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Summary. In this article, we give some equality and basic theorems about
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The articles [11], [1], [12], [3], [4], [9], [2], [5], [8], [7], [10], [13], and [6] provide
the notation and terminology for this paper.
In this paper z1, z2, z3, z4, z are quaternion numbers.
The following propositions are true:

(1) <(z1 · z2) = <(z2 · z1).
(2) If z is a real number, then z + z3 = <(z) + <(z3) + =1(z3) · i+ =2(z3) ·
j + =3(z3) · k.

(3) If z is a real number, then z − z3 = 〈<(z)−<(z3),−=1(z3),−=2(z3),
−=3(z3)〉H.

(4) If z is a real number, then z · z3 = 〈<(z) · <(z3),<(z) · =1(z3),<(z) ·
=2(z3),<(z) · =3(z3)〉H.

(5) If z is a real number, then z · i = 〈0,<(z), 0, 0〉H.
(6) If z is a real number, then z · j = 〈0, 0,<(z), 0〉H.
(7) If z is a real number, then z · k = 〈0, 0, 0,<(z)〉H.
(8) z − 0H = z.
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(9) If z is a real number, then z · z1 = z1 · z.
(10) If =1(z) = 0 and =2(z) = 0 and =3(z) = 0, then z = <(z).
(11) |z|2 = (<(z))2 + (=1(z))2 + (=2(z))2 + (=3(z))2.
(12) |z|2 = |z · z |.
(13) |z|2 = <(z · z ).
(14) 2 · <(z) = <(z + z ).
(15) If z is a real number, then z · z1 = z · z1 .
(16) z1 · z2 = z2 · z1 .
(17) |z1 · z2|2 = |z1|2 · |z2|2.
(18) i · z1 − z1 · i = 〈0, 0,−2 · =3(z1), 2 · =2(z1)〉H.
(19) i · z1 + z1 · i = 〈−2 · =1(z1), 2 · <(z1), 0, 0〉H.
(20) j · z1 − z1 · j = 〈0, 2 · =3(z1), 0,−2 · =1(z1)〉H.
(21) j · z1 + z1 · j = 〈−2 · =2(z1), 0, 2 · <(z1), 0〉H.
(22) k · z1 − z1 · k = 〈0,−2 · =2(z1), 2 · =1(z1), 0〉H.
(23) k · z1 + z1 · k = 〈−2 · =3(z1), 0, 0, 2 · <(z1)〉H.
(24) <( 1|z|2 · z ) =

1
|z|2 · <(z).

(25) =1( 1|z|2 · z ) = −
1
|z|2 · =1(z).

(26) =2( 1|z|2 · z ) = −
1
|z|2 · =2(z).

(27) =3( 1|z|2 · z ) = −
1
|z|2 · =3(z).

(28) 1
|z|2 · z = 〈

1
|z|2 · <(z),−

1
|z|2 · =1(z),−

1
|z|2 · =2(z),−

1
|z|2 · =3(z)〉H.

(29) z · ( 1|z|2 · z ) = 〈
|z|2
|z|2 , 0, 0, 0〉H.

(30) <(z1 ·z2) = <(z1)·<(z2)−=1(z1)·=1(z2)−=2(z1)·=2(z2)−=3(z1)·=3(z2).
(31) =1(z1 · z2) = (<(z1) · =1(z2) +=1(z1) · <(z2) +=2(z1) · =3(z2))−=3(z1) ·
=2(z2).

(32) =2(z1 · z2) = (<(z1) · =2(z2) +=2(z1) · <(z2) +=3(z1) · =1(z2))−=1(z1) ·
=3(z2).

(33) =3(z1 · z2) = (<(z1) · =3(z2) +=3(z1) · <(z2) +=1(z1) · =2(z2))−=2(z1) ·
=1(z2).

(34) |z1 · z2 · z3|2 = |z1|2 · |z2|2 · |z3|2.
(35) <(z1 · z2 · z3) = <(z3 · z1 · z2).
(36) |z · z| = |z · z |.
(37) |z · z | = |z|2.
(38) |z1 · z2 · z3| = |z1| · |z2| · |z3|.
(39) |z1 + z2 + z3| ≤ |z1|+ |z2|+ |z3|.
(40) |(z1 + z2)− z3| ≤ |z1|+ |z2|+ |z3|.
(41) |z1 − z2 − z3| ≤ |z1|+ |z2|+ |z3|.
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(42) |z1| − |z2| ≤ |z1+z2|+|z1−z2|2 .

(43) |z1| − |z2| ≤ |z1+z2|+|z2−z1|2 .

(44) ||z1| − |z2|| ≤ |z2 − z1|.
(45) ||z1| − |z2|| ≤ |z1|+ |z2|.
(46) |z1| − |z2| ≤ |z1 − z|+ |z − z2|.
(47) If |z1| − |z2| 6= 0, then (|z1|2 + |z2|2)− 2 · |z1| · |z2| > 0.
(48) |z1|+ |z2| ≥ |z1+z2|+|z2−z1|2 .

(49) |z1|+ |z2| ≥ |z1+z2|+|z1−z2|2 .

(50) (z1 · z2)−1 = z2−1 · z1−1.
(51) z−1 = z−1 .

(52) (1H)−1 = 1H.

(53) If |z1| = |z2| and |z1| 6= 0 and z1−1 = z2−1, then z1 = z2.
(54) (z1 − z2) · (z3 + z4) = ((z1 · z3 − z2 · z3) + z1 · z4)− z2 · z4.
(55) (z1 + z2) · (z3 + z4) = z1 · z3 + z2 · z3 + z1 · z4 + z2 · z4.
(56) −(z1 + z2) = −z1 − z2.
(57) −(z1 − z2) = −z1 + z2.
(58) z − (z1 + z2) = z − z1 − z2.
(59) z − (z1 − z2) = (z − z1) + z2.
(60) (z1 + z2) · (z3 − z4) = (z1 · z3 + z2 · z3)− z1 · z4 − z2 · z4.
(61) (z1 − z2) · (z3 − z4) = (z1 · z3 − z2 · z3 − z1 · z4) + z2 · z4.
(62) −(z1 + z2 + z3) = −z1 − z2 − z3.
(63) −(z1 − z2 − z3) = −z1 + z2 + z3.
(64) −((z1 − z2) + z3) = (−z1 + z2)− z3.
(65) −((z1 + z2)− z3) = (−z1 − z2) + z3.
(66) If z1 + z = z2 + z, then z1 = z2.

(67) If z1 − z = z2 − z, then z1 = z2.
(68) ((z1 + z2)− z3) · z4 = (z1 · z4 + z2 · z4)− z3 · z4.
(69) ((z1 − z2) + z3) · z4 = (z1 · z4 − z2 · z4) + z3 · z4.
(70) (z1 − z2 − z3) · z4 = z1 · z4 − z2 · z4 − z3 · z4.
(71) (z1 + z2 + z3) · z4 = z1 · z4 + z2 · z4 + z3 · z4.
(72) (z1 − z2) · z3 = (z2 − z1) · −z3.
(73) z3 · (z1 − z2) = (−z3) · (z2 − z1).
(74) (z1 − z2 − z3) + z4 = (z4 − z3 − z2) + z1.
(75) (z1 − z2) · (z3 − z4) = (z2 − z1) · (z4 − z3).
(76) z − z1 − z2 = z − z2 − z1.
(77) z−1 = 〈<(z)|z|2 ,−

=1(z)
|z|2 ,−

=2(z)
|z|2 ,−

=3(z)
|z|2 〉H.
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(78) z1
z2
= 〈<(z2)·<(z1)+=1(z1)·=1(z2)+=2(z2)·=2(z1)+=3(z2)·=3(z1)|z2|2 ,

(<(z2)·=1(z1)−=1(z2)·<(z1)−=2(z2)·=3(z1))+=3(z2)·=2(z1)
|z2|2 ,

(<(z2)·=2(z1)+=1(z2)·=3(z1))−=2(z2)·<(z1)−=3(z2)·=1(z1)
|z2|2 ,

((<(z2)·=3(z1)−=1(z2)·=2(z1))+=2(z2)·=1(z1))−=3(z2)·<(z1)
|z2|2 〉H.

(79) (i)−1 = −i.
(80) (j)−1 = −j.
(81) (k)−1 = −k.
Let z be a quaternion number. The functor z2 is defined by:

(Def. 1) z2 = z · z.
Let z be a quaternion number. One can verify that z2 is quaternion.
Let z be an element of H. Then z2 is an element of H.
One can prove the following four propositions:

(82) z2 = 〈(<(z))2−(=1(z))2−(=2(z))2−(=3(z))2, 2 ·(<(z) ·=1(z)), 2 ·(<(z) ·
=2(z)), 2 · (<(z) · =3(z))〉H.

(83) (0H)2 = 0.

(84) (1H)2 = 1.

(85) z2 = (−z)2.
Let z be a quaternion number. The functor z3 is defined as follows:

(Def. 2) z3 = z · z · z.
Let z be a quaternion number. Observe that z3 is quaternion.
Let z be an element of H. Then z3 is an element of H.
Next we state several propositions:

(86) (0H)3 = 0.

(87) (1H)3 = 1.

(88) (i)3 = −i.
(89) (j)3 = −j.
(90) (k)3 = −k.
(91) (−1H)2 = 1.
(92) (−1H)3 = −1.
(93) z3 = −(−z)3.
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Summary. For a complex valued function defined on its domain in com-
plex numbers the differentiability in a single point and on a subset of the domain
is presented. The main elements of differential calculus are developed. The alge-
braic properties of differential complex functions are shown.

MML identifier: CFDIFF 1, version: 7.11.01 4.117.1046

The terminology and notation used here are introduced in the following articles:
[17], [18], [3], [5], [4], [8], [2], [7], [11], [6], [16], [12], [19], [9], [10], [1], [14], [15],
and [13].
For simplicity, we use the following convention: k, n, m denote elements of

N, X denotes a set, s1, s2 denote complex sequences, Y denotes a subset of C,
f , f1, f2 denote partial functions from C to C, r denotes a real number, a, a1,
b, x, x0, z, z0 denote complex numbers, and N1 denotes an increasing sequence
of naturals.
Let I be a complex sequence. We say that I is convergent to 0 if and only if:

(Def. 1) I is non-zero and convergent and lim I = 0.

We now state four propositions:

(1) Let r1 be a sequence of real numbers and c1 be a complex sequence. If
r1 = c1 and r1 is convergent, then c1 is convergent.

(2) If 0 < r and for every n holds s1(n) = 1
n+r , then s1 is convergent.

(3) If 0 < r and for every n holds s1(n) = 1
n+r , then lim s1 = 0.

(4) If for every n holds s1(n) = 1
n+1 , then s1 is convergent and lim s1 = 0.
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Let us observe that there exists a complex sequence which is convergent to
0.
Let us note that there exists a complex sequence which is constant.
Next we state four propositions:

(5) s1 is constant iff for all n, m holds s1(n) = s1(m).

(6) For every n holds (s1 ·N1)(n) = s1(N1(n)).
(7) If s1 is constant and s2 is a subsequence of s1, then s2 is constant.

(8) If s1 is constant and s2 is a subsequence of s1, then s1 = s2.

Let s3 be a constant complex sequence. Note that every subsequence of s3
is constant.
In the sequel h is a convergent to 0 complex sequence and c is a constant

complex sequence.
Let I be a partial function from C to C. We say that I is rest-like if and

only if:

(Def. 2) I is total and for every h holds h−1 (I · h) is convergent and lim(h−1 (I ·
h)) = 0.

Let us mention that there exists a partial function from C to C which is
rest-like.
A C-rest is a rest-like partial function from C to C.
Let I be a partial function from C to C. We say that I is linear if and only

if:

(Def. 3) I is total and there exists a such that for every z holds Iz = a · z.
One can check that there exists a partial function from C to C which is

linear.
A C-linear function is a linear partial function from C to C.
We adopt the following convention: R, R1, R2 are C-rests and L, L1, L2 are

C-linear functions.
Let us consider L1, L2. Observe that L1+L2 is linear and L1−L2 is linear.
The following propositions are true:

(9) For all L1, L2 holds L1 + L2 is a C-linear function and L1 − L2 is a
C-linear function.

(10) For all a, L holds a L is a C-linear function.
(11) For all R1, R2 holds R1 + R2 is a C-rest and R1 − R2 is a C-rest and
R1 R2 is a C-rest.

(12) aR is a C-rest.
(13) L1 L2 is rest-like.

(14) RL is a C-rest and LR is a C-rest.
Let z0 be a complex number. A subset of C is called a neighbourhood of z0

if:
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(Def. 4) There exists a real number g such that 0 < g and {y; y ranges over
complex numbers: |y − z0| < g} ⊆ it.
Next we state three propositions:

(15) For every real number g such that 0 < g holds {y; y ranges over complex
numbers: |y − z0| < g} is a neighbourhood of z0.

(16) For every neighbourhood N of z0 holds z0 ∈ N.
(17) Let z0 be a complex number and N2, N3 be neighbourhoods of z0. Then
there exists a neighbourhood N of z0 such that N ⊆ N2 and N ⊆ N3.
Let us consider f and let x0 be a complex number. We say that f is diffe-

rentiable in x0 if and only if the condition (Def. 5) is satisfied.

(Def. 5) There exists a neighbourhood N of x0 such that N ⊆ dom f and there
exist L, R such that for every complex number x such that x ∈ N holds
fx − fx0 = Lx−x0 +Rx−x0 .
Let us consider f and let z0 be a complex number. Let us assume that f is

differentiable in z0. The functor f ′(z0) yielding a complex number is defined by
the condition (Def. 6).

(Def. 6) There exists a neighbourhood N of z0 such that N ⊆ dom f and there
exist L, R such that f ′(z0) = L1C and for every complex number z such
that z ∈ N holds fz − fz0 = Lz−z0 +Rz−z0 .
Let us consider f , X. We say that f is differentiable on X if and only if:

(Def. 7) X ⊆ dom f and for every x such that x ∈ X holds f�X is differentiable
in x.

We now state the proposition

(18) If f is differentiable on X, then X is a subset of C.
Let X be a subset of C. We say that X is closed if and only if:

(Def. 8) For every complex sequence s3 such that rng s3 ⊆ X and s3 is convergent
holds lim s3 ∈ X.
Let X be a subset of C. We say that X is open if and only if:

(Def. 9) Xc is closed.

Next we state several propositions:

(19) Let X be a subset of C. Suppose X is open. Let z0 be a complex number.
If z0 ∈ X, then there exists a neighbourhood N of z0 such that N ⊆ X.

(20) Let X be a subset of C. Suppose X is open. Let z0 be a complex number.
Suppose z0 ∈ X. Then there exists a real number g such that {y; y ranges
over complex numbers: |y − z0| < g} ⊆ X.

(21) Let X be a subset of C. Suppose that for every complex number z0 such
that z0 ∈ X there exists a neighbourhood N of z0 such that N ⊆ X. Then
X is open.
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(22) Let X be a subset of C. Then X is open if and only if for every complex
number x such that x ∈ X there exists a neighbourhood N of x such that
N ⊆ X.

(23) Let X be a subset of C, z0 be an element of C, and r be an element of R.
If X = {y; y ranges over complex numbers: |y − z0| < r}, then X is open.

(24) Let X be a subset of C, z0 be an element of C, and r be an element of
R. If X = {y; y ranges over complex numbers: |y − z0| ≤ r}, then X is
closed.

Let us note that there exists a subset of C which is open.
In the sequel Z denotes an open subset of C.
Next we state two propositions:

(25) f is differentiable on Z iff Z ⊆ dom f and for every x such that x ∈ Z
holds f is differentiable in x.

(26) If f is differentiable on Y , then Y is open.

Let us consider f , X. Let us assume that f is differentiable on X. The
functor f ′�X yielding a partial function from C to C is defined by:

(Def. 10) dom(f ′�X) = X and for every x such that x ∈ X holds (f ′�X)x = f ′(x).
The following propositions are true:

(27) Let given f , Z. Suppose Z ⊆ dom f and there exists a1 such that rng f =
{a1}. Then f is differentiable on Z and for every x such that x ∈ Z holds
(f ′�Z)x = 0C.

(28) If s1 is non-zero, then s1 ↑ k is non-zero.
Let us consider h, n. Note that h ↑ n is convergent to 0.
Let us consider c, n. Note that c ↑ n is constant.
Next we state a number of propositions:

(29) (s1 + s2) ↑ k = s1 ↑ k + s2 ↑ k.
(30) (s1 − s2) ↑ k = s1 ↑ k − s2 ↑ k.
(31) s1−1 ↑ k = (s1 ↑ k)−1.
(32) (s1 s2) ↑ k = (s1 ↑ k) (s2 ↑ k).
(33) Let x0 be a complex number and N be a neighbourhood of x0. Suppose f
is differentiable in x0 and N ⊆ dom f. Let given h, c. Suppose rng c = {x0}
and rng(h + c) ⊆ N. Then h−1 (f · (h + c) − f · c) is convergent and
f ′(x0) = lim(h−1 (f · (h+ c)− f · c)).

(34) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is diffe-
rentiable in x0. Then f1 + f2 is differentiable in x0 and (f1 + f2)′(x0) =
f1
′(x0) + f2′(x0).

(35) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is diffe-
rentiable in x0. Then f1 − f2 is differentiable in x0 and (f1 − f2)′(x0) =
f1
′(x0)− f2′(x0).
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(36) For all a, f , x0 such that f is differentiable in x0 holds a f is differentiable
in x0 and (a f)′(x0) = a · f ′(x0).

(37) Let given f1, f2, x0. Suppose f1 is differentiable in x0 and f2 is dif-
ferentiable in x0. Then f1 f2 is differentiable in x0 and (f1 f2)′(x0) =
(f2)x0 · f1′(x0) + (f1)x0 · f2′(x0).

(38) For all f , Z such that Z ⊆ dom f and f�Z = idZ holds f is differentiable
on Z and for every x such that x ∈ Z holds (f ′�Z)x = 1C.

(39) Let given f1, f2, Z. Suppose Z ⊆ dom(f1 + f2) and f1 is differentiable
on Z and f2 is differentiable on Z. Then f1+ f2 is differentiable on Z and
for every x such that x ∈ Z holds ((f1 + f2)′�Z)x = f1

′(x) + f2′(x).

(40) Let given f1, f2, Z. Suppose Z ⊆ dom(f1 − f2) and f1 is differentiable
on Z and f2 is differentiable on Z. Then f1− f2 is differentiable on Z and
for every x such that x ∈ Z holds ((f1 − f2)′�Z)x = f1

′(x)− f2′(x).
(41) Let given a, f , Z. Suppose Z ⊆ dom(a f) and f is differentiable on Z.
Then a f is differentiable on Z and for every x such that x ∈ Z holds
((a f)′�Z)x = a · f ′(x).

(42) Let given f1, f2, Z. Suppose Z ⊆ dom(f1 f2) and f1 is differentiable on
Z and f2 is differentiable on Z. Then f1 f2 is differentiable on Z and for
every x such that x ∈ Z holds ((f1 f2)′�Z)x = (f2)x · f1

′(x) + (f1)x · f2′(x).
(43) If Z ⊆ dom f and f is a constant on Z, then f is differentiable on Z and
for every x such that x ∈ Z holds (f ′�Z)x = 0C.

(44) Suppose Z ⊆ dom f and for every x such that x ∈ Z holds fx = a ·x+ b.
Then f is differentiable on Z and for every x such that x ∈ Z holds
(f ′�Z)x = a.

(45) For every complex number x0 such that f is differentiable in x0 holds f
is continuous in x0.

(46) If f is differentiable on X, then f is continuous on X.

(47) If f is differentiable on X and Z ⊆ X, then f is differentiable on Z.
(48) If s1 is convergent, then |s1| is convergent.
(49) If f is differentiable in x0, then there exists R such that R0C = 0C and
R is continuous in 0C.
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Summary. This article presents the proof of Kolmogorov’s zero-one law in
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The articles [8], [19], [2], [10], [12], [18], [20], [1], [15], [5], [21], [11], [3], [9], [7],
[6], [17], [4], [16], [14], and [13] provide the terminology and notation for this
paper.
For simplicity, we adopt the following convention: Ω, I are non empty sets,

F is a σ-field of subsets of Ω, P is a probability on F , D, E, F are families of
subsets of Ω, A, B, s are non empty subsets of F , b is an element of B, a is an
element of F , p, q, u, v are events of F , n is an element of N, and i is a set.
Next we state three propositions:

(1) For every function f and for every set X such that X ⊆ dom f holds if
X 6= ∅, then rng(f�X) 6= ∅.

(2) For every real number r such that r · r = r holds r = 0 or r = 1.
(3) For every family X of subsets of Ω such that X = ∅ holds σ(X) = {∅,Ω}.
Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let B be a

subset of F , and let P be a probability on F . The functor Indep(B,P ) yielding
a subset of F is defined as follows:
(Def. 1) For every element a of F holds a ∈ Indep(B,P ) iff for every element b

of B holds P (a ∩ b) = P (a) · P (b).
Next we state several propositions:

(4) Let f be a sequence of subsets of F . Suppose for all n, b holds P (f(n)∩
b) = P (f(n)) · P (b) and f is disjoint valued. Then P (b ∩

⋃
f) = P (b) ·

P (
⋃
f).
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(5) Indep(B,P ) is a Dynkin system of Ω.

(6) For every family A of subsets of Ω such that A is intersection stable and
A ⊆ Indep(B,P ) holds σ(A) ⊆ Indep(B,P ).

(7) Let A, B be non empty subsets of F . Then A ⊆ Indep(B,P ) if and only
if for all p, q such that p ∈ A and q ∈ B holds p and q are independent
w.r.t. P .

(8) For all non empty subsets A, B of F such that A ⊆ Indep(B,P ) holds
B ⊆ Indep(A,P ).

(9) Let A be a family of subsets of Ω. Suppose A is a non empty subset of F
and intersection stable. Let B be a non empty subset of F . Suppose B is
intersection stable. If A ⊆ Indep(B,P ), then for all D, s such that D = B
and σ(D) = s holds σ(A) ⊆ Indep(s, P ).

(10) Let given E, F . Suppose that
(i) E is a non empty subset of F and intersection stable, and
(ii) F is a non empty subset of F and intersection stable.
Suppose that for all p, q such that p ∈ E and q ∈ F holds p and q are
independent w.r.t. P . Let given u, v. If u ∈ σ(E) and v ∈ σ(F ), then u
and v are independent w.r.t. P .

Let I be a set, let Ω be a non empty set, and let F be a σ-field of subsets of
Ω. A function from I into 2F is said to be a many sorted σ-field over I and F
if:

(Def. 2) For every i such that i ∈ I holds it(i) is a σ-field of subsets of Ω.
Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let P be a

probability on F , let I be a set, and let A be a function from I into F . We say
that A is independent w.r.t. P if and only if:

(Def. 3) For every one-to-one finite sequence e of elements of I such that e 6= ∅
holds

∏
(P ·A · e) = P (

⋂
rng(A · e)).

Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let I be a set, let
J be a subset of I, and let F be a many sorted σ-field over I and F . A function
from J into F is said to be a σ-section over J and F if:
(Def. 4) For every i such that i ∈ J holds it(i) ∈ F (i).

Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let P be a
probability on F , let I be a set, and let F be a many sorted σ-field over I and
F . We say that F is independent w.r.t. P if and only if:
(Def. 5) For every finite subset E of I holds every σ-section over E and F is

independent w.r.t. P .

Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω,
let F be a many sorted σ-field over I and F , and let J be a subset of I. Then
F �J is a function from J into 2F .
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Let I be a set, let J be a subset of I, let Ω be a non empty set, let F be a
σ-field of subsets of Ω, and let F be a function from J into 2F . Then

⋃
F is a

family of subsets of Ω.
Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω,

let F be a many sorted σ-field over I and F , and let J be a subset of I. The
functor sigUn(F, J) yields a σ-field of subsets of Ω and is defined as follows:

(Def. 6) sigUn(F, J) = σ(
⋃
(F �J)).

Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω, and
let F be a many sorted σ-field over I and F . The functor futSigmaFields(F, I)
yielding a family of subsets of 2Ω is defined as follows:

(Def. 7) For every family S of subsets of Ω holds S ∈ futSigmaFields(F, I) iff
there exists a finite subset E of I such that S = sigUn(F, I \ E).
Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω,

and let F be a many sorted σ-field over I and F . Note that futSigmaFields(F, I)
is non empty.
Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω, and

let F be a many sorted σ-field over I and F . The functor tailSigmaField(F, I)
yielding a family of subsets of Ω is defined as follows:

(Def. 8) tailSigmaField(F, I) =
⋂
futSigmaFields(F, I).

Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω,
and let F be a many sorted σ-field over I and F . Note that tailSigmaField(F, I)
is non empty.
Let Ω be a non empty set, let F be a σ-field of subsets of Ω, let I be a non

empty set, let J be a non empty subset of I, and let F be a many sorted σ-field
over I and F . The functor MeetSections(J, F ) yields a family of subsets of Ω
and is defined by the condition (Def. 9).

(Def. 9) Let x be a subset of Ω. Then x ∈ MeetSections(J, F ) if and only if there
exists a non empty finite subset E of I and there exists a σ-section f over
E and F such that E ⊆ J and x =

⋂
rng f.

One can prove the following propositions:

(11) For every many sorted σ-field F over I and F and for every non empty
subset J of I holds σ(MeetSections(J, F )) = sigUn(F, J).

(12) Let F be a many sorted σ-field over I and F and J , K be non empty
subsets of I. Suppose F is independent w.r.t. P and J misses K. Let a,
c be subsets of Ω. If a ∈ MeetSections(J, F ) and c ∈ MeetSections(K,F ),
then P (a ∩ c) = P (a) · P (c).

(13) Let F be a many sorted σ-field over I and F and J be a non empty
subset of I. Then MeetSections(J, F ) is a non empty subset of F .
Let us consider I, Ω, F , let F be a many sorted σ-field over I and F , and let

J be a non empty subset of I. Observe that MeetSections(J, F ) is intersection
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stable.
The following proposition is true

(14) Let F be a many sorted σ-field over I and F and J , K be non empty
subsets of I. Suppose F is independent w.r.t. P and J misses K. Let given
u, v. If u ∈ sigUn(F, J) and v ∈ sigUn(F,K), then P (u∩v) = P (u) ·P (v).
Let I be a set, let Ω be a non empty set, let F be a σ-field of subsets of Ω, and

let F be a many sorted σ-field over I and F . The functor finSigmaFields(F, I)
yielding a family of subsets of Ω is defined as follows:

(Def. 10) For every subset S of Ω holds S ∈ finSigmaFields(F, I) iff there exists a
finite subset E of I such that S ∈ sigUn(F,E).
One can prove the following propositions:

(15) For every many sorted σ-field F over I and F holds tailSigmaField(F, I)
is a σ-field of subsets of Ω.

(16) Let F be a many sorted σ-field over I and F . If F is independent w.r.t.
P and a ∈ tailSigmaField(F, I), then P (a) = 0 or P (a) = 1.
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Summary. In this article we define second-order partial differentiation of
real binary functions and discuss the relation of second-order partial derivatives
and partial derivatives defined in [17].
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The papers [15], [3], [4], [16], [5], [10], [1], [8], [11], [9], [2], [14], [6], [13], [12], [7],
and [17] provide the terminology and notation for this paper.

1. Second-Order Partial Derivatives

For simplicity, we adopt the following rules: x, x0, y, y0, r denote real num-
bers, z, z0 denote elements of R2, f , f1, f2 denote partial functions from R2 to
R, R denotes a rest, and L denotes a linear function.
One can check that every rest is total.
Let f be a partial function from R2 to R and let z be an element of R2. The

functor pdiff1(f, z) yielding a function from R2 into R is defined by:
(Def. 1) For every z such that z ∈ R2 holds (pdiff1(f, z))(z) = partdiff1(f, z).
The functor pdiff2(f, z) yields a function from R2 into R and is defined as
follows:

79
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(Def. 2) For every z such that z ∈ R2 holds (pdiff2(f, z))(z) = partdiff2(f, z).
Let f be a partial function from R2 to R and let z be an element of R2. We

say that f is partial differentiable on 1st-1st coordinate in z if and only if the
condition (Def. 3) is satisfied.

(Def. 3) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆
domSVF1(pdiff1(f, z), z) and there exist L, R such that for every x such
that x ∈ N holds (SVF1(pdiff1(f, z), z))(x)−(SVF1(pdiff1(f, z), z))(x0) =
L(x− x0) +R(x− x0).

We say that f is partial differentiable on 1st-2nd coordinate in z if and only if
the condition (Def. 4) is satisfied.

(Def. 4) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆
domSVF2(pdiff1(f, z), z) and there exist L, R such that for every y such
that y ∈ N holds (SVF2(pdiff1(f, z), z))(y)−(SVF2(pdiff1(f, z), z))(y0) =
L(y − y0) +R(y − y0).

We say that f is partial differentiable on 2nd-1st coordinate in z if and only if
the condition (Def. 5) is satisfied.

(Def. 5) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆
domSVF1(pdiff2(f, z), z) and there exist L, R such that for every x such
that x ∈ N holds (SVF1(pdiff2(f, z), z))(x)−(SVF1(pdiff2(f, z), z))(x0) =
L(x− x0) +R(x− x0).

We say that f is partial differentiable on 2nd-2nd coordinate in z if and only if
the condition (Def. 6) is satisfied.

(Def. 6) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆
domSVF2(pdiff2(f, z), z) and there exist L, R such that for every y such
that y ∈ N holds (SVF2(pdiff2(f, z), z))(y)−(SVF2(pdiff2(f, z), z))(y0) =
L(y − y0) +R(y − y0).
Let f be a partial function from R2 to R and let z be an element of R2. Let

us assume that f is partial differentiable on 1st-1st coordinate in z. The functor
hpartdiff11(f, z) yielding a real number is defined by the condition (Def. 7).

(Def. 7) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
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(ii) there exists a neighbourhood N of x0 such that N ⊆
domSVF1(pdiff1(f, z), z) and there exist L,R such that hpartdiff11(f, z) =
L(1) and for every x such that x ∈ N holds (SVF1(pdiff1(f, z), z))(x) −
(SVF1(pdiff1(f, z), z))(x0) = L(x− x0) +R(x− x0).
Let f be a partial function from R2 to R and let z be an element of R2. Let

us assume that f is partial differentiable on 1st-2nd coordinate in z. The functor
hpartdiff12(f, z) yielding a real number is defined by the condition (Def. 8).

(Def. 8) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆
domSVF2(pdiff1(f, z), z) and there exist L,R such that hpartdiff12(f, z) =
L(1) and for every y such that y ∈ N holds (SVF2(pdiff1(f, z), z))(y) −
(SVF2(pdiff1(f, z), z))(y0) = L(y − y0) +R(y − y0).
Let f be a partial function from R2 to R and let z be an element of R2.

Let us assume that f is partial differentiable on 2nd-1st coordinate in z. The
functor hpartdiff21(f, z) yields a real number and is defined by the condition
(Def. 9).

(Def. 9) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆
domSVF1(pdiff2(f, z), z) and there exist L,R such that hpartdiff21(f, z) =
L(1) and for every x such that x ∈ N holds (SVF1(pdiff2(f, z), z))(x) −
(SVF1(pdiff2(f, z), z))(x0) = L(x− x0) +R(x− x0).
Let f be a partial function fromR2 to R and let z be an element ofR2. Let us

assume that f is partial differentiable on 2nd-2nd coordinate in z. The functor
hpartdiff22(f, z) yielding a real number is defined by the condition (Def. 10).

(Def. 10) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆
domSVF2(pdiff2(f, z), z) and there exist L,R such that hpartdiff22(f, z) =
L(1) and for every y such that y ∈ N holds (SVF2(pdiff2(f, z), z))(y) −
(SVF2(pdiff2(f, z), z))(y0) = L(y − y0) +R(y − y0).
The following propositions are true:

(1) If z = 〈x0, y0〉 and f is partial differentiable on 1st-1st coordinate in z,
then SVF1(pdiff1(f, z), z) is differentiable in x0.

(2) If z = 〈x0, y0〉 and f is partial differentiable on 1st-2nd coordinate in z,
then SVF2(pdiff1(f, z), z) is differentiable in y0.

(3) If z = 〈x0, y0〉 and f is partial differentiable on 2nd-1st coordinate in z,
then SVF1(pdiff2(f, z), z) is differentiable in x0.
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(4) If z = 〈x0, y0〉 and f is partial differentiable on 2nd-2nd coordinate in z,
then SVF2(pdiff2(f, z), z) is differentiable in y0.

(5) If z = 〈x0, y0〉 and f is partial differentiable on 1st-1st coordinate in z,
then hpartdiff11(f, z) = (SVF1(pdiff1(f, z), z))′(x0).

(6) If z = 〈x0, y0〉 and f is partial differentiable on 1st-2nd coordinate in z,
then hpartdiff12(f, z) = (SVF2(pdiff1(f, z), z))′(y0).

(7) If z = 〈x0, y0〉 and f is partial differentiable on 2nd-1st coordinate in z,
then hpartdiff21(f, z) = (SVF1(pdiff2(f, z), z))′(x0).

(8) If z = 〈x0, y0〉 and f is partial differentiable on 2nd-2nd coordinate in z,
then hpartdiff22(f, z) = (SVF2(pdiff2(f, z), z))′(y0).

Let f be a partial function from R2 to R and let Z be a set. We say that f
is partial differentiable on 1st-1st coordinate on Z if and only if:

(Def. 11) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 1st-1st coordinate in z.

We say that f is partial differentiable on 1st-2nd coordinate on Z if and only if:

(Def. 12) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 1st-2nd coordinate in z.

We say that f is partial differentiable on 2nd-1st coordinate on Z if and only if:

(Def. 13) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 2nd-1st coordinate in z.

We say that f is partial differentiable on 2nd-2nd coordinate on Z if and only
if:

(Def. 14) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 2nd-2nd coordinate in z.

Let f be a partial function from R2 to R and let Z be a set. Let us assume
that f is partial differentiable on 1st-1st coordinate on Z. The functor f1st−1st�Z

yielding a partial function from R2 to R is defined as follows:

(Def. 15) dom(f1st−1st�Z ) = Z and for every element z of R2 such that z ∈ Z holds
f1st−1st�Z (z) = hpartdiff11(f, z).

Let f be a partial function from R2 to R and let Z be a set. Let us assume
that f is partial differentiable on 1st-2nd coordinate on Z. The functor f1st−2nd�Z

yielding a partial function from R2 to R is defined by:

(Def. 16) dom(f1st−2nd�Z ) = Z and for every element z of R2 such that z ∈ Z holds
f1st−2nd�Z (z) = hpartdiff12(f, z).

Let f be a partial function from R2 to R and let Z be a set. Let us assume
that f is partial differentiable on 2nd-1st coordinate on Z. The functor f2nd−1st�Z

yields a partial function from R2 to R and is defined by:
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(Def. 17) dom(f2nd−1st�Z ) = Z and for every element z of R2 such that z ∈ Z holds
f2nd−1st�Z (z) = hpartdiff21(f, z).

Let f be a partial function from R2 to R and let Z be a set. Let us assume
that f is partial differentiable on 2nd-2nd coordinate on Z. The functor f2nd−2nd�Z

yields a partial function from R2 to R and is defined by:
(Def. 18) dom(f2nd−2nd�Z ) = Z and for every element z of R2 such that z ∈ Z holds

f2nd−2nd�Z (z) = hpartdiff22(f, z).

2. Main Properties of Second-Order Partial Derivatives

Next we state a number of propositions:

(9) f is partial differentiable on 1st-1st coordinate in z if and only if
pdiff1(f, z) is partial differentiable on 1st coordinate in z.

(10) f is partial differentiable on 1st-2nd coordinate in z if and only if
pdiff1(f, z) is partial differentiable on 2nd coordinate in z.

(11) f is partial differentiable on 2nd-1st coordinate in z if and only if
pdiff2(f, z) is partial differentiable on 1st coordinate in z.

(12) f is partial differentiable on 2nd-2nd coordinate in z if and only if
pdiff2(f, z) is partial differentiable on 2nd coordinate in z.

(13) f is partial differentiable on 1st-1st coordinate in z if and only if
pdiff1(f, z) is partially differentiable in z w.r.t. coordinate 1.

(14) f is partial differentiable on 1st-2nd coordinate in z if and only if
pdiff1(f, z) is partially differentiable in z w.r.t. coordinate 2.

(15) f is partial differentiable on 2nd-1st coordinate in z if and only if
pdiff2(f, z) is partially differentiable in z w.r.t. coordinate 1.

(16) f is partial differentiable on 2nd-2nd coordinate in z if and only if
pdiff2(f, z) is partially differentiable in z w.r.t. coordinate 2.

(17) If f is partial differentiable on 1st-1st coordinate in z, then
hpartdiff11(f, z) = partdiff1(pdiff1(f, z), z).

(18) If f is partial differentiable on 1st-2nd coordinate in z, then
hpartdiff12(f, z) = partdiff2(pdiff1(f, z), z).

(19) If f is partial differentiable on 2nd-1st coordinate in z, then
hpartdiff21(f, z) = partdiff1(pdiff2(f, z), z).

(20) If f is partial differentiable on 2nd-2nd coordinate in z, then
hpartdiff22(f, z) = partdiff2(pdiff2(f, z), z).

(21) Let z0 be an element ofR2 and N be a neighbourhood of (proj(1, 2))(z0).
Suppose f is partial differentiable on 1st-1st coordinate in z0 and N ⊆
domSVF1(pdiff1(f, z0), z0). Let h be a convergent to 0 sequence of real
numbers and c be a constant sequence of real numbers. Suppose rng c =
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{(proj(1, 2))(z0)} and rng(h+ c) ⊆ N. Then h−1 (SVF1(pdiff1(f, z0), z0) ·
(h+ c)− SVF1(pdiff1(f, z0), z0) · c) is convergent and hpartdiff11(f, z0) =
lim(h−1 (SVF1(pdiff1(f, z0), z0) · (h+ c)− SVF1(pdiff1(f, z0), z0) · c)).

(22) Let z0 be an element ofR2 and N be a neighbourhood of (proj(2, 2))(z0).
Suppose f is partial differentiable on 1st-2nd coordinate in z0 and N ⊆
domSVF2(pdiff1(f, z0), z0). Let h be a convergent to 0 sequence of real
numbers and c be a constant sequence of real numbers. Suppose rng c =
{(proj(2, 2))(z0)} and rng(h+ c) ⊆ N. Then h−1 (SVF2(pdiff1(f, z0), z0) ·
(h+ c)− SVF2(pdiff1(f, z0), z0) · c) is convergent and hpartdiff12(f, z0) =
lim(h−1 (SVF2(pdiff1(f, z0), z0) · (h+ c)− SVF2(pdiff1(f, z0), z0) · c)).

(23) Let z0 be an element ofR2 and N be a neighbourhood of (proj(1, 2))(z0).
Suppose f is partial differentiable on 2nd-1st coordinate in z0 and N ⊆
domSVF1(pdiff2(f, z0), z0). Let h be a convergent to 0 sequence of real
numbers and c be a constant sequence of real numbers. Suppose rng c =
{(proj(1, 2))(z0)} and rng(h+ c) ⊆ N. Then h−1 (SVF1(pdiff2(f, z0), z0) ·
(h+ c)− SVF1(pdiff2(f, z0), z0) · c) is convergent and hpartdiff21(f, z0) =
lim(h−1 (SVF1(pdiff2(f, z0), z0) · (h+ c)− SVF1(pdiff2(f, z0), z0) · c)).

(24) Let z0 be an element ofR2 and N be a neighbourhood of (proj(2, 2))(z0).
Suppose f is partial differentiable on 2nd-2nd coordinate in z0 and N ⊆
domSVF2(pdiff2(f, z0), z0). Let h be a convergent to 0 sequence of real
numbers and c be a constant sequence of real numbers. Suppose rng c =
{(proj(2, 2))(z0)} and rng(h+ c) ⊆ N. Then h−1 (SVF2(pdiff2(f, z0), z0) ·
(h+ c)− SVF2(pdiff2(f, z0), z0) · c) is convergent and hpartdiff22(f, z0) =
lim(h−1 (SVF2(pdiff2(f, z0), z0) · (h+ c)− SVF2(pdiff2(f, z0), z0) · c)).

(25) Suppose that
(i) f1 is partial differentiable on 1st-1st coordinate in z0, and
(ii) f2 is partial differentiable on 1st-1st coordinate in z0.
Then pdiff1(f1, z0)+pdiff1(f2, z0) is partial differentiable on 1st coordinate
in z0 and partdiff1(pdiff1(f1, z0)+pdiff1(f2, z0), z0) = hpartdiff11(f1, z0)+
hpartdiff11(f2, z0).

(26) Suppose that
(i) f1 is partial differentiable on 1st-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 1st-2nd coordinate in z0.
Then pdiff1(f1, z0) + pdiff1(f2, z0) is partial differentiable on 2nd
coordinate in z0 and partdiff2(pdiff1(f1, z0) + pdiff1(f2, z0), z0) =
hpartdiff12(f1, z0) + hpartdiff12(f2, z0).

(27) Suppose that
(i) f1 is partial differentiable on 2nd-1st coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-1st coordinate in z0.
Then pdiff2(f1, z0)+pdiff2(f2, z0) is partial differentiable on 1st coordinate
in z0 and partdiff1(pdiff2(f1, z0)+pdiff2(f2, z0), z0) = hpartdiff21(f1, z0)+
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hpartdiff21(f2, z0).

(28) Suppose that
(i) f1 is partial differentiable on 2nd-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-2nd coordinate in z0.
Then pdiff2(f1, z0) + pdiff2(f2, z0) is partial differentiable on 2nd
coordinate in z0 and partdiff2(pdiff2(f1, z0) + pdiff2(f2, z0), z0) =
hpartdiff22(f1, z0) + hpartdiff22(f2, z0).

(29) Suppose that
(i) f1 is partial differentiable on 1st-1st coordinate in z0, and
(ii) f2 is partial differentiable on 1st-1st coordinate in z0.
Then pdiff1(f1, z0)−pdiff1(f2, z0) is partial differentiable on 1st coordinate
in z0 and partdiff1(pdiff1(f1, z0)−pdiff1(f2, z0), z0) = hpartdiff11(f1, z0)−
hpartdiff11(f2, z0).

(30) Suppose that
(i) f1 is partial differentiable on 1st-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 1st-2nd coordinate in z0.
Then pdiff1(f1, z0) − pdiff1(f2, z0) is partial differentiable on 2nd
coordinate in z0 and partdiff2(pdiff1(f1, z0) − pdiff1(f2, z0), z0) =
hpartdiff12(f1, z0)− hpartdiff12(f2, z0).

(31) Suppose that
(i) f1 is partial differentiable on 2nd-1st coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-1st coordinate in z0.
Then pdiff2(f1, z0)−pdiff2(f2, z0) is partial differentiable on 1st coordinate
in z0 and partdiff1(pdiff2(f1, z0)−pdiff2(f2, z0), z0) = hpartdiff21(f1, z0)−
hpartdiff21(f2, z0).

(32) Suppose that
(i) f1 is partial differentiable on 2nd-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-2nd coordinate in z0.
Then pdiff2(f1, z0) − pdiff2(f2, z0) is partial differentiable on 2nd
coordinate in z0 and partdiff2(pdiff2(f1, z0) − pdiff2(f2, z0), z0) =
hpartdiff22(f1, z0)− hpartdiff22(f2, z0).

(33) Suppose f is partial differentiable on 1st-1st coordinate in z0. Then
r pdiff1(f, z0) is partial differentiable on 1st coordinate in z0 and
partdiff1(r pdiff1(f, z0), z0) = r · hpartdiff11(f, z0).

(34) Suppose f is partial differentiable on 1st-2nd coordinate in z0. Then
r pdiff1(f, z0) is partial differentiable on 2nd coordinate in z0 and
partdiff2(r pdiff1(f, z0), z0) = r · hpartdiff12(f, z0).

(35) Suppose f is partial differentiable on 2nd-1st coordinate in z0. Then
r pdiff2(f, z0) is partial differentiable on 1st coordinate in z0 and
partdiff1(r pdiff2(f, z0), z0) = r · hpartdiff21(f, z0).
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(36) Suppose f is partial differentiable on 2nd-2nd coordinate in z0. Then
r pdiff2(f, z0) is partial differentiable on 2nd coordinate in z0 and
partdiff2(r pdiff2(f, z0), z0) = r · hpartdiff22(f, z0).

(37) Suppose that
(i) f1 is partial differentiable on 1st-1st coordinate in z0, and
(ii) f2 is partial differentiable on 1st-1st coordinate in z0.
Then pdiff1(f1, z0) pdiff1(f2, z0) is partial differentiable on 1st coordinate
in z0.

(38) Suppose that
(i) f1 is partial differentiable on 1st-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 1st-2nd coordinate in z0.
Then pdiff1(f1, z0) pdiff1(f2, z0) is partial differentiable on 2nd coordinate
in z0.

(39) Suppose that
(i) f1 is partial differentiable on 2nd-1st coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-1st coordinate in z0.
Then pdiff2(f1, z0) pdiff2(f2, z0) is partial differentiable on 1st coordinate
in z0.

(40) Suppose that
(i) f1 is partial differentiable on 2nd-2nd coordinate in z0, and
(ii) f2 is partial differentiable on 2nd-2nd coordinate in z0.
Then pdiff2(f1, z0) pdiff2(f2, z0) is partial differentiable on 2nd coordinate
in z0.

(41) Let z0 be an element of R2. Suppose f is partial differentiable on
1st-1st coordinate in z0. Then SVF1(pdiff1(f, z0), z0) is continuous in
(proj(1, 2))(z0).

(42) Let z0 be an element of R2. Suppose f is partial differentiable on
1st-2nd coordinate in z0. Then SVF2(pdiff1(f, z0), z0) is continuous in
(proj(2, 2))(z0).

(43) Let z0 be an element of R2. Suppose f is partial differentiable on
2nd-1st coordinate in z0. Then SVF1(pdiff2(f, z0), z0) is continuous in
(proj(1, 2))(z0).

(44) Let z0 be an element of R2. Suppose f is partial differentiable on
2nd-2nd coordinate in z0. Then SVF2(pdiff2(f, z0), z0) is continuous in
(proj(2, 2))(z0).

(45) If f is partial differentiable on 1st-1st coordinate in z0, then there exists
R such that R(0) = 0 and R is continuous in 0.

(46) If f is partial differentiable on 1st-2nd coordinate in z0, then there exists
R such that R(0) = 0 and R is continuous in 0.
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(47) If f is partial differentiable on 2nd-1st coordinate in z0, then there exists
R such that R(0) = 0 and R is continuous in 0.

(48) If f is partial differentiable on 2nd-2nd coordinate in z0, then there exists
R such that R(0) = 0 and R is continuous in 0.
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Summary. In this article, we formalized the measurability of complex-
valued functional sequences. First, we proved the measurability of the limits of
real-valued functional sequences. Next, we defined complex-valued functional se-
quences dividing real part into imaginary part. Then using the former theorems,
we proved the measurability of each part. Lastly, we proved the measurability of
the limits of complex-valued functional sequences. We also showed several proper-
ties of complex-valued measurable functions. In addition, we proved properties
of complex-valued simple functions.
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The notation and terminology used here are introduced in the following papers:
[12], [26], [2], [8], [1], [21], [27], [9], [11], [3], [18], [10], [22], [4], [5], [17], [23], [20],
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1. Real-Valued Functional Sequences

For simplicity, we adopt the following convention: X denotes a non empty
set, Y denotes a set, S denotes a σ-field of subsets of X,M denotes a σ-measure
on S, f , g denote partial functions from X to C, r denotes a real number, k
denotes a real number, and E denotes an element of S.
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor R(f) yielding a sequence of partial functions from X into
R is defined as follows:
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(Def. 1) R(f) = f.
Next we state the proposition

(1) Let X be a non empty set, f be a sequence of partial functions from X
into R, and x be an element of X. Then f#x = R(f)#x.
Let X be a non empty set and let f be a function from X into R. Note that

R(f) is total.
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor inf f yields a partial function from X to R and is defined
by:

(Def. 2) inf f = inf R(f).
Next we state the proposition

(2) Let X be a non empty set, f be a sequence of partial functions from
X into R, and x be an element of X. If x ∈ dom inf f, then (inf f)(x) =
inf rngR(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor sup f yielding a partial function from X to R is defined
as follows:

(Def. 3) sup f = supR(f).
We now state the proposition

(3) Let X be a non empty set, f be a sequence of partial functions from X
into R, and x be an element of X. If x ∈ dom sup f, then (sup f)(x) =
sup rngR(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The inferior real sequence of f yields a sequence of partial functions
from X into R with the same dom and is defined as follows:
(Def. 4) The inferior real sequence of f = the inferior real sequence of R(f).

One can prove the following proposition

(4) Let X be a non empty set, f be a sequence of partial functions from X
into R, and n be a natural number. Then
(i) dom (the inferior real sequence of f)(n) = dom f(0), and
(ii) for every element x of X such that x ∈ dom (the inferior real sequence
of f)(n) holds (the inferior real sequence of f)(n)(x) = (the inferior real
sequence of R(f#x))(n).
Let X be a non empty set and let f be a sequence of partial functions from X

into R. The superior real sequence of f yielding a sequence of partial functions
from X into R with the same dom is defined as follows:
(Def. 5) The superior real sequence of f = the superior real sequence of R(f).

One can prove the following two propositions:



the measurability of complex-valued . . . 91

(5) Let X be a non empty set, f be a sequence of partial functions from X
into R, and n be a natural number. Then
(i) dom (the superior real sequence of f)(n) = dom f(0), and
(ii) for every element x of X such that x ∈ dom (the superior real sequence
of f)(n) holds (the superior real sequence of f)(n)(x) = (the superior real
sequence of R(f#x))(n).

(6) Let f be a sequence of partial functions from X into R and x be an
element of X. Suppose x ∈ dom f(0). Then (the inferior real sequence of
f)#x = the inferior real sequence of R(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R with the same dom. Note that R(f) has the same dom.
One can prove the following propositions:

(7) Let X be a non empty set, f be a sequence of partial functions from
X into R with the same dom, S be a σ-field of subsets of X, E be an
element of S, and n be a natural number. If f(n) is measurable on E,
then (R(f))(n) is measurable on E.

(8) Let X be a non empty set, f be a sequence of partial functions from X
into R, and n be an element of N. Then R(f) ↑ n = R(f ↑ n).

(9) Let f be a sequence of partial functions from X into R with the same
dom and n be an element of N. Then (the inferior real sequence of f)(n) =
inf(f ↑ n).

(10) Let f be a sequence of partial functions from X into R with the same
dom and n be an element of N. Then (the superior real sequence of f)(n) =
sup(f ↑ n).

(11) Let f be a sequence of partial functions from X into R and x be an
element of X. Suppose x ∈ dom f(0). Then (the superior real sequence of
f)#x = the superior real sequence of R(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor lim inf f yielding a partial function from X to R is defined
as follows:

(Def. 6) lim inf f = lim inf R(f).
We now state the proposition

(12) Let X be a non empty set, f be a sequence of partial functions from X
into R, and x be an element ofX. If x ∈ dom lim inf f, then (lim inf f)(x) =
lim inf R(f#x).
Let X be a non empty set and let f be a sequence of partial functions from X

into R. The functor lim sup f yielding a partial function from X to R is defined
by:

(Def. 7) lim sup f = lim supR(f).
Next we state the proposition
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(13) Let X be a non empty set, f be a sequence of partial functions
from X into R, and x be an element of X. If x ∈ dom lim sup f, then
(lim sup f)(x) = lim supR(f#x).
Let X be a non empty set and let f be a sequence of partial functions from

X into R. The functor lim f yielding a partial function from X to R is defined
by:

(Def. 8) lim f = limR(f).
One can prove the following propositions:

(14) Let X be a non empty set, f be a sequence of partial functions from
X into R, and x be an element of X. If x ∈ dom lim f, then (lim f)(x) =
limR(f#x).

(15) Let f be a sequence of partial functions from X into R and x be an
element of X. If x ∈ dom lim f and f#x is convergent, then (lim f)(x) =
(lim sup f)(x) and (lim f)(x) = (lim inf f)(x).

(16) Let f be a sequence of partial functions from X into R with the same
dom, F be a sequence of subsets of S, and r be a real number. Suppose that
for every natural number n holds F (n) = dom f(0) ∩ GT-dom(f(n), r).
Then

⋃
rngF = dom f(0) ∩GT-dom(sup f, r).

(17) Let f be a sequence of partial functions from X into R with the same
dom, F be a sequence of subsets of S, and r be a real number. Suppose that
for every natural number n holds F (n) = dom f(0) ∩ GTE-dom(f(n), r).
Then

⋂
rngF = dom f(0) ∩GTE-dom(inf f, r).

(18) Let f be a sequence of partial functions fromX into R with the same dom
and E be an element of S. Suppose dom f(0) = E and for every natural
number n holds f(n) is measurable on E. Then lim sup f is measurable on
E.

(19) Let f be a sequence of partial functions fromX into R with the same dom
and E be an element of S. Suppose dom f(0) = E and for every natural
number n holds f(n) is measurable on E. Then lim inf f is measurable on
E.

(20) Let f be a sequence of partial functions from X into R and x be an
element of X. Suppose x ∈ dom f(0) and f#x is convergent. Then (the
superior real sequence of f)#x is lower bounded.

(21) Let f be a sequence of partial functions from X into R with the same
dom and E be an element of S. Suppose that
(i) dom f(0) = E,
(ii) for every natural number n holds f(n) is measurable on E, and
(iii) for every element x of X such that x ∈ E holds f#x is convergent.
Then lim f is measurable on E.

(22) Let f be a sequence of partial functions from X into R with the same
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dom, g be a partial function from X to R, and E be an element of S.
Suppose that
(i) dom f(0) = E,
(ii) for every natural number n holds f(n) is measurable on E,
(iii) dom g = E, and
(iv) for every element x of X such that x ∈ E holds f#x is convergent and
g(x) = lim(f#x).
Then g is measurable on E.

2. The Measurability of Complex-Valued Functional Sequences

Let X be a non empty set, let H be a sequence of partial functions from
X into C, and let x be an element of X. The functor H#x yielding a complex
sequence is defined by:

(Def. 9) For every natural number n holds (H#x)(n) = H(n)(x).

Let X be a non empty set and let f be a sequence of partial functions from
X into C. The functor lim f yields a partial function from X to C and is defined
as follows:

(Def. 10) dom lim f = dom f(0) and for every element x of X such that x ∈
dom lim f holds (lim f)(x) = lim(f#x).

Let X be a non empty set and let f be a sequence of partial functions from
X into C. The functor <(f) yielding a sequence of partial functions from X into
R is defined by the condition (Def. 11).

(Def. 11) Let n be a natural number. Then dom<(f)(n) = dom f(n) and for
every element x of X such that x ∈ dom<(f)(n) holds <(f)(n)(x) =
<(f#x)(n).
Let X be a non empty set and let f be a sequence of partial functions from

X into C with the same dom. Then <(f) is a sequence of partial functions from
X into R with the same dom.
Let X be a non empty set and let f be a sequence of partial functions from

X into C. The functor =(f) yielding a sequence of partial functions from X into
R is defined by the condition (Def. 12).

(Def. 12) Let n be a natural number. Then dom=(f)(n) = dom f(n) and for
every element x of X such that x ∈ dom=(f)(n) holds =(f)(n)(x) =
=(f#x)(n).
Let X be a non empty set and let f be a sequence of partial functions from

X into C with the same dom. Then =(f) is a sequence of partial functions from
X into R with the same dom.
We now state several propositions:
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(23) Let f be a sequence of partial functions from X into C with the same
dom and x be an element of X. If x ∈ dom f(0), then <(f)#x = <(f#x)
and =(f)#x = =(f#x).

(24) Let f be a sequence of partial functions fromX into C and n be a natural
number. Then <(f)(n) = <(f(n)) and =(f)(n) = =(f(n)).

(25) Let f be a sequence of partial functions from X into C with the same
dom. Suppose that for every element x of X such that x ∈ dom f(0) holds
f#x is convergent. Then lim<(f) = <(lim f) and lim=(f) = =(lim f).

(26) Let f be a sequence of partial functions from X into C with the same
dom and E be an element of S. Suppose that
(i) dom f(0) = E,
(ii) for every natural number n holds f(n) is measurable on E, and
(iii) for every element x of X such that x ∈ E holds f#x is convergent.
Then lim f is measurable on E.

(27) Let f be a sequence of partial functions from X into C with the same
dom, g be a partial function from X to C, and E be an element of S.
Suppose that
(i) dom f(0) = E,
(ii) for every natural number n holds f(n) is measurable on E,
(iii) dom g = E, and
(iv) for every element x of X such that x ∈ E holds f#x is convergent and
g(x) = lim(f#x).
Then g is measurable on E.

3. Selected Properties of Complex-Valued Measurable Functions

One can prove the following propositions:

(28) (r f)�Y = r (f�Y ).

(29) If 0 ≤ k and E ⊆ dom f and f is measurable on E, then |f |k is measu-
rable on E.

(30) For all partial functions f , g from X to R holds R(f)R(g) = R(f g).
(31) Let f , g be partial functions from X to R. Suppose dom f ∩ dom g = E
and f is measurable on E and g is measurable on E. Then f g is measurable
on E.

(32) <(f g) = <(f)<(g)−=(f)=(g) and =(f g) = =(f)<(g) + <(f)=(g).
(33) If dom f ∩ dom g = E and f is measurable on E and g is measurable on
E, then f g is measurable on E.

(34) Let f , g be partial functions from X to R. Suppose that
(i) there exists an element E of S such that E = dom f and E = dom g
and f is measurable on E and g is measurable on E,
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(ii) f is non-negative,
(iii) g is non-negative, and
(iv) for every element x of X such that x ∈ dom g holds g(x) ≤ f(x).
Then

∫
g dM ≤

∫
f dM.

(35) Let X be a non empty set, S be a σ-field of subsets of X, M be a
σ-measure on S, and f be a partial function from X to C. Suppose f is
integrable onM . Then there exists an element A of S such that A = dom f
and f is measurable on A and |f | is integrable on M .

(36) Suppose f is integrable on M . Then there exists a function F from N
into S such that
(i) for every natural number n holds F (n) = dom f∩GTE-dom(|f |,R( 1n+1)),
(ii) dom f \ EQ-dom(|f |, 0) =

⋃
rngF, and

(iii) for every natural number n holds F (n) ∈ S and M(F (n)) < +∞.
In the sequel x, A denote sets.
We now state several propositions:

(37) |f |�A = |f�A|.
(38) dom(|f |+ |g|) = dom f ∩ dom g and dom |f + g| ⊆ dom |f |.
(39) |f |�dom |f + g|+ |g|�dom |f + g| = (|f |+ |g|)�dom |f + g|.
(40) If x ∈ dom |f + g|, then |f + g|(x) ≤ (|f |+ |g|)(x).
(41) Let f , g be partial functions from X to R. If for every set x such that
x ∈ dom f holds f(x) ≤ g(x), then g − f is non-negative.

(42) Suppose f is integrable on M and g is integrable on M . Then there
exists an element E of S such that E = dom(f + g) and

∫
|f + g|�E dM ≤∫

|f |�E dM +
∫
|g|�E dM.

4. Properties of Complex-Valued Simple Functions

Let X be a non empty set, let S be a σ-field of subsets of X, and let f be a
partial function from X to C. We say that f is simple function in S if and only
if the condition (Def. 13) is satisfied.

(Def. 13) There exists a finite sequence F of separated subsets of S such that
(i) dom f =

⋃
rngF, and

(ii) for every natural number n and for all elements x, y of X such that
n ∈ domF and x, y ∈ F (n) holds f(x) = f(y).
Let X be a non empty set, let S be a σ-field of subsets of X, let f be a

partial function from X to R, let F be a finite sequence of separated subsets
of S, and let a be a finite sequence of elements of R. We say that F and a are
representation of f if and only if the conditions (Def. 14) are satisfied.

(Def. 14)(i) dom f =
⋃
rngF,

(ii) domF = dom a, and
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(iii) for every natural number n such that n ∈ domF and for every set x
such that x ∈ F (n) holds f(x) = a(n).
Let us consider X, S, f , let F be a finite sequence of separated subsets of

S, and let a be a finite sequence of elements of C. We say that F and a are
representation of f if and only if the conditions (Def. 15) are satisfied.

(Def. 15)(i) dom f =
⋃
rngF,

(ii) domF = dom a, and
(iii) for every natural number n such that n ∈ domF and for every set x
such that x ∈ F (n) holds f(x) = a(n).
The following three propositions are true:

(43) f is simple function in S if and only if <(f) is simple function in S and
=(f) is simple function in S.

(44) Suppose f is simple function in S. Then there exists a finite sequence F
of separated subsets of S and there exists a finite sequence a of elements
of C such that
(i) dom f =

⋃
rngF,

(ii) domF = dom a, and
(iii) for every natural number n such that n ∈ domF and for every set x
such that x ∈ F (n) holds f(x) = a(n).

(45) f is simple function in S if and only if there exists a finite sequence F
of separated subsets of S and there exists a finite sequence a of elements
of C such that F and a are representation of f .

In the sequel c is a finite sequence of elements of C.
Next we state four propositions:

(46) For every natural number n such that n ∈ dom<(c) holds <(c)(n) =
<(c(n)).

(47) For every natural number n such that n ∈ dom=(c) holds =(c)(n) =
=(c(n)).

(48) Let F be a finite sequence of separated subsets of S and a be a finite
sequence of elements of C. Then F and a are representation of f if and only
if F and <(a) are representation of <(f) and F and =(a) are representation
of =(f).

(49) f is simple function in S if and only if there exists a finite sequence F of
separated subsets of S and there exists a finite sequence c of elements of
C such that dom f =

⋃
rngF and domF = dom c and for every natural

number n such that n ∈ domF and for every set x such that x ∈ F (n)
holds <(f)(x) = <(c)(n) and for every natural number n such that n ∈
domF and for every set x such that x ∈ F (n) holds =(f)(x) = =(c)(n).
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Summary. The article starts with definitions of sets of opposite and in-
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cases and extended real numbers ones are introduced separately and unified for
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The articles [4], [2], [1], and [3] provide the terminology and notation for this
paper.
For simplicity, we adopt the following convention: w, w1, w2 are elements

of R, c, c1, c2 are elements of C, A, B, C, D are complex-membered sets, F ,
G, H, I are extended real-membered sets, a, b are complex numbers, f , g are
extended real numbers, r is a real number, and e is a set.
Let us consider w. Then −w is an element of R. Then w−1 is an element of

R. Let us consider w1. Then w · w1 is an element of R.
Let a, b, c, d be complex numbers. One can check that {a, b, c, d} is complex-

membered.
Let a, b, c, d be extended real numbers. Observe that {a, b, c, d} is extended

real-membered.
Let F be an extended real-membered set. The functor 	F yielding an exten-

ded real-membered set is defined by:

(Def. 1) 	F = {−w : w ∈ F}.
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Let us note that the functor 	F is involutive.
The following propositions are true:

(1) f ∈ F iff −f ∈ 	F.
(2) −f ∈ F iff f ∈ 	F.
Let F be an empty set. One can check that 	F is empty.
Let F be an extended real-membered non empty set. Note that 	F is non

empty.
The following propositions are true:

(3) F ⊆ G iff 	F ⊆ 	G.
(4) If 	F = 	G, then F = G.
(5) 	(F ∪G) = 	F ∪ 	G.
(6) 	(F ∩G) = 	F ∩ 	G.
(7) 	(F \G) = 	F \ 	G.
(8) 	(F−. G) = 	F−. 	G.
(9) 	{f} = {−f}.
(10) 	{f, g} = {−f,−g}.
LetA be a complex-membered set. The functor	A yields a complex-membered

set and is defined as follows:

(Def. 2) 	A = {−c : c ∈ A}.
Let us note that the functor 	A is involutive.
Next we state two propositions:

(11) a ∈ A iff −a ∈ 	A.
(12) −a ∈ A iff a ∈ 	A.
Let A be an empty set. One can check that 	A is empty.
Let A be a complex-membered non empty set. One can verify that 	A is

non empty.
Let A be a real-membered set. One can check that 	A is real-membered.
Let A be a rational-membered set. Note that 	A is rational-membered.
Let A be an integer-membered set. Observe that 	A is integer-membered.
Let A be a real-membered set and let F be an extended real-membered set.

One can verify that 	A and 	F can be identified when A = F .
We now state several propositions:

(13) A ⊆ B iff 	A ⊆ 	B.
(14) If 	A = 	B, then A = B.
(15) 	(A ∪B) = 	A ∪ 	B.
(16) 	(A ∩B) = 	A ∩ 	B.
(17) 	(A \B) = 	A \ 	B.
(18) 	(A−. B) = 	A−. 	B.



collective operations on number-membered sets 101

(19) 	{a} = {−a}.
(20) 	{a, b} = {−a,−b}.
Let F be an extended real-membered set. The functor F−1 yields an exten-

ded real-membered set and is defined by:

(Def. 3) F−1 = {w−1 : w ∈ F}.
Next we state the proposition

(21) If f ∈ F, then f−1 ∈ F−1.
Let F be an empty set. Note that F−1 is empty.
Let F be an extended real-membered non empty set. One can check that

F−1 is non empty.
The following propositions are true:

(22) If F ⊆ G, then F−1 ⊆ G−1.
(23) (F ∪G)−1 = F−1 ∪G−1.
(24) (F ∩G)−1 ⊆ F−1 ∩G−1.
(25) 	(F−1) = (	F )−1.
(26) {f}−1 = {f−1}.
(27) {f, g}−1 = {f−1, g−1}.
Let A be a complex-membered set. The functor A−1 yields a complex-

membered set and is defined as follows:

(Def. 4) A−1 = {c−1 : c ∈ A}.
Let us notice that the functor A−1 is involutive.
One can prove the following propositions:

(28) a ∈ A iff a−1 ∈ A−1.
(29) a−1 ∈ A iff a ∈ A−1.
Let A be an empty set. Observe that A−1 is empty.
Let A be a complex-membered non empty set. Observe that A−1 is non

empty.
Let A be a real-membered set. Note that A−1 is real-membered.
Let A be a rational-membered set. One can verify that A−1 is rational-

membered.
Let A be a real-membered set and let F be an extended real-membered set.

One can verify that A−1 and F−1 can be identified when A = F .
Next we state several propositions:

(30) A ⊆ B iff A−1 ⊆ B−1.
(31) If A−1 = B−1, then A = B.

(32) (A ∪B)−1 = A−1 ∪B−1.
(33) (A ∩B)−1 = A−1 ∩B−1.
(34) (A \B)−1 = A−1 \B−1.
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(35) (A−. B)−1 = A−1−. B−1.
(36) 	(A−1) = (	A)−1.
(37) {a}−1 = {a−1}.
(38) {a, b}−1 = {a−1, b−1}.
Let F , G be extended real-membered sets. The functor F ⊕G is defined as

follows:

(Def. 5) F ⊕G = {w1 + w2 : w1 ∈ F ∧ w2 ∈ G}.
Let us note that the functor F ⊕G is commutative.
Next we state the proposition

(39) If f ∈ F and g ∈ G, then f + g ∈ F ⊕G.
Let F be an empty set and let G be an extended real-membered set. Observe

that F ⊕G is empty and G⊕ F is empty.
Let F , G be extended real-membered non empty sets. One can check that

F ⊕G is non empty.
Let F , G be extended real-membered sets. Observe that F ⊕G is extended

real-membered.
Next we state several propositions:

(40) If F ⊆ G and H ⊆ I, then F ⊕H ⊆ G⊕ I.
(41) F ⊕ (G ∪H) = (F ⊕G) ∪ (F ⊕H).
(42) F ⊕G ∩H ⊆ (F ⊕G) ∩ (F ⊕H).
(43) {f} ⊕ {g} = {f + g}.
(44) {f} ⊕ {g, h} = {f + g, f + h}.
(45) {f, g} ⊕ {h, i} = {f + h, f + i, g + h, g + i}.
Let A, B be complex-membered sets. The functor A⊕B is defined by:

(Def. 6) A⊕B = {c1 + c2 : c1 ∈ A ∧ c2 ∈ B}.
Let us note that the functor A⊕B is commutative.
Next we state the proposition

(46) If a ∈ A and b ∈ B, then a+ b ∈ A⊕B.
Let A be an empty set and let B be a complex-membered set. One can check

that A⊕B is empty and B ⊕A is empty.
Let A, B be complex-membered non empty sets. Note that A ⊕ B is non

empty.
Let A, B be complex-membered sets. One can check that A⊕B is complex-

membered.
Let A, B be real-membered sets. Observe that A⊕B is real-membered.
LetA,B be rational-membered sets. Observe thatA⊕B is rational-membered.
Let A, B be integer-membered sets. One can verify that A ⊕ B is integer-

membered.
LetA,B be natural-membered sets. Observe thatA⊕B is natural-membered.
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Let A, B be real-membered sets and let F , G be extended real-membered
sets. Observe that A⊕B and F ⊕G can be identified when A = F and B = G.
We now state several propositions:

(47) If A ⊆ B and C ⊆ D, then A⊕ C ⊆ B ⊕D.
(48) A⊕ (B ∪ C) = (A⊕B) ∪ (A⊕ C).
(49) A⊕B ∩ C ⊆ (A⊕B) ∩ (A⊕ C).
(50) (A⊕B)⊕ C = A⊕ (B ⊕ C).
(51) {a} ⊕ {b} = {a+ b}.
(52) {a} ⊕ {s, t} = {a+ s, a+ t}.
(53) {a, b} ⊕ {s, t} = {a+ s, a+ t, b+ s, b+ t}.
Let F , G be extended real-membered sets. The functor F 	G is defined by:

(Def. 7) F 	G = F ⊕	G.
Next we state two propositions:

(54) F 	G = {w1 − w2 : w1 ∈ F ∧ w2 ∈ G}.
(55) If f ∈ F and g ∈ G, then f − g ∈ F 	G.
Let F be an empty set and let G be an extended real-membered set. Note

that F 	G is empty and G	 F is empty.
Let F , G be extended real-membered non empty sets. Observe that F 	G

is non empty.
Let F , G be extended real-membered sets. Note that F 	 G is extended

real-membered.
One can prove the following propositions:

(56) If F ⊆ G and H ⊆ I, then F 	H ⊆ G	 I.
(57) F 	 (G ∪H) = (F 	G) ∪ (F 	H).
(58) F 	G ∩H ⊆ (F 	G) ∩ (F 	H).
(59) 	(F ⊕G) = 	F 	G.
(60) 	(F 	G) = 	F ⊕G.
(61) {f} 	 {g} = {f − g}.
(62) {f} 	 {h, i} = {f − h, f − i}.
(63) {f, g} 	 {h} = {f − h, g − h}.
(64) {f, g} 	 {h, i} = {f − h, f − i, g − h, g − i}.
Let A, B be complex-membered sets. The functor A	B is defined by:

(Def. 8) A	B = A⊕	B.
Next we state two propositions:

(65) A	B = {c1 − c2 : c1 ∈ A ∧ c2 ∈ B}.
(66) If a ∈ A and b ∈ B, then a− b ∈ A	B.
Let A be an empty set and let B be a complex-membered set. One can check

that A	B is empty and B 	A is empty.
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Let A, B be complex-membered non empty sets. One can verify that A	B
is non empty.
Let A, B be complex-membered sets. One can verify that A	B is complex-

membered.
Let A, B be real-membered sets. Note that A	B is real-membered.
Let A, B be rational-membered sets. One can verify that A	B is rational-

membered.
Let A, B be integer-membered sets. One can check that A 	 B is integer-

membered.
Let A, B be real-membered sets and let F , G be extended real-membered

sets. One can check that A 	 B and F 	G can be identified when A = F and
B = G.
The following propositions are true:

(67) If A ⊆ B and C ⊆ D, then A	 C ⊆ B 	D.
(68) A	 (B ∪ C) = (A	B) ∪ (A	 C).
(69) A	B ∩ C ⊆ (A	B) ∩ (A	 C).
(70) 	(A⊕B) = 	A	B.
(71) 	(A	B) = 	A⊕B.
(72) A⊕ (B 	 C) = (A⊕B)	 C.
(73) A	 (B ⊕ C) = A	B 	 C.
(74) A	 (B 	 C) = (A	B)⊕ C.
(75) {a} 	 {b} = {a− b}.
(76) {a} 	 {s, t} = {a− s, a− t}.
(77) {a, b} 	 {s} = {a− s, b− s}.
(78) {a, b} 	 {s, t} = {a− s, a− t, b− s, b− t}.
Let F , G be extended real-membered sets. The functor F ◦ G is defined as

follows:

(Def. 9) F ◦G = {w1 · w2 : w1 ∈ F ∧ w2 ∈ G}.
Let us observe that the functor F ◦G is commutative.
Let F be an empty set and let G be an extended real-membered set. One

can verify that F ◦G is empty and G ◦ F is empty.
Let F , G be extended real-membered sets. Note that F ◦ G is extended

real-membered.
Next we state the proposition

(79) If f ∈ F and g ∈ G, then f · g ∈ F ◦G.
Let F , G be extended real-membered non empty sets. Observe that F ◦G is

non empty.
One can prove the following propositions:

(80) (F ◦G) ◦H = F ◦ (G ◦H).



collective operations on number-membered sets 105

(81) If F ⊆ G and H ⊆ I, then F ◦H ⊆ G ◦ I.
(82) F ◦ (G ∪H) = F ◦G ∪ F ◦H.
(83) F ◦ (G ∩H) ⊆ (F ◦G) ∩ (F ◦H).
(84) F ◦ 	G = 	(F ◦G).
(85) (F ◦G)−1 = F−1 ◦G−1.
(86) {f} ◦ {g} = {f · g}.
(87) {f} ◦ {h, i} = {f · h, f · i}.
(88) {f, g} ◦ {h, i} = {f · h, f · i, g · h, g · i}.
Let A, B be complex-membered sets. The functor A◦B is defined as follows:

(Def. 10) A ◦B = {c1 · c2 : c1 ∈ A ∧ c2 ∈ B}.
Let us notice that the functor A ◦B is commutative.
One can prove the following proposition

(89) If a ∈ A and b ∈ B, then a · b ∈ A ◦B.
Let A be an empty set and let B be a complex-membered set. Note that

A ◦B is empty and B ◦A is empty.
Let A, B be complex-membered non empty sets. Note that A ◦ B is non

empty.
Let A, B be complex-membered sets. Note that A◦B is complex-membered.
Let A, B be real-membered sets. Note that A ◦B is real-membered.
LetA,B be rational-membered sets. Observe thatA◦B is rational-membered.
Let A, B be integer-membered sets. Observe that A◦B is integer-membered.
Let A, B be natural-membered sets. Observe that A◦B is natural-membered.
Let A, B be real-membered sets and let F , G be extended real-membered

sets. Note that A ◦B and F ◦G can be identified when A = F and B = G.
The following propositions are true:

(90) (A ◦B) ◦ C = A ◦ (B ◦ C).
(91) If A ⊆ B and C ⊆ D, then A ◦ C ⊆ B ◦D.
(92) A ◦ (B ∪ C) = A ◦B ∪A ◦ C.
(93) A ◦ (B ∩ C) ⊆ (A ◦B) ∩ (A ◦ C).
(94) A ◦ 	B = 	(A ◦B).
(95) A ◦ (B ⊕ C) ⊆ A ◦B ⊕A ◦ C.
(96) A ◦ (B 	 C) ⊆ A ◦B 	A ◦ C.
(97) (A ◦B)−1 = A−1 ◦B−1.
(98) {a} ◦ {b} = {a · b}.
(99) {a} ◦ {s, t} = {a · s, a · t}.
(100) {a, b} ◦ {s, t} = {a · s, a · t, b · s, b · t}.
Let F , G be extended real-membered sets. The functor F �G is defined as

follows:
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(Def. 11) F �G = F ◦G−1.
We now state two propositions:

(101) F �G = {w1w2 : w1 ∈ F ∧ w2 ∈ G}.

(102) If f ∈ F and g ∈ G, then fg ∈ F �G.
Let F be an empty set and let G be an extended real-membered set. One

can verify that F �G is empty and G� F is empty.
Let F , G be extended real-membered non empty sets. One can verify that

F �G is non empty.
Let F , G be extended real-membered sets. One can verify that F � G is

extended real-membered.
Next we state a number of propositions:

(103) If F ⊆ G and H ⊆ I, then F �H ⊆ G� I.
(104) (F ∪G)�H = (F �H) ∪ (G�H).
(105) F ∩G�H ⊆ (F �H) ∩ (G�H).
(106) F � (G ∪H) = (F �G) ∪ (F �H).
(107) F �G ∩H ⊆ (F �G) ∩ (F �H).
(108) F ◦G�H = F ◦ (G�H).
(109) (F �G) ◦H = F ◦H �G.
(110) F �G�H = F �G ◦H.
(111) {f} � {g} = {fg }.

(112) {f} � {h, i} = {fh ,
f
i }.

(113) {f, g} � {h} = {fh ,
g
h}.

(114) {f, g} � {h, i} = {fh ,
f
i ,
g
h ,
g
i }.

Let A, B be complex-membered sets. The functor A�B is defined by:
(Def. 12) A�B = A ◦B−1.

We now state two propositions:

(115) A�B = { c1c2 : c1 ∈ A ∧ c2 ∈ B}.
(116) If a ∈ A and b ∈ B, then ab ∈ A�B.
Let A be an empty set and let B be a complex-membered set. One can check

that A�B is empty and B �A is empty.
Let A, B be complex-membered non empty sets. Note that A � B is non

empty.
Let A, B be complex-membered sets. Note that A�B is complex-membered.
Let A, B be real-membered sets. Observe that A�B is real-membered.
Let A, B be rational-membered sets. One can check that A�B is rational-

membered.
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Let A, B be real-membered sets and let F , G be extended real-membered
sets. One can check that A � B and F �G can be identified when A = F and
B = G.
We now state a number of propositions:

(117) If A ⊆ B and C ⊆ D, then A� C ⊆ B �D.
(118) A� (B ∪ C) = (A�B) ∪ (A� C).
(119) A�B ∩ C ⊆ (A�B) ∩ (A� C).
(120) A�	B = 	(A�B).
(121) 	A�B = 	(A�B).
(122) (A⊕B)� C ⊆ (A� C)⊕ (B � C).
(123) (A	B)� C ⊆ (A� C)	 (B � C).
(124) A ◦B � C = A ◦ (B � C).
(125) (A�B) ◦ C = A ◦ C �B.
(126) A�B � C = A�B ◦ C.
(127) A� (B � C) = A ◦ C �B.
(128) {a} � {b} = {ab}.
(129) {a} � {s, t} = {as ,

a
t }.

(130) {a, b} � {s} = {as ,
b
s}.

(131) {a, b} � {s, t} = {as ,
a
t ,
b
s ,
b
t}.

Let F be an extended real-membered set and let f be an extended real
number. The functor f ⊕ F is defined as follows:

(Def. 13) f ⊕ F = {f} ⊕ F.
We now state three propositions:

(132) If g ∈ G, then f + g ∈ f ⊕G.
(133) f ⊕ F = {f + w : w ∈ F}.
(134) If e ∈ f ⊕ F, then there exists w such that e = f + w and w ∈ F.
Let F be an empty set and let f be an extended real number. One can check

that f ⊕ F is empty.
Let F be an extended real-membered non empty set and let f be an extended

real number. Observe that f ⊕ F is non empty.
Let F be an extended real-membered set and let f be an extended real

number. One can check that f ⊕ F is extended real-membered.
Next we state several propositions:

(135) If r ⊕ F ⊆ r ⊕G, then F ⊆ G.
(136) If r ⊕ F = r ⊕G, then F = G.
(137) r ⊕ F ∩G = (r ⊕ F ) ∩ (r ⊕G).
(138) (f ⊕ F ) \ (f ⊕G) ⊆ f ⊕ (F \G).
(139) r ⊕ (F \G) = (r ⊕ F ) \ (r ⊕G).
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(140) r ⊕ (F−. G) = (r ⊕ F )−. (r ⊕G).
Let A be a complex-membered set and let a be a complex number. The

functor a⊕A is defined as follows:
(Def. 14) a⊕A = {a} ⊕A.

We now state three propositions:

(141) If b ∈ A, then a+ b ∈ a⊕A.
(142) a⊕A = {a+ c : c ∈ A}.
(143) If e ∈ a⊕A, then there exists c such that e = a+ c and c ∈ A.
Let A be an empty set and let a be a complex number. Observe that a⊕A

is empty.
Let A be a complex-membered non empty set and let a be a complex number.

Note that a⊕A is non empty.
Let A be a complex-membered set and let a be a complex number. Observe

that a⊕A is complex-membered.
Let A be a real-membered set and let a be a real number. One can verify

that a⊕A is real-membered.
Let A be a rational-membered set and let a be a rational number. Note that

a⊕A is rational-membered.
Let A be an integer-membered set and let a be an integer number. One can

verify that a⊕A is integer-membered.
Let A be a natural-membered set and let a be a natural number. Note that

a⊕A is natural-membered.
Let A be a real-membered set, let F be an extended real-membered set, let

a be a real number, and let f be an extended real number. Note that a⊕A and
f ⊕ F can be identified when a = f and A = F .
We now state several propositions:

(144) A ⊆ B iff a⊕A ⊆ a⊕B.
(145) If a⊕A = a⊕B, then A = B.
(146) 0⊕A = A.
(147) (a+ b)⊕A = a⊕ (b⊕A).
(148) a⊕ (A⊕B) = (a⊕A)⊕B.
(149) a⊕A ∩B = (a⊕A) ∩ (a⊕B).
(150) a⊕ (A \B) = (a⊕A) \ (a⊕B).
(151) a⊕ (A−. B) = (a⊕A)−. (a⊕B).
Let F be an extended real-membered set and let f be an extended real

number. The functor f 	 F is defined by:
(Def. 15) f 	 F = {f} 	 F.

The following propositions are true:

(152) If g ∈ G, then f − g ∈ f 	G.
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(153) f 	 F = {f − w : w ∈ F}.
(154) If e ∈ f 	 F, then there exists w such that e = f − w and w ∈ F.
Let F be an empty set and let f be an extended real number. One can check

that f 	 F is empty.
Let F be an extended real-membered non empty set and let f be an extended

real number. One can verify that f 	 F is non empty.
Let F be an extended real-membered set and let f be an extended real

number. Observe that f 	 F is extended real-membered.
We now state several propositions:

(155) If r 	 F ⊆ r 	G, then F ⊆ G.
(156) If r 	 F = r 	G, then F = G.
(157) r 	 F ∩G = (r 	 F ) ∩ (r 	G).
(158) r 	 (F \G) = (r 	 F ) \ (r 	G).
(159) r 	 (F−. G) = (r 	 F )−. (r 	G).
Let A be a complex-membered set and let a be a complex number. The

functor a	A is defined as follows:
(Def. 16) a	A = {a} 	A.

Next we state three propositions:

(160) If b ∈ A, then a− b ∈ a	A.
(161) a	A = {a− c : c ∈ A}.
(162) If e ∈ a	A, then there exists c such that e = a− c and c ∈ A.
Let A be an empty set and let a be a complex number. One can verify that

a	A is empty.
Let A be a complex-membered non empty set and let a be a complex number.

Note that a	A is non empty.
Let A be a complex-membered set and let a be a complex number. Note

that a	A is complex-membered.
Let A be a real-membered set and let a be a real number. Note that a	 A

is real-membered.
Let A be a rational-membered set and let a be a rational number. Note that

a	A is rational-membered.
Let A be an integer-membered set and let a be an integer number. Observe

that a	A is integer-membered.
Let A be a real-membered set, let F be an extended real-membered set, let

a be a real number, and let f be an extended real number. Observe that a	A
and f 	 F can be identified when a = f and A = F .
Next we state several propositions:

(163) A ⊆ B iff a	A ⊆ a	B.
(164) If a	A = a	B, then A = B.
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(165) a	A ∩B = (a	A) ∩ (a	B).
(166) a	 (A \B) = (a	A) \ (a	B).
(167) a	 (A−. B) = (a	A)−. (a	B).
Let F be an extended real-membered set and let f be an extended real

number. The functor F 	 f is defined as follows:
(Def. 17) F 	 f = F 	 {f}.

One can prove the following three propositions:

(168) If g ∈ G, then g − f ∈ G	 f.
(169) F 	 f = {w − f : w ∈ F}.
(170) If e ∈ F 	 f, then there exists w such that e = w − f and w ∈ F.
Let F be an empty set and let f be an extended real number. One can verify

that F 	 f is empty.
Let F be an extended real-membered non empty set and let f be an extended

real number. Observe that F 	 f is non empty.
Let F be an extended real-membered set and let f be an extended real

number. Note that F 	 f is extended real-membered.
One can prove the following propositions:

(171) F 	 f = 	(f 	 F ).
(172) f 	 F = 	(F 	 f).
(173) F ∩G	 r = (F 	 r) ∩ (G	 r).
(174) (F \G)	 r = (F 	 r) \ (G	 r).
(175) (F−. G)	 r = (F 	 r)−. (G	 r).
Let A be a complex-membered set and let a be a complex number. The

functor A	 a is defined by:
(Def. 18) A	 a = A	 {a}.

Next we state three propositions:

(176) If b ∈ A, then b− a ∈ A	 a.
(177) A	 a = {c− a : c ∈ A}.
(178) If e ∈ A	 a, then there exists c such that e = c− a and c ∈ A.
Let A be an empty set and let a be a complex number. Observe that A	 a

is empty.
Let A be a complex-membered non empty set and let a be a complex number.

Observe that A	 a is non empty.
Let A be a complex-membered set and let a be a complex number. Observe

that A	 a is complex-membered.
Let A be a real-membered set and let a be a real number. Note that A	 a

is real-membered.
Let A be a rational-membered set and let a be a rational number. Note that

A	 a is rational-membered.
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Let A be an integer-membered set and let a be an integer number. One can
verify that A	 a is integer-membered.
Let A be a real-membered set, let F be an extended real-membered set, let

a be a real number, and let f be an extended real number. One can verify that
A	 a and F 	 f can be identified when a = f and A = F .
Next we state several propositions:

(179) A ⊆ B iff A	 a ⊆ B 	 a.
(180) If A	 a = B 	 a, then A = B.
(181) A	 a = 	(a	A).
(182) a	A = 	(A	 a).
(183) A ∩B 	 a = (A	 a) ∩ (B 	 a).
(184) (A \B)	 a = (A	 a) \ (B 	 a).
(185) (A−. B)	 a = (A	 a)−. (B 	 a).
Let F be an extended real-membered set and let f be an extended real

number. The functor f ◦ F is defined as follows:
(Def. 19) f ◦ F = {f} ◦ F.

The following three propositions are true:

(186) If g ∈ G, then f · g ∈ f ◦G.
(187) f ◦ F = {f · w : w ∈ F}.
(188) If e ∈ f ◦ F, then there exists w such that e = f · w and w ∈ F.
Let F be an empty set and let f be an extended real number. Observe that

f ◦ F is empty.
Let F be an extended real-membered non empty set and let f be an extended

real number. One can verify that f ◦ F is non empty.
Let F be an extended real-membered set and let f be an extended real

number. Note that f ◦ F is extended real-membered.
One can prove the following four propositions:

(189) If r 6= 0, then r ◦ (F ∩G) = (r ◦ F ) ∩ (r ◦G).
(190) f ◦ F \ f ◦G ⊆ f ◦ (F \G).
(191) If r 6= 0, then r ◦ (F \G) = r ◦ F \ r ◦G.
(192) If r 6= 0, then r ◦ (F−. G) = r ◦ F−. r ◦G.
Let A be a complex-membered set and let a be a complex number. The

functor a ◦A is defined as follows:
(Def. 20) a ◦A = {a} ◦A.

We now state three propositions:

(193) If b ∈ A, then a · b ∈ a ◦A.
(194) a ◦A = {a · c : c ∈ A}.
(195) If e ∈ a ◦A, then there exists c such that e = a · c and c ∈ A.
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Let A be an empty set and let a be a complex number. Note that a ◦ A is
empty.
Let A be a complex-membered non empty set and let a be a complex number.

One can verify that a ◦A is non empty.
Let A be a complex-membered set and let a be a complex number. Note

that a ◦A is complex-membered.
Let A be a real-membered set and let a be a real number. Note that a ◦ A

is real-membered.
Let A be a rational-membered set and let a be a rational number. Observe

that a ◦A is rational-membered.
Let A be an integer-membered set and let a be an integer number. Note that

a ◦A is integer-membered.
Let A be a natural-membered set and let a be a natural number. One can

check that a ◦A is natural-membered.
Let A be a real-membered set, let F be an extended real-membered set, let

a be a real number, and let f be an extended real number. Note that a ◦A and
f ◦ F can be identified when a = f and A = F .
One can prove the following propositions:

(196) If a 6= 0 and a ◦A ⊆ a ◦B, then A ⊆ B.
(197) If a 6= 0 and a ◦A = a ◦B, then A = B.
(198) If a 6= 0, then a ◦ (A ∩B) = (a ◦A) ∩ (a ◦B).
(199) If a 6= 0, then a ◦ (A \B) = a ◦A \ a ◦B.
(200) If a 6= 0, then a ◦ (A−. B) = a ◦A−. a ◦B.
(201) 0 ◦A ⊆ {0}.
(202) If A 6= ∅, then 0 ◦A = {0}.
(203) 1 ◦A = A.
(204) (a · b) ◦A = a ◦ (b ◦A).
(205) a ◦ (A ◦B) = (a ◦A) ◦B.
(206) (a+ b) ◦A ⊆ a ◦A⊕ b ◦A.
(207) (a− b) ◦A ⊆ a ◦A	 b ◦A.
(208) a ◦ (B ⊕ C) = a ◦B ⊕ a ◦ C.
(209) a ◦ (B 	 C) = a ◦B 	 a ◦ C.
Let F be an extended real-membered set and let f be an extended real

number. The functor f � F is defined by:
(Def. 21) f � F = {f} � F.

We now state three propositions:

(210) If g ∈ G, then fg ∈ f �G.

(211) f � F = { fw : w ∈ F}.
(212) If e ∈ f � F, then there exists w such that e = fw and w ∈ F.
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Let F be an empty set and let f be an extended real number. Note that
f � F is empty.
Let F be an extended real-membered non empty set and let f be an extended

real number. One can verify that f � F is non empty.
Let F be an extended real-membered set and let f be an extended real

number. Observe that f � F is extended real-membered.
Let A be a complex-membered set and let a be a complex number. The

functor a�A is defined by:
(Def. 22) a�A = {a} �A.

One can prove the following three propositions:

(213) If b ∈ A, then ab ∈ a�A.
(214) a�A = {ac : c ∈ A}.
(215) If e ∈ a�A, then there exists c such that e = ac and c ∈ A.
Let A be an empty set and let a be a complex number. One can check that

a�A is empty.
Let A be a complex-membered non empty set and let a be a complex number.

Note that a�A is non empty.
Let A be a complex-membered set and let a be a complex number. One can

check that a�A is complex-membered.
Let A be a real-membered set and let a be a real number. One can check

that a�A is real-membered.
Let A be a rational-membered set and let a be a rational number. One can

verify that a�A is rational-membered.
Let A be a real-membered set, let F be an extended real-membered set, let

a be a real number, and let f be an extended real number. Observe that a�A
and f � F can be identified when a = f and A = F .
The following propositions are true:

(216) If a 6= 0 and a�A ⊆ a�B, then A ⊆ B.
(217) If a 6= 0 and a�A = a�B, then A = B.
(218) If a 6= 0, then a�A ∩B = (a�A) ∩ (a�B).
(219) If a 6= 0, then a� (A \B) = (a�A) \ (a�B).
(220) If a 6= 0, then a� (A−. B) = (a�A)−. (a�B).
(221) (a+ b)�A ⊆ (a�A)⊕ (b�A).
(222) (a− b)�A ⊆ (a�A)	 (b�A).
Let F be an extended real-membered set and let f be an extended real

number. The functor F � f is defined by:
(Def. 23) F � f = F � {f}.

We now state three propositions:

(223) If g ∈ G, then gf ∈ G� f.
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(224) F � f = {wf : w ∈ F}.
(225) If e ∈ F � f, then there exists w such that e = wf and w ∈ F.

Let F be an empty set and let f be an extended real number. Note that
F � f is empty.
Let F be an extended real-membered non empty set and let f be an extended

real number. Observe that F � f is non empty.
Let F be an extended real-membered set and let f be an extended real

number. Note that F � f is extended real-membered.
Let A be a complex-membered set and let a be a complex number. The

functor A� a is defined by:

(Def. 24) A� a = A� {a}.
One can prove the following three propositions:

(226) If b ∈ A, then ba ∈ A� a.
(227) A� a = { ca : c ∈ A}.
(228) If e ∈ A� a, then there exists c such that e = ca and c ∈ A.

Let A be an empty set and let a be a complex number. Note that A � a is
empty.
Let A be a complex-membered non empty set and let a be a complex number.

Note that A� a is non empty.
Let A be a complex-membered set and let a be a complex number. One can

check that A� a is complex-membered.
Let A be a real-membered set and let a be a real number. One can check

that A� a is real-membered.
Let A be a rational-membered set and let a be a rational number. Observe

that A� a is rational-membered.
Let A be a real-membered set, let F be an extended real-membered set, let

a be a real number, and let f be an extended real number. Note that A� a and
F � f can be identified when a = f and A = F .
The following propositions are true:

(229) If a 6= 0 and A� a ⊆ B � a, then A ⊆ B.
(230) If a 6= 0 and A� a = B � a, then A = B.
(231) If a 6= 0, then A ∩B � a = (A� a) ∩ (B � a).
(232) If a 6= 0, then (A \B)� a = (A� a) \ (B � a).
(233) If a 6= 0, then (A−. B)� a = (A� a)−. (B � a).
(234) (A⊕B)� a = (A� a)⊕ (B � a).
(235) (A	B)� a = (A� a)	 (B � a).
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Summary. In this article, the principal n-th root of a complex number is
defined, the Vieta’s formulas for polynomial equations of degree 2, 3 and 4 are
formalized. The solution of quadratic equations, the Cardan’s solution of cubic
equations and the Descartes-Euler solution of quartic equations in terms of their
complex coefficients are also presented [5].

MML identifier: POLYEQ 5, version: 7.11.02 4.120.1050

The articles [11], [1], [4], [2], [10], [6], [8], [9], [12], [7], and [3] provide the notation
and terminology for this paper.

1. Preliminaries

In this paper a, b denote complex numbers.
The following propositions are true:

(1) a · a = a2.
(2) a · a · a = a3.
(3) a · a · a · a = a4.
(4) (a− b)2 = (a2 − 2 · a · b) + b2.
(5) (a− b)3 = ((a3 − 3 · a2 · b) + 3 · b2 · a)− b3.
(6) (a− b)4 = (((a4 − 4 · a3 · b) + 6 · a2 · b2)− 4 · b3 · a) + b4.
Let n be a natural number and let r be a real number. We introduce r1/n

as a synonym of n
√
r.

Let n be a non zero natural number and let z be a complex number. The
functor n

√
z yielding a complex number is defined as follows:

(Def. 1) n
√
z = |z|1/n · (cos(Arg zn ) + sin(

Arg z
n ) · i).
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In the sequel z is a complex number and n0 is a non zero natural number.
The following propositions are true:

(7) n0
√
z
n0 = z.

(8) For every real number r such that r ≥ 0 holds n0
√
r = r1/n0 .

(9) For every real number r such that r > 0 holds n0
√
z
r =

n0
√
z

n0
√
r
.

(10) z2 = a iff z = 2
√
a or z = − 2

√
a.

2. Solution of Quadratic Equations

In the sequel a0, a1, a2, s1, s2 denote complex numbers.
We now state two propositions:

(11) If a1 = −(s1 + s2) and a0 = s1 · s2, then z2+ a1 · z+ a0 = 0 iff z = s1 or
z = s2.

(12) If a2 6= 0, then a2 · z2 + a1 · z + a0 = 0 iff z = − a12·a2 +
2
√
∆(a0,a1,a2)
2·a2 or

z = − a12·a2 −
2
√
∆(a0,a1,a2)
2·a2 .

3. Solution of Cubic Equations

In the sequel a3, x, q, r, s, s3 are complex numbers.
We now state four propositions:

(13) Suppose z = x − a23 and q =
3·a1−a22
9 and r = 9·a2·a1−2·a2

3−27·a0
54 . Then

z3 + a2 · z2 + a1 · z + a0 = 0 if and only if (x3 + 3 · q · x)− 2 · r = 0.
(14) If a2 = −(s1 + s2 + s3) and a1 = s1 · s2 + s1 · s3 + s2 · s3 and a0 =
−s1 · s2 · s3, then z3+a2 ·z2+a1 ·z+a0 = 0 iff z = s1 or z = s2 or z = s3.

(15) Suppose q = 3·a1−a22
9 and q 6= 0 and r = 9·a2·a1−2·a23−27·a0

54 and s =
2
√
q3 + r2 and s1 = 3

√
r + s and s2 = − qs1 . Then z

3+a2 · z2+a1 · z+a0 = 0
if and only if one of the following conditions is satisfied:
(i) z = (s1 + s2)− a23 , or
(ii) z = (− s1+s22 −

a2
3 ) +

(s1−s2)· 2
√
3·i

2 , or

(iii) z = − s1+s22 −
a2
3 −

(s1−s2)· 2
√
3·i

2 .

(16) Suppose q = 3·a1−a22
9 and q = 0 and r = 9·a2·a1−2·a23−27·a0

54 and s1 =
3
√
2 · r. Then z3+ a2 · z2+ a1 · z+ a0 = 0 if and only if one of the following
conditions is satisfied:
(i) z = s1 − a23 , or
(ii) z = (− s12 −

a2
3 ) +

s1· 2
√
3·i
2 , or

(iii) z = − s12 −
a2
3 −

s1· 2
√
3·i
2 .
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Let a0, a1, a2 be complex numbers. The functor ρ1(a0, a1, a2) yielding a
complex number is defined as follows:

(Def. 2)(i) There exist r, s1 such that r = 9·a2·a1−2·a2
3−27·a0

54 and s1 =
3
√
2 · r and

ρ1(a0, a1, a2) = s1 − a23 if 3 · a1 − a2
2 = 0,

(ii) there exist q, r, s, s1, s2 such that q = 3·a1−a22
9 and r =

9·a2·a1−2·a23−27·a0
54 and s = 2

√
q3 + r2 and s1 = 3

√
r + s and s2 = − qs1 and

ρ1(a0, a1, a2) = (s1 + s2)− a23 , otherwise.
The functor ρ2(a0, a1, a2) yielding a complex number is defined as follows:

(Def. 3)(i) There exist r, s1 such that r = 9·a2·a1−2·a2
3−27·a0

54 and s1 =
3
√
2 · r and

ρ2(a0, a1, a2) = (− s12 −
a2
3 ) +

s1· 2
√
3·i
2 if 3 · a1 − a22 = 0,

(ii) there exist q, r, s, s1, s2 such that q = 3·a1−a22
9 and r =

9·a2·a1−2·a23−27·a0
54 and s = 2

√
q3 + r2 and s1 = 3

√
r + s and s2 = − qs1 and

ρ2(a0, a1, a2) = (− s1+s22 −
a2
3 ) +

(s1−s2)· 2
√
3·i

2 , otherwise.

The functor ρ3(a0, a1, a2) yielding a complex number is defined as follows:

(Def. 4)(i) There exist r, s1 such that r = 9·a2·a1−2·a2
3−27·a0

54 and s1 =
3
√
2 · r and

ρ3(a0, a1, a2) = − s12 −
a2
3 −

s1· 2
√
3·i
2 if 3 · a1 − a22 = 0,

(ii) there exist q, r, s, s1, s2 such that q = 3·a1−a22
9 and r =

9·a2·a1−2·a23−27·a0
54 and s = 2

√
q3 + r2 and s1 = 3

√
r + s and s2 = − qs1 and

ρ3(a0, a1, a2) = − s1+s22 −
a2
3 −

(s1−s2)· 2
√
3·i

2 , otherwise.

Next we state four propositions:

(17) ρ1(a0, a1, a2) + ρ2(a0, a1, a2) + ρ3(a0, a1, a2) = −a2.
(18) ρ1(a0, a1, a2) ·ρ2(a0, a1, a2)+ρ1(a0, a1, a2) ·ρ3(a0, a1, a2)+ρ2(a0, a1, a2) ·
ρ3(a0, a1, a2) = a1.

(19) ρ1(a0, a1, a2) · ρ2(a0, a1, a2) · ρ3(a0, a1, a2) = −a0.
(20) If a3 6= 0, then a3 · z3 + a2 · z2 + a1 · z + a0 = 0 iff z = ρ1(a0a3 ,

a1
a3
, a2a3 ) or

z = ρ2(a0a3 ,
a1
a3
, a2a3 ) or z = ρ3(

a0
a3
, a1a3 ,

a2
a3
).

4. Solution of Quartic Equations

In the sequel a4, p, s4 denote complex numbers.
The following propositions are true:

(21) Suppose z = x − a34 and p =
8·a2−3·a32
32 and q = (8·a1−4·a2·a3)+a3

3

64 and

r = ((256·a0−64·a3·a1)+16·a3
2·a2)−3·a34

1024 . Then z4+a3 ·z3+a2 ·z2+a1 ·z+a0 = 0
if and only if x4 + 4 · p · x2 + 8 · q · x+ 4 · r = 0.

(22) Suppose a3 = −(s1 + s2 + s3 + s4) and a2 = s1·s2+s1·s3+s1·s4+s2·s3+
s2 ·s4+s3 ·s4 and a1 = −(s1 · s2 · s3 + s1 · s2 · s4 + s1 · s3 · s4 + s2 · s3 · s4)
and a0 = s1 · s2 · s3 · s4. Then z4 + a3 · z3 + a2 · z2 + a1 · z + a0 = 0 if and
only if z = s1 or z = s2 or z = s3 or z = s4.
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(23) Suppose q 6= 0 and s1 = 2
√
ρ1(−q2, p2 − r, 2 · p) and s2 =

2
√
ρ2(−q2, p2 − r, 2 · p) and s3 = − q

s1·s2 . Then z
4+4 ·p ·z2+8 ·q ·z+4 ·r = 0

if and only if z = s1 + s2 + s3 or z = s1 − s2 − s3 or z = (−s1 + s2)− s3
or z = (−s1 − s2) + s3.

(24) Suppose that p = 8·a2−3·a32
32 and q = (8·a1−4·a2·a3)+a33

64 and q 6= 0 and
r = ((256·a0−64·a3·a1)+16·a32·a2)−3·a34

1024 and s1 = 2
√
ρ1(−q2, p2 − r, 2 · p) and

s2 = 2
√
ρ2(−q2, p2 − r, 2 · p) and s3 = − q

s1·s2 . Then z
4 + a3 · z3 + a2 · z2 +

a1 · z+a0 = 0 if and only if z = (s1+ s2+ s3)− a34 or z = s1− s2− s3−
a3
4

or z = (−s1 + s2)− s3 − a34 or z = ((−s1 − s2) + s3)−
a3
4 .

(25) Suppose p = 8·a2−3·a32
32 and q = (8·a1−4·a2·a3)+a33

64 and q = 0 and r =
((256·a0−64·a3·a1)+16·a32·a2)−3·a34

1024 and s1 = 2
√
p2 − r. Then z4 + a3 · z3 + a2 ·

z2+a1 ·z+a0 = 0 if and only if one of the following conditions is satisfied:
(i) z = 2

√
−2 · (p− s1)− a34 , or

(ii) z = − 2
√
−2 · (p− s1)− a34 , or

(iii) z = 2
√
−2 · (p+ s1)− a34 , or

(iv) z = − 2
√
−2 · (p+ s1)− a34 .

Let a0, a1, a2, a3 be complex numbers. The functor ρ1(a0, a1, a2, a3) yielding
a complex number is defined by:

(Def. 5)(i) There exist p, r, s1 such that p = 8·a2−3·a32
32 and r =

((256·a0−64·a3·a1)+16·a32·a2)−3·a34
1024 and s1 = 2

√
p2 − r and ρ1(a0, a1, a2, a3) =

2
√
−2 · (p− s1)− a34 if (8 · a1 − 4 · a2 · a3) + a3

3 = 0,

(ii) there exist p, q, r, s1, s2, s3 such that p = 8·a2−3·a32
32 and

q = (8·a1−4·a2·a3)+a33
64 and r = ((256·a0−64·a3·a1)+16·a32·a2)−3·a34

1024 and s1 =
2
√
ρ1(−q2, p2 − r, 2 · p) and s2 = 2

√
ρ2(−q2, p2 − r, 2 · p) and s3 = − q

s1·s2
and ρ1(a0, a1, a2, a3) = (s1 + s2 + s3)− a34 , otherwise.

The functor ρ2(a0, a1, a2, a3) yielding a complex number is defined by:

(Def. 6)(i) There exist p, r, s1 such that p = 8·a2−3·a32
32 and r =

((256·a0−64·a3·a1)+16·a32·a2)−3·a34
1024 and s1 = 2

√
p2 − r and ρ2(a0, a1, a2, a3) =

− 2
√
−2 · (p− s1)− a34 if (8 · a1 − 4 · a2 · a3) + a3

3 = 0,

(ii) there exist p, q, r, s1, s2, s3 such that p = 8·a2−3·a32
32 and

q = (8·a1−4·a2·a3)+a33
64 and r = ((256·a0−64·a3·a1)+16·a32·a2)−3·a34

1024 and s1 =
2
√
ρ1(−q2, p2 − r, 2 · p) and s2 = 2

√
ρ2(−q2, p2 − r, 2 · p) and s3 = − q

s1·s2
and ρ2(a0, a1, a2, a3) = ((−s1 − s2) + s3)− a34 , otherwise.

The functor ρ3(a0, a1, a2, a3) yielding a complex number is defined by:

(Def. 7)(i) There exist p, r, s1 such that p = 8·a2−3·a32
32 and r =

((256·a0−64·a3·a1)+16·a32·a2)−3·a34
1024 and s1 = 2

√
p2 − r and ρ3(a0, a1, a2, a3) =

2
√
−2 · (p+ s1)− a34 if (8 · a1 − 4 · a2 · a3) + a3

3 = 0,

(ii) there exist p, q, r, s1, s2, s3 such that p = 8·a2−3·a32
32 and
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q = (8·a1−4·a2·a3)+a33
64 and r = ((256·a0−64·a3·a1)+16·a32·a2)−3·a34

1024 and s1 =
2
√
ρ1(−q2, p2 − r, 2 · p) and s2 = 2

√
ρ2(−q2, p2 − r, 2 · p) and s3 = − q

s1·s2
and ρ3(a0, a1, a2, a3) = (−s1 + s2)− s3 − a34 , otherwise.

The functor ρ4(a0, a1, a2, a3) yielding a complex number is defined by:

(Def. 8)(i) There exist p, r, s1 such that p = 8·a2−3·a32
32 and r =

((256·a0−64·a3·a1)+16·a32·a2)−3·a34
1024 and s1 = 2

√
p2 − r and ρ4(a0, a1, a2, a3) =

− 2
√
−2 · (p+ s1)− a34 if (8 · a1 − 4 · a2 · a3) + a3

3 = 0,

(ii) there exist p, q, r, s1, s2, s3 such that p = 8·a2−3·a32
32 and

q = (8·a1−4·a2·a3)+a33
64 and r = ((256·a0−64·a3·a1)+16·a32·a2)−3·a34

1024 and s1 =
2
√
ρ1(−q2, p2 − r, 2 · p) and s2 = 2

√
ρ2(−q2, p2 − r, 2 · p) and s3 = − q

s1·s2
and ρ4(a0, a1, a2, a3) = s1 − s2 − s3 − a34 , otherwise.
One can prove the following propositions:

(26) ρ1(a0, a1, a2, a3)+ρ2(a0, a1, a2, a3)+ρ3(a0, a1, a2, a3)+ρ4(a0, a1, a2, a3) =
−a3.

(27) ρ1(a0, a1, a2, a3) · ρ2(a0, a1, a2, a3) + ρ1(a0, a1, a2, a3) · ρ3(a0, a1, a2, a3) +
ρ1(a0, a1, a2, a3) · ρ4(a0, a1, a2, a3) + ρ2(a0, a1, a2, a3) · ρ3(a0, a1, a2, a3) +
ρ2(a0, a1, a2, a3)·ρ4(a0, a1, a2, a3)+ρ3(a0, a1, a2, a3)·ρ4(a0, a1, a2, a3) = a2.

(28) ρ1(a0, a1, a2, a3) · ρ2(a0, a1, a2, a3) · ρ3(a0, a1, a2, a3) + ρ1(a0, a1, a2, a3) ·
ρ2(a0, a1, a2, a3) · ρ4(a0, a1, a2, a3) + ρ1(a0, a1, a2, a3) · ρ3(a0, a1, a2, a3) ·
ρ4(a0, a1, a2, a3) + ρ2(a0, a1, a2, a3) · ρ3(a0, a1, a2, a3) · ρ4(a0, a1, a2, a3) =
−a1.

(29) ρ1(a0, a1, a2, a3)·ρ2(a0, a1, a2, a3)·ρ3(a0, a1, a2, a3)·ρ4(a0, a1, a2, a3) = a0.
(30) Suppose a4 6= 0. Then a4 · z4+a3 · z3+a2 · z2+a1 · z+a0 = 0 if and only
if z = ρ1(a0a4 ,

a1
a4
, a2a4 ,

a3
a4
) or z = ρ2(a0a4 ,

a1
a4
, a2a4 ,

a3
a4
) or z = ρ3(a0a4 ,

a1
a4
, a2a4 ,

a3
a4
) or

z = ρ4(a0a4 ,
a1
a4
, a2a4 ,

a3
a4
).
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Summary. This article formalizes proofs of some elementary theorems
of number theory (see [1, 26]): Wilson’s theorem (that n is prime iff n > 1
and (n − 1)! ∼= −1 (mod n)), that all primes (1 mod 4) equal the sum of two
squares, and two basic theorems of Euclid and Euler about perfect numbers. The
article also formally defines Euler’s sum of divisors function φ, proves that φ is
multiplicative and that

∑
k|n φ(k) = n.

MML identifier: NAT 5, version: 7.11.02 4.120.1050

The notation and terminology used in this paper are introduced in the following
articles: [14], [38], [28], [32], [39], [11], [40], [13], [33], [12], [5], [4], [2], [6], [10],
[37], [36], [25], [3], [15], [19], [35], [24], [30], [18], [34], [16], [9], [22], [21], [41],
[17], [20], [7], [31], [29], [8], [23], and [27].

1. Preliminaries

We adopt the following convention: k, n, m, l, p denote natural numbers and
n0, m0 denote non zero natural numbers.
We now state several propositions:

(1) 2n+1 < 2n+2 − 1.
(2) If n0 is even, then there exist k, m such that m is odd and k > 0 and
n0 = 2k ·m.

(3) If n = 2k and m is odd, then n and m are relative prime.

(4) {n} is a finite subset of N.
(5) {n,m} is a finite subset of N.

123
c© 2009 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/nat_5.miz
http://ftp.mizar.org/


124 marco riccardi

In the sequel f is a finite sequence and x, X, Y are sets.
The following four propositions are true:

(6) If f is one-to-one, then f�n is one-to-one.

(7) If f is one-to-one and n ∈ dom f, then f(n) /∈ rng(f�n).
(8) If x ∈ rng f and x /∈ rng(f�n), then x = f(n).
(9) Let f1 be a finite sequence of elements of N and f2 be a finite sequence
of elements of X. If rng f1 ⊆ dom f2, then f2 · f1 is a finite sequence of
elements of X.

In the sequel f1, f2, f3 are finite sequences of elements of R.
Next we state four propositions:

(10) If X ∪ Y = dom f1 and X misses Y and f2 = f1 · SgmX and f3 =
f1 · SgmY, then

∑
f1 =

∑
f2 +

∑
f3.

(11) If f2 = f1 · SgmX and dom f1 \ f1−1({0}) ⊆ X ⊆ dom f1, then
∑
f1 =∑

f2.

(12)
∑
f1 =

∑
(f1 − {0}).

(13) Every finite sequence of elements of N is a finite sequence of elements of
R.
In the sequel n1, n2, m1, m2 denote natural numbers.
We now state several propositions:

(14) If n1 ∈ NatDivisorsn and m1 ∈ NatDivisorsm and n and m are relative
prime, then n1 and m1 are relative prime.

(15) If n1 ∈ NatDivisorsn and m1 ∈ NatDivisorsm and n2 ∈ NatDivisorsn
and m2 ∈ NatDivisorsm and n and m are relative prime and n1 ·m1 =
n2 ·m2, then n1 = n2 and m1 = m2.

(16) If n1 ∈ NatDivisorsn0 and m1 ∈ NatDivisorsm0, then n1 · m1 ∈
NatDivisors(n0 ·m0).

(17) If n0 andm0 are relative prime, then k gcdn0·m0 = (k gcdn0)·(k gcdm0).
(18) If n0 and m0 are relative prime and k ∈ NatDivisors(n0 ·m0), then there
exist n1, m1 such that n1 ∈ NatDivisorsn0 and m1 ∈ NatDivisorsm0 and
k = n1 ·m1.

(19) If p is prime, then NatDivisors(pn) = {pk; k ranges over elements of N:
k ≤ n}.

(20) If 0 6= l and p > l and p > n1 and p > n2 and l ·n1 mod p = l ·n2 mod p
and p is prime, then n1 = n2.

(21) If p is prime, then p -count(n0 gcdm0) = min(p -count(n0), p -count(m0)).
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2. Wilson’s Theorem

One can prove the following proposition

(22) n is prime iff ((n−′ 1)! + 1) mod n = 0 and n > 1.

3. All Primes Congruent to 1 Modulo 4 are the Sum of Two
Squares

The following proposition is true

(23) If p is prime and pmod4 = 1, then there exist n,m such that p = n2+m2.

4. The Sum of Divisors Function

Let I be a set, let f be a function from I into N, and let J be a finite subset
of I. Then f�J is a bag of J .
Let I be a set, let f be a function from I into N, and let J be a finite subset

of I. Observe that
∑
(f�J) is natural.

The following propositions are true:

(24) Let f be a function from N into N, F be a function from N into R, and
J be a finite subset of N. If f = F and there exists k such that J ⊆ Seg k,
then

∑
(f�J) =

∑
FuncSeq(F,Sgm J).

(25) Let I be a non empty set, F be a partial function from I to R, f be
a function from I into N, and J be a finite subset of I. If f = F, then∑
(f�J) =

∑J
κ=0 F (κ).

We use the following convention: I, j are sets, f , g are functions from I into
N, and J , K are finite subsets of I.
Next we state three propositions:

(26) If J misses K, then
∑
(f�(J ∪K)) =

∑
(f�J) +

∑
(f�K).

(27)
∑
(f�({j})) = f(j).

(28)
∑
((·N · (f × g))�(J ×K)) =

∑
(f�J) ·

∑
(g�K).

Let k be a natural number. The functor EXP k yields a function from N into
N and is defined by:
(Def. 1) For every natural number n holds (EXP k)(n) = nk.

Let k, n be natural numbers. The functor σk(n) yielding an element of N is
defined by:

(Def. 2)(i) For every non zero natural number m such that n = m holds σk(n) =∑
(EXP k�NatDivisorsm) if n 6= 0,

(ii) σk(n) = 0, otherwise.
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Let k be a natural number. The functor Σk yields a function from N into N
and is defined as follows:

(Def. 3) For every natural number n holds (Σk)(n) = σk(n).

Let n be a natural number. The functor σ(n) yielding an element of N is
defined by:

(Def. 4) σ(n) = σ1(n).

Next we state several propositions:

(29) σk(1) = 1.

(30) If p is prime, then σ(pn) = p
n+1−1
p−1 .

(31) If m | n0 and n0 6= m 6= 1, then 1 +m+ n0 ≤ σ(n0).
(32) If m | n0 and k | n0 and n0 6= m and n0 6= k and m 6= 1 and k 6= 1 and
m 6= k, then 1 +m+ k + n0 ≤ σ(n0).

(33) If σ(n0) = n0 +m and m | n0 and n0 6= m, then m = 1 and n0 is prime.

Let f be a function from N into N. We say that f is multiplicative if and
only if:

(Def. 5) For all non zero natural numbers n0,m0 such that n0 andm0 are relative
prime holds f(n0 ·m0) = f(n0) · f(m0).
Next we state four propositions:

(34) Let f , F be functions from N into N. Suppose f is multiplicative and for
every n0 holds F (n0) =

∑
(f�NatDivisorsn0). Then F is multiplicative.

(35) EXP k is multiplicative.

(36) Σk is multiplicative.

(37) If n0 and m0 are relative prime, then σ(n0 ·m0) = σ(n0) · σ(m0).

5. Two Basic Theorems on Perfect Numbers

Let n0 be a non zero natural number. We say that n0 is perfect if and only
if:

(Def. 6) σ(n0) = 2 · n0.
We now state two propositions:

(38) If 2p −′ 1 is prime and n0 = 2p−
′1 · (2p −′ 1), then n0 is perfect.

(39) If n0 is even and perfect, then there exists a natural number p such that
2p −′ 1 is prime and n0 = 2p−

′1 · (2p −′ 1).
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6. A Formula Involving Euler’s φ Function

The function φ from N into N is defined as follows:
(Def. 7) For every element k of N holds φ(k) = Euler k.

The following proposition is true

(40)
∑
(φ �NatDivisorsn0) = n0.
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Summary. In the various branches of science, probability and randomness
provide us with useful theoretical frameworks. The Formalized Mathematics has
already published some articles concerning the probability: [23], [24], [25], and
[30]. In order to apply those articles, we shall give some theorems concerning the
probability and the real-valued random variables to prepare for further studies.
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1. Probability on Finite Set

One can prove the following four propositions:

(1) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a
σ-measure on S1, f be a partial function from X to R, E be an element of
S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f
and M(E) < +∞ and for every element x of X such that x ∈ E holds
a ≤ f(x). Then R(a) ·M(E) ≤

∫
f�E dM.

(2) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a
σ-measure on S1, f be a partial function from X to R, E be an element of
S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f
and M(E) < +∞ and for every element x of X such that x ∈ E holds
a ≤ f(x). Then R(a) ·M(E) ≤

∫
f�E dM.
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(3) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a
σ-measure on S1, f be a partial function from X to R, E be an element of
S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f
and M(E) < +∞ and for every element x of X such that x ∈ E holds
f(x) ≤ a. Then

∫
f�E dM ≤ R(a) ·M(E).

(4) Let X be a non empty set, S1 be a σ-field of subsets of X, M be a
σ-measure on S1, f be a partial function from X to R, E be an element of
S1, and a be a real number. Suppose f is integrable on M and E ⊆ dom f
and M(E) < +∞ and for every element x of X such that x ∈ E holds
f(x) ≤ a. Then

∫
f�E dM ≤ R(a) ·M(E).

2. Random Variables

For simplicity, we follow the rules: O is a non empty set, r is a real number,
S is a σ-field of subsets of O, P is a probability on S, and E is a finite non
empty set.
Let E be a non empty set. We introduce the trivial σ-field of E as a synonym

of 2E . Then the trivial σ-field of E is a σ-field of subsets of E.
Next we state a number of propositions:

(5) Let O be a non empty finite set and f be a partial function from O to
R. Then there exists a finite sequence F of separated subsets of the trivial
σ-field of O and there exists a finite sequence s of elements of dom f such
that
dom f =

⋃
rngF and domF = dom s and s is one-to-one and rng s =

dom f and len s = dom f and for every natural number k such that k ∈
domF holds F (k) = {s(k)} and for every natural number n and for all
elements x, y of O such that n ∈ domF and x, y ∈ F (n) holds f(x) = f(y).

(6) Let O be a non empty finite set and f be a partial function from O to
R. Then
(i) f is simple function in the trivial σ-field of O, and
(ii) dom f is an element of the trivial σ-field of O.

(7) Let O be a non empty finite set, M be a σ-measure on the trivial σ-
field of O, and f be a partial function from O to R. If dom f 6= ∅ and
M(dom f) < +∞, then f is integrable on M .

(8) Let O be a non empty finite set and f be a partial function from O to
R. Then there exists an element X of the trivial σ-field of O such that
dom f = X and f is measurable on X.

(9) Let O be a non empty finite set, M be a σ-measure on the trivial σ-field
of O, f be a function from O into R, x be a finite sequence of elements of
R, and s be a finite sequence of elements of O. Suppose M(O) < +∞ and
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s is one-to-one and rng s = O and len s = O. Then there exists a finite
sequence F of separated subsets of the trivial σ-field of O and there exists
a finite sequence a of elements of R such that
(i) dom f =

⋃
rngF,

(ii) dom a = dom s,
(iii) domF = dom s,
(iv) for every natural number k such that k ∈ domF holds F (k) = {s(k)},
and

(v) for every natural number n and for all elements x, y of O such that
n ∈ domF and x, y ∈ F (n) holds f(x) = f(y).

(10) Let O be a non empty finite set, M be a σ-measure on the trivial σ-field
of O, f be a function from O into R, x be a finite sequence of elements of
R, and s be a finite sequence of elements of O. Suppose that
(i) M(O) < +∞,
(ii) lenx = O,
(iii) s is one-to-one,
(iv) rng s = O,
(v) len s = O, and
(vi) for every natural number n such that n ∈ domx holds x(n) =

R(f(s(n))) ·M({s(n)}).
Then

∫
f dM =

∑
x.

(11) Let O be a non empty finite set, M be a σ-measure on the trivial σ-field
of O, and f be a function from O into R. Suppose M(O) < +∞. Then
there exists a finite sequence x of elements of R and there exists a finite
sequence s of elements of O such that
(i) lenx = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domx holds x(n) =

R(f(s(n))) ·M({s(n)}), and
(vi)

∫
f dM =

∑
x.

(12) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, f be a function from O into R, x be a finite sequence of elements of
R, and s be a finite sequence of elements of O. Suppose that
(i) lenx = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O, and
(v) for every natural number n such that n ∈ domx holds x(n) = f(s(n)) ·
P ({s(n)}).
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Then
∫
f dP2MP =

∑
x.

(13) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, and f be a function from O into R. Then there exists a finite sequence
F of elements of R and there exists a finite sequence s of elements of O
such that
(i) lenF = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domF holds F (n) = f(s(n)) ·
P ({s(n)}), and

(vi)
∫
f dP2MP =

∑
F.

(14) Let E be a finite non empty set and A be a sequence of subsets of E.
Suppose A is non-increasing. Then there exists an element N of N such
that for every element m of N such that N ≤ m holds A(N) = A(m).

(15) Let E be a finite non empty set and A be a sequence of subsets of E.
SupposeA is non-increasing. Then there exists an elementN of N such that
for every element m of N such that N ≤ m holds IntersectionA = A(m).

(16) Let E be a finite non empty set and A be a sequence of subsets of E.
Suppose A is non-decreasing. Then there exists an element N of N such
that for every element m of N such that N ≤ m holds A(N) = A(m).

(17) Let E be a finite non empty set and A be a sequence of subsets of E.
Suppose A is non-decreasing. Then there exists a natural number N such
that for every natural number m such that N ≤ m holds

⋃
A = A(m).

Let us consider E. The trivial probability of E yielding a probability on the
trivial σ-field of E is defined as follows:

(Def. 1) For every event A1 of E holds (the trivial probability of E)(A1) = P(A1).

Let us consider O, S. A function from O into R is said to be a real-valued
random variable of S if:

(Def. 2) There exists an element X of S such that X = O and it is measurable
on X.

In the sequel f , g are real-valued random variables of S.
Next we state the proposition

(18) f + g is a real-valued random variable of S.

Let us consider O, S, f , g. Then f + g is a real-valued random variable of S.
We now state the proposition

(19) f − g is a real-valued random variable of S.
Let us consider O, S, f , g. Then f − g is a real-valued random variable of S.
Next we state the proposition

(20) For every real number r holds r f is a real-valued random variable of S.
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Let us consider O, S, f and let r be a real number. Then r f is a real-valued
random variable of S.
Next we state two propositions:

(21) For all partial functions f , g from O to R holds R(f)R(g) = R(f g).
(22) f g is a real-valued random variable of S.

Let us consider O, S, f , g. Then f g is a real-valued random variable of S.
Next we state two propositions:

(23) For every real number r such that 0 ≤ r and f is non-negative holds f r
is a real-valued random variable of S.

(24) |f | is a real-valued random variable of S.
Let us consider O, S, f . Then |f | is a real-valued random variable of S.
We now state the proposition

(25) For every real number r such that 0 ≤ r holds |f |r is a real-valued
random variable of S.

Let us consider O, S, f , P . We say that f is integrable on P if and only if:

(Def. 3) f is integrable on P2MP.

Let us consider O, S, P and let f be a real-valued random variable of S. Let
us assume that f is integrable on P . The functor EP {f} yielding an element of
R is defined as follows:
(Def. 4) EP {f} =

∫
f dP2MP.

One can prove the following propositions:

(26) If f is integrable on P and g is integrable on P , then EP {f + g} =
EP {f}+ EP {g}.

(27) If f is integrable on P , then EP {r f} = r · EP {f}.
(28) If f is integrable on P and g is integrable on P , then EP {f − g} =
EP {f} − EP {g}.

(29) For every non empty finite set O holds every function from O into R is
a real-valued random variable of the trivial σ-field of O.

(30) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, and X be a real-valued random variable of the trivial σ-field of O.
Then X is integrable on P .

(31) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, X be a real-valued random variable of the trivial σ-field of O, F be
a finite sequence of elements of R, and s be a finite sequence of elements
of O. Suppose that
(i) lenF = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O, and
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(v) for every natural number n such that n ∈ domF holds F (n) = X(s(n))·
P ({s(n)}).
Then EP {X} =

∑
F.

(32) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, and X be a real-valued random variable of the trivial σ-field of O.
Then there exists a finite sequence F of elements of R and there exists a
finite sequence s of elements of O such that
(i) lenF = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domF holds F (n) = X(s(n))·
P ({s(n)}), and

(vi) EP {X} =
∑
F.

(33) Let O be a non empty finite set, P be a probability on the trivial σ-field
of O, and X be a real-valued random variable of the trivial σ-field of O.
Then there exists a finite sequence F of elements of R and there exists a
finite sequence s of elements of O such that
(i) lenF = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domF holds F (n) = X(s(n))·
P ({s(n)}), and

(vi) EP {X} =
∑
F.

(34) Let O be a non empty finite set, X be a real-valued random variable of
the trivial σ-field of O, G be a finite sequence of elements of R, and s be
a finite sequence of elements of O. Suppose lenG = O and s is one-to-one
and rng s = O and len s = O and for every natural number n such that
n ∈ domG holds G(n) = X(s(n)). Then Ethe trivial probability of O{X} =∑
G

O
.

(35) Let O be a non empty finite set and X be a real-valued random variable
of the trivial σ-field of O. Then there exists a finite sequence G of elements
of R and there exists a finite sequence s of elements of O such that
(i) lenG = O,
(ii) s is one-to-one,
(iii) rng s = O,
(iv) len s = O,
(v) for every natural number n such that n ∈ domG holds G(n) = X(s(n)),
and
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(vi) Ethe trivial probability of O{X} =
∑
G

O
.

(36) Let X be a real-valued random variable of S. Suppose 0 < r and X is
non-negative and X is integrable on P . Then P ({t ∈ O: r ≤ X(t)}) ≤
EP {X}
r .
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Summary. In this article, we formalized Lebesgue’s Convergence theorem
of complex-valued function. We proved Lebesgue’s Convergence Theorem of real-
valued function using the theorem of extensional real-valued function. Then ap-
plying the former theorem to real part and imaginary part of complex-valued
functional sequences, we proved Lebesgue’s Convergence Theorem of complex-
valued function. We also defined partial sums of real-valued functional sequences
and complex-valued functional sequences and showed their properties. In addi-
tion, we proved properties of complex-valued simple functions.

MML identifier: MESFUN9C, version: 7.11.02 4.120.1050

The papers [24], [1], [4], [12], [25], [5], [26], [6], [7], [18], [19], [2], [8], [14], [13],
[20], [21], [3], [11], [22], [15], [10], [16], [9], [17], and [23] provide the notation
and terminology for this paper.

1. Partial Sums of Real-Valued Functional Sequences

For simplicity, we follow the rules: X denotes a non empty set, S denotes a
σ-field of subsets of X, M denotes a σ-measure on S, E denotes an element of
S, F denotes a sequence of partial functions from X into R, f denotes a partial
function from X to R, s denotes a sequence of real numbers, n,m denote natural
numbers, x denotes an element of X, and z, D denote sets.
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Let X, Y be sets, let F be a sequence of partial functions from X into Y ,
and let D be a set. The functor F � D yielding a sequence of partial functions
from X into Y is defined as follows:

(Def. 1) For every natural number n holds (F � D)(n) = F (n)�D.

One can prove the following propositions:

(1) If x ∈ D and F#x is convergent, then (F � D)#x is convergent.

(2) Let X, Y , D be sets and F be a sequence of partial functions from X
into Y . If F has the same dom, then F � D has the same dom.

(3) If D ⊆ domF (0) and for every element x of X such that x ∈ D holds
F#x is convergent, then limF �D = lim(F � D).

(4) Suppose F has the same dom and E ⊆ domF (0) and for every natural
numberm holds F (m) is measurable on E. Then (F � E)(n) is measurable
on E.

(5) (
∑κ
α=0(R(s))(α))κ∈N = R((

∑κ
α=0 s(α))κ∈N).

(6) Suppose that for every element x of X such that x ∈ E holds F#x
is summable. Let x be an element of X. If x ∈ E, then (F � E)#x is
summable.

Let X be a non empty set and let F be a sequence of partial functions from
X into R. The functor (

∑κ
α=0 F (α))κ∈N yielding a sequence of partial functions

from X into R is defined by:
(Def. 2) (

∑κ
α=0 F (α))κ∈N(0) = F (0) and for every element n of N holds

(
∑κ
α=0 F (α))κ∈N(n+ 1) = (

∑κ
α=0 F (α))κ∈N(n) + F (n+ 1).

Next we state a number of propositions:

(7) (
∑κ
α=0(R(F ))(α))κ∈N = R((

∑κ
α=0 F (α))κ∈N).

(8) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and m ≤ n, then z ∈

dom(
∑κ
α=0 F (α))κ∈N(m) and z ∈ domF (m).

(9) R(F ) is additive.
(10) dom(

∑κ
α=0 F (α))κ∈N(n) =

⋂
{domF (k); k ranges over elements of N:

k ≤ n}.
(11) If F has the same dom, then dom(

∑κ
α=0 F (α))κ∈N(n) = domF (0).

(12) If F has the same dom and D ⊆ domF (0) and x ∈ D, then
(
∑κ
α=0(F#x)(α))κ∈N(n) = ((

∑κ
α=0 F (α))κ∈N#x)(n).

(13) If F has the same dom and D ⊆ domF (0) and x ∈ D, then
(
∑κ
α=0(F#x)(α))κ∈N is convergent iff (

∑κ
α=0 F (α))κ∈N#x is convergent.

(14) If F has the same dom and dom f ⊆ domF (0) and x ∈ dom f and
f(x) =

∑
(F#x), then f(x) = lim((

∑κ
α=0 F (α))κ∈N#x).

(15) If for every natural number m holds F (m) is simple function in S, then
(
∑κ
α=0 F (α))κ∈N(n) is simple function in S.
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(16) If for every natural number n holds F (n) is measurable on E, then
(
∑κ
α=0 F (α))κ∈N(m) is measurable on E.

(17) Let X be a non empty set and F be a sequence of partial functions from
X into R. If F has the same dom, then (

∑κ
α=0 F (α))κ∈N has the same

dom.

(18) Suppose that
(i) domF (0) = E,
(ii) F has the same dom,
(iii) for every natural number n holds (

∑κ
α=0 F (α))κ∈N(n) is measurable on

E, and
(iv) for every element x of X such that x ∈ E holds F#x is summable.
Then lim((

∑κ
α=0 F (α))κ∈N) is measurable on E.

(19) Suppose that for every natural number n holds F (n) is integrable onM .
Let m be a natural number. Then (

∑κ
α=0 F (α))κ∈N(m) is integrable on

M .

2. Partial Sums of Complex-Valued Functional Sequences

In the sequel F denotes a sequence of partial functions from X into C, f
denotes a partial function from X to C, and A denotes a set.
We now state several propositions:

(20) <(f)�A = <(f�A) and =(f)�A = =(f�A).
(21) <(F � D) = <(F ) � D.
(22) =(F � D) = =(F ) � D.
(23) If F has the same dom and D ⊆ domF (0) and x ∈ D, then if F#x is
convergent, then (F � D)#x is convergent.

(24) F has the same dom iff <(F ) has the same dom.
(25) <(F ) has the same dom iff =(F ) has the same dom.
(26) If F has the same dom and D = domF (0) and for every element x of X
such that x ∈ D holds F#x is convergent, then limF �D = lim(F � D).

(27) Suppose F has the same dom and E ⊆ domF (0) and for every natural
numberm holds F (m) is measurable on E. Then (F � E)(n) is measurable
on E.

(28) Suppose E ⊆ domF (0) and F has the same dom and for every element
x of X such that x ∈ E holds F#x is summable. Let x be an element of
X. If x ∈ E, then (F � E)#x is summable.

Let X be a non empty set and let F be a sequence of partial functions from
X into C. The functor (

∑κ
α=0 F (α))κ∈N yielding a sequence of partial functions

from X into C is defined as follows:
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(Def. 3) (
∑κ
α=0 F (α))κ∈N(0) = F (0) and for every natural number n holds

(
∑κ
α=0 F (α))κ∈N(n+ 1) = (

∑κ
α=0 F (α))κ∈N(n) + F (n+ 1).

Next we state a number of propositions:

(29) (
∑κ
α=0<(F )(α))κ∈N = <((

∑κ
α=0 F (α))κ, (

∑κ
α=0=(F )(α))κ∈N =

=((
∑κ
α=0 F (α))κ∈N).

(30) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and m ≤ n, then z ∈

dom(
∑κ
α=0 F (α))κ∈N(m) and z ∈ domF (m).

(31) dom(
∑κ
α=0 F (α))κ∈N(n) =

⋂
{domF (k); k ranges over elements of N:

k ≤ n}.
(32) If F has the same dom, then dom(

∑κ
α=0 F (α))κ∈N(n) = domF (0).

(33) If F has the same dom and D ⊆ domF (0) and x ∈ D, then
(
∑κ
α=0(F#x)(α))κ∈N(n) = ((

∑κ
α=0 F (α))κ∈N#x)(n).

(34) If F has the same dom, then (
∑κ
α=0 F (α))κ∈N has the same dom.

(35) If F has the same dom and D ⊆ domF (0) and x ∈ D, then
(
∑κ
α=0(F#x)(α))κ∈N is convergent iff (

∑κ
α=0 F (α))κ∈N#x is convergent.

(36) If F has the same dom and dom f ⊆ domF (0) and x ∈ dom f and F#x
is summable and f(x) =

∑
(F#x), then f(x) = lim((

∑κ
α=0 F (α))κ∈N#x).

(37) If for every natural number m holds F (m) is simple function in S, then
(
∑κ
α=0 F (α))κ∈N(n) is simple function in S.

(38) If for every natural number n holds F (n) is measurable on E, then
(
∑κ
α=0 F (α))κ∈N(m) is measurable on E.

(39) Suppose that
(i) domF (0) = E,
(ii) F has the same dom,
(iii) for every natural number n holds (

∑κ
α=0 F (α))κ∈N(n) is measurable on

E, and
(iv) for every element x of X such that x ∈ E holds F#x is summable.
Then lim((

∑κ
α=0 F (α))κ∈N) is measurable on E.

(40) Suppose that for every natural number n holds F (n) is integrable onM .
Let m be a natural number. Then (

∑κ
α=0 F (α))κ∈N(m) is integrable on

M .

3. Selected Properties of Complex-Valued Simple Functions

In the sequel f , g are partial functions from X to C and A is an element of
S.
The following propositions are true:

(41) If f is simple function in S, then f is measurable on A.

(42) If f is simple function in S, then f�A is simple function in S.
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(43) If f is simple function in S, then dom f is an element of S.

(44) If f is simple function in S and g is simple function in S, then f + g is
simple function in S.

(45) For every complex number c such that f is simple function in S holds
c f is simple function in S.

4. Lebesgue’s Convergence Theorem of Complex-Valued Function

In the sequel F is a sequence of partial functions from X into R with the
same dom and P is a partial function from X to R.
Next we state the proposition

(46) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x), and

(vi) for every element x of X such that x ∈ E holds F#x is convergent.
Then limF is integrable on M .

In the sequel F denotes a sequence of partial functions from X into R with
the same dom and f , P denote partial functions from X to R.
We now state two propositions:

(47) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x), and

(vi) for every element x of X such that x ∈ E holds F#x is convergent.
Then limF is integrable on M .

(48) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M , and
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x).
Then there exists a sequence I of real numbers such that
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(vi) for every natural number n holds I(n) =
∫
F (n) dM, and

(vii) if for every element x of X such that x ∈ E holds F#x is convergent,
then I is convergent and lim I =

∫
limF dM.

Let X be a set and let F be a sequence of partial functions from X into
R. We say that F is uniformly bounded if and only if the condition (Def. 4) is
satisfied.

(Def. 4) There exists a real number K such that for every natural number n and
for every element x of X if x ∈ domF (0), then |F (n)(x)| ≤ K.
We now state the proposition

(49) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is measurable on E,
(iv) F is uniformly bounded, and
(v) for every element x of X such that x ∈ E holds F#x is convergent.
Then

(vi) for every natural number n holds F (n) is integrable on M ,
(vii) limF is integrable on M , and
(viii) there exists a sequence I of extended reals such that for every natu-
ral number n holds I(n) =

∫
F (n) dM and I is convergent and lim I =∫

limF dM.

Let X be a set, let F be a sequence of partial functions from X into R, and
let f be a partial function from X to R. We say that F is uniformly convergent
to f if and only if the conditions (Def. 5) are satisfied.

(Def. 5)(i) F has the same dom,
(ii) domF (0) = dom f, and
(iii) for every real number e such that e > 0 there exists a natural number
N such that for every natural number n and for every element x of X such
that n ≥ N and x ∈ domF (0) holds |F (n)(x)− f(x)| < e.
The following proposition is true

(50) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is integrable on M , and
(iv) F is uniformly convergent to f .
Then

(v) f is integrable on M , and
(vi) there exists a sequence I of extended reals such that for every natu-
ral number n holds I(n) =

∫
F (n) dM and I is convergent and lim I =∫

f dM.
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In the sequel F denotes a sequence of partial functions from X into C with
the same dom and f denotes a partial function from X to C.
The following propositions are true:

(51) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x), and

(vi) for every element x of X such that x ∈ E holds F#x is convergent.
Then limF is integrable on M .

(52) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M , and
(v) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x).
Then there exists a complex sequence I such that

(vi) for every natural number n holds I(n) =
∫
F (n) dM, and

(vii) if for every element x of X such that x ∈ E holds F#x is convergent,
then I is convergent and lim I =

∫
limF dM.

Let X be a set and let F be a sequence of partial functions from X into
C. We say that F is uniformly bounded if and only if the condition (Def. 6) is
satisfied.

(Def. 6) There exists a real number K such that for every natural number n and
for every element x of X if x ∈ domF (0), then |F (n)(x)| ≤ K.
Next we state the proposition

(53) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is measurable on E,
(iv) F is uniformly bounded, and
(v) for every element x of X such that x ∈ E holds F#x is convergent.
Then

(vi) for every natural number n holds F (n) is integrable on M ,
(vii) limF is integrable on M , and
(viii) there exists a complex sequence I such that for every natural number
n holds I(n) =

∫
F (n) dM and I is convergent and lim I =

∫
limF dM.
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Let X be a set, let F be a sequence of partial functions from X into C, and
let f be a partial function from X to C. We say that F is uniformly convergent
to f if and only if the conditions (Def. 7) are satisfied.

(Def. 7)(i) F has the same dom,
(ii) domF (0) = dom f, and
(iii) for every real number e such that e > 0 there exists a natural number
N such that for every natural number n and for every element x of X such
that n ≥ N and x ∈ domF (0) holds |F (n)(x)− f(x)| < e.
Next we state the proposition

(54) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is integrable on M , and
(iv) F is uniformly convergent to f .
Then

(v) f is integrable on M , and
(vi) there exists a complex sequence I such that for every natural number
n holds I(n) =

∫
F (n) dM and I is convergent and lim I =

∫
f dM.
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Let f be a partial function from C to C. The functor <(f) yields a partial

function from C to R and is defined by:
(Def. 1) dom f = dom<(f) and for every complex number z such that z ∈

dom<(f) holds <(f)(z) = <(fz).
Let f be a partial function from C to C. The functor =(f) yielding a partial

function from C to R is defined by:
(Def. 2) dom f = dom=(f) and for every complex number z such that z ∈

dom=(f) holds =(f)(z) = =(fz).
We now state several propositions:

(1) For every partial function f from C to C such that f is total holds
dom<(f) = C and dom=(f) = C.
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(2) Let f be a partial function from C to C, u, v be partial functions from
R2 to R, z0 be a complex number, x0, y0 be real numbers, and x1 be an
element of R2. Suppose that
(i) for all real numbers x, y such that x+y · i ∈ dom f holds 〈x, y〉 ∈ domu
and u(〈x, y〉) = <(f)(x+ y · i),

(ii) for all real numbers x, y such that x+y · i ∈ dom f holds 〈x, y〉 ∈ dom v
and v(〈x, y〉) = =(f)(x+ y · i),

(iii) z0 = x0 + y0 · i,
(iv) x1 = 〈x0, y0〉, and
(v) f is differentiable in z0.
Then

(vi) u is partially differentiable in x1 w.r.t. coordinate 1 and partially dif-
ferentiable in x1 w.r.t. coordinate 2,

(vii) v is partially differentiable in x1 w.r.t. coordinate 1 and partially diffe-
rentiable in x1 w.r.t. coordinate 2,

(viii) <(f ′(z0)) = partdiff(u, x1, 1),
(ix) <(f ′(z0)) = partdiff(v, x1, 2),
(x) =(f ′(z0)) = −partdiff(u, x1, 2), and
(xi) =(f ′(z0)) = partdiff(v, x1, 1).
(3) For every sequence s of real numbers holds s is convergent and lim s = 0
iff |s| is convergent and lim|s| = 0.

(4) Let X be a real normed space and s be a sequence of X. Then s is
convergent and lim s = 0X if and only if ‖s‖ is convergent and lim‖s‖ = 0.

(5) Let u be a partial function from R2 to R, x0, y0 be real numbers, and
x1 be an element of R2. Suppose x1 = 〈x0, y0〉 and 〈u〉 is differentiable in
x1. Then
(i) u is partially differentiable in x1 w.r.t. coordinate 1 and partially dif-
ferentiable in x1 w.r.t. coordinate 2,

(ii) 〈partdiff(u, x1, 1)〉 = 〈u〉′(x1)(〈1, 0〉), and
(iii) 〈partdiff(u, x1, 2)〉 = 〈u〉′(x1)(〈0, 1〉).
(6) Let f be a partial function from C to C, u, v be partial functions fromR2
to R, z0 be a complex number, x0, y0 be real numbers, and x1 be an element
ofR2. Suppose that for all real numbers x, y such that 〈x, y〉 ∈ dom v holds
x+y·i ∈ dom f and for all real numbers x, y such that x+y·i ∈ dom f holds
〈x, y〉 ∈ domu and u(〈x, y〉) = <(f)(x+ y · i) and for all real numbers x, y
such that x+y·i ∈ dom f holds 〈x, y〉 ∈ dom v and v(〈x, y〉) = =(f)(x+y·i)
and z0 = x0 + y0 · i and x1 = 〈x0, y0〉 and 〈u〉 is differentiable in x1
and 〈v〉 is differentiable in x1 and partdiff(u, x1, 1) = partdiff(v, x1, 2)
and partdiff(u, x1, 2) = −partdiff(v, x1, 1). Then f is differentiable in z0
and u is partially differentiable in x1 w.r.t. coordinate 1 and partially
differentiable in x1 w.r.t. coordinate 2 and v is partially differentiable in
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x1 w.r.t. coordinate 1 and partially differentiable in x1 w.r.t. coordinate
2 and <(f ′(z0)) = partdiff(u, x1, 1) and <(f ′(z0)) = partdiff(v, x1, 2) and
=(f ′(z0)) = −partdiff(u, x1, 2) and =(f ′(z0)) = partdiff(v, x1, 1).
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Summary. In the [16] has been proven that the multiplicative group Z/pZ∗

is a cyclic group. Likewise, finite subgroup of the multiplicative group of a field
is a cyclic group. However, finite subgroup of the multiplicative group of a field
being a cyclic group has not yet been proven. Therefore, it is of importance to
prove that finite subgroup of the multiplicative group of a field is a cyclic group.
Meanwhile, in cryptographic system like RSA, in which security basis de-

pends upon the difficulty of factorization of given numbers into prime factors,
it is important to employ integers that are difficult to be factorized into prime
factors. If both p and 2p + 1 are prime numbers, we call p as Sophie Germain
prime, and 2p+ 1 as safe prime. It is known that the product of two safe primes
is a composite number that is difficult for some factoring algorithms to factorize
into prime factors. In addition, safe primes are also important in cryptography
system because of their use in discrete logarithm based techniques like Diffie-
Hellman key exchange. If p is a safe prime, the multiplicative group of numbers
modulo p has a subgroup of large prime order. However, no definitions have not
been established yet with the safe prime and Sophie Germain prime. So it is
important to give definitions of the Sophie Germain prime and safe prime.
In this article, we prove finite subgroup of the multiplicative group of a field

is a cyclic group, and, further, define the safe prime and Sophie Germain prime,
and prove several facts about them. In addition, we define Mersenne number
(Mn), and some facts about Mersenne numbers and prime numbers are proven.
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1. Properties of Primes

The following proposition is true

(1) For all prime numbers p, q and for every natural number k such that
k | p · q holds k = 1 or k = p or k = q or k = p · q.
Let p be a natural number. We say that p is safe if and only if:

(Def. 1) There exists a prime number s such that 2 · s+ 1 = p.
Let us note that there exists a prime number which is safe.
The following propositions are true:

(2) For every safe prime number p holds p ≥ 5.
(3) For every safe prime number p holds p mod 2 = 1.

(4) For every safe prime number p such that p 6= 7 holds p mod 3 = 2.
(5) For every safe prime number p such that p 6= 5 holds p mod 4 = 3.
(6) For every safe prime number p such that p 6= 7 holds p mod 6 = 5.
(7) For every safe prime number p such that p > 7 holds p mod 12 = 11.

(8) For every safe prime number p such that p > 5 holds p mod 8 = 3 or
p mod 8 = 7.

Let p be a natural number. We say that p is Sophie Germain if and only if:

(Def. 2) 2 · p+ 1 is a prime number.
Let us mention that there exists a prime number which is Sophie Germain.
The following propositions are true:

(9) For every Sophie Germain prime number p such that p > 2 holds p mod
4 = 1 or p mod 4 = 3.

(10) For every safe prime number p there exists a Sophie Germain prime
number q such that p = 2 · q + 1.

(11) For every safe prime number p there exists a Sophie Germain prime
number q such that Euler p = 2 · q.

(12) Let p1, p2 be safe prime numbers and N be a natural number. Suppose
p1 6= p2 and N = p1 · p2. Then there exist Sophie Germain prime numbers
q1, q2 such that EulerN = 4 · q1 · q2.

(13) For every safe prime number p there exists a Sophie Germain prime
number q such that CardZ/pZ∗ = 2 · q.

(14) Let G be a cyclic finite group and n, m be natural numbers. Suppose
CardG = n ·m. Then there exists an element a of G such that ord(a) = n
and gr({a}) is a strict subgroup of G.

(15) Let p be a safe prime number. Then there exists a Sophie Germain prime
number q and there exist strict subgroups H1, H2, H3, H4 of Z/pZ∗ such
that CardH1 = 1 and CardH2 = 2 and CardH3 = q and CardH4 = 2 · q
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and for every strict subgroup H of Z/pZ∗ holds H = H1 or H = H2 or
H = H3 or H = H4.

Let n be a natural number. The functor Mn yields a natural number and is
defined as follows:

(Def. 3) Mn = 2n − 1.
Next we state a number of propositions:

(16) M0 = 0.

(17) M1 = 1.

(18) M2 = 3.

(19) M3 = 7.

(20) M5 = 31.

(21) M7 = 127.

(22) M11 = 23 · 89.
(23) For every prime number p such that p 6= 2 holds Mp mod2 · p = 1.
(24) For every prime number p such that p 6= 2 holds Mp mod8 = 7.
(25) For every Sophie Germain prime number p such that p > 2 and pmod 4 =
3 there exists a safe prime number q such that q |Mp .

(26) Let p be a Sophie Germain prime number. If p > 2 and p mod 4 = 1,
then there exists a safe prime number q such that Mp mod q = q − 2.

(27) For all natural numbers a, n such that a > 1 holds a− 1 | an − 1.
(28) For all natural numbers a, p such that p > 1 and ap−1 is a prime number
holds a = 2 and p is a prime number.

(29) For every natural number p such that p > 1 and Mp is a prime number
holds p is a prime number.

(30) For every integer a and for all natural numbers x, n holds ax mod n =
(a mod n)x mod n.

(31) For all integers x, y, n such that x and n are relative prime and x ≡
y (modn) holds y and n are relative prime.

(32) Let a, x be natural numbers and p be a prime number. Suppose a and p
are relative prime and a ≡ x · x (mod p). Then x and p are relative prime.

(33) Let a, x be integers and p be a prime number. Suppose a and p are
relative prime and a ≡ x · x (mod p). Then x and p are relative prime.

(34) For all integers a, b and for all natural numbers n, x such that a ≡
b (modn) and n 6= 0 holds ax ≡ bx (modn).

(35) For every integer a and for every prime number n such that a·amodn = 1
holds a ≡ 1 (modn) or a ≡ −1 (modn).
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2. Multiplicative Group of a Field

The following proposition is true

(36) For every prime number p holds Z/pZ∗ = MultGroup(ZRp ).
Let F be a commutative skew field. One can verify that MultGroup(F ) is

commutative.
The following two propositions are true:

(37) Let F be a commutative skew field, x be an element of MultGroup(F ),
and x1 be an element of F . If x = x1, then x−1 = x1−1.

(38) For every commutative skew field F holds every finite subgroup of
MultGroup(F ) is a cyclic group.
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Summary. The authors have presented some articles about Lebesgue type
integration theory. In our previous articles [12, 13, 26], we assumed that some
σ-additive measure existed and that a function was measurable on that measure.
However the existence of such a measure is not trivial. In general, because the
construction of a finite additive measure is comparatively easy, to induce a σ-
additive measure a finite additive measure is used. This is known as an E. Hopf’s
extension theorem of measure [15].
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1. The Outer Measure Induced by the Finite Additive Measure

For simplicity, we follow the rules: X denotes a set, F denotes a field of
subsets of X, M denotes a measure on F , A, B denote subsets of X, S1 denotes
a sequence of subsets of X, s1, s2, s3 denote sequences of extended reals, and
n, k denote natural numbers.
We now state three propositions:

(1) Ser s1 = (
∑κ
α=0(s1)(α))κ∈N.

(2)1 If s1 is non-negative, then s1 is summable and
∑
s1 =

∑
s1.

1The translation of Mizar functor SUM introduced in [4] was changed from
∑
to
∑
.
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(3) Suppose s2 is non-negative and s3 is non-negative and for every natural
number n holds s1(n) = s2(n)+s3(n). Then s1 is non-negative and

∑
s1 =∑

s2 +
∑
s3 and

∑
s1 =

∑
s2 +

∑
s3.

Let us consider X, F . One can check that there exists a function from N
into F which is disjoint valued.
Let us consider X, F . A finite sequence of elements of 2X is said to be a

finite sequence of elements of F if:

(Def. 1) For every natural number k such that k ∈ dom it holds it(k) ∈ F.
Let us consider X, F . Observe that there exists a finite sequence of elements

of F which is disjoint valued.
Let us consider X, F . A disjoint valued finite set sequence of F is a disjoint

valued finite sequence of elements of F .
Let us consider X, F . A sequence of separated subsets of F is a disjoint

valued function from N into F .
Let us consider X, F . A sequence of subsets of X is said to be a set sequence

of F if:

(Def. 2) For every natural number n holds it(n) ∈ F.
Let us consider X, A, F . A set sequence of F is said to be a covering of A

in F if:

(Def. 3) A ⊆
⋃
rng it.

In the sequel F1 denotes a set sequence of F and C1 denotes a covering of
A in F .
Let us consider X, F , F1, n. Then F1(n) is an element of F .
Let us consider X, F , S1. A function from N into (2X)N is said to be a

covering of S1 in F if:

(Def. 4) For every element n of N holds it(n) is a covering of S1(n) in F .
In the sequel C2 is a covering of S1 in F .
Let us consider X, F , M , F1. The functor vol(M,F1) yielding a sequence of

extended reals is defined as follows:

(Def. 5) For every n holds (vol(M,F1))(n) =M(F1(n)).

One can prove the following proposition

(4) vol(M,F1) is non-negative.

Let us consider X, F , S1, C2 and let n be an element of N. Then C2(n) is a
covering of S1(n) in F .
Let us consider X, F , S1, M , C2. The functor Volume(M,C2) yielding a

sequence of extended reals is defined as follows:

(Def. 6) For every element n of N holds (Volume(M,C2))(n) =
∑
vol(M,C2(n)).

The following proposition is true

(5) 0 ≤ (Volume(M,C2))(n).
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Let us consider X, F , M , A. The functor Svc(M,A) yielding a subset of R
is defined as follows:

(Def. 7) For every extended real number x holds x ∈ Svc(M,A) iff there exists a
covering C1 of A in F such that x =

∑
vol(M,C1).

Let us consider X, A, F , M . Observe that Svc(M,A) is non empty.
Let us consider X, F , M . The Caratheodory measure determined by M is

a function from 2X into R and is defined by:
(Def. 8) For every subset A of X holds (the Caratheodory measure determined

by M)(A) = inf Svc(M,A).

The function InvPairFunc from N into N× N is defined by:
(Def. 9) InvPairFunc = PairFunc−1.

Let us consider X, F , S1, C2. The functor OnC2 yielding a covering of⋃
rngS1 in F is defined by:

(Def. 10) For every natural number n holds (OnC2)(n) =
C2(pr1(InvPairFunc)(n))(pr2(InvPairFunc)(n)).

The following propositions are true:

(6) Let k be an element of N. Then there exists a natural number
m such that for every sequence S1 of subsets of X and for eve-
ry covering C2 of S1 in F holds (

∑κ
α=0(vol(M,OnC2))(α))κ∈N(k) ≤

(
∑κ
α=0(Volume(M,C2))(α))κ∈N(m).

(7) inf Svc(M,
⋃
rngS1) ≤

∑
Volume(M,C2).

(8) If A ∈ F, then A, ∅X followed by ∅X is a covering of A in F .
(9) Let X be a set, F be a field of subsets of X, M be a measure on F ,
and A be a set. If A ∈ F, then (the Caratheodory measure determined by
M)(A) ≤M(A).

(10) The Caratheodory measure determined by M is non-negative.

(11) (The Caratheodory measure determined by M)(∅) = 0.
(12) If A ⊆ B, then (the Caratheodory measure determined byM)(A) ≤ (the
Caratheodory measure determined by M)(B).

(13) (The Caratheodory measure determined by M)(
⋃
rngS1) ≤

∑
((the Ca-

ratheodory measure determined by M) · S1).
(14) The Caratheodory measure determined byM is a Caratheodor’s measure
on X.

Let X be a set, let F be a field of subsets of X, and let M be a measure
on F . Then the Caratheodory measure determined by M is a Caratheodor’s
measure on X.
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2. Hopf Extension Theorem

Let X be a set, let F be a field of subsets of X, and let M be a measure on
F . We say that M is completely-additive if and only if:

(Def. 11) For every sequence F1 of separated subsets of F such that
⋃
rngF1 ∈ F

holds
∑
(M · F1) =M(

⋃
rngF1).

The following propositions are true:

(15) The partial unions of F1 are a set sequence of F .

(16) The partial diff-unions of F1 are a set sequence of F .

(17) Suppose A ∈ F. Then there exists a sequence F1 of separated subsets of
F such that A =

⋃
rngF1 and for every natural number n holds F1(n) ⊆

C1(n).

(18) SupposeM is completely-additive. LetA be a set. IfA ∈ F, thenM(A) =
(the Caratheodory measure determined by M)(A).

In the sequel C is a Caratheodor’s measure on X.
The following propositions are true:

(19) If for every subset B of X holds C(B ∩ A) + C(B ∩ (X \ A)) ≤ C(B),
then A ∈ σ-Field(C).

(20) F ⊆ σ-Field(the Caratheodory measure determined by M).
(21) Let X be a set, F be a field of subsets of X, F1 be a set sequence of F ,
andM be a function from F into R. ThenM ·F1 is a sequence of extended
reals.

Let X be a set, let F be a field of subsets of X, let F1 be a set sequence of
F , and let g be a function from F into R. Then g ·F1 is a sequence of extended
reals.
We now state the proposition

(22) Let X be a set, S be a σ-field of subsets of X, S2 be a sequence of subsets
of S, and M be a function from S into R. Then M · S2 is a sequence of
extended reals.

Let X be a set, let S be a σ-field of subsets of X, let S2 be a sequence of
subsets of S, and let g be a function from S into R. Then g ·S2 is a sequence of
extended reals.
We now state several propositions:

(23) Let F , G be functions from N into R and n be a natural number. Suppose
that for every natural number m such that m ≤ n holds F (m) ≤ G(m).
Then (SerF )(n) ≤ (SerG)(n).

(24) For all X, C and for every sequence s1 of separated subsets of σ-Field(C)
holds

⋃
rng s1 ∈ σ-Field(C) and C(

⋃
rng s1) =

∑
(C · s1).

(25) For all X, C and for every sequence s1 of subsets of σ-Field(C) holds⋃
s1 ∈ σ-Field(C).
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(26) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, and S2 be a sequence of subsets of S. If S2 is non-decreasing,
then lim(M · S2) =M(limS2).

(27) If F1 is non-decreasing, then M · F1 is non-decreasing.
(28) If F1 is descending, then M · F1 is non-increasing.
(29) Let X be a set, S be a σ-field of subsets of X, M be a σ-measure on S,
and S2 be a sequence of subsets of S. If S2 is non-decreasing, then M · S2
is non-decreasing.

(30) Let X be a set, S be a σ-field of subsets of X, M be a σ-measure on S,
and S2 be a sequence of subsets of S. If S2 is descending, then M · S2 is
non-increasing.

(31) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, and S2 be a sequence of subsets of S. If S2 is descending
and M(S2(0)) < +∞, then lim(M · S2) =M(limS2).
Let X be a set, let F be a field of subsets of X, let S be a σ-field of subsets

of X, let m be a measure on F , and let M be a σ-measure on S. We say that
M is an extension of m if and only if:

(Def. 12) For every set A such that A ∈ F holds M(A) = m(A).
We now state four propositions:

(32) Let X be a non empty set, F be a field of subsets of X, and m be a
measure on F . If there exists a σ-measure on σ(F ) which is an extension
of m, then m is completely-additive.

(33) Let X be a non empty set, F be a field of subsets of X, and m be
a measure on F . Suppose m is completely-additive. Then there exists
a σ-measure M on σ(F ) such that M is an extension of m and M =
σ-Meas(the Caratheodory measure determined by m)�σ(F ).

(34) If for every n holds M(F1(n)) < +∞, then M((the partial unions of
F1)(k)) < +∞.

(35) Let X be a non empty set, F be a field of subsets of X, and m be a
measure on F . Suppose that
(i) m is completely-additive, and
(ii) there exists a set sequence A1 of F such that for every natural number
n holds m(A1(n)) < +∞ and X =

⋃
rngA1.

Let M be a σ-measure on σ(F ). Suppose M is an extension of m. Then
M = σ-Meas(the Caratheodory measure determined by m)�σ(F ).
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Summary. This article introduces labelled state transition systems, where
transitions may be labelled by words from a given alphabet. Reduction relations
from [4] are used to define transitions between states, acceptance of words, and
reachable states. Deterministic transition systems are also defined.

MML identifier: REWRITE3, version: 7.11.02 4.125.1059

The notation and terminology used here are introduced in the following papers:
[1], [8], [2], [11], [6], [17], [7], [9], [16], [15], [14], [4], [10], [13], [3], [12], and [5].

1. Preliminaries

For simplicity, we use the following convention: x, x1, x2, y, y1, y2, z, z1, z2,
X, X1, X2 are sets, E is a non empty set, e is an element of E, u, v, v1, v2, w,
w1, w2 are elements of Eω, F , F1, F2 are subsets of Eω, and k, l are natural
numbers.
Next we state a number of propositions:

(1) For every finite sequence p such that k ∈ dom p holds (〈x〉 a p)(k+ 1) =
p(k).

(2) For every finite sequence p such that p 6= ∅ there exists a finite sequence
q and there exists x such that p = q a 〈x〉 and len p = len q + 1.

(3) For every finite sequence p such that k ∈ dom p and k+1 /∈ dom p holds
len p = k.

(4) Let R be a binary relation, P be a reduction sequence w.r.t. R, and q1,
q2 be finite sequences. Suppose P = q1 a q2 and len q1 > 0 and len q2 > 0.
Then q1 is a reduction sequence w.r.t. R and q2 is a reduction sequence
w.r.t. R.
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(5) Let R be a binary relation and P be a reduction sequence w.r.t. R.
Suppose lenP > 1. Then there exists a reduction sequence Q w.r.t. R
such that 〈P (1)〉 a Q = P and lenQ+ 1 = lenP.

(6) Let R be a binary relation and P be a reduction sequence w.r.t. R.
Suppose lenP > 1. Then there exists a reduction sequence Q w.r.t. R
such that Q a 〈P (lenP )〉 = P and lenQ+ 1 = lenP.

(7) Let R be a binary relation and P be a reduction sequence w.r.t. R.
Suppose lenP > 1. Then there exists a reduction sequence Q w.r.t. R
such that lenQ + 1 = lenP and for every k such that k ∈ domQ holds
Q(k) = P (k + 1).

(8) For every binary relation R such that 〈x, y〉 is a reduction sequence w.r.t.
R holds 〈〈x, y〉〉 ∈ R.

(9) If w = u a v, then lenu ≤ lenw and len v ≤ lenw.
(10) If w = u a v and u 6= 〈〉E and v 6= 〈〉E , then lenu < lenw and len v <
lenw.

(11) If w1av1 = w2av2 and if lenw1 = lenw2 or len v1 = len v2, then w1 = w2
and v1 = v2.

(12) If w1 a v1 = w2 a v2 and if lenw1 ≤ lenw2 or len v1 ≥ len v2, then there
exists u such that w1 a u = w2 and v1 = u a v2.

(13) If w1 a v1 = w2 a v2, then there exists u such that w1 a u = w2 and
v1 = u a v2 or there exists u such that w2 a u = w1 and v2 = u a v1.

Let us consider X. We consider transition-systems over X as extensions of
1-sorted structure as systems
〈 a carrier, a transition 〉,

where the carrier is a set and the transition is a relation between the carrier×
X and the carrier.

2. Transition Systems over Subsets of Eω

Let us consider E, F and let T be a transition-system over F . We say that
T is deterministic if and only if the conditions (Def. 1) are satisfied.

(Def. 1)(i) The transition of T is a function,
(ii) 〈〉E /∈ rng dom (the transition of T), and
(iii) for every element s of T and for all u, v such that u 6= v and 〈〈s,
u〉〉 ∈ dom (the transition of T) and 〈〈s, v〉〉 ∈ dom (the transition of T) it is
not true that there exists w such that u a w = v or v a w = u.

The following proposition is true

(14) For every transition-system T over F such that dom (the transition of
T) = ∅ holds T is deterministic.
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Let us consider E, F . Note that there exists a transition-system over F
which is strict, non empty, finite, and deterministic.

3. Productions

Let us consider X, let T be a transition-system over X, and let us consider
x, y, z. The predicate x, y →T z is defined by:

(Def. 2) 〈〈〈〈x, y〉〉, z〉〉 ∈ the transition of T.
We now state several propositions:

(15) Let T be a transition-system over X. Suppose x, y →T z. Then
(i) x ∈ T,

(ii) y ∈ X,
(iii) z ∈ T,

(iv) x ∈ domdom (the transition of T),
(v) y ∈ rng dom (the transition of T), and
(vi) z ∈ rng (the transition of T).
(16) Let T1 be a transition-system overX1 and T2 be a transition-system over
X2. Suppose the transition of T1 = the transition of T2. If x, y →T1 z, then
x, y →T2 z.

(17) Let T be a transition-system over F . Suppose the transition of T is a
function. If x, y →T z1 and x, y →T z2, then z1 = z2.

(18) For every deterministic transition-system T over F such that 〈〉E /∈
rng dom (the transition of T) holds x, 〈〉E 6→T y.

(19) Let T be a deterministic transition-system over F . If u 6= v and x, u→T

z1 and x, v →T z2, then it is not true that there exists w such that uaw = v
or v a w = u.

4. Direct Transitions

Let us consider E, F , let T be a transition-system over F , and let us consider
x1, x2, y1, y2. The predicate x1, x2 ⇒T y1, y2 is defined by:

(Def. 3) There exist v, w such that v = y2 and x1, w →T y1 and x2 = w a v.

One can prove the following propositions:

(20) Let T be a transition-system over F . Suppose x1, x2 ⇒T y1, y2. Then
x1, y1 ∈ T and x2, y2 ∈ Eω and x1 ∈ domdom (the transition of T) and
y1 ∈ rng (the transition of T).

(21) Let T1 be a transition-system over F1 and T2 be a transition-system over
F2. Suppose the transition of T1 = the transition of T2 and x1, x2 ⇒T1

y1, y2. Then x1, x2 ⇒T2 y1, y2.
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(22) For every transition-system T over F such that x, u⇒T y, v there exists
w such that x,w →T y and u = w a v.

(23) For every transition-system T over F holds x, y →T z iff x, y ⇒T z, 〈〉E .
(24) For every transition-system T over F holds x, v →T y iff x, vaw ⇒T y, w.

(25) For every transition-system T over F such that x, u⇒T y, v holds x, ua

w ⇒T y, v
a w.

(26) For every transition-system T over F such that x, u⇒T y, v holds lenu ≥
len v.

(27) Let T be a transition-system over F . Suppose the transition of T is a
function. If x1, x2 ⇒T y1, z and x1, x2 ⇒T y2, z, then y1 = y2.

(28) For every transition-system T over F such that 〈〉E /∈ rng dom (the trans-
ition of T) holds x, z 6⇒T y, z.

(29) For every transition-system T over F such that 〈〉E /∈ rng dom (the trans-
ition of T) holds if x, u⇒T y, v, then lenu > len v.

(30) For every deterministic transition-system T over F such that x1, x2 ⇒T

y1, z1 and x1, x2 ⇒T y2, z2 holds y1 = y2 and z1 = z2.

5. Reduction Relation

In the sequel T is a non empty transition-system over F , s, t are elements
of T, and S is a subset of T.
Let us consider E, F , T. The functor ⇒T yields a binary relation on (the

carrier of T)× Eω and is defined by:
(Def. 4) 〈〈〈〈x1, x2〉〉, 〈〈y1, y2〉〉〉〉 ∈ ⇒T iff x1, x2 ⇒T y1, y2.

One can prove the following propositions:

(31) If 〈〈x, y〉〉 ∈ ⇒T, then there exist s, v, t, w such that x = 〈〈s, v〉〉 and
y = 〈〈t, w〉〉.

(32) Suppose 〈〈〈〈x1, x2〉〉, 〈〈y1, y2〉〉〉〉 ∈ ⇒T. Then x1, y1 ∈ T and x2, y2 ∈ Eω
and x1 ∈ domdom (the transition of T) and y1 ∈ rng (the transition of T).

(33) If x ∈ ⇒T, then there exist s, t, v, w such that x = 〈〈〈〈s, v〉〉, 〈〈t, w〉〉〉〉.
(34) Let T1 be a non empty transition-system over F1 and T2 be a non empty
transition-system over F2. Suppose the carrier of T1 = the carrier of T2
and the transition of T1 = the transition of T2. Then ⇒T1 =⇒T2 .

(35) If 〈〈〈〈x1, x2〉〉, 〈〈y1, y2〉〉〉〉 ∈ ⇒T, then there exist v, w such that v = y2 and
x1, w →T y1 and x2 = w a v.

(36) If 〈〈〈〈x, u〉〉, 〈〈y, v〉〉〉〉 ∈ ⇒T, then there exists w such that x,w →T y and
u = w a v.

(37) x, y →T z iff 〈〈〈〈x, y〉〉, 〈〈z, 〈〉E〉〉〉〉 ∈ ⇒T.

(38) x, v →T y iff 〈〈〈〈x, v a w〉〉, 〈〈y, w〉〉〉〉 ∈ ⇒T.
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(39) If 〈〈〈〈x, u〉〉, 〈〈y, v〉〉〉〉 ∈ ⇒T, then 〈〈〈〈x, u a w〉〉, 〈〈y, v a w〉〉〉〉 ∈ ⇒T.

(40) If 〈〈〈〈x, u〉〉, 〈〈y, v〉〉〉〉 ∈ ⇒T, then lenu ≥ len v.
(41) If the transition of T is a function, then if 〈〈x, 〈〈y1, z〉〉〉〉, 〈〈x, 〈〈y2, z〉〉〉〉 ∈ ⇒T,

then y1 = y2.

(42) If 〈〉E /∈ rng dom (the transition of T), then if 〈〈〈〈x, u〉〉, 〈〈y, v〉〉〉〉 ∈ ⇒T,

then lenu > len v.

(43) If 〈〉E /∈ rng dom (the transition of T), then 〈〈〈〈x, z〉〉, 〈〈y, z〉〉〉〉 /∈ ⇒T.

(44) If T is deterministic, then if 〈〈x, y1〉〉, 〈〈x, y2〉〉 ∈ ⇒T, then y1 = y2.

(45) If T is deterministic, then if 〈〈x, 〈〈y1, z1〉〉〉〉, 〈〈x, 〈〈y2, z2〉〉〉〉 ∈ ⇒T, then y1 =
y2 and z1 = z2.

(46) If T is deterministic, then ⇒T is function-like.

6. Reduction Sequences

Let us consider x, E. The functor dim2(x,E) yields an element of Eω and
is defined as follows:

(Def. 5) dim2(x,E) =

{
x2, if there exist y, u such that x = 〈〈y, u〉〉,
∅, otherwise.

Next we state a number of propositions:

(47) Let P be a reduction sequence w.r.t.⇒T and given k. If k, k+1 ∈ domP,
then there exist s, v, t, w such that P (k) = 〈〈s, v〉〉 and P (k + 1) = 〈〈t, w〉〉.

(48) Let P be a reduction sequence w.r.t.⇒T and given k. If k, k+1 ∈ domP,
then P (k) = 〈〈P (k)1, P (k)2〉〉 and P (k + 1) = 〈〈P (k + 1)1, P (k + 1)2〉〉.

(49) Let P be a reduction sequence w.r.t.⇒T and given k. Suppose k, k+1 ∈
domP. Then
(i) P (k)1 ∈ T,

(ii) P (k)2 ∈ Eω,
(iii) P (k + 1)1 ∈ T,

(iv) P (k + 1)2 ∈ Eω,
(v) P (k)1 ∈ domdom (the transition of T), and
(vi) P (k + 1)1 ∈ rng (the transition of T).
(50) Let T1 be a non empty transition-system over F1 and T2 be a non empty
transition-system over F2. Suppose the carrier of T1 = the carrier of T2
and the transition of T1 = the transition of T2. Then every reduction
sequence w.r.t. ⇒T1 is a reduction sequence w.r.t. ⇒T2 .

(51) Let P be a reduction sequence w.r.t. ⇒T. If there exist x, u such
that P (1) = 〈〈x, u〉〉, then for every k such that k ∈ domP holds
dim2(P (k), E) = P (k)2.

(52) Let P be a reduction sequence w.r.t. ⇒T. If P (lenP ) = 〈〈y, w〉〉, then for
every k such that k ∈ domP there exists u such that P (k)2 = u a w.
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(53) For every reduction sequence P w.r.t. ⇒T such that P (1) = 〈〈x, v〉〉 and
P (lenP ) = 〈〈y, w〉〉 there exists u such that v = u a w.

(54) Let P be a reduction sequence w.r.t. ⇒T. If P (1) = 〈〈x, u〉〉 and
P (lenP ) = 〈〈y, u〉〉, then for every k such that k ∈ domP holds P (k)2 = u.

(55) Let P be a reduction sequence w.r.t.⇒T and given k. Suppose k, k+1 ∈
domP. Then there exist v, w such that v = P (k + 1)2 and P (k)1, w →T

P (k + 1)1 and P (k)2 = w a v.

(56) Let P be a reduction sequence w.r.t.⇒T and given k. Suppose k, k+1 ∈
domP and P (k) = 〈〈x, u〉〉 and P (k+1) = 〈〈y, v〉〉. Then there exists w such
that x,w →T y and u = w a v.

(57) x, y →T z iff 〈〈〈x, y〉〉, 〈〈z, 〈〉E〉〉〉 is a reduction sequence w.r.t. ⇒T.

(58) x, v →T y iff 〈〈〈x, v a w〉〉, 〈〈y, w〉〉〉 is a reduction sequence w.r.t. ⇒T.

(59) For every reduction sequence P w.r.t. ⇒T such that P (1) = 〈〈x, v〉〉 and
P (lenP ) = 〈〈y, w〉〉 holds len v ≥ lenw.

(60) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t. ⇒T. If P (1) = 〈〈x, u〉〉 and P (lenP ) = 〈〈y, u〉〉, then lenP = 1
and x = y.

(61) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t. ⇒T. If P (1)2 = P (lenP )2, then lenP = 1.

(62) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction
sequence w.r.t. ⇒T. If P (1) = 〈〈x, u〉〉 and P (lenP ) = 〈〈y, 〈〉E〉〉, then
lenP ≤ lenu+ 1.

(63) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t.⇒T. If P (1) = 〈〈x, 〈e〉〉〉 and P (lenP ) = 〈〈y, 〈〉E〉〉, then lenP = 2.

(64) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t.⇒T. If P (1) = 〈〈x, v〉〉 and P (lenP ) = 〈〈y, w〉〉, then len v > lenw
or lenP = 1 and x = y and v = w.

(65) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction sequ-
ence w.r.t. ⇒T and given k. If k, k+1 ∈ domP, then P (k)2 6= P (k + 1)2.

(66) Suppose 〈〉E /∈ rng dom (the transition of T). Let P be a reduction
sequence w.r.t. ⇒T and given k, l. If k, l ∈ domP and k < l, then
P (k)2 6= P (l)2.

(67) Suppose T is deterministic. Let P , Q be reduction sequences w.r.t. ⇒T.
If P (1) = Q(1), then for every k such that k ∈ domP and k ∈ domQ
holds P (k) = Q(k).

(68) If T is deterministic, then for all reduction sequences P , Q w.r.t. ⇒T

such that P (1) = Q(1) and lenP = lenQ holds P = Q.

(69) Suppose T is deterministic. Let P , Q be reduction sequences w.r.t. ⇒T.
If P (1) = Q(1) and P (lenP )2 = Q(lenQ)2, then P = Q.
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7. Reductions

The following propositions are true:

(70) If ⇒T reduces 〈〈x, v〉〉 to 〈〈y, w〉〉, then there exists u such that v = u a w.

(71) If⇒T reduces 〈〈x, u〉〉 to 〈〈y, v〉〉, then⇒T reduces 〈〈x, uaw〉〉 to 〈〈y, vaw〉〉.
(72) If x, y →T z, then ⇒T reduces 〈〈x, y〉〉 to 〈〈z, 〈〉E〉〉.
(73) If x, v →T y, then ⇒T reduces 〈〈x, v a w〉〉 to 〈〈y, w〉〉.
(74) If x1, x2 ⇒T y1, y2, then ⇒T reduces 〈〈x1, x2〉〉 to 〈〈y1, y2〉〉.
(75) If ⇒T reduces 〈〈x, v〉〉 to 〈〈y, w〉〉, then len v ≥ lenw.
(76) If ⇒T reduces 〈〈x, w〉〉 to 〈〈y, v a w〉〉, then v = 〈〉E .
(77) If 〈〉E /∈ rng dom (the transition of T), then if ⇒T reduces 〈〈x, v〉〉 to 〈〈y,
w〉〉, then len v > lenw or x = y and v = w.

(78) If 〈〉E /∈ rng dom (the transition of T), then if ⇒T reduces 〈〈x, u〉〉 to 〈〈y,
u〉〉, then x = y.

(79) If 〈〉E /∈ rng dom (the transition of T), then if ⇒T reduces 〈〈x, 〈e〉〉〉 to 〈〈y,
〈〉E〉〉, then 〈〈〈〈x, 〈e〉〉〉, 〈〈y, 〈〉E〉〉〉〉 ∈ ⇒T.

(80) If T is deterministic, then if ⇒T reduces x to 〈〈y1, z〉〉 and ⇒T reduces x
to 〈〈y2, z〉〉, then y1 = y2.

8. Transitions

Let us consider E, F , T, x1, x2, y1, y2. The predicate x1, x2 ⇒∗T y1, y2 is
defined by:

(Def. 6) ⇒T reduces 〈〈x1, x2〉〉 to 〈〈y1, y2〉〉.
Next we state a number of propositions:

(81) Let T1 be a non empty transition-system over F1 and T2 be a non empty
transition-system over F2. Suppose the carrier of T1 = the carrier of T2
and the transition of T1 = the transition of T2. If x1, x2 ⇒∗T1 y1, y2, then
x1, x2 ⇒∗T2 y1, y2.

(82) x, y ⇒∗T x, y.
(83) If x1, x2 ⇒∗T y1, y2 and y1, y2 ⇒∗T z1, z2, then x1, x2 ⇒∗T z1, z2.
(84) If x, y →T z, then x, y ⇒∗T z, 〈〉E .
(85) If x, v →T y, then x, v a w ⇒∗T y, w.
(86) If x, u⇒∗T y, v, then x, u a w ⇒∗T y, v a w.

(87) If x1, x2 ⇒T y1, y2, then x1, x2 ⇒∗T y1, y2.
(88) If x, v ⇒∗T y, w, then there exists u such that v = u a w.

(89) If x, v ⇒∗T y, w, then lenw ≤ len v.
(90) If x,w ⇒∗T y, v a w, then v = 〈〉E .
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(91) If 〈〉E /∈ rng dom (the transition of T), then x, u⇒∗T y, u iff x = y.
(92) If 〈〉E /∈ rng dom (the transition of T), then if x, 〈e〉 ⇒∗T y, 〈〉E , then
x, 〈e〉 ⇒T y, 〈〉E .

(93) If T is deterministic, then if x1, x2 ⇒∗T y1, z and x1, x2 ⇒∗T y2, z, then
y1 = y2.

9. Acceptance of Words

Let us consider E, F , T, x1, x2, y. The predicate x1, x2 ⇒∗T y is defined as
follows:

(Def. 7) x1, x2 ⇒∗T y, 〈〉E .
The following propositions are true:

(94) Let T1 be a non empty transition-system over F1 and T2 be a non empty
transition-system over F2. Suppose the carrier of T1 = the carrier of T2 and
the transition of T1 = the transition of T2. If x, y ⇒∗T1 z, then x, y ⇒

∗
T2
z.

(95) x, 〈〉E ⇒∗T x.
(96) If x, u⇒∗T y, then x, u a v ⇒∗T y, v.
(97) If x, y →T z, then x, y ⇒∗T z.
(98) If x1, x2 ⇒T y, 〈〉E , then x1, x2 ⇒∗T y.
(99) If x, u⇒∗T y and y, v ⇒∗T z, then x, u a v ⇒∗T z.
(100) If 〈〉E /∈ rng dom (the transition of T), then x, 〈〉E ⇒∗T y iff x = y.
(101) If 〈〉E /∈ rng dom (the transition of T), then if x, 〈e〉 ⇒∗T y, then x, 〈e〉 ⇒T

y, 〈〉E .
(102) If T is deterministic, then if x1, x2 ⇒∗T y1 and x1, x2 ⇒∗T y2, then y1 = y2.

10. Reachable States

Let us consider E, F , T, x, X. The functor x-succT(X) yields a subset of T
and is defined by:

(Def. 8) x-succT(X) = {s :
∨
t (t ∈ X ∧ t, x⇒∗T s)}.

One can prove the following propositions:

(103) s ∈ x-succT(X) iff there exists t such that t ∈ X and t, x⇒∗T s.
(104) If 〈〉E /∈ rng dom (the transition of T), then 〈〉E-succT(S) = S.
(105) Let T1 be a non empty transition-system over F1 and T2 be a non empty

transition-system over F2. Suppose the carrier of T1 = the carrier of T2
and the transition of T1 = the transition of T2. Then x-succT1(X) =
x-succT2(X).
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Summary. A pseudorandom number generator plays an important role in
practice in computer science. For example: computer simulations, cryptology, and
so on. A pseudorandom number generator is an algorithm to generate a sequence
of numbers that is indistinguishable from the true random number sequence. In
this article, we shall formalize the “Uniform Distribution” that is the idealized
set of true random number sequences. The basic idea of our formalization is due
to [15].
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1. Probability on Finite and Discrete Set

Let S be a non empty finite set and let s be a finite sequence of elements of
S. We introduce the certain event of s as a synonym of dom s.
Let S be a non empty finite set and let s be a non empty finite sequence of

elements of S. Then the certain event of s is a non empty finite set.
Next we state the proposition

(1) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then the certain event of s = s−1(S).

Let S be a non empty finite set, let s be a finite sequence of elements of S,
and let x be a set. We introduce Ei(s(i) = x) as a synonym of s−1(x).
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Let S be a non empty finite set, let s be a finite sequence of elements of S,
and let x be a set. Then Ei(s(i) = x) is an event of the certain event of s.
Let S be a non empty finite set, let s be a finite sequence of elements of

S, and let x be a set. The functor frequency(x, s) yielding a natural number is
defined as follows:

(Def. 1) frequency(x, s) = Ei(s(i) = x) .
One can prove the following propositions:

(2) Let S be a non empty finite set, s be a finite sequence of elements of S,
and e be a set. Suppose e ∈ the certain event of s. Then there exists an
element x of S such that e ∈ Ei(s(i) = x).

(3) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then the certain event of s = len s.

Let S be a non empty finite set, let s be a finite sequence of elements of S,
and let x be a set. The functor ProbD(x, s) yielding a real number is defined as
follows:

(Def. 2) ProbD(x, s) =
frequency(x,s)

len s .

Next we state the proposition

(4) For every non empty finite set S and for every finite sequence s of ele-
ments of S and for every set x holds frequency(x, s) = len s · ProbD(x, s).
Let S be a non empty finite set and let s be a finite sequence of elements

of S. The functor FDprobSEQ s yielding a finite sequence of elements of R is
defined by:

(Def. 3) domFDprobSEQ s = Seg S and for every natural number n
such that n ∈ domFDprobSEQ s holds (FDprobSEQ s)(n) =
ProbD((CFS(S))(n), s).

The following proposition is true

(5) Let S be a non empty finite set, s be a non empty finite sequence of
elements of S, and x be a set. Then ProbD(x, s) = P(Ei(s(i) = x)).
Let S be a non empty finite set and let s, t be finite sequences of elements

of S. We say that s and t are probability equivalent if and only if:

(Def. 4) For every set x holds ProbD(x, s) = ProbD(x, t).

Let us notice that the predicate s and t are probability equivalent is reflexive
and symmetric.
The following proposition is true

(6) Let S be a non empty finite set and s, t, u be finite sequences of elements
of S. Suppose s and t are probability equivalent and t and u are probability
equivalent. Then s and u are probability equivalent.

Let S be a non empty finite set and let s be a finite sequence of elements of
S. The equivalence class of s yielding a non empty subset of S∗ is defined by



probability on finite and discrete set and . . . 175

the condition (Def. 5).

(Def. 5) The equivalence class of s = {t; t ranges over finite sequences of elements
of S: s and t are probability equivalent}.
Next we state three propositions:

(7) Let S be a non empty finite set and s, t be finite sequences of elements of
S. Then s and t are probability equivalent if and only if t ∈ the equivalence
class of s.

(8) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then s ∈ the equivalence class of s.

(9) Let S be a non empty finite set and s, t be finite sequences of elements
of S. Then s and t are probability equivalent if and only if the equivalence
class of s = the equivalence class of t.

Let S be a non empty finite set. The distribution family of S yielding a non
empty family of subsets of S∗ is defined by the condition (Def. 6).

(Def. 6) Let A be a subset of S∗. Then A ∈ the distribution family of S if and
only if there exists a finite sequence s of elements of S such that A = the
equivalence class of s.

Next we state two propositions:

(10) Let S be a non empty finite set and s, t be finite sequences of elements of
S. Then s and t are probability equivalent if and only if FDprobSEQ s =
FDprobSEQ t.

(11) Let S be a non empty finite set and s, t be finite sequences of elements
of S. If t ∈ the equivalence class of s, then FDprobSEQ s = FDprobSEQ t.
Let S be a non empty finite set. The functor GenProbSEQS yields a function

from the distribution family of S into R∗ and is defined by the condition (Def. 7).
(Def. 7) Let x be an element of the distribution family of S. Then there exists a fi-

nite sequence s of elements of S such that s ∈ x and (GenProbSEQS)(x) =
FDprobSEQ s.

One can prove the following proposition

(12) Let S be a non empty finite set and s be a finite sequence of elements of
S. Then (GenProbSEQS)(the equivalence class of s) = FDprobSEQ s.

Let S be a non empty finite set. Observe that GenProbSEQS is one-to-one.
Let S be a non empty finite set and let p be a finite probability distribution

finite sequence of elements of R. Let us assume that len p = S and there exists
a finite sequence s of elements of S such that FDprobSEQ s = p. The functor
distribution(p, S) yielding an element of the distribution family of S is defined
by:

(Def. 8) (GenProbSEQS)(distribution(p, S)) = p.
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Let S be a non empty finite set and let s be a finite sequence of elements of
S. The functor freqSEQ s yields a finite sequence of elements of N and is defined
by:

(Def. 9) dom freqSEQ s = Seg S and for every natural number n such that n ∈
dom freqSEQ s holds (freqSEQ s)(n) = len s · (FDprobSEQ s)(n).
One can prove the following propositions:

(13) Let S be a non empty finite set, s be a non empty finite sequence of
elements of S, and n be a natural number. If n ∈ Seg S , then there
exists an element x of S such that (freqSEQ s)(n) = frequency(x, s) and
x = (CFS(S))(n).

(14) For every non empty finite set S and for every finite sequence s of ele-
ments of S holds freqSEQ s = len s · FDprobSEQ s.

(15) For every non empty finite set S and for every finite sequence s of ele-
ments of S holds

∑
freqSEQ s = len s ·

∑
FDprobSEQ s.

(16) Let S be a non empty finite set, s be a non empty finite sequence of
elements of S, and n be a natural number. Suppose n ∈ dom s. Then there
exists a natural number m such that (freqSEQ s)(m) = frequency(s(n), s)
and s(n) = (CFS(S))(m).

(17) Let n be a natural number, S be a function, and L be a finite sequence
of elements of N. Suppose that
(i) S is disjoint valued,
(ii) domS = domL,
(iii) n = lenL, and
(iv) for every natural number i such that i ∈ domS holds S(i) is finite and
L(i) = CardS(i).
Then

⋃
rngS is finite and Card

⋃
rngS =

∑
L.

(18) Let S be a function and L be a finite sequence of elements of N. Suppose
S is disjoint valued and domS = domL and for every natural number
i such that i ∈ domS holds S(i) is finite and L(i) = CardS(i). Then⋃
rngS is finite and Card

⋃
rngS =

∑
L.

(19) For every non empty finite set S and for every non empty finite sequence
s of elements of S holds

∑
freqSEQ s = len s.

(20) For every non empty finite set S and for every non empty finite sequence
s of elements of S holds

∑
FDprobSEQ s = 1.

(21) Let S be a non empty finite set and s be a non empty finite sequence of
elements of S. Then FDprobSEQ s is finite probability distribution.

Let S be a non empty finite set. A finite probability distribution finite sequ-
ence of elements of R is said to be a probability distribution finite sequence on
S if:



probability on finite and discrete set and . . . 177

(Def. 10) len it = S and there exists a finite sequence s of elements of S such that
FDprobSEQ s = it.

The following proposition is true

(22) Let S be a non empty finite set and p be a probability distribution finite
sequence on S. Then
(i) p is a finite probability distribution finite sequence of elements of R,
(ii) len p = S ,
(iii) there exists a finite sequence s of elements of S such that
FDprobSEQ s = p,

(iv) distribution(p, S) is an element of the distribution family of S, and
(v) (GenProbSEQS)(distribution(p, S)) = p.

2. Uniform Distribution

Let S be a non empty finite set and let s be a finite sequence of elements of
S. We say that s is uniformly distributed if and only if:

(Def. 11) For every natural number n such that n ∈ domFDprobSEQ s holds
(FDprobSEQ s)(n) = 1

S
.

We now state four propositions:

(23) Let S be a non empty finite set and s be a finite sequence of elements of
S. If s is uniformly distributed, then FDprobSEQ s is constant.

(24) Let S be a non empty finite set and s, t be finite sequences of elements
of S. Suppose s is uniformly distributed and s and t are probability equ-
ivalent. Then t is uniformly distributed.

(25) Let S be a non empty finite set and s, t be finite sequences of elements
of S. Suppose s is uniformly distributed and t is uniformly distributed.
Then s and t are probability equivalent.

(26) For every non empty finite set S holds CFS(S) is uniformly distributed.

Let S be a non empty finite set. The uniform distribution S yielding an
element of the distribution family of S is defined by the condition (Def. 12).

(Def. 12) Let s be a finite sequence of elements of S. Then s ∈ the uniform distri-
bution S if and only if s is uniformly distributed.

Let S be a non empty finite set. One can check that there exists a probability
distribution finite sequence on S which is constant.
Let S be a non empty finite set. The functor UniformFDprobSEQS yielding

a constant probability distribution finite sequence on S is defined as follows:

(Def. 13) UniformFDprobSEQS = FDprobSEQCFS(S).

We now state the proposition
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(27) For every non empty finite set S holds the uniform distribution S =
distribution(UniformFDprobSEQS, S).
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from R into Rn, and prove the linearity of this operator. The presented method
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1. Preliminaries

Let A be a closed-interval subset of R, let f be a function from A into R,
let S be a non empty Division of A, and let D be an element of S. A finite
sequence of elements of R is said to be a middle volume of f and D if it satisfies
the conditions (Def. 1).

(Def. 1)(i) len it = lenD, and
(ii) for every natural number i such that i ∈ domD there exists an element
r of R such that r ∈ rng(f�divset(D, i)) and it(i) = r · vol(divset(D, i)).
Let A be a closed-interval subset of R, let f be a function from A into R,

let S be a non empty Division of A, let D be an element of S, and let F be a
middle volume of f andD. The functor middle sum(f, F ) yielding a real number
is defined as follows:

(Def. 2) middle sum(f, F ) =
∑
F.

We now state four propositions:
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(1) Let A be a closed-interval subset of R, f be a function from A into R, S
be a non empty Division of A, D be an element of S, and F be a middle
volume of f and D. If f�A is lower bounded, then lower sum(f,D) ≤
middle sum(f, F ).

(2) Let A be a closed-interval subset of R, f be a function from A into R, S
be a non empty Division of A, D be an element of S, and F be a middle
volume of f and D. If f�A is upper bounded, then middle sum(f, F ) ≤
upper sum(f,D).

(3) Let A be a closed-interval subset of R, f be a function from A into R, S be
a non empty Division of A, D be an element of S, and e be a real number.
Suppose f�A is lower bounded and 0 < e. Then there exists a middle
volume F of f and D such that middle sum(f, F ) ≤ lower sum(f,D) + e.

(4) Let A be a closed-interval subset of R, f be a function from A into R, S be
a non empty Division of A, D be an element of S, and e be a real number.
Suppose f�A is upper bounded and 0 < e. Then there exists a middle
volume F of f and D such that upper sum(f,D)− e ≤ middle sum(f, F ).
Let A be a closed-interval subset of R, let f be a function from A into R,

and let T be a DivSequence of A. A function from N into R∗ is said to be a
middle volume sequence of f and T if:

(Def. 3) For every element k of N holds it(k) is a middle volume of f and T (k).
Let A be a closed-interval subset of R, let f be a function from A into R, let

T be a DivSequence of A, let S be a middle volume sequence of f and T , and
let k be an element of N. Then S(k) is a middle volume of f and T (k).
Let A be a closed-interval subset of R, let f be a function from A into R, let

T be a DivSequence of A, and let S be a middle volume sequence of f and T .
The functor middle sum(f, S) yields a sequence of real numbers and is defined
as follows:

(Def. 4) For every element i of N holds (middle sum(f, S))(i) = middle sum(f, S(i)).
One can prove the following propositions:

(5) Let A be a closed-interval subset of R, f be a function from A into R, T
be a DivSequence of A, S be a middle volume sequence of f and T , and i
be an element of N. If f�A is lower bounded, then (lower sum(f, T ))(i) ≤
(middle sum(f, S))(i).

(6) Let A be a closed-interval subset of R, f be a function from A into R, T
be a DivSequence of A, S be a middle volume sequence of f and T , and i
be an element of N. If f�A is upper bounded, then (middle sum(f, S))(i) ≤
(upper sum(f, T ))(i).

(7) Let A be a closed-interval subset of R, f be a function from A into R,
T be a DivSequence of A, and e be an element of R. Suppose 0 < e and
f�A is lower bounded. Then there exists a middle volume sequence S of
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f and T such that for every element i of N holds (middle sum(f, S))(i) ≤
(lower sum(f, T ))(i) + e.

(8) Let A be a closed-interval subset of R, f be a function from A into R,
T be a DivSequence of A, and e be an element of R. Suppose 0 < e and
f�A is upper bounded. Then there exists a middle volume sequence S of f
and T such that for every element i of N holds (upper sum(f, T ))(i)− e ≤
(middle sum(f, S))(i).

(9) Let A be a closed-interval subset of R, f be a function from A in-
to R, T be a DivSequence of A, and S be a middle volume sequence
of f and T . Suppose f is bounded and f is integrable on A and δT is
convergent and lim(δT ) = 0. Then middle sum(f, S) is convergent and
limmiddle sum(f, S) = integral f.

(10) Let A be a closed-interval subset of R and f be a function from A into R.
Suppose f is bounded. Then f is integrable on A if and only if there exists a
real number I such that for every DivSequence T of A and for every middle
volume sequence S of f and T such that δT is convergent and lim(δT ) = 0
holds middle sum(f, S) is convergent and limmiddle sum(f, S) = I.

Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into Rn, let S be a non empty Division of A, and let D be an
element of S. A finite sequence of elements of Rn is said to be a middle volume
of f and D if it satisfies the conditions (Def. 5).

(Def. 5)(i) len it = lenD, and
(ii) for every natural number i such that i ∈ domD there exists an element
r of Rn such that r ∈ rng(f�divset(D, i)) and it(i) = vol(divset(D, i)) · r.
Let n be an element of N, let A be a closed-interval subset of R, let f be a

function from A intoRn, let S be a non empty Division of A, letD be an element
of S, and let F be a middle volume of f and D. The functor middle sum(f, F )
yields an element of Rn and is defined by the condition (Def. 6).
(Def. 6) Let i be an element of N. Suppose i ∈ Seg n. Then there exists a fi-

nite sequence F1 of elements of R such that F1 = proj(i, n) · F and
(middle sum(f, F ))(i) =

∑
F1.

Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into Rn, and let T be a DivSequence of A. A function from N
into (Rn)∗ is said to be a middle volume sequence of f and T if:
(Def. 7) For every element k of N holds it(k) is a middle volume of f and T (k).

Let n be an element of N, let A be a closed-interval subset of R, let f be a
function from A into Rn, let T be a DivSequence of A, let S be a middle volume
sequence of f and T , and let k be an element of N. Then S(k) is a middle volume
of f and T (k).
Let n be an element of N, let A be a closed-interval subset of R, let f be a
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function from A into Rn, let T be a DivSequence of A, and let S be a middle
volume sequence of f and T . The functor middle sum(f, S) yields a sequence of
〈En, ‖ · ‖〉 and is defined as follows:
(Def. 8) For every element i of N holds (middle sum(f, S))(i) = middle sum(f, S(i)).

Let n be an element of N, let Z be a non empty set, and let f , g be partial
functions from Z to Rn. The functor f + g yields a partial function from Z to
Rn and is defined by:
(Def. 9) dom(f + g) = dom f ∩ dom g and for every element c of Z such that

c ∈ dom(f + g) holds (f + g)c = fc + gc.
The functor f − g yielding a partial function from Z to Rn is defined by:

(Def. 10) dom(f − g) = dom f ∩ dom g and for every element c of Z such that
c ∈ dom(f − g) holds (f − g)c = fc − gc.
Let n be an element of N, let r be a real number, let Z be a non empty set,

and let f be a partial function from Z to Rn. The functor r f yields a partial
function from Z to Rn and is defined by:

(Def. 11) dom(r f) = dom f and for every element c of Z such that c ∈ dom(r f)
holds (r f)c = r · fc.

2. Definition of Riemann Integral of Functions from R into Rn

Let n be an element of N, let A be a closed-interval subset of R, and let f
be a function from A into Rn. We say that f is bounded if and only if:

(Def. 12) For every element i of N such that i ∈ Seg n holds proj(i, n)·f is bounded.
Let n be an element of N, let A be a closed-interval subset of R, and let f

be a function from A into Rn. We say that f is integrable if and only if:
(Def. 13) For every element i of N such that i ∈ Seg n holds proj(i, n) · f is inte-

grable on A.

Let n be an element of N, let A be a closed-interval subset of R, and let f
be a function from A into Rn. The functor integral f yielding an element of Rn
is defined by:

(Def. 14) dom integral f = Seg n and for every element i of N such that i ∈ Seg n
holds (integral f)(i) = integral proj(i, n) · f.
One can prove the following propositions:

(11) Let n be an element of N, A be a closed-interval subset of R, f be a
function from A into Rn, T be a DivSequence of A, and S be a middle
volume sequence of f and T . Suppose f is bounded and integrable and δT
is convergent and lim(δT ) = 0. Then middle sum(f, S) is convergent and
limmiddle sum(f, S) = integral f.
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(12) Let n be an element of N, A be a closed-interval subset of R, and f be
a function from A into Rn. Suppose f is bounded. Then f is integrable if
and only if there exists an element I ofRn such that for every DivSequence
T of A and for every middle volume sequence S of f and T such that δT
is convergent and lim(δT ) = 0 holds middle sum(f, S) is convergent and
limmiddle sum(f, S) = I.

Let n be an element of N and let f be a partial function from R to Rn. We
say that f is bounded if and only if:

(Def. 15) For every element i of N such that i ∈ Seg n holds proj(i, n)·f is bounded.
Let n be an element of N, let A be a closed-interval subset of R, and let f be

a partial function from R to Rn. We say that f is integrable on A if and only if:
(Def. 16) For every element i of N such that i ∈ Seg n holds proj(i, n) · f is inte-

grable on A.

Let n be an element of N, let A be a closed-interval subset of R, and let f
be a partial function from R to Rn. The functor

∫
A

f(x)dx yielding an element

of Rn is defined by:

(Def. 17) dom
∫
A

f(x)dx = Seg n and for every element i of N such that i ∈ Seg n

holds (
∫
A

f(x)dx)(i) =
∫
A

(proj(i, n) · f)(x)dx.

We now state two propositions:

(13) Let n be an element of N, A be a closed-interval subset of R, f be
a partial function from R to Rn, and g be a function from A into Rn.
Suppose f�A = g. Then f is integrable on A if and only if g is integrable.

(14) Let n be an element of N, A be a closed-interval subset of R, f be a
partial function from R to Rn, and g be a function from A into Rn. If
f�A = g, then

∫
A

f(x)dx = integral g.

Let a, b be real numbers, let n be an element of N, and let f be a partial

function from R to Rn. The functor
b∫
a

f(x)dx yielding an element of Rn is

defined as follows:

(Def. 18) dom
b∫
a

f(x)dx = Seg n and for every element i of N such that i ∈ Seg n

holds (
b∫
a

f(x)dx)(i) =
b∫
a

(proj(i, n) · f)(x)dx.
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3. Linearity of Integration Operator

Next we state several propositions:

(15) Let n be an element of N, f1, f2 be partial functions from R to Rn, and
i be an element of N. If i ∈ Seg n, then proj(i, n) · (f1 + f2) = proj(i, n) ·
f1+proj(i, n) · f2 and proj(i, n) · (f1− f2) = proj(i, n) · f1− proj(i, n) · f2.

(16) Let n be an element of N, r be a real number, f be a partial function from
R to Rn, and i be an element of N. If i ∈ Seg n, then proj(i, n) · (r f) =
r (proj(i, n) · f).

(17) Let n be an element of N, A be a closed-interval subset of R, and f1,
f2 be partial functions from R to Rn. Suppose f1 is integrable on A and
f2 is integrable on A and A ⊆ dom f1 and A ⊆ dom f2 and f1�A is
bounded and f2�A is bounded. Then f1+f2 is integrable on A and f1−f2
is integrable on A and

∫
A

(f1 + f2)(x)dx =
∫
A

f1(x)dx +
∫
A

f2(x)dx and∫
A

(f1 − f2)(x)dx =
∫
A

f1(x)dx−
∫
A

f2(x)dx.

(18) Let n be an element of N, r be a real number, A be a closed-interval
subset of R, and f be a partial function from R to Rn. Suppose A ⊆ dom f
and f is integrable on A and f�A is bounded. Then r f is integrable on A

and
∫
A

(r f)(x)dx = r ·
∫
A

f(x)dx.

(19) Let n be an element of N, f be a partial function from R to Rn, A be
a closed-interval subset of R, and a, b be real numbers. If A = [a, b], then∫
A

f(x)dx =
b∫
a

f(x)dx.

(20) Let n be an element of N, f be a partial function from R to Rn, A be
a closed-interval subset of R, and a, b be real numbers. If A = [b, a], then

−
∫
A

f(x)dx =
b∫
a

f(x)dx.
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1. Even and Odd Functions

In this paper x, r denote real numbers.
Let A be a set. We say that A is symmetrical if and only if:

(Def. 1) For every complex number x such that x ∈ A holds −x ∈ A.
One can verify that there exists a subset of C which is symmetrical.
Let us observe that there exists a subset of R which is symmetrical.
In the sequel A denotes a symmetrical subset of C.
Let R be a binary relation. We say that R has symmetrical domain if and

only if:

(Def. 2) domR is symmetrical.

One can verify that every binary relation which is empty has also symme-
trical domain and there exists a binary relation which has symmetrical domain.
Let R be a binary relation with symmetrical domain. Note that domR is

symmetrical.
Let X, Y be complex-membered sets and let F be a partial function from

X to Y . We say that F is quasi even if and only if:
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(Def. 3) For every x such that x, −x ∈ domF holds F (−x) = F (x).
Let X, Y be complex-membered sets and let F be a partial function from

X to Y . We say that F is even if and only if:

(Def. 4) F is quasi even and has symmetrical domain.

Let X, Y be complex-membered sets. One can check that every partial
function from X to Y which is quasi even and has symmetrical domain is also
even and every partial function from X to Y which is even is also quasi even
and has symmetrical domain.
Let A be a set, let X, Y be complex-membered sets, and let F be a partial

function from X to Y . We say that F is even on A if and only if:

(Def. 5) A ⊆ domF and F �A is even.

Let X, Y be complex-membered sets and let F be a partial function from
X to Y . We say that F is quasi odd if and only if:

(Def. 6) For every x such that x, −x ∈ domF holds F (−x) = −F (x).
Let X, Y be complex-membered sets and let F be a partial function from

X to Y . We say that F is odd if and only if:

(Def. 7) F is quasi odd and has symmetrical domain.

Let X, Y be complex-membered sets. Note that every partial function from
X to Y which is quasi odd and has symmetrical domain is also odd and every
partial function from X to Y which is odd is also quasi odd and has symmetrical
domain.
Let A be a set, let X, Y be complex-membered sets, and let F be a partial

function from X to Y . We say that F is odd on A if and only if:

(Def. 8) A ⊆ domF and F �A is odd.

In the sequel F , G denote partial functions from R to R.
One can prove the following propositions:

(1) F is odd on A iff A ⊆ domF and for every x such that x ∈ A holds
F (x) + F (−x) = 0.

(2) F is even on A iff A ⊆ domF and for every x such that x ∈ A holds
F (x)− F (−x) = 0.

(3) If F is odd on A and for every x such that x ∈ A holds F (x) 6= 0, then
A ⊆ domF and for every x such that x ∈ A holds F (x)F (−x) = −1.

(4) If A ⊆ domF and for every x such that x ∈ A holds F (x)F (−x) = −1, then
F is odd on A.

(5) If F is even on A and for every x such that x ∈ A holds F (x) 6= 0, then
A ⊆ domF and for every x such that x ∈ A holds F (x)F (−x) = 1.

(6) If A ⊆ domF and for every x such that x ∈ A holds F (x)F (−x) = 1, then F
is even on A.
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(7) If F is even on A and odd on A, then for every x such that x ∈ A holds
F (x) = 0.

(8) If F is even on A, then for every x such that x ∈ A holds F (x) = F (|x|).
(9) If A ⊆ domF and for every x such that x ∈ A holds F (x) = F (|x|),
then F is even on A.

(10) If F is odd on A and G is odd on A, then F +G is odd on A.

(11) If F is even on A and G is even on A, then F +G is even on A.

(12) If F is odd on A and G is odd on A, then F −G is odd on A.
(13) If F is even on A and G is even on A, then F −G is even on A.
(14) If F is odd on A, then r F is odd on A.

(15) If F is even on A, then r F is even on A.

(16) If F is odd on A, then −F is odd on A.
(17) If F is even on A, then −F is even on A.
(18) If F is odd on A, then F−1 is odd on A.

(19) If F is even on A, then F−1 is even on A.

(20) If F is odd on A, then |F | is even on A.
(21) If F is even on A, then |F | is even on A.
(22) If F is odd on A and G is odd on A, then F G is even on A.

(23) If F is even on A and G is even on A, then F G is even on A.

(24) If F is even on A and G is odd on A, then F G is odd on A.

(25) If F is even on A, then r + F is even on A.

(26) If F is even on A, then F − r is even on A.
(27) If F is even on A, then F 2 is even on A.

(28) If F is odd on A, then F 2 is even on A.

(29) If F is odd on A and G is odd on A, then F/G is even on A.

(30) If F is even on A and G is even on A, then F/G is even on A.

(31) If F is odd on A and G is even on A, then F/G is odd on A.

(32) If F is even on A and G is odd on A, then F/G is odd on A.

(33) If F is odd, then −F is odd.
(34) If F is even, then −F is even.
(35) If F is odd, then F−1 is odd.

(36) If F is even, then F−1 is even.

(37) If F is odd, then |F | is even.
(38) If F is even, then |F | is even.
(39) If F is odd, then F 2 is even.

(40) If F is even, then F 2 is even.

(41) If F is even, then r + F is even.
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(42) If F is even, then F − r is even.
(43) If F is odd, then r F is odd.

(44) If F is even, then r F is even.

(45) If F is odd and G is odd and domF ∩domG is symmetrical, then F +G
is odd.

(46) If F is even and G is even and domF ∩domG is symmetrical, then F+G
is even.

(47) If F is odd and G is odd and domF ∩domG is symmetrical, then F −G
is odd.

(48) If F is even and G is even and domF ∩domG is symmetrical, then F−G
is even.

(49) If F is odd and G is odd and domF ∩ domG is symmetrical, then F G
is even.

(50) If F is even and G is even and domF ∩domG is symmetrical, then F G
is even.

(51) If F is even and G is odd and domF ∩ domG is symmetrical, then F G
is odd.

(52) If F is odd and G is odd and domF ∩ domG is symmetrical, then F/G
is even.

(53) If F is even and G is even and domF ∩domG is symmetrical, then F/G
is even.

(54) If F is odd and G is even and domF ∩ domG is symmetrical, then F/G
is odd.

(55) If F is even and G is odd and domF ∩ domG is symmetrical, then F/G
is odd.

2. Some Examples

The function signum from R into R is defined as follows:
(Def. 9) For every real number x holds signum(x) = sgnx.

Let x be a real number. One can check that signum(x) is real.
We now state a number of propositions:

(56) For every real number x such that x > 0 holds signum(x) = 1.

(57) For every real number x such that x < 0 holds signum(x) = −1.
(58) signum(0) = 0.

(59) For every real number x holds signum(−x) = −signum(x).
(60) For every symmetrical subset A of R holds signum is odd on A.
(61) For every real number x such that x ≥ 0 holds |�|R(x) = x.
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(62) For every real number x such that x < 0 holds |�|R(x) = −x.
(63) For every real number x holds |�|R(−x) = |�|R(x).
(64) For every symmetrical subset A of R holds |�|R is even on A.
(65) For every symmetrical subset A of R holds the function sin is odd on A.
(66) For every symmetrical subset A of R holds the function cos is even on
A.

Let us note that the function sin is odd.
Let us note that the function cos is even.
The following two propositions are true:

(67) For every symmetrical subset A of R holds the function sinh is odd on
A.

(68) For every symmetrical subset A of R holds the function cosh is even on
A.

One can check that the function sinh is odd.
Let us mention that the function cosh is even.
We now state a number of propositions:

(69) If A ⊆ ]−π2 ,
π
2 [, then the function tan is odd on A.

(70) Suppose A ⊆ dom (the function tan) and for every x such that x ∈ A
holds (the function cos)(x) 6= 0. Then the function tan is odd on A.

(71) Suppose A ⊆ dom (the function cot) and for every x such that x ∈ A
holds (the function sin)(x) 6= 0. Then the function cot is odd on A.

(72) If A ⊆ [−1, 1], then the function arctan is odd on A.
(73) For every symmetrical subset A of R holds |the function sin | is even on
A.

(74) For every symmetrical subset A of R holds |the function cos | is even on
A.

(75) For every symmetrical subset A of R holds (the function sin) −1 is odd
on A.

(76) For every symmetrical subset A of R holds (the function cos) −1 is even
on A.

(77) For every symmetrical subset A of R holds −the function sin is odd on
A.

(78) For every symmetrical subset A of R holds −the function cos is even on
A.

(79) For every symmetrical subset A of R holds (the function sin)2 is even on
A.

(80) For every symmetrical subset A of R holds (the function cos)2 is even
on A.
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In the sequel B is a symmetrical subset of R.
One can prove the following four propositions:

(81) If B ⊆ dom (the function sec), then the function sec is even on B.
(82) If for every real number x such that x ∈ B holds (the function cos)(x) 6=
0, then the function sec is even on B.

(83) If B ⊆ dom (the function cosec), then the function cosec is odd on B.
(84) If for every real number x such that x ∈ B holds (the function sin)(x) 6=
0, then the function cosec is odd on B.
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1. Preliminaries

For simplicity, we adopt the following convention: x, y, X denote sets, E
denotes a non empty set, e denotes an element of E, u, u1, v, v1, v2, w denote
elements of Eω, F denotes a subset of Eω, i, k, l denote natural numbers, T
denotes a non empty transition-system over F , and S, T denote subsets of T.
One can prove the following propositions:

(1) If i ≥ k + l, then i ≥ k.
(2) For all finite sequences a, b such that a a b = a or b a a = a holds b = ∅.
(3) For all finite sequences p, q such that k ∈ dom p and len p + 1 = len q
holds k + 1 ∈ dom q.

(4) If lenu = 1, then there exists e such that 〈e〉 = u and e = u(0).
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(5) If k 6= 0 and lenu ≤ k + 1, then there exist v1, v2 such that len v1 ≤ k
and len v2 ≤ k and u = v1 a v2.

(6) For all finite 0-sequences p, q such that 〈x〉a p = 〈y〉a q holds x = y and
p = q.

(7) If lenu > 0, then there exist e, u1 such that u = 〈e〉 a u1.

Let us consider E. One can verify that LexE is non empty.
Next we state three propositions:

(8) 〈〉E /∈ LexE.
(9) u ∈ LexE iff lenu = 1.
(10) If u 6= v and u, v ∈ LexE, then it is not true that there exists w such
that u a w = v or w a u = v.

2. Transition Systems over LexE

The following propositions are true:

(11) For every transition-system T over LexE holds 〈〉E /∈ rng dom (the trans-
ition of T).

(12) For every transition-system T over LexE such that the transition of T
is a function holds T is deterministic.

3. Powerset Construction for Transition Systems

Let us consider E, F , T. The functor boolT yielding a strict transition-
system over LexE is defined by the conditions (Def. 1).

(Def. 1)(i) The carrier of boolT = 2the carrier of T, and
(ii) for all S, w, T holds 〈〈〈〈S, w〉〉, T 〉〉 ∈ the transition of boolT iff lenw = 1
and T = w-succT(S).

Let us consider E, F , T. Note that boolT is non empty and deterministic.
Let us consider E, F and let T be a finite non empty transition-system over

F . One can check that boolT is finite.
The following two propositions are true:

(13) If x, 〈e〉 ⇒∗boolT y, 〈〉E , then x, 〈e〉 ⇒boolT y, 〈〉E .
(14) If lenw = 1, then X = w-succT(S) iff S,w ⇒∗boolT X.
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4. Semiautomata

Let us consider E, F . We consider semiautomata over F as extensions of
transition-system over F as systems
〈 a carrier, a transition, an initial state 〉,

where the carrier is a set, the transition is a relation between the carrier×F and
the carrier, and the initial state is a subset of the carrier.
Let us consider E, F and let S be a semiautomaton over F . We say that S

is deterministic if and only if:

(Def. 2) The transition-system of S is deterministic and Card (the initial state
of S) = 1.

Let us consider E, F . One can check that there exists a semiautomaton over
F which is strict, non empty, finite, and deterministic.
In the sequel S is a non empty semiautomaton over F .
Let us consider E, F , S. Observe that the transition-system of S is non

empty.
Let us consider E, F , S. The functor boolS yields a strict semiautomaton

over LexE and is defined by the conditions (Def. 3).

(Def. 3)(i) The transition-system of boolS = bool (the transition-system of S),
and

(ii) the initial state of boolS = {〈〉E-succS(the initial state of S)}.
Let us consider E, F ,S. Observe that boolS is non empty and deterministic.
The following proposition is true

(15) The carrier of boolS = 2the carrier of S.

Let us consider E, F and let S be a finite non empty semiautomaton over
F . Observe that boolS is finite.

5. Left-languages

Let us consider E, F , S and let Q be a subset of S. The functor left-LangQ
yields a subset of Eω and is defined as follows:

(Def. 4) left-LangQ = {w : Q meets w-succS(the initial state of S)}.
Next we state the proposition

(16) For every subset Q of S holds w ∈ left-LangQ iff Q meets w-succS(the
initial state of S).
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6. Automata

Let us consider E, F . We consider automata over F as extensions of semiau-
tomaton over F as systems
〈 a carrier, a transition, an initial state, final states 〉,

where the carrier is a set, the transition is a relation between the carrier×F
and the carrier, the initial state is a subset of the carrier, and the final states
constitute a subset of the carrier.
Let us consider E, F and let A be an automaton over F . We say that A is

deterministic if and only if:

(Def. 5) The semiautomaton of A is deterministic.

Let us consider E, F . Observe that there exists a automaton over F which
is strict, non empty, finite, and deterministic.
In the sequel A denotes a non empty automaton over F and p, q denote

elements of A.
Let us consider E, F , A. One can check that the transition-system of A is

non empty and the semiautomaton of A is non empty.
Let us consider E, F , A. The functor boolA yields a strict automaton over

LexE and is defined by the conditions (Def. 6).

(Def. 6)(i) The semiautomaton of boolA = bool (the semiautomaton of A), and
(ii) the final states of boolA = {Q;Q ranges over elements of boolA : Q
meets the final states of A}.
Let us consider E, F , A. One can check that boolA is non empty and

deterministic.
The following proposition is true

(17) The carrier of boolA = 2the carrier of A.

Let us consider E, F and let A be a finite non empty automaton over F .
Note that boolA is finite.

7. Right-languages

Let us consider E, F , A and let Q be a subset of A. The functor right-LangQ
yields a subset of Eω and is defined as follows:

(Def. 7) right-LangQ = {w : w-succA(Q) meets the final states of A}.
The following proposition is true

(18) For every subset Q of A holds w ∈ right-LangQ iff w-succA(Q) meets
the final states of A.

n
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8. Languages Accepted by Automata

Let us consider E, F , A. The language generated by A yielding a subset of
Eω is defined by the condition (Def. 8).

(Def. 8) The language generated by A = {u :
∨
p,q (p ∈ the initial state of A ∧ q ∈

the final states of A ∧ p, u⇒∗A q)}.
The following propositions are true:

(19) w ∈ the language generated by A if and only if there exist p, q such that
p ∈ the initial state of A and q ∈ the final states of A and p, w ⇒∗A q.

(20) w ∈ the language generated by A if and only if w-succA(the initial state
of A) meets the final states of A.

(21) The language generated by A = left-Lang (the final states of A).

(22) The language generated by A = right-Lang (the initial state of A).

9. Equivalence of Deterministic and Nondeterministic Epsilon
Automata

In the sequel T denotes a non empty transition-system over LexE ∪ {〈〉E}.
One can prove the following three propositions:

(23) For every reduction sequence R w.r.t.⇒T such that R(1)2 = 〈e〉a u and
R(lenR)2 = 〈〉E holds R(2)2 = 〈e〉 a u or R(2)2 = u.

(24) For every reduction sequence R w.r.t. ⇒T such that R(1)2 = u and
R(lenR)2 = 〈〉E holds lenR > lenu.

(25) For every reduction sequence R w.r.t. ⇒T such that R(1)2 = u a v and
R(lenR)2 = 〈〉E there exists l such that l ∈ domR and R(l)2 = v.
Let us consider E, u, v. The functor chop(u, v) yielding an element of Eω is

defined by:

(Def. 9)(i) For every w such that w a v = u holds chop(u, v) = w if there exists
w such that w a v = u,

(ii) chop(u, v) = u, otherwise.

The following propositions are true:

(26) Let p be a reduction sequence w.r.t. ⇒T. Suppose p(1) = 〈〈x, uaw〉〉 and
p(len p) = 〈〈y, v a w〉〉. Then there exists a reduction sequence q w.r.t. ⇒T

such that q(1) = 〈〈x, u〉〉 and q(len q) = 〈〈y, v〉〉.
(27) If ⇒T reduces 〈〈x, u a w〉〉 to 〈〈y, v a w〉〉, then ⇒T reduces 〈〈x, u〉〉 to 〈〈y,
v〉〉.

(28) If x, u a w ⇒∗T y, v a w, then x, u⇒∗T y, v.
(29) For all elements p, q of T such that p, ua v ⇒∗T q there exists an element
r of T such that p, u⇒∗T r and r, v ⇒∗T q.
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(30) w a v-succT(X) = v-succT(w-succT(X)).

(31) boolT is a non empty transition-system over LexE ∪ {〈〉E}.
(32) w-succboolT({v-succT(X)}) = {v a w-succT(X)}.
In the sequel S denotes a non empty semiautomaton over LexE ∪ {〈〉E}.
One can prove the following proposition

(33) w-succboolS({〈〉E-succS(X)}) = {w-succS(X)}.
In the sequel A denotes a non empty automaton over LexE ∪ {〈〉E} and P

denotes a subset of A.
Next we state several propositions:

(34) If x ∈ the final states of A and x ∈ P, then P ∈ the final states of boolA.
(35) If X ∈ the final states of boolA, then X meets the final states of A.
(36) The initial state of boolA = {〈〉E-succA(the initial state of A)}.
(37) w-succboolA({〈〉E-succA(X)}) = {w-succA(X)}.
(38) w-succboolA(the initial state of boolA) = {w-succA(the initial state of

A)}.
(39) The language generated by A = the language generated by boolA.

(40) Let A be a non empty automaton over LexE∪{〈〉E}. Then there exists a
non empty deterministic automaton A1 over LexE such that the language
generated by A = the language generated by A1.

(41) Let F be a non empty finite automaton over LexE ∪ {〈〉E}. Then there
exists a non empty deterministic finite automaton A2 over LexE such that
the language generated by F = the language generated by A2.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377–382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41–46, 1990.

[3] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91–96, 1990.
[4] Grzegorz Bancerek. Reduction relations. Formalized Mathematics, 5(4):469–478, 1996.
[5] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47–53,
1990.

[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[10] Karol Pąk. The Catalan numbers. Part II. Formalized Mathematics, 14(4):153–159, 2006,
doi:10.2478/v10037-006-0019-7.

[11] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[12] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,
1(1):97–105, 1990.

[13] Michał Trybulec. Formal languages – concatenation and closure. Formalized Mathematics,
15(1):11–15, 2007, doi:10.2478/v10037-007-0002-y.



equivalence of deterministic and . . . 199

[14] Michał Trybulec. Labelled state transition systems. Formalized Mathematics, 17(2):163–
171, 2009, doi: 10.2478/v10037-009-0019-5.

[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[16] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequ-
ences. Formalized Mathematics, 9(4):825–829, 2001.

[17] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[18] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

Received May 25, 2009




