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Dilworth’s Decomposition Theorem for
Posets1

Piotr Rudnicki
University of Alberta
Edmonton, Canada

Summary. The following theorem is due to Dilworth [8]: Let P be a
partially ordered set. If the maximal number of elements in an independent subset
(anti-chain) of P is k, then P is the union of k chains (cliques).

In this article we formalize an elegant proof of the above theorem for finite
posets by Perles [13]. The result is then used in proving the case of infinite posets
following the original proof of Dilworth [8].

A dual of Dilworth’s theorem also holds: a poset with maximum clique m is
a union of m independent sets. The proof of this dual fact is considerably easier;
we follow the proof by Mirsky [11]. Mirsky states also a corollary that a poset
of r × s + 1 elements possesses a clique of size r + 1 or an independent set of
size s + 1, or both. This corollary is then used to prove the result of Erdős and
Szekeres [9].

Instead of using posets, we drop reflexivity and state the facts about anti-
symmetric and transitive relations.

MML identifier: DILWORTH, version: 7.11.04 4.130.1076

The articles [1], [15], [14], [7], [2], [16], [3], [12], [17], [5], [10], [4], and [6] provide
the notation and terminology for this paper.

1. Preliminaries

The scheme FraenkelFinCard1 deals with a finite non empty set A, a finite
set B, a unary functor F yielding a set, and a unary predicate P, and states
that:
1This work has been partially supported by the NSERC grant OGP 9207.
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B ≤ A
provided the following condition is satisfied:
• B = {F(w);w ranges over elements of A : P[w]}.

Next we state the proposition

(1) For all sets X, Y , x such that x /∈ X holds X \ (Y ∪ {x}) = X \ Y.
Let us note that every set which is empty is also ⊆-linear and there exists a

set which is empty and ⊆-linear.
Let X be a ⊆-linear set. Note that every subset of X is ⊆-linear.
One can prove the following four propositions:

(2) Let X, Y be sets, F be a family of subsets of X, and G be a family of
subsets of Y . Then F ∪G is a family of subsets of X ∪ Y.

(3) Let X, Y be sets, F be a partition of X, and G be a partition of Y . If
X misses Y , then F ∪G is a partition of X ∪ Y.

(4) For all sets X, Y and for every partition F of Y such that Y ⊂ X holds
F ∪ {X \ Y } is a partition of X.

(5) For every infinite set X and for every natural number n there exists a
finite subset Y of X such that Y > n.

2. Cliques and Stable Sets

Let R be a relational structure and let S be a subset of R. We say that S is
connected if and only if:

(Def. 1) The internal relation of R is connected in S.

Let R be a relational structure and let S be a subset of R. We introduce S
is a clique as a synonym of S is connected.

Let R be a relational structure. Note that every subset of R which is trivial
is also a clique.

Let R be a relational structure. One can check that there exists a subset of
R which is a clique.

Let R be a relational structure. A clique of R is a clique subset of R.
We now state the proposition

(6) Let R be a relational structure and S be a subset of R. Then S is a
clique of R if and only if for all elements a, b of R such that a, b ∈ S and
a 6= b holds a ≤ b or b ≤ a.

Let R be a relational structure. Observe that there exists a clique of R which
is finite.

Let R be a reflexive relational structure. One can check that every subset of
R which is connected is also strongly connected.

Let R be a non empty relational structure. Observe that there exists a clique
of R which is finite and non empty.
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One can prove the following propositions:

(7) Let R be a non empty relational structure and a1, a2 be elements of R.
If a1 6= a2 and {a1, a2} is a clique of R, then a1 ≤ a2 or a2 ≤ a1.

(8) Let R be a non empty relational structure and a1, a2 be elements of R.
If a1 ≤ a2 or a2 ≤ a1, then {a1, a2} is a clique of R.

(9) For every relational structure R and for every clique C of R holds every
subset of C is a clique of R.

(10) Let R be a relational structure, C be a finite clique of R, and n be a
natural number. If n ≤ C , then there exists a finite clique B of R such
that B = n.

(11) Let R be a transitive relational structure, C be a clique of R, and x, y
be elements of R. If x is maximal in C and x ≤ y, then C ∪{y} is a clique
of R.

(12) Let R be a transitive relational structure, C be a clique of R, and x, y
be elements of R. If x is minimal in C and y ≤ x, then C ∪ {y} is a clique
of R.

Let R be a relational structure and let S be a subset of R. We say that S is
stable if and only if:

(Def. 2) For all elements x, y of R such that x, y ∈ S and x 6= y holds x 6≤ y and
y 6≤ x.

Let R be a relational structure. One can check that every subset of R which
is trivial is also stable. Let R be a relational structure. Note that there exists a
subset of R which is stable.

Let R be a relational structure. A stable set of R is a stable subset of R.
Let R be a relational structure. Note that there exists a stable set of R which

is finite.
Let R be a non empty relational structure. Observe that there exists a stable

set of R which is finite and non empty.
The following propositions are true:

(13) Let R be a non empty relational structure and a1, a2 be elements of R.
If a1 6= a2 and {a1, a2} is a stable set of R, then a1 6≤ a2 and a2 6≤ a1.

(14) Let R be a non empty relational structure and a1, a2 be elements of R.
If a1 6≤ a2 and a2 6≤ a1, then {a1, a2} is a stable set of R.

(15) Let R be a relational structure, C be a clique of R, A be a stable set of
R, and a, b be sets. If a, b ∈ A and a, b ∈ C, then a = b.

(16) For every relational structure R and for every stable set A of R holds
every subset of A is a stable set of R.

(17) Let R be a relational structure, A be a finite stable set of R, and n be
a natural number. If n ≤ A, then there exists a finite stable set B of R
such that B = n.
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3. Clique Number and Stability Number

Let R be a relational structure. We say that R has finite clique number if
and only if:

(Def. 3) There exists a finite clique C of R such that for every finite clique D of
R holds D ≤ C .

Let us observe that every relational structure which is finite has also fini-
te clique number and there exists a relational structure which is non empty,
antisymmetric, and transitive and has finite clique number.

Let R be a relational structure with finite clique number. Observe that every
clique of R is finite.

Let R be a relational structure with finite clique number. The functor ω(R)
yields a natural number and is defined as follows:

(Def. 4) There exists a finite clique C of R such that C = ω(R) and for every
finite clique T of R holds T ≤ ω(R).

Let R be an empty relational structure. Note that ω(R) is empty.
Let R be a non empty relational structure with finite clique number. Observe

that ω(R) is positive.
Next we state two propositions:

(18) For every non empty relational structure R with finite clique number
such that ΩR is a stable set of R holds ω(R) = 1.

(19) For every relational structure R with finite clique number such that
ω(R) = 1 holds ΩR is a stable set of R.

Let R be a relational structure. We say that R has finite stability number if
and only if:

(Def. 5) There exists a finite stable set A of R such that for every finite stable
set B of R holds B ≤ A.

One can verify that every relational structure which is finite has also finite
stability number and there exists a relational structure which is antisymmetric,
transitive, and non empty and has finite stability number.

Let R be a relational structure with finite stability number. Note that every
stable set of R is finite.

Let R be a relational structure with finite stability number. The functor
α(R) yielding a natural number is defined by:

(Def. 6) There exists a finite stable set A of R such that A = α(R) and for every
finite stable set T of R holds T ≤ α(R).

Let R be an empty relational structure. Observe that α(R) is empty.
Let R be a non empty relational structure with finite stability number. One

can verify that α(R) is positive.
We now state two propositions:
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(20) For every non empty relational structure R with finite stability number
such that ΩR is a clique of R holds α(R) = 1.

(21) For every relational structure R with finite stability number such that
α(R) = 1 holds ΩR is a clique of R.

Let us mention that every relational structure which has finite clique number
and finite stability number is also finite.

4. Lower and Upper Sets, Minimal and Maximal Elements

Let R be a relational structure and let X be a subset of R. The functor
LowerX yields a subset of R and is defined by:

(Def. 7) LowerX = X ∪ ↓X.
The functor UpperX yielding a subset of R is defined as follows:

(Def. 8) UpperX = X ∪ ↑X.
One can prove the following propositions:

(22) Let R be an antisymmetric transitive relational structure, A be a stable
set of R, and z be a set. If z ∈ UpperA and z ∈ LowerA, then z ∈ A.

(23) Let R be a relational structure with finite stability number and A be a
stable set of R. If A = α(R), then UpperA ∪ LowerA = ΩR.

(24) Let R be a transitive relational structure, x be an element of R, and S

be a subset of R. If x is minimal in LowerS, then x is minimal in ΩR.

(25) Let R be a transitive relational structure, x be an element of R, and S

be a subset of R. If x is maximal in UpperS, then x is maximal in ΩR.

Let R be a relational structure. The functor minimals(R) yielding a subset
of R is defined as follows:

(Def. 9)(i) For every element x of R holds x ∈ minimals(R) iff x is minimal in
ΩR if R is non empty,

(ii) minimals(R) = ∅, otherwise.

The functor maximals(R) yielding a subset of R is defined as follows:

(Def. 10)(i) For every element x of R holds x ∈ maximals(R) iff x is maximal in
ΩR if R is non empty,

(ii) maximals(R) = ∅, otherwise.

Let R be a non empty antisymmetric transitive relational structure with fini-
te clique number. One can verify that maximals(R) is non empty and minimals(R)
is non empty.

LetR be a relational structure. Note that minimals(R) is stable and maximals(R)
is stable.

The following two propositions are true:
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(26) For every relational structure R and for every stable set A of R such
that minimals(R) 6⊆ A holds minimals(R) 6⊆ UpperA.

(27) For every relational structure R and for every stable set A of R such
that maximals(R) 6⊆ A holds maximals(R) 6⊆ LowerA.

5. Substructures

Let R be a relational structure and let X be a finite subset of R. Observe
that sub(X) is finite.

One can prove the following propositions:

(28) For every relational structure R and for every subset S of R holds every
clique of sub(S) is a clique of R.

(29) Let R be a relational structure, S be a subset of R, and C be a clique
of R. Then C ∩ S is a clique of sub(S).

(30) For every relational structure R and for every subset S of R holds every
stable set of sub(S) is a stable set of R.

(31) Let R be a relational structure, S be a subset of R, and A be a stable
set of R. Then A ∩ S is a stable set of sub(S).

(32) Let R be a relational structure, S be a subset of R, B be a subset of
sub(S), x be an element of sub(S), and y be an element of R. If x = y

and x is maximal in B, then y is maximal in B.

(33) Let R be a relational structure, S be a subset of R, B be a subset of
sub(S), x be an element of sub(S), and y be an element of R. If x = y

and x is minimal in B, then y is minimal in B.

(34) Let R be a transitive relational structure, A be a stable set of R, C be a
clique of sub(LowerA), and a, b be elements of R. If a ∈ A and a, b ∈ C,
then a = b or b ≤ a.

(35) Let R be a transitive relational structure, A be a stable set of R, C be a
clique of sub(UpperA), and a, b be elements of R. If a ∈ A and a, b ∈ C,
then a = b or a ≤ b.

Let R be a relational structure with finite clique number and let S be a
subset of R. One can verify that sub(S) has finite clique number.

Let R be a relational structure with finite stability number and let S be a
subset of R. One can verify that sub(S) has finite stability number.

The following propositions are true:

(36) Let R be a non empty antisymmetric transitive relational structure with
finite clique number and x be an element ofR. Then there exists an element
y of R such that y is minimal in ΩR but y = x or y < x.

(37) For every antisymmetric transitive relational structure R with finite cli-
que number holds Upper minimals(R) = ΩR.
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(38) Let R be a non empty antisymmetric transitive relational structure with
finite clique number and x be an element ofR. Then there exists an element
y of R such that y is maximal in ΩR but y = x or x < y.

(39) For every antisymmetric transitive relational structure R with finite cli-
que number holds Lower maximals(R) = ΩR.

(40) Let R be an antisymmetric transitive relational structure with finite
clique number and A be a stable set of R. If minimals(R) ⊆ A, then
A = minimals(R).

(41) Let R be an antisymmetric transitive relational structure with finite
clique number and A be a stable set of R. If maximals(R) ⊆ A, then
A = maximals(R).

(42) For every relational structure R with finite clique number and for every
subset S of R holds ω(sub(S)) ≤ ω(R).

(43) Let R be a relational structure with finite clique number, C be a clique
of R, and S be a subset of R. If C = ω(R) and C ⊆ S, then ω(sub(S)) =
ω(R).

(44) For every relational structure R with finite stability number and for
every subset S of R holds α(sub(S)) ≤ α(R).

(45) Let R be a relational structure with finite stability number, A be a
stable set of R, and S be a subset of R. If A = α(R) and A ⊆ S, then
α(sub(S)) = α(R).

6. Partitions into Cliques and Stable Sets

Let R be a relational structure and let P be a partition of the carrier of R.
We say that P is clique-wise if and only if:

(Def. 11) For every set x such that x ∈ P holds x is a clique of R.

Let R be a relational structure. Observe that there exists a partition of the
carrier of R which is clique-wise.

Let R be a relational structure. A clique-partition of R is a clique-wise
partition of the carrier of R.

Let R be an empty relational structure. One can verify that every partition
of the carrier of R which is empty is also clique-wise.

Next we state four propositions:

(46) For every finite relational structure R and for every clique-partition C

of R holds C ≥ α(R).

(47) Let R be a relational structure with finite stability number, A be a stable
set of R, and C be a clique-partition of R. Suppose CardC = CardA. Then
there exists a function f from A into C such that f is bijective and for
every set x such that x ∈ A holds x ∈ f(x).



230 piotr rudnicki

(48) Let R be a finite relational structure, A be a stable set of R, and C be a
clique-partition of R. Suppose C = A. Let c be a set. If c ∈ C, then there
exists an element a of A such that c ∩A = {a}.

(49) LetR be an antisymmetric transitive non empty relational structure with
finite stability number, A be a stable set of R, U be a clique-partition
of sub(UpperA), and L be a clique-partition of sub(LowerA). Suppose
A = α(R) and CardU = α(R) and CardL = α(R). Then there exists a
clique-partition C of R such that CardC = α(R).

Let R be a relational structure and let P be a partition of the carrier of R.
We say that P is stable-wise if and only if:

(Def. 12) For every set x such that x ∈ P holds x is a stable set of R.

Let R be a relational structure. Observe that there exists a partition of the
carrier of R which is stable-wise.

Let R be a relational structure. A coloring of R is a stable-wise partition of
the carrier of R.

Let R be an empty relational structure. Note that every partition of the
carrier of R is stable-wise.

We now state the proposition

(50) For every finite relational structure R and for every coloring C of R holds
C ≥ ω(R).

7. Dilworth’s Theorem and a Dual

Next we state the proposition

(51) Let R be a finite antisymmetric transitive relational structure. Then
there exists a clique-partition C of R such that C = α(R).

Let R be a non empty relational structure with finite stability number and
let C be a subset of R. We say that C is strong-chain if and only if the condition
(Def. 13) is satisfied.

(Def. 13) Let S be a finite non empty subset of R. Then there exists a clique-
partition P of sub(S) such that P ≤ α(R) and there exists a set c such
that c ∈ P and S ∩ C ⊆ c and for every set d such that d ∈ P and d 6= c

holds C ∩ d = ∅.
Let R be a non empty relational structure with finite stability number. Note

that every subset of R which is strong-chain is also a clique.
Let R be an antisymmetric transitive non empty relational structure with

finite stability number. Observe that every subset of R which is trivial and non
empty is also strong-chain.

The following propositions are true:



dilworth’s decomposition theorem for posets 231

(52) Let R be a non empty antisymmetric transitive relational structure with
finite stability number. Then there exists a non empty subset S of R such
that S is strong-chain and it is not true that there exists a subset D of R
such that D is strong-chain and S ⊂ D.

(53) Let R be an antisymmetric transitive relational structure with finite
stability number. Then there exists a clique-partition C of R such that
CardC = α(R).

(54) Let R be an antisymmetric transitive relational structure with finite
clique number. Then there exists a coloring A of R such that CardA =
ω(R).

8. Erdős-Szekeres Theorem

One can prove the following two propositions:

(55) Let R be a finite antisymmetric transitive relational structure and r, s
be natural numbers. Suppose CardR = r ·s+1. Then there exists a clique
C of R such that C ≥ r + 1 or there exists a stable set A of R such that
A ≥ s+ 1.

(56) Let f be a real-valued finite sequence and n be a natural number. Sup-
pose f = n2+ 1 and f is one-to-one. Then there exists a real-valued finite
subsequence g such that g ⊆ f and g ≥ n + 1 and g is increasing or
decreasing.
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Summary. In this article, we defined complex curve and complex integral.
Then we have proved the linearity for the complex integral. Furthermore, we have
proved complex integral of complex curve’s connection is the sum of each complex
integral of individual complex curve.
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The terminology and notation used here are introduced in the following articles:
[10], [2], [14], [11], [12], [3], [4], [1], [7], [15], [5], [13], [8], [17], [9], [16], and [6].

1. The Definition of Complex Curve and Complex Integral

In this paper t is an element of R.
The function R2 → C from R× R into C is defined as follows:

(Def. 1) For every element p of R × R and for all elements a, b of R such that
a = p1 and b = p2 holds (R2 → C)(〈〈a, b〉〉) = a+ b · i.

Let a, b be real numbers, let x, y be partial functions from R to R, let Z
be a subset of R, and let f be a partial function from C to C. The functor∫

(f, x, y, a, b, Z) yielding a complex number is defined by the condition (Def. 2).

1This work has been partially supported by the MEXT grant Grant-in-Aid for Young
Scientists (B)16700156.
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(Def. 2) There exist partial functions u0, v0 from R to R such that u0 = <(f) ·
(R2 → C) · 〈x, y〉 and v0 = =(f) · (R2 → C) · 〈x, y〉 and

∫
(f, x, y, a, b, Z) =

b∫
a

(u0 x′�Z − v0 y′�Z)(x)dx+
b∫
a

(v0 x′�Z + u0 y
′
�Z)(x)dx · i.

Let C be a partial function from R to C. We say that C is C1-curve-like if
and only if the condition (Def. 3) is satisfied.

(Def. 3) There exist real numbers a, b and there exist partial functions x, y from
R to R and there exists a subset Z of R such that
a ≤ b and [a, b] = domC and [a, b] ⊆ domx and [a, b] ⊆ dom y and Z is
open and [a, b] ⊆ Z and x is differentiable on Z and y is differentiable on Z
and x is continuous on Z and y is continuous on Z and C = (x+ i y)�[a, b].

Let us observe that there exists a partial function from R to C which is
C1-curve-like.

A C1-curve is a C1-curve-like partial function from R to C.
Let f be a partial function from C to C and let C be a C1-curve. Let us

assume that rngC ⊆ dom f. The functor
∫
C

f(x)dx yields a complex number

and is defined by the condition (Def. 4).

(Def. 4) There exist real numbers a, b and there exist partial functions x, y from
R to R and there exists a subset Z of R such that
a ≤ b and [a, b] = domC and [a, b] ⊆ domx and [a, b] ⊆ dom y and Z is
open and [a, b] ⊆ Z and x is differentiable on Z and y is differentiable on Z
and x is continuous on Z and y is continuous on Z and C = (x+ i y)�[a, b]

and
∫
C

f(x)dx =
∫

(f, x, y, a, b, Z).

Let f be a partial function from C to C and let C be a C1-curve. We say
that f is integrable on C if and only if the condition (Def. 5) is satisfied.

(Def. 5) Let a, b be real numbers, x, y be partial functions from R to R, Z be
a subset of R, and u0, v0 be partial functions from R to R. Suppose that
a ≤ b and [a, b] = domC and [a, b] ⊆ domx and [a, b] ⊆ dom y and Z is
open and [a, b] ⊆ Z and x is differentiable on Z and y is differentiable on Z
and x is continuous on Z and y is continuous on Z and C = (x+ i y)�[a, b].
Then u0 x′�Z−v0 y′�Z is integrable on [a, b] and v0 x′�Z +u0 y

′
�Z is integrable

on [a, b].

Let f be a partial function from C to C and let C be a C1-curve. We say
that f is bounded on C if and only if the condition (Def. 6) is satisfied.

(Def. 6) Let a, b be real numbers, x, y be partial functions from R to R, Z be a
subset of R, and u0, v0 be partial functions from R to R. Suppose that a ≤ b
and [a, b] = domC and [a, b] ⊆ domx and [a, b] ⊆ dom y and Z is open and
[a, b] ⊆ Z and x is differentiable on Z and y is differentiable on Z and x is
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continuous on Z and y is continuous on Z and C = (x + i y)�[a, b]. Then
(u0 x′�Z − v0 y′�Z)�[a, b] is bounded and (v0 x′�Z + u0 y

′
�Z)�[a, b] is bounded.

2. Linearity of Complex Intergal

Next we state two propositions:

(1) Let f , g be partial functions from C to C and C be a C1-curve. Suppose
rngC ⊆ dom f and rngC ⊆ dom g and f is integrable on C and g is
integrable on C and f is bounded on C and g is bounded on C. Then∫
C

(f + g)(x)dx =
∫
C

f(x)dx+
∫
C

g(x)dx.

(2) Let f be a partial function from C to C and C be a C1-curve. Suppose
rngC ⊆ dom f and f is integrable on C and f is bounded on C. Let r be

a real number. Then
∫
C

(r f)(x)dx = r ·
∫
C

f(x)dx.

3. Complex Integral of Complex Curve’s Connection

We now state the proposition

(3) Let f be a partial function from C to C, C, C1, C2 be C1-curves, and a,
b, d be real numbers. Suppose that rngC ⊆ dom f and f is integrable on
C and f is bounded on C and a ≤ b and domC = [a, b] and d ∈ [a, b] and
domC1 = [a, d] and domC2 = [d, b] and for every t such that t ∈ domC1
holds C(t) = C1(t) and for every t such that t ∈ domC2 holds C(t) =

C2(t). Then
∫
C

f(x)dx =
∫
C1

f(x)dx+
∫
C2

f(x)dx.
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Summary. Rough sets, developed by Pawlak [6], are an important tool to
describe a situation of incomplete or partially unknown information. One of the
algebraic models deals with the pair of the upper and the lower approximation.
Although usually the tolerance or the equivalence relation is taken into account
when considering a rough set, here we rather concentrate on the model with the
pair of two definable sets, hence we are close to the notion of an interval set. In
this article, the lattices of rough sets and intervals are formalized. This paper,
being essentially the continuation of [3], is also a step towards the formalization
of the algebraic theory of rough sets, as in [4] or [9].
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The articles [2], [1], [10], [7], [3], [5], and [8] provide the terminology and notation
for this paper.

1. Interval Sets

Let U be a set and let X, Y be subsets of U . The functor [X,Y ]I yielding a
family of subsets of U is defined by:

(Def. 1) [X,Y ]I = {A ⊆ U : X ⊆ A ∧ A ⊆ Y }.
In the sequel U denotes a set and X, Y denote subsets of U .
Next we state several propositions:

(1) For every set x holds x ∈ [X,Y ]I iff X ⊆ x ⊆ Y.
(2) If [X,Y ]I 6= ∅, then X, Y ∈ [X,Y ]I.
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(3) For every set U and for all subsets A, B of U such that A 6⊆ B holds
[A,B]I = ∅.

(4) For every set U and for all subsets A, B of U such that [A,B]I = ∅ holds
A 6⊆ B.

(5) For all subsets A, B of U such that [A,B]I 6= ∅ holds A ⊆ B.
(6) For all subsets A, B, C, D of U such that [A,B]I 6= ∅ and [A,B]I =

[C,D]I holds A = C and B = D.

(7) For every non empty set U and for every non empty subset A of U holds
[A, ∅U ]I = ∅.

(8) For every subset A of U holds [A,A]I = {A}.
Let us consider U . A family of subsets of U is said to be an interval set of

U if:

(Def. 2) There exist subsets A, B of U such that it = [A,B]I.

We now state two propositions:

(9) For every non empty set U holds ∅ is an interval set of U .

(10) For every non empty set U and for every subset A of U holds {A} is an
interval set of U .

Let us consider U and let A, B be subsets of U . Then [A,B]I is an interval
set of U .

Let U be a non empty set. Note that there exists an interval set of U which
is non empty.

We now state three propositions:

(11) Let U be a non empty set and A be a set. Then A is a non empty interval
set of U if and only if there exist subsets A1, A2 of U such that A1 ⊆ A2
and A = [A1, A2]I.

(12) Let U be a non empty set and A1, A2, B1, B2 be subsets of U . If A1 ⊆ A2
and B1 ⊆ B2, then [A1, A2]I e [B1, B2]I = {C;C ranges over subsets of U :
A1 ∩B1 ⊆ C ∧ C ⊆ A2 ∩B2}.

(13) Let U be a non empty set and A1, A2, B1, B2 be subsets of U . If A1 ⊆ A2
and B1 ⊆ B2, then [A1, A2]I d [B1, B2]I = {C;C ranges over subsets of U :
A1 ∪B1 ⊆ C ∧ C ⊆ A2 ∪B2}.

Let U be a non empty set and let A, B be non empty interval sets of U . The
functor A ∩I B yielding an interval set of U is defined by:

(Def. 3) A ∩I B = A eB.

The functor A ∪I B yields an interval set of U and is defined by:

(Def. 4) A ∪I B = A dB.

Let U be a non empty set and let A, B be non empty interval sets of U .
Note that A ∩I B is non empty and A ∪I B is non empty.
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In the sequel U denotes a non empty set and A, B, C denote non empty
interval sets of U .

Let us consider U , A. The functor A1 yielding a subset of U is defined by:

(Def. 5) There exists a subset B of U such that A = [A1, B]I.

The functor A2 yielding a subset of U is defined as follows:

(Def. 6) There exists a subset B of U such that A = [B,A2]I.

We now state several propositions:

(14) For every set X holds X ∈ A iff A1 ⊆ X ⊆ A2.
(15) A = [A1, A2]I.

(16) A1 ⊆ A2.
(17) A ∪I B = [A1 ∪B1, A2 ∪B2]I.
(18) A ∩I B = [A1 ∩B1, A2 ∩B2]I.

Let us consider U and let us consider A, B. Let us observe that A = B if
and only if:

(Def. 7) A1 = B1 and A2 = B2.

The following propositions are true:

(19) A ∪I A = A.

(20) A ∩I A = A.

(21) A ∪I B = B ∪I A.
(22) A ∩I B = B ∩I A.
(23) (A ∪I B) ∪I C = A ∪I (B ∪I C).

(24) (A ∩I B) ∩I C = A ∩I (B ∩I C).

Let X be a set and let F be a family of subsets of X. We say that F is
ordered if and only if:

(Def. 8) There exist sets A, B such that A, B ∈ F and for every set Y holds
Y ∈ F iff A ⊆ Y ⊆ B.

Let X be a set. Observe that there exists a family of subsets of X which is
non empty and ordered.

Next we state two propositions:

(25) For all subsets A, B of U such that A ⊆ B holds [A,B]I is a non empty
ordered family of subsets of U .

(26) Every non empty interval set of U is a non empty ordered family of
subsets of U .

Let X be a set. We introduce minX as a synonym of
⋂
X. We introduce

maxX as a synonym of
⋃
X.

Let X be a set and let F be a non empty ordered family of subsets of X.
Then minF is an element of F . Then maxF is an element of F .

We now state a number of propositions:
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(27) Let A, B be subsets of U and F be an ordered non empty family of
subsets of U . If F = [A,B]I, then minF = A and maxF = B.

(28) For all sets X, Y and for every non empty ordered family A of subsets
of X holds Y ∈ A iff minA ⊆ Y ⊆ maxA.

(29) For every set X and for all non empty ordered families A, B, C of subsets
of X holds A dB e C = (A dB) e (A d C).

(30) For every set X and for all non empty ordered families A, B, C of subsets
of X holds A e (B d C) = A eB dA e C.

(31) A ∪I B ∩I C = (A ∪I B) ∩I (A ∪I C).

(32) A ∩I (B ∪I C) = A ∩I B ∪I A ∩I C.
(33) For every set X and for all non empty ordered families A, B of subsets

of X holds A e (A dB) = A.

(34) For every set X and for all non empty ordered families A, B of subsets
of X holds A eB dB = B.

(35) A ∩I (A ∪I B) = A.

(36) A ∩I B ∪I B = B.

2. Families of Subsets

One can prove the following propositions:

(37) For every non empty set U and for all families A, B of subsets of U holds
A \\B is a family of subsets of U .

(38) Let U be a non empty set and A, B be non empty ordered families
of subsets of U . Then A \\B = {C ⊆ U : minA \ maxB ⊆ C ∧ C ⊆
maxA \minB}.

(39) Let U be a non empty set and A1, A2, B1, B2 be subsets of U . If A1 ⊆ A2
and B1 ⊆ B2, then [A1, A2]I \\[B1, B2]I = {C ⊆ U : A1 \ B2 ⊆ C ∧ C ⊆
A2 \B1}.

Let U be a non empty set and let A, B be non empty interval sets of U . The
functor A \I B yields an interval set of U and is defined as follows:

(Def. 9) A \I B = A \\B.
Let U be a non empty set and let A, B be non empty interval sets of U .

Observe that A \I B is non empty.
Next we state several propositions:

(40) A \I B = [A1 \B2, A2 \B1]I.
(41) For all subsets X, Y of U such that A = [X,Y ]I holds A \I C =

[X \ C2, Y \ C1]I.
(42) For all subsets X, Y , W , Z of U such that A = [X,Y ]I and C = [W,Z]I

holds A \I C = [X \ Z, Y \W ]I.
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(43) For every non empty set U holds [ΩU ,ΩU ]I is a non empty interval set
of U .

(44) For every non empty set U holds [∅U , ∅U ]I is a non empty interval set of
U .

Let U be a non empty set. Note that [ΩU ,ΩU ]I is non empty and [∅U , ∅U ]I
is non empty.

Let U be a non empty set and let A be a non empty interval set of U . The
functor −A yielding a non empty interval set of U is defined as follows:

(Def. 10) −A = [ΩU ,ΩU ]I \I A.
We now state four propositions:

(45) For every non empty set U and for every non empty interval set A of U
holds −A = [(A2)c, (A1)c]I.

(46) For all subsets X, Y of U such that A = [X,Y ]I and X ⊆ Y holds
−A = [Y c, Xc]I.

(47) −[∅U , ∅U ]I = [ΩU ,ΩU ]I.

(48) −[ΩU ,ΩU ]I = [∅U , ∅U ]I.

3. Counterexamples

Next we state several propositions:

(49) There exists a non empty interval set A of U such that A ∩I −A 6=
[∅U , ∅U ]I.

(50) There exists a non empty interval set A of U such that A ∪I −A 6=
[ΩU ,ΩU ]I.

(51) There exists a non empty interval set A of U such that A\IA 6= [∅U , ∅U ]I.

(52) For every non empty interval set A of U holds U ∈ A ∪I −A.
(53) For every non empty interval set A of U holds ∅ ∈ A ∩I −A.
(54) For every non empty interval set A of U holds ∅ ∈ A \I A.

4. Lattice of Interval Sets

Let U be a non empty set. The functor I(2U ) yielding a non empty set is
defined by:

(Def. 11) For every set x holds x ∈ I(2U ) iff x is a non empty interval set of U .

Let U be a non empty set. The functor InterLattU yields a strict non empty
lattice structure and is defined by the conditions (Def. 12).

(Def. 12)(i) The carrier of InterLattU = I(2U ), and
(ii) for all elements a, b of the carrier of InterLattU and for all non empty

interval sets a′, b′ of U such that a′ = a and b′ = b holds (the join operation
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of InterLattU)(a, b) = a′ ∪I b′ and (the meet operation of InterLattU)(a,
b) = a′ ∩I b′.

Let U be a non empty set. Observe that InterLattU is lattice-like.
Let X be a tolerance space.

(Def. 13) An element of 2the carrier of X × 2the carrier of X is said to be a rough set
of X.

One can prove the following proposition

(55) For every tolerance space X and for every rough set A of X there exist
subsets B, C of X such that A = 〈〈B, C〉〉.

Let X be a tolerance space and let A be a subset of X. The functor RSA
yielding a rough set of X is defined by:

(Def. 14) RSA = 〈〈LAp(A), UAp(A)〉〉.
Let X be a tolerance space and let A be a rough set of X. The functor

LAp(A) yielding a subset of X is defined as follows:

(Def. 15) LAp(A) = A1.

The functor UAp(A) yielding a subset of X is defined by:

(Def. 16) UAp(A) = A2.

Let X be a tolerance space and let A, B be rough sets of X. Let us observe
that A = B if and only if:

(Def. 17) LAp(A) = LAp(B) and UAp(A) = UAp(B).

Let X be a tolerance space and let A, B be rough sets of X. The functor
A ∪I B yields a rough set of X and is defined by:

(Def. 18) A ∪I B = 〈〈LAp(A) ∪ LAp(B), UAp(A) ∪UAp(B)〉〉.
The functor A ∩I B yielding a rough set of X is defined as follows:

(Def. 19) A ∩I B = 〈〈LAp(A) ∩ LAp(B), UAp(A) ∩UAp(B)〉〉.
In the sequel X denotes a tolerance space and A, B, C denote rough sets of

X.
Next we state a number of propositions:

(56) LAp(A ∪I B) = LAp(A) ∪ LAp(B).

(57) UAp(A ∪I B) = UAp(A) ∪UAp(B).

(58) LAp(A ∩I B) = LAp(A) ∩ LAp(B).

(59) UAp(A ∩I B) = UAp(A) ∩UAp(B).

(60) A ∪I A = A.

(61) A ∩I A = A.

(62) A ∪I B = B ∪I A.
(63) A ∩I B = B ∩I A.
(64) (A ∪I B) ∪I C = A ∪I (B ∪I C).

(65) (A ∩I B) ∩I C = A ∩I (B ∩I C).
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(66) A ∩I (B ∪I C) = A ∩I B ∪I A ∩I C.
(67) A ∪I A ∩I B = A.

(68) A ∩I (A ∪I B) = A.

5. Lattice of Rough Sets

Let us consider X. The functor RoughSetsX is defined as follows:

(Def. 20) For every set x holds x ∈ RoughSetsX iff x is a rough set of X.

Let us consider X. One can check that RoughSetsX is non empty.
Let us consider X and let R be an element of RoughSetsX. The functor @R

yielding a rough set of X is defined by:

(Def. 21) @R = R.

Let us consider X and let R be a rough set of X. The functor @R yielding
an element of RoughSetsX is defined as follows:

(Def. 22) @R = R.

Let us consider X. The functor RSLatticeX yields a strict lattice structure
and is defined by the conditions (Def. 23).

(Def. 23)(i) The carrier of RSLatticeX = RoughSetsX, and
(ii) for all elements A, B of RoughSetsX and for all rough sets A′, B′ of X

such that A = A′ and B = B′ holds (the join operation of RSLatticeX)(A,
B) = A′ ∪IB′ and (the meet operation of RSLatticeX)(A, B) = A′ ∩IB′.

Let us consider X. Observe that RSLatticeX is non empty.
Let us consider X. Observe that RSLatticeX is lattice-like.
Let us consider X. Note that RSLatticeX is distributive.
Let us consider X. The functor ERSX yields a rough set of X and is defined

by:

(Def. 24) ERSX = 〈〈∅, ∅〉〉.
One can prove the following proposition

(69) For every rough set A of X holds ERSX ∪I A = A.

Let us consider X. The functor TRS(X) is a rough set of X and is defined
as follows:

(Def. 25) TRS(X) = 〈〈ΩX , ΩX〉〉.
One can prove the following proposition

(70) For every rough set A of X holds TRS(X) ∩I A = A.

Let us consider X. Note that RSLatticeX is bounded.
We now state the proposition

(71) Let X be a tolerance space, A, B be elements of RSLatticeX, and A′,
B′ be rough sets of X. If A = A′ and B = B′, then A v B iff LAp(A′) ⊆
LAp(B′) and UAp(A′) ⊆ UAp(B′).
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Let us consider X. Observe that RSLatticeX is complete.
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Summary. In this article we present definitions, basic properties and some
examples of periodic functions according to [5].
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The papers [2], [6], [3], [10], [11], [9], [8], [1], [4], and [7] provide the terminology
and notation for this paper.

1. Basic Properties of a Period of a Function

We use the following convention: x, t, t1, t2, r, a, b are real numbers and F ,
G are partial functions from R to R.

Let F be a partial function from R to R and let t be a real number. We say
that t is a period of F if and only if:

(Def. 1) t 6= 0 and for every x holds x ∈ domF iff x+t ∈ domF and if x ∈ domF,

then F (x) = F (x+ t).

Let F be a partial function from R to R. We say that F is periodic if and
only if:

(Def. 2) There exists t which is a period of F .

We now state a number of propositions:
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(1) t is a period of F iff t 6= 0 and for every x such that x ∈ domF holds
x+ t, x− t ∈ domF and F (x) = F (x+ t).

(2) If t is a period of F and a period of G, then t is a period of F +G.

(3) If t is a period of F and a period of G, then t is a period of F −G.
(4) If t is a period of F and a period of G, then t is a period of F G.

(5) If t is a period of F and a period of G, then t is a period of F/G.

(6) If t is a period of F , then t is a period of −F .

(7) If t is a period of F , then t is a period of r F.

(8) If t is a period of F , then t is a period of r + F.

(9) If t is a period of F , then t is a period of F − r.
(10) If t is a period of F , then t is a period of |F |.
(11) If t is a period of F , then t is a period of F−1.

(12) If t is a period of F , then t is a period of F 2.

(13) If t is a period of F , then for every x such that x ∈ domF holds F (x) =
F (x− t).

(14) If t is a period of F , then −t is a period of F .

(15) If t1 is a period of F and t2 is a period of F and t1+ t2 6= 0, then t1+ t2
is a period of F .

(16) If t1 is a period of F and t2 is a period of F and t1− t2 6= 0, then t1− t2
is a period of F .

(17) Suppose t 6= 0 and for every x such that x ∈ domF holds x+ t, x− t ∈
domF and F (x + t) = F (x − t). Then 2 · t is a period of F and F is
periodic.

(18) Suppose t1 + t2 6= 0 and for every x such that x ∈ domF holds x + t1,
x− t1, x+ t2, x− t2 ∈ domF and F (x+ t1) = F (x− t2). Then t1 + t2 is
a period of F and F is periodic.

(19) Suppose t1 − t2 6= 0 and for every x such that x ∈ domF holds x + t1,
x− t1, x+ t2, x− t2 ∈ domF and F (x+ t1) = F (x+ t2). Then t1 − t2 is
a period of F and F is periodic.

(20) Suppose t 6= 0 and for every x such that x ∈ domF holds x+ t, x− t ∈
domF and F (x+t) = F (x)−1. Then 2·t is a period of F and F is periodic.

Let us observe that there exists a partial function from R to R which is
periodic.

Let F be a periodic partial function from R to R. One can check that −F
is periodic.

Let F be a periodic partial function from R to R and let r be a real number.
One can check the following observations:

∗ r F is periodic,

∗ r + F is periodic, and
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∗ F − r is periodic.

Let F be a periodic partial function from R to R. One can check the following
observations:

∗ |F | is periodic,

∗ F−1 is periodic, and

∗ F 2 is periodic.

2. Some Examples

Let us note that the function sin is periodic and the function cos is periodic.
We now state two propositions:

(21) For every element k of N holds 2 ·π ·(k+1) is a period of the function sin.

(22) For every element k of N holds 2·π ·(k+1) is a period of the function cos.

Let us observe that the function cosec is periodic and the function sec is
periodic.

We now state two propositions:

(23) For every element k of N holds 2 ·π ·(k+1) is a period of the function sec.

(24) For every element k of N holds 2·π·(k+1) is a period of the function cosec.

Let us mention that the function tan is periodic and the function cot is
periodic.

Next we state a number of propositions:

(25) For every element k of N holds π · (k+ 1) is a period of the function tan.

(26) For every element k of N holds π · (k+ 1) is a period of the function cot.

(27) For every element k of N holds π · (k+1) is a period of |the function sin|.
(28) For every element k of N holds π · (k + 1) is a period of |the function

cos|.
(29) For every element k of N holds π

2 · (k + 1) is a period of |the function
sin|+ |the function cos|.

(30) For every element k of N holds π ·(k+1) is a period of (the function sin)2.

(31) For every element k of N holds π ·(k+1) is a period of (the function cos)2.

(32) For every element k of N holds π · (k + 1) is a period of (the function
sin) (the function cos).

(33) For every element k of N holds π · (k + 1) is a period of (the function
cos) (the function sin).

(34) For every element k of N holds 2 · π · (k + 1) is a period of b + a (the
function sin).

(35) For every element k of N holds 2 ·π · (k+ 1) is a period of a (the function
sin)−b.
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(36) For every element k of N holds 2 · π · (k + 1) is a period of b + a (the
function cos).

(37) For every element k of N holds 2 ·π · (k+ 1) is a period of a (the function
cos)−b.

(38) If domF = R and for every real number x holds F (x) = a, then for
every element k of N holds k + 1 is a period of F .
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1. Preliminaries

For simplicity, we follow the rules: α, β, γ denote ordinal numbers, m, n
denote natural numbers, f denotes a sequence of ordinal numbers, and x denotes
a set.

One can prove the following proposition

(1) If α ⊆ succβ, then α ⊆ β or α = succβ.

Let us note that ω is limit ordinal and every empty set is ordinal yielding.
One can verify that there exists a transfinite sequence which is non empty

and finite.
Let f be a transfinite sequence and let g be a non empty transfinite sequence.

One can check that f a g is non empty and g a f is non empty.
In the sequel ψ, ψ1, ψ2 denote transfinite sequences.
One can prove the following three propositions:

(2) If domψ = α + β, then there exist ψ1, ψ2 such that ψ = ψ1
a ψ2 and

domψ1 = α and domψ2 = β.

(3) rngψ1 ⊆ rng(ψ1 a ψ2) and rngψ2 ⊆ rng(ψ1 a ψ2).

(4) If ψ1aψ2 is ordinal yielding, then ψ1 is ordinal yielding and ψ2 is ordinal
yielding.

Let f be a transfinite sequence. We say that f is decreasing if and only if:

(Def. 1) For all α, β such that α ∈ β and β ∈ dom f holds f(β) ∈ f(α).

We say that f is non-decreasing if and only if:

(Def. 2) For all α, β such that α ∈ β and β ∈ dom f holds f(α) ⊆ f(β).

We say that f is non-increasing if and only if:

(Def. 3) For all α, β such that α ∈ β and β ∈ dom f holds f(β) ⊆ f(α).

Let us observe that every sequence of ordinal numbers which is increasing is
also non-decreasing and every sequence of ordinal numbers which is decreasing
is also non-increasing.

We now state the proposition

(5) For every transfinite sequence f holds f is infinite iff ω ⊆ dom f.

Let us note that every transfinite sequence which is decreasing is also finite
and every sequence of ordinal numbers which is empty is also decreasing and
increasing.

Let us consider α. Observe that 〈α〉 is ordinal yielding.
Let us consider α. One can check that 〈α〉 is decreasing and increasing.
Let us observe that there exists a sequence of ordinal numbers which is

decreasing, increasing, non-decreasing, non-increasing, finite, and non empty.
The following propositions are true:

(6) For every non-decreasing sequence f of ordinal numbers such that dom f

is non empty holds
⋃
f is the limit of f .
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(7) If α ∈ β, then n · ωα ∈ ωβ.
(8) If 0 ∈ α and for every β such that β ∈ dom f holds f(β) = αβ, then f is

non-decreasing.

(9) If α is a limit ordinal number and 0 ∈ β, then αβ is a limit ordinal
number.

(10) If 1 ∈ α and for every β such that β ∈ dom f holds f(β) = αβ, then f is
increasing.

(11) If 0 ∈ α and β is a non empty limit ordinal number, then x ∈ αβ iff
there exists γ such that γ ∈ β and x ∈ αγ .

(12) If 0 ∈ α and αβ ∈ αγ , then β ∈ γ.

2. Tetration (Knuth’s Arrow Notation) of Ordinals1

Let α, β be ordinal numbers. The functor α ↑↑β yields an ordinal number
and is defined by the condition (Def. 4).

(Def. 4) There exists a sequence ϕ of ordinal numbers such that
(i) α ↑↑β = lastϕ,
(ii) domϕ = succβ,
(iii) ϕ(∅) = 1,
(iv) for every ordinal number γ such that succ γ ∈ succβ holds ϕ(succ γ) =

αϕ(γ), and
(v) for every ordinal number γ such that γ ∈ succβ and γ 6= ∅ and γ is a

limit ordinal number holds ϕ(γ) = lim(ϕ�γ).

We now state a number of propositions:

(13) α ↑↑ 0 = 1.

(14) α ↑↑ succβ = αα ↑↑β.

(15) Suppose β 6= ∅ and β is a limit ordinal number. Let ϕ be a sequence
of ordinal numbers. If domϕ = β and for every γ such that γ ∈ β holds
ϕ(γ) = α ↑↑ γ, then α ↑↑β = limϕ.

(16) α ↑↑ 1 = α.

(17) 1 ↑↑α = 1.

(18) α ↑↑ 2 = αα.

(19) α ↑↑ 3 = αα
α
.

(20) For every natural number n holds 0 ↑↑(2 · n) = 1 and 0 ↑↑(2 · n+ 1) = 0.

(21) If α ⊆ β and 0 ∈ γ, then γ ↑↑α ⊆ γ ↑↑β.
1Important fact (32)

α ↑↑ β = α ↑↑ ω for β ≥ ω and α > 0



252 grzegorz bancerek

(22) If 0 ∈ α and for every β such that β ∈ dom f holds f(β) = α ↑↑β, then
f is non-decreasing.

(23) If 0 ∈ α and 0 ∈ β, then α ⊆ α ↑↑β.
(24) If 1 ∈ α and m < n, then α ↑↑m ∈ α ↑↑n.
(25) If 1 ∈ α and dom f ⊆ ω and for every β such that β ∈ dom f holds

f(β) = α ↑↑β, then f is increasing.

(26) If 1 ∈ α and 1 ∈ β, then α ∈ α ↑↑β.
(27) For all natural numbers n, k holds nk = nk.

Let n, k be natural numbers. Observe that nk is natural.
Let n, k be natural numbers. One can check that n ↑↑ k is natural.
Next we state several propositions:

(28) For all natural numbers n, k such that n > 1 holds n ↑↑ k > k.

(29) For every natural number n such that n > 1 holds n ↑↑ω = ω.

(30) If 1 ∈ α, then α ↑↑ω is a limit ordinal number.

(31) If 0 ∈ α, then αα ↑↑ω = α ↑↑ω.
(32) If 0 ∈ α and ω ⊆ β, then α ↑↑β = α ↑↑ω.

3. Critical Numbers2

In this article we present several logical schemes. The scheme CriticalNum-
ber2 deals with an ordinal number A, a sequence B of ordinal numbers, and a
unary functor F yielding an ordinal number, and states that:

A ⊆
⋃
B and F(

⋃
B) =

⋃
B and for every β such that A ⊆ β and

F(β) = β holds
⋃
B ⊆ β

provided the following requirements are met:
• For all α, β such that α ∈ β holds F(α) ∈ F(β),
• Let given α. Suppose α is a non empty limit ordinal number. Let
ϕ be a sequence of ordinal numbers. If domϕ = α and for every
β such that β ∈ α holds ϕ(β) = F(β), then F(α) is the limit of
ϕ,

• domB = ω and B(0) = A, and
• For every α such that α ∈ ω holds B(succα) = F(B(α)).

The scheme CriticalNumber3 deals with an ordinal number A and a unary
functor F yielding an ordinal number, and states that:

There exists α such that A ∈ α and F(α) = α

provided the following requirements are met:
• For all α, β such that α ∈ β holds F(α) ∈ F(β), and

2F is increasing continuous map of ordinals and α = F(α) is a critical number of F
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• Let given α. Suppose α is a non empty limit ordinal number. Let
ϕ be a sequence of ordinal numbers. If domϕ = α and for every
β such that β ∈ α holds ϕ(β) = F(β), then F(α) is the limit of
ϕ.

4. Epsilon Numbers3

Let α be an ordinal number. We say that α is epsilon if and only if:

(Def. 5) ωα = α.

One can prove the following proposition

(33) There exists β such that α ∈ β and β is epsilon.

Let us note that there exists an ordinal number which is epsilon.
Let α be an ordinal number. The first ε greater than α yielding an epsilon

number is defined by the conditions (Def. 6).

(Def. 6)(i) α ∈ the first ε greater than α, and
(ii) for every epsilon number β such that α ∈ β holds the first ε greater

than α ⊆ β.
One can prove the following four propositions:

(34) If α ⊆ β, then the first ε greater than α ⊆ the first ε greater than β.

(35) Suppose α ∈ β and β ∈ the first ε greater than α. Then the first ε greater
than β = the first ε greater than α.

(36) The first ε greater than 0 = ω ↑↑ω.
(37) For every epsilon number e holds ω ∈ e.

One can check that every ordinal number which is epsilon is also non empty
limit ordinal.

One can prove the following propositions:

(38) For every epsilon number e holds ωe
ω

= ee
ω
.

(39) For every epsilon number e such that 0 ∈ n holds e ↑↑(n+2) = ωe ↑↑(n+1).

(40) For every epsilon number e holds the first ε greater than e = e ↑↑ω.
Let α be an ordinal number. The functor εα yields an ordinal number and

is defined by the condition (Def. 7).

(Def. 7) There exists a sequence ϕ of ordinal numbers such that
(i) εα = lastϕ,
(ii) domϕ = succα,
(iii) ϕ(∅) = ω ↑↑ω,
(iv) for every ordinal number β such that succβ ∈ succα holds ϕ(succβ) =

ϕ(β) ↑↑ω, and

3An ordinal number α is epsilon iff it is a critical number of exp nential map: α 7→ ωαo
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(v) for every ordinal number γ such that γ ∈ succα and γ 6= ∅ and γ is a
limit ordinal number holds ϕ(γ) = lim(ϕ�γ).

The following propositions are true:

(41) ε0 = ω ↑↑ω.
(42) εsuccα = εα ↑↑ω.
(43) Suppose β 6= ∅ and β is a limit ordinal number. Let ϕ be a sequence

of ordinal numbers. If domϕ = β and for every γ such that γ ∈ β holds
ϕ(γ) = εγ , then εβ = limϕ.

(44) If α ∈ β, then εα ∈ εβ.
(45) For every sequence ϕ of ordinal numbers such that for every γ such that

γ ∈ domϕ holds ϕ(γ) = εγ holds ϕ is increasing.

(46) Suppose β 6= ∅ and β is a limit ordinal number. Let ϕ be a sequence
of ordinal numbers. If domϕ = β and for every γ such that γ ∈ β holds
ϕ(γ) = εγ , then εβ =

⋃
ϕ.

(47) If β is a non empty limit ordinal number, then x ∈ εβ iff there exists γ
such that γ ∈ β and x ∈ εγ .

(48)4 α ⊆ εα.
(49) Let X be a non empty set. Suppose that for every x such that x ∈ X

holds x is an epsilon number and there exists an epsilon number e such
that x ∈ e and e ∈ X. Then

⋃
X is an epsilon number.

(50) Let X be a non empty set. Suppose that
(i) for every x such that x ∈ X holds x is an epsilon number, and

(ii) for every α such that α ∈ X holds the first ε greater than α ∈ X.
Then

⋃
X is an epsilon number.

Let us consider α. Observe that εα is epsilon.
The following proposition is true

(51) If α is epsilon, then there exists β such that α = εβ.

5. Cantor Normal Form

Let A be a finite sequence of ordinal numbers. The functor
∑
A yielding an

ordinal number is defined by the condition (Def. 8).

(Def. 8) There exists a sequence f of ordinal numbers such that
∑
A = last f

and dom f = succ domA and f(0) = 0 and for every natural number n
such that n ∈ domA holds f(n+ 1) = f(n) +A(n).

One can prove the following propositions:

(52)
∑
∅ = 0.

4Of course not always α ∈ εα because there are critical α’s such that α = εα
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(53)
∑
〈α〉 = α.

(54) For every finite sequenceA of ordinal numbers holds
∑
Aa〈α〉 =

∑
A+α.

(55) For every finite sequence A of ordinal numbers holds
∑
〈α〉aA = α+

∑
A.

(56) For every finite sequence A of ordinal numbers holds A(0) ⊆
∑
A.

Let us consider α. We say that α is Cantor component if and only if:

(Def. 9) There exist β, n such that 0 ∈ n and α = n · ωβ.
Let us note that every ordinal number which is Cantor component is also

non empty.
Let us note that there exists an ordinal number which is Cantor component.
Let us consider α, β. The functor β-exponent(α) yields an ordinal number

and is defined by:

(Def. 10)(i) ββ-exponent(α) ⊆ α and for every γ such that βγ ⊆ α holds γ ⊆
β-exponent(α) if 1 ∈ β and 0 ∈ α,

(ii) β-exponent(α) = 0, otherwise.

The following propositions are true:

(57) α ∈ ωsucc(ω-exponent(α)).

(58)5 If 0 ∈ n, then ω-exponent(n · ωα) = α.

(59) If 0 ∈ α and γ = ω-exponent(α), then α÷ ωγ ∈ ω.
(60) If 0 ∈ α and γ = ω-exponent(α), then 0 ∈ α÷ ωγ .
(61) If 0 ∈ α and γ = ω-exponent(α), then α mod ωγ ∈ ωγ .
(62) If 0 ∈ α, then there exist n, β such that α = n · ωω-exponent(α) + β and

0 ∈ n and β ∈ ωω-exponent(α).

(63) If ω-exponent(β) ∈ ω-exponent(α), then β ∈ α.
Let A be a sequence of ordinal numbers. We say that A is Cantor normal

form if and only if:

(Def. 11) For every α such that α ∈ domA holds A(α) is Cantor component and
for all α, β such that α ∈ β and β ∈ domA holds ω-exponent(A(β)) ∈
ω-exponent(A(α)).

Let us note that every sequence of ordinal numbers which is empty is also
Cantor normal form and every sequence of ordinal numbers which is Cantor
normal form is also decreasing and finite.

In the sequel C, B are Cantor normal form sequences of ordinal numbers.
One can prove the following propositions:

(64) If
∑
C = 0, then C = ∅.

(65) If 0 ∈ n, then 〈n · ωβ〉 is Cantor normal form.

Let us note that there exists a sequence of ordinal numbers which is non
empty and Cantor normal form.

5α-exponent(β) is the entier of the logarithm
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The following four propositions are true:

(66) Let C, B be sequences of ordinal numbers. Suppose CaB is Cantor normal
form. Then C is Cantor normal form and B is Cantor normal form.

(67) If C 6= ∅, then there exists a Cantor component ordinal number γ and
there exists B such that C = 〈γ〉 a B.

(68) Let C be a non empty Cantor normal form sequence of ordinal numbers
and γ be a Cantor component ordinal number. If ω-exponent(C(0)) ∈
ω-exponent(γ), then 〈γ〉 a C is Cantor normal form.

(69)6 For every ordinal number α there exists a Cantor normal form sequence
C of ordinal numbers such that α =

∑
C.
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