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Summary. This article gives an elementary introduction to stochastic
finance (in discrete time). A formalization of random variables is given and some
elements of Borel sets are considered. Furthermore, special functions (for buying
a present portfolio and the value of a portfolio in the future) and some statements
about the relation between these functions are introduced. For details see: [8] (p.
185), [7] (pp. 12, 20), [6] (pp. 3–6).

MML identifier: FINANCE1, version: 7.12.01 4.167.1133

The notation and terminology used in this paper have been introduced in the
following papers: [15], [2], [1], [3], [4], [11], [10], [9], [5], [14], [12], and [13].

We use the following convention: O1, O2 are non empty sets, S1, F are
σ-fields of subsets of O1, and S2, F2 are σ-fields of subsets of O2.

Let a, r be real numbers. We introduce the halfline finance of a and r as a
synonym of [a, r[. Then the halfline finance of a and r is a subset of R.

We now state two propositions:

(1) For every real number k holds R \ [k,+∞[ = ]−∞, k[.

(2) For every real number k holds R \ ]−∞, k[ = [k,+∞[.

Let a, b be real numbers. The half open sets of a and b yields a sequence of
subsets of R and is defined by the conditions (Def. 1).

(Def. 1)(i) (The half open sets of a and b)(0) = the halfline finance of a and
b+ 1, and

(ii) for every element n of N holds (the half open sets of a and b)(n+1) = the
halfline finance of a and b+ 1

n+1 .

A sequence of real numbers is said to be a price function if:
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(Def. 2) It(0) = 1 and for every element n of N holds it(n) ≥ 0.

Let p1, j1 be sequences of real numbers. We introduce the elements of buy
portfolio of p1 and j1 as a synonym of p1 · j1. Then the elements of buy portfolio
of p1 and j1 is a sequence of real numbers.

Let d be a natural number. The buy portfolio extension of p1, j1, and d

yields an element of R and is defined as follows:

(Def. 3) The buy portfolio extension of p1, j1, and d = (
∑κ
α=0 (the elements of

buy portfolio of p1 and j1)(α))κ∈N(d).

The buy portfolio of p1, j1, and d yielding an element of R is defined as follows:

(Def. 4) The buy portfolio of p1, j1, and d = (
∑κ
α=0((the elements of buy portfolio

of p1 and j1) ↑ 1)(α))κ∈N(d− 1).

Let O1, O2 be sets, let S1 be a σ-field of subsets of O1, let S2 be a σ-field of
subsets of O2, and let X be a function. We say that X is random variable on
S1 and S2 if and only if:

(Def. 5) For every element x of S2 holds {y ∈ O1: X(y) is an element of x} is an
element of S1.

Let O1, O2 be sets, let F be a σ-field of subsets of O1, and let F2 be a σ-field
of subsets of O2. The set of random variables on F and F2 is defined by:

(Def. 6) The set of random variables on F and F2 = {f : O1 → O2: f is random
variable on F and F2}.

Let us consider O1, O2, F , F2. One can check that the set of random variables
on F and F2 is non empty.

Let O1, O2 be non empty sets, let F be a σ-field of subsets of O1, let F2 be
a σ-field of subsets of O2, and let X be a set. Let us assume that X = the set of
random variables on F and F2. Let k be an element of X. The change element
to function F , F2, and k yielding a function from O1 into O2 is defined by:

(Def. 7) The change element to function F , F2, and k = k.

Let O1 be a non empty set, let F be a σ-field of subsets of O1, let X be a
non empty set, and let k be an element of X. The random variables for future
elements of portfolio value of F and k yields a function from O1 into R and is
defined by the condition (Def. 8).

(Def. 8) Let w be an element of O1. Then (the random variables for future ele-
ments of portfolio value of F and k)(w) = (the change element to function
F , the Borel sets, and k)(w).

Let p be a natural number, let O1, O2 be non empty sets, let F be a σ-field
of subsets of O1, let F2 be a σ-field of subsets of O2, and let X be a set. Let us
assume that X = the set of random variables on F and F2. Let G be a function
from N into X. The element of F , F2, G, and p yields a function from O1 into
O2 and is defined as follows:

(Def. 9) The element of F , F2, G, and p = G(p).
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Let r be a real number, let O1 be a non empty set, let F be a σ-field of
subsets of O1, let X be a non empty set, let w be an element of O1, let G
be a function from N into X, and let p1 be a sequence of real numbers. The
future elements of portfolio value of r, p1, F , w, and G yields a sequence of real
numbers and is defined by the condition (Def. 10).

(Def. 10) Let n be an element of N. Then (the future elements of portfolio value
of r, p1, F , w, and G)(n) = (the random variables for future elements of
portfolio value of F and G(n))(w) · p1(n).

Let r be a real number, let d be a natural number, let p1 be a sequence of
real numbers, let O1 be a non empty set, let F be a σ-field of subsets of O1,
let X be a non empty set, let G be a function from N into X, and let w be
an element of O1. The future portfolio value extension of r, d, p1, F , G, and w

yields an element of R and is defined by the condition (Def. 11).

(Def. 11) The future portfolio value extension of r, d, p1, F , G, and w =
(
∑κ
α=0 (the future elements of portfolio value of r, p1, F , w, and

G)(α))κ∈N(d).

The future portfolio value of r, d, p1, F , G, and w yields an element of R and
is defined by the condition (Def. 12).

(Def. 12) The future portfolio value of r, d, p1, F , G, and w = (
∑κ
α=0((the future

elements of portfolio value of r, p1, F , w, and G) ↑ 1)(α))κ∈N(d− 1).

Let us observe that there exists an element of the Borel sets which is non
empty.

One can prove the following propositions:

(3) For every real number k holds [k,+∞[ is an element of the Borel sets
and ]−∞, k[ is an element of the Borel sets.

(4) For all real numbers k1, k2 holds [k2, k1[ is an element of the Borel sets.

(5) For all real numbers a, b holds Intersection (the half open sets of a and
b) is an element of the Borel sets.

(6) For all real numbers a, b holds Intersection (the half open sets of a and
b) = [a, b].

(7) Let a, b be real numbers and n be a natural number. Then (the partial
intersections of the half open sets of a and b)(n) is an element of the Borel
sets.

(8) For all real numbers k1, k2 holds [k2, k1] is an element of the Borel sets.

(9) Let X be a function from O1 into R. Suppose X is random variable
on S1 and the Borel sets. Then for every real number k holds {w ∈ O1:
X(w) ≥ k} is an element of S1 and {w ∈ O1: X(w) < k} is an element
of S1 and for all real numbers k1, k2 such that k1 < k2 holds {w ∈ O1:
k1 ≤ X(w) ∧ X(w) < k2} is an element of S1 and for all real numbers
k1, k2 such that k1 ≤ k2 holds {w ∈ O1: k1 ≤ X(w) ∧ X(w) ≤ k2} is an
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element of S1 and for every real number r holds LE-dom(X, r) = {w ∈ O1:
X(w) < r} and for every real number r holds GTE-dom(X, r) = {w ∈ O1:
X(w) ≥ r} and for every real number r holds EQ-dom(X, r) = {w ∈ O1:
X(w) = r} and for every real number r holds EQ-dom(X, r) is an element
of S1.

(10) For every real number s holds O1 7−→ s is random variable on S1 and
the Borel sets.

(11) Let p1 be a sequence of real numbers, j1 be a price function, and d be a
natural number. Suppose d > 0. Then the buy portfolio extension of p1,
j1, and d = p1(0) + the buy portfolio of p1, j1, and d.

(12) Let d be a natural number. Suppose d > 0. Let r be a real number, p1
be a sequence of real numbers, and G be a function from N into the set of
random variables on F and the Borel sets. Suppose the element of F , the
Borel sets, G, and 0 = O1 7−→ 1 + r. Let w be an element of O1. Then the
future portfolio value extension of r, d, p1, F , G, and w = (1+r)·p1(0)+the
future portfolio value of r, d, p1, F , G, and w.

(13) Let d be a natural number. Suppose d > 0. Let r be a real number.
Suppose r > −1. Let p1 be a sequence of real numbers, j1 be a price
function, and G be a function from N into the set of random variables on
F and the Borel sets. Suppose the element of F , the Borel sets, G, and
0 = O1 7−→ 1 + r. Let w be an element of O1. Suppose the buy portfolio
extension of p1, j1, and d ≤ 0. Then the future portfolio value extension
of r, d, p1, F , G, and w ≤ (the future portfolio value of r, d, p1, F , G,
and w)− (1 + r) · the buy portfolio of p1, j1, and d.

(14) Let d be a natural number. Suppose d > 0. Let r be a real number.
Suppose r > −1. Let p1 be a sequence of real numbers, j1 be a price
function, and G be a function from N into the set of random variables on
F and the Borel sets. Suppose the element of F , the Borel sets, G, and
0 = O1 7−→ 1+r. Suppose the buy portfolio extension of p1, j1, and d ≤ 0.
Then

(i) {w ∈ O1: the future portfolio value extension of r, d, p1, F , G, and
w ≥ 0} ⊆ {w ∈ O1: the future portfolio value of r, d, p1, F , G, and
w ≥ (1 + r) · the buy portfolio of p1, j1, and d}, and

(ii) {w ∈ O1: the future portfolio value extension of r, d, p1, F , G, and
w > 0} ⊆ {w ∈ O1: the future portfolio value of r, d, p1, F , G, and
w > (1 + r) · the buy portfolio of p1, j1, and d}.

(15) Let f be a function from O1 into R. Suppose f is random variable on S1
and the Borel sets. Then f is measurable on Ω(S1) and f is a real-valued
random variable on S1.

(16) The set of random variables on S1 and the Borel sets ⊆ the real-valued
random variables set on S1.
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Summary. In the article we introduce a valuation function over a field [1].
Ring of non negative elements and its ideal of positive elements have been also
defined.
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The notation and terminology used here have been introduced in the following
papers: [11], [19], [4], [15], [20], [8], [21], [10], [9], [16], [3], [5], [7], [18], [17], [13],
[14], [6], [2], and [12].

1. Extended Reals

We use the following convention: x, y, z, s are extended real numbers, i is
an integer, and n, m are natural numbers.

The following propositions are true:

(1) If x = −x, then x = 0.

(2) If x+ x = 0, then x = 0.
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(3) If 0 ≤ x ≤ y and 0 ≤ s ≤ z, then x · s ≤ y · z.
(4) If y 6= +∞ and 0 < x and 0 < y, then 0 < x

y .

(5) If y 6= +∞ and x < 0 < y, then x
y < 0.

(6) If y 6= −∞ and 0 < x and y < 0, then x
y < 0.

(7) If x, y ∈ R or z ∈ R, then x+y
z = x

z + y
z .

(8) If y 6= +∞ and y 6= −∞ and y 6= 0, then x
y · y = x.

(9) If y 6= −∞ and y 6= +∞ and x 6= 0 and y 6= 0, then x
y 6= 0.

Let x be a number. We say that x is extended integer if and only if:

(Def. 1) x is integer or x = +∞.
Let us mention that every number which is extended integer is also extended

real.
One can verify the following observations:

∗ +∞ is extended integer,

∗ −∞ is non extended integer,

∗ 1 is extended integer, positive, and real,

∗ every number which is integer is also extended integer, and

∗ every number which is real and extended integer is also integer.

Let us observe that there exists an element of R which is real, extended inte-
ger, and positive and there exists an extended integer number which is positive.

An extended integer is an extended integer number.
In the sequel x, y, v denote extended integers.
One can prove the following propositions:

(10) If x < y, then x+ 1 ≤ y.
(11) −∞ < x.

Let X be an extended real-membered set. Let us assume that there exists
a positive extended integer i0 such that i0 ∈ X. The functor least-positiveX
yielding a positive extended integer is defined by:

(Def. 2) least-positiveX ∈ X and for every positive extended integer i such that
i ∈ X holds least-positiveX ≤ i.

Let f be a binary relation. We say that f is extended integer valued if and
only if:

(Def. 3) For every set x such that x ∈ rng f holds x is extended integer.

Let us note that there exists a function which is extended integer valued.
Let A be a set. Note that there exists a function from A into R which is

extended integer valued.
Let f be an extended integer valued function and let x be a set. Note that

f(x) is extended integer.
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2. Structures

One can prove the following proposition

(12) Let K be a distributive left unital add-associative right zeroed right
complementable non empty double loop structure. Then −1K ·−1K = 1K .

Let K be a non empty double loop structure, let S be a subset of K, and
let n be a natural number. The functor Sn yielding a subset of K is defined by:

(Def. 4)(i) Sn = the carrier of K if n = 0,
(ii) there exists a finite sequence f of elements of 2the carrier of K such that

Sn = f(len f) and len f = n and f(1) = S and for every natural number
i such that i, i+ 1 ∈ dom f holds f(i+ 1) = S ∗ fi, otherwise.

In the sequel A denotes a subset of D. The following propositions are true:

(13) A1 = A.

(14) A2 = A ∗A.
Let R be a ring, let S be an ideal of R, and let n be a natural number.

Observe that Sn is non empty, add closed, left ideal, and right ideal.
Let G be a non empty double loop structure, let g be an element of G, and

let i be an integer. The functor gi yielding an element of G is defined as follows:

(Def. 5) gi =

{
powerG(g, |i|), if 0 ≤ i,
powerG(g, |i|)−1, otherwise.

Let G be a non empty double loop structure, let g be an element of G, and
let n be a natural number. Then gn can be characterized by the condition:

(Def. 6) gn = powerG(g, n).

In the sequel K is a field-like non degenerated associative add-associative
right zeroed right complementable distributive Abelian non empty double loop
structure and a, b, c are elements of K. We now state two propositions:

(15) an+m = an · am.
(16) If a 6= 0K , then ai 6= 0K .

3. Valuation

Let K be a double loop structure. We say that K has a valuation if and only
if the condition (Def. 7) is satisfied.

(Def. 7) There exists an extended integer valued function f from K into R such
that

(i) f(0K) = +∞,
(ii) for every element a of K such that a 6= 0K holds f(a) ∈ Z,
(iii) for all elements a, b of K holds f(a · b) = f(a) + f(b),
(iv) for every element a of K such that 0 ≤ f(a) holds 0 ≤ f(1K + a), and
(v) there exists an element a of K such that f(a) 6= 0 and f(a) 6= +∞.
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Let K be a double loop structure. Let us assume that K has a valuation.
An extended integer valued function from K into R is said to be a valuation of
K if it satisfies the conditions (Def. 8).

(Def. 8)(i) It(0K) = +∞,
(ii) for every element a of K such that a 6= 0K holds it(a) ∈ Z,

(iii) for all elements a, b of K holds it(a · b) = it(a) + it(b),
(iv) for every element a of K such that 0 ≤ it(a) holds 0 ≤ it(1K + a), and
(v) there exists an element a of K such that it(a) 6= 0 and it(a) 6= +∞.
In the sequel v denotes a valuation of K.
One can prove the following propositions:

(17) If K has a valuation, then v(1K) = 0.

(18) If K has a valuation and a 6= 0K , then v(a) 6= +∞.
(19) If K has a valuation, then v(−1K) = 0.

(20) If K has a valuation, then v(−a) = v(a).

(21) If K has a valuation and a 6= 0K , then v(a−1) = −v(a).

(22) If K has a valuation and b 6= 0K , then v(ab ) = v(a)− v(b).

(23) If K has a valuation and a 6= 0K and b 6= 0K , then v(ab ) = −v( ba).

(24) If K has a valuation and b 6= 0K and 0 ≤ v(ab ), then v(b) ≤ v(a).

(25) If K has a valuation and a 6= 0K and b 6= 0K and v(ab ) ≤ 0, then
0 ≤ v( ba).

(26) If K has a valuation and b 6= 0K and v(ab ) ≤ 0, then v(a) ≤ v(b).

(27) If K has a valuation, then min(v(a), v(b)) ≤ v(a+ b).

(28) If K has a valuation and v(a) < v(b), then v(a) = v(a+ b).

(29) If K has a valuation and a 6= 0K , then v(ai) = i · v(a).

(30) If K has a valuation and 0 ≤ v(1K + a), then 0 ≤ v(a).

(31) If K has a valuation and 0 ≤ v(1K − a), then 0 ≤ v(a).

(32) If K has a valuation and a 6= 0K and v(a) ≤ v(b), then 0 ≤ v( ba).

(33) If K has a valuation, then +∞ ∈ rng v.

(34) If v(a) = 1, then least-positive rng v = 1.

(35) If K has a valuation, then least-positive rng v is integer.

(36) If K has a valuation, then for every element x of K such that x 6= 0K
there exists an integer i such that v(x) = i · least-positive rng v.

Let us consider K, v. Let us assume that K has a valuation. The functor
Pgenerator v yielding an element of K is defined as follows:

(Def. 9) Pgenerator v = the element of v−1({least-positive rng v}).
Let us consider K, v. Let us assume that K has a valuation. The functor

normal-valuation v yields a valuation of K and is defined by:

(Def. 10) v(a) = (normal-valuation v)(a) · least-positive rng v.
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We now state a number of propositions:

(37) If K has a valuation, then v(a) = 0 iff (normal-valuation v)(a) = 0.

(38) If K has a valuation, then v(a) = +∞ iff (normal-valuation v)(a) = +∞.
(39) If K has a valuation, then v(a) = v(b) iff (normal-valuation v)(a) =

(normal-valuation v)(b).

(40) If K has a valuation, then v(a) is positive iff (normal-valuation v)(a) is
positive.

(41) If K has a valuation, then 0 ≤ v(a) iff 0 ≤ (normal-valuation v)(a).

(42) If K has a valuation, then v(a) is non negative iff (normal-valuation v)(a)
is non negative.

(43) If K has a valuation, then (normal-valuation v)(Pgenerator v) = 1.

(44) If K has a valuation and 0 ≤ v(a), then (normal-valuation v)(a) ≤ v(a).

(45) If K has a valuation and v(a) = 1, then normal-valuation v = v.

(46) If K has a valuation, then normal-valuation(normal-valuation v) =
normal-valuation v.

4. Valuation Ring

Let K be a non empty double loop structure and let v be a valuation of K.
The functor NonNegElements v is defined as follows:

(Def. 11) NonNegElements v = {x ∈ K: 0 ≤ v(x)}.
The following four propositions are true:

(47) Let K be a non empty double loop structure, v be a valuation of K, and
a be an element of K. Then a ∈ NonNegElements v if and only if 0 ≤ v(a).

(48) For every non empty double loop structure K and for every valuation v
of K holds NonNegElements v ⊆ the carrier of K.

(49) For every non empty double loop structure K and for every valuation v
of K such that K has a valuation holds 0K ∈ NonNegElements v.

(50) If K has a valuation, then 1K ∈ NonNegElements v.

Let us consider K, v. Let us assume that K has a valuation. The functor
ValuatRing v yields a strict commutative non degenerated ring and is defined
by the conditions (Def. 12).

(Def. 12)(i) The carrier of ValuatRing v = NonNegElements v,
(ii) the addition of ValuatRing v = (the addition ofK)�(NonNegElements v×

NonNegElements v),
(iii) the multiplication of ValuatRing v = (the multiplication of

K)�(NonNegElements v ×NonNegElements v),
(iv) the zero of ValuatRing v = 0K , and
(v) the one of ValuatRing v = 1K .
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The following propositions are true:

(51) If K has a valuation, then every element of ValuatRing v is an element
of K.

(52) If K has a valuation, then 0 ≤ v(a) iff a is an element of ValuatRing v.

(53) If K has a valuation, then for every subset S of ValuatRing v holds 0 is
a lower bound of v◦S.

(54) Suppose K has a valuation. Let x, y be elements of K and x1, y1 be
elements of ValuatRing v. If x = x1 and y = y1, then x+ y = x1 + y1.

(55) Suppose K has a valuation. Let x, y be elements of K and x1, y1 be
elements of ValuatRing v. If x = x1 and y = y1, then x · y = x1 · y1.

(56) If K has a valuation, then 0ValuatRing v = 0K .

(57) If K has a valuation, then 1ValuatRing v = 1K .

(58) If K has a valuation, then for every element x of K and for every element
y of ValuatRing v such that x = y holds −x = −y.

(59) If K has a valuation, then ValuatRing v is integral domain-like.

(60) If K has a valuation, then for every element y of ValuatRing v holds
powerK(y, n) = powerValuatRing v(y, n).

Let us consider K, v. Let us assume that K has a valuation. The functor
PosElements v yields an ideal of ValuatRing v and is defined as follows:

(Def. 13) PosElements v = {x ∈ K: 0 < v(x)}.
Let us consider K, v. We introduce vp v as a synonym of PosElements v.
Next we state three propositions:

(61) If K has a valuation, then a ∈ vp v iff 0 < v(a).

(62) If K has a valuation, then 0K ∈ vp v.

(63) If K has a valuation, then 1K /∈ vp v.

Let us consider K, v and let S be a non empty subset of K. Let us assume
that K has a valuation and S is a subset of ValuatRing v. The functor min(S, v)
yielding a subset of ValuatRing v is defined as follows:

(Def. 14) min(S, v) = v−1({inf(v◦S)}) ∩ S.
The following four propositions are true:

(64) For every non empty subset S of K such that K has a valuation and S

is a subset of ValuatRing v holds min(S, v) ⊆ S.
(65) Let S be a non empty subset of K. Suppose K has a valuation and S is

a subset of ValuatRing v. Let x be an element of K. Then x ∈ min(S, v)
if and only if the following conditions are satisfied:

(i) x ∈ S, and
(ii) for every element y of K such that y ∈ S holds v(x) ≤ v(y).
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(66) Suppose K has a valuation. Let I be a non empty subset of K and x be an
element of ValuatRing v. If I is an ideal of ValuatRing v and x ∈ min(I, v),
then I = {x}–ideal.

(67) For every non empty double loop structure R holds every add closed non
empty subset of R is a set closed w.r.t. the addition of R.

Let R be a ring and let P be a right ideal of R. A submodule of RightMod(R)
is called a submodule of P if:

(Def. 15) The carrier of it = P.

Let R be a ring and let P be a right ideal of R. Note that there exists a
submodule of P which is strict. Next we state the proposition

(68) Let R be a ring, P be an ideal of R, M be a submodule of P , a be a
binary operation on P , z be an element of P , and m be a function from
P × the carrier of R into P . Suppose a = (the addition of R)�(P ×P ) and
m = (the multiplication of R)�(P × the carrier of R) and z = the zero of
R. Then the right module structure of M = 〈P, a, z,m〉.

Let R be a ring, let M1, M2 be right modules over R, and let h be a function
from M1 into M2. We say that h is scalar linear if and only if:

(Def. 16) For every element x of M1 and for every element r of R holds h(x · r) =
h(x) · r.

Let R be a ring, let M1 be a right module over R, and let M2 be a submodule
of M1. Observe that incl(M2,M1) is additive and scalar linear.

Next we state a number of propositions:

(69) If K has a valuation and b is an element of ValuatRing v, then v(a) ≤
v(a) + v(b).

(70) If K has a valuation and a is an element of ValuatRing v, then
powerK(a, n) is an element of ValuatRing v.

(71) If K has a valuation, then for every element x of ValuatRing v such that
x 6= 0K holds powerK(x, n) 6= 0K .

(72) If K has a valuation and v(a) = 0, then a is an element of ValuatRing v
and a−1 is an element of ValuatRing v.

(73) If K has a valuation and a 6= 0K and a is an element of ValuatRing v
and a−1 is an element of ValuatRing v, then v(a) = 0.

(74) If K has a valuation and v(a) = 0, then for every ideal I of ValuatRing v
holds a ∈ I iff I = the carrier of ValuatRing v.

(75) If K has a valuation, then Pgenerator v is an element of ValuatRing v.

(76) If K has a valuation, then vp v is proper.

(77) If K has a valuation, then for every element x of ValuatRing v such that
x /∈ vp v holds v(x) = 0.

(78) If K has a valuation, then vp v is prime.
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(79) If K has a valuation, then for every proper ideal I of ValuatRing v holds
I ⊆ vp v.

(80) If K has a valuation, then vp v is maximal.

(81) If K has a valuation, then for every maximal ideal I of ValuatRing v
holds I = vp v.

(82) If K has a valuation, then NonNegElements normal-valuation v =
NonNegElements v.

(83) If K has a valuation, then ValuatRing normal-valuation v =
ValuatRing v.
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Let X be a topological structure and let f be a function from the carrier of
X into C. We say that f is continuous if and only if:

(Def. 1) For every subset Y of C such that Y is closed holds f−1(Y ) is closed.

Let X be a 1-sorted structure and let y be a complex number. The functor
X 7−→ y yielding a function from the carrier of X into C is defined by:

(Def. 2) X 7−→ y = (the carrier of X) 7−→ y.

One can prove the following proposition

(1) Let X be a non empty topological space, y be a complex number, and
f be a function from the carrier of X into C. If f = X 7−→ y, then f is
continuous.

Let X be a non empty topological space and let y be a complex number.
Observe that X 7−→ y is continuous.
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Let X be a non empty topological space. One can verify that there exists a
function from the carrier of X into C which is continuous.

The following propositions are true:

(2) Let X be a non empty topological space and f be a function from the
carrier of X into C. Then f is continuous if and only if for every subset Y
of C such that Y is open holds f−1(Y ) is open.

(3) Let X be a non empty topological space and f be a function from the
carrier of X into C. Then f is continuous if and only if for every point x
of X and for every subset V of C such that f(x) ∈ V and V is open there
exists a subset W of X such that x ∈W and W is open and f◦W ⊆ V.

(4) Let X be a non empty topological space and f , g be continuous functions
from the carrier of X into C. Then f +g is a continuous function from the
carrier of X into C.

(5) Let X be a non empty topological space, a be a complex number, and
f be a continuous function from the carrier of X into C. Then a · f is a
continuous function from the carrier of X into C.

(6) Let X be a non empty topological space and f , g be continuous functions
from the carrier of X into C. Then f −g is a continuous function from the
carrier of X into C.

(7) Let X be a non empty topological space and f , g be continuous functions
from the carrier of X into C. Then f · g is a continuous function from the
carrier of X into C.

(8) Let X be a non empty topological space and f be a continuous function
from the carrier of X into C. Then |f | is a function from the carrier of X
into R and |f | is continuous.

Let X be a non empty topological space. The C-continuous functions of X
yields a subset of C-Algebra(the carrier of X) and is defined by:

(Def. 3) The C-continuous functions of X = {f : f ranges over continuous func-
tions from the carrier of X into C}.

Let X be a non empty topological space. Observe that the C-continuous
functions of X is non empty.

Let X be a non empty topological space. Observe that the C-continuous
functions of X is C-additively linearly closed and multiplicatively closed.

Let X be a non empty topological space. The C-algebra of continuous func-
tions of X yielding a complex algebra is defined by the condition (Def. 4).

(Def. 4) The C-algebra of continuous functions of X = 〈the C-continuous func-
tions of X, mult(the C-continuous functions of X, C-Algebra(the car-
rier of X)),Add(the C-continuous functions of X, C-Algebra(the car-
rier of X)),Mult(the C-continuous functions of X, C-Algebra(the carrier
of X)),One(the C-continuous functions of X, C-Algebra(the carrier of
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X)),Zero(the C-continuous functions of X, C-Algebra(the carrier of X))〉.
Next we state the proposition

(9) Let X be a non empty topological space. Then the C-algebra of conti-
nuous functions of X is a complex subalgebra of C-Algebra(the carrier of
X).

Let X be a non empty topological space. Observe that the C-algebra of
continuous functions of X is strict and non empty.

Let X be a non empty topological space. One can check that the C-algebra of
continuous functions of X is Abelian, add-associative, right zeroed, right com-
plementable, vector distributive, scalar distributive, scalar associative, scalar
unital, commutative, associative, right unital, right distributive, vector distri-
butive, scalar distributive, scalar associative, and vector associative.

Next we state several propositions:

(10) Let X be a non empty topological space, F , G, H be vectors of the
C-algebra of continuous functions of X, and f , g, h be functions from
the carrier of X into C. Suppose f = F and g = G and h = H. Then
H = F + G if and only if for every element x of the carrier of X holds
h(x) = f(x) + g(x).

(11) Let X be a non empty topological space, F , G be vectors of the C-
algebra of continuous functions of X, f , g be functions from the carrier of
X into C, and a be a complex number. Suppose f = F and g = G. Then
G = a · F if and only if for every element x of X holds g(x) = a · f(x).

(12) Let X be a non empty topological space, F , G, H be vectors of the
C-algebra of continuous functions of X, and f , g, h be functions from
the carrier of X into C. Suppose f = F and g = G and h = H. Then
H = F · G if and only if for every element x of the carrier of X holds
h(x) = f(x) · g(x).

(13) For every non empty topological space X holds
0the C-algebra of continuous functions of X = X 7−→ 0C.

(14) For every non empty topological space X holds
1the C-algebra of continuous functions of X = X 7−→ 1C.

(15) Let A be a complex algebra and A1, A2 be complex subalgebras of A.
Suppose the carrier of A1 ⊆ the carrier of A2. Then A1 is a complex
subalgebra of A2.

(16) Let X be a non empty compact topological space. Then the C-algebra
of continuous functions of X is a complex subalgebra of the C-algebra of
bounded functions of the carrier of X.

Let X be a non empty compact topological space. The C-continuous func-
tions norm of X yields a function from the C-continuous functions of X into R
and is defined by:
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(Def. 5) The C-continuous functions norm ofX = (C-BoundedFunctionsNorm (the
carrier of X))�the C-continuous functions of X.

Let X be a non empty compact topological space. The C-normed algebra
of continuous functions of X yields a normed complex algebra structure and is
defined by the condition (Def. 6).

(Def. 6) The C-normed algebra of continuous functions of X = 〈the C-continuous
functions of X, mult(the C-continuous functions of X, C-Algebra(the car-
rier of X)),Add(the C-continuous functions of X, C-Algebra(the car-
rier of X)),Mult(the C-continuous functions of X, C-Algebra(the car-
rier of X)),One(the C-continuous functions of X, C-Algebra(the carrier
of X)),Zero(the C-continuous functions of X, C-Algebra(the carrier of
X)), the C-continuous functions norm of X〉.

Let X be a non empty compact topological space. Note that the C-normed
algebra of continuous functions of X is non empty and strict.

Let X be a non empty compact topological space. Observe that the C-
normed algebra of continuous functions of X is unital.

Next we state the proposition

(17) Let X be a non empty compact topological space. Then the C-normed
algebra of continuous functions of X is a complex algebra.

Let X be a non empty compact topological space. One can check that the
C-normed algebra of continuous functions of X is right complementable, Abe-
lian, add-associative, right zeroed, vector distributive, scalar distributive, scalar
associative, associative, commutative, right distributive, right unital, and vector
associative.

One can prove the following proposition

(18) Let X be a non empty compact topological space and F be a point
of the C-normed algebra of continuous functions of X. Then (Mult(the
C-continuous functions of X, C-Algebra(the carrier of X)))(1C, F ) = F.

Let X be a non empty compact topological space. Observe that the C-
normed algebra of continuous functions of X is vector distributive, scalar distri-
butive, scalar associative, and scalar unital.

We now state a number of propositions:

(19) Let X be a non empty compact topological space. Then the C-normed
algebra of continuous functions of X is a complex linear space.

(20) Let X be a non empty compact topological space. Then X 7−→ 0 =
0the C-normed algebra of continuous functions of X .

(21) Let X be a non empty compact topological space and F be a point of
the C-normed algebra of continuous functions of X. Then 0 ≤ ‖F‖.

(22) Let X be a non empty compact topological space, f , g, h be functions
from the carrier of X into C, and F , G, H be points of the C-normed
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algebra of continuous functions of X. Suppose f = F and g = G and
h = H. Then H = F + G if and only if for every element x of X holds
h(x) = f(x) + g(x).

(23) Let a be a complex number, X be a non empty compact topological
space, f , g be functions from the carrier of X into C, and F , G be points
of the C-normed algebra of continuous functions of X. Suppose f = F

and g = G. Then G = a · F if and only if for every element x of X holds
g(x) = a · f(x).

(24) Let X be a non empty compact topological space, f , g, h be functions
from the carrier of X into C, and F , G, H be points of the C-normed
algebra of continuous functions of X. Suppose f = F and g = G and
h = H. Then H = F · G if and only if for every element x of X holds
h(x) = f(x) · g(x).

(25) Let X be a non empty compact topological space.
Then ‖0the C-normed algebra of continuous functions of X‖ = 0.

(26) Let X be a non empty compact topological space and F be a point of
the C-normed algebra of continuous functions of X. Suppose ‖F‖ = 0.
Then F = 0the C-normed algebra of continuous functions of X .

(27) Let a be a complex number, X be a non empty compact topological
space, and F be a point of the C-normed algebra of continuous functions
of X. Then ‖a · F‖ = |a| · ‖F‖.

(28) Let X be a non empty compact topological space and F , G be points
of the C-normed algebra of continuous functions of X. Then ‖F + G‖ ≤
‖F‖+ ‖G‖.

Let X be a non empty compact topological space. Observe that the C-
normed algebra of continuous functions of X is discernible, reflexive, and com-
plex normed space-like.

The following propositions are true:

(29) Let X be a non empty compact topological space, f , g, h be functions
from the carrier of X into C, and F , G, H be points of the C-normed
algebra of continuous functions of X. Suppose f = F and g = G and
h = H. Then H = F − G if and only if for every element x of X holds
h(x) = f(x)− g(x).

(30) Let X be a complex Banach space, Y be a subset of X, and s1 be a
sequence of X. Suppose Y is closed and rng s1 ⊆ Y and s1 is C-Cauchy.
Then s1 is convergent and lim s1 ∈ Y.

(31) Let X be a non empty compact topological space and Y be a subset of
the C-normed algebra of bounded functions of the carrier of X. If Y = the
C-continuous functions of X, then Y is closed.

(32) Let X be a non empty compact topological space and s1 be a sequence
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of the C-normed algebra of continuous functions of X. If s1 is C-Cauchy,
then s1 is convergent.

Let X be a non empty compact topological space. One can verify that the
C-normed algebra of continuous functions of X is complete.

Let X be a non empty compact topological space. Observe that the C-
normed algebra of continuous functions of X is Banach Algebra-like.

Next we state three propositions:

(33) For every non empty topological space X and for all functions f , g from
the carrier of X into C holds support(f + g) ⊆ support f ∪ support g.

(34) Let X be a non empty topological space, a be a complex number, and f
be a function from the carrier of X into C. Then support(a·f) ⊆ support f.

(35) For every non empty topological space X and for all functions f , g from
the carrier of X into C holds support(f · g) ⊆ support f ∪ support g.

Let X be a non empty topological space. The CC0-functions of X yielding
a non empty subset of the C-vector space of the carrier of X is defined by the
condition (Def. 7).

(Def. 7) The CC0-functions of X = {f ; f ranges over functions from the
carrier of X into C: f is continuous ∧

∨
Y : non empty subset of X (Y is

compact ∧
∧
A : subset of X (A = support f ⇒ A is a subset of Y ))}.

The following propositions are true:

(36) Let X be a non empty topological space. Then the CC0-functions of X
is a non empty subset of C-Algebra(the carrier of X).

(37) Let X be a non empty topological space and W be a non empty subset
of C-Algebra(the carrier of X). Suppose W = the CC0-functions of X.
Then W is C-additively linearly closed.

(38) For every non empty topological space X holds the CC0-functions of X
is add closed.

(39) For every non empty topological space X holds the CC0-functions of X
is linearly closed.

Let X be a non empty topological space. Observe that the CC0-functions
of X is non empty and linearly closed.

The following propositions are true:

(40) Let V be a complex linear space and V1 be a subset of
V . Suppose V1 is linearly closed and V1 is not empty. Then
〈V1,Zero(V1, V ),Add(V1, V ),Mult(V1, V )〉 is a subspace of V .

(41) Let X be a non empty topological space. Then 〈the CC0-functions of
X, Zero(the CC0-functions of X, the C-vector space of the carrier of
X),Add(the CC0-functions of X, the C-vector space of the carrier of
X),Mult(the CC0-functions of X, the C-vector space of the carrier of
X)〉 is a subspace of the C-vector space of the carrier of X.
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Let X be a non empty topological space. The C-vector space of C0-functions
of X yielding a complex linear space is defined by the condition (Def. 8).

(Def. 8) The C-vector space of C0-functions of X = 〈the CC0-functions of
X, Zero(the CC0-functions of X, the C-vector space of the carrier of
X),Add(the CC0-functions of X, the C-vector space of the carrier of
X),Mult(the CC0-functions of X, the C-vector space of the carrier of
X)〉.

Next we state the proposition

(42) Let X be a non empty topological space and x be a set. If x ∈ the
CC0-functions of X, then x ∈ C-BoundedFunctions (the carrier of X).

Let X be a non empty topological space. The CC0-functions norm of X
yielding a function from the CC0-functions of X into R is defined by:

(Def. 9) The CC0-functions norm of X = (C-BoundedFunctionsNorm (the car-
rier of X))�the CC0-functions of X.

LetX be a non empty topological space. The C-normed space ofC0-functions
of X yielding a complex normed space structure is defined by the condition
(Def. 10).

(Def. 10) The C-normed space of C0-functions of X = 〈the CC0-functions of
X, Zero(the CC0-functions of X, the C-vector space of the carrier of
X),Add(the CC0-functions of X, the C-vector space of the carrier of
X),Mult(the CC0-functions of X, the C-vector space of the carrier of
X), the CC0-functions norm of X〉.

Let X be a non empty topological space. One can check that the C-normed
space of C0-functions of X is strict and non empty.

One can prove the following propositions:

(43) Let X be a non empty topological space and x be a set. Suppose x ∈ the
CC0-functions of X. Then x ∈ the C-continuous functions of X.

(44) For every non empty topological space X holds
0the C-vector space of C0-functions of X = X 7−→ 0.

(45) For every non empty topological space X holds
0the C-normed space of C0-functions of X = X 7−→ 0.

(46) Let a be a complex number, X be a non empty topological space, and
F , G be points of the C-normed space of C0-functions of X. Then ‖F‖ =
0 iff F = 0the C-normed space of C0-functions of X and ‖a · F‖ = |a| · ‖F‖ and
‖F +G‖ ≤ ‖F‖+ ‖G‖.

Let X be a non empty topological space. Note that the C-normed space of
C0-functions of X is reflexive, discernible, complex normed space-like, vector
distributive, scalar distributive, scalar associative, scalar unital, Abelian, add-
associative, right zeroed, and right complementable.

The following proposition is true
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(47) Let X be a non empty topological space. Then the C-normed space of
C0-functions of X is a complex normed space.
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Poland

Summary. We introduce length-preserving linear transformations of Euc-
lidean topological spaces. We also introduce rotation which preserves orientation
(proper rotation) and reverses orientation (improper rotation). We show that
every rotation that preserves orientation can be represented as a composition
of base proper rotations. And finally, we show that every rotation that rever-
ses orientation can be represented as a composition of proper rotations and one
improper rotation.

MML identifier: MATRTOP3, version: 7.12.01 4.167.1133

The papers [11], [35], [36], [8], [10], [9], [3], [7], [14], [2], [30], [4], [19], [12], [31],
[24], [34], [13], [22], [17], [1], [20], [15], [16], [40], [38], [33], [25], [28], [37], [23], [6],
[39], [18], [21], [32], [5], [26], [29], and [27] provide the terminology and notation
for this paper.

1. Preliminaries

We adopt the following rules: x, X are sets, α, α1, α2, r, s are real numbers,
and i, j, k, m, n are natural numbers.

We now state three propositions:

(1) Let K be a field, M be a square matrix over K of dimension n, and P be
a permutation of Seg n. Then Det(((M ·P )T ·P )T) = DetM and for all i,
j such that 〈〈i, j〉〉 ∈ the indices of M holds ((M · P )T · P )Ti,j = MP (i),P (j).

(2) For every field K and for every diagonal square matrix M over K of
dimension n holds MT = M.
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(3) For every real-valued finite sequence f and for every i such that i ∈ dom f

holds
∑2(f +· (i, r)) = (

∑2f − f(i)2) + r2.

Let us consider X and let F be a function yielding function. We say that F
is X-support-yielding if and only if:

(Def. 1) For every function f and for every x such that f ∈ domF and F (f)(x) 6=
f(x) holds x ∈ X.

Let us consider X. One can check that there exists a function yielding func-
tion which is X-support-yielding.

Let us consider X and let Y be a subset of X. One can check that every func-
tion yielding function which is Y -support-yielding is also X-support-yielding.

Let X, Y be sets. Note that every function yielding function which is X-
support-yielding and Y -support-yielding is also X ∩ Y -support-yielding. Let f
be an X-support-yielding function yielding function and let g be a Y -support-
yielding function yielding function. Note that f · g is X ∪ Y -support-yielding.

Let us consider n. Observe that there exists a function from EnT into EnT which
is homogeneous.

Let us consider n, m. Observe that every function from EnT into EmT is finite
sequence-yielding.

Let us consider n, m and let A be a matrix over RF of dimension n × m.
One can check that Mx2TranA is additive.

Let us consider n and let A be a square matrix over RF of dimension n. Note
that Mx2TranA is homogeneous.

Let us consider n and let f , g be homogeneous functions from EnT into EnT.
Note that f · g is homogeneous.

2. Improper Rotation

In the sequel p, q are points of EnT.
Let us consider n, i. Let us assume that i ∈ Seg n. The axial symmetry of i

and n yields an invertible square matrix over RF of dimension n and is defined
by the conditions (Def. 2).

(Def. 2)(i) (The axial symmetry of i and n)i,i = −1RF , and
(ii) for all k, m such that 〈〈k, m〉〉 ∈ the indices of the axial symmetry of

i and n holds if k = m and k 6= i, then (the axial symmetry of i and
n)k,k = 1RF and if k 6= m, then (the axial symmetry of i and n)k,m = 0RF .

The following propositions are true:

(4) If i ∈ Seg n, then Det (the axial symmetry of i and n) = −1RF .

(5) If i, j ∈ Seg n and i 6= j, then (@p) · (the axial symmetry of i and
n)�,j = p(j).

(6) If i ∈ Seg n, then (@p) · (the axial symmetry of i and n)�,i = −p(i).
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(7) Suppose i ∈ Seg n. Then
(i) the axial symmetry of i and n is diagonal, and
(ii) (the axial symmetry of i and n)` = the axial symmetry of i and n.

(8) If i ∈ Seg n and i 6= j, then (Mx2Tran (the axial symmetry of i and
n))(p)(j) = p(j).

(9) If i ∈ Seg n, then (Mx2Tran (the axial symmetry of i and n))(p)(i) =
−p(i).

(10) If i ∈ Seg n, then (Mx2Tran (the axial symmetry of i and n))(p) =
p+· (i,−p(i)).

(11) If i ∈ Seg n, then Mx2Tran (the axial symmetry of i and n) is {i}-
support-yielding.

(12) For all elements a, b of RF such that a = cos r and b = sin r holds

Det (the 0RF-block diagonal of 〈
(

a b

−b a

)
, In×nRF 〉) = 1RF .

3. Proper Rotation

Let us consider n, α and let us consider i, j. Let us assume that 1 ≤ i < j ≤
n. The functor Rotation(i, j, n, α) yielding an invertible square matrix over RF
of dimension n is defined by the conditions (Def. 3).

(Def. 3)(i) (Rotation(i, j, n, α))i,i = cosα,
(ii) (Rotation(i, j, n, α))j,j = cosα,
(iii) (Rotation(i, j, n, α))i,j = sinα,
(iv) (Rotation(i, j, n, α))j,i = −sinα, and
(v) for all k, m such that 〈〈k, m〉〉 ∈ the indices of Rotation(i, j, n, α) holds

if k = m and k 6= i and k 6= j, then (Rotation(i, j, n, α))k,k = 1RF and if
k 6= m and {k,m} 6= {i, j}, then (Rotation(i, j, n, α))k,m = 0RF .

We now state a number of propositions:

(13) If 1 ≤ i < j ≤ n, then Det Rotation(i, j, n, α) = 1RF .

(14) If 1 ≤ i < j ≤ n and k ∈ Seg n and k 6= i and k 6= j, then (@p) ·
(Rotation(i, j, n, α))�,k = p(k).

(15) If 1 ≤ i < j ≤ n, then (@p) · (Rotation(i, j, n, α))�,i = p(i) · cosα+ p(j) ·
−sinα.

(16) If 1 ≤ i < j ≤ n, then (@p) · (Rotation(i, j, n, α))�,j = p(i) · sinα+ p(j) ·
cosα.

(17) If 1 ≤ i < j ≤ n, then Rotation(i, j, n, α1) · Rotation(i, j, n, α2) =
Rotation(i, j, n, α1 + α2).

(18) If 1 ≤ i < j ≤ n, then Rotation(i, j, n, 0) = In×nRF .

(19) If 1 ≤ i < j ≤ n, then Rotation(i, j, n, α) is orthogonal and
(Rotation(i, j, n, α))` = Rotation(i, j, n,−α).
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(20) If 1 ≤ i < j ≤ n and k 6= i and k 6= j, then
(Mx2Tran Rotation(i, j, n, α))(p)(k) = p(k).

(21) If 1 ≤ i < j ≤ n, then (Mx2Tran Rotation(i, j, n, α))(p)(i) = p(i)·cosα+
p(j) · −sinα.

(22) If 1 ≤ i < j ≤ n, then (Mx2Tran Rotation(i, j, n, α))(p)(j) = p(i)·sinα+
p(j) · cosα.

(23) If 1 ≤ i < j ≤ n, then (Mx2Tran Rotation(i, j, n, α))(p) = (p�(i−′ 1)) a

〈p(i)·cosα+p(j)·−sinα〉a(p�i�(j−′i−′1))a〈p(i)·sinα+p(j)·cosα〉a(p�j).

(24) If 1 ≤ i < j ≤ n and s2 ≤ p(i)2 + p(j)2, then there exists α such that
(Mx2Tran Rotation(i, j, n, α))(p)(i) = s.

(25) If 1 ≤ i < j ≤ n and s2 ≤ p(i)2 + p(j)2, then there exists α such that
(Mx2Tran Rotation(i, j, n, α))(p)(j) = s.

(26) If 1 ≤ i < j ≤ n, then Mx2Tran Rotation(i, j, n, α) is {i, j}-support-
yielding.

4. Length-Preserving Linear Transformations

Let us consider n and let f be a function from EnT into EnT. We say that f is
rotation if and only if:

(Def. 4) |p| = |f(p)|.
One can prove the following proposition

(27) If i ∈ Seg n, then Mx2Tran (the axial symmetry of i and n) is rotation.

Let us consider n and let f be a function from EnT into EnT. We say that f is
base rotation if and only if the condition (Def. 5) is satisfied.

(Def. 5) There exists a finite sequence F of elements of the semigroup of functions
onto the carrier of EnT such that f =

∏
F and for every k such that

k ∈ domF there exist i, j, r such that 1 ≤ i < j ≤ n and F (k) =
Mx2Tran Rotation(i, j, n, r).

Let us consider n. One can check that idEnT is base rotation.
Let us consider n. One can check that there exists a function from EnT into

EnT which is base rotation.
Let us consider n and let f , g be base rotation functions from EnT into EnT.

One can check that f · g is base rotation.
Next we state the proposition

(28) If 1 ≤ i < j ≤ n, then Mx2Tran Rotation(i, j, n, r) is base rotation.

Let us consider n. Observe that every function from EnT into EnT which is base
rotation is also homogeneous, additive, rotation, and homeomorphism.

Let us consider n and let f be a base rotation function from EnT into EnT.
Note that f−1 is base rotation.
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Let us consider n and let f , g be rotation functions from EnT into EnT. One
can check that f · g is rotation.

In the sequel f , f1, f2 are homogeneous additive functions from EnT into EnT.
Let us consider n and let us consider f . The functor AutMt f yields a square

matrix over RF of dimension n and is defined as follows:

(Def. 6) f = Mx2Tran AutMt f.

Next we state several propositions:

(29) AutMt(f1 · f2) = AutMt f2 ·AutMt f1.

(30) Suppose k ∈ X and k ∈ Seg n. Then there exists f such that
(i) f is X-support-yielding and base rotation,

(ii) if X ∩ Seg n > 1, then f(p)(k) ≥ 0, and
(iii) for every i such that i ∈ X ∩ Seg n and i 6= k holds f(p)(i) = 0.

(31) For every subset A of EnT such that f�A = idA holds f�Lin(A) = idLin(A).

(32) Let A be a subset of EnT. Suppose f is rotation and f�A = idA. Let given
i. Suppose i ∈ Seg n and the base finite sequence of n and i ∈ Lin(A).
Then f(p)(i) = p(i).

(33) Let f be a rotation function from EnT into EnT. Suppose f is X-support-
yielding and for every i such that i ∈ X ∩ Seg n holds p(i) = 0. Then
f(p) = p.

(34) If i ∈ Seg n and n ≥ 2, then there exists f such that f is base rotation
and f(p) = p+· (i,−p(i)).

(35) If f is {i}-support-yielding and rotation, then AutMt f = the axial sym-
metry of i and n or AutMt f = In×nRF .

(36) If f1 is rotation, then there exists f2 such that f2 is base rotation and
f2 · f1 is {n}-support-yielding.

5. Rotation Matrix Classification

The following three propositions are true:

(37) If f is rotation, then Det AutMt f = 1RF iff f is base rotation.

(38) If f is rotation, then Det AutMt f = 1RF or Det AutMt f = −1RF .

(39) If f1 is rotation and Det AutMt f1 = −1RF and i ∈ Seg n and AutMt f2 =
the axial symmetry of i and n, then f1 · f2 is base rotation.

Let us consider n and let f be a rotation homogeneous additive function
from EnT into EnT. One can check that AutMt f is orthogonal.

Let us consider n. One can verify that every function from EnT into EnT which
is homogeneous, additive, and rotation is also homeomorphism.
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6. The Rotation Mapping a Given Point to Another Point

One can prove the following propositions:

(40) Suppose n = 1 and |p| = |q|. Then there exists f such that f is rota-
tion and f(p) = q either AutMt f = the axial symmetry of n and n or
AutMt f = In×nRF .

(41) If n 6= 1 and |p| = |q|, then there exists f such that f is base rotation
and f(p) = q.
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Differentiable Functions on Normed Linear
Spaces1

Yasunari Shidama
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Summary. In this article, we formalize differentiability of functions on
normed linear spaces. Partial derivative, mean value theorem for vector-valued
functions, continuous differentiability, etc. are formalized. As it is well known,
there is no exact analog of the mean value theorem for vector-valued functions.
However a certain type of generalization of the mean value theorem for vector-
valued functions is obtained as follows: If ||f ′(x+ t ·h)|| is bounded for t between
0 and 1 by some constant M, then ||f(x+t ·h)−f(x)|| ≤M · ||h||. This theorem is
called the mean value theorem for vector-valued functions. By this theorem, the
relation between the (total) derivative and the partial derivatives of a function
is derived [23].

MML identifier: NDIFF 5, version: 7.1 .0 4.16 .11

The notation and terminology used here have been introduced in the following
papers: [28], [29], [9], [4], [30], [12], [10], [25], [11], [1], [2], [26], [7], [3], [5], [8],
[17], [22], [20], [27], [21], [31], [14], [24], [18], [16], [15], [19], [13], and [6].

1. Preliminaries

In this paper r is a real number and S, T are non trivial real normed spaces.
Next we state several propositions:

(1) Let R be a function from R into S. Then R is rest-like if and only if for
every real number r such that r > 0 there exists a real number d such
that d > 0 and for every real number z such that z 6= 0 and |z| < d holds
|z|−1 · ‖Rz‖ < r.

1This work was supported by JSPS KAKENHI 22300285.
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(2) Let R be a rest of S. Suppose R0 = 0S . Let e be a real number. Suppose
e > 0. Then there exists a real number d such that d > 0 and for every
real number h such that |h| < d holds ‖Rh‖ ≤ e · |h|.

(3) For every rest R of S and for every bounded linear operator L from S

into T holds L ·R is a rest of T .

(4) Let R1 be a rest of S. Suppose (R1)0 = 0S . Let R2 be a rest of S, T . If
(R2)0S = 0T , then for every linear L of S holds R2 · (L + R1) is a rest of
T .

(5) Let R1 be a rest of S. Suppose (R1)0 = 0S . Let R2 be a rest of S, T .
Suppose (R2)0S = 0T . Let L1 be a linear of S and L2 be a bounded linear
operator from S into T . Then L2 ·R1 +R2 · (L1 +R1) is a rest of T .

(6) Let x0 be an element of R and g be a partial function from R to the
carrier of S. Suppose g is differentiable in x0. Let f be a partial function
from the carrier of S to the carrier of T . Suppose f is differentiable in gx0 .
Then f · g is differentiable in x0 and (f · g)′(x0) = f ′(gx0)(g

′(x0)).

(7) Let S be a real normed space, x1 be a finite sequence of elements of S,
and y1 be a finite sequence of elements of R. Suppose lenx1 = len y1 and
for every element i of N such that i ∈ domx1 holds y1(i) = ‖(x1)i‖. Then
‖
∑
x1‖ ≤

∑
y1.

(8) Let S be a real normed space, x be a point of S, and N1, N2 be neigh-
bourhoods of x. Then N1 ∩N2 is a neighbourhood of x.

(9) For every non-empty finite sequence X and for every set x such that
x ∈

∏
X holds x is a finite sequence.

Let G be a real norm space sequence. One can verify that
∏
G is constituted

finite sequences.
Let G be a real linear space sequence, let z be an element of

∏
G, and let j

be an element of domG. Then z(j) is an element of G(j).
One can prove the following propositions:

(10) The carrier of
∏
G =

∏
G.

(11) Let i be an element of domG, r be a set, and x be a function. If r ∈ the
carrier of G(i) and x ∈

∏
G, then x+· (i, r) ∈ the carrier of

∏
G.

Let G be a real norm space sequence. We say that G is nontrivial if and only
if:

(Def. 1) For every element j of domG holds G(j) is non trivial.

Let us mention that there exists a real norm space sequence which is non-
trivial.

Let G be a nontrivial real norm space sequence and let i be an element of
domG. Note that G(i) is non trivial.

Let G be a nontrivial real norm space sequence. Note that
∏
G is non trivial.

The following propositions are true:
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(12) Let G be a real norm space sequence, p, q be points of
∏
G, and r0, p0,

q0 be elements of
∏
G. Suppose p = p0 and q = q0. Then p+ q = r0 if and

only if for every element i of domG holds r0(i) = p0(i) + q0(i).

(13) Let G be a real norm space sequence, p be a point of
∏
G, r be a real

number, and r0, p0 be elements of
∏
G. Suppose p = p0. Then r · p = r0

if and only if for every element i of domG holds r0(i) = r · p0(i).
(14) Let G be a real norm space sequence and p0 be an element of

∏
G. Then

0∏G = p0 if and only if for every element i of domG holds p0(i) = 0G(i).

(15) Let G be a real norm space sequence, p, q be points of
∏
G, and r0, p0,

q0 be elements of
∏
G. Suppose p = p0 and q = q0. Then p− q = r0 if and

only if for every element i of domG holds r0(i) = p0(i)− q0(i).

2. Mean Value Theorem for Vector-Valued Functions

Let S be a real linear space and let p, q be points of S. The functor ]p, q[
yielding a subset of S is defined as follows:

(Def. 2) ]p, q[ = {p+ t · (q − p); t ranges over real numbers: 0 < t ∧ t < 1}.
Let S be a real linear space and let p, q be points of S. We introduce [p, q]

as a synonym of L(p, q).
Next we state several propositions:

(16) For every real linear space S and for all points p, q of S holds ]p, q[ ⊆
[p, q].

(17) Let T be a non trivial real normed space and R be a partial function
from R to T . Suppose R is total. Then R is rest-like if and only if for every
real number r such that r > 0 there exists a real number d such that d > 0
and for every real number z such that z 6= 0 and |z| < d holds ‖Rz‖|z| < r.

(18) Let R be a function from R into R. Then R is rest-like if and only if
for every real number r such that r > 0 there exists a real number d such
that d > 0 and for every real number z such that z 6= 0 and |z| < d holds
|R(z)|
|z| < r.

(19) Let S, T be non trivial real normed spaces, f be a partial function from
S to T , p, q be points of S, and M be a real number. Suppose that

(i) [p, q] ⊆ dom f,

(ii) for every point x of S such that x ∈ [p, q] holds f is continuous in x,
(iii) for every point x of S such that x ∈ ]p, q[ holds f is differentiable in x,

and
(iv) for every point x of S such that x ∈ ]p, q[ holds ‖f ′(x)‖ ≤M.

Then ‖fq − fp‖ ≤M · ‖q − p‖.
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(20) Let S, T be non trivial real normed spaces, f be a partial function from
S to T , p, q be points of S, M be a real number, and L be a point of the
real norm space of bounded linear operators from S into T . Suppose that

(i) [p, q] ⊆ dom f,

(ii) for every point x of S such that x ∈ [p, q] holds f is continuous in x,
(iii) for every point x of S such that x ∈ ]p, q[ holds f is differentiable in x,

and
(iv) for every point x of S such that x ∈ ]p, q[ holds ‖f ′(x)− L‖ ≤M.

Then ‖fq − fp − L(q − p)‖ ≤M · ‖q − p‖.

3. Partial Derivative of a Function of Several Variables

Let G be a real norm space sequence and let i be an element of domG. The
projection onto i yielding a function from

∏
G into G(i) is defined by:

(Def. 3) For every element x of
∏
G holds (the projection onto i)(x) = x(i).

Let G be a real norm space sequence, let i be an element of domG, and let
x be an element of

∏
G. The functor reproj(i, x) yielding a function from G(i)

into
∏
G is defined by:

(Def. 4) For every element r of G(i) holds (reproj(i, x))(r) = x+· (i, r).
Let G be a nontrivial real norm space sequence and let j be a set. Let

us assume that j ∈ domG. The functor modetrans(G, j) yields an element of
domG and is defined by:

(Def. 5) modetrans(G, j) = j.

Let G be a nontrivial real norm space sequence, let F be a non trivial real
normed space, let i be a set, let f be a partial function from

∏
G to F , and let

x be an element of
∏
G. We say that f is partially differentiable in x w.r.t. i if

and only if:

(Def. 6) f · reproj(modetrans(G, i), x) is differentiable in (the projection onto
modetrans(G, i))(x).

Let G be a nontrivial real norm space sequence, let F be a non trivial real
normed space, let i be a set, let f be a partial function from

∏
G to F , and let x

be a point of
∏
G. The functor partdiff(f, x, i) yielding a point of the real norm

space of bounded linear operators from G(modetrans(G, i)) into F is defined as
follows:

(Def. 7) partdiff(f, x, i) = (f · reproj(modetrans(G, i), x))′((the projection onto
modetrans(G, i))(x)).
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4. Linearity of Partial Differential Operator

For simplicity, we adopt the following rules: G denotes a nontrivial real norm
space sequence, F denotes a non trivial real normed space, i denotes an element
of domG, f , f1, f2 denote partial functions from

∏
G to F , x denotes a point

of
∏
G, and X denotes a set.

Let G be a nontrivial real norm space sequence, let F be a non trivial real
normed space, let i be a set, let f be a partial function from

∏
G to F , and let

X be a set. We say that f is partially differentiable on X w.r.t. i if and only if:

(Def. 8) X ⊆ dom f and for every point x of
∏
G such that x ∈ X holds f�X is

partially differentiable in x w.r.t. i.

Next we state several propositions:

(21) For every element x2 of G(i) holds ‖(reproj(i, 0∏G))(x2)‖ = ‖x2‖.
(22) LetG be a nontrivial real norm space sequence, i be an element of domG,

x be a point of
∏
G, and r be a point of G(i). Then (reproj(i, x))(r)−x =

(reproj(i, 0∏G))(r−(the projection onto i)(x)) and x−(reproj(i, x))(r) =
(reproj(i, 0∏G))((the projection onto i)(x)− r).

(23) LetG be a nontrivial real norm space sequence, i be an element of domG,

x be a point of
∏
G, and Z be a subset of

∏
G. Suppose Z is open and

x ∈ Z. Then there exists a neighbourhood N of (the projection onto i)(x)
such that for every point z of G(i) if z ∈ N, then (reproj(i, x))(z) ∈ Z.

(24) Let G be a nontrivial real norm space sequence, T be a non trivial real
normed space, i be a set, f be a partial function from

∏
G to T , and Z

be a subset of
∏
G. Suppose Z is open. Then f is partially differentiable

on Z w.r.t. i if and only if Z ⊆ dom f and for every point x of
∏
G such

that x ∈ Z holds f is partially differentiable in x w.r.t. i.

(25) For every set i such that i ∈ domG and f is partially differentiable on
X w.r.t. i holds X is a subset of

∏
G.

Let G be a nontrivial real norm space sequence, let S be a non trivial real
normed space, and let i be a set. Let us assume that i ∈ domG. Let f be a partial
function from

∏
G to S and let X be a set. Let us assume that f is partially

differentiable on X w.r.t. i. The functor f�iX yields a partial function from
∏
G

to the real norm space of bounded linear operators from G(modetrans(G, i)) into
S and is defined by:

(Def. 9) dom(f�iX) = X and for every point x of
∏
G such that x ∈ X holds

(f�iX)x = partdiff(f, x, i).

One can prove the following propositions:

(26) For every set i such that i ∈ domG holds (f1 + f2) ·
reproj(modetrans(G, i), x) = f1 · reproj(modetrans(G, i), x) + f2 ·
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reproj(modetrans(G, i), x) and (f1 − f2) · reproj(modetrans(G, i), x) =
f1 · reproj(modetrans(G, i), x)− f2 · reproj(modetrans(G, i), x).

(27) For every set i such that i ∈ domG holds r·(f ·reproj(modetrans(G, i), x)) =
(r · f) · reproj(modetrans(G, i), x).

(28) Let i be a set. Suppose i ∈ domG and f1 is partially differentiable in x

w.r.t. i and f2 is partially differentiable in x w.r.t. i. Then f1+f2 is partially
differentiable in x w.r.t. i and partdiff(f1 + f2, x, i) = partdiff(f1, x, i) +
partdiff(f2, x, i).

(29) Let i be a set. Suppose i ∈ domG and f1 is partially differentiable in x

w.r.t. i and f2 is partially differentiable in x w.r.t. i. Then f1−f2 is partially
differentiable in x w.r.t. i and partdiff(f1 − f2, x, i) = partdiff(f1, x, i) −
partdiff(f2, x, i).

(30) Let i be a set. Suppose i ∈ domG and f is partially differentiable in x

w.r.t. i. Then r · f is partially differentiable in x w.r.t. i and partdiff(r ·
f, x, i) = r · partdiff(f, x, i).

5. Continuous Differentiatibility of Partial Derivative

Next we state the proposition

(31) ‖(the projection onto i)(x)‖ ≤ ‖x‖.
Let G be a nontrivial real norm space sequence. One can verify that every

point of
∏
G is lenG-element.

We now state a number of propositions:

(32) Let G be a nontrivial real norm space sequence, T be a non trivial real
normed space, i be a set, Z be a subset of

∏
G, and f be a partial function

from
∏
G to T . Suppose Z is open. Then f is partially differentiable on

Z w.r.t. i if and only if Z ⊆ dom f and for every point x of
∏
G such that

x ∈ Z holds f is partially differentiable in x w.r.t. i.

(33) Let i, j be elements of domG, x be a point of G(i), and z be an element
of
∏
G such that z = (reproj(i, 0∏G))(x). Then

(i) if i = j, then z(j) = x, and
(ii) if i 6= j, then z(j) = 0G(j).

(34) For all points x, y of G(i) holds (reproj(i, 0∏G))(x + y) =
(reproj(i, 0∏G))(x) + (reproj(i, 0∏G))(y).

(35) Let x, y be points of
∏
G. Then (the projection onto i)(x + y) = (the

projection onto i)(x) + (the projection onto i)(y).

(36) For all points x, y of G(i) holds (reproj(i, 0∏G))(x − y) =
(reproj(i, 0∏G))(x)− (reproj(i, 0∏G))(y).
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(37) Let x, y be points of
∏
G. Then (the projection onto i)(x − y) = (the

projection onto i)(x)− (the projection onto i)(y).

(38) For every point x of G(i) such that x 6= 0G(i) holds (reproj(i, 0∏G))(x) 6=
0∏G.

(39) For every point x of G(i) and for every element a of R holds
(reproj(i, 0∏G))(a · x) = a · (reproj(i, 0∏G))(x).

(40) Let x be a point of
∏
G and a be an element of R. Then (the projection

onto i)(a · x) = a · (the projection onto i)(x).

(41) Let G be a nontrivial real norm space sequence, S be a non trivial
real normed space, f be a partial function from

∏
G to S, x be a

point of
∏
G, and i be a set. Suppose f is differentiable in x. Then

f is partially differentiable in x w.r.t. i and partdiff(f, x, i) = f ′(x) ·
reproj(modetrans(G, i), 0∏G).

(42) Let S be a real normed space and h, g be finite sequences of elements
of S. Suppose lenh = len g + 1 and for every natural number i such that
i ∈ dom g holds gi = hi − hi+1. Then h1 − hlenh =

∑
g.

(43) Let G be a nontrivial real norm space sequence, x, y be elements of
∏
G,

and Z be a set. Then x+·y�Z is an element of
∏
G.

(44) Let G be a nontrivial real norm space sequence, x, y be points of
∏
G,

Z, x0 be elements of
∏
G, and X be a set. If Z = 0∏G and x0 = x and

y = Z+·x0�X, then ‖y‖ ≤ ‖x‖.
(45) Let G be a nontrivial real norm space sequence, S be a non trivial real

normed space, f be a partial function from
∏
G to S, and x, y be points

of
∏
G. Then there exists a finite sequence h of elements of

∏
G and there

exists a finite sequence g of elements of S and there exist elements Z, y0
of
∏
G such that

y0 = y and Z = 0∏G and lenh = lenG+1 and len g = lenG and for every
natural number i such that i ∈ domh holds hi = Z+·y0� Seg((lenG+1)−′
i) and for every natural number i such that i ∈ dom g holds gi = fx+hi −
fx+hi+1 and for every natural number i and for every point h1 of

∏
G such

that i ∈ domh and hi = h1 holds ‖h1‖ ≤ ‖y‖ and fx+y − fx =
∑
g.

(46) LetG be a nontrivial real norm space sequence, i be an element of domG,

x, y be points of
∏
G, and x2 be a point of G(i). If y = (reproj(i, x))(x2),

then (the projection onto i)(y) = x2.

(47) LetG be a nontrivial real norm space sequence, i be an element of domG,

y be a point of
∏
G, and q be a point of G(i). If q = (the projection onto

i)(y), then y = (reproj(i, y))(q).

(48) LetG be a nontrivial real norm space sequence, i be an element of domG,

x, y be points of
∏
G, and x2 be a point of G(i). If y = (reproj(i, x))(x2),

then reproj(i, x) = reproj(i, y).
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(49) Let G be a nontrivial real norm space sequence, i, j be elements of
domG, x, y be points of

∏
G, and x2 be a point of G(i). Suppose

y = (reproj(i, x))(x2) and i 6= j. Then (the projection onto j)(x) = (the
projection onto j)(y).

(50) Let G be a nontrivial real norm space sequence, F be a non trivial real
normed space, i be an element of domG, x be a point of

∏
G, x2 be a point

of G(i), f be a partial function from
∏
G to F , and g be a partial function

from G(i) to F . If (the projection onto i)(x) = x2 and g = f · reproj(i, x),
then g′(x2) = partdiff(f, x, i).

(51) Let G be a nontrivial real norm space sequence, F be a non trivial real
normed space, f be a partial function from

∏
G to F , x be a point of∏

G, i be a set, M be a real number, L be a point of the real norm space
of bounded linear operators from G(modetrans(G, i)) into F , and p, q be
points of G(modetrans(G, i)). Suppose that

(i) i ∈ domG,

(ii) for every point h of G(modetrans(G, i)) such that h ∈ ]p, q[ holds
‖partdiff(f, (reproj(modetrans(G, i), x))(h), i)− L‖ ≤M,

(iii) for every point h of G(modetrans(G, i)) such that h ∈ [p, q] holds
(reproj(modetrans(G, i), x))(h) ∈ dom f, and

(iv) for every point h of G(modetrans(G, i)) such that h ∈ [p, q] holds f is
partially differentiable in (reproj(modetrans(G, i), x))(h) w.r.t. i.
Then ‖f(reproj(modetrans(G,i),x))(q) − f(reproj(modetrans(G,i),x))(p) −L(q − p)‖ ≤
M · ‖q − p‖.

(52) Let G be a nontrivial real norm space sequence, x, y, z, w be points of∏
G, i be an element of domG, d be a real number, and p, q, r be points

of G(i). Suppose ‖y − x‖ < d and ‖z − x‖ < d and p = (the projection
onto i)(y) and z = (reproj(i, y))(q) and r ∈ [p, q] and w = (reproj(i, y))(r).
Then ‖w − x‖ < d.

(53) Let G be a nontrivial real norm space sequence, S be a non trivial real
normed space, f be a partial function from

∏
G to S, X be a subset of

∏
G,

x, y, z be points of
∏
G, i be a set, p, q be points of G(modetrans(G, i)),

and d, r be real numbers. Suppose that i ∈ domG and X is open and x ∈
X and ‖y−x‖ < d and ‖z−x‖ < d and X ⊆ dom f and for every point x of∏
G such that x ∈ X holds f is partially differentiable in x w.r.t. i and for

every point z of
∏
G such that ‖z−x‖ < d holds z ∈ X and for every point

z of
∏
G such that ‖z−x‖ < d holds ‖partdiff(f, z, i)−partdiff(f, x, i)‖ ≤

r and z = (reproj(modetrans(G, i), y))(p) and q = (the projection onto
modetrans(G, i))(y). Then ‖fz−fy−(partdiff(f, x, i))(p−q)‖ ≤ ‖p−q‖·r.

(54) Let G be a nontrivial real norm space sequence, h be a finite sequ-
ence of elements of

∏
G, y, x be points of

∏
G, y0, Z be elements of∏

G, and j be an element of N. Suppose y = y0 and Z = 0∏G and
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lenh = lenG + 1 and 1 ≤ j ≤ lenG and for every natural number
i such that i ∈ domh holds hi = Z+·y0� Seg((lenG + 1) −′ i). Then
x+hj = (reproj(modetrans(G, (lenG+ 1)−′ j), x+hj+1))((the projection
onto modetrans(G, (lenG+ 1)−′ j))(x+ y)).

(55) Let G be a nontrivial real norm space sequence, h be a finite sequ-
ence of elements of

∏
G, y, x be points of

∏
G, y0, Z be elements of∏

G, and j be an element of N. Suppose y = y0 and Z = 0∏G and
lenh = lenG + 1 and 1 ≤ j ≤ lenG and for every natural number i
such that i ∈ domh holds hi = Z+·y0� Seg((lenG + 1) −′ i). Then (the
projection onto modetrans(G, (lenG + 1) −′ j))(x + y) − (the projection
onto modetrans(G, (lenG + 1) −′ j))(x + hj+1) = (the projection onto
modetrans(G, (lenG+ 1)−′ j))(y).

(56) Let G be a nontrivial real norm space sequence, S be a non trivial real
normed space, f be a partial function from

∏
G to S, X be a subset of∏

G, and x be a point of
∏
G. Suppose that

(i) X is open,
(ii) x ∈ X, and
(iii) for every set i such that i ∈ domG holds f is partially differentiable

on X w.r.t. i and f�iX is continuous on X.
Then

(iv) f is differentiable in x, and
(v) for every point h of

∏
G there exists a finite sequence w of elements

of S such that domw = domG and for every set i such that i ∈ domG

holds w(i) = (partdiff(f, x, i))((the projection onto modetrans(G, i))(h))
and f ′(x)(h) =

∑
w.

(57) Let G be a nontrivial real norm space sequence, F be a non trivial real
normed space, f be a partial function from

∏
G to F , and X be a subset

of
∏
G. Suppose X is open. Then for every set i such that i ∈ domG holds

f is partially differentiable on X w.r.t. i and f�iX is continuous on X if
and only if f is differentiable on X and f ′�X is continuous on X.
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[15], [8], [27], [39], [3], [42], [12], [23], [7], [5], and [33] provide the notation and
terminology for this paper.

1. Preliminaries

Let us observe that ∅ is ∅-valued and ∅ is onto.
Next we state three propositions:

(1) For every function f and for every set Y holds dom(Y �f) = f−1(Y ).

(2) For every function f and for all sets Y1, Y2 such that Y2 ⊆ Y1 holds
(Y1�f)−1(Y2) = f−1(Y2).

(3) Let S, T be topological structures and f be a function from S into T . If
f is homeomorphism, then f−1 is homeomorphism.

Let S, T be topological structures. Let us note that the predicate S and T

are homeomorphic is symmetric.
For simplicity, we use the following convention: T1, T2, T3 denote topological

spaces, A1 denotes a subset of T1, A2 denotes a subset of T2, and A3 denotes a
subset of T3.
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Next we state several propositions:

(4) Let f be a function from T1 into T2. Suppose f is homeomorphism.
Let g be a function from T1�f−1(A2) into T2�A2. If g = A2�f, then g is
homeomorphism.

(5) For every function f from T1 into T2 such that f is homeomorphism
holds f−1(A2) and A2 are homeomorphic.

(6) If A1 and A2 are homeomorphic, then A2 and A1 are homeomorphic.

(7) If A1 and A2 are homeomorphic, then A1 is empty iff A2 is empty.

(8) If A1 and A2 are homeomorphic and A2 and A3 are homeomorphic, then
A1 and A3 are homeomorphic.

(9) If T1 is second-countable and T1 and T2 are homeomorphic, then T2 is
second-countable.

In the sequel n, k are natural numbers and M , N are non empty topological
spaces.

The following propositions are true:

(10) If M is Hausdorff and M and N are homeomorphic, then N is Hausdorff.

(11) If M is n-locally Euclidean and M and N are homeomorphic, then N is
n-locally Euclidean.

(12) If M is n-manifold and M and N are homeomorphic, then N is n-
manifold.

(13) Let x1, x2 be finite sequences of elements of R and i be an element of N. If
i ∈ dom(x1•x2), then (x1•x2)(i) = (x1)i ·(x2)i and (x1•x2)i = (x1)i ·(x2)i.

(14) For all finite sequences x1, x2, y1, y2 of elements of R such that lenx1 =
lenx2 and len y1 = len y2 holds x1 a y1 • x2 a y2 = (x1 • x2) a (y1 • y2).

(15) For all finite sequences x1, x2, y1, y2 of elements of R such that lenx1 =
lenx2 and len y1 = len y2 holds |(x1 a y1, x2 a y2)| = |(x1, x2)|+ |(y1, y2)|.

In the sequel p, q, p1 are points of EnT and r is a real number.
One can prove the following propositions:

(16) If k ∈ Seg n, then (p1 + p2)(k) = p1(k) + p2(k).

(17) For every set X holds X is a linear combination of RSegnR iff X is a linear
combination of EnT.

(18) Let F be a finite sequence of elements of EnT, f1 be a function from EnT
into R, F1 be a finite sequence of elements of RSegnR , and f2 be a function
from RSegnR into R. If f1 = f2 and F = F1, then f1 · F = f2 · F1.

(19) Let F be a finite sequence of elements of EnT and F1 be a finite sequence
of elements of RSegnR . If F1 = F, then

∑
F =

∑
F1.

(20) For every linear combination L2 of RSegnR and for every linear combina-
tion L1 of EnT such that L1 = L2 holds

∑
L1 =

∑
L2.
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(21) Let A4 be a subset of RSegnR and A5 be a subset of EnT. Suppose A4 = A5.

Then A4 is linearly independent if and only if A5 is linearly independent.

(22) For every subset V of EnT such that V = RN-Basen there exists a linear
combination l of V such that p =

∑
l.

(23) RN-Basen is a basis of EnT.

(24) Let V be a subset of EnT. Then V ∈ the topology of EnT if and only if for
every p such that p ∈ V there exists r such that r > 0 and Ball(p, r) ⊆ V.

Let n be a natural number and let p be a point of EnT.

The functor InnerProduct p yields a function from EnT into R1 and is defined
by:

(Def. 1) For every point q of EnT holds (InnerProduct p)(q) = |(p, q)|.
Let us consider n, p. Note that InnerProduct p is continuous.

2. Planes

Let us consider n and let us consider p, q. The functor Plane(p, q) yielding
a subset of EnT is defined as follows:

(Def. 2) Plane(p, q) = {y; y ranges over points of EnT: |(p, y − q)| = 0}.
The following propositions are true:

(25) (transl(p1, EnT))◦ Plane(p, p2) = Plane(p, p1 + p2).

(26) If p 6= 0EnT , then there exists a linearly independent subset A of EnT such

that A = n− 1 and ΩLin(A) = Plane(p, 0EnT).

(27) If p1 6= 0EnT and p2 6= 0EnT , then there exists a function R from EnT into EnT
such that R is homeomorphism and R◦ Plane(p1, 0EnT) = Plane(p2, 0EnT).

Let us consider n and let us consider p, q. The functor TPlane(p, q) yields a
non empty subspace of EnT and is defined by:

(Def. 3) TPlane(p, q) = EnT� Plane(p, q).

The following three propositions are true:

(28) The base finite sequence of n+ 1 and n+ 1 = (0EnT) a 〈1〉.

(29) For all points p, q of En+1T such that p 6= 0En+1T
holds EnT and TPlane(p, q)

are homeomorphic.

(30) For all points p, q of En+1T such that p 6= 0En+1T
holds TPlane(p, q) is

n-manifold.
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3. Spheres

Let us consider n. The functor Sn yields a topological space and is defined
by:

(Def. 4) Sn = TopUnitCircle(n+ 1).

Let us consider n. Note that Sn is non empty.
Let us consider n, p and let S be a subspace of EnT. Let us assume that p ∈

Sphere((0EnT), 1). The functor σS,p yielding a function from S into TPlane(p, 0EnT)
is defined as follows:

(Def. 5) For every q such that q ∈ S holds (σS,p)(q) = 1
1−|(q,p)| · (q − |(q, p)| · p).

Next we state the proposition

(31) For every subspace S of EnT such that ΩS = Sphere((0EnT), 1) \ {p} and
p ∈ Sphere((0EnT), 1) holds σS,p is homeomorphism.

Let us consider n. One can verify the following observations:

∗ Sn is second-countable,

∗ Sn is n-locally Euclidean, and

∗ Sn is n-manifold.
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Summary. In this article, we formalize Z-module, that is a module over
integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-
Lovász) base reduction algorithm and cryptographic systems with lattices [11].
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The papers [10], [17], [18], [7], [2], [9], [14], [8], [6], [13], [5], [1], [15], [4], [3], [19],
[16], and [12] provide the terminology and notation for this paper.

1. Definition of Z-module

We introduce Z-module structures which are extensions of additive loop
structure and are systems
〈 a carrier, a zero, an addition, an external multiplication 〉,

where the carrier is a set, the zero is an element of the carrier, the addition is
a binary operation on the carrier, and the external multiplication is a function
from Z× the carrier into the carrier.

Let us mention that there exists a Z-module structure which is non empty.
Let V be a Z-module structure. A vector of V is an element of V .
In the sequel V denotes a non empty Z-module structure and v denotes a

vector of V .
Let us consider V , v and let a be an integer number. The functor a · v yields

an element of V and is defined by:

(Def. 1) a · v = (the external multiplication of V )(a, v).

1This work was supported by JSPS KAKENHI 21240001.
2This work was supported by JSPS KAKENHI 22300285.
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Let Z1 be a non empty set, let O be an element of Z1, let F be a binary
operation on Z1, and let G be a function from Z × Z1 into Z1. One can verify
that 〈〈Z1, O, F,G〉〉 is non empty.

Let I1 be a non empty Z-module structure. We say that I1 is vector distri-
butive if and only if:

(Def. 2) For every a and for all vectors v, w of I1 holds a · (v+w) = a · v+ a ·w.
We say that I1 is scalar distributive if and only if:

(Def. 3) For all a, b and for every vector v of I1 holds (a+ b) · v = a · v + b · v.
We say that I1 is scalar associative if and only if:

(Def. 4) For all a, b and for every vector v of I1 holds (a · b) · v = a · (b · v).

We say that I1 is scalar unital if and only if:

(Def. 5) For every vector v of I1 holds 1 · v = v.

The strict Z-module structure the trivial structure of Z-module is defined
as follows:

(Def. 6) The trivial structure of Z-module = 〈〈1, op0, op2, π2(Z× 1)〉〉.
Let us observe that the trivial structure of Z-module is trivial and non empty.
Let us observe that there exists a non empty Z-module structure which

is strict, Abelian, add-associative, right zeroed, right complementable, scalar
distributive, vector distributive, scalar associative, and scalar unital.

A Z-module is an Abelian add-associative right zeroed right complementable
scalar distributive vector distributive scalar associative scalar unital non empty
Z-module structure.

In the sequel v, w denote vectors of V .
Let I1 be a non empty Z-module structure. We say that I1 inherits cancelable

on multiplication if and only if:

(Def. 7) For every a and for every vector v of I1 such that a ·v = 0(I1) holds a = 0
or v = 0(I1).

The following propositions are true:

(1) If a = 0 or v = 0V , then a · v = 0V .

(2) −v = (−1) · v.
(3) If V inherits cancelable on multiplication and v = −v, then v = 0V .

(4) If V inherits cancelable on multiplication and v + v = 0V , then v = 0V .

(5) a · −v = (−a) · v.
(6) a · −v = −a · v.
(7) (−a) · −v = a · v.
(8) a · (v − w) = a · v − a · w.
(9) (a− b) · v = a · v − b · v.

(10) If V inherits cancelable on multiplication and a 6= 0 and a · v = a · w,
then v = w.
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(11) If V inherits cancelable on multiplication and v 6= 0V and a · v = b · v,
then a = b.

For simplicity, we follow the rules: V is a Z-module, u, v, w are vectors of
V , F , G, H, I are finite sequences of elements of V , j, k, n are elements of N,
and f9 is a function from N into the carrier of V .

Next we state several propositions:

(12) If lenF = lenG and for all k, v such that k ∈ domF and v = G(k) holds
F (k) = a · v, then

∑
F = a ·

∑
G.

(13) For every Z-module V and for every integer a holds a ·∑
(ε(the carrier of V )) = 0V .

(14) For every Z-module V and for every integer a and for all vectors v, u of
V holds a ·

∑
〈v, u〉 = a · v + a · u.

(15) For every Z-module V and for every integer a and for all vectors v, u, w
of V holds a ·

∑
〈v, u, w〉 = a · v + a · u+ a · w.

(16) (−a) · v = −a · v.
(17) If lenF = lenG and for every k such that k ∈ domF holds G(k) = a ·Fk,

then
∑
G = a ·

∑
F.

2. Submodules and Cosets of Submodules in Z-module

We use the following convention: V , X are Z-modules, V1, V2, V3 are subsets
of V , and x is a set.

Let us consider V , V1. We say that V1 is linearly closed if and only if:

(Def. 8) For all v, u such that v, u ∈ V1 holds v + u ∈ V1 and for all a, v such
that v ∈ V1 holds a · v ∈ V1.

One can prove the following propositions:

(18) If V1 6= ∅ and V1 is linearly closed, then 0V ∈ V1.
(19) If V1 is linearly closed, then for every v such that v ∈ V1 holds −v ∈ V1.
(20) If V1 is linearly closed, then for all v, u such that v, u ∈ V1 holds

v − u ∈ V1.
(21) If the carrier of V = V1, then V1 is linearly closed.

(22) If V1 is linearly closed and V2 is linearly closed and V3 = {v + u : v ∈
V1 ∧ u ∈ V2}, then V3 is linearly closed.

Let us consider V . Observe that {0V } is linearly closed.
Let us consider V . Note that there exists a subset of V which is linearly

closed.
Let us consider V and let V1, V2 be linearly closed subsets of V . Note that

V1 ∩ V2 is linearly closed.
Let us consider V . A Z-module is called a submodule of V if it satisfies the

conditions (Def. 9).
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(Def. 9)(i) The carrier of it ⊆ the carrier of V ,
(ii) 0it = 0V ,
(iii) the addition of it = (the addition of V ) � (the carrier of it), and
(iv) the external multiplication of it = (the external multiplication of

V )�(Z× the carrier of it).

In the sequel W2 denotes a submodule of V and w, w1, w2 denote vectors of
W .

We now state a number of propositions:

(23) If x ∈W1 and W1 is a submodule of W2, then x ∈W2.
(24) If x ∈W, then x ∈ V.
(25) w is a vector of V .

(26) 0W = 0V .

(27) 0(W1) = 0(W2).

(28) If w1 = v and w2 = u, then w1 + w2 = v + u.

(29) If w = v, then a · w = a · v.
(30) If w = v, then −v = −w.
(31) If w1 = v and w2 = u, then w1 − w2 = v − u.
(32) V is a submodule of V .

(33) 0V ∈W.
(34) 0(W1) ∈W2.
(35) 0W ∈ V.
(36) If u, v ∈W, then u+ v ∈W.
(37) If v ∈W, then a · v ∈W.
(38) If v ∈W, then −v ∈W.
(39) If u, v ∈W, then u− v ∈W.

In the sequel d1 is an element of D, A is a binary operation on D, and M is
a function from Z×D into D.

We now state several propositions:

(40) Suppose V1 = D and d1 = 0V and A = (the addition of V ) � (V1) and
M = (the external multiplication of V )�(Z× V1). Then 〈〈D, d1, A,M〉〉 is a
submodule of V .

(41) For all strict Z-modules V , X such that V is a submodule of X and X

is a submodule of V holds V = X.

(42) If V is a submodule of X and X is a submodule of Y , then V is a
submodule of Y .

(43) If the carrier of W1 ⊆ the carrier of W2, then W1 is a submodule of W2.

(44) If for every v such that v ∈ W1 holds v ∈ W2, then W1 is a submodule
of W2.



Z-modules 51

Let us consider V . Note that there exists a submodule of V which is strict.
Next we state several propositions:

(45) For all strict submodules W1, W2 of V such that the carrier of W1 = the
carrier of W2 holds W1 = W2.

(46) For all strict submodules W1, W2 of V such that for every v holds v ∈W1
iff v ∈W2 holds W1 = W2.

(47) Let V be a strict Z-module and W be a strict submodule of V . If the
carrier of W = the carrier of V , then W = V.

(48) Let V be a strict Z-module and W be a strict submodule of V . If for
every vector v of V holds v ∈W iff v ∈ V, then W = V.

(49) If the carrier of W = V1, then V1 is linearly closed.

(50) If V1 6= ∅ and V1 is linearly closed, then there exists a strict submodule
W of V such that V1 = the carrier of W .

Let us consider V . The functor 0V yielding a strict submodule of V is defined
by:

(Def. 10) The carrier of 0V = {0V }.
Let us consider V . The functor ΩV yields a strict submodule of V and is

defined by:

(Def. 11) ΩV = the Z-module structure of V .

We now state several propositions:

(51) 0W = 0V .

(52) 0(W1) = 0(W2).

(53) 0W is a submodule of V .

(54) 0V is a submodule of W .

(55) 0(W1) is a submodule of W2.

(56) Every strict Z-module V is a submodule of ΩV .

Let us consider V , v, W . The functor v + W yields a subset of V and is
defined as follows:

(Def. 12) v +W = {v + u : u ∈W}.
Let us consider V , W . A subset of V is called a coset of W if:

(Def. 13) There exists v such that it = v +W.

In the sequel B, C are cosets of W .
The following propositions are true:

(57) 0V ∈ v +W iff v ∈W.
(58) v ∈ v +W.

(59) 0V +W = the carrier of W .

(60) v + 0V = {v}.
(61) v + ΩV = the carrier of V .
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(62) 0V ∈ v +W iff v +W = the carrier of W .

(63) v ∈W iff v +W = the carrier of W .

(64) If v ∈W, then a · v +W = the carrier of W .

(65) u ∈W iff v +W = v + u+W.

(66) u ∈W iff v +W = (v − u) +W.

(67) v ∈ u+W iff u+W = v +W.

(68) If u ∈ v1 +W and u ∈ v2 +W, then v1 +W = v2 +W.

(69) If v ∈W, then a · v ∈ v +W.

(70) u+ v ∈ v +W iff u ∈W.
(71) v − u ∈ v +W iff u ∈W.
(72) u ∈ v +W iff there exists v1 such that v1 ∈W and u = v + v1.

(73) u ∈ v +W iff there exists v1 such that v1 ∈W and u = v − v1.
(74) There exists v such that v1, v2 ∈ v +W iff v1 − v2 ∈W.
(75) If v+W = u+W, then there exists v1 such that v1 ∈W and v+ v1 = u.

(76) If v+W = u+W, then there exists v1 such that v1 ∈W and v− v1 = u.

(77) For all strict submodules W1, W2 of V such that v+W1 = v+W2 holds
W1 = W2.

(78) For all strict submodules W1, W2 of V such that v+W1 = u+W2 holds
W1 = W2.

(79) C is linearly closed iff C = the carrier of W .

(80) For all strict submodules W1, W2 of V and for every coset C1 of W1 and
for every coset C2 of W2 such that C1 = C2 holds W1 = W2.

(81) {v} is a coset of 0V .

(82) If V1 is a coset of 0V , then there exists v such that V1 = {v}.
(83) The carrier of W is a coset of W .

(84) The carrier of V is a coset of ΩV .

(85) If V1 is a coset of ΩV , then V1 = the carrier of V .

(86) 0V ∈ C iff C = the carrier of W .

(87) u ∈ C iff C = u+W.

(88) If u, v ∈ C, then there exists v1 such that v1 ∈W and u+ v1 = v.

(89) If u, v ∈ C, then there exists v1 such that v1 ∈W and u− v1 = v.

(90) There exists C such that v1, v2 ∈ C iff v1 − v2 ∈W.
(91) If u ∈ B and u ∈ C, then B = C.
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3. Operations on Submodules in Z-module

For simplicity, we use the following convention: V is a Z-module, W , W1,
W2, W3 are submodules of V , u, u1, u2, v, v1, v2 are vectors of V , a, a1, a2 are
integer numbers, and X, Y , y, y1, y2 are sets.

Let us consider V , W1, W2. The functor W1+W2 yielding a strict submodule
of V is defined by:

(Def. 14) The carrier of W1 +W2 = {v + u : v ∈W1 ∧ u ∈W2}.
Let us notice that the functor W1 +W2 is commutative.

Let us consider V , W1, W2. The functor W1 ∩W2 yields a strict submodule
of V and is defined as follows:

(Def. 15) The carrier of W1 ∩W2 = (the carrier of W1) ∩ (the carrier of W2).

Let us observe that the functor W1 ∩W2 is commutative.
We now state a number of propositions:

(92) x ∈ W1 + W2 iff there exist v1, v2 such that v1 ∈ W1 and v2 ∈ W2 and
x = v1 + v2.

(93) If v ∈W1 or v ∈W2, then v ∈W1 +W2.

(94) x ∈W1 ∩W2 iff x ∈W1 and x ∈W2.
(95) For every strict submodule W of V holds W +W = W.

(96) W1 + (W2 +W3) = (W1 +W2) +W3.

(97) W1 is a submodule of W1 +W2.

(98) For every strict submodule W2 of V holds W1 is a submodule of W2 iff
W1 +W2 = W2.

(99) For every strict submodule W of V holds 0V +W = W.

(100) 0V + ΩV = the Z-module structure of V .

(101) ΩV +W = the Z-module structure of V .

(102) For every strict Z-module V holds ΩV + ΩV = V.

(103) For every strict submodule W of V holds W ∩W = W.

(104) W1 ∩ (W2 ∩W3) = (W1 ∩W2) ∩W3.
(105) W1 ∩W2 is a submodule of W1.

(106) For every strict submodule W1 of V holds W1 is a submodule of W2 iff
W1 ∩W2 = W1.

(107) 0V ∩W = 0V .

(108) 0V ∩ ΩV = 0V .

(109) For every strict submodule W of V holds ΩV ∩W = W.

(110) For every strict Z-module V holds ΩV ∩ ΩV = V.

(111) W1 ∩W2 is a submodule of W1 +W2.

(112) For every strict submodule W2 of V holds W1 ∩W2 +W2 = W2.
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(113) For every strict submodule W1 of V holds W1 ∩ (W1 +W2) = W1.

(114) W1 ∩W2 +W2 ∩W3 is a submodule of W2 ∩ (W1 +W3).

(115) If W1 is a submodule of W2, then W2∩(W1+W3) = W1∩W2+W2∩W3.
(116) W2 +W1 ∩W3 is a submodule of (W1 +W2) ∩ (W2 +W3).

(117) If W1 is a submodule of W2, then W2+W1∩W3 = (W1+W2)∩(W2+W3).

(118) If W1 is a strict submodule of W3, then W1+W2∩W3 = (W1+W2)∩W3.
(119) For all strict submodules W1, W2 of V holds W1+W2 = W2 iff W1∩W2 =

W1.

(120) For all strict submodules W2, W3 of V such that W1 is a submodule of
W2 holds W1 +W3 is a submodule of W2 +W3.

(121) There exists W such that the carrier of W = (the carrier of W1) ∪ (the
carrier of W2) if and only if W1 is a submodule of W2 or W2 is a submodule
of W1.

Let us consider V . The functor Sub(V ) yields a set and is defined by:

(Def. 16) For every x holds x ∈ Sub(V ) iff x is a strict submodule of V .

Let us consider V . One can verify that Sub(V ) is non empty.
We now state the proposition

(122) For every strict Z-module V holds V ∈ Sub(V ).

Let us consider V , W1, W2. We say that V is the direct sum of W1 and W2
if and only if:

(Def. 17) The Z-module structure of V = W1 +W2 and W1 ∩W2 = 0V .

Let V be a Z-module and let W be a submodule of V . We say that W has
linear complement if and only if:

(Def. 18) There exists a submodule C of V such that V is the direct sum of C and
W .

Let V be a Z-module. Observe that there exists a submodule of V which has
linear complement.

Let V be a Z-module and let W be a submodule of V . Let us assume that
W has linear complement. A submodule of V is called a linear complement of
W if:

(Def. 19) V is the direct sum of it and W .

One can prove the following propositions:

(123) Let V be a Z-module and W1, W2 be submodules of V . Suppose V is
the direct sum of W1 and W2. Then W2 is a linear complement of W1.

(124) Let V be a Z-module, W be a submodule of V with linear complement,
and L be a linear complement of W . Then V is the direct sum of L and
W and the direct sum of W and L.
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(125) Let V be a Z-module, W be a submodule of V with linear complement,
and L be a linear complement of W . Then W+L = the Z-module structure
of V .

(126) Let V be a Z-module, W be a submodule of V with linear complement,
and L be a linear complement of W . Then W ∩ L = 0V .

(127) If V is the direct sum of W1 and W2, then V is the direct sum of W2
and W1.

(128) Let V be a Z-module, W be a submodule of V with linear complement,
and L be a linear complement of W . Then W is a linear complement of
L.

(129) Every Z-module V is the direct sum of 0V and ΩV and the direct sum
of ΩV and 0V .

(130) For every Z-module V holds 0V is a linear complement of ΩV and ΩV is
a linear complement of 0V .

In the sequel C is a coset of W , C1 is a coset of W1, and C2 is a coset of W2.
Next we state several propositions:

(131) If C1 meets C2, then C1 ∩ C2 is a coset of W1 ∩W2.
(132) Let V be a Z-module and W1, W2 be submodules of V . Then V is the

direct sum of W1 and W2 if and only if for every coset C1 of W1 and for
every coset C2 of W2 there exists a vector v of V such that C1∩C2 = {v}.

(133) Let V be a Z-module and W1, W2 be submodules of V . Then W1+W2 =
the Z-module structure of V if and only if for every vector v of V there
exist vectors v1, v2 of V such that v1 ∈W1 and v2 ∈W2 and v = v1 + v2.

(134) If V is the direct sum of W1 and W2 and v1 + v2 = u1 + u2 and v1,
u1 ∈W1 and v2, u2 ∈W2, then v1 = u1 and v2 = u2.

(135) Suppose V = W1 + W2 and there exists v such that for all v1, v2, u1,
u2 such that v1 + v2 = u1 + u2 and v1, u1 ∈ W1 and v2, u2 ∈ W2 holds
v1 = u1 and v2 = u2. Then V is the direct sum of W1 and W2.

Let us consider V , v, W1, W2. Let us assume that V is the direct sum of
W1 and W2. The functor v〈〈W1,W2〉〉 yields an element of (the carrier of V )× (the

carrier of V ) and is defined as follows:

(Def. 20) v = (v〈〈W1,W2〉〉)1+(v〈〈W1,W2〉〉)2 and (v〈〈W1,W2〉〉)1 ∈W1 and (v〈〈W1,W2〉〉)2 ∈
W2.

Next we state several propositions:

(136) If V is the direct sum of W1 and W2, then (v〈〈W1,W2〉〉)1 = (v〈〈W2,W1〉〉)2.

(137) If V is the direct sum of W1 and W2, then (v〈〈W1,W2〉〉)2 = (v〈〈W2,W1〉〉)1.

(138) Let V be a Z-module, W be a submodule of V with linear complement,
L be a linear complement of W , v be a vector of V , and t be an element
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of (the carrier of V ) × (the carrier of V ). If t1 + t2 = v and t1 ∈ W and
t2 ∈ L, then t = v〈〈W,L〉〉.

(139) Let V be a Z-module, W be a submodule of V with linear complement,
L be a linear complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1+

(v〈〈W,L〉〉)2 = v.

(140) Let V be a Z-module, W be a submodule of V with linear complement, L
be a linear complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1 ∈W
and (v〈〈W,L〉〉)2 ∈ L.

(141) Let V be a Z-module, W be a submodule of V with linear complement,
L be a linear complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)1 =

(v〈〈L,W〉〉)2.
(142) Let V be a Z-module, W be a submodule of V with linear complement,

L be a linear complement of W , and v be a vector of V . Then (v〈〈W,L〉〉)2 =

(v〈〈L,W〉〉)1.

In the sequel A1, A2, B are elements of Sub(V ).
Let us consider V . The functor SubJoinV yielding a binary operation on

Sub(V ) is defined by:

(Def. 21) For all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubJoinV )(A1, A2) = W1 +W2.

Let us consider V . The functor SubMeetV yields a binary operation on
Sub(V ) and is defined by:

(Def. 22) For all A1, A2, W1, W2 such that A1 = W1 and A2 = W2 holds
(SubMeetV )(A1, A2) = W1 ∩W2.

One can prove the following proposition

(143) 〈Sub(V ),SubJoinV,SubMeetV 〉 is a lattice.

Let us consider V . Note that 〈Sub(V ), SubJoinV,SubMeetV 〉 is lattice-like.
We now state several propositions:

(144) For every Z-module V holds 〈Sub(V ), SubJoinV,SubMeetV 〉 is lower-
bounded.

(145) For every Z-module V holds 〈Sub(V ), SubJoinV,SubMeetV 〉 is upper-
bounded.

(146) For every Z-module V holds 〈Sub(V ), SubJoinV,SubMeetV 〉 is a bound
lattice.

(147) For every Z-module V holds 〈Sub(V ), SubJoinV,SubMeetV 〉 is modular.

(148) Let V be a Z-module and W1, W2, W3 be strict submodules of V . If W1
is a submodule of W2, then W1 ∩W3 is a submodule of W2 ∩W3.

(149) Let V be a Z-module and W be a strict submodule of V . Suppose that
for every vector v of V holds v ∈ W. Then W = the Z-module structure
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of V .

(150) There exists C such that v ∈ C.

4. Transformation of Abelian Group to Z-module

LetA3 be a non empty additive loop structure. The left integer multiplication
of A3 yielding a function from Z × the carrier of A3 into the carrier of A3 is
defined by the condition (Def. 23).

(Def. 23) Let i be an element of Z and a be an element of A3. Then
(i) if i ≥ 0, then (the left integer multiplication of A3)(i, a) =

(Nat-mult-leftA3)(i, a), and
(ii) if i < 0, then (the left integer multiplication of A3)(i, a) =

(Nat-mult-leftA3)(−i,−a).

The following propositions are true:

(151) Let R be a non empty additive loop structure, a be an element of R, i
be an element of Z, and i1 be an element of N. If i = i1, then (the left
integer multiplication of R)(i, a) = i1 · a.

(152) Let R be a non empty additive loop structure, a be an element of R,
and i be an element of Z. If i = 0, then (the left integer multiplication of
R)(i, a) = 0R.

(153) Let R be an add-associative right zeroed right complementable non
empty additive loop structure and i be an element of N. Then
(Nat-mult-leftR)(i, 0R) = 0R.

(154) Let R be an add-associative right zeroed right complementable non emp-
ty additive loop structure and i be an element of Z. Then (the left integer
multiplication of R)(i, 0R) = 0R.

(155) Let R be a right zeroed non empty additive loop structure, a be an
element of R, and i be an element of Z. If i = 1, then (the left integer
multiplication of R)(i, a) = a.

(156) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i, j, k be
elements of N. If i ≤ j and k = j − i, then (Nat-mult-leftR)(k, a) =
(Nat-mult-leftR)(j, a)− (Nat-mult-leftR)(i, a).

(157) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i be an
element of N. Then −(Nat-mult-leftR)(i, a) = (Nat-mult-leftR)(i,−a).

(158) Let R be an Abelian right zeroed add-associative right complementa-
ble non empty additive loop structure, a be an element of R, and i, j be
elements of Z. Suppose i ∈ N and j /∈ N. Then (the left integer multipli-
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cation of R)(i + j, a) = (the left integer multiplication of R)(i, a) + (the
left integer multiplication of R)(j, a).

(159) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i, j be
elements of Z. Then (the left integer multiplication of R)(i+ j, a) = (the
left integer multiplication of R)(i, a) + (the left integer multiplication of
R)(j, a).

(160) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a, b be elements of R, and i be an
element of N. Then (Nat-mult-leftR)(i, a+ b) = (Nat-mult-leftR)(i, a) +
(Nat-mult-leftR)(i, b).

(161) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a, b be elements of R, and i be an
element of Z. Then (the left integer multiplication of R)(i, a + b) = (the
left integer multiplication of R)(i, a) + (the left integer multiplication of
R)(i, b).

(162) Let R be an Abelian right zeroed add-associative right comple-
mentable non empty additive loop structure, a be an element of
R, and i, j be elements of N. Then (Nat-mult-leftR)(i · j, a) =
(Nat-mult-leftR)(i, (Nat-mult-leftR)(j, a)).

(163) Let R be an Abelian right zeroed add-associative right complementable
non empty additive loop structure, a be an element of R, and i, j be
elements of Z. Then (the left integer multiplication of R)(i·j, a) = (the left
integer multiplication of R)(i, (the left integer multiplication of R)(j, a)).

(164) Let A3 be a non empty Abelian add-associative right zeroed right com-
plementable additive loop structure. Then 〈〈the carrier of A3, the zero of
A3, the addition of A3, the left integer multiplication of A3〉〉 is a Z-module.
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Summary. In this article we defined mathematical morphology image pro-
cessing with set operations. First, we defined Minkowski set operations and pro-
ved their properties. Next, we defined basic image processing, dilation and erosion
proving basic fact about them [5], [8].
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1. Minkowski Set Operations

Let E be a non empty RLS structure. A binary image of E is a subset of E.
In the sequel E denotes a real linear space and A denotes a binary image of E.
Let E be a real linear space and let A, B be binary images of E. The functor

A	B yielding a binary image of E is defined as follows:

(Def. 1) A	B = {z ∈ E:
∧
b : element of E (b ∈ B ⇒ z − b ∈ A)}.

Let a be a real number, let E be a real linear space, and let A be a subset
of E. We introduce a ·A as a synonym of a�A. The following propositions are
true:

(1) Let E be a real linear space and A, B be subsets of E. If B = ∅, then
A⊕B = B and B ⊕A = B and A	B = the carrier of E.

(2) For every real linear space E and for all subsets A, B of E such that
A 6= ∅ and B = ∅ holds B 	A = B.
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(3) Let E be a real linear space and A, B be subsets of E. If B = the carrier
of E and A 6= ∅, then A⊕B = B and B ⊕A = B.

(4) For every real linear space E and for all subsets A, B of E such that
B = the carrier of E holds B 	A = B.

(5) A⊕B =
⋃
{b+A; b ranges over elements of E: b ∈ B}.

Let E be a non empty RLS structure. A binary image family of E is a family
of subsets of the carrier of E.

We follow the rules: F , G are binary image families of E and A, B, C are
non empty binary images of E. We now state four propositions:

(6) A	B =
⋂
{b+A; b ranges over elements of E: b ∈ B}.

(7) A⊕B = {v ∈ E: (v + (−1) ·B) ∩A 6= ∅}.
(8) A	B = {v ∈ E: v + (−1) ·B ⊆ A}.
(9) ((The carrier of E)\A)⊕B = (the carrier of E)\A	B and ((the carrier

of E) \A)	B = (the carrier of E) \A⊕B.
Let E be a non empty Abelian additive loop structure and let A, B be

subsets of E. Let us note that the functor A⊕B is commutative.
One can prove the following propositions:

(10) For every non empty add-associative additive loop structure E and for
all subsets A, B, C of E holds (A+B) + C = A+ (B + C).

(11) (A⊕B)⊕ C = A⊕ (B ⊕ C).

(12)
⋃
F ⊕B =

⋃
{X ⊕B;X ranges over binary images of E: X ∈ F}.

(13) A⊕
⋃
F =

⋃
{A⊕X;X ranges over binary images of E: X ∈ F}.

(14)
⋂
F ⊕B ⊆

⋂
{X ⊕B;X ranges over binary images of E: X ∈ F}.

(15) A⊕
⋂
F ⊆

⋂
{A⊕X;X ranges over binary images of E: X ∈ F}.

(16) For every non empty additive loop structure E and for all subsets A, B,
C of E such that B ⊆ C holds A+B ⊆ A+ C.

(17) (v +A)⊕B = A⊕ (v +B) and (v +A)⊕B = v +A⊕B.
(18)

⋂
F 	B =

⋂
{X 	B;X ranges over binary images of E: X ∈ F}.

(19)
⋂
{B 	X;X ranges over binary images of E: X ∈ F} ⊆ B 	

⋂
F.

(20)
⋃
{X 	B;X ranges over binary images of E: X ∈ F} ⊆

⋃
F 	B.

(21) If F 6= ∅, then B 	
⋃
F =

⋂
{B 	X;X ranges over binary images of E:

X ∈ F}.
(22) If A ⊆ B, then A	 C ⊆ B 	 C.
(23) If A ⊆ B, then C 	B ⊆ C 	A.
(24) (v +A)	B = A	 (v +B) and (v +A)	B = v +A	B.
(25) A	B 	 C = A	 (B ⊕ C).
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2. Dilation and Erosion

Let E be a real linear space and let B be a binary image of E. The functor
dilationB yields a function from 2the carrier of E into 2the carrier of E and is defined
as follows:

(Def. 2) For every binary image A of E holds (dilationB)(A) = A⊕B.
Let E be a real linear space and let B be a binary image of E. The functor

erosionB yields a function from 2the carrier of E into 2the carrier of E and is defined
by:

(Def. 3) For every binary image A of E holds (erosionB)(A) = A	B.
The following propositions are true:

(26) (dilationB)(
⋃
F ) =

⋃
{(dilationB)(X);X ranges over binary images of

E: X ∈ F}.
(27) If A ⊆ B, then (dilationC)(A) ⊆ (dilationC)(B).

(28) (dilationC)(v +A) = v + (dilationC)(A).

(29) (erosionB)(
⋂
F ) =

⋂
{(erosionB)(X);X ranges over binary images of

E: X ∈ F}.
(30) If A ⊆ B, then (erosionC)(A) ⊆ (erosionC)(B).

(31) (erosionC)(v +A) = v + (erosionC)(A).

(32) (dilationC)((the carrier of E) \A) = (the carrier of E) \ (erosionC)(A)
and (erosionC)((the carrier of E)\A) = (the carrier of E)\(dilationC)(A).

(33) (dilationC)((dilationB)(A)) = (dilation(dilationC)(B))(A) and
(erosionC)((erosionB)(A)) = (erosion(dilationC)(B))(A).
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Let us observe that there exists a sequence of real numbers which is conver-
gent to 0 and non-zero.

For simplicity, we adopt the following convention: x0, r denote real numbers,
i, m denote elements of N, n denotes a non empty element of N, Y denotes a
subset of R, Z denotes an open subset of R, and f1, f2 denote partial functions
from R to Rn.

The following proposition is true

(1) For all partial functions f1, f2 from R to Rm holds f1 − f2 = f1 +−f2.
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Let n be a non empty element of N, let f be a partial function from R to
Rn, and let x be a real number. We say that f is differentiable in x if and only
if:

(Def. 1) There exists a partial function g from R to 〈En, ‖ · ‖〉 such that f = g

and g is differentiable in x.

One can prove the following proposition

(2) Let n be a non empty element of N, f be a partial function from R to
Rn, h be a partial function from R to 〈En, ‖ · ‖〉, and x be a real number.
Suppose h = f. Then f is differentiable in x if and only if h is differentiable
in x.

Let n be a non empty element of N, let f be a partial function from R to
Rn, and let x be a real number. The functor f ′(x) yields an element of Rn and
is defined as follows:

(Def. 2) There exists a partial function g from R to 〈En, ‖ · ‖〉 such that f = g

and f ′(x) = g′(x).

One can prove the following proposition

(3) Let n be a non empty element of N, f be a partial function from R to
Rn, h be a partial function from R to 〈En, ‖ · ‖〉, and x be a real number.
If h = f, then f ′(x) = h′(x).

Let us consider n, f , X. We say that f is differentiable on X if and only if:

(Def. 3) X ⊆ dom f and for every x such that x ∈ X holds f�X is differentiable
in x.

The following propositions are true:

(4) If f is differentiable on X, then X is a subset of R.

(5) f is differentiable on Z iff Z ⊆ dom f and for every x such that x ∈ Z
holds f is differentiable in x.

(6) If f is differentiable on Y , then Y is open.

Let us consider n, f , X. Let us assume that f is differentiable on X. The
functor f ′�X yields a partial function from R to Rn and is defined by:

(Def. 4) dom(f ′�X) = X and for every x such that x ∈ X holds f ′�X(x) = f ′(x).

One can prove the following propositions:

(7) Suppose Z ⊆ dom f and there exists an element r of Rn such that
rng f = {r}. Then f is differentiable on Z and for every x such that x ∈ Z
holds (f ′�Z)x = 〈0, . . . , 0︸ ︷︷ ︸

n

〉.

(8) Let x0 be a real number, f be a partial function from R to Rn, g be a
partial function from R to 〈En, ‖ · ‖〉, and N be a neighbourhood of x0.
Suppose f = g and f is differentiable in x0 and N ⊆ dom f. Let given h, c.
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Suppose rng c = {x0} and rng(h+ c) ⊆ N. Then h−1 · ((g∗(h+ c))− (g∗c))
is convergent and f ′(x0) = lim(h−1 · ((g∗(h+ c))− (g∗c))).

(9) If f is differentiable in x0, then r·f is differentiable in x0 and (r·f)′(x0) =
r · f ′(x0).

(10) If f is differentiable in x0, then −f is differentiable in x0 and (−f)′(x0) =
−f ′(x0).

(11) If f1 is differentiable in x0 and f2 is differentiable in x0, then f1 + f2 is
differentiable in x0 and (f1 + f2)′(x0) = f1

′(x0) + f2
′(x0).

(12) If f1 is differentiable in x0 and f2 is differentiable in x0, then f1 − f2 is
differentiable in x0 and (f1 − f2)′(x0) = f1

′(x0)− f2′(x0).
(13) Suppose Z ⊆ dom f and f is differentiable on Z. Then r · f is differen-

tiable on Z and for every x such that x ∈ Z holds (r · f)′�Z(x) = r · f ′(x).

(14) If Z ⊆ dom f and f is differentiable on Z, then −f is differentiable on
Z and for every x such that x ∈ Z holds (−f)′�Z(x) = −f ′(x).

(15) Suppose Z ⊆ dom(f1 + f2) and f1 is differentiable on Z and f2 is diffe-
rentiable on Z. Then f1 + f2 is differentiable on Z and for every x such
that x ∈ Z holds (f1 + f2)′�Z(x) = f1

′(x) + f2
′(x).

(16) Suppose Z ⊆ dom(f1 − f2) and f1 is differentiable on Z and f2 is diffe-
rentiable on Z. Then f1 − f2 is differentiable on Z and for every x such
that x ∈ Z holds (f1 − f2)′�Z(x) = f1

′(x)− f2′(x).

(17) If Z ⊆ dom f and f�Z is constant, then f is differentiable on Z and for
every x such that x ∈ Z holds f ′�Z(x) = 〈0, . . . , 0︸ ︷︷ ︸

n

〉.

(18) Let r, p be elements of Rn. Suppose Z ⊆ dom f and for every x such
that x ∈ Z holds fx = x ·r+p. Then f is differentiable on Z and for every
x such that x ∈ Z holds f ′�Z(x) = r.

(19) For every real number x0 such that f is differentiable in x0 holds f is
continuous in x0.

(20) If f is differentiable on X, then f�X is continuous.

(21) If f is differentiable on X and Z ⊆ X, then f is differentiable on Z.

Let n be a non empty element of N and let f be a partial function from R
to Rn. We say that f is differentiable if and only if:

(Def. 5) f is differentiable on dom f.

Let us consider n. One can check that R 7−→ 〈0, . . . , 0︸ ︷︷ ︸
n

〉 is differentiable.

Let us consider n. Note that there exists a function from R into Rn which
is differentiable.

One can prove the following proposition

(22) For every differentiable partial function f from R to Rn such that Z ⊆
dom f holds f is differentiable on Z.
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In the sequel G1, R are rests of 〈En, ‖ · ‖〉 and D1, L are linears of 〈En, ‖ · ‖〉.
Next we state a number of propositions:

(23) Let R be a partial function from R to 〈En, ‖ · ‖〉. Suppose R is total.
Then R is rest-like if and only if for every real number r such that r > 0
there exists a real number d such that d > 0 and for every real number z
such that z 6= 0 and |z| < d holds |z|−1 · ‖Rz‖ < r.

(24) Let g be a partial function from R to 〈En, ‖ · ‖〉 and x0 be a real number.
Suppose 1 ≤ i ≤ n and g is differentiable in x0. Then Proj(i, n) · g is
differentiable in x0 and (Proj(i, n))(g′(x0)) = (Proj(i, n) · g)′(x0).

(25) Let g be a partial function from R to 〈En, ‖ · ‖〉 and x0 be a real number.
Then g is differentiable in x0 if and only if for every element i of N such
that 1 ≤ i ≤ n holds Proj(i, n) · g is differentiable in x0.

(26) Let f be a partial function from R to Rn and x0 be a real number.
Suppose 1 ≤ i ≤ n and f is differentiable in x0. Then Proj(i, n) · f is
differentiable in x0 and (Proj(i, n))(f ′(x0)) = (Proj(i, n) · f)′(x0).

(27) Let f be a partial function from R to Rn and x0 be a real number. Then
f is differentiable in x0 if and only if for every element i of N such that
1 ≤ i ≤ n holds Proj(i, n) · f is differentiable in x0.

(28) Let g be a partial function from R to 〈En, ‖ · ‖〉. Suppose 1 ≤ i ≤ n

and g is differentiable on X. Then Proj(i, n) · g is differentiable on X and
Proj(i, n) · g′�X = (Proj(i, n) · g)′�X .

(29) Let f be a partial function from R to Rn. Suppose 1 ≤ i ≤ n and
f is differentiable on X. Then Proj(i, n) · f is differentiable on X and
Proj(i, n) · f ′�X = (Proj(i, n) · f)′�X .

(30) Let g be a partial function from R to 〈En, ‖ · ‖〉. Then g is differentiable
on X if and only if for every element i of N such that 1 ≤ i ≤ n holds
Proj(i, n) · g is differentiable on X.

(31) Let f be a partial function from R to Rn. Then f is differentiable on X if
and only if for every element i of N such that 1 ≤ i ≤ n holds Proj(i, n) ·f
is differentiable on X.

(32) For every function J from 〈E1, ‖ · ‖〉 into R and for every point x0 of
〈E1, ‖ · ‖〉 such that J = proj(1, 1) holds J is continuous in x0.

(33) For every function I from R into 〈E1, ‖ · ‖〉 such that I = proj(1, 1)−1

holds I is continuous in x0.

(34) Let S, T be real normed spaces, f1 be a partial function from S to R,
f2 be a partial function from R to T , and x0 be a point of S. Suppose
x0 ∈ dom(f2 ·f1) and f1 is continuous in x0 and f2 is continuous in (f1)x0 .
Then f2 · f1 is continuous in x0.

(35) Let J be a function from 〈E1, ‖ · ‖〉 into R, x0 be a point of 〈E1, ‖ · ‖〉,
y0 be an element of R, g be a partial function from R to 〈En, ‖ · ‖〉, and f
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be a partial function from 〈E1, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose J = proj(1, 1)
and x0 ∈ dom f and y0 ∈ dom g and x0 = 〈y0〉 and f = g · J. Then f is
continuous in x0 if and only if g is continuous in y0.

(36) Let I be a function from R into 〈E1, ‖ · ‖〉, x0 be a point of 〈E1, ‖ · ‖〉, y0
be an element of R, g be a partial function from R to 〈En, ‖ · ‖〉, and f be
a partial function from 〈E1, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose I = proj(1, 1)−1

and x0 ∈ dom f and y0 ∈ dom g and x0 = 〈y0〉 and f · I = g. Then f is
continuous in x0 if and only if g is continuous in y0.

(37) For every function I from R into 〈E1, ‖ · ‖〉 such that I = proj(1, 1)−1

holds I is differentiable in x0 and I ′(x0) = 〈1〉.
Let n be a non empty element of N, let f be a partial function from 〈En, ‖·‖〉

to R, and let x be a point of 〈En, ‖ · ‖〉. We say that f is differentiable in x if
and only if the condition (Def. 6) is satisfied.

(Def. 6) There exists a partial function g from Rn to R and there exists an
element y of Rn such that f = g and x = y and g is differentiable in y.

Let n be a non empty element of N, let f be a partial function from 〈En, ‖·‖〉
to R, and let x be a point of 〈En, ‖ · ‖〉. The functor f ′(x) yields a function from
〈En, ‖ · ‖〉 into R and is defined by:

(Def. 7) There exists a partial function g from Rn to R and there exists an
element y of Rn such that f = g and x = y and f ′(x) = g′(y).

We now state several propositions:

(38) Let J be a function from R1 into R and x0 be an element of R1. If
J = proj(1, 1), then J is differentiable in x0 and J ′(x0) = J.

(39) Let J be a function from 〈E1, ‖ · ‖〉 into R and x0 be a point of 〈E1, ‖ · ‖〉.
If J = proj(1, 1), then J is differentiable in x0 and J ′(x0) = J.

(40) Let I be a function from R into 〈E1, ‖ · ‖〉. Suppose I = proj(1, 1)−1.
Then

(i) for every rest R of 〈E1, ‖ · ‖〉, 〈En, ‖ · ‖〉 holds R · I is a rest of 〈En, ‖ · ‖〉,
and

(ii) for every linear operator L from 〈E1, ‖ · ‖〉 into 〈En, ‖ · ‖〉 holds L · I is
a linear of 〈En, ‖ · ‖〉.

(41) Let J be a function from 〈E1, ‖ · ‖〉 into R. Suppose J = proj(1, 1). Then
(i) for every rest R of 〈En, ‖ · ‖〉 holds R ·J is a rest of 〈E1, ‖ · ‖〉, 〈En, ‖ · ‖〉,

and
(ii) for every linear L of 〈En, ‖ · ‖〉 holds L · J is a bounded linear operator

from 〈E1, ‖ · ‖〉 into 〈En, ‖ · ‖〉.
(42) Let I be a function from R into 〈E1, ‖ · ‖〉, x0 be a point of 〈E1, ‖ · ‖〉, y0

be an element of R, g be a partial function from R to 〈En, ‖ · ‖〉, and f be
a partial function from 〈E1, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose I = proj(1, 1)−1

and x0 ∈ dom f and y0 ∈ dom g and x0 = 〈y0〉 and f · I = g and f is
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differentiable in x0. Then g is differentiable in y0 and g′(y0) = f ′(x0)(〈1〉)
and for every element r of R holds f ′(x0)(〈r〉) = r · g′(y0).

(43) Let I be a function from R into 〈E1, ‖ · ‖〉, x0 be a point of 〈E1, ‖ · ‖〉, y0
be an element of R, g be a partial function from R to 〈En, ‖ · ‖〉, and f be
a partial function from 〈E1, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose I = proj(1, 1)−1

and x0 ∈ dom f and y0 ∈ dom g and x0 = 〈y0〉 and f · I = g. Then f is
differentiable in x0 if and only if g is differentiable in y0.

(44) Let J be a function from 〈E1, ‖ · ‖〉 into R, x0 be a point of 〈E1, ‖ · ‖〉,
y0 be an element of R, g be a partial function from R to 〈En, ‖ · ‖〉, and f
be a partial function from 〈E1, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose J = proj(1, 1)
and x0 ∈ dom f and y0 ∈ dom g and x0 = 〈y0〉 and f = g · J. Then f is
differentiable in x0 if and only if g is differentiable in y0.

(45) Let J be a function from 〈E1, ‖ · ‖〉 into R, x0 be a point of 〈E1, ‖ · ‖〉,
y0 be an element of R, g be a partial function from R to 〈En, ‖ · ‖〉, and f
be a partial function from 〈E1, ‖ · ‖〉 to 〈En, ‖ · ‖〉. Suppose J = proj(1, 1)
and x0 ∈ dom f and y0 ∈ dom g and x0 = 〈y0〉 and f = g · J and g is
differentiable in y0. Then f is differentiable in x0 and g′(y0) = f ′(x0)(〈1〉)
and for every element r of R holds f ′(x0)(〈r〉) = r · g′(y0).

(46) Let R be a rest of 〈En, ‖ · ‖〉. Suppose R0 = 0〈En,‖·‖〉. Let e be a real
number. Suppose e > 0. Then there exists a real number d such that
d > 0 and for every real number h such that |h| < d holds ‖Rh‖ ≤ e · |h|.

In the sequel m, n denote non empty elements of N.
One can prove the following propositions:

(47) For every rest R of 〈En, ‖ · ‖〉 and for every bounded linear operator L
from 〈En, ‖ · ‖〉 into 〈Em, ‖ · ‖〉 holds L ·R is a rest of 〈Em, ‖ · ‖〉.

(48) Let R1 be a rest of 〈En, ‖ · ‖〉. Suppose (R1)0 = 0〈En,‖·‖〉. Let R2 be a rest
of 〈En, ‖ · ‖〉, 〈Em, ‖ · ‖〉. Suppose (R2)0〈En,‖·‖〉 = 0〈Em,‖·‖〉. Let L be a linear
of 〈En, ‖ · ‖〉. Then R2 · (L+R1) is a rest of 〈Em, ‖ · ‖〉.

(49) Let R1 be a rest of 〈En, ‖ · ‖〉. Suppose (R1)0 = 0〈En,‖·‖〉. Let R2 be a
rest of 〈En, ‖ · ‖〉, 〈Em, ‖ · ‖〉. Suppose (R2)0〈En,‖·‖〉 = 0〈Em,‖·‖〉. Let L1 be
a linear of 〈En, ‖ · ‖〉 and L2 be a bounded linear operator from 〈En, ‖ · ‖〉
into 〈Em, ‖ · ‖〉. Then L2 ·R1 +R2 · (L1 +R1) is a rest of 〈Em, ‖ · ‖〉.

(50) Let x0 be an element of R and g be a partial function from R to 〈En, ‖·‖〉.
Suppose g is differentiable in x0. Let f be a partial function from 〈En, ‖·‖〉
to 〈Em, ‖ · ‖〉. Suppose f is differentiable in gx0 . Then f · g is differentiable
in x0 and (f · g)′(x0) = f ′(gx0)(g

′(x0)).
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The notation and terminology used here have been introduced in the following
papers: [7], [9], [13], [6], [14], [1], [3], [18], [17], [4], [2], [8], [11], [12], [16], [15],
[5], and [10].

1. Basic Properties of Subordinate Symmetric Matrices

For simplicity, we use the following convention: n denotes a natural number,
K denotes a field, a, b denote elements of K, p, q denote finite sequences of
elements of K, and M1, M2 denote square matrices over K of dimension n.

Let K be a field, let n be a natural number, and let M be a square matrix
over K of dimension n. We say that M is subsymmetric if and only if:

(Def. 1) For all natural numbers i, j, k, l such that 〈〈i, j〉〉 ∈ the indices of M and
k = (n+ 1)− j and l = (n+ 1)− i holds Mi,j = Mk,l.

Let us consider n, K, a. Note that (a)n×n is subsymmetric.
Let us consider n, K. Observe that there exists a square matrix over K of

dimension n which is subsymmetric.
1Authors thanks Andrzej Trybulec and Yatsuka Nakamura for the help during writing this

article.
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Let us consider n, K and let M be a subsymmetric square matrix over K of
dimension n. Note that −M is subsymmetric.

Let us consider n, K and let M1, M2 be subsymmetric square matrices over
K of dimension n. One can check that M1 +M2 is subsymmetric.

Let us consider n, K, a and let M be a subsymmetric square matrix over K
of dimension n. Note that a ·M is subsymmetric.

Let us consider n, K and let M1, M2 be subsymmetric square matrices over
K of dimension n. One can verify that M1 −M2 is subsymmetric.

Let us consider n, K and let M be a subsymmetric square matrix over K of
dimension n. Observe that MT is subsymmetric.

Let us consider n, K. Observe that every square matrix over K of dimension
n which is line circulant is also subsymmetric and every square matrix over K
of dimension n which is column circulant is also subsymmetric.

Let K be a field, let n be a natural number, and let M be a square matrix
over K of dimension n. We say that M is anti-subsymmetric if and only if:

(Def. 2) For all natural numbers i, j, k, l such that 〈〈i, j〉〉 ∈ the indices of M and
k = (n+ 1)− j and l = (n+ 1)− i holds Mi,j = −Mk,l.

Let us consider n, K. One can verify that there exists a square matrix over
K of dimension n which is anti-subsymmetric.

The following proposition is true

(1) Let K be a Fanoian field, n, i, j, k, l be natural numbers, and M1 be
a square matrix over K of dimension n. Suppose 〈〈i, j〉〉 ∈ the indices of
M1 and i+ j = n + 1 and k = (n + 1)− j and l = (n + 1)− i and M1 is
anti-subsymmetric. Then (M1)i,j = 0K .

Let us consider n, K and let M be an anti-subsymmetric square matrix over
K of dimension n. Note that −M is anti-subsymmetric.

Let us consider n, K and let M1, M2 be anti-subsymmetric square matrices
over K of dimension n. Observe that M1 +M2 is anti-subsymmetric.

Let us consider n, K, a and let M be an anti-subsymmetric square matrix
over K of dimension n. One can verify that a ·M is anti-subsymmetric.

Let us consider n, K and let M1, M2 be anti-subsymmetric square matrices
over K of dimension n. One can check that M1 −M2 is anti-subsymmetric.

Let us consider n, K and let M be an anti-subsymmetric square matrix over
K of dimension n. One can verify that MT is anti-subsymmetric.

2. Basic Properties of Central Symmetric Matrices

Let K be a field, let n be a natural number, and let M be a square matrix
over K of dimension n. We say that M is central symmetric if and only if:

(Def. 3) For all natural numbers i, j, k, l such that 〈〈i, j〉〉 ∈ the indices of M and
k = (n+ 1)− i and l = (n+ 1)− j holds Mi,j = Mk,l.
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Let us consider n, K, a. Note that (a)n×n is central symmetric.
Let us consider n, K. One can verify that there exists a square matrix over

K of dimension n which is central symmetric.
Let us consider n, K and let M be a central symmetric square matrix over

K of dimension n. One can verify that −M is central symmetric.
Let us consider n, K and let M1, M2 be central symmetric square matrices

over K of dimension n. One can verify that M1 +M2 is central symmetric.
Let us consider n, K, a and let M be a central symmetric square matrix

over K of dimension n. Note that a ·M is central symmetric.
Let us consider n, K and let M1, M2 be central symmetric square matrices

over K of dimension n. Observe that M1 −M2 is central symmetric.
Let us consider n, K and let M be a central symmetric square matrix over

K of dimension n. Observe that MT is central symmetric.
Let us consider n, K. Note that every square matrix over K of dimension n

which is symmetric and subsymmetric is also central symmetric.

3. Basic Properties of Symmetric Circulant Matrices

Let K be a set, let M be a matrix over K, and let p be a finite sequence. We
say that M is symmetry circulant about p if and only if the conditions (Def. 4)
are satisfied.

(Def. 4)(i) len p = widthM,

(ii) for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M and
i+ j 6= len p+ 1 holds Mi,j = p(((i+ j)− 1) mod len p), and

(iii) for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M and
i+ j = len p+ 1 holds Mi,j = p(len p).

The following propositions are true:

(2) (a)n×n is symmetry circulant about n 7→ a.

(3) If M1 is symmetry circulant about p, then a ·M1 is symmetry circulant
about a · p.

(4) If M1 is symmetry circulant about p, then −M1 is symmetry circulant
about −p.

(5) If M1 is symmetry circulant about p and M2 is symmetry circulant about
q, then M1 +M2 is symmetry circulant about p+ q.

Let K be a set and let M be a matrix over K. We say that M is symmetry
circulant if and only if:

(Def. 5) There exists a finite sequence p of elements of K such that len p =
widthM and M is symmetry circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K.
We say that p is first symmetry of circulant if and only if:
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(Def. 6) There exists a square matrix over K of dimension len p which is symme-
try circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K.
Let us assume that p is first symmetry of circulant. The functor SCirc p yielding
a square matrix over K of dimension len p is defined as follows:

(Def. 7) SCirc p is symmetry circulant about p.

Let us consider n, K, a. Note that (a)n×n is symmetry circulant.
Let us consider n, K. Note that there exists a square matrix over K of

dimension n which is symmetry circulant.
In the sequel D is a non empty set, t is a finite sequence of elements of D,

and A is a square matrix over D of dimension n.
We now state the proposition

(6) Let p be a finite sequence of elements of D. Suppose 0 < n and A is
symmetry circulant about p. Then AT is symmetry circulant about p.

Let us consider n, K, a and let M1 be a symmetry circulant square matrix
over K of dimension n. Note that a ·M1 is symmetry circulant.

Let us consider n, K and let M1, M2 be symmetry circulant square matrices
over K of dimension n. Note that M1 +M2 is symmetry circulant.

Let us consider n, K and let M1 be a symmetry circulant square matrix over
K of dimension n. Note that −M1 is symmetry circulant.

Let us consider n, K and let M1, M2 be symmetry circulant square matrices
over K of dimension n. Observe that M1 −M2 is symmetry circulant.

The following propositions are true:

(7) If A is symmetry circulant and n > 0, then AT is symmetry circulant.

(8) If p is first symmetry of circulant, then −p is first symmetry of circulant.

(9) If p is first symmetry of circulant, then SCirc(−p) = −SCirc p.

(10) Suppose p is first symmetry of circulant and q is first symmetry of cir-
culant and len p = len q. Then p+ q is first symmetry of circulant.

(11) If len p = len q and p is first symmetry of circulant and q is first symmetry
of circulant, then SCirc(p+ q) = SCirc p+ SCirc q.

(12) If p is first symmetry of circulant, then a·p is first symmetry of circulant.

(13) If p is first symmetry of circulant, then SCirc(a · p) = a · SCirc p.

(14) If p is first symmetry of circulant, then a·SCirc p+b·SCirc p = SCirc((a+
b) · p).

(15) If p is first symmetry of circulant and q is first symmetry of circulant
and len p = len q, then a · SCirc p+ a · SCirc q = SCirc(a · (p+ q)).

(16) Suppose p is first symmetry of circulant and q is first symmetry of cir-
culant and len p = len q. Then a · SCirc p+ b · SCirc q = SCirc(a · p+ b · q).

(17) If M1 is symmetry circulant, then M1
T = M1.
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Let us consider n, K. Note that every square matrix over K of dimension n
which is symmetry circulant is also symmetric.
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Summary. In this article, we define the Riemann integral on functions R
into n-dimensional real normed space and prove the linearity of this operator. As
a result, the Riemann integration can be applied to the wider range. Our method
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1. On the Functions from R into n-dimensional Real Space

For simplicity, we adopt the following convention: X denotes a set, n denotes
an element of N, a, b, c, d, e, r, x0 denote real numbers, A denotes a non empty
closed-interval subset of R, f , g, h denote partial functions from R to Rn, and
E denotes an element of Rn. We now state a number of propositions:

(1) If a ≤ c ≤ b, then c ∈ [a, b] and [a, c] ⊆ [a, b] and [c, b] ⊆ [a, b].

1This work was supported by JSPS KAKENHI 22300285.
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(2) If a ≤ c ≤ d ≤ b and [a, b] ⊆ X, then [c, d] ⊆ X.
(3) If a ≤ b and c, d ∈ [a, b] and [a, b] ⊆ X, then [min(c, d),max(c, d)] ⊆ X.
(4) If a ≤ c ≤ d ≤ b and [a, b] ⊆ dom f and [a, b] ⊆ dom g, then [c, d] ⊆

dom(f + g).

(5) If a ≤ c ≤ d ≤ b and [a, b] ⊆ dom f and [a, b] ⊆ dom g, then [c, d] ⊆
dom(f − g).

(6) Let f be a partial function from R to R. Suppose a ≤ c ≤ d ≤ b and f

is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f. Then r · f
is integrable on [c, d] and (r · f)�[c, d] is bounded.

(7) Let f , g be partial functions from R to R. Suppose that a ≤ c ≤ d ≤ b

and f is integrable on [a, b] and g is integrable on [a, b] and f�[a, b] is
bounded and g�[a, b] is bounded and [a, b] ⊆ dom f and [a, b] ⊆ dom g.

Then f − g is integrable on [c, d] and (f − g)�[c, d] is bounded.

(8) Suppose a ≤ b and f is integrable on [a, b] and f�[a, b] is bounded and
[a, b] ⊆ dom f and c ∈ [a, b]. Then f is integrable on [a, c] and f is inte-

grable on [c, b] and
b∫
a

f(x)dx =
c∫
a

f(x)dx+
b∫
c

f(x)dx.

(9) Suppose a ≤ c ≤ d ≤ b and f is integrable on [a, b] and f�[a, b] is bounded
and [a, b] ⊆ dom f. Then f is integrable on [c, d] and f�[c, d] is bounded.

(10) Suppose that a ≤ c ≤ d ≤ b and f is integrable on [a, b] and g is
integrable on [a, b] and f�[a, b] is bounded and g�[a, b] is bounded and
[a, b] ⊆ dom f and [a, b] ⊆ dom g. Then f + g is integrable on [c, d] and
(f + g)�[c, d] is bounded.

(11) Suppose a ≤ c ≤ d ≤ b and f is integrable on [a, b] and f�[a, b] is bounded
and [a, b] ⊆ dom f. Then r · f is integrable on [c, d] and (r · f)�[c, d] is
bounded.

(12) Suppose a ≤ c ≤ d ≤ b and f is integrable on [a, b] and f�[a, b] is
bounded and [a, b] ⊆ dom f. Then −f is integrable on [c, d] and (−f)�[c, d]
is bounded.

(13) Suppose that a ≤ c ≤ d ≤ b and f is integrable on [a, b] and g is
integrable on [a, b] and f�[a, b] is bounded and g�[a, b] is bounded and
[a, b] ⊆ dom f and [a, b] ⊆ dom g. Then f − g is integrable on [c, d] and
(f − g)�[c, d] is bounded.

(14) Let n be a non empty element of N and f be a function from A into Rn.
Then f is bounded if and only if |f | is bounded.

(15) If f is bounded and A ⊆ dom f, then f�A is bounded.

(16) Let f be a partial function from R to Rn and g be a function from A

into Rn. If f is bounded and f = g, then g is bounded.

(17) For every partial function f from R to Rn and for every function g from
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A into Rn such that f = g holds |f | = |g|.
(18) If A ⊆ domh, then |h�A| = |h|�A.
(19) Let n be a non empty element of N and h be a partial function from R

to Rn. If A ⊆ domh and h�A is bounded, then |h|�A is bounded.

(20) Let n be a non empty element of N and h be a partial function from R
to Rn. Suppose A ⊆ domh and h�A is bounded and h is integrable on A

and |h| is integrable on A. Then |
∫
A

h(x)dx| ≤
∫
A

|h|(x)dx.

(21) Let n be a non empty element of N and h be a partial function from R to
Rn. Suppose a ≤ b and [a, b] ⊆ domh and h is integrable on [a, b] and |h| is

integrable on [a, b] and h�[a, b] is bounded. Then |
b∫
a

h(x)dx| ≤
b∫
a

|h|(x)dx.

(22) Let n be a non empty element of N and f be a partial function from R
to Rn. Suppose that a ≤ b and f is integrable on [a, b] and |f | is integrable
on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f and c, d ∈ [a, b]. Then
|f | is integrable on [min(c, d),max(c, d)] and |f |�[min(c, d),max(c, d)] is

bounded and |
d∫
c

f(x)dx| ≤
max(c,d)∫
min(c,d)

|f |(x)dx.

(23) Let n be a non empty element of N and f be a partial function from
R to Rn. Suppose that a ≤ b and c ≤ d and f is integrable on [a, b] and
|f | is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f and
c, d ∈ [a, b]. Then |f | is integrable on [c, d] and |f |�[c, d] is bounded and

|
d∫
c

f(x)dx| ≤
d∫
c

|f |(x)dx and |
c∫
d

f(x)dx| ≤
d∫
c

|f |(x)dx.

(24) Let n be a non empty element of N and f be a partial function from
R to Rn. Suppose that a ≤ b and c ≤ d and f is integrable on [a, b] and
|f | is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f and c,
d ∈ [a, b] and for every real number x such that x ∈ [c, d] holds |fx| ≤ e.

Then |
d∫
c

f(x)dx| ≤ e · (d− c) and |
c∫
d

f(x)dx| ≤ e · (d− c).

(25) If a ≤ b and f is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆

dom f and c, d ∈ [a, b], then
d∫
c

(r · f)(x)dx = r ·
d∫
c

f(x)dx.

(26) If a ≤ b and f is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆

dom f and c, d ∈ [a, b], then
d∫
c

(−f)(x)dx = −
d∫
c

f(x)dx.
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(27) Suppose that a ≤ b and f is integrable on [a, b] and g is integrable on
[a, b] and f�[a, b] is bounded and g�[a, b] is bounded and [a, b] ⊆ dom f

and [a, b] ⊆ dom g and c, d ∈ [a, b]. Then
d∫
c

(f + g)(x)dx =
d∫
c

f(x)dx +

d∫
c

g(x)dx.

(28) Suppose that a ≤ b and f is integrable on [a, b] and g is integrable on
[a, b] and f�[a, b] is bounded and g�[a, b] is bounded and [a, b] ⊆ dom f

and [a, b] ⊆ dom g and c, d ∈ [a, b]. Then
d∫
c

(f − g)(x)dx =
d∫
c

f(x)dx −

d∫
c

g(x)dx.

(29) Suppose a ≤ b and [a, b] ⊆ dom f and for every real number x such that
x ∈ [a, b] holds f(x) = E. Then f is integrable on [a, b] and f�[a, b] is

bounded and
b∫
a

f(x)dx = (b− a) · E.

(30) Suppose a ≤ b and for every real number x such that x ∈ [a, b] holds

f(x) = E and [a, b] ⊆ dom f and c, d ∈ [a, b]. Then
d∫
c

f(x)dx = (d−c) ·E.

(31) If a ≤ b and f is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆

dom f and c, d ∈ [a, b], then
d∫
a

f(x)dx =
c∫
a

f(x)dx+
d∫
c

f(x)dx.

(32) Suppose that a ≤ b and f is integrable on [a, b] and f�[a, b] is bounded
and [a, b] ⊆ dom f and c, d ∈ [a, b] and for every real number x such that

x ∈ [min(c, d),max(c, d)] holds |fx| ≤ e. Then |
d∫
c

f(x)dx| ≤ n · e · |d− c|.

(33)
a∫
b

f(x)dx = −
b∫
a

f(x)dx.

2. On the Functions from R into n-dimensional Real Normed Space

Let R be a real normed space, let X be a non empty set, and let g be a
partial function from X to R. We say that g is bounded if and only if:

(Def. 1) There exists a real number r such that for every set y such that y ∈ dom g

holds ‖gy‖ < r.
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Next we state a number of propositions:

(34) Let f be a partial function from R to Rn and g be a partial function
from R to 〈En, ‖ · ‖〉. If f = g, then f is bounded iff g is bounded.

(35) Let X, Y be sets and f1, f2 be partial functions from R to 〈En, ‖ · ‖〉.
Suppose f1�X is bounded and f2�Y is bounded. Then (f1 + f2)�(X ∩ Y )
is bounded and (f1 − f2)�(X ∩ Y ) is bounded.

(36) Let f be a function from A intoRn, g be a function from A into 〈En, ‖·‖〉,
D be a Division of A, p be a finite sequence of elements of Rn, and q be a
finite sequence of elements of 〈En, ‖ · ‖〉. Suppose f = g and p = q. Then
p is a middle volume of f and D if and only if q is a middle volume of g
and D.

(37) Let f be a function from A intoRn, g be a function from A into 〈En, ‖·‖〉,
D be a Division of A, p be a middle volume of f and D, and q be a
middle volume of g and D. If f = g and p = q, then middle sum(f, p) =
middle sum(g, q).

(38) Let f be a function from A intoRn, g be a function from A into 〈En, ‖·‖〉,
T be a division sequence of A, p be a function from N into (Rn)∗, and q

be a function from N into (the carrier of 〈En, ‖ · ‖〉)∗. Suppose f = g and
p = q. Then p is a middle volume sequence of f and T if and only if q is
a middle volume sequence of g and T .

(39) Let f be a function from A intoRn, g be a function from A into 〈En, ‖·‖〉,
T be a division sequence of A, S be a middle volume sequence of f and
T , and U be a middle volume sequence of g and T . If f = g and S = U,

then middle sum(f, S) = middle sum(g, U).

(40) Let f be a function from A intoRn, g be a function from A into 〈En, ‖·‖〉,
I be an element of Rn, and J be a point of 〈En, ‖ · ‖〉. Suppose f = g and
I = J. Then the following statements are equivalent

(i) for every division sequence T of A and for every middle volume se-
quence S of f and T such that δT is convergent and lim(δT ) = 0 holds
middle sum(f, S) is convergent and lim middle sum(f, S) = I,

(ii) for every division sequence T of A and for every middle volume se-
quence S of g and T such that δT is convergent and lim(δT ) = 0 holds
middle sum(g, S) is convergent and lim middle sum(g, S) = J.

(41) Let f be a function from A into Rn and g be a function from A into
〈En, ‖ · ‖〉. Suppose f = g and f is bounded. Then f is integrable if and
only if g is integrable.

(42) Let f be a function from A into Rn and g be a function from A into
〈En, ‖ · ‖〉. Suppose f = g and f is bounded and integrable. Then g is
integrable and integral f = integral g.

(43) Let f be a partial function from R to Rn and g be a partial function
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from R to 〈En, ‖ · ‖〉. Suppose f = g and f�A is bounded and A ⊆ dom f.

Then f is integrable on A if and only if g is integrable on A.

(44) Let f be a partial function from R toRn and g be a partial function from
R to 〈En, ‖ · ‖〉. Suppose f = g and f�A is bounded and A ⊆ dom f and f

is integrable on A. Then g is integrable on A and
∫
A

f(x)dx =
∫
A

g(x)dx.

(45) Let f be a partial function from R to Rn and g be a partial function
from R to 〈En, ‖ · ‖〉. Suppose f = g and a ≤ b and f�[a, b] is bounded and

[a, b] ⊆ dom f and f is integrable on [a, b]. Then
b∫
a

f(x)dx =
b∫
a

g(x)dx.

(46) Let f , g be partial functions from R to 〈En, ‖ · ‖〉. Suppose a ≤ b and
f is integrable on [a, b] and g is integrable on [a, b] and [a, b] ⊆ dom f

and [a, b] ⊆ dom g. Then
b∫
a

(f + g)(x)dx =
b∫
a

f(x)dx +
b∫
a

g(x)dx and

b∫
a

(f − g)(x)dx =
b∫
a

f(x)dx−
b∫
a

g(x)dx.

(47) For every partial function f from R to 〈En, ‖ · ‖〉 such that a ≤ b and

[a, b] ⊆ dom f holds
a∫
b

f(x)dx = −
b∫
a

f(x)dx.

(48) Let f be a partial function from R to 〈En, ‖ · ‖〉 and g be a partial
function from R to Rn. Suppose f = g and a ≤ b and [a, b] ⊆ dom f

and f�[a, b] is bounded and f is integrable on [a, b] and c, d ∈ [a, b]. Then
d∫
c

f(x)dx =
d∫
c

g(x)dx.

(49) Let f , g be partial functions from R to 〈En, ‖ · ‖〉. Suppose that a ≤ b

and f is integrable on [a, b] and g is integrable on [a, b] and f�[a, b] is
bounded and g�[a, b] is bounded and [a, b] ⊆ dom f and [a, b] ⊆ dom g and

c, d ∈ [a, b]. Then
d∫
c

(f + g)(x)dx =
d∫
c

f(x)dx+
d∫
c

g(x)dx.

(50) Let f , g be partial functions from R to 〈En, ‖ · ‖〉. Suppose that a ≤ b

and f is integrable on [a, b] and g is integrable on [a, b] and f�[a, b] is
bounded and g�[a, b] is bounded and [a, b] ⊆ dom f and [a, b] ⊆ dom g and

c, d ∈ [a, b]. Then
d∫
c

(f − g)(x)dx =
d∫
c

f(x)dx−
d∫
c

g(x)dx.

(51) Let E be a point of 〈En, ‖ · ‖〉 and f be a partial function from R to
〈En, ‖ · ‖〉. Suppose a ≤ b and [a, b] ⊆ dom f and for every real number
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x such that x ∈ [a, b] holds f(x) = E. Then f is integrable on [a, b] and

f�[a, b] is bounded and
b∫
a

f(x)dx = (b− a) · E.

(52) Let E be a point of 〈En, ‖ · ‖〉 and f be a partial function from R to
〈En, ‖ · ‖〉. Suppose a ≤ b and [a, b] ⊆ dom f and for every real number x

such that x ∈ [a, b] holds f(x) = E and c, d ∈ [a, b]. Then
d∫
c

f(x)dx =

(d− c) · E.
(53) Let f be a partial function from R to 〈En, ‖ · ‖〉. Suppose a ≤ b and f

is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f and c,

d ∈ [a, b]. Then
d∫
a

f(x)dx =
c∫
a

f(x)dx+
d∫
c

f(x)dx.

(54) Let f be a partial function from R to 〈En, ‖ · ‖〉. Suppose that a ≤ b and
f is integrable on [a, b] and f�[a, b] is bounded and [a, b] ⊆ dom f and c,
d ∈ [a, b] and for every real number x such that x ∈ [min(c, d),max(c, d)]

holds ‖fx‖ ≤ e. Then ‖
d∫
c

f(x)dx‖ ≤ n · e · |d− c|.

3. Fundamental Theorem of Calculus

The following two propositions are true:

(55)2 Let n be a non empty element of N and F , f be partial functions from R
to 〈En, ‖ · ‖〉. Suppose that a ≤ b and f is integrable on [a, b] and f�[a, b] is
bounded and [a, b] ⊆ dom f and ]a, b[ ⊆ domF and for every real number

x such that x ∈ ]a, b[ holds F (x) =
x∫
a

f(x)dx and x0 ∈ ]a, b[ and f is

continuous in x0. Then F is differentiable in x0 and F ′(x0) = fx0 .

(56) Let n be a non empty element of N and f be a partial function from R to
〈En, ‖·‖〉. Suppose a ≤ b and f is integrable on [a, b] and f�[a, b] is bounded
and [a, b] ⊆ dom f and x0 ∈ ]a, b[ and f is continuous in x0. Then there
exists a partial function F from R to 〈En, ‖ · ‖〉 such that ]a, b[ ⊆ domF

and for every real number x such that x ∈ ]a, b[ holds F (x) =
x∫
a

f(x)dx

and F is differentiable in x0 and F ′(x0) = fx0 .

2Fundamental Theorem of Calculus (for Rn)
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1. Arithmetic in GF(p)

For simplicity, we adopt the following convention: i, j denote integers, n
denotes a natural number, K denotes a field, and a1, a2, a3, a4, a5, a6 denote
elements of K.

One can prove the following propositions:

(1) If a1 = −a2, then a1
2 = a2

2.

(2) (1K)−1 = 1K .
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(3) If a2 6= 0K and a4 6= 0K and a1 · a2−1 = a3 · a4−1, then a1 · a4 = a2 · a3.
(4) If a2 6= 0K and a4 6= 0K and a1 · a4 = a2 · a3, then a1 · a2−1 = a3 · a4−1.
(5) If a1 = 0K and n > 1, then a1

n = 0K .

(6) If a1 = −a2, then −a1 = a2.

(7) a1+a2+a3+a4 = a4+a2+a3+a1 and a1+a2+a3+a4 = a1+a4+a3+a2.

(8) (a1 + a2 + a3) + a4 = a1 + (a2 + a3 + a4) and (a1 + a2 + a3 + a4) + a5 =
a1 + (a2 + a3 + a4 + a5).

(9) (a1 + a2 + a3 + a4 + a5) + a6 = a1 + (a2 + a3 + a4 + a5 + a6).

(10) a1 · a2 · a3 · a4 = a4 · a2 · a3 · a1 and a1 · a2 · a3 · a4 = a1 · a4 · a3 · a2.
(11) (a1 ·a2 ·a3)·a4 = a1 ·(a2 ·a3 ·a4) and (a1 ·a2 ·a3 ·a4)·a5 = a1 ·(a2 ·a3 ·a4 ·a5).
(12) (a1 ·a2 ·a3 ·a4 ·a5) ·a6 = a1 · (a2 ·a3 ·a4 ·a5 ·a6) and a1 ·a2 ·a3 ·a4 ·a5 ·a6 =

a1 · (a2 · a3 · a4) · a5 · a6.
(13) (a1 · a2 · a3)n = a1

n · a2n · a3n.
(14) a1 · (a2 + a3 + a4) = a1 · a2 + a1 · a3 + a1 · a4 and a1 · ((a2 + a3)− a4) =

(a1 ·a2+a1 ·a3)−a1 ·a4 and a1 · ((a2−a3)+a4) = (a1 ·a2−a1 ·a3)+a1 ·a4
and a1 · (a2− a3− a4) = a1 · a2− a1 · a3− a1 · a4 and a1 · (−a2+ a3+ a4) =
−a1 · a2+a1 ·a3+a1 ·a4 and a1 ·((−a2+a3)−a4) = (−a1 · a2+a1 ·a3)−a1 ·a4
and a1·((−a2−a3)+a4) = (−a1 · a2−a1·a3)+a1·a4 and a1·(−a2−a3−a4) =
−a1 · a2 − a1 · a3 − a1 · a4.

(15) (a1 + a2) · (a1 − a2) = a1
2 − a22.

(16) (a1 + a2) · ((a12 − a1 · a2) + a2
2) = a1

3 + a2
3.

(17) (a1 − a2) · (a12 + a1 · a2 + a2
2) = a1

3 − a23.
Let n, p be natural numbers. We say that p is n or greater if and only if:

(Def. 1) n ≤ p.
Let us note that there exists a natural number which is 5 or greater and

prime.
The following propositions are true:

(18) For all elements g1, g2, g3, a of GF(p) such that g1 = i mod p and
g2 = j mod p and g3 = (i+ j) mod p holds g1 · a+ g2 · a = g3 · a.

(19) For all elements g1, g2, a of GF(p) such that g1 = i mod p and g2 =
j mod p and j = i+ 1 holds g1 · a+ a = g2 · a.

(20) For all elements g4, a of GF(p) such that g4 = 2 mod p holds a+a = g4 ·a.
(21) For all elements g1, g2, g3, a of GF(p) such that g1 = i mod p and

g2 = j mod p and g3 = (i− j) mod p holds g1 · a− g2 · a = g3 · a.
(22) For all elements g1, g2, a of GF(p) such that g1 = i mod p and g2 =

j mod p and i = j + 1 holds g1 · a− g2 · a = a.

(23) For all elements g1, g2, a of GF(p) such that g1 = i mod p and g2 =
j mod p and i = j + 1 holds g1 · a− a = g2 · a.
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(24) For all elements g4, a of GF(p) such that g4 = 2 mod p holds g4 ·a−a = a.

(25) For all elements g4, a, b of GF(p) such that g4 = 2 mod p holds (a+ b)2 =
a2 + g4 · a · b+ b2.

(26) For all elements g4, a, b of GF(p) such that g4 = 2 mod p holds (a− b)2 =
(a2 − g4 · a · b) + b2.

(27) For all elements g4, a, b, c, d of GF(p) such that g4 = 2 mod p holds
(a · c+ b · d)2 = a2 · c2 + g4 · a · b · c · d+ b2 · d2.

(28) Let p be a prime number, n be a natural number, and g4 be an element
of GF(p). If p > 2 and g4 = 2 mod p, then g4 6= 0GF(p) and g4

n 6= 0GF(p).

(29) Let p be a prime number, n be a natural number, and g4, g5 be elements
of GF(p). If p > 3 and g5 = 3 mod p, then g5 6= 0GF(p) and g5

n 6= 0GF(p).

2. Parameters of an Elliptic Curve

Let p be a 5 or greater prime number. The parameters of elliptic curve p
yielding a subset of (the carrier of GF(p))× (the carrier of GF(p)) is defined as
follows:

(Def. 2) The parameters of elliptic curve p = {〈〈a, b〉〉; a ranges over elements of
GF(p), b ranges over elements of GF(p): Disc(a) 6= 0GF(p)}.

Let p be a 5 or greater prime number. Observe that the parameters of elliptic
curve p is non empty.

Let p be a 5 or greater prime number and let z be an element of the parame-
ters of elliptic curve p. Then z1 is an element of GF(p). Then z2 is an element
of GF(p).

The following proposition is true

(30) Let p be a 5 or greater prime number and z be an element of the para-
meters of elliptic curve p. Then p > 3 and Disc(z1) 6= 0GF(p).

For simplicity, we adopt the following rules: p1, p2, p3 denote sets, P1, P2,
P3 denote elements of GF(p), P denotes an element of ProjCo(GF(p)), and O

denotes an element of ECSetProjCo(a).
Let p be a prime number, let a, b be elements of GF(p), and let P be an

element of ECSetProjCo(a). The functor P1 yields an element of GF(p) and is
defined as follows:

(Def. 3) If P = 〈〈p1, p2, p3〉〉, then P1 = p1.

The functor P2 yielding an element of GF(p) is defined as follows:

(Def. 4) If P = 〈〈p1, p2, p3〉〉, then P2 = p2.

The functor P3 yielding an element of GF(p) is defined by:

(Def. 5) If P = 〈〈p1, p2, p3〉〉, then P3 = p3.

We now state three propositions:
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(31) For every prime number p and for all elements a, b of GF(p) and for
every element P of ECSetProjCo(a) holds P = 〈〈P1, P2, P3〉〉.

(32) Let p be a prime number, a, b be elements of GF(p), P be an element
of ECSetProjCo(a), and Q be an element of ProjCo(GF(p)). Then P = Q if
and only if the following conditions are satisfied:

(i) P1 = Q1,

(ii) P2 = Q2, and
(iii) P3 = Q3.

(33) Let p be a prime number, a, b, P1, P2, P3 be elements of GF(p), and P

be an element of ECSetProjCo(a). If P = 〈〈P1, P2, P3〉〉, then P1 = P1 and
P2 = P2 and P3 = P3.

Let p be a prime number, let P be an element of ProjCo(GF(p)), and let C1
be a function from (the carrier of GF(p))× (the carrier of GF(p))× (the carrier
of GF(p)) into GF(p). We say that P is on curve defined by an equation C1 if
and only if:

(Def. 6) C1(P ) = 0GF(p).

The following two propositions are true:

(34) P is on curve defined by an equation ECWEqProjCo(a) iff P is an element
of ECSetProjCo(a).

(35) Let p be a prime number, a, b be elements of GF(p), and P be an element
of ECSetProjCo(a). Then (P2)

2 ·P3−((P1)
3+a·P1 ·(P3)2+b·(P3)3) = 0GF(p).

Let p be a prime number and let P be an element of ProjCo(GF(p)). The
represent point of P yields an element of ProjCo(GF(p)) and is defined by:

(Def. 7)(i) The represent point of P = 〈〈P1 · (P3)−1, P2 · (P3)−1, 1〉〉 if P3 6= 0,
(ii) the represent point of P = 〈〈0, 1, 0〉〉 if P3 = 0,
(iii) P3 = 0, otherwise.

The following propositions are true:

(36) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P be an element of ECSetProjCo(z1). Then the
represent point of P ≡ P and the represent point of P ∈ ECSetProjCo(z1).

(37) Let p be a prime number, a, b be elements of GF(p), and P be an ele-
ment of ProjCo(GF(p)). Suppose (the represent point of P )3 = 0. Then
the represent point of P = 〈〈0, 1, 0〉〉 and P3 = 0.

(38) Let p be a prime number, a, b be elements of GF(p), and P be an ele-
ment of ProjCo(GF(p)). Suppose (the represent point of P )3 6= 0. Then
the represent point of P = 〈〈P1 · (P3)−1, P2 · (P3)−1, 1〉〉 and P3 6= 0.

(39) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). Then P ≡ Q
if and only if the represent point of P = the represent point of Q.
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3. Operations of Points on an Elliptic Curve over GF(p)

Let p be a 5 or greater prime number and let z be an element of the para-
meters of elliptic curve p. The functor compellProjCo(z, p) yields a function from
ECSetProjCo(z1) into ECSetProjCo(z1) and is defined as follows:

(Def. 8) For every element P of ECSetProjCo(z1) holds (compellProjCo(z, p))(P ) =
〈〈P1, −P2, P3〉〉.

Let p be a 5 or greater prime number, let z be an element of the pa-
rameters of elliptic curve p, let F be a function from ECSetProjCo(z1) into
ECSetProjCo(z1), and let P be an element of ECSetProjCo(z1). Then F (P ) is an
element of ECSetProjCo(z1).

We now state a number of propositions:

(40) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and O be an element of ECSetProjCo(z1). If O = 〈〈0, 1,
0〉〉, then (compellProjCo(z, p))(O) ≡ O.

(41) Let p be a 5 or greater prime number, z be an element of the para-
meters of elliptic curve p, and P be an element of ECSetProjCo(z1). Then
(compellProjCo(z, p))((compellProjCo(z, p))(P )) = P.

(42) Let p be a 5 or greater prime number, z be an element of the parame-
ters of elliptic curve p, and P be an element of ECSetProjCo(z1). Sup-
pose P3 6= 0. Then the represent point of (compellProjCo(z, p))(P ) =
(compellProjCo(z, p))(the represent point of P ).

(43) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). Then P = Q

if and only if (compellProjCo(z, p))(P ) = (compellProjCo(z, p))(Q).

(44) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P be an element of ECSetProjCo(z1). If P3 6= 0, then
P ≡ (compellProjCo(z, p))(P ) iff P2 = 0.

(45) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). If P3 6= 0,
then P1 = Q1 and P3 = Q3 iff P = Q or P = (compellProjCo(z, p))(Q).

(46) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). Then P ≡ Q
if and only if (compellProjCo(z, p))(P ) ≡ (compellProjCo(z, p))(Q).

(47) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). Then P ≡
(compellProjCo(z, p))(Q) if and only if (compellProjCo(z, p))(P ) ≡ Q.

(48) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). Suppose P3 6=
0 and Q3 6= 0. Then the represent point of P = (compellProjCo(z, p))(the
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represent point of Q) if and only if P ≡ (compellProjCo(z, p))(Q).

(49) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). If P ≡ Q,

then P2 ·Q3 = Q2 · P3.
(50) Let p be a 5 or greater prime number, z be an element of the parameters

of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). Suppose P3 6=
0 and Q3 6= 0. Then P ≡ Q or P ≡ (compellProjCo(z, p))(Q) if and only if
P1 ·Q3 = Q1 · P3.

(51) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). If P3 6= 0
and Q3 6= 0 and P2 6= 0, then if P ≡ (compellProjCo(z, p))(Q), then
P2 ·Q3 6= Q2 · P3.

(52) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, and P , Q be elements of ECSetProjCo(z1). If P 6≡ Q and
P ≡ (compellProjCo(z, p))(Q), then P2 ·Q3 6= Q2 · P3.

(53) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g5 be an element of GF(p), and P be an element of
ECSetProjCo(z1). If g5 = 3 mod p and P2 = 0 and P3 6= 0, then z1 · (P3)2+
g5 · (P1)2 6= 0.

(54) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g6, g7, g8 be elements of GF(p), P , Q be elements
of ECSetProjCo(z1), and R be an element of (the carrier of GF(p)) × (the
carrier of GF(p))× (the carrier of GF(p)). Suppose that

(i) g4 = 2 mod p,

(ii) g6 = Q2 · P3 − P2 ·Q3,
(iii) g7 = Q1 · P3 − P1 ·Q3,
(iv) g8 = g6

2 · P3 ·Q3 − g73 − g4 · g72 · P1 ·Q3, and
(v) R = 〈〈g7 · g8, g6 · (g72 · P1 ·Q3 − g8)− g73 · P2 ·Q3, g73 · P3 ·Q3〉〉.

Then g7 · P3 ·R2 = −(g6 · (R1 · P3 − P1 ·R3) + g7 · P2 ·R3).
(55) Let p be a 5 or greater prime number, z be an element of the parameters

of elliptic curve p, g4, g6, g7, g8 be elements of GF(p), P , Q be elements
of ECSetProjCo(z1), and R be an element of (the carrier of GF(p)) × (the
carrier of GF(p))× (the carrier of GF(p)). Suppose that

(i) g4 = 2 mod p,

(ii) g6 = Q2 · P3 − P2 ·Q3,
(iii) g7 = Q1 · P3 − P1 ·Q3,
(iv) g8 = g6

2 · P3 ·Q3 − g73 − g4 · g72 · P1 ·Q3, and
(v) R = 〈〈g7 · g8, g6 · (g72 · P1 ·Q3 − g8)− g73 · P2 ·Q3, g73 · P3 ·Q3〉〉.

Then −g72 · (P3 ·Q3 ·R1 + P3 ·Q1 ·R3 + P1 ·Q3 ·R3)+P3 ·Q3 ·R3 ·g62 =
0GF(p).
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(56) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g6, g7, g8 be elements of GF(p), P , Q be elements
of ECSetProjCo(z1), and R be an element of (the carrier of GF(p)) × (the
carrier of GF(p))× (the carrier of GF(p)). Suppose that

(i) g4 = 2 mod p,

(ii) g6 = Q2 · P3 − P2 ·Q3,
(iii) g7 = Q1 · P3 − P1 ·Q3,
(iv) g8 = g6

2 · P3 ·Q3 − g73 − g4 · g72 · P1 ·Q3, and
(v) R = 〈〈g7 · g8, g6 · (g72 · P1 ·Q3 − g8)− g73 · P2 ·Q3, g73 · P3 ·Q3〉〉.

Then z2 ·g72 ·(P3)2 ·Q3 ·R3 = −g72 · P3 · P1 ·Q1 ·R1+(g7 · P2 − g6 · P1)2 ·
Q3 ·R3.

(57) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g6, g7, g8 be elements of GF(p), P , Q be elements
of ECSetProjCo(z1), and R be an element of (the carrier of GF(p)) × (the
carrier of GF(p))× (the carrier of GF(p)). Suppose that

(i) g4 = 2 mod p,

(ii) g6 = Q2 · P3 − P2 ·Q3,
(iii) g7 = Q1 · P3 − P1 ·Q3,
(iv) g8 = g6

2 · P3 ·Q3 − g73 − g4 · g72 · P1 ·Q3, and
(v) R = 〈〈g7 · g8, g6 · (g72 · P1 ·Q3 − g8)− g73 · P2 ·Q3, g73 · P3 ·Q3〉〉.

Then z1 · g72 · P3 ·Q3 · R3 = g7
2 · (P1 ·Q1 · R3 + P3 ·Q1 · R1 + P1 ·Q3 ·

R1) + g4 · g6 ·Q3 ·R3 · (g7 · P2 − g6 · P1).
(58) Let p be a 5 or greater prime number, z be an element of the parameters

of elliptic curve p, g4, g6, g7, g8 be elements of GF(p), P , Q be elements
of ECSetProjCo(z1), and R be an element of (the carrier of GF(p)) × (the
carrier of GF(p))× (the carrier of GF(p)). Suppose that

(i) g4 = 2 mod p,

(ii) g6 = Q2 · P3 − P2 ·Q3,
(iii) g7 = Q1 · P3 − P1 ·Q3,
(iv) g8 = g6

2 · P3 ·Q3 − g73 − g4 · g72 · P1 ·Q3, and
(v) R = 〈〈g7 · g8, g6 · (g72 · P1 ·Q3 − g8)− g73 · P2 ·Q3, g73 · P3 ·Q3〉〉.

Then g72·(P3)2·Q3·((R2)2·R3−((R1)
3+z1·R1·(R3)2+z2·(R3)3)) = 0GF(p).

(59) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g5, g11, g9, g6, g7, g8, g10 be elements of GF(p), P
be an element of ECSetProjCo(z1), and R be an element of (the carrier of
GF(p)) × (the carrier of GF(p)) × (the carrier of GF(p)). Suppose that
g4 = 2 mod p and g5 = 3 mod p and g11 = 4 mod p and g9 = 8 mod p

and g6 = z1 · (P3)2 + g5 · (P1)2 and g7 = P2 · P3 and g8 = P1 · P2 · g7 and
g10 = g6

2− g9 · g8 and R = 〈〈g4 · g10 · g7, g6 · (g11 · g8− g10)− g9 · (P2)2 · g72,
g9 ·g73〉〉. Then g4 ·g7 ·P3 ·R2 = −(g6 · (P3 ·R1 − P1 ·R3) + g4 · g7 · P2 ·R3).
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(60) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g5, g11, g9, g6, g7, g8, g10 be elements of GF(p), P
be an element of ECSetProjCo(z1), and R be an element of (the carrier of
GF(p)) × (the carrier of GF(p)) × (the carrier of GF(p)). Suppose that
g4 = 2 mod p and g5 = 3 mod p and g11 = 4 mod p and g9 = 8 mod p

and g6 = z1 · (P3)2 + g5 · (P1)2 and g7 = P2 · P3 and g8 = P1 · P2 · g7 and
g10 = g6

2− g9 · g8 and R = 〈〈g4 · g10 · g7, g6 · (g11 · g8− g10)− g9 · (P2)2 · g72,
g9 · g73〉〉. Then g11 · g72 · P3 ·R1 = R3 · (g62 · P3 − g9 · g72 · P1).

(61) Let p be a 5 or greater prime number, z be an element of the parameters
of elliptic curve p, g4, g5, g11, g9, g6, g7, g8, g10 be elements of GF(p), P
be an element of ECSetProjCo(z1), and R be an element of (the carrier of
GF(p)) × (the carrier of GF(p)) × (the carrier of GF(p)). Suppose that
g4 = 2 mod p and g5 = 3 mod p and g11 = 4 mod p and g9 = 8 mod p and
g6 = z1 · (P3)2+ g5 · (P1)2 and g7 = P2 ·P3 and g8 = P1 ·P2 · g7 and g10 =
g6
2−g9·g8 andR = 〈〈g4·g10·g7, g6·(g11·g8−g10)−g9·(P2)2·g72, g9·g73〉〉. Then

g11 ·g72 · (P3)2 · (z2 ·R3) = R3 · (g4 · g7 · P2 − g6 · P1)2−g11 ·g72 · (P1)2 ·R1.
(62) Let p be a 5 or greater prime number, z be an element of the parameters

of elliptic curve p, g4, g5, g11, g9, g6, g7, g8, g10 be elements of GF(p), P
be an element of ECSetProjCo(z1), and R be an element of (the carrier of
GF(p)) × (the carrier of GF(p)) × (the carrier of GF(p)). Suppose that
g4 = 2 mod p and g5 = 3 mod p and g11 = 4 mod p and g9 = 8 mod p

and g6 = z1 · (P3)2 + g5 · (P1)2 and g7 = P2 · P3 and g8 = P1 · P2 · g7 and
g10 = g6

2− g9 · g8 and R = 〈〈g4 · g10 · g7, g6 · (g11 · g8− g10)− g9 · (P2)2 · g72,
g9 · g73〉〉. Then g4 · g72 · (P3)2 · (z1 · R3) = g6 · P3 · R3 · (g4 · g7 · P2 − g6 ·
P1) + g7

2 · (g11 · P1 · P3 ·R1 + g4 · (P1)2 ·R3).
(63) Let p be a 5 or greater prime number, z be an element of the parameters

of elliptic curve p, g4, g5, g11, g9, g6, g7, g8, g10 be elements of GF(p), P
be an element of ECSetProjCo(z1), and R be an element of (the carrier of
GF(p)) × (the carrier of GF(p)) × (the carrier of GF(p)). Suppose that
g4 = 2 mod p and g5 = 3 mod p and g11 = 4 mod p and g9 = 8 mod p and
g6 = z1 · (P3)2+ g5 · (P1)2 and g7 = P2 ·P3 and g8 = P1 ·P2 · g7 and g10 =
g6
2−g9 ·g8 and R = 〈〈g4 ·g10 ·g7, g6 ·(g11 ·g8−g10)−g9 ·(P2)2 ·g72, g9 ·g73〉〉.

Then g11·g72·(P3)2·((R2)2·R3−((R1)
3+z1·R1·(R3)2+z2·(R3)3)) = 0GF(p).

Let p be a 5 or greater prime number and let z be an element of the para-
meters of elliptic curve p. The functor addellProjCo(z, p) yields a function from
ECSetProjCo(z1) × ECSetProjCo(z1) into ECSetProjCo(z1) and is defined by the
condition (Def. 9).

(Def. 9) Let P , Q, O be elements of ECSetProjCo(z1) such that O = 〈〈0, 1, 0〉〉.
Then

(i) if P ≡ O, then (addellProjCo(z, p))(P,Q) = Q,

(ii) if Q ≡ O and P 6≡ O, then (addellProjCo(z, p))(P,Q) = P,
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(iii) if P 6≡ O and Q 6≡ O and P 6≡ Q, then for all elements g4, g6, g7,
g8 of GF(p) such that g4 = 2 mod p and g6 = Q2 · P3 − P2 · Q3 and
g7 = Q1 ·P3 −P1 ·Q3 and g8 = g6

2 ·P3 ·Q3 − g73 − g4 · g72 ·P1 ·Q3 holds
(addellProjCo(z, p))(P,Q) = 〈〈g7 · g8, g6 · (g72 · P1 ·Q3 − g8)− g73 · P2 ·Q3,
g7
3 · P3 ·Q3〉〉, and

(iv) if P 6≡ O and Q 6≡ O and P ≡ Q, then for all elements g4, g5, g11,
g9, g6, g7, g8, g10 of GF(p) such that g4 = 2 mod p and g5 = 3 mod p

and g11 = 4 mod p and g9 = 8 mod p and g6 = z1 · (P3)2 + g5 · (P1)2

and g7 = P2 · P3 and g8 = P1 · P2 · g7 and g10 = g6
2 − g9 · g8 holds

(addellProjCo(z, p))(P,Q) = 〈〈g4 · g10 · g7, g6 · (g11 · g8− g10)− g9 · (P2)2 · g72,
g9 · g73〉〉.

Let p be a 5 or greater prime number, let z be an element of the parameters
of elliptic curve p, let F be a function from ECSetProjCo(z1) × ECSetProjCo(z1)
into ECSetProjCo(z1), and let Q, R be elements of ECSetProjCo(z1). Then F (Q,R)
is an element of ECSetProjCo(z1).
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