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Inaba 2205, Wing-Minamikan

Nagano, Nagano, Japan

Adam Naumowicz
Institute of Computer Science

University of Białystok
Akademicka 2, 15-267 Białystok, Poland

Noboru Endou
Nagano National College of Technology

Japan

Yasunari Shidama
Shinshu University

Nagano, Japan

Summary. In this article, we aim to prove the characterization of dif-
ferentiation by means of partial differentiation for vector-valued functions on
n-dimensional real normed linear spaces (refer to [15] and [16]).
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One can prove the following propositions:

(1) Let n, i be elements of N, q be an element of Rn, and p be a point of
EnT. If i ∈ Seg n and q = p, then |pi| ≤ |q|.

(2) For every real number x and for every element v1 of 〈E1, ‖ · ‖〉 such that
v1 = 〈x〉 holds ‖v1‖ = |x|.

(3) Let n be a non empty element of N, x be a point of 〈En, ‖ · ‖〉, and i be
an element of N. If 1 ≤ i ≤ n, then ‖(Proj(i, n))(x)‖ ≤ ‖x‖.
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(4) For every non empty element n of N and for every element x of 〈En, ‖ ·‖〉
and for every element i of N holds ‖(Proj(i, n))(x)‖ = |(proj(i, n))(x)|.

(5) Let n be a non empty element of N, x be an element of Rn, and i be an
element of N. If 1 ≤ i ≤ n, then |(proj(i, n))(x)| ≤ |x|.

(6) Let m, n be non empty elements of N, s be a point of the real norm
space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, and i

be an element of N. Suppose 1 ≤ i ≤ n. Then Proj(i, n) is a bounded
linear operator from 〈En, ‖ · ‖〉 into 〈E1, ‖ · ‖〉 and (BdLinOpsNorm(〈En, ‖ ·
‖〉, 〈E1, ‖ · ‖〉))(Proj(i, n)) ≤ 1.

(7) Let m, n be non empty elements of N, s be a point of the real norm
space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, and i be
an element of N. Suppose 1 ≤ i ≤ n. Then

(i) Proj(i, n)·s is a point of the real norm space of bounded linear operators
from 〈Em, ‖ · ‖〉 into 〈E1, ‖ · ‖〉, and

(ii) (BdLinOpsNorm(〈Em, ‖ · ‖〉, 〈E1, ‖ · ‖〉))(Proj(i, n) · s) ≤
(BdLinOpsNorm(〈En, ‖·‖〉, 〈E1, ‖·‖〉))(Proj(i, n))·(BdLinOpsNorm(〈Em, ‖·
‖〉, 〈En, ‖ · ‖〉))(s).

(8) For every non empty element n of N and for every element i of N holds
Proj(i, n) is homogeneous.

(9) Let n be a non empty element of N, x be an element of Rn, r be a
real number, and i be an element of N. Then (proj(i, n))(r · x) = r ·
(proj(i, n))(x).

(10) Let n be a non empty element of N, x, y be elements of Rn, and i be an
element of N. Then (proj(i, n))(x+ y) = (proj(i, n))(x) + (proj(i, n))(y).

(11) Let n be a non empty element of N, x, y be points of 〈En, ‖·‖〉, and i be an
element of N. Then (Proj(i, n))(x− y) = (Proj(i, n))(x)− (Proj(i, n))(y).

(12) Let n be a non empty element of N, x, y be elements of Rn, and i be an
element of N. Then (proj(i, n))(x− y) = (proj(i, n))(x)− (proj(i, n))(y).

(13) Let m, n be non empty elements of N, s be a point of the real norm
space of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, i be an
element of N, and s1 be a point of the real norm space of bounded linear
operators from 〈Em, ‖·‖〉 into 〈E1, ‖·‖〉. If s1 = Proj(i, n) ·s and 1 ≤ i ≤ n,
then ‖s1‖ ≤ ‖s‖.

(14) Letm, n be non empty elements of N, s, t be points of the real norm space
of bounded linear operators from 〈Em, ‖ · ‖〉 into 〈En, ‖ · ‖〉, s1, t1 be points
of the real norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into
〈E1, ‖·‖〉, and i be an element of N. If s1 = Proj(i, n)·s and t1 = Proj(i, n)·t
and 1 ≤ i ≤ n, then ‖s1 − t1‖ ≤ ‖s− t‖.

(15) Let K be a real number, n be an element of N, and s be an element
of Rn. Suppose that for every element i of N such that 1 ≤ i ≤ n holds
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|s(i)| ≤ K. Then |s| ≤ n ·K.
(16) Let K be a real number, n be a non empty element of N, and s be an

element of 〈En, ‖ · ‖〉. Suppose that for every element i of N such that
1 ≤ i ≤ n holds ‖(Proj(i, n))(s)‖ ≤ K. Then ‖s‖ ≤ n ·K.

(17) Let K be a real number, n be a non empty element of N, and s be an
element of Rn. Suppose that for every element i of N such that 1 ≤ i ≤ n
holds |(proj(i, n))(s)| ≤ K. Then |s| ≤ n ·K.

(18) Let m, n be non empty elements of N, s be a point of the real norm
space of bounded linear operators from 〈Em, ‖·‖〉 into 〈En, ‖·‖〉, and K be
a real number. Suppose that for every element i of N and for every point
s1 of the real norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into
〈E1, ‖ · ‖〉 such that s1 = Proj(i, n) · s and 1 ≤ i ≤ n holds ‖s1‖ ≤ K. Then
‖s‖ ≤ n ·K.

(19) Let m, n be non empty elements of N, s, t be points of the real norm
space of bounded linear operators from 〈Em, ‖·‖〉 into 〈En, ‖·‖〉, and K be
a real number. Suppose that for every element i of N and for all points s1,
t1 of the real norm space of bounded linear operators from 〈Em, ‖ · ‖〉 into
〈E1, ‖ · ‖〉 such that s1 = Proj(i, n) · s and t1 = Proj(i, n) · t and 1 ≤ i ≤ n
holds ‖s1 − t1‖ ≤ K. Then ‖s− t‖ ≤ n ·K.

(20) Let m, n be non empty elements of N, f be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, X be a subset of 〈Em, ‖ · ‖〉, and i be an element
of N. Suppose 1 ≤ i ≤ m and X is open. Then the following statements
are equivalent

(i) f is partially differentiable on X w.r.t. i and f�iX is continuous on X,
(ii) for every element j of N such that 1 ≤ j ≤ n holds Proj(j, n) · f is

partially differentiable on X w.r.t. i and Proj(j, n) · f�iX is continuous on
X.

(21) Let m, n be non empty elements of N, f be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and X be a subset of 〈Em, ‖ · ‖〉. Suppose X is
open. Then f is differentiable on X and f ′�X is continuous on X if and
only if for every element j of N such that 1 ≤ j ≤ n holds Proj(j, n) · f is
differentiable on X and (Proj(j, n) · f)′�X is continuous on X.

(22) Let m, n be non empty elements of N, f be a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and X be a subset of 〈Em, ‖ · ‖〉. Suppose X is
open. Then for every element i of N such that 1 ≤ i ≤ m holds f is
partially differentiable on X w.r.t. i and f�iX is continuous on X if and
only if f is differentiable on X and f ′�X is continuous on X.
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Summary. In this article, we formalize the differentiability of functions
from the set of real numbers into a normed vector space [14].
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The notation and terminology used here have been introduced in the following
papers: [12], [2], [3], [7], [9], [11], [1], [4], [10], [13], [6], [17], [18], [15], [8], [16],
[19], and [5].

For simplicity, we adopt the following rules: F denotes a non trivial real
normed space, G denotes a real normed space, X denotes a set, x, x0, r, p
denote real numbers, n, k denote elements of N, Y denotes a subset of R, Z
denotes an open subset of R, s1 denotes a sequence of real numbers, s2 denotes
a sequence of G, f , f1, f2 denote partial functions from R to the carrier of F ,
h denotes a convergent to 0 sequence of real numbers, and c denotes a constant
sequence of real numbers.

We now state two propositions:

(1) If for every n holds ‖s2(n)‖ ≤ s1(n) and s1 is convergent and lim s1 = 0,
then s2 is convergent and lim s2 = 0G.

(2) (s1 ↑ k) (s2 ↑ k) = (s1 s2) ↑ k.
Let us consider F and let I1 be a partial function from R to the carrier of

F . We say that I1 is rest-like if and only if:
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(Def. 1) I1 is total and for every h holds h−1 (I1∗h) is convergent and
lim(h−1 (I1∗h)) = 0F .

Let us consider F . One can check that there exists a partial function from R
to the carrier of F which is rest-like. Let us consider F . A rest of F is a rest-like
partial function from R to the carrier of F . Let us consider F and let I1 be a
function from R into the carrier of F . We say that I1 is linear if and only if:

(Def. 2) There exists a point r of F such that for every real number p holds
I1(p) = p · r.

Let us consider F . Note that there exists a function from R into the carrier
of F which is linear. Let us consider F . A linear of F is a linear function from
R into the carrier of F .

We use the following convention: R, R1, R2 denote rests of F and L, L1, L2
denote linears of F .

The following propositions are true:

(3) L1 + L2 is a linear of F and L1 − L2 is a linear of F .

(4) r L is a linear of F .

(5) Let h1, h2 be partial functions from R to the carrier of F and s2 be a
sequence of real numbers. If rng s2 ⊆ domh1∩domh2, then (h1+h2)∗s2 =
(h1∗s2) + (h2∗s2) and (h1 − h2)∗s2 = (h1∗s2)− (h2∗s2).

(6) Let h1, h2 be partial functions from R to the carrier of F and s2 be a
sequence of real numbers. If h1 is total and h2 is total, then (h1+h2)∗s2 =
(h1∗s2) + (h2∗s2) and (h1 − h2)∗s2 = (h1∗s2)− (h2∗s2).

(7) R1 +R2 is a rest of F and R1 −R2 is a rest of F .

(8) r R is a rest of F .

Let us consider F , f and let x0 be a real number. We say that f is differen-
tiable in x0 if and only if:

(Def. 3) There exists a neighbourhood N of x0 such that N ⊆ dom f and there
exist L, R such that for every x such that x ∈ N holds fx − fx0 = L(x−
x0) +Rx−x0 .

Let us consider F , f and let x0 be a real number. Let us assume that f is
differentiable in x0. The functor f ′(x0) yielding a point of F is defined by the
condition (Def. 4).

(Def. 4) There exists a neighbourhood N of x0 such that N ⊆ dom f and there
exist L, R such that f ′(x0) = L(1) and for every x such that x ∈ N holds
fx − fx0 = L(x− x0) +Rx−x0 .

Let us consider F , f , X. We say that f is differentiable on X if and only if:

(Def. 5) X ⊆ dom f and for every x such that x ∈ X holds f�X is differentiable
in x.

The following propositions are true:
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(9) If f is differentiable on X, then X is a subset of R.

(10) f is differentiable on Z iff Z ⊆ dom f and for every x such that x ∈ Z
holds f is differentiable in x.

(11) If f is differentiable on Y , then Y is open.

Let us consider F , f , X. Let us assume that f is differentiable on X. The
functor f ′�X yields a partial function from R to the carrier of F and is defined
by:

(Def. 6) dom(f ′�X) = X and for every x such that x ∈ X holds f ′�X(x) = f ′(x).

Next we state a number of propositions:

(12) Suppose Z ⊆ dom f and there exists a point r of F such that rng f = {r}.
Then f is differentiable on Z and for every x such that x ∈ Z holds
(f ′�Z)x = 0F .

(13) Let x0 be a real number and N be a neighbourhood of x0. Suppose f is
differentiable in x0 and N ⊆ dom f. Let given h, c. Suppose rng c = {x0}
and rng(h + c) ⊆ N. Then h−1 ((f∗(h + c)) − (f∗c)) is convergent and
f ′(x0) = lim(h−1 ((f∗(h+ c))− (f∗c))).

(14) If f1 is differentiable in x0 and f2 is differentiable in x0, then f1 + f2 is
differentiable in x0 and (f1 + f2)′(x0) = f1

′(x0) + f2
′(x0).

(15) If f1 is differentiable in x0 and f2 is differentiable in x0, then f1 − f2 is
differentiable in x0 and (f1 − f2)′(x0) = f1

′(x0)− f2′(x0).
(16) For every real number r such that f is differentiable in x0 holds r f is

differentiable in x0 and (r f)′(x0) = r · f ′(x0).
(17) Suppose Z ⊆ dom(f1 + f2) and f1 is differentiable on Z and f2 is diffe-

rentiable on Z. Then f1 + f2 is differentiable on Z and for every x such
that x ∈ Z holds (f1 + f2)′�Z(x) = f1

′(x) + f2
′(x).

(18) Suppose Z ⊆ dom(f1 − f2) and f1 is differentiable on Z and f2 is diffe-
rentiable on Z. Then f1 − f2 is differentiable on Z and for every x such
that x ∈ Z holds (f1 − f2)′�Z(x) = f1

′(x)− f2′(x).

(19) Suppose Z ⊆ dom(r f) and f is differentiable on Z. Then r f is differen-
tiable on Z and for every x such that x ∈ Z holds (r f)′�Z(x) = r · f ′(x).

(20) If Z ⊆ dom f and f�Z is constant, then f is differentiable on Z and for
every x such that x ∈ Z holds f ′�Z(x) = 0F .

(21) Let r, p be points of F and given Z, f . Suppose Z ⊆ dom f and for every
x such that x ∈ Z holds fx = x · r + p. Then f is differentiable on Z and
for every x such that x ∈ Z holds f ′�Z(x) = r.

(22) For every real number x0 such that f is differentiable in x0 holds f is
continuous in x0.

(23) If f is differentiable on X, then f�X is continuous.

(24) If f is differentiable on X and Z ⊆ X, then f is differentiable on Z.
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(25) There exists a rest R of F such that R0 = 0F and R is continuous in 0.

Let us consider F and let f be a partial function from R to the carrier of F .
We say that f is differentiable if and only if:

(Def. 7) f is differentiable on dom f.

Let us consider F . One can check that there exists a function from R into
the carrier of F which is differentiable. We now state the proposition

(26) Let f be a differentiable partial function from R to the carrier of F . If
Z ⊆ dom f, then f is differentiable on Z.
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Summary. We formulate a few basic concepts of J. H. Conway’s theory
of games based on his book [6]. This is a first step towards formalizing Conway’s
theory of numbers into Mizar, which is an approach to proving the existence of
a FIELD (i.e., a proper class that satisfies the axioms of a real-closed field) that
includes the reals and ordinals, thus providing a uniform, independent and simple
approach to these two constructions that does not go via the rational numbers
and hence does for example not need the notion of a quotient field.

In this first article on Conway’s games, we provide a definition of games, their
birthdays (or ranks), their trees (a notion which is not in Conway’s book, but is
useful as a tool), their negates and their signs, together with some elementary
properties of these notions. If one is interested only in Conway’s numbers, it
would have been easier to define them directly, but going via the notion of a
game is a more general approach in the sense that a number is a special instance
of a game and that there is a rich theory of games that are not numbers.

The main obstacle in formulating these topics in Mizar is that all defini-
tions are highly recursive, which is not entirely simple to translate into the Mizar
language. For example, according to Conway’s definition, a game is an object
consisting of left and right options which are themselves games, and this is by
definition the only way to construct a game. This cannot directly be transla-
ted into Mizar, but a theorem is included in the article which proves that our
definition is equivalent to Conway’s.

MML identifier: CGAMES 1, version: 7.11.07 4.156.1112

The terminology and notation used here have been introduced in the following
articles: [1], [4], [7], [5], [2], [3], [9], and [8].
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1. Construction of Days

We follow the rules: x, z, s are sets, α, β are ordinal numbers, and n is a
natural number.

We introduce lefts-rights which are systems
〈 left options, right options 〉,

where the left options and the right options constitute sets.
The functor 0 is defined by:

(Def. 1) 0 = 〈∅, ∅〉.
One can verify that there exists a left-right which is strict.
Let us consider α. The functor ConwayDayα yields a set and is defined by

the condition (Def. 2).

(Def. 2) There exists a transfinite sequence f such that α ∈ dom f and f(α) =
ConwayDayα and for every β such that β ∈ dom f holds f(β) = {〈x, y〉 :
x ranges over subsets of

⋃
rng(f�β), y ranges over subsets of

⋃
rng(f�β)}.

We now state three propositions:

(1) z ∈ ConwayDayα if and only if there exists a strict left-right w such
that z = w and for every x such that x ∈ (the left options of w) ∪ (the
right options of w) there exists β such that β ∈ α and x ∈ ConwayDay β.

(2) ConwayDay 0 = {0}.
(3) If α ⊆ β, then ConwayDayα ⊆ ConwayDay β.

Let us consider α. Note that ConwayDayα is non empty.

2. Games

Let us consider x. We say that x is Conway game-like if and only if:

(Def. 3) There exists α such that x ∈ ConwayDayα.

Let us consider α. Note that every element of ConwayDayα is Conway game-
like.

Let us observe that 0 is Conway game-like.
One can check that there exists a left-right which is Conway game-like and

strict and there exists a set which is Conway game-like.
A Conway game is a Conway game-like set.
0 is an element of ConwayDay 0.
The element 1 of ConwayDay 1 is defined by:

(Def. 4) 1 = 〈{0}, ∅〉.
The element ∗ of ConwayDay 1 is defined as follows:

(Def. 5) ∗ = 〈{0}, {0}〉.
In the sequel g, g0, g1, g2, g3, g4, g5, g6 are Conway games.
We now state the proposition
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(4) g is a strict left-right.

One can verify that every left-right which is Conway game-like is also strict.
Let us consider g. The left options of g is defined as follows:

(Def. 6) There exists a left-right w such that g = w and the left options of g = the
left options of w.

The right options of g is defined by:

(Def. 7) There exists a left-right w such that g = w and the right options of
g = the right options of w.

Let us consider g. The options of g is defined by:

(Def. 8) The options of g = (the left options of g) ∪ (the right options of g).

Next we state the proposition

(5) g1 = g2 if and only if the following conditions are satisfied:
(i) the left options of g1 = the left options of g2, and
(ii) the right options of g1 = the right options of g2.

One can verify the following observations:

∗ the left options of 0 is empty,

∗ the right options of 0 is empty, and

∗ the right options of 1 is empty.

Next we state four propositions:

(6) g = 0 iff the options of g = ∅.
(7) x ∈ the left options of 1 iff x = 0.

(8)(i) x ∈ the options of ∗ iff x = 0,
(ii) x ∈ the left options of ∗ iff x = 0, and
(iii) x ∈ the right options of ∗ iff x = 0.

(9) g ∈ ConwayDayα iff for every x such that x ∈ the options of g there
exists β such that β ∈ α and x ∈ ConwayDay β.

Let g be a set. Let us assume that g is a Conway game. The functor
ConwayRank g yields an ordinal number and is defined as follows:

(Def. 9) g ∈ ConwayDay ConwayRank g and for every β such that β ∈
ConwayRank g holds g /∈ ConwayDay β.

One can prove the following propositions:

(10) If g ∈ ConwayDayα and x ∈ the options of g, then x ∈ ConwayDayα.

(11) If g ∈ ConwayDayα and if x ∈ the left options of g or x ∈ the right
options of g, then x ∈ ConwayDayα.

(12) g ∈ ConwayDayα iff ConwayRank g ⊆ α.
(13) ConwayRank g ∈ α iff there exists β such that β ∈ α and g ∈

ConwayDay β.

(14) If g3 ∈ the options of g, then ConwayRank g3 ∈ ConwayRank g.
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(15) If g3 ∈ the left options of g or g3 ∈ the right options of g, then
ConwayRank g3 ∈ ConwayRank g.

(16) g /∈ the options of g.

(17) If x ∈ the options of g, then x is a Conway game-like left-right.

(18) If x ∈ the left options of g or x ∈ the right options of g, then x is a
Conway game-like left-right.

(19) Let w be a strict left-right. Then w is a Conway game if and only if for
every z such that z ∈ (the left options of w) ∪ (the right options of w)
holds z is a Conway game.

3. Schemes of Induction

In this article we present several logical schemes. The scheme ConwayGa-
meMinTot concerns a unary predicate P, and states that:

There exists g such that P[g] and for every g1 such that ConwayRank g1 ∈
ConwayRank g holds not P[g1]

provided the following condition is met:
• There exists g such that P[g].

The scheme ConwayGameMin concerns a unary predicate P, and states that:
There exists g such that P[g] and for every g3 such that g3 ∈ the
options of g holds not P[g3]

provided the parameters satisfy the following condition:
• There exists g such that P[g].

The scheme ConwayGameInd concerns a unary predicate P, and states that:
For every g holds P[g]

provided the following condition is met:
• For every g such that for every g3 such that g3 ∈ the options of g

holds P[g3] holds P[g].

4. Tree of a Game

Let f be a function. We say that f is Conway game-valued if and only if:

(Def. 10) For every x such that x ∈ dom f holds f(x) is a Conway game.

Let us consider g. One can verify that 〈g〉 is Conway game-valued.
Let us mention that there exists a finite sequence which is Conway game-

valued and non empty.
Let f be a non empty finite sequence. Observe that every element of dom f

is natural and non empty.
Let f be a Conway game-valued non empty function and let x be an element

of dom f. Note that f(x) is Conway game-like.
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Let f be a Conway game-valued non empty finite sequence. We say that f
is Conway game chain-like if and only if:

(Def. 11) For every element n of dom f such that n > 1 holds f(n − 1) ∈ the
options of f(n).

One can prove the following proposition

(20) For every finite sequence f and for every n such that n ∈ dom f and
n > 1 holds n− 1 ∈ dom f.

Let us consider g. Observe that 〈g〉 is Conway game chain-like.
Let us observe that there exists a Conway game-valued non empty finite

sequence which is Conway game chain-like.
A Conway game chain is a Conway game chain-like Conway game-valued

non empty finite sequence.
Next we state three propositions:

(21) For every Conway game chain f and for all elements n, m of dom f such
that n < m holds ConwayRank f(n) ∈ ConwayRank f(m).

(22) For every Conway game chain f and for all elements n, m of dom f such
that n ≤ m holds ConwayRank f(n) ⊆ ConwayRank f(m).

(23) For every Conway game chain f such that f(len f) ∈ ConwayDayα holds
f(1) ∈ ConwayDayα.

Let us consider g. The tree of g yields a set and is defined as follows:

(Def. 12) z ∈ the tree of g iff there exists a Conway game chain f such that
f(1) = z and f(len f) = g.

Let us consider g. Observe that the tree of g is non empty.
Let us consider g. The proper tree of g yielding a subset of the tree of g is

defined by:

(Def. 13) The proper tree of g = (the tree of g) \ {g}.
We now state the proposition

(24) g ∈ the tree of g.

Let us consider α and let g be an element of ConwayDayα. Then the tree
of g is a subset of ConwayDayα.

Let us consider g. One can verify that every element of the tree of g is
Conway game-like.

The following propositions are true:

(25) For every Conway game chain f and for every non empty natural number
n holds f�n is a Conway game chain.

(26) Let f1, f2 be Conway game chains. Given g such that g = f2(1) and
f1(len f1) ∈ the options of g. Then f1

a f2 is a Conway game chain.

(27) x ∈ the tree of g iff x = g or there exists g3 such that g3 ∈ the options
of g and x ∈ the tree of g3.
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(28) If g3 ∈ the tree of g, then g3 = g or ConwayRank g3 ∈ ConwayRank g.

(29) If g3 ∈ the tree of g, then ConwayRank g3 ⊆ ConwayRank g.

(30) For every set s such that g ∈ s and for every g1 such that g1 ∈ s holds
the options of g1 ⊆ s holds the tree of g ⊆ s.

(31) If g1 ∈ the tree of g2, then the tree of g1 ⊆ the tree of g2.

(32) If g1 ∈ the tree of g2, then the proper tree of g1 ⊆ the proper tree of g2.

(33) The options of g ⊆ the proper tree of g.

(34) The options of g ⊆ the tree of g.

(35) If g1 ∈ the proper tree of g2, then the tree of g1 ⊆ the proper tree of g2.

(36) If g3 ∈ the options of g, then the tree of g3 ⊆ the proper tree of g.

(37) The tree of 0 = {0}.
(38) 0 ∈ the tree of g.

The scheme ConwayGameMin2 concerns a unary predicate P, and states
that:

There exists g such that P[g] and for every g3 such that g3 ∈ the
proper tree of g holds not P[g3]

provided the following condition is met:
• There exists g such that P[g].

5. Scheme about Definability of Functions by Recursion

Now we present two schemes. The scheme Func1RecUniq deals with a binary
functor F yielding a set, and states that:

Let given g and f1, f2 be functions. Suppose that
(i) dom f1 = the tree of g,
(ii) dom f2 = the tree of g,

(iii) for every g1 such that g1 ∈ dom f1 holds f1(g1) = F(g1, f1�the
proper tree of g1), and
(iv) for every g1 such that g1 ∈ dom f2 holds f2(g1) = F(g1, f2�the
proper tree of g1).

Then f1 = f2
for all values of the parameter.

The scheme Func1RecEx deals with a binary functor F yielding a set, and
states that:

There exists a function f such that dom f = the tree of g and for
every g1 such that g1 ∈ dom f holds f(g1) = F(g1, f�the proper
tree of g1)

for all values of the parameter.
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6. The Negative and Signs

Let us consider g. The functor −g is defined by the condition (Def. 14).

(Def. 14) There exists a function f such that
(i) dom f = the tree of g,
(ii) −g = f(g), and
(iii) for every g1 such that g1 ∈ dom f holds f(g1) = 〈{f(g4); g4 ranges over

elements of the right options of g1: the right options of g1 6= ∅}, {f(g7); g7
ranges over elements of the left options of g1: the left options of g1 6= ∅}〉.

Let us consider g. One can check that −g is Conway game-like.
We now state three propositions:

(39)(i) For every x holds x ∈ the left options of −g iff there exists g4 such
that g4 ∈ the right options of g and x = −g4, and

(ii) for every x holds x ∈ the right options of −g iff there exists g7 such
that g7 ∈ the left options of g and x = −g7.

(40) −−g = g.

(41)(i) g3 ∈ the left options of −g iff −g3 ∈ the right options of g,
(ii) g3 ∈ the left options of g iff −g3 ∈ the right options of −g,
(iii) g3 ∈ the right options of −g iff −g3 ∈ the left options of g, and
(iv) g3 ∈ the right options of g iff −g3 ∈ the left options of −g.

Let us consider g. We say that g is non-negative if and only if the condition
(Def. 15) is satisfied.

(Def. 15) There exists s such that
(i) g ∈ s, and
(ii) for every g1 such that g1 ∈ s and for every g4 such that g4 ∈ the right

options of g1 there exists g8 such that g8 ∈ the left options of g4 and g8 ∈ s.
Let us consider g. We say that g is non-positive if and only if:

(Def. 16) −g is non-negative.

Let us consider g. We say that g is zero if and only if:

(Def. 17) g is non-negative and non-positive.

We say that g is fuzzy if and only if:

(Def. 18) g is not non-negative and g is not non-positive.

Let us consider g. We say that g is positive if and only if:

(Def. 19) g is non-negative and g is not zero.

We say that g is negative if and only if:

(Def. 20) g is non-positive and g is not zero.

One can verify the following observations:

∗ every Conway game which is zero is also non-negative and non-positive,

∗ every Conway game which is non-positive and non-negative is also zero,
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∗ every Conway game which is negative is also non-positive and non zero,

∗ every Conway game which is non-positive and non zero is also negative,

∗ every Conway game which is positive is also non-negative and non zero,

∗ every Conway game which is non-negative and non zero is also positive,

∗ every Conway game which is fuzzy is also non non-negative and non
non-positive, and

∗ every Conway game which is non non-negative and non non-positive is
also fuzzy.

One can prove the following propositions:

(42) g is zero, or positive, or negative, or fuzzy.

(43) g is non-negative if and only if for every g4 such that g4 ∈ the right
options of g there exists g8 such that g8 ∈ the left options of g4 and g8 is
non-negative.

(44) g is non-positive if and only if for every g7 such that g7 ∈ the left options
of g there exists g6 such that g6 ∈ the right options of g7 and g6 is non-
positive.

(45)(i) g is non-negative iff for every g4 such that g4 ∈ the right options of g
holds g4 is fuzzy or positive, and

(ii) g is non-positive iff for every g7 such that g7 ∈ the left options of g
holds g7 is fuzzy or negative.

(46) g is fuzzy if and only if the following conditions are satisfied:
(i) there exists g7 such that g7 ∈ the left options of g and g7 is non-negative,

and
(ii) there exists g4 such that g4 ∈ the right options of g and g4 is non-

positive.

(47) g is zero if and only if the following conditions are satisfied:
(i) for every g7 such that g7 ∈ the left options of g holds g7 is fuzzy or

negative, and
(ii) for every g4 such that g4 ∈ the right options of g holds g4 is fuzzy or

positive.

(48) g is positive if and only if the following conditions are satisfied:
(i) for every g4 such that g4 ∈ the right options of g holds g4 is fuzzy or

positive, and
(ii) there exists g7 such that g7 ∈ the left options of g and g7 is non-negative.

(49) g is negative if and only if the following conditions are satisfied:
(i) for every g7 such that g7 ∈ the left options of g holds g7 is fuzzy or

negative, and
(ii) there exists g4 such that g4 ∈ the right options of g and g4 is non-

positive.
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One can check that 0 is zero.
Let us observe that 1 is positive and ∗ is fuzzy.
One can verify the following observations:

∗ there exists a Conway game which is zero,

∗ there exists a Conway game which is positive, and

∗ there exists a Conway game which is fuzzy.

Let g be a non-positive Conway game. Note that −g is non-negative.
Let g be a non-negative Conway game. Note that −g is non-positive.
Let g be a positive Conway game. One can verify that −g is negative.
Let us note that there exists a Conway game which is negative.
Let g be a negative Conway game. Note that −g is positive.
Let g be a fuzzy Conway game. Note that −g is fuzzy.
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Summary. The Veblen hierarchy is an extension of the construction of
epsilon numbers (fixpoints of the exponential map: ωε = ε). It is a collection
ϕα of the Veblen Functions where ϕ0(β) = ωβ and ϕ1(β) = εβ . The sequence
of fixpoints of ϕ1 function form ϕ2, etc. For a limit non empty ordinal λ the
function ϕλ is the sequence of common fixpoints of all functions ϕα where α < λ.

The Mizar formalization of the concept cannot be done directly as the Veblen
functions are classes (not (small) sets). It is done with use of universal sets (Tarski
classes). Namely, we define the Veblen functions in a given universal set and ϕα(β)
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1. Preliminaries

For simplicity, we adopt the following convention: α, β, γ, δ denote ordinal
numbers, λ denotes a non empty limit ordinal ordinal number, A denotes a non
empty ordinal number, e denotes an element of A, X, Y , x, y denote sets, and
n denotes a natural number.

Next we state several propositions:

(1) Let ϕ be a function. Suppose ϕ is an isomorphism between ⊆X and ⊆Y .
Let given x, y. If x, y ∈ X, then x ⊆ y iff ϕ(x) ⊆ ϕ(y).

(2) Let X, Y be ordinal-membered sets and ϕ be a function. Suppose ϕ is
an isomorphism between ⊆X and ⊆Y . Let given x, y. If x, y ∈ X, then
x ∈ y iff ϕ(x) ∈ ϕ(y).

83
c© 2011 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/ordinal6.miz
http://ftp.mizar.org/


84 grzegorz bancerek

(3) If 〈〈x, y〉〉 ∈ ⊆X , then x ⊆ y.
(4) For all transfinite sequences f1, f2 holds f1 ⊆ f1 a f2.
(5) For all transfinite sequences f1, f2 holds rng(f1 a f2) = rng f1 ∪ rng f2.

(6) α ⊆ β iff εα ⊆ εβ.
(7) α ∈ β iff εα ∈ εβ.
Let X be an ordinal-membered set. Note that

⋃
X is ordinal.

Let ϕ be an ordinal yielding function. Observe that rngϕ is ordinal-membered.
Let us consider α. Note that idα is transfinite sequence-like and ordinal

yielding.
Let us consider α. Observe that idα is increasing.
Let us consider α. Note that idα is continuous.
Let us observe that there exists a sequence of ordinal numbers which is non

empty, increasing, and continuous.
Let ϕ be a transfinite sequence. We say that ϕ is normal if and only if:

(Def. 1) ϕ is an increasing continuous sequence of ordinal numbers.

Let ϕ be a sequence of ordinal numbers. Let us observe that ϕ is normal if
and only if:

(Def. 2) ϕ is increasing and continuous.

One can verify the following observations:

∗ every transfinite sequence which is normal is also ordinal yielding,

∗ every sequence of ordinal numbers which is normal is also increasing and
continuous, and

∗ every sequence of ordinal numbers which is increasing and continuous is
also normal.

Let us observe that there exists a transfinite sequence which is non empty
and normal.

Next we state the proposition

(8) For every sequence ϕ of ordinal numbers such that ϕ is non-decreasing
holds ϕ�α is non-decreasing.

Let us consider X. The functor ord-typeX yields an ordinal number and is
defined by:

(Def. 3) ord-typeX = ⊆
OnX .

Let X be an ordinal-membered set. Then ord-typeX can be characterized
by the condition:

(Def. 4) ord-typeX = ⊆
X .

Let X be an ordinal-membered set. One can verify that ⊆X is well-ordering.
Let E be an empty set. Observe that OnE is empty.
Let E be an empty set. One can verify that E is empty.
Next we state four propositions:
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(9) ord-type ∅ = 0.

(10) ord-type{α} = 1.

(11) If α 6= β, then ord-type{α, β} = 2.

(12) ord-typeα = α.

Let us consider X. The functor numberingX yields a sequence of ordinal
numbers and is defined as follows:

(Def. 5) numberingX = the canonical isomorphism between ⊆
ord-typeX and

⊆
OnX .

Next we state four propositions:

(13) dom numberingX = ord-typeX and rng numberingX = OnX.

(14) For every ordinal-membered set X holds rng numberingX = X.

(15) Card dom numberingX = Card OnX.

(16) numberingX is an isomorphism between ⊆ord-typeX and ⊆OnX .

In the sequel ϕ denotes a sequence of ordinal numbers.
One can prove the following propositions:

(17) If ϕ = numberingX and x, y ∈ domϕ, then x ⊆ y iff ϕ(x) ⊆ ϕ(y).

(18) If ϕ = numberingX and x, y ∈ domϕ, then x ∈ y iff ϕ(x) ∈ ϕ(y).

Let us consider X. Note that numberingX is increasing.
Let X, Y be ordinal-membered sets. One can check that X ∪ Y is ordinal-

membered.
Let X be an ordinal-membered set and let Y be a set. Observe that X \ Y

is ordinal-membered.
The following three propositions are true:

(19) Let X, Y be ordinal-membered sets. Suppose that for all x, y such that
x ∈ X and y ∈ Y holds x ∈ y. Then (numberingX) a numbering Y is an
isomorphism between ⊆ord-typeX+ord-typeY and ⊆X∪Y .

(20) For all ordinal-membered sets X, Y such that for all x, y such that
x ∈ X and y ∈ Y holds x ∈ y holds numbering(X∪Y ) = (numberingX)a

numbering Y.

(21) For all ordinal-membered sets X, Y such that for all x, y such that x ∈ X
and y ∈ Y holds x ∈ y holds ord-type(X ∪ Y ) = ord-typeX + ord-typeY.

2. Fixpoints of a Normal Function

Next we state the proposition

(27) For every function ϕ such that x is a fixpoint of ϕ holds x ∈ rngϕ.

Let ϕ be a sequence of ordinal numbers. The functor criticalsϕ yields a
sequence of ordinal numbers and is defined by:
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(Def. 7) criticalsϕ = numbering{α ∈ domϕ : α is a fixpoint of ϕ}.
We now state three propositions:

(28) On{α ∈ domϕ : α is a fixpoint of ϕ} = {α ∈ domϕ : α is a fixpoint of
ϕ}.

(29) If x ∈ dom criticalsϕ, then (criticalsϕ)(x) is a fixpoint of ϕ.

(30) rng criticalsϕ = {α ∈ domϕ : α is a fixpoint of ϕ} and rng criticalsϕ ⊆
rngϕ.

Let us consider ϕ. One can verify that criticalsϕ is increasing.
We now state several propositions:

(31) If x ∈ dom criticalsϕ, then x ⊆ (criticalsϕ)(x).

(32) dom criticalsϕ ⊆ domϕ.

(33) If β is a fixpoint of ϕ, then there exists α such that α ∈ dom criticalsϕ
and β = (criticalsϕ)(α).

(34) If α ∈ dom criticalsϕ and β is a fixpoint of ϕ and (criticalsϕ)(α) ∈ β,
then succα ∈ dom criticalsϕ.

(35) If succα ∈ dom criticalsϕ and β is a fixpoint of ϕ and (criticalsϕ)(α) ∈
β, then (criticalsϕ)(succα) ⊆ β.

(36) Suppose ϕ is normal and
⋃
X ∈ domϕ and X is non empty and for

every x such that x ∈ X there exists y such that x ⊆ y and y ∈ X and y

is a fixpoint of ϕ. Then
⋃
X = ϕ(

⋃
X).

(37) If ϕ is normal and
⋃
X ∈ domϕ and X is non empty and for every x

such that x ∈ X holds x is a fixpoint of ϕ, then
⋃
X = ϕ(

⋃
X).

(38) If λ ⊆ dom criticalsϕ and α is a fixpoint of ϕ and for every x such that
x ∈ λ holds (criticalsϕ)(x) ∈ α, then λ ∈ dom criticalsϕ.

(39) If ϕ is normal and λ ∈ dom criticalsϕ, then (criticalsϕ)(λ) =⋃
((criticalsϕ)�λ).

Let ϕ be a normal sequence of ordinal numbers. Observe that criticalsϕ is
continuous.

Next we state the proposition

(40) For all sequences f1, f2 of ordinal numbers such that f1 ⊆ f2 holds
criticals f1 ⊆ criticals f2.

3. Fixpoints in a Universal Set

In the sequel U , W are universal classes.
Let us consider U . One can check that there exists a transfinite sequence of

ordinals of U which is normal.
Let us consider U , α. An ordinal-sequence from α to U is a function from α

into OnU.
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Let us consider U , α. Note that every ordinal-sequence from α to U is trans-
finite sequence-like and ordinal yielding.

Let us consider U , α, let ϕ be an ordinal-sequence from α to U , and let us
consider x. Then ϕ(x) is an ordinal of U .

The following two propositions are true:

(41) If α ∈ U, then for every ordinal-sequence ϕ from α to U holds
⋃
ϕ ∈ U.

(42) If α ∈ U, then for every ordinal-sequence ϕ from α to U holds supϕ ∈ U.
In this article we present several logical schemes. The scheme CriticalNum-

ber2 deals with a universal class A, an ordinal B of A, an ordinal-sequence C
from ω to A, and a unary functor F yielding an ordinal number, and states
that:

B ⊆
⋃
C and F(

⋃
C) =

⋃
C and for every β such that B ⊆ β and

β ∈ A and F(β) = β holds
⋃
C ⊆ β

provided the following conditions are met:
• ω ∈ A,
• For every α such that α ∈ A holds F(α) ∈ A,
• For all α, β such that α ∈ β and β ∈ A holds F(α) ∈ F(β),
• Let α be an ordinal of A. Suppose α is non empty and limit

ordinal. Let ϕ1 be a sequence of ordinal numbers. If domϕ1 = α

and for every β such that β ∈ α holds ϕ1(β) = F(β), then F(α)
is the limit of ϕ1,

• C(0) = B, and
• For every α such that α ∈ ω holds C(succα) = F(C(α)).

The scheme CriticalNumber3 deals with a universal class A, an ordinal B of
A, and a unary functor F yielding an ordinal number, and states that:

There exists an ordinal α of A such that B ∈ α and F(α) = α

provided the following requirements are met:
• ω ∈ A,
• For every α such that α ∈ A holds F(α) ∈ A,
• For all α, β such that α ∈ β and β ∈ A holds F(α) ∈ F(β), and
• Let α be an ordinal of A. Suppose α is non empty and limit

ordinal. Let ϕ1 be a sequence of ordinal numbers. If domϕ1 = α

and for every β such that β ∈ α holds ϕ1(β) = F(β), then F(α)
is the limit of ϕ1.

In the sequel F , ϕ1 denote normal transfinite sequences of ordinals of W .
One can prove the following propositions:

(43) If ω, β ∈ W, then there exists α such that β ∈ α and α is a fixpoint of
ϕ1.

(44) If ω ∈W, then criticalsF is a transfinite sequence of ordinals of W .

(45) If ϕ is normal, then for every α such that α ∈ dom criticalsϕ holds
ϕ(α) ⊆ (criticalsϕ)(α).
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4. Sequences of Sequences of Ordinals

Let us consider U and let α, β be ordinals of U . Then αβ is an ordinal of U .
Let us consider U , α. Let us assume that α ∈ U. The functor U expα yields

a transfinite sequence of ordinals of U and is defined as follows:

(Def. 8) For every ordinal β of U holds (U expα)(β) = αβ.

Let us observe that ω is non trivial.
Let us consider U . Observe that there exists an ordinal of U which is non

trivial and finite.
One can verify that there exists an ordinal number which is non trivial and

finite.
Let us consider U and let α be a non trivial ordinal of U . Note that U expα

is normal.
Let ψ be a function. We say that ψ is ordinal-sequence-valued if and only if:

(Def. 9) If x ∈ rngψ, then x is a sequence of ordinal numbers.

Let ϕ be a sequence of ordinal numbers. Observe that 〈ϕ〉 is ordinal-sequence-
valued.

Let ϕ be a function. We say that ϕ has the same dom if and only if:

(Def. 10) rngϕ has common domain.

Let ϕ be a function. Observe that {ϕ} has common domain.
Let ϕ be a function. One can verify that 〈ϕ〉 has the same dom.
One can verify that there exists a transfinite sequence which is non empty

and ordinal-sequence-valued and has the same dom.
Let ψ be an ordinal-sequence-valued function and let us consider x. Observe

that ψ(x) is relation-like and function-like.
Let ψ be an ordinal-sequence-valued function and let us consider x. Observe

that ψ(x) is transfinite sequence-like and ordinal yielding.
Let ψ be a transfinite sequence and let us consider α. Note that ψ�α is

transfinite sequence-like.
Let ψ be an ordinal-sequence-valued function and let us consider X. One

can check that ψ�X is ordinal-sequence-valued.
Let us consider α, β. Observe that every function from α into β is ordinal

yielding and transfinite sequence-like.
Let ψ be an ordinal-sequence-valued transfinite sequence. The functor criticalsψ

yields a sequence of ordinal numbers and is defined as follows:

(Def. 11) criticalsψ = numbering{α ∈ domψ(0) : α ∈ domψ(0) ∧
∧
ϕ (ϕ ∈

rngψ ⇒ α is a fixpoint of ϕ)}.
In the sequel ψ is an ordinal-sequence-valued transfinite sequence.
One can prove the following propositions:

(46) Let given ψ. Then {α ∈ domψ(0) : α ∈ domψ(0) ∧
∧
ϕ (ϕ ∈ rngψ ⇒ α

is a fixpoint of ϕ)} is ordinal-membered.
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(47) If α ∈ domψ and β ∈ dom criticalsψ, then (criticalsψ)(β) is a fixpoint
of ψ(α).

(48) If x ∈ dom criticalsψ, then x ⊆ (criticalsψ)(x).

(49) If ϕ ∈ rngψ, then dom criticalsψ ⊆ domϕ.

(50) If domψ 6= ∅ and for every γ such that γ ∈ domψ holds β is a fi-
xpoint of ψ(γ), then there exists α such that α ∈ dom criticalsψ and
β = (criticalsψ)(α).

(51) Suppose domψ 6= ∅ and λ ⊆ dom criticalsψ and for every ϕ such that
ϕ ∈ rngψ holds α is a fixpoint of ϕ and for every x such that x ∈ λ holds
(criticalsψ)(x) ∈ α. Then λ ∈ dom criticalsψ.

(52) For every ψ such that domψ 6= ∅ and for every α such that α ∈ domψ

holds ψ(α) is normal holds if λ ∈ dom criticalsψ, then (criticalsψ)(λ) =⋃
((criticalsψ)�λ).

(53) For every ψ such that domψ 6= ∅ and for every α such that α ∈ domψ

holds ψ(α) is normal holds criticalsψ is continuous.

(54) Let given ψ. Suppose domψ 6= ∅ and for every α such that α ∈ domψ

holds ψ(α) is normal. Let given α, ϕ. If α ∈ dom criticalsψ and ϕ ∈ rngψ,
then ϕ(α) ⊆ (criticalsψ)(α).

(55) Let g1, g2 be ordinal-sequence-valued transfinite sequences. If dom g1 =
dom g2 and dom g1 6= ∅ and for every α such that α ∈ dom g1 holds
g1(α) ⊆ g2(α), then criticals g1 ⊆ criticals g2.

Let ψ be an ordinal-sequence-valued transfinite sequence. The functor limsψ
yielding a sequence of ordinal numbers is defined by:

(Def. 12) dom limsψ = domψ(0) and for every α such that α ∈ dom limsψ holds
(limsψ)(α) =

⋃
{ψ(β)(α);β ranges over elements of domψ : β ∈ domψ}.

Next we state the proposition

(56) Let ψ be an ordinal-sequence-valued transfinite sequence. Suppose
domψ 6= ∅ and domψ ∈ U and for every α such that α ∈ domψ holds
ψ(α) is a transfinite sequence of ordinals of U . Then limsψ is a transfinite
sequence of ordinals of U .

5. Veblen Hierarchy

Let us consider x. The functor OSx yields a sequence of ordinal numbers
and is defined by:

(Def. 13) OSx =

{
x, if x is a sequence of ordinal numbers,
the sequence of ordinal numbers, otherwise.

The functor OSV x yielding an ordinal-sequence-valued transfinite sequence is
defined by:
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(Def. 14) OSV x =

{
x, if x is an ordinal-sequence-valued transfinite sequence,
the ordinal-sequence-valued transfinite sequence, otherwise.

Let us consider U . The functor U -Veblen yields an ordinal-sequence-valued
transfinite sequence and is defined by the conditions (Def. 15).

(Def. 15)(i) dom(U -Veblen) = OnU,
(ii) U -Veblen(0) = U expω,

(iii) for every β such that succβ ∈ OnU holds U -Veblen(succβ) =
criticalsU -Veblen(β), and

(iv) for every λ such that λ ∈ OnU holds U -Veblen(λ) =
criticals(U -Veblen �λ).

Let us note that there exists a universal class which is uncountable.
One can prove the following propositions:

(57) For every universal class U holds U is uncountable iff ω ∈ U.
(58) If α ∈ β and β, ω ∈ U and γ ∈ domU -Veblen(β), then U -Veblen(β)(γ)

is a fixpoint of U -Veblen(α).

(59) If λ ∈ U and for every γ such that γ ∈ λ holds α is a fixpoint of
U -Veblen(γ), then α is a fixpoint of lims(U -Veblen �λ).

(60) If α ⊆ β and β, ω ∈ U and γ ∈ domU -Veblen(β) and for every γ

such that γ ∈ β holds U -Veblen(γ) is normal, then U -Veblen(α)(γ) ⊆
U -Veblen(β)(γ).

(61) Suppose λ, α ∈ U and β ∈ λ and for every γ such that γ ∈ λ holds
U -Veblen(γ) is a normal transfinite sequence of ordinals of U . Then
(lims(U -Veblen �λ))(α) is a fixpoint of U -Veblen(β).

(62) If ω, α ∈ U, then U -Veblen(α) is a normal transfinite sequence of ordinals
of U .

(63) If ω ∈ U and U ⊆W and α ∈ U, then U -Veblen(α) ⊆W -Veblen(α).

(64) If ω, α, β ∈ U and ω, α, β ∈ W, then U -Veblen(β)(α) =
W -Veblen(β)(α).

(65) Suppose λ ∈ U and for every α such that α ∈ λ holds U -Veblen(α) is a
normal transfinite sequence of ordinals of U . Then lims(U -Veblen �λ) is a
non-decreasing continuous transfinite sequence of ordinals of U .

Let us consider α. Note that T(α ∪ ω) is uncountable.
Let us consider α, β. The functor ϕα(β) yields an ordinal number and is

defined by:

(Def. 16) ϕα(β) = T(α ∪ β ∪ ω) -Veblen(α)(β).

Let us consider n, β. Then ϕn(β) is an ordinal number and it can be cha-
racterized by the condition:

(Def. 17) ϕn(β) = T(β ∪ ω) -Veblen(n)(β).

One can prove the following propositions:
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(66) α ∈ T(α ∪ β ∪ γ).

(67) If ω, α, β ∈ U, then ϕβ(α) = U -Veblen(β)(α).

(68) ϕ0(α) = ωα.

(69) ϕβ(ϕsuccβ(α)) = ϕsuccβ(α).

(70) If β ∈ γ, then ϕβ(ϕγ(α)) = ϕγ(α).

(71) α ⊆ β iff ϕγ(α) ⊆ ϕγ(β).

(72) α ∈ β iff ϕγ(α) ∈ ϕγ(β).

(73) ϕα(β) ∈ ϕγ(δ) iff α = γ and β ∈ δ or α ∈ γ and β ∈ ϕγ(δ) or γ ∈ α and
ϕα(β) ∈ δ.

6. Epsilon Numbers

In the sequel U is an uncountable universal class.
Next we state four propositions:

(74) U -Veblen(1) = criticals(U expω).

(75) ϕ1(α) is epsilon.

(76) For every epsilon ordinal number e there exists α such that e = ϕ1(α).

(77) ϕ1(α) = εα.

References

[1] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathema-
tics, 1(4):711–714, 1990.

[2] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Sequences of ordinal numbers. Formalized Mathematics, 1(2):281–

290, 1990.
[5] Grzegorz Bancerek. Tarski’s classes and ranks. Formalized Mathematics, 1(3):563–567,

1990.
[6] Grzegorz Bancerek. The well ordering relations. Formalized Mathematics, 1(1):123–129,

1990.
[7] Grzegorz Bancerek. Zermelo theorem and axiom of choice. Formalized Mathematics,

1(2):265–267, 1990.
[8] Grzegorz Bancerek. Epsilon numbers and Cantor normal form. Formalized Mathematics,

17(4):249–256, 2009, doi: 10.2478/v10037-009-0032-8.
[9] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–

65, 1990.
[10] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,

1990.
[11] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[12] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,

1990.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[14] Bogdan Nowak and Grzegorz Bancerek. Universal classes. Formalized Mathematics,

1(3):595–600, 1990.
[15] Karol Pąk. The Nagata-Smirnov theorem. Part I. Formalized Mathematics, 12(3):341–

346, 2004.
[16] Piotr Rudnicki and Andrzej Trybulec. Abian’s fixed point theorem. Formalized Mathe-
matics, 6(3):335–338, 1997.



92 grzegorz bancerek

[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[18] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequ-

ences. Formalized Mathematics, 9(4):825–829, 2001.
[19] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.

Received October 18, 2010



FORMALIZED MATHEMATICS

Vol. 19, No. 2, Pages 93–102, 2011

Sorting by Exchanging

Grzegorz Bancerek
Białystok Technical University

Poland

Summary. We show that exchanging of pairs in an array which are in
incorrect order leads to sorted array. It justifies correctness of Bubble Sort, In-
sertion Sort, and Quicksort.
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The notation and terminology used here have been introduced in the following
papers: [20], [6], [11], [1], [8], [16], [12], [13], [10], [9], [17], [18], [3], [4], [2], [7],
[14], [21], [22], [19], [5], and [15].

1. Preliminaries

We adopt the following convention: α, β, γ, δ denote ordinal numbers, k
denotes a natural number, and x, y, z, t, X, Y , Z denote sets.

The following propositions are true:

(1) x ∈ (α+ β) \ α iff there exists γ such that x = α+ γ and γ ∈ β.
(2) Suppose α ∈ β and γ ∈ δ. Then γ 6= α and γ 6= β and δ 6= α and δ 6= β

or γ ∈ α and δ = α or γ ∈ α and δ = β or γ = α and δ ∈ β or γ = α and
δ = β or γ = α and β ∈ δ or α ∈ γ and δ = β or γ = β and β ∈ δ.

(3) If x 6∈ y, then (y ∪ {x}) \ y = {x}.
(4) succx \ x = {x}.
(5) Let f be a function, r be a binary relation, and given x. Then x ∈ f◦r

if and only if there exist y, z such that 〈〈y, z〉〉 ∈ r and 〈〈y, z〉〉 ∈ dom f and
f(y, z) = x.

(6) If α \β 6= ∅, then inf(α \β) = β and sup(α \β) = α and
⋃

(α \β) =
⋃
α.
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(7) If α \ β is non empty and finite, then there exists a natural number n
such that α = β + n.

2. Arrays

Let f be a set. We say that f is segmental if and only if:

(Def. 1) There exist α, β such that π1(f) = α \ β.
In the sequel f , g denote functions.
The following two propositions are true:

(8) If dom f = dom g and f is segmental, then g is segmental.

(9) If f is segmental, then for all α, β, γ such that α ⊆ β ⊆ γ and α,
γ ∈ dom f holds β ∈ dom f.

Let us observe that every function which is transfinite sequence-like is also
segmental and every function which is finite sequence-like is also segmental.

Let us consider α and let s be a set. We say that s is α-based if and only if:

(Def. 2) If β ∈ π1(s), then α ∈ π1(s) and α ⊆ β.
We say that s is α-limited if and only if:

(Def. 3) α = supπ1(s).

Next we state two propositions:

(10) f is α-based and segmental iff there exists β such that dom f = β \ α
and α ⊆ β.

(11) f is β-limited, non empty, and segmental iff there exists α such that
dom f = β \ α and α ∈ β.

Let us observe that every function which is transfinite sequence-like is also
0-based and every function which is finite sequence-like is also 1-based.

The following three propositions are true:

(12) f is inf dom f -based.

(13) f is sup dom f -limited.

(14) If f is β-limited and α ∈ dom f, then α ∈ β.
Let us consider f . The functor base f yielding an ordinal number is defined

as follows:

(Def. 4)(i) f is base f -based if there exists α such that α ∈ dom f,

(ii) base f = 0, otherwise.

The functor limit f yields an ordinal number and is defined as follows:

(Def. 5)(i) f is limit f -limited if there exists α such that α ∈ dom f,

(ii) limit f = 0, otherwise.

Let us consider f . The functor length f yielding an ordinal number is defined
as follows:
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(Def. 6) length f = limit f − base f.

We now state four propositions:

(15) base ∅ = 0 and limit ∅ = 0 and length ∅ = 0.

(16) limit f = sup dom f.

(17) f is limit f -limited.

(18) Every empty set is α-based.

Let us consider α, X, Y . Note that there exists a transfinite sequence which
is Y -defined, X-valued, α-based, segmental, finite, and empty.

An array is a segmental function.
Let A be an array. Observe that domA is ordinal-membered.
We now state the proposition

(19) For every array f holds f is 0-limited iff f is empty.

Let us mention that every array which is 0-based is also transfinite sequence-
like.

Let us consider X. An array of X is an X-valued array.
Let X be a 1-sorted structure. An array of X is an array of the carrier of X.
Let us consider α, X. An array of α, X is α-defined array of X.
In the sequel A, B, C denote arrays.
Next we state several propositions:

(20) base f = inf dom f.

(21) f is base f -based.

(22) domA = limitA \ baseA.

(23) If domA = α \ β and A is non empty, then baseA = β and limitA = α.

(24) For every transfinite sequence f holds base f = 0 and limit f = dom f

and length f = dom f.

Let us consider α, β, X. Note that there exists an array of α, X which is
β-based, natural-valued, integer-valued, real-valued, complex-valued, and finite.

Let us consider α, x. Note that {〈〈α, x〉〉} is segmental.
Let us consider α and let x be a natural number. Observe that {〈〈α, x〉〉} is

natural-valued.
Let us consider α and let x be a real number. One can verify that {〈〈α, x〉〉}

is real-valued.
Let us consider α, let X be a non empty set, and let x be an element of X.

One can check that {〈〈α, x〉〉} is X-valued.
Let us consider α, x. One can check that {〈〈α, x〉〉} is α-based and succα-

limited.
Let us consider β. Note that there exists an array which is non empty, β-

based, natural-valued, integer-valued, real-valued, complex-valued, and finite.
Let X be a non empty set. Note that there exists an array which is non empty,
β-based, finite, and X-valued.

an
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Let s be a transfinite sequence. We introduce s last as a synonym of last s.
Let A be an array. The functor lastA is defined by:

(Def. 7) lastA = A(
⋃

domA).

3. Descending Sequences

Let f be a function. We say that f is descending if and only if:

(Def. 8) For all α, β such that α, β ∈ dom f and α ∈ β holds f(β) ⊂ f(α).

We now state four propositions:

(25) For every finite array f such that for every α such that α, succα ∈ dom f

holds f(succα) ⊂ f(α) holds f is descending.

(26) For every array f such that length f = ω and for every α such that α,
succα ∈ dom f holds f(succα) ⊂ f(α) holds f is descending.

(27) For every transfinite sequence f such that f is descending and f(0) is
finite holds f is finite.

(28) Let f be a transfinite sequence. Suppose f is descending and f(0) is
finite and for every α such that f(α) 6= ∅ holds succα ∈ dom f. Then
last f = ∅.

The scheme A deals with a transfinite sequence A and a unary functor F
yielding a set, and states that:

A is finite
provided the parameters meet the following requirements:
• F(A(0)) is finite, and
• For every α such that succα ∈ domA and F(A(α)) is finite holds
F(A(succα)) ⊂ F(A(α)).

4. Swap

Let us consider X, let f be anX-defined function, and let α, β be sets. Note
that Swap(f, α, β) is X-defined.

Let X be a set, let f be X-valued function, and let x, y be sets. Note that
Swap(f, x, y) is X-valued.

The following propositions are true:

(29) If x, y ∈ dom f, then (Swap(f, x, y))(x) = f(y).

(30) For every array f of X such that x, y ∈ dom f holds (Swap(f, x, y))x =
fy.

(31) If x, y ∈ dom f, then (Swap(f, x, y))(y) = f(x).

(32) For every array f of X such that x, y ∈ dom f holds (Swap(f, x, y))y =
fx.

na
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(33) If z 6= x and z 6= y, then (Swap(f, x, y))(z) = f(z).

(34) For every array f of X such that z ∈ dom f and z 6= x and z 6= y holds
(Swap(f, x, y))z = fz.

(35) If x, y ∈ dom f, then Swap(f, x, y) = Swap(f, y, x).

Let X be a non empty set. Observe that there exists anX-valued non empty
function which is onto.

Let X be a non empty set, let f be an onto X-valued non empty function,
and let x, y be elements of dom f. Note that Swap(f, x, y) is onto.

Let us consider A and let us consider x, y. Note that Swap(A, x, y) is seg-
mental.

We now state the proposition

(36) If x, y ∈ domA, then Swap(Swap(A, x, y), x, y) = A.

Let A be a real-valued array and let us consider x, y. One can verify that
Swap(A, x, y) is real-valued.

5. Permutations

Let A be an array. An array is called a permutation of A if:

(Def. 9) There exists a permutation f of domA such that it = A · f.
We now state several propositions:

(37) For every permutation B of A holds domB = domA and rngB = rngA.

(38) A is a permutation of A.

(39) If A is a permutation of B, then B is a permutation of A.

(40) If A is a permutation of B and B is a permutation of C, then A is a
permutation of C.

(41) Swap(idX , x, y) is one-to-one.

Let X be a non empty set and let x, y be elements of X.
Note that Swap(idX , x, y) is one-to-one, X-valued, and X-defined.
Let X be a non empty set and let x, y be elements of X.
Note that Swap(idX , x, y) is onto and total.
Let X, Y be non empty sets, let f be a function from X into Y , and let x,

y be elements of X. Then Swap(f, x, y) is a function from X into Y .
Next we state three propositions:

(42) If x, y ∈ X and f = Swap(idX , x, y) and X = domA, then
Swap(A, x, y) = A · f.

(43) If x, y ∈ domA, then Swap(A, x, y) is a permutation of A and A is a
permutation of Swap(A, x, y).

(44) Suppose x, y ∈ domA and A is a permutation of B. Then Swap(A, x, y)
is a permutation of B and A is a permutation of Swap(B, x, y).
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6. Exchanging

Let O be a relational structure and let A be an array of O. We say that A
is ascending if and only if:

(Def. 10) For all α, β such that α, β ∈ domA and α ∈ β holds Aα ≤ Aβ.
The functor inversionsA is defined by:

(Def. 11) inversionsA = {〈〈α, β〉〉;α ranges over elements of domA, β ranges over
elements of domA : α ∈ β ∧ Aα 6≤ Aβ}.

Let O be a relational structure. One can verify that every empty array of O
is ascending. Let A be an empty array of O. One can verify that inversionsA is
empty.

In the sequel O is a connected non empty poset and R, Q are arrays of O.
We now state the proposition

(45) For every O and for all elements x, y of O holds x > y iff x 6≤ y.
Let us consider O, R. Then inversionsR can be characterized by the condi-

tion:

(Def. 12) inversionsR = {〈〈α, β〉〉;α ranges over elements of domR, β ranges over
elements of domR : α ∈ β ∧ Rα > Rβ}.

Next we state two propositions:

(46) 〈〈x, y〉〉 ∈ inversionsR iff x, y ∈ domR and x ∈ y and Rx > Ry.

(47) inversionsR ⊆ domR× domR.

Let us consider O and let R be a finite array of O. Observe that inversionsR
is finite.

We now state three propositions:

(48) R is ascending iff inversionsR = ∅.
(49) If 〈〈x, y〉〉 ∈ inversionsR, then 〈〈y, x〉〉 6∈ inversionsR.

(50) If 〈〈x, y〉〉, 〈〈y, z〉〉 ∈ inversionsR, then 〈〈x, z〉〉 ∈ inversionsR.

Let us consider O, R. Note that inversionsR is relation-like.
Let us consider O, R. Note that inversionsR is asymmetric and transitive.
Let us consider O and let α, β be elements of O. Let us note that the

predicate α < β is antisymmetric.
Next we state several propositions:

(51) If 〈〈x, y〉〉 ∈ inversionsR, then 〈〈x, y〉〉 6∈ inversions Swap(R, x, y).

(52) If x, y ∈ domR and z 6= x and z 6= y and t 6= x and t 6= y, then 〈〈z,
t〉〉 ∈ inversionsR iff 〈〈z, t〉〉 ∈ inversions Swap(R, x, y).

(53) If 〈〈x, y〉〉 ∈ inversionsR, then 〈〈z, y〉〉 ∈ inversionsR and z ∈ x iff 〈〈z,
x〉〉 ∈ inversions Swap(R, x, y).

(54) If 〈〈x, y〉〉 ∈ inversionsR, then 〈〈z, x〉〉 ∈ inversionsR iff z ∈ x and 〈〈z,
y〉〉 ∈ inversions Swap(R, x, y).
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(55) If 〈〈x, y〉〉 ∈ inversionsR and z ∈ y and 〈〈x, z〉〉 ∈ inversions Swap(R, x, y),
then 〈〈x, z〉〉 ∈ inversionsR.

(56) If 〈〈x, y〉〉 ∈ inversionsR and x ∈ z and 〈〈z, y〉〉 ∈ inversions Swap(R, x, y),
then 〈〈z, y〉〉 ∈ inversionsR.

(57) If 〈〈x, y〉〉 ∈ inversionsR and y ∈ z and 〈〈x, z〉〉 ∈ inversions Swap(R, x, y),
then 〈〈y, z〉〉 ∈ inversionsR.

(58) If 〈〈x, y〉〉 ∈ inversionsR, then y ∈ z and 〈〈x, z〉〉 ∈ inversionsR iff 〈〈y,
z〉〉 ∈ inversions Swap(R, x, y).

Let us consider O, R, x, y. The functor ⊆Rx,y yields a function and is defined
by:

(Def. 13) ⊆Rx,y= Swap(iddomR, x, y)×Swap(iddomR, x, y)+·id{x}×(succ y\x)∪(succ y\x)×{y}.
Next we state the proposition

(59) γ ∈ succβ \ α iff α ⊆ γ ⊆ β.
We adopt the following convention: T is a non empty array of O and p, q,

r, s are elements of domT.

The following propositions are true:

(60) succ q \ p ⊆ domT.

(61) dom ⊆Tp,q= domT × domT and rng ⊆Tp,q⊆ domT × domT.

(62) If p ⊆ r ⊆ q, then (⊆Tp,q)(p, r) = 〈〈p, r〉〉 and (⊆Tp,q)(r, q) = 〈〈r, q〉〉.
(63) If r 6= p and s 6= q and f = Swap(iddomT , p, q), then (⊆Tp,q)(r, s) = 〈〈f(r),

f(s)〉〉.
(64) If r ∈ p and f = Swap(iddomT , p, q), then (⊆Tp,q)(r, q) = 〈〈f(r), f(q)〉〉 and

(⊆Tp,q)(r, p) = 〈〈f(r), f(p)〉〉.
(65) If q ∈ r and f = Swap(iddomT , p, q), then (⊆Tp,q)(p, r) = 〈〈f(p), f(r)〉〉

and (⊆Tp,q)(q, r) = 〈〈f(q), f(r)〉〉.
(66) If p ∈ q, then (⊆Tp,q)(p, q) = 〈〈p, q〉〉.
(67) If p ∈ q and r 6= p and r 6= q and s 6= p and s 6= q, then (⊆Tp,q)(r, s) = 〈〈r,

s〉〉.
(68) If r ∈ p and p ∈ q, then (⊆Tp,q)(r, p) = 〈〈r, q〉〉 and (⊆Tp,q)(r, q) = 〈〈r, p〉〉.
(69) If p ∈ s and s ∈ q, then (⊆Tp,q)(p, s) = 〈〈p, s〉〉 and (⊆Tp,q)(s, q) = 〈〈s, q〉〉.
(70) If p ∈ q and q ∈ s, then (⊆Tp,q)(p, s) = 〈〈q, s〉〉 and (⊆Tp,q)(q, s) = 〈〈p, s〉〉.
(71) If p ∈ q, then ⊆Tp,q �(inversions Swap(T, p, q) qua set) is one-to-one.

Let us consider O, R, x, y, z. Note that (⊆Rx,y)◦z is relation-like.
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7. Correctness of Sorting by Exchanging

The following proposition is true

(72) If 〈〈x, y〉〉 ∈ inversionsR, then (⊆Rx,y)◦ inversions Swap(R, x, y) ⊂
inversionsR.

Let R be a finite function and let us consider x, y. One can check that
Swap(R, x, y) is finite.

Next we state two propositions:

(73) For every array R of O such that 〈〈x, y〉〉 ∈ inversionsR and inversionsR

is finite holds inversions Swap(R, x, y) ∈ inversionsR.

(74) For every finite array R of O such that 〈〈x, y〉〉 ∈ inversionsR holds

inversions Swap(R, x, y) < inversionsR.

Let us consider O, R. A non empty array is called a computation of R if it
satisfies the conditions (Def. 14).

(Def. 14)(i) It(base it) = R,

(ii) for every α such that α ∈ dom it holds it(α) is an array of O, and
(iii) for every α such that α, succα ∈ dom it there exist R, x, y such that
〈〈x, y〉〉 ∈ inversionsR and it(α) = R and it(succα) = Swap(R, x, y).

We now state the proposition

(75) {〈〈α, R〉〉} is a computation of R.

Let us consider O, R, α. One can check that there exists a computation of
R which is α-based and finite.

Let us consider O, R, let C be a computation of R, and let us consider x.
One can check that C(x) is segmental, function-like, and relation-like.

Let us consider O, R, let C be a computation of R, and let us consider x.
Observe that C(x) is the carrier of O-valued.

Let us consider O, R and let C be a computation of R. Observe that lastC
is segmental, relation-like, and function-like.

Let us consider O, R and let C be a computation of R. Observe that lastC
is the carrier of O-valued.

Let us consider O, R and let C be a computation of R. We say that C is
complete if and only if:

(Def. 15) lastC is ascending.

One can prove the following three propositions:

(76) For every 0-based computation C of R such that R is a finite array of O
holds C is finite.

(77) Let C be a 0-based computation of R. Suppose R is a finite array of O
and for every α such that inversionsC(α) 6= ∅ holds succα ∈ domC. Then
C is complete.
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(78) Let C be a finite computation of R. Then lastC is a permutation of R
and for every α such that α ∈ domC holds C(α) is a permutation of R.

8. Existence of Complete Computations

Next we state three propositions:

(79) For every 0-based finite array A of X such that A 6= ∅ holds lastA ∈ X.
(80) last〈x〉 = x.

(81) For every 0-based finite array A holds last(A a 〈x〉) = x.

Let X be a set. Observe that every element of Xω is X-valued.
The scheme A deals with a unary functor F yielding a set, a non empty set

A, a set B, and a binary predicate P, and states that:
There exists a finite 0-based non empty array f and there exists
an element k of A such that
(i) k = last f,
(ii) F(k) = ∅,

(iii) f(0) = B, and
(iv) for every α such that succα ∈ dom f there exist elements
x, y of A such that x = f(α) and y = f(succα) and P[x, y]

provided the following requirements are met:
• B ∈ A,
• F(B) is finite, and
• For every element x of A such that F(x) 6= ∅ there exists an

element y of A such that P[x, y] and F(y) ⊂ F(x).
In the sequel A is an array and B is a permutation of A.
We now state the proposition

(82) B ∈ (rngA)domA.

Let A be a real-valued array. One can verify that every permutation of A is
real-valued.

Let us consider α and let X be a non empty set. Observe that every element
of Xα is transfinite sequence-like.

Let us consider X and let Y be a real-membered non empty set. One can
check that every element of Y X is real-valued.

Let us consider X and let A be an array of X. One can check that every
permutation of A is X-valued.

Let X be a set, let Z be a set, and let Y be a subset of Z. Note that every
element of Y X is Z-valued.

One can prove the following propositions:

(83) Every X-defined Y -valued binary relation is a relation between X and Y .
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(84) For every finite ordinal number α and for every x such that x ∈ α holds
x = 0 or there exists β such that x = succβ.

(85) For every 0-based finite non empty array A of O holds there exists a
0-based computation of A which is complete.

(86) For every 0-based finite non empty array A of O holds there exists a
permutation of A which is ascending.

Let us consider O and let A be a 0-based finite array of O. Observe that
there exists a permutation of A which is ascending.
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1. Preliminaries

For simplicity, we adopt the following rules: X, Y denote sets, n, m, k, i
denote natural numbers, r denotes a real number, R denotes an element of RF,
K denotes a field, f , f1, f2, g1, g2 denote finite sequences, r1, r2, r3 denote
real-valued finite sequences, c1, c2 denote complex-valued finite sequences, and
F denotes a function.

Let us consider X, Y and let F be a positive yielding partial function from
X to R. One can check that F �Y is positive yielding.

Let us consider X, Y and let F be a negative yielding partial function from
X to R. One can verify that F �Y is negative yielding.

Let us consider X, Y and let F be a non-positive yielding partial function
from X to R. Note that F �Y is non-positive yielding.
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Let us consider X, Y and let F be a non-negative yielding partial function
from X to R. Note that F �Y is non-negative yielding.

Let us consider r1. One can check that
√
r1 is finite sequence-like.

Let us consider r1. The functor @r1 yielding a finite sequence of elements of
RF is defined by:

(Def. 1) @r1 = r1.

Let p be a finite sequence of elements of RF. The functor @p yields a finite
sequence of elements of R and is defined as follows:

(Def. 2) @p = p.

We now state several propositions:

(1) (@r2) + @r3 = r2 + r3.

(2)
√
r2 a r3 =

√
r2
a √r3.

(3)
√
〈r〉 = 〈

√
r〉.

(4)
√
r12 = |r1|.

(5) If r1 is non-negative yielding, then
√∑

r1 ≤
∑√

r1.

(6) There exists X such that X ⊆ domF and rngF = rng(F �X) and F �X
is one-to-one.

Let us consider c1, X. Observe that c1 −X is complex-valued.
Let us consider r1, X. Observe that r1 −X is real-valued.
Let c1 be a complex-valued finite subsequence. Note that Seq c1 is complex-

valued.
Let r1 be a real-valued finite subsequence. Observe that Seq r1 is real-valued.
One can prove the following propositions:

(7) For every permutation P of dom f such that f1 = f · P there exists a
permutation Q of dom(f −X) such that f1 −X = (f −X) ·Q.

(8) For every permutation P of dom c1 such that c2 = c1 · P holds
∑

(c2 −
X) =

∑
(c1 −X).

(9) Let f , f1 be finite subsequences and P be a permutation of dom f. If
f1 = f ·P, then there exists a permutation Q of dom Seq(f1�P−1(X)) such
that Seq(f�X) = Seq(f1�P−1(X)) ·Q.

(10) Let c1, c2 be complex-valued finite subsequences and P be a permutation
of dom c1. If c2 = c1 · P, then

∑
Seq(c1�X) =

∑
Seq(c2�P−1(X)).

(11) Let f be a finite subsequence and n be an element of N. If for every i

holds i+ n ∈ X iff i ∈ Y, then Shiftn f�X = Shiftn(f�Y ).

(12) There exists a subset Y of N such that Seq((f1a f2)�X) = (Seq(f1�X))a

Seq(f2�Y ) and for every n such that n > 0 holds n ∈ Y iff n + len f1 ∈
X ∩ dom(f1 a f2).

(13) If len g1 = len f1 and len g2 ≤ len f2, then Seq((f1af2)�(g1ag2)−1(X)) =
(Seq(f1�g1−1(X))) a Seq(f2�g2−1(X)).
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(14) Let D be a non empty set and M be a matrix over D of dimension n ×
m. Then M −X is a matrix over D of dimension n−′ M−1(X) × m.

(15) Let F be a function from Seg n into Seg n, D be a non empty set, M
be a matrix over D of dimension n × m, and given i. If i ∈ Seg widthM,

then (M · F )�,i = M�,i · F.
(16) Let A be a matrix over K of dimension n × m. Suppose rk(A) = n.

Then there exists a matrix B over K of dimension m−′ n × m such that
rk(A a B) = m.

(17) Let A be a matrix over K of dimension n × m. Suppose rk(A) = m.

Then there exists a matrix B over K of dimension n × n−′ m such that
rk(A_ B) = n.

For simplicity, we adopt the following convention: f , f1, f2 denote n-element
real-valued finite sequences, p, p1, p2 denote points of EnT, M , M1, M2 denote
matrices over RF of dimension n × m, and A, B denote square matrices over
RF of dimension n.

2. Linear Transformations of Euclidean Topological Spaces Given
by a Transformation Matrix

Let us consider n, m, M . The functor Mx2TranM yielding a function from
EnT into EmT is defined by:

(Def. 3)(i) (Mx2TranM)(f) = Line(LineVec2Mx(@f) ·M, 1) if n 6= 0,
(ii) (Mx2TranM)(f) = 0EmT , otherwise.

Let us consider n,m,M and let x be a set. One can check that (Mx2TranM)(x)
is function-like and relation-like and (Mx2TranM)(x) is real-valued and finite
sequence-like.

Let us consider n, m, M , f . One can check that (Mx2TranM)(f) is m-
element.

One can prove the following propositions:

(18) If 1 ≤ i ≤ m and n 6= 0, then (Mx2TranM)(f)(i) = (@f) ·M�,i.
(19) len MX2FinS(In×nK ) = n.

(20) Let B1 be an ordered basis of the n-dimension vector space over RF and
B2 be an ordered basis of the m-dimension vector space over RF. Suppose
B1 = MX2FinS(In×nRF ) and B2 = MX2FinS(Im×mRF ). Let M1 be a matrix
over RF of dimension lenB1 × lenB2. If M1 = M, then Mx2TranM =
Mx2Tran(M1, B1, B2).

(21) For every permutation P of Seg n holds (Mx2TranM)(f) =
(Mx2Tran(M · P ))(f · P ) and f · P is an n-element finite sequence of
elements of R.

(22) (Mx2TranM)(f1 + f2) = (Mx2TranM)(f1) + (Mx2TranM)(f2).
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(23) (Mx2TranM)(r · f) = r · (Mx2TranM)(f).

(24) (Mx2TranM)(f1 − f2) = (Mx2TranM)(f1)− (Mx2TranM)(f2).

(25) (Mx2Tran(M1 +M2))(f) = (Mx2TranM1)(f) + (Mx2TranM2)(f).

(26) (R) · (Mx2TranM)(f) = (Mx2Tran(R ·M))(f).

(27) (Mx2TranM)(p1 + p2) = (Mx2TranM)(p1) + (Mx2TranM)(p2).

(28) (Mx2TranM)(p1 − p2) = (Mx2TranM)(p1)− (Mx2TranM)(p2).

(29) (Mx2TranM)(0EnT) = 0EmT .

(30) For every subset A of EnT holds (Mx2TranM)◦(p + A) =
(Mx2TranM)(p) + (Mx2TranM)◦A.

(31) For every subset A of EmT holds (Mx2TranM)−1((Mx2TranM)(p)+A) =
p+ (Mx2TranM)−1(A).

(32) Let A be a matrix over RF of dimension n × m and B be a matrix over
RF of dimension widthA × k. If if n = 0, then m = 0 and if m = 0, then
k = 0, then Mx2TranB ·Mx2TranA = Mx2Tran(A ·B).

(33) Mx2Tran(In×nRF ) = idEnT .

(34) If Mx2TranM1 = Mx2TranM2, then M1 = M2.

(35) Let A be a matrix over RF of dimension n × m and B be a matrix
over RF of dimension k × m. Then (Mx2Tran(A a B))(f a (k 7→ 0)) =
(Mx2TranA)(f) and (Mx2Tran(B a A))((k 7→ 0) a f) = (Mx2TranA)(f).

(36) Let A be a matrix over RF of dimension n × m, B be a matrix over
RF of dimension k × m, and g be a k-element real-valued finite sequence.
Then (Mx2Tran(A a B))(f a g) = (Mx2TranA)(f) + (Mx2TranB)(g).

(37) Let A be a matrix over RF of dimension n × k and B be a matrix
over RF of dimension n × m such that if n = 0, then k + m = 0. Then
(Mx2Tran(A_ B))(f) = (Mx2TranA)(f) a (Mx2TranB)(f).

(38) (Mx2Tran(Im×mRF �n))(f)�n = f.

3. Selected Properties of the Mx2Tran Operator

Next we state several propositions:

(39) Mx2TranM is one-to-one iff rk(M) = n.

(40) Mx2TranA is one-to-one iff DetA 6= 0RF .

(41) Mx2TranM is onto iff rk(M) = m.

(42) Mx2TranA is onto iff DetA 6= 0RF .

(43) For all A, B such that DetA 6= 0RF holds (Mx2TranA)−1 = Mx2TranB
iff A` = B.

(44) There exists an m-element finite sequence L of elements of R such that
for every i such that i ∈ domL holds L(i) = |@(M�,i)| and for every f

holds |(Mx2TranM)(f)| ≤
∑
L · |f |.
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(45) There exists a real number L such that L > 0 and for every f holds
|(Mx2TranM)(f)| ≤ L · |f |.

(46) If rk(M) = n, then there exists a real number L such that L > 0 and for
every f holds |f | ≤ L · |(Mx2TranM)(f)|.

(47) Mx2TranM is continuous.

Let us consider n, K. One can check that there exists a square matrix over
K of dimension n which is invertible.

Let us consider n and let A be an invertible square matrix over RF of di-
mension n. Note that Mx2TranA is homeomorphism.
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notation for this paper.

1. Correspondence Between Euclidean Topological Space and
Vector Space over RF

For simplicity, we follow the rules: X denotes a set, n, m, k denote natural
numbers, K denotes a field, f denotes an n-element real-valued finite sequence,
and M denotes a matrix over RF of dimension n × m.

One can prove the following propositions:

(1) X is a linear combination of the n-dimension vector space over RF if and
only if X is a linear combination of EnT.

(2) Let L2 be a linear combination of the n-dimension vector space over RF
and L1 be a linear combination of EnT. If L1 = L2, then the support of
L1 = the support of L2.

(3) Let F be a finite sequence of elements of EnT, f1 be a function from EnT
into R, F1 be a finite sequence of elements of the n-dimension vector space
over RF, and f2 be a function from the n-dimension vector space over RF
into RF. If f1 = f2 and F = F1, then f1 F = f2 F1.
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(4) Let F be a finite sequence of elements of EnT and F1 be a finite sequence
of elements of the n-dimension vector space over RF. If F1 = F, then∑
F =

∑
F1.

(5) Let L2 be a linear combination of the n-dimension vector space over RF
and L1 be a linear combination of EnT. If L1 = L2, then

∑
L1 =

∑
L2.

(6) Let A2 be a subset of the n-dimension vector space over RF and A1 be
a subset of EnT. If A2 = A1, then ΩLin(A1) = ΩLin(A2).

(7) Let A2 be a subset of the n-dimension vector space over RF and A1 be
a subset of EnT. Suppose A2 = A1. Then A2 is linearly independent if and
only if A1 is linearly independent.

(8) Let V be a vector space over K, W be a subspace of V , and L be a linear
combination of V . Then L�the carrier of W is a linear combination of W .

(9) Let V be a vector space over K, A be a linearly independent subset of V ,
and L3, L4 be linear combinations of V . Suppose the support of L3 ⊆ A

and the support of L4 ⊆ A and
∑
L3 =

∑
L4. Then L3 = L4.

(10) Let V be a real linear space, W be a subspace of V , and L be a linear
combination of V . Then L�the carrier of W is a linear combination of W .

(11) Let U be a subspace of the n-dimension vector space over RF and W be
a subspace of EnT. Suppose ΩU = ΩW . Then X is a linear combination of
U if and only if X is a linear combination of W .

(12) Let U be a subspace of the n-dimension vector space over RF, W be
a subspace of EnT, L5 be a linear combination of U , and L6 be a linear
combination of W . If L5 = L6, then the support of L5 = the support of
L6 and

∑
L5 =

∑
L6.

Let us consider m, K and let A be a subset of the m-dimension vector space
over K. Note that Lin(A) is finite dimensional.

2. Correspondence Between the Mx2Tran Operator and
Decomposition of a Vector in Basis

The following propositions are true:

(13) If rk(M) = n, then M is an ordered basis of Lin(lines(M)).

(14) Let V , W be vector spaces over K, T be a linear transformation from V

to W , A be a subset of V , and L be a linear combination of A. If T �A is
one-to-one, then T (

∑
L) =

∑
(T@L).

(15) Let S be a subset of Seg n. Suppose M�S is one-to-one and rng(M�S) =
lines(M). Then there exists a linear combination L of lines(M) such
that

∑
L = (Mx2TranM)(f) and for every k such that k ∈ S holds

L(Line(M,k)) =
∑

Seq(f�M−1({Line(M,k)})).
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(16) Suppose M is without repeated line. Then there exists a linear combi-
nation L of lines(M) such that

∑
L = (Mx2TranM)(f) and for every k

such that k ∈ dom f holds L(Line(M,k)) = f(k).

(17) For every ordered basis B of Lin(lines(M)) such that B = M and for
every element M1 of Lin(lines(M)) such that M1 = (Mx2TranM)(f) holds
M1 → B = f.

(18) rng Mx2TranM = ΩLin(lines(M)).

(19) Let F be a one-to-one finite sequence of elements of EnT. Suppose rngF
is linearly independent. Then there exists a square matrix M over RF of
dimension n such that M is invertible and M� lenF = F.

(20) Let B be an ordered basis of the n-dimension vector space over RF. If
B = MX2FinS(In×nRF ), then f ∈ Lin(rng(B�k)) iff f = (f�k) a ((n−′ k) 7→
0).

(21) Let F be a one-to-one finite sequence of elements of EnT. Suppose rngF
is linearly independent. Let B be an ordered basis of the n-dimension
vector space over RF. Suppose B = MX2FinS(In×nRF ). Let M be a square
matrix over RF of dimension n. If M is invertible and M� lenF = F, then
(Mx2TranM)◦(ΩLin(rng(B� lenF ))) = ΩLin(rngF ).

(22) Let A, B be linearly independent subsets of EnT. Suppose A = B. Then
there exists a square matrix M over RF of dimension n such that M is
invertible and (Mx2TranM)◦(ΩLin(A)) = ΩLin(B).

3. Preservation of Linear and Affine Independence of Vectors by
the Mx2Tran Operator

The following propositions are true:

(23) For every linearly independent subset A of EnT such that rk(M) = n holds
(Mx2TranM)◦A is linearly independent.

(24) For every affinely independent subset A of EnT such that rk(M) = n holds
(Mx2TranM)◦A is affinely independent.

(25) Let A be an affinely independent subset of EnT. Suppose rk(M) = n.

Let v be an element of EnT. If v ∈ AffinA, then (Mx2TranM)(v) ∈
Affin((Mx2TranM)◦A) and for every f holds (v → A)(f) =
((Mx2TranM)(v)→ (Mx2TranM)◦A)((Mx2TranM)(f)).

(26) For every linearly independent subset A of EmT such that rk(M) = n

holds (Mx2TranM)−1(A) is linearly independent.

(27) For every affinely independent subset A of EmT such that rk(M) = n

holds (Mx2TranM)−1(A) is affinely independent.
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1. Preliminaries

In this paper a, b, c denote boolean numbers.
Next we state three propositions:

(1) (a⇒ b ∧ c)⇒ (a⇒ b) = 1.

(2) (a⇒ (b⇒ c))⇒ (a ∧ b⇒ c) = 1.

(3) (a ∧ b⇒ c)⇒ (a⇒ (b⇒ c)) = 1.

2. The Language. Basic Operators. Further Operators as
Abbreviations

We introduce the LTLB-WFF as a synonym of HP-WFF.
For simplicity, we adopt the following rules: p, q, r, s, A, B, C are elements

of the LTLB-WFF, G is a subset of the LTLB-WFF, i, j, n are elements of N,
and f1, f2 are finite sequences of elements of the LTLB-WFF.
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We introduce ⊥t as a synonym of VERUM.
Let us consider p, q. We introduce pUs q as a synonym of p ∧ q.
We now state the proposition

(4) For every A holds A = ⊥t or there exists n such that A = propn or there
exist p, q such that A = p⇒ q or there exist p, q such that A = pUs q.

Let us consider p. The functor ¬p yields an element of the LTLB-WFF and
is defined as follows:

(Def. 1) ¬p = p⇒ ⊥t.
The functor X p yielding an element of the LTLB-WFF is defined as follows:

(Def. 2) X p = ⊥t Us p.
The element >t of the LTLB-WFF is defined by:

(Def. 3) >t = ¬⊥t.
Let us consider p, q. The functor p&& q yields an element of the LTLB-WFF

and is defined as follows:

(Def. 4) p&& q = (p⇒ (q ⇒ ⊥t))⇒ ⊥t.
Let us consider p, q. The functor p || q yielding an element of the LTLB-WFF

is defined as follows:

(Def. 5) p || q = ¬(¬p&&¬q).
Let us consider p. The functor G p yielding an element of the LTLB-WFF is

defined as follows:

(Def. 6) G p = ¬(¬p ||(>t &&(>t Us ¬p))).
Let us consider p. The functor F p yields an element of the LTLB-WFF and

is defined as follows:

(Def. 7) F p = ¬G ¬p.
Let us consider p, q. The functor p U q yields an element of the LTLB-WFF

and is defined as follows:

(Def. 8) p U q = q ||(p&&(pUs q)).
Let us consider p, q. The functor pRq yielding an element of the LTLB-WFF

is defined as follows:

(Def. 9) pR q = ¬(¬p U ¬q).

3. The Semantics

The subset AP of the LTLB-WFF is defined by:

(Def. 10) For every set x holds x ∈ AP iff there exists an element n of N such that
x = propn.

A LTL Model is a sequence of 2AP .
In the sequel M denotes a LTL Model.
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Let M be a LTL Model. The functor SATM yielding a function from N ×
the LTLB-WFF into Boolean is defined by the condition (Def. 11).

(Def. 11) Let given n. Then
(i) SATM (〈〈n, ⊥t〉〉) = 0,
(ii) for every k holds SATM (〈〈n, prop k〉〉) = 1 iff prop k ∈M(n), and
(iii) for all p, q holds SATM (〈〈n, p ⇒ q〉〉) = SATM (〈〈n, p〉〉) ⇒ SATM (〈〈n,

q〉〉) and SATM (〈〈n, pUs q〉〉) = 1 iff there exists i such that 0 < i and
SATM (〈〈n+i, q〉〉) = 1 and for every j such that 1 ≤ j < i holds SATM (〈〈n+
j, p〉〉) = 1.

One can prove the following propositions:

(5) SATM (〈〈n, ¬A〉〉) = 1 iff SATM (〈〈n, A〉〉) = 0.

(6) SATM (〈〈n, >t〉〉) = 1.

(7) SATM (〈〈n, A&&B〉〉) = 1 iff SATM (〈〈n, A〉〉) = 1 and SATM (〈〈n, B〉〉) = 1.

(8) SATM (〈〈n, A ||B〉〉) = 1 iff SATM (〈〈n, A〉〉) = 1 or SATM (〈〈n, B〉〉) = 1.

(9) SATM (〈〈n, X A〉〉) = SATM (〈〈n+ 1, A〉〉).
(10) SATM (〈〈n, G A〉〉) = 1 iff for every i holds SATM (〈〈n+ i, A〉〉) = 1.

(11) SATM (〈〈n, F A〉〉) = 1 iff there exists i such that SATM (〈〈n+ i, A〉〉) = 1.

(12) SATM (〈〈n, p U q〉〉) = 1 iff there exists i such that SATM (〈〈n+ i, q〉〉) = 1
and for every j such that j < i holds SATM (〈〈n+ j, p〉〉) = 1.

(13) SATM (〈〈n, p R q〉〉) = 1 if and only if one of the following conditions is
satisfied:

(i) there exists i such that SATM (〈〈n+ i, p〉〉) = 1 and for every j such that
j ≤ i holds SATM (〈〈n+ j, q〉〉) = 1, or

(ii) for every i holds SATM (〈〈n+ i, q〉〉) = 1.

(14) SATM (〈〈n, ¬X B〉〉) = SATM (〈〈n, X ¬B〉〉).
(15) SATM (〈〈n, ¬X B ⇒ X ¬B〉〉) = 1.

(16) SATM (〈〈n, X ¬B ⇒ ¬X B〉〉) = 1.

(17) SATM (〈〈n, X (B ⇒ C)⇒ (X B ⇒ X C)〉〉) = 1.

(18) SATM (〈〈n, GB ⇒ B&&X GB〉〉) = 1.

(19) SATM (〈〈n, B UsC ⇒ X C || X (B&&(B UsC))〉〉) = 1.

(20) SATM (〈〈n, X C || X (B&&(B UsC))⇒ B UsC〉〉) = 1.

(21) SATM (〈〈n, B UsC ⇒ X F C〉〉) = 1.

4. Validity. Consequence. Some Facts about the Semantical
Notions

Let us consider M , p. The predicate M |= p is defined as follows:

(Def. 12) For every element n of N holds SATM (〈〈n, p〉〉) = 1.
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Let us consider M , F . The predicate M |= F is defined by:

(Def. 13) For every p such that p ∈ F holds M |= p.

Let us consider F , p. The predicate F |= p is defined as follows:

(Def. 14) For every M such that M |= F holds M |= p.

One can prove the following propositions:

(22) M |= F and M |= G iff M |= F ∪G.
(23) M |= A iff M |= {A}.
(24) If F |= A and F |= A⇒ B, then F |= B.

(25) If F |= A, then F |= X A.
(26) If F |= A, then F |= G A.
(27) If F |= A⇒ B and F |= A⇒ X A, then F |= A⇒ GB.
(28) SAT(M↑i)(〈〈j, A〉〉) = SATM (〈〈i+ j, A〉〉).
(29) If M |= F, then M ↑ i |= F.

(30) F ∪ {A} |= B iff F |= G A⇒ B.

Let f be a function from the LTLB-WFF into Boolean. The functor VAL f
yielding a function from the LTLB-WFF into Boolean is defined as follows:

(Def. 15) (VAL f)(⊥t) = 0 and (VAL f)(propn) = f(propn) and (VAL f)(A ⇒
B) = (VAL f)(A)⇒ (VAL f)(B) and (VAL f)(AUsB) = f(AUsB).

The following propositions are true:

(31) For every function f from the LTLB-WFF into Boolean and for all p, q
holds (VAL f)(p&& q) = (VAL f)(p) ∧ (VAL f)(q).

(32) Let f be a function from the LTLB-WFF into Boolean. Suppose that for
every set B such that B ∈ the LTLB-WFF holds f(B) = SATM (〈〈n, B〉〉).
Then (VAL f)(A) = SATM (〈〈n, A〉〉).

Let us consider p. We say that p is tautologically valid if and only if:

(Def. 16) For every function f from the LTLB-WFF into Boolean holds
(VAL f)(p) = 1.

One can prove the following proposition

(33) If A is tautologically valid, then F |= A.

5. Axioms. Derivation Rules. Derivability. Soundness Theorem for
LTL

Let D be a set. We say that D has LTL axioms if and only if the condition
(Def. 17) is satisfied.

(Def. 17) Let given p, q. Then if p is tautologically valid, then p ∈ D,
¬X p⇒ X ¬p ∈ D,
X ¬p⇒ ¬X p ∈ D,
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X (p⇒ q)⇒ (X p⇒ X q) ∈ D,
G p⇒ p&&X G p ∈ D,
pUs q ⇒ X q || X (p&&(pUs q)) ∈ D,
X q || X (p&&(pUs q))⇒ pUs q ∈ D,
pUs q ⇒ X F q ∈ D.

The subset AXLTL of the LTLB-WFF is defined as follows:

(Def. 18) AXLTL has LTL axioms and for every subset D of the LTLB-WFF such
that D has LTL axioms holds AXLTL ⊆ D.

Let us mention that AXLTL has LTL axioms.
Next we state two propositions:

(34) p⇒ (q ⇒ p) ∈ AXLTL.
(35) (p⇒ (q ⇒ r))⇒ ((p⇒ q)⇒ (p⇒ r)) ∈ AXLTL.

Let us consider p, q. The predicate NEX(p, q) is defined as follows:

(Def. 19) q = X p.
Let us consider r. The predicate MP(p, q, r) is defined as follows:

(Def. 20) q = p⇒ r.

The predicate IND(p, q, r) is defined as follows:

(Def. 21) There exist A, B such that p = A⇒ B and q = A⇒ X A and r = A⇒
GB.

Let us observe that AXLTL is non empty.
Let us consider A. We say that A is LTL axiom 1 if and only if:

(Def. 22) There exists B such that A = ¬X B ⇒ X ¬B.
We say that A is LTL axiom 1a if and only if:

(Def. 23) There exists B such that A = X ¬B ⇒ ¬X B.
We say that A is LTL axiom 2 if and only if:

(Def. 24) There exist B, C such that A = X (B ⇒ C)⇒ (X B ⇒ X C).

We say that A is LTL axiom 3 if and only if:

(Def. 25) There exists B such that A = GB ⇒ B&&X GB.
We say that A is LTL axiom 4 if and only if:

(Def. 26) There exist B, C such that A = B UsC ⇒ X C || X (B&&(B UsC)).

We say that A is LTL axiom 5 if and only if:

(Def. 27) There exist B, C such that A = X C || X (B&&(B UsC))⇒ B UsC.
We say that A is LTL axiom 6 if and only if:

(Def. 28) There exist B, C such that A = B UsC ⇒ X F C.
Next we state two propositions:

(36) Every element of AXLTL is tautologically valid, or LTL axiom 1, or LTL
axiom 1a, or LTL axiom 2, or LTL axiom 3, or LTL axiom 4, or LTL
axiom 5, or LTL axiom 6.
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(37) Suppose that A is LTL axiom 1, or LTL axiom 1a, or LTL axiom 2, or
LTL axiom 3, or LTL axiom 4, or LTL axiom 5, or LTL axiom 6. Then
F |= A.

Let i be a natural number and let us consider f , X. The predicate prc(f,X, i)
is defined by the conditions (Def. 29).

(Def. 29)(i) f(i) ∈ AXLTL, or
(ii) f(i) ∈ X, or

(iii) there exist natural numbers j, k such that 1 ≤ j < i and 1 ≤ k < i and
MP(fj , fk, fi) or IND(fj , fk, fi), or

(iv) there exists a natural number j such that 1 ≤ j < i and NEX(fj , fi).

Let us consider X, p. The predicate X ` p is defined as follows:

(Def. 30) There exists f such that f(len f) = p and 1 ≤ len f and for every natural
number i such that 1 ≤ i ≤ len f holds prc(f,X, i).

We now state four propositions:

(38) Let i, n be natural numbers. Suppose n + len f ≤ len f2 and for every
natural number k such that 1 ≤ k ≤ len f holds f(k) = f2(k + n) and
1 ≤ i ≤ len f. If prc(f,X, i), then prc(f2, X, i+ n).

(39) Suppose that
(i) f2 = f a f1,

(ii) 1 ≤ len f,
(iii) 1 ≤ len f1,
(iv) for every natural number i such that 1 ≤ i ≤ len f holds prc(f,X, i),

and
(v) for every natural number i such that 1 ≤ i ≤ len f1 holds prc(f1, X, i).

Let i be a natural number. If 1 ≤ i ≤ len f2, then prc(f2, X, i).

(40) Suppose f = f1
a 〈p〉 and 1 ≤ len f1 and for every natural number i such

that 1 ≤ i ≤ len f1 holds prc(f1, X, i) and prc(f,X, len f). Then for every
natural number i such that 1 ≤ i ≤ len f holds prc(f,X, i) and X ` p.

(41)1 If F ` A, then F |= A.

6. Derivation of Some Formulas. Deduction Theorem of LTL

We now state a number of propositions:

(42) If p ∈ AXLTL or p ∈ X, then X ` p.
(43) If X ` p and X ` p⇒ q, then X ` q.
(44) If X ` p, then X ` X p.
(45) If X ` p⇒ q and X ` p⇒ X p, then X ` p⇒ G q.
(46) If X ` r ⇒ p&& q, then X ` r ⇒ p and X ` r ⇒ q.

1Soundness Theorem for LTL
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(47) If X ` p⇒ q and X ` q ⇒ r, then X ` p⇒ r.

(48) If X ` p⇒ (q ⇒ r), then X ` p&& q ⇒ r.

(49) If X ` p&& q ⇒ r, then X ` p⇒ (q ⇒ r).

(50) If X ` p&& q ⇒ r and X ` p⇒ s, then X ` p&& q ⇒ s&& r.

(51) If X ` p⇒ (q ⇒ r) and X ` r ⇒ s, then X ` p⇒ (q ⇒ s).

(52) If X ` p⇒ q, then X ` ¬q ⇒ ¬p.
(53) X ` X p&&X q ⇒ X (p&& q).

(54) If F ` p, then F ` G p.
(55) If p⇒ q ∈ F, then F ∪ {p} ` G q.
(56) If F ` q, then F ∪ {p} ` q.
(57)2 If F ∪ {p} ` q, then F ` G p⇒ q.

(58) If F ` p⇒ q, then F ∪ {p} ` q.
(59) If F ` G p⇒ q, then F ∪ {p} ` q.
(60) F ` G(p⇒ q)⇒ (G p⇒ G q).
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[9] Fred Kröger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag,

2008.
[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,

1(1):115–122, 1990.
[11] Andrzej Trybulec. Defining by structural induction in the positive propositional language.
Formalized Mathematics, 8(1):133–137, 1999.

[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[13] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,

1990.

Received November 20, 2010

2Deduction Theorem of LTL





FORMALIZED MATHEMATICS

Vol. 19, No. 2, Pages 121–126, 2011

Banach Algebra of Bounded
Complex-Valued Functionals

Katuhiko Kanazashi
Shizuoka High School

Japan

Hiroyuki Okazaki
Shinshu University

Nagano, Japan

Yasunari Shidama
Shinshu University

Nagano, Japan

Summary. In this article, we describe some basic properties of the Banach
algebra which is constructed from all bounded complex-valued functionals.

MML identifier: CC0SP1, version: 7.11.07 4.160.1126

The notation and terminology used in this paper are introduced in the following
articles: [2], [16], [9], [14], [7], [8], [3], [18], [17], [4], [19], [5], [15], [1], [20], [12],
[11], [10], [21], [13], and [6].

Let V be a complex algebra. A complex algebra is called a complex subal-
gebra of V if it satisfies the conditions (Def. 1).

(Def. 1)(i) The carrier of it ⊆ the carrier of V ,
(ii) the addition of it = (the addition of V ) � (the carrier of it),
(iii) the multiplication of it = (the multiplication of V ) � (the carrier of it),
(iv) the external multiplication of it = (the external multiplication of

V )�(C× the carrier of it),
(v) 1it = 1V , and
(vi) 0it = 0V .

We now state the proposition

(1) Let X be a non empty set, V be a complex algebra, V1 be a non empty
subset of V , d1, d2 be elements of X, A be a binary operation on X, M
be a function from X × X into X, and M1 be a function from C × X

into X. Suppose that V1 = X and d1 = 0V and d2 = 1V and A = (the
addition of V ) � (V1) and M = (the multiplication of V ) � (V1) and
M1 = (the external multiplication of V )�(C × V1) and V1 has inverse.
Then 〈X,M,A,M1, d2, d1〉 is a complex subalgebra of V .
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Let V be a complex algebra. One can check that there exists a complex
subalgebra of V which is strict.

Let V be a complex algebra and let V1 be a subset of V . We say that V1 is
C-additively-linearly-closed if and only if:

(Def. 2) V1 is add closed and has inverse and for every complex number a and
for every element v of V such that v ∈ V1 holds a · v ∈ V1.

Let V be a complex algebra and let V1 be a subset of V . Let us assume
that V1 is C-additively-linearly-closed and non empty. The functor Mult(V1, V )
yielding a function from C× V1 into V1 is defined as follows:

(Def. 3) Mult(V1, V ) = (the external multiplication of V )�(C× V1).
Let X be a non empty set. The functor C-BoundedFunctionsX yielding a

non empty subset of CAlgebra(X) is defined by:

(Def. 4) C-BoundedFunctionsX = {f : X → C: f�X is bounded}.
Let X be a non empty set. Note that CAlgebra(X) is scalar unital.
Let X be a non empty set. One can verify that C-BoundedFunctionsX is

C-additively-linearly-closed and multiplicatively-closed.
Let V be a complex algebra. Observe that there exists a non empty subset

of V which is C-additively-linearly-closed and multiplicatively-closed.
Let V be a non empty CLS structure. We say that V is scalar-multiplcation-

cancelable if and only if:

(Def. 5) For every complex number a and for every element v of V such that
a · v = 0V holds a = 0 or v = 0V .

One can prove the following two propositions:

(2) Let V be a complex algebra and V1 be a C-additively-linearly-closed
multiplicatively-closed non empty subset of V .
Then 〈V1,mult(V1, V ),Add(V1, V ),Mult(V1, V ),One(V1, V ),Zero(V1, V )〉
is a complex subalgebra of V .

(3) Let V be a complex algebra and V1 be a complex subalgebra of V . Then
(i) for all elements v1, w1 of V1 and for all elements v, w of V such that
v1 = v and w1 = w holds v1 + w1 = v + w,

(ii) for all elements v1, w1 of V1 and for all elements v, w of V such that
v1 = v and w1 = w holds v1 · w1 = v · w,

(iii) for every element v1 of V1 and for every element v of V and for every
complex number a such that v1 = v holds a · v1 = a · v,

(iv) 1(V1) = 1V , and
(v) 0(V1) = 0V .

Let X be a non empty set. The C-algebra of bounded functions of X yielding
a complex algebra is defined by:

(Def. 6) The C-algebra of bounded functions of X =
〈C-BoundedFunctionsX,mult(C-BoundedFunctionsX,CAlgebra(X)),
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Add(C-BoundedFunctionsX,CAlgebra(X)),
Mult(C-BoundedFunctionsX,CAlgebra(X)),
One(C-BoundedFunctionsX,CAlgebra(X)),
Zero(C-BoundedFunctionsX,CAlgebra(X))〉.

One can prove the following proposition

(4) For every non empty set X holds the C-algebra of bounded functions of
X is a complex subalgebra of CAlgebra(X).

Let X be a non empty set. Note that the C-algebra of bounded functions of
X is vector distributive and scalar unital.

Next we state several propositions:

(5) Let X be a non empty set, F , G, H be vectors of the C-algebra of
bounded functions of X, and f , g, h be functions from X into C. Suppose
f = F and g = G and h = H. Then H = F + G if and only if for every
element x of X holds h(x) = f(x) + g(x).

(6) Let X be a non empty set, a be a complex number, F , G be vectors of
the C-algebra of bounded functions of X, and f , g be functions from X

into C. Suppose f = F and g = G. Then G = a ·F if and only if for every
element x of X holds g(x) = a · f(x).

(7) Let X be a non empty set, F , G, H be vectors of the C-algebra of
bounded functions of X, and f , g, h be functions from X into C. Suppose
f = F and g = G and h = H. Then H = F · G if and only if for every
element x of X holds h(x) = f(x) · g(x).

(8) For every non empty set X holds 0the C-algebra of bounded functions of X =
X 7−→ 0.

(9) For every non empty set X holds 1the C-algebra of bounded functions of X =
X 7−→ 1C.

Let X be a non empty set and let F be a set. Let us assume that F ∈
C-BoundedFunctionsX. The functor modetrans(F,X) yields a function from X

into C and is defined by:

(Def. 7) modetrans(F,X) = F and modetrans(F,X)�X is bounded.

Let X be a non empty set and let f be a function from X into C. The functor
PreNorms(f) yields a non empty subset of R and is defined by:

(Def. 8) PreNorms(f) = {|f(x)| : x ranges over elements of X}.
We now state two propositions:

(10) For every non empty set X and for every function f from X into C such
that f�X is bounded holds PreNorms(f) is upper bounded.

(11) Let X be a non empty set and f be a function from X into C. Then
f�X is bounded if and only if PreNorms(f) is upper bounded.
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Let X be a non empty set. The functor C-BoundedFunctionsNormX yields
a function from C-BoundedFunctionsX into R and is defined by:

(Def. 9) For every set x such that x ∈ C-BoundedFunctionsX holds
(C-BoundedFunctionsNormX)(x) = sup PreNorms(modetrans(x,X)).

One can prove the following two propositions:

(13)1 For every non empty set X and for every function f from X into C such
that f�X is bounded holds modetrans(f,X) = f.

(14) For every non empty set X and for every function f from X into
C such that f�X is bounded holds (C-BoundedFunctionsNormX)(f) =
sup PreNorms(f).

Let X be a non empty set. The C-normed algebra of bounded functions of
X yielding a normed complex algebra structure is defined by:

(Def. 10) The C-normed algebra of bounded functions of X =
〈C-BoundedFunctionsX,mult(C-BoundedFunctionsX,CAlgebra(X)),
Add(C-BoundedFunctionsX,CAlgebra(X)),
Mult(C-BoundedFunctionsX,CAlgebra(X)),
One(C-BoundedFunctionsX,CAlgebra(X)),
Zero(C-BoundedFunctionsX,CAlgebra(X)),C-BoundedFunctionsNormX〉.

Let X be a non empty set. One can verify that the C-normed algebra of
bounded functions of X is non empty.

Let X be a non empty set. One can check that the C-normed algebra of
bounded functions of X is unital.

We now state a number of propositions:

(15) Let W be a normed complex algebra structure and V be a complex
algebra. Suppose 〈the carrier of W , the multiplication of W , the addition
of W , the external multiplication of W , the one of W , the zero of W 〉 = V.

Then W is a complex algebra.

(16) For every non empty set X holds the C-normed algebra of bounded
functions of X is a complex algebra.

(17) Let X be a non empty set and F be a point of the C-normed algebra of
bounded functions of X.
Then (Mult(C-BoundedFunctionsX,CAlgebra(X)))(1C, F ) = F.

(18) For every non empty set X holds the C-normed algebra of bounded
functions of X is a complex linear space.

(19) For every non empty set X holds
X 7−→ 0 = 0the C-normed algebra of bounded functions of X .

(20) Let X be a non empty set, x be an element of X, f be a function from
X into C, and F be a point of the C-normed algebra of bounded functions
of X. If f = F and f�X is bounded, then |f(x)| ≤ ‖F‖.

1The proposition (12) has been removed.
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(21) For every non empty set X and for every point F of the C-normed
algebra of bounded functions of X holds 0 ≤ ‖F‖.

(22) Let X be a non empty set and F be a point of the C-
normed algebra of bounded functions of X. Suppose F =
0the C-normed algebra of bounded functions of X . Then 0 = ‖F‖.

(23) Let X be a non empty set, f , g, h be functions from X into C, and F , G,
H be points of the C-normed algebra of bounded functions of X. Suppose
f = F and g = G and h = H. Then H = F + G if and only if for every
element x of X holds h(x) = f(x) + g(x).

(24) Let X be a non empty set, a be a complex number, f , g be functions
from X into C, and F , G be points of the C-normed algebra of bounded
functions of X. Suppose f = F and g = G. Then G = a · F if and only if
for every element x of X holds g(x) = a · f(x).

(25) Let X be a non empty set, f , g, h be functions from X into C, and F , G,
H be points of the C-normed algebra of bounded functions of X. Suppose
f = F and g = G and h = H. Then H = F · G if and only if for every
element x of X holds h(x) = f(x) · g(x).

(26) Let X be a non empty set, a be a complex number, and F , G be points
of the C-normed algebra of bounded functions of X. Then

(i) if ‖F‖ = 0, then F = 0the C-normed algebra of bounded functions of X ,

(ii) if F = 0the C-normed algebra of bounded functions of X , then ‖F‖ = 0,
(iii) ‖a · F‖ = |a| · ‖F‖, and
(iv) ‖F +G‖ ≤ ‖F‖+ ‖G‖.

Let X be a non empty set. Note that the C-normed algebra of bounded
functions of X is right complementable, Abelian, add-associative, right zeroed,
vector distributive, scalar distributive, scalar associative, scalar unital, discer-
nible, reflexive, and complex normed space-like.

We now state two propositions:

(27) Let X be a non empty set, f , g, h be functions from X into C, and F , G,
H be points of the C-normed algebra of bounded functions of X. Suppose
f = F and g = G and h = H. Then H = F − G if and only if for every
element x of X holds h(x) = f(x)− g(x).

(28) Let X be a non empty set and s1 be a sequence of the C-normed algebra
of bounded functions of X. If s1 is CCauchy, then s1 is convergent.

Let X be a non empty set. Observe that the C-normed algebra of bounded
functions of X is complete.

Next we state the proposition

(29) For every non empty set X holds the C-normed algebra of bounded
functions of X is a complex Banach algebra.
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