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Summary. In this article, we first extend several basic theorems of the
operation of vector in 3-dimensional Euclidean spaces. Then three unit vectors:
e1, e2, e3 and the definition of vector function in the same spaces are introduced.
By dint of unit vector the main operation properties as well as the differentiation
formulas of vector function are shown [12].
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1. Preliminaries

For simplicity, we use the following convention: r, r1, r2, x, y, z, x1, x2, x3,
y1, y2, y3 are elements of R, p, q, p1, p2, p3, q1, q2 are elements of R3, f1, f2,
f3, g1, g2, g3, h1, h2, h3 are partial functions from R to R, and t, t0, t1, t2 are
real numbers.

Let x, y, z be real numbers. Then [x, y, z] is an element of R3.
One can prove the following proposition
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(1) For every finite sequence f of elements of R such that len f = 3 holds f
is an element of R3.

The element e1 of R3 is defined by:

(Def. 1) e1 = [1, 0, 0].

The element e2 of R3 is defined as follows:

(Def. 2) e2 = [0, 1, 0].

The element e3 of R3 is defined as follows:

(Def. 3) e3 = [0, 0, 1].

Let us consider p1, p2. The functor p1 × p2 yielding an element of R3 is
defined as follows:

(Def. 4) p1 × p2 = [p1(2) · p2(3)− p1(3) · p2(2), p1(3) · p2(1)− p1(1) · p2(3), p1(1) ·
p2(2)− p1(2) · p2(1)].

Next we state the proposition

(2) If p1 and p2 are linearly dependent, then p1 × p2 = 0E3T .

2. Vector Functions in 3-dimensional Euclidean Spaces

We now state a number of propositions:

(3) |e1| = 1.

(4) |e2| = 1.

(5) |e3| = 1.

(6) e1, e2 are orthogonal.

(7) e1, e3 are orthogonal.

(8) e2, e3 are orthogonal.

(9) |(e1, e1)| = 1.

(10) |(e2, e2)| = 1.

(11) |(e3, e3)| = 1.

(12) |(e1, [0, 0, 0])| = 0.

(13) |(e2, [0, 0, 0])| = 0.

(14) |(e3, [0, 0, 0])| = 0.

(15) e1 × e2 = e3.

(16) e2 × e3 = e1.

(17) e3 × e1 = e2.

(18) e3 × e2 = −e1.

(19) e1 × e3 = −e2.

(20) e2 × e1 = −e3.

(21) e1 × [0, 0, 0] = [0, 0, 0].
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(22) e2 × [0, 0, 0] = [0, 0, 0].

(23) e3 × [0, 0, 0] = [0, 0, 0].

(24) r · e1 = [r, 0, 0].

(25) r · e2 = [0, r, 0].

(26) r · e3 = [0, 0, r].

(27) 1 · e1 = e1.

(28) 1 · e2 = e2.

(29) 1 · e3 = e3.

(30) −e1 = [−1, 0, 0].

(31) −e2 = [0,−1, 0].

(32) −e3 = [0, 0,−1].

(33) 0 · e1 = [0, 0, 0].

(34) 0 · e2 = [0, 0, 0].

(35) 0 · e3 = [0, 0, 0].

(36) p = p(1) · e1 + p(2) · e2 + p(3) · e3.

(37) r · p = r · p(1) · e1 + r · p(2) · e2 + r · p(3) · e3.

(38) [x, y, z] = x · e1 + y · e2 + z · e3.

(39) r · [x, y, z] = r · x · e1 + r · y · e2 + r · z · e3.

(40) −p = −p(1) · e1 − p(2) · e2 − p(3) · e3.

(41) −[x, y, z] = −x · e1 − y · e2 − z · e3.

(42) p1 + p2 = (p1(1) + p2(1)) · e1 + (p1(2) + p2(2)) · e2 + (p1(3) + p2(3)) · e3.

(43) p1 − p2 = (p1(1)− p2(1)) · e1 + (p1(2)− p2(2)) · e2 + (p1(3)− p2(3)) · e3.

(44) [x1, x2, x3] + [y1, y2, y3] = (x1 + y1) · e1 + (x2 + y2) · e2 + (x3 + y3) · e3.

(45) [x1, x2, x3]− [y1, y2, y3] = (x1 − y1) · e1 + (x2 − y2) · e2 + (x3 − y3) · e3.

(46) p1(1) · e1 + p1(2) · e2 + p1(3) · e3 = (p2(1) + p3(1)) · e1 + (p2(2) + p3(2)) ·
e2 + (p2(3) + p3(3)) · e3 if and only if p2(1) · e1 + p2(2) · e2 + p2(3) · e3 =
(p1(1)− p3(1)) · e1 + (p1(2)− p3(2)) · e2 + (p1(3)− p3(3)) · e3.

Let f1, f2, f3 be partial functions from R to R. The functor VFunc(f1, f2, f3)
yielding a function from R into R3 is defined as follows:

(Def. 5) For every t holds (VFunc(f1, f2, f3))(t) = [f1(t), f2(t), f3(t)].

We now state a number of propositions:

(47) (VFunc(f1, f2, f3))(t) = f1(t) · e1 + f2(t) · e2 + f3(t) · e3.

(48) p = (VFunc(f1, f2, f3))(t) iff p(1) = f1(t) and p(2) = f2(t) and p(3) =
f3(t).

(49) If p = (VFunc(f1, f2, f3))(t), then len p = 3 and dom p = Seg 3.

(50) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then p•q =
〈f1(t1) · g1(t2), f2(t1) · g2(t2), f3(t1) · g3(t2)〉.
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(51) If p = (VFunc(f1, f2, f3))(t), then r · p = [r · f1(t), r · f2(t), r · f3(t)].

(52) If p = (VFunc(f1, f2, f3))(t), then −p = [−f1(t),−f2(t),−f3(t)].

(53) If p = (VFunc(f1, f2, f3))(t), then (−p)(1) = −f1(t) and (−p)(2) =
−f2(t) and (−p)(3) = −f3(t).

(54) If p = (VFunc(f1, f2, f3))(t), then len(−p) = 3.

(55) If p = (VFunc(f1, f2, f3))(t), then len(−p) = len p.

(56) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then
len(p+ q) = 3.

(57) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then p +
q = [f1(t1) + g1(t2), f2(t1) + g2(t2), f3(t1) + g3(t2)].

(58) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2) and p = q,

then f1(t1) = g1(t2) and f2(t1) = g2(t2) and f3(t1) = g3(t2).

(59) If f1(t1) = g1(t2) and f2(t1) = g2(t2) and f3(t1) = g3(t2), then
(VFunc(f1, f2, f3))(t1) = (VFunc(g1, g2, g3))(t2).

(60) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then p +
q = [f1(t1) + g1(t2), f2(t1) + g2(t2), f3(t1) + g3(t2)].

(61) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then p +
−q = [f1(t1)− g1(t2), f2(t1)− g2(t2), f3(t1)− g3(t2)].

(62) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then p −
q = [f1(t1)− g1(t2), f2(t1)− g2(t2), f3(t1)− g3(t2)].

(63) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then
len(p− q) = 3.

(64) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then
|(p, q)| = f1(t1) · g1(t2) + f2(t1) · g2(t2) + f3(t1) · g3(t2).

(65) If p = (VFunc(f1, f2, f3))(t), then |(p, p)| = f1(t)2 + f2(t)2 + f3(t)2.

(66) If p = (VFunc(f1, f2, f3))(t), then |p| =
√
f1(t)2 + f2(t)2 + f3(t)2.

(67) If p = (VFunc(f1, f2, f3))(t), then |r · p| = |r| ·
√
f1(t)2 + f2(t)2 + f3(t)2.

(68) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then p ×
q = [f2(t1) · g3(t2) − f3(t1) · g2(t2), f3(t1) · g1(t2) − f1(t1) · g3(t2), f1(t1) ·
g2(t2)− f2(t1) · g1(t2)].

(69) If p = (VFunc(f1, f2, f3))(t), then r1 · p+ r2 · p = (r1 + r2) · [f1(t), f2(t),
f3(t)].

(70) If p = (VFunc(f1, f2, f3))(t), then r1 · p− r2 · p = (r1 − r2) · [f1(t), f2(t),
f3(t)].

(71) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then |(r ·
p, q)| = r · (f1(t1) · g1(t2) + f2(t1) · g2(t2) + f3(t1) · g3(t2)).

(72) If p = (VFunc(f1, f2, f3))(t), then |(p, 0E3T)| = 0.

(73) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then
|(−p, q)| = −|(p, q)|.
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(74) If p = (VFunc(f1, f2, f3))(t1) and q = (VFunc(g1, g2, g3))(t2), then
|(−p,−q)| = |(p, q)|.

(75) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q =
(VFunc(g1, g2, g3))(t2), then |(p1 − p2, q)| = |(p1, q)| − |(p2, q)|.

(76) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q =
(VFunc(g1, g2, g3))(t2), then |(p1 + p2, q)| = |(p1, q)|+ |(p2, q)|.

(77) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q =
(VFunc(g1, g2, g3))(t2), then |(r1 ·p1 +r2 ·p2, q)| = r1 · |(p1, q)|+r2 · |(p2, q)|.

(78) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q1 =
(VFunc(g1, g2, g3))(t1) and q2 = (VFunc(g1, g2, g3))(t2), then |(p1 +p2, q1 +
q2)| = |(p1, q1)|+ |(p1, q2)|+ |(p2, q1)|+ |(p2, q2)|.

(79) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q1 =
(VFunc(g1, g2, g3))(t1) and q2 = (VFunc(g1, g2, g3))(t2), then |(p1−p2, q1−
q2)| = (|(p1, q1)| − |(p1, q2)| − |(p2, q1)|) + |(p2, q2)|.

(80) For every p such that p = (VFunc(f1, f2, f3))(t) holds |(p, p)| = 0 iff
p = 0E3T .

(81) For every p such that p = (VFunc(f1, f2, f3))(t) holds |p| = 0 iff p = 0E3T .

(82) If p = (VFunc(f1, f2, f3))(t) and q = (VFunc(g1, g2, g3))(t), then |(p −
q, p− q)| = (|(p, p)| − 2 · |(p, q)|) + |(q, q)|.

(83) If p = (VFunc(f1, f2, f3))(t) and q = (VFunc(g1, g2, g3))(t), then |(p +
q, p+ q)| = |(p, p)|+ 2 · |(p, q)|+ |(q, q)|.

(84) If p = (VFunc(f1, f2, f3))(t) and q = (VFunc(g1, g2, g3))(t), then (r ·p)×
q = r · (p× q) and (r · p)× q = p× (r · q).

(85) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q =
(VFunc(g1, g2, g3))(t), then p1 × (p2 + q) = p1 × p2 + p1 × q.

(86) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q =
(VFunc(g1, g2, g3))(t), then (p1 + p2)× q = p1 × q + p2 × q.

Let us consider p1, p2, p3. The functor 〈|p1, p2, p3|〉 yields a real number and
is defined as follows:

(Def. 6) 〈|p1, p2, p3|〉 = |(p1, p2 × p3)|.
Next we state several propositions:

(87) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2), then
〈|p1, p1, p2|〉 = 0.

(88) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2), then
〈|p2, p1, p2|〉 = 0.

(89) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2), then
〈|p1, p2, p2|〉 = 0.

(90) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q =
(VFunc(g1, g2, g3))(t), then 〈|p1, p2, q|〉 = 〈|p2, q, p1|〉.
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(91) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q =
(VFunc(g1, g2, g3))(t), then 〈|p1, p2, q|〉 = |(p1 × p2, q)|.

(92) If p1 = (VFunc(f1, f2, f3))(t1) and p2 = (VFunc(f1, f2, f3))(t2) and q =
(VFunc(g1, g2, g3))(t), then 〈|p1, p2, q|〉 = |(q × p1, p2)|.

3. The Differentiation Formulas of Vector Functions in
3-dimensional Euclidean Spaces

Let f1, f2, f3 be partial functions from R to R and let t0 be a real num-
ber. The functor VFuncdiff(f1, f2, f3, t0) yielding an element of R3 is defined as
follows:

(Def. 7) VFuncdiff(f1, f2, f3, t0) = [f1
′(t0), f2

′(t0), f3
′(t0)].

Next we state a number of propositions:

(93) Suppose f1 is differentiable in t0 and f2 is differentiable in t0 and f3 is
differentiable in t0. Then VFuncdiff(f1, f2, f3, t0) = f1

′(t0) · e1 + f2
′(t0) ·

e2 + f3
′(t0) · e3.

(94) Suppose that
(i) f1 is differentiable in t0,
(ii) f2 is differentiable in t0,
(iii) f3 is differentiable in t0,
(iv) g1 is differentiable in t0,
(v) g2 is differentiable in t0, and
(vi) g3 is differentiable in t0.

Then VFuncdiff(f1 + g1, f2 + g2, f3 + g3, t0) = VFuncdiff(f1, f2, f3, t0) +
VFuncdiff(g1, g2, g3, t0).

(95) Suppose that
(i) f1 is differentiable in t0,
(ii) f2 is differentiable in t0,
(iii) f3 is differentiable in t0,
(iv) g1 is differentiable in t0,
(v) g2 is differentiable in t0, and
(vi) g3 is differentiable in t0.

Then VFuncdiff(f1 − g1, f2 − g2, f3 − g3, t0) = VFuncdiff(f1, f2, f3, t0) −
VFuncdiff(g1, g2, g3, t0).

(96) If f1 is differentiable in t0 and f2 is differentiable in t0 and f3 is differen-
tiable in t0, then VFuncdiff(r f1, r f2, r f3, t0) = r ·VFuncdiff(f1, f2, f3, t0).

(97) Suppose that
(i) f1 is differentiable in t0,
(ii) f2 is differentiable in t0,
(iii) f3 is differentiable in t0,
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(iv) g1 is differentiable in t0,
(v) g2 is differentiable in t0, and
(vi) g3 is differentiable in t0.

Then VFuncdiff(f1 g1, f2 g2, f3 g3, t0) = [g1(t0) · f1
′(t0), g2(t0) · f2

′(t0),
g3(t0) · f3

′(t0)] + [f1(t0) · g1
′(t0), f2(t0) · g2

′(t0), f3(t0) · g3
′(t0)].

(98) Suppose that
(i) f1 is differentiable in t0,
(ii) f2 is differentiable in t0,

(iii) f3 is differentiable in t0,
(iv) g1 is differentiable in f1(t0),
(v) g2 is differentiable in f2(t0), and
(vi) g3 is differentiable in f3(t0).

Then VFuncdiff(g1 · f1, g2 · f2, g3 · f3, t0) = [g1
′(f1(t0)) · f1

′(t0), g2
′(f2(t0)) ·

f2
′(t0), g3

′(f3(t0)) · f3
′(t0)].

(99) Suppose that f1 is differentiable in t0 and f2 is differentiable in t0 and
f3 is differentiable in t0 and g1 is differentiable in t0 and g2 is differen-
tiable in t0 and g3 is differentiable in t0 and g1(t0) 6= 0 and g2(t0) 6= 0
and g3(t0) 6= 0. Then VFuncdiff(f1g1 ,

f2
g2
, f3g3 , t0) = [f1

′(t0)·g1(t0)−g1′(t0)·f1(t0)
g1(t0)2

,
f2
′(t0)·g2(t0)−g2′(t0)·f2(t0)

g2(t0)2
, f3
′(t0)·g3(t0)−g3′(t0)·f3(t0)

g3(t0)2
].

(100) Suppose f1 is differentiable in t0 and f2 is differentiable in t0 and f3 is
differentiable in t0 and f1(t0) 6= 0 and f2(t0) 6= 0 and f3(t0) 6= 0. Then
VFuncdiff( 1

f1
, 1
f2
, 1
f3
, t0) = −[ f1

′(t0)
f1(t0)2

, f2
′(t0)

f2(t0)2
, f3

′(t0)
f3(t0)2

].

(101) Suppose f1 is differentiable in t0 and f2 is differentiable in t0 and f3 is
differentiable in t0. Then VFuncdiff(r f1, r f2, r f3, t0) = r · f1

′(t0) · e1 + r ·
f2
′(t0) · e2 + r · f3

′(t0) · e3.

(102) Suppose that
(i) f1 is differentiable in t0,
(ii) f2 is differentiable in t0,
(iii) f3 is differentiable in t0,
(iv) g1 is differentiable in t0,
(v) g2 is differentiable in t0, and
(vi) g3 is differentiable in t0.

Then VFuncdiff(r (f1 + g1), r (f2 + g2), r (f3 + g3), t0) =
r ·VFuncdiff(f1, f2, f3, t0) + r ·VFuncdiff(g1, g2, g3, t0).

(103) Suppose that
(i) f1 is differentiable in t0,
(ii) f2 is differentiable in t0,
(iii) f3 is differentiable in t0,
(iv) g1 is differentiable in t0,
(v) g2 is differentiable in t0, and



8 xiquan liang and piqing zhao and ou bai

(vi) g3 is differentiable in t0.
Then VFuncdiff(r (f1 − g1), r (f2 − g2), r (f3 − g3), t0) =
r ·VFuncdiff(f1, f2, f3, t0)− r ·VFuncdiff(g1, g2, g3, t0).

(104) Suppose that
(i) f1 is differentiable in t0,

(ii) f2 is differentiable in t0,
(iii) f3 is differentiable in t0,
(iv) g1 is differentiable in t0,
(v) g2 is differentiable in t0, and
(vi) g3 is differentiable in t0.

Then VFuncdiff(r f1 g1, r f2 g2, r f3 g3, t0) = r·[g1(t0)·f1
′(t0), g2(t0)·f2

′(t0),
g3(t0) · f3

′(t0)] + r · [f1(t0) · g1
′(t0), f2(t0) · g2

′(t0), f3(t0) · g3
′(t0)].

(105) Suppose that
(i) f1 is differentiable in t0,
(ii) f2 is differentiable in t0,
(iii) f3 is differentiable in t0,
(iv) g1 is differentiable in f1(t0),
(v) g2 is differentiable in f2(t0), and
(vi) g3 is differentiable in f3(t0).

Then VFuncdiff((r g1) ·f1, (r g2) ·f2, (r g3) ·f3, t0) = r · [g1
′(f1(t0)) ·f1

′(t0),
g2
′(f2(t0)) · f2

′(t0), g3
′(f3(t0)) · f3

′(t0)].

(106) Suppose that f1 is differentiable in t0 and f2 is differentiable in t0 and f3

is differentiable in t0 and g1 is differentiable in t0 and g2 is differentiable
in t0 and g3 is differentiable in t0 and g1(t0) 6= 0 and g2(t0) 6= 0 and
g3(t0) 6= 0. Then VFuncdiff( r f1g1 ,

r f2
g2
, r f3g3 , t0) = r · [f1

′(t0)·g1(t0)−g1′(t0)·f1(t0)
g1(t0)2

,
f2
′(t0)·g2(t0)−g2′(t0)·f2(t0)

g2(t0)2
, f3
′(t0)·g3(t0)−g3′(t0)·f3(t0)

g3(t0)2
].

(107) Suppose that f1 is differentiable in t0 and f2 is differentiable in t0 and
f3 is differentiable in t0 and f1(t0) 6= 0 and f2(t0) 6= 0 and f3(t0) 6= 0 and
r 6= 0. Then VFuncdiff( 1

r f1
, 1
r f2

, 1
r f3

, t0) = −1
r · [

f1
′(t0)

f1(t0)2
, f2

′(t0)
f2(t0)2

, f3
′(t0)

f3(t0)2
].

(108) Suppose that
(i) f1 is differentiable in t0,

(ii) f2 is differentiable in t0,
(iii) f3 is differentiable in t0,
(iv) g1 is differentiable in t0,
(v) g2 is differentiable in t0, and
(vi) g3 is differentiable in t0.

Then VFuncdiff(f2 g3 − f3 g2, f3 g1 − f1 g3, f1 g2 − f2 g1, t0) = [f2(t0) ·
g3
′(t0)−f3(t0)·g2

′(t0), f3(t0)·g1
′(t0)−f1(t0)·g3

′(t0), f1(t0)·g2
′(t0)−f2(t0)·

g1
′(t0)] + [f2

′(t0) · g3(t0) − f3
′(t0) · g2(t0), f3

′(t0) · g1(t0) − f1
′(t0) · g3(t0),

f1
′(t0) · g2(t0)− f2

′(t0) · g1(t0)].
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(109) Suppose that f1 is differentiable in t0 and f2 is differentiable in t0 and f3

is differentiable in t0 and g1 is differentiable in t0 and g2 is differentiable
in t0 and g3 is differentiable in t0 and h1 is differentiable in t0 and h2 is
differentiable in t0 and h3 is differentiable in t0. Then VFuncdiff(h1 (f2 g3−
f3 g2), h2 (f3 g1 − f1 g3), h3 (f1 g2 − f2 g1), t0) = [h1

′(t0) · (f2(t0) · g3(t0) −
f3(t0)·g2(t0)), h2

′(t0)·(f3(t0)·g1(t0)−f1(t0)·g3(t0)), h3
′(t0)·(f1(t0)·g2(t0)−

f2(t0) · g1(t0))] + [h1(t0) · (f2
′(t0) · g3(t0)− f3

′(t0) · g2(t0)), h2(t0) · (f3
′(t0) ·

g1(t0)− f1
′(t0) · g3(t0)), h3(t0) · (f1

′(t0) · g2(t0)− f2
′(t0) · g1(t0))] + [h1(t0) ·

(f2(t0) · g3
′(t0) − f3(t0) · g2

′(t0)), h2(t0) · (f3(t0) · g1
′(t0) − f1(t0) · g3

′(t0)),
h3(t0) · (f1(t0) · g2

′(t0)− f2(t0) · g1
′(t0))].

(110) Suppose that f1 is differentiable in t0 and f2 is differentiable in t0 and f3

is differentiable in t0 and g1 is differentiable in t0 and g2 is differentiable
in t0 and g3 is differentiable in t0 and h1 is differentiable in t0 and h2 is
differentiable in t0 and h3 is differentiable in t0. Then VFuncdiff(h2 f2 g3−
h3 f3 g2, h3 f3 g1−h1 f1 g3, h1 f1 g2−h2 f2 g1, t0) = [h2(t0) ·f2(t0) ·g3

′(t0)−
h3(t0) · f3(t0) · g2

′(t0), h3(t0) · f3(t0) · g1
′(t0)−h1(t0) · f1(t0) · g3

′(t0), h1(t0) ·
f1(t0) · g2

′(t0) − h2(t0) · f2(t0) · g1
′(t0)] + [h2(t0) · f2

′(t0) · g3(t0) − h3(t0) ·
f3
′(t0) · g2(t0), h3(t0) ·f3

′(t0) · g1(t0)−h1(t0) ·f1
′(t0) · g3(t0), h1(t0) ·f1

′(t0) ·
g2(t0)−h2(t0)·f2

′(t0)·g1(t0)]+[h2
′(t0)·f2(t0)·g3(t0)−h3

′(t0)·f3(t0)·g2(t0),
h3
′(t0) ·f3(t0) ·g1(t0)−h1

′(t0) ·f1(t0) ·g3(t0), h1
′(t0) ·f1(t0) ·g2(t0)−h2

′(t0) ·
f2(t0) · g1(t0)].

(111) Suppose that f1 is differentiable in t0 and f2 is differentiable in t0 and f3

is differentiable in t0 and g1 is differentiable in t0 and g2 is differentiable
in t0 and g3 is differentiable in t0 and h1 is differentiable in t0 and h2 is
differentiable in t0 and h3 is differentiable in t0. Then VFuncdiff(h2 (f1 g2−
f2 g1)− h3 (f3 g1 − f1 g3), h3 (f2 g3 − f3 g2)− h1 (f1 g2 − f2 g1), h1 (f3 g1 −
f1 g3)− h2 (f2 g3 − f3 g2), t0) = [h2(t0) · (f1(t0) · g2

′(t0)− f2(t0) · g1
′(t0))−

h3(t0) · (f3(t0) · g1
′(t0) − f1(t0) · g3

′(t0)), h3(t0) · (f2(t0) · g3
′(t0) − f3(t0) ·

g2
′(t0))− h1(t0) · (f1(t0) · g2

′(t0)− f2(t0) · g1
′(t0)), h1(t0) · (f3(t0) · g1

′(t0)−
f1(t0) ·g3

′(t0))−h2(t0) · (f2(t0) ·g3
′(t0)−f3(t0) ·g2

′(t0))]+ [h2(t0) · (f1
′(t0) ·

g2(t0)− f2
′(t0) · g1(t0))− h3(t0) · (f3

′(t0) · g1(t0)− f1
′(t0) · g3(t0)), h3(t0) ·

(f2
′(t0) · g3(t0)− f3

′(t0) · g2(t0))− h1(t0) · (f1
′(t0) · g2(t0)− f2

′(t0) · g1(t0)),
h1(t0) · (f3

′(t0) · g1(t0)− f1
′(t0) · g3(t0))− h2(t0) · (f2

′(t0) · g3(t0)− f3
′(t0) ·

g2(t0))]+ [h2
′(t0) · (f1(t0) ·g2(t0)−f2(t0) ·g1(t0))−h3

′(t0) · (f3(t0) ·g1(t0)−
f1(t0) · g3(t0)), h3

′(t0) · (f2(t0) · g3(t0) − f3(t0) · g2(t0)) − h1
′(t0) · (f1(t0) ·

g2(t0) − f2(t0) · g1(t0)), h1
′(t0) · (f3(t0) · g1(t0) − f1(t0) · g3(t0)) − h2

′(t0) ·
(f2(t0) · g3(t0)− f3(t0) · g2(t0))].
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Summary. In this article, we give a definition of a functional space which
is constructed from all continuous functions defined on a compact topological
space. We prove that this functional space is a Banach algebra. Next, we give a
definition of a function space which is constructed from all real-valued continuous
functions with bounded support. We prove that this function space is a real
normed space.

MML identifier: C0SP2, version: 7.11.07 4.156.1112

The notation and terminology used here have been introduced in the following
papers: [2], [15], [7], [17], [16], [10], [3], [18], [14], [13], [12], [1], [4], [11], [6], [8],
[19], [20], [9], and [5].

1. Banach Algebra of Continuous Functionals

Let X be a 1-sorted structure and let y be a real number. The functor
X 7−→ y yielding a real map of X is defined as follows:

(Def. 1) X 7−→ y = (the carrier of X) 7−→ y.

1This work was supported by JSPS KAKENHI 22300285.
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Let X be a topological space and let y be a real number. Note that X 7−→ y

is continuous.
Next we state the proposition

(1) Let X be a non empty topological space and f be a real map of X. Then
f is continuous if and only if for every point x of X and for every subset
V of R such that f(x) ∈ V and V is open there exists a subset W of X
such that x ∈W and W is open and f◦W ⊆ V.

In the sequel X denotes a non empty topological space.
Let us consider X. The functor C(X; R) yielding a subset of RAlgebra (the

carrier of X) is defined by:

(Def. 2) C(X; R) = {f : f ranges over continuous real maps of X}.
Let us consider X. Observe that C(X; R) is non empty.
Let us consider X. One can verify that C(X; R) is additively-linearly-closed

and multiplicatively-closed.
Let X be a non empty topological space. The functor CA(X; R) yielding an

algebra structure is defined by the condition (Def. 3).

(Def. 3) CA(X; R) = 〈C(X; R),mult(C(X; R),RAlgebra (the carrier of X)),
Add(C(X; R),RAlgebra (the carrier of X)),Mult(C(X; R),RAlgebra (the car-
rier of X)),One(C(X; R),RAlgebra (the carrier of X)),Zero(C(X; R),
RAlgebra (the carrier of X))〉.

One can prove the following proposition

(2) CA(X; R) is a subalgebra of RAlgebra (the carrier of X).

Let us consider X. Note that CA(X; R) is strict and non empty.
Let us consider X. Observe that CA(X; R) is Abelian, add-associative, right

zeroed, right complementable, vector distributive, scalar distributive, scalar as-
sociative, scalar unital, commutative, associative, right unital, right distributive,
vector distributive, scalar distributive, scalar associative, and vector associative.

We use the following convention: F , G, H denote vectors of CA(X; R), g, h
denote real maps of X, and a denotes a real number.

One can prove the following propositions:

(3) Suppose f = F and g = G and h = H. Then H = F + G if and only if
for every element x of the carrier of X holds h(x) = f(x) + g(x).

(4) If f = F and g = G, then G = a · F iff for every element x of X holds
g(x) = a · f(x).

(5) Suppose f = F and g = G and h = H. Then H = F · G if and only if
for every element x of the carrier of X holds h(x) = f(x) · g(x).

(6) 0CA(X;R) = X 7−→ 0.

(7) 1CA(X;R) = X 7−→ 1.

In the sequel X denotes a compact non empty topological space and f , g, h
denote real maps of X.
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We now state two propositions:

(8) Let A be an algebra and A1, A2 be subalgebras of A. Suppose the carrier
of A1 ⊆ the carrier of A2. Then A1 is a subalgebra of A2.

(9) CA(X; R) is a subalgebra of the R-algebra of bounded functions on the
carrier of X.

Let us consider X. The functor || · ||C(X;R) yielding a function from C(X; R)
into R is defined as follows:

(Def. 4) || · ||C(X;R) = BoundedFunctionsNorm (the carrier of X)� C(X; R).

Let us consider X. The functor CNA(X; R) yielding a normed algebra struc-
ture is defined by the condition (Def. 5).

(Def. 5) CNA(X; R) = 〈C(X; R),mult(C(X; R),RAlgebra (the carrier of X)),
Add(C(X; R),RAlgebra (the carrier of X)),Mult(C(X; R),RAlgebra (the
carrier of X)),One(C(X; R),RAlgebra (the carrier of X)),Zero(C(X; R),
RAlgebra (the carrier of X)), || · ||C(X;R)〉.

Let us consider X. Observe that CNA(X; R) is strict and non empty.
Let us consider X. Note that CNA(X; R) is unital.
Next we state the proposition

(10) Let W be a normed algebra structure and V be an algebra. If the algebra
structure of W = V, then W is an algebra.

In the sequel F , G, H denote points of CNA(X; R).
Let us consider X. Note that CNA(X; R) is Abelian, add-associative, right

zeroed, right complementable, commutative, associative, right unital, right di-
stributive, vector distributive, scalar distributive, scalar associative, and vector
associative.

We now state the proposition

(11) (Mult(C(X; R),RAlgebra (the carrier of X)))(1, F ) = F.

Let us consider X. Note that CNA(X; R) is vector distributive, scalar distri-
butive, scalar associative, and scalar unital.

We now state several propositions:

(12) X 7−→ 0 = 0CNA(X;R).

(13) 0 ≤ ‖F‖.
(14) 0 = ‖(0CNA(X;R))‖.
(15) If f = F and g = G and h = H, then H = F +G iff for every element x

of X holds h(x) = f(x) + g(x).

(16) If f = F and g = G, then G = a · F iff for every element x of X holds
g(x) = a · f(x).

(17) If f = F and g = G and h = H, then H = F ·G iff for every element x
of X holds h(x) = f(x) · g(x).
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(18) ‖F‖ = 0 iff F = 0CNA(X;R) and ‖a · F‖ = |a| · ‖F‖ and ‖F + G‖ ≤
‖F‖+ ‖G‖.

Let us consider X. One can check that CNA(X; R) is reflexive, discernible,
and real normed space-like.

Next we state four propositions:

(19) If f = F and g = G and h = H, then H = F −G iff for every element x
of X holds h(x) = f(x)− g(x).

(20) Let X be a real Banach space, Y be a subset of X, and s1 be a sequence
of X. Suppose Y is closed and rng s1 ⊆ Y and s1 is Cauchy sequence by
norm. Then s1 is convergent and lim s1 ∈ Y.

(21) Let Y be a subset of the R-normed algebra of bounded functions on the
carrier of X. If Y = C(X; R), then Y is closed.

(22) For every sequence s1 of CNA(X; R) such that s1 is Cauchy sequence by
norm holds s1 is convergent.

Let us consider X. One can verify that CNA(X; R) is complete.
Let us consider X. Observe that CNA(X; R) is Banach Algebra-like.

2. Some Properties of Support

Next we state three propositions:

(23) For every non empty topological space X and for all real maps f , g of
X holds support(f + g) ⊆ support f ∪ support g.

(24) For every non empty topological space X and for every real number a
and for every real map f of X holds support(a f) ⊆ support f.

(25) For every non empty topological space X and for all real maps f , g of
X holds support(f g) ⊆ support f ∪ support g.

3. The Space of Real-valued Continuous Functionals with
Bounded Support

Let X be a non empty topological space. The functor C0(X) yielding a non
empty subset of Rthe carrier of X

R is defined by the condition (Def. 6).

(Def. 6) C0(X) = {f ; f ranges over real maps of X: f is continuous ∧∨
Y : non empty subset of X (Y is compact ∧

∧
A : subset of X (A =

support f ⇒ A is a subset of Y ))}.
The following propositions are true:

(26) For every non empty topological space X holds C0(X) is a non empty
non empty subset of RAlgebra (the carrier of X).
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(27) Let X be a non empty topological space and W be a non empty subset of
RAlgebra (the carrier of X). If W = C0(X), then W is additively-linearly-
closed.

(28) For every non empty topological space X holds C0(X) is linearly closed.

Let X be a non empty topological space. Note that C0(X) is non empty and
linearly closed.

Let X be a non empty topological space. The functor CVS
0 (X) yielding a real

linear space is defined by:

(Def. 7) CVS
0 (X) = 〈C0(X),Zero(C0(X),Rthe carrier of X

R ),Add(C0(X),
Rthe carrier of X

R ),Mult(C0(X),Rthe carrier of X
R )〉.

The following two propositions are true:

(29) For every non empty topological space X holds CVS
0 (X) is a subspace of

Rthe carrier of X
R .

(30) For every non empty topological space X and for every set x such that
x ∈ C0(X) holds x ∈ BoundedFunctions (the carrier of X).

Let X be a non empty topological space. The functor || · ||C0(X) yielding a
function from C0(X) into R is defined by:

(Def. 8) || · ||C0(X) = BoundedFunctionsNorm (the carrier of X)� C0(X).

Let X be a non empty topological space. The functor CNS
0 (X) yields a non

empty normed structure and is defined as follows:

(Def. 9) CNS
0 (X) = 〈C0(X),Zero(C0(X),Rthe carrier of X

R ),Add(C0(X),
Rthe carrier of X

R ),Mult(C0(X),Rthe carrier of X
R ), || · ||C0(X)〉.

Let X be a non empty topological space. One can verify that CNS
0 (X) is

strict and non empty.
Next we state several propositions:

(31) For every non empty topological space X and for every set x such that
x ∈ C0(X) holds x ∈ C(X; R).

(32) For every non empty topological space X holds 0CVS0 (X) = X 7−→ 0.

(33) For every non empty topological space X holds 0CNS0 (X) = X 7−→ 0.

(34) Let a be a real number, X be a non empty topological space, and F , G
be points of CNS

0 (X). Then ‖F‖ = 0 iff F = 0CNS0 (X) and ‖a ·F‖ = |a| ·‖F‖
and ‖F +G‖ ≤ ‖F‖+ ‖G‖.

(35) For every non empty topological space X holds CNS
0 (X) is real normed

space-like.

Let X be a non empty topological space. Note that CNS
0 (X) is reflexive,

discernible, real normed space-like, vector distributive, scalar distributive, sca-
lar associative, scalar unital, Abelian, add-associative, right zeroed, and right
complementable.

Next we state the proposition
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(36) For every non empty topological space X holds CNS
0 (X) is a real normed

space.
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Summary. This article introduces the free magmaM(X) constructed on a
set X [6]. Then, we formalize some theorems aboutM(X): if f is a function from
the set X to a magma N , the free magmaM(X) has a unique extension of f to a
morphism ofM(X) into N and every magma is isomorphic to a magma generated
by a set X under a set of relators on M(X). In doing it, the article defines the
stable subset under the law of composition of a magma, the submagma, the
equivalence relation compatible with the law of composition and the equivalence
kernel of a function. We also introduce some schemes on the recursive function.
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1. Preliminaries

Let X be a set, let f be a function from N into X, and let n be a natural
number. Observe that f�n is transfinite sequence-like.

Let X, x be sets. The 0-sequence X(x) yielding a finite 0-sequence of X is
defined as follows:

(Def. 1) The 0-sequence X(x) =

{
x, if x is a finite 0-sequence of X,
〈〉X , otherwise.

Let X be a non empty set, let f be a function from Xω into X, and let c be
a finite 0-sequence of X. Then f(c) is an element of X.

One can prove the following proposition

(1) For all sets X, Y , Z such that Y ⊆ the universe of X and Z ⊆ the
universe of X holds Y × Z ⊆ the universe of X.
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In this article we present several logical schemes. The scheme FuncRecur-
siveUniq deals with a unary functor F yielding a set and functions A, B, and
states that:

A = B
provided the parameters satisfy the following conditions:
• domA = N and for every natural number n holdsA(n) = F(A�n),

and
• domB = N and for every natural number n holds B(n) = F(B�n).

The scheme FuncRecursiveExist deals with a unary functor F yielding a set,
and states that:

There exists a function f such that dom f = N and for every
natural number n holds f(n) = F(f�n)

for all values of the parameter.
The scheme FuncRecursiveUniqu2 deals with a non empty set A, a unary

functor F yielding an element of A, and functions B, C from N into A, and
states that:

B = C
provided the parameters meet the following requirements:
• For every element n of N holds B(n) = F(B�n), and
• For every element n of N holds C(n) = F(C�n).

The scheme FuncRecursiveExist2 deals with a non empty set A and a unary
functor F yielding an element of A, and states that:

There exists a function f from N intoA such that for every natural
number n holds f(n) = F(f�n)

for all values of the parameters.
Let f , g be functions. We say that f extends g if and only if:

(Def. 2) dom g ⊆ dom f and f ≈ g.
Let us note that there exists a multiplicative magma which is empty.

2. Equivalence Relations and Relators

Let M be a multiplicative magma and let R be an equivalence relation of
M . We say that R is compatible if and only if:

(Def. 3) For all elements v, v′, w, w′ of M such that v ∈ [v′]R and w ∈ [w′]R
holds v · w ∈ [v′ · w′]R.

Let M be a multiplicative magma. Observe that ∇the carrier of M is compa-
tible.

Let M be a multiplicative magma. Observe that there exists an equivalence
relation of M which is compatible.

One can prove the following proposition
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(2) Let M be a multiplicative magma and R be an equivalence relation of
M . Then R is compatible if and only if for all elements v, v′, w, w′ of M
such that [v]R = [v′]R and [w]R = [w′]R holds [v · w]R = [v′ · w′]R.

Let M be a multiplicative magma and let R be a compatible equivalence
relation of M . The functor ◦R yielding a binary operation on ClassesR is defined
as follows:

(Def. 4)(i) For all elements x, y of ClassesR and for all elements v, w of M such
that x = [v]R and y = [w]R holds (◦R)(x, y) = [v · w]R if M is non empty,

(ii) ◦R = ∅, otherwise.

Let M be a multiplicative magma and let R be a compatible equivalence
relation of M . The functor M/R yielding a multiplicative magma is defined as
follows:

(Def. 5) M/R = 〈ClassesR, ◦R〉.
Let M be a multiplicative magma and let R be a compatible equivalence

relation of M . Observe that M/R is strict.
Let M be a non empty multiplicative magma and let R be a compatible

equivalence relation of M . One can check that M/R is non empty.
Let M be a non empty multiplicative magma and let R be a compatible

equivalence relation of M . The canonical homomorphism onto cosets of R yields
a function from M into M/R and is defined by:

(Def. 6) For every element v of M holds (the canonical homomorphism onto
cosets of R)(v) = [v]R.

Let M be a non empty multiplicative magma and let R be a compatible
equivalence relation of M . Note that the canonical homomorphism onto cosets
of R is multiplicative.

Let M be a non empty multiplicative magma and let R be a compatible
equivalence relation of M . Note that the canonical homomorphism onto cosets
of R is onto.

Let M be a multiplicative magma. A function is called a relators of M if:

(Def. 7) rng it ⊆ (the carrier of M)× (the carrier of M).

Let M be a multiplicative magma and let r be a relators of M . The equ-
ivalence relation of r yielding an equivalence relation of M is defined by the
condition (Def. 8).

(Def. 8) The equivalence relation of r =
⋂
{R;R ranges over compatible equiva-

lence relations of M :
∧
i : set

∧
v,w : element of M (i ∈ dom r ∧ r(i) = 〈〈v,

w〉〉 ⇒ v ∈ [w]R)}.
Next we state the proposition

(3) Let M be a multiplicative magma, r be a relators of M , and R be a
compatible equivalence relation of M . Suppose that for every set i and
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for all elements v, w of M such that i ∈ dom r and r(i) = 〈〈v, w〉〉 holds
v ∈ [w]R. Then the equivalence relation of r ⊆ R.

Let M be a multiplicative magma and let r be a relators of M . Note that
the equivalence relation of r is compatible.

Let X, Y be sets and let f be a function from X into Y . The equivalence
kernel of f yielding an equivalence relation of X is defined as follows:

(Def. 9) For all sets x, y holds 〈〈x, y〉〉 ∈ the equivalence kernel of f iff x, y ∈ X
and f(x) = f(y).

In the sequel M , N are non empty multiplicative magmas and f is a function
from M into N .

The following propositions are true:

(4) If f is multiplicative, then the equivalence kernel of f is compatible.

(5) Suppose f is multiplicative. Then there exists a relators r of M such
that the equivalence kernel of f = the equivalence relation of r.

3. Submagmas and Stable Subsets

Let M be a multiplicative magma. A multiplicative magma is said to be a
submagma of M if it satisfies the conditions (Def. 10).

(Def. 10)(i) The carrier of it ⊆ the carrier of M , and
(ii) the multiplication of it = (the multiplication of M) � (the carrier of it).

Let M be a multiplicative magma. One can check that there exists a sub-
magma of M which is strict.

Let M be a non empty multiplicative magma. Note that there exists a sub-
magma of M which is non empty.

In the sequel M denotes a multiplicative magma and N , K denote submag-
mas of M .

One can prove the following propositions:

(6) Suppose N is a submagma of K and K is a submagma of N . Then the
multiplicative magma of N = the multiplicative magma of K.

(7) Suppose the carrier of N = the carrier of M . Then the multiplicative
magma of N = the multiplicative magma of M .

Let M be a multiplicative magma and let A be a subset of M . We say that
A is stable if and only if:

(Def. 11) For all elements v, w of M such that v, w ∈ A holds v · w ∈ A.
Let M be a multiplicative magma. One can check that there exists a subset

of M which is stable.
We now state the proposition

(8) The carrier of N is a stable subset of M .



Free magmas 21

Let M be a multiplicative magma and let N be a submagma of M . Note
that the carrier of N is stable.

We now state the proposition

(9) Let F be a function. Suppose that for every set i such that i ∈ domF

holds F (i) is a stable subset of M . Then
⋂
F is a stable subset of M .

For simplicity, we adopt the following convention: M , N are non empty
multiplicative magmas, A is a subset of M , f , g are functions from M into N ,
X is a stable subset of M , and Y is a stable subset of N .

Next we state four propositions:

(10) A is stable iff A ·A ⊆ A.
(11) If f is multiplicative, then f◦X is a stable subset of N .

(12) If f is multiplicative, then f−1(Y ) is a stable subset of M .

(13) If f is multiplicative and g is multiplicative, then {v ∈M : f(v) = g(v)}
is a stable subset of M .

Let M be a multiplicative magma and let A be a stable subset of M . The
multiplication induced by A yields a binary operation on A and is defined by:

(Def. 12) The multiplication induced by A = (the multiplication of M) � A.

LetM be a multiplicative magma and let A be a subset ofM . The submagma
generated by A yielding a strict submagma of M is defined by the conditions
(Def. 13).

(Def. 13)(i) A ⊆ the carrier of the submagma generated by A, and
(ii) for every strict submagma N of M such that A ⊆ the carrier of N

holds the submagma generated by A is a submagma of N .

We now state the proposition

(14) Let M be a multiplicative magma and A be a subset of M . Then A is
empty if and only if the submagma generated by A is empty.

Let M be a multiplicative magma and let A be an empty subset of M . Note
that the submagma generated by A is empty.

The following proposition is true

(15) Let M , N be non empty multiplicative magmas, f be a function from M

into N , and X be a subset of M . Suppose f is multiplicative. Then f◦(the
carrier of the submagma generated by X) = the carrier of the submagma
generated by f◦X.
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4. Free Magmas

Let X be a set. The free magma sequence of X yielding a function from N
into 2the universe of X∪N is defined by the conditions (Def. 14).

(Def. 14)(i) (The free magma sequence of X)(0) = ∅,
(ii) (the free magma sequence of X)(1) = X, and
(iii) for every natural number n such that n ≥ 2 there exists a finite sequence

f1 such that len f1 = n − 1 and for every natural number p such that
p ≥ 1 and p ≤ n − 1 holds f1(p) = (the free magma sequence of X)(p) ×
(the free magma sequence of X)(n− p) and (the free magma sequence of
X)(n) =

⋃
disjoint f1.

Let X be a set and let n be a natural number. The functor Mn(X) is defined
by:

(Def. 15) Mn(X) = (the free magma sequence of X)(n).

Let X be a non empty set and let n be a non zero natural number. Observe
that Mn(X) is non empty.

In the sequel X is a set.
We now state four propositions:

(16) M0(X) = ∅.
(17) M1(X) = X.

(18) M2(X) = X ×X × {1}.
(19) M3(X) = X × (X ×X × {1})× {1} ∪X ×X × {1} ×X × {2}.

We adopt the following convention: x, y, Y are sets and n, m, p are elements
of N.

One can prove the following propositions:

(20) Suppose n ≥ 2. Then there exists a finite sequence f1 such that len f1 =
n−1 and for every p such that p ≥ 1 and p ≤ n−1 holds f1(p) = Mp(X)×
Mn−′p(X) and Mn(X) =

⋃
disjoint f1.

(21) Suppose n ≥ 2 and x ∈ Mn(X). Then there exist p, m such that x2 = p

and 1 ≤ p ≤ n−1 and (x1)1 ∈ Mp(X) and (x1)2 ∈ Mm(X) and n = p+m

and x ∈ Mp(X)×Mm(X)× {p}.
(22) If x ∈ Mn(X) and y ∈ Mm(X), then 〈〈〈〈x, y〉〉, n〉〉 ∈ Mn+m(X).

(23) If X ⊆ Y, then Mn(X) ⊆ Mn(Y ).

Let X be a set. The carrier of free magma on X is defined as follows:

(Def. 16) The carrier of free magma on X =
⋃

disjoint((the free magma sequence
of X)�N+).

One can prove the following proposition

(24) X = ∅ iff the carrier of free magma on X = ∅.
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Let X be an empty set. Observe that the carrier of free magma on X is
empty.

Let X be a non empty set. One can verify that the carrier of free magma
on X is non empty. Let w be an element of the carrier of free magma on X.
Observe that w2 is non zero and natural.

We now state four propositions:

(25) For every non empty set X and for every element w of the carrier of free
magma on X holds w ∈ Mw2(X)× {w2}.

(26) Let X be a non empty set and v, w be elements of the carrier of free
magma on X. Then 〈〈〈〈〈〈v1, w1〉〉, v2〉〉, v2 +w2〉〉 is an element of the carrier
of free magma on X.

(27) If X ⊆ Y, then the carrier of free magma on X ⊆ the carrier of free
magma on Y .

(28) If n > 0, then Mn(X)× {n} ⊆ the carrier of free magma on X.

Let X be a set. The multiplication of free magma on X yields a binary
operation on the carrier of free magma on X and is defined as follows:

(Def. 17)(i) For all elements v, w of the carrier of free magma on X and for all n,
m such that n = v2 and m = w2 holds (the multiplication of free magma
on X)(v, w) = 〈〈〈〈〈〈v1, w1〉〉, v2〉〉, n+m〉〉 if X is non empty,

(ii) the multiplication of free magma on X = ∅, otherwise.

Let X be a set. The functor M(X) yields a multiplicative magma and is
defined by:

(Def. 18) M(X) = 〈the carrier of free magma on X, the multiplication of free
magma on X〉.

Let X be a set. Note that M(X) is strict.
Let X be an empty set. One can verify that M(X) is empty.
Let X be a non empty set. Note that M(X) is non empty. Let w be an

element of M(X). One can verify that w2 is non zero and natural.
The following proposition is true

(29) For every set X and for every subset S of X holds M(S) is a submagma
of M(X).

Let X be a set and let w be an element of M(X). The functor lengthw yields
a natural number and is defined by:

(Def. 19) lengthw =

{
w2, if X is non empty,
0, otherwise.

One can prove the following proposition

(30) X = {w1;w ranges over elements of M(X): lengthw = 1}.
In the sequel v, v1, v2, w, w1, w2 denote elements of M(X).
One can prove the following propositions:
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(31) If X is non empty, then v · w = 〈〈〈〈〈〈v1, w1〉〉, v2〉〉, length v + lengthw〉〉.
(32) If X is non empty, then v = 〈〈v1, v2〉〉 and length v ≥ 1.

(33) length(v · w) = length v + lengthw.

(34) If lengthw ≥ 2, then there exist w1, w2 such that w = w1 · w2 and
lengthw1 < lengthw and lengthw2 < lengthw.

(35) If v1 · v2 = w1 · w2, then v1 = w1 and v2 = w2.

Let X be a set and let n be a natural number. The n-canonical image of X
yields a function from Mn(X) into M(X) and is defined as follows:

(Def. 20)(i) For every x such that x ∈ dom (the n-canonical image of X) holds
(the n-canonical image of X)(x) = 〈〈x, n〉〉 if n > 0,

(ii) the n-canonical image of X = ∅, otherwise.

Let X be a set and let n be a natural number. Observe that the n-canonical
image of X is one-to-one.

Let X be a non empty set. Observe that the 1-canonical image of X
In the sequel X, Y , Z are non empty sets.
Next we state three propositions:

(36) For every subset A of M(X) such that A = (the 1-canonical image of
X)◦X holds M(X) = the submagma generated by A.

(37) Let R be a compatible equivalence relation of M(X). Then M(X)/R =
the submagma generated by (the canonical homomorphism onto cosets of
R)◦(the 1-canonical image of X)◦X.

(38) For every function f from X into Y holds (the 1-canonical image of Y )·f
is a function from X into M(Y ).

Let X be a non empty set, let M be a non empty multiplicative magma, let
n, m be non zero natural numbers, let f be a function from Mn(X) into M , and
let g be a function from Mm(X) into M . The functor f × g yielding a function
from Mn(X)×Mm(X)× {n} into M is defined by the condition (Def. 21).

(Def. 21) Let x be an element of Mn(X) × Mm(X) × {n}, y be an element of
Mn(X), and z be an element of Mm(X). If y = (x1)1 and z = (x1)2, then
(f × g)(x) = f(y) · g(z).

In the sequel M is a non empty multiplicative magma.
One can prove the following propositions:

(39) Let f be a function from X into M . Then there exists a function h

from M(X) into M such that h is multiplicative and h extends f · (the
1-canonical image of X)−1.

(40) Let f be a function from X into M and h, g be functions from M(X)
into M . Suppose that

(i) h is multiplicative,
(ii) h extends f · (the 1-canonical image of X)−1,

(iii) g is multiplicative, and



Free magmas 25

(iv) g extends f · (the 1-canonical image of X)−1.

Then h = g.

For simplicity, we adopt the following rules: M , N are non empty multipli-
cative magmas, f is a function from M into N , H is a non empty submagma of
N , and R is a compatible equivalence relation of M .

We now state three propositions:

(41) Suppose f is multiplicative and the carrier of H = rng f and R = the
equivalence kernel of f . Then there exists a function g from M/R into H
such that f = g · the canonical homomorphism onto cosets of R and g is
bijective and multiplicative.

(42) Let g1, g2 be functions from M/R into N . Suppose g1 · the canonical
homomorphism onto cosets of R = g2 · the canonical homomorphism onto
cosets of R. Then g1 = g2.

(43) Let M be a non empty multiplicative magma. Then there exists a non
empty set X and there exists a relators r of M(X) such that there exists a
function from M(X)/the equivalence relation of r into M which is bijective and
multiplicative.

Let X, Y be non empty sets and let f be a function from X into Y . The
functor M(f) yields a function from M(X) into M(Y ) and is defined by:

(Def. 22) M(f) is multiplicative and M(f) extends (the 1-canonical image of Y ) ·
f · (the 1-canonical image of X)−1.

Let X, Y be non empty sets and let f be a function from X into Y . One
can verify that M(f) is multiplicative.

In the sequel f denotes a function from X into Y and g denotes a function
from Y into Z.

Next we state several propositions:

(44) M(g · f) = M(g) ·M(f).

(45) For every function g from X into Z such that Y ⊆ Z and f = g holds
M(f) = M(g).

(46) M(idX) = iddomM(f).

(47) If f is one-to-one, then M(f) is one-to-one.

(48) If f is onto, then M(f) is onto.
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The papers [12], [2], [3], [1], [7], [11], [13], [4], [17], [8], [9], [6], [18], [5], [10], [15],
[16], and [14] provide the terminology and notation for this paper.

One can check that there exists a subset of R which is closed-interval.
For simplicity, we use the following convention: a, b, x, r are real numbers,

n is an element of N, A is a closed-interval subset of R, f , g, f1, f2, g1, g2 are
partial functions from R to R, and Z is an open subset of R.

We now state a number of propositions:

(1) Suppose Z ⊆ dom( 1
f1+f2

) and for every x such that x ∈ Z holds f1(x) = 1
and f2 = �2. Then 1

f1+f2
is differentiable on Z and for every x such that

x ∈ Z holds ( 1
f1+f2

)′�Z(x) = − 2·x
(1+x2)2 .

(2) Suppose that A ⊆ Z and f =
1

g1+g2
f2

and f2 = the func-
tion arccot and Z ⊆ ]−1, 1[ and g2 = �2 and for every x such
that x ∈ Z holds g1(x) = 1 and f2(x) > 0 and Z = dom f.

Then
∫
A

f(x)dx = (−(the function ln) · (the function arccot))(supA) −

(−(the function ln) · (the function arccot))(inf A).

(3) Suppose that
(i) A ⊆ Z,
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(ii) for every x such that x ∈ Z holds (the function exp)(x) < 1 and
f1(x) = 1,

(iii) Z ⊆ dom((the function arctan) ·(the function exp)),
(iv) Z = dom f, and
(v) f = the function exp

f1+(the function exp)2
.

Then
∫
A

f(x)dx = ((the function arctan) ·(the function exp))(supA) −

((the function arctan) ·(the function exp))(inf A).

(4) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds (the function exp)(x) < 1 and
f1(x) = 1,

(iii) Z ⊆ dom((the function arccot) ·(the function exp)),
(iv) Z = dom f, and
(v) f = −the function exp

f1+(the function exp)2
.

Then
∫
A

f(x)dx = ((the function arccot) ·(the function exp))(supA)−((the

function arccot) ·(the function exp))(inf A).

(5) Suppose that
(i) A ⊆ Z,
(ii) Z = dom f, and

(iii) f = (the function exp) the function sin
the function cos + the function exp

(the function cos)2
.

Then
∫
A

f(x)dx = ((the function exp) (the function tan))(supA) − ((the

function exp) (the function tan))(inf A).

(6) Suppose that
(i) A ⊆ Z,

(ii) Z = dom f, and
(iii) f = (the function exp) the function cos

the function sin −
the function exp

(the function sin)2
.

Then
∫
A

f(x)dx = ((the function exp) (the function cot))(supA) − ((the

function exp) (the function cot))(inf A).

(7) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f1(x) = 1,
(iii) Z ⊆ ]−1, 1[,
(iv) Z = dom f, and
(v) f = (the function exp) (the function arctan)+ the function exp

f1+�2
.
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Then
∫
A

f(x)dx = ((the function exp) (the function arctan))(supA)−((the

function exp) (the function arctan))(inf A).

(8) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f1(x) = 1,
(iii) Z ⊆ ]−1, 1[,
(iv) Z = dom f, and
(v) f = (the function exp) (the function arccot)− the function exp

f1+�2
.

Then
∫
A

f(x)dx = ((the function exp) (the function arccot))(supA)−((the

function exp) (the function arccot))(inf A).

(9) Suppose A ⊆ Z = dom f and f = ((the function exp) ·(the function sin))

(the function cos). Then
∫
A

f(x)dx = ((the function exp) ·(the function

sin))(supA)− ((the function exp) ·(the function sin))(inf A).

(10) Suppose A ⊆ Z = dom f and f = ((the function exp) ·(the function
cos)) (the function sin).

Then
∫
A

f(x)dx = (−(the function exp) · (the function cos))(supA) −

(−(the function exp) · (the function cos))(inf A).

(11) Suppose A ⊆ Z and for every x such that x ∈ Z holds x > 0 and
Z = dom f and f = ((the function cos) ·(the function ln)) 1

idZ
. Then∫

A

f(x)dx = ((the function sin) ·(the function ln))(supA)− ((the function

sin) ·(the function ln))(inf A).

(12) Suppose A ⊆ Z and for every x such that x ∈ Z holds x > 0
and Z = dom f and f = ((the function sin) ·(the function ln))

1
idZ
. Then

∫
A

f(x)dx = (−(the function cos) · (the function ln))(supA) −

(−(the function cos) · (the function ln))(inf A).

(13) Suppose A ⊆ Z = dom f and f = (the function exp) ((the function cos)

·(the function exp)). Then
∫
A

f(x)dx = ((the function sin) ·(the function

exp))(supA)− ((the function sin) ·(the function exp))(inf A).

(14) Suppose A ⊆ Z = dom f and f = (the function exp) ((the function sin)
·(the function exp)).

Then
∫
A

f(x)dx = (−(the function cos) · (the function exp))(supA) −

(−(the function cos) · (the function exp))(inf A).
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(15) Suppose thatA ⊆ Z ⊆ dom((the function ln) ·(f1+f2)) and r 6= 0 and for
every x such that x ∈ Z holds g(x) = x

r and g(x) > −1 and g(x) < 1 and
f1(x) = 1 and f2 = (�2) · g and Z = dom f and f = (the function arctan)

·g. Then
∫
A

f(x)dx = (idZ ((the function arctan) ·g)− r
2 ((the function ln)

·(f1 + f2)))(supA)− (idZ ((the function arctan) ·g)− r
2 ((the function ln)

·(f1 + f2)))(inf A).

(16) Suppose thatA ⊆ Z ⊆ dom((the function ln) ·(f1+f2)) and r 6= 0 and for
every x such that x ∈ Z holds g(x) = x

r and g(x) > −1 and g(x) < 1 and
f1(x) = 1 and f2 = (�2) · g and Z = dom f and f = (the function arccot)

·g. Then
∫
A

f(x)dx = (idZ ((the function arccot) ·g) + r
2 ((the function ln)

·(f1 + f2)))(supA)− (idZ ((the function arccot) ·g) + r
2 ((the function ln)

·(f1 + f2)))(inf A).

(17) Suppose that
(i) A ⊆ Z,

(ii) f = (the function arctan) ·f1 + idZ
r (g+f12)

,

(iii) for every x such that x ∈ Z holds g(x) = 1 and f1(x) = x
r and

f1(x) > −1 and f1(x) < 1,
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (idZ ((the function arctan) ·f1))(supA) − (idZ ((the

function arctan) ·f1))(inf A).

(18) Suppose that
(i) A ⊆ Z,

(ii) f = (the function arccot) ·f1 − idZ
r (g+f12)

,

(iii) for every x such that x ∈ Z holds g(x) = 1 and f1(x) = x
r and

f1(x) > −1 and f1(x) < 1,
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (idZ ((the function arccot) ·f1))(supA) − (idZ ((the

function arccot) ·f1))(inf A).

(19) Suppose that A ⊆ Z ⊆ ]−1, 1[ and for every x such that x ∈ Z holds
f1(x) = 1 and Z = dom f and Z ⊆ dom((�n) · (the function arcsin)) and

1 < n and f = n ((�n−1)·(the function arcsin))

(�
1
2 )·(f1−�2)

. Then
∫
A

f(x)dx = ((�n) · (the

function arcsin))(supA)− ((�n) · (the function arcsin))(inf A).

(20) Suppose that A ⊆ Z ⊆ ]−1, 1[ and for every x such that x ∈ Z holds
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f1(x) = 1 and Z ⊆ dom((�n) · (the function arccos)) and Z = dom f

and 1 < n and f = n ((�n−1)·(the function arccos))

(�
1
2 )·(f1−�2)

. Then
∫
A

f(x)dx =

(−(�n) · (the function arccos))(supA)− (−(�n) · (the function arccos))
(inf A).

(21) Suppose A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1 and
Z ⊆ ]−1, 1[ and Z = dom f and f = (the function arcsin)+ idZ

(�
1
2 )·(f1−�2)

.

Then
∫
A

f(x)dx = (idZ (the function arcsin))(supA) − (idZ (the function

arcsin))(inf A).

(22) Suppose A ⊆ Z and for every x such that x ∈ Z holds f1(x) = 1 and
Z ⊆ ]−1, 1[ and Z = dom f and f = (the function arccos)− idZ

(�
1
2 )·(f1−�2)

.

Then
∫
A

f(x)dx = (idZ (the function arccos))(supA) − (idZ (the function

arccos))(inf A).

(23) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f1(x) = a · x+ b and f2(x) = 1,
(iv) Z = dom f, and
(v) f = a (the function arcsin)+ f1

(�
1
2 )·(f2−�2)

.

Then
∫
A

f(x)dx = (f1 (the function arcsin))(supA) − (f1 (the function

arcsin))(inf A).

(24) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f1(x) = a · x+ b and f2(x) = 1,
(iv) Z = dom f, and
(v) f = a (the function arccos)− f1

(�
1
2 )·(f2−�2)

.

Then
∫
A

f(x)dx = (f1 (the function arccos))(supA) − (f1 (the function

arccos))(inf A).

(25) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds g(x) = 1 and f1(x) = x
a and f1(x) > −1

and f1(x) < 1,
(iii) Z = dom f,

(iv) f is continuous on A, and
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(v) f = (the function arcsin) ·f1 + idZ
a ((�

1
2 )·(g−f12))

.

Then
∫
A

f(x)dx = (idZ ((the function arcsin) ·f1))(supA) − (idZ ((the function

arcsin) ·f1))(inf A).

(26) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds g(x) = 1 and f1(x) = x

a and f1(x) > −1
and f1(x) < 1,

(iii) Z = dom f,

(iv) f is continuous on A, and
(v) f = (the function arccos) ·f1 − idZ

a ((�
1
2 )·(g−f12))

.

Then
∫
A

f(x)dx = (idZ ((the function arccos) ·f1))(supA)− (idZ ((the function

arccos) ·f1))(inf A).

(27) Suppose A ⊆ Z and f = n ((�n−1)·(the function sin))
(�n+1)·(the function cos) and 1 ≤ n and Z ⊆

dom((�n) · (the function tan)) and Z = dom f. Then
∫
A

f(x)dx = ((�n) · (the

function tan))(supA)− ((�n) · (the function tan))(inf A).

(28) Suppose A ⊆ Z and f = n ((�n−1)·(the function cos))
(�n+1)·(the function sin) and 1 ≤ n and

Z ⊆ dom((�n) · (the function cot)) and Z = dom f. Then
∫
A

f(x)dx =

(−(�n) · (the function cot))(supA)− (−(�n) · (the function cot))(inf A).

(29) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ dom((the function tan) ·f1),

(iii) f = ((the function sin)·f1)2
((the function cos)·f1)2 ,

(iv) for every x such that x ∈ Z holds f1(x) = a · x and a 6= 0, and
(v) Z = dom f.

Then
∫
A

f(x)dx = (
1
a

((the function tan) ·f1) − idZ)(supA) − ( 1
a ((the function

tan) ·f1)− idZ)(inf A).

(30) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ dom((the function cot) ·f1),

(iii) f = ((the function cos)·f1)2
((the function sin)·f1)2 ,

(iv) for every x such that x ∈ Z holds f1(x) = a · x and a 6= 0, and
(v) Z = dom f.
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Then
∫
A

f(x)dx = ((−1
a

) ((the function cot) ·f1) − idZ)(supA) − ((− 1
a) ((the

function cot) ·f1)− idZ)(inf A).

(31) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f1(x) = a · x+ b,

(iii) Z = dom f, and
(iv) f = a the function sin

the function cos + f1
(the function cos)2

.

Then
∫
A

f(x)dx = (f1 (the function tan))(supA)−(f1 (the function tan))(inf A).

(32) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f1(x) = a · x+ b,

(iii) Z = dom f, and
(iv) f = a the function cos

the function sin −
f1

(the function sin)2
.

Then
∫
A

f(x)dx = (f1 (the function cot))(supA)− (f1 (the function cot))(inf A).

(33) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function sin)(x)2

(the function cos)(x)2 ,

(iii) Z ⊆ dom((the function tan)−idZ),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function tan)−idZ)(supA) − ((the function

tan)−idZ)(inf A).

(34) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = (the function cos)(x)2

(the function sin)(x)2 ,

(iii) Z ⊆ dom(−the function cot− idZ),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (−the function cot − idZ)(supA) − (−the function cot −

idZ)(inf A).

(35) Suppose that
(i) A ⊆ Z,

(ii) for every x such that x ∈ Z holds f(x) = 1
x·(1+(the function ln)(x)2) and (the

function ln)(x) > −1 and (the function ln)(x) < 1,
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(iii) Z ⊆ dom((the function arctan) ·(the function ln)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function arctan) ·(the function ln))(supA)− ((the func-

tion arctan) ·(the function ln))(inf A).

(36) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = − 1

x·(1+(the function ln)(x)2) and (the
function ln)(x) > −1 and (the function ln)(x) < 1,

(iii) Z ⊆ dom((the function arccot) ·(the function ln)),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function arccot) ·(the function ln))(supA)− ((the func-

tion arccot) ·(the function ln))(inf A).

(37) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a√

1−(a·x+b)2
and f1(x) = a · x + b

and f1(x) > −1 and f1(x) < 1,
(iii) Z ⊆ dom((the function arcsin) ·f1),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = ((the function arcsin) ·f1)(supA) − ((the function arcsin)

·f1)(inf A).

(38) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a√

1−(a·x+b)2
and f1(x) = a · x + b

and f1(x) > −1 and f1(x) < 1,
(iii) Z ⊆ dom((the function arccos) ·f1),
(iv) Z = dom f, and
(v) f is continuous on A.

Then
∫
A

f(x)dx = (−(the function arccos) · f1)(supA)− (−(the function

arccos) · f1)(inf A).

(39) Suppose that A ⊆ Z and f1 = g − f2 and f2 = �2 and for every x such
that x ∈ Z holds f(x) = x · (1 − x2)−

1
2 and g(x) = 1 and f1(x) > 0 and

Z ⊆ dom((�
1
2 ) ·f1) and Z = dom f and f is continuous on A. Then

∫
A

f(x)dx =



Integrability formulas. Part I 35

(−(�
1
2 ) · f1)(supA)− (−(�

1
2 ) · f1)(inf A).

(40) Suppose that A ⊆ Z and g = f1 − f2 and f2 = �2 and for every x such
that x ∈ Z holds f(x) = x · (a2 − x2)−

1
2 and f1(x) = a2 and g(x) > 0 and

Z ⊆ dom((�
1
2 ) · g) and Z = dom f and f is continuous on A. Then

∫
A

f(x)dx =

(−(�
1
2 ) · g)(supA)− (−(�

1
2 ) · g)(inf A).

(41) Suppose that
(i) A ⊆ Z,

(ii) n > 0,
(iii) for every x such that x ∈ Z holds f(x) = (the function cos)(x)

(the function sin)(x)n+1 and (the
function sin)(x) 6= 0,

(iv) Z ⊆ dom((�n) · 1
the function sin),

(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = ((− 1
n

) ((�n) · 1
the function sin

))(supA) − ((− 1
n

) ((�n) ·

1
the function sin

))(inf A).

(42) Suppose that
(i) A ⊆ Z,

(ii) n > 0,
(iii) for every x such that x ∈ Z holds f(x) = (the function sin)(x)

(the function cos)(x)n+1 and (the
function cos)(x) 6= 0,

(iv) Z ⊆ dom((�n) · 1
the function cos),

(v) Z = dom f, and
(vi) f is continuous on A.

Then
∫
A

f(x)dx = (
1
n

((�n) · 1
the function cos

))(supA) − (
1
n

((�n) ·

1
the function cos

))(inf A).

(43) Suppose that A ⊆ Z and f =
1

g1+g2
f2

and f2 = the function arccot
and Z ⊆ ]−1, 1[ and g2 = �2 and for every x such that x ∈ Z holds
f(x) = 1

(1+x2)·(the function arccot)(x) and g1(x) = 1 and f2(x) > 0 and Z =

dom f. Then
∫
A

f(x)dx = (−(the function ln) · (the function arccot))(supA) −

(−(the function ln) · (the function arccot))(inf A).

(44) Suppose that
(i) A ⊆ Z,

(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds (the function arcsin)(x) > 0 and f1(x) = 1,
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(iv) Z ⊆ dom((the function ln) ·(the function arcsin)),
(v) Z = dom f, and

(vi) f = 1

((�
1
2 )·(f1−�2)) (the function arcsin)

.

Then
∫
A

f(x)dx = ((the function ln) ·(the function arcsin))(supA)− ((the func-

tion ln) ·(the function arcsin))(inf A).

(45) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,

(iii) for every x such that x ∈ Z holds f1(x) = 1 and (the function arccos)(x) > 0,
(iv) Z ⊆ dom((the function ln) ·(the function arccos)),
(v) Z = dom f, and

(vi) f = 1

((�
1
2 )·(f1−�2)) (the function arccos)

.

Then
∫
A

f(x)dx = (−(the function ln) · (the function arccos))(supA)−

(−(the function ln) · (the function arccos))(inf A).
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1. Preliminaries

For simplicity, we use the following convention: D denotes a set, x, x0, y, y0,
z, z0, r, s, t denote real numbers, p, a, u, u0 denote elements of R3, f , f1, f2,
f3, g denote partial functions from R3 to R, R denotes a rest, and L denotes a
linear function.

One can prove the following three propositions:

(1) dom proj(1, 3) = R3 and rng proj(1, 3) = R and for all elements x, y, z
of R holds (proj(1, 3))(〈x, y, z〉) = x.
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(2) dom proj(2, 3) = R3 and rng proj(2, 3) = R and for all elements x, y, z
of R holds (proj(2, 3))(〈x, y, z〉) = y.

(3) dom proj(3, 3) = R3 and rng proj(3, 3) = R and for all elements x, y, z
of R holds (proj(3, 3))(〈x, y, z〉) = z.

2. Partial Differentiation of Real Ternary Functions

One can prove the following propositions:

(4) If u = 〈x, y, z〉 and f is partially differentiable in u w.r.t. coordinate
number 1, then SVF1(1, f, u) is differentiable in x.

(5) If u = 〈x, y, z〉 and f is partially differentiable in u w.r.t. coordinate
number 2, then SVF1(2, f, u) is differentiable in y.

(6) If u = 〈x, y, z〉 and f is partially differentiable in u w.r.t. coordinate
number 3, then SVF1(3, f, u) is differentiable in z.

(7) Let f be a partial function from R3 to R and u be an element of R3.
Then the following statements are equivalent

(i) there exist real numbers x0, y0, z0 such that u = 〈x0, y0, z0〉 and
SVF1(1, f, u) is differentiable in x0,

(ii) f is partially differentiable in u w.r.t. coordinate number 1.

(8) Let f be a partial function from R3 to R and u be an element of R3.
Then the following statements are equivalent

(i) there exist real numbers x0, y0, z0 such that u = 〈x0, y0, z0〉 and
SVF1(2, f, u) is differentiable in y0,

(ii) f is partially differentiable in u w.r.t. coordinate number 2.

(9) Let f be a partial function from R3 to R and u be an element of R3.
Then the following statements are equivalent

(i) there exist real numbers x0, y0, z0 such that u = 〈x0, y0, z0〉 and
SVF1(3, f, u) is differentiable in z0,

(ii) f is partially differentiable in u w.r.t. coordinate number 3.

(10) Suppose u = 〈x0, y0, z0〉 and f is partially differentiable in u w.r.t.
coordinate number 1. Then there exists a neighbourhood N of x0 such
that N ⊆ dom SVF1(1, f, u) and there exist L, R such that for eve-
ry x such that x ∈ N holds (SVF1(1, f, u))(x) − (SVF1(1, f, u))(x0) =
L(x− x0) +R(x− x0).

(11) Suppose u = 〈x0, y0, z0〉 and f is partially differentiable in u w.r.t.
coordinate number 2. Then there exists a neighbourhood N of y0 such
that N ⊆ dom SVF1(2, f, u) and there exist L, R such that for eve-
ry y such that y ∈ N holds (SVF1(2, f, u))(y) − (SVF1(2, f, u))(y0) =
L(y − y0) +R(y − y0).
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(12) Suppose u = 〈x0, y0, z0〉 and f is partially differentiable in u w.r.t. co-
ordinate number 3. Then there exists a neighbourhood N of z0 such that
N ⊆ dom SVF1(3, f, u) and there exist L, R such that for every z such that
z ∈ N holds (SVF1(3, f, u))(z)−(SVF1(3, f, u))(z0) = L(z−z0)+R(z−z0).

(13) Let f be a partial function from R3 to R and u be an element of R3.
Then the following statements are equivalent

(i) f is partially differentiable in u w.r.t. coordinate number 1,
(ii) there exist real numbers x0, y0, z0 such that u = 〈x0, y0, z0〉 and there

exists a neighbourhoodN of x0 such thatN ⊆ dom SVF1(1, f, u) and there
exist L, R such that for every x such that x ∈ N holds (SVF1(1, f, u))(x)−
(SVF1(1, f, u))(x0) = L(x− x0) +R(x− x0).

(14) Let f be a partial function from R3 to R and u be an element of R3.
Then the following statements are equivalent

(i) f is partially differentiable in u w.r.t. coordinate number 2,
(ii) there exist real numbers x0, y0, z0 such that u = 〈x0, y0, z0〉 and there

exists a neighbourhoodN of y0 such thatN ⊆ dom SVF1(2, f, u) and there
exist L, R such that for every y such that y ∈ N holds (SVF1(2, f, u))(y)−
(SVF1(2, f, u))(y0) = L(y − y0) +R(y − y0).

(15) Let f be a partial function from R3 to R and u be an element of R3.
Then the following statements are equivalent

(i) f is partially differentiable in u w.r.t. coordinate number 3,
(ii) there exist real numbers x0, y0, z0 such that u = 〈x0, y0, z0〉 and there

exists a neighbourhood N of z0 such that N ⊆ dom SVF1(3, f, u) and there
exist L, R such that for every z such that z ∈ N holds (SVF1(3, f, u))(z)−
(SVF1(3, f, u))(z0) = L(z − z0) +R(z − z0).

(16) Suppose u = 〈x0, y0, z0〉 and f is partially differentiable in u w.r.t. co-
ordinate number 1. Then r = partdiff(f, u, 1) if and only if there exist
real numbers x0, y0, z0 such that u = 〈x0, y0, z0〉 and there exists a
neighbourhood N of x0 such that N ⊆ dom SVF1(1, f, u) and there
exist L, R such that r = L(1) and for every x such that x ∈ N holds
(SVF1(1, f, u))(x)− (SVF1(1, f, u))(x0) = L(x− x0) +R(x− x0).

(17) Suppose u = 〈x0, y0, z0〉 and f is partially differentiable in u w.r.t. co-
ordinate number 2. Then r = partdiff(f, u, 2) if and only if there exist
real numbers x0, y0, z0 such that u = 〈x0, y0, z0〉 and there exists a
neighbourhood N of y0 such that N ⊆ dom SVF1(2, f, u) and there
exist L, R such that r = L(1) and for every y such that y ∈ N holds
(SVF1(2, f, u))(y)− (SVF1(2, f, u))(y0) = L(y − y0) +R(y − y0).

(18) Suppose u = 〈x0, y0, z0〉 and f is partially differentiable in u w.r.t. co-
ordinate number 3. Then r = partdiff(f, u, 3) if and only if there exist
real numbers x0, y0, z0 such that u = 〈x0, y0, z0〉 and there exists a
neighbourhood N of z0 such that N ⊆ dom SVF1(3, f, u) and there
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exist L, R such that r = L(1) and for every z such that z ∈ N holds
(SVF1(3, f, u))(z)− (SVF1(3, f, u))(z0) = L(z − z0) +R(z − z0).

(19) If u = 〈x0, y0, z0〉, then partdiff(f, u, 1) = (SVF1(1, f, u))′(x0).

(20) If u = 〈x0, y0, z0〉, then partdiff(f, u, 2) = (SVF1(2, f, u))′(y0).

(21) If u = 〈x0, y0, z0〉, then partdiff(f, u, 3) = (SVF1(3, f, u))′(z0).

Let f be a partial function from R3 to R and let D be a set. We say that f
is partially differentiable w.r.t. 1st coordinate on D if and only if the conditions
(Def. 1) are satisfied.

(Def. 1)(i) D ⊆ dom f, and
(ii) for every element u of R3 such that u ∈ D holds f�D is partially

differentiable in u w.r.t. coordinate number 1.

We say that f is partially differentiable w.r.t. 2nd coordinate on D if and only
if the conditions (Def. 2) are satisfied.

(Def. 2)(i) D ⊆ dom f, and
(ii) for every element u of R3 such that u ∈ D holds f�D is partially

differentiable in u w.r.t. coordinate number 2.

We say that f is partially differentiable w.r.t. 3rd coordinate on D if and only
if the conditions (Def. 3) are satisfied.

(Def. 3)(i) D ⊆ dom f, and
(ii) for every element u of R3 such that u ∈ D holds f�D is partially

differentiable in u w.r.t. coordinate number 3.

The following three propositions are true:

(22) Suppose f is partially differentiable w.r.t. 1st coordinate onD. ThenD ⊆
dom f and for every u such that u ∈ D holds f is partially differentiable
in u w.r.t. coordinate number 1.

(23) Suppose f is partially differentiable w.r.t. 2nd coordinate on D. Then
D ⊆ dom f and for every u such that u ∈ D holds f is partially differen-
tiable in u w.r.t. coordinate number 2.

(24) Suppose f is partially differentiable w.r.t. 3rd coordinate on D. Then
D ⊆ dom f and for every u such that u ∈ D holds f is partially differen-
tiable in u w.r.t. coordinate number 3.

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partially differentiable w.r.t. 1st coordinate on D. The functor f1st

�D
yielding a partial function from R3 to R is defined as follows:

(Def. 4) dom(f1st
�D ) = D and for every element u of R3 such that u ∈ D holds

f1st
�D (u) = partdiff(f, u, 1).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partially differentiable w.r.t. 2nd coordinate on D. The functor f2nd

�D
yields a partial function from R3 to R and is defined as follows:
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(Def. 5) dom(f2nd
�D ) = D and for every element u of R3 such that u ∈ D holds

f2nd
�D (u) = partdiff(f, u, 2).

Let f be a partial function from R3 to R and let D be a set. Let us assume
that f is partially differentiable w.r.t. 3rd coordinate on D. The functor f3rd

�D
yielding a partial function from R3 to R is defined as follows:

(Def. 6) dom(f3rd
�D ) = D and for every element u of R3 such that u ∈ D holds

f3rd
�D (u) = partdiff(f, u, 3).

3. Main Properties of Partial Differentiation of Real Ternary
Functions

We now state a number of propositions:

(25) Let u0 be an element ofR3 and N be a neighbourhood of (proj(1, 3))(u0).
Suppose f is partially differentiable in u0 w.r.t. coordinate number 1
and N ⊆ dom SVF1(1, f, u0). Let h be a convergent to 0 sequence of
real numbers and c be a constant sequence of real numbers. Suppose
rng c = {(proj(1, 3))(u0)} and rng(h+ c) ⊆ N. Then h−1 (SVF1(1, f, u0) ·
(h + c) − SVF1(1, f, u0) · c) is convergent and partdiff(f, u0, 1) =
lim(h−1 (SVF1(1, f, u0) · (h+ c)− SVF1(1, f, u0) · c)).

(26) Let u0 be an element ofR3 and N be a neighbourhood of (proj(2, 3))(u0).
Suppose f is partially differentiable in u0 w.r.t. coordinate number 2
and N ⊆ dom SVF1(2, f, u0). Let h be a convergent to 0 sequence of
real numbers and c be a constant sequence of real numbers. Suppose
rng c = {(proj(2, 3))(u0)} and rng(h+ c) ⊆ N. Then h−1 (SVF1(2, f, u0) ·
(h + c) − SVF1(2, f, u0) · c) is convergent and partdiff(f, u0, 2) =
lim(h−1 (SVF1(2, f, u0) · (h+ c)− SVF1(2, f, u0) · c)).

(27) Let u0 be an element ofR3 and N be a neighbourhood of (proj(3, 3))(u0).
Suppose f is partially differentiable in u0 w.r.t. coordinate number 3
and N ⊆ dom SVF1(3, f, u0). Let h be a convergent to 0 sequence of
real numbers and c be a constant sequence of real numbers. Suppose
rng c = {(proj(3, 3))(u0)} and rng(h+ c) ⊆ N. Then h−1 (SVF1(3, f, u0) ·
(h + c) − SVF1(3, f, u0) · c) is convergent and partdiff(f, u0, 3) =
lim(h−1 (SVF1(3, f, u0) · (h+ c)− SVF1(3, f, u0) · c)).

(28) Suppose that
(i) f1 is partially differentiable in u0 w.r.t. coordinate number 1, and
(ii) f2 is partially differentiable in u0 w.r.t. coordinate number 1.

Then f1 f2 is partially differentiable in u0 w.r.t. coordinate number 1.

(29) Suppose that
(i) f1 is partially differentiable in u0 w.r.t. coordinate number 2, and
(ii) f2 is partially differentiable in u0 w.r.t. coordinate number 2.
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Then f1 f2 is partially differentiable in u0 w.r.t. coordinate number 2.

(30) Suppose that
(i) f1 is partially differentiable in u0 w.r.t. coordinate number 3, and
(ii) f2 is partially differentiable in u0 w.r.t. coordinate number 3.

Then f1 f2 is partially differentiable in u0 w.r.t. coordinate number 3.

(31) Let u0 be an element of R3. Suppose f is partially differentiable in
u0 w.r.t. coordinate number 1. Then SVF1(1, f, u0) is continuous in
(proj(1, 3))(u0).

(32) Let u0 be an element of R3. Suppose f is partially differentiable in
u0 w.r.t. coordinate number 2. Then SVF1(2, f, u0) is continuous in
(proj(2, 3))(u0).

(33) Let u0 be an element of R3. Suppose f is partially differentiable in
u0 w.r.t. coordinate number 3. Then SVF1(3, f, u0) is continuous in
(proj(3, 3))(u0).

(34) Suppose f is partially differentiable in u0 w.r.t. coordinate number 1.
Then there exists R such that R(0) = 0 and R is continuous in 0.

(35) Suppose f is partially differentiable in u0 w.r.t. coordinate number 2.
Then there exists R such that R(0) = 0 and R is continuous in 0.

(36) Suppose f is partially differentiable in u0 w.r.t. coordinate number 3.
Then there exists R such that R(0) = 0 and R is continuous in 0.

4. Grads and Curl

Let f be a partial function from R3 to R and let p be an element of R3. The
functor grad(f, p) yields an element of R3 and is defined as follows:

(Def. 7) grad(f, p) = partdiff(f, p, 1)·e1+partdiff(f, p, 2)·e2+partdiff(f, p, 3)·e3.

We now state several propositions:

(37) grad(f, p) = [partdiff(f, p, 1),partdiff(f, p, 2),partdiff(f, p, 3)].

(38) Suppose that
(i) f is partially differentiable in p w.r.t. coordinate number 1, partially

differentiable in p w.r.t. coordinate number 2, and partially differentiable
in p w.r.t. coordinate number 3, and

(ii) g is partially differentiable in p w.r.t. coordinate number 1, partially
differentiable in p w.r.t. coordinate number 2, and partially differentiable
in p w.r.t. coordinate number 3.
Then grad(f + g, p) = grad(f, p) + grad(g, p).

(39) Suppose that
(i) f is partially differentiable in p w.r.t. coordinate number 1, partially

differentiable in p w.r.t. coordinate number 2, and partially differentiable
in p w.r.t. coordinate number 3, and
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(ii) g is partially differentiable in p w.r.t. coordinate number 1, partially
differentiable in p w.r.t. coordinate number 2, and partially differentiable
in p w.r.t. coordinate number 3.
Then grad(f − g, p) = grad(f, p)− grad(g, p).

(40) Suppose that
(i) f is partially differentiable in p w.r.t. coordinate number 1,
(ii) f is partially differentiable in p w.r.t. coordinate number 2, and
(iii) f is partially differentiable in p w.r.t. coordinate number 3.

Then grad(r f, p) = r · grad(f, p).

(41) Suppose that
(i) f is partially differentiable in p w.r.t. coordinate number 1, partially

differentiable in p w.r.t. coordinate number 2, and partially differentiable
in p w.r.t. coordinate number 3, and

(ii) g is partially differentiable in p w.r.t. coordinate number 1, partially
differentiable in p w.r.t. coordinate number 2, and partially differentiable
in p w.r.t. coordinate number 3.
Then grad(s f + t g, p) = s · grad(f, p) + t · grad(g, p).

(42) Suppose that
(i) f is partially differentiable in p w.r.t. coordinate number 1, partially

differentiable in p w.r.t. coordinate number 2, and partially differentiable
in p w.r.t. coordinate number 3, and

(ii) g is partially differentiable in p w.r.t. coordinate number 1, partially
differentiable in p w.r.t. coordinate number 2, and partially differentiable
in p w.r.t. coordinate number 3.
Then grad(s f − t g, p) = s · grad(f, p)− t · grad(g, p).

(43) If f is total and constant, then grad(f, p) = 0E3T .

Let a be an element of R3. The functor unitvector a yields an element of R3

and is defined as follows:

(Def. 8) unitvector a = [ a(1)√
a(1)2+a(2)2+a(3)2

, a(2)√
a(1)2+a(2)2+a(3)2

, a(3)√
a(1)2+a(2)2+a(3)2

].

Let f be a partial function from R3 to R and let p, a be elements of R3.
The functor Directiondiff(f, p, a) yielding a real number is defined by:

(Def. 9) Directiondiff(f, p, a) = partdiff(f, p, 1)·(unitvector a)(1)+partdiff(f, p, 2)·
(unitvector a)(2) + partdiff(f, p, 3) · (unitvector a)(3).

The following propositions are true:

(44) If a = 〈x0, y0, z0〉, then Directiondiff(f, p, a) = partdiff(f,p,1)·x0√
x02+y02+z02

+

partdiff(f,p,2)·y0√
x02+y02+z02

+ partdiff(f,p,3)·z0√
x02+y02+z02

.

(45) Directiondiff(f, p, a) = |(grad(f, p), unitvector a)|.
Let f1, f2, f3 be partial functions from R3 to R and let p be an element of

R3. The functor curl(f1, f2, f3, p) yields an element of R3 and is defined by:
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(Def. 10) curl(f1, f2, f3, p) = (partdiff(f3, p, 2)− partdiff(f2, p, 3)) · e1+
(partdiff(f1, p, 3)− partdiff(f3, p, 1)) · e2 + (partdiff(f2, p, 1)−
partdiff(f1, p, 2)) · e3.

Next we state the proposition

(46) curl(f1, f2, f3, p) = [partdiff(f3, p, 2)−partdiff(f2, p, 3), partdiff(f1, p, 3)−
partdiff(f3, p, 1),partdiff(f2, p, 1)− partdiff(f1, p, 2)].
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the notation and terminology for this paper.

1. Monotone Functions, Chain and Chain-complete Posets

Let P be a non empty poset. Observe that there exists a chain of P which
is non empty.

Let I1 be a relational structure. We say that I1 is chain-complete if and only
if:

(Def. 1) I1 is lower-bounded and for every chain L of I1 such that L is non empty
holds sup L exists in I1.

One can prove the following proposition

(1) Let P1, P2 be non empty posets, K be a non empty chain of P1, and h

be a monotone function from P1 into P2. Then h◦K is a non empty chain
of P2.

Let us note that there exists a poset which is strict, chain-complete, and non
empty.

Let us mention that every relational structure which is chain-complete is
also lower-bounded.

47
c© 2010 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/poset_1.miz
http://ftp.mizar.org/


48 kazuhisa ishida and yasunari shidama

For simplicity, we adopt the following rules: x, y denote sets, P , Q denote
strict chain-complete non empty posets, L denotes a non empty chain of P ,
M denotes a non empty chain of Q, p denotes an element of P , f denotes a
monotone function from P into Q, and g, g1, g2 denote monotone functions
from P into P .

We now state the proposition

(2) sup(f◦L) ≤ f(supL).

2. Fixpoint Theorem for Continuous Functions on Chain-complete
Posets

Let P be a non empty poset, let g be a monotone function from P into P ,
and let p be an element of P . The functor iterSet(g, p) yields a non empty set
and is defined by:

(Def. 2) iterSet(g, p) = {x ∈ P :
∨
n : natural number x = gn(p)}.

Next we state the proposition

(3) iterSet(g,⊥P ) is a non empty chain of P .

Let us consider P and let g be a monotone function from P into P . The
functor iter-min g yields a non empty chain of P and is defined by:

(Def. 3) iter-min g = iterSet(g,⊥P ).

The following propositions are true:

(4) sup iter-min g = sup(g◦ iter-min g).

(5) If g1 ≤ g2, then sup iter-min g1 ≤ sup iter-min g2.

Let P , Q be non empty posets and let f be a function from P into Q. We
say that f is continuous if and only if:

(Def. 4) f is monotone and for every non empty chain L of P holds f preserves
sup of L.

We now state two propositions:

(6) For every function f from P intoQ holds f is continuous iff f is monotone
and for every L holds f(supL) = sup(f◦L).

(7) For every element z of Q holds P 7−→ z is continuous.

Let us consider P , Q. Observe that there exists a function from P into Q

which is continuous.
Let us consider P , Q. One can verify that every function from P into Q

which is continuous is also monotone.
The following proposition is true

(8) For every monotone function f from P into Q such that for every L

holds f(supL) ≤ sup(f◦L) holds f is continuous.
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Let us consider P and let g be a monotone function from P into P . Let us
assume that g is continuous. The least fixpoint of g yields an element of P and
is defined by the conditions (Def. 5).

(Def. 5)(i) The least fixpoint of g is a fixpoint of g, and
(ii) for every p such that p is a fixpoint of g holds the least fixpoint of g ≤ p.
One can prove the following propositions:

(9) For every continuous function g from P into P holds the least fixpoint
of g = sup iter-min g.

(10) Let g1, g2 be continuous functions from P into P . If g1 ≤ g2, then the
least fixpoint of g1 ≤ the least fixpoint of g2.

3. Function Space of Continuous Functions on Chain-complete
Posets

Let us consider P , Q. The functor ConFuncs(P,Q) yields a non empty set
and is defined by the condition (Def. 6).

(Def. 6) ConFuncs(P,Q) = {x;x ranges over elements of (the carrier of
Q)the carrier of P :

∨
f : continuous function from P into Q f = x}.

Let us consider P , Q. The functor ConRelat(P,Q) yielding a binary relation
on ConFuncs(P,Q) is defined by the condition (Def. 7).

(Def. 7) Let given x, y. Then 〈〈x, y〉〉 ∈ ConRelat(P,Q) if and only if the following
conditions are satisfied:

(i) x ∈ ConFuncs(P,Q),
(ii) y ∈ ConFuncs(P,Q), and
(iii) there exist functions f , g from P into Q such that x = f and y = g

and f ≤ g.
Let us consider P , Q. One can verify the following observations:

∗ ConRelat(P,Q) is reflexive,

∗ ConRelat(P,Q) is transitive, and

∗ ConRelat(P,Q) is antisymmetric.

Let us consider P , Q. The functor ConPoset(P,Q) yielding a strict non
empty poset is defined as follows:

(Def. 8) ConPoset(P,Q) = 〈ConFuncs(P,Q),ConRelat(P,Q)〉.
In the sequel F is a non empty chain of ConPoset(P,Q).
Let us consider P , Q, F , p. The functor F -image(p) yielding a non empty

chain of Q is defined as follows:

(Def. 9) F -image(p) = {x ∈ Q:
∨
f : continuous function from P into Q (f ∈ F ∧ x =

f(p))}.
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Let us consider P , Q, F . The functor sup-funcF yields a function from P

into Q and is defined as follows:

(Def. 10) For all p, M such that M = F -image(p) holds (sup-funcF )(p) = supM.

Let us consider P , Q, F . One can check that sup-funcF is continuous.
The following proposition is true

(11) Sup F exists in ConPoset(P,Q) and sup-funcF =
⊔

ConPoset(P,Q) F.

Let us consider P , Q. The functor min-func(P,Q) yielding a function from
P into Q is defined as follows:

(Def. 11) min-func(P,Q) = P 7−→ ⊥Q.
Let us consider P , Q. One can check that min-func(P,Q) is continuous.
The following proposition is true

(12) For every element f of ConPoset(P,Q) such that f = min-func(P,Q)
holds f ≤ the carrier of ConPoset(P,Q).

Let us consider P , Q. Note that ConPoset(P,Q) is chain-complete.

4. Continuity of Fixpoint Function from ConPoset(P, P ) into P

Let us consider P . The functor fix-funcP yielding a function
from ConPoset(P, P ) into P is defined by the condition (Def. 12).

(Def. 12) Let g be an element of ConPoset(P, P ) and h be a continuous function
from P into P . If g = h, then (fix-funcP )(g) = the least fixpoint of h.

Let us consider P . One can check that fix-funcP is continuous.
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The papers [2], [3], [4], [6], [7], [5], [8], [9], [10], and [1] provide the terminology
and notation for this paper.

For simplicity, we adopt the following convention: x denotes a set, G denotes
a group, A, B, H, H1, H2 denote subgroups of G, a, b, c denote elements of
G, F denotes a finite sequence of elements of the carrier of G, and i, j denote
elements of N.

One can prove the following propositions:

(1) ab = a · [a, b].
(2) [a, b]−1 = [a, b−1]b.

(3) [a, b]−1 = [a−1, b]a.

(4) ([a, b−1]b)−1 = [b−1, a]b.

(5) [a, b−1, c]b = [[a, b−1]b, cb].

(6) [a, b−1]b = [b, a].

(7) [a, b−1, c]b = [b, a, cb].

(8) [a, b, ca] · [c, a, bc] · [b, c, ab] = 1G.
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(9) [A,B] is a subgroup of [B,A].

(10) [A,B] = [B,A].

Let us consider G, A, B. Let us note that the functor [A,B] is commutative.
One can prove the following propositions:

(11) If B is a subgroup of A, then the commutators of A & B ⊆ A.
(12) If B is a subgroup of A, then [A,B] is a subgroup of A.

(13) If B is a subgroup of A, then [B,A] is a subgroup of A.

(14) If [H1,ΩG] is a subgroup of H2, then [H1∩H,H] is a subgroup of H2∩H.
(15) [H1, H2] is a subgroup of [H1,ΩG].

(16) A is a normal subgroup of G iff [A,ΩG] is a subgroup of A.

Let us consider G. The normal subgroups of G yields a set and is defined
by:

(Def. 1) x ∈ the normal subgroups of G iff x is a strict normal subgroup of G.

Let us consider G. One can verify that the normal subgroups of G is non
empty.

Next we state three propositions:

(17) Let F be a finite sequence of elements of the normal subgroups of G and
given j. If j ∈ domF, then F (j) is a strict normal subgroup of G.

(18) The normal subgroups of G ⊆ SubGrG.

(19) Every finite sequence of elements of the normal subgroups of G is a finite
sequence of elements of SubGrG.

Let I1 be a group. We say that I1 is nilpotent if and only if the condition
(Def. 2) is satisfied.

(Def. 2) There exists a finite sequence F of elements of the normal subgroups of
I1 such that

(i) lenF > 0,
(ii) F (1) = Ω(I1),

(iii) F (lenF ) = {1}(I1), and
(iv) for every i such that i, i+1 ∈ domF and for all strict normal subgroups

G1, G2 of I1 such that G1 = F (i) and G2 = F (i+1) holds G2 is a subgroup
of G1 and G1/(G2)(G1)

is a subgroup of Z(I1/G2).

Let us note that there exists a group which is nilpotent and strict.
We now state four propositions:

(20) Let G1 be a subgroup of G and N be a strict normal subgroup of G.
Suppose N is a subgroup of G1 and G1/(N)(G1)

is a subgroup of Z(G/N ).
Then [G1,ΩG] is a subgroup of N .

(21) Let G1 be a subgroup of G and N be a normal subgroup of G. Suppose
N is a strict subgroup of G1 and [G1,ΩG] is a strict subgroup of N . Then
G1/(N)(G1)

is a subgroup of Z(G/N ).
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(22) Let G be a group. Then G is nilpotent if and only if there exists a
finite sequence F of elements of the normal subgroups of G such that
lenF > 0 and F (1) = ΩG and F (lenF ) = {1}G and for every i such that
i, i+1 ∈ domF and for all strict normal subgroups G1, G2 of G such that
G1 = F (i) and G2 = F (i+ 1) holds G2 is a subgroup of G1 and [G1,ΩG]
is a subgroup of G2.

(23) Let G be a group, H, G1 be subgroups of G, G2 be a strict normal
subgroup of G, H1 be a subgroup of H, and H2 be a normal subgroup
of H. Suppose G2 is a subgroup of G1 and G1/(G2)(G1)

is a subgroup of

Z(G/G2) and H1 = G1 ∩ H and H2 = G2 ∩ H. Then H1/(H2)(H1)
is a

subgroup of Z(H/H2).

Let G be a nilpotent group. Note that every subgroup of G is nilpotent.
Let us mention that every group which is commutative is also nilpotent and

every group which is cyclic is also nilpotent.
We now state four propositions:

(24) Let G, H be strict groups, h be a homomorphism from G to H, A be a
strict subgroup of G, and a, b be elements of G. Then h(a) · h(b) · h◦A =
h◦(a · b ·A) and h◦A · h(a) · h(b) = h◦(A · a · b).

(25) Let G, H be strict groups, h be a homomorphism from G to H, A be
a strict subgroup of G, a, b be elements of G, H1 be a subgroup of Imh,

and a1, b1 be elements of Imh. If a1 = h(a) and b1 = h(b) and H1 = h◦A,

then a1 · b1 ·H1 = h(a) · h(b) · h◦A.
(26) Let G, H be strict groups, h be a homomorphism from G to H, G1 be a

strict subgroup of G, G2 be a strict normal subgroup of G, H1 be a strict
subgroup of Imh, and H2 be a strict normal subgroup of Imh. Suppose
G2 is a strict subgroup of G1 and G1/(G2)(G1)

is a subgroup of Z(G/G2) and

H1 = h◦G1 and H2 = h◦G2. Then H1/(H2)(H1)
is a subgroup of Z(Imh/H2).

(27) Let G, H be strict groups, h be a homomorphism from G to H, and A

be a strict normal subgroup of G. Then h◦A is a strict normal subgroup
of Imh.

Let G be a strict nilpotent group, let H be a strict group, and let h be a
homomorphism from G to H. One can check that Imh is nilpotent.

Let G be a strict nilpotent group and let N be a strict normal subgroup of
G. Note that G/N is nilpotent.

One can prove the following three propositions:

(28) Let G be a group. Given a finite sequence F of elements of the normal
subgroups of G such that

(i) lenF > 0,
(ii) F (1) = ΩG,

(iii) F (lenF ) = {1}G, and
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(iv) for every i such that i, i + 1 ∈ domF and for every strict normal
subgroup G1 of G such that G1 = F (i) holds [G1,ΩG] = F (i+ 1).
Then G is nilpotent.

(29) Let G be a group. Given a finite sequence F of elements of the normal
subgroups of G such that

(i) lenF > 0,
(ii) F (1) = ΩG,

(iii) F (lenF ) = {1}G, and
(iv) for every i such that i, i+1 ∈ domF and for all strict normal subgroups

G1, G2 of G such that G1 = F (i) and G2 = F (i+1) holds G2 is a subgroup
of G1 and G/G2 is a commutative group.
Then G is nilpotent.

(30) Let G be a group. Given a finite sequence F of elements of the normal
subgroups of G such that

(i) lenF > 0,
(ii) F (1) = ΩG,

(iii) F (lenF ) = {1}G, and
(iv) for every i such that i, i+1 ∈ domF and for all strict normal subgroups

G1, G2 of G such that G1 = F (i) and G2 = F (i+1) holds G2 is a subgroup
of G1 and G/G2 is a cyclic group.
Then G is nilpotent.

Let us mention that every group which is nilpotent is also solvable.
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The terminology and notation used in this paper have been introduced in the
following papers: [6], [2], [1], [4], [11], [7], [5], [8], [12], [9], [10], and [3].

We follow the rules: n, m are elements of N, h, k, r, r1, r2, x, x0, x1, x2, x3

are real numbers, and f , f1, f2 are functions from R into R.
Next we state a number of propositions:

(1) (δh[f ])(x) = (∆h
2
[f ])(x)− (∆−h2

[f ])(x).

(2) (∆−h2
[f ])(x) = −(∇h

2
[f ])(x).

(3) (δh[f ])(x) = (∇h
2
[f ])(x)− (∇−h2 [f ])(x).

(4) (~∆h[r f1 + f2])(n+ 1)(x) = r · (~∆h[f1])(n+ 1)(x) + (~∆h[f2])(n+ 1)(x).

(5) (~∆h[f1 + r f2])(n+ 1)(x) = (~∆h[f1])(n+ 1)(x) + r · (~∆h[f2])(n+ 1)(x).

(6) (~∆h[r1 f1 − r2 f2])(n+ 1)(x) = r1 · (~∆h[f1])(n+ 1)(x)− r2 · (~∆h[f2])(n+
1)(x).

(7) (~∆h[f ])(1) = ∆h[f ].

(8) (~∇h[r f1 + f2])(n+ 1)(x) = r · (~∇h[f1])(n+ 1)(x) + (~∇h[f2])(n+ 1)(x).

(9) (~∇h[f1 + r f2])(n+ 1)(x) = (~∇h[f1])(n+ 1)(x) + r · (~∇h[f2])(n+ 1)(x).

(10) (~∇h[r1 f1 − r2 f2])(n+ 1)(x) = r1 · (~∇h[f1])(n+ 1)(x)− r2 · (~∇h[f2])(n+
1)(x).
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(11) (~∇h[f ])(1) = ∇h[f ].

(12) (~∇h[(~∇h[f ])(m)])(n)(x) = (~∇h[f ])(m+ n)(x).

(13) (~δh[r f1 + f2])(n+ 1)(x) = r · (~δh[f1])(n+ 1)(x) + (~δh[f2])(n+ 1)(x).

(14) (~δh[f1 + r f2])(n+ 1)(x) = (~δh[f1])(n+ 1)(x) + r · (~δh[f2])(n+ 1)(x).

(15) (~δh[r1 f1−r2 f2])(n+1)(x) = r1 ·(~δh[f1])(n+1)(x)−r2 ·(~δh[f2])(n+1)(x).

(16) (~δh[f ])(1) = δh[f ].

(17) (~δh[(~δh[f ])(m)])(n)(x) = (~δh[f ])(m+ n)(x).

(18) If (~∆h[f ])(n)(x) = (~δh[f ])(n)(x + n
2 · h), then (~∇h[f ])(n)(x) =

(~δh[f ])(n)(x− n
2 · h).

(19) If (~∆h[f ])(n)(x) = (~δh[f ])(n)(x + n−1
2 · h + h

2 ), then (~∇h[f ])(n)(x) =
(~δh[f ])(n)(x− n−1

2 · h−
h
2 ).

(20) ∆[f ](x, x+ h) = (∆h[f ])(x)
h .

(21) ∆[f ](x− h, x) = (∇h[f ])(x)
h .

(22) ∆[f ](x− h
2 , x+ h

2 ) = (δh[f ])(x)
h .

(23) ∆[f ](x− h
2 , x+ h

2 ) = (~δh[f ])(1)(x)
h .

(24) If h 6= 0, then ∆[f ](x− h, x, x+ h) = (~δh[f ])(2)(x)
2·h·h .

(25) ∆[f1 − f2](x0, x1) = ∆[f1](x0, x1)−∆[f2](x0, x1).

(26) ∆[r f1 + f2](x0, x1) = r ·∆[f1](x0, x1) + ∆[f2](x0, x1).

(27) ∆[r f1 − f2](x0, x1) = r ·∆[f1](x0, x1)−∆[f2](x0, x1).

(28) ∆[f1 + r f2](x0, x1) = ∆[f1](x0, x1) + r ·∆[f2](x0, x1).

(29) ∆[f1 − r f2](x0, x1) = ∆[f1](x0, x1)− r ·∆[f2](x0, x1).

(30) ∆[r1 f1 − r2 f2](x0, x1) = r1 ·∆[f1](x0, x1)− r2 ·∆[f2](x0, x1).

(31) (~∇h[f1 f2])(1)(x) = f1(x) · (~∇h[f2])(1)(x) + f2(x− h) · (~∇h[f1])(1)(x).

(32) If x0, x1, x2 are mutually different, then ∆[f ](x0, x1, x2) =
∆[f ](x0, x2, x1).

In the sequel S is a sequence of real sequences.
We now state a number of propositions:

(33) Suppose that for all natural numbers n, i such that i ≤ n holds S(n)(i) =(n
i

)
· (~∇h[f1])(i)(x) · (~∇h[f2])(n −′ i)(x − i · h). Then (~∇h[f1 f2])(1)(x) =∑1

κ=0 S(1)(κ) and (~∇h[f1 f2])(2)(x) =
∑2
κ=0 S(2)(κ).

(34) (~δh[f1 f2])(1)(x) = f1(x+ h
2 ) · (~δh[f2])(1)(x) + f2(x− h

2 ) · (~δh[f1])(1)(x).

(35) Suppose that for all natural numbers n, i such that i ≤ n holds
S(n)(i) =

(n
i

)
· (~δh[f1])(i)(x+ (n−′ i) · h2 ) · (~δh[f2])(n−′ i)(x− i · h2 ). Then

(~δh[f1 f2])(1)(x) =
∑1
κ=0 S(1)(κ) and (~δh[f1 f2])(2)(x) =

∑2
κ=0 S(2)(κ).

(36) If for every x holds f(x) =
√
x and x0 6= x1 and x0 > 0 and x1 > 0, then

∆[f ](x0, x1) = 1√
x0+
√
x1
.
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(37) Suppose for every x holds f(x) =
√
x and x0, x1, x2 are mutually dif-

ferent and x0 > 0 and x1 > 0 and x2 > 0. Then ∆[f ](x0, x1, x2) =
− 1

(
√
x0+
√
x1)·(

√
x0+
√
x2)·(

√
x1+
√
x2)
.

(38) Suppose for every x holds f(x) =
√
x and x0, x1, x2, x3 are mutually

different and x0 > 0 and x1 > 0 and x2 > 0 and x3 > 0.
Then ∆[f ](x0, x1, x2, x3) =√

x0+
√
x1+
√
x2+
√
x3

(
√
x0+
√
x1)·(

√
x0+
√
x2)·(

√
x0+
√
x3)·(

√
x1+
√
x2)·(

√
x1+
√
x3)·(

√
x2+
√
x3)
.

(39) If for every x holds f(x) =
√
x and x > 0 and x + h > 0, then

(∆h[f ])(x) =
√
x+ h−

√
x.

(40) If for every x holds f(x) =
√
x and x > 0 and x − h > 0, then

(∇h[f ])(x) =
√
x−
√
x− h.

(41) If for every x holds f(x) =
√
x and x + h

2 > 0 and x − h
2 > 0, then

(δh[f ])(x) =
√
x+ h

2 −
√
x− h

2 .

(42) If for every x holds f(x) = x2 and x0 6= x1, then ∆[f ](x0, x1) = x0 +x1.

(43) If for every x holds f(x) = x2 and x0, x1, x2 are mutually different, then
∆[f ](x0, x1, x2) = 1.

(44) If for every x holds f(x) = x2 and x0, x1, x2, x3 are mutually different,
then ∆[f ](x0, x1, x2, x3) = 0.

(45) If for every x holds f(x) = x2, then (∆h[f ])(x) = 2 · x · h+ h2.

(46) If for every x holds f(x) = x2, then (∇h[f ])(x) = h · (2 · x− h).

(47) If for every x holds f(x) = x2, then (δh[f ])(x) = 2 · h · x.
(48) If for every x holds f(x) = k

x2
and x0 6= x1 and x0 6= 0 and x1 6= 0, then

∆[f ](x0, x1) = − k
x0·x1 · (

1
x0

+ 1
x1

).

(49) Suppose for every x holds f(x) = k
x2

and x0 6= 0 and x1 6= 0 and
x2 6= 0 and x0, x1, x2 are mutually different. Then ∆[f ](x0, x1, x2) =

k
x0·x1·x2 · (

1
x0

+ 1
x1

+ 1
x2

).

(50) If for every x holds f(x) = k
x2

and x 6= 0 and x+h 6= 0, then (∆h[f ])(x) =
(−k)·h·(2·x+h)

(x2+h·x)2 .

(51) If for every x holds f(x) = k
x2

and x 6= 0 and x−h 6= 0, then (∇h[f ])(x) =
(−k)·h·(2·x−h)

(x2−x·h)2 .

(52) If for every x holds f(x) = k
x2

and x + h
2 6= 0 and x − h

2 6= 0, then
(δh[f ])(x) = −2·h·k·x

(x2−(h2 )2)2
.

(53) ∆[(the function sin) (the function sin) (the function sin)](x0, x1) =
1
2 ·(3·cos(x0+x12 )·sin(x0−x12 )−cos( 3·(x0+x1)2 )·sin( 3·(x0−x1)2 ))

x0−x1 .

(54) (∆h[(the function sin) (the function sin) (the function sin)])(x) = 1
2 ·

(3 · cos(2·x+h
2 ) · sin(h2 )− cos(3·(2·x+h)

2 ) · sin(3·h
2 )).
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(55) (∇h[(the function sin) (the function sin) (the function sin)])(x) = 1
2 ·

(3 · cos(2·x−h
2 ) · sin(h2 )− cos(3·(2·x−h)

2 ) · sin(3·h
2 )).

(56) (δh[(the function sin) (the function sin) (the function sin)])(x) = 1
2 · (3 ·

cosx · sin(h2 )− cos(3 · x) · sin(3·h
2 )).

(57) ∆[(the function cos) (the function cos) (the function cos)](x0, x1) =

−
1
2 ·(3·sin(x0+x12 )·sin(x0−x12 )+sin( 3·x0+3·x12 )·sin( 3·x0−3·x12 ))

x0−x1 .

(58) (∆h[(the function cos) (the function cos) (the function cos)])(x) =
−1

2 · (3 · sin(2·x+h
2 ) · sin(h2 ) + sin(3·(2·x+h)

2 ) · sin(3·h
2 )).

(59) (∇h[(the function cos) (the function cos) (the function cos)])(x) =
−1

2 · (3 · sin(2·x−h
2 ) · sin(h2 ) + sin(3·(2·x−h)

2 ) · sin(3·h
2 )).

(60) (δh[(the function cos) (the function cos) (the function cos)])(x) =
−1

2 · (3 · sinx · sin(h2 ) + sin(3 · x) · sin(3·h
2 )).

(61) If for every x holds f(x) = 1
sinx and sinx0 6= 0 and sinx1 6= 0, then

∆[f ](x0, x1) = −
2·(sin x1−sin x0)

cos(x0+x1)−cos(x0−x1)
x0−x1 .

(62) If for every x holds f(x) = 1
sinx and sinx 6= 0 and sin(x + h) 6= 0, then

(∆h[f ])(x) = −2·(sinx−sin(x+h))
cos(2·x+h)−cosh .

(63) If for every x holds f(x) = 1
sinx and sinx 6= 0 and sin(x − h) 6= 0, then

(∇h[f ])(x) = (−2)·(sin(x−h)−sinx)
cos(2·x−h)−cosh .

(64) If for every x holds f(x) = 1
sinx and sin(x+ h

2 ) 6= 0 and sin(x− h
2 ) 6= 0,

then (δh[f ])(x) = −2·(sin(x−h2 )−sin(x+h2 ))
cos(2·x)−cosh .

(65) If for every x holds f(x) = 1
cosx and x0 6= x1 and cosx0 6= 0 and

cosx1 6= 0, then ∆[f ](x0, x1) =
2·(cos x1−cos x0)

cos(x0+x1)+cos(x0−x1)
x0−x1 .

(66) If for every x holds f(x) = 1
cosx and cosx 6= 0 and cos(x+ h) 6= 0, then

(∆h[f ])(x) = 2·(cosx−cos(x+h))
cos(2·x+h)+cosh .

(67) If for every x holds f(x) = 1
cosx and cosx 6= 0 and cos(x− h) 6= 0, then

(∇h[f ])(x) = 2·(cos(x−h)−cosx)
cos(2·x−h)+cosh .

(68) If for every x holds f(x) = 1
cosx and cos(x+ h

2 ) 6= 0 and cos(x− h
2 ) 6= 0,

then (δh[f ])(x) =
2·(cos(x−h2 )−cos(x+h2 ))

cos(2·x)+cosh .

(69) Suppose for every x holds f(x) = 1
(sinx)2 and x0 6= x1 and sinx0 6= 0 and

sinx1 6= 0. Then ∆[f ](x0, x1) =
16·cos(x1+x02 )·sin(x1−x02 )·cos(x1−x02 )·sin(x1+x02 )

(cos(x0+x1)−cos(x0−x1))2·(x0−x1) .

(70) If for every x holds f(x) = 1
(sinx)2 and sinx 6= 0 and sin(x+h) 6= 0, then

(∆h[f ])(x) =
16·cos( 2·x+h2 )·sin(−h2 )·cos(−h2 )·sin( 2·x+h2 )

(cos(2·x+h)−cosh)2 .

(71) If for every x holds f(x) = 1
(sinx)2 and sinx 6= 0 and sin(x−h) 6= 0, then
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(∇h[f ])(x) =
16·cos( 2·x−h2 )·sin(−h2 )·cos(−h2 )·sin( 2·x−h2 )

(cos(2·x−h)−cosh)2 .

(72) If for every x holds f(x) = 1
(sinx)2 and sin(x+ h

2 ) 6= 0 and sin(x− h
2 ) 6= 0,

then (δh[f ])(x) =
16·cosx·sin(−h2 )·cos(−h2 )·sinx

(cos(2·x)−cosh)2 .

(73) Suppose for every x holds f(x) = 1
(cosx)2 and x0 6= x1 and cosx0 6= 0 and

cosx1 6= 0. Then ∆[f ](x0, x1) =
(−16)·sin(x1+x02 )·sin(x1−x02 )·cos(x1+x02 )·cos(x1−x02 )

(cos(x0+x1)+cos(x0−x1))2

x0−x1 .

(74) If for every x holds f(x) = 1
(cosx)2 and cosx 6= 0 and cos(x + h) 6= 0,

then (∆h[f ])(x) =
(−16)·sin( 2·x+h2 )·sin(−h2 )·cos( 2·x+h2 )·cos(−h2 )

(cos(2·x+h)+cosh)2 .

(75) If for every x holds f(x) = 1
(cosx)2 and cosx 6= 0 and cos(x − h) 6= 0,

then (∇h[f ])(x) =
(−16)·sin( 2·x−h2 )·sin(−h2 )·cos( 2·x−h2 )·cos(−h2 )

(cos(2·x−h)+cosh)2 .

(76) If for every x holds f(x) = 1
(cosx)2 and cos(x+ h

2 ) 6= 0 and cos(x− h
2 ) 6= 0,

then (δh[f ])(x) =
(−16)·sinx·sin(−h2 )·cosx·cos(−h2 )

(cos(2·x)+cosh)2 .

(77) Suppose x0 ∈ dom (the function tan) and x1 ∈ dom (the func-
tion tan). Then ∆[(the function tan) (the function sin)](x0, x1) =
( 1
cos x0

−cosx0− 1
cos x1

)+cosx1
x0−x1 .

(78) Suppose that
(i) for every x holds f(x) = ((the function tan) (the function sin))(x),
(ii) x ∈ dom (the function tan), and
(iii) x+ h ∈ dom (the function tan).

Then (∆h[f ])(x) = ( 1
cos(x+h) − cos(x+ h)− 1

cosx) + cosx.

(79) Suppose that
(i) for every x holds f(x) = ((the function tan) (the function sin))(x),
(ii) x ∈ dom (the function tan), and
(iii) x− h ∈ dom (the function tan).

Then (∇h[f ])(x) = ( 1
cosx − cosx− 1

cos(x−h)) + cos(x− h).

(80) Suppose that
(i) for every x holds f(x) = ((the function tan) (the function sin))(x),
(ii) x+ h

2 ∈ dom (the function tan), and
(iii) x− h

2 ∈ dom (the function tan).
Then (δh[f ])(x) = ( 1

cos(x+h2 )
− cos(x+ h

2 )− 1
cos(x−h2 )

) + cos(x− h
2 ).

(81) Suppose for every x holds f(x) = ((the function tan) (the function
cos))(x) and x0 ∈ dom (the function tan) and x1 ∈ dom (the function
tan). Then ∆[f ](x0, x1) = sinx0−sinx1

x0−x1 .

(82) Suppose that
(i) for every x holds f(x) = ((the function tan) (the function cos))(x),
(ii) x ∈ dom (the function tan), and
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(iii) x+ h ∈ dom (the function tan).
Then (∆h[f ])(x) = sin(x+ h)− sinx.

(83) Suppose that
(i) for every x holds f(x) = ((the function tan) (the function cos))(x),

(ii) x ∈ dom (the function tan), and
(iii) x− h ∈ dom (the function tan).

Then (∇h[f ])(x) = sinx− sin(x− h).

(84) Suppose that
(i) for every x holds f(x) = ((the function tan) (the function cos))(x),

(ii) x+ h
2 ∈ dom (the function tan), and

(iii) x− h
2 ∈ dom (the function tan).

Then (δh[f ])(x) = sin(x+ h
2 )− sin(x− h

2 ).

(85) Suppose for every x holds f(x) = ((the function cot) (the function
cos))(x) and x0 ∈ dom (the function cot) and x1 ∈ dom (the function cot).

Then ∆[f ](x0, x1) =
( 1
sin x0

−sinx0− 1
sin x1

)+sinx1
x0−x1 .

(86) Suppose that
(i) for every x holds f(x) = ((the function cot) (the function cos))(x),
(ii) x ∈ dom (the function cot), and

(iii) x+ h ∈ dom (the function cot).
Then (∆h[f ])(x) = ( 1

sin(x+h) − sin(x+ h)− 1
sinx) + sinx.

(87) Suppose that
(i) for every x holds f(x) = ((the function cot) (the function cos))(x),
(ii) x ∈ dom (the function cot), and

(iii) x− h ∈ dom (the function cot).
Then (∇h[f ])(x) = ( 1

sinx − sinx− 1
sin(x−h)) + sin(x− h).

(88) Suppose that
(i) for every x holds f(x) = ((the function cot) (the function cos))(x),

(ii) x+ h
2 ∈ dom (the function cot), and

(iii) x− h
2 ∈ dom (the function cot).

Then (δh[f ])(x) = ( 1
sin(x+h2 )

− sin(x+ h
2 )− 1

sin(x−h2 )
) + sin(x− h

2 ).

(89) Suppose for every x holds f(x) = ((the function cot) (the function
sin))(x) and x0 ∈ dom (the function cot) and x1 ∈ dom (the function cot).
Then ∆[f ](x0, x1) = cosx0−cosx1

x0−x1 .

(90) Suppose that
(i) for every x holds f(x) = ((the function cot) (the function sin))(x),
(ii) x ∈ dom (the function cot), and

(iii) x+ h ∈ dom (the function cot).
Then (∆h[f ])(x) = cos(x+ h)− cosx.

(91) Suppose that
(i) for every x holds f(x) = ((the function cot) (the function sin))(x),
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(ii) x ∈ dom (the function cot), and
(iii) x− h ∈ dom (the function cot).

Then (∇h[f ])(x) = cosx− cos(x− h).

(92) Suppose that
(i) for every x holds f(x) = ((the function cot) (the function sin))(x),
(ii) x+ h

2 ∈ dom (the function cot), and
(iii) x− h

2 ∈ dom (the function cot).
Then (δh[f ])(x) = cos(x+ h

2 )− cos(x− h
2 ).

(93) Suppose for every x holds f(x) = ((the function tan) (the function
tan))(x) and x0 ∈ dom (the function tan) and x1 ∈ dom (the function
tan). Then ∆[f ](x0, x1) = (cosx1)2−(cosx0)2

(cosx0·cosx1)2·(x0−x1) .

(94) Suppose that
(i) for every x holds f(x) = ((the function tan) (the function tan))(x),
(ii) x ∈ dom (the function tan), and
(iii) x+ h ∈ dom (the function tan).

Then (∆h[f ])(x) = −
1
2 ·(cos(2·(x+h))−cos(2·x))

(cos(x+h)·cosx)2 .

(95) Suppose that
(i) for every x holds f(x) = ((the function tan) (the function tan))(x),
(ii) x ∈ dom (the function tan), and
(iii) x− h ∈ dom (the function tan).

Then (∇h[f ])(x) = −
1
2 ·(cos(2·x)−cos(2·(h−x)))

(cosx·cos(x−h))2 .

(96) Suppose that
(i) for every x holds f(x) = ((the function tan) (the function tan))(x),
(ii) x+ h

2 ∈ dom (the function tan), and
(iii) x− h

2 ∈ dom (the function tan).

Then (δh[f ])(x) = −
1
2 ·(cos(h+2·x)−cos(h−2·x))

(cos(x+h2 )·cos(x−h2 ))2
.
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1. Preliminary

In this paper i, j denote natural numbers.
Next we state two propositions:

(1) For every pair set x holds x = 〈〈x1, x2〉〉.
(2) For every infinite set X there exist sets x1, x2 such that x1, x2 ∈ X and

x1 6= x2.

In this article we present several logical schemes. The scheme MinimalEle-
ment deals with a finite non empty set A and a binary predicate P, and states
that:
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There exists a set x such that x ∈ A and for every set y such that
y ∈ A holds not P[y, x]

provided the parameters have the following properties:
• For all sets x, y such that x, y ∈ A and P[x, y] holds not P[y, x],

and
• For all sets x, y, z such that x, y, z ∈ A and P[x, y] and P[y, z]

holds P[x, z].
The scheme FiniteC deals with a finite set A and a unary predicate P, and

states that:
P[A]

provided the following condition is satisfied:
• For every subset A of A such that for every set B such that B ⊂ A

holds P[B] holds P[A].
The scheme Numeration deals with a finite set A and a binary predicate P,

and states that:
There exists an one-to-one finite sequence s such that rng s = A
and for all i, j such that i, j ∈ dom s and P[s(i), s(j)] holds i < j

provided the parameters satisfy the following conditions:
• For all sets x, y such that x, y ∈ A and P[x, y] holds not P[y, x],

and
• For all sets x, y, z such that x, y, z ∈ A and P[x, y] and P[y, z]

holds P[x, z].
One can prove the following two propositions:

(3) For every variable x holds varcl vars(x) = vars(x).

(4) Let C be an initialized constructor signature and e be an expression of
C. Then e is compound if and only if it is not true that there exists an
element x of Vars such that e = xC.

2. Standardized Constructor Signature

Let us note that there exists a quasi-locus sequence which is empty.
Let C be a constructor signature. We say that C is standardized if and only

if the condition (Def. 1) is satisfied.

(Def. 1) Let o be an operation symbol of C. Suppose o is constructor. Then o ∈
Constructors and o1 = the result sort of o and Card((o2)1) = len Arity(o).

The following proposition is true

(5) Let C be a constructor signature. Suppose C is standardized. Let o

be an operation symbol of C. Then o is constructor if and only if
o ∈ Constructors .

Let us note that M is standardized.
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Let us observe that there exists a constructor signature which is initialized,
standardized, and strict.

Let C be an initialized standardized constructor signature and let c be a
constructor operation symbol of C. The loci of c yielding a quasi-locus sequence
is defined by:

(Def. 2) The loci of c = (c2)1.

Let C be a constructor signature. One can verify that there exists a subsi-
gnature of C which is constructor.

Let C be an initialized constructor signature. Note that there exists a con-
structor subsignature of C which is initialized.

Let C be a standardized constructor signature. One can verify that every
constructor subsignature of C is standardized.

One can prove the following two propositions:

(6) Let S1, S2 be standardized constructor signatures. Suppose the operation
symbols of S1 = the operation symbols of S2. Then the many sorted
signature of S1 = the many sorted signature of S2.

(7) For every constructor signature C holds C is standardized iff C is a sub-
signature of M.

Let C be an initialized constructor signature. Observe that there exists a
quasi-term of C which is non compound.

Let us mention that every element of Vars is pair.
The following propositions are true:

(8) For every element x of Vars such that vars(x) is natural holds
vars(x) = 0.

(9) Vars misses Constructors.

(10) For every element x of Vars holds x 6= ∗ and x 6= non .

(11) For every standardized constructor signature C holds Vars misses the
operation symbols of C.

(12) Let C be an initialized standardized constructor signature and e be an
expression of C. Then

(i) there exists an element x of Vars such that e = xC and e(∅) = 〈〈x,
term 〉〉, or

(ii) there exists an operation symbol o of C such that e(∅) = 〈〈o, the carrier
of C〉〉 but o ∈ Constructors or o = ∗ or o = non .

Let C be an initialized standardized constructor signature and let e be an
expression of C. Note that e(∅) is pair.

The following propositions are true:

(13) Let C be an initialized constructor signature, e be an expression of C,
and o be an operation symbol of C. Suppose e(∅) = 〈〈o, the carrier of C〉〉.
Then e is an expression of C from the result sort of o.
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(14) Let C be an initialized standardized constructor signature and e be an
expression of C. Then

(i) if e(∅)1 = ∗, then e is an expression of C from typeC, and
(ii) if e(∅)1 = non, then e is an expression of C from adjC.

(15) Let C be an initialized standardized constructor signature and e be an
expression of C. Then

(i) e(∅)1 ∈ Vars and e(∅)2 = term and e is a quasi-term of C, or
(ii) e(∅)2 = the carrier of C but e(∅)1 ∈ Constructors and e(∅)1 ∈ the

operation symbols of C or e(∅)1 = ∗ or e(∅)1 = non .

(16) Let C be an initialized standardized constructor signature and e be
an expression of C. If e(∅)1 ∈ Constructors, then e ∈ (the sorts of
FreeC(Vars C))((e(∅)1)1).

(17) Let C be an initialized standardized constructor signature and e be an
expression of C. Then e(∅)1 /∈ Vars if and only if e(∅)1 is an operation
symbol of C.

(18) Let C be an initialized standardized constructor signature and e be an
expression of C. If e(∅)1 ∈ Vars, then there exists an element x of Vars
such that x = e(∅)1 and e = xC.

(19) Let C be an initialized standardized constructor signature and e be an
expression of C. Suppose e(∅)1 = ∗. Then there exists an expression α of
C from adjC and there exists an expression q of C from typeC such that
e = 〈〈∗, 3〉〉-tree(α, q).

(20) Let C be an initialized standardized constructor signature and e be an
expression of C. If e(∅)1 = non, then there exists an expression α of C

from adjC such that e = 〈〈non, 3〉〉-tree(α).

(21) Let C be an initialized standardized constructor signature and e be an
expression of C. Suppose e(∅)1 ∈ Constructors . Then there exists an ope-
ration symbol o of C such that o = e(∅)1 and the result sort of o = o1 and
e is an expression of C from the result sort of o.

(22) Let C be an initialized standardized constructor signature and τ be a
quasi-term of C. Then τ is compound if and only if τ(∅)1 ∈ Constructors
and (τ(∅)1)1 = term .

(23) Let C be an initialized standardized constructor signature and τ be an
expression of C. Then τ is a non compound quasi-term of C if and only if
τ(∅)1 ∈ Vars .

(24) Let C be an initialized standardized constructor signature and τ be
an expression of C. Then τ is a quasi-term of C if and only if τ(∅)1 ∈
Constructors and (τ(∅)1)1 = term or τ(∅)1 ∈ Vars .

(25) Let C be an initialized standardized constructor signature and α be an
expression of C. Then α is a positive quasi-adjective of C if and only if
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α(∅)1 ∈ Constructors and (α(∅)1)1 = adj .

(26) Let C be an initialized standardized constructor signature and α be a
quasi-adjective of C. Then α is negative if and only if α(∅)1 = non .

(27) Let C be an initialized standardized constructor signature and τ be an
expression of C. Then τ is a pure expression of C from typeC if and only
if τ(∅)1 ∈ Constructors and (τ(∅)1)1 = type .

3. Expressions

In the sequel i is a natural number, x is a variable, and ` is a quasi-locus
sequence.

An expression is an expression of M. A valuation is a valuation of M. A quasi-
adjective is a quasi-adjective of M. The subset QuasiAdjs of FreeM(Vars M) is
defined as follows:

(Def. 3) QuasiAdjs = QuasiAdjs M.

A quasi-term is a quasi-term of M. The subset QuasiTerms of FreeM(Vars M)
is defined as follows:

(Def. 4) QuasiTerms = QuasiTerms M.

A quasi-type is a quasi-type of M. The functor QuasiTypes is defined as follows:

(Def. 5) QuasiTypes = QuasiTypes M.

One can verify the following observations:

∗ QuasiAdjs is non empty,

∗ QuasiTerms is non empty, and

∗ QuasiTypes is non empty.

Modes is a non empty subset of Constructors. Then Attrs is a non empty
subset of Constructors. Then Funcs is a non empty subset of Constructors.

In the sequel C denotes an initialized constructor signature.
The element set-constr of Modes is defined by:

(Def. 6) set-constr = 〈〈 type, 〈〈∅, 0〉〉〉〉.
One can prove the following propositions:

(28) The kind of set-constr = type and the loci of set-constr = ∅ and the
index of set-constr = 0.

(29) Constructors = {type,adj, term} × (QuasiLoci×N).

(30) 〈〈 rng `, i〉〉 ∈ Vars and ` a 〈〈〈 rng `, i〉〉〉 is a quasi-locus sequence.

(31) There exists ` such that len ` = i.

(32) For every finite subset X of Vars there exists ` such that rng ` = varclX.

(33) Let X, o be sets and p be a decorated tree yielding finite sequence. Given
C such that X =

⋃
(the sorts of FreeC(Vars C)). If o-tree(p) ∈ X, then p is

a finite sequence of elements of X.
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Let us consider C and let e be an expression of C. An expression of C is called
a subexpression of e if:

(Def. 7) It ∈ Subtrees(e).

The functor constrs e is defined by:

(Def. 8) constrs e = π1(rng e) ∩ {o : o ranges over constructor operation symbols
of C}.

The functor main-constr e is defined by:

(Def. 9) main-constr e =

{
e(∅)1, if e is compound,
∅, otherwise.

The functor args e yields a finite sequence of elements of FreeC(Vars C) and is
defined by:

(Def. 10) e = e(∅)-tree(args e).

Next we state three propositions:

(34) For every C holds every expression e of C is a subexpression of e.

(35) main-constr(xC) = ∅.
(36) Let c be a constructor operation symbol of C and p be a finite

sequence of elements of QuasiTerms C. If len p = len Arity(c), then
main-constr(c~(p)) = c.

Let us consider C and let e be an expression of C. We say that e is constructor
if and only if:

(Def. 11) e is compound and main-constr e is a constructor operation symbol of C.

Let us consider C. Observe that every expression of C which is constructor
is also compound.

Let us consider C. Observe that there exists an expression of C which is
constructor.

Let us consider C and let e be a constructor expression of C. One can verify
that there exists a subexpression of e which is constructor.

Let S be a non void signature, let X be a non empty yielding many sorted
set indexed by S, and let τ be an element of FreeS(X). Observe that rng τ is
relation-like.

One can prove the following proposition

(37) For every constructor expression e of C holds main-constr e ∈ constrs e.

4. Arity

For simplicity, we follow the rules: α is a quasi-adjective, τ , τ1, τ2 are quasi-
terms, ϑ is a quasi-type, and c is an element of Constructors.

Let C be a non void signature. We say that C is arity-rich if and only if the
condition (Def. 12) is satisfied.
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(Def. 12) Let n be a natural number and s be a sort symbol of C. Then {o; o ranges
over operation symbols of C: the result sort of o = s ∧ len Arity(o) = n}
is infinite.

Let o be an operation symbol of C. We say that o is nullary if and only if:

(Def. 13) Arity(o) = ∅.
We say that o is unary if and only if:

(Def. 14) len Arity(o) = 1.

We say that o is binary if and only if:

(Def. 15) len Arity(o) = 2.

The following proposition is true

(38) Let C be a non void signature and o be an operation symbol of C. Then
(i) if o is nullary, then o is not unary,

(ii) if o is nullary, then o is not binary, and
(iii) if o is unary, then o is not binary.

Let C be a constructor signature. Observe that nonC is unary and ∗C is
binary.

Let C be a constructor signature. Note that every operation symbol of C

which is nullary is also constructor.
The following proposition is true

(39) Let C be a constructor signature. Then C is initialized if and only if
there exists an operation symbol m of typeC and there exists an operation
symbol α of adjC such that m is nullary and α is nullary.

Let C be an initialized constructor signature. One can verify that there exists
an operation symbol of typeC which is nullary and constructor and there exists
an operation symbol of adjC which is nullary and constructor.

Let C be an initialized constructor signature. Observe that there exists an
operation symbol of C which is nullary and constructor.

One can check that every non void signature which is arity-rich has also an
operation for each sort and every constructor signature which is arity-rich is
also initialized.

One can check that M is arity-rich.
Let us mention that there exists a constructor signature which is arity-rich

and initialized.
Let C be an arity-rich constructor signature and let s be a sort symbol of C.

One can verify the following observations:

∗ there exists an operation symbol of s which is nullary and constructor,

∗ there exists an operation symbol of s which is unary and constructor,
and

∗ there exists an operation symbol of s which is binary and constructor.
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Let C be an arity-rich constructor signature. One can check that there exists
an operation symbol of C which is unary and constructor and there exists an
operation symbol of C which is binary and constructor.

The following proposition is true

(40) Let o be a nullary operation symbol of C. Then 〈〈o, the carrier of
C〉〉-tree(∅) is an expression of C from the result sort of o.

Let C be an initialized constructor signature and let m be a nullary con-
structor operation symbol of typeC. Then mt is a pure expression of C from
typeC.

Let c be an element of Constructors. The functor @c yielding a constructor
operation symbol of M is defined by:

(Def. 16) @c = c.

Let m be an element of Modes. Then @m is a constructor operation symbol
of typeM.

Let us note that @set-constr is nullary.
We now state the proposition

(41) Arity(@set-constr) = ∅.
The quasi-type set-type is defined by:

(Def. 17) set-type = ∅QuasiAdjs M ∗ (@set-constr)t.

The following proposition is true

(42) adjs set-type = ∅ and the base of set-type = (@set-constr)t.

Let ` be a finite sequence of elements of Vars. The functor args ` yields a
finite sequence of elements of QuasiTerms M and is defined as follows:

(Def. 18) len args ` = len ` and for every i such that i ∈ dom ` holds (args `)(i) =
(`i)M.

Let us consider c. The base expression of c yields an expression and is defined
as follows:

(Def. 19) The base expression of c = (@c)~(args (the loci of c)).

Next we state several propositions:

(43) For every operation symbol o of M holds o is constructor iff o ∈
Constructors .

(44) For every nullary operation symbol m of M holds main-constr(mt) = m.

(45) For every unary constructor operation symbol m of M and for every τ

holds main-constr(m(τ)) = m.

(46) For every α holds main-constr(nonM(α)) = non .

(47) For every binary constructor operation symbol m of M and for all τ1, τ2

holds main-constr(m(τ1, τ2)) = m.

(48) For every expression q of M from typeM and for every α holds
main-constr(∗M(α, q)) = ∗.
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Let ϑ be a quasi-type. The functor constrsϑ is defined by:

(Def. 20) constrsϑ = constrs (the base of ϑ) ∪
⋃
{constrsα : α ∈ adjsϑ}.

The following two propositions are true:

(49) For every pure expression q of M from typeM and for every finite subset
A of QuasiAdjs M holds constrs(A ∗ q) = constrs q∪

⋃
{constrsα : α ∈ A}.

(50) constrs(α ∗ ϑ) = constrsα ∪ constrsϑ.

5. Unification

Let C be an initialized constructor signature and let τ , p be expressions of
C. We say that τ matches p if and only if:

(Def. 21) There exists a valuation f of C such that τ = p[f ].

Let us note that the predicate τ matches p is reflexive.
The following proposition is true

(51) For all expressions τ1, τ2, τ3 of C such that τ1 matches τ2 and τ2 matches
τ3 holds τ1 matches τ3.

Let C be an initialized constructor signature and let A, B be subsets of
QuasiAdjs C. We say that A matches B if and only if:

(Def. 22) There exists a valuation f of C such that B[f ] ⊆ A.
Let us note that the predicate A matches B is reflexive.

The following proposition is true

(52) For all subsets A1, A2, A3 of QuasiAdjs C such that A1 matches A2 and
A2 matches A3 holds A1 matches A3.

Let C be an initialized constructor signature and let ϑ, P be quasi-types of
C. We say that ϑ matches P if and only if:

(Def. 23) There exists a valuation f of C such that (adjsP )[f ] ⊆ adjsϑ and (the
base of P )[f ] = the base of ϑ.

Let us note that the predicate ϑ matches P is reflexive.
One can prove the following proposition

(53) For all quasi-types ϑ1, ϑ2, ϑ3 of C such that ϑ1 matches ϑ2 and ϑ2

matches ϑ3 holds ϑ1 matches ϑ3.

Let C be an initialized constructor signature, let τ1, τ2 be expressions of C,
and let f be a valuation of C. We say that f unifies τ1 with τ2 if and only if:

(Def. 24) τ1[f ] = τ2[f ].

The following proposition is true

(54) Let τ1, τ2 be expressions of C and f be a valuation of C. If f unifies τ1

with τ2, then f unifies τ2 with τ1.

Let C be an initialized constructor signature and let τ1, τ2 be expressions of
C. We say that τ1 and τ2 are unifiable if and only if:
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(Def. 25) There exists a valuation f of C such that f unifies τ1 with τ2.

Let us notice that the predicate τ1 and τ2 are unifiable is reflexive and symmetric.
Let C be an initialized constructor signature and let τ1, τ2 be expressions of

C. We say that τ1 and τ2 are weakly-unifiable if and only if:

(Def. 26) There exists an irrelevant one-to-one valuation g of C such that Var τ2 ⊆
dom g and τ1 and τ2[g] are unifiable.

Let us note that the predicate τ1 and τ2 are weakly-unifiable is reflexive.
We now state the proposition

(55) For all expressions τ1, τ2 of C such that τ1 and τ2 are unifiable holds τ1

and τ2 are weakly-unifiable.

Let C be an initialized constructor signature and let τ , τ1, τ2 be expressions
of C. We say that τ is a unification of τ1 and τ2 if and only if:

(Def. 27) There exists a valuation f of C such that f unifies τ1 with τ2 and τ =
τ1[f ].

We now state two propositions:

(56) For all expressions τ1, τ2, τ of C such that τ is a unification of τ1 and τ2

holds τ is a unification of τ2 and τ1.

(57) For all expressions τ1, τ2, τ of C such that τ is a unification of τ1 and τ2

holds τ matches τ1 and τ matches τ2.

Let C be an initialized constructor signature and let τ , τ1, τ2 be expressions of
C. We say that τ is a general-unification of τ1 and τ2 if and only if the conditions
(Def. 28) are satisfied.

(Def. 28)(i) τ is a unification of τ1 and τ2, and
(ii) for every expression u of C such that u is a unification of τ1 and τ2

holds u matches τ .

6. Type Distribution

The following three propositions are true:

(58) Let n be a natural number and s be a sort symbol of M. Then there
exists a constructor operation symbol m of s such that len Arity(m) = n.

(59) Let given `, s be a sort symbol of M, and m be a constructor operation
symbol of s. If len Arity(m) = len `, then Var(m~(args `)) = rng `.

(60) Let X be a finite subset of Vars. Suppose varclX = X. Let s be a sort
symbol of M. Then there exists a constructor operation symbol m of s
and there exists a finite sequence p of elements of QuasiTerms M such
that len p = len Arity(m) and vars(m~(p)) = X.

Let d be a partial function from Vars to QuasiTypes. We say that d is even
if and only if:
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(Def. 29) For all x, ϑ such that x ∈ dom d and ϑ = d(x) holds vars(ϑ) = vars(x).

Let ` be a quasi-locus sequence. A partial function from Vars to QuasiTypes
is said to be a type-distribution for ` if:

(Def. 30) dom it = rng ` and it is even.

We now state the proposition

(61) For every empty quasi-locus sequence ` holds ∅ is a type-distribution
for `.
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1. Preliminaries

One can prove the following propositions:

(1) For all real numbers a, b and for every natural number c holds (ab )c = ac

bc .

(2) For every real number a and for all integer numbers b, c such that a 6= 0
holds ab+c = ab · ac.

(3) For every natural number n and for every real number a such that n is
even and a 6= 0 holds (−a)n = an.

(4) For every natural number n and for every real number a such that n is
odd and a 6= 0 holds (−a)n = −an.

(5) |τ | < 1.

(6) For every natural number n and for every non empty real number r such
that n is even holds rn > 0.

(7) For every natural number n and for every real number r such that n is
odd and r < 0 holds rn < 0.
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(8) For every natural number n such that n 6= 0 holds τn < 1
2 .

(9) For all natural numbers n, m and for every real number r such that m
is odd and n ≥ m and r < 0 and r > −1 holds rn ≥ rm.

(10) For all natural numbers n, m such that m is odd and n ≥ m holds
τn ≥ τm.

(11) For all natural numbers n, m such that n is even and m is even and
n ≥ m holds τn ≤ τm.

(12) For all non empty natural numbers m, n such that m ≥ n holds
Luc(m) ≥ Luc(n).

(13) For every non empty natural number n holds τn > τn.

(14) For every natural number n such that n > 1 holds −1
2 < τn.

(15) For every natural number n such that n > 2 holds τn ≥ − 1√
5
.

(16) For every natural number n such that n ≥ 2 holds τn ≤ 1√
5
.

(17) For every natural number n holds τn√
5

+ 1
2 > 0 and τn√

5
+ 1

2 < 1.

2. Formulas for the Fibonacci Numbers

Next we state two propositions:

(18) For every natural number n holds b τn√
5

+ 1
2c = Fib(n).

(19) For every natural number n such that n 6= 0 holds d τn√
5
− 1

2e = Fib(n).

We now state a number of propositions:

(20) For every natural number n such that n 6= 0 holds b τ2·n√
5
c = Fib(2 · n).

(21) For every natural number n holds d τ2·n+1√
5
e = Fib(2 · n+ 1).

(22) For every natural number n such that n ≥ 2 and n is even holds Fib(n+
1) = bτ · Fib(n) + 1c.

(23) For every natural number n such that n ≥ 2 and n is odd holds Fib(n+
1) = dτ · Fib(n)− 1e.

(24) For every natural number n such that n ≥ 2 holds Fib(n + 1) =

bFib(n)+
√

5·Fib(n)+1
2 c.

(25) For every natural number n such that n ≥ 2 holds Fib(n + 1) =

d (Fib(n)+
√

5·Fib(n))−1
2 e.

(26) For every natural number n holds Fib(n+1) = Fib(n)+
√

5·Fib(n)2+4·(−1)n

2 .

(27) For every natural number n such that n ≥ 2 holds Fib(n + 1) =

bFib(n)+1+
√

(5·Fib(n)2−2·Fib(n))+1
2 c.

(28) For every natural number n such that n ≥ 2 holds Fib(n) = b 1
τ ·(Fib(n+

1) + 1
2)c.
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(29) For all natural numbers n, k such that n ≥ k > 1 or k = 1 and n > k

holds bτk · Fib(n) + 1
2c = Fib(n+ k).

3. Formulas for the Lucas Numbers

Next we state a number of propositions:

(30) For every natural number n such that n ≥ 2 holds Luc(n) = bτn + 1
2c.

(31) For every natural number n such that n ≥ 2 holds Luc(n) = dτn − 1
2e.

(32) For every natural number n such that n ≥ 2 holds Luc(2 · n) = dτ2·ne.
(33) For every natural number n such that n ≥ 2 holds Luc(2 · n + 1) =
bτ2·n+1c.

(34) For every natural number n such that n ≥ 2 and n is odd holds Luc(n+
1) = bτ · Luc(n) + 1c.

(35) For every natural number n such that n ≥ 2 and n is even holds Luc(n+
1) = dτ · Luc(n)− 1e.

(36) For every natural number n such that n 6= 1 holds Luc(n + 1) =
Luc(n)+

√
5·(Luc(n)2−4·(−1)n)

2 .

(37) For every natural number n such that n ≥ 4 holds Luc(n + 1) =

bLuc(n)+1+
√

(5·Luc(n)2−2·Luc(n))+1
2 c.

(38) For every natural number n such that n > 2 holds Luc(n) = b 1
τ ·(Luc(n+

1) + 1
2)c.

(39) For all natural numbers n, k such that n ≥ 4 and k ≥ 1 and n > k and
n is odd holds Luc(n+ k) = bτk · Luc(n) + 1c.
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For simplicity, we use the following convention: x, y are sets, i, n are natural
numbers, r, s are real numbers, and f1, f2 are n-long real-valued finite sequences.

Let s be a real number and let r be a non positive real number. One can
check the following observations:

∗ ]s− r, s+ r[ is empty,

∗ [s− r, s+ r[ is empty, and

∗ ]s− r, s+ r] is empty.

Let s be a real number and let r be a negative real number. Observe that
[s− r, s+ r] is empty.

Let f be an empty yielding function and let us consider x. Observe that f(x)
is empty.

Let us consider i. Observe that i 7→ 0 is empty yielding.
Let f be an n-long complex-valued finite sequence. One can check the follo-

wing observations:
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∗ −f is n-long,

∗ f−1 is n-long,

∗ f2 is n-long, and

∗ |f | is n-long.

Let g be an n-long complex-valued finite sequence. One can verify the following
observations:

∗ f + g is n-long,

∗ f − g is n-long,

∗ f g is n-long, and

∗ f/g is n-long.

Let c be a complex number and let f be an n-long complex-valued finite
sequence. One can check the following observations:

∗ c+ f is n-long,

∗ f − c is n-long, and

∗ c f is n-long.

Let f be a real-valued function. Note that {f} is real-functions-membered.
Let g be a real-valued function. One can verify that {f, g} is real-functions-
membered.

Let D be a set and let us consider n. Note that Dn is finite sequence-
membered.

Let us consider n. Note that Rn is finite sequence-membered.
Let us consider n. Observe that Rn is real-functions-membered.
Let us consider x, y and let f be an n-long finite sequence. Observe that

f +· (x, y) is n-long.
One can prove the following three propositions:

(1) For every n-long finite sequence f such that f is empty holds n = 0.

(2) For every n-long real-valued finite sequence f holds f ∈ Rn.
(3) For all complex-valued functions f , g holds |f − g| = |g − f |.
Let us consider f1, f2. The functor max-diff-index(f1, f2) yields a natural

number and is defined as follows:

(Def. 1) max-diff-index(f1, f2) is the element of |f1 − f2|−1({sup rng|f1 − f2|}).
Let us note that the functor max-diff-index(f1, f2) is commutative.

One can prove the following propositions:

(4) If n 6= 0, then max-diff-index(f1, f2) ∈ dom f1.

(5) |f1 − f2|(x) ≤ |f1 − f2|(max-diff-index(f1, f2)).

One can verify that the metric space of real numbers is real-membered.
Let us observe that (E0)top is trivial.
Let us consider n. Observe that En is constituted finite sequences.
Let us consider n. One can verify that every point of En is real-valued.
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Let us consider n. One can check that every point of En is n-long.
The following two propositions are true:

(6) The open set family of E0 = {∅, {∅}}.
(7) For every subset B of E0 holds B = ∅ or B = {∅}.
In the sequel e, e1 are points of En.
Let us consider n, e. The functor @e yields a point of (En)top and is defined

by:

(Def. 2) @e = e.

Let us consider n, e and let r be a non positive real number. Observe that
Ball(e, r) is empty.

Let us consider n, e and let r be a positive real number. Note that Ball(e, r)
is non empty.

We now state three propositions:

(8) For all points p1, p2 of EnT such that i ∈ dom p1 holds (p1(i)− p2(i))2 ≤∑2(p1 − p2).

(9) Let n be an element of N and a, o, p be elements of EnT. If a ∈ Ball(o, r),
then for every set x holds |(a− o)(x)| < r and |a(x)− o(x)| < r.

(10) For all points a, o of En such that a ∈ Ball(o, r) and for every set x holds
|(a− o)(x)| < r and |a(x)− o(x)| < r.

Let f be a real-valued function and let r be a real number. The functor
Intervals(f, r) yields a function and is defined as follows:

(Def. 3) dom Intervals(f, r) = dom f and for every set x such that x ∈ dom f

holds (Intervals(f, r))(x) = ]f(x)− r, f(x) + r[.

Let us consider r. Note that Intervals(∅, r) is empty.
Let f be a real-valued finite sequence and let us consider r. One can check

that Intervals(f, r) is finite sequence-like.
Let us consider n, e, r. The functor OpenHypercube(e, r) yielding a subset

of (En)top is defined by:

(Def. 4) OpenHypercube(e, r) =
∏

Intervals(e, r).

Next we state the proposition

(11) If 0 < r, then e ∈ OpenHypercube(e, r).

Let n be a non zero natural number, let e be a point of En, and let r be a
non positive real number. Observe that OpenHypercube(e, r) is empty.

One can prove the following proposition

(12) For every point e of E0 holds OpenHypercube(e, r) = {∅}.
Let e be a point of E0 and let us consider r. Note that OpenHypercube(e, r)

is non empty.
Let us consider n, e and let r be a positive real number. One can check that

OpenHypercube(e, r) is non empty.
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One can prove the following propositions:

(13) If r ≤ s, then OpenHypercube(e, r) ⊆ OpenHypercube(e, s).

(14) If n 6= 0 or 0 < r and if e1 ∈ OpenHypercube(e, r), then for every set x
holds |(e1 − e)(x)| < r and |e1(x)− e(x)| < r.

(15) If n 6= 0 and e1 ∈ OpenHypercube(e, r), then
∑2(e1 − e) < n · r2.

(16) If n 6= 0 and e1 ∈ OpenHypercube(e, r), then ρ(e1, e) < r ·
√
n.

(17) If n 6= 0, then OpenHypercube(e, r√
n

) ⊆ Ball(e, r).

(18) If n 6= 0, then OpenHypercube(e, r) ⊆ Ball(e, r ·
√
n).

(19) If e1 ∈ Ball(e, r), then there exists a non zero element m of N such that
OpenHypercube(e1,

1
m) ⊆ Ball(e, r).

(20) If n 6= 0 and e1 ∈ OpenHypercube(e, r),
then r > |e1 − e|(max-diff-index(e1, e)).

(21) OpenHypercube(e1, r − |e1 − e|(max-diff-index(e1, e))) ⊆
OpenHypercube(e, r).

(22) Ball(e, r) ⊆ OpenHypercube(e, r).

Let us consider n, e, r. Observe that OpenHypercube(e, r) is open.
We now state two propositions:

(23) Let V be a subset of (En)top. Suppose V is open. Let e be a point of
En. If e ∈ V, then there exists a non zero element m of N such that
OpenHypercube(e, 1

m) ⊆ V.
(24) Let V be a subset of (En)top. Suppose that for every point e of En

such that e ∈ V there exists a real number r such that r > 0 and
OpenHypercube(e, r) ⊆ V. Then V is open.

Let us consider n, e. The functor OpenHypercubes e yields a family of subsets
of (En)top and is defined by:

(Def. 5) OpenHypercubes e = {OpenHypercube(e, 1
m) : m ranges over non zero

elements of N}.
Let us consider n, e. Observe that OpenHypercubes e is non empty, open,

and e-quasi-basis.
Next we state four propositions:

(25) For every 1-sorted yielding many sorted set J indexed by Seg n such that
J = Seg n 7−→ R1 holds RSegn =

∏
(the support of J).

(26) Let J be a topological space yielding many sorted set indexed by Seg n.
Suppose n 6= 0 and J = Seg n 7−→ R1. Let P1 be a family of subsets of
(En)top. If P1 = the product prebasis for J , then P1 is quasi-prebasis.

(27) Let J be a topological space yielding many sorted set indexed by Seg n.
Suppose J = Seg n 7−→ R1. Let P1 be a family of subsets of (En)top. If
P1 = the product prebasis for J , then P1 is open.

(28) (En)top =
∏

(Seg n 7−→ R1).
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Summary. In this article we describe the notion of affinely independent
subset of a real linear space. First we prove selected theorems concerning opera-
tions on linear combinations. Then we introduce affine independence and prove
the equivalence of various definitions of this notion. We also introduce the notion
of the affine hull, i.e. a subset generated by a set of vectors which is an inter-
section of all affine sets including the given set. Finally, we introduce and prove
selected properties of the barycentric coordinates.

MML identifier: RLAFFIN1, version: 7.11.0 4.1 .10

The terminology and notation used here are introduced in the following papers:
[1], [6], [10], [2], [3], [8], [15], [13], [12], [11], [7], [5], [9], [14], and [4].

1. Preliminaries

For simplicity, we adopt the following convention: x, y are sets, r, s are real
numbers, S is a non empty additive loop structure, L1, L2, L3 are linear combi-
nations of S, G is an Abelian add-associative right zeroed right complementable
non empty additive loop structure, L4, L5, L6 are linear combinations of G,
g, h are elements of G, R1 is a non empty RLS structure, R is a real linear
space-like non empty RLS structure, A1 is a subset of R, L7, L8, L9 are linear
combinations of R, V is a real linear space, v, v1, v2, w, p are vectors of V , A, B
are subsets of V , F1, F2 are families of subsets of V , and L, L10, L11 are linear
combinations of V .

Let us consider R1 and let A be an empty subset of R1. Note that convA is
empty.
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Let us consider R1 and let A be a non empty subset of R1. One can check
that convA is non empty.

One can prove the following propositions:

(1) For every element v of R holds conv{v} = {v}.
(2) For every subset A of R1 holds A ⊆ convA.

(3) For all subsets A, B of R1 such that A ⊆ B holds convA ⊆ convB.

(4) For all subsets S, A of R1 such that A ⊆ convS holds convS =
convS ∪A.

(5) Let V be an add-associative non empty additive loop structure, A be a
subset of V , and v, w be elements of V . Then (v+w) +A = v+ (w+A).

(6) For every Abelian right zeroed non empty additive loop structure V and
for every subset A of V holds 0V +A = A.

(7) For every subset A of G holds CardA = Card(g +A).

(8) For every element v of S holds v + ∅S = ∅S .
(9) For all subsets A, B of R1 such that A ⊆ B holds r ·A ⊆ r ·B.

(10) (r · s) ·A1 = r · (s ·A1).

(11) 1 ·A1 = A1.

(12) 0 ·A ⊆ {0V }.
(13) For every finite sequence F of elements of S holds (L2 + L3) · F =

L2 · F + L3 · F.
(14) For every finite sequence F of elements of V holds (r ·L) ·F = r · (L ·F ).

(15) Suppose A is linearly independent and A ⊆ B and Lin(B) = V. Then
there exists a linearly independent subset I of V such that A ⊆ I ⊆ B

and Lin(I) = V.

2. Two Transformations of Linear Combinations

Let us consider G, L4, g. The functor g + L4 yielding a linear combination
of G is defined as follows:

(Def. 1) (g + L4)(h) = L4(h− g).

Next we state several propositions:

(16) The support of g + L4 = g + the support of L4.

(17) g + (L5 + L6) = (g + L5) + (g + L6).

(18) v + r · L = r · (v + L).

(19) g + (h+ L4) = (g + h) + L4.

(20) g + 0LCG = 0LCG .

(21) 0G + L4 = L4.
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Let us consider R, L7, r. The functor r ◦ L7 yields a linear combination of
R and is defined as follows:

(Def. 2)(i) For every element v of R holds (r ◦ L7)(v) = L7(r−1 · v) if r 6= 0,
(ii) r ◦ L7 = 0LCR , otherwise.

The following propositions are true:

(22) The support of r ◦ L7 ⊆ r · (the support of L7).

(23) If r 6= 0, then the support of r ◦ L7 = r · (the support of L7).

(24) r ◦ (L8 + L9) = r ◦ L8 + r ◦ L9.

(25) r · (s ◦ L) = s ◦ (r · L).

(26) r ◦ 0LCR = 0LCR .

(27) r ◦ (s ◦ L7) = (r · s) ◦ L7.

(28) 1 ◦ L7 = L7.

3. The Sum of Coefficients of a Linear Combination

Let us consider S, L1. The functor sumL1 yields a real number and is defined
as follows:

(Def. 3) There exists a finite sequence F of elements of S such that F is one-to-
one and rngF = the support of L1 and sumL1 =

∑
(L1 · F ).

One can prove the following propositions:

(29) For every finite sequence F of elements of S such that the support of L1

misses rngF holds
∑

(L1 · F ) = 0.

(30) Let F be a finite sequence of elements of S. If F is one-to-one and the
support of L1 ⊆ rngF, then sumL1 =

∑
(L1 · F ).

(31) sum 0LCS = 0.

(32) For every element v of S such that the support of L1 ⊆ {v} holds
sumL1 = L1(v).

(33) For all elements v1, v2 of S such that the support of L1 ⊆ {v1, v2} and
v1 6= v2 holds sumL1 = L1(v1) + L1(v2).

(34) sumL2 + L3 = sumL2 + sumL3.

(35) sum r · L = r · sumL.

(36) sumL10 − L11 = sumL10 − sumL11.

(37) sumL4 = sum g + L4.

(38) If r 6= 0, then sumL7 = sum r ◦ L7.

(39)
∑

(v + L) = sumL · v +
∑
L.

(40)
∑

(r ◦ L) = r ·
∑
L.
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4. Affine Independence of Vectors

Let us consider V , A. We say that A is affinely independent if and only if:

(Def. 4) A is empty or there exists v such that v ∈ A and (−v + A) \ {0V } is
linearly independent.

Let us consider V . Observe that every subset of V which is empty is al-
so affinely independent. Let us consider v. One can check that {v} is affinely
independent. Let us consider w. Observe that {v, w} is affinely independent.

Let us consider V . Note that there exists a subset of V which is non empty,
trivial, and affinely independent.

We now state three propositions:

(41) A is affinely independent iff for every v such that v ∈ A holds (−v+A)\
{0V } is linearly independent.

(42) A is affinely independent if and only if for every linear combination L of
A such that

∑
L = 0V and sumL = 0 holds the support of L = ∅.

(43) If A is affinely independent and B ⊆ A, then B is affinely independent.

Let us consider V . Note that every subset of V which is linearly independent
is also affinely independent.

In the sequel I denotes an affinely independent subset of V .
Let us consider V , I, v. Observe that v + I is affinely independent.
One can prove the following proposition

(44) If v +A is affinely independent, then A is affinely independent.

Let us consider V , I, r. One can check that r · I is affinely independent.
The following propositions are true:

(45) If r ·A is affinely independent and r 6= 0, then A is affinely independent.

(46) If 0V ∈ A, then A is affinely independent iff A \ {0V } is linearly inde-
pendent.

Let us consider V and let F be a family of subsets of V . We say that F is
affinely independent if and only if:

(Def. 5) If A ∈ F, then A is affinely independent.

Let us consider V . Observe that every family of subsets of V which is empty
is also affinely independent. Let us consider I. One can check that {I} is affinely
independent.

Let us consider V . Note that there exists a family of subsets of V which is
empty and affinely independent and there exists a family of subsets of V which
is non empty and affinely independent.

Next we state two propositions:

(47) If F1 is affinely independent and F2 is affinely independent, then F1∪F2

is affinely independent.

(48) If F1 ⊆ F2 and F2 is affinely independent, then F1 is affinely independent.
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5. Affine Hull

Let us consider R1 and let A be a subset of R1. The functor AffinA yields
a subset of R1 and is defined as follows:

(Def. 6) AffinA =
⋂
{B;B ranges over affine subsets of R1: A ⊆ B}.

Let us consider R1 and let A be a subset of R1. Observe that AffinA is affine.
Let us consider R1 and let A be an empty subset of R1. Note that AffinA

is empty.
Let us consider R1 and let A be a non empty subset of R1. Note that AffinA

is non empty.
One can prove the following propositions:

(49) For every subset A of R1 holds A ⊆ AffinA.

(50) For every affine subset A of R1 holds A = AffinA.

(51) For all subsets A, B of R1 such that A ⊆ B and B is affine holds
AffinA ⊆ B.

(52) For all subsets A, B of R1 such that A ⊆ B holds AffinA ⊆ AffinB.

(53) Affin(v +A) = v + AffinA.

(54) If A1 is affine, then r ·A1 is affine.

(55) If r 6= 0, then Affin(r ·A1) = r ·AffinA1.

(56) Affin(r ·A) = r ·AffinA.

(57) If v ∈ AffinA, then AffinA = v + Up(Lin(−v +A)).

(58) A is affinely independent iff for every B such that B ⊆ A and AffinA =
AffinB holds A = B.

(59) AffinA = {
∑
L;L ranges over linear combinations of A: sumL = 1}.

(60) If I ⊆ A, then there exists an affinely independent subset I1 of V such
that I ⊆ I1 ⊆ A and Affin I1 = AffinA.

(61) Let A, B be finite subsets of V . Suppose A is affinely independent and
AffinA = AffinB and B ≤ A. Then B is affinely independent.

(62) L is convex iff sumL = 1 and for every v holds 0 ≤ L(v).

(63) If L is convex, then L(x) ≤ 1.

(64) If L is convex and L(x) = 1, then the support of L = {x}.
(65) convA ⊆ AffinA.

(66) If x ∈ convA and convA \ {x} is convex, then x ∈ A.
(67) Affin convA = AffinA.

(68) If convA ⊆ convB, then AffinA ⊆ AffinB.

(69) For all subsets A, B of R1 such that A ⊆ AffinB holds Affin(A ∪ B) =
AffinB.
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6. Barycentric Coordinates

Let us consider V and let us consider A. Let us assume that A is affinely
independent. Let us consider x. Let us assume that x ∈ AffinA. The functor
x→ A yielding a linear combination of A is defined by:

(Def. 7)
∑

(x→ A) = x and sumx→ A = 1.

We now state a number of propositions:

(70) If v1, v2 ∈ Affin I, then (1−r)·v1+r ·v2 → I = (1−r)·(v1 → I)+r ·(v2 →
I).

(71) If x ∈ conv I, then x→ I is convex and 0 ≤ (x→ I)(v) ≤ 1.

(72) If x ∈ conv I, then (x→ I)(y) = 1 iff x = y and x ∈ I.
(73) For every I such that x ∈ Affin I and for every v such that v ∈ I holds

0 ≤ (x→ I)(v) holds x ∈ conv I.

(74) If x ∈ I, then conv I \ {x} is convex.

(75) For every B such that x ∈ Affin I and for every y such that y ∈ B holds
(x→ I)(y) = 0 holds x ∈ Affin(I \B) and x→ I = x→ I \B.

(76) For every B such that x ∈ conv I and for every y such that y ∈ B holds
(x→ I)(y) = 0 holds x ∈ conv I \B.

(77) If B ⊆ I and x ∈ AffinB, then x→ B = x→ I.

(78) If v1, v2 ∈ AffinA and r + s = 1, then r · v1 + s · v2 ∈ AffinA.

(79) For all finite subsets A, B of V such that A is affinely independent and
AffinA ⊆ AffinB holds A ≤ B.

(80) Let A, B be finite subsets of V . Suppose A is affinely independent and
AffinA ⊆ AffinB and A = B. Then B is affinely independent.

(81) If L10(v) 6= L11(v), then (r ·L10 +(1−r)·L11)(v) = s iff r = L11(v)−s
L11(v)−L10(v) .

(82) A ∪ {v} is affinely independent iff A is affinely independent but v ∈ A
or v /∈ AffinA.

(83) If w /∈ AffinA and v1, v2 ∈ A and r 6= 1 and r · w + (1 − r) · v1 =
s · w + (1− s) · v2, then r = s and v1 = v2.

(84) If v ∈ I and w ∈ Affin I and p ∈ Affin(I \ {v}) and w = r · v+ (1− r) · p,
then r = (w → I)(v).
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Summary. In this article we define the notion of abstract simplicial com-
plexes and operations on them. We introduce the following basic notions: simplex,
face, vertex, degree, skeleton, subdivision and substructure, and prove some of
their properties.

MML identifier: SIMPLEX0, version: 7.11.0 4.1 .10

The articles [2], [5], [6], [10], [8], [14], [1], [7], [3], [4], [11], [13], [16], [12], [15],
and [9] provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x, y, X, Y , Z are sets, D
is a non empty set, n, k are natural numbers, and i, i1, i2 are integers.

Let us consider X. We introduce X has empty element as an antonym of X
has non empty elements.

Note that there exists a set which is empty and finite-membered and every
set which is empty is also finite-membered. Let X be a finite set. Note that {X}
is finite-membered and 2X is finite-membered. Let Y be a finite set. Observe
that {X,Y } is finite-membered.

Let X be a finite-membered set. Observe that every subset of X is finite-
membered. Let Y be a finite-membered set. One can check that X ∪Y is finite-
membered.

Let X be a finite finite-membered set. Note that
⋃
X is finite.

One can verify the following observations:

∗ every set which is empty is also subset-closed,
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∗ every set which has empty element is also non empty,

∗ every set which is non empty and subset-closed has also empty element,
and

∗ there exists a set which has empty element.

Let us considerX. Observe that SubFin(X) is finite-membered and there exi-
sts a family of subsets of X which is subset-closed, finite, and finite-membered.

Let X be a subset-closed set. One can check that SubFin(X) is subset-closed.
Next we state the proposition

(1) Y is subset-closed iff for every X such that X ∈ Y holds 2X ⊆ Y.
Let A, B be subset-closed sets. Note that A ∪B is subset-closed and A ∩B

is subset-closed.
Let us consider X. The subset-closure of X yields a subset-closed set and is

defined by the conditions (Def. 1).

(Def. 1)(i) X ⊆ the subset-closure of X, and
(ii) for every Y such that X ⊆ Y and Y is subset-closed holds the subset-

closure of X ⊆ Y.
The following proposition is true

(2) x ∈ the subset-closure of X iff there exists y such that x ⊆ y and y ∈ X.
Let us consider X and let F be a family of subsets of X. Then the subset-

closure of F is a subset-closed family of subsets of X.
Observe that the subset-closure of ∅ is empty. Let X be a non empty set.

Note that the subset-closure of X is non empty.
Let X be a set with a non-empty element. One can check that the subset-

closure of X has a non-empty element.
Let X be a finite-membered set. Note that the subset-closure of X is finite-

membered.
The following propositions are true:

(3) If X ⊆ Y and Y is subset-closed, then the subset-closure of X ⊆ Y.
(4) The subset-closure of {X} = 2X .

(5) The subset-closure of X ∪ Y = (the subset-closure of X) ∪ (the subset-
closure of Y ).

(6) X is finer than Y iff the subset-closure of X ⊆ the subset-closure of Y .

(7) If X is subset-closed, then the subset-closure of X = X.

(8) If the subset-closure of X ⊆ X, then X is subset-closed.

Let us consider Y , X and let n be a set. The subsets of X and Y with
cardinality limited by n yields a family of subsets of Y and is defined by the
condition (Def. 2).

(Def. 2) Let A be a subset of Y . Then A ∈ the subsets ofX and Y with cardinality
limited by n if and only if A ∈ X and CardA ⊆ Cardn.
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Let us consider D. One can verify that there exists a family of subsets of D
which is finite, subset-closed, and finite-membered and has a non-empty element.

Let us consider Y , X and let n be a finite set. One can check that the subsets
of X and Y with cardinality limited by n is finite-membered.

Let us consider Y , let X be a subset-closed set, and let n be a set. Note that
the subsets of X and Y with cardinality limited by n is subset-closed.

Let us consider Y , let X be a set with empty element, and let n be a set.
One can check that the subsets of X and Y with cardinality limited by n has
empty element.

Let us consider D, let X be a subset-closed family of subsets of D with a
non-empty element, and let n be a non empty set. Note that the subsets of X
and D with cardinality limited by n has a non-empty element.

Let us consider X, let Y be a family of subsets of X, and let n be a set. We
introduce the subsets of Y with cardinality limited by n as a synonym of the
subsets of Y and X with cardinality limited by n.

Let us observe that every set which is empty is also ⊆-linear and there exists
a set which is empty and ⊆-linear.

Let X be a ⊆-linear set. Note that every subset of X is ⊆-linear.
The following propositions are true:

(9) If X is non empty, finite, and ⊆-linear, then
⋃
X ∈ X.

(10) For every finite ⊆-linear set X such that X has non empty elements
holds CardX ⊆ Card

⋃
X.

(11) If X is ⊆-linear and
⋃
X misses x, then X ∪ {

⋃
X ∪ x} is ⊆-linear.

(12) Let X be a non empty set. Then there exists a family Y of subsets of X
such that

(i) Y is ⊆-linear and has non empty elements,
(ii) X ∈ Y,
(iii) CardX = CardY, and
(iv) for every Z such that Z ∈ Y and CardZ 6= 1 there exists x such that

x ∈ Z and Z \ {x} ∈ Y.
(13) Let Y be a family of subsets of X. Suppose Y is finite and ⊆-linear and

has non empty elements and X ∈ Y. Then there exists a family Y ′ of
subsets of X such that

(i) Y ⊆ Y ′,
(ii) Y ′ is ⊆-linear and has non empty elements,
(iii) CardX = CardY ′, and
(iv) for every Z such that Z ∈ Y ′ and CardZ 6= 1 there exists x such that

x ∈ Z and Z \ {x} ∈ Y ′.
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2. Simplicial Complexes

A simplicial complex structure is a topological structure.
In the sequel K denotes a simplicial complex structure.
Let us consider K and let A be a subset of K. We introduce A is simplex-like

as a synonym of A is open.
Let us consider K and let S be a family of subsets of K. We introduce S is

simplex-like as a synonym of S is open.
Let us consider K. One can check that there exists a family of subsets of K

which is empty and simplex-like.
The following proposition is true

(14) For every family S of subsets of K holds S is simplex-like iff S ⊆ the
topology of K.

Let us consider K and let v be an element of K. We say that v is vertex-like
if and only if:

(Def. 3) There exists a subset S of K such that S is simplex-like and v ∈ S.
Let us consider K. The functor VerticesK yielding a subset of K is defined

by:

(Def. 4) For every element v of K holds v ∈ VerticesK iff v is vertex-like.

Let K be a simplicial complex structure. A vertex of K is an element of
VerticesK.

Let K be a simplicial complex structure. We say that K is finite-vertices if
and only if:

(Def. 5) VerticesK is finite.

Let us consider K. We say that K is locally-finite if and only if:

(Def. 6) For every vertex v of K holds {S ⊆ K: S is simplex-like ∧ v ∈ S} is
finite.

Let us consider K. We say that K is empty-membered if and only if:

(Def. 7) The topology of K is empty-membered.

We say that K has non empty elements if and only if:

(Def. 8) The topology of K has non empty elements.

Let us consider K. We introduce K has a non-empty element as an antonym
of K is empty-membered. We introduce K has empty element as an antonym
of K has non empty elements.

Let us consider X. A simplicial complex structure is said to be a simplicial
complex structure of X if:

(Def. 9) Ωit ⊆ X.
Let us consider X and let K1 be a simplicial complex structure of X. We

say that K1 is total if and only if:
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(Def. 10) Ω(K1) = X.

One can check the following observations:

∗ every simplicial complex structure which has empty element is also non
void,

∗ every simplicial complex structure which has a non-empty element is
also non void,

∗ every simplicial complex structure which is non void and empty-membered
has also empty element,

∗ every simplicial complex structure which is non void and subset-closed
has also empty element,

∗ every simplicial complex structure which is empty-membered is also
subset-closed and finite-vertices,

∗ every simplicial complex structure which is finite-vertices is also locally-
finite and finite-degree, and

∗ every simplicial complex structure which is locally-finite and subset-
closed is also finite-membered.

Let us consider X. Observe that there exists a simplicial complex structure
of X which is empty, void, empty-membered, and strict.

Let us consider D. Note that there exists a simplicial complex structure of D
which is non empty, non void, total, empty-membered, and strict and there exists
a simplicial complex structure of D which is non empty, total, finite-vertices,
subset-closed, and strict and has empty element and a non-empty element.

Let us observe that there exists a simplicial complex structure which is non
empty, finite-vertices, subset-closed, and strict and has empty element and a
non-empty element.

Let K be a simplicial complex structure with a non-empty element. Observe
that VerticesK is non empty.

Let K be a finite-vertices simplicial complex structure. Note that every fa-
mily of subsets of K which is simplex-like is also finite.

Let K be a finite-membered simplicial complex structure. Note that every
family of subsets of K which is simplex-like is also finite-membered.

Next we state several propositions:

(15) VerticesK is empty iff K is empty-membered.

(16) VerticesK =
⋃

(the topology of K).

(17) For every subset S of K such that S is simplex-like holds S ⊆ VerticesK.

(18) If K is finite-vertices, then the topology of K is finite.

(19) If the topology of K is finite and K is non finite-vertices, then K is non
finite-membered.

(20) If K is subset-closed and the topology of K is finite, then K is finite-
vertices.
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3. The Simplicial Complex Generated on the Set

Let us consider X and let Y be a family of subsets of X. The complex of Y
yielding a strict simplicial complex structure of X is defined as follows:

(Def. 11) The complex of Y = 〈X, the subset-closure of Y 〉.
Let us consider X and let Y be a family of subsets of X. One can verify that

the complex of Y is total and subset-closed.
Let us consider X and let Y be a non empty family of subsets of X. Note

that the complex of Y has empty element.
Let us consider X and let Y be a finite-membered family of subsets of X.

Note that the complex of Y is finite-membered.
Let us consider X and let Y be a finite finite-membered family of subsets of

X. Observe that the complex of Y is finite-vertices.
One can prove the following proposition

(21) If K is subset-closed, then the topological structure of K = the complex
of the topology of K.

Let us consider X. A simplicial complex of X is a finite-membered subset-
closed simplicial complex structure of X.

Let K be a non void simplicial complex structure. A simplex of K is a
simplex-like subset of K.

Let K be a simplicial complex structure with empty element. One can check
that every subset of K which is empty is also simplex-like and there exists a
simplex of K which is empty.

Let K be a non void finite-membered simplicial complex structure. Note
that there exists a simplex of K which is finite.

4. The Degree of Simplicial Complexes

Let us consider K. The functor degree(K) yields an extended real number
and is defined as follows:

(Def. 12)(i) For every finite subset S of K such that S is simplex-like holds S ≤
degree(K) + 1 and there exists a subset S of K such that S is simplex-like
and CardS = degree(K) + 1 if K is non void and finite-degree,

(ii) degree(K) = −1 if K is void,
(iii) degree(K) = +∞, otherwise.

Let K be a finite-degree simplicial complex structure. Note that degree(K)+
1 is natural and degree(K) is integer.

The following propositions are true:

(22) degree(K) = −1 iff K is empty-membered.

(23) −1 ≤ degree(K).
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(24) For every finite subset S of K such that S is simplex-like holds S ≤
degree(K) + 1.

(25) Suppose K is non void or i ≥ −1. Then degree(K) ≤ i if and only if the
following conditions are satisfied:

(i) K is finite-membered, and
(ii) for every finite subset S of K such that S is simplex-like holds S ≤ i+1.

(26) For every finite subset A of X holds degree(the complex of {A}) = A−1.

5. Subcomplexes

Let us consider X and let K1 be a simplicial complex structure of X. A
simplicial complex of X is said to be a subsimplicial complex of K1 if:

(Def. 13) Ωit ⊆ Ω(K1) and the topology of it ⊆ the topology of K1.

In the sequel K1 denotes a simplicial complex structure of X and S1 denotes
a subsimplicial complex of K1.

Let us consider X, K1. One can check that there exists a subsimplicial
complex of K1 which is empty, void, and strict.

Let us consider X and let K1 be a void simplicial complex structure of X.
Observe that every subsimplicial complex of K1 is void.

Let us consider D and let K2 be a non void subset-closed simplicial complex
structure of D. Note that there exists a subsimplicial complex of K2 which is
non void.

Let us consider X and let K1 be a finite-vertices simplicial complex structure
of X. One can check that every subsimplicial complex of K1 is finite-vertices.

Let us consider X and let K1 be a finite-degree simplicial complex structure
of X. Note that every subsimplicial complex of K1 is finite-degree.

Next we state several propositions:

(27) Every subsimplicial complex of S1 is a subsimplicial complex of K1.

(28) Let A be a subset of K1 and S be a finite-membered family of subsets
of A. Suppose the subset-closure of S ⊆ the topology of K1. Then the
complex of S is a strict subsimplicial complex of K1.

(29) Let K1 be a subset-closed simplicial complex structure of X, A be a
subset of K1, and S be a finite-membered family of subsets of A. Suppose
S ⊆ the topology of K1. Then the complex of S is a strict subsimplicial
complex of K1.

(30) Let Y1, Y2 be families of subsets of X. Suppose Y1 is finite-membered
and finer than Y2. Then the complex of Y1 is a subsimplicial complex of
the complex of Y2.

(31) VerticesS1 ⊆ VerticesK1.

(32) degree(S1) ≤ degree(K1).
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Let us consider X, K1, S1. We say that S1 is maximal if and only if:

(Def. 14) For every subset A of S1 such that A ∈ the topology of K1 holds A is
simplex-like.

We now state the proposition

(33) S1 is maximal iff 2Ω(S1) ∩ the topology of K1 ⊆ the topology of S1.

Let us consider X, K1. Note that there exists a subsimplicial complex of K1

which is maximal and strict.
We now state three propositions:

(34) Let S2 be a subsimplicial complex of S1. Suppose S1 is maximal and S2

is maximal. Then S2 is a maximal subsimplicial complex of K1.

(35) Let S2 be a subsimplicial complex of S1. If S2 is a maximal subsimplicial
complex of K1, then S2 is maximal.

(36) Let K3, K4 be maximal subsimplicial complexes of K1.
Suppose Ω(K3) = Ω(K4). Then the topological structure of K3 = the topo-
logical structure of K4.

Let us consider X, let K1 be a subset-closed simplicial complex structure
of X, and let A be a subset of K1. Let us assume that 2A ∩ the topology of
K1 is finite-membered. The functor K1�A yields a maximal strict subsimplicial
complex of K1 and is defined as follows:

(Def. 15) ΩK1�A = A.

In the sequel S3 denotes a simplicial complex of X.
Let us consider X, S3 and let A be a subset of S3. Then S3�A is a maximal

strict subsimplicial complex of S3 and it can be characterized by the condition:

(Def. 16) ΩS3�A = A.

The following four propositions are true:

(37) For every subset A of S3 holds the topology of S3�A = 2A∩ the topology
of S3.

(38) For all subsets A, B of S3 and for every subset B′ of S3�A such that
B′ = B holds S3�A�B′ = S3�B.

(39) S3�Ω(S3) = the topological structure of S3.

(40) For all subsets A, B of S3 such that A ⊆ B holds S3�A is a subsimplicial
complex of S3�B.

Let us observe that every integer is finite.

6. The Skeleton of a Simplicial Complex

Let us consider X, K1 and let i be a real number. The skeleton of K1 and i
yielding a simplicial complex structure of X is defined by the condition (Def. 17).
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(Def. 17) The skeleton of K1 and i = the complex of the subsets of the topology
of K1 with cardinality limited by i+ 1.

Let us consider X, K1. Observe that the skeleton of K1 and −1 is empty-
membered. Let us consider i. Note that the skeleton of K1 and i is finite-degree.

Let us consider X, let K1 be an empty-membered simplicial complex struc-
ture of X, and let us consider i. One can check that the skeleton of K1 and i is
empty-membered.

Let us consider D, let K2 be a non void subset-closed simplicial complex
structure of D, and let us consider i. One can check that the skeleton of K2 and
i is non void.

One can prove the following proposition

(41) If −1 ≤ i1 ≤ i2, then the skeleton of K1 and i1 is a subsimplicial complex
of the skeleton of K1 and i2.

Let us consider X, let K1 be a subset-closed simplicial complex structure
of X, and let us consider i. Then the skeleton of K1 and i is a subsimplicial
complex of K1.

We now state several propositions:

(42) If K1 is subset-closed and the skeleton of K1 and i is empty-membered,
then K1 is empty-membered or i = −1.

(43) degree(the skeleton of K1 and i) ≤ degree(K1).

(44) If −1 ≤ i, then degree(the skeleton of K1 and i) ≤ i.
(45) If −1 ≤ i and the skeleton of K1 and i = the topological structure of

K1, then degree(K1) ≤ i.
(46) If K1 is subset-closed and degree(K1) ≤ i, then the skeleton of K1 and

i = the topological structure of K1.

In the sequel K is a non void subset-closed simplicial complex structure.
Let us consider K and let i be a real number. Let us assume that i is integer.

A finite simplex of K is said to be a simplex of i and K if:

(Def. 18)(i) it = i+ 1 if −1 ≤ i ≤ degree(K),
(ii) it is empty, otherwise.

Let us consider K. Note that every simplex of −1 and K is empty.
The following three propositions are true:

(47) For every simplex S of i and K such that S is non empty holds i is
natural.

(48) Every finite simplex S of K is a simplex of S − 1 and K.

(49) LetK be a non void subset-closed simplicial complex structure ofD, S be
a non void subsimplicial complex of K, i be an integer, and A be a simplex
of i and S. If A is non empty or i ≤ degree(S) or degree(S) = degree(K),
then A is a simplex of i and K.
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Let us consider K and let i be a real number. Let us assume that i is integer
and i ≤ degree(K). Let S be a simplex of i and K. A simplex of max(i− 1,−1)
and K is said to be a face of S if:

(Def. 19) It ⊆ S.
One can prove the following proposition

(50) Let S be a simplex of n and K. Suppose n ≤ degree(K). Then X is a
face of S if and only if there exists x such that x ∈ S and S \ {x} = X.

7. The Subdivision of a Simplicial Complex

In the sequel P is a function.
Let us consider X, K1, P . The functor subdivision(P,K1) yields a strict

simplicial complex structure of X and is defined by the conditions (Def. 20).

(Def. 20)(i) Ωsubdivision(P,K1) = Ω(K1), and
(ii) for every subset A of subdivision(P,K1) holds A is simplex-like iff there

exists a ⊆-linear finite simplex-like family S of subsets of K1 such that
A = P ◦S.

Let us consider X, K1, P . One can verify that subdivision(P,K1) is subset-
closed and finite-membered and has empty element.

Let us consider X, let K1 be a void simplicial complex structure of X, and
let us consider P . Observe that subdivision(P,K1) is empty-membered.

The following propositions are true:

(51) degree(subdivision(P,K1)) ≤ degree(K1) + 1.

(52) If domP has non empty elements, then degree(subdivision(P,K1)) ≤
degree(K1).

Let us consider X, let K1 be a finite-degree simplicial complex structure of
X, and let us consider P . Note that subdivision(P,K1) is finite-degree.

Let us consider X, let K1 be a finite-vertices simplicial complex structure
of X, and let us consider P . One can check that subdivision(P,K1) is finite-
vertices.

One can prove the following propositions:

(53) Let K1 be a subset-closed simplicial complex structure of X and given
P . Suppose that

(i) domP has non empty elements, and
(ii) for every n such that n ≤ degree(K1) there exists a subset S of K1 such

that S is simplex-like and CardS = n + 1 and 2S+ ⊆ domP and P ◦2S+ is
a subset of K1 and P �2S+ is one-to-one.
Then degree(subdivision(P,K1)) = degree(K1).

(54) If Y ⊆ Z, then subdivision(P �Y,K1) is a subsimplicial complex of
subdivision(P �Z,K1).
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(55) If domP ∩ the topology of K1 ⊆ Y, then subdivision(P �Y,K1) =
subdivision(P,K1).

(56) If Y ⊆ Z, then subdivision(Y �P,K1) is a subsimplicial complex of
subdivision(Z�P,K1).

(57) If P ◦(the topology of K1) ⊆ Y, then subdivision(Y �P,K1) =
subdivision(P,K1).

(58) subdivision(P, S1) is a subsimplicial complex of subdivision(P,K1).

(59) For every subset A of subdivision(P,K1) such that domP ⊆ the topology
of S1 and A = Ω(S1) holds subdivision(P, S1) = subdivision(P,K1)�A.

(60) Let K3, K4 be simplicial complex structures of X. Suppose the to-
pological structure of K3 = the topological structure of K4. Then
subdivision(P,K3) = subdivision(P,K4).

Let us consider X, K1, P , n. The functor subdivision(n, P,K1) yielding a
simplicial complex structure of X is defined by the condition (Def. 21).

(Def. 21) There exists a function F such that
(i) F (0) = K1,

(ii) F (n) = subdivision(n, P,K1),
(iii) domF = N, and
(iv) for every k and for every simplicial complex structure K ′1 of X such

that K ′1 = F (k) holds F (k + 1) = subdivision(P,K ′1).

Next we state several propositions:

(61) subdivision(0, P,K1) = K1.

(62) subdivision(1, P,K1) = subdivision(P,K1).

(63) For every natural number n1 such that n1 = n + k holds
subdivision(n1, P,K1) = subdivision(n, P, subdivision(k, P,K1)).

(64) Ωsubdivision(n,P,K1) = Ω(K1).

(65) subdivision(n, P, S1) is a subsimplicial complex of subdivision(n, P,K1).
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