On the Decomposition of the States of SCM

Yasushi Tanaka
Shinshu University
Information Engineering Dept.
Nagano

Abstract

Summary. This article continues the development of the basic terminology for the SCM as defined in $[11,12,18]$. There is developed of the terminology for discussing static properties of instructions (i.e. not related to execution), for data locations, instruction locations, as well as for states and partial states of SCM. The main contribution of the article consists in characterizing SCM computations starting in states containing autonomic finite partial states.

MML Identifier: AMI_5.

The articles [17], [2], [16], [10], [15], [20], [5], [6], [7], [19], [1], [14], [4], [9], [3], [8], [11], [12], [18], and [13] provide the notation and terminology for this paper.

1. Preliminaries

The following propositions are true:
(1) For all sets A, B, X, Y such that $A \subseteq X$ and $B \subseteq Y$ and $X \cap Y=\emptyset$ holds $A \cap B=\emptyset$.
(2) For all sets X, Y, Z such that $X \subseteq Y$ holds $X \subseteq Z \cup Y$ and $X \subseteq Y \cup Z$.
(3) For all natural numbers m, k such that $k \neq 0$ holds $m \cdot k \div k=m$.
(4) For all natural numbers i, j such that $i \geq j$ holds $i-^{\prime} j+j=i$.
(5) For all functions f, g and for all sets A, B such that $A \subseteq B$ and $f \upharpoonright B=g \upharpoonright B$ holds $f \upharpoonright A=g \upharpoonright A$.
(6) For all functions p, q and for every set A holds $(p+\cdot q) \upharpoonright A=p \upharpoonright A+\cdot q \upharpoonright A$.
(7) For all functions f, g and for every set A such that A misses $\operatorname{dom} g$ holds $(f+g) \upharpoonright A=f \upharpoonright A$.
(8) For all functions f, g and for every set A such that $\operatorname{dom} f$ misses A holds $(f+g) \upharpoonright A=g \upharpoonright A$.
(9) For all functions f, g, h such that $\operatorname{dom} g=\operatorname{dom} h$ holds $f+\cdot g+\cdot h=$ $f+h$.
(10) For all functions f, g such that $f \subseteq g$ holds $f+\cdot g=g$ and $g+\cdot f=g$.
(11) For every function f and for every set A holds $f+f \upharpoonright A=f$.
(12) For all functions f, g and for all sets B, C such that $\operatorname{dom} f \subseteq B$ and dom $g \subseteq C$ and B misses C holds $(f+\cdot g) \upharpoonright B=f$ and $(f+\cdot g) \upharpoonright C=g$.
(13) For all functions p, q and for every set A such that $\operatorname{dom} p \subseteq A$ and $\operatorname{dom} q$ misses A holds $(p+\cdot q) \upharpoonright A=p$.
(14) For every function f and for all sets A, B holds $f \upharpoonright(A \cup B)=f \upharpoonright A+\cdot f \upharpoonright B$.

2. Total states of SCM

One can prove the following propositions:
(15) Let a be a data-location and let s be a state of SCM. Then $(\operatorname{Exec}(\operatorname{Divide}(a, a), s))\left(\mathbf{I C}_{\mathbf{S C M}}\right)=\operatorname{Next}\left(\mathbf{I C}_{s}\right)$ and $(\operatorname{Exec}(\operatorname{Divide}(a, a), s))$ $(a)=s(a) \bmod s(a)$ and for every data-location c such that $c \neq a$ holds $(\operatorname{Exec}(\operatorname{Divide}(a, a), s))(c)=s(c)$.
(16) For arbitrary x such that $x \in$ Data-Locscm holds x is a data-location.
(17) For arbitrary x such that $x \in$ Instr-Loc SCM $^{\text {holds }} x$ is an instructionlocation of SCM.
(18) For every data-location d_{1} there exists a natural number i such that $d_{1}=\mathbf{d}_{i}$.
(19) For every instruction-location i_{1} of $\mathbf{S C M}$ there exists a natural number i such that $i_{1}=\mathbf{i}_{i}$.
(20) For every data-location d_{1} holds $d_{1} \neq \mathbf{I C}_{\mathbf{S C M}}$.
(21) For every instruction-location i_{1} of $\mathbf{S C M}$ holds $i_{1} \neq \mathbf{I C}_{\mathbf{S C M}}$.
(22) For every instruction-location i_{1} of SCM and for every data-location d_{1} holds $i_{1} \neq d_{1}$.
(23) The objects of $\mathbf{S C M}=\left\{\mathbf{I C}_{\mathbf{S C M}}\right\} \cup$ Data-Loc SCM \cup Instr-Loc CSM .
(24) Let s be a state of SCM, and let d be a data-location, and let l be an instruction-location of SCM. Then $d \in \operatorname{dom} s$ and $l \in \operatorname{dom} s$.
(25) For every state s of $\mathbf{S C M}$ holds $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} s$.
(26) Let s_{1}, s_{2} be states of SCM. Suppose $\mathbf{I C}_{\left(s_{1}\right)}=\mathbf{I C}_{\left(s_{2}\right)}$ and for every data-location a holds $s_{1}(a)=s_{2}(a)$ and for every instruction-location i of SCM holds $s_{1}(i)=s_{2}(i)$. Then $s_{1}=s_{2}$.
(27) For every state s of $\mathbf{S C M}$ holds Data-Loc $\mathrm{SCM}_{\mathrm{SCM}} \subseteq \operatorname{dom} s$.
(28) For every state s of $\mathbf{S C M}$ holds Instr-LocsCM $\subseteq \operatorname{dom} s$.
(29) For every state s of $\mathbf{S C M}$ holds dom $\left(s \upharpoonright\right.$ Data-Loc $\left.{ }_{S C M}\right)=$ Data-LocsCM.
(30) For every state s of $\mathbf{S C M}$ holds dom $\left(s \upharpoonright\right.$ Instr-Loc $\left.{ }_{S C M}\right)=$ Instr-Loc ${ }_{S C M}$.
(31) Data-LocsCm is finite.
(32) The instruction locations of SCM is finite.
(33) Data-LocsCM misses Instr-LocsCM.
(34) For every state s of $\mathbf{S C M}$ holds $\operatorname{Start}-\operatorname{At}\left(\mathbf{I C}_{s}\right)=s \upharpoonright\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$.
(35) For every instruction-location l of $\mathbf{S C M}$ holds Start-At $(l)=\left\{\left\langle\mathbf{I C}_{\mathbf{S C M}}\right.\right.$, $l\rangle\}$.
Let I be an instruction of $\mathbf{S C M}$. The functor $\operatorname{InsCode}(I)$ yields a natural number and is defined as follows:
(Def.1) $\operatorname{InsCode}(I)=I_{\mathbf{1}}$.
The functor ${ }^{@} I$ yielding an element of $\operatorname{Instr}_{\text {SCM }}$ is defined by:
(Def.2) ${ }^{@} I=I$.
Let l_{1} be an element of Instr-Locscm. The functor $l_{1}{ }^{\mathrm{T}}$ yields an instructionlocation of SCM and is defined as follows:
(Def.3) $\quad l_{1}{ }^{\mathrm{T}}=l_{1}$.
Let l_{1} be an element of Data-LocsCM. The functor $l_{1}{ }^{\mathrm{T}}$ yielding a datalocation is defined as follows:
(Def.4) $\quad l_{1}{ }^{\mathrm{T}}=l_{1}$.
One can prove the following proposition
(36) For every instruction l of $\mathbf{S C M}$ holds InsCode $(l) \leq 8$.

In the sequel a, b are data-locations and l_{1} is an instruction-location of $\mathbf{S C M}$.
One can prove the following propositions:
(37) InsCode(halt SCM) $=0$.
(38) $\operatorname{InsCode}(a:=b)=1$.
(39) $\quad \operatorname{InsCode}(\operatorname{AddTo}(a, b))=2$.
(40) $\operatorname{InsCode}(\operatorname{SubFrom}(a, b))=3$.
(41) $\quad \operatorname{InsCode}(\operatorname{MultBy}(a, b))=4$.
(42) $\quad \operatorname{InsCode}(\operatorname{Divide}(a, b))=5$.
(43) \quad InsCode (goto $\left.l_{1}\right)=6$.
(44) $\operatorname{InsCode}\left(\right.$ if $a=0$ goto $\left.l_{1}\right)=7$.
(45) $\quad \operatorname{InsCode}\left(\right.$ if $a>0$ goto $\left.l_{1}\right)=8$.

In the sequel d_{2}, d_{3} denote data-locations and l_{1} denotes an instructionlocation of SCM.

We now state a number of propositions:
(46) For every instruction i_{2} of $\mathbf{S C M}$ such that $\operatorname{InsCode}\left(i_{2}\right)=0$ holds $i_{2}=$ haltsCM.
(47) For every instruction i_{2} of SCM such that $\operatorname{InsCode}\left(i_{2}\right)=1$ there exist d_{2}, d_{3} such that $i_{2}=d_{2}:=d_{3}$.
(48) For every instruction i_{2} of $\mathbf{S C M}$ such that $\operatorname{InsCode}\left(i_{2}\right)=2$ there exist d_{2}, d_{3} such that $i_{2}=\operatorname{AddTo}\left(d_{2}, d_{3}\right)$.
(49) For every instruction i_{2} of $\mathbf{S C M}$ such that $\operatorname{InsCode}\left(i_{2}\right)=3$ there exist d_{2}, d_{3} such that $i_{2}=\operatorname{SubFrom}\left(d_{2}, d_{3}\right)$.
(50) For every instruction i_{2} of $\mathbf{S C M}$ such that $\operatorname{InsCode}\left(i_{2}\right)=4$ there exist d_{2}, d_{3} such that $i_{2}=\operatorname{MultBy}\left(d_{2}, d_{3}\right)$.
(51) For every instruction i_{2} of $\mathbf{S C M}$ such that $\operatorname{InsCode}\left(i_{2}\right)=5$ there exist d_{2}, d_{3} such that $i_{2}=\operatorname{Divide}\left(d_{2}, d_{3}\right)$.
(52) For every instruction i_{2} of $\mathbf{S C M}$ such that InsCode $\left(i_{2}\right)=6$ there exists l_{1} such that $i_{2}=$ goto l_{1}.
(53) For every instruction i_{2} of $\mathbf{S C M}$ such that $\operatorname{InsCode}\left(i_{2}\right)=7$ there exist l_{1}, d_{2} such that $i_{2}=$ if $d_{2}=0$ goto l_{1}.

For every instruction i_{2} of $\mathbf{S C M}$ such that $\operatorname{InsCode}\left(i_{2}\right)=8$ there exist l_{1}, d_{2} such that $i_{2}=$ if $d_{2}>0$ goto l_{1}.

For every instruction-location l_{1} of $\mathbf{S C M}$ holds (${ }^{@}$ goto l_{1}) address ${ }_{\mathrm{j}}=l_{1}$. For every instruction-location l_{1} of $\mathbf{S C M}$ and for every datalocation a holds $\left({ }^{@}\left(\right.\right.$ if $a=0$ goto $\left.\left.l_{1}\right)\right)$ address ${ }_{j}=l_{1}$ and $\left({ }^{@}(\right.$ if $a=$ 0 goto $\left.l_{1}\right)$)address ${ }_{\mathrm{c}}=a$.
(57) For every instruction-location l_{1} of $\mathbf{S C M}$ and for every datalocation a holds $\left({ }^{@}\left(\right.\right.$ if $a>0$ goto $\left.\left.l_{1}\right)\right)$ address $_{j}=l_{1}$ and $\left({ }^{@}(\right.$ if $a>$ 0 goto $\left.l_{1}\right)$) address ${ }_{\mathrm{c}}=a$.

For all states s_{1}, s_{2} of $\mathbf{S C M}$ such that $s_{1} \upharpoonright\left(\right.$ Data-Loc $\left._{S C M} \cup\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}\right)=$ $s_{2} \upharpoonright\left(\right.$ Data-Locscm $\left.\cup\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}\right)$ and for every instruction l of $\mathbf{S C M}$ holds $\operatorname{Exec}\left(l, s_{1}\right) \upharpoonright\left(\right.$ Data-LocsCM $\left.\cup\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}\right)=\operatorname{Exec}\left(l, s_{2}\right) \upharpoonright\left(\right.$ Data-Loc ${ }_{S C M} \cup$ $\left.\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}\right)$.
(59) For every instruction i of $\mathbf{S C M}$ and for every state s of $\mathbf{S C M}$ holds $\operatorname{Exec}(i, s) \upharpoonright$ Instr-Loc ${ }_{S C M}=s \upharpoonright$ Instr-Loc ${ }_{\text {SCM }}$.

3. Finite partial states of SCM

The following proposition is true
(60) For every finite partial state p of $\mathbf{S C M}$ and for every state s of $\mathbf{S C M}$ such that $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$ and $p \subseteq s$ holds $\mathbf{I C}_{p}=\mathbf{I C}$.
Let p be a finite partial state of $\mathbf{S C M}$ and let l_{1} be an instruction-location of SCM. Let us assume that $l_{1} \in \operatorname{dom} p$. The functor $\pi_{l_{1}} p$ yielding an instruction of $\mathbf{S C M}$ is defined by:
(Def.5) $\quad \pi_{l_{1}} p=p\left(l_{1}\right)$.
The following proposition is true
(61) Let x be arbitrary and let p be a finite partial state of $\mathbf{S C M}$. If $x \subseteq p$, then x is a finite partial state of $\mathbf{S C M}$.
Let p be a finite partial state of SCM. The functor ProgramPart(p) yields a programmed finite partial state of SCM and is defined by:
(Def.6) ProgramPart $(p)=p \upharpoonright$ (the instruction locations of SCM).

The functor $\operatorname{DataPart}(p)$ yielding a finite partial state of $\mathbf{S C M}$ is defined as follows:
(Def.7) DataPart $(p)=p$ 「 Data-LocsCm.
A finite partial state of SCM is data-only if:
(Def.8) dom it \subseteq Data-Locscm.
Next we state a number of propositions:
(62) For every finite partial state p of $\mathbf{S C M}$ holds $\operatorname{DataPart}(p) \subseteq p$.
(63) For every finite partial state p of $\mathbf{S C M}$ holds $\operatorname{ProgramPart}(p) \subseteq p$.
(64) Let p be a finite partial state of SCM and let s be a state of SCM. If $p \subseteq s$, then for every natural number i holds $\operatorname{ProgramPart}(p) \subseteq$ (Computation $(s))(i)$.
(65) For every finite partial state p of $\mathbf{S C M}$ holds $\mathbf{I C}_{\mathbf{S C M}} \notin$ dom DataPart (p).
(66) For every finite partial state p of $\mathbf{S C M}$ holds $\mathbf{I C}_{\mathbf{S C M}} \notin$ dom ProgramPart (p).
(67) For every finite partial state p of $\mathbf{S C M}$ holds $\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$ misses dom DataPart (p).
(68) For every finite partial state p of $\mathbf{S C M}$ holds $\left\{\mathbf{I C}_{\mathbf{S C M}}\right\}$ misses dom ProgramPart (p).
(69) For every finite partial state p of $\mathbf{S C M}$ holds dom $\operatorname{DataPart}(p) \subseteq$ Data-Locscm.
(70) For every finite partial state p of $\mathbf{S C M}$ holds dom $\operatorname{ProgramPart}(p) \subseteq$ Instr-LocsCM.
(71) For all finite partial states p, q of $\mathbf{S C M}$ holds dom $\operatorname{DataPart}(p)$ misses dom ProgramPart (q).
(72) For every programmed finite partial state p of SCM holds $\operatorname{ProgramPart}(p)=p$.
(73) For every finite partial state p of SCM and for every instructionlocation l of $\mathbf{S C M}$ such that $l \in \operatorname{dom} p$ holds $l \in \operatorname{dom} \operatorname{ProgramPart}(p)$.
(74) Let p be a data-only finite partial state of SCM and let q be a finite partial state of SCM. Then $p \subseteq q$ if and only if $p \subseteq \operatorname{DataPart}(q)$.
(75) For every finite partial state p of $\mathbf{S C M}$ such that $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$ holds $p=\operatorname{Start}-\operatorname{At}\left(\mathbf{I} \mathbf{C}_{p}\right)+\cdot \operatorname{ProgramPart}(p)+\cdot \operatorname{DataPart}(p)$.
A partial function from FinPartSt(SCM) to FinPartSt(SCM) is data-only if it satisfies the condition (Def.9).
(Def.9) Let p be a finite partial state of SCM. Suppose $p \in$ domit. Then p is data-only and for every finite partial state q of SCM such that $q=\operatorname{it}(p)$ holds q is data-only.
Next we state the proposition
(76) For every finite partial state p of $\mathbf{S C M}$ such that $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$ holds p is not programmed.

Let s be a state of SCM and let p be a finite partial state of SCM. Then $s+\cdot p$ is a state of SCM.

Next we state several propositions:
(77) Let i be an instruction of SCM, and let s be a state of SCM, and let p be a programmed finite partial state of $\mathbf{S C M}$. Then $\operatorname{Exec}(i, s+p)=$ $\operatorname{Exec}(i, s)+\cdot p$.
(78) For every finite partial state p of $\mathbf{S C M}$ such that $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$ holds Start- $\operatorname{At}\left(\mathbf{I} \mathbf{C}_{p}\right) \subseteq p$.
(79) For every state s of SCM and for every instruction-location i_{3} of SCM holds $\mathbf{I C}_{s+\text { Start-At }\left(i_{3}\right)}=i_{3}$.
(80) For every state s of SCM and for every instruction-location i_{3} of SCM and for every data-location a holds $s(a)=\left(s+\cdot \operatorname{Start}-\operatorname{At}\left(i_{3}\right)\right)(a)$.
(81) Let s be a state of SCM, and let i_{3} be an instruction-location of SCM, and let a be an instruction-location of SCM. Then $s(a)=$ $\left(s+\cdot \operatorname{Start}-\operatorname{At}\left(i_{3}\right)\right)(a)$.
(82) For all states s, t of $\mathbf{S C M}$ holds $s+\cdot t \upharpoonright$ Data-Loc $_{S C M}$ is a state of SCM.

4. Autonomic finite partial states of SCM

The following proposition is true
(83) For every autonomic finite partial state p of SCM such that $\operatorname{DataPart}(p) \neq \emptyset$ holds $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$.
One can check that there exists a finite partial state of SCM which is autonomic and non programmed.

We now state a number of propositions:
(84) For every autonomic non programmed finite partial state p of SCM holds $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$.
(85) For every autonomic finite partial state p of $\mathbf{S C M}$ such that $\mathbf{I C}_{\mathbf{S C M}} \in$ $\operatorname{dom} p$ holds $\mathbf{I C}_{p} \in \operatorname{dom} p$.
(86) Let p be an autonomic non programmed finite partial state of SCM and let s be a state of $\mathbf{S C M}$. If $p \subseteq s$, then for every natural number i holds $\mathbf{I C}_{(\text {Computation }(s))(i)} \in \operatorname{dom} \operatorname{ProgramPart}(p)$.
(87) Let p be an autonomic non programmed finite partial state of SCM and let s_{1}, s_{2} be states of SCM. Suppose $p \subseteq s_{1}$ and $p \subseteq s_{2}$. Let i be a natural number, and let d_{2}, d_{3} be data-locations, and let l_{1} be an instruction-location of SCM, and let I be an instruction of SCM. If $I=\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right)$, then $\mathbf{I C}_{\left(\text {Computation }\left(s_{1}\right)\right)(i)}=$ $\mathbf{I C}_{\left(\text {Computation }\left(s_{2}\right)\right)(i)}$ and $I=\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{2}\right)\right)(i)\right)$.
(88) Let p be an autonomic non programmed finite partial state of SCM and let s_{1}, s_{2} be states of SCM. Suppose $p \subseteq s_{1}$ and $p \subseteq s_{2}$. Let i be a natural number, and let d_{2}, d_{3} be data-locations, and let l_{1} be an
instruction-location of SCM, and let I be an instruction of SCM. If $I=\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right)$, then if $I=d_{2}:=d_{3}$ and $d_{2} \in \operatorname{dom} p$, then $\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{3}\right)=\left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{3}\right)$.
(89) Let p be an autonomic non programmed finite partial state of SCM and let s_{1}, s_{2} be states of SCM. Suppose $p \subseteq s_{1}$ and $p \subseteq s_{2}$. Let i be a natural number, and let d_{2}, d_{3} be data-locations, and let l_{1} be an instruction-location of SCM, and let I be an instruction of SCM. Suppose $I=\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right)$. If $I=\operatorname{AddTo}\left(d_{2}, d_{3}\right)$ and $d_{2} \in \operatorname{dom} p$, then $\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{2}\right)+\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{3}\right)=$ $\left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{2}\right)+\left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{3}\right)$.
(90) Let p be an autonomic non programmed finite partial state of SCM and let s_{1}, s_{2} be states of SCM. Suppose $p \subseteq s_{1}$ and $p \subseteq s_{2}$. Let i be a natural number, and let d_{2}, d_{3} be data-locations, and let l_{1} be an instruction-location of SCM, and let I be an instruction of SCM. Suppose $I=\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right)$. If $I=\operatorname{SubFrom}\left(d_{2}, d_{3}\right)$ and $d_{2} \in \operatorname{dom} p$, then $\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{2}\right)-\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{3}\right)=$ (Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{2}\right)-\left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{3}\right)$.
(91) Let p be an autonomic non programmed finite partial state of SCM and let s_{1}, s_{2} be states of SCM. Suppose $p \subseteq s_{1}$ and $p \subseteq s_{2}$. Let i be a natural number, and let d_{2}, d_{3} be data-locations, and let l_{1} be an instruction-location of SCM, and let I be an instruction of SCM. Suppose $I=\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right)$. If $I=\operatorname{MultBy}\left(d_{2}, d_{3}\right)$ and $d_{2} \in \operatorname{dom} p$, then $\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{2}\right) \cdot\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{3}\right)=$ (Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{2}\right) \cdot\left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{3}\right)$.
(92) Let p be an autonomic non programmed finite partial state of SCM and let s_{1}, s_{2} be states of $\mathbf{S C M}$. Suppose $p \subseteq s_{1}$ and $p \subseteq s_{2}$. Let i be a natural number, and let d_{2}, d_{3} be data-locations, and let l_{1} be an instructionlocation of SCM, and let I be an instruction of SCM. Suppose $I=$ CurInstr$\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right)$. If $I=\operatorname{Divide}\left(d_{2}, d_{3}\right)$ and $d_{2} \in \operatorname{dom} p$ and $d_{2} \neq d_{3}$, then $\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{2}\right) \div\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{3}\right)=$ (Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{2}\right) \div\left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{3}\right)$.
(93) Let p be an autonomic non programmed finite partial state of SCM and let s_{1}, s_{2} be states of SCM. Suppose $p \subseteq s_{1}$ and $p \subseteq s_{2}$. Let i be a natural number, and let d_{2}, d_{3} be data-locations, and let l_{1} be an instructionlocation of SCM, and let I be an instruction of SCM. Suppose $I=$ $\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right)$. If $I=\operatorname{Divide}\left(d_{2}, d_{3}\right)$ and $d_{3} \in \operatorname{dom} p$ and $d_{2} \neq d_{3}$, then $\left(\right.$ Computation $\left.\left(s_{1}\right)\right)(i)\left(d_{2}\right) \bmod \left(\right.$ Computation $\left.\left(s_{1}\right)\right)(i)\left(d_{3}\right)=$ (Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{2}\right) \bmod \left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{3}\right)$.
(94) Let p be an autonomic non programmed finite partial state of SCM and let s_{1}, s_{2} be states of SCM. Suppose $p \subseteq s_{1}$ and $p \subseteq s_{2}$. Let i be a natural number, and let d_{2}, d_{3} be data-locations, and let l_{1} be an instruction-location of SCM, and let I be an instruction of SCM. Suppose $I=\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right)$. If $I=$ if $d_{2}=0$ goto l_{1} and $l_{1} \neq \operatorname{Next}\left(\mathbf{I} \mathbf{C}_{\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)}\right)$, then $\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{2}\right)=0$
iff $\left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{2}\right)=0$.
(95) Let p be an autonomic non programmed finite partial state of SCM and let s_{1}, s_{2} be states of SCM. Suppose $p \subseteq s_{1}$ and $p \subseteq s_{2}$. Let i be a natural number, and let d_{2}, d_{3} be data-locations, and let l_{1} be an instruction-location of SCM, and let I be an instruction of SCM. Suppose $I=\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right)$. If $I=$ if $d_{2}>0$ goto l_{1} and $l_{1} \neq \operatorname{Next}\left(\mathbf{I} \mathbf{C}_{\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)}\right)$, then $\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\left(d_{2}\right)>0$ iff $\left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i)\left(d_{2}\right)>0$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[9] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[11] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[12] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[14] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[15] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[16] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[19] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[20] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received November 23, 1993

On Defining Functions on Binary Trees ${ }^{1}$

Grzegorz Bancerek
Polish Academy of Sciences
Institute of Mathematics
Warsaw

Piotr Rudnicki
University of Alberta
Department of Computing Science
Edmonton

Abstract

Summary. This article is a continuation of an article on defining functions on trees (see [6]). In this article we develop terminology specialized for binary trees, first defining binary trees and binary grammars. We recast the induction principle for the set of parse trees of binary grammars and the scheme of defining functions inductively with the set as domain. We conclude with defining the scheme of defining such functions by lambda-like expressions.

MML Identifier: BINTREE1.

The terminology and notation used here are introduced in the following articles: [12], [14], [15], [13], [8], [9], [5], [7], [11], [10], [1], [3], [4], [2], and [6].

Let D be a non empty set and let t be a tree decorated with elements of D. The root label of t is an element of D and is defined by:
(Def.1) The root label of $t=t(\varepsilon)$.
One can prove the following two propositions:
(1) Let D be a non empty set and let t be a tree decorated with elements of D. Then the roots of $\langle t\rangle=\langle$ the root label of $t\rangle$.
(2) Let D be a non empty set and let t_{1}, t_{2} be trees decorated with elements of D. Then the roots of $\left\langle t_{1}, t_{2}\right\rangle=\left\langle\right.$ the root label of t_{1}, the root label of $\left.t_{2}\right\rangle$.
A tree is binary if:
(Def.2) For every element t of it such that $t \notin$ Leaves(it) holds succ $t=\left\{t^{\wedge}\right.$ $\left.\langle 0\rangle, t^{\wedge}\langle 1\rangle\right\}$.
The following propositions are true:

[^0](3) For every tree T and for every element t of T holds $t \in \operatorname{Leaves}(T)$ iff $t \sim\langle 0\rangle \notin T$.
(4) For every tree T and for every element t of T holds $t \in \operatorname{Leaves}(T)$ iff it is not true that there exists a natural number n such that $t^{\wedge}\langle n\rangle \in T$.
(5) For every tree T and for every element t of T holds succ $t=\emptyset$ iff $t \in \operatorname{Leaves}(T)$.
(6) The elementary tree of 0 is binary.
(7) The elementary tree of 2 is binary.

Let us note that there exists a tree which is binary and finite.
A decorated tree is binary if:
(Def.3) dom it is binary.
Let D be a non empty set. Observe that there exists a tree decorated with elements of D which is binary and finite.

Let us mention that there exists a decorated tree which is binary and finite. Let us observe that every tree which is binary is also finite-order.
We now state four propositions:
(8) Let T_{0}, T_{1} be trees and let t be an element of $\overbrace{T_{0}, T_{1}}$. Then
(i) for every element p of T_{0} such that $t=\langle 0\rangle \wedge p$ holds $t \in \operatorname{Leaves}(\overbrace{T_{0}, T_{1}})$ iff $p \in \operatorname{Leaves}\left(T_{0}\right)$, and
(ii) for every element p of T_{1} such that $t=\langle 1\rangle \wedge p$ holds $t \in \operatorname{Leaves}(\overbrace{T_{0}, T_{1}})$ iff $p \in \operatorname{Leaves}\left(T_{1}\right)$.
(9) Let T_{0}, T_{1} be trees and let t be an element of $\overbrace{T_{0}, T_{1}}$. Then
(i) if $t=\varepsilon$, then succ $t=\left\{t^{\wedge}\langle 0\rangle, t^{\wedge}\langle 1\rangle\right\}$,
(ii) for every element p of T_{0} such that $t=\langle 0\rangle \wedge p$ and for every finite sequence s_{1} holds $s_{1} \in \operatorname{succ} p$ iff $\langle 0\rangle{ }^{\wedge} s_{1} \in \operatorname{succ} t$, and
(iii) for every element p of T_{1} such that $t=\langle 1\rangle^{\wedge} p$ and for every finite sequence s_{1} holds $s_{1} \in \operatorname{succ} p$ iff $\langle 1\rangle{ }^{\wedge} s_{1} \in \operatorname{succ} t$.
(10) For all trees T_{1}, T_{2} holds T_{1} is binary and T_{2} is binary iff $\overbrace{T_{1}, T_{2}}$ is binary.
(11) For all decorated trees T_{1}, T_{2} and for arbitrary x holds T_{1} is binary and T_{2} is binary iff x-tree $\left(T_{1}, T_{2}\right)$ is binary.
Let D be a non empty set, let x be an element of D, and let T_{1}, T_{2} be binary finite trees decorated with elements of D. Then x-tree $\left(T_{1}, T_{2}\right)$ is a binary finite tree decorated with elements of D.

A non empty tree construction structure is binary if:
(Def.4) For every symbol s of it and for every finite sequence p such that $s \Rightarrow p$ there exist symbols x_{1}, x_{2} of it such that $p=\left\langle x_{1}, x_{2}\right\rangle$.
One can check that there exists a non empty tree construction structure which is binary and strict and has terminals, nonterminals, and useful nonterminals.

The scheme BinDTConstrStrEx concerns a non empty set \mathcal{A} and a ternary predicate \mathcal{P}, and states that:

There exists a binary strict non empty tree construction structure G such that the carrier of $G=\mathcal{A}$ and for all symbols x, y, z of G holds $x \Rightarrow\langle y, z\rangle$ iff $\mathcal{P}[x, y, z]$
for all values of the parameters.
One can prove the following proposition
(12) Let G be a binary non empty tree construction structure with terminals and nonterminals, and let t_{3} be a finite sequence of elements of $\mathrm{TS}(G)$, and let n_{1} be a symbol of G. Suppose $n_{1} \Rightarrow$ the roots of t_{3}. Then
(i) n_{1} is a nonterminal of G,
(ii) $\operatorname{dom} t_{3}=\{1,2\}$,
(iii) $1 \in \operatorname{dom} t_{3}$,
(iv) $2 \in \operatorname{dom} t_{3}$, and
(v) there exist elements t_{4}, t_{5} of $\mathrm{TS}(G)$ such that the roots of $t_{3}=\langle$ the root label of t_{4}, the root label of $\left.t_{5}\right\rangle$ and $t_{4}=t_{3}(1)$ and $t_{5}=t_{3}(2)$ and n_{1} - $\operatorname{tree}\left(t_{3}\right)=n_{1}$-tree $\left(t_{4}, t_{5}\right)$ and $t_{4} \in \operatorname{rng} t_{3}$ and $t_{5} \in \operatorname{rng} t_{3}$.
Now we present three schemes. The scheme BinDTConstrInd concerns a binary non empty tree construction structure \mathcal{A} with terminals and nonterminals and a unary predicate \mathcal{P}, and states that:

For every element t of $\operatorname{TS}(\mathcal{A})$ holds $\mathcal{P}[t]$
provided the parameters have the following properties:

- For every terminal s of \mathcal{A} holds $\mathcal{P}[$ the root tree of $s]$,
- Let n_{1} be a nonterminal of \mathcal{A} and let t_{4}, t_{5} be elements of $\operatorname{TS}(\mathcal{A})$. Suppose $n_{1} \Rightarrow\left\langle\right.$ the root label of t_{4}, the root label of $\left.t_{5}\right\rangle$ and $\mathcal{P}\left[t_{4}\right]$ and $\mathcal{P}\left[t_{5}\right]$. Then $\mathcal{P}\left[n_{1}\right.$-tree $\left.\left(t_{4}, t_{5}\right)\right]$.
The scheme BinDTConstrIndDef concerns a binary non empty tree construction structure \mathcal{A} with terminals, nonterminals, and useful nonterminals, a non empty set \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, and a 5 -ary functor \mathcal{G} yielding an element of \mathcal{B}, and states that:

There exists a function f from $\operatorname{TS}(\mathcal{A})$ into \mathcal{B} such that
(i) for every terminal t of \mathcal{A} holds f (the root tree of $t)=\mathcal{F}(t)$, and
(ii) for every nonterminal n_{1} of \mathcal{A} and for all elements t_{4}, t_{5} of $\operatorname{TS}(\mathcal{A})$ and for all symbols r_{1}, r_{2} of \mathcal{A} such that $r_{1}=$ the root label of t_{4} and $r_{2}=$ the root label of t_{5} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$ and for all elements x_{3}, x_{4} of \mathcal{B} such that $x_{3}=f\left(t_{4}\right)$ and $x_{4}=f\left(t_{5}\right)$ holds $f\left(n_{1}\right.$-tree $\left.\left(t_{4}, t_{5}\right)\right)=\mathcal{G}\left(n_{1}, r_{1}, r_{2}, x_{3}, x_{4}\right)$
for all values of the parameters.
The scheme BinDTConstrUniqDef deals with a binary non empty tree construction structure \mathcal{A} with terminals, nonterminals, and useful nonterminals, a non empty set \mathcal{B}, functions \mathcal{C}, \mathcal{D} from $\operatorname{TS}(\mathcal{A})$ into \mathcal{B}, a unary functor \mathcal{F} yielding an element of \mathcal{B}, and a 5 -ary functor \mathcal{G} yielding an element of \mathcal{B}, and states that:

$$
\mathcal{C}=\mathcal{D}
$$

provided the following requirements are met:

- (i) For every terminal t of \mathcal{A} holds $\mathcal{C}($ the root tree of $t)=\mathcal{F}(t)$, and
(ii) for every nonterminal n_{1} of \mathcal{A} and for all elements t_{4}, t_{5} of $\mathrm{TS}(\mathcal{A})$ and for all symbols r_{1}, r_{2} of \mathcal{A} such that $r_{1}=$ the root label of t_{4} and $r_{2}=$ the root label of t_{5} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$ and for all elements x_{3}, x_{4} of \mathcal{B} such that $x_{3}=\mathcal{C}\left(t_{4}\right)$ and $x_{4}=\mathcal{C}\left(t_{5}\right)$ holds $\mathcal{C}\left(n_{1}\right.$-tree $\left.\left(t_{4}, t_{5}\right)\right)=\mathcal{G}\left(n_{1}, r_{1}, r_{2}, x_{3}, x_{4}\right)$,
- (i) For every terminal t of \mathcal{A} holds \mathcal{D} (the root tree of $t)=\mathcal{F}(t)$, and
(ii) for every nonterminal n_{1} of \mathcal{A} and for all elements t_{4}, t_{5} of $\operatorname{TS}(\mathcal{A})$ and for all symbols r_{1}, r_{2} of \mathcal{A} such that $r_{1}=$ the root label of t_{4} and $r_{2}=$ the root label of t_{5} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$ and for all elements x_{3}, x_{4} of \mathcal{B} such that $x_{3}=\mathcal{D}\left(t_{4}\right)$ and $x_{4}=\mathcal{D}\left(t_{5}\right)$ holds $\mathcal{D}\left(n_{1}\right.$-tree $\left.\left(t_{4}, t_{5}\right)\right)=\mathcal{G}\left(n_{1}, r_{1}, r_{2}, x_{3}, x_{4}\right)$.
Let A, B, C be non empty sets, let a be an element of A, let b be an element of B, and let c be an element of C. Then $\langle a, b, c\rangle$ is an element of : $A, B, C \vdots$.

Now we present two schemes. The scheme BinDTC DefLambda deals with a binary non empty tree construction structure \mathcal{A} with terminals, nonterminals, and useful nonterminals, non empty sets \mathcal{B}, \mathcal{C}, a binary functor \mathcal{F} yielding an element of \mathcal{C}, and a 4 -ary functor \mathcal{G} yielding an element of \mathcal{C}, and states that:

There exists a function f from $\operatorname{TS}(\mathcal{A})$ into $\mathcal{C}^{\mathcal{B}}$ such that
(i) for every terminal t of \mathcal{A} there exists a function g from \mathcal{B} into \mathcal{C} such that $g=f($ the root tree of t) and for every element a of \mathcal{B} holds $g(a)=\mathcal{F}(t, a)$, and
(ii) for every nonterminal n_{1} of \mathcal{A} and for all elements t_{1}, t_{2} of $\operatorname{TS}(\mathcal{A})$ and for all symbols r_{1}, r_{2} of \mathcal{A} such that $r_{1}=$ the root label of t_{1} and $r_{2}=$ the root label of t_{2} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$ there exist functions g, f_{1}, f_{2} from \mathcal{B} into \mathcal{C} such that $g=f\left(n_{1}\right.$-tree $\left.\left(t_{1}, t_{2}\right)\right)$ and $f_{1}=f\left(t_{1}\right)$ and $f_{2}=f\left(t_{2}\right)$ and for every element a of \mathcal{B} holds $g(a)=\mathcal{G}\left(n_{1}, f_{1}, f_{2}, a\right)$
for all values of the parameters.
The scheme BinDTC DefLambdaUniq deals with a binary non empty tree construction structure \mathcal{A} with terminals, nonterminals, and useful nonterminals, non empty sets \mathcal{B}, \mathcal{C}, functions \mathcal{D}, \mathcal{E} from $\operatorname{TS}(\mathcal{A})$ into $\mathcal{C}^{\mathcal{B}}$, a binary functor \mathcal{F} yielding an element of \mathcal{C}, and a 4 -ary functor \mathcal{G} yielding an element of \mathcal{C}, and states that:

$$
\mathcal{D}=\mathcal{E}
$$

provided the parameters satisfy the following conditions:

- (i) For every terminal t of \mathcal{A} there exists a function g from \mathcal{B} into \mathcal{C} such that $g=\mathcal{D}$ (the root tree of t) and for every element a of \mathcal{B} holds $g(a)=\mathcal{F}(t, a)$, and
(ii) for every nonterminal n_{1} of \mathcal{A} and for all elements t_{1}, t_{2} of $\operatorname{TS}(\mathcal{A})$ and for all symbols r_{1}, r_{2} of \mathcal{A} such that $r_{1}=$ the root label of t_{1} and $r_{2}=$ the root label of t_{2} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$ there exist functions g, f_{1}, f_{2} from \mathcal{B} into \mathcal{C} such that $g=\mathcal{D}\left(n_{1}\right.$-tree $\left.\left(t_{1}, t_{2}\right)\right)$
and $f_{1}=\mathcal{D}\left(t_{1}\right)$ and $f_{2}=\mathcal{D}\left(t_{2}\right)$ and for every element a of \mathcal{B} holds $g(a)=\mathcal{G}\left(n_{1}, f_{1}, f_{2}, a\right)$,
- (i) For every terminal t of \mathcal{A} there exists a function g from \mathcal{B} into \mathcal{C} such that $g=\mathcal{E}$ (the root tree of $t)$ and for every element a of \mathcal{B} holds $g(a)=\mathcal{F}(t, a)$, and
(ii) for every nonterminal n_{1} of \mathcal{A} and for all elements t_{1}, t_{2} of $\mathrm{TS}(\mathcal{A})$ and for all symbols r_{1}, r_{2} of \mathcal{A} such that $r_{1}=$ the root label of t_{1} and $r_{2}=$ the root label of t_{2} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$ there exist functions g, f_{1}, f_{2} from \mathcal{B} into \mathcal{C} such that $g=\mathcal{E}\left(n_{1}\right.$-tree $\left.\left(t_{1}, t_{2}\right)\right)$ and $f_{1}=\mathcal{E}\left(t_{1}\right)$ and $f_{2}=\mathcal{E}\left(t_{2}\right)$ and for every element a of \mathcal{B} holds $g(a)=\mathcal{G}\left(n_{1}, f_{1}, f_{2}, a\right)$.
Let G be a binary non empty tree construction structure with terminals and nonterminals. Note that every element of $\operatorname{TS}(G)$ is binary.

References

[1] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[2] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[3] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[4] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[7] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[8] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[9] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[10] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.
[11] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

A Compiler of Arithmetic Expressions for SCM ${ }^{1}$

Grzegorz Bancerek
Polish Academy of Sciences
Institute of Mathematics
Warsaw

Piotr Rudnicki
University of Alberta
Department of Computing Science
Edmonton

Abstract

Summary. We define a set of binary arithmetic expressions with the following operations:,,$+- \cdot$, mod, and div and formalize the common meaning of the expressions in the set of integers. Then, we define a compile function that for a given expression results in a program for the SCM machine defined by Nakamura and Trybulec in [13]. We prove that the generated program when loaded into the machine and executed computes the value of the expression. The program uses additional memory and runs in time linear in length of the expression.

MML Identifier: SCM_COMP.

The articles [16], [12], [1], [21], [18], [20], [17], [9], [10], [3], [2], [13], [14], [19], [15], [5], [4], [8], [11], [6], and [7] provide the terminology and notation for this paper.

The following two propositions are true:
(1) Let I_{1}, I_{2} be finite sequences of elements of the instructions of $\mathbf{S C M}$, and let D be a finite sequence of elements of \mathbb{Z}, and let i_{1}, p_{1}, d_{1} be natural numbers. Then every state with instruction counter on i_{1}, with $I_{1} \wedge I_{2}$ located from p_{1}, and D from d_{1} is a state with instruction counter on i_{1}, with I_{1} located from p_{1}, and D from d_{1} and a state with instruction counter on i_{1}, with I_{2} located from $p_{1}+\operatorname{len} I_{1}$, and D from d_{1}.
(2) Let I_{1}, I_{2} be finite sequences of elements of the instructions of SCM, and let $i_{1}, p_{1}, d_{1}, k, i_{2}$ be natural numbers, and let s be a state with instruction counter on i_{1}, with $I_{1} \cap I_{2}$ located from p_{1}, and $\varepsilon_{\mathbb{Z}}$ from d_{1}, and let u be a state of SCM. Suppose $u=(\operatorname{Computation}(s))(k)$ and

[^1]$\mathbf{i}_{\left(i_{2}\right)}=\mathbf{I C}_{u}$. Then u is a state with instruction counter on i_{2}, with I_{2} located from $p_{1}+\operatorname{len} I_{1}$, and $\varepsilon_{\mathbb{Z}}$ from d_{1}.
The binary strict non empty tree construction structure $A_{S C M}$ with terminals, nonterminals, and useful nonterminals is defined by the conditions (Def.1).
(Def.1) (i) The terminals of $\mathrm{AE}_{\mathrm{SCM}}=$ Data-Loc ${ }_{S C M}$,
(ii) the nonterminals of $\mathrm{AE}_{\mathrm{SCM}}=[1,5:]$, and
(iii) for all symbols x, y, z of $\mathrm{AE}_{\mathrm{SCM}}$ holds $x \Rightarrow\langle y, z\rangle$ iff $x \in[: 1,5 ;$.

A binary term is an element of $\operatorname{TS}\left(\mathrm{AE}_{\mathrm{SCM}}\right)$.
Let n_{1} be a nonterminal of $\mathrm{AE}_{\mathrm{SCM}}$ and let t_{1}, t_{2} be binary terms. Then n_{1}-tree $\left(t_{1}, t_{2}\right)$ is a binary term.

Let t be a terminal of $\mathrm{AE}_{\mathrm{SCM}}$. Then the root tree of t is a binary term.
Let t be a terminal of $\mathrm{AE}_{\mathrm{SCM}}$. The functor ${ }^{@} t$ yielding a data-location is defined as follows:
(Def.2) ${ }^{@} t=t$.
One can prove the following propositions:
(3) For every nonterminal n_{1} of $\mathrm{AE}_{\mathrm{SCM}}$ holds $n_{1}=\langle 0,0\rangle$ or $n_{1}=\langle 0,1\rangle$ or $n_{1}=\langle 0,2\rangle$ or $n_{1}=\langle 0,3\rangle$ or $n_{1}=\langle 0,4\rangle$.
(4) (i) $\langle 0,0\rangle$ is a nonterminal of $\mathrm{AE}_{\mathrm{SCM}}$,
(ii) $\langle 0,1\rangle$ is a nonterminal of $\mathrm{AE}_{\mathrm{SCM}}$,
(iii) $\langle 0,2\rangle$ is a nonterminal of $\mathrm{AE}_{\mathrm{SCM}}$,
(iv) $\langle 0,3\rangle$ is a nonterminal of $\mathrm{AE}_{\mathrm{SCM}}$, and
(v) $\langle 0,4\rangle$ is a nonterminal of $\mathrm{AE}_{\mathrm{SCM}}$.

Let t_{3}, t_{4} be binary terms. The functor $t_{3}+t_{4}$ yields a binary term and is defined as follows:
(Def.3) $\quad t_{3}+t_{4}=\langle 0,0\rangle$-tree $\left(t_{3}, t_{4}\right)$.
The functor $t_{3}-t_{4}$ yielding a binary term is defined as follows:
(Def.4) $\quad t_{3}-t_{4}=\langle 0,1\rangle$-tree $\left(t_{3}, t_{4}\right)$.
The functor $t_{3} \cdot t_{4}$ yields a binary term and is defined by:
(Def.5) $\quad t_{3} \cdot t_{4}=\langle 0,2\rangle$-tree $\left(t_{3}, t_{4}\right)$.
The functor $t_{3} \div t_{4}$ yields a binary term and is defined by:
(Def.6) $\quad t_{3} \div t_{4}=\langle 0,3\rangle$-tree $\left(t_{3}, t_{4}\right)$.
The functor $t_{3} \bmod t_{4}$ yielding a binary term is defined as follows:
(Def.7) $\quad t_{3} \bmod t_{4}=\langle 0,4\rangle$-tree $\left(t_{3}, t_{4}\right)$.
We now state the proposition
(5) Let t_{5} be a binary term. Then
(i) there exists a terminal t of $\mathrm{AE}_{\mathrm{SCM}}$ such that $t_{5}=$ the root tree of t, or
(ii) there exist binary terms t_{1}, t_{2} such that $t_{5}=t_{1}+t_{2}$ or $t_{5}=t_{1}-t_{2}$ or $t_{5}=t_{1} \cdot t_{2}$ or $t_{5}=t_{1} \div t_{2}$ or $t_{5}=t_{1} \bmod t_{2}$.
Let o be a nonterminal of $\mathrm{AE}_{\mathrm{SCM}}$ and let i, j be integers. The functor $o(i, j)$ yielding an integer is defined as follows:
(Def.8) (i) $\quad o(i, j)=i+j$ if $o=\langle 0,0\rangle$,
(ii) $o(i, j)=i-j$ if $o=\langle 0,1\rangle$,
(iii) $o(i, j)=i \cdot j$ if $o=\langle 0,2\rangle$,
(iv) $o(i, j)=i \div j$ if $o=\langle 0,3\rangle$,
(v) $o(i, j)=i \bmod j$ if $o=\langle 0,4\rangle$.

Let s be a state of SCM and let t be a terminal of $\mathrm{AE}_{\text {SCM }}$. Then $s(t)$ is an integer.
\mathbb{Z} is a non empty subset of \mathbb{R}.
One can verify that every element of \mathbb{Z} is integer.
Let D be a non empty set, let f be a function from \mathbb{Z} into D, and let x be an integer. Then $f(x)$ is an element of D.

Let s be a state of SCM and let t_{5} be a binary term. The functor $t_{5}{ }^{@} s$ yields an integer and is defined by the condition (Def.9).
(Def.9) There exists a function f from $\operatorname{TS}\left(\mathrm{AE}_{\mathrm{SCM}}\right)$ into \mathbb{Z} such that
(i) $t_{5}{ }^{@} s=f\left(t_{5}\right)$,
(ii) for every terminal t of $\mathrm{AE}_{\mathrm{SCM}}$ holds f (the root tree of $\left.t\right)=s(t)$, and
(iii) for every nonterminal n_{1} of $\mathrm{AE}_{\mathrm{SCM}}$ and for all binary terms t_{1}, t_{2} and for all symbols r_{1}, r_{2} of $\mathrm{AE}_{\text {SCM }}$ such that $r_{1}=$ the root label of t_{1} and $r_{2}=$ the root label of t_{2} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$ and for all elements x_{1}, x_{2} of \mathbb{Z} such that $x_{1}=f\left(t_{1}\right)$ and $x_{2}=f\left(t_{2}\right)$ holds $f\left(n_{1}-\operatorname{tree}\left(t_{1}, t_{2}\right)\right)=n_{1}\left(x_{1}, x_{2}\right)$.
One can prove the following three propositions:
(6) For every state s of $\mathbf{S C M}$ and for every terminal t of $\mathrm{AE}_{\text {SCM }}$ holds (the root tree of $t)^{@} s=s(t)$.
(7) For every state s of $\mathbf{S C M}$ and for every nonterminal n_{1} of $\mathrm{AE}_{\mathrm{SCM}}$ and for all binary terms t_{1}, t_{2} holds $\left(n_{1}\right.$-tree $\left.\left(t_{1}, t_{2}\right)\right){ }^{@} s=n_{1}\left(t_{1}{ }^{@} s, t_{2}{ }^{@} s\right)$.
(8) Let s be a state of SCM and let t_{1}, t_{2} be binary terms. Then $\left(t_{1}+\right.$ $\left.t_{2}\right){ }^{@} s=\left(t_{1} @^{@} s\right)+\left(t_{2}{ }^{@} s\right)$ and $\left(t_{1}-t_{2}\right) @^{@} s=\left(t_{1}{ }^{@} s\right)-\left(t_{2}{ }^{@} s\right)$ and $t_{1} \cdot t_{2}{ }^{@} s=\left(t_{1}{ }^{@} s\right) \cdot\left(t_{2}{ }^{@} s\right)$ and $\left(t_{1} \div t_{2}\right){ }^{@} s=\left(t_{1}{ }^{@} s\right) \div\left(t_{2}{ }^{@} s\right)$ and $\left(t_{1} \bmod t_{2}\right){ }^{@} s=\left(t_{1}{ }^{@} s\right) \bmod \left(t_{2}{ }^{@} s\right)$.
Let n_{1} be a nonterminal of $\mathrm{AE}_{\mathrm{SCM}}$ and let n be a natural number. The functor $\operatorname{Selfwork}\left(n_{1}, n\right)$ yielding an element of (the instructions of SCM qua set)* is defined as follows:
(Def.10) (i)
$\operatorname{Selfwork}\left(n_{1}, n\right)=\left\langle\operatorname{AddTo}\left(\mathbf{d}_{n}, \mathbf{d}_{n+1}\right)\right\rangle$ if $n_{1}=\langle 0,0\rangle$,
(ii) $\operatorname{Selfwork}\left(n_{1}, n\right)=\left\langle\operatorname{SubFrom}\left(\mathbf{d}_{n}, \mathbf{d}_{n+1}\right)\right\rangle$ if $n_{1}=\langle 0,1\rangle$,
(iii) $\operatorname{Selfwork}\left(n_{1}, n\right)=\left\langle\operatorname{MultBy}\left(\mathbf{d}_{n}, \mathbf{d}_{n+1}\right)\right\rangle$ if $n_{1}=\langle 0,2\rangle$,
(iv) $\operatorname{Selfwork}\left(n_{1}, n\right)=\left\langle\operatorname{Divide}\left(\mathbf{d}_{n}, \mathbf{d}_{n+1}\right)\right\rangle$ if $n_{1}=\langle 0,3\rangle$,
(v) $\operatorname{Selfwork}\left(n_{1}, n\right)=\left\langle\operatorname{Divide}\left(\mathbf{d}_{n}, \mathbf{d}_{n+1}\right), \mathbf{d}_{n}:=\mathbf{d}_{n+1}\right\rangle$ if $n_{1}=\langle 0,4\rangle$.

Let t_{5} be a binary term and let a_{1} be a natural number. The functor Compile $\left(t_{5}, a_{1}\right)$ yielding a finite sequence of elements of the instructions of SCM is defined by the condition (Def.11).
(Def.11) There exists a function f from $\mathrm{TS}\left(\mathrm{AE}_{\mathrm{SCM}}\right)$ into ((the instructions of SCM qua set $\left.)^{*}\right)^{\mathbb{N}}$ such that
(i) Compile $\left(t_{5}, a_{1}\right)=\left(f\left(t_{5}\right)\right.$ qua element of ((the instructions of SCM
qua set $\left.\left.)^{*}\right)^{\mathbb{N}}\right)\left(a_{1}\right)$,
(ii) for every terminal t of $\mathrm{AE}_{\mathrm{SCM}}$ there exists a function g from \mathbb{N} into (the instructions of SCM qua set)* such that $g=f$ (the root tree of t) and for every natural number n holds $g(n)=\left\langle\mathbf{d}_{n}:={ }^{\varrho} t\right\rangle$, and
(iii) for every nonterminal n_{1} of $\mathrm{AE}_{\mathrm{SCM}}$ and for all binary terms t_{3}, t_{4} and for all symbols r_{1}, r_{2} of $\mathrm{AE}_{\mathrm{SCM}}$ such that $r_{1}=$ the root label of t_{3} and $r_{2}=$ the root label of t_{4} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$ there exist functions g, f_{1}, f_{2} from \mathbb{N} into (the instructions of SCM qua set)* such that $g=f\left(n_{1}\right.$-tree $\left.\left(t_{3}, t_{4}\right)\right)$ and $f_{1}=f\left(t_{3}\right)$ and $f_{2}=f\left(t_{4}\right)$ and for every natural number n holds $g(n)=f_{1}(n) \wedge f_{2}(n+1) \wedge \operatorname{Selfwork}\left(n_{1}, n\right)$.
One can prove the following propositions:
(9) For every terminal t of $\mathrm{AE}_{\text {SCM }}$ and for every natural number n holds Compile(the root tree of $t, n)=\left\langle\mathbf{d}_{n}:={ }^{@} t\right\rangle$.
(10) Let n_{1} be a nonterminal of $\mathrm{AE}_{\mathrm{SCM}}$, and let t_{3}, t_{4} be binary terms, and let n be a natural number, and let r_{1}, r_{2} be symbols of $\mathrm{AE}_{\mathrm{SCM}}$. Suppose $r_{1}=$ the root label of t_{3} and $r_{2}=$ the root label of t_{4} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$. Then Compile $\left(n_{1}-\operatorname{tree}\left(t_{3}, t_{4}\right), n\right)=\left(\operatorname{Compile}\left(t_{3}, n\right)\right)^{\wedge} \operatorname{Compile}\left(t_{4}, n+1\right)^{\wedge}$ Selfwork $\left(n_{1}, n\right)$.
Let t be a terminal of $\mathrm{AE}_{\mathrm{SCM}}$. The functor $\mathbf{d}^{-1}(t)$ yielding a natural number is defined as follows:

$$
\begin{equation*}
\mathbf{d}_{\mathbf{d}^{-1}(t)}=t \tag{Def.12}
\end{equation*}
$$

Let n_{2}, n_{3} be natural numbers. Then $\max \left(n_{2}, n_{3}\right)$ is a natural number.
Let t_{5} be a binary term. The functor $\max _{\mathrm{DL}}\left(t_{5}\right)$ yielding a natural number is defined by the condition (Def.13).
(Def.13) There exists a function f from $\operatorname{TS}\left(\mathrm{AE}_{S C M}\right)$ into \mathbb{N} such that
(i) $\max _{\mathrm{DL}}\left(t_{5}\right)=f\left(t_{5}\right)$,
(ii) for every terminal t of $\mathrm{AE}_{\mathrm{SCM}}$ holds f (the root tree of $\left.t\right)=\mathbf{d}^{-1}(t)$, and
(iii) for every nonterminal n_{1} of $\mathrm{AE}_{\mathrm{SCM}}$ and for all binary terms t_{1}, t_{2} and for all symbols r_{1}, r_{2} of $\mathrm{AE}_{\text {SCM }}$ such that $r_{1}=$ the root label of t_{1} and $r_{2}=$ the root label of t_{2} and $n_{1} \Rightarrow\left\langle r_{1}, r_{2}\right\rangle$ and for all natural numbers x_{1}, x_{2} such that $x_{1}=f\left(t_{1}\right)$ and $x_{2}=f\left(t_{2}\right)$ holds $f\left(n_{1}\right.$-tree $\left.\left(t_{1}, t_{2}\right)\right)=$ $\max \left(x_{1}, x_{2}\right)$.
One can prove the following propositions:
(11) For every terminal t of $\mathrm{AE}_{\mathrm{SCM}}$ holds $\max _{\mathrm{DL}}($ the root tree of $t)=\mathbf{d}^{-1}(t)$.
(12) For every nonterminal n_{1} of $\mathrm{AE}_{\mathrm{SCM}}$ and for all binary terms t_{1}, t_{2} holds $\max _{\mathrm{DL}}\left(n_{1}\right.$ - $\left.\operatorname{tree}\left(t_{1}, t_{2}\right)\right)=\max \left(\max _{\mathrm{DL}}\left(t_{1}\right), \max _{\mathrm{DL}}\left(t_{2}\right)\right)$.
(13) Let t_{5} be a binary term and let s_{1}, s_{2} be states of SCM. Suppose that for every natural number d_{2} such that $d_{2} \leq \max _{\mathrm{DL}}\left(t_{5}\right)$ holds $s_{1}\left(\mathbf{d}_{\left(d_{2}\right)}\right)=$ $s_{2}\left(\mathbf{d}_{\left(d_{2}\right)}\right)$. Then $t_{5}{ }^{@} s_{1}=t_{5}{ }^{@} s_{2}$.
(14) Let t_{5} be a binary term, and let a_{1}, n, k be natural numbers, and let s be a state with instruction counter on n, with Compile $\left(t_{5}, a_{1}\right)$ located
from n, and $\varepsilon_{\mathbb{Z}}$ from k. Suppose $a_{1}>\max _{\mathrm{DL}}\left(t_{5}\right)$. Then there exists a natural number i and there exists a state u of SCM such that
(i) $\quad u=(\operatorname{Computation}(s))(i+1)$,
(ii) $i+1=$ len Compile $\left(t_{5}, a_{1}\right)$,
(iii) $\quad \mathbf{I} \mathbf{C}_{(\text {Computation }(s))(i)}=\mathbf{i}_{n+i}$,
(iv) $\quad \mathbf{I} \mathbf{C}_{u}=\mathbf{i}_{n+(i+1)}$,
(v) $u\left(\mathbf{d}_{\left(a_{1}\right)}\right)=t_{5}{ }^{@} s$, and
(vi) for every natural number d_{2} such that $d_{2}<a_{1}$ holds $s\left(\mathbf{d}_{\left(d_{2}\right)}\right)=u\left(\mathbf{d}_{\left(d_{2}\right)}\right)$.
(15) Let t_{5} be a binary term, and let a_{1}, n, k be natural numbers, and let s be a state with instruction counter on n, with $\left(\operatorname{Compile}\left(t_{5}, a_{1}\right)\right)$ $\left\langle\boldsymbol{h a l t} \mathbf{S C M}_{\mathbf{C}}\right\rangle$ located from n, and $\varepsilon_{\mathbb{Z}}$ from k. Suppose $a_{1}>\max _{\mathrm{DL}}\left(t_{5}\right)$. Then s is halting and $(\operatorname{Result}(s))\left(\mathbf{d}_{\left(a_{1}\right)}\right)=t_{5}{ }^{@} s$ and the complexity of $s=\operatorname{len} \operatorname{Compile}\left(t_{5}, a_{1}\right)$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[3] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Grzegorz Bancerek and Piotr Rudnicki. Development of terminology for SCM. Formalized Mathematics, 4(1):61-67, 1993.
[6] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on binary trees. Formalized Mathematics, 5(1):9-13, 1996.
[7] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[13] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[14] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[15] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[18] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[19] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[20] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received December 30, 1993

Some Properties of the Intervals

Józef Białas
Łódź University

MML Identifier: MEASURE6.

The papers [8], [10], [4], [5], [6], [1], [2], [3], [7], and [9] provide the terminology and notation for this paper.

The scheme FunctXD YD concerns a non empty set \mathcal{A}, a non empty set \mathcal{B}, and a binary predicate \mathcal{P}, and states that:

There exists a function F from \mathcal{A} into \mathcal{B} such that for every element x of \mathcal{A} holds $\mathcal{P}[x, F(x)]$
provided the following condition is satisfied:

- For every element x of \mathcal{A} there exists an element y of \mathcal{B} such that $\mathcal{P}[x, y]$.
Let X, Y be non empty sets. Note that Y^{X} is non empty.
We now state a number of propositions:
(1) There exists a function F from \mathbb{N} into $: \mathbb{N}, \mathbb{N}]$ such that F is one-to-one and $\operatorname{dom} F=\mathbb{N}$ and $\operatorname{rng} F=[: \mathbb{N}, \mathbb{N}]$.
(2) For every function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that F is non-negative holds $0_{\overline{\mathrm{R}}} \leq \sum F$.
(3) Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$ and let x be a Real number. Suppose there exists a natural number n such that $x \leq F(n)$ and F is non-negative. Then $x \leq \sum F$.
(4) For every Real number x such that there exists a Real number y such that $y<x$ holds $x \neq-\infty$.
(5) For every Real number x such that there exists a Real number y such that $x<y$ holds $x \neq+\infty$.
(6) For all Real numbers x, y holds $x \leq y$ iff $x<y$ or $x=y$.
(7) Let x, y be Real numbers and let p, q be real numbers. If $x=p$ and $y=q$, then $p \leq q$ iff $x \leq y$.
(8) For all Real numbers x, y such that x is a real number holds $(y-x)+x=$ y and $(y+x)-x=y$.
(9) For all Real numbers x, y such that $x \in \mathbb{R}$ holds $x+y=y+x$.
(10) For all Real numbers x, y, z such that $z \in \mathbb{R}$ and $y<x$ holds $(z+x)-$ $(z+y)=x-y$.
(11) For all Real numbers x, y, z such that $z \in \mathbb{R}$ and $x \leq y$ holds $z+x \leq z+y$ and $x+z \leq y+z$ and $x-z \leq y-z$.
(12) For all Real numbers x, y, z such that $z \in \mathbb{R}$ and $x<y$ holds $z+x<z+y$ and $x+z<y+z$ and $x-z<y-z$.
Let x be a real number. The functor $\overline{\mathbb{R}}(x)$ yields a Real number and is defined as follows:
(Def.1) $\quad \overline{\mathbb{R}}(x)=x$.
The following propositions are true:
(13) For all real numbers x, y holds $x \leq y$ iff $\overline{\mathbb{R}}(x) \leq \overline{\mathbb{R}}(y)$.
(14) For all real numbers x, y holds $x<y$ iff $\overline{\mathbb{R}}(x)<\overline{\mathbb{R}}(y)$.
(15) For all Real numbers x, y, z such that $x<y$ and $y<z$ holds y is a real number.
(16) Let x, y, z be Real numbers. Suppose x is a real number and z is a real number and $x \leq y$ and $y \leq z$. Then y is a real number.
(17) For all Real numbers x, y, z such that x is a real number and $x \leq y$ and $y<z$ holds y is a real number.
(18) For all Real numbers x, y, z such that $x<y$ and $y \leq z$ and z is a real number holds y is a real number.
(19) For all Real numbers x, y such that $0_{\overline{\mathbb{R}}}<x$ and $x<y$ holds $0_{\overline{\mathbb{R}}}<y-x$.
(20) For all Real numbers x, y, z such that $0_{\overline{\mathbb{R}}} \leq x$ and $0_{\overline{\mathbb{R}}} \leq z$ and $z+x<y$ holds $z<y-x$.
(21) For every Real number x holds $x-0_{\bar{R}}=x$.
(22) For all Real numbers x, y, z such that $0_{\overline{\mathbb{R}}} \leq x$ and $0_{\overline{\mathbb{R}}} \leq z$ and $z+x<y$ holds $z \leq y$.
(23) For every Real number x such that $0_{\overline{\mathbb{R}}}<x$ there exists a Real number y such that $0_{\bar{R}}<y$ and $y<x$.
(24) Let x, z be Real numbers. Suppose $0_{\overline{\mathbb{R}}}<x$ and $x<z$. Then there exists a Real number y such that $0_{\overline{\mathbb{R}}}<y$ and $x+y<z$ and $y \in \mathbb{R}$.
(25) Let x, z be Real numbers. Suppose $0_{\bar{R}} \leq x$ and $x<z$. Then there exists a Real number y such that $0_{\overline{\mathbb{R}}}<y$ and $x+y<z$ and $y \in \mathbb{R}$.
(26) For every Real number x such that $0_{\bar{R}}<x$ there exists a Real number y such that $0_{\overline{\mathrm{R}}}<y$ and $y+y<x$.
Let x be a Real number. Let us assume that $0_{\overline{\mathrm{R}}}<x$. The functor $\operatorname{Seg} x$ yields a non empty subset of $\overline{\mathbb{R}}$ and is defined by:
(Def.2) For every Real number y holds $y \in \operatorname{Seg} x$ iff $0_{\overline{\mathbb{R}}}<y$ and $y+y<x$.
Let x be a Real number. Let us assume that $0_{\overline{\mathbb{R}}}<x$. The functor len x yielding a Real number is defined as follows:
(Def.3) $\quad \operatorname{len} x=\sup \operatorname{Seg} x$.
Next we state several propositions:
(27) For every Real number x such that $0_{\overline{\mathbb{R}}}<x$ holds $0_{\overline{\mathbb{R}}}<\operatorname{len} x$.

For every Real number x such that $0_{\overline{\mathrm{R}}}<x$ holds len $x \leq x$.
For every Real number x such that $0_{\overline{\mathbb{R}}}<x$ and $x<+\infty$ holds len x is a real number.
(30) For every Real number x such that $0_{\bar{R}}<x$ holds len $x+\operatorname{len} x \leq x$.
(31) Let e_{1} be a Real number. Suppose $0_{\bar{R}}<e_{1}$. Then there exists a function F from \mathbb{N} into $\overline{\mathbb{R}}$ such that for every natural number n holds $0_{\overline{\mathbb{R}}}<F(n)$ and $\sum F<e_{1}$.
(32) Let e_{1} be a Real number and let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose $0_{\overline{\mathbb{R}}}<e_{1}$ and $\inf X$ is a real number. Then there exists a Real number x such that $x \in X$ and $x<\inf X+e_{1}$.
(33) Let e_{1} be a Real number and let X be a non empty subset of $\overline{\mathbb{R}}$. Suppose $0_{\overline{\mathbb{R}}}<e_{1}$ and $\sup X$ is a real number. Then there exists a Real number x such that $x \in X$ and $\sup X-e_{1}<x$.
(34) Let F be a function from \mathbb{N} into $\overline{\mathbb{R}}$. Suppose F is non-negative and $\sum F<+\infty$. Let n be a natural number. Then $F(n) \in \mathbb{R}$.
$-\infty$ is a Real number.
$+\infty$ is a Real number.
We now state a number of propositions:
(35) \mathbb{R} is an interval and $\mathbb{R}=]-\infty,+\infty[$ and $\mathbb{R}=[-\infty,+\infty]$ and $\mathbb{R}=$ $[-\infty,+\infty[$ and $\mathbb{R}=]-\infty,+\infty]$.
(36) For all Real numbers a, b such that $b=-\infty$ holds $] a, b[=\emptyset$ and $[a, b]=\emptyset$ and $[a, b[=\emptyset$ and $] a, b]=\emptyset$.
(37) For all Real numbers a, b such that $a=+\infty$ holds $] a, b[=\emptyset$ and $[a, b]=\emptyset$ and $[a, b[=\emptyset$ and $] a, b]=\emptyset$.
(38) Let A be an interval and let a, b be Real numbers. Suppose $A=] a, b[$. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \leq e$ and $e \leq d$, then $e \in A$.
(39) Let A be an interval and let a, b be Real numbers. Suppose $A=[a, b]$. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \leq e$ and $e \leq d$, then $e \in A$.
(40) Let A be an interval and let a, b be Real numbers. Suppose $A=] a, b]$. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \leq e$ and $e \leq d$, then $e \in A$.
(41) Let A be an interval and let a, b be Real numbers. Suppose $A=[a, b[$. Let c, d be real numbers. Suppose $c \in A$ and $d \in A$. Let e be a real number. If $c \leq e$ and $e \leq d$, then $e \in A$.
(42) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m=\inf A$ and $M=\sup A$. Suppose that
(i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \leq e$ and $e \leq d$ holds $e \in A$,
(ii) $\quad m \notin A$, and
(iii) $\quad M \notin A$.

Then $A=] m, M[$.
(43) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m=\inf A$ and $M=\sup A$. Suppose that
(i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \leq e$ and $e \leq d$ holds $e \in A$,
(ii) $m \in A$,
(iii) $M \in A$, and
(iv) $A \subseteq \mathbb{R}$.

Then $A=[m, M]$.
(44) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m=\inf A$ and $M=\sup A$. Suppose that
(i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \leq e$ and $e \leq d$ holds $e \in A$,
(ii) $m \in A$,
(iii) $M \notin A$, and
(iv) $A \subseteq \mathbb{R}$.

Then $A=[m, M[$.
(45) Let A be a non empty subset of $\overline{\mathbb{R}}$ and let m, M be Real numbers. Suppose $m=\inf A$ and $M=\sup A$. Suppose that
(i) for all real numbers c, d such that $c \in A$ and $d \in A$ and for every real number e such that $c \leq e$ and $e \leq d$ holds $e \in A$,
(ii) $m \notin A$,
(iii) $M \in A$, and
(iv) $A \subseteq \mathbb{R}$.

Then $A=] m, M]$.
(46) Let A be a subset of \mathbb{R}. Then A is an interval if and only if for all real numbers a, b such that $a \in A$ and $b \in A$ and for every real number c such that $a \leq c$ and $c \leq b$ holds $c \in A$.
Let A, B be intervals. Then $A \cup B$ is a subset of \mathbb{R}.
Next we state the proposition
(47) For all intervals A, B such that $A \cap B \neq \emptyset$ holds $A \cup B$ is an interval.

Let A be an interval. Let us assume that $A \neq \emptyset$. The functor $\inf A$ yields a Real number and is defined as follows:
(Def.4) There exists a Real number b such that $\inf A \leq b$ but $A=] \inf A, b[$ or $A=] \inf A, b]$ or $A=[\inf A, b]$ or $A=[\inf A, b[$.
Let A be an interval. Let us assume that $A \neq \emptyset$. The functor $\sup A$ yielding a Real number is defined as follows:
(Def.5) There exists a Real number a such that $a \leq \sup A$ but $A=] a, \sup A[$ or $A=] a, \sup A]$ or $A=[a, \sup A]$ or $A=[a, \sup A[$.
Next we state a number of propositions:
(48) For every interval A such that A is open interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A=] \inf A, \sup A[$.
(49) For every interval A such that A is closed interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A=[\inf A, \sup A]$.
(50) For every interval A such that A is right open interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A=[\inf A, \sup A[$.
(51) For every interval A such that A is left open interval and $A \neq \emptyset$ holds $\inf A \leq \sup A$ and $A=\rfloor \inf A, \sup A]$.
(52) For every interval A such that $A \neq \emptyset$ holds $\inf A \leq \sup A$ but $A=] \inf A, \sup A[$ or $A=] \inf A, \sup A]$ or $A=[\inf A, \sup A]$ or $A=$ $[\inf A, \sup A[$.
(53) For all intervals A, B such that $A=\emptyset$ or $B=\emptyset$ holds $A \cup B$ is an interval.
(54) For every interval A and for every real number a such that $a \in A$ holds $\inf A \leq \overline{\mathbb{R}}(a)$ and $\overline{\mathbb{R}}(a) \leq \sup A$.
(55) For all intervals A, B and for all real numbers a, b such that $a \in A$ and $b \in B$ holds if $\sup A \leq \inf B$, then $a \leq b$.
(56) For every interval A and for every Real number a such that $a \in A$ holds $\inf A \leq a$ and $a \leq \sup A$.
(57) For every interval A such that $A \neq \emptyset$ and for every Real number a such that $\inf A<a$ and $a<\sup A$ holds $a \in A$.
(58) For all intervals A, B such that $\sup A=\inf B$ but $\sup A \in A$ or $\inf B \in$ B holds $A \cup B$ is an interval.
Let A be a subset of \mathbb{R} and let x be a real number. The functor $x+A$ yields a subset of \mathbb{R} and is defined by:
(Def.6) For every real number y holds $y \in x+A$ iff there exists a real number z such that $z \in A$ and $y=x+z$.
One can prove the following propositions:
(59) For every subset A of \mathbb{R} and for every real number x holds $-x+(x+A)=$ A.
(60) For every real number x and for every subset A of \mathbb{R} such that $A=\mathbb{R}$ holds $x+A=A$.
(61) For every real number x holds $x+\emptyset=\emptyset$.
(62) For every interval A and for every real number x holds A is open interval iff $x+A$ is open interval.
(63) For every interval A and for every real number x holds A is closed interval iff $x+A$ is closed interval.
(64) Let A be an interval and let x be a real number. Then A is right open interval if and only if $x+A$ is right open interval.
(65) Let A be an interval and let x be a real number. Then A is left open interval if and only if $x+A$ is left open interval.
(66) For every interval A and for every real number x holds $x+A$ is an interval.

Let A be an interval and let x be a real number. Note that $x+A$ is interval. The following proposition is true
(67) For every interval A and for every real number $x \operatorname{holds} \operatorname{vol}(A)=\operatorname{vol}(x+$ A).

REferences

[1] Józef Białas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.
[2] Józef Białas. Series of positive real numbers. Measure theory. Formalized Mathematics, 2(1):173-183, 1991.
[3] Józef Białas. The σ-additive measure theory. Formalized Mathematics, 2(2):263-270, 1991.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Białas Józef. Properties of the intervals of real numbers. Formalized Mathematics, 3(2):263-269, 1992.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received February 5, 1994

Binary Arithmetics, Addition and Subtraction of Integers

Yasuho Mizuhara
Shinshu University
Information Engineering Dept.
Nagano

Takaya Nishiyama
Shinshu University
Information Engineering Dept.
Nagano

Abstract

Summary. This article is a continuation of [6] and presents the concepts of binary arithmetic operations for integers. There is introduced 2 's complement representation of integers and natural numbers to integers are expanded. The binary addition and subtraction for integers are defined and theorems on the relationship between binary and numerical operations presented.

MML Identifier: BINARI_2.

The notation and terminology used here are introduced in the following papers: [8], [5], [4], [9], [11], [7], [2], [1], [3], [10], and [6].

Let X be a non empty set, let D be a non empty subset of X, let x, y be arbitrary, and let a, b be elements of D. Then $(x=y \rightarrow a, b)$ is an element of D.

We follow the rules: i will be a natural number, n will be a non empty natural number, and x, y, z_{1}, z_{2} will be tuples of n and Boolean.

Let us consider n. The functor $\operatorname{Bin} 1(n)$ yielding a tuple of n and Boolean is defined by:
(Def.1) For every i such that $i \in \operatorname{Seg} n$ holds $\pi_{i} \operatorname{Bin} 1(n)=(i=1 \rightarrow$ true, false $)$.
Let us consider n, x. The functor $\operatorname{Neg2(x)~yielding~a~tuple~of~} n$ and Boolean is defined by:
(Def.2) $\operatorname{Neg2(x)}=\neg x+\operatorname{Bin} 1(n)$.
Let us consider n, x. The functor $\operatorname{Intval}(x)$ yielding an integer is defined by: (Def.3) (i) $\operatorname{Intval}(x)=\operatorname{Absval}(x)$ if $\pi_{n} x=$ false,
(ii) $\operatorname{Intval}(x)=\operatorname{Absval}(x)-($ the n-th power of 2$)$, otherwise.

Let us consider n, z_{1}, z_{2}. The functor Int_add_ovfl $\left(z_{1}, z_{2}\right)$ yields an element of Boolean and is defined by:
(Def.4) Int_add_ovf $\left(z_{1}, z_{2}\right)=\neg \pi_{n} z_{1} \wedge \neg \pi_{n} z_{2} \wedge \pi_{n} \operatorname{carry}\left(z_{1}, z_{2}\right)$.
Let us consider n, z_{1}, z_{2}. The functor Int_add_udfl $\left(z_{1}, z_{2}\right)$ yields an element of Boolean and is defined by:
(Def.5) Int_add_udfl $\left(z_{1}, z_{2}\right)=\pi_{n} z_{1} \wedge \pi_{n} z_{2} \wedge \neg \pi_{n} \operatorname{carry}\left(z_{1}, z_{2}\right)$.
The following propositions are true:
(1) For every tuple z_{1} of 1 and Boolean such that $z_{1}=\langle$ false \rangle holds $\operatorname{Absval}\left(z_{1}\right)=0$.
(2) For every tuple z_{1} of 1 and Boolean such that $z_{1}=\langle$ true \rangle holds $\operatorname{Absval}\left(z_{1}\right)=1$.
(3) For every tuple z_{1} of 2 and Boolean such that $z_{1}=\langle$ false $\rangle \sim\langle$ false \rangle holds $\operatorname{Intval}\left(z_{1}\right)=0$.
(4) For every tuple z_{1} of 2 and Boolean such that $z_{1}=\langle\text { true }\rangle^{\wedge}\langle$ false \rangle holds $\operatorname{Intval}\left(z_{1}\right)=1$.
For every tuple z_{1} of 2 and Boolean such that $z_{1}=\langle$ false $\rangle \wedge\langle$ true \rangle holds $\operatorname{Intval}\left(z_{1}\right)=-2$.
For every tuple z_{1} of 2 and Boolean such that $z_{1}=\langle$ true $\rangle \wedge\langle$ true \rangle holds $\operatorname{Intval}\left(z_{1}\right)=-1$.
For every i such that $i \in \operatorname{Seg} n$ and $i=1$ holds $\pi_{i} \operatorname{Bin} 1(n)=$ true. For every i such that $i \in \operatorname{Seg} n$ and $i \neq 1$ holds $\pi_{i} \operatorname{Bin} 1(n)=$ false.
For every n holds $\operatorname{Bin} 1(n+1)=(\operatorname{Bin} 1(n))^{\wedge}\langle$ false \rangle.
For every n holds $\operatorname{Intval}((\operatorname{Bin} 1(n)) \sim\langle$ false $\rangle)=1$.
For every n and for every tuple z of n and Boolean and for every element d of Boolean holds $\neg\left(z^{\wedge}\langle d\rangle\right)=(\neg z)^{\wedge}\langle\neg d\rangle$.
(12) Given n, and let z be a tuple of n and Boolean, and let d be an element of Boolean. Then $\operatorname{Intval}\left(z^{\wedge}\langle d\rangle\right)=\operatorname{Absval}(z)-((d=$ false $\rightarrow 0$, the n-th power of 2) qua natural number).
(13) Given n, and let z_{1}, z_{2} be tuples of n and Boolean, and let d_{1}, d_{2} be elements of Boolean. Then (Intval $\left(z_{1} \wedge\left\langle d_{1}\right\rangle+z_{2} \wedge\left\langle d_{2}\right\rangle\right)+$ (Int_add_ovfl $\left(z_{1} \wedge\right.$ $\left.\left\langle d_{1}\right\rangle, z_{2} \wedge\left\langle d_{2}\right\rangle\right)=$ false $\rightarrow 0$, the $n+1$-th power of 2$)$) -(Int_add_udfl $\left(z_{1} \wedge\right.$ $\left.\left\langle d_{1}\right\rangle, z_{2} \wedge\left\langle d_{2}\right\rangle\right)=$ false $\rightarrow 0$, the $n+1$-th power of 2$)=\operatorname{Intval}\left(z_{1} \wedge\left\langle d_{1}\right\rangle\right)+$ $\operatorname{Intval}\left(z_{2} \sim\left\langle d_{2}\right\rangle\right)$.
(14) Given n, and let z_{1}, z_{2} be tuples of n and Boolean, and let d_{1}, d_{2} be elements of Boolean. Then $\operatorname{Intval}\left(z_{1} \wedge\left\langle d_{1}\right\rangle+z_{2} \wedge\left\langle d_{2}\right\rangle\right)=\left(\left(\operatorname{Intval}\left(z_{1} \wedge\right.\right.\right.$ $\left.\left\langle d_{1}\right\rangle\right)+$ Intval $\left.\left(z_{2} \sim\left\langle d_{2}\right\rangle\right)\right)-\left(\right.$ Int_add_ovfl $\left(z_{1} \wedge\left\langle d_{1}\right\rangle, z_{2} \wedge\left\langle d_{2}\right\rangle\right)=$ false $\rightarrow 0$, the $n+1$-th power of 2$))+\left(\right.$ Int_add_udfl $\left(z_{1} \wedge\left\langle d_{1}\right\rangle, z_{2} \wedge\left\langle d_{2}\right\rangle\right)=$ false $\rightarrow 0$, the $n+1$-th power of 2).
(15) For every n and for every tuple x of n and Boolean holds $\operatorname{Absval}(\neg x)=$ $(-\operatorname{Absval}(x)+($ the n-th power of 2$))-1$.
(16) For every n and for every tuple z of n and Boolean and for every element d of Boolean holds $\left.\operatorname{Neg2(~} z^{\wedge}\langle d\rangle\right)=(\operatorname{Neg2} 2(z))^{\wedge}\langle\neg d \oplus$ add_ovfl $(\neg z, \operatorname{Bin} 1(n))\rangle$.
(17) Given n, and let z be a tuple of n and Boolean, and let d be an element of Boolean. Then Intval(Neg2 $\left.\left(z^{\wedge}\langle d\rangle\right)\right)+\left(\right.$ Int_add_ovfl $\left(\neg\left(z^{\wedge}\langle d\rangle\right), \operatorname{Bin} 1(n+\right.$ $1))=$ false $\rightarrow 0$, the $n+1$-th power of 2$)=-\operatorname{Intval}\left(z^{\wedge}\langle d\rangle\right)$.
(18) For every n and for every tuple z of n and Boolean and for every element d of Boolean holds Neg2 $\left(\operatorname{Neg} 2\left(z^{\wedge}\langle d\rangle\right)\right)=z^{\wedge}\langle d\rangle$.
Let us consider n, x, y. The functor $x-y$ yielding a tuple of n and Boolean is defined as follows:
(Def.6) For every i such that $i \in \operatorname{Seg} n$ holds $\pi_{i}(x-y)=\pi_{i} x \oplus \pi_{i} \operatorname{Neg2(y)~} \oplus$ $\pi_{i} \operatorname{carry}(x, \operatorname{Neg} 2(y))$.
One can prove the following three propositions:
(19) For every n and for all tuples x, y of n and Boolean holds $x-y=$ $x+\operatorname{Neg} 2(y)$.
(20) For every n and for all tuples z_{1}, z_{2} of n and Boolean and for all elements d_{1}, d_{2} of Boolean holds $z_{1} \wedge\left\langle d_{1}\right\rangle-z_{2} \wedge\left\langle d_{2}\right\rangle=\left(z_{1}+\operatorname{Neg} 2\left(z_{2}\right)\right)^{\wedge}\left\langle d_{1} \oplus \neg d_{2} \oplus\right.$ $\left.\operatorname{add} _o v f\left(\neg z_{2}, \operatorname{Bin} 1(n)\right) \oplus \operatorname{add} _o v f\left(z_{1}, \operatorname{Neg} 2\left(z_{2}\right)\right)\right\rangle$.
(21) Given n, and let z_{1}, z_{2} be tuples of n and Boolean, and let d_{1}, d_{2} be elements of Boolean. Then $\left(\left(\operatorname{Intval}\left(z_{1} \wedge\left\langle d_{1}\right\rangle-z_{2}{ }^{\wedge}\left\langle d_{2}\right\rangle\right)+\right.\right.$ (Int_add_ovfl $\left(z_{1} \vee\left\langle d_{1}\right\rangle, \operatorname{Neg2}\left(z_{2} \sim\left\langle d_{2}\right\rangle\right)\right)=$ false $\rightarrow 0$, the $n+1$-th power of 2)) -(Int_add_udfl $\left(z_{1} \sim\left\langle d_{1}\right\rangle, \operatorname{Neg} 2\left(z_{2} \sim\left\langle d_{2}\right\rangle\right)\right)=$ false $\rightarrow 0$, the $n+1$-th power of 2$))+\left(\right.$ Int_add_ovfl $\left(\neg\left(z_{2} \sim\left\langle d_{2}\right\rangle\right), \operatorname{Bin} 1(n+1)\right)=$ false $\rightarrow 0$, the $n+1$-th power of 2$)=\operatorname{Intval}\left(z_{1} \wedge\left\langle d_{1}\right\rangle\right)-\operatorname{Intval}\left(z_{2} \wedge\left\langle d_{2}\right\rangle\right)$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[3] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[4] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[5] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[6] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[7] Konrad Raczkowski and Andrzej Nędzusiak. Serieses. Formalized Mathematics, 2(4):449-452, 1991.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[9] Michal J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[10] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[11] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733737, 1990.

Boolean Properties of Lattices

Agnieszka Julia Marasik
Warsaw University
Białystok

MML Identifier: BOOLEALG.

The article [1] provides the terminology and notation for this paper.

1. General lattice

We follow the rules: L will be a lattice and X, Y, Z, V will be elements of the carrier of L.

Let us consider L, X, Y. The functor $X \backslash Y$ yielding an element of the carrier of L is defined by:
(Def.1) $\quad X \backslash Y=X \sqcap Y^{\mathrm{c}}$.
Let us consider L, X, Y. The functor $X \doteq Y$ yields an element of the carrier of L and is defined by:
(Def.2) $\quad X \dot{\succ} Y=(X \backslash Y) \sqcup(Y \backslash X)$.
Let us consider L, X, Y. Let us observe that $X=Y$ if and only if: (Def.3) $\quad X \sqsubseteq Y$ and $Y \sqsubseteq X$.

Let us consider L, X, Y. We say that X meets Y if and only if: (Def.4) $\quad X \sqcap Y \neq \perp_{L}$.
We introduce X misses Y as an antonym of X meets Y.
We now state a number of propositions:
(1) $X \sqsubseteq X \sqcup Y$ and $Y \sqsubseteq X \sqcup Y$.
(3) ${ }^{1}$ If $X \sqcup Y \sqsubseteq Z$, then $X \sqsubseteq Z$ and $Y \sqsubseteq Z$.
(4) $X \sqcap Y \sqsubseteq X \sqcup Z$.
(5) If $X \sqsubseteq Y$, then $X \sqcap Z \sqsubseteq Y \sqcap Z$ and $Z \sqcap X \sqsubseteq Z \sqcap Y$.
(6) If $X \sqsubseteq Z$, then $X \backslash Y \sqsubseteq Z$.

[^2](7) If $X \sqsubseteq Y$, then $X \backslash Z \sqsubseteq Y \backslash Z$.
(8) $X \backslash Y \sqsubseteq X$.
(9) $X \backslash Y \sqsubseteq X \dot{-} Y$.
(10) If $X \backslash Y \sqsubseteq Z$ and $Y \backslash X \sqsubseteq Z$, then $X \doteq Y \sqsubseteq Z$.
(11) $\quad X=Y \sqcup Z$ iff $Y \sqsubseteq X$ and $Z \sqsubseteq X$ and for every V such that $Y \sqsubseteq V$ and $Z \sqsubseteq V$ holds $X \sqsubseteq V$.
(12) $\quad X=Y \sqcap Z$ iff $X \sqsubseteq Y$ and $X \sqsubseteq Z$ and for every V such that $V \sqsubseteq Y$ and $V \sqsubseteq Z$ holds $V \sqsubseteq X$.
(13) If $X \sqcup Y=Y$ or $Y \sqcup X=Y$, then $X \sqsubseteq Y$.
(14) $\quad X \sqcap(Y \backslash Z)=X \sqcap Y \backslash Z$.
(15) If X meets Y, then Y meets X.
(16) X meets X iff $X \neq \perp_{L}$.
(17) $X \doteq Y=Y \dot{\doteq}$.

2. Modular lattice

In the sequel L will denote a modular lattice and X, Y will denote elements of the carrier of L.

The following three propositions are true:
(18) If $Y \sqsubseteq X$ and $X \sqcap Y=\perp_{L}$, then $Y=\perp_{L}$.
$(20)^{2}$ If $X \sqsubseteq Y$, then $X \sqcup Y=Y$ and $Y \sqcup X=Y$.
(21) If X misses Y, then Y misses X.

3. Distributive lattice

In the sequel L will denote a distributive lattice and X, Y, Z will denote elements of the carrier of L.

Next we state three propositions:
(22) If $X \sqcap Y \sqcup X \sqcap Z=X$, then $X \sqsubseteq Y \sqcup Z$.
(23) $\quad X \sqcap Y \sqcup Y \sqcap Z \sqcup Z \sqcap X=(X \sqcup Y) \sqcap(Y \sqcup Z) \sqcap(Z \sqcup X)$.
(24) $(X \sqcup Y) \backslash Z=(X \backslash Z) \sqcup(Y \backslash Z)$.

[^3]
4. Distributive lower bounded lattice

In the sequel L will denote a lower bound lattice and X, Y, Z will denote elements of the carrier of L.

The following propositions are true:
(25) If $X \sqsubseteq \perp_{L}$, then $X=\perp_{L}$.
(26) If $X \sqsubseteq Y$ and $X \sqsubseteq Z$ and $Y \sqcap Z=\perp_{L}$, then $X=\perp_{L}$.
(27) $X \sqcup Y=\perp_{L}$ iff $X=\perp_{L}$ and $Y=\perp_{L}$.
(28) If $X \sqsubseteq Y$ and $Y \sqcap Z=\perp_{L}$, then $X \sqcap Z=\perp_{L}$.
(29) $\perp_{L} \backslash X=\perp_{L}$.
(30) If X meets Y and $Y \sqsubseteq Z$, then X meets Z.
(31) If X meets $Y \sqcap Z$, then X meets Y and X meets Z.
(32) If X meets $Y \backslash Z$, then X meets Y.
(33) X misses \perp_{L}.
(34) If X misses Z and $Y \sqsubseteq Z$, then X misses Y.
(35) If X misses Y or X misses Z, then X misses $Y \sqcap Z$.
(36) If $X \sqsubseteq Y$ and $X \sqsubseteq Z$ and Y misses Z, then $X=\perp_{L}$.
(37) If X misses Y, then $Z \sqcap X$ misses $Z \sqcap Y$ and $X \sqcap Z$ misses $Y \sqcap Z$.

5. Boolean lattice

We follow a convention: L will be a Boolean lattice and X, Y, Z, V will be elements of the carrier of L.

Next we state a number of propositions:
(38) If $X \backslash Y \sqsubseteq Z$, then $X \sqsubseteq Y \sqcup Z$.
(39) If $X \sqsubseteq Y$, then $Z \backslash Y \sqsubseteq Z \backslash X$.
(40) If $X \sqsubseteq Y$ and $Z \sqsubseteq V$, then $X \backslash V \sqsubseteq Y \backslash Z$.
(41) If $X \sqsubseteq Y \sqcup Z$, then $X \backslash Y \sqsubseteq Z$ and $X \backslash Z \sqsubseteq Y$.
(42) $\quad X^{\mathrm{c}} \sqsubseteq(X \sqcap Y)^{\mathrm{c}}$ and $Y^{\mathrm{c}} \sqsubseteq(X \sqcap Y)^{\mathrm{c}}$.
(43) $(X \sqcup Y)^{\mathrm{c}} \sqsubseteq X^{\mathrm{c}}$ and $(X \sqcup Y)^{\mathrm{c}} \sqsubseteq Y^{\mathrm{c}}$.
(44) If $X \sqsubseteq Y \backslash X$, then $X=\perp_{L}$.
(45) If $X \sqsubseteq Y$, then $Y=X \sqcup(Y \backslash X)$ and $Y=(Y \backslash X) \sqcup X$.
(46) $\quad X \backslash Y=\perp_{L}$ iff $X \sqsubseteq Y$.
(47) If $X \sqsubseteq Y \sqcup Z$ and $X \sqcap Z=\perp_{L}$, then $X \sqsubseteq Y$.
(48) $X \sqcup Y=(X \backslash Y) \sqcup Y$.
(49) $X \backslash(X \sqcup Y)=\perp_{L}$ and $X \backslash(Y \sqcup X)=\perp_{L}$.
(50) $\quad X \backslash X \sqcap Y=X \backslash Y$ and $X \backslash Y \sqcap X=X \backslash Y$.

$$
\begin{equation*}
(X \backslash Y) \sqcap Y=\perp_{L} \text { and } Y \sqcap(X \backslash Y)=\perp_{L} \tag{51}
\end{equation*}
$$

(52) $X \sqcup(Y \backslash X)=X \sqcup Y$ and $(Y \backslash X) \sqcup X=Y \sqcup X$.
(53) $\quad X \sqcap Y \sqcup(X \backslash Y)=X$ and $(X \backslash Y) \sqcup X \sqcap Y=X$.
(54) $\quad X \backslash(Y \backslash Z)=(X \backslash Y) \sqcup X \sqcap Z$.
(55) $\quad X \backslash(X \backslash Y)=X \sqcap Y$.
(56) $\quad(X \sqcup Y) \backslash Y=X \backslash Y$.
(57) $\quad X \sqcap Y=\perp_{L}$ iff $X \backslash Y=X$.
(58) $\quad X \backslash(Y \sqcup Z)=(X \backslash Y) \sqcap(X \backslash Z)$.
(59) $\quad X \backslash Y \sqcap Z=(X \backslash Y) \sqcup(X \backslash Z)$.
(60) $\quad X \sqcap(Y \backslash Z)=X \sqcap Y \backslash X \sqcap Z$ and $(Y \backslash Z) \sqcap X=Y \sqcap X \backslash Z \sqcap X$.
(61) $(X \sqcup Y) \backslash X \sqcap Y=(X \backslash Y) \sqcup(Y \backslash X)$.
(62) $X \backslash Y \backslash Z=X \backslash(Y \sqcup Z)$.
(63) If $X \backslash Y=Y \backslash X$, then $X=Y$.
(64) $\left(\perp_{L}\right)^{c}=T_{L}$.
(65) $\left(\top_{L}\right)^{c}=\perp_{L}$.
(66) $X \backslash X=\perp_{L}$.
(67) $X \backslash \perp_{L}=X$.
(68) $\quad(X \backslash Y)^{\mathrm{c}}=X^{\mathrm{c}} \sqcup Y$.
(69) X meets $Y \sqcup Z$ iff X meets Y or X meets Z.
(70) $\quad X \sqcap Y$ misses $X \backslash Y$.
(71) $\quad X$ misses $Y \sqcup Z$ iff X misses Y and X misses Z.
(72) $X \backslash Y$ misses Y.
(73) If X misses Y, then $(X \sqcup Y) \backslash Y=X$ and $(X \sqcup Y) \backslash X=Y$.
(74) If $X^{\mathrm{c}} \sqcup Y^{\mathrm{c}}=X \sqcup Y$ and X misses X^{c} and Y misses Y^{c}, then $X=Y^{\mathrm{c}}$ and $Y=X^{c}$.
(75) If $X^{\mathrm{c}} \sqcup Y^{\mathrm{c}}=X \sqcup Y$ and Y misses X^{c} and X misses Y^{c}, then $X=X^{\mathrm{c}}$ and $Y=Y^{\mathrm{c}}$.
(76) $X \dot{\perp} \perp_{L}=X$ and $\perp_{L} \doteq X=X$.
(77) $X \dot{\perp} X=\perp_{L}$.
(78) $X \sqcap Y$ misses $X \doteq Y$.
(79) $\quad X \sqcup Y=X \dot{\lrcorner}(Y \backslash X)$.
(80) $\quad X \dot{\perp} \cap \sqcap Y=X \backslash Y$.
(81) $X \sqcup Y=(X \doteq Y) \sqcup X \sqcap Y$.
(82) $X \doteq Y \dot{\oplus} \sqcap Y=X \sqcup Y$.
(83) $X \dot{\succ} \dot{-}(X \sqcup Y)=X \sqcap Y$.
(84) $\quad X \dot{\perp} Y=(X \sqcup Y) \backslash X \sqcap Y$.
(85) $\quad(X \doteq Y) \backslash Z=(X \backslash(Y \sqcup Z)) \sqcup(Y \backslash(X \sqcup Z))$.
(86) $\quad X \backslash(Y \dot{-} Z)=(X \backslash(Y \sqcup Z)) \sqcup X \sqcap Y \sqcap Z$.
(87) $(X \dot{\oplus} Y) \dot{-} Z=X \dot{-}(Y \dot{-} Z)$.
(88) $\quad(X \dot{\succ} Y)^{\mathrm{c}}=X \sqcap Y \sqcup X^{\mathrm{c}} \sqcap Y^{\mathrm{c}}$.

References

[1] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received March 28, 1994

Many Sorted Algebras

Andrzej Trybulec
Warsaw University
Białystok

Abstract

Summary. The basic purpose of the paper is to prepare preliminaries of the theory of many sorted algebras. The concept of the signature of a many sorted algebra is introduced as well as the concept of many sorted algebra itself. Some auxiliary related notions are defined. The correspondence between (1 sorted) universal algebras [9] and many sorted algebras with one sort only is described by introducing two functors mapping one into the other. The construction is done this way that the composition of both functors is the identity on universal algebras.

MML Identifier: MSUALG_1.

The articles [12], [14], [5], [6], [2], [10], [7], [4], [1], [11], [13], [3], [8], and [9] provide the notation and terminology for this paper.

1. Preliminaries

In this paper i, j are arbitrary and I is a set.
Next we state the proposition
(1) It is not true that there exists a non-empty many sorted set M of I such that $\emptyset \in \operatorname{rng} M$.
In this article we present several logical schemes. The scheme MSSEx deals with a set \mathcal{A} and a binary predicate \mathcal{P}, and states that:

There exists a many sorted set f of \mathcal{A} such that for every i such that $i \in \mathcal{A}$ holds $\mathcal{P}[i, f(i)]$
provided the following condition is met:

- For every i such that $i \in \mathcal{A}$ there exists j such that $\mathcal{P}[i, j]$.

The scheme MSSLambda concerns a set \mathcal{A} and a unary functor \mathcal{F} yielding arbitrary, and states that:

There exists a many sorted set f of \mathcal{A} such that for every i such that $i \in \mathcal{A}$ holds $f(i)=\mathcal{F}(i)$
for all values of the parameters.
Let I be a set and let M be a many sorted set of I. A component of M is an element of $\operatorname{rng} M$.

Next we state two propositions:
(2) Let I be a non empty set, and let M be a many sorted set of I, and let A be a component of M. Then there exists i such that $i \in I$ and $A=M(i)$.
(3) For every many sorted set M of I and for every i such that $i \in I$ holds $M(i)$ is a component of M.
Let us consider I and let B be a many sorted set of I. A many sorted set of I is said to be an element of B if:
(Def.1) For every i such that $i \in I$ holds $\operatorname{it}(i)$ is an element of $B(i)$.

2. Auxiliary functors

Let us consider I, let A be a many sorted set of I, and let B be a many sorted set of I. A many sorted set of I is called a many sorted function from A into B if:
(Def.2) For every i such that $i \in I$ holds it (i) is a function from $A(i)$ into $B(i)$.
Let us consider I, let A be a many sorted set of I, and let B be a many sorted set of I. Note that every many sorted function from A into B is function yielding.

Let I be a set and let M be a many sorted set of I. The functor $M^{\#}$ yielding a many sorted set of I^{*} is defined by:
(Def.3) For every element i of I^{*} holds $M^{\#}(i)=\Pi(M \cdot i)$.
Let I be a set and let M be a non-empty many sorted set of I. Note that $M^{\#}$ is non-empty.

Let us consider I, let J be a non empty set, let O be a function from I into J, and let F be a many sorted set of J. Then $F \cdot O$ is a many sorted set of I.

Let us consider I, let J be a non empty set, let O be a function from I into J, and let F be a non-empty many sorted set of J. Then $F \cdot O$ is a non-empty many sorted set of I.

Let a be arbitrary. The functor $\square \longmapsto a$ yields a function from \mathbb{N} into $\{a\}^{*}$ and is defined as follows:
(Def.4) For every natural number n holds $(\square \longmapsto a)(n)=n \mapsto a$.
In the sequel D denotes a non empty set and n denotes a natural number.
The following propositions are true:
(4) For arbitrary a, b holds $(\{a\} \longmapsto b) \cdot(n \mapsto a)=n \mapsto b$.
(5) For arbitrary a and for every many sorted set M of $\{a\}$ such that $M=\{a\} \longmapsto D$ holds $\left(M^{\#} \cdot(\square \longmapsto a)\right)(n)=D^{\operatorname{Seg} n}$.

Let us consider I, i ．Then $I \longmapsto i$ is a function from I into $\{i\}$ ．
Let C be a set，let A, B be non empty sets，let F be a partial function from C to A ，and let G be a function from A into B ．Then $G \cdot F$ is a function from dom F into B ．

3．Many sorted signatures

We introduce many sorted signatures which are extensions of 1－sorted struc－ ture and are systems
\langle a carrier，operation symbols，an arity，a result sort \rangle ，
where the carrier is a set，the operation symbols constitute a set，the arity is a function from the operation symbols into the carrier＊，and the result sort is a function from the operation symbols into the carrier．

A many sorted signature is void if：
（Def．5）The operation symbols of it $=\emptyset$ ．
One can verify that there exists a many sorted signature which is void strict and non empty and there exists a many sorted signature which is non void strict and non empty．

In the sequel S is a non empty many sorted signature．
Let us consider S ．A sort symbol of S is an element of the carrier of S ．An operation symbol of S is an element of the operation symbols of S ．

Let S be a non void non empty many sorted signature and let o be an oper－ ation symbol of S ．The functor $\operatorname{Arity}(o)$ yields an element of（the carrier of $S)^{*}$ and is defined as follows：
（Def．6）$\quad \operatorname{Arity}(o)=($ the arity of $S)(o)$ ．
The result sort of o yielding an element of the carrier of S is defined by：
（Def．7）The result sort of $o=($ the result sort of $S)(o)$ ．

4．Many sorted algebras

Let S be a 1－sorted structure．We consider many－sorted structures over S as systems

〈 sorts＞，
where the sorts constitute a many sorted set of the carrier of S ．
Let us consider S ．We consider algebras over S as extensions of many－sorted structure over S as systems

〈 sorts，a characteristics 〉，
where the sorts constitute a many sorted set of the carrier of S and the char－ acteristics is a many sorted function from the sorts\＃．（the arity of S ）into（the sorts）•（the result sort of S ）．

Let us consider S and let A be an algebra over S ．We say that A is non－empty if and only if：
(Def.8) The sorts of A is non-empty.
Let us consider S. Observe that there exists an algebra over S which is strict and non-empty.

Let us consider S and let A be a non-empty algebra over S. One can verify that the sorts of A is non-empty.

Let us consider S and let A be a non-empty algebra over S. One can check that every component of the sorts of A is non empty and every component of the sorts of A \# is non empty.

Let S be a non void non empty many sorted signature, let o be an operation symbol of S, and let A be an algebra over S. The functor $\operatorname{Args}(o, A)$ yielding a component of (the sorts of $A)^{\#}$ is defined by:
$\left(\right.$ Def.9) $\quad \operatorname{Args}(o, A)=\left((\text { the sorts of } A)^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o)$.
The functor Result (o, A) yields a component of the sorts of A and is defined as follows:
(Def.10) $\operatorname{Result}(o, A)=(($ the sorts of $A) \cdot($ the result sort of $S))(o)$.
Let S be a non void non empty many sorted signature, let o be an operation symbol of S, and let A be an algebra over S. The functor $\operatorname{Den}(o, A)$ yielding a function from $\operatorname{Args}(o, A)$ into $\operatorname{Result}(o, A)$ is defined as follows:
(Def.11) $\operatorname{Den}(o, A)=($ the characteristics of $A)(o)$.
The following proposition is true
(6) Let S be a non void non empty many sorted signature, and let o be an operation symbol of S, and let A be a non-empty algebra over S. Then $\operatorname{Den}(o, A)$ is non empty.

5. Universal algebras as many sorted

We now state two propositions:
(8) ${ }^{1}$ For every homogeneous quasi total non empty partial function h from D^{*} to D holds dom $h=D^{\text {Seg arity } h}$.
(9) For every universal algebra A holds signature A is non empty.
6. Universal algebras for many sorted algebras with one sort

Let A be a universal algebra. Then signature A is a finite sequence of elements of \mathbb{N}.

A many sorted signature is segmental if:
(Def.12) There exists n such that the operation symbols of it $=\operatorname{Seg} n$.
The following proposition is true

[^4](10) Let S be a non empty many sorted signature. Suppose S is trivial. Let A be an algebra over S and let c_{1}, c_{2} be components of the sorts of A. Then $c_{1}=c_{2}$.
Let us mention that there exists a many sorted signature which is segmental trivial non void strict and non empty.

Let A be a universal algebra. The functor $\operatorname{MSSign}(A)$ yields a non void strict segmental trivial many sorted signature and is defined by:
(Def.13) $\operatorname{MSSign}(A)=\langle\{0\}$, dom signature $A,(\square \longmapsto 0) \cdot$ signature A, dom signature $A \longmapsto 0\rangle$.
Let A be a universal algebra. One can check that $\operatorname{MSSign}(A)$ is non empty.
Let A be a universal algebra. The functor $\operatorname{MSSorts}(A)$ yields a non-empty many sorted set of the carrier of $\operatorname{MSSign}(A)$ and is defined as follows:
(Def.14) $\quad \operatorname{MSSorts}(A)=\{0\} \longmapsto$ the carrier of A.
Let A be a universal algebra. The functor $\operatorname{MSCharact}(A)$ yields a many sorted function from $(\operatorname{MSSorts}(A)) \#$. (the arity of $\operatorname{MSSign}(A))$ into $\operatorname{MSSorts}(A)$. (the result sort of MSSign (A)) and is defined by:
(Def.15) $\operatorname{MSCharact}(A)=$ the characteristic of A.
Let A be a universal algebra. The functor $\operatorname{MSAlg}(A)$ yielding a strict algebra over $\operatorname{MSSign}(A)$ is defined by:
(Def.16) $\operatorname{MSAlg}(A)=\langle\operatorname{MSSorts}(A), \operatorname{MSCharact}(A)\rangle$.
Let A be a universal algebra. Note that $\operatorname{MSAlg}(A)$ is non-empty.
Let M_{1} be a trivial non empty many sorted signature and let A be an algebra over M_{1}. The sort of A yielding a set is defined as follows:
(Def.17) There exists a component c of the sorts of A such that the sort of $A=c$.
Let M_{1} be a trivial non empty many sorted signature and let A be a nonempty algebra over M_{1}. Observe that the sort of A is non empty.

We now state four propositions:
(11) Let M_{1} be a segmental trivial non void non empty many sorted signature, and let i be an operation symbol of M_{1}, and let A be a non-empty algebra over M_{1}. Then $\operatorname{Args}(i, A)=(\text { the sort of } A)^{\operatorname{len} \operatorname{Arity}(i)}$.
(12) For every non empty set A and for every n holds $A^{n} \subseteq A^{*}$.
(13) Let M_{1} be a segmental trivial non void non empty many sorted signature, and let i be an operation symbol of M_{1}, and let A be a non-empty algebra over M_{1}. Then $\operatorname{Args}(i, A) \subseteq(\text { the sort of } A)^{*}$.
(14) Let M_{1} be a segmental trivial non void non empty many sorted signature and let A be a non-empty algebra over M_{1}. Then the characteristics of A is a finite sequence of elements of (the sort of $A)^{*} \dot{\rightarrow}$ the sort of A.
Let M_{1} be a segmental trivial non void non empty many sorted signature and let A be a non-empty algebra over M_{1}. The functor charact (A) yielding a finite sequence of operational functions of the sort of A is defined by:
(Def.18) $\quad \operatorname{charact}(A)=$ the characteristics of A.

In the sequel M_{1} will denote a segmental trivial non void non empty many sorted signature and A will denote a non-empty algebra over M_{1}.

Let us consider M_{1}, A. The functor $\operatorname{Alg}_{1}(A)$ yields a non-empty strict universal algebra and is defined as follows:
(Def.19) $\quad \operatorname{Alg}_{1}(A)=\langle$ the sort of $A, \operatorname{charact}(A)\rangle$.
We now state the proposition
(15) For every strict universal algebra A holds $A=\operatorname{Alg}_{1}(\operatorname{MSAlg}(A))$.

Acknowledgments

I would like to express my gratitude to Czesław Byliński, whose remarks enabled me to enhance the paper.

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125-135, 1993.
[9] Jarosław Kotowicz, Beata Madras, and Matgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
[10] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[11] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received April 21, 1994

On the Group of Inner Automorphisms

Artur Korniłowicz
Warsaw University
Białystok

MML Identifier: AUTGROUP.

The notation and terminology used in this paper are introduced in the following articles: [6], [2], [3], [1], [5], [11], [4], [9], [10], [7], [8], and [12].

For simplicity we adopt the following rules: G denotes a strict group, H denotes a subgroup of G, a, b, x denote elements of G, and h denotes a homomorphism from G to G.

One can prove the following proposition
(1) For all a, b such that b is an element of H holds $b^{a} \in H$ iff H is normal.

Let us consider G. One can verify that $\mathrm{Z}(G)$ is normal.
Let us consider G. The functor $\operatorname{Aut}(G)$ yields a non empty set of functions from the carrier of G to the carrier of G and is defined as follows:
(Def.1) Every element of $\operatorname{Aut}(G)$ is a homomorphism from G to G and for every h holds $h \in \operatorname{Aut}(G)$ iff h is one-to-one and an epimorphism.
We now state several propositions:
(2) For every h holds $h \in \operatorname{Aut}(G)$ iff h is one-to-one and an epimorphism.
(3) $\operatorname{Aut}(G) \subseteq(\text { the carrier of } G)^{\text {the carrier of } G}$.
(4) $\mathrm{id}_{(\text {the carrier of } G)}$ is an element of $\operatorname{Aut}(G)$.
(5) For every h holds $h \in \operatorname{Aut}(G)$ iff h is an isomorphism.
(6) For every element f of $\operatorname{Aut}(G)$ holds f^{-1} is a homomorphism from G to G.
(7) For every element f of $\operatorname{Aut}(G)$ holds f^{-1} is an element of $\operatorname{Aut}(G)$.
(8) For all elements f_{1}, f_{2} of $\operatorname{Aut}(G)$ holds $f_{1} \cdot f_{2}$ is an element of $\operatorname{Aut}(G)$.

Let us consider G. The functor $\operatorname{AutComp}(G)$ yielding a binary operation on $\operatorname{Aut}(G)$ is defined as follows:
(Def.2) For all elements x, y of $\operatorname{Aut}(G)$ holds $(\operatorname{AutComp}(G))(x, y)=x \cdot y$.
Let us consider G. The functor $\operatorname{AutGroup}(G)$ yields a strict group and is defined by:
(Def.3) $\operatorname{AutGroup}(G)=\langle\operatorname{Aut}(G), \operatorname{AutComp}(G)\rangle$.
The following three propositions are true:
(9) For all elements x, y of $\operatorname{AutGroup}(G)$ and for all elements f, g of $\operatorname{Aut}(G)$ such that $x=f$ and $y=g$ holds $x \cdot y=f \cdot g$.
(10) $\quad \mathrm{id}_{\text {(the carrier of } G)}=1_{\text {AutGroup }(G)}$.
(11) For every element f of $\operatorname{Aut}(G)$ and for every element g of $\operatorname{AutGroup}(G)$ such that $f=g$ holds $f^{-1}=g^{-1}$.
Let us consider G. The functor $\operatorname{InnAut}(G)$ yields a non empty set of functions from the carrier of G to the carrier of G and is defined by the condition (Def.4).
(Def.4) Let f be an element of (the carrier of G) the carrier of G. Then $f \in$ $\operatorname{InnAut}(G)$ if and only if there exists a such that for every x holds $f(x)=x^{a}$.
Next we state several propositions:
(12) $\operatorname{InnAut}(G) \subseteq(\text { the carrier of } G)^{\text {the carrier of } G}$.
(13) Every element of $\operatorname{InnAut}(G)$ is an element of $\operatorname{Aut}(G)$.
(14) $\operatorname{InnAut}(G) \subseteq \operatorname{Aut}(G)$.
(15) For all elements f, g of $\operatorname{InnAut}(G)$ holds $(\operatorname{AutComp}(G))(f, g)=f \cdot g$.
(16) $\mathrm{id}_{(\text {the carrier of } G)}$ is an element of $\operatorname{InnAut}(G)$.
(17) For every element f of $\operatorname{InnAut}(G)$ holds f^{-1} is an element of $\operatorname{InnAut}(G)$.
(18) For all elements f, g of $\operatorname{InnAut}(G)$ holds $f \cdot g$ is an element of $\operatorname{InnAut}(G)$.

Let us consider G. The functor $\operatorname{InnAutGroup}(G)$ yields a normal strict subgroup of $\operatorname{AutGroup}(G)$ and is defined by:
(Def.5) The carrier of $\operatorname{InnAutGroup}(G)=\operatorname{InnAut}(G)$.
Next we state three propositions:
$(20)^{1}$ For all elements x, y of $\operatorname{InnAutGroup}(G)$ and for all elements f, g of $\operatorname{InnAut}(G)$ such that $x=f$ and $y=g$ holds $x \cdot y=f \cdot g$.
(21) $\quad \mathrm{id}_{\text {(the carrier of } G)}=1_{\text {InnAutGroup }(G)}$.
(22) For every element f of $\operatorname{InnAut}(G)$ and for every element g of InnAutGroup (G) such that $f=g$ holds $f^{-1}=g^{-1}$.
Let us consider G, b. The functor Conjugate(b) yields an element of $\operatorname{InnAut}(G)$ and is defined by:
(Def.6) For every a holds (Conjugate $(b))(a)=a^{b}$.
The following propositions are true:
(23) For all a, b holds Conjugate $(a \cdot b)=\operatorname{Conjugate}(b) \cdot \operatorname{Conjugate}(a)$.
(24) Conjugate $\left(1_{G}\right)=\operatorname{id}_{(\text {the carrier of } G)}$.
(25) For every a holds (Conjugate $\left.\left(1_{G}\right)\right)(a)=a$.
(26) For every a holds Conjugate $(a) \cdot \operatorname{Conjugate}\left(a^{-1}\right)=\operatorname{Conjugate}\left(1_{G}\right)$.
(27) For every a holds Conjugate $\left(a^{-1}\right) \cdot$ Conjugate $(a)=$ Conjugate $\left(1_{G}\right)$.
(28) For every a holds Conjugate $\left(a^{-1}\right)=(\operatorname{Conjugate}(a))^{-1}$.

[^5](29) For every a holds Conjugate $(a) \cdot \operatorname{Conjugate}\left(1_{G}\right)=\operatorname{Conjugate}(a)$ and Conjugate $\left(1_{G}\right) \cdot$ Conjugate $(a)=\operatorname{Conjugate}(a)$.
(30) For every element f of $\operatorname{InnAut}(G)$ holds $f \cdot \operatorname{Conjugate}\left(1_{G}\right)=f$ and Conjugate $\left(1_{G}\right) \cdot f=f$.
(31) For every G holds $\operatorname{InnAutGroup}(G)$ and ${ }^{G} / \mathrm{Z}(G)$ are isomorphic.
(32) For every G such that G is a commutative group and for every element f of $\operatorname{InnAutGroup}(G)$ holds $f=1_{\operatorname{InnAutGroup}(G)}$.

References

[1] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[5] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[7] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
[8] Wojciech A. Trybulec. Commutator and center of a group. Formalized Mathematics, 2(4):461-466, 1991.
[9] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[10] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[12] Wojciech A. Trybulec and Michat J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.

Received April 22, 1994

Subalgebras of Many Sorted Algebra. Lattice of Subalgebras

Ewa Burakowska
Warsaw University
Białystok

MML Identifier: MSUALG_2.

The articles [12], [13], [5], [6], [2], [8], [9], [7], [4], [14], [3], [1], [11], and [10] provide the notation and terminology for this paper.

1. Auxilary Facts about Many Sorted Sets

In this paper x will be arbitrary.
The scheme LambdaB concerns a non empty set \mathcal{A} and a unary functor \mathcal{F} yielding arbitrary, and states that:

There exists a function f such that $\operatorname{dom} f=\mathcal{A}$ and for every element d of \mathcal{A} holds $f(d)=\mathcal{F}(d)$ for all values of the parameters.

Let I be a set, let X be a many sorted set of I, and let Y be a non-empty many sorted set of I. Observe that $X \cup Y$ is non-empty and $Y \cup X$ is non-empty.

Next we state two propositions:
(1) Let I be a set, and let X be a many sorted set of I, and let Y be a non-empty many sorted set of I. Then $X \cup Y$ is non-empty and $Y \cup X$ is non-empty.
(2) For every non empty set I and for all many sorted sets X, Y of I and for every element i of I^{*} holds $\Pi((X \cap Y) \cdot i)=\Pi(X \cdot i) \cap \Pi(Y \cdot i)$.
Let I be a set and let M be a many sorted set of I. A many sorted set of I is said to be a many sorted subset of M if:
(Def.1) It $\subseteq M$.
Let I be a set and let M be a non-empty many sorted set of I. Observe that there exists a many sorted subset of M which is non-empty.

2. Constants of a Many Sorted Algebra

We follow the rules: S will denote a non void non empty many sorted signature, o will denote an operation symbol of S, and U_{0}, U_{1}, U_{2} will denote algebras over S.

Let S be a non empty many sorted signature and let U_{0} be an algebra over S. A subset of U_{0} is a many sorted subset of the sorts of U_{0}.

Let S be a non empty many sorted signature. A sort symbol of S has constants if:
(Def.2) There exists an operation symbol o of S such that (the arity of S) $(o)=\varepsilon$ and (the result sort of $S)(o)=$ it.
A non empty many sorted signature has constant operations if:
(Def.3) Every sort symbol of it has constants.
Let A be a non empty set, let B be a set, let a be a function from B into A^{*}, and let r be a function from B into A. Note that $\langle A, B, a, r\rangle$ is non empty.

Let us observe that there exists a non empty many sorted signature which is non void and strict and has constant operations.

Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, and let s be a sort symbol of S. The functor Constants $\left(U_{0}, s\right)$ yielding a subset of (the sorts of $\left.U_{0}\right)(s)$ is defined by:
(Def.4) (i) There exists a non empty set A such that $A=\left(\right.$ the sorts of $\left.U_{0}\right)(s)$ and Constants $\left(U_{0}, s\right)=\left\{a: a\right.$ ranges over elements of A, \bigvee_{o} (the arity of $S)(o)=\varepsilon \wedge$ (the result sort of $\left.S)(o)=s \wedge a \in \operatorname{rng} \operatorname{Den}\left(o, U_{0}\right)\right\}$ if (the sorts of $\left.U_{0}\right)(s) \neq \emptyset$,
(ii) Constants $\left(U_{0}, s\right)=\emptyset$, otherwise.

Let S be a non void non empty many sorted signature and let U_{0} be an algebra over S. The functor Constants $\left(U_{0}\right)$ yielding a subset of U_{0} is defined as follows:
(Def.5) For every sort symbol s of S holds $\left(\operatorname{Constants}\left(U_{0}\right)\right)(s)=$ Constants $\left(U_{0}, s\right)$.
Let S be a non void non empty many sorted signature with constant operations, let U_{0} be a non-empty algebra over S, and let s be a sort symbol of S. One can verify that Constants $\left(U_{0}, s\right)$ is non empty.

Let S be a non void non empty many sorted signature with constant operations and let U_{0} be a non-empty algebra over S. One can verify that Constants $\left(U_{0}\right)$ is non-empty.

3. Subalgebras of a Many Sorted Algebra

Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, let o be an operation symbol of S, and let A be a subset of U_{0}. We say that A is closed on o if and only if:
(Def.6) $\quad \operatorname{rng}\left(\operatorname{Den}\left(o, U_{0}\right) \upharpoonright\left(A^{\#} \cdot(\right.\right.$ the arity of $\left.\left.S)\right)(o)\right) \subseteq(A \cdot($ the result sort of $S)(o)$.
Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, and let A be a subset of U_{0}. We say that A is operations closed if and only if:
(Def.7) For every operation symbol o of S holds A is closed on o.
One can prove the following proposition
(3) Let S be a non void non empty many sorted signature, and let o be an operation symbol of S, and let U_{0} be an algebra over S, and let B_{0}, B_{1} be subsets of U_{0}. If $B_{0} \subseteq B_{1}$, then $\left(B_{0}{ }^{\#}\right.$. (the arity of $\left.\left.S\right)\right)(o) \subseteq\left(B_{1}{ }^{\#}\right.$. (the arity of $S)$)(o).
Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, let o be an operation symbol of S, and let A be a subset of U_{0}. Let us assume that A is closed on o. The functor o_{A} yielding a function from ($A^{\#}$. (the arity of $S))(o)$ into $(A \cdot($ the result sort of $S))(o)$ is defined as follows:
(Def.8) $\quad o_{A}=\operatorname{Den}\left(o, U_{0}\right) \upharpoonright\left(A^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o)$.
Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, and let A be a subset of U_{0}. The functor $\operatorname{Opers}\left(U_{0}, A\right)$ yielding a many sorted function from $A^{\#} \cdot($ the arity of S) into $A \cdot($ the result sort of S) is defined by:
(Def.9) For every operation symbol o of S holds $\left(\operatorname{Opers}\left(U_{0}, A\right)\right)(o)=o_{A}$.
Next we state two propositions:
(4) Let U_{0} be an algebra over S and let B be a subset of U_{0}. Suppose $B=$ the sorts of U_{0}. Then B is operations closed and for every o holds $o_{B}=\operatorname{Den}\left(o, U_{0}\right)$.
(5) For every subset B of U_{0} such that $B=$ the sorts of U_{0} holds Opers $\left(U_{0}, B\right)=$ the characteristics of U_{0}.
Let S be a non void non empty many sorted signature and let U_{0} be an algebra over S. An algebra over S is called a subalgebra of U_{0} if it satisfies the conditions (Def.10).
(Def.10) (i) The sorts of it is a subset of U_{0}, and
(ii) for every subset B of U_{0} such that $B=$ the sorts of it holds B is operations closed and the characteristics of it $=\operatorname{Opers}\left(U_{0}, B\right)$.
Let S be a non void non empty many sorted signature and let U_{0} be an algebra over S. One can check that there exists a subalgebra of U_{0} which is strict.

Let S be a non void non empty many sorted signature and let U_{0} be a nonempty algebra over S. Observe that there exists a subalgebra of U_{0} which is non-empty and strict.

One can prove the following propositions:
(6) $\quad U_{0}$ is a subalgebra of U_{0}.
(7) If U_{0} is a subalgebra of U_{1} and U_{1} is a subalgebra of U_{2}, then U_{0} is a subalgebra of U_{2}.
(8) If U_{1} is a strict subalgebra of U_{2} and U_{2} is a strict subalgebra of U_{1}, then $U_{1}=U_{2}$.
(9) For all subalgebras U_{1}, U_{2} of U_{0} such that the sorts of $U_{1} \subseteq$ the sorts of U_{2} holds U_{1} is a subalgebra of U_{2}.
(10) For all strict subalgebras U_{1}, U_{2} of U_{0} such that the sorts of $U_{1}=$ the sorts of U_{2} holds $U_{1}=U_{2}$.
(11) Let S be a non void non empty many sorted signature, and let U_{0} be an algebra over S, and let U_{1} be a subalgebra of U_{0}. Then Constants $\left(U_{0}\right)$ is a subset of U_{1}.
(12) Let S be a non void non empty many sorted signature with constant operations, and let U_{0} be a non-empty algebra over S, and let U_{1} be a non-empty subalgebra of U_{0}. Then Constants $\left(U_{0}\right)$ is a non-empty subset of U_{1}.
(13) Let S be a non void non empty many sorted signature with constant operations, and let U_{0} be a non-empty algebra over S, and let U_{1}, U_{2} be non-empty subalgebras of U_{0}. Then (the sorts of $\left.U_{1}\right) \cap\left(\right.$ the sorts of $\left.U_{2}\right)$ is non-empty.

4. Many Sorted Subsets of Many Sorted Algebra

Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, and let A be a subset of U_{0}. The functor $\operatorname{SubSorts}(A)$ yielding a non empty set is defined by the condition (Def.11).
(Def.11) Let x be arbitrary. Then $x \in \operatorname{SubSorts}(A)$ if and only if the following conditions are satisfied:
(i) $\quad x \in\left(2 \bigcup\right.$ (the sorts of $\left.\left.U_{0}\right)\right)^{\text {the carrier of } S}$,
(ii) $\quad x$ is a subset of U_{0}, and
(iii) for every subset B of U_{0} such that $B=x$ holds B is operations closed and Constants $\left(U_{0}\right) \subseteq B$ and $A \subseteq B$.
Let S be a non void non empty many sorted signature and let U_{0} be an algebra over S. The functor $\operatorname{SubSorts}\left(U_{0}\right)$ yields a non empty set and is defined by the condition (Def.12).
(Def.12) Let x be arbitrary. Then $x \in \operatorname{SubSorts}\left(U_{0}\right)$ if and only if the following conditions are satisfied:
(i) $\quad x \in\left(2 \bigcup\right.$ (the sorts of $\left.\left.U_{0}\right)\right)^{\text {the carrier of } S}$,
(ii) x is a subset of U_{0}, and
(iii) for every subset B of U_{0} such that $B=x$ holds B is operations closed.

Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, and let e be an element of $\operatorname{SubSorts}\left(U_{0}\right)$. The functor ${ }^{@} e$ yielding a subset of U_{0} is defined as follows:
(Def.13) ${ }^{@} e=e$.
Next we state two propositions:
(14) For all subsets A, B of U_{0} holds $B \in \operatorname{SubSorts}(A)$ iff B is operations closed and Constants $\left(U_{0}\right) \subseteq B$ and $A \subseteq B$.
(15) For every subset B of U_{0} holds $B \in \operatorname{SubSorts}\left(U_{0}\right)$ iff B is operations closed.
Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, let A be a subset of U_{0}, and let s be a sort symbol of S. The functor $\operatorname{SubSort}(A, s)$ yields a non empty set and is defined as follows:
(Def.14) For arbitrary x holds $x \in \operatorname{SubSort}(A, s)$ iff there exists a subset B of U_{0} such that $B \in \operatorname{SubSorts}(A)$ and $x=B(s)$.
Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, and let A be a subset of U_{0}. The functor $\operatorname{MSSubSort}(A)$ yields a subset of U_{0} and is defined as follows:
(Def.15) For every sort symbol s of S holds (MSSubSort $(A))(s)=$ $\cap \operatorname{SubSort}(A, s)$.
We now state several propositions:
(16) For every subset A of U_{0} holds $\operatorname{Constants}\left(U_{0}\right) \cup A \subseteq \operatorname{MSSubSort}(A)$.
(17) For every subset A of U_{0} such that $\operatorname{Constants}\left(U_{0}\right) \cup A$ is non-empty holds MSSubSort (A) is non-empty.
(18) Let A be a subset of U_{0} and let B be a subset of U_{0}. If $B \in \operatorname{SubSorts}(A)$, then $\left((\operatorname{MSSubSort}(A))^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o) \subseteq\left(B^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o)$.
(19) Let A be a subset of U_{0} and let B be a subset of U_{0}. Suppose $B \in \operatorname{SubSorts}(A)$. Then $\operatorname{rng}\left(\operatorname{Den}\left(o, U_{0}\right) \upharpoonright((\operatorname{MSSubSort}(A)))^{\#}\right.$. (the arity of $S)(o)) \subseteq(B \cdot($ the result sort of $S))(o)$.
(20) For every subset A of U_{0} holds rng $\left(\operatorname{Den}\left(o, U_{0}\right) \upharpoonright((\operatorname{MSSubSort}(A)))^{\#}\right.$. (the arity of $S))(o)) \subseteq(\operatorname{MSSubSort}(A) \cdot($ the result sort of $S))(o)$.
(21) For every subset A of U_{0} holds $\operatorname{MSSubSort}(A)$ is operations closed and $A \subseteq \operatorname{MSSubSort}(A)$.

5. Operations on Many Sorted Algebra and its Subalgebras

Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, and let A be a subset of U_{0}. Let us assume that A is operations closed. The functor $U_{0} \upharpoonright A$ yields a strict subalgebra of U_{0} and is defined as follows:
(Def.16) $\quad U_{0} \upharpoonright A=\left\langle A,\left(\operatorname{Opers}\left(U_{0}, A\right)\right.\right.$ qua many sorted function from $A^{\#}$. (the arity of S) into $A \cdot($ the result sort of $S)$) .
Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, and let U_{1}, U_{2} be subalgebras of U_{0}. The functor $U_{1} \cap U_{2}$ yielding a strict subalgebra of U_{0} is defined by the conditions (Def.17).
(Def.17) (i) The sorts of $U_{1} \cap U_{2}=$ (the sorts of $\left.U_{1}\right) \cap$ (the sorts of U_{2}), and
(ii) for every subset B of U_{0} such that $B=$ the sorts of $U_{1} \cap U_{2}$ holds B is operations closed and the characteristics of $U_{1} \cap U_{2}=\operatorname{Opers}\left(U_{0}, B\right)$.
Let S be a non void non empty many sorted signature, let U_{0} be an algebra over S, and let A be a subset of U_{0}. The functor $\operatorname{Gen}(A)$ yields a strict subalgebra of U_{0} and is defined by the conditions (Def.18).
(Def.18) (i) A is a subset of $\operatorname{Gen}(A)$, and
(ii) for every subalgebra U_{1} of U_{0} such that A is a subset of U_{1} holds $\operatorname{Gen}(A)$ is a subalgebra of U_{1}.
Let S be a non void non empty many sorted signature, let U_{0} be a non-empty algebra over S, and let A be a non-empty subset of U_{0}. Observe that $\operatorname{Gen}(A)$ is non-empty.

We now state three propositions:
(22) Let S be a non void non empty many sorted signature, and let U_{0} be a strict algebra over S, and let B be a subset of U_{0}. If $B=$ the sorts of U_{0}, then $\operatorname{Gen}(B)=U_{0}$.
(23) Let S be a non void non empty many sorted signature, and let U_{0} be an algebra over S, and let U_{1} be a strict subalgebra of U_{0}, and let B be a subset of U_{0}. If $B=$ the sorts of U_{1}, then $\operatorname{Gen}(B)=U_{1}$.
(24) Let S be a non void non empty many sorted signature with constant operations, and let U_{0} be a non-empty algebra over S, and let U_{1} be a subalgebra of U_{0}. Then $\operatorname{Gen}\left(\operatorname{Constants}\left(U_{0}\right)\right) \cap U_{1}=\operatorname{Gen}\left(\operatorname{Constants}\left(U_{0}\right)\right)$.
Let S be a non void non empty many sorted signature, let U_{0} be a nonempty algebra over S, and let U_{1}, U_{2} be subalgebras of U_{0}. The functor $U_{1} \bigsqcup U_{2}$ yielding a strict subalgebra of U_{0} is defined as follows:
(Def.19) For every subset A of U_{0} such that $A=\left(\right.$ the sorts of $\left.U_{1}\right) \cup$ (the sorts of U_{2}) holds $U_{1} \sqcup U_{2}=\operatorname{Gen}(A)$.
Next we state several propositions:
(25) Let S be a non void non empty many sorted signature, and let U_{0} be a non-empty algebra over S, and let U_{1} be a subalgebra of U_{0}, and let A, B be subsets of U_{0}. If $B=A \cup$ the sorts of U_{1}, then $\operatorname{Gen}(A) \sqcup U_{1}=\operatorname{Gen}(B)$.
(26) Let S be a non void non empty many sorted signature, and let U_{0} be a non-empty algebra over S, and let U_{1} be a subalgebra of U_{0}, and let B be a subset of U_{0}. If $B=$ the sorts of U_{0}, then $\operatorname{Gen}(B) \bigsqcup U_{1}=\operatorname{Gen}(B)$.
(27) Let S be a non void non empty many sorted signature, and let U_{0} be a non-empty algebra over S, and let U_{1}, U_{2} be subalgebras of U_{0}. Then $U_{1} \sqcup U_{2}=U_{2} \sqcup U_{1}$.
(28) Let S be a non void non empty many sorted signature, and let U_{0} be a non-empty algebra over S, and let U_{1}, U_{2} be strict subalgebras of U_{0}. Then $U_{1} \cap\left(U_{1} \bigsqcup U_{2}\right)=U_{1}$.
(29) Let S be a non void non empty many sorted signature with constant operations, and let U_{0} be a non-empty algebra over S, and let U_{1}, U_{2} be strict subalgebras of U_{0}. Then $U_{1} \cap U_{2} \sqcup U_{2}=U_{2}$.

6. Lattice of Subalgebras of Many Sorted Algebra

Let S be a non void non empty many sorted signature and let U_{0} be an algebra over S. The functor Subalgebras $\left(U_{0}\right)$ yielding a non empty set is defined as follows:
(Def.20) For every x holds $x \in \operatorname{Subalgebras}\left(U_{0}\right)$ iff x is a strict subalgebra of U_{0}.
Let S be a non void non empty many sorted signature and let U_{0} be a nonempty algebra over S. The functor $\operatorname{MSAlgJoin}\left(U_{0}\right)$ yields a binary operation on Subalgebras $\left(U_{0}\right)$ and is defined by:
(Def.21) For all elements x, y of $\operatorname{Subalgebras}\left(U_{0}\right)$ and for all strict subalgebras U_{1}, U_{2} of U_{0} such that $x=U_{1}$ and $y=U_{2}$ holds $\left(\operatorname{MSAlgJoin}\left(U_{0}\right)\right)(x$, $y)=U_{1} \sqcup U_{2}$.
Let S be a non void non empty many sorted signature and let U_{0} be a nonempty algebra over S. The functor $\operatorname{MSAlgMeet}\left(U_{0}\right)$ yielding a binary operation on Subalgebras $\left(U_{0}\right)$ is defined by:
(Def.22) For all elements x, y of $\operatorname{Subalgebras}\left(U_{0}\right)$ and for all strict subalgebras U_{1}, U_{2} of U_{0} such that $x=U_{1}$ and $y=U_{2}$ holds $\left(\operatorname{MSAlgMeet}\left(U_{0}\right)\right)(x$, $y)=U_{1} \cap U_{2}$.
In the sequel U_{0} is a non-empty algebra over S.
We now state four propositions:
(30) $\operatorname{MSAlgJoin}\left(U_{0}\right)$ is commutative.
(31) MSAlgJoin $\left(U_{0}\right)$ is associative.
(32) Let S be a non void non empty many sorted signature with constant operations and let U_{0} be a non-empty algebra over S. Then $\operatorname{MSAlgMeet}\left(U_{0}\right)$ is commutative.
(33) Let S be a non void non empty many sorted signature with constant operations and let U_{0} be a non-empty algebra over S. Then MSAlgMeet $\left(U_{0}\right)$ is associative.
Let S be a non void non empty many sorted signature with constant operations and let U_{0} be a non-empty algebra over S. The lattice of subalgebras of U_{0} yields a strict lattice and is defined as follows:
(Def.23) The lattice of subalgebras of $U_{0}=\left\langle\operatorname{Subalgebras}\left(U_{0}\right)\right.$, $\operatorname{MSAlgJoin}\left(U_{0}\right)$, $\left.\operatorname{MSAlgMeet}\left(U_{0}\right)\right\rangle$.
The following proposition is true
(34) Let S be a non void non empty many sorted signature with constant operations and let U_{0} be a non-empty algebra over S. Then the lattice of subalgebras of U_{0} is bounded.
Let S be a non void non empty many sorted signature with constant operations and let U_{0} be a non-empty algebra over S. Note that the lattice of subalgebras of U_{0} is bounded.

We now state three propositions:
(35) Let S be a non void non empty many sorted signature with constant operations and let U_{0} be a non-empty algebra over S. Then $\perp_{\text {the lattice of subalgebras of }} U_{0}=\operatorname{Gen}\left(\operatorname{Constants}\left(U_{0}\right)\right)$.
(36) Let S be a non void non empty many sorted signature with constant operations, and let U_{0} be a non-empty algebra over S, and let B be a subset of U_{0}. If $B=$ the sorts of U_{0}, then $\top_{\text {the lattice of subalgebras of } U_{0}}=$ $\operatorname{Gen}(B)$.
(37) Let S be a non void non empty many sorted signature with constant operations and let U_{0} be a strict non-empty algebra over S. Then $\top_{\text {the lattice of subalgebras of }} U_{0}=U_{0}$.

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[9] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[10] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[11] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[14] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Products of Many Sorted Algebras

Beata Madras
Warsaw University
Białystok

Abstract

Summary. Product of two many sorted universal algebras and product of family of many sorted universal algebras are defined in this article. Operations on functions, such that commute, Frege, are also introduced.

MML Identifier: PRALG_2.

The papers [17], [18], [9], [10], [6], [7], [13], [11], [14], [4], [8], [2], [1], [3], [5], [16], [12], and [15] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity we follow the rules: I, J denote sets, A, B denote many sorted sets of I, i, j, x are arbitrary, and S denotes a non empty many sorted signature.

A set has common domain if:
(Def.1) For all functions f, g such that $f \in$ it and $g \in$ it holds $\operatorname{dom} f=\operatorname{dom} g$.
Let us mention that there exists a set which is functional and non empty and has common domain.

The following proposition is true
(1) $\{\emptyset\}$ is a functional set with common domain.

Let X be a functional set with common domain. The functor $\operatorname{DOM}(X)$ yielding a set is defined as follows:
(Def.2) (i) For every function x such that $x \in X$ holds $\operatorname{DOM}(X)=\operatorname{dom} x$ if $X \neq \emptyset$,
(ii) $\operatorname{DOM}(X)=\emptyset$, otherwise.

We now state the proposition
(2) For every functional set X with common domain such that $X=\{\emptyset\}$ holds $\operatorname{DOM}(X)=\emptyset$.

Let I be a set and let M be a non-empty many sorted set of I. Observe that ΠM is functional and non empty and has common domain.

2. Operations on Functions

The scheme LambdaDMS deals with a non empty set \mathcal{A} and a unary functor \mathcal{F} yielding arbitrary, and states that:

There exists a many sorted set X of \mathcal{A} such that for every element
d of \mathcal{A} holds $X(d)=\mathcal{F}(d)$
for all values of the parameters.
Let f be a function. The functor commute (f) yields a function yielding function and is defined as follows:
$\left(\right.$ Def.5) ${ }^{1} \quad$ commute $(f)=$ curry $^{\prime}$ uncurry f.
We now state several propositions:
(3) For every function f and for arbitrary x such that $x \in \operatorname{dom}$ commute (f) holds (commute $(f))(x)$ is a function.
(4) For all sets A, B, C and for every function f such that $A \neq \emptyset$ and $B \neq \emptyset$ and $f \in\left(C^{B}\right)^{A}$ holds commute $(f) \in\left(C^{A}\right)^{B}$.
(5) Let A, B, C be sets and let f be a function. Suppose $A \neq \emptyset$ and $B \neq \emptyset$ and $f \in\left(C^{B}\right)^{A}$. Let g, h be functions and let x, y be arbitrary. Suppose $x \in A$ and $y \in B$ and $f(x)=g$ and $(\operatorname{commute}(f))(y)=h$. Then $h(x)=g(y)$ and $\operatorname{dom} h=A$ and $\operatorname{dom} g=B$ and $\operatorname{rng} h \subseteq C$ and $\operatorname{rng} g \subseteq C$.
(6) For all sets A, B, C and for every function f such that $A \neq \emptyset$ and $B \neq \emptyset$ and $f \in\left(C^{B}\right)^{A}$ holds commute $($ commute $(f))=f$.
(7) commute $(\square)=\square$.

Let F be a function. The functor \square commute (F) yielding a function is defined by the conditions (Def.6).
(Def.6) (i) For every x holds $x \in \operatorname{dom} \llbracket \operatorname{commute}(F)$ iff there exists a function f such that $f \in \operatorname{dom} F$ and $x=\operatorname{commute}(f)$, and
(ii) for every function f such that $f \in \operatorname{dom}$ ©commute (F) holds $\left(\square_{\text {commute }}(F)\right)(f)=F($ commute $(f))$.
The following proposition is true
(8) For every function F such that $\operatorname{dom} F=\{\emptyset\}$ holds \square commute $(F)=F$.

Let F be a function yielding function and let f be a function. The functor $F \leftrightarrow f$ yielding a function is defined by:
(Def.7) $\quad \operatorname{dom}(F \leftrightarrow f)=\operatorname{dom} F$ and for arbitrary x and for every function g such that $x \in \operatorname{dom} F$ and $g=F(x)$ holds $(F \leftrightarrows f)(x)=g(f(x))$.
Let f be a function yielding function. The functor Frege (f) yields a many sorted function of $\Pi\left(\operatorname{dom}_{\kappa} f(\kappa)\right)$ and is defined as follows:

[^6](Def.8) For every function g such that $g \in \prod\left(\operatorname{dom}_{\kappa} f(\kappa)\right)$ holds $($ Frege $(f))(g)=$ $f \leftrightarrow g$.
Let us consider I, A, B. The functor $\llbracket A, B \rrbracket$ yielding a many sorted set of I is defined by:
(Def.9) For every i such that $i \in I$ holds $\llbracket A, B \rrbracket(i)=ः: A(i), B(i) \rrbracket$.
Let us consider I and let A, B be non-empty many sorted sets of I. Note that $\llbracket A, B \rrbracket$ is non-empty.

Next we state the proposition
(9) Let I be a non empty set, and let J be a set, and let A, B be many sorted sets of I, and let f be a function from J into I. Then $\llbracket A, B \rrbracket \cdot f=$ $\llbracket A \cdot f, B \cdot f \rrbracket$.
Let I be a non empty set, let us consider J, let A, B be non-empty many sorted sets of I, let p be a function from J into I^{*}, let r be a function from J into I, let j be arbitrary, let f be a function from $\left(A^{\#} \cdot p\right)(j)$ into $(A \cdot r)(j)$, and let g be a function from $\left(B^{\#} \cdot p\right)(j)$ into $(B \cdot r)(j)$. Let us assume that $j \in J$. The functor $\rceil\urcorner f, g\left\lceil\left\lceil\right.\right.$ yields a function from $\left(\llbracket A, B \rrbracket^{\#} \cdot p\right)(j)$ into $(\llbracket A, B \rrbracket \cdot r)(j)$ and is defined as follows:
(Def.10) For every function h such that $h \in\left(\llbracket A, B \rrbracket^{\#} \cdot p\right)(j)$ holds $\rceil f, g \llbracket(h)=$ $\langle f(\operatorname{pr} 1(h)), g(\operatorname{pr} 2(h))\rangle$.
Let I be a non empty set, let us consider J, let A, B be non-empty many sorted sets of I, let p be a function from J into I^{*}, let r be a function from J into I, let F be a many sorted function from $A^{\#} \cdot p$ into $A \cdot r$, and let G be a many sorted function from $B^{\#} \cdot p$ into $B \cdot r$. The functor $\rceil F, G\lceil$ yielding a many sorted function from $\llbracket A, B \rrbracket^{\#} \cdot p$ into $\llbracket A, B \rrbracket \cdot r$ is defined by the condition (Def.11).
(Def.11) Given j. Suppose $j \in J$. Let f be a function from $\left(A^{\#} \cdot p\right)(j)$ into $(A \cdot r)(j)$ and let g be a function from $\left(B^{\#} \cdot p\right)(j)$ into $(B \cdot r)(j)$. If $f=F(j)$ and $g=G(j)$, then $\rceil\rceil F, G \Pi(j)=\rceil\rceil f, g \Pi$.

3. Family of Many Sorted Universal Algebras

Let us consider I, S. A many sorted set of I is said to be an algebra family of I over S if:
(Def.12) For every i such that $i \in I$ holds $\operatorname{it}(i)$ is a non-empty algebra over S.
Let I be a non empty set, let us consider S, let A be an algebra family of I over S, and let i be an element of I. Then $A(i)$ is a non-empty algebra over S.

Let S be a non empty many sorted signature and let U_{1} be a non-empty algebra over S. The functor $\left|U_{1}\right|$ yields a non empty set and is defined as follows:
(Def.13) $\quad\left|U_{1}\right|=\bigcup \mathrm{rng}\left(\right.$ the sorts of $\left.U_{1}\right)$.

Let I be a non empty set, let S be a non empty many sorted signature, and let A be an algebra family of I over S. The functor $|A|$ yields a non empty set and is defined as follows:
(Def.14)

$$
|A|=\bigcup\{|A(i)|: i \text { ranges over elements of } I\} .
$$

4. Product of Many Sorted Universal Algebras

We now state two propositions:
(10) Let S be a non void non empty many sorted signature, and let U_{0} be an algebra over S, and let o be an operation symbol of S. Then $\operatorname{Args}\left(o, U_{0}\right)=\Pi\left(\left(\right.\right.$ the sorts of $\left.\left.U_{0}\right) \cdot \operatorname{Arity}(o)\right)$ and dom $\left(\left(\right.\right.$ the sorts of $\left.U_{0}\right)$. $\operatorname{Arity}(o))=\operatorname{dom} \operatorname{Arity}(o)$ and $\operatorname{Result}\left(o, U_{0}\right)=\left(\right.$ the sorts of $\left.U_{0}\right)($ the result sort of o).
(11) Let S be a non void non empty many sorted signature, and let U_{0} be an algebra over S, and let o be an operation symbol of S. If $\operatorname{Arity}(o)=\varepsilon$, then $\operatorname{Args}\left(o, U_{0}\right)=\{\square\}$.
Let us consider S and let U_{1}, U_{2} be non-empty algebras over S. The functor [: U_{1}, U_{2} : yields a strict algebra over S and is defined as follows:
(Def.15) $\quad\left[U_{1}, U_{2}\right]=\left\langle\left[\right.\right.$ the sorts of U_{1}, the sorts of $U_{2} \rrbracket$, 77 the characteristics of U_{1}, (the characteristics of U_{2}) $\left.\Pi\right\rangle$.
Let I be a non empty set, let us consider S, let s be a sort symbol of S, and let A be an algebra family of I over S. The functor $\operatorname{Carrier}(A, s)$ yielding a non-empty many sorted set of I is defined as follows:
(Def.16) For every element i of I holds $(\operatorname{Carrier}(A, s))(i)=($ the sorts of $A(i))(s)$.
Let I be a non empty set, let us consider S, and let A be an algebra family of I over S. The functor $\operatorname{SORTS}(A)$ yields a non-empty many sorted set of the carrier of S and is defined as follows:
(Def.17) For every sort symbol s of S holds $(\operatorname{SORTS}(A))(s)=\Pi \operatorname{Carrier}(A, s)$.
Let I be a non empty set, let S be a non empty many sorted signature, and let A be an algebra family of I over S. The functor $\operatorname{OPER}(A)$ yields a many sorted function of I and is defined by:
(Def.18) For every element i of I holds $(\operatorname{OPER}(A))(i)=$ the characteristics of $A(i)$.
We now state two propositions:
(12) Let I be a non empty set, and let S be a non empty many sorted signature, and let A be an algebra family of I over S. Then dom uncurry $\operatorname{OPER}(A)=[I$, the operation symbols of $S:]$.
(13) Let I be a non empty set, and let S be a non void non empty many sorted signature, and let A be an algebra family of I over S, and let o be an operation symbol of S. Then commute $(\operatorname{OPER}(A)) \in$ $\left((\text { rng uncurry } \operatorname{OPER}(A))^{I}\right)^{\text {the operation symbols of } S}$.

Let I be a non empty set, let S be a non void non empty many sorted signature, let A be an algebra family of I over S, and let o be an operation symbol of S. The functor $A(o)$ yielding a many sorted function of I is defined by:
$($ Def.19) $\quad A(o)=(\operatorname{commute}(\operatorname{OPER}(A)))(o)$.
We now state several propositions:
(14) Let I be a non empty set, and let i be an element of I, and let S be a non void non empty many sorted signature, and let A be an algebra family of I over S, and let o be an operation symbol of S. Then $A(o)(i)=$ $\operatorname{Den}(o, A(i))$.
(15) Let I be a non empty set, and let S be a non void non empty many sorted signature, and let A be an algebra family of I over S, and let o be an operation symbol of S, and let x be arbitrary. If $x \in \operatorname{rng} \operatorname{Frege}(A(o))$, then x is a function.
(16) Let I be a non empty set, and let S be a non void non empty many sorted signature, and let A be an algebra family of I over S, and let o be an operation symbol of S, and let f be a function. If $f \in \operatorname{rng} \operatorname{Frege}(A(o))$, then $\operatorname{dom} f=I$ and for every element i of I holds $f(i) \in \operatorname{Result}(o, A(i))$.
(17) Let I be a non empty set, and let S be a non void non empty many sorted signature, and let A be an algebra family of I over S, and let o be an operation symbol of S, and let f be a function. Suppose $f \in$ dom Frege $(A(o))$. Then $\operatorname{dom} f=I$ and for every element i of I holds $f(i) \in \operatorname{Args}(o, A(i))$ and $\operatorname{rng} f \subseteq|A|^{\operatorname{dom} \operatorname{Arity}(o)}$.
(18) Let I be a non empty set, and let S be a non void non empty many sorted signature, and let A be an algebra family of I over S, and let o be an operation symbol of S. Then $\operatorname{dom}\left(\operatorname{dom}_{\kappa} A(o)(\kappa)\right)=I$ and for every element i of I holds $\left(\operatorname{dom}_{\kappa} A(o)(\kappa)\right)(i)=\operatorname{Args}(o, A(i))$.
Let I be a non empty set, let S be a non void non empty many sorted signature, and let A be an algebra family of I over S. The functor $\operatorname{OPS}(A)$ yielding a many sorted function from $(\operatorname{SORTS}(A))^{\#} \cdot($ the arity of $S)$ into $\operatorname{SORTS}(A) \cdot$ (the result sort of S) is defined by:
(Def.20) For every operation symbol o of S holds $(\operatorname{OPS}(A))(o)=(\operatorname{Arity}(o)=$ $\varepsilon \rightarrow$ commute $(A(o))$, ■commute(Frege $(A(o))))$.
Let I be a non empty set, let S be a non void non empty many sorted signature, and let A be an algebra family of I over S. The functor ΠA yields a strict algebra over S and is defined as follows:
(Def.21) $\quad \Pi A=\langle\operatorname{SORTS}(A), \operatorname{OPS}(A)\rangle$.
We now state two propositions:
(19) Let I be a non empty set, and let S be a non void non empty many sorted signature, and let A be an algebra family of I over S. Then $\Pi A=$ $\langle\operatorname{SORTS}(A), \operatorname{OPS}(A)\rangle$.
(20) Let I be a non empty set, and let S be a non void non empty many sorted signature, and let A be an algebra family of I over S. Then the
sorts of $\Pi A=\operatorname{SORTS}(A)$ and the characteristics of $\Pi A=\operatorname{OPS}(A)$.

References

[1] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[2] Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990.
[3] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[6] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[7] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[12] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
[13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[14] Andrzej Trybulec. Function domains and Frænkel operator. Formalized Mathematics, 1(3):495-500, 1990.
[15] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[16] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[17] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received April 25, 1994

Homomorphisms of Many Sorted Algebras

Małgorzata Korolkiewicz
Warsaw University
Białystok

Abstract

Summary. The aim of this article is to present the definition and some properties of homomorphisms of many sorted algebras. Some auxiliary properties of many sorted functions also have been shown.

MML Identifier: MSUALG_3.

The notation and terminology used in this paper have been introduced in the following articles: [10], [12], [13], [5], [6], [2], [4], [1], [11], [9], [7], [8], and [3].

1. Preliminaries

For simplicity we follow the rules: S is a non void non empty many sorted signature, U_{1}, U_{2}, U_{3} are non-empty algebras over S, o is an operation symbol of S, and n is a natural number.

Let I be a non empty set, let A, B be non-empty many sorted sets of I, let F be a many sorted function from A into B, and let i be an element of I. Then $F(i)$ is a function from $A(i)$ into $B(i)$.

Let us consider S, U_{1}, U_{2}. A many sorted function from U_{1} into U_{2} is a many sorted function from the sorts of U_{1} into the sorts of U_{2}.

Let I be a set and let A be a many sorted set of I. The functor id_{A} yields a many sorted function from A into A and is defined as follows:
(Def.1) For arbitrary i such that $i \in I$ holds $\operatorname{id}_{A}(i)=\operatorname{id}_{A(i)}$.
A function is " $1-1$ " if:
(Def.2) For arbitrary i and for every function f such that $i \in \operatorname{dom}$ it and $\operatorname{it}(i)=$ f holds f is one-to-one.
Let I be a set. Observe that there exists a many sorted function of I which is " $1-1$ ".

We now state the proposition
(1) Let I be a set and let F be a many sorted function of I. Then F is "1-1" if and only if for arbitrary i and for every function f such that $i \in I$ and $F(i)=f$ holds f is one-to-one.
Let I be a set and let A, B be many sorted sets of I. A many sorted function from A into B is "onto" if:
(Def.3) For arbitrary i and for every function f from $A(i)$ into $B(i)$ such that $i \in I$ and $\operatorname{it}(i)=f$ holds $\operatorname{rng} f=B(i)$.
Let F, G be function yielding functions. The functor $G \circ F$ yielding a function yielding function is defined by the conditions (Def.4).
(Def.4) (i) $\quad \operatorname{dom}(G \circ F)=\operatorname{dom} F \cap \operatorname{dom} G$, and
(ii) for arbitrary i and for every function f and for every function g such that $i \in \operatorname{dom}(G \circ F)$ and $f=F(i)$ and $g=G(i)$ holds $(G \circ F)(i)=g \cdot f$.
We now state the proposition
(2) Let I be a set, and let A be a many sorted set of I, and let B, C be non-empty many sorted sets of I, and let F be a many sorted function from A into B, and let G be a many sorted function from B into C. Then
(i) $\operatorname{dom}(G \circ F)=I$, and
(ii) for arbitrary i and for every function f from $A(i)$ into $B(i)$ and for every function g from $B(i)$ into $C(i)$ such that $i \in I$ and $f=F(i)$ and $g=G(i)$ holds $(G \circ F)(i)=g \cdot f$.
Let I be a set, let A be a many sorted set of I, let B, C be non-empty many sorted sets of I, let F be a many sorted function from A into B, and let G be a many sorted function from B into C. Then $G \circ F$ is a many sorted function from A into C.

Next we state two propositions:
(3) Let I be a set, and let A, B be non-empty many sorted sets of I, and let F be a many sorted function from A into B. Then $F \circ \operatorname{id}_{A}=F$.
(4) Let I be a set, and let A be a many sorted set of I, and let B be a non-empty many sorted set of I, and let F be a many sorted function from A into B. Then $\operatorname{id}_{B} \circ F=F$.
Let I be a set, let A, B be non-empty many sorted sets of I, and let F be a many sorted function from A into B. Let us assume that F is " $1-1$ " and "onto". The functor F^{-1} yielding a many sorted function from B into A is defined as follows:
(Def.5) For arbitrary i and for every function f from $A(i)$ into $B(i)$ such that $i \in I$ and $f=F(i)$ holds $F^{-1}(i)=f^{-1}$.
We now state the proposition
(5) Let I be a set, and let A, B be non-empty many sorted sets of I, and let H be a many sorted function from A into B, and let H_{1} be a many sorted function from B into A. If H is " $1-1$ " and "onto" and $H_{1}=H^{-1}$, then $H \circ H_{1}=\mathrm{id}_{B}$ and $H_{1} \circ H=\mathrm{id}_{A}$.

Let I be a set, let A be a many sorted set of I, and let F be a many sorted function of I. The functor $F^{\circ} A$ yields a many sorted set of I and is defined as follows:
(Def.6) For arbitrary i and for every function f such that $i \in I$ and $f=F(i)$ holds $\left(F^{\circ} A\right)(i)=f^{\circ} A(i)$.
Let us consider S, U_{1}, o. Observe that every element of $\operatorname{Args}\left(o, U_{1}\right)$ is function-like and relation-like.

2. Homomorphisms of Many Sorted Algebras

One can prove the following proposition
(6) Let x be an element of $\operatorname{Args}\left(o, U_{1}\right)$. Then $\operatorname{dom} x=\operatorname{dom} \operatorname{Arity}(o)$ and for arbitrary y such that $y \in \operatorname{dom}\left(\left(\right.\right.$ the sorts of $\left.\left.U_{1}\right) \cdot \operatorname{Arity}(o)\right)$ holds $x(y) \in\left(\left(\right.\right.$ the sorts of $\left.\left.U_{1}\right) \cdot \operatorname{Arity}(o)\right)(y)$.
Let us consider S, U_{1}, U_{2}, o, let F be a many sorted function from U_{1} into U_{2}, and let x be an element of $\operatorname{Args}\left(o, U_{1}\right)$. The functor $F \# x$ yielding an element of $\operatorname{Args}\left(o, U_{2}\right)$ is defined by:
(Def.7) For every n such that $n \in \operatorname{dom} x$ holds $(F \# x)(n)=$ $F\left(\pi_{n} \operatorname{Arity}(o)\right)(x(n))$.
The following two propositions are true:
(7) For all S, o, U_{1} and for every element x of $\operatorname{Args}\left(o, U_{1}\right)$ holds $x=$ $\mathrm{id}_{\left(\text {the sorts of } U_{1}\right)} \# x$.
(8) Let H_{1} be a many sorted function from U_{1} into U_{2}, and let H_{2} be a many sorted function from U_{2} into U_{3}, and let x be an element of $\operatorname{Args}\left(o, U_{1}\right)$. Then $\left(H_{2} \circ H_{1}\right) \# x=H_{2} \#\left(H_{1} \# x\right)$.
Let us consider S, U_{1}, U_{2} and let F be a many sorted function from U_{1} into U_{2}. We say that F is a homomorphism of U_{1} into U_{2} if and only if:
(Def.8) For every operation symbol o of S and for every element x of $\operatorname{Args}\left(o, U_{1}\right)$ holds $F($ the result sort of $o)\left(\left(\operatorname{Den}\left(o, U_{1}\right)\right)(x)\right)=\left(\operatorname{Den}\left(o, U_{2}\right)\right)(F \# x)$.
Next we state two propositions:
(9) $\quad \operatorname{id}_{\left(\text {the sorts of } U_{1}\right)}$ is a homomorphism of U_{1} into U_{1}.
(10) Let H_{1} be a many sorted function from U_{1} into U_{2} and let H_{2} be a many sorted function from U_{2} into U_{3}. Suppose H_{1} is a homomorphism of U_{1} into U_{2} and H_{2} is a homomorphism of U_{2} into U_{3}. Then $H_{2} \circ H_{1}$ is a homomorphism of U_{1} into U_{3}.
Let us consider S, U_{1}, U_{2} and let F be a many sorted function from U_{1} into U_{2}. We say that F is an epimorphism of U_{1} onto U_{2} if and only if:
(Def.9) $\quad F$ is a homomorphism of U_{1} into U_{2} and "onto".
One can prove the following proposition
(11) Let F be a many sorted function from U_{1} into U_{2} and let G be a many sorted function from U_{2} into U_{3}. Suppose F is an epimorphism of U_{1} onto U_{2} and G is an epimorphism of U_{2} onto U_{3}. Then $G \circ F$ is an epimorphism of U_{1} onto U_{3}.
Let us consider S, U_{1}, U_{2} and let F be a many sorted function from U_{1} into U_{2}. We say that F is a monomorphism of U_{1} into U_{2} if and only if:
(Def.10) $\quad F$ is a homomorphism of U_{1} into U_{2} and "1-1".
The following proposition is true
(12) Let F be a many sorted function from U_{1} into U_{2} and let G be a many sorted function from U_{2} into U_{3}. Suppose F is a monomorphism of U_{1} into U_{2} and G is a monomorphism of U_{2} into U_{3}. Then $G \circ F$ is a monomorphism of U_{1} into U_{3}.
Let us consider S, U_{1}, U_{2} and let F be a many sorted function from U_{1} into U_{2}. We say that F is an isomorphism of U_{1} and U_{2} if and only if:
(Def.11) $\quad F$ is an epimorphism of U_{1} onto U_{2} and a monomorphism of U_{1} into U_{2}. The following propositions are true:
(13) Let F be a many sorted function from U_{1} into U_{2}. Then F is an isomorphism of U_{1} and U_{2} if and only if F is a homomorphism of U_{1} into U_{2} "onto" and "1-1".
(14) Let H be a many sorted function from U_{1} into U_{2} and let H_{1} be a many sorted function from U_{2} into U_{1}. Suppose H is an isomorphism of U_{1} and U_{2} and $H_{1}=H^{-1}$. Then H_{1} is an isomorphism of U_{2} and U_{1}.
(15) Let H be a many sorted function from U_{1} into U_{2} and let H_{1} be a many sorted function from U_{2} into U_{3}. Suppose H is an isomorphism of U_{1} and U_{2} and H_{1} is an isomorphism of U_{2} and U_{3}. Then $H_{1} \circ H$ is an isomorphism of U_{1} and U_{3}.
Let us consider S, U_{1}, U_{2}. We say that U_{1} and U_{2} are isomorphic if and only if:
(Def.12) There exists many sorted function from U_{1} into U_{2} which is an isomorphism of U_{1} and U_{2}.
Next we state three propositions:
(16) U_{1} and U_{1} are isomorphic.
(17) If U_{1} and U_{2} are isomorphic, then U_{2} and U_{1} are isomorphic.
(18) If U_{1} and U_{2} are isomorphic and U_{2} and U_{3} are isomorphic, then U_{1} and U_{3} are isomorphic.
Let us consider S, U_{1}, U_{2} and let F be a many sorted function from U_{1} into U_{2}. Let us assume that F is a homomorphism of U_{1} into U_{2}. The functor $\operatorname{Im} F$ yields a strict non-empty subalgebra of U_{2} and is defined as follows:
(Def.13) The sorts of $\operatorname{Im} F=F^{\circ}$ (the sorts of U_{1}).
We now state several propositions:
(19) Let U_{2} be a strict non-empty algebra over S and let F be a many sorted function from U_{1} into U_{2}. Suppose F is a homomorphism of U_{1} into U_{2}. Then F is an epimorphism of U_{1} onto U_{2} if and only if $\operatorname{Im} F=U_{2}$.
(20) Let F be a many sorted function from U_{1} into U_{2} and let G be a many sorted function from U_{1} into $\operatorname{Im} F$. Suppose $F=G$ and F is a homomorphism of U_{1} into U_{2}. Then G is an epimorphism of U_{1} onto $\operatorname{Im} F$.
(21) Let F be a many sorted function from U_{1} into U_{2}. Suppose F is a homomorphism of U_{1} into U_{2}. Then there exists a many sorted function G from U_{1} into $\operatorname{Im} F$ such that $F=G$ and G is an epimorphism of U_{1} onto $\operatorname{Im} F$.
(22) Let U_{2} be a strict non-empty subalgebra of U_{1} and let G be a many sorted function from U_{2} into U_{1}. If $G=\mathrm{id}_{\left(\text {the sorts of } U_{2}\right)}$, then G is a monomorphism of U_{2} into U_{1}.
(23) Let F be a many sorted function from U_{1} into U_{2}. Suppose F is a homomorphism of U_{1} into U_{2}. Then there exists a many sorted function F_{1} from U_{1} into $\operatorname{Im} F$ and there exists a many sorted function F_{2} from $\operatorname{Im} F$ into U_{2} such that F_{1} is an epimorphism of U_{1} onto $\operatorname{Im} F$ and F_{2} is a monomorphism of $\operatorname{Im} F$ into U_{2} and $F=F_{2} \circ F_{1}$.

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47-54, 1996.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
[8] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[9] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[13] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Free Many Sorted Universal Algebra

Beata Perkowska
Warsaw University
Białystok

MML Identifier: MSAFREE.

The terminology and notation used in this paper are introduced in the following papers: [21], [24], [25], [11], [22], [12], [7], [18], [13], [10], [2], [4], [5], [23], [14], [6], [1], [16], [3], [8], [20], [17], [19], [9], and [15].

1. Preliminaries

The following proposition is true
(1) Let I be a set, and let J be a non empty set, and let f be a function from I into J^{*}, and let X be a many sorted set of J, and let p be an element of J^{*}, and let x be arbitrary. If $x \in I$ and $p=f(x)$, then $\left(X^{\#} \cdot f\right)(x)=\Pi(X \cdot p)$.
Let I be a set, let A, B be many sorted sets of I, let C be a many sorted subset of A, and let F be a many sorted function from A into B. The functor $F \upharpoonright C$ yielding a many sorted function from C into B is defined as follows:
(Def.1) For arbitrary i such that $i \in I$ and for every function f from $A(i)$ into $B(i)$ such that $f=F(i)$ holds $(F \upharpoonright C)(i)=f \upharpoonright C(i)$.
Let I be a set, let X be a many sorted set of I, and let i be arbitrary. Let us assume that $i \in I$. The functor $\operatorname{coprod}(i, X)$ yields a set and is defined as follows:
(Def.2) For arbitrary x holds $x \in \operatorname{coprod}(i, X)$ iff there exists arbitrary a such that $a \in X(i)$ and $x=\langle a, i\rangle$.
Let I be a set and let X be a many sorted set of I. Then $\operatorname{disjoint} X$ is a many sorted set of I and it can be characterized by the condition:
(Def.3) For arbitrary i such that $i \in I$ holds $($ disjoint $X)(i)=\operatorname{coprod}(i, X)$.

We introduce $\operatorname{coprod}(X)$ as a synonym of disjoint X.
Let I be a non empty set and let X be a non-empty many sorted set of I. One can verify that $\operatorname{coprod}(X)$ is non-empty.

Let I be a non empty set and let X be a non-empty many sorted set of I. One can check that $\bigcup X$ is non empty.

We now state the proposition
(2) Let I be a set, and let X be a many sorted set of I, and let i be arbitrary. If $i \in I$, then $X(i) \neq \emptyset$ iff $(\operatorname{coprod}(X))(i) \neq \emptyset$.

2. Free Many Sorted Universal Algebra - General Notions

Let S be a non void non empty many sorted signature and let U_{0} be an algebra over S. A subset of U_{0} is said to be a generator set of U_{0} if:
(Def.4) The sorts of Gen(it) $=$ the sorts of U_{0}.
Next we state the proposition
(3) Let S be a non void non empty many sorted signature, and let U_{0} be a strict non-empty algebra over S, and let A be a subset of U_{0}. Then A is a generator set of U_{0} if and only if $\operatorname{Gen}(A)=U_{0}$.
Let S be a non void non empty many sorted signature and let U_{0} be a nonempty algebra over S. A generator set of U_{0} is free if it satisfies the condition (Def.5).
(Def.5) Let U_{1} be a non-empty algebra over S and let f be a many sorted function from it into the sorts of U_{1}. Then there exists a many sorted function h from U_{0} into U_{1} such that h is a homomorphism of U_{0} into U_{1} and $h \upharpoonright$ it $=f$.
Let S be a non void non empty many sorted signature. A non-empty algebra over S is free if:
(Def.6) There exists generator set of it which is free.
The following proposition is true
(4) Let S be a non void non empty many sorted signature and let X be a many sorted set of the carrier of S. Then $\cup \operatorname{coprod}(X) \cap$: the operation symbols of S, $\{$ the carrier of $S\}:]=\emptyset$.

3. Semidisjoint Many Sorted Signature

Let S be a non void many sorted signature. Note that the operation symbols of S is non empty.

Let S be a non void non empty many sorted signature and let X be a many sorted set of the carrier of S. The functor $\operatorname{REL}(X)$ yields a relation between : the operation symbols of S, \{the carrier of $S\}: \cup \cup \operatorname{Coprod}(X)$ and
(: the operation symbols of S, \{the carrier of $S\}: \exists \cup \bigcup \operatorname{coprod}(X))^{*}$ and is defined by the condition (Def.9).
$\left(\right.$ Def.9) ${ }^{1}$ Let a be an element of : the operation symbols of S, $\{$ the carrier of $S\}: \cup \cup \cup \operatorname{coprod}(X)$ and let b be an element of (: the operation symbols of $S,\{$ the carrier of $S\}: \exists \cup \cup \operatorname{coprod}(X))^{*}$. Then $\langle a, b\rangle \in \operatorname{REL}(X)$ if and only if the following conditions are satisfied:
(i) $\quad a \in$: the operation symbols of S, \{the carrier of $S\}$:, and
(ii) for every operation symbol o of S such that $\langle o$, the carrier of $S\rangle=a$ holds len $b=$ len $\operatorname{Arity}(o)$ and for arbitrary x such that $x \in \operatorname{dom} b$ holds if $b(x) \in\{$ the operation symbols of S, \{the carrier of $S\}:$, then for every operation symbol o_{1} of S such that $\left\langle o_{1}\right.$, the carrier of $\left.S\right\rangle=b(x)$ holds the result sort of $o_{1}=\operatorname{Arity}(o)(x)$ and if $b(x) \in \bigcup \operatorname{coprod}(X)$, then $b(x) \in \operatorname{coprod}(\operatorname{Arity}(o)(x), X)$.
In the sequel S will be a non void non empty many sorted signature, X will be a many sorted set of the carrier of S, o will be an operation symbol of S, and b will be an element of (: the operation symbols of S, $\{$ the carrier of $S\}: \cup \cup \bigcup \operatorname{coprod}(X))^{*}$.

Next we state the proposition
(5) $\langle\langle o$, the carrier of $S\rangle, b\rangle \in \operatorname{REL}(X)$ if and only if the following conditions are satisfied:
(i) $\operatorname{len} b=$ len $\operatorname{Arity}(o)$, and
(ii) for arbitrary x such that $x \in \operatorname{dom} b$ holds if $b(x) \in$: the operation symbols of S, \{the carrier of $S\}$:, then for every operation symbol o_{1} of S such that $\left\langle o_{1}\right.$, the carrier of $\left.S\right\rangle=b(x)$ holds the result sort of $o_{1}=\operatorname{Arity}(o)(x)$ and if $b(x) \in \bigcup \operatorname{coprod}(X)$, then $b(x) \in \operatorname{coprod}(\operatorname{Arity}(o)(x), X)$.
Let S be a non void non empty many sorted signature and let X be a many sorted set of the carrier of S. The functor DTConMSA (X) yielding a strict tree construction structure is defined as follows:
(Def.10) DTConMSA $(X)=\langle$: the operation symbols of $S,\{$ the carrier of $S\}:\} \cup$ $\cup \operatorname{coprod}(X), \operatorname{REL}(X)\rangle$.
Let S be a non void non empty many sorted signature and let X be a many sorted set of the carrier of S. Observe that DTConMSA(X) is non empty.

We now state the proposition
(6) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then the nonterminals of DTConMSA $(X)=[$ the operation symbols of S, \{the carrier of $S\}$: and the terminals of DTConMSA $(X)=\bigcup \operatorname{coprod}(X)$.
Let S be a non void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. Observe that DTConMSA (X) has terminals, nonterminals, and useful nonterminals.

One can prove the following proposition

[^7](7) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let t be arbitrary. Then $t \in$ the terminals of $\operatorname{DTConMSA}(X)$ if and only if there exists a sort symbol s of S and there exists arbitrary x such that $x \in X(s)$ and $t=\langle x, s\rangle$.
Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S. The functor $\operatorname{Sym}(o, X)$ yielding a symbol of $\operatorname{DTConMSA}(X)$ is defined by:
(Def.11) $\operatorname{Sym}(o, X)=\langle o$, the carrier of $S\rangle$.
Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let s be a sort symbol of S. The functor FreeSort(X, s) yielding a non empty subset of $\operatorname{TS}(\operatorname{DTConMSA}(X))$ is defined by the condition (Def.12).
(Def.12) FreeSort $(X, s)=\{a: a$ ranges over elements of $\operatorname{TS}(\operatorname{DTConMSA}(X))$, $\bigvee_{x} x \in X(s) \wedge a=$ the root tree of $\langle x, s\rangle \vee \bigvee_{o}\langle o$, the carrier of $S\rangle=a(\varepsilon) \wedge$ the result sort of $o=s\}$.
Let S be a non void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor FreeSorts (X) yielding a non-empty many sorted set of the carrier of S is defined by:
(Def.13) For every sort symbol s of S holds $(\operatorname{FreeSorts}(X))(s)=\operatorname{FreeSort}(X, s)$.
The following propositions are true:
(8) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S, and let x be arbitrary. Suppose $x \in$ $\left((\operatorname{FreeSorts}(X))^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o)$. Then x is a finite sequence of elements of $\operatorname{TS}(\mathrm{DTConMSA}(X))$.
(9) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S, and let p be a finite sequence of elements of $\operatorname{TS}(\operatorname{DTConMSA}(X))$. Then $p \in\left((\operatorname{FreeSorts}(X))^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o)$ if and only if $\operatorname{dom} p=\operatorname{dom} \operatorname{Arity}(o)$ and for every natural number n such that $n \in \operatorname{dom} p$ holds $p(n) \in \operatorname{FreeSort}\left(X, \pi_{n} \operatorname{Arity}(o)\right)$.
(10) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S, and let p be a finite sequence of elements of $\operatorname{TS}(\operatorname{DTConMSA}(X))$. Then $\operatorname{Sym}(o, X) \Rightarrow$ the roots of p if and only if $p \in\left((\text { FreeSorts }(X))^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o)$.
(11) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S. Then $(\operatorname{FreeSorts}(X) \cdot($ the result sort of $S))(o) \neq \emptyset$.
(12) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then \cup rng FreeSorts $(X)=$ TS(DTConMSA (X)).

Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let s_{1}, s_{2} be sort symbols of S. If $s_{1} \neq s_{2}$, then $($ FreeSorts $(X))\left(s_{1}\right) \cap($ FreeSorts $(X))\left(s_{2}\right)=$ \emptyset.
Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let o be an operation symbol of S. The functor $\operatorname{DenOp}(o, X)$ yielding a function from $\left((\operatorname{FreeSorts}(X))^{\#} \cdot\right.$ (the arity of $S))(o)$ into $(\operatorname{FreeSorts}(X) \cdot($ the result sort of $S))(o)$ is defined by:
(Def.14) For every finite sequence p of elements of TS(DTConMSA $(X))$ such that $\operatorname{Sym}(o, X) \Rightarrow$ the roots of p holds $(\operatorname{DenOp}(o, X))(p)=\operatorname{Sym}(o, X)$-tree (p).
Let S be a non void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor FreeOperations (X) yielding a many sorted function from $(\operatorname{FreeSorts}(X)){ }^{\#} \cdot($ the arity of S) into FreeSorts (X) • (the result sort of S) is defined as follows:
(Def.15) For every operation symbol o of S holds (FreeOperations $(X))(o)=$ DenOp (o, X).
Let S be a non void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor $\operatorname{Free}(X)$ yields a strict non-empty algebra over S and is defined by:
(Def.16) $\quad \operatorname{Free}(X)=\langle\operatorname{FreeSorts}(X)$, FreeOperations $(X)\rangle$.
Let S be a non void non empty many sorted signature, let X be a nonempty many sorted set of the carrier of S, and let s be a sort symbol of S. The functor $\operatorname{FreeGenerator}(s, X)$ yields a non empty subset of $(\operatorname{FreeSorts}(X))(s)$ and is defined as follows:
(Def.17) For arbitrary x holds $x \in$ FreeGenerator (s, X) iff there exists arbitrary a such that $a \in X(s)$ and $x=$ the root tree of $\langle a, s\rangle$.
The following proposition is true
(14) Let S be a non void non empty many sorted signature, and let X be a non-empty many sorted set of the carrier of S, and let s be a sort symbol of S. Then FreeGenerator $(s, X)=\{$ the root tree of $t: t$ ranges over symbols of DTConMSA $(X), t \in$ the terminals of $\left.\operatorname{DTConMSA}(X) \wedge t_{\mathbf{2}}=s\right\}$.
Let S be a non void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor FreeGenerator (X) yielding a generator set of Free (X) is defined as follows:
(Def.18) For every sort symbol s of S holds (FreeGenerator $(X))(s)=$ FreeGenerator (s, X).
We now state two propositions:
(15) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then FreeGenerator (X) is non-empty.
(16) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then
\bigcup rng FreeGenerator $(X)=\{$ the root tree of t : t ranges over symbols of DTConMSA $(X), t \in$ the terminals of DTConMSA $(X)\}$.
Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let s be a sort symbol of S. The functor Reverse (s, X) yielding a function from FreeGenerator (s, X) into $X(s)$ is defined as follows:
(Def.19) For every symbol t of DTConMSA(X) such that the root tree of $t \in$ FreeGenerator (s, X) holds $(\operatorname{Reverse}(s, X))($ the root tree of $t)=t_{\mathbf{1}}$.
Let S be a non void non empty many sorted signature and let X be a nonempty many sorted set of the carrier of S. The functor $\operatorname{Reverse}(X)$ yielding a many sorted function from FreeGenerator (X) into X is defined by:
(Def.20) For every sort symbol s of S holds $(\operatorname{Reverse}(X))(s)=\operatorname{Reverse}(s, X)$.
Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, let A be a non-empty many sorted set of the carrier of S, let F be a many sorted function from FreeGenerator (X) into A, and let t be a symbol of $\operatorname{DTConMSA}(X)$. Let us assume that $t \in$ the terminals of DTConMSA (X). The functor $\pi(F, A, t)$ yielding an element of $\cup A$ is defined as follows:
(Def.21) For every function f such that $f=F\left(t_{\mathbf{2}}\right)$ holds $\pi(F, A, t)=f$ (the root tree of t).
Let S be a non void non empty many sorted signature, let X be a non-empty many sorted set of the carrier of S, and let t be a symbol of DTConMSA (X). Let us assume that there exists a finite sequence p such that $t \Rightarrow p$. The functor ${ }^{@}(X, t)$ yielding an operation symbol of S is defined by:
(Def.22) $\quad\left\langle{ }^{@}(X, t)\right.$, the carrier of $\left.S\right\rangle=t$.
Let S be a non void non empty many sorted signature, let U_{0} be a non-empty algebra over S, let o be an operation symbol of S, and let p be a finite sequence. Let us assume that $p \in \operatorname{Args}\left(o, U_{0}\right)$. The functor $\pi\left(o, U_{0}, p\right)$ yielding an element of U (the sorts of U_{0}) is defined by:
(Def.23) $\quad \pi\left(o, U_{0}, p\right)=\left(\operatorname{Den}\left(o, U_{0}\right)\right)(p)$.
Next we state two propositions:
(17) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then FreeGenerator (X) is free.
(18) Let S be a non void non empty many sorted signature and let X be a non-empty many sorted set of the carrier of S. Then Free (X) is free.
Let S be a non void non empty many sorted signature. One can check that there exists a non-empty algebra over S which is free and strict.

Let S be a non void non empty many sorted signature and let U_{0} be a free non-empty algebra over S. One can verify that there exists a generator set of U_{0} which is free.

One can prove the following propositions:
(19) Let S be a non void non empty many sorted signature and let U_{1} be a non-empty algebra over S. Then there exists a strict free non-empty algebra U_{0} over S such that there exists many sorted function from U_{0} into U_{1} which is an epimorphism of U_{0} onto U_{1}.
(20) Let S be a non void non empty many sorted signature and let U_{1} be a strict non-empty algebra over S. Then there exists a strict free non-empty algebra U_{0} over S and there exists a many sorted function F from U_{0} into U_{1} such that F is an epimorphism of U_{0} onto U_{1} and $\operatorname{Im} F=U_{1}$.

References

[1] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547552, 1991.
[2] Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.
[3] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.
[4] Grzegorz Bancerek. König's lemma. Formalized Mathematics, 2(3):397-402, 1991.
[5] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[6] Grzegorz Bancerek. Sets and functions of trees and joining operations of trees. Formalized Mathematics, 3(2):195-204, 1992.
[7] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[8] Grzegorz Bancerek and Piotr Rudnicki. On defining functions on trees. Formalized Mathematics, 4(1):91-101, 1993.
[9] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47-54, 1996.
[10] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[11] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[12] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[13] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[14] Patricia L. Carlson and Grzegorz Bancerek. Context-free grammar - part 1. Formalized Mathematics, 2(5):683-687, 1991.
[15] Mał gorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
[16] Jarosław Kotowicz, Beata Madras, and Matgorzata Korolkiewicz. Basic notation of universal algebra. Formalized Mathematics, 3(2):251-253, 1992.
[17] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
[18] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[19] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[20] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[21] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[22] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[23] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[24] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[25] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received April 27, 1994

T_{0} Topological Spaces

Mariusz Żynel
Warsaw University
Białystok

Adam Guzowski
Warsaw University
Białystok

MML Identifier: T_OTOPSP.

The papers [7], [10], [9], [1], [2], [4], [3], [6], [5], and [8] provide the terminology and notation for this paper.

The following two propositions are true:
(1) Let A, B be non empty sets and let R_{1}, R_{2} be relations between A and B. Suppose that for every element x of A and for every element y of B holds $\langle x, y\rangle \in R_{1}$ iff $\langle x, y\rangle \in R_{2}$. Then $R_{1}=R_{2}$.
(2) Let X, Y be non empty sets, and let f be a function from X into Y, and let A be a subset of X. Suppose that for all elements x_{1}, x_{2} of X such that $x_{1} \in A$ and $f\left(x_{1}\right)=f\left(x_{2}\right)$ holds $x_{2} \in A$. Then $f^{-1} f^{\circ} A=A$.
Let T, S be topological spaces. We say that T and S are homeomorphic if and only if:
(Def.1) There exists map from T into S which is a homeomorphism.
Let T, S be topological spaces and let f be a map from T into S. We say that f is open if and only if:
(Def.2) For every subset A of T such that A is open holds $f^{\circ} A$ is open.
Let T be a topological space. The functor Indiscernibility (T) yielding an equivalence relation of the carrier of T is defined by the condition (Def.3).
(Def.3) Let p, q be points of T. Then $\langle p, q\rangle \in \operatorname{Indiscernibility~}(T)$ if and only if for every subset A of T such that A is open holds $p \in A$ iff $q \in A$.
Let T be a topological space. The functor $T_{/ \text {Indiscernibility } T}$ yields a non empty partition of the carrier of T and is defined as follows:
(Def.4) $\quad T_{/ \text {Indiscernibility } T}=$ Classes Indiscernibility (T).
Let T be a topological space. The functor T_{0}-reflex (T) yields a topological space and is defined as follows:
(Def.5) $\quad T_{0}$-reflex $(T)=$ the decomposition space of $T_{/ \text {Indiscernibility } T}$.

Let T be a topological space. The functor $T_{0}-\operatorname{map}(T)$ yielding a continuous map from T into T_{0}-reflex (T) is defined as follows:
(Def.6) $\quad T_{0}-\operatorname{map}(T)=$ the projection onto $T_{/ \text {Indiscernibility } T}$.
One can prove the following propositions:
(3) For every topological space T and for every point p of T holds $p \in$ $\left(T_{0}-\operatorname{map}(T)\right)(p)$.
(4) For every topological space T holds dom $T_{0}-\operatorname{map}(T)=$ the carrier of T and $\operatorname{rng} T_{0}-\operatorname{map}(T) \subseteq$ the carrier of T_{0}-reflex (T).
(5) Let T be a topological space. Then the carrier of $T_{0}-\operatorname{reflex}(T)=$ $T_{/ \text {Indiscernibility } T}$ and the topology of T_{0}-reflex $(T)=\{A: A$ ranges over subsets of $T_{/ \text {Indiscernibility } T}, \bigcup A \in$ the topology of $\left.T\right\}$.
(6) For every topological space T and for every subset V of $T_{0}-\operatorname{reflex}(T)$ holds V is open iff $\cup V \in$ the topology of T.
(7) Let T be a topological space and let C be arbitrary. Then C is a point of $T_{0}-\operatorname{reflex}(T)$ if and only if there exists a point p of T such that $C=[p]_{\text {Indiscernibility }(T)}$.
(8) For every topological space T and for every point p of T holds $\left(T_{0}-\operatorname{map}(T)\right)(p)=[p]_{\text {Indiscernibility }(T)}$.
(9) For every topological space T and for all points p, q of T holds $\left(T_{0}-\operatorname{map}(T)\right)(q)=\left(T_{0}-\operatorname{map}(T)\right)(p)$ iff $\langle q, p\rangle \in \operatorname{Indiscernibility}(T)$.
(10) Let T be a topological space and let A be a subset of T. Suppose A is open. Let p, q be points of T. If $p \in A$ and $\left(T_{0}-\operatorname{map}(T)\right)(p)=$ $\left(T_{0}-\operatorname{map}(T)\right)(q)$, then $q \in A$.
(11) Let T be a topological space and let A be a subset of T. Suppose A is open. Let C be a subset of T. If $C \in T_{/ \text {Indiscernibility } T}$ and C meets A, then $C \subseteq A$.
(12) For every topological space T holds $T_{0}-\operatorname{map}(T)$ is open.

A topological structure is discernible if it satisfies the condition (Def.7).
(Def.7) Let x, y be points of it. Suppose $x \neq y$. Then there exists a subset V of it such that V is open but $x \in V$ and $y \notin V$ or $y \in V$ and $x \notin V$.
Let us note that there exists a topological space which is discernible.
A T_{0}-space is a discernible topological space.
One can prove the following propositions:
(13) For every topological space T holds T_{0}-reflex (T) is a T_{0}-space.
(14) Let T, S be topological spaces. Given a map h from $T_{0}-\operatorname{reflex}(S)$ into T_{0}-reflex (T) such that h is a homeomorphism and $T_{0}-\operatorname{map}(T)$ and h. $T_{0}-\operatorname{map}(S)$ are fiberwise equipotent. Then T and S are homeomorphic.
(15) Let T be a topological space, and let T_{0} be a T_{0}-space, and let f be a continuous map from T into T_{0}, and let p, q be points of T. If $\langle p$, $q\rangle \in \operatorname{Indiscernibility}(T)$, then $f(p)=f(q)$.
(16) Let T be a topological space, and let T_{0} be a T_{0}-space, and let f be a continuous map from T into T_{0}, and let p be a point of T. Then $f^{\circ}\left([p]_{\text {Indiscernibility }(T)}\right)=\{f(p)\}$.
(17) Let T be a topological space, and let T_{0} be a T_{0}-space, and let f be a continuous map from T into T_{0}. Then there exists a continuous map h from T_{0}-reflex (T) into T_{0} such that $f=h \cdot T_{0-\operatorname{map}}(T)$.

References

[1] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[2] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[3] Agata Darmochwał. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.
[4] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[5] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[6] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.
[9] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[10] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received May 6, 1994

Many Sorted Quotient Algebra

Małgorzata Korolkiewicz
Warsaw University
Białystok

Abstract

Summary. This article introduces the construction of a many sorted quotient algebra. A few preliminary notions such as a many sorted relation, a many sorted equivalence relation, a many sorted congruence and the set of all classes of a many sorted relation are also formulated.

MML Identifier: MSUALG_4.

The notation and terminology used here are introduced in the following papers: [13], [15], [5], [16], [10], [6], [2], [4], [1], [14], [12], [8], [11], [3], [7], and [9].

1. Many Sorted Relation

In this paper S will be a non void non empty many sorted signature and o will be an operation symbol of S.

A function is binary relation yielding if:
(Def.1) For arbitrary x such that $x \in \operatorname{dom}$ it holds it (x) is a binary relation.
Let I be a set. Observe that there exists a many sorted set of I which is binary relation yielding.

Let I be a set. A many sorted relation of I is a binary relation yielding many sorted set of I.

Let I be a set and let A, B be many sorted sets of I. A many sorted set of I is said to be a many sorted relation between A and B if:
(Def.2) For arbitrary i such that $i \in I$ holds $\operatorname{it}(i)$ is a relation between $A(i)$ and $B(i)$.
Let I be a set and let A, B be many sorted sets of I. Note that every many sorted relation between A and B is binary relation yielding.

Let I be a set and let A be a many sorted set of I. A many sorted relation of A is a many sorted relation between A and A.

Let I be a set and let A be a many sorted set of I. A many sorted relation of A is equivalence if it satisfies the condition (Def.3).
(Def.3) Let i be arbitrary and let R be a binary relation on $A(i)$. If $i \in I$ and $\operatorname{it}(i)=R$, then R is an equivalence relation of $A(i)$.
Let I be a non empty set, let A, B be many sorted sets of I, let F be a many sorted relation between A and B, and let i be an element of I. Then $F(i)$ is a relation between $A(i)$ and $B(i)$.

Let S be a non empty many sorted signature and let U_{1} be an algebra over S.
(Def.4) A many sorted relation of the sorts of U_{1} is said to be a many sorted relation of U_{1}.
Let S be a non empty many sorted signature and let U_{1} be an algebra over S. A many sorted relation of U_{1} is equivalence if:
(Def.5) It is equivalence.
Let S be a non void non empty many sorted signature and let U_{1} be an algebra over S. Note that there exists a many sorted relation of U_{1} which is equivalence.

One can prove the following proposition
(1) Let S be a non void non empty many sorted signature, and let U_{1} be an algebra over S, and let R be an equivalence many sorted relation of U_{1}, and let s be a sort symbol of S. Then $R(s)$ is an equivalence relation of (the sorts of $\left.U_{1}\right)(s)$.
Let S be a non void non empty many sorted signature and let U_{1} be a nonempty algebra over S. An equivalence many sorted relation of U_{1} is called a congruence of U_{1} if it satisfies the condition (Def.6).
(Def.6) Let o be an operation symbol of S and let x, y be elements of $\operatorname{Args}\left(o, U_{1}\right)$. Suppose that for every natural number n such that $n \in \operatorname{dom} x$ holds $\langle x(n), y(n)\rangle \in \operatorname{it}\left(\pi_{n} \operatorname{Arity}(o)\right)$. Then $\left\langle\left(\operatorname{Den}\left(o, U_{1}\right)\right)(x)\right.$, $\left.\left(\operatorname{Den}\left(o, U_{1}\right)\right)(y)\right\rangle \in \operatorname{it}($ the result sort of $o)$.
Let S be a non void non empty many sorted signature, let U_{1} be an algebra over S, let R be an equivalence many sorted relation of U_{1}, and let i be an element of the carrier of S. Then $R(i)$ is an equivalence relation of (the sorts of $\left.U_{1}\right)(i)$.

Let S be a non void non empty many sorted signature, let U_{1} be an algebra over S, let R be an equivalence many sorted relation of U_{1}, let i be an element of the carrier of S, and let x be an element of (the sorts of $\left.U_{1}\right)(i)$. The functor $[x]_{R}$ yields a subset of (the sorts of $\left.U_{1}\right)(i)$ and is defined by:
(Def.7) $\quad[x]_{R}=[x]_{R(i)}$.
Let us consider S, let U_{1} be a non-empty algebra over S, and let R be a congruence of U_{1}. The functor Classes R yields a non-empty many sorted set of the carrier of S and is defined by:
(Def.8) For every element s of the carrier of S holds (Classes $R)(s)=$ Classes $R(s)$.

2. Many Sorted Quotient Algebra

Let us consider S, let M_{1}, M_{2} be many sorted sets of the operation symbols of S, let F be a many sorted function from M_{1} into M_{2}, and let o be an operation symbol of S. Then $F(o)$ is a function from $M_{1}(o)$ into $M_{2}(o)$.

Let I be a non empty set, let p be a finite sequence of elements of I, and let X be a non-empty many sorted set of I. Then $X \cdot p$ is a non-empty many sorted set of $\operatorname{dom} p$.

Let us consider S, o, let A be a non-empty algebra over S, let R be a congruence of A, and let x be an element of $\operatorname{Args}(o, A)$. The functor $R \# x$ yields an element of $\Pi($ Classes $R \cdot \operatorname{Arity}(o))$ and is defined as follows:
(Def.9) For every natural number n such that $n \in \operatorname{dom} \operatorname{Arity}(o)$ holds $(R \# x)(n)=[x(n)]_{R\left(\pi_{n} \operatorname{Arity}(o)\right)}$.
Let us consider S, o, let A be a non-empty algebra over S, and let R be a congruence of A. The functor $\operatorname{QuotRes}(R, o)$ yielding a function from ((the sorts of $A) \cdot($ the result sort of $S))(o)$ into (Classes $R \cdot($ the result sort of $S))(o)$ is defined as follows:
(Def.10) For every element x of (the sorts of A)(the result sort of o) holds $(\operatorname{QuotRes}(R, o))(x)=[x]_{R}$.
The functor $\operatorname{Quot} \operatorname{Args}(R, o)$ yielding a function from ((the sorts of $A)^{\#} \cdot$ (the arity of $S))(o)$ into $\left((\text { Classes } R)^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o)$ is defined as follows:
(Def.11) For every element x of $\operatorname{Args}(o, A)$ holds $(\operatorname{Quot} \operatorname{Args}(R, o))(x)=R \# x$.
Let us consider S, let A be a non-empty algebra over S, and let R be a congruence of A. The functor $\operatorname{Quot} \operatorname{Res}(R)$ yielding a many sorted function from (the sorts of A) • (the result sort of S) into Classes $R \cdot($ the result sort of S) is defined as follows:
(Def.12) For every operation symbol o of S holds $(\operatorname{QuotRes}(R))(o)=$ QuotRes (R, o).
The functor $\operatorname{Quot} \operatorname{Args}(R)$ yielding a many sorted function from (the sorts of $A)^{\#}$. (the arity of S) into (Classes $\left.R\right)^{\#}$. (the arity of S) is defined as follows:
(Def.13) For every operation symbol of S holds $(\operatorname{Quot} \operatorname{Args}(R))(o)=$ QuotArgs (R, o).
Next we state the proposition
(2) Let A be a non-empty algebra over S, and let R be a congruence of A, and let x be arbitrary. Suppose $x \in\left((\text { Classes } R)^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o)$. Then there exists an element a of $\operatorname{Args}(o, A)$ such that $x=R \# a$.
Let us consider S, o, let A be a non-empty algebra over S, and let R be a congruence of A. The functor QuotCharact (R, o) yields a function from $\left((\text { Classes } R)^{\#} \cdot(\right.$ the arity of $\left.S)\right)(o)$ into (Classes $R \cdot($ the result sort of $\left.S)\right)(o)$ and is defined as follows:
(Def.14) For every element a of $\operatorname{Args}(o, A)$ such that $R \# a \in((\operatorname{Classes} R)$. $($ the arity of $S))(o)$ holds $($ QuotCharact $(R, o))(R \# a)=(\operatorname{QuotRes}(R, o)$. $\operatorname{Den}(o, A))(a)$.
Let us consider S, let A be a non-empty algebra over S, and let R be a congruence of A. The functor QuotCharact (R) yielding a many sorted function from (Classes $R)^{\#} \cdot($ the arity of S) into Classes $R \cdot($ the result sort of S) is defined as follows:
(Def.15) For every operation symbol of S holds (QuotCharact $(R))(o)=$ QuotCharact (R, o).
Let us consider S, let U_{1} be a non-empty algebra over S, and let R be a congruence of U_{1}. The functor $\operatorname{QuotMSAlg}(R)$ yielding a strict non-empty algebra over S is defined by:
(Def.16) $\operatorname{QuotMSAlg}(R)=\langle$ Classes R, $\operatorname{QuotCharact}(R)\rangle$.
Let us consider S, let U_{1} be a non-empty algebra over S, let R be a congruence of U_{1}, and let s be a sort symbol of S. The functor $\operatorname{MSNatHom}\left(U_{1}, R, s\right)$ yielding a function from (the sorts of $\left.U_{1}\right)(s)$ into (Classes $\left.R\right)(s)$ is defined as follows:
(Def.17) For arbitrary x such that $x \in$ (the sorts of $\left.U_{1}\right)(s)$ holds $\left(\operatorname{MSNatHom}\left(U_{1}, R, s\right)\right)(x)=[x]_{R(s)}$.
Let us consider S, let U_{1} be a non-empty algebra over S, and let R be a congruence of U_{1}. The functor $\operatorname{MSNatHom}\left(U_{1}, R\right)$ yielding a many sorted function from U_{1} into $\operatorname{QuotMSAlg}(R)$ is defined by:
(Def.18) For every sort symbol s of S holds (MSNatHom $\left.\left(U_{1}, R\right)\right)(s)=$ $\operatorname{MSNatHom}\left(U_{1}, R, s\right)$.
Next we state the proposition
(3) Let S be a non void non empty many sorted signature, and let U_{1} be a non-empty algebra over S, and let R be a congruence of U_{1}. Then $\operatorname{MSNatHom}\left(U_{1}, R\right)$ is an epimorphism of U_{1} onto $\operatorname{QuotMSAlg}(R)$.
Let us consider S, let U_{1}, U_{2} be non-empty algebras over S, let F be a many sorted function from U_{1} into U_{2}, and let s be a sort symbol of S. The functor Congruence (F, s) yields an equivalence relation of (the sorts of $\left.U_{1}\right)(s)$ and is defined as follows:
(Def.19) For all elements x, y of (the sorts of $\left.U_{1}\right)(s)$ holds $\langle x, y\rangle \in$ Congruence (F, s) iff $F(s)(x)=F(s)(y)$.
Let us consider S, let U_{1}, U_{2} be non-empty algebras over S, and let F be a many sorted function from U_{1} into U_{2}. Let us assume that F is a homomorphism of U_{1} into U_{2}. The functor Congruence (F) yielding a congruence of U_{1} is defined by:
(Def.20) For every sort symbol s of S holds (Congruence $(F))(s)=$ Congruence (F, s).
Let us consider S, let U_{1}, U_{2} be non-empty algebras over S, let F be a many sorted function from U_{1} into U_{2}, and let s be a sort symbol of S. Let us assume that F is a homomorphism of U_{1} into U_{2}. The functor $\operatorname{MSHomQuot}(F, s)$ yields
a function from (the sorts of $\operatorname{QuotMSAlg}($ Congruence $(F)))(s)$ into (the sorts of $\left.U_{2}\right)(s)$ and is defined as follows:
(Def.21) For every element x of (the sorts of $\left.U_{1}\right)(s)$ holds (MSHomQuot (F, s)) $\left([x]_{\text {Congruence }(F, s)}\right)=F(s)(x)$.
Let us consider S, let U_{1}, U_{2} be non-empty algebras over S, and let F be a many sorted function from U_{1} into U_{2}. Let us assume that F is a homomorphism of U_{1} into U_{2}. The functor MSHomQuot (F) yields a many sorted function from QuotMSAlg(Congruence $(F))$ into U_{2} and is defined by:
(Def.22) For every sort symbol s of S holds $(\operatorname{MSHomQuot}(F))(s)=$ $\operatorname{MSHomQuot}(F, s)$.
The following propositions are true:
(4) Let S be a non void non empty many sorted signature, and let U_{1}, U_{2} be non-empty algebras over S, and let F be a many sorted function from U_{1} into U_{2}. Suppose F is a homomorphism of U_{1} into U_{2}. Then MSHomQuot (F) is a monomorphism of QuotMSAlg (Congruence (F)) into U_{2}.
(5) Let S be a non void non empty many sorted signature, and let U_{1}, U_{2} be non-empty algebras over S, and let F be a many sorted function from U_{1} into U_{2}. Suppose F is an epimorphism of U_{1} onto U_{2}. Then MSHomQuot (F) is an isomorphism of QuotMSAlg(Congruence $(F))$ and U_{2}.
(6) Let S be a non void non empty many sorted signature, and let U_{1}, U_{2} be non-empty algebras over S, and let F be a many sorted function from U_{1} into U_{2}. If F is an epimorphism of U_{1} onto U_{2}, then QuotMSAlg(Congruence $(F))$ and U_{2} are isomorphic.

References

[1] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Ewa Burakowska. Subalgebras of many sorted algebra. Lattice of subalgebras. Formalized Mathematics, 5(1):47-54, 1996.
[4] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Mał gorzata Korolkiewicz. Homomorphisms of many sorted algebras. Formalized Mathematics, 5(1):61-65, 1996.
[8] Beata Madras. Product of family of universal algebras. Formalized Mathematics, 4(1):103-108, 1993.
[9] Beata Madras. Products of many sorted algebras. Formalized Mathematics, 5(1):55-60, 1996.
[10] Konrad Raczkowski and Paweł Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.
[11] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.
[12] Andrzej Trybulec. Many-sorted sets. Formalized Mathematics, 4(1):15-22, 1993.
[13] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[14] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Received May 6, 1994

Quantales

Grzegorz Bancerek
Institute of Mathematics
Polish Academy of Sciences

Abstract

Summary. The concepts of Girard quantales (see [10] and [15]) and Blikle nets (see [5]) are introduced.

MML Identifier: QUANTAL1.

The notation and terminology used in this paper are introduced in the following papers: [12], [11], [14], [7], [8], [6], [9], [16], [2], [3], [1], [13], and [4].

Let X be a set and let Y be a subset of 2^{X}. Then $\cup Y$ is a subset of X.
In this article we present several logical schemes. The scheme DenestFraenkel concerns a non empty set \mathcal{A}, a non empty set \mathcal{B}, a unary functor \mathcal{F} yielding arbitrary, a unary functor \mathcal{G} yielding an element of \mathcal{B}, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(a)$: a ranges over elements of $\mathcal{B}, a \in\{\mathcal{G}(b): b$ ranges over elements of $\mathcal{A}, \mathcal{P}[b]\}\}=\{\mathcal{F}(\mathcal{G}(a)): a$ ranges over elements of \mathcal{A}, $\mathcal{P}[a]\}$
for all values of the parameters.
The scheme EmptyFraenkel deals with a non empty set \mathcal{A}, a unary functor \mathcal{F} yielding arbitrary, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(a): a$ ranges over elements of $\mathcal{A}, \mathcal{P}[a]\}=\emptyset$
provided the following requirement is met:

- It is not true that there exists an element a of \mathcal{A} such that $\mathcal{P}[a]$.

We now state two propositions:
(1) Let L_{1}, L_{2} be non empty lattice structures. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Let a_{1}, b_{1} be elements of L_{1}, and let a_{2}, b_{2} be elements of L_{2}, and let X be a set. Suppose $a_{1}=a_{2}$ and $b_{1}=b_{2}$. Then $a_{1} \sqcup b_{1}=a_{2} \sqcup b_{2}$ and $a_{1} \sqcap b_{1}=a_{2} \sqcap b_{2}$ and $a_{1} \sqsubseteq b_{1}$ iff $a_{2} \sqsubseteq b_{2}$.
(2) Let L_{1}, L_{2} be non empty lattice structures. Suppose the lattice structure of $L_{1}=$ the lattice structure of L_{2}. Let a be an element of L_{1}, and
let b be an element of L_{2}, and let X be a set. If $a=b$, then $a \sqsubseteq X$ iff $b \sqsubseteq X$ and $a \sqsupseteq X$ iff $b \sqsupseteq X$.
Let L be a 1 -sorted structure. A binary operation on L is a binary operation on the carrier of L. A unary operation on L is a unary operation on the carrier of L.

Let L be a non empty lattice structure and let X be a subset of L. We say that X is directed if and only if:
(Def.1) For every finite subset Y of X there exists an element x of L such that $\bigsqcup_{L} Y \sqsubseteq x$ and $x \in X$.
The following proposition is true
(3) For every non empty lattice structure L and for every subset X of L such that X is directed holds X is non empty.
We introduce quantale structures which are extensions of lattice structure and half group structure and are systems
< a carrier, a join operation, a meet operation, a multiplication 〉,
where the carrier is a set and the join operation, the meet operation, and the multiplication are binary operations on the carrier.

Let us mention that there exists a quantale structure which is non empty.
We consider quasinet structures as extensions of quantale structure and multiplicative loop structure as systems
\langle a carrier, a join operation, a meet operation, a multiplication, a unity \rangle, where the carrier is a set, the join operation, the meet operation, and the multiplication are binary operations on the carrier, and the unity is an element of the carrier.

Let us note that there exists a quasinet structure which is non empty.
A non empty half group structure has left-zero if:
(Def.2) There exists an element a of it such that for every element b of it holds $a \cdot b=a$.
A non empty half group structure has right-zero if:
(Def.3) There exists an element b of it such that for every element a of it holds $a \cdot b=b$.
A non empty half group structure has zero if:
(Def.4) It has left-zero and right-zero.
One can verify that every non empty half group structure which has zero has also left-zero and right-zero and every non empty half group structure which has left-zero and right-zero has also zero.

Let us note that there exists a non empty half group structure has zero.
A non empty quantale structure is right-distributive if:
(Def.5) For every element a of it and for every set X holds $a \otimes \bigsqcup_{\mathrm{it}} X=\bigsqcup_{\mathrm{it}}\{a \otimes b$: b ranges over elements of it, $b \in X\}$.
A non empty quantale structure is left-distributive if:
(Def.6) For every element a of it and for every set X holds $\bigsqcup_{\mathrm{it}} X \otimes a=\bigsqcup_{\mathrm{it}}\{b \otimes a$: b ranges over elements of it, $b \in X\}$.

A non empty quantale structure is \otimes-additive if:
(Def.7) For all elements a, b, c of it holds $(a \sqcup b) \otimes c=a \otimes c \sqcup b \otimes c$ and $c \otimes(a \sqcup b)=c \otimes a \sqcup c \otimes b$.
A non empty quantale structure is \otimes-continuous if it satisfies the condition (Def.8).
(Def.8) Let X_{1}, X_{2} be subsets of it. Suppose X_{1} is directed and X_{2} is directed. Then $\bigsqcup X_{1} \otimes \bigsqcup X_{2}=\bigsqcup_{\mathrm{it}}\{a \otimes b: a$ ranges over elements of it, b ranges over elements of it, $\left.a \in X_{1} \wedge b \in X_{2}\right\}$.
The following proposition is true
(4) Let Q be a non empty quantale structure. Suppose the lattice structure of $Q=$ the lattice of subsets of \emptyset. Then Q is associative commutative unital complete right-distributive left-distributive and lattice-like and has zero.
Let A be a non empty set and let b_{1}, b_{2}, b_{3} be binary operations on A. Note that $\left\langle A, b_{1}, b_{2}, b_{3}\right\rangle$ is non empty.

Let us observe that there exists a non empty quantale structure which is associative commutative unital left-distributive right-distributive complete and lattice-like and has zero.

The scheme LUBFraenkelDistr deals with a complete lattice-like non empty quantale structure \mathcal{A}, a binary functor \mathcal{F} yielding an element of \mathcal{A}, and sets \mathcal{B}, \mathcal{C}, and states that:
$\bigsqcup_{\mathcal{A}}\left\{\bigsqcup_{\mathcal{A}}\{\mathcal{F}(a, b): b\right.$ ranges over elements of $\mathcal{A}, b \in \mathcal{C}\}: a$ ranges over elements of $\mathcal{A}, a \in \mathcal{B}\}=\bigsqcup_{\mathcal{A}}\{\mathcal{F}(a, b): a$ ranges over elements of \mathcal{A}, b ranges over elements of $\mathcal{A}, a \in \mathcal{B} \wedge b \in \mathcal{C}\}$
for all values of the parameters.
In the sequel Q denotes a left-distributive right-distributive complete latticelike non empty quantale structure and a, b, c denote elements of Q.

Next we state two propositions:
(5) For every Q and for all sets X, Y holds $\bigsqcup_{Q} X \otimes \bigsqcup_{Q} Y=\bigsqcup_{Q}\{a \otimes b: a \in$ $X \wedge b \in Y\}$.
(6) $(a \sqcup b) \otimes c=a \otimes c \sqcup b \otimes c$ and $c \otimes(a \sqcup b)=c \otimes a \sqcup c \otimes b$.

Let A be a non empty set, let b_{1}, b_{2}, b_{3} be binary operations on A, and let e be an element of A. Observe that $\left\langle A, b_{1}, b_{2}, b_{3}, e\right\rangle$ is non empty.

One can verify that there exists a non empty quasinet structure which is complete and lattice-like.

Let us note that every complete lattice-like non empty quasinet structure which is left-distributive and right-distributive is also \otimes-continuous and \otimes additive.

Let us observe that there exists a non empty quasinet structure which is associative commutative well unital left-distributive right-distributive complete and lattice-like and has zero and left-zero.

A quantale is an associative left-distributive right-distributive complete lattice-like non empty quantale structure. A quasinet is a well unital associa-
tive \otimes-continuous \otimes-additive complete lattice-like non empty quasinet structure with left-zero.

A Blikle net is a non empty quasinet with zero.
The following proposition is true
(7) For every well unital non empty quasinet structure Q such that Q is a quantale holds Q is a Blikle net.
We adopt the following rules: Q will be a quantale and a, b, c, d, D will be elements of Q.

The following propositions are true:
(8) If $a \sqsubseteq b$, then $a \otimes c \sqsubseteq b \otimes c$ and $c \otimes a \sqsubseteq c \otimes b$.
(9) If $a \sqsubseteq b$ and $c \sqsubseteq d$, then $a \otimes c \sqsubseteq b \otimes d$.

Let A be a non empty set. A unary operation on A is idempotent if:
(Def.9) For every element a of A holds $\operatorname{it}(\operatorname{it}(a))=\operatorname{it}(a)$.
Let L be a non empty lattice structure. A unary operation on L is inflationary if:
(Def.10) For every element p of L holds $p \sqsubseteq \mathrm{it}(p)$.
A unary operation on L is deflationary if:
(Def.11) For every element p of L holds it $(p) \sqsubseteq p$.
A unary operation on L is monotone if:
(Def.12) For all elements p, q of L such that $p \sqsubseteq q$ holds $\operatorname{it}(p) \sqsubseteq \operatorname{it}(q)$.
A unary operation on L is \bigsqcup-distributive if:
(Def.13) For every subset X of L holds $\operatorname{it}(\bigsqcup X) \sqsubseteq \bigsqcup_{L}\{\operatorname{it}(a): a$ ranges over elements of $L, a \in X\}$.
We now state the proposition
(10) Let L be a complete lattice and let j be a unary operation on L. Suppose j is monotone. Then j is \bigsqcup-distributive if and only if for every subset X of L holds $j(\sqcup X)=\bigsqcup_{L}\{j(a)$: a ranges over elements of $L, a \in X\}$.
Let Q be a non empty quantale structure. A unary operation on Q is \otimes monotone if:
(Def.14) For all elements a, b of Q holds $\operatorname{it}(a) \otimes \operatorname{it}(b) \sqsubseteq \operatorname{it}(a \otimes b)$.
Let Q be a non empty quantale structure and let a, b be elements of Q. The functor $a \rightarrow_{r} b$ yields an element of Q and is defined by:
(Def.15) $\quad a \rightarrow_{r} b=\bigsqcup_{Q}\{c: c$ ranges over elements of $Q, c \otimes a \sqsubseteq b\}$.
The functor $a \rightarrow_{l} b$ yields an element of Q and is defined by:
(Def.16) $\quad a \rightarrow_{l} b=\bigsqcup_{Q}\{c: c$ ranges over elements of $Q, a \otimes c \sqsubseteq b\}$.
One can prove the following propositions:
$a \otimes b \sqsubseteq c$ iff $b \sqsubseteq a \rightarrow_{l} c$.
(12) $a \otimes b \sqsubseteq c$ iff $a \sqsubseteq b \rightarrow_{r} c$.
(13) For every quantale Q and for all elements s, a, b of Q such that $a \sqsubseteq b$ holds $b \rightarrow_{r} s \sqsubseteq a \rightarrow_{r} s$ and $b \rightarrow_{l} s \sqsubseteq a \rightarrow_{l} s$.
(14) Let Q be a quantale, and let s be an element of Q, and let j be a unary operation on Q. If for every element a of Q holds $j(a)=\left(a \rightarrow_{r} s\right) \rightarrow_{r} s$, then j is monotone.
Let Q be a non empty quantale structure. An element of Q is dualizing if:
(Def.17) For every element a of Q holds $\left(a \rightarrow_{r}\right.$ it) \rightarrow_{l} it $=a$ and ($a \rightarrow_{l}$ it) \rightarrow_{r} it $=a$.
An element of Q is cyclic if:
(Def.18) For every element a of Q holds $a \rightarrow_{r}$ it $=a \rightarrow_{l}$ it.
We now state several propositions:
(15) $\quad c$ is cyclic iff for all a, b such that $a \otimes b \sqsubseteq c$ holds $b \otimes a \sqsubseteq c$.
(16) For every quantale Q and for all elements s, a of Q such that s is cyclic holds $a \sqsubseteq\left(a \rightarrow_{r} s\right) \rightarrow_{r} s$ and $a \sqsubseteq\left(a \rightarrow_{l} s\right) \rightarrow_{l} s$.
(17) For every quantale Q and for all elements s, a of Q such that s is cyclic holds $a \rightarrow_{r} s=\left(\left(a \rightarrow_{r} s\right) \rightarrow_{r} s\right) \rightarrow_{r} s$ and $a \rightarrow_{l} s=\left(\left(a \rightarrow_{l} s\right) \rightarrow_{l} s\right) \rightarrow_{l} s$.
(18) For every quantale Q and for all elements s, a, b of Q such that s is cyclic holds $\left(\left(a \rightarrow_{r} s\right) \rightarrow_{r} s\right) \otimes\left(\left(b \rightarrow_{r} s\right) \rightarrow_{r} s\right) \sqsubseteq\left(a \otimes b \rightarrow_{r} s\right) \rightarrow_{r} s$.
(19) If D is dualizing, then Q is unital and $\mathbf{1}_{\text {the multiplication of } Q}=D \rightarrow_{r} D$ and $\mathbf{1}_{\text {the multiplication of } Q}=D \rightarrow_{l} D$.
(20) If a is dualizing, then $b \rightarrow_{r} c=b \otimes\left(c \rightarrow_{l} a\right) \rightarrow_{r} a$ and $b \rightarrow_{l} c=\left(c \rightarrow_{r}\right.$ $a) \otimes b \rightarrow_{l} a$.
We introduce Girard quantale structures which are extensions of quasinet structure and are systems

〈 a carrier, a join operation, a meet operation, a multiplication, a unity, absurd \rangle,
where the carrier is a set, the join operation, the meet operation, and the multiplication are binary operations on the carrier, and the unity and the absurd constitute elements of the carrier.

One can check that there exists a Girard quantale structure which is non empty.

A non empty Girard quantale structure is cyclic if:
(Def.19) The absurd of it is cyclic.
A non empty Girard quantale structure is dualized if:
(Def.20) The absurd of it is dualizing.
The following proposition is true
(21) Let Q be a non empty Girard quantale structure. Suppose the lattice structure of $Q=$ the lattice of subsets of \emptyset. Then Q is cyclic and dualized.
Let A be a non empty set, let b_{1}, b_{2}, b_{3} be binary operations on A, and let e_{1}, e_{2} be elements of A. One can verify that $\left\langle A, b_{1}, b_{2}, b_{3}, e_{1}, e_{2}\right\rangle$ is non empty.

Let us note that there exists a non empty Girard quantale structure which is associative commutative well unital left-distributive right-distributive complete lattice-like cyclic dualized and strict.

A Girard quantale is an associative well unital left-distributive rightdistributive complete lattice-like cyclic dualized non empty Girard quantale structure.

Let G be a Girard quantale structure. The functor \perp_{G} yielding an element of G is defined as follows:
(Def.21) $\perp_{G}=$ the absurd of G.
Let G be a non empty Girard quantale structure. The functor \top_{G} yielding an element of G is defined by:
(Def.22) $\quad \top_{G}=\perp_{G} \rightarrow_{r} \perp_{G}$.
Let a be an element of G. The functor \perp_{a} yielding an element of G is defined by:
(Def.23) $\perp_{a}=a \rightarrow_{r} \perp_{G}$.
Let G be a non empty Girard quantale structure. The functor $\operatorname{Negation}(G)$ yields a unary operation on G and is defined as follows:
(Def.24) For every element a of G holds (Negation $(G))(a)=\perp_{a}$.
Let G be a non empty Girard quantale structure and let u be a unary operation on G. The functor \perp_{u} yielding a unary operation on G is defined by:
(Def.25) $\quad \perp_{u}=\operatorname{Negation}(G) \cdot u$.
Let G be a non empty Girard quantale structure and let o be a binary operation on G. The functor \perp_{o} yields a binary operation on G and is defined as follows:
(Def.26) $\quad \perp_{o}=\operatorname{Negation}(G) \cdot o$.
We adopt the following convention: Q denotes a Girard quantale, a, a_{1}, a_{2}, b, b_{1}, b_{2}, c denote elements of Q, and X denotes a set.

We now state several propositions:

$$
\begin{align*}
& \text { (23) If } a \sqsubseteq b \text {, then } \perp_{b} \sqsubseteq \perp_{a} \text {. } \\
& \perp_{\perp_{a}}=a . \tag{22}\\
& \text { If } a \sqsubseteq b \text {, then } \perp_{b} \sqsubseteq \perp_{a} \text {. } \\
& \perp_{\bigsqcup_{Q} X}=\Pi_{Q}\left\{\perp_{a}: a \in X\right\} . \tag{24}\\
& \perp^{\sqcap_{Q} X}=\bigsqcup_{Q}\left\{\perp_{a}: a \in X\right\} \text {. } \tag{25}\\
& \perp_{a \sqcup b}=\perp_{a} \sqcap \perp_{b} \text { and } \perp_{a \sqcap b}=\perp_{a} \sqcup \perp_{b} . \tag{26}
\end{align*}
$$

Let us consider Q, a, b. The functor $a \wp b$ yields an element of Q and is defined as follows:
(Def.27) $\quad a \wp b=\perp_{\perp_{a} \otimes \perp_{b}}$.
We now state several propositions:
(27) $a \otimes \bigsqcup_{Q} X=\bigsqcup_{Q}\{a \otimes b: b \in X\}$ and $a \wp \Pi_{Q} X=\Pi_{Q}\{a \wp c: c \in X\}$.

$$
\begin{align*}
& \sqcup_{Q} X \otimes a=\bigsqcup_{Q}\{b \otimes a: b \in X\} \text { and } \Pi_{Q} X \wp a=\Pi_{Q}\{c \wp a: c \in X\} . \tag{28}\\
& a \wp b \sqcap c=(a \wp b) \sqcap(a \wp c) \text { and } b \sqcap c \wp a=(b \wp a) \sqcap(c \wp a) . \tag{29}\\
& \text { If } a_{1} \sqsubseteq b_{1} \text { and } a_{2} \sqsubseteq b_{2}, \text { then } a_{1} \wp a_{2} \sqsubseteq b_{1} \wp b_{2} . \tag{30}\\
& (a \wp b) \wp c=a \wp(b \wp c) \text {. } \tag{31}\\
& a \otimes \top_{Q}=a \text { and } \top_{Q} \otimes a=a . \tag{32}
\end{align*}
$$

$a \wp \perp_{Q}=a$ and $\perp_{Q} \wp a=a$.
Let Q be a quantale and let j be a unary operation on Q. Suppose j is monotone idempotent and \bigsqcup-distributive. Then there exists a complete lattice L such that the carrier of $L=\operatorname{rng} j$ and for every subset X of L holds $\bigsqcup X=j\left(\bigsqcup_{Q} X\right)$.

References

[1] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
[2] Grzegorz Bancerek. Filters - part I. Formalized Mathematics, 1(5):813-819, 1990.
[3] Grzegorz Bancerek. Filters - part II. Quotient lattices modulo filters and direct product of two lattices. Formalized Mathematics, 2(3):433-438, 1991.
[4] Grzegorz Bancerek. Monoids. Formalized Mathematics, 3(2):213-225, 1992.
[5] A. Blikle. An analysis of programs by algebraic means. Banach Center Publications, 2:167-213.
[6] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] J.-Y. Girard. Liniear logic. Theoretical Computer Science, 50(1):1-102, 1987.
[11] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[12] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[13] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[15] Davide N. Yetter. Quantales and (noncommutative) linear logic. The Journal of Symbolic Logic, 55(1):41-64, March 1990.
[16] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received May 9, 1994

Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$

Agnieszka Sakowicz
Warsaw University
Białystok
Jarosław Gryko
Warsaw University
Białystok
Adam Grabowski
Warsaw University
Białystok

MML Identifier: TOPRNS_1.

The papers [12], [3], [4], [11], [8], [10], [1], [2], [5], [6], [9], and [7] provide the notation and terminology for this paper.

For simplicity we adopt the following rules: f denotes a function, N, n, m denote natural numbers, q, r, r_{1}, r_{2} denote real numbers, x is arbitrary, and w, w_{1}, w_{2}, g denote points of $\mathcal{E}_{\mathrm{T}}^{N}$.

Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is a function from \mathbb{N} into the carrier of $\mathcal{E}_{\mathrm{T}}^{N}$.

In the sequel $s_{1}, s_{2}, s_{3}, s_{4}, s_{1}^{\prime}$ are sequences in $\mathcal{E}_{\mathrm{T}}^{N}$.
Next we state two propositions:
(1) $\quad f$ is a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ if and only if $\operatorname{dom} f=\mathbb{N}$ and for every x such that $x \in \mathbb{N}$ holds $f(x)$ is a point of $\mathcal{E}_{\mathrm{T}}^{N}$.
(2) $\quad f$ is a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ iff $\operatorname{dom} f=\mathbb{N}$ and for every n holds $f(n)$ is a point of $\mathcal{E}_{\mathrm{T}}^{N}$.
Let us consider N, s_{1}, n. Then $s_{1}(n)$ is a point of $\mathcal{E}_{\mathrm{T}}^{N}$.
Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is non-zero if:
(Def.1) \quad rng it \subseteq (the carrier of $\left.\mathcal{E}_{\mathrm{T}}^{N}\right) \backslash\left\{0_{\mathcal{E}_{\mathrm{T}}^{N}}\right\}$.
We now state several propositions:
(3) s_{1} is non-zero iff for every x such that $x \in \mathbb{N}$ holds $s_{1}(x) \neq 0_{\mathcal{E}_{T}^{N}}$.
(4) $\quad s_{1}$ is non-zero iff for every n holds $s_{1}(n) \neq 0_{\mathcal{E}_{\mathrm{T}}^{N}}$.
(5) For all N, s_{1}, s_{2} such that for every x such that $x \in \mathbb{N}$ holds $s_{1}(x)=$ $s_{2}(x)$ holds $s_{1}=s_{2}$.
(6) For all N, s_{1}, s_{2} such that for every n holds $s_{1}(n)=s_{2}(n)$ holds $s_{1}=s_{2}$.
(7) For every point w of $\mathcal{E}_{\mathrm{T}}^{N}$ there exists s_{1} such that rng $s_{1}=\{w\}$.

The scheme ExTopRealNSeq deals with a natural number \mathcal{A} and a unary functor \mathcal{F} yielding a point of $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$, and states that:

There exists a sequence s_{1} in $\mathcal{E}_{\mathrm{T}}^{\mathcal{A}}$ such that for every n holds $s_{1}(n)=$ $\mathcal{F}(n)$
for all values of the parameters.
Let us consider N, s_{2}, s_{3}. The functor $s_{2}+s_{3}$ yielding a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is defined by:
(Def.2) For every n holds $\left(s_{2}+s_{3}\right)(n)=s_{2}(n)+s_{3}(n)$.
Let us consider r, N, s_{1}. The functor $r \cdot s_{1}$ yields a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ and is defined by:
(Def.3) For every n holds $\left(r \cdot s_{1}\right)(n)=r \cdot s_{1}(n)$.
Let us consider N, s_{1}. The functor $-s_{1}$ yields a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ and is defined as follows:
(Def.4) For every n holds $\left(-s_{1}\right)(n)=-s_{1}(n)$.
Let us consider N, s_{2}, s_{3}. The functor $s_{2}-s_{3}$ yields a sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ and is defined by:
(Def.5) $s_{2}-s_{3}=s_{2}+-s_{3}$.
Let us consider N and let x be a point of $\mathcal{E}_{\mathrm{T}}^{N}$. The functor $|x|$ yields a real number and is defined by:
(Def.6) There exists a finite sequence y of elements of \mathbb{R} such that $x=y$ and $|x|=|y|$.
Let us consider N, s_{1}. The functor $\left|s_{1}\right|$ yielding a sequence of real numbers is defined by:
(Def.7) For every n holds $\left|s_{1}\right|(n)=\left|s_{1}(n)\right|$.
We now state a number of propositions:
(8) $|r| \cdot|w|=|r \cdot w|$.
(9) $\quad\left|r \cdot s_{1}\right|=|r|\left|s_{1}\right|$.
(10) $s_{2}+s_{3}=s_{3}+s_{2}$.
(11) $\left(s_{2}+s_{3}\right)+s_{4}=s_{2}+\left(s_{3}+s_{4}\right)$.
(12) $-s_{1}=(-1) \cdot s_{1}$.
(13) $r \cdot\left(s_{2}+s_{3}\right)=r \cdot s_{2}+r \cdot s_{3}$.
(14) $(r \cdot q) \cdot s_{1}=r \cdot\left(q \cdot s_{1}\right)$.
(15) $r \cdot\left(s_{2}-s_{3}\right)=r \cdot s_{2}-r \cdot s_{3}$.
(16) $s_{2}-\left(s_{3}+s_{4}\right)=s_{2}-s_{3}-s_{4}$.
(17) $1 \cdot s_{1}=s_{1}$.
(18) $\quad--s_{1}=s_{1}$.
(19) $s_{2}--s_{3}=s_{2}+s_{3}$.
(20) $s_{2}-\left(s_{3}-s_{4}\right)=\left(s_{2}-s_{3}\right)+s_{4}$.
(21) $s_{2}+\left(s_{3}-s_{4}\right)=\left(s_{2}+s_{3}\right)-s_{4}$.
(22) If $r \neq 0$ and s_{1} is non-zero, then $r \cdot s_{1}$ is non-zero.
(23) If s_{1} is non-zero, then $-s_{1}$ is non-zero.
(24) $\left|0_{\mathcal{E}_{\mathrm{T}}^{N}}\right|=0$.
(34) If $w_{1} \neq w_{2}$, then $\left|w_{1}-w_{2}\right|>0$.
(36) If $0 \leq\left|w_{1}\right|$ and $0 \leq r_{1}$ and $\left|w_{1}\right|<\left|w_{2}\right|$ and $r_{1}<r_{2}$, then $\left|w_{1}\right| \cdot r_{1}<$ $\left|w_{2}\right| \cdot r_{2}$.
(38) ${ }^{1} \quad-|w|<r$ and $r<|w|$ iff $|r|<|w|$.

Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is bounded if:
(Def.8) There exists r such that for every n holds \mid it $(n) \mid<r$.
The following proposition is true
(39) For every n there exists r such that $0<r$ and for every m such that $m \leq n$ holds $\left|s_{1}(m)\right|<r$.
Let us consider N. A sequence in $\mathcal{E}_{\mathrm{T}}^{N}$ is convergent if:
(Def.9) There exists g such that for every r such that $0<r$ there exists n such that for every m such that $n \leq m$ holds \mid it $(m)-g \mid<r$.
Let us consider N, s_{1}. Let us assume that s_{1} is convergent. The functor $\lim s_{1}$ yields a point of $\mathcal{E}_{\mathrm{T}}^{N}$ and is defined by:
(Def.10) For every r such that $0<r$ there exists n such that for every m such that $n \leq m$ holds $\left|s_{1}(m)-\lim s_{1}\right|<r$.
The following propositions are true:
(40) Suppose s_{1} is convergent. Then $\lim s_{1}=g$ if and only if for every r such that $0<r$ there exists n such that for every m such that $n \leq m$ holds $\left|s_{1}(m)-g\right|<r$.
(41) If s_{1} is convergent and s_{1}^{\prime} is convergent, then $s_{1}+s_{1}^{\prime}$ is convergent.
(42) If s_{1} is convergent and s_{1}^{\prime} is convergent, then $\lim \left(s_{1}+s_{1}^{\prime}\right)=\lim s_{1}+$ $\lim s_{1}^{\prime}$.
(43) If s_{1} is convergent, then $r \cdot s_{1}$ is convergent.
(44) If s_{1} is convergent, then $\lim \left(r \cdot s_{1}\right)=r \cdot \lim s_{1}$.
(45) If s_{1} is convergent, then $-s_{1}$ is convergent.
(46) If s_{1} is convergent, then $\lim \left(-s_{1}\right)=-\lim s_{1}$.
(47) If s_{1} is convergent and s_{1}^{\prime} is convergent, then $s_{1}-s_{1}^{\prime}$ is convergent.

[^8](48) If s_{1} is convergent and s_{1}^{\prime} is convergent, then $\lim \left(s_{1}-s_{1}^{\prime}\right)=\lim s_{1}-$ $\lim s_{1}^{\prime}$.
$(50)^{2}$ If s_{1} is convergent, then s_{1} is bounded.
If s_{1} is convergent, then if $\lim s_{1} \neq 0_{\mathcal{E}_{\mathrm{T}}^{N}}$, then there exists n such that for every m such that $n \leq m$ holds $\frac{\left|\lim s_{1}\right|}{2}<\left|s_{1}(m)\right|$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[10] Jan Popiołek. Some properties of functions modul and signum. Formalized Mathematics, $1(\mathbf{2}): 263-264,1990$.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received May 10, 1994

[^9]
Extremal Properties of Vertices on Special Polygons, Part I

Yatsuka Nakamura
Shinshu University
Nagano

Czesław Byliński
Warsaw University
Białystok

Abstract

Summary. First, extremal properties of endpoints of line segments in n-dimensional Euclidean space are discussed. Some topological properties of line segments are also discussed. Secondly, extremal properties of vertices of special polygons which consist of horizontal and vertical line segments in 2-dimensional Euclidean space, are also derived.

MML Identifier: SPPOL_1.

The terminology and notation used in this paper are introduced in the following articles: [18], [2], [12], [17], [21], [19], [22], [6], [15], [10], [16], [1], [7], [3], [5], [13], [4], [8], [20], [9], [14], and [11].

1. Preliminaries

One can prove the following propositions:
(1) For every finite sequence f holds f is trivial iff len $f<2$.
(2) For every finite set A holds A is trivial iff card $A<2$.
(3) For every set A holds A is non trivial iff there exist arbitrary a_{1}, a_{2} such that $a_{1} \in A$ and $a_{2} \in A$ and $a_{1} \neq a_{2}$.
(4) Let D be a non empty set and let A be a subset of D. Then A is non trivial if and only if there exist elements d_{1}, d_{2} of D such that $d_{1} \in A$ and $d_{2} \in A$ and $d_{1} \neq d_{2}$.
We follow a convention: n, i, k, m will denote natural numbers and r, r_{1}, r_{2}, s, s_{1}, s_{2} will denote real numbers.

Next we state a number of propositions:
(5) If $n \leq k$, then $n-1 \leq k$ and $n-1<k$ and $n \leq k+1$ and $n<k+1$.
(6) If $n<k$, then $n-1 \leq k$ and $n-1<k$ and $n+1 \leq k$ and $n \leq k-1$ and $n \leq k+1$ and $n<k+1$.
(7) If $1 \leq k-m$ and $k-m \leq n$, then $k-m \in \operatorname{Seg} n$ and $k-m$ is a natural number.
(8) If $r_{1} \geq 0$ and $r_{2} \geq 0$ and $r_{1}+r_{2}=0$, then $r_{1}=0$ and $r_{2}=0$.
(9) If $r_{1} \leq 0$ and $r_{2} \leq 0$ and $r_{1}+r_{2}=0$, then $r_{1}=0$ and $r_{2}=0$. and $r_{2}=1$.
(11) If $r_{1} \geq 0$ and $r_{2} \geq 0$ and $s_{1} \geq 0$ and $s_{2} \geq 0$ and $r_{1} \cdot s_{1}+r_{2} \cdot s_{2}=0$, then $r_{1}=0$ or $s_{1}=0$ but $r_{2}=0$ or $s_{2}=0$.
(12) If $0 \leq r$ and $r \leq 1$ and $s_{1} \geq 0$ and $s_{2} \geq 0$ and $r \cdot s_{1}+(1-r) \cdot s_{2}=0$, then $r=0$ and $s_{2}=0$ or $r=1$ and $s_{1}=0$ or $s_{1}=0$ and $s_{2}=0$.
(13) If $r<r_{1}$ and $r<r_{2}$, then $r<\min \left(r_{1}, r_{2}\right)$.
(14) If $r>r_{1}$ and $r>r_{2}$, then $r>\max \left(r_{1}, r_{2}\right)$.

In this article we present several logical schemes. The scheme FinSeqFam deals with a non empty set \mathcal{A}, a finite sequence \mathcal{B} of elements of \mathcal{A}, a binary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(\mathcal{B}, i): i \in \operatorname{dom} \mathcal{B} \wedge \mathcal{P}[i]\}$ is finite
for all values of the parameters.
The scheme FinSeqFam' concerns a non empty set \mathcal{A}, a finite sequence \mathcal{B} of elements of \mathcal{A}, a binary functor \mathcal{F} yielding a set, and a unary predicate \mathcal{P}, and states that:
$\{\mathcal{F}(\mathcal{B}, i): 1 \leq i \wedge i \leq \operatorname{len} \mathcal{B} \wedge \mathcal{P}[i]\}$ is finite
for all values of the parameters.
Next we state several propositions:
(15) For all elements x_{1}, x_{2}, x_{3} of \mathcal{R}^{n} holds $\left|x_{1}-x_{2}\right|-\left|x_{2}-x_{3}\right| \leq\left|x_{1}-x_{3}\right|$.
(16) For all elements x_{1}, x_{2}, x_{3} of \mathcal{R}^{n} holds $\left|x_{2}-x_{1}\right|-\left|x_{2}-x_{3}\right| \leq\left|x_{3}-x_{1}\right|$.
(17) Every point of $\mathcal{E}_{\mathrm{T}}^{n}$ is an element of \mathcal{R}^{n} and a point of \mathcal{E}^{n}.
(18) Every point of \mathcal{E}^{n} is an element of \mathcal{R}^{n} and a point of $\mathcal{E}_{\mathrm{T}}^{n}$.
(19) Every element of \mathcal{R}^{n} is a point of \mathcal{E}^{n} and a point of $\mathcal{E}_{\mathrm{T}}^{n}$.

2. Properties of line segments

In the sequel $p, p_{1}, p_{2}, q_{1}, q_{2}$ will denote points of $\mathcal{E}_{\mathrm{T}}^{n}$.
One can prove the following propositions:
(20) For all points u_{1}, u_{2} of \mathcal{E}^{n} and for all elements v_{1}, v_{2} of \mathcal{R}^{n} such that $v_{1}=u_{1}$ and $v_{2}=u_{2}$ holds $\rho\left(u_{1}, u_{2}\right)=\left|v_{1}-v_{2}\right|$.
(21) For all p, p_{1}, p_{2} such that $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ there exists r such that $0 \leq r$ and $r \leq 1$ and $p=(1-r) \cdot p_{1}+r \cdot p_{2}$.
(22) For all p_{1}, p_{2}, r such that $0 \leq r$ and $r \leq 1$ holds $(1-r) \cdot p_{1}+r \cdot p_{2} \in$ $\mathcal{L}\left(p_{1}, p_{2}\right)$.
(23) Given p_{1}, p_{2} and let P be a non empty subset of $\mathcal{E}_{\mathrm{T}}^{n}$. Suppose P is closed and $P \subseteq \mathcal{L}\left(p_{1}, p_{2}\right)$. Then there exists s such that $(1-s) \cdot p_{1}+s \cdot p_{2} \in P$ and for every r such that $0 \leq r$ and $r \leq 1$ and $(1-r) \cdot p_{1}+r \cdot p_{2} \in P$ holds $s \leq r$.
(24) For all $p_{1}, p_{2}, q_{1}, q_{2}$ such that $\mathcal{L}\left(q_{1}, q_{2}\right) \subseteq \mathcal{L}\left(p_{1}, p_{2}\right)$ and $p_{1} \in \mathcal{L}\left(q_{1}, q_{2}\right)$ holds $p_{1}=q_{1}$ or $p_{1}=q_{2}$.
(25) For all $p_{1}, p_{2}, q_{1}, q_{2}$ such that $\mathcal{L}\left(p_{1}, p_{2}\right)=\mathcal{L}\left(q_{1}, q_{2}\right)$ holds $p_{1}=q_{1}$ and $p_{2}=q_{2}$ or $p_{1}=q_{2}$ and $p_{2}=q_{1}$.
(26) $\mathcal{E}_{\mathrm{T}}^{n}$ is a T_{2} space.
(27) $\{p\}$ is closed.
(28) $\mathcal{L}\left(p_{1}, p_{2}\right)$ is compact.
(29) $\quad \mathcal{L}\left(p_{1}, p_{2}\right)$ is closed.

Let us consider n, p and let P be a subset of $\mathcal{E}_{\mathrm{T}}^{n}$. We say that p is extremal in P if and only if:
(Def.1) $\quad p \in P$ and for all p_{1}, p_{2} such that $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ and $\mathcal{L}\left(p_{1}, p_{2}\right) \subseteq P$ holds $p=p_{1}$ or $p=p_{2}$.
We now state several propositions:
(30) For all subsets P, Q of $\mathcal{E}_{\mathrm{T}}^{n}$ such that p is extremal in P and $Q \subseteq P$ and $p \in Q$ holds p is extremal in Q.
(31) p is extremal in $\{p\}$.
(32) $\quad p_{1}$ is extremal in $\mathcal{L}\left(p_{1}, p_{2}\right)$.
(33) $\quad p_{2}$ is extremal in $\mathcal{L}\left(p_{1}, p_{2}\right)$.
(34) If p is extremal in $\mathcal{L}\left(p_{1}, p_{2}\right)$, then $p=p_{1}$ or $p=p_{2}$.

3. Alternating special sequences

We follow the rules: P, Q will be subsets of $\mathcal{E}_{\mathrm{T}}^{2}, f, f_{1}, f_{2}$ will be finite sequences of elements of the carrier of $\mathcal{E}_{\mathrm{T}}^{2}$, and $p, p_{1}, p_{2}, p_{3}, q$ will be points of $\mathcal{E}_{\mathrm{T}}^{2}$.

The following proposition is true
(35) For all p_{1}, p_{2} such that $\left(p_{1}\right)_{\mathbf{1}} \neq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{2}} \neq\left(p_{2}\right)_{\mathbf{2}}$ there exists p such that $p \in \mathcal{L}\left(p_{1}, p_{2}\right)$ and $p_{\mathbf{1}} \neq\left(p_{1}\right)_{\mathbf{1}}$ and $p_{\mathbf{1}} \neq\left(p_{2}\right)_{\mathbf{1}}$ and $p_{\mathbf{2}} \neq\left(p_{1}\right)_{\mathbf{2}}$ and $p_{\mathbf{2}} \neq\left(p_{2}\right)_{\mathbf{2}}$.
Let us consider P. We say that P is horizontal if and only if:
(Def.2) For all p, q such that $p \in P$ and $q \in P$ holds $p_{\mathbf{2}}=q_{\mathbf{2}}$.
We say that P is vertical if and only if:
(Def.3) For all p, q such that $p \in P$ and $q \in P$ holds $p_{\mathbf{1}}=q_{\mathbf{1}}$.
Let us observe that every subset of $\mathcal{E}_{\mathrm{T}}^{2}$ which is non trivial and horizontal is also non vertical and every subset of $\mathcal{E}_{\text {T }}^{2}$ which is non trivial and vertical is also non horizontal.

Next we state a number of propositions:
(36) $\quad p_{2}=q_{2}$ iff $\mathcal{L}(p, q)$ is horizontal.
$p_{\mathbf{1}}=q_{1}$ iff $\mathcal{L}(p, q)$ is vertical.
(38) If $p_{1} \in \mathcal{L}(p, q)$ and $p_{2} \in \mathcal{L}(p, q)$ and $\left(p_{1}\right)_{\mathbf{1}} \neq\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{2}}=\left(p_{2}\right)_{\mathbf{2}}$, then $\mathcal{L}(p, q)$ is horizontal.
(39) If $p_{1} \in \mathcal{L}(p, q)$ and $p_{2} \in \mathcal{L}(p, q)$ and $\left(p_{1}\right)_{\mathbf{2}} \neq\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{1}}=\left(p_{2}\right)_{\mathbf{1}}$, then $\mathcal{L}(p, q)$ is vertical.
(40) $\mathcal{L}(f, i)$ is closed.
(41) If f is special, then $\mathcal{L}(f, i)$ is vertical or $\mathcal{L}(f, i)$ is horizontal.
(42) If f is one-to-one and $1 \leq i$ and $i+1 \leq \operatorname{len} f$, then $\mathcal{L}(f, i)$ is non trivial.
(43) If f is one-to-one and $1 \leq i$ and $i+1 \leq \operatorname{len} f$ and $\mathcal{L}(f, i)$ is vertical, then $\mathcal{L}(f, i)$ is non horizontal.
(44) For every f holds $\{\mathcal{L}(f, i): 1 \leq i \wedge i \leq \operatorname{len} f\}$ is finite.
(45) For every f holds $\{\mathcal{L}(f, i): 1 \leq i \wedge i+1 \leq \operatorname{len} f\}$ is finite.
(46) For every f holds $\{\mathcal{L}(f, i): 1 \leq i \wedge i \leq \operatorname{len} f\}$ is a family of subsets of $\mathcal{E}_{\mathrm{T}}^{2}$.
(47) For every f holds $\{\mathcal{L}(f, i): 1 \leq i \wedge i+1 \leq \operatorname{len} f\}$ is a family of subsets of $\mathcal{E}_{\mathrm{T}}^{2}$.
(48) For every f such that $Q=\bigcup\{\mathcal{L}(f, i): 1 \leq i \wedge i+1 \leq \operatorname{len} f\}$ holds Q is closed.
(49) $\widetilde{\mathcal{L}}(f)$ is closed.

A finite sequence of elements of $\mathcal{E}_{\mathrm{T}}^{2}$ is alternating if:
(Def.4) For every i such that $1 \leq i$ and $i+2 \leq$ len it holds $\left(\pi_{i} \mathrm{it}\right)_{\mathbf{1}} \neq\left(\pi_{i+2} \mathrm{it}\right)_{\mathbf{1}}$ and $\left(\pi_{i} \mathrm{it}\right)_{\mathbf{2}} \neq\left(\pi_{i+2} \mathrm{it}\right)_{\mathbf{2}}$.
One can prove the following propositions:
(50) If f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$ and $\left(\pi_{i} f\right)_{\mathbf{1}}=$ $\left(\pi_{i+1} f\right)_{\mathbf{1}}$, then $\left(\pi_{i+1} f\right)_{\mathbf{2}}=\left(\pi_{i+2} f\right)_{\mathbf{2}}$.
(51) If f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$ and $\left(\pi_{i} f\right)_{\mathbf{2}}=$ $\left(\pi_{i+1} f\right)_{\mathbf{2}}$, then $\left(\pi_{i+1} f\right)_{\mathbf{1}}=\left(\pi_{i+2} f\right)_{\mathbf{1}}$.
(52) Suppose f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$ and $p_{1}=\pi_{i} f$ and $p_{2}=\pi_{i+1} f$ and $p_{3}=\pi_{i+2} f$. Then $\left(p_{1}\right)_{\mathbf{1}}=\left(p_{2}\right)_{\mathbf{1}}$ and $\left(p_{3}\right)_{\mathbf{1}} \neq\left(p_{2}\right)_{\mathbf{1}}$ or $\left(p_{1}\right)_{\mathbf{2}}=\left(p_{2}\right)_{\mathbf{2}}$ and $\left(p_{3}\right)_{\mathbf{2}} \neq\left(p_{2}\right)_{\mathbf{2}}$.
(53) Suppose f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$ and $p_{1}=\pi_{i} f$ and $p_{2}=\pi_{i+1} f$ and $p_{3}=\pi_{i+2} f$. Then $\left(p_{2}\right)_{\mathbf{1}}=\left(p_{3}\right)_{\mathbf{1}}$ and $\left(p_{1}\right)_{\mathbf{1}} \neq\left(p_{2}\right)_{\mathbf{1}}$ or $\left(p_{2}\right)_{\mathbf{2}}=\left(p_{3}\right)_{\mathbf{2}}$ and $\left(p_{1}\right)_{\mathbf{2}} \neq\left(p_{2}\right)_{\mathbf{2}}$.
(54) If f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$, then $\mathcal{L}\left(\pi_{i} f, \pi_{i+2} f\right) \nsubseteq \mathcal{L}(f, i) \cup \mathcal{L}(f, i+1)$.
(55) If f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$ and $\mathcal{L}(f, i)$ is vertical, then $\mathcal{L}(f, i+1)$ is horizontal.
(56) If f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$ and $\mathcal{L}(f, i)$ is horizontal, then $\mathcal{L}(f, i+1)$ is vertical.
(57) Suppose f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$. Then $\mathcal{L}(f, i)$ is vertical and $\mathcal{L}(f, i+1)$ is horizontal or $\mathcal{L}(f, i)$ is horizontal and $\mathcal{L}(f, i+1)$ is vertical.
(58) Suppose f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$ and $\pi_{i+1} f \in \mathcal{L}(p, q)$ and $\mathcal{L}(p, q) \subseteq \mathcal{L}(f, i) \cup \mathcal{L}(f, i+1)$. Then $\pi_{i+1} f=p$ or $\pi_{i+1} f=q$.
(59) If f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$, then $\pi_{i+1} f$ is extremal in $\mathcal{L}(f, i) \cup \mathcal{L}(f, i+1)$.
(60) Let u be a point of \mathcal{E}^{2}. Suppose f is special and alternating and $1 \leq i$ and $i+2 \leq \operatorname{len} f$ and $u=\pi_{i+1} f$ and $\pi_{i+1} f \in \mathcal{L}(p, q)$ and $\pi_{i+1} f \neq q$ and $p \notin \mathcal{L}(f, i) \cup \mathcal{L}(f, i+1)$. Given s. If $s>0$, then there exists p_{3} such that $p_{3} \notin \mathcal{L}(f, i) \cup \mathcal{L}(f, i+1)$ and $p_{3} \in \mathcal{L}(p, q)$ and $p_{3} \in \operatorname{Ball}(u, s)$.
Let us consider f_{1}, f_{2}, P. We say that f_{1} and f_{2} are generators of P if and only if the conditions (Def.5) are satisfied.
(Def.5) (i) f_{1} is alternating,
(ii) f_{2} is alternating,
(iii) $\pi_{1} f_{1}=\pi_{1} f_{2}$,
(iv) $\pi_{\operatorname{len} f_{1}} f_{1}=\pi_{\operatorname{len} f_{2}} f_{2}$,
(v) $\left\langle\pi_{2} f_{1}, \pi_{1} f_{1}, \pi_{2} f_{2}\right\rangle$ is alternating,
(vi) $\left\langle\pi_{\operatorname{len} f_{1}-1} f_{1}, \pi_{\operatorname{len} f_{1}} f_{1}, \pi_{\operatorname{len} f_{2}-1} f_{2}\right\rangle$ is alternating,
(vii) $\quad \pi_{1} f_{1} \neq \pi_{\text {len } f_{1}} f_{1}$,
(viii) $\widetilde{\mathcal{L}}\left(f_{1}\right) \cap \widetilde{\mathcal{L}}\left(f_{2}\right)=\left\{\pi_{1} f_{1}, \pi_{\operatorname{len} f_{1}} f_{1}\right\}$, and
(ix) $\quad P=\widetilde{\mathcal{L}}\left(f_{1}\right) \cup \widetilde{\mathcal{L}}\left(f_{2}\right)$.

Next we state the proposition
(61) If f_{1} and f_{2} are generators of P and $1<i$ and $i<\operatorname{len} f_{1}$, then $\pi_{i} f_{1}$ is extremal in P.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Agata Darmochwat. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.
[9] Agata Darmochwal. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[10] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[11] Agata Darmochwał and Yatsuka Nakamura. The topological space $\mathcal{E}_{\mathrm{T}}^{2}$. Arcs, line segments and special polygonal arcs. Formalized Mathematics, 2(5):617-621, 1991.
[12] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[13] Stanisława Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.
[14] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125-135, 1993.
[15] Beata Padlewska and Agata Darmochwal. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[17] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[18] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[19] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[20] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[21] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[22] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received May 11, 1994

Relocatability ${ }^{1}$

Yasushi Tanaka
Shinshu University
Information Engineering Dept.
Nagano

Abstract

Summary. This article defines the concept of relocating the program part of a finite partial state of SCM (data part stays intact). The relocated program differs from the original program in that all jump instructions are adjusted by the relocation factor and other instructions remain unchanged. The main theorem states that if a program computes a function then the relocated program computes the same function, and vice versa.

MML Identifier: RELOC.

The terminology and notation used in this paper have been introduced in the following articles: [16], [2], [1], [19], [5], [6], [15], [7], [18], [13], [4], [9], [3], [8], [10], [11], [17], [12], and [14].

1. Relocatability

In this paper j, k, m will be natural numbers.
Let l_{1} be an instruction-location of SCM and let k be a natural number. The functor $l_{1}+k$ yielding an instruction-location of SCM is defined as follows: (Def.1) There exists a natural number m such that $l_{1}=\mathbf{i}_{m}$ and $l_{1}+k=\mathbf{i}_{m+k}$. The functor $l_{1}-^{\prime} k$ yields an instruction-location of SCM and is defined as follows:
(Def.2) There exists a natural number m such that $l_{1}=\mathbf{i}_{m}$ and $l_{1}-^{\prime} k=\mathbf{i}_{m-^{\prime} k}$.
The following three propositions are true:
(1) For every instruction-location l_{1} of $\mathbf{S C M}$ and for every natural number k holds $\left(l_{1}+k\right)-^{\prime} k=l_{1}$.

[^10](2) For all instructions-locations l_{2}, l_{3} of $\mathbf{S C M}$ and for every natural number k holds $\operatorname{Start}-\operatorname{At}\left(l_{2}+k\right)=\operatorname{Start}-\operatorname{At}\left(l_{3}+k\right)$ iff $\operatorname{Start}-\operatorname{At}\left(l_{2}\right)=$ Start-At $\left(l_{3}\right)$.
(3) For all instructions-locations l_{2}, l_{3} of $\mathbf{S C M}$ and for every natural number k such that $\operatorname{Start}-\operatorname{At}\left(l_{2}\right)=\operatorname{Start}-\operatorname{At}\left(l_{3}\right)$ holds $\operatorname{Start}-\operatorname{At}\left(l_{2}-{ }^{\prime} k\right)=$ Start-At $\left(l_{3}-{ }^{\prime} k\right)$.
Let I be an instruction of $\mathbf{S C M}$ and let k be a natural number. The functor $\operatorname{IncAddr}(I, k)$ yields an instruction of $\mathbf{S C M}$ and is defined as follows:
(Def.3) (i) $\operatorname{IncAddr}(I, k)=$ goto $\left(\left({ }^{@} I\right) \operatorname{address}_{\mathrm{j}}^{\mathrm{T}}+k\right)$ if $\operatorname{InsCode}(I)=6$,
(ii) $\operatorname{IncAddr}(I, k)=$ if $\left({ }^{@} I\right) \operatorname{address}_{\mathrm{c}}^{\mathrm{T}}=0$ goto $\left.{ }^{@} I\right) \operatorname{address}_{\mathrm{j}}^{\mathrm{T}}+k$ if $\operatorname{InsCode}(I)=7$,
(iii) $\operatorname{IncAddr}(I, k)=$ if $\left({ }^{@} I\right) \operatorname{address}_{\mathrm{c}}^{\mathrm{T}}>0$ goto $\left({ }^{@} I\right) \operatorname{address}_{\mathrm{j}}^{\mathrm{T}}+k$ if $\operatorname{InsCode}(I)=8$,
(iv) $\operatorname{IncAddr}(I, k)=I$, otherwise.

One can prove the following propositions:
(4) For every natural number k holds $\operatorname{IncAddr}\left(\right.$ halt $\left._{\mathbf{S C M}}, k\right)=$ halt $_{\mathbf{S C M}}$.
(5) For every natural number k and for all data-locations a, b holds $\operatorname{IncAddr}(a:=b, k)=a:=b$.
(6) For every natural number k and for all data-locations a, b holds $\operatorname{IncAddr}(\operatorname{AddTo}(a, b), k)=\operatorname{AddTo}(a, b)$.
(7) For every natural number k and for all data-locations a, b holds $\operatorname{IncAddr}(\operatorname{SubFrom}(a, b), k)=\operatorname{SubFrom}(a, b)$.
(8) For every natural number k and for all data-locations a, b holds $\operatorname{IncAddr}(\operatorname{MultBy}(a, b), k)=\operatorname{MultBy}(a, b)$.
(9) For every natural number k and for all data-locations a, b holds $\operatorname{IncAddr}(\operatorname{Divide}(a, b), k)=\operatorname{Divide}(a, b)$.
(10) For every natural number k and for every instruction-location l_{1} of SCM holds IncAddr (goto $\left.l_{1}, k\right)=$ goto $\left(l_{1}+k\right)$.
(11) Let k be a natural number, and let l_{1} be an instruction-location of $\mathbf{S C M}$, and let a be a data-location. Then $\operatorname{IncAddr}\left(\right.$ if $a=0$ goto $\left.l_{1}, k\right)=$ if $a=0$ goto $l_{1}+k$.
(12) Let k be a natural number, and let l_{1} be an instruction-location of $\mathbf{S C M}$, and let a be a data-location. Then $\operatorname{IncAddr}\left(\right.$ if $a>0$ goto $\left.l_{1}, k\right)=$ if $a>0$ goto $l_{1}+k$.
(13) For every instruction I of SCM and for every natural number k holds InsCode $(\operatorname{IncAddr}(I, k))=\operatorname{InsCode}(I)$.
(14) Let I_{1}, I be instructions of SCM and let k be a natural number. Suppose $\operatorname{InsCode}(I)=0$ or $\operatorname{InsCode}(I)=1$ or $\operatorname{InsCode}(I)=$ 2 or $\operatorname{InsCode}(I)=3$ or $\operatorname{InsCode}(I)=4$ or $\operatorname{InsCode}(I)=5$ but $\operatorname{IncAddr}\left(I_{1}, k\right)=I$. Then $I_{1}=I$.
Let p be a programmed finite partial state of $\mathbf{S C M}$ and let k be a natural number. The functor $\operatorname{Shift}(p, k)$ yielding a programmed finite partial state of
$\mathbf{S C M}$ is defined by:
(Def.4) dom $\operatorname{Shift}(p, k)=\left\{\mathbf{i}_{m+k}: \mathbf{i}_{m} \in \operatorname{dom} p\right\}$ and for every m such that $\mathbf{i}_{m} \in \operatorname{dom} p$ holds $(\operatorname{Shift}(p, k))\left(\mathbf{i}_{m+k}\right)=p\left(\mathbf{i}_{m}\right)$.
We now state three propositions:
(15) Let l be an instruction-location of $\mathbf{S C M}$, and let k be a natural number, and let p be a programmed finite partial state of $\mathbf{S C M}$. If $l \in \operatorname{dom} p$, then $(\operatorname{Shift}(p, k))(l+k)=p(l)$.
(16) Let p be a programmed finite partial state of $\mathbf{S C M}$ and let k be a natural number. Then dom $\operatorname{Shift}(p, k)=\left\{i_{1}+k: i_{1}\right.$ ranges over instructionslocations of $\left.\mathbf{S C M}, i_{1} \in \operatorname{dom} p\right\}$.
(17) Let p be a programmed finite partial state of SCM and let k be a natural number. Then dom $\operatorname{Shift}(p, k) \subseteq$ the instruction locations of SCM.
Let p be a programmed finite partial state of $\mathbf{S C M}$ and let k be a natural number. The functor $\operatorname{IncAddr}(p, k)$ yielding a programmed finite partial state of SCM is defined as follows:
(Def.5) dom $\operatorname{IncAddr}(p, k)=\operatorname{dom} p$ and for every m such that $\mathbf{i}_{m} \in \operatorname{dom} p$ holds $(\operatorname{IncAddr}(p, k))\left(\mathbf{i}_{m}\right)=\operatorname{IncAddr}\left(\pi_{\mathbf{i}_{m}} p, k\right)$.
One can prove the following two propositions:
(18) Let p be a programmed finite partial state of $\mathbf{S C M}$, and let k be a natural number, and let l be an instruction-location of $\mathbf{S C M}$. If $l \in \operatorname{dom} p$, then $(\operatorname{IncAddr}(p, k))(l)=\operatorname{IncAddr}\left(\pi_{l} p, k\right)$.
(19) For every natural number i and for every programmed finite partial state p of $\mathbf{S C M}$ holds $\operatorname{Shift}(\operatorname{IncAddr}(p, i), i)=\operatorname{IncAddr}(\operatorname{Shift}(p, i), i)$.
Let p be a finite partial state of $\mathbf{S C M}$ and let k be a natural number. The functor Relocated (p, k) yielding a finite partial state of $\mathbf{S C M}$ is defined as follows:
(Def.6) $\operatorname{Relocated}(p, k)=\operatorname{Start}-\operatorname{At}\left(\mathbf{I} \mathbf{C}_{p}+k\right)+\cdot \operatorname{IncAddr}(\operatorname{Shift}(\operatorname{ProgramPart}(p)$, $k), k)+$ DataPart (p).
Next we state a number of propositions:
(20) For every finite partial state p of $\mathbf{S C M}$ holds dom IncAddr $(\operatorname{Shift}(\operatorname{ProgramPart}(p), k), k) \subseteq \operatorname{Instr}-\operatorname{Loc}_{\mathrm{SCM}}$.
(21) For every finite partial state p of $\mathbf{S C M}$ and for every natural number k holds DataPart $(\operatorname{Relocated}(p, k))=\operatorname{DataPart}(p)$.
(22) For every finite partial state p of $\mathbf{S C M}$ and for every natural number k holds ProgramPart $(\operatorname{Relocated}(p, k))=\operatorname{IncAddr}(\operatorname{Shift}(\operatorname{ProgramPart}(p), k), k)$.
(23) For every finite partial state p of $\mathbf{S C M}$ holds dom ProgramPart $(\operatorname{Relocated}(p, k))=\left\{\mathbf{i}_{j+k}: \mathbf{i}_{j} \in\right.$ dom $\left.\operatorname{ProgramPart}(p)\right\}$.
(24) Let p be a finite partial state of $\mathbf{S C M}$, and let k be a natural number, and let l be an instruction-location of $\mathbf{S C M}$. Then $l \in \operatorname{dom} p$ if and only if $l+k \in \operatorname{dom} \operatorname{Relocated}(p, k)$.
(25) For every finite partial state p of $\mathbf{S C M}$ and for every natural number k holds $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} \operatorname{Relocated}(p, k)$.
(26) For every finite partial state p of $\mathbf{S C M}$ and for every natural number k holds $\mathbf{I} \mathbf{C R e l o c a t e d}(p, k)=\mathbf{I} \mathbf{C}_{p}+k$.
(27) Let p be a finite partial state of SCM, and let k be a natural number, and let l_{1} be an instruction-location of $\mathbf{S C M}$, and let I be an instruction of $\mathbf{S C M}$. If $l_{1} \in \operatorname{dom} \operatorname{ProgramPart}(p)$ and $I=p\left(l_{1}\right)$, then $\operatorname{IncAddr}(I, k)=$ $($ Relocated $(p, k))\left(l_{1}+k\right)$.
(28) For every finite partial state p of $\mathbf{S C M}$ and for every natural number k holds $\operatorname{Start}-\operatorname{At}\left(\mathbf{I} \mathbf{C}_{p}+k\right) \subseteq \operatorname{Relocated}(p, k)$.
(29) Let s be a data-only finite partial state of $\mathbf{S C M}$, and let p be a finite partial state of $\mathbf{S C M}$, and let k be a natural number. If $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$, then Relocated $(p+\cdot s, k)=\operatorname{Relocated}(p, k)+\cdot s$.
(30) Let k be a natural number, and let p be an autonomic finite partial state of $\mathbf{S C M}$, and let s_{1}, s_{2} be states of SCM. If $p \subseteq s_{1}$ and Relocated $(p, k) \subseteq$ s_{2}, then $p \subseteq s_{1}+s_{2} \upharpoonright$ Data-Loc ${ }_{S C M}$.
(31) For every state s of $\mathbf{S C M}$ holds $\operatorname{Exec}(\operatorname{IncAddr}(\operatorname{Cur} \operatorname{Instr}(s), k), s+$. $\left.\operatorname{Start}-\operatorname{At}\left(\mathbf{I} \mathbf{C}_{s}+k\right)\right)=$ Following $(s)+\cdot \operatorname{Start}-\operatorname{At}\left(\mathbf{I} \mathbf{C}_{\text {Following }(s)}+k\right)$.
(32) Let I_{2} be an instruction of $\mathbf{S C M}$, and let s be a state of $\mathbf{S C M}$, and let p be a finite partial state of $\mathbf{S C M}$, and let i, j, k be natural numbers. If $\mathbf{I C}_{s}=\mathbf{i}_{j+k}$, then $\operatorname{Exec}\left(I_{2}, s+\cdot \operatorname{Start}-\operatorname{At}\left(\mathbf{I C}_{s}-^{\prime} k\right)\right)=$ $\operatorname{Exec}\left(\operatorname{IncAddr}\left(I_{2}, k\right), s\right)+\cdot \operatorname{Start}-\operatorname{At}\left(\mathbf{I} \mathbf{C}_{\operatorname{Exec}\left(\operatorname{IncAddr}\left(I_{2}, k\right), s\right)}-^{\prime} k\right)$.

2. Main theorems of Relocatability

Next we state several propositions:
(33) Let k be a natural number and let p be an autonomic finite partial state of $\mathbf{S C M}$. Suppose $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$. Let s be a state of SCM. Suppose $p \subseteq s$. Let i be a natural number. Then $(\operatorname{Computation}(s+\cdot \operatorname{Relocated}(p, k)))(i)=(\operatorname{Computation}(s))(i)+$. Start- $\operatorname{At}\left(\mathbf{I} \mathbf{C}_{(\operatorname{Computation}(s))(i)}+k\right)+\cdot \operatorname{ProgramPart}(\operatorname{Relocated}(p, k))$.
(34) Let k be a natural number, and let p be an autonomic finite partial state of $\mathbf{S C M}$, and let s_{1}, s_{2}, s_{3} be states of $\mathbf{S C M}$. Suppose $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$ and $p \subseteq s_{1}$ and Relocated $(p, k) \subseteq s_{2}$ and $s_{3}=s_{1}+s_{2} \upharpoonright$ Data-LocsCm. Let i be a natural number. Then $\mathbf{I C}_{\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)}+k=$ $\mathbf{I C}\left(\operatorname{Computation}\left(s_{2}\right)\right)(i)$ and $\operatorname{IncAddr}\left(\operatorname{CurInstr}\left(\left(\operatorname{Computation}\left(s_{1}\right)\right)(i)\right), k\right)=$ CurInstr$\left(\left(\operatorname{Computation}\left(s_{2}\right)\right)(i)\right)$ and (Computation $\left.\left(s_{1}\right)\right)(i) \upharpoonright$ dom DataPart $(p)=\left(\operatorname{Computation}\left(s_{2}\right)\right)(i) \upharpoonright \operatorname{dom} \operatorname{DataPart}(\operatorname{Relocated}(p, k))$ and $\left(\right.$ Computation $\left.\left(s_{3}\right)\right)(i) \upharpoonright$ Data-Loc ${ }_{S C M}=\left(\right.$ Computation $\left.\left(s_{2}\right)\right)(i) \upharpoonright$ Data-Loc ${ }_{\text {SCM }}$.
(35) Let p be an autonomic finite partial state of $\mathbf{S C M}$ and let k be a natural number. If $\mathbf{I} \mathbf{C}_{\mathbf{S C M}} \in \operatorname{dom} p$, then p is halting iff $\operatorname{Relocated}(p, k)$ is halting.
(36) Let k be a natural number and let p be an autonomic finite partial state of $\mathbf{S C M}$. Suppose $\mathbf{I C} \mathbf{S C M} \in \operatorname{dom} p$. Let s be a
state of SCM. Suppose Relocated $(p, k) \subseteq s$. Let i be a natural number. Then $(\operatorname{Computation}(s))(i)=(\operatorname{Computation}(s+\cdot$ $p))(i)+\cdot \operatorname{Start}-\operatorname{At}\left(\mathbf{I} \mathbf{C}_{(\operatorname{Computation}(s+\cdot p))(i)}+k\right)+\cdot s \upharpoonright \operatorname{dom} \operatorname{ProgramPart}(p)+\cdot$ ProgramPart($\operatorname{Relocated}(p, k))$.
(37) Let k be a natural number and let p be a finite partial state of $\mathbf{S C M}$. Suppose $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$. Let s be a state of $\mathbf{S C M}$. Suppose $p \subseteq s$ and Relocated (p, k) is autonomic. Let i be a natural number. Then (Computation $(s))(i)=(\operatorname{Computation}(s+$. $\operatorname{Relocated}(p, k)))(i)+\cdot \operatorname{Start}-\operatorname{At}\left(\mathbf{I} \mathbf{C}_{(\operatorname{Computation}(s+\cdot \operatorname{Relocated}(p, k)))(i)}-^{\prime} k\right)+\cdot$ $s \upharpoonright \operatorname{dom} \operatorname{ProgramPart}(\operatorname{Relocated}(p, k))+\cdot \operatorname{ProgramPart}(p)$.
(38) Let p be a finite partial state of $\mathbf{S C M}$. Suppose $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$. Let k be a natural number. Then p is autonomic if and only if $\operatorname{Relocated}(p, k)$ is autonomic.
(39) Let p be a halting autonomic finite partial state of SCM. If $\mathbf{I C}_{\mathbf{S C M}} \in$ dom p, then for every natural number k holds $\operatorname{DataPart}(\operatorname{Result}(p))=$ DataPart (Result(Relocated $(p, k)))$.
(40) Let F be a data-only partial function from FinPartSt(SCM) to FinPartSt(SCM) and let p be a finite partial state of SCM. Suppose $\mathbf{I C}_{\mathbf{S C M}} \in \operatorname{dom} p$. Let k be a natural number. Then p computes F if and only if $\operatorname{Relocated}(p, k)$ computes F.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. A classical first order language. Formalized Mathematics, 1(4):669676, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[6] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[7] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[8] Czesław Byliński. Products and coproducts in categories. Formalized Mathematics, 2(5):701-709, 1991.
[9] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Yatsuka Nakamura and Andrzej Trybulec. A mathematical model of CPU. Formalized Mathematics, 3(2):151-160, 1992.
[11] Yatsuka Nakamura and Andrzej Trybulec. On a mathematical model of programs. Formalized Mathematics, 3(2):241-250, 1992.
[12] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[13] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[14] Yasushi Tanaka. On the decomposition of the states of SCM. Formalized Mathematics, 5(1):1-8, 1996.
[15] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, $1(\mathbf{2}): 329-334,1990$.
[16] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[17] Andrzej Trybulec and Yatsuka Nakamura. Some remarks on the simple concrete model of computer. Formalized Mathematics, 4(1):51-56, 1993.
[18] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received June 16, 1994

Maximal Anti-Discrete Subspaces of Topological Spaces

Zbigniew Karno
Warsaw University
Białystok

Summary. Let X be a topological space and let A be a subset of $X . A$ is said to be anti-discrete provided for every open subset G of X either $A \cap G=\emptyset$ or $A \subseteq G$; equivalently, for every closed subset F of X either $A \cap F=\emptyset$ or $A \subseteq F$. An anti-discrete subset M of X is said to be maximal anti-discrete provided for every anti-discrete subset A of X if $M \subseteq A$ then $M=A$. A subspace of X is maximal antidiscrete iff its carrier is maximal anti-discrete in X. The purpose is to list a few properties of maximal anti-discrete sets and subspaces in Mizar formalism.

It is shown that every $x \in X$ is contained in a unique maximal antidiscrete subset $\mathrm{M}(x)$ of X, denoted in the text by MaxADSet (x). Such subset can be defined by

$$
\mathrm{M}(x)=\bigcap\{S \subseteq X: x \in S, \text { and } S \text { is open or closed in } X\}
$$

It has the following remarkable properties: (1) $y \in \mathrm{M}(x)$ iff $\mathrm{M}(y)=$ $\mathrm{M}(x)$, (2) either $\mathrm{M}(x) \cap \mathrm{M}(y)=\emptyset$ or $\mathrm{M}(x)=\mathrm{M}(y)$, (3) $\mathrm{M}(x)=\mathrm{M}(y)$ iff $\overline{\{x\}}=\overline{\{y\}}$, and (4) $\mathrm{M}(x) \cap \mathrm{M}(y)=\emptyset$ iff $\overline{\{x\}} \neq \overline{\{y\}}$. It follows from these properties that $\{\mathrm{M}(x): x \in X\}$ is the T_{0}-partition of X defined by M.H. Stone in [7].

Moreover, it is shown that the operation M defined on all subsets of X by

$$
\mathrm{M}(A)=\bigcup\{\mathrm{M}(x): x \in A\}
$$

denoted in the text by $\operatorname{MaxADSet}(A)$, satisfies the Kuratowski closure axioms (see e.g., [4]), i.e., (1) $\mathrm{M}(A \cup B)=\mathrm{M}(A) \cup \mathrm{M}(B)$, (2) $\mathrm{M}(A)=$ $\mathrm{M}(\mathrm{M}(A))$, (3) $A \subseteq \mathrm{M}(A)$, and (4) $\mathrm{M}(\emptyset)=\emptyset$. Note that this operation commutes with the usual closure operation of X, and if A is an open (or a closed) subset of X, then $\mathrm{M}(A)=A$.

MML Identifier: TEX_4.

The articles [11], [12], [8], [10], [5], [6], [13], [9], [3], [1], and [2] provide the terminology and notation for this paper.

1. Properties of the Closure and the Interior Operations

Let X be a topological space and let A be a non empty subset of X. Observe that \bar{A} is non empty.

Let X be a topological space and let A be an empty subset of X. One can check that \bar{A} is empty.

Let X be a topological space and let A be a non proper subset of X. One can check that \bar{A} is non proper.

Let X be a non trivial topological space and let A be a non trivial non empty subset of X. Observe that \bar{A} is non trivial.

In the sequel X is a topological space.
We now state three propositions:
(1) For every subset A of X holds $\bar{A}=\bigcap\{F: F$ ranges over subsets of X, F is closed $\wedge A \subseteq F\}$
(2) For every point x of X holds $\overline{\{x\}}=\bigcap\{F: F$ ranges over subsets of X, F is closed $\wedge x \in F\}$.
(3) For all subsets A, B of X such that $B \subseteq \bar{A}$ holds $\bar{B} \subseteq \bar{A}$.

Let X be a topological space and let A be a non proper subset of X. Note that $\operatorname{Int} A$ is non proper.

Let X be a topological space and let A be a proper subset of X. One can check that $\operatorname{Int} A$ is proper.

Let X be a topological space and let A be an empty subset of X. Note that Int A is empty.

Next we state two propositions:
(4) For every subset A of X holds Int $A=\bigcup\{G: G$ ranges over subsets of X, G is open $\wedge G \subseteq A\}$.
(5) For all subsets A, B of X such that $\operatorname{Int} A \subseteq B$ holds $\operatorname{Int} A \subseteq \operatorname{Int} B$.

2. Anti-Discrete Subsets of Topological Structures

Let Y be a topological structure. A subset of Y is anti-discrete if:
(Def.1) For every point x of Y and for every subset G of Y such that G is open and $x \in G$ holds if $x \in$ it, then it $\subseteq G$.
Let Y be a non empty topological structure. Let us observe that a subset of Y is anti-discrete if:
(Def.2) For every point x of Y and for every subset F of Y such that F is closed and $x \in F$ holds if $x \in$ it, then it $\subseteq F$.
Let Y be a topological structure. Let us observe that a subset of Y is antidiscrete if:
(Def.3) For every subset G of Y such that G is open holds it $\cap G=\emptyset$ or it $\subseteq G$.

Let Y be a topological structure. Let us observe that a subset of Y is antidiscrete if:
(Def.4) For every subset F of Y such that F is closed holds it $\cap F=\emptyset$ or it $\subseteq F$.
Next we state the proposition
(6) Let Y_{0}, Y_{1} be topological structures, and let D_{0} be a subset of Y_{0}, and let D_{1} be a subset of Y_{1}. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1} and $D_{0}=D_{1}$. If D_{0} is anti-discrete, then D_{1} is anti-discrete.
In the sequel Y will denote a non empty topological structure.
Next we state three propositions:
(7) For all subsets A, B of Y such that $B \subseteq A$ holds if A is anti-discrete, then B is anti-discrete.
(8) For every point x of Y holds $\{x\}$ is anti-discrete.
(9) Every empty subset of Y is anti-discrete.

Let Y be a topological structure. A family of subsets of Y is anti-discrete-set-family if:
(Def.5) For every subset A of Y such that $A \in$ it holds A is anti-discrete.
One can prove the following propositions:
(10) Let F be a family of subsets of Y. Suppose F is anti-discrete-set-family. If $\bigcap F \neq \emptyset$, then $\bigcup F$ is anti-discrete.
(11) For every family F of subsets of Y such that F is anti-discrete-set-family holds $\bigcap F$ is anti-discrete.
Let Y be a non empty topological structure and let x be a point of Y. The functor MaxADSF (x) yields a non empty family of subsets of Y and is defined by:
(Def.6) $\operatorname{MaxADSF}(x)=\{A: A$ ranges over subsets of Y, A is antidiscrete $\wedge x \in A\}$.
In the sequel x will denote a point of Y.
We now state four propositions:
(12) $\operatorname{Max} \operatorname{ADSF}(x)$ is anti-discrete-set-family.
(13) $\quad\{x\}=\bigcap \operatorname{MaxADSF}(x)$.
(14) $\quad\{x\} \subseteq \cup \operatorname{MaxADSF}(x)$.
(15) $\cup \operatorname{MaxADSF}(x)$ is anti-discrete.

3. Maximal Anti-Discrete Subsets of Topological Structures

Let Y be a topological structure. A subset of Y is maximal anti-discrete if:
(Def.7) It is anti-discrete and for every subset D of Y such that D is anti-discrete and it $\subseteq D$ holds it $=D$.

We now state the proposition
(16) Let Y_{0}, Y_{1} be topological structures, and let D_{0} be a subset of Y_{0}, and let D_{1} be a subset of Y_{1}. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1} and $D_{0}=D_{1}$. If D_{0} is maximal anti-discrete, then D_{1} is maximal anti-discrete.
In the sequel Y will denote a non empty topological structure.
One can prove the following propositions:
(17) Every empty subset of Y is not maximal anti-discrete.
(18) For every non empty subset A of Y such that A is anti-discrete and open holds A is maximal anti-discrete.
(19) For every non empty subset A of Y such that A is anti-discrete and closed holds A is maximal anti-discrete.
Let Y be a non empty topological structure and let x be a point of Y. The functor $\operatorname{MaxADSet}(x)$ yielding a non empty subset of Y is defined by:
(Def.8) $\operatorname{MaxADSet}(x)=\bigcup \operatorname{MaxADSF}(x)$.
We now state several propositions:
(20) For every point x of Y holds $\{x\} \subseteq \operatorname{MaxADSet}(x)$.
(21) For every subset D of Y and for every point x of Y such that D is anti-discrete and $x \in D$ holds $D \subseteq \operatorname{MaxADSet}(x)$.
(22) For every point x of Y holds $\operatorname{MaxADSet}(x)$ is maximal anti-discrete.
(23) For all points x, y of Y holds $y \in \operatorname{MaxADSet}(x)$ iff $\operatorname{MaxADSet}(y)=$ $\operatorname{MaxADSet}(x)$.
(24) For all points x, y of Y holds $\operatorname{MaxADSet}(x) \cap \operatorname{MaxADSet}(y)=\emptyset$ or $\operatorname{MaxADSet}(x)=\operatorname{MaxADSet}(y)$.
(25) For every subset F of Y and for every point x of Y such that F is closed and $x \in F$ holds $\operatorname{MaxADSet}(x) \subseteq F$.
(26) For every subset G of Y and for every point x of Y such that G is open and $x \in G$ holds $\operatorname{MaxADSet}(x) \subseteq G$.
(27) Let x be a point of Y. Suppose $\{F: F$ ranges over subsets of Y, F is closed $\wedge x \in F\} \neq \emptyset$. Then $\operatorname{MaxADSet}(x) \subseteq \bigcap\{F: F$ ranges over subsets of Y, F is closed $\wedge x \in F\}$.
(28) Let x be a point of Y. Suppose $\{G: G$ ranges over subsets of Y, G is open $\wedge x \in G\} \neq \emptyset$. Then $\operatorname{MaxADSet}(x) \subseteq \bigcap\{G: G$ ranges over subsets of Y, G is open $\wedge x \in G\}$.
Let Y be a non empty topological structure. Let us observe that a subset of Y is maximal anti-discrete if:
(Def.9) There exists a point x of Y such that $x \in$ it and it $=\operatorname{MaxADSet}(x)$.
The following proposition is true
(29) For every subset A of Y and for every point x of Y such that $x \in A$ holds if A is maximal anti-discrete, then $A=\operatorname{MaxADSet}(x)$.

Let Y be a non empty topological structure. Let us observe that a non empty subset of Y is maximal anti-discrete if:
(Def.10) For every point x of Y such that $x \in$ it holds it $=\operatorname{MaxADSet}(x)$.
Let Y be a non empty topological structure and let A be a subset of Y. The functor $\operatorname{MaxADSet}(A)$ yielding a subset of Y is defined as follows:
(Def.11) $\operatorname{MaxADSet}(A)=\bigcup\{\operatorname{MaxADSet}(a): a$ ranges over points of $Y, a \in A\}$.
Next we state a number of propositions:
(30) For every point x of Y holds $\operatorname{MaxADSet}(x)=\operatorname{MaxADSet}(\{x\})$.
(31) For every subset A of Y and for every point x of Y such that $\operatorname{MaxADSet}(x) \cap \operatorname{MaxADSet}(A) \neq \emptyset$ holds $\operatorname{MaxADSet}(x) \cap A \neq \emptyset$.
(32) For every subset A of Y and for every point x of Y such that $\operatorname{MaxADSet}(x) \cap \operatorname{MaxADSet}(A) \neq \emptyset$ holds $\operatorname{MaxADSet}(x) \subseteq$ $\operatorname{MaxADSet}(A)$.
(33) For all subsets A, B of Y such that $A \subseteq B$ holds $\operatorname{MaxADSet}(A) \subseteq$ $\operatorname{MaxADSet}(B)$.
(34) For every subset A of Y holds $A \subseteq \operatorname{MaxADSet}(A)$.
(36) For all subsets A, B of Y such that $A \subseteq \operatorname{MaxADSet}(B)$ holds $\operatorname{MaxADSet}(A) \subseteq \operatorname{MaxADSet}(B)$.
(37) For all subsets A, B of Y holds $B \subseteq \operatorname{MaxADSet}(A)$ and $A \subseteq$ $\operatorname{MaxADSet}(B)$ iff $\operatorname{MaxADSet}(A)=\operatorname{MaxADSet}(B)$.
(38) For all subsets A, B of Y holds $\operatorname{MaxADSet}(A \cup B)=\operatorname{MaxADSet}(A) \cup$ $\operatorname{MaxADSet}(B)$.
(39) For all subsets A, B of Y holds $\operatorname{MaxADSet}(A \cap B) \subseteq \operatorname{MaxADSet}(A) \cap$ $\operatorname{MaxADSet}(B)$.
Let Y be a non empty topological structure and let A be a non empty subset of Y. One can verify that $\operatorname{MaxADSet}(A)$ is non empty.

Let Y be a non empty topological structure and let A be an empty subset of Y. One can verify that $\operatorname{MaxADSet}(A)$ is empty.

Let Y be a non empty topological structure and let A be a non proper subset of Y. Observe that $\operatorname{MaxADSet}(A)$ is non proper.

Let Y be a non trivial non empty topological structure and let A be a non trivial non empty subset of Y. Note that $\operatorname{MaxADSet}(A)$ is non trivial.

The following four propositions are true:
(40) For every subset G of Y and for every subset A of Y such that G is open and $A \subseteq G$ holds $\operatorname{MaxADSet}(A) \subseteq G$.
(41) Let A be a subset of Y. Suppose $\{G: G$ ranges over subsets of Y, G is open $\wedge A \subseteq G\} \neq \emptyset$. Then $\operatorname{MaxADSet}(A) \subseteq \bigcap\{G: G$ ranges over subsets of Y, G is open $\wedge A \subseteq G\}$.
(42) For every subset F of Y and for every subset A of Y such that F is closed and $A \subseteq F$ holds $\operatorname{MaxADSet}(A) \subseteq F$.
(43) Let A be a subset of Y. Suppose $\{F: F$ ranges over subsets of Y, F is closed $\wedge A \subseteq F\} \neq \emptyset$. Then $\operatorname{MaxADSet}(A) \subseteq \bigcap\{F: F$ ranges over subsets of Y, F is closed $\wedge A \subseteq F\}$.

4. Anti-Discrete and Maximal Anti-Discrete Subsets of Topological Spaces

Let X be a topological space. Let us observe that a subset of X is antidiscrete if:
(Def.12) For every point x of X such that $x \in$ it holds it $\subseteq \overline{\{x\}}$.
Let X be a topological space. Let us observe that a subset of X is antidiscrete if:
(Def.13) For every point x of X such that $x \in$ it holds $\overline{\text { it }}=\overline{\{x\}}$.
Let X be a topological space. Let us observe that a subset of X is antidiscrete if:
(Def.14) For all points x, y of X such that $x \in$ it and $y \in$ it holds $\overline{\{x\}}=\overline{\{y\}}$.
In the sequel X will be a topological space.
The following four propositions are true:
(44) For every point x of X and for every subset D of X such that D is anti-discrete and $\overline{\{x\}} \subseteq D$ holds $D=\overline{\{x\}}$.
(45) Let A be a subset of X. Then A is anti-discrete and closed if and only if for every point x of X such that $x \in A$ holds $A=\overline{\{x\}}$.
(46) For every subset A of X such that A is anti-discrete and A is not open holds A is boundary.
(47) For every point x of X such that $\overline{\{x\}}=\{x\}$ holds $\{x\}$ is maximal anti-discrete.

In the sequel x, y will be points of X.
The following propositions are true:
(48) $\operatorname{MaxADSet}(x) \subseteq \bigcap\{G: G$ ranges over subsets of X, G is open $\wedge x \in G\}$.
(49) $\operatorname{MaxADSet}(x) \subseteq \bigcap\{F: F$ ranges over subsets of X, F is closed $\wedge x \in$ $F\}$.
(50) $\quad \operatorname{MaxADSet}(x) \subseteq \overline{\{x\}}$.
(51) $\operatorname{MaxADSet}(x)=\operatorname{MaxADSet}(y)$ iff $\overline{\{x\}}=\overline{\{y\}}$.
(52) $\operatorname{MaxADSet}(x) \cap \operatorname{MaxADSet}(y)=\emptyset$ iff $\overline{\{x\}} \neq \overline{\{y\}}$.

Let X be a topological space and let x be a point of X. Then $\operatorname{MaxADSet}(x)$ is a non empty subset of X and it can be characterized by the condition:
(Def.15) $\operatorname{MaxADSet}(x)=\overline{\{x\}} \cap \bigcap\{G: G$ ranges over subsets of X, G is open $\wedge x \in G\}$.
The following propositions are true:
(53) Let x, y be points of X. Then $\overline{\{x\}} \subseteq \overline{\{y\}}$ if and only if $\bigcap\{G: G$ ranges over subsets of X, G is open $\wedge y \in G\} \subseteq \bigcap\{G: G$ ranges over subsets of X, G is open $\wedge x \in G\}$.
(54) For all points x, y of X holds $\overline{\{x\}} \subseteq \overline{\{y\}}$ iff $\operatorname{MaxADSet}(y) \subseteq \bigcap\{G: G$ ranges over subsets of X, G is open $\wedge x \in G\}$.
(55) Let x, y be points of X. Then $\operatorname{MaxADSet}(x) \cap \operatorname{MaxADSet}(y)=\emptyset$ if and only if one of the following conditions is satisfied:
(i) there exists a subset V of X such that V is open and $\operatorname{MaxADSet}(x) \subseteq V$ and $V \cap \operatorname{MaxADSet}(y)=\emptyset$, or
(ii) there exists a subset W of X such that W is open and $W \cap$ $\operatorname{MaxADSet}(x)=\emptyset$ and $\operatorname{MaxADSet}(y) \subseteq W$.
(56) Let x, y be points of X. Then $\operatorname{MaxADSet}(x) \cap \operatorname{MaxADSet}(y)=\emptyset$ if and only if one of the following conditions is satisfied:
(i) there exists a subset E of X such that E is closed and $\operatorname{MaxADSet}(x) \subseteq$ E and $E \cap \operatorname{MaxADSet}(y)=\emptyset$, or
(ii) there exists a subset F of X such that F is closed and $F \cap$ $\operatorname{MaxADSet}(x)=\emptyset$ and $\operatorname{MaxADSet}(y) \subseteq F$.
In the sequel A, B denote subsets of X.
The following propositions are true:
(57) $\operatorname{MaxADSet}(A) \subseteq \bigcap\{G: G$ ranges over subsets of X, G is open $\wedge A \subseteq$ $G\}$.
(58) If A is open, then $\operatorname{MaxADSet}(A)=A$.
(59) $\operatorname{MaxADSet}(\operatorname{Int} A)=\operatorname{Int} A$.
(60) $\operatorname{MaxADSet}(A) \subseteq \bigcap\{F: F$ ranges over subsets of X, F is closed $\wedge A \subseteq$ $F\}$.
(61) $\operatorname{MaxADSet}(A) \subseteq \bar{A}$.
(62) If A is closed, then $\operatorname{MaxADSet}(A)=A$.
(63) $\operatorname{MaxADSet}(\bar{A})=\bar{A}$.
(64) $\overline{\operatorname{MaxADSet}(A)}=\bar{A}$.
(65) If $\operatorname{MaxADSet}(A)=\operatorname{MaxADSet}(B)$, then $\bar{A}=\bar{B}$.
(66) If A is closed or B is closed, then $\operatorname{MaxADSet}(A \cap B)=\operatorname{MaxADSet}(A) \cap$ $\operatorname{MaxADSet}(B)$.
(67) If A is open or B is open, then $\operatorname{MaxADSet}(A \cap B)=\operatorname{MaxADSet}(A) \cap$ $\operatorname{MaxADSet}(B)$.

5. Maximal Anti-Discrete Subspaces

In the sequel Y is a non empty topological structure.
One can prove the following two propositions:
(68) Let Y_{0} be a subspace of Y and let A be a subset of Y. Suppose $A=$ the carrier of Y_{0}. If Y_{0} is anti-discrete, then A is anti-discrete.
(69) Let Y_{0} be a subspace of Y. Suppose Y_{0} is topological space-like. Let A be a subset of Y. Suppose $A=$ the carrier of Y_{0}. If A is anti-discrete, then Y_{0} is anti-discrete.
In the sequel X will be a topological space and Y_{0} will be a subspace of X. One can prove the following four propositions:
(70) If for every open subspace X_{0} of X holds Y_{0} misses X_{0} or Y_{0} is a subspace of X_{0}, then Y_{0} is anti-discrete.
(71) If for every closed subspace X_{0} of X holds Y_{0} misses X_{0} or Y_{0} is a subspace of X_{0}, then Y_{0} is anti-discrete.
(72) Let Y_{0} be an anti-discrete subspace of X and let X_{0} be an open subspace of X. Then Y_{0} misses X_{0} or Y_{0} is a subspace of X_{0}.
(73) Let Y_{0} be an anti-discrete subspace of X and let X_{0} be a closed subspace of X. Then Y_{0} misses X_{0} or Y_{0} is a subspace of X_{0}.
Let Y be a non empty topological structure. A subspace of Y is maximal anti-discrete if it satisfies the conditions (Def.16).
(Def.16) (i) It is anti-discrete, and
(ii) for every subspace Y_{0} of Y such that Y_{0} is anti-discrete holds if the carrier of it \subseteq the carrier of Y_{0}, then the carrier of it $=$ the carrier of Y_{0}.
Let Y be a non empty topological structure. Note that every subspace of Y which is maximal anti-discrete is also anti-discrete and every subspace of Y which is non anti-discrete is also non maximal anti-discrete.

Next we state the proposition
(74) Let Y_{0} be a subspace of X and let A be a subset of X. Suppose $A=$ the carrier of Y_{0}. Then Y_{0} is maximal anti-discrete if and only if A is maximal anti-discrete.
Let X be a topological space. One can check the following observations:

* every subspace of X which is open and anti-discrete is also maximal anti-discrete,
* every subspace of X which is open and non maximal anti-discrete is also non anti-discrete,
* every subspace of X which is anti-discrete and non maximal antidiscrete is also non open,
* every subspace of X which is closed and anti-discrete is also maximal anti-discrete,
* every subspace of X which is closed and non maximal anti-discrete is also non anti-discrete, and
* every subspace of X which is anti-discrete and non maximal antidiscrete is also non closed.
Let Y be a non empty topological structure and let x be a point of Y. The functor MaxADSspace (x) yielding a strict subspace of Y is defined by:
(Def.17) The carrier of MaxADSspace $(x)=\operatorname{MaxADSet}(x)$.
We now state three propositions:
(75) For every point x of Y holds $\operatorname{Sspace}(x)$ is a subspace of $\operatorname{MaxADSspace}(x)$.
(76) Let x, y be points of Y. Then y is a point of $\operatorname{MaxADSspace}(x)$ if and only if the topological structure of $\operatorname{MaxADSspace}(y)=$ the topological structure of MaxADSspace (x).
(77) Let x, y be points of Y. Then
(i) the carrier of MaxADSspace (x) misses the carrier of MaxADSspace (y), or
(ii) the topological structure of $\operatorname{MaxADSspace}(x)=$ the topological structure of MaxADSspace (y).
Let X be a topological space. One can check that there exists a subspace of X which is maximal anti-discrete and strict.

Let X be a topological space and let x be a point of X. One can check that $\operatorname{MaxADSspace}(x)$ is maximal anti-discrete.

One can prove the following propositions:
(78) Let X_{0} be a closed subspace of X and let x be a point of X. If x is a point of X_{0}, then MaxADSspace (x) is a subspace of X_{0}.
(79) Let X_{0} be an open subspace of X and let x be a point of X. If x is a point of X_{0}, then $\operatorname{MaxADSspace}(x)$ is a subspace of X_{0}.
(80) For every point x of X such that $\overline{\{x\}}=\{x\}$ holds Sspace (x) is maximal anti-discrete.
Let Y be a non empty topological structure and let A be a non empty subset of Y. The functor $\operatorname{Sspace}(A)$ yielding a strict subspace of Y is defined by:
(Def.18) The carrier of $\operatorname{Sspace}(A)=A$.
One can prove the following propositions:
(81) Every non empty subset of Y is a subset of $\operatorname{Sspace}(A)$.
(82) Let Y_{0} be a subspace of Y and let A be a non empty subset of Y. If A is a subset of Y_{0}, then $\operatorname{Sspace}(A)$ is a subspace of Y_{0}.
Let Y be a non trivial non empty topological structure. Note that there exists a subspace of Y which is non proper and strict.

Let Y be a non trivial non empty topological structure and let A be a non trivial non empty subset of Y. Observe that $\operatorname{Sspace}(A)$ is non trivial.

Let Y be a non empty topological structure and let A be a non proper non empty subset of Y. One can verify that $\operatorname{Sspace}(A)$ is non proper.

Let Y be a non empty topological structure and let A be a non empty subset of Y. The functor $\operatorname{MaxADSspace}(A)$ yields a strict subspace of Y and is defined by:
(Def.19) The carrier of $\operatorname{MaxADSspace}(A)=\operatorname{MaxADSet}(A)$.
We now state several propositions:
(83) Every non empty subset of Y is a subset of MaxADSspace (A).
(84) For every non empty subset A of Y holds $\operatorname{Sspace}(A)$ is a subspace of MaxADSspace (A).

For every point x of Y holds the topological structure of $\operatorname{MaxADSspace}(x)=$ the topological structure of MaxADSspace $(\{x\})$.
For all non empty subsets A, B of Y such that $A \subseteq B$ holds MaxADSspace (A) is a subspace of MaxADSspace (B).
For every non empty subset A of Y holds the topological structure of $\operatorname{MaxADSspace}(A)=$ the topological structure of MaxADSspace ($\operatorname{MaxADSet}(A))$. set of MaxADSspace (B) holds MaxADSspace (A) is a subspace of MaxADSspace (B).
Let A, B be non empty subsets of Y. Then B is a subset of MaxADSspace (A) and A is a subset of MaxADSspace (B) if and only if the topological structure of $\operatorname{MaxADSspace}(A)=$ the topological structure of MaxADSspace (B).
Let Y be a non trivial non empty topological structure and let A be a non trivial non empty subset of Y. One can verify that $\operatorname{MaxADSspace}(A)$ is non trivial.

Let Y be a non empty topological structure and let A be a non proper non empty subset of Y. One can verify that $\operatorname{MaxADSspace}(A)$ is non proper.

The following two propositions are true:
(90) Let X_{0} be an open subspace of X and let A be a non empty subset of X. If A is a subset of X_{0}, then $\operatorname{MaxADSspace}(A)$ is a subspace of X_{0}.
(91) Let X_{0} be a closed subspace of X and let A be a non empty subset of X. If A is a subset of X_{0}, then $\operatorname{MaxADSspace}(A)$ is a subspace of X_{0}.

References

[1] Zbigniew Karno. The lattice of domains of an extremally disconnected space. Formalized Mathematics, 3(2):143-149, 1992.
[2] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125-135, 1993.
[3] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.
[4] Kazimierz Kuratowski. Topology. Volume I, PWN - Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
[5] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[6] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[7] M. H. Stone. Application of boolean algebras to topology. Math. Sb., 1:765-771, 1936.
[8] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[9] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[10] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[11] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received July 26, 1994

On Kolmogorov Topological Spaces ${ }^{1}$

Zbigniew Karno
Warsaw University
Białystok

Abstract

Summary. Let X be a topological space. X is said to be T_{0}-space (or Kolmogorov space) provided for every pair of distinct points $x, y \in X$ there exists an open subset of X containing exactly one of these points; equivalently, for every pair of distinct points $x, y \in X$ there exists a closed subset of X containing exactly one of these points (see [1], [6], [2]).

The purpose is to list some of the standard facts on Kolmogorov spaces, using Mizar formalism. As a sample we formulate the following characteristics of such spaces: X is a Kolmogorov space iff for every pair of distinct points $x, y \in X$ the closures $\overline{\{x\}}$ and $\overline{\{y\}}$ are distinct.

There is also reviewed analogous facts on Kolmogorov subspaces of topological spaces. In the presented approach T_{0}-subsets are introduced and some of their properties developed.

MML Identifier: TSP_1.

The articles [10], [11], [9], [7], [8], [5], [4], and [3] provide the terminology and notation for this paper.

1. Subspaces

Let Y be a non empty topological structure. We see that the subspace of Y is a non empty topological structure and it can be characterized by the following (equivalent) condition:
(Def.1) (i) The carrier of it \subseteq the carrier of Y, and
(ii) for every subset G_{0} of it holds G_{0} is open iff there exists a subset G of Y such that G is open and $G_{0}=G \cap$ (the carrier of it).
Next we state two propositions:

[^11](1) Let Y be a non empty topological structure, and let Y_{0} be a subspace of Y, and let G_{0} be a subset of Y_{0}. Then G_{0} is open if and only if there exists a subset G of Y such that G is open and $G_{0}=G \cap$ (the carrier of Y_{0}).
(2) Let Y be a non empty topological structure, and let Y_{0} be a subspace of Y, and let G be a subset of Y. Suppose G is open. Then there exists a subset G_{0} of Y_{0} such that G_{0} is open and $G_{0}=G \cap\left(\right.$ the carrier of $\left.Y_{0}\right)$.
Let Y be a non empty topological structure. We see that the subspace of Y is a non empty topological structure and it can be characterized by the following (equivalent) condition:
(Def.2) (i) The carrier of it \subseteq the carrier of Y, and
(ii) for every subset F_{0} of it holds F_{0} is closed iff there exists a subset F of Y such that F is closed and $F_{0}=F \cap$ (the carrier of it).
We now state two propositions:
(3) Let Y be a non empty topological structure, and let Y_{0} be a subspace of Y, and let F_{0} be a subset of Y_{0}. Then F_{0} is closed if and only if there exists a subset F of Y such that F is closed and $F_{0}=F \cap$ (the carrier of Y_{0}).
(4) Let Y be a non empty topological structure, and let Y_{0} be a subspace of Y, and let F be a subset of Y. Suppose F is closed. Then there exists a subset F_{0} of Y_{0} such that F_{0} is closed and $F_{0}=F \cap\left(\right.$ the carrier of $\left.Y_{0}\right)$.

2. Kolmogorov Spaces

A topological structure is T_{0} if it satisfies the condition (Def.3).
(Def.3) Let x, y be points of it. Suppose $x \neq y$. Then
(i) there exists a subset V of it such that V is open and $x \in V$ and $y \notin V$, or
(ii) there exists a subset W of it such that W is open and $x \notin W$ and $y \in W$.
Let us observe that a non empty topological structure is T_{0} if it satisfies the condition (Def.4).
(Def.4) Let x, y be points of it. Suppose $x \neq y$. Then
(i) there exists a subset E of it such that E is closed and $x \in E$ and $y \notin E$, or
(ii) there exists a subset F of it such that F is closed and $x \notin F$ and $y \in F$.

Let us mention that every non empty topological structure which is trivial is also T_{0} and every non empty topological structure which is non T_{0} is also non trivial.

One can verify that there exists a topological space which is strict T_{0} and non empty and there exists a topological space which is strict non T_{0} and non empty.

One can check the following observations:

* every topological space which is discrete is also T_{0},
* every topological space which is non T_{0} is also non discrete,
* every topological space which is anti-discrete and non trivial is also non T_{0},
* every topological space which is anti-discrete and T_{0} is also trivial, and
* every topological space which is T_{0} and non trivial is also non antidiscrete.
Let us observe that a topological space is T_{0} if:
(Def.5) For all points x, y of it such that $x \neq y$ holds $\overline{\{x\}} \neq \overline{\{y\}}$.
Let us observe that a topological space is T_{0} if:
(Def.6) For all points x, y of it such that $x \neq y$ holds $x \notin \overline{\{y\}}$ or $y \notin \overline{\{x\}}$.
Let us observe that a topological space is T_{0} if:
(Def.7) For all points x, y of it such that $x \neq y$ and $x \in \overline{\{y\}}$ holds $\overline{\{y\}} \nsubseteq \overline{\{x\}}$.
One can verify the following observations:
* every topological space which is almost discrete and T_{0} is also discrete,
* every topological space which is almost discrete and non discrete is also non T_{0}, and
* every topological space which is non discrete and T_{0} is also non almost discrete.
A Kolmogorov space is a T_{0} topological space. A non-Kolmogorov space is a non T_{0} topological space.

Let us observe that there exists a Kolmogorov space which is non trivial and strict and there exists a non-Kolmogorov space which is non trivial and strict.

3. T_{0}-Subsets

Let Y be a topological structure. A subset of Y is T_{0} if it satisfies the condition (Def.8).
(Def.8) Let x, y be points of Y. Suppose $x \in$ it and $y \in$ it and $x \neq y$. Then there exists a subset V of Y such that V is open and $x \in V$ and $y \notin V$ or there exists a subset W of Y such that W is open and $x \notin W$ and $y \in W$.
Let Y be a non empty topological structure. Let us observe that a subset of Y is T_{0} if it satisfies the condition (Def.9).
(Def.9) Let x, y be points of Y. Suppose $x \in$ it and $y \in$ it and $x \neq y$. Then
(i) there exists a subset E of Y such that E is closed and $x \in E$ and $y \notin E$, or
(ii) there exists a subset F of Y such that F is closed and $x \notin F$ and $y \in F$.

Next we state two propositions:
(5) Let Y_{0}, Y_{1} be topological structures, and let D_{0} be a subset of Y_{0}, and let D_{1} be a subset of Y_{1}. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1} and $D_{0}=D_{1}$. If D_{0} is T_{0}, then D_{1} is T_{0}.
(6) Let Y be a non empty topological structure and let A be a subset of Y. Suppose $A=$ the carrier of Y. Then A is T_{0} if and only if Y is T_{0}.
In the sequel Y will denote a non empty topological structure.
The following propositions are true:
(7) For all subsets A, B of Y such that $B \subseteq A$ holds if A is T_{0}, then B is T_{0}.
(8) For all subsets A, B of Y such that A is T_{0} or B is T_{0} holds $A \cap B$ is T_{0}.
(9) Let A, B be subsets of Y. Suppose A is open or B is open. If A is T_{0} and B is T_{0}, then $A \cup B$ is T_{0}.
(10) Let A, B be subsets of Y. Suppose A is closed or B is closed. If A is T_{0} and B is T_{0}, then $A \cup B$ is T_{0}.
(11) For every subset A of Y such that A is discrete holds A is T_{0}.
(12) For every non empty subset A of Y such that A is anti-discrete and A is not trivial holds A is not T_{0}.
Let X be a topological space. Let us observe that a subset of X is T_{0} if:
(Def.10) $\frac{\text { For all points } x, y \text { of } X \text { such that } x \in \text { it and } y \in \text { it and } x \neq y \text { holds }}{\{x\}} \neq \overline{\{y\}}$.
Let X be a topological space. Let us observe that a subset of X is T_{0} if:
(Def.11) For all points x, y of X such that $x \in$ it and $y \in$ it and $x \neq y$ holds $x \notin \overline{\{y\}}$ or $y \notin \overline{\{x\}}$.
Let X be a topological space. Let us observe that a subset of X is T_{0} if:
(Def.12) For all points x, y of X such that $x \in$ it and $y \in$ it and $x \neq y$ holds if $x \in \overline{\{y\}}$, then $\overline{\{y\}} \nsubseteq \overline{\{x\}}$.
In the sequel X will denote a topological space.
The following two propositions are true:
(13) Every empty subset of X is T_{0}.
(14) For every point x of X holds $\{x\}$ is T_{0}.

4. Kolmogorov Subspaces

Let Y be a non empty topological structure. Observe that there exists a subspace of Y which is strict and T_{0}.

Let Y be a non empty topological structure. Let us observe that a subspace of Y is T_{0} if it satisfies the condition (Def.13).
(Def.13) Let x, y be points of Y. Suppose x is a point of it and y is a point of it and $x \neq y$. Then there exists a subset V of Y such that V is open and
$x \in V$ and $y \notin V$ or there exists a subset W of Y such that W is open and $x \notin W$ and $y \in W$.
Let Y be a non empty topological structure. Let us observe that a subspace of Y is T_{0} if it satisfies the condition (Def.14).
(Def.14) Let x, y be points of Y. Suppose x is a point of it and y is a point of it and $x \neq y$. Then
(i) there exists a subset E of Y such that E is closed and $x \in E$ and $y \notin E$, or
(ii) there exists a subset F of Y such that F is closed and $x \notin F$ and $y \in F$.

In the sequel Y denotes a non empty topological structure.
The following propositions are true:
(15) Let Y_{0} be a subspace of Y and let A be a subset of Y. Suppose $A=$ the carrier of Y_{0}. Then A is T_{0} if and only if Y_{0} is T_{0}.
(16) Let Y_{0} be a subspace of Y and let Y_{1} be a T_{0} subspace of Y. If Y_{0} is a subspace of Y_{1}, then Y_{0} is T_{0}.
Let X be a topological space. One can check that there exists a subspace of X which is strict and T_{0}.

In the sequel X is a topological space.
The following propositions are true:
(17) For every T_{0} subspace X_{1} of X and for every subspace X_{2} of X such that X_{1} meets X_{2} holds $X_{1} \cap X_{2}$ is T_{0}.
(18) For all T_{0} subspaces X_{1}, X_{2} of X such that X_{1} is open or X_{2} is open holds $X_{1} \cup X_{2}$ is T_{0}.
(19) For all T_{0} subspaces X_{1}, X_{2} of X such that X_{1} is closed or X_{2} is closed holds $X_{1} \cup X_{2}$ is T_{0}.
Let X be a topological space. A Kolmogorov subspace of X is a T_{0} subspace of X.

Next we state the proposition
(20) Let X be a topological space and let A_{0} be a non empty subset of X. Suppose A_{0} is T_{0}. Then there exists a strict Kolmogorov subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.
Let X be a non trivial topological space. One can verify that there exists a Kolmogorov subspace of X which is proper and strict.

Let X be a Kolmogorov space. Observe that every subspace of X is T_{0}.
Let X be a non-Kolmogorov space. One can check that every subspace of X which is non proper is also non T_{0} and every subspace of X which is T_{0} is also proper.

Let X be a non-Kolmogorov space. Note that there exists a subspace of X which is strict and non T_{0}.

Let X be a non-Kolmogorov space. A non-Kolmogorov subspace of X is a non T_{0} subspace of X.

We now state the proposition
(21) Let X be a non-Kolmogorov space and let A_{0} be a subset of X. Suppose A_{0} is not T_{0}. Then there exists a strict non-Kolmogorov subspace X_{0} of X such that $A_{0}=$ the carrier of X_{0}.

References

[1] P. Alexandroff and H. H. Hopf. Topologie I. Springer-Verlag, Berlin, 1935.
[2] Ryszard Engelking. General Topology. Volume 60 of Monografie Matematyczne, PWN Polish Scientific Publishers, Warsaw, 1977.
[3] Zbigniew Karno. Maximal anti-discrete subspaces of topological spaces. Formalized Mathematics, 5(1):109-118, 1996.
[4] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125-135, 1993.
[5] Zbigniew Karno. Separated and weakly separated subspaces of topological spaces. Formalized Mathematics, 2(5):665-674, 1991.
[6] Kazimierz Kuratowski. Topology. Volume I, PWN - Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
[7] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[8] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[9] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[10] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
Received July 26, 1994

Maximal Kolmogorov Subspaces of a Topological Space as Stone Retracts of the Ambient Space ${ }^{1}$

Zbigniew Karno
Warsaw University
Białystok

Abstract

Summary. Let X be a topological space. X is said to be T_{0}-space (or Kolmogorov space) provided for every pair of distinct points $x, y \in X$ there exists an open subset of X containing exactly one of these points (see [1], [8], [4]). Such spaces and subspaces were investigated in Mizar formalism in [7]. A Kolmogorov subspace X_{0} of a topological space X is said to be maximal provided for every Kolmogorov subspace Y of X if X_{0} is subspace of Y then the topological structures of Y and X_{0} are the same. M.H. Stone proved in [10] that every topological space can be made into a Kolmogorov space by identifying points with the same closure (see also [11]). The purpose is to generalize the Stone result, using Mizar System. It is shown here that: (1) in every topological space X there exists a maximal Kolmogorov subspace X_{0} of X, and (2) every maximal Kolmogorov subspace X_{0} of X is a continuous retract of X. Moreover, if $r: X \rightarrow X_{0}$ is a continuous retraction of X onto a maximal Kolmogorov subspace X_{0} of X, then $r^{-1}(x)=\operatorname{MaxADSet}(x)$ for any point x of X belonging to X_{0}, where $\operatorname{MaxADSet}(x)$ is a unique maximal antidiscrete subset of X containing x (see [5] for the precise definition of the set $\operatorname{MaxADSet}(x))$. The retraction r from the last theorem is defined uniquely, and it is denoted in the text by "Stone-retraction". It has the following two remarkable properties: r is open, i.e., sends open sets in X to open sets in X_{0}, and r is closed, i.e., sends closed sets in X to closed sets in X_{0}.

These results may be obtained by the methods described by R.H. Warren in [17].

MML Identifier: TSP_2.

The terminology and notation used here are introduced in the following articles: [15], [16], [12], [18], [2], [3], [14], [9], [19], [13], [6], [5], and [7].

[^12]
1. Maximal T_{0}-Subsets

Let X be a topological space. Let us observe that a subset of X is T_{0} if:
(Def.1) For all points a, b of X such that $a \in$ it and $b \in$ it holds if $a \neq b$, then $\operatorname{MaxADSet}(a) \cap \operatorname{MaxADSet}(b)=\emptyset$.
Let X be a topological space. Let us observe that a subset of X is T_{0} if:
(Def.2) For every point a of X such that $a \in$ it holds it $\cap \operatorname{MaxADSet}(a)=\{a\}$.
Let X be a topological space. Let us observe that a subset of X is T_{0} if:
(Def.3) For every point a of X such that $a \in$ it there exists a subset D of X such that D is maximal anti-discrete and it $\cap D=\{a\}$.
Let Y be a topological structure. A subset of Y is maximal T_{0} if:
(Def.4) It is T_{0} and for every subset D of Y such that D is T_{0} and it $\subseteq D$ holds it $=D$.
Next we state the proposition
(1) Let Y_{0}, Y_{1} be topological structures, and let D_{0} be a subset of Y_{0}, and let D_{1} be a subset of Y_{1}. Suppose the topological structure of $Y_{0}=$ the topological structure of Y_{1} and $D_{0}=D_{1}$. If D_{0} is maximal T_{0}, then D_{1} is maximal T_{0}.
Let X be a topological space. Let us observe that a subset of X is maximal T_{0} if:
(Def.5) It is T_{0} and $\operatorname{MaxADSet}($ it $)=$ the carrier of X.
In the sequel X denotes a topological space.
We now state several propositions:
(2) For every subset M of X such that M is maximal T_{0} holds M is dense.
(3) For every subset A of X such that A is open or closed holds if A is maximal T_{0}, then A is not proper.
(4) Every empty subset of X is not maximal T_{0}.
(5) Let M be a subset of X. Suppose M is maximal T_{0}. Let A be a subset of X. If A is closed, then $A=\operatorname{MaxADSet}(M \cap A)$.
(6) Let M be a subset of X. Suppose M is maximal T_{0}. Let A be a subset of X. If A is open, then $A=\operatorname{MaxADSet}(M \cap A)$.
(7) For every subset M of X such that M is maximal T_{0} and for every subset A of X holds $\bar{A}=\operatorname{MaxADSet}(M \cap \bar{A})$.
(8) For every subset M of X such that M is maximal T_{0} and for every subset A of X holds $\operatorname{Int} A=\operatorname{MaxADSet}(M \cap \operatorname{Int} A)$.
Let X be a topological space. Let us observe that a subset of X is maximal T_{0} if:
(Def.6) For every point x of X there exists a point a of X such that $a \in$ it and it $\cap \operatorname{MaxADSet}(x)=\{a\}$.
The following two propositions are true:
(9) For every subset A of X such that A is T_{0} there exists a subset M of X such that $A \subseteq M$ and M is maximal T_{0}.
(10) There exists subset of X which is maximal T_{0}.

2. Maximal Kolmogorov Subspaces

Let Y be a non empty topological structure. A subspace of Y is maximal T_{0} if:
(Def.7) For every subset A of Y such that $A=$ the carrier of it holds A is maximal T_{0}.
One can prove the following proposition
(11) Let Y be a non empty topological structure, and let Y_{0} be a subspace of Y, and let A be a subset of Y. Suppose $A=$ the carrier of Y_{0}. Then A is maximal T_{0} if and only if Y_{0} is maximal T_{0}.
Let Y be a non empty topological structure. Note that every subspace of Y which is maximal T_{0} is also T_{0} and every subspace of Y which is non T_{0} is also non maximal T_{0}.

Let X be a topological space. Let us observe that a subspace of X is maximal T_{0} if it satisfies the conditions (Def.8).
(Def.8) (i) It is T_{0}, and
(ii) for every T_{0} subspace Y_{0} of X such that it is a subspace of Y_{0} holds the topological structure of it $=$ the topological structure of Y_{0}.
In the sequel X will be a topological space.
One can prove the following proposition
(12) Let A_{0} be a non empty subset of X. Suppose A_{0} is maximal T_{0}. Then there exists a strict subspace X_{0} of X such that X_{0} is maximal T_{0} and $A_{0}=$ the carrier of X_{0}.
Let X be a topological space. One can verify the following observations:

* every subspace of X which is maximal T_{0} is also dense,
* every subspace of X which is non dense is also non maximal T_{0},
* every subspace of X which is open and maximal T_{0} is also non proper, * every subspace of X which is open and proper is also non maximal T_{0},
* every subspace of X which is proper and maximal T_{0} is also non open,
* every subspace of X which is closed and maximal T_{0} is also non proper,
* every subspace of X which is closed and proper is also non maximal T_{0}, and
* every subspace of X which is proper and maximal T_{0} is also non closed.

Next we state the proposition
(13) Let Y_{0} be a T_{0} subspace of X. Then there exists a strict subspace X_{0} of X such that Y_{0} is a subspace of X_{0} and X_{0} is maximal T_{0}.

Let X be a topological space. Note that there exists a subspace of X which is maximal T_{0} and strict.

Let X be a topological space. A maximal Kolmogorov subspace of X is a maximal T_{0} subspace of X.

The following four propositions are true:
(14) Let X_{0} be a maximal Kolmogorov subspace of X, and let G be a subset of X, and let G_{0} be a subset of X_{0}. Suppose $G_{0}=G$. Then G_{0} is open if and only if the following conditions are satisfied:
(i) $\operatorname{MaxADSet}(G)$ is open, and
(ii) $\quad G_{0}=\operatorname{MaxADSet}(G) \cap\left(\right.$ the carrier of $\left.X_{0}\right)$.
(15) Let X_{0} be a maximal Kolmogorov subspace of X and let G be a subset of X. Then G is open if and only if the following conditions are satisfied:
(i) $G=\operatorname{MaxADSet}(G)$, and
(ii) there exists a subset G_{0} of X_{0} such that G_{0} is open and $G_{0}=G \cap$ (the carrier of X_{0}).
(16) Let X_{0} be a maximal Kolmogorov subspace of X, and let F be a subset of X, and let F_{0} be a subset of X_{0}. Suppose $F_{0}=F$. Then F_{0} is closed if and only if the following conditions are satisfied:
(i) $\operatorname{MaxADSet}(F)$ is closed, and
(ii) $\quad F_{0}=\operatorname{MaxADSet}(F) \cap\left(\right.$ the carrier of $\left.X_{0}\right)$.
(17) Let X_{0} be a maximal Kolmogorov subspace of X and let F be a subset of X. Then F is closed if and only if the following conditions are satisfied:
(i) $F=\operatorname{MaxADSet}(F)$, and
(ii) there exists a subset F_{0} of X_{0} such that F_{0} is closed and $F_{0}=F \cap$ (the carrier of X_{0}).

3. Stone Retraction Mapping Theorems

In the sequel X is a topological space and X_{0} is a maximal Kolmogorov subspace of X.

One can prove the following propositions:
(18) Let r be a mapping from X into X_{0} and let M be a subset of X. Suppose $M=$ the carrier of X_{0}. Suppose that for every point a of X holds $M \cap \operatorname{MaxADSet}(a)=\{r(a)\}$. Then r is a continuous mapping from X into X_{0}.

Let r be a mapping from X into X_{0}. Suppose that for every point a of X holds $r(a) \in \operatorname{MaxADSet}(a)$. Then r is a continuous mapping from X into X_{0}.
(20) Let r be a continuous mapping from X into X_{0} and let M be a subset of X. Suppose $M=$ the carrier of X_{0}. If for every point a of X holds $M \cap \operatorname{MaxADSet}(a)=\{r(a)\}$, then r is a retraction.
(21) For every continuous mapping r from X into X_{0} such that for every point a of X holds $r(a) \in \operatorname{MaxADSet}(a)$ holds r is a retraction.
(22) There exists continuous mapping from X into X_{0} which is a retraction.
(23) $\quad X_{0}$ is a retract of X.

Let X be a topological space and let X_{0} be a maximal Kolmogorov subspace of X. Stone-retraction of X onto X_{0} is a continuous mapping from X into X_{0} and is defined as follows:
(Def.9) Stone-retraction of X onto X_{0} is a retraction.
Next we state three propositions:
(24) Let a be a point of X and let b be a point of X_{0}. If $a=b$, then (Stone-retraction of X onto $\left.X_{0}\right)^{-1} \overline{\{b\}}=\overline{\{a\}}$.
(25) For every point a of X and for every point b of X_{0} such that $a=b$ holds (Stone-retraction of X onto $\left.X_{0}\right)^{-1}\{b\}=\operatorname{MaxADSet}(a)$.
(26) For every subset E of X and for every subset F of X_{0} such that $F=E$ holds (Stone-retraction of X onto $\left.X_{0}\right)^{-1} F=\operatorname{MaxADSet}(E)$.
Let X be a topological space and let X_{0} be a maximal Kolmogorov subspace of X. Then Stone-retraction of X onto X_{0} is a continuous mapping from X into X_{0} and it can be characterized by the condition:
(Def.10) Let M be a subset of X. Suppose $M=$ the carrier of X_{0}. Let a be a point of X. Then $M \cap \operatorname{MaxADSet}(a)=\{($ Stone-retraction of X onto $\left.\left.X_{0}\right)(a)\right\}$.
Let X be a topological space and let X_{0} be a maximal Kolmogorov subspace of X. Then Stone-retraction of X onto X_{0} is a continuous mapping from X into X_{0} and it can be characterized by the condition:
(Def.11) For every point a of X holds (Stone-retraction of X onto $\left.X_{0}\right)(a) \in$ $\operatorname{MaxADSet}(a)$.
Next we state two propositions:
(27) For every point a of X holds (Stone-retraction of X onto X_{0}) ${ }^{-1}$ $\left\{\left(\right.\right.$ Stone-retraction of X onto $\left.\left.X_{0}\right)(a)\right\}=\operatorname{MaxADSet}(a)$.
(28) For every point a of X holds (Stone-retraction of X onto $\left.X_{0}\right)^{\circ}\{a\}=$ (Stone-retraction of X onto $\left.X_{0}\right)^{\circ} \operatorname{MaxADSet}(a)$.
Let X be a topological space and let X_{0} be a maximal Kolmogorov subspace of X. Then Stone-retraction of X onto X_{0} is a continuous mapping from X into X_{0} and it can be characterized by the condition:
(Def.12) Let M be a subset of X. Suppose $M=$ the carrier of X_{0}. Let A be a subset of X. Then $M \cap \operatorname{MaxADSet}(A)=($ Stone-retraction of X onto $\left.X_{0}\right)^{\circ} A$.
The following propositions are true:
(29) For every subset A of X holds (Stone-retraction of X onto $\left.X_{0}\right)^{-1}$ (Stone-retraction of X onto $\left.X_{0}\right)^{\circ} A=\operatorname{MaxADSet}(A)$.
(30) For every subset A of X holds (Stone-retraction of X onto $\left.X_{0}\right)^{\circ} A=$ (Stone-retraction of X onto $\left.X_{0}\right)^{\circ} \operatorname{MaxADSet}(A)$.
(31)

Let A, B be subsets of X. Then (Stone-retraction of X onto $\left.X_{0}\right)^{\circ}(A \cup$ $B)=\left(\text { Stone-retraction of } X \text { onto } X_{0}\right)^{\circ} A \cup($ Stone-retraction of X onto $\left.X_{0}\right)^{\circ} B$.
(32) Let A, B be subsets of X. Suppose A is open or B is open. Then (Stone-retraction of X onto $\left.X_{0}\right)^{\circ}(A \cap B)=$ (Stone-retraction of X onto $\left.X_{0}\right)^{\circ} A \cap\left(\text { Stone-retraction of } X \text { onto } X_{0}\right)^{\circ} B$.
(33) Let A, B be subsets of X. Suppose A is closed or B is closed. Then (Stone-retraction of X onto $\left.X_{0}\right)^{\circ}(A \cap B)=($ Stone-retraction of X onto $\left.X_{0}\right)^{\circ} A \cap\left(\text { Stone-retraction of } X \text { onto } X_{0}\right)^{\circ} B$.
(34) For every subset A of X such that A is open holds (Stone-retraction of X onto $\left.X_{0}\right)^{\circ} A$ is open.
(35) For every subset A of X such that A is closed holds (Stone-retraction of X onto $\left.X_{0}\right)^{\circ} A$ is closed.

References

[1] P. Alexandroff and H. H. Hopf. Topologie I. Springer-Verlag, Berlin, 1935.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Ryszard Engelking. General Topology. Volume 60 of Monografie Matematyczne, PWN Polish Scientific Publishers, Warsaw, 1977.
[5] Zbigniew Karno. Maximal anti-discrete subspaces of topological spaces. Formalized Mathematics, 5(1):109-118, 1996.
[6] Zbigniew Karno. Maximal discrete subspaces of almost discrete topological spaces. Formalized Mathematics, 4(1):125-135, 1993.
[7] Zbigniew Karno. On Kolmogorov topological spaces. Formalized Mathematics, 5(1):119124, 1996.
[8] Kazimierz Kuratowski. Topology. Volume I, PWN - Polish Scientific Publishers, Academic Press, Warsaw, New York and London, 1966.
[9] Beata Padlewska and Agata Darmochwat. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[10] M. H. Stone. Application of boolean algebras to topology. Math. Sb., 1:765-771, 1936.
[11] W.J. Thron. Topological Structures. Holt, Rinehart and Winston, New York, 1966.
[12] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[13] Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.
[14] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[15] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[16] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[17] R.H. Warren. Identification spaces and unique uniformity. Pacific Journal of Mathematics, 95:483-492, 1981.
[18] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[19] Mirosław Wysocki and Agata Darmochwał. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990.

Received July 26, 1994

Projective Planes

Michał Muzalewski
Warsaw University
Białystok

Abstract

Summary. The line of points a, b, denoted by $a \cdot b$ and the point of lines A, B denoted by $A \cdot B$ are defined. A few basic theorems related to these notions are proved. An inspiration for such approach comes from so called Leibniz program. Let us recall that the Leibniz program is a program of algebraization of geometry using purely geometric notions. Leibniz formulated his program in opposition to algebraization method developed by Descartes.

MML Identifier: PROJPL_1.

The terminology and notation used in this paper are introduced in the papers [2] and [1].

1. Projective Spaces

In this paper G will denote a projective incidence structure.
Let us consider G. A point of G is an element of the points of G. A line of G is an element of the lines of G.

We adopt the following rules: $a, a_{1}, a_{2}, b, b_{1}, b_{2}, c, d, p, q, r$ will be points of G and A, B, M, N, P, Q, R will be lines of G.

Let us consider G, a, P. We introduce $a \nmid P$ as an antonym of $a \mid P$.
Let us consider G, a, b, P. The predicate $a, b \nmid P$ is defined as follows:
(Def.1) $\quad a \nmid P$ and $b \nmid P$.
Let us consider G, a, P, Q. The predicate $a \mid P, Q$ is defined as follows:
(Def.2) $\quad a \mid P$ and $a \mid Q$.
Let us consider G, a, P, Q, R. The predicate $a \mid P, Q, R$ is defined as follows:
(Def.3) $\quad a \mid P$ and $a \mid Q$ and $a \mid R$.
We now state the proposition
(1) (i) If $a, b \mid P$, then $b, a \mid P$,
(ii) if $a, b, c \mid P$, then $a, c, b \mid P$ and $b, a, c \mid P$ and $b, c, a \mid P$ and $c, a, b \mid P$ and $c, b, a \mid P$,
(iii) if $a \mid P, Q$, then $a \mid Q, P$, and
(iv) if $a \mid P, Q, R$, then $a \mid P, R, Q$ and $a \mid Q, P, R$ and $a \mid Q, R, P$ and $a \mid R, P, Q$ and $a \mid R, Q, P$.
A projective incidence structure is configuration if:
(Def.4) For all points p, q of it and for all lines P, Q of it such that $p \mid P$ and $q \mid P$ and $p \mid Q$ and $q \mid Q$ holds $p=q$ or $P=Q$.
We now state three propositions:
(2) $\quad G$ is configuration iff for all p, q, P, Q such that $p, q \mid P$ and $p, q \mid Q$ holds $p=q$ or $P=Q$.
(3) $\quad G$ is configuration iff for all p, q, P, Q such that $p \mid P, Q$ and $q \mid P, Q$ holds $p=q$ or $P=Q$.
(4) The following statements are equivalent
(i) G is a projective space defined in terms of incidence,
(ii) $\quad G$ is configuration and for all p, q there exists P such that $p, q \mid P$ and there exist p, P such that $p \nmid P$ and for every P there exist a, b, c such that a, b, c are mutually different and $a, b, c \mid P$ and for all a, b, c, d, p, M, N, P, Q such that $a, b, p \mid M$ and $c, d, p \mid N$ and $a, c \mid P$ and $b, d \mid Q$ and $p \nmid P$ and $p \nmid Q$ and $M \neq N$ there exists q such that $q \mid P, Q$.
An incidence projective plane is a 2 -dimensional projective space defined in terms of incidence.

Let us consider G, a, b, c. We say that a, b and c are collinear if and only if: (Def.5) There exists P such that $a, b, c \mid P$.
We introduce a, b, c form a triangle as an antonym of a, b and c are collinear.
Next we state two propositions:
(5) $\quad a, b$ and c are collinear iff there exists P such that $a \mid P$ and $b \mid P$ and $c \mid P$.
(6) a, b, c form a triangle iff for every P holds $a \nmid P$ or $b \nmid P$ or $c \nmid P$.

Let us consider G, a, b, c, d. We say that a, b, c, d form a quadrangle if and only if the conditions (Def.6) are satisfied.
(Def.6) (i) $\quad a, b, c$ form a triangle,
(ii) b, c, d form a triangle,
(iii) c, d, a form a triangle, and
(iv) d, a, b form a triangle.

One can prove the following propositions:
(7) If G is a projective space defined in terms of incidence, then there exist A, B such that $A \neq B$.
(8) Suppose G is a projective space defined in terms of incidence and $a \mid A$. Then there exist b, c such that $b, c \mid A$ and a, b, c are mutually different.
(9) Suppose G is a projective space defined in terms of incidence and $a \mid A$ and $A \neq B$. Then there exists b such that $b \mid A$ and $b \nmid B$ and $a \neq b$.
(10) If G is configuration and $a_{1}, a_{2} \mid A$ and $a_{1} \neq a_{2}$ and $b \nmid A$, then a_{1}, a_{2}, b form a triangle.
(11) Suppose a, b and c are collinear. Then
(i) a, c and b are collinear,
(ii) b, a and c are collinear,
(iii) b, c and a are collinear,
(iv) c, a and b are collinear, and
(v) c, b and a are collinear.
(12) Suppose a, b, c form a triangle. Then
(i) a, c, b form a triangle,
(ii) b, a, c form a triangle,
(iii) b, c, a form a triangle,
(iv) c, a, b form a triangle, and
(v) c, b, a form a triangle.
(13) Suppose a, b, c, d form a quadrangle. Then
(i) a, c, b, d form a quadrangle,
(ii) b, a, c, d form a quadrangle,
(iii) b, c, a, d form a quadrangle,
(iv) c, a, b, d form a quadrangle,
(v) c, b, a, d form a quadrangle,
(vi) a, b, d, c form a quadrangle,
(vii) a, c, d, b form a quadrangle,
(viii) b, a, d, c form a quadrangle,
(ix) b, c, d, a form a quadrangle,
(x) c, a, d, b form a quadrangle,
(xi) c, b, d, a form a quadrangle,
(xii) a, d, b, c form a quadrangle,
(xiii) a, d, c, b form a quadrangle,
(xiv) b, d, a, c form a quadrangle,
(xv) b, d, c, a form a quadrangle,
(xvi) c, d, a, b form a quadrangle,
(xvii) c, d, b, a form a quadrangle,
(xviii) d, a, b, c form a quadrangle,
(xix) d, a, c, b form a quadrangle,
(xx) d, b, a, c form a quadrangle,
(xxi) d, b, c, a form a quadrangle,
(xxii) d, c, a, b form a quadrangle, and
(xxiii) d, c, b, a form a quadrangle.
(14) If G is configuration and $a_{1}, a_{2} \mid A$ and $b_{1}, b_{2} \mid B$ and $a_{1}, a_{2} \nmid B$ and $b_{1}, b_{2} \nmid A$ and $a_{1} \neq a_{2}$ and $b_{1} \neq b_{2}$, then $a_{1}, a_{2}, b_{1}, b_{2}$ form a quadrangle.
(15) Suppose G is a projective space defined in terms of incidence. Then there exist a, b, c, d such that a, b, c, d form a quadrangle.

Let G be a projective space defined in terms of incidence. An element of : the points of G, the points of G, the points of G, the points of G : is called a quadrangle of G if:
(Def.7) $\mathrm{it}_{\mathbf{1}}, \mathrm{it}_{\mathbf{2}}, \mathrm{it}_{\mathbf{3}}, \mathrm{it}_{\mathbf{4}}$ form a quadrangle.
Let G be a projective space defined in terms of incidence and let a, b be points of G. Let us assume that $a \neq b$. The functor $a \cdot b$ yields a line of G and is defined as follows:
(Def.8) $a, b \mid a \cdot b$.
Next we state the proposition
(16) Let G be a projective space defined in terms of incidence, and let a, b be points of G, and let L be a line of G. Suppose $a \neq b$. Then $a \mid a \cdot b$ and $b \mid a \cdot b$ and $a \cdot b=b \cdot a$ and if $a \mid L$ and $b \mid L$, then $L=a \cdot b$.

2. Projective Planes

The following propositions are true:
(17) If there exist a, b, c such that a, b, c form a triangle and for all p, q there exists M such that $p, q \mid M$, then there exist p, P such that $p \nmid P$.
(18) If there exist a, b, c, d such that a, b, c, d form a quadrangle, then there exist a, b, c such that a, b, c form a triangle.
(19) If a, b, c form a triangle and $a, b \mid P$ and $a, c \mid Q$, then $P \neq Q$.
(20) If a, b, c, d form a quadrangle and $a, b \mid P$ and $a, c \mid Q$ and $a, d \mid R$, then P, Q, R are mutually different.
(21) Suppose G is configuration and $a \mid P, Q, R$ and P, Q, R are mutually different and $a \nmid A$ and $p \mid A, P$ and $q \mid A, Q$ and $r \mid A, R$. Then p, q, r are mutually different.
(22) Suppose that
(i) G is configuration,
(ii) for all p, q there exists M such that $p, q \mid M$,
(iii) for all P, Q there exists a such that $a \mid P, Q$, and
(iv) there exist a, b, c, d such that a, b, c, d form a quadrangle.

Given P. Then there exist a, b, c such that a, b, c are mutually different and $a, b, c \mid P$.
(23) G is an incidence projective plane if and only if the following conditions are satisfied:
(i) G is configuration,
(ii) for all p, q there exists M such that $p, q \mid M$,
(iii) for all P, Q there exists a such that $a \mid P, Q$, and
(iv) there exist a, b, c, d such that a, b, c, d form a quadrangle.

We adopt the following convention: G will denote an incidence projective plane, a, q will denote points of G, and A, B will denote lines of G.

Let us consider G, A, B. Let us assume that $A \neq B$. The functor $A \cdot B$ yields a point of G and is defined by:

(Def.9) $A \cdot B \mid A, B$.

Next we state two propositions:
(24) If $A \neq B$, then $A \cdot B \mid A$ and $A \cdot B \mid B$ and $A \cdot B=B \cdot A$ and if $a \mid A$ and $a \mid B$, then $a=A \cdot B$.
(25) If $A \neq B$ and $a \mid A$ and $q \nmid A$ and $a \neq A \cdot B$, then $q \cdot a \cdot B \mid B$ and $q \cdot a \cdot B \nmid A$.

3. Some Useful Propositions

We adopt the following convention: G denotes a projective space defined in terms of incidence and a, b, c, d denote points of G.

We now state two propositions:
(26) If a, b, c form a triangle, then a, b, c are mutually different.
(27) If a, b, c, d form a quadrangle, then a, b, c, d are mutually different.

In the sequel G will be an incidence projective plane.
One can prove the following propositions:
(28) For all points a, b, c, d of G such that $a \cdot c=b \cdot d$ holds $a=c$ or $b=d$ or $c=d$ or $a \cdot c=c \cdot d$.
(29) For all points a, b, c, d of G such that $a \cdot c=b \cdot d$ holds $a=c$ or $b=d$ or $c=d$ or $a \mid c \cdot d$.
(30) Let G be an incidence projective plane, and let e, m, m^{\prime} be points of G, and let I be a line of G. If $m \mid I$ and $m^{\prime} \mid I$ and $m \neq m^{\prime}$ and $e \nmid I$, then $m \cdot e \neq m^{\prime} \cdot e$ and $e \cdot m \neq e \cdot m^{\prime}$.
(31) Let G be an incidence projective plane, and let e be a point of G, and let I, L_{1}, L_{2} be lines of G. If $e \mid L_{1}$ and $e \mid L_{2}$ and $L_{1} \neq L_{2}$ and $e \nmid I$, then $I \cdot L_{1} \neq I \cdot L_{2}$ and $L_{1} \cdot I \neq L_{2} \cdot I$.
(32) Let G be a projective space defined in terms of incidence and let a, b, q, q_{1} be points of G. If $q \mid a \cdot b$ and $q \mid a \cdot q_{1}$ and $q \neq a$ and $q_{1} \neq a$ and $a \neq b$, then $q_{1} \mid a \cdot b$.
(33) Let G be a projective space defined in terms of incidence and let a, b, c be points of G. If $c \mid a \cdot b$ and $a \neq c$, then $b \mid a \cdot c$.
(34) Let G be an incidence projective plane, and let $q_{1}, q_{2}, r_{1}, r_{2}$ be points of G, and let H be a line of G. If $r_{1} \neq r_{2}$ and $r_{1} \mid H$ and $r_{2} \mid H$ and $q_{1} \nmid H$ and $q_{2} \nmid H$, then $q_{1} \cdot r_{1} \neq q_{2} \cdot r_{2}$.
(35) For all points a, b, c of G such that $a \mid b \cdot c$ holds $a=c$ or $b=c$ or $b \mid c \cdot a$.
(36) For all points a, b, c of G such that $a \mid b \cdot c$ holds $b=a$ or $b=c$ or $c \mid b \cdot a$.
(37) Let $e, x_{1}, x_{2}, p_{1}, p_{2}$ be points of G and let H, I be lines of G. Suppose $x_{1} \mid I$ and $x_{2} \mid I$ and $e \mid H$ and $e \nmid I$ and $x_{1} \neq x_{2}$ and $p_{1} \neq e$ and $p_{2} \neq e$ and $p_{1} \mid e \cdot x_{1}$ and $p_{2} \mid e \cdot x_{2}$. Then there exists a point r of G such that $r \mid p_{1} \cdot p_{2}$ and $r \mid H$ and $r \neq e$.

References

[1] Wojciech Leończuk and Krzysztof Prażmowski. Incidence projective spaces. Formalized Mathematics, 2(2):225-232, 1991.
[2] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.

Received July 28, 1994

The Formalization of Simple Graphs

Yozo Toda
Information Processing Center
Chiba University

Summary. A graph is simple when

- it is non-directed,
- there is at most one edge between two vertices,
- there is no loop of length one.

A formalization of simple graphs is given from scratch. There is already an article [9], dealing with the similar subject. It is not used as a startingpoint, because [9] formalizes directed non-empty graphs. Given a set of vertices, edge is defined as an (unordered) pair of different two vertices and graph as a pair of a set of vertices and a set of edges.

The following concepts are introduced:

- simple graph structure,
- the set of all simple graphs,
- equality relation on graphs.
- the notion of degrees of vertices; the number of edges connected to, or the number of adjacent vertices,
- the notion of subgraphs,
- path, cycle,
- complete and bipartite complete graphs,

Theorems proved in this articles include:

- the set of simple graphs satisfies a certain minimality condition,
- equivalence between two notions of degrees.

MML Identifier: SGRAPH1.

The terminology and notation used in this paper have been introduced in the following articles: [13], [1], [4], [6], [7], [2], [3], [8], [5], [11], [10], and [12].

[^13]
1. Preliminaries

Let m, n be natural numbers. The functor $[m, n]_{\mathbb{N}}$ yields a finite subset of \mathbb{N} and is defined by:
(Def.1) $\quad[m, n]_{N}=\{i: i$ ranges over natural numbers, $m \leq i \wedge i \leq n\}$.
The following propositions are true:
(1) For all natural numbers m, n holds $[m, n]_{N}=\{i: i$ ranges over natural numbers, $m \leq i \wedge i \leq n\}$.
(2) Let m, n be natural numbers and let e be arbitrary. Then $e \in[m, n]_{\mathrm{N}}$ if and only if there exists a natural number i such that $e=i$ and $m \leq i$ and $i \leq n$.
(3) For all natural numbers m, n, k holds $k \in[m, n]_{N}$ iff $m \leq k$ and $k \leq n$.
(4) For every natural number n holds $[1, n]_{\mathrm{N}}=\operatorname{Seg} n$.
(5) For all natural numbers m, n such that $1 \leq m$ holds $[m, n]_{N} \subseteq \operatorname{Seg} n$.
(6) For all natural numbers k, m, n such that $k<m$ holds $\operatorname{Seg} k \cap[m, n]_{\mathrm{N}}=$ \emptyset.
(7) For all natural numbers m, n such that $n<m$ holds $[m, n]_{\mathrm{N}}=\emptyset$.

Let A, B be sets and let f be a function from A into B. We say that f is onto if and only if:
(Def.2) $\quad \operatorname{rng} f=B$.
Let A, B be sets and let f be a function from A into B. We say that f is bijective if and only if:
(Def.3) $\quad f$ is one-to-one and onto.
One can prove the following proposition
(8) For every finite set z holds card $z=2$ iff there exist arbitrary x, y such that $x \in z$ and $y \in z$ and $x \neq y$ and $z=\{x, y\}$.
Let A be a set. The functor TwoElementSets (A) yields a set and is defined by:
(Def.4) TwoElementSets $(A)=\left\{z: z\right.$ ranges over finite elements of $2^{A}, \operatorname{card} z=$ $2\}$.
The following propositions are true:
(9) For every set A and for arbitrary e holds $e \in \operatorname{TwoElementSets}(A)$ iff there exists a finite subset z of A such that $e=z$ and card $z=2$.
(10) Let A be a set and let e be arbitrary. Then $e \in \operatorname{TwoElementSets}(A)$ if and only if the following conditions are satisfied:
(i) e is a finite subset of A, and
(ii) there exist arbitrary x, y such that $x \in A$ and $y \in A$ and $x \neq y$ and $e=\{x, y\}$.
(11) For every set A holds TwoElementSets $(A) \subseteq 2^{A}$.
(12) For every set A and for arbitrary e_{1}, e_{2} such that $\left\{e_{1}, e_{2}\right\} \in$ TwoElementSets (A) holds $e_{1} \in A$ and $e_{2} \in A$ and $e_{1} \neq e_{2}$.
(13) TwoElementSets $(\emptyset)=\emptyset$.
(14) For all sets t, u such that $t \subseteq u$ holds TwoElementSets $(t) \subseteq$ TwoElementSets (u).
(15) For every finite set A holds TwoElementSets (A) is finite.
(16) For every non trivial set A holds TwoElementSets (A) is non empty.
(17) For arbitrary a holds TwoElementSets $(\{a\})=\emptyset$.

Let a be a set.
(Def.5) $\quad \phi(a)$ is an empty subset of TwoElementSets (a).
Let X be an empty set. Observe that every subset of X is empty.
In the sequel X will be a set.

2. Simple Graphis

We introduce simple graph structures which are systems
\langle SVertices, SEdges 〉,
where the SVertices constitute a set and the SEdges constitute a subset of TwoElementSets(the SVertices).

Let X be a set. The functor SimpleGraphs (X) yields a non empty set and is defined as follows:
(Def.6) $\operatorname{SimpleGraphs}(X)=\{\langle v, e\rangle: v$ ranges over finite subsets of X, e ranges over finite subsets of TwoElementSets $(v)\}$.
Next we state the proposition
$(19)^{1}\langle\emptyset, \phi(\emptyset)\rangle \in \operatorname{SimpleGraphs}(X)$.
Let X be a set. A strict simple graph structure is said to be a simple graph of X if:
(Def.7) It is an element of SimpleGraphs (X).
Next we state two propositions:
(20) $\operatorname{SimpleGraphs}(X)=\{\langle v, e\rangle: v$ ranges over finite subsets of X, e ranges over finite subsets of TwoElementSets $(v)\}$.
(21) Let g be arbitrary. Then $g \in \operatorname{SimpleGraphs}(X)$ if and only if there exists a finite subset v of X and there exists a finite subset e of TwoElementSets (v) such that $g=\langle v, e\rangle$.

[^14]
3. Equality Relation on Simple Graphs

One can prove the following propositions:
$(23)^{2}$ For every simple graph g of X holds the SVertices of $g \subseteq X$ and the SEdges of $g \subseteq$ TwoElementSets(the SVertices of g).
(24) For every simple graph g of X holds $g=\langle$ the SVertices of g, the SEdges of $g\rangle$.
(25) Let g be a simple graph of X and let e be arbitrary. Suppose $e \in$ the SEdges of g. Then there exist arbitrary v_{1}, v_{2} such that $v_{1} \in$ the SVertices of g and $v_{2} \in$ the SVertices of g and $v_{1} \neq v_{2}$ and $e=\left\{v_{1}, v_{2}\right\}$.
(26) Let g be a simple graph of X and let v_{1}, v_{2} be arbitrary. Suppose $\left\{v_{1}, v_{2}\right\} \in$ the SEdges of g. Then $v_{1} \in$ the SVertices of g and $v_{2} \in$ the SVertices of g and $v_{1} \neq v_{2}$.
(27) Let g be a simple graph of X. Then
(i) the SVertices of g is a finite subset of X, and
(ii) the SEdges of g is a finite subset of TwoElementSets(the SVertices of g).

Let us consider X and let G, G^{\prime} be simple graphs of X. We say that G is isomorphic to G^{\prime} if and only if the condition (Def.8) is satisfied.
(Def.8) There exists a function F_{1} from the SVertices of G into the SVertices of G^{\prime} such that
(i) F_{1} is bijective, and
(ii) for all elements v_{1}, v_{2} of the SVertices of G holds $\left\{v_{1}, v_{2}\right\} \in$ the SEdges of G iff $\left\{F_{1}\left(v_{1}\right), F_{1}\left(v_{2}\right)\right\} \in$ the SEdges of G.

4. Properties of Simple Graphs

The scheme IndSimpleGraphs0 concerns a set \mathcal{A} and a unary predicate \mathcal{P}, and states that:

For arbitrary G such that $G \in \operatorname{SimpleGraphs}(\mathcal{A})$ holds $\mathcal{P}[G]$
provided the parameters satisfy the following conditions:

- $\mathcal{P}[\langle\emptyset, \phi(\emptyset)\rangle]$,
- Let g be a simple graph of \mathcal{A} and let v be arbitrary. Suppose $g \in \operatorname{SimpleGraphs}(\mathcal{A})$ and $\mathcal{P}[g]$ and $v \in \mathcal{A}$ and $v \notin$ the SVertices of g. Then $\mathcal{P}[\langle($ the SVertices of $g) \cup\{v\}, \phi(($ the SVertices of $g) \cup\{v\})\rangle]$,
- Let g be a simple graph of \mathcal{A} and let e be arbitrary. Suppose $\mathcal{P}[g]$ and $e \in$ TwoElementSets(the SVertices of g) and $e \notin$ the SEdges of g. Then there exists a subset s_{1} of TwoElementSets(the SVertices of g) such that $s_{1}=($ the SEdges of $g) \cup\{e\}$ and $\mathcal{P}[\langle$ the SVertices of $\left.\left.g, s_{1}\right\rangle\right]$.

[^15]We now state three propositions:
(28) Let g be a simple graph of X. Then $g=\langle\emptyset, \phi(\emptyset)\rangle$ or there exists a set v and there exists a subset e of TwoElementSets (v) such that v is non empty and $g=\langle v, e\rangle$.
$(30)^{3}$ Let V be a subset of X, and let E be a subset of TwoElementSets (V), and let n be arbitrary, and let E_{1} be a finite subset of TwoElementSets $(V \cup$ $\{n\})$. If $\langle V, E\rangle \in \operatorname{SimpleGraphs}(X)$ and $n \in X$ and $n \notin V$, then $\langle V \cup$ $\left.\{n\}, E_{1}\right\rangle \in \operatorname{SimpleGraphs}(X)$.
(31) Let V be a subset of X, and let E be a subset of TwoElementSets (V), and let v_{1}, v_{2} be arbitrary. Suppose $v_{1} \in V$ and $v_{2} \in V$ and $v_{1} \neq v_{2}$ and $\langle V, E\rangle \in \operatorname{SimpleGraphs}(X)$. Then there exists a finite subset v_{3} of TwoElementSets (V) such that $v_{3}=E \cup\left\{\left\{v_{1}, v_{2}\right\}\right\}$ and $\left\langle V, v_{3}\right\rangle \in$ SimpleGraphs (X).
Let X be a set and let G_{1} be a set. We say that G_{1} is a set of simple graphs of X if and only if the conditions (Def.9) are satisfied.
(Def.9) (i) $\langle\emptyset, \phi(\emptyset)\rangle \in G_{1}$,
(ii) for every subset V of X and for every subset E of TwoElementSets(V) and for arbitrary n and for every finite subset E_{1} of TwoElementSets $(V \cup$ $\{n\})$ such that $\langle V, E\rangle \in G_{1}$ and $n \in X$ and $n \notin V$ holds $\left\langle V \cup\{n\}, E_{1}\right\rangle \in$ G_{1}, and
(iii) for every subset V of X and for every subset E of TwoElementSets (V) and for arbitrary v_{1}, v_{2} such that $\langle V, E\rangle \in G_{1}$ and $v_{1} \in V$ and $v_{2} \in V$ and $v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\} \notin E$ there exists a finite subset v_{3} of TwoElementSets (V) such that $v_{3}=E \cup\left\{\left\{v_{1}, v_{2}\right\}\right\}$ and $\left\langle V, v_{3}\right\rangle \in G_{1}$.
One can prove the following propositions:
(32) For arbitrary g_{1} such that g_{1} is a set of simple graphs of X holds $\langle\emptyset, \phi(\emptyset)\rangle \in g_{1}$.
(33) Let G_{1} be arbitrary. Suppose G_{1} is a set of simple graphs of X. Let V be a subset of X, and let E be a subset of TwoElementSets (V), and let n be arbitrary, and let E_{1} be a finite subset of TwoElementSets $(V \cup\{n\})$. If $\langle V, E\rangle \in G_{1}$ and $n \in X$ and $n \notin V$, then $\left\langle V \cup\{n\}, E_{1}\right\rangle \in G_{1}$.
(34) Let G_{1} be arbitrary. Suppose G_{1} is a set of simple graphs of X. Let V be a subset of X, and let E be a subset of TwoElementSets (V), and let v_{1}, v_{2} be arbitrary. Suppose $\langle V, E\rangle \in G_{1}$ and $v_{1} \in V$ and $v_{2} \in V$ and $v_{1} \neq v_{2}$ and $\left\{v_{1}, v_{2}\right\} \notin E$. Then there exists a finite subset v_{3} of TwoElementSets (V) such that $v_{3}=E \cup\left\{\left\{v_{1}, v_{2}\right\}\right\}$ and $\left\langle V, v_{3}\right\rangle \in G_{1}$.
(35) $\operatorname{SimpleGraphs}(X)$ is a set of simple graphs of X.
(36) For arbitrary O_{1} such that O_{1} is a set of simple graphs of X holds SimpleGraphs $(X) \subseteq O_{1}$.
(37) $\operatorname{SimpleGraphs}(X)$ is a set of simple graphs of X and for arbitrary O_{1} such that O_{1} is a set of simple graphs of X holds SimpleGraphs $(X) \subseteq O_{1}$.

[^16]
5. SubGRAPHS

Let X be a set and let G be a simple graph of X. A simple graph of X is called a subgraph of G if:
(Def.10) The SVertices of it \subseteq the SVertices of G and the SEdges of it \subseteq the SEdges of G.

6. Degree of Vertices

Let X be a set, let G be a simple graph of X, and let v be arbitrary. Let us assume that $v \in$ the SVertices of G. The functor degree (G, v) yielding a natural number is defined by:
(Def.11) There exists a finite set X such that for arbitrary z holds $z \in X$ iff $z \in$ the SEdges of G and $v \in z$ and degree $(G, v)=\operatorname{card} X$.
One can prove the following propositions:
(38) Let G be a simple graph of X and let v be arbitrary. Suppose $v \in$ the SVertices of G. Then there exists a finite set Y such that for arbitrary z holds $z \in Y$ iff $z \in$ the SEdges of G and $v \in z$ and degree $(G, v)=\operatorname{card} Y$.
(39) Let X be a non empty set, and let G be a simple graph of X, and let v be arbitrary. Suppose $v \in$ the SVertices of G. Then there exists a finite set w_{1} such that $w_{1}=\{w: w$ ranges over elements of $X, w \in$ the SVertices of $G \wedge\{v, w\} \in$ the SEdges of $G\}$ and degree $(G, v)=\operatorname{card} w_{1}$.
(40) Let X be a non empty set, and let g be a simple graph of X, and let v be arbitrary. Suppose $v \in$ the SVertices of g. Then there exists a finite set V_{1} such that $V_{1}=$ the SVertices of g and degree $(g, v)<\operatorname{card} V_{1}$.
(41) Let g be a simple graph of X and let v, e be arbitrary. Suppose $v \in$ the SVertices of g and $e \in$ the SEdges of g and degree $(g, v)=0$. Then $v \notin e$.
(42) Let g be a simple graph of X, and let v be arbitrary, and let v_{4} be a finite set. Suppose $v_{4}=$ the SVertices of g and $v \in v_{4}$ and $1+\operatorname{degree}(g, v)=$ card v_{4}. Let w be an element of v_{4}. If $v \neq w$, then there exists arbitrary e such that $e \in$ the SEdges of g and $e=\{v, w\}$.

7. Path and Cycle

Let X be a set, let g be a simple graph of X, let v_{1}, v_{2} be elements of the SVertices of g, and let p be a finite sequence of elements of the SVertices of g. We say that p is a path of v_{1} and v_{2} if and only if the conditions (Def.12) are satisfied.
(Def.12) (i) $\quad p(1)=v_{1}$,
(ii) $p(\operatorname{len} p)=v_{2}$,
(iii) for every natural number i such that $1 \leq i$ and $i<\operatorname{len} p$ holds $\{p(i), p(i+1)\} \in$ the SEdges of g, and
(iv) for all natural numbers i, j such that $1 \leq i$ and $i<\operatorname{len} p$ and $i<j$ and $j<\operatorname{len} p$ holds $p(i) \neq p(j)$ and $\{p(i), p(i+1)\} \neq\{p(j), p(j+1)\}$.
Let X be a set, let g be a simple graph of X, and let v_{1}, v_{2} be elements of the SVertices of g. The functor $\operatorname{Paths}\left(v_{1}, v_{2}\right)$ yields a subset of $(\text { the SVertices of } g)^{*}$ and is defined by:
(Def.13) Paths $\left(v_{1}, v_{2}\right)=\left\{s_{2}: s_{2} \text { ranges over elements of (the SVertices of } g\right)^{*}$, s_{2} is a path of v_{1} and $\left.v_{2}\right\}$.
One can prove the following three propositions:
(43) Let g be a simple graph of X and let v_{1}, v_{2} be elements of the SVertices of g. Then Paths $\left(v_{1}, v_{2}\right)=\left\{s_{2}: s_{2}\right.$ ranges over elements of (the SVertices of $g)^{*}, s_{2}$ is a path of v_{1} and $\left.v_{2}\right\}$.
(44) Let g be a simple graph of X, and let v_{1}, v_{2} be elements of the SVertices of g, and let e be arbitrary. Then $e \in \operatorname{Paths}\left(v_{1}, v_{2}\right)$ if and only if there exists an element s_{2} of (the SVertices of $\left.g\right)^{*}$ such that $e=s_{2}$ and s_{2} is a path of v_{1} and v_{2}.
(45) Let g be a simple graph of X, and let v_{1}, v_{2} be elements of the SVertices of g, and let e be an element of (the SVertices of $g)^{*}$. If e is a path of v_{1} and v_{2}, then $e \in \operatorname{Paths}\left(v_{1}, v_{2}\right)$.
Let X be a set, let g be a simple graph of X, and let p be arbitrary. We say that p is a cycle of g if and only if:
(Def.14) There exists an element v of the SVertices of g such that $p \in \operatorname{Paths}(v, v)$.

8. Some Famous Graphs

Let n, m be natural numbers. The functor $\mathrm{K}_{m, n}$ yielding a simple graph of \mathbb{N} is defined by the condition (Def.16).
(Def.16) ${ }^{4}$ There exists a subset e_{3} of TwoElementSets $(\operatorname{Seg}(m+n))$ such that $e_{3}=\{\{i, j\}: i$ ranges over elements of \mathbb{N}, j ranges over elements of \mathbb{N}, $\left.i \in \operatorname{Seg} m \wedge j \in[m+1, m+n]_{\mathbb{N}}\right\}$ and $\mathrm{K}_{m, n}=\left\langle\operatorname{Seg}(m+n), e_{3}\right\rangle$.
Let n be a natural number. The functor K_{n} yields a simple graph of \mathbb{N} and is defined by the condition (Def.17).
(Def.17) There exists a finite subset e_{3} of TwoElementSets(Seg n) such that $e_{3}=$ $\{\{i, j\}: i$ ranges over elements of \mathbb{N}, j ranges over elements of $\mathbb{N}, i \in$ $\operatorname{Seg} n \wedge j \in \operatorname{Seg} n \wedge i \neq j\}$ and $\mathrm{K}_{n}=\left\langle\operatorname{Seg} n, e_{3}\right\rangle$.
The simple graph TriangleGraph of \mathbb{N} is defined by:
(Def.18) TriangleGraph $=\mathrm{K}_{3}$.

[^17]One can prove the following propositions:
(46) There exists a subset e_{3} of TwoElementSets(Seg 3) such that $e_{3}=$ $\{\{1,2\},\{2,3\},\{3,1\}\}$ and TriangleGraph $=\left\langle\operatorname{Seg} 3, e_{3}\right\rangle$.
(47) The SVertices of TriangleGraph $=\operatorname{Seg} 3$ and the SEdges of TriangleGraph $=\{\{1,2\},\{2,3\},\{3,1\}\}$.
$\{1,2\} \in$ the SEdges of TriangleGraph and $\{2,3\} \in$ the SEdges of TriangleGraph and $\{3,1\} \in$ the SEdges of TriangleGraph.
$\langle 1\rangle^{\wedge}\langle 2\rangle^{\wedge}\langle 3\rangle \wedge\langle 1\rangle$ is a cycle of TriangleGraph.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[5] Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[9] Krzysztof Hryniewiecki. Graphs. Formalized Mathematics, 2(3):365-370, 1991.
[10] Andrzej Trybulec. Semilattice operations on finite subsets. Formalized Mathematics, 1(2):369-376, 1990.
[11] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[12] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575-579, 1990.
[13] Zinaida Trybulec and Halina Świẹczkowska. Boolean properties of sets. Formalized Mathematics, 1(1):17-23, 1990.

Received September 8, 1994

Solvable Groups

Katarzyna Zawadzka
Warsaw University
Białystok

Abstract

Summary. The concept of solvable group is introduced. Some theorems concerning heirdom of solvability are proved.

MML Identifier: GRSOLV_1.

The articles [7], [13], [3], [4], [11], [6], [5], [2], [1], [9], [10], [8], and [12] provide the terminology and notation for this paper.

In this paper G denotes a group and i denotes a natural number.
A group is solvable if it satisfies the condition (Def.1).
(Def.1) There exists a finite sequence F of elements of SubGr it such that
(i) $\operatorname{len} F>0$,
(ii) $\quad F(1)=\Omega_{\text {it }}$,
(iii) $F(\operatorname{len} F)=\left\{\mathbf{1}_{\text {it }}\right.$, and
(iv) for every i such that $i \in \operatorname{dom} F$ and $i+1 \in \operatorname{dom} F$ and for all strict subgroups G_{1}, G_{2} of it such that $G_{1}=F(i)$ and $G_{2}=F(i+1)$ holds G_{2} is a strict normal subgroup of G_{1} and for every normal subgroup N of G_{1} such that $N=G_{2}$ holds ${ }^{G_{1}} / \mathrm{N}$ is commutative.
One can check that there exists a group which is solvable and strict.
One can prove the following propositions:
(1) Let G be a strict group and let H, F_{1}, F_{2} be strict subgroups of G. Suppose F_{1} is a normal subgroup of F_{2}. Then $F_{1} \cap H$ is a normal subgroup of $F_{2} \cap H$.
(2) Let G be a strict group, and let F_{2} be a strict subgroup of G, and let F_{1} be a strict normal subgroup of F_{2}, and let a, b be elements of F_{2}. Then $a \cdot F_{1} \cdot\left(b \cdot F_{1}\right)=(a \cdot b) \cdot F_{1}$.
(3) Let G be a strict group, and let H, F_{2} be strict subgroups of G, and let F_{1} be a strict normal subgroup of F_{2}, and let G_{2} be a strict subgroup of G. Suppose $G_{2}=H \cap F_{2}$. Let G_{1} be a normal subgroup of G_{2}. Suppose
$G_{1}=H \cap F_{1}$. Then there exists a subgroup G_{3} of F_{2} / F_{1} such that G_{2} / G_{1} and G_{3} are isomorphic.
(4) Let G be a strict group, and let H, F_{2} be strict subgroups of G, and let F_{1} be a strict normal subgroup of F_{2}, and let G_{2} be a strict subgroup of G. Suppose $G_{2}=F_{2} \cap H$. Let G_{1} be a normal subgroup of G_{2}. Suppose $G_{1}=F_{1} \cap H$. Then there exists a subgroup G_{3} of F_{2} / F_{1} such that ${ }^{G_{2}} / G_{1}$ and G_{3} are isomorphic.
(5) For every solvable strict group G holds every strict subgroup of G is solvable.
(6) Let G be a strict group. Given a finite sequence F of elements of SubGr G such that
(i) $\operatorname{len} F>0$,
(ii) $\quad F(1)=\Omega_{G}$,
(iii) $F(\operatorname{len} F)=\{\mathbf{1}\}_{G}$, and
(iv) for every i such that $i \in \operatorname{dom} F$ and $i+1 \in \operatorname{dom} F$ and for all strict subgroups G_{1}, G_{2} of G such that $G_{1}=F(i)$ and $G_{2}=F(i+1)$ holds G_{2} is a strict normal subgroup of G_{1} and for every normal subgroup N of G_{1} such that $N=G_{2}$ holds ${ }^{G_{1}} / N$ is a cyclic group.
Then G is solvable.
(7) Every strict commutative group is strict and solvable.

Let G, H be strict groups, let g be a homomorphism from G to H, and let A be a subgroup of G. The functor $g \upharpoonright A$ yielding a homomorphism from A to H is defined as follows:
(Def.2) $\quad g \upharpoonright A=g \upharpoonright($ the carrier of $A)$.
Let G, H be strict groups, let g be a homomorphism from G to H, and let A be a subgroup of G. The functor $g^{\circ} A$ yields a strict subgroup of H and is defined as follows:
(Def.3) $\quad g^{\circ} A=\operatorname{Im}(g \upharpoonright A)$.
Next we state a number of propositions:
(8) Let G, H be strict groups, and let g be a homomorphism from G to H, and let A be a subgroup of G. Then $\operatorname{rng}(g \upharpoonright A)=g^{\circ}$ (the carrier of $\left.A\right)$.
(9) Let G, H be strict groups, and let g be a homomorphism from G to H, and let A be a strict subgroup of G. Then the carrier of $g^{\circ} A=g^{\circ}$ (the carrier of A).
(10) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A be a strict subgroup of G. Then $\operatorname{Im}(h \upharpoonright A)$ is a strict subgroup of $\operatorname{Im} h$.
(11) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A be a strict subgroup of G. Then $h^{\circ} A$ is a strict subgroup of $\operatorname{Im} h$.
(12) For all strict groups G, H and for every homomorphism h from G to H holds $h^{\circ}\left(\{\mathbf{1}\}_{G}\right)=\{\mathbf{1}\}_{H}$ and $h^{\circ}\left(\Omega_{G}\right)=\Omega_{\operatorname{Im} h}$.
(13) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A, B be strict subgroups of G. If A is a subgroup of B, then $h^{\circ} A$ is a subgroup of $h^{\circ} B$.
(14) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A be a strict subgroup of G, and let a be an element of G. Then $h(a) \cdot h^{\circ} A=h^{\circ}(a \cdot A)$ and $h^{\circ} A \cdot h(a)=h^{\circ}(A \cdot a)$.
(15) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A, B be subsets of G. Then $h^{\circ} A \cdot h^{\circ} B=h^{\circ}(A \cdot B)$.
(16) Let G, H be strict groups, and let h be a homomorphism from G to H, and let A, B be strict subgroups of G. Suppose A is a strict normal subgroup of B. Then $h^{\circ} A$ is a strict normal subgroup of $h^{\circ} B$.
(17) Let G, H be strict groups and let h be a homomorphism from G to H. If G is a solvable group, then $\operatorname{Im} h$ is solvable.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.
[4] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[5] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[6] Dariusz Surowik. Cyclic groups and some of their properties - part I. Formalized Mathematics, 2(5):623-627, 1991.
[7] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9-11, 1990.
[8] Wojciech A. Trybulec. Classes of conjugation. Normal subgroups. Formalized Mathematics, 1(5):955-962, 1990.
[9] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[10] Wojciech A. Trybulec. Subgroup and cosets of subgroups. Formalized Mathematics, 1(5):855-864, 1990.
[11] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291296, 1990.
[12] Wojciech A. Trybulec and Michał J. Trybulec. Homomorphisms and isomorphisms of groups. Quotient group. Formalized Mathematics, 2(4):573-578, 1991.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received October 23, 1994

Index of MML Identifiers

AMI_5 1
AUTGROUP 43
BINARI_2 27
BINTREE1 9
BOOLEALG 31
GRSOLV_1 145
MEASURE6 21
MSAFREE 67
MSUALG_1 37
MSUALG_2 47
MSUALG_3 61
MSUALG_4 79
PRALG_2 55
PROJPL_1 131
QUANTAL1 85
RELOC 103
SCM_COMP 15
SGRAPH1 137
SPPOL_1 97
TEX_4 109
TOPRNS_1 93
TSP_1 119
TSP_2 125
T_OTOPSP 75

Contents

On the Decomposition of the States of SCM
By Yasushi Tanaka 1
On Defining Functions on Binary Trees By Grzegorz Bancerek and Piotr Rudnicki 9
A Compiler of Arithmetic Expressions for SCM By Grzegorz Bancerek and Piotr Rudnicki 15
Some Properties of the Intervals By Józef BiaŁas 21
Binary Arithmetics, Addition and Subtraction of Integers By Yasuho Mizuhara and Takaya Nishiyama 27
Boolean Properties of Lattices By Agnieszka Julia Marasik 31
Many Sorted Algebras By Andrzej Trybulec 37
On the Group of Inner Automorphisms
By Artur Kornilowicz 43
Subalgebras of Many Sorted Algebra. Lattice of Subalgebras By Ewa Burakowska 47
Products of Many Sorted Algebras By Beata Madras 55
Homomorphisms of Many Sorted Algebras
By Ma乇gorzata Korolkiewicz 61
Free Many Sorted Universal Algebra
By Beata Perkowska 67
T_{0} Topological Spaces
By Mariusz Żynel and Adam Guzowski 75
Many Sorted Quotient Algebra
By MaŁgorzata Korolkiewicz 79
Quantales
By Grzegorz Bancerek 85
Sequences in $\mathcal{E}_{\mathrm{T}}^{N}$
By Agnieszka Sakowicz et al 93
Extremal Properties of Vertices on Special Polygons, Part I By Yatsuka Nakamura and CzesŁaw Byliński 97
Relocatability
By Yasushi Tanaka 103
Maximal Anti-Discrete Subspaces of Topological Spaces By Zbigniew Karno 109
On Kolmogorov Topological Spaces
By Zbigniew Karno 119
Maximal Kolmogorov Subspaces of a Topological Space as Stone Retracts of the Ambient Space By Zbigniew Karno 125
Projective Planes
By Micha乇 Muzalewski 131
The Formalization of Simple Graphs By Yozo Toda 137
Solvable Groups
By Katarzyna Zawadzka 145
Index of MML Identifiers 148

[^0]: ${ }^{1}$ This work was partially supported by NSERC Grant OGP9207 while the first author visited University of Alberta, May-June 1993.

[^1]: ${ }^{1}$ This work was partially supported by NSERC Grant OGP9207 while the first author visited University of Alberta, May-June 1993.

[^2]: ${ }^{1}$ The proposition (2) has been removed.

[^3]: ${ }^{2}$ The proposition (19) has been removed.

[^4]: ${ }^{1}$ The proposition (7) has been removed.

[^5]: ${ }^{1}$ The proposition (19) has been removed.

[^6]: ${ }^{1}$ The definitions (Def.3) and (Def.4) have been removed.

[^7]: ${ }^{1}$ The definitions (Def.7) and (Def.8) have been removed.

[^8]: ${ }^{1}$ The proposition (37) has been removed.

[^9]: ${ }^{2}$ The proposition (49) has been removed.

[^10]: ${ }^{1}$ This work was done under guidance and supervision of A. Trybulec and P. Rudnicki.

[^11]: ${ }^{1}$ Presented at Mizar Conference: Mathematics in Mizar (Białystok, September 12-14, 1994).

[^12]: ${ }^{1}$ Presented at Mizar Conference: Mathematics in Mizar (Białystok, September 12-14, 1994).

[^13]: (C) 1996 Warsaw University - Bialystok ISSN 0777-4028

[^14]: ${ }^{1}$ The proposition (18) has been removed.

[^15]: ${ }^{2}$ The proposition (22) has been removed.

[^16]: ${ }^{3}$ The proposition (29) has been removed.

[^17]: ${ }^{4}$ The definition (Def.15) has been removed.

