symbol of S, and let e be an element
of (the sorts of Free(X))(v). Suppose v ∈ InnerVertices(S) and e(ε) =
〈〈o, the carrier of S〉〉. Then there exists a decorated tree yielding finite
sequence p such that len p = len Arity(o) and for every natural number i
such that i ∈ dom p holds p(i) ∈ (the sorts of Free(X))(Arity(o)(i)).

Let S be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of S, let v be a sort symbol of S, and
let e be an element of (the sorts of Free(X))(v). The functor depth(e) yielding
a natural number is defined by:

(Def.14) There exists a finite decorated tree d1 and there exists a finite tree t
such that d1 = e and t = dom d1 and depth(e) = height t.
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Summary. The aim of the article is to check the compatibility
of the automorphisms of universal algebras introduced in [8] and the
corresponding concept for many sorted algebras introduced in [9].
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The notation and terminology used in this paper have been introduced in the
following articles: [2], [17], [20], [21], [5], [6], [4], [14], [16], [11], [13], [18], [19],
[1], [10], [3], [8], [12], [15], [9], and [7].

1. On the Group of Automorphisms of Universal Algebra

In this paper U1 denotes a universal algebra and f , g denote functions from
U1 into U1.

One can prove the following proposition

(1) id(the carrier of U1) is an isomorphism of U1 and U1.

Let us consider U1. The functor UAAut(U1) yields a non empty set of func-
tions from the carrier of U1 to the carrier of U1 and is defined by the conditions
(Def.1).

(Def.1) (i) Every element of UAAut(U1) is a function from U1 into U1, and
(ii) for every function h from U1 into U1 holds h ∈ UAAut(U1) iff h is an

isomorphism of U1 and U1.

Next we state several propositions:

(2) UAAut(U1) ⊆ (the carrier of U1)the carrier of U1 .
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(3) For every f holds f ∈ UAAut(U1) iff f is an isomorphism of U1 and U1.

(4) id(the carrier of U1) ∈ UAAut(U1).

(5) For all f , g such that f is an element of UAAut(U1) and g = f−1 holds
g is an isomorphism of U1 and U1.

(6) For every element f of UAAut(U1) holds f−1 ∈ UAAut(U1).

(7) For all elements f1, f2 of UAAut(U1) holds f1 · f2 ∈ UAAut(U1).

Let us consider U1. The functor UAAutComp(U1) yields a binary operation
on UAAut(U1) and is defined as follows:

(Def.2) For all elements x, y of UAAut(U1) holds (UAAutComp(U1))(x, y) =
y · x.

Let us consider U1. The functor UAAutGroup(U1) yielding a group is defined
by:

(Def.3) UAAutGroup(U1) = 〈UAAut(U1),UAAutComp(U1)〉.
Let us consider U1. Note that UAAutGroup(U1) is strict.
The following propositions are true:

(8) Let x, y be elements of the carrier of UAAutGroup(U1) and let f , g be
elements of UAAut(U1). If x = f and y = g, then x · y = g · f.

(9) id(the carrier of U1) = 1UAAutGroup(U1).

(10) For every element f of UAAut(U1) and for every element g of the carrier
of UAAutGroup(U1) such that f = g holds f−1 = g−1.

2. Some Properties of Many Sorted Functions

In the sequel I is a set and A, B, C are many sorted sets indexed by I.
Let us consider I, A, B. We say that A is transformable to B if and only if:

(Def.4) For arbitrary i such that i ∈ I holds if B(i) = ∅, then A(i) = ∅.
Let us observe that the predicate introduced above is reflexive.

Next we state several propositions:

(11) If A is transformable to B and B is transformable to C, then A is
transformable to C.

(12) For arbitrary x and for every many sorted set A indexed by {x} holds
A = {x} 7−→ A(x).

(13) For all function yielding functions F , G, H holds (H ◦ G) ◦ F = H ◦
(G ◦ F ).

(14) Let A, B be non-empty many sorted sets indexed by I and let F be a
many sorted function from A into B. If F is “1-1” and “onto”, then F −1

is “1-1” and “onto”.

(15) Let A, B be non-empty many sorted sets indexed by I and let F be
a many sorted function from A into B. If F is “1-1” and “onto”, then
(F−1)−1 = F.
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(16) For all function yielding functions F , G such that F is “1-1” and G is
“1-1” holds G ◦ F is “1-1”.

(17) Let B, C be non-empty many sorted sets indexed by I, and let F be a
many sorted function from A into B, and let G be a many sorted function
from B into C. If F is “onto” and G is “onto”, then G ◦ F is “onto”.

(18) Let A, B, C be non-empty many sorted sets indexed by I, and let F
be a many sorted function from A into B, and let G be a many sorted
function from B into C. Suppose F is “1-1” and “onto” and G is “1-1”
and “onto”. Then (G ◦ F )−1 = F−1 ◦G−1.

(19) Let A, B be non-empty many sorted sets indexed by I, and let F be a
many sorted function from A into B, and let G be a many sorted function
from B into A. If F is “1-1” and “onto” and G ◦F = idA, then G = F−1.

3. On the Group of Automorphisms of Many Sorted Algebra

In the sequel S will be a non void non empty many sorted signature and U2,
U3 will be non-empty algebras over S.

Let us consider I, A, B. The functor MSFuncs(A,B) yields a many sorted
set indexed by I and is defined as follows:

(Def.5) For arbitrary i such that i ∈ I holds (MSFuncs(A,B))(i) = B(i)A(i).

One can prove the following propositions:

(20) Let h be a many sorted set indexed by I. If h = MSFuncs(A,B), then
for arbitrary i such that i ∈ I holds h(i) = B(i)A(i).

(21) Let A, B be many sorted sets indexed by I. Suppose A is transformable
to B. Let x be arbitrary. If x ∈ ∏MSFuncs(A,B), then x is a many sorted
function from A into B.

(22) Let A, B be many sorted sets indexed by I. Suppose A is trans-
formable to B. Let g be a many sorted function from A into B. Then
g ∈ ∏MSFuncs(A,B).

(23) For all many sorted sets A, B indexed by I such that A is transformable
to B holds MSFuncs(A,B) is non-empty.

Let us consider I, A, B. Let us assume that A is transformable to B. A non
empty set is said to be a set of manysorted functions from A into B if:

(Def.6) For arbitrary x such that x ∈ it holds x is a many sorted function from
A into B.

Let us consider I, A. Note that MSFuncs(A,A) is non-empty.
Let us consider S, U2, U3. A set of manysorted functions from U2 into U3 is

a set of manysorted functions from the sorts of U2 into the sorts of U3.
Let I be a set and let D be a many sorted set indexed by I. Note that there

exists a set of manysorted functions from D into D which is non empty.
We now state four propositions:
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(24) idA is “onto”.

(25) idA is “1-1”.

(26) id(the sorts of U2) is an isomorphism of U2 and U2.

(27) id(the sorts of U2) ∈
∏

MSFuncs(the sorts of U2, the sorts of U2).

Let us consider S, U2. The functor MSAAut(U2) yielding a set of manysorted
functions from the sorts of U2 into the sorts of U2 is defined by the conditions
(Def.7).

(Def.7) (i) Every element of MSAAut(U2) is a many sorted function from U2

into U2, and

(ii) for every many sorted function h from U2 into U2 holds h ∈
MSAAut(U2) iff h is an isomorphism of U2 and U2.

One can prove the following propositions:

(28) For every many sorted function F from U2 into U2 holds F ∈
MSAAut(U2) iff F is an isomorphism of U2 and U2.

(29) For every element f of MSAAut(U2) holds f ∈ ∏MSFuncs(the sorts of
U2, the sorts of U2).

(30) MSAAut(U2) ⊆ ∏MSFuncs(the sorts of U2, the sorts of U2).

(31) id(the sorts of U2) ∈ MSAAut(U2).

(32) For every element f of MSAAut(U2) holds f−1 ∈ MSAAut(U2).

(33) For all elements f1, f2 of MSAAut(U2) holds f1 ◦ f2 ∈ MSAAut(U2).

(34) For every many sorted function F from MSAlg(U1) into MSAlg(U1)
and for every element f of UAAut(U1) such that F = {0} 7−→ f holds
F ∈ MSAAut(MSAlg(U1)).

Let us consider S, U2. The functor MSAAutComp(U2) yields a binary oper-
ation on MSAAut(U2) and is defined as follows:

(Def.8) For all elements x, y of MSAAut(U2) holds (MSAAutComp(U2))(x,
y) = y ◦ x.

Let us consider S, U2. The functor MSAAutGroup(U2) yields a group and
is defined by:

(Def.9) MSAAutGroup(U2) = 〈MSAAut(U2),MSAAutComp(U2)〉.
Let us consider S, U2. Observe that MSAAutGroup(U2) is strict.

The following three propositions are true:

(35) Let x, y be elements of the carrier of MSAAutGroup(U2) and let f , g
be elements of MSAAut(U2). If x = f and y = g, then x · y = g ◦ f.

(36) id(the sorts of U2) = 1MSAAutGroup(U2).

(37) For every element f of MSAAut(U2) and for every element g of
MSAAutGroup(U2) such that f = g holds f−1 = g−1.
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4. On the Relationship of Automorphisms of 1-sorted and Many
Sorted Algebras

Next we state several propositions:

(38) Let U4, U5 be universal algebras. Suppose U4 and U5 are sim-
ilar. Let F be a many sorted function from MSAlg(U4) into
(MSAlg(U5) over MSSign(U4)). Then F (0) is a function from U4 into U5.

(39) For every element f of UAAut(U1) holds {0} 7−→ f is a many sorted
function from MSAlg(U1) into MSAlg(U1).

(40) Let h be a function. Suppose domh = UAAut(U1) and for arbitrary x
such that x ∈ UAAut(U1) holds h(x) = {0} 7−→ x. Then h is a homomor-
phism from UAAutGroup(U1) to MSAAutGroup(MSAlg(U1)).

(41) Let h be a homomorphism from UAAutGroup(U1) to
MSAAutGroup(MSAlg(U1)). Suppose that for arbitrary x such that x ∈
UAAut(U1) holds h(x) = {0} 7−→ x. Then h is an isomorphism.

(42) UAAutGroup(U1) and MSAAutGroup(MSAlg(U1)) are isomorphic.
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Summary. This article is the third in a series of four articles
(preceded by [19,20] and continued in [18]) about modelling circuits by
many sorted algebras.

A circuit is defined as a locally-finite algebra over a circuit-like many
sorted signature. For circuits we define notions of input function and of
circuit state which are later used (see [18]) to define circuit computations.
For circuits over monotonic signatures we introduce notions of vertex size
and vertex depth that characterize certain graph properties of circuit’s
signature in terms of elements of its free envelope algebra. The depth of
a finite circuit is defined as the maximal depth over its vertices.

MML Identifier: CIRCUIT1.

The terminology and notation used in this paper are introduced in the following
papers: [24], [27], [3], [16], [28], [12], [9], [29], [15], [25], [1], [7], [26], [13], [2], [4],
[6], [8], [5], [14], [10], [23], [22], [11], [17], [21], [19], and [20].

1. Circuit State

Let S be a non void circuit-like non empty many sorted signature. A circuit
of S is a locally-finite algebra over S.

In the sequel I1 will denote a circuit-like non void non empty many sorted
signature.

Let us consider I1 and let S1 be a non-empty circuit of I1.
The functor Set-Constants(S1) yielding a many sorted set indexed by
SortsWithConstants(I1) is defined as follows:

1Partial funding for this work has been provided by: Shinshu Endowment Fund for Infor-
mation Science, NSERC Grant OGP9207, JSTF award 651-93-S009.
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(Def.1) For every vertex x of I1 such that x ∈ dom Set-Constants(S1) holds
(Set-Constants(S1))(x) ∈ Constants(S1, x).

The following proposition is true

(1) Given I1, and let S1 be a non-empty circuit of I1, and let v be
a vertex of I1, and let e be an element of (the sorts of S1)(v).
If v ∈ SortsWithConstants(I1) and e ∈ Constants(S1, v), then
(Set-Constants(S1))(v) = e.

Let us consider I1 and let C1 be a circuit of I1. An input function of C1 is
a many sorted function from InputVertices(I1) 7−→ � into (the sorts of C1)

�
InputVertices(I1).

The following proposition is true

(2) Given I1, and let S1 be a non-empty circuit of I1, and let I2 be an input
function of S1, and let n be a natural number. If I1 has input vertices,
then (commute(I2))(n) is an input assignment of S1.

Let us consider I1. Let us assume that I1 has input vertices. Let S1 be a
non-empty circuit of I1, let I2 be an input function of S1, and let n be a natural
number. The functor n-th-input(I2) yields an input assignment of S1 and is
defined by:

(Def.2) n-th-input(I2) = (commute(I2))(n).

The following proposition is true

(3) Given I1, and let S1 be a non-empty circuit of I1, and let I2 be an input
function of S1, and let n be a natural number. If I1 has input vertices,
then n-th-input(I2) = (commute(I2))(n).

Let us consider I1 and let S1 be a circuit of I1. A state of S1 is an element
of
∏

(the sorts of S1).
The following propositions are true:

(4) For every I1 and for every non-empty circuit S1 of I1 and for every state
s of S1 holds dom s = the carrier of I1.

(5) Given I1, and let S1 be a non-empty circuit of I1, and let s be a state
of S1, and let v be a vertex of I1. Then s(v) ∈ (the sorts of S1)(v).

Let us consider I1, let S1 be a non-empty circuit of I1, let s be a state of S1,
and let o be an operation symbol of I1. The functor odepends-on-in s yields an
element of Args(o, S1) and is defined as follows:

(Def.3) odepends-on-in s = s · Arity(o).

In the sequel I1 will be a monotonic circuit-like non void non empty many
sorted signature.

The following proposition is true

(6) Given I1, and let S1 be a locally-finite non-empty algebra over I1, and
let v, w be vertices of I1, and let e1 be an element of (the sorts of
FreeEnvelope(S1))(v), and let q1 be a decorated tree yielding finite se-
quence. Suppose v ∈ InnerVertices(I1) and e1 = 〈〈the action at v, the
carrier of I1〉〉-tree(q1). Let k be a natural number. If k ∈ dom q1 and
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q1(k) ∈ (the sorts of FreeEnvelope(S1))(w), then w = πk Arity(the action
at v).

Let us consider I1, let S1 be a locally-finite non-empty algebra over I1, and let
v be a vertex of I1. Note that every element of the sorts of FreeEnvelope(S1)(v)
is finite non empty function-like and relation-like.

Let us consider I1, let S1 be a locally-finite non-empty algebra over I1,
and let v be a vertex of I1. Observe that every element of the sorts of
FreeEnvelope(S1)(v) is decorated tree-like.

Next we state four propositions:

(7) Given I1, and let S1 be a locally-finite non-empty algebra over
I1, and let v, w be vertices of I1, and let e1 be an element of
(the sorts of FreeEnvelope(S1))(v), and let e2 be an element of (the
sorts of FreeEnvelope(S1))(w), and let q1 be a decorated tree yield-
ing finite sequence, and let k1 be a natural number. Suppose v ∈
InnerVertices(I1) \ SortsWithConstants(I1) and e1 = 〈〈the action at
v, the carrier of I1〉〉-tree(q1) and k1 + 1 ∈ dom q1 and q1(k1 + 1) ∈
(the sorts of FreeEnvelope(S1))(w). Then e1(〈k1〉/e2) ∈ (the sorts of
FreeEnvelope(S1))(v).

(8) Given I1, and let A be a locally-finite non-empty algebra over I1, and
let v be an element of the carrier of I1, and let e be an element of (the
sorts of FreeEnvelope(A))(v). Suppose 1 < card e. Then there exists an
operation symbol o of I1 such that e(ε) = 〈〈o, the carrier of I1〉〉.

(9) Let I1 be a non void circuit-like non empty many sorted signature, and
let S1 be a non-empty circuit of I1, and let s be a state of S1, and let o be
an operation symbol of I1. Then (Den(o, S1))(odepends-on-in s) ∈ (the
sorts of S1)(the result sort of o).

(10) Given I1, and let A be a non-empty circuit of I1, and let v be a vertex of
I1, and let e be an element of (the sorts of FreeEnvelope(A))(v). Suppose
e(ε) = 〈〈the action at v, the carrier of I1〉〉. Then there exists a decorated
tree yielding finite sequence p such that e = 〈〈the action at v, the carrier
of I1〉〉-tree(p).

2. Vertex Size

Let I1 be a monotonic non void non empty many sorted signature, let A be
a locally-finite non-empty algebra over I1, and let v be a sort symbol of I1. One
can verify that (the sorts of FreeEnvelope(A))(v) is finite.

Let us consider I1, let A be a locally-finite non-empty algebra over I1, and
let v be a sort symbol of I1. The functor size(v,A) yielding a natural number
is defined as follows:

(Def.4) There exists a finite non empty subset s of � such that s =
{card t : t ranges over elements of (the sorts of FreeEnvelope(A))(v)}
and size(v,A) = max s.
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Next we state four propositions:

(11) Given I1, and let A be a locally-finite non-empty algebra over I1, and
let v be an element of the carrier of I1. Then size(v,A) = 1 if and only if
v ∈ InputVertices(I1) ∪ SortsWithConstants(I1).

(12) Given I1, and let S1 be a locally-finite non-empty algebra over I1,
and let v, w be vertices of I1, and let e1 be an element of (the sorts
of FreeEnvelope(S1))(v), and let e2 be an element of (the sorts of
FreeEnvelope(S1))(w), and let q1 be a decorated tree yielding finite se-
quence. Suppose v ∈ InnerVertices(I1) \ SortsWithConstants(I1) and
card e1 = size(v, S1) and e1 = 〈〈the action at v, the carrier of I1〉〉-tree(q1)
and e2 ∈ rng q1. Then card e2 = size(w,S1).

(13) Given I1, and let A be a locally-finite non-empty algebra over
I1, and let v be a vertex of I1, and let e be an element of
(the sorts of FreeEnvelope(A))(v). Suppose v ∈ InnerVertices(I1) \
SortsWithConstants(I1) and card e = size(v,A). Then there exists a dec-
orated tree yielding finite sequence q such that e = 〈〈the action at v, the
carrier of I1〉〉-tree(q).

(14) Given I1, and let A be a locally-finite non-empty algebra over
I1, and let v be a vertex of I1, and let e be an element of
(the sorts of FreeEnvelope(A))(v). Suppose v ∈ InnerVertices(I1) \
SortsWithConstants(I1) and card e = size(v,A). Then there exists an
operation symbol o of I1 such that e(ε) = 〈〈o, the carrier of I1〉〉.

Let S be a non void non empty many sorted signature, let A be a locally-
finite non-empty algebra over S, let v be a sort symbol of S, and let e be an
element of (the sorts of FreeEnvelope(A))(v). The functor depth(e) yielding a
natural number is defined as follows:

(Def.5) There exists an element e′ of (the sorts of Free(the sorts of A))(v) such
that e = e′ and depth(e) = depth(e′).

The following propositions are true:

(15) Given I1, and let A be a locally-finite non-empty algebra over I1, and
let v, w be elements of the carrier of I1. If v ∈ InnerVertices(I1) and
w ∈ rng Arity(the action at v), then size(w,A) < size(v,A).

(16) For every I1 and for every locally-finite non-empty algebra A over I1

and for every sort symbol v of I1 holds size(v,A) > 0.

(17) Given I1, and let A be a non-empty circuit of I1, and let v be a vertex
of I1, and let e be an element of (the sorts of FreeEnvelope(A))(v), and
let p be a decorated tree yielding finite sequence. Suppose that

(i) v ∈ InnerVertices(I1),
(ii) e = 〈〈the action at v, the carrier of I1〉〉-tree(p), and
(iii) for every natural number k such that k ∈ dom p there exists an element

e3 of (the sorts of FreeEnvelope(A))(πk Arity(the action at v)) such that
e3 = p(k) and card e3 = size(πk Arity(the action at v), A).
Then card e = size(v,A).
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3. Vertex and Circuit Depth

Let S be a monotonic non void non empty many sorted signature, let A be
a locally-finite non-empty algebra over S, and let v be a sort symbol of S. The
functor depth(v,A) yields a natural number and is defined by:

(Def.6) There exists a finite non empty subset s of � such that s =
{depth(t) : t ranges over elements of (the sorts of FreeEnvelope(A))(v)}
and depth(v,A) = max s.

Let I1 be a finite monotonic circuit-like non void non empty many sorted
signature and let A be a non-empty circuit of I1. The functor depth(A) yielding
a natural number is defined by the condition (Def.7).

(Def.7) There exists a finite non empty subset D1 of � such that D1 =
{depth(v,A) : v ranges over elements of the carrier of I1, v ∈ the car-
rier of I1} and depth(A) = maxD1.

The following three propositions are true:

(18) Let I1 be a finite monotonic circuit-like non void non empty many sorted
signature, and let A be a non-empty circuit of I1, and let v be a vertex of
I1. Then depth(v,A) ≤ depth(A).

(19) Given I1, and let A be a non-empty circuit of I1, and let v be a vertex
of I1. Then depth(v,A) = 0 if and only if v ∈ InputVertices(I1) or
v ∈ SortsWithConstants(I1).

(20) Given I1, and let A be a locally-finite non-empty algebra over I1, and let
v, v1 be sort symbols of I1. If v ∈ InnerVertices(I1) and v1 ∈ rng Arity(the
action at v), then depth(v1, A) < depth(v,A).
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Summary. The aim of the paper is to define some basic notions
of the theory of topological spaces like basis and prebasis, and to prove
their simple properties. The definition of the Cantor set is given in terms
of countable product of {0, 1} and a collection of its subsets to serve as a
prebasis.

MML Identifier: CANTOR 1.

The papers [13], [16], [15], [9], [17], [2], [3], [6], [14], [12], [10], [5], [4], [1], [7],
[11], and [8] provide the terminology and notation for this paper.

Let Y be a set and let x be a non empty set. Observe that Y 7−→ x is
non-empty.

Let X be arbitrary and let A be a family of subsets of X. The functor
UniCl(A) yields a family of subsets of X and is defined by:

(Def.1) For every subset x of X holds x ∈ UniCl(A) iff there exists a family Y
of subsets of X such that Y ⊆ A and x =

⋃
Y.

Let X be a topological structure. A family of subsets of the carrier of X is
called a basis of X if:

(Def.2) It ⊆ the topology of X and the topology of X ⊆ UniCl(it).

We now state three propositions:

(1) For arbitrary X and for every family A of subsets of X holds A ⊆
UniCl(A).

(2) For every topological structure S holds the topology of S is a basis of
S.

(3) For every topological structure S holds the topology of S is open.

Let M be arbitrary and let B be a family of subsets of M . The functor
Intersect(B) yielding a subset of M is defined by:

1The present work had been completed while the first author’s visit to Bia lystok in winter
1994-95.
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(Def.3) (i) Intersect(B) =
⋂
B if B 6= ∅,

(ii) Intersect(B) = M, otherwise.

Let X be arbitrary and let A be a family of subsets of X. The functor
FinMeetCl(A) yielding a family of subsets of X is defined by the condition
(Def.4).

(Def.4) Let x be a subset of X. Then x ∈ FinMeetCl(A) if and only if there
exists a family Y of subsets of X such that Y ⊆ A and Y is finite and
x = Intersect(Y ).

One can prove the following proposition

(4) For arbitrary X and for every family A of subsets of X holds A ⊆
FinMeetCl(A).

Let T be a topological space. Note that the topology of T is non empty.
The following propositions are true:

(5) For every topological space T holds the topology of T = FinMeetCl(the
topology of T ).

(6) For every topological space T holds the topology of T = UniCl(the
topology of T ).

(7) For every topological space T holds the topology of T =
UniCl(FinMeetCl(the topology of T )).

(8) For arbitrary X and for every family A of subsets of X holds X ∈
FinMeetCl(A).

(9) For arbitrary X and for all families A, B of subsets of X such that
A ⊆ B holds UniCl(A) ⊆ UniCl(B).

(10) Let X be arbitrary, and let R be a family of subsets of X, and let x
be arbitrary. Suppose x ∈ X. Then x ∈ Intersect(R) if and only if for
arbitrary Y such that Y ∈ R holds x ∈ Y.

(11) For arbitrary X and for all families H, J of subsets of X such that
H ⊆ J holds Intersect(J) ⊆ Intersect(H).

(12) Let X be arbitrary, and let R be a non empty family of subsets of 2X ,
and let F be a family of subsets of X. If F = {Intersect(x) : x ranges
over elements of R}, then Intersect(F ) = Intersect(

⋃
R).

Let X, Y be arbitrary, let A be a family of subsets of X, let F be a function
from Y into 2A, and let x be arbitrary. Then F (x) is a family of subsets of X.

We now state four propositions:

(13) For arbitrary X and for every family A of subsets of X holds
FinMeetCl(A) = FinMeetCl(FinMeetCl(A)).

(14) Let X be arbitrary, and let A be a family of subsets of X, and let
a, b be arbitrary. If a ∈ FinMeetCl(A) and b ∈ FinMeetCl(A), then
a ∩ b ∈ FinMeetCl(A).

(15) Let X be arbitrary, and let A be a family of subsets of X, and let
a, b be arbitrary. If a ⊆ FinMeetCl(A) and b ⊆ FinMeetCl(A), then
a � b ⊆ FinMeetCl(A).
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(16) For arbitrary X and for all families A, B of subsets of X such that
A ⊆ B holds FinMeetCl(A) ⊆ FinMeetCl(B).

Let X be arbitrary and let A be a family of subsets of X. Observe that
FinMeetCl(A) is non empty.

One can prove the following proposition

(17) For every non empty set X and for every family A of subsets of X holds
〈X,UniCl(FinMeetCl(A))〉 is topological space-like.

Let X be a topological structure. A family of subsets of the carrier of X is
said to be a prebasis of X if:

(Def.5) It ⊆ the topology of X and there exists a basis F of X such that
F ⊆ FinMeetCl(it).

We now state three propositions:

(18) For every non empty set X holds every family of subsets of X is a basis
of 〈X,UniCl(Y )〉.

(19) Let T1, T2 be strict topological spaces and let P be a prebasis of T1.
Suppose the carrier of T1 = the carrier of T2 and P is a prebasis of T2.
Then T1 = T2.

(20) For every non empty set X holds every family of subsets of X is a
prebasis of 〈X,UniCl(FinMeetCl(Y ))〉.

The strict topological space the Cantor set is defined by the conditions
(Def.6).

(Def.6) (i) The carrier of the Cantor set =
∏

( � 7−→ {0, 1}), and
(ii) there exists a prebasis P of the Cantor set such that for every subset X

of
∏

( � 7−→ {0, 1}) holds X ∈ P iff there exist natural numbers N , n such
that for every element F of

∏
( � 7−→ {0, 1}) holds F ∈ X iff F (N) = n.
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[3] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[4] Agata Darmochwa l. Compact spaces. Formalized Mathematics, 1(2):383–386, 1990.
[5] Agata Darmochwa l. Families of subsets, subspaces and mappings in topological spaces.

Formalized Mathematics, 1(2):257–261, 1990.
[6] Agata Darmochwa l. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[7] Jaros law Kotowicz, Beata Madras, and Ma lgorzata Korolkiewicz. Basic notation of

universal algebra. Formalized Mathematics, 3(2):251–253, 1992.
[8] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized

Mathematics, 3(2):151–160, 1992.
[9] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147–152, 1990.

[10] Beata Padlewska and Agata Darmochwa l. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[11] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,
1(2):329–334, 1990.

[12] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics,
1(2):369–376, 1990.



236 alexander yu. shibakov and andrzej trybulec

[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,
1990.

[14] Andrzej Trybulec and Agata Darmochwa l. Boolean domains. Formalized Mathematics,
1(1):187–190, 1990.

[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.

[16] Zinaida Trybulec and Halina Świe
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The notation and terminology used here are introduced in the following papers:
[11], [9], [10], [8], [1], [12], [4], [2], [7], [5], [3], and [6].

For simplicity we adopt the following rules: p, q, r, s, p1, q1 are elements of
CQC-WFF, X, Y , Z, X1, X2 are subsets of CQC-WFF, h is a formula, and x,
y are bound variables.

One can prove the following four propositions:

(1) If p ∈ X, then X ` p.
(2) If X ⊆ CnY, then CnX ⊆ CnY.

(3) If X ` p and {p} ` q, then X ` q.
(4) If X ` p and X ⊆ Y, then Y ` p.
Let p, q be elements of CQC-WFF. The predicate p ` q is defined by:

(Def.1) {p} ` q.
We now state two propositions:

(5) p ` p.
(6) If p ` q and q ` r, then p ` r.
Let X, Y be subsets of CQC-WFF. The predicate X ` Y is defined as

follows:

(Def.2) For every element p of CQC-WFF such that p ∈ Y holds X ` p.
We now state several propositions:

(7) X ` Y iff Y ⊆ CnX.

(8) X ` X.
(9) If X ` Y and Y ` Z, then X ` Z.

(10) X ` {p} iff X ` p.
1This work has been done while the author visited Warsaw University in Bia lystok, in

winter 1994–1995.
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(11) {p} ` {q} iff p ` q.
(12) If X ⊆ Y, then Y ` X.
(13) X ` Taut .

(14) ∅CQC ` Taut .

Let X be a subset of CQC-WFF. The predicate ` X is defined by:

(Def.3) For every element p of CQC-WFF such that p ∈ X holds ` p.
We now state three propositions:

(15) ` X iff ∅CQC ` X.
(16) ` Taut .

(17) ` X iff X ⊆ Taut .

Let us consider X, Y . The predicate X à Y is defined by:

(Def.4) For every p holds X ` p iff Y ` p.
Let us observe that this predicate is reflexive and symmetric.

The following propositions are true:

(18) X à Y iff X ` Y and Y ` X.
(19) If X à Y and Y à Z, then X à Z.
(20) X à Y iff CnX = CnY.

(21) CnX ∪CnY ⊆ Cn(X ∪ Y ).

(22) Cn(X ∪ Y ) = Cn(CnX ∪CnY ).

(23) X à CnX.

(24) X ∪ Y à CnX ∪CnY.

(25) If X1 à X2, then X1 ∪ Y à X2 ∪ Y.
(26) If X1 à X2 and X1 ∪ Y ` Z, then X2 ∪ Y ` Z.
(27) If X1 à X2 and Y ` X1, then Y ` X2.

Let p, q be elements of CQC-WFF. The predicate p à q is defined by:

(Def.5) p ` q and q ` p.
Let us observe that the predicate defined above is reflexive and symmetric.

We now state a number of propositions:

(28) If p à q and q à r, then p à r.
(29) p à q iff {p} à {q}.
(30) If p à q and X ` p, then X ` q.
(31) {p, q} à {p ∧ q}.
(32) p ∧ q à q ∧ p.
(33) X ` p ∧ q iff X ` p and X ` q.
(34) If p à q and r à s, then p ∧ r à q ∧ s.
(35) X ` ∀xp iff X ` p.
(36) ∀xp à p.
(37) If p à q, then ∀xp à ∀yq.
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Let p, q be elements of CQC-WFF. We say that p is an universal closure of
q if and only if the conditions (Def.6) are satisfied.

(Def.6) (i) p is closed, and

(ii) there exists a natural number n such that 1 ≤ n and there exists a
finite sequence L such that lenL = n and L(1) = q and L(n) = p and for
every natural number k such that 1 ≤ k and k < n there exists a bound
variable x and there exists an element r of CQC-WFF such that r = L(k)
and L(k + 1) = ∀xr.

One can prove the following propositions:

(38) If p is an universal closure of q, then p à q.
(39) If ` p⇒ q, then p ` q.
(40) If X ` p⇒ q, then X ∪ {p} ` q.
(41) If p is closed and p ` q, then ` p⇒ q.

(42) If p1 is an universal closure of p, then X ∪ {p} ` q iff X ` p1 ⇒ q.

(43) If p is closed and p ` q, then ¬q ` ¬p.
(44) If p is closed and X ∪ {p} ` q, then X ∪ {¬q} ` ¬p.
(45) If p is closed and ¬p ` ¬q, then q ` p.
(46) If p is closed and X ∪ {¬p} ` ¬q, then X ∪ {q} ` p.
(47) If p is closed and q is closed, then p ` q iff ¬q ` ¬p.
(48) If p1 is an universal closure of p and q1 is an universal closure of q, then

p ` q iff ¬q1 ` ¬p1.

(49) If p1 is an universal closure of p and q1 is an universal closure of q, then
p à q iff ¬p1 à ¬q1.

Let p, q be elements of CQC-WFF. The predicate p ≡ q is defined by:

(Def.7) ` p⇔ q.

Let us observe that this predicate is reflexive and symmetric.

One can prove the following propositions:

(50) p ≡ q iff ` p⇒ q and ` q ⇒ p.

(51) If p ≡ q and q ≡ r, then p ≡ r.
(52) If p ≡ q, then p à q.
(53) p ≡ q iff ¬p ≡ ¬q.
(54) If p ≡ q and r ≡ s, then p ∧ r ≡ q ∧ s.
(55) If p ≡ q and r ≡ s, then p⇒ r ≡ q ⇒ s.

(56) If p ≡ q and r ≡ s, then p ∨ r ≡ q ∨ s.
(57) If p ≡ q and r ≡ s, then p⇔ r ≡ q ⇔ s.

(58) If p ≡ q, then ∀xp ≡ ∀xq.
(59) If p ≡ q, then ∃xp ≡ ∃xq.
(60) For all sets X, Y , Z such that Y ∩Z = ∅ holds (X \Y )∪Z = (X∪Z)\Y.
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(61) Let k be a natural number, and let l be a list of variables of the length
k, and let a be a free variable, and let x be a bound variable. Then
snb(l) ⊆ snb(l[a7−→. x]).

(62) Let k be a natural number, and let l be a list of variables of the length
k, and let a be a free variable, and let x be a bound variable. Then
snb(l[a7−→. x]) ⊆ snb(l) ∪ {x}.

(63) For every h holds snb(h) ⊆ snb(h(x)).

(64) For every h holds snb(h(x)) ⊆ snb(h) ∪ {x}.
(65) If p = h(x) and x 6= y and y /∈ snb(h), then y /∈ snb(p).

(66) If p = h(x) and q = h(y) and x /∈ snb(h) and y /∈ snb(h), then ∀xp ≡
∀yq.
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[3] Czes law Byliński. A classical first order language. Formalized Mathematics, 1(4):669–
676, 1990.
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‘
czkowska. Boolean properties of sets. Formalized

Mathematics, 1(1):17–23, 1990.
[12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received January 24, 1995



FORMALIZED MATHEMATICS

Volume 5, Number 2, 1996

Warsaw University - Bia lystok

Some Properties of Restrictions of Finite

Sequences

Czes law Byliński
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Summary. The aim of the paper is to define some basic notions
of restrictions of finite sequences.

MML Identifier: FINSEQ 5.

The notation and terminology used in this paper are introduced in the following
papers: [12], [15], [11], [14], [9], [2], [16], [5], [6], [3], [13], [1], [4], [7], [10], and
[8].

In this paper i, j, k, k1, k2, n are natural numbers.
The following propositions are true:

(1) If i ≤ n, then (n− i) + 1 is a natural number.

(2) If i ∈ Seg n, then (n− i) + 1 ∈ Segn.

(3) For every function f and for arbitrary x, y such that f −1 {y} = {x}
holds x ∈ dom f and y ∈ rng f and f(x) = y.

(4) For every function f holds f is one-to-one iff for arbitrary x such that
x ∈ dom f holds f −1 {f(x)} = {x}.

(5) For every function f and for arbitrary y1, y2 such that f is one-to-one
and y1 ∈ rng f and y2 ∈ rng f and f −1 {y1} = f −1 {y2} holds y1 = y2.

Let x be arbitrary. Note that 〈x〉 is non empty.
Let us note that every set which is empty is also trivial.
Let x be arbitrary. Note that 〈x〉 is trivial. Let y be arbitrary. Observe that

〈x, y〉 is non trivial.
One can verify that there exists a finite sequence which is one-to-one and

non empty.
Next we state three propositions:

(6) For every non empty finite sequence f holds 1 ∈ dom f and len f ∈
dom f.
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(7) For every non empty finite sequence f there exists i such that i + 1 =
len f.

(8) For arbitrary x and for every finite sequence f holds len(〈x〉 � f) =
1 + len f.

The scheme domSeqLambda concerns a natural numberA and a unary functor
F yielding arbitrary, and states that:

There exists a finite sequence p such that len p = A and for every
k such that k ∈ dom p holds p(k) = F(k)

for all values of the parameters.
We now state four propositions:

(9) For every set X such that X ⊆ Segn and 1 ≤ i and i ≤ j and j ≤
len SgmX and k1 = (SgmX)(i) and k2 = (SgmX)(j) holds k1 ≤ k2.

(10) For every finite sequence f and for arbitrary p, q such that p ∈ rng f
and q ∈ rng f and p � f = q � f holds p = q.

(11) For all finite sequences f , g such that n+ 1 ∈ dom f and g = f
�
Seg n

holds f
�
Seg(n+ 1) = g � 〈f(n+ 1)〉.

(12) For every one-to-one finite sequence f such that i ∈ dom f holds f(i) �
f = i.

We adopt the following rules: D is a non empty set, p, q are elements of D,
and f , g are finite sequences of elements of D.

Let us consider D. One can verify that there exists a finite sequence of
elements of D which is one-to-one and non empty.

One can prove the following propositions:

(13) If dom f = dom g and for every i such that i ∈ dom f holds πif = πig,
then f = g.

(14) If len f = len g and for every k such that 1 ≤ k and k ≤ len f holds
πkf = πkg, then f = g.

(15) If len f = 1, then f = 〈π1f〉.
(16) π1(〈p〉 � f) = p.

(18)1 len(f
�
i) ≤ len f.

(19) len(f
�
i) ≤ i.

(20) dom(f
�
i) ⊆ dom f.

(21) rng(f
�
i) ⊆ rng f.

Let us consider D, f . Observe that f
�
0 is empty.

Next we state three propositions:

(22) If len f ≤ i, then f
�
i = f.

(23) If f is non empty, then f
�
1 = 〈π1f〉.

(24) If i+ 1 = len f, then f = (f
�
i) � 〈πlen ff〉.

Let us consider i, D and let f be an one-to-one finite sequence of elements
of D. One can verify that f

�
i is one-to-one.

1The proposition (17) has been removed.
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The following propositions are true:

(25) If i ≤ len f, then (f � g) �
i = f

�
i.

(26) (f � g) �
len f = f.

(27) If p ∈ rng f, then (f ← p) � 〈p〉 = f
�
p � f.

(28) len(f 
 i) ≤ len f.

(29) If i ∈ dom(f 
 n), then n+ i ∈ dom f.

(30) If i ∈ dom(f 
 n), then πif 
 n = πn+if.

(31) f 
 0 = f.

(32) If f is non empty, then f = 〈π1f〉 � (f 
 1 ).

(33) If i+ 1 = len f, then f 
 i = 〈πlen ff〉.
(34) If j + 1 = i and i ∈ dom f, then 〈πif〉 � (f 
 i) = f 
 j .
(35) If len f ≤ i, then f 
 i is empty.

(36) rng(f 
 n) ⊆ rng f.

Let us consider i, D and let f be an one-to-one finite sequence of elements
of D. Note that f 
 i is one-to-one.

The following propositions are true:

(37) If f is one-to-one, then rng(f
�
n) misses rng(f 
 n).

(38) If p ∈ rng f, then f → p = f 
 p � f .

(39) (f � g) 
 len f+i = g 
 i .
(40) (f � g) 
 len f = g.

(41) If p ∈ rng f, then πp � ff = p.

(42) If i ∈ dom f, then (πif) � f ≤ i.
(43) If p ∈ rng(f

�
i), then p � (f

�
i) = p � f.

(44) If i ∈ dom f and f is one-to-one, then (πif) � f = i.

Let us consider D, f and let p be arbitrary. The functor f −: p yielding a
finite sequence of elements of D is defined as follows:

(Def.1) f −: p = f
�
p � f.

One can prove the following propositions:

(45) If p ∈ rng f, then len(f −: p) = p � f.

(46) If p ∈ rng f and i ∈ Seg(p � f), then πi(f −: p) = πif.

(47) If p ∈ rng f, then π1(f −: p) = π1f.

(48) If p ∈ rng f, then πp � f (f −: p) = p.

(49) If q ∈ rng f and p ∈ rng f and q � f ≤ p � f, then q ∈ rng(f −: p).

(50) If p ∈ rng f, then f −: p is non empty.

(51) rng(f −: p) ⊆ rng f.

Let us consider D, p and let f be an one-to-one finite sequence of elements
of D. Observe that f −: p is one-to-one.

Let us consider D, f , p. The functor f :− p yielding a finite sequence of
elements of D is defined by:

(Def.2) f :− p = 〈p〉 � (f 
 p � f ).
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We now state three propositions:

(52) If p ∈ rng f, then there exists i such that i+1 = p � f and f :−p = f 
 i .
(53) If p ∈ rng f, then len(f :− p) = (len f − p � f) + 1.

(54) If p ∈ rng f and j + 1 ∈ dom(f :− p), then j + p � f ∈ dom f.

Let us consider D, p, f . One can check that f :− p is non empty.
Next we state several propositions:

(55) If p ∈ rng f and j + 1 ∈ dom(f :− p), then πj+1(f :− p) = πj+p � ff.

(56) π1(f :− p) = p.

(57) If p ∈ rng f, then πlen(f :−p)(f :− p) = πlen ff.

(58) If p ∈ rng f, then rng(f :− p) ⊆ rng f.

(59) If p ∈ rng f and f is one-to-one, then f :− p is one-to-one.

Let f be a finite sequence. The functor Rev(f) yielding a finite sequence is
defined by:

(Def.3) len Rev(f) = len f and for every i such that i ∈ dom Rev(f) holds
(Rev(f))(i) = f((len f − i) + 1).

One can prove the following propositions:

(60) For every finite sequence f holds dom f = dom Rev(f) and rng f =
rng Rev(f).

(61) For every finite sequence f such that i ∈ dom f holds (Rev(f))(i) =
f((len f − i) + 1).

(62) For every finite sequence f and for all natural numbers i, j such that
i ∈ dom f and i+ j = len f + 1 holds j ∈ dom Rev(f).

Let f be an empty finite sequence. Observe that Rev(f) is empty.
Next we state three propositions:

(63) For arbitrary x holds Rev(〈x〉) = 〈x〉.
(64) For arbitrary x1, x2 holds Rev(〈x1, x2〉) = 〈x2, x1〉.
(65) For every non empty finite sequence f holds f(1) = (Rev(f))(len f) and

f(len f) = (Rev(f))(1).

Let f be an one-to-one finite sequence. Note that Rev(f) is one-to-one.
The following two propositions are true:

(66) For every finite sequence f and for arbitrary x holds Rev(f � 〈x〉) =
〈x〉 � Rev(f).

(67) For all finite sequences f , g holds Rev(f � g) = (Rev(g)) � Rev(f).

Let us consider D, f . Then Rev(f) is a finite sequence of elements of D.
We now state two propositions:

(68) If f is non empty, then π1f = πlen f Rev(f) and πlen ff = π1 Rev(f).

(69) If i ∈ dom f and i+ j = len f + 1, then πif = πj Rev(f).

Let us consider D, f , p, n. The functor Ins(f, n, p) yielding a finite sequence
of elements of D is defined as follows:

(Def.4) Ins(f, n, p) = (f
�
n) � 〈p〉 � (f 
 n).
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One can prove the following propositions:

(70) Ins(f, 0, p) = 〈p〉 � f.
(71) If len f ≤ n, then Ins(f, n, p) = f � 〈p〉.
(72) len Ins(f, n, p) = len f + 1.

(73) rng Ins(f, n, p) = {p} ∪ rng f.

Let us consider D, f , n, p. Observe that Ins(f, n, p) is non empty.
The following propositions are true:

(74) p ∈ rng Ins(f, n, p).

(75) If i ∈ dom(f
�
n), then πi Ins(f, n, p) = πif.

(76) If n ≤ len f, then πn+1 Ins(f, n, p) = p.

(77) If n+ 1 ≤ i and i ≤ len f, then πi+1 Ins(f, n, p) = πif.

(78) If 1 ≤ n and f is non empty, then π1 Ins(f, n, p) = π1f.

(79) If f is one-to-one and p /∈ rng f, then Ins(f, n, p) is one-to-one.
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The papers [22], [26], [21], [25], [13], [1], [14], [27], [4], [5], [2], [23], [3], [10], [24],
[19], [15], [18], [7], [9], [8], [20], [11], [12], [17], [16], and [6] provide the notation
and terminology for this paper.

1. Segments in E2
T

For simplicity we adopt the following convention: P , P1, P2 will be subsets
of the carrier of E2

T, f , f1, f2, g will be finite sequences of elements of E 2
T, p, p1,

p2, q, q1, q2 will be points of E2
T, r1, r2, r′1, r′2 will be real numbers, and i, j, k,

n will be natural numbers.
Next we state a number of propositions:

(1) If [r1, r2] = [r′1, r
′
2], then r1 = r′1 and r2 = r′2.

(2) If i+ j = len f, then L(f, i) = L(Rev(f), j).

(3) If i+ 1 ≤ len(f
�
n), then L(f

�
n, i) = L(f, i).

(4) If n ≤ len f and 1 ≤ i, then L(f 
 n , i) = L(f, n+ i).

(5) If 1 ≤ i and i+ 1 ≤ len f − n, then L(f 
 n , i) = L(f, n+ i).

(6) If i+ 1 ≤ len f, then L(f � g, i) = L(f, i).

(7) If 1 ≤ i, then L(f � g, len f + i) = L(g, i).

(8) If f is non empty and g is non empty, then L(f � g, len f) =
L(πlen ff, π1g).

(9) If i+ 1 ≤ len(f −: p), then L(f −: p, i) = L(f, i).

(10) If p ∈ rng f and 1 ≤ i+ 1, then L(f :− p, i+ 1) = L(f, i+ p � f).

(11) L̃(ε(the carrier of E2
T

)) = ∅.
(12) L̃(〈p〉) = ∅.
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(13) If p ∈ L̃(f), then there exists i such that 1 ≤ i and i + 1 ≤ len f and
p ∈ L(f, i).

(14) If p ∈ L̃(f), then there exists i such that 1 ≤ i and i + 1 ≤ len f and
p ∈ L(πif, πi+1f).

(15) If 1 ≤ i and i+ 1 ≤ len f and p ∈ L(πif, πi+1f), then p ∈ L̃(f).

(16) If 1 ≤ i and i+ 1 ≤ len f, then L(πif, πi+1f) ⊆ L̃(f).

(17) If p ∈ L(f, i), then p ∈ L̃(f).

(18) If len f ≥ 2, then rng f ⊆ L̃(f).

(19) If f is non empty, then L̃(f � 〈p〉) = L̃(f) ∪ L(πlen ff, p).

(20) If f is non empty, then L̃(〈p〉 � f) = L(p, π1f) ∪ L̃(f).

(21) L̃(〈p, q〉) = L(p, q).

(22) L̃(f) = L̃(Rev(f)).

(23) If f1 is non empty and f2 is non empty, then L̃(f1 � f2) = L̃(f1) ∪
L(πlen f1f1, π1f2) ∪ L̃(f2).

(25)1 If q ∈ rng f, then L̃(f) = L̃(f −: q) ∪ L̃(f :− q).
(26) If p ∈ L(f, n), then L̃(f) = L̃(Ins(f, n, p)).

2. Special Sequences in E2
T

One can verify the following observations:

∗ there exists a finite sequence of elements of E 2
T

∗ every finite sequence of elements of E 2
T is one-to-one unfolded s.n.c.

special and non trivial,

∗ every finite sequence of elements of E 2
T which is one-to-one unfolded

s.n.c. special and non trivial has and

∗ every finite sequence of elements of E 2
T is non empty.

Let us note that there exists a finite sequence of elements of E 2
T which is

one-to-one unfolded s.n.c. special and non trivial.
We now state the proposition

(27) If len f ≤ 2, then f is unfolded.

Let f be an unfolded finite sequence of elements of E 2
T and let us consider n.

Note that f
�
n is unfolded and f 
 n is unfolded.

One can prove the following proposition

(28) If p ∈ rng f and f is unfolded, then f :− p is unfolded.

Let f be an unfolded finite sequence of elements of E 2
T and let us consider p.

Observe that f −: p is unfolded.
Next we state several propositions:

1The proposition (24) has been removed.
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(29) If f is unfolded, then Rev(f) is unfolded.

(30) If g is unfolded and L(p, π1g)∩L(g, 1) = {π1g}, then 〈p〉 � g is unfolded.

(31) If f is unfolded and k+1 = len f and L(f, k)∩L(πlen ff, p) = {πlen ff},
then f � 〈p〉 is unfolded.

(32) Suppose f is unfolded and g is unfolded and k+ 1 = len f and L(f, k)∩
L(πlen ff, π1g) = {πlen ff} and L(πlen ff, π1g) ∩ L(g, 1) = {π1g}. Then
f � g is unfolded.

(33) If f is unfolded and p ∈ L(f, n), then Ins(f, n, p) is unfolded.

(34) If len f ≤ 2, then f is s.n.c..

Let f be a s.n.c. finite sequence of elements of E 2
T and let us consider n.

Observe that f
�
n is s.n.c. and f 
 n is s.n.c..

Let f be a s.n.c. finite sequence of elements of E 2
T and let us consider p. Note

that f −: p is s.n.c..
We now state four propositions:

(35) If p ∈ rng f and f is s.n.c., then f :− p is s.n.c..

(36) If f is s.n.c., then Rev(f) is s.n.c..

(37) Suppose that
(i) f is s.n.c.,
(ii) g is s.n.c.,

(iii) L̃(f) ∩ L̃(g) = ∅,
(iv) for every i such that 1 ≤ i and i + 2 ≤ len f holds L(f, i) ∩
L(πlen ff, π1g) = ∅, and

(v) for every i such that 2 ≤ i and i + 1 ≤ len g holds L(g, i) ∩
L(πlen ff, π1g) = ∅.
Then f � g is s.n.c..

(38) If f is unfolded and s.n.c. and p ∈ L(f, n) and p /∈ rng f, then Ins(f, n, p)
is s.n.c..

Let us observe that ε(the carrier of E2
T) is special.

Next we state two propositions:

(39) 〈p〉 is special.

(40) If p1 = q1 or p2 = q2, then 〈p, q〉 is special.

Let f be a special finite sequence of elements of E 2
T and let us consider n.

Note that f
�
n is special and f 
 n is special.

We now state the proposition

(41) If p ∈ rng f and f is special, then f :− p is special.

Let f be a special finite sequence of elements of E 2
T and let us consider p.

Observe that f −: p is special.
The following four propositions are true:

(42) If f is special, then Rev(f) is special.

(44)2 If f is special and p ∈ L(f, n), then Ins(f, n, p) is special.

2The proposition (43) has been removed.
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(45) If q ∈ rng f and 1 6= q � f and q � f 6= len f and f is unfolded and

s.n.c., then L̃(f −: q) ∩ L̃(f :− q) = {q}.
(46) If p 6= q and if p1 = q1 or p2 = q2, then 〈p, q〉

a S-sequence in � 2 is a finite sequence of elements of E 2
T.

The following propositions are true:

(47) For every S-sequence f in � 2 holds Rev(f)

(48) For every S-sequence f in � 2 such that i ∈ dom f holds πif ∈ L̃(f).

(49) If p 6= q and if p1 = q1 or p2 = q2, then L(p, q)

(50) For every S-sequence f in � 2 such that p ∈ rng f and p � f 6= 1 holds
f −: p

(51) For every S-sequence f in � 2 such that p ∈ rng f and p � f 6= len f
holds f :− p

(52) For every S-sequence f in � 2 such that p ∈ L(f, i) and p /∈ rng f holds
Ins(f, i, p)

3. Special Polygons in E2
T

Let us mention that there exists a subset of the carrier of E 2
T and every subset

of the carrier of E2
T is non empty.

The following proposition is true

(53) If P is a special polygonal arc joining p1 and p2, then P is a special
polygonal arc joining p2 and p1.

Let us consider p1, p2, P . We say that p1 and p2 split P if and only if the
conditions (Def.1) are satisfied.

(Def.1) (i) p1 6= p2, and
(ii) there exist S-sequences f1, f2 in � 2 such that p1 = π1f1 and p1 = π1f2

and p2 = πlen f1f1 and p2 = πlen f2f2 and L̃(f1) ∩ L̃(f2) = {p1, p2} and

P = L̃(f1) ∪ L̃(f2).

We now state four propositions:

(54) If p1 and p2 split P , then p2 and p1 split P .

(55) If p1 and p2 split P and q ∈ P and q 6= p1, then p1 and q split P .

(56) If p1 and p2 split P and q ∈ P and q 6= p2, then q and p2 split P .

(57) If p1 and p2 split P and q1 ∈ P and q2 ∈ P and q1 6= q2, then q1 and q2

split P .

Let us observe that a subset of the carrier of E 2
T is special polygon if:

(Def.2) There exist p1, p2 such that p1 and p2 split it.

We introduce special polygonal as a synonym of special polygon.
Let us consider r1, r2, r′1, r′2. The functor [.r1, r2, r

′
1, r
′
2.] yields a subset of

the carrier of E2
T and is defined by the condition (Def.3).
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(Def.3) [.r1, r2, r
′
1, r
′
2.] = {p : p1 = r1 ∧ p2 ≤ r′2 ∧ p2 ≥ r′1 ∨ p1 ≤ r2 ∧ p1 ≥ r1 ∧

p2 = r′2 ∨ p1 ≤ r2 ∧ p1 ≥ r1 ∧ p2 = r′1 ∨ p1 = r2 ∧ p2 ≤ r′2 ∧ p2 ≥ r′1}.
One can prove the following propositions:

(58) If r1 < r2 and r′1 < r′2, then [.r1, r2, r
′
1, r
′
2.] = L([r1, r

′
1], [r1, r

′
2]) ∪ L([r1,

r′2], [r2, r
′
2]) ∪ (L([r2, r

′
2], [r2, r

′
1]) ∪ L([r2, r

′
1], [r1, r

′
1])).

(59) If r1 < r2 and r′1 < r′2, then [.r1, r2, r
′
1, r
′
2.] is special polygonal.

(60) � E2 = [.0, 1, 0, 1.].

(61) � E2 is special polygonal.

One can verify the following observations:

∗ there exists a subset of the carrier of E 2
T which is special polygonal,

∗ every subset of the carrier of E2
T which is special polygonal is also non

empty, and

∗ every subset of the carrier of E2
T which is special polygonal is also non

trivial.

A special polygon in � 2 is a special polygonal subset of the carrier of E 2
T.

We now state four propositions:

(62) If P is then P is compact.

(63) Every special polygon in � 2 is compact.

(64) If P is special polygonal, then for all p1, p2 such that p1 6= p2 and
p1 ∈ P and p2 ∈ P holds p1 and p2 split P .

(65) Suppose P is special polygonal. Given p1, p2. Suppose p1 6= p2 and
p1 ∈ P and p2 ∈ P. Then there exist P1, P2 such that

(i) P1 is a special polygonal arc joining p1 and p2,
(ii) P2 is a special polygonal arc joining p1 and p2,

(iii) P1 ∩ P2 = {p1, p2}, and
(iv) P = P1 ∪ P2.
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 Lódź University

 Lódź

Summary. The paper is the crowning of a series of articles writ-
ten in the Mizar language, being a formalization of notions needed for
the description of the one-dimensional Lebesgue measure. The formal-
ization of the notion as classical as the Lebesgue measure determines the
powers of the PC Mizar system as a tool for the strict, precise nota-
tion and verification of the correctness of deductive theories. Following
the successive articles [6], [8], [10], [11] constructed so that the final one
should include the definition and the basic properties of the Lebesgue
measure, we observe one of the paths relatively simple in the sense of the
definition, enabling us the formal introduction of this notion. This way,
although toilsome, since such is the nature of formal theories, is greatly
instructive. It brings home the proper succession of the introduction of
the definitions of intermediate notions and points out to those elements
of the theory which determine the essence of the complexity of the notion
being introduced.

The paper includes the definition of the σ-field of Lebesgue measur-
able sets, the definition of the Lebesgue measure and the basic set of the
theorems describing its properties.

MML Identifier: MEASURE7.

The terminology and notation used in this paper are introduced in the following
articles: [21], [24], [20], [25], [14], [12], [13], [2], [19], [3], [17], [6], [8], [10], [9],
[5], [7], [18], [11], [23], [1], [4], [16], [22], and [15].

The following propositions are true:

(1) For every function F from � into � such that for every natural number
n holds F (n) = 0 � holds

∑
F = 0 � .

(2) For every function F from � into � such that F is non-negative and for
every natural number n holds F (n) ≤ (SerF )(n).

(3) Let F , G, H be functions from � into � . Suppose G is non-negative
and H is non-negative. Suppose that for every natural number n holds
F (n) = G(n) + H(n). Let n be a natural number. Then (SerF )(n) =
(SerG)(n) + (SerH)(n).
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(4) Let F , G, H be functions from � into � . Suppose that for every natural
number n holds F (n) = G(n) +H(n). If G is non-negative and H is non-
negative, then

∑
F ≤∑G+

∑
H.

(5) Let F , G be functions from � into � . Suppose F is non-negative and for
every natural number n holds F (n) = G(n). Let n be a natural number.
Then (SerF )(n) = (SerG)(n).

(6) Let F , G be functions from � into � . Suppose F is non-negative and for
every natural number n holds F (n) ≤ G(n). Let n be a natural number.
Then (SerF )(n) ≤∑G.

(7) For every function F from � into � such that F is non-negative and for
every natural number n holds (SerF )(n) ≤ ∑F.

Let S be a non empty subset of � , let H be a function from S into � , and
let n be an element of S. Then H(n) is a natural number.

Let G be a function from � into � , let S be a non empty subset of � , and let
H be a function from S into � . The functor On(G,H) yields a function from �
into � and is defined as follows:

(Def.1) For every element n of � holds if n ∈ S, then (On(G,H))(n) = G(H(n))
and if n /∈ S, then (On(G,H))(n) = 0 � .

Next we state several propositions:

(8) Let G be a function from � into � . Suppose G is non-negative. Let S
be a non empty subset of � and let H be a function from S into � . Then
On(G,H) is non-negative.

(9) Let F be a function from � into � . Suppose F is non-negative. Let n,
k be natural numbers. If n ≤ k, then (SerF )(n) ≤ (SerF )(k).

(10) Let k be a natural number and let F be a function from � into � .
Suppose F is non-negative. Suppose that for every natural number n
such that n 6= k holds F (n) = 0 � . Then

(i) for every natural number n such that n < k holds (SerF )(n) = 0 � ,
and

(ii) for every natural number n such that k ≤ n holds (SerF )(n) = F (k).

(11) Let G be a function from � into � . Suppose G is non-negative. Let S
be a non empty subset of � and let H be a function from S into � . If H
is one-to-one and rngH = � , then

∑
On(G,H) ≤∑G.

(12) Let F , G be functions from � into � . Suppose F is non-negative and G
is non-negative. Let S be a non empty subset of � and let H be a function
from S into � . Suppose H is one-to-one and rngH = � . Suppose that
for every natural number k holds if k ∈ S, then F (k) = G(H(k)) and if
k /∈ S, then F (k) = 0 � . Then

∑
F ≤∑G.

Let A be a subset of � . A function from � into 2
�

is said to be an interval
covering of A if:

(Def.2) A ⊆ ⋃ rng it and for every natural number n holds it(n) is an interval.

Let A be a subset of � , let F be an interval covering of A, and let n be a
natural number. Then F (n) is an interval.
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Let F be a function from � into 2
�
. A function from � into (2

�
)



is said to

be an interval covering of F if:

(Def.3) For every natural number n holds it(n) is an interval covering of F (n).

Let A be a subset of � and let F be an interval covering of A. The functor
(F ) vol yields a function from � into � and is defined by:

(Def.4) For every natural number n holds (F ) vol(n) = vol(F (n)).

The following proposition is true

(13) For every subset A of � and for every interval covering F of A holds
(F ) vol is non-negative.

Let F be a function from � into 2
�
, let H be an interval covering of F , and

let n be a natural number. Then H(n) is an interval covering of F (n).
Let F be a function from � into 2

�
and let G be an interval covering of F .

The functor (G) vol yields a function from � into � 

and is defined by:

(Def.5) For every natural number n holds (G) vol(n) = (G(n)) vol .

Let A be a subset of � and let F be an interval covering of A. The functor
vol(F ) yields a Real number and is defined as follows:

(Def.6) vol(F ) =
∑

((F ) vol).

Let F be a function from � into 2
�

and let G be an interval covering of F .
The functor vol(G) yielding a function from � into � is defined by:

(Def.7) For every natural number n holds (vol(G))(n) = vol(G(n)).

One can prove the following proposition

(14) Let F be a function from � into 2
�
, and let G be an interval covering

of F , and let n be a natural number. Then 0 � ≤ (vol(G))(n).

Let A be a subset of � . The functor Svc(A) yielding a non empty subset of
� is defined by:

(Def.8) For every Real number x holds x ∈ Svc(A) iff there exists an interval
covering F of A such that x = vol(F ).

Let A be an element of 2
�
. The functor � A yields an element of � and is

defined as follows:

(Def.9) � A = inf Svc(A).

The function OSMeas from 2
�

into � is defined by:

(Def.10) For every subset A of � holds (OSMeas)(A) = inf Svc(A).

Let F be a function from � into � and let n be a natural number. Then
F (n) is a natural number.

Let x, y be Real numbers. Then {x, y} is a subset of � .
Let H be a function from � into [: � , � :]. The functor pr1(H) yielding a

function from � into � is defined by:

(Def.11) For every element n of � there exists an element s of � such that
H(n) = 〈〈 pr1(H)(n), s〉〉.

Let H be a function from � into [: � , � :]. The functor pr2(H) yielding a
function from � into � is defined by:
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(Def.12) For every element n of � holds H(n) = 〈〈pr1(H)(n), pr2(H)(n)〉〉.
Let F be a function from � into 2

�
, let G be an interval covering of F , and

let H be a function from � into [: � , � :]. Let us assume that H is one-to-one and
rngH = [: � , � :]. The functor On(G,H) yields an interval covering of

⋃
rngF

and is defined by:

(Def.13) For every element n of � holds (On(G,H))(n) = G(pr1(H)(n))(pr2(H)(n)).

Next we state three propositions:

(15) Let H be a function from � into [: � , � :]. Suppose H is one-to-one and
rngH = [: � , � :]. Let k be a natural number. Then there exists a natural
number m such that for every function F from � into 2

�
and for every in-

terval covering G of F holds (Ser((On(G,H)) vol))(k) ≤ (Ser vol(G))(m).

(16) For every function F from � into 2
�

and for every interval covering G
of F holds inf Svc(

⋃
rngF ) ≤∑ vol(G).

(17)1 OSMeas is a Caratheodor’s measure on � .

OSMeas is a Caratheodor’s measure on � .
The functor Lµ-σFIELD is a σ-field of subsets of � and is defined by:

(Def.14) Lµ-σFIELD = σ-Field(OSMeas).

The σ-measure Lµ on Lµ-σFIELD is defined by:

(Def.15) Lµ = σ-Meas(OSMeas).

The following propositions are true:

(18) Lµ is complete on Lµ-σFIELD.

(19) Lµ is a measure on Lµ-σFIELD.

(20) ∅ ∈ Lµ-σFIELD and � ∈ Lµ-σFIELD.

(21) For every set A such that A ∈ Lµ-σFIELD holds � \ A ∈ Lµ-σFIELD.

(22) For all sets A, B such that A ∈ Lµ-σFIELD and B ∈ Lµ-σFIELD holds
A ∪B ∈ Lµ-σFIELD.

(23) For all sets A, B such that A ∈ Lµ-σFIELD and B ∈ Lµ-σFIELD holds
A ∩B ∈ Lµ-σFIELD.

(24) For all sets A, B such that A ∈ Lµ-σFIELD and B ∈ Lµ-σFIELD holds
A \ B ∈ Lµ-σFIELD.

(25) For every family T of measurable sets of Lµ-σFIELD holds
⋂
T ∈

Lµ-σFIELD and
⋃
T ∈ Lµ-σFIELD.

(27)2 For every denumerable family M of subsets of � such that M ⊆
Lµ-σFIELD holds

⋂
M ∈ Lµ-σFIELD.

(28) For all elements A, B of Lµ-σFIELD such that A∩B = ∅ holds Lµ(A∪
B) = Lµ(A) + Lµ(B).

(29) For all elements A, B of Lµ-σFIELD such that A ⊆ B holds Lµ(A) ≤
Lµ(B).

1Editiorial footnote: The repetition below is caused by the fact that the first sentence is
the translation of a Mizar theorem, and the second one – of a Mizar redefinition.

2The proposition (26) has been removed.
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(30) For all elements A, B of Lµ-σFIELD such that A ⊆ B and Lµ(A) < +∞
holds Lµ(B \ A) = Lµ(B)− Lµ(A).

(31) For all elements A, B of Lµ-σFIELD holds Lµ(A∪B) ≤ Lµ(A)+Lµ(B).

(32) Lµ is non-negative and Lµ(∅) = 0 � and for every sequence F of sepa-
rated subsets of Lµ-σFIELD holds

∑
(Lµ · F ) = Lµ(

⋃
rngF ).

(33) For every function F from � into Lµ-σFIELD such that for every ele-
ment n of � holds F (n) ⊆ F (n+ 1) holds Lµ(

⋃
rngF ) = sup rng(Lµ ·F ).

(34) Let F be a function from � into Lµ-σFIELD. Suppose for every element
n of � holds F (n+ 1) ⊆ F (n) and Lµ(F (0)) < +∞. Then Lµ(

⋂
rngF ) =

inf rng(Lµ · F ).

(35) Let T be a family of measurable sets of Lµ-σFIELD. Suppose that for
every set A such that A ∈ T holds A is a set of measure zero w.r.t. Lµ.
Then

⋃
T is a set of measure zero w.r.t. Lµ.

(36) Let T be a family of measurable sets of Lµ-σFIELD. Given a set A
such that A ∈ T and A is a set of measure zero w.r.t. Lµ. Then

⋂
T is a

set of measure zero w.r.t. Lµ.

(37) Let T be a family of measurable sets of Lµ-σFIELD. Suppose that for
every set A such that A ∈ T holds A is a set of measure zero w.r.t. Lµ.
Then

⋂
T is a set of measure zero w.r.t. Lµ.

(38) Let A be an element of Lµ-σFIELD and let B be a set of measure zero
w.r.t. Lµ. If A ⊆ B, then A is a set of measure zero w.r.t. Lµ.

(39) Let A, B be sets of measure zero w.r.t. Lµ. Then
(i) A ∪B is a set of measure zero w.r.t. Lµ,
(ii) A ∩B is a set of measure zero w.r.t. Lµ, and

(iii) A \ B is a set of measure zero w.r.t. Lµ.

(40) Let A be an element of Lµ-σFIELD and let B be a set of measure
zero w.r.t. Lµ. Then Lµ(A ∪ B) = Lµ(A) and Lµ(A ∩ B) = 0 � and
Lµ(A \ B) = Lµ(A).

(41) (i) ∅ is measurable w.r.t. Lµ,
(ii) � is measurable w.r.t. Lµ, and

(iii) for all sets A, B such that A is measurable w.r.t. Lµ and B is measur-
able w.r.t. Lµ holds � \A is measurable w.r.t. Lµ and A∪B is measurable
w.r.t. Lµ and A ∩B is measurable w.r.t. Lµ.

(42) Let T be a denumerable family of subsets of � . Suppose that for every
set A such that A ∈ T holds A is measurable w.r.t. Lµ. Then

⋃
T is

measurable w.r.t. Lµ and
⋂
T is measurable w.r.t. Lµ.
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[5] Józef Bia las. Completeness of the σ-additive measure. measure theory. Formalized Math-
ematics, 2(5):689–693, 1991.
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Summary. Category theory had been formalized in Mizar quite
early [8]. This had been done closely to the handbook of S. McLane [11].
In this paper we use a different approach. Category is a triple

〈O, {〈o1, o2〉}o1,o2∈O, {◦o1,o2,o3}o1,o2,o3∈O〉

where ◦o1,o2,o3 : 〈o2, o3〉×〈o1, o2〉 → 〈o1, o3〉 that satisfies usual conditions
(associativity and the existence of the identities). This approach is closer
to the way in which categories are presented in homological algebra (e.g.
[1], pp.58-59). We do not assume that 〈o1, o2〉’s are mutually disjoint.
If f is simultaneously a morphism from o1 to o2 and o′1 to o2 (o1 6= o′1)
than different compositions are used (◦o1,o2,o3 or ◦o′

1
,o2,o3) to compose it

with a morphism g from o2 to o3. The operation g · f has actually six
arguments (two visible and four hidden: three objects and the category).

We introduce some simple properties of categories. Perhaps more
than necessary. It is partially caused by the formalization. The functional
categories are characterized by the following properties:

• quasi-functional that means that morphisms are functions (rather
meaningless, if it stands alone)

• semi-functional that means that the composition of morphism is the
composition of functions, provided they are functions.

• pseudo-functional that means that the composition of morphisms is
the composition of functions.

For categories pseudo-functional is just quasi-functional and semi-
functional, but we work in a bit more general setting. Similarly the
concept of a discrete category is split into two:

• quasi-discrete that means that 〈o1, o2〉 is empty for o1 6= o2 and

• pseudo-discrete that means that 〈o, o〉 is trivial, i.e. consists of the
identity only, in a category.

We plan to follow Semadeni-Wiweger book [14], in the development
the category theory in Mizar. However, the beginning is not very close
to [14], because of the approach adopted and because we work in Tarski-
Grothendieck set theory.
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MML Identifier: ALTCAT 1.

The terminology and notation used in this paper have been introduced in the
following articles: [19], [21], [20], [15], [22], [2], [6], [7], [3], [13], [5], [10], [4], [16],
[9], [18], [12], and [17].

1. Preliminaries

One can prove the following proposition

(1) For every non empty set A and for all sets B, C, D such that [:A,
B :] ⊆ [:C, D :] or [:B, A :] ⊆ [:D, C :] holds B ⊆ D.

In the sequel i, j, k, x are arbitrary.
Let A be a functional set. Observe that every subset of A is functional.
Let f be a function yielding function and let C be a set. Observe that f

�
C

is function yielding.
Let f be a function. One can verify that {f} is functional.
Next we state four propositions:

(2) For every set A holds idA ∈ AA.
(3) ∅∅ = {id∅}.
(4) For all sets A, B, C and for all functions f , g such that f ∈ BA and

g ∈ CB holds g · f ∈ CA.

(5) For all sets A, B, C such that BA 6= ∅ and CB 6= ∅ holds CA 6= ∅.
Let A, B be sets. One can check that BA is functional.
We now state two propositions:

(6) For all sets A, B and for every function f such that f ∈ BA holds
dom f = A and rng f ⊆ B.

(7) Let A, B be sets, and let F be a many sorted set indexed by [:B, A :],
and let C be a subset of A, and let D be a subset of B, and let x, y be
arbitrary. If x ∈ C and y ∈ D, then F (y, x) = (F

�
[:D, C :])(y, x).

In this article we present several logical schemes. The scheme MSSLambdaD
deals with a non empty set A and a unary functor F yielding arbitrary, and
states that:

There exists a many sorted set M indexed by A such that for every
element i of A holds M(i) = F(i)

for all values of the parameters.
The scheme MSSLambda2 deals with sets A, B and a binary functor F yield-

ing arbitrary, and states that:
There exists a many sorted set M indexed by [:A, B :] such that for
all i, j such that i ∈ A and j ∈ B holds M(i, j) = F(i, j)

for all values of the parameters.
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The scheme MSSLambda2D deals with non empty sets A, B and a binary
functor F yielding arbitrary, and states that:

There exists a many sorted set M indexed by [:A, B :] such that
for every element i of A and for every element j of B holds M(i,
j) = F(i, j)

for all values of the parameters.
The scheme MSSLambda3 concerns sets A, B, C and a ternary functor F

yielding arbitrary, and states that:
There exists a many sorted set M indexed by [:A, B, C :] such that
for all i, j, k such that i ∈ A and j ∈ B and k ∈ C holds M(i, j,
k) = F(i, j, k)

for all values of the parameters.
The scheme MSSLambda3D deals with non empty sets A, B, C and a ternary

functor F yielding arbitrary, and states that:
There exists a many sorted set M indexed by [:A, B, C :] such that
for every element i of A and for every element j of B and for every
element k of C holds M(i, j, k) = F(i, j, k)

for all values of the parameters.
One can prove the following propositions:

(8) Let A, B be sets and let N , M be many sorted sets indexed by [:A, B :].
If for all i, j such that i ∈ A and j ∈ B holds N(i, j) = M(i, j), then
M = N.

(9) Let A, B be non empty sets and let N , M be many sorted sets indexed
by [:A, B :]. Suppose that for every element i of A and for every element
j of B holds N(i, j) = M(i, j). Then M = N.

(10) Let A be a set and let N , M be many sorted sets indexed by [:A, A,
A :]. Suppose that for all i, j, k such that i ∈ A and j ∈ A and k ∈ A
holds N(i, j, k) = M(i, j, k). Then M = N.

(11) [〈i, j〉 7→ k] = 〈〈i, j〉〉7−→. k.

(12) [〈i, j〉 7→ k](i, j) = k.

2. Graphs

We consider graphs as extensions of 1-sorted structure as systems
〈 a carrier, arrows 〉,

where the carrier is a set and the arrows constitute a many sorted set indexed
by [: the carrier, the carrier :].

Let G be a graph.

(Def.1) An element of the carrier of G is called an object of G.

Let G be a graph and let o1, o2 be objects of G. The functor 〈o1, o2〉 is
defined as follows:

(Def.2) 〈o1, o2〉 = (the arrows of G)(o1, o2).
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Let G be a graph and let o1, o2 be objects of G.

(Def.3) An element of 〈o1, o2〉 is said to be a morphism from o1 to o2.

Let G be a graph. We say that G is transitive if and only if:

(Def.4) For all objects o1, o2, o3 of G such that 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅
holds 〈o1, o3〉 6= ∅.

3. Many Sorted Binary Compositions

Let I be a set and let G be a many sorted set indexed by [: I, I :]. The functor
{|G|} yields a many sorted set indexed by [: I, I, I :] and is defined as follows:

(Def.5) For all i, j, k such that i ∈ I and j ∈ I and k ∈ I holds ({|G|})(i, j,
k) = G(i, k).

Let H be a many sorted set indexed by [: I, I :]. The functor {|G,H|} yielding a
many sorted set indexed by [: I, I, I :] is defined by:

(Def.6) For all i, j, k such that i ∈ I and j ∈ I and k ∈ I holds ({|G,H|})(i, j,
k) = [:H(j, k), G(i, j) :].

Let I be a set and let G be a many sorted set indexed by [: I, I :]. A binary
composition of G is a many sorted function from {|G,G|} into {|G|}.

Let I be a non empty set, let G be a many sorted set indexed by [: I, I :], let
o be a binary composition of G, and let i, j, k be elements of I. Then o(i, j, k)
is a function from [:G(j, k), G(i, j) :] into G(i, k).

Let I be a non empty set and let G be a many sorted set indexed by [: I, I :].
A binary composition of G is associative if it satisfies the condition (Def.7).

(Def.7) Let i, j, k, l be elements of I and let f , g, h be arbitrary. Suppose
f ∈ G(i, j) and g ∈ G(j, k) and h ∈ G(k, l). Then it(i, k, l)(h, it(i, j,
k)(g, f)) = it(i, j, l)(it(j, k, l)(h, g), f).

A binary composition of G has right units if it satisfies the condition (Def.8).

(Def.8) Let i be an element of I. Then there exists arbitrary e such that e ∈ G(i,
i) and for every element j of I and for arbitrary f such that f ∈ G(i, j)
holds it(i, i, j)(f, e) = f.

A binary composition of G has left units if it satisfies the condition (Def.9).

(Def.9) Let j be an element of I. Then there exists arbitrary e such that
e ∈ G(j, j) and for every element i of I and for arbitrary f such that
f ∈ G(i, j) holds it(i, j, j)(e, f) = f.

4. Categories

We introduce category structures which are extensions of graph and are sys-
tems
〈 a carrier, arrows, a composition 〉,
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where the carrier is a set, the arrows constitute a many sorted set indexed by
[: the carrier, the carrier :], and the composition is a binary composition of the
arrows.

Let us observe that there exists a category structure which is strict and non
empty.

Let C be a non empty category structure and let o1, o2, o3 be objects of C.
Let us assume that 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅ and 〈o1, o3〉 6= ∅. Let f be a
morphism from o1 to o2 and let g be a morphism from o2 to o3. The functor
g · f yields a morphism from o1 to o3 and is defined by:

(Def.10) g · f = (the composition of C)(o1, o2, o3)(g, f).

A function is compositional if:

(Def.11) If x ∈ dom it, then there exist functions f , g such that x = 〈〈g, f〉〉 and
it(x) = g · f.

Let A, B be functional sets. Observe that there exists a many sorted function
of [:A, B :] which is compositional.

Next we state the proposition

(13) Let A, B be functional sets, and let F be a compositional many sorted
set indexed by [:A, B :], and let g, f be functions. If g ∈ A and f ∈ B,
then F (g, f) = g · f.

Let A, B be functional sets.

(Def.12) FuncComp(A,B) is a compositional many sorted function of [:B, A :].

The following propositions are true:

(14) For all sets A, B, C holds rng FuncComp(BA, CB) ⊆ CA.
(15) For every set o holds FuncComp({ido}, {ido}) = [〈ido, ido〉 7→ ido].

(16) For all functional sets A, B and for every subset A1 of A and for every
subset B1 of B holds FuncComp(A1, B1) = FuncComp(A,B)

�
[:B1, A1 :].

Let C be a non empty category structure. We say that C is quasi-functional
if and only if:

(Def.13) For all objects a1, a2 of C holds 〈a1, a2〉 ⊆ a2
a1 .

We say that C is semi-functional if and only if the condition (Def.14) is satisfied.

(Def.14) Let a1, a2, a3 be objects of C. Suppose 〈a1, a2〉 6= ∅ and 〈a2, a3〉 6= ∅
and 〈a1, a3〉 6= ∅. Let f be a morphism from a1 to a2, and let g be a
morphism from a2 to a3, and let f ′, g′ be functions. If f = f ′ and g = g′,
then g · f = g′ · f ′.

We say that C is pseudo-functional if and only if:

(Def.15) For all objects o1, o2, o3 of C holds (the composition of C)(o1, o2,
o3) = FuncComp(o2

o1 , o3
o2)

�
[: 〈o2, o3〉, 〈o1, o2〉 :].

Let X be a non empty set, let A be a many sorted set indexed by [:X, X :],
and let C be a binary composition of A. Note that 〈X,A,C〉 is non empty.

Let us observe that there exists a non empty category structure which is
strict and pseudo-functional.

One can prove the following propositions:
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(17) Let C be a non empty category structure and let a1, a2, a3 be objects
of C. Suppose if 〈a1, a3〉 = ∅, then 〈a1, a2〉 = ∅ or 〈a2, a3〉 = ∅. Then (the
composition of C)(a1, a2, a3) is a function from [: 〈a2, a3〉, 〈a1, a2〉 :] into
〈a1, a3〉.

(18) Let C be a pseudo-functional non empty category structure and let
a1, a2, a3 be objects of C. Suppose 〈a1, a2〉 6= ∅ and 〈a2, a3〉 6= ∅ and
〈a1, a3〉 6= ∅. Let f be a morphism from a1 to a2, and let g be a morphism
from a2 to a3, and let f ′, g′ be functions. If f = f ′ and g = g′, then
g · f = g′ · f ′.

Let A be a non empty set. The functor EnsA yielding a strict pseudo-
functional non empty category structure is defined as follows:

(Def.16) The carrier of EnsA = A and for all objects a1, a2 of EnsA holds
〈a1, a2〉 = a2

a1 .

Let C be a non empty category structure. We say that C is associative if
and only if:

(Def.17) The composition of C is associative.

We say that C has units if and only if:

(Def.18) The composition of C has left units and right units.

Let us mention that there exists a non empty category structure which is
transitive associative and strict and has units.

The following propositions are true:

(19) Let C be a transitive non empty category structure and let a1, a2, a3

be objects of C. Then (the composition of C)(a1, a2, a3) is a function
from [: 〈a2, a3〉, 〈a1, a2〉 :] into 〈a1, a3〉.

(20) Let C be a transitive non empty category structure and let a1, a2, a3 be
objects of C. Then dom (the composition of C)(a1, a2, a3) = [: 〈a2, a3〉,
〈a1, a2〉 :] and rng (the composition of C)(a1, a2, a3) ⊆ 〈a1, a3〉.

(21) For every non empty category structure C with units and for every
object o of C holds 〈o, o〉 6= ∅.

Let A be a non empty set. Observe that EnsA is transitive and associative
and has units.

Let us mention that every non empty category structure which is quasi-
functional semi-functional and transitive is also pseudo-functional and every
non empty category structure which is pseudo-functional and transitive and has
units is also quasi-functional and semi-functional.

A category is a transitive associative non empty category structure with
units.

5. Identities

One can prove the following proposition
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(22) Let C be a transitive non empty category structure and let o1, o2, o3 be
objects of C. Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅. Let f be a morphism
from o1 to o2 and let g be a morphism from o2 to o3. Then g · f = (the
composition of C)(o1, o2, o3)(g, f).

Let C be a non empty category structure with units and let o be an object
of C. The functor ido yielding a morphism from o to o is defined by:

(Def.19) For every object o′ of C such that 〈o, o′〉 6= ∅ and for every morphism a
from o to o′ holds a · ido = a.

One can prove the following three propositions:

(23) For every non empty category structure C with units and for every
object o of C holds ido ∈ 〈o, o〉.

(24) Let C be a non empty category structure with units and let o1, o2 be
objects of C. If 〈o1, o2〉 6= ∅, then for every morphism a from o1 to o2

holds id(o2) ·a = a.

(25) Let C be an associative transitive non empty category structure and
let o1, o2, o3, o4 be objects of C. Suppose 〈o1, o2〉 6= ∅ and 〈o2, o3〉 6= ∅
and 〈o3, o4〉 6= ∅. Let a be a morphism from o1 to o2, and let b be a
morphism from o2 to o3, and let c be a morphism from o3 to o4. Then
c · (b · a) = (c · b) · a.

6. Discrete categories

Let C be a category structure. We say that C is quasi-discrete if and only if:

(Def.20) For all objects i, j of C such that 〈i, j〉 6= ∅ holds i = j.

We say that C is pseudo-discrete if and only if:

(Def.21) For every object i of C holds 〈i, i〉 is trivial.

One can prove the following proposition

(26) Let C be a non empty category structure with units. Then C is pseudo-
discrete if and only if for every object o of C holds 〈o, o〉 = {ido}.

Let us observe that every category structure which is trivial is also quasi-
discrete.

One can prove the following proposition

(27) Ens1 is pseudo-discrete and trivial.

Let us note that there exists a category which is pseudo-discrete trivial and
strict.

Let us observe that there exists a category which is quasi-discrete pseudo-
discrete trivial and strict.

A discrete category is a quasi-discrete pseudo-discrete category.
Let A be a non empty set. The functor DiscrCat(A) yields a quasi-discrete

strict non empty category structure and is defined by:
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(Def.22) The carrier of DiscrCat(A) = A and for every object i of DiscrCat(A)
holds 〈i, i〉 = {idi}.

One can verify that every category structure which is quasi-discrete is also
transitive.

One can prove the following propositions:

(28) Let A be a non empty set and let o1, o2, o3 be objects of DiscrCat(A). If
o1 6= o2 or o2 6= o3, then (the composition of DiscrCat(A))(o1, o2, o3) = ∅.

(29) For every non empty set A and for every object o of DiscrCat(A) holds
(the composition of DiscrCat(A))(o, o, o) = [〈ido, ido〉 7→ ido].

Let A be a non empty set. Note that DiscrCat(A) is pseudo-functional
pseudo-discrete and associative and has units.
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[6] Czes law Byliński. Functions and their basic properties. Formalized Mathematics,

1(1):55–65, 1990.
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Summary. The aim of the article is to prove the fact that if ex-
tensions of mappings on generator set are equal then these mappings are
equal. The article contains the properties of epimorphisms & monomor-
phisms between Many Sorted Algebras.

MML Identifier: EXTENS 1.

The articles [15], [17], [18], [6], [16], [8], [7], [1], [2], [3], [14], [5], [11], [13], [4],
[10], [9], and [12] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity we adopt the following convention: S will be a non void non
empty many sorted signature, U1, U2, U3 will be non-empty algebras over S,
I will be a set, A will be a many sorted set indexed by I, and B, C will be
non-empty many sorted sets indexed by I.

We now state four propositions:

(1) For every binary relation R and for all sets X, Y such that X ⊆ Y
holds (R

�
Y )◦X = R◦X.

(2) Let A be a set, and let B, C be non empty sets, and let f be a function
from A into B, and let g be a function from B into C, and let X be a
subset of A. Then (g · f)

�
X = g · (f �

X).

(3) For every function yielding function f holds dom(domκ f(κ)) = dom f.

(4) For every function yielding function f holds dom(rngκ f(κ)) = dom f.

269
c© 1996 Warsaw University - Bia lystok

ISSN 1426–2630



270 artur korni lowicz

2. Facts about Many Sorted Functions

Next we state several propositions:

(5) Let F be a many sorted function from A into B and let X be a many
sorted subset of A. If A ⊆ X, then F

�
X = F.

(6) Let A, B be many sorted sets indexed by I, and let M be a many sorted
subset of A, and let F be a many sorted function from A into B. Then
F ◦M ⊆ F ◦ A.

(7) Let F be a many sorted function from A into B and let M1, M2 be
many sorted subsets of A. If M1 ⊆M2, then (F

�
M2) ◦M1 = F ◦M1.

(8) Let F be a many sorted function from A into B, and let G be a many
sorted function from B into C, and let X be a many sorted subset of A.
Then (G ◦ F )

�
X = G ◦ (F

�
X).

(9) Let A, B be many sorted sets indexed by I. Suppose A is transformable
to B. Let F be a many sorted function from A into B and let C be a
many sorted set indexed by I. Suppose B is a many sorted subset of C.
Then F is a many sorted function from A into C.

(10) Let F be a many sorted function from A into B and let X be a many
sorted subset of A. If F is “1-1”, then F

�
X is “1-1”.

3. dom’s & rng’s of Many Sorted Functions

Let us consider I and let F be a many sorted function of I. Then domκ F (κ)
is a many sorted set indexed by I.

Let us consider I and let F be a many sorted function of I. Then rngκ F (κ)
is a many sorted set indexed by I.

We now state several propositions:

(11) For every many sorted function F from A into B and for every many
sorted subset X of A holds domκ F

�
X(κ) ⊆ domκ F (κ).

(12) For every many sorted function F from A into B and for every many
sorted subset X of A holds rngκ F

�
X(κ) ⊆ rngκ F (κ).

(13) Let A, B be many sorted sets indexed by I and let F be a many sorted
function from A into B. Then F is “onto” if and only if rngκ F (κ) = B.

(14) For every non-empty many sorted set X indexed by the carrier of S
holds rngκ Reverse(X)(κ) = X.

(15) Let F be a many sorted function from A into B, and let G be a many
sorted function from B into C, and let X be a non-empty many sorted
subset of B. If rngκ F (κ) ⊆ X, then (G

�
X) ◦ F = G ◦ F.
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4. Other properties of ”onto” & ”1-1”

Next we state two propositions:

(16) Let F be a many sorted function from A into B. Then F is “onto” if
and only if for every C and for all many sorted functions G, H from B
into C such that G ◦ F = H ◦ F holds G = H.

(17) Let F be a many sorted function from A into B. Suppose A is non-
empty and B is non-empty. Then F is “1-1” if and only if for every many
sorted set C indexed by I and for all many sorted functions G, H from
C into A such that F ◦G = F ◦H holds G = H.

5. Extensions of Mappings on Generator Set

We now state three propositions:

(18) Let X be a non-empty many sorted set indexed by the carrier of S and
let h1, h2 be many sorted functions from Free(X) into U1. Suppose h1

is a homomorphism of Free(X) into U1 and h2 is a homomorphism of
Free(X) into U1 and h1

�
FreeGenerator(X) = h2

�
FreeGenerator(X).

Then h1 = h2.

(19) Let F be a many sorted function from U1 into U2. Suppose F is a
homomorphism of U1 into U2. Suppose F is an epimorphism of U1 onto
U2. Let U3 be a non-empty algebra over S and let h1, h2 be many sorted
functions from U2 into U3. Suppose h1 is a homomorphism of U2 into U3

and h2 is a homomorphism of U2 into U3. If h1 ◦F = h2 ◦F, then h1 = h2.

(20) Let F be a many sorted function from U2 into U3. Suppose F is a
homomorphism of U2 into U3. Then F is a monomorphism of U2 into
U3 if and only if for every non-empty algebra U1 over S and for all many
sorted functions h1, h2 from U1 into U2 such that h1 is a homomorphism of
U1 into U2 and h2 is a homomorphism of U1 into U2 holds if F ◦h1 = F ◦h2,
then h1 = h2.

Let us consider S, U1. Note that there exists a generator set of U1 which is
non-empty.

We now state three propositions:

(21) For all non-empty subsets A, B of U1 such that A is a many sorted
subset of B holds Gen(A) is a subalgebra of Gen(B).

(22) Let U2 be a non-empty subalgebra of U1, and let B1 be a non-empty
subset of U1, and let B2 be a subset of U2. If B1 = B2, then Gen(B1) =
Gen(B2).

(23) Let U1 be a strict non-empty algebra over S, and let U2 be a non-
empty algebra over S, and let G1 be a non-empty generator set of U1,
and let h1, h2 be many sorted functions from U1 into U2. Suppose h1 is
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a homomorphism of U1 into U2 and h2 is a homomorphism of U1 into U2

and h1
�
G1 = h2

�
G1. Then h1 = h2.
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Summary. This article is the last in a series of four articles (pre-
ceded by [23,22,21]) about modelling circuits by many sorted algebras.

The notion of a circuit computation is defined as a sequence of cir-
cuit states. For a state of a circuit the next state is given by executing
operations at circuit vertices in the current state, according to denota-
tions of the operations. The values at input vertices at each state of a
computation are provided by an external sequence of input values. The
process of how input values propagate through a circuit is described in
terms of a homomorphism of the free envelope algebra of the circuit into
itself. We prove that every computation of a circuit over a finite mono-
tonic signature and with constant input values stabilizes after executing
the number of steps equal to the depth of the circuit.

MML Identifier: CIRCUIT2.

The articles [27], [30], [31], [12], [13], [18], [14], [3], [9], [16], [5], [7], [4], [28], [1],
[6], [29], [2], [15], [10], [26], [19], [25], [11], [20], [17], [24], [23], [22], [21], and [8]
provide the terminology and notation for this paper.

1. Circuit Inputs

In this paper I1 will be a monotonic circuit-like non void non empty many
sorted signature.

The following proposition is true

1Partial funding for this work has been provided by: Shinshu Endowment Fund for Infor-
mation Science, NSERC Grant OGP9207, JSTF award 651-93-S009.
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(1) Let X be a non-empty many sorted set indexed by the carrier of I1,
and let H be a many sorted function from Free(X) into Free(X), and let
H1 be a function yielding function, and let v be a sort symbol of I1, and
let p be a decorated tree yielding finite sequence, and let t be an element
of (the sorts of Free(X))(v). Suppose that

(i) v ∈ InnerVertices(I1),

(ii) t = 〈〈the action at v, the carrier of I1〉〉-tree(p),

(iii) H is a homomorphism of Free(X) into Free(X), and

(iv) H1 = H · Arity(the action at v).

Then there exists a decorated tree yielding finite sequence H2 such that
H2 = H1 � p and H(v)(t) = 〈〈the action at v, the carrier of I1〉〉-tree(H2).

Let us consider I1, let S1 be a non-empty circuit of I1, let s be a state of S1,
and let i1 be an input assignment of S1. Then s+· i1 is a state of S1.

Let us consider I1, let A be a non-empty circuit of I1, and let i1 be an input
assignment of A. The functor FixInput(i1) yields a many sorted function from
FreeGenerator(the sorts of A) into the sorts of FreeEnvelope(A) and is defined
by the condition (Def.1).

(Def.1) Let v be a vertex of I1. Then

(i) if v ∈ InputVertices(I1), then (FixInput(i1))(v) = FreeGenerator(v, the
sorts of A) 7−→ the root tree of 〈〈i1(v), v〉〉,

(ii) if v ∈ SortsWithConstants(I1), then (FixInput(i1))(v) =
FreeGenerator(v, the sorts of A) 7−→ the root tree of 〈〈the action at v,
the carrier of I1〉〉, and

(iii) if v ∈ InnerVertices(I1) \ SortsWithConstants(I1), then

(FixInput(i1))(v) = idFreeGenerator(v,the sorts of A).

Let us consider I1, let A be a non-empty circuit of I1, and let i1 be an input
assignment of A. The functor FixInputExt(i1) yields a many sorted function
from FreeEnvelope(A) into FreeEnvelope(A) and is defined by:

(Def.2) FixInputExt(i1) is a homomorphism of FreeEnvelope(A) into
FreeEnvelope(A) and FixInput(i1) ⊆ FixInputExt(i1).

The following propositions are true:

(2) Let A be a non-empty circuit of I1, and let i1 be an input as-
signment of A, and let v be a vertex of I1, and let e be an ele-
ment of (the sorts of FreeEnvelope(A))(v), and let x be arbitrary. If
v ∈ InnerVertices(I1) \ SortsWithConstants(I1) and e = the root tree of
〈〈x, v〉〉, then (FixInputExt(i1))(v)(e) = e.

(3) Let A be a non-empty circuit of I1, and let i1 be an input assignment
of A, and let v be a vertex of I1, and let x be an element of (the sorts of
A)(v). If v ∈ InputVertices(I1), then (FixInputExt(i1))(v)(the root tree
of 〈〈x, v〉〉) = the root tree of 〈〈i1(v), v〉〉.

(4) Let A be a non-empty circuit of I1, and let i1 be an input assignment
of A, and let v be a vertex of I1, and let e be an element of (the sorts
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of FreeEnvelope(A))(v), and let p, q be decorated tree yielding finite se-
quences. Suppose that

(i) v ∈ InnerVertices(I1),
(ii) e = 〈〈the action at v, the carrier of I1〉〉-tree(p),

(iii) dom p = dom q, and
(iv) for every natural number k such that k ∈ dom p holds q(k) =

(FixInputExt(i1))(πk Arity(the action at v))(p(k)).
Then (FixInputExt(i1))(v)(e) = 〈〈the action at v, the carrier of
I1〉〉-tree(q).

(5) Let A be a non-empty circuit of I1, and let i1 be an input assign-
ment of A, and let v be a vertex of I1, and let e be an element of
(the sorts of FreeEnvelope(A))(v). Suppose v ∈ SortsWithConstants(I1).
Then (FixInputExt(i1))(v)(e) = the root tree of 〈〈the action at v, the
carrier of I1〉〉.

(6) Let A be a non-empty circuit of I1, and let i1 be an input assignment
of A, and let v be a vertex of I1, and let e, e1 be elements of (the sorts of
FreeEnvelope(A))(v), and let t, t1 be decorated trees. If t = e and t1 = e1

and e1 = (FixInputExt(i1))(v)(e), then dom t = dom t1.

(7) Let A be a non-empty circuit of I1, and let i1 be an input assignment
of A, and let v be a vertex of I1, and let e, e1 be elements of (the sorts
of FreeEnvelope(A))(v). If e1 = (FixInputExt(i1))(v)(e), then card e =
card e1.

Let us consider I1, let S1 be a non-empty circuit of I1, let v be a vertex of
I1, and let i1 be an input assignment of S1. The functor InputGenTree(v, i1)
yields an element of (the sorts of FreeEnvelope(S1))(v) and is defined by:

(Def.3) There exists an element e of (the sorts of FreeEnvelope(S1))(v) such that
card e = size(v, S1) and InputGenTree(v, i1) = (FixInputExt(i1))(v)(e).

We now state two propositions:

(8) Let S1 be a non-empty circuit of I1, and let v be a vertex of I1,
and let i1 be an input assignment of S1. Then InputGenTree(v, i1) =
(FixInputExt(i1))(v)(InputGenTree(v, i1)).

(9) Let S1 be a non-empty circuit of I1, and let v be a vertex of I1, and let
i1 be an input assignment of S1, and let p be a decorated tree yielding
finite sequence. Suppose that

(i) v ∈ InnerVertices(I1),
(ii) dom p = dom Arity(the action at v), and

(iii) for every natural number k such that k ∈ dom p holds p(k) =
InputGenTree(πk Arity(the action at v), i1).
Then InputGenTree(v, i1) = 〈〈the action at v, the carrier of I1〉〉-tree(p).

Let us consider I1, let S1 be a non-empty circuit of I1, let v be a vertex of
I1, and let i1 be an input assignment of S1. The functor InputGenValue(v, i1)
yields an element of (the sorts of S1)(v) and is defined by:

(Def.4) InputGenValue(v, i1) = (Eval(S1))(v)(InputGenTree(v, i1)).
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The following propositions are true:

(10) Let S1 be a non-empty circuit of I1, and let v be a vertex of I1, and
let i1 be an input assignment of S1. If v ∈ InputVertices(I1), then
InputGenValue(v, i1) = i1(v).

(11) Let S1 be a non-empty circuit of I1, and let v be a vertex of I1, and
let i1 be an input assignment of S1. If v ∈ SortsWithConstants(I1), then
InputGenValue(v, i1) = (Set-Constants(S1))(v).

2. Circuit Computations

Let I1 be a circuit-like non void non empty many sorted signature, let S1 be
a non-empty circuit of I1, and let s be a state of S1. The functor Following(s)
yielding a state of S1 is defined by the condition (Def.5).

(Def.5) Let v be a vertex of I1. Then if v ∈ InputVertices(I1),
then (Following(s))(v) = s(v) and if v ∈ InnerVertices(I1), then
(Following(s))(v) = (Den(the action at v, S1))((the action at
v) depends-on-in s).

Next we state the proposition

(12) Let S1 be a non-empty circuit of I1, and let s be a state of S1, and let
i1 be an input assignment of S1. If i1 ⊆ s, then i1 ⊆ Following(s).

Let I1 be a circuit-like non void non empty many sorted signature and let S1

be a non-empty circuit of I1. A state of S1 is stable if:

(Def.6) It = Following(it).

Let us consider I1, let S1 be a non-empty circuit of I1, let s be a state of S1,
and let i1 be an input assignment of S1. The functor Following(s, i1) yielding a
state of S1 is defined by:

(Def.7) Following(s, i1) = Following(s+· i1).

Let us consider I1, let S1 be a non-empty circuit of I1, let I2 be an input
function of S1, and let s be a state of S1. The functor InitialComp(s, I2) yielding
a state of S1 is defined as follows:

(Def.8) InitialComp(s, I2) = s+· (0-th-input(I2)) +· Set-Constants(S1).

Let us consider I1, let S1 be a non-empty circuit of I1, let I2 be an input
function of S1, and let s be a state of S1. The functor Computation(s, I2)
yielding a function from � into

∏
(the sorts of S1) is defined by the conditions

(Def.9).

(Def.9) (i) (Computation(s, I2))(0) = InitialComp(s, I2), and
(ii) for every natural number i and for every state x of S1 such

that x = (Computation(s, I2))(i) holds (Computation(s, I2))(i + 1) =
Following(x, (i + 1)-th-input(I2)).

In the sequel S1 denotes a non-empty circuit of I1, s denotes a state of S1,
and i1 denotes an input assignment of S1.
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Next we state the proposition

(13) Let k be a natural number. Suppose that for every vertex v of I1

such that depth(v, S1) ≤ k holds s(v) = InputGenValue(v, i1). Let v1

be a vertex of I1. If depth(v1, S1) ≤ k + 1, then (Following(s))(v1) =
InputGenValue(v1, i1).

For simplicity we adopt the following convention: I1 is a finite monotonic
circuit-like non void non empty many sorted signature, S1 is a non-empty circuit
of I1, I2 is an input function of S1, s is a state of S1, and i1 is an input assignment
of S1.

We now state several propositions:

(14) If commute(I2) is constant and InputVertices(I1) is non empty, then for
all s, i1 such that i1 = (commute(I2))(0) and for every natural number k
holds i1 ⊆ (Computation(s, I2))(k).

(15) Let n be a natural number. Suppose commute(I2) is constant and
InputVertices(I1) is non empty and (Computation(s, I2))(n) is stable.
Let m be a natural number. If n ≤ m, then (Computation(s, I2))(n) =
(Computation(s, I2))(m).

(16) Suppose commute(I2) is constant and InputVertices(I1) is non empty.
Given s, i1. Suppose i1 = (commute(I2))(0). Let k be a natu-
ral number and let v be a vertex of I1. If depth(v, S1) ≤ k,
then ((Computation(s, I2))(k) qua element of

∏
(the sorts of S1))(v) =

InputGenValue(v, i1).

(17) Suppose commute(I2) is constant and InputVertices(I1) is non empty
and i1 = (commute(I2))(0). Let s be a state of S1 and let v be a ver-
tex of I1. Then ((Computation(s, I2))(depth(S1)) qua state of S1)(v) =
InputGenValue(v, i1).

(18) If commute(I2) is constant and InputVertices(I1) is non empty, then for
every state s of S1 holds (Computation(s, I2))(depth(S1)) is stable.

(19) If commute(I2) is constant and InputVertices(I1) is non empty, then
for all states s1, s2 of S1 holds (Computation(s1, I2))(depth(S1)) =
(Computation(s2, I2))(depth(S1)).
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1. Boolean of Many Sorted Sets

We follow a convention: I will denote a set, A, B, X, Y will denote many
sorted sets indexed by I, and x, y will be arbitrary.

Let us consider I, A. The functor 2A yielding a many sorted set indexed by
I is defined as follows:

(Def.1) For arbitrary i such that i ∈ I holds 2A(i) = 2A(i).

Let us consider I, A. Note that 2A is non-empty.
One can prove the following propositions:

(1) X = 2Y iff for every A holds A ∈ X iff A ⊆ Y.
(2) 2∅I = I 7−→ {∅}.
(3) 2I 7−→x = I 7−→ 2x.

(4) 2I 7−→{x} = I 7−→ {∅, {x}}.
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(5) ∅I ∈ 2A.

(6) If A ⊆ B, then 2A ⊆ 2B .

(7) 2A ∪ 2B ⊆ 2A∪B .
(8) If 2A∪2B = 2A∪B , then for arbitrary i such that i ∈ I holds A(i) ⊆ B(i)

or B(i) ⊆ A(i).

(9) 2A∩B = 2A ∩ 2B .

(10) 2A\B ⊆ (I 7−→ {∅}) ∪ (2A \ 2B).

(11) X ∈ 2A\B iff X ⊆ A and X misses B.

(12) 2A\B ∪ 2B\A ⊆ 2A−
.
B .

(13) X ∈ 2A−
.
B iff X ⊆ A ∪B and X misses A ∩B.

(14) If X ∈ 2A and Y ∈ 2A, then X ∪ Y ∈ 2A.

(15) If X ∈ 2A or Y ∈ 2A, then X ∩ Y ∈ 2A.

(16) If X ∈ 2A, then X \ Y ∈ 2A.

(17) If X ∈ 2A and Y ∈ 2A, then X−. Y ∈ 2A.

(18) [[X,Y ]] ⊆ 22X∪Y .

(19) X ⊆ A iff X ∈ 2A.

(20) MSFuncs(A,B) ⊆ 2[[A,B]].

2. Union of Many Sorted Sets

Let us consider I, A. The functor
⋃
A yields a many sorted set indexed by

I and is defined as follows:

(Def.2) For arbitrary i such that i ∈ I holds (
⋃
A)(i) =

⋃
A(i).

Let us consider I. Observe that
⋃

(∅I) is empty yielding.
We now state a number of propositions:

(21) A ∈ ⋃X iff there exists Y such that A ∈ Y and Y ∈ X.
(22)

⋃
(∅I) = ∅I .

(23)
⋃

(I 7−→ x) = I 7−→ ⋃
x.

(24)
⋃

(I 7−→ {x}) = I 7−→ x.

(25)
⋃

(I 7−→ {{x}, {y}}) = I 7−→ {x, y}.
(26) If X ∈ A, then X ⊆ ⋃A.
(27) If A ⊆ B, then

⋃
A ⊆ ⋃B.

(28)
⋃

(A ∪B) =
⋃
A ∪⋃B.

(29)
⋃

(A ∩B) ⊆ ⋃A ∩⋃B.
(30)

⋃
(2A) = A.

(31) A ⊆ 2
⋃
A.

(32) If
⋃
Y ⊆ A and X ∈ Y, then X ⊆ A.
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(33) Let Z be a many sorted set indexed by I and let A be a non-empty
many sorted set indexed by I. Suppose that for every many sorted set X
indexed by I such that X ∈ A holds X ⊆ Z. Then

⋃
A ⊆ Z.

(34) Let B be a many sorted set indexed by I and let A be a non-empty
many sorted set indexed by I. Suppose that for every many sorted set X
indexed by I such that X ∈ A holds X ∩B = ∅I . Then

⋃
A ∩B = ∅I .

(35) Let A, B be many sorted sets indexed by I. Suppose A ∪ B is non-
empty. Suppose that for all many sorted sets X, Y indexed by I such
that X 6= Y and X ∈ A ∪ B and Y ∈ A ∪ B holds X ∩ Y = ∅I . Then⋃

(A ∩B) =
⋃
A ∩⋃B.

(36) Let A, X be many sorted sets indexed by I and let B be a non-empty
many sorted set indexed by I. Suppose X ⊆ ⋃

(A ∪ B) and for every
many sorted set Y indexed by I such that Y ∈ B holds Y ∩X = ∅I . Then
X ⊆ ⋃A.

(37) Let A be a locally-finite non-empty many sorted set indexed by I. Sup-
pose that for all many sorted sets X, Y indexed by I such that X ∈ A
and Y ∈ A holds X ⊆ Y or Y ⊆ X. Then

⋃
A ∈ A.
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Summary. We continue the formalisation of circuits started in
[15,14,13,12]. Our goal was to work out the notation of combining circuits
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The terminology and notation used in this paper are introduced in the following
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[24], [10], [19], [11], [18], [15], [14], [13], and [12].

1. Combining of Many Sorted Signatures

Let S be a many sorted signature. A gate of S is an element of the operation
symbols of S.

Let A be a set and let X be a set. Then A 7−→ X is a many sorted set
indexed by A.

Let A be a set and let X be a non empty set. One can check that A 7−→ X
is non-empty.

Let A be a set and let f be a function. One can verify that A 7−→ f is
function yielding.

Let f , g be non-empty functions. Note that f +· g is non-empty.
Let A, B be sets, let f be a many sorted set indexed by A, and let g be a

many sorted set indexed by B. Then f +· g is a many sorted set indexed by
A ∪B.

We now state several propositions:

1This work was written while the second author visited Shinshu University, July–August
1994.
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(1) For all functions f1, f2, g1, g2 such that rng g1 ⊆ dom f1 and rng g2 ⊆
dom f2 and f1 ≈ f2 holds (f1 +· f2) · (g1 +· g2) = f1 · g1 +· f2 · g2.

(2) For all functions f1, f2, g such that rng g ⊆ dom f1 and rng g ⊆ dom f2

and f1 ≈ f2 holds f1 · g = f2 · g.
(3) Let A, B be sets, and let f be a many sorted set indexed by A, and let

g be a many sorted set indexed by B. If f ⊆ g, then f# ⊆ g#.

(4) For all sets X, Y , x, y holds X 7−→ x ≈ Y 7−→ y iff x = y or X misses
Y .

(5) For all functions f , g, h such that f ≈ g and g ≈ h and h ≈ f holds
f +· g ≈ h.

(6) For every set X and for every non empty set Y and for every finite
sequence p of elements of X holds (X 7−→ Y )#(p) = Y len p.

Let A be a set, let f1, g1 be non-empty many sorted sets indexed by A, let
B be a set, let f2, g2 be non-empty many sorted sets indexed by B, let h1 be a
many sorted function from f1 into g1, and let h2 be a many sorted function from
f2 into g2. Then h1 +· h2 is a many sorted function from f1 +· f2 into g1 +· g2.

Let S1, S2 be many sorted signatures. The predicate S1 ≈ S2 is defined by:

(Def.1) The arity of S1 ≈ the arity of S2 and the result sort of S1 ≈ the result
sort of S2.

Let us notice that this predicate is reflexive and symmetric.
Let S1, S2 be non empty many sorted signatures. The functor S1 +· S2

yielding a strict non empty many sorted signature is defined by the conditions
(Def.2).

(Def.2) (i) The carrier of S1 +· S2 = (the carrier of S1) ∪ (the carrier of S2),
(ii) the operation symbols of S1+·S2 = (the operation symbols of S1)∪(the

operation symbols of S2),
(iii) the arity of S1 +· S2 = (the arity of S1) +· (the arity of S2), and
(iv) the result sort of S1 +· S2 = (the result sort of S1) +· (the result sort

of S2).

The following propositions are true:

(7) For all non empty many sorted signatures S1, S2, S3 such that S1 ≈ S2

and S2 ≈ S3 and S3 ≈ S1 holds S1 +· S2 ≈ S3.

(8) For every non empty many sorted signature S holds S+·S = the many
sorted signature of S.

(9) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2

holds S1 +· S2 = S2 +· S1.

(10) For all non empty many sorted signatures S1, S2, S3 holds (S1 +·S2)+·
S3 = S1 +· (S2 +· S3).

One can verify that there exists a function which is one-to-one.
Next we state four propositions:

(11) Let f be an one-to-one function and let S1, S2 be circuit-like non empty
many sorted signatures. Suppose the result sort of S1 ⊆ f and the result
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sort of S2 ⊆ f. Then S1 +· S2 is circuit-like.

(12) For all circuit-like non empty many sorted signatures S1, S2 such that
InnerVertices(S1) misses InnerVertices(S2) holds S1 +· S2 is circuit-like.

(13) For all non empty many sorted signatures S1, S2 such that S1 is not
void or S2 is not void holds S1 +· S2 is non void.

(14) For all finite non empty many sorted signatures S1, S2 holds S1 +· S2

is finite.

Let S1 be a non void non empty many sorted signature and let S2 be a non
empty many sorted signature. Observe that S1 +· S2 is non void and S2 +· S1

is non void.

We now state several propositions:

(15) For all non empty many sorted signatures S1, S2 such that S1 ≈ S2

holds InnerVertices(S1 +·S2) = InnerVertices(S1)∪ InnerVertices(S2) and
InputVertices(S1 +· S2) ⊆ InputVertices(S1) ∪ InputVertices(S2).

(16) For all non empty many sorted signatures S1, S2 and for every vertex v2

of S2 such that v2 ∈ InputVertices(S1 +·S2) holds v2 ∈ InputVertices(S2).

(17) Let S1, S2 be non empty many sorted signatures. If S1 ≈ S2, then
for every vertex v1 of S1 such that v1 ∈ InputVertices(S1 +· S2) holds
v1 ∈ InputVertices(S1).

(18) Let S1 be a non empty many sorted signature, and let S2 be a non void
non empty many sorted signature, and let o2 be an operation symbol of
S2, and let o be an operation symbol of S1 +· S2. Suppose o2 = o. Then
Arity(o) = Arity(o2) and the result sort of o = the result sort of o2.

(19) Let S1 be a non empty many sorted signature and let S2, S be circuit-
like non void non empty many sorted signatures. Suppose S = S1 +· S2.
Let v2 be a vertex of S2. Suppose v2 ∈ InnerVertices(S2). Let v be a vertex
of S. If v2 = v, then v ∈ InnerVertices(S) and the action at v = the action
at v2.

(20) Let S1 be a non void non empty many sorted signature and let S2 be
a non empty many sorted signature. Suppose S1 ≈ S2. Let o1 be an
operation symbol of S1 and let o be an operation symbol of S1 +· S2.
Suppose o1 = o. Then Arity(o) = Arity(o1) and the result sort of o = the
result sort of o1.

(21) Let S1, S be circuit-like non void non empty many sorted signatures
and let S2 be a non empty many sorted signature. Suppose S1 ≈ S2 and
S = S1 +· S2. Let v1 be a vertex of S1. Suppose v1 ∈ InnerVertices(S1).
Let v be a vertex of S. If v1 = v, then v ∈ InnerVertices(S) and the
action at v = the action at v1.
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2. Combinig of Circuits

Let S1, S2 be non empty many sorted signatures, let A1 be an algebra over
S1, and let A2 be an algebra over S2. The predicate A1 ≈ A2 is defined by:

(Def.3) S1 ≈ S2 and the sorts of A1 ≈ the sorts of A2 and the characteristics of
A1 ≈ the characteristics of A2.

Let S1, S2 be non empty many sorted signatures, let A1 be a non-empty
algebra over S1, and let A2 be a non-empty algebra over S2. Let us assume that
the sorts of A1 ≈ the sorts of A2. The functor A1 +·A2 yields a strict non-empty
algebra over S1 +· S2 and is defined by the conditions (Def.4).

(Def.4) (i) The sorts of A1 +· A2 = (the sorts of A1) +· (the sorts of A2), and

(ii) the characteristics of A1 +· A2 = (the characteristics of A1) +· (the
characteristics of A2).

The following propositions are true:

(22) For every non void non empty many sorted signature S and for every
algebra A over S holds A ≈ A.

(23) Let S1, S2 be non void non empty many sorted signatures, and let A1

be an algebra over S1, and let A2 be an algebra over S2. If A1 ≈ A2, then
A2 ≈ A1.

(24) Let S1, S2, S3 be non empty many sorted signatures, and let A1 be a
non-empty algebra over S1, and let A2 be a non-empty algebra over S2,
and let A3 be an algebra over S3. If A1 ≈ A2 and A2 ≈ A3 and A3 ≈ A1,
then A1 +· A2 ≈ A3.

(25) Let S be a strict non empty many sorted signature and let A be a
non-empty algebra over S. Then A+· A = the algebra of A.

(26) Let S1, S2 be non empty many sorted signatures, and let A1 be a non-
empty algebra over S1, and let A2 be a non-empty algebra over S2. If
A1 ≈ A2, then A1 +· A2 = A2 +·A1.

(27) Let S1, S2, S3 be non empty many sorted signatures, and let A1 be a
non-empty algebra over S1, and let A2 be a non-empty algebra over S2,
and let A3 be a non-empty algebra over S3. Suppose that

(i) the sorts of A1 ≈ the sorts of A2,
(ii) the sorts of A2 ≈ the sorts of A3, and

(iii) the sorts of A3 ≈ the sorts of A1.
Then (A1 +·A2) +· A3 = A1 +· (A2 +· A3).

(28) Let S1, S2 be non empty many sorted signatures, and let A1 be a locally-
finite non-empty algebra over S1, and let A2 be a locally-finite non-empty
algebra over S2. If the sorts of A1 ≈ the sorts of A2, then A1 +· A2 is
locally-finite.

(29) For all non-empty functions f , g and for every element x of
∏
f and for

every element y of
∏
g holds x+· y ∈ ∏(f +· g).
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(30) For all non-empty functions f , g and for every element x of
∏

(f +· g)
holds x

�
dom g ∈ ∏ g.

(31) For all non-empty functions f , g such that f ≈ g and for every element
x of

∏
(f +· g) holds x

�
dom f ∈ ∏ f.

(32) Let S1, S2 be non empty many sorted signatures, and let A1 be a non-
empty algebra over S1, and let s1 be an element of

∏
(the sorts of A1), and

let A2 be a non-empty algebra over S2, and let s2 be an element of
∏

(the
sorts of A2). If the sorts of A1 ≈ the sorts of A2, then s1 +· s2 ∈

∏
(the

sorts of A1 +· A2).

(33) Let S1, S2 be non empty many sorted signatures, and let A1 be a
non-empty algebra over S1, and let A2 be a non-empty algebra over S2.
Suppose the sorts of A1 ≈ the sorts of A2. Let s be an element of

∏
(the

sorts of A1 +·A2). Then s
�
(the carrier of S1) ∈ ∏ (the sorts of A1) and

s
�
(the carrier of S2) ∈ ∏ (the sorts of A2).

(34) Let S1, S2 be non void non empty many sorted signatures, and let A1

be a non-empty algebra over S1, and let A2 be a non-empty algebra over
S2. Suppose the sorts of A1 ≈ the sorts of A2. Let o be an operation
symbol of S1 +· S2 and let o2 be an operation symbol of S2. If o = o2,
then Den(o,A1 +·A2) = Den(o2, A2).

(35) Let S1, S2 be non void non empty many sorted signatures, and let A1

be a non-empty algebra over S1, and let A2 be a non-empty algebra over
S2. Suppose the sorts of A1 ≈ the sorts of A2 and the characteristics of
A1 ≈ the characteristics of A2. Let o be an operation symbol of S1 +· S2

and let o1 be an operation symbol of S1. If o = o1, then Den(o,A1+·A2) =
Den(o1, A1).

(36) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S = S1 +· S2. Let A1 be a non-empty circuit of S1, and let A2

be a non-empty circuit of S2, and let A be a non-empty circuit of S, and
let s be a state of A, and let s2 be a state of A2. Suppose s2 = s

�
(the

carrier of S2). Let g be a gate of S and let g2 be a gate of S2. If g = g2,
then g depends-on-in s = g2 depends-on-in s2.

(37) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S = S1 +· S2 and S1 ≈ S2. Let A1 be a non-empty circuit of S1,
and let A2 be a non-empty circuit of S2, and let A be a non-empty circuit
of S, and let s be a state of A, and let s1 be a state of A1. Suppose
s1 = s

�
(the carrier of S1). Let g be a gate of S and let g1 be a gate of

S1. If g = g1, then g depends-on-in s = g1 depends-on-in s1.

(38) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose S = S1 +·S2. Let A1 be a non-empty circuit of S1, and let A2 be
a non-empty circuit of S2, and let A be a non-empty circuit of S. Suppose
A1 ≈ A2 and A = A1 +·A2. Let s be a state of A and let v be a vertex of
S. Then

(i) for every state s1 of A1 such that s1 = s
�
(the carrier of S1) holds if
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v ∈ InnerVertices(S1) or v ∈ the carrier of S1 and v ∈ InputVertices(S),
then (Following(s))(v) = (Following(s1))(v), and

(ii) for every state s2 of A2 such that s2 = s
�
(the carrier of S2) holds if

v ∈ InnerVertices(S2) or v ∈ the carrier of S2 and v ∈ InputVertices(S),
then (Following(s))(v) = (Following(s2))(v).

(39) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InnerVertices(S1) misses InputVertices(S2) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, and let A2 be a non-empty circuit of S2,
and let A be a non-empty circuit of S. SupposeA1 ≈ A2 and A = A1+·A2.
Let s be a state of A, and let s1 be a state of A1, and let s2 be a state of
A2. Suppose s1 = s

�
(the carrier of S1) and s2 = s

�
(the carrier of S2).

Then Following(s) = Following(s1) +· Following(s2).

(40) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InnerVertices(S2) misses InputVertices(S1) and S = S1+·S2. Let
A1 be a non-empty circuit of S1, and let A2 be a non-empty circuit of S2,
and let A be a non-empty circuit of S. SupposeA1 ≈ A2 and A = A1+·A2.
Let s be a state of A, and let s1 be a state of A1, and let s2 be a state of
A2. Suppose s1 = s

�
(the carrier of S1) and s2 = s

�
(the carrier of S2).

Then Following(s) = Following(s2) +· Following(s1).

(41) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S1) ⊆ InputVertices(S2) and S = S1 +·S2. Let A1

be a non-empty circuit of S1, and let A2 be a non-empty circuit of S2, and
let A be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1 +· A2.
Let s be a state of A, and let s1 be a state of A1, and let s2 be a state of
A2. Suppose s1 = s

�
(the carrier of S1) and s2 = s

�
(the carrier of S2).

Then Following(s) = Following(s2) +· Following(s1).

(42) Let S1, S2, S be non void circuit-like non empty many sorted signatures.
Suppose InputVertices(S2) ⊆ InputVertices(S1) and S = S1 +·S2. Let A1

be a non-empty circuit of S1, and let A2 be a non-empty circuit of S2, and
let A be a non-empty circuit of S. Suppose A1 ≈ A2 and A = A1 +· A2.
Let s be a state of A, and let s1 be a state of A1, and let s2 be a state of
A2. Suppose s1 = s

�
(the carrier of S1) and s2 = s

�
(the carrier of S2).

Then Following(s) = Following(s1) +· Following(s2).

3. Signatures with One Operation

Let A, B be non empty sets and let a be an element of A. Then B 7−→ a is
a function from B into A.

Let f be a set, let p be a finite sequence, and let x be a set. The func-
tor 1GateCircStr(p, f, x) yields a non void strict many sorted signature and is
defined by the conditions (Def.5).

(Def.5) (i) The carrier of 1GateCircStr(p, f, x) = rng p ∪ {x},
(ii) the operation symbols of 1GateCircStr(p, f, x) = {〈〈p, f〉〉},
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(iii) (the arity of 1GateCircStr(p, f, x))(〈〈p, f〉〉) = p, and

(iv) (the result sort of 1GateCircStr(p, f, x))(〈〈p, f〉〉) = x.

Let f be a set, let p be a finite sequence, and let x be a set. Note that
1GateCircStr(p, f, x) is non empty.

The following propositions are true:

(43) Let f , x be sets and let p be a finite sequence. Then the ar-
ity of 1GateCircStr(p, f, x) = {〈〈p, f〉〉} 7−→ p and the result sort of
1GateCircStr(p, f, x) = {〈〈p, f〉〉} 7−→ x.

(44) Let f , x be sets, and let p be a finite sequence, and let g be a gate of
1GateCircStr(p, f, x). Then g = 〈〈p, f〉〉 and Arity(g) = p and the result
sort of g = x.

(45) For all sets f , x and for every finite sequence p holds In-
putVertices (1GateCircStr(p, f, x)) = rng p \ {x} and InnerVertices
(1GateCircStr(p, f, x)) = {x}.

Let f be a set and let p be a finite sequence. The functor 1GateCircStr(p, f)
yielding a non void strict many sorted signature is defined by the conditions
(Def.6).

(Def.6) (i) The carrier of 1GateCircStr(p, f) = rng p ∪ {〈〈p, f〉〉},
(ii) the operation symbols of 1GateCircStr(p, f) = {〈〈p, f〉〉},

(iii) (the arity of 1GateCircStr(p, f))(〈〈p, f〉〉) = p, and

(iv) (the result sort of 1GateCircStr(p, f))(〈〈p, f〉〉) = 〈〈p, f〉〉.
Let f be a set and let p be a finite sequence. Note that 1GateCircStr(p, f)

is non empty.

One can prove the following propositions:

(46) For every set f and for every finite sequence p holds 1GateCircStr(p, f) =
1GateCircStr(p, f, 〈〈p, f〉〉).

(47) Let f be a set and let p be a finite sequence. Then the ar-
ity of 1GateCircStr(p, f) = {〈〈p, f〉〉} 7−→ p and the result sort of
1GateCircStr(p, f) = {〈〈p, f〉〉} 7−→ 〈〈p, f〉〉.

(48) Let f be a set, and let p be a finite sequence, and let g be a gate of
1GateCircStr(p, f). Then g = 〈〈p, f〉〉 and Arity(g) = p and the result sort
of g = g.

(49) For every set f and for every finite sequence p holds InputVertices

(1GateCircStr(p, f)) = rng p and InnerVertices(1GateCircStr(p, f)) =
{〈〈p, f〉〉}.

(50) For every set f and for every finite sequence p and for every set x such
that x ∈ rng p holds rk(x) ∈ rk(〈〈p, f〉〉).

(51) For every set f and for all finite sequences p, q holds
1GateCircStr(p, f) ≈ 1GateCircStr(q, f).
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4. Unsplit Condition

A many sorted signature is unsplit if:

(Def.7) The result sort of it = id(the operation symbols of it).

A many sorted signature has arity held in gates if:

(Def.8) For every set g such that g ∈ the operation symbols of it holds g = 〈〈(the
arity of it)(g), g2〉〉.

A many sorted signature has Boolean denotation held in gates if it satisfies the
condition (Def.9).

(Def.9) Let g be a set. Suppose g ∈ the operation symbols of it. Let p be
a finite sequence. Suppose p = (the arity of it)(g). Then there exists a
function f from Boolean len p into Boolean such that g = 〈〈g1, f〉〉.

Let S be a non empty many sorted signature. An algebra over S has denotation
held in gates if:

(Def.10) For every set g such that g ∈ the operation symbols of S holds g = 〈〈g1,
(the characteristics of it)(g)〉〉.

A non empty many sorted signature has denotation held in gates if:

(Def.11) There exists algebra over it which has denotation held in gates.

One can verify that every non empty many sorted signature which has
Boolean denotation held in gates has also denotation held in gates.

The following two propositions are true:

(52) Let S be a non empty many sorted signature. Then S is unsplit if and
only if for every set o such that o ∈ the operation symbols of S holds (the
result sort of S)(o) = o.

(53) Let S be a non empty many sorted signature. Suppose S is unsplit.
Then the operation symbols of S ⊆ the carrier of S.

Let us note that every non empty many sorted signature which is unsplit is
also circuit-like.

The following proposition is true

(54) For every set f and for every finite sequence p holds 1GateCircStr(p, f)
is unsplit and has arity held in gates.

Let f be a set and let p be a finite sequence. Observe that 1GateCircStr(p, f)
is unsplit and has arity held in gates.

Let us observe that there exists a many sorted signature which is unsplit non
void strict and non empty and has arity held in gates.

One can prove the following propositions:

(55) For all unsplit non empty many sorted signatures S1, S2 with arity held
in gates holds S1 ≈ S2.

(56) Let S1, S2 be non empty many sorted signatures, and let A1 be an
algebra over S1, and let A2 be an algebra over S2. Suppose A1 has de-
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notation held in gates and A2 has denotation held in gates. Then the
characteristics of A1 ≈ the characteristics of A2.

(57) For all unsplit non empty many sorted signatures S1, S2 holds S1 +·S2

is unsplit.

Let S1, S2 be unsplit non empty many sorted signatures. Observe that
S1 +· S2 is unsplit.

We now state the proposition

(58) For all non empty many sorted signatures S1, S2 with arity held in gates
holds S1 +· S2 has arity held in gates.

Let S1, S2 be non empty many sorted signatures with arity held in gates.
Note that S1 +· S2 has arity held in gates.

The following proposition is true

(59) Let S1, S2 be non empty many sorted signatures. Suppose S1 has
Boolean denotation held in gates and S2 has Boolean denotation held in
gates. Then S1 +· S2 has Boolean denotation held in gates.

5. One Gate Circuits

Let n be a natural number. A finite sequence is said to be a finite sequence
with length n if:

(Def.12) len it = n.

Let n be a natural number, let X, Y be non empty sets, let f be a function
from Xn into Y , let p be a finite sequence with length n, and let x be a set.
Let us assume that if x ∈ rng p, then X = Y. The functor 1GateCircuit(p, f, x)
yielding a strict non-empty algebra over 1GateCircStr(p, f, x) is defined by:

(Def.13) The sorts of 1GateCircuit(p, f, x) = (rng p 7−→ X) +· ({x} 7−→ Y ) and
(the characteristics of 1GateCircuit(p, f, x))(〈〈p, f〉〉) = f.

Let n be a natural number, let X be a non empty set, let f be a function
from Xn into X, and let p be a finite sequence with length n. The functor
1GateCircuit(p, f) yielding a strict non-empty algebra over 1GateCircStr(p, f)
is defined as follows:

(Def.14) The sorts of 1GateCircuit(p, f) = (the carrier of 1GateCircStr(p, f)) 7−→
(X) and (the characteristics of 1GateCircuit(p, f))(〈〈p, f〉〉) = f.

Next we state the proposition

(60) Let n be a natural number, and let X be a non empty set, and let
f be a function from Xn into X, and let p be a finite sequence with
length n. Then 1GateCircuit(p, f) has denotation held in gates and
1GateCircStr(p, f) has denotation held in gates.

Let n be a natural number, let X be a non empty set, let f be a function
from Xn into X, and let p be a finite sequence with length n. One can verify
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that 1GateCircuit(p, f) has denotation held in gates and 1GateCircStr(p, f) has
denotation held in gates.

One can prove the following proposition

(61) Let n be a natural number, and let p be a finite sequence with
length n, and let f be a function from Booleann into Boolean . Then
1GateCircStr(p, f) has Boolean denotation held in gates.

Let n be a natural number, let f be a function from Boolean n into Boolean ,
and let p be a finite sequence with length n. Note that 1GateCircStr(p, f) has
Boolean denotation held in gates.

One can check that there exists a many sorted signature which is non empty
and has Boolean denotation held in gates.

Let S1, S2 be non empty many sorted signatures with Boolean denotation
held in gates. Observe that S1 +· S2 has Boolean denotation held in gates.

One can prove the following proposition

(62) Let n be a natural number, and let X be a non empty set, and
let f be a function from Xn into X, and let p be a finite sequence
with length n. Then the characteristics of 1GateCircuit(p, f) = {〈〈p,
f〉〉} 7−→ f and for every vertex v of 1GateCircStr(p, f) holds (the sorts of
1GateCircuit(p, f))(v) = X.

Let n be a natural number, let X be a non empty finite set, let f be a
function from Xn into X, and let p be a finite sequence with length n. One can
check that 1GateCircuit(p, f) is locally-finite.

Next we state two propositions:

(63) Let n be a natural number, and let X be a non empty set, and let f be
a function from Xn into X, and let p, q be finite sequences with length
n. Then 1GateCircuit(p, f) ≈ 1GateCircuit(q, f).

(64) Let n be a natural number, and let X be a finite non empty set, and let f
be a function from Xn into X, and let p be a finite sequence with length
n, and let s be a state of 1GateCircuit(p, f). Then (Following(s))(〈〈p,
f〉〉) = f(s · p).

Let X be a non empty set. Observe that there exists a non empty subset of
X which is finite.

6. Boolean Circuits

Boolean is a finite non empty subset of � .

Let S be a non empty many sorted signature. An algebra over S is Boolean
if:

(Def.15) For every vertex v of S holds (the sorts of it)(v) = Boolean .

Next we state the proposition
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(65) Let S be a non empty many sorted signature and let A be an algebra
over S. Then A is Boolean if and only if the sorts of A = (the carrier of
S) 7−→ Boolean .

Let S be a non empty many sorted signature. Note that every algebra over
S which is Boolean is also non-empty and locally-finite.

One can prove the following three propositions:

(66) Let S be a non empty many sorted signature and let A be an algebra
over S. Then A is Boolean if and only if rng (the sorts of A) ⊆ {Boolean}.

(67) Let S1, S2 be non empty many sorted signatures, and let A1 be an
algebra over S1, and let A2 be an algebra over S2. Suppose A1 is Boolean
and A2 is Boolean. Then the sorts of A1 ≈ the sorts of A2.

(68) Let S1, S2 be unsplit non empty many sorted signatures with arity held
in gates, and let A1 be an algebra over S1, and let A2 be an algebra over
S2. Suppose A1 is Boolean and has denotation held in gates and A2 is
Boolean and has denotation held in gates. Then A1 ≈ A2.

Let S be a non empty many sorted signature. One can check that there
exists a strict algebra over S which is Boolean.

We now state three propositions:

(69) Let n be a natural number, and let f be a function from Boolean n

into Boolean , and let p be a finite sequence with length n. Then
1GateCircuit(p, f) is Boolean.

(70) Let S1, S2 be non empty many sorted signatures, and let A1 be a
Boolean algebra over S1, and let A2 be a Boolean algebra over S2. Then
A1 +· A2 is Boolean.

(71) Let S1, S2 be non empty many sorted signatures, and let A1 be a
non-empty algebra over S1, and let A2 be a non-empty algebra over S2.
Suppose A1 has denotation held in gates and A2 has denotation held in
gates and the sorts of A1 ≈ the sorts of A2. Then A1 +·A2 has denotation
held in gates.

Let us observe that there exists a non empty many sorted signature which is
unsplit non void and strict and has arity held in gates, denotation held in gates,
and Boolean denotation held in gates.

Let S be a non empty many sorted signature with Boolean denotation held
in gates. Note that there exists a strict algebra over S which is Boolean and has
denotation held in gates.

Let S1, S2 be unsplit non void non empty many sorted signatures with
Boolean denotation held in gates, let A1 be a Boolean circuit of S1 with de-
notation held in gates, and let A2 be a Boolean circuit of S2 with denotation
held in gates. One can verify that A1 +·A2 is Boolean and has denotation held
in gates.

Let n be a natural number, let X be a finite non empty set, let f be a
function from Xn into X, and let p be a finite sequence with length n. Observe
that there exists a circuit of 1GateCircStr(p, f) which is strict and non-empty
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and has denotation held in gates.
Let n be a natural number, let X be a finite non empty set, let f be a

function from Xn into X, and let p be a finite sequence with length n. Note
that 1GateCircuit(p, f) has denotation held in gates.

One can prove the following proposition

(72) Let S1, S2 be unsplit non void non empty many sorted signatures with
arity held in gates and Boolean denotation held in gates, and let A1 be
a Boolean circuit of S1 with denotation held in gates, and let A2 be a
Boolean circuit of S2 with denotation held in gates, and let s be a state
of A1 +·A2, and let v be a vertex of S1 +· S2. Then

(i) for every state s1 of A1 such that s1 = s
�
(the carrier of S1) holds if v ∈

InnerVertices(S1) or v ∈ the carrier of S1 and v ∈ InputVertices(S1 +·S2),
then (Following(s))(v) = (Following(s1))(v), and

(ii) for every state s2 of A2 such that s2 = s
�
(the carrier of S2) holds if v ∈

InnerVertices(S2) or v ∈ the carrier of S2 and v ∈ InputVertices(S1 +·S2),
then (Following(s))(v) = (Following(s2))(v).

References

[1] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[2] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics, 1(3):563–567,

1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
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