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Summary. This article is the continuation of [31]. We define the set of L?
integrable functions — the set of all partial functions whose absolute value raised
to the p-th power is integrable. We show that LP integrable functions form the
LP space. We also prove Minkowski’s inequality, Holder’s inequality and that LP
space is Banach space ([15], [27]).
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The notation and terminology used in this paper have been introduced in the
following papers: [7], [8], [9], [10], [4], [1], [31], [6], [19], [20], [13], [28], [14], [2],
[24], [3], [11], [25], [22], [21], [16], [32], [29], [23], [18], [17], [26], [30], [5], and [12].

1. PRELIMINARIES ON POWERS OF NUMBERS AND OPERATIONS ON REAL
SEQUENCES

For simplicity, we follow the rules: X denotes a non empty set, x denotes
an element of X, S denotes a o-field of subsets of X, M denotes a o-measure
on S, f, g, f1, g1 denote partial functions from X to R, and a, b, ¢ denote real
numbers.

The following propositions are true:

(1) For all positive real numbers m, n such that L + 1 =1 holds m > 1.
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(2) Let X be a non empty set, S be a o-field of subsets of X, M be a o-
measure on S, A be an element of S, and f be a partial function from X
to R. Suppose A = dom f and f is measurable on A and f is non-negative.
Then [ fdM € R if and only if f is integrable on M.

Let 7 be a real number. We say that r is great or equal to 1 if and only if:
(Def. 1) 1<
Let us note that every real number which is great or equal to 1 is also
positive.
One can verify that there exists a real number which is great or equal to 1.
In the sequel k denotes a positive real number.
We now state several propositions:

For all real numbers a, b, p such that 0 < p and 0 < a < b holds a” < bP.
4) Ifa>0andb> 0, then a® > 0.

5) Ifa>0andb>0andc>0,then (a-b)°=a-b".

6) For all real numbers a, b and for every f such that f is non-negative and
a>0and b > 0 holds (f*)? = fo?.

(7) For all real numbers a, b and for every f such that f is non-negative and
a>0and b > 0 holds f* f0 = fotb,

®) fl=*r

(9) Let s1, s2 be sequences of real numbers and k be a positive real number.
Suppose that for every element n of N holds s1(n) = sa(n)* and s2(n) > 0.
Then s; is convergent if and only if sy is convergent.

w
~—

~—~ I~ —~

(10) Let s3 be a sequence of real numbers and n, m be elements of
N. If m < n, then [(3a—0(s3)(@))ren(n) — (Za=o(s3)(@))ren(m)| <
(Xa=ols3l(@))ren(n) — (Za=ols3|(a))ren(m) and |(326—o(s3)())ren(n) —
(XCa=0(s3)(@))ren(m)| < (Xa=olssl(a))xen(n).

(11) Let s3, s2 be sequences of real numbers and k be a positive real number.
Suppose s3 is convergent and for every element n of N holds so(n) =

[lim s3 — s3(n)|¥. Then sy is convergent and lim sy = 0.

2. REAL LINEAR SPACE OF LP INTEGRABLE FUNCTIONS

Next we state two propositions:
(12) For every positive real number k and for every non empty set X holds
(X — 0)F = X 0.
(13) For every partial function f from X to R and for every set D holds
|f1D| = [f]ID.
Let us consider X and let f be a partial function from X to R. Observe that
| f| is non-negative.
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One can prove the following two propositions:
(14) For every partial function f from X to R such that f is non-negative
holds |f| = f.
(15) If X = dom f and for every x such that € dom f holds 0 = f(z), then
f is integrable on M and [ fdM = 0.

Let X be a non empty set, let S be a o-field of subsets of X, let M be a o-
measure on S, and let k be a positive real number. The functor LP functions(M, k)
yielding a non empty subset of PFunctrys X is defined by the condition (Def. 2).

(Def. 2) LP functions(M, k) = {f; f ranges over partial functions from X to R:
VE, clement of s (M(E1€) = 0 A domf = E; A f is measurable on
Ey A |f|¥ is integrable on M)}.
Next we state a number of propositions:
(16) For all real numbers a, b, k such that k& > 0 holds |a + b|* < (|a| + |b])*
and (Ja] + [b])" < (2 - max(|al, [b]))" and |a +b]* < (2 max(]al, [b]))*.
(17) For all real numbers a, b, k such that a > 0 and b > 0 and k& > 0 holds
(max(a, b))* < a + b,

(18) For every partial function f from X to R and for all real numbers a, b
such that b > 0 holds |al® |f|® = |a f]°.

(19) Let f be a partial function from X to R and a, b be real numbers. If
a>0and b > 0, then a® |f|® = (a|f])’.

(20) For every partial function f from X to R and for every real number k
and for every set E holds (fIE)* = f*IE.

(21) For all real numbers a, b, k such that k& > 0 holds |a+b|* < 2%-(|a|*+|b[*).

(22) Let k be a positive real number and f, g be partial functions from X to

R. Suppose f, g € LP functions(M, k). Then |f|* is integrable on M and
lg|* is integrable on M and |f|¥ + |g|* is integrable on M.

(23) X +— 0 is a partial function from X to R and X ~—— 0 €
LP functions(M, k).

(24) Let k be a real number. Suppose k& > 0. Let f, g be partial functions
from X to R and x be an element of X. If z € dom f N dom g, then

| +gl*(2) < @5 (1F1F + 191")) ().
If f, g € LP functions(M, k), then f + g € LP functions(M, k).
If f € LP functions(M, k), then a f € LP functions(M, k).
27) If f, g € L? functions(M, k), then f — g € LP functions(M, k).
28) If f € LP functions(M, k), then |f| € LP functions(M, k).

Let X be a non empty set, let S be a o-field of subsets of X, let M be a o-
measure on S, and let k be a positive real number. Note that L functions(M, k)
is multiplicatively-closed and add closed.

(25)
(26)
(27)
(28)
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Let X be a non empty set, let S be a o-field of subsets of X, let M be
a o-measure on S, and let k£ be a positive real number. One can check that
(LP functions(M, k), Oprunctr.s x (€ LP functions(M, k)), add |(LP functions(M, k),
PFunctrrs X), - 1» functions(M, k)> is Abelian, add-associative, and real linear space-
like.

Let X be a non empty set, let S be a o-field of subsets of X, let M
be a o-measure on S, and let k be a positive real number. The functor
RLSp LpFunct(M, k) yields a strict Abelian add-associative real linear space-
like non empty RLS structure and is defined by:

(Def. 3) RLSp LpFunct(M, k) = (LP functions(M, k), OpFunctr, s x (€ LP functions
(M, k)),add |(LP functions(M, k), PFunctrrs X), * Lr functions(M,k))-

3. PRELIMINARIES ON REAL NORMED SPACE OF LP INTEGRABLE FUNCTIONS

In the sequel v, u are vectors of RLSp LpFunct(M, k).
We now state three propositions:
(29) (v)+ (u) =v+u.
(30) a(u)=a-u.
(31) Suppose f = u. Then
(i) wu+(-1)-u=(X+—0)[dom f, and
(ii)  there exist partial functions v, g from X to R such that v, g €
LP functions(M, k) and v = u + (—1)-u and g = X —— 0 and v =M 4.

Let X be a non empty set, let S be a o-field of subsets of X,
let M be a o-measure on S, and let £ be a positive real number.
The functor AlmostZeroLpFunctions(M, k) yielding a non empty subset of
RLSp LpFunct(M, k) is defined by:

(Def. 4)  AlmostZeroLpFunctions(M, k) = {f;f ranges over partial functions
from X to R: f € LP functions(M, k) A f =M X +— 0}.

Let X be a non empty set, let S be a o-field of subsets of X, let M be
a o-measure on S, and let k£ be a positive real number. One can check that
AlmostZeroLpFunctions(M, k) is add closed and multiplicatively-closed.

Next we state the proposition

(32> ORLSp LpFunct(M,k) = X +— 0 and
ORLSp LpFunct(M,k) € AlmostZeroLpFunctions(M, k).

Let X be a non empty set, let S be a o-field of subsets of X, let M
be a o-measure on S, and let k& be a positive real number. The functor
RLSpAlmostZeroLpFunctions(M, k) yielding a non empty RLS structure is de-
fined by:

(Def. 5) RLSpAlmostZeroLpFunctions(M, k) = (AlmostZeroLpFunctions(M, k),
ORLSp LpFunct(M,k) (€ AlmostZeroLpFunctions(M, k)), add |(AlmostZeroLp
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Functions(M, k), RLSp LpFunct(M, k)), - AtmostZeroLpFunctions(M,k)) -

Let X be a non empty set, let S be a o-field of subsets of X, let M
be a o-measure on S, and let k be a positive real number. Observe that
RLSp LpFunct(M, k) is strict, Abelian, add-associative, right zeroed, and re-
al linear space-like.

In the sequel v, u are vectors of RLSpAlmostZeroLpFunctions(M, k).

One can prove the following two propositions:

(33) (v)+ (u) =v+u.
(34) a(u)=a-u.

Let X be a non empty set, let S be a o-field of subsets of X, let M be

a o-measure on S, let f be a partial function from X to R, and let k be

a positive real number. The functor a.e-eq-class LP(f, M, k) yields a subset of
L? functions(M, k) and is defined as follows:
(Def. 6) a.e-eq-class LP(f, M, k) = {h; h ranges over partial functions from X to
R: h € LP functions(M, k) A f =M h}.
Next we state a number of propositions:

(35) If f € LP functions(M, k), then there exists an element F of S such that
M(E€) =0 and dom f = E and f is measurable on E.

(36) 1If g € LP functions(M, k) and g =M, £, then g € a.e-eq-class LP(f, M, k).

(37) Suppose there exists an element E of S such that M (E°) =0 and E =
dom f and f is measurable on E and g € a.e-eq-class LP(f, M, k). Then
g =M fand f € LP functions(M, k).

(38) If f € LPfunctions(M, k), then f € a.e-eq-class LP(f, M, k).

(39) Suppose there exists an element E of S such that M(E€) =0 and E =
domg and ¢ is measurable on E and a.e-eq-class LP(f, M, k) # 0 and
a.e-eq-class LP(f, M, k) = a.e-eq-class LP(g, M, k). Then f = ¢.

(40) Suppose f € LPfunctions(M,k) and there exists an element E of S
such that M(E°) = 0 and E = domg and g is measurable on E and
a.e-eq-class LP(f, M, k) = a.e-eq-class LP(g, M, k). Then f = g.

(41) If f =M g, then a.e-eq-class LP(f, M, k) = a.e-eq-class LP(g, M, k).

(42) If f =M g, then a.e-eq-class LP(f, M, k) = a.e-eq-class LP(g, M, k).

(43) If f € LPfunctions(M,k) and g € a.e-eq-classLP(f, M, k), then
a.e-eq-class LP(f, M, k) = a.e-eq-class LP(g, M, k).

(44) Suppose that there exists an element E of S such that M(E) = 0
and £ = dom f and f is measurable on F and there exists an element
E of S such that M(E°) = 0 and E = dom f; and f; is measurable
on F and there exists an element E of S such that M(E°) = 0 and

F = domg and g is measurable on E and there exists an element E
of S such that M(E¢) = 0 and £ = domg; and ¢; is measurable on
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E and a.e-eq-class LP(f, M, k) is non empty and a.e-eq-class LP(g, M, k)
is non empty and a.e-eq-class LP(f, M, k) = a.e-eq-class LP(f1, M, k) and
a.e-eq-class LP(g, M, k) = a.e-eq-class LP (g1, M, k). Then a.e-eq-class LP( f+
g, M, k) = a.e-eq-class LP(f1 + g1, M, k).
(45) If f, f1, g, g1 € LP functions(M, k) and a.e-eq-class LP(f, M, k) =
a.e-eq-class LP(f1, M, k) and a.e-eq-class LP(g, M, k) =
a.e-eq-class LP(gy, M, k), then a.e-eq-class LP(f + g, M, k) =
a.e-eq-class LP(f1 + g1, M, k).
(46) Suppose that
(i)  there exists an element F of S such that M(E°) =0 and dom f = E
and f is measurable on F,
(ii)  there exists an element E of S such that M(E°) = 0 and domg = E
and ¢ is measurable on F,
(iii)  a.e-eq-class LP(f, M, k) is non empty, and
(iv) a.e-eq-class LP(f, M, k) = a.e-eq-class LP(g, M, k).
Then a.e-eq-class LP(a f, M, k) = a.e-eq-class LP(a g, M, k).
(47) If f, g € LPfunctions(M,k) and a.e-eq-classLP(f,M,k) =
a.e-eq-class LP(g, M, k), then
a.e-eq-class LP(a f, M, k) = a.e-eq-class LP(a g, M, k).
Let X be a non empty set, let S be a o-field of subsets of X, let M be a o-
measure on S, and let k£ be a positive real number. The functor CosetSet(M, k)
yielding a non empty family of subsets of LP functions(M, k) is defined by:

(Def. 7) CosetSet(M, k) = {a.e-eq-class LP(f, M, k); f ranges over partial func-
tions from X to R: f € LP functions(M, k)}.

Let X be a non empty set, let S be a o-field of subsets of X, let M be a o-
measure on S, and let k be a positive real number. The functor addCoset(M, k)
yields a binary operation on CosetSet(M, k) and is defined by the condition
(Def. 8).

(Def. 8) Let A, B be elements of CosetSet(M,k) and a, b be partial func-
tions from X to R. If a« € A and b € B, then (addCoset(M,k))(A,
B) = a.e-eq-class LP(a + b, M, k).
Let X be a non empty set, let S be a o-field of subsets of X, let M be a o-
measure on S, and let k be a positive real number. The functor zeroCoset (M, k)
yields an element of CosetSet(M, k) and is defined as follows:

(Def. 9) zeroCoset(M, k) = a.e-eq-class LP(X —— 0, M, k).
Let X be a non empty set, let S be a o-field of subsets of X, let M be a o-
measure on S, and let k be a positive real number. The functor ImultCoset (M, k)

yielding a function from R x CosetSet(M, k) into CosetSet(M, k) is defined by
the condition (Def. 10).
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(Def. 10) Let z be an element of R, A be an element of CosetSet(M, k), and f
be a partial function from X to R. If f € A, then (ImultCoset(M, k))(z,
A) = a.e-eq-class LP(z f, M, k).

Let X be a non empty set, let S be a o-field of subsets of X, let M
be a o-measure on S, and let k be a positive real number. The functor
Pre- LP -Space(M, k) yielding a strict RLS structure is defined by the conditions
(Def. 11).

(Def. 11)(i)  The carrier of Pre- LP -Space(M, k) = CosetSet(M, k),
(ii)  the addition of Pre- LP -Space(M, k) = addCoset(M, k),
(i) Opye- £r-Space(n,k) = zeroCoset(M, k), and
(iv)  the external multiplication of Pre- LP -Space(M, k) = lmultCoset(M, k).

Let X be a non empty set, let S be a o-field of subsets of X, let M
be a o-measure on S, and let £ be a positive real number. Observe that
Pre- L? -Space(M, k) is non empty.

Let X be a non empty set, let S be a o-field of subsets of X, let M
be a o-measure on S, and let £ be a positive real number. Observe that
Pre- LP -Space(M, k) is Abelian, add-associative, right zeroed, right complemen-
table, and real linear space-like.

4. REAL NORMED SPACE OF LP INTEGRABLE FUNCTIONS

The following propositions are true:

(48) If f, g € LP functions(M, k) and f =2 g, then [|f|¥dM = [|g|* dM.

(49) If f € LP functions(M, k), then [|f|*dM € R and 0 < [|f|* dM.

(50) If there exists a vector = of Pre- LP -Space(M, k) such that f, g € x, then

=M gand f, g € LP functions(M, k).

(51) Let k be a positive real number. Then there exists a function N; from
the carrier of Pre- LP -Space(M, k) into R such that for every point = of
Pre- LP -Space(M, k) holds there exists a partial function f from X to R
such that f € x and there exists a real number r such that r = [|f|* dM
and Ny (z) = rE.

In the sequel x denotes a point of Pre- LP -Space(M, k).
We now state two propositions:

(52) If f € z, then |f|¥ is integrable on M and f € LP functions(M, k).

(53) If f, g €, then f =M gand [|f|*dM = [|g|*dM.

Let X be a non empty set, let S be a o-field of subsets of X, let M be a o-
measure on S, and let k£ be a positive real number. The functor LP -Norm(M, k)

yielding a function from the carrier of Pre- LP -Space(M, k) into R is defined by
the condition (Def. 12).
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(Def. 12) Let x be a point of Pre- LP-Space(M, k). Then there exists a partial
function f from X to R such that f € x and there exists a real number r
such that » = [|f|¥dM and (LP-Norm(M, k))(z) = rk.

Let X be a non empty set, let S be a o-field of subsets of X, let M be a o-
measure on S, and let k be a positive real number. The functor LP -Space(M, k)
yields a non empty normed structure and is defined by:

(Def. 13) LP-Space(M,k) = (the carrier of Pre- LP-Space(M, k), the zero of
Pre- LP -Space(M, k), the addition of Pre- LP-Space(M, k), the external
multiplication of Pre- LP -Space(M, k), LP -Norm (M, k)).

In the sequel z, y denote points of L? -Space(M, k).

One can prove the following propositions:

(54)(1)  There exists a partial function f from X to R such that f €
LP functions(M, k) and = = a.e-eq-class LP(f, M, k), and
(ii)  for every partial function f from X to R such that f € z there exists
a real number r such that 0 < r = [|f|*dM and ||z| = rE.
(55) If fexandge€y, then f+g€x+yandif f € x, thenaf €a-x.
(56) If f € z, then z = a.e-eq-class LP(f, M, k) and there exists a real number
7 such that 0 <r = [|f|*dM and ||z| = rE.
X +—— 0 € the L' functions of M.
If f € LP functions(M, k) and [|f|*dM = 0, then f =M X +— 0.
[IX — 0FdM = 0.
Let m, n be positive real numbers. Suppose % + % = 1and f €
LP functions(M,m) and g € LP functions(M,n). Then f g € the L' func-
tions of M and f g is integrable on M.

57
o8
59

(
(
(
(60

)
)
)
)

(61) Let m, n be positive real numbers. Suppose % +% = 1and f €
LP functions(M, m) and g € LP functions(M,n). Then there exists a re-
al number r; such that 1 = [|f|"™ dM and there exists a real number ry
such that ro = [|g|"dM and [|f g|dM < i T

(62) Let m be a positive real number and 71, r3, r3 be elements of R. Suppose
1 < m and f, g € LPfunctions(M,m) and r; = [[f|"™dM and ry =
Jlg|™dM and r3 = [|f + g|™ dM. Then ram <y 4 rom.

Let k be a great or equal to 1 real number, let X be a non empty set,
let S be a o-field of subsets of X, and let M be a o-measure on S. Note that
LP -Space(M, k) is reflexive, discernible, real normed space-like, real linear space-
like, Abelian, add-associative, right zeroed, and right complementable.
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5. PRELIMINARIES ON COMPLETENESS OF LP SPACE

The following propositions are true:

(63) Let S; be a sequence of LP-Space(M, k). Then there exists a sequence
Fy of partial functions from X into R such that for every element n of N
holds
Fi(n) € [LPfunctions(M,k) and Fi(n) € Si(n) and Si(n) =
a.e-eq-class LP(Fi(n), M, k) and there exists a real number r such that
r = [|Fi(n)|FdM and ||Sy(n)|| = rk.

(64) Let S; be a sequence of LP-Space(M, k). Then there exists a sequence
F1 of partial functions from X into R with the same dom such that for
every element n of N holds
Fi(n) € [LPfunctions(M,k) and Fi(n) € Si(n) and Si(n) =
a.e-eq-class LP(Fi(n), M, k) and there exists a real number r such that
0<r=[|F(n)*dM and ||Sy(n)| = r*.

(65) Let X be a real normed space, S; be a sequence of X, and Sy be a
point of X. If ||S1 — Sp|| is convergent and lim||.S; — Sp|| = 0, then S is
convergent and lim S7 = 5.

(66) Let X be a real normed space and S; be a sequence of X. Suppose
S1 is Cauchy sequence by norm. Then there exists an increasing function
N from N into N such that for all elements i, j of N if j > N (i), then
151(5) = S1(N (@) < 27"

(67) Let F be a sequence of partial functions from X into R. Suppose that
for every natural number m holds F'(m) € LP functions(M, k). Let m be a
natural number. Then (3°5_ F(a))ken(m) € LP functions(M, k).

(68) Let F be a sequence of partial functions from X into R. Suppose that for
every natural number m holds F'(m) is non-negative. Let m be a natural
number. Then (35 _ F'(«))ken(m) is non-negative.

(69) Let F be a sequence of partial functions from X into R,  be an element
of X, and n, m be natural numbers. Suppose F' has the same dom and
x € dom F'(0) and for every natural number & holds F'(k) is non-negative
and n < m. Then (5_g F(a))sen(n)(@) < (X5 F(a))wen(m) ().

(70) For every sequence F' of partial functions from X into R such that F
has the same dom holds |F| has the same dom.

(71) Let k be a great or equal to 1 real number and S; be a sequence of
LP -Space(M, k). If Sy is Cauchy sequence by norm, then S is convergent.

Let us consider X, S, M and let k be a great or equal to 1 real number.
Observe that LP-Space(M, k) is complete.

167
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6. RELATIONS BETWEEN L! SPACE AND LP SPACE

One can prove the following propositions:

(72) Let X be a non empty set, S be a o-field of subsets of X, and M be a
o-measure on S. Then CosetSet M = CosetSet(M, 1).

(73) Let X be a non empty set, S be a o-field of subsets of X, and M be a
o-measure on S. Then addCoset M = addCoset(M, 1).

(74) Let X be a non empty set, S be a o-field of subsets of X, and M be a
o-measure on S. Then zeroCoset M = zeroCoset(M, 1).

(75) Let X be a non empty set, S be a o-field of subsets of X, and M be a
o-measure on S. Then lmultCoset M = lmultCoset(M, 1).

(76) Let X be a non empty set, S be a o-field of subsets of X, and M be a
o-measure on S. Then pre-L-Space M = Pre- LP -Space(M, 1).

(77) Let X be a non empty set, S be a o-field of subsets of X, and M be a
o-measure on S. Then L'-Norm(M) = LP-Norm(M, 1).

(78) Let X be a non empty set, S be a o-field of subsets of X, and M be a
o-measure on S. Then L!-Space(M) = LP-Space(M, 1).
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The notation and terminology used here have been introduced in the following
papers: [6], [4], [5], [8], [1], [2], [3], [10], [11], [12], [7], [9], and [13].

1. OPEN FUNCTIONS

We adopt the following rules: n, m are elements of N, T is a non empty
topological space, and M, My, M> are non empty metric spaces.
The following propositions are true:
(1) Let A, B, S, T be topological spaces, f be a function from A into S,
and g be a function from B into 7. Suppose that
(i)  the topological structure of A = the topological structure of B,
(ii)  the topological structure of S = the topological structure of T,
(ili) f=g,and
) f is open.
Then g is open.

(iv

(2) Let P be a subset of &'. Then P is open if and only if for every point
p of &' such that p € P there exists a positive real number 7 such that
Ball(p,r) C P.
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(3) Let X, Y be non empty topological spaces and f be a function from X
into Y. Then f is open if and only if for every point p of X and for every
open subset V' of X such that p € V' there exists an open subset W of Y
such that f(p) € W and W C f°V.

(4) Let f be a function from 7T into M;ep. Then f is open if and only if for
every point p of T and for every open subset V' of T" and for every point

g of M such that ¢ = f(p) and p € V there exists a positive real number
r such that Ball(q,r) C f°V.

(5) Let f be a function from M., into 7. Then f is open if and only if for
every point p of M and for every positive real number r there exists an
open subset W of T such that f(p) € W and W C f° Ball(p,r).

(6) Let f be a function from (M )tep into (Maz)iop. Then f is open if and
only if for every point p of M; and for every point g of My and for every
positive real number r such that ¢ = f(p) there exists a positive real
number s such that Ball(gq, s) C f° Ball(p,r).

(7) Let f be a function from 7" into &'. Then f is open if and only if for
every point p of T and for every open subset V of T" such that p € V there
exists a positive real number r such that Ball(f(p),r) C f°V.

(8) Let f be a function from & into T'. Then f is open if and only if for
every point p of &' and for every positive real number r there exists an
open subset W of T such that f(p) € W and W C f° Ball(p, 7).

(9) Let f be a function from & into &F. Then f is open if and only if for
every point p of &' and for every positive real number r there exists a
positive real number s such that Ball(f(p),s) C f° Ball(p, r).

(10) Let f be a function from 7 into R'. Then f is open if and only if for
every point p of T and for every open subset V of T" such that p € V there
exists a positive real number r such that |f(p) — r, f(p) + r[ C f°V.

(11) Let f be a function from R into 7. Then f is open if and only if for
every point p of R! and for every positive real number r there exists an
open subset V of T such that f(p) € V and V C f°p—r,p+r|[.

(12) Let f be a function from R! into R'. Then f is open if and only if for
every point p of R and for every positive real number 7 there exists a
positive real number s such that |f(p) — s, f(p) +s[ C f°lp —r,p+ r[.

(13) Let f be a function from &P into R1. Then f is open if and only if for
every point p of &' and for every positive real number r there exists a
positive real number s such that |f(p) — s, f(p) + s[ C f° Ball(p, 7).

(14) Let f be a function from R into £F. Then f is open if and only if for
every point p of Rl and for every positive real number 7 there exists a
positive real number s such that Ball(f(p),s) C f°lp —r,p+7[.
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2. CONTINUOUS FUNCTIONS

Next we state a number of propositions:

(15) Let f be a function from T into My,p. Then f is continuous if and only
if for every point p of T" and for every point ¢ of M and for every positive
real number 7 such that ¢ = f(p) there exists an open subset W of T" such
that p € W and f°W C Ball(q, ).

(16) Let f be a function from M;p, into T'. Then f is continuous if and only
if for every point p of M and for every open subset V of T such that
f(p) € V there exists a positive real number s such that f°Ball(p,s) C V.

(17) Let f be a function from (Mj)iop into (Ms)iop. Then f is continuous if
and only if for every point p of M; and for every point ¢ of My and for
every positive real number r such that ¢ = f(p) there exists a positive real
number s such that f° Ball(p, s) C Ball(q, ).

(18) Let f be a function from T into EF'. Then f is continuous if and only if
for every point p of T and for every positive real number r there exists an
open subset W of T such that p € W and f°W C Ball(f(p),r).

(19) Let f be a function from &P into T. Then f is continuous if and only
if for every point p of £F' and for every open subset V' of T' such that
f(p) € V there exists a positive real number s such that f°Ball(p,s) C V.

(20) Let f be a function from £ into EF. Then f is continuous if and only if
for every point p of &' and for every positive real number r there exists
a positive real number s such that f°Ball(p, s) C Ball(f(p),r).

(21) Let f be a function from 7 into R. Then f is continuous if and only if
for every point p of T and for every positive real number r there exists an
open subset W of T such that p € W and f°W C|f(p) —r, f(p) + [

(22) Let f be a function from R into 7. Then f is continuous if and only if for
every point p of R and for every open subset V of T such that f(p) € V
there exists a positive real number s such that f°|p —s,p+ s[ C V.

(23) Let f be a function from R! into R!. Then f is continuous if and only
if for every point p of R and for every positive real number 7 there exists
a positive real number s such that f°lp —s,p+s[ C|f(p) —r, f(p) +7].

(24) Let f be a function from &P into R, Then f is continuous if and only
if for every point p of £{' and for every positive real number r there exists
a positive real number s such that f°Ball(p,s) C |f(p) —r, f(p) + r[.

(25) Let f be a function from R! into £%. Then f is continuous if and only
if for every point p of R! and for every positive real number r there exists
a positive real number s such that f°|p — s, p + s[ C Ball(f(p),r).
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1. PRELIMINARIES

For simplicity, we adopt the following rules: z, X are sets, i, n, m are natural
numbers, 7, s are real numbers, ¢, c¢1, co, d are complex numbers, f, g are
complex-valued functions, g; is an n-element complex-valued finite sequence, f;
is an n-element real-valued finite sequence, 1" is a non empty topological space,
and p is an element of £F.

Let R be a binary relation and let X be an empty set. Observe that R°X is
empty and R~!(X) is empty.

Let A be an empty set. Observe that every element of A is empty.

We now state the proposition

(1) For every trivial set X and for every set Y such that X ~ Y holds Y is
trivial.

Let r be a real number. Observe that r2 is non negative.

Let r be a positive real number. Note that 72 is positive.

Let us note that v/0 is zero.

(© 2010 University of Bialystok
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Let f be an empty set. Note that 2f is empty and |f| is zero.
The following propositions are true:

(2) fleate)=fa+ fe

(3) fler—ec2)=fcr— feo

(4) fletg/e=(f+g)/c

() fle—g/e=(f—g)/c

(6) Ifcg 20 and cg # 0, then f/c1 —g/ca = (fea—ger)/(er - ca).
(7) Ifc#0,then f/c—g=(f—cg)/c.

8) (c—d)f=cf—-df.

9) (f-9*=@-H>

(10) (f/e)® = f2/c>.

(11) In—r—nw—sl=yn-|r—s|.

Let us consider f, x, c. Observe that f +- (z,c) is complex-valued.
We now state a number of propositions:
(12) (<0770> +- (xac))zz <077O> + (xacZ)'
~—— ——

n n

(13) If x € Segn, then [(0,...,0) +- (z,7)| = |r|.
——

(14) 05% +- (x,O)ZOgn

(15) fr e (Ocg 4 (.1)) = Ocg +- (2, fu(a) - ).
(16) [(fu,Op +- (e,1)] = fula) .

(7) (g1 + () ~ 1 = 0. .0) + (e~ ga(0)
as) ()] = Irl o

(19) Every real-valued finite sequence is a finite sequence of elements of R.

(20) For every real-valued finite sequence f such that |f| # 0 there exists a
natural number ¢ such that ¢ € dom f and f(i) # 0.

(21) For every real-valued finite sequence f holds |} f| < >|f].

(22) Let A be a non empty l-sorted structure, B be a trivial non empty 1-
sorted structure, ¢ be a point of B, and f be a function from A into B.
Then f=A+—t.

Let n be a non zero natural number, let 7 be an element of Segn, and let T’
be a real-membered non empty topological space. Note that proj(Segn —— T, 1)
is real-valued.

Let us consider n, let p be an element of R", and let us consider r. Then
p/r is an element of R™.

One can prove the following proposition

(23) For all points p, g of EF holds p € Ball(q,r) iff —p € Ball(—q,r).
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Let S be a 1-sorted structure. We say that .S is complex-functions-membered
if and only if:

(Def. 1) The carrier of S is complex-functions-membered.
We say that S is real-functions-membered if and only if:
(Def. 2) The carrier of S is real-functions-membered.

Let us consider n. One can verify that £} is real-functions-membered.

Let us observe that é’% is real-membered.

One can check that 2 is trivial.

Let us observe that every l-sorted structure which is real-functions-
membered is also complex-functions-membered.

Let us mention that there exists a 1-sorted structure which is strict, non
empty, and real-functions-membered.

Let S be a complex-functions-membered 1-sorted structure. One can check
that the carrier of S is complex-functions-membered.

Let S be a real-functions-membered 1-sorted structure. Note that the carrier
of S is real-functions-membered.

Let us observe that there exists a topological space which is strict, non
empty, and real-functions-membered.

Let S be a complex-functions-membered topological space. Observe that
every subspace of S is complex-functions-membered.

Let S be a real-functions-membered topological space. One can verify that
every subspace of S is real-functions-membered.

Let X be a complex-functions-membered set. The functor (—)X yields a
complex-functions-membered set and is defined as follows:

(Def. 3) For every complex-valued function f holds —f € (—)X iff f € X.

Let us observe that the functor (—)X is involutive.

Let X be an empty set. One can verify that (—)X is empty.

Let X be a non empty complex-functions-membered set. Observe that (—)X
is non empty.

The following proposition is true

(24) Let X be a complex-functions-membered set and f be a complex-valued
function. Then —f € X if and only if f € (—)X.

Let X be a real-functions-membered set. One can verify that (—)X is real-
functions-membered.
Next we state the proposition
(25) For every subset X of &f holds —X = (—)X.
Let us consider n and let X be a subset of &f. Then (—)X is a subset of ELL.
Let us consider n and let X be an open subset of £ Observe that (—)X is
open.
Let us consider n, p, . Then p(zx) is an element of R.
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Let R, S, T be non empty topological spaces, let f be a function from R x
S into T', and let « be a point of R x S. Then f(x) is a point of 7T

Let R, S, T be non empty topological spaces, let f be a function from R X
S into T, let r be a point of R, and let s be a point of S. Then f(r, s) is a point
of T.

Let us consider n, p, 7. Then p 4 r is a point of £F.

Let us consider n, p, . Then p — r is a point of £F.

Let us consider n, p, . Then pr is a point of £F.

Let us consider n, p, r. Then p/r is a point of Ef.

Let us consider n and let p1, p2 be points of £F. Then py p2 is a point of .
Let us note that the functor p; po is commutative.

Let us consider n and let p be a point of £X. Then 2?p is a point of EZ.

Let us consider n and let p;, pp be points of £f. Then p; /ps is a point of EF.

Let us consider n, p, z, r. Then p +- (z,r) is a point of EL.

Next we state the proposition

(26) For all points a, o of E} such that n # 0 and a € Ball(o,r) holds
> (a—o) <n-r.
Let us consider n. Note that £" is real-functions-membered.
One can prove the following propositions:

(27) Let V be an add-associative right zeroed right complementable non emp-
ty additive loop structure and v, u be elements of V. Then (v+u) —u = v.

(28) Let V be an Abelian add-associative right zeroed right complementable
non empty additive loop structure and v, u be elements of V. Then (v —
u) +u=uv.

(29) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f + ¢ = f+ (dom f — c¢).

(30) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f —¢ = f — (dom f — ¢).

(31) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f-¢= f-(dom f — c).

(32) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f/c = f/(dom f +— c¢).

Let D be a complex-functions-membered set and let f, g be finite sequences
of elements of D. One can verify the following observations:

* [+ g is finite sequence-like,

* f — g is finite sequence-like,

x f - g is finite sequence-like, and
*  f/g is finite sequence-like.

Next we state a number of propositions:
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(33) For every function f from X into £} holds —f is a function from X into
ER.

(34) For every function f from &% into E% holds f o — is a function from &%

into £F.

(35) For every function f from X into £} holds f + r is a function from X
into £F.

(36) For every function f from X into &} holds f — r is a function from X
into £F.

(37) For every function f from X into £} holds f-r is a function from X into
En.

(38) For every function f from X into &} holds f/r is a function from X into
En.

(39) For all functions f, g from X into £} holds f + g is a function from X
into £F.

(40) For all functions f, g from X into £} holds f — g is a function from X
into £F.

(41) For all functions f, g from X into & holds f - ¢ is a function from X
into £F.

(42) For all functions f, g from X into £} holds f/g is a function from X
into £F.

(43) Let f be a function from X into £F and g be a function from X into R™.
Then f + g is a function from X into &F.

(44) Let f be a function from X into £} and g be a function from X into R™.
Then f — g is a function from X into &£F.

(45) Let f be a function from X into £F and g be a function from X into R™.
Then f - g is a function from X into £F.

(46) Let f be a function from X into £F and g be a function from X into R™.
Then f/g is a function from X into EF.

Let n be a natural number, let T' be a non empty set, let R be a real-
membered set, and let f be a function from 7" into R. The functor incl(f,n)
yields a function from 7" into £} and is defined by:

(Def. 4) For every element ¢ of T holds (incl(f,n))(t) =n — f(t).

We now state several propositions:

(47) Let R be a real-membered set, f be a function from 7" into R, and ¢ be
a point of T. If = € Segn, then (incl(f,n))(t)(z) = f(t).

(48) For every non empty set T and for every real-membered set R and for
every function f from 7T into R holds incl(f,0) =T +— 0.

(49) For every function f from T into £} and for every function g from T
into R! holds f + g = f +incl(g,n).
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(50) For every function f from T into £} and for every function g from T'
into R! holds f — g = f —incl(g,n).
(51) For every function f from T into £} and for every function g from T'
into R! holds f - g = f - incl(g, n).
(52) For every function f from T into £} and for every function g from T
into R! holds f/g = f/incl(g,n).
Let us consider n. The functor ),, yields a function from £f x £F into £F
and is defined by:
(Def. 5) For all points z, y of £F holds ®,,(z, y) =z y.
Next we state two propositions:
(53) ®g = EP x EY — Ogo.
(54) For all functions f, g from 7" into £} holds f - g = (®,,)°(f, 9).
Let us consider m, n. The functor PROJ(m,n) yields a function from &
into R! and is defined as follows:
(Def. 6) For every element p of &' holds (PROJ(m,n))(p) = pn.
One can prove the following propositions:
(55) For every point p of EF such that n € dom p holds (PROJ(m, n))° Ball(p,r) =
1Pn — 7, pn + .
(56) For every non zero natural number m and for every function f from T
into R holds f = PROJ(m,m) - incl(f,m).

2. CONTINUITY

Let us consider T. One can check that there exists a function from T into
R! which is non-empty and continuous.
Next we state two propositions:
(57) If n € Segm, then PROJ(m,n) is continuous.
(58) If n € Segm, then PROJ(m,n) is open.
Let us consider n, T and let f be a continuous function from T into R.
Observe that incl(f,n) is continuous.
Let us consider n. One can verify that &),, is continuous.
One can prove the following proposition

59) Let f be a function from &7 into £%. Suppose f is continuous. Then
T T pp
f o — is a continuous function from £ into &£F.

Let us consider T and let f be a continuous function from 7" into R'. Observe
that — f is continuous.

Let us consider T" and let f be a non-empty continuous function from 7" into
R!. One can verify that f~! is continuous.
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Let us consider T', let f be a continuous function from 7" into R!, and let us
consider . One can check the following observations:

x f 4+ r is continuous,

x f —r is continuous,

* fris continuous, and
*  f/r is continuous.

Let us consider T and let f, g be continuous functions from 7" into R!. One
can verify the following observations:

* f+ g is continuous,
* [ — g is continuous, and
* f g is continuous.

Let us consider T, let f be a continuous function from 7 into R, and let
g be a non-empty continuous function from T into R!. Observe that f/g is
continuous.

Let us consider n, T and let f, g be continuous functions from 7" into &F.
One can verify the following observations:

*x f+ g is continuous,
* [ — g is continuous, and
* f g is continuous.

Let us consider n, T', let f be a continuous function from 7" into &%, and
let g be a continuous function from T into R!. One can verify the following
observations:

x f + g is continuous,

* [ — g is continuous, and

* f g is continuous.

Let us consider n, T', let f be a continuous function from 7" into &%, and
let g be a non-empty continuous function from T' into RY. Observe that f/g is
continuous.

Let us consider n, T, r and let f be a continuous function from 7" into £F.
One can verify the following observations:

* f 4 r is continuous,

% f —r is continuous,

% f-ris continuous, and

*  f/r is continuous.

We now state two propositions:

(60) Let r be a non negative real number, n be a non zero natural number,
and p be a point of Tcircle(Ogp, ). Then —p is a point of Tcircle(Ogn, 7).
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(61) Let r be a non negative real number and f be a function from
Tcircle(05¥+1,r) into £F. Then f o — is a function from Tcircle(OS;H,r)
into &F.
Let n be a natural number, let r be a non negative real number, and let X
be a subset of Tcircle(OS%H,r). Then (—)X is a subset of Tcircle(Oa}LH,r).
Let us consider m, let » be a non negative real number, and let X be an
open subset of Tcircle(Og;nH,r). One can verify that (—)X is open.
The following proposition is true

(62) Let r be a non negative real number and f be a continuous function
from Tcircle(Ogm+1,7) into EF'. Then f o — is a continuous function from
T

Tcircle(0gm+1,7) into .
T
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Summary. We introduce the notions of the geometric interior and the
centre of mass for subsets of real linear spaces. We prove a number of theorems
concerning these notions which are used in the theory of abstract simplicial com-
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The papers [1], [6], [11], [2], [5], [3], [4], [13], [7], [16], [10], [14], [12], [8], [9], and
[15] provide the terminology and notation for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following convention:  denotes a set, r, s denote
real numbers, n denotes a natural number, V' denotes a real linear space, v, u,
w, p denote vectors of V, A, B denote subsets of V', A; denotes a finite subset
of V, I denotes an affinely independent subset of V', I denotes a finite affinely
independent subset of V', F' denotes a family of subsets of V', and L;, Lo denote
linear combinations of V.

Next we state four propositions:

(1) Let L be a linear combination of A. Suppose L is convex and v # > L
and L(v) # 0. Then there exists p such that p € conv A\ {v} and }_ L =
L(v)-v+ (1 —L(v))-pand ﬁ-ZL—{—(l—ﬁ)'p:v.

(2) Let p1, p2, w1, wy be elements of V. Suppose that v, u € conv /] and
u ¢ convl \ {p1} and u ¢ convI \ {p2} and w; € convI \ {p1} and

(© 2010 University of Bialystok
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wy €convI\{patandr-u+(1—7r) - wy=vand s-u+(l—s) - wy=v
and r < 1 and s < 1. Then w; = wo and r = s.

(3) Let L be a linear combination of A;. Suppose 4; C conv I; and sum L =
1. Then

(i) > L e Affin1;, and

(ii)  for every element x of V there exists a finite sequence F' of elements
of R and there exists a finite sequence G of elements of V such that
(> L — I))(z) =) F and lenG = len F' and G is one-to-one and rng G =
the support of L and for every n such that n € dom F holds F(n) =
L(G(n)) - (G(n) — I)(x).

(4) For every subset As of V such that Ajs is affine and conv ANconv B C Ay
and conv A\ {v} C Ay and v ¢ Aj holds conv A\ {v} Nconv B = conv AN
conv B.

2. THE GEOMETRIC INTERIOR

Let V be a non empty RLS structure and let A be a subset of V. The functor
Int A yields a subset of V' and is defined by:

(Def. 1) z € Int A iff x € conv A and it is not true that there exists a subset B
of V such that B C A and x € conv B.

Let V be a non empty RLS structure and let A be an empty subset of V.
Observe that Int A is empty.
We now state a number of propositions:

(5) For every non empty RLS structure V' and for every subset A of V holds
Int A C conv A.

(6) Let V be a real linear space-like non empty RLS structure and A be a
subset of V. Then Int A = A if and only if A is trivial.

(7) If AC B, then conv A misses Int B.

(8) convA={Int B: B C A}.

(9) convA =1Int AUJ{conv A\ {v}:v € A}

(10) If x € Int A, then there exists a linear combination L of A such that L
is convex and z = > L.

(11) For every linear combination L of A such that L is convex and > L €
Int A holds the support of L = A.

(12) For every linear combination L of I such that L is convex and the support
of L=1holds Y L € Int[.

(13) 1If Int A is non empty, then A is finite.

(14) Ifvelandu € Int]l andp € convI\{v}andr-v+ (1 —7r)-p=u,
then p € Int(1 \ {v}).
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3. THE CENTER OF MASS

Let us consider V. The center of mass of V yielding a function from
gthe carrier of V' into the carrier of V is defined by the conditions (Def. 2).

(Def. 2)(i)  For every non empty finite subset A of V' holds (the center of mass
of V)(A4) = % -y A, and
(ii)  for every A such that A is infinite holds (the center of mass of V')(A) =
Oy.
One can prove the following propositions:
(15) There exists a linear combination L of A; such that > L =r-3>" A; and
sumL =r A:1 and L = Opc, +- (41 — 7).
If A; is non empty, then (the center of mass of V')(A;) € conv A;.
If U F is finite, then (the center of mass of V')°F C conv |J F.

If v € I, then ((the center of mass of V)(I1) — I1)(v) = %
1

If I is non empty, then (the center of mass of V))(I1) € Int I;.
If A C I and (the center of mass of V')(I;) € Affin A, then I; = A.

If v e Ay and A;\{v} is non empty, then (the center of mass of V))(4;) =

(1— A%l) - (the center of mass of V') 4\ v} + A%l "

(23) If conv A C conv I; and I; is non empty and conv A misses Int I1, then
there exists a subset B of V such that B C I; and conv A C conv B.

(24) If YLy # > Lo and sum L; = sum Lo, then there exists v such that
Li(v) > La(v).

(25) Let p be a real number. Suppose (- L1+ (1 —7)-La)(v) <p < (s-Li+
(1—5)-L2)(v). Then there exists a real number r; such that (r-L;+ (1 —
r1)-La)(v) =pandif r <s,thenr <7 <sandifs <r thens<r <r.

(26) If v, u € conv A and v # u, then there exist p, w, r such that p € A and
weconvA\ {ptand0<r<landr-u+(1—-7) w=wo.

(27) AU {v} is affinely independent iff A is affinely independent but v € A
or v ¢ Affin A.

(28) If Ay C T and v € Ay, then (I\ {v})U {(the center of mass of V')(A;)}
is an affinely independent subset of V.

(29) Let F be a C-linear family of subsets of V. Suppose |J F' is finite and
affinely independent. Then (the center of mass of V)°F is an affinely in-
dependent subset of V.

(30) Let F be a C-linear family of subsets of V. Suppose | F is affinely
independent and finite. Then Int((the center of mass of V)°F) C IntJ F.

(16)
(17)
(18)
(19) (The center of mass of V')(I;) € I; iff T =1
(20)
(21)
(22)
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