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Summary. Triviality of fundamental groups of spheres of dimension gre-
ater than 1 is proven, [17].
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The notation and terminology used in this paper have been introduced in the
following papers: [4], [11], [12], [19], [9], [3], [5], [6], [21], [22], [1], [2], [7], [18],
[20], [24], [25], [23], [16], [13], [14], [10], [15], and [8].

1. Preliminaries

In this paper T , U are non empty topological spaces, t is a point of T , and
n is a natural number.

Let S be a topological space and let T be a non empty topological space.
Note that every function from S into T which is constant is also continuous.

The following two propositions are true:

(1) L01(0, 1, 0, 1) = id[0, 1]T .

(2) For all real numbers r1, r2, r3, r4, r5, r6 such that r1 < r2 and r3 ≤ r4
and r5 < r6 holds L01(r1, r2, r3, r4) · L01(r5, r6, r1, r2) = L01(r5, r6, r3, r4).

Let n be a positive natural number. Observe that EnT is infinite and every
non empty topological space which is n-locally Euclidean is also infinite.

The following propositions are true:
1This work has been supported by the Polish Ministry of Science and Higher Education pro-

ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).

97
c© 2012 University of Białystok

CC-BY-SA License ver. 3.0 or later

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/topalg_6.miz
http://ftp.mizar.org/


98 marco riccardi and artur korniłowicz

(3) For every point p of EnT such that p ∈ Sphere((0EnT), 1) holds −p ∈
Sphere((0EnT), 1) \ {p}.

(4) Let T be a non empty topological structure, t1, t2 be points of T , and p
be a path from t1 to t2. Then inf dom p = 0 and sup dom p = 1.

(5) For all constant loops C1, C2 of t holds C1, C2 are homotopic.

(6) Let S be a non empty subspace of T , t1, t2 be points of T , s1, s2 be
points of S, A, B be paths from t1 to t2, and C, D be paths from s1 to
s2. Suppose s1, s2 are connected and t1, t2 are connected and A = C and
B = D and C, D are homotopic. Then A, B are homotopic.

(7) Let S be a non empty subspace of T , t1, t2 be points of T , s1, s2 be points
of S, A, B be paths from t1 to t2, and C, D be paths from s1 to s2. Suppose
s1, s2 are connected and t1, t2 are connected and A = C and B = D and
[C]EqRel(S,s1,s2) = [D]EqRel(S,s1,s2). Then [A]EqRel(T,t1,t2) = [B]EqRel(T,t1,t2).

(8) Let T be a trivial non empty topological space, t be a point of T , and L
be a loop of t. Then the carrier of π1(T, t) = {[L]EqRel(T,t)}.

(9) For every point p of EnT and for every subset S of EnT such that n ≥ 2
and S = ΩEnT \ {p} holds EnT�S is pathwise connected.

(10) Let S be a non empty subset of T . Suppose n ≥ 2 and S = ΩT \ {t} and
EnT and T are homeomorphic. Then T �S is pathwise connected.

Let n be an element of N and let p, q be points of EnT. Observe that
TPlane(p, q) is convex.

2. Fundamental Groups

Let us consider T . We say that T has trivial fundamental group if and only
if:

(Def. 1) For every point t of T holds π1(T, t) is trivial.

Let us consider T . We say that T is simply connected if and only if:

(Def. 2) T is pathwise connected and has trivial fundamental group.

One can verify that every non empty topological space which is simply con-
nected is also pathwise connected and has trivial fundamental group and every
non empty topological space which is pathwise connected and has trivial funda-
mental group is also simply connected.

The following proposition is true

(11) If T has trivial fundamental group, then for every point t of T and for
all loops P , Q of t holds P , Q are homotopic.

Let n be a natural number. Note that EnT has trivial fundamental group.
Let us note that every non empty topological space which is trivial also has

trivial fundamental group.
The following proposition is true
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(12) T is simply connected if and only if for all points t1, t2 of T holds t1, t2
are connected and for all paths P , Q from t1 to t2 holds [P ]EqRel(T,t1,t2) =
[Q]EqRel(T,t1,t2).

Let T be a non empty topological space with trivial fundamental group and
let t be a point of T . One can check that π1(T, t) is trivial.

Next we state three propositions:

(13) Let S, T be non empty topological spaces. Suppose S and T are home-
omorphic. If S has trivial fundamental group, then T has trivial funda-
mental group.

(14) Let S, T be non empty topological spaces. Suppose S and T are home-
omorphic. If S is simply connected, then T is simply connected.

(15) Let T be a non empty topological space with trivial fundamental group,
t be a point of T , and P1, P2 be loops of t. Then P1, P2 are homotopic.

Let us consider T , t and let l be a loop of t. We say that l is null-homotopic
if and only if:

(Def. 3) There exists a constant loop c of t such that l, c are homotopic.

Let us consider T , t. Observe that every loop of t which is constant is also
null-homotopic.

Let us consider T , t. Note that there exists a loop of t which is constant.

The following proposition is true

(16) Let f be a loop of t and g be a continuous function from T into U . If f
is null-homotopic, then g · f is null-homotopic.

Let T , U be non empty topological spaces, let t be a point of T , let f be
a null-homotopic loop of t, and let g be a continuous function from T into U .
Note that g · f is null-homotopic.

Let T be a non empty topological space with trivial fundamental group and
let t be a point of T . Note that every loop of t is null-homotopic.

One can prove the following proposition

(17) If for every point t of T holds every loop of t is null-homotopic, then T

has trivial fundamental group.

Let n be an element of N and let p, q be points of EnT. Note that TPlane(p, q)
has trivial fundamental group.

We now state the proposition

(18) Let S be a non empty subspace of T , s be a point of S, f be a loop of
t, and g be a loop of s. If t = s and f = g and g is null-homotopic, then
f is null-homotopic.
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3. Curves

In the sequel T is a topological structure and f is a partial function from
R1 to T .

Let us consider T , f . We say that f is parametrized curve if and only if the
conditions (Def. 4) are satisfied.

(Def. 4)(i) dom f is an interval subset of R, and
(ii) there exists a subspace S of R1 and there exists a function g from S

into T such that f = g and S = R1�dom f and g is continuous.

Let us consider T . Observe that there exists a partial function from R1 to
T which is parametrized curve.

One can prove the following proposition

(19) ∅ is a parametrized curve partial function from R1 to T .

Let us consider T . The functor T -Curves yields a subset of R→̇ΩT and is
defined as follows:

(Def. 5) T -Curves = {f ∈ R→̇ΩT : f is a parametrized curve partial function
from R1 to T}.

Let us consider T . One can check that T -Curves is non empty.
Let us consider T . A curve of T is an element of T -Curves.
In the sequel c is a curve of T .
We now state several propositions:

(20) Every parametrized curve partial function from R1 to T is a curve of T .

(21) ∅ is a curve of T .

(22) Let t1, t2 be points of T and p be a path from t1 to t2. If t1, t2 are
connected, then p is a curve of T .

(23) c is a parametrized curve partial function from R1 to T .

(24) dom c ⊆ R and rng c ⊆ ΩT .

Let us consider T , c. One can verify that dom c is real-membered.
Let us consider T , c. We say that c has first point if and only if:

(Def. 6) dom c is left-ended.

We say that c has last point if and only if:

(Def. 7) dom c is right-ended.

Let us consider T , c. We say that c has endpoints if and only if:

(Def. 8) c has first point and last point.

Let us consider T . One can check that every curve of T which has first point
and last point also has endpoints and every curve of T which has endpoints also
has first point and last point.

In the sequel T denotes a non empty topological structure.
Let us consider T . Note that there exists a curve of T which has endpoints.
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Let us consider T and let c be a curve of T with first point. Note that dom c

is non empty and inf dom c is real.
Let us consider T and let c be a curve of T with last point. Note that dom c

is non empty and sup dom c is real.
Let us consider T . Observe that every curve of T which has first point is

also non empty and every curve of T which has last point is also non empty.
Let us consider T and let c be a curve of T with first point. The first point

of c yielding a point of T is defined by:

(Def. 9) The first point of c = c(inf dom c).

Let us consider T and let c be a curve of T with last point. The last point
of c yielding a point of T is defined by:

(Def. 10) The last point of c = c(sup dom c).

The following propositions are true:

(25) Let t1, t2 be points of T and p be a path from t1 to t2. If t1, t2 are
connected, then p is a curve of T with endpoints.

(26) For every curve c of T and for all real numbers r1, r2 holds c�[r1, r2] is
a curve of T .

(27) For every curve c of T with endpoints holds dom c = [inf dom c, sup dom c].

(28) Let c be a curve of T with endpoints. Suppose dom c = [0, 1]. Then c is
a path from the first point of c to the last point of c.

(29) Let c be a curve of T with endpoints. Then c·L01(0, 1, inf dom c, sup dom c)
is a path from the first point of c to the last point of c.

(30) Let c be a curve of T with endpoints and t1, t2 be points of T . Suppo-
se c · L01(0, 1, inf dom c, sup dom c) is a path from t1 to t2 and t1, t2 are
connected. Then t1 = the first point of c and t2 = the last point of c.

(31) For every curve c of T with endpoints holds the first point of c ∈ rng c
and the last point of c ∈ rng c.

(32) Let r1, r2 be real numbers, t1, t2 be points of T , and p1 be a path from
t1 to t2. Suppose t1, t2 are connected and r1 < r2. Then p1 ·L01(r1, r2, 0, 1)
is a curve of T with endpoints.

(33) For every curve c of T with endpoints holds the first point of c, the last
point of c are connected.

Let T be a non empty topological structure and let c1, c2 be curves of T
with endpoints. We say that c1, c2 are homotopic if and only if the condition
(Def. 11) is satisfied.

(Def. 11) There exist points a, b of T and there exist paths p1, p2 from a

to b such that p1 = c1 · L01(0, 1, inf dom c1, sup dom c1) and p2 = c2 ·
L01(0, 1, inf dom c2, sup dom c2) and p1, p2 are homotopic.

Let us note that the predicate c1, c2 are homotopic is symmetric.
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Let T be a non empty topological space and let c1, c2 be curves of T with
endpoints. Let us notice that the predicate c1, c2 are homotopic is reflexive and
symmetric.

The following three propositions are true:

(34) Let T be a non empty topological structure, c1, c2 be curves of T with
endpoints, a, b be points of T , and p1, p2 be paths from a to b. Suppose
c1 = p1 and c2 = p2 and a, b are connected. Then c1, c2 are homotopic if
and only if p1, p2 are homotopic.

(35) Let c1, c2 be curves of T with endpoints. Suppose c1, c2 are homotopic.
Then the first point of c1 = the first point of c2 and the last point of
c1 = the last point of c2.

(36) Let T be a non empty topological space, c1, c2 be curves of T with
endpoints, and S be a subset of R1. Suppose dom c1 = dom c2 and S =
dom c1. Then c1, c2 are homotopic if and only if there exists a function
f from (R1�S) × I into T and there exist points a, b of T such that f is
continuous and for every point t of R1�S holds f(t, 0) = c1(t) and f(t, 1) =
c2(t) and for every point t of I holds f(inf S, t) = a and f(supS, t) = b.

Let T be a topological structure and let c1, c2 be curves of T . The functor
c1 + c2 yielding a curve of T is defined as follows:

(Def. 12) c1 + c2 =

{
c1 ∪ c2, if c1 ∪ c2 is a curve of T ,
∅, otherwise.

One can prove the following three propositions:

(37) Let c be a curve of T with endpoints and r be a real number. Then
there exist elements c1, c2 of T -Curves such that c = c1 + c2 and c1 =
c�[inf dom c, r] and c2 = c�[r, sup dom c].

(38) Let T be a non empty topological space and c1, c2 be curves of T with
endpoints. Suppose sup dom c1 = inf dom c2 and the last point of c1 =
the first point of c2. Then c1 + c2 has endpoints and dom(c1 + c2) =
[inf dom c1, sup dom c2] and (c1 + c2)(inf dom c1) = the first point of c1
and (c1 + c2)(sup dom c2) = the last point of c2.

(39) Let T be a non empty topological space and c1, c2, c3, c4, c5, c6 be curves
of T with endpoints. Suppose that c1, c2 are homotopic and dom c1 =
dom c2 and c3, c4 are homotopic and dom c3 = dom c4 and c5 = c1 + c3
and c6 = c2 + c4 and the last point of c1 = the first point of c3 and
sup dom c1 = inf dom c3. Then c5, c6 are homotopic.

Let T be a topological structure and let f be a finite sequence of elements
of T -Curves. The functor (

∑κ
α=0 f(α))κ∈N yielding a finite sequence of elements

of T -Curves is defined as follows:

(Def. 13) len f = len((
∑κ
α=0 f(α))κ∈N) and f(1) = (

∑κ
α=0 f(α))κ∈N(1) and for

every natural number i such that 1 ≤ i < len f holds (
∑κ
α=0 f(α))κ∈N(i+
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1) = ((
∑κ
α=0 f(α))κ∈N)i + fi+1.

Let T be a topological structure and let f be a finite sequence of elements
of T -Curves. The functor

∑
f yields a curve of T and is defined as follows:

(Def. 14)
∑
f =

{
(
∑κ
α=0 f(α))κ∈N(len f), if len f > 0,

∅, otherwise.

Next we state several propositions:

(40) For every curve c of T holds
∑
〈c〉 = c.

(41) For every curve c of T and for every finite sequence f of elements of
T -Curves holds

∑
(f a 〈c〉) =

∑
f + c.

(42) Let X be a set and f be a finite sequence of elements of T -Curves.
Suppose that for every natural number i such that 1 ≤ i ≤ len f holds
rng(fi) ⊆ X. Then rng

∑
f ⊆ X.

(43) Let T be a non empty topological space and f be a finite sequence of
elements of T -Curves. Suppose that

(i) len f > 0,
(ii) for every natural number i such that 1 ≤ i < len f holds

fi(sup dom(fi)) = fi+1(inf dom(fi+1)) and sup dom(fi) = inf dom(fi+1),
and

(iii) for every natural number i such that 1 ≤ i ≤ len f holds fi has endpo-
ints.
Then there exists a curve c of T with endpoints such that

∑
f = c

and dom c = [inf dom(f1), sup dom(flen f )] and the first point of c =
f1(inf dom(f1)) and the last point of c = flen f (sup dom(flen f )).

(44) Let T be a non empty topological space, f1, f2 be finite sequen-
ces of elements of T -Curves, and c1, c2 be curves of T with end-
points. Suppose that len f1 > 0 and len f1 = len f2 and

∑
f1 =

c1 and
∑
f2 = c2 and for every natural number i such that 1 ≤

i < len f1 holds (f1)i(sup dom((f1)i)) = (f1)i+1(inf dom((f1)i+1)) and
sup dom((f1)i) = inf dom((f1)i+1) and for every natural number i such
that 1 ≤ i < len f2 holds (f2)i(sup dom((f2)i)) = (f2)i+1(inf dom((f2)i+1))
and sup dom((f2)i) = inf dom((f2)i+1) and for every natural number i such
that 1 ≤ i ≤ len f1 there exist curves c3, c4 of T with endpoints such that
c3 = (f1)i and c4 = (f2)i and c3, c4 are homotopic and dom c3 = dom c4.

Then c1, c2 are homotopic.

(45) Let c be a curve of T with endpoints and h be a finite sequence of
elements of R. Suppose lenh ≥ 2 and h(1) = inf dom c and h(lenh) =
sup dom c and h is increasing. Then there exists a finite sequence f of
elements of T -Curves such that len f = lenh − 1 and c =

∑
f and for

every natural number i such that 1 ≤ i ≤ len f holds fi = c�[hi, hi+1].

(46) If n ≥ 2, then Sn has trivial fundamental group.
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(47) Let n be a non empty natural number, r be a positive real number, and
x be a point of EnT. If n ≥ 3, then Tcircle(x, r) has trivial fundamental
group.
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The notation and terminology used here have been introduced in the following
papers: [33], [36], [15], [16], [2], [5], [28], [35], [13], [26], [20], [30], [4], [34], [6],
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1. Preliminaries

For simplicity, we adopt the following rules: a, b, x, y, z, X, Y , Z denote
sets, n denotes a natural number, i denotes an integer, r, r1, r2, r3, s denote
real numbers, c, c1, c2 denote complex numbers, and p denotes a point of EnT.

Let us observe that every element of IQ is irrational.
Next we state a number of propositions:

(1) If 0 ≤ r and 0 ≤ s and r2 = s2, then r = s.

(2) If frac r ≥ frac s, then frac(r − s) = frac r − frac s.

(3) If frac r < frac s, then frac(r − s) = (frac r − frac s) + 1.

1This work has been supported by the Polish Ministry of Science and Higher Education pro-
ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).
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(4) There exists i such that frac(r − s) = (frac r − frac s) + i but i = 0 or
i = 1.

(5) If sin r = 0, then r = 2 · π · b r
2·π c or r = π + 2 · π · b r

2·π c.
(6) If cos r = 0, then r = π

2 + 2 · π · b r
2·π c or r = 3·π

2 + 2 · π · b r
2·π c.

(7) If sin r = 0, then there exists i such that r = π · i.
(8) If cos r = 0, then there exists i such that r = π

2 + π · i.
(9) If sin r = sin s, then there exists i such that r = s + 2 · π · i or r =

(π − s) + 2 · π · i.
(10) If cos r = cos s, then there exists i such that r = s+2·π·i or r = −s+2·π·i.
(11) If sin r = sin s and cos r = cos s, then there exists i such that r = s+2·π·i.
(12) If |c1| = |c2| and Arg c1 = Arg c2 + 2 · π · i, then c1 = c2.

Let f be a one-to-one complex-valued function and let us consider c. One
can verify that f + c is one-to-one.

Let f be a one-to-one complex-valued function and let us consider c. Note
that f − c is one-to-one.

One can prove the following propositions:

(13) For every complex-valued finite sequence f holds len(−f) = len f.

(14) −〈0, . . . , 0︸ ︷︷ ︸
n

〉 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(15) For every complex-valued function f such that f 6= 〈0, . . . , 0︸ ︷︷ ︸
n

〉 holds −f 6=

〈0, . . . , 0︸ ︷︷ ︸
n

〉.

(16) 2〈r1, r2, r3〉 = 〈r12, r22, r32〉.
(17)

∑2〈r1, r2, r3〉 = r1
2 + r2

2 + r3
2.

(18) For every complex-valued finite sequence f holds (c · f)2 = c2 · f2.
(19) For every complex-valued finite sequence f holds (f/c)2 = f2/c2.

(20) For every real-valued finite sequence f such that
∑
f 6= 0 holds∑

(f/
∑
f) = 1.

Let a, b, c, x, y, z be sets. The functor [a 7→ x, b 7→ y, c 7→ z] is defined by:

(Def. 1) [a 7→ x, b 7→ y, c 7→ z] = [a 7−→ x, b 7−→ y]+·(c 7−→. z).

Let a, b, c, x, y, z be sets. One can check that [a 7→ x, b 7→ y, c 7→ z] is
function-like and relation-like.

The following propositions are true:

(21) dom([a 7→ x, b 7→ y, c 7→ z]) = {a, b, c}.
(22) rng([a 7→ x, b 7→ y, c 7→ z]) ⊆ {x, y, z}.
(23) [a 7→ x, a 7→ y, a 7→ z] = a 7−→. z.

(24) [a 7→ x, a 7→ y, b 7→ z] = [a 7−→ y, b 7−→ z].

(25) If a 6= b, then [a 7→ x, b 7→ y, a 7→ z] = [a 7−→ z, b 7−→ y].
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(26) [a 7→ x, b 7→ y, b 7→ z] = [a 7−→ x, b 7−→ z].

(27) If a 6= b and a 6= c, then ([a 7→ x, b 7→ y, c 7→ z])(a) = x.

(28) If a, b, c are mutually different, then ([a 7→ x, b 7→ y, c 7→ z])(a) = x and
([a 7→ x, b 7→ y, c 7→ z])(b) = y and ([a 7→ x, b 7→ y, c 7→ z])(c) = z.

(29) For every function f such that dom f = {a, b, c} and f(a) = x and
f(b) = y and f(c) = z holds f = [a 7→ x, b 7→ y, c 7→ z].

(30) 〈a, b, c〉 = [1 7→ a, 2 7→ b, 3 7→ c].

(31) If a, b, c are mutually different, then
∏

([a 7→ {x}, b 7→ {y}, c 7→ {z}]) =
{[a 7→ x, b 7→ y, c 7→ z]}.

(32) For all sets A, B, C, D, E, F such that A ⊆ B and C ⊆ D and E ⊆ F

holds
∏

([a 7→ A, b 7→ C, c 7→ E]) ⊆
∏

([a 7→ B, b 7→ D, c 7→ F ]).

(33) If a, b, c are mutually different and x ∈ X and y ∈ Y and z ∈ Z, then
[a 7→ x, b 7→ y, c 7→ z] ∈

∏
([a 7→ X, b 7→ Y, c 7→ Z]).

Let f be a function. We say that f is odd if and only if:

(Def. 2) For all complex-valued functions x, y such that x, −x ∈ dom f and
y = f(x) holds f(−x) = −y.

Let us mention that ∅ is odd.
Let us observe that there exists a function which is odd and complex-

functions-valued.
The following propositions are true:

(34) For every point p of E3T holds 2p = 〈(p1)2, (p2)2, (p3)2〉.
(35) For every point p of E3T holds

∑2p = (p1)2 + (p2)2 + (p3)2.

The following two propositions are true:

(36) For every subset S of R1 such that S = Q holds Q ∩ ]−∞, r[ is an open
subset of R1�S.

(37) For every subset S of R1 such that S = Q holds Q ∩ ]r,+∞[ is an open
subset of R1�S.

Let X be a connected non empty topological space, let Y be a non empty
topological space, and let f be a continuous function from X into Y . Note that
Im f is connected.

Next we state two propositions:

(38) Let S be a subset of R1. Suppose S = Q. Let T be a connected topological
space and f be a function from T into R1�S. If f is continuous, then f is
constant.

(39) Let a, b be real numbers, f be a continuous function from [a, b]T into
R1, and g be a partial function from R to R. If a ≤ b and f = g, then g is
continuous.

Let s be a point of R1 and let r be a real number. Then s + r is a point
of R1.
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Let s be a point of R1 and let r be a real number. Then s − r is a point
of R1.

Let X be a set, let f be a function from X into R1, and let us consider r.
Then f + r is a function from X into R1.

Let X be a set, let f be a function from X into R1, and let us consider r.
Then f − r is a function from X into R1.

Let s, t be points of R1, let f be a path from s to t, and let r be a real
number. Then f + r is a path from s + r to t + r. Then f − r is a path from
s− r to t− r.

The point c[100] of TopUnitCircle 3 is defined by:

(Def. 3) c[100] = [1, 0, 0].

The point c[−100] of TopUnitCircle 3 is defined by:

(Def. 4) c[−100] = [−1, 0, 0].

Next we state several propositions:

(40) −c[100] = c[−100].

(41) −c[−100] = c[100].

(42) c[100]− c[−100] = [2, 0, 0].

(43) For every point p of E2T holds p1 = |p| · cos Arg p and p2 = |p| · sin Arg p.

(44) For every point p of E2T holds p = cpx2euc(|p| ·cos Arg p+ |p| ·sin Arg p ·i).
(45) For all points p1, p2 of E2T such that |p1| = |p2| and Arg p1 = Arg p2+2·π·i

holds p1 = p2.

One can prove the following propositions:

(46) For every point p of E2T such that p = CircleMap(r) holds Arg p =
2 · π · frac r.

(47) Let p1, p2 be points of E3T and u1, u2 be points of E3. If u1 = p1 and
u2 = p2, then ρ3(u1, u2) =√

((p1)1 − (p2)1)2 + ((p1)2 − (p2)2)2 + ((p1)3 − (p2)3)2.

(48) Let p be a point of E3T and e be a point of E3. If p = e and p3 = 0, then∏
([1 7→ ]p1 − r√

2
, p1 + r√

2
[, 2 7→ ]p2 − r√

2
, p2 + r√

2
[, 3 7→ {0}]) ⊆ Ball(e, r).

(49) For every real number s holds c 	 s = c 	 s+ 2 · π · i.
(50) For every real number s holds Rotate s = Rotate(s+ 2 · π · i).
(51) For every real number s and for every point p of E2T holds
|(Rotate s)(p)| = |p|.

(52) For every real number s and for every point p of E2T holds
Arg(Rotate s)(p) = Arg(euc2cpx(p) 	 s).

(53) For every real number s and for every point p of E2T such that p 6= 0E2T
there exists i such that Arg(Rotate s)(p) = s+ Arg p+ 2 · π · i.

(54) For every real number s holds (Rotate s)(0E2T) = 0E2T .
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(55) For every real number s and for every point p of E2T such that
(Rotate s)(p) = 0E2T holds p = 0E2T .

(56) For every real number s and for every point p of E2T holds
(Rotate s)((Rotate(−s))(p)) = p.

(57) For every real number s holds Rotate s · Rotate(−s) = idE2T .

(58) For every real number s and for every point p of E2T holds p ∈
Sphere((0E2T), r) iff (Rotate s)(p) ∈ Sphere((0E2T), r).

(59) For every non negative real number r and for every real number s holds
(Rotate s)◦ Sphere((0E2T), r) = Sphere((0E2T), r).

Let r be a non negative real number and let s be a real number. The functor
RotateCircle(r, s) yields a function from Tcircle(0E2T , r) into Tcircle(0E2T , r) and
is defined by:

(Def. 5) RotateCircle(r, s) = Rotate s�Tcircle(0E2T , r).

Let r be a non negative real number and let s be a real number. Note that
RotateCircle(r, s) is homeomorphism.

One can prove the following proposition

(60) For every point p of E2T such that p = CircleMap(r2) holds
(RotateCircle(1, (−Arg p)))(CircleMap(r1)) = CircleMap(r1 − r2).

2. On the Antipodals

Let n be a non empty natural number, let p be a point of EnT, and let r be
a non negative real number. The functor CircleIso(p, r) yields a function from
TopUnitCirclen into Tcircle(p, r) and is defined as follows:

(Def. 6) For every point a of TopUnitCirclen and for every point b of EnT such
that a = b holds (CircleIso(p, r))(a) = r · b+ p.

Let n be a non empty natural number, let p be a point of EnT, and let r be
a positive real number. Note that CircleIso(p, r) is homeomorphism.

The function SphereMap from R1 into TopUnitCircle 3 is defined by:

(Def. 7) For every real number x holds (SphereMap)(x) = [cos(2 ·π ·x), sin(2 ·π ·
x), 0].

We now state the proposition

(61) (SphereMap)(i) = c[100].

Let us note that SphereMap is continuous.
Let r be a real number. The functor eLoop r yields a function from I into

TopUnitCircle 3 and is defined as follows:

(Def. 8) For every point x of I holds (eLoop r)(x) = [cos(2·π·r·x), sin(2·π·r·x), 0].

We now state the proposition

(62) eLoop r = SphereMap ·ExtendInt r.
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Let us consider i. Then eLoop i is a loop of c[100].
One can check that eLoop i is null-homotopic as a loop of c[100].
One can prove the following proposition

(63) If p 6= 0EnT , then |p/|p|| = 1.

Let n be a natural number and let p be a point of EnT. Let us assume that
p 6= 0EnT . The functor (Rn → S1) p yields a point of Tcircle(0EnT , 1) and is defined
by:

(Def. 9) (Rn → S1) p = p/|p|.
Let n be a non zero natural number and let f be a function
from Tcircle(0En+1T

, 1) into EnT. The functor (Sn+1 → Sn) f yielding a func-
tion from TopUnitCircle(n+ 1) into TopUnitCirclen is defined as follows:

(Def. 10) For all points x, y of Tcircle(0En+1T
, 1) such that y = −x holds

((Sn+1 → Sn) f)(x) = (Rn → S1)(f(x)− f(y)).

Let x0, y0 be points of TopUnitCircle 2, let x1 be a set, and let f be a
path from x0 to y0. Let us assume that x1 ∈ CircleMap−1({x0}). The functor
liftPath(f, x1) yielding a function from I into R1 is defined by the conditions
(Def. 11).

(Def. 11)(i) (liftPath(f, x1))(0) = x1,

(ii) f = CircleMap · liftPath(f, x1),
(iii) liftPath(f, x1) is continuous, and
(iv) for every function f1 from I into R1 such that f1 is continuous and

f = CircleMap ·f1 and f1(0) = x1 holds liftPath(f, x1) = f1.

Let n be a natural number, let p, x, y be points of EnT, and let r be a real
number. We say that x and y are antipodals of p and r if and only if:

(Def. 12) x is a point of Tcircle(p, r) and y is a point of Tcircle(p, r) and p ∈
L(x, y).

Let n be a natural number, let p, x, y be points of EnT, let r be a real number,
and let f be a function. We say that x and y are antipodals of p, r and f if and
only if:

(Def. 13) x and y are antipodals of p and r and x, y ∈ dom f and f(x) = f(y).

Let m, n be natural numbers, let p be a point of EmT , let r be a real number,
and let f be a function from Tcircle(p, r) into EnT. We say that f has antipodals
if and only if:

(Def. 14) There exist points x, y of EmT such that x and y are antipodals of p, r
and f .

Let m, n be natural numbers, let p be a point of EmT , let r be a real number,
and let f be a function from Tcircle(p, r) into EnT. We introduce f is without
antipodals as an antonym of f has antipodals.

One can prove the following propositions:
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(64) Let n be a non empty natural number, r be a non negative real number,
and x be a point of EnT. Suppose x is a point of Tcircle(0EnT , r). Then x

and −x are antipodals of 0EnT and r.

(65) Let n be a non empty natural number, p, x, y, x2, y1 be points of EnT,
and r be a positive real number. Suppose x and y are antipodals of 0EnT
and 1 and x2 = (CircleIso(p, r))(x) and y1 = (CircleIso(p, r))(y). Then x2
and y1 are antipodals of p and r.

(66) Let f be a function from Tcircle(0En+1T
, 1) into EnT and x be a point of

Tcircle(0En+1T
, 1). If f is without antipodals, then f(x)− f(−x) 6= 0EnT .

(67) For every function f from Tcircle(0En+1T
, 1) into EnT such that f is without

antipodals holds (Sn+1 → Sn) f is odd.

(68) Let f be a function from Tcircle(0En+1T
, 1) into EnT and g, B1 be functions

from Tcircle(0En+1T
, 1) into EnT. If g = f ◦− and B1 = f−g and f is without

antipodals, then (Sn+1 → Sn) f = B1/(nNormF ·B1).
Let us consider n, let r be a negative real number, and let p be a point of

En+1T . Observe that every function from Tcircle(p, r) into EnT is without antipo-
dals.

Let r be a non negative real number and let p be a point of E3T. Note that
every function from Tcircle(p, r) into E2T which is continuous also has antipo-
dals.2
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Summary. In this article, we shall extend the formalization of [10] to di-
scuss higher-order partial differentiation of real valued functions. The linearity of
this operator is also proved (refer to [10], [12] and [13] for partial differentiation).

MML identifier: PDIFF 9, version: 7.12.02 4.181.1147

The terminology and notation used here have been introduced in the following
articles: [3], [8], [2], [4], [5], [15], [21], [17], [16], [20], [1], [6], [10], [12], [13], [18],
[11], [9], [23], [7], [19], [14], and [22].

1. Preliminaries

We use the following convention: m, n denote non empty elements of N, i, j
denote elements of N, and Z denotes a set.

One can prove the following propositions:

(1) Let S, T be real normed spaces, f be a point of the real norm space of
bounded linear operators from S into T , and r be a real number. Suppose
0 ≤ r and for every point x of S such that ‖x‖ ≤ 1 holds ‖f(x)‖ ≤ r · ‖x‖.
Then ‖f‖ ≤ r.

(2) Let S be a real normed space and f be a partial function from S to
R. Then f is continuous on Z if and only if the following conditions are
satisfied:
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(i) Z ⊆ dom f, and
(ii) for every sequence s1 of S such that rng s1 ⊆ Z and s1 is convergent

and lim s1 ∈ Z holds f∗s1 is convergent and flim s1 = lim(f∗s1).

(3) For every partial function f from Ri to R holds dom〈f〉 = dom f.

(4) For every partial function f from Ri to R such that Z ⊆ dom f holds
dom(〈f〉�Z) = Z.

(5) For every partial function f from Ri to R holds 〈f�Z〉 = 〈f〉�Z.
(6) Let f be a partial function from Ri to R and x be an element of Ri. If

x ∈ dom f, then 〈f〉(x) = 〈f(x)〉 and 〈f〉x = 〈fx〉.
(7) For all partial functions f , g from Ri to R holds 〈f + g〉 = 〈f〉+ 〈g〉 and
〈f − g〉 = 〈f〉 − 〈g〉.

(8) For every partial function f from Ri to R and for every real number r
holds 〈r · f〉 = r · 〈f〉.

(9) Let f be a partial function from Ri to R and g be a partial function
from Ri to R1. If 〈f〉 = g, then |f | = |g|.

(10) For every subset X of Rm and for every subset Y of 〈Em, ‖ · ‖〉 such that
X = Y holds X is open iff Y is open.

(11) For every element q of R such that 1 ≤ i ≤ j holds
|(reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

j

〉))(q)| = |q|.

(12) For every element x of Rj holds x = (reproj(i, x))((proj(i, j))(x)).

2. Continuity and Differentiability

The following two propositions are true:

(13) Let X be a subset of Rm and f be a partial function from Rm to Rn. If
f is differentiable on X, then X is open.

(14) Let X be a subset of Rm and f be a partial function from Rm to Rn.
SupposeX is open. Then f is differentiable onX if and only if the following
conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every element x of Rm such that x ∈ X holds f is differentiable in

x.

Let m, n be non empty elements of N, let Z be a set, and let f be a partial
function from Rm to Rn. Let us assume that Z ⊆ dom f. The functor f ′�Z yields
a partial function from Rm to (Rn)R

m
and is defined by:

(Def. 1) dom(f ′�Z) = Z and for every element x of Rm such that x ∈ Z holds
(f ′�Z)x = f ′(x).

We now state a number of propositions:



Higher-order partial differentiation 115

(15) Let X be a subset of Rm and f , g be partial functions from Rm to Rn.
Suppose f is differentiable on X and g is differentiable on X. Then f + g

is differentiable on X and for every element x of Rm such that x ∈ X

holds ((f + g)′�X)x = f ′(x) + g′(x).

(16) Let X be a subset of Rm and f , g be partial functions from Rm to Rn.
Suppose f is differentiable on X and g is differentiable on X. Then f − g
is differentiable on X and for every element x of Rm such that x ∈ X

holds ((f − g)′�X)x = f ′(x)− g′(x).

(17) Let X be a subset of Rm, f be a partial function from Rm to Rn,
and r be a real number. Suppose f is differentiable on X. Then r · f is
differentiable on X and for every element x of Rm such that x ∈ X holds
((r · f)′�X)x = r · f ′(x).

(18) Let f be a point of the real norm space of bounded linear operators from
〈E1, ‖ · ‖〉 into 〈Ej , ‖ · ‖〉. Then there exists a point p of 〈Ej , ‖ · ‖〉 such that

(i) p = f(〈1〉),
(ii) for every real number r and for every point x of 〈E1, ‖ · ‖〉 such that

x = 〈r〉 holds f(x) = r · p, and
(iii) for every point x of 〈E1, ‖ · ‖〉 holds ‖f(x)‖ = ‖p‖ · ‖x‖.

(19) Let f be a point of the real norm space of bounded linear operators from
〈E1, ‖ · ‖〉 into 〈Ej , ‖ · ‖〉. Then there exists a point p of 〈Ej , ‖ · ‖〉 such that
p = f(〈1〉) and ‖p‖ = ‖f‖.

(20) Let f be a point of the real norm space of bounded linear operators from
〈E1, ‖ · ‖〉 into 〈Ej , ‖ · ‖〉 and x be a point of 〈E1, ‖ · ‖〉. Then ‖f(x)‖ =
‖f‖ · ‖x‖.

(21) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose 1 ≤ i ≤ m and X is open and g = f and X = Y and
f is partially differentiable on X w.r.t. i. Let x be an element of Rm and
y be a point of 〈Em, ‖ · ‖〉. If x ∈ X and x = y, then partdiff(f, x, i) =
(partdiff(g, y, i))(〈1〉).

(22) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose 1 ≤ i ≤ m and X is open and g = f and X = Y and
f is partially differentiable on X w.r.t. i. Let x0, x1 be elements of Rm
and y0, y1 be points of 〈Em, ‖ · ‖〉. If x0 = y0 and x1 = y1 and x0, x1 ∈ X,
then |(f�iX)x1 − (f�iX)x0 | = ‖(g�iY )y1 − (g�iY )y0‖.

(23) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose 1 ≤ i ≤ m and X is open and g = f and X = Y. Then
the following statements are equivalent

(i) f is partially differentiable on X w.r.t. i and f�iX is continuous on X,
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(ii) g is partially differentiable on Y w.r.t. i and g�iY is continuous on Y .

(24) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose X = Y and X is open and f = g. Then for every i

such that 1 ≤ i ≤ m holds f is partially differentiable on X w.r.t. i and
f�iX is continuous on X if and only if g is differentiable on Y and g′�Y is
continuous on Y .

(25) Let f be a partial function from Rm to Rn, g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of Rm, and Y be a subset of
〈Em, ‖ · ‖〉. Suppose X is open and X ⊆ dom f and g = f and X = Y.

Then g is differentiable on Y and g′�Y is continuous on Y if and only if the
following conditions are satisfied:

(i) f is differentiable on X, and
(ii) for every element x0 of Rm and for every real number r such that

x0 ∈ X and 0 < r there exists a real number s such that 0 < s and for
every element x1 of Rm such that x1 ∈ X and |x1 − x0| < s and for every
element v of Rm holds |f ′(x1)(v)− f ′(x0)(v)| ≤ r · |v|.

(26) Let X be a subset of Rm and f be a partial function from Rm to Rn.
Suppose X is open and X ⊆ dom f. Then the following statements are
equivalent

(i) for every element i of N such that 1 ≤ i ≤ m holds f is partially
differentiable on X w.r.t. i and f�iX is continuous on X,

(ii) f is differentiable on X and for every element x0 of Rm and for every
real number r such that x0 ∈ X and 0 < r there exists a real number s
such that 0 < s and for every element x1 of Rm such that x1 ∈ X and
|x1−x0| < s and for every element v of Rm holds |f ′(x1)(v)−f ′(x0)(v)| ≤
r · |v|.

(27) Let f be a partial function from Rm to Rn and g be a partial function
from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉. If f = g and f is differentiable on Z, then
f ′�Z = g′�Z .

(28) Let f be a partial function from Rm to Rn, g be a partial function from
〈Em, ‖·‖〉 to 〈En, ‖·‖〉, X be a subset ofRm, and Y be a subset of 〈Em, ‖·‖〉.
Suppose X = Y and X is open and f = g. Then for every element i of N
such that 1 ≤ i ≤ m holds f is partially differentiable on X w.r.t. i and
f�iX is continuous on X if and only if f is differentiable on X and g′�Y is
continuous on Y .

(29) Let f , g be partial functions from Rm to Rn and x be an element of
Rm. Suppose f is continuous in x and g is continuous in x. Then f + g is
continuous in x and f − g is continuous in x.

(30) Let f be a partial function from Rm to Rn, x be an element of Rm, and
r be a real number. If f is continuous in x, then r · f is continuous in x.
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(31) Let f be a partial function from Rm to Rn and x be an element of Rm.
If f is continuous in x, then −f is continuous in x.

(32) Let f be a partial function from Rm to Rn and x be an element of Rm.
If f is continuous in x, then |f | is continuous in x.

(33) Let Z be a set and f , g be partial functions from Rm to Rn. Suppose f
is continuous on Z and g is continuous on Z. Then f + g is continuous on
Z and f − g is continuous on Z.

(34) Let r be a real number and f , g be partial functions from Rm to Rn. If
f is continuous on Z, then r · f is continuous on Z.

(35) For all partial functions f , g from Rm to Rn such that f is continuous
on Z holds −f is continuous on Z.

(36) Let f be a partial function from Ri to R and x0 be an element of Ri.
Then f is continuous in x0 if and only if the following conditions are
satisfied:

(i) x0 ∈ dom f, and
(ii) for every real number r such that 0 < r there exists a real number s

such that 0 < s and for every element x of Ri such that x ∈ dom f and
|x− x0| < s holds |fx − fx0 | < r.

(37) Let f be a partial function from Rm to R and x0 be an element of Rm.
Then f is continuous in x0 if and only if 〈f〉 is continuous in x0.

(38) Let f , g be partial functions from Rm to R and x0 be an element of Rm.
Suppose f is continuous in x0 and g is continuous in x0. Then f + g is
continuous in x0 and f − g is continuous in x0.

(39) Let f be a partial function from Rm to R, x0 be an element of Rm, and
r be a real number. If f is continuous in x0, then r · f is continuous in x0.

(40) Let f be a partial function from Rm to R and x0 be an element of Rm.
If f is continuous in x0, then |f | is continuous in x0.

(41) Let f , g be partial functions from Ri to R and x be an element of Ri. If
f is continuous in x and g is continuous in x, then f · g is continuous in x.

Let m be a non empty element of N, let Z be a set, and let f be a partial
function from Rm to R. We say that f is continuous on Z if and only if:

(Def. 2) For every element x0 of Rm such that x0 ∈ Z holds f�Z is continuous
in x0.

We now state a number of propositions:

(42) Let f be a partial function from Rm to R and g be a partial function
from 〈Em, ‖ ·‖〉 to R. Suppose f = g. Then Z ⊆ dom f and f is continuous
on Z if and only if g is continuous on Z.

(43) Let f be a partial function fromRm to R and g be a partial function from
〈Em, ‖ ·‖〉 to R. Suppose f = g and Z ⊆ dom f. Then f is continuous on Z
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if and only if for every sequence s of 〈Em, ‖ · ‖〉 such that rng s ⊆ Z and s
is convergent and lim s ∈ Z holds g∗s is convergent and glim s = lim(g∗s).

(44) Let f be a partial function from Rm to R and g be a partial function
from Rm to R1. Suppose 〈f〉 = g. Then Z ⊆ dom f and f is continuous
on Z if and only if g is continuous on Z.

(45) Let f be a partial function from Rm to R. Suppose Z ⊆ dom f. Then f

is continuous on Z if and only if for every element x0 of Rm and for every
real number r such that x0 ∈ Z and 0 < r there exists a real number s
such that 0 < s and for every element x1 of Rm such that x1 ∈ Z and
|x1 − x0| < s holds |fx1 − fx0 | < r.

(46) Let f , g be partial functions from Rm to R. Suppose f is continuous on
Z and g is continuous on Z and Z ⊆ dom f and Z ⊆ dom g. Then f + g

is continuous on Z and f − g is continuous on Z.

(47) Let f be a partial function from Rm to R and r be a real number. If
Z ⊆ dom f and f is continuous on Z, then r · f is continuous on Z.

(48) Let f , g be partial functions from Rm to R. Suppose f is continuous on
Z and g is continuous on Z and Z ⊆ dom f and Z ⊆ dom g. Then f · g is
continuous on Z.

(49) Let f be a partial function from Rm to R and g be a partial function
from 〈Em, ‖ ·‖〉 to R. Suppose f = g. Then Z ⊆ dom f and f is continuous
on Z if and only if g is continuous on Z.

(50) For all partial functions f , g from Rm to Rn such that f is continuous
on Z holds |f | is continuous on Z.

(51) Let f , g be partial functions from Rm to R and x be an element of Rm.
Suppose f is differentiable in x and g is differentiable in x. Then f + g is
differentiable in x and (f+g)′(x) = f ′(x)+g′(x) and f−g is differentiable
in x and (f − g)′(x) = f ′(x)− g′(x).

(52) Let f be a partial function from Rm to R, r be a real number, and
x be an element of Rm. Suppose f is differentiable in x. Then r · f is
differentiable in x and (r · f)′(x) = r · f ′(x).

Let Z be a set, let m be a non empty element of N, and let f be a partial
function from Rm to R. We say that f is differentiable on Z if and only if:

(Def. 3) For every element x of Rm such that x ∈ Z holds f�Z is differentiable
in x.

Next we state three propositions:

(53) Let f be a partial function from Rm to R and g be a partial function
from Rm to R1. Suppose 〈f〉 = g. Then Z ⊆ dom f and f is differentiable
on Z if and only if g is differentiable on Z.

(54) Let X be a subset of Rm and f be a partial function from Rm to R.
Suppose X ⊆ dom f and X is open. Then f is differentiable on X if and
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only if for every element x of Rm such that x ∈ X holds f is differentiable
in x.

(55) Let X be a subset of Rm and f be a partial function from Rm to R. If
X ⊆ dom f and f is differentiable on X, then X is open.

Let m be a non empty element of N, let Z be a set, and let f be a partial
function from Rm to R. Let us assume that Z ⊆ dom f. The functor f ′�Z yields
a partial function from Rm to RRm and is defined by:

(Def. 4) dom(f ′�Z) = Z and for every element x of Rm such that x ∈ Z holds
(f ′�Z)x = f ′(x).

One can prove the following four propositions:

(56) Let X be a subset of Rm, f be a partial function from Rm to R, and g

be a partial function from Rm to R1. Suppose 〈f〉 = g and X ⊆ dom f

and f is differentiable on X. Then g is differentiable on X and for every
element x of Rm such that x ∈ X holds (f ′�X)x = proj(1, 1) · (g′�X)x.

(57) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose X ⊆ dom f and X ⊆ dom g and f is differentiable on X and
g is differentiable on X. Then f + g is differentiable on X and for every
element x of Rm such that x ∈ X holds ((f + g)′�X)x = (f ′�X)x + (g′�X)x.

(58) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose X ⊆ dom f and X ⊆ dom g and f is differentiable on X and
g is differentiable on X. Then f − g is differentiable on X and for every
element x of Rm such that x ∈ X holds ((f − g)′�X)x = (f ′�X)x − (g′�X)x.

(59) Let X be a subset of Rm, f be a partial function from Rm to R, and r

be a real number. Suppose X ⊆ dom f and f is differentiable on X. Then
r · f is differentiable on X and for every element x of Rm such that x ∈ X
holds ((r · f)′�X)x = r · (f ′�X)x.

Let m be a non empty element of N, let Z be a set, let i be an element of
N, and let f be a partial function from Rm to R. We say that f is partially
differentiable on Z w.r.t. i if and only if:

(Def. 5) Z ⊆ dom f and for every element x of Rm such that x ∈ Z holds f�Z is
partially differentiable in x w.r.t. i.

Let m be a non empty element of N, let Z be a set, let i be an element of N,
and let f be a partial function from Rm to R. Let us assume that f is partially
differentiable on Z w.r.t. i. The functor f�iZ yields a partial function from Rm
to R and is defined as follows:

(Def. 6) dom(f�iZ) = Z and for every element x of Rm such that x ∈ Z holds
(f�iZ)x = partdiff(f, x, i).

Next we state several propositions:

(60) Let X be a subset of Rm and f be a partial function from Rm to R.
Suppose X is open and 1 ≤ i ≤ m. Then f is partially differentiable on X
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w.r.t. i if and only if X ⊆ dom f and for every element x of Rm such that
x ∈ X holds f is partially differentiable in x w.r.t. i.

(61) Let X be a subset of Rm, f be a partial function from Rm to R, and g

be a partial function from Rm to R1. Suppose 〈f〉 = g and X is open and
1 ≤ i ≤ m. Then f is partially differentiable on X w.r.t. i if and only if g
is partially differentiable on X w.r.t. i.

(62) Let X be a subset of Rm, f be a partial function from Rm to R, and
g be a partial function from Rm to R1. Suppose 〈f〉 = g and X is open
and 1 ≤ i ≤ m and f is partially differentiable on X w.r.t. i. Then f�iX
is continuous on X if and only if g�iX is continuous on X.

(63) Let X be a subset of Rm and f be a partial function from Rm to R.
Suppose X is open and X ⊆ dom f. Then the following statements are
equivalent

(i) for every element i of N such that 1 ≤ i ≤ m holds f is partially
differentiable on X w.r.t. i and f�iX is continuous on X,

(ii) f is differentiable on X and for every element x0 of Rm and for every
real number r such that x0 ∈ X and 0 < r there exists a real number s
such that 0 < s and for every element x1 of Rm such that x1 ∈ X and
|x1−x0| < s and for every element v of Rm holds |f ′(x1)(v)−f ′(x0)(v)| ≤
r · |v|.

(64) Let f , g be partial functions from Rm to R and x be an element of
Rm. Suppose f is partially differentiable in x w.r.t. i and g is partially
differentiable in x w.r.t. i. Then f · g is partially differentiable in x w.r.t.
i and partdiff(f · g, x, i) = partdiff(f, x, i) · g(x) + f(x) · partdiff(g, x, i).

(65) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose that

(i) X is open,
(ii) 1 ≤ i,
(iii) i ≤ m,
(iv) f is partially differentiable on X w.r.t. i, and
(v) g is partially differentiable on X w.r.t. i.

Then
(vi) f + g is partially differentiable on X w.r.t. i,
(vii) (f + g)�iX = (f�iX) + (g�iX), and

(viii) for every element x of Rm such that x ∈ X holds ((f + g)�iX)x =
partdiff(f, x, i) + partdiff(g, x, i).

(66) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose that

(i) X is open,
(ii) 1 ≤ i,
(iii) i ≤ m,
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(iv) f is partially differentiable on X w.r.t. i, and
(v) g is partially differentiable on X w.r.t. i.

Then
(vi) f − g is partially differentiable on X w.r.t. i,

(vii) (f − g)�iX = (f�iX)− (g�iX), and
(viii) for every element x of Rm such that x ∈ X holds ((f − g)�iX)x =

partdiff(f, x, i)− partdiff(g, x, i).

(67) Let X be a subset of Rm, r be a real number, and f be a partial function
from Rm to R. Suppose X is open and 1 ≤ i ≤ m and f is partially
differentiable on X w.r.t. i. Then

(i) r · f is partially differentiable on X w.r.t. i,
(ii) r · f�iX = r · (f�iX), and
(iii) for every element x of Rm such that x ∈ X holds (r · f�iX)x = r ·

partdiff(f, x, i).

(68) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose that

(i) X is open,
(ii) 1 ≤ i,
(iii) i ≤ m,
(iv) f is partially differentiable on X w.r.t. i, and
(v) g is partially differentiable on X w.r.t. i.

Then
(vi) f · g is partially differentiable on X w.r.t. i,

(vii) f · g�iX = (f�iX) · g + f · (g�iX), and
(viii) for every element x of Rm such that x ∈ X holds (f · g�iX)x =

partdiff(f, x, i) · g(x) + f(x) · partdiff(g, x, i).

3. Higher-Order Partial Differentiation

Let m be a non empty element of N, let Z be a set, let I be a finite sequence
of elements of N, and let f be a partial function from Rm to R. The functor
PartDiffSeq(f, Z, I) yielding a sequence of partial functions from Rm into R is
defined by:

(Def. 7) (PartDiffSeq(f, Z, I))(0) = f and for every natural number i holds
(PartDiffSeq(f, Z, I))(i+ 1) = (PartDiffSeq(f, Z, I))(i)�Ii+1Z.

Let m be a non empty element of N, let Z be a set, let I be a finite sequence
of elements of N, and let f be a partial function from Rm to R. We say that f
is partially differentiable on Z w.r.t. I if and only if:

(Def. 8) For every element i of N such that i ≤ len I − 1 holds
(PartDiffSeq(f, Z, I))(i) is partially differentiable on Z w.r.t. Ii+1.
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Let m be a non empty element of N, let Z be a set, let I be a finite sequence
of elements of N, and let f be a partial function from Rm to R. The functor
f�IZ yielding a partial function from Rm to R is defined by:

(Def. 9) f�IZ = (PartDiffSeq(f, Z, I))(len I).

The following propositions are true:

(69) Let X be a subset of Rm, I be a non empty finite sequence of elements
of N, and f , g be partial functions from Rm to R. Suppose that

(i) X is open,
(ii) rng I ⊆ Segm,
(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Let given i. Suppose i ≤ len I − 1. Then (PartDiffSeq(f + g,X, I))(i) is
partially differentiable on X w.r.t. Ii+1 and (PartDiffSeq(f+g,X, I))(i) =
(PartDiffSeq(f,X, I))(i) + (PartDiffSeq(g,X, I))(i).

(70) Let X be a subset of Rm, I be a non empty finite sequence of elements
of N, and f , g be partial functions from Rm to R. Suppose that

(i) X is open,
(ii) rng I ⊆ Segm,
(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Then f + g is partially differentiable on X w.r.t. I and (f + g)�IX =
(f�IX) + (g�IX).

(71) Let X be a subset of Rm, I be a non empty finite sequence of elements
of N, and f , g be partial functions from Rm to R. Suppose that

(i) X is open,
(ii) rng I ⊆ Segm,

(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Let given i. Suppose i ≤ len I − 1. Then (PartDiffSeq(f − g,X, I))(i) is
partially differentiable on X w.r.t. Ii+1 and (PartDiffSeq(f−g,X, I))(i) =
(PartDiffSeq(f,X, I))(i)− (PartDiffSeq(g,X, I))(i).

(72) Let X be a subset of Rm, I be a non empty finite sequence of elements
of N, and f , g be partial functions from Rm to R. Suppose that

(i) X is open,
(ii) rng I ⊆ Segm,

(iii) f is partially differentiable on X w.r.t. I, and
(iv) g is partially differentiable on X w.r.t. I.

Then f − g is partially differentiable on X w.r.t. I and (f − g)�IX =
(f�IX)− (g�IX).

(73) Let X be a subset of Rm, r be a real number, I be a non empty finite
sequence of elements of N, and f be a partial function from Rm to R.
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Suppose X is open and rng I ⊆ Segm and f is partially differentiable on X
w.r.t. I. Let given i. Suppose i ≤ len I−1. Then (PartDiffSeq(r·f,X, I))(i)
is partially differentiable on X w.r.t. Ii+1 and (PartDiffSeq(r·f,X, I))(i) =
r · (PartDiffSeq(f,X, I))(i).

(74) Let X be a subset of Rm, r be a real number, I be a non empty finite
sequence of elements of N, and f be a partial function from Rm to R.
Suppose X is open and rng I ⊆ Segm and f is partially differentiable
on X w.r.t. I. Then r · f is partially differentiable on X w.r.t. I and
r · f�IX = r · (f�IX).

Let m be a non empty element of N, let f be a partial function fromRm to R,
let k be an element of N, and let Z be a set. We say that f is partial differentiable
up to order k and Z if and only if the condition (Def. 10) is satisfied.

(Def. 10) Let I be a non empty finite sequence of elements of N. If len I ≤ k and
rng I ⊆ Segm, then f is partially differentiable on Z w.r.t. I.

The following proposition is true

(75) Let f be a partial function from Rm to R and I, G be non empty finite
sequences of elements of N. Then f is partially differentiable on Z w.r.t.
G a I if and only if f is partially differentiable on Z w.r.t. G and f�GZ is
partially differentiable on Z w.r.t. I.

One can prove the following propositions:

(76) Let f be a partial function from Rm to R. Then f is partially diffe-
rentiable on Z w.r.t. 〈i〉 if and only if f is partially differentiable on Z

w.r.t. i.

(77) For every partial function f from Rm to R holds f�〈i〉Z = f�iZ.

(78) Let f be a partial function from Rm to R and I be a non empty finite
sequence of elements of N. Suppose f is partial differentiable up to order
i + j and Z and rng I ⊆ Segm and len I = j. Then f�IZ is partial
differentiable up to order i and Z.

(79) Let f be a partial function from Rm to R. Suppose f is partial differen-
tiable up to order i and Z and j ≤ i. Then f is partial differentiable up
to order j and Z.

(80) Let X be a subset of Rm and f , g be partial functions from Rm to R.
Suppose that

(i) X is open,
(ii) f is partial differentiable up to order i and X, and
(iii) g is partial differentiable up to order i and X.

Then f+g is partial differentiable up to order i and X and f−g is partial
differentiable up to order i and X.

(81) Let X be a subset of Rm, f be a partial function from Rm to R, and r

be a real number. Suppose X is open and f is partial differentiable up to
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order i and X. Then r · f is partial differentiable up to order i and X.

(82) Let X be a subset of Rm. Suppose X is open. Let i be an element
of N and f , g be partial functions from Rm to R. Suppose f is partial
differentiable up to order i and X and g is partial differentiable up to
order i and X. Then f · g is partial differentiable up to order i and X.
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[13] Takao Inoué, Adam Naumowicz, Noboru Endou, and Yasunari Shidama. Partial differen-
tiation of vector-valued functions on n-dimensional real normed linear spaces. Formalized
Mathematics, 19(1):1–9, 2011, doi: 10.2478/v10037-011-0001-x.

[14] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269–272, 1990.

[15] Keiichi Miyajima and Yasunari Shidama. Riemann integral of functions from R into Rn.
Formalized Mathematics, 17(2):179–185, 2009, doi: 10.2478/v10037-009-0021-y.

[16] Keiko Narita, Artur Kornilowicz, and Yasunari Shidama. More on the continuity of real
functions. Formalized Mathematics, 19(4):233–239, 2011, doi: 10.2478/v10037-011-0032-3.

[17] Takaya Nishiyama, Keiji Ohkubo, and Yasunari Shidama. The continuous functions on
normed linear spaces. Formalized Mathematics, 12(3):269–275, 2004.

[18] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions.
Formalized Mathematics, 1(1):223–230, 1990.

[19] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathe-
matics, 3(1):17–21, 1992.

[20] Jan Popiołek. Real normed space. Formalized Mathematics, 2(1):111–115, 1991.
[21] Yasunari Shidama. Banach space of bounded linear operators. Formalized Mathematics,

12(1):39–48, 2004.
[22] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[23] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received November 20, 2011



FORMALIZED MATHEMATICS

Vol. 20, No. 2, Pages 125–146, 2012
DOI: 10.2478/v10037-012-0016-y versita.com/fm/

Formalization of the Data Encryption
Standard1

Hiroyuki Okazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article we formalize DES (the Data Encryption Stan-
dard), that was the most widely used symmetric cryptosystem in the world.
DES is a block cipher which was selected by the National Bureau of Standards
as an official Federal Information Processing Standard for the United States in
1976 [15].
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[9], [21], [22], [13], [19], and [10] provide the terminology and notation for this
paper.

1. Preliminaries

Let n be a natural number and let f be an n-element finite sequence. Note
that Rev(f) is n-element.

Let D be a non empty set, let n be a natural number, and let f be an element
of Dn. Then Rev(f) is an element of Dn.

Let n be a natural number and let f be a finite sequence. We introduce
Op-Left(f, n) as a synonym of f�n. We introduce Op-Right(f, n) as a synonym
of f�n.

Let D be a non empty set, let n be a natural number, and let f be a finite
sequence of elements of D. Then Op-Left(f, n) is a finite sequence of elements
of D. Then Op-Right(f, n) is a finite sequence of elements of D.
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Let D be a non empty set, let n be a natural number, and let s be an element
of D2·n. We introduce SP-Left s as a synonym of Op-Left(s, n). We introduce
SP-Right s as a synonym of Op-Right(s, n).

Let D be a non empty set, let n be a natural number, and let s be an element
of D2·n. Then SP-Left s is an element of Dn.

One can prove the following propositions:

(1) For all non empty elements m, n of N and for every element s of Dn

such that m ≤ n holds Op-Left(s,m) is an element of Dm.

(2) Let m, n, l be non empty elements of N and s be an element of Dn. If
m ≤ n and l = n−m, then Op-Right(s,m) is an element of Dl.

Let D be a non empty set, let n be a non empty element of N, and let s be
an element of D2·n. Then SP-Right s is an element of Dn.

Next we state the proposition

(3) For every non empty element n of N and for every element s of D2·n

holds (SP-Left s) a SP-Right s = s.

Let s be a finite sequence. The functor Op-LeftShift s yielding a finite sequ-
ence is defined by:

(Def. 1) Op-LeftShift s = (s�1) a 〈s(1)〉.
Next we state three propositions:

(4) For every finite sequence s such that 1 ≤ len s holds len Op-LeftShift s =
len s.

(5) If 1 ≤ len s, then Op-LeftShift s is a finite sequence of elements of D and
len Op-LeftShift s = len s.

(6) For every non empty element n of N and for every element s of Dn holds
Op-LeftShift s is an element of Dn.

Let s be a finite sequence. The functor Op-RightShift s yields a finite sequ-
ence and is defined by:

(Def. 2) Op-RightShift s = (〈s(len s)〉 a s)� len s.

One can prove the following three propositions:

(7) For every finite sequence s holds len Op-RightShift s = len s.

(8) If 1 ≤ len s, then Op-RightShift s is a finite sequence of elements of D
and len Op-RightShift s = len s.

(9) For every non empty element n of N and for every element s of Dn holds
Op-RightShift s is an element of Dn.

Let D be a non empty set, let s be a finite sequence of elements of D, and
let n be an integer. Let us assume that 1 ≤ len s. The functor Op-Shift(s, n)
yields a finite sequence of elements of D and is defined by:

(Def. 3) len Op-Shift(s, n) = len s and for every natural number i such that i ∈
Seg len s holds (Op-Shift(s, n))(i) = s((((i− 1) + n) mod len s) + 1).
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The following propositions are true:

(10) For all integers n,m such that 1 ≤ len s holds Op-Shift(Op-Shift(s, n),m) =
Op-Shift(s, n+m).

(11) If 1 ≤ len s, then Op-Shift(s, 0) = s.

(12) If 1 ≤ len s, then Op-Shift(s, len s) = s.

(13) If 1 ≤ len s, then Op-Shift(s,−len s) = s.

(14) Let n be a non empty element of N, m be an integer, and s be an element
of Dn. Then Op-Shift(s,m) is an element of Dn.

(15) If 1 ≤ len s, then Op-Shift(s,−1) = Op-RightShift s.

(16) If 1 ≤ len s, then Op-Shift(s, 1) = Op-LeftShift s.

Let x, y be elements of Boolean28. Then x a y is an element of Boolean56.
Let n be a non empty element of N, let s be an element of Booleann, and let

i be a natural number. Then s(i) is an element of Boolean.
Let n be a non empty element of N, let s be an element of Nn, and let i be

a natural number. Then s(i) is an element of N.
Let n be a natural number. Observe that every element of Booleann is

boolean-valued.
Let n be an element of N and let s, t be elements of Booleann. We introduce

Op-XOR(s, t) as a synonym of s⊕ t.
Let n be a non empty element of N and let s, t be elements of Booleann.

Then Op-XOR(s, t) is an element of Booleann and it can be characterized by
the condition:

(Def. 4) For every natural number i such that i ∈ Seg n holds
(Op-XOR(s, t))(i) = s(i)⊕ t(i).

Let us notice that the functor Op-XOR(s, t) is commutative.
Let n, k be non empty elements of N, let R1 be an element of (Booleann)k,

and let i be an element of Seg k. Then R1(i) is an element of Booleann.
We now state the proposition

(17) For every non empty element n of N and for all elements s, t of Booleann

holds Op-XOR(Op-XOR(s, t), t) = s.

Let m be a non empty element of N, let D be a non empty set, let L be a
sequence of Dm, and let i be a natural number. Then L(i) is an element of Dm.

Let f be a function from 64 into 16 and let i be a set. Then f(i) is an element
of 16.

Next we state the proposition

(18) For all natural numbers n, m such that n + m ≤ len s holds (s�n) a

(s�n�m) = s�(n+m).

The schemeQuadChoiceRec deals with non empty setsA, B, C,D, an element
E of A, an element F of B, an element G of C, an element H of D, and a 9-ary
predicate P, and states that:
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There exists a function f from N intoA and there exists a function
g from N into B and there exists a function h from N into C and
there exists a function i from N into D such that f(0) = E and
g(0) = F and h(0) = G and i(0) = H and for every element n of N
holds P[n, f(n), g(n), h(n), i(n), f(n+1), g(n+1), h(n+1), i(n+1)]

provided the following condition is satisfied:
• Let n be an element of N, x be an element of A, y be an element

of B, z be an element of C, and w be an element of D. Then there
exists an element x1 of A and there exists an element y1 of B and
there exists an element z1 of C and there exists an element w1 of
D such that P[n, x, y, z, w, x1, y1, z1, w1].

Next we state a number of propositions:

(19) Let x be a set. Suppose x ∈ Seg 16. Then x = 1 or x = 2 or x = 3 or
x = 4 or x = 5 or x = 6 or x = 7 or x = 8 or x = 9 or x = 10 or x = 11
or x = 12 or x = 13 or x = 14 or x = 15 or x = 16.

(20) Let x be a set. Suppose x ∈ Seg 32. Then x = 1 or x = 2 or x = 3 or
x = 4 or x = 5 or x = 6 or x = 7 or x = 8 or x = 9 or x = 10 or x = 11
or x = 12 or x = 13 or x = 14 or x = 15 or x = 16 or x = 17 or x = 18 or
x = 19 or x = 20 or x = 21 or x = 22 or x = 23 or x = 24 or x = 25 or
x = 26 or x = 27 or x = 28 or x = 29 or x = 30 or x = 31 or x = 32.

(21) Let x be a set. Suppose x ∈ Seg 48. Then x = 1 or x = 2 or x = 3 or
x = 4 or x = 5 or x = 6 or x = 7 or x = 8 or x = 9 or x = 10 or x = 11
or x = 12 or x = 13 or x = 14 or x = 15 or x = 16 or x = 17 or x = 18 or
x = 19 or x = 20 or x = 21 or x = 22 or x = 23 or x = 24 or x = 25 or
x = 26 or x = 27 or x = 28 or x = 29 or x = 30 or x = 31 or x = 32 or
x = 33 or x = 34 or x = 35 or x = 36 or x = 37 or x = 38 or x = 39 or
x = 40 or x = 41 or x = 42 or x = 43 or x = 44 or x = 45 or x = 46 or
x = 47 or x = 48.

(22) Let x be a set. Suppose x ∈ Seg 56. Then x = 1 or x = 2 or x = 3 or
x = 4 or x = 5 or x = 6 or x = 7 or x = 8 or x = 9 or x = 10 or x = 11
or x = 12 or x = 13 or x = 14 or x = 15 or x = 16 or x = 17 or x = 18 or
x = 19 or x = 20 or x = 21 or x = 22 or x = 23 or x = 24 or x = 25 or
x = 26 or x = 27 or x = 28 or x = 29 or x = 30 or x = 31 or x = 32 or
x = 33 or x = 34 or x = 35 or x = 36 or x = 37 or x = 38 or x = 39 or
x = 40 or x = 41 or x = 42 or x = 43 or x = 44 or x = 45 or x = 46 or
x = 47 or x = 48 or x = 49 or x = 50 or x = 51 or x = 52 or x = 53 or
x = 54 or x = 55 or x = 56.

(23) Let x be a set. Suppose x ∈ Seg 64. Then x = 1 or x = 2 or x = 3 or
x = 4 or x = 5 or x = 6 or x = 7 or x = 8 or x = 9 or x = 10 or x = 11
or x = 12 or x = 13 or x = 14 or x = 15 or x = 16 or x = 17 or x = 18 or
x = 19 or x = 20 or x = 21 or x = 22 or x = 23 or x = 24 or x = 25 or
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x = 26 or x = 27 or x = 28 or x = 29 or x = 30 or x = 31 or x = 32 or
x = 33 or x = 34 or x = 35 or x = 36 or x = 37 or x = 38 or x = 39 or
x = 40 or x = 41 or x = 42 or x = 43 or x = 44 or x = 45 or x = 46 or
x = 47 or x = 48 or x = 49 or x = 50 or x = 51 or x = 52 or x = 53 or
x = 54 or x = 55 or x = 56 or x = 57 or x = 58 or x = 59 or x = 60 or
x = 61 or x = 62 or x = 63 or x = 64.

(24) For every non empty natural number n holds n = {0} ∪ (Seg n \ {n}).
(25) For every non empty natural number n and for every set x such that

x ∈ n holds x = 0 or x ∈ Seg n and x 6= n.

(26) Let x be a set. Suppose x ∈ 16. Then x = 0 or x = 1 or x = 2 or x = 3
or x = 4 or x = 5 or x = 6 or x = 7 or x = 8 or x = 9 or x = 10 or x = 11
or x = 12 or x = 13 or x = 14 or x = 15.

(27) Let x be a set. Suppose x ∈ 64. Then x = 0 or x = 1 or x = 2 or x = 3
or x = 4 or x = 5 or x = 6 or x = 7 or x = 8 or x = 9 or x = 10 or x = 11
or x = 12 or x = 13 or x = 14 or x = 15 or x = 16 or x = 17 or x = 18 or
x = 19 or x = 20 or x = 21 or x = 22 or x = 23 or x = 24 or x = 25 or
x = 26 or x = 27 or x = 28 or x = 29 or x = 30 or x = 31 or x = 32 or
x = 33 or x = 34 or x = 35 or x = 36 or x = 37 or x = 38 or x = 39 or
x = 40 or x = 41 or x = 42 or x = 43 or x = 44 or x = 45 or x = 46 or
x = 47 or x = 48 or x = 49 or x = 50 or x = 51 or x = 52 or x = 53 or
x = 54 or x = 55 or x = 56 or x = 57 or x = 58 or x = 59 or x = 60 or
x = 61 or x = 62 or x = 63.

(28) Let S be a non empty set and x1, x2, x3, x4, x5, x6, x7, x8 be elements
of S. Then there exists a finite sequence s of elements of S such that s is
8-element and s(1) = x1 and s(2) = x2 and s(3) = x3 and s(4) = x4 and
s(5) = x5 and s(6) = x6 and s(7) = x7 and s(8) = x8.

(29) Let S be a non empty set and x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,
x12, x13, x14, x15, x16 be elements of S. Then there exists a finite sequence
s of elements of S such that
s is 16-element and s(1) = x1 and s(2) = x2 and s(3) = x3 and s(4) = x4
and s(5) = x5 and s(6) = x6 and s(7) = x7 and s(8) = x8 and s(9) = x9
and s(10) = x10 and s(11) = x11 and s(12) = x12 and s(13) = x13 and
s(14) = x14 and s(15) = x15 and s(16) = x16.

(30) Let S be a non empty set and x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,
x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27,
x28, x29, x30, x31, x32 be elements of S. Then there exists a finite sequence
s of elements of S such that
s is 32-element and s(1) = x1 and s(2) = x2 and s(3) = x3 and s(4) = x4
and s(5) = x5 and s(6) = x6 and s(7) = x7 and s(8) = x8 and s(9) = x9
and s(10) = x10 and s(11) = x11 and s(12) = x12 and s(13) = x13
and s(14) = x14 and s(15) = x15 and s(16) = x16 and s(17) = x17
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and s(18) = x18 and s(19) = x19 and s(20) = x20 and s(21) = x21
and s(22) = x22 and s(23) = x23 and s(24) = x24 and s(25) = x25
and s(26) = x26 and s(27) = x27 and s(28) = x28 and s(29) = x29 and
s(30) = x30 and s(31) = x31 and s(32) = x32.

(31) Let S be a non empty set and x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,
x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27,
x28, x29, x30, x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43,
x44, x45, x46, x47, x48 be elements of S. Then there exists a finite sequence
s of elements of S such that

s is 48-element and s(1) = x1 and s(2) = x2 and s(3) = x3 and s(4) = x4
and s(5) = x5 and s(6) = x6 and s(7) = x7 and s(8) = x8 and s(9) = x9
and s(10) = x10 and s(11) = x11 and s(12) = x12 and s(13) = x13
and s(14) = x14 and s(15) = x15 and s(16) = x16 and s(17) = x17
and s(18) = x18 and s(19) = x19 and s(20) = x20 and s(21) = x21
and s(22) = x22 and s(23) = x23 and s(24) = x24 and s(25) = x25
and s(26) = x26 and s(27) = x27 and s(28) = x28 and s(29) = x29
and s(30) = x30 and s(31) = x31 and s(32) = x32 and s(33) = x33
and s(34) = x34 and s(35) = x35 and s(36) = x36 and s(37) = x37
and s(38) = x38 and s(39) = x39 and s(40) = x40 and s(41) = x41
and s(42) = x42 and s(43) = x43 and s(44) = x44 and s(45) = x45 and
s(46) = x46 and s(47) = x47 and s(48) = x48.

(32) Let S be a non empty set and x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,
x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27,
x28, x29, x30, x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43,
x44, x45, x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56 be elements of
S. Then there exists a finite sequence s of elements of S such that

s is 56-element and s(1) = x1 and s(2) = x2 and s(3) = x3 and s(4) = x4
and s(5) = x5 and s(6) = x6 and s(7) = x7 and s(8) = x8 and s(9) = x9
and s(10) = x10 and s(11) = x11 and s(12) = x12 and s(13) = x13
and s(14) = x14 and s(15) = x15 and s(16) = x16 and s(17) = x17
and s(18) = x18 and s(19) = x19 and s(20) = x20 and s(21) = x21
and s(22) = x22 and s(23) = x23 and s(24) = x24 and s(25) = x25
and s(26) = x26 and s(27) = x27 and s(28) = x28 and s(29) = x29
and s(30) = x30 and s(31) = x31 and s(32) = x32 and s(33) = x33
and s(34) = x34 and s(35) = x35 and s(36) = x36 and s(37) = x37
and s(38) = x38 and s(39) = x39 and s(40) = x40 and s(41) = x41
and s(42) = x42 and s(43) = x43 and s(44) = x44 and s(45) = x45
and s(46) = x46 and s(47) = x47 and s(48) = x48 and s(49) = x49
and s(50) = x50 and s(51) = x51 and s(52) = x52 and s(53) = x53 and
s(54) = x54 and s(55) = x55 and s(56) = x56.

(33) Let S be a non empty set and x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,
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x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27,
x28, x29, x30, x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43,
x44, x45, x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59,
x60, x61, x62, x63, x64 be elements of S. Then there exists a finite sequence
s of elements of S such that
s is 64-element and s(1) = x1 and s(2) = x2 and s(3) = x3 and s(4) = x4
and s(5) = x5 and s(6) = x6 and s(7) = x7 and s(8) = x8 and s(9) = x9
and s(10) = x10 and s(11) = x11 and s(12) = x12 and s(13) = x13
and s(14) = x14 and s(15) = x15 and s(16) = x16 and s(17) = x17
and s(18) = x18 and s(19) = x19 and s(20) = x20 and s(21) = x21
and s(22) = x22 and s(23) = x23 and s(24) = x24 and s(25) = x25
and s(26) = x26 and s(27) = x27 and s(28) = x28 and s(29) = x29
and s(30) = x30 and s(31) = x31 and s(32) = x32 and s(33) = x33
and s(34) = x34 and s(35) = x35 and s(36) = x36 and s(37) = x37
and s(38) = x38 and s(39) = x39 and s(40) = x40 and s(41) = x41
and s(42) = x42 and s(43) = x43 and s(44) = x44 and s(45) = x45
and s(46) = x46 and s(47) = x47 and s(48) = x48 and s(49) = x49
and s(50) = x50 and s(51) = x51 and s(52) = x52 and s(53) = x53
and s(54) = x54 and s(55) = x55 and s(56) = x56 and s(57) = x57
and s(58) = x58 and s(59) = x59 and s(60) = x60 and s(61) = x61 and
s(62) = x62 and s(63) = x63 and s(64) = x64.

Let n be a non empty natural number and let i be an element of n. We
introduce ntoSeg i as a synonym of succ i.

Let n be a non empty natural number and let i be an element of n. Then
ntoSeg i is an element of Seg n.

Let n be a non empty natural number and let f be a function from n into
Seg n. We say that f is NtoSeg if and only if:

(Def. 5) For every element i of n holds f(i) = ntoSeg i.

Let n be a non empty natural number. One can check that there exists a
function from n into Seg n which is NtoSeg.

Let n be a non empty natural number. Observe that every function from n

into Seg n is bijective and NtoSeg.
We now state two propositions:

(34) Let n be a non empty natural number, f be an NtoSeg function from
n into Seg n, and i be a natural number. If i < n, then f(i) = i + 1 and
i ∈ dom f.

(35) Let S be a non empty set and x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11,
x12, x13, x14, x15, x16, x17, x18, x19, x20, x21, x22, x23, x24, x25, x26, x27,
x28, x29, x30, x31, x32, x33, x34, x35, x36, x37, x38, x39, x40, x41, x42, x43,
x44, x45, x46, x47, x48, x49, x50, x51, x52, x53, x54, x55, x56, x57, x58, x59,
x60, x61, x62, x63, x64 be elements of S. Then there exists a function f
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from 64 into S such that
f(0) = x1 and f(1) = x2 and f(2) = x3 and f(3) = x4 and f(4) = x5 and
f(5) = x6 and f(6) = x7 and f(7) = x8 and f(8) = x9 and f(9) = x10
and f(10) = x11 and f(11) = x12 and f(12) = x13 and f(13) = x14
and f(14) = x15 and f(15) = x16 and f(16) = x17 and f(17) = x18
and f(18) = x19 and f(19) = x20 and f(20) = x21 and f(21) = x22
and f(22) = x23 and f(23) = x24 and f(24) = x25 and f(25) = x26
and f(26) = x27 and f(27) = x28 and f(28) = x29 and f(29) = x30
and f(30) = x31 and f(31) = x32 and f(32) = x33 and f(33) = x34
and f(34) = x35 and f(35) = x36 and f(36) = x37 and f(37) = x38
and f(38) = x39 and f(39) = x40 and f(40) = x41 and f(41) = x42
and f(42) = x43 and f(43) = x44 and f(44) = x45 and f(45) = x46
and f(46) = x47 and f(47) = x48 and f(48) = x49 and f(49) = x50
and f(50) = x51 and f(51) = x52 and f(52) = x53 and f(53) = x54
and f(54) = x55 and f(55) = x56 and f(56) = x57 and f(57) = x58
and f(58) = x59 and f(59) = x60 and f(60) = x61 and f(61) = x62 and
f(62) = x63 and f(63) = x64.

2. S-Boxes

The function DES-SBOX1 from 64 into 16 is defined by the conditions
(Def. 6).

(Def. 6) (DES-SBOX1)(0) = 14 and (DES-SBOX1)(1) = 4 and (DES-SBOX1)(2) =
13 and (DES-SBOX1)(3) = 1 and (DES-SBOX1)(4) = 2
and (DES-SBOX1)(5) = 15 and (DES-SBOX1)(6) = 11 and
(DES-SBOX1)(7) = 8 and (DES-SBOX1)(8) = 3 and (DES-SBOX1)(9) =
10 and (DES-SBOX1)(10) = 6 and (DES-SBOX1)(11) = 12
and (DES-SBOX1)(12) = 5 and (DES-SBOX1)(13) = 9 and
(DES-SBOX1)(14) = 0 and (DES-SBOX1)(15) = 7 and (DES-SBOX1)(16) =
0 and (DES-SBOX1)(17) = 15 and (DES-SBOX1)(18) = 7
and (DES-SBOX1)(19) = 4 and (DES-SBOX1)(20) = 14 and
(DES-SBOX1)(21) = 2 and (DES-SBOX1)(22) = 13 and (DES-SBOX1)(23) =
1 and (DES-SBOX1)(24) = 10 and (DES-SBOX1)(25) = 6
and (DES-SBOX1)(26) = 12 and (DES-SBOX1)(27) = 11
and (DES-SBOX1)(28) = 9 and (DES-SBOX1)(29) = 5 and
(DES-SBOX1)(30) = 3 and (DES-SBOX1)(31) = 8 and (DES-SBOX1)(32) =
4 and (DES-SBOX1)(33) = 1 and (DES-SBOX1)(34) = 14
and (DES-SBOX1)(35) = 8 and (DES-SBOX1)(36) = 13 and
(DES-SBOX1)(37) = 6 and (DES-SBOX1)(38) = 2 and (DES-SBOX1)(39) =
11 and (DES-SBOX1)(40) = 15 and (DES-SBOX1)(41) = 12
and (DES-SBOX1)(42) = 9 and (DES-SBOX1)(43) = 7 and
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(DES-SBOX1)(44) = 3 and (DES-SBOX1)(45) = 10 and (DES-SBOX1)(46) =
5 and (DES-SBOX1)(47) = 0 and (DES-SBOX1)(48) = 15
and (DES-SBOX1)(49) = 12 and (DES-SBOX1)(50) = 8 and
(DES-SBOX1)(51) = 2 and (DES-SBOX1)(52) = 4 and (DES-SBOX1)(53) =
9 and (DES-SBOX1)(54) = 1 and (DES-SBOX1)(55) = 7
and (DES-SBOX1)(56) = 5 and (DES-SBOX1)(57) = 11 and
(DES-SBOX1)(58) = 3 and (DES-SBOX1)(59) = 14 and (DES-SBOX1)(60) =
10 and (DES-SBOX1)(61) = 0 and (DES-SBOX1)(62) = 6 and
(DES-SBOX1)(63) = 13.

The function DES-SBOX2 from 64 into 16 is defined by the conditions
(Def. 7).

(Def. 7) (DES-SBOX2)(0) = 15 and (DES-SBOX2)(1) = 1 and (DES-SBOX2)(2) =
8 and (DES-SBOX2)(3) = 14 and (DES-SBOX2)(4) = 6
and (DES-SBOX2)(5) = 11 and (DES-SBOX2)(6) = 3 and
(DES-SBOX2)(7) = 4 and (DES-SBOX2)(8) = 9 and (DES-SBOX2)(9) =
7 and (DES-SBOX2)(10) = 2 and (DES-SBOX2)(11) = 13
and (DES-SBOX2)(12) = 12 and (DES-SBOX2)(13) = 0 and
(DES-SBOX2)(14) = 5 and (DES-SBOX2)(15) = 10 and (DES-SBOX2)(16) =
3 and (DES-SBOX2)(17) = 13 and (DES-SBOX2)(18) = 4
and (DES-SBOX2)(19) = 7 and (DES-SBOX2)(20) = 15 and
(DES-SBOX2)(21) = 2 and (DES-SBOX2)(22) = 8 and (DES-SBOX2)(23) =
14 and (DES-SBOX2)(24) = 12 and (DES-SBOX2)(25) = 0
and (DES-SBOX2)(26) = 1 and (DES-SBOX2)(27) = 10 and
(DES-SBOX2)(28) = 6 and (DES-SBOX2)(29) = 9 and (DES-SBOX2)(30) =
11 and (DES-SBOX2)(31) = 5 and (DES-SBOX2)(32) = 0
and (DES-SBOX2)(33) = 14 and (DES-SBOX2)(34) = 7 and
(DES-SBOX2)(35) = 11 and (DES-SBOX2)(36) = 10 and
(DES-SBOX2)(37) = 4 and (DES-SBOX2)(38) = 13 and (DES-SBOX2)(39) =
1 and (DES-SBOX2)(40) = 5 and (DES-SBOX2)(41) = 8
and (DES-SBOX2)(42) = 12 and (DES-SBOX2)(43) = 6 and
(DES-SBOX2)(44) = 9 and (DES-SBOX2)(45) = 3 and (DES-SBOX2)(46) =
2 and (DES-SBOX2)(47) = 15 and (DES-SBOX2)(48) = 13
and (DES-SBOX2)(49) = 8 and (DES-SBOX2)(50) = 10 and
(DES-SBOX2)(51) = 1 and (DES-SBOX2)(52) = 3 and (DES-SBOX2)(53) =
15 and (DES-SBOX2)(54) = 4 and (DES-SBOX2)(55) = 2
and (DES-SBOX2)(56) = 11 and (DES-SBOX2)(57) = 6 and
(DES-SBOX2)(58) = 7 and (DES-SBOX2)(59) = 12 and (DES-SBOX2)(60) =
0 and (DES-SBOX2)(61) = 5 and (DES-SBOX2)(62) = 14 and
(DES-SBOX2)(63) = 9.

The function DES-SBOX3 from 64 into 16 is defined by the conditions
(Def. 8).
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(Def. 8) (DES-SBOX3)(0) = 10 and (DES-SBOX3)(1) = 0 and (DES-SBOX3)(2) =
9 and (DES-SBOX3)(3) = 14 and (DES-SBOX3)(4) = 6
and (DES-SBOX3)(5) = 3 and (DES-SBOX3)(6) = 15 and
(DES-SBOX3)(7) = 5 and (DES-SBOX3)(8) = 1 and (DES-SBOX3)(9) =
13 and (DES-SBOX3)(10) = 12 and (DES-SBOX3)(11) = 7
and (DES-SBOX3)(12) = 11 and (DES-SBOX3)(13) = 4 and
(DES-SBOX3)(14) = 2 and (DES-SBOX3)(15) = 8 and (DES-SBOX3)(16) =
13 and (DES-SBOX3)(17) = 7 and (DES-SBOX3)(18) = 0
and (DES-SBOX3)(19) = 9 and (DES-SBOX3)(20) = 3 and
(DES-SBOX3)(21) = 4 and (DES-SBOX3)(22) = 6 and (DES-SBOX3)(23) =
10 and (DES-SBOX3)(24) = 2 and (DES-SBOX3)(25) = 8
and (DES-SBOX3)(26) = 5 and (DES-SBOX3)(27) = 14 and
(DES-SBOX3)(28) = 12 and (DES-SBOX3)(29) = 11 and
(DES-SBOX3)(30) = 15 and (DES-SBOX3)(31) = 1 and (DES-SBOX3)(32) =
13 and (DES-SBOX3)(33) = 6 and (DES-SBOX3)(34) = 4
and (DES-SBOX3)(35) = 9 and (DES-SBOX3)(36) = 8 and
(DES-SBOX3)(37) = 15 and (DES-SBOX3)(38) = 3 and (DES-SBOX3)(39) =
0 and (DES-SBOX3)(40) = 11 and (DES-SBOX3)(41) = 1
and (DES-SBOX3)(42) = 2 and (DES-SBOX3)(43) = 12 and
(DES-SBOX3)(44) = 5 and (DES-SBOX3)(45) = 10 and (DES-SBOX3)(46) =
14 and (DES-SBOX3)(47) = 7 and (DES-SBOX3)(48) = 1
and (DES-SBOX3)(49) = 10 and (DES-SBOX3)(50) = 13
and (DES-SBOX3)(51) = 0 and (DES-SBOX3)(52) = 6 and
(DES-SBOX3)(53) = 9 and (DES-SBOX3)(54) = 8 and (DES-SBOX3)(55) =
7 and (DES-SBOX3)(56) = 4 and (DES-SBOX3)(57) = 15
and (DES-SBOX3)(58) = 14 and (DES-SBOX3)(59) = 3 and
(DES-SBOX3)(60) = 11 and (DES-SBOX3)(61) = 5 and (DES-SBOX3)(62) =
2 and (DES-SBOX3)(63) = 12.

The function DES-SBOX4 from 64 into 16 is defined by the conditions
(Def. 9).

(Def. 9) (DES-SBOX4)(0) = 7 and (DES-SBOX4)(1) = 13 and (DES-SBOX4)(2) =
14 and (DES-SBOX4)(3) = 3 and (DES-SBOX4)(4) = 0 and
(DES-SBOX4)(5) = 6 and (DES-SBOX4)(6) = 9 and (DES-SBOX4)(7) =
10 and (DES-SBOX4)(8) = 1 and (DES-SBOX4)(9) = 2
and (DES-SBOX4)(10) = 8 and (DES-SBOX4)(11) = 5 and
(DES-SBOX4)(12) = 11 and (DES-SBOX4)(13) = 12 and
(DES-SBOX4)(14) = 4 and (DES-SBOX4)(15) = 15 and (DES-SBOX4)(16) =
13 and (DES-SBOX4)(17) = 8 and (DES-SBOX4)(18) = 11
and (DES-SBOX4)(19) = 5 and (DES-SBOX4)(20) = 6 and
(DES-SBOX4)(21) = 15 and (DES-SBOX4)(22) = 0 and (DES-SBOX4)(23) =
3 and (DES-SBOX4)(24) = 4 and (DES-SBOX4)(25) = 7
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and (DES-SBOX4)(26) = 2 and (DES-SBOX4)(27) = 12 and
(DES-SBOX4)(28) = 1 and (DES-SBOX4)(29) = 10 and (DES-SBOX4)(30) =
14 and (DES-SBOX4)(31) = 9 and (DES-SBOX4)(32) = 10
and (DES-SBOX4)(33) = 6 and (DES-SBOX4)(34) = 9 and
(DES-SBOX4)(35) = 0 and (DES-SBOX4)(36) = 12 and (DES-SBOX4)(37) =
11 and (DES-SBOX4)(38) = 7 and (DES-SBOX4)(39) = 13
and (DES-SBOX4)(40) = 15 and (DES-SBOX4)(41) = 1 and
(DES-SBOX4)(42) = 3 and (DES-SBOX4)(43) = 14 and (DES-SBOX4)(44) =
5 and (DES-SBOX4)(45) = 2 and (DES-SBOX4)(46) = 8
and (DES-SBOX4)(47) = 4 and (DES-SBOX4)(48) = 3 and
(DES-SBOX4)(49) = 15 and (DES-SBOX4)(50) = 0 and (DES-SBOX4)(51) =
6 and (DES-SBOX4)(52) = 10 and (DES-SBOX4)(53) = 1
and (DES-SBOX4)(54) = 13 and (DES-SBOX4)(55) = 8 and
(DES-SBOX4)(56) = 9 and (DES-SBOX4)(57) = 4 and (DES-SBOX4)(58) =
5 and (DES-SBOX4)(59) = 11 and (DES-SBOX4)(60) = 12
and (DES-SBOX4)(61) = 7 and (DES-SBOX4)(62) = 2 and
(DES-SBOX4)(63) = 14.

The function DES-SBOX5 from 64 into 16 is defined by the conditions
(Def. 10).

(Def. 10) (DES-SBOX5)(0) = 2 and (DES-SBOX5)(1) = 12 and (DES-SBOX5)(2) =
4 and (DES-SBOX5)(3) = 1 and (DES-SBOX5)(4) = 7 and
(DES-SBOX5)(5) = 10 and (DES-SBOX5)(6) = 11 and (DES-SBOX5)(7) =
6 and (DES-SBOX5)(8) = 8 and (DES-SBOX5)(9) = 5 and
(DES-SBOX5)(10) = 3 and (DES-SBOX5)(11) = 15 and (DES-SBOX5)(12) =
13 and (DES-SBOX5)(13) = 0 and (DES-SBOX5)(14) = 14
and (DES-SBOX5)(15) = 9 and (DES-SBOX5)(16) = 14 and
(DES-SBOX5)(17) = 11 and (DES-SBOX5)(18) = 2 and (DES-SBOX5)(19) =
12 and (DES-SBOX5)(20) = 4 and (DES-SBOX5)(21) = 7
and (DES-SBOX5)(22) = 13 and (DES-SBOX5)(23) = 1 and
(DES-SBOX5)(24) = 5 and (DES-SBOX5)(25) = 0 and (DES-SBOX5)(26) =
15 and (DES-SBOX5)(27) = 10 and (DES-SBOX5)(28) = 3
and (DES-SBOX5)(29) = 9 and (DES-SBOX5)(30) = 8 and
(DES-SBOX5)(31) = 6 and (DES-SBOX5)(32) = 4 and (DES-SBOX5)(33) =
2 and (DES-SBOX5)(34) = 1 and (DES-SBOX5)(35) = 11
and (DES-SBOX5)(36) = 10 and (DES-SBOX5)(37) = 13
and (DES-SBOX5)(38) = 7 and (DES-SBOX5)(39) = 8 and
(DES-SBOX5)(40) = 15 and (DES-SBOX5)(41) = 9 and (DES-SBOX5)(42) =
12 and (DES-SBOX5)(43) = 5 and (DES-SBOX5)(44) = 6
and (DES-SBOX5)(45) = 3 and (DES-SBOX5)(46) = 0 and
(DES-SBOX5)(47) = 14 and (DES-SBOX5)(48) = 11 and
(DES-SBOX5)(49) = 8 and (DES-SBOX5)(50) = 12 and (DES-SBOX5)(51) =
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7 and (DES-SBOX5)(52) = 1 and (DES-SBOX5)(53) = 14
and (DES-SBOX5)(54) = 2 and (DES-SBOX5)(55) = 13 and
(DES-SBOX5)(56) = 6 and (DES-SBOX5)(57) = 15 and (DES-SBOX5)(58) =
0 and (DES-SBOX5)(59) = 9 and (DES-SBOX5)(60) = 10
and (DES-SBOX5)(61) = 4 and (DES-SBOX5)(62) = 5 and
(DES-SBOX5)(63) = 3.

The function DES-SBOX6 from 64 into 16 is defined by the conditions
(Def. 11).

(Def. 11) (DES-SBOX6)(0) = 12 and (DES-SBOX6)(1) = 1 and (DES-SBOX6)(2) =
10 and (DES-SBOX6)(3) = 15 and (DES-SBOX6)(4) = 9
and (DES-SBOX6)(5) = 2 and (DES-SBOX6)(6) = 6 and
(DES-SBOX6)(7) = 8 and (DES-SBOX6)(8) = 0 and (DES-SBOX6)(9) =
13 and (DES-SBOX6)(10) = 3 and (DES-SBOX6)(11) = 4
and (DES-SBOX6)(12) = 14 and (DES-SBOX6)(13) = 7 and
(DES-SBOX6)(14) = 5 and (DES-SBOX6)(15) = 11 and (DES-SBOX6)(16) =
10 and (DES-SBOX6)(17) = 15 and (DES-SBOX6)(18) = 4
and (DES-SBOX6)(19) = 2 and (DES-SBOX6)(20) = 7 and
(DES-SBOX6)(21) = 12 and (DES-SBOX6)(22) = 9 and (DES-SBOX6)(23) =
5 and (DES-SBOX6)(24) = 6 and (DES-SBOX6)(25) = 1
and (DES-SBOX6)(26) = 13 and (DES-SBOX6)(27) = 14
and (DES-SBOX6)(28) = 0 and (DES-SBOX6)(29) = 11 and
(DES-SBOX6)(30) = 3 and (DES-SBOX6)(31) = 8 and (DES-SBOX6)(32) =
9 and (DES-SBOX6)(33) = 14 and (DES-SBOX6)(34) = 15
and (DES-SBOX6)(35) = 5 and (DES-SBOX6)(36) = 2 and
(DES-SBOX6)(37) = 8 and (DES-SBOX6)(38) = 12 and (DES-SBOX6)(39) =
3 and (DES-SBOX6)(40) = 7 and (DES-SBOX6)(41) = 0
and (DES-SBOX6)(42) = 4 and (DES-SBOX6)(43) = 10 and
(DES-SBOX6)(44) = 1 and (DES-SBOX6)(45) = 13 and (DES-SBOX6)(46) =
11 and (DES-SBOX6)(47) = 6 and (DES-SBOX6)(48) = 4
and (DES-SBOX6)(49) = 3 and (DES-SBOX6)(50) = 2 and
(DES-SBOX6)(51) = 12 and (DES-SBOX6)(52) = 9 and (DES-SBOX6)(53) =
5 and (DES-SBOX6)(54) = 15 and (DES-SBOX6)(55) = 10
and (DES-SBOX6)(56) = 11 and (DES-SBOX6)(57) = 14
and (DES-SBOX6)(58) = 1 and (DES-SBOX6)(59) = 7 and
(DES-SBOX6)(60) = 6 and (DES-SBOX6)(61) = 0 and (DES-SBOX6)(62) =
8 and (DES-SBOX6)(63) = 13.

The function DES-SBOX7 from 64 into 16 is defined by the conditions
(Def. 12).

(Def. 12) (DES-SBOX7)(0) = 4 and (DES-SBOX7)(1) = 11 and (DES-SBOX7)(2) =
2 and (DES-SBOX7)(3) = 14 and (DES-SBOX7)(4) = 15 and
(DES-SBOX7)(5) = 0 and (DES-SBOX7)(6) = 8 and (DES-SBOX7)(7) =
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13 and (DES-SBOX7)(8) = 3 and (DES-SBOX7)(9) = 12
and (DES-SBOX7)(10) = 9 and (DES-SBOX7)(11) = 7 and
(DES-SBOX7)(12) = 5 and (DES-SBOX7)(13) = 10 and (DES-SBOX7)(14) =
6 and (DES-SBOX7)(15) = 1 and (DES-SBOX7)(16) = 13
and (DES-SBOX7)(17) = 0 and (DES-SBOX7)(18) = 11 and
(DES-SBOX7)(19) = 7 and (DES-SBOX7)(20) = 4 and (DES-SBOX7)(21) =
9 and (DES-SBOX7)(22) = 1 and (DES-SBOX7)(23) = 10
and (DES-SBOX7)(24) = 14 and (DES-SBOX7)(25) = 3 and
(DES-SBOX7)(26) = 5 and (DES-SBOX7)(27) = 12 and (DES-SBOX7)(28) =
2 and (DES-SBOX7)(29) = 15 and (DES-SBOX7)(30) = 8
and (DES-SBOX7)(31) = 6 and (DES-SBOX7)(32) = 1 and
(DES-SBOX7)(33) = 4 and (DES-SBOX7)(34) = 11 and (DES-SBOX7)(35) =
13 and (DES-SBOX7)(36) = 12 and (DES-SBOX7)(37) = 3
and (DES-SBOX7)(38) = 7 and (DES-SBOX7)(39) = 14 and
(DES-SBOX7)(40) = 10 and (DES-SBOX7)(41) = 15 and
(DES-SBOX7)(42) = 6 and (DES-SBOX7)(43) = 8 and (DES-SBOX7)(44) =
0 and (DES-SBOX7)(45) = 5 and (DES-SBOX7)(46) = 9
and (DES-SBOX7)(47) = 2 and (DES-SBOX7)(48) = 6 and
(DES-SBOX7)(49) = 11 and (DES-SBOX7)(50) = 13 and
(DES-SBOX7)(51) = 8 and (DES-SBOX7)(52) = 1 and (DES-SBOX7)(53) =
4 and (DES-SBOX7)(54) = 10 and (DES-SBOX7)(55) = 7
and (DES-SBOX7)(56) = 9 and (DES-SBOX7)(57) = 5 and
(DES-SBOX7)(58) = 0 and (DES-SBOX7)(59) = 15 and (DES-SBOX7)(60) =
14 and (DES-SBOX7)(61) = 2 and (DES-SBOX7)(62) = 3 and
(DES-SBOX7)(63) = 12.

The function DES-SBOX8 from 64 into 16 is defined by the conditions
(Def. 13).

(Def. 13) (DES-SBOX8)(0) = 13 and (DES-SBOX8)(1) = 2 and (DES-SBOX8)(2) =
8 and (DES-SBOX8)(3) = 4 and (DES-SBOX8)(4) = 6 and
(DES-SBOX8)(5) = 15 and (DES-SBOX8)(6) = 11 and (DES-SBOX8)(7) =
1 and (DES-SBOX8)(8) = 10 and (DES-SBOX8)(9) = 9
and (DES-SBOX8)(10) = 3 and (DES-SBOX8)(11) = 14 and
(DES-SBOX8)(12) = 5 and (DES-SBOX8)(13) = 0 and (DES-SBOX8)(14) =
12 and (DES-SBOX8)(15) = 7 and (DES-SBOX8)(16) = 1
and (DES-SBOX8)(17) = 15 and (DES-SBOX8)(18) = 13
and (DES-SBOX8)(19) = 8 and (DES-SBOX8)(20) = 10 and
(DES-SBOX8)(21) = 3 and (DES-SBOX8)(22) = 7 and (DES-SBOX8)(23) =
4 and (DES-SBOX8)(24) = 12 and (DES-SBOX8)(25) = 5
and (DES-SBOX8)(26) = 5 and (DES-SBOX8)(27) = 11 and
(DES-SBOX8)(28) = 0 and (DES-SBOX8)(29) = 14 and (DES-SBOX8)(30) =
9 and (DES-SBOX8)(31) = 2 and (DES-SBOX8)(32) = 7
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and (DES-SBOX8)(33) = 11 and (DES-SBOX8)(34) = 4 and
(DES-SBOX8)(35) = 1 and (DES-SBOX8)(36) = 9 and (DES-SBOX8)(37) =
12 and (DES-SBOX8)(38) = 14 and (DES-SBOX8)(39) = 2
and (DES-SBOX8)(40) = 0 and (DES-SBOX8)(41) = 6 and
(DES-SBOX8)(42) = 10 and (DES-SBOX8)(43) = 13 and
(DES-SBOX8)(44) = 15 and (DES-SBOX8)(45) = 3 and (DES-SBOX8)(46) =
5 and (DES-SBOX8)(47) = 8 and (DES-SBOX8)(48) = 2
and (DES-SBOX8)(49) = 1 and (DES-SBOX8)(50) = 14 and
(DES-SBOX8)(51) = 7 and (DES-SBOX8)(52) = 4 and (DES-SBOX8)(53) =
10 and (DES-SBOX8)(54) = 8 and (DES-SBOX8)(55) = 13
and (DES-SBOX8)(56) = 15 and (DES-SBOX8)(57) = 12
and (DES-SBOX8)(58) = 9 and (DES-SBOX8)(59) = 0 and
(DES-SBOX8)(60) = 3 and (DES-SBOX8)(61) = 5 and (DES-SBOX8)(62) =
6 and (DES-SBOX8)(63) = 11.

3. Initial Permutation

Let r be an element of Boolean64. The functor DES-IP r yields an element
of Boolean64 and is defined by the conditions (Def. 14).

(Def. 14) (DES-IP r)(1) = r(58) and (DES-IP r)(2) = r(50) and (DES-IP r)(3) =
r(42) and (DES-IP r)(4) = r(34) and (DES-IP r)(5) = r(26)
and (DES-IP r)(6) = r(18) and (DES-IP r)(7) = r(10) and
(DES-IP r)(8) = r(2) and (DES-IP r)(9) = r(60) and (DES-IP r)(10) =
r(52) and (DES-IP r)(11) = r(44) and (DES-IP r)(12) = r(36)
and (DES-IP r)(13) = r(28) and (DES-IP r)(14) = r(20) and
(DES-IP r)(15) = r(12) and (DES-IP r)(16) = r(4) and (DES-IP r)(17) =
r(62) and (DES-IP r)(18) = r(54) and (DES-IP r)(19) = r(46)
and (DES-IP r)(20) = r(38) and (DES-IP r)(21) = r(30) and
(DES-IP r)(22) = r(22) and (DES-IP r)(23) = r(14) and (DES-IP r)(24) =
r(6) and (DES-IP r)(25) = r(64) and (DES-IP r)(26) = r(56)
and (DES-IP r)(27) = r(48) and (DES-IP r)(28) = r(40) and
(DES-IP r)(29) = r(32) and (DES-IP r)(30) = r(24) and (DES-IP r)(31) =
r(16) and (DES-IP r)(32) = r(8) and (DES-IP r)(33) = r(57)
and (DES-IP r)(34) = r(49) and (DES-IP r)(35) = r(41) and
(DES-IP r)(36) = r(33) and (DES-IP r)(37) = r(25) and (DES-IP r)(38) =
r(17) and (DES-IP r)(39) = r(9) and (DES-IP r)(40) = r(1)
and (DES-IP r)(41) = r(59) and (DES-IP r)(42) = r(51) and
(DES-IP r)(43) = r(43) and (DES-IP r)(44) = r(35) and (DES-IP r)(45) =
r(27) and (DES-IP r)(46) = r(19) and (DES-IP r)(47) = r(11) and
(DES-IP r)(48) = r(3) and (DES-IP r)(49) = r(61) and (DES-IP r)(50) =
r(53) and (DES-IP r)(51) = r(45) and (DES-IP r)(52) = r(37)
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and (DES-IP r)(53) = r(29) and (DES-IP r)(54) = r(21) and
(DES-IP r)(55) = r(13) and (DES-IP r)(56) = r(5) and (DES-IP r)(57) =
r(63) and (DES-IP r)(58) = r(55) and (DES-IP r)(59) = r(47)
and (DES-IP r)(60) = r(39) and (DES-IP r)(61) = r(31) and
(DES-IP r)(62) = r(23) and (DES-IP r)(63) = r(15) and (DES-IP r)(64) =
r(7).

The function DES-PIP from Boolean64 into Boolean64 is defined by:

(Def. 15) For every element i of Boolean64 holds (DES-PIP)(i) = DES-IP i.

Let r be an element of Boolean64. The functor DES-IPINV r yields an ele-
ment of Boolean64 and is defined by the conditions (Def. 16).

(Def. 16) (DES-IPINV r)(1) = r(40) and (DES-IPINV r)(2) = r(8) and
(DES-IPINV r)(3) = r(48) and (DES-IPINV r)(4) = r(16) and
(DES-IPINV r)(5) = r(56) and (DES-IPINV r)(6) = r(24) and
(DES-IPINV r)(7) = r(64) and (DES-IPINV r)(8) = r(32) and
(DES-IPINV r)(9) = r(39) and (DES-IPINV r)(10) = r(7) and
(DES-IPINV r)(11) = r(47) and (DES-IPINV r)(12) = r(15) and
(DES-IPINV r)(13) = r(55) and (DES-IPINV r)(14) = r(23) and
(DES-IPINV r)(15) = r(63) and (DES-IPINV r)(16) = r(31) and
(DES-IPINV r)(17) = r(38) and (DES-IPINV r)(18) = r(6) and
(DES-IPINV r)(19) = r(46) and (DES-IPINV r)(20) = r(14) and
(DES-IPINV r)(21) = r(54) and (DES-IPINV r)(22) = r(22) and
(DES-IPINV r)(23) = r(62) and (DES-IPINV r)(24) = r(30) and
(DES-IPINV r)(25) = r(37) and (DES-IPINV r)(26) = r(5) and
(DES-IPINV r)(27) = r(45) and (DES-IPINV r)(28) = r(13) and
(DES-IPINV r)(29) = r(53) and (DES-IPINV r)(30) = r(21) and
(DES-IPINV r)(31) = r(61) and (DES-IPINV r)(32) = r(29) and
(DES-IPINV r)(33) = r(36) and (DES-IPINV r)(34) = r(4) and
(DES-IPINV r)(35) = r(44) and (DES-IPINV r)(36) = r(12) and
(DES-IPINV r)(37) = r(52) and (DES-IPINV r)(38) = r(20) and
(DES-IPINV r)(39) = r(60) and (DES-IPINV r)(40) = r(28) and
(DES-IPINV r)(41) = r(35) and (DES-IPINV r)(42) = r(3) and
(DES-IPINV r)(43) = r(43) and (DES-IPINV r)(44) = r(11) and
(DES-IPINV r)(45) = r(51) and (DES-IPINV r)(46) = r(19) and
(DES-IPINV r)(47) = r(59) and (DES-IPINV r)(48) = r(27) and
(DES-IPINV r)(49) = r(34) and (DES-IPINV r)(50) = r(2) and
(DES-IPINV r)(51) = r(42) and (DES-IPINV r)(52) = r(10) and
(DES-IPINV r)(53) = r(50) and (DES-IPINV r)(54) = r(18) and
(DES-IPINV r)(55) = r(58) and (DES-IPINV r)(56) = r(26) and
(DES-IPINV r)(57) = r(33) and (DES-IPINV r)(58) = r(1) and
(DES-IPINV r)(59) = r(41) and (DES-IPINV r)(60) = r(9) and
(DES-IPINV r)(61) = r(49) and (DES-IPINV r)(62) = r(17) and
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(DES-IPINV r)(63) = r(57) and (DES-IPINV r)(64) = r(25).

The function DES-PIPINV from Boolean64 into Boolean64 is defined by:

(Def. 17) For every element i of Boolean64 holds (DES-PIPINV)(i) =
DES-IPINV i.

Let us note that DES-PIP is bijective.
Let us note that DES-PIPINV is bijective.
The following proposition is true

(36) DES-PIPINV = (DES-PIP)−1.

4. Feistel Function

Let r be an element of Boolean32. The functor DES-E r yielding an element
of Boolean48 is defined by the conditions (Def. 18).

(Def. 18) (DES-E r)(1) = r(32) and (DES-E r)(2) = r(1) and (DES-E r)(3) = r(2)
and (DES-E r)(4) = r(3) and (DES-E r)(5) = r(4) and (DES-E r)(6) =
r(5) and (DES-E r)(7) = r(4) and (DES-E r)(8) = r(5) and
(DES-E r)(9) = r(6) and (DES-E r)(10) = r(7) and (DES-E r)(11) = r(8)
and (DES-E r)(12) = r(9) and (DES-E r)(13) = r(8) and (DES-E r)(14) =
r(9) and (DES-E r)(15) = r(10) and (DES-E r)(16) = r(11) and
(DES-E r)(17) = r(12) and (DES-E r)(18) = r(13) and (DES-E r)(19) =
r(12) and (DES-E r)(20) = r(13) and (DES-E r)(21) = r(14) and
(DES-E r)(22) = r(15) and (DES-E r)(23) = r(16) and (DES-E r)(24) =
r(17) and (DES-E r)(25) = r(16) and (DES-E r)(26) = r(17) and
(DES-E r)(27) = r(18) and (DES-E r)(28) = r(19) and (DES-E r)(29) =
r(20) and (DES-E r)(30) = r(21) and (DES-E r)(31) = r(20) and
(DES-E r)(32) = r(21) and (DES-E r)(33) = r(22) and (DES-E r)(34) =
r(23) and (DES-E r)(35) = r(24) and (DES-E r)(36) = r(25) and
(DES-E r)(37) = r(24) and (DES-E r)(38) = r(25) and (DES-E r)(39) =
r(26) and (DES-E r)(40) = r(27) and (DES-E r)(41) = r(28) and
(DES-E r)(42) = r(29) and (DES-E r)(43) = r(28) and (DES-E r)(44) =
r(29) and (DES-E r)(45) = r(30) and (DES-E r)(46) = r(31) and
(DES-E r)(47) = r(32) and (DES-E r)(48) = r(1).

Let r be an element of Boolean32. The functor DES-P r yielding an element
of Boolean32 is defined by the conditions (Def. 19).

(Def. 19) (DES-P r)(1) = r(16) and (DES-P r)(2) = r(7) and (DES-P r)(3) =
r(20) and (DES-P r)(4) = r(21) and (DES-P r)(5) = r(29) and
(DES-P r)(6) = r(12) and (DES-P r)(7) = r(28) and (DES-P r)(8) =
r(17) and (DES-P r)(9) = r(1) and (DES-P r)(10) = r(15) and
(DES-P r)(11) = r(23) and (DES-P r)(12) = r(26) and (DES-P r)(13) =
r(5) and (DES-P r)(14) = r(18) and (DES-P r)(15) = r(31) and
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(DES-P r)(16) = r(10) and (DES-P r)(17) = r(2) and (DES-P r)(18) =
r(8) and (DES-P r)(19) = r(24) and (DES-P r)(20) = r(14) and
(DES-P r)(21) = r(32) and (DES-P r)(22) = r(27) and (DES-P r)(23) =
r(3) and (DES-P r)(24) = r(9) and (DES-P r)(25) = r(19) and
(DES-P r)(26) = r(13) and (DES-P r)(27) = r(30) and (DES-P r)(28) =
r(6) and (DES-P r)(29) = r(22) and (DES-P r)(30) = r(11) and
(DES-P r)(31) = r(4) and (DES-P r)(32) = r(25).

Let r be an element of Boolean48. The functor DES-DIV8 r yielding an
element of (Boolean6)8 is defined by the conditions (Def. 20).

(Def. 20) (DES-DIV8 r)(1) = Op-Left(r, 6) and (DES-DIV8 r)(2) =
Op-Left(Op-Right(r, 6), 6) and (DES-DIV8 r)(3) =
Op-Left(Op-Right(r, 12), 6) and (DES-DIV8 r)(4) =
Op-Left(Op-Right(r, 18), 6) and (DES-DIV8 r)(5) =
Op-Left(Op-Right(r, 24), 6) and (DES-DIV8 r)(6) =
Op-Left(Op-Right(r, 30), 6) and (DES-DIV8 r)(7) =
Op-Left(Op-Right(r, 36), 6) and (DES-DIV8 r)(8) = Op-Right(r, 42).

Next we state the proposition

(37) Let r be an element of Boolean48. Then there exist elements s1, s2,
s3, s4, s5, s6, s7, s8 of Boolean6 such that s1 = (DES-DIV8 r)(1)
and s2 = (DES-DIV8 r)(2) and s3 = (DES-DIV8 r)(3) and s4 =
(DES-DIV8 r)(4) and s5 = (DES-DIV8 r)(5) and s6 = (DES-DIV8 r)(6)
and s7 = (DES-DIV8 r)(7) and s8 = (DES-DIV8 r)(8) and r = s1

a s2
a

s3
a s4

a s5
a s6

a s7
a s8.

Let t be an element of Boolean6. The functor B6toN64 t yielding an element
of 64 is defined by:

(Def. 21) B6toN64 t = 32 · t(1) + 16 · t(6) + 8 · t(2) + 4 · t(3) + 2 · t(4) + 1 · t(5).

The function N16toB4 from 16 into Boolean4 is defined by the conditions
(Def. 22).

(Def. 22) (N16toB4)(0) = 〈0, 0, 0, 0〉 and (N16toB4)(1) = 〈0, 0, 0, 1〉 and
(N16toB4)(2) = 〈0, 0, 1, 0〉 and (N16toB4)(3) = 〈0, 0, 1, 1〉 and
(N16toB4)(4) = 〈0, 1, 0, 0〉 and (N16toB4)(5) = 〈0, 1, 0, 1〉 and
(N16toB4)(6) = 〈0, 1, 1, 0〉 and (N16toB4)(7) = 〈0, 1, 1, 1〉 and
(N16toB4)(8) = 〈1, 0, 0, 0〉 and (N16toB4)(9) = 〈1, 0, 0, 1〉 and
(N16toB4)(10) = 〈1, 0, 1, 0〉 and (N16toB4)(11) = 〈1, 0, 1, 1〉 and
(N16toB4)(12) = 〈1, 1, 0, 0〉 and (N16toB4)(13) = 〈1, 1, 0, 1〉 and
(N16toB4)(14) = 〈1, 1, 1, 0〉 and (N16toB4)(15) = 〈1, 1, 1, 1〉.

Let R be an element of Boolean32 and let R2 be an element of Boolean48.
The functor DES-F(R,R2) yields an element of Boolean32 and is defined by the
condition (Def. 23).

(Def. 23) There exist elements D1, D2, D3, D4, D5, D6, D7, D8 of Boolean6 and
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there exist elements x1, x2, x3, x4, x5, x6, x7, x8 of Boolean4 and there
exists an element C32 of Boolean32 such that
D1 = (DES-DIV8 Op-XOR(DES-ER,R2))(1) and
D2 = (DES-DIV8 Op-XOR(DES-ER,R2))(2) and
D3 = (DES-DIV8 Op-XOR(DES-ER,R2))(3) and
D4 = (DES-DIV8 Op-XOR(DES-ER,R2))(4) and
D5 = (DES-DIV8 Op-XOR(DES-ER,R2))(5) and
D6 = (DES-DIV8 Op-XOR(DES-ER,R2))(6) and
D7 = (DES-DIV8 Op-XOR(DES-ER,R2))(7) and
D8 = (DES-DIV8 Op-XOR(DES-ER,R2))(8) and
Op-XOR(DES-ER,R2) = D1

a D2
a D3

a D4
a D5

a D6
a D7

a

D8 and x1 = (N16toB4)((DES-SBOX1)(B6toN64D1)) and x2 =
(N16toB4)((DES-SBOX2)(B6toN64D2)) and
x3 = (N16toB4)((DES-SBOX3)(B6toN64D3)) and
x4 = (N16toB4)((DES-SBOX4)(B6toN64D4)) and
x5 = (N16toB4)((DES-SBOX5)(B6toN64D5)) and
x6 = (N16toB4)((DES-SBOX6)(B6toN64D6)) and
x7 = (N16toB4)((DES-SBOX7)(B6toN64D7)) and
x8 = (N16toB4)((DES-SBOX8)(B6toN64D8)) and C32 = x1

a x2
a x3

a

x4
a x5

a x6
a x7

a x8 and DES-F(R,R2) = DES-PC32.

The function DES-FFUNC from Boolean32×Boolean48 into Boolean32 is
defined as follows:

(Def. 24) For every element z of Boolean32×Boolean48 holds (DES-FFUNC)(z) =
DES-F(z1, z2).

5. Key Schedule

Let r be an element of Boolean64. The functor DES-PC1 r yields an element
of Boolean56 and is defined by the conditions (Def. 25).

(Def. 25) (DES-PC1 r)(1) = r(57) and (DES-PC1 r)(2) = r(49) and
(DES-PC1 r)(3) = r(41) and (DES-PC1 r)(4) = r(33) and
(DES-PC1 r)(5) = r(25) and (DES-PC1 r)(6) = r(17) and
(DES-PC1 r)(7) = r(9) and (DES-PC1 r)(8) = r(1) and (DES-PC1 r)(9) =
r(58) and (DES-PC1 r)(10) = r(50) and (DES-PC1 r)(11) = r(42)
and (DES-PC1 r)(12) = r(34) and (DES-PC1 r)(13) = r(26)
and (DES-PC1 r)(14) = r(18) and (DES-PC1 r)(15) = r(10)
and (DES-PC1 r)(16) = r(2) and (DES-PC1 r)(17) = r(59) and
(DES-PC1 r)(18) = r(51) and (DES-PC1 r)(19) = r(43) and
(DES-PC1 r)(20) = r(35) and (DES-PC1 r)(21) = r(27) and
(DES-PC1 r)(22) = r(19) and (DES-PC1 r)(23) = r(11) and
(DES-PC1 r)(24) = r(3) and (DES-PC1 r)(25) = r(60) and
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(DES-PC1 r)(26) = r(52) and (DES-PC1 r)(27) = r(44) and
(DES-PC1 r)(28) = r(36) and (DES-PC1 r)(29) = r(63) and
(DES-PC1 r)(30) = r(55) and (DES-PC1 r)(31) = r(47) and
(DES-PC1 r)(32) = r(39) and (DES-PC1 r)(33) = r(31) and
(DES-PC1 r)(34) = r(23) and (DES-PC1 r)(35) = r(15) and
(DES-PC1 r)(36) = r(7) and (DES-PC1 r)(37) = r(62) and
(DES-PC1 r)(38) = r(54) and (DES-PC1 r)(39) = r(46) and
(DES-PC1 r)(40) = r(38) and (DES-PC1 r)(41) = r(30) and
(DES-PC1 r)(42) = r(22) and (DES-PC1 r)(43) = r(14) and
(DES-PC1 r)(44) = r(6) and (DES-PC1 r)(45) = r(61) and
(DES-PC1 r)(46) = r(53) and (DES-PC1 r)(47) = r(45) and
(DES-PC1 r)(48) = r(37) and (DES-PC1 r)(49) = r(29) and
(DES-PC1 r)(50) = r(21) and (DES-PC1 r)(51) = r(13) and
(DES-PC1 r)(52) = r(5) and (DES-PC1 r)(53) = r(28) and
(DES-PC1 r)(54) = r(20) and (DES-PC1 r)(55) = r(12) and
(DES-PC1 r)(56) = r(4).

Let r be an element of Boolean56. The functor DES-PC2 r yielding an ele-
ment of Boolean48 is defined by the conditions (Def. 26).

(Def. 26) (DES-PC2 r)(1) = r(14) and (DES-PC2 r)(2) = r(17) and
(DES-PC2 r)(3) = r(11) and (DES-PC2 r)(4) = r(24) and
(DES-PC2 r)(5) = r(1) and (DES-PC2 r)(6) = r(5) and (DES-PC2 r)(7) =
r(3) and (DES-PC2 r)(8) = r(28) and (DES-PC2 r)(9) = r(15)
and (DES-PC2 r)(10) = r(6) and (DES-PC2 r)(11) = r(21) and
(DES-PC2 r)(12) = r(10) and (DES-PC2 r)(13) = r(23) and
(DES-PC2 r)(14) = r(19) and (DES-PC2 r)(15) = r(12) and
(DES-PC2 r)(16) = r(4) and (DES-PC2 r)(17) = r(26) and
(DES-PC2 r)(18) = r(8) and (DES-PC2 r)(19) = r(16) and
(DES-PC2 r)(20) = r(7) and (DES-PC2 r)(21) = r(27) and
(DES-PC2 r)(22) = r(20) and (DES-PC2 r)(23) = r(13) and
(DES-PC2 r)(24) = r(2) and (DES-PC2 r)(25) = r(41) and
(DES-PC2 r)(26) = r(52) and (DES-PC2 r)(27) = r(31) and
(DES-PC2 r)(28) = r(37) and (DES-PC2 r)(29) = r(47) and
(DES-PC2 r)(30) = r(55) and (DES-PC2 r)(31) = r(30) and
(DES-PC2 r)(32) = r(40) and (DES-PC2 r)(33) = r(51) and
(DES-PC2 r)(34) = r(45) and (DES-PC2 r)(35) = r(33) and
(DES-PC2 r)(36) = r(48) and (DES-PC2 r)(37) = r(44) and
(DES-PC2 r)(38) = r(49) and (DES-PC2 r)(39) = r(39) and
(DES-PC2 r)(40) = r(56) and (DES-PC2 r)(41) = r(34) and
(DES-PC2 r)(42) = r(53) and (DES-PC2 r)(43) = r(46) and
(DES-PC2 r)(44) = r(42) and (DES-PC2 r)(45) = r(50) and
(DES-PC2 r)(46) = r(36) and (DES-PC2 r)(47) = r(29) and
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(DES-PC2 r)(48) = r(32).

The finite sequence bitshiftDES of elements of N is defined by the conditions
(Def. 27).

(Def. 27) bitshiftDES is 16-element and (bitshiftDES)(1) = 1 and (bitshiftDES)(2) =
1 and (bitshiftDES)(3) = 2 and (bitshiftDES)(4) = 2 and (bitshiftDES)(5) =
2 and (bitshiftDES)(6) = 2 and (bitshiftDES)(7) = 2 and (bitshiftDES)(8) =
2 and (bitshiftDES)(9) = 1 and (bitshiftDES)(10) = 2 and
(bitshiftDES)(11) = 2 and (bitshiftDES)(12) = 2 and (bitshiftDES)(13) =
2 and (bitshiftDES)(14) = 2 and (bitshiftDES)(15) = 2 and
(bitshiftDES)(16) = 1.

Let K1 be an element of Boolean64. The functor DES-KSK1 yielding an
element of (Boolean48)16 is defined by the condition (Def. 28).

(Def. 28) There exist sequences C, D of Boolean28 such that
(i) C(0) = Op-Left(DES-PC1K1, 28),
(ii) D(0) = Op-Right(DES-PC1K1, 28), and

(iii) for every element i of N such that 0 ≤ i ≤ 15
holds (DES-KSK1)(i + 1) = DES-PC2(C(i + 1) a D(i + 1))
and C(i + 1) = Op-Shift(C(i), (bitshiftDES)(i)) and D(i + 1) =
Op-Shift(D(i), (bitshiftDES)(i)).

6. Encryption and Decryption

Let n,m, k be non empty elements of N, let R1 be an element of (Booleanm)k,
let F be a function from Booleann×Booleanm into Booleann, let I1 be a per-
mutation of Boolean2·n, and let M be an element of Boolean2·n. The functor
DES-like-CoDec(M,F, I1, R1) yields an element of Boolean2·n and is defined by
the condition (Def. 29).

(Def. 29) There exist sequences L, R of Booleann such that
(i) L(0) = SP-Left I1(M),

(ii) R(0) = SP-Right I1(M),
(iii) for every element i of N such that 0 ≤ i ≤ k − 1 holds L(i+ 1) = R(i)

and R(i+ 1) = Op-XOR(L(i), F (R(i), (R1)i+1)), and
(iv) DES-like-CoDec(M,F, I1, R1) = I1

−1(R(k) a L(k)).

The following proposition is true

(38) Let n, m, k be non empty elements of N, R1 be an element of
(Booleanm)k, F be a function from Booleann×Booleanm into Booleann, I1
be a permutation of Boolean2·n, and M be an element of Boolean2·n. Then
DES-like-CoDec(DES-like-CoDec(M,F, I1, R1), F, I1,Rev(R1)) = M.

Let R1 be an element of (Boolean48)16, let F be a function from Boolean32×
Boolean48 into Boolean32, let I1 be a permutation of Boolean64, and let M be an
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element of Boolean64. The functor DES-CoDec(M,F, I1, R1) yielding an element
of Boolean64 is defined by:

(Def. 30) There exists a permutation I2 of Boolean2·32 and there exists an
element M1 of Boolean2·32 such that I2 = I1 and M1 = M and
DES-CoDec(M,F, I1, R1) = DES-like-CoDec(M1, F, I2, R1).

The following proposition is true

(39) Let R1 be an element of (Boolean48)16, F be a function from Boolean32×
Boolean48 into Boolean32, I1 be a permutation of Boolean64, and M be an
element of Boolean64.
Then DES-CoDec(DES-CoDec(M,F, I1, R1), F, I1,Rev(R1)) = M.

Let p1, s9 be elements of Boolean64. The functor DES-ENC(p1, s9) yields an
element of Boolean64 and is defined by:

(Def. 31) DES-ENC(p1, s9) = DES-CoDec(p1,DES-FFUNC,DES-PIP,DES-KS s9).

Let c1, s9 be elements of Boolean64. The functor DES-DEC(c1, s9) yields an
element of Boolean64 and is defined as follows:

(Def. 32) DES-DEC(c1, s9) =
DES-CoDec(c1,DES-FFUNC,DES-PIP,Rev(DES-KS s9)).

The following proposition is true

(40) For all elements m1, s9 of Boolean64 holds
DES-DEC(DES-ENC(m1, s9), s9) = m1.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite

sequences. Formalized Mathematics, 1(1):107–114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175–180, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[11] Czesław Byliński. Some properties of restrictions of finite sequences. Formalized Mathe-
matics, 5(2):241–245, 1996.

[12] Shunichi Kobayashi and Kui Jia. A theory of Boolean valued functions and partitions.
Formalized Mathematics, 7(2):249–254, 1998.

[13] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathe-
matics, 3(2):275–278, 1992.

[14] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.



146 hiroyuki okazaki and yasunari shidama

[15] U.S. Department of Commerce/National Institute of Standards and Technology. Fips pub
46-3, data encryption standard (DES). http://csrc.nist.gov/publications/fips/-
fips46-3/fips46-3.pdf. Federal Information Processing Standars Publication, 1999.

[16] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[17] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501–505, 1990.
[18] Wojciech A. Trybulec. Pigeon hole principle. Formalized Mathematics, 1(3):575–579,

1990.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[20] Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733–737,

1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received November 30, 2011



FORMALIZED MATHEMATICS

Vol. 20, No. 2, Pages 147–155, 2012
DOI: 10.2478/v10037-012-0017-x versita.com/fm/

Semantics of MML Query1

Grzegorz Bancerek
Białystok Technical University

Poland

Summary. In the paper the semantics of MML Query queries is given.
The formalization is done according to [4].

MML identifier: MMLQUERY, version: 7.12.02 4.181.1147

The notation and terminology used here have been introduced in the following
papers: [1], [5], [11], [8], [10], [6], [2], [3], [15], [13], [14], [9], [12], and [7].

1. Elementary Queries

Let X be a set. A list of X is a subset of X. An operation of X is a binary
relation on X.

Let x, y, R be sets. The predicate x, y ∈ R is defined by:

(Def. 1) 〈〈x, y〉〉 ∈ R.
Let x, y, R be sets. We introduce x, y 6∈ R as an antonym of x, y ∈ R.
For simplicity, we use the following convention: X, Y , z, s denote sets, L, L1,

L2, A denote lists of X, x denotes an element of X, O, O2, O3 denote operations
of X, and m denotes a natural number.

The following proposition is true

(1) For all binary relations R1, R2 holds R1 ⊆ R2 iff for every z holds
R1
◦z ⊆ R2◦z.

Let us consider X, O, x. We introduce x O as a synonym of O◦x.
Let us consider X, O, x. Then x O is a list of X.
One can prove the following proposition
1This work has been supported by the Polish Ministry of Science and Higher Education pro-

ject “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519
385136).

147
c© 2012 University of Białystok

CC-BY-SA License ver. 3.0 or later

ISSN 1426–2630(p), 1898-9934(e)

http://ftp.mizar.org/
http://fm.mizar.org/miz/mmlquery.miz


148 grzegorz bancerek

(2) x, y ∈ O iff y ∈ x O.
Let us consider X, O, L. We introduce L|O as a synonym of O◦L.
Let us consider X, O, L. Then L|O is a list of X and it can be characterized

by the condition:

(Def. 2) L|O =
⋃
{x O : x ∈ L}.

The functor L&O yielding a list of X is defined as follows:

(Def. 3) L&O =
⋂
{x O : x ∈ L}.

The functor L whereO yielding a list of X is defined as follows:

(Def. 4) L whereO = {x :
∨
y (x, y ∈ O ∧ x ∈ L)}.

Let O2 be an operation of X. The functor L whereO = O2 yielding a list of X
is defined as follows:

(Def. 5) L whereO = O2 = {x : x O = x O2 ∧ x ∈ L}.
The functor L whereO ≤ O2 yielding a list of X is defined by:

(Def. 6) L whereO ≤ O2 = {x : x O ⊆ x O2 ∧ x ∈ L}.
The functor L whereO ≥ O2 yields a list of X and is defined by:

(Def. 7) L whereO ≥ O2 = {x : x O2 ⊆ x O ∧ x ∈ L}.
The functor L whereO < O2 yielding a list of X is defined as follows:

(Def. 8) L whereO < O2 = {x : x O ∈ x O2 ∧ x ∈ L}.
The functor L whereO > O2 yields a list of X and is defined by:

(Def. 9) L whereO > O2 = {x : x O2 ∈ x O ∧ x ∈ L}.
Let us consider X, L, O, n. The functor L whereO = n yielding a list of X

is defined as follows:

(Def. 10) L whereO = n = {x : x O = n ∧ x ∈ L}.
The functor L whereO ≤ n yielding a list of X is defined by:

(Def. 11) L whereO ≤ n = {x : x O ⊆ n ∧ x ∈ L}.
The functor L whereO ≥ n yielding a list of X is defined as follows:

(Def. 12) L whereO ≥ n = {x : n ⊆ x O ∧ x ∈ L}.
The functor L whereO < n yields a list of X and is defined as follows:

(Def. 13) L whereO < n = {x : x O ∈ n ∧ x ∈ L}.
The functor L whereO > n yields a list of X and is defined by:

(Def. 14) L whereO > n = {x : n ∈ x O ∧ x ∈ L}.
One can prove the following propositions:

(3) x ∈ L whereO iff x ∈ L and x O 6= ∅.
(4) L whereO ⊆ L.
(5) If L ⊆ domO, then L whereO = L.

(6) If n 6= 0 and L1 ⊆ L2, then L1 whereO ≥ n ⊆ L2 whereO.
(7) L whereO ≥ 1 = L whereO.
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(8) If L1 ⊆ L2, then L1 whereO > n ⊆ L2 whereO.
(9) L whereO > 0 = L whereO.

(10) If n 6= 0 and L1 ⊆ L2, then L1 whereO = n ⊆ L2 whereO.
(11) L whereO ≥ n+ 1 = L whereO > n.

(12) L whereO ≤ n = L whereO < n+ 1.

(13) If n ≤ m and L1 ⊆ L2 and O1 ⊆ O2, then L1 whereO1 ≥ m ⊆
L2 whereO2 ≥ n.

(14) If n ≤ m and L1 ⊆ L2 and O1 ⊆ O2, then L1 whereO1 > m ⊆
L2 whereO2 > n.

(15) If n ≤ m and L1 ⊆ L2 and O1 ⊆ O2, then L1 whereO2 ≤ n ⊆
L2 whereO1 ≤ m.

(16) If n ≤ m and L1 ⊆ L2 and O1 ⊆ O2, then L1 whereO2 < n ⊆
L2 whereO1 < m.

(17) If O1 ⊆ O2 and L1 ⊆ L2 and O ⊆ O3, then L1 whereO ≥ O2 ⊆
L2 whereO3 ≥ O1.

(18) If O1 ⊆ O2 and L1 ⊆ L2 and O ⊆ O3, then L1 whereO > O2 ⊆
L2 whereO3 > O1.

(19) If O1 ⊆ O2 and L1 ⊆ L2 and O ⊆ O3, then L1 whereO3 ≤ O1 ⊆
L2 whereO ≤ O2.

(20) If O1 ⊆ O2 and L1 ⊆ L2 and O ⊆ O3, then L1 whereO3 < O1 ⊆
L2 whereO < O2.

(21) L whereO > O1 ⊆ L whereO.
(22) If O1 ⊆ O2 and L1 ⊆ L2, then L1 whereO1 ⊆ L2 whereO2.
(23) a ∈ L|O iff there exists b such that a ∈ b O and b ∈ L.

Let us consider X, A, B. We introduce A andB as a synonym of A ∩ B.
We introduce A orB as a synonym of A ∪ B. We introduce A butnotB as a
synonym of A \B.

Let us consider X, A, B. Then A andB is a list of X. Then A orB is a list
of X. Then A butnotB is a list of X.

We now state several propositions:

(24) If L1 6= ∅ and L2 6= ∅, then (L1 orL2)&O = (L1&O) and(L2&O).

(25) If L1 ⊆ L2 and O1 ⊆ O2, then L1|O1 ⊆ L2|O2.
(26) If O1 ⊆ O2, then L&O1 ⊆ L&O2.

(27) L&(O1 andO2) = (L&O1) and(L&O2).

(28) If L1 6= ∅ and L1 ⊆ L2, then L2&O ⊆ L1&O.
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2. Operations

One can prove the following two propositions:

(29) For all operations O1, O2 of X such that for every x holds x O1 = x O2
holds O1 = O2.

(30) For all operations O1, O2 of X such that for every L holds L|O1 = L|O2
holds O1 = O2.

The functor notO yielding an operation of X is defined as follows:

(Def. 15) For every L holds L| notO =
⋃
{(x O = ∅ → {x}, ∅) : x ∈ L}.

Let us consider X and let O1, O2 be operations of X. We introduce O1 andO2
as a synonym of O1 ∩O2. We introduce O1 orO2 as a synonym of O1 ∪O2. We
introduce O1 butnotO2 as a synonym of O1 \ O2. We introduce O1|O2 as a
synonym of O1 ·O2.

Let us consider X and let O1, O2 be operations of X. Then O1 andO2 is an
operation of X and it can be characterized by the condition:

(Def. 16) For every L holds L|(O1 andO2) =
⋃
{(x O1) and(x O2) : x ∈ L}.

Then O1 orO2 is an operation of X and it can be characterized by the condition:

(Def. 17) For every L holds L|(O1 orO2) =
⋃
{(x O1) or(x O2) : x ∈ L}.

Then O1 butnotO2 is an operation of X and it can be characterized by the
condition:

(Def. 18) For every L holds L|(O1 butnotO2) =
⋃
{(x O1) butnot(x O2) : x ∈ L}.

Then O1|O2 is an operation of X and it can be characterized by the condition:

(Def. 19) For every L holds L|(O1|O2) = L|O1|O2.
The functor O1&O2 yielding an operation of X is defined as follows:

(Def. 20) For every L holds L|(O1&O2) =
⋃
{(x O1)&O2 : x ∈ L}.

We now state a number of propositions:

(31) x (O1 andO2) = (x O1) and(x O2).

(32) x (O1 orO2) = (x O1) or(x O2).

(33) x (O1 butnotO2) = (x O1) butnot(x O2).

(34) x (O1|O2) = (x O1)|O2.
(35) x (O1&O2) = (x O1)&O2.

(36) z, s ∈ notO iff z = s and z ∈ X and z 6∈ domO.

(37) notO = idX\domO.

(38) dom not notO = domO.

(39) L where not notO = L whereO.

(40) L whereO = 0 = L where notO.

(41) not not notO = notO.

(42) notO1 or notO2 ⊆ not(O1 andO2).
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(43) not(O1 orO2) = notO1 and notO2.

(44) If domO1 = X and domO2 = X, then (O1 orO2)&O =
(O1&O) and(O2&O).

Let us consider X, O. We say that O is filtering if and only if:

(Def. 21) O ⊆ idX .

Next we state the proposition

(45) O is filtering iff O = iddomO.

Let us consider X, O. Note that notO is filtering.
Let us consider X. Note that there exists an operation of X which is filtering.
In the sequel F1, F2 denote filtering operations of X.
Let us consider X, F , O. One can check the following observations:

∗ F andO is filtering,

∗ O andF is filtering, and

∗ F butnotO is filtering.

Let us consider X, F1, F2. One can verify that F1 orF2 is filtering.

(46) If z ∈ x F, then z = x.

(47) L|F = L whereF.

(48) not notF = F.

(49) not(F1 andF2) = notF1 or notF2.

(50) dom(O or notO) = X.

(51) F or notF = idX .

(52) O and notO = ∅.
(53) (O1 orO2) and notO1 ⊆ O2.

3. Rough Queries

Let A be a finite sequence and let a be a set. The functor #occurrences(a,A)
yielding a natural number is defined as follows:

(Def. 22) #occurrences(a,A) = {i : i ∈ domA ∧ a ∈ A(i)} .
We now state two propositions:

(54) For every finite sequenceA and for every set a holds #occurrences(a,A) ≤
lenA.

(55) For every finite sequence A and for every set a holds A 6= ∅ and
#occurrences(a,A) = lenA iff a ∈

⋂
rngA.

The functor max#A yielding a natural number is defined as follows:

(Def. 23) For every set a holds #occurrences(a,A) ≤ max#A and for every n such
that for every set a holds #occurrences(a,A) ≤ n holds max#A ≤ n.
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(56) For every finite sequence A holds max#A ≤ lenA.

(57) For every finite sequence A and for every set a such that
#occurrences(a,A) = lenA holds max#A = lenA.

Let us consider X, let A be a finite sequence of elements of 2X , and let n be
a natural number. The functor roughn(A) yields a list of X and is defined as
follows:

(Def. 24) roughn(A) = {x : n ≤ #occurrences(x,A)} if X 6= ∅.
Let m be a natural number. The functor roughn-m(A) yields a list of X and is
defined by:

(Def. 25) roughn-m(A) = {x : n ≤ #occurrences(x,A) ∧ #occurrences(x,A) ≤
m} if X 6= ∅.

Let us consider X and let A be a finite sequence of elements of 2X . The
functor rough(A) yielding a list of X is defined by:

(Def. 26) rough(A) = roughmax#A(A).

Next we state several propositions:

(58) For every finite sequence A of elements of 2X holds roughn- lenA(A) =
roughn(A).

(59) For every finite sequence A of elements of 2X such that n ≤ m holds
roughm(A) ⊆ roughn(A).

(60) Let A be a finite sequence of elements of 2X and n1, n2, m1, m2 be
natural numbers. If n1 ≤ m1 and n2 ≤ m2, then roughm1-n2(A) ⊆
roughn1-m2(A).

(61) For every finite sequence A of elements of 2X holds roughn-m(A) ⊆
roughn(A).

(62) For every finite sequence A of elements of 2X such that A 6= ∅ holds
rough lenA(A) =

⋂
rngA.

(63) For every finite sequence A of elements of 2X holds rough 1(A) =
⋃
A.

(64) For all lists L1, L2 of X holds rough 2(〈L1, L2〉) = L1 andL2.

(65) For all lists L1, L2 of X holds rough 1(〈L1, L2〉) = L1 orL2.

4. Constructor Database

We introduce constructor databases which are extensions of 1-sorted struc-
tures and are systems
〈 a carrier, constructors, a ref-operation 〉,

where the carrier is a set, the constructors constitute a list of the carrier, and
the ref-operation is a relation between the carrier and the constructors.

Let X be a 1-sorted structure. A list of X is a list of the carrier of X. An
operation of X is an operation of the carrier of X.
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Let us consider X, let S be a subset of X, and let R be a relation between
X and S. The functor @R yields a binary relation on X and is defined by:

(Def. 27) @R = R.

Let X be a constructor database and let a be an element of X. The functor
a ref yielding a list of X is defined as follows:

(Def. 28) a ref = a @the ref-operation of X.

The functor a occur yields a list of X and is defined as follows:

(Def. 29) a occur = a (@the ref-operation of X)`.

The following proposition is true

(66) For every constructor database X and for all elements x, y of X holds
x ∈ y ref iff y ∈ x occur .

Let X be a constructor database. We say that X is ref-finite if and only if:

(Def. 30) For every element x of X holds x ref is finite.

One can verify that every constructor database which is finite is also ref-
finite.

Let us note that there exists a constructor database which is finite and non
empty.

Let X be a ref-finite constructor database and let x be an element of X.
Observe that x ref is finite.

Let X be a constructor database and let A be a finite sequence of elements
of the constructors of X. The functor atleast(A) yielding a list of X is defined
by:

(Def. 31) atleast(A) = {x ∈ X: rngA ⊆ x ref} if the carrier of X 6= ∅.
The functor atmost(A) yielding a list of X is defined as follows:

(Def. 32) atmost(A) = {x ∈ X: x ref ⊆ rngA} if the carrier of X 6= ∅.
The functor exactly(A) yields a list of X and is defined by:

(Def. 33) exactly(A) = {x ∈ X: x ref = rngA} if the carrier of X 6= ∅.
Let n be a natural number. The functor atleast minusn(A) yields a list of X
and is defined by:

(Def. 34) atleast minusn(A) = {x ∈ X: rngA \ x ref ≤ n} if the carrier of
X 6= ∅.

Let X be a ref-finite constructor database, let A be a finite sequence of
elements of the constructors of X, and let n be a natural number. The functor
atmost plusn(A) yields a list of X and is defined by:

(Def. 35) atmost plusn(A) = {x ∈ X: x ref \ rngA ≤ n} if the carrier of X 6= ∅.
Let m be a natural number. The functor exactly plusn minusm(A) yielding
a list of X is defined by:
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(Def. 36) exactly plusn minusm(A) = {x ∈ X: x ref \ rngA ≤ n ∧
rngA \ x ref ≤ m} if the carrier of X 6= ∅.

In the sequel X denotes a constructor database, x denotes an element of X,
B denotes a finite sequence of elements of the constructors of Y , and y denotes
an element of Y .

The following propositions are true:

(67) atleast minus 0(A) = atleast(A).

(68) atmost plus 0(B) = atmost(B).

(69) exactly plus 0 minus 0(B) = exactly(B).

(70) If n ≤ m, then atleast minusn(A) ⊆ atleast minusm(A).

(71) If n ≤ m, then atmost plusn(B) ⊆ atmost plusm(B).

(72) For all natural numbers n1, n2, m1, m2 such that n1 ≤ m1 and n2 ≤ m2
holds exactly plusn1 minusn2(B) ⊆ exactly plusm1 minusm2(B).

(73) atleast(A) ⊆ atleast minusn(A).

(74) atmost(B) ⊆ atmost plusn(B).

(75) exactly(B) ⊆ exactly plusn minusm(B).

(76) exactly(A) = atleast(A) and atmost(A).

(77) exactly plusn minusm(B) = atleast minusm(B) and atmost plusn(B).

(78) If A 6= ∅, then atleast(A) =
⋂
{x occur : x ∈ rngA}.

(79) For all elements c1, c2 of X such that A = 〈c1, c2〉 holds atleast(A) =
c1 occur and c2 occur .
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Summary. The goal of this article is to formalize Ceva’s theorem that is
in the [8] on the web. Alongside with it formalizations of Routh’s, Menelaus’ and
generalized form of Ceva’s theorem itself are provided.

MML identifier: MENELAUS, version: 7.12.02 4.181.1147

The papers [1], [4], [3], [6], [5], [2], [7], and [9] provide the notation and termi-
nology for this paper.

1. Some Properties of the Area of Triangle

We use the following convention: A, B, C, A1, B1, C1, A2, B2, C2 are points
of E2T, l1, m1, n1 are real numbers, and X, Y , Z are subsets of E2T.

Let us consider X, Y . We introduce X is parallel to Y as a synonym of X
misses Y .

Let us consider X, Y , Z. We say that X, Y , Z are concurrent if and only if:

(Def. 1) X is parallel to Y and Y is parallel to Z and Z is parallel to X or there
exists A such that A ∈ X and A ∈ Y and A ∈ Z.

One can prove the following propositions:

(1) (A+B)1 = A1 +B1 and (A+B)2 = A2 +B2.

(2) (l1 ·A)1 = l1 ·A1 and (l1 ·A)2 = l1 ·A2.
(3) (−A)1 = −A1 and (−A)2 = −A2.
(4) (l1 ·A+m1 ·B)1 = l1 · A1 + m1 · B1 and (l1 ·A+m1 ·B)2 = l1 · A2 +

m1 ·B2.
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(5) ((−l1) ·A)1 = −l1 ·A1 and ((−l1) ·A)2 = −l1 ·A2.
(6) (l1 ·A−m1 ·B)1 = l1 · A1 −m1 · B1 and (l1 ·A−m1 ·B)2 = l1 · A2 −

m1 ·B2.
(7) The area of M((1−l1)·A+l1 ·A1, B,C) = (1−l1)·the area of M(A,B,C)+

l1 · the area of M(A1, B,C).

(8) If ](A,B,C) = 0 and A, B, C are mutually different, then ](B,C,A) =
π or ](B,A,C) = π.

(9) A, B and C are collinear iff the area of M(A,B,C) = 0.

(10) The area of M(0E2T , B,C) = B1·C2−C1·B2
2 .

(11) The area of M(A+ A1, B, C) = ((the area of M(A,B,C)) + (the area of
M(A1, B,C)))− the area of M(0E2T , B,C).

(12) If A ∈ L(B,C), then A ∈ Line(B,C).

(13) If B 6= C, then A, B and C are collinear iff A ∈ Line(B,C).

(14) If A, B, C form a triangle and A1 = (1− l1) ·B + l1 · C, then A 6= A1.

(15) Suppose A, B, C form a triangle. Then
(i) A, C, B form a triangle,

(ii) B, A, C form a triangle,
(iii) B, C, A form a triangle,
(iv) C, A, B form a triangle, and
(v) C, B, A form a triangle.

(16) Suppose A, B, C form a triangle and A1 = (1 − l1) · B + l1 · C and
B1 = (1 −m1) · C + m1 · A and m1 6= 1. Then (1 −m1) + l1 ·m1 6= 0 if
and only if Line(A,A1) is not parallel to Line(B,B1).

2. Ceva’s Theorem and Others

The following propositions are true:

(17) Suppose A1 = (1 − l1) · B + l1 · C and B1 = (1 −m1) · C + m1 · A and
C1 = (1−n1) ·A+n1 ·B. Then the area of M(A1, B1, C1) = ((1− l1) · (1−
m1) · (1− n1) + l1 ·m1 · n1) · the area of M(A,B,C).

(18) Suppose A, B, C form a triangle and A1 = (1 − l1) · B + l1 · C and
B1 = (1 − m1) · C + m1 · A and C1 = (1 − n1) · A + n1 · B and l1 6= 1
and m1 6= 1 and n1 6= 1. Then A1, B1 and C1 are collinear if and only if
l1
1−l1 ·

m1
1−m1 ·

n1
1−n1 = −1.

(19) Suppose that A, B, C form a triangle and A1 = (1− l1) ·B + l1 ·C and
B1 = (1−m1) ·C +m1 ·A and C1 = (1− n1) ·A+ n1 ·B and l1 6= 1 and
m1 6= 1 and n1 6= 1 and A, A1 and C2 are collinear and B, B1 and C2 are
collinear and B, B1 and A2 are collinear and C, C1 and A2 are collinear
and A, A1 and B2 are collinear and C, C1 and B2 are collinear. Then
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(i) ((1−m1) + l1 ·m1) · ((1− l1) + n1 · l1) · ((1− n1) +m1 · n1) 6= 0, and
(ii) the area of M(A2, B2, C2) = (m1·n1·l1−(1−m1)·(1−n1)·(1−l1))2

((1−m1)+l1·m1)·((1−l1)+n1·l1)·((1−n1)+m1·n1) ·
the area of M(A,B,C).

(20) Suppose that A, B, C form a triangle and A1 = 2
3 · B + 1

3 · C and
B1 = 2

3 · C + 1
3 ·A and C1 = 2

3 ·A+ 1
3 ·B and A, A1 and C2 are collinear

and B, B1 and C2 are collinear and B, B1 and A2 are collinear and C, C1
and A2 are collinear and A, A1 and B2 are collinear and C, C1 and B2 are
collinear. Then the area of M(A2, B2, C2) = the area of M(A,B,C)

7 .

(21) Suppose that A, B, C form a triangle and A1 = (1− l1) ·B + l1 ·C and
B1 = (1−m1) ·C +m1 ·A and C1 = (1− n1) ·A+ n1 ·B and l1 6= 1 and
m1 6= 1 and n1 6= 1 and (1 −m1) + l1 ·m1 6= 0 and (1 − l1) + n1 · l1 6= 0
and (1 − n1) + m1 · n1 6= 0. Then l1

1−l1 ·
m1
1−m1 ·

n1
1−n1 = 1 if and only if

there exists A2 such that A, A1 and A2 are collinear and B, B1 and A2
are collinear and C, C1 and A2 are collinear.

(22) Suppose A, B, C form a triangle and A1 = (1 − l1) · B + l1 · C and
B1 = (1−m1) ·C +m1 ·A and C1 = (1− n1) ·A+ n1 ·B and l1 6= 1 and
m1 6= 1 and n1 6= 1. Then l1

1−l1 ·
m1
1−m1 ·

n1
1−n1 = 1 if and only if Line(A,A1),

Line(B,B1), Line(C,C1) are concurrent.
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Summary. Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested
to formalize simple graphs using simplicial complexes. We have developed basic
terminology for simple graphs as at most 1-dimensional complexes.

We formalize this new setting and then reprove Mycielski’s [12] construction
resulting in a triangle-free graph with arbitrarily large chromatic number. A
different formalization of similar material is in [15].
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1. Preliminaries

One can prove the following propositions:

(1) For all sets x, X holds 〈〈x, X〉〉 /∈ X.
(2) For all sets x, X holds 〈〈x, X〉〉 6= X.

(3) For all sets x, X holds 〈〈x, X〉〉 6= x.

(4) For all sets x1, y1, x2, y2, X such that x1, x2 ∈ X and {x1, 〈〈y1, X〉〉} =
{x2, 〈〈y2, X〉〉} holds x1 = x2 and y1 = y2.

(5) For all sets X, v such that 3 ⊆ X there exist sets v1, v2 such that v1,
v2 ∈ X and v1 6= v and v2 6= v and v1 6= v2.

(6) For every set x holds S{x} = {{x}}.
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Let us observe that there exists a finite sequence which is finite-yielding.
The following proposition is true

(7) Let X be a non empty finite set and P be a partition of X. If P < X ,

then there exist sets p, x, y such that p ∈ P and x, y ∈ p and x 6= y.

Let us note that
⋃
{∅} is empty.

Next we state three propositions:

(8) For every set x holds
⋃
{∅, {x}} = {x}.

(9) For every set X and for every subset s of X such that s is 1-element
there exists a set x such that x ∈ X and s = {x}.

(10) For every set X holds

{{X, 〈〈x, X〉〉};x ranges over elements of X: x ∈ X} = X .

Let G be a set. The functor PairsOf G yielding a subset of G is defined as
follows:

(Def. 1) For every set e holds e ∈ PairsOf G iff e ∈ G and e = 2.

The following propositions are true:

(11) For every set X and for every set e such that e ∈ PairsOf X there exist
sets x, y such that x 6= y and x, y ∈

⋃
X and e = {x, y}.

(12) For all sets X, x, y such that x 6= y and {x, y} ∈ X holds {x, y} ∈
PairsOf X.

(13) For all sets X, x, y such that {x, y} ∈ PairsOf X holds x 6= y and x,
y ∈
⋃
X.

(14) For all sets G, H such that G ⊆ H holds PairsOf G ⊆ PairsOf H.

(15) For every finite set X holds

{{x, 〈〈y,
⋃
X〉〉};x ranges over elements of

⋃
X,y ranges over elements of⋃

X : {x, y} ∈ PairsOf X} = 2 · PairsOf X .

(16) For every finite set X holds

{〈〈x, y〉〉;x ranges over elements of
⋃
X,y ranges over elements of⋃

X : {x, y} ∈ PairsOf X} = 2 · PairsOf X .

Let X be a finite set. Note that PairsOf X is finite.
Let X be a set. We say that X is void if and only if:

(Def. 2) X = {∅}.
One can verify that there exists a set which is void.
Let us observe that every set which is void is also finite.
Let G be a void set. Observe that

⋃
G is empty.

Next we state two propositions:

(17) For every set X such that X is void holds PairsOf X = ∅.
(18) For every set X such that

⋃
X = ∅ holds X = ∅ or X = {∅}.

Let X be a set. We say that X is pair free if and only if:
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(Def. 3) PairsOf X is empty.

We now state the proposition

(19) For all sets X, x such that
⋃
X = 1 holds X is pair free.

Let us observe that there exists a set which is finite-membered and non
empty.

Let X be a finite-membered set and let Y be a set. Observe that X ∩ Y is
finite-membered and X \ Y is finite-membered.

2. Simple Graphs as Simplicial Complexes

Let n be a natural number and let X be a set. We say that X is at most
n-dimensional if and only if:

(Def. 4) For every set x such that x ∈ X holds x ⊆ n+ 1.

Let n be a natural number. Observe that every set which is at most n-
dimensional is also finite-membered.

Let n be a natural number. Observe that there exists a set which is at most
n-dimensional, subset-closed, and non empty.

Next we state two propositions:

(20) For every subset-closed non empty set G holds ∅ ∈ G.
(21) Let n be a natural number, X be an at most n-dimensional set, and x

be an element of X. If x ∈ X, then x ≤ n+ 1.

Let n be a natural number and let X, Y be at most n-dimensional sets. Note
that X ∪ Y is at most n-dimensional.

Let n be a natural number, let X be an at most n-dimensional set, and let
Y be a set. Note that X ∩ Y is at most n-dimensional and X \ Y is at most
n-dimensional.

Let n be a natural number and let X be an at most n-dimensional set.
Observe that every at most n-dimensional set is at most n-dimensional.

Let s be a set. We say that s is simple graph-like if and only if:

(Def. 5) s is at most 1-dimensional, subset-closed, and non empty.

Let us note that every set which is simple graph-like is also at most 1-
dimensional, subset-closed, and non empty and every set which is at most 1-
dimensional, subset-closed, and non empty is also simple graph-like.

The following proposition is true

(22) {∅} is simple graph-like.

One can verify that {∅} is simple graph-like.
One can verify that there exists a set which is simple graph-like.
A simple graph is a simple graph-like set.
One can verify that there exists a simple graph which is void and there exists

a simple graph which is finite.
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Let G be a set. We introduce VerticesG as a synonym of
⋃
G. We introduce

EdgesG as a synonym of PairsOf G.
Let X be a set. We introduce X is edgesless as a synonym of X is pair free.
We now state three propositions:

(23) For every simple graph G such that VerticesG is finite holds G is finite.

(24) For every simple graph G and for every set x holds x ∈ VerticesG iff
{x} ∈ G.

(25) For every set x holds {∅, {x}} is a simple graph.

Let X be a finite finite-membered set. The functor orderX yielding a natural
number is defined by:

(Def. 6) orderX =
⋃
X .

Let X be a finite set. The functor sizeX yielding a natural number is defined
by:

(Def. 7) sizeX = PairsOf X .

Next we state the proposition

(26) For every finite simple graph G holds orderG ≤ G.

Let G be a simple graph. A vertex of G is an element of VerticesG. An edge
of G is an element of EdgesG.

The following propositions are true:

(27) For every simple graph G holds G = {∅} ∪ S(VerticesG) ∪ EdgesG.

(28) For every simple graph G such that VerticesG = ∅ holds G is void.

(29) Let G be a simple graph and x be a set. If x ∈ G and x 6= ∅, then there
exists a set y such that x = {y} and y ∈ VerticesG or x ∈ EdgesG.

(30) For every simple graph G and for every set x such that VerticesG = {x}
holds G = {∅, {x}}.

(31) For every set X there exists a simple graph G such that G is edgesless
and VerticesG = X.

Let G be a simple graph and let v be an element of VerticesG. The functor
Adjacent(v) yielding a subset of VerticesG is defined by:

(Def. 8) For every element x of VerticesG holds x ∈ Adjacent(v) iff {v, x} ∈
EdgesG.

Let X be a set. A simple graph is called a simple graph of X if:

(Def. 9) Vertices it = X.

Let X be a set. The functor CompleteSGraphX yields a simple graph of X
and is defined by:

(Def. 10) CompleteSGraphX = {V ;V ranges over finite subsets of X: V ≤ 2}.
One can prove the following proposition
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(32) For every simple graph G such that for all sets x, y such that x, y ∈
VerticesG holds {x, y} ∈ G holds G = CompleteSGraph VerticesG.

Let X be a finite set. One can check that CompleteSGraphX is finite.
The following propositions are true:

(33) For every set X and for every set x such that x ∈ X holds {x} ∈
CompleteSGraphX.

(34) For every set X and for all sets x, y such that x, y ∈ X holds {x, y} ∈
CompleteSGraphX.

(35) CompleteSGraph ∅ = {∅}.
(36) For every set x holds CompleteSGraph{x} = {∅, {x}}.
(37) For all sets x, y holds CompleteSGraph{x, y} = {∅, {x}, {y}, {x, y}}.
(38) For all sets X, Y such that X ⊆ Y holds CompleteSGraphX ⊆

CompleteSGraphY.

(39) For every simple graph G and for every set x such that x ∈ VerticesG
holds CompleteSGraph{x} ⊆ G.

Let G be a simple graph. One can check that there exists a subset of G which
is simple graph-like.

Let G be a simple graph. A subgraph of G is a simple graph-like subset of
G.

Let G be a simple graph. The functor ComplementG yields a simple graph
and is defined as follows:

(Def. 11) ComplementG = CompleteSGraph VerticesG \ EdgesG.

Let us observe that the functor ComplementG is involutive.
Next we state two propositions:

(40) For every simple graph G holds VerticesG = Vertices ComplementG.

(41) Let G be a simple graph and x, y be sets. If x 6= y and x, y ∈ VerticesG,
then {x, y} ∈ EdgesG iff {x, y} 6∈ Edges ComplementG.

3. Induced Subgraphs

Let G be a simple graph and let L be a set. The subgraph induced by G

yielding a subset of G is defined by:

(Def. 12) The subgraph induced by G = G ∩ 2L.

Let G be a simple graph and let L be a set. Observe that the subgraph
induced by G is simple graph-like.

Next we state two propositions:

(42) For every simple graph G holds G = the subgraph induced by G.

(43) For every simple graph G and for every set L holds the subgraph induced
by G = the subgraph induced by G.
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Let G be a finite simple graph and let L be a set. Observe that the subgraph
induced by G is finite.

Let G be a simple graph and let L be a finite set. One can check that the
subgraph induced by G is finite.

One can prove the following three propositions:

(44) For all simple graphs G, H such that G ⊆ H holds G ⊆ the subgraph
induced by H.

(45) For every simple graphG and for every set L holds Vertices (the subgraph
induced by G) = VerticesG ∩ L.

(46) For every simple graph G and for every set x such that x ∈ VerticesG
holds the subgraph induced by G = {∅, {x}}.

4. Clique, Clique Number, Clique Cover

Let G be a simple graph. We say that G is a clique if and only if:

(Def. 13) G = CompleteSGraph VerticesG.

The following propositions are true:

(47) Let G be a simple graph. Suppose that for all sets x, y such that x 6= y

and x, y ∈ VerticesG holds {x, y} ∈ EdgesG. Then G is a clique.

(48) {∅} is a clique.

Observe that there exists a simple graph which is a clique. Let G be a simple
graph. Note that there exists a subgraph of G which is a clique.

Let G be a simple graph. A clique of G is a clique subgraph of G.
Next we state the proposition

(49) For every set X holds CompleteSGraphX is a clique.

Let X be a set. One can check that CompleteSGraphX is a clique.
Next we state two propositions:

(50) For every simple graph G and for every set x such that x ∈ VerticesG
holds {∅, {x}} is a clique of G.

(51) Let G be a simple graph and x, y be sets. If x, y ∈ VerticesG and
{x, y} ∈ G, then {∅, {x}, {y}, {x, y}} is a clique of G.

Let G be a simple graph. Observe that there exists a clique of G which is
finite.

We now state two propositions:

(52) For every simple graph G and for every set x such that x ∈
⋃
G there

exists a finite clique C of G such that VerticesC = {x}.
(53) For every a clique simple graph C and for all sets u, v such that u,

v ∈ VerticesC holds {u, v} ∈ C.
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Let G be a simple graph. We say that G has finite clique number if and only
if:

(Def. 14) There exists a finite clique C of G such that for every finite clique D of
G holds orderD ≤ orderC.

Let us note that there exists a simple graph which has finite clique number.
Let us observe that every simple graph which is finite also has finite clique

number.
Let G be a simple graph with finite clique number. The functor ω(G) yielding

a natural number is defined as follows:

(Def. 15) There exists a finite clique C of G such that orderC = ω(G) and for
every finite clique T of G holds orderT ≤ ω(G).

We now state several propositions:

(54) For every simple graph G with finite clique number such that ω(G) = 0
holds VerticesG = ∅.

(55) For every void simple graph G holds ω(G) = 0.

(56) LetG be a simple graph and x, y be sets. If {x, y} ∈ G, then the subgraph
induced by G is a clique of G.

(57) For every simple graph G with finite clique number such that EdgesG 6=
∅ holds ω(G) ≥ 2.

(58) For all simple graphs G, H with finite clique number such that G ⊆ H

holds ω(G) ≤ ω(H).

(59) For every finite set X holds ω(CompleteSGraphX) = X .

Let G be a simple graph and let P be a partition of VerticesG. We say that
P is clique-wise if and only if:

(Def. 16) For every set x such that x ∈ P holds the subgraph induced by G is a
clique of G.

Let G be a simple graph. Observe that there exists a partition of VerticesG
which is clique-wise.

Let G be a simple graph. A clique-partition of G is a clique-wise partition
of VerticesG.

Let G be a void simple graph. Note that every partition of VerticesG which
is empty is also clique-wise.

Let G be a simple graph. We say that G has finite clique cover if and only
if:

(Def. 17) There exists a clique-partition of G which is finite.

One can verify that every simple graph which is finite also has finite clique
cover.

Let G be a simple graph with finite clique cover. Note that there exists a
clique-partition of G which is finite.
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Let G be a simple graph with finite clique cover and let S be a subset of
VerticesG. One can verify that the subgraph induced by G has finite clique
cover.

Let G be a simple graph with finite clique cover. The functor κ(G) yielding
a natural number is defined by:

(Def. 18) There exists a finite clique-partition C of G such that C = κ(G) and for
every finite clique-partition C of G holds κ(G) ≤ C .

5. Stable Set, Coloring

Let G be a simple graph and let S be a subset of VerticesG. We say that S
is stable if and only if:

(Def. 19) For all sets x, y such that x 6= y and x, y ∈ S holds {x, y} 6∈ G.
We now state two propositions:

(60) For every simple graph G holds ∅VerticesG is stable.

(61) For every simple graph G and for every subset S of VerticesG and for
every set v such that S = {v} holds S is stable.

Let G be a simple graph. Observe that every subset of VerticesG which is
trivial is also stable.

Let G be a simple graph. Note that there exists a subset of VerticesG which
is stable.

Let G be a simple graph. A stable set of G is a stable subset of VerticesG.
The following two propositions are true:

(62) For every simple graph G and for all sets x, y such that x, y ∈ VerticesG
and {x, y} 6∈ G holds {x, y} is a stable set of G.

(63) For every simple graph G with finite clique number such that ω(G) = 1
holds VerticesG is a stable set of G.

Let G be a simple graph. Note that there exists a stable set of G which is
finite.

One can prove the following proposition

(64) For every simple graph G and for every stable set A of G holds every
subset of A is a stable set of G.

Let G be a simple graph and let P be a partition of VerticesG. We say that
P is stable-wise if and only if:

(Def. 20) For every set x such that x ∈ P holds x is a stable set of G.

The following proposition is true

(65) For every simple graph G holds SmallestPartition(VerticesG) is stable-
wise.
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Let G be a simple graph. Note that there exists a partition of VerticesG
which is stable-wise. A coloring of G is a stable-wise partition of VerticesG. We
say that G is finitely colorable if and only if:

(Def. 21) There exists a coloring of G which is finite.

One can verify that there exists a simple graph which is finitely colorable.
Let us note that every simple graph which is finite is also finitely colorable.
Let G be a finitely colorable simple graph. Note that there exists a coloring

of G which is finite.
We now state two propositions:

(66) Let G be a simple graph, S be a clique of G, and L be a set. If L ⊆
VerticesS, then the subgraph induced by G is a clique of G.

(67) Let G be a simple graph, C be a coloring of G, and S be a subset of
VerticesG. Then C�S is a coloring of the subgraph induced by G.

Let G be a finitely colorable simple graph and let S be a set. One can check
that the subgraph induced by G is finitely colorable. The functor χ(G) yielding
a natural number is defined as follows:

(Def. 22) There exists a finite coloring C of G such that C = χ(G) and for every
finite coloring C of G holds χ(G) ≤ C .

One can prove the following three propositions:

(68) For all finitely colorable simple graphs G, H such that G ⊆ H holds
χ(G) ≤ χ(H).

(69) For every finite set X holds χ(CompleteSGraphX) = X .

(70) Let G be a finitely colorable simple graph, C be a finite coloring of G,
and c be a set. Suppose c ∈ C and C = χ(G). Then there exists an element
v of VerticesG such that v ∈ c and for every element d of C such that
d 6= c there exists an element w of VerticesG such that w ∈ Adjacent(v)
and w ∈ d.

Let G be a simple graph. We say that G has finite stability number if and
only if:

(Def. 23) There exists a finite stable set A of G such that for every finite stable
set B of G holds B ≤ A.

One can check that every simple graph which is finite also has finite stability
number.

Let G be a simple graph with finite stability number. Observe that every
stable set of G is finite.

Let us note that there exists a simple graph which is non void and has finite
stability number.

Let G be a simple graph with finite stability number. The functor α(G)
yielding a natural number is defined as follows:
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(Def. 24) There exists a finite stable set A of G such that A = α(G) and for every
finite stable set T of G holds T ≤ α(G).

Let G be a non void simple graph with finite stability number. One can
check that α(G) is positive.

Next we state the proposition

(71) For every simple graph G with finite stability number such that α(G) = 1
holds G is a clique.

Let us observe that every simple graph which has finite clique number and
finite stability number is also finite.

We now state four propositions:

(72) For every simple graph G and for every clique C of G holds VerticesC
is a stable set of ComplementG.

(73) For every simple graph G and for every clique C of ComplementG holds
VerticesC is a stable set of G.

(74) For every simple graph G and for every stable set C of G holds the
subgraph induced by ComplementG is a clique of ComplementG.

(75) For every simple graph G and for every stable set C of ComplementG
holds the subgraph induced by G is a clique of G.

Let G be a simple graph with finite clique number. One can check that
ComplementG has finite stability number.

LetG be a simple graph with finite stability number. Note that ComplementG
has finite clique number.

We now state several propositions:

(76) For every simple graph G with finite clique number holds ω(G) =
α(ComplementG).

(77) For every simple graph G with finite stability number holds α(G) =
ω(ComplementG).

(78) For every simple graph G holds every clique-partition of ComplementG
is a coloring of G.

(79) For every simple graph G holds every clique-partition of G is a coloring
of ComplementG.

(80) For every simple graph G holds every coloring of G is a clique-partition
of ComplementG.

(81) For every simple graph G holds every coloring of ComplementG is a
clique-partition of G.

LetG be a finitely colorable simple graph. One can check that ComplementG
has finite clique cover.

Let G be a simple graph with finite clique cover.
One can check that ComplementG is finitely colorable.
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One can prove the following propositions:

(82) For every finitely colorable simple graph G holds χ(G) =
κ(ComplementG).

(83) For every simple graph G with finite clique cover holds κ(G) =
χ(ComplementG).

6. Mycielskian of a Graph

Let G be a simple graph. The functor MycielskianG yielding a simple graph
is defined by the condition (Def. 25).

(Def. 25) MycielskianG = {∅} ∪ {{x} : x ranges over elements of
⋃
G ∪
⋃
G ×

{
⋃
G}∪{

⋃
G}}∪EdgesG∪{{x, 〈〈y,

⋃
G〉〉};x ranges over elements of

⋃
G, y

ranges over elements of
⋃
G : {x, y} ∈ EdgesG} ∪ {{

⋃
G, 〈〈x,

⋃
G〉〉};x

ranges over elements of
⋃
G : x ∈ VerticesG}.

We now state several propositions:

(84) For every simple graph G holds G ⊆ MycielskianG.

(85) Let G be a simple graph and v be a set. Then v ∈ Vertices MycielskianG
if and only if one of the following conditions is satisfied:

(i) v ∈
⋃
G, or

(ii) there exists a set x such that x ∈
⋃
G and v = 〈〈x,

⋃
G〉〉, or

(iii) v =
⋃
G.

(86) For every simple graph G holds Vertices MycielskianG =
⋃
G ∪
⋃
G ×

{
⋃
G} ∪ {

⋃
G}.

(87) For every simple graph G holds
⋃
G ∈
⋃

MycielskianG.

(88) For every void simple graph G holds MycielskianG = {∅, {
⋃
G}}.

Let G be a finite simple graph. Note that MycielskianG is finite.
The following propositions are true:

(89) For every finite simple graph G holds order MycielskianG = 2 ·orderG+
1.

(90) Let G be a simple graph and e be a set. Then e ∈ Edges MycielskianG
if and only if one of the following conditions is satisfied:

(i) e ∈ EdgesG, or
(ii) there exist elements x, y of

⋃
G such that e = {x, 〈〈y,

⋃
G〉〉} and {x, y} ∈

EdgesG, or
(iii) there exists an element y of

⋃
G such that e = {

⋃
G, 〈〈y,

⋃
G〉〉} and

y ∈
⋃
G.

(91) Let G be a simple graph. Then Edges MycielskianG = EdgesG∪{{x, 〈〈y,⋃
G〉〉};x ranges over elements of

⋃
G, y ranges over elements of

⋃
G :

{x, y} ∈ EdgesG} ∪ {{
⋃
G, 〈〈y,

⋃
G〉〉}; y ranges over elements of

⋃
G :

y ∈
⋃
G}.
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(92) For every finite simple graph G holds size MycielskianG = 3 · sizeG +
orderG.

(93) Let G be a simple graph and s, t be sets. Suppose {s, t} ∈
Edges MycielskianG. Then

(i) {s, t} ∈ EdgesG, or
(ii) s ∈

⋃
G or s =

⋃
G but there exists a set y such that y ∈

⋃
G and

t = 〈〈y,
⋃
G〉〉, or

(iii) t ∈
⋃
G or t =

⋃
G but there exists a set y such that y ∈

⋃
G and

s = 〈〈y,
⋃
G〉〉.

(94) For every simple graph G and for every set u such that {
⋃
G, u} ∈

Edges MycielskianG there exists a set x such that x ∈
⋃
G and u = 〈〈x,⋃

G〉〉.
(95) For every simple graph G and for every set u such that u ∈ VerticesG

holds {〈〈u,
⋃
G〉〉} ∈ MycielskianG.

(96) For every simple graph G and for every set u such that u ∈ VerticesG
holds {〈〈u,

⋃
G〉〉,
⋃
G} ∈ MycielskianG.

(97) For every simple graph G and for all sets x, y holds {〈〈x,
⋃
G〉〉, 〈〈y,⋃

G〉〉} /∈ Edges MycielskianG.

(98) For every simple graph G and for all sets x, y such that x 6= y holds {〈〈x,⋃
G〉〉, 〈〈y,

⋃
G〉〉} /∈ MycielskianG.

(99) For every simple graph G and for all sets x, y such that {〈〈x,
⋃
G〉〉, y} ∈

Edges MycielskianG holds x 6= y but x ∈
⋃
G but y ∈

⋃
G or y =

⋃
G.

(100) For every simple graph G and for all sets x, y such that {〈〈x,
⋃
G〉〉, y} ∈

MycielskianG holds x 6= y.

(101) For every simple graph G and for all sets x, y such that y ∈
⋃
G and

{〈〈x,
⋃
G〉〉, y} ∈ MycielskianG holds {x, y} ∈ G.

(102) For every simple graph G and for all sets x, y such that {x, y} ∈ EdgesG
holds {〈〈x,

⋃
G〉〉, y} ∈ MycielskianG.

(103) For every simple graph G and for all sets x, y such that x, y ∈ VerticesG
and {x, y} ∈ MycielskianG holds {x, y} ∈ G.

(104) For every simple graph G holds G = the subgraph induced by
MycielskianG.

(105) Let G be a simple graph and C be a finite clique of MycielskianG. If
3 ≤ orderC, then for every vertex v of C holds v 6=

⋃
G.

(106) For every simple graph G with finite clique number such that ω(G) = 0
and for every finite clique D of MycielskianG holds orderD ≤ 1.

(107) For every simple graph G and for every set x such that VerticesG = {x}
holds MycielskianG = {∅, {x}, {〈〈x,

⋃
G〉〉}, {

⋃
G}, {〈〈x,

⋃
G〉〉,
⋃
G}}.

(108) For every simple graph G with finite clique number such that ω(G) = 1
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and for every finite clique D of MycielskianG holds orderD ≤ 2.

(109) For every simple graph G with finite clique number such that 2 ≤ ω(G)
and for every finite clique D of MycielskianG holds orderD ≤ ω(G).

Let G be a simple graph with finite clique number. Note that MycielskianG
has finite clique number.

We now state two propositions:

(110) For every simple graph G with finite clique number such that 2 ≤ ω(G)
holds ω(MycielskianG) = ω(G).

(111) For every finitely colorable simple graph G there exists a coloring E of
MycielskianG such that E = 1 + χ(G).

Let G be a finitely colorable simple graph. Observe that MycielskianG is
finitely colorable.

We now state the proposition

(112) For every finitely colorable simple graph G holds χ(MycielskianG) =
1 + χ(G).

Let G be a simple graph. The Mycielskian sequence of G yields a many
sorted set indexed by N and is defined by the condition (Def. 26).

(Def. 26) There exists a function m1 such that
(i) the Mycielskian sequence of G = m1,

(ii) m1(0) = G, and
(iii) for every natural number k and for every simple graph G such that

G = m1(k) holds m1(k + 1) = MycielskianG.

We now state two propositions:

(113) For every simple graph G holds (the Mycielskian sequence of G)(0) = G.

(114) Let G be a simple graph and n be a natural number. Then (the Myciel-
skian sequence of G)(n) is a simple graph.

Let G be a simple graph and let n be a natural number. Observe that (the
Mycielskian sequence of G)(n) is simple graph-like.

The following proposition is true

(115) Let G, H be simple graphs and n be a natural number. Then (the My-
cielskian sequence of G)(n + 1) = Mycielskian (the Mycielskian sequence
of G)(n).

Let G be a simple graph with finite clique number and let n be a natural
number. One can check that (the Mycielskian sequence of G)(n) has finite clique
number.

Let G be a finitely colorable simple graph and let n be a natural number.
One can check that (the Mycielskian sequence of G)(n) is finitely colorable.

Let G be a finite simple graph and let n be a natural number. Observe that
(the Mycielskian sequence of G)(n) is finite.

One can prove the following propositions:
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(116) Let G be a finite simple graph and n be a natural number. Then
order (the Mycielskian sequence of G)(n) = (2n · orderG+ 2n)− 1.

(117) Let G be a finite simple graph and n be a natural number. Then size (the
Mycielskian sequence of G)(n) = 3n · sizeG + (3n − 2n) · orderG + ((n +
1) block 3).

(118) Let n be a natural number. Then ω((the Mycielskian sequence
of CompleteSGraph 2)(n)) = 2 and χ((the Mycielskian sequence of
CompleteSGraph 2)(n)) = n+ 2.

(119) For every natural number n there exists a finite simple graph G such
that ω(G) = 2 and χ(G) > n.

(120) For every natural number n there exists a finite simple graph G such
that α(G) = 2 and κ(G) > n.
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Summary. In this article we formalize some number theoretical algori-
thms, Euclidean Algorithm and Extended Euclidean Algorithm [9]. Besides the
a gcd b, Extended Euclidean Algorithm can calculate a pair of two integers (x, y)
that holds ax + by = a gcd b. In addition, we formalize an algorithm that can
compute a solution of the Chinese remainder theorem by using Extended Eucli-
dean Algorithm. Our aim is to support the implementation of number theoretic
tools. Our formalization of those algorithms is based on the source code of the
NZMATH, a number theory oriented calculation system developed by Tokyo
Metropolitan University [8].

MML identifier: NTALGO 1, version: 7.12.02 4.181.1147

The terminology and notation used in this paper have been introduced in the
following papers: [3], [4], [5], [12], [10], [11], [1], [2], [7], [13], and [6].

1. Euclidean Algorithm

One can prove the following proposition

(1) For all integers x, p holds x mod p mod p = x mod p.

Let a, b be elements of Z. The functor ALGOGCD(a, b) yielding an element
of N is defined by the condition (Def. 1).

(Def. 1) There exist sequences A, B of N such that
(i) A(0) = |a|,
(ii) B(0) = |b|,
1This work was supported by JSPS KAKENHI 21240001 and 22300285.

175
c© 2012 University of Białystok

CC-BY-SA License ver. 3.0 or later

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/scmyciel.miz
http://fm.mizar.org/miz/ntalgo_1.miz
http://ftp.mizar.org/


176 hiroyuki okazaki et al.

(iii) for every element i of N holds A(i+1) = B(i) and B(i+1) = A(i) mod
B(i), and

(iv) ALGOGCD(a, b) = A(min∗{i ∈ N: B(i) = 0}).
Next we state the proposition

(2) For all elements a, b of Z holds ALGOGCD(a, b) = a gcd b.

2. Extended Euclidean Algorithm

The schemeQuadChoiceRec deals with non empty setsA, B, C,D, an element
E of A, an element F of B, an element G of C, an element H of D, and a 9-ary
predicate P, and states that:

There exists a function f from N intoA and there exists a function
g from N into B and there exists a function h from N into C and
there exists a function i from N into D such that f(0) = E and
g(0) = F and h(0) = G and i(0) = H and for every element n of N
holds P[n, f(n), g(n), h(n), i(n), f(n+1), g(n+1), h(n+1), i(n+1)]

provided the parameters satisfy the following condition:
• Let n be an element of N, x be an element of A, y be an element

of B, z be an element of C, and w be an element of D. Then there
exists an element x1 of A and there exists an element y1 of B and
there exists an element z1 of C and there exists an element w1 of
D such that P[n, x, y, z, w, x1, y1, z1, w1].

Let x, y be elements of Z. The functor ALGOEXGCD(x, y) yielding an element
of Z× Z× Z is defined by the condition (Def. 2).

(Def. 2) There exist sequences g, w, q, t of Z and there exist sequences a, b, v, u
of Z and there exists an element i1 of N such that
a(0) = 1 and b(0) = 0 and g(0) = x and q(0) = 0 and u(0) = 0 and
v(0) = 1 and w(0) = y and t(0) = 0 and for every element i of N holds
q(i+1) = g(i) divw(i) and t(i+1) = g(i) mod w(i) and a(i+1) = u(i) and
b(i+ 1) = v(i) and g(i+ 1) = w(i) and u(i+ 1) = a(i)− q(i+ 1) · u(i) and
v(i+ 1) = b(i)− q(i+ 1) ·v(i) and w(i+ 1) = t(i+ 1) and i1 = min∗{i ∈ N:
w(i) = 0} and if 0 ≤ g(i1), then ALGOEXGCD(x, y) = 〈〈a(i1), b(i1), g(i1)〉〉
and if g(i1) < 0, then ALGOEXGCD(x, y) = 〈〈−a(i1), −b(i1), −g(i1)〉〉.

One can prove the following propositions:

(3) For all integers i3, i2 such that i3 ≤ 0 holds i2 mod i3 ≤ 0.

(4) For all integers i3, i2 such that i3 < 0 holds −(i2 mod i3) < −i3.
(5) For all elements x, y of Z such that |y| 6= 0 holds |x mod y| < |y|.
(6) For all elements x, y of Z holds (ALGOEXGCD(x, y))3,3 = x gcd y and

(ALGOEXGCD(x, y))1,3 · x+ (ALGOEXGCD(x, y))2,3 · y = x gcd y.
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Let x, p be elements of Z. The functor ALGOINVERSE(x, p) yielding an ele-
ment of Z is defined by the condition (Def. 3).

(Def. 3) Let y be an element of Z such that y = x mod p. Then
(i) if (ALGOEXGCD(p, y))3,3 = 1, then if (ALGOEXGCD(p, y))2,3 < 0, then

there exists an element z of Z such that z = (ALGOEXGCD(p, y))2,3 and
ALGOINVERSE(x, p) = p + z and if 0 ≤ (ALGOEXGCD(p, y))2,3, then
ALGOINVERSE(x, p) = (ALGOEXGCD(p, y))2,3, and

(ii) if (ALGOEXGCD(p, y))3,3 6= 1, then ALGOINVERSE(x, p) = ∅.
Next we state the proposition

(7) For all elements x, p, y of Z such that y = x mod p and
(ALGOEXGCD(p, y))3,3 = 1 holds ALGOINVERSE(x, p)·xmod p = 1 mod p.

3. CRT Algorithm

Let n1 be a non empty finite sequence of elements of Z × Z. The functor
ALGOCRT n1 yielding an element of Z is defined by the conditions (Def. 4).

(Def. 4)(i) If lenn1 = 1, then ALGOCRT n1 = n1(1)1, and
(ii) if lenn1 6= 1, then there exist finite sequences m, n, p1, p2 of elements

of Z and there exist elements M0, M of Z such that lenm = lenn1 and
lenn = lenn1 and len p1 = lenn1− 1 and len p2 = lenn1− 1 and m(1) = 1
and for every natural number i such that 1 ≤ i ≤ lenm − 1 there exist
elements d, x, y of Z such that x = n1(i)2 and m(i + 1) = m(i) · x
and y = m(i + 1) and d = n1(i+ 1)2 and p2(i) = ALGOINVERSE(y, d)
and p1(i) = y and M0 = n1(lenm)2 and M = p1(lenm − 1) · M0 and
n(1) = n1(1)1 and for every natural number i such that 1 ≤ i ≤ lenm− 1
there exist elements u, u0, u1 of Z such that u0 = n1(i+ 1)1 and u1 =
n1(i+ 1)2 and u = (u0−n(i)) ·p2(i) mod u1 and n(i+ 1) = n(i) +u ·p1(i)
and ALGOCRT n1 = n(lenm) mod M.

One can prove the following propositions:

(8) For all elements a, b of Z such that b 6= 0 holds a mod b ≡ a (mod b).

(9) For all elements a, b of Z such that b 6= 0 holds a mod b gcd b = a gcd b.

(10) Let a, b, c be elements of Z. Suppose c 6= 0 and a = b mod c and b and
c are relative prime. Then a and c are relative prime.

(11) Let n1 be a non empty finite sequence of elements of Z× Z and a, b be
finite sequences of elements of Z. Suppose that

(i) len a = len b,
(ii) len a = lenn1,

(iii) for every natural number i such that i ∈ Seg lenn1 holds b(i) 6= 0,
(iv) for every natural number i such that i ∈ Seg lenn1 holds n1(i)1 = a(i)

and n1(i)2 = b(i), and
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(v) for all natural numbers i, j such that i, j ∈ Seg lenn1 and i 6= j holds
b(i) and b(j) are relative prime.
Let i be a natural number. If i ∈ Seg lenn1, then ALGOCRT n1 mod b(i) =
a(i) mod b(i).

(12) Let x, y be elements of Z and b, m be non empty finite sequences of
elements of Z. Suppose that

(i) 2 ≤ len b,
(ii) for all natural numbers i, j such that i, j ∈ Seg len b and i 6= j holds

b(i) and b(j) are relative prime,
(iii) for every natural number i such that i ∈ Seg len b holds x mod b(i) =

y mod b(i), and
(iv) m(1) = 1.

Let k be an element of N. Suppose 1 ≤ k ≤ len b and for every natural
number i such that 1 ≤ i ≤ k holds m(i + 1) = m(i) · b(i). Then x mod
m(k + 1) = y mod m(k + 1).

(13) For every finite sequence b of elements of Z such that len b = 1 holds∏
b = b(1).

(14) Let b be a finite sequence of elements of Z. Then there exists a non
empty finite sequence m of elements of Z such that lenm = len b+ 1 and
m(1) = 1 and for every natural number i such that 1 ≤ i ≤ len b holds
m(i+ 1) = m(i) · b(i) and

∏
b = m(len b+ 1).

(15) Let n1 be a non empty finite sequence of elements of Z × Z, a, b be
non empty finite sequences of elements of Z, and x, y be elements of
Z. Suppose that len a = len b and len a = lenn1 and for every natural
number i such that i ∈ Seg lenn1 holds b(i) 6= 0 and for every natural
number i such that i ∈ Seg lenn1 holds n1(i)1 = a(i) and n1(i)2 = b(i)
and for all natural numbers i, j such that i, j ∈ Seg lenn1 and i 6= j

holds b(i) and b(j) are relative prime and for every natural number i such
that i ∈ Seg lenn1 holds x mod b(i) = a(i) mod b(i) and y =

∏
b. Then

ALGOCRT n1 mod y = x mod y.
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Summary. In this article we formalize rational functions as pairs of po-
lynomials and define some basic notions including the degree and evaluation of
rational functions [8]. The main goal of the article is to provide properties of
rational functions necessary to prove a theorem on the stability of networks.
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The notation and terminology used in this paper are introduced in the following
articles: [14], [3], [4], [5], [18], [20], [16], [17], [1], [15], [2], [6], [12], [10], [11], [22],
[19], [21], [9], [13], [23], and [7].

1. Preliminaries

One can prove the following three propositions:

(1) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure, a be an element of L, and
p, q be finite sequences of elements of L. Suppose len p = len q and for every
element i of N such that i ∈ dom p holds qi = a · pi. Then

∑
q = a ·

∑
p.

(2) Let L be an add-associative right zeroed right complementable right
distributive non empty double loop structure, f be a finite sequence of
elements of L, and i, j be elements of N. If i ∈ dom f and j = i− 1, then
Ins(f�i, j, fi) = f.

(3) Let L be an add-associative right zeroed right complementable associa-
tive unital right distributive commutative non empty double loop struc-
ture, f be a finite sequence of elements of L, and i be an element of N. If
i ∈ dom f, then

∏
f = fi ·

∏
(f�i).
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Let L be an add-associative right zeroed right complementable well unital
associative left distributive commutative almost left invertible integral domain-
like non trivial double loop structure and let x, y be non zero elements of L.
Note that x

y is non zero.
Let us note that every add-associative right zeroed right complementable

right distributive non empty double loop structure which is integral domain-like
is also almost left cancelable and every add-associative right zeroed right com-
plementable left distributive non empty double loop structure which is integral
domain-like is also almost right cancelable.

Let x, y be integers. Note that max(x, y) is integer and min(x, y) is integer.
One can prove the following proposition

(4) For all integers x, y, z holds max(x+ y, x+ z) = x+ max(y, z).

2. More on Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. We say
that p is zero if and only if:

(Def. 1) p = 0. L.

We say that p is constant if and only if:

(Def. 2) deg p ≤ 0.

Let L be a non trivial zero structure. One can verify that there exists a
polynomial of L which is non zero.

Let L be a non empty zero structure. One can verify that 0. L is zero and
constant.

Let L be a non degenerated multiplicative loop with zero structure. Note
that 1. L is non zero.

Let L be a non empty multiplicative loop with zero structure. Note that 1. L
is constant.

Let L be a non empty zero structure. One can verify that every polynomial
of L which is zero is also constant. Note that every polynomial of L which is
non constant is also non zero.

Let L be a non trivial zero structure. One can verify that there exists a
polynomial of L which is non constant.

Let L be a well unital non degenerated non empty double loop structure, let
z be an element of L, and let k be an element of N. Observe that rpoly(k, z) is
non zero.

Let L be an add-associative right zeroed right complementable distributive
non degenerated double loop structure. One can check that Polynom-RingL is
non degenerated.
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Let L be an integral domain-like add-associative right zeroed right comple-
mentable distributive non trivial double loop structure. Observe that Polynom-RingL
is integral domain-like.

Next we state two propositions:

(5) Let L be an add-associative right zeroed right complementable right di-
stributive associative non empty double loop structure, p, q be polynomials
of L, and a be an element of L. Then (a · p) ∗ q = a · (p ∗ q).

(6) Let L be an add-associative right zeroed right complementable right
distributive commutative associative non empty double loop structure, p,
q be polynomials of L, and a be an element of L. Then p∗(a ·q) = a ·(p∗q).

Let L be an add-associative right zeroed right complementable well unital
commutative associative distributive almost left invertible non trivial double
loop structure, let p be a non zero polynomial of L, and let a be a non zero
element of L. Note that a · p is non zero.

Let L be an integral domain-like add-associative right zeroed right comple-
mentable distributive non trivial double loop structure and let p1, p2 be non
zero polynomials of L. Observe that p1 ∗ p2 is non zero.

One can prove the following proposition

(7) Let L be an add-associative right zeroed right complementable distributi-
ve Abelian integral domain-like non trivial double loop structure, p1, p2 be
polynomials of L, and p3 be a non zero polynomial of L. If p1∗p3 = p2∗p3,
then p1 = p2.

Let L be a non trivial zero structure and let p be a non zero polynomial of
L. One can check that degree(p) is natural.

Next we state several propositions:

(8) Let L be an add-associative right zeroed right complementable unital
right distributive non empty double loop structure and p be a polynomial
of L. If deg p = 0, then for every element x of L holds eval(p, x) 6= 0L.

(9) Let L be an Abelian add-associative right zeroed right complementable
well unital associative commutative distributive almost left invertible non
degenerated double loop structure, p be a polynomial of L, and x be an
element of L. Then eval(p, x) = 0L if and only if rpoly(1, x) | p.

(10) Let L be an Abelian add-associative right zeroed right complementa-
ble well unital associative commutative distributive almost left invertible
integral domain-like non degenerated double loop structure, p, q be po-
lynomials of L, and x be an element of L. If rpoly(1, x) | p ∗ q, then
rpoly(1, x) | p or rpoly(1, x) | q.

(11) Let L be an Abelian add-associative right zeroed right complementable
well unital associative commutative distributive almost left invertible non
degenerated double loop structure and f be a finite sequence of elements



184 christoph schwarzweller

of Polynom-RingL. Suppose that for every natural number i such that
i ∈ dom f there exists an element z of L such that f(i) = rpoly(1, z). Let
p be a polynomial of L. If p =

∏
f, then p 6= 0. L.

(12) Let L be an Abelian add-associative right zeroed right complementable
well unital associative commutative distributive almost left invertible in-
tegral domain-like non degenerated double loop structure and f be a finite
sequence of elements of Polynom-RingL. Suppose that for every natural
number i such that i ∈ dom f there exists an element z of L such that
f(i) = rpoly(1, z). Let p be a polynomial of L. Suppose p =

∏
f. Let x be

an element of L. Then eval(p, x) = 0L if and only if there exists a natural
number i such that i ∈ dom f and f(i) = rpoly(1, x).

3. Common Roots of Polynomials

Let L be a unital non empty double loop structure, let p1, p2 be polynomials
of L, and let x be an element of L. We say that x is a common root of p1 and
p2 if and only if:

(Def. 3) x is a root of p1 and x is a root of p2.

Let L be a unital non empty double loop structure and let p1, p2 be poly-
nomials of L. We say that p1 and p2 have a common root if and only if:

(Def. 4) There exists an element of L which is a common root of p1 and p2.

Let L be a unital non empty double loop structure and let p1, p2 be poly-
nomials of L. We introduce p1 and p2 have common roots as a synonym of p1
and p2 have a common root. We introduce p1 and p2 have no common roots as
an antonym of p1 and p2 have a common root.

Next we state several propositions:

(13) Let L be an Abelian add-associative right zeroed right complementable
unital distributive non empty double loop structure, p be a polynomial of
L, and x be an element of L. If x is a root of p, then x is a root of −p.

(14) Let L be an Abelian add-associative right zeroed right complementable
unital left distributive non empty double loop structure, p1, p2 be polyno-
mials of L, and x be an element of L. If x is a common root of p1 and p2,
then x is a root of p1 + p2.

(15) Let L be an Abelian add-associative right zeroed right complementable
unital distributive non empty double loop structure, p1, p2 be polynomials
of L, and x be an element of L. If x is a common root of p1 and p2, then
x is a root of −(p1 + p2).

(16) Let L be an Abelian add-associative right zeroed right complementable
unital distributive non empty double loop structure, p, q be polynomials
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of L, and x be an element of L. If x is a common root of p and q, then x

is a root of p+ q.

(17) Let L be an Abelian add-associative right zeroed right complementable
well unital associative commutative distributive almost left invertible non
trivial double loop structure and p1, p2 be polynomials of L. If p1 | p2 and
p1 has roots, then p1 and p2 have common roots.

Let L be a unital non empty double loop structure and let p, q be polynomials
of L. The common roots of p and q yields a subset of L and is defined by:

(Def. 5) The common roots of p and q = {x ∈ L: x is a common root of p and q}.

4. Normalized Polynomials

Let L be a non empty zero structure and let p be a polynomial of L. The
leading coefficient of p yields an element of L and is defined by:

(Def. 6) The leading coefficient of p = p(len p−′ 1).

We introduce LC p as a synonym of the leading coefficient of p.
Let L be a non trivial double loop structure and let p be a non zero polyno-

mial of L. One can check that LC p is non zero.
One can prove the following proposition

(18) Let L be an add-associative right zeroed right complementable well uni-
tal commutative associative distributive almost left invertible non empty
double loop structure, p be a polynomial of L, and a be an element of L.
Then LC(a · p) = a · LC p.

Let L be a non empty double loop structure and let p be a polynomial of L.
We say that p is normalized if and only if:

(Def. 7) LC p = 1L.

Let L be an add-associative right zeroed right complementable well unital
commutative associative distributive almost left invertible non trivial double
loop structure and let p be a non zero polynomial of L. One can check that
1L
LC p · p is normalized.

Let L be a field and let p be a non zero polynomial of L. One can verify that
NormPolynomial p is normalized.

5. Rational Functions

Let L be a non trivial multiplicative loop with zero structure. Rational func-
tion of L is defined by:

(Def. 8) There exists a polynomial p1 of L and there exists a non zero polynomial
p2 of L such that it = 〈〈p1, p2〉〉.
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Let L be a non trivial multiplicative loop with zero structure, let p1 be a
polynomial of L, and let p2 be a non zero polynomial of L. Then 〈〈p1, p2〉〉 is a
rational function of L.

Let L be a non trivial multiplicative loop with zero structure and let z be
a rational function of L. Then z1 is a polynomial of L. Then z2 is a non zero
polynomial of L.

Let L be a non trivial multiplicative loop with zero structure and let z be a
rational function of L. We say that z is zero if and only if:

(Def. 9) z1 = 0. L.

Let L be a non trivial multiplicative loop with zero structure. One can check
that there exists a rational function of L which is non zero.

Next we state the proposition

(19) Let L be a non trivial multiplicative loop with zero structure and z be
a rational function of L. Then z = 〈〈z1, z2〉〉.

Let L be an add-associative right zeroed right complementable distributive
unital non trivial double loop structure and let z be a rational function of L.
We say that z is irreducible if and only if:

(Def. 10) z1 and z2 have no common roots.

Let L be an add-associative right zeroed right complementable distributive
unital non trivial double loop structure and let z be a rational function of L.
We introduce z is reducible as an antonym of z is irreducible.

Let L be an add-associative right zeroed right complementable distributive
unital non trivial double loop structure and let z be a rational function of L.
We say that z is normalized if and only if:

(Def. 11) z is irreducible and z2 is normalized.

Let L be an add-associative right zeroed right complementable distributive
unital non trivial double loop structure. Observe that every rational function of
L which is normalized is also irreducible.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. Note that LC(z2) is non zero.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. The norm rational function of z yields a rational function of L and is defined
by:

(Def. 12) The norm rational function of z = 〈〈 1LLC(z2) · z1,
1L
LC(z2)

· z2〉〉.
Let L be an Abelian add-associative right zeroed right complementable

well unital associative distributive commutative almost left invertible integral
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domain-like non trivial double loop structure and let z be a rational function of
L. We introduce NormRatF z as a synonym of the norm rational function of z.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a non zero rational
function of L. Observe that the norm rational function of z is non zero.

Let L be a non degenerated multiplicative loop with zero structure. The
functor 0. L yields a rational function of L and is defined by:

(Def. 13) 0. L = 〈〈0. L, 1. L〉〉.
The functor 1. L yields a rational function of L and is defined as follows:

(Def. 14) 1. L = 〈〈1. L, 1. L〉〉.
Let L be an add-associative right zeroed right complementable distributive

associative well unital non degenerated double loop structure. One can check
that 0. L is normalized.

Let L be a non degenerated multiplicative loop with zero structure. Note
that 1. L is non zero.

Let L be an add-associative right zeroed right complementable distributive
associative well unital non degenerated double loop structure. One can verify
that 1. L is irreducible.

Let L be an add-associative right zeroed right complementable distributive
associative well unital non degenerated double loop structure. Observe that
there exists a rational function of L which is irreducible and non zero.

Let L be an add-associative right zeroed right complementable distributive
Abelian associative well unital non degenerated double loop structure and let
x be an element of L. One can check that 〈〈 rpoly(1, x), rpoly(1, x)〉〉 is reducible
and non zero as a rational function of L.

Let L be an add-associative right zeroed right complementable distributive
Abelian associative well unital non degenerated double loop structure. Observe
that there exists a rational function of L which is reducible and non zero.

Let L be an add-associative right zeroed right complementable distributive
associative well unital non degenerated double loop structure. One can verify
that there exists a rational function of L which is normalized.

Let L be a non degenerated multiplicative loop with zero structure. One can
verify that 0. L is zero.

Let L be an add-associative right zeroed right complementable distributive
associative well unital non degenerated double loop structure. One can check
that 1. L is normalized.

Let L be an integral domain-like add-associative right zeroed right comple-
mentable distributive non trivial double loop structure and let p, q be rational
functions of L. The functor p+ q yields a rational function of L and is defined
by:
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(Def. 15) p+ q = 〈〈p1 ∗ q2 + p2 ∗ q1, p2 ∗ q2〉〉.
Let L be an integral domain-like add-associative right zeroed right comple-

mentable distributive non trivial double loop structure and let p, q be rational
functions of L. The functor p ∗ q yielding a rational function of L is defined by:

(Def. 16) p ∗ q = 〈〈p1 ∗ q1, p2 ∗ q2〉〉.
One can prove the following proposition

(20) Let L be an add-associative right zeroed right complementable well uni-
tal commutative associative distributive almost left invertible non trivial
double loop structure, p be a rational function of L, and a be a non zero
element of L. Then 〈〈a·p1, a·p2〉〉 is irreducible if and only if p is irreducible.

6. Normalized Rational Functions

We now state the proposition

(21) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative integral domain-like non
trivial double loop structure and z be a rational function of L. Then there
exists a rational function z1 of L and there exists a non zero polynomial
z2 of L such that

(i) z = 〈〈z2 ∗ (z1)1, z2 ∗ (z1)2〉〉,
(ii) z1 is irreducible, and
(iii) there exists a finite sequence f of elements of Polynom-RingL such

that z2 =
∏
f and for every element i of N such that i ∈ dom f there

exists an element x of L such that x is a common root of z1 and z2 and
f(i) = rpoly(1, x).

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. The functor NF z yielding a rational function of L is defined by:

(Def. 17)(i) There exists a rational function z1 of L and there exists a non zero
polynomial z2 of L such that z = 〈〈z2∗(z1)1, z2∗(z1)2〉〉 and z1 is irreducible
and NF z = the norm rational function of z1 and there exists a finite
sequence f of elements of Polynom-RingL such that z2 =

∏
f and for

every element i of N such that i ∈ dom f there exists an element x of L
such that x is a common root of z1 and z2 and f(i) = rpoly(1, x) if z is
non zero,

(ii) NF z = 0. L, otherwise.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
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domain-like non trivial double loop structure and let z be a rational function of
L. Observe that NF z is normalized and irreducible.

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a non zero rational
function of L. One can verify that NF z is non zero.

One can prove the following propositions:

(22) Let L be an Abelian add-associative right zeroed right complementa-
ble well unital associative distributive commutative almost left invertible
integral domain-like non trivial double loop structure, z be a non zero
rational function of L, z1 be a rational function of L, and z2 be a non zero
polynomial of L. Suppose that

(i) z = 〈〈z2 ∗ (z1)1, z2 ∗ (z1)2〉〉,
(ii) z1 is irreducible, and
(iii) there exists a finite sequence f of elements of Polynom-RingL such

that z2 =
∏
f and for every element i of N such that i ∈ dom f there

exists an element x of L such that x is a common root of z1 and z2 and
f(i) = rpoly(1, x).
Then NF z = the norm rational function of z1.

(23) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
tegral domain-like non trivial double loop structure. Then NF 0. L = 0. L.

(24) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
tegral domain-like non trivial double loop structure. Then NF 1. L = 1. L.

(25) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible inte-
gral domain-like non trivial double loop structure and z be an irreducible
non zero rational function of L. Then NF z = the norm rational function
of z.

(26) Let L be an Abelian add-associative right zeroed right complementa-
ble well unital associative distributive commutative almost left inverti-
ble integral domain-like non trivial double loop structure, z be a ratio-
nal function of L, and x be an element of L. Then NF 〈〈 rpoly(1, x) ∗ z1,
rpoly(1, x) ∗ z2〉〉 = NF z.

(27) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
tegral domain-like non trivial double loop structure and z be a rational
function of L. Then NF NF z = NF z.

(28) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
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tegral domain-like non degenerated double loop structure and z be a non
zero rational function of L. Then z is irreducible if and only if there exists
an element a of L such that a 6= 0L and 〈〈a · z1, a · z2〉〉 = NF z.

7. Degree of Rational Functions

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. The functor degree(z) yielding an integer is defined as follows:

(Def. 18) degree(z) = max(degree((NF z)1),degree((NF z)2)).

Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible integral
domain-like non trivial double loop structure and let z be a rational function of
L. We introduce deg z as a synonym of degree(z).

Next we state two propositions:

(29) Let L be an Abelian add-associative right zeroed right complementable
well unital associative distributive commutative almost left invertible in-
tegral domain-like non trivial double loop structure and z be a rational
function of L. Then degree(z) ≤ max(degree(z1),degree(z2)).

(30) Let L be an Abelian add-associative right zeroed right complementa-
ble well unital associative distributive commutative almost left inverti-
ble integral domain-like non trivial double loop structure and z be a
non zero rational function of L. Then z is irreducible if and only if
degree(z) = max(degree(z1), degree(z2)).

8. Evaluation of Rational Functions

Let L be a field, let z be a rational function of L, and let x be an element
of L. The functor eval(z, x) yielding an element of L is defined by:

(Def. 19) eval(z, x) = eval(z1,x)
eval(z2,x)

.

The following propositions are true:

(31) For every field L and for every element x of L holds eval(0. L, x) = 0L.

(32) For every field L and for every element x of L holds eval(1. L, x) = 1L.

(33) Let L be a field, p, q be rational functions of L, and x be an element of L.
If eval(p2, x) 6= 0L and eval(q2, x) 6= 0L, then eval(p+ q, x) = eval(p, x) +
eval(q, x).

(34) Let L be a field, p, q be rational functions of L, and x be an element of
L. If eval(p2, x) 6= 0L and eval(q2, x) 6= 0L, then eval(p ∗ q, x) = eval(p, x) ·
eval(q, x).
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(35) Let L be a field, p be a rational function of L, and x be an element of L. If
eval(p2, x) 6= 0L, then eval(the norm rational function of p, x) = eval(p, x).

(36) Let L be a field, p be a rational function of L, and x be an element of L. If
eval(p2, x) 6= 0L, then x is a common root of p1 and p2 or eval(NF p, x) =
eval(p, x).
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