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Summary. The first four sections of this article include some auxiliary

theorems related to number and finite sequence of numbers, in particular a pri-

mality test, the Pocklington’s theorem (see [19]). The last section presents the

formalization of Bertrand’s postulate closely following the book [1], pp. 7–9.
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The articles [26], [4], [24], [28], [3], [2], [20], [17], [14], [16], [30], [10], [11], [6],

[23], [13], [15], [5], [21], [8], [22], [27], [18], [29], [9], [7], [12], [25], and [31] provide

the notation and terminology for this paper.

1. Some Theorems on Real and Natural Numbers

The following propositions are true:

(1) For all real numbers r, s such that 0 ≤ r and s · s < r · r holds s < r.

(2) For all real numbers r, s such that 1 < r and r · r ≤ s holds r < s.

(3) For all natural numbers a, n such that a > 1 holds an > n.

(4) For all natural numbers n, k, m such that k ≤ n and m = b n2 c holds(n
m

)
≥
(n
k

)
.

(5) For all natural numbers n, m such that m = b n2 c and n ≥ 2 holds(n
m

)
≥ 2n

n .

(6) For every natural number n holds
(2·n
n

)
≥ 4n

2·n .

(7) For all natural numbers n, p such that p > 0 and n | p and n 6= 1 and

n 6= p holds 1 < n and n < p.
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(8) Let p be a natural number. Given a natural number n such that n | p
and 1 < n and n < p. Then there exists a natural number n such that

n | p and 1 < n and n · n ≤ p.
(9) For all natural numbers i, j, k, l such that i = j · k + l and l < j and

0 < l holds j - i.
(10) For all natural numbers n, q, b such that gcd(q, b) = 1 and q 6= 0 and

b 6= 0 holds gcd(qn, b) = 1.

(11) For all natural numbers a, b, c holds a2·b mod c = (ab mod c) · (ab mod

c) mod c.

(12) Let p be a natural number. Then p is not prime if and only if one of the

following conditions is satisfied:

(i) p ≤ 1, or

(ii) there exists a natural number n such that n | p and 1 < n and n < p.

(13) Let n, k be natural numbers. Suppose n | k and 1 < n. Then there exists

a natural number p such that p | k and p ≤ n and p is prime.

(14) Let p be a natural number. Then p is prime if and only if the following

conditions are satisfied:

(i) p > 1, and

(ii) for every natural number n such that 1 < n and n · n ≤ p and n is

prime holds n - p.
(15) For all natural numbers a, p, k such that ak mod p = 1 and k ≥ 1 and p

is prime holds a and p are relative prime.

(16) Let p be a prime number, a be a natural number, and x be a set. Suppose

a 6= 0 and x = pp -count(a). Then there exists a natural number b such that

b = x and 1 ≤ b and b ≤ a.
(17) For all natural numbers k, q, n, d such that q is prime and d | k · qn+1

and d - k · qn holds qn+1 | d.
(18) For all natural numbers q1, q, n1 such that q1 | qn1 and q is prime and

q1 is prime and n1 > 0 holds q = q1.

(19) For every prime number p and for every natural number n such that

n < p holds p - n!.

(20) Let a, b be non empty natural numbers. Suppose that for every natural

number p such that p is prime holds p -count(a) ≤ p -count(b). Then there

exists a natural number c such that b = a · c.
(21) Let a, b be non empty natural numbers. Suppose that for every natural

number p such that p is prime holds p -count(a) = p -count(b). Then a = b.

(22) For all prime numbers p1, p2 and for every non empty natural number m

such that p1
p1 -count(m) = p2

p2 -count(m) and p1 -count(m) > 0 holds p1 = p2.
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2. Pocklington’s Theorem

One can prove the following propositions:

(23) Let n, k, q, p, n1, p, a be natural numbers. Suppose n− 1 = k · qn1 and

k > 0 and n1 > 0 and q is prime and an−
′1 mod n = 1 and p is prime and

p | n. Then p | a(n−′1)÷q −′ 1 or pmod qn1 = 1.

(24) Let n, f , c be natural numbers. Suppose that

(i) n− 1 = f · c,
(ii) f > c,

(iii) c > 0,

(iv) gcd(f, c) = 1, and

(v) for every natural number q such that q | f and q is prime there exists a

natural number a such that an−
′1 modn = 1 and gcd(a(n−′1)÷q−′1, n) = 1.

Then n is prime.

(25) Let n, f , d, n1, a, q be natural numbers. Suppose n − 1 = qn1 · d and

qn1 > d and d > 0 and gcd(q, d) = 1 and q is prime and an−
′1 mod n = 1

and gcd(a(n−′1)÷q −′ 1, n) = 1. Then n is prime.

3. Some Prime Numbers

The following propositions are true:

(26) 7 is prime.

(27) 11 is prime.

(28) 13 is prime.

(29) 19 is prime.

(30) 23 is prime.

(31) 37 is prime.

(32) 43 is prime.

(33) 83 is prime.

(34) 139 is prime.

(35) 163 is prime.

(36) 317 is prime.

(37) 631 is prime.

(38) 1259 is prime.

(39) 2503 is prime.

(40) 4001 is prime.
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4. Some Theorems on Finite Sequence of Numbers

One can prove the following propositions:

(41) For all finite sequences f , f0, f1 of elements of R such that f = f0 + f1

holds dom f = dom f0 ∩ dom f1.

(42) Let F be a finite sequence of elements of R. If for every natural number

k such that k ∈ domF holds F (k) > 0, then
∏
F > 0.

(43) For every set X1 and for every finite set X2 such that X1 ⊆ X2 and

X2 ⊆ N and ∅ /∈ X2 holds
∏

SgmX1 ≤
∏

SgmX2.

(44) Let a, k be natural numbers, X be a set, F be a finite sequence of

elements of Prime, and p be a prime number such that X ⊆ Prime and

X ⊆ Seg k and F = SgmX and a =
∏
F. Then

(i) if p ∈ rngF, then p -count(a) = 1, and

(ii) if p /∈ rngF, then p -count(a) = 0.

(45) For every natural number n holds
∏

Sgm{p; p ranges over prime num-

bers: p ≤ n+ 1} ≤ 4n.

(46) For every real number x such that x ≥ 2 holds
∏

Sgm{p; p ranges over

prime numbers: p ≤ x} ≤ 4x−1.

(47) Let n be a natural number and p be a prime number. Suppose n 6= 0.

Then there exists a finite sequence f of elements of N such that

(i) len f = n,

(ii) for every natural number k such that k ∈ dom f holds f(k) = 1 iff

pk | n and f(k) = 0 iff pk - n, and

(iii) p -count(n) =
∑
f.

(48) Let n be a natural number and p be a prime number. Then there exists a

finite sequence f of elements of N such that len f = n and for every natural

number k such that k ∈ dom f holds f(k) = b n
pk
c and p -count(n!) =

∑
f.

(49) Let n be a natural number and p be a prime number. Then there exists

a finite sequence f of elements of R such that len f = 2 · n and for every

natural number k such that k ∈ dom f holds f(k) = b 2·n
pk
c − 2 · b n

pk
c and

p -count(
(2·n
n

)
) =

∑
f.

Let f be a finite sequence of elements of N and let p be a prime number.

The functor p -count(f) yielding a finite sequence of elements of N is defined by:

(Def. 1) len(p -count(f)) = len f and for every set i such that i ∈
dom(p -count(f)) holds (p -count(f))(i) = p -count(f(i)).

One can prove the following propositions:

(50) For every prime number p and for every finite sequence f of elements of

N such that f = ∅ holds p -count(f) = ∅.
(51) For every prime number p and for all finite sequences f1, f2 of elements

of N holds p -count(f1
a f2) = (p -count(f1)) a (p -count(f2)).
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(52) For every prime number p and for every non empty natural number n

holds p -count(〈n〉) = 〈p -count(n)〉.
(53) For every finite sequence f of elements of N and for every prime number

p such that
∏
f 6= 0 holds p -count(

∏
f) =

∑
(p -count(f)).

(54) Let f1, f2 be finite sequences of elements of R. Suppose len f1 = len f2

and for every natural number k such that k ∈ dom f1 holds f1(k) ≤ f2(k)

and f1(k) > 0. Then
∏
f1 ≤

∏
f2.

(55) For every natural number n and for every real number r such that r > 0

holds
∏

(n 7→ r) = rn.

In this article we present several logical schemes. The scheme scheme1 con-

cerns a ternary predicate P, and states that:

Let p be a prime number, n be a natural number, m be a non

empty natural number, and X be a set. If X = {p′p′ -count(m); p′

ranges over prime numbers: P[n,m, p′]}, then
∏

SgmX > 0

for all values of the parameters.

The scheme scheme2 concerns a ternary predicate P, and states that:

Let p be a prime number, n be a natural number, m be a non

empty natural number, and X be a set. If X = {p′p′ -count(m); p′

ranges over prime numbers: P[n,m, p′]} and pp -count(m) /∈ X, then

p -count(
∏

SgmX) = 0

for all values of the parameters.

The scheme scheme3 concerns a ternary predicate P, and states that:

Let p be a prime number, n be a natural number, m be a non

empty natural number, and X be a set. If X = {p′p′ -count(m); p′

ranges over prime numbers: P[n,m, p′]} and pp -count(m) ∈ X, then

p -count(
∏

SgmX) = p -count(m)

for all values of the parameters.

The scheme scheme4 deals with a binary functor F yielding a set and a

binary predicate P, and states that:

Let n, m be natural numbers, r be a real number, and X be a

finite set. If X = {F(p,m); p ranges over prime numbers: p ≤
r ∧ P[p,m]} and r ≥ 0, then cardX ≤ brc

for all values of the parameters.

5. Bertrand’s Postulate

The following proposition is true

(56) For every natural number n such that n ≥ 1 there exists a prime number

p such that n < p and p ≤ 2 · n.
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Summary. In this paper we construct integral of measurable function.
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The terminology and notation used here are introduced in the following articles:

[29], [12], [32], [1], [27], [18], [33], [9], [2], [34], [13], [11], [10], [28], [31], [20], [30],

[3], [4], [5], [14], [7], [17], [15], [16], [26], [8], [19], [21], [24], [23], [6], [22], and

[25].

1. Lemmas for Extended Real Numbers

One can prove the following propositions:

(1) For all extended real numbers x, y holds |x− y| = |y − x|.
(2) For all extended real numbers x, y holds y − x ≤ |x− y|.
(3) Let x, y be extended real numbers and e be a real number. Suppose

|x − y| < e and x 6= +∞ or y 6= +∞ but x 6= −∞ or y 6= −∞. Then

x 6= +∞ and x 6= −∞ and y 6= +∞ and y 6= −∞.
(4) For all extended real numbers x, y such that for every real number e

such that 0 < e holds x < y + R(e) holds x ≤ y.
(5) For all extended real numbers x, y, t such that t 6= −∞ and t 6= +∞

and x < y holds x+ t < y + t.

(6) For all extended real numbers x, y, t such that t 6= −∞ and t 6= +∞
and x < y holds x− t < y − t.

1This work has been partially supported by the MEXT grant Grant-in-Aid for Young

Scientists (B)16700156.
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(7) For all real numbers a, b holds R(a) + R(b) = a+ b and −R(a) = −a.
(8) Let n be a natural number and p be an extended real number. Suppose

0 ≤ p and p < n. Then there exists a natural number k such that 1 ≤ k

and k ≤ 2n · n and k−1
2n ≤ p and p < k

2n .

(9) Let n, k be natural numbers and p be an extended real number. If 1 ≤ k
and k ≤ 2n · n and n ≤ p and k−1

2n ≤ p, then k
2n ≤ p.

(10) For all extended real numbers x, y, w, z such that −∞ < w holds if

x < y and w < z, then x+ w < y + z.

(11) For all extended real numbers x, y, k such that 0 ≤ k holds k·max(x, y) =

max(k · x, k · y) and k ·min(x, y) = min(k · x, k · y).

(12) For all extended real numbers x, y, k such that k ≤ 0 holds k·min(x, y) =

max(k · x, k · y) and k ·max(x, y) = min(k · x, k · y).

(13) For all extended real numbers x, y, z such that 0 ≤ x and 0 ≤ z and

z + x ≤ y holds z ≤ y.

2. Lemmas for Partial Function of Non-empty Set, Extended Real

Numbers

Let I1 be a set. We say that I1 is non-positive if and only if:

(Def. 1) For every extended real number x such that x ∈ I1 holds x ≤ 0.

Let R be a binary relation. We say that R is non-positive if and only if:

(Def. 2) rngR is non-positive.

The following propositions are true:

(14) Let X be a set and F be a partial function from X to R. Then F is

non-positive if and only if for every set n holds F (n) ≤ 0R .

(15) Let X be a set and F be a partial function from X to R. If for every set

n such that n ∈ domF holds F (n) ≤ 0R, then F is non-positive.

Let R be a binary relation. We say that R is without −∞ if and only if:

(Def. 3) −∞ /∈ rngR.

We say that R is without +∞ if and only if:

(Def. 4) +∞ /∈ rngR.

Let X be a non empty set and let f be a partial function from X to R. Let

us observe that f is without −∞ if and only if:

(Def. 5) For every set x holds −∞ < f(x).

Let us observe that f is without +∞ if and only if:

(Def. 6) For every set x holds f(x) < +∞.
Next we state four propositions:
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(16) Let X be a non empty set and f be a partial function from X to R.

Then for every set x such that x ∈ dom f holds −∞ < f(x) if and only if

f is without −∞.

(17) Let X be a non empty set and f be a partial function from X to R.

Then for every set x such that x ∈ dom f holds f(x) < +∞ if and only if

f is without +∞.

(18) Let X be a non empty set and f be a partial function from X to R. If

f is non-negative, then f is without −∞.

(19) Let X be a non empty set and f be a partial function from X to R. If

f is non-positive, then f is without +∞.

Let X be a non empty set. Note that every partial function from X to R
which is non-negative is also without −∞ and every partial function from X to

R which is non-positive is also without +∞.

The following propositions are true:

(20) Let X be a non empty set, S be a σ-field of subsets of X, and f be a

partial function from X to R. Suppose f is simple function in S. Then f

is without +∞ and without −∞.

(21) Let X be a non empty set, Y be a set, and f be a partial function from

X to R. If f is non-negative, then f�Y is non-negative.

(22) Let X be a non empty set and f , g be partial functions from X to R.

Suppose f is without −∞ and g is without −∞. Then dom(f + g) =

dom f ∩ dom g.

(23) Let X be a non empty set and f , g be partial functions from X to R.

Suppose f is without −∞ and g is without +∞. Then dom(f − g) =

dom f ∩ dom g.

(24) Let X be a non empty set, S be a σ-field of subsets of X, f , g be partial

functions from X to R, F be a function from Q into S, r be a real number,

and A be an element of S. Suppose f is without −∞ and g is without

−∞ and for every rational number p holds F (p) = A∩LE-dom(f,R(p))∩
(A ∩ LE-dom(g,R(r − p))). Then A ∩ LE-dom(f + g,R(r)) =

⋃
rngF.

Let X be a non empty set and let f be a partial function from X to R. The

functor R(f) yielding a partial function from X to R is defined as follows:

(Def. 7) R(f) = f.

Next we state a number of propositions:

(25) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. If f is non-

negative and g is non-negative, then f + g is non-negative.

(26) Let X be a non empty set, f be a partial function from X to R, and c

be a real number such that f is non-negative. Then

(i) if 0 ≤ c, then c f is non-negative, and
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(ii) if c ≤ 0, then c f is non-positive.

(27) Let X be a non empty set and f , g be partial functions from X to R.

Suppose that for every set x such that x ∈ dom f∩dom g holds g(x) ≤ f(x)

and −∞ < g(x) and f(x) < +∞. Then f − g is non-negative.

(28) Let X be a non empty set and f , g be partial functions from X to R.

Suppose f is non-negative and g is non-negative. Then dom(f + g) =

dom f ∩ dom g and f + g is non-negative.

(29) Let X be a non empty set and f , g, h be partial functions from X to

R. Suppose f is non-negative and g is non-negative and h is non-negative.

Then dom(f + g + h) = dom f ∩ dom g ∩ domh and f + g + h is non-

negative and for every set x such that x ∈ dom f ∩ dom g ∩ domh holds

(f + g + h)(x) = f(x) + g(x) + h(x).

(30) Let X be a non empty set and f , g be partial functions from X to R.

Suppose f is without −∞ and g is without −∞. Then

(i) dom(max+(f + g) + max−(f)) = dom f ∩ dom g,

(ii) dom(max−(f + g) + max+(f)) = dom f ∩ dom g,

(iii) dom(max+(f + g) + max−(f) + max−(g)) = dom f ∩ dom g,

(iv) dom(max−(f + g) + max+(f) + max+(g)) = dom f ∩ dom g,

(v) max+(f + g) + max−(f) is non-negative, and

(vi) max−(f + g) + max+(f) is non-negative.

(31) Let X be a non empty set and f , g be partial functions from X to R.

Suppose f is without −∞ and without +∞ and g is without −∞ and

without +∞. Then max+(f + g) + max−(f) + max−(g) = max−(f + g) +

max+(f) + max+(g).

(32) Let C be a non empty set, f be a partial function from C to R, and c be

a real number. If 0 ≤ c, then max+(c f) = c max+(f) and max−(c f) =

c max−(f).

(33) Let C be a non empty set, f be a partial function from C to R, and

c be a real number. If 0 ≤ c, then max+((−c) f) = c max−(f) and

max−((−c) f) = c max+(f).

(34) Let X be a non empty set, f be a partial function from X to R, and A

be a set. Then max+(f�A) = max+(f)�A and max−(f�A) = max−(f)�A.
(35) Let X be a non empty set, f , g be partial functions from X to R,

and B be a set. If B ⊆ dom(f + g), then dom((f + g)�B) = B and

dom(f�B + g�B) = B and (f + g)�B = f�B + g�B.
(36) Let X be a non empty set, f be a partial function from X to R, and a

be an extended real number. Then EQ-dom(f, a) = f−1({a}).
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3. Lemmas for Measurable Function and Simple Valued Function

The following propositions are true:

(37) Let X be a non empty set, S be a σ-field of subsets of X, f , g be partial

functions from X to R, and A be an element of S. Suppose f is without

−∞ and g is without −∞ and f is measurable on A and g is measurable

on A. Then f + g is measurable on A.

(38) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. Suppose f is

simple function in S and dom f = ∅. Then there exists a finite sequence F

of separated subsets of S and there exist finite sequences a, x of elements

of R such that

(i) F and a are representation of f ,

(ii) a(1) = 0,

(iii) for every natural number n such that 2 ≤ n and n ∈ dom a holds

0 < a(n) and a(n) < +∞,
(iv) domx = domF,

(v) for every natural number n such that n ∈ domx holds x(n) = a(n) ·
(M · F )(n), and

(vi)
∑
x = 0.

(39) Let X be a non empty set, S be a σ-field of subsets of X, f be a

partial function from X to R, A be an element of S, and r, s be real

numbers. Suppose f is measurable on A and A ⊆ dom f. Then A ∩
GTE-dom(f,R(r)) ∩ LE-dom(f,R(s)) is measurable on S.

(40) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A be an element

of S. If f is simple function in S, then f�A is simple function in S.

(41) Let X be a non empty set, S be a σ-field of subsets of X, A be an

element of S, F be a finite sequence of separated subsets of S, and G be a

finite sequence. Suppose domF = domG and for every natural number n

such that n ∈ domF holds G(n) = F (n) ∩A. Then G is a finite sequence

of separated subsets of S.

(42) Let X be a non empty set, S be a σ-field of subsets of X, f be a partial

function from X to R, A be an element of S, F , G be finite sequences

of separated subsets of S, and a be a finite sequence of elements of R.

Suppose domF = domG and for every natural number n such that n ∈
domF holds G(n) = F (n)∩A and F and a are representation of f . Then

G and a are representation of f�A.
(43) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. If f is simple

function in S, then dom f is an element of S.
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(44) Let X be a non empty set, S be a σ-field of subsets of X, and f , g be

partial functions from X to R. Suppose f is simple function in S and g is

simple function in S. Then f + g is simple function in S.

(45) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, f be a partial function from X to R, and c be a real

number. If f is simple function in S, then c f is simple function in S.

(46) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) f is simple function in S,

(ii) g is simple function in S, and

(iii) for every set x such that x ∈ dom(f − g) holds g(x) ≤ f(x).

Then f − g is non-negative.

(47) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, A be an element of S, and c be an extended real number.

Suppose c 6= +∞ and c 6= −∞. Then there exists a partial function f

from X to R such that f is simple function in S and dom f = A and for

every set x such that x ∈ A holds f(x) = c.

(48) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and B, B1 be elements

of S. Suppose f is measurable on B and B1 = dom f ∩ B. Then f�B is

measurable on B1.

(49) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, A be an element of S, and f , g be partial functions from

X to R. Suppose that

(i) A ⊆ dom f,

(ii) f is measurable on A,

(iii) g is measurable on A,

(iv) f is without −∞, and

(v) g is without −∞.

Then max+(f + g) + max−(f) is measurable on A.

(50) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, A be an element of S, and f , g be partial functions from

X to R. Suppose that

(i) A ⊆ dom f ∩ dom g,

(ii) f is measurable on A,

(iii) g is measurable on A,

(iv) f is without −∞, and

(v) g is without −∞.

Then max−(f + g) + max+(f) is measurable on A.

(51) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and A be a set. If A ∈ S, then 0 ≤M(A).
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(52) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) there exists an element E1 of S such that E1 = dom f and f is mea-

surable on E1,

(ii) there exists an element E2 of S such that E2 = dom g and g is measur-

able on E2,

(iii) f−1({+∞}) ∈ S,
(iv) f−1({−∞}) ∈ S,
(v) g−1({+∞}) ∈ S, and

(vi) g−1({−∞}) ∈ S.
Then dom(f + g) ∈ S.

(53) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) there exists an element E1 of S such that E1 = dom f and f is mea-

surable on E1, and

(ii) there exists an element E2 of S such that E2 = dom g and g is measur-

able on E2.

Then there exists an element E of S such that E = dom(f + g) and f + g

is measurable on E.

(54) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A, B be elements

of S. Suppose dom f = A. Then f is measurable on B if and only if f is

measurable on A ∩B.
(55) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. Given an element

A of S such that dom f = A. Let c be a real number and B be an element

of S. If f is measurable on B, then c f is measurable on B.

4. Sequence of Extended Real Numbers

A sequence of extended reals is a function from N into R.

Let s1 be a sequence of extended reals. We say that s1 is convergent to finite

number if and only if the condition (Def. 8) is satisfied.

(Def. 8) There exists a real number g such that for every real number p if 0 < p,

then there exists a natural number n such that for every natural number

m such that n ≤ m holds |s1(m)− R(g)| < p.

Let s1 be a sequence of extended reals. We say that s1 is convergent to +∞
if and only if the condition (Def. 9) is satisfied.

(Def. 9) Let g be a real number. Suppose 0 < g. Then there exists a natural

number n such that for every natural number m such that n ≤ m holds

g ≤ s1(m).
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Let s1 be a sequence of extended reals. We say that s1 is convergent to −∞
if and only if the condition (Def. 10) is satisfied.

(Def. 10) Let g be a real number. Suppose g < 0. Then there exists a natural

number n such that for every natural number m such that n ≤ m holds

s1(m) ≤ g.
We now state two propositions:

(56) Let s1 be a sequence of extended reals. Suppose s1 is convergent to

+∞. Then s1 is not convergent to −∞ and s1 is not convergent to finite

number.

(57) Let s1 be a sequence of extended reals. Suppose s1 is convergent to

−∞. Then s1 is not convergent to +∞ and s1 is not convergent to finite

number.

Let s1 be a sequence of extended reals. We say that s1 is convergent if and

only if:

(Def. 11) s1 is convergent to finite number, or convergent to +∞, or convergent

to −∞.

Let s1 be a sequence of extended reals. Let us assume that s1 is conver-

gent. The functor lim s1 yields an extended real number and is defined by the

conditions (Def. 12).

(Def. 12)(i) There exists a real number g such that lim s1 = g and for every real

number p such that 0 < p there exists a natural number n such that for

every natural number m such that n ≤ m holds |s1(m) − lim s1| < p and

s1 is convergent to finite number, or

(ii) lim s1 = +∞ and s1 is convergent to +∞, or

(iii) lim s1 = −∞ and s1 is convergent to −∞.

We now state a number of propositions:

(58) Let s1 be a sequence of extended reals and r be a real number. Suppose

that for every natural number n holds s1(n) = r. Then s1 is convergent to

finite number and lim s1 = r.

(59) Let F be a finite sequence of elements of R. If for every natural number

n such that n ∈ domF holds 0 ≤ F (n), then 0 ≤∑F.

(60) Let L be a sequence of extended reals. Suppose that for all natural

numbers n, m such that n ≤ m holds L(n) ≤ L(m). Then L is convergent

and limL = sup rngL.

(61) For all sequences L, G of extended reals such that for every natural

number n holds L(n) ≤ G(n) holds sup rngL ≤ sup rngG.

(62) For every sequence L of extended reals and for every natural number n

holds L(n) ≤ sup rngL.

(63) Let L be a sequence of extended reals andK be an extended real number.

If for every natural number n holds L(n) ≤ K, then sup rngL ≤ K.
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(64) Let L be a sequence of extended reals and K be an extended real num-

ber. If K 6= +∞ and for every natural number n holds L(n) ≤ K, then

sup rngL < +∞.
(65) Let L be a sequence of extended reals. Suppose L is without −∞. Then

sup rngL 6= +∞ if and only if there exists a real number K such that

0 < K and for every natural number n holds L(n) ≤ K.
(66) Let L be a sequence of extended reals and c be an extended real number.

Suppose that for every natural number n holds L(n) = c. Then L is

convergent and limL = c and limL = sup rngL.

(67) Let J , K, L be sequences of extended reals. Suppose that

(i) for all natural numbers n, m such that n ≤ m holds J(n) ≤ J(m),

(ii) for all natural numbers n, m such that n ≤ m holds K(n) ≤ K(m),

(iii) J is without −∞,

(iv) K is without −∞, and

(v) for every natural number n holds J(n) +K(n) = L(n).

Then L is convergent and limL = sup rngL and limL = lim J + limK

and sup rngL = sup rngK + sup rng J.

(68) Let L, K be sequences of extended reals and c be a real number. Suppose

0 ≤ c and L is without −∞ and for every natural number n holds K(n) =

R(c) · L(n). Then sup rngK = R(c) · sup rngL and K is without −∞.

(69) Let L, K be sequences of extended reals and c be a real number. Suppose

that

(i) 0 ≤ c,
(ii) for all natural numbers n, m such that n ≤ m holds L(n) ≤ L(m),

(iii) for every natural number n holds K(n) = R(c) · L(n), and

(iv) L is without −∞.

Then

(v) for all natural numbers n, m such that n ≤ m holds K(n) ≤ K(m),

(vi) K is without −∞ and convergent,

(vii) limK = sup rngK, and

(viii) limK = R(c) · limL.

5. Sequence of Extended Real Valued Functions

Let X be a non empty set, let H be a sequence of partial functions from X

into R, and let x be an element of X. The functor H#x yields a sequence of

extended reals and is defined as follows:

(Def. 13) For every natural number n holds (H#x)(n) = H(n)(x).

Let D1, D2 be sets, let F be a function from N into D1→̇D2, and let n be a

natural number. Then F (n) is a partial function from D1 to D2.
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Next we state the proposition

(70) Let X be a non empty set, S be a σ-field of subsets of X, and f be a

partial function from X to R. Suppose there exists an element A of S such

that A = dom f and f is measurable on A and f is non-negative. Then

there exists a sequence F of partial functions from X into R such that

(i) for every natural number n holds F (n) is simple function in S and

domF (n) = dom f,

(ii) for every natural number n holds F (n) is non-negative,

(iii) for all natural numbers n, m such that n ≤ m and for every element x

of X such that x ∈ dom f holds F (n)(x) ≤ F (m)(x), and

(iv) for every element x of X such that x ∈ dom f holds F#x is convergent

and lim(F#x) = f(x).

6. Integral of Non Negative Simple Valued Function

Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, and let f be a partial function from X to R. The functor∫ ′
f dM yielding an element of R is defined as follows:

(Def. 14)
∫ ′
f dM =

{ ∫
X

f dM, if dom f 6= ∅,

0R, otherwise.

The following propositions are true:

(71) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. Suppose

f is simple function in S and g is simple function in S and f is non-

negative and g is non-negative. Then dom(f + g) = dom f ∩ dom g and∫ ′
f + g dM =

∫ ′
f�dom(f + g) dM +

∫ ′
g� dom(f + g) dM.

(72) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and c be a real number.

Suppose f is simple function in S and f is non-negative and 0 ≤ c. Then∫ ′
c f dM = R(c) ·

∫ ′
f dM.

(73) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A, B be elements

of S. Suppose f is simple function in S and f is non-negative and A misses

B. Then
∫ ′
f�(A ∪B) dM =

∫ ′
f�AdM +

∫ ′
f�B dM.

(74) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. If f is simple

function in S and f is non-negative, then 0 ≤
∫ ′
f dM.

(75) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) f is simple function in S,
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(ii) f is non-negative,

(iii) g is simple function in S,

(iv) g is non-negative, and

(v) for every set x such that x ∈ dom(f − g) holds g(x) ≤ f(x).

Then dom(f − g) = dom f ∩ dom g and
∫ ′
f�dom(f − g) dM =

∫ ′
f −

g dM +
∫ ′
g� dom(f − g) dM.

(76) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) f is simple function in S,

(ii) g is simple function in S,

(iii) f is non-negative,

(iv) g is non-negative, and

(v) for every set x such that x ∈ dom(f − g) holds g(x) ≤ f(x).

Then
∫ ′
g� dom(f − g) dM ≤

∫ ′
f�dom(f − g) dM.

(77) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and c be an extended

real number. Suppose 0 ≤ c and f is simple function in S and for every

set x such that x ∈ dom f holds f(x) = c. Then
∫ ′
f dM = c ·M(dom f).

(78) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function fromX to R. Suppose f is simple

function in S and f is non-negative. Then
∫ ′
f�EQ-dom(f,R(0)) dM = 0.

(79) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, B be an element of S, and f be a partial function from X to

R. Suppose f is simple function in S and M(B) = 0 and f is non-negative.

Then
∫ ′
f�B dM = 0.

(80) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, g be a partial function from X to R, F be a sequence of

partial functions from X into R, and L be a sequence of extended reals.

Suppose that g is simple function in S and for every set x such that x ∈
dom g holds 0 < g(x) and for every natural number n holds F (n) is simple

function in S and for every natural number n holds domF (n) = dom g and

for every natural number n holds F (n) is non-negative and for all natural

numbers n, m such that n ≤ m and for every element x of X such that

x ∈ dom g holds F (n)(x) ≤ F (m)(x) and for every element x of X such

that x ∈ dom g holds F#x is convergent and g(x) ≤ lim(F#x) and for

every natural number n holds L(n) =
∫ ′
F (n) dM. Then L is convergent

and
∫ ′
g dM ≤ limL.

(81) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, g be a partial function from X to R, and F be a sequence

of partial functions from X into R. Suppose that g is simple function in S

and g is non-negative and for every natural number n holds F (n) is simple
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function in S and for every natural number n holds domF (n) = dom g and

for every natural number n holds F (n) is non-negative and for all natural

numbers n, m such that n ≤ m and for every element x of X such that

x ∈ dom g holds F (n)(x) ≤ F (m)(x) and for every element x of X such

that x ∈ dom g holds F#x is convergent and g(x) ≤ lim(F#x). Then there

exists a sequence G of extended reals such that for every natural number

n holds G(n) =
∫ ′
F (n) dM and G is convergent and sup rngG = limG

and
∫ ′
g dM ≤ limG.

(82) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, A be an element of S, F , G be sequences of partial functions

from X into R, and K, L be sequences of extended reals. Suppose that for

every natural number n holds F (n) is simple function in S and domF (n) =

A and for every natural number n holds F (n) is non-negative and for all

natural numbers n, m such that n ≤ m and for every element x of X

such that x ∈ A holds F (n)(x) ≤ F (m)(x) and for every natural number

n holds G(n) is simple function in S and domG(n) = A and for every

natural number n holds G(n) is non-negative and for all natural numbers

n, m such that n ≤ m and for every element x of X such that x ∈ A holds

G(n)(x) ≤ G(m)(x) and for every element x of X such that x ∈ A holds

F#x is convergent and G#x is convergent and lim(F#x) = lim(G#x)

and for every natural number n holds K(n) =
∫ ′
F (n) dM and L(n) =∫ ′

G(n) dM. Then K is convergent and L is convergent and limK = limL.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a

σ-measure on S, and let f be a partial function from X to R. Let us assume

that there exists an element A of S such that A = dom f and f is measurable

on A and f is non-negative. The functor
∫ +

f dM yielding an element of R is

defined by the condition (Def. 15).

(Def. 15) There exists a sequence F of partial functions from X into R and there

exists a sequence K of extended reals such that

for every natural number n holds F (n) is simple function in S and

domF (n) = dom f and for every natural number n holds F (n) is non-

negative and for all natural numbers n, m such that n ≤ m and for

every element x of X such that x ∈ dom f holds F (n)(x) ≤ F (m)(x)

and for every element x of X such that x ∈ dom f holds F#x is con-

vergent and lim(F#x) = f(x) and for every natural number n holds

K(n) =
∫ ′
F (n) dM and K is convergent and

∫ +
f dM = limK.

The following propositions are true:

(83) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. If f is simple

function in S and f is non-negative, then
∫ +

f dM =
∫ ′
f dM.

(84) Let X be a non empty set, S be a σ-field of subsets of X, M be a
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σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) there exists an element A of S such that A = dom f and f is measurable

on A,

(ii) there exists an element B of S such that B = dom g and g is measurable

on B,

(iii) f is non-negative, and

(iv) g is non-negative.

Then there exists an element C of S such that C = dom(f + g) and∫ +
f + g dM =

∫ +
f�C dM +

∫ +
g�C dM.

(85) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. Suppose there

exists an element A of S such that A = dom f and f is measurable on A

and f is non-negative. Then 0 ≤
∫ +

f dM.

(86) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A be an element

of S. Suppose there exists an element E of S such that E = dom f and f

is measurable on E and f is non-negative. Then 0 ≤
∫ +

f�AdM.

(87) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A, B be elements

of S. Suppose there exists an element E of S such that E = dom f

and f is measurable on E and f is non-negative and A misses B. Then∫ +
f�(A ∪B) dM =

∫ +
f�AdM +

∫ +
f�B dM.

(88) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A be an element

of S. Suppose there exists an element E of S such that E = dom f

and f is measurable on E and f is non-negative and M(A) = 0. Then∫ +
f�AdM = 0.

(89) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A, B be elements

of S. Suppose there exists an element E of S such that E = dom f and f

is measurable on E and f is non-negative and A ⊆ B. Then
∫ +

f�AdM ≤∫ +
f�B dM.

(90) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and E, A be elements

of S. Suppose f is non-negative and E = dom f and f is measurable on

E and M(A) = 0. Then
∫ +

f�(E \A) dM =
∫ +

f dM.

(91) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) there exists an element E of S such that E = dom f and E = dom g

and f is measurable on E and g is measurable on E,

(ii) f is non-negative,
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(iii) g is non-negative, and

(iv) for every element x of X such that x ∈ dom g holds g(x) ≤ f(x).

Then
∫ +

g dM ≤
∫ +

f dM.

(92) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and c be a real number.

Suppose 0 ≤ c and there exists an element A of S such that A = dom f

and f is measurable on A and f is non-negative. Then
∫ +

c f dM =

R(c) ·
∫ +

f dM.

(93) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f be a partial function from X to R. Suppose that

(i) there exists an element A of S such that A = dom f and f is measurable

on A, and

(ii) for every element x of X such that x ∈ dom f holds 0 = f(x).

Then
∫ +

f dM = 0.

7. Integral of Measurable Function

Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, and let f be a partial function from X to R. The functor∫
f dM yielding an element of R is defined as follows:

(Def. 16)
∫
f dM =

∫ +
max+(f) dM −

∫ +
max−(f) dM.

We now state several propositions:

(94) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. Suppose there

exists an element A of S such that A = dom f and f is measurable on A

and f is non-negative. Then
∫
f dM =

∫ +
f dM.

(95) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. Suppose f is

simple function in S and f is non-negative. Then
∫
f dM =

∫ +
f dM and∫

f dM =
∫ ′
f dM.

(96) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. Suppose there

exists an element A of S such that A = dom f and f is measurable on A

and f is non-negative. Then 0 ≤
∫
f dM.

(97) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A, B be elements

of S. Suppose there exists an element E of S such that E = dom f

and f is measurable on E and f is non-negative and A misses B. Then∫
f�(A ∪B) dM =

∫
f�AdM +

∫
f�B dM.
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(98) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A be an element

of S. Suppose there exists an element E of S such that E = dom f and f

is measurable on E and f is non-negative. Then 0 ≤
∫
f�AdM.

(99) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A, B be elements

of S. Suppose there exists an element E of S such that E = dom f and f

is measurable on E and f is non-negative and A ⊆ B. Then
∫
f�AdM ≤∫

f�B dM.

(100) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A be an element

of S. Suppose there exists an element E of S such that E = dom f and f

is measurable on E and M(A) = 0. Then
∫
f�AdM = 0.

(101) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and E, A be elements

of S. If E = dom f and f is measurable on E and M(A) = 0, then∫
f�(E \A) dM =

∫
f dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a

σ-measure on S, and let f be a partial function from X to R. We say that f is

integrable on M if and only if:

(Def. 17) There exists an element A of S such that A = dom f and f is measurable

on A and
∫ +

max+(f) dM < +∞ and
∫ +

max−(f) dM < +∞.
One can prove the following propositions:

(102) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. Suppose f is

integrable on M . Then 0 ≤
∫ +

max+(f) dM and 0 ≤
∫ +

max−(f) dM

and −∞ <
∫
f dM and

∫
f dM < +∞.

(103) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, f be a partial function from X to R, and A be an el-

ement of S. Suppose f is integrable on M . Then
∫ +

max+(f�A) dM ≤∫ +
max+(f) dM and

∫ +
max−(f�A) dM ≤

∫ +
max−(f) dM and f�A is

integrable on M .

(104) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, f be a partial function from X to R, and A, B be

elements of S. Suppose f is integrable on M and A misses B. Then∫
f�(A ∪B) dM =

∫
f�AdM +

∫
f�B dM.

(105) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, and A, B be elements

of S. Suppose f is integrable on M and B = dom f \ A. Then f�A is

integrable on M and
∫
f dM =

∫
f�AdM +

∫
f�B dM.



68 noboru endou and yasunari shidama

(106) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f be a partial function from X to R. Given an

element A of S such that A = dom f and f is measurable on A. Then f

is integrable on M if and only if |f | is integrable on M .

(107) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f be a partial function from X to R. If f is integrable

on M , then |
∫
f dM | ≤

∫
|f |dM.

(108) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f , g be partial functions from X to R. Suppose that

(i) there exists an element A of S such that A = dom f and f is measurable

on A,

(ii) dom f = dom g,

(iii) g is integrable on M , and

(iv) for every element x of X such that x ∈ dom f holds |f(x)| ≤ g(x).

Then f is integrable on M and
∫
|f |dM ≤

∫
g dM.

(109) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, f be a partial function from X to R, and r be a real

number. Suppose dom f ∈ S and 0 ≤ r and dom f 6= ∅ and for every set

x such that x ∈ dom f holds f(x) = r. Then
∫
X

f dM = R(r) ·M(dom f).

(110) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, f be a partial function from X to R, and r be a real

number. Suppose dom f ∈ S and 0 ≤ r and for every set x such that

x ∈ dom f holds f(x) = r. Then
∫ ′
f dM = R(r) ·M(dom f).

(111) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, and f be a partial function from X to R. Suppose

f is integrable on M . Then f−1({+∞}) ∈ S and f−1({−∞}) ∈ S

and M(f−1({+∞})) = 0 and M(f−1({−∞})) = 0 and f−1({+∞}) ∪
f−1({−∞}) ∈ S and M(f−1({+∞}) ∪ f−1({−∞})) = 0.

(112) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f , g be partial functions from X to R. Suppose f is

integrable on M and g is integrable on M and f is non-negative and g is

non-negative. Then f + g is integrable on M .

(113) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f , g be partial functions from X to R. If f is integrable

on M and g is integrable on M , then dom(f + g) ∈ S.
(114) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f , g be partial functions from X to R. Suppose f is

integrable on M and g is integrable on M . Then f + g is integrable on M .

(115) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, and f , g be partial functions from X to R. Suppose f is
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integrable on M and g is integrable on M . Then there exists an element E

of S such that E = dom f∩dom g and
∫
f+g dM =

∫
f�E dM+

∫
g�E dM.

(116) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, f be a partial function from X to R, and c be a real

number. Suppose f is integrable on M . Then c f is integrable on M and∫
c f dM = R(c) ·

∫
f dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, let f be a partial function from X to R, and let B be an

element of S. The functor
∫
B

f dM yielding an element of R is defined as follows:

(Def. 18)
∫
B

f dM =
∫
f�B dM.

The following propositions are true:

(117) Let X be a non empty set, S be a σ-field of subsets of X, M be a

σ-measure on S, f , g be partial functions from X to R, and B be an

element of S. Suppose f is integrable on M and g is integrable on M

and B ⊆ dom(f + g). Then f + g is integrable on M and
∫
B

f + g dM =
∫
B

f dM +
∫
B

g dM.

(118) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-

measure on S, f be a partial function from X to R, c be a real number, and

B be an element of S. Suppose f is integrable on M and f is measurable

on B. Then f�B is integrable on M and
∫
B

c f dM = R(c) ·
∫
B

f dM.
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