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Summary. Here we will prove Fashoda meet theorem for the unit circle
and for a square, when 4 points on the boundary are ordered cyclically. Also, the
concepts of general rectangle and general circle are defined.
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The articles [8], [22], [26], [3], [4], [25], [1], [9], [2], [6], [13], [23], [19], [18], [16],
[17], [11], [24], [7], [14], [15], [21], [20], [10], [5], and [12] provide the notation
and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

(2)1 For all real numbers a, b, r such that 0 ¬ r and r ¬ 1 and a ¬ b holds
a ¬ (1− r) · a + r · b and (1− r) · a + r · b ¬ b.

(3) For all real numbers a, b such that a ­ 0 and b > 0 or a > 0 and b ­ 0
holds a + b > 0.

(4) For all real numbers a, b such that −1 ¬ a and a ¬ 1 and −1 ¬ b and
b ¬ 1 holds a2 · b2 ¬ 1.

(5) For all real numbers a, b such that a ­ 0 and b ­ 0 holds a·
√

b =
√

a2 · b.
(6) For all real numbers a, b such that −1 ¬ a and a ¬ 1 and −1 ¬ b and

b ¬ 1 holds (−b) · √1 + a2 ¬ √1 + b2 and −√1 + b2 ¬ b · √1 + a2.

1The proposition (1) has been removed.
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(7) For all real numbers a, b such that −1 ¬ a and a ¬ 1 and −1 ¬ b and
b ¬ 1 holds b · √1 + a2 ¬ √1 + b2.

(8) For all real numbers a, b such that a ­ b holds a ·√1 + b2 ­ b ·√1 + a2.

(9) Let a, c, d be real numbers and p be a point of E2
T. If c ¬ d and p ∈ L([a,

c], [a, d]), then p1 = a and c ¬ p2 and p2 ¬ d.

(10) For all real numbers a, c, d and for every point p of E2
T such that c < d

and p1 = a and c ¬ p2 and p2 ¬ d holds p ∈ L([a, c], [a, d]).
(11) Let a, b, d be real numbers and p be a point of E2

T. If a ¬ b and p ∈ L([a,

d], [b, d]), then p2 = d and a ¬ p1 and p1 ¬ b.

(12) For all real numbers a, b and for every subset B of I such that B = [a, b]
holds B is closed.

(13) Let X be a topological structure, Y , Z be non empty topological struc-
tures, f be a map from X into Y , and g be a map from X into Z. Then
dom f = dom g and dom f = the carrier of X and dom f = ΩX .

(14) Let X be a non empty topological space and B be a non empty subset
of X. Then there exists a map f from X¹B into X such that for every
point p of X¹B holds f(p) = p and f is continuous.

(15) Let X be a non empty topological space, f1 be a map from X into R1,
and a be a real number. Suppose f1 is continuous. Then there exists a
map g from X into R1 such that for every point p of X and for every real
number r1 such that f1(p) = r1 holds g(p) = r1 − a and g is continuous.

(16) Let X be a non empty topological space, f1 be a map from X into R1,
and a be a real number. Suppose f1 is continuous. Then there exists a
map g from X into R1 such that for every point p of X and for every real
number r1 such that f1(p) = r1 holds g(p) = a− r1 and g is continuous.

(17) Let X be a non empty topological space, n be a natural number, p be
a point of En

T, and f be a map from X into R1. Suppose f is continuous.
Then there exists a map g from X into En

T such that for every point r of
X holds g(r) = f(r) · p and g is continuous.

(18) SqCirc([−1, 0]) = [−1, 0].
(19) For every compact non empty subset P of E2

T such that P = {p; p ranges
over points of E2

T: |p| = 1} holds SqCirc([−1, 0]) = W-min P.

(20) Let X be a non empty topological space, n be a natural number, and g1,
g2 be maps from X into En

T. Suppose g1 is continuous and g2 is continuous.
Then there exists a map g from X into En

T such that for every point r of
X holds g(r) = g1(r) + g2(r) and g is continuous.

(21) Let X be a non empty topological space, n be a natural number, p1,
p2 be points of En

T, and f1, f2 be maps from X into R1. Suppose f1 is
continuous and f2 is continuous. Then there exists a map g from X into
En

T such that for every point r of X holds g(r) = f1(r) · p1 + f2(r) · p2 and
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g is continuous.

(22) For every function f and for every set A such that f is one-to-one and
A ⊆ dom f holds (f−1)◦f◦A = A.

2. General Fashoda Theorem for Unit Circle

In the sequel p, p1, p2, p3, q, q1, q2 are points of E2
T.

One can prove the following propositions:

(23) Let f , g be maps from I into E2
T, C0, K1, K2, K3, K4 be subsets of

E2
T, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =
{p : |p| ¬ 1} and K1 = {q1; q1 ranges over points of E2

T: |q1| = 1 ∧ (q1)2 ¬
(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E2

T:
|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over
points of E2

T: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2
T: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K1 and f(I) ∈ K2 and g(O) ∈ K3 and g(I) ∈ K4 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(24) Let f , g be maps from I into E2
T, C0, K1, K2, K3, K4 be subsets of

E2
T, and O, I be points of I. Suppose that O = 0 and I = 1 and f is

continuous and one-to-one and g is continuous and one-to-one and C0 =
{p : |p| ¬ 1} and K1 = {q1; q1 ranges over points of E2

T: |q1| = 1 ∧ (q1)2 ¬
(q1)1 ∧ (q1)2 ­ −(q1)1} and K2 = {q2; q2 ranges over points of E2

T:
|q2| = 1 ∧ (q2)2 ­ (q2)1 ∧ (q2)2 ¬ −(q2)1} and K3 = {q3; q3 ranges over
points of E2

T: |q3| = 1 ∧ (q3)2 ­ (q3)1 ∧ (q3)2 ­ −(q3)1} and K4 = {q4; q4

ranges over points of E2
T: |q4| = 1 ∧ (q4)2 ¬ (q4)1 ∧ (q4)2 ¬ −(q4)1} and

f(O) ∈ K1 and f(I) ∈ K2 and g(O) ∈ K4 and g(I) ∈ K3 and rng f ⊆ C0

and rng g ⊆ C0. Then rng f meets rng g.

(25) Let p1, p2, p3, p4 be points of E2
T, P be a compact non empty subset of

E2
T, and C0 be a subset of E2

T. Suppose P = {p; p ranges over points of E2
T:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p8; p8 ranges over points of E2
T:

|p8| ¬ 1} and f(0) = p3 and f(1) = p1 and g(0) = p2 and g(1) = p4 and
rng f ⊆ C0 and rng g ⊆ C0. Then rng f meets rng g.

(26) Let p1, p2, p3, p4 be points of E2
T, P be a compact non empty subset of

E2
T, and C0 be a subset of E2

T. Suppose P = {p; p ranges over points of E2
T:

|p| = 1} and LE(p1, p2, P ) and LE(p2, p3, P ) and LE(p3, p4, P ). Let f , g

be maps from I into E2
T. Suppose that f is continuous and one-to-one and

g is continuous and one-to-one and C0 = {p8; p8 ranges over points of E2
T:
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|p8| ¬ 1} and f(0) = p3 and f(1) = p1 and g(0) = p4 and g(1) = p2 and
rng f ⊆ C0 and rng g ⊆ C0. Then rng f meets rng g.

(27) Let p1, p2, p3, p4 be points of E2
T, P be a compact non empty subset of

E2
T, and C0 be a subset of E2

T. Suppose P = {p; p ranges over points of E2
T:

|p| = 1} and p1, p2, p3, p4 are in this order on P . Let f , g be maps from I
into E2

T. Suppose that f is continuous and one-to-one and g is continuous
and one-to-one and C0 = {p8; p8 ranges over points of E2

T: |p8| ¬ 1} and
f(0) = p1 and f(1) = p3 and g(0) = p2 and g(1) = p4 and rng f ⊆ C0 and
rng g ⊆ C0. Then rng f meets rng g.

3. General Rectangles and Circles

Let a, b, c, d be real numbers. The functor Rectangle(a, b, c, d) yielding a
subset of E2

T is defined by the condition (Def. 1).

(Def. 1) Rectangle(a, b, c, d) = {p : p1 = a ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = d ∧ a ¬
p1 ∧ p1 ¬ b ∨ p1 = b ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = c ∧ a ¬ p1 ∧ p1 ¬ b}.

The following proposition is true

(28) Let a, b, c, d be real numbers and p be a point of E2
T. If a ¬ b and c ¬ d

and p ∈ Rectangle(a, b, c, d), then a ¬ p1 and p1 ¬ b and c ¬ p2 and
p2 ¬ d.

Let a, b, c, d be real numbers. The functor InsideOfRectangle(a, b, c, d) yields
a subset of E2

T and is defined as follows:

(Def. 2) InsideOfRectangle(a, b, c, d) = {p : a < p1 ∧ p1 < b ∧ c < p2 ∧ p2 < d}.
Let a, b, c, d be real numbers. The functor ClosedInsideOfRectangle(a, b, c, d)

yielding a subset of E2
T is defined as follows:

(Def. 3) ClosedInsideOfRectangle(a, b, c, d) = {p : a ¬ p1 ∧ p1 ¬ b ∧ c ¬
p2 ∧ p2 ¬ d}.

Let a, b, c, d be real numbers. The functor OutsideOfRectangle(a, b, c, d)
yields a subset of E2

T and is defined by:

(Def. 4) OutsideOfRectangle(a, b, c, d) = {p : a 6¬ p1 ∨ p1 6¬ b ∨ c 6¬ p2 ∨ p2 6¬
d}.

Let a, b, c, d be real numbers. The functor ClosedOutsideOfRectangle(a, b, c, d)
yielding a subset of E2

T is defined by:

(Def. 5) ClosedOutsideOfRectangle(a, b, c, d) = {p : a 6< p1 ∨ p1 6< b ∨ c 6<
p2 ∨ p2 6< d}.

Next we state four propositions:

(29) Let a, b, r be real numbers and K5, C1 be subsets of E2
T. Suppose r ­ 0

and K5 = {q : |q| = 1} and C1 = {p2; p2 ranges over points of E2
T: |p2− [a,

b]| = r}. Then (AffineMap(r, a, r, b))◦K5 = C1.
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(30) Let P , Q be subsets of E2
T. Suppose there exists a map from E2

T¹P into
E2

T¹Q which is a homeomorphism and P is a simple closed curve. Then Q

is a simple closed curve.

(31) For every subset P of E2
T such that P satisfies conditions of simple closed

curve holds P is compact.

(32) Let a, b, r be real numbers and C1 be a subset of E2
T. Suppose r > 0 and

C1 = {p; p ranges over points of E2
T: |p− [a, b]| = r}. Then C1 is a simple

closed curve.

Let a, b, r be real numbers. Let us assume that r > 0. The functor Circle(a, b, r)
yielding a compact non empty subset of E2

T is defined as follows:

(Def. 6) Circle(a, b, r) = {p; p ranges over points of E2
T: |p− [a, b]| = r}.

Let a, b, r be real numbers. The functor InsideOfCircle(a, b, r) yielding a
subset of E2

T is defined by:

(Def. 7) InsideOfCircle(a, b, r) = {p; p ranges over points of E2
T: |p− [a, b]| < r}.

Let a, b, r be real numbers. The functor ClosedInsideOfCircle(a, b, r) yields
a subset of E2

T and is defined as follows:

(Def. 8) ClosedInsideOfCircle(a, b, r) = {p; p ranges over points of E2
T: |p − [a,

b]| ¬ r}.
Let a, b, r be real numbers. The functor OutsideOfCircle(a, b, r) yielding a

subset of E2
T is defined by:

(Def. 9) OutsideOfCircle(a, b, r) = {p; p ranges over points of E2
T: |p− [a, b]| > r}.

Let a, b, r be real numbers. The functor ClosedOutsideOfCircle(a, b, r) yiel-
ding a subset of E2

T is defined as follows:

(Def. 10) ClosedOutsideOfCircle(a, b, r) = {p; p ranges over points of E2
T: |p − [a,

b]| ­ r}.
One can prove the following propositions:

(33) Let r be a real number. Then InsideOfCircle(0, 0, r) = {p : |p| < r} and if
r > 0, then Circle(0, 0, r) = {p2 : |p2| = r} and OutsideOfCircle(0, 0, r) =
{p3 : |p3| > r} and ClosedInsideOfCircle(0, 0, r) = {q : |q| ¬ r} and
ClosedOutsideOfCircle(0, 0, r) = {q2 : |q2| ­ r}.

(34) Let K5, C1 be subsets of E2
T. Suppose K5 = {p : −1 < p1 ∧ p1 <

1 ∧ −1 < p2 ∧ p2 < 1} and C1 = {p2; p2 ranges over points of E2
T:

|p2| < 1}. Then SqCirc◦K5 = C1.

(35) Let K5, C1 be subsets of E2
T. Suppose K5 = {p : −1 6¬ p1 ∨ p1 6¬

1 ∨ −1 6¬ p2 ∨ p2 6¬ 1} and C1 = {p2; p2 ranges over points of E2
T:

|p2| > 1}. Then SqCirc◦K5 = C1.

(36) Let K5, C1 be subsets of E2
T. Suppose K5 = {p : −1 ¬ p1 ∧ p1 ¬

1 ∧ −1 ¬ p2 ∧ p2 ¬ 1} and C1 = {p2; p2 ranges over points of E2
T:

|p2| ¬ 1}. Then SqCirc◦K5 = C1.
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(37) Let K5, C1 be subsets of E2
T. Suppose K5 = {p : −1 6< p1 ∨ p1 6<

1 ∨ −1 6< p2 ∨ p2 6< 1} and C1 = {p2; p2 ranges over points of E2
T:

|p2| ­ 1}. Then SqCirc◦K5 = C1.

(38) Let P0, P1, P2, P11, K0, K6, K7, K11 be subsets of E2
T, P , K be non

empty compact subsets of E2
T, and f be a map from E2

T into E2
T. Sup-

pose that P = Circle(0, 0, 1) and P0 = InsideOfCircle(0, 0, 1) and P1 =
OutsideOfCircle(0, 0, 1) and P2 = ClosedInsideOfCircle(0, 0, 1) and P11 =
ClosedOutsideOfCircle(0, 0, 1) and K = Rectangle(−1, 1,−1, 1) and K0 =
InsideOfRectangle(−1, 1,−1, 1) and K6 = OutsideOfRectangle(−1, 1,−1, 1)
and K7 = ClosedInsideOfRectangle(−1, 1,−1, 1) and
K11 = ClosedOutsideOfRectangle(−1, 1,−1, 1) and f = SqCirc . Then
f◦K = P and (f−1)◦P = K and f◦K0 = P0 and (f−1)◦P0 = K0 and
f◦K6 = P1 and (f−1)◦P1 = K6 and f◦K7 = P2 and f◦K11 = P11 and
(f−1)◦P2 = K7 and (f−1)◦P11 = K11.

4. Order of Points on Rectangle

The following propositions are true:

(39) Let a, b, c, d be real numbers. Suppose a ¬ b and c ¬ d. Then
(i) L([a, c], [a, d]) = {p1 : (p1)1 = a ∧ (p1)2 ¬ d ∧ (p1)2 ­ c},
(ii) L([a, d], [b, d]) = {p2 : (p2)1 ¬ b ∧ (p2)1 ­ a ∧ (p2)2 = d},
(iii) L([a, c], [b, c]) = {q1 : (q1)1 ¬ b ∧ (q1)1 ­ a ∧ (q1)2 = c}, and
(iv) L([b, c], [b, d]) = {q2 : (q2)1 = b ∧ (q2)2 ¬ d ∧ (q2)2 ­ c}.

(40) Let a, b, c, d be real numbers. Suppose a ¬ b and c ¬ d. Then {p : p1 =
a ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = d ∧ a ¬ p1 ∧ p1 ¬ b ∨ p1 = b ∧ c ¬
p2 ∧ p2 ¬ d ∨ p2 = c ∧ a ¬ p1 ∧ p1 ¬ b} = L([a, c], [a, d])∪L([a, d], [b,
d]) ∪ (L([a, c], [b, c]) ∪ L([b, c], [b, d])).

(41) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds L([a,

c], [a, d]) ∩ L([a, c], [b, c]) = {[a, c]}.
(42) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds L([a, c], [b,

c]) ∩ L([b, c], [b, d]) = {[b, c]}.
(43) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds L([a, d], [b,

d]) ∩ L([b, c], [b, d]) = {[b, d]}.
(44) For all real numbers a, b, c, d such that a ¬ b and c ¬ d holds L([a,

c], [a, d]) ∩ L([a, d], [b, d]) = {[a, d]}.
(45) {q : −1 = q1 ∧ −1 ¬ q2 ∧ q2 ¬ 1 ∨ q1 = 1 ∧ −1 ¬ q2 ∧ q2 ¬

1 ∨ −1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1 ∨ 1 = q2 ∧ −1 ¬ q1 ∧ q1 ¬ 1} = {p :
p1 = −1 ∧ −1 ¬ p2 ∧ p2 ¬ 1 ∨ p2 = 1 ∧ −1 ¬ p1 ∧ p1 ¬ 1 ∨ p1 =
1 ∧ −1 ¬ p2 ∧ p2 ¬ 1 ∨ p2 = −1 ∧ −1 ¬ p1 ∧ p1 ¬ 1}.
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(46) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then
W-bound K = a.

(47) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then
N-bound K = d.

(48) Let K be a non empty compact subset of E2
T and a, b, c, d be real num-

bers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then E-bound K = b.

(49) Let K be a non empty compact subset of E2
T and a, b, c, d be real num-

bers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then S-bound K = c.

(50) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then
NW-corner K = [a, d].

(51) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then
NE-corner K = [b, d].

(52) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then
SW-corner K = [a, c].

(53) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then
SE-corner K = [b, c].

(54) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then
W-most K = L([a, c], [a, d]).

(55) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then
E-most K = L([b, c], [b, d]).

(56) Let K be a non empty compact subset of E2
T and a, b, c, d be real num-

bers. If K = Rectangle(a, b, c, d) and a ¬ b and c ¬ d, then W-min K = [a,

c] and E-max K = [b, d].
(57) Let K be a non empty compact subset of E2

T and a, b, c, d be real
numbers. Suppose K = Rectangle(a, b, c, d) and a < b and c < d. Then
L([a, c], [a, d]) ∪ L([a, d], [b, d]) is an arc from W-min K to E-max K and
L([a, c], [b, c]) ∪ L([b, c], [b, d]) is an arc from E-max K to W-min K.

(58) Let P , P1, P3 be subsets of E2
T, a, b, c, d be real numbers, f1, f2 be finite

sequences of elements of E2
T, and p0, p1, p5, p10 be points of E2

T. Suppose
that a < b and c < d and P = {p : p1 = a ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 =
d ∧ a ¬ p1 ∧ p1 ¬ b ∨ p1 = b ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 =
c ∧ a ¬ p1 ∧ p1 ¬ b} and p0 = [a, c] and p1 = [b, d] and p5 = [a,
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d] and p10 = [b, c] and f1 = 〈p0, p5, p1〉 and f2 = 〈p0, p10, p1〉. Then f1 is
a special sequence and L̃(f1) = L(p0, p5) ∪ L(p5, p1) and f2 is a special
sequence and L̃(f2) = L(p0, p10) ∪ L(p10, p1) and P = L̃(f1) ∪ L̃(f2) and
L̃(f1) ∩ L̃(f2) = {p0, p1} and (f1)1 = p0 and (f1)len f1 = p1 and (f2)1 = p0

and (f2)len f2 = p1.

(59) Let P , P1, P3 be subsets of E2
T, a, b, c, d be real numbers, f1, f2 be finite

sequences of elements of E2
T, and p1, p2 be points of E2

T. Suppose that a < b

and c < d and P = {p : p1 = a ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = d ∧ a ¬
p1 ∧ p1 ¬ b ∨ p1 = b ∧ c ¬ p2 ∧ p2 ¬ d ∨ p2 = c ∧ a ¬ p1 ∧ p1 ¬ b}
and p1 = [a, c] and p2 = [b, d] and f1 = 〈[a, c], [a, d], [b, d]〉 and f2 = 〈[a,

c], [b, c], [b, d]〉 and P1 = L̃(f1) and P3 = L̃(f2). Then P1 is an arc from p1

to p2 and P3 is an arc from p1 to p2 and P1 is non empty and P3 is non
empty and P = P1 ∪ P3 and P1 ∩ P3 = {p1, p2}.

(60) For all real numbers a, b, c, d such that a < b and c < d holds
Rectangle(a, b, c, d) is a simple closed curve.

(61) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a < b and c < d, then
UpperArc K = L([a, c], [a, d]) ∪ L([a, d], [b, d]).

(62) Let K be a non empty compact subset of E2
T and a, b, c, d be real

numbers. If K = Rectangle(a, b, c, d) and a < b and c < d, then
LowerArc K = L([a, c], [b, c]) ∪ L([b, c], [b, d]).

(63) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d. Then there exists a map f from I into (E2
T)¹ UpperArc K such

that
f is a homeomorphism and f(0) = W-min K and f(1) = E-max K and
rng f = UpperArc K and for every real number r such that r ∈ [0, 1

2 ] holds
f(r) = (1− 2 · r) · [a, c] + 2 · r · [a, d] and for every real number r such that
r ∈ [12 , 1] holds f(r) = (1− (2 · r−1)) · [a, d]+(2 ·r−1) · [b, d] and for every

point p of E2
T such that p ∈ L([a, c], [a, d]) holds 0 ¬

p2−c
d−c

2 and
p2−c
d−c

2 ¬ 1

and f(
p2−c
d−c

2 ) = p and for every point p of E2
T such that p ∈ L([a, d], [b, d])

holds 0 ¬
p1−a
b−a

2 + 1
2 and

p1−a
b−a

2 + 1
2 ¬ 1 and f(

p1−a
b−a

2 + 1
2) = p.

(64) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d. Then there exists a map f from I into (E2
T)¹ LowerArc K such

that
f is a homeomorphism and f(0) = E-max K and f(1) = W-min K and
rng f = LowerArc K and for every real number r such that r ∈ [0, 1

2 ] holds
f(r) = (1− 2 · r) · [b, d] + 2 · r · [b, c] and for every real number r such that
r ∈ [12 , 1] holds f(r) = (1− (2 · r−1)) · [b, c]+ (2 · r−1) · [a, c] and for every
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point p of E2
T such that p ∈ L([b, d], [b, c]) holds 0 ¬

p2−d
c−d

2 and
p2−d
c−d

2 ¬ 1

and f(
p2−d
c−d

2 ) = p and for every point p of E2
T such that p ∈ L([b, c], [a, c])

holds 0 ¬
p1−b
a−b

2 + 1
2 and

p1−b
a−b

2 + 1
2 ¬ 1 and f(

p1−b
a−b

2 + 1
2) = p.

(65) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b and

c < d and p1 ∈ L([a, c], [a, d]) and p2 ∈ L([a, c], [a, d]). Then LE(p1, p2, K)
if and only if (p1)2 ¬ (p2)2.

(66) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b and

c < d and p1 ∈ L([a, d], [b, d]) and p2 ∈ L([a, d], [b, d]). Then LE(p1, p2, K)
if and only if (p1)1 ¬ (p2)1.

(67) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b and

c < d and p1 ∈ L([b, c], [b, d]) and p2 ∈ L([b, c], [b, d]). Then LE(p1, p2, K)
if and only if (p1)2 ­ (p2)2.

(68) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b and

c < d and p1 ∈ L([a, c], [b, c]) and p2 ∈ L([a, c], [b, c]). Then LE(p1, p2, K)
and p1 6= W-min K if and only if (p1)1 ­ (p2)1 and p2 6= W-min K.

(69) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d and p1 ∈ L([a, c], [a, d]). Then LE(p1, p2,K) if and only if one
of the following conditions is satisfied:

(i) p2 ∈ L([a, c], [a, d]) and (p1)2 ¬ (p2)2, or
(ii) p2 ∈ L([a, d], [b, d]), or
(iii) p2 ∈ L([b, d], [b, c]), or
(iv) p2 ∈ L([b, c], [a, c]) and p2 6= W-min K.

(70) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d and p1 ∈ L([a, d], [b, d]). Then LE(p1, p2,K) if and only if one
of the following conditions is satisfied:

(i) p2 ∈ L([a, d], [b, d]) and (p1)1 ¬ (p2)1, or
(ii) p2 ∈ L([b, d], [b, c]), or
(iii) p2 ∈ L([b, c], [a, c]) and p2 6= W-min K.

(71) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d and p1 ∈ L([b, d], [b, c]). Then LE(p1, p2,K) if and only if one of
the following conditions is satisfied:

(i) p2 ∈ L([b, d], [b, c]) and (p1)2 ­ (p2)2, or
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(ii) p2 ∈ L([b, c], [a, c]) and p2 6= W-min K.

(72) Let K be a non empty compact subset of E2
T, a, b, c, d be real numbers,

and p1, p2 be points of E2
T. Suppose K = Rectangle(a, b, c, d) and a < b

and c < d and p1 ∈ L([b, c], [a, c]) and p1 6= W-min K. Then LE(p1, p2,K)
if and only if the following conditions are satisfied:

(i) p2 ∈ L([b, c], [a, c]),
(ii) (p1)1 ­ (p2)1, and
(iii) p2 6= W-min K.

(73) Let x be a set and a, b, c, d be real numbers. Suppose x ∈
Rectangle(a, b, c, d) and a < b and c < d. Then x ∈ L([a, c], [a, d]) or
x ∈ L([a, d], [b, d]) or x ∈ L([b, d], [b, c]) or x ∈ L([b, c], [a, c]).

5. General Fashoda Theorem for Square

The following propositions are true:

(74) Let p1, p2 be points of E2
T and K be a non empty compact subset of E2

T.
Suppose K = Rectangle(−1, 1,−1, 1) and LE(p1, p2, K) and p1 ∈ L([−1,

−1], [−1, 1]). Then p2 ∈ L([−1,−1], [−1, 1]) and (p2)2 ­ (p1)2 or p2 ∈
L([−1, 1], [1, 1]) or p2 ∈ L([1, 1], [1,−1]) or p2 ∈ L([1,−1], [−1,−1]) and
p2 6= [−1,−1].

(75) Let p1, p2 be points of E2
T, P , K be non empty compact subsets of

E2
T, and f be a map from E2

T into E2
T. Suppose P = Circle(0, 0, 1) and

K = Rectangle(−1, 1,−1, 1) and f = SqCirc and p1 ∈ L([−1,−1], [−1, 1])
and (p1)2 ­ 0 and LE(p1, p2,K). Then LE(f(p1), f(p2), P ).

(76) Let p1, p2, p3 be points of E2
T, P , K be non empty compact subsets of

E2
T, and f be a map from E2

T into E2
T. Suppose P = Circle(0, 0, 1) and K =

Rectangle(−1, 1,−1, 1) and f = SqCirc and p1 ∈ L([−1,−1], [−1, 1]) and
(p1)2 ­ 0 and LE(p1, p2,K) and LE(p2, p3,K). Then LE(f(p2), f(p3), P ).

(77) Let p be a point of E2
T and f be a map from E2

T into E2
T. If f = SqCirc

and p1 = −1 and p2 < 0, then f(p)1 < 0 and f(p)2 < 0.

(78) Let p be a point of E2
T, P , K be non empty compact subsets of E2

T,
and f be a map from E2

T into E2
T. If P = Circle(0, 0, 1) and K =

Rectangle(−1, 1,−1, 1) and f = SqCirc, then f(p)1 ­ 0 iff p1 ­ 0.

(79) Let p be a point of E2
T, P , K be non empty compact subsets of E2

T,
and f be a map from E2

T into E2
T. If P = Circle(0, 0, 1) and K =

Rectangle(−1, 1,−1, 1) and f = SqCirc, then f(p)2 ­ 0 iff p2 ­ 0.

(80) Let p, q be points of E2
T and f be a map from E2

T into E2
T. If f = SqCirc

and p ∈ L([−1,−1], [−1, 1]) and q ∈ L([1,−1], [−1,−1]), then f(p)1 ¬
f(q)1.
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(81) Let p, q be points of E2
T and f be a map from E2

T into E2
T. Suppose

f = SqCirc and p ∈ L([−1,−1], [−1, 1]) and q ∈ L([−1,−1], [−1, 1]) and
p2 ­ q2 and p2 < 0. Then f(p)2 ­ f(q)2.

(82) Let p1, p2, p3, p4 be points of E2
T, P , K be non empty compact subsets

of E2
T, and f be a map from E2

T into E2
T. Suppose P = Circle(0, 0, 1) and

K = Rectangle(−1, 1,−1, 1) and f = SqCirc . Suppose LE(p1, p2,K) and
LE(p2, p3,K) and LE(p3, p4,K). Then f(p1), f(p2), f(p3), f(p4) are in
this order on P .

(83) Let p1, p2 be points of E2
T and P be a non empty compact subset of E2

T.
If P is a simple closed curve and p1 ∈ P and p2 ∈ P and not LE(p1, p2, P ),
then LE(p2, p1, P ).

(84) Let p1, p2, p3 be points of E2
T and P be a non empty compact subset of E2

T.
Suppose P is a simple closed curve and p1 ∈ P and p2 ∈ P and p3 ∈ P.

Then LE(p1, p2, P ) and LE(p2, p3, P ) or LE(p1, p3, P ) and LE(p3, p2, P )
or LE(p2, p1, P ) and LE(p1, p3, P ) or LE(p2, p3, P ) and LE(p3, p1, P ) or
LE(p3, p1, P ) and LE(p1, p2, P ) or LE(p3, p2, P ) and LE(p2, p1, P ).

(85) Let p1, p2, p3 be points of E2
T and P be a non empty compact subset of

E2
T. Suppose P is a simple closed curve and p1 ∈ P and p2 ∈ P and p3 ∈ P

and LE(p2, p3, P ). Then LE(p1, p2, P ) or LE(p2, p1, P ) and LE(p1, p3, P )
or LE(p3, p1, P ).

(86) Let p1, p2, p3, p4 be points of E2
T and P be a non empty compact subset

of E2
T. Suppose P is a simple closed curve and p1 ∈ P and p2 ∈ P and

p3 ∈ P and p4 ∈ P and LE(p2, p3, P ) and LE(p3, p4, P ). Then LE(p1, p2, P )
or LE(p2, p1, P ) and LE(p1, p3, P ) or LE(p3, p1, P ) and LE(p1, p4, P ) or
LE(p4, p1, P ).

(87) Let p1, p2, p3, p4 be points of E2
T, P , K be non empty compact subsets

of E2
T, and f be a map from E2

T into E2
T. Suppose P = Circle(0, 0, 1) and

K = Rectangle(−1, 1,−1, 1) and f = SqCirc and LE(f(p1), f(p2), P ) and
LE(f(p2), f(p3), P ) and LE(f(p3), f(p4), P ). Then p1, p2, p3, p4 are in this
order on K.

(88) Let p1, p2, p3, p4 be points of E2
T, P , K be non empty compact subsets

of E2
T, and f be a map from E2

T into E2
T. Suppose P = Circle(0, 0, 1) and

K = Rectangle(−1, 1,−1, 1) and f = SqCirc . Then p1, p2, p3, p4 are in
this order on K if and only if f(p1), f(p2), f(p3), f(p4) are in this order
on P .

(89) Let p1, p2, p3, p4 be points of E2
T, K be a compact non empty subset of

E2
T, and K0 be a subset of E2

T. Suppose K = Rectangle(−1, 1,−1, 1) and
p1, p2, p3, p4 are in this order on K. Let f , g be maps from I into E2

T.
Suppose that f is continuous and one-to-one and g is continuous and one-
to-one and K0 = ClosedInsideOfRectangle(−1, 1,−1, 1) and f(0) = p1 and
f(1) = p3 and g(0) = p2 and g(1) = p4 and rng f ⊆ K0 and rng g ⊆ K0.
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Then rng f meets rng g.
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Summary. In this paper, we first introduce the notion of summability of
an infinite set of vectors of real Hilbert space, without using index sets. Fur-
ther we introduce the notion of weak summability, which is weaker than that of
summability. Then, several statements for summable sets and weakly summable
ones are proved. In the last part of the paper, we give a necessary and sufficient
condition for summability of an infinite set of vectors of real Hilbert space as our
main theorem. The last theorem is due to [8].

MML Identifier: BHSP 6.

The terminology and notation used here are introduced in the following articles:
[18], [21], [6], [1], [16], [9], [22], [4], [5], [7], [12], [20], [13], [14], [15], [3], [10], [17],
[11], [2], [19], and [23].

1. Preliminaries

In this paper X is a real unitary space, x is a point of X, and i is a natural
number.

Let us consider X. Let us assume that the addition of X is commutative
and associative and the addition of X has a unity. Let Y be a finite subset of
the carrier of X. The functor Setsum(Y ) yielding an element of the carrier of
X is defined by the condition (Def. 1).
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(Def. 1) There exists a finite sequence p of elements of the carrier of X such that
p is one-to-one and rng p = Y and Setsum(Y ) = the addition of X � p.

We now state two propositions:

(1) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let Y be a finite subset of the carrier of
X and I be a function from the carrier of X into the carrier of X. Suppose
Y ⊆ dom I and for every set x such that x ∈ dom I holds I(x) = x.

Then Setsum(Y ) = setopfunc(Y, the carrier of X, the carrier of X, I, the
addition of X).

(2) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let Y1, Y2 be finite subsets of the carrier
of X. Suppose Y1 misses Y2. Let Z be a finite subset of the carrier of X.
If Z = Y1 ∪ Y2, then Setsum(Z) = Setsum(Y1) + Setsum(Y2).

2. Summability

Let us consider X and let Y be a subset of the carrier of X. We say that Y

is summable set if and only if the condition (Def. 2) is satisfied.

(Def. 2) There exists x such that for every real number e if e > 0, then there
exists a finite subset Y0 of the carrier of X such that Y0 is non empty and
Y0 ⊆ Y and for every finite subset Y1 of the carrier of X such that Y0 ⊆ Y1

and Y1 ⊆ Y holds ‖x− Setsum(Y1)‖ < e.

Let us consider X and let Y be a subset of the carrier of X. Let us assume
that Y is summable set. The functor sum Y yielding a point of X is defined by
the condition (Def. 3).

(Def. 3) Let e be a real number. Suppose e > 0. Then there exists a finite subset
Y0 of the carrier of X such that Y0 is non empty and Y0 ⊆ Y and for every
finite subset Y1 of the carrier of X such that Y0 ⊆ Y1 and Y1 ⊆ Y holds
‖sum Y − Setsum(Y1)‖ < e.

Let us consider X and let L be a linear functional in X. We say that L is
Bounded if and only if:

(Def. 4) There exists a real number K such that K > 0 and for every x holds
|L(x)| ¬ K · ‖x‖.

Let us consider X and let Y be a subset of the carrier of X. We say that Y

is weakly summable set if and only if the condition (Def. 5) is satisfied.

(Def. 5) There exists x such that for every linear functional L in X if L is Bo-
unded, then for every real number e such that e > 0 there exists a finite
subset Y0 of the carrier of X such that Y0 is non empty and Y0 ⊆ Y and
for every finite subset Y1 of the carrier of X such that Y0 ⊆ Y1 and Y1 ⊆ Y

holds |L(x− Setsum(Y1))| < e.



on some properties of real hilbert space. . . . 227

Let us consider X, let Y be a subset of the carrier of X, and let L be a
functional in X. We say that Y is summable set by L if and only if the condition
(Def. 6) is satisfied.

(Def. 6) There exists a real number r such that for every real number e if e > 0,

then there exists a finite subset Y0 of the carrier of X such that Y0 is
non empty and Y0 ⊆ Y and for every finite subset Y1 of the carrier of X

such that Y0 ⊆ Y1 and Y1 ⊆ Y holds |r − setopfunc(Y1, the carrier of X,
R, L, +R)| < e.

Let us consider X, let Y be a subset of the carrier of X, and let L be
a functional in X. Let us assume that Y is summable set by L. The functor
SumByfunc(Y, L) yielding a real number is defined by the condition (Def. 7).

(Def. 7) Let e be a real number. Suppose e > 0. Then there exists a finite subset
Y0 of the carrier of X such that

(i) Y0 is non empty,
(ii) Y0 ⊆ Y, and
(iii) for every finite subset Y1 of the carrier of X such that Y0 ⊆ Y1 and Y1 ⊆

Y holds |SumByfunc(Y,L)−setopfunc(Y1, the carrier of X, R, L,+R)| < e.

The following propositions are true:

(3) For every subset Y of the carrier of X such that Y is summable set holds
Y is weakly summable set.

(4) Let L be a linear functional in X and p be a finite sequence of elements of
the carrier of X. Suppose len p ­ 1. Let q be a finite sequence of elements
of R. Suppose dom p = dom q and for every i such that i ∈ dom q holds
q(i) = L(p(i)). Then L(the addition of X � p) = +R � q.

(5) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let S be a finite subset of the carrier
of X. Suppose S is non empty. Let L be a linear functional in X. Then
L(Setsum(S)) = setopfunc(S, the carrier of X, R, L, +R).

(6) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let Y be a subset of the carrier of
X. Suppose Y is weakly summable set. Then there exists x such that for
every linear functional L in X if L is Bounded, then for every real number
e such that e > 0 there exists a finite subset Y0 of the carrier of X such
that Y0 is non empty and Y0 ⊆ Y and for every finite subset Y1 of the
carrier of X such that Y0 ⊆ Y1 and Y1 ⊆ Y holds |L(x)− setopfunc(Y1, the
carrier of X, R, L,+R)| < e.

(7) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let Y be a subset of the carrier of X.
Suppose Y is weakly summable set. Let L be a linear functional in X. If
L is Bounded, then Y is summable set by L.
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(8) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let Y be a subset of the carrier of
X. Suppose Y is summable set. Let L be a linear functional in X. If L is
Bounded, then Y is summable set by L.

(9) For every finite subset Y of the carrier of X such that Y is non empty
holds Y is summable set.

3. Necessary and Sufficient Condition for Summability

One can prove the following proposition

(10) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity and X is a Hilbert space. Let Y be a
subset of the carrier of X. Then Y is summable set if and only if for every
real number e such that e > 0 there exists a finite subset Y0 of the carrier
of X such that Y0 is non empty and Y0 ⊆ Y and for every finite subset Y1

of the carrier of X such that Y1 is non empty and Y1 ⊆ Y and Y0 misses
Y1 holds ‖Setsum(Y1)‖ < e.
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Summary. In this article we continue investigations from [22] of verifica-
tion of a design of subtracter circuit. We define it as a combination of multi cell
circuit using schemes from [6]. As the main result we prove the stability of the
circuit.

MML Identifier: FSCIRC 2.

The articles [17], [16], [21], [15], [3], [18], [25], [1], [9], [10], [4], [8], [2], [19],
[24], [14], [20], [13], [12], [11], [23], [5], [7], and [22] provide the terminology and
notation for this paper.

Let n be a natural number and let x, y be finite sequences. The functor
n-BitSubtracterStr(x, y) yields an unsplit non void strict non empty many sorted
signature with arity held in gates and Boolean denotation held in gates and is
defined by the condition (Def. 1).

(Def. 1) There exist many sorted sets f , g indexed by N such that
(i) n-BitSubtracterStr(x, y) = f(n),
(ii) f(0) = 1GateCircStr(ε, Boolean0 7−→ true),
(iii) g(0) = 〈〈ε, Boolean0 7−→ true〉〉, and
(iv) for every natural number n and for every non empty many sorted

signature S and for every set z such that S = f(n) and z = g(n) holds
f(n + 1) = S+·BitSubtracterWithBorrowStr(x(n + 1), y(n + 1), z) and
g(n + 1) = BorrowOutput(x(n + 1), y(n + 1), z).

Let n be a natural number and let x, y be finite sequences.
The functor n-BitSubtracterCirc(x, y) yielding a Boolean strict circuit of
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n-BitSubtracterStr(x, y) with denotation held in gates is defined by the con-
dition (Def. 2).

(Def. 2) There exist many sorted sets f , g, h indexed by N such that
(i) n-BitSubtracterStr(x, y) = f(n),
(ii) n-BitSubtracterCirc(x, y) = g(n),
(iii) f(0) = 1GateCircStr(ε, Boolean0 7−→ true),
(iv) g(0) = 1GateCircuit(ε, Boolean0 7−→ true),
(v) h(0) = 〈〈ε, Boolean0 7−→ true〉〉, and
(vi) for every natural number n and for every non empty many sorted

signature S and for every non-empty algebra A over S and for every set
z such that S = f(n) and A = g(n) and z = h(n) holds f(n + 1) =
S+·BitSubtracterWithBorrowStr(x(n + 1), y(n + 1), z) and g(n + 1) =
A+·BitSubtracterWithBorrowCirc(x(n + 1), y(n + 1), z) and h(n + 1) =
BorrowOutput(x(n + 1), y(n + 1), z).

Let n be a natural number and let x, y be finite sequences. The functor
n-BitBorrowOutput(x, y) yields an element of InnerVertices(n-BitSubtracterStr

(x, y)) and is defined by the condition (Def. 3).

(Def. 3) There exists a many sorted set h indexed by N such that
(i) n-BitBorrowOutput(x, y) = h(n),
(ii) h(0) = 〈〈ε, Boolean0 7−→ true〉〉, and
(iii) for every natural number n and for every set z such that z = h(n) holds

h(n + 1) = BorrowOutput(x(n + 1), y(n + 1), z).

One can prove the following propositions:

(1) Let x, y be finite sequences and f , g, h be many sorted sets indexed by
N. Suppose that

(i) f(0) = 1GateCircStr(ε, Boolean0 7−→ true),
(ii) g(0) = 1GateCircuit(ε, Boolean0 7−→ true),
(iii) h(0) = 〈〈ε, Boolean0 7−→ true〉〉, and
(iv) for every natural number n and for every non empty many sorted

signature S and for every non-empty algebra A over S and for every set
z such that S = f(n) and A = g(n) and z = h(n) holds f(n + 1) =
S+·BitSubtracterWithBorrowStr(x(n + 1), y(n + 1), z) and g(n + 1) =
A+·BitSubtracterWithBorrowCirc(x(n + 1), y(n + 1), z) and h(n + 1) =
BorrowOutput(x(n + 1), y(n + 1), z).
Let n be a natural number. Then n-BitSubtracterStr(x, y) = f(n) and
n-BitSubtracterCirc(x, y) = g(n) and n-BitBorrowOutput(x, y) = h(n).

(2) For all finite sequences a, b holds 0-BitSubtracterStr(a, b) =
1GateCircStr(ε, Boolean0 7−→ true) and 0-BitSubtracterCirc(a, b) =
1GateCircuit(ε, Boolean0 7−→ true) and 0-BitBorrowOutput(a, b) = 〈〈ε,
Boolean0 7−→ true〉〉.
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(3) Let a, b be finite sequences and c be a set. Suppose c = 〈〈ε, Boolean0 7−→
true〉〉. Then 1-BitSubtracterStr(a, b) = 1GateCircStr(ε, Boolean0 7−→
true)+·BitSubtracterWithBorrowStr(a(1), b(1), c) and
1-BitSubtracterCirc(a, b) = 1GateCircuit(ε, Boolean0 7−→ true)+·
BitSubtracterWithBorrowCirc(a(1), b(1), c) and 1-BitBorrowOutput(a, b) =
BorrowOutput(a(1), b(1), c).

(4) For all sets a, b, c such that c = 〈〈ε, Boolean0 7−→ true〉〉 holds
1-BitSubtracterStr(〈a〉, 〈b〉) = 1GateCircStr(ε, Boolean0 7−→ true)+·
BitSubtracterWithBorrowStr(a, b, c) and 1-BitSubtracterCirc(〈a〉, 〈b〉) =
1GateCircuit(ε, Boolean0 7−→ true)+·BitSubtracterWithBorrowCirc(a, b, c)
and 1-BitBorrowOutput(〈a〉, 〈b〉) = BorrowOutput(a, b, c).

(5) Let n be a natural number, p, q be finite sequences with length n, and
p1, p2, q1, q2 be finite sequences. Then n-BitSubtracterStr(pa p1, q

a q1) =
n-BitSubtracterStr(pa p2, q

a q2) and n-BitSubtracterCirc(pa p1, q
a q1) =

n-BitSubtracterCirc(pap2, q
aq2) and n-BitBorrowOutput(pap1, q

aq1) =
n-BitBorrowOutput(p a p2, q

a q2).
(6) Let n be a natural number, x, y be finite sequences with length n, and

a, b be sets.
Then (n+1)-BitSubtracterStr(xa〈a〉, ya〈b〉) = (n-BitSubtracterStr(x, y))+·
BitSubtracterWithBorrowStr(a, b, n-BitBorrowOutput(x, y)) and (n +
1)-BitSubtracterCirc(x a 〈a〉, y a 〈b〉) = (n-BitSubtracterCirc(x, y))+·
BitSubtracterWithBorrowCirc(a, b, n-BitBorrowOutput(x, y)) and (n +
1)-BitBorrowOutput(x a 〈a〉, y a 〈b〉) =
BorrowOutput(a, b, n-BitBorrowOutput(x, y)).

(7) Let n be a natural number and x, y be finite sequences. Then (n +
1)-BitSubtracterStr(x, y) =
(n-BitSubtracterStr(x, y))+·BitSubtracterWithBorrowStr(x(n+1), y(n+
1), n-BitBorrowOutput(x, y)) and (n + 1)-BitSubtracterCirc(x, y) =
(n-BitSubtracterCirc(x, y))+·BitSubtracterWithBorrowCirc(x(n+1), y(n+
1), n-BitBorrowOutput(x, y)) and (n + 1)-BitBorrowOutput(x, y) =
BorrowOutput(x(n + 1), y(n + 1), n-BitBorrowOutput(x, y)).

(8) For all natural numbers n, m such that n ¬ m and for all fi-
nite sequences x, y holds InnerVertices(n-BitSubtracterStr(x, y)) ⊆
InnerVertices(m-BitSubtracterStr(x, y)).

(9) For every natural number n and for all finite sequences x, y holds
InnerVertices((n + 1)-BitSubtracterStr(x, y)) =
InnerVertices(n-BitSubtracterStr(x, y)) ∪ InnerVertices
(BitSubtracterWithBorrowStr(x(n+1), y(n+1), n-BitBorrowOutput(x, y))).

Let k, n be natural numbers. Let us assume that k ­ 1 and k ¬ n. Let x,
y be finite sequences. The functor (k, n)-BitSubtracterOutput(x, y) yielding an
element of InnerVertices(n-BitSubtracterStr(x, y)) is defined by:
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(Def. 4) There exists a natural number i such that k = i + 1 and
(k, n)-BitSubtracterOutput(x, y) = BitSubtracterOutput(x(k), y(k),
i-BitBorrowOutput(x, y)).

One can prove the following propositions:

(10) For all natural numbers n, k such that k < n and for all fi-
nite sequences x, y holds (k + 1, n)-BitSubtracterOutput(x, y) =
BitSubtracterOutput(x(k + 1), y(k + 1), k-BitBorrowOutput(x, y)).

(11) For every natural number n and for all finite sequences x, y holds
InnerVertices(n-BitSubtracterStr(x, y)) is a binary relation.

(12) For all sets x, y, c holds InnerVertices(BorrowIStr(x, y, c)) = {〈〈〈x, y〉,
and2a 〉〉, 〈〈〈y, c〉, and2 〉〉, 〈〈〈x, c〉, and2a 〉〉}.

(13) For all sets x, y, c such that x 6= 〈〈〈y, c〉, and2 〉〉 and y 6= 〈〈〈x, c〉,
and2a 〉〉 and c 6= 〈〈〈x, y〉, and2a 〉〉 holds InputVertices(BorrowIStr(x, y, c)) =
{x, y, c}.

(14) For all sets x, y, c holds InnerVertices(BorrowStr(x, y, c)) = {〈〈〈x, y〉,
and2a 〉〉, 〈〈〈y, c〉, and2 〉〉, 〈〈〈x, c〉, and2a 〉〉} ∪ {BorrowOutput(x, y, c)}.

(15) For all sets x, y, c such that x 6= 〈〈〈y, c〉, and2 〉〉 and y 6= 〈〈〈x, c〉,
and2a 〉〉 and c 6= 〈〈〈x, y〉, and2a 〉〉 holds InputVertices(BorrowStr(x, y, c)) =
{x, y, c}.

(16) For all sets x, y, c such that x 6= 〈〈〈y, c〉, and2 〉〉 and y 6= 〈〈〈x,

c〉, and2a 〉〉 and c 6= 〈〈〈x, y〉, and2a 〉〉 and c 6= 〈〈〈x, y〉, xor 〉〉 holds
InputVertices(BitSubtracterWithBorrowStr(x, y, c)) = {x, y, c}.

(17) For all sets x, y, c holds InnerVertices(BitSubtracterWithBorrowStr(x, y,

c)) = {〈〈〈x, y〉, xor 〉〉, 2GatesCircOutput(x, y, c, xor)}∪{〈〈〈x, y〉, and2a 〉〉, 〈〈〈y,

c〉, and2 〉〉, 〈〈〈x, c〉, and2a 〉〉} ∪ {BorrowOutput(x, y, c)}.
Let n be a natural number and let x, y be finite sequences. Observe that

n-BitBorrowOutput(x, y) is pair.
The following propositions are true:

(18) Let x, y be finite sequences and n be a natural number. Then
(n-BitBorrowOutput(x, y))1 = ε and (n-BitBorrowOutput(x, y))2 =
Boolean0 7−→ true and π1((n-BitBorrowOutput(x, y))2) = Boolean0 or

(n-BitBorrowOutput(x, y))1 = 3 and (n-BitBorrowOutput(x, y))2 = or3
and π1((n-BitBorrowOutput(x, y))2) = Boolean3 .

(19) Let n be a natural number, x, y be finite sequences, and p be a set. Then
n-BitBorrowOutput(x, y) 6= 〈〈p, and2 〉〉 and n-BitBorrowOutput(x, y) 6=
〈〈p, and2a 〉〉 and n-BitBorrowOutput(x, y) 6= 〈〈p, xor 〉〉.

(20) Let f , g be nonpair yielding finite sequences and n be a na-
tural number. Then InputVertices((n + 1)-BitSubtracterStr(f, g)) =
InputVertices(n-BitSubtracterStr(f, g)) ∪ (InputVertices
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(BitSubtracterWithBorrowStr(f(n+1), g(n+1), n-BitBorrowOutput(f, g)))\
{n-BitBorrowOutput(f, g)}) and InnerVertices(n-BitSubtracterStr(f, g))
is a binary relation and InputVertices(n-BitSubtracterStr(f, g)) has no
pairs.

(21) For every natural number n and for all nonpair yielding finite sequences
x, y with length n holds InputVertices(n-BitSubtracterStr(x, y)) = rng x∪
rng y.

(22) Let x, y, c be sets, s be a state of BorrowCirc(x, y, c), and a1, a2, a3 be
elements of Boolean. If a1 = s(〈〈〈x, y〉, and2a 〉〉) and a2 = s(〈〈〈y, c〉, and2 〉〉)
and a3 = s(〈〈〈x, c〉, and2a 〉〉), then (Following(s))(BorrowOutput(x, y, c)) =
a1 ∨ a2 ∨ a3.

(23) Let x, y, c be sets. Suppose x 6= 〈〈〈y, c〉, and2 〉〉 and y 6= 〈〈〈x, c〉, and2a 〉〉
and c 6= 〈〈〈x, y〉, and2a 〉〉 and c 6= 〈〈〈x, y〉, xor 〉〉. Let s be a state of
BorrowCirc(x, y, c). Then Following(s, 2) is stable.

(24) Let x, y, c be sets. Suppose x 6= 〈〈〈y, c〉, and2 〉〉 and y 6= 〈〈〈x, c〉,
and2a 〉〉 and c 6= 〈〈〈x, y〉, and2a 〉〉 and c 6= 〈〈〈x, y〉, xor 〉〉. Let s be a
state of BitSubtracterWithBorrowCirc(x, y, c) and a1, a2, a3 be ele-
ments of Boolean. Suppose a1 = s(x) and a2 = s(y) and a3 = s(c).
Then (Following(s, 2))(BitSubtracterOutput(x, y, c)) = a1 ⊕ a2 ⊕ a3 and
(Following(s, 2))(BorrowOutput(x, y, c)) = ¬a1 ∧ a2 ∨ a2 ∧ a3 ∨ ¬a1 ∧ a3.

(25) Let x, y, c be sets. Suppose x 6= 〈〈〈y, c〉, and2 〉〉 and y 6= 〈〈〈x, c〉, and2a 〉〉
and c 6= 〈〈〈x, y〉, and2a 〉〉 and c 6= 〈〈〈x, y〉, xor 〉〉. Let s be a state of
BitSubtracterWithBorrowCirc(x, y, c). Then Following(s, 2) is stable.

(26) Let n be a natural number, x, y be nonpair yielding finite sequen-
ces with length n, and s be a state of n-BitSubtracterCirc(x, y). Then
Following(s, 1 + 2 · n) is stable.
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Summary. The article formalizes Dijkstra’s shortest path algorithm [11].
A path from a source vertex v to a target vertex u is said to be the shortest path
if its total cost is minimum among all v-to-u paths. Dijkstra’s algorithm is based
on the following assumptions:

• All edge costs are non-negative.

• The number of vertices is finite.

• The source is a single vertex, but the target may be all other vertices.

The underlying principle of the algorithm may be described as follows: the al-
gorithm starts with the source; it visits the vertices in order of increasing cost,
and maintains a set V of visited vertices (denoted by UsedVx in the article)
whose cost from the source has been computed, and a tentative cost D(u) to
each unvisited vertex u. In the article, the set of all unvisited vertices is denoted
by UnusedVx. D(u) is the cost of the shortest path from the source to u in the
subgraph induced by V ∪ {u}. We denote the set of all unvisited vertices whose
D-values are not infinite (i.e. in the subgraph each of which has a path from the
source to itself) by OuterVx. Dijkstra’s algorithm repeatedly searches OuterVx
for the vertex with minimum tentative cost (this procedure is called findmin in
the article), adds it to the set V and modifies D-values by a procedure, called
Relax. Suppose the unvisited vertex with minimum tentative cost is x, the proce-
dure Relax replaces D(u) with min{D(u), D(u) + cost(x, u)} where u is a vertex
in UnusedVx, and cost(x, u) is the cost of edge (x, u). In the Mizar library, there
are several computer models, e.g. SCMFSA and SCMPDS etc. However, it is
extremely difficult to use these models to formalize the algorithm. Instead, we
adopt functions in the Mizar library, which seem to be pseudo-codes, and are si-
milar to those in the functional programming language, e.g. Lisp. To date, there
is no rigorous justification with respect to the correctness of Dijkstra’s algorithm.
The article presents first the rigorous justification.

MML Identifier: GRAPHSP.
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The papers [12], [2], [20], [19], [22], [23], [6], [3], [5], [21], [1], [10], [13], [7], [15],
[9], [16], [18], [8], [14], [17], and [4] provide the terminology and notation for this
paper.

1. Preliminaries

For simplicity, we adopt the following rules: X denotes a set, i, j, k, m, n

denote natural numbers, p denotes a finite sequence of elements of X, and i1
denotes an integer.

We now state three propositions:

(1) For every finite sequence p and for every set x holds x /∈ rng p and p is
one-to-one iff p a 〈x〉 is one-to-one.

(2) If 1 ¬ i1 and i1 ¬ len p, then p(i1) ∈ X.

(3) If 1 ¬ i1 and i1 ¬ len p, then pi1 = p(i1).

For simplicity, we adopt the following rules: G denotes a graph, p1, q1 denote
finite sequences of elements of the edges of G, p, q denote oriented chains of G,
W denotes a function, U , V , e, e1 denote sets, and v1, v2, v3, v4 denote vertices
of G.

We now state three propositions:

(4) If W is weight of G and len p1 = 1, then cost(p1,W ) = W (p1(1)).
(5) If e ∈ the edges of G, then 〈e〉 is a Simple oriented chain of G.

(6) Let p be a Simple oriented chain of G. Suppose p = p1
a q1 and

len p1 ­ 1 and len q1 ­ 1. Then (the target of G)(p(len p)) 6= (the target
of G)(p1(len p1)) and (the source of G)(p(1)) 6= (the source of G)(q1(1)).

2. The Fundamental Properties of Directed Paths and Shortest
Paths

We now state several propositions:

(7) p is oriented path from v1 to v2 in V iff p is oriented path from v1 to v2

in V ∪ {v2}.
(8) p is shortest path from v1 to v2 in V w.r.t. W iff p is shortest path from

v1 to v2 in V ∪ {v2} w.r.t. W .

(9) Suppose p is shortest path from v1 to v2 in V w.r.t. W and q is shortest
path from v1 to v2 in V w.r.t. W . Then cost(p,W ) = cost(q, W ).

(10) Let G be an oriented graph, v1, v2 be vertices of G, and e2, e3 be sets.
Suppose e2 ∈ the edges of G and e3 ∈ the edges of G and e2 orientedly
joins v1, v2 and e3 orientedly joins v1, v2. Then e2 = e3.
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(11) Suppose that
(i) the vertices of G = U ∪ V,

(ii) v1 ∈ U,

(iii) v2 ∈ V, and
(iv) for all v3, v4 such that v3 ∈ U and v4 ∈ V it is not true that there

exists e such that e ∈ the edges of G and e orientedly joins v3, v4.
Then there exists no p which is oriented path from v1 to v2.

(12) Suppose that
(i) the vertices of G = U ∪ V,

(ii) v1 ∈ U,

(iii) for all v3, v4 such that v3 ∈ U and v4 ∈ V it is not true that there
exists e such that e ∈ the edges of G and e orientedly joins v3, v4, and

(iv) p is oriented path from v1 to v2.
Then p is oriented path from v1 to v2 in U .

3. The Basic Theorems for Dijkstra’s Shortest Path Algorithm
(continue)

We adopt the following convention: G is a finite graph, P , Q are oriented
chains of G, and v1, v2, v3 are vertices of G.

Next we state the proposition

(13) Suppose that W is nonnegative weight of G and P is shortest path from
v1 to v2 in V w.r.t. W and v1 6= v2 and v1 6= v3 and Q is shortest path
from v1 to v3 in V w.r.t. W and it is not true that there exists e such
that e ∈ the edges of G and e orientedly joins v2, v3 and P is longest in
shortest path from v1 in V w.r.t. W . Then Q is shortest path from v1 to
v3 in V ∪ {v2} w.r.t. W .

For simplicity, we adopt the following rules: G is a finite oriented graph, P ,
Q are oriented chains of G, W is a function from the edges of G into R­0, and
v1, v2, v3, v4 are vertices of G.

One can prove the following three propositions:

(14) Suppose e ∈ the edges of G and v1 6= v2 and P = 〈e〉 and e orientedly
joins v1, v2. Then P is shortest path from v1 to v2 in {v1} w.r.t. W .

(15) Suppose that e ∈ the edges of G and P is shortest path from v1 to v2 in
V w.r.t. W and v1 6= v3 and Q = P a 〈e〉 and e orientedly joins v2, v3 and
v1 ∈ V and for every v4 such that v4 ∈ V it is not true that there exists
e1 such that e1 ∈ the edges of G and e1 orientedly joins v4, v3. Then Q is
shortest path from v1 to v3 in V ∪ {v2} w.r.t. W .

(16) Suppose that
(i) the vertices of G = U ∪ V,
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(ii) v1 ∈ U, and
(iii) for all v3, v4 such that v3 ∈ U and v4 ∈ V it is not true that there

exists e such that e ∈ the edges of G and e orientedly joins v3, v4.
Then P is shortest path from v1 to v2 in U w.r.t. W if and only if P is
shortest path from v1 to v2 in W .

4. The Definition of Assignment Statement

Let f be a function and let i, x be sets. We introduce fi:=x as a synonym
of f +· (i, x).

We now state the proposition

(17) For all sets x, y and for every function f holds rng(fx:=y) ⊆ rng f ∪{y}.
Let f be a finite sequence of elements of R, let x be a set, and let r be a real

number. Then fx:=r is a finite sequence of elements of R.
Let i, k be natural numbers, let f be a finite sequence of elements of R, and

let r be a real number. The functor (f, i) := (k, r) yielding a finite sequence of
elements of R is defined by:

(Def. 1) (f, i) := (k, r) = fi:=kk:=r.

In the sequel f , g, h denote elements of R∗ and r denotes a real number.
One can prove the following propositions:

(18) If i 6= k and i ∈ dom f, then ((f, i) := (k, r))(i) = k.

(19) If m 6= i and m 6= k and m ∈ dom f, then ((f, i) := (k, r))(m) = f(m).
(20) If k ∈ dom f, then ((f, i) := (k, r))(k) = r.

(21) dom((f, i) := (k, r)) = dom f.

5. The Definition of Pascal–Like “while” - “do” Statement

Let X be a set. Then idX is an element of XX .
Let X be a set and let f , g be functions from X into X. Then g · f is a

function from X into X.
Let X be a set and let f , g be elements of XX . Then g · f is an element of

XX .
Let X be a set, let f be an element of XX , and let g be an element of X.

Then f(g) is an element of X.
Let X be a set and let f be an element of XX . The functor repeat f yields

a function from N into XX and is defined by:

(Def. 2) (repeat f)(0) = idX and for every natural number i and for every element
x of XX such that x = (repeat f)(i) holds (repeat f)(i + 1) = f · x.

Next we state two propositions:



dijkstra’s shortest path algorithm 241

(22) For every element F of (R∗)R∗ and for every element f of R∗ and for all
natural numbers n, i holds (repeat F )(0)(f) = f.

(23) Let F , G be elements of (R∗)R∗ , f be an element of R∗, and i be a natural
number. Then (repeat(F ·G))(i + 1)(f) = F (G((repeat(F ·G))(i)(f))).

Let g be an element of (R∗)R∗ and let f be an element of R∗. Then g(f) is
an element of R∗.

Let f be an element of R∗ and let n be a natural number. The functor
OuterVx(f, n) yielding a subset of N is defined by:

(Def. 3) OuterVx(f, n) = {i : i ∈ dom f ∧ 1 ¬ i ∧ i ¬ n ∧ f(i) 6= −1 ∧ f(n+i) 6=
−1}.

Let f be an element of (R∗)R∗ , let g be an element of R∗, and let
n be a natural number. Let us assume that there exists i such that
OuterVx((repeat f)(i)(g), n) = ∅. The functor LifeSpan(f, g, n) yielding a natu-
ral number is defined by:

(Def. 4) OuterVx((repeat f)(LifeSpan(f, g, n))(g), n) = ∅ and for every na-
tural number k such that OuterVx((repeat f)(k)(g), n) = ∅ holds
LifeSpan(f, g, n) ¬ k.

Let f be an element of (R∗)R∗ and let n be a natural number. The functor
WhileDo(f, n) yielding an element of (R∗)R∗ is defined as follows:

(Def. 5) dom WhileDo(f, n) = R∗ and for every element h of R∗ holds
(WhileDo(f, n))(h) = (repeat f)(LifeSpan(f, h, n))(h).

6. Defining a Weight Function for an Oriented Graph

Let G be an oriented graph and let v1, v2 be vertices of G. Let us assume
that there exists a set e such that e ∈ the edges of G and e orientedly joins v1,
v2. The functor Edge(v1, v2) is defined as follows:

(Def. 6) There exists a set e such that Edge(v1, v2) = e and e ∈ the edges of G

and e orientedly joins v1, v2.

Let G be an oriented graph, let v1, v2 be vertices of G, and let W be a
function. The functor Weight(v1, v2, W ) is defined as follows:

(Def. 7) Weight(v1, v2, W ) =





W (Edge(v1, v2)), if there exists a set e such
that e ∈ the edges of G and e orientedly joins
v1, v2,

−1, otherwise.
Let G be an oriented graph, let v1, v2 be vertices of G, and let W be a function

from the edges of G into R­0. Then Weight(v1, v2,W ) is a real number.
In the sequel G is an oriented graph, v1, v2 are vertices of G, and W is a

function from the edges of G into R­0.
We now state three propositions:
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(24) Weight(v1, v2,W ) ­ 0 iff there exists a set e such that e ∈ the edges of
G and e orientedly joins v1, v2.

(25) Weight(v1, v2,W ) = −1 iff it is not true that there exists a set e such
that e ∈ the edges of G and e orientedly joins v1, v2.

(26) If e ∈ the edges of G and e orientedly joins v1, v2, then
Weight(v1, v2,W ) = W (e).

7. Basic Operations for Dijkstra’s Shortest Path Algorithm

Let f be an element of R∗ and let n be a natural number. The functor
UnusedVx(f, n) yields a subset of N and is defined as follows:

(Def. 8) UnusedVx(f, n) = {i : i ∈ dom f ∧ 1 ¬ i ∧ i ¬ n ∧ f(i) 6= −1}.
Let f be an element of R∗ and let n be a natural number. The functor

UsedVx(f, n) yielding a subset of N is defined as follows:

(Def. 9) UsedVx(f, n) = {i : i ∈ dom f ∧ 1 ¬ i ∧ i ¬ n ∧ f(i) = −1}.
The following proposition is true

(27) UnusedVx(f, n) ⊆ Seg n.

Let f be an element of R∗ and let n be a natural number. One can verify
that UnusedVx(f, n) is finite.

Next we state two propositions:

(28) OuterVx(f, n) ⊆ UnusedVx(f, n).
(29) OuterVx(f, n) ⊆ Seg n.

Let f be an element of R∗ and let n be a natural number. Observe that
OuterVx(f, n) is finite.

Let X be a finite subset of N, let f be an element of R∗, and let us consider
n. The functor Argmin(X, f, n) yielding a natural number is defined by the
conditions (Def. 10).

(Def. 10)(i) If X 6= ∅, then there exists i such that i = Argmin(X, f, n) and i ∈ X

and for every k such that k ∈ X holds f2·n+i ¬ f2·n+k and for every k

such that k ∈ X and f2·n+i = f2·n+k holds i ¬ k, and
(ii) if X = ∅, then Argmin(X, f, n) = 0.

We now state two propositions:

(30) If OuterVx(f, n) 6= ∅ and j = Argmin(OuterVx(f, n), f, n), then j ∈
dom f and 1 ¬ j and j ¬ n and f(j) 6= −1 and f(n + j) 6= −1.

(31) Argmin(OuterVx(f, n), f, n) ¬ n.

Let n be a natural number. The functor findmin n yields an element of (R∗)R∗

and is defined as follows:

(Def. 11) dom findmin n = R∗ and for every element f of R∗ holds (findmin n)(f) =
(f, n · n + 3 · n + 1) := (Argmin(OuterVx(f, n), f, n),−1).
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Next we state four propositions:

(32) If i ∈ dom f and i > n and i 6= n · n + 3 · n + 1, then (findmin n)(f)(i) =
f(i).

(33) If i ∈ dom f and f(i) = −1 and i 6= n·n+3·n+1, then (findmin n)(f)(i) =
−1.

(34) dom(findmin n)(f) = dom f.

(35) If OuterVx(f, n) 6= ∅, then there exists j such that j ∈ OuterVx(f, n)
and 1 ¬ j and j ¬ n and (findmin n)(f)(j) = −1.

Let f be an element of R∗ and let n, k be natural numbers. The functor
newpathcost(f, n, k) yielding a real number is defined as follows:

(Def. 12) newpathcost(f, n, k) = f2·n+fn·n+3·n+1 + f2·n+n·fn·n+3·n+1+k.

Let n, k be natural numbers and let f be an element of R∗. We say that f

has better path at n, k if and only if:

(Def. 13) f(n+k) = −1 or f2·n+k > newpathcost(f, n, k) but f2·n+n·fn·n+3·n+1+k ­
0 but f(k) 6= −1.

Let f be an element of R∗ and let n be a natural number. The functor
Relax(f, n) yields an element of R∗ and is defined by the conditions (Def. 14).

(Def. 14)(i) dom Relax(f, n) = dom f, and
(ii) for every natural number k such that k ∈ dom f holds if n < k and

k ¬ 2 · n, then if f has better path at n, k −′ n, then (Relax(f, n))(k) =
fn·n+3·n+1 and if f does not have better path at n, k −′ n, then
(Relax(f, n))(k) = f(k) and if 2 · n < k and k ¬ 3 · n, then if f has better
path at n, k−′2·n, then (Relax(f, n))(k) = newpathcost(f, n, k−′2·n) and
if f does not have better path at n, k−′ 2 ·n, then (Relax(f, n))(k) = f(k)
and if k ¬ n or k > 3 · n, then (Relax(f, n))(k) = f(k).

Let n be a natural number. The functor Relax n yields an element of (R∗)R∗

and is defined by:

(Def. 15) dom Relax n = R∗ and for every element f of R∗ holds (Relax n)(f) =
Relax(f, n).

One can prove the following propositions:

(36) dom(Relax n)(f) = dom f.

(37) If i ¬ n or i > 3 · n and if i ∈ dom f, then (Relax n)(f)(i) = f(i).
(38) dom(repeat(Relax n·findmin n))(i)(f) = dom(repeat(Relax n·findmin n))

(i + 1)(f).
(39) If OuterVx((repeat(Relax n · findmin n))(i)(f), n) 6= ∅, then

UnusedVx((repeat(Relax n ·findmin n))(i+1)(f), n) ⊂ UnusedVx((repeat
(Relax n · findmin n))(i)(f), n).

(40) If g = (repeat(Relax n · findmin n))(i)(f) and h = (repeat(Relax n ·
findmin n))(i + 1)(f) and k = Argmin(OuterVx(g, n), g, n) and
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OuterVx(g, n) 6= ∅, then UsedVx(h, n) = UsedVx(g, n) ∪ {k} and k /∈
UsedVx(g, n).

(41) There exists i such that i ¬ n and OuterVx((repeat(Relax n ·
findmin n))(i)(f), n) = ∅.

(42) dom f = dom(repeat(Relax n · findmin n))(i)(f).
Let f , g be elements of R∗ and let us consider m, n. We say that f , g are

equal at m, n if and only if:

(Def. 16) dom f = dom g and for every k such that k ∈ dom f and m ¬ k and
k ¬ n holds f(k) = g(k).

One can prove the following propositions:

(43) f , f are equal at m, n.

(44) If f , g are equal at m, n and g, h are equal at m, n, then f , h are equal
at m, n.

(45) (repeat(Relax n ·findmin n))(i)(f), (repeat(Relax n ·findmin n))(i+1)(f)
are equal at 3 · n + 1, n · n + 3 · n.

(46) Let F be an element of (R∗)R∗ , f be an element of R∗, and n, i be natural
numbers. If i < LifeSpan(F, f, n), then OuterVx((repeat F )(i)(f), n) 6= ∅.

(47) f , (repeat(Relax n · findmin n))(i)(f) are equal at 3 · n + 1, n · n + 3 · n.

(48) Suppose that
(i) 1 ¬ n,

(ii) 1 ∈ dom f,

(iii) f(n + 1) 6= −1,

(iv) for every i such that 1 ¬ i and i ¬ n holds f(i) = 1, and
(v) for every i such that 2 ¬ i and i ¬ n holds f(n + i) = −1.

Then 1 = Argmin(OuterVx(f, n), f, n) and UsedVx(f, n) = ∅ and {1} =
UsedVx((repeat(Relax n · findmin n))(1)(f), n).

(49) If g = (repeat(Relax n · findmin n))(1)(f) and h = (repeat(Relax n ·
findmin n))(i)(f) and 1 ¬ i and i ¬ LifeSpan(Relax n ·findmin n, f, n) and
m ∈ UsedVx(g, n), then m ∈ UsedVx(h, n).

Let p be a finite sequence of elements of N, let f be an element of R∗, and
let i, n be natural numbers. We say that p is vertex sequence at f , i, n if and
only if:

(Def. 17) p(len p) = i and for every k such that 1 ¬ k and k < len p holds p(len p−
k) = f(n + p(len p−k)+1).

Let p be a finite sequence of elements of N, let f be an element of R∗, and
let i, n be natural numbers. We say that p is simple vertex sequence at f , i, n

if and only if:

(Def. 18) p(1) = 1 and len p > 1 and p is vertex sequence at f , i, n and one-to-one.

Next we state the proposition
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(50) Let p, q be finite sequences of elements of N, f be an element of R∗, and
i, n be natural numbers. Suppose p is simple vertex sequence at f , i, n

and q is simple vertex sequence at f , i, n. Then p = q.

Let G be a graph, let p be a finite sequence of elements of the edges of G,
and let v5 be a finite sequence. We say that p is oriented edge sequence at v5 if
and only if:

(Def. 19) len v5 = len p + 1 and for every n such that 1 ¬ n and n ¬ len p holds
(the source of G)(p(n)) = v5(n) and (the target of G)(p(n)) = v5(n + 1).

One can prove the following two propositions:

(51) Let G be an oriented graph, v5 be a finite sequence, and p, q be oriented
chains of G. Suppose p is oriented edge sequence at v5 and q is oriented
edge sequence at v5. Then p = q.

(52) Let G be a graph, v6, v7 be finite sequences, and p be an oriented chain
of G. Suppose p is oriented edge sequence at v6 and oriented edge sequence
at v7 and len p ­ 1. Then v6 = v7.

8. Data Structure for Dijkstra’s Shortest Path Algorithm

Let f be an element of R∗, let G be an oriented graph, let n be a natural
number, and let W be a function from the edges of G into R­0. We say that f is
input of Dijkstra algorithm G to n in W if and only if the conditions (Def. 20)
are satisfied.

(Def. 20)(i) len f = n · n + 3 · n + 1,

(ii) Seg n = the vertices of G,
(iii) for every i such that 1 ¬ i and i ¬ n holds f(i) = 1 and f(2 ·n+ i) = 0,

(iv) f(n + 1) = 0,
(v) for every i such that 2 ¬ i and i ¬ n holds f(n + i) = −1, and
(vi) for all vertices i, j of G and for all k, m such that k = i and m = j

holds f(2 · n + n · k + m) = Weight(i, j, W ).

9. The Definition of Dijkstra’s Shortest Path Algorithm

Let n be a natural number. The functor DijkstraAlgorithm n yielding an
element of (R∗)R∗ is defined as follows:

(Def. 21) DijkstraAlgorithm n = WhileDo(Relax n · findmin n, n).
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10. Justifying the Correctness of Dijkstra’s Shortest Path
Algorithm

For simplicity, we adopt the following rules: p is a finite sequence of elements
of N, G is a finite oriented graph, P , Q are oriented chains of G, W is a function
from the edges of G into R­0, and v1, v2 are vertices of G.

We now state the proposition

(53) Suppose f is input of Dijkstra algorithm G to n in W and v1 = 1 and
1 6= v2 and v2 = i and n ­ 1 and g = (DijkstraAlgorithm n)(f). Then

(i) the vertices of G = UsedVx(g, n) ∪UnusedVx(g, n),
(ii) if v2 ∈ UsedVx(g, n), then there exist p, P such that p is simple vertex

sequence at g, i, n and P is oriented edge sequence at p and shortest path
from v1 to v2 in W and cost(P, W ) = g(2 · n + i), and

(iii) if v2 ∈ UnusedVx(g, n), then there exists no Q which is oriented path
from v1 to v2.
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The non empty set the set of real sequences is defined by:

(Def. 1) For every set x holds x ∈ the set of real sequences iff x is a sequence of
real numbers.

Let a be a set. Let us assume that a ∈ the set of real sequences. The functor
idseq(a) yields a sequence of real numbers and is defined by:

(Def. 2) idseq(a) = a.

Let a be a set. Let us assume that a ∈ R. The functor idR(a) yielding a real
number is defined by:

(Def. 3) idR(a) = a.

We now state two propositions:

(1) There exists a binary operation A1 on the set of real sequences such
that for all elements a, b of the set of real sequences holds A1(a, b) =
idseq(a) + idseq(b) and A1 is commutative and associative.
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(2) There exists a function f from [:R, the set of real sequences :] into the
set of real sequences such that for all sets r, x if r ∈ R and x ∈ the set of
real sequences, then f(〈〈r, x〉〉) = idR(r) idseq(x).

The binary operation addseq on the set of real sequences is defined as follows:

(Def. 4) For all elements a, b of the set of real sequences holds addseq(a, b) =
idseq(a) + idseq(b).

The function multseq from [:R, the set of real sequences :] into the set of real
sequences is defined by:

(Def. 5) For all sets r, x such that r ∈ R and x ∈ the set of real sequences holds
multseq(〈〈r, x〉〉) = idR(r) idseq(x).

The element Zeroseq of the set of real sequences is defined by:

(Def. 6) For every natural number n holds (idseq(Zeroseq))(n) = 0.

One can prove the following propositions:

(3) For every sequence x of real numbers holds idseq(x) = x.

(4) For all vectors v, w of 〈the set of real sequences, Zeroseq, addseq, multseq〉
holds v + w = idseq(v) + idseq(w).

(5) For every real number r and for every vector v of 〈the set of real
sequences, Zeroseq, addseq, multseq〉 holds r · v = r idseq(v).

One can verify that 〈the set of real sequences, Zeroseq, addseq, multseq〉 is
Abelian.

We now state several propositions:

(6) For all vectors u, v, w of 〈the set of real sequences, Zeroseq, addseq, multseq〉
holds (u + v) + w = u + (v + w).

(7) For every vector v of 〈the set of real sequences, Zeroseq, addseq, multseq〉
holds v + 0〈the set of real sequences,Zeroseq,addseq,multseq〉 = v.

(8) Let v be a vector of 〈the set of real sequences, Zeroseq, addseq, multseq〉.
Then there exists a vector w of 〈the set of real sequences, Zeroseq, addseq,

multseq〉 such that v + w = 0〈the set of real sequences,Zeroseq,addseq,multseq〉.
(9) For every real number a and for all vectors v, w of 〈the set of real

sequences, Zeroseq, addseq, multseq〉 holds a · (v + w) = a · v + a · w.

(10) For all real numbers a, b and for every vector v of 〈the set of real
sequences, Zeroseq, addseq, multseq〉 holds (a + b) · v = a · v + b · v.

(11) For all real numbers a, b and for every vector v of 〈the set of real
sequences, Zeroseq, addseq, multseq〉 holds (a · b) · v = a · (b · v).

(12) For every vector v of 〈the set of real sequences, Zeroseq, addseq, multseq〉
holds 1 · v = v.

The real linear space the linear space of real sequences is defined by:

(Def. 7) The linear space of real sequences = 〈the set of real sequences, Zeroseq,

addseq, multseq〉.
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Let X be a real linear space and let X1 be a subset of the carrier of X. Let
us assume that X1 is linearly closed and non empty. The functor Add (X1, X)
yielding a binary operation on X1 is defined by:

(Def. 8) Add (X1, X) = (the addition of X)¹[:X1, X1 :].

Let X be a real linear space and let X1 be a subset of the carrier of X. Let
us assume that X1 is linearly closed and non empty. The functor Mult (X1, X)
yielding a function from [:R, X1 :] into X1 is defined as follows:

(Def. 9) Mult (X1, X) = (the external multiplication of X)¹[:R, X1 :].

Let X be a real linear space and let X1 be a subset of the carrier of X. Let
us assume that X1 is linearly closed and non empty. The functor Zero (X1, X)
yields an element of X1 and is defined by:

(Def. 10) Zero (X1, X) = 0X .

We now state the proposition

(13) Let V be a real linear space and V1 be a subset of the car-
rier of V . Suppose V1 is linearly closed and non empty. Then
〈V1, Zero (V1, V ), Add (V1, V ), Mult (V1, V )〉 is a subspace of V .

The subset the set of l2-real sequences of the carrier of the linear space of
real sequences is defined by the conditions (Def. 11).

(Def. 11)(i) The set of l2-real sequences is non empty, and
(ii) for every set x holds x ∈ the set of l2-real sequences iff x ∈ the set of

real sequences and idseq(x) idseq(x) is summable.

Next we state several propositions:

(14) The set of l2-real sequences is linearly closed and the set of l2-real sequ-
ences is non empty.

(15) 〈the set of l2-real sequences, Zero (the set of l2-real sequences, the linear
space of real sequences), Add (the set of l2-real sequences, the linear space
of real sequences), Mult (the set of l2-real sequences, the linear space of
real sequences)〉 is a subspace of the linear space of real sequences.

(16) 〈the set of l2-real sequences, Zero (the set of l2-real sequences, the linear
space of real sequences), Add (the set of l2-real sequences, the linear space
of real sequences), Mult (the set of l2-real sequences, the linear space of
real sequences)〉 is a real linear space.

(17)(i) The carrier of the linear space of real sequences = the set of real
sequences,

(ii) for every set x holds x is an element of the carrier of the linear space
of real sequences iff x is a sequence of real numbers,

(iii) for every set x holds x is a vector of the linear space of real sequences
iff x is a sequence of real numbers,

(iv) for every vector u of the linear space of real sequences holds u = idseq(u),
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(v) for all vectors u, v of the linear space of real sequences holds u + v =
idseq(u) + idseq(v), and

(vi) for every real number r and for every vector u of the linear space of
real sequences holds r · u = r idseq(u).

(18) There exists a function f from [: the set of l2-real sequences, the set of
l2-real sequences :] into R such that for all sets x, y if x ∈ the set of
l2-real sequences and y ∈ the set of l2-real sequences, then f(〈〈x, y〉〉) =∑

(idseq(x) idseq(y)).

The function scalarseq from [: the set of l2-real sequences, the set of l2-real
sequences :] into R is defined by the condition (Def. 12).

(Def. 12) Let x, y be sets. Suppose x ∈ the set of l2-real sequences and y ∈ the
set of l2-real sequences. Then scalarseq(〈〈x, y〉〉) =

∑
(idseq(x) idseq(y)).

One can check that 〈the set of l2-real sequences, Zero (the set of
l2-real sequences, the linear space of real sequences), Add (the set of l2-
real sequences, the linear space of real sequences), Mult (the set of l2-real
sequences, the linear space of real sequences), scalarseq〉 is non empty.

The non empty unitary space structure l2-Space is defined by the condition
(Def. 13).

(Def. 13) l2-Space = 〈the set of l2-real sequences, Zero (the set of l2-real
sequences, the linear space of real sequences), Add (the set of l2-real
sequences, the linear space of real sequences), Mult (the set of l2-real
sequences, the linear space of real sequences), scalarseq〉.

One can prove the following propositions:

(19) Let l be a unitary space structure. Suppose 〈the carrier of l, the zero of
l, the addition of l, the external multiplication of l〉 is a real linear space.
Then l is a real linear space.

(20) Let r1 be a sequence of real numbers. If for every natural number n holds
r1(n) = 0, then r1 is summable and

∑
r1 = 0.

(21) Let r1 be a sequence of real numbers. Suppose for every natural number
n holds 0 ¬ r1(n) and r1 is summable and

∑
r1 = 0. Let n be a natural

number. Then r1(n) = 0.

Let us observe that l2-Space is Abelian, add-associative, right zeroed, right
complementable, and real linear space-like.
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Summary. A continuation of [16]. As the example of real unitary spaces,
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sum able real sequences and introduce the scaler products also. This set has the
structure of the Hilbert space.
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The articles [15], [17], [3], [14], [5], [18], [1], [2], [16], [12], [9], [10], [11], [8], [6],
[7], [13], and [4] provide the terminology and notation for this paper.

1. Hilbert Space of Real Sequences

One can prove the following two propositions:

(1) The carrier of l2-Space = the set of l2-real sequences and for every
set x holds x is an element of the carrier of l2-Space iff x is a sequence
of real numbers and idseq(x) idseq(x) is summable and for every set x

holds x is a vector of l2-Space iff x is a sequence of real numbers and
idseq(x) idseq(x) is summable and 0l2-Space = Zeroseq and for every vector
u of l2-Space holds u = idseq(u) and for all vectors u, v of l2-Space holds
u+v = idseq(u)+ idseq(v) and for every real number r and for every vector
u of l2-Space holds r · u = r idseq(u) and for every vector u of l2-Space
holds −u = −idseq(u) and idseq(−u) = −idseq(u) and for all vectors u, v

of l2-Space holds u − v = idseq(u) − idseq(v) and for all vectors v, w of
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l2-Space holds idseq(v) idseq(w) is summable and for all vectors v, w of
l2-Space holds (v|w) =

∑
(idseq(v) idseq(w)).

(2) Let x, y, z be points of l2-Space and a be a real number. Then (x|x) = 0
iff x = 0l2-Space and 0 ¬ (x|x) and (x|y) = (y|x) and ((x + y)|z) =
(x|z) + (y|z) and ((a · x)|y) = a · (x|y).

Let us note that l2-Space is real unitary space-like.
One can prove the following proposition

(3) For every sequence v1 of l2-Space such that v1 is a Cauchy sequence
holds v1 is convergent.

Let us mention that l2-Space is Hilbert and complete.

2. Miscellaneous

We now state several propositions:

(4) Let r1 be a sequence of real numbers. Suppose for every natural number
n holds 0 ¬ r1(n) and r1 is summable. Then

(i) for every natural number n holds r1(n) ¬ (
∑κ

α=0(r1)(α))κ∈N(n),
(ii) for every natural number n holds 0 ¬ (

∑κ
α=0(r1)(α))κ∈N(n),

(iii) for every natural number n holds (
∑κ

α=0(r1)(α))κ∈N(n) ¬∑
r1, and

(iv) for every natural number n holds r1(n) ¬∑
r1.

(5) For all real numbers x, y holds (x + y) · (x + y) ¬ 2 · x · x + 2 · y · y and
for all real numbers x, y holds x · x ¬ 2 · (x− y) · (x− y) + 2 · y · y.

(6) Let e be a real number and s1 be a sequence of real numbers. Suppose
s1 is convergent and there exists a natural number k such that for every
natural number i such that k ¬ i holds s1(i) ¬ e. Then lim s1 ¬ e.

(7) Let c be a real number and s1 be a sequence of real numbers. Suppose
s1 is convergent. Let r1 be a sequence of real numbers. Suppose that for
every natural number i holds r1(i) = (s1(i) − c) · (s1(i) − c). Then r1 is
convergent and lim r1 = (lim s1 − c) · (lim s1 − c).

(8) Let c be a real number and s1, s2 be sequences of real numbers. Suppose
s1 is convergent and s2 is convergent. Let r1 be a sequence of real numbers.
Suppose that for every natural number i holds r1(i) = (s1(i)− c) · (s1(i)−
c)+s2(i). Then r1 is convergent and lim r1 = (lim s1−c)·(lim s1−c)+lim s2.
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Summary. In this paper, we develop intuitionistic propositional calculus
IPC in the extended language with single modal operator. The formulation that
we adopt in this paper is very useful not only to formalize the calculus but also to
do a number of logics with essentially propositional character. In addition, it is
much simpler than the past formalization for modal logic. In the first section, we
give the mentioned formulation which the author heavily owes to the formalism
of Adam Grabowski’s [4]. After the theoretical development of the logic, we prove
a number of valid formulas of IPC in the sections 2–4. The last two sections are
devoted to present classical propositional calculus and modal calculus S4 in our
framework, as a preparation for future study. In the forthcoming Part II of this
paper, we shall prove, among others, a number of intuitionistically valid formulas
with negation.

MML Identifier: INTPRO 1.

The articles [6], [7], [5], [8], [3], [1], and [2] provide the notation and terminology
for this paper.

1. Intuitionistic Propositional Calculus IPC in the Extended
Language with Modal Operator

Let E be a set. We say that E has FALSUM if and only if:

(Def. 1) 〈0〉 ∈ E.

Let E be a set. We say that E has intuitionistic implication if and only if:
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(Def. 2) For all finite sequences p, q such that p ∈ E and q ∈ E holds 〈1〉a pa q ∈
E.

Let E be a set. We say that E has intuitionistic conjunction if and only if:

(Def. 3) For all finite sequences p, q such that p ∈ E and q ∈ E holds 〈2〉a pa q ∈
E.

Let E be a set. We say that E has intuitionistic disjunction if and only if:

(Def. 4) For all finite sequences p, q such that p ∈ E and q ∈ E holds 〈3〉a pa q ∈
E.

Let E be a set. We say that E has intuitionistic propositional variables if
and only if:

(Def. 5) For every natural number n holds 〈5 + 2 · n〉 ∈ E.

Let E be a set. We say that E has intuitionistic modal operator if and only
if:

(Def. 6) For every finite sequence p such that p ∈ E holds 〈6〉 a p ∈ E.

Let E be a set. We say that E is MC-closed if and only if the conditions
(Def. 7) are satisfied.

(Def. 7)(i) E ⊆ N∗, and
(ii) E has FALSUM, intuitionistic implication, intuitionistic conjunction,

intuitionistic disjunction, intuitionistic propositional variables, and intu-
itionistic modal operator.

One can check that every set which is MC-closed is also non empty and
has FALSUM, intuitionistic implication, intuitionistic conjunction, intuitioni-
stic disjunction, intuitionistic propositional variables, and intuitionistic modal
operator and every subset of N∗ which has FALSUM, intuitionistic implication,
intuitionistic conjunction, intuitionistic disjunction, intuitionistic propositional
variables, and intuitionistic modal operator is also MC-closed.

The set MC-wff is defined by:

(Def. 8) MC-wff is MC-closed and for every set E such that E is MC-closed holds
MC-wff ⊆ E.

One can verify that MC-wff is MC-closed.
Let us note that there exists a set which is MC-closed and non empty.
One can verify that every element of MC-wff is relation-like and function-

like.
Let us note that every element of MC-wff is finite sequence-like.
A MC-formula is an element of MC-wff.
The MC-formula FALSUM is defined as follows:

(Def. 9) FALSUM = 〈0〉.
Let p, q be elements of MC-wff. The functor p⇒ q yields a MC-formula and is
defined as follows:
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(Def. 10) p⇒ q = 〈1〉 a p a q.

The functor p ∧ q yields a MC-formula and is defined as follows:

(Def. 11) p ∧ q = 〈2〉 a p a q.

The functor p ∨ q yielding a MC-formula is defined by:

(Def. 12) p ∨ q = 〈3〉 a p a q.

Let p be an element of MC-wff. The functor Nes(p) yielding a MC-formula
is defined by:

(Def. 13) Nes(p) = 〈6〉 a p.

We use the following convention: T , X, Y denote subsets of MC-wff and p,
q, r, s denote elements of MC-wff.

Let T be a subset of MC-wff. We say that T is IPC theory if and only if the
condition (Def. 14) is satisfied.

(Def. 14) Let p, q, r be elements of MC-wff. Then p ⇒ (q ⇒ p) ∈ T and (p ⇒
(q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ T and p∧q ⇒ p ∈ T and p∧q ⇒ q ∈ T

and p ⇒ (q ⇒ p ∧ q) ∈ T and p ⇒ p ∨ q ∈ T and q ⇒ p ∨ q ∈ T and
(p ⇒ r) ⇒ ((q ⇒ r) ⇒ (p ∨ q ⇒ r)) ∈ T and FALSUM ⇒ p ∈ T and if
p ∈ T and p⇒ q ∈ T, then q ∈ T.

Let us consider X. The functor CnIPC(X) yielding a subset of MC-wff is
defined as follows:

(Def. 15) r ∈ CnIPC(X) iff for every T such that T is IPC theory and X ⊆ T

holds r ∈ T.

The subset IPC-Taut of MC-wff is defined as follows:

(Def. 16) IPC-Taut = CnIPC(∅MC-wff).
Let p be an element of MC-wff. The functor neg(p) yields a MC-formula and

is defined as follows:

(Def. 17) neg(p) = p⇒ FALSUM .

The MC-formula IVERUM is defined by:

(Def. 18) IVERUM = FALSUM⇒ FALSUM .

The following propositions are true:

(1) p⇒ (q ⇒ p) ∈ CnIPC(X).
(2) (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ CnIPC(X).
(3) p ∧ q ⇒ p ∈ CnIPC(X).
(4) p ∧ q ⇒ q ∈ CnIPC(X).
(5) p⇒ (q ⇒ p ∧ q) ∈ CnIPC(X).
(6) p⇒ p ∨ q ∈ CnIPC(X).
(7) q ⇒ p ∨ q ∈ CnIPC(X).
(8) (p⇒ r)⇒ ((q ⇒ r)⇒ (p ∨ q ⇒ r)) ∈ CnIPC(X).
(9) FALSUM⇒ p ∈ CnIPC(X).
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(10) If p ∈ CnIPC(X) and p⇒ q ∈ CnIPC(X), then q ∈ CnIPC(X).
(11) If T is IPC theory and X ⊆ T, then CnIPC(X) ⊆ T.

(12) X ⊆ CnIPC(X).
(13) If X ⊆ Y, then CnIPC(X) ⊆ CnIPC(Y ).
(14) CnIPC(CnIPC(X)) = CnIPC(X).

Let X be a subset of MC-wff. Observe that CnIPC(X) is IPC theory.
The following propositions are true:

(15) T is IPC theory iff CnIPC(T ) = T.

(16) If T is IPC theory, then IPC-Taut ⊆ T.

One can verify that IPC-Taut is IPC theory.

2. Formulas Provable in IPC: Implication

We now state a number of propositions:

(17) p⇒ p ∈ IPC-Taut .

(18) If q ∈ IPC-Taut, then p⇒ q ∈ IPC-Taut .

(19) IVERUM ∈ IPC-Taut .

(20) (p⇒ q)⇒ (p⇒ p) ∈ IPC-Taut .

(21) (q ⇒ p)⇒ (p⇒ p) ∈ IPC-Taut .

(22) (q ⇒ r)⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ IPC-Taut .

(23) If p⇒ (q ⇒ r) ∈ IPC-Taut, then q ⇒ (p⇒ r) ∈ IPC-Taut .

(24) (p⇒ q)⇒ ((q ⇒ r)⇒ (p⇒ r)) ∈ IPC-Taut .

(25) If p⇒ q ∈ IPC-Taut, then (q ⇒ r)⇒ (p⇒ r) ∈ IPC-Taut .

(26) If p⇒ q ∈ IPC-Taut and q ⇒ r ∈ IPC-Taut, then p⇒ r ∈ IPC-Taut .

(27) (p⇒ (q ⇒ r))⇒ ((s⇒ q)⇒ (p⇒ (s⇒ r))) ∈ IPC-Taut .

(28) ((p⇒ q)⇒ r)⇒ (q ⇒ r) ∈ IPC-Taut .

(29) (p⇒ (q ⇒ r))⇒ (q ⇒ (p⇒ r)) ∈ IPC-Taut .

(30) (p⇒ (p⇒ q))⇒ (p⇒ q) ∈ IPC-Taut .

(31) q ⇒ ((q ⇒ p)⇒ p) ∈ IPC-Taut .

(32) If s⇒ (q ⇒ p) ∈ IPC-Taut and q ∈ IPC-Taut, then s⇒ p ∈ IPC-Taut .

3. Formulas Provable in IPC: Conjunction

The following propositions are true:

(33) p⇒ p ∧ p ∈ IPC-Taut .

(34) p ∧ q ∈ IPC-Taut iff p ∈ IPC-Taut and q ∈ IPC-Taut .

(35) p ∧ q ∈ IPC-Taut iff q ∧ p ∈ IPC-Taut .
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(36) (p ∧ q ⇒ r)⇒ (p⇒ (q ⇒ r)) ∈ IPC-Taut .

(37) (p⇒ (q ⇒ r))⇒ (p ∧ q ⇒ r) ∈ IPC-Taut .

(38) (r ⇒ p)⇒ ((r ⇒ q)⇒ (r ⇒ p ∧ q)) ∈ IPC-Taut .

(39) (p⇒ q) ∧ p⇒ q ∈ IPC-Taut .

(40) (p⇒ q) ∧ p ∧ s⇒ q ∈ IPC-Taut .

(41) (q ⇒ s)⇒ (p ∧ q ⇒ s) ∈ IPC-Taut .

(42) (q ⇒ s)⇒ (q ∧ p⇒ s) ∈ IPC-Taut .

(43) (p ∧ s⇒ q)⇒ (p ∧ s⇒ q ∧ s) ∈ IPC-Taut .

(44) (p⇒ q)⇒ (p ∧ s⇒ q ∧ s) ∈ IPC-Taut .

(45) (p⇒ q) ∧ (p ∧ s)⇒ q ∧ s ∈ IPC-Taut .

(46) p ∧ q ⇒ q ∧ p ∈ IPC-Taut .

(47) (p⇒ q) ∧ (p ∧ s)⇒ s ∧ q ∈ IPC-Taut .

(48) (p⇒ q)⇒ (p ∧ s⇒ s ∧ q) ∈ IPC-Taut .

(49) (p⇒ q)⇒ (s ∧ p⇒ s ∧ q) ∈ IPC-Taut .

(50) p ∧ (s ∧ q)⇒ p ∧ (q ∧ s) ∈ IPC-Taut .

(51) (p⇒ q) ∧ (p⇒ s)⇒ (p⇒ q ∧ s) ∈ IPC-Taut .

(52) p ∧ q ∧ s⇒ p ∧ (q ∧ s) ∈ IPC-Taut .

(53) p ∧ (q ∧ s)⇒ p ∧ q ∧ s ∈ IPC-Taut .

4. Formulas Provable in IPC: Disjunction

We now state a number of propositions:

(54) p ∨ p⇒ p ∈ IPC-Taut .

(55) If p ∈ IPC-Taut or q ∈ IPC-Taut, then p ∨ q ∈ IPC-Taut .

(56) p ∨ q ⇒ q ∨ p ∈ IPC-Taut .

(57) p ∨ q ∈ IPC-Taut iff q ∨ p ∈ IPC-Taut .

(58) (p⇒ q)⇒ (p⇒ q ∨ s) ∈ IPC-Taut .

(59) (p⇒ q)⇒ (p⇒ s ∨ q) ∈ IPC-Taut .

(60) (p⇒ q)⇒ (p ∨ s⇒ q ∨ s) ∈ IPC-Taut .

(61) If p⇒ q ∈ IPC-Taut, then p ∨ s⇒ q ∨ s ∈ IPC-Taut .

(62) (p⇒ q)⇒ (s ∨ p⇒ s ∨ q) ∈ IPC-Taut .

(63) If p⇒ q ∈ IPC-Taut, then s ∨ p⇒ s ∨ q ∈ IPC-Taut .

(64) p ∨ (q ∨ s)⇒ q ∨ (p ∨ s) ∈ IPC-Taut .

(65) p ∨ (q ∨ s)⇒ p ∨ q ∨ s ∈ IPC-Taut .

(66) p ∨ q ∨ s⇒ p ∨ (q ∨ s) ∈ IPC-Taut .
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5. Classical Propositional Calculus CPC

We use the following convention: T , X, Y are subsets of MC-wff and p, q, r

are elements of MC-wff.
Let T be a subset of MC-wff. We say that T is CPC theory if and only if

the condition (Def. 19) is satisfied.

(Def. 19) Let p, q, r be elements of MC-wff. Then p ⇒ (q ⇒ p) ∈ T and (p ⇒
(q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ T and p∧q ⇒ p ∈ T and p∧q ⇒ q ∈ T

and p ⇒ (q ⇒ p ∧ q) ∈ T and p ⇒ p ∨ q ∈ T and q ⇒ p ∨ q ∈ T and
(p ⇒ r) ⇒ ((q ⇒ r) ⇒ (p ∨ q ⇒ r)) ∈ T and FALSUM ⇒ p ∈ T and
p ∨ (p⇒ FALSUM) ∈ T and if p ∈ T and p⇒ q ∈ T, then q ∈ T.

One can prove the following proposition

(67) If T is CPC theory, then T is IPC theory.

Let us consider X. The functor CnCPC(X) yielding a subset of MC-wff is
defined by:

(Def. 20) r ∈ CnCPC(X) iff for every T such that T is CPC theory and X ⊆ T

holds r ∈ T.

The subset CPC-Taut of MC-wff is defined by:

(Def. 21) CPC-Taut = CnCPC(∅MC-wff).
Next we state several propositions:

(68) CnIPC(X) ⊆ CnCPC(X).
(69) p ⇒ (q ⇒ p) ∈ CnCPC(X) and (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒

r)) ∈ CnCPC(X) and p∧q ⇒ p ∈ CnCPC(X) and p∧q ⇒ q ∈ CnCPC(X)
and p⇒ (q ⇒ p ∧ q) ∈ CnCPC(X) and p⇒ p ∨ q ∈ CnCPC(X) and q ⇒
p∨ q ∈ CnCPC(X) and (p⇒ r)⇒ ((q ⇒ r)⇒ (p∨ q ⇒ r)) ∈ CnCPC(X)
and FALSUM⇒ p ∈ CnCPC(X) and p ∨ (p⇒ FALSUM) ∈ CnCPC(X).

(70) If p ∈ CnCPC(X) and p⇒ q ∈ CnCPC(X), then q ∈ CnCPC(X).
(71) If T is CPC theory and X ⊆ T, then CnCPC(X) ⊆ T.

(72) X ⊆ CnCPC(X).
(73) If X ⊆ Y, then CnCPC(X) ⊆ CnCPC(Y ).
(74) CnCPC(CnCPC(X)) = CnCPC(X).

Let X be a subset of MC-wff. Note that CnCPC(X) is CPC theory.
Next we state two propositions:

(75) T is CPC theory iff CnCPC(T ) = T.

(76) If T is CPC theory, then CPC-Taut ⊆ T.

Let us note that CPC-Taut is CPC theory.
The following proposition is true

(77) IPC-Taut ⊆ CPC-Taut .
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6. Modal Calculus S4

We use the following convention: T , X, Y are subsets of MC-wff and p, q, r

are elements of MC-wff.
Let T be a subset of MC-wff. We say that T is S4 theory if and only if the

condition (Def. 22) is satisfied.

(Def. 22) Let p, q, r be elements of MC-wff. Then p ⇒ (q ⇒ p) ∈ T and (p ⇒
(q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ T and p∧q ⇒ p ∈ T and p∧q ⇒ q ∈ T

and p ⇒ (q ⇒ p ∧ q) ∈ T and p ⇒ p ∨ q ∈ T and q ⇒ p ∨ q ∈ T and
(p ⇒ r) ⇒ ((q ⇒ r) ⇒ (p ∨ q ⇒ r)) ∈ T and FALSUM ⇒ p ∈ T and
p ∨ (p ⇒ FALSUM) ∈ T and Nes(p ⇒ q) ⇒ (Nes(p) ⇒ Nes(q)) ∈ T

and Nes(p) ⇒ p ∈ T and Nes(p) ⇒ Nes(Nes(p)) ∈ T and if p ∈ T and
p⇒ q ∈ T, then q ∈ T and if p ∈ T, then Nes(p) ∈ T.

Next we state two propositions:

(78) If T is S4 theory, then T is CPC theory.

(79) If T is S4 theory, then T is IPC theory.

Let us consider X. The functor CnS4(X) yielding a subset of MC-wff is
defined by:

(Def. 23) r ∈ CnS4(X) iff for every T such that T is S4 theory and X ⊆ T holds
r ∈ T.

The subset S4-Taut of MC-wff is defined by:

(Def. 24) S4-Taut = CnS4(∅MC-wff).
Next we state a number of propositions:

(80) CnCPC(X) ⊆ CnS4(X).
(81) CnIPC(X) ⊆ CnS4(X).
(82) p ⇒ (q ⇒ p) ∈ CnS4(X) and (p ⇒ (q ⇒ r)) ⇒ ((p ⇒ q) ⇒ (p ⇒

r)) ∈ CnS4(X) and p ∧ q ⇒ p ∈ CnS4(X) and p ∧ q ⇒ q ∈ CnS4(X)
and p ⇒ (q ⇒ p ∧ q) ∈ CnS4(X) and p ⇒ p ∨ q ∈ CnS4(X) and q ⇒
p∨ q ∈ CnS4(X) and (p⇒ r)⇒ ((q ⇒ r)⇒ (p∨ q ⇒ r)) ∈ CnS4(X) and
FALSUM⇒ p ∈ CnS4(X) and p ∨ (p⇒ FALSUM) ∈ CnS4(X).

(83) If p ∈ CnS4(X) and p⇒ q ∈ CnS4(X), then q ∈ CnS4(X).
(84) Nes(p⇒ q)⇒ (Nes(p)⇒ Nes(q)) ∈ CnS4(X).
(85) Nes(p)⇒ p ∈ CnS4(X).
(86) Nes(p)⇒ Nes(Nes(p)) ∈ CnS4(X).
(87) If p ∈ CnS4(X), then Nes(p) ∈ CnS4(X).
(88) If T is S4 theory and X ⊆ T, then CnS4(X) ⊆ T.

(89) X ⊆ CnS4(X).
(90) If X ⊆ Y, then CnS4(X) ⊆ CnS4(Y ).
(91) CnS4(CnS4(X)) = CnS4(X).
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Let X be a subset of MC-wff. One can verify that CnS4(X) is S4 theory.
Next we state two propositions:

(92) T is S4 theory iff CnS4(T ) = T.

(93) If T is S4 theory, then S4-Taut ⊆ T.

Let us note that S4-Taut is S4 theory.
The following propositions are true:

(94) CPC-Taut ⊆ S4-Taut .

(95) IPC-Taut ⊆ S4-Taut .

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics,
8(1):69–72, 1999.

[5] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[6] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[8] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received April 3, 2003



FORMALIZED MATHEMATICS

Volume 11, Number 3, 2003
University of Białystok

Some Properties for Convex Combinations

Noboru Endou
Gifu National College of Technology

Yasumasa Suzuki
Miyagi University

Yasunari Shidama
Shinshu University

Nagano

Summary. This is a continuation of [6]. In this article, we proved that
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The notation and terminology used in this paper are introduced in the following
articles: [13], [18], [12], [8], [2], [19], [3], [5], [1], [10], [4], [17], [16], [15], [14], [11],
[7], [6], and [9].

1. Convex Combinations on Convex Family

The following propositions are true:

(1) For every non empty RLS structure V and for all convex subsets M , N

of V holds M ∩N is convex.

(2) Let V be a real unitary space-like non empty unitary space structure, M

be a subset of V , F be a finite sequence of elements of the carrier of V , and
B be a finite sequence of elements of R. Suppose M = {u;u ranges over
vectors of V :

∧
i : natural number (i ∈ dom F ∩ dom B ⇒ ∨

v : vector of V (v =
F (i) ∧ (u|v) ¬ B(i)))}. Then M is convex.

(3) Let V be a real unitary space-like non empty unitary space structure, M

be a subset of V , F be a finite sequence of elements of the carrier of V , and
B be a finite sequence of elements of R. Suppose M = {u;u ranges over
vectors of V :

∧
i : natural number (i ∈ dom F ∩ dom B ⇒ ∨

v : vector of V (v =
F (i) ∧ (u|v) < B(i)))}. Then M is convex.
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(4) Let V be a real unitary space-like non empty unitary space structure, M

be a subset of V , F be a finite sequence of elements of the carrier of V , and
B be a finite sequence of elements of R. Suppose M = {u;u ranges over
vectors of V :

∧
i : natural number (i ∈ dom F ∩ dom B ⇒ ∨

v : vector of V (v =
F (i) ∧ (u|v) ­ B(i)))}. Then M is convex.

(5) Let V be a real unitary space-like non empty unitary space structure, M

be a subset of V , F be a finite sequence of elements of the carrier of V , and
B be a finite sequence of elements of R. Suppose M = {u;u ranges over
vectors of V :

∧
i : natural number (i ∈ dom F ∩ dom B ⇒ ∨

v : vector of V (v =
F (i) ∧ (u|v) > B(i)))}. Then M is convex.

(6) Let V be a real linear space and M be a subset of V . Then for every
subset N of V and for every linear combination L of N such that L is
convex and N ⊆M holds

∑
L ∈M if and only if M is convex.

Let V be a real linear space and let M be a subset of V . The functor LCM

yielding a set is defined as follows:

(Def. 1) For every set L holds L ∈ LCM iff L is a linear combination of M .

Let V be a real linear space. Observe that there exists a linear combination
of V which is convex.

Let V be a real linear space. A convex combination of V is a convex linear
combination of V .

Let V be a real linear space and let M be a non empty subset of V . One
can verify that there exists a linear combination of M which is convex.

Let V be a real linear space and let M be a non empty subset of V . A convex
combination of M is a convex linear combination of M .

The following propositions are true:

(7) For every real linear space V and for every subset M of V holds
Convex-Family M 6= ∅.

(8) For every real linear space V and for every subset M of V holds M ⊆
conv M.

(9) Let V be a real linear space, L1, L2 be convex combinations of V , and r

be a real number. If 0 < r and r < 1, then r ·L1 + (1− r) ·L2 is a convex
combination of V .

(10) Let V be a real linear space, M be a non empty subset of V , L1, L2 be
convex combinations of M , and r be a real number. If 0 < r and r < 1,

then r · L1 + (1− r) · L2 is a convex combination of M .

(11) For every real linear space V holds there exists a linear combination of
V which is convex.

(12) For every real linear space V and for every non empty subset M of V

holds there exists a linear combination of M which is convex.
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2. Miscellaneous

We now state several propositions:

(13) For every real linear space V and for all subspaces W1, W2 of V holds
Up(W1 + W2) = Up(W1) + Up(W2).

(14) For every real linear space V and for all subspaces W1, W2 of V holds
Up(W1 ∩W2) = Up(W1) ∩Up(W2).

(15) Let V be a real linear space, L1, L2 be convex combinations of V , and a, b

be real numbers. Suppose a·b > 0. Then the support of a·L1+b·L2 = (the
support of a · L1) ∪ (the support of b · L2).

(16) Let F , G be functions. Suppose F and G are fiberwise equipotent. Let
x1, x2 be sets. Suppose x1 ∈ dom F and x2 ∈ dom F and x1 6= x2. Then
there exist sets z1, z2 such that z1 ∈ dom G and z2 ∈ dom G and z1 6= z2

and F (x1) = G(z1) and F (x2) = G(z2).
(17) Let V be a real linear space, L be a linear combination of V , and A be

a subset of V . Suppose A ⊆ the support of L. Then there exists a linear
combination L1 of V such that the support of L1 = A.
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Summary. This paper is a continuation of our paper [21]. We give an
analogue of the necessary and sufficient condition for summable set (i.e. the main
theorem of [21]) with respect to summable set by a functional L in real Hilbert
space. After presenting certain useful lemmas, we prove our main theorem that
the summability for an orthonormal infinite set in real Hilbert space is equivalent
to its summability with respect to the square of norm, say H(x) = (x, x). Then
we show that the square of norm H commutes with infinite sum operation if the
orthonormal set under our consideration is summable. Our main theorem is due
to [7].

MML Identifier: BHSP 7.

The articles [16], [18], [5], [14], [8], [3], [4], [19], [17], [11], [12], [13], [2], [6], [9],
[15], [10], [1], [20], and [21] provide the notation and terminology for this paper.

1. Necessary and Sufficient Condition for Summable Set

In this paper X is a real unitary space and x, y are points of X.
The following propositions are true:

(1) Let Y be a subset of the carrier of X and L be a functional in X. Then
Y is summable set by L if and only if for every real number e such that
0 < e there exists a finite subset Y0 of the carrier of X such that Y0 is non
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empty and Y0 ⊆ Y and for every finite subset Y1 of the carrier of X such
that Y1 is non empty and Y1 ⊆ Y and Y0 misses Y1 holds |setopfunc(Y1, the
carrier of X, R, L, +R)| < e.

(2) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let S be a finite orthogonal family
of X. Suppose S is non empty. Let I be a function from the carrier of
X into the carrier of X. Suppose S ⊆ dom I and for every y such that
y ∈ S holds I(y) = y. Let H be a function from the carrier of X into R.
Suppose S ⊆ dom H and for every y such that y ∈ S holds H(y) = (y|y).
Then (setopfunc(S, the carrier of X, the carrier of X, I, the addition of
X)| setopfunc(S, the carrier of X, the carrier of X, I, the addition of X)) =
setopfunc(S, the carrier of X, R,H,+R).

(3) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity. Let S be a finite orthogonal family
of X. Suppose S is non empty. Let H be a functional in X. Suppose
S ⊆ dom H and for every x such that x ∈ S holds H(x) = (x|x). Then
(Setsum(S)| Setsum(S)) = setopfunc(S, the carrier of X, R,H,+R).

(4) Let Y be an orthogonal family of X and Z be a subset of the carrier of
X. If Z is a subset of Y , then Z is an orthogonal family of X.

(5) Let Y be an orthonormal family of X and Z be a subset of the carrier
of X. If Z is a subset of Y , then Z is an orthonormal family of X.

2. Equivalence of Summability

Next we state three propositions:

(6) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity and X is a Hilbert space. Let S be
an orthonormal family of X and H be a functional in X. Suppose S ⊆
dom H and for every x such that x ∈ S holds H(x) = (x|x). Then S is
summable set if and only if S is summable set by H.

(7) Let S be a subset of the carrier of X. Suppose S is non empty and
summable set. Let e be a real number. Suppose 0 < e. Then there exists
a finite subset Y0 of the carrier of X such that

(i) Y0 is non empty,
(ii) Y0 ⊆ S, and
(iii) for every finite subset Y1 of the carrier of X such that Y0 ⊆ Y1 and

Y1 ⊆ S holds |(sum S| sum S)− (Setsum(Y1)| Setsum(Y1))| < e.

(8) Let given X. Suppose the addition of X is commutative and associative
and the addition of X has a unity and X is a Hilbert space. Let S be an
orthonormal family of X. Suppose S is non empty. Let H be a functional
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in X. Suppose S ⊆ dom H and for every x such that x ∈ S holds H(x) =
(x|x). If S is summable set, then (sum S| sum S) = SumByfunc(S, H).
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Summary. An inner product of complex numbers is defined and used to
characterize the (counter-clockwise) angle between (a,0) and (0,b) in the complex
plane. For complex a, b and c we then define the (counter-clockwise) angle be-
tween (a,c) and (c, b) and prove theorems about the sum of internal and external
angles of a triangle.

MML Identifier: COMPLEX2.

The papers [9], [13], [10], [12], [14], [3], [7], [15], [5], [6], [8], [11], [2], [1], and [4]
provide the notation and terminology for this paper.

1. Preliminaries

One can prove the following propositions:

(1) For all real numbers a, b holds −(a + bi) = −a + (−b)i.
(2) For all real numbers a, b such that b > 0 there exists a real number r

such that r = b · −bab c+ a and 0 ¬ r and r < b.

(3) Let a, b, c be real numbers. Suppose a > 0 and b ­ 0 and c ­ 0 and
b < a and c < a. Let i be an integer. If b = c + a · i, then b = c.

(4) For all real numbers a, b holds sin(a− b) = sin a · cos b− cos a · sin b and
cos(a− b) = cos a · cos b + sin a · sin b.

(5) For every real number a holds sin(a − π) = −sin(a) and cos(a − π) =
−cos(a).

(6) For every real number a holds sin(a − π) = −sin a and cos(a − π) =
−cos a.
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(7) For all real numbers a, b such that a ∈ ]0, π
2 [ and b ∈ ]0, π

2 [ holds a < b

iff sin a < sin b.

(8) For all real numbers a, b such that a ∈ ]π2 , π[ and b ∈ ]π2 , π[ holds a < b

iff sin a > sin b.

(9) For every real number a and for every integer i holds sin a = sin(2·π·i+a).
(10) For every real number a and for every integer i holds cos a = cos(2 · π ·

i + a).
(11) For every real number a such that sin a = 0 holds cos a 6= 0.

(12) For all real numbers a, b such that 0 ¬ a and a < 2 · π and 0 ¬ b and
b < 2 · π and sin a = sin b and cos a = cos b holds a = b.

2. More on the Argument of a Complex Number

Let us observe that CF is non empty.
Let z be an element of C. The functor Ftize(z) yields an element of the

carrier of CF and is defined as follows:

(Def. 1) Ftize(z) = z.

We now state four propositions:

(13) For every element z of C holds <(z) = <(Ftize(z)) and =(z) =
=(Ftize(z)).

(14) For all elements x, y of C holds Ftize(x + y) = Ftize(x) + Ftize(y).
(15) For every element z of C holds z = 0C iff Ftize(z) = 0CF .

(16) For every element z of C holds |z| = |Ftize(z)|.
Let z be an element of C. The functor Arg z yields a real number and is

defined as follows:

(Def. 2) Arg z = Arg Ftize(z).
One can prove the following propositions:

(17) For every element z of C and for every element u of the carrier of CF

such that z = u holds Arg z = Arg u.

(18) For every element z of C holds 0 ¬ Arg z and Arg z < 2 · π.

(19) For every element z of C holds z = |z| · cos Arg z + (|z| · sin Arg z)i.
(20) Arg(0C) = 0.
(21) Let z be an element of C and r be a real number. If z 6= 0 and z =
|z| · cos r + (|z| · sin r)i and 0 ¬ r and r < 2 · π, then r = Arg z.

(22) For every element z of C such that z 6= 0C holds if Arg z < π, then
Arg(−z) = Arg z + π and if Arg z ­ π, then Arg(−z) = Arg z − π.

(23) For every real number r such that r ­ 0 holds Arg(r + 0i) = 0.
(24) For every element z of C holds Arg z = 0 iff z = |z|+ 0i.
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(25) For every element z of C such that z 6= 0C holds Arg z < π iff Arg(−z) ­
π.

(26) For all elements x, y of C such that x 6= y or x−y 6= 0C holds Arg(x−y) <

π iff Arg(y − x) ­ π.

(27) For every element z of C holds Arg z ∈ ]0, π[ iff =(z) > 0.

(28) For every element z of C such that Arg z 6= 0 holds Arg z < π iff
sin Arg z > 0.

(29) For all elements x, y of C such that Arg x < π and Arg y < π holds
Arg(x + y) < π.

(30) For every real number x such that x > 0 holds Arg(0 + xi) = π
2 .

(31) For every element z of C holds Arg z ∈ ]0, π
2 [ iff <(z) > 0 and =(z) > 0.

(32) For every element z of C holds Arg z ∈ ]π
2 , π[ iff <(z) < 0 and =(z) > 0.

(33) For every element z of C such that =(z) > 0 holds sin Arg z > 0.

(34) For every element z of C holds Arg z = 0 iff <(z) ­ 0 and =(z) = 0.

(35) For every element z of C holds Arg z = π iff <(z) < 0 and =(z) = 0.
(36) For every element z of C holds =(z) = 0 iff Arg z = 0 or Arg z = π.

(37) For every element z of C such that Arg z ¬ π holds =(z) ­ 0.

(38) For every element z of C such that z 6= 0 holds cos Arg(−z) = −cos Arg z

and sin Arg(−z) = −sin Arg z.

(39) For every element a of C such that a 6= 0 holds cos Arg a = <(a)
|a| and

sin Arg a = =(a)
|a| .

(40) For every element a of C and for every real number r such that r > 0
holds Arg(a · (r + 0i)) = Arg a.

(41) For every element a of C and for every real number r such that r < 0
holds Arg(a · (r + 0i)) = Arg(−a).

3. Inner Product

Let x, y be elements of C. The functor (x|y) yielding an element of C is
defined by:

(Def. 3) (x|y) = x · y .

In the sequel a, b, c, d, x, y, z are elements of C.
The following propositions are true:

(42) (x|y) = (<(x) · <(y) + =(x) · =(y)) + (−<(x) · =(y) + =(x) · <(y))i.
(43) (z|z) = (<(z) · <(z) +=(z) · =(z)) + 0i and (z|z) = (<(z)2 +=(z)2) + 0i.

(44) (z|z) = |z|2 + 0i and |z|2 = <((z|z)).
(45) |(x|y)| = |x| · |y|.
(46) If (x|x) = 0, then x = 0.
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(47) (y|x) = (x|y) .
(48) ((x + y)|z) = (x|z) + (y|z).
(49) (x|(y + z)) = (x|y) + (x|z).
(50) ((a · x)|y) = a · (x|y).
(51) (x|(a · y)) = a · (x|y).
(52) ((a · x)|y) = (x|(a · y)).
(53) ((a · x + b · y)|z) = a · (x|z) + b · (y|z).
(54) (x|(a · y + b · z)) = a · (x|y) + b · (x|z).
(55) ((−x)|y) = (x|−y).
(56) ((−x)|y) = −(x|y).
(57) −(x|y) = (x|−y).
(58) ((−x)|−y) = (x|y).
(59) ((x− y)|z) = (x|z)− (y|z).
(60) (x|(y − z)) = (x|y)− (x|z).
(61) (0C|x) = 0C and (x|0C) = 0C.

(62) ((x + y)|(x + y)) = (x|x) + (x|y) + (y|x) + (y|y).
(63) ((x− y)|(x− y)) = ((x|x)− (x|y)− (y|x)) + (y|y).
(64) <((x|y)) = 0 iff =((x|y)) = |x| · |y| or =((x|y)) = −|x| · |y|.

4. Rotation

Let a be an element of C and let r be a real number. The functor a ª r

yielding an element of C is defined as follows:

(Def. 4) a ª r = |a| · cos(r + Arg a) + (|a| · sin(r + Arg a))i.
In the sequel r denotes a real number.
We now state a number of propositions:

(65) a ª 0 = a.

(66) a ª r = 0C iff a = 0C.

(67) |a ª r| = |a|.
(68) If a 6= 0C, then there exists an integer i such that Arg(a ª r) = 2 · π ·

i + (r + Arg a).
(69) a ª −Arg a = |a|+ 0i.

(70) <(a ª r) = <(a)·cos r−=(a)·sin r and =(a ª r) = <(a)·sin r+=(a)·cos r.

(71) a + b ª r = (a ª r) + (b ª r).
(72) −a ª r = −(a ª r).
(73) a− b ª r = (a ª r)− (b ª r).
(74) a ª π = −a.
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5. Angles

Let a, b be elements of C. The functor ](a, b) yielding a real number is
defined by:

(Def. 5) ](a, b) =
{

Arg(b ª −Arg a), if Arg a = 0 or b 6= 0,

2 · π −Arg a, otherwise.
Next we state several propositions:

(75) If r ­ 0, then ](r + 0i, a) = Arg a.

(76) If Arg a = Arg b and a 6= 0 and b 6= 0, then Arg(a ª r) = Arg(b ª r).
(77) If r > 0, then ](a, b) = ](a · (r + 0i), b · (r + 0i)).
(78) If a 6= 0 and b 6= 0 and Arg a = Arg b, then Arg(−a) = Arg(−b).
(79) If a 6= 0 and b 6= 0, then ](a, b) = ](a ª r, b ª r).
(80) If r < 0 and a 6= 0 and b 6= 0, then ](a, b) = ](a · (r + 0i), b · (r + 0i)).
(81) If a 6= 0 and b 6= 0, then ](a, b) = ](−a,−b).
(82) If b 6= 0 and ](a, b) = 0, then ](a,−b) = π.

(83) If a 6= 0 and b 6= 0, then cos ](a, b) = <((a|b))
|a|·|b| and sin ](a, b) = −=((a|b))

|a|·|b| .

Let x, y, z be elements of C. The functor ](x, y, z) yielding a real number
is defined as follows:

(Def. 6) ](x, y, z) =
{

Arg(z − y)−Arg(x− y), if Arg(z − y)−Arg(x− y) ­ 0,

2 · π + (Arg(z − y)−Arg(x− y)), otherwise.
One can prove the following propositions:

(84) 0 ¬ ](x, y, z) and ](x, y, z) < 2 · π.

(85) ](x, y, z) = ](x− y, 0C, z − y).
(86) ](a, b, c) = ](a + d, b + d, c + d).
(87) ](a, b) = ](a, 0C, b).
(88) If ](x, y, z) = 0, then Arg(x− y) = Arg(z − y) and ](z, y, x) = 0.

(89) If a 6= 0C and b 6= 0C, then <((a|b)) = 0 iff ](a, 0C, b) = π
2 or

](a, 0C, b) = 3
2 · π.

(90) If a 6= 0C and b 6= 0C, then =((a|b)) = |a| · |b| or =((a|b)) = −|a| · |b| iff
](a, 0C, b) = π

2 or ](a, 0C, b) = 3
2 · π.

(91) If x 6= y and if z 6= y and if ](x, y, z) = π
2 or ](x, y, z) = 3

2 · π, then
|x− y|2 + |z − y|2 = |x− z|2.

(92) If a 6= b and b 6= c, then ](a, b, c) = ](a ª r, b ª r, c ª r).
(93) ](a, b, a) = 0.
(94) ](a, b, c) 6= 0 iff ](a, b, c) + ](c, b, a) = 2 · π.

(95) If ](a, b, c) 6= 0, then ](c, b, a) 6= 0.

(96) If ](a, b, c) = π, then ](c, b, a) = π.
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(97) If a 6= b and a 6= c and b 6= c, then ](a, b, c) 6= 0 or ](b, c, a) 6= 0 or
](c, a, b) 6= 0.

(98) If a 6= b and b 6= c and 0 < ](a, b, c) and ](a, b, c) < π, then ](a, b, c) +
](b, c, a) + ](c, a, b) = π and 0 < ](b, c, a) and 0 < ](c, a, b).

(99) If a 6= b and b 6= c and ](a, b, c) > π, then ](a, b, c) + ](b, c, a) +
](c, a, b) = 5 · π and ](b, c, a) > π and ](c, a, b) > π.

(100) If a 6= b and b 6= c and ](a, b, c) = π, then ](b, c, a) = 0 and ](c, a, b) =
0.

(101) If a 6= b and a 6= c and b 6= c and ](a, b, c) = 0, then ](b, c, a) = 0 and
](c, a, b) = π or ](b, c, a) = π and ](c, a, b) = 0.

(102) ](a, b, c)+](b, c, a)+](c, a, b) = π or ](a, b, c)+](b, c, a)+](c, a, b) =
5 · π iff a 6= b and a 6= c and b 6= c.
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Summary. Two transformations between the complex space and 2-
dimensional Euclidean topological space are defined. By them, the concept of
argument is induced to 2-dimensional vectors using argument of complex num-
ber. Similarly, the concept of an angle is introduced using the angle of two com-
plex numbers. The concept of a triangle and related concepts are also defined in
n-dimensional Euclidean topological spaces.

MML Identifier: EUCLID 3.

The notation and terminology used in this paper have been introduced in the
following articles: [17], [19], [18], [20], [4], [12], [21], [5], [16], [11], [3], [13], [15],
[8], [2], [6], [7], [1], [10], [9], and [14].

We follow the rules: z, z1, z2 are elements of C, r, r1, r2, x1, x2 are real
numbers, and p, p1, p2, p3, q are points of E2

T.
Let z be an element of C. The functor cpx2euc(z) yielding a point of E2

T is
defined by:

(Def. 1) cpx2euc(z) = [<(z),=(z)].
Let p be a point of E2

T. The functor euc2cpx(p) yields an element of C and
is defined as follows:

(Def. 2) euc2cpx(p) = p1 + p2i.

One can prove the following propositions:

(1) euc2cpx(cpx2euc(z)) = z.

(2) cpx2euc(euc2cpx(p)) = p.

(3) For every p there exists z such that p = cpx2euc(z).
(4) For every z there exists p such that z = euc2cpx(p).
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(5) For all z1, z2 such that cpx2euc(z1) = cpx2euc(z2) holds z1 = z2.

(6) For all p1, p2 such that euc2cpx(p1) = euc2cpx(p2) holds p1 = p2.

(7) (cpx2euc(z))1 = <(z) and (cpx2euc(z))2 = =(z).

(8) <(euc2cpx(p)) = p1 and =(euc2cpx(p)) = p2.

(9) cpx2euc(x1 + x2i) = [x1, x2].

(10) [<(z1 + z2),=(z1 + z2)] = [<(z1) + <(z2),=(z1) + =(z2)].

(11) cpx2euc(z1 + z2) = cpx2euc(z1) + cpx2euc(z2).

(12) (p1 + p2)1 + (p1 + p2)2i = ((p1)1 + (p2)1) + ((p1)2 + (p2)2)i.

(13) euc2cpx(p1 + p2) = euc2cpx(p1) + euc2cpx(p2).

(14) [<(−z),=(−z)] = [−<(z),−=(z)].

(15) cpx2euc(−z) = −cpx2euc(z).

(16) (−p)1 + (−p)2i = −p1 + (−p2)i.

(17) euc2cpx(−p) = −euc2cpx(p).

(18) cpx2euc(z1 − z2) = cpx2euc(z1)− cpx2euc(z2).

(19) euc2cpx(p1 − p2) = euc2cpx(p1)− euc2cpx(p2).

(20) cpx2euc(0C) = 0E2T .

(21) euc2cpx(0E2T) = 0C.

(22) If euc2cpx(p) = 0C, then p = 0E2T .

(23) cpx2euc((r + 0i) · z) = r · cpx2euc(z).

(24) (r + 0i) · (r1 + r2i) = r · r1 + (r · r2)i.

(25) euc2cpx(r · p) = (r + 0i) · euc2cpx(p).

(26) | euc2cpx(p)| =
√

(p1)2 + (p2)2.

(27) For every finite sequence f of elements of R such that len f = 2 holds
|f | =

√
f(1)2 + f(2)2.

(28) For every finite sequence f of elements of R and for every point p of E2
T

such that len f = 2 and p = f holds |p| = |f |.
(29) | cpx2euc(z)| =

√
<(z)2 + =(z)2.

(30) | cpx2euc(z)| = |z|.
(31) | euc2cpx(p)| = |p|.

Let us consider p. The functor Arg p yields a real number and is defined as
follows:

(Def. 3) Arg p = Arg euc2cpx(p).

We now state a number of propositions:

(32) For every element z of C and for every p such that z = euc2cpx(p) or
p = cpx2euc(z) holds Arg z = Arg p.

(33) For every p holds 0 ¬ Arg p and Arg p < 2 · π.
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(34) For all real numbers x1, x2 and for every p such that x1 = |p| · cos Arg p

and x2 = |p| · sin Arg p holds p = [x1, x2].

(35) Arg(0E2T) = 0.

(36) For every p such that p 6= 0E2T holds if Arg p < π, then Arg(−p) =
Arg p + π and if Arg p ­ π, then Arg(−p) = Arg p− π.

(37) For every p such that Arg p = 0 holds p = [|p|, 0] and p2 = 0.

(38) For every p such that p 6= 0E2T holds Arg p < π iff Arg(−p) ­ π.

(39) For all p1, p2 such that p1 6= p2 or p1 − p2 6= 0E2T holds Arg(p1 − p2) < π

iff Arg(p2 − p1) ­ π.

(40) For every p holds Arg p ∈ ]0, π[ iff p2 > 0.

(41) For every p such that Arg p 6= 0 holds Arg p < π iff sin Arg p > 0.

(42) For all p1, p2 such that Arg p1 < π and Arg p2 < π holds Arg(p1+p2) < π.

Let us consider p1, p2, p3. The functor ](p1, p2, p3) yielding a real number
is defined as follows:

(Def. 4) ](p1, p2, p3) = ](euc2cpx(p1), euc2cpx(p2), euc2cpx(p3)).

The following propositions are true:

(43) For all p1, p2, p3 holds 0 ¬ ](p1, p2, p3) and ](p1, p2, p3) < 2 · π.

(44) For all p1, p2, p3 holds ](p1, p2, p3) = ](p1 − p2, 0E2T , p3 − p2).

(45) For all p1, p2, p3 such that ](p1, p2, p3) = 0 holds Arg(p1−p2) = Arg(p3−
p2) and ](p3, p2, p1) = 0.

(46) For all p1, p2, p3 such that ](p1, p2, p3) 6= 0 holds ](p3, p2, p1) = 2 · π −
](p1, p2, p3).

(47) For all p1, p2, p3 such that ](p3, p2, p1) 6= 0 holds ](p3, p2, p1) = 2 · π −
](p1, p2, p3).

(48) For all elements x, y of C holds <((x|y)) = <(x) · <(y) + =(x) · =(y).

(49) For all elements x, y of C holds =((x|y)) = −<(x) · =(y) + =(x) · <(y).

(50) For all p, q holds |(p, q)| = p1 · q1 + p2 · q2.

(51) For all p1, p2 holds |(p1, p2)| = <((euc2cpx(p1)| euc2cpx(p2))).

(52) For all p1, p2, p3 such that p1 6= 0E2T and p2 6= 0E2T holds |(p1, p2)| = 0 iff

](p1, 0E2T , p2) = π
2 or ](p1, 0E2T , p2) = 3

2 · π.

(53) Let given p1, p2. Suppose p1 6= 0E2T and p2 6= 0E2T . Then −(p1)1 · (p2)2 +
(p1)2 · (p2)1 = |p1| · |p2| or −(p1)1 · (p2)2 +(p1)2 · (p2)1 = −|p1| · |p2| if and
only if ](p1, 0E2T , p2) = π

2 or ](p1, 0E2T , p2) = 3
2 · π.

(54) For all p1, p2, p3 such that p1 6= p2 and p3 6= p2 holds |(p1−p2, p3−p2)| =
0 iff ](p1, p2, p3) = π

2 or ](p1, p2, p3) = 3
2 · π.

(55) For all p1, p2, p3 such that p1 6= p2 but p3 6= p2 but ](p1, p2, p3) = π
2 or

](p1, p2, p3) = 3
2 · π holds |p1 − p2|2 + |p3 − p2|2 = |p1 − p3|2.
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(56) For all p1, p2, p3 such that p2 6= p1 and p1 6= p3 and p3 6= p2 and
](p2, p1, p3) < π and ](p1, p3, p2) < π and ](p3, p2, p1) < π holds
](p2, p1, p3) + ](p1, p3, p2) + ](p3, p2, p1) = π.

Let n be a natural number and let p1, p2, p3 be points of En
T. The functor

Triangle(p1, p2, p3) yields a subset of En
T and is defined as follows:

(Def. 5) Triangle(p1, p2, p3) = L(p1, p2) ∪ L(p2, p3) ∪ L(p3, p1).
Let n be a natural number and let p1, p2, p3 be points of En

T. The functor
ClInsideOfTriangle(p1, p2, p3) yields a subset of En

T and is defined as follows:

(Def. 6) ClInsideOfTriangle(p1, p2, p3) = {p; p ranges over points of En
T:∨

a1,a2,a3 : real number (0 ¬ a1 ∧ 0 ¬ a2 ∧ 0 ¬ a3 ∧ a1 + a2 + a3 =
1 ∧ p = a1 · p1 + a2 · p2 + a3 · p3)}.

Let n be a natural number and let p1, p2, p3 be points of En
T. The functor

InsideOfTriangle(p1, p2, p3) yielding a subset of En
T is defined by:

(Def. 7) InsideOfTriangle(p1, p2, p3) = ClInsideOfTriangle(p1, p2, p3)\Triangle(p1,

p2, p3).
Let n be a natural number and let p1, p2, p3 be points of En

T. The functor
OutsideOfTriangle(p1, p2, p3) yielding a subset of En

T is defined by the condition
(Def. 8).

(Def. 8) OutsideOfTriangle(p1, p2, p3) = {p; p ranges over points of En
T:∨

a1,a2,a3 : real number ((0 > a1 ∨ 0 > a2 ∨ 0 > a3) ∧ a1 + a2 + a3 =
1 ∧ p = a1 · p1 + a2 · p2 + a3 · p3)}.

Let n be a natural number and let p1, p2, p3 be points of En
T. The functor

plane(p1, p2, p3) yielding a subset of En
T is defined as follows:

(Def. 9) plane(p1, p2, p3) = OutsideOfTriangle(p1, p2, p3)∪ClInsideOfTriangle(p1,

p2, p3).
One can prove the following propositions:

(57) Let n be a natural number and p1, p2, p3, p be points of En
T. Suppose

p ∈ plane(p1, p2, p3). Then there exist real numbers a1, a2, a3 such that
a1 + a2 + a3 = 1 and p = a1 · p1 + a2 · p2 + a3 · p3.

(58) For every natural number n and for all points p1, p2, p3 of En
T holds

Triangle(p1, p2, p3) ⊆ ClInsideOfTriangle(p1, p2, p3).

Let n be a natural number and let q1, q2 be points of En
T. We say that q1, q2

are lindependent2 if and only if:

(Def. 10) For all real numbers a1, a2 such that a1 · q1 + a2 · q2 = 0En
T

holds a1 = 0
and a2 = 0.

We introduce q1, q2 are ldependent2 as an antonym of q1, q2 are lindependent2.
One can prove the following propositions:

(59) Let n be a natural number and q1, q2 be points of En
T. If q1, q2 are

lindependent2, then q1 6= q2 and q1 6= 0En
T

and q2 6= 0En
T
.
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(60) Let n be a natural number and p1, p2, p3, p0 be points of En
T. Suppose

p2 − p1, p3 − p1 are lindependent2 and p0 ∈ plane(p1, p2, p3). Then there
exist real numbers a1, a2, a3 such that

(i) p0 = a1 · p1 + a2 · p2 + a3 · p3,

(ii) a1 + a2 + a3 = 1, and
(iii) for all real numbers b1, b2, b3 such that p0 = b1 · p1 + b2 · p2 + b3 · p3 and

b1 + b2 + b3 = 1 holds b1 = a1 and b2 = a2 and b3 = a3.

(61) Let n be a natural number and p1, p2, p3, p0 be points of En
T. Given real

numbers a1, a2, a3 such that p0 = a1 ·p1+a2 ·p2+a3 ·p3 and a1+a2+a3 = 1.

Then p0 ∈ plane(p1, p2, p3).
(62) Let n be a natural number and p1, p2, p3 be points of En

T. Then
plane(p1, p2, p3) = {p; p ranges over points of En

T:
∨

a1,a2,a3 : real number (a1+
a2 + a3 = 1 ∧ p = a1 · p1 + a2 · p2 + a3 · p3)}.

(63) For all p1, p2, p3 such that p2 − p1, p3 − p1 are lindependent2 holds
plane(p1, p2, p3) = R2.

Let n be a natural number and let p1, p2, p3, p be points of En
T. Let us assume

that p2 − p1, p3 − p1 are lindependent2 and p ∈ plane(p1, p2, p3). The functor
tricord1(p1, p2, p3, p) yields a real number and is defined as follows:

(Def. 11) There exist real numbers a2, a3 such that tricord1(p1, p2, p3, p)+a2+a3 =
1 and p = tricord1(p1, p2, p3, p) · p1 + a2 · p2 + a3 · p3.

Let n be a natural number and let p1, p2, p3, p be points of En
T. Let us assume

that p2 − p1, p3 − p1 are lindependent2 and p ∈ plane(p1, p2, p3). The functor
tricord2(p1, p2, p3, p) yielding a real number is defined as follows:

(Def. 12) There exist real numbers a1, a3 such that a1+tricord2(p1, p2, p3, p)+a3 =
1 and p = a1 · p1 + tricord2(p1, p2, p3, p) · p2 + a3 · p3.

Let n be a natural number and let p1, p2, p3, p be points of En
T. Let us assume

that p2 − p1, p3 − p1 are lindependent2 and p ∈ plane(p1, p2, p3). The functor
tricord2(p1, p2, p3, p) yielding a real number is defined as follows:

(Def. 13) There exist real numbers a1, a2 such that a1+a2+tricord2(p1, p2, p3, p) =
1 and p = a1 · p1 + a2 · p2 + tricord2(p1, p2, p3, p) · p3.

Let us consider p1, p2, p3. The functor trcmap1(p1, p2, p3) yielding a map
from E2

T into R1 is defined as follows:

(Def. 14) For every p holds (trcmap1(p1, p2, p3))(p) = tricord1(p1, p2, p3, p).
Let us consider p1, p2, p3. The functor trcmap2(p1, p2, p3) yields a map from

E2
T into R1 and is defined as follows:

(Def. 15) For every p holds (trcmap2(p1, p2, p3))(p) = tricord2(p1, p2, p3, p).
Let us consider p1, p2, p3. The functor trcmap3(p1, p2, p3) yielding a map

from E2
T into R1 is defined by:

(Def. 16) For every p holds (trcmap3(p1, p2, p3))(p) = tricord2(p1, p2, p3, p).
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Next we state several propositions:

(64) Let given p1, p2, p3, p. Suppose p2 − p1, p3 − p1 are lindependent2.
Then p ∈ OutsideOfTriangle(p1, p2, p3) if and only if one of the following
conditions is satisfied:

(i) tricord1(p1, p2, p3, p) < 0, or
(ii) tricord2(p1, p2, p3, p) < 0, or
(iii) tricord2(p1, p2, p3, p) < 0.

(65) Let given p1, p2, p3, p. Suppose p2− p1, p3− p1 are lindependent2. Then
p ∈ Triangle(p1, p2, p3) if and only if the following conditions are satisfied:

(i) tricord1(p1, p2, p3, p) ­ 0,

(ii) tricord2(p1, p2, p3, p) ­ 0,

(iii) tricord2(p1, p2, p3, p) ­ 0, and
(iv) tricord1(p1, p2, p3, p) = 0 or tricord2(p1, p2, p3, p) = 0 or

tricord2(p1, p2, p3, p) = 0.
(66) Let given p1, p2, p3, p. Suppose p2− p1, p3− p1 are lindependent2. Then

p ∈ Triangle(p1, p2, p3) if and only if one of the following conditions is
satisfied:

(i) tricord1(p1, p2, p3, p) = 0 and tricord2(p1, p2, p3, p) ­ 0 and
tricord2(p1, p2, p3, p) ­ 0, or

(ii) tricord1(p1, p2, p3, p) ­ 0 and tricord2(p1, p2, p3, p) = 0 and
tricord2(p1, p2, p3, p) ­ 0, or

(iii) tricord1(p1, p2, p3, p) ­ 0 and tricord2(p1, p2, p3, p) ­ 0 and
tricord2(p1, p2, p3, p) = 0.

(67) Let given p1, p2, p3, p. Suppose p2− p1, p3− p1 are lindependent2. Then
p ∈ InsideOfTriangle(p1, p2, p3) if and only if the following conditions are
satisfied:

(i) tricord1(p1, p2, p3, p) > 0,

(ii) tricord2(p1, p2, p3, p) > 0, and
(iii) tricord2(p1, p2, p3, p) > 0.

(68) For all p1, p2, p3 such that p2 − p1, p3 − p1 are lindependent2 holds
InsideOfTriangle(p1, p2, p3) is non empty.
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The Class of Series-Parallel Graphs.
Part II1

Krzysztof Retel
University of Białystok

Summary. In this paper we introduce two new operations on graphs:
sum and union corresponding to parallel and series operation respectively. We
determine N -free graph as the graph that does not embed Necklace 4. We define
“fin RelStr” as the set of all graphs with finite carriers. We also define the smallest
class of graphs which contains the one-element graph and which is closed under
parallel and series operations. The goal of the article is to prove the theorem that
the class of finite series-parallel graphs is the class of finite N -free graphs. This
paper formalizes the next part of [12].

MML Identifier: NECKLA 2.

The terminology and notation used in this paper are introduced in the following
papers: [15], [14], [18], [7], [20], [8], [1], [2], [3], [13], [16], [4], [17], [19], [11], [5],
[6], [9], and [10].

In this paper U denotes a universal class.
Next we state two propositions:

(1) For all sets X, Y such that X ∈ U and Y ∈ U and for every relation R

between X and Y holds R ∈ U.

(2) The internal relation of Necklace 4 = {〈〈0, 1〉〉, 〈〈1, 0〉〉, 〈〈1, 2〉〉, 〈〈2, 1〉〉, 〈〈2,

3〉〉, 〈〈3, 2〉〉}.
Let n be a natural number. One can check that every element of Rn is finite.
Next we state the proposition

(3) For every set x such that x ∈ U0 holds x is finite.

Let us mention that every element of U0 is finite.
Let us note that every number which is finite and ordinal is also natural.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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Let G be a non empty relational structure. We say that G is N-free if and
only if:

(Def. 1) G does not embed Necklace 4.

Let us mention that there exists a non empty relational structure which is
N-free.

Let R, S be relational structures. The functor UnionOf(R, S) yielding a
strict relational structure is defined by the conditions (Def. 2).

(Def. 2)(i) The carrier of UnionOf(R, S) = (the carrier of R)∪ (the carrier of S),
and

(ii) the internal relation of UnionOf(R, S) = (the internal relation of R) ∪
(the internal relation of S).

Let R, S be relational structures. The functor SumOf(R,S) yielding a strict
relational structure is defined by the conditions (Def. 3).

(Def. 3)(i) The carrier of SumOf(R, S) = (the carrier of R) ∪ (the carrier of S),
and

(ii) the internal relation of SumOf(R, S) = (the internal relation of R)∪(the
internal relation of S)∪ [: the carrier of R, the carrier of S :]∪ [: the carrier
of S, the carrier of R :].

The functor FinRelStr is defined by the condition (Def. 4).

(Def. 4) Let X be a set. Then X ∈ FinRelStr if and only if there exists a strict
relational structure R such that X = R and the carrier of R ∈ U0.

Let us mention that FinRelStr is non empty.
The subset FinRelStrSp of FinRelStr is defined by the conditions (Def. 5).

(Def. 5)(i) For every strict relational structure R such that the carrier of R is
non empty and trivial and the carrier of R ∈ U0 holds R ∈ FinRelStrSp,

(ii) for all strict relational structures H1, H2 such that the carrier of H1 mis-
ses the carrier of H2 and H1 ∈ FinRelStrSp and H2 ∈ FinRelStrSp holds
UnionOf(H1,H2) ∈ FinRelStrSp and SumOf(H1,H2) ∈ FinRelStrSp, and

(iii) for every subset M of FinRelStr such that for every strict relational
structure R such that the carrier of R is non empty and trivial and the
carrier of R ∈ U0 holds R ∈M and for all strict relational structures H1,
H2 such that the carrier of H1 misses the carrier of H2 and H1 ∈ M and
H2 ∈ M holds UnionOf(H1,H2) ∈ M and SumOf(H1, H2) ∈ M holds
FinRelStrSp ⊆M.

One can verify that FinRelStrSp is non empty.
We now state four propositions:

(4) For every set X such that X ∈ FinRelStrSp holds X is a finite strict
non empty relational structure.

(5) For every relational structure R such that R ∈ FinRelStrSp holds the
carrier of R ∈ U0.
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(6) Let X be a set. Suppose X ∈ FinRelStrSp . Then
(i) X is a strict non empty trivial relational structure, or
(ii) there exist strict relational structures H1, H2 such that the carrier of

H1 misses the carrier of H2 and H1 ∈ FinRelStrSp and H2 ∈ FinRelStrSp
and X = UnionOf(H1,H2) or X = SumOf(H1,H2).

(7) For every strict non empty relational structure R such that R ∈
FinRelStrSp holds R is N-free.
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Summary. We continue the Mizar formalization of Gröbner bases follo-
wing [8]. In this article we prove a number of characterizations of Gröbner bases
among them that Gröbner bases are convergent rewriting systems. We also show
the existence and uniqueness of reduced Gröbner bases.

MML Identifier: GROEB 1.

The papers [24], [31], [33], [32], [10], [5], [17], [29], [28], [11], [13], [4], [2], [30],
[9], [7], [15], [16], [12], [20], [19], [25], [27], [18], [1], [6], [14], [22], [26], [23], [3],
and [21] provide the terminology and notation for this paper.

1. Preliminaries

Let n be an ordinal number, let L be a right zeroed add-associative right com-
plementable unital distributive non trivial double loop structure, and let p be a
polynomial of n, L. Then {p} is a non empty finite subset of Polynom-Ring(n,L).

We now state several propositions:

(1) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive field-like non trivial double loop structure,
and f , p, g be polynomials of n, L. Suppose f reduces to g, p, T . Then
there exists a monomial m of n, L such that g = f −m ∗ p.

(2) Let n be an ordinal number, T be an admissible connected term order of
n, L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, and f , p, g be polynomials of n, L. Suppose
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f reduces to g, p, T . Then there exists a monomial m of n, L such that
g = f−m∗p and HT(m∗p, T ) /∈ Support g and HT(m∗p, T ) ¬T HT(f, T ).

(3) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed commutative associa-
tive well unital distributive field-like non trivial double loop structure, f ,
g be polynomials of n, L, and P , Q be subsets of Polynom-Ring(n, L). If
P ⊆ Q, then if f reduces to g, P , T , then f reduces to g, Q, T .

(4) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative as-
sociative well unital distributive field-like non trivial double loop struc-
ture, and P , Q be subsets of Polynom-Ring(n,L). If P ⊆ Q, then
PolyRedRel(P, T ) ⊆ PolyRedRel(Q,T ).

(5) Let n be an ordinal number, L be a right zeroed add-associative right
complementable non empty double loop structure, and p be a polynomial
of n, L. Then Support(−p) = Support p.

(6) Let n be an ordinal number, T be a connected term order of n, L be a
right zeroed add-associative right complementable unital distributive non
trivial non empty double loop structure, and p be a polynomial of n, L.
Then HT(−p, T ) = HT(p, T ).

(7) Let n be an ordinal number, T be an admissible connected term or-
der of n, L be a right zeroed add-associative right complementable unital
distributive non trivial non empty double loop structure, and p, q be po-
lynomials of n, L. Then HT(p− q, T ) ¬T maxT (HT(p, T ), HT(q, T )).

(8) Let n be an ordinal number, T be an admissible connected term order
of n, L be an add-associative right complementable right zeroed commu-
tative associative well unital distributive field-like non trivial double loop
structure, and p, q be polynomials of n, L. If Support q ⊆ Support p, then
q ¬T p.

(9) Let n be an ordinal number, T be a connected admissible term order of n,
L be an add-associative right complementable right zeroed commutative
associative well unital distributive field-like non degenerated non empty
double loop structure, and f , p be non-zero polynomials of n, L. If f is
reducible wrt p, T , then HT(p, T ) ¬T HT(f, T ).

2. Characterization of Gröbner Bases

Next we state two propositions:

(10) Let n be a natural number, T be a connected admissible term order of n,
L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non trivial double



characterization and existence of . . . 295

loop structure, and p be a polynomial of n, L. Then PolyRedRel({p}, T )
is locally-confluent.

(11) Let n be a natural number, T be a connected admissible term order of n,
L be an Abelian add-associative right complementable right zeroed com-
mutative associative well unital distributive field-like non degenerated non
empty double loop structure, and P be a subset of Polynom-Ring(n,L).
Given a polynomial p of n, L such that p ∈ P and P–ideal = {p}–ideal.
Then PolyRedRel(P, T ) is locally-confluent.

Let n be an ordinal number, let T be a connected term order of n, let L be a
right zeroed add-associative right complementable unital distributive non trivial
non empty double loop structure, and let P be a subset of Polynom-Ring(n,L).
The functor HT(P, T ) yields a subset of Bags n and is defined as follows:

(Def. 1) HT(P, T ) = {HT(p, T ); p ranges over polynomials of n, L: p ∈ P ∧ p 6=
0nL}.

Let n be an ordinal number and let S be a subset of Bags n. The functor
multiples(S) yields a subset of Bags n and is defined by:

(Def. 2) multiples(S) = {b; b ranges over elements of Bags n :
∨

b′ : bag of n (b′ ∈
S ∧ b′ | b)}.

We now state several propositions:

(12) Let n be a natural number, T be a connected admissible term order of n,
L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, and P be a subset of Polynom-Ring(n,L). If
PolyRedRel(P, T ) is locally-confluent, then PolyRedRel(P, T ) is confluent.

(13) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive field-like non trivial double loop structure,
and P be a subset of Polynom-Ring(n,L). If PolyRedRel(P, T ) is conflu-
ent, then PolyRedRel(P, T ) has unique normal form property.

(14) Let n be a natural number, T be a connected admissible term or-
der of n, L be an add-associative right complementable right zeroed
commutative associative well unital distributive Abelian field-like non
degenerated non empty double loop structure, and P be a subset of
Polynom-Ring(n,L). Suppose PolyRedRel(P, T ) has unique normal form
property. Then PolyRedRel(P, T ) has Church-Rosser property.

(15) Let n be a natural number, T be a connected admissible term order
of n, L be an add-associative right complementable right zeroed com-
mutative associative well unital distributive Abelian field-like non de-
generated non empty double loop structure, and P be a non empty
subset of Polynom-Ring(n,L). Suppose PolyRedRel(P, T ) has Church-
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Rosser property. Let f be a polynomial of n, L. If f ∈ P–ideal, then
PolyRedRel(P, T ) reduces f to 0nL.

(16) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed commutative associa-
tive well unital distributive field-like non trivial double loop structure, and
P be a subset of Polynom-Ring(n,L). Suppose that for every polynomial
f of n, L such that f ∈ P–ideal holds PolyRedRel(P, T ) reduces f to 0nL.

Let f be a non-zero polynomial of n, L. If f ∈ P–ideal, then f is reducible
wrt P , T .

(17) Let n be a natural number, T be an admissible connected term order of
n, L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, and P be a subset of Polynom-Ring(n,L).
Suppose that for every non-zero polynomial f of n, L such that f ∈
P–ideal holds f is reducible wrt P , T . Let f be a non-zero polynomial of
n, L. If f ∈ P–ideal, then f is top reducible wrt P , T .

(18) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive field-like non trivial double loop structure,
and P be a subset of Polynom-Ring(n,L). Suppose that for every non-zero
polynomial f of n, L such that f ∈ P–ideal holds f is top reducible wrt
P , T . Let b be a bag of n. If b ∈ HT(P–ideal, T ), then there exists a bag
b′ of n such that b′ ∈ HT(P, T ) and b′ | b.

(19) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive field-like non trivial double loop structure,
and P be a subset of Polynom-Ring(n,L). Suppose that for every bag b

of n such that b ∈ HT(P–ideal, T ) there exists a bag b′ of n such that
b′ ∈ HT(P, T ) and b′ | b. Then HT(P–ideal, T ) ⊆ multiples(HT(P, T )).

(20) Let n be a natural number, T be a connected admissible term order of n,
L be an Abelian add-associative right complementable right zeroed com-
mutative associative well unital distributive field-like non degenerated non
empty double loop structure, and P be a subset of Polynom-Ring(n,L). If
HT(P–ideal, T ) ⊆ multiples(HT(P, T )), then PolyRedRel(P, T ) is locally-
confluent.

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let G be
a subset of Polynom-Ring(n,L). We say that G is a Groebner basis wrt T if and
only if:

(Def. 3) PolyRedRel(G, T ) is locally-confluent.
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Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let G, I

be subsets of Polynom-Ring(n,L). We say that G is a Groebner basis of I, T if
and only if:

(Def. 4) G–ideal = I and PolyRedRel(G,T ) is locally-confluent.

One can prove the following propositions:

(21) Let n be a natural number, T be a connected admissible term order
of n, L be an Abelian add-associative right complementable right ze-
roed commutative associative well unital distributive field-like non de-
generated non empty double loop structure, and G, P be non empty
subsets of Polynom-Ring(n,L). If G is a Groebner basis of P , T , then
PolyRedRel(G, T ) is a completion of PolyRedRel(P, T ).

(22) Let n be a natural number, T be a connected admissible term order of n,
L be an Abelian add-associative right complementable right zeroed com-
mutative associative well unital distributive field-like non degenerated non
empty double loop structure, p, q be elements of Polynom-Ring(n,L), and
G be a non empty subset of Polynom-Ring(n,L). Suppose G is a Groebner
basis wrt T . Then p ≡ q(mod G–ideal) if and only if nfPolyRedRel(G,T )(p) =
nfPolyRedRel(G,T )(q).

(23) Let n be a natural number, T be a connected admissible term order of n,
L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, f be a polynomial of n, L, and P be a non
empty subset of Polynom-Ring(n,L). Suppose P is a Groebner basis wrt
T . Then f ∈ P–ideal if and only if PolyRedRel(P, T ) reduces f to 0nL.

(24) Let n be a natural number, T be a connected admissible term order of
n, L be an add-associative right complementable right zeroed commuta-
tive associative well unital distributive Abelian field-like non degenerated
non empty double loop structure, I be a subset of Polynom-Ring(n,L),
and G be a non empty subset of Polynom-Ring(n,L). Suppose G is a
Groebner basis of I, T . Let f be a polynomial of n, L. If f ∈ I, then
PolyRedRel(G, T ) reduces f to 0nL.

(25) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed commutative associa-
tive well unital distributive field-like non trivial double loop structure, and
G, I be subsets of Polynom-Ring(n,L). Suppose that for every polynomial
f of n, L such that f ∈ I holds PolyRedRel(G,T ) reduces f to 0nL. Let
f be a non-zero polynomial of n, L. If f ∈ I, then f is reducible wrt G,
T .

(26) Let n be a natural number, T be an admissible connected term order of
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n, L be an add-associative right complementable right zeroed commuta-
tive associative well unital distributive Abelian field-like non degenerated
non empty double loop structure, I be an add closed left ideal subset of
Polynom-Ring(n, L), and G be a subset of Polynom-Ring(n,L). Suppose
G ⊆ I. Suppose that for every non-zero polynomial f of n, L such that
f ∈ I holds f is reducible wrt G, T . Let f be a non-zero polynomial of n,
L. If f ∈ I, then f is top reducible wrt G, T .

(27) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed commutative associa-
tive well unital distributive field-like non trivial double loop structure, and
G, I be subsets of Polynom-Ring(n,L). Suppose that for every non-zero
polynomial f of n, L such that f ∈ I holds f is top reducible wrt G, T .
Let b be a bag of n. If b ∈ HT(I, T ), then there exists a bag b′ of n such
that b′ ∈ HT(G,T ) and b′ | b.

(28) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed commutative associa-
tive well unital distributive field-like non trivial double loop structure, and
G, I be subsets of Polynom-Ring(n,L). Suppose that for every bag b of n

such that b ∈ HT(I, T ) there exists a bag b′ of n such that b′ ∈ HT(G,T )
and b′ | b. Then HT(I, T ) ⊆ multiples(HT(G,T )).

(29) Let n be a natural number, T be a connected admissible term order
of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenera-
ted non empty double loop structure, I be an add closed left ideal non
empty subset of Polynom-Ring(n, L), and G be a non empty subset of
Polynom-Ring(n, L). If G ⊆ I, then if HT(I, T ) ⊆ multiples(HT(G, T )),
then G is a Groebner basis of I, T .

3. Existence of Gröbner Bases

Next we state four propositions:

(30) Let n be a natural number, T be a connected admissible term order of
n, and L be an add-associative right complementable right zeroed com-
mutative associative well unital distributive Abelian field-like non trivial
double loop structure. Then {0nL} is a Groebner basis of {0nL}, T .

(31) Let n be a natural number, T be a connected admissible term order of n,
L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non trivial double
loop structure, and p be a polynomial of n, L. Then {p} is a Groebner
basis of {p}–ideal, T .
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(32) Let T be an admissible connected term order of ∅, L be an add-
associative right complementable right zeroed commutative associative
well unital distributive Abelian field-like non degenerated non empty do-
uble loop structure, I be an add closed left ideal non empty subset of
Polynom-Ring(∅, L), and P be a non empty subset of Polynom-Ring(∅, L).
If P ⊆ I and P 6= {0∅L}, then P is a Groebner basis of I, T .

(33) Let n be a non empty ordinal number, T be an admissible connected
term order of n, and L be an add-associative right complementable right
zeroed commutative associative well unital distributive field-like non de-
generated non empty double loop structure. Then there exists a subset P

of Polynom-Ring(n,L) such that P is not a Groebner basis wrt T .

Let n be an ordinal number. The functor DivOrder(n) yields an order in
Bags n and is defined by:

(Def. 5) For all bags b1, b2 of n holds 〈〈b1, b2〉〉 ∈ DivOrder(n) iff b1 | b2.

Let n be a natural number. One can check that 〈Bags n, DivOrder(n)〉 is
Dickson.

The following propositions are true:

(34) For every natural number n and for every subset N of the carrier of
〈Bags n, DivOrder(n)〉 holds there exists a finite subset of Bags n which is
Dickson basis of N , 〈Bags n, DivOrder(n)〉.

(35) Let n be a natural number, T be a connected admissible term order
of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated
non empty double loop structure, and I be an add closed left ideal non
empty subset of Polynom-Ring(n, L). Then there exists a finite subset of
Polynom-Ring(n,L) which is a Groebner basis of I, T .

(36) Let n be a natural number, T be a connected admissible term order
of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated
non empty double loop structure, and I be an add closed left ideal non
empty subset of Polynom-Ring(n,L). Suppose I 6= {0nL}. Then there
exists a finite subset G of Polynom-Ring(n,L) such that G is a Groebner
basis of I, T and 0nL /∈ G.

Let n be an ordinal number, let T be a connected term order of n, let L be
a non empty multiplicative loop with zero structure, and let p be a polynomial
of n, L. We say that p is monic wrt T if and only if:

(Def. 6) HC(p, T ) = 1L.

Let n be an ordinal number, let T be a connected term order of n, let L be a
right zeroed add-associative right complementable commutative associative well
unital distributive field-like non trivial non empty double loop structure, and
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let P be a subset of Polynom-Ring(n,L). We say that P is reduced wrt T if and
only if:

(Def. 7) For every polynomial p of n, L such that p ∈ P holds p is monic wrt T

and irreducible wrt P \ {p}, T .

We introduce P is autoreduced wrt T as a synonym of P is reduced wrt T .
Next we state four propositions:

(37) Let n be an ordinal number, T be an admissible connected term order of
n, L be an add-associative right complementable right zeroed commuta-
tive associative well unital distributive Abelian field-like non degenerated
non empty double loop structure, I be an add closed left ideal subset of
Polynom-Ring(n, L), m be a monomial of n, L, and f , g be polynomials
of n, L. Suppose f ∈ I and g ∈ I and HM(f, T ) = m and HM(g, T ) = m.

Suppose that
(i) it is not true that there exists a polynomial p of n, L such that p ∈ I

and p <T f and HM(p, T ) = m, and
(ii) it is not true that there exists a polynomial p of n, L such that p ∈ I

and p <T g and HM(p, T ) = m.

Then f = g.

(38) Let n be a natural number, T be a connected admissible term order
of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated
non empty double loop structure, I be an add closed left ideal non empty
subset of Polynom-Ring(n,L), G be a subset of Polynom-Ring(n,L), p be
a polynomial of n, L, and q be a non-zero polynomial of n, L. Suppose
p ∈ G and q ∈ G and p 6= q and HT(q, T ) | HT(p, T ). If G is a Groebner
basis of I, T , then G \ {p} is a Groebner basis of I, T .

(39) Let n be a natural number, T be a connected admissible term order
of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated
non empty double loop structure, and I be an add closed left ideal non
empty subset of Polynom-Ring(n,L). If I 6= {0nL}, then there exists a
finite subset G of Polynom-Ring(n,L) which is a Groebner basis of I, T

and reduced wrt T .

(40) Let n be a natural number, T be a connected admissible term order
of n, L be an Abelian add-associative right complementable right zeroed
commutative associative well unital distributive field-like non degenerated
non empty double loop structure, I be an add closed left ideal non empty
subset of Polynom-Ring(n,L), and G1, G2 be non empty finite subsets of
Polynom-Ring(n, L). Suppose G1 is a Groebner basis of I, T and reduced
wrt T and G2 is a Groebner basis of I, T and reduced wrt T . Then
G1 = G2.
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Summary. We continue the Mizar formalization of Gröbner bases follo-
wing [6]. In this article we introduce S-polynomials and standard representations
and show how these notions can be used to characterize Gröbner bases.
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[25], [28], [17], [1], [4], [13], [22], [21], [27], [26], [16], [10], [23], [2], [20], [11], and
[35].

1. Preliminaries

One can prove the following propositions:

(1) For every set X and for every finite sequence p of elements of X such
that p 6= ∅ holds p¹1 = 〈p1〉.

(2) Let L be a non empty loop structure, p be a finite sequence of elements
of L, and n, m be natural numbers. If m ¬ n, then p¹n¹m = p¹m.

(3) Let L be an add-associative right zeroed right complementable non
empty loop structure, p be a finite sequence of elements of L, and n be
a natural number. Suppose that for every natural number k such that
k ∈ dom p and k > n holds p(k) = 0L. Then

∑
p =

∑
(p¹n).

(4) Let L be an add-associative right zeroed Abelian non empty loop struc-
ture, f be a finite sequence of elements of L, and i, j be natural numbers.
Then

∑
Swap(f, i, j) =

∑
f.
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(5) Let n be an ordinal number, T be a term order of n, and b1, b2, b3 be
bags of n. If b1 ¬T b3 and b2 ¬T b3, then maxT (b1, b2) ¬T b3.

(6) Let n be an ordinal number, T be a term order of n, and b1, b2, b3 be
bags of n. If b3 ¬T b1 and b3 ¬T b2, then b3 ¬T minT (b1, b2).

Let X be a set and let b1, b2 be bags of X. Let us assume that b2 | b1. The
functor b1

b2
yields a bag of X and is defined by:

(Def. 1) b2 + b1
b2

= b1.

Let X be a set and let b1, b2 be bags of X. The functor lcm(b1, b2) yields a
bag of X and is defined as follows:

(Def. 2) For every set k holds lcm(b1, b2)(k) = max(b1(k), b2(k)).
Let us observe that the functor lcm(b1, b2) is commutative and idempotent. We
introduce lcm(b1, b2) as a synonym of lcm(b1, b2).

Let X be a set and let b1, b2 be bags of X. We say that b1, b2 are disjoint if
and only if:

(Def. 3) For every set i holds b1(i) = 0 or b2(i) = 0.

We introduce b1, b2 are non disjoint as an antonym of b1, b2 are disjoint.
We now state several propositions:

(7) For every set X and for all bags b1, b2 of X holds b1 | lcm(b1, b2) and
b2 | lcm(b1, b2).

(8) For every set X and for all bags b1, b2, b3 of X such that b1 | b3 and
b2 | b3 holds lcm(b1, b2) | b3.

(9) Let X be a set, T be a term order of X, and b1, b2 be bags of X. Then
b1, b2 are disjoint if and only if lcm(b1, b2) = b1 + b2.

(10) For every set X and for every bag b of X holds b
b = EmptyBag X.

(11) For every set X and for all bags b1, b2 of X holds b2 | b1 iff lcm(b1, b2) =
b1.

(12) For every set X and for all bags b1, b2, b3 of X such that b1 | lcm(b2, b3)
holds lcm(b2, b1) | lcm(b2, b3).

(13) For every set X and for all bags b1, b2, b3 of X such that lcm(b2, b1) |
lcm(b2, b3) holds lcm(b1, b3) | lcm(b2, b3).

(14) For every set n and for all bags b1, b2, b3 of n such that lcm(b1, b3) |
lcm(b2, b3) holds b1 | lcm(b2, b3).

(15) Let n be a natural number, T be a connected admissible term order of
n, and P be a non empty subset of Bags n. Then there exists a bag b of n

such that b ∈ P and for every bag b′ of n such that b′ ∈ P holds b ¬T b′.
Let L be an add-associative right zeroed right complementable non trivial

loop structure and let a be a non-zero element of L. Note that −a is non-zero.
Let X be a set, let L be a left zeroed right zeroed add-cancelable distributive

non empty double loop structure, let m be a monomial of X, L, and let a be an
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element of L. One can verify that a ·m is monomial-like.
Let n be an ordinal number, let L be a left zeroed right zeroed add-cancelable

distributive integral domain-like non trivial double loop structure, let p be a non-
zero polynomial of n, L, and let a be a non-zero element of L. One can verify
that a · p is non-zero.

Next we state several propositions:

(16) Let n be an ordinal number, T be a term order of n, L be a right zeroed
right distributive non empty double loop structure, p, q be series of n, L,
and b be a bag of n. Then b ∗ (p + q) = b ∗ p + b ∗ q.

(17) Let n be an ordinal number, T be a term order of n, L be an add-
associative right zeroed right complementable non empty loop structure,
p be a series of n, L, and b be a bag of n. Then b ∗ −p = −b ∗ p.

(18) Let n be an ordinal number, T be a term order of n, L be a left zeroed
add-right-cancelable right distributive non empty double loop structure,
p be a series of n, L, b be a bag of n, and a be an element of L. Then
b ∗ (a · p) = a · (b ∗ p).

(19) Let n be an ordinal number, T be a term order of n, L be a right
distributive non empty double loop structure, p, q be series of n, L, and
a be an element of L. Then a · (p + q) = a · p + a · q.

(20) Let X be a set, L be an add-associative right zeroed right complemen-
table non empty double loop structure, and a be an element of L. Then
−(a (X, L)) = −a (X,L).

2. S-Polynomials

The following proposition is true

(21) Let n be a natural number, T be a connected admissible term order of n,
L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, and P be a subset of Polynom-Ring(n,L).
Suppose 0nL /∈ P. Suppose that for all polynomials p1, p2 of n, L such
that p1 6= p2 and p1 ∈ P and p2 ∈ P and for all monomials m1, m2 of
n, L such that HM(m1 ∗ p1, T ) = HM(m2 ∗ p2, T ) holds PolyRedRel(P, T )
reduces m1 ∗ p1 −m2 ∗ p2 to 0nL. Then P is a Groebner basis wrt T .

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let p1, p2

be polynomials of n, L. The functor S-Poly(p1, p2, T ) yielding a polynomial of
n, L is defined by:
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(Def. 4) S-Poly(p1, p2, T ) = HC(p2, T ) · ( lcm(HT(p1,T ),HT(p2,T ))
HT(p1,T ) ∗ p1) − HC(p1, T ) ·

( lcm(HT(p1,T ),HT(p2,T ))
HT(p2,T ) ∗ p2).

One can prove the following propositions:

(22) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive field-like Abelian non trivial double loop
structure, P be a subset of Polynom-Ring(n,L), and p1, p2 be polyno-
mials of n, L. If p1 ∈ P and p2 ∈ P, then S-Poly(p1, p2, T ) ∈ P–ideal.

(23) Let n be an ordinal number, T be a connected term order of n, L be an
add-associative right complementable right zeroed commutative associa-
tive well unital distributive field-like non trivial double loop structure, and
p1, p2 be polynomials of n, L. If p1 = p2, then S-Poly(p1, p2, T ) = 0nL.

(24) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive field-like non trivial double loop structure,
and m1, m2 be monomials of n, L. Then S-Poly(m1,m2, T ) = 0nL.

(25) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative as-
sociative well unital distributive field-like non trivial double loop struc-
ture, and p be a polynomial of n, L. Then S-Poly(p, 0nL, T ) = 0nL and
S-Poly(0nL, p, T ) = 0nL.

(26) Let n be an ordinal number, T be an admissible connected term order
of n, L be an add-associative right complementable right zeroed commu-
tative associative well unital distributive field-like non trivial double loop
structure, and p1, p2 be polynomials of n, L. Then S-Poly(p1, p2, T ) = 0nL

or HT(S-Poly(p1, p2, T ), T ) <T lcm(HT(p1, T ), HT(p2, T )).

(27) Let n be an ordinal number, T be a connected term order of n, L be
an add-associative right complementable right zeroed commutative asso-
ciative well unital distributive field-like non trivial double loop structure,
and p1, p2 be non-zero polynomials of n, L. If HT(p2, T ) | HT(p1, T ), then
HC(p2, T ) · p1 top reduces to S-Poly(p1, p2, T ), p2, T .

(28) Let n be a natural number, T be a connected admissible term order of n,
L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, and G be a subset of Polynom-Ring(n,L).
Suppose G is a Groebner basis wrt T . Let g1, g2, h be polynomials of n,
L. If g1 ∈ G and g2 ∈ G and h is a normal form of S-Poly(g1, g2, T ) w.r.t.
PolyRedRel(G,T ), then h = 0nL.

(29) Let n be a natural number, T be a connected admissible term order of n,
L be an Abelian add-associative right complementable right zeroed com-



construction of gröbner bases. . . . 307

mutative associative well unital distributive field-like non degenerated non
empty double loop structure, and G be a subset of Polynom-Ring(n,L).
Suppose that for all polynomials g1, g2, h of n, L such that g1 ∈ G and
g2 ∈ G and h is a normal form of S-Poly(g1, g2, T ) w.r.t. PolyRedRel(G, T )
holds h = 0nL. Let g1, g2 be polynomials of n, L. If g1 ∈ G and g2 ∈ G,

then PolyRedRel(G,T ) reduces S-Poly(g1, g2, T ) to 0nL.

(30) Let n be a natural number, T be an admissible connected term order of
n, L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, and G be a subset of Polynom-Ring(n,L).
Suppose 0nL /∈ G. Suppose that for all polynomials g1, g2 of n, L such
that g1 ∈ G and g2 ∈ G holds PolyRedRel(G, T ) reduces S-Poly(g1, g2, T )
to 0nL. Then G is a Groebner basis wrt T .

Let n be an ordinal number, let T be a connected term order of n, let L be
an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let P be
a subset of Polynom-Ring(n,L). The functor S-Poly(P, T ) yielding a subset of
Polynom-Ring(n,L) is defined by:

(Def. 5) S-Poly(P, T ) = {S-Poly(p1, p2, T ); p1 ranges over polynomials of n, L, p2

ranges over polynomials of n, L: p1 ∈ P ∧ p2 ∈ P}.
Let n be an ordinal number, let T be a connected term order of n, let L be

an add-associative right complementable right zeroed commutative associative
well unital distributive field-like non trivial double loop structure, and let P be
a finite subset of Polynom-Ring(n,L). One can check that S-Poly(P, T ) is finite.

One can prove the following proposition

(31) Let n be a natural number, T be an admissible connected term order of
n, L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, and G be a subset of Polynom-Ring(n,L).
Suppose 0nL /∈ G and for every polynomial g of n, L such that g ∈ G

holds g is a monomial of n, L. Then G is a Groebner basis wrt T .

3. Standard Representations

The following three propositions are true:

(32) Let L be a non empty multiplicative loop structure, P be a non empty
subset of L, A be a left linear combination of P , and i be a natural number.
Then A¹i is a left linear combination of P .

(33) Let L be a non empty multiplicative loop structure, P be a non empty
subset of L, A be a left linear combination of P , and i be a natural number.
Then Aºi is a left linear combination of P .
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(34) Let L be a non empty multiplicative loop structure, P , Q be non empty
subsets of the carrier of L, and A be a left linear combination of P . If
P ⊆ Q, then A is a left linear combination of Q.

Let n be an ordinal number, let L be a right zeroed add-associative right
complementable unital distributive non trivial non empty double loop structure,
let P be a non empty subset of Polynom-Ring(n,L), and let A, B be left linear
combinations of P . Then A a B is a left linear combination of P .

Let n be an ordinal number, let L be a right zeroed add-associative right com-
plementable unital distributive non trivial non empty double loop structure, let
f be a polynomial of n, L, let P be a non empty subset of Polynom-Ring(n,L),
and let A be a left linear combination of P . We say that A is a monomial
representation of f if and only if the conditions (Def. 6) are satisfied.

(Def. 6)(i)
∑

A = f, and
(ii) for every natural number i such that i ∈ dom A there exists a monomial

m of n, L and there exists a polynomial p of n, L such that p ∈ P and
Ai = m ∗ p.

Next we state two propositions:

(35) Let n be an ordinal number, L be a right zeroed add-associative ri-
ght complementable unital distributive non trivial non empty double
loop structure, f be a polynomial of n, L, P be a non empty subset of
Polynom-Ring(n, L), and A be a left linear combination of P . Suppose A is
a monomial representation of f . Then Support f ⊆ ⋃{Support(m ∗ p);m
ranges over monomials of n, L, p ranges over polynomials of n, L:∨

i : natural number (i ∈ dom A ∧ Ai = m ∗ p)}.
(36) Let n be an ordinal number, L be a right zeroed add-associative ri-

ght complementable unital distributive non trivial non empty double loop
structure, f , g be polynomials of n, L, P be a non empty subset of
Polynom-Ring(n, L), and A, B be left linear combinations of P . Suppose
A is a monomial representation of f and B is a monomial representation
of g. Then A a B is a monomial representation of f + g.

Let n be an ordinal number, let T be a connected term order of n, let L

be a right zeroed add-associative right complementable unital distributive non
trivial non empty double loop structure, let f be a polynomial of n, L, let P be
a non empty subset of Polynom-Ring(n,L), let A be a left linear combination
of P , and let b be a bag of n. We say that A is a standard representation of f ,
P , b, T if and only if the conditions (Def. 7) are satisfied.

(Def. 7)(i)
∑

A = f, and
(ii) for every natural number i such that i ∈ dom A there exists a non-zero

monomial m of n, L and there exists a non-zero polynomial p of n, L such
that p ∈ P and Ai = m ∗ p and HT(m ∗ p, T ) ¬T b.
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Let n be an ordinal number, let T be a connected term order of n, let L be a
right zeroed add-associative right complementable unital distributive non trivial
non empty double loop structure, let f be a polynomial of n, L, let P be a non
empty subset of Polynom-Ring(n,L), and let A be a left linear combination of
P . We say that A is a standard representation of f , P , T if and only if:

(Def. 8) A is a standard representation of f , P , HT(f, T ), T .

Let n be an ordinal number, let T be a connected term order of n, let L

be a right zeroed add-associative right complementable unital distributive non
trivial non empty double loop structure, let f be a polynomial of n, L, let P

be a non empty subset of Polynom-Ring(n, L), and let b be a bag of n. We say
that f has a standard representation of P , b, T if and only if:

(Def. 9) There exists a left linear combination of P which is a standard represen-
tation of f , P , b, T .

Let n be an ordinal number, let T be a connected term order of n, let L

be a right zeroed add-associative right complementable unital distributive non
trivial non empty double loop structure, let f be a polynomial of n, L, and let
P be a non empty subset of Polynom-Ring(n,L). We say that f has a standard
representation of P , T if and only if:

(Def. 10) There exists a left linear combination of P which is a standard represen-
tation of f , P , T .

One can prove the following propositions:

(37) Let n be an ordinal number, T be a connected term order of n, L be a
right zeroed add-associative right complementable unital distributive non
trivial non empty double loop structure, f be a polynomial of n, L, P be
a non empty subset of Polynom-Ring(n,L), A be a left linear combination
of P , and b be a bag of n. Suppose A is a standard representation of f ,
P , b, T . Then A is a monomial representation of f .

(38) Let n be an ordinal number, T be a connected term order of n, L be a
right zeroed add-associative right complementable unital distributive non
trivial non empty double loop structure, f , g be polynomials of n, L, P be a
non empty subset of Polynom-Ring(n,L), A, B be left linear combinations
of P , and b be a bag of n. Suppose A is a standard representation of f ,
P , b, T and B is a standard representation of g, P , b, T . Then A a B is a
standard representation of f + g, P , b, T .

(39) Let n be an ordinal number, T be a connected term order of n, L be
a right zeroed add-associative right complementable unital distributive
non trivial non empty double loop structure, f , g be polynomials of n,
L, P be a non empty subset of Polynom-Ring(n,L), A, B be left linear
combinations of P , b be a bag of n, and i be a natural number. Suppose A

is a standard representation of f , P , b, T and B = A¹i and g =
∑

(Aºi).
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Then B is a standard representation of f − g, P , b, T .

(40) Let n be an ordinal number, T be a connected term order of n, L be an
Abelian right zeroed add-associative right complementable unital distri-
butive non trivial non empty double loop structure, f , g be polynomials of
n, L, P be a non empty subset of Polynom-Ring(n,L), A, B be left linear
combinations of P , b be a bag of n, and i be a natural number. Suppose
A is a standard representation of f , P , b, T and B = Aºi and g =

∑
(A¹i)

and i ¬ len A. Then B is a standard representation of f − g, P , b, T .

(41) Let n be an ordinal number, T be a connected term order of n, L be a
right zeroed add-associative right complementable unital distributive non
trivial non empty double loop structure, f be a non-zero polynomial of n,
L, P be a non empty subset of Polynom-Ring(n,L), and A be a left linear
combination of P . Suppose A is a monomial representation of f . Then
there exists a natural number i and there exists a non-zero monomial
m of n, L and there exists a non-zero polynomial p of n, L such that
i ∈ dom A and p ∈ P and A(i) = m ∗ p and HT(f, T ) ¬T HT(m ∗ p, T ).

(42) Let n be an ordinal number, T be a connected term order of n, L be a
right zeroed add-associative right complementable unital distributive non
trivial non empty double loop structure, f be a non-zero polynomial of n,
L, P be a non empty subset of Polynom-Ring(n,L), and A be a left linear
combination of P . Suppose A is a standard representation of f , P , T . Then
there exists a natural number i and there exists a non-zero monomial m

of n, L and there exists a non-zero polynomial p of n, L such that p ∈ P

and i ∈ dom A and Ai = m ∗ p and HT(f, T ) = HT(m ∗ p, T ).

(43) Let n be an ordinal number, T be an admissible connected term order of
n, L be an add-associative right complementable right zeroed commutative
associative well unital distributive Abelian field-like non degenerated non
empty double loop structure, f be a polynomial of n, L, and P be a non
empty subset of Polynom-Ring(n,L) such that PolyRedRel(P, T ) reduces
f to 0nL. Then f has a standard representation of P , T .

(44) Let n be an ordinal number, T be an admissible connected term order
of n, L be an add-associative right complementable right zeroed commu-
tative associative well unital distributive field-like non trivial double loop
structure, f be a non-zero polynomial of n, L, and P be a non empty
subset of Polynom-Ring(n, L). If f has a standard representation of P , T ,
then f is top reducible wrt P , T .

(45) Let n be a natural number, T be a connected admissible term order
of n, L be an add-associative right complementable right zeroed commu-
tative associative well unital distributive Abelian field-like non degenera-
ted non empty double loop structure, and G be a non empty subset of
Polynom-Ring(n, L). Then G is a Groebner basis wrt T if and only if for
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every non-zero polynomial f of n, L such that f ∈ G–ideal holds f has a
standard representation of G, T .
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On the Subcontinua of a Real Line1

Adam Grabowski
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Summary. In [10] we showed that the only proper subcontinua of the
simple closed curve are arcs and single points. In this article we prove that the
only proper subcontinua of the real line are closed intervals. We introduce some
auxiliary notions such as ]a, b[Q, ]a, b[IQ – intervals consisting of rational and
irrational numbers respectively. We show also some basic topological properties
of intervals.

MML Identifier: BORSUK 5.

The notation and terminology used in this paper are introduced in the following
papers: [24], [27], [22], [23], [18], [25], [28], [3], [4], [26], [19], [6], [21], [13], [16],
[17], [1], [8], [5], [9], [14], [7], [20], [15], [12], [11], and [2].

1. Preliminaries

The following three propositions are true:

(1) For all sets A, B, C, D holds (A ∪B ∪ C) ∪D = A ∪ (B ∪ C ∪D).
(2) For all sets A, B, a such that A ⊆ B and B ⊆ A∪{a} holds A∪{a} = B

or A = B.

(3) For all sets x1, x2, x3, x4, x5, x6 holds {x1, x2, x3, x4, x5, x6} =
{x1, x3, x6} ∪ {x2, x4, x5}.

In the sequel x1, x2, x3, x4, x5, x6, x7 are sets.
Let x1, x2, x3, x4, x5, x6 be sets. We say that x1, x2, x3, x4, x5, x6 are

mutually different if and only if the conditions (Def. 1) are satisfied.

(Def. 1) x1 6= x2 and x1 6= x3 and x1 6= x4 and x1 6= x5 and x1 6= x6 and x2 6= x3

and x2 6= x4 and x2 6= x5 and x2 6= x6 and x3 6= x4 and x3 6= x5 and
x3 6= x6 and x4 6= x5 and x4 6= x6 and x5 6= x6.

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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Let x1, x2, x3, x4, x5, x6, x7 be sets. We say that x1, x2, x3, x4, x5, x6, x7

are mutually different if and only if the conditions (Def. 2) are satisfied.

(Def. 2) x1 6= x2 and x1 6= x3 and x1 6= x4 and x1 6= x5 and x1 6= x6 and x1 6= x7

and x2 6= x3 and x2 6= x4 and x2 6= x5 and x2 6= x6 and x2 6= x7 and
x3 6= x4 and x3 6= x5 and x3 6= x6 and x3 6= x7 and x4 6= x5 and x4 6= x6

and x4 6= x7 and x5 6= x6 and x5 6= x7 and x6 6= x7.

One can prove the following propositions:

(4) For all sets x1, x2, x3, x4, x5, x6 such that x1, x2, x3, x4, x5, x6 are
mutually different holds card{x1, x2, x3, x4, x5, x6} = 6.

(5) For all sets x1, x2, x3, x4, x5, x6, x7 such that x1, x2, x3, x4, x5, x6, x7

are mutually different holds card{x1, x2, x3, x4, x5, x6, x7} = 7.

(6) If {x1, x2, x3} misses {x4, x5, x6}, then x1 6= x4 and x1 6= x5 and x1 6= x6

and x2 6= x4 and x2 6= x5 and x2 6= x6 and x3 6= x4 and x3 6= x5 and
x3 6= x6.

(7) Suppose x1, x2, x3 are mutually different and x4, x5, x6 are mutually
different and {x1, x2, x3} misses {x4, x5, x6}. Then x1, x2, x3, x4, x5, x6

are mutually different.

(8) Suppose x1, x2, x3, x4, x5, x6 are mutually different and
{x1, x2, x3, x4, x5, x6} misses {x7}. Then x1, x2, x3, x4, x5, x6, x7 are
mutually different.

(9) If x1, x2, x3, x4, x5, x6, x7 are mutually different, then x7, x1, x2, x3,
x4, x5, x6 are mutually different.

(10) If x1, x2, x3, x4, x5, x6, x7 are mutually different, then x1, x2, x5, x3,
x6, x7, x4 are mutually different.

(11) Let T be a non empty topological space and a, b be points of T . Given a
map f from I into T such that f is continuous and f(0) = a and f(1) = b.

Then there exists a map g from I into T such that g is continuous and
g(0) = b and g(1) = a.

Let us observe that R1 is arcwise connected.
Let us note that there exists a topological space which is connected and non

empty.

2. Intervals

The following two propositions are true:

(12) Every subset of R is a subset of R1.

(13) ΩR1 = R.

Let a be a real number. We introduce ]−∞, a] as a synonym of ]−∞, a]. We
introduce ]−∞, a[ as a synonym of ]−∞, a[. We introduce [a,+∞[ as a synonym
of [a, +∞[. We introduce ]a,+∞[ as a synonym of ]a,+∞[.
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Next we state a number of propositions:

(14) For all real numbers a, b holds a ∈]b, +∞[ iff a > b.

(15) For all real numbers a, b holds a ∈ [b, +∞[ iff a ­ b.

(16) For all real numbers a, b holds a ∈]−∞, b] iff a ¬ b.

(17) For all real numbers a, b holds a ∈]−∞, b[ iff a < b.

(18) For every real number a holds R \ {a} =]−∞, a[∪]a,+∞[.
(19) For all real numbers a, b, c, d such that a < b and b ¬ c holds [a, b]

misses ]c, d].
(20) For all real numbers a, b, c, d such that a < b and b ¬ c holds [a, b[

misses [c, d].
(21) Let A, B be subsets of the carrier of R1 and a, b, c, d be real numbers.

Suppose a < b and b ¬ c and c < d and A = [a, b[ and B = ]c, d]. Then A

and B are separated.

(22) For every real number a holds R\]−∞, a[= [a, +∞[.
(23) For every real number a holds R\]−∞, a] =]a, +∞[.
(24) For every real number a holds R\]a, +∞[=]−∞, a].
(25) For every real number a holds R \ [a,+∞[=]−∞, a[.
(26) For every real number a holds ]−∞, a] misses ]a,+∞[.
(27) For every real number a holds ]−∞, a[ misses [a,+∞[.
(28) For all real numbers a, b, c such that a ¬ c and c ¬ b holds [a, b] ∪

[c,+∞[= [a,+∞[.
(29) For all real numbers a, b, c such that a ¬ c and c ¬ b holds ] −∞, c] ∪

[a, b] =]−∞, b].
(30) For every 1-sorted structure T and for every subset A of T holds {A} is

a family of subsets of T .

(31) For every 1-sorted structure T and for all subsets A, B of T holds {A,B}
is a family of subsets of T .

(32) For every 1-sorted structure T and for all subsets A, B, C of T holds
{A,B, C} is a family of subsets of T .

Let us observe that every element of Q is real.
Let us observe that every element of the carrier of the metric space of real

numbers is real.
Next we state four propositions:

(33) Let A be a subset of the carrier of R1 and p be a point of the metric
space of real numbers. Then p ∈ A if and only if for every real number r

such that r > 0 holds Ball(p, r) meets A.

(34) For all elements p, q of the carrier of the metric space of real numbers
such that q ­ p holds ρ(p, q) = q − p.
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(35) For every subset A of the carrier of R1 such that A = Q holds A = the
carrier of R1.

(36) For every subset A of the carrier of R1 and for all real numbers a, b such
that A = ]a, b[ and a 6= b holds A = [a, b].

3. Rational and Irrational Numbers

Let us mention that e is irrational.
The subset IQ of R is defined by:

(Def. 3) IQ = R \Q.

Let a, b be real numbers. The functor ]a, b[Q yielding a subset of R is defined
by:

(Def. 4) ]a, b[Q = Q ∩ ]a, b[.
The functor ]a, b[IQ yielding a subset of R is defined as follows:

(Def. 5) ]a, b[IQ = IQ ∩ ]a, b[.
One can prove the following proposition

(37) For every real number x holds x is irrational iff x ∈ IQ.

Let us observe that there exists a real number which is irrational.
Let us note that IQ is non empty.
Next we state several propositions:

(38) For every rational number a and for every irrational real number b holds
a + b is irrational.

(39) For every irrational real number a holds −a is irrational.

(40) For every rational number a and for every irrational real number b holds
a− b is irrational.

(41) For every rational number a and for every irrational real number b holds
b− a is irrational.

(42) For every rational number a and for every irrational real number b such
that a 6= 0 holds a · b is irrational.

(43) For every rational number a and for every irrational real number b such
that a 6= 0 holds b

a is irrational.

One can check that every real number which is irrational is also non zero.
The following propositions are true:

(44) For every rational number a and for every irrational real number b such
that a 6= 0 holds a

b is irrational.

(45) For every irrational real number r holds frac r is irrational.

Let r be an irrational real number. Note that frac r is irrational.
Let a be an irrational real number. Note that −a is irrational.
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Let a be a rational number and let b be an irrational real number. One can
verify the following observations:

∗ a + b is irrational,

∗ b + a is irrational,

∗ a− b is irrational, and

∗ b− a is irrational.

Let us observe that there exists a rational number which is non zero.
Let a be a non zero rational number and let b be an irrational real number.

One can check the following observations:

∗ a · b is irrational,

∗ b · a is irrational,

∗ a
b is irrational, and

∗ b
a is irrational.

The following propositions are true:

(46) For every irrational real number r holds 0 < frac r.

(47) For all real numbers a, b such that a < b there exist rational numbers
p1, p2 such that a < p1 and p1 < p2 and p2 < b.

(48) For all real numbers s1, s3, s4, l such that s1 ¬ s3 and s1 < s4 and 0 < l

and l < 1 holds s1 < (1− l) · s3 + l · s4.

(49) For all real numbers s1, s3, s4, l such that s3 < s1 and s4 ¬ s1 and 0 < l

and l < 1 holds (1− l) · s3 + l · s4 < s1.

(50) For all real numbers a, b such that a < b there exists an irrational real
number p such that a < p and p < b.

(51) For every subset A of the carrier of R1 such that A = IQ holds A = the
carrier of R1.

(52) For all real numbers a, b, c such that a < b holds c ∈]a, b[Q iff c is rational
and a < c and c < b.

(53) For all real numbers a, b, c such that a < b holds c ∈]a, b[IQ iff c is
irrational and a < c and c < b.

(54) For every subset A of the carrier of R1 and for all real numbers a, b such
that a < b and A =]a, b[Q holds A = [a, b].

(55) For every subset A of the carrier of R1 and for all real numbers a, b such
that a < b and A =]a, b[IQ holds A = [a, b].

(56) For every connected topological space T and for every closed open subset
A of T holds A = ∅ or A = ΩT .

(57) For every subset A of R1 such that A is closed and open holds A = ∅ or
A = R.
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4. Topological Properties of Intervals

We now state a number of propositions:

(58) For every subset A of the carrier of R1 and for all real numbers a, b such
that A = [a, b[ and a 6= b holds A = [a, b].

(59) For every subset A of the carrier of R1 and for all real numbers a, b such
that A = ]a, b] and a 6= b holds A = [a, b].

(60) Let A be a subset of the carrier of R1 and a, b, c be real numbers. If
A = [a, b[∪]b, c] and a < b and b < c, then A = [a, c].

(61) For every subset A of the carrier of R1 and for every real number a such
that A = {a} holds A = {a}.

(62) For every subset A of R and for every subset B of R1 such that A = B

holds A is open iff B is open.

(63) For every subset A of R1 and for every real number a such that A =
]a,+∞[ holds A is open.

(64) For every subset A of R1 and for every real number a such that A =
]−∞, a[ holds A is open.

(65) For every subset A of R1 and for every real number a such that A =
]−∞, a] holds A is closed.

(66) For every subset A of R1 and for every real number a such that A =
[a,+∞[ holds A is closed.

(67) For every real number a holds [a,+∞[= {a}∪]a,+∞[.
(68) For every real number a holds ]−∞, a] = {a}∪]−∞, a[.
(69) For every real number a holds ]a,+∞[⊆ [a,+∞[.
(70) For every real number a holds ]−∞, a[⊆]−∞, a].

Let a be a real number. One can check the following observations:

∗ ]a,+∞[ is non empty,

∗ ]−∞, a] is non empty,

∗ ]−∞, a[ is non empty, and

∗ [a,+∞[ is non empty.

The following propositions are true:

(71) For every real number a holds ]a,+∞[6= R.

(72) For every real number a holds [a,+∞[6= R.

(73) For every real number a holds ]−∞, a] 6= R.

(74) For every real number a holds ]−∞, a[6= R.

(75) For every subset A of the carrier of R1 and for every real number a such
that A =]a,+∞[ holds A = [a,+∞[.

(76) For every real number a holds ]a,+∞[ = [a,+∞[.
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(77) For every subset A of the carrier of R1 and for every real number a such
that A =]−∞, a[ holds A =]−∞, a].

(78) For every real number a holds ]−∞, a[ =]−∞, a].
(79) Let A, B be subsets of the carrier of R1 and b be a real number. If

A =]−∞, b[ and B =]b, +∞[, then A and B are separated.

(80) For every subset A of the carrier of R1 and for all real numbers a, b such
that a < b and A = [a, b[∪]b, +∞[ holds A = [a,+∞[.

(81) For every subset A of the carrier of R1 and for all real numbers a, b such
that a < b and A = ]a, b[∪]b, +∞[ holds A = [a,+∞[.

(82) Let A be a subset of the carrier of R1 and a, b, c be real numbers. If
a < b and b < c and A =]a, b[Q ∪ ]b, c[∪]c, +∞[, then A = [a,+∞[.

(83) For every subset A of the carrier of R1 holds −A = R \A.

(84) For all real numbers a, b such that a < b holds ]a, b[IQ misses ]a, b[Q.

(85) For all real numbers a, b such that a < b holds R\]a, b[Q =] −
∞, a]∪]a, b[IQ ∪ [b, +∞[.

(86) For all real numbers a, b, c such that a ¬ b and b < c holds a /∈
]b, c[∪]c, +∞[.

(87) For all real numbers a, b such that a < b holds b /∈ ]a, b[∪]b, +∞[.
(88) For all real numbers a, b such that a < b holds [a,+∞[\(]a, b[∪]b,+∞[) =
{a} ∪ {b}.

(89) For every subset A of the carrier of R1 such that A =]2, 3[Q ∪
]3, 4[∪]4, +∞[ holds −A =]−∞, 2]∪]2, 3[IQ ∪ {3} ∪ {4}.

(90) For every subset A of the carrier of R1 and for every real number a such
that A = {a} holds −A =]−∞, a[∪]a,+∞[.

(91) For all real numbers a, b such that a < b holds ]a,+∞[∩]−∞, b] = ]a, b].
(92) (] − ∞, 1[∪]1,+∞[) ∩ (] − ∞, 2]∪]2, 3[IQ ∪ {3} ∪ {4}) =] −
∞, 1[∪]1, 2]∪]2, 3[IQ ∪ {3} ∪ {4}.

(93) For all real numbers a, b such that a ¬ b holds ] − ∞, b[\{a} =] −
∞, a[∪]a, b[.

(94) For all real numbers a, b such that a ¬ b holds ]a, +∞[\{b} =
]a, b[∪]b, +∞[.

(95) Let A be a subset of the carrier of R1 and a, b be real numbers. If a ¬ b

and A = {a} ∪ [b, +∞[, then −A =]−∞, a[∪]a, b[.
(96) For every subset A of the carrier of R1 and for all real numbers a, b such

that a < b and A =]−∞, a[∪]a, b[ holds A =]−∞, b].
(97) For every subset A of the carrier of R1 and for all real numbers a, b such

that a < b and A =]−∞, a[∪]a, b] holds A =]−∞, b].
(98) For every subset A of the carrier of R1 and for every real number a such

that A =]−∞, a] holds −A =]a,+∞[.
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(99) For every subset A of the carrier of R1 and for every real number a such
that A = [a,+∞[ holds −A =]−∞, a[.

(100) Let A be a subset of the carrier of R1 and a, b, c be real numbers. If
a < b and b < c and A =]−∞, a[∪]a, b]∪]b, c[IQ ∪ {c}, then A =]−∞, c].

(101) Let A be a subset of the carrier of R1 and a, b, c, d be real numbers.
If a < b and b < c and A =] − ∞, a[∪]a, b]∪]b, c[IQ ∪ {c} ∪ {d}, then
A =]−∞, c] ∪ {d}.

(102) Let A be a subset of the carrier of R1 and a, b be real numbers. If a ¬ b

and A =]−∞, a] ∪ {b}, then −A = ]a, b[∪]b, +∞[.
(103) For all real numbers a, b holds [a,+∞[∪{b} 6= R.

(104) For all real numbers a, b holds ]−∞, a] ∪ {b} 6= R.

(105) For every topological structure T1 and for all subsets A, B of the carrier
of T1 such that A 6= B holds −A 6= −B.

(106) For every subset A of the carrier of R1 such that R = −A holds A = ∅.

5. Subcontinua of a Real Line

Let us mention that I is arcwise connected.
We now state several propositions:

(107) Let X be a compact subset of R1 and X ′ be a subset of R. If X ′ = X,

then X ′ is upper bounded and lower bounded.

(108) Let X be a compact subset of R1, X ′ be a subset of R, and x be a real
number. If x ∈ X ′ and X ′ = X, then inf X ′ ¬ x and x ¬ sup X ′.

(109) Let C be a non empty compact connected subset of R1 and C ′ be a
subset of R. If C = C ′ and [inf C ′, sup C ′] ⊆ C ′, then [inf C ′, sup C ′] = C ′.

(110) Let A be a connected subset of R1 and a, b, c be real numbers. If a ¬ b

and b ¬ c and a ∈ A and c ∈ A, then b ∈ A.

(111) For every connected subset A of R1 and for all real numbers a, b such
that a ∈ A and b ∈ A holds [a, b] ⊆ A.

(112) Every non empty compact connected subset of R1 is a non empty closed-
interval subset of R.

(113) For every non empty compact connected subset A of R1 there exist real
numbers a, b such that a ¬ b and A = [a, b].

6. Sets with Proper Subsets Only

Let T1 be a topological structure and let F be a family of subsets of T1. We
say that F has proper subsets if and only if:

(Def. 6) The carrier of T1 /∈ F.



on the subcontinua of a real line 321

One can prove the following proposition

(114) Let T1 be a topological structure and F , G be families of subsets of T1

such that F has proper subsets and G ⊆ F. Then G has proper subsets.

Let T1 be a non empty topological structure. Observe that there exists a
family of subsets of T1 which has proper subsets.

We now state the proposition

(115) Let T1 be a non empty topological structure and A, B be families of
subsets of T1 with proper subsets. Then A ∪B has proper subsets.

Let T be a topological structure and let F be a family of subsets of T . We
say that F is open if and only if:

(Def. 7) For every subset P of T such that P ∈ F holds P is open.

We say that F is closed if and only if:

(Def. 8) For every subset P of T such that P ∈ F holds P is closed.

Let T be a topological space. Note that there exists a family of subsets of T

which is open, closed, and non empty.
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Summary. In this article we formalize the Kuratowski closure-complement
result: there is at most 14 distinct sets that one can produce from a given subset
A of a topological space T by applying closure and complement operators and
that all 14 can be obtained from a suitable subset of R, namely KuratExSet
= {1} ∪Q(2, 3) ∪ (3, 4) ∪ (4,∞).

The second part of the article deals with the maximal number of distinct
sets which may be obtained from a given subset A of T by applying closure and
interior operators. The subset KuratExSet of R is also enough to show that 7
can be achieved.

MML Identifier: KURATO 1.

The papers [15], [16], [10], [13], [11], [17], [14], [1], [3], [12], [7], [6], [8], [2], [4],
[9], and [5] provide the notation and terminology for this paper.

1. Fourteen Kuratowski Sets

In this paper T is a non empty topological space and A is a subset of T .
The following proposition is true

(1) −−−A = −A.

Let us consider T , A. The functor Kurat14Part(A) is defined as follows:

(Def. 1) Kurat14Part(A) = {A, A,−A,−A,−−A,−−A,−−−A}.
Let us consider T , A. One can check that Kurat14Part(A) is finite.
Let us consider T , A. The functor Kurat14Set(A) yields a family of subsets

of T and is defined by:
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(Def. 2) Kurat14Set(A) = {A, A,−A,−A,−−A,−−A,−−−A}∪
{−A,−A,−−A,−−A,−−−A,−−−A,−−−−A}.

We now state three propositions:

(2) Kurat14Set(A) = Kurat14Part(A) ∪Kurat14Part(−A).
(3) A ∈ Kurat14Set(A) and A ∈ Kurat14Set(A) and −A ∈ Kurat14Set(A)

and −A ∈ Kurat14Set(A) and −−A ∈ Kurat14Set(A) and −−A ∈
Kurat14Set(A) and −−−A ∈ Kurat14Set(A).

(4) −A ∈ Kurat14Set(A) and −A ∈ Kurat14Set(A) and −−A ∈
Kurat14Set(A) and −−A ∈ Kurat14Set(A) and −−−A ∈ Kurat14Set(A)

and −−−A ∈ Kurat14Set(A) and −−−−A ∈ Kurat14Set(A).
Let us consider T , A. The functor Kurat14ClosedPart(A) yielding a family

of subsets of T is defined by:

(Def. 3) Kurat14ClosedPart(A) = {A,−A,−−A,−A,−−A,−−−A}.
The functor Kurat14OpenPart(A) yields a family of subsets of T and is defined
as follows:

(Def. 4) Kurat14OpenPart(A) = {−A,−−A,−−−A,−−A,−−−A,−−−−A}.
We now state the proposition

(5) Kurat14Set(A) = {A,−A}∪Kurat14ClosedPart(A)∪Kurat14OpenPart(A).
Let us consider T , A. One can verify that Kurat14Set(A) is finite.
Next we state two propositions:

(6) For every subset Q of the carrier of T such that Q ∈ Kurat14Set(A)
holds −Q ∈ Kurat14Set(A) and Q ∈ Kurat14Set(A).

(7) card Kurat14Set(A) ¬ 14.

2. Seven Kuratowski Sets

Let us consider T , A. The functor Kurat7Set(A) yielding a family of subsets
of T is defined as follows:

(Def. 5) Kurat7Set(A) = {A, Int A, A, Int A, Int A, Int A, Int Int A}.
We now state two propositions:

(8) A ∈ Kurat7Set(A) and Int A ∈ Kurat7Set(A) and A ∈ Kurat7Set(A)
and Int A ∈ Kurat7Set(A) and Int A ∈ Kurat7Set(A) and Int A ∈
Kurat7Set(A) and Int Int A ∈ Kurat7Set(A).

(9) Kurat7Set(A) = {A} ∪ {Int A, Int A, Int Int A} ∪ {A, Int A, Int A}.
Let us consider T , A. Note that Kurat7Set(A) is finite.
We now state two propositions:
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(10) For every subset Q of the carrier of T such that Q ∈ Kurat7Set(A) holds
Int Q ∈ Kurat7Set(A) and Q ∈ Kurat7Set(A).

(11) card Kurat7Set(A) ¬ 7.

3. The Set Generating Exactly Fourteen Kuratowski Sets

The subset KuratExSet of R1 is defined as follows:

(Def. 6) KuratExSet = {1}∪]2, 3[Q ∪ ]3, 4[∪]4, +∞[.

Next we state a number of propositions:

(12) KuratExSet = {1} ∪ [2, +∞[.

(13) −KuratExSet =]−∞, 1[∪]1, 2[.

(14) −KuratExSet =]−∞, 2].

(15) −−KuratExSet =]2,+∞[.

(16) −−KuratExSet = [2,+∞[.

(17) −−−KuratExSet =]−∞, 2[.

(18) −KuratExSet =]−∞, 1[∪]1, 2]∪]2, 3[IQ ∪ {3} ∪ {4}.
(19) −KuratExSet =]−∞, 3] ∪ {4}.
(20) −−KuratExSet = ]3, 4[∪]4, +∞[.

(21) −−KuratExSet = [3,+∞[.

(22) −−−KuratExSet =]−∞, 3[.

(23) −−−KuratExSet =]−∞, 3].

(24) −−−−KuratExSet =]3, +∞[.

4. The Set Generating Exactly Seven Kuratowski Sets

Next we state several propositions:

(25) Int KuratExSet = ]3, 4[∪]4,+∞[.

(26) Int KuratExSet = [3, +∞[.

(27) Int Int KuratExSet =]3, +∞[.

(28) Int KuratExSet =]2, +∞[.

(29) Int KuratExSet = [2, +∞[.
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5. The Difference Between Chosen Kuratowski Sets

One can prove the following propositions:

(30) Int KuratExSet 6= Int KuratExSet.

(31) Int KuratExSet 6= KuratExSet.

(32) Int KuratExSet 6= Int Int KuratExSet.

(33) Int KuratExSet 6= Int KuratExSet.

(34) Int KuratExSet 6= Int KuratExSet .

(35) Int KuratExSet 6= KuratExSet.

(36) Int KuratExSet 6= Int Int KuratExSet.

(37) Int KuratExSet 6= Int KuratExSet.

(38) Int KuratExSet 6= Int KuratExSet .

(39) Int Int KuratExSet 6= KuratExSet.

(40) Int KuratExSet 6= KuratExSet.

(41) Int KuratExSet 6= KuratExSet.

(42) KuratExSet 6= KuratExSet .

(43) KuratExSet 6= Int KuratExSet .

(44) Int KuratExSet 6= Int Int KuratExSet.

(45) Int Int KuratExSet 6= Int KuratExSet .

(46) Int KuratExSet 6= Int KuratExSet .

6. Final Proofs For Seven Sets

The following propositions are true:

(47) Int Int KuratExSet 6= Int KuratExSet.

(48) Int KuratExSet, Int KuratExSet, Int Int KuratExSet are mutually diffe-
rent.

(49) KuratExSet, Int KuratExSet, Int KuratExSet are mutually different.

(50) For every set X such that X ∈ {Int KuratExSet, Int KuratExSet,
Int Int KuratExSet} holds X is an open non empty subset of R1.

(51) For every set X such that X ∈ {KuratExSet, Int KuratExSet,

Int KuratExSet} holds X is a closed subset of R1.

(52) For every set X such that X ∈ {Int KuratExSet, Int KuratExSet,
Int Int KuratExSet} holds X 6= R.

(53) For every set X such that X ∈ {KuratExSet, Int KuratExSet,

Int KuratExSet} holds X 6= R.
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(54) {Int KuratExSet, Int KuratExSet, Int Int KuratExSet}misses {KuratExSet,

Int KuratExSet, Int KuratExSet}.
(55) Int KuratExSet, Int KuratExSet, Int Int KuratExSet, KuratExSet,

Int KuratExSet, Int KuratExSet are mutually different.

Let us note that KuratExSet is non closed and non open.
Next we state three propositions:

(56) {Int KuratExSet, Int KuratExSet, Int Int KuratExSet, KuratExSet,

Int KuratExSet, Int KuratExSet} misses {KuratExSet}.
(57) KuratExSet, Int KuratExSet, Int KuratExSet, Int Int KuratExSet,

KuratExSet, Int KuratExSet, Int KuratExSet are mutually different.

(58) card Kurat7Set(KuratExSet) = 7.

7. Final Proofs For Fourteen Sets

One can check that Kurat14ClosedPart(KuratExSet) has proper subsets and
Kurat14OpenPart(KuratExSet) has proper subsets.

One can verify that Kurat14Set(KuratExSet) has proper subsets.
Let us note that Kurat14Set(KuratExSet) has non empty elements.
We now state the proposition

(59) For every set A with non empty elements and for every set B such that
B ⊆ A holds B has non empty elements.

Let us note that Kurat14ClosedPart(KuratExSet) has non empty elements
and Kurat14OpenPart(KuratExSet) has non empty elements.

Let us note that there exists a family of subsets of R1 which has proper
subsets and non empty elements.

We now state the proposition

(60) Let F , G be families of subsets of R1 with proper subsets and non empty
elements. If F is open and G is closed, then F misses G.

Let us mention that Kurat14ClosedPart(KuratExSet) is closed and
Kurat14OpenPart(KuratExSet) is open.

One can prove the following proposition

(61) Kurat14ClosedPart(KuratExSet) misses Kurat14OpenPart(KuratExSet).

Let us consider T , A. Observe that Kurat14ClosedPart(A) is finite and
Kurat14OpenPart(A) is finite.

We now state three propositions:

(62) card Kurat14ClosedPart(KuratExSet) = 6.

(63) card Kurat14OpenPart(KuratExSet) = 6.
(64) {KuratExSet,−KuratExSet} misses Kurat14ClosedPart(KuratExSet).
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Let us observe that KuratExSet is non empty.
The following three propositions are true:

(65) KuratExSet 6= −KuratExSet.

(66) {KuratExSet,−KuratExSet} misses Kurat14OpenPart(KuratExSet).
(67) card Kurat14Set(KuratExSet) = 14.

8. Properties of Kuratowski Sets

Let T be a topological structure and let A be a family of subsets of T . We
say that A is closed for closure operator if and only if:

(Def. 7) For every subset P of the carrier of T such that P ∈ A holds P ∈ A.

We say that A is closed for interior operator if and only if:

(Def. 8) For every subset P of the carrier of T such that P ∈ A holds Int P ∈ A.

Let T be a 1-sorted structure and let A be a family of subsets of T . We say
that A is closed for complement operator if and only if:

(Def. 9) For every subset P of the carrier of T such that P ∈ A holds −P ∈ A.

Let us consider T , A. One can verify the following observations:

∗ Kurat14Set(A) is non empty,

∗ Kurat14Set(A) is closed for closure operator, and

∗ Kurat14Set(A) is closed for complement operator.

Let us consider T , A. One can check the following observations:

∗ Kurat7Set(A) is non empty,

∗ Kurat7Set(A) is closed for interior operator, and

∗ Kurat7Set(A) is closed for closure operator.

Let us consider T . One can check that there exists a family of subsets of
T which is closed for interior operator, closed for closure operator, and non
empty and there exists a family of subsets of T which is closed for complement
operator, closed for closure operator, and non empty.
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Summary. In this article, there are two themes. One of them is the proof
that convex hull of a given subset M consists of all convex combinations of M.

Another is definitions of cone and convex cone and some properties of them.

MML Identifier: CONVEX3.

The terminology and notation used in this paper are introduced in the following
articles: [8], [11], [7], [2], [12], [3], [5], [1], [4], [10], [9], and [6].

1. Equality of Convex Hull and Set of Convex Combinations

Let V be a real linear space. The functor ConvexComb(V ) yielding a set is
defined by:

(Def. 1) For every set L holds L ∈ ConvexComb(V ) iff L is a convex combination
of V .

Let V be a real linear space and let M be a non empty subset of V . The
functor ConvexComb(M) yielding a set is defined as follows:

(Def. 2) For every set L holds L ∈ ConvexComb(M) iff L is a convex combination
of M .

We now state several propositions:

(1) Let V be a real linear space and v be a vector of V . Then there exists a
convex combination L of V such that

∑
L = v and for every non empty

subset A of V such that v ∈ A holds L is a convex combination of A.
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(2) Let V be a real linear space and v1, v2 be vectors of V . Suppose v1 6= v2.

Then there exists a convex combination L of V such that for every non
empty subset A of V if {v1, v2} ⊆ A, then L is a convex combination of
A.

(3) Let V be a real linear space and v1, v2, v3 be vectors of V . Suppose
v1 6= v2 and v1 6= v3 and v2 6= v3. Then there exists a convex combination
L of V such that for every non empty subset A of V if {v1, v2, v3} ⊆ A,

then L is a convex combination of A.

(4) Let V be a real linear space and M be a non empty subset of V . Then
M is convex if and only if {∑L; L ranges over convex combinations of M :
L ∈ ConvexComb(V )} ⊆M.

(5) Let V be a real linear space and M be a non empty subset of V .
Then conv M = {∑L; L ranges over convex combinations of M : L ∈
ConvexComb(V )}.

2. Cone and Convex Cone

Let V be a non empty RLS structure and let M be a subset of V . We say
that M is cone if and only if:

(Def. 3) For every real number r and for every vector v of V such that r > 0 and
v ∈M holds r · v ∈M.

One can prove the following proposition

(6) For every non empty RLS structure V and for every subset M of V such
that M = ∅ holds M is cone.

Let V be a non empty RLS structure. Observe that there exists a subset of
V which is cone.

Let V be a non empty RLS structure. Observe that there exists a subset of
V which is empty and cone.

Let V be a real linear space. Observe that there exists a subset of V which
is non empty and cone.

The following propositions are true:

(7) Let V be a non empty RLS structure and M be a cone subset of V .
Suppose V is real linear space-like. Then M is convex if and only if for all
vectors u, v of V such that u ∈M and v ∈M holds u + v ∈M.

(8) Let V be a real linear space and M be a subset of V . Then M is convex
and cone if and only if for every linear combination L of M such that the
support of L 6= ∅ and for every vector v of V such that v ∈ the support of
L holds L(v) > 0 holds

∑
L ∈M.

(9) For every non empty RLS structure V and for all subsets M , N of V

such that M is cone and N is cone holds M ∩N is cone.



convex hull, set of convex combinations and . . . 333

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[5] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[6] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex com-

binations. Formalized Mathematics, 11(1):53–58, 2003.
[7] Andrzej Trybulec. Introduction to arithmetics. To appear in Formalized Mathematics.
[8] Andrzej Trybulec. Tarski Grothendieck set theory. Formalized Mathematics, 1(1):9–11,

1990.
[9] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics,

1(3):581–588, 1990.
[10] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291–296,

1990.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[12] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received June 16, 2003





FORMALIZED MATHEMATICS

Volume 11, Number 3, 2003
University of Białystok

On the Two Short Axiomatizations of
Ortholattices

Wioletta Truszkowska
University of Białystok

Adam Grabowski1

University of Białystok

Summary. In the paper, two short axiom systems for Boolean algebras are
introduced. In the first section we show that the single axiom (DN1) proposed in
[2] in terms of disjunction and negation characterizes Boolean algebras. To prove
that (DN1) is a single axiom for Robbins algebras (that is, Boolean algebras as
well), we use the Otter theorem prover. The second section contains proof that
the two classical axioms (Meredith1), (Meredith2) proposed by Meredith [3] may
also serve as a basis for Boolean algebras. The results will be used to characterize
ortholattices.

MML Identifier: ROBBINS2.

The terminology and notation used in this paper have been introduced in the
following articles: [4], [5], and [1].

1. Single Axiom for Boolean Algebras

Let L be a non empty complemented lattice structure. We say that L satisfies
(DN1) if and only if:

(Def. 1) For all elements x, y, z, u of the carrier of L holds (((x+y)c + z)c +(x+
(zc + (z + u)c)c)c)c = z.

Let us observe that TrivComplLat satisfies (DN1) and TrivOrtLat satisfies
(DN1).

Let us observe that there exists a non empty complemented lattice structure
which is join-commutative and join-associative and satisfies (DN1).

Next we state a number of propositions:

1This work has been partially supported by CALCULEMUS grant HPRN-CT-2000-00102.
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(1) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z, u, v be elements of the carrier of L. Then ((x + y)c + (((z +
u)c + x)c + (yc + (y + v)c)c)c)c = y.

(2) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z, u be elements of the carrier of L. Then ((x+ y)c +((z +x)c +
(yc + (y + u)c)c)c)c = y.

(3) Let L be a non empty complemented lattice structure satisfying (DN1)
and x be an element of the carrier of L. Then ((x + xc)c + x)c = xc.

(4) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z, u be elements of the carrier of L. Then ((x+ y)c +((z +x)c +
(((y + yc)c + y)c + (y + u)c)c)c)c = y.

(5) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then ((x+y)c+((z+x)c+y)c)c =
y.

(6) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then ((x + y)c + (xc + y)c)c = y.

(7) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (((x+y)c+x)c+(x+y)c)c =
x.

(8) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (x + ((x + y)c + x)c)c =
(x + y)c.

(9) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (((x+y)c+z)c+(x+z)c)c =
z.

(10) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (x+((y+z)c+(y+x)c)c)c =
(y + x)c.

(11) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then ((((x + y)c + z)c + (xc +
y)c)c + y)c = (xc + y)c.

(12) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (x+((y+z)c+(z+x)c)c)c =
(z + x)c.

(13) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z, u be elements of the carrier of L. Then ((x+ y)c +((z +x)c +
(yc + (u + y)c)c)c)c = y.

(14) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (x + y)c = (y + x)c.

(15) Let L be a non empty complemented lattice structure satisfying (DN1)
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and x, y, z be elements of the carrier of L. Then (((x+y)c+(y+z)c)c+z)c =
(y + z)c.

(16) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then ((x+((x+y)c+z)c)c+z)c =
((x + y)c + z)c.

(17) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (((x+y)c+x)c+y)c = (y+y)c.

(18) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (xc + (y + x)c)c = x.

(19) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then ((x + y)c + yc)c = y.

(20) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (x + (y + xc)c)c = xc.

(21) Let L be a non empty complemented lattice structure satisfying (DN1)
and x be an element of the carrier of L. Then (x + x)c = xc.

(22) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (((x + y)c + x)c + y)c = yc.

(23) Let L be a non empty complemented lattice structure satisfying (DN1)
and x be an element of the carrier of L. Then (xc)c = x.

(24) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then ((x + y)c + x)c + y = (yc)c.

(25) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then ((x + y)c)c = y + x.

(26) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then x+((y+z)c +(y+x)c)c =
((y + x)c)c.

(27) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then x + y = y + x.

One can verify that every non empty complemented lattice structure which
satisfies (DN1) is also join-commutative.

Next we state a number of propositions:

(28) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then ((x + y)c + x)c + y = y.

(29) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then ((x + y)c + y)c + x = x.

(30) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then x + ((y + x)c + y)c = x.

(31) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (x+yc)c+(yc+y)c = (x+yc)c.
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(32) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (x+y)c+(y+yc)c = (x+y)c.

(33) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (x+y)c+(yc+y)c = (x+y)c.

(34) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (((x+yc)c)c+y)c = (yc+y)c.

(35) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (x + yc + y)c = (yc + y)c.

(36) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (((x + yc + z)c + y)c +
(yc + y)c)c = y.

(37) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then x+((y+z)c +(y+x)c)c =
y + x.

(38) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then x+(y+((z+y)c +x)c)c =
(z + y)c + x.

(39) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then x+((y+x)c +(y+z)c)c =
y + x.

(40) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then ((x + y)c + ((x + y)c +
(x + z)c)c)c + y = y.

(41) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (((x+yc +z)c +y)c)c = y.

(42) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then x + (y + xc + z)c = x.

(43) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then xc + (y + x + z)c = xc.

(44) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (x + y)c + x = x + yc.

(45) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y be elements of the carrier of L. Then (x + (x + yc)c)c = (x + y)c.

(46) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then ((x+y)c+(x+z))c+y = y.

(47) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (((x + y)c + z)c + (xc +
y)c)c + y = ((xc + y)c)c.

(48) Let L be a non empty complemented lattice structure satisfying (DN1)
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and x, y, z be elements of the carrier of L. Then (((x + y)c + z)c + (xc +
y)c)c + y = xc + y.

(49) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (xc + (((y + x)c)c + (y +
z))c)c + (y + z) = ((y + x)c)c + (y + z).

(50) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (xc +(y+x+(y+z))c)c +
(y + z) = ((y + x)c)c + (y + z).

(51) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (xc +(y+x+(y+z))c)c +
(y + z) = (y + x) + (y + z).

(52) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (xc)c + (y + z) = (y +
x) + (y + z).

(53) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (x+y)+(x+z) = y+(x+z).

(54) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (x+y)+(x+z) = z+(x+y).

(55) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then x+(y + z) = z +(y +x).

(56) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then x+(y + z) = y +(z +x).

(57) Let L be a non empty complemented lattice structure satisfying (DN1)
and x, y, z be elements of the carrier of L. Then (x+ y)+ z = x+(y + z).

Let us observe that every non empty complemented lattice structure which
satisfies (DN1) is also join-associative and every non empty complemented lattice
structure which satisfies (DN1) is also Robbins.

One can prove the following propositions:

(58) Let L be a non empty complemented lattice structure and x, z be ele-
ments of the carrier of L. Suppose L is join-commutative, join-associative,
and Huntington. Then (z + x) ∗ (z + xc) = z.

(59) Let L be a non empty complemented lattice structure such that L is
join-commutative, join-associative, and Robbins. Then L satisfies (DN1).

Let us mention that every non empty complemented lattice structure which
is join-commutative, join-associative, and Robbins satisfies also (DN1).

Let us observe that there exists a pre-ortholattice which is de Morgan and
satisfies (DN1).

One can verify that every pre-ortholattice which is de Morgan satisfies (DN1)
is also Boolean and every well-complemented pre-ortholattice which is Boolean
satisfies also (DN1).
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2. Meredith Two Axioms for Boolean Algebras

Let L be a non empty complemented lattice structure. We say that L satisfies
(Meredith1) if and only if:

(Def. 2) For all elements x, y of the carrier of L holds (xc + y)c + x = x.

We say that L satisfies (Meredith2) if and only if:

(Def. 3) For all elements x, y, z of the carrier of L holds (xc + y)c + (z + y) =
y + (z + x).

Let us note that every non empty complemented lattice structure which
satisfies (Meredith1) and (Meredith2) is also join-commutative, join-associative,
and Huntington and every non empty complemented lattice structure which
is join-commutative, join-associative, and Huntington satisfies also (Meredith1)
and (Meredith2).

Let us note that there exists a pre-ortholattice which is de Morgan and
satisfies (Meredith1), (Meredith2), and (DN1).

Let us observe that every pre-ortholattice which is de Morgan satisfies
(Meredith1) and (Meredith2) is also Boolean and every well-complemented pre-
ortholattice which is Boolean satisfies also (Meredith1) and (Meredith2).
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