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Summary. In this paper we show the finite dimensionality of real linear
spaces with their carriers equal Rn. We also give the standard basis of such
spaces. For the set Rn we introduce the concepts of linear manifold subsets and
orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is
proved to equal n.
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1. Preliminaries

We use the following convention: i, j, n are elements of N, z, B0 are sets,
and f , x0 are real-valued finite sequences.
Next we state several propositions:

(1) For all functions f , g holds dom(f · g) = dom g ∩ g−1(dom f).
(2) For every binary relation R and for every set Y such that rngR ⊆ Y
holds R−1(Y ) = domR.
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(3) Let X be a set, Y be a non empty set, and f be a function from X into
Y . If f is bijective, then X = Y .

(4) 〈z〉 · 〈1〉 = 〈z〉.
(5) For every element x of R0 holds x = εR.
(6) For all elements a, b, c of Rn holds (a− b) + c+ b = a+ c.
Let f1, f2 be finite sequences. One can verify that 〈f1, f2〉 is finite sequence-

like.
Let D be a set and let f1, f2 be finite sequences of elements of D. Then

〈f1, f2〉 is a finite sequence of elements of D ×D.
Let h be a real-valued finite sequence. Let us observe that h is increasing if

and only if:

(Def. 1) For every i such that 1 ≤ i < lenh holds h(i) < h(i+ 1).
One can prove the following four propositions:

(7) Let h be a real-valued finite sequence. Suppose h is increasing. Let given
i, j. If i < j and 1 ≤ i and j ≤ lenh, then h(i) < h(j).

(8) Let h be a real-valued finite sequence. Suppose h is increasing. Let given
i, j. If i ≤ j and 1 ≤ i and j ≤ lenh, then h(i) ≤ h(j).

(9) Let h be a natural-valued finite sequence. Suppose h is increasing. Let
given i. If 1 ≤ i ≤ lenh and 1 ≤ h(1), then i ≤ h(i).

(10) Let V be a real linear space and X be a subspace of V . Suppose V is
strict and X is strict and the carrier of X = the carrier of V . Then X = V.

Let D be a set, let F be a finite sequence of elements of D, and let h be a
permutation of domF. The functor F ◦ h yields a finite sequence of elements of
D and is defined as follows:

(Def. 2) F ◦ h = F · h.
One can prove the following propositions:

(11) Let D be a non empty set and f be a finite sequence of elements of D.
If 1 ≤ i ≤ len f and 1 ≤ j ≤ len f, then (Swap(f, i, j))(i) = f(j) and
(Swap(f, i, j))(j) = f(i).

(12) ∅ is a permutation of ∅.
(13) 〈1〉 is a permutation of {1}.
(14) For every finite sequence h of elements of R holds h is one-to-one iff
sorta h is one-to-one.

(15) Let h be a finite sequence of elements of N. Suppose h is one-to-one.
Then there exists a permutation h3 of domh and there exists a finite
sequence h2 of elements of N such that h2 = h · h3 and h2 is increasing
and domh = domh2 and rng h = rng h2.
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2. Orthogonal Basis

Let B0 be a set. We say that B0 is R-orthogonal if and only if:
(Def. 3) For all real-valued finite sequences x, y such that x, y ∈ B0 and x 6= y

holds |(x, y)| = 0.
Let us observe that every set which is empty is also R-orthogonal.
We now state the proposition

(16) B0 is R-orthogonal if and only if for all points x, y of EnT such that x,
y ∈ B0 and x 6= y holds x, y are orthogonal.
Let B0 be a set. We say that B0 is R-normal if and only if:

(Def. 4) For every real-valued finite sequence x such that x ∈ B0 holds |x| = 1.
Let us observe that every set which is empty is also R-normal.
Let us observe that there exists a set which is R-normal.
Let B0, B1 be R-normal sets. One can verify that B0 ∪B1 is R-normal.
One can prove the following propositions:

(17) If |f | = 1, then {f} is R-normal.
(18) If B0 is R-normal and |x0| = 1, then B0 ∪ {x0} is R-normal.
Let B0 be a set. We say that B0 is R-orthonormal if and only if:

(Def. 5) B0 is R-orthogonal and R-normal.
Let us note that every set which is R-orthonormal is also R-orthogonal and R-

normal and every set which is R-orthogonal and R-normal is also R-orthonormal.
Let us observe that {〈1〉} is R-orthonormal.
Let us observe that there exists a set which is R-orthonormal and non empty.
Let us consider n. One can verify that there exists a subset of Rn which is

R-orthonormal.
Let us consider n and let B0 be a subset of Rn. We say that B0 is complete

if and only if:

(Def. 6) For every R-orthonormal subset B of Rn such that B0 ⊆ B holds
B = B0.

Let n be an element of N and let B0 be a subset of Rn. We say that B0 is
orthogonal basis if and only if:

(Def. 7) B0 is R-orthonormal and complete.
Let us consider n. One can verify that every subset ofRn which is orthogonal

basis is also R-orthonormal and complete and every subset of Rn which is R-
orthonormal and complete is also orthogonal basis.
The following propositions are true:

(19) For every subset B0 of R0 such that B0 is orthogonal basis holds B0 = ∅.
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(20) Let B0 be a subset of Rn and y be an element of Rn. Suppose B0 is
orthogonal basis and for every element x of Rn such that x ∈ B0 holds
|(x, y)| = 0. Then y = 〈0, . . . , 0︸ ︷︷ ︸

n

〉.

3. Linear Manifolds

Let us consider n and let X be a subset of Rn. We say that X is linear
manifold if and only if:

(Def. 8) For all elements x, y of Rn and for all elements a, b of R such that x,
y ∈ X holds a · x+ b · y ∈ X.
Let us consider n. Observe that ΩRn is linear manifold.
The following proposition is true

(21) {〈0, . . . , 0︸ ︷︷ ︸
n

〉} is linear manifold.

Let us consider n. Observe that {〈0, . . . , 0︸ ︷︷ ︸
n

〉} is linear manifold.

Let us consider n and let X be a subset of Rn. The linear span of X yielding
a subset of Rn is defined by:
(Def. 9) The linear span of X =

⋂
{Y ⊆ Rn: Y is linear manifold ∧ X ⊆ Y }.

Let us consider n and let X be a subset of Rn. Observe that the linear span
of X is linear manifold.
Let us consider n and let f be a finite sequence of elements of Rn. The

functor
∑
f yielding an element of Rn is defined as follows:

(Def. 10)(i) There exists a finite sequence g of elements of Rn such that len f =
len g and f(1) = g(1) and for every natural number i such that 1 ≤ i <
len f holds g(i+ 1) = gi + fi+1 and

∑
f = g(len f) if len f > 0,

(ii)
∑
f = 〈0, . . . , 0︸ ︷︷ ︸

n

〉, otherwise.

Let n be a natural number and let f be a finite sequence of elements of Rn.
The functor accum f yields a finite sequence of elements of Rn and is defined
as follows:

(Def. 11) len f = len accum f and f(1) = (accum f)(1) and for every natural num-
ber i such that 1 ≤ i < len f holds (accum f)(i+ 1) = (accum f)i + fi+1.
We now state several propositions:

(22) For every finite sequence f of elements of Rn such that len f > 0 holds
(accum f)(len f) =

∑
f.

(23) For all finite sequences F , F2 of elements ofRn and for every permutation
h of domF such that F2 = F ◦ h holds

∑
F2 =

∑
F.

(24) For every element k of N holds
∑
k 7→ 〈0, . . . , 0︸ ︷︷ ︸

n

〉 = 〈0, . . . , 0︸ ︷︷ ︸
n

〉.
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(25) Let g be a finite sequence of elements of Rn, h be a finite sequence of
elements of N, and F be a finite sequence of elements of Rn. Suppose
h is increasing and rng h ⊆ dom g and F = g · h and for every element
i of N such that i ∈ dom g and i /∈ rng h holds g(i) = 〈0, . . . , 0︸ ︷︷ ︸

n

〉. Then∑
g =
∑
F.

(26) Let g be a finite sequence of elements of Rn, h be a finite sequence of
elements of N, and F be a finite sequence of elements of Rn. Suppose h
is one-to-one and rng h ⊆ dom g and F = g · h and for every element
i of N such that i ∈ dom g and i /∈ rng h holds g(i) = 〈0, . . . , 0︸ ︷︷ ︸

n

〉. Then∑
g =
∑
F.

4. Standard Basis

Let us consider n, i. Then the base finite sequence of n and i is an element
of Rn.
The following propositions are true:

(27) Let i1, i2 be elements of N. Suppose that
(i) 1 ≤ i1,
(ii) i1 ≤ n,
(iii) 1 ≤ i2,
(iv) i2 ≤ n, and
(v) the base finite sequence of n and i1 = the base finite sequence of n
and i2.
Then i1 = i2.

(28) 2(the base finite sequence of n and i) = the base finite sequence of n
and i.

(29) If 1 ≤ i ≤ n, then
∑
the base finite sequence of n and i = 1.

(30) If 1 ≤ i ≤ n, then |the base finite sequence of n and i| = 1.
(31) Suppose 1 ≤ i ≤ n and 1 ≤ j ≤ n and i 6= j. Then |(the base finite
sequence of n and i, the base finite sequence of n and j)| = 0.

(32) For every element x of Rn such that 1 ≤ i ≤ n holds |(x, the base finite
sequence of n and i)| = x(i).
Let us consider n and let x0 be an element of Rn. The functor ProjFinSeqx0

yields a finite sequence of elements of Rn and is defined by the conditions
(Def. 12).

(Def. 12)(i) lenProjFinSeqx0 = n, and
(ii) for every i such that 1 ≤ i ≤ n holds (ProjFinSeqx0)(i) = |(x0, the
base finite sequence of n and i)| · the base finite sequence of n and i.
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The following proposition is true

(33) For every element x0 of Rn holds x0 =
∑
ProjFinSeqx0.

Let us consider n. The functor RN-Basen yields a subset ofRn and is defined
by:

(Def. 13) RN-Basen = {the base finite sequence of n and i; i ranges over elements
of N: 1 ≤ i ∧ i ≤ n}.
Next we state the proposition

(34) For every non zero element n of N holds RN-Basen 6= ∅.
Let us mention that RN-Base 0 is empty.
Let n be a non zero element of N. Note that RN-Basen is non empty.
Let us consider n. Observe that RN-Basen is orthogonal basis.
Let us consider n. Observe that there exists a subset of Rn which is ortho-

gonal basis.
Let us consider n. An orthogonal basis of n is an orthogonal basis subset of

Rn.
Let n be a non zero element of N. Observe that every orthogonal basis of n

is non empty.

5. Finite Real Unitary Spaces and Finite Real Linear Spaces

Let n be an element of N. Observe that 〈En, (·|·)〉 is constituted finite sequ-
ences. Let n be an element of N. One can check that every element of 〈En, (·|·)〉
is real-valued.
Let n be an element of N, let x, y be vectors of 〈En, (·|·)〉, and let a, b be

real-valued functions. One can verify that x+y and a+b can be identified when
x = a and y = b.
Let n be an element of N, let x be a vector of 〈En, (·|·)〉, let y be a real-

valued function, and let a, b be elements of R. Observe that a · x and b y can be
identified when a = b and x = y.
Let n be an element of N, let x be a vector of 〈En, (·|·)〉, and let a be a

real-valued function. Observe that −x and −a can be identified when x = a.
Let n be an element of N, let x, y be vectors of 〈En, (·|·)〉, and let a, b be

real-valued functions. One can check that x−y and a− b can be identified when
x = a and y = b. The following three propositions are true:

(35) Let n be an element of N, x, y be elements of Rn, and u, v be points of
〈En, (·|·)〉. If x = u and y = v, then ⊗En(〈〈u, v〉〉) = |(x, y)|.

(36) Let n, j be elements of N, F be a finite sequence of elements of the carrier
of 〈En, (·|·)〉, B2 be a subset of 〈En, (·|·)〉, v0 be an element of 〈En, (·|·)〉,
and l be a linear combination of B2. Suppose F is one-to-one and B2 is
R-orthogonal and rngF = the support of l and v0 ∈ B2 and j ∈ dom(l F )
and v0 = F (j). Then ⊗En(〈〈v0,

∑
l F 〉〉) = ⊗En(〈〈v0, l(Fj) · v0〉〉).
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(37) Let n be an element of N, f be a finite sequence of elements of Rn, and
g be a finite sequence of elements of the carrier of 〈En, (·|·)〉. If f = g, then∑
f =
∑
g.

Let A be a set. Note that RAR is constituted functions.
Let us consider n. Observe that RSegnR is constituted finite sequences.
Let A be a set. One can verify that every element of RAR is real-valued.
Let A be a set, let x, y be vectors of RAR , and let a, b be real-valued functions.

Observe that x+ y and a+ b can be identified when x = a and y = b.
Let A be a set, let x be a vector of RAR , let y be a real-valued function, and

let a, b be elements of R. Observe that a ·x and b y can be identified when a = b
and x = y.
Let A be a set, let x be a vector of RAR , and let a be a real-valued function.

One can check that −x and −a can be identified when x = a.
Let A be a set, let x, y be vectors of RAR , and let a, b be real-valued functions.

Observe that x− y and a− b can be identified when x = a and y = b.
The following propositions are true:

(38) Let X be a subspace of RSegnR , x be an element of Rn, and a be a real
number. If x ∈ the carrier of X, then a · x ∈ the carrier of X.

(39) Let X be a subspace of RSegnR and x, y be elements of Rn. Suppose
x ∈ the carrier of X and y ∈ the carrier of X. Then x+ y ∈ the carrier of
X.

(40) Let X be a subspace of RSegnR , x, y be elements of Rn, and a, b be real
numbers. Suppose x ∈ the carrier of X and y ∈ the carrier of X. Then
a · x+ b · y ∈ the carrier of X.

(41) For all elements x, y of Rn and for all points u, v of RSegnR such that
x = u and y = v holds ⊗En(〈〈u, v〉〉) = |(x, y)|.

(42) Let F be a finite sequence of elements of the carrier of RSegnR , B2 be a
subset of RSegnR , v0 be an element of RSegnR , and l be a linear combination
of B2. Suppose F is one-to-one and B2 is R-orthogonal and rngF = the
support of l and v0 ∈ B2 and j ∈ dom(l F ) and v0 = F (j). Then ⊗En(〈〈v0,∑
l F 〉〉) = ⊗En(〈〈v0, l(Fj) · v0〉〉).

Let us consider n. Note that every subset of RSegnR which is R-orthonormal
is also linearly independent.
Let n be an element of N. Note that every subset of 〈En, (·|·)〉 which is

R-orthonormal is also linearly independent. Next we state the proposition
(43) Let B2 be a subset of RSegnR , x, y be elements of Rn, and a be a real
number. If B2 is linearly independent and x, y ∈ B2 and y = a · x, then
x = y.
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6. Finite Dimensionality of the Spaces

Let us consider n. One can check that RN-Basen is finite.
The following propositions are true:

(44) cardRN-Basen = n.
(45) Let f be a finite sequence of elements of Rn and g be a finite sequence
of elements of the carrier of RSegnR . If f = g, then

∑
f =
∑
g.

(46) Let x0 be an element of RSegnR and B be a subset of RSegnR . If B =
RN-Basen, then there exists a linear combination l of B such that x0 =∑
l.

(47) Let n be an element of N, x0 be an element of 〈En, (·|·)〉, andB be a subset
of 〈En, (·|·)〉. If B = RN-Basen, then there exists a linear combination l
of B such that x0 =

∑
l.

(48) For every subset B of RSegnR such that B = RN-Basen holds B is a basis
of RSegnR .

Let us consider n. Observe that RSegnR is finite dimensional.
We now state several propositions:

(49) dim(RSegnR ) = n.

(50) For every subset B of RSegnR such that B is a basis of RSegnR holds B = n.

(51) ∅ is a basis of RSeg 0R .

(52) For every element n of N holds RN-Basen is a basis of 〈En, (·|·)〉.
(53) Every orthogonal basis of n is a basis of RSegnR .

Let n be an element of N. Note that 〈En, (·|·)〉 is finite dimensional.
We now state two propositions:

(54) For every element n of N holds dim(〈En, (·|·)〉) = n.
(55) For every orthogonal basis B of n holds B = n.
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For simplicity, we use the following convention: r, p, x denote real numbers,
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We now state a number of propositions:
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(2)
∫
A

((the function exp) · ((−1)�+0))(x)dx = −exp(−supA)+exp(−inf A).

(3) 1
2 ((the function exp) ·(2�+0)) is differentiable on R and for every x
holds (12 ((the function exp) ·(2�+0)))

′
�R(x) = exp(2 · x).

(4)
∫
A

((the function exp) · (2�+0))(x)dx = 1
2
·exp(2·supA)−1

2
·exp(2·inf A).

(5) Suppose r 6= 0. Then 1r ((the function exp) ·(r�+0)) is differentiable on
R and for every x holds (1r ((the function exp) ·(r�+0)))

′
�R(x) = exp(r ·x).

(6) If r 6= 0, then
∫
A

((the function exp) · (r�+0))(x)dx = 1
r
·exp(r ·supA)−

1
r
· exp(r · inf A).

(7)
∫
A

((the function sin) · (2�+0))(x)dx = (−1
2
)·cos(2·supA)−(−1

2
)·cos(2·

inf A).

(8) Suppose n 6= 0. Then (− 1n) ((the function cos) ·(n�+0)) is differentiable
on R and for every x holds ((− 1n) ((the function cos) ·(n�+0)))

′
�R(x) =

sin(n · x).

(9) If n 6= 0, then
∫
A

((the function sin) · (n�+0))(x)dx = (− 1
n
) · cos(n ·

supA)− (− 1
n
) · cos(n · inf A).

(10) 1
2 ((the function sin) ·(2�+0)) is differentiable on R and for every x holds
(12 ((the function sin) ·(2�+0)))

′
�R(x) = cos(2 · x).

(11)
∫
A

((the function cos) · (2�+0))(x)dx = 1
2
·sin(2·supA)− 1

2
·sin(2·inf A).

(12) Suppose n 6= 0. Then 1n ((the function sin) ·(n�+0)) is differentiable on
R and for every x holds ( 1n ((the function sin) ·(n�+0)))

′
�R(x) = cos(n ·x).

(13) If n 6= 0, then
∫
A

((the function cos) · (n�+0))(x)dx = 1
n
·sin(n ·supA)−

1
n
· sin(n · inf A).

(14) If A ⊆ Z, then
∫
A

(idZ (the function sin))(x)dx = ((−supA) · cos supA+

sin supA)− ((−inf A) · cos inf A+ sin inf A).

(15) If A ⊆ Z, then
∫
A

(idZ (the function cos))(x)dx = (supA · sin supA +

cos supA)− (inf A · sin inf A+ cos inf A).
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(16) idZ (the function cos) is differentiable on Z and for every x such that
x ∈ Z holds (idZ (the function cos))′�Z(x) = cosx− x · sinx.

(17)(i) −the function sin + idZ (the function cos) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function sin+idZ (the function
cos))′�Z(x) = −x · sinx.

(18) If A ⊆ Z, then
∫
A

((−idZ) (the function sin))(x)dx = (−sin supA+supA·

cos supA)− (−sin inf A+ inf A · cos inf A).
(19)(i) −the function cos− idZ (the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function cos−idZ (the function
sin))′�Z(x) = −x · cosx.

(20) If A ⊆ Z, then
∫
A

((−idZ) (the function cos))(x)dx = −cos supA−supA·

sin supA− (−cos inf A− inf A · sin inf A).

(21) If A ⊆ Z, then
∫
A

((the function sin) + idZ (the function cos))(x)dx =

supA · sin supA− inf A · sin inf A.

(22) If A ⊆ Z, then
∫
A

(−the function cos + idZ (the function sin))(x)dx =

(−supA) · cos supA− (−inf A) · cos inf A.

(23)
∫
A

((1�+0) (the function exp))(x)dx = exp(supA− 1)− exp(inf A− 1).

(24) 1
n+1 (�

n+1) is differentiable on R and for every x holds ( 1n+1 (�
n+1))′�R(x) =

xn.

(25)
∫
A

(�n)(x)dx =
1
n+ 1

· (supA)n+1 − 1
n+ 1

· (inf A)n+1.

(26) For all partial functions f , g from R to R and for every non empty subset
C of R holds (f − g) � C = f � C − g � C.

(27) For all partial functions f1, f2, g from R to R and for every non empty
subset C of R holds ((f1 + f2) � C) (g � C) = (f1 g + f2 g) � C.

(28) For all partial functions f1, f2, g from R to R and for every non empty
subset C of R holds ((f1 − f2) � C) (g � C) = (f1 g − f2 g) � C.

(29) For all partial functions f1, f2, g from R to R and for every non empty
subset C of R holds ((f1 f2) � C) (g � C) = (f1 � C) ((f2 g) � C).

Let A be a closed-interval subset of R and let f , g be partial functions from
R to R. The functor 〈f, g〉A yielding a real number is defined by:

(Def. 1) 〈f, g〉A =
∫
A

(f g)(x)dx.
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The following propositions are true:

(30) For all partial functions f , g from R to R and for every closed-interval
subset A of R holds 〈f, g〉A = 〈g, f〉A.

(31) Let f1, f2, g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that
(i) (f1 g) � A is total,
(ii) (f2 g) � A is total,
(iii) (f1 g) � A is bounded,
(iv) f1 g is integrable on A,
(v) (f2 g) � A is bounded, and
(vi) f2 g is integrable on A.
Then 〈f1 + f2, g〉A = 〈(f1), g〉A + 〈(f2), g〉A.

(32) Let f1, f2, g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that
(i) (f1 g) � A is total,
(ii) (f2 g) � A is total,
(iii) (f1 g) � A is bounded,
(iv) f1 g is integrable on A,
(v) (f2 g) � A is bounded, and
(vi) f2 g is integrable on A.
Then 〈f1 − f2, g〉A = 〈(f1), g〉A − 〈(f2), g〉A.

(33) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose (f g)�A is bounded and f g is integrable on A and
A ⊆ dom(f g). Then 〈−f, g〉A = −〈f, g〉A.

(34) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose (f g)�A is bounded and f g is integrable on A and
A ⊆ dom(f g). Then 〈r f, g〉A = r · 〈f, g〉A.

(35) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose (f g)�A is bounded and f g is integrable on A and
A ⊆ dom(f g). Then 〈r f, p g〉A = r · p · 〈f, g〉A.

(36) For all partial functions f , g, h from R to R and for every closed-interval
subset A of R holds 〈f g, h〉A = 〈f, g h〉A.

(37) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that (f f) � A is total and (f g) � A is total and (g g) �
A is total and (f f) � A is bounded and (f g) � A is bounded and (g g) � A
is bounded and f f is integrable on A and f g is integrable on A and g g
is integrable on A. Then 〈f + g, f + g〉A = 〈f, f〉A + 2 · 〈f, g〉A + 〈g, g〉A.
Let A be a closed-interval subset of R and let f , g be partial functions from

R to R. We say that f is orthogonal with g in A if and only if:
(Def. 2) 〈f, g〉A = 0.
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The following propositions are true:

(38) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that (f f) � A is total and (f g) � A is total and
(g g) � A is total and (f f) � A is bounded and (f g) � A is bounded
and (g g) � A is bounded and f f is integrable on A and f g is integrable
on A and g g is integrable on A and f is orthogonal with g in A. Then
〈f + g, f + g〉A = 〈f, f〉A + 〈g, g〉A.

(39) Let f be a partial function from R to R and A be a closed-interval
subset of R. Suppose (f f) � A is total and (f f) � A is bounded and f f is
integrable on A and for every x such that x ∈ A holds ((f f) � A)(x) ≥ 0.
Then 〈f, f〉A ≥ 0.

(40) The function sin is orthogonal with the function cos in [0, π].

(41) The function sin is orthogonal with the function cos in [0, π · 2].
(42) The function sin is orthogonal with the function cos in [2·n·π, (2·n+1)·π].
(43) The function sin is orthogonal with the function cos in [x+ 2 · n · π, x+
(2 · n+ 1) · π].

(44) The function sin is orthogonal with the function cos in [−π, π].
(45) The function sin is orthogonal with the function cos in [−π2 ,

π
2 ].

(46) The function sin is orthogonal with the function cos in [−2 · π, 2 · π].
(47) The function sin is orthogonal with the function cos in [−2 · n · π, 2·n·π].
(48) The function sin is orthogonal with the function cos in [x− 2 · n · π, x+
2 · n · π].
Let A be a closed-interval subset of R and let f be a partial function from

R to R. The functor ||f ||A yields a real number and is defined by:
(Def. 3) ||f ||A =

√
〈f, f〉A.

Next we state three propositions:

(49) Let f be a partial function from R to R and A be a closed-interval
subset of R. Suppose (f f) � A is total and (f f) � A is bounded and f f is
integrable on A and for every x such that x ∈ A holds ((f f) � A)(x) ≥ 0.
Then 0 ≤ ||f ||A.

(50) For every partial function f from R to R and for every closed-interval
subset A of R holds ||1 f ||A = ||f ||A.

(51) Let f , g be partial functions from R to R and A be a closed-interval
subset of R. Suppose that (f f) � A is total and (f g) � A is total and
(g g) � A is total and (f f) � A is bounded and (f g) � A is bounded and
(g g) � A is bounded and f f is integrable on A and f g is integrable on A
and g g is integrable on A and f is orthogonal with g in A and for every x
such that x ∈ A holds ((f f) � A)(x) ≥ 0 and for every x such that x ∈ A
holds ((g g) � A)(x) ≥ 0. Then (||f + g||A)2 = (||f ||A)2 + (||g||A)2.
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For simplicity, we follow the rules: a, b, x are real numbers, n is an element
of N, A is a closed-interval subset of R, f , f1, f2 are partial functions from R to
R, and Z is an open subset of R.
Next we state several propositions:

(52) If −a /∈ A, then 1
1�+a�A is continuous.

(53) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) 6= 0,
(iii) Z = dom f,
(iv) dom f = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = − 1

(a+x)2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = f(supA)−1 − f(inf A)−1.

(54) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) 6= 0,
(iii) dom((−1) 1f ) = Z,
(iv) dom((−1) 1f ) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

(a+x)2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −f(supA)−1 + f(inf A)−1.

(55) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a− x and f(x) 6= 0,
(iii) dom f = Z,
(iv) dom f = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

(a−x)2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = f(supA)−1 − f(inf A)−1.

(56) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) > 0,
(iii) dom((the function ln) ·f) = Z,
(iv) dom((the function ln) ·f) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

a+x , and
(vi) f2�A is continuous.
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Then
∫
A

f2(x)dx = ln(a+ supA)− ln(a+ inf A).

Next we state a number of propositions:

(57) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = x− a and f(x) > 0,
(iii) dom((the function ln) ·f) = Z,
(iv) dom((the function ln) ·f) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

x−a , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = ln f(supA)− ln f(inf A).

(58) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a− x and f(x) > 0,
(iii) dom(−(the function ln) · f) = Z,
(iv) dom(−(the function ln) · f) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1

a−x , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −ln(a− supA) + ln(a− inf A).

(59) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = a+ x and f1(x) > 0 and dom(idZ − a f) = Z =
dom f2 and for every x such that x ∈ Z holds f2(x) = x

a+x and f2�A is

continuous. Then
∫
A

f2(x)dx = supA−a · f(supA)− (inf A−a · f(inf A)).

(60) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = a+ x and f1(x) > 0 and dom((2 · a) f − idZ) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = a−xa+x and f2�A is

continuous. Then
∫
A

f2(x)dx = 2·a·f(supA)−supA−(2·a·f(inf A)−inf A).

(61) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x+ a and f1(x) > 0 and dom(idZ − (2 · a) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x−ax+a and f2�A is

continuous. Then
∫
A

f2(x)dx = supA−2·a·f(supA)−(inf A−2·a·f(inf A)).

(62) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x− a and f1(x) > 0 and dom(idZ + (2 · a) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x+ax−a and f2�A



18 bo li et al.

is continuous. Then
∫
A

f2(x)dx = (supA+2 · a · f(supA))− (inf A+2 · a ·

f(inf A)).

(63) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x+ b and f1(x) > 0 and dom(idZ + (a− b) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x+ax+b and f2�A

is continuous. Then
∫
A

f2(x)dx = (supA + (a − b) · f(supA)) − (inf A +

(a− b) · f(inf A)).
(64) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x− b and f1(x) > 0 and dom(idZ + (a+ b) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x+ax−b and f2�A

is continuous. Then
∫
A

f2(x)dx = (supA + (a + b) · f(supA)) − (inf A +

(a+ b) · f(inf A)).
(65) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x+ b and f1(x) > 0 and dom(idZ − (a+ b) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x−ax+b and f2�A

is continuous. Then
∫
A

f2(x)dx = supA− (a+ b) · f(supA)− (inf A− (a+

b) · f(inf A)).
(66) Suppose that A ⊆ Z and f = (the function ln) ·f1 and for every x such
that x ∈ Z holds f1(x) = x− b and f1(x) > 0 and dom(idZ + (b− a) f) =
Z = dom f2 and for every x such that x ∈ Z holds f2(x) = x−ax−b and f2�A

is continuous. Then
∫
A

f2(x)dx = (supA + (b − a) · f(supA)) − (inf A +

(b− a) · f(inf A)).
(67) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = x and f(x) > 0,
(iii) dom((the function ln) ·f) = Z,
(iv) dom((the function ln) ·f) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = 1x , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = ln supA− ln inf A.

(68) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds x > 0,
(iii) dom((the function ln) ·(�n)) = Z,
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(iv) dom((the function ln) ·(�n)) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = nx , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = ln((supA)n)− ln((inf A)n).

(69) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = x,
(iii) dom((the function ln) · 1f ) = Z,
(iv) dom((the function ln) · 1f ) = dom f2,
(v) for every x such that x ∈ Z holds f2(x) = − 1x , and
(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −ln supA+ ln inf A.

(70) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) > 0,
(iii) dom(23 f

3
2 ) = Z,

(iv) dom(23 f
3
2 ) = dom f2,

(v) for every x such that x ∈ Z holds f2(x) = (a+ x)
1
2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx =
2
3
· (a+ supA)

3
2 − 2
3
· (a+ inf A)

3
2 .

(71) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a− x and f(x) > 0,
(iii) dom((−23) f

3
2 ) = Z,

(iv) dom((−23) f
3
2 ) = dom f2,

(v) for every x such that x ∈ Z holds f2(x) = (a− x)
1
2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −
2
3
· (a− supA)

3
2 +
2
3
· (a− inf A)

3
2 .

(72) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a+ x and f(x) > 0,
(iii) dom(2 f

1
2 ) = Z,

(iv) dom(2 f
1
2 ) = dom f2,

(v) for every x such that x ∈ Z holds f2(x) = (a+ x)−
1
2 , and

(vi) f2�A is continuous.
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Then
∫
A

f2(x)dx = 2 · (a+ supA)
1
2 − 2 · (a+ inf A)

1
2 .

(73) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = a− x and f(x) > 0,
(iii) dom((−2) f

1
2 ) = Z,

(iv) dom((−2) f
1
2 ) = dom f2,

(v) for every x such that x ∈ Z holds f2(x) = (a− x)−
1
2 , and

(vi) f2�A is continuous.

Then
∫
A

f2(x)dx = −2 · (a− supA)
1
2 + 2 · (a− inf A)

1
2 .

(74) Suppose that
(i) A ⊆ Z,
(ii) dom((−idZ) (the function cos)+the function sin) = Z,
(iii) for every x such that x ∈ Z holds f(x) = x · sinx,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−supA · cos supA + sin supA) − (−inf A · cos inf A +

sin inf A).

(75) Suppose A ⊆ Z and dom (the function sec) = Z and for every x such
that x ∈ Z holds f(x) = sinx

(cosx)2 and Z = dom f and f�A is continuous.

Then
∫
A

f(x)dx = sec supA− sec inf A.

(76) Suppose Z ⊆ dom(−the function cosec). Then −the function cosec
is differentiable on Z and for every x such that x ∈ Z holds
(−the function cosec)′�Z(x) = cosx

(sinx)2 .

(77) Suppose A ⊆ Z and dom(−the function cosec) = Z and for every x such
that x ∈ Z holds f(x) = cosx

(sinx)2 and Z = dom f and f�A is continuous.

Then
∫
A

f(x)dx = −cosec supA+ cosec inf A.
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1. Differentiation Formulas

For simplicity, we adopt the following rules: r, x, a, b denote real numbers, n,
m denote elements of N, A denotes a closed-interval subset of R, and Z denotes
an open subset of R.
One can prove the following propositions:

(1)(i) (12�+0)−
1
4 ((the function sin) ·(2�+0)) is differentiable on R, and

(ii) for every x holds ((12�+0) −
1
4 ((the function sin) ·(2�+0)))

′
�R(x) =

(sinx)2.
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(2)(i) (12�+0) +
1
4 ((the function sin) ·(2�+0)) is differentiable on R, and

(ii) for every x holds ((12�+0) +
1
4 ((the function sin) ·(2�+0)))

′
�R(x) =

(cosx)2.

(3) 1
n+1 ((�

n+1) · (the function sin)) is differentiable on R and for every x
holds ( 1n+1 (the function sin)

n+1)′�R(x) = (sinx)
n · cosx.

(4)(i) (− 1
n+1) ((�

n+1) · (the function cos)) is differentiable on R, and
(ii) for every x holds ((− 1

n+1) (the function cos)
n+1)′�R(x) = (cosx)

n · sinx.
(5) Suppose m+ n 6= 0 and m− n 6= 0. Then
(i) 1

2·(m+n) ((the function sin) ·((m+n)�+0))+
1

2·(m−n) ((the function sin)
·((m− n)�+0)) is differentiable on R, and

(ii) for every x holds ( 1
2·(m+n) ((the function sin) ·((m + n)�+0)) +

1
2·(m−n) ((the function sin) ·((m− n)�+0)))

′
�R(x) = cos(m · x) · cos(n · x).

(6) Suppose m+ n 6= 0 and m− n 6= 0. Then
(i) 1

2·(m−n) ((the function sin) ·((m−n)�+0))−
1

2·(m+n) ((the function sin)
·((m+ n)�+0)) is differentiable on R, and

(ii) for every x holds ( 1
2·(m−n) ((the function sin) ·((m − n)�+0)) −

1
2·(m+n) ((the function sin) ·((m+ n)�+0)))

′
�R(x) = sin(m · x) · sin(n · x).

(7) Suppose m+ n 6= 0 and m− n 6= 0. Then
(i) − 1

2·(m+n) ((the function cos) · ((m+ n)�+0)) −
1

2·(m−n) ((the function
cos) ·((m− n)�+0)) is differentiable on R, and

(ii) for every x holds (− 1
2·(m+n) ((the function cos) · ((m+ n)�+0)) −

1
2·(m−n) ((the function cos) ·((m− n)�+0)))

′
�R(x) = sin(m · x) · cos(n · x).

(8) Suppose n 6= 0. Then
(i) 1

n2
((the function sin) ·(n�+0))−( 1n�+0) ((the function cos) ·(n�+0))

is differentiable on R, and
(ii) for every x holds ( 1

n2
((the function sin) ·(n�+0))−( 1n�+0) ((the func-

tion cos) ·(n�+0)))′�R(x) = x · sin(n · x).
(9) Suppose n 6= 0. Then
(i) 1

n2
((the function cos) ·(n�+0))+( 1n�+0) ((the function sin) ·(n�+0))

is differentiable on R, and
(ii) for every x holds ( 1

n2
((the function cos) ·(n�+0))+( 1n�+0) ((the func-

tion sin) ·(n�+0)))′�R(x) = x · cos(n · x).
(10)(i) (1�+0) (the function cosh)−the function sinh is differentiable on R,
and

(ii) for every x holds ((1�+0) (the function cosh)−the function
sinh)′�R(x) = x · sinhx.

(11)(i) (1�+0) (the function sinh)−the function cosh is differentiable on R,
and
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(ii) for every x holds ((1�+0) (the function sinh)−the function
cosh)′�R(x) = x · coshx.

(12) If a · (n + 1) 6= 0, then 1
a·(n+1) (a�+b)

n+1 is differentiable on R and for
every x holds ( 1

a·(n+1) (a�+b)
n+1)′�R(x) = (a · x+ b)n.

2. Integrability Formulas

Next we state a number of propositions:

(13)
∫
A

(the function sin)2(x)dx =
1
2
· supA− 1

4
· sin(2 · supA)− (1

2
· inf A−

1
4
· sin(2 · inf A)).

(14)
∫
[0,π]

(the function sin)2(x)dx =
π

2
.

(15)
∫
[0,2·π]

(the function sin)2(x)dx = π.

(16)
∫
A

(the function cos)2(x)dx = (
1
2
· supA+ 1

4
· sin(2 · supA))− (1

2
· inf A+

1
4
· sin(2 · inf A)).

(17)
∫
[0,π]

(the function cos)2(x)dx =
π

2
.

(18)
∫
[0,2·π]

(the function cos)2(x)dx = π.

(19)
∫
A

((the function sin)n (the function cos))(x)dx =
1
n+ 1

·(sin supA)n+1−

1
n+ 1

· (sin inf A)n+1.

(20)
∫
[0,π]

((the function sin)n (the function cos))(x)dx = 0.

(21)
∫
[0,2·π]

((the function sin)n (the function cos))(x)dx = 0.

(22)
∫
A

((the function cos)n (the function sin))(x)dx = (− 1
n+ 1

)·(cos supA)n+1−

(− 1
n+ 1

) · (cos inf A)n+1.
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(23)
∫
[0,2·π]

((the function cos)n (the function sin))(x)dx = 0.

(24)
∫

[−π2 ,
π
2 ]

((the function cos)n (the function sin))(x)dx = 0.

(25) Suppose m+ n 6= 0 and m− n 6= 0. Then∫
A

(((the function cos) · (m�+0)) ((the function cos) · (n�+0)))(x)dx =

(
1

2 · (m+ n)
· sin((m + n) · supA) + 1

2 · (m− n)
· sin((m − n) · supA)) −

(
1

2 · (m+ n)
· sin((m+ n) · inf A) + 1

2 · (m− n)
· sin((m− n) · inf A)).

(26) Suppose m+ n 6= 0 and m− n 6= 0. Then∫
A

(((the function sin) · (m�+0)) ((the function sin) · (n�+0)))(x)dx =

1
2 · (m− n)

· sin((m − n) · supA) − 1
2 · (m+ n)

· sin((m + n) · supA) −

(
1

2 · (m− n)
· sin((m− n) · inf A)− 1

2 · (m+ n)
· sin((m+ n) · inf A)).

(27) Suppose m+ n 6= 0 and m− n 6= 0. Then∫
A

(((the function sin) · (m�+0)) ((the function cos) · (n�+0)))(x)dx =

− 1
2 · (m+ n)

· cos((m+ n) · supA) − 1
2 · (m− n)

· cos((m − n) · supA) −

(− 1
2 · (m+ n)

· cos((m+ n) · inf A)− 1
2 · (m− n)

· cos((m− n) · inf A)).

(28) If n 6= 0, then
∫
A

((1�+0) ((the function sin) · (n�+0)))(x)dx = 1
n2
·

sin(n · supA)− 1
n
· supA · cos(n · supA)− ( 1

n2
· sin(n · inf A)− 1

n
· inf A ·

cos(n · inf A)).

(29) If n 6= 0, then
∫
A

((1�+0) ((the function cos) · (n�+0)))(x)dx = ( 1
n2
·

cos(n · supA) + 1
n
· supA · sin(n · supA))− ( 1

n2
· cos(n · inf A) + 1

n
· inf A ·

sin(n · inf A)).

(30)
∫
A

((1�+0) (the function sinh))(x)dx = supA · cosh supA− sinh supA−

(inf A · cosh inf A− sinh inf A).

(31)
∫
A

((1�+0) (the function cosh))(x)dx = supA · sinh supA− cosh supA−

(inf A · sinh inf A− cosh inf A).
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(32) If a · (n+1) 6= 0, then
∫
A

(a�+b)n(x)dx =
1

a · (n+ 1)
· (a · supA+b)n+1−

1
a · (n+ 1)

· (a · inf A+ b)n+1.

3. Addenda

In the sequel f , f1, f2, f3, g are partial functions from R to R.
The following propositions are true:

(33) If Z ⊆ dom(12 f) and f = �2, then 12 f is differentiable on Z and for
every x such that x ∈ Z holds (12 f)

′
�Z(x) = x.

(34) If A ⊆ Z = dom(12 (�
2)), then

∫
A

idZ(x)dx =
1
2
· (supA)2 − 1

2
· (inf A)2.

(35) Suppose A ⊆ Z and for every x such that x ∈ Z holds g(x) = x and
g(x) 6= 0 and f(x) = − 1

x2
and Z = dom g and dom f = Z and f�A is

continuous. Then
∫
A

f(x)dx = (supA)−1 − (inf A)−1.

(36) Suppose that
(i) A ⊆ Z,
(ii) f1 = �2,
(iii) for every x such that x ∈ Z holds f2(x) = 1 and x 6= 0 and f(x) =

2·x
(1+x2)2 ,

(iv) dom( f1f2+f1 ) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = (
f1
f2 + f1

)(supA)− ( f1
f2 + f1

)(inf A).

(37) Suppose Z ⊆ dom((the function tan)+(the function sec)) and for every
x such that x ∈ Z holds 1 + sinx 6= 0 and 1− sinx 6= 0. Then
(i) (the function tan)+(the function sec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan)+(the function
sec))′�Z(x) =

1
1−sinx .

(38) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + sinx 6= 0 and 1 − sinx 6= 0 and
f(x) = 1

1−sinx ,

(iii) dom((the function tan)+(the function sec)) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = (tan supA+ sec supA)− (tan inf A+ sec inf A).

(39) Suppose Z ⊆ dom((the function tan)−(the function sec)) and for every
x such that x ∈ Z holds 1 + sinx 6= 0 and 1− sinx 6= 0. Then
(i) (the function tan)−(the function sec) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan)−(the function
sec))′�Z(x) =

1
1+sinx .

(40) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + sinx 6= 0 and 1 − sinx 6= 0 and
f(x) = 1

1+sinx ,

(iii) dom((the function tan)−(the function sec)) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = tan supA− sec supA− (tan inf A− sec inf A).

(41) Suppose Z ⊆ dom(−the function cot+ the function cosec) and for every
x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0. Then
(i) −the function cot + the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function cot + the function
cosec)′�Z(x) =

1
1+cosx .

(42) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0 and
f(x) = 1

1+cosx ,

(iii) dom(−the function cot + the function cosec) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (−cot supA+ cosec supA)− (−cot inf A+ cosec inf A).

(43) Suppose Z ⊆ dom(−the function cot− the function cosec) and for every
x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0. Then
(i) −the function cot− the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function cot − the function
cosec)′�Z(x) =

1
1−cosx .

(44) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0 and
f(x) = 1

1−cosx ,

(iii) dom(−the function cot− the function cosec) = Z,
(iv) Z = dom f, and
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(v) f�A is continuous.

Then
∫
A

f(x)dx = −cot supA− cosec supA− (−cot inf A− cosec inf A).

(45) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = 1

1+x2 ,

(iv) dom (the function arctan) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = arctan supA− arctan inf A.

(46) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = r

1+x2 ,

(iv) dom(r the function arctan) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = r · arctan supA− r · arctan inf A.

(47) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = − 1

1+x2 ,

(iv) dom (the function arccot) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = arccot supA− arccot inf A.

(48) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = − r

1+x2 ,

(iv) dom(r the function arccot) = Z,
(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx = r · arccot supA− r · arccot inf A.

(49) Suppose Z ⊆ dom((idZ + the function cot)−the function cosec) and for
every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0. Then
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(i) (idZ + the function cot)−the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((idZ+the function cot)−the function
cosec)′�Z(x) =

cosx
1+cosx .

(50) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0 and
f(x) = cosx

1+cosx ,

(iii) dom((idZ + the function cot)−the function cosec) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (supA+cot supA)− cosec supA− ((inf A+cot inf A)−

cosec inf A).

(51) Suppose Z ⊆ dom(idZ + the function cot+the function cosec) and for
every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0. Then
(i) idZ + the function cot+the function cosec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ +the function cot+the function
cosec)′�Z(x) =

cosx
cosx−1 .

(52) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + cosx 6= 0 and 1− cosx 6= 0 and
f(x) = cosx

cosx−1 ,

(iii) dom(idZ + the function cot+the function cosec) = Z,
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = (supA+ cot supA+ cosec supA)− (inf A+ cot inf A+

cosec inf A).

(53) Suppose Z ⊆ dom((idZ − the function tan)+the function sec) and for
every x such that x ∈ Z holds 1 + sinx 6= 0 and 1− sinx 6= 0. Then
(i) (idZ − the function tan)+the function sec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((idZ−the function tan)+the function
sec)′�Z(x) =

sinx
sinx+1 .

(54) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + sinx 6= 0 and 1 − sinx 6= 0 and
f(x) = sinx

1+sinx ,

(iii) Z ⊆ dom((idZ − the function tan)+the function sec),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = ((supA− tan supA)+sec supA)− ((inf A− tan inf A)+

sec inf A).

(55) Suppose Z ⊆ dom(idZ−the function tan−the function sec) and for every
x such that x ∈ Z holds 1 + sinx 6= 0 and 1− sinx 6= 0. Then
(i) idZ − the function tan−the function sec is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ − the function tan−the function
sec)′�Z(x) =

sinx
sinx−1 .

(56) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds 1 + sinx 6= 0 and 1 − sinx 6= 0 and
f(x) = sinx

sinx−1 ,

(iii) Z ⊆ dom(idZ − the function tan−the function sec),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = supA − tan supA − sec supA − (inf A − tan inf A −

sec inf A).

(57) Suppose Z ⊆ dom((the function tan)−idZ). Then (the function
tan)−idZ is differentiable on Z and for every x such that x ∈ Z holds
((the function tan)−idZ)′�Z(x) = (tanx)2.

(58) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds (the function cos)(x) > 0 and
f(x) = (tanx)2,

(iii) Z ⊆ dom((the function tan)−idZ),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = tan supA− supA− (tan inf A− inf A).

(59) Suppose Z ⊆ dom(−the function cot − idZ). Then −the function cot −
idZ is differentiable on Z and for every x such that x ∈ Z holds
(−the function cot− idZ)′�Z(x) = (cotx)2.

(60) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds (the function sin)(x) > 0 and
f(x) = (cotx)2,

(iii) Z ⊆ dom(−the function cot− idZ),
(iv) Z = dom f, and
(v) f�A is continuous.
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Then
∫
A

f(x)dx = −cot supA− supA− (−cot inf A− inf A).

(61) Suppose A ⊆ Z and for every x such that x ∈ Z holds f(x) = 1
(cosx)2 and

cosx 6= 0 and dom (the function tan) = Z = dom f and f�A is continuous.
Then

∫
A

f(x)dx = tan supA− tan inf A.

(62) Suppose A ⊆ Z and for every x such that x ∈ Z holds f(x) = − 1
(sinx)2

and sinx 6= 0 and dom (the function cot) = Z = dom f and f�A is conti-
nuous. Then

∫
A

f(x)dx = cot supA− cot inf A.

(63) Suppose A ⊆ Z and for every x such that x ∈ Z holds f(x) = sinx−(cosx)
2

(cosx)2

and Z ⊆ dom((the function sec)−idZ) and Z = dom f and f�A is conti-
nuous. Then

∫
A

f(x)dx = sec supA− supA− (sec inf A− inf A).

(64) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds f(x) = cosx−(sinx)

2

(sinx)2 ,

(iii) Z ⊆ dom(−the function cosec− idZ),
(iv) Z = dom f, and
(v) f�A is continuous.

Then
∫
A

f(x)dx = −cosec supA− supA− (−cosec inf A− inf A).

The following propositions are true:

(65) Suppose that
(i) A ⊆ Z,
(ii) for every x such that x ∈ Z holds sinx > 0,
(iii) Z ⊆ dom((the function ln) ·(the function sin)),
(iv) Z = dom (the function cot), and
(v) (the function cot)�A is continuous.

Then
∫
A

(the function cot)(x)dx = ln sin supA− ln sin inf A.

(66) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = arcsinx√

1−x2 ,

(iv) Z ⊆ dom(12 (the function arcsin)
2),

(v) Z = dom f, and
(vi) f�A is continuous.
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Then
∫
A

f(x)dx =
1
2
· (arcsin supA)2 − 1

2
· (arcsin inf A)2.

(67) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) for every x such that x ∈ Z holds f(x) = −arccosx√

1−x2 ,

(iv) Z ⊆ dom(12 (the function arccos)
2),

(v) Z = dom f, and
(vi) f�A is continuous.

Then
∫
A

f(x)dx =
1
2
· (arccos supA)2 − 1

2
· (arccos inf A)2.

(68) A ⊆ Z ⊆ ]−1, 1[ and f = f1 − f2 and f2 = �2 and for every x such that
x ∈ Z holds f1(x) = 1 and f(x) > 0 and x 6= 0 and dom (the function
arcsin) = Z ⊆ dom(idZ (the function arcsin)+f

1
2 ).

(69) Suppose that A ⊆ Z ⊆ ]−1, 1[ and f = f1 − f2 and f2 = �2 and for
every x such that x ∈ Z holds f1(x) = a2 and f(x) > 0 and f3(x) = xa and
−1 < f3(x) < 1 and x 6= 0 and a > 0 and dom((the function arcsin) ·f3) =
Z ⊆ dom(idZ ((the function arcsin) ·f3) + (�

1
2 ) · f) and ((the function

arcsin) ·f3)�A is continuous. Then
∫
A

((the function arcsin) · f3)(x)dx =

(supA · arcsin(supA
a
) + f(supA)

1
2 )− (inf A · arcsin( inf A

a
) + f(inf A)

1
2 ).

(70) Suppose that A ⊆ Z ⊆ ]−1, 1[ and f = f1 − f2 and f2 = �2 and for
every x such that x ∈ Z holds f1(x) = 1 and f(x) > 0 and x 6= 0 and
dom (the function arccos) = Z ⊆ dom(idZ (the function arccos)−(�

1
2 ) ·f).

Then
∫
A

(the function arccos)(x)dx = supA · arccos supA − f(supA)
1
2 −

(inf A · arccos inf A− f(inf A)
1
2 ).

(71) Suppose that A ⊆ Z ⊆ ]−1, 1[ and f = f1 − f2 and f2 = �2 and for
every x such that x ∈ Z holds f1(x) = a2 and f(x) > 0 and f3(x) = xa and
−1 < f3(x) < 1 and x 6= 0 and a > 0 and dom((the function arccos) ·f3) =
Z = dom(idZ ((the function arccos) ·f3) − (�

1
2 ) · f) and ((the function

arccos) ·f3)�A is continuous. Then
∫
A

((the function arccos) · f3)(x)dx =

supA · arccos(supA
a
)− f(supA)

1
2 − (inf A · arccos( inf A

a
)− f(inf A)

1
2 ).

(72) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) f2 = �2,
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(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) Z = dom (the function arctan), and
(vi) Z = dom(idZ the function arctan−12 ((the function ln) ·(f1 + f2))).

Then
∫
A

(the function arctan)(x)dx = supA · arctan supA − 1
2
· ln(1 +

(supA)2)− (inf A · arctan inf A− 1
2
· ln(1 + (inf A)2)).

(73) Suppose that
(i) A ⊆ Z,
(ii) Z ⊆ ]−1, 1[,
(iii) f2 = �2,
(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) dom (the function arccot) = Z, and
(vi) Z = dom(idZ the function arccot+12 ((the function ln) ·(f1 + f2))).

Then
∫
A

(the function arccot)(x)dx = (supA · arccot supA + 1
2
· ln(1 +

(supA)2))− (inf A · arccot inf A+ 1
2
· ln(1 + (inf A)2)).
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Summary. Based on the Petri net definitions and theorems already for-
malized in [8], with this article, we developed the concept of “Cell Petri Nets”. It
is based on [9]. In a cell Petri net we introduce the notions of colors and colored
states of a Petri net, connecting mappings for linking two Petri nets, firing rules
for transitions, and the synthesis of two or more Petri nets.
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The papers [11], [12], [6], [13], [14], [10], [8], [2], [5], [3], [4], [7], and [1] provide
the terminology and notation for this paper.

1. Preliminaries: Thin Cylinder, Locus

Let A be a non empty set, let B be a set, let B1 be a set, and let y1
be a function from B1 into A. Let us assume that B1 ⊆ B. The functor
cylinder0(A,B,B1, y1) yields a non empty subset of A

B and is defined by:

(Def. 1) cylinder0(A,B,B1, y1) = {y : B → A: y�B1 = y1}.
Let A be a non empty set and let B be a set. A non empty subset of AB is

said to be a thin cylinder of A and B if:

(Def. 2) There exists a subset B1 of B and there exists a function y1 from B1
into A such that B1 is finite and it = cylinder0(A,B,B1, y1).

The following propositions are true:
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c© 2009 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://ftp.mizar.org/
http://fm.mizar.org/miz/petri_2.miz


38 mitsuru jitsukawa et al.

(1) Let A be a non empty set, B be a set, and D be a thin cylinder of A
and B. Then there exists a subset B1 of B and there exists a function y1
from B1 into A such that B1 is finite and D = {y : B → A: y�B1 = y1}.

(2) Let A1, A2 be non empty sets, B be a set, and D1 be a thin cylinder of
A1 and B. If A1 ⊆ A2, then there exists a thin cylinder D2 of A2 and B
such that D1 ⊆ D2.
Let A be a non empty set and let B be a set. The thin cylinders of A and

B constitute a non empty family of subsets of AB defined by:

(Def. 3) The thin cylinders of A and B = {D ⊆ AB: D is a thin cylinder of A
and B}.
We now state three propositions:

(3) Let A be a non trivial set, B be a set, B2 be a set, y2 be a function from
B2 into A, B3 be a set, and y3 be a function from B3 into A. If B2 ⊆ B
and B3 ⊆ B and cylinder0(A,B,B2, y2) = cylinder0(A,B,B3, y3), then
B2 = B3 and y2 = y3.

(4) Let A1, A2 be non empty sets and B4, B5 be sets. Suppose A1 ⊆ A2 and
B4 ⊆ B5. Then there exists a function F from the thin cylinders of A1 and
B4 into the thin cylinders of A2 and B5 such that for every set x if x ∈ the
thin cylinders of A1 and B4, then there exists a subset B1 of B4 and there
exists a function y2 from B1 into A1 and there exists a function y3 from B1
into A2 such that B1 is finite and y2 = y3 and x = cylinder0(A1, B4, B1, y2)
and F (x) = cylinder0(A2, B5, B1, y3).

(5) Let A1, A2 be non empty sets and B4, B5 be sets. Then there exists a
function G from the thin cylinders of A2 and B5 into the thin cylinders
of A1 and B4 such that for every set x if x ∈ the thin cylinders of A2
and B5, then there exists a subset B3 of B5 and there exists a subset B2
of B4 and there exists a function y2 from B2 into A1 and there exists
a function y3 from B3 into A2 such that B2 is finite and B3 is finite and
B2 = B4∩B3∩y3−1(A1) and y2 = y3�B2 and x = cylinder0(A2, B5, B3, y3)
and G(x) = cylinder0(A1, B4, B2, y2).

Let A1, A2 be non trivial sets and let B4, B5 be sets. Let us assume that there
exist sets x, y such that x 6= y and x, y ∈ A1 and A1 ⊆ A2 and B4 ⊆ B5. The
functor Extcylinders(A1, B4, A2, B5) yielding a function from the thin cylinders
of A1 and B4 into the thin cylinders of A2 and B5 is defined by the condition
(Def. 4).

(Def. 4) Let x be a set. Suppose x ∈ the thin cylinders of A1 and B4. Then there
exists a subset B1 of B4 and there exists a function y2 from B1 into A1 and
there exists a function y3 from B1 into A2 such that B1 is finite and y2 = y3
and x = cylinder0(A1, B4, B1, y2) and (Extcylinders(A1, B4, A2, B5))(x) =
cylinder0(A2, B5, B1, y3).
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Let A1 be a non empty set, let A2 be a non trivial set, and let B4,
B5 be sets. Let us assume that A1 ⊆ A2 and B4 ⊆ B5. The functor
Ristcylinders(A1, B4, A2, B5) yields a function from the thin cylinders of A2
and B5 into the thin cylinders of A1 and B4 and is defined by the condition
(Def. 5).

(Def. 5) Let x be a set. Suppose x ∈ the thin cylinders of A2 and B5. Then
there exists a subset B3 of B5 and there exists a subset B2 of B4 and
there exists a function y2 from B2 into A1 and there exists a function
y3 from B3 into A2 such that B2 is finite and B3 is finite and B2 =
B4 ∩B3 ∩ y3−1(A1) and y2 = y3�B2 and x = cylinder0(A2, B5, B3, y3) and
(Ristcylinders(A1, B4, A2, B5))(x) = cylinder0(A1, B4, B2, y2).

Let A be a non trivial set, let B be a set, and let D be a thin cylinder of A
and B. The functor locD yielding a finite subset of B is defined by the condition
(Def. 6).

(Def. 6) There exists a subset B1 of B and there exists a function y1 from B1 into
A such that B1 is finite and D = {y : B → A: y�B1 = y1} and locD = B1.

2. Colored Petri Nets

Let A1, A2 be non trivial sets, let B4, B5 be sets, let C1, C2 be non
trivial sets, let D1, D2 be sets, and let F be a function from the thin cy-
linders of A1 and B4 into the thin cylinders of C1 and D1. The functor
CylinderFunc(A1, B4, A2, B5, C1, D1, C2, D2, F ) yielding a function from the
thin cylinders of A2 and B5 into the thin cylinders of C2 and D2 is defined
as follows:

(Def. 7) CylinderFunc(A1, B4, A2, B5, C1, D1, C2, D2, F ) =
Extcylinders(C1, D1, C2, D2) · F · Ristcylinders(A1, B4, A2, B5).
We consider colored place/transition net structures as extensions of pla-

ce/transition net structure as systems
〈 places, transitions, S-T arcs, T-S arcs, a colored set, a firing-rule 〉,

where the places and the transitions constitute non empty sets, the S-T arcs
constitute a non empty relation between the places and the transitions, the T-S
arcs constitute a non empty relation between the transitions and the places, the
colored set is a non empty finite set, and the firing-rule is a function.
Let C3 be a colored place/transition net structure and let t0 be a transition

of C3. We say that t0 is outbound if and only if:

(Def. 8) {t0} = ∅.
Let C4 be a colored place/transition net structure. The functor OutbdsC4

yielding a subset of the transitions of C4 is defined by:

(Def. 9) OutbdsC4 = {x;x ranges over transitions of C4: x is outbound}.
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Let C3 be a colored place/transition net structure. We say that C3 is colored-
PT-net-like if and only if the conditions (Def. 10) are satisfied.

(Def. 10)(i) dom (the firing-rule of C3) ⊆ (the transitions of C3) \OutbdsC3, and
(ii) for every transition t of C3 such that t ∈ dom (the firing-rule of C3)
there exists a non empty subset C5 of the colored set of C3 and there
exists a subset I of ∗{t} and there exists a subset O of {t} such that (the
firing-rule of C3)(t) is a function from the thin cylinders of C5 and I into
the thin cylinders of C5 and O.

We now state two propositions:

(6) Let C3 be a colored place/transition net structure and t be a transition
of C3. Suppose C3 is colored-PT-net-like and t ∈ dom (the firing-rule of
C3). Then there exists a non empty subset C5 of the colored set of C3 and
there exists a subset I of ∗{t} and there exists a subset O of {t} such that
(the firing-rule of C3)(t) is a function from the thin cylinders of C5 and I
into the thin cylinders of C5 and O.

(7) Let C4, C6 be colored place/transition net structures, t1 be a transition
of C4, and t2 be a transition of C6. Suppose that
(i) the places of C4 ⊆ the places of C6,
(ii) the transitions of C4 ⊆ the transitions of C6,
(iii) the S-T arcs of C4 ⊆ the S-T arcs of C6,
(iv) the T-S arcs of C4 ⊆ the T-S arcs of C6, and
(v) t1 = t2.
Then ∗{t1} ⊆ ∗{t2} and {t1} ⊆ {t2} .
One can verify that there exists a colored place/transition net structure

which is strict and colored-PT-net-like.
A colored place/transition net is a colored-PT-net-like colored pla-

ce/transition net structure.

3. Color Counts of CPNT

Let C4, C6 be colored place/transition net structures. We say that C4 misses
C6 if and only if:

(Def. 11) (The places of C4) ∩ (the places of C6) = ∅ and (the transitions of
C4) ∩ (the transitions of C6) = ∅.

Let us note that the predicate C4 misses C6 is symmetric.

4. Colored States of CPNT

Let C4 be a colored place/transition net structure and let C6 be a colored
place/transition net structure. Connecting mapping of C4 and C6 is defined by
the condition (Def. 12).
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(Def. 12) There exists a function O12 from OutbdsC4 into the places of C6 and
there exists a function O21 from OutbdsC6 into the places of C4 such that
it = 〈〈O12, O21〉〉.

5. Outbound Transitions of CPNT

Let C4, C6 be colored place/transition nets and let O be a connecting map-
ping of C4 and C6. Connecting firing rule of C4, C6, and O is defined by the
condition (Def. 13).

(Def. 13) There exist functions q12, q21 and there exists a function O12 from
OutbdsC4 into the places of C6 and there exists a function O21 from
OutbdsC6 into the places of C4 such that
(i) O = 〈〈O12, O21〉〉,
(ii) dom q12 = OutbdsC4,
(iii) dom q21 = OutbdsC6,
(iv) for every transition t3 of C4 such that t3 is outbound holds q12(t3) is
a function from the thin cylinders of the colored set of C4 and ∗{t3} into
the thin cylinders of the colored set of C4 and O12◦t3,

(v) for every transition t4 of C6 such that t4 is outbound holds q21(t4) is
a function from the thin cylinders of the colored set of C6 and ∗{t4} into
the thin cylinders of the colored set of C6 and O21◦t4, and

(vi) it = 〈〈q12, q21〉〉.

6. Connecting Mapping for CPNT1, CPNT2

Let C4, C6 be colored place/transition nets, let O be a connecting mapping
of C4 and C6, and let q be a connecting firing rule of C4, C6, and O. Let us
assume that C4 misses C6. The functor synthesis(C4, C6, O, q) yielding a strict
colored place/transition net is defined by the condition (Def. 14).

(Def. 14) There exist functions q12, q21 and there exists a function O12 from
OutbdsC4 into the places of C6 and there exists a function O21 from
OutbdsC6 into the places of C4 such that
O = 〈〈O12, O21〉〉 and dom q12 = OutbdsC4 and dom q21 = OutbdsC6 and
for every transition t3 of C4 such that t3 is outbound holds q12(t3) is a
function from the thin cylinders of the colored set of C4 and ∗{t3} into
the thin cylinders of the colored set of C4 and O12◦t3 and for every trans-
ition t4 of C6 such that t4 is outbound holds q21(t4) is a function from the
thin cylinders of the colored set of C6 and ∗{t4} into the thin cylinders
of the colored set of C6 and O21◦t4 and q = 〈〈q12, q21〉〉 and the places of
synthesis(C4, C6, O, q) = (the places of C4) ∪ (the places of C6) and the
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transitions of synthesis(C4, C6, O, q) = (the transitions of C4)∪(the trans-
itions of C6) and the S-T arcs of synthesis(C4, C6, O, q) = (the S-T arcs of
C4)∪(the S-T arcs of C6) and the T-S arcs of synthesis(C4, C6, O, q) = (the
T-S arcs of C4) ∪ (the T-S arcs of C6) ∪ O12 ∪ O21 and the colored set of
synthesis(C4, C6, O, q) = (the colored set of C4) ∪ (the colored set of C6)
and the firing-rule of synthesis(C4, C6, O, q) = (the firing-rule of C4)+·(the
firing-rule of C6)+·q12+·q21.
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The notation and terminology used here are introduced in the following papers:
[4], [9], [10], [2], [11], [6], [3], [1], [8], [5], and [7].

1. Functional sets

In this paper x, X, X1, X2 are sets.
Let Y be a functional set. The functor DOMS(Y ) is defined by:

(Def. 1) DOMS(Y ) =
⋃
{dom f : f ranges over elements of Y }.

Let us consider X. We say that X is complex-functions-membered if and
only if:

(Def. 2) If x ∈ X, then x is a complex-valued function.
Let us consider X. We say that X is extended-real-functions-membered if

and only if:

(Def. 3) If x ∈ X, then x is an extended real-valued function.
Let us consider X. We say that X is real-functions-membered if and only if:

1The article was written while the author visited Shinshu University, Nagano, Japan.
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(Def. 4) If x ∈ X, then x is a real-valued function.
Let us consider X. We say that X is rational-functions-membered if and

only if:

(Def. 5) If x ∈ X, then x is a rational-valued function.
Let us consider X. We say that X is integer-functions-membered if and only

if:

(Def. 6) If x ∈ X, then x is an integer-valued function.
Let us consider X. We say that X is natural-functions-membered if and only

if:

(Def. 7) If x ∈ X, then x is a natural-valued function.
One can check the following observations:

∗ every set which is natural-functions-membered is also integer-functions-
membered,

∗ every set which is integer-functions-membered is also rational-functions-
membered,

∗ every set which is rational-functions-membered is also real-functions-
membered,

∗ every set which is real-functions-membered is also complex-functions-
membered, and

∗ every set which is real-functions-membered is also extended-real-
functions-membered.

Let us mention that every set which is empty is also natural-functions-
membered.
Let f be a complex-valued function. Observe that {f} is complex-functions-

membered.
One can verify that every set which is complex-functions-membered is al-

so functional and every set which is extended-real-functions-membered is also
functional.
One can verify that there exists a set which is natural-functions-membered

and non empty.
Let X be a complex-functions-membered set. One can verify that every

subset of X is complex-functions-membered.
Let X be an extended-real-functions-membered set. Note that every subset

of X is extended-real-functions-membered.
Let X be a real-functions-membered set. Note that every subset of X is

real-functions-membered.
Let X be a rational-functions-membered set. Observe that every subset of

X is rational-functions-membered.
Let X be an integer-functions-membered set. Note that every subset of X

is integer-functions-membered.
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Let X be a natural-functions-membered set. Observe that every subset of X
is natural-functions-membered.
Let D be a set. The functor C-PFuncsD yields a set and is defined by:

(Def. 8) For every set f holds f ∈ C-PFuncsD iff f is a partial function from D
to C.
Let D be a set. The functor C-FuncsD yielding a set is defined by:

(Def. 9) For every set f holds f ∈ C-FuncsD iff f is a function from D into C.
Let D be a set. The functor R-PFuncsD yields a set and is defined by:

(Def. 10) For every set f holds f ∈ R-PFuncsD iff f is a partial function from D
to R.
Let D be a set. The functor R-FuncsD yields a set and is defined as follows:

(Def. 11) For every set f holds f ∈ R-FuncsD iff f is a function from D into R.
Let D be a set. The functor R-PFuncsD yielding a set is defined by:

(Def. 12) For every set f holds f ∈ R-PFuncsD iff f is a partial function from D
to R.
Let D be a set. The functor R-FuncsD yielding a set is defined by:

(Def. 13) For every set f holds f ∈ R-FuncsD iff f is a function from D into R.
LetD be a set. The functor Q-PFuncsD yields a set and is defined as follows:

(Def. 14) For every set f holds f ∈ Q-PFuncsD iff f is a partial function from D
to Q.
Let D be a set. The functor Q-FuncsD yields a set and is defined by:

(Def. 15) For every set f holds f ∈ Q-FuncsD iff f is a function from D into Q.
Let D be a set. The functor Z-PFuncsD yielding a set is defined by:

(Def. 16) For every set f holds f ∈ Z-PFuncsD iff f is a partial function from D
to Z.
Let D be a set. The functor Z-FuncsD yields a set and is defined as follows:

(Def. 17) For every set f holds f ∈ Z-FuncsD iff f is a function from D into Z.
Let D be a set. The functor N-PFuncsD yields a set and is defined by:

(Def. 18) For every set f holds f ∈ N-PFuncsD iff f is a partial function from D
to N.
Let D be a set. The functor N-FuncsD yielding a set is defined by:

(Def. 19) For every set f holds f ∈ N-FuncsD iff f is a function from D into N.
The following propositions are true:

(1) C-FuncsX is a subset of C-PFuncsX.
(2) R-FuncsX is a subset of R-PFuncsX.
(3) R-FuncsX is a subset of R-PFuncsX.
(4) Q-FuncsX is a subset of Q-PFuncsX.
(5) Z-FuncsX is a subset of Z-PFuncsX.
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(6) N-FuncsX is a subset of N-PFuncsX.
Let us consider X. One can verify the following observations:

∗ C-PFuncsX is complex-functions-membered,
∗ C-FuncsX is complex-functions-membered,
∗ R-PFuncsX is extended-real-functions-membered,
∗ R-FuncsX is extended-real-functions-membered,
∗ R-PFuncsX is real-functions-membered,
∗ R-FuncsX is real-functions-membered,
∗ Q-PFuncsX is rational-functions-membered,
∗ Q-FuncsX is rational-functions-membered,
∗ Z-PFuncsX is integer-functions-membered,
∗ Z-FuncsX is integer-functions-membered,
∗ N-PFuncsX is natural-functions-membered, and
∗ N-FuncsX is natural-functions-membered.
Let X be a complex-functions-membered set. Observe that every element of

X is complex-valued.
Let X be an extended-real-functions-membered set. One can check that eve-

ry element of X is extended real-valued.
Let X be a real-functions-membered set. One can check that every element

of X is real-valued.
Let X be a rational-functions-membered set. One can check that every ele-

ment of X is rational-valued.
Let X be an integer-functions-membered set. Observe that every element of

X is integer-valued.
Let X be a natural-functions-membered set. Observe that every element of

X is natural-valued.
Let X, x be sets, let Y be a complex-functions-membered set, and let f be

a partial function from X to Y . Observe that f(x) is function-like and relation-
like.
Let X, x be sets, let Y be an extended-real-functions-membered set, and

let f be a partial function from X to Y . Observe that f(x) is function-like and
relation-like.
Let us consider X, x, let Y be a complex-functions-membered set, and let f

be a partial function from X to Y . One can check that f(x) is complex-valued.
Let us consider X, x, let Y be an extended-real-functions-membered set, and

let f be a partial function from X to Y . One can verify that f(x) is extended
real-valued.
Let us consider X, x, let Y be a real-functions-membered set, and let f be

a partial function from X to Y . Note that f(x) is real-valued.
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Let us consider X, x, let Y be a rational-functions-membered set, and let f
be a partial function from X to Y . Note that f(x) is rational-valued.
Let us consider X, x, let Y be an integer-functions-membered set, and let f

be a partial function from X to Y . Note that f(x) is integer-valued.
Let us consider X, x, let Y be a natural-functions-membered set, and let f

be a partial function from X to Y . One can check that f(x) is natural-valued.
Let us consider X and let Y be a complex-membered set. One can check

that X→̇Y is complex-functions-membered.
Let us consider X and let Y be an extended real-membered set. Observe

that X→̇Y is extended-real-functions-membered.
Let us consider X and let Y be a real-membered set. Observe that X→̇Y is

real-functions-membered.
Let us consider X and let Y be a rational-membered set. Observe that X→̇Y

is rational-functions-membered.
Let us considerX and let Y be an integer-membered set. Observe thatX→̇Y

is integer-functions-membered.
Let us consider X and let Y be a natural-membered set. One can verify that

X→̇Y is natural-functions-membered.
Let us consider X and let Y be a complex-membered set. Note that Y X is

complex-functions-membered.
Let us consider X and let Y be an extended real-membered set. Note that

Y X is extended-real-functions-membered.
Let us consider X and let Y be a real-membered set. Note that Y X is real-

functions-membered.
Let us consider X and let Y be a rational-membered set. Note that Y X is

rational-functions-membered.
Let us consider X and let Y be an integer-membered set. Note that Y X is

integer-functions-membered.
Let us consider X and let Y be a natural-membered set. One can check that

Y X is natural-functions-membered.
Let R be a binary relation. We say that R is complex-functions-valued if

and only if:

(Def. 20) rngR is complex-functions-membered.

We say that R is extended-real-functions-valued if and only if:

(Def. 21) rngR is extended-real-functions-membered.

We say that R is real-functions-valued if and only if:

(Def. 22) rngR is real-functions-membered.

We say that R is rational-functions-valued if and only if:

(Def. 23) rngR is rational-functions-membered.

We say that R is integer-functions-valued if and only if:
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(Def. 24) rngR is integer-functions-membered.

We say that R is natural-functions-valued if and only if:

(Def. 25) rngR is natural-functions-membered.

Let f be a function. Let us observe that f is complex-functions-valued if and
only if:

(Def. 26) For every set x such that x ∈ dom f holds f(x) is a complex-valued
function.

Let us observe that f is extended-real-functions-valued if and only if:

(Def. 27) For every set x such that x ∈ dom f holds f(x) is an extended real-valued
function.

Let us observe that f is real-functions-valued if and only if:

(Def. 28) For every set x such that x ∈ dom f holds f(x) is a real-valued function.
Let us observe that f is rational-functions-valued if and only if:

(Def. 29) For every set x such that x ∈ dom f holds f(x) is a rational-valued
function.

Let us observe that f is integer-functions-valued if and only if:

(Def. 30) For every set x such that x ∈ dom f holds f(x) is an integer-valued
function.

Let us observe that f is natural-functions-valued if and only if:

(Def. 31) For every set x such that x ∈ dom f holds f(x) is a natural-valued
function.

One can verify the following observations:

∗ every binary relation which is natural-functions-valued is also integer-
functions-valued,

∗ every binary relation which is integer-functions-valued is also rational-
functions-valued,

∗ every binary relation which is rational-functions-valued is also real-
functions-valued,

∗ every binary relation which is real-functions-valued is also extended-real-
functions-valued, and

∗ every binary relation which is real-functions-valued is also complex-
functions-valued.

Let us note that every binary relation which is empty is also natural-
functions-valued.
Let us mention that there exists a function which is natural-functions-valued.
Let R be a complex-functions-valued binary relation. Note that rngR is

complex-functions-membered.
Let R be an extended-real-functions-valued binary relation. Observe that

rngR is extended-real-functions-membered.
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Let R be a real-functions-valued binary relation. Note that rngR is real-
functions-membered.
Let R be a rational-functions-valued binary relation. Observe that rngR is

rational-functions-membered.
Let R be an integer-functions-valued binary relation. One can verify that

rngR is integer-functions-membered.
Let R be a natural-functions-valued binary relation. One can check that

rngR is natural-functions-membered.
Let us consider X and let Y be a complex-functions-membered set. Observe

that every partial function from X to Y is complex-functions-valued.
Let us consider X and let Y be an extended-real-functions-membered set.

One can check that every partial function from X to Y is extended-real-
functions-valued.
Let us consider X and let Y be a real-functions-membered set. One can

check that every partial function from X to Y is real-functions-valued.
Let us consider X and let Y be a rational-functions-membered set. Observe

that every partial function from X to Y is rational-functions-valued.
Let us consider X and let Y be an integer-functions-membered set. Observe

that every partial function from X to Y is integer-functions-valued.
Let us consider X and let Y be a natural-functions-membered set. Note that

every partial function from X to Y is natural-functions-valued.
Let f be a complex-functions-valued function and let us consider x. Note

that f(x) is function-like and relation-like.
Let f be an extended-real-functions-valued function and let us consider x.

Observe that f(x) is function-like and relation-like.
Let f be a complex-functions-valued function and let us consider x. One can

verify that f(x) is complex-valued.
Let f be an extended-real-functions-valued function and let us consider x.

Note that f(x) is extended real-valued.
Let f be a real-functions-valued function and let us consider x. One can

verify that f(x) is real-valued.
Let f be a rational-functions-valued function and let us consider x. Observe

that f(x) is rational-valued.
Let f be an integer-functions-valued function and let us consider x. Note

that f(x) is integer-valued.
Let f be a natural-functions-valued function and let us consider x. One can

check that f(x) is natural-valued.

2. Operations

For simplicity, we adopt the following rules: Y , Y1, Y2 are complex-functions-
membered sets, c, c1, c2 are complex numbers, f is a partial function from X
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to Y , f1 is a partial function from X1 to Y1, f2 is a partial function from X2 to
Y2, and g, h, k are complex-valued functions.
We now state a number of propositions:

(7) If g 6= ∅ and g + c1 = g + c2, then c1 = c2.
(8) If g 6= ∅ and g − c1 = g − c2, then c1 = c2.
(9) If g 6= ∅ and g is non-empty and g c1 = g c2, then c1 = c2.
(10) −(g + c) = −g − c.
(11) −(g − c) = −g + c.
(12) (g + c1) + c2 = g + (c1 + c2).

(13) (g + c1)− c2 = g + (c1 − c2).
(14) (g − c1) + c2 = g − (c1 − c2).
(15) g − c1 − c2 = g − (c1 + c2).
(16) g c1 c2 = g (c1 · c2).
(17) −(g + h) = −g − h.
(18) g − h = −(h− g).
(19) (g h)/k = g (h/k).

(20) (g/h) k = (g k)/h.

(21) g/h/k = g/(h k).

(22) c−g = (−c) g.
(23) c−g = −c g.
(24) (−c) g = −c g.
(25) −g h = (−g) h.
(26) −g/h = (−g)/h.
(27) −g/h = g/−h.
Let f be a complex-valued function and let c be a complex number. The

functor f/c yields a function and is defined as follows:

(Def. 32) f/c = 1c f.

Let f be a complex-valued function and let c be a complex number. Note
that f/c is complex-valued.
Let f be a real-valued function and let r be a real number. Note that f/r is

real-valued.
Let f be a rational-valued function and let r be a rational number. One can

check that f/r is rational-valued.
Let f be a complex-valued finite sequence and let c be a complex number.

One can check that f/c is finite sequence-like.
The following propositions are true:

(28) dom(g/c) = dom g.

(29) (g/c)(x) = g(x)c .
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(30) (−g)/c = −g/c.
(31) g/−c = −g/c.
(32) g/−c = (−g)/c.
(33) If g 6= ∅ and g is non-empty and g/c1 = g/c2, then c1 = c2.
(34) (g c1)/c2 = g c1c2 .

(35) (g/c1) c2 = (g c2)/c1.

(36) g/c1/c2 = g/(c1 · c2).
(37) (g + h)/c = g/c+ h/c.

(38) (g − h)/c = g/c− h/c.
(39) (g h)/c = g (h/c).

(40) (g/h)/c = g/(h c).

Let us consider X, let Y be a complex-functions-membered set, and let f be
a partial function from X to Y . The functor −f yields a function and is defined
by:

(Def. 33) dom(−f) = dom f and for every set x such that x ∈ dom(−f) holds
(−f)(x) = −f(x).
Let us consider X, let Y be a complex-functions-membered set, and let f

be a partial function from X to Y . Then −f is a partial function from X to
C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, and let f be

a partial function from X to Y . Then −f is a partial function from X to
R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, and let f

be a partial function from X to Y . Then −f is a partial function from X to
Q-PFuncsDOMS(Y ).
Let us consider X, let Y be an integer-functions-membered set, and let f

be a partial function from X to Y . Then −f is a partial function from X to
Z-PFuncsDOMS(Y ).
Let Y be a complex-functions-membered set and let f be a finite sequence

of elements of Y . One can check that −f is finite sequence-like.
We now state two propositions:

(41) −− f = f.
(42) If −f1 = −f2, then f1 = f2.
Let X be a complex-functions-membered set, let Y be a set, and let f be a

partial function from X to Y . The functor f ◦ − yielding a function is defined
as follows:

(Def. 34) dom(f ◦ −) = dom f and for every complex-valued function x such that
x ∈ dom(f ◦ −) holds (f ◦ −)(x) = f(−x).
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Let us consider X, let Y be a complex-functions-membered set, and let f be
a partial function from X to Y . The functor 1/f yields a function and is defined
as follows:

(Def. 35) dom 1/f = dom f and for every set x such that x ∈ dom 1/f holds
(1/f)(x) = f(x)−1.

Let us consider X, let Y be a complex-functions-membered set, and let f
be a partial function from X to Y . Then 1/f is a partial function from X to
C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, and let f be

a partial function from X to Y . Then 1/f is a partial function from X to
R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, and let f

be a partial function from X to Y . Then 1/f is a partial function from X to
Q-PFuncsDOMS(Y ).
Let Y be a complex-functions-membered set and let f be a finite sequence

of elements of Y . Note that 1/f is finite sequence-like.
The following proposition is true

(43) 1/1/f = f.

Let us consider X, let Y be a complex-functions-membered set, and let f be
a partial function from X to Y . The functor |f | yields a function and is defined
by:

(Def. 36) dom|f | = dom f and for every set x such that x ∈ dom|f | holds |f |(x) =
|f(x)|.
Let us consider X, let Y be a complex-functions-membered set, and let f

be a partial function from X to Y . Then |f | is a partial function from X to
C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, and let f be

a partial function from X to Y . Then |f | is a partial function from X to
R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, and let f

be a partial function from X to Y . Then |f | is a partial function from X to
Q-PFuncsDOMS(Y ).
Let us consider X, let Y be an integer-functions-membered set, and let f

be a partial function from X to Y . Then |f | is a partial function from X to
N-PFuncsDOMS(Y ).
Let Y be a complex-functions-membered set and let f be a finite sequence

of elements of Y . Note that |f | is finite sequence-like.
We now state the proposition

(44) ||f || = |f |.
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y , and let c be a complex number. The functor f + c
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yields a function and is defined by:

(Def. 37) dom(f + c) = dom f and for every set x such that x ∈ dom(f + c) holds
(f + c)(x) = c+ f(x).

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y , and let c be a complex number. Then f + c is a
partial function from X to C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, let f be a partial

function from X to Y , and let c be a real number. Then f+c is a partial function
from X to R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, let f be a

partial function from X to Y , and let c be a rational number. Then f + c is a
partial function from X to Q-PFuncsDOMS(Y ).
Let us consider X, let Y be an integer-functions-membered set, let f be a

partial function from X to Y , and let c be an integer number. Then f + c is a
partial function from X to Z-PFuncsDOMS(Y ).
Let us consider X, let Y be a natural-functions-membered set, let f be a

partial function from X to Y , and let c be a natural number. Then f + c is a
partial function from X to N-PFuncsDOMS(Y ).
One can prove the following propositions:

(45) f + c1 + c2 = f + (c1 + c2).

(46) If f 6= ∅ and f is non-empty and f + c1 = f + c2, then c1 = c2.
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y , and let c be a complex number. The functor f − c
yields a function and is defined as follows:

(Def. 38) f − c = f +−c.
We now state two propositions:

(47) dom(f − c) = dom f.
(48) If x ∈ dom(f − c), then (f − c)(x) = f(x)− c.
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y , and let c be a complex number. Then f − c is a
partial function from X to C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, let f be a partial

function from X to Y , and let c be a real number. Then f−c is a partial function
from X to R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, let f be a

partial function from X to Y , and let c be a rational number. Then f − c is a
partial function from X to Q-PFuncsDOMS(Y ).
Let us consider X, let Y be an integer-functions-membered set, let f be a

partial function from X to Y , and let c be an integer number. Then f − c is a
partial function from X to Z-PFuncsDOMS(Y ).
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We now state four propositions:

(49) If f 6= ∅ and f is non-empty and f − c1 = f − c2, then c1 = c2.
(50) (f + c1)− c2 = f + (c1 − c2).
(51) (f − c1) + c2 = f − (c1 − c2).
(52) f − c1 − c2 = f − (c1 + c2).
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y , and let c be a complex number. The functor f · c
yielding a function is defined as follows:

(Def. 39) dom(f · c) = dom f and for every set x such that x ∈ dom(f · c) holds
(f · c)(x) = c f(x).
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y , and let c be a complex number. Then f · c is a
partial function from X to C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, let f be a partial

function from X to Y , and let c be a real number. Then f ·c is a partial function
from X to R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, let f be a

partial function from X to Y , and let c be a rational number. Then f · c is a
partial function from X to Q-PFuncsDOMS(Y ).
Let us consider X, let Y be an integer-functions-membered set, let f be a

partial function from X to Y , and let c be an integer number. Then f · c is a
partial function from X to Z-PFuncsDOMS(Y ).
Let us consider X, let Y be a natural-functions-membered set, let f be a

partial function from X to Y , and let c be a natural number. Then f · c is a
partial function from X to N-PFuncsDOMS(Y ).
The following two propositions are true:

(53) f · c1 · c2 = f · (c1 · c2).
(54) If f 6= ∅ and f is non-empty and for every x such that x ∈ dom f holds
f(x) is non-empty and f · c1 = f · c2, then c1 = c2.
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y , and let c be a complex number. The functor f/c
yielding a function is defined as follows:

(Def. 40) f/c = f · c−1.
One can prove the following propositions:

(55) dom(f/c) = dom f.

(56) If x ∈ dom(f/c), then (f/c)(x) = c−1 f(x).
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y , and let c be a complex number. Then f/c is a
partial function from X to C-PFuncsDOMS(Y ).
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Let us consider X, let Y be a real-functions-membered set, let f be a partial
function from X to Y , and let c be a real number. Then f/c is a partial function
from X to R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, let f be a

partial function from X to Y , and let c be a rational number. Then f/c is a
partial function from X to Q-PFuncsDOMS(Y ).
The following propositions are true:

(57) f/c1/c2 = f/(c1 · c2).
(58) If f 6= ∅ and f is non-empty and for every x such that x ∈ dom f holds
f(x) is non-empty and f/c1 = f/c2, then c1 = c2.

Let us consider X, let Y be a complex-functions-membered set, let f be
a partial function from X to Y , and let g be a complex-valued function. The
functor f + g yielding a function is defined as follows:

(Def. 41) dom(f+g) = dom f∩dom g and for every set x such that x ∈ dom(f+g)
holds (f + g)(x) = f(x) + g(x).

Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y , and let g be a complex-valued function. Then
f + g is a partial function from X ∩ dom g to C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, let f be a partial

function from X to Y , and let g be a real-valued function. Then f+g is a partial
function from X ∩ dom g to R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, let f be a

partial function from X to Y , and let g be a rational-valued function. Then
f + g is a partial function from X ∩ dom g to Q-PFuncsDOMS(Y ).
Let us consider X, let Y be an integer-functions-membered set, let f be a

partial function from X to Y , and let g be an integer-valued function. Then
f + g is a partial function from X ∩ dom g to Z-PFuncsDOMS(Y ).
Let us consider X, let Y be a natural-functions-membered set, let f be a

partial function from X to Y , and let g be a natural-valued function. Then f+g
is a partial function from X ∩ dom g to N-PFuncsDOMS(Y ).
Next we state two propositions:

(59) f + g + h = f + (g + h).

(60) −(f + g) = (−f) +−g.
Let us consider X, let Y be a complex-functions-membered set, let f be

a partial function from X to Y , and let g be a complex-valued function. The
functor f − g yields a function and is defined by:

(Def. 42) f − g = f +−g.
We now state two propositions:

(61) dom(f − g) = dom f ∩ dom g.
(62) If x ∈ dom(f − g), then (f − g)(x) = f(x)− g(x).
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Let us consider X, let Y be a complex-functions-membered set, let f be a
partial function from X to Y , and let g be a complex-valued function. Then
f − g is a partial function from X ∩ dom g to C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, let f be a partial

function from X to Y , and let g be a real-valued function. Then f−g is a partial
function from X ∩ dom g to R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, let f be a

partial function from X to Y , and let g be a rational-valued function. Then
f − g is a partial function from X ∩ dom g to Q-PFuncsDOMS(Y ).
Let us consider X, let Y be an integer-functions-membered set, let f be a

partial function from X to Y , and let g be an integer-valued function. Then
f − g is a partial function from X ∩ dom g to Z-PFuncsDOMS(Y ).
The following propositions are true:

(63) f −−g = f + g.
(64) −(f − g) = (−f) + g.
(65) (f + g)− h = f + (g − h).
(66) (f − g) + h = f − (g − h).
(67) f − g − h = f − (g + h).
Let us consider X, let Y be a complex-functions-membered set, let f be

a partial function from X to Y , and let g be a complex-valued function. The
functor f · g yielding a function is defined by:

(Def. 43) dom(f · g) = dom f ∩ dom g and for every set x such that x ∈ dom(f · g)
holds (f · g)(x) = f(x) g(x).
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y , and let g be a complex-valued function. Then f ·g
is a partial function from X ∩ dom g to C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, let f be a partial

function from X to Y , and let g be a real-valued function. Then f ·g is a partial
function from X ∩ dom g to R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, let f be a

partial function from X to Y , and let g be a rational-valued function. Then f ·g
is a partial function from X ∩ dom g to Q-PFuncsDOMS(Y ).
Let us consider X, let Y be an integer-functions-membered set, let f be a

partial function from X to Y , and let g be an integer-valued function. Then f ·g
is a partial function from X ∩ dom g to Z-PFuncsDOMS(Y ).
Let us consider X, let Y be a natural-functions-membered set, let f be a

partial function from X to Y , and let g be a natural-valued function. Then f · g
is a partial function from X ∩ dom g to N-PFuncsDOMS(Y ).
Next we state three propositions:

(68) f · −g = (−f) · g.
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(69) f · −g = −f · g.
(70) f · g · h = f · (g h).
Let us consider X, let Y be a complex-functions-membered set, let f be

a partial function from X to Y , and let g be a complex-valued function. The
functor f/g yields a function and is defined by:

(Def. 44) f/g = f · g−1.
Next we state two propositions:

(71) dom(f/g) = dom f ∩ dom g.
(72) If x ∈ dom(f/g), then (f/g)(x) = f(x)/g(x).
Let us consider X, let Y be a complex-functions-membered set, let f be a

partial function from X to Y , and let g be a complex-valued function. Then f/g
is a partial function from X ∩ dom g to C-PFuncsDOMS(Y ).
Let us consider X, let Y be a real-functions-membered set, let f be a partial

function from X to Y , and let g be a real-valued function. Then f/g is a partial
function from X ∩ dom g to R-PFuncsDOMS(Y ).
Let us consider X, let Y be a rational-functions-membered set, let f be a

partial function from X to Y , and let g be a rational-valued function. Then f/g
is a partial function from X ∩ dom g to Q-PFuncsDOMS(Y ).
Next we state the proposition

(73) (f · g)/h = f · (g/h).
Let X1, X2 be sets, let Y1, Y2 be complex-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to Y2.
The functor f + g yielding a function is defined as follows:

(Def. 45) dom(f+g) = dom f∩dom g and for every set x such that x ∈ dom(f+g)
holds (f + g)(x) = f(x) + g(x).

Let X1, X2 be sets, let Y1, Y2 be complex-functions-membered sets, let f
be a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f + g is a partial function from X1 ∩ X2 to C-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be real-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f + g is a partial function from X1 ∩ X2 to R-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be rational-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f + g is a partial function from X1 ∩ X2 to Q-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be integer-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
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Y2. Then f + g is a partial function from X1 ∩ X2 to Z-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be natural-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f + g is a partial function from X1 ∩ X2 to N-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
We now state three propositions:

(74) f1 + f2 = f2 + f1.

(75) (f + f1) + f2 = f + (f1 + f2).

(76) −(f1 + f2) = (−f1) +−f2.
Let X1, X2 be sets, let Y1, Y2 be complex-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to Y2.
The functor f − g yields a function and is defined by:

(Def. 46) dom(f−g) = dom f∩dom g and for every set x such that x ∈ dom(f−g)
holds (f − g)(x) = f(x)− g(x).
Let X1, X2 be sets, let Y1, Y2 be complex-functions-membered sets, let f

be a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f − g is a partial function from X1 ∩ X2 to C-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be real-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f − g is a partial function from X1 ∩ X2 to R-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be rational-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f − g is a partial function from X1 ∩ X2 to Q-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be integer-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f − g is a partial function from X1 ∩ X2 to Z-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
One can prove the following propositions:

(77) f1 − f2 = −(f2 − f1).
(78) −(f1 − f2) = (−f1) + f2.
(79) (f + f1)− f2 = f + (f1 − f2).
(80) (f − f1) + f2 = f − (f1 − f2).
(81) f − f1 − f2 = f − (f1 + f2).
(82) f − f1 − f2 = f − f2 − f1.
Let X1, X2 be sets, let Y1, Y2 be complex-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to Y2.
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The functor f · g yields a function and is defined by:
(Def. 47) dom(f · g) = dom f ∩ dom g and for every set x such that x ∈ dom(f · g)

holds (f · g)(x) = f(x) g(x).
Let X1, X2 be sets, let Y1, Y2 be complex-functions-membered sets, let f

be a partial function from X1 to Y1, and let g be a partial function from X2
to Y2. Then f · g is a partial function from X1 ∩X2 to C-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be real-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f · g is a partial function from X1 ∩ X2 to R-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be rational-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f · g is a partial function from X1 ∩ X2 to Q-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be integer-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f · g is a partial function from X1 ∩ X2 to Z-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be natural-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f · g is a partial function from X1 ∩ X2 to N-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
We now state several propositions:

(83) f1 · f2 = f2 · f1.
(84) (f · f1) · f2 = f · (f1 · f2).
(85) (−f1) · f2 = −f1 · f2.
(86) f1 · −f2 = −f1 · f2.
(87) f · (f1 + f2) = f · f1 + f · f2.
(88) (f1 + f2) · f = f1 · f + f2 · f.
(89) f · (f1 − f2) = f · f1 − f · f2.
(90) (f1 − f2) · f = f1 · f − f2 · f.
Let X1, X2 be sets, let Y1, Y2 be complex-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to Y2.
The functor f/g yields a function and is defined by:

(Def. 48) dom(f/g) = dom f ∩ dom g and for every set x such that x ∈ dom(f/g)
holds (f/g)(x) = f(x)/g(x).

Let X1, X2 be sets, let Y1, Y2 be complex-functions-membered sets, let f
be a partial function from X1 to Y1, and let g be a partial function from X2
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to Y2. Then f/g is a partial function from X1 ∩X2 to C-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be real-functions-membered sets, let f be

a partial function from X1 to Y1, and let g be a partial function from X2 to
Y2. Then f/g is a partial function from X1 ∩ X2 to R-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
Let X1, X2 be sets, let Y1, Y2 be rational-functions-membered sets, let f

be a partial function from X1 to Y1, and let g be a partial function from X2
to Y2. Then f/g is a partial function from X1 ∩X2 to Q-PFuncs(DOMS(Y1) ∩
DOMS(Y2)).
One can prove the following propositions:

(91) (−f1)/f2 = −f1/f2.
(92) f1/− f2 = −f1/f2.
(93) (f · f1)/f2 = f · (f1/f2).
(94) (f/f1) · f2 = (f · f2)/f1.
(95) f/f1/f2 = f/(f1 · f2).
(96) (f1 + f2)/f = f1/f + f2/f.

(97) (f1 − f2)/f = f1/f − f2/f.
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