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Posterior Probability on Finite Set1

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Summary. In [14] we formalized probability and probability distribution
on a finite sample space. In this article first we propose a formalization of the class
of finite sample spaces whose element’s probability distributions are equivalent
with each other. Next, we formalize the probability measure of the class of sample
spaces we have formalized above. Finally, we formalize the sampling and posterior
probability.

MML identifier: DIST 2, version: 8.0.01 5.3.1162

The notation and terminology used in this paper have been introduced in the
following papers: [11], [1], [14], [17], [3], [5], [20], [10], [6], [7], [4], [19], [22], [25],
[18], [2], [8], [13], [15], [12], [23], [24], [16], [21], and [9].

1. Equivalent Distributed Finite and Distributed Sample Spaces

The following propositions are true:

(1) Let Y be a non empty finite set and s be a finite sequence of elements
of Y . If Y = {1} and s = 〈1〉, then FDprobSEQ s = 〈1〉.

(2) Let S be a non empty finite set, p be a probability distribution fi-
nite sequence on S, and s be a finite sequence of elements of S. If
FDprobSEQ s = p, then distribution(p, S) = the equivalence class of s
and s ∈ distribution(p, S).

(3) Let S be a non empty finite set and x be an element of S. Then
x ∈ rng CFS(S) and there exists a natural number n such that n ∈
dom CFS(S) and x = (CFS(S))(n) and n ∈ Seg S .

1This work is supported by JSPS KAKENHI 21240001.
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Let S be a non empty finite set. One can check that every non empty finite
set is non empty.

Let S be a non empty finite set and let D be an element of the distribution
family of S. We see that the element of D is a finite sequence of elements of S.

One can prove the following proposition

(4) Let S be a non empty finite set, D be an element of the distribution
family of S, and s, t be elements of D. Then s and t are probability
equivalent.

Let S be a non empty finite set and let D be an element of the distribution
family of S. We introduce D is well distributed as a synonym of D has non
empty elements.

We now state the proposition

(5) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then for every set x holds ProbD(x, s) = 0 if and only if s is empty.

Let S be a non empty finite set. Observe that every non empty finite set
which is well distributed

We now state the proposition

(6) Let S be a non empty finite set and D be an element of the distribution
family of S. Then D is not well distributed if and only if D = {εS}.

Let S be a non empty finite set. An equivalent distributed sample spaces
family of S is a well distributed element of the distribution family of S.

Let S be a non empty finite set. One can verify that the uniform distribution
S is well distributed.

One can prove the following proposition

(7) Let S be a non empty finite set and D be an equivalent distributed
sample spaces family of S. Then (GenProbSEQS)(D) is a probability
distribution finite sequence on S.

2. Probability Measure of Equivalent Distributed Finite and
Distributed Sample Spaces

Let S be a non empty finite set and let a be an element of S. The functor
|• : a|N yielding an element of N is defined by:

(Def. 1) |• : a|N = a" CFS(S).

Let S be a non empty finite set and let D be an equivalent distributed sample
spaces family of S. The probability finite sequence of D yields a probability
distribution finite sequence on S and is defined by:

(Def. 2) The probability finite sequence of D = (GenProbSEQS)(D).

Let j1 be a Boolean-valued function. The true event of j1 yielding an event
of dom j1 is defined as follows:
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(Def. 3) The true event of j1 = j1
−1({true}).

The following proposition is true

(8) Let S be a non empty finite set, f be an S-valued function, and j1 be a
function from S into Boolean. Then the true event of j1 · f is an event of
dom f.

Let S be a non empty finite set, let D be an equivalent distributed sample
spaces family of S, let s be an element of D, and let j1 be a function from S into
Boolean. The functor Prob(j1, s) yielding a real number is defined as follows:

(Def. 4) Prob(j1, s) = the true event of j1·s
len s .

The following propositions are true:

(9) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, j1 be a function from S into
Boolean, F be a non empty finite set, and E be an event of F . If F = dom s

and E = the true event of j1 · s, then Prob(j1, s) = P(E).

(10) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, a be an element of S, s be an element of D, and
j1 be a function from S into Boolean. If for every set x holds x = a iff
j1(x) = true, then Prob(j1, s) = ProbD(a, s).

Let S be a set, let s be a finite sequence of elements of S, and let A be a
subset of dom s. The functor extract(s,A) yielding a finite sequence of elements
of S is defined by:

(Def. 5) extract(s,A) = s · CFS(A).

We now state several propositions:

(11) Let S be a set, s be a finite sequence of elements of S, and A be a subset
of dom s. Then len extract(s,A) = A and for every natural number i such
that i ∈ dom extract(s,A) holds (extract(s,A))(i) = s((CFS(A))(i)).

(12) Let S be a non empty finite set, s be a finite sequence of elements of
S, A be a subset of dom s, and f be a function. If f = CFS(A), then
extract(s,A) · f−1 = s�A.

(13) Let S be a non empty finite set, f be an S-valued function, j1 be a
function from S into Boolean, and n be a set. Suppose n ∈ dom f. Then
n ∈ the true event of j1 · f if and only if f(n) ∈ the true event of j1.

(14) Let S be a non empty finite set, f be an S-valued function, and j1 be
a function from S into Boolean. Then the true event of j1 · f = f−1(the
true event of j1).

(15) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, and j1 be a function from
S into Boolean. Then there exists a subset A of dom freqSEQ s such
that A = the true event of j1 · CFS(S) and the true event of j1 · s =
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∑
extract(freqSEQ s,A).

(16) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and s be an element of D. Then freqSEQ s = len s ·
FDprobSEQ s.

(17) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s, t be elements of D, and j1 be a function from S into
Boolean. Then Prob(j1, s) = Prob(j1, t).

Let S be a non empty finite set, let D be an equivalent distributed sample
spaces family of S, and let j1 be a function from S into Boolean. The functor
Prob(j1, D) yielding a real number is defined by:

(Def. 6) For every element s of D holds Prob(j1, D) = Prob(j1, s).

Next we state the proposition

(18) For every non empty finite set S and for every element s of S∗ and for
every function j1 from S into Boolean holds Coim(j1 · s, true) ∈ 2dom s.

Let S be a set and let S1 be a subset of S. The membership decision of S1

yielding a function from S into Boolean is defined as follows:

(Def. 7) The membership decision of S1 = χ(S1),S .

The following propositions are true:

(19) For every non empty finite set S and for every subset B1 of S there exists
a function j1 from S into Boolean such that Coim(j1, true) = B1.

(20) Let S be a non empty finite set, s be an element of S∗, f be a function
from S into Boolean, and F be a σ-field of subsets of dom s. If F = 2dom s,

then Coim(f · s, true) is an event of F .

(21) Let S be a non empty finite set, s be an element of S∗, and f , g be
functions from S into Boolean. Then Coim((f ∨ g) · s, true) = Coim(f ·
s, true) ∪ Coim(g · s, true).

(22) Let S be a non empty finite set, s be an element of S∗, and f , g be
functions from S into Boolean. Then Coim((f ∧ g) · s, true) = Coim(f ·
s, true) ∩ Coim(g · s, true).

(23) Let S be a non empty finite set, s be an element of S∗, and f be a function
from S into Boolean. Then Coim(¬f · s, true) = dom s \Coim(f · s, true).

(24) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, and f , g be functions from S into

Boolean. Then Prob(f ∨ g, s) = (the true event of f ·s)∪(the true event of g·s)
len s .

(25) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, and f , g be functions from S into

Boolean. Then Prob(f ∧ g, s) = (the true event of f ·s)∩(the true event of g·s)
len s .

(26) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, s be an element of D, and f be a function from S into
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Boolean. Then Prob(¬f, s) = 1− Prob(f, s).

(27) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and f , g be functions from S into Boolean. Then
Prob(f ∨ g,D) = (Prob(f,D) + Prob(g,D))− Prob(f ∧ g,D).

(28) Let S be a non empty finite set, D be an equivalent distributed sam-
ple spaces family of S, and f be a function from S into Boolean. Then
Prob(¬f,D) = 1− Prob(f,D).

(29) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and f be a function from S into Boolean. If f = χS,S ,

then Prob(f,D) = 1.

(30) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and f be a function from S into Boolean. Then 0 ≤
Prob(f,D).

(31) Let S be a non empty finite set, A, B be sets, and f , g be functions from
S into Boolean. If A ⊆ S and B ⊆ S and f = χA,S and g = χB,S , then
χA∪B,S = f ∨ g.

(32) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, A, B be sets, and f , g be functions from S into Boolean.
If A ⊆ S and B ⊆ S and A misses B and f = χA,S and g = χB,S , then
Prob(f ∧ g,D) = 0.

Let S be a non empty finite set and let D be an equivalent distributed sample
spaces family of S. A function from BooleanS into R is said to be a probability
on D if:

(Def. 8) For every element j1 of BooleanS holds it(j1) = Prob(j1, D).

Let S be a non empty finite set and let D be an equivalent distributed sample
spaces family of S. The trivial probability of D yields a probability on the trivial
σ-field of S and is defined by the condition (Def. 9).

(Def. 9) Let x be a set. Suppose x ∈ the trivial σ-field of S. Then there exists
a function c1 from S into Boolean such that c1 = χx,S and (the trivial
probability of D)(x) = Prob(c1, D).

3. Sampling and Posterior Probability

Let S be a non empty finite set and let D be an equivalent distributed sample
spaces family of S. An element of S is called a sample of D if:

(Def. 10) There exists an element s of D such that it ∈ rng s.

Let S be a non empty finite set, let D be an equivalent distributed sample
spaces family of S, and let x be a sample of D. The functor Probx yielding a
real number is defined as follows:

(Def. 11) Probx = Prob(the membership decision of {x}, D).
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One can prove the following proposition

(33) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, and x be a sample of D. Then Probx = (the probability
finite sequence of D)(|• : x|N).

A non empty subset of S is said to be a sampling RNG of D if:

(Def. 12) There exists a sample x of D such that x ∈ it.

Let S be a non empty finite set, let D be an equivalent distributed sample
spaces family of S, and let X be a sampling RNG of D. The functor ProbX
yielding a real number is defined as follows:

(Def. 13) ProbX = Prob(the membership decision of X, D).

We now state several propositions:

(34) Let S be a non empty finite set, X be a subset of S, s, t be finite
sequences of elements of S, S2 be a subset of dom s, and x be a subset of
X. If S2 = s−1(X) and t = extract(s, S2), then s−1(x) = t−1(x) .

(35) Let S be a non empty finite set,X be a subset of S, s, t be finite sequences
of elements of S, S2 be a subset of dom s, and x be a set. If S2 = s−1(X)
and t = extract(s, S2) and x ∈ X, then frequency(x, s) = frequency(x, t).

(36) Let S be a non empty finite set, D be an element of the distribution
family of S, and s be a finite sequence of elements of S. If s ∈ D, then
D = the equivalence class of s.

(37) Let S be a non empty finite set, X be a subset of S, and s be a fi-
nite sequence of elements of S. Then s−1(X) = the true event of (the
membership decision of X) · s.

(38) Let S be a non empty finite set, X be a non empty subset of S, D be an
equivalent distributed sample spaces family of S, s1, s2 be elements of D,
t1, t2 be finite sequences of elements of S, S3 be a subset of dom s1, and
S4 be a subset of dom s2. Suppose S3 = s1

−1(X) and t1 = extract(s1, S3)
and S4 = s2

−1(X) and t2 = extract(s2, S4). Then t1 and t2 are probability
equivalent.

The conditional subset of X yields an equivalent distributed sample spaces
family of S and is defined by the condition (Def. 14).

(Def. 14) There exists an element s of D and there exists a finite sequence t of
elements of S and there exists a subset S2 of dom s such that S2 = s−1(X)
and t = extract(s, S2) and t ∈ the conditional subset of X.

Let f be a function from S into Boolean. The functor Prob(f,X) yielding a
real number is defined by:

(Def. 15) Prob(f,X) = Prob(f, the conditional subset of X).

One can prove the following proposition
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(39) Let S be a non empty finite set, D be an equivalent distributed sample
spaces family of S, X be a sampling RNG of D, and f be a function from
S into Boolean. Then Prob(f,X) · ProbX = Prob(f ∧ the membership
decision of X, D).
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Summary. In this paper we defined the reduced residue system and pro-
ved its fundamental properties. Then we proved the basic properties of the order
function. Finally, we defined the primitive root and proved its fundamental pro-
perties. Our work is based on [12], [8], and [11].
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The notation and terminology used here have been introduced in the following
papers: [1], [18], [9], [4], [7], [5], [20], [16], [17], [19], [14], [2], [15], [3], [10], [13],
[22], [23], [21], and [6].

For simplicity, we adopt the following convention: i, s, t, m, n, k are natural
numbers, d, e are elements of N, f1 is a finite sequence of elements of N, and x

is an integer.
Let m be a natural number. The functor RelPrimesm yields a set and is

defined by:

(Def. 1) RelPrimesm = {k ∈ N: m and k are relative prime ∧ 1 ≤ k ∧ k ≤ m}.
We now state the proposition

(1) RelPrimesm ⊆ Segm.

Let m be a natural number. Then RelPrimesm is a subset of N.
Let m be a natural number. Observe that RelPrimesm is finite.
Next we state several propositions:

(2) If 1 ≤ m, then RelPrimesm 6= ∅.
1Authors thank Andrzej Trybulec and Yatsuka Nakamura for the help during writing this

article.
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(3) For every subset X of Z and for every integer a holds x ∈ a ◦X iff there
exists an integer y such that y ∈ X and x = a · y.

(4) There exists a natural number r such that (1 + s)t = 1+t·s+
(t
2

)
·s2+r·s3.

(5) If n > 1 and i and n are relative prime, then i 6= 0.

(6) For all integers a, b and for every natural number m such that a · b mod
m = 1 and a mod m = 1 holds b mod m = 1.

(7) For every odd integer x and for every natural number k such that k ≥ 3

holds x2k−
′2

mod 2k = 1.

In the sequel p is a prime number.
We now state a number of propositions:

(8) If m ≥ 1, then Euler pm = pm − pm−′1.
(9) If n > 1 and i and n are relative prime, then order(i, n) | Eulern.

(10) For all i, n such that n > 1 and i and n are relative prime holds is ≡
it (modn) iff s ≡ t (mod order(i, n)).

(11) For all i, n such that n > 1 and i and n are relative prime holds is ≡
1 (modn) iff order(i, n) | s.

(12) Suppose n > 1 and i and n are relative prime and len f1 = order(i, n)
and for every d such that d ∈ dom f1 holds f1(d) = id−

′1. Let given d, e.
If d, e ∈ dom f1 and d 6= e, then f1(d) 6≡ f1(e) (modn).

(13) Suppose n > 1 and i and n are relative prime and len f1 = order(i, n)
and for every d such that d ∈ dom f1 holds f1(d) = id−

′1. Let given d. If
d ∈ dom f1, then f1(d)order(i,n) mod n = 1.

(14) If n > 1 and i and n are relative prime, then order(is, n) =
order(i, n) div(order(i, n) gcd s).

(15) Let given i, n. Suppose n > 1 and i and n are relative prime. Then
order(i, n) and s are relative prime if and only if order(is, n) = order(i, n).

(16) If n > 1 and i and n are relative prime and order(i, n) = s · t, then
order(is, n) = t.

(17) Suppose that
(i) n > 1,

(ii) s and n are relative prime,
(iii) t and n are relative prime, and
(iv) order(s, n) and order(t, n) are relative prime.

Then order(s · t, n) = order(s, n) · order(t, n).

In the sequel f2, f3 are finite sequences of elements of N.
We now state four propositions:

(18) Suppose n > 1 and s and n are relative prime and t and n are relative
prime and order(s · t, n) = order(s, n) · order(t, n). Then order(s, n) and
order(t, n) are relative prime.
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(19) If n > 1 and s and n are relative prime and s · t mod n = 1, then
order(s, n) = order(t, n).

(20) If n > 1 and m > 1 and i and n are relative prime and m | n, then
order(i,m) | order(i, n).

(21) If n > 1 and m > 1 and m and n are relative prime and i and m · n are
relative prime, then order(i,m · n) = lcm(order(i,m), order(i, n)).

Let X be a set and let m be a natural number. We say that X is primitive
root of m if and only if the condition (Def. 2) is satisfied.

(Def. 2) There exists a finite sequence f2 of elements of Z such that len f2 =
len Sgm RelPrimesm and for every d such that d ∈ dom f2 holds f2(d) ∈
[(Sgm RelPrimesm)(d)]Congm and X = rng f2.

We now state several propositions:

(22) RelPrimesm is primitive root of m.

(23) If d, e ∈ dom Sgm RelPrimesm and d 6= e, then (Sgm RelPrimesm)(d) 6≡
(Sgm RelPrimesm)(e) (modm).

(24) Let X be a finite set. Suppose X is primitive root of m. Then

(i) X = Eulerm,
(ii) for all integers x, y such that x, y ∈ X and x 6= y holds x 6≡ y (modm),

and
(iii) for every integer x such that x ∈ X holds x and m are relative prime.

(25) ∅ is primitive root of m iff m = 0.

(26) Let X be a finite subset of Z. Suppose that
(i) 1 < m,

(ii) X = Eulerm,
(iii) for all integers x, y such that x, y ∈ X and x 6= y holds x 6≡ y (modm),

and
(iv) for every integer x such that x ∈ X holds x and m are relative prime.

Then X is primitive root of m.

(27) Let X be a finite subset of Z and a be an integer. Suppose m > 1 and
a and m are relative prime and X is primitive root of m. Then a ◦ X is
primitive root of m.

Let us consider i, n. We say that i is RRS of n if and only if:

(Def. 3) order(i, n) = Eulern.

Next we state several propositions:

(28) Suppose n > 1 and i and n are relative prime. Then i is RRS of n if
and only if for every f1 such that len f1 = Eulern and for every natural
number d such that d ∈ dom f1 holds f1(d) = id holds rng f1 is primitive
root of n.
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(29) Suppose p > 2 and i and p are relative prime and i is RRS of p. Let k
be a natural number. Then i2·k+1 is not quadratic residue mod p.

(30) Let k be a natural number. Suppose k ≥ 3. Let given m. If m and 2k are
relative prime, then m is not RRS of 2k.

(31) If p > 2 and k ≥ 2 and i and p are relative prime and i is RRS of p and

ip−
′1 mod p2 6= 1, then iEuler pk−

′1
mod pk 6= 1.

(32) Suppose n > 1 and len f2 ≥ 2 and for every d such that d ∈ dom f2 holds
f2(d) and n are relative prime. Let given f3. Suppose that

(i) len f3 = len f2,

(ii) for every d such that d ∈ dom f3 holds f3(d) = order(f2(d), n), and
(iii) for all d, e such that d, e ∈ dom f3 and d 6= e holds f3(d) and f3(e) are

relative prime.
Then order(

∏
f2, n) =

∏
f3.
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Summary. In this article we formalize one of the most important theorems
of linear operator theory – the Closed Graph Theorem commonly used in a
standard text book such as [10] in Chapter 24.3. It states that a surjective closed
linear operator between Banach spaces is bounded.
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[18], [9], and [6].

Let X, Y be non empty normed structures, let x be a point of X, and let y
be a point of Y . Then 〈〈x, y〉〉 is a point of X × Y.

Let X, Y be non empty normed structures, let s1 be a sequence of X, and
let s2 be a sequence of Y . Then 〈s1, s2〉 is a sequence of X × Y.

We now state several propositions:

(1) Let X, Y be real linear spaces and T be a linear operator from X into
Y . Suppose T is bijective. Then T−1 is a linear operator from Y into X
and rng(T−1) = the carrier of X.

(2) Let X, Y be non empty linear topological spaces, T be a linear operator
from X into Y , and S be a function from Y into X. Suppose T is bijective

1This work was supported by JSPS KAKENHI 22300285.
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and open and S = T−1. Then S is a linear operator from Y into X, onto,
and continuous.

(3) For all real normed spaces X, Y and for every linear operator f from X

into Y holds 0Y = f(0X).

(4) Let X, Y be real normed spaces, f be a linear operator from X into
Y , and x be a point of X. Then f is continuous in x if and only if f is
continuous in 0X .

(5) Let X, Y be real normed spaces and f be a linear operator from X into
Y . Then f is continuous on the carrier of X if and only if f is continuous
in 0X .

(6) Let X, Y be real normed spaces and f be a linear operator from X into
Y . Then f is Lipschitzian if and only if f is continuous on the carrier of
X.

(7) Let X, Y be real Banach spaces and T be a Lipschitzian linear operator
from X into Y . Suppose T is bijective. Then T−1 is a Lipschitzian linear
operator from Y into X.

(8) Let X, Y be real normed spaces, s1 be a sequence of X, s2 be a sequence
of Y , x be a point of X, and y be a point of Y . Then s1 is convergent
and lim s1 = x and s2 is convergent and lim s2 = y if and only if 〈s1, s2〉
is convergent and lim〈s1, s2〉 = 〈〈x, y〉〉.

Let X, Y be real normed spaces and let T be a partial function from X to
Y . The functor graph(T ) yields a subset of X × Y and is defined as follows:

(Def. 1) graph(T ) = T.

Let X, Y be real normed spaces and let T be a non empty partial function
from X to Y . Observe that graph(T ) is non empty.

Let X, Y be real normed spaces and let T be a linear operator from X into
Y . Note that graph(T ) is linearly closed.

Let X, Y be real normed spaces and let T be a linear operator from X

into Y . The functor graphNrm(T ) yielding a function from graph(T ) into R is
defined as follows:

(Def. 2) graphNrm(T ) = (the norm of X × Y )� graph(T ).

Let X, Y be real normed spaces and let T be a partial function from X to
Y . We say that T is closed if and only if:

(Def. 3) graph(T ) is closed.

Let X, Y be real normed spaces and let T be a linear operator from X

into Y . The functor graphNSP(T ) yields a non empty normed structure and is
defined by:

(Def. 4) graphNSP(T ) = 〈graph(T ),Zero(graph(T ), X × Y ),Add(graph(T ), X ×
Y ),Mult(graph(T ), X × Y ), graphNrm(T )〉.
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Let X, Y be real normed spaces and let T be a linear operator from X into
Y . One can check that graphNSP(T ) is Abelian, add-associative, right zeroed,
right complementable, scalar distributive, vector distributive, scalar associative,
and scalar unital.

One can prove the following proposition

(9) For all real normed spaces X, Y and for every linear operator T from X

into Y holds graphNSP(T ) is a subspace of X × Y.
Let X, Y be real normed spaces and let T be a linear operator from X into

Y . Note that graphNSP(T ) is reflexive, discernible, and real normed space-like.
We now state several propositions:

(10) Let X be a real normed space, Y be a real Banach space, and X0 be a
subset of Y . Suppose that

(i) X is a subspace of Y ,
(ii) the carrier of X = X0,

(iii) the norm of X = (the norm of Y )�(the carrier of X), and
(iv) X0 is closed.

Then X is complete.

(11) Let X, Y be real Banach spaces and T be a linear operator from X into
Y . If T is closed, then graphNSP(T ) is complete.

(12) Let X, Y be real normed spaces and T be a non empty partial function
from X to Y . Then T is closed if and only if for every sequence s3 of X
such that rng s3 ⊆ domT and s3 is convergent and T ∗s3 is convergent
holds lim s3 ∈ domT and lim(T ∗s3) = T (lim s3).

(13) Let X, Y be real normed spaces, T be a non empty partial function from
X to Y , and T0 be a linear operator from X into Y . If T0 is Lipschitzian
and domT is closed and T = T0, then T is closed.

(14) Let X, Y be real normed spaces, T be a non empty partial function from
X to Y , and S be a non empty partial function from Y to X. If T is closed
and one-to-one and S = T−1, then S is closed.

(15) For all real normed spaces X, Y and for every point x of X and for every
point y of Y holds ‖x‖ ≤ ‖〈〈x, y〉〉‖ and ‖y‖ ≤ ‖〈〈x, y〉〉‖.

Let X, Y be real Banach spaces. Note that every linear operator from X

into Y which is closed is also Lipschitzian.
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Summary. In this article we formalize a free Z-module and its rank. We
formally prove that for a free finite rank Z-module V , the number of elements in
its basis, that is a rank of the Z-module, is constant regardless of the selection of
its basis. Z-module is necessary for lattice problems, LLL(Lenstra, Lenstra and
Lovász) base reduction algorithm and cryptographic systems with lattice [15].
Some theorems in this article are described by translating theorems in [21] and
[8] into theorems of Z-module.
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The papers [17], [1], [3], [9], [4], [5], [23], [20], [14], [18], [16], [19], [2], [6], [12],
[27], [28], [25], [26], [13], [24], [22], [7], [10], and [11] provide the terminology and
notation for this paper.

1. Free Z-module

In this paper V is a Z-module, v is a vector of V , and W is a submodule of V .
Let us note that there exists a Z-module which is non trivial.
Let V be a Z-module. One can verify that there exists a finite subset of V

which is linearly independent.
Let K be a field, let V be a non empty vector space structure over K, let

L be a linear combination of V , and let v be a vector of V . Then L(v) is an
element of K.

Next we state two propositions:

(1) Let u be a vector of V . Then there exists a z linear combination l of
V such that l(u) = 1 and for every vector v of V such that v 6= u holds
l(v) = 0.

1This work was supported by JSPS KAKENHI 21240001 and 22300285.
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(2) Let G be a Z-module, i be an element of Z, w be an element of Z, and
v be an element of G. Suppose G = 〈〈the carrier of (ZR), the zero of (ZR),
the addition of (ZR), the left integer multiplication of (ZR)〉〉 and v = w.

Then i · v = i · w.
Let I1 be a Z-module. We say that I1 is free if and only if:

(Def. 1) There exists a subset A of I1 such that A is linearly independent and
Lin(A) = the Z-module structure of I1.

Let us consider V . One can check that 0V is free.
One can verify that there exists a Z-module which is strict and free.
Let V be a Z-module. One can verify that there exists a submodule of V

which is strict and free.
Let V be a free Z-module. A subset of V is called a basis of V if:

(Def. 2) It is linearly independent and Lin(it) = the Z-module structure of V .

One can verify that every free Z-module inherits cancelable on multiplica-
tion.

Let us observe that there exists a non trivial Z-module which is free.
In the sequel K1, K2 denote z linear combinations of V and X denotes a

subset of V .
We now state a number of propositions:

(3) If X is linearly independent and the support of K1 ⊆ X and the support
of K2 ⊆ X and

∑
K1 =

∑
K2, then K1 = K2.

(4) Let V be a free Z-module and A be a subset of V . Suppose A is linearly
independent. Then there exists a subset B of V such that A ⊆ B and B

is linearly independent and for every vector v of V there exists an integer
a such that a · v ∈ Lin(B).

(5) Let L be a z linear combination of V , F , G be finite sequences of elements
of V , and P be a permutation of domF. If G = F · P, then

∑
(L · F ) =∑

(L ·G).

(6) Let L be a z linear combination of V and F be a finite sequence of
elements of V . If the support of L misses rngF, then

∑
(L · F ) = 0V .

(7) Let F be a finite sequence of elements of V . Suppose F is one-to-one.
Let L be a z linear combination of V . If the support of L ⊆ rngF, then∑

(L · F ) =
∑
L.

(8) Let L be a z linear combination of V and F be a finite sequence of
elements of V . Then there exists a z linear combination K of V such that
the support of K = rngF ∩ (the support of L) and L · F = K · F.

(9) Let L be a z linear combination of V , A be a subset of V , and F be a
finite sequence of elements of V . Suppose rngF ⊆ the carrier of Lin(A).
Then there exists a z linear combination K of A such that

∑
(L·F ) =

∑
K.
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(10) Let L be a z linear combination of V and A be a subset of V . Suppose
the support of L ⊆ the carrier of Lin(A). Then there exists a z linear
combination K of A such that

∑
L =

∑
K.

(11) Let L be a z linear combination of V . Suppose the support of L ⊆ the
carrier of W . Let K be a z linear combination of W . Suppose K = L�the
carrier of W . Then the support of L = the support of K and

∑
L =

∑
K.

(12) Let K be a z linear combination of W . Then there exists a z linear
combination L of V such that the support of K = the support of L and∑
K =

∑
L.

(13) Let L be a z linear combination of V . Suppose the support of L ⊆ the
carrier of W . Then there exists a z linear combination K of W such that
the support of K = the support of L and

∑
K =

∑
L.

(14) For every free Z-module V and for every basis I of V and for every vector
v of V holds v ∈ Lin(I).

(15) For every subset A of W such that A is linearly independent holds A is
a linearly independent subset of V .

(16) Let A be a subset of V . Suppose A is linearly independent and A ⊆ the
carrier of W . Then A is a linearly independent subset of W .

(17) Let V be a Z-module and A be a subset of V . Suppose A is linearly
independent. Let v be a vector of V . If v ∈ A, then for every subset B of
V such that B = A \ {v} holds v /∈ Lin(B).

(18) Let V be a free Z-module, I be a basis of V , and A be a non empty
subset of V . Suppose A misses I. Let B be a subset of V . If B = I ∪ A,
then B is linearly dependent.

(19) For every subset A of V such that A ⊆ the carrier of W holds Lin(A) is
a submodule of W .

(20) For every subset A of V and for every subset B of W such that A = B

holds Lin(A) = Lin(B).

Let V be a Z-module and let A be a linearly independent subset of V . One
can check that Lin(A) is free.

Let V be a free Z-module. Observe that ΩV is strict and free.

2. Finite Rank Free Z-module

Let I1 be a free Z-module. We say that I1 is finite-rank if and only if:

(Def. 3) There exists a finite subset of I1 which is a basis of I1.

Let us consider V . Note that 0V is finite-rank.
Let us note that there exists a free Z-module which is strict and finite-rank.
Let V be a Z-module. Note that there exists a free submodule of V which

is strict and finite-rank.
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Let V be a Z-module and let A be a finite linearly independent subset of V .
One can check that Lin(A) is finite-rank.

Let V be a Z-module. We say that V is finitely-generated if and only if:

(Def. 4) There exists a finite subset A of V such that Lin(A) = the Z-module
structure of V .

Let us consider V . One can verify that 0V is finitely-generated.
Let us mention that there exists a Z-module which is strict, finitely-generated,

and free.
Let V be a finite-rank free Z-module. Observe that every basis of V is finite.

3. Rank of a Finite Rank Free Z-module

The following propositions are true:

(21) Let p be a prime number, V be a free Z-module, I be a basis of V , and u1,
u2 be vectors of V . If u1 6= u2 and u1, u2 ∈ I, then ZMtoMQV(V, p, u1) 6=
ZMtoMQV(V, p, u2).

(22) Let p be a prime number, V be a Z-module, Z1 be a vector space over
GF(p), and v1 be a vector of Z1. If Z1 = ZMQVectSp(V, p), then there
exists a vector v of V such that v1 = ZMtoMQV(V, p, v).

(23) Let p be a prime number, V be a Z-module, I be a subset of V , and l1
be a linear combination of ZMQVectSp(V, p). Then there exists a z linear
combination l of I such that for every vector v of V if v ∈ I, then there
exists a vector w of V such that w ∈ I and w ∈ ZMtoMQV(V, p, v) and
l(w) = l1(ZMtoMQV(V, p, v)).

(24) Let p be a prime number, V be a free Z-module, I be a basis of V ,
and l1 be a linear combination of ZMQVectSp(V, p). Then there exists a z
linear combination l of I such that for every vector v of V if v ∈ I, then
l(v) = l1(ZMtoMQV(V, p, v)).

(25) Let p be a prime number, V be a free Z-module, I be a basis of
V , and X be a non empty subset of ZMQVectSp(V, p). Suppose X =
{ZMtoMQV(V, p, u);u ranges over vectors of V : u ∈ I}. Then there exists
a function F from X into the carrier of V such that for every vector u of
V such that u ∈ I holds F (ZMtoMQV(V, p, u)) = u and F is one-to-one
and domF = X and rngF = I.

(26) Let p be a prime number, V be a free Z-module, and I be a basis of V .

Then {ZMtoMQV(V, p, u);u ranges over vectors of V : u ∈ I} = I .

(27) For every prime number p and for every free Z-module V holds
ZMtoMQV(V, p, 0V ) = 0ZMQVectSp(V,p).

(28) Let p be a prime number, V be a free Z-module, and s, t be elements of
V . Then ZMtoMQV(V, p, s)+ZMtoMQV(V, p, t) = ZMtoMQV(V, p, s+t).
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(29) Let p be a prime number, V be a free Z-module, s be a finite sequence of
elements of V , and t be a finite sequence of elements of ZMQVectSp(V, p).
Suppose len s = len t and for every element i of N such that i ∈ dom s there
exists a vector s1 of V such that s1 = s(i) and t(i) = ZMtoMQV(V, p, s1).
Then

∑
t = ZMtoMQV(V, p,

∑
s).

(30) Let p be a prime number, V be a free Z-module, s be an element of
V , a be an integer, and b be an element of GF(p). If a = b, then b ·
ZMtoMQV(V, p, s) = ZMtoMQV(V, p, a · s).

(31) Let p be a prime number, V be a free Z-module, I be a basis of V , l be a
z linear combination of I, I2 be a subset of ZMQVectSp(V, p), and l1 be a
linear combination of I2. Suppose I2 = {ZMtoMQV(V, p, u);u ranges over
vectors of V : u ∈ I} and for every vector v of V such that v ∈ I holds
l(v) = l1(ZMtoMQV(V, p, v)). Then

∑
l1 = ZMtoMQV(V, p,

∑
l).

(32) Let p be a prime number, V be a free Z-module, I be a basis of V , and
I2 be a subset of ZMQVectSp(V, p). If I2 = {ZMtoMQV(V, p, u);u ranges
over vectors of V : u ∈ I}, then I2 is linearly independent.

(33) Let p be a prime number, V be a free Z-module, I be a subset of V , and
I2 be a subset of ZMQVectSp(V, p). Suppose I2 = {ZMtoMQV(V, p, u);u
ranges over vectors of V : u ∈ I}. Let s be a finite sequence of elements of
V . Suppose that for every element i of N such that i ∈ dom s there exists
a vector s1 of V such that s1 = s(i) and ZMtoMQV(V, p, s1) ∈ Lin(I2).
Then ZMtoMQV(V, p,

∑
s) ∈ Lin(I2).

(34) Let p be a prime number, V be a free Z-module, I be a basis of V ,
I2 be a subset of ZMQVectSp(V, p), and l be a z linear combination of
I. If I2 = {ZMtoMQV(V, p, u);u ranges over vectors of V : u ∈ I}, then
ZMtoMQV(V, p,

∑
l) ∈ Lin(I2).

(35) Let p be a prime number, V be a free Z-module, I be a basis of V , and
I2 be a subset of ZMQVectSp(V, p). If I2 = {ZMtoMQV(V, p, u);u ranges
over vectors of V : u ∈ I}, then I2 is a basis of ZMQVectSp(V, p).

Let p be a prime number and let V be a finite-rank free Z-module. Observe
that ZMQVectSp(V, p) is finite dimensional.

Next we state the proposition

(36) For every finite-rank free Z-module V and for all bases A, B of V holds
A = B.

Let V be a finite-rank free Z-module. The functor rankV yields a natural
number and is defined as follows:

(Def. 5) For every basis I of V holds rankV = I .

The following proposition is true

(37) For every prime number p and for every finite-rank free Z-module V

holds rankV = dim(ZMQVectSp(V, p)).
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1. Preliminaries

We use the following convention: u, v, x, y, z, X, Y are sets and r, s are
real numbers.

One can prove the following proposition

(1) For all real numbers a, b, c, d holds (a + b)2 + (c + d)2 ≤ (
√
a2 + c2 +√

b2 + d2)2.

Let X be a non trivial real normed space and let x be a non zero element of
X. One can verify that ‖x‖ is positive.

Let c be a non zero complex number. Note that c2 is non zero.
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Let x be a non empty set. Observe that 〈x〉 is non-empty.
Let us note that there exists a finite 0-sequence which is non-empty.
Let f , g be non-empty finite 0-sequences. Observe that f a g is non-empty.
Let x, y be non empty sets. One can verify that 〈x, y〉 is non-empty.
The following propositions are true:

(2) If 〈u〉 = 〈x〉, then u = x.

(3) If 〈u, v〉 = 〈x, y〉, then u = x and v = y.

(4) If x ∈ X, then 〈x〉 ∈
∏
〈X〉.

(5) If z ∈
∏
〈X〉, then there exists x such that x ∈ X and z = 〈x〉.

(6) If x ∈ X and y ∈ Y, then 〈x, y〉 ∈
∏
〈X,Y 〉.

(7) If z ∈
∏
〈X,Y 〉, then there exist x, y such that x ∈ X and y ∈ Y and

z = 〈x, y〉.
Let D be a set. The functor binopD yielding a binary operation on D is

defined by:

(Def. 1) binopD = D ×D 7−→ the element of D.

Let D be a set. Observe that binopD is associative and commutative.
Let D be a set. One can verify that there exists a binary operation on D

which is associative and commutative.

2. Conjunctive Normed Spaces

We introduce conjunctive normed algebra structures which are extensions of
normed algebra structures and are systems
〈 a carrier, a multiplication, an addition, an external multiplication, a one,

a zero, a norm, a conjugate 〉,
where the carrier is a set, the multiplication and the addition are binary ope-
rations on the carrier, the external multiplication is a function from R × the
carrier into the carrier, the one and the zero are elements of the carrier, the
norm is a function from the carrier into R, and the conjugate is a function from
the carrier into the carrier.

Let us observe that there exists a conjunctive normed algebra structure
which is non trivial and strict.

We use the following convention: N is a non empty conjunctive normed
algebra structure and a, a1, a2, b, b1, b2 are elements of N .

Let N be a non empty conjunctive normed algebra structure and let a be an
element of N . The functor a yields an element of N and is defined as follows:

(Def. 2) a = (the conjugate of N)(a).

Let N be a non empty conjunctive normed algebra structure and let a be
an element of N . We say that a is properly conjugated if and only if:
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(Def. 3)(i) a · a = ‖a‖2 · 1N if a is non zero,
(ii) a is zero, otherwise.

Let N be a non empty conjunctive normed algebra structure. We say that
N is properly conjugated if and only if:

(Def. 4) Every element of N is properly conjugated.

We say that N is additively conjugative if and only if:

(Def. 5) For all elements a, b of N holds a+ b = a + b.

We say that N is norm-wise conjugative if and only if:

(Def. 6) For every element a of N holds ‖a‖ = ‖a‖.
We say that N is scalar-wise conjugative if and only if:

(Def. 7) For every real number r and for every element a of N holds r · a = r · a.
Let D be a real-membered set, let a, m be binary operations on D, let

M be a function from R × D into D, let O, Z be elements of D, let n be a
function from D into R, and let c be a function from D into D. Observe that
〈〈D,m, a,M,O,Z, n, c〉〉 is real-membered.

Let D be a set, let a be an associative binary operation on D, let m be a
binary operation on D, let M be a function from R × D into D, let O, Z be
elements of D, let n be a function from D into R, and let c be a function from
D into D. Observe that 〈〈D,m, a,M,O,Z, n, c〉〉 is add-associative.

Let D be a set, let a be a commutative binary operation on D, let m be a
binary operation on D, let M be a function from R × D into D, let O, Z be
elements of D, let n be a function from D into R, and let c be a function from
D into D. Observe that 〈〈D,m, a,M,O,Z, n, c〉〉 is Abelian.

Let D be a set, let a be a binary operation on D, let m be an associative
binary operation on D, let M be a function from R × D into D, let O, Z be
elements of D, let n be a function from D into R, and let c be a function from
D into D. One can verify that 〈〈D,m, a,M,O,Z, n, c〉〉 is associative.

Let D be a set, let a be a binary operation on D, let m be a commutative
binary operation on D, let M be a function from R × D into D, let O, Z be
elements of D, let n be a function from D into R, and let c be a function from
D into D. One can check that 〈〈D,m, a,M,O,Z, n, c〉〉 is commutative.

The strict conjunctive normed algebra structure N-Real is defined by:

(Def. 8) N-Real = 〈〈R, ·R,+R, ·R, 1(∈ R), 0(∈ R), |�|R, idR〉〉.
Let us observe that N-Real is non degenerated, real-membered, add-associative,

Abelian, associative, and commutative. Let a, b be elements of N-Real and r, s
be real numbers. We identify r+s with a+b where a = r and b = s. We identify
r · s with a · b where a = r and b = s.

One can check the following observations:

∗ every Abelian non empty additive magma which is right add-cancelable
is also left add-cancelable,
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∗ every Abelian non empty additive magma which is left add-cancelable is
also right add-cancelable,

∗ every Abelian non empty additive loop structure which is left comple-
mentable is also right complementable,

∗ every Abelian commutative non empty double loop structure which is
left distributive is also right distributive,

∗ every Abelian commutative non empty double loop structure which is
right distributive is also left distributive,

∗ every commutative non empty multiplicative loop with zero structure
which is almost left invertible is also almost right invertible,

∗ every commutative non empty multiplicative loop with zero structure
which is almost right invertible is also almost left invertible,

∗ every commutative non empty multiplicative loop with zero structure
which is almost right cancelable is also almost left cancelable,

∗ every commutative non empty multiplicative loop with zero structure
which is almost left cancelable is also almost right cancelable,

∗ every commutative non empty multiplicative magma which is right mult-
cancelable is also left mult-cancelable, and

∗ every commutative non empty multiplicative magma which is left mult-
cancelable is also right mult-cancelable.

One can verify that N-Real is right complementable and right add-cancelable.
We identify −r with −a where a = r.
We identify r − s with a− b where a = r and b = s.
We identify r · s with r · a where a = s.
We identify |a| with ‖a‖.
The following proposition is true

(8) For every element a of N-Real holds a · a = ‖a‖2.
Let us observe that a reduces to a.
One can verify that N-Real is reflexive, discernible, well unital, real normed

space-like, right zeroed, right distributive, vector associative, vector distributi-
ve, scalar distributive, scalar associative, scalar unital, Banach Algebra-like1,
Banach Algebra-like2, Banach Algebra-like3, almost left invertible, almost left
cancelable, properly conjugated, additively conjugative, norm-wise conjugative,
and scalar-wise conjugative.

One can verify that there exists a non empty conjunctive normed algebra
structure which is strict, non degenerated, real-membered, reflexive, discernible,
zeroed, complementable, add-associative, Abelian, associative, commutative, di-
stributive, well unital, add-cancelable, vector associative, vector distributive,
scalar distributive, scalar associative, scalar unital, Banach Algebra-like1, Ba-
nach Algebra-like2, Banach Algebra-like3, properly conjugated, additively con-
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jugative, norm-wise conjugative, scalar-wise conjugative, almost left invertible,
almost left cancelable, and real normed space-like.

One can check that 0N-Real is non left invertible and non right invertible.
We identify r−1 with a−1 where a = r.
Let X be a discernible non trivial conjunctive normed algebra structure and

let x be a non zero element of X. One can check that ‖x‖ is non zero.
Let us mention that every non zero element of N-Real is non empty.
Let us observe that every non zero element of N-Real is mult-cancelable.
Let N be a properly conjugated non empty conjunctive normed algebra

structure. Observe that every element of N is properly conjugated.
Let N be a properly conjugated non empty conjunctive normed algebra

structure and let a be a zero element of N . Observe that a is zero.
Let us observe that 0N reduces to 0N .
Let N be a properly conjugated discernible add-associative right zeroed ri-

ght complementable left distributive scalar distributive scalar associative scalar
unital vector distributive non degenerated conjunctive normed algebra structure
and let a be a non zero element of N . Note that a is non zero.

The following propositions are true:

(9) Suppose that N is add-associative, right zeroed, right complementable,
properly conjugated, reflexive, scalar distributive, scalar unital, vector di-
stributive, and left distributive. Let given a. Then a · a = ‖a‖2 · 1N .
Let N be left unital Banach Algebra-like2 almost right cancelable properly
conjugated scalar unital nonempty conjunctive normed algebra structure.
Let us observe that a reduces to a.
Let N be right unital Banach Algebra-like2 almost right cancelable proper-
ly conjugated scalar unital nonempty conjunctive normed algebra struc-
ture. Let us observe that 1N reduces to 1N .

(10) Suppose that N is properly conjugated, reflexive, discernible, real nor-
med space-like, vector distributive, scalar distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, right complementa-
ble, associative, distributive, well unital, non degenerated, and almost left
invertible. Then −a = −a.

(11) Suppose that N is properly conjugated, reflexive, discernible, real nor-
med space-like, vector distributive, scalar distributive, scalar associative,
scalar unital, Abelian, add-associative, right zeroed, right complementable,
associative, distributive, well unital, non degenerated, almost left inverti-
ble, and additively conjugative. Then a− b = a − b.
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3. Cayley-Dickson Construction

Let N be a non empty conjunctive normed algebra structure. The func-
tor Cayley-DicksonN yielding a strict conjunctive normed algebra structure is
defined by the conditions (Def. 9).

(Def. 9)(i) The carrier of Cayley-DicksonN =
∏
〈the carrier of N , the carrier

of N〉,
(ii) the zero of Cayley-DicksonN = 〈0N , 0N 〉,

(iii) the one of Cayley-DicksonN = 〈1N , 0N 〉,
(iv) for all elements a1, a2, b1, b2 of N holds (the addition of

Cayley-DicksonN)(〈a1, b1〉, 〈a2, b2〉) = 〈a1 + a2, b1 + b2〉 and (the multi-
plication of Cayley-DicksonN)(〈a1, b1〉, 〈a2, b2〉) = 〈a1 ·a2− b2 ·b1, b2 ·a1 +
b1 · a2 〉,

(v) for every real number r and for all elements a, b of N holds (the external
multiplication of Cayley-DicksonN)(r, 〈a, b〉) = 〈r · a, r · b〉, and

(vi) for all elements a, b ofN holds (the norm of Cayley-DicksonN)(〈a, b〉) =√
‖a‖2 + ‖b‖2 and (the conjugate of Cayley-DicksonN)(〈a, b〉) = 〈a,−b〉.

In the sequel c, c1, c2 are elements of Cayley-DicksonN.
Let N be a non empty conjunctive normed algebra structure. Note that

Cayley-DicksonN is non empty.
We now state two propositions:

(12) There exist elements a, b of N such that c = 〈a, b〉.
(13) For every element c of Cayley-Dickson Cayley-DicksonN there exist a1,

b1, a2, b2 such that c = 〈〈a1, b1〉, 〈a2, b2〉〉.
Let us consider N , a, b. Then 〈a, b〉 is an element of Cayley-DicksonN.
Let us consider N and let a, b be zero elements of N . Observe that 〈a, b〉 is

zero.
Let N be a non degenerated non empty conjunctive normed algebra struc-

ture, let a be a non zero element of N , and let b be an element of N . One can
check that 〈a, b〉 is non zero.

Let N be a reflexive non empty conjunctive normed algebra structure. Note
that Cayley-DicksonN is reflexive.

Let N be a discernible non empty conjunctive normed algebra structure.
Observe that Cayley-DicksonN is discernible.

We now state a number of propositions:

(14) If a is left complementable and b is left complementable, then 〈a, b〉 is
left complementable.

(15) If 〈a, b〉 is left complementable, then a is left complementable and b is
left complementable.

(16) If a is right complementable and b is right complementable, then 〈a, b〉
is right complementable.
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(17) If 〈a, b〉 is right complementable, then a is right complementable and b

is right complementable.

(18) If a is complementable and b is complementable, then 〈a, b〉 is comple-
mentable.

(19) If 〈a, b〉 is complementable, then a is complementable and b is comple-
mentable.

(20) If a is left add-cancelable and b is left add-cancelable, then 〈a, b〉 is left
add-cancelable.

(21) If 〈a, b〉 is left add-cancelable, then a is left add-cancelable and b is left
add-cancelable.

(22) If a is right add-cancelable and b is right add-cancelable, then 〈a, b〉 is
right add-cancelable.

(23) If 〈a, b〉 is right add-cancelable, then a is right add-cancelable and b is
right add-cancelable.

(24) If a is add-cancelable and b is add-cancelable, then 〈a, b〉 is add-
cancelable.

(25) If 〈a, b〉 is add-cancelable, then a is add-cancelable and b is add-
cancelable.

(26) If 〈a, b〉 is left complementable and right add-cancelable, then −〈a, b〉 =
〈−a,−b〉.

Let N be an add-associative non empty conjunctive normed algebra struc-
ture. Observe that Cayley-DicksonN is add-associative.

Let N be a right zeroed non empty conjunctive normed algebra structure.
Observe that Cayley-DicksonN is right zeroed.

Let N be a left zeroed non empty conjunctive normed algebra structure.
One can verify that Cayley-DicksonN is left zeroed.

Let N be a right complementable non empty conjunctive normed algebra
structure. One can check that Cayley-DicksonN is right complementable.

Let N be a left complementable non empty conjunctive normed algebra
structure. One can check that Cayley-DicksonN is left complementable.

Let N be an Abelian non empty conjunctive normed algebra structure. Ob-
serve that Cayley-DicksonN is Abelian.

One can prove the following propositions:

(27) If N is add-associative, right zeroed, and right complementable, then
−〈a, b〉 = 〈−a,−b〉.

(28) If N is add-associative, right zeroed, and right complementable, then
〈a1, b1〉 − 〈a2, b2〉 = 〈a1 − a2, b1 − b2〉.

Let N be a well unital add-associative right zeroed right complementable
distributive Banach Algebra-like2 properly conjugated scalar unital almost ri-
ght cancelable non empty conjunctive normed algebra structure. Observe that
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Cayley-DicksonN is well unital.
Let N be a non degenerated non empty conjunctive normed algebra struc-

ture. One can check that Cayley-DicksonN is non degenerated.
Let N be an additively conjugative add-associative right zeroed right com-

plementable Abelian non empty conjunctive normed algebra structure. One can
verify that Cayley-DicksonN is additively conjugative.

Let N be a norm-wise conjugative reflexive discernible real normed space-
like vector distributive scalar distributive scalar associative scalar unital Abe-
lian add-associative right zeroed right complementable non empty conjunctive
normed algebra structure. Observe that Cayley-DicksonN is norm-wise conju-
gative.

Let N be a scalar-wise conjugative add-associative right zeroed right com-
plementable Abelian scalar distributive scalar associative scalar unital vector
distributive non empty conjunctive normed algebra structure. One can check
that Cayley-DicksonN is scalar-wise conjugative.

Let N be a distributive add-associative right zeroed right complementable
Abelian non empty conjunctive normed algebra structure.

Note that Cayley-DicksonN is left distributive.
Let N be a distributive add-associative right zeroed right complementable

additively conjugative Abelian non empty conjunctive normed algebra structure.
Note that Cayley-DicksonN is right distributive.

Let N be a reflexive discernible real normed space-like vector distributive
scalar distributive scalar associative scalar unital Abelian add-associative right
zeroed right complementable non empty conjunctive normed algebra structure.
One can check that Cayley-DicksonN is real normed space-like.

Let N be a vector distributive non empty conjunctive normed algebra struc-
ture. Observe that Cayley-DicksonN is vector distributive.

Let N be a vector associative Banach Algebra-like3 add-associative right
zeroed right complementable Abelian scalar distributive scalar associative sca-
lar unital vector distributive non empty conjunctive normed algebra structure.
Observe that Cayley-DicksonN is vector associative.

Let N be a scalar distributive non empty conjunctive normed algebra struc-
ture. One can verify that Cayley-DicksonN is scalar distributive.

Let N be a scalar associative non empty conjunctive normed algebra struc-
ture. Note that Cayley-DicksonN is scalar associative.

Let N be a scalar unital non empty conjunctive normed algebra structure.
One can check that Cayley-DicksonN is scalar unital.

Let N be a reflexive Banach Algebra-like2 non empty conjunctive normed
algebra structure. Observe that Cayley-DicksonN is Banach Algebra-like2.

Let N be a Banach Algebra-like3 add-associative right zeroed right com-
plementable Abelian scalar distributive scalar associative scalar unital vector
distributive vector associative scalar-wise conjugative non empty conjunctive
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normed algebra structure. Observe that Cayley-DicksonN is Banach Algebra-
like3.

Next we state the proposition

(29) LetN be an almost left invertible associative add-associative right zeroed
right complementable well unital distributive Abelian scalar distributive
scalar associative scalar unital vector distributive vector associative refle-
xive discernible real normed space-like almost right cancelable properly
conjugated additively conjugative Banach Algebra-like2 Banach Algebra-
like3 non degenerated conjunctive normed algebra structure and a, b be
elements ofN . Suppose a is non zero or b is non zero but 〈a, b〉 is right mult-
cancelable and left invertible. Then 〈a, b〉−1 = 〈 1

‖a‖2+‖b‖2 ·a,
1

‖a‖2+‖b‖2 ·−b〉.
Let N be an add-associative right zeroed right complementable distributi-

ve scalar distributive scalar unital vector distributive discernible reflexive pro-
perly conjugated non empty conjunctive normed algebra structure. Note that
Cayley-DicksonN is properly conjugated.

Let us mention that Cayley-Dickson N-Real is associative and commutative.
The following propositions are true:

(30) 〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉·〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉
= 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 1N-Real〉〉.

(31) 〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉·〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉
= 〈〈0N-Real, 0N-Real〉, 〈0N-Real,−1N-Real〉〉.

One can verify that Cayley-Dickson Cayley-Dickson N-Real is associative and
non commutative.

We now state four propositions:

(32) 〈〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉 =
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 1N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉.

(33) 〈〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉 =
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real,−1N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉.

(34) 〈〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉〉 =
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈−1N-Real, 0N-Real〉〉〉.

(35) 〈〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
(〈〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉〉·
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 1N-Real〉, 〈0N-Real, 0N-Real〉〉〉) =
〈〈〈0N-Real, 0N-Real〉, 〈0N-Real, 0N-Real〉〉, 〈〈0N-Real, 0N-Real〉, 〈1N-Real, 0N-Real〉〉〉.

One can check that Cayley-Dickson Cayley-Dickson Cayley-Dickson N-Real
is non associative and non commutative.
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Let f be a function. We say that f has unique fixpoint if and only if:

(Def. 1) There exists a set x such that x is a fixpoint of f and for every set y
such that y is a fixpoint of f holds x = y.

Next we state two propositions:

(1) Every set x is a fixpoint of {〈〈x, x〉〉}.
(2) For all sets x, y, z such that x is a fixpoint of {〈〈y, z〉〉} holds x = y.

Let x be a set. Observe that {〈〈x, x〉〉} has unique fixpoint.
Next we state three propositions:

(3) Let X be a real normed space and x be a point of X. If for every real
number e such that e > 0 holds ‖x‖ < e, then x = 0X .

(4) Let X be a real normed space and x, y be points of X. If for every real
number e such that e > 0 holds ‖x− y‖ < e, then x = y.

(5) For all real numbers K, L, e such that 0 < K < 1 and 0 < e there exists
a natural number n such that |L ·Kn| < e.

Let X be a real normed space. Note that every function from X into X

which is constant is also contraction.
Let X be a real Banach space. One can verify that every function from X

into X which is contraction also has unique fixpoint.
One can prove the following three propositions:

(6) Let X be a real Banach space and f be a function from X into X.
Suppose f is contraction. Then there exists a point x1 of X such that
f(x1) = x1 and for every point x of X such that f(x) = x holds x1 = x.

(7) Let X be a real Banach space and f be a function from X into X such
that there exists a natural number n0 such that fn0 is contraction. Then
f has unique fixpoint.

(8) Let X be a real Banach space and f be a function from X into X.
Given an element n0 of N such that fn0 is contraction. Then there exists
a point x1 of X such that f(x1) = x1 and for every point x of X such that
f(x) = x holds x1 = x.

2. The Real Banach Space C([a,b],X)

We now state the proposition

(9) Let X be a non empty closed interval subset of R, Y be a real normed
space, and f be a continuous partial function from R to Y . If dom f = X,

then f is a bounded function from X into Y .

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The continuous functions of X and Y yields a subset of the set of bounded
real sequences from X into Y and is defined by the condition (Def. 2).
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(Def. 2) Let x be a set. Then x ∈ the continuous functions of X and Y if and
only if there exists a continuous partial function f from R to Y such that
x = f and dom f = X.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Note that the continuous functions of X and Y is non empty.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Observe that the continuous functions of X and Y is linearly closed.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The R-vector space of continuous functions of X and Y yielding a strict
real linear space is defined by the condition (Def. 3).

(Def. 3) The R-vector space of continuous functions of X and Y = 〈the conti-
nuous functions of X and Y , Zero(the continuous functions of X and Y ,
the set of bounded real sequences from X into Y ),Add(the continuous
functions of X and Y , the set of bounded real sequences from X into
Y ),Mult(the continuous functions of X and Y , the set of bounded real
sequences from X into Y )〉.

Let X be a non empty closed interval subset of R and let Y be a real
normed space. Observe that the R-vector space of continuous functions of X
and Y is Abelian, add-associative, right zeroed, right complementable, vector
distributive, scalar distributive, scalar associative, and scalar unital.

One can prove the following three propositions:

(10) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g, h be vectors of the R-vector space of continuous functions of
X and Y , and f9, g9, h9 be continuous partial functions from R to Y .
Suppose f9 = f and g9 = g and h9 = h and dom f9 = X and dom g9 = X

and domh9 = X. Then h = f + g if and only if for every element x of X
holds (h9)x = (f9)x + (g9)x.

(11) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , h be vectors of the R-vector space of continuous functions of X
and Y , and f9, h9 be continuous partial functions from R to Y . Suppose
f9 = f and h9 = h and dom f9 = X and domh9 = X. Then h = a · f if
and only if for every element x of X holds (h9)x = a · (f9)x.

(12) Let X be a non empty closed interval subset of R and Y be a real normed
space. Then 0the R-vector space of continuous functions of X and Y = X 7−→ 0Y .

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The continuous functions norm of X and Y yields a function from the
continuous functions of X and Y into R and is defined as follows:

(Def. 4) The continuous functions norm of X and Y = BdFuncsNorm(X,Y )�the
continuous functions of X and Y .

Let X be a non empty closed interval subset of R, let Y be a real normed
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space, and let f be a set. Let us assume that f ∈ the continuous functions of X
and Y . The functor modetrans(f,X, Y ) yielding a continuous partial function
from R to Y is defined by:

(Def. 5) modetrans(f,X, Y ) = f and dom modetrans(f,X, Y ) = X.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. The R-norm space of continuous functions of X and Y yields a strict non
empty normed structure and is defined by the condition (Def. 6).

(Def. 6) The R-norm space of continuous functions of X and Y = 〈the continuous
functions of X and Y , Zero(the continuous functions of X and Y , the set
of bounded real sequences from X into Y ),Add(the continuous functions
of X and Y , the set of bounded real sequences from X into Y ),Mult(the
continuous functions of X and Y , the set of bounded real sequences from
X into Y ), the continuous functions norm of X and Y 〉.

We now state several propositions:

(13) Let X be a non empty closed interval subset of R, Y be a real normed
space, and f be a continuous partial function from R to Y . If dom f = X,

then modetrans(f,X, Y ) = f.

(14) Let X be a non empty closed interval subset of R and Y be a real normed
space. Then X 7−→ 0Y = 0the R-norm space of continuous functions of X and Y .

(15) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g, h be points of the R-norm space of continuous functions of
X and Y , and f9, g9, h9 be continuous partial functions from R to Y .
Suppose f9 = f and g9 = g and h9 = h and dom f9 = X and dom g9 = X

and domh9 = X. Then h = f + g if and only if for every element x of X
holds (h9)x = (f9)x + (g9)x.

(16) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , h be points of the R-norm space of continuous functions of X
and Y , and f9, h9 be continuous partial functions from R to Y . Suppose
f9 = f and h9 = h and dom f9 = X and domh9 = X. Then h = a · f if
and only if for every element x of X holds (h9)x = a · (f9)x.

(17) Let X be a non empty closed interval subset of R, Y be a real normed
space, f be a point of the R-norm space of continuous functions of X and
Y , and g be a point of the real normed space of bounded functions from
X into Y . If f = g, then ‖f‖ = ‖g‖.

(18) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g be points of the R-norm space of continuous functions of X
and Y , and f1, g1 be points of the real normed space of bounded functions
from X into Y . If f1 = f and g1 = g, then f + g = f1 + g1.

(19) Let X be a non empty closed interval subset of R, Y be a real normed
space, f be a point of the R-norm space of continuous functions of X and
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Y , and f1 be a point of the real normed space of bounded functions from
X into Y . If f1 = f, then a · f = a · f1.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Observe that the R-norm space of continuous functions of X and Y is
reflexive, discernible, real normed space-like, vector distributive, scalar distri-
butive, scalar associative, scalar unital, Abelian, add-associative, right zeroed,
and right complementable.

One can prove the following propositions:

(20) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g, h be points of the R-norm space of continuous functions of
X and Y , and f9, g9, h9 be continuous partial functions from R to Y .
Suppose f9 = f and g9 = g and h9 = h and dom f9 = X and dom g9 = X

and domh9 = X. Then h = f − g if and only if for every element x of X
holds (h9)x = (f9)x − (g9)x.

(21) Let X be a non empty closed interval subset of R, Y be a real normed
space, f , g be points of the R-norm space of continuous functions of X
and Y , and f1, g1 be points of the real normed space of bounded functions
from X into Y . If f1 = f and g1 = g, then f − g = f1 − g1.

Let X be a non empty closed interval subset of R and let Y be a real normed
space. Note that there exists a subset of the real normed space of bounded
functions from X into Y which is closed.

The following two propositions are true:

(22) Let X be a non empty closed interval subset of R and Y be a real normed
space. Then the continuous functions of X and Y is a closed subset of the
real normed space of bounded functions from X into Y .

(23) Let X be a non empty closed interval subset of R, Y be a real normed
space, and s1 be a sequence of the R-norm space of continuous functions
of X and Y . Suppose Y is complete and s1 is Cauchy sequence by norm.
Then s1 is convergent.

Let X be a non empty closed interval subset of R and let Y be a real Banach
space. One can check that the R-norm space of continuous functions of X and
Y is complete.

We now state four propositions:

(24) Let X be a non empty closed interval subset of R, Y be a real normed
space, v be a point of the R-norm space of continuous functions of X and
Y , and g be a partial function from R to Y . If g = v, then for every real
number t such that t ∈ X holds ‖gt‖ ≤ ‖v‖.

(25) Let X be a non empty closed interval subset of R, Y be a real normed
space, K be a real number, v be a point of the R-norm space of continuous
functions of X and Y , and g be a partial function from R to Y . Suppose
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g = v and for every real number t such that t ∈ X holds ‖gt‖ ≤ K. Then
‖v‖ ≤ K.

(26) Let X be a non empty closed interval subset of R, Y be a real normed
space, v1, v2 be points of the R-norm space of continuous functions of X
and Y , and g1, g2 be partial functions from R to Y . Suppose g1 = v1 and
g2 = v2. Let t be a real number. If t ∈ X, then ‖(g1)t− (g2)t‖ ≤ ‖v1− v2‖.

(27) Let X be a non empty closed interval subset of R, Y be a real normed
space, K be a real number, v1, v2 be points of the R-norm space of conti-
nuous functions of X and Y , and g1, g2 be partial functions from R to Y .
Suppose g1 = v1 and g2 = v2 and for every real number t such that t ∈ X
holds ‖(g1)t − (g2)t‖ ≤ K. Then ‖v1 − v2‖ ≤ K.

3. Differential Equations

The following propositions are true:

(28) Let n, i be natural numbers, f be a partial function from R to Rn, and
A be a subset of R. Then proj(i, n) · (f�A) = (proj(i, n) · f)�A.

(29) For every continuous partial function g from R to Rn such that dom g =
[a, b] holds g�[a, b] is bounded.

(30) For every continuous partial function g from R to Rn such that dom g =
[a, b] holds g is integrable on [a, b].

(31) Let f , F be partial functions from R to Rn. Suppose a ≤ b and dom f =
[a, b] and domF = [a, b] and f is continuous and for every real number

t such that t ∈ [a, b] holds F (t) =
t∫
a

f(x)dx. Let x be a real number. If

x ∈ [a, b], then F is continuous in x.

(32) For every continuous partial function f from R to 〈En, ‖ · ‖〉 such that
dom f = [a, b] holds f�[a, b] is bounded.

(33) For every continuous partial function f from R to 〈En, ‖ · ‖〉 such that
dom f = [a, b] holds f is integrable on [a, b].

(34) Let f be a continuous partial function from R to 〈En, ‖ · ‖〉 and F be a
partial function from R to 〈En, ‖ · ‖〉. Suppose a ≤ b and dom f = [a, b]
and domF = [a, b] and for every real number t such that t ∈ [a, b] holds

F (t) =
t∫
a

f(x)dx. Let x be a real number. If x ∈ [a, b], then F is continuous

in x.

(35) Let R be a partial function from R to R. Suppose R is total. Then R is
rest-like if and only if for every real number r such that r > 0 there exists
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a real number d such that d > 0 and for every real number z such that
z 6= 0 and |z| < d holds |z|−1 · |Rz| < r.

In the sequel Z denotes an open subset of R, y0 denotes a vector of 〈En, ‖·‖〉,
and G denotes a function from 〈En, ‖ · ‖〉 into 〈En, ‖ · ‖〉.

One can prove the following propositions:

(36) Let f be a continuous partial function from R to 〈En, ‖ · ‖〉 and g be a
partial function from R to 〈En, ‖ · ‖〉. Suppose a ≤ b and dom f = [a, b]
and dom g = [a, b] and Z = ]a, b[ and for every real number t such that

t ∈ [a, b] holds g(t) = y0 +
t∫
a

f(x)dx. Then g is continuous and ga = y0

and g is differentiable on Z and for every real number t such that t ∈ Z
holds g′(t) = ft.

(37) For every natural number i and for all points y1, y2 of 〈En, ‖ · ‖〉 holds
(proj(i, n))(y1 + y2) = (proj(i, n))(y1) + (proj(i, n))(y2).

(38) For every natural number i and for every point y1 of 〈En, ‖ · ‖〉 and for
every real number r holds (proj(i, n))(r · y1) = r · (proj(i, n))(y1).

(39) Let g be a partial function from R to 〈En, ‖ · ‖〉, x0 be a real number,
and i be a natural number. Suppose 1 ≤ i ≤ n and g is differentiable
in x0. Then proj(i, n) · g is differentiable in x0 and (proj(i, n))(g′(x0)) =
(proj(i, n) · g)′(x0).

(40) Let f be a partial function from R to 〈En, ‖ · ‖〉 and X be a set. Suppose
that for every natural number i such that 1 ≤ i ≤ n holds (proj(i, n)·f)�X
is constant. Then f�X is constant.

(41) Let f be a partial function from R to 〈En, ‖ · ‖〉. Suppose ]a, b[ ⊆ dom f

and f is differentiable on ]a, b[ and for every real number x such that
x ∈ ]a, b[ holds f ′(x) = 0〈En,‖·‖〉. Then f�]a, b[ is constant.

(42) Let f be a continuous partial function from R to 〈En, ‖ · ‖〉. Suppose
a < b and [a, b] = dom f and f�]a, b[ is constant. Let x be a real number.
If x ∈ [a, b], then f(x) = f(a).

(43) Let y, G1 be continuous partial functions from R to 〈En, ‖ · ‖〉 and g

be a partial function from R to 〈En, ‖ · ‖〉. Suppose that a < b and Z =
]a, b[ and dom y = [a, b] and dom g = [a, b] and domG1 = [a, b] and y is
differentiable on Z and ya = y0 and for every real number t such that
t ∈ Z holds y′(t) = (G1)t and for every real number t such that t ∈ [a, b]

holds g(t) = y0 +
t∫
a

G1(x)dx. Then y = g.

(44) Let a, b, c, d be real numbers and f be a partial function from R to 〈En, ‖·
‖〉. Suppose that a ≤ b and f is integrable on [a, b] and ‖f‖ is integrable
on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f and c, d ∈ [a, b]. Then
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‖f‖ is integrable on [min(c, d),max(c, d)] and ‖f‖�[min(c, d),max(c, d)] is

bounded and ‖
d∫
c

f(x)dx‖ ≤
max(c,d)∫

min(c,d)

‖f‖(x)dx.

(45) Let a, b, c, d, e be real numbers and f be a partial function from R to
〈En, ‖ · ‖〉. Suppose that a ≤ b and c ≤ d and f is integrable on [a, b] and
‖f‖ is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f and c,
d ∈ [a, b] and for every real number x such that x ∈ [c, d] holds ‖fx‖ ≤ e.

Then ‖
d∫
c

f(x)dx‖ ≤ e · (d− c) and ‖
c∫
d

f(x)dx‖ ≤ e · (d− c).

(46) Let n be a natural number and g be a function from R into R. Suppose
that for every real number x holds g(x) = (x− a)n+1. Let x be a real
number. Then g is differentiable in x and g′(x) = (n+ 1) · (x− a)n.

(47) Let n be a natural number and g be a function from R into R. Suppose

that for every real number x holds g(x) = (x−a)n+1

(n+1)! . Let x be a real number.

Then g is differentiable in x and g′(x) = (x−a)n

n! .

(48) Let f , g be partial functions from R to R. Suppose that a ≤ t and
[a, t] ⊆ dom f and f is integrable on [a, t] and f�[a, t] is bounded and
[a, t] ⊆ dom g and g is integrable on [a, t] and g�[a, t] is bounded and
for every real number x such that x ∈ [a, t] holds f(x) ≤ g(x). Then
t∫
a

f(x)dx ≤
t∫
a

g(x)dx.

Let n be a non empty element of N, let y0 be a vector of 〈En, ‖·‖〉, let G be a
function from 〈En, ‖·‖〉 into 〈En, ‖·‖〉, and let a, b be real numbers. Let us assume
that a ≤ b and G is continuous on domG. The functor Fredholm(G, a, b, y0)
yielding a function from the R-norm space of continuous functions of [a, b] and
〈En, ‖ · ‖〉 into the R-norm space of continuous functions of [a, b] and 〈En, ‖ · ‖〉
is defined by the condition (Def. 7).

(Def. 7) Let x be a vector of the R-norm space of continuous functions of [a, b]
and 〈En, ‖ · ‖〉. Then there exist continuous partial functions f , g, G1 from
R to 〈En, ‖ · ‖〉 such that x = f and (Fredholm(G, a, b, y0))(x) = g and
dom f = [a, b] and dom g = [a, b] and G1 = G ·f and for every real number

t such that t ∈ [a, b] holds g(t) = y0 +
t∫
a

G1(x)dx.

We now state several propositions:

(49) Suppose a ≤ b and 0 < r and for all vectors y1, y2 of 〈En, ‖ · ‖〉 holds
‖Gy1 − Gy2‖ ≤ r · ‖y1 − y2‖. Let u, v be vectors of the R-norm space of
continuous functions of [a, b] and 〈En, ‖ · ‖〉 and g, h be continuous partial
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functions from R to 〈En, ‖ · ‖〉. Suppose g = (Fredholm(G, a, b, y0))(u) and
h = (Fredholm(G, a, b, y0))(v). Let t be a real number. If t ∈ [a, b], then
‖gt − ht‖ ≤ r · (t− a) · ‖u− v‖.

(50) Suppose a ≤ b and 0 < r and for all vectors y1, y2 of 〈En, ‖ · ‖〉 holds
‖Gy1 − Gy2‖ ≤ r · ‖y1 − y2‖. Let u, v be vectors of the R-norm space
of continuous functions of [a, b] and 〈En, ‖ · ‖〉, m be an element of N,
and g, h be continuous partial functions from R to 〈En, ‖ · ‖〉. Suppose
g = (Fredholm(G, a, b, y0))m+1(u) and h = (Fredholm(G, a, b, y0))m+1(v).

Let t be a real number. If t ∈ [a, b], then ‖gt − ht‖ ≤ (r·(t−a))m+1

(m+1)! · ‖u− v‖.

(51) Let m be a natural number. Suppose a ≤ b and 0 < r and for all
vectors y1, y2 of 〈En, ‖ · ‖〉 holds ‖Gy1 −Gy2‖ ≤ r · ‖y1 − y2‖. Let u, v be
vectors of the R-norm space of continuous functions of [a, b] and 〈En, ‖ ·‖〉.
Then ‖(Fredholm(G, a, b, y0))m+1(u) − (Fredholm(G, a, b, y0))m+1(v)‖ ≤
(r·(b−a))m+1

(m+1)! · ‖u− v‖.

(52) Suppose a < b and G is Lipschitzian on the carrier of 〈En, ‖ · ‖〉. Then
there exists a natural number m such that (Fredholm(G, a, b, y0))m+1 is
contraction.

(53) If a < b and G is Lipschitzian on the carrier of 〈En, ‖ · ‖〉, then
Fredholm(G, a, b, y0) has unique fixpoint.

(54) Let f , g be continuous partial functions from R to 〈En, ‖ · ‖〉. Suppose
dom f = [a, b] and dom g = [a, b] and Z = ]a, b[ and a < b and G is
Lipschitzian on the carrier of 〈En, ‖ ·‖〉 and g = (Fredholm(G, a, b, y0))(f).
Then ga = y0 and g is differentiable on Z and for every real number t such
that t ∈ Z holds g′(t) = (G · f)t.

(55) Let y be a continuous partial function from R to 〈En, ‖ ·‖〉. Suppose that
a < b and Z = ]a, b[ and G is Lipschitzian on the carrier of 〈En, ‖ · ‖〉
and dom y = [a, b] and y is differentiable on Z and ya = y0 and for every
real number t such that t ∈ Z holds y′(t) = G(yt). Then y is a fixpoint of
Fredholm(G, a, b, y0).

(56) Let y1, y2 be continuous partial functions from R to 〈En, ‖ · ‖〉. Suppose
that a < b and Z = ]a, b[ and G is Lipschitzian on the carrier of 〈En, ‖ · ‖〉
and dom y1 = [a, b] and y1 is differentiable on Z and (y1)a = y0 and
for every real number t such that t ∈ Z holds y1

′(t) = G((y1)t) and
dom y2 = [a, b] and y2 is differentiable on Z and (y2)a = y0 and for every
real number t such that t ∈ Z holds y2

′(t) = G((y2)t). Then y1 = y2.

(57) Suppose a < b and Z = ]a, b[ and G is Lipschitzian on the carrier of
〈En, ‖ · ‖〉. Then there exists a continuous partial function y from R to
〈En, ‖ · ‖〉 such that dom y = [a, b] and y is differentiable on Z and ya = y0

and for every real number t such that t ∈ Z holds y′(t) = G(yt).
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The papers [10], [6], [1], [8], [2], [3], [4], [9], [12], [11], and [5] provide the termi-
nology and notation for this paper.

In this paper I denotes a set and E denotes a non empty set.
Let us mention that every binary relation which is empty is also ∅-defined.
Let C be a graph. We say that C is functional if and only if:

(Def. 1) For all objects a, b of C holds 〈a, b〉 is functional.

Let us consider E. One can verify that EnsE is functional.
Let us observe that there exists a category which is functional and strict.
Let C be a functional category structure. One can verify that the graph of

C is functional.
Let us observe that there exists a graph which is functional and strict.
Let us note that there exists a category which is functional and strict.
Let C be a functional graph and let a, b be objects of C. Observe that 〈a, b〉

is functional.
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Let C be a non empty category structure and let I be a set. An objects
family of I and C is a function from I into C.

Let C be a non empty category structure, let o be an object of C, let I be
a set, and let f be an objects family of I and C. A many sorted set indexed by
I is said to be a morphisms family of o and f if:

(Def. 2) For every set i such that i ∈ I there exists an object o1 of C such that
o1 = f(i) and it(i) is a morphism from o to o1.

Let C be a non empty category structure, let o be an object of C, let I be a
non empty set, and let f be an objects family of I and C. Let us note that the
morphisms family of o and f can be characterized by the following (equivalent)
condition:

(Def. 3) For every element i of I holds it(i) is a morphism from o to f(i).

Let C be a non empty category structure, let o be an object of C, let I be
a non empty set, let f be an objects family of I and C, let M be a morphisms
family of o and f , and let i be an element of I. Then M(i) is a morphism from
o to f(i).

Let C be a functional non empty category structure, let o be an object of
C, let I be a set, and let f be an objects family of I and C. Observe that every
morphisms family of o and f is function yielding.

Next we state the proposition

(1) Let C be a non empty category structure, o be an object of C, and f be
an objects family of ∅ and C. Then ∅ is a morphisms family of o and f .

Let C be a non empty category structure, let I be a set, let A be an objects
family of I and C, let B be an object of C, and let P be a morphisms family of
B and A. We say that P is feasible if and only if:

(Def. 4) For every set i such that i ∈ I there exists an object o of C such that
o = A(i) and P (i) ∈ 〈B, o〉.

Let C be a non empty category structure, let I be a non empty set, let A be
an objects family of I and C, let B be an object of C, and let P be a morphisms
family of B and A. Let us observe that P is feasible if and only if:

(Def. 5) For every element i of I holds P (i) ∈ 〈B,A(i)〉.
Let C be a category, let I be a set, let A be an objects family of I and C,

let B be an object of C, and let P be a morphisms family of B and A. We say
that P is projection morphisms family if and only if the condition (Def. 6) is
satisfied.

(Def. 6) Let X be an object of C and F be a morphisms family of X and A.
Suppose F is feasible. Then there exists a morphism f from X to B such
that

(i) f ∈ 〈X,B〉,
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(ii) for every set i such that i ∈ I there exists an object s1 of C and there
exists a morphism P1 from B to s1 such that s1 = A(i) and P1 = P (i)
and F (i) = P1 · f, and

(iii) for every morphism f1 from X to B such that for every set i such that
i ∈ I there exists an object s1 of C and there exists a morphism P1 from B

to s1 such that s1 = A(i) and P1 = P (i) and F (i) = P1 · f1 holds f = f1.

Let C be a category, let I be a non empty set, let A be an objects family
of I and C, let B be an object of C, and let P be a morphisms family of B
and A. Let us observe that P is projection morphisms family if and only if the
condition (Def. 7) is satisfied.

(Def. 7) Let X be an object of C and F be a morphisms family of X and A.
Suppose F is feasible. Then there exists a morphism f from X to B such
that

(i) f ∈ 〈X,B〉,
(ii) for every element i of I holds F (i) = P (i) · f, and
(iii) for every morphism f1 from X to B such that for every element i of I

holds F (i) = P (i) · f1 holds f = f1.

Let C be a category, let A be an objects family of ∅ and C, and let B be an
object of C. Note that every morphisms family of B and A is feasible.

One can prove the following propositions:

(2) Let C be a category, A be an objects family of ∅ and C, and B be an
object of C. If B is terminal, then there exists a morphisms family of B
and A which is empty and projection morphisms family.

(3) For every objects family A of I and Ens1 and for every object o of Ens1

holds I 7−→ ∅ is a morphisms family of o and A.

(4) Let A be an objects family of I and Ens1, o be an object of Ens1, and
P be a morphisms family of o and A. If P = I 7−→ ∅, then P is feasible
and projection morphisms family.

Let C be a category. We say that C has products if and only if the condition
(Def. 8) is satisfied.

(Def. 8) Let I be a set and A be an objects family of I and C. Then there exists
an object B of C such that there exists a morphisms family of B and A

which is feasible and projection morphisms family.

Let us note that Ens1 has products.
One can check that there exists a category which has products.
Let C be a category, let I be a set, let A be an objects family of I and C,

and let B be an object of C. We say that B is A-cat product-like if and only if:

(Def. 9) There exists a morphisms family of B and A which is feasible and pro-
jection morphisms family.
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Let C be a category with products, let I be a set, and let A be an objects
family of I and C. One can check that there exists an object of C which is A-cat
product-like.

Let C be a category and let A be an objects family of ∅ and C. Note that
every object of C which is A-cat product-like is also terminal.

We now state two propositions:

(5) Let C be a category, A be an objects family of ∅ and C, and B be an
object of C. If B is terminal, then B is A-cat product-like.

(6) Let C be a category, A be an objects family of I and C, and C1, C2 be
objects of C. Suppose C1 is A-cat product-like and C2 is A-cat product-
like. Then C1, C2 are iso.

In the sequel A is an objects family of I and EnsE .
Let us consider I, E, A. Let us assume that

∏
A ∈ E. The functor

EnsCatProductObjA yielding an object of EnsE is defined by:

(Def. 10) EnsCatProductObjA =
∏
A.

Let us consider I, E, A. Let us assume that
∏
A ∈ E. The functor

EnsCatProductA yields a morphisms family of EnsCatProductObjA and A

and is defined by:

(Def. 11) For every set i such that i ∈ I holds (EnsCatProductA)(i) = proj(A, i).

We now state four propositions:

(7) If
∏
A ∈ E and

∏
A = ∅, then EnsCatProductA = I 7−→ ∅.

(8) If
∏
A ∈ E, then EnsCatProductA is feasible and projection morphisms

family.

(9) If
∏
A ∈ E, then EnsCatProductObjA is A-cat product-like.

(10) If for all I, A holds
∏
A ∈ E, then EnsE has products.
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Summary. We introduce an algebra with free variables, an algebra with
undefined values, a program algebra over a term algebra, an algebra with integers,
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assignments. Programs depend on the set of generators with supporting variables
and supporting terms which determine the value of free variables in the next state.
The execution of a program is changing state according to successor function
using supporting terms.
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The terminology and notation used in this paper have been introduced in the
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1. Preliminaries

For simplicity, we adopt the following convention: i denotes a natural num-
ber, x, y, z denote sets, Σ denotes a non empty non void many sorted signature,
and X denotes a non-empty many sorted set indexed by the carrier of Σ.

We now state three propositions:

(1) For all sets A, B and for every A-valued binary relation R holds
R◦B ⊆ A.

1This work has been supported by the Polish Ministry of Science and Higher Education pro-
ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).
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(2) For all sets I, J such that I ⊆ J holds Ii ⊆ J i.
(3) Let I, J be non empty sets and f be a homogeneous partial function from

I∗ to J . Then f is quasi total and non empty if and only if dom f = Iarity f .

Let I be a set, let f be a many sorted set indexed by I, let i be a set, and
let us consider x. Then f +· (i, x) is a many sorted set indexed by I.

Let A, B be sets, let f be a function from A into B, let x be a set, and let
y be an element of B. Then f +· (x, y) is a function from A into B.

Let I be a set, let A, B be many sorted sets indexed by I, let F be a many
sorted function from A into B, and let us consider x. Then F (x) is a function
from A(x) into B(x).

Let I be a set, let f be a non-empty many sorted set indexed by I, let i be
a set, and let x be a non empty set. Note that f +· (i, x) is non-empty.

The following propositions are true:

(4) For every set I and for all many sorted sets f , g indexed by I such that
f ⊆ g holds f# ⊆ g#.

(5) Let I be a non empty set, J be a set, and A, B be many sorted sets
indexed by I. If A ⊆ B, then for every function f from J into I holds
A · f ⊆ B · f.

(6) For every set I and for all many sorted sets A, B indexed by I such that
A ⊆ B holds

∏
A ⊆

∏
B.

Let f be a function yielding function. Note that Frege(f) is function yielding.
The following two propositions are true:

(7) For all function yielding functions f , g holds domκ(f · g)(κ) =
(domκ f(κ)) · g.

(8) For all functions f , g such that g = f(x) holds g(y) = f(x)(y).

Let I be a set, let i be an element of I, and let us consider x. The functor
i -singletonx yields a many sorted set indexed by I and is defined by:

(Def. 1) i -singletonx = 0.I +· (i, {x}).
One can prove the following propositions:

(9) For every non empty set I and for all elements i, j of I and for every x
holds (i -singletonx)(i) = {x} and if i 6= j, then (i -singletonx)(j) = ∅.

(10) Let I be a non empty set, i be an element of I, A be a many sorted set
indexed by I, and given x. If x ∈ A(i), then i -singletonx is a many sorted
subset of A.

Let I be a set, let A, B be many sorted sets indexed by I, let F be a many
sorted function from A into B, and let i be a set. Let us assume that i ∈ I.

Let j be a set. Let us assume that j ∈ A(i). Let v be a set. Let us assume that
v ∈ B(i). The functor F +·(i, j, v) yields a many sorted function from A into B
and is defined as follows:
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(Def. 2) (F +·(i, j, v))(i) = F (i) +· (j, v) and for every set s such that s ∈ I and
s 6= i holds (F +·(i, j, v))(s) = F (s).

Let a, b, c, d, x, y, z, v be sets. The functor (a, b, c, d) 7→ (x, y, z, v) yielding
a set is defined as follows:

(Def. 3) (a, b, c, d) 7→ (x, y, z, v) = (a, b, c) 7→ (x, y, z)+·(d 7−→. v).

Let a, b, c, d, x, y, z, v be sets. Observe that (a, b, c, d) 7→ (x, y, z, v) is
relation-like and function-like.

Next we state a number of propositions:

(11) Let a1, a2, a3, b1, b2, b3 be sets. Then ((a1, a2, a3) 7→ (b1, b2, b3))(a3) = b3
and if a2 6= a3, then ((a1, a2, a3) 7→ (b1, b2, b3))(a2) = b2 and if a1 6= a2

and a1 6= a3, then ((a1, a2, a3) 7→ (b1, b2, b3))(a1) = b1.

(12) For all sets a1, a2, a3, a4, b1, b2, b3, b4 holds dom((a1, a2, a3, a4) 7→
(b1, b2, b3, b4)) = {a1, a2, a3, a4}.

(13) Let a1, a2, a3, a4, b1, b2, b3, b4 be sets. Then
(i) ((a1, a2, a3, a4) 7→ (b1, b2, b3, b4))(a4) = b4,

(ii) if a3 6= a4, then ((a1, a2, a3, a4) 7→ (b1, b2, b3, b4))(a3) = b3,

(iii) if a2 6= a3 and a2 6= a4, then ((a1, a2, a3, a4) 7→ (b1, b2, b3, b4))(a2) = b2,

and
(iv) if a1 6= a2 and a1 6= a3 and a1 6= a4, then ((a1, a2, a3, a4) 7→

(b1, b2, b3, b4))(a1) = b1.

(14) For all sets a1, a2, a3, b1, b2, b3 such that a2 6= a3 and a1 6= a2 and
a1 6= a3 holds rng((a1, a2, a3) 7→ (b1, b2, b3)) = {b1, b2, b3}.

(15) For all sets a1, a2, a3, a4, b1, b2, b3, b4 such that a2 6= a3 and a1 6= a2 and
a1 6= a3 and a4 6= a1 and a4 6= a2 and a4 6= a3 holds rng((a1, a2, a3, a4) 7→
(b1, b2, b3, b4)) = {b1, b2, b3, b4}.

(16) For every set X and for all sets a1, a2, a3 such that a1, a2, a3 ∈ X holds
{a1, a2, a3} ⊆ X.

(17) For every set X and for all sets a1, a2, a3, a4 such that a1, a2, a3, a4 ∈ X
holds {a1, a2, a3, a4} ⊆ X.

(18) Let X be a set and a1, a2, a3, a4, a5, a6 be sets. If a1, a2, a3, a4, a5,
a6 ∈ X, then {a1, a2, a3, a4, a5, a6} ⊆ X.

(19) Let X be a set and a1, a2, a3, a4, a5, a6, a7, a8, a9 be sets. Suppose a1, a2,
a3, a4, a5, a6, a7, a8, a9 ∈ X. Then {a1, a2, a3, a4, a5, a6, a7, a8, a9} ⊆ X.

(20) Let X be a set and a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be
sets. Suppose a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 ∈ X. Then
{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10} ⊆ X.

(21) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9 holds {a1} ∪
{a2, a3, a4, a5, a6, a7, a8, a9} = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

(22) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 holds {a1} ∪
{a2, a3, a4, a5, a6, a7, a8, a9, a10} = {a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}.



312 grzegorz bancerek

(23) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9 holds
{a1, a2, a3, a4, a5, a6, a7, a8} ∪ {a9} = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

(24) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 holds
{a1, a2, a3, a4, a5, a6, a7, a8, a9} ∪ {a10} =
{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10}.

(25) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9 holds {a1, a2, a3} ∪
{a4, a5, a6, a7, a8, a9} = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

(26) For all sets a1, a2, a3, a4 such that a1 6= a2 and a1 6= a3 and a1 6= a4 and
a2 6= a3 and a2 6= a4 and a3 6= a4 holds 〈a1, a2, a3, a4〉 is one-to-one.

Let a1, a2, a3, a4, a5, a6 be sets. The functor 〈〈a1, a2, a3, a4, a5, a6〉〉 yielding
a finite sequence is defined as follows:

(Def. 4) 〈〈a1, a2, a3, a4, a5, a6〉〉 = 〈a1, a2, a3, a4, a5〉 a 〈a6〉.
Let X be a non empty set and let a1, a2, a3, a4, a5, a6 be elements of X.

Then 〈〈a1, a2, a3, a4, a5, a6〉〉 is a finite sequence of elements of X.
Let a1, a2, a3, a4, a5, a6 be sets. One can check that 〈〈a1, a2, a3, a4, a5, a6〉〉 is

6-element.
We now state two propositions:

(27) Let a1, a2, a3, a4, a5, a6 be sets and f be a finite sequence. Then f =
〈〈a1, a2, a3, a4, a5, a6〉〉 if and only if the following conditions are satisfied:
len f = 6 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and
f(5) = a5 and f(6) = a6.

(28) For all sets a1, a2, a3, a4, a5, a6 holds rng 〈〈a1, a2, a3, a4, a5, a6〉〉 =
{a1, a2, a3, a4, a5, a6}.

Let a1, a2, a3, a4, a5, a6, a7 be sets. The functor 〈〈a1, a2, a3, a4, a5, a6, a7〉〉
yields a finite sequence and is defined by:

(Def. 5) 〈〈a1, a2, a3, a4, a5, a6, a7〉〉 = 〈a1, a2, a3, a4, a5〉 a 〈a6, a7〉.
Let X be a non empty set and let a1, a2, a3, a4, a5, a6, a7 be elements of

X. Then 〈〈a1, a2, a3, a4, a5, a6, a7〉〉 is a finite sequence of elements of X.
Let a1, a2, a3, a4, a5, a6, a7 be sets. Observe that 〈〈a1, a2, a3, a4, a5, a6, a7〉〉

is 7-element.
We now state two propositions:

(29) Let a1, a2, a3, a4, a5, a6, a7 be sets and f be a finite sequence. Then
f = 〈〈a1, a2, a3, a4, a5, a6, a7〉〉 if and only if the following conditions are
satisfied:
len f = 7 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and
f(5) = a5 and f(6) = a6 and f(7) = a7.

(30) For all sets a1, a2, a3, a4, a5, a6, a7 holds rng 〈〈a1, a2, a3, a4, a5, a6, a7〉〉 =
{a1, a2, a3, a4, a5, a6, a7}.

Let a1, a2, a3, a4, a5, a6, a7, a8 be sets. The functor 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉
yielding a finite sequence is defined by:
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(Def. 6) 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 = 〈a1, a2, a3, a4, a5〉 a 〈a6, a7, a8〉.
Let X be a non empty set and let a1, a2, a3, a4, a5, a6, a7, a8 be elements

of X. Then 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 is a finite sequence of elements of X.
Let a1, a2, a3, a4, a5, a6, a7, a8 be sets.
Observe that 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 is 8-element.
The following propositions are true:

(31) Let a1, a2, a3, a4, a5, a6, a7, a8 be sets and f be a finite sequence. Then
f = 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 if and only if the following conditions are
satisfied:
len f = 8 and f(1) = a1 and f(2) = a2 and f(3) = a3 and f(4) = a4 and
f(5) = a5 and f(6) = a6 and f(7) = a7 and f(8) = a8.

(32) For all sets a1, a2, a3, a4, a5, a6, a7, a8 holds
rng 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 = {a1, a2, a3, a4, a5, a6, a7, a8}.

(33) For all sets a1, a2, a3, a4, a5, a6, a7, a8, a9 holds
rng(〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 a 〈a9〉) = {a1, a2, a3, a4, a5, a6, a7, a8, a9}.

(34) Seg 9 = {1, 2, 3, 4, 5, 6, 7, 8, 9}.
(35) Seg 10 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}.

We now state the proposition

(36) Let a1, a2, a3, a4, a5, a6, a7, a8, a9 be sets. Then domw9 = Seg 9 and
w9(1) = a1 and w9(2) = a2 and w9(3) = a3 and w9(4) = a4 and w9(5) = a5

and w9(6) = a6 and w9(7) = a7 and w9(8) = a8 and w9(9) = a9, where
w9 = 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉 a 〈a9〉.

The following proposition is true

(37) Let a1, a2, a3, a4, a5, a6, a7, a8, a9, a10 be sets. Then domw10 = Seg 10
and w10(1) = a1 and w10(2) = a2 and w10(3) = a3 and w10(4) = a4

and w10(5) = a5 and w10(6) = a6 and w10(7) = a7 and w10(8) = a8 and
w10(9) = a9 and w10(10) = a10, where w10 = 〈〈a1, a2, a3, a4, a5, a6, a7, a8〉〉a
〈a9, a10〉.

Let I, J be sets and let Σ be a many sorted set indexed by I. A many sorted
function indexed by I is said to be a double many sorted set of Σ and J if:

(Def. 7) For all sets i, j such that i ∈ I holds dom it(i) = Σ(i) and if j ∈ Σ(i),
then it(i)(j) is a many sorted set indexed by J .

Let I, J be sets, let Σ1 be a many sorted set indexed by I, and let Σ2 be a
many sorted set indexed by J . A double many sorted set of Σ1 and J is said to
be a double many sorted set of Σ1 and Σ2 if:

(Def. 8) For all sets i, a such that i ∈ I and a ∈ Σ1(i) holds it(i)(a) is a many
sorted subset of Σ2.

Let I be a set, let X, Y be many sorted sets indexed by I, let f be a
double many sorted set of X and Y , and let x, y be sets. Note that f(x)(y) is
function-like and relation-like.
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Let Σ be a many sorted signature, let o, a be sets, and let r be an element
of Σ. We say that o is of type a → r if and only if:

(Def. 9) (The arity of Σ)(o) = a and (the result sort of Σ)(o) = r.

One can prove the following propositions:

(38) Let Σ be a non void non empty many sorted signature, o be an operation
symbol of Σ, and r be a sort symbol of Σ. Suppose o is of type ∅ → r. Let A

be an algebra over Σ. Suppose (the sorts of A)(r) 6= ∅. Then (Den(o(∈ the
carrier’ of Σ),A))(∅) is an element of (the sorts of A)(r).

(39) Let Σ be a non void non empty many sorted signature, o, a be sets, and
r be a sort symbol of Σ. Suppose o is of type 〈a〉 → r. Let A be an algebra
over Σ. Suppose (the sorts of A)(a) 6= ∅ and (the sorts of A)(r) 6= ∅. Let
x be an element of (the sorts of A)(a). Then (Den(o(∈ the carrier’ of Σ),
A))(〈x〉) is an element of (the sorts of A)(r).

(40) Let Σ be a non void non empty many sorted signature, o, a, b be sets,
and r be a sort symbol of Σ. Suppose o is of type 〈a, b〉 → r. Let A be an
algebra over Σ. Suppose (the sorts of A)(a) 6= ∅ and (the sorts of A)(b) 6= ∅
and (the sorts of A)(r) 6= ∅. Let x be an element of (the sorts of A)(a) and
y be an element of (the sorts of A)(b). Then (Den(o(∈ the carrier’ of Σ),
A))(〈x, y〉) is an element of (the sorts of A)(r).

(41) Let Σ be a non void non empty many sorted signature, o, a, b, c be sets,
and r be a sort symbol of Σ. Suppose o is of type 〈a, b, c〉 → r. Let A

be an algebra over Σ. Suppose (the sorts of A)(a) 6= ∅ and (the sorts of
A)(b) 6= ∅ and (the sorts of A)(c) 6= ∅ and (the sorts of A)(r) 6= ∅. Let x be
an element of (the sorts of A)(a), y be an element of (the sorts of A)(b),
and z be an element of (the sorts of A)(c). Then (Den(o(∈ the carrier’ of
Σ),A))(〈x, y, z〉) is an element of (the sorts of A)(r).

(42) Let Σ1, Σ2 be many sorted signatures. Suppose the many sorted signa-
ture of Σ1 = the many sorted signature of Σ2. Let o, a be sets, r1 be an
element of Σ1, and r2 be an element of Σ2. If r1 = r2, then if o is of type
a → r1, then o is of type a → r2.

(43) Let o be an operation symbol of Σ, r be a sort symbol of Σ, and A be
an algebra over Σ. If o is of type ∅ → r, then ∅ ∈ Args(o,A).

(44) Let o be an operation symbol of Σ, s, r be sort symbols of Σ, and A be
an algebra over Σ. If o is of type 〈s〉 → r and x ∈ (the sorts of A)(s), then
〈x〉 ∈ Args(o,A).

(45) Let o be an operation symbol of Σ, s1, s2, r be sort symbols of Σ, and A

be an algebra over Σ. Suppose o is of type 〈s1, s2〉 → r and x ∈ (the sorts
of A)(s1) and y ∈ (the sorts of A)(s2). Then 〈x, y〉 ∈ Args(o,A).

(46) Let o be an operation symbol of Σ, s1, s2, s3, r be sort symbols of Σ, and
A be an algebra over Σ. Suppose o is of type 〈s1, s2, s3〉 → r and x ∈ (the
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sorts of A)(s1) and y ∈ (the sorts of A)(s2) and z ∈ (the sorts of A)(s3).
Then 〈x, y, z〉 ∈ Args(o,A).

2. Free Variables

Let Σ be a non empty non void many sorted signature. We consider free
variable algebras over Σ as extensions of algebra over Σ as systems
〈 sorts, a characteristics, free variables 〉,

where the sorts constitute a many sorted set indexed by the carrier of Σ, the
characteristics is a many sorted function from the sorts# · the arity of Σ into
the sorts ·the result sort of Σ, and the free variables constitute a double many
sorted set of the sorts and the sorts.

Let Σ be a non empty non void many sorted signature, let U be a non-empty
many sorted set indexed by the carrier of Σ, let C be a many sorted function
from U# · the arity of Σ into U · the result sort of Σ, and let v be a double many
sorted set of U and U . Observe that 〈〈U,C, v〉〉V is non-empty.

Let Σ be a non empty non void many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of Σ. Observe that there exists
a strict free variable algebra over Σ which is non-empty and including Σ-terms
over X.

Let Σ be a non empty non void many sorted signature. One can check that
there exists a free variable algebra over Σ which is non-empty and disjoint
valued. Let X be a non-empty many sorted set indexed by the carrier of Σ.
One can check that every including Σ-terms over X free variable algebra over
Σ which has all variables is also non-empty.

Let Σ be a non empty non void many sorted signature, let A be a non-empty
free variable algebra over Σ, let a be a sort symbol of Σ, and let t be an element
of A from a. The functor vf t yields a many sorted subset of the sorts of A and
is defined as follows:

(Def. 10) vf t = (the free variables of A)(a)(t).

Let Σ be a non empty non void many sorted signature and let A be a non-
empty free variable algebra over Σ. We say that A is vf-correct if and only if
the condition (Def. 11) is satisfied.

(Def. 11) Let o be an operation symbol of Σ and p be a finite sequence. Sup-
pose p ∈ Args(o,A). Let b be an element of A from the result sort
of o. Suppose b = (Den(o,A))(p). Let s be a sort symbol of Σ. Then
(vf b)(s) ⊆

⋃
{(vf a)(s); s0 ranges over sort symbols of Σ, a ranges over

elements of A from s0:
∨
i : natural number (i ∈ dom Arity(o) ∧ s0 =

Arity(o)(i) ∧ a = p(i))}.
Next we state three propositions:



316 grzegorz bancerek

(47) Let Σ be a non empty non void many sorted signature and A, B be
algebras over Σ. Suppose the algebra of A = the algebra of B. Let G be a
subset of A and H be a subset of B. If G = H, then Gen(G) = Gen(H).

(48) Let Σ be a non empty non void many sorted signature and A, B be
algebras over Σ. Suppose the algebra of A = the algebra of B. Then every
generator set of A is a generator set of B.

(49) Let Σ be a non empty non void many sorted signature and A, B be
non-empty algebras over Σ. Suppose the algebra of A = the algebra of B.
Let G be a generator set of A and H be a generator set of B. If G = H,

then if G is free, then H is free.

Let Σ be a non empty non void many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of Σ. Observe that there exists a
non-empty including Σ-terms over X strict free variable algebra over Σ which
is free in itself, has all variables, and inherits operations.

Let Σ be a non empty non void many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of Σ, and let A be a non-empty including
Σ-terms over X free variable algebra over Σ. We say that A is vf-free if and only
if the condition (Def. 12) is satisfied.

(Def. 12) Let s, r be sort symbols of Σ and t be an element of A from s. Then
(vf t)(r) = {t�p; p ranges over elements of dom t : (t�p)(∅)2 = r}.

The scheme Scheme deals with a non empty set A, non-empty many sorted
sets B, C indexed by A, and a ternary functor F yielding a set, and states that:

There exists a double many sorted set f of B and C such that
for all elements s, r of A and for every element t of B(s) holds
f(s)(t)(r) = F(s, r, t)

provided the parameters satisfy the following condition:
• For all elements s, r of A and for every element t of B(s) holds
F(s, r, t) is a subset of C(r).

Next we state the proposition

(50) Let Σ be a non empty non void many sorted signature, X be a non-
empty many sorted set indexed by the carrier of Σ, and A be a free in itself
including Σ-terms over X algebra over Σ with all variables and inheriting
operations. Then there exists a double many sorted set V1 of the sorts of
A and the sorts of A and there exists a free in itself including Σ-terms
over X free variable algebra B over Σ with all variables and inheriting
operations such that B = 〈〈the sorts of A, the characteristics of A, V1〉〉V
and B is vf-free.

Let Σ be a non empty non void many sorted signature and let X be a non-
empty many sorted set indexed by the carrier of Σ. One can verify that there
exists a free in itself including Σ-terms over X free variable algebra over Σ with
all variables and inheriting operations which is strict and vf-free.
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We now state two propositions:

(51) Let Σ be a non empty non void many sorted signature, X be a non-empty
many sorted set indexed by the carrier of Σ, A be a vf-free including Σ-
terms over X free variable algebra over Σ with all variables and inheriting
operations, s be a sort symbol of Σ, and t be an element of A from s. Then
vf t is a many sorted subset of FreeGenerator(X).

(52) Let Σ be a non empty non void many sorted signature, X be a non-empty
many sorted set indexed by the carrier of Σ, A be a vf-free non-empty
including Σ-terms over X free variable algebra over Σ, s be a sort symbol
of Σ, and x be an element of A from s. If x ∈ (FreeGenerator(X))(s), then
vf x = s -singletonx.

3. Algebra with Undefined Values

Let I be a set and let Σ be a many sorted set indexed by I. A many sorted
element of Σ is an element of Σ.

Let I be a non empty set, let A be a non-empty many sorted set indexed by
I, let e be a many sorted element of A, and let i be an element of I. Then e(i)
is an element of A(i).

Let Σ be a non empty non void many sorted signature. We introduce algebras
over Σ with undefined values which are extensions of algebra over Σ and are
systems
〈 sorts, a characteristics, an undefined map 〉,

where the sorts constitute a many sorted set indexed by the carrier of Σ, the
characteristics is a many sorted function from the sorts# · the arity of Σ into
the sorts ·the result sort of Σ, and the undefined map is a many sorted element
of the sorts.

Let Σ be a non empty non void many sorted signature. Note that there exists
an algebra over Σ with undefined values which is non-empty.

Let Σ be a non empty non void many sorted signature, let A be an algebra
over Σ with undefined values, let s be a sort symbol of Σ, and let a be an element
of A from s. We say that a is undefined if and only if:

(Def. 13) a = (the undefined map of A)(s).

Let Σ be a non empty non void many sorted signature, let A be an algebra
over Σ, let s be a sort symbol of Σ, and let a be an element of A from s. We say
that a is defined if and only if:

(Def. 14) For every algebra B over Σ with undefined values such that B = A holds
a 6= (the undefined map of B)(s).

Let Σ be a non empty non void many sorted signature and let A be an
algebra over Σ. The defined sorts of A constitute a many sorted subset of the
sorts of A defined by:



318 grzegorz bancerek

(Def. 15)(i) For every algebra B over Σ with undefined values such that A = B

and for every many sorted set U indexed by the carrier of Σ such that
for every sort symbol s of Σ holds U(s) = {(the undefined map of B)(s)}
holds the defined sorts of A = (the sorts of A) \ U if A is an algebra over
Σ with undefined values,

(ii) the defined sorts of A = the sorts of A, otherwise.

We now state the proposition

(53) Let Σ1, Σ2 be non empty non void many sorted signatures, A1 be an
algebra over Σ1 with undefined values, and A2 be an algebra over Σ2

with undefined values. Suppose the sorts of A1 = the sorts of A2 and the
undefined map of A1 = the undefined map of A2. Then the defined sorts
of A1 = the defined sorts of A2.

Let Σ be a non empty non void many sorted signature and let A be an
algebra over Σ. We say that A has defined elements if and only if:

(Def. 16) The defined sorts of A are non-empty.

Let Σ be a non empty non void many sorted signature, let A be a non-empty
algebra over Σ with undefined values, let s be a sort symbol of Σ, and let a be
an element of A from s. Let us observe that a is defined if and only if:

(Def. 17) a ∈ (the defined sorts of A)(s).

Let Σ be a non empty non void many sorted signature and let A be an
algebra over Σ with undefined values. We say that A is undefined consequently
if and only if the condition (Def. 18) is satisfied.

(Def. 18) Let o be an operation symbol of Σ and p be a finite sequence. Suppose
that

(i) p ∈ Args(o,A), and
(ii) there exists a natural number i and there exists a sort symbol s of Σ

and there exists an element a of A from s such that i ∈ dom Arity(o) and
s = Arity(o)(i) and a = p(i) and a is undefined.
Let b be an element of A from the result sort of o. If b = (Den(o,A))(p),
then b is undefined.

Let I be a set and let A be a many sorted set indexed by I. The functor
succA yielding a many sorted set indexed by I is defined as follows:

(Def. 19) For every set i such that i ∈ I holds (succA)(i) = succA(i).

Let I be a set and let A be a many sorted set indexed by I. Note that succA
is non-empty.

Let Σ be a non empty non void many sorted signature, let A be an algebra
over Σ, and let B be an algebra over Σ with undefined values. We say that B

is A with undefined values if and only if the conditions (Def. 20) are satisfied.

(Def. 20)(i) B is undefined consequently,
(ii) the undefined map of B = the sorts of A,
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(iii) the sorts of B = succ (the sorts of A), and
(iv) for every operation symbol o of Σ and for every element a of Args(o,A)

such that Args(o,A) 6= ∅ holds if (Den(o,B))(a) 6= (Den(o,A))(a), then
(Den(o,B))(a) = (the undefined map of B)(the result sort of o).

We now state the proposition

(54) Let Σ be a non empty non void many sorted signature, A be an algebra
over Σ, and B be an algebra over Σ with undefined values. Suppose B is
A with undefined values. Then the defined sorts of B = the sorts of A.

Let Σ be a non empty many sorted signature and let A be an algebra over
Σ. Observe that the characteristics of A is function yielding.

Let Σ be a non empty non void many sorted signature. Note that every
algebra over Σ which has defined elements is also non-empty.

The scheme UndefAlgebra deals with a non empty non void many sorted
signature A, a non-empty algebra B over A, and a binary predicate P, and
states that:

There exists a strict algebra B over A with undefined values such
that
(i) B is B with undefined values and has defined elements,
(ii) the undefined map of B = the sorts of B,
(iii) the sorts of B = succ (the sorts of B), and
(iv) for every operation symbol o of A and for every element a
of Args(o,B) holds if not P[o, a], then (Den(o,B))(a) = (Den(o,
B))(a) and if P[o, a], then (Den(o,B))(a) = (the undefined map
of B)(the result sort of o)

for all values of the parameters.
One can prove the following proposition

(55) Let A be a non-empty algebra over Σ. Then there exists a strict algebra
B over Σ with undefined values such that

(i) B is A with undefined values and has defined elements,
(ii) the undefined map of B = the sorts of A,
(iii) the sorts of B = succ (the sorts of A), and
(iv) for every operation symbol o of Σ and for every element a of Args(o,A)

holds (Den(o,B))(a) = (Den(o,A))(a).

Let Σ be a non empty non void many sorted signature and let A be a non-
empty algebra over Σ. Note that every algebra over Σ with undefined values
which is A with undefined values is also undefined consequently and there exists
a strict algebra over Σ with undefined values which is A with undefined values
and has defined elements.

Let Σ be a non empty non void many sorted signature. One can verify that
there exists an algebra over Σ which has defined elements.
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Let Σ be a non empty non void many sorted signature and let A be an
algebra over Σ with defined elements. One can verify that the defined sorts of
A is non-empty. Let s be a sort symbol of Σ. Note that there exists an element
of A from s which is defined.

Let us consider Σ, let A be an algebra over Σ with undefined values with
defined elements, and let s be a sort symbol of Σ. Note that there exists an
element of A from s which is defined.

4. Program Algebra

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. We introduce program algebra struc-
tures of J , T, and X which are extensions of universal algebra structures and
are systems
〈 a carrier, a characteristic, assignments 〉,

where the carrier is a set, the characteristic is a finite sequence of operational
functions of the carrier, and the assignments constitute a function from

⋃
[[X, the

sorts of T]] into the carrier.
Let J be a non empty non void many sorted signature, let T be an algebra

over J , let X be a generator set of T, and let A be a program algebra structure
of J , T, and X. We say that A is disjoint valued if and only if:

(Def. 21) The sorts of T are disjoint valued and the assignments of A are one-to-
one.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. Note that there exists a strict program
algebra structure of J , T, and X which is partial, quasi total, and non-empty.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. Note that there exists a partial quasi
total non-empty non empty strict program algebra structure of J , T, and X

which has empty-instruction, catenation, if-instruction, and while-instruction.
We now state several propositions:

(56) Let U1, U2 be pre-if-while algebras. Suppose the universal algebra struc-
ture of U1 = the universal algebra structure of U2. Then

(i) EmptyIns(U1) = EmptyIns(U2), and
(ii) for all elements I1, J1 of U1 and for all elements I2, J2 of U2 such that

I1 = I2 and J1 = J2 holds I1; J1 = I2; J2 and while I1 do J1 = while I2 do J2

and for every element C1 of U1 and for every element C2 of U2 such that
C1 = C2 holds if C1 then I1 else J1 = if C2 then I2 else J2.

(57) Let U1, U2 be pre-if-while algebras. Suppose the universal alge-
bra structure of U1 = the universal algebra structure of U2. Then
ElementaryInstructions(U1) = ElementaryInstructions(U2) .
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(58) Let U1, U2 be universal algebras, Σ1 be a subset of U1, and Σ2 be a
subset of U2. Suppose Σ1 = Σ2. Let o1 be an operation of U1 and o2 be
an operation of U2. If o1 = o2, then if Σ1 is closed on o1, then Σ2 is closed
on o2.

(59) Let U1, U2 be universal algebras. Suppose the universal algebra structure
of U1 = the universal algebra structure of U2. Let Σ1 be a subset of U1

and Σ2 be a subset of U2. If Σ1 = Σ2, then if Σ1 is operations closed, then
Σ2 is operations closed.

(60) Let U1, U2 be universal algebras. Suppose the universal algebra structure
of U1 = the universal algebra structure of U2. Then every generator set of
U1 is a generator set of U2.

(61) Let U1, U2 be universal algebras. Suppose the universal algebra struc-
ture of U1 = the universal algebra structure of U2. Then signatureU1 =
signatureU2.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. Note that there exists a partial quasi
total non-empty non empty strict program algebra structure of J , T, and X

with empty-instruction, catenation, if-instruction, and while-instruction which
is non degenerated, well founded, E.C.I.W.-strict, and infinite.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. A pre-if-while algebra over X is a
partial quasi total non-empty non empty program algebra structure of J , T, and
X with empty-instruction, catenation, if-instruction, and while-instruction.

Let J be a non empty non void many sorted signature, let T be an algebra
over J , and let X be a generator set of T. A if-while algebra over X is a non
degenerated well founded E.C.I.W.-strict pre-if-while algebra over X.

Let J be a non empty non void many sorted signature, let T be a non-empty
algebra over J , let X be a non-empty generator set of T, let A be a non empty
program algebra structure of J , T, and X, let a be a sort symbol of J , let x be
an element of X(a), and let t be an element of T from a. The functor x :=At

yielding an algorithm of A is defined as follows:

(Def. 22) x:=At = (the assignments of A)(〈〈x, t〉〉).
Let Σ be a set and let T be a disjoint valued non-empty many sorted set

indexed by Σ. Note that there exists a many sorted subset of T which is non-
empty.

Let J be a non void non empty many sorted signature, let T, C be non-empty
algebras over J , and let X be a non-empty generator set of T. The functor
C -States(X) yields a subset of MSFuncs(X, the sorts of C) and is defined by the
condition (Def. 23).

(Def. 23) Let s be a many sorted function from X into the sorts of C. Then s ∈
C -States(X) if and only if there exists a many sorted function f from T



322 grzegorz bancerek

into C such that f is a homomorphism of T into C and s = f � X.

Let J be a non void non empty many sorted signature, let T be a non-empty
algebra over J , let C be a non-empty image of T, and let X be a non-empty
generator set of T. One can verify that C -States(X) is non empty.

The following proposition is true

(62) Let B be a non void non empty many sorted signature, T, C be non-
empty algebras over B, X be a non-empty generator set of T, and g be a
set. Suppose g ∈ C -States(X). Then g is a many sorted function from X

into the sorts of C.

Let B be a non void non empty many sorted signature, let T, C be non-
empty algebras over B, and let X be a non-empty generator set of T. Note that
every element of C -States(X) is relation-like and function-like.

Let B be a non void non empty many sorted signature, let T, C be non-
empty algebras over B, and let X be a non-empty generator set of T. One can
check that every element of C -States(X) is function yielding and the carrier of
B-defined.

Let B be a non void non empty many sorted signature, let T be a non-empty
algebra over B, let C be a non-empty image of T, and let X be a non-empty
generator set of T. Observe that every element of C -States(X) is total.

Let B be a non void non empty many sorted signature, let T be a non-empty
algebra over B, let C be a non-empty algebra over B, let X be a non-empty
generator set of T, let a be a sort symbol of B, let x be an element of X(a),
and let f be an element of C from a. The functor Statesx 6→f (X) yields a subset
of C -States(X) and is defined by the condition (Def. 24).

(Def. 24) Let s be a many sorted function from X into the sorts of C. Then s ∈
Statesx 6→f (X) if and only if s ∈ C -States(X) and s(a)(x) 6= f.

Let Σ be a non empty non void many sorted signature, let A be a non-
empty algebra over Σ, and let o be an operation symbol of Σ. Observe that
every element of Args(o,A) is function-like and relation-like.

Let B be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of B, let T be an including B-terms over
X non-empty algebra over B, let C be a non-empty image of T, let a be a sort
symbol of B, let t be an element of T from a, and let s be a function yielding
function. Let us assume that there exist a many sorted function h from T into
C and a generator set Q of T such that h is a homomorphism of T into C and
Q = domκ s(κ) and s = h � Q. The functor t value at(C, s) yielding an element
of C from a is defined by the condition (Def. 25).

(Def. 25) There exists a many sorted function f from T into C and there exists
a generator set Q of T such that f is a homomorphism of T into C and
Q = domκ s(κ) and s = f � Q and t value at(C, s) = f(a)(t).
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5. Generator System

Let us consider Σ, X and let T be a non-empty including Σ-terms over X
algebra over Σ. We introduce generator systems over Σ, X, and T which are
systems
〈 generators, a supported variable, a supported term 〉,

where the generators constitute a non-empty generator set of T, the supported
variable is a many sorted function from the generators into FreeGenerator(X),
and the supported term is a double many sorted set of the generators and the
carrier of Σ.

Let us consider Σ, X, let T be a non-empty including Σ-terms over X algebra
over Σ, let G be a generator system over Σ, X, and T, and let s be a sort symbol
of Σ. An element of T from s is said to be an element of G from s if:

(Def. 26) It ∈ (the generators of G)(s).

Let us consider Σ, X, let T be a non-empty including Σ-terms over X algebra
over Σ, let G be a generator system over Σ, X, and T, and let s be a sort symbol
of Σ. The functor G(s) yields a component of the generators of G and is defined
by:

(Def. 27) G(s) = (the generators of G)(s).

Let g be an element of G from s. The functor supp-var g yielding an element of
(FreeGenerator(X))(s) is defined as follows:

(Def. 28) supp-var g = (the supported variable of G)(s)(g).

Let us consider Σ, X, let T be a non-empty including Σ-terms over X free
variable algebra over Σ, let G be a generator system over Σ, X, and T, let s be
a sort symbol of Σ, and let g be an element of G from s. Let us assume that
(the supported term of G)(s)(g) is a many sorted function from vf g into the
sorts of T. The functor supp-term g yielding a many sorted function from vf g
into the sorts of T is defined as follows:

(Def. 29) supp-term g = (the supported term of G)(s)(g).

Let Σ be a non void non empty many sorted signature, let X be a non-empty
many sorted set indexed by the carrier of Σ, let T be a non-empty including
Σ-terms over X free variable algebra over Σ, let C be a non-empty image of T,
and let G be a generator system over Σ, X, and T. We say that G is C-supported
if and only if the conditions (Def. 30) are satisfied.

(Def. 30)(i) FreeGenerator(X) is a many sorted subset of the generators of G, and
(ii) for every sort symbol s of Σ holds dom (the supported term of

G)(s) = G(s) and for every element t of G from s holds (the suppor-
ted term of G)(s)(t) is a many sorted function from vf t into the sorts of
T and if t ∈ (FreeGenerator(X))(s), then supp-term t = ids -singleton t and
supp-var t = t and for every element v of C -States(the generators of G)
such that v(s)(supp-var t) = v(s)(t) and for every sort symbol r of Σ and
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for every element x of (FreeGenerator(X))(r) and for every element q of
(the sorts of T)(r) such that x ∈ (vf t)(r) and q = (supp-term t)(r)(x)
and q value at(C, v) is defined holds v(r)(x) = q value at(C, v) and if
t 6∈ (FreeGenerator(X))(s), then for every many sorted subset H of the
generators of G such that H = FreeGenerator(X) and for every element
v of C from s and for every many sorted function f from the genera-
tors of G into the sorts of C such that f ∈ C -States(the generators of
G) and for every many sorted function u from FreeGenerator(X) in-
to the sorts of C such that for every sort symbol a of Σ and for eve-
ry element z of (FreeGenerator(X))(a) such that z ∈ (vf t)(a) and for
every element q of T from a such that q = (supp-term t)(a)(z) holds
u(a)(z) = q value at(C, (f � H) +·(s, supp-var t, v)) and for every many
sorted subset H of the sorts of T such that H = FreeGenerator(X) and
for every many sorted function h from T into C such that h is a homomor-
phism of T into C and h � H = u holds v = h(s)(t).

Let us consider Σ, let us consider X, let A be a vf-free free in itself including
Σ-terms over X free variable algebra over Σ with all variables and inheriting
operations, let C be a non-empty image of A, and let G be a generator system
over Σ, X, and A. Let us assume that G is C-supported. Let s be an element of
C -States(the generators of G), let r be a sort symbol of Σ, let v be an element
of C from r, and let t be an element of G from r. The functor succt:=v(s) yields
an element of C -States(the generators of G) and is defined by the conditions
(Def. 31).

(Def. 31)(i) (succt:=v(s))(r)(t) = v, and

(ii) for every sort symbol p of Σ and for every element x of
(FreeGenerator(X))(p) such that if p = r, then x 6= t holds if x 6∈ (vf t)(p),
then (succt:=v(s))(p)(x) = s(p)(x) and for every many sorted function u

from FreeGenerator(X) into the sorts of C and for every many sorted sub-
set H of the generators of G such that H = FreeGenerator(X) and for
every many sorted function f from the generators of G into the sorts of C

such that f = s and u = (f � H) +·(r, supp-var t, v) holds if x ∈ (vf t)(p),
then for every element q of A from p such that q = (supp-term t)(p)(x)
holds (succt:=v(s))(p)(x) = q value at(C, u).

Let B be a non void non empty many sorted signature, let Y be a non-
empty many sorted set indexed by the carrier of B, let T be a vf-free free in
itself including B-terms over Y free variable algebra over B with all variables
and inheriting operations, let C be a non-empty image of T, let X be a generator
system over B, Y , and T, let A be a pre-if-while algebra over the generators of X,
let a be a sort symbol of B, let x be an element of (the generators of X)(a), and
let z be an element of C from a. The functor C -Executionx 6→z(A) yields a subset
of (C -States(the generators of X))(C -States(the generators of X))×the carrier of A and
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is defined by the condition (Def. 32).

(Def. 32) Let f be a function from (C -States(the generators of X)) × the carrier
of A into C -States(the generators of X). Then f ∈ C -Executionx 6→z(A) if
and only if f is an execution function of A over C -States(the generators
of X) and Statesx 6→z(the generators of X).

6. Boolean Signature

We consider connectives signatures as extensions of many sorted signature
as systems
〈 a carrier, a carrier’, an arity, a result sort, connectives 〉,

where the carrier and the carrier’ are sets, the arity is a function from the carrier’
into the carrier∗, the result sort is a function from the carrier’ into the carrier,
and the connectives constitute a finite sequence of elements of the carrier’.

Let Σ be a connectives signature. We say that Σ is 1-1-connectives if and
only if:

(Def. 33) The connectives of Σ are one-to-one.

Let n be a natural number and let Σ be a connectives signature. We say
that Σ is n-connectives if and only if:

(Def. 34) len (the connectives of Σ) = n.

Let n be a natural number. Note that there exists a strict connectives signa-
ture which is n-connectives, non empty, and non void.

We consider boolean signatures as extensions of connectives signature as
systems
〈 a carrier, a carrier’, an arity, a result sort, a boolean sort, connectives 〉,

where the carrier and the carrier’ are sets, the arity is a function from the carrier’
into the carrier∗, the result sort is a function from the carrier’ into the carrier,
the boolean sort is an element of the carrier, and the connectives constitute a
finite sequence of elements of the carrier’.

Let n be a natural number. Note that there exists a strict boolean signature
which is n-connectives, non empty, and non void.

Let B be a boolean signature. We say that B is boolean correct if and only
if the conditions (Def. 35) are satisfied.

(Def. 35)(i) len (the connectives of B) ≥ 3,
(ii) (the connectives of B)(1) is of type ∅ → the boolean sort of B,
(iii) (the connectives of B)(2) is of type 〈the boolean sort of B〉 → the

boolean sort of B, and
(iv) (the connectives of B)(3) is of type 〈the boolean sort of B, the boolean

sort of B〉 → the boolean sort of B.
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One can verify that there exists a strict boolean signature which is 3-
connectives, 1-1-connectives, boolean correct, non empty, and non void.

Let us note that there exists a connectives signature which is 1-1-connectives,
non empty, and non void.

Let Σ be a 1-1-connectives non empty non void connectives signature. Note
that the connectives of Σ is one-to-one.

Let Σ be a non empty non void boolean signature and let B be an algebra
over Σ. We say that B is boolean correct if and only if the conditions (Def. 36)
are satisfied.

(Def. 36)(i) (The defined sorts of B)(the boolean sort of Σ) = Boolean,
(ii) (Den((the connectives of Σ)(1)(∈ the carrier’ of Σ),B))(∅) = true, and
(iii) for all boolean sets x, y holds (Den((the connectives of Σ)(2)(∈ the

carrier’ of Σ),B))(〈x〉) = ¬x and (Den((the connectives of Σ)(3)(∈ the
carrier’ of Σ),B))(〈x, y〉) = x ∧ y.

One can prove the following proposition

(63) Let A, B be non empty sets, n be a natural number, and f be a function
from An into B. Then

(i) f is a homogeneous quasi total non empty partial function from A∗ to
B, and

(ii) for every homogeneous function g such that f = g holds g is n-ary.

Let A, B be non empty sets and let n be a natural number. Note that there
exists a homogeneous quasi total non empty partial function from A∗ to B which
is n-ary.

Now we present two schemes. The scheme Sch1 deals with non empty sets
A, B and a unary functor F yielding an element of B, and states that:

There exists a 1-ary homogeneous quasi total non empty partial
function f from A∗ to B such that for every element a of A holds
f(〈a〉) = F(a)

for all values of the parameters.
The scheme Sch2 deals with non empty sets A, B and a binary functor F

yielding an element of B, and states that:
There exists a 2-ary homogeneous quasi total non empty partial
function f from A∗ to B such that for all elements a, b of A holds
f(〈a, b〉) = F(a, b)

for all values of the parameters.
One can prove the following propositions:

(64) Let Σ be a non empty non void many sorted signature, A be a non-empty
many sorted set indexed by the carrier of Σ, f be a many sorted function
from A# · the arity of Σ into A · the result sort of Σ, o be an operation
symbol of Σ, and d be a function from (A# · the arity of Σ)(o) into (A · the
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result sort of Σ)(o). Then f+·(o, d) is a many sorted function from A# ·the
arity of Σ into A · the result sort of Σ.

(65) Let Σ be a boolean correct non empty non void boolean signature and
A be a non-empty many sorted set indexed by the carrier of Σ. Then
there exists a strict algebra B over Σ with undefined values with defined
elements such that

(i) the defined sorts of B = A+· (the boolean sort of Σ, Boolean),
(ii) the undefined map of B = the defined sorts of B,
(iii) the sorts of B = succ (the defined sorts of B), and
(iv) B is boolean correct and undefined consequently.

Let Σ be a boolean correct non empty non void boolean signature. One can
verify that there exists a strict algebra over Σ with undefined values which is
boolean correct and undefined consequently and has defined elements and there
exists an algebra over Σ which is boolean correct and has defined elements.

Let Σ be a boolean correct non empty non void boolean signature and let
B be a non-empty algebra over Σ. The functor trueB yielding an element of B

from the boolean sort of Σ is defined as follows:

(Def. 37) trueB = (Den((the connectives of Σ)(1)(∈ the carrier’ of Σ),B))(∅).
Let p be an element of B from the boolean sort of Σ. The functor ¬p yields an
element of B from the boolean sort of Σ and is defined as follows:

(Def. 38) ¬p = (Den((the connectives of Σ)(2)(∈ the carrier’ of Σ),B))(〈p〉).
Let q be an element of B from the boolean sort of Σ. The functor p∧ q yielding
an element of B from the boolean sort of Σ is defined as follows:

(Def. 39) p ∧ q = (Den((the connectives of Σ)(3)(∈ the carrier’ of Σ),B))(〈p, q〉).
Let Σ be a boolean correct non empty non void boolean signature and let

B be a non-empty algebra over Σ. The functor falseB yielding an element of B

from the boolean sort of Σ is defined as follows:

(Def. 40) falseB = ¬ trueB .

Let p be an element of B from the boolean sort of Σ and let q be an element
of B from the boolean sort of Σ. The functor p∨ q yields an element of B from
the boolean sort of Σ and is defined by:

(Def. 41) p ∨ q = ¬(¬p ∧ ¬q).
The functor p⇒ q yielding an element of B from the boolean sort of Σ is defined
by:

(Def. 42) p⇒ q = ¬(p ∧ ¬q).
Let Σ be a boolean correct non empty non void boolean signature, let B be

a non-empty algebra over Σ, let p be an element of B from the boolean sort of
Σ, and let q be an element of B from the boolean sort of Σ. The functor p⇔ q

yielding an element of B from the boolean sort of Σ is defined by:

(Def. 43) p⇔ q = (p ∧ q) ∨ (¬p ∧ ¬q).
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The following proposition is true

(66) Let Σ be a boolean correct non empty non void boolean signature and
B be a boolean correct algebra over Σ with undefined values with defined
elements. Then

(i) trueB = true,
(ii) falseB = false, and

(iii) for all defined elements x, y of B from the boolean sort of Σ and for
all boolean numbers a, b such that a = x and b = y holds ¬x = ¬a and
x ∧ y = a ∧ b and x ∨ y = a ∨ b and x⇒ y = a⇒ b and x⇔ y = a⇔ b.

7. Algebra with Integers

Let i be a natural number, let s be a set, and let Σ be a boolean signature.
We say that Σ has integers with connectives from i and the sort at s if and only
if the conditions (Def. 44) are satisfied.

(Def. 44)(i) len (the connectives of Σ) ≥ i+ 6, and
(ii) there exists an element I of Σ such that I = s and I 6= the boolean sort

of Σ and (the connectives of Σ)(i) is of type ∅ → I and (the connectives of
Σ)(i+1) is of type ∅ → I and (the connectives of Σ)(i) 6= (the connectives
of Σ)(i + 1) and (the connectives of Σ)(i + 2) is of type 〈I〉 → I and
(the connectives of Σ)(i + 3) is of type 〈I, I〉 → I and (the connectives
of Σ)(i + 4) is of type 〈I, I〉 → I and (the connectives of Σ)(i + 5) is of
type 〈I, I〉 → I and (the connectives of Σ)(i + 3) 6= (the connectives of
Σ)(i+ 4) and (the connectives of Σ)(i+ 3) 6= (the connectives of Σ)(i+ 5)
and (the connectives of Σ)(i+ 4) 6= (the connectives of Σ)(i+ 5) and (the
connectives of Σ)(i+ 6) is of type 〈I, I〉 → the boolean sort of Σ.

The following proposition is true

(67) There exists an 10-connectives non empty non void strict boolean signa-
ture Σ such that

(i) Σ is 1-1-connectives and boolean correct and has integers with connec-
tives from 4 and the sort at 1,

(ii) the carrier of Σ = {0, 1}, and
(iii) there exists a sort symbol I of Σ such that I = 1 and (the connectives

of Σ)(4) is of type ∅ → I.

Let us mention that there exists a strict boolean signature which is 10-
connectives, 1-1-connectives, boolean correct, non empty, and non void and has
integers with connectives from 4 and the sort at 1.

Let Σ be a non empty non void boolean signature, let N be a set, and let I
be a sort symbol of Σ. We say that I is integer sort of N if and only if:

(Def. 45) I = N.
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Let Σ be a non empty non void boolean signature and let I be a sort symbol
of Σ. We say that I is integer if and only if:

(Def. 46) I is integer sort of 1.

Let Σ be a non empty non void boolean signature. Observe that every sort
symbol of Σ which is integer is also integer sort of 1 and every sort symbol of Σ
which is integer sort of 1 is also integer.

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1. One can verify that there exists a sort symbol
of Σ which is integer.

We now state the proposition

(68) Let Σ be a non empty non void boolean signature with integers with
connectives from 4 and the sort at 1 and I be an integer sort symbol of
Σ. Then I 6= the boolean sort of Σ and (the connectives of Σ)(4) is of
type ∅ → I and (the connectives of Σ)(4 + 1) is of type ∅ → I and (the
connectives of Σ)(4) 6= (the connectives of Σ)(4 + 1) and (the connectives
of Σ)(4 + 2) is of type 〈I〉 → I and (the connectives of Σ)(4 + 3) is of
type 〈I, I〉 → I and (the connectives of Σ)(4 + 4) is of type 〈I, I〉 → I and
(the connectives of Σ)(4 + 5) is of type 〈I, I〉 → I and (the connectives of
Σ)(4+3) 6= (the connectives of Σ)(4+4) and (the connectives of Σ)(4+3) 6=
(the connectives of Σ)(4 + 5) and (the connectives of Σ)(4 + 4) 6= (the
connectives of Σ)(4 + 5) and (the connectives of Σ)(4 + 6) is of type 〈I, I〉
→ the boolean sort of Σ.

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1, let A be a non-empty algebra over Σ, and let
I be an integer sort symbol of Σ. The functor 0IA yields an element of (the sorts
of A)(I) and is defined by:

(Def. 47) 0IA = (Den((the connectives of Σ)(4)(∈ the carrier’ of Σ),A))(∅).
The functor 1IA yields an element of (the sorts of A)(I) and is defined as follows:

(Def. 48) 1IA = (Den((the connectives of Σ)(5)(∈ the carrier’ of Σ),A))(∅).
Let a be an element of (the sorts of A)(I). The functor −a yielding an element
of (the sorts of A)(I) is defined as follows:

(Def. 49) −a = (Den((the connectives of Σ)(6)(∈ the carrier’ of Σ),A))(〈a〉).
Let b be an element of (the sorts of A)(I). The functor a+ b yielding an element
of (the sorts of A)(I) is defined as follows:

(Def. 50) a+ b = (Den((the connectives of Σ)(7)(∈ the carrier’ of Σ),A))(〈a, b〉).
The functor a · b yielding an element of (the sorts of A)(I) is defined as follows:

(Def. 51) a · b = (Den((the connectives of Σ)(8)(∈ the carrier’ of Σ),A))(〈a, b〉).
The functor a div b yielding an element of (the sorts of A)(I) is defined by:

(Def. 52) a div b = (Den((the connectives of Σ)(9)(∈ the carrier’ of Σ),A))(〈a, b〉).
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The functor leq(a, b) yielding an element of (the sorts of A)(the boolean sort of
Σ) is defined by:

(Def. 53) leq(a, b) = (Den((the connectives of Σ)(10)(∈ the carrier’ of Σ),A))(〈a,
b〉).

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1, let A be a non-empty algebra over Σ, let I be
an integer sort symbol of Σ, and let a, b be elements of A from I. The functor
a− b yields an element of A from I and is defined by:

(Def. 54) a− b = a+−b.
The functor a mod b yields an element of A from I and is defined by:

(Def. 55) a mod b = a+−(a div b) · b.
Let Σ be a non empty non void boolean signature with integers with con-

nectives from 4 and the sort at 1 and let X be a non-empty many sorted set
indexed by the carrier of Σ. One can verify that X(1) is non empty.

Let n be a natural number, let s be a set, let Σ be a boolean correct non
empty non void boolean signature, and let A be a boolean correct algebra over
Σ. We say that A has integers with connectives from n and the sort at s if and
only if the condition (Def. 56) is satisfied.

(Def. 56) There exists a sort symbol I of Σ such that
(i) I = s,

(ii) (the connectives of Σ)(n) is of type ∅ → I,
(iii) (the defined sorts of A)(I) = Z,
(iv) (Den((the connectives of Σ)(n)(∈ the carrier’ of Σ),A))(∅) = 0,
(v) (Den((the connectives of Σ)(n+1)(∈ the carrier’ of Σ),A))(∅) = 1, and
(vi) for all integers i, j holds (Den((the connectives of Σ)(n+ 2)(∈ the car-

rier’ of Σ),A))(〈i〉) = −i and (Den((the connectives of Σ)(n+3)(∈ the car-
rier’ of Σ),A))(〈i, j〉) = i+j and (Den((the connectives of Σ)(n+4)(∈ the
carrier’ of Σ),A))(〈i, j〉) = i · j and if j 6= 0, then (Den((the connectives of
Σ)(n + 5)(∈ the carrier’ of Σ),A))(〈i, j〉) = idiv j and (Den((the connec-
tives of Σ)(n+ 6)(∈ the carrier’ of Σ),A))(〈i, j〉) = (i > j → false, true).

Let Σ be a non empty non void boolean signature, let I be a set, let n be
a natural number, and let A be an algebra over Σ with undefined values with
defined elements. We say that A has division by 0 undefined with n and I if and
only if the condition (Def. 57) is satisfied.

(Def. 57) Let J be a sort symbol of Σ. Suppose I = J. Let a be a defined element
of (the sorts of A)(J). Then (Den((the connectives of Σ)(n + 5)(∈ the
carrier’ of Σ),A))(〈a, (Den((the connectives of Σ)(n)(∈ the carrier’ of Σ),
A))(∅)〉) = (the undefined map of A)(J).

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1 and let A be an algebra over Σ with undefined
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values with defined elements. We say that A has division by 0 undefined if and
only if:

(Def. 58) A has division by 0 undefined with 4 and 1.

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1 and let A be an algebra over Σ with undefined
values with defined elements. Let us observe that A has division by 0 undefined
if and only if the condition (Def. 59) is satisfied.

(Def. 59) Let I be an integer sort symbol of Σ and a be a defined element of (the
sorts of A)(I). Then adiv 0IA is undefined.

The following proposition is true

(69) Let n be a natural number and I be a set. Suppose n ≥ 1. Let Σ be
a boolean correct non empty non void boolean signature. Suppose Σ has
integers with connectives from n and the sort at I. Then there exists a
boolean correct strict algebra A over Σ with undefined values with defined
elements such that

(i) the undefined map of A = the defined sorts of A,
(ii) the sorts of A = succ (the defined sorts of A), and
(iii) A is undefined consequently and has integers with connectives from n

and the sort at I and division by 0 undefined with n and I.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1. Note that there exists a
boolean correct strict algebra over Σ with undefined values with defined elements
which is undefined consequently and has integers with connectives from 4 and
the sort at 1 and division by 0 undefined.

One can prove the following proposition

(70) Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1, A be a boolean correct
algebra over Σ with undefined values with integers with connectives from
4 and the sort at 1 and defined elements, and I be an integer sort symbol
of Σ. Then

(i) (the defined sorts of A)(I) = Z,
(ii) 0IA = 0,
(iii) 1IA = 1, and
(iv) for all integers i, j and for all elements a, b of (the sorts of A)(I) such

that a = i and b = j holds −a = −i and a + b = i + j and a − b = i − j
and a · b = i · j and if j 6= 0, then adiv b = idiv j and a mod b = i mod j

and leq(a, b) = (i > j → false, true) and leq(a, b) = true iff i ≤ j and
leq(a, b) = false iff i > j.
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8. Algebras with Arrays

Let I, N be sets, let n be a natural number, and let Σ be a connectives
signature. We say that Σ has arrays of type I with connectives from n and
integers at N if and only if the conditions (Def. 60) are satisfied.

(Def. 60)(i) len (the connectives of Σ) ≥ n+ 3, and
(ii) there exist elements J , K, L of Σ such that L = I and K = N and

J 6= L and J 6= K and (the connectives of Σ)(n) is of type 〈J,K〉 → L and
(the connectives of Σ)(n+1) is of type 〈J,K,L〉 → J and (the connectives
of Σ)(n + 2) is of type 〈J〉 → K and (the connectives of Σ)(n + 3) is of
type 〈K,L〉 → J .

Next we state the proposition

(71) Let Σ1, Σ2 be non empty non void connectives signatures. Suppose the
connectives signature of Σ1 = the connectives signature of Σ2. Let I, N
be sets and n be a natural number such that Σ1 has arrays of type I with
connectives from n and integers at N . Then Σ2 has arrays of type I with
connectives from n and integers at N .

Let Σ be a non empty non void connectives signature, let I, N be sets, let
n be a natural number, and let A be an algebra over Σ with defined elements.
We say that A has arrays of type I with connectives from n and integers at N
if and only if the condition (Def. 61) is satisfied.

(Def. 61) There exist elements J , K of Σ such that
(i) K = I,

(ii) (the connectives of Σ)(n) is of type 〈J,N〉 → K,
(iii) (the defined sorts of A)(J) = (the defined sorts of A)(K)ω,
(iv) (the defined sorts of A)(N) = Z,
(v) for every 0-based finite array a of (the defined sorts of A)(K) holds

for every integer i such that i ∈ dom a holds (Den((the connectives of
Σ)n,A))(〈a, i〉) = a(i) and for every defined element x of A from K holds
(Den((the connectives of Σ)n+1,A))(〈a, i, x〉) = a +· (i, x) and (Den((the
connectives of Σ)n+2,A))(〈a〉) = a, and

(vi) for every integer i and for every defined element x of A from K such
that i ≥ 0 holds (Den((the connectives of Σ)n+3,A))(〈i, x〉) = i 7−→ x.

Let B be a non empty boolean signature and let C be a non empty connec-
tives signature. The functor B+·C yielding a strict boolean signature is defined
by the conditions (Def. 62).

(Def. 62)(i) The many sorted signature of B+·C = B+·C,
(ii) the boolean sort of B+·C = the boolean sort of B, and
(iii) the connectives of B+·C = (the connectives of B)a (the connectives of

C).

Next we state the proposition
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(72) Let B be a non empty boolean signature and C be a non empty connec-
tives signature. Then

(i) the carrier of B+·C = (the carrier of B) ∪ (the carrier of C),
(ii) the carrier’ of B+·C = (the carrier’ of B) ∪ (the carrier’ of C),
(iii) the arity of B+·C = (the arity of B)+·(the arity of C), and
(iv) the result sort of B+·C = (the result sort of B)+·(the result sort of

C).

Let B be a non empty boolean signature and let C be a non empty connec-
tives signature. Note that B+·C is non empty.

Let B be a non void non empty boolean signature and let C be a non empty
connectives signature. One can verify that B+·C is non void.

Let n1, n2 be natural numbers, let B be an n1-connectives non empty non
void boolean signature, and let C be an n2-connectives non empty non void
connectives signature. One can check that B+·C is n1 + n2-connectives.

One can prove the following proposition

(73) Let M , O be sets and N , I be sets. Suppose I, N ∈M. Then there exists
an 4-connectives non empty non void strict connectives signature C such
that

(i) C is 1-1-connectives and has arrays of type I with connectives from 1
and integers at N ,

(ii) M ⊆ the carrier of C,
(iii) O misses the carrier’ of C, and
(iv) (the result sort of C)((the connectives of C)(2)) 6∈M.

Let I, N be sets. Note that there exists a non empty non void strict connec-
tives signature which is 4-connectives and has arrays of type I with connectives
from 1 and integers at N .

The following propositions are true:

(74) Let n, m be natural numbers. Suppose m > 0. Let B be an n-connectives
non empty non void boolean signature, I, N be sets, and C be a non
empty non void connectives signature. Suppose C has arrays of type I

with connectives from m and integers at N . Then B+·C has arrays of
type I with connectives from n+m and integers at N .

(75) Let m be a natural number. Suppose m > 0. Let s be a set, B be a
non empty non void boolean signature, and C be a non empty non void
connectives signature. Suppose that

(i) B has integers with connectives from m and the sort at s, and
(ii) the carrier’ of B misses the carrier’ of C.

Then B+·C has integers with connectives from m and the sort at s.

(76) Let B be a boolean correct non empty non void boolean signature and
C be a non empty non void connectives signature. Suppose the carrier’ of
B misses the carrier’ of C. Then B+·C is boolean correct.
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Let n be a natural number and let B be a boolean signature. We say that
B is n-array correct if and only if:

(Def. 63) (The result sort of B)((the connectives of B)(n+ 1)) 6= the boolean sort
of B.

Let us note that there exists a strict boolean signature which is 1-1-
connectives, 14-connectives, 11-array correct, boolean correct, non empty, and
non void and has arrays of type 1 with connectives from 11 and integers at 1
and integers with connectives from 4 and the sort at 1.

Let Σ be a non empty non void boolean signature with arrays of type 1 with
connectives from 11 and integers at 1. Observe that there exists a sort symbol
of Σ which is integer.

Let Σ be a non empty non void boolean signature with arrays of type 1 with
connectives from 11 and integers at 1. The array sort of Σ yields a sort symbol
of Σ and is defined as follows:

(Def. 64) The array sort of Σ = (the result sort of Σ)((the connectives of Σ)(12)).

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11
and integers at 1, let A be a non-empty algebra over Σ, let a be an element of
(the sorts of A)(the array sort of Σ), and let I be an integer sort symbol of Σ.
The functor lengthI a yields an element of (the sorts of A)(I) and is defined as
follows:

(Def. 65) lengthI a = (Den((the connectives of Σ)(13)(∈ the carrier’ of Σ),
A))(〈a〉).

Let i be an element of (the sorts of A)(I). The functor a(i) yields an element of
(the sorts of A)(I) and is defined by:

(Def. 66) a(i) = (Den((the connectives of Σ)(11)(∈ the carrier’ of Σ),A))(〈a, i〉).
Let x be an element of (the sorts of A)(I). The functor ai←x yielding an element
of (the sorts of A)(the array sort of Σ) is defined as follows:

(Def. 67) ai←x = (Den((the connectives of Σ)(12)(∈ the carrier’ of Σ),A))(〈a, i,
x〉).

Let Σ be a boolean correct non empty non void boolean signature, let I, s
be sets, let n, m be natural numbers, and let A be a non-empty algebra over Σ
with undefined values. We say that A has index overflow undefined with n, m,
I, and s if and only if the condition (Def. 68) is satisfied.

(Def. 68) Let J , K be sort symbols of Σ. Suppose I = J and s = K. Let a be a
defined element of (the sorts of A)(K) and i, x be defined elements of (the
sorts of A)(J). Suppose that

(i) (Den((the connectives of Σ)(n+ 6)(∈ the carrier’ of Σ),A))(〈(Den((the
connectives of Σ)(n)(∈ the carrier’ of Σ),A))(∅), i〉) = falseA, or
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(ii) (Den((the connectives of Σ)(n+ 6)(∈ the carrier’ of Σ),A))(〈(Den((the
connectives of Σ)(m+ 2)(∈ the carrier’ of Σ),A))(〈a〉), i〉) = trueA .

Then
(iii) (Den((the connectives of Σ)(m)(∈ the carrier’ of Σ),A))(〈a, i〉) = (the

undefined map of A)(J), and
(iv) (Den((the connectives of Σ)(m+1)(∈ the carrier’ of Σ),A))(〈a, i, x〉) =

(the undefined map of A)(K).

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and arrays of type 1 with
connectives from 11 and integers at 1 and let A be a non-empty algebra over Σ
with undefined values. We say that A has index overflow undefined if and only
if:

(Def. 69) A has index overflow undefined with 4, 11, 1, and the array sort of Σ.

Let Σ be a boolean correct non empty non void boolean signature with
integers with connectives from 4 and the sort at 1 and arrays of type 1 with
connectives from 11 and integers at 1 and let A be a non-empty algebra over
Σ with undefined values. Let us observe that A has index overflow undefined if
and only if the condition (Def. 70) is satisfied.

(Def. 70) Let I be an integer sort symbol of Σ, a be a defined element of (the
sorts of A)(the array sort of Σ), and i, x be defined elements of (the sorts
of A)(I). If leq(0IA, i) = falseA or leq(lengthI a, i) = trueA, then a(i) is
undefined and ai←x is undefined.

Let Σ be a non empty non void boolean signature with integers with con-
nectives from 4 and the sort at 1 and arrays of type 1 with connectives from 11
and integers at 1, let A be a non-empty algebra over Σ, let I be an integer sort
symbol of Σ, let i be an element of (the sorts of A)(I), and let x be an element
of (the sorts of A)(I). The functor init.array(i, x) yielding an element of (the
sorts of A)(the array sort of Σ) is defined as follows:

(Def. 71) init.array(i, x) = (Den((the connectives of Σ)(14)(∈ the carrier’ of Σ),
A))(〈i, x〉).

Let X be a non empty set. One can check that 〈X〉 is non-empty. Let Y , Z
be non empty sets. One can verify that 〈X,Y, Z〉 is non-empty.

Let X be a functional non empty set, let Y , Z be non empty sets, and let f
be an element of

∏
〈X,Y, Z〉. Observe that f(1) is relation-like and function-like.

Let X be an integer-membered non empty set, let Y be a non empty set,
and let f be an element of

∏
〈X,Y 〉. Observe that f(1) is integer.

The following proposition is true

(77) Let I, N be sets, Σ be a non empty non void connectives signature with
arrays of type I with connectives from 1 and integers at N , Y be a non
empty set, and X be a non-empty many sorted set indexed by Y . Suppose
that
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(i) (the result sort of Σ)((the connectives of Σ)(2)) 6∈ Y or X((the result
sort of Σ)((the connectives of Σ)(2))) = X(I)ω,

(ii) X(N) = Z, and
(iii) I ∈ Y.

Then there exists a strict algebra A over Σ with undefined values with
defined elements such that

(iv) A has arrays of type I with connectives from 1 and integers at N ,
(v) the defined sorts of A ≈ X, and

(vi) for every 0-based finite array a of (the defined sorts of A)(I) and for
every integer i such that i 6∈ dom a holds (Den((the connectives of Σ)(1)(∈
the carrier’ of Σ),A))(〈a, i〉) = (the undefined map of A)(I) and for every
element x of (the defined sorts of A)(I) holds (Den((the connectives of
Σ)(2)(∈ the carrier’ of Σ),A))(〈a, i, x〉) = (the undefined map of A)(the
result sort of (the connectives of Σ)(2)(∈ the carrier’ of Σ)).

Let I, N be sets and let Σ be a non empty non void connectives signature
with arrays of type I with connectives from 1 and integers at N . One can verify
that there exists a strict algebra over Σ with undefined values with defined
elements which has arrays of type I with connectives from 1 and integers at N .

Let Σ1 be a non empty non void boolean signature, let Σ2 be a non empty
non void connectives signature, let A1 be an algebra over Σ1 with undefined
values with defined elements, and let A2 be an algebra over Σ2 with undefined
values with defined elements. Let us assume that the sorts of A1 ≈ the sorts
of A2 and the undefined map of A1 ≈ the undefined map of A2. The functor
A1Σ1+·Σ2A2 yields a strict algebra over Σ1+·Σ2 with undefined values with
defined elements and is defined by the conditions (Def. 72).

(Def. 72)(i) The sorts of A1Σ1+·Σ2A2 = (the sorts of A1)+·(the sorts of A2),
(ii) the characteristics of A1Σ1+·Σ2A2 = (the characteristics of A1)+·(the

characteristics of A2), and
(iii) the undefined map of A1Σ1+·Σ2A2 = (the undefined map of A1)+·(the

undefined map of A2).

The following propositions are true:

(78) Let B, C be non empty non void connectives signatures, A1 be an algebra
over B with undefined values with defined elements, and A2 be an algebra
over C with undefined values with defined elements. Suppose the sorts of
A1 ≈ the sorts of A2 and the undefined map of A1 ≈ the undefined map
of A2. Then the defined sorts of A1 ≈ the defined sorts of A2.

(79) Let B be a non empty non void boolean signature, A1 be an algebra over
B with undefined values with defined elements, C be a non empty non void
connectives signature, and A2 be an algebra over C with undefined values
with defined elements. Suppose the sorts of A1 ≈ the sorts of A2 and the
undefined map of A1 ≈ the undefined map of A2. Then the defined sorts
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of A1B+·CA2 = (the defined sorts of A1)+·(the defined sorts of A2).

(80) Let B be a boolean correct non empty non void boolean signature, A1

be a boolean correct algebra over B with undefined values with defined
elements, and C be a non empty non void connectives signature. Suppose
the carrier’ of B misses the carrier’ of C. Let A2 be an algebra over C with
undefined values with defined elements. Suppose the sorts of A1 ≈ the
sorts of A2 and the undefined map of A1 ≈ the undefined map of A2.
Then A1B+·CA2 is boolean correct.

(81) Let n be a natural number and I be a set. Suppose n ≥ 4. Let B be
a boolean correct non empty non void boolean signature. Suppose B has
integers with connectives from n and the sort at I. Let A1 be a boolean
correct algebra over B with undefined values with defined elements. Sup-
pose A1 has integers with connectives from n and the sort at I. Let C
be a non empty non void connectives signature. Suppose the carrier’ of
B misses the carrier’ of C. Let A2 be an algebra over C with undefined
values with defined elements. Suppose the sorts of A1 ≈ the sorts of A2

and the undefined map of A1 ≈ the undefined map of A2. Let Σ be a bo-
olean correct non empty non void boolean signature. Suppose the boolean
signature of Σ = B+·C. Let A be a boolean correct algebra over Σ with
undefined values with defined elements. Suppose the algebra of A with
undefined values = A1B+·CA2. Then

(i) A has integers with connectives from n and the sort at I, and
(ii) if A1 has division by 0 undefined with n and I, then A has division by

0 undefined with n and I.

(82) Let n, m be natural numbers and s, r be sets. Suppose n ≥ 1 and m ≥ 1.
Let B be an m-connectives non empty non void boolean signature, A1 be
an algebra over B with undefined values with defined elements, and C be
a non empty non void connectives signature. Suppose that

(i) the carrier’ of B misses the carrier’ of C, and
(ii) C has arrays of type s with connectives from n and integers at r.

Let A2 be an algebra over C with undefined values with defined elements.
Suppose that

(iii) the sorts of A1 ≈ the sorts of A2,
(iv) the undefined map of A1 ≈ the undefined map of A2, and
(v) A2 has arrays of type s with connectives from n and integers at r.

Let Σ be a non empty non void boolean signature. Suppose the boolean
signature of Σ = B+·C. Let A be an algebra over Σ with undefined values
with defined elements. Suppose the algebra of A with undefined values
= A1B+·CA2. Then

(vi) A has arrays of type s with connectives from m+ n and integers at r,
and
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(vii) if the characteristics of A1 ≈ the characteristics of A2 and B ≈ C and
A1 is undefined consequently and A2 is undefined consequently, then A is
undefined consequently.

(83) Let n, n1, m be natural numbers and r be a set. Suppose n ≥ 1 and
n1 ≥ 4. Let B be a boolean correct non empty non void boolean signature.
Suppose B is m-connectives. Let A1 be a boolean correct algebra over B
with undefined values with defined elements. Suppose that

(i) B has integers with connectives from n1 and the sort at r, and
(ii) A1 has integers with connectives from n1 and the sort at r.

Let C be a non empty non void connectives signature. Suppose that
(iii) the carrier’ of B misses the carrier’ of C, and
(iv) C has arrays of type r with connectives from n and integers at r.

Let A2 be an algebra over C with undefined values with defined elements.
Suppose that

(v) the sorts of A1 ≈ the sorts of A2,
(vi) the undefined map of A1 ≈ the undefined map of A2, and
(vii) A2 has arrays of type r with connectives from n and integers at r.

Let Σ be a boolean correct non empty non void boolean signature. Sup-
pose the boolean signature of Σ = B+·C. Let A be a boolean correct
algebra over Σ with undefined values with defined elements such that the
algebra of A with undefined values = A1B+·CA2 and for every 0-based
finite array a of Z and for every integer i such that i 6∈ dom a holds
(Den((the connectives of C)(n)(∈ the carrier’ of C),A2))(〈a, i〉) = (the
undefined map of A2)(r) and for every integer x holds (Den((the connecti-
ves of C)(n+ 1)(∈ the carrier’ of C),A2))(〈a, i, x〉) = (the undefined map
of A2)(the result sort of (the connectives of C)(n+1)(∈ the carrier’ of C)).
Then A has index overflow undefined with n1, n + m, r, and the result
sort of the connectives of Σ(n+m+ 1)(∈ the carrier’ of Σ).

(84) Let n be a natural number, s be a set, and Σ1, Σ2 be boolean signatures.
Suppose that

(i) the boolean sort of Σ1 = the boolean sort of Σ2,
(ii) len (the connectives of Σ2) ≥ 3, and

(iii) for every i such that i ≥ 1 and i ≤ 3 holds (the arity of Σ1)((the
connectives of Σ1)(i)) = (the arity of Σ2)((the connectives of Σ2)(i)) and
(the result sort of Σ1)((the connectives of Σ1)(i)) = (the result sort of
Σ2)((the connectives of Σ2)(i)).
If Σ1 is boolean correct, then Σ2 is boolean correct.

(85) Let n be a natural number, s be a set, and Σ1, Σ2 be non empty bo-
olean signatures. Suppose that n ≥ 1 and the boolean sort of Σ1 = the
boolean sort of Σ2 and len (the connectives of Σ2) ≥ n + 6 and (the con-
nectives of Σ2)(n) 6= (the connectives of Σ2)(n + 1) and (the connecti-
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ves of Σ2)(n + 3) 6= (the connectives of Σ2)(n + 4) and (the connectives
of Σ2)(n + 3) 6= (the connectives of Σ2)(n + 5) and (the connectives of
Σ2)(n+4) 6= (the connectives of Σ2)(n+5) and for every i such that i ≥ n
and i ≤ n + 6 holds (the arity of Σ1)((the connectives of Σ1)(i)) = (the
arity of Σ2)((the connectives of Σ2)(i)) and (the result sort of Σ1)((the con-
nectives of Σ1)(i)) = (the result sort of Σ2)((the connectives of Σ2)(i)).
Suppose Σ1 has integers with connectives from n and the sort at s. Then
Σ2 has integers with connectives from n and the sort at s.

(86) Let n, m be natural numbers, s, r be sets, and Σ1, Σ2 be non empty
connectives signatures. Suppose that

(i) 1 ≤ n,
(ii) len (the connectives of Σ1) ≥ n+ 3, and
(iii) for every i such that i ≥ n and i ≤ n + 3 holds (the arity of Σ1)((the

connectives of Σ1)(i)) = (the arity of Σ2)((the connectives of Σ2)(i+m))
and (the result sort of Σ1)((the connectives of Σ1)(i)) = (the result sort
of Σ2)((the connectives of Σ2)(i+m)).
Suppose Σ2 has arrays of type s with connectives from n+m and integers
at r. Then Σ1 has arrays of type s with connectives from n and integers
at r.

(87) Let j, k be sets and i, m, n be natural numbers. Suppose m ≥ 4 and
m + 6 ≤ n and i ≥ 1. Let Σ be a 1-1-connectives boolean correct non
empty non void boolean signature. Suppose that
then there exists a boolean correct non empty non void boolean signature
B and there exists a non empty non void connectives signature C such
that
the boolean signature of Σ = B+·C and B is n-connectives and has inte-
gers with connectives from m and the sort at k and C has arrays of type j
with connectives from i and integers at k and the carrier of B = the carrier
of C and the carrier’ of B = (the carrier’ of Σ)\ rng (the connectives of C)
and the carrier’ of C = rng (the connectives of C) and the connectives of
B = (the connectives of Σ)�n and the connectives of C = (the connectives
of Σ)�n.

(88) Let s, I be sets and Σ be a boolean correct non empty non void boolean
signature. Suppose Σ has integers with connectives from 4 and the sort
at I. Let X be a non empty set. Suppose s ∈ the carrier of Σ and s 6= I

and s 6= the boolean sort of Σ. Then there exists a boolean correct strict
algebra A over Σ with undefined values with defined elements such that

(i) the undefined map of A = the defined sorts of A,
(ii) the sorts of A = succ (the defined sorts of A),

(iii) A is undefined consequently and has integers with connectives from 4
and the sort at I,
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(iv) (the defined sorts of A)(s) = X, and
(v) A has division by 0 undefined with 4 and I.

Let Σ be a 1-1-connectives 11-array correct boolean correct non empty non
void boolean signature with arrays of type 1 with connectives from 11 and
integers at 1 and integers with connectives from 4 and the sort at 1. One can
check that there exists a boolean correct strict algebra over Σ with undefined
values with defined elements which is undefined consequently and has arrays
of type 1 with connectives from 11 and integers at 1, integers with connectives
from 4 and the sort at 1, division by 0 undefined, and index overflow undefined.
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Summary. In this article, we formalize that every finite cyclic group is
isomorphic to a direct product of finite cyclic groups which orders are relative
prime. This theorem is closely related to the Chinese Remainder theorem ([18])
and is a useful lemma to prove the basis theorem for finite abelian groups and
the fundamental theorem of finite abelian groups. Moreover, we formalize some
facts about the product of a finite sequence of abelian groups.
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Let G be an Abelian add-associative right zeroed right complementable non
empty additive loop structure. Note that 〈G〉 is non empty and Abelian group
yielding as a finite sequence.

Let G, F be Abelian add-associative right zeroed right complementable non
empty additive loop structures. Note that 〈G,F 〉 is non empty and Abelian
group yielding as a finite sequence.

We now state the proposition

(1) Let X be an Abelian group. Then there exists a homomorphism I from
X to

∏
〈X〉 such that I is bijective and for every element x of X holds

I(x) = 〈x〉.
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Let G, F be non empty Abelian group yielding finite sequences. Note that
G a F is Abelian group yielding.

One can prove the following propositions:

(2) Let X, Y be Abelian groups. Then there exists a homomorphism I from
X × Y to

∏
〈X,Y 〉 such that I is bijective and for every element x of X

and for every element y of Y holds I(x, y) = 〈x, y〉.
(3) Let X, Y be sequences of groups. Then there exists a homomorphism I

from
∏
X ×

∏
Y to

∏
(X a Y ) such that

(i) I is bijective, and
(ii) for every element x of

∏
X and for every element y of

∏
Y there exist

finite sequences x1, y1 such that x = x1 and y = y1 and I(x, y) = x1
a y1.

(4) Let G, F be Abelian groups. Then
(i) for every set x holds x is an element of

∏
〈G,F 〉 iff there exists an

element x1 of G and there exists an element x2 of F such that x = 〈x1,

x2〉,
(ii) for all elements x, y of

∏
〈G,F 〉 and for all elements x1, y1 of G and

for all elements x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1, y2〉 holds
x+ y = 〈x1 + y1, x2 + y2〉,

(iii) 0∏〈G,F 〉 = 〈0G, 0F 〉, and
(iv) for every element x of

∏
〈G,F 〉 and for every element x1 of G and for

every element x2 of F such that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉.
(5) Let G, F be Abelian groups. Then
(i) for every set x holds x is an element of G×F iff there exists an element
x1 of G and there exists an element x2 of F such that x = 〈〈x1, x2〉〉,

(ii) for all elements x, y of G× F and for all elements x1, y1 of G and for
all elements x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds
x+ y = 〈〈x1 + y1, x2 + y2〉〉,

(iii) 0G×F = 〈〈0G, 0F 〉〉, and
(iv) for every element x of G × F and for every element x1 of G and for

every element x2 of F such that x = 〈〈x1, x2〉〉 holds −x = 〈〈−x1, −x2〉〉.
(6) Let G, H, I be groups, h be a homomorphism from G to H, and h1 be

a homomorphism from H to I. Then h1 · h is a homomorphism from G to
I.

Let G, H, I be groups, let h be a homomorphism from G to H, and let h1

be a homomorphism from H to I. Then h1 · h is a homomorphism from G to I.
One can prove the following propositions:

(7) Let G, H be groups and h be a homomorphism from G to H. If h is
bijective, then h−1 is a homomorphism from H to G.

(8) Let X, Y be sequences of groups. Then there exists a homomorphism I

from
∏
〈
∏
X,
∏
Y 〉 to

∏
(X a Y ) such that

(i) I is bijective, and
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(ii) for every element x of
∏
X and for every element y of

∏
Y there exist

finite sequences x1, y1 such that x = x1 and y = y1 and I(〈x, y〉) = x1
ay1.

(9) Let X, Y be Abelian groups. Then there exists a homomorphism I from
X × Y to X ×

∏
〈Y 〉 such that I is bijective and for every element x of X

and for every element y of Y holds I(x, y) = 〈〈x, 〈y〉〉〉.
(10) Let X be a sequence of groups and Y be an Abelian group. Then there

exists a homomorphism I from
∏
X × Y to

∏
(X a 〈Y 〉) such that

(i) I is bijective, and
(ii) for every element x of

∏
X and for every element y of Y there exist

finite sequences x1, y1 such that x = x1 and 〈y〉 = y1 and I(x, y) = x1
ay1.

(11) Let n be a non zero natural number. Then the additive loop structure of
(ZR

n ) is non empty, Abelian, right complementable, add-associative, and
right zeroed.

Let n be a natural number. The functor Z/nZ yields an additive loop struc-
ture and is defined by:

(Def. 1) Z/nZ = the additive loop structure of (ZR
n ).

Let n be a non zero natural number. Observe that Z/nZ is non empty and
strict.

Let n be a non zero natural number. Note that Z/nZ is Abelian, right
complementable, add-associative, and right zeroed.

Next we state a number of propositions:

(12) Let X be a sequence of groups, x, y, z be elements of
∏
X, and x1, y1,

z1 be finite sequences. Suppose x = x1 and y = y1 and z = z1. Then
z = x + y if and only if for every element j of domX holds z1(j) = (the
addition of X(j))(x1(j), y1(j)).

(13) For every CR-sequence m and for every natural number j and for every
integer x such that j ∈ domm holds x mod

∏
m mod m(j) = x mod m(j).

(14) Letm be a CR-sequence andX be a sequence of groups. Suppose lenm =
lenX and for every element i of N such that i ∈ domX there exists a non
zero natural number m1 such that m1 = m(i) and X(i) = Z/m1Z . Then
there exists a homomorphism I from Z/(

∏
m)Z to

∏
X such that for every

integer x if x ∈ the carrier of Z/(
∏
m)Z, then I(x) = mod(x,m).

(15) Let X, Y be non empty sets. Then there exists a function I from X ×
Y into X ×

∏
〈Y 〉 such that I is one-to-one and onto and for all sets x, y

such that x ∈ X and y ∈ Y holds I(x, y) = 〈〈x, 〈y〉〉〉.
(16) For every non empty set X holds

∏
〈X〉 = X .

(17) Let X be a non-empty non empty finite sequence and Y be a non empty
set. Then there exists a function I from

∏
X × Y into

∏
(X a 〈Y 〉) such

that
(i) I is one-to-one and onto, and
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(ii) for all sets x, y such that x ∈
∏
X and y ∈ Y there exist finite sequences

x1, y1 such that x = x1 and 〈y〉 = y1 and I(x, y) = x1
a y1.

(18) Let m be a finite sequence of elements of N and X be a non-empty non
empty finite sequence. Suppose lenm = lenX and for every element i of
N such that i ∈ domX holds X(i) = m(i). Then

∏
X =

∏
m.

(19) Letm be a CR-sequence andX be a sequence of groups. Suppose lenm =
lenX and for every element i of N such that i ∈ domX there exists a non
zero natural number m1 such that m1 = m(i) and X(i) = Z/m1Z . Then
the carrier of

∏
X =

∏
m.

(20) Let m be a CR-sequence, X be a sequence of groups, and I be a function
from Z/(

∏
m)Z into

∏
X. Suppose that

(i) lenm = lenX,
(ii) for every element i of N such that i ∈ domX there exists a non zero

natural number m1 such that m1 = m(i) and X(i) = Z/m1Z, and
(iii) for every integer x such that x ∈ the carrier of Z/(

∏
m)Z holds I(x) =

mod(x,m).
Then I is one-to-one.

(21) Letm be a CR-sequence andX be a sequence of groups. Suppose lenm =
lenX and for every element i of N such that i ∈ domX there exists a non
zero natural number m1 such that m1 = m(i) and X(i) = Z/m1Z . Then
there exists a homomorphism I from Z/(

∏
m)Z to

∏
X such that I is

bijective and for every integer x such that x ∈ the carrier of Z/(
∏
m)Z

holds I(x) = mod(x,m).
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Summary. In this article, we formalized L1 space formed by complex-
valued partial functions [11], [15]. The real-valued case was formalized in [22]
and this article is its generalization.
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1. Preliminaries of Complex Linear Space

Let D be a non empty set and let E be a complex-membered set. One can
verify that every element of D→̇E is complex-valued.

Let D be a non empty set, let E be a complex-membered set, and let F1,
F2 be elements of D→̇E. Then F1 + F2 is an element of D→̇C. Then F1 − F2

is an element of D→̇C. Then F1 · F2 is an element of D→̇C. Then F1/F2 is an
element of D→̇C.

Let D be a non empty set, let E be a complex-membered set, let F be an
element of D→̇E, and let a be a complex number. Then a · F is an element of
D→̇C.

Let V be a non empty CLS structure and let V1 be a subset of V . We say
that V1 is multiplicatively closed if and only if:
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(Def. 1) For every complex number a and for every vector v of V such that v ∈ V1

holds a · v ∈ V1.

Next we state the proposition

(1) Let V be a complex linear space and V1 be a subset of V . Then V1 is
linearly closed if and only if V1 is add closed and multiplicatively closed.

Let V be a non empty CLS structure. One can verify that there exists a non
empty subset of V which is add closed and multiplicatively closed.

Let X be a non empty CLS structure and let X1 be a multiplicatively closed
non empty subset of X. The functor ·(X1) yields a function from C × X1 into
X1 and is defined by:

(Def. 2) ·(X1) = (the external multiplication of X)�(C×X1).

In the sequel a, b, r denote complex numbers and V denotes a complex linear
space.

We now state two propositions:

(2) Let V be an Abelian add-associative right zeroed vector distributive sca-
lar distributive scalar associative scalar unital non empty CLS structure,
V1 be a non empty subset of V , d1 be an element of V1, A be a binary ope-
ration on V1, and M be a function from C× V1 into V1. Suppose d1 = 0V
and A = (the addition of V ) � (V1) and M = (the external multiplication
of V )�(C × V1). Then 〈V1, d1, A,M〉 is Abelian, add-associative, right ze-
roed, vector distributive, scalar distributive, scalar associative, and scalar
unital.

(3) Let V be an Abelian add-associative right zeroed vector distributive
scalar distributive scalar associative scalar unital non empty CLS struc-
ture and V1 be an add closed multiplicatively closed non empty subset
of V . Suppose 0V ∈ V1. Then 〈V1, 0V (∈ V1), add |(V1, V ), ·(V1)〉 is Abelian,
add-associative, right zeroed, vector distributive, scalar distributive, scalar
associative, and scalar unital.

2. Quasi-Complex Linear Space of Partial Functions

We follow the rules: A, B are non empty sets and f , g, h are elements of
A→̇C.

Let us consider A. The functor multcpfuncA yielding a binary operation on
A→̇C is defined as follows:

(Def. 3) For all elements f , g of A→̇C holds (multcpfuncA)(f, g) = f · g.
Let us consider A. The functor multcomplexcpfuncA yielding a function

from C× (A→̇C) into A→̇C is defined by:

(Def. 4) For every complex number a and for every element f of A→̇C holds
(multcomplexcpfuncA)(a, f) = a · f.
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LetD be a non empty set. The functor addcpfuncD yields a binary operation
on D→̇C and is defined as follows:

(Def. 5) For all elements F1, F2 of D→̇C holds (addcpfuncD)(F1, F2) = F1 +F2.

Let A be a set. The functor CPFuncZeroA yields an element of A→̇C and
is defined by:

(Def. 6) CPFuncZeroA = A 7−→ 0C.

Let A be a set. The functor CPFuncUnitA yielding an element of A→̇C is
defined as follows:

(Def. 7) CPFuncUnitA = A 7−→ 1C.

The following propositions are true:

(4) h = (addcpfuncA)(f, g) iff domh = dom f∩dom g and for every element
x of A such that x ∈ domh holds h(x) = f(x) + g(x).

(5) h = (multcpfuncA)(f, g) iff domh = dom f ∩ dom g and for every ele-
ment x of A such that x ∈ domh holds h(x) = f(x) · g(x).

(6) CPFuncZeroA 6= CPFuncUnitA.

(7) h = (multcomplexcpfuncA)(a, f) iff domh = dom f and for every ele-
ment x of A such that x ∈ dom f holds h(x) = a · f(x).

Let us consider A. Note that addcpfuncA is commutative and associative.
Observe that multcpfuncA is commutative and associative.
One can prove the following propositions:

(8) CPFuncUnitA is a unity w.r.t. multcpfuncA.

(9) CPFuncZeroA is a unity w.r.t. addcpfuncA.

(10) (addcpfuncA)(f, (multcomplexcpfuncA)(−1C, f)) =
CPFuncZeroA�dom f.

(11) (multcomplexcpfuncA)(1C, f) = f.

(12) (multcomplexcpfuncA)(a, (multcomplexcpfuncA)(b, f)) =
(multcomplexcpfuncA)(a · b, f).

(13) (addcpfuncA)((multcomplexcpfuncA)(a, f),
(multcomplexcpfuncA)(b, f)) = (multcomplexcpfuncA)(a+ b, f).

(14) (multcpfuncA)(f, (addcpfuncA)(g, h)) =
(addcpfuncA)((multcpfuncA)(f, g), (multcpfuncA)(f, h)).

(15) (multcpfuncA)((multcomplexcpfuncA)(a, f), g) =
(multcomplexcpfuncA)(a, (multcpfuncA)(f, g)).

Let us consider A. The functor CLSp PFunctA yields a non empty CLS
structure and is defined as follows:

(Def. 8) CLSp PFunctA =
〈A→̇C,CPFuncZeroA, addcpfuncA,multcomplexcpfuncA〉.

In the sequel u, v, w are vectors of CLSp PFunctA.
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Note that CLSp PFunctA is strict, Abelian, add-associative, right zeroed,
vector distributive, scalar distributive, scalar associative, and scalar unital.

3. Quasi-Complex Linear Space of Integrable Functions

For simplicity, we use the following convention: X is a non empty set, x is
an element of X, S is a σ-field of subsets of X, M is a σ-measure on S, E, A
are elements of S, and f , g, h, f1, g1 are partial functions from X to C.

Let us consider X and let f be a partial function from X to C. Note that
|f | is non-negative.

Next we state the proposition

(16) Let f be a partial function from X to C. Suppose dom f ∈ S and for
every x such that x ∈ dom f holds 0 = f(x). Then f is integrable on M

and
∫
f dM = 0.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The functor L1CFunctionsM yielding a non empty subset of
CLSp PFunctX is defined by the condition (Def. 9).

(Def. 9) L1CFunctionsM = {f ; f ranges over partial functions from X to C:∨
N1 : element of S (M(N1) = 0 ∧ dom f = N1

c ∧ f is integrable on M)}.
The following propositions are true:

(17) If f , g ∈ L1CFunctionsM, then f + g ∈ L1CFunctionsM.

(18) If f ∈ L1CFunctionsM, then a · f ∈ L1CFunctionsM.

Note that L1CFunctionsM is multiplicatively closed and add closed.
The functor CLSp L1FunctM yielding a non empty CLS structure is defined

by:

(Def. 10) CLSp L1FunctM = 〈L1CFunctionsM, 0CLSp PFunctX(∈ L1CFunctionsM),
add |(L1CFunctionsM,CLSp PFunctX), ·L1CFunctionsM 〉.

One can verify that CLSp L1FunctM is strict, Abelian, add-associative, ri-
ght zeroed, vector distributive, scalar distributive, scalar associative, and scalar
unital.

4. Quotient Space of Quasi-Complex Linear Space of Integrable
Functions

In the sequel v, u are vectors of CLSp L1FunctM.

Next we state two propositions:

(19) If f = v and g = u, then f + g = v + u.

(20) If f = u, then a · f = a · u.
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Let X be a non empty set, let S be a σ-field of subsets of X, let M be a
σ-measure on S, and let f , g be partial functions from X to C. We say that f
a.e.cpfunc = g and M if and only if:

(Def. 11) There exists an element E of S such that M(E) = 0 and f�Ec = g�Ec.

We now state several propositions:

(21) Suppose f = u. Then
(i) u+ (−1C) · u = (X 7−→ 0C)�dom f, and
(ii) there exist partial functions v, g from X to C such that v, g ∈

L1CFunctionsM and v = u+(−1C) ·u and g = X 7−→ 0C and v a.e.cpfunc
= g and M .

(22) f a.e.cpfunc = f and M .

(23) If f a.e.cpfunc = g and M , then g a.e.cpfunc = f and M .

(24) If f a.e.cpfunc = g and M and g a.e.cpfunc = h and M , then f a.e.cpfunc
= h and M .

(25) If f a.e.cpfunc = f1 and M and g a.e.cpfunc = g1 and M , then f + g

a.e.cpfunc = f1 + g1 and M .

(26) If f a.e.cpfunc = g and M , then a · f a.e.cpfunc = a · g and M .

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The almost zero cfunctions of M yields a non empty subset
of CLSp L1FunctM and is defined by the condition (Def. 12).

(Def. 12) The almost zero cfunctions of M = {f ; f ranges over partial functions
from X to C: f ∈ L1CFunctionsM ∧ f a.e.cpfunc = X 7−→ 0C and M}.

One can prove the following proposition

(27) (X 7−→ 0C) + (X 7−→ 0C) = X 7−→ 0C and a · (X 7−→ 0C) = X 7−→ 0C.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. One can check that the almost zero cfunctions of M is add
closed and multiplicatively closed.

One can prove the following proposition

(28) 0CLSp L1FunctM = X 7−→ 0C and 0CLSp L1FunctM ∈ the almost zero cfunc-
tions of M .

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The clsp almost zero functions of M yields a non empty CLS
structure and is defined by the condition (Def. 13).

(Def. 13) The clsp almost zero functions of M = 〈the almost zero cfunctions of
M , 0CLSp L1FunctM (∈ the almost zero cfunctions of M), add |(the almost
zero cfunctions of M , CLSp L1FunctM), ·the almost zero cfunctions of M 〉.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. One can check that CLSp L1FunctM is strict, Abelian,
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add-associative, right zeroed, vector distributive, scalar distributive, scalar as-
sociative, and scalar unital.

In the sequel v, u are vectors of the clsp almost zero functions of M .
One can prove the following proposition

(29) If f = v and g = u, then f + g = v + u.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be
a σ-measure on S, and let f be a partial function from X to C. The functor
a.e-Ceq-class(f,M) yields a subset of L1CFunctionsM and is defined as follows:

(Def. 14) a.e-Ceq-class(f,M) = {g; g ranges over partial functions from X to C:
g ∈ L1CFunctionsM ∧ f ∈ L1CFunctionsM ∧ f a.e.cpfunc = g and
M}.

Next we state several propositions:

(30) If f , g ∈ L1CFunctionsM, then g a.e.cpfunc = f and M iff g ∈
a.e-Ceq-class(f,M).

(31) If f ∈ L1CFunctionsM, then f ∈ a.e-Ceq-class(f,M).

(32) If f , g ∈ L1CFunctionsM, then a.e-Ceq-class(f,M) = a.e-Ceq-class(g,M)
iff f a.e.cpfunc = g and M .

(33) If f , g ∈ L1CFunctionsM, then a.e-Ceq-class(f,M) = a.e-Ceq-class(g,M)
iff g ∈ a.e-Ceq-class(f,M).

(34) If f , f1, g, g1 ∈ L1CFunctionsM and a.e-Ceq-class(f,M) =
a.e-Ceq-class(f1,M) and a.e-Ceq-class(g,M) = a.e-Ceq-class(g1,M), then
a.e-Ceq-class(f + g,M) = a.e-Ceq-class(f1 + g1,M).

(35) If f , g ∈ L1CFunctionsM and a.e-Ceq-class(f,M) = a.e-Ceq-class(g,M),
then a.e-Ceq-class(a · f,M) = a.e-Ceq-class(a · g,M).

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The functor CCosetSetM yields a non empty family of subsets
of L1CFunctionsM and is defined by:

(Def. 15) CCosetSetM = {a.e-Ceq-class(f,M); f ranges over partial functions
from X to C: f ∈ L1CFunctionsM}.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor addCCosetM yields a binary operation on
CCosetSetM and is defined by the condition (Def. 16).

(Def. 16) Let A, B be elements of CCosetSetM and a, b be partial functions
from X to C. If a ∈ A and b ∈ B, then (addCCosetM)(A,B) =
a.e-Ceq-class(a+ b,M).

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The functor zeroCCosetM yielding an element of CCosetSetM
is defined by:

(Def. 17) zeroCCosetM = a.e-Ceq-class(X 7−→ 0C,M).
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Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor lmultCCosetM yields a function from C ×
CCosetSetM into CCosetSetM and is defined by the condition (Def. 18).

(Def. 18) Let z be a complex number, A be an element of CCosetSetM, and f be
a partial function from X to C. If f ∈ A, then (lmultCCosetM)(z,A) =
a.e-Ceq-class(z · f,M).

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor Pre-L-CSpaceM yields a strict Abelian add-
associative right zeroed right complementable vector distributive scalar distri-
butive scalar associative scalar unital non empty CLS structure and is defined
by the conditions (Def. 19).

(Def. 19)(i) The carrier of Pre-L-CSpaceM = CCosetSetM,

(ii) the addition of Pre-L-CSpaceM = addCCosetM,

(iii) 0Pre-L-CSpaceM = zeroCCosetM, and
(iv) the external multiplication of Pre-L-CSpaceM = lmultCCosetM.

5. Complex Normed Space of Integrable Functions

Next we state several propositions:

(36) If f , g ∈ L1CFunctionsM and f a.e.cpfunc = g and M , then
∫
f dM =∫

g dM.

(37) If f is integrable on M , then
∫
f dM ∈ C and

∫
|f | dM ∈ R and |f | is

integrable on M .

(38) If f , g ∈ L1CFunctionsM and f a.e.cpfunc = g and M , then |f | =M
a.e. |g|

and
∫
|f | dM =

∫
|g| dM.

(39) If there exists a vector x of Pre-L-CSpaceM such that f , g ∈ x, then f

a.e.cpfunc = g and M and f , g ∈ L1CFunctionsM.

(40) There exists a function N2 from the carrier of Pre-L-CSpaceM into R
such that for every point x of Pre-L-CSpaceM holds there exists a partial
function f from X to C such that f ∈ x and N2(x) =

∫
|f | dM.

In the sequel x is a point of Pre-L-CSpaceM.

The following two propositions are true:

(41) If f ∈ x, then f is integrable on M and f ∈ L1CFunctionsM and |f | is
integrable on M .

(42) If f , g ∈ x, then f a.e.cpfunc = g and M and
∫
f dM =

∫
g dM and∫

|f |dM =
∫
|g|dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The functor L-1-CNormM yields a function from the carrier
of Pre-L-CSpaceM into R and is defined by:
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(Def. 20) For every point x of Pre-L-CSpaceM there exists a partial function f

from X to C such that f ∈ x and (L-1-CNormM)(x) =
∫
|f | dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor L-1-CSpaceM yields a non empty complex
normed space structure and is defined as follows:

(Def. 21) L-1-CSpaceM = 〈the carrier of Pre-L-CSpaceM, the zero of
Pre-L-CSpaceM, the addition of Pre-L-CSpaceM, the external multipli-
cation of Pre-L-CSpaceM,L-1-CNormM〉.

In the sequel x denotes a point of L-1-CSpaceM.

Next we state several propositions:

(43)(i) There exists a partial function f from X to C such that f ∈
L1CFunctionsM and x = a.e-Ceq-class(f,M) and ‖x‖ =

∫
|f | dM, and

(ii) for every partial function f from X to C such that f ∈ x holds∫
|f | dM = ‖x‖.

(44) If f ∈ x, then x = a.e-Ceq-class(f,M) and ‖x‖ =
∫
|f |dM.

(45) If f ∈ x and g ∈ y, then f + g ∈ x+ y and if f ∈ x, then a · f ∈ a · x.
(46) If f ∈ L1CFunctionsM and

∫
|f | dM = 0, then f a.e.cpfunc = X 7−→ 0C

and M .

(47) If f , g ∈ L1CFunctionsM, then
∫
|f + g|dM ≤

∫
|f |dM +

∫
|g|dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a σ-
measure on S. One can check that L-1-CSpaceM is complex normed space-like,
vector distributive, scalar distributive, scalar associative, scalar unital, Abelian,
add-associative, right zeroed, and right complementable.
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