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Summary. In this article we define the Discrete Fourier Transforma-

tion for univariate polynomials and show that multiplication of polynomials can

be carried out by two Fourier Transformations with a vector multiplication in-

between. Our proof follows the standard one found in the literature and uses

Vandermonde matrices, see e.g. [27].
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1. Preliminaries

The following proposition is true

(1) Let n be an element of N, L be a unital integral domain-like non de-

generated non empty double loop structure, and x be an element of L. If

x 6= 0L, then xn 6= 0L.
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One can verify that every associative right unital add-associative right zeroed

right complementable left distributive non empty double loop structure which

is field-like is also integral domain-like.

The following four propositions are true:

(2) Let L be an add-associative right zeroed right complementable asso-

ciative commutative left unital field-like distributive non empty double

loop structure and x, y be elements of L. If x 6= 0L and y 6= 0L, then

(x · y)−1 = x−1 · y−1.

(3) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and z, z1 be elements of L. If z 6= 0L, then

z1 = z1·z
z .

(4) Let L be a left zeroed right zeroed add-associative right complementable

non empty double loop structure, m be an element of N, and s be a finite

sequence of elements of L. Suppose len s = m and for every element k of

N such that 1 ≤ k and k ≤ m holds sk = 1L. Then
∑
s = m · 1L.

(5) Let L be an add-associative right zeroed right complementable associa-

tive commutative left unital distributive field-like non empty double loop

structure, s be a finite sequence of elements of L, and q be an element of

L. Suppose q 6= 1L and for every natural number i such that 1 ≤ i and

i ≤ len s holds s(i) = qi−
′1. Then

∑
s = 1L−qlen s

1L−q .

Let L be a unital non empty double loop structure and let m be an element

of N. The functor mL yielding an element of L is defined as follows:

(Def. 1) mL = m · 1L.
Next we state several propositions:

(6) Let L be a field and m, n, k be elements of N. Suppose m > 0 and n > 0.

Let M1 be a matrix over L of dimension m × n and M2 be a matrix over

L of dimension n × k. Then (mL ·M1) ·M2 = mL · (M1 ·M2).

(7) Let L be a non empty zero structure, p be an algebraic sequence of L,

and i be an element of N. If p(i) 6= 0L, then len p ≥ i+ 1.

(8) For every non empty zero structure L and for every algebraic sequence

s of L such that len s > 0 holds s(len s− 1) 6= 0L.

(9) Let L be an add-associative right zeroed right complementable distribu-

tive commutative associative left unital integral domain-like non empty

double loop structure and p, q be polynomials of L. If len p > 0 and

len q > 0, then len(p ∗ q) ≤ len p+ len q.

(10) Let L be an associative non empty double loop structure, k, l be elements

of L, and s1 be a sequence of L. Then k · (l · s1) = (k · l) · s1.
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2. Multiplication of Algebraic Sequences

Let L be a non empty double loop structure and let m1, m2 be sequences of

L. The functor m1 ·m2 yields a sequence of L and is defined as follows:

(Def. 2) For every element i of N holds (m1 ·m2)(i) = m1(i) ·m2(i).

Let L be an add-associative right zeroed right complementable left distribu-

tive non empty double loop structure and let m1, m2 be algebraic sequences of

L. Observe that m1 ·m2 is finite-Support.

We now state two propositions:

(11) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure and m1, m2 be algebraic sequences

of L. Then len(m1 ·m2) ≤ min(lenm1, lenm2).

(12) Let L be an add-associative right zeroed right complementable distribu-

tive integral domain-like non empty double loop structure and m1, m2 be

algebraic sequences of L. If lenm1 = lenm2, then len(m1 ·m2) = lenm1.

3. Powers in Double Loop Structures

Let L be an associative commutative left unital distributive field-like non

empty double loop structure, let a be an element of L, and let i be an integer.

The functor ai yielding an element of L is defined as follows:

(Def. 3) ai =

{
powerL(a, i), if 0 ≤ i,
powerL(a, |i|)−1, otherwise.

Next we state a number of propositions:

(13) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and x be an element of L. Then x0 = 1L.

(14) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and x be an element of L. Then x1 = x.

(15) Let L be an associative commutative left unital distributive field-like non

empty double loop structure and x be an element of L. Then x−1 = x−1.

(16) Let L be an associative commutative left unital distributive field-like non

degenerated non empty double loop structure and i be an integer. Then

(1L)i = 1L.

(17) Let L be an associative commutative left unital distributive field-like non

empty double loop structure, x be an element of L, and n be an element

of N. Then xn+1 = xn · x and xn+1 = x · xn.
(18) Let L be an add-associative right zeroed right complementable associa-

tive commutative left unital distributive field-like non degenerated non

empty double loop structure, i be an integer, and x be an element of L.

If x 6= 0L, then (xi)−1 = x−i.
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(19) For every field L and for every integer j and for every element x of L

such that x 6= 0L holds xj+1 = xj · x1.

(20) For every field L and for every integer j and for every element x of L

such that x 6= 0L holds xj−1 = xj · x−1.

(21) For every field L and for all integers i, j and for every element x of L

such that x 6= 0L holds xi · xj = xi+j.

(22) Let L be a field-like associative unital add-associative right zeroed right

complementable left distributive commutative non degenerated non empty

double loop structure, k be an element of N, and x be an element of L. If

x 6= 0L, then (x−1)k = x−k.

(23) Let L be a field and x be an element of L. Suppose x 6= 0L. Let i, j, k

be natural numbers. Then x(i−1)·(k−1) · x−(j−1)·(k−1) = x(i−j)·(k−1).

(24) Let L be an associative commutative left unital distributive field-like non

empty double loop structure, x be an element of L, and n, m be elements

of N. Then xn·m = (xn)m.

(25) For every field L and for every element x of L such that x 6= 0L and for

every integer i holds (x−1)i = (xi)−1.

(26) For every field L and for every element x of L such that x 6= 0L and for

all integers i, j holds xi·j = (xi)j.

(27) Let L be an associative commutative left unital distributive field-like non

empty double loop structure, x be an element of L, and i, k be elements

of N. If 1 ≤ k, then xi·(k−1) = (xi)k−1.

4. Conversion between Algebraic Sequences and Matrices

Let m be a natural number, let L be a non empty zero structure, and let p

be an algebraic sequence of L. The functor mConv(p,m) yielding a matrix over

L of dimension m × 1 is defined as follows:

(Def. 4) For every natural number i such that 1 ≤ i and i ≤ m holds

(mConv(p,m))i,1 = p(i− 1).

We now state two propositions:

(28) Let m be a natural number. Suppose m > 0. Let L be a non empty zero

structure and p be an algebraic sequence of L. Then len mConv(p,m) = m

and width mConv(p,m) = 1 and for every natural number i such that

i < m holds (mConv(p,m))i+1,1 = p(i).

(29) Let m be a natural number. Suppose m > 0. Let L be a non empty

zero structure, a be an algebraic sequence of L, and M be a matrix over

L of dimension m × 1. Suppose that for every natural number i such that

i < m holds Mi+1,1 = a(i). Then mConv(a,m) = M.
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Let L be a non empty zero structure and let M be a matrix over L. The

functor aConvM yielding an algebraic sequence of L is defined by the conditions

(Def. 5).

(Def. 5)(i) For every natural number i such that i < lenM holds (aConvM)(i) =

Mi+1,1, and

(ii) for every natural number i such that i ≥ lenM holds (aConvM)(i) =

0L.

5. Primitive Roots, DFT and Vandermonde Matrix

Let L be a unital non empty double loop structure, let x be an element of

L, and let n be an element of N. We say that x is primitive root of degree n if

and only if:

(Def. 6) n 6= 0 and xn = 1L and for every element i of N such that 0 < i and

i < n holds xi 6= 1L.

We now state three propositions:

(30) Let L be a unital add-associative right zeroed right complementable right

distributive non degenerated non empty double loop structure and n be

an element of N. Then 0L is !not primitive root of degree n.

(31) Let L be an add-associative right zeroed right complementable associa-

tive commutative unital distributive field-like non degenerated non empty

double loop structure, m be an element of N, and x be an element of L.

If x is primitive root of degree m, then x−1 is primitive root of degree m.

(32) Let L be an add-associative right zeroed right complementable associa-

tive commutative left unital distributive field-like non degenerated non

empty double loop structure, m be an element of N, and x be an element

of L. Suppose x is primitive root of degree m. Let i, j be natural numbers.

If 1 ≤ i and i ≤ m and 1 ≤ j and j ≤ m and i 6= j, then xi−j 6= 1L.

Let m be a natural number, let L be a unital non empty double loop struc-

ture, let p be a polynomial of L, and let x be an element of L. The functor

DFT(p, x,m) yielding an algebraic sequence of L is defined by the conditions

(Def. 7).

(Def. 7)(i) For every element i of N such that i < m holds (DFT(p, x,m))(i) =

eval(p, xi), and

(ii) for every element i of N such that i ≥ m holds (DFT(p, x,m))(i) = 0L.

The following propositions are true:

(33) Let m be a natural number, L be a unital non empty double loop struc-

ture, and x be an element of L. Then DFT(0. L, x,m) = 0. L.

(34) Let m be a natural number, L be a field, p, q be polynomials of L, and x

be an element of L. Then DFT(p, x,m) ·DFT(q, x,m) = DFT(p∗q, x,m).
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Let L be an associative commutative left unital distributive field-like non

empty double loop structure, let m be a natural number, and let x be an element

of L. The functor Vandermonde(x,m) yielding a matrix over L of dimension m

is defined as follows:

(Def. 8) For all natural numbers i, j such that 1 ≤ i and i ≤ m and 1 ≤ j and

j ≤ m holds (Vandermonde(x,m))i,j = x(i−1)·(j−1).

Let L be an associative commutative left unital distributive field-like non

empty double loop structure, let m be a natural number, and let x be an element

of L. We introduce VM(x,m) as a synonym of Vandermonde(x,m).

One can prove the following propositions:

(35) Let L be a field and m, n be natural numbers. Suppose m > 0. Let M be

a matrix over L of dimension m × n. Then




1 0
. . .

0 1




m×m

L

·M = M.

(36) Let L be a field and m be an element of N. Suppose 0 < m. Let u,

v, u1 be matrices over L of dimension m. Suppose that for all natural

numbers i, j such that 1 ≤ i and i ≤ m and 1 ≤ j and j ≤ m holds

(u · v)i,j = mL · (u1)i,j. Then u · v = mL · u1.

(37) Let L be a field, x be an element of L, s be a finite sequence of elements

of L, and i, j, m be elements of N. Suppose that x is primitive root of

degree m and 1 ≤ i and i ≤ m and 1 ≤ j and j ≤ m and len s = m and for

every natural number k such that 1 ≤ k and k ≤ m holds sk = x(i−j)·(k−1).

Then (VM(x,m) · VM(x−1,m))i,j =
∑
s.

(38) Let L be a field, m, i, j be elements of N, and x be an element of L.

Suppose i 6= j and 1 ≤ i and i ≤ m and 1 ≤ j and j ≤ m and x is

primitive root of degree m. Then (VM(x,m) · VM(x−1,m))i,j = 0L.

(39) Let L be a field and m be an element of N. Suppose m > 0. Let x

be an element of L. If x is primitive root of degree m, then VM(x,m) ·

VM(x−1,m) = mL ·




1 0
. . .

0 1




m×m

L

.

(40) Let L be a field, m be an element of N, and x be an element of L. If

m > 0 and x is primitive root of degree m, then VM(x,m) ·VM(x−1,m) =

VM(x−1,m) · VM(x,m).
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6. DFT-Multiplication of Polynomials

We now state four propositions:

(41) Let L be a field, p be a polynomial of L, and m be an element of N. Sup-

pose m > 0 and len p ≤ m. Let x be an element of L and i be an element

of N. If i < m, then (DFT(p, x,m))(i) = (VM(x,m) ·mConv(p,m))i+1,1.

(42) Let L be a field, p be a polynomial of L, and m be a natural number. If

0 < m and len p ≤ m, then for every element x of L holds DFT(p, x,m) =

aConv(VM(x,m) ·mConv(p,m)).

(43) Let L be a field, p, q be polynomials of L, and m be an element of N.

Supposem > 0 and len p ≤ m and len q ≤ m. Let x be an element of L. If x

is primitive root of degree 2·m, then DFT(DFT(p∗q, x, 2·m), x−1 , 2·m) =

(2 ·m)L · (p ∗ q).
(44) Let L be a field, p, q be polynomials of L, and m be an element of N.

Suppose m > 0 and len p ≤ m and len q ≤ m. Let x be an element of

L. Suppose x is primitive root of degree 2 · m. If (2 · m)L 6= 0L, then

((2 ·m)L)−1 ·DFT(DFT(p, x, 2 ·m) ·DFT(q, x, 2 ·m), x−1, 2 ·m) = p ∗ q.
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The terminology and notation used here are introduced in the following articles:

[2], [9], [3], [12], [1], [5], [8], [4], [7], [11], [6], and [10].

1. Some Special Matrices of Real Elements

We use the following convention: a, b are elements of R, i, j, n are natural

numbers, and M , M1, M2, M3, M4 are matrices over R of dimension n.

Let M be a matrix over R. We say that M is positive if and only if:

(Def. 1) For all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j > 0.

We say that M is negative if and only if:

(Def. 2) For all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j < 0.

We say that M is nonpositive if and only if:
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(Def. 3) For all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j ≤ 0.

We say that M is nonnegative if and only if:

(Def. 4) For all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j ≥ 0.

Let M1, M2 be matrices over R. The predicate M1 v M2 is defined as

follows:

(Def. 5) For all i, j such that 〈〈i, j〉〉 ∈ the indices of M1 holds (M1)i,j < (M2)i,j .

We say that M1 is less or equal with M2 if and only if:

(Def. 6) For all i, j such that 〈〈i, j〉〉 ∈ the indices of M1 holds (M1)i,j ≤ (M2)i,j .

Let M be a matrix over R. The functor |:M :| yielding a matrix over R is

defined by:

(Def. 7) len|:M :| = lenM and width|:M :| = widthM and for all i, j such that 〈〈i,
j〉〉 ∈ the indices of M holds |:M :|i,j = |Mi,j|.

Let us consider n and let us consider M . Then −M is a matrix over R of

dimension n.

Let us consider n and let us consider M1, M2. Then M1 + M2 is a matrix

over R of dimension n.

Let us consider n and let us consider M1, M2. Then M1 −M2 is a matrix

over R of dimension n.

Let us consider n, let a be an element of R, and let us consider M . Then

a ·M is a matrix over R of dimension n.

Let us observe that there exists a matrix over R which is positive and non-

negative and there exists a matrix over R which is negative and nonpositive.

Let M be a positive matrix over R. One can check that MT is positive.

Let M be a negative matrix over R. Note that MT is negative.

Let M be a nonpositive matrix over R. One can verify that MT is nonposi-

tive.

Let M be a nonnegative matrix over R. Observe that MT is nonnegative.

Let us consider n. Observe that




1 . . . 1
...

. . .
...

1 . . . 1




n×n

is positive and nonneg-

ative and



−1 . . . −1
...

. . .
...

−1 . . . −1




n×n

is negative and nonpositive.

Let us consider n. One can verify that there exists a matrix over R of

dimension n which is positive and nonnegative and there exists a matrix over R
of dimension n which is negative and nonpositive.

We now state a number of propositions:

(1) For every element x1 of RF and for every real number x2 such that

x1 = x2 holds −x1 = −x2.
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(2) For every matrix M over R such that 〈〈i, j〉〉 ∈ the indices of M holds

(−M)i,j = −Mi,j.

(3) For all matrices M1, M2 over R such that lenM1 = lenM2 and

widthM1 = widthM2 and 〈〈i, j〉〉 ∈ the indices of M1 holds (M1−M2)i,j =

(M1)i,j − (M2)i,j.

(4) For every matrix M over R such that len(a ·M) = lenM and width(a ·
M) = widthM and 〈〈i, j〉〉 ∈ the indices of M holds (a ·M)i,j = a ·Mi,j .

(5) The indices of M = the indices of |:M :|.
(6) |:a ·M :| = |a| · |:M :|.
(7) If M is negative, then −M is positive.

(8) If M1 is positive and M2 is positive, then M1 +M2 is positive.

(9) If −M2 vM1, then M1 +M2 is positive.

(10) If M1 is nonnegative and M2 is positive, then M1 +M2 is positive.

(11) If M1 is positive and M2 is negative and |:M2:| v |:M1:|, then M1 +M2

is positive.

(12) If M1 is positive and M2 is negative, then M1 −M2 is positive.

(13) If M2 vM1, then M1 −M2 is positive.

(14) If a > 0 and M is positive, then a ·M is positive.

(15) If a < 0 and M is negative, then a ·M is positive.

(16) If M is positive, then −M is negative.

(17) If M1 is negative and M2 is negative, then M1 +M2 is negative.

(18) If M1 v −M2, then M1 +M2 is negative.

(19) If M1 is positive and M2 is negative and |:M1:| v |:M2:|, then M1 +M2

is negative.

(20) If M1 vM2, then M1 −M2 is negative.

(21) If M1 is positive and M2 is negative, then M2 −M1 is negative.

(22) If a < 0 and M is positive, then a ·M is negative.

(23) If a > 0 and M is negative, then a ·M is negative.

(24) If M is nonnegative, then −M is nonpositive.

(25) If M is negative, then M is nonpositive.

(26) If M1 is nonpositive and M2 is nonpositive, then M1 +M2 is nonpositive.

(27) If M1 is less or equal with −M2, then M1 +M2 is nonpositive.

(28) If M1 is less or equal with M2, then M1 −M2 is nonpositive.

(29) If a ≤ 0 and M is positive, then a ·M is nonpositive.

(30) If a ≥ 0 and M is negative, then a ·M is nonpositive.

(31) If a ≥ 0 and M is nonpositive, then a ·M is nonpositive.

(32) If a ≤ 0 and M is nonnegative, then a ·M is nonpositive.
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(33) |:M :| is nonnegative.

(34) If M1 is positive, then M1 is nonnegative.

(35) If M is nonpositive, then −M is nonnegative.

(36) If M1 is nonnegative and M2 is nonnegative, then M1 +M2 is nonnega-

tive.

(37) If −M1 is less or equal with M2, then M1 +M2 is nonnegative.

(38) If M2 is less or equal with M1, then M1 −M2 is nonnegative.

(39) If a ≥ 0 and M is positive, then a ·M is nonnegative.

(40) If a ≤ 0 and M is negative, then a ·M is nonnegative.

(41) If a ≤ 0 and M is nonpositive, then a ·M is nonnegative.

(42) If a ≥ 0 and M is nonnegative, then a ·M is nonnegative.

(43) If a ≥ 0 and b ≥ 0 and M1 is nonnegative and M2 is nonnegative, then

a ·M1 + b ·M2 is nonnegative.

2. Some Basic Inequalities in Matrices of Real Elements

Next we state a number of propositions:

(44) If M1 vM2, then M1 is less or equal with M2.

(45) If M1 vM2 and M2 vM3, then M1 vM3.

(46) If M1 vM2 and M3 vM4, then M1 +M3 vM2 +M4.

(47) If M1 vM2, then M1 +M3 vM2 +M3.

(48) If M1 vM2, then M3 −M2 vM3 −M1.

(49) |:M1 +M2:| is less or equal with |:M1:|+ |:M2:|.
(50) If M1 is less or equal with M2, then M1 − M3 is less or equal with

M2 −M3.

(51) If M1−M3 is less or equal with M2−M3, then M1 is less or equal with

M2.

(52) If M1 is less or equal with M2 − M3, then M3 is less or equal with

M2 −M1.

(53) If M1−M2 is less or equal with M3, then M1−M3 is less or equal with

M2.

(54) If M1 vM2 and M3 is less or equal with M4, then M1−M4 vM2−M3.

(55) If M1 is less or equal with M2 and M3 vM4, then M1−M4 vM2−M3.

(56) If M1−M2 is less or equal with M3−M4, then M1−M3 is less or equal

with M2 −M4.

(57) If M1−M2 is less or equal with M3−M4, then M4−M2 is less or equal

with M3 −M1.
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(58) If M1−M2 is less or equal with M3−M4, then M4−M3 is less or equal

with M2 −M1.

(59) If M1 + M2 is less or equal with M3, then M1 is less or equal with

M3 −M2.

(60) If M1 +M2 is less or equal with M3 +M4, then M1−M3 is less or equal

with M4 −M2.

(61) If M1 +M2 is less or equal with M3−M4, then M1 +M4 is less or equal

with M3 −M2.

(62) If M1−M2 is less or equal with M3 +M4, then M1−M4 is less or equal

with M3 +M2.

(63) If M1 is less or equal with M2, then −M2 is less or equal with −M1.

(64) If M1 is less or equal with −M2, then M2 is less or equal with −M1.

(65) If −M2 is less or equal with M1, then −M1 is less or equal with M2.

(66) If M1 is positive, then M2 vM2 +M1.

(67) If M1 is negative, then M1 +M2 vM2.

(68) If M1 is nonnegative, then M2 is less or equal with M1 +M2.

(69) If M1 is nonpositive, then M1 +M2 is less or equal with M2.

(70) If M1 is nonpositive and M3 is less or equal with M2, then M3 +M1 is

less or equal with M2.

(71) If M1 is nonpositive and M3 vM2, then M3 +M1 vM2.

(72) If M1 is negative and M3 is less or equal with M2, then M3 +M1 vM2.

(73) If M1 is nonnegative and M2 is less or equal with M3, then M2 is less or

equal with M1 +M3.

(74) If M1 is positive and M2 is less or equal with M3, then M2 vM1 +M3.

(75) If M1 is nonnegative and M2 vM3, then M2 vM1 +M3.

(76) If M1 is nonnegative, then M2 −M1 is less or equal with M2.

(77) If M1 is positive, then M2 −M1 vM2.

(78) If M1 is nonpositive, then M2 is less or equal with M2 −M1.

(79) If M1 is negative, then M2 vM2 −M1.

(80) If M1 is less or equal with M2, then M2 −M1 is nonnegative.

(81) If M1 is nonnegative and M2 vM3, then M2 −M1 vM3.

(82) If M1 is nonpositive and M2 is less or equal with M3, then M2 is less or

equal with M3 −M1.

(83) If M1 is nonpositive and M2 vM3, then M2 vM3 −M1.

(84) If M1 is negative and M2 is less or equal with M3, then M2 vM3−M1.

(85) If M1 vM2 and a > 0, then a ·M1 v a ·M2.

(86) If M1 vM2 and a ≥ 0, then a ·M1 is less or equal with a ·M2.

(87) If M1 vM2 and a < 0, then a ·M2 v a ·M1.
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(88) If M1 vM2 and a ≤ 0, then a ·M2 is less or equal with a ·M1.

(89) If M1 is less or equal with M2 and a ≥ 0, then a ·M1 is less or equal

with a ·M2.

(90) If M1 is less or equal with M2 and a ≤ 0, then a ·M2 is less or equal

with a ·M1.

(91) If a ≥ 0 and a ≤ b and M1 is nonnegative and less or equal with M2,

then a ·M1 is less or equal with b ·M2.

(92) If a ≤ 0 and b ≤ a and M1 is nonpositive and M2 is less or equal with

M1, then a ·M1 is less or equal with b ·M2.

(93) If a < 0 and b ≤ a and M1 is negative and M2 vM1, then a·M1 v b·M2.

(94) If a ≥ 0 and a < b and M1 is nonnegative and M1 vM2, then a ·M1 v
b ·M2.

(95) If a ≥ 0 and a < b and M1 is positive and less or equal with M2, then

a ·M1 v b ·M2.

(96) If a > 0 and a ≤ b and M1 is positive and M1 vM2, then a ·M1 v b ·M2.
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Summary. A complex polynomial is called a Hurwitz polynomial if all

its roots have a real part smaller than zero. This kind of polynomial plays an

all-dominant role in stability checks of electrical networks.

In this article we prove Schur’s criterion [17] that allows to decide whether

a polynomial p(x) is Hurwitz without explicitly computing its roots: Schur’s

recursive algorithm successively constructs polynomials pi(x) of lesser degree by

division with x− c, <{c} < 0, such that pi(x) is Hurwitz if and only if p(x) is.

MML identifier: HURWITZ, version: 7.8.03 4.75.958

The articles [20], [25], [26], [18], [13], [5], [6], [1], [22], [23], [21], [19], [24], [16],

[4], [9], [2], [3], [15], [14], [7], [12], [10], [27], [11], and [8] provide the terminology

and notation for this paper.

1. Preliminaries

One can prove the following propositions:

(1) Let L be an add-associative right zeroed right complementable associa-

tive commutative left unital distributive field-like non empty double loop

structure and x be an element of L. If x 6= 0L, then −x−1 = (−x)−1.
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(2) Let L be an add-associative right zeroed right complementable asso-

ciative commutative left unital field-like distributive non degenerated non

empty double loop structure and k be an element of N. Then powerL(−1L,

k) 6= 0L.

(3) Let L be an associative right unital non empty multiplicative loop struc-

ture, x be an element of L, and k1, k2 be elements of N. Then powerL(x,

k1) · powerL(x, k2) = powerL(x, k1 + k2).

(4) Let L be an add-associative right zeroed right complementable left unital

distributive non empty double loop structure and k be an element of N.

Then powerL(−1L, 2 · k) = 1L and powerL(−1L, 2 · k + 1) = −1L.

(5) For every element z of CF and for every element k of N holds

powerCF
(z, k) = powerCF

(z , k).

(6) Let F , G be finite sequences of elements of CF. Suppose lenG = lenF

and for every element i of N such that i ∈ domG holds Gi = Fi . Then∑
G =

∑
F .

(7) Let L be an add-associative right zeroed right complementable Abelian

non empty loop structure and F1, F2 be finite sequences of elements of L.

Suppose lenF1 = lenF2 and for every element i of N such that i ∈ domF1

holds (F1)i = −(F2)i. Then
∑
F1 = −∑F2.

(8) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure, x be an element of L, and F be a

finite sequence of elements of L. Then x ·∑F =
∑

(x · F ).

2. More on Polynomials

We now state four propositions:

(9) For every add-associative right zeroed right complementable non empty

loop structure L holds −0. L = 0. L.

(10) Let L be an add-associative right zeroed right complementable non

empty loop structure and p be a polynomial of L. Then −−p = p.

(11) Let L be an add-associative right zeroed right complementable Abelian

distributive non empty double loop structure and p1, p2 be polynomials

of L. Then −(p1 + p2) = −p1 +−p2.

(12) Let L be an add-associative right zeroed right complementable distribu-

tive Abelian non empty double loop structure and p1, p2 be polynomials

of L. Then −p1 ∗ p2 = (−p1) ∗ p2 and −p1 ∗ p2 = p1 ∗ −p2.

Let L be an add-associative right zeroed right complementable distributive

non empty double loop structure, let F be a finite sequence of elements of

Polynom-RingL, and let i be an element of N. The functor Coeff(F, i) yielding

a finite sequence of elements of L is defined by the conditions (Def. 1).
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(Def. 1)(i) len Coeff(F, i) = lenF, and

(ii) for every element j of N such that j ∈ dom Coeff(F, i) there exists a

polynomial p of L such that p = F (j) and (Coeff(F, i))(j) = p(i).

One can prove the following propositions:

(13) Let L be an add-associative right zeroed right complementable distribu-

tive non empty double loop structure, p be a polynomial of L, and F be a

finite sequence of elements of Polynom-RingL. If p =
∑
F, then for every

element i of N holds p(i) =
∑

Coeff(F, i).

(14) Let L be an associative non empty double loop structure, p be a poly-

nomial of L, and x1, x2 be elements of L. Then x1 · (x2 · p) = (x1 · x2) · p.
(15) Let L be an add-associative right zeroed right complementable left dis-

tributive non empty double loop structure, p be a polynomial of L, and x

be an element of L. Then −x · p = (−x) · p.
(16) Let L be an add-associative right zeroed right complementable right

distributive non empty double loop structure, p be a polynomial of L, and

x be an element of L. Then −x · p = x · −p.
(17) Let L be a left distributive non empty double loop structure, p be a

polynomial of L, and x1, x2 be elements of L. Then (x1 + x2) · p =

x1 · p+ x2 · p.
(18) Let L be a right distributive non empty double loop structure, p1, p2 be

polynomials of L, and x be an element of L. Then x·(p1+p2) = x·p1+x·p2.

(19) Let L be an add-associative right zeroed right complementable distribu-

tive commutative associative non empty double loop structure, p1, p2 be

polynomials of L, and x be an element of L. Then p1∗(x ·p2) = x ·(p1∗p2).

Let L be a non empty zero structure and let p be a polynomial of L. The

functor degree(p) yields an integer and is defined by:

(Def. 2) degree(p) = len p− 1.

Let L be a non empty zero structure and let p be a polynomial of L. We

introduce deg p as a synonym of degree(p).

We now state several propositions:

(20) For every non empty zero structure L and for every polynomial p of L

holds deg p = −1 iff p = 0. L.

(21) Let L be an add-associative right zeroed right complementable non

empty loop structure and p1, p2 be polynomials of L. If deg p1 6= deg p2,

then deg(p1 + p2) = max(deg p1,deg p2).

(22) Let L be an add-associative right zeroed right complementable Abelian

non empty loop structure and p1, p2 be polynomials of L. Then deg(p1 +

p2) ≤ max(deg p1,deg p2).

(23) Let L be an add-associative right zeroed right complementable distribu-

tive commutative associative left unital integral domain-like non empty
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double loop structure and p1, p2 be polynomials of L. If p1 6= 0. L and

p2 6= 0. L, then deg(p1 ∗ p2) = deg p1 + deg p2.

(24) Let L be an add-associative right zeroed right complementable unital

non empty double loop structure and p be a polynomial of L such that

deg p = 0. Then p does not have roots.

Let L be a unital non empty double loop structure, let z be an element of

L, and let k be an element of N. The functor rpoly(k, z) yields a polynomial of

L and is defined by:

(Def. 3) rpoly(k, z) = 0. L+·[0 7−→ −powerL(z, k), k 7−→ 1L].

One can prove the following propositions:

(25) Let L be a unital non empty double loop structure, z be an element of L,

and k be an element of N. If k 6= 0, then (rpoly(k, z))(0) = −powerL(z, k)

and (rpoly(k, z))(k) = 1L.

(26) Let L be a unital non empty double loop structure, z be an element of L,

and i, k be elements of N. If i 6= 0 and i 6= k, then (rpoly(k, z))(i) = 0L.

(27) Let L be a unital non degenerated non empty double loop structure, z

be an element of L, and k be an element of N. Then deg rpoly(k, z) = k.

(28) Let L be an add-associative right zeroed right complementable left unital

commutative associative distributive field-like non degenerated non empty

double loop structure and p be a polynomial of L. Then deg p = 1 if

and only if there exist elements x, z of L such that x 6= 0L and p =

x · rpoly(1, z).

(29) Let L be an add-associative right zeroed right complementable Abelian

unital non degenerated non empty double loop structure and x, z be ele-

ments of L. Then eval(rpoly(1, z), x) = x− z.
(30) Let L be an add-associative right zeroed right complementable unital

Abelian non degenerated non empty double loop structure and z be an

element of L. Then z is a root of rpoly(1, z).

Let L be a unital non empty double loop structure, let z be an element of

L, and let k be an element of N. The functor qpoly(k, z) yielding a polynomial

of L is defined by the conditions (Def. 4).

(Def. 4)(i) For every element i of N such that i < k holds (qpoly(k, z))(i) =

powerL(z, k − i− 1), and

(ii) for every element i of N such that i ≥ k holds (qpoly(k, z))(i) = 0L.

Next we state three propositions:

(31) Let L be a unital non degenerated non empty double loop structure, z be

an element of L, and k be an element of N. If k ≥ 1, then deg qpoly(k, z) =

k − 1.

(32) Let L be an add-associative right zeroed right complementable left dis-

tributive unital commutative non empty double loop structure, z be an
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element of L, and k be an element of N. If k > 1, then rpoly(1, z) ∗
qpoly(k, z) = rpoly(k, z).

(33) Let L be an Abelian add-associative right zeroed right complementable

unital associative distributive commutative non empty double loop struc-

ture, p be a polynomial of L, and z be an element of L. If z is a root of

p, then there exists a polynomial s of L such that p = rpoly(1, z) ∗ s.

3. Division of Polynomials

Let L be an Abelian add-associative right zeroed right complementable left

unital associative commutative distributive field-like non empty double loop

structure and let p, s be polynomials of L. Let us assume that s 6= 0. L. The

functor p÷ s yields a polynomial of L and is defined by:

(Def. 5) There exists a polynomial t of L such that p = (p ÷ s) ∗ s + t and

deg t < deg s.

Let L be an Abelian add-associative right zeroed right complementable left

unital associative commutative distributive field-like non empty double loop

structure and let p, s be polynomials of L. The functor p mod s yielding a

polynomial of L is defined by:

(Def. 6) pmod s = p− (p÷ s) ∗ s.
Let L be an Abelian add-associative right zeroed right complementable left

unital associative commutative distributive field-like non empty double loop

structure and let p, s be polynomials of L. The predicate s | p is defined by:

(Def. 7) pmod s = 0. L.

One can prove the following three propositions:

(34) Let L be an Abelian add-associative right zeroed right complementable

left unital associative commutative distributive field-like non empty double

loop structure and p, s be polynomials of L. Suppose s 6= 0. L. Then s | p
if and only if there exists a polynomial t of L such that t ∗ s = p.

(35) Let L be an Abelian add-associative right zeroed right complementable

left unital associative commutative distributive field-like non degenerated

non empty double loop structure, p be a polynomial of L, and z be an

element of L. If z is a root of p, then rpoly(1, z) | p.
(36) Let L be an Abelian add-associative right zeroed right complementable

left unital associative commutative distributive field-like non degenerated

non empty double loop structure, p be a polynomial of L, and z be an

element of L. If p 6= 0. L and z is a root of p, then deg(p÷ rpoly(1, z)) =

deg p− 1.
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4. Schur’s Theorem

Let f be a polynomial of CF. We say that f is Hurwitz if and only if:

(Def. 8) For every element z of CF such that z is a root of f holds <(z) < 0.

We now state several propositions:

(37) 0.(CF) is non Hurwitz.

(38) For every element x of CF such that x 6= 0CF
holds x ·1.(CF) is Hurwitz.

(39) For all elements x, z of CF such that x 6= 0CF
holds x · rpoly(1, z) is

Hurwitz iff <(z) < 0.

(40) Let f be a polynomial of CF and z be an element of CF. If z 6= 0CF
,

then f is Hurwitz iff z · f is Hurwitz.

(41) For all polynomials f , g of CF holds f ∗ g is Hurwitz iff f is Hurwitz and

g is Hurwitz.

Let f be a polynomial of CF. The functor f yielding a polynomial of CF is

defined by:

(Def. 9) For every element i of N holds f (i) = powerCF
(−1CF

, i) · f(i) .

We now state several propositions:

(42) For every polynomial f of CF holds deg f = deg f.

(43) For every polynomial f of CF holds f = f.

(44) For every polynomial f of CF and for every element z of CF holds z · f =

z · f .
(45) For every polynomial f of CF holds −f = −f .
(46) For all polynomials f , g of CF holds f + g = f + g .

(47) For all polynomials f , g of CF holds f ∗ g = f ∗ g .
(48) For all elements x, z of CF holds eval(rpoly(1, z) , x) = −x− z .

(49) For every polynomial f of CF such that f is Hurwitz and for every

element x of CF such that <(x) ≥ 0 holds 0 < | eval(f, x)|.
(50) Let f be a polynomial of CF. Suppose deg f ≥ 1 and f is Hurwitz. Let

x be an element of CF. Then

(i) if <(x) < 0, then | eval(f, x)| < | eval(f , x)|,
(ii) if <(x) > 0, then | eval(f, x)| > | eval(f , x)|, and

(iii) if <(x) = 0, then | eval(f, x)| = | eval(f , x)|.
Let f be a polynomial of CF and let z be an element of CF. The functor

F ∗ (f, z) yields a polynomial of CF and is defined as follows:

(Def. 10) F ∗ (f, z) = eval(f , z) · f − eval(f, z) · f .
We now state four propositions:

(51) Let a, b be elements of CF. Suppose |a| > |b|. Let f be a polynomial of

CF. If deg f ≥ 1, then f is Hurwitz iff a · f − b · f is Hurwitz.
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(52) Let f be a polynomial of CF. Suppose deg f ≥ 1. Let r1 be an element

of CF. If <(r1) < 0, then if f is Hurwitz, then F ∗ (f, r1)÷ rpoly(1, r1) is

Hurwitz.

(53) Let f be a polynomial of CF. Suppose deg f ≥ 1. Given an element r1

of CF such that <(r1) < 0 and | eval(f, r1)| ≥ | eval(f , r1)|. Then f is non

Hurwitz.

(54) Let f be a polynomial of CF. Suppose deg f ≥ 1. Let r1 be an element

of CF. Suppose <(r1) < 0 and | eval(f, r1)| < | eval(f , r1)|. Then f is

Hurwitz if and only if F ∗ (f, r1)÷ rpoly(1, r1) is Hurwitz.
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[7] Czes law Byliński. The modification of a function by a function and the iteration of the

composition of a function. Formalized Mathematics, 1(3):521–527, 1990.
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Summary. Based on [16], authors formalized the integral of an extended

real valued measurable function in [12] before. However, the integral argued in

[12] cannot be applied to real-valued functions unconditionally. Therefore, in this

article we have formalized the integral of a real-value function.
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The papers [25], [11], [26], [1], [23], [24], [17], [18], [8], [27], [10], [2], [19], [7], [20],

[6], [9], [3], [4], [5], [13], [14], [15], [22], [21], and [12] provide the terminology

and notation for this paper.

1. The Measurability of Real-Valued Functions

For simplicity, we follow the rules: X denotes a non empty set, Y denotes a

set, S denotes a σ-field of subsets of X, F denotes a function from N into S, f ,

g denote partial functions from X to R, A, B denote elements of S, r, s denote

real numbers, a denotes a real number, and n denotes a natural number.

Let X be a non empty set, let f be a partial function from X to R, and let a

be a real number. The functor LE-dom(f, a) yields a subset of X and is defined

as follows:

(Def. 1) LE-dom(f, a) = LE-dom(R(f),R(a)).

The following three propositions are true:

(1) |R(f)| = R(|f |).
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(2) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, f be a partial function from X to R, and r be a real

number. Suppose dom f ∈ S and for every set x such that x ∈ dom f

holds f(x) = r. Then f is simple function in S.

(3) For every set x holds x ∈ LE-dom(f, a) iff x ∈ dom f and there exists a

real number y such that y = f(x) and y < a.

Let us consider X, f , a. The functor LEQ-dom(f, a) yields a subset of X

and is defined as follows:

(Def. 2) LEQ-dom(f, a) = LEQ-dom(R(f),R(a)).

We now state the proposition

(4) For every set x holds x ∈ LEQ-dom(f, a) iff x ∈ dom f and there exists

a real number y such that y = f(x) and y ≤ a.
Let us consider X, f , a. The functor GT-dom(f, a) yielding a subset of X

is defined as follows:

(Def. 3) GT-dom(f, a) = GT-dom(R(f),R(a)).

We now state the proposition

(5) For every set x holds x ∈ GT-dom(f, r) iff x ∈ dom f and there exists a

real number y such that y = f(x) and r < y.

Let us consider X, f , a. The functor GTE-dom(f, a) yields a subset of X

and is defined as follows:

(Def. 4) GTE-dom(f, a) = GTE-dom(R(f),R(a)).

Next we state the proposition

(6) For every set x holds x ∈ GTE-dom(f, r) iff x ∈ dom f and there exists

a real number y such that y = f(x) and r ≤ y.
Let us consider X, f , a. The functor EQ-dom(f, a) yielding a subset of X

is defined by:

(Def. 5) EQ-dom(f, a) = EQ-dom(R(f),R(a)).

The following propositions are true:

(7) For every set x holds x ∈ EQ-dom(f, r) iff x ∈ dom f and there exists a

real number y such that y = f(x) and r = y.

(8) If for every n holds F (n) = Y ∩ GT-dom(f, r − 1
n+1), then Y ∩

GTE-dom(f, r) =
⋂

rngF.

(9) If for every n holds F (n) = Y ∩ LE-dom(f, r + 1
n+1), then Y ∩

LEQ-dom(f, r) =
⋂

rngF.

(10) If for every n holds F (n) = Y ∩ LEQ-dom(f, r − 1
n+1), then Y ∩

LE-dom(f, r) =
⋃

rngF.

(11) If for every n holds F (n) = Y ∩ GTE-dom(f, r + 1
n+1), then Y ∩

GT-dom(f, r) =
⋃

rngF.
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Let X be a non empty set, let S be a σ-field of subsets of X, let f be a

partial function from X to R, and let A be an element of S. We say that f is

measurable on A if and only if:

(Def. 6) R(f) is measurable on A.

The following propositions are true:

(12) f is measurable on A iff for every real number r holds A∩LE-dom(f, r)

is measurable on S.

(13) Suppose A ⊆ dom f. Then f is measurable on A if and only if for every

real number r holds A ∩GTE-dom(f, r) is measurable on S.

(14) f is measurable on A iff for every real number r holds A∩LEQ-dom(f, r)

is measurable on S.

(15) Suppose A ⊆ dom f. Then f is measurable on A if and only if for every

real number r holds A ∩GT-dom(f, r) is measurable on S.

(16) If B ⊆ A and f is measurable on A, then f is measurable on B.

(17) If f is measurable on A and f is measurable on B, then f is measurable

on A ∪B.
(18) If f is measurable on A and A ⊆ dom f, then A ∩ GT-dom(f, r) ∩

LE-dom(f, s) is measurable on S.

(19) If f is measurable on A and g is measurable on A and A ⊆ dom g, then

A ∩ LE-dom(f, r) ∩GT-dom(g, r) is measurable on S.

(20) R(r f) = rR(f).

(21) If f is measurable on A and A ⊆ dom f, then r f is measurable on A.

2. The Measurability of f + g and f − g for Real-Valued

Functions f, g

For simplicity, we adopt the following rules: X denotes a non empty set, S

denotes a σ-field of subsets of X, f , g denote partial functions from X to R,

A denotes an element of S, r denotes a real number, and p denotes a rational

number.

Next we state several propositions:

(22) R(f) is finite.

(23) R(f + g) = R(f) + R(g) and R(f − g) = R(f) − R(g) and domR(f +

g) = domR(f)∩ domR(g) and domR(f − g) = domR(f)∩ domR(g) and

domR(f + g) = dom f ∩ dom g and domR(f − g) = dom f ∩ dom g.

(24) For every function F from Q into S such that for every p holds F (p) =

A∩ LE-dom(f, p)∩ (A ∩ LE-dom(g, r − p)) holds A ∩LE-dom(f + g, r) =⋃
rngF.
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(25) Suppose f is measurable on A and g is measurable on A. Then there

exists a function F from Q into S such that for every rational number p

holds F (p) = A ∩ LE-dom(f, p) ∩ (A ∩ LE-dom(g, r − p)).
(26) If f is measurable on A and g is measurable on A, then f+g is measurable

on A.

(27) R(f)− R(g) = R(f) + R(−g).
(28) −R(f) = R((−1) f) and −R(f) = R(−f).

(29) If f is measurable on A and g is measurable on A and A ⊆ dom g, then

f − g is measurable on A.

3. Basic Properties of Real-Valued Functions, max+ f and max− f

In the sequel X denotes a non empty set, f denotes a partial function from

X to R, and r denotes a real number.

Next we state a number of propositions:

(30) max+(R(f)) = max+(f) and max−(R(f)) = max−(f).

(31) For every element x of X holds 0 ≤ (max+(f))(x).

(32) For every element x of X holds 0 ≤ (max−(f))(x).

(33) max−(f) = max+(−f).

(34) For every set x such that x ∈ dom f and 0 < (max+(f))(x) holds

(max−(f))(x) = 0.

(35) For every set x such that x ∈ dom f and 0 < (max−(f))(x) holds

(max+(f))(x) = 0.

(36) dom f = dom(max+(f) − max−(f)) and dom f = dom(max+(f) +

max−(f)).

(37) For every set x such that x ∈ dom f holds (max+(f))(x) = f(x) or

(max+(f))(x) = 0 but (max−(f))(x) = −f(x) or (max−(f))(x) = 0.

(38) For every set x such that x ∈ dom f and (max+(f))(x) = f(x) holds

(max−(f))(x) = 0.

(39) For every set x such that x ∈ dom f and (max+(f))(x) = 0 holds

(max−(f))(x) = −f(x).

(40) For every set x such that x ∈ dom f and (max−(f))(x) = −f(x) holds

(max+(f))(x) = 0.

(41) For every set x such that x ∈ dom f and (max−(f))(x) = 0 holds

(max+(f))(x) = f(x).

(42) f = max+(f)−max−(f).

(43) |r| = |R(r)|.
(44) R(|f |) = |R(f)|.
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(45) |f | = max+(f) + max−(f).

4. The Measurability of max+ f,max− f and |f |

In the sequel X denotes a non empty set, S denotes a σ-field of subsets of

X, f denotes a partial function from X to R, and A denotes an element of S.

The following propositions are true:

(46) If f is measurable on A, then max+(f) is measurable on A.

(47) If f is measurable on A and A ⊆ dom f, then max−(f) is measurable on

A.

(48) If f is measurable on A and A ⊆ dom f, then |f | is measurable on A.

5. The Definition and the Measurability of a Real-Valued Simple

Function

For simplicity, we adopt the following rules: X is a non empty set, Y is a

set, S is a σ-field of subsets of X, f , g, h are partial functions from X to R, A

is an element of S, and r is a real number.

Let us consider X, S, f . We say that f is simple function in S if and only

if the condition (Def. 7) is satisfied.

(Def. 7) There exists a finite sequence F of separated subsets of S such that

(i) dom f =
⋃

rngF, and

(ii) for every natural number n and for all elements x, y of X such that

n ∈ domF and x ∈ F (n) and y ∈ F (n) holds f(x) = f(y).

Next we state a number of propositions:

(49) f is simple function in S iff R(f) is simple function in S.

(50) If f is simple function in S, then f is measurable on A.

(51) Let X be a set and f be a partial function from X to R. Then f is

non-negative if and only if for every set x holds 0 ≤ f(x).

(52) Let X be a set and f be a partial function from X to R. If for every set

x such that x ∈ dom f holds 0 ≤ f(x), then f is non-negative.

(53) Let X be a set and f be a partial function from X to R. Then f is

non-positive if and only if for every set x holds f(x) ≤ 0.

(54) If for every set x such that x ∈ dom f holds f(x) ≤ 0, then f is non-

positive.

(55) If f is non-negative, then f�Y is non-negative.

(56) If f is non-negative and g is non-negative, then f + g is non-negative.

(57) If f is non-negative, then if 0 ≤ r, then r f is non-negative and if r ≤ 0,

then r f is non-positive.
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(58) If for every set x such that x ∈ dom f ∩ dom g holds g(x) ≤ f(x), then

f − g is non-negative.

(59) If f is non-negative and g is non-negative and h is non-negative, then

f + g + h is non-negative.

(60) For every set x such that x ∈ dom(f + g + h) holds (f + g + h)(x) =

f(x) + g(x) + h(x).

(61) max+(f) is non-negative and max−(f) is non-negative.

(62)(i) dom(max+(f + g) + max−(f)) = dom f ∩ dom g,

(ii) dom(max−(f + g) + max+(f)) = dom f ∩ dom g,

(iii) dom(max+(f + g) + max−(f) + max−(g)) = dom f ∩ dom g,

(iv) dom(max−(f + g) + max+(f) + max+(g)) = dom f ∩ dom g,

(v) max+(f + g) + max−(f) is non-negative, and

(vi) max−(f + g) + max+(f) is non-negative.

(63) max+(f+g)+max−(f)+max−(g) = max−(f+g)+max+(f)+max+(g).

(64) If 0 ≤ r, then max+(r f) = r max+(f) and max−(r f) = r max−(f).

(65) If 0 ≤ r, then max+((−r) f) = r max−(f) and max−((−r) f) =

r max+(f).

(66) max+(f�Y ) = max+(f)�Y and max−(f�Y ) = max−(f)�Y.
(67) If Y ⊆ dom(f +g), then dom((f +g)�Y ) = Y and dom(f�Y +g�Y ) = Y

and (f + g)�Y = f�Y + g�Y.
(68) EQ-dom(f, r) = f−1({r}).

6. Lemmas for a Real-Valued Measurable Function and a Simple

Function

For simplicity, we use the following convention: X is a non empty set, S

is a σ-field of subsets of X, f , g are partial functions from X to R, A, B are

elements of S, and r, s are real numbers.

We now state a number of propositions:

(69) If f is measurable on A and A ⊆ dom f, then A ∩ GTE-dom(f, r) ∩
LE-dom(f, s) is measurable on S.

(70) If f is simple function in S, then f�A is simple function in S.

(71) If f is simple function in S, then dom f is an element of S.

(72) If f is simple function in S and g is simple function in S, then f + g is

simple function in S.

(73) If f is simple function in S, then r f is simple function in S.

(74) If for every set x such that x ∈ dom(f−g) holds g(x) ≤ f(x), then f−g
is non-negative.
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(75) There exists a partial function f from X to R such that f is simple

function in S and dom f = A and for every set x such that x ∈ A holds

f(x) = r.

(76) If f is measurable on B and A = dom f ∩B, then f�B is measurable on

A.

(77) If A ⊆ dom f and f is measurable on A and g is measurable on A, then

max+(f + g) + max−(f) is measurable on A.

(78) If A ⊆ dom f ∩ dom g and f is measurable on A and g is measurable on

A, then max−(f + g) + max+(f) is measurable on A.

(79) If dom f ∈ S and dom g ∈ S, then dom(f + g) ∈ S.
(80) If dom f = A, then f is measurable on B iff f is measurable on A ∩B.
(81) Given an element A of S such that dom f = A. Let c be a real number

and B be an element of S. If f is measurable on B, then c f is measurable

on B.

7. The Integral of a Real-Valued Function

For simplicity, we follow the rules: X is a non empty set, S is a σ-field of

subsets of X, M is a σ-measure on S, f , g are partial functions from X to R, r

is a real number, and E, A, B are elements of S.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, and let f be a partial function from X to R. The functor∫
f dM yields an element of R and is defined by:

(Def. 8)
∫
f dM =

∫
R(f) dM.

The following propositions are true:

(82) If there exists an element A of S such that A = dom f and f is measur-

able on A and f is non-negative, then
∫
f dM =

∫ +R(f) dM.

(83) If f is simple function in S and f is non-negative, then
∫
f dM =∫ +R(f) dM and

∫
f dM =

∫ ′R(f) dM.

(84) If there exists an element A of S such that A = dom f and f is measur-

able on A and f is non-negative, then 0 ≤
∫
f dM.

(85) Suppose there exists an element E of S such that E = dom f and f is

measurable on E and f is non-negative and A misses B. Then
∫
f�(A ∪

B) dM =
∫
f�AdM +

∫
f�B dM.

(86) If there exists an element E of S such that E = dom f and f is measur-

able on E and f is non-negative, then 0 ≤
∫
f�AdM.

(87) Suppose there exists an element E of S such that E = dom f and f is

measurable on E and f is non-negative and A ⊆ B. Then
∫
f�AdM ≤∫

f�B dM.
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(88) If there exists an element E of S such that E = dom f and f is measur-

able on E and M(A) = 0, then
∫
f�AdM = 0.

(89) If E = dom f and f is measurable on E and M(A) = 0, then
∫
f�(E \

A) dM =
∫
f dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a

σ-measure on S, and let f be a partial function from X to R. We say that f is

integrable on M if and only if:

(Def. 9) R(f) is integrable on M .

We now state a number of propositions:

(90) If f is integrable on M , then −∞ <
∫
f dM and

∫
f dM < +∞.

(91) If f is integrable on M , then f�A is integrable on M .

(92) If f is integrable on M and A misses B, then
∫
f�(A ∪ B) dM =∫

f�AdM +
∫
f�B dM.

(93) If f is integrable on M and B = dom f \ A, then f�A is integrable on

M and
∫
f dM =

∫
f�AdM +

∫
f�B dM.

(94) Given an element A of S such that A = dom f and f is measurable on

A. Then f is integrable on M if and only if |f | is integrable on M .

(95) If f is integrable on M , then |
∫
f dM | ≤

∫
|f |dM.

(96) Suppose that

(i) there exists an element A of S such that A = dom f and f is measurable

on A,

(ii) dom f = dom g,

(iii) g is integrable on M , and

(iv) for every element x of X such that x ∈ dom f holds |f(x)| ≤ g(x).

Then f is integrable on M and
∫
|f |dM ≤

∫
g dM.

(97) If dom f ∈ S and 0 ≤ r and for every set x such that x ∈ dom f holds

f(x) = r, then
∫
f dM = R(r) ·M(dom f).

(98) Suppose f is integrable on M and g is integrable on M and f is non-

negative and g is non-negative. Then f + g is integrable on M .

(99) If f is integrable on M and g is integrable on M , then dom(f + g) ∈ S.
(100) If f is integrable on M and g is integrable on M , then f+g is integrable

on M .

(101) Suppose f is integrable on M and g is integrable on M . Then there

exists an element E of S such that E = dom f ∩ dom g and
∫
f + g dM =∫

f�E dM +
∫
g�E dM.

(102) If f is integrable on M , then r f is integrable on M and
∫
r f dM =

R(r) ·
∫
f dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, let f be a partial function from X to R, and let B be an
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element of S. The functor
∫
B

f dM yielding an element of R is defined by:

(Def. 10)
∫
B

f dM =
∫
f�B dM.

Next we state two propositions:

(103) Suppose f is integrable on M and g is integrable on M and B ⊆ dom(f+

g). Then f + g is integrable on M and
∫
B

f + g dM =
∫
B

f dM +
∫
B

g dM.

(104) If f is integrable on M and f is measurable on B, then f�B is integrable

on M and
∫
B

r f dM = R(r) ·
∫
B

f dM.
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[11] Czes law Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[12] Noboru Endou and Yasunari Shidama. Integral of measurable function. Formalized Math-

ematics, 14(2):53–70, 2006.
[13] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Basic properties of extended

real numbers. Formalized Mathematics, 9(3):491–494, 2001.
[14] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definitions and basic properties

of measurable functions. Formalized Mathematics, 9(3):495–500, 2001.
[15] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. The measurability of extended

real valued functions. Formalized Mathematics, 9(3):525–529, 2001.
[16] P. R. Halmos. Measure Theory. Springer-Verlag, 1987.
[17] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35–40, 1990.
[18] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics,

1(5):841–845, 1990.
[19] Jaros law Kotowicz. Real sequences and basic operations on them. Formalized Mathemat-

ics, 1(2):269–272, 1990.
[20] Jaros law Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the

set of real numbers. Formalized Mathematics, 3(2):279–288, 1992.
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Summary. In this paper, we define sequence dominated by 0, in which

every initial fragment contains more zeroes than ones. If n ≥ 2 ·m and n > 0,

then the number of sequences dominated by 0 the length n including m of ones,

is given by the formula

D(n,m) =
n + 1 − 2 ·m
n + 1 −m ·

 
n

m

!

and satisfies the recurrence relation

D(n,m) = D(n − 1,m) +

m−1X

i=0

D(2 · i, i) ·D(n − 2 · (i+ 1),m− (i+ 1)).

Obviously, if n = 2 ·m, then we obtain the recurrence relation for the Catalan

numbers (starting from 0)

Cm+1 =

m−1X

i=0

Ci+1 · Cm−i.

Using the above recurrence relation we can see that

∞X

i=0

Ci+1 · xi = 1 +

 ∞X

i=0

Ci+1 · xi
!2

where (|x| < 1
4
) and hence

∞X

i=0

Ci+1 · xi =
1−√1− 4 · x

2 · x .
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The notation and terminology used here are introduced in the following papers:

[2], [23], [7], [25], [19], [27], [5], [28], [9], [1], [26], [21], [6], [3], [14], [12], [16], [13],

[20], [15], [8], [22], [11], [10], [18], [24], [17], and [4].

1. Preliminaries

For simplicity, we adopt the following convention: x, D denote sets, i, j, k,

l, m, n denote elements of N, p, q denote finite 0-sequences of N, p′, q′ denote

finite 0-sequences, and p1, q1 denote finite 0-sequences of D.

Next we state several propositions:

(1) (p′ a q′)� dom p′ = p′.

(2) If n ≤ dom p′, then (p′ a q′)�n = p′�n.
(3) If n = dom p′ + k, then (p′ a q′)�n = p′ a (q′�k).

(4) There exists q′ such that p′ = (p′�n) a q′.
(5) There exists q1 such that p1 = (p1�n) a q1.

Let us consider p. We say that p is dominated by 0 if and only if:

(Def. 1) rng p ⊆ {0, 1} and for every k such that k ≤ dom p holds 2 ·∑(p�k) ≤ k.
The following propositions are true:

(6) If p is dominated by 0, then 2 ·∑(p�k) ≤ k.
(7) If p is dominated by 0, then p(0) = 0.

Let us consider k, m. Then k 7−→ m is a finite 0-sequence of N.

One can check that there exists a finite 0-sequence of N which is empty and

dominated by 0 and there exists a finite 0-sequence of N which is non empty

and dominated by 0.

The following propositions are true:

(8) n 7−→ 0 is dominated by 0.

(9) If n ≥ m, then (n 7−→ 0) a (m 7−→ 1) is dominated by 0.

(10) If p is dominated by 0, then p�n is dominated by 0.

(11) If p is dominated by 0 and q is dominated by 0, then p a q is dominated

by 0.

(12) If p is dominated by 0, then 2 ·∑(p�(2 · n+ 1)) < 2 · n+ 1.

(13) If p is dominated by 0 and n ≤ len p − 2 · ∑ p, then p a (n 7−→ 1) is

dominated by 0.

(14) If p is dominated by 0 and n ≤ (k + len p) − 2 · ∑ p, then (k 7−→
0) a p a (n 7−→ 1) is dominated by 0.

(15) If p is dominated by 0 and 2 ·∑(p�k) = k, then k ≤ len p and len(p�k) =

k.

(16) If p is dominated by 0 and 2 ·∑(p�k) = k and p = (p�k) a q, then q is

dominated by 0.
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(17) If p is dominated by 0 and 2 ·∑(p�k) = k and k = n + 1, then p�k =

(p�n) a (1 7−→ 1).

(18) Let given m, p. Suppose m = min∗{n : 2 ·∑(p�n) = n ∧ n > 0}
and m > 0 and p is dominated by 0. Then there exists q such that

p�m = (1 7−→ 0) a q a (1 7−→ 1) and q is dominated by 0.

(19) Let given p. Suppose rng p ⊆ {0, 1} and p is not dominated by 0. Then

there exists k such that 2 ·k+1 = min∗{n : 2 ·∑(p�n) > n} and 2 ·k+1 ≤
dom p and k =

∑
(p�(2 · k)) and p(2 · k) = 1.

(20) Let given p, q, k. Suppose p�(2 · k + len q) = (k 7−→ 0) a q a (k 7−→ 1)

and q is dominated by 0 and 2 ·∑ q = len q and k > 0. Then min∗{n :

2 ·∑(p�n) = n ∧ n > 0} = 2 · k + len q.

(21) Let given p. Suppose p is dominated by 0 and {i : 2 ·∑(p�i) = i ∧ i >

0} = ∅ and len p > 0. Then there exists q such that p = 〈0〉 a q and q is

dominated by 0.

(22) If p is dominated by 0, then 〈0〉a p is dominated by 0 and {i : 2 ·∑((〈0〉a
p)�i) = i ∧ i > 0} = ∅.

(23) If rng p ⊆ {0, 1} and p is not dominated by 0 and 2 · k + 1 = min∗{n :

2 ·∑(p�n) > n}, then p�(2 · k) is dominated by 0.

2. The Recurrence Relation for the Catalan Numbers

Let n, m be natural numbers. The functor Domin0(n,m) yields a subset of

{0, 1}ω and is defined as follows:

(Def. 2) x ∈ Domin0(n,m) iff there exists a finite 0-sequence p of N such that

p = x and p is dominated by 0 and dom p = n and
∑
p = m.

Next we state two propositions:

(24) p ∈ Domin0(n,m) iff p is dominated by 0 and dom p = n and
∑
p = m.

(25) Domin0(n,m) ⊆ Choose(n,m, 1, 0).

Let us consider n, m. One can check that Domin0(n,m) is finite.

One can prove the following propositions:

(26) Domin0(n,m) is empty iff 2 ·m > n.

(27) Domin0(n, 0) = {n 7−→ 0}.
(28) card Domin0(n, 0) = 1.

(29) Let given p, n. Suppose rng p ⊆ {0, n}. Then there exists q such that

len p = len q and rng q ⊆ {0, n} and for every k such that k ≤ len p

holds
∑

(p�k) +
∑

(q�k) = n · k and for every k such that k ∈ len p holds

q(k) = n− p(k).

(30) If m ≤ n, then
(n
m

)
> 0.
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(31) If 2 · (m+1) ≤ n, then card(Choose(n,m+1, 1, 0)\Domin0(n,m+1)) =

card Choose(n,m, 1, 0).

(32) If 2 · (m+ 1) ≤ n, then card Domin0(n,m+ 1) =
( n
m+1

)
−
(n
m

)
.

(33) If 2 ·m ≤ n, then card Domin0(n,m) = (n+1)−2·m
(n+1)−m ·

(n
m

)
.

(34) card Domin0(2 + k, 1) = k + 1.

(35) card Domin0(4 + k, 2) = (k+1)·(k+4)
2 .

(36) card Domin0(6 + k, 3) = (k+1)·(k+5)·(k+6)
6 .

(37) card Domin0(2 · n, n) =
(2·n
n )

n+1 .

(38) card Domin0(2 · n, n) = Catalan(n+ 1).

Let us consider D. A functional non empty set is said to be a set of ω-

sequences of D if:

(Def. 3) For every x such that x ∈ it holds x is a finite 0-sequence of D.

Let us consider D. Then Dω is a set of ω-sequences of D. Let F be a set of

ω-sequences of D. We see that the element of F is a finite 0-sequence of D.

In the sequel p2 denotes an element of Nω.

We now state several propositions:

(39) {p2 : dom p2 = 2 · n ∧ p2 is dominated by 0} =
(

2·n
n

)
.

(40) Let given n, m, k, j, l. Suppose j = n− 2 · (k+ 1) and l = m− (k + 1).

Then {p2 : p2 ∈ Domin0(n,m) ∧ 2 · (k + 1) = min∗{i : 2 ·∑(p2�i) =

i ∧ i > 0}} = card Domin0(2 · k, k) · card Domin0(j, l).

(41) Let given n, m. Suppose 2 ·m ≤ n. Then there exists a finite 0-sequence

C1 of N such that

{p2 : p2 ∈ Domin0(n,m) ∧ {i : 2 ·∑(p2�i) = i ∧ i > 0} 6= ∅} =
∑
C1

and domC1 = m and for every j such that j < m holds C1(j) =

card Domin0(2 · j, j) · card Domin0(n−′ 2 · (j + 1),m−′ (j + 1)).

(42) For every n such that n > 0 holds Domin0(2·n, n) = {p2 : p2 ∈ Domin0(2·
n, n) ∧ {i : 2 ·∑(p2�i) = i ∧ i > 0} 6= ∅}.

(43) Let given n. Suppose n > 0. Then there exists a finite 0-sequence C2 of

N such that
∑
C2 = Catalan(n+ 1) and domC2 = n and for every j such

that j < n holds C2(j) = Catalan(j + 1) · Catalan(n−′ j).
(44) {p2 : p2 ∈ Domin0(n+ 1,m) ∧ {i : 2 ·∑(p2�i) = i ∧ i > 0} = ∅} =

card Domin0(n,m).

(45) Let given n, m. Suppose 2 ·m ≤ n. Then there exists a finite 0-sequence

C1 of N such that card Domin0(n,m) =
∑
C1 + card Domin0(n −′ 1,m)

and domC1 = m and for every j such that j < m holds C1(j) =

card Domin0(2 · j, j) · card Domin0(n−′ 2 · (j + 1),m−′ (j + 1)).

(46) For all n, k there exists p such that
∑
p = card Domin0(2 · n + 2 +

k, n + 1) and dom p = k + 1 and for every i such that i ≤ k holds p(i) =
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card Domin0(2 · n+ 1 + i, n).

3. Cauchy Product

We use the following convention: s1, s2, s3 denote sequences of real numbers,

r denotes a real number, and F1, F2, F3 denote finite 0-sequences of R.

Let us consider F1. The functor
∑
F1 yields a real number and is defined as

follows:

(Def. 4)
∑
F1 = +R � F1.

Let us consider F1, x. Then F1(x) is a real number.

Let s1, s2 be sequences of real numbers. The functor s1 (#) s2 yields a

sequence of real numbers and is defined by the condition (Def. 5).

(Def. 5) Let k be a natural number. Then there exists a finite 0-sequence F1 of

R such that domF1 = k + 1 and for every n such that n ∈ k + 1 holds

F1(n) = s1(n) · s2(k −′ n) and
∑
F1 = (s1 (#) s2)(k).

Let us notice that the functor s1 (#) s2 is commutative.

One can prove the following propositions:

(47) For all F1, n such that n ∈ domF1 holds
∑

(F1�n)+F1(n) =
∑

(F1�(n+

1)).

(48) For all F2, F3 such that domF2 = domF3 and for every n such that

n ∈ lenF2 holds F2(n) = F3(lenF2 −′ (1 + n)) holds
∑
F2 =

∑
F3.

(49) For all F2, F3 such that domF2 = domF3 and for every n such that

n ∈ lenF2 holds F2(n) = r · F3(n) holds
∑
F2 = r ·∑F3.

(50) s1 (#) r s2 = r (s1 (#) s2).

(51) s1 (#)(s2 + s3) = (s1 (#) s2) + (s1 (#) s3).

(52) (s1 (#) s2)(0) = s1(0) · s2(0).

(53) For all s1, s2, n there exists F1 such that (
∑κ

α=0(s1 (#) s2)(α))κ∈N(n) =∑
F1 and domF1 = n + 1 and for every i such that i ∈ n + 1 holds

F1(i) = s1(i) · (∑κ
α=0(s2)(α))κ∈N(n−′ i).

(54) Let given s1, s2, n. Suppose s2 is summable. Then there exists F1 such

that (
∑κ

α=0(s1 (#) s2)(α))κ∈N(n) =
∑
s2 · (

∑κ
α=0(s1)(α))κ∈N(n) −∑F1

and domF1 = n + 1 and for every i such that i ∈ n + 1 holds F1(i) =

s1(i) ·∑(s2 ↑ ((n−′ i) + 1)).

(55) For every F1 there exists a finite 0-sequence a1 of R such that doma1 =

domF1 and |∑F1| ≤
∑
a1 and for every i such that i ∈ doma1 holds

a1(i) = |F1(i)|.
(56) For every s1 such that s1 is summable there exists r such that 0 < r and

for every k holds |∑(s1 ↑ k)| < r.
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(57) For all s1, n, m such that n ≤ m and for every i holds s1(i) ≥ 0 holds

(
∑κ

α=0(s1)(α))κ∈N(n) ≤ (
∑κ

α=0(s1)(α))κ∈N(m).

(58) For all s1, s2 such that s1 is absolutely summable and s2 is summable

holds s1 (#) s2 is summable and
∑

(s1 (#) s2) =
∑
s1 ·

∑
s2.

(59) If p = F1, then
∑
p =

∑
F1.

4. The Generating Function for the Catalan Numbers

Next we state the proposition

(60) Let given r. Then there exists a sequence C2 of real numbers such that

(i) for every n holds C2(n) = Catalan(n+ 1) · rn, and

(ii) if |r| < 1
4 , then C2 is absolutely summable and

∑
C2 = 1 + r · (∑C2)2

and
∑
C2 = 2

1+
√

1−4·r and if r 6= 0, then
∑
C2 = 1−√1−4·r

2·r .
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Summary. In this article, we define the set H of quaternion numbers

as the set of all ordered sequences q = 〈x, y,w, z〉 where x,y,w and z are real

numbers. The addition, difference and multiplication of the quaternion numbers

are also defined. We define the real and imaginary parts of q and denote this by

x = <(q), y = =1(q), w = =2(q), z = =3(q). We define the addition, difference,

multiplication again and denote this operation by real and three imaginary parts.

We define the conjugate of q denoted by q∗′ and the absolute value of q denoted

by |q|. We also give some properties of quaternion numbers.

MML identifier: QUATERNI, version: 7.8.03 4.75.958

The articles [14], [16], [2], [1], [12], [17], [4], [5], [6], [13], [3], [11], [7], [8], [15],

[18], [9], and [10] provide the terminology and notation for this paper.

We use the following convention: a, b, c, d, x, y, w, z, x1, x2, x3, x4 denote

sets and A denotes a non empty set.

The functor H is defined by:

(Def. 1) H = (R4 \ {x;x ranges over elements of R4: x(2) = 0 ∧ x(3) = 0}) ∪C.
Let x be a number. We say that x is quaternion if and only if:

(Def. 2) x ∈ H .
Let us observe that H is non empty.

Let us consider x, y, w, z, a, b, c, d. The functor [x 7→ a, y 7→ b, w 7→ c, z 7→ d]

yields a set and is defined as follows:

(Def. 3) [x 7→ a, y 7→ b, w 7→ c, z 7→ d] = [x 7−→ a, y 7−→ b]+·[w 7−→ c, z 7−→ d].

Let us consider x, y, w, z, a, b, c, d. Note that [x 7→ a, y 7→ b, w 7→ c, z 7→ d]

is function-like and relation-like.

Next we state several propositions:
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(1) dom[x 7→ a, y 7→ b, w 7→ c, z 7→ d] = {x, y, w, z}.
(2) rng[x 7→ a, y 7→ b, w 7→ c, z 7→ d] ⊆ {a, b, c, d}.
(3) Suppose x, y, w, z are mutually different. Then [x 7→ a, y 7→ b, w 7→

c, z 7→ d](x) = a and [x 7→ a, y 7→ b, w 7→ c, z 7→ d](y) = b and [x 7→ a, y 7→
b, w 7→ c, z 7→ d](w) = c and [x 7→ a, y 7→ b, w 7→ c, z 7→ d](z) = d.

(4) If x, y, w, z are mutually different, then rng[x 7→ a, y 7→ b, w 7→ c, z 7→
d] = {a, b, c, d}.

(5) {x1, x2, x3, x4} ⊆ X iff x1 ∈ X and x2 ∈ X and x3 ∈ X and x4 ∈ X.
Let us consider A, x, y, w, z and let a, b, c, d be elements of A. Then

[x 7→ a, y 7→ b, w 7→ c, z 7→ d] is a function from {x, y, w, z} into A.

The functor j is defined by:

(Def. 4) j = [0 7→ 0, 1 7→ 0, 2 7→ 1, 3 7→ 0].

The functor k is defined by:

(Def. 5) k = [0 7→ 0, 1 7→ 0, 2 7→ 0, 3 7→ 1].

One can check the following observations:

∗ i is quaternion,

∗ j is quaternion, and

∗ k is quaternion.

Let us observe that there exists a number which is quaternion.

Let us mention that every element of H is quaternion.

Let x, y, w, z be elements of R. The functor 〈x, y, w, z〉H yields an element

of H and is defined as follows:

(Def. 6) 〈x, y, w, z〉H =

{
x+ yi, if w = 0 and z = 0,

[0 7→ x, 1 7→ y, 2 7→ w, 3 7→ z], otherwise.

Next we state three propositions:

(6) Let a, b, c, d, e, i, j, k be sets and g be a function. Suppose a 6= b and

c 6= d and dom g = {a, b, c, d} and g(a) = e and g(b) = i and g(c) = j and

g(d) = k. Then g = [a 7→ e, b 7→ i, c 7→ j, d 7→ k].

(7) For every element g of H there exist elements r, s, t, u of R such that

g = 〈r, s, t, u〉H.
(8) If a, c, x, w are mutually different, then [a 7→ b, c 7→ d, x 7→ y, w 7→ z] =

{〈〈a, b〉〉, 〈〈c, d〉〉, 〈〈x, y〉〉, 〈〈w, z〉〉}.
We adopt the following convention: a, b, c, d are elements of R and r, s, t

are elements of Q+.

One can prove the following four propositions:

(9) Let A be a subset of Q+. Suppose there exists t such that t ∈ A and

t 6= ∅ and for all r, s such that r ∈ A and s ≤ r holds s ∈ A. Then there

exist elements r1, r2, r3, r4, r5 of Q+ such that
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r1 ∈ A and r2 ∈ A and r3 ∈ A and r4 ∈ A and r5 ∈ A and r1 6= r2 and

r1 6= r3 and r1 6= r4 and r1 6= r5 and r2 6= r3 and r2 6= r4 and r2 6= r5 and

r3 6= r4 and r3 6= r5 and r4 6= r5.

(10) [0 7→ a, 1 7→ b, 2 7→ c, 3 7→ d] /∈ C.
(11) Let a, b, c, d, x, y, z, w, x′, y′, z′, w′ be sets. Suppose a, b, c, d are

mutually different and [a 7→ x, b 7→ y, c 7→ z, d 7→ w] = [a 7→ x′, b 7→
y′, c 7→ z′, d 7→ w′]. Then x = x′ and y = y′ and z = z′ and w = w′.

(12) For all elements x1, x2, x3, x4, y1, y2, y3, y4 of R such that

〈x1, x2, x3, x4〉H = 〈y1, y2, y3, y4〉H holds x1 = y1 and x2 = y2 and x3 = y3

and x4 = y4.

Let x, y be quaternion numbers. The functor x+ y is defined by:

(Def. 7) There exist elements x1, x2, x3, x4, y1, y2, y3, y4 of R such that x =

〈x1, x2, x3, x4〉H and y = 〈y1, y2, y3, y4〉H and x+y = 〈x1 +y1, x2 +y2, x3 +

y3, x4 + y4〉H.
Let us observe that the functor x+ y is commutative.

Let z be a quaternion number. The functor −z yields a quaternion number

and is defined by:

(Def. 8) z +−z = 0.

Let us observe that the functor −z is involutive.

Let x, y be quaternion numbers. The functor x− y is defined as follows:

(Def. 9) x− y = x+−y.
Let x, y be quaternion numbers. The functor x ·y is defined by the condition

(Def. 10).

(Def. 10) There exist elements x1, x2, x3, x4, y1, y2, y3, y4 of R such that x =

〈x1, x2, x3, x4〉H and y = 〈y1, y2, y3, y4〉H and x · y = 〈x1 · y1 − x2 · y2 − x3 ·
y3− x4 · y4, (x1 · y2 + x2 · y1 + x3 · y4)− x4 · y3, (x1 · y3 + y1 · x3 + y2 · x4)−
y4 · x2, (x1 · y4 + x4 · y1 + x2 · y3)− x3 · y2〉H.

Let z, z′ be quaternion numbers. One can verify the following observations:

∗ z + z′ is quaternion,

∗ z · z′ is quaternion, and

∗ z − z′ is quaternion.

j Is an element of H and it can be characterized by the condition:

(Def. 11) j = 〈0, 0, 1, 0〉H .
Then k is an element of H and it can be characterized by the condition:

(Def. 12) k = 〈0, 0, 0, 1〉H.
One can prove the following propositions:

(13) i · i = −1.

(14) j · j = −1.
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(15) k · k = −1.

(16) i · j = k.

(17) j · k = i.

(18) k · i = j.

(19) i · j = −j · i.
(20) j · k = −k · j.
(21) k · i = −i · k.

Let z be a quaternion number. The functor <(z) is defined as follows:

(Def. 13)(i) There exists a complex number z ′ such that z = z′ and <(z) = <(z′)
if z ∈ C,

(ii) there exists a function f from 4 into R such that z = f and <(z) = f(0),

otherwise.

The functor =1(z) is defined by:

(Def. 14)(i) There exists a complex number z ′ such that z = z′ and =1(z) = =(z′)
if z ∈ C,

(ii) there exists a function f from 4 into R such that z = f and =1(z) =

f(1), otherwise.

The functor =2(z) is defined as follows:

(Def. 15)(i) =2(z) = 0 if z ∈ C,
(ii) there exists a function f from 4 into R such that z = f and =2(z) =

f(2), otherwise.

The functor =3(z) is defined by:

(Def. 16)(i) =3(z) = 0 if z ∈ C,
(ii) there exists a function f from 4 into R such that z = f and =3(z) =

f(3), otherwise.

Let z be a quaternion number. One can check the following observations:

∗ <(z) is real,

∗ =1(z) is real,

∗ =2(z) is real, and

∗ =3(z) is real.

Let z be a quaternion number. Then <(z) is a real number. Then =1(z) is

a real number. Then =2(z) is a real number. Then =3(z) is a real number.

One can prove the following two propositions:

(22) For every function f from 4 into R there exist a, b, c, d such that

f = [0 7→ a, 1 7→ b, 2 7→ c, 3 7→ d].

(23) <(〈a, b, c, d〉H) = a and =1(〈a, b, c, d〉H) = b and =2(〈a, b, c, d〉H) = c and

=3(〈a, b, c, d〉H) = d.

In the sequel z, z1, z2, z3, z4 denote quaternion numbers.
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Next we state two propositions:

(24) z = 〈<(z),=1(z),=2(z),=3(z)〉H.
(25) If <(z1) = <(z2) and =1(z1) = =1(z2) and =2(z1) = =2(z2) and =3(z1) =

=3(z2), then z1 = z2.

The quaternion number 0H is defined as follows:

(Def. 17) 0H = 0.

The quaternion number 1H is defined as follows:

(Def. 18) 1H = 1.

One can prove the following propositions:

(26) If <(z) = 0 and =1(z) = 0 and =2(z) = 0 and =3(z) = 0, then z = 0H.

(27) If z = 0, then (<(z))2 + (=1(z))2 + (=2(z))2 + (=3(z))2 = 0.

(28) If (<(z))2 + (=1(z))2 + (=2(z))2 + (=3(z))2 = 0, then z = 0H.

(29) <(1H) = 1 and =1(1H) = 0 and =2(1H) = 0 and =3(1H) = 0.

(30) <(i) = 0 and =1(i) = 1 and =2(i) = 0 and =3(i) = 0.

(31) <(j) = 0 and =1(j) = 0 and =2(j) = 1 and =3(j) = 0 and <(k) = 0 and

=1(k) = 0 and =2(k) = 0 and =3(k) = 1.

(32) <(z1 + z2 + z3 + z4) = <(z1) + <(z2) + <(z3) + <(z4) and =1(z1 + z2 +

z3 + z4) = =1(z1) +=1(z2) +=1(z3) +=1(z4) and =2(z1 + z2 + z3 + z4) =

=2(z1) + =2(z2) + =2(z3) + =2(z4) and =3(z1 + z2 + z3 + z4) = =3(z1) +

=3(z2) + =3(z3) + =3(z4).

In the sequel x denotes a real number.

We now state three propositions:

(33) If z1 = x, then <(z1 · i) = 0 and =1(z1 · i) = x and =2(z1 · i) = 0 and

=3(z1 · i) = 0.

(34) If z1 = x, then <(z1 · j) = 0 and =1(z1 · j) = 0 and =2(z1 · j) = x and

=3(z1 · j) = 0.

(35) If z1 = x, then <(z1 · k) = 0 and =1(z1 · k) = 0 and =2(z1 · k) = 0 and

=3(z1 · k) = x.

Let x be a real number and let y be a quaternion number. The functor x+y

is defined as follows:

(Def. 19) There exist elements y1, y2, y3, y4 of R such that y = 〈y1, y2, y3, y4〉H
and x+ y = 〈x+ y1, y2, y3, y4〉H.

Let x be a real number and let y be a quaternion number. The functor x−y
is defined by:

(Def. 20) x− y = x+−y.
Let x be a real number and let y be a quaternion number. The functor x · y

is defined as follows:
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(Def. 21) There exist elements y1, y2, y3, y4 of R such that y = 〈y1, y2, y3, y4〉H
and x · y = 〈x · y1, x · y2, x · y3, x · y4〉H.

Let x be a real number and let z ′ be a quaternion number. One can verify

the following observations:

∗ x+ z′ is quaternion,

∗ x · z′ is quaternion, and

∗ x− z′ is quaternion.

Let z1, z2 be quaternion numbers. Then z1 + z2 is an element of H and it

can be characterized by the condition:

(Def. 22) z1 + z2 = <(z1) + <(z2) + (=1(z1) +=1(z2)) · i+ (=2(z1) +=2(z2)) · j +

(=3(z1) + =3(z2)) · k.
The following proposition is true

(36) <(z1 + z2) = <(z1) + <(z2) and =1(z1 + z2) = =1(z1) + =1(z2) and

=2(z1 + z2) = =2(z1) + =2(z2) and =3(z1 + z2) = =3(z1) + =3(z2).

Let z1, z2 be elements of H. Then z1 · z2 is an element of H and it can be

characterized by the condition:

(Def. 23) z1 ·z2 = (<(z1)·<(z2)−=1(z1)·=1(z2)−=2(z1)·=2(z2)−=3(z1)·=3(z2))+

((<(z1) · =1(z2) + =1(z1) · <(z2) + =2(z1) · =3(z2))−=3(z1) · =2(z2)) · i+

((<(z1) · =2(z2) + =2(z1) · <(z2) +=3(z1) · =1(z2))−=1(z1) · =3(z2)) · j +

((<(z1) · =3(z2) + =3(z1) · <(z2) + =1(z1) · =2(z2))−=2(z1) · =1(z2)) · k.
We now state four propositions:

(37) z = <(z) + =1(z) · i+ =2(z) · j + =3(z) · k.
(38) Suppose =1(z1) = 0 and =1(z2) = 0 and =2(z1) = 0 and =2(z2) = 0

and =3(z1) = 0 and =3(z2) = 0. Then <(z1 · z2) = <(z1) · <(z2) and

=1(z1 · z2) = =2(z1) · =3(z2) − =3(z1) · =2(z2) and =2(z1 · z2) = =3(z1) ·
=1(z2)−=1(z1) · =3(z2) and =3(z1 · z2) = =1(z1) · =2(z2)−=2(z1) · =1(z2).

(39) Suppose <(z1) = 0 and <(z2) = 0. Then <(z1 · z2) = −=1(z1) · =1(z2)−
=2(z1) · =2(z2)−=3(z1) · =3(z2) and =1(z1 · z2) = =2(z1) · =3(z2)−=3(z1) ·
=2(z2) and =2(z1 · z2) = =3(z1) · =1(z2)−=1(z1) · =3(z2) and =3(z1 · z2) =

=1(z1) · =2(z2)−=2(z1) · =1(z2).

(40) <(z · z) = (<(z))2 − (=1(z))2 − (=2(z))2 − (=3(z))2 and =1(z · z) = 2 ·
(<(z)·=1(z)) and =2(z·z) = 2·(<(z)·=2(z)) and =3(z·z) = 2·(<(z)·=3(z)).

Let z be a quaternion number. Then −z is an element of H and it can be

characterized by the condition:

(Def. 24) −z = −<(z) + (−=1(z)) · i+ (−=2(z)) · j + (−=3(z)) · k.
The following proposition is true

(41) <(−z) = −<(z) and =1(−z) = −=1(z) and =2(−z) = −=2(z) and

=3(−z) = −=3(z).
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Let z1, z2 be quaternion numbers. Then z1 − z2 is an element of H and it

can be characterized by the condition:

(Def. 25) z1− z2 = (<(z1)−<(z2)) + (=1(z1)−=1(z2)) · i+ (=2(z1)−=2(z2)) · j+

(=3(z1)−=3(z2)) · k.
One can prove the following proposition

(42) <(z1 − z2) = <(z1) − <(z2) and =1(z1 − z2) = =1(z1) − =1(z2) and

=2(z1 − z2) = =2(z1)−=2(z2) and =3(z1 − z2) = =3(z1)−=3(z2).

Let z be a quaternion number. The functor z yielding a quaternion number

is defined by:

(Def. 26) z = <(z) + (−=1(z)) · i+ (−=2(z)) · j + (−=3(z)) · k.
Let z be a quaternion number. Then z is an element of H.

We now state a number of propositions:

(43) z = 〈<(z),−=1(z),−=2(z),−=3(z)〉H.
(44) <(z ) = <(z) and =1(z ) = −=1(z) and =2(z ) = −=2(z) and =3(z ) =

−=3(z).

(45) If z = 0, then z = 0.

(46) If z = 0, then z = 0.

(47) 1H = 1H.

(48) <(i) = 0 and =1(i) = −1 and =2(i) = 0 and =3(i) = 0.

(49) <(j ) = 0 and =1(j ) = 0 and =2(j ) = −1 and =3(j ) = 0.

(50) <(k ) = 0 and =1(k ) = 0 and =2(k ) = 0 and =3(k ) = −1.

(51) i = −i.
(52) j = −j.
(53) k = −k.
(54) z1 + z2 = z1 + z2 .

(55) −z = −z .
(56) z1 − z2 = z1 − z2 .

(57) If =2(z1) · =3(z2) 6= =3(z1) · =2(z2), then z1 · z2 6= z1 · z2 .

(58) If =1(z) = 0 and =2(z) = 0 and =3(z) = 0, then z = z.

(59) If <(z) = 0, then z = −z.
(60) <(z · z ) = (<(z))2 + (=1(z))2 + (=2(z))2 + (=3(z))2 and =1(z · z ) = 0

and =2(z · z ) = 0 and =3(z · z ) = 0.

(61) <(z+z ) = 2·<(z) and =1(z+z ) = 0 and =2(z+z ) = 0 and=3(z+z ) = 0.

(62) −z = 〈−<(z),−=1(z),−=2(z),−=3(z)〉H.
(63) z1 − z2 = 〈<(z1) − <(z2),=1(z1) − =1(z2),=2(z1) − =2(z2),=3(z1) −
=3(z2)〉H.

(64) <(z − z ) = 0 and =1(z − z ) = 2 · =1(z) and =2(z − z ) = 2 · =2(z) and

=3(z − z ) = 2 · =3(z).
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Let us consider z. The functor |z| yielding a real number is defined by:

(Def. 27) |z| =
√

(<(z))2 + (=1(z))2 + (=2(z))2 + (=3(z))2.

We now state a number of propositions:

(65) |0H| = 0.

(66) If |z| = 0, then z = 0.

(67) 0 ≤ |z|.
(68) |1H| = 1.

(69) |i| = 1.

(70) |j| = 1.

(71) |k| = 1.

(72) |−z| = |z|.
(73) |z | = |z|.
(74) 0 ≤ (<(z))2 + (=1(z))2 + (=2(z))2 + (=3(z))2.

(75) <(z) ≤ |z|.
(76) =1(z) ≤ |z|.
(77) =2(z) ≤ |z|.
(78) =3(z) ≤ |z|.
(79) |z1 + z2| ≤ |z1|+ |z2|.
(80) |z1 − z2| ≤ |z1|+ |z2|.
(81) |z1| − |z2| ≤ |z1 + z2|.
(82) |z1| − |z2| ≤ |z1 − z2|.
(83) |z1 − z2| = |z2 − z1|.
(84) |z1 − z2| = 0 iff z1 = z2.

(85) |z1 − z2| ≤ |z1 − z|+ |z − z2|.
(86) ||z1| − |z2|| ≤ |z1 − z2|.
(87) |z1 · z2| = |z1| · |z2|.
(88) |z · z| = (<(z))2 + (=1(z))2 + (=2(z))2 + (=3(z))2.

(89) |z · z| = |z · z |.
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Let x, S be sets and let a be an element of S. The functor k.id(x, S, a) yields

an element of S and is defined by:

(Def. 1) k.id(x, S, a) =

{
x, if x ∈ S,
a, otherwise.

Let x be a set. The functor k.nat x yields an element of N and is defined by:

(Def. 2) k.nat x =

{
x, if x ∈ N,
0, otherwise.

Let f be a function and let x, a be sets. The functor UnivF(x, f, a) yielding

a set is defined by:

(Def. 3) UnivF(x, f, a) =

{
f(x), if x ∈ dom f,

a, otherwise.

Let a be a set. The functor Castboolean a yields a boolean set and is defined

by:

(Def. 4) Castboolean a =

{
a, if a is a boolean set,

false, otherwise.

Let X, a be sets. The functor CastBool(a,X) yielding a subset of X is

defined as follows:

(Def. 5) CastBool(a,X) =

{
a, if a ⊆ X,
∅, otherwise.
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For simplicity, we adopt the following rules: n denotes an element of N, a

denotes a set, D denotes a non empty set, and p, q denote finite sequences of

elements of N.

Let x be a variable. Then 〈x〉 is a finite sequence of elements of N.

Let us consider n. The functor atom. n yields a finite sequence of elements

of N and is defined by:

(Def. 6) atom. n = 〈5 + n〉.
Let us consider p. The functor ¬p yielding a finite sequence of elements of

N is defined by:

(Def. 7) ¬p = 〈0〉 a p.
Let us consider q. The functor p ∧ q yielding a finite sequence of elements of N
is defined by:

(Def. 8) p ∧ q = 〈1〉 a p a q.
Let us consider p. The functor EX p yielding a finite sequence of elements

of N is defined as follows:

(Def. 9) EX p = 〈2〉 a p.
The functor EG p yielding a finite sequence of elements of N is defined by:

(Def. 10) EG p = 〈3〉 a p.
Let us consider q. The functor pEU q yields a finite sequence of elements of N
and is defined as follows:

(Def. 11) pEU q = 〈4〉 a p a q.
The non empty set CTL-WFF is defined by the conditions (Def. 12).

(Def. 12) For every a such that a ∈ CTL-WFF holds a is a finite sequence of

elements of N and for every n holds atom. n ∈ CTL-WFF and for every

p such that p ∈ CTL-WFF holds ¬p ∈ CTL-WFF and for all p, q such

that p ∈ CTL-WFF and q ∈ CTL-WFF holds p ∧ q ∈ CTL-WFF and for

every p such that p ∈ CTL-WFF holds EX p ∈ CTL-WFF and for every

p such that p ∈ CTL-WFF holds EG p ∈ CTL-WFF and for all p, q such

that p ∈ CTL-WFF and q ∈ CTL-WFF holds pEU q ∈ CTL-WFF and for

every D such that for every a such that a ∈ D holds a is a finite sequence

of elements of N and for every n holds atom. n ∈ D and for every p such

that p ∈ D holds ¬p ∈ D and for all p, q such that p ∈ D and q ∈ D holds

p ∧ q ∈ D and for every p such that p ∈ D holds EX p ∈ D and for every

p such that p ∈ D holds EG p ∈ D and for all p, q such that p ∈ D and

q ∈ D holds pEU q ∈ D holds CTL-WFF ⊆ D.
Let I1 be a finite sequence of elements of N. We say that I1 is CTL-formula-

like if and only if:

(Def. 13) I1 is an element of CTL-WFF.
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Let us mention that there exists a finite sequence of elements of N which is

CTL-formula-like.

A CTL-formula is a CTL-formula-like finite sequence of elements of N.

One can prove the following proposition

(1) a is a CTL-formula iff a ∈ CTL-WFF .

In the sequel F , G, H, H1, H2 denote CTL-formulae.

Let us consider n. One can verify that atom. n is CTL-formula-like.

Let us consider H. One can verify the following observations:

∗ ¬H is CTL-formula-like,

∗ EXH is CTL-formula-like, and

∗ EGH is CTL-formula-like.

Let us consider G. One can verify that H ∧G is CTL-formula-like and H EUG

is CTL-formula-like.

Let us consider H. We say that H is atomic if and only if:

(Def. 14) There exists n such that H = atom. n.

We say that H is negative if and only if:

(Def. 15) There exists H1 such that H = ¬H1.

We say that H is conjunctive if and only if:

(Def. 16) There exist F , G such that H = F ∧G.
We say that H is exist-next-formula if and only if:

(Def. 17) There exists H1 such that H = EXH1.

We say that H is exist-global-formula if and only if:

(Def. 18) There exists H1 such that H = EGH1.

We say that H is exist-until-formula if and only if:

(Def. 19) There exist F , G such that H = F EUG.

Let us consider F , G. The functor F ∨G yielding a CTL-formula is defined

by:

(Def. 20) F ∨G = ¬(¬F ∧ ¬G).

One can prove the following proposition

(2) H is atomic, or negative, or conjunctive, or exist-next-formula, or exist-

global-formula, or exist-until-formula.

Let us consider H. Let us assume that H is negative, or exist-next-formula,

or exist-global-formula. The functor Arg(H) yielding a CTL-formula is defined

as follows:

(Def. 21)(i) ¬Arg(H) = H if H is negative,

(ii) EX Arg(H) = H if H is exist-next-formula,

(iii) EG Arg(H) = H, otherwise.
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Let us consider H. Let us assume that H is conjunctive or exist-until-

formula. The functor LeftArg(H) yields a CTL-formula and is defined as follows:

(Def. 22)(i) There exists H1 such that LeftArg(H)∧H1 = H if H is conjunctive,

(ii) there exists H1 such that LeftArg(H) EUH1 = H, otherwise.

The functor RightArg(H) yielding a CTL-formula is defined by:

(Def. 23)(i) There exists H1 such that H1∧RightArg(H) = H if H is conjunctive,

(ii) there exists H1 such that H1 EU RightArg(H) = H, otherwise.

Let x be a set. The functor CastCTLformulax yields a CTL-formula and is

defined by:

(Def. 24) CastCTLformulax =

{
x, if x ∈ CTL-WFF,

atom. 0, otherwise.

Let P1 be a set. We consider Kripke structures over P1 as systems

〈 worlds, starts, possibilities, a label 〉,
where the worlds constitute a set, the starts constitute a subset of the worlds,

the possibilities constitute a total relation between the worlds and the worlds,

and the label is a function from the worlds into 2P1 .

We introduce CTL model structures which are systems

〈 assignations, basic assignations, a conjunction, a negation, a next-operation,

a global-operation, an until-operation 〉,
where the assignations constitute a non empty set, the basic assignations con-

stitute a non empty subset of the assignations, the conjunction is a binary oper-

ation on the assignations, the negation is a unary operation on the assignations,

the next-operation is a unary operation on the assignations, the global-operation

is a unary operation on the assignations, and the until-operation is a binary op-

eration on the assignations.

Let V be a CTL model structure. An assignation of V is an element of the

assignations of V .

The subset the atomic WFF of CTL-WFF is defined by:

(Def. 25) The atomic WFF = {x;x ranges over CTL-formulae: x is atomic}.
Let V be a CTL model structure, let K1 be a function from the atomic WFF

into the basic assignations of V , and let f be a function from CTL-WFF into

the assignations of V . We say that f is an evaluation for K1 if and only if the

condition (Def. 26) is satisfied.

(Def. 26) Let H be a CTL-formula. Then

(i) if H is atomic, then f(H) = K1(H),

(ii) if H is negative, then f(H) = (the negation of V )(f(Arg(H))),

(iii) ifH is conjunctive, then f(H) = (the conjunction of V )(f(LeftArg(H)),

f(RightArg(H))),

(iv) if H is exist-next-formula, then f(H) = (the next-operation of

V )(f(Arg(H))),



model checking. part i 175

(v) if H is exist-global-formula, then f(H) = (the global-operation of

V )(f(Arg(H))), and

(vi) if H is exist-until-formula, then f(H) = (the until-operation of

V )(f(LeftArg(H)), f(RightArg(H))).

Let V be a CTL model structure, let K1 be a function from the atomic

WFF into the basic assignations of V , let f be a function from CTL-WFF

into the assignations of V , and let n be an element of N. We say that f is a

n-pre-evaluation for K1 if and only if the condition (Def. 27) is satisfied.

(Def. 27) Let H be a CTL-formula such that lenH ≤ n. Then

(i) if H is atomic, then f(H) = K1(H),

(ii) if H is negative, then f(H) = (the negation of V )(f(Arg(H))),

(iii) ifH is conjunctive, then f(H) = (the conjunction of V )(f(LeftArg(H)),

f(RightArg(H))),

(iv) if H is exist-next-formula, then f(H) = (the next-operation of

V )(f(Arg(H))),

(v) if H is exist-global-formula, then f(H) = (the global-operation of

V )(f(Arg(H))), and

(vi) if H is exist-until-formula, then f(H) = (the until-operation of

V )(f(LeftArg(H)), f(RightArg(H))).

Let V be a CTL model structure, let K1 be a function from the atomic WFF

into the basic assignations of V , let f , h be functions from CTL-WFF into the

assignations of V , let n be an element of N, and let H be a CTL-formula. The

functor GraftEval(V,K1, f, h, n,H) yields a set and is defined as follows:

(Def. 28) GraftEval(V,K1, f, h, n,H) =



f(H), if lenH > n+ 1,

K1(H), if lenH = n+ 1 and H is atomic,

(the negation of V )(h(Arg(H))), if lenH = n+ 1 and H is negative,

(the conjunction of V )(h(LeftArg(H)), h(RightArg(H))),

if lenH = n+ 1 and H is conjunctive,

(the next-operation of V )(h(Arg(H))), if lenH = n+ 1 and H is

exist-next-formula,

(the global-operation of V )(h(Arg(H))), if lenH = n+ 1 and H is

exist-global-formula,

(the until-operation of V )(h(LeftArg(H)), h(RightArg(H))),

if lenH = n+ 1 and H is exist-until-formula,

h(H), if lenH < n+ 1,

∅, otherwise.

We follow the rules: V is a CTL model structure, K1 is a function from the

atomic WFF into the basic assignations of V , and f , f1, f2 are functions from

CTL-WFF into the assignations of V .

Let V be a CTL model structure, let K1 be a function from the atomic
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WFF into the basic assignations of V , and let n be an element of N. The

functor EvalSet(V,K1, n) yields a non empty set and is defined by:

(Def. 29) EvalSet(V,K1, n) = {h;h ranges over functions from CTL-WFF into the

assignations of V : h is a n-pre-evaluation for K1}.
Let V be a CTL model structure, let v0 be an element of the assignations of

V , and let x be a set. The functor CastEval(V, x, v0) yielding a function from

CTL-WFF into the assignations of V is defined by:

(Def. 30) CastEval(V, x, v0) =

{
x, if x ∈ (the assignations of V )CTL-WFF,

CTL-WFF 7−→ v0, otherwise.

Let V be a CTL model structure and let K1 be a function from the atomic

WFF into the basic assignations of V . The functor EvalFamily(V,K1) yielding

a non empty set is defined by the condition (Def. 31).

(Def. 31) Let p be a set. Then p ∈ EvalFamily(V,K1) if and only if the following

conditions are satisfied:

(i) p ∈ 2(the assignations of V )CTL-WFF
, and

(ii) there exists an element n of N such that p = EvalSet(V,K1, n).

We now state two propositions:

(3) There exists f which is an evaluation for K1.

(4) If f1 is an evaluation for K1 and f2 is an evaluation for K1, then f1 = f2.

Let V be a CTL model structure, let K1 be a function from the atomic

WFF into the basic assignations of V , and let H be a CTL-formula. The

functor Evaluate(H,K1) yields an assignation of V and is defined by:

(Def. 32) There exists a function f from CTL-WFF into the assignations of V

such that f is an evaluation for K1 and Evaluate(H,K1) = f(H).

Let V be a CTL model structure and let f be an assignation of V . The

functor ¬f yields an assignation of V and is defined as follows:

(Def. 33) ¬f = (the negation of V )(f).

Let V be a CTL model structure and let f , g be assignations of V . The

functor f ∧ g yielding an assignation of V is defined by:

(Def. 34) f ∧ g = (the conjunction of V )(f, g).

Let V be a CTL model structure and let f be an assignation of V . The

functor EX f yields an assignation of V and is defined by:

(Def. 35) EX f = (the next-operation of V )(f).

The functor EG f yielding an assignation of V is defined as follows:

(Def. 36) EG f = (the global-operation of V )(f).

Let V be a CTL model structure and let f , g be assignations of V . The

functor f EU g yields an assignation of V and is defined as follows:

(Def. 37) f EU g = (the until-operation of V )(f, g).

The functor f ∨ g yielding an assignation of V is defined as follows:
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(Def. 38) f ∨ g = ¬(¬f ∧ ¬g).
Next we state several propositions:

(5) Evaluate(¬H,K1) = ¬Evaluate(H,K1).

(6) Evaluate(H1 ∧H2,K1) = Evaluate(H1,K1) ∧ Evaluate(H2,K1).

(7) Evaluate(EXH,K1) = EX Evaluate(H,K1).

(8) Evaluate(EGH,K1) = EG Evaluate(H,K1).

(9) Evaluate(H1 EUH2,K1) = Evaluate(H1,K1) EU Evaluate(H2,K1).

(10) Evaluate(H1 ∨H2,K1) = Evaluate(H1,K1) ∨ Evaluate(H2,K1).

Let f be a function and let n be an element of N. We introduce f n as a

synonym of fn.

Let S be a set, let f be a function from S into S, and let n be an element

of N. Then fn is a function from S into S.

We use the following convention: S is a non empty set, R is a total relation

between S and S, and s, s0, s1 are elements of S.

The scheme ExistPath deals with a non empty set A, a total relation B
between A and A, an element C of A, and a unary functor F yielding a set, and

states that:

There exists a function f from N into A such that f(0) = C
and for every element n of N holds 〈〈f(n), f(n + 1)〉〉 ∈ B and

f(n+ 1) ∈ F(f(n))

provided the following requirement is met:

• For every element s of A holds B◦{s}∩F(s) is a non empty subset

of A.
Let S be a non empty set and let R be a total relation between S and S. A

function from N into S is said to be an infinity path of R if:

(Def. 39) For every element n of N holds 〈〈it(n), it(n+ 1)〉〉 ∈ R.
Let S be a non empty set. The functor ModelSPS yields a non empty set

and is defined by:

(Def. 40) ModelSPS = BooleanS .

Let S be a non empty set. Observe that ModelSPS is non empty.

Let S be a non empty set and let f be a set. The functor Fid(f, S) yielding

a function from S into Boolean is defined by:

(Def. 41) Fid(f, S) =

{
f, if f ∈ ModelSPS,

S 7−→ false , otherwise.

Now we present several schemes. The scheme Func1EX deals with a non

empty set A, a function B from A into Boolean , and a binary functor F yielding

a boolean set, and states that:

There exists a set g such that g ∈ ModelSPA and for every set s

such that s ∈ A holds F(s,B) = true iff (Fid(g,A))(s) = true

for all values of the parameters.
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The scheme Func1Unique deals with a non empty set A, a function B from

A into Boolean , and a binary functor F yielding a boolean set, and states that:

Let g1, g2 be sets. Suppose that

(i) g1 ∈ModelSPA,
(ii) for every set s such that s ∈ A holds F(s,B) = true iff

(Fid(g1,A))(s) = true,

(iii) g2 ∈ModelSPA, and

(iv) for every set s such that s ∈ A holds F(s,B) = true iff

(Fid(g2,A))(s) = true.

Then g1 = g2

for all values of the parameters.

The scheme UnOpEX deals with a non empty set A and a unary functor F
yielding an element of A, and states that:

There exists a unary operation o on A such that for every set f

such that f ∈ A holds o(f) = F(f)

for all values of the parameters.

The scheme UnOpUnique deals with a non empty set A, a non empty set B,
and a unary functor F yielding an element of B, and states that:

Let o1, o2 be unary operations on B. Suppose for every set f such

that f ∈ B holds o1(f) = F(f) and for every set f such that

f ∈ B holds o2(f) = F(f). Then o1 = o2

for all values of the parameters.

The scheme Func2EX deals with a non empty set A, a function B from

A into Boolean , a function C from A into Boolean , and a ternary functor F
yielding a boolean set, and states that:

There exists a set h such that h ∈ ModelSPA and for every set s

such that s ∈ A holds F(s,B, C) = true iff (Fid(h,A))(s) = true

for all values of the parameters.

The scheme Func2Unique deals with a non empty set A, a function B from

A into Boolean , a function C from A into Boolean , and a ternary functor F
yielding a boolean set, and states that:

Let h1, h2 be sets. Suppose that

(i) h1 ∈ModelSPA,
(ii) for every set s such that s ∈ A holds F(s,B, C) = true iff

(Fid(h1,A))(s) = true,

(iii) h2 ∈ModelSPA, and

(iv) for every set s such that s ∈ A holds F(s,B, C) = true iff

(Fid(h2,A))(s) = true.

Then h1 = h2

for all values of the parameters.

Let S be a non empty set and let f be a set. The functor Not0(f, S) yielding

an element of ModelSPS is defined as follows:
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(Def. 42) For every set s such that s ∈ S holds ¬Castboolean(Fid(f, S))(s) = true

iff (Fid(Not0(f, S), S))(s) = true.

Let S be a non empty set. The functor NotS yields a unary operation on

ModelSPS and is defined by:

(Def. 43) For every set f such that f ∈ ModelSPS holds (NotS)(f) = Not0(f, S).

Let S be a non empty set, let R be a total relation between S and S, let f be a

function from S into Boolean , and let x be a set. The functor EneXtuniv(x, f,R)

yielding an element of Boolean is defined by:

(Def. 44) EneXtuniv(x, f,R) =





true,

if x ∈ S and there exists an infinity path p1

of R such that p1(0) = x and f(p1(1)) = true,

false, otherwise.

Let S be a non empty set, let R be a total relation between S and S, and

let f be a set. The functor EneXt0(f,R) yielding an element of ModelSPS is

defined as follows:

(Def. 45) For every set s such that s ∈ S holds EneXtuniv(s,Fid(f, S), R) = true

iff (Fid(EneXt0(f,R), S))(s) = true.

Let S be a non empty set and let R be a total relation between S and S.

The functor EneXtR yields a unary operation on ModelSPS and is defined by:

(Def. 46) For every set f such that f ∈ ModelSPS holds (EneXtR)(f) =

EneXt0(f,R).

Let S be a non empty set, let R be a total relation between S and S,

let f be a function from S into Boolean , and let x be a set. The functor

EGlobaluniv(x, f,R) yielding an element of Boolean is defined by:

(Def. 47) EGlobaluniv(x, f,R) =





true,

if x ∈ S and there exists an infinity path

p1 of R such that p1(0) = x and for every

element n of N holds f(p1(n)) = true,

false, otherwise.

Let S be a non empty set, let R be a total relation between S and S, and

let f be a set. The functor EGlobal0(f,R) yielding an element of ModelSPS is

defined as follows:

(Def. 48) For every set s such that s ∈ S holds EGlobaluniv(s,Fid(f, S), R) = true

iff (Fid(EGlobal0(f,R), S))(s) = true.

Let S be a non empty set and let R be a total relation between S and S.

The functor EGlobalR yields a unary operation on ModelSPS and is defined

as follows:

(Def. 49) For every set f such that f ∈ ModelSPS holds (EGlobalR)(f) =

EGlobal0(f,R).
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Let S be a non empty set and let f , g be sets. The functor And0(f, g, S)

yields an element of ModelSPS and is defined as follows:

(Def. 50) For every set s such that s ∈ S holds Castboolean(Fid(f, S))(s) ∧
Castboolean(Fid(g, S))(s) = true iff (Fid(And0(f, g, S), S))(s) = true.

Let S be a non empty set. The and S yielding a binary operation on

ModelSPS is defined by:

(Def. 51) For all sets f , g such that f ∈ ModelSPS and g ∈ModelSPS holds (the

and S)(f, g) = And0(f, g, S).

Let S be a non empty set, let R be a total relation between S and S,

let f , g be functions from S into Boolean , and let x be a set. The functor

EUntilluniv(x, f, g,R) yielding an element of Boolean is defined as follows:

(Def. 52) EUntilluniv(x, f, g,R) =





true, if x ∈ S and there exists an infinity path

p1 of R such that p1(0) = x and there exists

an element m of N such that for every

element j of N such that j < m holds

f(p1(j)) = true and g(p1(m)) = true,

false, otherwise.

Let S be a non empty set, let R be a total relation between S and S, and

let f , g be sets. The functor EUntill0(f, g,R) yields an element of ModelSPS

and is defined by:

(Def. 53) For every set s such that s ∈ S holds EUntilluniv(s,Fid(f, S),Fid(g, S), R)

= true iff (Fid(EUntill0(f, g,R), S))(s) = true.

Let S be a non empty set and let R be a total relation between S and S.

The functor EUntillR yields a binary operation on ModelSPS and is defined as

follows:

(Def. 54) For all sets f , g such that f ∈ ModelSPS and g ∈ ModelSPS holds

(EUntillR)(f, g) = EUntill0(f, g,R).

Let S be a non empty set, let X be a non empty subset of ModelSPS, and

let s be a set. The functor F-LABEL(s,X) yields a subset of X and is defined

as follows:

(Def. 55) For every set x holds x ∈ F-LABEL(s,X) iff x ∈ X and there exists a

function f from S into Boolean such that f = x and f(s) = true.

Let S be a non empty set and let X be a non empty subset of ModelSPS.

The functor LabelX yields a function from S into 2X and is defined by:

(Def. 56) For every set x such that x ∈ S holds (LabelX)(x) = F-LABEL(x,X).

Let S be a non empty set, let S0 be a subset of S, let R be a total relation

between S and S, and let P1 be a non empty subset of ModelSPS. The functor

KModel(R,S0, P1) yields a Kripke structure over P1 and is defined as follows:

(Def. 57) KModel(R,S0, P1) = 〈S, S0, R,LabelP1〉.
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Let S be a non empty set, let S0 be a subset of S, let R be a total relation

between S and S, and let P1 be a non empty subset of ModelSPS. One can

check that the worlds of KModel(R,S0, P1) is non empty.

Let S be a non empty set, let S0 be a subset of S, let R be a total relation

between S and S, and let P1 be a non empty subset of ModelSPS. One can

verify that ModelSP (the worlds of KModel(R,S0, P1)) is non empty.

Let S be a non empty set, let R be a total relation between S and S, and

let B1 be a non empty subset of ModelSPS. The functor CTLModel(R,B1)

yielding a CTL model structure is defined as follows:

(Def. 58) CTLModel(R,B1) = 〈ModelSPS,B1, the and S, NotS,EneXtR,

EGlobalR,EUntillR〉.
In the sequel B1 is a non empty subset of ModelSPS and k1 is a function

from the atomic WFF into the basic assignations of CTLModel(R,B1).

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, let s be an element of S, and let f be an

assignation of CTLModel(R,B1). The predicate s |= f is defined by:

(Def. 59) (Fid(f, S))(s) = true.

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, let s be an element of S, and let f be an

assignation of CTLModel(R,B1). We introduce s 6|= f as an antonym of s |= f.

Next we state several propositions:

(11) For every assignation a of CTLModel(R,B1) such that a ∈ B1 holds

s |= a iff a ∈ (LabelB1)(s).

(12) For every assignation f of CTLModel(R,B1) holds s |= ¬f iff s 6|= f.

(13) For all assignations f , g of CTLModel(R,B1) holds s |= f ∧ g iff s |= f

and s |= g.

(14) For every assignation f of CTLModel(R,B1) holds s |= EX f iff there

exists an infinity path p1 of R such that p1(0) = s and p1(1) |= f.

(15) Let f be an assignation of CTLModel(R,B1). Then s |= EG f if and

only if there exists an infinity path p1 of R such that p1(0) = s and for

every element n of N holds p1(n) |= f.

(16) Let f , g be assignations of CTLModel(R,B1). Then s |= f EU g if and

only if there exists an infinity path p1 of R such that p1(0) = s and there

exists an element m of N such that for every element j of N such that

j < m holds p1(j) |= f and p1(m) |= g.

(17) For all assignations f , g of CTLModel(R,B1) holds s |= f ∨ g iff s |= f

or s |= g.

Let S be a non empty set, let R be a total relation between S and S, let

B1 be a non empty subset of ModelSPS, let k1 be a function from the atomic
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WFF into the basic assignations of CTLModel(R,B1), let s be an element of S,

and let H be a CTL-formula. The predicate s |=k1 H is defined by:

(Def. 60) s |= Evaluate(H, k1).

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, let k1 be a function from the atomic WFF

into the basic assignations of CTLModel(R,B1), let s be an element of S, and

let H be a CTL-formula. We introduce s 6|=k1 H as an antonym of s |=k1 H.

The following propositions are true:

(18) If H is atomic, then s |=k1 H iff k1(H) ∈ (LabelB1)(s).

(19) s |=k1 ¬H iff s 6|=k1 H.

(20) s |=k1 H1 ∧H2 iff s |=k1 H1 and s |=k1 H2.

(21) s |=k1 H1 ∨H2 iff s |=k1 H1 or s |=k1 H2.

(22) s |=k1 EXH iff there exists an infinity path p1 of R such that p1(0) = s

and p1(1) |=k1 H.

(23) s |=k1 EGH iff there exists an infinity path p1 of R such that p1(0) = s

and for every element n of N holds p1(n) |=k1 H.

(24) s |=k1 H1 EUH2 if and only if there exists an infinity path p1 of R such

that p1(0) = s and there exists an element m of N such that for every

element j of N such that j < m holds p1(j) |=k1 H1 and p1(m) |=k1 H2.

(25) For every s0 there exists an infinity path p1 of R such that p1(0) = s0.

(26) Let R be a relation between S and S. Then R is total if and only if for

every set x such that x ∈ S there exists a set y such that y ∈ S and 〈〈x,
y〉〉 ∈ R.

Let S be a non empty set, let R be a total relation between S and S, let

s0 be an element of S, let p1 be an infinity path of R, and let n be a set. The

functor PrePath(n, s0, p1) yielding an element of S is defined as follows:

(Def. 61) PrePath(n, s0, p1) =

{
s0, if n = 0,

p1(k.nat(k.natn− 1)), otherwise.

The following propositions are true:

(27) If 〈〈s0, s1〉〉 ∈ R, then there exists an infinity path p1 of R such that

p1(0) = s0 and p1(1) = s1.

(28) For every assignation f of CTLModel(R,B1) holds s |= EX f iff there

exists an element s1 of S such that 〈〈s, s1〉〉 ∈ R and s1 |= f.

Let S be a non empty set, let R be a total relation between S and S, and let

H be a subset of S. The functor Pred(H,R) yields a subset of S and is defined

by:

(Def. 62) Pred(H,R) = {s; s ranges over elements of S:
∨
t : element of S (t ∈ H ∧ 〈〈s,

t〉〉 ∈ R)}.
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Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f be an assignation of

CTLModel(R,B1). The functor SIGMA f yields a subset of S and is defined as

follows:

(Def. 63) SIGMA f = {s; s ranges over elements of S: s |= f}.
One can prove the following proposition

(29) For all assignations f , g of CTLModel(R,B1) such that SIGMA f =

SIGMA g holds f = g.

Let S be a non empty set, let R be a total relation between S and S, let B1

be a non empty subset of ModelSPS, and let T be a subset of S. The functor

Tau(T,R,B1) yielding an assignation of CTLModel(R,B1) is defined as follows:

(Def. 64) For every set s such that s ∈ S holds (Fid(Tau(T,R,B1), S))(s) =
χT,S(s).

The following propositions are true:

(30) For all subsets T1, T2 of S such that Tau(T1, R,B1) = Tau(T2, R,B1)

holds T1 = T2.

(31) For every assignation f of CTLModel(R,B1) holds

Tau(SIGMA f,R,B1) = f.

(32) For every subset T of S holds SIGMA Tau(T,R,B1) = T.

(33) For all assignations f , g of CTLModel(R,B1) holds SIGMA¬f = S \
SIGMA f and SIGMA(f∧g) = SIGMA f∩SIGMA g and SIGMA(f∨g) =

SIGMA f ∪ SIGMA g.

(34) For all subsets G1, G2 of S such that G1 ⊆ G2 and for every element s

of S such that s |= Tau(G1, R,B1) holds s |= Tau(G2, R,B1).

(35) For all assignations f1, f2 of CTLModel(R,B1) such that for every ele-

ment s of S such that s |= f1 holds s |= f2 holds SIGMA f1 ⊆ SIGMA f2.

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f , g be assignations of

CTLModel(R,B1). The functor Fax(f, g) yielding an assignation of

CTLModel(R,B1) is defined by:

(Def. 65) Fax(f, g) = f ∧ EX g.

Next we state the proposition

(36) Let f , g1, g2 be assignations of CTLModel(R,B1). Suppose that for

every element s of S such that s |= g1 holds s |= g2. Let s be an element

of S. If s |= Fax(f, g1), then s |= Fax(f, g2).

Let S be a non empty set, let R be a total relation between S and S, let B1 be

a non empty subset of ModelSPS, let f be an assignation of CTLModel(R,B1),

and let G be a subset of S. The functor SigFaxTau(f,G,R,B1) yielding a subset

of S is defined by:
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(Def. 66) SigFaxTau(f,G,R,B1) = SIGMA Fax(f,Tau(G,R,B1)).

One can prove the following proposition

(37) For every assignation f of CTLModel(R,B1) and for all subsets

G1, G2 of S such that G1 ⊆ G2 holds SigFaxTau(f,G1, R,B1) ⊆
SigFaxTau(f,G2, R,B1).

Let S be a non empty set, let R be a total relation between S and S, let p1 be

an infinity path of R, and let k be an element of N. The functor PathShift(p1, k)

yielding an infinity path of R is defined as follows:

(Def. 67) For every element n of N holds (PathShift(p1, k))(n) = p1(n+ k).

Let S be a non empty set, let R be a total relation between S and S, let

p2, p3 be infinity paths of R, and let n, k be elements of N. The functor

PathChange(p2, p3, k, n) yielding a set is defined by:

(Def. 68) PathChange(p2, p3, k, n) =

{
p2(n), if n < k,

p3(n− k), otherwise.

Let S be a non empty set, let R be a total relation between S and S,

let p2, p3 be infinity paths of R, and let k be an element of N. The functor

PathConc(p2, p3, k) yielding a function from N into S is defined as follows:

(Def. 69) For every element n of N holds (PathConc(p2, p3, k))(n) =

PathChange(p2, p3, k, n).

We now state four propositions:

(38) Let p2, p3 be infinity paths of R and k be an element of N. If p2(k) =

p3(0), then PathConc(p2, p3, k) is an infinity path of R.

(39) For every assignation f of CTLModel(R,B1) and for every element s of

S holds s |= EG f iff s |= Fax(f,EG f).

(40) Let g be an assignation of CTLModel(R,B1) and s0 be an element of

S. Suppose s0 |= g. Suppose that for every element s of S such that

s |= g holds s |= EX g. Then there exists an infinity path p1 of R such that

p1(0) = s0 and for every element n of N holds p1(n) |= g.

(41) Let f , g be assignations of CTLModel(R,B1). Suppose that for every

element s of S holds s |= g iff s |= Fax(f, g). Let s be an element of S. If

s |= g, then s |= EG f.

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f be an assignation of

CTLModel(R,B1). The functor TransEG f yielding a ⊆-monotone function

from 2S into 2S is defined as follows:

(Def. 70) For every subsetG of S holds (TransEG f)(G) = SigFaxTau(f,G,R,B1).

One can prove the following two propositions:

(42) Let f , g be assignations of CTLModel(R,B1). Then for every element s

of S holds s |= g iff s |= Fax(f, g) if and only if SIGMA g is a fixpoint of
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TransEG f.

(43) For every assignation f of CTLModel(R,B1) holds SIGMA EG f =

gfp(S,TransEG f).

Let S be a non empty set, let R be a total relation between S and S, let

B1 be a non empty subset of ModelSPS, and let f , g, h be assignations of

CTLModel(R,B1). The functor Foax(g, f, h) yields an assignation of

CTLModel(R,B1) and is defined as follows:

(Def. 71) Foax(g, f, h) = g ∨ Fax(f, h).

We now state the proposition

(44) Let f , g, h1, h2 be assignations of CTLModel(R,B1). Suppose that for

every element s of S such that s |= h1 holds s |= h2. Let s be an element

of S. If s |= Foax(g, f, h1), then s |= Foax(g, f, h2).

Let S be a non empty set, let R be a total relation between S and S, let B1 be

a non empty subset of ModelSPS, let f , g be assignations of CTLModel(R,B1),

and let H be a subset of S. The functor SigFoaxTau(g, f,H,R,B1) yields a

subset of S and is defined as follows:

(Def. 72) SigFoaxTau(g, f,H,R,B1) = SIGMA Foax(g, f,Tau(H,R,B1)).

Next we state three propositions:

(45) For all assignations f , g of CTLModel(R,B1) and for all subsets

H1, H2 of S such that H1 ⊆ H2 holds SigFoaxTau(g, f,H1, R,B1) ⊆
SigFoaxTau(g, f,H2, R,B1).

(46) For all assignations f , g of CTLModel(R,B1) and for every element s of

S holds s |= f EU g iff s |= Foax(g, f, f EU g).

(47) Let f , g, h be assignations of CTLModel(R,B1). Suppose that for every

element s of S holds s |= h iff s |= Foax(g, f, h). Let s be an element of S.

If s |= f EU g, then s |= h.

Let S be a non empty set, let R be a total relation between S and S,

let B1 be a non empty subset of ModelSPS, and let f , g be assignations of

CTLModel(R,B1). The functor TransEU(f, g) yields a ⊆-monotone function

from 2S into 2S and is defined by:

(Def. 73) For every subset H of S holds

(TransEU(f, g))(H) = SigFoaxTau(g, f,H,R,B1).

One can prove the following propositions:

(48) Let f , g, h be assignations of CTLModel(R,B1). Then for every element

s of S holds s |= h iff s |= Foax(g, f, h) if and only if SIGMAh is a fixpoint

of TransEU(f, g).

(49) For all assignations f , g of CTLModel(R,B1) holds SIGMA(f EU g) =

lfp(S,TransEU(f, g)).
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(50) For every assignation f of CTLModel(R,B1) holds SIGMA EX f =

Pred(SIGMA f,R).

(51) For every assignation f of CTLModel(R,B1) and for every subset X of

S holds (TransEG f)(X) = SIGMA f ∩ Pred(X,R).

(52) For all assignations f , g of CTLModel(R,B1) and for every subset X of

S holds (TransEU(f, g))(X) = SIGMA g ∪ SIGMA f ∩ Pred(X,R).
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[7] Czes law Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
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1. Preliminaries

The following propositions are true:

(1) Let A, B be elements of N, X be a non empty set, and

F be a function from N into X. If F is one-to-one, then

{F (w);w ranges over elements of N: A ≤ w ∧ w ≤ A+B} = B + 1.

(2) For all natural numbers n, m, k such that m ≤ k and n < m holds

k −′ m < k −′ n.
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(3) For all natural numbers n, k such that n < k holds (k −′ (n+ 1)) + 1 =

k −′ n.
(4) For all natural numbers n, m, k such that k 6= 0 holds (n+m · k)÷ k =

(n÷ k) +m.

Let S be a set. We say that S has finite elements if and only if:

(Def. 1) Every element of S is finite.

Let us note that there exists a set which is non empty and has finite elements

and there exists a subset of 2N which is non empty and finite and has finite

elements.

Let S be a set with finite elements. One can check that every element of S

is finite.

Let f , g be functions. The functor f [∪]g yielding a function is defined by:

(Def. 2) dom(f [∪]g) = dom f ∪ dom g and for every set x such that x ∈ dom f ∪
dom g holds (f [∪]g)(x) = f(x) ∪ g(x).

The following three propositions are true:

(5) For all natural numbersm, n, k holdsm ∈ Seg k\Seg(k−′n) iff k−′n < m

and m ≤ k.
(6) For all natural numbers n, k, m such that n ≤ m holds Seg k \ Seg(k −′

n) ⊆ Seg k \ Seg(k −′ m).

(7) For all natural numbers n, k such that n < k holds (Seg k \ Seg(k −′
n)) ∪ {k −′ n} = Seg k \ Seg(k −′ (n+ 1)).

Let f be a binary relation. We say that f is natsubset yielding if and only

if:

(Def. 3) rng f ⊆ 2N.

Let us mention that there exists a function which is finite-yielding and nat-

subset yielding.

Let f be a finite-yielding natsubset yielding function and let x be a set.

Then f(x) is a finite subset of N.

One can prove the following proposition

(8) For every ordinal number X and for all finite subsets a, b of X such that

a 6= b holds (a, 1) -bag 6= (b, 1) -bag .

Let F be a natural-yielding function, let S be a set, and let k be a natural

number. The functor F .incSubset(S, k) yielding a natural-yielding function is

defined by the conditions (Def. 4).

(Def. 4)(i) dom(F .incSubset(S, k)) = domF, and

(ii) for every set y holds if y ∈ S and y ∈ domF,

then (F .incSubset(S, k))(y) = F (y) + k and if y /∈ S, then

(F .incSubset(S, k))(y) = F (y).
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Let n be an ordinal number, let T be a connected term order of n, and let

B be a non empty finite subset of Bagsn. The functor max(B, T ) yields a bag

of n and is defined as follows:

(Def. 5) max(B, T ) ∈ B and for every bag x of n such that x ∈ B holds x ≤T
max(B, T ).

Let O be an ordinal number. Observe that InvLexOrderO is connected.

2. Miscellany on Graphs

Let G be a graph. Note that there exists a vertex sequence of G which is

non empty and one-to-one.

Let G be a graph and let V be a non empty vertex sequence of G. A walk

of G is called a walk of V if:

(Def. 6) It.vertexSeq() = V.

Let G be a graph and let V be a non empty one-to-one vertex sequence of

G. One can check that every walk of V is path-like.

We now state two propositions:

(9) For every graph G and for all walks W1, W2 of G such that W1 is trivial

and W1.last() = W2.first() holds W1.append(W2) = W2.

(10) Let G, H be graphs, A, B, C be sets, G1 be a subgraph of G induced by

A, H1 be a subgraph of H induced by B, G2 be a subgraph of G1 induced

by C, and H2 be a subgraph of H1 induced by C. Suppose G =G H and

A ⊆ B and C ⊆ A and C is a non empty subset of the vertices of G. Then

G2 =G H2.

Let G be a v-graph. We say that G is natural v-labeled if and only if:

(Def. 7) The vlabel of G is natural-yielding.

3. Graphs with Two Vertex Labels

The natural number V2-LabelSelector is defined by:

(Def. 8) V2-LabelSelector = 8.

Let G be a graph structure. We say that G is v2-labeled if and only if:

(Def. 9) V2-LabelSelector ∈ domG and there exists a function f such that

G(V2-LabelSelector) = f and dom f ⊆ the vertices of G.

Let us note that there exists a graph structure which is graph-like, weighted,

elabeled, vlabeled, and v2-labeled.

A v2-graph is a v2-labeled graph. A vv-graph is a vlabeled v2-labeled graph.

Let G be a v2-graph. The v2-label of G yields a function and is defined as

follows:
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(Def. 10) The v2-label of G = G(V2-LabelSelector).

Next we state the proposition

(11) For every v2-graph G holds dom (the v2-label of G) ⊆ the vertices of G.

Let G be a graph and let X be a set. Note that G.set(V2-LabelSelector, X)

is graph-like.

We now state the proposition

(12) For every graph G and for every set X holds

G.set(V2-LabelSelector, X) =G G.

Let G be a finite graph and let X be a set.

Note that G.set(V2-LabelSelector, X) is finite.

Let G be a loopless graph and let X be a set.

Observe that G.set(V2-LabelSelector, X) is loopless.

Let G be a trivial graph and let X be a set.

Note that G.set(V2-LabelSelector, X) is trivial.

Let G be a non trivial graph and let X be a set. One can check that

G.set(V2-LabelSelector, X) is non trivial.

Let G be a non-multi graph and let X be a set. One can check that

G.set(V2-LabelSelector, X) is non-multi.

Let G be a non-directed-multi graph and let X be a set. One can verify that

G.set(V2-LabelSelector, X) is non-directed-multi.

Let G be a connected graph and let X be a set.

Note that G.set(V2-LabelSelector, X) is connected.

Let G be an acyclic graph and let X be a set.

One can verify that G.set(V2-LabelSelector, X) is acyclic.

Let G be a v-graph and let X be a set.

One can check that G.set(V2-LabelSelector, X) is vlabeled.

LetG be a e-graph and letX be a set. Observe thatG.set(V2-LabelSelector, X)

is elabeled.

LetG be a w-graph and letX be a set. Observe thatG.set(V2-LabelSelector, X)

is weighted.

Let G be a v2-graph and let X be a set.

One can verify that G.set(VLabelSelector, X) is v2-labeled.

Let G be a graph, let Y be a set, and let X be a partial function from the

vertices of G to Y . Observe that G.set(V2-LabelSelector, X) is v2-labeled.

Let G be a graph and let X be a many sorted set indexed by the vertices of

G. Observe that G.set(V2-LabelSelector, X) is v2-labeled.

Let G be a graph. One can verify that G.set(V2-LabelSelector, ∅) is v2-

labeled.

Let G be a v2-graph. We say that G is natural v2-labeled if and only if:

(Def. 11) The v2-label of G is natural-yielding.

We say that G is finite v2-labeled if and only if:
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(Def. 12) The v2-label of G is finite-yielding.

We say that G is natsubset v2-labeled if and only if:

(Def. 13) The v2-label of G is natsubset yielding.

One can check that there exists a weighted elabeled vlabeled v2-labeled

graph which is finite, natural v-labeled, finite v2-labeled, natsubset v2-labeled,

and chordal and there exists a weighted elabeled vlabeled v2-labeled graph which

is finite, natural v-labeled, natural v2-labeled, and chordal.

Let G be a natural v-labeled v-graph. Observe that the vlabel of G is

natural-yielding.

Let G be a natural v2-labeled v2-graph. Observe that the v2-label of G is

natural-yielding.

Let G be a finite v2-labeled v2-graph. Observe that the v2-label of G is

finite-yielding.

Let G be a natsubset v2-labeled v2-graph. One can verify that the v2-label

of G is natsubset yielding.

LetG be a vv-graph and let v, x be sets. One can check thatG.labelVertex(v, x)

is v2-labeled.

Next we state the proposition

(13) For every vv-graph G and for all sets v, x holds the v2-label of G = the

v2-label of G.labelVertex(v, x).

Let G be a natural v-labeled vv-graph, let v be a set, and let x be a natural

number. Observe that G.labelVertex(v, x) is natural v-labeled.

Let G be a natural v2-labeled vv-graph, let v be a set, and let x be a natural

number. Observe that G.labelVertex(v, x) is natural v2-labeled.

Let G be a finite v2-labeled vv-graph, let v be a set, and let x be a natural

number. Note that G.labelVertex(v, x) is finite v2-labeled.

Let G be a natsubset v2-labeled vv-graph, let v be a set, and let x be a

natural number. One can check that G.labelVertex(v, x) is natsubset v2-labeled.

Let G be a graph. Note that there exists a subgraph of G which is vlabeled

and v2-labeled.

Let G be a v2-graph and let G2 be a v2-labeled subgraph of G. We say that

G2 inherits v2-label if and only if:

(Def. 14) The v2-label of G2 = (the v2-label of G)�(the vertices of G2).

Let G be a v2-graph. Note that there exists a v2-labeled subgraph of G

which inherits v2-label.

Let G be a v2-graph. A v2-subgraph of G is a v2-labeled subgraph of G

inheriting v2-label.

Let G be a vv-graph. Note that there exists a vlabeled v2-labeled subgraph

of G which inherits vlabel and v2-label.

Let G be a vv-graph. A vv-subgraph of G is a vlabeled v2-labeled subgraph

of G inheriting vlabel and v2-label.
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Let G be a natural v-labeled v-graph. Note that every v-subgraph of G is

natural v-labeled.

Let G be a graph and let V , E be sets. Observe that there exists a subgraph

of G induced by V and E which is weighted, elabeled, vlabeled, and v2-labeled.

Let G be a vv-graph and let V , E be sets. Observe that there exists a

vlabeled v2-labeled subgraph of G induced by V and E which inherits vlabel

and v2-label.

Let G be a vv-graph and let V , E be sets. A (V,E)-induced vv-subgraph of

G is a vlabeled v2-labeled subgraph of G induced by V and E inheriting vlabel

and v2-label.

Let G be a vv-graph and let V be a set. A V -induced vv-subgraph of G is

a (V,G.edgesBetween(V ))-induced vv-subgraph of G.

4. More on Graph Sequences

Let s be a many sorted set indexed by N. We say that s is iterative if and

only if:

(Def. 15) For all natural numbers k, n such that s(k) = s(n) holds s(k + 1) =

s(n+ 1).

Let G3 be a many sorted set indexed by N. We say that G3 is eventually

constant if and only if:

(Def. 16) There exists a natural number n such that for every natural number m

such that n ≤ m holds G3(n) = G3(m).

Let us observe that there exists a many sorted set indexed by N which is

halting, iterative, and eventually constant.

The following proposition is true

(14) For every many sorted set G4 indexed by N such that G4 is halting and

iterative holds G4 is eventually constant.

One can check that every many sorted set indexed by N which is halting and

iterative is also eventually constant.

The following proposition is true

(15) For every many sorted set G4 indexed by N such that G4 is eventually

constant holds G4 is halting.

Let us mention that every many sorted set indexed by N which is eventually

constant is also halting.

One can prove the following two propositions:

(16) Let G4 be an iterative eventually constant many sorted set indexed

by N and n be a natural number. If G4.Lifespan() ≤ n, then

G4(G4.Lifespan()) = G4(n).
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(17) Let G4 be an iterative eventually constant many sorted set indexed by

N and n, m be natural numbers. If G4.Lifespan() ≤ n and n ≤ m, then

G4(m) = G4(n).

Let G3 be a v-graph sequence. We say that G3 is natural v-labeled if and

only if:

(Def. 17) For every natural number x holds G3(x) is natural v-labeled.

Let G3 be a graph sequence. We say that G3 is chordal if and only if:

(Def. 18) For every natural number x holds G3(x) is chordal.

We say that G3 has fixed vertices if and only if:

(Def. 19) For all natural numbers n, m holds the vertices of G3(n) = the vertices

of G3(m).

We say that G3 is v2-labeled if and only if:

(Def. 20) For every natural number x holds G3(x) is v2-labeled.

Let us observe that there exists a graph sequence which is weighted, elabeled,

vlabeled, and v2-labeled.

A v2-graph sequence is a v2-labeled graph sequence. A vv-graph sequence

is a vlabeled v2-labeled graph sequence.

Let G5 be a v2-graph sequence and let x be a natural number. Note that

G5(x) is v2-labeled.

Let G5 be a v2-graph sequence. We say that G5 is natural v2-labeled if and

only if:

(Def. 21) For every natural number x holds G5(x) is natural v2-labeled.

We say that G5 is finite v2-labeled if and only if:

(Def. 22) For every natural number x holds G5(x) is finite v2-labeled.

We say that G5 is natsubset v2-labeled if and only if:

(Def. 23) For every natural number x holds G5(x) is natsubset v2-labeled.

Let us mention that there exists a weighted elabeled vlabeled v2-labeled

graph sequence which is finite, natural v-labeled, finite v2-labeled, natsub-

set v2-labeled, and chordal and there exists a weighted elabeled vlabeled v2-

labeled graph sequence which is finite, natural v-labeled, natural v2-labeled,

and chordal.

Let G4 be a v-graph sequence and let x be a natural number. Then G4(x)

is a v-graph.

Let G5 be a natural v-labeled v-graph sequence and let x be a natural

number. Observe that G5(x) is natural v-labeled.

Let G5 be a natural v2-labeled v2-graph sequence and let x be a natural

number. One can check that G5(x) is natural v2-labeled.

Let G5 be a finite v2-labeled v2-graph sequence and let x be a natural

number. One can verify that G5(x) is finite v2-labeled.
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Let G5 be a natsubset v2-labeled v2-graph sequence and let x be a natural

number. Note that G5(x) is natsubset v2-labeled.

Let G5 be a chordal graph sequence and let x be a natural number. One

can check that G5(x) is chordal.

Let G4 be a v-graph sequence and let n be a natural number. Then G4(n)

is a v-graph.

Let G4 be a finite v-graph sequence and let n be a natural number. One can

check that G4(n) is finite.

Let G4 be a vv-graph sequence and let n be a natural number. Then G4(n)

is a vv-graph.

Let G4 be a finite vv-graph sequence and let n be a natural number. One

can verify that G4(n) is finite.

Let G4 be a chordal vv-graph sequence and let n be a natural number. Note

that G4(n) is chordal.

Let G4 be a natural v-labeled vv-graph sequence and let n be a natural

number. One can check that G4(n) is natural v-labeled.

Let G4 be a finite v2-labeled vv-graph sequence and let n be a natural

number. Note that G4(n) is finite v2-labeled.

Let G4 be a natsubset v2-labeled vv-graph sequence and let n be a natural

number. One can check that G4(n) is natsubset v2-labeled.

Let G4 be a natural v2-labeled vv-graph sequence and let n be a natural

number. Observe that G4(n) is natural v2-labeled.

5. Vertices Numbering Sequences

Let G3 be a v-graph sequence. We say that G3 has initially empty v-label if

and only if:

(Def. 24) The vlabel of G3(0) = ∅.
We say that G3 is adding one at a step if and only if the condition (Def. 25) is

satisfied.

(Def. 25) Let n be a natural number. Suppose n < G3.Lifespan(). Then there

exists a set w such that w /∈ dom (the vlabel of G3(n)) and the vlabel of

G3(n+ 1) = (the vlabel of G3(n))+·(w 7−→. (G3.Lifespan()−′ n)).

Let G3 be a v-graph sequence. We say that G3 is v-label numbering if and

only if the condition (Def. 26) is satisfied.

(Def. 26) G3 is iterative, eventually constant, finite, natural v-labeled, and adding

one at a step and has fixed vertices and initially empty v-label.

One can check that there exists a v-graph sequence which is iterative, even-

tually constant, finite, natural v-labeled, and adding one at a step and has fixed

vertices and initially empty v-label.
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Let us observe that there exists a v-graph sequence which is v-label num-

bering.

One can check the following observations:

∗ every v-graph sequence which is v-label numbering is also iterative,

∗ every v-graph sequence which is v-label numbering is also eventually

constant,

∗ every v-graph sequence which is v-label numbering is also finite,

∗ every v-graph sequence which is v-label numbering has also fixed vertices,

∗ every v-graph sequence which is v-label numbering is also natural v-

labeled,

∗ every v-graph sequence which is v-label numbering has also initially

empty v-label, and

∗ every v-graph sequence which is v-label numbering is also adding one at

a step.

A v-label numbering sequence is a v-label numbering v-graph sequence.

Let G3 be a v-label numbering sequence and let n be a natural number. The

functor G3 .PickedAt n yields a set and is defined by:

(Def. 27)(i) G3 .PickedAt n = choose(the vertices of G3(0)) if n ≥ G3.Lifespan(),

(ii) G3 .PickedAt n /∈ dom (the vlabel of G3(n)) and the vlabel of G3(n +

1) = (the vlabel of G3(n))+·((G3 .PickedAt n)7−→. (G3.Lifespan() −′ n)),

otherwise.

The following propositions are true:

(18) Let G3 be a v-label numbering sequence and n be a natural number.

If n < G3.Lifespan(), then G3 .PickedAt n ∈ G3(n + 1).labeledV() and

G3(n+ 1).labeledV() = G3(n).labeledV() ∪ {G3 .PickedAt n}.
(19) Let G3 be a v-label numbering sequence and n be a natural number.

If n < G3.Lifespan(), then (the vlabel of G3(n + 1))(G3 .PickedAt n) =

G3.Lifespan()−′ n.
(20) For every v-label numbering sequence G3 and for every natural number

n such that n ≤ G3.Lifespan() holds card(G3(n).labeledV()) = n.

(21) For every v-label numbering sequence G3 and for every natural number n

holds rng (the vlabel ofG3(n)) = Seg(G3.Lifespan())\Seg(G3.Lifespan()−′
n).

(22) Let G3 be a v-label numbering sequence, n be a natural number, and

x be a set. Then (the vlabel of G3(n))(x) ≤ G3.Lifespan() and if x ∈
G3(n).labeledV(), then 1 ≤ (the vlabel of G3(n))(x).

(23) Let G3 be a v-label numbering sequence and n, m be natural numbers.

Suppose G3.Lifespan() −′ n < m and m ≤ G3.Lifespan(). Then there

exists a vertex v of G3(n) such that v ∈ G3(n).labeledV() and (the vlabel
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of G3(n))(v) = m.

(24) Let G3 be a v-label numbering sequence and m, n be natural numbers.

If m ≤ n, then the vlabel of G3(m) ⊆ the vlabel of G3(n).

(25) For every v-label numbering sequence G3 and for every natural number

n holds the vlabel of G3(n) is one-to-one.

(26) Let G3 be a v-label numbering sequence, m, n be natural numbers, and

v be a set. Suppose v ∈ G3(m).labeledV() and v ∈ G3(n).labeledV().

Then (the vlabel of G3(m))(v) = (the vlabel of G3(n))(v).

(27) Let G3 be a v-label numbering sequence, v be a set, and m, n be natural

numbers. If v ∈ G3(m).labeledV() and (the vlabel of G3(m))(v) = n, then

G3 .PickedAt(G3.Lifespan()−′ n) = v.

(28) Let G3 be a v-label numbering sequence and m, n be natural numbers.

If n < G3.Lifespan() and n < m, then G3 .PickedAt n ∈ G3(m).labeledV()

and (the vlabel of G3(m))(G3 .PickedAt n) = G3.Lifespan()−′ n.
(29) Let G3 be a v-label numbering sequence, m be a natural number, and v

be a set. Suppose v ∈ G3(m).labeledV(). ThenG3.Lifespan()−′(the vlabel

of G3(m))(v) < m and G3.Lifespan()−′ m < (the vlabel of G3(m))(v).

(30) Let G3 be a v-label numbering sequence, i be a natural number, and

a, b be sets. Suppose a ∈ G3(i).labeledV() and b ∈ G3(i).labeledV()

and (the vlabel of G3(i))(a) < (the vlabel of G3(i))(b). Then b ∈
G3(G3.Lifespan()−′ (the vlabel of G3(i))(a)).labeledV().

(31) Let G3 be a v-label numbering sequence, i be a natural number, and

a, b be sets. Suppose a ∈ G3(i).labeledV() and b ∈ G3(i).labeledV()

and (the vlabel of G3(i))(a) < (the vlabel of G3(i))(b). Then a /∈
G3(G3.Lifespan()−′ (the vlabel of G3(i))(b)).labeledV().

6. Lexicographical Breadth-First Search

Let G be a graph. The functor LexBFS:InitG yields a natural v-labeled

finite v2-labeled natsubset v2-labeled vv-graph and is defined as follows:

(Def. 28) LexBFS:InitG = G.set(VLabelSelector, ∅).set(V2-LabelSelector, (the

vertices of G) 7−→ ∅).
Let G be a finite graph. Then LexBFS:InitG is a finite natural v-labeled

finite v2-labeled natsubset v2-labeled vv-graph.

Let G be a finite finite v2-labeled natsubset v2-labeled vv-graph. Let

us assume that dom (the v2-label of G) = the vertices of G. The functor

LexBFS:PickUnnumberedG yields a vertex of G and is defined by:

(Def. 29)(i) LexBFS:PickUnnumberedG = choose(the vertices of G) if dom (the

vlabel of G) = the vertices of G,
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(ii) there exists a non empty finite subset S of 2N and there exists a non

empty finite subsetB of BagsN and there exists a function F such that S =

rngF and F = (the v2-label of G)�((the vertices of G)\dom (the vlabel of

G)) and for every finite subset x of N such that x ∈ S holds (x, 1) -bag ∈ B
and for every set x such that x ∈ B there exists a finite subset y of N
such that y ∈ S and x = (y, 1) -bag and LexBFS:PickUnnumberedG =

choose(F−1({support max(B, InvLexOrderN)})), otherwise.

Let G be a vv-graph, let v be a set, and let k be a natural number. The

functor LexBFS:LabelAdjacent(G, v, k) yielding a vv-graph is defined as follows:

(Def. 30) LexBFS:LabelAdjacent(G, v, k) = G.set(V2-LabelSelector, (the v2-label

of G)[∪]((G.adjacentSet({v})) \ dom (the vlabel of G) 7−→ {k})).
Next we state four propositions:

(32) Let G be a vv-graph, v, x be sets, and k be a natural number. If

x /∈ G.adjacentSet({v}), then (the v2-label of G)(x) = (the v2-label of

LexBFS:LabelAdjacent(G, v, k))(x).

(33) Let G be a vv-graph, v, x be sets, and k be a natural number. Suppose

x ∈ dom (the vlabel of G). Then (the v2-label of G)(x) = (the v2-label of

LexBFS:LabelAdjacent(G, v, k))(x).

(34) Let G be a vv-graph, v, x be sets, and k be a natural number. Suppose

x ∈ G.adjacentSet({v}) and x /∈ dom (the vlabel of G). Then (the v2-label

of LexBFS:LabelAdjacent(G, v, k))(x) = (the v2-label of G)(x) ∪ {k}.
(35) Let G be a vv-graph, v be a set, and k be a natural number. Suppose

dom (the v2-label of G) = the vertices of G. Then dom (the v2-label of

LexBFS:LabelAdjacent(G, v, k)) = the vertices of G.

Let G be a finite natural v-labeled finite v2-labeled natsubset v2-labeled

vv-graph, let v be a vertex of G, and let k be a natural number. Then

LexBFS:LabelAdjacent(G, v, k) is a finite natural v-labeled finite v2-labeled nat-

subset v2-labeled vv-graph.

Let G be a finite natural v-labeled finite v2-labeled natsubset v2-labeled

vv-graph, let v be a vertex of G, and let n be a natural number. The func-

tor LexBFS:Update(G, v, n) yielding a finite natural v-labeled finite v2-labeled

natsubset v2-labeled vv-graph is defined by:

(Def. 31) LexBFS:Update(G, v, n) =

LexBFS:LabelAdjacent(G.labelVertex(v,G.order()−′n), v,G.order()−′n).

Let G be a finite natural v-labeled finite v2-labeled natsubset v2-labeled

vv-graph. The functor LexBFS:StepG yields a finite natural v-labeled finite

v2-labeled natsubset v2-labeled vv-graph and is defined as follows:

(Def. 32) LexBFS:StepG =





G, if G.order() ≤ card dom (the vlabel of G),

LexBFS:Update(G,LexBFS:PickUnnumberedG,

card dom (the vlabel of G)), otherwise.
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Let G be a finite graph. The functor LexBFS:CSeqG yields a finite natural

v-labeled finite v2-labeled natsubset v2-labeled vv-graph sequence and is defined

by:

(Def. 33) (LexBFS:CSeqG)(0) = LexBFS:InitG and for every natural number n

holds (LexBFS:CSeqG)(n+ 1) = LexBFS:Step(LexBFS:CSeqG)(n).

We now state the proposition

(36) For every finite graph G holds LexBFS:CSeqG is iterative.

Let G be a finite graph. Observe that LexBFS:CSeqG is iterative.

Next we state a number of propositions:

(37) For every graph G holds the vlabel of LexBFS:InitG = ∅.
(38) Let G be a graph and v be a set. Then dom (the v2-

label of LexBFS:InitG) = the vertices of G and (the v2-label of

LexBFS:InitG)(v) = ∅.
(39) For every graph G holds G =G LexBFS:InitG.

(40) Let G be a finite finite v2-labeled natsubset v2-labeled vv-graph and x

be a set. Suppose that

(i) x /∈ dom (the vlabel of G),

(ii) dom (the v2-label of G) = the vertices of G, and

(iii) dom (the vlabel of G) 6= the vertices of G.

Then ((the v2-label of G)(x), 1) -bag ≤InvLexOrderN ((the v2-label of

G)(LexBFS:PickUnnumberedG), 1) -bag .

(41) Let G be a finite finite v2-labeled natsubset v2-labeled vv-graph. Sup-

pose dom (the v2-label of G) = the vertices of G and dom (the vlabel of

G) 6= the vertices of G. Then LexBFS:PickUnnumberedG /∈ dom (the

vlabel of G).

(42) For every finite graph G and for every natural number n holds

(LexBFS:CSeqG)(n) =G G.

(43) For every finite graph G and for all natural numbers m, n holds

(LexBFS:CSeqG)(m) =G (LexBFS:CSeqG)(n).

(44) Let G be a finite graph and n be a natural number. Sup-

pose card dom (the vlabel of (LexBFS:CSeqG)(n)) < G.order().

Then the vlabel of (LexBFS:CSeqG)(n + 1) = (the vlabel of

(LexBFS:CSeqG)(n))+·(LexBFS:PickUnnumbered(LexBFS:CSeqG)(n)

7−→. (G.order()−′ card dom (the vlabel of (LexBFS:CSeqG)(n)))).

(45) For every finite graph G and for every natural number n holds dom (the

v2-label of (LexBFS:CSeqG)(n)) = the vertices of (LexBFS:CSeqG)(n).

(46) For every finite graph G and for every natural number n such that n ≤
G.order() holds card dom (the vlabel of (LexBFS:CSeqG)(n)) = n.

(47) For every finite graph G and for every natural number n

such that G.order() ≤ n holds (LexBFS:CSeqG)(G.order()) =
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(LexBFS:CSeqG)(n).

(48) For every finite graph G and for all natural numbers m, n such

that G.order() ≤ m and m ≤ n holds (LexBFS:CSeqG)(m) =

(LexBFS:CSeqG)(n).

(49) For every finite graph G holds LexBFS:CSeqG is eventually constant.

Let G be a finite graph. Note that LexBFS:CSeqG is eventually constant.

We now state two propositions:

(50) Let G be a finite graph and n be a natural number. Then dom (the

vlabel of (LexBFS:CSeqG)(n)) = the vertices of (LexBFS:CSeqG)(n) if

and only if G.order() ≤ n.
(51) For every finite graph G holds (LexBFS:CSeqG).Lifespan() = G.order().

Let G be a finite chordal graph and let i be a natural number. One can

check that (LexBFS:CSeqG)(i) is chordal.

Let G be a finite chordal graph. One can check that LexBFS:CSeqG is

chordal.

One can prove the following proposition

(52) For every finite graph G holds LexBFS:CSeqG is v-label numbering.

Let G be a finite graph. Note that LexBFS:CSeqG is v-label numbering.

We now state several propositions:

(53) For every finite graph G and for every natural number n

such that n < G.order() holds LexBFS:CSeqG .PickedAt n =

LexBFS:PickUnnumbered(LexBFS:CSeqG)(n).

(54) Let G be a finite graph and n be a natural number. Suppose n <

G.order(). Then there exists a vertex w of (LexBFS:CSeqG)(n) such that

(i) w = LexBFS:PickUnnumbered(LexBFS:CSeqG)(n), and

(ii) for every set v holds if v ∈ G.adjacentSet({w}) and v /∈ dom (the vla-

bel of (LexBFS:CSeqG)(n)), then (the v2-label of (LexBFS:CSeqG)(n+

1))(v) = (the v2-label of (LexBFS:CSeqG)(n))(v)∪{G.order()−′n} and if

v /∈ G.adjacentSet({w}) or v ∈ dom (the vlabel of (LexBFS:CSeqG)(n)),

then (the v2-label of (LexBFS:CSeqG)(n + 1))(v) = (the v2-label of

(LexBFS:CSeqG)(n))(v).

(55) Let G be a finite graph, i be a natural number, and v be a set. Then (the

v2-label of (LexBFS:CSeqG)(i))(v) ⊆ Seg(G.order())\Seg(G.order()−′ i).
(56) Let G be a finite graph, x be a set, and i, j be natural numbers. If

i ≤ j, then (the v2-label of (LexBFS:CSeqG)(i))(x) ⊆ (the v2-label of

(LexBFS:CSeqG)(j))(x).

(57) Let G be a finite graph, m, n be natural numbers, and x,

y be sets. Suppose n < G.order() and n < m and y =

LexBFS:PickUnnumbered(LexBFS:CSeqG)(n) and x /∈ dom (the vlabel of
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(LexBFS:CSeqG)(n)) and x ∈ G.adjacentSet({y}). Then G.order()−′n ∈
(the v2-label of (LexBFS:CSeqG)(m))(x).

(58) Let G be a finite graph and m, n be natural numbers. Suppose

m < n. Let x be a set. Suppose G.order() −′ m /∈ (the v2-label of

(LexBFS:CSeqG)(m + 1))(x). Then G.order() −′ m /∈ (the v2-label of

(LexBFS:CSeqG)(n))(x).

(59) Let G be a finite graph and m, n, k be natural numbers. Suppose

k < n and n ≤ m. Let x be a set. Suppose G.order() −′ k /∈ (the v2-

label of (LexBFS:CSeqG)(n))(x). Then G.order() −′ k /∈ (the v2-label of

(LexBFS:CSeqG)(m))(x).

(60) Let G be a finite graph, m, n be natural numbers, and x

be a vertex of (LexBFS:CSeqG)(m). Suppose n ∈ (the v2-

label of (LexBFS:CSeqG)(m))(x). Then there exists a vertex y of

(LexBFS:CSeqG)(m) such that LexBFS:PickUnnumbered(LexBFS:CSeqG)

(G.order()−′n) = y and y /∈ dom (the vlabel of (LexBFS:CSeqG)(G.order()−′
n)) and x ∈ G.adjacentSet({y}).

Let G4 be a finite natural v-labeled vv-graph sequence. Then G4.Result() is

a finite natural v-labeled vv-graph.

The following four propositions are true:

(61) For every finite graph G holds (LexBFS:CSeqG).Result().labeledV() =

the vertices of G.

(62) For every finite graphG holds (the vlabel of (LexBFS:CSeqG).Result())−1

is a vertex scheme of G.

(63) Let G be a finite graph, i, j be natural numbers, and a, b be vertices of

(LexBFS:CSeqG)(i). Suppose that

(i) a ∈ dom (the vlabel of (LexBFS:CSeqG)(i)),

(ii) b ∈ dom (the vlabel of (LexBFS:CSeqG)(i)),

(iii) (the vlabel of (LexBFS:CSeqG)(i))(a) < (the vlabel of

(LexBFS:CSeqG)(i))(b), and

(iv) j = G.order()−′ (the vlabel of (LexBFS:CSeqG)(i))(b).

Then ((the v2-label of (LexBFS:CSeqG)(j))(a), 1) -bag ≤InvLexOrderN
((the v2-label of (LexBFS:CSeqG)(j))(b), 1) -bag .

(64) Let G be a finite graph, i, j be natural numbers, and

v be a vertex of (LexBFS:CSeqG)(i). Suppose j ∈ (the

v2-label of (LexBFS:CSeqG)(i))(v). Then there exists a vertex

w of (LexBFS:CSeqG)(i) such that w ∈ dom (the vlabel of

(LexBFS:CSeqG)(i)) and (the vlabel of (LexBFS:CSeqG)(i))(w) = j and

v ∈ G.adjacentSet({w}).
Let G be a natural v-labeled v-graph. We say that G has property L3 if

and only if the condition (Def. 34) is satisfied.
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(Def. 34) Let a, b, c be vertices of G. Suppose that a ∈ dom (the vlabel of G) and

b ∈ dom (the vlabel of G) and c ∈ dom (the vlabel of G) and (the vlabel

of G)(a) < (the vlabel of G)(b) and (the vlabel of G)(b) < (the vlabel of

G)(c) and a and c are adjacent and b and c are not adjacent. Then there

exists a vertex d of G such that

(i) d ∈ dom (the vlabel of G),

(ii) (the vlabel of G)(c) < (the vlabel of G)(d),

(iii) b and d are adjacent,

(iv) a and d are not adjacent, and

(v) for every vertex e of G such that e 6= d and e and b are adjacent and e

and a are not adjacent holds (the vlabel of G)(e) < (the vlabel of G)(d).

One can prove the following three propositions:

(65) For every finite graph G and for every natural number n holds

(LexBFS:CSeqG)(n) has property L3 .

(66) Let G be a finite chordal natural v-labeled v-graph. Suppose G has

property L3 and dom (the vlabel of G) = the vertices of G. Let V be a

vertex scheme of G. If V −1 = the vlabel of G, then V is perfect.

(67) For every finite chordal vv-graph G holds

(the vlabel of (LexBFS:CSeqG).Result())−1 is a perfect vertex scheme of

G.

7. The Maximum Cardinality Search Algorithm

Let G be a finite graph. The functor MCS:InitG yields a finite natural

v-labeled natural v2-labeled vv-graph and is defined by:

(Def. 35) MCS:InitG = G.set(VLabelSelector, ∅).set(V2-LabelSelector, (the ver-

tices of G) 7−→ 0).

Let G be a finite natural v2-labeled vv-graph. Let us assume that dom (the

v2-label of G) = the vertices of G. The functor MCS:PickUnnumberedG yields

a vertex of G and is defined by:

(Def. 36)(i) MCS:PickUnnumberedG = choose(the vertices of G) if dom (the vla-

bel of G) = the vertices of G,

(ii) there exists a finite non empty natural-membered set S and there exists

a function F such that S = rngF and F = (the v2-label of G)�((the

vertices of G) \ dom (the vlabel of G)) and MCS:PickUnnumberedG =

choose(F−1({maxS})), otherwise.

Let G be a finite natural v2-labeled vv-graph and let v be a set. The func-

tor MCS:LabelAdjacent(G, v) yields a finite natural v2-labeled vv-graph and is

defined by:
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(Def. 37) MCS:LabelAdjacent(G, v) = G.set(V2-LabelSelector, (the v2-label of

G) .incSubset((G.adjacentSet({v})) \ dom (the vlabel of G), 1)).

Let G be a finite natural v-labeled natural v2-labeled vv-graph and let v

be a vertex of G. Then MCS:LabelAdjacent(G, v) is a finite natural v-labeled

natural v2-labeled vv-graph.

Let G be a finite natural v-labeled natural v2-labeled vv-graph, let v be a

vertex of G, and let n be a natural number. The functor MCS:Update(G, v, n)

yielding a finite natural v-labeled natural v2-labeled vv-graph is defined as fol-

lows:

(Def. 38) MCS:Update(G, v, n) = MCS:LabelAdjacent(G.labelVertex(v,G.order()− ′
n), v).

Let G be a finite natural v-labeled natural v2-labeled vv-graph. The functor

MCS:StepG yielding a finite natural v-labeled natural v2-labeled vv-graph is

defined by:

(Def. 39) MCS:StepG =





G, if G.order() ≤ card dom (the vlabel of G),

MCS:Update(G,MCS:PickUnnumberedG, card dom

(the vlabel of G)), otherwise.

Let G be a finite graph. The functor MCS:CSeqG yields a finite natural

v-labeled natural v2-labeled vv-graph sequence and is defined by:

(Def. 40) (MCS:CSeqG)(0) = MCS:InitG and for every natural number n holds

(MCS:CSeqG)(n+ 1) = MCS:Step(MCS:CSeqG)(n).

The following proposition is true

(68) For every finite graph G holds MCS:CSeqG is iterative.

Let G be a finite graph. Observe that MCS:CSeqG is iterative.

We now state a number of propositions:

(69) For every finite graph G holds the vlabel of MCS:InitG = ∅.
(70) Let G be a finite graph and v be a set. Then dom (the v2-label of

MCS:InitG) = the vertices of G and (the v2-label of MCS:InitG)(v) = 0.

(71) For every finite graph G holds G =G MCS:InitG.

(72) Let G be a finite natural v2-labeled vv-graph and x be a set. Suppose

that

(i) x /∈ dom (the vlabel of G),

(ii) dom (the v2-label of G) = the vertices of G, and

(iii) dom (the vlabel of G) 6= the vertices of G.

Then (the v2-label ofG)(x) ≤ (the v2-label ofG)(MCS:PickUnnumberedG).

(73) Let G be a finite natural v2-labeled vv-graph. Suppose dom (the v2-label

of G) = the vertices of G and dom (the vlabel of G) 6= the vertices of G.

Then MCS:PickUnnumberedG /∈ dom (the vlabel of G).

(74) Let G be a finite natural v2-labeled vv-graph and v, x be sets. If

x /∈ G.adjacentSet({v}), then (the v2-label of G)(x) = (the v2-label of
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MCS:LabelAdjacent(G, v))(x).

(75) Let G be a finite natural v2-labeled vv-graph and v, x be sets. Suppose

x ∈ dom (the vlabel of G). Then (the v2-label of G)(x) = (the v2-label of

MCS:LabelAdjacent(G, v))(x).

(76) Let G be a finite natural v2-labeled vv-graph and v, x be sets. Suppose

x ∈ dom (the v2-label of G) and x ∈ G.adjacentSet({v}) and x /∈ dom (the

vlabel of G). Then (the v2-label of MCS:LabelAdjacent(G, v))(x) = (the

v2-label of G)(x) + 1.

(77) Let G be a finite natural v2-labeled vv-graph and v be a set. Suppose

dom (the v2-label of G) = the vertices of G. Then dom (the v2-label of

MCS:LabelAdjacent(G, v)) = the vertices of G.

(78) For every finite graph G and for every natural number n holds

(MCS:CSeqG)(n) =G G.

(79) For every finite graph G and for all natural numbers m, n holds

(MCS:CSeqG)(m) =G (MCS:CSeqG)(n).

Let G be a finite chordal graph and let n be a natural number. Observe that

(MCS:CSeqG)(n) is chordal.

Let G be a finite chordal graph. Observe that MCS:CSeqG is chordal.

One can prove the following propositions:

(80) For every finite graph G and for every natural number n holds dom (the

v2-label of (MCS:CSeqG)(n)) = the vertices of (MCS:CSeqG)(n).

(81) Let G be a finite graph and n be a natural number. Suppose

card dom (the vlabel of (MCS:CSeqG)(n)) < G.order(). Then the vlabel

of (MCS:CSeqG)(n+ 1) = (the vlabel of (MCS:CSeqG)(n))

+·(MCS:PickUnnumbered(MCS:CSeqG)(n)7−→. (G.order()−′card dom (the

vlabel of (MCS:CSeqG)(n)))).

(82) For every finite graph G and for every natural number n such that n ≤
G.order() holds card dom (the vlabel of (MCS:CSeqG)(n)) = n.

(83) For every finite graph G and for every natural number n such that

G.order() ≤ n holds (MCS:CSeqG)(G.order()) = (MCS:CSeqG)(n).

(84) For every finite graph G and for all natural numbers m, n such that

G.order() ≤ m and m ≤ n holds (MCS:CSeqG)(m) = (MCS:CSeqG)(n).

(85) For every finite graph G holds MCS:CSeqG is eventually constant.

Let G be a finite graph. Observe that MCS:CSeqG is eventually constant.

The following propositions are true:

(86) Let G be a finite graph and n be a natural number. Then dom (the

vlabel of (MCS:CSeqG)(n)) = the vertices of (MCS:CSeqG)(n) if and

only if G.order() ≤ n.
(87) For every finite graph G holds (MCS:CSeqG).Lifespan() = G.order().
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(88) For every finite graph G holds MCS:CSeqG is v-label numbering.

Let G be a finite graph. Note that MCS:CSeqG is v-label numbering.

Next we state three propositions:

(89) For every finite graph G and for every natural number n such that n <

G.order() holds MCS:CSeqG .PickedAt n =

MCS:PickUnnumbered(MCS:CSeqG)(n).

(90) Let G be a finite graph and n be a natural number. Suppose n <

G.order(). Then there exists a vertex w of (MCS:CSeqG)(n) such that

(i) w = MCS:PickUnnumbered(MCS:CSeqG)(n), and

(ii) for every set v holds if v ∈ G.adjacentSet({w}) and v /∈ dom (the vlabel

of (MCS:CSeqG)(n)), then (the v2-label of (MCS:CSeqG)(n + 1))(v) =

(the v2-label of (MCS:CSeqG)(n))(v) + 1 and if v /∈ G.adjacentSet({w})
or v ∈ dom (the vlabel of (MCS:CSeqG)(n)), then (the v2-label of

(MCS:CSeqG)(n+ 1))(v) = (the v2-label of (MCS:CSeqG)(n))(v).

(91) Let G be a finite graph, n be a natural number, and x be a set. Sup-

pose x /∈ dom (the vlabel of (MCS:CSeqG)(n)). Then (the v2-label of

(MCS:CSeqG)(n))(x) = card((G.adjacentSet({x})) ∩ dom (the vlabel of

(MCS:CSeqG)(n))).

Let G be a natural v-labeled v-graph. We say that G has property T if and

only if the condition (Def. 41) is satisfied.

(Def. 41) Let a, b, c be vertices of G. Suppose that a ∈ dom (the vlabel of G) and

b ∈ dom (the vlabel of G) and c ∈ dom (the vlabel of G) and (the vlabel

of G)(a) < (the vlabel of G)(b) and (the vlabel of G)(b) < (the vlabel of

G)(c) and a and c are adjacent and b and c are not adjacent. Then there

exists a vertex d of G such that

(i) d ∈ dom (the vlabel of G),

(ii) (the vlabel of G)(b) < (the vlabel of G)(d),

(iii) b and d are adjacent, and

(iv) a and d are not adjacent.

We now state three propositions:

(92) For every finite graph G and for every natural number n holds

(MCS:CSeqG)(n) has property T .

(93) For every finite graph G holds (LexBFS:CSeqG).Result() has property

T .

(94) Let G be a finite chordal natural v-labeled v-graph. Suppose G has

property T and dom (the vlabel of G) = the vertices of G. Let V be a

vertex scheme of G. If V −1 = the vlabel of G, then V is perfect.
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Summary. In this paper, we showed the linearity of the indefinite integralR b
a
fdx, the form of which was introduced in [11]. In addition, we proved some

theorems about the integral calculus on the subinterval of [a, b]. As a result, we

described the fundamental theorem of calculus, that we developed in [11], by a

more general expression.
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1. Preliminaries

We use the following convention: a, b, c, d, e, x are real numbers, A is a

closed-interval subset of R, and f , g are partial functions from R to R.

We now state several propositions:

(1) If a ≤ b and c ≤ d and a+ c = b+ d, then a = b and c = d.

(2) If a ≤ b, then ]x− a, x+ a[ ⊆ ]x− b, x+ b[.

1This work has been partially supported by the MEXT grant Grant-in-Aid for Young

Scientists (B)16700156.
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(3) For every binary relation R and for all sets A, B, C such that A ⊆ B

and A ⊆ C holds R�B�A = R�C�A.
(4) For all sets A, B, C such that A ⊆ B and A ⊆ C holds χB,B�A =

χC,C�A.
(5) If a ≤ b, then vol([′a, b′]) = b− a.
(6) vol([′min(a, b),max(a, b)′]) = |b− a|.

2. Integrability and the Integral of Partial Functions

The following propositions are true:

(7) If A ⊆ dom f and f is integrable on A and f is bounded on A, then |f |
is integrable on A and |

∫

A

f(x)dx| ≤
∫

A

|f |(x)dx.

(8) If a ≤ b and [′a, b′] ⊆ dom f and f is integrable on [′a, b′] and f is

bounded on [′a, b′], then |
b∫

a

f(x)dx| ≤
b∫

a

|f |(x)dx.

(9) Let r be a real number. Suppose A ⊆ dom f and f is integrable on A

and f is bounded on A. Then r f is integrable on A and

∫

A

(r f)(x)dx =

r ·
∫

A

f(x)dx.

(10) If a ≤ b and [′a, b′] ⊆ dom f and f is integrable on [′a, b′] and f is

bounded on [′a, b′], then

b∫

a

(c f)(x)dx = c ·
b∫

a

f(x)dx.

(11) Suppose A ⊆ dom f and A ⊆ dom g and f is integrable on A and f is

bounded on A and g is integrable on A and g is bounded on A. Then

f+g is integrable on A and f−g is integrable on A and

∫

A

(f + g)(x)dx =

∫

A

f(x)dx+

∫

A

g(x)dx and

∫

A

(f − g)(x)dx =

∫

A

f(x)dx−
∫

A

g(x)dx.

(12) Suppose that a ≤ b and [′a, b′] ⊆ dom f and [′a, b′] ⊆ dom g and f is

integrable on [′a, b′] and g is integrable on [′a, b′] and f is bounded on [′a, b′]

and g is bounded on [′a, b′]. Then

b∫

a

(f + g)(x)dx =

b∫

a

f(x)dx+

b∫

a

g(x)dx
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and

b∫

a

(f − g)(x)dx =

b∫

a

f(x)dx−
b∫

a

g(x)dx.

(13) If f is bounded on A and g is bounded on A, then f g is bounded on A.

(14) Suppose A ⊆ dom f and A ⊆ dom g and f is integrable on A and f is

bounded on A and g is integrable on A and g is bounded on A. Then f g

is integrable on A.

(15) Let n be an element of N. Suppose n > 0 and vol(A) > 0. Then there

exists an element D of divsA such that lenD = n and for every element

i of N such that i ∈ domD holds D(i) = inf A+ vol(A)
n · i.

3. Integrability on a Subinterval

The following propositions are true:

(16) Suppose vol(A) > 0. Then there exists a DivSequence T of A such that

(i) δT is convergent,

(ii) lim(δT ) = 0, and

(iii) for every element n of N there exists an element T1 of divsA such that

T1 divides into equal n+ 1 and T (n) = T1.

(17) Suppose a ≤ b and f is integrable on [′a, b′] and f is bounded on [′a, b′]
and [′a, b′] ⊆ dom f and c ∈ [′a, b′]. Then f is integrable on [′a, c′] and f is

integrable on [′c, b′] and

b∫

a

f(x)dx =

c∫

a

f(x)dx+

b∫

c

f(x)dx.

(18) Suppose a ≤ c and c ≤ d and d ≤ b and f is integrable on [′a, b′] and f

is bounded on [′a, b′] and [′a, b′] ⊆ dom f. Then f is integrable on [′c, d′]
and f is bounded on [′c, d′] and [′c, d′] ⊆ dom f.

(19) Suppose that a ≤ c and c ≤ d and d ≤ b and f is integrable on [′a, b′]
and g is integrable on [′a, b′] and f is bounded on [′a, b′] and g is bounded

on [′a, b′] and [′a, b′] ⊆ dom f and [′a, b′] ⊆ dom g. Then f + g is integrable

on [′c, d′] and f + g is bounded on [′c, d′].

(20) Suppose a ≤ b and f is integrable on [′a, b′] and f is bounded on [′a, b′]

and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]. Then

d∫

a

f(x)dx =

c∫

a

f(x)dx+

d∫

c

f(x)dx.

(21) Suppose a ≤ b and f is integrable on [′a, b′] and f is bounded

on [′a, b′] and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′].
Then [′min(c, d),max(c, d)′] ⊆ dom|f | and |f | is integrable on
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[′min(c, d),max(c, d)′] and |f | is bounded on [′min(c, d),max(c, d)′] and

|
d∫

c

f(x)dx| ≤
max(c,d)∫

min(c,d)

|f |(x)dx.

(22) Suppose a ≤ b and c ≤ d and f is integrable on [′a, b′] and f is bounded

on [′a, b′] and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]. Then [′c, d′] ⊆
dom|f | and |f | is integrable on [′c, d′] and |f | is bounded on [′c, d′] and

|
d∫

c

f(x)dx| ≤
d∫

c

|f |(x)dx and |
c∫

d

f(x)dx| ≤
d∫

c

|f |(x)dx.

(23) Suppose that a ≤ b and c ≤ d and f is integrable on [′a, b′] and f is

bounded on [′a, b′] and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]
and for every real number x such that x ∈ [′c, d′] holds |f(x)| ≤ e. Then

|
d∫

c

f(x)dx| ≤ e · (d− c) and |
c∫

d

f(x)dx| ≤ e · (d− c).

(24) Suppose that a ≤ b and f is integrable on [′a, b′] and g is integrable

on [′a, b′] and f is bounded on [′a, b′] and g is bounded on [′a, b′] and

[′a, b′] ⊆ dom f and [′a, b′] ⊆ dom g and c ∈ [′a, b′] and d ∈ [′a, b′]. Then
d∫

c

(f + g)(x)dx =

d∫

c

f(x)dx+

d∫

c

g(x)dx and

d∫

c

(f − g)(x)dx =

d∫

c

f(x)dx−

d∫

c

g(x)dx.

(25) Suppose a ≤ b and f is integrable on [′a, b′] and f is bounded on [′a, b′]

and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]. Then

d∫

c

(e f)(x)dx =

e ·
d∫

c

f(x)dx.

(26) Suppose a ≤ b and [′a, b′] ⊆ dom f and for every real number x such

that x ∈ [′a, b′] holds f(x) = e. Then f is integrable on [′a, b′] and f is

bounded on [′a, b′] and

b∫

a

f(x)dx = e · (b− a).

(27) Suppose a ≤ b and for every real number x such that x ∈ [′a, b′] holds

f(x) = e and [′a, b′] ⊆ dom f and c ∈ [′a, b′] and d ∈ [′a, b′]. Then
d∫

c

f(x)dx = e · (d− c).
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4. Fundamental Theorem of Calculus

Next we state two propositions:

(28) Let x0 be a real number and F be a partial function from R to R.

Suppose that a ≤ b and f is integrable on [′a, b′] and f is bounded on

[′a, b′] and [′a, b′] ⊆ dom f and ]a, b[ ⊆ domF and for every real number

x such that x ∈ ]a, b[ holds F (x) =

x∫

a

f(x)dx and x0 ∈ ]a, b[ and f is

continuous in x0. Then F is differentiable in x0 and F ′(x0) = f(x0).

(29) Let x0 be a real number. Suppose a ≤ b and f is integrable on [′a, b′]
and f is bounded on [′a, b′] and [′a, b′] ⊆ dom f and x0 ∈ ]a, b[ and f is

continuous in x0. Then there exists a partial function F from R to R such

that ]a, b[ ⊆ domF and for every real number x such that x ∈ ]a, b[ holds

F (x) =

x∫

a

f(x)dx and F is differentiable in x0 and F ′(x0) = f(x0).
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Summary. As application of complete metric space, we proved a Baire’s

category theorem. Then we defined some spaces generated from real normed

space and discussed each of them. In the second section, we showed the equiv-

alence of convergence and the continuity of a function. In other sections, we

showed some topological properties of two spaces, which are topological space

and linear topological space generated from real normed space.
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1. Baire’s Category Theorem

The following proposition is true

(1) Let X be a non empty metric space and Y be a sequence of subsets of

X. Suppose X is complete and
⋃

rng Y = the carrier of X and for every

element n of N holds Y (n)c ∈ the open set family of X. Then there exists

an element n0 of N and there exists a real number r and there exists a

point x0 of X such that 0 < r and Ball(x0, r) ⊆ Y (n0).

1This work has been partially supported by the MEXT grant Grant-in-Aid for Young

Scientists (B)16700156.
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2. Metric Space Generated from Real Normed Space

Let X be a real normed space. The distance by norm of X yields a function

from [: the carrier of X, the carrier of X :] into R and is defined as follows:

(Def. 1) For all points x, y ofX holds (the distance by norm ofX)(x, y) = ‖x−y‖.
Let X be a real normed space. The functor MetricSpaceNormX yields a

non empty metric space and is defined by:

(Def. 2) MetricSpaceNormX = 〈the carrier of X, the distance by norm of X〉.
Next we state several propositions:

(2) Let X be a real normed space, z be an element of MetricSpaceNormX,

and r be a real number. Then there exists a point x of X such that x = z

and Ball(z, r) = {y; y ranges over points of X: ‖x− y‖ < r}.
(3) Let X be a real normed space, z be an element of MetricSpaceNormX,

and r be a real number. Then there exists a point x of X such that x = z

and Ball(z, r) = {y; y ranges over points of X: ‖x− y‖ ≤ r}.
(4) Let X be a real normed space, S be a sequence of X, S1 be a se-

quence of MetricSpaceNormX, x be a point of X, and x1 be a point

of MetricSpaceNormX. Suppose S = S1 and x = x1. Then S1 is conver-

gent to x1 if and only if for every real number r such that 0 < r there

exists an element m of N such that for every element n of N such that

m ≤ n holds ‖S(n)− x‖ < r.

(5) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of MetricSpaceNormX. If S = S1, then S1 is convergent iff S is

convergent.

(6) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of MetricSpaceNormX. If S = S1 and S1 is convergent, then

limS1 = limS.

3. Topological Space Generated from Real Normed Space

Let X be a real normed space. The functor TopSpaceNormX yields a non

empty topological space and is defined by:

(Def. 3) TopSpaceNormX = (MetricSpaceNormX)top.

The following propositions are true:

(7) Let X be a real normed space and V be a subset of TopSpaceNormX.

Then V is open if and only if for every point x of X such that x ∈ V there

exists a real number r such that r > 0 and {y; y ranges over points of X:

‖x− y‖ < r} ⊆ V.
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(8) Let X be a real normed space, x be a point of X, and r be a real number.

Then {y; y ranges over points of X: ‖x − y‖ < r} is an open subset of

TopSpaceNormX.

(9) Let X be a real normed space, x be a point of X, and r be a real number.

Then {y; y ranges over points of X: ‖x − y‖ ≤ r} is a closed subset of

TopSpaceNormX.

(10) For every Hausdorff non empty topological space X such that X is

locally-compact holds X is Baire.

(11) For every real normed space X holds TopSpaceNormX is sequential.

Let X be a real normed space. Observe that TopSpaceNormX is sequential.

One can prove the following propositions:

(12) Let X be a real normed space, S be a sequence of X, S1 be a se-

quence of TopSpaceNormX, x be a point of X, and x1 be a point of

TopSpaceNormX. Suppose S = S1 and x = x1. Then S1 is convergent to

x1 if and only if for every real number r such that 0 < r there exists an

element m of N such that for every element n of N such that m ≤ n holds

‖S(n)− x‖ < r.

(13) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of TopSpaceNormX. If S = S1, then S1 is convergent iff S is

convergent.

(14) LetX be a real normed space, S be a sequence ofX, and S1 be a sequence

of TopSpaceNormX. If S = S1 and S1 is convergent, then LimS1 =

{limS} and limS1 = limS.

(15) Let X be a real normed space, V be a subset of X, and V1 be a subset

of TopSpaceNormX. If V = V1, then V is closed iff V1 is closed.

(16) Let X be a real normed space, V be a subset of X, and V1 be a subset

of TopSpaceNormX. If V = V1, then V is open iff V1 is open.

(17) Let X be a real normed space, U be a subset of X, U1 be a sub-

set of TopSpaceNormX, x be a point of X, and x1 be a point of

TopSpaceNormX. Suppose U = U1 and x = x1. Then U is a neigh-

bourhood of x if and only if U1 is a neighbourhood of x1.

(18) Let X, Y be real normed spaces, f be a partial function from X to Y , f1

be a function from TopSpaceNormX into TopSpaceNormY, x be a point

of X, and x1 be a point of TopSpaceNormX. Suppose f = f1 and x = x1.

Then f is continuous in x if and only if f1 is continuous at x1.

(19) Let X, Y be real normed spaces, f be a partial function from X to

Y , and f1 be a function from TopSpaceNormX into TopSpaceNorm Y.

Suppose f = f1. Then f is continuous on the carrier of X if and only if f1

is continuous.
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4. Linear Topological Space Generated from Real Normed Space

Let X be a real normed space. The functor LinearTopSpaceNormX yields a

strict non empty real linear topological structure and is defined by the conditions

(Def. 4).

(Def. 4)(i) The carrier of LinearTopSpaceNormX = the carrier of X,

(ii) the zero of LinearTopSpaceNormX = the zero of X,

(iii) the addition of LinearTopSpaceNormX = the addition of X,

(iv) the external multiplication of LinearTopSpaceNormX = the external

multiplication of X, and

(v) the topology of LinearTopSpaceNormX = the topology of

TopSpaceNormX.

Let X be a real normed space. Note that LinearTopSpaceNormX is add-

continuous, mult-continuous, topological space-like, Abelian, add-associative,

right zeroed, right complementable, and real linear space-like.

We now state several propositions:

(20) Let X be a real normed space, V be a subset of TopSpaceNormX, and

V1 be a subset of LinearTopSpaceNormX. If V = V1, then V is open iff

V1 is open.

(21) Let X be a real normed space, V be a subset of TopSpaceNormX, and

V1 be a subset of LinearTopSpaceNormX. If V = V1, then V is closed iff

V1 is closed.

(22) Let X be a real normed space and V be a subset of

LinearTopSpaceNormX. Then V is open if and only if for every point

x of X such that x ∈ V there exists a real number r such that r > 0 and

{y; y ranges over points of X: ‖x− y‖ < r} ⊆ V.
(23) Let X be a real normed space, x be a point of X, r be a real number,

and V be a subset of LinearTopSpaceNormX. If V = {y; y ranges over

points of X: ‖x− y‖ < r}, then V is open.

(24) Let X be a real normed space, x be a point of X, r be a real number,

and V be a subset of TopSpaceNormX. If V = {y; y ranges over points of

X: ‖x− y‖ ≤ r}, then V is closed.

Let X be a real normed space. Observe that LinearTopSpaceNormX is T2

and LinearTopSpaceNormX is sober.

One can prove the following proposition

(25) Let X be a real normed space, S be a family of subsets of

TopSpaceNormX, S1 be a family of subsets of LinearTopSpaceNormX, x

be a point of TopSpaceNormX, and x1 be a point of LinearTopSpaceNormX.

Suppose S = S1 and x = x1. Then S1 is a basis of x1 if and only if S is a

basis of x.



baire’s category theorem and some spaces . . . 217

Let X be a real normed space. One can verify the following observations:

∗ LinearTopSpaceNormX is first-countable,

∗ LinearTopSpaceNormX is Frechet, and

∗ LinearTopSpaceNormX is sequential.

Next we state a number of propositions:

(26) Let X be a real normed space, S be a sequence of TopSpaceNormX,

S1 be a sequence of LinearTopSpaceNormX, x be a point of

TopSpaceNormX, and x1 be a point of LinearTopSpaceNormX. Suppose

S = S1 and x = x1. Then S1 is convergent to x1 if and only if S is

convergent to x.

(27) Let X be a real normed space, S be a sequence of TopSpaceNormX,

and S1 be a sequence of LinearTopSpaceNormX. If S = S1, then S1 is

convergent iff S is convergent.

(28) Let X be a real normed space, S be a sequence of TopSpaceNormX,

and S1 be a sequence of LinearTopSpaceNormX. If S = S1 and S1 is

convergent, then LimS = LimS1 and limS = limS1.

(29) Let X be a real normed space, S be a sequence of X, S1 be a se-

quence of LinearTopSpaceNormX, x be a point of X, and x1 be a point

of LinearTopSpaceNormX. Suppose S = S1 and x = x1. Then S1 is con-

vergent to x1 if and only if for every real number r such that 0 < r there

exists an element m of N such that for every element n of N such that

m ≤ n holds ‖S(n)− x‖ < r.

(30) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of LinearTopSpaceNormX. If S = S1, then S1 is convergent iff

S is convergent.

(31) Let X be a real normed space, S be a sequence of X, and S1 be a

sequence of LinearTopSpaceNormX. If S = S1 and S1 is convergent, then

LimS1 = {limS} and limS1 = limS.

(32) Let X be a real normed space, V be a subset of X, and V1 be a subset

of LinearTopSpaceNormX. If V = V1, then V is closed iff V1 is closed.

(33) Let X be a real normed space, V be a subset of X, and V1 be a subset

of LinearTopSpaceNormX. If V = V1, then V is open iff V1 is open.

(34) Let X be a real normed space, U be a subset of TopSpaceNormX, U1 be

a subset of LinearTopSpaceNormX, x be a point of TopSpaceNormX, and

x1 be a point of LinearTopSpaceNormX. Suppose U = U1 and x = x1.

Then U is a neighbourhood of x if and only if U1 is a neighbourhood of

x1.

(35) Let X, Y be real normed spaces, f be a function from TopSpaceNormX

into TopSpaceNormY, f1 be a function from LinearTopSpaceNormX into

LinearTopSpaceNormY, x be a point of TopSpaceNormX, and x1 be a
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point of LinearTopSpaceNormX. Suppose f = f1 and x = x1. Then f is

continuous at x if and only if f1 is continuous at x1.

(36) Let X, Y be real normed spaces, f be a function from TopSpaceNormX

into TopSpaceNormY, and f1 be a function from LinearTopSpaceNormX

into LinearTopSpaceNorm Y. If f = f1, then f is continuous iff f1 is con-

tinuous.
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Summary. In this paper we show that every natural number can be

uniquely represented as a base-b numeral. The formalization is based on the

proof presented in [11]. We also prove selected divisibility criteria in the base-10

numeral system.
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The notation and terminology used in this paper have been introduced in the

following articles: [13], [15], [2], [1], [17], [12], [14], [6], [4], [5], [8], [9], [10], [16],

[7], and [3].

1. Preliminaries

One can prove the following propositions:

(1) For all finite 0-sequences d, e of N holds
∑

(d a e) =
∑
d+

∑
e.

(2) Let S be a sequence of real numbers, d be a finite 0-sequence of N, and

n be a natural number. If d = S�(n+ 1), then
∑
d = (

∑κ
α=0 S(α))κ∈N(n).

(3) For all natural numbers k, l, m holds (k (lκ)κ∈N)�m is a finite 0-sequence

of N.

(4) Let d, e be finite 0-sequences of N. Suppose len d ≥ 1 and len d = len e

and for every natural number i such that i ∈ dom d holds d(i) ≤ e(i).

Then
∑
d ≤∑ e.

1This work has been partially supported by the FP6 IST grant TYPES No. 510996.
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(5) Let d be a finite 0-sequence of N and n be a natural number. If for every

natural number i such that i ∈ dom d holds n | d(i), then n | ∑ d.

(6) Let d, e be finite 0-sequences of N and n be a natural number. Suppose

dom d = dom e and for every natural number i such that i ∈ dom d holds

e(i) = d(i) mod n. Then
∑
dmod n =

∑
emod n.

2. Representation of Numbers in the Base-b Numeral System

Let d be a finite 0-sequence of N and let b be a natural number. The functor

value(d, b) yields a natural number and is defined by the condition (Def. 1).

(Def. 1) There exists a finite 0-sequence d′ of N such that dom d′ = dom d and

for every natural number i such that i ∈ dom d′ holds d′(i) = d(i) · bi and

value(d, b) =
∑
d′.

Let n, b be natural numbers. Let us assume that b > 1. The functor

digits(n, b) yields a finite 0-sequence of N and is defined as follows:

(Def. 2)(i) value(digits(n, b), b) = n and (digits(n, b))(len digits(n, b) − 1) 6= 0

and for every natural number i such that i ∈ dom digits(n, b) holds 0 ≤
(digits(n, b))(i) and (digits(n, b))(i) < b if n 6= 0,

(ii) digits(n, b) = 〈0〉, otherwise.

One can prove the following two propositions:

(7) For all natural numbers n, b such that b > 1 holds len digits(n, b) ≥ 1.

(8) For all natural numbers n, b such that b > 1 holds value(digits(n, b), b) =

n.

3. Selected Divisibility Criteria

One can prove the following propositions:

(9) For all natural numbers n, k such that k = 10n − 1 holds 9 | k.
(10) For all natural numbers n, b such that b > 1 holds b | n iff

(digits(n, b))(0) = 0.

(11) For every natural number n holds 2 | n iff 2 | (digits(n, 10))(0).

(12) For every natural number n holds 3 | n iff 3 | ∑digits(n, 10).

(13) For every natural number n holds 5 | n iff 5 | (digits(n, 10))(0).
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Summary. In this article, we first discuss the relation between measure

defined using extended real numbers and probability defined using real numbers.

Further, we define completeness of probability, and its completion method, and

also show that they coincide with those of measure.

MML identifier: PROB 4, version: 7.6.01 4.53.937

The articles [18], [20], [2], [3], [5], [1], [12], [15], [21], [8], [19], [17], [4], [9], [14],

[23], [6], [11], [16], [22], [10], [7], and [13] provide the notation and terminology

for this paper.

For simplicity, we adopt the following convention: n denotes a natural num-

ber, X denotes a set, A1 denotes a sequence of subsets of X, S1 denotes a σ-field

of subsets of X, X1 denotes a sequence of subsets of S1, O1 denotes a non empty

set, S2 denotes a σ-field of subsets of O1, A2 denotes a sequence of subsets of

S2, and P denotes a probability on S2.

Let us consider X, S1, X1, n. Then X1(n) is an element of S1.

Next we state two propositions:

(1) rngX1 ⊆ S1.

(2) For every function f holds f is a sequence of subsets of S1 iff f is a

function from N into S1.

The scheme LambdaSigmaSSeq deals with a set A, a σ-field B of subsets of

A, and a unary functor F yielding an element of B, and states that:

There exists a sequence f of subsets of B such that for every n

holds f(n) = F(n)
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for all values of the parameters.

Let us consider X. Note that there exists a sequence of subsets of X which

is disjoint valued.

Let us consider X, S1. Note that there exists a sequence of subsets of S1

which is disjoint valued.

One can prove the following propositions:

(3) For all subsets A, B of X there exists A1 such that A1(0) = A and

A1(1) = B and for every n such that n > 1 holds A1(n) = ∅.
(4) Let A, B be subsets of X. Suppose A misses B and A1(0) = A and

A1(1) = B and for every n such that n > 1 holds A1(n) = ∅. Then A1 is

disjoint valued and
⋃
A1 = A ∪B.

(5) Let S be a non empty set. Then S is a σ-field of subsets of X if and

only if the following conditions are satisfied:

(i) S ⊆ 2X ,

(ii) for every sequence A1 of subsets of X such that for every n holds

A1(n) ∈ S holds
⋃
A1 ∈ S, and

(iii) for every subset A of X such that A ∈ S holds Ac ∈ S.
(6) For all events A, B of S2 holds P (A \B) = P (A ∪B)− P (B).

(7) For all events A, B of S2 such that A ⊆ B and P (B) = 0 holds P (A) = 0.

(8) For every n holds P (A2(n)) = 0 iff P (
⋃
A2) = 0.

(9) For every setA such that A ∈ rngA2 holds P (A) = 0 iff P (
⋃

rngA2) = 0.

(10) For every function s1 from N into R and for every function E1 from N
into R such that s1 = E1 holds (

∑κ
α=0(s1)(α))κ∈N = SerE1.

(11) Let s1 be a function from N into R and E1 be a function from N into R.

If s1 = E1 and s1 is upper bounded, then sup s1 = sup rngE1.

(12) Let s1 be a function from N into R and E1 be a function from N into R.

If s1 = E1 and s1 is lower bounded, then inf s1 = inf rngE1.

(13) Let s1 be a function from N into R and E1 be a function from N into R.

If s1 = E1 and s1 is non-negative and summable, then
∑
s1 =

∑
E1.

(14) P is a σ-measure on S2.

Let us consider O1, S2, P . The functor P2MP yields a σ-measure on S2

and is defined as follows:

(Def. 1) P2MP = P.

One can prove the following proposition

(15) Let X be a non empty set, S be a σ-field of subsets of X, and M be a

σ-measure on S. If M(X) = R(1), then M is a probability on S.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M

be a σ-measure on S. Let us assume that M(X) = R(1). The functor M2PM

yielding a probability on S is defined as follows:
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(Def. 2) M2PM = M.

One can prove the following propositions:

(16) If A1 is non-decreasing, then the partial unions of A1 = A1.

(17) Suppose A1 is non-decreasing. Then (the partial diff-unions of A1)(0) =

A1(0) and for every n holds (the partial diff-unions of A1)(n+1) = A1(n+

1) \ A1(n).

(18) If A1 is non-decreasing, then for every n holds A1(n+ 1) = (the partial

diff-unions of A1)(n+ 1) ∪A1(n).

(19) If A1 is non-decreasing, then for every n holds (the partial diff-unions of

A1)(n+ 1) misses A1(n).

(20) If X1 is non-decreasing, then the partial unions of X1 = X1.

(21) Suppose X1 is non-decreasing. Then (the partial diff-unions of X1)(0) =

X1(0) and for every n holds (the partial diff-unions of X1)(n+1) = X1(n+

1) \X1(n).

(22) If X1 is non-decreasing, then for every n holds (the partial diff-unions of

X1)(n+ 1) misses X1(n).

Let us consider O1, S2, P . We say that P is complete on S2 if and only if:

(Def. 3) For every subset A of O1 and for every set B such that B ∈ S2 holds if

A ⊆ B and P (B) = 0, then A ∈ S2.

Next we state the proposition

(23) P is complete on S2 iff P2MP is complete on S2.

Let us consider O1, S2, P . A subset of O1 is called a set with measure zero

w.r.t. P if:

(Def. 4) There exists a set A such that A ∈ S2 and it ⊆ A and P (A) = 0.

We now state three propositions:

(24) Let Y be a subset of O1. Then Y is a set with measure zero w.r.t. P if

and only if Y is a set with measure zero w.r.t. P2MP.

(25) ∅ is a set with measure zero w.r.t. P .

(26) Let B1, B2 be sets. Suppose B1 ∈ S2 and B2 ∈ S2. Let C1, C2 be sets

with measure zero w.r.t. P . If B1 ∪ C1 = B2 ∪ C2, then P (B1) = P (B2).

Let us consider O1, S2, P . The functor COM(S2, P ) yields a non empty

family of subsets of O1 and is defined by the condition (Def. 5).

(Def. 5) Let A be a set. Then A ∈ COM(S2, P ) if and only if there exists a set

B such that B ∈ S2 and there exists a set C with measure zero w.r.t. P

such that A = B ∪ C.
Next we state two propositions:

(27) For every set C with measure zero w.r.t. P holds C ∈ COM(S2, P ).

(28) COM(S2, P ) = COM(S2,P2MP ).
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Let us consider O1, S2, P and let A be an element of COM(S2, P ). The

functor PCOM2MCOM A yields an element of COM(S2,P2MP ) and is defined

by:

(Def. 6) PCOM2MCOMA = A.

Next we state the proposition

(29) S2 ⊆ COM(S2, P ).

Let us consider O1, S2, P and let A be an element of COM(S2, P ). The

functor ProbPartA yielding a non empty family of subsets of O1 is defined by:

(Def. 7) For every set B holds B ∈ ProbPartA iff B ∈ S2 and B ⊆ A and A \ B
is a set with measure zero w.r.t. P .

We now state several propositions:

(30) For every element A of COM(S2, P ) holds

ProbPartA = MeasPart PCOM2MCOM A.

(31) For every element A of COM(S2, P ) and for all sets A1, A3 such that

A1 ∈ ProbPartA and A3 ∈ ProbPartA holds P (A1) = P (A3).

(32) For every function F from N into COM(S2, P ) there exists a sequence

B3 of subsets of S2 such that for every n holds B3(n) ∈ ProbPartF (n).

(33) Let F be a function from N into COM(S2, P ) and B3 be a sequence of

subsets of S2. Then there exists a sequence C3 of subsets of O1 such that

for every n holds C3(n) = F (n) \B3(n).

(34) Let B3 be a sequence of subsets of O1. Suppose that for every n holds

B3(n) is a set with measure zero w.r.t. P . Then there exists a se-

quence C3 of subsets of S2 such that for every n holds B3(n) ⊆ C3(n)

and P (C3(n)) = 0.

(35) Let D be a non empty family of subsets of O1. Suppose that for every

set A holds A ∈ D iff there exists a set B such that B ∈ S2 and there

exists a set C with measure zero w.r.t. P such that A = B ∪ C. Then D

is a σ-field of subsets of O1.

Let us consider O1, S2, P . Then COM(S2, P ) is a σ-field of subsets of O1.

Let us consider O1, S2, P . We see that the set with measure zero w.r.t. P

is an event of COM(S2, P ).

Next we state two propositions:

(36) For every set A holds A ∈ COM(S2, P ) iff there exist sets A1, A3 such

that A1 ∈ S2 and A3 ∈ S2 and A1 ⊆ A and A ⊆ A3 and P (A3 \ A1) = 0.

(37) Let C be a non empty family of subsets of O1. Suppose that for every set

A holds A ∈ C iff there exist sets A1, A3 such that A1 ∈ S2 and A3 ∈ S2

and A1 ⊆ A and A ⊆ A3 and P (A3 \ A1) = 0. Then C = COM(S2, P ).

Let us consider O1, S2, P . The functor COM(P ) yields a probability on

COM(S2, P ) and is defined as follows:
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(Def. 8) For every set B such that B ∈ S2 and for every set C with measure zero

w.r.t. P holds (COM(P ))(B ∪ C) = P (B).

One can prove the following propositions:

(38) COM(P ) = COM(P2MP ).

(39) COM(P ) is complete on COM(S2, P ).

(40) For every event A of S2 holds P (A) = (COM(P ))(A).

(41) For every set C with measure zero w.r.t. P holds (COM(P ))(C) = 0.

(42) For every element A of COM(S2, P ) and for every set B such that B ∈
ProbPartA holds P (B) = (COM(P ))(A).
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[4] Józef Bia las. Infimum and supremum of the set of real numbers. Measure theory. For-

malized Mathematics, 2(1):163–171, 1991.
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