The Sum and Product of Finite Sequences of Complex Numbers

Keiichi Miyajima
Ibaraki University
Faculty of Engineering
Hitachi, Japan

Takahiro Kato
Graduate School of Ibaraki University
Faculty of Engineering
Hitachi, Japan

Abstract

Summary. This article extends the [10]. We define the sum and the product of the sequence of complex numbers, and formalize these theorems. Our method refers to the [11].

MML identifier: RVSUM_2, version: 7.11.07 4.156.1112

The notation and terminology used in this paper have been introduced in the following papers: [5], [7], [6], [4], [8], [13], [9], [2], [3], [15], [10], [12], and [14].

1. Auxiliary Theorems

Let F be a complex-valued binary relation. Then $\mathrm{rng} F$ is a subset of \mathbb{C}.
Let D be a non empty set, let F be a function from \mathbb{C} into D, and let F_{1} be a complex-valued finite sequence. Note that $F \cdot F_{1}$ is finite sequence-like.

For simplicity, we adopt the following rules: i, j denote natural numbers, x, x_{1} denote elements of \mathbb{C}, c denotes a complex number, F, F_{1}, F_{2} denote complex-valued finite sequences, and R, R_{1} denote i-element finite sequences of elements of \mathbb{C}.

The unary operation sqrcomplex on \mathbb{C} is defined as follows:
(Def. 1) For every c holds (sqrcomplex) $(c)=c^{2}$.
Next we state two propositions:
(1) sqrcomplex is distributive w.r.t. $\cdot \mathbb{C}$.
(2) $\cdot{ }_{\mathbb{C}}^{c}$ is distributive w.r.t. $+\mathbb{C}$.

2. Some Functors on the i-Tuples of Complex Numbers

Let us consider F_{1}, F_{2}. Then $F_{1}+F_{2}$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 2) $\quad F_{1}+F_{2}=(+\mathbb{C})^{\circ}\left(F_{1}, F_{2}\right)$.
Let us observe that the functor $F_{1}+F_{2}$ is commutative.
Let us consider i, R_{1}, R_{2}. Then $R_{1}+R_{2}$ is an element of \mathbb{C}^{i}.
The following propositions are true:
(3) $\left(R_{1}+R_{2}\right)(s)=R_{1}(s)+R_{2}(s)$.
(4) $\varepsilon_{\mathbb{C}}+F=\varepsilon_{\mathbb{C}}$.
(5) $\left\langle c_{1}\right\rangle+\left\langle c_{2}\right\rangle=\left\langle c_{1}+c_{2}\right\rangle$.
(6) $i \mapsto c_{1}+i \mapsto c_{2}=i \mapsto\left(c_{1}+c_{2}\right)$.

Let us consider F. Then $-F$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 3) $-F=-\mathbb{C} \cdot F$.
Let us consider i, R. Then $-R$ is an element of \mathbb{C}^{i}.
The following propositions are true:
(7) $-\langle c\rangle=\langle-c\rangle$.
(8) $-i \mapsto c=i \mapsto(-c)$.
(9) If $R_{1}+R=R_{2}+R$, then $R_{1}=R_{2}$.
(10) $-\left(F_{1}+F_{2}\right)=-F_{1}+-F_{2}$.

Let us consider F_{1}, F_{2}. Then $F_{1}-F_{2}$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 4) $\quad F_{1}-F_{2}=(-\mathbb{C})^{\circ}\left(F_{1}, F_{2}\right)$.
Let us consider i, R_{1}, R_{2}. Then $R_{1}-R_{2}$ is an element of \mathbb{C}^{i}.
The following propositions are true:
(11) $\left(R_{1}-R_{2}\right)(s)=R_{1}(s)-R_{2}(s)$.
(12) $\varepsilon_{\mathbb{C}}-F=\varepsilon_{\mathbb{C}}$ and $F-\varepsilon_{\mathbb{C}}=\varepsilon_{\mathbb{C}}$.
(13) $\left\langle c_{1}\right\rangle-\left\langle c_{2}\right\rangle=\left\langle c_{1}-c_{2}\right\rangle$.
(14) $i \mapsto c_{1}-i \mapsto c_{2}=i \mapsto\left(c_{1}-c_{2}\right)$.
(15) $R-i \mapsto 0_{\mathbb{C}}=R$.
(16) $-\left(F_{1}-F_{2}\right)=F_{2}-F_{1}$.
(17) $-\left(F_{1}-F_{2}\right)=-F_{1}+F_{2}$.
(18) If $R_{1}-R_{2}=i \mapsto 0_{\mathbb{C}}$, then $R_{1}=R_{2}$.
(19) $\quad R_{1}=\left(R_{1}+R\right)-R$.
(20) $\quad R_{1}=\left(R_{1}-R\right)+R$.

Let us consider F, c. We introduce $c \cdot F$ as a synonym of $c F$.

Let us consider F, c. Then $c \cdot F$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 5) $c \cdot F=\cdot{ }_{\mathbb{C}}^{c} \cdot F$.
Let us consider i, R, c. Then $c \cdot R$ is an element of \mathbb{C}^{i}.
One can prove the following four propositions:
(21) $c \cdot\left\langle c_{1}\right\rangle=\left\langle c \cdot c_{1}\right\rangle$.
(22) $\quad c_{1} \cdot\left(i \mapsto c_{2}\right)=i \mapsto\left(c_{1} \cdot c_{2}\right)$.
(23) $\left(c_{1}+c_{2}\right) \cdot F=c_{1} \cdot F+c_{2} \cdot F$.
(24) $\quad 0_{\mathbb{C}} \cdot R=i \mapsto 0_{\mathbb{C}}$.

Let us consider F_{1}, F_{2}. We introduce $F_{1} \bullet F_{2}$ as a synonym of $F_{1} F_{2}$.
Let us consider F_{1}, F_{2}. Then $F_{1} \bullet F_{2}$ is a finite sequence of elements of \mathbb{C} and it can be characterized by the condition:
(Def. 6) $\quad F_{1} \bullet F_{2}=(\cdot \mathbb{C})^{\circ}\left(F_{1}, F_{2}\right)$.
Let us note that the functor $F_{1} \bullet F_{2}$ is commutative.
Let us consider i, R_{1}, R_{2}. Then $R_{1} \bullet R_{2}$ is an element of \mathbb{C}^{i}.
Next we state four propositions:
(25) $\varepsilon_{\mathbb{C}} \bullet F=\varepsilon_{\mathbb{C}}$.
(26) $\left\langle c_{1}\right\rangle \bullet\left\langle c_{2}\right\rangle=\left\langle c_{1} \cdot c_{2}\right\rangle$.
(27) $i \mapsto c \bullet R=c \cdot R$.
(28) $\quad i \mapsto c_{1} \bullet i \mapsto c_{2}=i \mapsto\left(c_{1} \cdot c_{2}\right)$.

3. Finite Sum of Finite Sequence of Complex Numbers

One can prove the following propositions:
(29) $\sum\left(\varepsilon_{\mathbb{C}}\right)=0_{\mathbb{C}}$.
(30) $\sum\langle c\rangle=c$.
(31) $\sum\left(F^{\wedge}\langle c\rangle\right)=\sum F+c$.
(32) $\sum\left(F_{1} \wedge F_{2}\right)=\sum F_{1}+\sum F_{2}$.
(33) $\sum\left(\langle c\rangle^{\wedge} F\right)=c+\sum F$.
(34) $\sum\left\langle c_{1}, c_{2}\right\rangle=c_{1}+c_{2}$.
(35) $\sum\left\langle c_{1}, c_{2}, c_{3}\right\rangle=c_{1}+c_{2}+c_{3}$.
(36) $\quad \sum(i \mapsto c)=i \cdot c$.
(37) $\quad \sum\left(i \mapsto 0_{\mathbb{C}}\right)=0_{\mathbb{C}}$.
(38) $\sum(c \cdot F)=c \cdot \sum F$.
(39) $\quad \sum(-F)=-\sum F$.
(40) $\sum\left(R_{1}+R_{2}\right)=\sum R_{1}+\sum R_{2}$.
(41) $\quad \sum\left(R_{1}-R_{2}\right)=\sum R_{1}-\sum R_{2}$.

4. The Product of Finite Sequences of Complex Numbers

One can prove the following propositions:
(42) $\quad \Pi\left(\varepsilon_{\mathbb{C}}\right)=1$.
(43) $\Pi(\langle c\rangle \sim F)=c \cdot \Pi F$.
(44) For every element R of \mathbb{C}^{0} holds $\Pi R=1$.
(45) $\quad \Pi((i+j) \mapsto c)=\Pi(i \mapsto c) \cdot \Pi(j \mapsto c)$.
(46) $\quad \Pi((i \cdot j) \mapsto c)=\Pi(j \mapsto \Pi(i \mapsto c))$.
(47) $\quad \Pi\left(i \mapsto\left(c_{1} \cdot c_{2}\right)\right)=\Pi\left(i \mapsto c_{1}\right) \cdot \Pi\left(i \mapsto c_{2}\right)$.
(48) $\Pi\left(R_{1} \bullet R_{2}\right)=\Pi R_{1} \cdot \Pi R_{2}$.
(49) $\Pi(c \cdot R)=\Pi(i \mapsto c) \cdot \Pi R$.

5. Modified Part of [1]

We now state several propositions:
(50) For every complex-valued finite sequence x holds $\operatorname{len}(-x)=\operatorname{len} x$.
(51) For all complex-valued finite sequences x_{1}, x_{2} such that len $x_{1}=\operatorname{len} x_{2}$ holds len $\left(x_{1}+x_{2}\right)=\operatorname{len} x_{1}$.
(52) For all complex-valued finite sequences x_{1}, x_{2} such that len $x_{1}=\operatorname{len} x_{2}$ holds len $\left(x_{1}-x_{2}\right)=\operatorname{len} x_{1}$.
(53) For every real number a and for every complex-valued finite sequence x holds len $(a \cdot x)=\operatorname{len} x$.
(54) For all complex-valued finite sequences x, y, z such that $\operatorname{len} x=\operatorname{len} y=$ len z holds $(x+y) \bullet z=x \bullet z+y \bullet z$.

References

[1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[7] Czesław Byliński. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.
[8] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[9] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55$65,1990$.
[10] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[11] Keith E. Hirst. Numbers, Sequences and Series. Butterworth-Heinemann, 1984.
[12] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[13] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[14] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.

Received January 12, 2010

Second-Order Partial Differentiation of Real Ternary Functions

Takao Inoué
Inaba 2205, Wing-Minamikan
Nagano, Nagano, Japan

Abstract

Summary. In this article, we shall extend the result of [17] to discuss second-order partial differentiation of real ternary functions (refer to [7] and [14] for partial differentiation).

MML identifier: PDIFF_5, version: 7.11.07 4.156.1112

The notation and terminology used here have been introduced in the following papers: [6], [11], [12], [1], [2], [3], [4], [5], [7], [16], [17], [13], [8], [15], [10], and [9].

1. Second-order Partial Derivatives

For simplicity, we use the following convention: $x, x_{0}, y, y_{0}, z, z_{0}, r$ denote real numbers, u, u_{0} denote elements of $\mathcal{R}^{3}, f, f_{1}, f_{2}$ denote partial functions from \mathcal{R}^{3} to \mathbb{R}, R denotes a rest, and L denotes a linear function.

Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. We say that f is partial differentiable on 1st-1st coordinate in u if and only if the condition (Def. 1) is satisfied.
(Def. 1) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 $(1, \operatorname{pdiff} 1(f, 1), u)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF1}(1, \operatorname{pdiff1}(f, 1), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.

We say that f is partial differentiable on 1 st- 2 nd coordinate in u if and only if the condition (Def. 2) is satisfied.
(Def. 2) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ domSVF1 $(2, \operatorname{pdiff} 1(f, 1), u)$ and there exist $L, \quad R$ such that for every y such that $y \in N$ holds $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 1), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 1), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
We say that f is partial differentiable on 1 st-3rd coordinate in u if and only if the condition (Def. 3) is satisfied.
(Def. 3) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 1), u)$ and there exist $L, \quad R$ such that for every z such that $z \in N$ holds $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
We say that f is partial differentiable on 2 nd-1st coordinate in u if and only if the condition (Def. 4) is satisfied.
(Def. 4) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 1 (1, $\operatorname{pdiff} 1(f, 2), u)$ and there exist $L, \quad R$ such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
We say that f is partial differentiable on 2 nd- 2 nd coordinate in u if and only if the condition (Def. 5) is satisfied.
(Def. 5) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff} 1(f, 2), u)$ and there exist $L, \quad R$ such that for every y such that $y \in N$ holds $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
We say that f is partial differentiable on 2 nd-3rd coordinate in u if and only if the condition (Def. 6) is satisfied.
(Def. 6) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3$, $\operatorname{pdiff} 1(f, 2), u)$ and there exist $L, \quad R$ such that for every z such that $z \in N$ holds $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.

We say that f is partial differentiable on 3rd-1st coordinate in u if and only if the condition (Def. 7) is satisfied.
(Def. 7) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1(1, $\operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
We say that f is partial differentiable on 3rd-2nd coordinate in u if and only if the condition (Def. 8) is satisfied.
(Def. 8) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that for every y such that $y \in N$ holds $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
We say that f is partial differentiable on 3rd-3rd coordinate in u if and only if the condition (Def. 9) is satisfied.
(Def. 9) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that for every z such that $z \in N$ holds $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 1st-1st coordinate in u. The functor hpartdiff11 (f, u) yielding a real number is defined by the condition (Def. 10).
(Def. 10) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 $(1, \operatorname{pdiff} 1(f, 1), u)$ and there exist L, R such that hpartdiff11 $(f, u)=$ $L(1)$ and for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 1st-2nd coordinate in u. The functor hpartdiff12 (f, u) yielding a real number is defined by the condition (Def. 11).
(Def. 11) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff} 1(f, 1), u)$ and there exist L, R such that hpartdiff12 $(f, u)=$
$L(1)$ and for every y such that $y \in N$ holds (SVF1 $(2, \operatorname{pdiff} 1(f, 1), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 1), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 1st-3rd coordinate in u. The functor hpartdiff13 (f, u) yielding a real number is defined by the condition (Def. 12).
(Def. 12) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 1), u)$ and there exist L, R such that hpartdiff13 $(f, u)=$ $L(1)$ and for every z such that $z \in N$ holds (SVF1 $(3, \operatorname{pdiff} 1(f, 1), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 2 nd- 1 st coordinate in u. The functor hpartdiff $21(f, u)$ yielding a real number is defined by the condition (Def. 13).
(Def. 13) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 (1, pdiff1 $(f, 2), u)$ and there exist L, R such that hpartdiff21 $(f, u)=$ $L(1)$ and for every x such that $x \in N$ holds $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 2 nd-2nd coordinate in u. The functor hpartdiff $22(f, u)$ yielding a real number is defined by the condition (Def. 14).
(Def. 14) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff} 1(f, 2), u)$ and there exist L, R such that hpartdiff22 $(f, u)=$ $L(1)$ and for every y such that $y \in N$ holds (SVF1 $(2, \operatorname{pdiff} 1(f, 2), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 2 nd-3rd coordinate in u. The functor hpartdiff $23(f, u)$ yielding a real number is defined by the condition (Def. 15).
(Def. 15) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 2), u)$ and there exist L, R such that $\operatorname{hpartdiff} 23(f, u)=$ $L(1)$ and for every z such that $z \in N$ holds (SVF1 $(3, \operatorname{pdiff} 1(f, 2), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 3 rd-1st coordinate in u. The functor
hpartdiff31 (f, u) yields a real number and is defined by the condition (Def. 16).
(Def. 16) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of x_{0} such that $N \subseteq$ dom SVF1 $(1, \operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that hpartdiff31 $(f, u)=$ $L(1)$ and for every x such that $x \in N$ holds (SVF1(1, pdiff1 $(f, 3), u))(x)-$ $(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u))\left(x_{0}\right)=L\left(x-x_{0}\right)+R\left(x-x_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 3rd-2nd coordinate in u. The functor hpartdiff32 (f, u) yielding a real number is defined by the condition (Def. 17).
(Def. 17) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of y_{0} such that $N \subseteq$ dom SVF1 $(2, \operatorname{pdiff1}(f, 3), u)$ and there exist L, R such that hpartdiff32 $(f, u)=$ $L(1)$ and for every y such that $y \in N$ holds (SVF1(2, pdiff1 $(f, 3), u))(y)-$ $(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u))\left(y_{0}\right)=L\left(y-y_{0}\right)+R\left(y-y_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let u be an element of \mathcal{R}^{3}. Let us assume that f is partial differentiable on 3rd-3rd coordinate in u. The functor hpartdiff33($f, u)$ yielding a real number is defined by the condition (Def. 18).
(Def. 18) There exist real numbers x_{0}, y_{0}, z_{0} such that
(i) $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$, and
(ii) there exists a neighbourhood N of z_{0} such that $N \subseteq$ dom SVF1 $(3, \operatorname{pdiff} 1(f, 3), u)$ and there exist L, R such that hpartdiff33 $(f, u)=$ $L(1)$ and for every z such that $z \in N$ holds (SVF1(3, pdiff1 $(f, 3), u))(z)-$ $(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u))\left(z_{0}\right)=L\left(z-z_{0}\right)+R\left(z-z_{0}\right)$.
Next we state a number of propositions:
(1) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-1st coordinate in u, then $\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u)$ is differentiable in x_{0}.
(2) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-2nd coordinate in u, then $\operatorname{SVF} 1(2, \operatorname{pdiff1}(f, 1), u)$ is differentiable in y_{0}.
(3) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-3rd coordinate in u, then $\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u)$ is differentiable in z_{0}.
(4) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-1st coordinate in u, then $\operatorname{SVF} 1(1, \operatorname{pdiff1}(f, 2), u)$ is differentiable in x_{0}.
(5) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-2nd coordinate in u, then $\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u)$ is differentiable in y_{0}.
(6) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-3rd coordinate in u, then $\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u)$ is differentiable in z_{0}.
(7) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-1st coordinate in u, then $\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u)$ is differentiable in x_{0}.
(8) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-2nd coordinate in u, then $\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u)$ is differentiable in y_{0}.
(9) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-3rd coordinate in u, then $\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u)$ is differentiable in z_{0}.
(10) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-1st coordinate in u, then hpartdiff11 $(f, u)=(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 1), u))^{\prime}\left(x_{0}\right)$.
(11) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-2nd coordinate in u, then hpartdiff12 $(f, u)=(\operatorname{SVF} 1(2, \operatorname{pdiff1}(f, 1), u))^{\prime}\left(y_{0}\right)$.
(12) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 1st-3rd coordinate in u, then hpartdiff13 $(f, u)=(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 1), u))^{\prime}\left(z_{0}\right)$.
(13) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-1st coordinate in u, then hpartdiff21 $(f, u)=(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 2), u))^{\prime}\left(x_{0}\right)$.
(14) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-2nd coordinate in u, then hpartdiff22 $(f, u)=(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 2), u))^{\prime}\left(y_{0}\right)$.
(15) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 2nd-3rd coordinate in u, then hpartdiff23 $(f, u)=(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 2), u))^{\prime}\left(z_{0}\right)$.
(16) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-1st coordinate in u, then hpartdiff31 $(f, u)=(\operatorname{SVF} 1(1, \operatorname{pdiff} 1(f, 3), u))^{\prime}\left(x_{0}\right)$.
(17) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-2nd coordinate in u, then hpartdiff32 $(f, u)=(\operatorname{SVF} 1(2, \operatorname{pdiff} 1(f, 3), u))^{\prime}\left(y_{0}\right)$.
(18) If $u=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and f is partial differentiable on 3rd-3rd coordinate in u, then hpartdiff33 $(f, u)=(\operatorname{SVF} 1(3, \operatorname{pdiff} 1(f, 3), u))^{\prime}\left(z_{0}\right)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. We say that f is partial differentiable on 1st-1st coordinate on D if and only if:
(Def. 19) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \upharpoonright D$ is partial differentiable on 1st-1st coordinate in u.
We say that f is partial differentiable on 1st-2nd coordinate on D if and only if: (Def. 20) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \backslash D$ is partial differentiable on 1st-2nd coordinate in u.
We say that f is partial differentiable on 1st-3rd coordinate on D if and only if: (Def. 21) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \backslash D$ is partial differentiable on 1st-3rd coordinate in u.
We say that f is partial differentiable on 2 nd-1st coordinate on D if and only if: (Def. 22) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \upharpoonright D$ is partial differentiable on 2nd-1st coordinate in u.
We say that f is partial differentiable on 2 nd-2nd coordinate on D if and only if:
(Def. 23) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f \upharpoonright D$ is partial differentiable on 2nd-2nd coordinate in u.
We say that f is partial differentiable on 2 nd- 3 rd coordinate on D if and only if:
(Def. 24) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f\lceil D$ is partial differentiable on 2 nd-3rd coordinate in u.
We say that f is partial differentiable on 3 rd- 1 st coordinate on D if and only if:
(Def. 25) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f\lceil D$ is partial differentiable on 3 rd-1st coordinate in u.
We say that f is partial differentiable on 3 rd- 2 nd coordinate on D if and only if:
(Def. 26) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f\lceil D$ is partial differentiable on $3 \mathrm{rd}-2 \mathrm{nd}$ coordinate in u.
We say that f is partial differentiable on 3 rd- 3 rd coordinate on D if and only if:
(Def. 27) $D \subseteq \operatorname{dom} f$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f\lceil D$ is partial differentiable on 3 rd-3rd coordinate in u.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 1 st- 1 st coordinate on D. The functor $f_{\mid D}^{1 \text { st-1st }}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 28) $\operatorname{dom}\left(f_{\upharpoonright D}^{1 \text { st-1st }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\Gamma D}^{1 \text { st-1st }}(u)=\operatorname{hpartdiff11}(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 1 st- 2 nd coordinate on D. The functor $f_{\upharpoonright D}^{1 \text { st- } 2 \text { nd }}$ yielding a partial function from \mathcal{R}^{3} to \mathbb{R} is defined by:
(Def. 29) $\operatorname{dom}\left(f_{\upharpoonright D}^{1 \text { st-2nd }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\upharpoonright D}^{1 \text { st-2nd }}(u)=\operatorname{hpartdiff12}(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 1 st- 3 rd coordinate on D. The functor $f_{\lceil D}^{1 \text { st }-3 \mathrm{rd}}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 30) $\operatorname{dom}\left(f_{\mid D}^{1 \text { st-3rd }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\mid D}^{1 \mathrm{st}-3 \mathrm{rd}}(u)=\operatorname{hpartdiff} 13(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 2 nd- 1 st coordinate on D. The functor $f_{\lceil D}^{2 \text { nd }-1 \text { st }}$ yielding a partial function from \mathcal{R}^{3} to \mathbb{R} is defined as follows:
(Def. 31) $\operatorname{dom}\left(f_{\upharpoonright D}^{2 \text { nd }-1 \text { st }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\upharpoonright D}^{2 \text { nd-1st }}(u)=\operatorname{hpartdiff} 21(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 2 nd- 2 nd coordinate on D. The functor $f_{\upharpoonright D}^{2 \text { nd }-2 \text { nd }}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 32) $\operatorname{dom}\left(f_{\upharpoonright D}^{2 \text { nd-2nd }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\mid D}^{2 \text { nd-2nd }}(u)=\operatorname{hpartdiff} 22(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 2 nd-3rd coordinate on D. The functor $f_{\uparrow D}^{2 \text { nd }-3 \text { rd }}$
yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 33) $\operatorname{dom}\left(f_{\upharpoonright D}^{2 \text { nd }-3 \mathrm{rd}}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\uparrow D}^{2 \text { nd }-3 \mathrm{rd}}(u)=\operatorname{hpartdiff} 23(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 3 rd- 1 st coordinate on D. The functor $f_{\lceil D}^{3 \mathrm{rd}-1 \mathrm{st}}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined as follows:
(Def. 34) $\operatorname{dom}\left(f_{\upharpoonright D}^{3 \mathrm{rd}-1 \mathrm{st}}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\upharpoonright D}^{3 \mathrm{rd}-1 \mathrm{st}}(u)=\operatorname{hpartdiff} 31(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 3 rd- 2 nd coordinate on D. The functor $f_{\uparrow D}^{3 \text { rd-2nd }}$ yields a partial function from \mathcal{R}^{3} to \mathbb{R} and is defined by:
(Def. 35) $\operatorname{dom}\left(f_{\uparrow D}^{3 \mathrm{rd}-2 \mathrm{nd}}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\Gamma D}^{3 \mathrm{rd}-2 \mathrm{nd}}(u)=\operatorname{hpartdiff} 32(f, u)$.
Let f be a partial function from \mathcal{R}^{3} to \mathbb{R} and let D be a set. Let us assume that f is partial differentiable on 3 rd-3rd coordinate on D. The functor $f_{\upharpoonright D}^{3 \mathrm{rd}-3 \mathrm{rd}}$ yielding a partial function from \mathcal{R}^{3} to \mathbb{R} is defined by:
(Def. 36) $\operatorname{dom}\left(f_{\mid D}^{3 \text { rd-3rd }}\right)=D$ and for every element u of \mathcal{R}^{3} such that $u \in D$ holds $f_{\lceil D}^{3 \mathrm{rd}-3 \mathrm{rd}}(u)=\operatorname{hpartdiff} 33(f, u)$.

2. Main Properties of Second-order Partial Derivatives

Next we state a number of propositions:
(19) f is partial differentiable on 1 st-1st coordinate in u if and only if $\operatorname{pdiff} 1(f, 1)$ is partially differentiable in u w.r.t. 1 .
(20) f is partial differentiable on 1st-2nd coordinate in u if and only if $\operatorname{pdiff} 1(f, 1)$ is partially differentiable in u w.r.t. 2 .
(21) f is partial differentiable on 1st-3rd coordinate in u if and only if $\operatorname{pdiff} 1(f, 1)$ is partially differentiable in u w.r.t. 3 .
(22) f is partial differentiable on 2 nd- 1 st coordinate in u if and only if $\operatorname{pdiff} 1(f, 2)$ is partially differentiable in u w.r.t. 1 .
(23) f is partial differentiable on 2 nd-2nd coordinate in u if and only if $\operatorname{pdiff} 1(f, 2)$ is partially differentiable in u w.r.t. 2.
(24) f is partial differentiable on 2nd-3rd coordinate in u if and only if $\operatorname{pdiff} 1(f, 2)$ is partially differentiable in u w.r.t. 3 .
(25) f is partial differentiable on 3rd-1st coordinate in u if and only if pdiff $1(f, 3)$ is partially differentiable in u w.r.t. 1 .
(26) f is partial differentiable on 3rd-2nd coordinate in u if and only if $\operatorname{pdiff} 1(f, 3)$ is partially differentiable in u w.r.t. 2 .
(27) f is partial differentiable on 3rd-3rd coordinate in u if and only if pdiff $1(f, 3)$ is partially differentiable in u w.r.t. 3 .
(28) If f is partial differentiable on 1st-1st coordinate in u, then $\operatorname{hpartdiff} 11(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 1), u, 1)$.
(29) If f is partial differentiable on 1 st-2nd coordinate in u, then $\operatorname{hpartdiff} 12(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 1), u, 2)$.
(30) If f is partial differentiable on 1st-3rd coordinate in u, then $\operatorname{hpartdiff} 13(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 1), u, 3)$.
(31) If f is partial differentiable on 2 nd-1st coordinate in u, then $\operatorname{hpartdiff} 21(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 2), u, 1)$.
(32) If f is partial differentiable on 2 nd-2nd coordinate in u, then $\operatorname{hpartdiff} 22(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 2), u, 2)$.
(33) If f is partial differentiable on 2 nd-3rd coordinate in u, then $\operatorname{hpartdiff} 23(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 2), u, 3)$.
(34) If f is partial differentiable on 3rd-1st coordinate in u, then $\operatorname{hpartdiff} 31(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 3), u, 1)$.
(35) If f is partial differentiable on 3 rd-2nd coordinate in u, then hpartdiff $32(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 3), u, 2)$.
(36) If f is partial differentiable on 3rd-3rd coordinate in u, then $\operatorname{hpartdiff} 33(f, u)=\operatorname{partdiff}(\operatorname{pdiff} 1(f, 3), u, 3)$.
(37) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(1,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 1st-1st coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(1,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)$ is convergent and $\operatorname{hpartdiff11}\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)\right)$.
(38) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(2,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 1st-2nd coordinate in u_{0} and $N \subseteq \operatorname{domSVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(2,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff12 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)\right)$.
(39) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(3,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 1st-3rd coordinate in u_{0} and $N \subseteq \operatorname{domSVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real num-
bers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(3,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff13 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)_{*} c\right)\right)\right)$.
(40) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(1,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 2 nd-1st coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(1,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff21 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)\right)$.
(41) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(2,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 2 nd-2nd coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(2,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff22 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)\right)$.
(42) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(3,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 2nd-3rd coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(3,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff23 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)_{*} c\right)\right)\right)$.
(43) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(1,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 3 rd-1st coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(1,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff31 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)\right)$.
(44) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(2,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 3rd-2nd coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(2,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then
$h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff $32\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(2, \operatorname{pdiff}(f, 3), u_{0}\right)_{*} c\right)\right)\right)$.
(45) Let u_{0} be an element of \mathcal{R}^{3} and N be a neighbourhood of $(\operatorname{proj}(3,3))\left(u_{0}\right)$. Suppose f is partial differentiable on 3rd-3rd coordinate in u_{0} and $N \subseteq \operatorname{dom} \operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)$. Let h be a convergent to 0 sequence of real numbers and c be a constant sequence of real numbers. Suppose $\operatorname{rng} c=\left\{(\operatorname{proj}(3,3))\left(u_{0}\right)\right\}$ and $\operatorname{rng}(h+c) \subseteq N$. Then $h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+c)\right)-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)$ is convergent and hpartdiff33 $\left(f, u_{0}\right)=\lim \left(h^{-1}\left(\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*}(h+\right.\right.\right.$ $\left.\left.c))-\left(\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)_{*} c\right)\right)\right)$.
(46) Suppose that
(i) f_{1} is partial differentiable on 1st-1st coordinate in u_{0}, and
(ii) f_{2} is partial differentiable on 1st-1st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)+\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 1 and partdiff($\left.\operatorname{pdiff1}\left(f_{1}, 1\right)+\operatorname{pdiff}\left(f_{2}, 1\right), u_{0}, 1\right)=\operatorname{hpartdiff11}\left(f_{1}, u_{0}\right)+$ hpartdiff11 $\left(f_{2}, u_{0}\right)$.
(47) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-2nd coordinate in u_{0}, and
(ii) f_{2} is partial differentiable on 1 st-2nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)+\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 2 and partdiff(pdiff1 $\left.\left(f_{1}, 1\right)+\operatorname{pdiff}\left(f_{2}, 1\right), u_{0}, 2\right)=\operatorname{hpartdiff12}\left(f_{1}, u_{0}\right)+$ hpartdiff12 $\left(f_{2}, u_{0}\right)$.
(48) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st-3rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)+\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(\operatorname{pdiff1}\left(f_{1}, 1\right)+\operatorname{pdiff} 1\left(f_{2}, 1\right), u_{0}, 3\right)=\operatorname{hpartdiff13}\left(f_{1}, u_{0}\right)+$ hpartdiff13 $\left(f_{2}, u_{0}\right)$.
(49) Suppose that
(i) f_{1} is partial differentiable on 2nd-1st coordinate in u_{0}, and
(ii) f_{2} is partial differentiable on 2nd-1st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)+\operatorname{pdiff}\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 1 and partdiff($\left.\operatorname{pdiff1}\left(f_{1}, 2\right)+\operatorname{pdiff}\left(f_{2}, 2\right), u_{0}, 1\right)=\operatorname{hpartdiff} 21\left(f_{1}, u_{0}\right)+$ hpartdiff21 $\left(f_{2}, u_{0}\right)$.
(50) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2nd-2nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 2 nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)+\operatorname{pdiff}\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 2 and partdiff($\left.\operatorname{pdiff1}\left(f_{1}, 2\right)+\operatorname{pdiff}\left(f_{2}, 2\right), u_{0}, 2\right)=\operatorname{hpartdiff} 22\left(f_{1}, u_{0}\right)+$ hpartdiff22 $\left(f_{2}, u_{0}\right)$.
(51) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 3 rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2nd-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)+\operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 3 and partdiff $\left(\operatorname{pdiff} 1\left(f_{1}, 2\right)+\operatorname{pdiff} 1\left(f_{2}, 2\right), u_{0}, 3\right)=\operatorname{hpartdiff} 23\left(f_{1}, u_{0}\right)+$ $\operatorname{hpartdiff} 23\left(f_{2}, u_{0}\right)$.
(52) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-1st coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-1st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right), u_{0}, 1\right)=\operatorname{hpartdiff} 11\left(f_{1}, u_{0}\right)-$ $\operatorname{hpartdiff11}\left(f_{2}, u_{0}\right)$.
(53) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1 st- 2 nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1 st- 2 nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 2 and $\operatorname{partdiff}\left(\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right), u_{0}, 2\right)=\operatorname{hpartdiff} 12\left(f_{1}, u_{0}\right)-$ hpartdiff12 $\left(f_{2}, u_{0}\right)$.
(54) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-3rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(\operatorname{pdiff} 1\left(f_{1}, 1\right)-\operatorname{pdiff} 1\left(f_{2}, 1\right), u_{0}, 3\right)=\operatorname{hpartdiff} 13\left(f_{1}, u_{0}\right)-$ hpartdiff13 $\left(f_{2}, u_{0}\right)$.
(55) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 1 st coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 1 st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right), u_{0}, 1\right)=\operatorname{hpartdiff} 21\left(f_{1}, u_{0}\right)-$ $\operatorname{hpartdiff21}\left(f_{2}, u_{0}\right)$.
(56) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 2 nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd-2nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 2 and partdiff($\left.\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right), u_{0}, 2\right)=\operatorname{hpartdiff} 22\left(f_{1}, u_{0}\right)-$ hpartdiff22 $\left(f_{2}, u_{0}\right)$.
(57) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 3 rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2nd-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 3 and partdiff($\left.\operatorname{pdiff} 1\left(f_{1}, 2\right)-\operatorname{pdiff} 1\left(f_{2}, 2\right), u_{0}, 3\right)=\operatorname{hpartdiff} 23\left(f_{1}, u_{0}\right)-$
$\operatorname{hpartdiff} 23\left(f_{2}, u_{0}\right)$.
(58) Suppose f is partial differentiable on 1st-1st coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 1)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(r \operatorname{pdiff1}(f, 1), u_{0}, 1\right)=r \cdot \operatorname{hpartdiff11}\left(f, u_{0}\right)$.
(59) Suppose f is partial differentiable on 1 st-2nd coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 1)$ is partially differentiable in u_{0} w.r.t. 2 and $\left.\operatorname{partdiff}\left(r \operatorname{pdiff1}(f, 1), u_{0}, 2\right)=r \cdot \operatorname{hpartdiff12(} f, u_{0}\right)$.
(60) Suppose f is partial differentiable on 1st-3rd coordinate in u_{0}. Then $r \operatorname{pdiff}(f, 1)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 1), u_{0}, 3\right)=r \cdot \operatorname{hpartdiff13}\left(f, u_{0}\right)$.
(61) Suppose f is partial differentiable on 2 nd-1st coordinate in u_{0}. Then $r \operatorname{pdiff}(f, 2)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 2), u_{0}, 1\right)=r \cdot \operatorname{hpartdiff21}\left(f, u_{0}\right)$.
(62) Suppose f is partial differentiable on 2 nd-2nd coordinate in u_{0}. Then $r \operatorname{pdiff}(f, 2)$ is partially differentiable in u_{0} w.r.t. 2 and $\operatorname{partdiff}\left(r \operatorname{pdiff1}(f, 2), u_{0}, 2\right)=r \cdot \operatorname{hpartdiff22(f,u_{0})}$.
(63) Suppose f is partial differentiable on 2nd-3rd coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 2)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(r \operatorname{pdiff}(f, 2), u_{0}, 3\right)=r \cdot \operatorname{hpartdiff23(f,u_{0}).}$
(64) Suppose f is partial differentiable on 3rd-1st coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 3)$ is partially differentiable in u_{0} w.r.t. 1 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 3), u_{0}, 1\right)=r \cdot \operatorname{hpartdiff3} 3\left(f, u_{0}\right)$.
(65) Suppose f is partial differentiable on 3rd-2nd coordinate in u_{0}. Then $r \operatorname{pdiff} 1(f, 3)$ is partially differentiable in u_{0} w.r.t. 2 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 3), u_{0}, 2\right)=r \cdot \operatorname{hpartdiff32(f,u_{0})\text {.}}$
(66) Suppose f is partial differentiable on 3rd-3rd coordinate in u_{0}. Then $r \operatorname{pdiff}(f, 3)$ is partially differentiable in u_{0} w.r.t. 3 and $\operatorname{partdiff}\left(r \operatorname{pdiff} 1(f, 3), u_{0}, 3\right)=r \cdot \operatorname{hpartdiff33}\left(f, u_{0}\right)$.
(67) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-1st coordinate in u_{0}, and
(ii) f_{2} is partial differentiable on 1st-1st coordinate in u_{0}.

Then $\operatorname{pdiff1}\left(f_{1}, 1\right) \operatorname{pdiff}\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 1 .
(68) Suppose that
(i) f_{1} is partial differentiable on 1st-2nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-2nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right) \operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 2 .
(69) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 1st-3rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 1st-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 1\right) \operatorname{pdiff} 1\left(f_{2}, 1\right)$ is partially differentiable in u_{0} w.r.t. 3 .
(70) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 1 st coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 1 st coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right) \operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 1 .
(71) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 2 nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd- 2 nd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 2\right) \operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 2 .
(72) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 2 nd- 3 rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 2 nd-3rd coordinate in u_{0}.

Then pdiff1 $\left(f_{1}, 2\right) \operatorname{pdiff} 1\left(f_{2}, 2\right)$ is partially differentiable in u_{0} w.r.t. 3 .
(73) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 3 rd- 1 st coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 3 rd-1st coordinate in u_{0}.

Then pdiff1 $\left(f_{1}, 3\right) \operatorname{pdiff} 1\left(f_{2}, 3\right)$ is partially differentiable in u_{0} w.r.t. 1 .
(74) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 3 rd- 2 nd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 3rd-2nd coordinate in u_{0}.

Then pdiff1 $\left(f_{1}, 3\right) \operatorname{pdiff} 1\left(f_{2}, 3\right)$ is partially differentiable in u_{0} w.r.t. 2 .
(75) Suppose that
(i) $\quad f_{1}$ is partial differentiable on 3rd-3rd coordinate in u_{0}, and
(ii) $\quad f_{2}$ is partial differentiable on 3 rd-3rd coordinate in u_{0}.

Then $\operatorname{pdiff} 1\left(f_{1}, 3\right) \operatorname{pdiff} 1\left(f_{2}, 3\right)$ is partially differentiable in u_{0} w.r.t. 3 .
(76) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 1 st-1st coordinate in u_{0}. Then $\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 1), u_{0}\right)$ is continuous in $(\operatorname{proj}(1,3))\left(u_{0}\right)$.
(77) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 1 st-2nd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 1), u_{0}\right)$ is continuous in $(\operatorname{proj}(2,3))\left(u_{0}\right)$.
(78) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 1 st-3rd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 1), u_{0}\right)$ is continuous in (proj$(3,3))\left(u_{0}\right)$.
(79) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 2 nd-1st coordinate in u_{0}. Then $\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 2), u_{0}\right)$ is continuous in $(\operatorname{proj}(1,3))\left(u_{0}\right)$.
(80) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 2 nd-2nd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 2), u_{0}\right)$ is continuous in $(\operatorname{proj}(2,3))\left(u_{0}\right)$.
(81) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 2nd-3rd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 2), u_{0}\right)$ is continuous in $(\operatorname{proj}(3,3))\left(u_{0}\right)$.
(82) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 3rd-1st coordinate in u_{0}. Then $\operatorname{SVF} 1\left(1, \operatorname{pdiff} 1(f, 3), u_{0}\right)$ is continuous in $(\operatorname{proj}(1,3))\left(u_{0}\right)$.
(83) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 3 rd-2nd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(2, \operatorname{pdiff} 1(f, 3), u_{0}\right)$ is continuous in $(\operatorname{proj}(2,3))\left(u_{0}\right)$.
(84) Let u_{0} be an element of \mathcal{R}^{3}. Suppose f is partial differentiable on 3 rd-3rd coordinate in u_{0}. Then $\operatorname{SVF} 1\left(3, \operatorname{pdiff} 1(f, 3), u_{0}\right)$ is continuous in $(\operatorname{proj}(3,3))\left(u_{0}\right)$.

References

[1] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[2] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[4] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[7] Noboru Endou, Yasunari Shidama, and Keiichi Miyajima. Partial differentiation on normed linear spaces \mathcal{R}^{n}. Formalized Mathematics, 15(2):65-72, 2007, doi:10.2478/v10037-007-0008-5.
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[9] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Walter Rudin. Principles of Mathematical Analysis. MacGraw-Hill, 1976.
[15] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[16] Bing Xie, Xiquan Liang, and Hongwei Li. Partial differentiation of real binary functions. Formalized Mathematics, 16(4):333-338, 2008, doi:10.2478/v10037-008-0041-z.
[17] Bing Xie, Xiquan Liang, and Xiuzhuan Shen. Second-order partial differentiation of real binary functions. Formalized Mathematics, 17(2):79-87, 2009, doi: 10.2478/v10037-009-0009-7.

Integrability Formulas. Part II

Bo Li
Qingdao University of Science
and Technology
China

Na Ma
Qingdao University of Science
and Technology
China

Xiquan Liang
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article, we give several differentiation and integrability formulas of special and composite functions including trigonometric function, and polynomial function.

MML identifier: INTEGR13, version: $\underline{7.11 .074 .156 .1112}$

The terminology and notation used here have been introduced in the following articles: [12], [13], [2], [3], [9], [1], [6], [11], [14], [4], [18], [7], [8], [5], [19], [10], [16], [17], and [15].

For simplicity, we use the following convention: a, x are real numbers, n is an element of \mathbb{N}, A is a closed-interval subset of $\mathbb{R}, f, h, f_{1}, f_{2}$ are partial functions from \mathbb{R} to \mathbb{R}, and Z is an open subset of \mathbb{R}.

The following propositions are true:
(1) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{1}{\text { (the function } \sin) \text { (the function cos) }}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function $\tan)$),
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\ln) \cdot($ the function $\tan))(\sup A)-(($ the function $\ln) \cdot($ the function $\tan))(\inf A)$.
(2) Suppose that
(i) $A \subseteq Z$,
(ii) $f=-\frac{1}{\text { (the function sin) (the function } \cos)}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function cot $)$),
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\ln) \cdot($ the function $\cot))(\sup A)-(($ the function $\ln) \cdot($ the function $\cot))(\inf A)$.
(3) Suppose that
(i) $A \subseteq Z$,
(ii) $f=2(($ the function $\exp)$ (the function $\sin))$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\exp)(($ the function $\sin)-($ the function $\cos)))$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\exp) \quad$ ((the function sin)-(the function $\cos))(\sup A)-(($ the function $\exp)(($ the function $\sin)-($ the function $\cos))(\inf A)$.
(4) Suppose that
(i) $A \subseteq Z$,
(ii) $f=2(($ the function $\exp)($ the function $\cos))$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\exp) \quad(($ the function $\sin)+($ the function $\cos)))$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=$ ((the function exp) ((the function $\left.\sin \right)+$ (the function $\cos)))(\sup A)-(($ the function $\exp)(($ the function $\sin)+($ the function $\cos))(\inf A)$.
(5) Suppose $A \subseteq Z=\operatorname{dom}(($ the function $\cos)$-(the function sin)) and (the function \cos)-(the function \sin) is continuous on A. Then $\int_{A}(($ the function cos $)-($ the function $\sin))(x) d x=(($ the function $\sin)+($ the function $\cos))(\sup A)-(($ the function $\sin)+($ the function $\cos))(\inf A)$.
(6) Suppose $A \subseteq Z=\operatorname{dom}(($ the function $\cos)+($ the function sin) $)$ and (the function cos) + (the function \sin) is continuous on A. Then $\int_{A}(($ the function $\cos)+($ the function $\sin))(x) d x=(($ the function $\sin)-($ the function $\cos))(\sup A)-(($ the function $\sin)-($ the function $\cos))(\inf A)$.
(7) Suppose $Z \subseteq \operatorname{dom}\left(\left(-\frac{1}{2}\right) \frac{(\text { the function sin) })+(\text { the function cos })}{\text { the function exp }}\right)$. Then
(i) $\left(-\frac{1}{2}\right) \frac{(\text { the function sin })+(\text { the function cos) })}{\text { the function exp }}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(-\frac{1}{2}\right) \frac{\text { (the function sin) }+(\text { the function cos })}{\text { the function exp }}\right)_{\mid Z}^{\prime}(x)=\frac{(\text { the function sin) }(x)}{\text { (the function exp) })(x)}$.
(8) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{\text { the function } \sin }{\text { the }}$,
(iii) $Z \subseteq \operatorname{dom}\left(\left(-\frac{1}{2}\right) \frac{(\text { (the function sin) }+(\text { the function cos) })}{\text { the function exp }}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\left(-\frac{1}{2}\right) \frac{\text { (the function } \sin)+(\text { the function } \cos)}{\text { the function } \exp }\right)(\sup A)-$ $\left(\left(-\frac{1}{2}\right) \frac{(\text { the function } \sin)+(\text { the function } \cos)}{\text { the function } \exp }\right)(\inf A)$.
(9) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{2} \frac{\text { (the function sin) }- \text { (the function cos) })}{\text { the function } \exp }\right)$. Then
(i) $\frac{1}{2} \frac{\text { (the function sin)-(the function cos) }}{\text { the function exp }}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds
$\left(\frac{1}{2} \frac{(\text { the function sin) }- \text { (the function cos })}{\text { the function exp }}\right)^{\prime}{ }_{Z}(x)=\frac{\text { (the function } \cos)(x)}{\text { (the function exp) }(x)}$.
(10) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{\text { the function cos }}{\text { the }}$,
(iii) $Z \subseteq \operatorname{dom}\left(\frac{1}{2} \frac{\text { (the function sin)-(the function cos) }}{\text { the function } \exp }\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\frac{1}{2} \frac{\text { (the function } \sin)-(\text { the function } \cos)}{\text { the function } \exp }\right)(\sup A)-$
$\left(\frac{1}{2} \frac{(\text { the function sin })-(\text { the function } \cos)}{\text { the function } \exp }\right)(\inf A)$.
(11) Suppose that
(i) $A \subseteq Z$,
(ii) $f=($ the function $\exp)(($ the function $\sin)+($ the function $\cos))$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\exp)$ (the function $\sin)$),
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\exp)$ (the function $\left.\sin)\right)(\sup A)-(($ the function $\exp)($ the function $\sin))(\inf A)$.
(12) Suppose that
(i) $A \subseteq Z$,
(ii) $f=($ the function $\exp)(($ the function $\cos)-($ the function $\sin))$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\exp)$ (the function $\cos)$),
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\exp) \quad($ the function $\cos))(\sup A)-(($ the function $\exp)($ the function $\cos))(\inf A)$.
(13) Suppose that
(i) $A \subseteq Z$,
(ii) $f_{1}=\square^{2}$,
(iii) $f=-\frac{\frac{\text { the function sin }}{\text { the tunction cos }}}{f_{1}}+\frac{\frac{1}{\mathrm{i} Z}}{\text { (the function cos) })^{2}}$,
(iv) $Z \subseteq \operatorname{dom}\left(\frac{1}{\mathrm{id}_{Z}}(\right.$ the function $\tan)$),
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\frac{1}{\mathrm{id}_{Z}}\right.$ (the function $\left.\left.\tan \right)\right)(\sup A)-\left(\frac{1}{\mathrm{id}_{Z}}\right.$ (the function $\tan)(\inf A)$.
(14) Suppose that
(i) $A \subseteq Z$,
(ii) $f=-\frac{\frac{\text { the function oos }}{\text { the function sin }}}{f_{1}}-\frac{\frac{1}{\text { in }}}{\text { (the function sin) }}{ }^{2}$,
(iii) $f_{1}=\square^{2}$,
(iv) $Z \subseteq \operatorname{dom}\left(\frac{1}{\mathrm{id} Z}(\right.$ the function $\left.\cot)\right)$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\frac{1}{\mathrm{id}_{Z}}\right.$ (the function $\left.\left.\cot \right)\right)(\sup A)-\left(\frac{1}{\mathrm{id} Z}\right.$ (the function $\cot))(\inf A)$.
(15) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{\text { the function sin }}{\text { the funcion } \cos } \begin{aligned} & \text { id } z\end{aligned} \frac{\text { the function } \ln }{(\text { the function cos })^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function $\tan)$),
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\ln)$ (the function $\left.\tan)\right)(\sup A)-(($ the function $\ln)($ the function $\tan)(\inf A)$.
(16) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{\frac{\text { the function cos }}{\frac{\text { the }}{} \text { fuction sin }}}{\text { id } z}-\frac{\text { the function } \ln }{(\text { the function sin) })^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function $\cot)$),
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\ln) \quad($ the function $\cot))(\sup A)-(($ the function $\ln)($ the function $\cot))(\inf A)$.
(17) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{\text { the function } \tan }{\mathrm{id}_{Z}}+\frac{\text { the function } \ln }{(\text { the function } \cos)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function $\tan)$),
(iv) $Z \subseteq \operatorname{dom}($ the function $\tan)$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\ln) \quad$ (the function $\left.\tan)\right)(\sup A)-(($ the function $\ln)($ the function $\tan)(\inf A)$.
(18) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{\text { the function cot }}{\text { id } Z}-\frac{\text { the function } \ln }{(\text { the function } \sin)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function $\cot)$),
(iv) $Z \subseteq \operatorname{dom}($ the function cot),
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\ln) \quad($ the function $\cot))(\sup A)-(($ the function $\ln)($ the function $\cot))(\inf A)$.
(19) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(iii) $f=\frac{\text { the function arctan }}{\operatorname{id}_{Z}}+\frac{\text { the function } \ln }{f_{1}+\square^{2}}$,
(iv) $Z \subseteq]-1,1[$,
(v) $Z=\operatorname{dom} f$, and
(vi) $\quad f$ is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\ln) \quad($ the function $\arctan))(\sup A)-(($ the function $\ln)($ the function $\arctan)(\inf A)$.
(20) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(iii) $f=\frac{\text { the function arccot }}{\mathrm{id}_{Z}}-\frac{\text { the function } \ln }{f_{1}+\square^{2}}$,
(iv) $Z \subseteq]-1,1[$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\ln)$ (the function $\left.\operatorname{arccot})\right)(\sup A)-(($ the function $\ln)($ the function $\operatorname{arccot}))(\inf A)$.
(21) Suppose $A \subseteq Z$ and $f=\frac{(\text { (the function exp).(the function } \tan)}{{\text { (the function } \cos)^{2}}^{2}}$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=($ (the function $\exp) \cdot$ (the function $\tan))(\sup A)-(($ the function $\exp) \cdot($ the function $\tan))(\inf A)$.
(22) Suppose $A \subseteq Z$ and $f=-\frac{\text { (the function exp).(the function cot) }}{\text { (the function sin) }}$) $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=($ (the function $\exp) \cdot$ (the function $\cot))(\sup A)-(($ the function $\exp) \cdot($ the function $\cot))(\inf A)$.
(23) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp) \cdot($ (the function cot $))$. Then
(i) -(the function exp) • (the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (-(the function exp) • (the function $\cot))_{\mid Z}^{\prime}(x)=\frac{\text { (the function } \exp)((\text { the function cot) }(x))}{\left(\text { the function sin) }(x)^{2}\right.}$.
(24) Suppose $A \subseteq Z$ and $f=\frac{\text { (the function exp).(the function cot) }}{\text { (the function sin) }}$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=(-($ the function $\exp)$. $($ the function $\cot))(\sup A)-(-($ the function $\exp) \cdot($ the function $\cot))(\inf A)$.
(25) Suppose that
(i) $A \subseteq Z$,
(ii) $\quad f=\frac{1}{\mathrm{id}_{Z}((\text { the function cos).(the function } \ln))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}($ (the function $\tan) \cdot($ the function $\ln)$),
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\tan) \cdot($ the function $\ln))(\sup A)-(($ the function $\tan) \cdot($ the function $\ln))(\inf A)$.
(26) Suppose that
(i) $A \subseteq Z$,
(ii) $f=-\frac{1}{\mathrm{id}_{Z}((\text { the function } \sin) \cdot(\text { (the function } \ln))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cot $) \cdot($ the function $\ln))$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function cot $) \cdot($ the function $\ln))(\sup A)-(($ the function cot) $\cdot($ the function $\ln))(\inf A)$.
(27) Suppose $Z \subseteq \operatorname{dom}(($ the function cot) $\cdot($ the function $\ln))$. Then
(i) - (the function cot) $\cdot($ the function $\ln)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ($-($ the function cot) • (the function $\ln))^{\prime}{ }_{Y}(x)=\frac{1}{x \cdot(\text { the function } \sin)((\text { the function } \ln)(x))^{2}}$.
(28) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{1}{\mathrm{id}_{Z}((\text { the function } \sin) \cdot(\text { (the function } \ln))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\cot) \cdot($ the function $\ln))$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(-($ the function $\cot) \cdot($ the function $\ln))(\sup A)-(-($ the function cot) $\cdot($ the function $\ln))(\inf A)$.
(29) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{\text { the function } \exp }{\left((\text { (the function cos) } \cdot \text { (the function exp) })^{2}\right.}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\tan) \cdot($ the function $\exp))$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function tan $) \cdot($ the function $\exp))(\sup A)-(($ the function $\tan) \cdot($ the function $\exp))(\inf A)$.
(30) Suppose that
(i) $A \subseteq Z$,
(ii) $f=-\frac{\text { the function } \exp }{((\text { the function } \sin) \cdot(\text { the function } \exp))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cot) $\cdot($ the function $\exp))$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\cot) \cdot($ the function $\exp))(\sup A)-(($ the function cot) $\cdot($ the function $\exp))(\inf A)$.
(31) Suppose $Z \subseteq \operatorname{dom}(($ the function cot) $\cdot($ the function $\exp))$. Then
(i) - (the function cot) $\cdot($ the function $\exp)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (- (the function cot) • (the function $\exp))^{\prime}{ }_{Y}(x)=\frac{(\text { the function } \exp)(x)}{\left(\text { the function sin) }((\text { the function } \exp)(x))^{2}\right.}$.
(32) Suppose that
(i) $A \subseteq Z$,
(ii) $f=\frac{\text { the function } \exp }{((\text { the function sin)•(the function } \exp))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cot $) \cdot($ the function $\exp))$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=(-($ the function $\cot) \cdot($ the function $\exp))(\sup A)-(-($ the function cot) $\cdot($ the function $\exp))(\inf A)$.
(33) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=-\frac{1}{\left.x^{2} \text {.(the function } \cos \right)\left(\frac{1}{x}\right)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan) \cdot \frac{1}{\mathrm{id}_{Z}}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left((\right.$ the function $\left.\tan) \cdot \frac{1}{\mathrm{id}_{Z}}\right)(\sup A)-(($ the function $\tan)$ $\left.\cdot \frac{1}{\operatorname{idd}_{Z}}\right)(\inf A)$.
(34) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan) \cdot \frac{1}{\operatorname{id} Z}\right)$. Then
(i) $\quad-($ the function $\tan) \cdot \frac{1}{\mathrm{id}_{Z}}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(-(\text { the function } \tan) \cdot \frac{1}{\operatorname{id}_{Z}}\right)_{{ }_{Z}}^{\prime}(x)=$ $\frac{1}{\left.x^{2} \text { (the function } \cos \right)\left(\frac{1}{x}\right)^{2}}$.
(35) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{1}{x^{2} \cdot(\text { the function } \cos)\left(\frac{1}{x}\right)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan) \cdot \frac{1}{\operatorname{id}_{Z}}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left(-(\right.$ the function $\left.\tan) \cdot \frac{1}{\mathrm{id}_{Z}}\right)(\sup A)-(-($ the function
$\left.\tan) \cdot \frac{1}{\operatorname{id} Z}\right)(\inf A)$.
(36) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{1}{\left.x^{2} \text {.(the function } \sin \right)\left(\frac{1}{x}\right)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\cot) \cdot \frac{1}{\mathrm{id}_{Z}}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) f is continuous on A.

Then $\int_{A} f(x) d x=\left((\right.$ the function $\left.\cot) \cdot \frac{1}{\operatorname{id}{ }_{Z}}\right)(\sup A)-(($ the function $\cot)$ $\left.\cdot \frac{1}{\mathrm{id}_{Z}}\right)(\inf A)$.
(37) Suppose that $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $($ the function $\arctan)(x)>0$ and $f=\frac{1}{\left(f_{1}+\square^{2}\right) \text { the function arctan }}$ and $Z \subseteq$]-1,1[and $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function arctan) $)$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=(($ the function $\ln) \cdot$ (the function $\arctan))(\sup A)-(($ the function $\ln) \cdot($ the function $\arctan))(\inf A)$.
(38) Suppose that $A \subseteq Z$ and $f=n \frac{\left(\square^{n-1}\right) \text { the function arctan }}{f_{1}+\square^{2}}$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $\left.Z \subseteq\right]-1,1\left[\right.$ and $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right)\right.$. the function $\arctan)$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=\left(\left(\square^{n}\right) \cdot\right.$ the function $\arctan)(\sup A)-\left(\left(\square^{n}\right) \cdot\right.$ the function $\left.\arctan \right)(\inf A)$.
(39) Suppose that $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f=-n \frac{\left(\square^{n-1}\right) \text { the function arccot }}{f_{1}+\square^{2}}$ and $\left.Z \subseteq\right]-1,1\left[\right.$ and $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right)\right.$ •the function arccot) and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=\left(\left(\square^{n}\right) \cdot\right.$ the function $\operatorname{arccot})(\sup A)-\left(\left(\square^{n}\right) \cdot\right.$ the function arccot) $(\inf A)$.
(40) Suppose $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right)\right.$ • the function arccot) and $\left.Z \subseteq\right]-1,1[$. Then
(i) $\quad-\left(\square^{n}\right)$ - the function arccot is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(-\left(\square^{n}\right) \cdot \text { the function } \operatorname{arccot}\right)^{\prime}{ }_{Z}(x)=$ $\frac{n \cdot(\text { the function arccot })(x)^{n-1}}{1+x^{2}}$.
(41) Suppose that $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f=n \frac{\left(\square^{n-1}\right) \text { the function arccot }}{f_{1}+\square^{2}}$ and $\left.Z \subseteq\right]-1,1\left[\right.$ and $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right) \cdot\right.$ the function arccot) and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=$ $\left(-\left(\square^{n}\right) \cdot\right.$ the function $\left.\operatorname{arccot}\right)(\sup A)-\left(-\left(\square^{n}\right) \cdot\right.$ the function $\left.\operatorname{arccot}\right)(\inf A)$.
(42) Suppose that $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f=\frac{\text { the function arctan }}{f_{1}+\square^{2}}$ and $\left.Z \subseteq\right]-1,1\left[\right.$ and $Z \subseteq \operatorname{dom}\left(\left(\square^{2}\right) \cdot\right.$ the function arctan $)$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=\left(\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.\right.$ the function $\arctan))(\sup A)-\left(\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.\right.$ the function $\left.\left.\arctan \right)\right)(\inf A)$.
(43) Suppose that $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f=-\frac{\text { the function arccot }}{f_{1}+\square^{2}}$ and $\left.Z \subseteq\right]-1,1\left[\right.$ and $Z \subseteq \operatorname{dom}\left(\left(\square^{2}\right) \cdot\right.$ the function arccot $)$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=\left(\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.\right.$ the function $\operatorname{arccot}))(\sup A)-\left(\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.\right.$ the function arccot) $)(\inf A)$.
(44) Suppose $Z \subseteq \operatorname{dom}\left(\left(\square^{2}\right) \cdot\right.$ the function arccot) and $\left.Z \subseteq\right]-1,1[$. Then
(i) $\quad-\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.$ the function arccot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds
$\left(-\frac{1}{2}\left(\left(\square^{2}\right) \text { - the function } \operatorname{arccot}\right)\right)^{\prime}{ }_{Z}(x)=\frac{(\text { the function arccot })(x)}{1+x^{2}}$.
(45) Suppose that $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f=\frac{\text { the function arccot }}{f_{1}+\square^{2}}$ and $\left.Z \subseteq\right]-1,1[$ and $Z \subseteq$ $\operatorname{dom}\left(\left(\square^{2}\right)\right.$. the function arccot) and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=\left(-\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.\right.$ the function $\left.\left.\operatorname{arccot}\right)\right)(\sup A)-$ $\left(-\frac{1}{2}\left(\left(\square^{2}\right) \cdot\right.\right.$ the function $\left.\left.\operatorname{arccot}\right)\right)(\inf A)$.
(46) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(iii) $f=$ (the function \arctan) $+\frac{\text { id }_{Z}}{f_{1}+\square^{2}}$,
(iv) $Z \subseteq]-1,1[$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\operatorname{id}_{Z}\right.$ the function $\left.\arctan \right)(\sup A)-\left(\operatorname{id}_{Z}\right.$ the function $\arctan)(\inf A)$.
(47) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(iii) $f=$ (the function arccot) $-\frac{\mathrm{id} Z}{f_{1}+\square^{2}}$,
(iv) $Z \subseteq]-1,1[$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=\left(\mathrm{id}_{Z}\right.$ the function $\left.\operatorname{arccot}\right)(\sup A)-\left(\operatorname{id}_{Z}\right.$ the function $\operatorname{arccot})(\inf A)$.
(48) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) $f=\frac{(\text { the function } \exp) \cdot(\text { the function arctan })}{f_{1}+\square^{2}}$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\exp) \cdot($ the function $\arctan))(\sup A)-(($ the function $\exp) \cdot($ the function $\arctan))(\inf A)$.
(49) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) $f=-\frac{(\text { the function } \exp) \cdot \text { (the function arccot) }}{f_{1}+\square^{2}}$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=(($ the function $\exp) \cdot($ the function $\operatorname{arccot}))(\sup A)-(($ the function $\exp) \cdot($ the function arccot) $)(\inf A)$.
(50) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp) \cdot($ the function arccot) $)$ and $Z \subseteq]-1,1[$. Then
(i) -(the function exp) • (the function arccot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (-(the function $\exp) \cdot$ (the function $\operatorname{arccot}))_{Z}^{\prime}(x)=\frac{(\text { the function } \exp)((\text { the function arccot })(x))}{1+x^{2}}$.
(51) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) $f=\frac{\text { (the function exp).(the function arccot) }}{f_{1}+\square^{2}}$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(v) $Z=\operatorname{dom} f$, and
(vi) f is continuous on A.

Then $\int_{A} f(x) d x=(-($ the function $\exp) \cdot($ the function $\operatorname{arccot}))(\sup A)-$ (-(the function $\exp) \cdot($ the function arccot) $)(\inf A)$.
(52) Suppose that $A \subseteq Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ and $f=\frac{\mathrm{id}_{Z}}{f_{1}+f_{2}}$ and $f_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=\left(\frac{1}{2}\left((\right.\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)(\sup A)-$ $\left(\frac{1}{2}\left((\right.\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)(\inf A)$.
(53) Suppose that $A \subseteq Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)$ and $f=\frac{\mathrm{id}_{Z}}{a\left(f_{1}+f_{2}\right)}$ and for every x such that $x \in Z$ holds $h(x)=\frac{x}{a}$ and $f_{1}(x)=1$ and $a \neq 0$ and $f_{2}=$ $\left(\square^{2}\right) \cdot h$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=\left(\frac{a}{2}((\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)(\sup A)-\left(\frac{a}{2}\left((\right.\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)(\inf A)$.
(54) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{\mathrm{id} Z}\right.$ the function arctan) and $\left.Z \subseteq\right]-1,1[$. Then
(i) $-\frac{1}{\mathrm{id} Z}$ the function arctan is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(-\frac{1}{\text { id }} Z \text { the function } \arctan \right)^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \arctan)(x)}{x^{2}}-\frac{1}{x \cdot\left(1+x^{2}\right)}$.
(55) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{\mathrm{id} Z}\right.$ the function arccot) and $\left.Z \subseteq\right]-1,1[$. Then
(i) $-\frac{1}{\mathrm{id} Z}$ the function arccot is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(-\frac{1}{\mathrm{id}_{Z}} \text { the function } \operatorname{arccot}\right)_{{ }_{Z}}^{\prime}(x)=$ $\frac{(\text { the function } \operatorname{arccot})(x)}{x^{2}}+\frac{1}{x \cdot\left(1+x^{2}\right)}$.
(56) Suppose that $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f=\frac{\text { the function arctan }}{\square^{2}}-\frac{1}{\operatorname{id}_{Z}\left(f_{1}+\square^{2}\right)}$ and $Z \subseteq \operatorname{dom}\left(\frac{1}{\operatorname{id} z}\right.$ the function arctan $)$ and $Z \subseteq]-1,1\left[\right.$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=$ $\left(-\frac{1}{\mathrm{id}_{Z}}\right.$ the function $\left.\arctan \right)(\sup A)-\left(-\frac{1}{\operatorname{id}_{Z}}\right.$ the function $\left.\arctan \right)(\inf A)$.
(57) Suppose that $A \subseteq Z$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f=\frac{\text { the function arccot }}{\square^{2}}+\frac{1}{\operatorname{id}_{Z}\left(f_{1}+\square^{2}\right)}$ and $Z \subseteq \operatorname{dom}\left(\frac{1}{\operatorname{id}_{Z}}\right.$ the function arccot $)$ and $Z \subseteq]-1,1\left[\right.$ and $Z=\operatorname{dom} f$ and f is continuous on A. Then $\int_{A} f(x) d x=$ $\left(-\frac{1}{\mathrm{id}_{Z}}\right.$ the function $\left.\operatorname{arccot}\right)(\sup A)-\left(-\frac{1}{\mathrm{id}_{Z}}\right.$ the function $\left.\operatorname{arccot}\right)(\inf A)$.

References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[2] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[3] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[5] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Jarosław Kotowicz. The limit of a real function at infinity. Formalized Mathematics, 2(1):17-28, 1991.
[10] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.
[11] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[12] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[14] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[15] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[16] Andrzej Trybulec and Czesław Bylinski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[19] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received February 4, 2010

Integrability Formulas. Part III

Bo Li
Qingdao University of Science
and Technology
China

Na Ma
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article, we give several differentiation and integrability formulas of composite trigonometric function.

MML identifier: INTEGR14, version: 7.11.07 4.156.1112

The papers [9], [10], [15], [2], [3], [1], [6], [11], [4], [16], [7], [8], [5], [17], [13], [14], and [12] provide the terminology and notation for this paper.

1. Differentiation Formulas

For simplicity, we adopt the following convention: a, x denote real numbers, n denotes a natural number, A denotes a closed-interval subset of \mathbb{R}, f, f_{1} denote partial functions from \mathbb{R} to \mathbb{R}, and Z denotes an open subset of \mathbb{R}.

One can prove the following propositions:
(1) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function sec $\left.) \cdot \frac{1}{\mathrm{id} Z}\right)$. Then
(i) $\quad-$ (the function sec) $\cdot \frac{1}{\mathrm{id} Z}$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ($-\left(\text { the function sec) } \cdot \frac{1}{\mathrm{id} Z}\right)^{\prime}{ }_{Z}(x)=$ $\frac{(\text { the function } \sin)\left(\frac{1}{x}\right)}{x^{2} \cdot(\text { the function } \cos)\left(\frac{1}{x}\right)^{2}}$.
(2) Suppose $Z \subseteq \operatorname{dom}(($ the function cosec) • (the function $\exp))$. Then
(i) -(the function cosec) • (the function exp) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ($-($ the function cosec) • (the function $\exp))^{\prime}{ }_{Y}(x)=\frac{(\text { the function exp })(x) \cdot(\text { the function cos) })(\text { (the function } \exp)(x))}{\text { (the function sin) }(\text { (the function exp) }(x))^{2}}$.
(3) Suppose $Z \subseteq \operatorname{dom}(($ the function cosec) • (the function $\ln))$. Then
(i) -(the function cosec) • (the function \ln) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (- (the function cosec) • (the function $\ln))^{\prime}(x)=\frac{(\text { the function } \cos)((\text { the function } \ln)(x))}{x \cdot(\text { the function sin })((\text { the function } \ln)(x))^{2}}$.
(4) Suppose $Z \subseteq \operatorname{dom}(($ the function $\exp) \cdot($ the function cosec $))$. Then
(i) $\quad-$ (the function $\exp) \cdot($ the function cosec) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ($-($ the function $\exp) \cdot$ (the function $\operatorname{cosec}))^{\prime}{ }_{Z}(x)=\frac{(\text { the function } \exp)((\text { the function } \operatorname{cosec})(x)) \cdot(\text { the function } \cos)(x)}{\text { (the function } \sin)(x)^{2}}$.
(5) Suppose $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function cosec $))$. Then
(i) $\quad-$ (the function $\ln) \cdot($ the function cosec) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $(-($ the function $\ln) \cdot($ the function $\operatorname{cosec}))_{\mid Z}^{\prime}(x)=($ the function cot $)(x)$.
(6) Suppose $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right) \cdot\right.$ the function cosec) and $1 \leq n$. Then
(i) $\quad-\left(\square^{n}\right) \cdot$ the function cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(-\left(\square^{n}\right) \cdot\right.$ the function $\operatorname{cosec})^{\prime}{ }_{Z}(x)=\frac{n \cdot(\text { the function } \cos)(x)}{(\text { the function sin) })(x)^{n+1}}$.
(7) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{\mathrm{id}_{Z}}\right.$ the function sec). Then
(i) $-\frac{1}{\mathrm{id}_{Z}}$ the function sec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(-\frac{1}{\operatorname{id}_{Z}}\right.$ the function $\sec)^{\prime}{ }_{Z}(x)=\frac{\frac{1}{\overline{(t h e} \text { function } \cos)(x)}}{x^{2}}-\frac{(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)^{2}}$.
(8) Suppose $Z \subseteq \operatorname{dom}\left(\frac{1}{\mathrm{id}_{Z}}\right.$ the function cosec). Then
(i) $-\frac{1}{\operatorname{id} Z}$ the function cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(-\frac{1}{\mathrm{id}_{Z}}\right.$ the function $\operatorname{cosec})^{\prime}(x)=\frac{\frac{1}{\overline{(\text { the function sin) }(x)}}}{x^{2}}+\frac{\frac{(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{2}}}{}$.
(9) Suppose $Z \subseteq \operatorname{dom}(($ the function $\operatorname{cosec}) \cdot($ the function $\sin))$. Then
(i) $\quad-$ (the function cosec) $\cdot($ the function $\sin)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (- (the function cosec) • (the function $\sin))^{\prime}{ }_{Z}(x)=\frac{\text { (the function } \cos)(x) \cdot(\text { the function } \cos)((\text { the function } \sin)(x))}{\text { (the function sin) }(\text { (the function } \sin)(x))^{2}}$.
(10) Suppose $Z \subseteq \operatorname{dom}(($ the function sec) $\cdot($ the function cot $))$. Then
(i) $\quad-$ (the function sec) $\cdot($ the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (- (the function sec) • (the function $\cot))^{\prime}{ }_{\mid Z}(x)=\frac{\frac{(\text { the function sin) }(\text { (the function } \cot)(x))}{\text { (the function sin })(x)^{2}}}{(\text { the function } \cos)(\text { (the function cot })(x))^{2}}$.
(11) Suppose $Z \subseteq \operatorname{dom}(($ the function cosec) $\cdot($ the function tan $))$. Then
(i) $\quad-$ (the function $\operatorname{cosec}) \cdot($ the function $\tan)$ is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (-(the function cosec) • (the function $($ (the function $\cos)(($ the function $\tan)(x))$
$\tan))^{\prime}{ }_{\mid Z}(x)=\frac{\frac{(\text { the function cos) })(x)^{2}}{(\text { the function sin) }(\text { (the function } \tan)(x))^{2}} .}{}$.
(12) Suppose $Z \subseteq \operatorname{dom}(($ the function cot) (the function sec)). Then
(i) $\quad-$ (the function cot) (the function sec) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (- (the function cot) (the function
sec) $)^{\prime}{ }_{\text {K }}(x)=\frac{\frac{1}{(\text { (the function sin) }(x))^{2}}}{(\text { (he function cos) }(x)}-\frac{(\text { the function cot) }(x) \cdot(\text { (the function } \sin)(x)}{\left(\text { the function cos) }(x)^{2}\right.}$.
(13) Suppose $Z \subseteq \operatorname{dom}(($ the function cot) (the function cosec)). Then
(i) -(the function cot) (the function cosec) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (-(the function cot) (the function $\operatorname{cosec}))^{\prime}{ }_{Z}(x)=\frac{\frac{1}{\frac{(\text { the function sin })(x)^{2}}{2}}}{(\text { (the function sin) }(x)}+\frac{(\text { the function } \cot)(x) \cdot(\text { the function } \cos)(x)}{\text { (the function sin) }(x)^{2}}$.
(14) Suppose $Z \subseteq \operatorname{dom}(($ the function cos) (the function cot)). Then
(i) -(the function cos) (the function cot) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (- (the function \cos) (the function $\cot))^{\prime}{ }_{Z}(x)=($ the function $\cos)(x)+\frac{(\text { (the function cos) }(x)}{\text { (the function sin) }(x)^{2}}$.

2. Integrability Formulas

We now state a number of propositions:
(15) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{(\text { the function } \sin)\left(\frac{1}{x}\right)}{\left.x^{2} \text {.(the function } \cos \right)\left(\frac{1}{x}\right)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left(\right.$ (the function sec) $\cdot \frac{1}{\mathrm{id} Z}$),
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\left(-(\right.$ the function $\left.\sec) \cdot \frac{1}{\operatorname{id}_{Z}}\right)(\sup A)-(-($ the function
sec) $\left.\cdot \frac{1}{\mathrm{id} Z}\right)(\inf A)$.
(16) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{(\text { the function } \cos)\left(\frac{1}{x}\right)}{x^{2} \cdot(\text { the function } \sin)\left(\frac{1}{x}\right)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\operatorname{cosec}) \cdot \frac{1}{\mathrm{id} Z}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\left((\right.$ the function cosec $\left.) \cdot \frac{1}{\mathrm{id}_{Z}}\right)(\sup A)-(($ the function
$\left.\operatorname{cosec}) \cdot \frac{1}{\mathrm{id} Z}\right)(\inf A)$.
(17) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{\text { (the function } \exp)(x) \cdot(\text { the function } \sin)((\text { (the function } \exp)(x))}{(\text { (the function cos) })(\text { (the function exp })(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function sec) $\cdot($ the function $\exp))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function sec $) \cdot($ the function $\exp))(\sup A)-(($ the function $\sec) \cdot($ the function $\exp))(\inf A)$.
(18) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{(\text { the function } \exp)(x) \cdot(\text { the function } \cos)((\text { the function } \exp)(x))}{\text { (the function sin) }(\text { (the function } \exp)(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cosec $) \cdot($ the function $\exp))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\operatorname{cosec}) \cdot($ the function $\exp))(\sup A)-$ $(-($ the function $\operatorname{cosec}) \cdot($ the function $\exp))(\inf A)$.
(19) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{(\text { the function } \sin)((\text { the function } \ln)(x))}{x \cdot(\text { the function cos })((\text { the function } \ln)(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function sec) $\cdot($ the function $\ln))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function sec $) \cdot($ the function $\ln))(\sup A)-(($ the function $\mathrm{sec}) \cdot($ the function $\ln))(\inf A)$.
(20) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{(\text { the function } \cos)((\text { the function } \ln)(x))}{x \cdot(\text { the function sin })((\text { the function } \ln)(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cosec) $\cdot($ the function $\ln))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function cosec $) \cdot($ the function $\ln))(\sup A)-(-($ the function cosec) $\cdot($ the function $\ln))(\inf A)$.
(21) Suppose that
(i) $A \subseteq Z$,
(ii) $f=(($ the function $\exp) \cdot($ the function sec $)) \frac{\text { the function sin }}{(\text { the function cos })^{2}}$,
(iii) $Z=\operatorname{dom} f$, and
(iv) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\exp) \cdot($ the function $\sec))(\sup A)-(($ the function $\exp) \cdot($ the function $\sec))(\inf A)$.
(22) Suppose that
(i) $A \subseteq Z$,
(ii) $f=(($ the function $\exp) \cdot($ the function $\operatorname{cosec})) \frac{\text { the function } \cos }{(\text { the function } \sin)^{2}}$,
(iii) $Z=\operatorname{dom} f$, and
(iv) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\exp) \cdot($ the function $\operatorname{cosec}))(\sup A)-$ $(-($ the function $\exp) \cdot($ the function cosec $))(\inf A)$.
(23) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function sec$))$,
(iii) $Z=\operatorname{dom}($ the function \tan), and
(iv) (the function tan) $\upharpoonright A$ is continuous.

Then $\int_{A}($ the function $\tan)(x) d x=(($ the function $\ln) \cdot($ the function $\sec))(\sup A)-(($ the function $\ln) \cdot($ the function $\sec))(\inf A)$.
(24) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function cosec $))$,
(iii) $Z=\operatorname{dom}$ (the function cot), and
(iv) (-the function cot $) \upharpoonright A$ is continuous.

Then $\int_{A}(-$ the function $\cot)(x) d x=(($ the function $\ln) \cdot($ the function $\operatorname{cosec}))(\sup A)-(($ the function $\ln) \cdot($ the function $\operatorname{cosec}))(\inf A)$.
(25) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function cosec $))$,
(iii) $Z=\operatorname{dom}($ the function cot), and
(iv) (the function cot) $\upharpoonright A$ is continuous.

Then $\int_{A}($ the function $\cot)(x) d x=(-($ the function $\ln) \cdot($ the function
$\operatorname{cosec}))(\sup A)-(-($ the function $\ln) \cdot($ the function $\operatorname{cosec}))(\inf A)$.
(26) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{n \cdot(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)^{n+1}}$,
(iii) $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right) \cdot\right.$ the function sec),
(iv) $1 \leq n$,
(v) $\quad Z=\operatorname{dom} f$, and
(vi) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\left(\left(\square^{n}\right) \cdot\right.$ the function $\left.\sec \right)(\sup A)-\left(\left(\square^{n}\right) \cdot\right.$ the function $\sec)(\inf A)$.
(27) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{n \cdot(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{n+1}}$,
(iii) $Z \subseteq \operatorname{dom}\left(\left(\square^{n}\right) \cdot\right.$ the function cosec $)$,
(iv) $1 \leq n$,
(v) $\quad Z=\operatorname{dom} f$, and
(vi) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\left(-\left(\square^{n}\right) \cdot\right.$ the function $\left.\operatorname{cosec}\right)(\sup A)-\left(-\left(\square^{n}\right) \cdot\right.$ the function cosec) $(\inf A)$.
(28) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\text { (the function exp)(x) }}{(\text { the function cos)(x) }}+$ $\frac{(\text { the function } \exp)(x) \cdot(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\exp)$ (the function sec)),
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\exp)$ (the function $\left.\sec)\right)(\sup A)-(($ the function $\exp)($ the function $\sec))(\inf A)$.
(29) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{(\text { the function } \exp)(x)}{(\text { the function } \sin)(x)}-$ $\frac{(\text { the function } \exp)(x) \cdot(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\exp)$ (the function cosec)),
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\exp) \quad($ the function $\operatorname{cosec}))(\sup A)-(($ the function $\exp)($ the function $\operatorname{cosec}))(\inf A)$.
(30) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{(\text { the function } \sin)(a \cdot x)-(\text { the function } \cos)(a \cdot x)^{2}}{(\text { the function } \cos)(a \cdot x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left(\frac{1}{a}\left(\left(\right.\right.\right.$ the function sec) $\left.\left.\cdot f_{1}\right)-\mathrm{id}_{Z}\right)$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=a \cdot x$ and $a \neq 0$,
(v) $Z=\operatorname{dom} f$, and
(vi) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\left(\frac{1}{a}\left((\right.\right.$ the function sec $\left.\left.) \cdot f_{1}\right)-\operatorname{id}_{Z}\right)(\sup A)-\left(\frac{1}{a}((\right.$ the function $\left.\left.\mathrm{sec}) \cdot f_{1}\right)-\operatorname{id}_{Z}\right)(\inf A)$.
(31) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{\text { (the function } \cos)(a \cdot x)-\text { (the function } \sin)(a \cdot x)^{2}}{\text { (the function sin) }(a \cdot x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left(\left(-\frac{1}{a}\right)\left((\right.\right.$ the function $\left.\left.\operatorname{cosec}) \cdot f_{1}\right)-\operatorname{id}_{Z}\right)$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=a \cdot x$ and $a \neq 0$,
(v) $Z=\operatorname{dom} f$, and
(vi) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\left(\left(-\frac{1}{a}\right)\left((\right.\right.$ the function cosec $\left.\left.) \cdot f_{1}\right)-\mathrm{id}_{Z}\right)(\sup A)-\left(\left(-\frac{1}{a}\right)\right)(($ the function cosec) $\left.\left.\cdot f_{1}\right)-\operatorname{id}_{Z}\right)(\inf A)$.
(32) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\frac{1}{\frac{(\text { the function } \cos)(x)}{x}}+}{}+$ $\frac{\text { (the function } \ln)(x) \cdot \text { (the function } \sin)(x)}{\text { (the function } \cos)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function sec)),
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\ln)($ the function $\sec))(\sup A)-(($ the function ln) (the function sec))(inf A).
(33) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\frac{1}{(\text { the function } \sin)(x)}}{x}-$ $\frac{(\text { the function } \ln)(x) \cdot(\text { the function } \cos)(x)}{\text { (the function sin) }(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\ln)$ (the function cosec)),
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\ln)$ (the function $\left.\operatorname{cosec})\right)(\sup A)-(($ the function $\ln)($ the function $\operatorname{cosec}))(\inf A)$.
(34) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\frac{1}{(\text { the function } \cos)(x)}}{x^{2}}-\frac{\frac{(\text { the function } \sin)(x)}{x}}{(\text { the function } \cos)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left(\frac{1}{\mathrm{id}_{Z}}\right.$ the function sec),
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\left(-\frac{1}{\mathrm{id}_{Z}}\right.$ the function $\left.\sec \right)(\sup A)-\left(-\frac{1}{\mathrm{id}_{Z}}\right.$ the function $\sec)(\inf A)$.
(35) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\frac{1}{(\text { the function } \sin)(x)}}{x^{2}}+\frac{\frac{(\text { the function } \cos)(x)}{x}}{(\text { the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left(\frac{1}{\operatorname{id}_{Z}}\right.$ the function cosec),
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\left(-\frac{1}{\mathrm{id}_{Z}}\right.$ the function $\left.\operatorname{cosec}\right)(\sup A)-\left(-\frac{1}{\mathrm{id}_{Z}}\right.$ the function $\operatorname{cosec})(\inf A)$.
(36) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{(\text { the function } \cos)(x) \cdot(\text { the function } \sin)((\text { the function } \sin)(x))}{\text { (the function } \cos)(\text { (the function } \sin)(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function sec) $\cdot($ the function $\sin))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\sec) \cdot($ the function $\sin))(\sup A)-(($ the function $\sec) \cdot($ the function $\sin))(\inf A)$.
(37) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{(\text { the function } \sin)(x) \cdot(\text { the function } \sin)((\text { the function } \cos)(x))}{\text { (the function } \cos)((\text { the function } \cos)(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function sec) $\cdot($ the function $\cos))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\sec) \cdot($ the function $\cos))(\sup A)-(-($ the function sec) $\cdot($ the function $\cos))(\inf A)$.
(38) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{(\text { the function } \cos)(x) \cdot(\text { the function } \cos)((\text { the function } \sin)(x))}{(\text { the function } \sin)((\text { the function } \sin)(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\operatorname{cosec}) \cdot($ the function $\sin))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function cosec $) \cdot($ the function
$\sin))(\sup A)-(-($ the function $\operatorname{cosec}) \cdot($ the function $\sin))(\inf A)$.
(39) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{(\text { the function } \sin)(x) \cdot(\text { the function } \cos)((\text { the function } \cos)(x))}{\text { (the function sin) })(\text { (the function } \cos)(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cosec $) \cdot($ the function $\cos))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function cosec $) \cdot($ the function $\cos))(\sup A)-(($ the function cosec) $\cdot($ the function $\cos))(\inf A)$.
(40) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{\frac{(\text { the function sin) }((\text { the function } \tan)(x))}{(\text { the function cos })(x)^{2}}}{(\text { the function cos })((\text { the function } \tan)(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function sec) $\cdot($ the function $\tan))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\sec) \cdot($ the function $\tan))(\sup A)-(($ the function sec) $\cdot($ the function tan $)(\inf A)$.
(41) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{\frac{(\text { (the function sin) })(\text { (the function } \cot)(x))}{\left(\text { the function sin) }(x)^{2}\right.}}{(\text { the function cos) })(\text { (the function cot })(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function sec) $\cdot($ the function cot $))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function sec $) \cdot($ the function $\cot))(\sup A)-(-($ the
function sec) $\cdot($ the function $\cot))(\inf A)$.
(42) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds

$$
f(x)=\frac{\frac{(\text { the function cos })(\text { (the function } \tan)(x))}{(\text { the function coss })(x)^{2}}}{(\text { the function } \sin)((\text { the function } \tan)(x))^{2}}
$$

(iii) $Z \subseteq \operatorname{dom}(($ the function cosec) $\cdot($ the function $\tan))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\operatorname{cosec}) \cdot($ the function $\tan))(\sup A)-$ $(-($ the function cosec $) \cdot($ the function tan $))(\inf A)$.
(43) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{\frac{(\text { the function } \cos)(\text { (the function } \cot)(x))}{\text { (the function } \sin)(x)^{2}}}{(\text { the function sin })((\text { the function } \cot)(x))^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\operatorname{cosec}) \cdot($ the function cot $)$),
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function cosec $) \cdot($ the function $\cot))(\sup A)-(($ the function cosec) $\cdot($ the function $\cot))(\inf A)$.
(44) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\frac{1}{(\text { (the function } \cos)(x)^{2}}}{(\text { (the function } \cos)(x)}+$ $\frac{(\text { the function } \tan)(x) \cdot(\text { the function } \sin)(x)}{(\text { the function } \cos)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\tan)$ (the function sec)),
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\tan) \quad($ the function $\sec))(\sup A)-(($ the function $\tan)($ the function $\sec))(\inf A)$.
(45) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\frac{1}{\left(\text { (the function sin) }(x)^{2}\right.}}{(\text { (the function } \cos)(x)}-$ $\frac{(\text { the function } \cot)(x) \cdot(\text { the function } \sin)(x)}{\text { (the function } \cos)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cot) (the function sec)),
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\cot)($ the function $\sec))(\sup A)-(-($ the
function cot) (the function sec)) (inf A).
(46) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\frac{1}{(\text { the function } \cos (x))^{2}}}{(\text { the function sin) }(x)}-$ $\frac{\text { (the function } \tan)(x) \cdot(\text { the } \text { function } \cos)(x)}{\text { (the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\tan)$ (the function cosec)),
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\tan) \quad($ the function $\operatorname{cosec}))(\sup A)-(($ the function $\tan)($ the function $\operatorname{cosec}))(\inf A)$.
(47) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\frac{1}{(\text { the function } \sin)(x)^{2}}}{(\text { the function } \sin)(x)}+$ $\frac{\text { (the function } \cot)(x) \cdot(\text { the function } \cos)(x)}{(\text { the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cot) (the function cosec)),
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\cot)($ the function $\operatorname{cosec}))(\sup A)-(-($ the function cot) (the function $\operatorname{cosec})(\inf A)$.
(48) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{1}{(\text { the function cos) }(\text { (the function cot) })(x))^{2}} \cdot \frac{1}{(\text { (the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function tan) •(the function cot)),
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\tan) \cdot($ the function $\cot))(\sup A)-(-($ the function $\tan) \cdot($ the function $\cot))(\inf A)$.
(49) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{1}{(\text { the function } \cos)(\text { (the function } \tan)(x))^{2}} \cdot \frac{1}{(\text { (the function } \cos)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\tan) \cdot($ (the function $\tan))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\tan) \cdot($ the function $\tan))(\sup A)-(($ the function $\tan) \cdot($ the function $\tan))(\inf A)$.
(50) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{1}{(\text { the function } \sin)((\text { the function } \cot)(x))^{2}} \cdot \frac{1}{(\text { the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cot $) \cdot($ the function $\cot))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\cot) \cdot($ the function $\cot))(\sup A)-(($ the function cot) $\cdot($ the function $\cot))(\inf A)$.
(51) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds
$f(x)=\frac{1}{(\text { the function } \sin)((\text { the function } \tan)(x))^{2}} \cdot \frac{1}{(\text { the function } \cos)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function cot) $\cdot($ the function $\tan))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function cot $) \cdot($ the function $\tan))(\sup A)-(-($ the
function cot) $\cdot($ the function $\tan))(\inf A)$.
(52) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{1}{(\text { the function } \cos)(x)^{2}}+$ $\frac{1}{(\text { the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\tan)-($ the function $\cot))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\tan)-($ the function $\cot))(\sup A)-(($ the function $\tan)-($ the function $\cot))(\inf A)$.
(53) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{1}{(\text { the function } \cos)(x)^{2}}-$ $\frac{1}{(\text { the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\tan)+($ the function cot $))$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\tan)+($ the function $\cot))(\sup A)-(($ the function $\tan)+($ the function $\cot))(\inf A)$.
(54) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=$ (the function $\cos)(($ the function $\sin)(x)) \cdot($ the function $\cos)(x)$,
(iii) $Z=\operatorname{dom} f$, and
(iv) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function $\sin) \cdot($ the function $\sin))(\sup A)-(($ the function $\sin) \cdot($ the function $\sin))(\inf A)$.
(55) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=$ (the function $\cos)($ (the function $\cos)(x)) \cdot($ the function $\sin)(x)$,
(iii) $\quad Z=\operatorname{dom} f$, and
(iv) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\sin) \cdot($ the function $\cos))(\sup A)-(-($ the function $\sin) \cdot($ the function $\cos))(\inf A)$.
(56) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=$ (the function \sin)((the function $\sin)(x)) \cdot($ the function $\cos)(x)$,
(iii) $Z=\operatorname{dom} f$, and
(iv) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\cos) \cdot($ the function $\sin))(\sup A)-(-($ the function $\cos) \cdot($ the function $\sin))(\inf A)$.
(57) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=$ (the function \sin)((the function $\cos)(x)) \cdot($ the function $\sin)(x)$,
(iii) $Z=\operatorname{dom} f$, and
(iv) $f \upharpoonright A$ is continuous.

Then $\int f(x) d x=(($ the function $\cos) \cdot($ the function $\cos))(\sup A)-(($ the function $\cos) \cdot($ the function $\cos))(\inf A)$.
(58) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=$ (the function $\cos)(x)+$ $\frac{(\text { the function } \cos)(x)}{\text { (the function } \sin)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}($ (the function $\cos)$ (the function cot)),
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-($ the function $\cos)($ the function $\cot))(\sup A)-(-($ the function cos) $($ the function $\cot))(\inf A)$.
(59) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=($ the function $\sin)(x)+$ $\frac{\text { (the function } \sin)(x)}{\text { (the function } \cos)(x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\sin)$ (the function $\tan)$),
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(($ the function sin $)($ the function $\tan))(\sup A)-(($ the function $\sin)($ the function $\tan))(\inf A)$.

References

[1] Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[2] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[3] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[4] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[5] Jarosław Kotowicz. Convergent real sequences. Upper and lower bound of sets of real numbers. Formalized Mathematics, 1(3):477-481, 1990.
[6] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[7] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[8] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[9] Konrad Raczkowski and Paweł Sadowski. Real function continuity. Formalized Mathematics, 1(4):787-791, 1990.
[10] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[11] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[12] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[13] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[15] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007, doi:10.2478/v10037-007-0009-4.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, [17] 1990.
[17] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received February 4, 2010

Contents

The Sum and Product of Finite Sequences of Complex Numbers
By Keilchi Miyajima and Takahiro Kato 107
Second-Order Partial Differentiation of Real Ternary Functions By Takao Inoué 113
Integrability Formulas. Part II
By Bo Li and Na Ma and Xiquan Liang 129
Integrability Formulas. Part III
By Bo Li and Na Ma 143

