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The notation and terminology used in this paper have been introduced in the
following papers: [5], [7], [6], [4], [8], [13], [9], [2], [3], [15], [10], [12], and [14].

1. Auxiliary Theorems

Let F be a complex-valued binary relation. Then rngF is a subset of C.
Let D be a non empty set, let F be a function from C into D, and let F1 be

a complex-valued finite sequence. Note that F · F1 is finite sequence-like.
For simplicity, we adopt the following rules: i, j denote natural numbers,

x, x1 denote elements of C, c denotes a complex number, F , F1, F2 denote
complex-valued finite sequences, and R, R1 denote i-element finite sequences of
elements of C.

The unary operation sqrcomplex on C is defined as follows:

(Def. 1) For every c holds (sqrcomplex)(c) = c2.

Next we state two propositions:

(1) sqrcomplex is distributive w.r.t. ·C.

(2) ·cC is distributive w.r.t. +C.
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2. Some Functors on the i-Tuples of Complex Numbers

Let us consider F1, F2. Then F1 + F2 is a finite sequence of elements of C
and it can be characterized by the condition:

(Def. 2) F1 + F2 = (+C)◦(F1, F2).

Let us observe that the functor F1 + F2 is commutative.
Let us consider i, R1, R2. Then R1 +R2 is an element of Ci.
The following propositions are true:

(3) (R1 +R2)(s) = R1(s) +R2(s).

(4) εC + F = εC.

(5) 〈c1〉+ 〈c2〉 = 〈c1 + c2〉.
(6) i 7→ c1 + i 7→ c2 = i 7→ (c1 + c2).

Let us consider F . Then −F is a finite sequence of elements of C and it can
be characterized by the condition:

(Def. 3) −F = −C · F.
Let us consider i, R. Then −R is an element of Ci.
The following propositions are true:

(7) −〈c〉 = 〈−c〉.
(8) −i 7→ c = i 7→ (−c).
(9) If R1 +R = R2 +R, then R1 = R2.

(10) −(F1 + F2) = −F1 +−F2.
Let us consider F1, F2. Then F1 − F2 is a finite sequence of elements of C

and it can be characterized by the condition:

(Def. 4) F1 − F2 = (−C)◦(F1, F2).

Let us consider i, R1, R2. Then R1 −R2 is an element of Ci.
The following propositions are true:

(11) (R1 −R2)(s) = R1(s)−R2(s).
(12) εC − F = εC and F − εC = εC.

(13) 〈c1〉 − 〈c2〉 = 〈c1 − c2〉.
(14) i 7→ c1 − i 7→ c2 = i 7→ (c1 − c2).
(15) R− i 7→ 0C = R.

(16) −(F1 − F2) = F2 − F1.
(17) −(F1 − F2) = −F1 + F2.

(18) If R1 −R2 = i 7→ 0C, then R1 = R2.

(19) R1 = (R1 +R)−R.
(20) R1 = (R1 −R) +R.

Let us consider F , c. We introduce c · F as a synonym of c F.
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Let us consider F , c. Then c · F is a finite sequence of elements of C and it
can be characterized by the condition:

(Def. 5) c · F = ·cC ·F.
Let us consider i, R, c. Then c ·R is an element of Ci.
One can prove the following four propositions:

(21) c · 〈c1〉 = 〈c · c1〉.
(22) c1 · (i 7→ c2) = i 7→ (c1 · c2).
(23) (c1 + c2) · F = c1 · F + c2 · F.
(24) 0C ·R = i 7→ 0C.

Let us consider F1, F2. We introduce F1 • F2 as a synonym of F1 F2.
Let us consider F1, F2. Then F1 • F2 is a finite sequence of elements of C

and it can be characterized by the condition:

(Def. 6) F1 • F2 = (·C)◦(F1, F2).

Let us note that the functor F1 • F2 is commutative.
Let us consider i, R1, R2. Then R1 •R2 is an element of Ci.
Next we state four propositions:

(25) εC • F = εC.

(26) 〈c1〉 • 〈c2〉 = 〈c1 · c2〉.
(27) i 7→ c •R = c ·R.
(28) i 7→ c1 • i 7→ c2 = i 7→ (c1 · c2).

3. Finite Sum of Finite Sequence of Complex Numbers

One can prove the following propositions:

(29)
∑

(εC) = 0C.

(30)
∑
〈c〉 = c.

(31)
∑

(F a 〈c〉) =
∑
F + c.

(32)
∑

(F1 a F2) =
∑
F1 +

∑
F2.

(33)
∑

(〈c〉 a F ) = c+
∑
F.

(34)
∑
〈c1, c2〉 = c1 + c2.

(35)
∑
〈c1, c2, c3〉 = c1 + c2 + c3.

(36)
∑

(i 7→ c) = i · c.
(37)

∑
(i 7→ 0C) = 0C.

(38)
∑

(c · F ) = c ·
∑
F.

(39)
∑

(−F ) = −
∑
F .

(40)
∑

(R1 +R2) =
∑
R1 +

∑
R2.

(41)
∑

(R1 −R2) =
∑
R1 −

∑
R2.



110 keiichi miyajima and takahiro kato

4. The Product of Finite Sequences of Complex Numbers

One can prove the following propositions:

(42)
∏

(εC) = 1.

(43)
∏

(〈c〉 a F ) = c ·
∏
F.

(44) For every element R of C0 holds
∏
R = 1.

(45)
∏

((i+ j) 7→ c) =
∏

(i 7→ c) ·
∏

(j 7→ c).
(46)

∏
((i · j) 7→ c) =

∏
(j 7→

∏
(i 7→ c)).

(47)
∏

(i 7→ (c1 · c2)) =
∏

(i 7→ c1) ·
∏

(i 7→ c2).
(48)

∏
(R1 •R2) =

∏
R1 ·
∏
R2.

(49)
∏

(c ·R) =
∏

(i 7→ c) ·
∏
R.

5. Modified Part of [1]

We now state several propositions:

(50) For every complex-valued finite sequence x holds len(−x) = lenx.

(51) For all complex-valued finite sequences x1, x2 such that lenx1 = lenx2
holds len(x1 + x2) = lenx1.

(52) For all complex-valued finite sequences x1, x2 such that lenx1 = lenx2
holds len(x1 − x2) = lenx1.

(53) For every real number a and for every complex-valued finite sequence x
holds len(a · x) = lenx.

(54) For all complex-valued finite sequences x, y, z such that lenx = len y =
len z holds (x+ y) • z = x • z + y • z.
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The notation and terminology used here have been introduced in the following
papers: [6], [11], [12], [1], [2], [3], [4], [5], [7], [16], [17], [13], [8], [15], [10], and
[9].

1. Second-order Partial Derivatives

For simplicity, we use the following convention: x, x0, y, y0, z, z0, r denote
real numbers, u, u0 denote elements of R3, f , f1, f2 denote partial functions
from R3 to R, R denotes a rest, and L denotes a linear function.

Let f be a partial function from R3 to R and let u be an element of R3. We
say that f is partial differentiable on 1st-1st coordinate in u if and only if the
condition (Def. 1) is satisfied.

(Def. 1) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆

dom SVF1(1,pdiff1(f, 1), u) and there exist L, R such that for
every x such that x ∈ N holds (SVF1(1,pdiff1(f, 1), u))(x) −
(SVF1(1, pdiff1(f, 1), u))(x0) = L(x− x0) +R(x− x0).
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We say that f is partial differentiable on 1st-2nd coordinate in u if and only if
the condition (Def. 2) is satisfied.

(Def. 2) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of y0 such that N ⊆
dom SVF1(2, pdiff1(f, 1), u) and there exist L, R such that for
every y such that y ∈ N holds (SVF1(2,pdiff1(f, 1), u))(y) −
(SVF1(2,pdiff1(f, 1), u))(y0) = L(y − y0) +R(y − y0).

We say that f is partial differentiable on 1st-3rd coordinate in u if and only if
the condition (Def. 3) is satisfied.

(Def. 3) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of z0 such that N ⊆
dom SVF1(3, pdiff1(f, 1), u) and there exist L, R such that for
every z such that z ∈ N holds (SVF1(3, pdiff1(f, 1), u))(z) −
(SVF1(3,pdiff1(f, 1), u))(z0) = L(z − z0) +R(z − z0).

We say that f is partial differentiable on 2nd-1st coordinate in u if and only if
the condition (Def. 4) is satisfied.

(Def. 4) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of x0 such that N ⊆
dom SVF1(1, pdiff1(f, 2), u) and there exist L, R such that for
every x such that x ∈ N holds (SVF1(1,pdiff1(f, 2), u))(x) −
(SVF1(1, pdiff1(f, 2), u))(x0) = L(x− x0) +R(x− x0).

We say that f is partial differentiable on 2nd-2nd coordinate in u if and only if
the condition (Def. 5) is satisfied.

(Def. 5) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of y0 such that N ⊆
dom SVF1(2, pdiff1(f, 2), u) and there exist L, R such that for
every y such that y ∈ N holds (SVF1(2,pdiff1(f, 2), u))(y) −
(SVF1(2, pdiff1(f, 2), u))(y0) = L(y − y0) +R(y − y0).

We say that f is partial differentiable on 2nd-3rd coordinate in u if and only if
the condition (Def. 6) is satisfied.

(Def. 6) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of z0 such that N ⊆
dom SVF1(3, pdiff1(f, 2), u) and there exist L, R such that for
every z such that z ∈ N holds (SVF1(3, pdiff1(f, 2), u))(z) −
(SVF1(3, pdiff1(f, 2), u))(z0) = L(z − z0) +R(z − z0).
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We say that f is partial differentiable on 3rd-1st coordinate in u if and only if
the condition (Def. 7) is satisfied.

(Def. 7) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆

dom SVF1(1,pdiff1(f, 3), u) and there exist L, R such that for
every x such that x ∈ N holds (SVF1(1,pdiff1(f, 3), u))(x) −
(SVF1(1, pdiff1(f, 3), u))(x0) = L(x− x0) +R(x− x0).

We say that f is partial differentiable on 3rd-2nd coordinate in u if and only if
the condition (Def. 8) is satisfied.

(Def. 8) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆

dom SVF1(2,pdiff1(f, 3), u) and there exist L, R such that for
every y such that y ∈ N holds (SVF1(2,pdiff1(f, 3), u))(y) −
(SVF1(2, pdiff1(f, 3), u))(y0) = L(y − y0) +R(y − y0).

We say that f is partial differentiable on 3rd-3rd coordinate in u if and only if
the condition (Def. 9) is satisfied.

(Def. 9) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and
(ii) there exists a neighbourhood N of z0 such that N ⊆

dom SVF1(3,pdiff1(f, 3), u) and there exist L, R such that for
every z such that z ∈ N holds (SVF1(3, pdiff1(f, 3), u))(z) −
(SVF1(3, pdiff1(f, 3), u))(z0) = L(z − z0) +R(z − z0).

Let f be a partial function from R3 to R and let u be an element of R3. Let
us assume that f is partial differentiable on 1st-1st coordinate in u. The functor
hpartdiff11(f, u) yielding a real number is defined by the condition (Def. 10).

(Def. 10) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of x0 such that N ⊆
dom SVF1(1, pdiff1(f, 1), u) and there exist L,R such that hpartdiff11(f, u) =
L(1) and for every x such that x ∈ N holds (SVF1(1,pdiff1(f, 1), u))(x)−
(SVF1(1, pdiff1(f, 1), u))(x0) = L(x− x0) +R(x− x0).

Let f be a partial function from R3 to R and let u be an element of R3. Let
us assume that f is partial differentiable on 1st-2nd coordinate in u. The functor
hpartdiff12(f, u) yielding a real number is defined by the condition (Def. 11).

(Def. 11) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of y0 such that N ⊆
dom SVF1(2, pdiff1(f, 1), u) and there exist L,R such that hpartdiff12(f, u) =
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L(1) and for every y such that y ∈ N holds (SVF1(2, pdiff1(f, 1), u))(y)−
(SVF1(2,pdiff1(f, 1), u))(y0) = L(y − y0) +R(y − y0).

Let f be a partial function from R3 to R and let u be an element of R3. Let
us assume that f is partial differentiable on 1st-3rd coordinate in u. The functor
hpartdiff13(f, u) yielding a real number is defined by the condition (Def. 12).

(Def. 12) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of z0 such that N ⊆
dom SVF1(3, pdiff1(f, 1), u) and there exist L,R such that hpartdiff13(f, u) =
L(1) and for every z such that z ∈ N holds (SVF1(3, pdiff1(f, 1), u))(z)−
(SVF1(3,pdiff1(f, 1), u))(z0) = L(z − z0) +R(z − z0).

Let f be a partial function from R3 to R and let u be an element of R3. Let
us assume that f is partial differentiable on 2nd-1st coordinate in u. The functor
hpartdiff21(f, u) yielding a real number is defined by the condition (Def. 13).

(Def. 13) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of x0 such that N ⊆
dom SVF1(1, pdiff1(f, 2), u) and there exist L,R such that hpartdiff21(f, u) =
L(1) and for every x such that x ∈ N holds (SVF1(1, pdiff1(f, 2), u))(x)−
(SVF1(1,pdiff1(f, 2), u))(x0) = L(x− x0) +R(x− x0).

Let f be a partial function fromR3 to R and let u be an element ofR3. Let us
assume that f is partial differentiable on 2nd-2nd coordinate in u. The functor
hpartdiff22(f, u) yielding a real number is defined by the condition (Def. 14).

(Def. 14) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of y0 such that N ⊆
dom SVF1(2, pdiff1(f, 2), u) and there exist L,R such that hpartdiff22(f, u) =
L(1) and for every y such that y ∈ N holds (SVF1(2, pdiff1(f, 2), u))(y)−
(SVF1(2,pdiff1(f, 2), u))(y0) = L(y − y0) +R(y − y0).

Let f be a partial function from R3 to R and let u be an element of R3. Let
us assume that f is partial differentiable on 2nd-3rd coordinate in u. The functor
hpartdiff23(f, u) yielding a real number is defined by the condition (Def. 15).

(Def. 15) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and

(ii) there exists a neighbourhood N of z0 such that N ⊆
dom SVF1(3, pdiff1(f, 2), u) and there exist L,R such that hpartdiff23(f, u) =
L(1) and for every z such that z ∈ N holds (SVF1(3, pdiff1(f, 2), u))(z)−
(SVF1(3,pdiff1(f, 2), u))(z0) = L(z − z0) +R(z − z0).

Let f be a partial function from R3 to R and let u be an element of R3. Let
us assume that f is partial differentiable on 3rd-1st coordinate in u. The functor
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hpartdiff31(f, u) yields a real number and is defined by the condition (Def. 16).

(Def. 16) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆

dom SVF1(1,pdiff1(f, 3), u) and there exist L,R such that hpartdiff31(f, u) =
L(1) and for every x such that x ∈ N holds (SVF1(1,pdiff1(f, 3), u))(x)−
(SVF1(1, pdiff1(f, 3), u))(x0) = L(x− x0) +R(x− x0).

Let f be a partial function from R3 to R and let u be an element of R3. Let
us assume that f is partial differentiable on 3rd-2nd coordinate in u. The functor
hpartdiff32(f, u) yielding a real number is defined by the condition (Def. 17).

(Def. 17) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆

dom SVF1(2,pdiff1(f, 3), u) and there exist L,R such that hpartdiff32(f, u) =
L(1) and for every y such that y ∈ N holds (SVF1(2,pdiff1(f, 3), u))(y)−
(SVF1(2, pdiff1(f, 3), u))(y0) = L(y − y0) +R(y − y0).

Let f be a partial function from R3 to R and let u be an element of R3. Let
us assume that f is partial differentiable on 3rd-3rd coordinate in u. The functor
hpartdiff33(f, u) yielding a real number is defined by the condition (Def. 18).

(Def. 18) There exist real numbers x0, y0, z0 such that
(i) u = 〈x0, y0, z0〉, and
(ii) there exists a neighbourhood N of z0 such that N ⊆

dom SVF1(3,pdiff1(f, 3), u) and there exist L,R such that hpartdiff33(f, u) =
L(1) and for every z such that z ∈ N holds (SVF1(3,pdiff1(f, 3), u))(z)−
(SVF1(3, pdiff1(f, 3), u))(z0) = L(z − z0) +R(z − z0).

Next we state a number of propositions:

(1) If u = 〈x0, y0, z0〉 and f is partial differentiable on 1st-1st coordinate in
u, then SVF1(1,pdiff1(f, 1), u) is differentiable in x0.

(2) If u = 〈x0, y0, z0〉 and f is partial differentiable on 1st-2nd coordinate in
u, then SVF1(2,pdiff1(f, 1), u) is differentiable in y0.

(3) If u = 〈x0, y0, z0〉 and f is partial differentiable on 1st-3rd coordinate in
u, then SVF1(3,pdiff1(f, 1), u) is differentiable in z0.

(4) If u = 〈x0, y0, z0〉 and f is partial differentiable on 2nd-1st coordinate in
u, then SVF1(1,pdiff1(f, 2), u) is differentiable in x0.

(5) If u = 〈x0, y0, z0〉 and f is partial differentiable on 2nd-2nd coordinate
in u, then SVF1(2, pdiff1(f, 2), u) is differentiable in y0.

(6) If u = 〈x0, y0, z0〉 and f is partial differentiable on 2nd-3rd coordinate
in u, then SVF1(3, pdiff1(f, 2), u) is differentiable in z0.

(7) If u = 〈x0, y0, z0〉 and f is partial differentiable on 3rd-1st coordinate in
u, then SVF1(1, pdiff1(f, 3), u) is differentiable in x0.
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(8) If u = 〈x0, y0, z0〉 and f is partial differentiable on 3rd-2nd coordinate
in u, then SVF1(2,pdiff1(f, 3), u) is differentiable in y0.

(9) If u = 〈x0, y0, z0〉 and f is partial differentiable on 3rd-3rd coordinate in
u, then SVF1(3, pdiff1(f, 3), u) is differentiable in z0.

(10) If u = 〈x0, y0, z0〉 and f is partial differentiable on 1st-1st coordinate in
u, then hpartdiff11(f, u) = (SVF1(1, pdiff1(f, 1), u))′(x0).

(11) If u = 〈x0, y0, z0〉 and f is partial differentiable on 1st-2nd coordinate in
u, then hpartdiff12(f, u) = (SVF1(2, pdiff1(f, 1), u))′(y0).

(12) If u = 〈x0, y0, z0〉 and f is partial differentiable on 1st-3rd coordinate in
u, then hpartdiff13(f, u) = (SVF1(3, pdiff1(f, 1), u))′(z0).

(13) If u = 〈x0, y0, z0〉 and f is partial differentiable on 2nd-1st coordinate in
u, then hpartdiff21(f, u) = (SVF1(1, pdiff1(f, 2), u))′(x0).

(14) If u = 〈x0, y0, z0〉 and f is partial differentiable on 2nd-2nd coordinate
in u, then hpartdiff22(f, u) = (SVF1(2, pdiff1(f, 2), u))′(y0).

(15) If u = 〈x0, y0, z0〉 and f is partial differentiable on 2nd-3rd coordinate
in u, then hpartdiff23(f, u) = (SVF1(3, pdiff1(f, 2), u))′(z0).

(16) If u = 〈x0, y0, z0〉 and f is partial differentiable on 3rd-1st coordinate in
u, then hpartdiff31(f, u) = (SVF1(1, pdiff1(f, 3), u))′(x0).

(17) If u = 〈x0, y0, z0〉 and f is partial differentiable on 3rd-2nd coordinate
in u, then hpartdiff32(f, u) = (SVF1(2, pdiff1(f, 3), u))′(y0).

(18) If u = 〈x0, y0, z0〉 and f is partial differentiable on 3rd-3rd coordinate in
u, then hpartdiff33(f, u) = (SVF1(3,pdiff1(f, 3), u))′(z0).

Let f be a partial function from R3 to R and let D be a set. We say that f
is partial differentiable on 1st-1st coordinate on D if and only if:

(Def. 19) D ⊆ dom f and for every element u of R3 such that u ∈ D holds f�D is
partial differentiable on 1st-1st coordinate in u.

We say that f is partial differentiable on 1st-2nd coordinate on D if and only if:

(Def. 20) D ⊆ dom f and for every element u of R3 such that u ∈ D holds f�D is
partial differentiable on 1st-2nd coordinate in u.

We say that f is partial differentiable on 1st-3rd coordinate on D if and only if:

(Def. 21) D ⊆ dom f and for every element u of R3 such that u ∈ D holds f�D is
partial differentiable on 1st-3rd coordinate in u.

We say that f is partial differentiable on 2nd-1st coordinate on D if and only if:

(Def. 22) D ⊆ dom f and for every element u of R3 such that u ∈ D holds f�D is
partial differentiable on 2nd-1st coordinate in u.

We say that f is partial differentiable on 2nd-2nd coordinate on D if and only if:

(Def. 23) D ⊆ dom f and for every element u of R3 such that u ∈ D holds f�D is
partial differentiable on 2nd-2nd coordinate in u.

We say that f is partial differentiable on 2nd-3rd coordinate on D if and only if:
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(Def. 24) D ⊆ dom f and for every element u of R3 such that u ∈ D holds f�D is
partial differentiable on 2nd-3rd coordinate in u.

We say that f is partial differentiable on 3rd-1st coordinate on D if and only if:

(Def. 25) D ⊆ dom f and for every element u of R3 such that u ∈ D holds f�D is
partial differentiable on 3rd-1st coordinate in u.

We say that f is partial differentiable on 3rd-2nd coordinate on D if and only if:

(Def. 26) D ⊆ dom f and for every element u of R3 such that u ∈ D holds f�D is
partial differentiable on 3rd-2nd coordinate in u.

We say that f is partial differentiable on 3rd-3rd coordinate on D if and only if:

(Def. 27) D ⊆ dom f and for every element u of R3 such that u ∈ D holds f�D is
partial differentiable on 3rd-3rd coordinate in u.

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partial differentiable on 1st-1st coordinate on D. The functor f1st−1st�D

yields a partial function from R3 to R and is defined by:

(Def. 28) dom(f1st−1st�D ) = D and for every element u of R3 such that u ∈ D holds
f1st−1st�D (u) = hpartdiff11(f, u).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partial differentiable on 1st-2nd coordinate on D. The functor f1st−2nd�D

yielding a partial function from R3 to R is defined by:

(Def. 29) dom(f1st−2nd�D ) = D and for every element u of R3 such that u ∈ D holds

f1st−2nd�D (u) = hpartdiff12(f, u).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partial differentiable on 1st-3rd coordinate on D. The functor f1st−3rd�D

yields a partial function from R3 to R and is defined by:

(Def. 30) dom(f1st−3rd�D ) = D and for every element u of R3 such that u ∈ D holds

f1st−3rd�D (u) = hpartdiff13(f, u).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partial differentiable on 2nd-1st coordinate on D. The functor f2nd−1st�D

yielding a partial function from R3 to R is defined as follows:

(Def. 31) dom(f2nd−1st�D ) = D and for every element u of R3 such that u ∈ D holds

f2nd−1st�D (u) = hpartdiff21(f, u).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partial differentiable on 2nd-2nd coordinate onD. The functor f2nd−2nd�D

yields a partial function from R3 to R and is defined by:

(Def. 32) dom(f2nd−2nd�D ) = D and for every element u of R3 such that u ∈ D
holds f2nd−2nd�D (u) = hpartdiff22(f, u).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partial differentiable on 2nd-3rd coordinate on D. The functor f2nd−3rd�D
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yields a partial function from R3 to R and is defined by:

(Def. 33) dom(f2nd−3rd�D ) = D and for every element u of R3 such that u ∈ D holds

f2nd−3rd�D (u) = hpartdiff23(f, u).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partial differentiable on 3rd-1st coordinate on D. The functor f3rd−1st�D

yields a partial function from R3 to R and is defined as follows:

(Def. 34) dom(f3rd−1st�D ) = D and for every element u of R3 such that u ∈ D holds

f3rd−1st�D (u) = hpartdiff31(f, u).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partial differentiable on 3rd-2nd coordinate on D. The functor f3rd−2nd�D

yields a partial function from R3 to R and is defined by:

(Def. 35) dom(f3rd−2nd�D ) = D and for every element u of R3 such that u ∈ D holds

f3rd−2nd�D (u) = hpartdiff32(f, u).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partial differentiable on 3rd-3rd coordinate on D. The functor f3rd−3rd�D

yielding a partial function from R3 to R is defined by:

(Def. 36) dom(f3rd−3rd�D ) = D and for every element u of R3 such that u ∈ D holds

f3rd−3rd�D (u) = hpartdiff33(f, u).

2. Main Properties of Second-order Partial Derivatives

Next we state a number of propositions:

(19) f is partial differentiable on 1st-1st coordinate in u if and only if
pdiff1(f, 1) is partially differentiable in u w.r.t. 1.

(20) f is partial differentiable on 1st-2nd coordinate in u if and only if
pdiff1(f, 1) is partially differentiable in u w.r.t. 2.

(21) f is partial differentiable on 1st-3rd coordinate in u if and only if
pdiff1(f, 1) is partially differentiable in u w.r.t. 3.

(22) f is partial differentiable on 2nd-1st coordinate in u if and only if
pdiff1(f, 2) is partially differentiable in u w.r.t. 1.

(23) f is partial differentiable on 2nd-2nd coordinate in u if and only if
pdiff1(f, 2) is partially differentiable in u w.r.t. 2.

(24) f is partial differentiable on 2nd-3rd coordinate in u if and only if
pdiff1(f, 2) is partially differentiable in u w.r.t. 3.

(25) f is partial differentiable on 3rd-1st coordinate in u if and only if
pdiff1(f, 3) is partially differentiable in u w.r.t. 1.

(26) f is partial differentiable on 3rd-2nd coordinate in u if and only if
pdiff1(f, 3) is partially differentiable in u w.r.t. 2.
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(27) f is partial differentiable on 3rd-3rd coordinate in u if and only if
pdiff1(f, 3) is partially differentiable in u w.r.t. 3.

(28) If f is partial differentiable on 1st-1st coordinate in u, then
hpartdiff11(f, u) = partdiff(pdiff1(f, 1), u, 1).

(29) If f is partial differentiable on 1st-2nd coordinate in u, then
hpartdiff12(f, u) = partdiff(pdiff1(f, 1), u, 2).

(30) If f is partial differentiable on 1st-3rd coordinate in u, then
hpartdiff13(f, u) = partdiff(pdiff1(f, 1), u, 3).

(31) If f is partial differentiable on 2nd-1st coordinate in u, then
hpartdiff21(f, u) = partdiff(pdiff1(f, 2), u, 1).

(32) If f is partial differentiable on 2nd-2nd coordinate in u, then
hpartdiff22(f, u) = partdiff(pdiff1(f, 2), u, 2).

(33) If f is partial differentiable on 2nd-3rd coordinate in u, then
hpartdiff23(f, u) = partdiff(pdiff1(f, 2), u, 3).

(34) If f is partial differentiable on 3rd-1st coordinate in u, then
hpartdiff31(f, u) = partdiff(pdiff1(f, 3), u, 1).

(35) If f is partial differentiable on 3rd-2nd coordinate in u, then
hpartdiff32(f, u) = partdiff(pdiff1(f, 3), u, 2).

(36) If f is partial differentiable on 3rd-3rd coordinate in u, then
hpartdiff33(f, u) = partdiff(pdiff1(f, 3), u, 3).

(37) Let u0 be an element ofR3 andN be a neighbourhood of (proj(1, 3))(u0).
Suppose f is partial differentiable on 1st-1st coordinate in u0 and
N ⊆ dom SVF1(1, pdiff1(f, 1), u0). Let h be a convergent to 0 se-
quence of real numbers and c be a constant sequence of real num-
bers. Suppose rng c = {(proj(1, 3))(u0)} and rng(h + c) ⊆ N. Then
h−1 ((SVF1(1,pdiff1(f, 1), u0)∗(h+c))−(SVF1(1, pdiff1(f, 1), u0)∗c)) is co-
nvergent and hpartdiff11(f, u0) = lim(h−1 ((SVF1(1, pdiff1(f, 1), u0)∗(h+
c))− (SVF1(1,pdiff1(f, 1), u0)∗c))).

(38) Let u0 be an element ofR3 andN be a neighbourhood of (proj(2, 3))(u0).
Suppose f is partial differentiable on 1st-2nd coordinate in u0 and
N ⊆ dom SVF1(2, pdiff1(f, 1), u0). Let h be a convergent to 0 se-
quence of real numbers and c be a constant sequence of real num-
bers. Suppose rng c = {(proj(2, 3))(u0)} and rng(h + c) ⊆ N. Then
h−1 ((SVF1(2,pdiff1(f, 1), u0)∗(h+c))−(SVF1(2, pdiff1(f, 1), u0)∗c)) is co-
nvergent and hpartdiff12(f, u0) = lim(h−1 ((SVF1(2, pdiff1(f, 1), u0)∗(h+
c))− (SVF1(2, pdiff1(f, 1), u0)∗c))).

(39) Let u0 be an element ofR3 andN be a neighbourhood of (proj(3, 3))(u0).
Suppose f is partial differentiable on 1st-3rd coordinate in u0 and
N ⊆ dom SVF1(3, pdiff1(f, 1), u0). Let h be a convergent to 0 se-
quence of real numbers and c be a constant sequence of real num-
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bers. Suppose rng c = {(proj(3, 3))(u0)} and rng(h + c) ⊆ N. Then
h−1 ((SVF1(3,pdiff1(f, 1), u0)∗(h+c))−(SVF1(3,pdiff1(f, 1), u0)∗c)) is co-
nvergent and hpartdiff13(f, u0) = lim(h−1 ((SVF1(3, pdiff1(f, 1), u0)∗(h+
c))− (SVF1(3,pdiff1(f, 1), u0)∗c))).

(40) Let u0 be an element ofR3 andN be a neighbourhood of (proj(1, 3))(u0).
Suppose f is partial differentiable on 2nd-1st coordinate in u0 and
N ⊆ dom SVF1(1, pdiff1(f, 2), u0). Let h be a convergent to 0 se-
quence of real numbers and c be a constant sequence of real num-
bers. Suppose rng c = {(proj(1, 3))(u0)} and rng(h + c) ⊆ N. Then
h−1 ((SVF1(1,pdiff1(f, 2), u0)∗(h+c))−(SVF1(1, pdiff1(f, 2), u0)∗c)) is co-
nvergent and hpartdiff21(f, u0) = lim(h−1 ((SVF1(1, pdiff1(f, 2), u0)∗(h+
c))− (SVF1(1,pdiff1(f, 2), u0)∗c))).

(41) Let u0 be an element ofR3 andN be a neighbourhood of (proj(2, 3))(u0).
Suppose f is partial differentiable on 2nd-2nd coordinate in u0 and
N ⊆ dom SVF1(2, pdiff1(f, 2), u0). Let h be a convergent to 0 se-
quence of real numbers and c be a constant sequence of real num-
bers. Suppose rng c = {(proj(2, 3))(u0)} and rng(h + c) ⊆ N. Then
h−1 ((SVF1(2,pdiff1(f, 2), u0)∗(h+c))−(SVF1(2, pdiff1(f, 2), u0)∗c)) is co-
nvergent and hpartdiff22(f, u0) = lim(h−1 ((SVF1(2, pdiff1(f, 2), u0)∗(h+
c))− (SVF1(2, pdiff1(f, 2), u0)∗c))).

(42) Let u0 be an element ofR3 andN be a neighbourhood of (proj(3, 3))(u0).
Suppose f is partial differentiable on 2nd-3rd coordinate in u0 and
N ⊆ dom SVF1(3, pdiff1(f, 2), u0). Let h be a convergent to 0 se-
quence of real numbers and c be a constant sequence of real num-
bers. Suppose rng c = {(proj(3, 3))(u0)} and rng(h + c) ⊆ N. Then
h−1 ((SVF1(3,pdiff1(f, 2), u0)∗(h+c))−(SVF1(3, pdiff1(f, 2), u0)∗c)) is co-
nvergent and hpartdiff23(f, u0) = lim(h−1 ((SVF1(3, pdiff1(f, 2), u0)∗(h+
c))− (SVF1(3, pdiff1(f, 2), u0)∗c))).

(43) Let u0 be an element ofR3 andN be a neighbourhood of (proj(1, 3))(u0).
Suppose f is partial differentiable on 3rd-1st coordinate in u0 and
N ⊆ dom SVF1(1, pdiff1(f, 3), u0). Let h be a convergent to 0 se-
quence of real numbers and c be a constant sequence of real num-
bers. Suppose rng c = {(proj(1, 3))(u0)} and rng(h + c) ⊆ N. Then
h−1 ((SVF1(1,pdiff1(f, 3), u0)∗(h+c))−(SVF1(1, pdiff1(f, 3), u0)∗c)) is co-
nvergent and hpartdiff31(f, u0) = lim(h−1 ((SVF1(1, pdiff1(f, 3), u0)∗(h+
c))− (SVF1(1, pdiff1(f, 3), u0)∗c))).

(44) Let u0 be an element ofR3 andN be a neighbourhood of (proj(2, 3))(u0).
Suppose f is partial differentiable on 3rd-2nd coordinate in u0 and
N ⊆ dom SVF1(2, pdiff1(f, 3), u0). Let h be a convergent to 0 se-
quence of real numbers and c be a constant sequence of real num-
bers. Suppose rng c = {(proj(2, 3))(u0)} and rng(h + c) ⊆ N. Then
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h−1 ((SVF1(2, pdiff1(f, 3), u0)∗(h+c))−(SVF1(2, pdiff1(f, 3), u0)∗c)) is co-
nvergent and hpartdiff32(f, u0) = lim(h−1 ((SVF1(2,pdiff1(f, 3), u0)∗(h+
c))− (SVF1(2, pdiff1(f, 3), u0)∗c))).

(45) Let u0 be an element ofR3 andN be a neighbourhood of (proj(3, 3))(u0).
Suppose f is partial differentiable on 3rd-3rd coordinate in u0 and
N ⊆ dom SVF1(3, pdiff1(f, 3), u0). Let h be a convergent to 0 se-
quence of real numbers and c be a constant sequence of real num-
bers. Suppose rng c = {(proj(3, 3))(u0)} and rng(h + c) ⊆ N. Then
h−1 ((SVF1(3, pdiff1(f, 3), u0)∗(h+c))−(SVF1(3, pdiff1(f, 3), u0)∗c)) is co-
nvergent and hpartdiff33(f, u0) = lim(h−1 ((SVF1(3,pdiff1(f, 3), u0)∗(h+
c))− (SVF1(3, pdiff1(f, 3), u0)∗c))).

(46) Suppose that
(i) f1 is partial differentiable on 1st-1st coordinate in u0, and
(ii) f2 is partial differentiable on 1st-1st coordinate in u0.

Then pdiff1(f1, 1) + pdiff1(f2, 1) is partially differentiable in u0 w.r.t.
1 and partdiff(pdiff1(f1, 1) + pdiff1(f2, 1), u0, 1) = hpartdiff11(f1, u0) +
hpartdiff11(f2, u0).

(47) Suppose that
(i) f1 is partial differentiable on 1st-2nd coordinate in u0, and
(ii) f2 is partial differentiable on 1st-2nd coordinate in u0.

Then pdiff1(f1, 1) + pdiff1(f2, 1) is partially differentiable in u0 w.r.t.
2 and partdiff(pdiff1(f1, 1) + pdiff1(f2, 1), u0, 2) = hpartdiff12(f1, u0) +
hpartdiff12(f2, u0).

(48) Suppose that
(i) f1 is partial differentiable on 1st-3rd coordinate in u0, and
(ii) f2 is partial differentiable on 1st-3rd coordinate in u0.

Then pdiff1(f1, 1) + pdiff1(f2, 1) is partially differentiable in u0 w.r.t.
3 and partdiff(pdiff1(f1, 1) + pdiff1(f2, 1), u0, 3) = hpartdiff13(f1, u0) +
hpartdiff13(f2, u0).

(49) Suppose that
(i) f1 is partial differentiable on 2nd-1st coordinate in u0, and
(ii) f2 is partial differentiable on 2nd-1st coordinate in u0.

Then pdiff1(f1, 2) + pdiff1(f2, 2) is partially differentiable in u0 w.r.t.
1 and partdiff(pdiff1(f1, 2) + pdiff1(f2, 2), u0, 1) = hpartdiff21(f1, u0) +
hpartdiff21(f2, u0).

(50) Suppose that
(i) f1 is partial differentiable on 2nd-2nd coordinate in u0, and
(ii) f2 is partial differentiable on 2nd-2nd coordinate in u0.

Then pdiff1(f1, 2) + pdiff1(f2, 2) is partially differentiable in u0 w.r.t.
2 and partdiff(pdiff1(f1, 2) + pdiff1(f2, 2), u0, 2) = hpartdiff22(f1, u0) +
hpartdiff22(f2, u0).
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(51) Suppose that
(i) f1 is partial differentiable on 2nd-3rd coordinate in u0, and

(ii) f2 is partial differentiable on 2nd-3rd coordinate in u0.
Then pdiff1(f1, 2) + pdiff1(f2, 2) is partially differentiable in u0 w.r.t.
3 and partdiff(pdiff1(f1, 2) + pdiff1(f2, 2), u0, 3) = hpartdiff23(f1, u0) +
hpartdiff23(f2, u0).

(52) Suppose that
(i) f1 is partial differentiable on 1st-1st coordinate in u0, and

(ii) f2 is partial differentiable on 1st-1st coordinate in u0.
Then pdiff1(f1, 1) − pdiff1(f2, 1) is partially differentiable in u0 w.r.t.
1 and partdiff(pdiff1(f1, 1) − pdiff1(f2, 1), u0, 1) = hpartdiff11(f1, u0) −
hpartdiff11(f2, u0).

(53) Suppose that
(i) f1 is partial differentiable on 1st-2nd coordinate in u0, and

(ii) f2 is partial differentiable on 1st-2nd coordinate in u0.
Then pdiff1(f1, 1) − pdiff1(f2, 1) is partially differentiable in u0 w.r.t.
2 and partdiff(pdiff1(f1, 1) − pdiff1(f2, 1), u0, 2) = hpartdiff12(f1, u0) −
hpartdiff12(f2, u0).

(54) Suppose that
(i) f1 is partial differentiable on 1st-3rd coordinate in u0, and

(ii) f2 is partial differentiable on 1st-3rd coordinate in u0.
Then pdiff1(f1, 1) − pdiff1(f2, 1) is partially differentiable in u0 w.r.t.
3 and partdiff(pdiff1(f1, 1) − pdiff1(f2, 1), u0, 3) = hpartdiff13(f1, u0) −
hpartdiff13(f2, u0).

(55) Suppose that
(i) f1 is partial differentiable on 2nd-1st coordinate in u0, and

(ii) f2 is partial differentiable on 2nd-1st coordinate in u0.
Then pdiff1(f1, 2) − pdiff1(f2, 2) is partially differentiable in u0 w.r.t.
1 and partdiff(pdiff1(f1, 2) − pdiff1(f2, 2), u0, 1) = hpartdiff21(f1, u0) −
hpartdiff21(f2, u0).

(56) Suppose that
(i) f1 is partial differentiable on 2nd-2nd coordinate in u0, and

(ii) f2 is partial differentiable on 2nd-2nd coordinate in u0.
Then pdiff1(f1, 2) − pdiff1(f2, 2) is partially differentiable in u0 w.r.t.
2 and partdiff(pdiff1(f1, 2) − pdiff1(f2, 2), u0, 2) = hpartdiff22(f1, u0) −
hpartdiff22(f2, u0).

(57) Suppose that
(i) f1 is partial differentiable on 2nd-3rd coordinate in u0, and

(ii) f2 is partial differentiable on 2nd-3rd coordinate in u0.
Then pdiff1(f1, 2) − pdiff1(f2, 2) is partially differentiable in u0 w.r.t.
3 and partdiff(pdiff1(f1, 2) − pdiff1(f2, 2), u0, 3) = hpartdiff23(f1, u0) −
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hpartdiff23(f2, u0).

(58) Suppose f is partial differentiable on 1st-1st coordinate in u0.
Then r pdiff1(f, 1) is partially differentiable in u0 w.r.t. 1 and
partdiff(r pdiff1(f, 1), u0, 1) = r · hpartdiff11(f, u0).

(59) Suppose f is partial differentiable on 1st-2nd coordinate in u0.
Then r pdiff1(f, 1) is partially differentiable in u0 w.r.t. 2 and
partdiff(r pdiff1(f, 1), u0, 2) = r · hpartdiff12(f, u0).

(60) Suppose f is partial differentiable on 1st-3rd coordinate in u0.
Then r pdiff1(f, 1) is partially differentiable in u0 w.r.t. 3 and
partdiff(r pdiff1(f, 1), u0, 3) = r · hpartdiff13(f, u0).

(61) Suppose f is partial differentiable on 2nd-1st coordinate in u0.
Then r pdiff1(f, 2) is partially differentiable in u0 w.r.t. 1 and
partdiff(r pdiff1(f, 2), u0, 1) = r · hpartdiff21(f, u0).

(62) Suppose f is partial differentiable on 2nd-2nd coordinate in u0.
Then r pdiff1(f, 2) is partially differentiable in u0 w.r.t. 2 and
partdiff(r pdiff1(f, 2), u0, 2) = r · hpartdiff22(f, u0).

(63) Suppose f is partial differentiable on 2nd-3rd coordinate in u0.
Then r pdiff1(f, 2) is partially differentiable in u0 w.r.t. 3 and
partdiff(r pdiff1(f, 2), u0, 3) = r · hpartdiff23(f, u0).

(64) Suppose f is partial differentiable on 3rd-1st coordinate in u0.
Then r pdiff1(f, 3) is partially differentiable in u0 w.r.t. 1 and
partdiff(r pdiff1(f, 3), u0, 1) = r · hpartdiff31(f, u0).

(65) Suppose f is partial differentiable on 3rd-2nd coordinate in u0.
Then r pdiff1(f, 3) is partially differentiable in u0 w.r.t. 2 and
partdiff(r pdiff1(f, 3), u0, 2) = r · hpartdiff32(f, u0).

(66) Suppose f is partial differentiable on 3rd-3rd coordinate in u0.
Then r pdiff1(f, 3) is partially differentiable in u0 w.r.t. 3 and
partdiff(r pdiff1(f, 3), u0, 3) = r · hpartdiff33(f, u0).

(67) Suppose that
(i) f1 is partial differentiable on 1st-1st coordinate in u0, and
(ii) f2 is partial differentiable on 1st-1st coordinate in u0.

Then pdiff1(f1, 1) pdiff1(f2, 1) is partially differentiable in u0 w.r.t. 1.

(68) Suppose that
(i) f1 is partial differentiable on 1st-2nd coordinate in u0, and
(ii) f2 is partial differentiable on 1st-2nd coordinate in u0.

Then pdiff1(f1, 1) pdiff1(f2, 1) is partially differentiable in u0 w.r.t. 2.

(69) Suppose that
(i) f1 is partial differentiable on 1st-3rd coordinate in u0, and
(ii) f2 is partial differentiable on 1st-3rd coordinate in u0.

Then pdiff1(f1, 1) pdiff1(f2, 1) is partially differentiable in u0 w.r.t. 3.
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(70) Suppose that
(i) f1 is partial differentiable on 2nd-1st coordinate in u0, and
(ii) f2 is partial differentiable on 2nd-1st coordinate in u0.

Then pdiff1(f1, 2) pdiff1(f2, 2) is partially differentiable in u0 w.r.t. 1.

(71) Suppose that
(i) f1 is partial differentiable on 2nd-2nd coordinate in u0, and

(ii) f2 is partial differentiable on 2nd-2nd coordinate in u0.
Then pdiff1(f1, 2) pdiff1(f2, 2) is partially differentiable in u0 w.r.t. 2.

(72) Suppose that
(i) f1 is partial differentiable on 2nd-3rd coordinate in u0, and

(ii) f2 is partial differentiable on 2nd-3rd coordinate in u0.
Then pdiff1(f1, 2) pdiff1(f2, 2) is partially differentiable in u0 w.r.t. 3.

(73) Suppose that
(i) f1 is partial differentiable on 3rd-1st coordinate in u0, and

(ii) f2 is partial differentiable on 3rd-1st coordinate in u0.
Then pdiff1(f1, 3) pdiff1(f2, 3) is partially differentiable in u0 w.r.t. 1.

(74) Suppose that
(i) f1 is partial differentiable on 3rd-2nd coordinate in u0, and

(ii) f2 is partial differentiable on 3rd-2nd coordinate in u0.
Then pdiff1(f1, 3) pdiff1(f2, 3) is partially differentiable in u0 w.r.t. 2.

(75) Suppose that
(i) f1 is partial differentiable on 3rd-3rd coordinate in u0, and

(ii) f2 is partial differentiable on 3rd-3rd coordinate in u0.
Then pdiff1(f1, 3) pdiff1(f2, 3) is partially differentiable in u0 w.r.t. 3.

(76) Let u0 be an element of R3. Suppose f is partial differentiable on
1st-1st coordinate in u0. Then SVF1(1,pdiff1(f, 1), u0) is continuous in
(proj(1, 3))(u0).

(77) Let u0 be an element of R3. Suppose f is partial differentiable on
1st-2nd coordinate in u0. Then SVF1(2,pdiff1(f, 1), u0) is continuous in
(proj(2, 3))(u0).

(78) Let u0 be an element of R3. Suppose f is partial differentiable on
1st-3rd coordinate in u0. Then SVF1(3, pdiff1(f, 1), u0) is continuous in
(proj(3, 3))(u0).

(79) Let u0 be an element of R3. Suppose f is partial differentiable on
2nd-1st coordinate in u0. Then SVF1(1,pdiff1(f, 2), u0) is continuous in
(proj(1, 3))(u0).

(80) Let u0 be an element of R3. Suppose f is partial differentiable on
2nd-2nd coordinate in u0. Then SVF1(2,pdiff1(f, 2), u0) is continuous in
(proj(2, 3))(u0).
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(81) Let u0 be an element of R3. Suppose f is partial differentiable on
2nd-3rd coordinate in u0. Then SVF1(3,pdiff1(f, 2), u0) is continuous in
(proj(3, 3))(u0).

(82) Let u0 be an element of R3. Suppose f is partial differentiable on
3rd-1st coordinate in u0. Then SVF1(1,pdiff1(f, 3), u0) is continuous in
(proj(1, 3))(u0).

(83) Let u0 be an element of R3. Suppose f is partial differentiable on
3rd-2nd coordinate in u0. Then SVF1(2,pdiff1(f, 3), u0) is continuous in
(proj(2, 3))(u0).

(84) Let u0 be an element of R3. Suppose f is partial differentiable on
3rd-3rd coordinate in u0. Then SVF1(3, pdiff1(f, 3), u0) is continuous in
(proj(3, 3))(u0).
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from R to R, and Z is an open subset of R.

The following propositions are true:

(1) Suppose that
(i) A ⊆ Z,
(ii) f = 1

(the function sin) (the function cos) ,

(iii) Z ⊆ dom((the function ln) ·(the function tan)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function ln) · (the function tan))(supA) − ((the

function ln) · (the function tan))(inf A).
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(2) Suppose that
(i) A ⊆ Z,
(ii) f = − 1

(the function sin) (the function cos) ,

(iii) Z ⊆ dom((the function ln) ·(the function cot)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function ln) ·(the function cot))(supA) − ((the

function ln) ·(the function cot))(inf A).

(3) Suppose that
(i) A ⊆ Z,

(ii) f = 2 ((the function exp) (the function sin)),
(iii) Z ⊆ dom((the function exp) ((the function sin)−(the function cos))),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function exp) ((the function sin)−(the func-

tion cos)))(supA)− ((the function exp) ((the function sin)−(the function
cos)))(inf A).

(4) Suppose that
(i) A ⊆ Z,

(ii) f = 2 ((the function exp) (the function cos)),
(iii) Z ⊆ dom((the function exp) ((the function sin)+(the function cos))),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function exp) ((the function sin)+(the func-

tion cos)))(supA)− ((the function exp) ((the function sin)+(the function
cos)))(inf A).

(5) Suppose A ⊆ Z = dom((the function cos)−(the function sin))
and (the function cos)−(the function sin) is continuous on A.

Then
∫
A

((the function cos)− (the function sin))(x)dx = ((the function

sin)+(the function cos))(supA) − ((the function sin)+(the function
cos))(inf A).

(6) Suppose A ⊆ Z = dom((the function cos)+(the function sin))
and (the function cos)+(the function sin) is continuous on A.

Then
∫
A

((the function cos) + (the function sin))(x)dx = ((the function

sin)−(the function cos))(supA) − ((the function sin)−(the function
cos))(inf A).
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(7) Suppose Z ⊆ dom((−12)
(the function sin)+(the function cos)

the function exp ). Then

(i) (−12)
(the function sin)+(the function cos)

the function exp is differentiable on Z, and
(ii) for every x such that x ∈ Z holds

((−12)
(the function sin)+(the function cos)

the function exp )′�Z(x) = (the function sin)(x)
(the function exp)(x) .

(8) Suppose that
(i) A ⊆ Z,
(ii) f = the function sin

the function exp ,

(iii) Z ⊆ dom((−12)
(the function sin)+(the function cos)

the function exp ),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((−1
2

)
(the function sin) + (the function cos)

the function exp
)(supA)−

((−1
2

)
(the function sin) + (the function cos)

the function exp
)(inf A).

(9) Suppose Z ⊆ dom(12
(the function sin)−(the function cos)

the function exp ). Then

(i) 1
2
(the function sin)−(the function cos)

the function exp is differentiable on Z, and
(ii) for every x such that x ∈ Z holds

(12
(the function sin)−(the function cos)

the function exp )′�Z(x) = (the function cos)(x)
(the function exp)(x) .

(10) Suppose that
(i) A ⊆ Z,
(ii) f = the function cos

the function exp ,

(iii) Z ⊆ dom(12
(the function sin)−(the function cos)

the function exp ),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (
1
2

(the function sin)− (the function cos)
the function exp

)(supA) −

(
1
2

(the function sin)− (the function cos)
the function exp

)(inf A).

(11) Suppose that
(i) A ⊆ Z,
(ii) f = (the function exp) ((the function sin)+(the function cos)),
(iii) Z ⊆ dom((the function exp) (the function sin)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function exp) (the function sin))(supA) − ((the

function exp) (the function sin))(inf A).

(12) Suppose that
(i) A ⊆ Z,
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(ii) f = (the function exp) ((the function cos)−(the function sin)),
(iii) Z ⊆ dom((the function exp) (the function cos)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function exp) (the function cos))(supA) − ((the

function exp) (the function cos))(inf A).

(13) Suppose that
(i) A ⊆ Z,

(ii) f1 = �2,

(iii) f = −
the function sin
the function cos

f1
+

1
idZ

(the function cos)2
,

(iv) Z ⊆ dom( 1idZ (the function tan)),
(v) Z = dom f, and

(vi) f is continuous on A.

Then
∫
A

f(x)dx = (
1

idZ
(the function tan))(supA) − ( 1idZ (the function

tan))(inf A).

(14) Suppose that
(i) A ⊆ Z,

(ii) f = −
the function cos
the function sin

f1
−

1
idZ

(the function sin)2
,

(iii) f1 = �2,
(iv) Z ⊆ dom( 1idZ (the function cot)),
(v) Z = dom f, and

(vi) f is continuous on A.

Then
∫
A

f(x)dx = (
1

idZ
(the function cot))(supA) − ( 1idZ (the function

cot))(inf A).

(15) Suppose that
(i) A ⊆ Z,
(ii) f =

the function sin
the function cos

idZ
+ the function ln
(the function cos)2

,

(iii) Z ⊆ dom((the function ln) (the function tan)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function ln) (the function tan))(supA) − ((the

function ln) (the function tan))(inf A).

(16) Suppose that
(i) A ⊆ Z,
(ii) f =

the function cos
the function sin

idZ
− the function ln
(the function sin)2

,
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(iii) Z ⊆ dom((the function ln) (the function cot)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function ln) (the function cot))(supA) − ((the

function ln) (the function cot))(inf A).

(17) Suppose that
(i) A ⊆ Z,
(ii) f = the function tan

idZ
+ the function ln
(the function cos)2

,

(iii) Z ⊆ dom((the function ln) (the function tan)),
(iv) Z ⊆ dom (the function tan),
(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = ((the function ln) (the function tan))(supA) − ((the

function ln) (the function tan))(inf A).

(18) Suppose that
(i) A ⊆ Z,
(ii) f = the function cot

idZ
− the function ln
(the function sin)2

,

(iii) Z ⊆ dom((the function ln) (the function cot)),
(iv) Z ⊆ dom (the function cot),
(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = ((the function ln) (the function cot))(supA) − ((the

function ln) (the function cot))(inf A).

(19) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f1(x) = 1,
(iii) f = the function arctan

idZ
+ the function ln

f1+�2
,

(iv) Z ⊆ ]−1, 1[,
(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = ((the function ln) (the function arctan))(supA)− ((the

function ln) (the function arctan))(inf A).

(20) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f1(x) = 1,
(iii) f = the function arccot

idZ
− the function lnf1+�2

,
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(iv) Z ⊆ ]−1, 1[,
(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = ((the function ln) (the function arccot))(supA)− ((the

function ln) (the function arccot))(inf A).

(21) Suppose A ⊆ Z and f = (the function exp)·(the function tan)
(the function cos)2

and Z = dom f

and f is continuous on A. Then
∫
A

f(x)dx = ((the function exp) ·(the

function tan))(supA)− ((the function exp) ·(the function tan))(inf A).

(22) Suppose A ⊆ Z and f = − (the function exp)·(the function cot)
(the function sin)2

and Z = dom f

and f is continuous on A. Then
∫
A

f(x)dx = ((the function exp) ·(the

function cot))(supA)− ((the function exp) ·(the function cot))(inf A).

(23) Suppose Z ⊆ dom((the function exp) ·(the function cot)). Then
(i) −(the function exp) · (the function cot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function exp) · (the function

cot))′�Z(x) = (the function exp)((the function cot)(x))
(the function sin)(x)2 .

(24) Suppose A ⊆ Z and f = (the function exp)·(the function cot)
(the function sin)2

and Z = dom f and

f is continuous on A. Then
∫
A

f(x)dx = (−(the function exp) ·

(the function cot))(supA)− (−(the function exp) · (the function cot))(inf A).

(25) Suppose that
(i) A ⊆ Z,
(ii) f = 1

idZ ((the function cos)·(the function ln))2 ,

(iii) Z ⊆ dom((the function tan) ·(the function ln)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function tan) ·(the function ln))(supA)− ((the function

tan) ·(the function ln))(inf A).

(26) Suppose that
(i) A ⊆ Z,
(ii) f = − 1

idZ ((the function sin)·(the function ln))2 ,

(iii) Z ⊆ dom((the function cot) ·(the function ln)),
(iv) Z = dom f, and
(v) f is continuous on A.
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Then
∫
A

f(x)dx = ((the function cot) ·(the function ln))(supA)− ((the function

cot) ·(the function ln))(inf A).

(27) Suppose Z ⊆ dom((the function cot) ·(the function ln)). Then
(i) −(the function cot) · (the function ln) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−(the function cot) · (the function
ln))′�Z(x) = 1

x·(the function sin)((the function ln)(x))2 .

(28) Suppose that
(i) A ⊆ Z,

(ii) f = 1
idZ ((the function sin)·(the function ln))2 ,

(iii) Z ⊆ dom((the function cot) ·(the function ln)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (−(the function cot) · (the function ln))(supA)− (−(the

function cot) · (the function ln))(inf A).

(29) Suppose that
(i) A ⊆ Z,

(ii) f = the function exp
((the function cos)·(the function exp))2 ,

(iii) Z ⊆ dom((the function tan) ·(the function exp)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function tan) ·(the function exp))(supA)− ((the func-

tion tan) ·(the function exp))(inf A).

(30) Suppose that
(i) A ⊆ Z,

(ii) f = − the function exp
((the function sin)·(the function exp))2 ,

(iii) Z ⊆ dom((the function cot) ·(the function exp)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function cot) ·(the function exp))(supA)−((the function

cot) ·(the function exp))(inf A).

(31) Suppose Z ⊆ dom((the function cot) ·(the function exp)). Then
(i) −(the function cot) · (the function exp) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−(the function cot) · (the function
exp))′�Z(x) = (the function exp)(x)

(the function sin)((the function exp)(x))2 .

(32) Suppose that
(i) A ⊆ Z,
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(ii) f = the function exp
((the function sin)·(the function exp))2 ,

(iii) Z ⊆ dom((the function cot) ·(the function exp)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (−(the function cot) · (the function exp))(supA)− (−(the

function cot) · (the function exp))(inf A).

(33) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = − 1

x2·(the function cos)( 1
x
)2
,

(iii) Z ⊆ dom((the function tan) · 1idZ ),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function tan) · 1idZ )(supA) − ((the function tan)

· 1idZ )(inf A).

(34) Suppose Z ⊆ dom((the function tan) · 1idZ ). Then

(i) −(the function tan) · 1idZ is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−(the function tan) · 1idZ )′�Z(x) =
1

x2·(the function cos)( 1
x
)2
.

(35) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = 1

x2·(the function cos)( 1
x
)2
,

(iii) Z ⊆ dom((the function tan) · 1idZ ),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (−(the function tan) · 1
idZ

)(supA)− (−(the function

tan) · 1idZ )(inf A).

(36) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = 1

x2·(the function sin)( 1
x
)2
,

(iii) Z ⊆ dom((the function cot) · 1idZ ),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function cot) · 1idZ )(supA) − ((the function cot)

· 1idZ )(inf A).
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(37) Suppose that A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1
and (the function arctan)(x) > 0 and f = 1

(f1+�2) the function arctan
and Z ⊆

]−1, 1[ and Z ⊆ dom((the function ln) ·(the function arctan)) and Z = dom f

and f is continuous on A. Then
∫
A

f(x)dx = ((the function ln) ·(the function

arctan))(supA)− ((the function ln) ·(the function arctan))(inf A).

(38) Suppose that A ⊆ Z and f = n (�
n−1)·the function arctan

f1+�2
and for every x such

that x ∈ Z holds f1(x) = 1 and Z ⊆ ]−1, 1[ and Z ⊆ dom((�n) · the function

arctan) and Z = dom f and f is continuous on A. Then
∫
A

f(x)dx = ((�n) · the

function arctan)(supA)− ((�n) · the function arctan)(inf A).

(39) Suppose that A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1 and
f = −n (�

n−1)·the function arccot
f1+�2

and Z ⊆ ]−1, 1[ and Z ⊆ dom((�n) · the function

arccot) and Z = dom f and f is continuous on A. Then
∫
A

f(x)dx = ((�n) · the

function arccot)(supA)− ((�n) · the function arccot)(inf A).

(40) Suppose Z ⊆ dom((�n) · the function arccot) and Z ⊆ ]−1, 1[. Then
(i) −(�n) · the function arccot is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−(�n) · the function arccot)′�Z(x) =
n·(the function arccot)(x)n−1

1+x2 .

(41) Suppose that A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1
and f = n (�

n−1)·the function arccot
f1+�2

and Z ⊆ ]−1, 1[ and Z ⊆ dom((�n) · the

function arccot) and Z = dom f and f is continuous on A. Then
∫
A

f(x)dx =

(−(�n) · the function arccot)(supA)− (−(�n) · the function arccot)(inf A).

(42) Suppose that A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1 and
f = the function arctan

f1+�2
and Z ⊆ ]−1, 1[ and Z ⊆ dom((�2) · the function arctan)

and Z = dom f and f is continuous on A. Then
∫
A

f(x)dx = (
1
2

((�2) · the

function arctan))(supA)− (12 ((�2) · the function arctan))(inf A).

(43) Suppose that A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1 and
f = − the function arccotf1+�2

and Z ⊆ ]−1, 1[ and Z ⊆ dom((�2) · the function arccot)

and Z = dom f and f is continuous on A. Then
∫
A

f(x)dx = (
1
2

((�2) · the

function arccot))(supA)− (12 ((�2) · the function arccot))(inf A).

(44) Suppose Z ⊆ dom((�2) · the function arccot) and Z ⊆ ]−1, 1[. Then
(i) −12 ((�2) · the function arccot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds
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(−12 ((�2) · the function arccot))′�Z(x) = (the function arccot)(x)
1+x2 .

(45) Suppose that A ⊆ Z and for every x such that x ∈ Z holds
f1(x) = 1 and f = the function arccot

f1+�2
and Z ⊆ ]−1, 1[ and Z ⊆

dom((�2) · the function arccot) and Z = dom f and f is continu-

ous on A. Then
∫
A

f(x)dx = (−1
2

((�2) · the function arccot))(supA) −

(−1
2

((�2) · the function arccot))(inf A).

(46) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f1(x) = 1,

(iii) f = (the function arctan)+ idZ
f1+�2

,

(iv) Z ⊆ ]−1, 1[,
(v) Z = dom f, and

(vi) f is continuous on A.

Then
∫
A

f(x)dx = (idZ the function arctan)(supA) − (idZ the function

arctan)(inf A).

(47) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f1(x) = 1,

(iii) f = (the function arccot)− idZ
f1+�2

,

(iv) Z ⊆ ]−1, 1[,
(v) Z = dom f, and

(vi) f is continuous on A.

Then
∫
A

f(x)dx = (idZ the function arccot)(supA) − (idZ the function

arccot)(inf A).

(48) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,

(iii) f = (the function exp)·(the function arctan)
f1+�2

,

(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) Z = dom f, and

(vi) f is continuous on A.

Then
∫
A

f(x)dx = ((the function exp) ·(the function arctan))(supA) − ((the

function exp) ·(the function arctan))(inf A).

(49) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
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(iii) f = − (the function exp)·(the function arccot)f1+�2
,

(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = ((the function exp) ·(the function arccot))(supA) − ((the

function exp) ·(the function arccot))(inf A).

(50) Suppose Z ⊆ dom((the function exp) ·(the function arccot)) and Z ⊆ ]−1, 1[.
Then

(i) −(the function exp) · (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function exp) · (the function

arccot))′�Z(x) = (the function exp)((the function arccot)(x))
1+x2 .

(51) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ ]−1, 1[,

(iii) f = (the function exp)·(the function arccot)
f1+�2

,

(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = (−(the function exp) · (the function arccot))(supA) −

(−(the function exp) · (the function arccot))(inf A).

(52) Suppose that A ⊆ Z ⊆ dom((the function ln) ·(f1 + f2)) and f = idZ
f1+f2

and
f2 = �2 and for every x such that x ∈ Z holds f1(x) = 1 and Z = dom f and f

is continuous on A. Then
∫
A

f(x)dx = (
1
2

((the function ln) ·(f1+f2)))(supA)−

(12 ((the function ln) ·(f1 + f2)))(inf A).

(53) Suppose that A ⊆ Z ⊆ dom((the function ln) ·(f1+f2)) and f = idZ
a (f1+f2)

and
for every x such that x ∈ Z holds h(x) = x

a and f1(x) = 1 and a 6= 0 and f2 =

(�2) · h and Z = dom f and f is continuous on A. Then
∫
A

f(x)dx = (
a

2
((the

function ln) ·(f1 + f2)))(supA)− (a2 ((the function ln) ·(f1 + f2)))(inf A).

(54) Suppose Z ⊆ dom( 1idZ the function arctan) and Z ⊆ ]−1, 1[. Then

(i) − 1
idZ

the function arctan is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (− 1
idZ

the function arctan)′�Z(x) =
(the function arctan)(x)

x2
− 1
x·(1+x2) .

(55) Suppose Z ⊆ dom( 1idZ the function arccot) and Z ⊆ ]−1, 1[. Then

(i) − 1
idZ

the function arccot is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (− 1
idZ

the function arccot)′�Z(x) =
(the function arccot)(x)

x2
+ 1
x·(1+x2) .

(56) Suppose that A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1 and
f = the function arctan

�2 − 1
idZ (f1+�2)

and Z ⊆ dom( 1idZ the function arctan) and

Z ⊆ ]−1, 1[ and Z = dom f and f is continuous on A. Then
∫
A

f(x)dx =

(− 1
idZ

the function arctan)(supA)− (− 1
idZ

the function arctan)(inf A).

(57) Suppose that A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1 and
f = the function arccot

�2 + 1
idZ (f1+�2)

and Z ⊆ dom( 1idZ the function arccot) and

Z ⊆ ]−1, 1[ and Z = dom f and f is continuous on A. Then
∫
A

f(x)dx =

(− 1
idZ

the function arccot)(supA)− (− 1
idZ

the function arccot)(inf A).
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The papers [9], [10], [15], [2], [3], [1], [6], [11], [4], [16], [7], [8], [5], [17], [13], [14],
and [12] provide the terminology and notation for this paper.

1. Differentiation Formulas

For simplicity, we adopt the following convention: a, x denote real numbers,
n denotes a natural number, A denotes a closed-interval subset of R, f , f1 denote
partial functions from R to R, and Z denotes an open subset of R.

One can prove the following propositions:

(1) Suppose Z ⊆ dom((the function sec) · 1idZ ). Then
(i) −(the function sec) · 1idZ is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function sec) · 1idZ )′�Z(x) =

(the function sin)( 1
x
)

x2·(the function cos)( 1
x
)2
.

(2) Suppose Z ⊆ dom((the function cosec) · (the function exp)). Then
(i) −(the function cosec) · (the function exp) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function cosec) · (the function

exp))′�Z(x) = (the function exp)(x)·(the function cos)((the function exp)(x))
(the function sin)((the function exp)(x))2 .

(3) Suppose Z ⊆ dom((the function cosec) · (the function ln)). Then
(i) −(the function cosec) · (the function ln) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (−(the function cosec) · (the function
ln))′�Z(x) = (the function cos)((the function ln)(x))

x·(the function sin)((the function ln)(x))2 .

(4) Suppose Z ⊆ dom((the function exp) ·(the function cosec)). Then
(i) −(the function exp) · (the function cosec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function exp) · (the function

cosec))′�Z(x) = (the function exp)((the function cosec)(x))·(the function cos)(x)
(the function sin)(x)2 .

(5) Suppose Z ⊆ dom((the function ln) ·(the function cosec)). Then
(i) −(the function ln) · (the function cosec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function ln) · (the function

cosec))′�Z(x) = (the function cot)(x).

(6) Suppose Z ⊆ dom((�n) · the function cosec) and 1 ≤ n. Then
(i) −(�n) · the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(�n) · the function

cosec)′�Z(x) = n·(the function cos)(x)
(the function sin)(x)n+1 .

(7) Suppose Z ⊆ dom( 1idZ the function sec). Then
(i) − 1

idZ
the function sec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (− 1
idZ

the function

sec)′�Z(x) =
1

(the function cos)(x)
x2

−
(the function sin)(x)

x
(the function cos)(x)2 .

(8) Suppose Z ⊆ dom( 1idZ the function cosec). Then
(i) − 1

idZ
the function cosec is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (− 1
idZ

the function

cosec)′�Z(x) =
1

(the function sin)(x)
x2

+
(the function cos)(x)

x
(the function sin)(x)2 .

(9) Suppose Z ⊆ dom((the function cosec) ·(the function sin)). Then
(i) −(the function cosec) · (the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function cosec) · (the function

sin))′�Z(x) = (the function cos)(x)·(the function cos)((the function sin)(x))
(the function sin)((the function sin)(x))2 .

(10) Suppose Z ⊆ dom((the function sec) ·(the function cot)). Then
(i) −(the function sec) · (the function cot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function sec) · (the function

cot))′�Z(x) =
(the function sin)((the function cot)(x))

(the function sin)(x)2

(the function cos)((the function cot)(x))2 .

(11) Suppose Z ⊆ dom((the function cosec) ·(the function tan)). Then
(i) −(the function cosec) · (the function tan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function cosec) · (the function

tan))′�Z(x) =
(the function cos)((the function tan)(x))

(the function cos)(x)2

(the function sin)((the function tan)(x))2 .

(12) Suppose Z ⊆ dom((the function cot) (the function sec)). Then
(i) −(the function cot) (the function sec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−(the function cot) (the function
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sec))′�Z(x) =
1

(the function sin)(x)2

(the function cos)(x) −
(the function cot)(x)·(the function sin)(x)

(the function cos)(x)2 .

(13) Suppose Z ⊆ dom((the function cot) (the function cosec)). Then
(i) −(the function cot) (the function cosec) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−(the function cot) (the function

cosec))′�Z(x) =
1

(the function sin)(x)2

(the function sin)(x) + (the function cot)(x)·(the function cos)(x)
(the function sin)(x)2 .

(14) Suppose Z ⊆ dom((the function cos) (the function cot)). Then
(i) −(the function cos) (the function cot) is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (−(the function cos) (the function
cot))′�Z(x) = (the function cos)(x) + (the function cos)(x)

(the function sin)(x)2 .

2. Integrability Formulas

We now state a number of propositions:

(15) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) =

(the function sin)( 1
x
)

x2·(the function cos)( 1
x
)2
,

(iii) Z ⊆ dom((the function sec) · 1idZ ),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function sec) · 1
idZ

)(supA)− (−(the function

sec) · 1idZ )(inf A).

(16) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
(the function cos)( 1

x
)

x2·(the function sin)( 1
x
)2
,

(iii) Z ⊆ dom((the function cosec) · 1idZ ),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cosec) · 1idZ )(supA)− ((the function

cosec) · 1idZ )(inf A).

(17) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds
f(x) = (the function exp)(x)·(the function sin)((the function exp)(x))

(the function cos)((the function exp)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function exp)),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = ((the function sec) ·(the function exp))(supA)−((the function

sec) ·(the function exp))(inf A).

(18) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) = (the function exp)(x)·(the function cos)((the function exp)(x))
(the function sin)((the function exp)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function exp)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cosec) · (the function exp))(supA) −

(−(the function cosec) · (the function exp))(inf A).

(19) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) = (the function sin)((the function ln)(x))
x·(the function cos)((the function ln)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function ln)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sec) ·(the function ln))(supA)− ((the function

sec) ·(the function ln))(inf A).

(20) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) = (the function cos)((the function ln)(x))
x·(the function sin)((the function ln)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function ln)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cosec) · (the function ln))(supA)− (−(the

function cosec) · (the function ln))(inf A).

(21) Suppose that
(i) A ⊆ Z,
(ii) f = ((the function exp) ·(the function sec)) the function sin

(the function cos)2
,

(iii) Z = dom f, and
(iv) f�A is continuous.
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Then
∫
A

f(x)dx = ((the function exp) ·(the function sec))(supA)−((the function

exp) ·(the function sec))(inf A).

(22) Suppose that
(i) A ⊆ Z,

(ii) f = ((the function exp) ·(the function cosec)) the function cos
(the function sin)2

,

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function exp) · (the function cosec))(supA) −

(−(the function exp) · (the function cosec))(inf A).

(23) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ dom((the function ln) ·(the function sec)),
(iii) Z = dom (the function tan), and
(iv) (the function tan)�A is continuous.

Then
∫
A

(the function tan)(x)dx = ((the function ln) ·(the function

sec))(supA)− ((the function ln) ·(the function sec))(inf A).

(24) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ dom((the function ln) ·(the function cosec)),
(iii) Z = dom (the function cot), and
(iv) (−the function cot)�A is continuous.

Then
∫
A

(−the function cot)(x)dx = ((the function ln) ·(the function

cosec))(supA)− ((the function ln) ·(the function cosec))(inf A).

(25) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ dom((the function ln) ·(the function cosec)),
(iii) Z = dom (the function cot), and
(iv) (the function cot)�A is continuous.

Then
∫
A

(the function cot)(x)dx = (−(the function ln) · (the function

cosec))(supA)− (−(the function ln) · (the function cosec))(inf A).

(26) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = n·(the function sin)(x)
(the function cos)(x)n+1 ,

(iii) Z ⊆ dom((�n) · the function sec),
(iv) 1 ≤ n,
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(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = ((�n) · the function sec)(supA) − ((�n) · the function

sec)(inf A).

(27) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = n·(the function cos)(x)

(the function sin)(x)n+1 ,

(iii) Z ⊆ dom((�n) · the function cosec),
(iv) 1 ≤ n,
(v) Z = dom f, and

(vi) f�A is continuous.

Then
∫
A

f(x)dx = (−(�n) · the function cosec)(supA)− (−(�n) · the

function cosec)(inf A).

(28) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = (the function exp)(x)

(the function cos)(x) +
(the function exp)(x)·(the function sin)(x)

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function exp) (the function sec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function exp) (the function sec))(supA)−((the function

exp) (the function sec))(inf A).

(29) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = (the function exp)(x)

(the function sin)(x) −
(the function exp)(x)·(the function cos)(x)

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function exp) (the function cosec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function exp) (the function cosec))(supA)− ((the func-

tion exp) (the function cosec))(inf A).

(30) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) = (the function sin)(a·x)−(the function cos)(a·x)2
(the function cos)(a·x)2 ,
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(iii) Z ⊆ dom( 1a ((the function sec) ·f1)− idZ),
(iv) for every x such that x ∈ Z holds f1(x) = a · x and a 6= 0,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = (
1
a

((the function sec) ·f1) − idZ)(supA) − ( 1a ((the function

sec) ·f1)− idZ)(inf A).

(31) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds

f(x) = (the function cos)(a·x)−(the function sin)(a·x)2
(the function sin)(a·x)2 ,

(iii) Z ⊆ dom((− 1a) ((the function cosec) ·f1)− idZ),
(iv) for every x such that x ∈ Z holds f1(x) = a · x and a 6= 0,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = ((−1
a

) ((the function cosec) ·f1) − idZ)(supA) − ((− 1a) ((the

function cosec) ·f1)− idZ)(inf A).

(32) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function cos)(x)
x +

(the function ln)(x)·(the function sin)(x)
(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function ln) (the function sec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function ln) (the function sec))(supA)− ((the function

ln) (the function sec))(inf A).

(33) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function sin)(x)
x −

(the function ln)(x)·(the function cos)(x)
(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function ln) (the function cosec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function ln) (the function cosec))(supA)− ((the func-

tion ln) (the function cosec))(inf A).

(34) Suppose that
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(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function cos)(x)
x2

−
(the function sin)(x)

x
(the function cos)(x)2 ,

(iii) Z ⊆ dom( 1idZ the function sec),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (− 1
idZ

the function sec)(supA)− (− 1
idZ

the function

sec)(inf A).

(35) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function sin)(x)
x2

+
(the function cos)(x)

x
(the function sin)(x)2 ,

(iii) Z ⊆ dom( 1idZ the function cosec),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (− 1
idZ

the function cosec)(supA)− (− 1
idZ

the function

cosec)(inf A).

(36) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds
f(x) = (the function cos)(x)·(the function sin)((the function sin)(x))

(the function cos)((the function sin)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function sin)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sec) ·(the function sin))(supA)−((the function

sec) ·(the function sin))(inf A).

(37) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds
f(x) = (the function sin)(x)·(the function sin)((the function cos)(x))

(the function cos)((the function cos)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function cos)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function sec) · (the function cos))(supA)− (−(the

function sec) · (the function cos))(inf A).

(38) Suppose that
(i) A ⊆ Z,
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(ii) for every x such that x ∈ Z holds
f(x) = (the function cos)(x)·(the function cos)((the function sin)(x))

(the function sin)((the function sin)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function sin)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cosec) · (the function

sin))(supA)− (−(the function cosec) · (the function sin))(inf A).

(39) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds
f(x) = (the function sin)(x)·(the function cos)((the function cos)(x))

(the function sin)((the function cos)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function cos)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cosec) ·(the function cos))(supA)− ((the func-

tion cosec) ·(the function cos))(inf A).

(40) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds

f(x) =
(the function sin)((the function tan)(x))

(the function cos)(x)2

(the function cos)((the function tan)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sec) ·(the function tan))(supA)−((the function

sec) ·(the function tan))(inf A).

(41) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds

f(x) =
(the function sin)((the function cot)(x))

(the function sin)(x)2

(the function cos)((the function cot)(x))2 ,

(iii) Z ⊆ dom((the function sec) ·(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function sec) · (the function cot))(supA)− (−(the

function sec) · (the function cot))(inf A).

(42) Suppose that
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(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) =
(the function cos)((the function tan)(x))

(the function cos)(x)2

(the function sin)((the function tan)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cosec) · (the function tan))(supA) −

(−(the function cosec) · (the function tan))(inf A).

(43) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds

f(x) =
(the function cos)((the function cot)(x))

(the function sin)(x)2

(the function sin)((the function cot)(x))2 ,

(iii) Z ⊆ dom((the function cosec) ·(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cosec) ·(the function cot))(supA)− ((the func-

tion cosec) ·(the function cot))(inf A).

(44) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function cos)(x)2

(the function cos)(x) +
(the function tan)(x)·(the function sin)(x)

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function tan) (the function sec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function tan) (the function sec))(supA)−((the function

tan) (the function sec))(inf A).

(45) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function sin)(x)2

(the function cos)(x) −
(the function cot)(x)·(the function sin)(x)

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function cot) (the function sec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cot) (the function sec))(supA)− (−(the
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function cot) (the function sec))(inf A).

(46) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function cos)(x)2

(the function sin)(x) −
(the function tan)(x)·(the function cos)(x)

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function tan) (the function cosec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function tan) (the function cosec))(supA)− ((the func-

tion tan) (the function cosec))(inf A).

(47) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) =
1

(the function sin)(x)2

(the function sin)(x) +
(the function cot)(x)·(the function cos)(x)

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function cot) (the function cosec)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cot) (the function cosec))(supA)− (−(the

function cot) (the function cosec))(inf A).

(48) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds
f(x) = 1

(the function cos)((the function cot)(x))2 ·
1

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function tan) ·(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function tan) · (the function cot))(supA)− (−(the

function tan) · (the function cot))(inf A).

(49) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds
f(x) = 1

(the function cos)((the function tan)(x))2 ·
1

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function tan) ·(the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = ((the function tan) ·(the function tan))(supA)−((the function

tan) ·(the function tan))(inf A).

(50) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds
f(x) = 1

(the function sin)((the function cot)(x))2 ·
1

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function cot) ·(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cot) ·(the function cot))(supA)−((the function

cot) ·(the function cot))(inf A).

(51) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds
f(x) = 1

(the function sin)((the function tan)(x))2 ·
1

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function cot) ·(the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cot) · (the function tan))(supA)− (−(the

function cot) · (the function tan))(inf A).

(52) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = 1

(the function cos)(x)2 +
1

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function tan)−(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function tan)−(the function cot))(supA)− ((the func-

tion tan)−(the function cot))(inf A).

(53) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = 1

(the function cos)(x)2 −
1

(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function tan)+(the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = ((the function tan)+(the function cot))(supA)− ((the func-

tion tan)+(the function cot))(inf A).

(54) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function cos)((the function
sin)(x)) · (the function cos)(x),

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sin) ·(the function sin))(supA)−((the function

sin) ·(the function sin))(inf A).

(55) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function cos)((the function
cos)(x)) · (the function sin)(x),

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function sin) · (the function cos))(supA)− (−(the

function sin) · (the function cos))(inf A).

(56) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function sin)((the function
sin)(x)) · (the function cos)(x),

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cos) · (the function sin))(supA)− (−(the

function cos) · (the function sin))(inf A).

(57) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function sin)((the function
cos)(x)) · (the function sin)(x),

(iii) Z = dom f, and
(iv) f�A is continuous.

Then
∫
A

f(x)dx = ((the function cos) ·(the function cos))(supA)−((the function

cos) ·(the function cos))(inf A).

(58) Suppose that
(i) A ⊆ Z,
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(ii) for every x such that x ∈ Z holds f(x) = (the function cos)(x) +
(the function cos)(x)
(the function sin)(x)2 ,

(iii) Z ⊆ dom((the function cos) (the function cot)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−(the function cos) (the function cot))(supA)− (−(the

function cos) (the function cot))(inf A).

(59) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = (the function sin)(x) +

(the function sin)(x)
(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function sin) (the function tan)),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = ((the function sin) (the function tan))(supA)−((the function

sin) (the function tan))(inf A).
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