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Summary. The article introduces simple continued fractions. They are

defined as an infinite sequence of integers. The characterization of rational num-

bers in terms of simple continued fractions is shown. We also give definitions

of convergents of continued fractions, and several important properties of simple

continued fractions and their convergents.

MML identifier: REAL 3, version: 7.8.01 4.70.946

The articles [15], [6], [18], [4], [2], [13], [3], [7], [8], [16], [17], [1], [19], [20], [14],

[10], [5], [9], [11], and [12] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: a, b, k, n, m are natural

numbers, i is an integer, r is a real number, p is a rational number, c is a complex

number, x is a set, and f is a function.

Let us consider n. One can check the following observations:

∗ n÷ 0 is zero,

∗ nmod 0 is zero,
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∗ 0÷ n is zero, and

∗ 0 mod n is zero.

Let us consider c. One can verify that c− c is zero and c
0 is zero.

Let us note that b0c is zero.

The following propositions are true:

(1) If 0 < r and r < 1, then 1 < 1
r .

(2) If i ≤ r and r < i+ 1, then brc = i.

(3) bmn c = m÷ n.
(4) If mmod n = 0, then m

n = m÷ n.
(5) If m

n = m÷ n, then mmod n = 0.

(6) frac(mn ) = mmodn
n .

(7) If p ≥ 0, then there exist natural numbers m, n such that n 6= 0 and

p = m
n .

Let R be a binary relation. We say that R is integer-yielding if and only if:

(Def. 1) rngR ⊆ Z.
One can verify that every binary relation which is natural-yielding is also

integer-yielding.

One can check the following observations:

∗ there exists a function which is natural-yielding,

∗ every binary relation which is empty is also integer-yielding, and

∗ every binary relation which is integer-yielding is also real-yielding.

Let D be a set. One can verify that every partial function from D to Z is

integer-yielding.

Let f be an integer-yielding function and let n be a set. One can verify that

f(n) is integer.

Let us note that there exists a sequence of real numbers which is integer-

yielding.

An integer sequence is an integer-yielding sequence of real numbers.

One can prove the following proposition

(8) f is an integer sequence iff dom f = N and for every x such that x ∈ N
holds f(x) is integer.

Let f be a natural-yielding function and let n be a set. Note that f(n) is

natural.

We now state three propositions:

(9) f is a function from N into Z iff f is an integer sequence.

(10) f is a sequence of naturals iff dom f = N and for every x such that x ∈ N
holds f(x) is natural.

(11) f is a function from N into N iff f is a sequence of naturals.
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2. On the Euclidean Algorithm

Let m, n be natural numbers. The functor modSeq(m,n) yielding a sequence

of naturals is defined by:

(Def. 2) (modSeq(m,n))(0) = mmodn and (modSeq(m,n))(1) = nmod (mmod

n) and for every natural number k holds (modSeq(m,n))(k + 2) =

(modSeq(m,n))(k) mod (modSeq(m,n))(k + 1).

Let m, n be natural numbers. The functor divSeq(m,n) yielding a sequence

of naturals is defined as follows:

(Def. 3) (divSeq(m,n))(0) = m ÷ n and (divSeq(m,n))(1) = n ÷ (m mod

n) and for every natural number k holds (divSeq(m,n))(k + 2) =

(modSeq(m,n))(k) ÷ (modSeq(m,n))(k + 1).

We now state several propositions:

(12) (divSeq(m,n))(1) = n÷ (modSeq(m,n))(0).

(13) (modSeq(m,n))(1) = nmod (modSeq(m,n))(0).

(14) If a ≤ b and (modSeq(m,n))(a) = 0, then (modSeq(m,n))(b) = 0.

(15) If a < b, then (modSeq(m,n))(a) > (modSeq(m,n))(b) or

(modSeq(m,n))(a) = 0.

(16) If (divSeq(m,n))(a + 1) = 0, then (modSeq(m,n))(a) = 0.

(17) If a 6= 0 and a ≤ b and (divSeq(m,n))(a) = 0, then (divSeq(m,n))(b) =

0.

(18) If a < b and (modSeq(m,n))(a) = 0, then (divSeq(m,n))(b) = 0.

(19) If n 6= 0, then m = (divSeq(m,n))(0) · n+ (modSeq(m,n))(0).

(20) If n 6= 0, then m
n = (divSeq(m,n))(0) + 1

n
(modSeq(m,n))(0)

.

One can prove the following propositions:

(21) divSeq(m, 0) = N 7−→ 0.

(22) modSeq(m, 0) = N 7−→ 0.

(23) divSeq(0, n) = N 7−→ 0.

(24) modSeq(0, n) = N 7−→ 0.

(25) There exists a natural number k such that (divSeq(m,n))(k) = 0 and

(modSeq(m,n))(k) = 0.

3. Simple Continued Fractions

Let r be a real number. The remainders for s.c.f. of r yields a sequence of

real numbers and is defined by the conditions (Def. 4).

(Def. 4)(i) (The remainders for s.c.f. of r)(0) = r, and

(ii) for every natural number n holds (the remainders for s.c.f. of r)(n+1) =
1

frac (the remainders for s.c.f. of r)(n) .
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Let r be a real number. We introduce rfs r as a synonym of the remainders

for s.c.f. of r.

Let r be a real number. The simple continued fraction of r yielding an

integer sequence is defined by:

(Def. 5) For every natural number n holds (the simple continued fraction of

r)(n) = b(rfs r)(n)c.
Let r be a real number. We introduce scf r as a synonym of the simple

continued fraction of r.

The following propositions are true:

(26) (rfs r)(n+ 1) = 1
(rfs r)(n)−(scf r)(n) .

(27) If (rfs r)(n) = 0 and n ≤ m, then (rfs r)(m) = 0.

(28) If (rfs r)(n) = 0 and n ≤ m, then (scf r)(m) = 0.

(29) (rfs i)(n+ 1) = 0.

(30) (scf i)(0) = i and (scf i)(n+ 1) = 0.

(31) If i > 1, then (rfs( 1
i ))(1) = i and (rfs( 1

i ))(n+ 2) = 0.

(32) If i > 1, then (scf( 1
i ))(0) = 0 and (scf( 1

i ))(1) = i and (scf( 1
i ))(n+2) = 0.

(33) If for every n holds (scf r)(n) = 0, then (rfs r)(n) = 0.

(34) If for every n holds (scf r)(n) = 0, then r = 0.

(35) frac r = r − (scf r)(0).

(36) (rfs r)(n+ 1) = (rfs( 1
frac r ))(n).

(37) (scf r)(n+ 1) = (scf( 1
frac r ))(n).

(38) If n ≥ 1, then (scf r)(n) ≥ 0.

(39) If n ≥ 1, then (scf r)(n) ∈ N.
(40) If n ≥ 1 and (scf r)(n) 6= 0, then (scf r)(n) ≥ 1.

(41) (scf(mn ))(k) = (divSeq(m,n))(k) and (rfs(mn ))(1) = n
(modSeq(m,n))(0) and

(rfs(mn ))(k + 2) = (modSeq(m,n))(k)
(modSeq(m,n))(k+1) .

(42) r is rational iff there exists n such that for every m such that m ≥ n

holds (scf r)(m) = 0.

(43) If for every n holds (scf r)(n) 6= 0, then r is irrational.

4. Convergents of Simple Continued Fractions

In the sequel n1, n2 are natural numbers.

Let r be a real number. The convergent numerators of r yielding a sequence

of real numbers is defined by the conditions (Def. 6).

(Def. 6)(i) (The convergent numerators of r)(0) = (scf r)(0),

(ii) (the convergent numerators of r)(1) = (scf r)(1) · (scf r)(0) + 1, and
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(iii) for every natural number n holds (the convergent numerators of r)(n+

2) = (scf r)(n+2)·(the convergent numerators of r)(n+1)+(the convergent

numerators of r)(n).

Let r be a real number. The convergent denominators of r yields a sequence

of real numbers and is defined by the conditions (Def. 7).

(Def. 7)(i) (The convergent denominators of r)(0) = 1,

(ii) (the convergent denominators of r)(1) = (scf r)(1), and

(iii) for every natural number n holds (the convergent denominators of

r)(n+2) = (scf r)(n+2) · (the convergent denominators of r)(n+1)+(the

convergent denominators of r)(n).

Let r be a real number. We introduce cn r as a synonym of the convergent

numerators of r. We introduce cd r as a synonym of the convergent denominators

of r.

One can prove the following propositions:

(44) If (scf r)(0) > 0, then for every n holds (cn r)(n) ∈ N.
(45) If (scf r)(0) > 0, then for every n holds (cn r)(n) > 0.

(46) If (scf r)(0) > 0, then for every n holds (cn r)(n + 2) > (scf r)(n + 2) ·
(cn r)(n+ 1).

(47) If (scf r)(0) > 0, then for every n such that n1 = (cn r)(n + 1) and

n2 = (cn r)(n) holds gcd(n1, n2) = 1.

(48) If (scf r)(0) > 0 and for every n holds (scf r)(n) 6= 0, then for every n

holds (cn r)(n) ≥ τn.
(49) If (scf r)(0) > 0 and for every n holds (scf r)(n) ≤ b, then for every n

holds (cn r)(n) ≤ ( b+
√
b2+4
2 )n+1.

(50) (cd r)(n) ∈ N.
(51) (cd r)(n) ≥ 0.

(52) If (scf r)(1) > 0, then for every n holds (cd r)(n) > 0.

(53) (cd r)(n+ 2) ≥ (scf r)(n+ 2) · (cd r)(n+ 1).

(54) If (scf r)(1) > 0, then for every n holds (cd r)(n + 2) > (scf r)(n + 2) ·
(cd r)(n+ 1).

(55) If for every n holds (scf r)(n) > 0, then for every n such that n ≥ 1 holds
1

(cd r)(n)·(cd r)(n+1) <
1

(scf r)(n+1)·(cd r)(n)2 .

(56) If for every n holds (scf r)(n) ≤ b, then for every n holds (cd r)(n+ 1) ≤
( b+
√
b2+4
2 )n+1.

(57) If n1 = (cd r)(n+ 1) and n2 = (cd r)(n), then gcd(n1, n2) = 1.

(58) If for every n holds (scf r)(n) > 0, then for every n holds (cd r)(n+1)
(cd r)(n) ≥

1
(scf r)(n+2) .
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(59) If for every n holds (scf r)(n) > 0, then for every n holds (cd r)(n+ 2) ≤
2 · (scf r)(n+ 2) · (cd r)(n+ 1).

(60) If for every n holds (scf r)(n) 6= 0, then for every n holds
1

(scf r)(n+1)·(cd r)(n)2 ≤ 1
(cd r)(n)2 .

(61) If for every n holds (scf r)(n) 6= 0, then for every n holds (cd r)(n+ 1) ≥
τn.

(62) If a > 0 and for every n holds (scf r)(n) ≥ a, then for every n holds

(cd r)(n+ 1) ≥ (a+
√
a2+4
2 )n.

(63) (cn r)(n+2)
(cd r)(n+2) = (scf r)(n+2)·(cn r)(n+1)+(cn r)(n)

(scf r)(n+2)·(cd r)(n+1)+(cd r)(n) .

(64) (cn r)(n+ 1) · (cd r)(n)− (cn r)(n) · (cd r)(n+ 1) = (−1)n.

(65) If for every n holds (cd r)(n) 6= 0, then (cn r)(n+1)
(cd r)(n+1) −

(cn r)(n)
(cd r)(n) =

(−1)n

(cd r)(n+1)·(cd r)(n) .

(66) (cn r)(n+ 2) · (cd r)(n)− (cn r)(n) · (cd r)(n+ 2) = (−1)n · (scf r)(n+ 2).

(67) If for every n holds (cd r)(n) 6= 0, then (cn r)(n+2)
(cd r)(n+2) −

(cn r)(n)
(cd r)(n) =

(−1)n·(scf r)(n+2)
(cd r)(n+2)·(cd r)(n) .

(68) If for every n holds (scf r)(n) 6= 0, then for every n such that n ≥ 1 holds
(cn r)(n)
(cd r)(n) = (cn r)(n+1)−(cn r)(n−1)

(cd r)(n+1)−(cd r)(n−1) .

(69) If for every n holds (cd r)(n) 6= 0, then for every n holds | (cn r)(n+1)
(cd r)(n+1) −

(cn r)(n)
(cd r)(n) | = 1

|(cd r)(n+1)·(cd r)(n)| .

(70) If (scf r)(1) > 0, then for every n holds (cn r)(2·n+1)
(cd r)(2·n+1) >

(cn r)(2·n)
(cd r)(2·n) .

Let r be a real number. The convergents of continued fractions of r yielding

a sequence of real numbers is defined as follows:

(Def. 8) The convergents of continued fractions of r = cn r/ cd r.

Let r be a real number. We introduce cocf r as a synonym of the convergents

of continued fractions of r.

One can prove the following propositions:

(71) (cocf r)(0) = (scf r)(0).

(72) If (scf r)(1) 6= 0, then (cocf r)(1) = (scf r)(0) + 1
(scf r)(1) .

(73) If for every n holds (scf r)(n) > 0, then (cocf r)(2) = (scf r)(0) +
1

(scf r)(1)+ 1
(scf r)(2)

.

(74) If for every n holds (scf r)(n) > 0, then (cocf r)(3) = (scf r)(0) +
1

(scf r)(1)+ 1

(scf r)(2)+ 1
(scf r)(3)

.

(75) If for every n holds (scf r)(n) > 0, then for every n such that n ≥ 1 holds
(cn r)(2·n+1)
(cd r)(2·n+1) <

(cn r)(2·n−1)
(cd r)(2·n−1) .



simple continued fractions . . . 77

(76) If for every n holds (scf r)(n) > 0, then for every n such that n ≥ 1 holds
(cn r)(2·n)
(cd r)(2·n) >

(cn r)(2·n−2)
(cd r)(2·n−2) .

(77) If for every n holds (scf r)(n) > 0, then for every n such that n ≥ 1 holds
(cn r)(2·n)
(cd r)(2·n) <

(cn r)(2·n−1)
(cd r)(2·n−1) .

Let r be a real number. The back continued fraction of r yields a sequence

of real numbers and is defined by the conditions (Def. 9).

(Def. 9)(i) (The back continued fraction of r)(0) = (scf r)(0), and

(ii) for every natural number n holds (the back continued fraction of r)(n+

1) = 1
(the back continued fraction of r)(n) + (scf r)(n+ 1).

Let r be a real number. We introduce bcf r as a synonym of the back

continued fraction of r.

One can prove the following proposition

(78) If (scf r)(0) > 0, then for every n holds (bcf r)(n+ 1) = (cn r)(n+1)
(cn r)(n) .
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1. Preliminaries

One can prove the following propositions:

(1) For every non zero natural number n holds n − 1 is a natural number

and 1 ≤ n.
(2) For every odd natural number n holds n − 1 is a natural number and

1 ≤ n.
(3) For all odd integers n, m such that n < m holds n ≤ m− 2.

(4) For all odd integers n, m such that m < n holds m+ 2 ≤ n.
(5) For every odd natural number n such that 1 6= n there exists an odd

natural number m such that m+ 2 = n.

(6) For every odd natural number n such that n ≤ 2 holds n = 1.

(7) For every odd natural number n such that n ≤ 4 holds n = 1 or n = 3.

(8) For every odd natural number n such that n ≤ 6 holds n = 1 or n = 3

or n = 5.
1This work has been partially supported by the NSERC grant OGP 9207.
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(9) For every odd natural number n such that n ≤ 8 holds n = 1 or n = 3

or n = 5 or n = 7.

(10) For every even natural number n such that n ≤ 1 holds n = 0.

(11) For every even natural number n such that n ≤ 3 holds n = 0 or n = 2.

(12) For every even natural number n such that n ≤ 5 holds n = 0 or n = 2

or n = 4.

(13) For every even natural number n such that n ≤ 7 holds n = 0 or n = 2

or n = 4 or n = 6.

(14) For every finite sequence p and for every non zero natural number n such

that p is one-to-one and n ≤ len p holds p(n)" p = n.

(15) Let p be a non empty finite sequence and T be a non empty subset of

rng p. Then there exists a set x such that x ∈ T and for every set y such

that y ∈ T holds x" p ≤ y " p.

Let p be a finite sequence and let n be a natural number. The functor

p.followSet(n) yields a finite set and is defined as follows:

(Def. 1) p.followSet(n) = rng〈p(n), . . . , p(len p)〉.
The following three propositions are true:

(16) Let p be a finite sequence, x be a set, and n be a natural number. Suppose

x ∈ rng p and n ∈ dom p and p is one-to-one. Then x ∈ p.followSet(n) if

and only if x" p ≥ n.
(17) Let p, q be finite sequences and x be a set. If p = 〈x〉 a q, then for every

non zero natural number n holds p.followSet(n+ 1) = q.followSet(n).

(18) Let X be a set, f be a finite sequence of elements of X, and g be a

FinSubsequence of f . If len Seq g = len f, then Seq g = f.

2. Miscellany on Graphs

Next we state a number of propositions:

(19) Let G be a graph, S be a subset of the vertices of G, H be a subgraph

of G induced by S, and u, v be sets. Suppose u ∈ S and v ∈ S. Let e be

a set. If e joins u and v in G, then e joins u and v in H.

(20) For every graph G and for every walk W of G holds W is trail-like iff

lenW = 2 · card(W.edges()) + 1.

(21) Let G be a graph, S be a subset of the vertices of G, H be a subgraph

of G with vertices S removed, and W be a walk of G. Suppose that for

every odd natural number n such that n ≤ lenW holds W (n) /∈ S. Then

W is a walk of H.



chordal graphs 81

(22) Let G be a graph and a, b be sets. Suppose a 6= b. Let W be a walk of

G. If W.vertices() = {a, b}, then there exists a set e such that e joins a

and b in G.

(23) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, and W be a walk of G. If W.vertices() ⊆ S,
then W is a walk of H.

(24) Let G1, G2 be graphs. Suppose G1 =G G2. Let W1 be a walk of G1 and

W2 be a walk of G2. If W1 = W2, then if W1 is cycle-like, then W2 is

cycle-like.

(25) Let G be a graph, P be a path of G, and m, n be odd natural numbers.

Suppose m ≤ lenP and n ≤ lenP and P (m) = P (n). Then m = n or

m = 1 and n = lenP or m = lenP and n = 1.

(26) Let G be a graph and P be a path of G. Suppose P is open. Let a, e, b

be sets. Suppose a /∈ P .vertices() and b = P .first() and e joins a and b in

G. Then (G.walkOf(a, e, b)).append(P ) is path-like.

(27) Let G be a graph and P , H be paths of G. Suppose P .edges() misses

H.edges() and P is non trivial and open and H is non trivial and open and

P .vertices() ∩H.vertices() = {P .first(), P .last()} and H.first() = P .last()

and H.last() = P .first(). Then P .append(H) is cycle-like.

(28) For every graph G and for all walks W1, W2 of G such that W1.last() =

W2.first() holds (W1.append(W2)).length() = W1.length() +W2.length().

(29) Let G be a graph and A, B be non empty subsets of the vertices of G.

Suppose B ⊆ A. Let H1 be a subgraph of G induced by A. Then every

subgraph of H1 induced by B is a subgraph of G induced by B.

(30) Let G be a graph and A, B be non empty subsets of the vertices of G.

Suppose B ⊆ A. Let H1 be a subgraph of G induced by A. Then every

subgraph of G induced by B is a subgraph of H1 induced by B.

(31) Let G be a graph and S, T be non empty subsets of the vertices of

G. If T ⊆ S, then for every subgraph G2 of G induced by S holds

G2.edgesBetween(T ) = G.edgesBetween(T ).

The scheme FinGraphOrderCompInd concerns a unary predicate P, and

states that:

For every finite graph G holds P[G]

provided the parameters meet the following condition:

• Let k be a non zero natural number. Suppose that for every finite

graph G3 such that G3.order() < k holds P[G3]. Let G4 be a finite

graph. If G4.order() = k, then P[G4].

We now state two propositions:

(32) For every graph G and for every walk W of G such that W is open and

path-like holds W is vertex-distinct.
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(33) Let G be a graph and P be a path of G. Suppose P is open and lenP > 3.

Let e be a set. If e joins P .last() and P .first() in G, then P .addEdge(e)

is cycle-like.

3. Shortest Topological Path

Let G be a graph and let W be a walk of G. We say that W is minimum

length if and only if:

(Def. 2) For every walk W2 of G such that W2 is walk from W.first() to W.last()

holds lenW2 ≥ lenW.

The following propositions are true:

(34) For every graph G and for every walk W of G and for every subwalk

S of W such that S.first() = W.first() and S.edgeSeq() = W.edgeSeq()

holds S = W.

(35) For every graph G and for every walk W of G and for every subwalk S

of W such that lenS = lenW holds S = W.

(36) For every graph G and for every walk W of G such that W is minimum

length holds W is path-like.

(37) For every graph G and for every walk W of G such that W is minimum

length holds W is path-like.

(38) Let G be a graph and W be a walk of G. Suppose that for every path P

of G such that P is walk from W.first() to W.last() holds lenP ≥ lenW.

Then W is minimum length.

(39) For every graph G and for every walk W of G holds there exists a path

of G which is walk from W.first() to W.last() and minimum length.

(40) Let G be a graph and W be a walk of G. Suppose W is minimum length.

Let m, n be odd natural numbers. Suppose m + 2 < n and n ≤ lenW.

Then it is not true that there exists a set e such that e joins W (m) and

W (n) in G.

(41) Let G be a graph, S be a non empty subset of the vertices of G, H be

a subgraph of G induced by S, and W be a walk of H. Suppose W is

minimum length. Let m, n be odd natural numbers. Suppose m+ 2 < n

and n ≤ lenW. Then it is not true that there exists a set e such that e

joins W (m) and W (n) in G.

(42) Let G be a graph and W be a walk of G. Suppose W is minimum

length. Let m, n be odd natural numbers. If m ≤ n and n ≤ lenW, then

W.cut(m,n) is minimum length.

(43) Let G be a graph. Suppose G is connected. Let A, B be non empty

subsets of the vertices of G. Suppose A misses B. Then there exists a

path P of G such that
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(i) P is minimum length and non trivial,

(ii) P .first() ∈ A,
(iii) P .last() ∈ B, and

(iv) for every odd natural number n such that 1 < n and n < lenP holds

P (n) /∈ A and P (n) /∈ B.

4. Adjacency and Complete Graphs

Let G be a graph and let a, b be vertices of G. We say that a and b are

adjacent if and only if:

(Def. 3) There exists a set e such that e joins a and b in G.

Let us note that the predicate a and b are adjacent is symmetric.

Next we state several propositions:

(44) Let G1, G2 be graphs. Suppose G1 =G G2. Let u1, v1 be vertices of G1.

Suppose u1 and v1 are adjacent. Let u2, v2 be vertices of G2. If u1 = u2

and v1 = v2, then u2 and v2 are adjacent.

(45) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, u, v be vertices of G, and t, w be vertices of

H. Suppose u = t and v = w. Then u and v are adjacent if and only if t

and w are adjacent.

(46) For every graph G and for every walk W of G such that W.first() 6=
W.last() and W.first() and W.last() are not adjacent holds W.length() ≥
2.

(47) Let G be a graph and v1, v2, v3 be vertices of G. Suppose v1 6= v2 and

v1 6= v3 and v2 6= v3 and v1 and v2 are adjacent and v2 and v3 are adjacent.

Then there exists a path P of G and there exist sets e1, e2 such that

P is open and lenP = 5 and P .length() = 2 and e1 joins v1 and v2 in G

and e2 joins v2 and v3 in G and P .edges() = {e1, e2} and P .vertices() =

{v1, v2, v3} and P (1) = v1 and P (3) = v2 and P (5) = v3.

(48) Let G be a graph and v1, v2, v3, v4 be vertices of G. Suppose that

v1 6= v2 and v1 6= v3 and v2 6= v3 and v2 6= v4 and v3 6= v4 and v1 and v2

are adjacent and v2 and v3 are adjacent and v3 and v4 are adjacent. Then

there exists a path P of G such that lenP = 7 and P .length() = 3 and

P .vertices() = {v1, v2, v3, v4} and P (1) = v1 and P (3) = v2 and P (5) = v3

and P (7) = v4.

Let G be a graph and let S be a set. The functor G.adjacentSet(S) yields a

subset of the vertices of G and is defined as follows:

(Def. 4) G.adjacentSet(S) = {u;u ranges over vertices of G: u /∈ S ∧∨
v : vertex of G (v ∈ S ∧ u and v are adjacent)}.

One can prove the following propositions:
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(49) For every graph G and for all sets S, x such that x ∈ G.adjacentSet(S)

holds x /∈ S.
(50) Let G be a graph, S be a set, and u be a vertex of G. Then u ∈

G.adjacentSet(S) if and only if the following conditions are satisfied:

(i) u /∈ S, and

(ii) there exists a vertex v of G such that v ∈ S and u and v are adjacent.

(51) For all graphs G1, G2 such that G1 =G G2 and for every set S holds

G1.adjacentSet(S) = G2.adjacentSet(S).

(52) For every graph G and for all vertices u, v of G holds u ∈
G.adjacentSet({v}) iff u 6= v and v and u are adjacent.

(53) For every graph G and for all sets x, y holds x ∈ G.adjacentSet({y}) iff

y ∈ G.adjacentSet({x}).
(54) Let G be a graph and C be a path of G. Suppose C is cycle-like and

C.length() > 3. Let x be a vertex of G. Suppose x ∈ C.vertices(). Then

there exist odd natural numbers m, n such that m+ 2 < n and n ≤ lenC

and m = 1 and n = lenC and m = 1 and n = lenC − 2 and m = 3

and n = lenC and C(m) 6= C(n) and C(m) ∈ G.adjacentSet({x}) and

C(n) ∈ G.adjacentSet({x}).
(55) Let G be a graph and C be a path of G. Suppose C is cycle-like and

C.length() > 3. Let x be a vertex of G. Suppose x ∈ C.vertices(). Then

there exist odd natural numbers m, n such that

(i) m+ 2 < n,

(ii) n ≤ lenC,

(iii) C(m) 6= C(n),

(iv) C(m) ∈ G.adjacentSet({x}),
(v) C(n) ∈ G.adjacentSet({x}), and

(vi) for every set e such that e ∈ C.edges() holds e does not join C(m) and

C(n) in G.

(56) For every loopless graph G and for every vertex u of G holds

G.adjacentSet({u}) = ∅ iff u is isolated.

(57) Let G be a graph, G0 be a subgraph of G, S be a non empty subset of

the vertices of G, x be a vertex of G, G1 be a subgraph of G induced by

S, and G2 be a subgraph of G induced by S ∪ {x}. If G1 is connected and

x ∈ G.adjacentSet(the vertices of G1), then G2 is connected.

(58) Let G be a graph, S be a non empty subset of the vertices of G, H be

a subgraph of G induced by S, and u be a vertex of G. Suppose u ∈ S
and G.adjacentSet({u}) ⊆ S. Let v be a vertex of H. If u = v, then

G.adjacentSet({u}) = H.adjacentSet({v}).
Let G be a graph and let S be a set. A subgraph of G is called an adjacency

graph of S in G if:
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(Def. 5) It is a subgraph of G induced by G.adjacentSet(S) if S is a subset of the

vertices of G.

Next we state two propositions:

(59) Let G1, G2 be graphs. Suppose G1 =G G2. Let u1 be a vertex of G1 and

u2 be a vertex of G2. Suppose u1 = u2. Let H1 be an adjacency graph of

{u1} in G1 and H2 be an adjacency graph of {u2} in G2. Then H1 =G H2.

(60) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, and u be a vertex of G. Suppose u ∈ S and

G.adjacentSet({u}) ⊆ S and G.adjacentSet({u}) 6= ∅. Let v be a vertex of

H. Suppose u = v. Let G5 be an adjacency graph of {u} in G and H3 be

an adjacency graph of {v} in H. Then G5 =G H3.

Let G be a graph. We say that G is complete if and only if:

(Def. 6) For all vertices u, v of G such that u 6= v holds u and v are adjacent.

We now state the proposition

(61) For every graph G such that G is trivial holds G is complete.

One can check that every graph which is trivial is also complete.

Let us note that there exists a graph which is trivial, simple, and complete

and there exists a graph which is non trivial, finite, simple, and complete.

The following propositions are true:

(62) For all graphs G1, G2 such that G1 =G G2 holds if G1 is complete, then

G2 is complete.

(63) For every complete graph G and for every subset S of the vertices of G

holds every subgraph of G induced by S is complete.

5. Simplicial Vertex

Let G be a graph and let v be a vertex of G. We say that v is simplicial if

and only if:

(Def. 7) If G.adjacentSet({v}) 6= ∅, then every adjacency graph of {v} in G is

complete.

The following propositions are true:

(64) For every complete graph G holds every vertex of G is simplicial.

(65) For every trivial graph G holds every vertex of G is simplicial.

(66) Let G1, G2 be graphs. Suppose G1 =G G2. Let u1 be a vertex of G1 and

u2 be a vertex of G2. If u1 = u2 and u1 is simplicial, then u2 is simplicial.

(67) Let G be a graph, S be a non empty subset of the vertices of G, H be

a subgraph of G induced by S, and u be a vertex of G. Suppose u ∈ S
and G.adjacentSet({u}) ⊆ S. Let v be a vertex of H. If u = v, then u is

simplicial iff v is simplicial.
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(68) Let G be a graph and v be a vertex of G. Suppose v is simplicial.

Let a, b be sets. Suppose a 6= b and a ∈ G.adjacentSet({v}) and b ∈
G.adjacentSet({v}). Then there exists a set e such that e joins a and b in

G.

(69) Let G be a graph and v be a vertex of G. Suppose v is not simplicial.

Then there exist vertices a, b of G such that a 6= b and v 6= a and v 6= b

and v and a are adjacent and v and b are adjacent and a and b are not

adjacent.

6. Vertex Separator

Let G be a graph and let a, b be vertices of G. Let us assume that a 6= b and

a and b are not adjacent. A subset of the vertices of G is said to be a vertex

separator of a and b if:

(Def. 8) a /∈ it and b /∈ it and for every subgraph G2 of G with vertices it removed

holds there exists no walk of G2 which is walk from a to b.

Next we state several propositions:

(70) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Then every vertex separator of a and b is a vertex

separator of b and a.

(71) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a subset of the vertices of G. Then S is a

vertex separator of a and b if and only if a /∈ S and b /∈ S and for every

walk W of G such that W is walk from a to b there exists a vertex x of G

such that x ∈ S and x ∈W.vertices().

(72) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent. Let S be a vertex separator of a and b and W be a walk

of G. Suppose W is walk from a to b. Then there exists an odd natural

number k such that 1 < k and k < lenW and W (k) ∈ S.
(73) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent. Let S be a vertex separator of a and b. If S = ∅, then

there exists no walk of G which is walk from a to b.

(74) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent and there exists no walk of G which is walk from a to b.

Then ∅ is a vertex separator of a and b.

(75) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent. Let S be a vertex separator of a and b, G2 be a subgraph

of G with vertices S removed, and a2 be a vertex of G2. If a2 = a, then

(G2.reachableFrom(a2)) ∩ S = ∅.
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(76) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and b

are not adjacent. Let S be a vertex separator of a and b, G2 be a subgraph

of G with vertices S removed, and a2, b2 be vertices of G2. If a2 = a and

b2 = b, then (G2.reachableFrom(a2)) ∩ (G2.reachableFrom(b2)) = ∅.
(77) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b and G2 be a

subgraph of G with vertices S removed. Then a is a vertex of G2 and b is

a vertex of G2.

Let G be a graph, let a, b be vertices of G, and let S be a vertex separator

of a and b. We say that S is minimal if and only if:

(Def. 9) For every subset T of S such that T 6= S holds T is not a vertex separator

of a and b.

Next we state several propositions:

(78) Let G be a graph, a, b be vertices of G, and S be a vertex separator of

a and b. If S = ∅, then S is minimal.

(79) For every finite graph G and for all vertices a, b of G holds there exists

a vertex separator of a and b which is minimal.

(80) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b. Suppose S

is minimal. Let T be a vertex separator of b and a. If S = T, then T is

minimal.

(81) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b. Suppose S is

minimal. Let x be a vertex of G. If x ∈ S, then there exists a walk W of

G such that W is walk from a to b and x ∈W.vertices().

(82) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b. Suppose S is

minimal. Let H be a subgraph of G with vertices S removed and a1 be

a vertex of H. Suppose a1 = a. Let x be a vertex of G. Suppose x ∈ S.
Then there exists a vertex y of G such that y ∈ H.reachableFrom(a1) and

x and y are adjacent.

(83) Let G be a graph and a, b be vertices of G. Suppose a 6= b and a and

b are not adjacent. Let S be a vertex separator of a and b. Suppose S is

minimal. Let H be a subgraph of G with vertices S removed and a1 be

a vertex of H. Suppose a1 = b. Let x be a vertex of G. Suppose x ∈ S.
Then there exists a vertex y of G such that y ∈ H.reachableFrom(a1) and

x and y are adjacent.
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7. Chordal Graphs

Let G be a graph and let W be a walk of G. We say that W is chordal if

and only if the condition (Def. 10) is satisfied.

(Def. 10) There exist odd natural numbers m, n such that

(i) m+ 2 < n,

(ii) n ≤ lenW,

(iii) W (m) 6= W (n),

(iv) there exists a set e such that e joins W (m) and W (n) in G, and

(v) for every set f such that f ∈ W.edges() holds f does not join W (m)

and W (n) in G.

Let G be a graph and let W be a walk of G. We introduce W is chordless

as an antonym of W is chordal.

Next we state a number of propositions:

(84) Let G be a graph and W be a walk of G. Suppose W is chordal. Then

there exist odd natural numbers m, n such that

(i) m+ 2 < n,

(ii) n ≤ lenW,

(iii) W (m) 6= W (n),

(iv) there exists a set e such that e joins W (m) and W (n) in G, and

(v) if W is cycle-like, then m = 1 and n = lenW and m = 1 and n =

lenW − 2 and m = 3 and n = lenW.

(85) Let G be a graph and P be a path of G. Given odd natural numbers m,

n such that

(i) m+ 2 < n,

(ii) n ≤ lenP,

(iii) there exists a set e such that e joins P (m) and P (n) in G, and

(iv) if P is cycle-like, then m = 1 and n = lenP andm = 1 and n = lenP−2

and m = 3 and n = lenP.

Then P is chordal.

(86) Let G1, G2 be graphs. Suppose G1 =G G2. Let W1 be a walk of G1

and W2 be a walk of G2. If W1 = W2, then if W1 is chordal, then W2 is

chordal.

(87) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, W1 be a walk of G, and W2 be a walk of H.

If W1 = W2, then W2 is chordal iff W1 is chordal.

(88) Let G be a graph and W be a walk of G. Suppose W is cycle-like and

chordal and W.length() = 4. Then there exists a set e such that e joins

W (1) and W (5) in G or e joins W (3) and W (7) in G.

(89) For every graph G and for every walk W of G such that W is minimum

length holds W is chordless.
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(90) Let G be a graph andW be a walk of G. SupposeW is open and lenW =

5 and W.first() and W.last() are not adjacent. Then W is chordless.

(91) For every graph G and for every walk W of G holds W is chordal iff

W.reverse() is chordal.

(92) Let G be a graph and P be a path of G. Suppose P is open and chordless.

Let m, n be odd natural numbers. Suppose m < n and n ≤ lenP. Then

there exists a set e such that e joins P (m) and P (n) in G if and only if

m+ 2 = n.

(93) Let G be a graph and P be a path of G. Suppose P is open and chord-

less. Let m, n be odd natural numbers. If m < n and n ≤ lenP, then

P .cut(m,n) is chordless and P .cut(m,n) is open.

(94) Let G be a graph, S be a non empty subset of the vertices of G, H be a

subgraph of G induced by S, W be a walk of G, and V be a walk of H.

If W = V, then W is chordless iff V is chordless.

Let G be a graph. We say that G is chordal if and only if:

(Def. 11) For every walk P of G such that P .length() > 3 and P is cycle-like holds

P is chordal.

Next we state two propositions:

(95) For all graphs G1, G2 such that G1 =G G2 holds if G1 is chordal, then

G2 is chordal.

(96) For every finite graph G such that card (the vertices of G) ≤ 3 holds G

is chordal.

One can verify the following observations:

∗ there exists a graph which is trivial, finite, and chordal,

∗ there exists a graph which is non trivial, finite, simple, and chordal, and

∗ every graph which is complete is also chordal.

Let G be a chordal graph and let V be a set. One can check that every

subgraph of G induced by V is chordal.

Next we state several propositions:

(97) Let G be a chordal graph and P be a path of G. Suppose P is open

and chordless. Let x, e be sets. Suppose x /∈ P .vertices() and e joins

P .last() and x in G and it is not true that there exists a set f such that

f joins P (lenP − 2) and x in G. Then P .addEdge(e) is path-like and

P .addEdge(e) is open and P .addEdge(e) is chordless.

(98) Let G be a chordal graph and a, b be vertices of G. Suppose a 6= b

and a and b are not adjacent. Let S be a vertex separator of a and b. If

S is minimal and non empty, then every subgraph of G induced by S is

complete.

(99) Let G be a finite graph. Suppose that for all vertices a, b of G such that
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a 6= b and a and b are not adjacent and for every vertex separator S of a

and b such that S is minimal and non empty holds every subgraph of G

induced by S is complete. Then G is chordal.

(100) Let G be a finite chordal graph and a, b be vertices of G. Suppose a 6= b

and a and b are not adjacent. Let S be a vertex separator of a and b.

Suppose S is minimal. Let H be a subgraph of G with vertices S removed

and a3 be a vertex of H. Suppose a = a3. Then there exists a vertex c

of G such that c ∈ H.reachableFrom(a3) and for every vertex x of G such

that x ∈ S holds c and x are adjacent.

(101) Let G be a finite chordal graph and a, b be vertices of G. Suppose

a 6= b and a and b are not adjacent. Let S be a vertex separator of a

and b. Suppose S is minimal. Let H be a subgraph of G with vertices S

removed and a3 be a vertex of H. Suppose a = a3. Let x, y be vertices

of G. Suppose x ∈ S and y ∈ S. Then there exists a vertex c of G such

that c ∈ H.reachableFrom(a3) and c and x are adjacent and c and y are

adjacent.

(102) Let G be a non trivial finite chordal graph. Suppose G is not complete.

Then there exist vertices a, b of G such that a 6= b and a and b are not

adjacent and a is simplicial and b is simplicial.

(103) For every finite chordal graph G holds there exists a vertex of G which

is simplicial.

8. Vertex Elimination Scheme

Let G be a finite graph. A finite sequence of elements of the vertices of G is

said to be a vertex scheme of G if:

(Def. 12) It is one-to-one and rng it = the vertices of G.

Let G be a finite graph. Note that every vertex scheme of G is non empty.

The following three propositions are true:

(104) For every finite graphG and for every vertex scheme S of G holds lenS =

card (the vertices of G).

(105) For every finite graph G and for every vertex scheme S of G holds 1 ≤
lenS.

(106) For all finite graphs G, H and for every vertex scheme g of G such that

G =G H holds g is a vertex scheme of H.

Let G be a finite graph, let S be a vertex scheme of G, and let x be a vertex

of G. Then x" S is a non zero element of N.

Let G be a finite graph, let S be a vertex scheme of G, and let n be a natural

number. Then S.followSet(n) is a subset of the vertices of G.

Next we state the proposition
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(107) Let G be a finite graph, S be a vertex scheme of G, and n be a non zero

natural number. If n ≤ lenS, then S.followSet(n) is non empty.

Let G be a finite graph and let S be a vertex scheme of G. We say that S

is perfect if and only if the condition (Def. 13) is satisfied.

(Def. 13) Let n be a non zero natural number. Suppose n ≤ lenS. Let G6 be

a subgraph of G induced by S.followSet(n) and v be a vertex of G6. If

v = S(n), then v is simplicial.

One can prove the following propositions:

(108) Let G be a finite trivial graph and v be a vertex of G. Then there exists

a vertex scheme S of G such that S = 〈v〉 and S is perfect.

(109) Let G be a finite graph and V be a vertex scheme of G. Then V is

perfect if and only if for all vertices a, b, c of G such that b 6= c and a and

b are adjacent and a and c are adjacent and for all natural numbers v5, v6,

v7 such that v5 ∈ domV and v6 ∈ domV and v7 ∈ domV and V (v5) = a

and V (v6) = b and V (v7) = c and v5 < v6 and v5 < v7 holds b and c are

adjacent.

Let G be a finite chordal graph. One can check that there exists a vertex

scheme of G which is perfect.

The following propositions are true:

(110) Let G, H be finite chordal graphs and g be a perfect vertex scheme of

G. If G =G H, then g is a perfect vertex scheme of H.

(111) For every finite graph G such that there exists a vertex scheme of G

which is perfect holds G is chordal.
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[5] Czes law Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
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Summary. First, equivalence conditions for connectedness are examined

for a finite topological space (originated in [9]). Secondly, definitions of subspace,

and components of the subspace of a finite topological space are given. Lastly,

concepts of continuous finite sequence and minimum path of finite topological

space are proposed.
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[11], [8], and [17] provide the terminology and notation for this paper.

1. Connectedness and Subspaces

In this paper F1 denotes a non empty finite topology space and A, B, C

denote subsets of F1.

Let us consider F1. One can check that ∅(F1) is connected.

We now state two propositions:

(1) For all subsets A, B of F1 holds (A ∪B)b = Ab ∪Bb.

(2) (∅(F1))
b = ∅.

Let us consider F1. Observe that (∅(F1))
b is empty.

Next we state the proposition

(3) Let A be a subset of F1. Suppose that for all subsets B, C of F1 such

that A = B ∪C and B 6= ∅ and C 6= ∅ and B misses C holds Bb meets C

and B meets Cb. Then A is connected.
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Let F1 be a non empty finite topology space. We say that F1 is connected

if and only if:

(Def. 1) Ω(F1) is connected.

We now state four propositions:

(4) Let A be a subset of F1. Suppose A is connected. Let A2, B2 be subsets

of F1. Suppose A = A2 ∪ B2 and A2 misses B2 and A2 and B2 are

separated. Then A2 = ∅(F1) or B2 = ∅(F1).

(5) Suppose F1 is connected. Let A, B be subsets of F1. Suppose Ω(F1) =

A ∪ B and A misses B and A and B are separated. Then A = ∅(F1) or

B = ∅(F1).

(6) For all subsets A, B of F1 such that F1 is symmetric and Ab misses B

holds A misses Bb.

(7) Let A be a subset of F1. Suppose that

(i) F1 is symmetric, and

(ii) for all subsets A2, B2 of F1 such that A = A2 ∪ B2 and A2 misses B2

and A2 and B2 are separated holds A2 = ∅(F1) or B2 = ∅(F1).

Then A is connected.

Let T be a finite topology space. A finite topology space is said to be a

subspace of T if it satisfies the conditions (Def. 2).

(Def. 2)(i) The carrier of it ⊆ the carrier of T ,

(ii) dom (the neighbour-map of it) = the carrier of it, and

(iii) for every element x of it such that x ∈ the carrier of it holds (the

neighbour-map of it)(x) = (the neighbour-map of T )(x)∩ the carrier of it.

Let T be a finite topology space. Note that there exists a subspace of T

which is strict.

Let T be a non empty finite topology space. Note that there exists a subspace

of T which is strict and non empty.

Let T be a non empty finite topology space and let P be a non empty subset

of T . The functor T �P yields a strict non empty subspace of T and is defined

as follows:

(Def. 3) ΩT �P = P.

We now state the proposition

(8) For every non empty subspace X of F1 such that F1 is filled holds X is

filled.

Let F1 be a filled non empty finite topology space. Note that every non

empty subspace of F1 is filled.

Next we state a number of propositions:

(9) For every non empty subspace X of F1 such that F1 is symmetric holds

X is symmetric.

(10) For every subspace X ′ of F1 holds every subset of X ′ is a subset of F1.
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(11) For every subset P of F1 holds P is closed iff P c is open.

(12) Let A be a subset of F1. Then A is open if and only if the following

conditions are satisfied:

(i) for every element z of F1 such that U(z) ⊆ A holds z ∈ A, and

(ii) for every element x of F1 such that x ∈ A holds U(x) ⊆ A.
(13) Let X ′ be a non empty subspace of F1, A be a subset of F1, and A1 be

a subset of X ′. If A = A1, then A1
b = Ab ∩ ΩX′ .

(14) Let X ′ be a non empty subspace of F1, P1, Q1 be subsets of F1, and

P , Q be subsets of X ′. Suppose P = P1 and Q = Q1. If P and Q are

separated, then P1 and Q1 are separated.

(15) Let X ′ be a non empty subspace of F1, P , Q be subsets of F1, and P1,

Q1 be subsets of X ′. Suppose P = P1 and Q = Q1 and P ∪ Q ⊆ ΩX′ . If

P and Q are separated, then P1 and Q1 are separated.

(16) For every non empty subset A of F1 holds A is connected iff F1�A is

connected.

(17) Let F1 be a filled non empty finite topology space and A be a non empty

subset of F1. Suppose F1 is symmetric. Then A is connected if and only

if for all subsets P , Q of F1 such that A = P ∪Q and P misses Q and P

and Q are separated holds P = ∅(F1) or Q = ∅(F1).

(18) For every subset A of F1 such that F1 is filled and connected and A 6= ∅
and Ac 6= ∅ holds Aδ 6= ∅.

(19) For every subset A of F1 such that F1 is filled, symmetric, and connected

and A 6= ∅ and Ac 6= ∅ holds Aδi 6= ∅.
(20) For every subset A of F1 such that F1 is filled, symmetric, and connected

and A 6= ∅ and Ac 6= ∅ holds Aδo 6= ∅.
(21) For every subset A of F1 holds Aδi misses Aδo .

(22) For every filled non empty finite topology space F1 and for every subset

A of F1 holds Aδo = Ab \ A.
(23) For all subsets A, B of F1 such that A and B are separated holds Aδo

misses B.

(24) Let A, B be subsets of F1. Suppose F1 is filled and A misses B and Aδo

misses B and Bδo misses A. Then A and B are separated.

(25) For every point x of F1 holds {x} is connected.

Let us consider F1 and let x be a point of F1. Note that {x} is connected.

Let F1 be a non empty finite topology space and let A be a subset of F1.

We say that A is a component of F1 if and only if:

(Def. 4) A is connected and for every subset B of F1 such that B is connected

holds if A ⊆ B, then A = B.

One can prove the following propositions:
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(26) For every subset A of F1 such that A is a component of F1 holds A 6=
∅(F1).

(27) If A is closed and B is closed and A misses B, then A and B are sepa-

rated.

(28) If F1 is filled and Ω(F1) = A ∪ B and A and B are separated, then A is

open and closed.

(29) For all subsets A, B, A1, B1 of F1 such that A and B are separated and

A1 ⊆ A and B1 ⊆ B holds A1 and B1 are separated.

(30) If A and B are separated and A and C are separated, then A and B ∪C
are separated.

(31) Suppose that

(i) F1 is filled and symmetric, and

(ii) for all subsets A, B of F1 such that Ω(F1) = A ∪ B and A 6= ∅(F1) and

B 6= ∅(F1) and A is closed and B is closed holds A meets B.

Then F1 is connected.

(32) Suppose F1 is connected. Let A, B be subsets of F1. Suppose Ω(F1) =

A∪B and A 6= ∅(F1) and B 6= ∅(F1) and A is closed and B is closed. Then

A meets B.

(33) If F1 is filled and A is connected and A ⊆ B ∪ C and B and C are

separated, then A ⊆ B or A ⊆ C.
(34) Let A, B be subsets of F1. Suppose F1 is symmetric and A is connected

and B is connected and A and B are not separated. Then A ∪ B is

connected.

(35) For all subsets A, C of F1 such that F1 is symmetric and C is connected

and C ⊆ A and A ⊆ Cb holds A is connected.

(36) For every subset C of F1 such that F1 is filled and symmetric and C is

connected holds Cb is connected.

(37) Suppose F1 is filled, symmetric, and connected and A is connected and

Ω(F1) \A = B ∪C and B and C are separated. Then A∪B is connected.

(38) Let X ′ be a non empty subspace of F1, A be a subset of F1, and B be a

subset of X ′. Suppose F1 is symmetric and A = B. Then A is connected

if and only if B is connected.

(39) For every subset A of F1 such that F1 is filled and symmetric and A is

a component of F1 holds A is closed.

(40) Let A, B be subsets of F1. Suppose F1 is symmetric and A is a com-

ponent of F1 and B is a component of F1. Then A = B or A and B are

separated.

(41) Let A, B be subsets of F1. Suppose F1 is filled and symmetric and A is

a component of F1 and B is a component of F1. Then A = B or A misses

B.
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(42) Let C be a subset of F1. Suppose F1 is filled and symmetric and C is

connected. Let S be a subset of F1. If S is a component of F1, then C

misses S or C ⊆ S.
Let F1 be a non empty finite topology space, let A be a non empty subset

of F1, and let B be a subset of F1. We say that B is a component of A if and

only if:

(Def. 5) There exists a subset B1 of F1�A such that B1 = B and B1 is a compo-

nent of F1�A.
We now state the proposition

(43) Let D be a non empty subset of F1. Suppose F1 is filled and symmetric

and D = Ω(F1) \A. Suppose F1 is connected and A is connected and C is

a component of D. Then Ω(F1) \ C is connected.

2. Continuous Finite Sequences and Minimum Path

Let us consider F1 and let f be a finite sequence of elements of F1. We say

that f is continuous if and only if the conditions (Def. 6) are satisfied.

(Def. 6)(i) 1 ≤ len f, and

(ii) for every natural number i and for every element x1 of F1 such that

1 ≤ i and i < len f and x1 = f(i) holds f(i+ 1) ∈ U(x1).

Let us consider F1 and let x be an element of F1. Observe that 〈x〉 is

continuous.

One can prove the following two propositions:

(44) Let f be a finite sequence of elements of F1 and x, y be elements of F1. If

f is continuous and y = f(len f) and x ∈ U(y), then f a 〈x〉 is continuous.

(45) Let f , g be finite sequences of elements of F1. Suppose f is continuous

and g is continuous and g(1) ∈ U(flen f ). Then f a g is continuous.

Let us consider F1 and let A be a subset of F1. We say that A is arcwise

connected if and only if the condition (Def. 7) is satisfied.

(Def. 7) Let x1, x2 be elements of F1. Suppose x1 ∈ A and x2 ∈ A. Then there

exists a finite sequence f of elements of F1 such that f is continuous and

rng f ⊆ A and f(1) = x1 and f(len f) = x2.

Let us consider F1. Observe that ∅(F1) is arcwise connected.

Let us consider F1 and let x be an element of F1. One can verify that {x}
is arcwise connected.

The following three propositions are true:

(46) For every subset A of F1 such that F1 is symmetric holds A is connected

iff A is arcwise connected.

(47) Let g be a finite sequence of elements of F1 and k be a natural number.

If g is continuous and 1 ≤ k, then g�k is continuous.
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(48) Let g be a finite sequence of elements of F1 and k be an element of N.

If g is continuous and k < len g, then g�k is continuous.

Let us consider F1, let g be a finite sequence of elements of F1, let A be a

subset of F1, and let x1, x2 be elements of F1. We say that g is minimum path

in A between x1 and x2 if and only if the conditions (Def. 8) are satisfied.

(Def. 8)(i) g is continuous,

(ii) rng g ⊆ A,
(iii) g(1) = x1,

(iv) g(len g) = x2, and

(v) for every finite sequence h of elements of F1 such that h is continuous

and rng h ⊆ A and h(1) = x1 and h(len h) = x2 holds len g ≤ lenh.

One can prove the following propositions:

(49) For every subset A of F1 and for every element x of F1 such that x ∈ A
holds 〈x〉 is minimum path in A between x and x.

(50) Let A be a subset of F1. Then A is arcwise connected if and only if for

all elements x1, x2 of F1 such that x1 ∈ A and x2 ∈ A holds there exists

a finite sequence of elements of F1 which is minimum path in A between

x1 and x2.

(51) Let A be a subset of F1 and x1, x2 be elements of F1. Given a finite

sequence f of elements of F1 such that f is continuous and rng f ⊆ A

and f(1) = x1 and f(len f) = x2. Then there exists a finite sequence of

elements of F1 which is minimum path in A between x1 and x2.

(52) Let g be a finite sequence of elements of F1, A be a subset of F1, x1, x2

be elements of F1, and k be an element of N. Suppose g is minimum path

in A between x1 and x2 and 1 ≤ k and k ≤ len g. Then g�k is continuous

and rng(g�k) ⊆ A and (g�k)(1) = x1 and (g�k)(len(g�k)) = gk.

(53) Let g be a finite sequence of elements of F1, A be a subset of F1, x1,

x2 be elements of F1, and k be an element of N. Suppose g is minimum

path in A between x1 and x2 and k < len g. Then g�k is continuous and

rng(g�k) ⊆ A and g�k(1) = g1+k and g�k(len(g�k)) = x2.

(54) Let g be a finite sequence of elements of F1, A be a subset of F1, and

x1, x2 be elements of F1. Suppose g is minimum path in A between x1

and x2. Let k be a natural number. If 1 ≤ k and k ≤ len g, then g�k is

minimum path in A between x1 and gk.

(55) Let g be a finite sequence of elements of F1, A be a subset of F1, and

x1, x2 be elements of F1. If g is minimum path in A between x1 and x2,

then g is one-to-one.

Let us consider F1 and let f be a finite sequence of elements of F1. We say

that f is inversely continuous if and only if the conditions (Def. 9) are satisfied.

(Def. 9)(i) 1 ≤ len f, and
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(ii) for all natural numbers i, j and for every element y of F1 such that

1 ≤ i and i ≤ len f and 1 ≤ j and j ≤ len f and y = f(i) and i 6= j and

f(j) ∈ U(y) holds i = j + 1 or j = i+ 1.

We now state three propositions:

(56) Let g be a finite sequence of elements of F1, A be a subset of F1, and x1,

x2 be elements of F1. Suppose g is minimum path in A between x1 and

x2 and F1 is symmetric. Then g is inversely continuous.

(57) Let g be a finite sequence of elements of F1, A be a subset of F1, and x1,

x2 be elements of F1. Suppose g is minimum path in A between x1 and

x2 and F1 is filled and symmetric and x1 6= x2. Then

(i) for every natural number i such that 1 < i and i < len g holds rng g ∩
U(gi) = {g(i −′ 1), g(i), g(i + 1)},

(ii) rng g ∩ U(g1) = {g(1), g(2)}, and

(iii) rng g ∩ U(glen g) = {g(len g −′ 1), g(len g)}.
(58) Let g be a finite sequence of elements of F1, A be a non empty subset

of F1, x1, x2 be elements of F1, and B0 be a subset of F1�A. Suppose g

is minimum path in A between x1 and x2 and F1 is filled and symmetric

and x1 6= x2 and B0 = {x1}. Let i be an element of N. If i < len g, then

g(i+ 1) ∈ Finf(B0, i) and if i ≥ 1, then g(i + 1) /∈ Finf(B0, i−′ 1).
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The papers [20], [23], [2], [19], [24], [6], [12], [8], [21], [4], [1], [22], [18], [14], [7],

[9], [25], [3], [5], [15], [16], [17], [11], [13], and [10] provide the terminology and

notation for this paper.

For simplicity, we use the following convention: D denotes a non empty set,

i, j, k denote elements of N, n, m denote natural numbers, and e denotes a

finite sequence of elements of R.

Let d be a set, let g be a finite sequence of elements of d∗, and let n be a

natural number. Then g(n) is a finite sequence of elements of d.

Let x be a real number. Then 〈x〉 is a finite sequence of elements of R.

Next we state a number of propositions:

(1) Let a be an element of D, m be a non empty natural number, and g be

a finite sequence of elements of D. Then len g = m and for every natural

number i such that i ∈ dom g holds g(i) = a if and only if g = m 7→ a.

(2) Let a, b be elements of D. Then there exists a finite sequence g of

elements of D such that len g = n and for every natural number i such

that i ∈ Seg n holds if i ∈ Seg k, then g(i) = a and if i /∈ Seg k, then

g(i) = b.
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(3) Suppose that for every natural number i such that i ∈ dom e holds

0 ≤ e(i). Let f be a sequence of real numbers. Suppose f(1) = e(1)

and for every natural number n such that 0 6= n and n < len e holds

f(n + 1) = f(n) + e(n + 1). Let n, m be natural numbers. If n ∈ dom e

and m ∈ dom e and n ≤ m, then f(n) ≤ f(m).

(4) Suppose len e ≥ 1 and for every natural number i such that i ∈ dom e

holds 0 ≤ e(i). Let f be a sequence of real numbers. Suppose f(1) = e(1)

and for every natural number n such that 0 6= n and n < len e holds

f(n+ 1) = f(n) + e(n+ 1). Let n be a natural number. If n ∈ dom e, then

e(n) ≤ f(n).

(5) Suppose that for every natural number i such that i ∈ dom e holds

0 ≤ e(i). Let k be a natural number. If k ∈ dom e, then e(k) ≤ ∑ e.

(6) Let r1, r2 be real numbers, k be a natural number, and s2 be a sequence

of real numbers. Then there exists a sequence s1 of real numbers such that

s1(0) = r1 and for every n holds if n 6= 0 and n ≤ k, then s1(n) = s2(n)

and if n > k, then s1(n) = r2.

(7) Let F be a finite sequence of elements of R. Then there exists a sequence

f of real numbers such that f(0) = 0 and for every natural number i such

that i < lenF holds f(i+ 1) = f(i) + F (i+ 1) and
∑
F = f(lenF ).

(8) Let D be a set and e1 be a finite sequence of elements of D. Then n 7→ e1

is a finite sequence of elements of D∗.

(9) Let D be a set and e1, e2 be finite sequences of elements of D. Then

there exists a finite sequence e of elements of D∗ such that len e = n and

for every natural number i such that i ∈ Segn holds if i ∈ Seg k, then

e(i) = e1 and if i /∈ Seg k, then e(i) = e2.

(10) Let D be a set and s be a finite sequence. Then s is a matrix over D if

and only if there exists n such that for every i such that i ∈ dom s there

exists a finite sequence p of elements of D such that s(i) = p and len p = n.

(11) Let D be a set and e be a finite sequence of elements of D∗. Then there

exists n such that for every i such that i ∈ dom e holds len e(i) = n if and

only if e is a matrix over D.

(12) For every tabular finite sequence M holds 〈〈i, j〉〉 ∈ the indices of M iff

i ∈ Seg lenM and j ∈ Seg widthM.

(13) Let D be a non empty set and M be a matrix over D. Then 〈〈i, j〉〉 ∈ the

indices of M if and only if i ∈ domM and j ∈ domM(i).

(14) For every non empty set D and for every matrix M over D such that 〈〈i,
j〉〉 ∈ the indices of M holds Mi,j = M(i)(j).

(15) Let D be a non empty set and M be a matrix over D. Then 〈〈i, j〉〉 ∈ the

indices of M if and only if i ∈ dom(M�,j) and j ∈ dom Line(M, i).

(16) Let D1, D2 be non empty sets, M1 be a matrix over D1, and M2 be a
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matrix over D2. If M1 = M2, then for every i such that i ∈ domM1 holds

Line(M1, i) = Line(M2, i).

(17) Let D1, D2 be non empty sets, M1 be a matrix over D1, and M2 be a

matrix over D2. If M1 = M2, then for every j such that j ∈ Seg widthM1

holds (M1)�,j = (M2)�,j .
(18) Let e1 be a finite sequence of elements of D. If len e1 = m, then n 7→ e1

is a matrix over D of dimension n × m.

(19) Let e1, e2 be finite sequences of elements of D. Suppose len e1 = m and

len e2 = m. Then there exists a matrix M over D of dimension n × m

such that for every natural number i holds

(i) if i ∈ Seg k, then M(i) = e1, and

(ii) if i /∈ Seg k, then M(i) = e2.

Let e be a finite sequence of elements of R∗. The functor
∑
e yields a finite

sequence of elements of R and is defined by:

(Def. 1) len
∑
e = len e and for every k such that k ∈ dom

∑
e holds (

∑
e)(k) =∑

e(k).

Let m be a matrix over R. We introduce LineSumm as a synonym of
∑
m.

We now state the proposition

(20) For every matrix m over R holds len
∑
m = lenm and for every i such

that i ∈ Seg lenm holds (
∑
m)(i) =

∑
Line(m, i).

Let m be a matrix over R. The functor ColSumm yields a finite sequence

of elements of R and is defined by:

(Def. 2) len ColSumm = widthm and for every j such that j ∈ Seg widthm

holds (ColSumm)(j) =
∑

(m�,j).
We now state two propositions:

(21) For every matrix M over R such that widthM > 0 holds LineSumM =

ColSum(MT).

(22) For every matrix M over R holds ColSumM = LineSum(MT).

Let M be a matrix over R. The functor SumAllM yields an element of R
and is defined as follows:

(Def. 3) SumAllM =
∑∑

M.

The following propositions are true:

(23) For every matrix M over R such that lenM = 0 holds SumAllM = 0.

(24) For every matrix M over R of dimension m × 0 holds SumAllM = 0.

(25) Let M1 be a matrix over R of dimension n × k and M2 be a matrix over

R of dimension m × k. Then
∑

(M1
aM2) = (

∑
M1) a

∑
M2.

(26) For all matrices M1, M2 over R holds
∑
M1 +

∑
M2 =

∑
(M1

_M2).

(27) For all matrices M1, M2 over R such that lenM1 = lenM2 holds

SumAllM1 + SumAllM2 = SumAll(M1
_M2).
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(28) For every matrix M over R holds SumAllM = SumAll(MT).

(29) For every matrix M over R holds SumAllM =
∑

ColSumM.

(30) For all finite sequences x, y of elements of R such that len x = len y holds

len(x • y) = lenx.

(31) For every i and for every element R of Ri holds i 7→ 1 • R = R.

(32) For every finite sequence x of elements of R holds lenx 7→ 1 • x = x.

(33) Let x, y be finite sequences of elements of R. Suppose for every i such

that i ∈ domx holds x(i) ≥ 0 and for every i such that i ∈ dom y holds

y(i) ≥ 0. Let given k. If k ∈ dom(x • y), then (x • y)(k) ≥ 0.

(34) Let given i, e1, e2 be elements of Ri, and f1, f2 be elements of (the

carrier of RF)i. If e1 = f1 and e2 = f2, then e1 • e2 = f1 • f2.

(35) Let e1, e2 be finite sequences of elements of R and f1, f2 be finite se-

quences of elements of RF. If len e1 = len e2 and e1 = f1 and e2 = f2, then

e1 • e2 = f1 • f2.

(36) Let e be a finite sequence of elements of R and f be a finite sequence of

elements of RF. If e = f, then
∑
e =

∑
f.

Let e1, e2 be finite sequences of elements of R. We introduce e1 · e2 as a

synonym of |(e1, e2)|.
We now state several propositions:

(37) Let given i, e1, e2 be elements of Ri, and f1, f2 be elements of (the

carrier of RF)i. If e1 = f1 and e2 = f2, then e1 · e2 = f1 · f2.

(38) Let e1, e2 be finite sequences of elements of R and f1, f2 be finite se-

quences of elements of RF. If len e1 = len e2 and e1 = f1 and e2 = f2, then

e1 · e2 = f1 · f2.

(39) Let M , M1, M2 be matrices over R. Suppose widthM1 = lenM2. Then

M = M1 ·M2 if and only if the following conditions are satisfied:

(i) lenM = lenM1,

(ii) widthM = widthM2, and

(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j = Line(M1, i) ·
(M2)�,j.

(40) Let M be a matrix over R and p be a finite sequence of elements of

R. If lenM = len p, then for every i such that i ∈ Seg len(p ·M) holds

(p ·M)(i) = p ·M�,i.
(41) Let M be a matrix over R and p be a finite sequence of elements of

R. If widthM = len p and widthM > 0, then for every i such that

i ∈ Seg len(M · p) holds (M · p)(i) = Line(M, i) · p.
(42) Let M , M1, M2 be matrices over R. Suppose widthM1 = lenM2 and

widthM1 > 0 and widthM2 > 0. Then M = M1 ·M2 if and only if the

following conditions are satisfied:

(i) lenM = lenM1,
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(ii) widthM = widthM2, and

(iii) for every i such that i ∈ Seg lenM holds Line(M, i) = Line(M1, i) ·M2.

Let n, m, k be non empty natural numbers, let M1 be a matrix over R of

dimension n × k, and let M2 be a matrix over R of dimension k × m. Note

that M1 ·M2

let x, y be finite sequences of elements of R and let M be a matrix over

R. Let us assume that lenx = lenM and len y = widthM. The functor

QuadraticForm(x,M, y) yields a matrix over R and is defined by the conditions

(Def. 4).

(Def. 4)(i) len QuadraticForm(x,M, y) = lenx,

(ii) width QuadraticForm(x,M, y) = len y, and

(iii) for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M holds

(QuadraticForm(x,M, y))i,j = x(i) ·Mi,j · y(j).

The following propositions are true:

(43) Let x, y be finite sequences of elements of R and M be a matrix over R.

If len x = lenM and len y = widthM and len x > 0 and len y > 0, then

(QuadraticForm(x,M, y))T = QuadraticForm(y,MT, x).

(44) Let x, y be finite sequences of elements of R and M be a matrix over R.

If len x = lenM and len y = widthM and len x > 0 and len y > 0, then

|(x,M · y)| = SumAll QuadraticForm(x,M, y).

(45) For every finite sequence x of elements of R holds |(x, len x 7→ 1)| = ∑
x.

(46) Let x, y be finite sequences of elements of R and M be a matrix over R.

If len x = lenM and len y = widthM and len x > 0 and len y > 0, then

|(x ·M,y)| = SumAll QuadraticForm(x,M, y).

(47) Let x, y be finite sequences of elements of R and M be a matrix over R.

If len x = lenM and len y = widthM and len x > 0 and len y > 0, then

|(x ·M,y)| = |(x,M · y)|.
(48) Let x, y be finite sequences of elements of R and M be a matrix over R.

If len y = lenM and lenx = widthM and len x > 0 and len y > 0, then

|(M · x, y)| = |(x,MT · y)|.
(49) Let x, y be finite sequences of elements of R and M be a matrix over R.

If len y = lenM and lenx = widthM and len x > 0 and len y > 0, then

|(x, y ·M)| = |(x ·MT, y)|.
(50) Let x be a finite sequence of elements of R and M be a matrix over

R. If lenx = lenM and x = lenx 7→ 1, then for every k such that

k ∈ Seg len(x ·M) holds (x ·M)(k) =
∑

(M�,k).

(51) Let x be a finite sequence of elements of R and M be a matrix over R.

Suppose len x = widthM and widthM > 0 and x = len x 7→ 1. Let given

k. If k ∈ Seg len(M · x), then (M · x)(k) =
∑

Line(M,k).
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(52) Let n be a non empty natural number. Then there exists a finite sequence

P of elements of R such that lenP = n and for every i such that i ∈ domP

holds P (i) ≥ 0 and
∑
P = 1.

Let p be a finite sequence of elements of R. We say that p is finite probability

distribution if and only if:

(Def. 5) For every i such that i ∈ dom p holds p(i) ≥ 0 and
∑
p = 1.

One can check that there exists a finite sequence of elements of R which is

non empty and finite probability distribution.

One can prove the following propositions:

(53) Let p be a non empty finite probability distribution finite sequence of

elements of R and given k. If k ∈ dom p, then p(k) ≤ 1.

(54) For every non empty yielding matrix M over D holds 1 ≤ lenM and

1 ≤ widthM.

Let M be a matrix over R. We say that M is nonnegative if and only if:

(Def. 6) For all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds Mi,j ≥ 0.

Let M be a matrix over R. We say that M is summable-to-1 if and only if:

(Def. 7) SumAllM = 1.

Let M be a matrix over R. We say that M is joint probability if and only

if:

(Def. 8) M is nonnegative and summable-to-1.

Let us mention that every matrix over R which is joint probability is also

nonnegative and summable-to-1 and every matrix over R which is nonnegative

and summable-to-1 is also joint probability.

We now state the proposition

(55) Let n, m be non empty natural numbers. Then there exists a matrix M

over R of dimension n×m such that M is nonnegative and SumAllM = 1.

One can check that there exists a matrix over R which is non empty yielding

and joint probability.

Let n, m be non empty natural numbers, let D be a non empty set, and let

M be a matrix over D of dimension n × m. Observe that MT

Next we state two propositions:

(56) Let M be a non empty yielding joint probability matrix over R. Then

MT is a non empty yielding joint probability matrix over R.

(57) Let M be a non empty yielding joint probability matrix over R and given

i, j. If 〈〈i, j〉〉 ∈ the indices of M , then Mi,j ≤ 1.

Let M be a matrix over R. We say that M has lines summable-to-1 if and

only if:

(Def. 9) For every k such that k ∈ domM holds
∑
M(k) = 1.

The following proposition is true
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(58) For all non empty natural numbers n, m holds there exists a matrix over

R of dimension n × m which is nonnegative and has lines summable-to-1.

Let M be a matrix over R. We say that M is conditional probability if and

only if:

(Def. 10) M is nonnegative and has lines summable-to-1.

Let us observe that every matrix over R which is conditional probability is

also nonnegative and has lines summable-to-1 and every matrix over R which is

nonnegative and has lines summable-to-1 is also conditional probability.

Let us mention that there exists a matrix over R which is non empty yielding

and conditional probability.

Next we state three propositions:

(59) Let M be a non empty yielding conditional probability matrix over R
and given i, j. If 〈〈i, j〉〉 ∈ the indices of M , then Mi,j ≤ 1.

(60) Let M be a non empty yielding matrix over R. Then the following

statements are equivalent

(i) M is a non empty yielding conditional probability matrix over R,

(ii) for every i such that i ∈ domM holds Line(M, i) is a non empty finite

probability distribution finite sequence of elements of R.

(61) For every non empty yielding matrix M over R with lines summable-to-1

holds SumAllM = lenM.

Let M be a matrix over R. We introduce the row marginal M as a syn-

onym of LineSumM. We introduce the column marginal M as a synonym of

ColSumM.

Let M be a non empty yielding joint probability matrix over R. Note that

the row marginal M is non empty and finite probability distribution and the

column marginal M is non empty and finite probability distribution.

Let M be a non empty yielding matrix over R. Observe that MT is non

empty yielding.

Let M be a non empty yielding joint probability matrix over R. Note that

MT is joint probability.

The following propositions are true:

(62) Let p be a non empty finite probability distribution finite sequence of

elements of R and P be a non empty yielding conditional probability

matrix over R. Suppose len p = lenP. Then p · P is a non empty finite

probability distribution finite sequence of elements of R and len(p · P ) =

widthP.

(63) Let P1, P2 be non empty yielding conditional probability matrices over R.

Suppose widthP1 = lenP2. Then P1·P2 is a non empty yielding conditional

probability matrix over R and len(P1 · P2) = lenP1 and width(P1 · P2) =

widthP2.
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The notation and terminology used here are introduced in the following papers:

[13], [15], [1], [16], [2], [4], [10], [11], [17], [5], [14], [12], [3], [7], [6], [9], and [8].

For simplicity, we adopt the following convention: x, a, b, c denote real

numbers, n denotes a natural number, Z denotes an open subset of R, and f ,

f1, f2 denote partial functions from R to R.

Next we state a number of propositions:

(1) If x ∈ dom (the function tan), then (the function cos)(x) 6= 0.

(2) If x ∈ dom (the function cot), then (the function sin)(x) 6= 0.

(3) If Z ⊆ dom( f1

f2
), then for every x such that x ∈ Z holds ( f1

f2
)(x)nZ =

f1(x)nZ
f2(x)nZ

.

(4) Suppose Z ⊆ dom( f1

f2
) and for every x such that x ∈ Z holds f1(x) =

x + a and f2(x) = x − b. Then f1

f2
is differentiable on Z and for every x

such that x ∈ Z holds ( f1

f2
)′�Z(x) = −a−b

(x−b)2 .

(5) Suppose Z ⊆ dom((the function ln) · 1f ) and for every x such that x ∈ Z
holds f(x) = x. Then (the function ln) · 1f is differentiable on Z and for

every x such that x ∈ Z holds ((the function ln) · 1f )′�Z(x) = − 1
x .

(6) Suppose Z ⊆ dom((the function tan) ·f) and for every x such that x ∈ Z
holds f(x) = a · x+ b. Then
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(i) (the function tan) ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·f)′�Z(x) =
a

(the function cos)(a·x+b)2
.

(7) Suppose Z ⊆ dom((the function cot) ·f) and for every x such that x ∈ Z
holds f(x) = a · x+ b. Then

(i) (the function cot) ·f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·f)′�Z(x) =

− a
(the function sin)(a·x+b)2 .

(8) Suppose Z ⊆ dom((the function tan) · 1f ) and for every x such that x ∈ Z
holds f(x) = x. Then

(i) (the function tan) · 1f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) · 1f )′�Z(x) =

− 1
x2·(the function cos)( 1

x
)2
.

(9) Suppose Z ⊆ dom((the function cot) · 1f ) and for every x such that x ∈ Z
holds f(x) = x. Then

(i) (the function cot) · 1f is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) · 1f )′�Z(x) =
1

x2·(the function sin)( 1
x

)2
.

(10) Suppose Z ⊆ dom((the function tan) ·(f1 + c f2)) and f2 = 2
Z and for

every x such that x ∈ Z holds f1(x) = a+ b · x. Then

(i) (the function tan) ·(f1 + c f2) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·(f1+c f2))′�Z(x) =
b+2·c·x

(the function cos)(a+b·x+c·x2)2
.

(11) Suppose Z ⊆ dom((the function cot) ·(f1 + c f2)) and f2 = 2
Z and for

every x such that x ∈ Z holds f1(x) = a+ b · x. Then

(i) (the function cot) ·(f1 + c f2) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·(f1+c f2))′�Z(x) =

− b+2·c·x
(the function sin)(a+b·x+c·x2)2

.

(12) Suppose Z ⊆ dom((the function tan) ·(the function exp)). Then

(i) (the function tan) ·(the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function

exp))′�Z(x) = (the function exp)(x)
(the function cos)((the function exp)(x))2 .

(13) Suppose Z ⊆ dom((the function cot) ·(the function exp)). Then

(i) (the function cot) ·(the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function

exp))′�Z(x) = − (the function exp)(x)
(the function sin)((the function exp)(x))2 .

(14) Suppose Z ⊆ dom((the function tan) ·(the function ln)). Then

(i) (the function tan) ·(the function ln) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function

ln))′�Z(x) = 1
x·(the function cos)((the function ln)(x))2

.

(15) Suppose Z ⊆ dom((the function cot) ·(the function ln)). Then

(i) (the function cot) ·(the function ln) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function

ln))′�Z(x) = − 1
x·(the function sin)((the function ln)(x))2

.

(16) Suppose Z ⊆ dom((the function exp) ·(the function tan)). Then

(i) (the function exp) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·(the function

tan))′�Z(x) = (the function exp)((the function tan)(x))
(the function cos)(x)2

.

(17) Suppose Z ⊆ dom((the function exp) ·(the function cot)). Then

(i) (the function exp) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·(the function

cot))′�Z (x) = − (the function exp)((the function cot)(x))
(the function sin)(x)2 .

(18) Suppose Z ⊆ dom((the function ln) ·(the function tan)). Then

(i) (the function ln) ·(the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function

tan))′�Z(x) = 1
(the function cos)(x)·(the function sin)(x) .

(19) Suppose Z ⊆ dom((the function ln) ·(the function cot)). Then

(i) (the function ln) ·(the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function

cot))′�Z (x) = − 1
(the function sin)(x)·(the function cos)(x) .

(20) Suppose Z ⊆ dom((nZ) · (the function tan)) and 1 ≤ n. Then

(i) (nZ) · (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((nZ) · (the function tan))′�Z(x) =
n·(the function sin)(x)n−1

Z
(the function cos)(x)n+1

Z
.

(21) Suppose Z ⊆ dom((nZ) · (the function cot)) and 1 ≤ n. Then

(i) (nZ) · (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((nZ) · (the function cot))′�Z (x) =

−n·(the function cos)(x)n−1
Z

(the function sin)(x)n+1
Z

.

(22) Suppose that

(i) Z ⊆ dom((the function tan)+ 1
the function cos), and

(ii) for every x such that x ∈ Z holds 1 + (the function sin)(x) 6= 0 and

1− (the function sin)(x) 6= 0.

Then

(iii) (the function tan)+ 1
the function cos is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ((the function tan)+ 1
the function cos)′�Z(x) =

1
1−(the function sin)(x) .
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(23) Suppose that

(i) Z ⊆ dom((the function tan)− 1
the function cos), and

(ii) for every x such that x ∈ Z holds 1 − (the function sin)(x) 6= 0 and

1 + (the function sin)(x) 6= 0.

Then

(iii) (the function tan)− 1
the function cos is differentiable on Z, and

(iv) for every x such that x ∈ Z holds ((the function tan)− 1
the function cos)′�Z(x) =

1
1+(the function sin)(x) .

(24) Suppose Z ⊆ dom((the function tan)−idZ). Then

(i) (the function tan)−idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan)−idZ)′�Z(x) =
(the function sin)(x)2

(the function cos)(x)2 .

(25) Suppose Z ⊆ dom(−the function cot − idZ). Then

(i) −the function cot− idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−the function cot − idZ)′�Z(x) =
(the function cos)(x)2

(the function sin)(x)2
.

(26) Suppose Z ⊆ dom( 1
a ((the function tan) ·f)− idZ) and for every x such

that x ∈ Z holds f(x) = a · x and a 6= 0. Then

(i) 1
a ((the function tan) ·f)− idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
a ((the function tan) ·f) −

idZ)′�Z(x) = (the function sin)(a·x)2

(the function cos)(a·x)2 .

(27) Suppose Z ⊆ dom((− 1
a) ((the function cot) ·f) − idZ) and for every x

such that x ∈ Z holds f(x) = a · x and a 6= 0. Then

(i) (− 1
a ) ((the function cot) ·f)− idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((− 1
a) ((the function cot) ·f) −

idZ)′�Z(x) = (the function cos)(a·x)2

(the function sin)(a·x)2
.

(28) Suppose Z ⊆ dom(f (the function tan)) and for every x such that x ∈ Z
holds f(x) = a · x+ b. Then

(i) f (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f (the function tan))′�Z(x) =
a·(the function sin)(x)
(the function cos)(x) + a·x+b

(the function cos)(x)2
.

(29) Suppose Z ⊆ dom(f (the function cot)) and for every x such that x ∈ Z
holds f(x) = a · x+ b. Then

(i) f (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (f (the function cot))′�Z (x) =
a·(the function cos)(x)
(the function sin)(x) − a·x+b

(the function sin)(x)2
.

(30) Suppose Z ⊆ dom((the function exp) (the function tan)). Then

(i) (the function exp) (the function tan) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function exp) (the function

tan))′�Z(x) = (the function exp)(x)·(the function sin)(x)
(the function cos)(x) + (the function exp)(x)

(the function cos)(x)2
.

(31) Suppose Z ⊆ dom((the function exp) (the function cot)). Then

(i) (the function exp) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) (the function

cot))′�Z (x) = (the function exp)(x)·(the function cos)(x)
(the function sin)(x) − (the function exp)(x)

(the function sin)(x)2 .

(32) Suppose Z ⊆ dom((the function ln) (the function tan)). Then

(i) (the function ln) (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the function

tan))′�Z(x) =
(the function sin)(x)
(the function cos)(x)

x + (the function ln)(x)
(the function cos)(x)2

.

(33) Suppose Z ⊆ dom((the function ln) (the function cot)). Then

(i) (the function ln) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function ln) (the function

cot))′�Z (x) =
(the function cos)(x)
(the function sin)(x)

x − (the function ln)(x)
(the function sin)(x)2

.

(34) Suppose Z ⊆ dom( 1
f (the function tan)) and for every x such that x ∈ Z

holds f(x) = x. Then

(i) 1
f (the function tan) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
f (the function tan))′�Z (x) =

−
(the function sin)(x)
(the function cos)(x)

x2 +
1
x

(the function cos)(x)2 .

(35) Suppose Z ⊆ dom( 1
f (the function cot)) and for every x such that x ∈ Z

holds f(x) = x. Then

(i) 1
f (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
f (the function cot))′�Z (x) =

−
(the function cos)(x)
(the function sin)(x)

x2 −
1
x

(the function sin)(x)2
.
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Summary. In this article, we give the definitions of forward difference,

backward difference, central difference and difference quotient, and some of their

important properties.
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The articles [2], [6], [1], [13], [16], [17], [14], [4], [5], [9], [8], [12], [18], [7], [15],

[11], [10], [3], and [19] provide the terminology and notation for this paper.

For simplicity, we follow the rules: n, m, i are elements of N, h, r, r1, r2,

x0, x1, x2, x are real numbers, f is a partial function from R to R, and S is a

sequence of partial functions from R into R.

Let f be a partial function from R to R and let h be a real number. The

functor Shift(f, h) yields a partial function from R to R and is defined by:

(Def. 1) dom Shift(f, h) = −h+ dom f and for every x such that x ∈ −h+ dom f

holds (Shift(f, h))(x) = f(x+ h).

Let f be a function from R into R and let h be a real number. Then

Shift(f, h) is a function from R into R and it can be characterized by the con-

dition:

(Def. 2) For every x holds (Shift(f, h))(x) = f(x+ h).

Let f be a partial function from R to R and let h be a real number. The

functor fD(f, h) yielding a partial function from R to R is defined as follows:
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(Def. 3) fD(f, h) = Shift(f, h)− f.
Let f be a function from R into R and let h be a real number. Then fD(f, h)

is a function from R into R.

Let f be a partial function from R to R and let h be a real number. The

functor bD(f, h) yields a partial function from R to R and is defined by:

(Def. 4) bD(f, h) = f − Shift(f,−h).

Let f be a function from R into R and let h be a real number. Then bD(f, h)

is a function from R into R.

We now state the proposition

(1) bD(f, h) = −fD(f,−h).

Let f be a partial function from R to R and let h be a real number. The

functor cD(f, h) yielding a partial function from R to R is defined by:

(Def. 5) cD(f, h) = Shift(f, h2 )− Shift(f,−h
2 ).

Let f be a function from R into R and let h be a real number. Then cD(f, h)

is a function from R into R.

Let f be a partial function from R to R and let h be a real number. The

forward difference of f and h yields a sequence of partial functions from R into

R and is defined by the conditions (Def. 6).

(Def. 6)(i) (The forward difference of f and h)(0) = f, and

(ii) for every n holds (the forward difference of f and h)(n+ 1) = fD((the

forward difference of f and h)(n), h).

Let f be a partial function from R to R and let h be a real number. We

introduce fdif(f, h) as a synonym of the forward difference of f and h.

In the sequel f , f1, f2 denote functions from R into R.

The following propositions are true:

(2) For every n holds (fdif(f, h))(n) is a function from R into R.

(3) For every x holds (fD(f, h))(x) = f(x+ h)− f(x).

(4) For every x holds (bD(f, h))(x) = f(x)− f(x− h).

(5) For every x holds (cD(f, h))(x) = f(x+ h
2 )− f(x− h

2 ).

(6) If f is constant, then for every x holds (fdif(f, h))(n + 1)(x) = 0.

(7) (fdif(r f, h))(n+ 1)(x) = r · (fdif(f, h))(n+ 1)(x).

(8) (fdif(f1+f2, h))(n+1)(x) = (fdif(f1, h))(n+1)(x)+(fdif(f2, h))(n+1)(x).

(9) (fdif(f1−f2, h))(n+1)(x) = (fdif(f1, h))(n+1)(x)−(fdif(f2, h))(n+1)(x).

(10) If f = r1 f1 + r2 f2, then for every x holds (fdif(f, h))(n + 1)(x) =

r1 · (fdif(f1, h))(n + 1)(x) + r2 · (fdif(f2, h))(n+ 1)(x).

(11) For every x holds (fdif(f, h))(1)(x) = (Shift(f, h))(x) − f(x).

Let f be a partial function from R to R and let h be a real number. The

backward difference of f and h yielding a sequence of partial functions from R
into R is defined by the conditions (Def. 7).
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(Def. 7)(i) (The backward difference of f and h)(0) = f, and

(ii) for every n holds (the backward difference of f and h)(n+1) = bD((the

backward difference of f and h)(n), h).

Let f be a partial function from R to R and let h be a real number. We

introduce bdif(f, h) as a synonym of the backward difference of f and h.

We now state several propositions:

(12) For every n holds (bdif(f, h))(n) is a function from R into R.

(13) If f is constant, then for every x holds (bdif(f, h))(n+ 1)(x) = 0.

(14) (bdif(r f, h))(n+ 1)(x) = r · (bdif(f, h))(n+ 1)(x).

(15) (bdif(f1 + f2, h))(n+ 1)(x) = (bdif(f1, h))(n+ 1)(x) + (bdif(f2, h))(n+

1)(x).

(16) (bdif(f1 − f2, h))(n+ 1)(x) = (bdif(f1, h))(n+ 1)(x)− (bdif(f2, h))(n+

1)(x).

(17) If f = r1 f1 + r2 f2, then for every x holds (bdif(f, h))(n + 1)(x) =

r1 · (bdif(f1, h))(n + 1)(x) + r2 · (bdif(f2, h))(n+ 1)(x).

(18) (bdif(f, h))(1)(x) = f(x)− (Shift(f,−h))(x).

Let f be a partial function from R to R and let h be a real number. The

central difference of f and h yielding a sequence of partial functions from R into

R is defined by the conditions (Def. 8).

(Def. 8)(i) (The central difference of f and h)(0) = f, and

(ii) for every n holds (the central difference of f and h)(n + 1) = cD((the

central difference of f and h)(n), h).

Let f be a partial function from R to R and let h be a real number. We

introduce cdif(f, h) as a synonym of the central difference of f and h.

One can prove the following propositions:

(19) For every n holds (cdif(f, h))(n) is a function from R into R.

(20) If f is constant, then for every x holds (cdif(f, h))(n+ 1)(x) = 0.

(21) (cdif(r f, h))(n+ 1)(x) = r · (cdif(f, h))(n+ 1)(x).

(22) (cdif(f1 + f2, h))(n + 1)(x) = (cdif(f1, h))(n + 1)(x) + (cdif(f2, h))(n +

1)(x).

(23) (cdif(f1 − f2, h))(n + 1)(x) = (cdif(f1, h))(n + 1)(x) − (cdif(f2, h))(n +

1)(x).

(24) If f = r1 f1 + r2 f2, then for every x holds (cdif(f, h))(n + 1)(x) =

r1 · (cdif(f1, h))(n+ 1)(x) + r2 · (cdif(f2, h))(n+ 1)(x).

(25) (cdif(f, h))(1)(x) = (Shift(f, h2 ))(x) − (Shift(f,−h
2 ))(x).

(26) (fdif(f, h))(n)(x) = (bdif(f, h))(n)(x + n · h).

(27) (fdif(f, h))(2 · n)(x) = (cdif(f, h))(2 · n)(x+ n · h).

(28) (fdif(f, h))(2 · n+ 1)(x) = (cdif(f, h))(2 · n+ 1)(x + n · h+ h
2 ).
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Let f be a function from R into R and let us consider x0, x1. The functor

∆(f, x0, x1) yielding a real number is defined as follows:

(Def. 9)(i) ∆(f, x0, x1) = f(x0)−f(x1)
x0−x1

if x0 6= x1,

(ii) x0 6= x1, otherwise.

Let x0, x1, x2 be real numbers and let f be a function from R into R. The

functor [!f, x0, x1, x2!] yielding a real number is defined as follows:

(Def. 10)(i) [!f, x0, x1, x2!] = ∆(f,x0,x1)−∆(f,x1,x2)
x0−x2

if x0 6= x2,

(ii) x0 6= x2, otherwise.

Let x0, x1, x2, x3 be real numbers and let f be a function from R into R.

The functor [!f, x0, x1, x2, x3!] yielding a real number is defined by:

(Def. 11)(i) [!f, x0, x1, x2, x3!] = [!f,x0,x1,x2!]−[!f,x1,x2,x3!]
x0−x3

if x0 6= x3,

(ii) x0 6= x3, otherwise.

We now state several propositions:

(29) If x0 6= x1, then ∆(f, x0, x1) = ∆(f, x1, x0).

(30) If f is constant and x0 6= x1, then ∆(f, x0, x1) = 0.

(31) If x0 6= x1, then ∆(r f, x0, x1) = r ·∆(f, x0, x1).

(32) If x0 6= x1, then ∆(f1 + f2, x0, x1) = ∆(f1, x0, x1) + ∆(f2, x0, x1).

(33) If x0 6= x1, then ∆(r1 f1 + r2 f2, x0, x1) = r1 · ∆(f1, x0, x1) + r2 ·
∆(f2, x0, x1).

(34) If x0 6= x1 and x0 6= x2 and x1 6= x2, then [!f, x0, x1, x2!] = [!f, x1, x2, x0!]

and [!f, x0, x1, x2!] = [!f, x2, x1, x0!].

(35) If x0 6= x1 and x0 6= x2 and x1 6= x2, then [!f, x0, x1, x2!] = [!f, x2, x0, x1!]

and [!f, x0, x1, x2!] = [!f, x1, x0, x2!].

(36) (fdif((fdif(f, h))(m), h))(n)(x) = (fdif(f, h))(m + n)(x).

Let us consider S. We say that S is sequence-yielding if and only if:

(Def. 12) For every n holds S(n) is a sequence of real numbers.

Let us note that there exists a sequence of partial functions from R into R
which is sequence-yielding.

A seq sequence is a sequence-yielding sequence of partial functions from R
into R.

Let S be a seq sequence and let us consider n. Then S(n) is a sequence of

real numbers.

In the sequel S denotes a seq sequence.

Next we state the proposition

(37) Suppose that for every n and for every i such that i ≤ n holds

S(n)(i) =
(n
i

)
· (fdif(f1, h))(i)(x) · (fdif(f2, h))(n −′ i)(x + i · h).

Then (fdif(f1 f2, h))(1)(x) =
∑1

κ=0 S(1)(κ) and (fdif(f1 f2, h))(2)(x) =∑2
κ=0 S(2)(κ).
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