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The notation and terminology used in this paper have been introduced in the
following papers: [7], [15], [2], [3], [24], [4], [5], [1], [11], [16], [6], [9], [12], [17],
[18], [10], [8], [23], [14], [21], [13], and [22].

For simplicity, we use the following convention: n, m denote non empty
elements of N, i, j denote elements of N, f denotes a partial function from
〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, g denotes a partial function from Rm to Rn, h denotes
a partial function from Rm to R, x denotes a point of 〈Em, ‖ · ‖〉, y denotes an
element of Rm, and X denotes a set.

We now state a number of propositions:
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(1) If i ≤ j, then 〈0, . . . , 0︸ ︷︷ ︸
j

〉�i = 〈0, . . . , 0︸ ︷︷ ︸
i

〉.

(2) If i ≤ j, then 〈0, . . . , 0︸ ︷︷ ︸
j

〉�(i−′ 1) = 〈0, . . . , 0︸ ︷︷ ︸
i−′1

〉.

(3) 〈0, . . . , 0︸ ︷︷ ︸
j

〉�i = 〈0, . . . , 0︸ ︷︷ ︸
j−′i

〉.

(4) If i ≤ j, then 〈0, . . . , 0︸ ︷︷ ︸
j

〉�(i−′ 1) = 〈0, . . . , 0︸ ︷︷ ︸
i−′1

〉 and 〈0, . . . , 0︸ ︷︷ ︸
j

〉�i = 〈0, . . . , 0︸ ︷︷ ︸
j−′i

〉.

(5) For every element x1 of 〈E1, ‖ · ‖〉 such that 1 ≤ i ≤ j holds
‖(reproj(i, 0〈Ej ,‖·‖〉))(x1)‖ = ‖x1‖.

(6) Let m, i be elements of N, x be an element ofRm, and r be a real number.
Then (reproj(i, x))(r)−x = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(r− (proj(i,m))(x)) and

x− (reproj(i, x))(r) = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸
m

〉))((proj(i,m))(x)− r).

(7) Let m, i be elements of N, x be a point of 〈Em, ‖ · ‖〉,
and p be a point of 〈E1, ‖ · ‖〉. Then (reproj(i, x))(p) − x =
(reproj(i, 0〈Em,‖·‖〉))(p − (Proj(i,m))(x)) and x − (reproj(i, x))(p) =
(reproj(i, 0〈Em,‖·‖〉))((Proj(i,m))(x)− p).

(8) Let m, n be non empty elements of N, i be an element of N, f be a partial
function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and Z be a subset of 〈Em, ‖ · ‖〉.
Suppose Z is open and 1 ≤ i ≤ m. Then f is partially differentiable on Z
w.r.t. i if and only if Z ⊆ dom f and for every point x of 〈Em, ‖ · ‖〉 such
that x ∈ Z holds f is partially differentiable in x w.r.t. i.

(9) For all elements x, y of R and for every element i of N such that
1 ≤ i ≤ m holds Replace(〈0, . . . , 0︸ ︷︷ ︸

m

〉, i, x + y) = Replace(〈0, . . . , 0︸ ︷︷ ︸
m

〉, i, x) +

Replace(〈0, . . . , 0︸ ︷︷ ︸
m

〉, i, y).

(10) For all elements x, a of R and for every element i of N such that 1 ≤ i ≤ m
holds Replace(〈0, . . . , 0︸ ︷︷ ︸

m

〉, i, a · x) = a · Replace(〈0, . . . , 0︸ ︷︷ ︸
m

〉, i, x).

(11) For every element x of R and for every element i of N such that 1 ≤ i ≤ m
and x 6= 0 holds Replace(〈0, . . . , 0︸ ︷︷ ︸

m

〉, i, x) 6= 〈0, . . . , 0︸ ︷︷ ︸
m

〉.

(12) Let x, y be elements of R, z be an element of Rm, and i be an
element of N. Suppose 1 ≤ i ≤ m and y = (proj(i,m))(z). Then
Replace(z, i, x)−z = Replace(〈0, . . . , 0︸ ︷︷ ︸

m

〉, i, x−y) and z−Replace(z, i, x) =

Replace(〈0, . . . , 0︸ ︷︷ ︸
m

〉, i, y − x).
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(13) For all elements x, y of R and for every element i of N such that 1 ≤
i ≤ m holds (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(x + y) = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸
m

〉))(x) +

(reproj(i, 〈0, . . . , 0︸ ︷︷ ︸
m

〉))(y).

(14) For all points x, y of 〈E1, ‖ · ‖〉 and for every element i of N such that
1 ≤ i ≤ m holds (reproj(i, 0〈Em,‖·‖〉))(x + y) = (reproj(i, 0〈Em,‖·‖〉))(x) +
(reproj(i, 0〈Em,‖·‖〉))(y).

(15) For all elements x, a of R and for every element i of N such that 1 ≤ i ≤ m
holds (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(a · x) = a · (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸
m

〉))(x).

(16) Let x be a point of 〈E1, ‖·‖〉, a be an element of R, and i be an element of
N. If 1 ≤ i ≤ m, then (reproj(i, 0〈Em,‖·‖〉))(a·x) = a·(reproj(i, 0〈Em,‖·‖〉))(x).

(17) For every element x of R and for every element i of N such that 1 ≤ i ≤ m
and x 6= 0 holds (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(x) 6= 〈0, . . . , 0︸ ︷︷ ︸
m

〉.

(18) For every point x of 〈E1, ‖ · ‖〉 and for every element i of N such that
1 ≤ i ≤ m and x 6= 0〈E1,‖·‖〉 holds (reproj(i, 0〈Em,‖·‖〉))(x) 6= 0〈Em,‖·‖〉.

(19) Let x, y be elements of R, z be an element of Rm, and i be
an element of N. Suppose 1 ≤ i ≤ m and y = (proj(i,m))(z).
Then (reproj(i, z))(x) − z = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(x − y) and z −

(reproj(i, z))(x) = (reproj(i, 〈0, . . . , 0︸ ︷︷ ︸
m

〉))(y − x).

(20) Let x, y be points of 〈E1, ‖ · ‖〉, i be an element of N, and z be a po-
int of 〈Em, ‖ · ‖〉. Suppose 1 ≤ i ≤ m and y = (Proj(i,m))(z). Then
(reproj(i, z))(x)−z = (reproj(i, 0〈Em,‖·‖〉))(x−y) and z−(reproj(i, z))(x) =
(reproj(i, 0〈Em,‖·‖〉))(y − x).

(21) Suppose f is differentiable in x and 1 ≤ i ≤ m. Then f is partially
differentiable in x w.r.t. i and partdiff(f, x, i) = f ′(x) · reproj(i, 0〈Em,‖·‖〉).

(22) Suppose g is differentiable in y and 1 ≤ i ≤ m. Then g is partially diffe-
rentiable in y w.r.t. i and partdiff(g, y, i) = (g′(y)·reproj(i, 0〈Em,‖·‖〉))(〈1〉).

Let n be a non empty element of N, let f be a partial function from Rn to
R, and let x be an element of Rn. We say that f is differentiable in x if and
only if:

(Def. 1) 〈f〉 is differentiable in x.

Let n be a non empty element of N, let f be a partial function from Rn to
R, and let x be an element of Rn. The functor f ′(x) yielding a function from
Rn into R is defined as follows:

(Def. 2) f ′(x) = proj(1, 1) · 〈f〉′(x).

Next we state several propositions:
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(23) Suppose h is differentiable in y and 1 ≤ i ≤ m. Then h is partially
differentiable in y w.r.t. i and
partdiff(h, y, i) = (h · reproj(i, y))′((proj(i,m))(y)) and
partdiff(h, y, i) = h′(y)((reproj(i, 〈0, . . . , 0︸ ︷︷ ︸

m

〉))(1)).

(24) Let m be a non empty element of N and v, w, u be finite sequences of
elements of Rm. If dom v = domw and u = v+w, then

∑
u =
∑
v+
∑
w.

(25) Let m be a non empty element of N, r be a real number, and w, u be
finite sequences of elements of Rm. If u = r w, then

∑
u = r ·

∑
w.

(26) Let n be a non empty element of N and h, g be finite sequences of
elements of Rn. Suppose lenh = len g + 1 and for every natural number i
such that i ∈ dom g holds gi = hi − hi+1. Then h1 − hlenh =

∑
g.

(27) Let n be a non empty element of N and h, g, j be finite sequences of
elements of Rn. Suppose lenh = len j and len g = len j and for every
natural number i such that i ∈ dom j holds ji = hi − gi. Then

∑
j =∑

h−
∑
g.

(28) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x, y be elements of Rm. Then there exists a finite sequence h
of elements of Rm and there exists a finite sequence g of elements of Rn
such that

(i) lenh = m+ 1,
(ii) len g = m,

(iii) for every natural number i such that i ∈ domh holds hi = (y�((m +
1)−′ i)) a 〈0, . . . , 0︸ ︷︷ ︸

i−′1

〉,

(iv) for every natural number i such that i ∈ dom g holds gi = fx+hi −
fx+hi+1 ,

(v) for every natural number i and for every element h1 of Rm such that
i ∈ domh and hi = h1 holds |h1| ≤ |y|, and

(vi) fx+y − fx =
∑
g.

(29) Let m be a non empty element of N and f be a partial function from
Rm to R1. Then there exists a partial function f0 from Rm to R such that
f = 〈f0〉.

(30) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, f0 be a partial function from 〈Em, ‖·‖〉 to 〈En, ‖·‖〉, x be an element
of Rm, and x0 be an element of 〈Em, ‖ · ‖〉. If x ∈ dom f and x = x0 and
f = f0, then fx = (f0)x0 .

Let m be a non empty element of N and let X be a subset of Rm. We say
that X is open if and only if:

(Def. 3) There exists a subset X0 of 〈Em, ‖ ·‖〉 such that X0 = X and X0 is open.

The following proposition is true
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(31) Let m be a non empty element of N and X be a subset of Rm. Then X
is open if and only if for every element x of Rm such that x ∈ X there
exists a real number r such that r > 0 and {y ∈ Rm: |y − x| < r} ⊆ X.

Let m, n be non empty elements of N, let i be an element of N, let f be a
partial function from Rm to Rn, and let X be a set. We say that f is partially
differentiable on X w.r.t. i if and only if:

(Def. 4) X ⊆ dom f and for every element x of Rm such that x ∈ X holds f�X
is partially differentiable in x w.r.t. i.

One can prove the following propositions:

(32) Let m, n be non empty elements of N and f be a partial function from
Rm to Rn. Suppose f is partially differentiable on X w.r.t. i. Then X is
a subset of Rm.

(33) Let m, n be non empty elements of N, i be an element of N, f be a
partial function from Rm to Rn, g be a partial function from 〈Em, ‖ · ‖〉 to
〈En, ‖·‖〉, and Z be a set. Suppose f = g. Then f is partially differentiable
on Z w.r.t. i if and only if g is partially differentiable on Z w.r.t. i.

(34) Let m, n be non empty elements of N, i be an element of N, f be a
partial function from Rm to Rn, and Z be a subset of Rm. Suppose Z is
open and 1 ≤ i ≤ m. Then f is partially differentiable on Z w.r.t. i if and
only if Z ⊆ dom f and for every element x of Rm such that x ∈ Z holds
f is partially differentiable in x w.r.t. i.

Let m, n be non empty elements of N, let i be an element of N, let f be
a partial function from Rm to Rn, and let us consider X. Let us assume that
f is partially differentiable on X w.r.t. i. The functor f�iX yielding a partial
function from Rm to Rn is defined as follows:

(Def. 5) dom(f�iX) = X and for every element x of Rm such that x ∈ X holds
(f�iX)x = partdiff(f, x, i).

Let m, n be non empty elements of N, let f be a partial function from Rm
to Rn, and let x0 be an element of Rm. We say that f is continuous in x0 if and
only if:

(Def. 6) There exists a point y0 of 〈Em, ‖ · ‖〉 and there exists a partial function
g from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉 such that x0 = y0 and f = g and g is
continuous in y0.

The following propositions are true:

(35) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, g be a partial function from 〈Em, ‖·‖〉 to 〈En, ‖·‖〉, x be an element
of Rm, and y be a point of 〈Em, ‖ · ‖〉. Suppose f = g and x = y. Then f

is continuous in x if and only if g is continuous in y.

(36) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and x0 be an element of Rm. Then f is continuous in x0 if and
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only if the following conditions are satisfied:
(i) x0 ∈ dom f, and

(ii) for every real number r such that 0 < r there exists a real number s
such that 0 < s and for every element x2 of Rm such that x2 ∈ dom f and
|x2 − x0| < s holds |fx2 − fx0 | < r.

Let m, n be non empty elements of N, let f be a partial function from Rm
to Rn, and let us consider X. We say that f is continuous on X if and only if:

(Def. 7) X ⊆ dom f and for every element x0 of Rm such that x0 ∈ X holds f�X
is continuous in x0.

Next we state a number of propositions:

(37) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, g be a partial function from 〈Em, ‖ · ‖〉 to 〈En, ‖ · ‖〉, and X be a
set. If f = g, then f is continuous on X iff g is continuous on X.

(38) Let m, n be non empty elements of N, f be a partial function from Rm
to Rn, and X be a set. Then f is continuous on X if and only if the
following conditions are satisfied:

(i) X ⊆ dom f, and
(ii) for every element x0 of Rm and for every real number r such that

x0 ∈ X and 0 < r there exists a real number s such that 0 < s and
for every element x2 of Rm such that x2 ∈ X and |x2 − x0| < s holds
|fx2 − fx0 | < r.

(39) Let m be a non empty element of N, x, y be elements of Rm, i
be an element of N, and x1 be a real number. If 1 ≤ i ≤ m and
y = (reproj(i, x))(x1), then (proj(i,m))(y) = x1.

(40) Let m be a non empty element of N, f be a partial function from Rm to
R, x, y be elements of Rm, i be an element of N, and x1 be a real number.
If 1 ≤ i ≤ m and y = (reproj(i, x))(x1), then reproj(i, x) = reproj(i, y).

(41) Letm be a non empty element of N, f be a partial function fromRm to R,
g be a partial function from R to R, x, y be elements ofRm, i be an element
of N, and x1 be a real number. If 1 ≤ i ≤ m and y = (reproj(i, x))(x1)
and g = f · reproj(i, x), then g′(x1) = partdiff(f, y, i).

(42) Let m be a non empty element of N, f be a partial function from Rm to
R, p, q be real numbers, x be an element of Rm, and i be an element of
N. Suppose that

(i) 1 ≤ i,
(ii) i ≤ m,
(iii) p < q,

(iv) for every real number h such that h ∈ [p, q] holds (reproj(i, x))(h) ∈
dom f, and
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(v) for every real number h such that h ∈ [p, q] holds f is partially diffe-
rentiable in (reproj(i, x))(h) w.r.t. i.
Then there exists a real number r and there exists an element y ofRm such
that r ∈]p, q[ and y = (reproj(i, x))(r) and f(reproj(i,x))(q)−f(reproj(i,x))(p) =
(q − p) · partdiff(f, y, i).

(43) Let m be a non empty element of N, f be a partial function from Rm to
R, p, q be real numbers, x be an element of Rm, and i be an element of
N. Suppose that

(i) 1 ≤ i,
(ii) i ≤ m,
(iii) p ≤ q,
(iv) for every real number h such that h ∈ [p, q] holds (reproj(i, x))(h) ∈

dom f, and
(v) for every real number h such that h ∈ [p, q] holds f is partially diffe-

rentiable in (reproj(i, x))(h) w.r.t. i.
Then there exists a real number r and there exists an element y ofRm such
that r ∈ [p, q] and y = (reproj(i, x))(r) and f(reproj(i,x))(q)−f(reproj(i,x))(p) =
(q − p) · partdiff(f, y, i).

(44) Let m be a non empty element of N, x, y, z, w be elements of Rm, i be
an element of N, and d, p, q, r be real numbers. Suppose 1 ≤ i ≤ m and
|y−x| < d and |z−x| < d and p = (proj(i,m))(y) and z = (reproj(i, y))(q)
and r ∈ [p, q] and w = (reproj(i, y))(r). Then |w − x| < d.

(45) Let m be a non empty element of N, f be a partial function from Rm
to R, X be a subset of Rm, x, y, z be elements of Rm, i be an element of
N, and d, p, q be real numbers. Suppose that 1 ≤ i ≤ m and X is open
and x ∈ X and |y − x| < d and |z − x| < d and X ⊆ dom f and for every
element x of Rm such that x ∈ X holds f is partially differentiable in x

w.r.t. i and 0 < d and for every element z of Rm such that |z−x| < d holds
z ∈ X and z = (reproj(i, y))(p) and q = (proj(i,m))(y). Then there exists
an element w of Rm such that |w−x| < d and f is partially differentiable
in w w.r.t. i and fz − fy = (p− q) · partdiff(f, w, i).

(46) Let m be a non empty element of N, h be a finite sequence of elements
of Rm, y, x be elements of Rm, and j be an element of N. Suppose lenh =
m+ 1 and 1 ≤ j ≤ m and for every natural number i such that i ∈ domh

holds hi = (y�((m+ 1)−′ i))a 〈0, . . . , 0︸ ︷︷ ︸
i−′1

〉. Then x+hj = (reproj((m+ 1)−′

j, x+ hj+1))((proj((m+ 1)−′ j,m))(x+ y)).

(47) Let m be a non empty element of N, f be a partial function from Rm to
R1, X be a subset of Rm, and x be an element of Rm. Suppose that

(i) X is open,
(ii) x ∈ X, and
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(iii) for every element i of N such that 1 ≤ i ≤ m holds f is partially
differentiable on X w.r.t. i and f�iX is continuous on X.
Then

(iv) f is differentiable in x, and
(v) for every element h of Rm there exists a finite sequence w of elements

of R1 such that domw = Segm and for every element i of N such that i ∈
Segm holds w(i) = (proj(i,m))(h) · partdiff(f, x, i) and f ′(x)(h) =

∑
w.

(48) Letm be a non empty element of N, f be a partial function from 〈Em, ‖·‖〉
to 〈E1, ‖ · ‖〉, X be a subset of 〈Em, ‖ · ‖〉, and x be a point of 〈Em, ‖ · ‖〉.
Suppose that

(i) X is open,
(ii) x ∈ X, and

(iii) for every element i of N such that 1 ≤ i ≤ m holds f is partially
differentiable on X w.r.t. i and f�iX is continuous on X.
Then

(iv) f is differentiable in x, and
(v) for every point h of 〈Em, ‖·‖〉 there exists a finite sequence w of elements

of R1 such that domw = Segm and for every element i of N such that
i ∈ Segm holds w(i) = (partdiff(f, x, i))(〈(proj(i,m))(h)〉) and f ′(x)(h) =∑
w.

(49) Letm be a non empty element of N, f be a partial function from 〈Em, ‖·‖〉
to 〈E1, ‖ · ‖〉, and X be a subset of 〈Em, ‖ · ‖〉. Suppose X is open. Then for
every element i of N such that 1 ≤ i ≤ m holds f is partially differentiable
on X w.r.t. i and f�iX is continuous on X if and only if f is differentiable
on X and f ′�X is continuous on X.
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1. p-Groups

For simplicity, we use the following convention: G is a group, a, b are elements
of G, m, n are natural numbers, and p is a prime natural number.

One can prove the following propositions:

(1) If for every natural number r holds n 6= pr, then there exists an element
s of N such that s is prime and s | n and s 6= p.

(2) For all natural numbers n, m such that n | pm there exists a natural
number r such that n = pr and r ≤ m.

(3) If an = 1G, then (a−1)n = 1G.

(4) If (a−1)n = 1G, then an = 1G.

(5) ord(a−1) = ord(a).

(6) ord(ab) = ord(a).

(7) Let G be a group, N be a subgroup of G, and a, b be elements of G.
Suppose N is normal and b ∈ N. Let given n. Then there exists an element
g of G such that g ∈ N and (a · b)n = an · g.

11
c© 2011 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/groupp_1.miz
http://ftp.mizar.org/


12 xiquan liang and dailu li

(8) Let G be a group, N be a normal subgroup of G, a be an element of
G, and S be an element of G/N . If S = a · N, then for every n holds
Sn = an ·N.

(9) Let G be a group, H be a subgroup of G, and a, b be elements of G. If
a ·H = b ·H, then there exists an element h of G such that a = b · h and
h ∈ H.

(10) Let G be a finite group and N be a normal subgroup of G. If N is a
subgroup of Z(G) and G/N is cyclic, then G is commutative.

(11) Let G be a finite group and N be a normal subgroup of G. If N = Z(G)
and G/N is cyclic, then G is commutative.

(12) For every finite groupG and for every subgroupH ofG such that H 6= G

there exists an element a of G such that a /∈ H.
Let p be a natural number, let G be a group, and let a be an element of G.

We say that a is p-power if and only if:

(Def. 1) There exists a natural number r such that ord(a) = pr.

We now state the proposition

(13) 1G is m-power.

Let us consider G, m. One can verify that there exists an element of G which
is m-power.

Let us consider p, G and let a be a p-power element of G. Observe that a−1

is p-power.
One can prove the following proposition

(14) If ab is p-power, then a is p-power.

Let us consider p, G, b and let a be a p-power element of G. One can verify
that ab is p-power.

Let us consider p, let G be a commutative group, and let a, b be p-power
elements of G. Observe that a · b is p-power.

Let us consider p and let G be a finite p-group group. One can verify that
every element of G is p-power.

The following proposition is true

(15) Let G be a finite group, H be a subgroup of G, and a be an element of
G. If H is p-group and a ∈ H, then a is p-power.

Let us consider p and let G be a finite p-group group. One can verify that
every subgroup of G is p-group.

We now state the proposition

(16) {1}G is p-group.

Let us consider p and let G be a group. Note that there exists a subgroup
of G which is p-group.
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Let us consider p, let G be a finite group, let G1 be a p-group subgroup of
G, and let G2 be a subgroup of G. One can verify that G1 ∩G2 is p-group and
G2 ∩G1 is p-group.

Next we state the proposition

(17) For every finite group G such that every element of G is p-power holds
G is p-group.

Let us consider p, let G be a finite p-group group, and let N be a normal
subgroup of G. Note that G/N is p-group.

The following four propositions are true:

(18) Let G be a finite group and N be a normal subgroup of G. If N is p-group
and G/N is p-group, then G is p-group.

(19) Let G be a finite commutative group and H, H1, H2 be subgroups of G.
Suppose H1 is p-group and H2 is p-group and the carrier of H = H1 ·H2.

Then H is p-group.

(20) Let G be a finite group and H, N be subgroups of G. Suppose N is a
normal subgroup of G and H is p-group and N is p-group. Then there
exists a strict subgroup P of G such that the carrier of P = H ·N and P

is p-group.

(21) Let G be a finite group and N1, N2 be normal subgroups of G. Sup-
pose N1 is p-group and N2 is p-group. Then there exists a strict normal
subgroup N of G such that the carrier of N = N1 ·N2 and N is p-group.

Let us consider p, let G be a p-group finite group, let H be a finite group,
and let g be a homomorphism from G to H. Observe that Im g is p-group.

The following proposition is true

(22) For all strict groups G, H such that G and H are isomorphic and G is
p-group holds H is p-group.

Let p be a prime natural number and let G be a group. Let us assume that
G is p-group. The functor expon(G, p) yields a natural number and is defined
by:

(Def. 2) G = pexpon(G,p).

Let p be a prime natural number and let G be a group. Then expon(G, p) is
an element of N.

Next we state four propositions:

(23) For every finite group G and for every subgroup H of G such that G is
p-group holds expon(H, p) ≤ expon(G, p).

(24) For every strict finite group G such that G is p-group and expon(G, p) =
0 holds G = {1}G.

(25) For every strict finite group G such that G is p-group and expon(G, p) =
1 holds G is cyclic.
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(26) LetG be a finite group, p be a prime natural number, and a be an element
of G. If G is p-group and expon(G, p) = 2 and ord(a) = p2, then G is com-
mutative.

2. Commutative p-Groups

Let p be a natural number and let G be a group. We say that G is p-
commutative group-like if and only if:

(Def. 3) For all elements a, b of G holds (a · b)p = ap · bp.
Let p be a natural number and let G be a group. We say that G is p-

commutative group if and only if:

(Def. 4) G is p-group and p-commutative group-like.

Let p be a natural number. Observe that every group which is p-commutative
group is also p-group and p-commutative group-like and every group which is
p-group and p-commutative group-like is also p-commutative group.

The following proposition is true

(27) {1}G is p-commutative group-like.

Let us consider p. Note that there exists a group which is p-commutative
group, finite, cyclic, and commutative.

Let us consider p and let G be a p-commutative group-like finite group. Note
that every subgroup of G is p-commutative group-like.

Let us consider p. Note that every group which is p-group, finite, and com-
mutative is also p-commutative group.

We now state the proposition

(28) For every strict finite group G such that G = p holds G is p-commutative
group.

Let us consider p, G. One can check that there exists a subgroup of G which
is p-commutative group and finite.

Let us consider p, let G be a finite group, let H1 be a p-commutative group-
like subgroup of G, and let H2 be a subgroup of G. One can check that H1∩H2

is p-commutative group-like and H2 ∩H1 is p-commutative group-like.
Let us consider p, let G be a finite p-commutative group-like group, and

let N be a normal subgroup of G. One can verify that G/N is p-commutative
group-like.

One can prove the following propositions:

(29) Let G be a finite group and a, b be elements of G. Suppose G is p-
commutative group-like. Let given n. Then (a · b)p

n

= ap
n · bpn .

(30) Let G be a finite commutative group and H, H1, H2 be subgroups of G.
Suppose H1 is p-commutative group and H2 is p-commutative group and
the carrier of H = H1 ·H2. Then H is p-commutative group.
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(31) Let G be a finite group, H be a subgroup of G, and N be a strict normal
subgroup of G. Suppose N is a subgroup of Z(G) and H is p-commutative
group and N is p-commutative group. Then there exists a strict subgroup
P of G such that the carrier of P = H ·N and P is p-commutative group.

(32) Let G be a finite group and N1, N2 be normal subgroups of G. Suppose
N2 is a subgroup of Z(G) and N1 is p-commutative group and N2 is p-
commutative group. Then there exists a strict normal subgroup N of G
such that the carrier of N = N1 ·N2 and N is p-commutative group.

(33) Let G, H be groups. Suppose G and H are isomorphic and G is p-
commutative group-like. Then H is p-commutative group-like.

(34) Let G, H be strict groups. Suppose G and H are isomorphic and G is
p-commutative group. Then H is p-commutative group.

Let us consider p, let G be a p-commutative group-like finite group, let H be
a finite group, and let g be a homomorphism from G to H. Observe that Im g

is p-commutative group-like.
The following propositions are true:

(35) For every strict finite group G such that G is p-group and expon(G, p) =
0 holds G is p-commutative group.

(36) For every strict finite group G such that G is p-group and expon(G, p) =
1 holds G is p-commutative group.
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1. Preliminaries

Let X be a real normed space, let A be a closed-interval subset of R, let f
be a function from A into the carrier of X, and let D be a Division of A. A
finite sequence of elements of X is said to be a middle volume of f and D if it
satisfies the conditions (Def. 1).

(Def. 1)(i) len it = lenD, and
(ii) for every natural number i such that i ∈ domD there exists a point c

of X such that c ∈ rng(f� divset(D, i)) and it(i) = vol(divset(D, i)) · c.
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Let X be a real normed space, let A be a closed-interval subset of R, let f
be a function from A into the carrier of X, let D be a Division of A, and let F
be a middle volume of f and D. The functor middle sum(f, F ) yielding a point
of X is defined by:

(Def. 2) middle sum(f, F ) =
∑
F.

Let X be a real normed space, let A be a closed-interval subset of R, let f
be a function from A into the carrier of X, and let T be a division sequence
of A. A function from N into (the carrier of X)∗ is said to be a middle volume
sequence of f and T if:

(Def. 3) For every element k of N holds it(k) is a middle volume of f and T (k).

Let X be a real normed space, let A be a closed-interval subset of R, let f
be a function from A into the carrier of X, let T be a division sequence of A,
let S be a middle volume sequence of f and T , and let k be an element of N.
Then S(k) is a middle volume of f and T (k).

Let X be a real normed space, let A be a closed-interval subset of R, let f be
a function from A into the carrier of X, let T be a division sequence of A, and
let S be a middle volume sequence of f and T . The functor middle sum(f, S)
yielding a sequence of X is defined as follows:

(Def. 4) For every element i of N holds
(middle sum(f, S))(i) = middle sum(f, S(i)).

2. Definition of Riemann Integral on Functions from R into Real
Normed Space

Let X be a real normed space, let A be a closed-interval subset of R, and
let f be a function from A into the carrier of X. We say that f is integrable if
and only if the condition (Def. 5) is satisfied.

(Def. 5) There exists a point I of X such that for every division sequence
T of A and for every middle volume sequence S of f and T if δT is
convergent and lim(δT ) = 0, then middle sum(f, S) is convergent and
lim middle sum(f, S) = I.

We now state three propositions:

(1) Let X be a real normed space and R1, R2, R3 be finite sequences of
elements of X. If lenR1 = lenR2 and R3 = R1 +R2, then

∑
R3 =

∑
R1 +∑

R2.

(2) Let X be a real normed space and R1, R2, R3 be finite sequences of
elements of X. If lenR1 = lenR2 and R3 = R1−R2, then

∑
R3 =

∑
R1−∑

R2.

(3) Let X be a real normed space, R1, R2 be finite sequences of elements of
X, and a be an element of R. If R2 = aR1, then

∑
R2 = a ·

∑
R1.
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Let X be a real normed space, let A be a closed-interval subset of R, and let
f be a function from A into the carrier of X. Let us assume that f is integrable.
The functor integral f yields a point ofX and is defined by the condition (Def. 6).

(Def. 6) Let T be a division sequence of A and S be a middle volume sequence
of f and T . If δT is convergent and lim(δT ) = 0, then middle sum(f, S) is
convergent and lim middle sum(f, S) = integral f.

We now state four propositions:

(4) Let X be a real normed space, A be a closed-interval subset of R, r be a
real number, and f , h be functions from A into the carrier of X. If h = r f

and f is integrable, then h is integrable and integralh = r · integral f.

(5) Let X be a real normed space, A be a closed-interval subset of R, and f ,
h be functions from A into the carrier of X. If h = −f and f is integrable,
then h is integrable and integralh = −integral f.

(6) Let X be a real normed space, A be a closed-interval subset of R, and
f , g, h be functions from A into the carrier of X. Suppose h = f + g and
f is integrable and g is integrable. Then h is integrable and integralh =
integral f + integral g.

(7) Let X be a real normed space, A be a closed-interval subset of R, and
f , g, h be functions from A into the carrier of X. Suppose h = f − g and
f is integrable and g is integrable. Then h is integrable and integralh =
integral f − integral g.

Let X be a real normed space, let A be a closed-interval subset of R, and let
f be a partial function from R to the carrier of X. We say that f is integrable
on A if and only if:

(Def. 7) There exists a function g from A into the carrier of X such that g = f�A
and g is integrable.

Let X be a real normed space, let A be a closed-interval subset of R, and let f
be a partial function from R to the carrier of X. Let us assume that A ⊆ dom f.

The functor
∫
A

f(x)dx yields an element of X and is defined as follows:

(Def. 8) There exists a function g from A into the carrier of X such that g = f�A

and
∫
A

f(x)dx = integral g.

We now state several propositions:

(8) Let A be a closed-interval subset of R, f be a partial function from R to
the carrier of X, and g be a function from A into the carrier of X. Suppose
f�A = g. Then f is integrable on A if and only if g is integrable.

(9) Let A be a closed-interval subset of R, f be a partial function from R
to the carrier of X, and g be a function from A into the carrier of X. If
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A ⊆ dom f and f�A = g, then
∫
A

f(x)dx = integral g.

(10) Let X, Y be non empty sets, V be a real normed space, g, f be partial
functions from X to the carrier of V , and g1, f1 be partial functions from
Y to the carrier of V . If g = g1 and f = f1, then g1 + f1 = g + f.

(11) Let X, Y be non empty sets, V be a real normed space, g, f be partial
functions from X to the carrier of V , and g1, f1 be partial functions from
Y to the carrier of V . If g = g1 and f = f1, then g1 − f1 = g − f.

(12) Let r be a real number, X, Y be non empty sets, V be a real normed
space, g be a partial function from X to the carrier of V , and g1 be a
partial function from Y to the carrier of V . If g = g1, then r g1 = r g.

3. Linearity of the Integration Operator

Next we state three propositions:

(13) Let r be a real number, A be a closed-interval subset of R, and f be
a partial function from R to the carrier of X. Suppose A ⊆ dom f and

f is integrable on A. Then r f is integrable on A and
∫
A

(r f)(x)dx =

r ·
∫
A

f(x)dx.

(14) Let A be a closed-interval subset of R and f1, f2 be partial functions from
R to the carrier of X. Suppose f1 is integrable on A and f2 is integrable
on A and A ⊆ dom f1 and A ⊆ dom f2. Then f1 + f2 is integrable on A

and
∫
A

(f1 + f2)(x)dx =
∫
A

f1(x)dx+
∫
A

f2(x)dx.

(15) Let A be a closed-interval subset of R and f1, f2 be partial functions from
R to the carrier of X. Suppose f1 is integrable on A and f2 is integrable
on A and A ⊆ dom f1 and A ⊆ dom f2. Then f1 − f2 is integrable on A

and
∫
A

(f1 − f2)(x)dx =
∫
A

f1(x)dx−
∫
A

f2(x)dx.

Let X be a real normed space, let f be a partial function from R to the

carrier of X, and let a, b be real numbers. The functor
b∫
a

f(x)dx yielding an

element of X is defined as follows:

(Def. 9)
b∫
a

f(x)dx =



∫
[a,b]

f(x)dx, if a ≤ b,

−
∫

[b,a]

f(x)dx, otherwise.
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One can prove the following propositions:

(16) Let f be a partial function from R to the carrier of X, A be a closed-
interval subset of R, and a, b be real numbers. If A = [a, b], then∫
A

f(x)dx =
b∫
a

f(x)dx.

(17) Let f be a partial function from R to the carrier of X and A be a closed-
interval subset of R. If vol(A) = 0 and A ⊆ dom f, then f is integrable on

A and
∫
A

f(x)dx = 0X .

(18) Let f be a partial function from R to the carrier of X, A be a closed-
interval subset of R, and a, b be real numbers. If A = [b, a] and A ⊆ dom f,

then −
∫
A

f(x)dx =
b∫
a

f(x)dx.
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some relations between a family of groups and its direct product.
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The papers [2], [4], [5], [3], [8], [9], [7], [10], [11], [6], [1], [13], and [12] provide
the terminology and notation for this paper.

1. Normal Subgroup of Product of Groups

Let I be a non empty set, let F be a group-like multiplicative magma family
of I, and let i be an element of I. Note that F (i) is group-like.

Let I be a non empty set, let F be an associative multiplicative magma
family of I, and let i be an element of I. Observe that F (i) is associative.

Let I be a non empty set, let F be a commutative multiplicative magma
family of I, and let i be an element of I. Note that F (i) is commutative.

In the sequel I is a non empty set, F is an associative group-like multiplica-
tive magma family of I, and i, j are elements of I.

We now state the proposition

(1) Let x be a function and g be an element of F (i). Then domx = I and
x(i) = g and for every element j of I such that j 6= i holds x(j) = 1F (j) if
and only if x = 1∏F +· (i, g).

Let I be a non empty set, let F be an associative group-like multiplicative
magma family of I, and let i be an element of I. The functor ProjSet(F, i) yields
a subset of

∏
F and is defined by:
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(Def. 1) For every set x holds x ∈ ProjSet(F, i) iff there exists an element g of
F (i) such that x = 1∏F +· (i, g).

Let I be a non empty set, let F be an associative group-like multiplicative
magma family of I, and let i be an element of I. Observe that ProjSet(F, i) is
non empty.

Next we state several propositions:

(2) Let x0 be a set. Then x0 ∈ ProjSet(F, i) if and only if there exists a
function x and there exists an element g of F (i) such that x = x0 and
domx = I and x(i) = g and for every element j of I such that j 6= i holds
x(j) = 1F (j).

(3) Let g1, g2 be elements of
∏
F and z1, z2 be elements of F (i). If g1 =

1∏F +· (i, z1) and g2 = 1∏F +· (i, z2), then g1 · g2 = 1∏F +· (i, z1 · z2).

(4) For every element g1 of
∏
F and for every element z1 of F (i) such that

g1 = 1∏F +· (i, z1) holds g1
−1 = 1∏F +· (i, z1

−1).

(5) For all elements g1, g2 of
∏
F such that g1, g2 ∈ ProjSet(F, i) holds

g1 · g2 ∈ ProjSet(F, i).

(6) For every element g of
∏
F such that g ∈ ProjSet(F, i) holds g−1 ∈

ProjSet(F, i).

Let I be a non empty set, let F be an associative group-like multiplicative
magma family of I, and let i be an element of I. The functor ProjGroup(F, i)
yields a strict subgroup of

∏
F and is defined as follows:

(Def. 2) The carrier of ProjGroup(F, i) = ProjSet(F, i).

Let us consider I, F , i. The functor 1ProdHom(F, i) yielding a homomor-
phism from F (i) to ProjGroup(F, i) is defined as follows:

(Def. 3) For every element x of F (i) holds (1ProdHom(F, i))(x) = 1∏F +· (i, x).

Let us consider I, F , i. Note that 1ProdHom(F, i) is bijective.
Let us consider I, F , i. One can check that ProjGroup(F, i) is normal.
One can prove the following proposition

(7) For all elements x, y of
∏
F such that i 6= j and x ∈ ProjGroup(F, i)

and y ∈ ProjGroup(F, j) holds x · y = y · x.

2. Product of Subgroups of a Group

In the sequel n denotes a non empty natural number.
One can prove the following propositions:

(8) Let F be an associative group-like multiplicative magma family of Seg n,
J be a natural number, and G1 be a group. Suppose 1 ≤ J ≤ n and
G1 = F (J). Let x be an element of

∏
F and s be a finite sequence of

elements of
∏
F. Suppose len s < J and for every element k of Seg n
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such that k ∈ dom s holds s(k) ∈ ProjGroup(F, k) and x =
∏
s. Then

x(J) = 1(G1).

(9) Let F be an associative group-like multiplicative magma family of
Seg n, x be an element of

∏
F, and s be a finite sequence of elements

of
∏
F. Suppose len s = n and for every element k of Seg n holds

s(k) ∈ ProjGroup(F, k) and x =
∏
s. Let i be a natural number. Suppose

1 ≤ i ≤ n. Then there exists an element s1 of
∏
F such that s1 = s(i) and

x(i) = s1(i).

(10) Let F be an associative group-like multiplicative magma family of Seg n,
x be an element of

∏
F, and s, t be finite sequences of elements of

∏
F.

Suppose that
(i) len s = n,

(ii) for every element k of Seg n holds s(k) ∈ ProjGroup(F, k),
(iii) x =

∏
s,

(iv) len t = n,

(v) for every element k of Seg n holds t(k) ∈ ProjGroup(F, k), and
(vi) x =

∏
t.

Then s = t.

(11) Let F be an associative group-like multiplicative magma family of Seg n
and x be an element of

∏
F. Then there exists a finite sequence s of

elements of
∏
F such that len s = n and for every element k of Seg n holds

s(k) ∈ ProjGroup(F, k) and x =
∏
s.

(12) Let G be a commutative group and F be an associative group-like mul-
tiplicative magma family of Seg n. Suppose that

(i) for every element i of Seg n holds F (i) is a subgroup of G,
(ii) for every element x of G there exists a finite sequence s of elements of

G such that len s = n and for every element k of Seg n holds s(k) ∈ F (k)
and x =

∏
s, and

(iii) for all finite sequences s, t of elements of G such that len s = n and for
every element k of Seg n holds s(k) ∈ F (k) and len t = n and for every
element k of Seg n holds t(k) ∈ F (k) and

∏
s =
∏
t holds s = t.

Then there exists a homomorphism f from
∏
F to G such that

(iv) f is bijective, and
(v) for every element x of

∏
F there exists a finite sequence s of elements of

G such that len s = n and for every element k of Seg n holds s(k) ∈ F (k)
and s = x and f(x) =

∏
s.

(13) Let G, F be associative commutative group-like multiplicative magma
families of Seg n. Suppose that for every element k of Seg n holds F (k) =
ProjGroup(G, k). Then there exists a homomorphism f from

∏
F to

∏
G

such that
(i) f is bijective, and
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(ii) for every element x of
∏
F there exists a finite sequence s of elements of∏

G such that len s = n and for every element k of Seg n holds s(k) ∈ F (k)
and s = x and f(x) =

∏
s.
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Summary. Let ω(G) and χ(G) be the clique number and the chromatic
number of a graph G. Mycielski [11] presented a construction that for any n

creates a graph Mn which is triangle-free (ω(G) = 2) with χ(G) > n. The
starting point is the complete graph of two vertices (K2). M(n+1) is obtained
from Mn through the operation µ(G) called the Mycielskian of a graph G.

We first define the operation µ(G) and then show that ω(µ(G)) = ω(G) and
χ(µ(G)) = χ(G) + 1. This is done for arbitrary graph G, see also [10]. Then we
define the sequence of graphs Mn each of exponential size in n and give their
clique and chromatic numbers.

MML identifier: MYCIELSK, version: 7.11.07 4.156.1112

The notation and terminology used here have been introduced in the following
papers: [1], [15], [13], [8], [5], [2], [14], [9], [16], [3], [6], [18], [19], [12], [17], [4],
and [7].

1. Preliminaries

One can prove the following propositions:

(1) For all real numbers x, y, z such that 0 ≤ x holds x ·(y−′z) = x ·y−′x ·z.
(2) For all natural numbers x, y, z holds x ∈ y \ z iff z ≤ x < y.

(3) For all sets A, B, C, D, E, X such that X ⊆ A or X ⊆ B or X ⊆ C or
X ⊆ D or X ⊆ E holds X ⊆ A ∪B ∪ C ∪D ∪ E.

(4) For all sets A, B, C, D, E, x holds x ∈ A ∪B ∪ C ∪D ∪ E iff x ∈ A or
x ∈ B or x ∈ C or x ∈ D or x ∈ E.

1This work has been partially supported by the NSERC grant OGP 9207.
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(5) Let R be a symmetric relational structure and x, y be sets. Suppose
x ∈ the carrier of R and y ∈ the carrier of R and 〈〈x, y〉〉 ∈ the internal
relation of R. Then 〈〈y, x〉〉 ∈ the internal relation of R.

(6) For every symmetric relational structure R and for all elements x, y of
R such that x ≤ y holds y ≤ x.

2. Partitions

One can prove the following proposition

(7) For every set X and for every partition P of X holds P ⊆ X .

Let X be a set, let P be a partition of X, and let S be a subset of X. The
functor P �S yields a partition of S and is defined by:

(Def. 1) P �S = {x ∩ S;x ranges over elements of P : x meets S}.
Let X be a set. Observe that there exists a partition of X which is finite.
Let X be a set, let P be a finite partition of X, and let S be a subset of X.

Observe that P �S is finite.
One can prove the following propositions:

(8) For every set X and for every finite partition P of X and for every subset
S of X holds P �S ≤ P .

(9) Let X be a set, P be a finite partition of X, and S be a subset of X. Then
for every set p such that p ∈ P holds p meets S if and only if P �S = P .

(10) Let R be a relational structure, C be a coloring of R, and S be a subset
of R. Then C�S is a coloring of sub(S).

3. Chromatic Number and Clique Cover Number

Let R be a relational structure. We say that R is finitely colorable if and
only if:

(Def. 2) There exists a coloring of R which is finite.

One can check that there exists a relational structure which is finitely colo-
rable.

Let us observe that every relational structure which is finite is also finitely
colorable.

Let R be a finitely colorable relational structure. Observe that there exists
a coloring of R which is finite.

Let R be a finitely colorable relational structure and let S be a subset of R.
One can verify that sub(S) is finitely colorable.

Let R be a finitely colorable relational structure. The functor χ(R) yielding
a natural number is defined by:
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(Def. 3) There exists a finite coloring C of R such that C = χ(R) and for every
finite coloring C of R holds χ(R) ≤ C .

Let R be an empty relational structure. Observe that χ(R) is empty.
Let R be a non empty finitely colorable relational structure. Observe that

χ(R) is positive.
Let R be a relational structure. We say that R has finite clique cover if and

only if:

(Def. 4) There exists a clique-partition of R which is finite.

One can verify that there exists a relational structure which has finite clique
cover.

One can verify that every relational structure which is finite has also finite
clique cover.

Let R be a relational structure with finite clique cover. Observe that there
exists a clique-partition of R which is finite.

Let R be a relational structure with finite clique cover and let S be a subset
of R. Observe that sub(S) has finite clique cover.

Let R be a relational structure with finite clique cover. The functor κ(R)
yielding a natural number is defined by:

(Def. 5) There exists a finite clique-partition C of R such that C = κ(R) and for
every finite clique-partition C of R holds κ(R) ≤ C .

Let R be an empty relational structure. One can check that κ(R) is empty.
Let R be a non empty relational structure with finite clique cover. One can

verify that κ(R) is positive.
We now state several propositions:

(11) For every finite relational structure R holds ω(R) ≤ the carrier of R.

(12) For every finite relational structure R holds α(R) ≤ the carrier of R.

(13) For every finite relational structure R holds χ(R) ≤ the carrier of R.

(14) For every finite relational structure R holds κ(R) ≤ the carrier of R.

(15) For every finitely colorable relational structure R with finite clique num-
ber holds ω(R) ≤ χ(R).

(16) For every relational structure R with finite stability number and finite
clique cover holds α(R) ≤ κ(R).

4. Complement

The following two propositions are true:

(17) Let R be a relational structure, x, y be elements of R, and a, b be
elements of ComplRelStrR. If x = a and y = b and x ≤ y, then a 6≤ b.
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(18) Let R be a relational structure, x, y be elements of R, and a, b be
elements of ComplRelStrR. If x = a and y = b and x 6= y and x ∈ the
carrier of R and a 6≤ b, then x ≤ y.

Let R be a finite relational structure. Note that ComplRelStrR is finite.
Next we state four propositions:

(19) For every symmetric relational structure R holds every clique of R is a
stable set of ComplRelStrR.

(20) For every symmetric relational structure R holds every clique of
ComplRelStrR is a stable set of R.

(21) For every relational structure R holds every stable set of R is a clique of
ComplRelStrR.

(22) For every relational structure R holds every stable set of ComplRelStrR
is a clique of R.

Let R be a relational structure with finite clique number.
One can verify that ComplRelStrR has finite stability number.
Let R be a symmetric relational structure with finite stability number. Ob-

serve that ComplRelStrR has finite clique number.
The following propositions are true:

(23) For every symmetric relational structure R with finite clique number
holds ω(R) = α(ComplRelStrR).

(24) For every symmetric relational structure R with finite stability number
holds α(R) = ω(ComplRelStrR).

(25) For every relational structure R holds every coloring of R is a clique-
partition of ComplRelStrR.

(26) For every symmetric relational structure R holds every clique-partition
of ComplRelStrR is a coloring of R.

(27) For every symmetric relational structure R holds every clique-partition
of R is a coloring of ComplRelStrR.

(28) For every relational structure R holds every coloring of ComplRelStrR
is a clique-partition of R.

Let R be a finitely colorable relational structure.
Observe that ComplRelStrR has finite clique cover.
Let R be a symmetric relational structure with finite clique cover. One can

check that ComplRelStrR is finitely colorable.
The following propositions are true:

(29) For every finitely colorable symmetric relational structure R holds
χ(R) = κ(ComplRelStrR).

(30) For every symmetric relational structure R with finite clique cover holds
κ(R) = χ(ComplRelStrR).
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5. Adjacent Set

Let R be a relational structure and let v be an element of R. The functor
Adjacent(v) yields a subset of R and is defined as follows:

(Def. 6) For every element x of R holds x ∈ Adjacent(v) iff x < v or v < x.

The following proposition is true

(31) Let R be a finitely colorable relational structure, C be a finite coloring
of R, and c be a set. Suppose c ∈ C and C = χ(R). Then there exists
an element v of R such that v ∈ c and for every element d of C such
that d 6= c there exists an element w of R such that w ∈ Adjacent(v) and
w ∈ d.

6. Natural Numbers as Vertices

Let n be a natural number. A strict relational structure is said to be a
relational structure of n if:

(Def. 7) The carrier of it = n.

Let us observe that every relational structure of 0 is empty.
Let n be a non empty natural number. Note that every relational structure

of n is non empty.
Let n be a natural number. Note that every relational structure of n is finite

and there exists a relational structure of n which is irreflexive.
Let n be a natural number. The functor K(n) yields a relational structure

of n and is defined as follows:

(Def. 8) The internal relation of K(n) = n× n \ idn.

The following proposition is true

(32) Let n be a natural number and x, y be sets. Suppose x, y ∈ n. Then 〈〈x,
y〉〉 ∈ the internal relation of K(n) if and only if x 6= y.

Let n be a natural number. Note that K(n) is irreflexive and symmetric.
Let n be a natural number. Observe that ΩK(n) is a clique.
The following propositions are true:

(33) For every natural number n holds ω(K(n)) = n.

(34) For every non empty natural number n holds α(K(n)) = 1.

(35) For every natural number n holds χ(K(n)) = n.

(36) For every non empty natural number n holds κ(K(n)) = 1.
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7. Mycielskian of a Graph

Let n be a natural number and let R be a relational structure of n. The
functor MycielskianR yields a relational structure of 2 · n+ 1 and is defined by
the condition (Def. 9).

(Def. 9) The internal relation of MycielskianR = (the internal relation of R) ∪
{〈〈x, y + n〉〉;x ranges over elements of N, y ranges over elements of N: 〈〈x,
y〉〉 ∈ the internal relation of R}∪{〈〈x+n, y〉〉;x ranges over elements of N,
y ranges over elements of N: 〈〈x, y〉〉 ∈ the internal relation of R}∪{2 ·n}×
(2 · n \ n) ∪ (2 · n \ n)× {2 · n}.

One can prove the following propositions:

(37) Let n be a natural number and R be a relational structure of n. Then
the carrier of R ⊆ the carrier of MycielskianR.

(38) Let n be a natural number, R be a relational structure of n, and x, y be
natural numbers. Suppose 〈〈x, y〉〉 ∈ the internal relation of MycielskianR.
Then

(i) x < n and y < n, or
(ii) x < n ≤ y < 2 · n, or

(iii) n ≤ x < 2 · n and y < n, or
(iv) x = 2 · n and n ≤ y < 2 · n, or
(v) n ≤ x < 2 · n and y = 2 · n.

(39) Let n be a natural number and R be a relational structure of n. Then
the internal relation of R ⊆ the internal relation of MycielskianR.

(40) Let n be a natural number, R be a relational structure of n, and x, y be
sets. Suppose x, y ∈ n and 〈〈x, y〉〉 ∈ the internal relation of MycielskianR.
Then 〈〈x, y〉〉 ∈ the internal relation of R.

(41) Let n be a natural number, R be a relational structure of n, and x, y
be natural numbers. Suppose 〈〈x, y〉〉 ∈ the internal relation of R. Then
〈〈x, y + n〉〉 ∈ the internal relation of MycielskianR and 〈〈x + n, y〉〉 ∈ the
internal relation of MycielskianR.

(42) Let n be a natural number, R be a relational structure of n, and x, y be
natural numbers. Suppose x ∈ n and 〈〈x, y + n〉〉 ∈ the internal relation of
MycielskianR. Then 〈〈x, y〉〉 ∈ the internal relation of R.

(43) Let n be a natural number, R be a relational structure of n, and x, y be
natural numbers. Suppose y ∈ n and 〈〈x+ n, y〉〉 ∈ the internal relation of
MycielskianR. Then 〈〈x, y〉〉 ∈ the internal relation of R.

(44) Let n be a natural number, R be a relational structure of n, and m

be a natural number. Suppose n ≤ m < 2 · n. Then 〈〈m, 2 · n〉〉 ∈ the
internal relation of MycielskianR and 〈〈2 · n, m〉〉 ∈ the internal relation of
MycielskianR.
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(45) Let n be a natural number, R be a relational structure of n, and S be a
subset of MycielskianR. If S = n, then R = sub(S).

(46) For every natural number n and for every irreflexive relational structure
R of n such that 2 ≤ ω(R) holds ω(R) = ω(MycielskianR).

(47) For every finitely colorable relational structure R and for every subset S
of R holds χ(R) ≥ χ(sub(S)).

(48) For every natural number n and for every irreflexive relational structure
R of n holds χ(MycielskianR) = 1 + χ(R).

Let n be a natural number. The functor Mycielskiann yielding a relational
structure of 3 · 2n −′ 1 is defined by the condition (Def. 10).

(Def. 10) There exists a function m1 such that
(i) Mycielskiann = m1(n),

(ii) domm1 = N,
(iii) m1(0) = K(2), and
(iv) for every natural number k and for every relational structure R of

3 · 2k −′ 1 such that R = m1(k) holds m1(k + 1) = MycielskianR.

The following proposition is true

(49) Mycielskian 0 = K(2) and for every natural number k holds
Mycielskian(k + 1) = Mycielskian Mycielskian k.

Let n be a natural number. One can verify that Mycielskiann is irreflexive.
Let n be a natural number. Observe that Mycielskiann is symmetric.
We now state three propositions:

(50) For every natural number n holds ω(Mycielskiann) = 2 and
χ(Mycielskiann) = n+ 2.

(51) For every natural number n there exists a finite relational structure R
such that ω(R) = 2 and χ(R) > n.

(52) For every natural number n there exists a finite relational structure R
such that α(R) = 2 and κ(R) > n.
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The papers [2], [7], [13], [3], [1], [6], [9], [4], [14], [8], [5], [15], [11], [12], and [10]
provide the notation and terminology for this paper.

We adopt the following rules: n denotes an element of N, h, k, x, x0, x1, x2,
x3 denote real numbers, and f , g denote functions from R into R.

Next we state a number of propositions:

(1) If x0 > 0 and x1 > 0, then loge x0 − loge x1 = loge(
x0
x1

).

(2) If x0 > 0 and x1 > 0, then loge x0 + loge x1 = loge(x0 · x1).

(3) If x > 0, then loge x = (the function ln)(x).

(4) If x0 > 0 and x1 > 0, then (the function ln)(x0)−(the function ln)(x1) =
(the function ln)(x0x1 ).

(5) Suppose for every x holds f(x) = k
x2

and x0 6= 0 and x1 6= 0 and
x2 6= 0 and x3 6= 0 and x0, x1, x2, x3 are mutually different. Then

∆[f ](x0, x1, x2, x3) =
k·( 1
x1·x2·x0

·( 1
x0

+ 1
x2

+ 1
x1

)− 1
x2·x1·x3

·( 1
x3

+ 1
x1

+ 1
x2

))

x0−x3 .
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(6) Suppose x0 ∈ dom (the function cot) and x1 ∈ dom (the func-
tion cot). Then ∆[(the function cot) (the function cot)](x0, x1) =
− (cosx1)2−(cosx0)2

(sinx0·sinx1)2·(x0−x1) .

(7) Suppose x ∈ dom (the function cot) and x + h ∈ dom (the func-
tion cot). Then (∆h[(the function cot) (the function cot)])(x) =
1
2 ·(cos(2·(x+h))−cos(2·x))

(sin(x+h)·sinx)2 .

(8) Suppose x ∈ dom (the function cot) and x − h ∈ dom (the func-
tion cot). Then (∇h[(the function cot) (the function cot)])(x) =
1
2 ·(cos(2·x)−cos(2·(h−x)))

(sinx·sin(x−h))2 .

(9) Suppose x + h
2 ∈ dom (the function cot) and x − h

2 ∈ dom (the
function cot). Then (δh[(the function cot) (the function cot)])(x) =
1
2 ·(cos(h+2·x)−cos(h−2·x))

(sin(x+h2 )·sin(x−h2 ))2
.

(10) If x0, x1 ∈ dom cosec, then
∆[cosec cosec](x0, x1) = 4·(sin(x1+x0)·sin(x1−x0))

(cos(x0+x1)−cos(x0−x1))2·(x0−x1) .

(11) If x, x+h ∈ dom cosec, then (∆h[cosec cosec])(x) = − 4·sin(2·x+h)·sinh
(cos(2·x+h)−cosh)2 .

(12) If x, x−h ∈ dom cosec, then (∇h[cosec cosec])(x) = − 4·sin(2·x−h)·sinh
(cos(2·x−h)−cosh)2 .

(13) If x+ h2 , x− h2 ∈ dom cosec, then (δh[cosec cosec])(x) = − 4·sin(2·x)·sinh
(cos(2·x)−cosh)2 .

(14) If x0, x1 ∈ dom sec, then
∆[sec sec](x0, x1) = 4·(sin(x0+x1)·sin(x0−x1))

(cos(x0+x1)+cos(x0−x1))2·(x0−x1) .

(15) If x, x+ h ∈ dom sec, then (∆h[sec sec])(x) = 4·sin(2·x+h)·sinh
(cos(2·x+h)+cosh)2 .

(16) If x, x− h ∈ dom sec, then (∇h[sec sec])(x) = 4·sin(2·x−h)·sinh
(cos(2·x−h)+cosh)2 .

(17) If x+ h
2 , x− h2 ∈ dom sec, then (δh[sec sec])(x) = 4·sin(2·x)·sinh

(cos(2·x)+cosh)2 .

(18) If x0, x1 ∈ dom cosec∩dom sec, then ∆[cosec sec](x0, x1) =
4·(cos(x1+x0)·sin(x1−x0))

sin(2·x0)·sin(2·x1)
x0−x1 .

(19) If x + h, x ∈ dom cosec∩dom sec, then (∆h[cosec sec])(x) =
−4 · cos(2·x+h)·sinh

sin(2·(x+h))·sin(2·x) .

(20) If x − h, x ∈ dom cosec∩dom sec, then (∇h[cosec sec])(x) =
−4 · cos(2·x−h)·sinh

sin(2·x)·sin(2·(x−h)) .

(21) If x + h
2 , x − h

2 ∈ dom cosec∩dom sec, then (δh[cosec sec])(x) =

−4 · cos(2·x)·sinh
sin(2·x+h)·sin(2·x−h) .

(22) Suppose x0 ∈ dom (the function tan) and x1 ∈ dom (the function tan).
Then ∆[(the function tan) (the function tan) (the function cos)](x0, x1) =
∆[(the function tan) (the function sin)](x0, x1).

(23) Suppose x ∈ dom (the function tan) and x+h ∈ dom (the function tan).
Then (∆h[(the function tan) (the function tan) (the function cos)])(x) =
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((the function tan) (the function sin))(x + h) − ((the function tan) (the
function sin))(x).

(24) Suppose x ∈ dom (the function tan) and x − h ∈ dom (the func-
tion tan). Then (∇h[(the function tan) (the function tan) (the function
cos)])(x) = ((the function tan) (the function sin))(x)−((the function tan)
(the function sin))(x− h).

(25) Suppose x + h
2 ∈ dom (the function tan) and x − h2 ∈ dom (the func-

tion tan). Then (δh[(the function tan) (the function tan) (the function
cos)])(x) = ((the function tan) (the function sin))(x+ h2 )− ((the function
tan) (the function sin))(x− h2 ).

(26) Suppose x0 ∈ dom (the function cot) and x1 ∈ dom (the function cot).
Then ∆[(the function cot) (the function cot) (the function sin)](x0, x1) =
∆[(the function cot) (the function cos)](x0, x1).

(27) Suppose x ∈ dom (the function cot) and x+ h ∈ dom (the function cot).
Then (∆h[(the function cot) (the function cot) (the function sin)])(x) =
((the function cot) (the function cos))(x + h) − ((the function cot) (the
function cos))(x).

(28) Suppose x ∈ dom (the function cot) and x − h ∈ dom (the func-
tion cot). Then (∇h[(the function cot) (the function cot) (the function
sin)])(x) = ((the function cot) (the function cos))(x)− ((the function cot)
(the function cos))(x− h).

(29) Suppose x + h
2 ∈ dom (the function cot) and x − h2 ∈ dom (the func-

tion cot). Then (δh[(the function cot) (the function cot) (the function
sin)])(x) = ((the function cot) (the function cos))(x+ h2 )− ((the function
cot) (the function cos))(x− h2 ).

(30) If x0 > 0 and x1 > 0, then ∆[the function ln](x0, x1) =
(the function ln)(x0

x1
)

x0−x1 .

(31) If x > 0 and x + h > 0, then (∆h[the function ln])(x) = (the function
ln)(1 + h

x).

(32) If x > 0 and x − h > 0, then (∇h[the function ln])(x) = (the function
ln)(1 + h

x−h).

(33) If x+ h2 > 0 and x− h2 > 0, then (δh[the function ln])(x) = (the function
ln)(1 + h

x−h2
).

(34) For all real numbers h, k holds exp(h− k) = exph
exp k .

(35) (∆h[f ])(x) = (Shift(f, h))(x)− f(x).

(36) If for every x holds f(x) = (∆h[g])(x), then ∆[f ](x0, x1) = ∆[g](x0 +
h, x1 + h)−∆[g](x0, x1).

(37) (∆h[∆h[f ]])(x) = (∆2·h[f ])(x)− 2 · (∆h[f ])(x).

(38) (∇h[∆h[f ]])(x) = (∆h[f ])(x)− (∇h[f ])(x).
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(39) (δh[∆h[f ]])(x) = (∆h[f ])(x+ h
2 )− (δh[f ])(x).

(40) (~∆h[f ])(1)(x) = (~∆h[f ])(0)(x+ h)− (~∆h[f ])(0)(x).

(41) (~∆h[f ])(n+ 1)(x) = (~∆h[f ])(n)(x+ h)− (~∆h[f ])(n)(x).

(42) (∇h[f ])(x) = f(x)− (Shift(f,−h))(x).

(43) If for every x holds f(x) = (∇h[g])(x), then ∆[f ](x0, x1) = ∆[g](x0, x1)−
∆[g](x0 − h, x1 − h).

(44) (∆h[∇h[f ]])(x) = (∆h[f ])(x)− (∇h[f ])(x).

(45) (∇h[∇h[f ]])(x) = 2 · (∇h[f ])(x)− (∇2·h[f ])(x).

(46) (δh[∇h[f ]])(x) = (δh[f ])(x)− (∇h[f ])(x− h2 ).

(47) (~∇h[f ])(1)(x) = (~∇h[f ])(0)(x)− (~∇h[f ])(0)(x− h).

(48) (~∇h[f ])(n+ 1)(x) = (~∇h[f ])(n)(x)− (~∇h[f ])(n)(x− h).

(49) (δh[f ])(x) = (Shift(f, h2 ))(x)− (Shift(f,−h2 ))(x).

(50) If for every x holds f(x) = (δh[g])(x), then ∆[f ](x0, x1) = ∆[g](x0 +
h
2 , x1 + h

2 )−∆[g](x0 − h2 , x1 − h2 ).

(51) (∆h[δh[f ]])(x) = (∆h[f ])(x+ h
2 )− (δh[f ])(x).

(52) (∇h[δh[f ]])(x) = (δh[f ])(x)− (∇h[f ])(x− h2 ).

(53) (δh[δh[f ]])(x) = (∆h[f ])(x)− (∇h[f ])(x).

(54) (~δh[f ])(1)(x) = (~δh[f ])(0)(x+ h
2 )− (~δh[f ])(0)(x− h2 ).

(55) (~δh[f ])(n+ 1)(x) = (~δh[f ])(n)(x+ h
2 )− (~δh[f ])(n)(x− h2 ).

(56) Suppose x0 ∈ dom (the function tan) and x1 ∈ dom (the function tan).
Then ∆[(the function tan) (the function tan) (the function sin)](x0, x1) =
(sinx0)3·(cosx1)2−(sinx1)3·(cosx0)2

(cosx0)2·(cosx1)2·(x0−x1) .

(57) Suppose x ∈ dom (the function tan) and x + h ∈ dom (the func-
tion tan). Then (∆h[(the function tan) (the function tan) (the function
sin)])(x) = (the function sin)(x+ h)3 · ((the function cos)(x+ h)−1)2 −
(the function sin)(x)3 · ((the function cos)(x)−1)2

.

(58) Suppose x ∈ dom (the function tan) and x − h ∈ dom (the func-
tion tan). Then (∇h[(the function tan) (the function tan) (the func-
tion sin)])(x) = (the function sin)(x)3 · ((the function cos)(x)−1)2 −
(the function sin)(x− h)3 · ((the function cos)(x− h)−1)2

.

(59) Suppose x + h
2 ∈ dom (the function tan) and x − h2 ∈ dom (the func-

tion tan). Then (δh[(the function tan) (the function tan) (the function
sin)])(x) = (the function sin)(x+ h

2 )
3 · ((the function cos)(x+ h

2 )−1)
2 −

(the function sin)(x− h2 )
3 · ((the function cos)(x− h2 )−1)

2
.

(60) Suppose x0 ∈ dom (the function cot) and x1 ∈ dom (the function cot).
Then ∆[(the function cot) (the function cot) (the function cos)](x0, x1) =
(cosx0)3·(sinx1)2−(cosx1)3·(sinx0)2

(sinx0)2·(sinx1)2·(x0−x1) .
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(61) Suppose x ∈ dom (the function cot) and x + h ∈ dom (the func-
tion cot). Then (∆h[(the function cot) (the function cot) (the function
cos)])(x) = (the function cos)(x+ h)3 · ((the function sin)(x+ h)−1)2 −
(the function cos)(x)3 · ((the function sin)(x)−1)2

.

(62) Suppose x ∈ dom (the function cot) and x − h ∈ dom (the func-
tion cot). Then (∇h[(the function cot) (the function cot) (the func-
tion cos)])(x) = (the function cos)(x)3 · ((the function sin)(x)−1)2 −
(the function cos)(x− h)3 · ((the function sin)(x− h)−1)2

.

(63) Suppose x + h
2 ∈ dom (the function cot) and x − h2 ∈ dom (the func-

tion cot). Then (δh[(the function cot) (the function cot) (the function
cos)])(x) = (the function cos)(x+ h

2 )
3 · ((the function sin)(x+ h

2 )−1)
2 −

(the function cos)(x− h2 )
3 · ((the function sin)(x− h2 )−1)

2
.
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The papers [8], [1], [6], [15], [7], [18], [3], [4], [17], [2], [16], [9], [19], [20], [11],
[12], [10], [14], and [5] provide the terminology and notation for this paper.

1. Preliminaries

Let x, y be sets. Observe that {〈〈x, y〉〉} is one-to-one.
In the sequel n denotes a natural number.
One can prove the following two propositions:

(1) For every non empty topological space T holds T and T �ΩT are home-
omorphic.

(2) Let X be a non empty subspace of EnT and f be a function from X into
R1. Suppose f is continuous. Then there exists a function g from X into
EnT such that

(i) for every point a of X and for every point b of EnT and for every real
number r such that a = b and f(a) = r holds g(b) = r · b, and

(ii) g is continuous.

Let us consider n and let S be a subset of EnT. We say that S is ball if and
only if:

(Def. 1) There exists a point p of EnT and there exists a real number r such that
S = Ball(p, r).
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Let us consider n. Observe that there exists a subset of EnT which is ball and
every subset of EnT which is ball is also open.

Let us consider n. One can verify that there exists a subset of EnT which is
non empty and ball.

In the sequel p denotes a point of EnT and r denotes a real number.
The following proposition is true

(3) For every open subset S of EnT such that p ∈ S there exists ball subset
B of EnT such that B ⊆ S and p ∈ B.

Let us consider n, p, r. The functor Br(p) yields a subspace of EnT and is
defined as follows:

(Def. 2) Br(p) = EnT� Ball(p, r).

Let us consider n. The functor Bn yields a subspace of EnT and is defined as
follows:

(Def. 3) Bn = B1(0EnT).

Let us consider n. One can verify that Bn is non empty. Let us consider p
and let s be a positive real number. Observe that Bs(p) is non empty.

The following propositions are true:

(4) The carrier of Br(p) = Ball(p, r).

(5) If n 6= 0 and p is a point of Bn, then |p| < 1.

(6) Let f be a function from Bn into EnT. Suppose n 6= 0 and for every point
a of Bn and for every point b of EnT such that a = b holds f(a) = 1

1−|b|·|b| ·b.
Then f is homeomorphism.

(7) Let r be a positive real number and f be a function from Bn into Br(p).
Suppose n 6= 0 and for every point a of Bn and for every point b of EnT
such that a = b holds f(a) = r · b+ p. Then f is homeomorphism.

(8) Bn and EnT are homeomorphic.

In the sequel q denotes a point of EnT.
We now state three propositions:

(9) For all positive real numbers r, s holds Br(p) and Bs(q) are homeomor-
phic.

(10) For every non empty ball subset B of EnT holds B and ΩEnT are home-
omorphic.

(11) Let M , N be non empty topological spaces, p be a point of M , U be
a neighbourhood of p, and B be an open subset of N . Suppose U and B

are homeomorphic. Then there exists an open subset V of M and there
exists an open subset S of N such that V ⊆ U and p ∈ V and V and S

are homeomorphic.
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2. Manifold

In the sequel M is a non empty topological space.
Let us consider n, M . We say that M is n-locally Euclidean if and only if

the condition (Def. 4) is satisfied.

(Def. 4) Let p be a point of M . Then there exists a neighbourhood U of p and
there exists an open subset S of EnT such that U and S are homeomorphic.

Let us consider n. Observe that EnT is n-locally Euclidean.
Let us consider n. Observe that there exists a non empty topological space

which is n-locally Euclidean.
We now state two propositions:

(12) M is n-locally Euclidean if and only if for every point p of M there exists
a neighbourhood U of p and there exists ball subset B of EnT such that U
and B are homeomorphic.

(13) M is n-locally Euclidean if and only if for every point p of M there exists
a neighbourhood U of p such that U and ΩEnT are homeomorphic.

Let us consider n. Observe that every non empty topological space which is
n-locally Euclidean is also first-countable.

Let us note that every non empty topological space which is 0-locally Euc-
lidean is also discrete and every non empty topological space which is discrete
is also 0-locally Euclidean.

Let us consider n. One can verify that EnT is second-countable.
Let us consider n. Note that there exists a non empty topological space

which is second-countable, Hausdorff, and n-locally Euclidean.
Let us consider n, M . We say that M is n-manifold if and only if:

(Def. 5) M is second-countable, Hausdorff, and n-locally Euclidean.

Let us consider M . We say that M is manifold-like if and only if:

(Def. 6) There exists n such that M is n-manifold.

Let us consider n. Observe that there exists a non empty topological space
which is n-manifold.

Let us consider n. One can check the following observations:

∗ every non empty topological space which is n-manifold is also second-
countable, Hausdorff, and n-locally Euclidean,

∗ every non empty topological space which is second-countable, Hausdorff,
and n-locally Euclidean is also n-manifold, and

∗ every non empty topological space which is n-manifold is also manifold-
like.

Let us note that every non empty topological space which is second-countable
and discrete is also 0-manifold.
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Let us consider n and let M be an n-manifold non empty topological space.
One can verify that every non empty subspace of M which is open is also n-
manifold.

Let us note that there exists a non empty topological space which is manifold-
like.

A manifold is a manifold-like non empty topological space.
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The terminology and notation used in this paper have been introduced in the
following papers: [2], [12], [3], [4], [10], [11], [1], [5], [13], [7], [17], [18], [15], [9],
[8], [16], [19], and [6].

1. Preliminaries

For simplicity, we adopt the following rules: n denotes an element of N, X,
X1 denote sets, r, p denote real numbers, s, x0, x1, x2 denote real numbers, S,
T denote real normed spaces, f , f1, f2 denote partial functions from R to the
carrier of S, s1 denotes a sequence of real numbers, and Y denotes a subset of
R.

The following propositions are true:

(1) Let s2 be a sequence of real numbers and h be a partial function from
R to the carrier of S. If rng s2 ⊆ domh, then s2(n) ∈ domh.

(2) Let h1, h2 be partial functions from R to the carrier of S and s2 be a
sequence of real numbers. If rng s2 ⊆ domh1∩domh2, then (h1 +h2)∗s2 =
(h1∗s2) + (h2∗s2) and (h1 − h2)∗s2 = (h1∗s2)− (h2∗s2).
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(3) For every sequence h of S and for every real number r holds r h = r · h.
(4) Let h be a partial function from R to the carrier of S, s2 be a sequence

of real numbers, and r be a real number. If rng s2 ⊆ domh, then r h∗s2 =
r · (h∗s2).

(5) Let h be a partial function from R to the carrier of S and s2 be a
sequence of real numbers. If rng s2 ⊆ domh, then ‖h∗s2‖ = ‖h‖∗s2 and
−(h∗s2) = −h∗s2.

2. Continuous Real Functions into Normed Linear Spaces

Let us consider S, f , x0. We say that f is continuous in x0 if and only if:

(Def. 1) x0 ∈ dom f and for every s1 such that rng s1 ⊆ dom f and s1 is conver-
gent and lim s1 = x0 holds f∗s1 is convergent and fx0 = lim(f∗s1).

Next we state a number of propositions:

(6) If x0 ∈ X and f is continuous in x0, then f�X is continuous in x0.

(7) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and

(ii) for every s1 such that rng s1 ⊆ dom f and s1 is convergent and lim s1 =
x0 and for every n holds s1(n) 6= x0 holds f∗s1 is convergent and fx0 =
lim(f∗s1).

(8) f is continuous in x0 if and only if the following conditions are satisfied:
(i) x0 ∈ dom f, and

(ii) for every r such that 0 < r there exists s such that 0 < s and for every
x1 such that x1 ∈ dom f and |x1 − x0| < s holds ‖fx1 − fx0‖ < r.

(9) Let given S, f , x0. Then f is continuous in x0 if and only if the following
conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N1 of fx0 there exists a neighbourhood N of x0

such that for every x1 such that x1 ∈ dom f and x1 ∈ N holds fx1 ∈ N1.

(10) Let given S, f , x0. Then f is continuous in x0 if and only if the following
conditions are satisfied:

(i) x0 ∈ dom f, and
(ii) for every neighbourhood N1 of fx0 there exists a neighbourhood N of

x0 such that f◦N ⊆ N1.

(11) If there exists a neighbourhood N of x0 such that dom f ∩ N = {x0},
then f is continuous in x0.

(12) If x0 ∈ dom f1 ∩ dom f2 and f1 is continuous in x0 and f2 is continuous
in x0, then f1 + f2 is continuous in x0 and f1 − f2 is continuous in x0.

(13) If f is continuous in x0, then r f is continuous in x0.
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(14) If x0 ∈ dom f and f is continuous in x0, then ‖f‖ is continuous in x0

and −f is continuous in x0.

(15) Let f1 be a partial function from R to the carrier of S and f2 be a partial
function from the carrier of S to the carrier of T . Suppose x0 ∈ dom(f2 ·f1)
and f1 is continuous in x0 and f2 is continuous in (f1)x0 . Then f2 · f1 is
continuous in x0.

Let us consider S, f . We say that f is continuous if and only if:

(Def. 2) For every x0 such that x0 ∈ dom f holds f is continuous in x0.

Next we state two propositions:

(16) Let given X, f . Suppose X ⊆ dom f. Then f�X is continuous if and only
if for every s1 such that rng s1 ⊆ X and s1 is convergent and lim s1 ∈ X
holds f∗s1 is convergent and flim s1 = lim(f∗s1).

(17) Suppose X ⊆ dom f. Then f�X is continuous if and only if for all x0, r
such that x0 ∈ X and 0 < r there exists s such that 0 < s and for every
x1 such that x1 ∈ X and |x1 − x0| < s holds ‖fx1 − fx0‖ < r.

Let us consider S. One can check that every partial function from R to the
carrier of S which is constant is also continuous.

Let us consider S. Note that there exists a partial function from R to the
carrier of S which is continuous.

Let us consider S, let f be a continuous partial function from R to the carrier
of S, and let X be a set. Observe that f�X is continuous.

Next we state the proposition

(18) If f�X is continuous and X1 ⊆ X, then f�X1 is continuous.

Let us consider S. Observe that every partial function from R to the carrier
of S which is empty is also continuous.

Let us consider S, f and let X be a trivial set. Observe that f�X is conti-
nuous.

Let us consider S and let f1, f2 be continuous partial functions from R to
the carrier of S. Observe that f1 + f2 is continuous and f1 − f2 is continuous.

The following two propositions are true:

(19) Let givenX, f1, f2. SupposeX ⊆ dom f1∩dom f2 and f1�X is continuous
and f2�X is continuous. Then (f1 + f2)�X is continuous and (f1 − f2)�X
is continuous.

(20) Let given X, X1, f1, f2. Suppose X ⊆ dom f1 and X1 ⊆ dom f2 and
f1�X is continuous and f2�X1 is continuous. Then (f1 + f2)�(X ∩X1) is
continuous and (f1 − f2)�(X ∩X1) is continuous.

Let us consider S, let f be a continuous partial function from R to the carrier
of S, and let us consider r. One can check that r f is continuous.

We now state several propositions:

(21) If X ⊆ dom f and f�X is continuous, then (r f)�X is continuous.
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(22) If X ⊆ dom f and f�X is continuous, then ‖f‖�X is continuous and
(−f)�X is continuous.

(23) If f is total and for all x1, x2 holds fx1+x2 = fx1 + fx2 and there exists
x0 such that f is continuous in x0, then f�R is continuous.

(24) If dom f is compact and f� dom f is continuous, then rng f is compact.

(25) If Y ⊆ dom f and Y is compact and f�Y is continuous, then f◦Y is
compact.

3. Lipschitz Continuity

Let us consider S, f . We say that f is Lipschitzian if and only if:

(Def. 3) There exists a real number r such that 0 < r and for all x1, x2 such that
x1, x2 ∈ dom f holds ‖fx1 − fx2‖ ≤ r · |x1 − x2|.

The following proposition is true

(26) f�X is Lipschitzian if and only if there exists a real number r such that
0 < r and for all x1, x2 such that x1, x2 ∈ dom(f�X) holds ‖fx1 − fx2‖ ≤
r · |x1 − x2|.

Let us consider S. Observe that every partial function from R to the carrier
of S which is empty is also Lipschitzian.

Let us consider S. One can verify that there exists a partial function from
R to the carrier of S which is empty.

Let us consider S, let f be a Lipschitzian partial function from R to the
carrier of S, and let X be a set. One can check that f�X is Lipschitzian.

The following proposition is true

(27) If f�X is Lipschitzian and X1 ⊆ X, then f�X1 is Lipschitzian.

Let us consider S and let f1, f2 be Lipschitzian partial functions from R
to the carrier of S. One can check that f1 + f2 is Lipschitzian and f1 − f2 is
Lipschitzian.

One can prove the following propositions:

(28) If f1�X is Lipschitzian and f2�X1 is Lipschitzian, then (f1+f2)�(X∩X1)
is Lipschitzian.

(29) If f1�X is Lipschitzian and f2�X1 is Lipschitzian, then (f1−f2)�(X∩X1)
is Lipschitzian.

Let us consider S, let f be a Lipschitzian partial function from R to the
carrier of S, and let us consider p. Note that p f is Lipschitzian.

Next we state the proposition

(30) If f�X is Lipschitzian and X ⊆ dom f, then (p f)�X is Lipschitzian.

Let us consider S and let f be a Lipschitzian partial function from R to the
carrier of S. Note that ‖f‖ is Lipschitzian.
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One can prove the following proposition

(31) If f�X is Lipschitzian, then −f�X is Lipschitzian and (−f)�X is Lip-
schitzian and ‖f‖�X is Lipschitzian.

Let us consider S. One can verify that every partial function from R to the
carrier of S which is constant is also Lipschitzian.

Let us consider S. Observe that every partial function from R to the carrier
of S which is Lipschitzian is also continuous.

Next we state two propositions:

(32) If there exists a point r of S such that rng f = {r}, then f is continuous.

(33) For all points r, p of S such that for every x0 such that x0 ∈ X holds
fx0 = x0 · r + p holds f�X is continuous.
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[10], [19], and [9].

1. Preliminaries

One can prove the following propositions:

(1) Let D, E, F , G be non empty sets. Then there exists a function I from
D × E × (F ×G) into D × F × (E ×G) such that

(i) I is one-to-one and onto, and
(ii) for all sets d, e, f , g such that d ∈ D and e ∈ E and f ∈ F and g ∈ G

holds I(〈〈d, e〉〉, 〈〈f, g〉〉) = 〈〈〈〈d, f〉〉, 〈〈e, g〉〉〉〉.
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(2) Let X be a non empty set and D be a function. Suppose domD = {1}
and D(1) = X. Then there exists a function I from X into

∏
D such

that I is one-to-one and onto and for every set x such that x ∈ X holds
I(x) = 〈x〉.

(3) Let X, Y be non empty sets and D be a function. Suppose domD =
{1, 2} and D(1) = X and D(2) = Y. Then there exists a function I from
X × Y into

∏
D such that I is one-to-one and onto and for all sets x, y

such that x ∈ X and y ∈ Y holds I(x, y) = 〈x, y〉.
(4) Let X be a non empty set. Then there exists a function I from X into∏

〈X〉 such that I is one-to-one and onto and for every set x such that
x ∈ X holds I(x) = 〈x〉.

Let X, Y be non-empty non empty finite sequences. Observe that X a Y is
non-empty.

We now state two propositions:

(5) Let X, Y be non empty sets. Then there exists a function I from X ×Y
into
∏
〈X,Y 〉 such that I is one-to-one and onto and for all sets x, y such

that x ∈ X and y ∈ Y holds I(x, y) = 〈x, y〉.
(6) Let X, Y be non-empty non empty finite sequences. Then there exists

a function I from
∏
X ×

∏
Y into

∏
(X a Y ) such that I is one-to-one

and onto and for all finite sequences x, y such that x ∈
∏
X and y ∈

∏
Y

holds I(x, y) = x a y.

Let G, F be non empty additive loop structures. The functor prodadd(G,F )
yielding a binary operation on (the carrier of G)× (the carrier of F ) is defined
by:

(Def. 1) For all points g1, g2 of G and for all points f1, f2 of F holds
(prodadd(G,F ))(〈〈g1, f1〉〉, 〈〈g2, f2〉〉) = 〈〈g1 + g2, f1 + f2〉〉.

Let G, F be non empty RLS structures. The functor prodmlt(G,F ) yielding
a function from R× ((the carrier of G)× (the carrier of F )) into (the carrier of
G)× (the carrier of F ) is defined by:

(Def. 2) For every element r of R and for every point g of G and for every point
f of F holds (prodmlt(G,F ))(r, 〈〈g, f〉〉) = 〈〈r · g, r · f〉〉.

Let G, F be non empty additive loop structures. The functor prodzero(G,F )
yields an element of (the carrier of G)× (the carrier of F ) and is defined by:

(Def. 3) prodzero(G,F ) = 〈〈0G, 0F 〉〉.
Let G, F be non empty additive loop structures. The functor G×F yielding

a strict non empty additive loop structure is defined by:

(Def. 4) G× F = 〈(the carrier of G)× (the carrier of F ), prodadd(G,F ),
prodzero(G,F )〉.

Let G, F be Abelian non empty additive loop structures. Observe that G×
F is Abelian.
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Let G, F be add-associative non empty additive loop structures. Note that
G× F is add-associative.

Let G, F be right zeroed non empty additive loop structures. Note that G×
F is right zeroed.

Let G, F be right complementable non empty additive loop structures. Note
that G× F is right complementable.

Next we state two propositions:

(7) Let G, F be non empty additive loop structures. Then
(i) for every set x holds x is a point of G× F iff there exists a point x1 of
G and there exists a point x2 of F such that x = 〈〈x1, x2〉〉,

(ii) for all points x, y of G×F and for all points x1, y1 of G and for all points
x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds x+y = 〈〈x1 +y1,

x2 + y2〉〉, and
(iii) 0G×F = 〈〈0G, 0F 〉〉.
(8) Let G, F be add-associative right zeroed right complementable non emp-

ty additive loop structures, x be a point of G×F, x1 be a point of G, and
x2 be a point of F . If x = 〈〈x1, x2〉〉, then −x = 〈〈−x1, −x2〉〉.

Let G, F be Abelian add-associative right zeroed right complementable strict
non empty additive loop structures. One can check that G×F is strict, Abelian,
add-associative, right zeroed, and right complementable.

Let G, F be non empty RLS structures. The functor G × F yields a strict
non empty RLS structure and is defined by:

(Def. 5) G× F = 〈(the carrier of G)× (the carrier of F ), prodzero(G,F ),
prodadd(G,F ),prodmlt(G,F )〉.

Let G, F be Abelian non empty RLS structures. Observe that G × F is
Abelian.

Let G, F be add-associative non empty RLS structures. Note that G× F is
add-associative.

Let G, F be right zeroed non empty RLS structures. Note that G × F is
right zeroed.

Let G, F be right complementable non empty RLS structures. One can check
that G× F is right complementable.

Next we state two propositions:

(9) Let G, F be non empty RLS structures. Then
(i) for every set x holds x is a point of G× F iff there exists a point x1 of
G and there exists a point x2 of F such that x = 〈〈x1, x2〉〉,

(ii) for all points x, y of G×F and for all points x1, y1 of G and for all points
x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds x+y = 〈〈x1 +y1,

x2 + y2〉〉,
(iii) 0G×F = 〈〈0G, 0F 〉〉, and
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(iv) for every point x of G × F and for every point x1 of G and for every
point x2 of F and for every real number a such that x = 〈〈x1, x2〉〉 holds
a · x = 〈〈a · x1, a · x2〉〉.

(10) Let G, F be add-associative right zeroed right complementable non emp-
ty RLS structures, x be a point of G×F, x1 be a point of G, and x2 be a
point of F . If x = 〈〈x1, x2〉〉, then −x = 〈〈−x1, −x2〉〉.

Let G, F be vector distributive non empty RLS structures. Note that G ×
F is vector distributive.

Let G, F be scalar distributive non empty RLS structures. Note that G×F
is scalar distributive.

Let G, F be scalar associative non empty RLS structures. Observe that G×
F is scalar associative.

Let G, F be scalar unital non empty RLS structures. One can verify that
G× F is scalar unital.

Let G be an Abelian add-associative right zeroed right complementable sca-
lar distributive vector distributive scalar associative scalar unital non empty
RLS structure. Note that 〈G〉 is real-linear-space-yielding.

Let G, F be Abelian add-associative right zeroed right complementable sca-
lar distributive vector distributive scalar associative scalar unital non empty
RLS structures. Note that 〈G,F 〉 is real-linear-space-yielding.

2. Cartesian Products of Real Linear Spaces

One can prove the following proposition

(11) Let X be a real linear space. Then there exists a function I from X into∏
〈X〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X holds I(x) = 〈x〉,

(iii) for all points v, w of X holds I(v + w) = I(v) + I(w),
(iv) for every point v ofX and for every element r of R holds I(r·v) = r·I(v),

and
(v) I(0X) = 0∏〈X〉.
Let G, F be non empty real-linear-space-yielding finite sequences. Observe

that G a F is real-linear-space-yielding.
We now state three propositions:

(12) Let X, Y be real linear spaces. Then there exists a function I from X ×
Y into

∏
〈X,Y 〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds I(x, y) = 〈x,

y〉,
(iii) for all points v, w of X × Y holds I(v + w) = I(v) + I(w),
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(iv) for every point v of X×Y and for every element r of R holds I(r · v) =
r · I(v), and

(v) I(0X×Y ) = 0∏〈X,Y 〉.
(13) Let X, Y be non empty real linear space-sequences. Then there exists a

function I from
∏
X ×

∏
Y into

∏
(X a Y ) such that

(i) I is one-to-one and onto,
(ii) for every point x of

∏
X and for every point y of

∏
Y there exist finite

sequences x1, y1 such that x = x1 and y = y1 and I(x, y) = x1
a y1,

(iii) for all points v, w of
∏
X ×

∏
Y holds I(v + w) = I(v) + I(w),

(iv) for every point v of
∏
X ×

∏
Y and for every element r of R holds

I(r · v) = r · I(v), and
(v) I(0∏X×∏Y ) = 0∏(XaY ).

(14) Let G, F be real linear spaces. Then
(i) for every set x holds x is a point of

∏
〈G,F 〉 iff there exists a point x1

of G and there exists a point x2 of F such that x = 〈x1, x2〉,
(ii) for all points x, y of

∏
〈G,F 〉 and for all points x1, y1 of G and for all

points x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1, y2〉 holds x + y =
〈x1 + y1, x2 + y2〉,

(iii) 0∏〈G,F 〉 = 〈0G, 0F 〉,
(iv) for every point x of

∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F such that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉, and
(v) for every point x of

∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F and for every real number a such that x = 〈x1, x2〉 holds
a · x = 〈a · x1, a · x2〉.

3. Cartesian Products of Real Normed Linear Spaces

Let G, F be non empty normed structures. The functor prodnorm(G,F )
yields a function from (the carrier of G) × (the carrier of F ) into R and is
defined by:

(Def. 6) For every point g of G and for every point f of F there exists an element
v of R2 such that v = 〈‖g‖, ‖f‖〉 and (prodnorm(G,F ))(g, f) = |v|.

Let G, F be non empty normed structures. The functor G × F yielding a
strict non empty normed structure is defined as follows:

(Def. 7) G× F = 〈(the carrier of G)× (the carrier of F ), prodzero(G,F ),
prodadd(G,F ),prodmlt(G,F ), prodnorm(G,F )〉.

Let G, F be real normed spaces. Observe that G×F is reflexive, discernible,
and real normed space-like.

Let G, F be reflexive discernible real normed space-like scalar distributive
vector distributive scalar associative scalar unital Abelian add-associative right
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zeroed right complementable non empty normed structures. One can verify that
G×F is strict, reflexive, discernible, real normed space-like, scalar distributive,
vector distributive, scalar associative, scalar unital, Abelian, add-associative,
right zeroed, and right complementable.

Let G be a reflexive discernible real normed space-like scalar distributive
vector distributive scalar associative scalar unital Abelian add-associative right
zeroed right complementable non empty normed structure. One can verify that
〈G〉 is real-norm-space-yielding.

Let G, F be reflexive discernible real normed space-like scalar distributive
vector distributive scalar associative scalar unital Abelian add-associative right
zeroed right complementable non empty normed structures. Observe that 〈G,
F 〉 is real-norm-space-yielding.

One can prove the following propositions:

(15) Let X, Y be real normed spaces. Then there exists a function I from
X × Y into

∏
〈X,Y 〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds I(x, y) = 〈x,

y〉,
(iii) for all points v, w of X × Y holds I(v + w) = I(v) + I(w),
(iv) for every point v of X×Y and for every element r of R holds I(r · v) =

r · I(v),
(v) 0∏〈X,Y 〉 = I(0X×Y ), and

(vi) for every point v of X × Y holds ‖I(v)‖ = ‖v‖.
(16) Let X be a real normed space. Then there exists a function I from X

into
∏
〈X〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X holds I(x) = 〈x〉,
(iii) for all points v, w of X holds I(v + w) = I(v) + I(w),
(iv) for every point v ofX and for every element r of R holds I(r·v) = r·I(v),
(v) 0∏〈X〉 = I(0X), and

(vi) for every point v of X holds ‖I(v)‖ = ‖v‖.
Let G, F be non empty real-norm-space-yielding finite sequences. One can

check that G a F is non empty and real-norm-space-yielding.
One can prove the following propositions:

(17) Let X, Y be non empty real norm space-sequences. Then there exists a
function I from

∏
X ×

∏
Y into

∏
(X a Y ) such that

(i) I is one-to-one and onto,
(ii) for every point x of

∏
X and for every point y of

∏
Y there exist finite

sequences x1, y1 such that x = x1 and y = y1 and I(x, y) = x1
a y1,

(iii) for all points v, w of
∏
X ×

∏
Y holds I(v + w) = I(v) + I(w),
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(iv) for every point v of
∏
X ×

∏
Y and for every element r of R holds

I(r · v) = r · I(v),
(v) I(0∏X×∏Y ) = 0∏(XaY ), and
(vi) for every point v of

∏
X ×

∏
Y holds ‖I(v)‖ = ‖v‖.

(18) Let G, F be real normed spaces. Then
(i) for every set x holds x is a point of G× F iff there exists a point x1 of
G and there exists a point x2 of F such that x = 〈〈x1, x2〉〉,

(ii) for all points x, y of G×F and for all points x1, y1 of G and for all points
x2, y2 of F such that x = 〈〈x1, x2〉〉 and y = 〈〈y1, y2〉〉 holds x+y = 〈〈x1 +y1,

x2 + y2〉〉,
(iii) 0G×F = 〈〈0G, 0F 〉〉,
(iv) for every point x of G × F and for every point x1 of G and for every

point x2 of F such that x = 〈〈x1, x2〉〉 holds −x = 〈〈−x1, −x2〉〉,
(v) for every point x of G × F and for every point x1 of G and for every

point x2 of F and for every real number a such that x = 〈〈x1, x2〉〉 holds
a · x = 〈〈a · x1, a · x2〉〉, and

(vi) for every point x of G × F and for every point x1 of G and for every
point x2 of F such that x = 〈〈x1, x2〉〉 there exists an element w of R2 such
that w = 〈‖x1‖, ‖x2‖〉 and ‖x‖ = |w|.

(19) Let G, F be real normed spaces. Then
(i) for every set x holds x is a point of

∏
〈G,F 〉 iff there exists a point x1

of G and there exists a point x2 of F such that x = 〈x1, x2〉,
(ii) for all points x, y of

∏
〈G,F 〉 and for all points x1, y1 of G and for all

points x2, y2 of F such that x = 〈x1, x2〉 and y = 〈y1, y2〉 holds x + y =
〈x1 + y1, x2 + y2〉,

(iii) 0∏〈G,F 〉 = 〈0G, 0F 〉,
(iv) for every point x of

∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F such that x = 〈x1, x2〉 holds −x = 〈−x1,−x2〉,
(v) for every point x of

∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F and for every real number a such that x = 〈x1, x2〉 holds
a · x = 〈a · x1, a · x2〉, and

(vi) for every point x of
∏
〈G,F 〉 and for every point x1 of G and for every

point x2 of F such that x = 〈x1, x2〉 there exists an element w of R2 such
that w = 〈‖x1‖, ‖x2‖〉 and ‖x‖ = |w|.

Let X, Y be complete real normed spaces. Observe that X ×Y is complete.
We now state several propositions:

(20) Let X, Y be non empty real norm space-sequences. Then there exists a
function I from

∏
〈
∏
X,
∏
Y 〉 into

∏
(X a Y ) such that

(i) I is one-to-one and onto,
(ii) for every point x of

∏
X and for every point y of

∏
Y there exist finite

sequences x1, y1 such that x = x1 and y = y1 and I(〈x, y〉) = x1
a y1,
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(iii) for all points v, w of
∏
〈
∏
X,
∏
Y 〉 holds I(v + w) = I(v) + I(w),

(iv) for every point v of
∏
〈
∏
X,
∏
Y 〉 and for every element r of R holds

I(r · v) = r · I(v),
(v) I(0∏〈∏X,∏Y 〉) = 0∏(XaY ), and

(vi) for every point v of
∏
〈
∏
X,
∏
Y 〉 holds ‖I(v)‖ = ‖v‖.

(21) Let X, Y be non empty real linear spaces. Then there exists a function
I from X × Y into X ×

∏
〈Y 〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds I(x, y) = 〈〈x,
〈y〉〉〉,

(iii) for all points v, w of X × Y holds I(v + w) = I(v) + I(w),
(iv) for every point v of X×Y and for every element r of R holds I(r · v) =

r · I(v), and
(v) I(0X×Y ) = 0X×

∏
〈Y 〉.

(22) Let X be a non empty real linear space-sequence and Y be a real linear
space. Then there exists a function I from

∏
X ×Y into

∏
(X a 〈Y 〉) such

that
(i) I is one-to-one and onto,

(ii) for every point x of
∏
X and for every point y of Y there exist finite

sequences x1, y1 such that x = x1 and 〈y〉 = y1 and I(x, y) = x1
a y1,

(iii) for all points v, w of
∏
X × Y holds I(v + w) = I(v) + I(w),

(iv) for every point v of
∏
X × Y and for every element r of R holds

I(r · v) = r · I(v), and
(v) I(0∏X×Y ) = 0∏(Xa〈Y 〉).

(23) Let X, Y be non empty real normed spaces. Then there exists a function
I from X × Y into X ×

∏
〈Y 〉 such that

(i) I is one-to-one and onto,
(ii) for every point x of X and for every point y of Y holds I(x, y) = 〈〈x,
〈y〉〉〉,

(iii) for all points v, w of X × Y holds I(v + w) = I(v) + I(w),
(iv) for every point v of X×Y and for every element r of R holds I(r · v) =

r · I(v),
(v) I(0X×Y ) = 0X×

∏
〈Y 〉, and

(vi) for every point v of X × Y holds ‖I(v)‖ = ‖v‖.
(24) Let X be a non empty real norm space-sequence and Y be a real normed

space. Then there exists a function I from
∏
X ×Y into

∏
(X a 〈Y 〉) such

that
(i) I is one-to-one and onto,

(ii) for every point x of
∏
X and for every point y of Y there exist finite

sequences x1, y1 such that x = x1 and 〈y〉 = y1 and I(x, y) = x1
a y1,

(iii) for all points v, w of
∏
X × Y holds I(v + w) = I(v) + I(w),



cartesian products of family of real linear . . . 59

(iv) for every point v of
∏
X × Y and for every element r of R holds

I(r · v) = r · I(v),
(v) I(0∏X×Y ) = 0∏(Xa〈Y 〉), and
(vi) for every point v of

∏
X × Y holds ‖I(v)‖ = ‖v‖.
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Summary. In this article, we formalize integral linear spaces, that is a li-
near space with integer coefficients. Integral linear spaces are necessary for lattice
problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm that outputs
short lattice base and cryptographic systems with lattice [8].
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[17].

1. Preliminaries

The following propositions are true:

(1) Let X be a real linear space and R1, R2 be finite sequences of elements
of X. If lenR1 = lenR2, then

∑
(R1 +R2) =

∑
R1 +

∑
R2.

(2) Let X be a real linear space and R1, R2, R3 be finite sequences of
elements of X. If lenR1 = lenR2 and R3 = R1−R2, then

∑
R3 =

∑
R1−∑

R2.

(3) Let X be a real linear space, R1, R2 be finite sequences of elements of
X, and a be an element of R. If R2 = aR1, then

∑
R2 = a ·

∑
R1.
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2. Integral Linear Space

For simplicity, we use the following convention: x denotes a set, a denotes a
real number, i denotes an integer, V denotes a real linear space, v, v1, v2, v3,
u, w, w1, w2, w3 denote vectors of V , A, B denote subsets of V , L denotes a
linear combination of V , and l, l1, l2 denote linear combinations of A.

Let us consider V , i, L. The functor i ·L yielding a linear combination of V
is defined as follows:

(Def. 1) For every v holds (i · L)(v) = i · L(v).

Let us consider V , A. The functor LinZA yielding a subset of V is defined
by:

(Def. 2) LinZA = {
∑
l : rng l ⊆ Z}.

One can prove the following propositions:

(4) (i) · l = i · l.
(5) If rng l1 ⊆ Z and rng l2 ⊆ Z, then rng(l1 + l2) ⊆ Z.
(6) If rng l ⊆ Z, then rng(i · l) ⊆ Z.
(7) rng(0LCV ) ⊆ Z.
(8) LinZA ⊆ the carrier of Lin(A).

(9) If v, u ∈ LinZA, then v + u ∈ LinZA.

(10) If v ∈ LinZA, then i · v ∈ LinZA.

(11) 0V ∈ LinZA.

(12) If x ∈ A, then x ∈ LinZA.

(13) If A ⊆ B, then LinZA ⊆ LinZB.

(14) LinZ(A ∪B) = (LinZA) + LinZB.

(15) LinZ(A ∩B) ⊆ (LinZA) ∩ LinZB.

(16) x ∈ LinZ{v} iff there exists an integer a such that x = a · v.
(17) v ∈ LinZ{v}.
(18) x ∈ v + LinZ{w} iff there exists an integer a such that x = v + a · w.
(19) x ∈ LinZ{w1, w2} iff there exist integers a, b such that x = a ·w1 + b ·w2.

(20) w1 ∈ LinZ{w1, w2}.
(21) x ∈ v + LinZ{w1, w2} iff there exist integers a, b such that x = v + a ·

w1 + b · w2.

(22) x ∈ LinZ{v1, v2, v3} iff there exist integers a, b, c such that x = a · v1 +
b · v2 + c · v3.

(23) w1, w2, w3 ∈ LinZ{w1, w2, w3}.
(24) x ∈ v + LinZ{w1, w2, w3} iff there exist integers a, b, c such that x =

v + a · w1 + b · w2 + c · w3.
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(25) Let x be a set. Then x ∈ LinZA if and only if there exist finite sequences
g1, h1 of elements of V and there exists an integer-valued finite sequence a1

such that x =
∑
h1 and rng g1 ⊆ A and len g1 = lenh1 and len g1 = len a1

and for every natural number i such that i ∈ Seg len g1 holds (h1)i =
a1(i) · (g1)i.

Let R4 be a real linear space and let f be a finite sequence of elements of R4.
The functor LinZ f yielding a subset of R4 is defined by the condition (Def. 3).

(Def. 3) LinZ f = {
∑
g; g ranges over len f -element finite sequences of ele-

ments of R4:
∨
a : len f -element integer-valued finite sequence

∧
i : natural number (i ∈

Seg len f ⇒ gi = a(i) · fi)}.
One can prove the following propositions:

(26) Let R4 be a real linear space, f be a finite sequence of elements of R4,
and x be a set. Then x ∈ LinZ f if and only if there exists a len f -element
finite sequence g of elements of R4 and there exists a len f -element integer-
valued finite sequence a such that x =

∑
g and for every natural number

i such that i ∈ Seg len f holds gi = a(i) · fi.
(27) Let R4 be a real linear space, f be a finite sequence of elements of R4,

x, y be elements of R4, and a, b be elements of Z. If x, y ∈ LinZ f, then
a · x+ b · y ∈ LinZ f.

(28) For every real linear space R4 and for every finite sequence f of elements
of R4 such that f = Seg len f 7−→ 0(R4) holds

∑
f = 0(R4).

(29) Let R4 be a real linear space, f be a finite sequence of elements of R4,
v be an element of R4, and i be a natural number. If i ∈ Seg len f and
f = (Seg len f 7−→ 0(R4))+·({i} 7−→ v), then

∑
f = v.

(30) Let R4 be a real linear space, f be a finite sequence of elements of R4,
and i be a natural number. If i ∈ Seg len f, then fi ∈ LinZ f.

(31) For every real linear space R4 and for every finite sequence f of elements
of R4 holds rng f ⊆ LinZ f.

(32) LetR4 be a real linear space, f be a non empty finite sequence of elements
of R4, g, h be finite sequences of elements of R4, and s be an integer-valued
finite sequence. Suppose rng g ⊆ LinZ f and len g = len s and len g = lenh
and for every natural number i such that i ∈ Seg len g holds hi = s(i) · gi.
Then

∑
h ∈ LinZ f.

(33) For every real linear space R4 and for every non empty finite sequence
f of elements of R4 holds LinZ rng f = LinZ f.

(34) Lin(LinZA) = Lin(A).

(35) Let x be a set, g1, h1 be finite sequences of elements of V , and a1 be an
integer-valued finite sequence. Suppose x =

∑
h1 and rng g1 ⊆ LinZA and

len g1 = lenh1 and len g1 = len a1 and for every natural number i such
that i ∈ Seg len g1 holds (h1)i = a1(i) · (g1)i. Then x ∈ LinZA.
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(36) LinZ LinZA = LinZA.

(37) If LinZA = LinZB, then Lin(A) = Lin(B).
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By Takao Inoué et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Some Properties of p-Groups and Commutative p-Groups
By Xiquan Liang and Dailu Li . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Riemann Integral of Functions from R into Real Normed Space
By Keiichi Miyajima et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Normal Subgroup of Product of Groups
By Hiroyuki Okazaki et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

The Mycielskian of a Graph
By Piotr Rudnicki and Lorna Stewart . . . . . . . . . . . . . . . . . 27

Difference and Difference Quotient. Part IV
By Xiquan Liang and Ling Tang and Xichun Jiang . . . . . . 35

The Definition of Topological Manifolds
By Marco Riccardi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

More on Continuous Functions on Normed Linear Spaces
By Hiroyuki Okazaki et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Cartesian Products of Family of Real Linear Spaces
By Hiroyuki Okazaki et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Formalization of Integral Linear Space
By Yuichi Futa et al. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61


