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Summary. This article is the continuation of [31]. We define the set of Lp

integrable functions – the set of all partial functions whose absolute value raised
to the p-th power is integrable. We show that Lp integrable functions form the
Lp space. We also prove Minkowski’s inequality, Hölder’s inequality and that Lp

space is Banach space ([15], [27]).
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The notation and terminology used in this paper have been introduced in the
following papers: [7], [8], [9], [10], [4], [1], [31], [6], [19], [20], [13], [28], [14], [2],
[24], [3], [11], [25], [22], [21], [16], [32], [29], [23], [18], [17], [26], [30], [5], and [12].

1. Preliminaries on Powers of Numbers and Operations on Real
Sequences

For simplicity, we follow the rules: X denotes a non empty set, x denotes
an element of X, S denotes a σ-field of subsets of X, M denotes a σ-measure
on S, f , g, f1, g1 denote partial functions from X to R, and a, b, c denote real
numbers.

The following propositions are true:

(1) For all positive real numbers m, n such that 1m + 1
n = 1 holds m > 1.
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(2) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, A be an element of S, and f be a partial function from X

to R. Suppose A = dom f and f is measurable on A and f is non-negative.
Then

∫
f dM ∈ R if and only if f is integrable on M .

Let r be a real number. We say that r is great or equal to 1 if and only if:

(Def. 1) 1 ≤ r.
Let us note that every real number which is great or equal to 1 is also

positive.
One can verify that there exists a real number which is great or equal to 1.
In the sequel k denotes a positive real number.
We now state several propositions:

(3) For all real numbers a, b, p such that 0 < p and 0 ≤ a < b holds ap < bp.

(4) If a ≥ 0 and b > 0, then ab ≥ 0.

(5) If a ≥ 0 and b ≥ 0 and c > 0, then (a · b)c = ac · bc.
(6) For all real numbers a, b and for every f such that f is non-negative and

a > 0 and b > 0 holds (fa)b = fa·b.

(7) For all real numbers a, b and for every f such that f is non-negative and
a > 0 and b > 0 holds fa f b = fa+b.

(8) f1 = f.

(9) Let s1, s2 be sequences of real numbers and k be a positive real number.
Suppose that for every element n of N holds s1(n) = s2(n)k and s2(n) ≥ 0.
Then s1 is convergent if and only if s2 is convergent.

(10) Let s3 be a sequence of real numbers and n, m be elements of
N. If m ≤ n, then |(

∑κ
α=0(s3)(α))κ∈N(n) − (

∑κ
α=0(s3)(α))κ∈N(m)| ≤

(
∑κ
α=0|s3|(α))κ∈N(n)−(

∑κ
α=0|s3|(α))κ∈N(m) and |(

∑κ
α=0(s3)(α))κ∈N(n)−

(
∑κ
α=0(s3)(α))κ∈N(m)| ≤ (

∑κ
α=0|s3|(α))κ∈N(n).

(11) Let s3, s2 be sequences of real numbers and k be a positive real number.
Suppose s3 is convergent and for every element n of N holds s2(n) =
|lim s3 − s3(n)|k. Then s2 is convergent and lim s2 = 0.

2. Real Linear Space of Lp Integrable Functions

Next we state two propositions:

(12) For every positive real number k and for every non empty set X holds
(X 7−→ 0)k = X 7−→ 0.

(13) For every partial function f from X to R and for every set D holds
|f�D| = |f |�D.

Let us consider X and let f be a partial function from X to R. Observe that
|f | is non-negative.
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One can prove the following two propositions:

(14) For every partial function f from X to R such that f is non-negative
holds |f | = f.

(15) If X = dom f and for every x such that x ∈ dom f holds 0 = f(x), then
f is integrable on M and

∫
f dM = 0.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor Lp functions(M,k)
yielding a non empty subset of PFunctRLSX is defined by the condition (Def. 2).

(Def. 2) Lp functions(M,k) = {f ; f ranges over partial functions from X to R:∨
E1 : element of S (M(E1c) = 0 ∧ dom f = E1 ∧ f is measurable on

E1 ∧ |f |k is integrable on M)}.
Next we state a number of propositions:

(16) For all real numbers a, b, k such that k > 0 holds |a+ b|k ≤ (|a|+ |b|)k
and (|a|+ |b|)k ≤ (2 ·max(|a|, |b|))k and |a+ b|k ≤ (2 ·max(|a|, |b|))k.

(17) For all real numbers a, b, k such that a ≥ 0 and b ≥ 0 and k > 0 holds
(max(a, b))k ≤ ak + bk.

(18) For every partial function f from X to R and for all real numbers a, b
such that b > 0 holds |a|b |f |b = |a f |b.

(19) Let f be a partial function from X to R and a, b be real numbers. If
a > 0 and b > 0, then ab |f |b = (a |f |)b.

(20) For every partial function f from X to R and for every real number k
and for every set E holds (f�E)k = fk�E.

(21) For all real numbers a, b, k such that k > 0 holds |a+b|k ≤ 2k ·(|a|k+|b|k).
(22) Let k be a positive real number and f , g be partial functions from X to

R. Suppose f , g ∈ Lp functions(M,k). Then |f |k is integrable on M and
|g|k is integrable on M and |f |k + |g|k is integrable on M .

(23) X 7−→ 0 is a partial function from X to R and X 7−→ 0 ∈
Lp functions(M,k).

(24) Let k be a real number. Suppose k > 0. Let f , g be partial functions
from X to R and x be an element of X. If x ∈ dom f ∩ dom g, then
|f + g|k(x) ≤ (2k (|f |k + |g|k))(x).

(25) If f , g ∈ Lp functions(M,k), then f + g ∈ Lp functions(M,k).

(26) If f ∈ Lp functions(M,k), then a f ∈ Lp functions(M,k).

(27) If f , g ∈ Lp functions(M,k), then f − g ∈ Lp functions(M,k).

(28) If f ∈ Lp functions(M,k), then |f | ∈ Lp functions(M,k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. Note that Lp functions(M,k)
is multiplicatively-closed and add closed.
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Let X be a non empty set, let S be a σ-field of subsets of X, let M be
a σ-measure on S, and let k be a positive real number. One can check that
〈Lp functions(M,k), 0PFunctRLSX(∈ Lp functions(M,k)), add |(Lp functions(M,k),
PFunctRLSX), ·Lp functions(M,k)〉 is Abelian, add-associative, and real linear space-
like.

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. The functor
RLSp LpFunct(M,k) yields a strict Abelian add-associative real linear space-
like non empty RLS structure and is defined by:

(Def. 3) RLSp LpFunct(M,k) = 〈Lp functions(M,k), 0PFunctRLSX(∈ Lp functions
(M,k)), add |(Lp functions(M,k),PFunctRLSX), ·Lp functions(M,k)〉.

3. Preliminaries on Real Normed Space of Lp Integrable Functions

In the sequel v, u are vectors of RLSp LpFunct(M,k).
We now state three propositions:

(29) (v) + (u) = v + u.

(30) a (u) = a · u.
(31) Suppose f = u. Then

(i) u+ (−1) · u = (X 7−→ 0)� dom f, and
(ii) there exist partial functions v, g from X to R such that v, g ∈

Lp functions(M,k) and v = u+ (−1) · u and g = X 7−→ 0 and v =M
a.e. g.

Let X be a non empty set, let S be a σ-field of subsets of X,
let M be a σ-measure on S, and let k be a positive real number.
The functor AlmostZeroLpFunctions(M,k) yielding a non empty subset of
RLSp LpFunct(M,k) is defined by:

(Def. 4) AlmostZeroLpFunctions(M,k) = {f ; f ranges over partial functions
from X to R: f ∈ Lp functions(M,k) ∧ f =M

a.e. X 7−→ 0}.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, and let k be a positive real number. One can check that
AlmostZeroLpFunctions(M,k) is add closed and multiplicatively-closed.

Next we state the proposition

(32) 0RLSp LpFunct(M,k) = X 7−→ 0 and
0RLSp LpFunct(M,k) ∈ AlmostZeroLpFunctions(M,k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. The functor
RLSpAlmostZeroLpFunctions(M,k) yielding a non empty RLS structure is de-
fined by:

(Def. 5) RLSpAlmostZeroLpFunctions(M,k) = 〈AlmostZeroLpFunctions(M,k),
0RLSp LpFunct(M,k)(∈ AlmostZeroLpFunctions(M,k)), add |(AlmostZeroLp
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Functions(M,k),RLSp LpFunct(M,k)), ·AlmostZeroLpFunctions(M,k)〉.
Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. Observe that
RLSp LpFunct(M,k) is strict, Abelian, add-associative, right zeroed, and re-
al linear space-like.

In the sequel v, u are vectors of RLSpAlmostZeroLpFunctions(M,k).
One can prove the following two propositions:

(33) (v) + (u) = v + u.

(34) a (u) = a · u.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be

a σ-measure on S, let f be a partial function from X to R, and let k be
a positive real number. The functor a.e-eq-classLp(f,M, k) yields a subset of
Lp functions(M,k) and is defined as follows:

(Def. 6) a.e-eq-classLp(f,M, k) = {h;h ranges over partial functions from X to
R: h ∈ Lp functions(M,k) ∧ f =M

a.e. h}.
Next we state a number of propositions:

(35) If f ∈ Lp functions(M,k), then there exists an element E of S such that
M(Ec) = 0 and dom f = E and f is measurable on E.

(36) If g ∈ Lp functions(M,k) and g =M
a.e. f, then g ∈ a.e-eq-classLp(f,M, k).

(37) Suppose there exists an element E of S such that M(Ec) = 0 and E =
dom f and f is measurable on E and g ∈ a.e-eq-classLp(f,M, k). Then
g =M
a.e. f and f ∈ Lp functions(M,k).

(38) If f ∈ Lp functions(M,k), then f ∈ a.e-eq-classLp(f,M, k).

(39) Suppose there exists an element E of S such that M(Ec) = 0 and E =
dom g and g is measurable on E and a.e-eq-classLp(f,M, k) 6= ∅ and
a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k). Then f =M

a.e. g.

(40) Suppose f ∈ Lp functions(M,k) and there exists an element E of S
such that M(Ec) = 0 and E = dom g and g is measurable on E and
a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k). Then f =M

a.e. g.

(41) If f =M
a.e. g, then a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k).

(42) If f =M
a.e. g, then a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k).

(43) If f ∈ Lp functions(M,k) and g ∈ a.e-eq-classLp(f,M, k), then
a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k).

(44) Suppose that there exists an element E of S such that M(Ec) = 0
and E = dom f and f is measurable on E and there exists an element
E of S such that M(Ec) = 0 and E = dom f1 and f1 is measurable
on E and there exists an element E of S such that M(Ec) = 0 and
E = dom g and g is measurable on E and there exists an element E
of S such that M(Ec) = 0 and E = dom g1 and g1 is measurable on



164 yasushige watase et al.

E and a.e-eq-classLp(f,M, k) is non empty and a.e-eq-classLp(g,M, k)
is non empty and a.e-eq-classLp(f,M, k) = a.e-eq-classLp(f1,M, k) and
a.e-eq-classLp(g,M, k) = a.e-eq-classLp(g1,M, k). Then a.e-eq-classLp(f+
g,M, k) = a.e-eq-classLp(f1 + g1,M, k).

(45) If f , f1, g, g1 ∈ Lp functions(M,k) and a.e-eq-classLp(f,M, k) =
a.e-eq-classLp(f1,M, k) and a.e-eq-classLp(g,M, k) =
a.e-eq-classLp(g1,M, k), then a.e-eq-classLp(f + g,M, k) =
a.e-eq-classLp(f1 + g1,M, k).

(46) Suppose that
(i) there exists an element E of S such that M(Ec) = 0 and dom f = E

and f is measurable on E,
(ii) there exists an element E of S such that M(Ec) = 0 and dom g = E

and g is measurable on E,
(iii) a.e-eq-classLp(f,M, k) is non empty, and
(iv) a.e-eq-classLp(f,M, k) = a.e-eq-classLp(g,M, k).

Then a.e-eq-classLp(a f,M, k) = a.e-eq-classLp(a g,M, k).

(47) If f , g ∈ Lp functions(M,k) and a.e-eq-classLp(f,M, k) =
a.e-eq-classLp(g,M, k), then
a.e-eq-classLp(a f,M, k) = a.e-eq-classLp(a g,M, k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor CosetSet(M,k)
yielding a non empty family of subsets of Lp functions(M,k) is defined by:

(Def. 7) CosetSet(M,k) = {a.e-eq-classLp(f,M, k); f ranges over partial func-
tions from X to R: f ∈ Lp functions(M,k)}.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor addCoset(M,k)
yields a binary operation on CosetSet(M,k) and is defined by the condition
(Def. 8).

(Def. 8) Let A, B be elements of CosetSet(M,k) and a, b be partial func-
tions from X to R. If a ∈ A and b ∈ B, then (addCoset(M,k))(A,
B) = a.e-eq-classLp(a+ b,M, k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor zeroCoset(M,k)
yields an element of CosetSet(M,k) and is defined as follows:

(Def. 9) zeroCoset(M,k) = a.e-eq-classLp(X 7−→ 0,M, k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor lmultCoset(M,k)
yielding a function from R × CosetSet(M,k) into CosetSet(M,k) is defined by
the condition (Def. 10).
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(Def. 10) Let z be an element of R, A be an element of CosetSet(M,k), and f

be a partial function from X to R. If f ∈ A, then (lmultCoset(M,k))(z,
A) = a.e-eq-classLp(z f,M, k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. The functor
Pre-Lp -Space(M,k) yielding a strict RLS structure is defined by the conditions
(Def. 11).

(Def. 11)(i) The carrier of Pre-Lp -Space(M,k) = CosetSet(M,k),
(ii) the addition of Pre-Lp -Space(M,k) = addCoset(M,k),
(iii) 0Pre-Lp -Space(M,k) = zeroCoset(M,k), and
(iv) the external multiplication of Pre-Lp -Space(M,k) = lmultCoset(M,k).

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. Observe that
Pre-Lp -Space(M,k) is non empty.

Let X be a non empty set, let S be a σ-field of subsets of X, let M

be a σ-measure on S, and let k be a positive real number. Observe that
Pre-Lp -Space(M,k) is Abelian, add-associative, right zeroed, right complemen-
table, and real linear space-like.

4. Real Normed Space of Lp Integrable Functions

The following propositions are true:

(48) If f , g ∈ Lp functions(M,k) and f =M
a.e. g, then

∫
|f |k dM =

∫
|g|k dM.

(49) If f ∈ Lp functions(M,k), then
∫
|f |k dM ∈ R and 0 ≤

∫
|f |k dM.

(50) If there exists a vector x of Pre-Lp -Space(M,k) such that f , g ∈ x, then
f =M

a.e. g and f , g ∈ Lp functions(M,k).

(51) Let k be a positive real number. Then there exists a function N1 from
the carrier of Pre-Lp -Space(M,k) into R such that for every point x of
Pre-Lp -Space(M,k) holds there exists a partial function f from X to R
such that f ∈ x and there exists a real number r such that r =

∫
|f |k dM

and N1(x) = r
1
k .

In the sequel x denotes a point of Pre-Lp -Space(M,k).
We now state two propositions:

(52) If f ∈ x, then |f |k is integrable on M and f ∈ Lp functions(M,k).

(53) If f , g ∈ x, then f =M
a.e. g and

∫
|f |k dM =

∫
|g|k dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor Lp -Norm(M,k)
yielding a function from the carrier of Pre-Lp -Space(M,k) into R is defined by
the condition (Def. 12).



166 yasushige watase et al.

(Def. 12) Let x be a point of Pre-Lp -Space(M,k). Then there exists a partial
function f from X to R such that f ∈ x and there exists a real number r
such that r =

∫
|f |k dM and (Lp -Norm(M,k))(x) = r

1
k .

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a σ-
measure on S, and let k be a positive real number. The functor Lp -Space(M,k)
yields a non empty normed structure and is defined by:

(Def. 13) Lp -Space(M,k) = 〈the carrier of Pre-Lp -Space(M,k), the zero of
Pre-Lp -Space(M,k), the addition of Pre-Lp -Space(M,k), the external
multiplication of Pre-Lp -Space(M,k), Lp -Norm(M,k)〉.

In the sequel x, y denote points of Lp -Space(M,k).
One can prove the following propositions:

(54)(i) There exists a partial function f from X to R such that f ∈
Lp functions(M,k) and x = a.e-eq-classLp(f,M, k), and

(ii) for every partial function f from X to R such that f ∈ x there exists
a real number r such that 0 ≤ r =

∫
|f |k dM and ‖x‖ = r

1
k .

(55) If f ∈ x and g ∈ y, then f + g ∈ x+ y and if f ∈ x, then a f ∈ a · x.
(56) If f ∈ x, then x = a.e-eq-classLp(f,M, k) and there exists a real number

r such that 0 ≤ r =
∫
|f |k dM and ‖x‖ = r

1
k .

(57) X 7−→ 0 ∈ the L1 functions of M .

(58) If f ∈ Lp functions(M,k) and
∫
|f |k dM = 0, then f =M

a.e. X 7−→ 0.

(59)
∫
|X 7−→ 0|k dM = 0.

(60) Let m, n be positive real numbers. Suppose 1
m + 1

n = 1 and f ∈
Lp functions(M,m) and g ∈ Lp functions(M,n). Then f g ∈ the L1 func-
tions of M and f g is integrable on M .

(61) Let m, n be positive real numbers. Suppose 1
m + 1

n = 1 and f ∈
Lp functions(M,m) and g ∈ Lp functions(M,n). Then there exists a re-
al number r1 such that r1 =

∫
|f |m dM and there exists a real number r2

such that r2 =
∫
|g|n dM and

∫
|f g|dM ≤ r1

1
m · r2

1
n .

(62) Let m be a positive real number and r1, r2, r3 be elements of R. Suppose
1 ≤ m and f , g ∈ Lp functions(M,m) and r1 =

∫
|f |m dM and r2 =∫

|g|m dM and r3 =
∫
|f + g|m dM. Then r3

1
m ≤ r1

1
m + r2

1
m .

Let k be a great or equal to 1 real number, let X be a non empty set,
let S be a σ-field of subsets of X, and let M be a σ-measure on S. Note that
Lp -Space(M,k) is reflexive, discernible, real normed space-like, real linear space-
like, Abelian, add-associative, right zeroed, and right complementable.
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5. Preliminaries on Completeness of Lp Space

The following propositions are true:

(63) Let S1 be a sequence of Lp -Space(M,k). Then there exists a sequence
F1 of partial functions from X into R such that for every element n of N
holds
F1(n) ∈ Lp functions(M,k) and F1(n) ∈ S1(n) and S1(n) =
a.e-eq-classLp(F1(n),M, k) and there exists a real number r such that
r =
∫
|F1(n)|k dM and ‖S1(n)‖ = r

1
k .

(64) Let S1 be a sequence of Lp -Space(M,k). Then there exists a sequence
F1 of partial functions from X into R with the same dom such that for
every element n of N holds
F1(n) ∈ Lp functions(M,k) and F1(n) ∈ S1(n) and S1(n) =
a.e-eq-classLp(F1(n),M, k) and there exists a real number r such that
0 ≤ r =

∫
|F1(n)|k dM and ‖S1(n)‖ = r

1
k .

(65) Let X be a real normed space, S1 be a sequence of X, and S0 be a
point of X. If ‖S1 − S0‖ is convergent and lim‖S1 − S0‖ = 0, then S1 is
convergent and limS1 = S0.

(66) Let X be a real normed space and S1 be a sequence of X. Suppose
S1 is Cauchy sequence by norm. Then there exists an increasing function
N from N into N such that for all elements i, j of N if j ≥ N(i), then
‖S1(j)− S1(N(i))‖ < 2−i.

(67) Let F be a sequence of partial functions from X into R. Suppose that
for every natural number m holds F (m) ∈ Lp functions(M,k). Let m be a
natural number. Then (

∑κ
α=0 F (α))κ∈N(m) ∈ Lp functions(M,k).

(68) Let F be a sequence of partial functions from X into R. Suppose that for
every natural number m holds F (m) is non-negative. Let m be a natural
number. Then (

∑κ
α=0 F (α))κ∈N(m) is non-negative.

(69) Let F be a sequence of partial functions from X into R, x be an element
of X, and n, m be natural numbers. Suppose F has the same dom and
x ∈ domF (0) and for every natural number k holds F (k) is non-negative
and n ≤ m. Then (

∑κ
α=0 F (α))κ∈N(n)(x) ≤ (

∑κ
α=0 F (α))κ∈N(m)(x).

(70) For every sequence F of partial functions from X into R such that F
has the same dom holds |F | has the same dom.

(71) Let k be a great or equal to 1 real number and S1 be a sequence of
Lp -Space(M,k). If S1 is Cauchy sequence by norm, then S1 is convergent.

Let us consider X, S, M and let k be a great or equal to 1 real number.
Observe that Lp -Space(M,k) is complete.
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6. Relations between L1 Space and Lp Space

One can prove the following propositions:

(72) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then CosetSetM = CosetSet(M, 1).

(73) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then addCosetM = addCoset(M, 1).

(74) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then zeroCosetM = zeroCoset(M, 1).

(75) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then lmultCosetM = lmultCoset(M, 1).

(76) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then pre-L-SpaceM = Pre-Lp -Space(M, 1).

(77) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then L1-Norm(M) = Lp -Norm(M, 1).

(78) Let X be a non empty set, S be a σ-field of subsets of X, and M be a
σ-measure on S. Then L1-Space(M) = Lp -Space(M, 1).
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The notation and terminology used here have been introduced in the following
papers: [6], [4], [5], [8], [1], [2], [3], [10], [11], [12], [7], [9], and [13].

1. Open Functions

We adopt the following rules: n, m are elements of N, T is a non empty
topological space, and M , M1, M2 are non empty metric spaces.

The following propositions are true:

(1) Let A, B, S, T be topological spaces, f be a function from A into S,
and g be a function from B into T . Suppose that

(i) the topological structure of A = the topological structure of B,
(ii) the topological structure of S = the topological structure of T ,
(iii) f = g, and
(iv) f is open.

Then g is open.

(2) Let P be a subset of EmT . Then P is open if and only if for every point
p of EmT such that p ∈ P there exists a positive real number r such that
Ball(p, r) ⊆ P.
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(3) Let X, Y be non empty topological spaces and f be a function from X

into Y . Then f is open if and only if for every point p of X and for every
open subset V of X such that p ∈ V there exists an open subset W of Y
such that f(p) ∈W and W ⊆ f◦V.

(4) Let f be a function from T into Mtop. Then f is open if and only if for
every point p of T and for every open subset V of T and for every point
q of M such that q = f(p) and p ∈ V there exists a positive real number
r such that Ball(q, r) ⊆ f◦V.

(5) Let f be a function from Mtop into T . Then f is open if and only if for
every point p of M and for every positive real number r there exists an
open subset W of T such that f(p) ∈W and W ⊆ f◦Ball(p, r).

(6) Let f be a function from (M1)top into (M2)top. Then f is open if and
only if for every point p of M1 and for every point q of M2 and for every
positive real number r such that q = f(p) there exists a positive real
number s such that Ball(q, s) ⊆ f◦Ball(p, r).

(7) Let f be a function from T into EmT . Then f is open if and only if for
every point p of T and for every open subset V of T such that p ∈ V there
exists a positive real number r such that Ball(f(p), r) ⊆ f◦V.

(8) Let f be a function from EmT into T . Then f is open if and only if for
every point p of EmT and for every positive real number r there exists an
open subset W of T such that f(p) ∈W and W ⊆ f◦Ball(p, r).

(9) Let f be a function from EmT into EnT. Then f is open if and only if for
every point p of EmT and for every positive real number r there exists a
positive real number s such that Ball(f(p), s) ⊆ f◦Ball(p, r).

(10) Let f be a function from T into R1. Then f is open if and only if for
every point p of T and for every open subset V of T such that p ∈ V there
exists a positive real number r such that ]f(p)− r, f(p) + r[ ⊆ f◦V.

(11) Let f be a function from R1 into T . Then f is open if and only if for
every point p of R1 and for every positive real number r there exists an
open subset V of T such that f(p) ∈ V and V ⊆ f◦]p− r, p+ r[.

(12) Let f be a function from R1 into R1. Then f is open if and only if for
every point p of R1 and for every positive real number r there exists a
positive real number s such that ]f(p)− s, f(p) + s[ ⊆ f◦]p− r, p+ r[.

(13) Let f be a function from EmT into R1. Then f is open if and only if for
every point p of EmT and for every positive real number r there exists a
positive real number s such that ]f(p)− s, f(p) + s[ ⊆ f◦Ball(p, r).

(14) Let f be a function from R1 into EmT . Then f is open if and only if for
every point p of R1 and for every positive real number r there exists a
positive real number s such that Ball(f(p), s) ⊆ f◦]p− r, p+ r[.
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2. Continuous Functions

Next we state a number of propositions:

(15) Let f be a function from T into Mtop. Then f is continuous if and only
if for every point p of T and for every point q of M and for every positive
real number r such that q = f(p) there exists an open subset W of T such
that p ∈W and f◦W ⊆ Ball(q, r).

(16) Let f be a function from Mtop into T . Then f is continuous if and only
if for every point p of M and for every open subset V of T such that
f(p) ∈ V there exists a positive real number s such that f◦Ball(p, s) ⊆ V.

(17) Let f be a function from (M1)top into (M2)top. Then f is continuous if
and only if for every point p of M1 and for every point q of M2 and for
every positive real number r such that q = f(p) there exists a positive real
number s such that f◦Ball(p, s) ⊆ Ball(q, r).

(18) Let f be a function from T into EmT . Then f is continuous if and only if
for every point p of T and for every positive real number r there exists an
open subset W of T such that p ∈W and f◦W ⊆ Ball(f(p), r).

(19) Let f be a function from EmT into T . Then f is continuous if and only
if for every point p of EmT and for every open subset V of T such that
f(p) ∈ V there exists a positive real number s such that f◦Ball(p, s) ⊆ V.

(20) Let f be a function from EmT into EnT. Then f is continuous if and only if
for every point p of EmT and for every positive real number r there exists
a positive real number s such that f◦Ball(p, s) ⊆ Ball(f(p), r).

(21) Let f be a function from T into R1. Then f is continuous if and only if
for every point p of T and for every positive real number r there exists an
open subset W of T such that p ∈W and f◦W ⊆ ]f(p)− r, f(p) + r[.

(22) Let f be a function from R1 into T . Then f is continuous if and only if for
every point p of R1 and for every open subset V of T such that f(p) ∈ V
there exists a positive real number s such that f◦]p− s, p+ s[ ⊆ V.

(23) Let f be a function from R1 into R1. Then f is continuous if and only
if for every point p of R1 and for every positive real number r there exists
a positive real number s such that f◦]p− s, p+ s[ ⊆ ]f(p)− r, f(p) + r[.

(24) Let f be a function from EmT into R1. Then f is continuous if and only
if for every point p of EmT and for every positive real number r there exists
a positive real number s such that f◦Ball(p, s) ⊆ ]f(p)− r, f(p) + r[.

(25) Let f be a function from R1 into EmT . Then f is continuous if and only
if for every point p of R1 and for every positive real number r there exists
a positive real number s such that f◦]p− s, p+ s[ ⊆ Ball(f(p), r).
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The terminology and notation used here have been introduced in the following
articles: [20], [1], [6], [13], [4], [7], [19], [8], [9], [5], [21], [2], [3], [10], [18], [25],
[26], [23], [12], [22], [24], [14], [16], [17], [15], and [11].

1. Preliminaries

For simplicity, we adopt the following rules: x, X are sets, i, n, m are natural
numbers, r, s are real numbers, c, c1, c2, d are complex numbers, f , g are
complex-valued functions, g1 is an n-element complex-valued finite sequence, f1
is an n-element real-valued finite sequence, T is a non empty topological space,
and p is an element of EnT.

Let R be a binary relation and let X be an empty set. Observe that R◦X is
empty and R−1(X) is empty.

Let A be an empty set. Observe that every element of A is empty.
We now state the proposition

(1) For every trivial set X and for every set Y such that X ≈ Y holds Y is
trivial.

Let r be a real number. Observe that r2 is non negative.
Let r be a positive real number. Note that r2 is positive.
Let us note that

√
0 is zero.
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Let f be an empty set. Note that 2f is empty and |f | is zero.
The following propositions are true:

(2) f (c1 + c2) = f c1 + f c2.

(3) f (c1 − c2) = f c1 − f c2.
(4) f/c+ g/c = (f + g)/c.

(5) f/c− g/c = (f − g)/c.

(6) If c1 6= 0 and c2 6= 0, then f/c1 − g/c2 = (f c2 − g c1)/(c1 · c2).
(7) If c 6= 0, then f/c− g = (f − c g)/c.

(8) (c− d) f = c f − d f.
(9) (f − g)2 = (g − f)2.

(10) (f/c)2 = f2/c2.

(11) |n 7→ r − n 7→ s| =
√
n · |r − s|.

Let us consider f , x, c. Observe that f +· (x, c) is complex-valued.
We now state a number of propositions:

(12) (〈0, . . . , 0︸ ︷︷ ︸
n

〉+· (x, c))2 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉+· (x, c2).

(13) If x ∈ Seg n, then |〈0, . . . , 0︸ ︷︷ ︸
n

〉+· (x, r)| = |r|.

(14) 0EnT +· (x, 0) = 0EnT .

(15) f1 • (0EnT +· (x, r)) = 0EnT +· (x, f1(x) · r).
(16) |(f1, 0EnT +· (x, r))| = f1(x) · r.
(17) (g1 +· (i, c))− g1 = 〈0, . . . , 0︸ ︷︷ ︸

n

〉+· (i, c− g1(i)).

(18) |〈r〉| = |r|.
(19) Every real-valued finite sequence is a finite sequence of elements of R.

(20) For every real-valued finite sequence f such that |f | 6= 0 there exists a
natural number i such that i ∈ dom f and f(i) 6= 0.

(21) For every real-valued finite sequence f holds |
∑
f | ≤

∑
|f |.

(22) Let A be a non empty 1-sorted structure, B be a trivial non empty 1-
sorted structure, t be a point of B, and f be a function from A into B.
Then f = A 7−→ t.

Let n be a non zero natural number, let i be an element of Seg n, and let T
be a real-membered non empty topological space. Note that proj(Seg n 7−→ T, i)
is real-valued.

Let us consider n, let p be an element of Rn, and let us consider r. Then
p/r is an element of Rn.

One can prove the following proposition

(23) For all points p, q of EmT holds p ∈ Ball(q, r) iff −p ∈ Ball(−q, r).
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Let S be a 1-sorted structure. We say that S is complex-functions-membered
if and only if:

(Def. 1) The carrier of S is complex-functions-membered.

We say that S is real-functions-membered if and only if:

(Def. 2) The carrier of S is real-functions-membered.

Let us consider n. One can verify that EnT is real-functions-membered.
Let us observe that E0T is real-membered.
One can check that E0T is trivial.
Let us observe that every 1-sorted structure which is real-functions-

membered is also complex-functions-membered.
Let us mention that there exists a 1-sorted structure which is strict, non

empty, and real-functions-membered.
Let S be a complex-functions-membered 1-sorted structure. One can check

that the carrier of S is complex-functions-membered.
Let S be a real-functions-membered 1-sorted structure. Note that the carrier

of S is real-functions-membered.
Let us observe that there exists a topological space which is strict, non

empty, and real-functions-membered.
Let S be a complex-functions-membered topological space. Observe that

every subspace of S is complex-functions-membered.
Let S be a real-functions-membered topological space. One can verify that

every subspace of S is real-functions-membered.
Let X be a complex-functions-membered set. The functor (−)X yields a

complex-functions-membered set and is defined as follows:

(Def. 3) For every complex-valued function f holds −f ∈ (−)X iff f ∈ X.
Let us observe that the functor (−)X is involutive.

Let X be an empty set. One can verify that (−)X is empty.
Let X be a non empty complex-functions-membered set. Observe that (−)X

is non empty.
The following proposition is true

(24) Let X be a complex-functions-membered set and f be a complex-valued
function. Then −f ∈ X if and only if f ∈ (−)X.

Let X be a real-functions-membered set. One can verify that (−)X is real-
functions-membered.

Next we state the proposition

(25) For every subset X of EnT holds −X = (−)X.

Let us consider n and let X be a subset of EnT. Then (−)X is a subset of EnT.
Let us consider n and let X be an open subset of EnT. Observe that (−)X is

open.
Let us consider n, p, x. Then p(x) is an element of R.
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Let R, S, T be non empty topological spaces, let f be a function from R×
S into T , and let x be a point of R× S. Then f(x) is a point of T .

Let R, S, T be non empty topological spaces, let f be a function from R×
S into T , let r be a point of R, and let s be a point of S. Then f(r, s) is a point
of T .

Let us consider n, p, r. Then p+ r is a point of EnT.
Let us consider n, p, r. Then p− r is a point of EnT.
Let us consider n, p, r. Then p r is a point of EnT.
Let us consider n, p, r. Then p/r is a point of EnT.
Let us consider n and let p1, p2 be points of EnT. Then p1 p2 is a point of EnT.

Let us note that the functor p1 p2 is commutative.
Let us consider n and let p be a point of EnT. Then 2p is a point of EnT.
Let us consider n and let p1, p2 be points of EnT. Then p1/p2 is a point of EnT.
Let us consider n, p, x, r. Then p+· (x, r) is a point of EnT.
Next we state the proposition

(26) For all points a, o of EnT such that n 6= 0 and a ∈ Ball(o, r) holds
|
∑

(a− o)| < n · r.
Let us consider n. Note that En is real-functions-membered.
One can prove the following propositions:

(27) Let V be an add-associative right zeroed right complementable non emp-
ty additive loop structure and v, u be elements of V . Then (v+u)−u = v.

(28) Let V be an Abelian add-associative right zeroed right complementable
non empty additive loop structure and v, u be elements of V . Then (v −
u) + u = v.

(29) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f + c = f + (dom f 7−→ c).

(30) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f − c = f − (dom f 7−→ c).

(31) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f · c = f · (dom f 7−→ c).

(32) For every complex-functions-membered set Y and for every partial func-
tion f from X to Y holds f/c = f/(dom f 7−→ c).

Let D be a complex-functions-membered set and let f , g be finite sequences
of elements of D. One can verify the following observations:

∗ f + g is finite sequence-like,

∗ f − g is finite sequence-like,

∗ f · g is finite sequence-like, and

∗ f/g is finite sequence-like.

Next we state a number of propositions:
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(33) For every function f from X into EnT holds −f is a function from X into
EnT.

(34) For every function f from E iT into EnT holds f ◦ − is a function from E iT
into EnT.

(35) For every function f from X into EnT holds f + r is a function from X

into EnT.

(36) For every function f from X into EnT holds f − r is a function from X

into EnT.

(37) For every function f from X into EnT holds f ·r is a function from X into
EnT.

(38) For every function f from X into EnT holds f/r is a function from X into
EnT.

(39) For all functions f , g from X into EnT holds f + g is a function from X

into EnT.

(40) For all functions f , g from X into EnT holds f − g is a function from X

into EnT.

(41) For all functions f , g from X into EnT holds f · g is a function from X

into EnT.

(42) For all functions f , g from X into EnT holds f/g is a function from X

into EnT.

(43) Let f be a function from X into EnT and g be a function from X into R1.
Then f + g is a function from X into EnT.

(44) Let f be a function from X into EnT and g be a function from X into R1.
Then f − g is a function from X into EnT.

(45) Let f be a function from X into EnT and g be a function from X into R1.
Then f · g is a function from X into EnT.

(46) Let f be a function from X into EnT and g be a function from X into R1.
Then f/g is a function from X into EnT.

Let n be a natural number, let T be a non empty set, let R be a real-
membered set, and let f be a function from T into R. The functor incl(f, n)
yields a function from T into EnT and is defined by:

(Def. 4) For every element t of T holds (incl(f, n))(t) = n 7→ f(t).

We now state several propositions:

(47) Let R be a real-membered set, f be a function from T into R, and t be
a point of T . If x ∈ Seg n, then (incl(f, n))(t)(x) = f(t).

(48) For every non empty set T and for every real-membered set R and for
every function f from T into R holds incl(f, 0) = T 7−→ 0.

(49) For every function f from T into EnT and for every function g from T

into R1 holds f + g = f + incl(g, n).
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(50) For every function f from T into EnT and for every function g from T

into R1 holds f − g = f − incl(g, n).

(51) For every function f from T into EnT and for every function g from T

into R1 holds f · g = f · incl(g, n).

(52) For every function f from T into EnT and for every function g from T

into R1 holds f/g = f/ incl(g, n).

Let us consider n. The functor
⊗

n yields a function from EnT × EnT into EnT
and is defined by:

(Def. 5) For all points x, y of EnT holds
⊗
n(x, y) = x y.

Next we state two propositions:

(53)
⊗
0 = E0T × E0T 7−→ 0E0T .

(54) For all functions f , g from T into EnT holds f · g = (
⊗
n)◦(f, g).

Let us consider m, n. The functor PROJ(m,n) yields a function from EmT
into R1 and is defined as follows:

(Def. 6) For every element p of EmT holds (PROJ(m,n))(p) = pn.

One can prove the following propositions:

(55) For every point p of EmT such that n ∈ dom p holds (PROJ(m,n))◦Ball(p, r) =
]pn − r, pn + r[.

(56) For every non zero natural number m and for every function f from T

into R1 holds f = PROJ(m,m) · incl(f,m).

2. Continuity

Let us consider T . One can check that there exists a function from T into
R1 which is non-empty and continuous.

Next we state two propositions:

(57) If n ∈ Segm, then PROJ(m,n) is continuous.

(58) If n ∈ Segm, then PROJ(m,n) is open.

Let us consider n, T and let f be a continuous function from T into R1.
Observe that incl(f, n) is continuous.

Let us consider n. One can verify that
⊗

n is continuous.
One can prove the following proposition

(59) Let f be a function from EmT into EnT. Suppose f is continuous. Then
f ◦ − is a continuous function from EmT into EnT.

Let us consider T and let f be a continuous function from T into R1. Observe
that −f is continuous.

Let us consider T and let f be a non-empty continuous function from T into
R1. One can verify that f−1 is continuous.
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Let us consider T , let f be a continuous function from T into R1, and let us
consider r. One can check the following observations:

∗ f + r is continuous,

∗ f − r is continuous,

∗ f r is continuous, and

∗ f/r is continuous.

Let us consider T and let f , g be continuous functions from T into R1. One
can verify the following observations:

∗ f + g is continuous,

∗ f − g is continuous, and

∗ f g is continuous.

Let us consider T , let f be a continuous function from T into R1, and let
g be a non-empty continuous function from T into R1. Observe that f/g is
continuous.

Let us consider n, T and let f , g be continuous functions from T into EnT.
One can verify the following observations:

∗ f + g is continuous,

∗ f − g is continuous, and

∗ f · g is continuous.

Let us consider n, T , let f be a continuous function from T into EnT, and
let g be a continuous function from T into R1. One can verify the following
observations:

∗ f + g is continuous,

∗ f − g is continuous, and

∗ f · g is continuous.

Let us consider n, T , let f be a continuous function from T into EnT, and
let g be a non-empty continuous function from T into R1. Observe that f/g is
continuous.

Let us consider n, T , r and let f be a continuous function from T into EnT.
One can verify the following observations:

∗ f + r is continuous,

∗ f − r is continuous,

∗ f · r is continuous, and

∗ f/r is continuous.

We now state two propositions:

(60) Let r be a non negative real number, n be a non zero natural number,
and p be a point of Tcircle(0EnT , r). Then −p is a point of Tcircle(0EnT , r).
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(61) Let r be a non negative real number and f be a function from
Tcircle(0En+1T

, r) into EnT. Then f ◦ − is a function from Tcircle(0En+1T
, r)

into EnT.

Let n be a natural number, let r be a non negative real number, and let X
be a subset of Tcircle(0En+1T

, r). Then (−)X is a subset of Tcircle(0En+1T
, r).

Let us consider m, let r be a non negative real number, and let X be an
open subset of Tcircle(0Em+1T

, r). One can verify that (−)X is open.
The following proposition is true

(62) Let r be a non negative real number and f be a continuous function
from Tcircle(0Em+1T

, r) into EmT . Then f ◦ − is a continuous function from
Tcircle(0Em+1T

, r) into EmT .
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Summary. We introduce the notions of the geometric interior and the
centre of mass for subsets of real linear spaces. We prove a number of theorems
concerning these notions which are used in the theory of abstract simplicial com-
plexes.
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The papers [1], [6], [11], [2], [5], [3], [4], [13], [7], [16], [10], [14], [12], [8], [9], and
[15] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x denotes a set, r, s denote
real numbers, n denotes a natural number, V denotes a real linear space, v, u,
w, p denote vectors of V , A, B denote subsets of V , A1 denotes a finite subset
of V , I denotes an affinely independent subset of V , I1 denotes a finite affinely
independent subset of V , F denotes a family of subsets of V , and L1, L2 denote
linear combinations of V .

Next we state four propositions:

(1) Let L be a linear combination of A. Suppose L is convex and v 6=
∑
L

and L(v) 6= 0. Then there exists p such that p ∈ convA \ {v} and
∑
L =

L(v) · v + (1− L(v)) · p and 1
L(v) ·

∑
L+ (1− 1

L(v)) · p = v.

(2) Let p1, p2, w1, w2 be elements of V . Suppose that v, u ∈ conv I and
u /∈ conv I \ {p1} and u /∈ conv I \ {p2} and w1 ∈ conv I \ {p1} and
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w2 ∈ conv I \ {p2} and r · u+ (1− r) · w1 = v and s · u+ (1− s) · w2 = v

and r < 1 and s < 1. Then w1 = w2 and r = s.

(3) Let L be a linear combination of A1. Suppose A1 ⊆ conv I1 and sumL =
1. Then

(i)
∑
L ∈ Affin I1, and

(ii) for every element x of V there exists a finite sequence F of elements
of R and there exists a finite sequence G of elements of V such that
(
∑
L→ I1)(x) =

∑
F and lenG = lenF and G is one-to-one and rngG =

the support of L and for every n such that n ∈ domF holds F (n) =
L(G(n)) · (G(n)→ I1)(x).

(4) For every subset A2 of V such that A2 is affine and convA∩convB ⊆ A2
and convA \ {v} ⊆ A2 and v /∈ A2 holds convA \ {v}∩ convB = convA∩
convB.

2. The Geometric Interior

Let V be a non empty RLS structure and let A be a subset of V . The functor
IntA yields a subset of V and is defined by:

(Def. 1) x ∈ IntA iff x ∈ convA and it is not true that there exists a subset B
of V such that B ⊂ A and x ∈ convB.

Let V be a non empty RLS structure and let A be an empty subset of V .
Observe that IntA is empty.

We now state a number of propositions:

(5) For every non empty RLS structure V and for every subset A of V holds
IntA ⊆ convA.

(6) Let V be a real linear space-like non empty RLS structure and A be a
subset of V . Then IntA = A if and only if A is trivial.

(7) If A ⊂ B, then convA misses IntB.

(8) convA =
⋃
{IntB : B ⊆ A}.

(9) convA = IntA ∪
⋃
{convA \ {v} : v ∈ A}.

(10) If x ∈ IntA, then there exists a linear combination L of A such that L
is convex and x =

∑
L.

(11) For every linear combination L of A such that L is convex and
∑
L ∈

IntA holds the support of L = A.

(12) For every linear combination L of I such that L is convex and the support
of L = I holds

∑
L ∈ Int I.

(13) If IntA is non empty, then A is finite.

(14) If v ∈ I and u ∈ Int I and p ∈ conv I \ {v} and r · v + (1 − r) · p = u,

then p ∈ Int(I \ {v}).
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3. The Center of Mass

Let us consider V . The center of mass of V yielding a function from
2the carrier of V+ into the carrier of V is defined by the conditions (Def. 2).

(Def. 2)(i) For every non empty finite subset A of V holds (the center of mass
of V )(A) = 1

A
·
∑
A, and

(ii) for every A such that A is infinite holds (the center of mass of V )(A) =
0V .

One can prove the following propositions:

(15) There exists a linear combination L of A1 such that
∑
L = r ·

∑
A1 and

sumL = r · A1 and L = 0LCV +·(A1 7−→ r).

(16) If A1 is non empty, then (the center of mass of V )(A1) ∈ convA1.

(17) If
⋃
F is finite, then (the center of mass of V )◦F ⊆ conv

⋃
F.

(18) If v ∈ I1, then ((the center of mass of V )(I1)→ I1)(v) = 1
I1
.

(19) (The center of mass of V )(I1) ∈ I1 iff I1 = 1.

(20) If I1 is non empty, then (the center of mass of V )(I1) ∈ Int I1.

(21) If A ⊆ I1 and (the center of mass of V )(I1) ∈ AffinA, then I1 = A.

(22) If v ∈ A1 and A1\{v} is non empty, then (the center of mass of V )(A1) =
(1− 1

A1
) · (the center of mass of V )A1\{v} + 1

A1
· v.

(23) If convA ⊆ conv I1 and I1 is non empty and convA misses Int I1, then
there exists a subset B of V such that B ⊂ I1 and convA ⊆ convB.

(24) If
∑
L1 6=

∑
L2 and sumL1 = sumL2, then there exists v such that

L1(v) > L2(v).

(25) Let p be a real number. Suppose (r ·L1+ (1− r) ·L2)(v) ≤ p ≤ (s ·L1+
(1−s) ·L2)(v). Then there exists a real number r1 such that (r1 ·L1+(1−
r1) ·L2)(v) = p and if r ≤ s, then r ≤ r1 ≤ s and if s ≤ r, then s ≤ r1 ≤ r.

(26) If v, u ∈ convA and v 6= u, then there exist p, w, r such that p ∈ A and
w ∈ convA \ {p} and 0 ≤ r < 1 and r · u+ (1− r) · w = v.

(27) A ∪ {v} is affinely independent iff A is affinely independent but v ∈ A
or v /∈ AffinA.

(28) If A1 ⊆ I and v ∈ A1, then (I \ {v}) ∪ {(the center of mass of V )(A1)}
is an affinely independent subset of V .

(29) Let F be a ⊆-linear family of subsets of V . Suppose
⋃
F is finite and

affinely independent. Then (the center of mass of V )◦F is an affinely in-
dependent subset of V .

(30) Let F be a ⊆-linear family of subsets of V . Suppose
⋃
F is affinely

independent and finite. Then Int((the center of mass of V )◦F ) ⊆ Int
⋃
F.
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