Contents

The Real Vector Spaces of Finite Sequences are Finite Dimensio- nal
By Yatsuka Nakamura et al. 1
Several Integrability Formulas of Some Functions, Orthogonal Po- lynomials and Norm Functions
By Bo Li et al. 11
Several Integrability Formulas of Special Functions. Part II
By Bo Li et al. 23
Cell Petri Net Concepts
By Mitsuru Jitsukawa et al. 37
Arithmetic Operations on Functions from Sets into Functional Sets
By Artur KorniŁowicz 43
Addenda i

The Real Vector Spaces of Finite Sequences are Finite Dimensional

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Artur Korniłowicz

Institute of Computer Science
University of Białystok
Sosnowa 64, 15-887 Białystok, Poland
Nagato Oya
Shinshu University
Nagano, Japan
Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this paper we show the finite dimensionality of real linear spaces with their carriers equal \mathcal{R}^{n}. We also give the standard basis of such spaces. For the set \mathcal{R}^{n} we introduce the concepts of linear manifold subsets and orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is proved to equal n.

MML identifier: EUCLID_7, version: $\underline{7.11 .014 .117 .1046}$

The articles [32], [7], [11], [33], [9], [2], [8], [5], [31], [4], [6], [18], [13], [22], [20], [14], [1], [21], [29], [28], [26], [3], [23], [10], [12], [30], [19], [34], [16], [17], [25], [15], [24], and [27] provide the notation and terminology for this paper.

1. Preliminaries

We use the following convention: i, j, n are elements of \mathbb{N}, z, B_{0} are sets, and f, x_{0} are real-valued finite sequences.

Next we state several propositions:
(1) For all functions f, g holds $\operatorname{dom}(f \cdot g)=\operatorname{dom} g \cap g^{-1}(\operatorname{dom} f)$.
(2) For every binary relation R and for every set Y such that $\operatorname{rng} R \subseteq Y$ holds $R^{-1}(Y)=\operatorname{dom} R$.
(3) Let X be a set, Y be a non empty set, and f be a function from X into Y. If f is bijective, then $\overline{\bar{X}}=\overline{\bar{Y}}$.
(4) $\langle z\rangle \cdot\langle 1\rangle=\langle z\rangle$.
(5) For every element x of \mathcal{R}^{0} holds $x=\varepsilon_{\mathbb{R}}$.
(6) For all elements a, b, c of \mathcal{R}^{n} holds $(a-b)+c+b=a+c$.

Let f_{1}, f_{2} be finite sequences. One can verify that $\left\langle f_{1}, f_{2}\right\rangle$ is finite sequencelike.

Let D be a set and let f_{1}, f_{2} be finite sequences of elements of D. Then $\left\langle f_{1}, f_{2}\right\rangle$ is a finite sequence of elements of $D \times D$.

Let h be a real-valued finite sequence. Let us observe that h is increasing if and only if:
(Def. 1) For every i such that $1 \leq i<\operatorname{len} h$ holds $h(i)<h(i+1)$.
One can prove the following four propositions:
(7) Let h be a real-valued finite sequence. Suppose h is increasing. Let given i, j. If $i<j$ and $1 \leq i$ and $j \leq$ len h, then $h(i)<h(j)$.
(8) Let h be a real-valued finite sequence. Suppose h is increasing. Let given i, j. If $i \leq j$ and $1 \leq i$ and $j \leq$ len h, then $h(i) \leq h(j)$.
(9) Let h be a natural-valued finite sequence. Suppose h is increasing. Let given i. If $1 \leq i \leq \operatorname{len} h$ and $1 \leq h(1)$, then $i \leq h(i)$.
(10) Let V be a real linear space and X be a subspace of V. Suppose V is strict and X is strict and the carrier of $X=$ the carrier of V. Then $X=V$.
Let D be a set, let F be a finite sequence of elements of D, and let h be a permutation of $\operatorname{dom} F$. The functor $F \circ h$ yields a finite sequence of elements of D and is defined as follows:
(Def. 2) $\quad F \circ h=F \cdot h$.
One can prove the following propositions:
(11) Let D be a non empty set and f be a finite sequence of elements of D. If $1 \leq i \leq \operatorname{len} f$ and $1 \leq j \leq \operatorname{len} f$, then $(\operatorname{Swap}(f, i, j))(i)=f(j)$ and $(\operatorname{Swap}(f, i, j))(j)=f(i)$.
(12) \emptyset is a permutation of \emptyset.
(13) $\langle 1\rangle$ is a permutation of $\{1\}$.
(14) For every finite sequence h of elements of \mathbb{R} holds h is one-to-one iff sort $_{\mathrm{a}} h$ is one-to-one.
(15) Let h be a finite sequence of elements of \mathbb{N}. Suppose h is one-to-one. Then there exists a permutation h_{3} of $\operatorname{dom} h$ and there exists a finite sequence h_{2} of elements of \mathbb{N} such that $h_{2}=h \cdot h_{3}$ and h_{2} is increasing and $\operatorname{dom} h=\operatorname{dom} h_{2}$ and $\operatorname{rng} h=\operatorname{rng} h_{2}$.

2. Orthogonal Basis

Let B_{0} be a set. We say that B_{0} is \mathbb{R}-orthogonal if and only if:
(Def. 3) For all real-valued finite sequences x, y such that $x, y \in B_{0}$ and $x \neq y$ holds $|(x, y)|=0$.
Let us observe that every set which is empty is also \mathbb{R}-orthogonal.
We now state the proposition
(16) $\quad B_{0}$ is \mathbb{R}-orthogonal if and only if for all points x, y of $\mathcal{E}_{\mathrm{T}}^{n}$ such that x, $y \in B_{0}$ and $x \neq y$ holds x, y are orthogonal.
Let B_{0} be a set. We say that B_{0} is \mathbb{R}-normal if and only if:
(Def. 4) For every real-valued finite sequence x such that $x \in B_{0}$ holds $|x|=1$.
Let us observe that every set which is empty is also \mathbb{R}-normal.
Let us observe that there exists a set which is \mathbb{R}-normal.
Let B_{0}, B_{1} be \mathbb{R}-normal sets. One can verify that $B_{0} \cup B_{1}$ is \mathbb{R}-normal.
One can prove the following propositions:
(17) If $|f|=1$, then $\{f\}$ is \mathbb{R}-normal.
(18) If B_{0} is \mathbb{R}-normal and $\left|x_{0}\right|=1$, then $B_{0} \cup\left\{x_{0}\right\}$ is \mathbb{R}-normal.

Let B_{0} be a set. We say that B_{0} is \mathbb{R}-orthonormal if and only if:
(Def. 5) $\quad B_{0}$ is \mathbb{R}-orthogonal and \mathbb{R}-normal.
Let us note that every set which is \mathbb{R}-orthonormal is also \mathbb{R}-orthogonal and \mathbb{R} normal and every set which is \mathbb{R}-orthogonal and \mathbb{R}-normal is also \mathbb{R}-orthonormal.

Let us observe that $\{\langle 1\rangle\}$ is \mathbb{R}-orthonormal.
Let us observe that there exists a set which is \mathbb{R}-orthonormal and non empty.
Let us consider n. One can verify that there exists a subset of \mathcal{R}^{n} which is \mathbb{R}-orthonormal.

Let us consider n and let B_{0} be a subset of \mathcal{R}^{n}. We say that B_{0} is complete if and only if:
(Def. 6) For every \mathbb{R}-orthonormal subset B of \mathcal{R}^{n} such that $B_{0} \subseteq B$ holds $B=B_{0}$.
Let n be an element of \mathbb{N} and let B_{0} be a subset of \mathcal{R}^{n}. We say that B_{0} is orthogonal basis if and only if:
(Def. 7) $\quad B_{0}$ is \mathbb{R}-orthonormal and complete.
Let us consider n. One can verify that every subset of \mathcal{R}^{n} which is orthogonal basis is also \mathbb{R}-orthonormal and complete and every subset of \mathcal{R}^{n} which is \mathbb{R} orthonormal and complete is also orthogonal basis.

The following propositions are true:
(19) For every subset B_{0} of \mathcal{R}^{0} such that B_{0} is orthogonal basis holds $B_{0}=\emptyset$.
(20) Let B_{0} be a subset of \mathcal{R}^{n} and y be an element of \mathcal{R}^{n}. Suppose B_{0} is orthogonal basis and for every element x of \mathcal{R}^{n} such that $x \in B_{0}$ holds $|(x, y)|=0$. Then $y=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.

3. Linear Manifolds

Let us consider n and let X be a subset of \mathcal{R}^{n}. We say that X is linear manifold if and only if:
(Def. 8) For all elements x, y of \mathcal{R}^{n} and for all elements a, b of \mathbb{R} such that x, $y \in X$ holds $a \cdot x+b \cdot y \in X$.
Let us consider n. Observe that $\Omega_{\mathcal{R}^{n}}$ is linear manifold.
The following proposition is true
(21) $\{\langle\underbrace{0, \ldots, 0}_{n}\rangle\}$ is linear manifold.

Let us consider n. Observe that $\{\langle\underbrace{0, \ldots, 0}_{n}\rangle\}$ is linear manifold.
Let us consider n and let X be a subset of \mathcal{R}^{n}. The linear span of X yielding a subset of \mathcal{R}^{n} is defined by:
(Def. 9) The linear span of $X=\bigcap\left\{Y \subseteq \mathcal{R}^{n}: Y\right.$ is linear manifold $\left.\wedge X \subseteq Y\right\}$.
Let us consider n and let X be a subset of \mathcal{R}^{n}. Observe that the linear span of X is linear manifold.

Let us consider n and let f be a finite sequence of elements of \mathcal{R}^{n}. The functor $\sum f$ yielding an element of \mathcal{R}^{n} is defined as follows:
(Def. 10)(i) There exists a finite sequence g of elements of \mathcal{R}^{n} such that len $f=$ len g and $f(1)=g(1)$ and for every natural number i such that $1 \leq i<$ len f holds $g(i+1)=g_{i}+f_{i+1}$ and $\sum f=g(\operatorname{len} f)$ if len $f>0$,
(ii) $\sum f=\langle\underbrace{0, \ldots, 0}_{n}\rangle$, otherwise.

Let n be a natural number and let f be a finite sequence of elements of \mathcal{R}^{n}. The functor accum f yields a finite sequence of elements of \mathcal{R}^{n} and is defined as follows:
(Def. 11) len $f=\operatorname{len} \operatorname{accum} f$ and $f(1)=(\operatorname{accum} f)(1)$ and for every natural number i such that $1 \leq i<\operatorname{len} f$ holds $(\operatorname{accum} f)(i+1)=(\operatorname{accum} f)_{i}+f_{i+1}$.
We now state several propositions:
(22) For every finite sequence f of elements of \mathcal{R}^{n} such that len $f>0$ holds $(\operatorname{accum} f)(\operatorname{len} f)=\sum f$.
(23) For all finite sequences F, F_{2} of elements of \mathcal{R}^{n} and for every permutation h of $\operatorname{dom} F$ such that $F_{2}=F \circ h$ holds $\sum F_{2}=\sum F$.
(24) For every element k of \mathbb{N} holds $\sum k \mapsto\langle\underbrace{0, \ldots, 0}_{n}\rangle=\langle\underbrace{0, \ldots, 0}_{n}\rangle$.
(25) Let g be a finite sequence of elements of \mathcal{R}^{n}, h be a finite sequence of elements of \mathbb{N}, and F be a finite sequence of elements of \mathcal{R}^{n}. Suppose h is increasing and $\operatorname{rng} h \subseteq \operatorname{dom} g$ and $F=g \cdot h$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} g$ and $i \notin \operatorname{rng} h$ holds $g(i)=\langle\underbrace{0, \ldots, 0}_{n}\rangle$. Then $\sum g=\sum F$.
(26) Let g be a finite sequence of elements of \mathcal{R}^{n}, h be a finite sequence of elements of \mathbb{N}, and F be a finite sequence of elements of \mathcal{R}^{n}. Suppose h is one-to-one and $\operatorname{rng} h \subseteq \operatorname{dom} g$ and $F=g \cdot h$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} g$ and $i \notin \operatorname{rng} h$ holds $g(i)=\langle\underbrace{0, \ldots, 0}_{n}\rangle$. Then $\sum g=\sum F$.

4. Standard Basis

Let us consider n, i. Then the base finite sequence of n and i is an element of \mathcal{R}^{n}.

The following propositions are true:
(27) Let i_{1}, i_{2} be elements of \mathbb{N}. Suppose that
(i) $1 \leq i_{1}$,
(ii) $\quad i_{1} \leq n$,
(iii) $1 \leq i_{2}$,
(iv) $\quad i_{2} \leq n$, and
(v) the base finite sequence of n and $i_{1}=$ the base finite sequence of n and i_{2}.
Then $i_{1}=i_{2}$.
(28) ${ }^{2}$ (the base finite sequence of n and $\left.i\right)=$ the base finite sequence of n and i.
(29) If $1 \leq i \leq n$, then \sum the base finite sequence of n and $i=1$.
(30) If $1 \leq i \leq n$, then |the base finite sequence of n and $i \mid=1$.
(31) Suppose $1 \leq i \leq n$ and $1 \leq j \leq n$ and $i \neq j$. Then |(the base finite sequence of n and i, the base finite sequence of n and $j) \mid=0$.
(32) For every element x of \mathcal{R}^{n} such that $1 \leq i \leq n$ holds $\mid(x$, the base finite sequence of n and $i) \mid=x(i)$.
Let us consider n and let x_{0} be an element of \mathcal{R}^{n}. The functor ProjFinSeq x_{0} yields a finite sequence of elements of \mathcal{R}^{n} and is defined by the conditions (Def. 12).
(Def. 12)(i) len ProjFinSeq $x_{0}=n$, and
(ii) for every i such that $1 \leq i \leq n$ holds $\left(\right.$ ProjFinSeq $\left.x_{0}\right)(i)=\mid\left(x_{0}\right.$, the base finite sequence of n and $i) \mid \cdot$ the base finite sequence of n and i.

The following proposition is true
(33) For every element x_{0} of \mathcal{R}^{n} holds $x_{0}=\sum \operatorname{ProjFinSeq} x_{0}$.

Let us consider n. The functor $\mathbb{R} N$-Base n yields a subset of \mathcal{R}^{n} and is defined by:
(Def. 13) $\mathbb{R N}$-Base $n=\{$ the base finite sequence of n and $i ; i$ ranges over elements of $\mathbb{N}: 1 \leq i \wedge i \leq n\}$.
Next we state the proposition
(34) For every non zero element n of \mathbb{N} holds $\mathbb{R N}$-Base $n \neq \emptyset$.

Let us mention that $\mathbb{R N}$-Base 0 is empty.
Let n be a non zero element of \mathbb{N}. Note that $\mathbb{R N}$-Base n is non empty.
Let us consider n. Observe that $\mathbb{R N}$-Base n is orthogonal basis.
Let us consider n. Observe that there exists a subset of \mathcal{R}^{n} which is orthogonal basis.

Let us consider n. An orthogonal basis of n is an orthogonal basis subset of \mathcal{R}^{n}.

Let n be a non zero element of \mathbb{N}. Observe that every orthogonal basis of n is non empty.

5. Finite Real Unitary Spaces and Finite Real Linear Spaces

Let n be an element of \mathbb{N}. Observe that $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$ is constituted finite sequences. Let n be an element of \mathbb{N}. One can check that every element of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$ is real-valued.

Let n be an element of \mathbb{N}, let x, y be vectors of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$, and let a, b be real-valued functions. One can verify that $x+y$ and $a+b$ can be identified when $x=a$ and $y=b$.

Let n be an element of \mathbb{N}, let x be a vector of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$, let y be a realvalued function, and let a, b be elements of \mathbb{R}. Observe that $a \cdot x$ and $b y$ can be identified when $a=b$ and $x=y$.

Let n be an element of \mathbb{N}, let x be a vector of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$, and let a be a real-valued function. Observe that $-x$ and $-a$ can be identified when $x=a$.

Let n be an element of \mathbb{N}, let x, y be vectors of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$, and let a, b be real-valued functions. One can check that $x-y$ and $a-b$ can be identified when $x=a$ and $y=b$. The following three propositions are true:
(35) Let n be an element of \mathbb{N}, x, y be elements of \mathcal{R}^{n}, and u, v be points of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$. If $x=u$ and $y=v$, then $\otimes_{\mathcal{E}^{n}}(\langle u, v\rangle)=|(x, y)|$.
(36) Let n, j be elements of \mathbb{N}, F be a finite sequence of elements of the carrier of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle, B_{2}$ be a subset of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle, v_{0}$ be an element of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$, and l be a linear combination of B_{2}. Suppose F is one-to-one and B_{2} is \mathbb{R}-orthogonal and $\operatorname{rng} F=$ the support of l and $v_{0} \in B_{2}$ and $j \in \operatorname{dom}(l F)$ and $v_{0}=F(j)$. Then $\otimes_{\mathcal{E}^{n}}\left(\left\langle v_{0}, \sum l F\right\rangle\right)=\otimes_{\mathcal{E}^{n}}\left(\left\langle v_{0}, l\left(F_{j}\right) \cdot v_{0}\right\rangle\right)$.
(37) Let n be an element of \mathbb{N}, f be a finite sequence of elements of \mathcal{R}^{n}, and g be a finite sequence of elements of the carrier of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$. If $f=g$, then $\sum f=\sum g$.
Let A be a set. Note that $\mathbb{R}_{\mathbb{R}}^{A}$ is constituted functions.
Let us consider n. Observe that $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ is constituted finite sequences.
Let A be a set. One can verify that every element of $\mathbb{R}_{\mathbb{R}}^{A}$ is real-valued.
Let A be a set, let x, y be vectors of $\mathbb{R}_{\mathbb{R}}^{A}$, and let a, b be real-valued functions. Observe that $x+y$ and $a+b$ can be identified when $x=a$ and $y=b$.

Let A be a set, let x be a vector of $\mathbb{R}_{\mathbb{R}}^{A}$, let y be a real-valued function, and let a, b be elements of \mathbb{R}. Observe that $a \cdot x$ and $b y$ can be identified when $a=b$ and $x=y$.

Let A be a set, let x be a vector of $\mathbb{R}_{\mathbb{R}}^{A}$, and let a be a real-valued function. One can check that $-x$ and $-a$ can be identified when $x=a$.

Let A be a set, let x, y be vectors of $\mathbb{R}_{\mathbb{R}}^{A}$, and let a, b be real-valued functions. Observe that $x-y$ and $a-b$ can be identified when $x=a$ and $y=b$.

The following propositions are true:
(38) Let X be a subspace of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}, x$ be an element of \mathcal{R}^{n}, and a be a real number. If $x \in$ the carrier of X, then $a \cdot x \in$ the carrier of X.
(39) Let X be a subspace of $\mathbb{R}_{\mathbb{R}}^{\mathrm{Seg} n}$ and x, y be elements of \mathcal{R}^{n}. Suppose $x \in$ the carrier of X and $y \in$ the carrier of X. Then $x+y \in$ the carrier of X.
(40) Let X be a subspace of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}, x, y$ be elements of \mathcal{R}^{n}, and a, b be real numbers. Suppose $x \in$ the carrier of X and $y \in$ the carrier of X. Then $a \cdot x+b \cdot y \in$ the carrier of X.
(41) For all elements x, y of \mathcal{R}^{n} and for all points u, v of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ such that $x=u$ and $y=v$ holds $\otimes_{\mathcal{E}^{n}}(\langle u, v\rangle)=|(x, y)|$.
(42) Let F be a finite sequence of elements of the carrier of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}, B_{2}$ be a subset of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$, v_{0} be an element of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$, and l be a linear combination of B_{2}. Suppose F is one-to-one and B_{2} is \mathbb{R}-orthogonal and $\mathrm{rng} F=$ the support of l and $v_{0} \in B_{2}$ and $j \in \operatorname{dom}(l F)$ and $v_{0}=F(j)$. Then $\otimes_{\mathcal{E}^{n}}\left(\left\langle v_{0}\right.\right.$, $\left.\left.\sum l F\right\rangle\right)=\otimes_{\mathcal{E}^{n}}\left(\left\langle v_{0}, l\left(F_{j}\right) \cdot v_{0}\right\rangle\right)$.
Let us consider n. Note that every subset of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ which is \mathbb{R}-orthonormal is also linearly independent.

Let n be an element of \mathbb{N}. Note that every subset of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$ which is \mathbb{R}-orthonormal is also linearly independent. Next we state the proposition
(43) Let B_{2} be a subset of $\mathbb{R}_{\mathbb{R}}^{\mathrm{Seg} n}, x, y$ be elements of \mathcal{R}^{n}, and a be a real number. If B_{2} is linearly independent and $x, y \in B_{2}$ and $y=a \cdot x$, then $x=y$.

6. Finite Dimensionality of the Spaces

Let us consider n. One can check that $\mathbb{R N}$-Base n is finite.
The following propositions are true:
(44) \quad card $\mathbb{R} N$-Base $n=n$.
(45) Let f be a finite sequence of elements of \mathcal{R}^{n} and g be a finite sequence of elements of the carrier of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$. If $f=g$, then $\sum f=\sum g$.
(46) Let x_{0} be an element of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ and B be a subset of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$. If $B=$ $\mathbb{R N}$-Base n, then there exists a linear combination l of B such that $x_{0}=$ $\sum l$.
(47) Let n be an element of \mathbb{N}, x_{0} be an element of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$, and B be a subset of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$. If $B=\mathbb{R} N$-Base n, then there exists a linear combination l of B such that $x_{0}=\sum l$.
(48) For every subset B of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ such that $B=\mathbb{R} N$-Base n holds B is a basis of $\mathbb{R}_{\mathbb{R}}^{\mathrm{Seg} n}$.
Let us consider n. Observe that $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ is finite dimensional.
We now state several propositions:
(49) $\quad \operatorname{dim}\left(\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}\right)=n$.
(50) For every subset B of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ such that B is a basis of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$ holds $\overline{\bar{B}}=n$.
(51) \emptyset is a basis of $\mathbb{R}_{\mathbb{R}}^{\mathrm{Seg} 0}$.
(52) For every element n of \mathbb{N} holds $\mathbb{R N}$-Base n is a basis of $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$.
(53) Every orthogonal basis of n is a basis of $\mathbb{R}_{\mathbb{R}}^{\operatorname{Seg} n}$.

Let n be an element of \mathbb{N}. Note that $\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle$ is finite dimensional.
We now state two propositions:
(54) For every element n of \mathbb{N} holds $\operatorname{dim}\left(\left\langle\mathcal{E}^{n},(\cdot \mid \cdot)\right\rangle\right)=n$.
(55) For every orthogonal basis B of n holds $\overline{\bar{B}}=n$.

References

[1] Kanchun and Yatsuka Nakamura. The inner product of finite sequences and of points of n-dimensional topological space. Formalized Mathematics, 11(2):179-183, 2003.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.
[6] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[7] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[8] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[9] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[10] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[11] Czesław Byliński. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[12] Jing-Chao Chen. The Steinitz theorem and the dimension of a real linear space. Formalized Mathematics, 6(3):411-415, 1997.
[13] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[14] Agata Darmochwał. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.
[15] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.
[16] Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Linear combinations in real unitary space. Formalized Mathematics, 11(1):17-22, 2003.
[17] Noboru Endou and Yasunari Shidama. Completeness of the real Euclidean space. Formalized Mathematics, 13(4):577-580, 2005.
[18] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[19] Yatsuka Nakamura. Sorting operators for finite sequences. Formalized Mathematics, 12(1):1-4, 2004.
[20] Henryk Oryszczyszyn and Krzysztof Prażmowski. Real functions spaces. Formalized Mathematics, 1(3):555-561, 1990.
[21] Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.
[22] Beata Padlewska and Agata Darmochwał. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.
[23] Nobuyuki Tamura and Yatsuka Nakamura. Determinant and inverse of matrices of real elements. Formalized Mathematics, 15(3):127-136, 2007, doi:10.2478/v10037-007-00014-7.
[24] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.
[25] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[26] Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.
[27] Wojciech A. Trybulec. Binary operations on finite sequences. Formalized Mathematics, 1(5):979-981, 1990.
[28] Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, $1(\mathbf{3}): 581-588,1990$.
[29] Wojciech A. Trybulec. Subspaces and cosets of subspaces in real linear space. Formalized Mathematics, 1 (2):297-301, 1990.
[30] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[31] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[32] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[33] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[34] Hiroshi Yamazaki, Yoshinori Fujisawa, and Yatsuka Nakamura. On replace function and swap function for finite sequences. Formalized Mathematics, 9(3):471-474, 2001.

Several Integrability Formulas of Some Functions, Orthogonal Polynomials and Norm Functions

Bo Li
Qingdao University of Science
and Technology
China
Bing Xie
Qingdao University of Science
and Technology
China

Yanping Zhuang
Qingdao University of Science
and Technology
China
Pan Wang
Qingdao University of Science
and Technology
China

Abstract

Summary. In this article, we give several integrability formulas of some functions including the trigonometric function and the index function [3]. We also give the definitions of the orthogonal polynomial and norm function, and some of their important properties [19].

MML identifier: INTEGRA9, version: $\underline{7.11 .014 .117 .1046}$

The terminology and notation used here are introduced in the following articles: [10], [21], [17], [6], [20], [1], [9], [13], [2], [4], [18], [15], [5], [8], [11], [14], [12], [16], and [7].

For simplicity, we use the following convention: r, p, x denote real numbers, n denotes an element of \mathbb{N}, A denotes a closed-interval subset of \mathbb{R}, f, g denote partial functions from \mathbb{R} to \mathbb{R}, and Z denotes an open subset of \mathbb{R}.

We now state a number of propositions:
(1) -(the function exp) $\cdot((-1) \square+0)$ is differentiable on \mathbb{R} and for every x holds $(-(\text { the function } \exp) \cdot((-1) \square+0))_{\mathfrak{R}}^{\prime}(x)=\exp (-x)$.
(2) $\int_{A}(($ the function $\exp) \cdot((-1) \square+0))(x) d x=-\exp (-\sup A)+\exp (-\inf A)$.
(3) $\frac{1}{2}(($ the function $\exp) \cdot(2 \square+0))$ is differentiable on \mathbb{R} and for every x holds $\left(\frac{1}{2}((\text { the function } \exp) \cdot(2 \square+0))\right)_{\upharpoonright \mathbb{R}}^{\prime}(x)=\exp (2 \cdot x)$.
(4) $\int_{A}(($ the function $\exp) \cdot(2 \square+0))(x) d x=\frac{1}{2} \cdot \exp (2 \cdot \sup A)-\frac{1}{2} \cdot \exp (2 \cdot \inf A)$.
(5) Suppose $r \neq 0$. Then $\frac{1}{r}(($ the function $\exp) \cdot(r \square+0))$ is differentiable on \mathbb{R} and for every x holds $\left(\frac{1}{r}((\text { the function } \exp) \cdot(r \square+0))\right)_{\upharpoonright \mathbb{R}}^{\prime}(x)=\exp (r \cdot x)$.
(6) If $r \neq 0$, then $\int_{A}(($ the function $\exp) \cdot(r \square+0))(x) d x=\frac{1}{r} \cdot \exp (r \cdot \sup A)-$ $\frac{1}{r} \cdot \exp (r \cdot \inf A)$.
(7) $\int_{A}(($ the function $\sin) \cdot(2 \square+0))(x) d x=\left(-\frac{1}{2}\right) \cdot \cos (2 \cdot \sup A)-\left(-\frac{1}{2}\right) \cdot \cos (2$.
inf $A)$.
(8) Suppose $n \neq 0$. Then $\left(-\frac{1}{n}\right)$ ((the function $\left.\left.\cos \right) \cdot(n \square+0)\right)$ is differentiable on \mathbb{R} and for every x holds $\left(\left(-\frac{1}{n}\right)((\text { the function } \cos) \cdot(n \square+0))\right)_{\uparrow \mathbb{R}}^{\prime}(x)=$ $\sin (n \cdot x)$.
(9) If $n \neq 0$, then $\int_{A}(($ the function $\sin) \cdot(n \square+0))(x) d x=\left(-\frac{1}{n}\right) \cdot \cos (n \cdot$ $\sup A)-\left(-\frac{1}{n}\right) \cdot \cos (n \cdot \inf A)$.
(10) $\quad \frac{1}{2}(($ the function $\sin) \cdot(2 \square+0))$ is differentiable on \mathbb{R} and for every x holds $\left(\frac{1}{2}((\text { the function } \sin) \cdot(2 \square+0))\right)_{\uparrow \mathbb{R}}^{\prime}(x)=\cos (2 \cdot x)$.
(11) $\int_{A}(($ the function $\cos) \cdot(2 \square+0))(x) d x=\frac{1}{2} \cdot \sin (2 \cdot \sup A)-\frac{1}{2} \cdot \sin (2 \cdot \inf A)$.
(12) Suppose $n \neq 0$. Then $\frac{1}{n}(($ the function $\sin) \cdot(n \square+0))$ is differentiable on \mathbb{R} and for every x holds $\left(\frac{1}{n}((\text { the function } \sin) \cdot(n \square+0))\right)^{\prime} \mathbb{R}^{\prime}(x)=\cos (n \cdot x)$.
(13) If $n \neq 0$, then $\int_{A}(($ the function $\cos) \cdot(n \square+0))(x) d x=\frac{1}{n} \cdot \sin (n \cdot \sup A)-$ $\frac{1}{n} \cdot \sin (n \cdot \inf A)$.
(14) If $A \subseteq Z$, then $\int_{A}\left(\operatorname{id}_{Z}(\right.$ the function $\left.\sin)\right)(x) d x=((-\sup A) \cdot \cos \sup A+$ $\sin \sup A)-((-\inf A) \cdot \cos \inf A+\sin \inf A)$.
(15) If $A \subseteq Z$, then $\int_{A}\left(\operatorname{id}_{Z}(\right.$ the function $\left.\cos)\right)(x) d x=(\sup A \cdot \sin \sup A+$ $\cos \sup A)-(\inf A \cdot \sin \inf A+\operatorname{cosinf} A)$.
(16) id_{Z} (the function cos) is differentiable on Z and for every x such that $x \in Z$ holds $\left(\operatorname{id}_{Z}(\text { the function } \cos)\right)^{\prime}(x)=\cos x-x \cdot \sin x$.
(17)(i) -the function $\sin +\mathrm{id}_{Z}$ (the function \cos) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (-the function $\sin +\mathrm{id}_{Z}$ (the function $\cos))^{\prime}(x)=-x \cdot \sin x$.
(18) If $A \subseteq Z$, then $\int_{A}\left(\left(-\mathrm{id}_{Z}\right)\right.$ (the function $\left.\left.\sin \right)\right)(x) d x=(-\sin \sup A+\sup A$. $\cos \sup A)-(-\sin \inf A+\inf A \cdot \cos \inf A)$.
(19)(i) -the function $\cos -\operatorname{id}_{Z}$ (the function \sin) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (-the function $\cos -\mathrm{id}_{Z}$ (the function $\sin))_{Y}^{\prime}(x)=-x \cdot \cos x$.
(20) If $A \subseteq Z$, then $\int_{A}\left(\left(-\operatorname{id}_{Z}\right)\right.$ (the function $\left.\left.\cos \right)\right)(x) d x=-\cos \sup A-\sup A$. $\sin \sup A-(-\cos \inf A-\inf A \cdot \sin \inf A)$.
(21) If $A \subseteq Z$, then $\int_{A}\left((\right.$ the function $\sin)+\operatorname{id}_{Z}($ the function $\left.\cos)\right)(x) d x=$ $\sup A \cdot \sin \sup A-\inf A \cdot \sin \inf A$.
(22) If $A \subseteq Z$, then $\int_{A}\left(-\right.$ the function $\cos +\mathrm{id}_{Z}($ the function $\left.\sin)\right)(x) d x=$ $(-\sup A) \cdot \operatorname{cossup} A-(-\inf A) \cdot \cos \inf A$.
(23) $\int_{A}((1 \square+0)($ the function $\exp))(x) d x=\exp (\sup A-1)-\exp (\inf A-1)$.
(24) $\frac{1}{n+1}\left(\square^{n+1}\right)$ is differentiable on \mathbb{R} and for every x holds $\left(\frac{1}{n+1}\left(\square^{n+1}\right)\right)_{\mathbb{R}}^{\prime}(x)=$ x^{n}. $\int_{A}\left(\square^{n}\right)(x) d x=\frac{1}{n+1} \cdot(\sup A)^{n+1}-\frac{1}{n+1} \cdot(\inf A)^{n+1}$
(26) For all partial functions f, g from \mathbb{R} to \mathbb{R} and for every non empty subset C of \mathbb{R} holds $(f-g) \upharpoonright C=f \upharpoonright C-g \upharpoonright C$.
(27) For all partial functions f_{1}, f_{2}, g from \mathbb{R} to \mathbb{R} and for every non empty subset C of \mathbb{R} holds $\left(\left(f_{1}+f_{2}\right) \upharpoonright C\right)(g \upharpoonright C)=\left(f_{1} g+f_{2} g\right) \upharpoonright C$.
(28) For all partial functions f_{1}, f_{2}, g from \mathbb{R} to \mathbb{R} and for every non empty subset C of \mathbb{R} holds $\left(\left(f_{1}-f_{2}\right) \upharpoonright C\right)(g \upharpoonright C)=\left(f_{1} g-f_{2} g\right) \upharpoonright C$.
(29) For all partial functions f_{1}, f_{2}, g from \mathbb{R} to \mathbb{R} and for every non empty subset C of \mathbb{R} holds $\left(\left(f_{1} f_{2}\right) \upharpoonright C\right)(g \upharpoonright C)=\left(f_{1} \upharpoonright C\right)\left(\left(f_{2} g\right) \upharpoonright C\right)$.
Let A be a closed-interval subset of \mathbb{R} and let f, g be partial functions from \mathbb{R} to \mathbb{R}. The functor $\langle f, g\rangle_{A}$ yielding a real number is defined by:
(Def. 1) $\langle f, g\rangle_{A}=\int_{A}(f g)(x) d x$.

The following propositions are true:
(30) For all partial functions f, g from \mathbb{R} to \mathbb{R} and for every closed-interval subset A of \mathbb{R} holds $\langle f, g\rangle_{A}=\langle g, f\rangle_{A}$.
(31) Let f_{1}, f_{2}, g be partial functions from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose that
(i) $\left(f_{1} g\right) \upharpoonright A$ is total,
(ii) $\left(f_{2} g\right) \upharpoonright A$ is total,
(iii) $\left(f_{1} g\right) \upharpoonright A$ is bounded,
(iv) $f_{1} g$ is integrable on A,
(v) $\left(f_{2} g\right) \upharpoonright A$ is bounded, and
(vi) $f_{2} g$ is integrable on A.

Then $\left\langle f_{1}+f_{2}, g\right\rangle_{A}=\left\langle\left(f_{1}\right), g\right\rangle_{A}+\left\langle\left(f_{2}\right), g\right\rangle_{A}$.
(32) Let f_{1}, f_{2}, g be partial functions from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose that
(i) $\left(f_{1} g\right) \upharpoonright A$ is total,
(ii) $\left(f_{2} g\right) \upharpoonright A$ is total,
(iii) $\left(f_{1} g\right) \upharpoonright A$ is bounded,
(iv) $f_{1} g$ is integrable on A,
(v) $\left(f_{2} g\right) \upharpoonright A$ is bounded, and
(vi) $f_{2} g$ is integrable on A.

Then $\left\langle f_{1}-f_{2}, g\right\rangle_{A}=\left\langle\left(f_{1}\right), g\right\rangle_{A}-\left\langle\left(f_{2}\right), g\right\rangle_{A}$.
(33) Let f, g be partial functions from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose $(f g) \upharpoonright A$ is bounded and $f g$ is integrable on A and $A \subseteq \operatorname{dom}(f g)$. Then $\langle-f, g\rangle_{A}=-\langle f, g\rangle_{A}$.
(34) Let f, g be partial functions from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose $(f g) \upharpoonright A$ is bounded and $f g$ is integrable on A and $A \subseteq \operatorname{dom}(f g)$. Then $\langle r f, g\rangle_{A}=r \cdot\langle f, g\rangle_{A}$.
(35) Let f, g be partial functions from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose $(f g) \upharpoonright A$ is bounded and $f g$ is integrable on A and $A \subseteq \operatorname{dom}(f g)$. Then $\langle r f, p g\rangle_{A}=r \cdot p \cdot\langle f, g\rangle_{A}$.
(36) For all partial functions f, g, h from \mathbb{R} to \mathbb{R} and for every closed-interval subset A of \mathbb{R} holds $\langle f g, h\rangle_{A}=\langle f, g h\rangle_{A}$.
(37) Let f, g be partial functions from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose that $(f f) \upharpoonright A$ is total and $(f g) \upharpoonright A$ is total and $(g g) \upharpoonright$ A is total and $(f f) \upharpoonright A$ is bounded and $(f g) \upharpoonright A$ is bounded and $(g g) \upharpoonright A$ is bounded and $f f$ is integrable on A and $f g$ is integrable on A and $g g$ is integrable on A. Then $\langle f+g, f+g\rangle_{A}=\langle f, f\rangle_{A}+2 \cdot\langle f, g\rangle_{A}+\langle g, g\rangle_{A}$.
Let A be a closed-interval subset of \mathbb{R} and let f, g be partial functions from \mathbb{R} to \mathbb{R}. We say that f is orthogonal with g in A if and only if:
(Def. 2) $\langle f, g\rangle_{A}=0$.

The following propositions are true:
(38) Let f, g be partial functions from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose that $(f f) \upharpoonright A$ is total and $(f g) \upharpoonright A$ is total and $(g g) \upharpoonright A$ is total and $(f f) \upharpoonright A$ is bounded and $(f g) \upharpoonright A$ is bounded and $(g g) \upharpoonright A$ is bounded and $f f$ is integrable on A and $f g$ is integrable on A and $g g$ is integrable on A and f is orthogonal with g in A. Then $\langle f+g, f+g\rangle_{A}=\langle f, f\rangle_{A}+\langle g, g\rangle_{A}$.
(39) Let f be a partial function from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose $(f f) \upharpoonright A$ is total and $(f f) \upharpoonright A$ is bounded and $f f$ is integrable on A and for every x such that $x \in A$ holds $((f f) \upharpoonright A)(x) \geq 0$. Then $\langle f, f\rangle_{A} \geq 0$.
(40) The function \sin is orthogonal with the function \cos in $[0, \pi]$.
(41) The function \sin is orthogonal with the function \cos in $[0, \pi \cdot 2]$.
(42) The function \sin is orthogonal with the function \cos in $[2 \cdot n \cdot \pi,(2 \cdot n+1) \cdot \pi]$.
(43) The function sin is orthogonal with the function \cos in $[x+2 \cdot n \cdot \pi, x+$ $(2 \cdot n+1) \cdot \pi]$.
(44) The function sin is orthogonal with the function \cos in $[-\pi, \pi]$.
(45) The function \sin is orthogonal with the function \cos in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
(46) The function \sin is orthogonal with the function \cos in $[-2 \cdot \pi, 2 \cdot \pi]$.
(47) The function \sin is orthogonal with the function \cos in $[-2 \cdot n \cdot \pi, 2 \cdot n \cdot \pi]$.
(48) The function \sin is orthogonal with the function \cos in $[x-2 \cdot n \cdot \pi, x+$ $2 \cdot n \cdot \pi]$.
Let A be a closed-interval subset of \mathbb{R} and let f be a partial function from \mathbb{R} to \mathbb{R}. The functor $\|f\|_{A}$ yields a real number and is defined by:
(Def. 3) $\|f\|_{A}=\sqrt{\langle f, f\rangle_{A}}$.
Next we state three propositions:
(49) Let f be a partial function from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose $(f f) \upharpoonright A$ is total and $(f f) \upharpoonright A$ is bounded and $f f$ is integrable on A and for every x such that $x \in A$ holds $((f f) \upharpoonright A)(x) \geq 0$. Then $0 \leq\|f\|_{A}$.
(50) For every partial function f from \mathbb{R} to \mathbb{R} and for every closed-interval subset A of \mathbb{R} holds $\|1 f\|_{A}=\|f\|_{A}$.
(51) Let f, g be partial functions from \mathbb{R} to \mathbb{R} and A be a closed-interval subset of \mathbb{R}. Suppose that $(f f) \upharpoonright A$ is total and $(f g) \upharpoonright A$ is total and $(g g) \upharpoonright A$ is total and $(f f) \upharpoonright A$ is bounded and $(f g) \upharpoonright A$ is bounded and $(g g) \upharpoonright A$ is bounded and $f f$ is integrable on A and $f g$ is integrable on A and $g g$ is integrable on A and f is orthogonal with g in A and for every x such that $x \in A$ holds $((f f) \upharpoonright A)(x) \geq 0$ and for every x such that $x \in A$ holds $((g g) \upharpoonright A)(x) \geq 0$. Then $\left(\|f+g\|_{A}\right)^{2}=\left(\|f\|_{A}\right)^{2}+\left(\|g\|_{A}\right)^{2}$.

For simplicity, we follow the rules: a, b, x are real numbers, n is an element of \mathbb{N}, A is a closed-interval subset of $\mathbb{R}, f, f_{1}, f_{2}$ are partial functions from \mathbb{R} to \mathbb{R}, and Z is an open subset of \mathbb{R}.

Next we state several propositions:
(52) If $-a \notin A$, then $\frac{1}{1 \square+a} \upharpoonright A$ is continuous.
(53) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=a+x$ and $f(x) \neq 0$,
(iii) $Z=\operatorname{dom} f$,
(iv) $\operatorname{dom} f=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=-\frac{1}{(a+x)^{2}}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=f(\sup A)^{-1}-f(\inf A)^{-1}$.
(54) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=a+x$ and $f(x) \neq 0$,
(iii) $\operatorname{dom}\left((-1) \frac{1}{f}\right)=Z$,
(iv) $\operatorname{dom}\left((-1) \frac{1}{f}\right)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=\frac{1}{(a+x)^{2}}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=-f(\sup A)^{-1}+f(\inf A)^{-1}$.
(55) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=a-x$ and $f(x) \neq 0$,
(iii) $\operatorname{dom} f=Z$,
(iv) $\operatorname{dom} f=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=\frac{1}{(a-x)^{2}}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=f(\sup A)^{-1}-f(\inf A)^{-1}$.
(56) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=a+x$ and $f(x)>0$,
(iii) $\operatorname{dom}(($ the function $\ln) \cdot f)=Z$,
(iv) $\quad \operatorname{dom}(($ the function $\ln) \cdot f)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=\frac{1}{a+x}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=\ln (a+\sup A)-\ln (a+\inf A)$.
Next we state a number of propositions:
(57) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=x-a$ and $f(x)>0$,
(iii) $\operatorname{dom}(($ the function $\ln) \cdot f)=Z$,
(iv) $\operatorname{dom}(($ the function $\ln) \cdot f)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=\frac{1}{x-a}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=\ln f(\sup A)-\ln f(\inf A)$.
(58) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=a-x$ and $f(x)>0$,
(iii) $\operatorname{dom}(-($ the function $\ln) \cdot f)=Z$,
(iv) $\operatorname{dom}(-($ the function $\ln) \cdot f)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=\frac{1}{a-x}$, and
(vi) $f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=-\ln (a-\sup A)+\ln (a-\inf A)$.
(59) Suppose that $A \subseteq Z$ and $f=($ the function $\ln) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+x$ and $f_{1}(x)>0$ and $\operatorname{dom}\left(\mathrm{id}_{Z}-a f\right)=Z=$ dom f_{2} and for every x such that $x \in Z$ holds $f_{2}(x)=\frac{x}{a+x}$ and $f_{2} \upharpoonright A$ is continuous. Then $\int_{A} f_{2}(x) d x=\sup A-a \cdot f(\sup A)-(\inf A-a \cdot f(\inf A))$.
(60) Suppose that $A \subseteq Z$ and $f=($ the function $\ln) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a+x$ and $f_{1}(x)>0$ and $\operatorname{dom}\left((2 \cdot a) f-\operatorname{id}_{Z}\right)=$ $Z=\operatorname{dom} f_{2}$ and for every x such that $x \in Z$ holds $f_{2}(x)=\frac{a-x}{a+x}$ and $f_{2} \upharpoonright A$ is continuous. Then $\int_{A} f_{2}(x) d x=2 \cdot a \cdot f(\sup A)-\sup A-(2 \cdot a \cdot f(\inf A)-\inf A)$.
(61) Suppose that $A \subseteq Z$ and $f=($ the function $\ln) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x+a$ and $f_{1}(x)>0$ and $\operatorname{dom}\left(\mathrm{id}_{Z}-(2 \cdot a) f\right)=$ $Z=\operatorname{dom} f_{2}$ and for every x such that $x \in Z$ holds $f_{2}(x)=\frac{x-a}{x+a}$ and $f_{2} \upharpoonright A$ is continuous. Then $\int_{A} f_{2}(x) d x=\sup A-2 \cdot a \cdot f(\sup A)-(\inf A-2 \cdot a \cdot f(\inf A))$.
(62) Suppose that $A \subseteq Z$ and $f=($ the function $\ln) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x-a$ and $f_{1}(x)>0$ and $\operatorname{dom}\left(\mathrm{id}_{Z}+(2 \cdot a) f\right)=$ $Z=\operatorname{dom} f_{2}$ and for every x such that $x \in Z$ holds $f_{2}(x)=\frac{x+a}{x-a}$ and $f_{2} \upharpoonright A$
is continuous. Then $\int_{A} f_{2}(x) d x=(\sup A+2 \cdot a \cdot f(\sup A))-(\inf A+2 \cdot a$. $f(\inf A))$.
(63) Suppose that $A \subseteq Z$ and $f=($ the function $\ln) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x+b$ and $f_{1}(x)>0$ and $\operatorname{dom}\left(\mathrm{id}_{Z}+(a-b) f\right)=$ $Z=\operatorname{dom} f_{2}$ and for every x such that $x \in Z$ holds $f_{2}(x)=\frac{x+a}{x+b}$ and $f_{2} \upharpoonright A$ is continuous. Then $\int_{A} f_{2}(x) d x=(\sup A+(a-b) \cdot f(\sup A))-(\inf A+$ $(a-b) \cdot f(\inf A))$.
(64) Suppose that $A \subseteq Z$ and $f=($ the function $\ln) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x-b$ and $f_{1}(x)>0$ and $\operatorname{dom}\left(\operatorname{id}_{Z}+(a+b) f\right)=$ $Z=\operatorname{dom} f_{2}$ and for every x such that $x \in Z$ holds $f_{2}(x)=\frac{x+a}{x-b}$ and $f_{2} \upharpoonright A$ is continuous. Then $\int_{A} f_{2}(x) d x=(\sup A+(a+b) \cdot f(\sup A))-(\inf A+$ $(a+b) \cdot f(\inf A))$.
(65) Suppose that $A \subseteq Z$ and $f=($ the function $\ln) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x+b$ and $f_{1}(x)>0$ and $\operatorname{dom}\left(\mathrm{id}_{Z}-(a+b) f\right)=$ $Z=\operatorname{dom} f_{2}$ and for every x such that $x \in Z$ holds $f_{2}(x)=\frac{x-a}{x+b}$ and $f_{2} \upharpoonright A$ is continuous. Then $\int_{A} f_{2}(x) d x=\sup A-(a+b) \cdot f(\sup A)-(\inf A-(a+$ b) $\cdot f(\inf A))$.
(66) Suppose that $A \subseteq Z$ and $f=($ the function $\ln) \cdot f_{1}$ and for every x such that $x \in Z$ holds $f_{1}(x)=x-b$ and $f_{1}(x)>0$ and $\operatorname{dom}\left(\mathrm{id}_{Z}+(b-a) f\right)=$ $Z=\operatorname{dom} f_{2}$ and for every x such that $x \in Z$ holds $f_{2}(x)=\frac{x-a}{x-b}$ and $f_{2} \upharpoonright A$ is continuous. Then $\int_{A} f_{2}(x) d x=(\sup A+(b-a) \cdot f(\sup A))-(\inf A+$ $(b-a) \cdot f(\inf A))$.
(67) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=x$ and $f(x)>0$,
(iii) $\operatorname{dom}(($ the function $\ln) \cdot f)=Z$,
(iv) $\quad \operatorname{dom}(($ the function $\ln) \cdot f)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=\frac{1}{x}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=\ln \sup A-\ln \inf A$.
(68) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $x>0$,
(iii) $\operatorname{dom}\left((\right.$ the function $\left.\ln) \cdot\left(\square^{n}\right)\right)=Z$,
(iv) $\quad \operatorname{dom}\left((\right.$ the function $\left.\ln) \cdot\left(\square^{n}\right)\right)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=\frac{n}{x}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=\ln \left((\sup A)^{n}\right)-\ln \left((\inf A)^{n}\right)$.
(69) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=x$,
(iii) $\operatorname{dom}\left((\right.$ the function $\left.\ln) \cdot \frac{1}{f}\right)=Z$,
(iv) $\operatorname{dom}\left((\right.$ the function $\left.\ln) \cdot \frac{1}{f}\right)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=-\frac{1}{x}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=-\ln \sup A+\ln \inf A$.
(70) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=a+x$ and $f(x)>0$,
(iii) $\operatorname{dom}\left(\frac{2}{3} f^{\frac{3}{2}}\right)=Z$,
(iv) $\operatorname{dom}\left(\frac{2}{3} f^{\frac{3}{2}}\right)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=(a+x)^{\frac{1}{2}}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=\frac{2}{3} \cdot(a+\sup A)^{\frac{3}{2}}-\frac{2}{3} \cdot(a+\inf A)^{\frac{3}{2}}$.
(71) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=a-x$ and $f(x)>0$,
(iii) $\operatorname{dom}\left(\left(-\frac{2}{3}\right) f^{\frac{3}{2}}\right)=Z$,
(iv) $\operatorname{dom}\left(\left(-\frac{2}{3}\right) f^{\frac{3}{2}}\right)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=(a-x)^{\frac{1}{2}}$, and
(vi) $f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=-\frac{2}{3} \cdot(a-\sup A)^{\frac{3}{2}}+\frac{2}{3} \cdot(a-\inf A)^{\frac{3}{2}}$.
(72) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=a+x$ and $f(x)>0$,
(iii) $\operatorname{dom}\left(2 f^{\frac{1}{2}}\right)=Z$,
(iv) $\operatorname{dom}\left(2 f^{\frac{1}{2}}\right)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=(a+x)^{-\frac{1}{2}}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=2 \cdot(a+\sup A)^{\frac{1}{2}}-2 \cdot(a+\inf A)^{\frac{1}{2}}$.
(73) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=a-x$ and $f(x)>0$,
(iii) $\operatorname{dom}\left((-2) f^{\frac{1}{2}}\right)=Z$,
(iv) $\operatorname{dom}\left((-2) f^{\frac{1}{2}}\right)=\operatorname{dom} f_{2}$,
(v) for every x such that $x \in Z$ holds $f_{2}(x)=(a-x)^{-\frac{1}{2}}$, and
(vi) $\quad f_{2} \upharpoonright A$ is continuous.

Then $\int_{A} f_{2}(x) d x=-2 \cdot(a-\sup A)^{\frac{1}{2}}+2 \cdot(a-\inf A)^{\frac{1}{2}}$.
(74) Suppose that
(i) $A \subseteq Z$,
(ii) $\operatorname{dom}\left(\left(-\mathrm{id}_{Z}\right)\right.$ (the function $\left.\cos \right)+$ the function $\left.\sin \right)=Z$,
(iii) for every x such that $x \in Z$ holds $f(x)=x \cdot \sin x$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-\sup A \cdot \cos \sup A+\sin \sup A)-(-\inf A \cdot \operatorname{cosinf} A+$ $\sin \inf A)$.
(75) Suppose $A \subseteq Z$ and dom (the function sec) $=Z$ and for every x such that $x \in Z$ holds $f(x)=\frac{\sin x}{(\cos x)^{2}}$ and $Z=\operatorname{dom} f$ and $f \upharpoonright A$ is continuous.
Then $\int_{A} f(x) d x=\sec \sup A-\sec \inf A$.
(76) Suppose $Z \subseteq \operatorname{dom}(-$ the function cosec). Then -the function cosec is differentiable on Z and for every x such that $x \in Z$ holds $(- \text { the function } \operatorname{cosec})^{\prime}{ }_{Z}(x)=\frac{\cos x}{(\sin x)^{2}}$.
(77) Suppose $A \subseteq Z$ and dom(-the function cosec) $=Z$ and for every x such that $x \in Z$ holds $f(x)=\frac{\cos x}{(\sin x)^{2}}$ and $Z=\operatorname{dom} f$ and $f \upharpoonright A$ is continuous. Then $\int_{A} f(x) d x=-\operatorname{cosec} \sup A+\operatorname{cosec} \inf A$.

References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[2] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[3] Chuanzhang Chen. Mathematical Analysis. Higher Education Press, Beijing, 1978.
[4] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[5] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[6] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.
[7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[12] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[13] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[14] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[15] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[16] Andrzej Trybulec and Yatsuka Nakamura. On the decomposition of a simple closed curve into two arcs. Formalized Mathematics, 10(3):163-167, 2002.
[17] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[18] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007, doi:10.2478/v10037-007-0009-4.
[19] Renhong Wang. Numerical approximation. Higher Education Press, Beijing, 1999.
[20] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[21] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Several Integrability Formulas of Special Functions. Part II

Bo Li
Qingdao University of Science and Technology
China
Yanhong Men
Qingdao University of Science
and Technology
China

Yanping Zhuang
Qingdao University of Science
and Technology
China
Xiquan Liang
Qingdao University of Science
and Technology
China

Summary. In this article, we give several differentiation and integrability formulas of special and composite functions including the trigonometric function, the hyperbolic function and the polynomial function [3].

MML identifier: INTEGR11, version: $\underline{7.11 .014 .117 .1046}$

The articles [10], [23], [19], [21], [22], [1], [8], [15], [9], [2], [4], [17], [5], [13], [16], [14], [18], [7], [12], [20], [6], and [11] provide the terminology and notation for this paper.

1. Differentiation Formulas

For simplicity, we adopt the following rules: r, x, a, b denote real numbers, n, m denote elements of \mathbb{N}, A denotes a closed-interval subset of \mathbb{R}, and Z denotes an open subset of \mathbb{R}.

One can prove the following propositions:
(1)(i) $\left(\frac{1}{2} \square+0\right)-\frac{1}{4}(($ the function $\sin) \cdot(2 \square+0))$ is differentiable on \mathbb{R}, and
(ii) for every x holds $\left(\left(\frac{1}{2} \square+0\right)-\frac{1}{4}((\text { the function sin }) \cdot(2 \square+0))\right)_{\mathfrak{R}}^{\prime}(x)=$ $(\sin x)^{2}$.
(2)(i) $\quad\left(\frac{1}{2} \square+0\right)+\frac{1}{4}(($ the function $\sin) \cdot(2 \square+0))$ is differentiable on \mathbb{R}, and
(ii) for every x holds $\left(\left(\frac{1}{2} \square+0\right)+\frac{1}{4}((\text { the function } \sin) \cdot(2 \square+0))\right)_{\uparrow \mathbb{R}}^{\prime}(x)=$ $(\cos x)^{2}$.
(3) $\frac{1}{n+1}\left(\left(\square^{n+1}\right) \cdot(\right.$ the function $\left.\sin)\right)$ is differentiable on \mathbb{R} and for every x holds $\left(\frac{1}{n+1}(\text { the function } \sin)^{n+1}\right)_{\mathbb{R}}^{\prime}(x)=(\sin x)^{n} \cdot \cos x$.
(4)(i) $\quad\left(-\frac{1}{n+1}\right)\left(\left(\square^{n+1}\right) \cdot(\right.$ the function $\left.\cos)\right)$ is differentiable on \mathbb{R}, and
(ii) for every x holds $\left.\left(\left(-\frac{1}{n+1}\right) \text { (the function } \cos \right)^{n+1}\right)^{\prime}{ }_{\mathbb{R}}(x)=(\cos x)^{n} \cdot \sin x$.
(5) Suppose $m+n \neq 0$ and $m-n \neq 0$. Then
(i) $\frac{1}{2 \cdot(m+n)}(($ the function $\sin) \cdot((m+n) \square+0))+\frac{1}{2 \cdot(m-n)}(($ the function $\sin)$ $\cdot((m-n) \square+0))$ is differentiable on \mathbb{R}, and
(ii) for every x holds $\left(\frac{1}{2 \cdot(m+n)}((\right.$ the function sin $) \cdot((m+n) \square+0))+$ $\frac{1}{2 \cdot(m-n)}(($ the function $\left.\sin) \cdot((m-n) \square+0))\right)_{{ }_{\mathbb{R}}}^{\prime}(x)=\cos (m \cdot x) \cdot \cos (n \cdot x)$.
(6) Suppose $m+n \neq 0$ and $m-n \neq 0$. Then
(i) $\frac{1}{2 \cdot(m-n)}(($ the function $\sin) \cdot((m-n) \square+0))-\frac{1}{2 \cdot(m+n)}(($ the function $\sin)$ $\cdot((m+n) \square+0))$ is differentiable on \mathbb{R}, and
(ii) for every x holds $\left(\frac{1}{2 \cdot(m-n)}((\right.$ the function $\sin) \cdot((m-n) \square+0))-$ $\frac{1}{2 \cdot(m+n)}(($ the function $\left.\sin) \cdot((m+n) \square+0))\right)_{\uparrow \mathbb{R}}^{\prime}(x)=\sin (m \cdot x) \cdot \sin (n \cdot x)$.
(7) Suppose $m+n \neq 0$ and $m-n \neq 0$. Then
(i) $\quad-\frac{1}{2 \cdot(m+n)}(($ the function $\cos) \cdot((m+n) \square+0))-\frac{1}{2 \cdot(m-n)}$ ((the function $\cos) \cdot((m-n) \square+0))$ is differentiable on \mathbb{R}, and
(ii) for every x holds $\left(-\frac{1}{2 \cdot(m+n)}((\right.$ the function $\cos) \cdot((m+n) \square+0))-$ $\frac{1}{2 \cdot(m-n)}(($ the function $\left.\cos) \cdot((m-n) \square+0))\right)_{\uparrow \mathbb{R}}^{\prime}(x)=\sin (m \cdot x) \cdot \cos (n \cdot x)$.
(8) Suppose $n \neq 0$. Then
(i) $\quad \frac{1}{n^{2}}(($ the function $\sin) \cdot(n \square+0))-\left(\frac{1}{n} \square+0\right)(($ the function $\cos) \cdot(n \square+0))$ is differentiable on \mathbb{R}, and
(ii) for every x holds $\left(\frac{1}{n^{2}}((\right.$ the function $\sin) \cdot(n \square+0))-\left(\frac{1}{n} \square+0\right)$ ((the function $\cos) \cdot(n \square+0)))_{\uparrow \mathbb{R}}^{\prime}(x)=x \cdot \sin (n \cdot x)$.
(9) Suppose $n \neq 0$. Then
(i) $\quad \frac{1}{n^{2}}(($ the function cos $) \cdot(n \square+0))+\left(\frac{1}{n} \square+0\right)(($ the function sin $) \cdot(n \square+0))$ is differentiable on \mathbb{R}, and
(ii) for every x holds $\left(\frac{1}{n^{2}}((\right.$ the function $\cos) \cdot(n \square+0))+\left(\frac{1}{n} \square+0\right)(($ the function sin) $\cdot(n \square+0)))_{\mid \mathbb{R}}^{\prime}(x)=x \cdot \cos (n \cdot x)$.
$(10)(\mathrm{i}) \quad(1 \square+0)$ (the function \cosh) - the function \sinh is differentiable on \mathbb{R}, and
(ii) for every x holds $((1 \square+0)$ (the function cosh)-the function $\sinh)_{\mathbb{R}}^{\prime}(x)=x \cdot \sinh x$.
(11)(i) $\quad(1 \square+0)$ (the function sinh) - the function cosh is differentiable on \mathbb{R}, and
(ii) for every x holds $((1 \square+0)$ (the function sinh)-the function $\cosh)_{\mathbb{R}}^{\prime}(x)=x \cdot \cosh x$.
(12) If $a \cdot(n+1) \neq 0$, then $\frac{1}{a \cdot(n+1)}(a \square+b)^{n+1}$ is differentiable on \mathbb{R} and for every x holds $\left(\frac{1}{a \cdot(n+1)}(a \square+b)^{n+1}\right)_{\mathbb{R}}^{\prime}(x)=(a \cdot x+b)^{n}$.

2. Integrability Formulas

Next we state a number of propositions:
(13) $\int_{A}(\text { the function } \sin)^{2}(x) d x=\frac{1}{2} \cdot \sup A-\frac{1}{4} \cdot \sin (2 \cdot \sup A)-\left(\frac{1}{2} \cdot \inf A-\right.$ $\left.\frac{1}{4} \cdot \sin (2 \cdot \inf A)\right)$.
(14) $\int_{[0, \pi]}\left(\right.$ the function $\sin ^{2}(x) d x=\frac{\pi}{2}$.
(15) $\int_{[0,2 \cdot \pi]}(\text { the function } \sin)^{2}(x) d x=\pi$.
(16) $\int_{A}(\text { the function } \cos)^{2}(x) d x=\left(\frac{1}{2} \cdot \sup A+\frac{1}{4} \cdot \sin (2 \cdot \sup A)\right)-\left(\frac{1}{2} \cdot \inf A+\right.$ $\left.\frac{1}{4} \cdot \sin (2 \cdot \inf A)\right)$.
(17) $\int_{[0, \pi]}(\text { the function } \cos)^{2}(x) d x=\frac{\pi}{2}$.
(18) $\int_{[0,2 \cdot \pi]}(\text { the function } \cos)^{2}(x) d x=\pi$.
(19) $\quad \int_{A}\left((\text { the function } \sin)^{n}(\right.$ the function $\left.\cos)\right)(x) d x=\frac{1}{n+1} \cdot(\sin \sup A)^{n+1}-$ $\frac{{ }_{A}^{A}}{n+1} \cdot(\sin \inf A)^{n+1}$.
(20) $\int_{[0, \pi]}\left((\text { the function sin })^{n}(\right.$ the function $\left.\cos)\right)(x) d x=0$.
(21) $\int_{[0,2 \cdot \pi]}\left((\text { the function } \sin)^{n}(\right.$ the function $\left.\cos)\right)(x) d x=0$.
(22) $\int_{A}\left((\text { the function } \cos)^{n}(\right.$ the function $\left.\sin)\right)(x) d x=\left(-\frac{1}{n+1}\right) \cdot(\cos \sup A)^{n+1}-$ $\left(-\frac{1}{n+1}\right) \cdot(\operatorname{cosinf} A)^{n+1}$.
(23) $\int_{[0,2 \cdot \pi]}\left((\text { the function } \cos)^{n}(\right.$ the function $\left.\sin)\right)(x) d x=0$.
(24) $\int_{\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]}\left((\text { the function } \cos)^{n}(\right.$ the function $\left.\sin)\right)(x) d x=0$.
(25) Suppose $m+n \neq 0$ and $m-n \neq 0$. Then
$\int_{A}((($ the function cos $) \cdot(m \square+0))(($ the function $\cos) \cdot(n \square+0)))(x) d x=$ $\left(\frac{1}{2 \cdot(m+n)} \cdot \sin ((m+n) \cdot \sup A)+\frac{1}{2 \cdot(m-n)} \cdot \sin ((m-n) \cdot \sup A)\right)-$ $\left(\frac{1}{2 \cdot(m+n)} \cdot \sin ((m+n) \cdot \inf A)+\frac{1}{2 \cdot(m-n)} \cdot \sin ((m-n) \cdot \inf A)\right)$.
(26) Suppose $m+n \neq 0$ and $m-n \neq 0$. Then
$\int_{A}((($ the function $\sin) \cdot(m \square+0))(($ the function $\sin) \cdot(n \square+0)))(x) d x=$ $\frac{1}{2 \cdot(m-n)} \cdot \sin ((m-n) \cdot \sup A)-\frac{1}{2 \cdot(m+n)} \cdot \sin ((m+n) \cdot \sup A)-$ $\left(\frac{1}{2 \cdot(m-n)} \cdot \sin ((m-n) \cdot \inf A)-\frac{1}{2 \cdot(m+n)} \cdot \sin ((m+n) \cdot \inf A)\right)$.
(27) Suppose $m+n \neq 0$ and $m-n \neq 0$. Then
$\int_{A}((($ the function sin $) \cdot(m \square+0))(($ the function $\cos) \cdot(n \square+0)))(x) d x=$ $-\frac{1}{2 \cdot(m+n)} \cdot \cos ((m+n) \cdot \sup A)-\frac{1}{2 \cdot(m-n)} \cdot \cos ((m-n) \cdot \sup A)-$ $\left(-\frac{1}{2 \cdot(m+n)} \cdot \cos ((m+n) \cdot \inf A)-\frac{1}{2 \cdot(m-n)} \cdot \cos ((m-n) \cdot \inf A)\right)$.
(28) If $n \neq 0$, then $\int_{A}((1 \square+0)(($ the function $\sin) \cdot(n \square+0)))(x) d x=\frac{1}{n^{2}}$. $\sin (n \cdot \sup A)-\frac{1}{n} \cdot \sup A \cdot \cos (n \cdot \sup A)-\left(\frac{1}{n^{2}} \cdot \sin (n \cdot \inf A)-\frac{1}{n} \cdot \inf A\right.$. $\cos (n \cdot \inf A))$.
(29) If $n \neq 0$, then $\int_{A}((1 \square+0)(($ the function $\cos) \cdot(n \square+0)))(x) d x=\left(\frac{1}{n^{2}}\right.$. $\left.\cos (n \cdot \sup A)+\frac{1}{n} \cdot \sup A \cdot \sin (n \cdot \sup A)\right)-\left(\frac{1}{n^{2}} \cdot \cos (n \cdot \inf A)+\frac{1}{n} \cdot \inf A\right.$. $\sin (n \cdot \inf A))$.
(30) $\int_{A}((1 \square+0)($ the function $\sinh))(x) d x=\sup A \cdot \cosh \sup A-\sinh \sup A-$ $(\inf A \cdot \cosh \inf A-\sinh \inf A)$.
(31) $\int_{A}((1 \square+0)($ the function $\cosh))(x) d x=\sup A \cdot \sinh \sup A-\cosh \sup A-$ $(\inf A \cdot \sinh \inf A-\cosh \inf A)$.
(32) If $a \cdot(n+1) \neq 0$, then $\int_{A}(a \square+b)^{n}(x) d x=\frac{1}{a \cdot(n+1)} \cdot(a \cdot \sup A+b)^{n+1}-$ $\frac{1}{a \cdot(n+1)} \cdot(a \cdot \inf A+b)^{n+1}$.

3. Addenda

In the sequel $f, f_{1}, f_{2}, f_{3}, g$ are partial functions from \mathbb{R} to \mathbb{R}.
The following propositions are true:
(33) If $Z \subseteq \operatorname{dom}\left(\frac{1}{2} f\right)$ and $f=\square^{2}$, then $\frac{1}{2} f$ is differentiable on Z and for every x such that $x \in Z$ holds $\left(\frac{1}{2} f\right)^{\prime}{ }_{Y Z}(x)=x$.
(34) If $A \subseteq Z=\operatorname{dom}\left(\frac{1}{2}\left(\square^{2}\right)\right)$, then $\int_{A} \operatorname{id}_{Z}(x) d x=\frac{1}{2} \cdot(\sup A)^{2}-\frac{1}{2} \cdot(\inf A)^{2}$.
(35) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $g(x)=x$ and $g(x) \neq 0$ and $f(x)=-\frac{1}{x^{2}}$ and $Z=\operatorname{dom} g$ and $\operatorname{dom} f=Z$ and $f \upharpoonright A$ is continuous. Then $\int_{A} f(x) d x=(\sup A)^{-1}-(\inf A)^{-1}$.
(36) Suppose that
(i) $A \subseteq Z$,
(ii) $f_{1}=\square^{2}$,
(iii) for every x such that $x \in Z$ holds $f_{2}(x)=1$ and $x \neq 0$ and $f(x)=$ $\frac{2 \cdot x}{\left(1+x^{2}\right)^{2}}$,
(iv) $\operatorname{dom}\left(\frac{f_{1}}{f_{2}+f_{1}}\right)=Z$,
(v) $Z=\operatorname{dom} f$, and
(vi) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\left(\frac{f_{1}}{f_{2}+f_{1}}\right)(\sup A)-\left(\frac{f_{1}}{f_{2}+f_{1}}\right)(\inf A)$.
(37) Suppose $Z \subseteq \operatorname{dom}(($ the function $\tan)+($ the function sec $))$ and for every x such that $x \in Z$ holds $1+\sin x \neq 0$ and $1-\sin x \neq 0$. Then
(i) $($ the function $\tan)+($ the function sec) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function tan) + (the function $\sec))^{\prime}{ }_{Z}(x)=\frac{1}{1-\sin x}$.
(38) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $1+\sin x \neq 0$ and $1-\sin x \neq 0$ and $f(x)=\frac{1}{1-\sin x}$,
(iii) $\operatorname{dom}(($ the function $\tan)+($ the function $\sec))=Z$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(\tan \sup A+\sec \sup A)-(\tan \inf A+\sec \inf A)$.
(39) Suppose $Z \subseteq \operatorname{dom}(($ the function $\tan)-($ the function sec $))$ and for every x such that $x \in Z$ holds $1+\sin x \neq 0$ and $1-\sin x \neq 0$. Then
(i) (the function tan) - (the function sec) is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds ((the function tan)-(the function $\sec))^{\prime}{ }_{Y}(x)=\frac{1}{1+\sin x}$.
(40) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $1+\sin x \neq 0$ and $1-\sin x \neq 0$ and $f(x)=\frac{1}{1+\sin x}$,
(iii) $\operatorname{dom}(($ the function $\tan)-($ the function sec $))=Z$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\tan \sup A-\sec \sup A-(\tan \inf A-\sec \inf A)$.
(41) Suppose $Z \subseteq$ dom(-the function cot + the function cosec) and for every x such that $x \in Z$ holds $1+\cos x \neq 0$ and $1-\cos x \neq 0$. Then
(i) - the function cot + the function cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (- the function cot + the function $\operatorname{cosec})^{\prime}{ }_{Z}(x)=\frac{1}{1+\cos x}$.
(42) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $1+\cos x \neq 0$ and $1-\cos x \neq 0$ and $f(x)=\frac{1}{1+\cos x}$,
(iii) $\operatorname{dom}(-$ the function cot + the function $\operatorname{cosec})=Z$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(-\cot \sup A+\operatorname{cosec} \sup A)-(-\cot \inf A+\operatorname{cosec} \inf A)$.
(43) Suppose $Z \subseteq \operatorname{dom}$ (-the function cot - the function cosec) and for every x such that $x \in Z$ holds $1+\cos x \neq 0$ and $1-\cos x \neq 0$. Then
(i) - the function cot - the function cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (-the function cot - the function $\operatorname{cosec})_{{ }_{Z}}^{\prime}(x)=\frac{1}{1-\cos x}$.
(44) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $1+\cos x \neq 0$ and $1-\cos x \neq 0$ and $f(x)=\frac{1}{1-\cos x}$,
(iii) $\operatorname{dom}(-$ the function cot - the function $\operatorname{cosec})=Z$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=-\cot \sup A-\operatorname{cosec} \sup A-(-\cot \inf A-\operatorname{cosec} \inf A)$.
(45) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds $f(x)=\frac{1}{1+x^{2}}$,
(iv) $\operatorname{dom}($ the function $\arctan)=Z$,
(v) $Z=\operatorname{dom} f$, and
(vi) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\arctan \sup A-\arctan \inf A$.
(46) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds $f(x)=\frac{r}{1+x^{2}}$,
(iv) $\operatorname{dom}(r$ the function $\arctan)=Z$,
(v) $Z=\operatorname{dom} f$, and
(vi) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=r \cdot \arctan \sup A-r \cdot \arctan \inf A$.
(47) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds $f(x)=-\frac{1}{1+x^{2}}$,
(iv) $\operatorname{dom}($ the function arccot) $=Z$,
(v) $Z=\operatorname{dom} f$, and
(vi) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\operatorname{arccot} \sup A-\operatorname{arccot} \inf A$.
(48) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds $f(x)=-\frac{r}{1+x^{2}}$,
(iv) $\operatorname{dom}(r$ the function arccot) $=Z$,
(v) $Z=\operatorname{dom} f$, and
(vi) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=r \cdot \operatorname{arccot} \sup A-r \cdot \operatorname{arccotinf} A$.
(49) Suppose $Z \subseteq \operatorname{dom}\left(\left(\mathrm{id}_{Z}+\right.\right.$ the function cot $)$-the function cosec $)$ and for every x such that $x \in Z$ holds $1+\cos x \neq 0$ and $1-\cos x \neq 0$. Then
(i) $\quad\left(\mathrm{id}_{Z}+\right.$ the function cot $)$-the function cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(\operatorname{id}_{Z}+\right.\right.$ the function $\left.\cot \right)-$ the function $\operatorname{cosec})^{\prime}{ }_{Z}(x)=\frac{\cos x}{1+\cos x}$.
(50) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $1+\cos x \neq 0$ and $1-\cos x \neq 0$ and $f(x)=\frac{\cos x}{1+\cos x}$,
(iii) $\operatorname{dom}\left(\left(\mathrm{id}_{Z}+\right.\right.$ the function cot $)-$ the function $\left.\operatorname{cosec}\right)=Z$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(\sup A+\cot \sup A)-\operatorname{cosec} \sup A-((\inf A+\cot \inf A)-$ $\operatorname{cosec} \inf A)$.
(51) Suppose $Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}+\right.$ the function cot+the function cosec $)$ and for every x such that $x \in Z$ holds $1+\cos x \neq 0$ and $1-\cos x \neq 0$. Then
(i) $\mathrm{id}_{Z}+$ the function cot+the function cosec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\mathrm{id}_{Z}+\right.$ the function cot+the function $\operatorname{cosec})^{\prime}{ }_{Z}(x)=\frac{\cos x}{\cos x-1}$.
(52) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $1+\cos x \neq 0$ and $1-\cos x \neq 0$ and $f(x)=\frac{\cos x}{\cos x-1}$,
(iii) $\operatorname{dom}\left(\mathrm{id}_{Z}+\right.$ the function cot+the function $\left.\operatorname{cosec}\right)=Z$,
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=(\sup A+\cot \sup A+\operatorname{cosec} \sup A)-(\inf A+\cot \inf A+$ cosec $\inf A)$.
(53) Suppose $Z \subseteq \operatorname{dom}\left(\left(\operatorname{id}_{Z}\right.\right.$ - the function $\left.\tan \right)+$ the function sec $)$ and for every x such that $x \in Z$ holds $1+\sin x \neq 0$ and $1-\sin x \neq 0$. Then
(i) $\quad\left(\mathrm{id}_{Z}-\right.$ the function $\left.\tan \right)+$ the function sec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds $\left(\left(\mathrm{id}_{Z}-\right.\right.$ the function $\left.\tan \right)+$ the function $\sec)_{Y Z}^{\prime}(x)=\frac{\sin x}{\sin x+1}$.
(54) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $1+\sin x \neq 0$ and $1-\sin x \neq 0$ and $f(x)=\frac{\sin x}{1+\sin x}$,
(iii) $Z \subseteq \operatorname{dom}\left(\left(\mathrm{id}_{Z}-\right.\right.$ the function tan $)+$ the function sec),
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=((\sup A-\tan \sup A)+\sec \sup A)-((\inf A-\tan \inf A)+$ $\sec \inf A)$.
(55) Suppose $Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}\right.$ - the function tan-the function sec) and for every x such that $x \in Z$ holds $1+\sin x \neq 0$ and $1-\sin x \neq 0$. Then
(i) id_{Z} - the function $\tan -$ the function sec is differentiable on Z, and
(ii) for every x such that $x \in Z$ holds (id ${ }_{Z}$ - the function \tan-the function sec $)^{\prime}{ }_{Z}(x)=\frac{\sin x}{\sin x-1}$.
(56) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $1+\sin x \neq 0$ and $1-\sin x \neq 0$ and $f(x)=\frac{\sin x}{\sin x-1}$,
(iii) $Z \subseteq \operatorname{dom}_{\left(\mathrm{id}_{Z}-\text { the function tan-the function sec), }\right.}^{\text {(iv) }}$
(iv) $Z=\operatorname{dom} f$, and
(v) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\sup A-\tan \sup A-\sec \sup A-(\inf A-\tan \inf A-$ $\sec \inf A)$.
(57) Suppose $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan)-\mathrm{id}_{Z}\right)$. Then (the function $\tan)-\mathrm{id}_{Z}$ is differentiable on Z and for every x such that $x \in Z$ holds $\left((\text { the function } \tan)-\mathrm{id}_{Z}\right)^{\prime}(x)=(\tan x)^{2}$.
(58) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds (the function $\cos)(x)>0$ and $f(x)=(\tan x)^{2}$,
(iii) $Z \subseteq \operatorname{dom}\left((\right.$ the function $\left.\tan)-\mathrm{id}_{Z}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\tan \sup A-\sup A-(\tan \inf A-\inf A)$.
(59) Suppose $Z \subseteq \operatorname{dom}\left(-\right.$ the function $\left.\cot -\mathrm{id}_{Z}\right)$. Then -the function cot id_{Z} is differentiable on Z and for every x such that $x \in Z$ holds $\left(- \text { the function } \cot -\mathrm{id}_{Z}\right)^{\prime}{ }^{\prime}(x)=(\cot x)^{2}$.
(60) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds (the function $\sin)(x)>0$ and $f(x)=(\cot x)^{2}$,
(iii) $Z \subseteq \operatorname{dom}\left(-\right.$ the function $\left.\cot -\mathrm{id}_{Z}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=-\cot \sup A-\sup A-(-\cot \inf A-\inf A)$.
(61) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $f(x)=\frac{1}{(\cos x)^{2}}$ and $\cos x \neq 0$ and $\operatorname{dom}($ the function $\tan)=Z=\operatorname{dom} f$ and $f \upharpoonright A$ is continuous. Then $\int_{A} f(x) d x=\tan \sup A-\tan \inf A$.
(62) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $f(x)=-\frac{1}{(\sin x)^{2}}$ and $\sin x \neq 0$ and $\operatorname{dom}($ the function $\cot)=Z=\operatorname{dom} f$ and $f \upharpoonright A$ is continuous. Then $\int_{A} f(x) d x=\cot \sup A-\cot \inf A$.
(63) Suppose $A \subseteq Z$ and for every x such that $x \in Z$ holds $f(x)=\frac{\sin x-(\cos x)^{2}}{(\cos x)^{2}}$ and $Z \subseteq \operatorname{dom}\left((\right.$ the function sec $\left.)-\operatorname{id}_{Z}\right)$ and $Z=\operatorname{dom} f$ and $f \upharpoonright A$ is continuous. Then $\int_{A} f(x) d x=\sec \sup A-\sup A-(\sec \inf A-\inf A)$.
(64) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $f(x)=\frac{\cos x-(\sin x)^{2}}{(\sin x)^{2}}$,
(iii) $Z \subseteq \operatorname{dom}\left(-\right.$ the function $\left.\operatorname{cosec}-\mathrm{id}_{Z}\right)$,
(iv) $Z=\operatorname{dom} f$, and
(v) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=-\operatorname{cosec} \sup A-\sup A-(-\operatorname{cosec} \inf A-\inf A)$.
The following propositions are true:
(65) Suppose that
(i) $A \subseteq Z$,
(ii) for every x such that $x \in Z$ holds $\sin x>0$,
(iii) $Z \subseteq \operatorname{dom}(($ the function $\ln) \cdot($ the function $\sin))$,
(iv) $Z=\operatorname{dom}$ (the function cot), and
(v) (the function cot) $\upharpoonright A$ is continuous.

Then \int_{A} (the function $\left.\cot \right)(x) d x=\ln \sin \sup A-\ln \sin \inf A$.
(66) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds $f(x)=\frac{\arcsin x}{\sqrt{1-x^{2}}}$,
(iv) $Z \subseteq \operatorname{dom}\left(\frac{1}{2}(\text { the function } \arcsin)^{2}\right)$,
(v) $Z=\operatorname{dom} f$, and
(vi) $\quad f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\frac{1}{2} \cdot(\arcsin \sup A)^{2}-\frac{1}{2} \cdot(\arcsin \inf A)^{2}$.
(67) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) for every x such that $x \in Z$ holds $f(x)=-\frac{\arccos x}{\sqrt{1-x^{2}}}$,
(iv) $Z \subseteq \operatorname{dom}\left(\frac{1}{2}(\text { the function } \arccos)^{2}\right)$,
(v) $Z=\operatorname{dom} f$, and
(vi) $f \upharpoonright A$ is continuous.

Then $\int_{A} f(x) d x=\frac{1}{2} \cdot(\operatorname{arccossup} A)^{2}-\frac{1}{2} \cdot(\operatorname{arccosinf} A)^{2}$.
(68) $\quad A \subseteq Z \subseteq]-1,1\left[\right.$ and $f=f_{1}-f_{2}$ and $f_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f(x)>0$ and $x \neq 0$ and dom (the function $\arcsin)=Z \subseteq \operatorname{dom}\left(\operatorname{id}_{Z}(\right.$ the function $\left.\arcsin)+f^{\frac{1}{2}}\right)$.
(69) Suppose that $A \subseteq Z \subseteq]-1,1\left[\right.$ and $f=f_{1}-f_{2}$ and $f_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{2}$ and $f(x)>0$ and $f_{3}(x)=\frac{x}{a}$ and $-1<f_{3}(x)<1$ and $x \neq 0$ and $a>0$ and $\operatorname{dom}\left((\right.$ the function arcsin $\left.) \cdot f_{3}\right)=$ $Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}\left((\right.\right.$ the function arcsin $\left.\left.) \cdot f_{3}\right)+\left(\square^{\frac{1}{2}}\right) \cdot f\right)$ and $(($ the function $\left.\arcsin) \cdot f_{3}\right) \upharpoonright A$ is continuous. Then $\int_{A}\left((\right.$ the function arcsin $\left.) \cdot f_{3}\right)(x) d x=$ $\left(\sup A \cdot \arcsin \left(\frac{\sup A}{a}\right)+f(\sup A)^{\frac{1}{2}}\right)-\left(\inf A \cdot \arcsin \left(\frac{\inf A}{a}\right)+f(\inf A)^{\frac{1}{2}}\right)$.
(70) Suppose that $A \subseteq Z \subseteq]-1,1\left[\right.$ and $f=f_{1}-f_{2}$ and $f_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=1$ and $f(x)>0$ and $x \neq 0$ and dom (the function arccos) $=Z \subseteq \operatorname{dom}\left(\mathrm{id}_{Z}\right.$ (the function arccos) $\left.-\left(\square^{\frac{1}{2}}\right) \cdot f\right)$. Then $\int_{A}($ the function $\arccos)(x) d x=\sup A \cdot \arccos \sup A-f(\sup A)^{\frac{1}{2}}-$ $\left(\inf A \cdot \operatorname{arccosinf} A-f(\inf A)^{\frac{1}{2}}\right)$.
(71) Suppose that $A \subseteq Z \subseteq]-1,1\left[\right.$ and $f=f_{1}-f_{2}$ and $f_{2}=\square^{2}$ and for every x such that $x \in Z$ holds $f_{1}(x)=a^{2}$ and $f(x)>0$ and $f_{3}(x)=\frac{x}{a}$ and $-1<f_{3}(x)<1$ and $x \neq 0$ and $a>0$ and $\operatorname{dom}\left((\right.$ the function arccos $\left.) \cdot f_{3}\right)=$ $Z=\operatorname{dom}\left(\operatorname{id}_{Z}\left(\left(\right.\right.\right.$ the function arccos) $\left.\left.\cdot f_{3}\right)-\left(\square^{\frac{1}{2}}\right) \cdot f\right)$ and ((the function $\left.\arccos) \cdot f_{3}\right) \upharpoonright A$ is continuous. Then $\int_{A}\left((\right.$ the function arccos $\left.) \cdot f_{3}\right)(x) d x=$ $\sup A \cdot \arccos \left(\frac{\sup A}{a}\right)-f(\sup A)^{\frac{1}{2}}-\left(\inf A \cdot \arccos \left(\frac{\inf A}{a}\right)-f(\inf A)^{\frac{1}{2}}\right)$.
(72) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) $f_{2}=\square^{2}$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(v) $Z=\operatorname{dom}($ the function arctan), and
(vi) $\quad Z=\operatorname{dom}\left(\mathrm{id}_{Z}\right.$ the function $\arctan -\frac{1}{2}\left((\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)$.

Then $\int_{A}($ the function $\arctan)(x) d x=\sup A \cdot \arctan \sup A-\frac{1}{2} \cdot \ln (1+$ $\left.(\sup A)^{2}\right)-\left(\inf A \cdot \arctan \inf A-\frac{1}{2} \cdot \ln \left(1+(\inf A)^{2}\right)\right)$.
(73) Suppose that
(i) $A \subseteq Z$,
(ii) $Z \subseteq]-1,1[$,
(iii) $f_{2}=\square^{2}$,
(iv) for every x such that $x \in Z$ holds $f_{1}(x)=1$,
(v) $\operatorname{dom}($ the function arccot) $=Z$, and
(vi) $\quad Z=\operatorname{dom}\left(\operatorname{id}_{Z}\right.$ the function $\operatorname{arccot}+\frac{1}{2}\left((\right.$ the function $\left.\left.\ln) \cdot\left(f_{1}+f_{2}\right)\right)\right)$.

Then $\int_{A}($ the function $\operatorname{arccot})(x) d x=\left(\sup A \cdot \operatorname{arccot} \sup A+\frac{1}{2} \cdot \ln (1+\right.$ $\left.\left.(\sup A)^{2}\right)\right)-\left(\inf A \cdot \operatorname{arccot} \inf A+\frac{1}{2} \cdot \ln \left(1+(\inf A)^{2}\right)\right)$.

References

[1] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[2] Czesław Byliński and Piotr Rudnicki. Bounding boxes for compact sets in \mathcal{E}^{2}. Formalized Mathematics, 6(3):427-440, 1997.
[3] Chuanzhang Chen. Mathematical Analysis. Higher Education Press, Beijing, 1978.
[4] Noboru Endou and Artur Korniłowicz. The definition of the Riemann definite integral and some related lemmas. Formalized Mathematics, 8(1):93-102, 1999.
[5] Noboru Endou, Katsumi Wasaki, and Yasunari Shidama. Definition of integrability for partial functions from \mathbb{R} to \mathbb{R} and integrability for continuous functions. Formalized Mathematics, 9(2):281-284, 2001.
[6] Artur Korniłowicz and Yasunari Shidama. Inverse trigonometric functions arcsin and arccos. Formalized Mathematics, 13(1):73-79, 2005.
[7] Jarosław Kotowicz. Convergent sequences and the limit of sequences. Formalized Mathematics, 1(2):273-275, 1990.
[8] Jarosław Kotowicz. Partial functions from a domain to a domain. Formalized Mathematics, 1(4):697-702, 1990.
[9] Jarosław Kotowicz. Partial functions from a domain to the set of real numbers. Formalized Mathematics, 1(4):703-709, 1990.
[10] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[11] Xiquan Liang and Bing Xie. Inverse trigonometric functions arctan and arccot. Formalized Mathematics, 16(2):147-158, 2008, doi:10.2478/v10037-008-0021-3.
[12] Takashi Mitsuishi and Yuguang Yang. Properties of the trigonometric function. Formalized Mathematics, 8(1):103-106, 1999.
[13] Konrad Raczkowski. Integer and rational exponents. Formalized Mathematics, 2(1):125130, 1991.
[14] Konrad Raczkowski and Paweł Sadowski. Real function differentiability. Formalized Mathematics, 1(4):797-801, 1990.
[15] Konrad Raczkowski and Paweł Sadowski. Topological properties of subsets in real numbers. Formalized Mathematics, 1(4):777-780, 1990.
[16] Yasunari Shidama. The Taylor expansions. Formalized Mathematics, 12(2):195-200, 2004.
[17] Andrzej Trybulec and Czesław Byliński. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.
[18] Andrzej Trybulec and Yatsuka Nakamura. On the decomposition of a simple closed curve into two arcs. Formalized Mathematics, 10(3):163-167, 2002.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Peng Wang and Bo Li. Several differentiation formulas of special functions. Part V. Formalized Mathematics, 15(3):73-79, 2007, doi:10.2478/v10037-007-0009-4.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.
[23] Yuguang Yang and Yasunari Shidama. Trigonometric functions and existence of circle ratio. Formalized Mathematics, 7(2):255-263, 1998.

Received October 14, 2008

Cell Petri Net Concepts

Mitsuru Jitsukawa
Chiba-ken Asahi-shi Kotoda 2927-13
289-2502 Japan
Yasunari Shidama Yatsuka Nakamura
Shinshu University
Nagano, Japan
Shinshu University
Nagano, Japan

Abstract

Summary. Based on the Petri net definitions and theorems already formalized in $[8]$, with this article, we developed the concept of "Cell Petri Nets". It is based on [9]. In a cell Petri net we introduce the notions of colors and colored states of a Petri net, connecting mappings for linking two Petri nets, firing rules for transitions, and the synthesis of two or more Petri nets.

MML identifier: PETRI_2, version: 7.11.01 4.117.1046

The papers [11], [12], [6], [13], [14], [10], [8], [2], [5], [3], [4], [7], and [1] provide the terminology and notation for this paper.

1. Preliminaries: Thin Cylinder, Locus

Let A be a non empty set, let B be a set, let B_{1} be a set, and let y_{1} be a function from B_{1} into A. Let us assume that $B_{1} \subseteq B$. The functor cylinder ${ }_{0}\left(A, B, B_{1}, y_{1}\right)$ yields a non empty subset of A^{B} and is defined by:
(Def. 1) $\operatorname{cylinder}_{0}\left(A, B, B_{1}, y_{1}\right)=\left\{y: B \rightarrow A: y \mid B_{1}=y_{1}\right\}$.
Let A be a non empty set and let B be a set. A non empty subset of A^{B} is said to be a thin cylinder of A and B if:
(Def. 2) There exists a subset B_{1} of B and there exists a function y_{1} from B_{1} into A such that B_{1} is finite and it $=\operatorname{cylinder}_{0}\left(A, B, B_{1}, y_{1}\right)$.
The following propositions are true:
(1) Let A be a non empty set, B be a set, and D be a thin cylinder of A and B. Then there exists a subset B_{1} of B and there exists a function y_{1} from B_{1} into A such that B_{1} is finite and $D=\left\{y: B \rightarrow A: y \upharpoonright B_{1}=y_{1}\right\}$.
(2) Let A_{1}, A_{2} be non empty sets, B be a set, and D_{1} be a thin cylinder of A_{1} and B. If $A_{1} \subseteq A_{2}$, then there exists a thin cylinder D_{2} of A_{2} and B such that $D_{1} \subseteq D_{2}$.

Let A be a non empty set and let B be a set. The thin cylinders of A and B constitute a non empty family of subsets of A^{B} defined by:
(Def. 3) The thin cylinders of A and $B=\left\{D \subseteq A^{B}: D\right.$ is a thin cylinder of A and $B\}$.
We now state three propositions:
(3) Let A be a non trivial set, B be a set, B_{2} be a set, y_{2} be a function from B_{2} into A, B_{3} be a set, and y_{3} be a function from B_{3} into A. If $B_{2} \subseteq B$ and $B_{3} \subseteq B$ and $\operatorname{cylinder}_{0}\left(A, B, B_{2}, y_{2}\right)=\operatorname{cylinder}_{0}\left(A, B, B_{3}, y_{3}\right)$, then $B_{2}=B_{3}$ and $y_{2}=y_{3}$.
(4) Let A_{1}, A_{2} be non empty sets and B_{4}, B_{5} be sets. Suppose $A_{1} \subseteq A_{2}$ and $B_{4} \subseteq B_{5}$. Then there exists a function F from the thin cylinders of A_{1} and B_{4} into the thin cylinders of A_{2} and B_{5} such that for every set x if $x \in$ the thin cylinders of A_{1} and B_{4}, then there exists a subset B_{1} of B_{4} and there exists a function y_{2} from B_{1} into A_{1} and there exists a function y_{3} from B_{1} into A_{2} such that B_{1} is finite and $y_{2}=y_{3}$ and $x=\operatorname{cylinder}_{0}\left(A_{1}, B_{4}, B_{1}, y_{2}\right)$ and $F(x)=$ cylinder $_{0}\left(A_{2}, B_{5}, B_{1}, y_{3}\right)$.
(5) Let A_{1}, A_{2} be non empty sets and B_{4}, B_{5} be sets. Then there exists a function G from the thin cylinders of A_{2} and B_{5} into the thin cylinders of A_{1} and B_{4} such that for every set x if $x \in$ the thin cylinders of A_{2} and B_{5}, then there exists a subset B_{3} of B_{5} and there exists a subset B_{2} of B_{4} and there exists a function y_{2} from B_{2} into A_{1} and there exists a function y_{3} from B_{3} into A_{2} such that B_{2} is finite and B_{3} is finite and $B_{2}=B_{4} \cap B_{3} \cap y_{3}^{-1}\left(A_{1}\right)$ and $y_{2}=y_{3} \upharpoonright B_{2}$ and $x=\operatorname{cylinder}_{0}\left(A_{2}, B_{5}, B_{3}, y_{3}\right)$ and $G(x)=$ cylinder ${ }_{0}\left(A_{1}, B_{4}, B_{2}, y_{2}\right)$.
Let A_{1}, A_{2} be non trivial sets and let B_{4}, B_{5} be sets. Let us assume that there exist sets x, y such that $x \neq y$ and $x, y \in A_{1}$ and $A_{1} \subseteq A_{2}$ and $B_{4} \subseteq B_{5}$. The functor Extcylinders $\left(A_{1}, B_{4}, A_{2}, B_{5}\right)$ yielding a function from the thin cylinders of A_{1} and B_{4} into the thin cylinders of A_{2} and B_{5} is defined by the condition (Def. 4).
(Def. 4) Let x be a set. Suppose $x \in$ the thin cylinders of A_{1} and B_{4}. Then there exists a subset B_{1} of B_{4} and there exists a function y_{2} from B_{1} into A_{1} and there exists a function y_{3} from B_{1} into A_{2} such that B_{1} is finite and $y_{2}=y_{3}$ and $x=\operatorname{cylinder}{ }_{0}\left(A_{1}, B_{4}, B_{1}, y_{2}\right)$ and $\left(\operatorname{Extcylinders}\left(A_{1}, B_{4}, A_{2}, B_{5}\right)\right)(x)=$ cylinder ${ }_{0}\left(A_{2}, B_{5}, B_{1}, y_{3}\right)$.

Let A_{1} be a non empty set, let A_{2} be a non trivial set, and let B_{4}, B_{5} be sets. Let us assume that $A_{1} \subseteq A_{2}$ and $B_{4} \subseteq B_{5}$. The functor Ristcylinders $\left(A_{1}, B_{4}, A_{2}, B_{5}\right)$ yields a function from the thin cylinders of A_{2} and B_{5} into the thin cylinders of A_{1} and B_{4} and is defined by the condition (Def. 5).
(Def. 5) Let x be a set. Suppose $x \in$ the thin cylinders of A_{2} and B_{5}. Then there exists a subset B_{3} of B_{5} and there exists a subset B_{2} of B_{4} and there exists a function y_{2} from B_{2} into A_{1} and there exists a function y_{3} from B_{3} into A_{2} such that B_{2} is finite and B_{3} is finite and $B_{2}=$ $B_{4} \cap B_{3} \cap y_{3}{ }^{-1}\left(A_{1}\right)$ and $y_{2}=y_{3} \upharpoonright B_{2}$ and $x=\operatorname{cylinder}_{0}\left(A_{2}, B_{5}, B_{3}, y_{3}\right)$ and $\left(\operatorname{Ristcylinders}\left(A_{1}, B_{4}, A_{2}, B_{5}\right)\right)(x)=\operatorname{cylinder}_{0}\left(A_{1}, B_{4}, B_{2}, y_{2}\right)$.
Let A be a non trivial set, let B be a set, and let D be a thin cylinder of A and B. The functor loc D yielding a finite subset of B is defined by the condition (Def. 6).
(Def. 6) There exists a subset B_{1} of B and there exists a function y_{1} from B_{1} into A such that B_{1} is finite and $D=\left\{y: B \rightarrow A: y \upharpoonright B_{1}=y_{1}\right\}$ and $\operatorname{loc} D=B_{1}$.

2. Colored Petri Nets

Let A_{1}, A_{2} be non trivial sets, let B_{4}, B_{5} be sets, let C_{1}, C_{2} be non trivial sets, let D_{1}, D_{2} be sets, and let F be a function from the thin cylinders of A_{1} and B_{4} into the thin cylinders of C_{1} and D_{1}. The functor CylinderFunc $\left(A_{1}, B_{4}, A_{2}, B_{5}, C_{1}, D_{1}, C_{2}, D_{2}, F\right)$ yielding a function from the thin cylinders of A_{2} and B_{5} into the thin cylinders of C_{2} and D_{2} is defined as follows:
(Def. 7) CylinderFunc $\left(A_{1}, B_{4}, A_{2}, B_{5}, C_{1}, D_{1}, C_{2}, D_{2}, F\right)=$ Extcylinders $\left(C_{1}, D_{1}, C_{2}, D_{2}\right) \cdot F \cdot \operatorname{Ristcylinders}\left(A_{1}, B_{4}, A_{2}, B_{5}\right)$.
We consider colored place/transition net structures as extensions of place/transition net structure as systems

〈 places, transitions, S-T arcs, T-S arcs, a colored set, a firing-rule 〉,
where the places and the transitions constitute non empty sets, the S-T arcs constitute a non empty relation between the places and the transitions, the T-S arcs constitute a non empty relation between the transitions and the places, the colored set is a non empty finite set, and the firing-rule is a function.

Let C_{3} be a colored place/transition net structure and let t_{0} be a transition of C_{3}. We say that t_{0} is outbound if and only if:
(Def. 8) $\overline{\left\{t_{0}\right\}}=\emptyset$.
Let C_{4} be a colored place/transition net structure. The functor Outbds C_{4} yielding a subset of the transitions of C_{4} is defined by:
(Def. 9) Outbds $C_{4}=\left\{x ; x\right.$ ranges over transitions of $C_{4}: x$ is outbound $\}$.

Let C_{3} be a colored place/transition net structure. We say that C_{3} is colored-PT-net-like if and only if the conditions (Def. 10) are satisfied.
(Def. 10)(i) dom (the firing-rule of $\left.C_{3}\right) \subseteq$ (the transitions of C_{3}) \backslash Outbds C_{3}, and
(ii) for every transition t of C_{3} such that $t \in \operatorname{dom}$ (the firing-rule of C_{3}) there exists a non empty subset C_{5} of the colored set of C_{3} and there exists a subset I of $*\{t\}$ and there exists a subset O of $\overline{\{t\}}$ such that (the firing-rule of $\left.C_{3}\right)(t)$ is a function from the thin cylinders of C_{5} and I into the thin cylinders of C_{5} and O.
We now state two propositions:
(6) Let C_{3} be a colored place/transition net structure and t be a transition of C_{3}. Suppose C_{3} is colored-PT-net-like and $t \in$ dom (the firing-rule of C_{3}). Then there exists a non empty subset C_{5} of the colored set of C_{3} and there exists a subset I of ${ }^{*}\{t\}$ and there exists a subset O of $\overline{\{t\}}$ such that (the firing-rule of $\left.C_{3}\right)(t)$ is a function from the thin cylinders of C_{5} and I into the thin cylinders of C_{5} and O.
(7) Let C_{4}, C_{6} be colored place/transition net structures, t_{1} be a transition of C_{4}, and t_{2} be a transition of C_{6}. Suppose that
(i) the places of $C_{4} \subseteq$ the places of C_{6},
(ii) the transitions of $C_{4} \subseteq$ the transitions of C_{6},
(iii) the S-T arcs of $C_{4} \subseteq$ the S-T arcs of C_{6},
(iv) the T-S arcs of $C_{4} \subseteq$ the T-S arcs of C_{6}, and
(v) $t_{1}=t_{2}$.

Then ${ }^{*}\left\{t_{1}\right\} \subseteq{ }^{*}\left\{t_{2}\right\}$ and $\overline{\left\{t_{1}\right\}} \subseteq \overline{\left\{t_{2}\right\}}$.
One can verify that there exists a colored place/transition net structure which is strict and colored-PT-net-like.

A colored place/transition net is a colored-PT-net-like colored place/transition net structure.

3. Color Counts of CPNT

Let C_{4}, C_{6} be colored place/transition net structures. We say that C_{4} misses C_{6} if and only if:
(Def. 11) (The places of $\left.C_{4}\right) \cap\left(\right.$ the places of $\left.C_{6}\right)=\emptyset$ and (the transitions of $\left.C_{4}\right) \cap\left(\right.$ the transitions of $\left.C_{6}\right)=\emptyset$.
Let us note that the predicate C_{4} misses C_{6} is symmetric.

4. Colored States of CPNT

Let C_{4} be a colored place/transition net structure and let C_{6} be a colored place/transition net structure. Connecting mapping of C_{4} and C_{6} is defined by the condition (Def. 12).
(Def. 12) There exists a function O_{12} from Outbds C_{4} into the places of C_{6} and there exists a function O_{21} from Outbds C_{6} into the places of C_{4} such that it $=\left\langle O_{12}, O_{21}\right\rangle$.

5. Outbound Transitions of CPNT

Let C_{4}, C_{6} be colored place/transition nets and let O be a connecting mapping of C_{4} and C_{6}. Connecting firing rule of C_{4}, C_{6}, and O is defined by the condition (Def. 13).
(Def. 13) There exist functions q_{12}, q_{21} and there exists a function O_{12} from Outbds C_{4} into the places of C_{6} and there exists a function O_{21} from Outbds C_{6} into the places of C_{4} such that
(i) $O=\left\langle O_{12}, O_{21}\right\rangle$,
(ii) $\operatorname{dom} q_{12}=$ Outbds C_{4},
(iii) $\operatorname{dom} q_{21}=$ Outbds C_{6},
(iv) for every transition t_{3} of C_{4} such that t_{3} is outbound holds $q_{12}\left(t_{3}\right)$ is a function from the thin cylinders of the colored set of C_{4} and ${ }^{*}\left\{t_{3}\right\}$ into the thin cylinders of the colored set of C_{4} and $O_{12}{ }^{\circ} t_{3}$,
(v) for every transition t_{4} of C_{6} such that t_{4} is outbound holds $q_{21}\left(t_{4}\right)$ is a function from the thin cylinders of the colored set of C_{6} and ${ }^{*}\left\{t_{4}\right\}$ into the thin cylinders of the colored set of C_{6} and $O_{21}{ }^{\circ} t_{4}$, and
(vi) \quad it $=\left\langle q_{12}, q_{21}\right\rangle$.

6. Connecting Mapping for CPNT1, CPNT2

Let C_{4}, C_{6} be colored place/transition nets, let O be a connecting mapping of C_{4} and C_{6}, and let q be a connecting firing rule of C_{4}, C_{6}, and O. Let us assume that C_{4} misses C_{6}. The functor synthesis $\left(C_{4}, C_{6}, O, q\right)$ yielding a strict colored place/transition net is defined by the condition (Def. 14).
(Def. 14) There exist functions q_{12}, q_{21} and there exists a function O_{12} from Outbds C_{4} into the places of C_{6} and there exists a function O_{21} from Outbds C_{6} into the places of C_{4} such that $O=\left\langle O_{12}, O_{21}\right\rangle$ and dom $q_{12}=\operatorname{Outbds} C_{4}$ and dom $q_{21}=\operatorname{Outbds} C_{6}$ and for every transition t_{3} of C_{4} such that t_{3} is outbound holds $q_{12}\left(t_{3}\right)$ is a function from the thin cylinders of the colored set of C_{4} and ${ }^{*}\left\{t_{3}\right\}$ into the thin cylinders of the colored set of C_{4} and $O_{12}{ }^{\circ} t_{3}$ and for every transition t_{4} of C_{6} such that t_{4} is outbound holds $q_{21}\left(t_{4}\right)$ is a function from the thin cylinders of the colored set of C_{6} and ${ }^{*}\left\{t_{4}\right\}$ into the thin cylinders of the colored set of C_{6} and $O_{21}{ }^{\circ} t_{4}$ and $q=\left\langle q_{12}, q_{21}\right\rangle$ and the places of $\operatorname{synthesis}\left(C_{4}, C_{6}, O, q\right)=\left(\right.$ the places of $\left.C_{4}\right) \cup\left(\right.$ the places of $\left.C_{6}\right)$ and the
transitions of synthesis $\left(C_{4}, C_{6}, O, q\right)=$ (the transitions of $\left.C_{4}\right) \cup$ (the transitions of C_{6}) and the S-T arcs of $\operatorname{synth} \operatorname{sis}\left(C_{4}, C_{6}, O, q\right)=($ the S-T arcs of $\left.C_{4}\right) \cup\left(\right.$ the S-T arcs of $\left.C_{6}\right)$ and the T-S arcs of synthesis $\left(C_{4}, C_{6}, O, q\right)=($ the T-S arcs of $\left.C_{4}\right) \cup\left(\right.$ the T-S arcs of $\left.C_{6}\right) \cup O_{12} \cup O_{21}$ and the colored set of $\operatorname{synthesis}\left(C_{4}, C_{6}, O, q\right)=\left(\right.$ the colored set of $\left.C_{4}\right) \cup\left(\right.$ the colored set of $\left.C_{6}\right)$ and the firing-rule of synthesis $\left(C_{4}, C_{6}, O, q\right)=\left(\right.$ the firing-rule of $\left.C_{4}\right)+\cdot($ the firing-rule of $\left.C_{6}\right)+\cdot q_{12}+\cdot q_{21}$.

References

[1] Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Bylinski. The modification of a function by a function and the iteration of the composition of a function. Formalized Mathematics, 1(3):521-527, 1990.
[5] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[6] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[8] Pauline N. Kawamoto, Yasushi Fuwa, and Yatsuka Nakamura. Basic Petri net concepts. Formalized Mathematics, 3(2):183-187, 1992.
[9] Pauline N. Kawamoto and Yatsuka Nakamura. On Cell Petri Nets. Journal of Applied Functional Analysis, 1996.
[10] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.
[11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[14] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Arithmetic Operations on Functions from Sets into Functional Sets

Artur Korniłowicz ${ }^{1}$
Institute of Computer Science
University of Bialystok
Sosnowa 64, 15-887 Bialystok
Poland

Summary. In this paper we introduce sets containing number-valued functions. Different arithmetic operations on maps between any set and such functional sets are later defined.

MML identifier: VALUED_2, version: $\underline{7.11 .014 .117 .1046}$

The notation and terminology used here are introduced in the following papers: [4], [9], [10], [2], [11], [6], [3], [1], [8], [5], and [7].

1. Functional sets

In this paper x, X, X_{1}, X_{2} are sets.
Let Y be a functional set. The functor $\operatorname{DOMS}(Y)$ is defined by:
(Def. 1) $\operatorname{DOMS}(Y)=\bigcup\{\operatorname{dom} f: f$ ranges over elements of $Y\}$.
Let us consider X. We say that X is complex-functions-membered if and only if:
(Def. 2) If $x \in X$, then x is a complex-valued function.
Let us consider X. We say that X is extended-real-functions-membered if and only if:
(Def. 3) If $x \in X$, then x is an extended real-valued function.
Let us consider X. We say that X is real-functions-membered if and only if:

[^0](Def. 4) If $x \in X$, then x is a real-valued function.
Let us consider X. We say that X is rational-functions-membered if and only if:
(Def. 5) If $x \in X$, then x is a rational-valued function.
Let us consider X. We say that X is integer-functions-membered if and only if:
(Def. 6) If $x \in X$, then x is an integer-valued function.
Let us consider X. We say that X is natural-functions-membered if and only if:
(Def. 7) If $x \in X$, then x is a natural-valued function.
One can check the following observations:

* every set which is natural-functions-membered is also integer-functionsmembered,
* every set which is integer-functions-membered is also rational-functionsmembered,
* every set which is rational-functions-membered is also real-functionsmembered,
* every set which is real-functions-membered is also complex-functionsmembered, and
* every set which is real-functions-membered is also extended-real-functions-membered.
Let us mention that every set which is empty is also natural-functionsmembered.

Let f be a complex-valued function. Observe that $\{f\}$ is complex-functionsmembered.

One can verify that every set which is complex-functions-membered is also functional and every set which is extended-real-functions-membered is also functional.

One can verify that there exists a set which is natural-functions-membered and non empty.

Let X be a complex-functions-membered set. One can verify that every subset of X is complex-functions-membered.

Let X be an extended-real-functions-membered set. Note that every subset of X is extended-real-functions-membered.

Let X be a real-functions-membered set. Note that every subset of X is real-functions-membered.

Let X be a rational-functions-membered set. Observe that every subset of X is rational-functions-membered.

Let X be an integer-functions-membered set. Note that every subset of X is integer-functions-membered.

Let X be a natural-functions-membered set. Observe that every subset of X is natural-functions-membered.

Let D be a set. The functor \mathbb{C}-PFuncs D yields a set and is defined by:
(Def. 8) For every set f holds $f \in \mathbb{C}$-PFuncs D iff f is a partial function from D to \mathbb{C}.
Let D be a set. The functor \mathbb{C}-Funcs D yielding a set is defined by:
(Def. 9) For every set f holds $f \in \mathbb{C}$-Funcs D iff f is a function from D into \mathbb{C}.
Let D be a set. The functor $\overline{\mathbb{R}}$-PFuncs D yields a set and is defined by:
(Def. 10) For every set f holds $f \in \overline{\mathbb{R}}$-PFuncs D iff f is a partial function from D to $\overline{\mathbb{R}}$.
Let D be a set. The functor $\overline{\mathbb{R}}$-Funcs D yields a set and is defined as follows:
(Def. 11) For every set f holds $f \in \overline{\mathbb{R}}$-Funcs D iff f is a function from D into $\overline{\mathbb{R}}$.
Let D be a set. The functor \mathbb{R}-PFuncs D yielding a set is defined by:
(Def. 12) For every set f holds $f \in \mathbb{R}$-PFuncs D iff f is a partial function from D to \mathbb{R}.
Let D be a set. The functor \mathbb{R}-Funcs D yielding a set is defined by:
(Def. 13) For every set f holds $f \in \mathbb{R}$-Funcs D iff f is a function from D into \mathbb{R}.
Let D be a set. The functor \mathbb{Q}-PFuncs D yields a set and is defined as follows:
(Def. 14) For every set f holds $f \in \mathbb{Q}$-PFuncs D iff f is a partial function from D to \mathbb{Q}.
Let D be a set. The functor \mathbb{Q}-Funcs D yields a set and is defined by:
(Def. 15) For every set f holds $f \in \mathbb{Q}$-Funcs D iff f is a function from D into \mathbb{Q}.
Let D be a set. The functor \mathbb{Z}-PFuncs D yielding a set is defined by:
(Def. 16) For every set f holds $f \in \mathbb{Z}$-PFuncs D iff f is a partial function from D to \mathbb{Z}.
Let D be a set. The functor \mathbb{Z}-Funcs D yields a set and is defined as follows:
(Def. 17) For every set f holds $f \in \mathbb{Z}$-Funcs D iff f is a function from D into \mathbb{Z}.
Let D be a set. The functor \mathbb{N}-PFuncs D yields a set and is defined by:
(Def. 18) For every set f holds $f \in \mathbb{N}$-PFuncs D iff f is a partial function from D to \mathbb{N}.
Let D be a set. The functor \mathbb{N}-Funcs D yielding a set is defined by:
(Def. 19) For every set f holds $f \in \mathbb{N}$-Funcs D iff f is a function from D into \mathbb{N}.
The following propositions are true:
(1) \mathbb{C}-Funcs X is a subset of \mathbb{C}-PFuncs X.
(2) $\overline{\mathbb{R}}$-Funcs X is a subset of $\overline{\mathbb{R}}$-PFuncs X.
(3) \mathbb{R}-Funcs X is a subset of \mathbb{R}-PFuncs X.
(4) \mathbb{Q}-Funcs X is a subset of \mathbb{Q}-PFuncs X.
(5) \mathbb{Z}-Funcs X is a subset of \mathbb{Z}-PFuncs X.
(6) \mathbb{N}-Funcs X is a subset of \mathbb{N}-PFuncs X.

Let us consider X. One can verify the following observations:

* \mathbb{C}-PFuncs X is complex-functions-membered,
* \mathbb{C}-Funcs X is complex-functions-membered,
* $\overline{\mathbb{R}}$-PFuncs X is extended-real-functions-membered,
* $\overline{\mathbb{R}}$-Funcs X is extended-real-functions-membered,
* \mathbb{R}-PFuncs X is real-functions-membered,
* \mathbb{R}-Funcs X is real-functions-membered,
* \mathbb{Q}-PFuncs X is rational-functions-membered,
* \mathbb{Q}-Funcs X is rational-functions-membered,
* \mathbb{Z}-PFuncs X is integer-functions-membered,
* \mathbb{Z}-Funcs X is integer-functions-membered,
* \mathbb{N}-PFuncs X is natural-functions-membered, and
* \mathbb{N}-Funcs X is natural-functions-membered.

Let X be a complex-functions-membered set. Observe that every element of X is complex-valued.

Let X be an extended-real-functions-membered set. One can check that every element of X is extended real-valued.

Let X be a real-functions-membered set. One can check that every element of X is real-valued.

Let X be a rational-functions-membered set. One can check that every element of X is rational-valued.

Let X be an integer-functions-membered set. Observe that every element of X is integer-valued.

Let X be a natural-functions-membered set. Observe that every element of X is natural-valued.

Let X, x be sets, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. Observe that $f(x)$ is function-like and relationlike.

Let X, x be sets, let Y be an extended-real-functions-membered set, and let f be a partial function from X to Y. Observe that $f(x)$ is function-like and relation-like.

Let us consider X, x, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. One can check that $f(x)$ is complex-valued.

Let us consider X, x, let Y be an extended-real-functions-membered set, and let f be a partial function from X to Y. One can verify that $f(x)$ is extended real-valued.

Let us consider X, x, let Y be a real-functions-membered set, and let f be a partial function from X to Y. Note that $f(x)$ is real-valued.

Let us consider X, x, let Y be a rational-functions-membered set, and let f be a partial function from X to Y. Note that $f(x)$ is rational-valued.

Let us consider X, x, let Y be an integer-functions-membered set, and let f be a partial function from X to Y. Note that $f(x)$ is integer-valued.

Let us consider X, x, let Y be a natural-functions-membered set, and let f be a partial function from X to Y. One can check that $f(x)$ is natural-valued.

Let us consider X and let Y be a complex-membered set. One can check that $X \dot{\rightarrow} Y$ is complex-functions-membered.

Let us consider X and let Y be an extended real-membered set. Observe that $X \dot{\rightarrow} Y$ is extended-real-functions-membered.

Let us consider X and let Y be a real-membered set. Observe that $X \dot{\rightarrow} Y$ is real-functions-membered.

Let us consider X and let Y be a rational-membered set. Observe that $X \dot{\rightarrow} Y$ is rational-functions-membered.

Let us consider X and let Y be an integer-membered set. Observe that $X \dot{\rightarrow} Y$ is integer-functions-membered.

Let us consider X and let Y be a natural-membered set. One can verify that $X \dot{\rightarrow} Y$ is natural-functions-membered.

Let us consider X and let Y be a complex-membered set. Note that Y^{X} is complex-functions-membered.

Let us consider X and let Y be an extended real-membered set. Note that Y^{X} is extended-real-functions-membered.

Let us consider X and let Y be a real-membered set. Note that Y^{X} is real-functions-membered.

Let us consider X and let Y be a rational-membered set. Note that Y^{X} is rational-functions-membered.

Let us consider X and let Y be an integer-membered set. Note that Y^{X} is integer-functions-membered.

Let us consider X and let Y be a natural-membered set. One can check that Y^{X} is natural-functions-membered.

Let R be a binary relation. We say that R is complex-functions-valued if and only if:
(Def. 20) $\quad \operatorname{rng} R$ is complex-functions-membered.
We say that R is extended-real-functions-valued if and only if:
(Def. 21) $\quad \operatorname{rng} R$ is extended-real-functions-membered.
We say that R is real-functions-valued if and only if:
(Def. 22) rng R is real-functions-membered.
We say that R is rational-functions-valued if and only if:
(Def. 23) $\operatorname{rng} R$ is rational-functions-membered.
We say that R is integer-functions-valued if and only if:
(Def. 24) rng R is integer-functions-membered.
We say that R is natural-functions-valued if and only if:
(Def. 25) rng R is natural-functions-membered.
Let f be a function. Let us observe that f is complex-functions-valued if and only if:
(Def. 26) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is a complex-valued function.
Let us observe that f is extended-real-functions-valued if and only if:
(Def. 27) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is an extended real-valued function.
Let us observe that f is real-functions-valued if and only if:
(Def. 28) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is a real-valued function.
Let us observe that f is rational-functions-valued if and only if:
(Def. 29) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is a rational-valued function.
Let us observe that f is integer-functions-valued if and only if:
(Def. 30) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is an integer-valued function.
Let us observe that f is natural-functions-valued if and only if:
(Def. 31) For every set x such that $x \in \operatorname{dom} f$ holds $f(x)$ is a natural-valued function.
One can verify the following observations:

* every binary relation which is natural-functions-valued is also integer-functions-valued,
* every binary relation which is integer-functions-valued is also rational-functions-valued,
* every binary relation which is rational-functions-valued is also real-functions-valued,
* every binary relation which is real-functions-valued is also extended-real-functions-valued, and
* every binary relation which is real-functions-valued is also complex-functions-valued.

Let us note that every binary relation which is empty is also natural-functions-valued.

Let us mention that there exists a function which is natural-functions-valued.
Let R be a complex-functions-valued binary relation. Note that $\operatorname{rng} R$ is complex-functions-membered.

Let R be an extended-real-functions-valued binary relation. Observe that $\operatorname{rng} R$ is extended-real-functions-membered.

Let R be a real-functions-valued binary relation. Note that $\operatorname{rng} R$ is real-functions-membered.

Let R be a rational-functions-valued binary relation. Observe that $\mathrm{rng} R$ is rational-functions-membered.

Let R be an integer-functions-valued binary relation. One can verify that $\operatorname{rng} R$ is integer-functions-membered.

Let R be a natural-functions-valued binary relation. One can check that $\operatorname{rng} R$ is natural-functions-membered.

Let us consider X and let Y be a complex-functions-membered set. Observe that every partial function from X to Y is complex-functions-valued.

Let us consider X and let Y be an extended-real-functions-membered set. One can check that every partial function from X to Y is extended-real-functions-valued.

Let us consider X and let Y be a real-functions-membered set. One can check that every partial function from X to Y is real-functions-valued.

Let us consider X and let Y be a rational-functions-membered set. Observe that every partial function from X to Y is rational-functions-valued.

Let us consider X and let Y be an integer-functions-membered set. Observe that every partial function from X to Y is integer-functions-valued.

Let us consider X and let Y be a natural-functions-membered set. Note that every partial function from X to Y is natural-functions-valued.

Let f be a complex-functions-valued function and let us consider x. Note that $f(x)$ is function-like and relation-like.

Let f be an extended-real-functions-valued function and let us consider x. Observe that $f(x)$ is function-like and relation-like.

Let f be a complex-functions-valued function and let us consider x. One can verify that $f(x)$ is complex-valued.

Let f be an extended-real-functions-valued function and let us consider x. Note that $f(x)$ is extended real-valued.

Let f be a real-functions-valued function and let us consider x. One can verify that $f(x)$ is real-valued.

Let f be a rational-functions-valued function and let us consider x. Observe that $f(x)$ is rational-valued.

Let f be an integer-functions-valued function and let us consider x. Note that $f(x)$ is integer-valued.

Let f be a natural-functions-valued function and let us consider x. One can check that $f(x)$ is natural-valued.

2. Operations

For simplicity, we adopt the following rules: Y, Y_{1}, Y_{2} are complex-functionsmembered sets, c, c_{1}, c_{2} are complex numbers, f is a partial function from X
to Y, f_{1} is a partial function from X_{1} to Y_{1}, f_{2} is a partial function from X_{2} to Y_{2}, and g, h, k are complex-valued functions.

We now state a number of propositions:
(7) If $g \neq \emptyset$ and $g+c_{1}=g+c_{2}$, then $c_{1}=c_{2}$.
(8) If $g \neq \emptyset$ and $g-c_{1}=g-c_{2}$, then $c_{1}=c_{2}$.
(9) If $g \neq \emptyset$ and g is non-empty and $g c_{1}=g c_{2}$, then $c_{1}=c_{2}$.
(10) $-(g+c)=-g-c$.
(11) $-(g-c)=-g+c$.
(12) $\left(g+c_{1}\right)+c_{2}=g+\left(c_{1}+c_{2}\right)$.
(13) $\left(g+c_{1}\right)-c_{2}=g+\left(c_{1}-c_{2}\right)$.
(14) $\left(g-c_{1}\right)+c_{2}=g-\left(c_{1}-c_{2}\right)$.
(15) $g-c_{1}-c_{2}=g-\left(c_{1}+c_{2}\right)$.
(16) $g c_{1} c_{2}=g\left(c_{1} \cdot c_{2}\right)$.
(17) $-(g+h)=-g-h$.
(18) $g-h=-(h-g)$.
(19) $(g h) / k=g(h / k)$.
(20) $(g / h) k=(g k) / h$.
(21) $g / h / k=g /(h k)$.
(22) $c-g=(-c) g$.
(23) $c-g=-c g$.
(24) $(-c) g=-c g$.
(25) $-g h=(-g) h$.
(26) $-g / h=(-g) / h$.
(27) $-g / h=g /-h$.

Let f be a complex-valued function and let c be a complex number. The functor f / c yields a function and is defined as follows:
(Def. 32) $f / c=\frac{1}{c} f$.
Let f be a complex-valued function and let c be a complex number. Note that f / c is complex-valued.

Let f be a real-valued function and let r be a real number. Note that f / r is real-valued.

Let f be a rational-valued function and let r be a rational number. One can check that f / r is rational-valued.

Let f be a complex-valued finite sequence and let c be a complex number. One can check that f / c is finite sequence-like.

The following propositions are true:
(28) $\operatorname{dom}(g / c)=\operatorname{dom} g$.

$$
\begin{equation*}
(g / c)(x)=\frac{g(x)}{c} . \tag{29}
\end{equation*}
$$

(30) $(-g) / c=-g / c$.
(31) $g /-c=-g / c$.
(32) $g /-c=(-g) / c$.
(33) If $g \neq \emptyset$ and g is non-empty and $g / c_{1}=g / c_{2}$, then $c_{1}=c_{2}$.
(34) $\left(g c_{1}\right) / c_{2}=g \frac{c_{1}}{c_{2}}$.
(35) $\left(g / c_{1}\right) c_{2}=\left(g c_{2}\right) / c_{1}$.
(36) $g / c_{1} / c_{2}=g /\left(c_{1} \cdot c_{2}\right)$.
(37) $(g+h) / c=g / c+h / c$.
(38) $(g-h) / c=g / c-h / c$.
(39) $(g h) / c=g(h / c)$.
(40) $\quad(g / h) / c=g /(h c)$.

Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. The functor $-f$ yields a function and is defined by:
(Def. 33) $\operatorname{dom}(-f)=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}(-f)$ holds $(-f)(x)=-f(x)$.
Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. Then $-f$ is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, and let f be a partial function from X to Y. Then $-f$ is a partial function from X to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, and let f be a partial function from X to Y. Then $-f$ is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, and let f be a partial function from X to Y. Then $-f$ is a partial function from X to Z-PFuncs DOMS (Y).

Let Y be a complex-functions-membered set and let f be a finite sequence of elements of Y. One can check that $-f$ is finite sequence-like.

We now state two propositions:
(41) $--f=f$.
(42) If $-f_{1}=-f_{2}$, then $f_{1}=f_{2}$.

Let X be a complex-functions-membered set, let Y be a set, and let f be a partial function from X to Y. The functor $f \circ-$ yielding a function is defined as follows:
(Def. 34) $\operatorname{dom}(f \circ-)=\operatorname{dom} f$ and for every complex-valued function x such that $x \in \operatorname{dom}(f \circ-)$ holds $(f \circ-)(x)=f(-x)$.

Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. The functor ${ }^{1} / f$ yields a function and is defined as follows:
(Def. 35) $\quad \operatorname{dom}{ }^{1} / f=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}^{1} / f$ holds $\left({ }^{1} / f\right)(x)=f(x)^{-1}$.
Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. Then ${ }^{1} / f$ is a partial function from X to \mathbb{C}-PFuncs DOMS (Y).

Let us consider X, let Y be a real-functions-membered set, and let f be a partial function from X to Y. Then ${ }^{1} / f$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, and let f be a partial function from X to Y. Then ${ }^{1} / f$ is a partial function from X to \mathbb{Q}-PFuncs DOMS (Y).

Let Y be a complex-functions-membered set and let f be a finite sequence of elements of Y. Note that ${ }^{1} / f$ is finite sequence-like.

The following proposition is true
(43) $\quad 1 / 1 / f=f$.

Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. The functor $|f|$ yields a function and is defined by:
(Def. 36) $\quad \operatorname{dom}|f|=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}|f|$ holds $|f|(x)=$ $|f(x)|$.
Let us consider X, let Y be a complex-functions-membered set, and let f be a partial function from X to Y. Then $|f|$ is a partial function from X to \mathbb{C}-PFuncs DOMS (Y).

Let us consider X, let Y be a real-functions-membered set, and let f be a partial function from X to Y. Then $|f|$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, and let f be a partial function from X to Y. Then $|f|$ is a partial function from X to \mathbb{Q}-PFuncs DOMS (Y).

Let us consider X, let Y be an integer-functions-membered set, and let f be a partial function from X to Y. Then $|f|$ is a partial function from X to \mathbb{N}-PFuncs DOMS (Y).

Let Y be a complex-functions-membered set and let f be a finite sequence of elements of Y. Note that $|f|$ is finite sequence-like.

We now state the proposition
(44) $\quad||f||=|f|$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. The functor $f+c$
yields a function and is defined by:
(Def. 37) $\operatorname{dom}(f+c)=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}(f+c)$ holds $(f+c)(x)=c+f(x)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. Then $f+c$ is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let c be a real number. Then $f+c$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let c be a rational number. Then $f+c$ is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let c be an integer number. Then $f+c$ is a partial function from X to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a natural-functions-membered set, let f be a partial function from X to Y, and let c be a natural number. Then $f+c$ is a partial function from X to \mathbb{N}-PFuncs $\operatorname{DOMS}(Y)$.

One can prove the following propositions:
(45) $f+c_{1}+c_{2}=f+\left(c_{1}+c_{2}\right)$.
(46) If $f \neq \emptyset$ and f is non-empty and $f+c_{1}=f+c_{2}$, then $c_{1}=c_{2}$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. The functor $f-c$ yields a function and is defined as follows:
(Def. 38) $f-c=f+-c$.
We now state two propositions:
(47) $\operatorname{dom}(f-c)=\operatorname{dom} f$.
(48) If $x \in \operatorname{dom}(f-c)$, then $(f-c)(x)=f(x)-c$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. Then $f-c$ is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let c be a real number. Then $f-c$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let c be a rational number. Then $f-c$ is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let c be an integer number. Then $f-c$ is a partial function from X to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

We now state four propositions:
(49) If $f \neq \emptyset$ and f is non-empty and $f-c_{1}=f-c_{2}$, then $c_{1}=c_{2}$.

$$
\begin{equation*}
\left(f+c_{1}\right)-c_{2}=f+\left(c_{1}-c_{2}\right) . \tag{50}
\end{equation*}
$$

$$
\left(f-c_{1}\right)+c_{2}=f-\left(c_{1}-c_{2}\right)
$$

$$
\begin{equation*}
f-c_{1}-c_{2}=f-\left(c_{1}+c_{2}\right) . \tag{52}
\end{equation*}
$$

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. The functor $f \cdot c$ yielding a function is defined as follows:
(Def. 39) $\operatorname{dom}(f \cdot c)=\operatorname{dom} f$ and for every set x such that $x \in \operatorname{dom}(f \cdot c)$ holds $(f \cdot c)(x)=c f(x)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. Then $f \cdot c$ is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let c be a real number. Then $f \cdot c$ is a partial function from X to \mathbb{R}-PFuncs DOMS (Y).

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let c be a rational number. Then $f \cdot c$ is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let c be an integer number. Then $f \cdot c$ is a partial function from X to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a natural-functions-membered set, let f be a partial function from X to Y, and let c be a natural number. Then $f \cdot c$ is a partial function from X to \mathbb{N}-PFuncs $\operatorname{DOMS}(Y)$.

The following two propositions are true:
(53) $f \cdot c_{1} \cdot c_{2}=f \cdot\left(c_{1} \cdot c_{2}\right)$.
(54) If $f \neq \emptyset$ and f is non-empty and for every x such that $x \in \operatorname{dom} f$ holds $f(x)$ is non-empty and $f \cdot c_{1}=f \cdot c_{2}$, then $c_{1}=c_{2}$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. The functor f / c yielding a function is defined as follows:
(Def. 40) $\quad f / c=f \cdot c^{-1}$.
One can prove the following propositions:
(55) $\operatorname{dom}(f / c)=\operatorname{dom} f$.
(56) If $x \in \operatorname{dom}(f / c)$, then $(f / c)(x)=c^{-1} f(x)$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let c be a complex number. Then f / c is a partial function from X to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let c be a real number. Then f / c is a partial function from X to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let c be a rational number. Then f / c is a partial function from X to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

The following propositions are true:

$$
\begin{equation*}
f / c_{1} / c_{2}=f /\left(c_{1} \cdot c_{2}\right) \tag{57}
\end{equation*}
$$

(58) If $f \neq \emptyset$ and f is non-empty and for every x such that $x \in \operatorname{dom} f$ holds $f(x)$ is non-empty and $f / c_{1}=f / c_{2}$, then $c_{1}=c_{2}$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. The functor $f+g$ yielding a function is defined as follows:
(Def. 41) $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f+g)$ holds $(f+g)(x)=f(x)+g(x)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let g be a real-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let g be a rational-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let g be an integer-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a natural-functions-membered set, let f be a partial function from X to Y, and let g be a natural-valued function. Then $f+g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{N}-PFuncs DOMS (Y).

Next we state two propositions:

$$
\begin{equation*}
f+g+h=f+(g+h) \tag{59}
\end{equation*}
$$

(60) $-(f+g)=(-f)+-g$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. The functor $f-g$ yields a function and is defined by:
(Def. 42) $\quad f-g=f+-g$.
We now state two propositions:
(61) $\operatorname{dom}(f-g)=\operatorname{dom} f \cap \operatorname{dom} g$.
(62) If $x \in \operatorname{dom}(f-g)$, then $(f-g)(x)=f(x)-g(x)$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. Then $f-g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let g be a real-valued function. Then $f-g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let g be a rational-valued function. Then $f-g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let g be an integer-valued function. Then $f-g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Z}-PFuncs $\operatorname{DOMS}(Y)$.

The following propositions are true:
(63) $f--g=f+g$.

$$
\begin{equation*}
-(f-g)=(-f)+g \tag{64}
\end{equation*}
$$

$$
\begin{equation*}
(f+g)-h=f+(g-h) . \tag{66}
\end{equation*}
$$

$(f-g)+h=f-(g-h)$.
$f-g-h=f-(g+h)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. The functor $f \cdot g$ yielding a function is defined by:
(Def. 43) $\quad \operatorname{dom}(f \cdot g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f \cdot g)$ holds $(f \cdot g)(x)=f(x) g(x)$.
Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let g be a real-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let g be a rational-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be an integer-functions-membered set, let f be a partial function from X to Y, and let g be an integer-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Z}-PFuncs DOMS (Y).

Let us consider X, let Y be a natural-functions-membered set, let f be a partial function from X to Y, and let g be a natural-valued function. Then $f \cdot g$ is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{N}-PFuncs $\operatorname{DOMS}(Y)$.

Next we state three propositions:

$$
\begin{equation*}
f \cdot-g=(-f) \cdot g . \tag{68}
\end{equation*}
$$

$$
\begin{align*}
& f \cdot-g=-f \cdot g . \tag{69}\\
& f \cdot g \cdot h=f \cdot(g h) .
\end{align*}
$$

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. The functor f / g yields a function and is defined by:
(Def. 44) $\quad f / g=f \cdot g^{-1}$.
Next we state two propositions:
(71) $\operatorname{dom}(f / g)=\operatorname{dom} f \cap \operatorname{dom} g$.
(72) If $x \in \operatorname{dom}(f / g)$, then $(f / g)(x)=f(x) / g(x)$.

Let us consider X, let Y be a complex-functions-membered set, let f be a partial function from X to Y, and let g be a complex-valued function. Then f / g is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{C}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a real-functions-membered set, let f be a partial function from X to Y, and let g be a real-valued function. Then f / g is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{R}-PFuncs $\operatorname{DOMS}(Y)$.

Let us consider X, let Y be a rational-functions-membered set, let f be a partial function from X to Y, and let g be a rational-valued function. Then f / g is a partial function from $X \cap \operatorname{dom} g$ to \mathbb{Q}-PFuncs $\operatorname{DOMS}(Y)$.

Next we state the proposition
(73) $(f \cdot g) / h=f \cdot(g / h)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. The functor $f+g$ yielding a function is defined as follows:
(Def. 45) $\operatorname{dom}(f+g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f+g)$ holds $(f+g)(x)=f(x)+g(x)$.
Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to \mathbb{C}-PFuncs $\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be real-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{R}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be rational-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Q}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be integer-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to
Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Z}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be natural-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f+g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{N}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

We now state three propositions:
(74) $f_{1}+f_{2}=f_{2}+f_{1}$.
(75) $\left(f+f_{1}\right)+f_{2}=f+\left(f_{1}+f_{2}\right)$.
(76) $-\left(f_{1}+f_{2}\right)=\left(-f_{1}\right)+-f_{2}$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. The functor $f-g$ yields a function and is defined by:
(Def. 46) $\quad \operatorname{dom}(f-g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f-g)$ holds $(f-g)(x)=f(x)-g(x)$.
Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f-g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{C}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be real-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f-g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{R}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be rational-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f-g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Q}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be integer-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f-g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Z}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

One can prove the following propositions:

$$
\begin{equation*}
f_{1}-f_{2}=-\left(f_{2}-f_{1}\right) \tag{77}
\end{equation*}
$$

$-\left(f_{1}-f_{2}\right)=\left(-f_{1}\right)+f_{2}$.
$\left(f+f_{1}\right)-f_{2}=f+\left(f_{1}-f_{2}\right)$.
$\left(f-f_{1}\right)+f_{2}=f-\left(f_{1}-f_{2}\right)$
(81) $f-f_{1}-f_{2}=f-\left(f_{1}+f_{2}\right)$.
(82) $f-f_{1}-f_{2}=f-f_{2}-f_{1}$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}.

The functor $f \cdot g$ yields a function and is defined by:
(Def. 47) $\operatorname{dom}(f \cdot g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f \cdot g)$ holds $(f \cdot g)(x)=f(x) g(x)$.
Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to \mathbb{C}-PFuncs $\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be real-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{R}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be rational-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Q}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be integer-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to \mathbb{Z} - $\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be natural-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then $f \cdot g$ is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{N}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

We now state several propositions:
(83) $f_{1} \cdot f_{2}=f_{2} \cdot f_{1}$.

$$
\begin{align*}
& \left(f \cdot f_{1}\right) \cdot f_{2}=f \cdot\left(f_{1} \cdot f_{2}\right) . \tag{84}\\
& \left(-f_{1}\right) \cdot f_{2}=-f_{1} \cdot f_{2} . \tag{85}\\
& f_{1} \cdot-f_{2}=-f_{1} \cdot f_{2} . \tag{86}\\
& f \cdot\left(f_{1}+f_{2}\right)=f \cdot f_{1}+f \cdot f_{2} . \tag{87}\\
& \left(f_{1}+f_{2}\right) \cdot f=f_{1} \cdot f+f_{2} \cdot f . \tag{88}\\
& f \cdot\left(f_{1}-f_{2}\right)=f \cdot f_{1}-f \cdot f_{2} . \tag{89}\\
& \left(f_{1}-f_{2}\right) \cdot f=f_{1} \cdot f-f_{2} \cdot f . \tag{90}
\end{align*}
$$

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. The functor f / g yields a function and is defined by:
(Def. 48) $\operatorname{dom}(f / g)=\operatorname{dom} f \cap \operatorname{dom} g$ and for every set x such that $x \in \operatorname{dom}(f / g)$ holds $(f / g)(x)=f(x) / g(x)$.
Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be complex-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2}
to Y_{2}. Then f / g is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{C}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be real-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then f / g is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{R}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

Let X_{1}, X_{2} be sets, let Y_{1}, Y_{2} be rational-functions-membered sets, let f be a partial function from X_{1} to Y_{1}, and let g be a partial function from X_{2} to Y_{2}. Then f / g is a partial function from $X_{1} \cap X_{2}$ to $\mathbb{Q}-\operatorname{PFuncs}\left(\operatorname{DOMS}\left(Y_{1}\right) \cap\right.$ $\left.\operatorname{DOMS}\left(Y_{2}\right)\right)$.

One can prove the following propositions:
(91) $\left(-f_{1}\right) / f_{2}=-f_{1} / f_{2}$.
(92) $\quad f_{1} /-f_{2}=-f_{1} / f_{2}$.
(93) $\left(f \cdot f_{1}\right) / f_{2}=f \cdot\left(f_{1} / f_{2}\right)$.
(94) $\left(f / f_{1}\right) \cdot f_{2}=\left(f \cdot f_{2}\right) / f_{1}$.
(95) $f / f_{1} / f_{2}=f /\left(f_{1} \cdot f_{2}\right)$.
(96) $\left(f_{1}+f_{2}\right) / f=f_{1} / f+f_{2} / f$.
(97) $\left(f_{1}-f_{2}\right) / f=f_{1} / f-f_{2} / f$.

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[3] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[4] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[5] Andrzej Kondracki. Basic properties of rational numbers. Formalized Mathematics, 1(5):841-845, 1990.
[6] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.
[7] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[8] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[9] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[10] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[11] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.

Addenda

Authors

1. Jitsukawa, Mitsuru 37
2. Kawamoto, Pauline N. 37
3. Korniłowicz, Artur 1,43
4. Li, Bo 11, 23
5. Liang, Xiquan 23
6. Men, Yanhong 23
7. Nakamura, Yatsuka 1,37
8. Oya, Nagato 1
9. Shidama, Yasunari 1,37
10. Wang, Pan 11
11. Xie, Bing 11
12. Zhuang, Yanping 11,23
MML Identifiers
13. EUCLID_7 1
14. INTEGR11 23
15. INTEGRA9 11
16. PETRI_2 37
17. VALUED_2 43

[^0]: ${ }^{1}$ The article was written while the author visited Shinshu University, Nagano, Japan.

