Cont ent S Formaliz. Math. 16 (4)

Eigenvalues of a Linear Transformation
By KAROL PAK ottt ittt ittt iieineenenns 289

Jordan Matrix Decomposition
By KAROL PAK vttt ittt ittt iiiiiiennnnnns 297

Fatou’s Lemma and the Lebesgue’s Convergence Theorem
By NOBORU ENDOU €t al. vvvvviiiiiiiiiiiiiiiiiiinennnnns 305

Extended Riemann Integral of Functions of Real Variable and One-
sided Laplace Transform
By MASAHIKO YAMAZAKI € @l. vvvevvinrnennrnnrnosnennns 311

Integral of Complex-Valued Measurable Function
By KEIKO NARITA €f Gl. vvvvivnininin it iniiiniinnnnnnns 319

Introduction to Matroids
By GRZEGORZ BANCEREK and YASUNARI SHIDAMA ...eco... 325

Partial Differentiation of Real Binary Functions
By Bing XIE and X1QUAN LIANG and HONGWELI L1 ......... 333

Model Checking. Part 111
By KAZUHISA ISHIDA and YASUNARI SHIDAMA ...eovnvunen.. 339

Basic Properties of Circulant Matrices and Anti-Circular Matrices
By XI1AOPENG YUE and XIQUAN LIANG .....cviiiiiiinnnnn, 355

On L' Space Formed by Real-Valued Partial Functions
By YASUSHIGE WATASE €l @l. vevvvriiiiinininininininennnn. 361

BCI-homomorphisms
By YuzHoNnG DING and Fucuo GE and CHENGLONG WU ... 371



Stability of the 4-2 Binary Addition Circuit Cells. Part 1
By KATSUMI WASAKI  ttvitiiinineneneneenenenenenenenens 377

Several Differentiation Formulas of Special Functions. Part VII
By FUGUO GE and BING XIE ..iiiiiiiiiiiiiiiinnnnennnn. 389

Open Mapping Theorem
By HIDEKI SAKURATL €f @l. vvvvvinin i iiiiiiiiiiinenenenens 401

Addenda ..cooiiiii ittt ettt i



FORMALIZED MATHEMATICS
Vol. 16, No. 4, Pages 289-295, 2008

Eigenvalues of a Linear Transformation

Karol Pak
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Poland

Summary. The article presents well known facts about eigenvalues of line-
ar transformation of a vector space (see [13]). I formalize main dependencies be-
tween eigenvalues and the diagram of the matrix of a linear transformation over a

finite-dimensional vector space. Finally, I formalize the subspace U Ker(f—AI )Z

i=0
called a generalized eigenspace for the eigenvalue A and show its basic properties.

MML identifier: VECTSP11, version: 7.9.03 4.108.1028

The articles [11], [33], [2], [3], [12], [34], [8], [10], [9], [5], [31], [27], [15], [7], [14],
[32], [35], [25], [30], [29], [28], [26], [6], [22], [16], [23], [20], [1], [19], [4], [21], [17],
[18], and [24] provide the notation and terminology for this paper.

1. PRELIMINARIES

We adopt the following convention: ¢, j, m, n denote natural numbers, K
denotes a field, and a denotes an element of K.
Next we state several propositions:

(1) Let A, B be matrices over K, n; be an element of N”, and m; be an
element of N™. If rngn; x rngm; C the indices of A, then Segm(A +
B,n1,my) = Segm(A, ny, my) + Segm (B, ny,my).

(2) For every without zero finite subset P of N such that P C Segn holds
Segm([?(X",P, P) — I}:{ardchardP'

(3) Let A, B be matrices over K and P, () be without zero finite subsets of
N. If P x @ C the indices of A, then Segm(A+ B, P, Q) = Segm(A, P, Q)+
Segm(B, P, Q).
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(4) For all square matrices A, B over K of dimension n such that i, j € Segn
holds Delete(A + B, i,j) = Delete(A, 1, j) + Delete(B, i, 7).

(5) For every square matrix A over K of dimension n such that i, j € Segn
holds Delete(a - A,1,j) = a - Delete(A,1, 7).

(6) Ifi e Segn, then Delete(I",4,1) = I}?Jl)x(n_’l).

(7) Let A, B be square matrices over K of dimension n. Then there exists
a polynomial P of K such that len P < n + 1 and for every element = of
K holds eval(P,z) = Det(A + z - B).

(8) Let A be a square matrix over K of dimension n. Then there exists a
polynomial P of K such that len P = n + 1 and for every element x of K
holds eval(P,z) = Det(A + x - I").

Let us consider K. Observe that there exists a vector space over K which is
non trivial and finite dimensional.

2. MAPS WITH EIGENVALUES

Let R be a non empty double loop structure, let V' be a non empty vector
space structure over R, and let I; be a function from V into V. We say that I
has eigenvalues if and only if:

(Def. 1) There exists a vector v of V' and there exists a scalar a of R such that
v# 0y and [1(v) =a-v.

For simplicity, we follow the rules: V' denotes a non trivial vector space over
K, V1, V5 denote vector spaces over K, f denotes a linear transformation from
V1 to Vi, v, w denote vectors of V, v; denotes a vector of V1, and L denotes a
scalar of K.

Let us consider K, V. One can verify that there exists a linear transformation
from V to V which has eigenvalues.

Let R be a non empty double loop structure, let V' be a non empty vector
space structure over R, and let f be a function from V into V. Let us assume
that f has eigenvalues. An element of R is called an eigenvalue of f if:

(Def. 2) There exists a vector v of V' such that v # Oy and f(v) =it - v.

Let R be a non empty double loop structure, let V' be a non empty vector
space structure over R, let f be a function from V into V', and let L be a scalar
of R. Let us assume that f has eigenvalues and L is an eigenvalue of f. A vector
of V is called an eigenvector of f and L if:

(Def. 3) f(it) = L - it.
We now state several propositions:

(9) Let given a. Suppose a # Og. Let f be a function from V into V' with
eigenvalues and L be an eigenvalue of f. Then
(i) a- f has eigenvalues,
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(ii) a- L is an eigenvalue of a - f, and
(ili) w is an eigenvector of f and L iff w is an eigenvector of a- f and a - L.
(10) Let f1, fo be functions from V into V' with eigenvalues and Li, Ly be
scalars of K. Suppose that
(i)  Lj is an eigenvalue of fi,
(ii) Lg is an eigenvalue of fo, and
(ili)  there exists v such that v is an eigenvector of fi and L; and an eige-
nvector of fo and Lo and v # Oy .
Then
(iv)  f1 + fo has eigenvalues,
(v) L1+ Lo is an eigenvalue of f; + f2, and
(vi) for every w such that w is an eigenvector of f; and L; and an eigenvector
of fo and Ly holds w is an eigenvector of fi + fo and Li + Lo.
(11) idy has eigenvalues and 1g is an eigenvalue of idy and every v is an
eigenvector of idy and 1.
(12) For every eigenvalue L of idy holds L = 1.
(13) 1If ker f is non trivial, then f has eigenvalues and O is an eigenvalue of
I
(14)  f has eigenvalues and L is an eigenvalue of f iff ker f + (—L) - id(y;) is
non trivial.

(15) Let Vi be a finite dimensional vector space over K, by, b} be ordered
bases of V7, and f be a linear transformation from V; to V1. Then f has
eigenvalues and L is an eigenvalue of f if and only if Det AutEqMt(f +
(L) -idgyyy, b1, b1) = Ox.

(16) Let K be an algebraic-closed field and V; be a non trivial finite dimen-
sional vector space over K. Then every linear transformation from Vj to
V1 has eigenvalues.

(17) Let given f, L. Suppose f has eigenvalues and L is an eigenvalue of f.
Then vy is an eigenvector of f and L if and only if v1 € ker f+(—L)-id).

Let S be a 1-sorted structure, let F' be a function from S into S, and let
n be a natural number. The functor F™ yields a function from S into S and is
defined as follows:

(Def. 4) For every element F’ of the semigroup of functions onto the carrier of S
such that F/ = F holds F" = [[(n — F).

In the sequel S denotes a 1-sorted structure and F' denotes a function from
S into S.
Next we state several propositions:

(18) F° =idg.
(19) F'=F.
(20) Fit =F'. FJ.
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(21) For all elements s1, so of S and for all n, m such that F(s1) = s2 and
F"(s3) = s holds F™Ti7(s1) = s9.

(22) Let K be an add-associative right zeroed right complementable Abelian
associative well unital distributive non empty double loop structure, V;
be an Abelian add-associative right zeroed right complementable vector
space-like non empty vector space structure over K, W be a subspace of
V1, f be a function from V; into Vi, and f3 be a function from W into W.
If f3 = fIW, then f"[W = f3".

Let us consider K, Vi, let f be a linear transformation from V; to V4, and
let n be a natural number. Then f is a linear transformation from Vj to V;.
We now state the proposition

(23) If f(v1) = Oy, then f7 (v1) = Ogyy).

3. GENERALIZED EIGENSPACE OF A LINEAR TRANSFORMATION

Let us consider K, Vi, f. The functor UnionKers f yielding a strict subspace
of V; is defined by:

(Def. 5) The carrier of UnionKers f = {v; v ranges over vectors of V1:\/,, f™(v) =
Ocviy}-
We now state a number of propositions:

v1 € UnionKers f iff there exists n such that f"(vi) = O(y;).

[\
IS
S~—

25)
26) ker f? is a subspace of ker fi*7.
27)

(
( ker f is a subspace of UnionKers f.

(

( Let V' be a finite dimensional vector space over K and f be a linear
transformation from V' to V. Then there exists n such that UnionKers f =
ker f.

(28) flker f™ is a linear transformation from ker f™ to ker f™.

(29) flker (f+ L-id(y,))" is alinear transformation from ker (f + L - id(y;))"
to ker (f + L - id(vl))n.

(30) f|UnionKers f is a linear transformation from UnionKersf to
UnionKers f.

(31)  fIUnionKers(f+L-idy,)) is a linear transformation from UnionKers( f+
L- id(V1)) to UnionKers(f +L- id(vl)).

(32) flim(f™) is a linear transformation from im(f") to im(f").

(33) fHim((f + L -id(y,))") is a linear transformation from im((f + L - idy;))"™)
to 1m((f + L - id(vl))n).

(34) 1If UnionKers f = ker f", then ker f™ Nim(f") = Oy,).



EIGENVALUES OF A LINEAR TRANSFORMATION

(35) Let V be a finite dimensional vector space over K, f be a linear trans-
formation from V to V, and given n. If UnionKers f = ker f", then V is
the direct sum of ker f™ and im(f").

(36) For every linear complement I of UnionKers f holds f[I is one-to-one.

(37) Let I be a linear complement of UnionKers(f + (—L) -id(y;)) and f4 be
a linear transformation from I to I. If f4 = f[I, then for every vector v
of I such that fi(v) = L -v holds v = Oy).

(38) Suppose n > 1. Then there exists a linear transformation h from V; to
Vi such that (f + L-idw,))" = f-h+ (L-idy,))" and for every i holds
ff-h=nh-f"

(39) Let Ly, Lo be scalars of K. Suppose f has eigenvalues and L # Lo
and L; is an eigenvalue of f and Lo is an eigenvalue of f. Let I be a
linear complement of UnionKers(f + (—L1) - id(y,)) and f4 be a linear
transformation from I to I. Suppose f4 = f[I. Then f; has eigenvalu-
es and L; is not an eigenvalue of f; and Lo is an eigenvalue of f; and
UnionKers(f + (—Lz) -id(y;)) is a subspace of I.

(40) Let U be a finite subset of V;. Suppose U is linearly independent. Let u
be a vector of V. Suppose u € U. Let L be a linear combination of U\ {u}.
Then U = (U \ {u})U{u+ Y L} and (U \ {u}) U {u+ > L} is linearly
independent.

(41) Let A be a subset of V;, L be a linear combination of V3, and f be a
linear transformation from Vj to Va. Suppose the support of L C f°A.
Then there exists a linear combination M of A such that f(3>° M) =73 L.

(42) Let f be a linear transformation from V; to V4, A be a subset of Vi, and
B be a subset of V. If f°A = B, then f°(the carrier of Lin(A)) = the
carrier of Lin(B).

(43) Let L be a linear combination of Vi, F' be a finite sequence of elements
of V1, and f be a linear transformation from Vj to V5. Suppose f[((the
support of L) Nrng F') is one-to-one and rng F' C the support of L. Then
there exists a linear combination Lg of V5 such that

(i)  the support of L = f°((the support of L) Nrng F),
(i) f-(LF)=Ls(f - F), and
(ili)  for every vy such that vy € (the support of L) Nrng F holds L(vy) =
L3(f(v1))-

(44) Let A, B be subsets of V; and L be a linear combination of V;. Suppose
the support of L C AUB and 37 L = O(y;). Let f be a linear function from
V1 into V5. Suppose f[B is one-to-one and f°B is a linearly independent
subset of V3 and f°A C {0(y;)}. Then the support of L C A.
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Jordan Matrix Decomposition
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Summary. In this paper I present the Jordan Matrix Decomposition The-
orem which states that an arbitrary square matrix M over an algebraically closed
field can be decomposed into the form

M=S8J8"*

where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e.

a special type of block diagonal matrix in which each block consists of Jordan
blocks (see [13]).

MML identifier: MATRIXJ2, version: 7.9.01 4.101.1015

The terminology and notation used here are introduced in the following articles:
[11], 2], [3], [12], [34], [7], [10], [8], [4], [28], [33], [30], [18], [6], [14], [15], [36],

(23], [37], [35], 9], [29], [32], [31]; [5], [19]; [24], [22], [17], [1], [21], [20], [16], [25],
[27], and [26].

1. JorDAN BLOCKS

We follow the rules: i, j, m, n, k denote natural numbers, K denotes a field,
and a, A denote elements of K.
Let us consider K, A, n. The Jordan block of A and n yields a matrix over
K and is defined by the conditions (Def. 1).
(Def. 1)(i)  len (the Jordan block of A and n) = n,
(ii)  width (the Jordan block of A and n) = n, and
(iii)  for all 4, j such that (i, j) € the indices of the Jordan block of A and n
holds if ¢ = j, then (the Jordan block of A and n); ; = A and if i +1 = j,
then (the Jordan block of A and n);; = 1x and if ¢ # j and 7 + 1 # j,
then (the Jordan block of A and n); ; = Ok.

(© 2008 University of Bialystok
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Let us consider K, A, n. Then the Jordan block of A and n is an upper
triangular matrix over K of dimension n.
The following propositions are true:
1) The diagonal of the Jordan block of A and n =n+— A.
2) Det (the Jordan block of A and n) = powerg (A, n).
3) The Jordan block of A and n is invertible iff n = 0 or A # Ok
4) If i € Segn and i # n, then Line(the Jordan block of A and n, i) =
A - Line(I",4) + Line(I™", i + 1).
(5) Line(the Jordan block of A and n, n) = A - Line(Ix*", n).
(6) Let F be an element of (the carrier of K)™ such that ¢ € Segn. Then
(i) if ¢ # n, then Line(the Jordan block of A and n, i) - F = X - F; + Fj41,
and
(ii)  if 4 = n, then Line(the Jordan block of A and n, i) - F = X\ - F;.
(7) Let F be an element of (the carrier of K)" such that ¢ € Segn. Then
(i) if ¢ =1, then (the Jordan block of X\ and n)g, - F' = X\ - F;, and
(ii) if ¢ # 1, then (the Jordan block of A and n)g,; - F = X+ F; + Fi_1.
(8) Suppose A # 0. Then there exists a square matrix M over K of dimen-
sion n such that
(i)  (the Jordan block of A and n)~ = M, and
(ii)  for all ¢, j such that (i, j) € the indices of M holds if i > j, then
M; ; =0 and if i < j, then M, j = —power(—A~1, (j —"4) + 1).
(9) (The Jordan block of X and n) + a - I*" = the Jordan block of X + a
and n.

(
(
(
(

2. FINITE SEQUENCES OF JORDAN BLOCKS

Let us consider K and let G be a finite sequence of elements
of ((the carrier of K)*)*. We say that G is Jordan-block-yielding if and only
if:

(Def. 2) For every i such that ¢ € dom G there exist A\, n such that G(i) = the
Jordan block of A and n.

Let us consider K. Observe that there exists a finite sequence of elements of
((the carrier of K)*)* which is Jordan-block-yielding.

Let us consider K. One can verify that every finite sequence of elements
of ((the carrier of K)*)* which is Jordan-block-yielding is also square-matrix-
yielding.

Let us consider K. A finite sequence of Jordan blocks of K is a Jordan-block-
yielding finite sequence of elements of ((the carrier of K)*)".

Let us consider K, A. A finite sequence of Jordan blocks of K is said to be
a finite sequence of Jordan blocks of A and K if:
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(Def. 3) For every i such that ¢ € domit there exists n such that it(i) = the
Jordan block of A and n.

Next we state two propositions:
(10) 0 is a finite sequence of Jordan blocks of A and K.

(11) (the Jordan block of A and n) is a finite sequence of Jordan blocks of A
and K.

Let us consider K, A. Observe that there exists a finite sequence of Jordan
blocks of A and K which is non-empty.

Let us consider K. Note that there exists a finite sequence of Jordan blocks
of K which is non-empty.

Next we state the proposition

(12) Let J be a finite sequence of Jordan blocks of A and K. Then J®len J +—
ae I}(GHJXLGHJ is a finite sequence of Jordan blocks of A + a and K.

Let us consider K and let Jy, Jo be fininte sequences of Jordan blocks of K.
Then J; ~ Js is a finite sequence of Jordan blocks of K.

Let us consider K, let J be a finite sequence of Jordan blocks of K, and let
us consider n. Then J|n is a finite sequence of Jordan blocks of K. Then J, is
a finite sequence of Jordan blocks of K.

Let us consider K, A and let Jy, Jo be finite sequences of Jordan blocks of
A and K. Then J; ~ Jo is a finite sequence of Jordan blocks of A and K.

Let us consider K, A, let J be a finite sequence of Jordan blocks of A and
K, and let us consider n. Then J[n is a finite sequence of Jordan blocks of A
and K. Then J, is a finite sequence of Jordan blocks of A and K.

3. NILPOTENT TRANSFORMATIONS

Let K be a double loop structure, let V' be a non empty vector space structure
over K, and let f be a function from V into V. We say that f is nilpotent if
and only if:

(Def. 4) There exists n such that for every vector v of V" holds f"(v) = Oy.
We now state the proposition

(13) Let K be a double loop structure, V' be a non empty vector space struc-
ture over K, and f be a function from V into V. Then f is nilpotent if
and only if there exists n such that f™ = ZeroMap(V, V).

Let K be a double loop structure and let V' be a non empty vector space
structure over K. Observe that there exists a function from V into V which is
nilpotent.

Let R be a ring and let V' be a left module over R. Observe that there exists
a function from V into V which is nilpotent and linear.

Next we state the proposition
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(14) Let V be a vector space over K and f be a linear transformation from
V to V. Then f]ker f™ is a nilpotent linear transformation from ker f™ to
ker ™.

Let K be a double loop structure, let V' be a non empty vector space structure
over K, and let f be a nilpotent function from V into V. The degree of nilpotence
of f yielding a natural number is defined by the conditions (Def. 5).

(Def 5)(1) fthe degree of nilpotence of f __ ZeroMap(V, V), and
(i) for every k such that f* = ZeroMap(V, V') holds the degree of nilpotence
of f <k.

Let K be a double loop structure, let V' be a non empty vector space structure
over K, and let f be a nilpotent function from V into V. We introduce deg f as
a synonym of the degree of nilpotence of f.

One can prove the following propositions:

(15) Let K be a double loop structure, V' be a non empty vector space struc-
ture over K, and f be a nilpotent function from V into V. Then deg f =0
if and only if Qy = {0y }.

(16) Let K be a double loop structure, V' be a non empty vector space struc-
ture over K, and f be a nilpotent function from V into V. Then there
exists a vector v of V such that for every i such that ¢ < deg f holds
fi(v) # Oy

(17) Let K be a field, V be a vector space over K, W be a subspace of V,
and f be a nilpotent function from V into V. Suppose f[W is a function
from W into W. Then f[W is a nilpotent function from W into W.

(18) Let K be a field, V' be a vector space over K, W be a subspace of V, f
be a nilpotent linear transformation from V' to V, and f; be a nilpotent
function from im(f™) into im(f™). If f1 = flim(f™) and n < deg f, then
deg f1 +n = deg f.

For simplicity, we adopt the following convention: V;, V5 denote finite di-
mensional vector spaces over K, Wy, Wy denote subspaces of Vi, U, Uy denote
subspaces of V5, b1 denotes an ordered basis of V7, By denotes a finite sequence
of elements of V7, by denotes an ordered basis of Vo, By denotes a finite sequence
of elements of V5, b3 denotes an ordered basis of W7, by denotes an ordered basis
of Wy, B3 denotes a finite sequence of elements of Uy, and B4 denotes a finite
sequence of elements of Us.

Next we state a number of propositions:

(19) Let M be a matrix over K of dimension lenb; x len By, M; be a ma-
trix over K of dimension lenbs X len B3, and Ms be a matrix over K
of dimension lenbs x len By such that by = b3 ~ by and By = B3 ™ By
and M = the Og-block diagonal of (M7, Ms) and width M; = len B3 and
width My = len B4. Then
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(i) if i € dombs, then (Mx2Tran(M, by, B2))((b1)i) =
(Mx2Tran(Mj, bs, B3))((b3)i), and

(ii) if ¢ € domby, then (Mx2Tran(M, by, B2))((b1)itients) =
(MXQTran(MQ, b4, B4>)(<b4)z)

(20) Let M be a matrix over K of dimension lenb; X len By and F' be a fi-
nite sequence of matrices over K. Suppose M = the 0x-block diagonal of
F. Let given i, m. Suppose ¢ € domb; and m = min(Len F,4). Then
(Mx2Tran(M, by, B2))((b1);) = Y lmlt(Line(F(m),i —" Y Len(F[(m —'
1)), (B2 22 Width(F'[m)) 5~ wiawn(Fi(m-1))) and
len((BQ[ZWidth(F[m))LZ Width(F[(m—1))) = Width F'(m).

(21) If lenB; € domBj, then ) lmlt(Line(the Jordan block of A and
len Bl,len Bl), Bl) =\ (Bl)lenBl'

(22) If i € dom B; and i # len By, then ) lmlt(Line(the Jordan block of A
and lenBl, ) Bl) =X ( ) + (Bl)i+1~

(23) Let M be a matrix over K of dimension len by x len By. Suppose M = the
Jordan block of A and n. Let given 7 such that ¢ € dom b;. Then

(i) if i =lenby, then (Mx2Tran(M, by, B2))((b1)i) = A\ - (B2);, and
(i) if i # lenby, then (Mx2Tran(M, by, B2))((b1)i) = X+ (B2)i + (B2)i+1-

(24) Let J be a finite sequence of Jordan blocks of A and K and M be a
matrix over K of dimension lenb; X len By. Suppose M = the 0x-block
diagonal of J. Let given i, m such that ¢ € domb; and m = min(Len J, ).
Then

(i) if i =) Len(J[m), then (Mx2Tran(M, b1, B2))((b1):) = A - (B2)i, and
(i) if ¢ # Y Len(J[m), then (Mx2Tran(M, b1, B2))((b1):) = A - (B2)i +
(B2)i+1-

(25) Let J be a finite sequence of Jordan blocks of O and K and M be a
matrix over K of dimension lenb; x lenb;. Suppose M = the 0x-block
diagonal of J. Let given m. If for every ¢ such that ¢ € domJ holds
len J(i) < m, then (Mx2Tran(M,by,b1))" = ZeroMap(Vy, V4).

(26) Let J be a finite sequence of Jordan blocks of A and K and M be a matrix
over K of dimension lenb; x lenb;. Suppose M = the 0x-block diagonal
of J. Then Mx2Tran(M, b1, b1) is nilpotent if and only if lenb; = 0 or
A=0g.

(27) Let J be a finite sequence of Jordan blocks of 0 and K and M be a
matrix over K of dimension lenb; X lenb;. Suppose M = the 0x-block
diagonal of J and lenb; > 0. Let F' be a nilpotent function from Vj
into V7. Suppose F' = Mx2Tran(M, by, b1). Then there exists ¢ such that
i € dom J and len J(i) = deg F' and for every ¢ such that i € dom J holds
len J(i) < deg F.

(28) Let given Vi, Vi, by, ba, A. Suppose lenb; = lenby. Let F' be a linear
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transformation from V; to V5. Suppose that for every i such that ¢ € dom by
holds F((bl)z) =X (bz)z ort+1 € dom by and F((bl)l) =\ (bg)i—i- (b2)i+1.
Then there exists a non-empty finite sequence J of Jordan blocks of A and
K such that AutMt(F, by, ba) = the Ox-block diagonal of J.

(29) Let Vi be a finite dimensional vector space over K and F' be a nilpotent
linear transformation from V; to V. Then there exists a non-empty finite
sequence J of Jordan blocks of O and K and there exists an ordered basis
by of V1 such that AutMt(F, by, b;) = the Ox-block diagonal of J.

(30) Let V be a vector space over K, F' be a linear transformation from
V to V, V1 be a finite dimensional subspace of V, and F} be a linear
transformation from V; to Vj. Suppose Vi = ker (F + (—\) -idy)" and
F1Vi = Fy. Then there exists a non-empty finite sequence J of Jordan
blocks of A and K and there exists an ordered basis b; of V; such that
AutMt(Fy, by, b1) = the Ox-block diagonal of J.

4. THE MAIN THEOREM

The following two propositions are true:

(31) Let K be an algebraic-closed field, V' be a non trivial finite dimensional
vector space over K, and F' be a linear transformation from V' to V. Then
there exists a non-empty finite sequence J of Jordan blocks of K and there
exists an ordered basis b; of V' such that

(i)  AutMt(F, by, b1) = the Ox-block diagonal of J, and
(ii)  for every scalar A of K holds A is an eigenvalue of F' iff there exists i
such that i € dom J and J(i) = the Jordan block of A and len J(7).

(32) Let K be an algebraic-closed field and M be a square matrix over K of
dimension n. Then there exists a non-empty finite sequence J of Jordan
blocks of K and there exists a square matrix P over K of dimension n
such that > LenJ = n and P is invertible and M = P - the 0x-block
diagonal of J - P~.
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[17] provide the terminology and notation for this paper.

1. FaATou’s LEMMA

For simplicity, we adopt the following rules: X denotes a non empty set,
F denotes a sequence of partial functions from X into R with the same dom,
s1, So, s3 denote sequences of extended reals, x denotes an element of X, a, r
denote extended real numbers, and n, m, k denote natural numbers.
We now state several propositions:
(1) If for every natural number n holds s3(n) < s3(n), then infrngsy <
inf rng s3.
(2) Suppose that for every natural number n holds sa(n) < s3(n). Then
(i)  (the inferior real sequence of s3)(k) < (the inferior real sequence of
s3)(k), and
(the superior real sequence of s9)(k) < (the superior real sequence of
s3)(

) (k).

(i)

(© 2008 University of Bialystok
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(3) If for every natural number n holds sa(n) < s3(n), then liminfsy <
liminf s3 and limsup so < lim sup s3.
(4) If for every natural number n holds s1(n) > a, then inf s; > a.
(5) If for every natural number n holds s1(n) < a, then sup s; < a.
(6) For every element n of N such that € dominf(F 1 n) holds (inf(F 1
) (&) = inf((F#a) 1 n).
In the sequel S is a o-field of subsets of X, M is a o-measure on S, and F
is an element of S.
We now state the proposition

(7) Suppose E = dom F(0) and for every n holds F'(n) is non-negative and
F(n) is measurable on E. Then there exists a sequence I of extended
reals such that for every n holds I(n) = [ F(n)dM and [liminf FdM <
liminf 7.

2. LEBESGUE’S CONVERGENCE THEOREM

We now state three propositions:
(8) For all non empty subsets X, Y of R and for every extended real number
r such that X = {r} and r € R holds sup(X +Y) =sup X +supY.
(9) For all non empty subsets X, Y of R and for every extended real number
r such that X = {r} and » € R holds inf(X +Y) =inf X +inf Y.

(10) If r € R and for every natural number n holds sa(n) = r + s3(n), then
liminf so = 7 + liminf s3 and lim sup s = r + lim sup s3.
We follow the rules: Fy, F are sequences of partial functions from X into R
and f, g, P are partial functions from X to R.
We now state several propositions:

(11) Suppose that
(i) dom F;(0) = dom F5(0),

)
(i)  Fy has the same dom,
(iii)  F3 has the same dom,
)
)
)

—

(iv)  f'({+o0}) =0,
v)  f1({-o00}) =0, and
for every natural number n holds Fi(n) = f + Fa(n).
Then liminf F; = f 4+ liminf F5 and limsup F; = f 4 limsup F5.
(12) S1 T 0= S1.
(13) 1If f is integrable on M and g is integrable on M, then f — g is integrable
on M.
(14) Suppose f is integrable on M and ¢ is integrable on M. Then there
exists an element E of S such that E = dom f Ndomg and [ f —gdM =
[ FIEAM + [(~g)IE dM.

—~

(vi
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(15) If for every natural number n holds s2(n) = —s3(n), then liminf s3 =
—lim sup s2 and lim sup s3 = —lim inf s,.

(16) Suppose dom Fi(0) = dom F5(0) and F; has the same dom and F5 has
the same dom and for every natural number n holds Fi(n) = —F(n).

Then liminf F} = —limsup F5> and limsup F; = —liminf F5.
(17) Suppose that
(i) E =dom F(0),
E =dom P,
for every natural number n holds F'(n) is measurable on F,

(iv) P is integrable on M,
(v) P is non-negative, and
(vi)  for every element x of X and for every natural number n such that

x € E holds |F(n)|(z) < P(z).
Then
(vii)  for every natural number n holds |F'(n)| is integrable on M,
(viii) |liminf F| is integrable on M, and
(ix) |limsup F| is integrable on M.
(18) Suppose that
)  E =domF(0),
) E=domP,
) for every natural number n holds F'(n) is measurable on F,
(iv) P is integrable on M,
) P is non-negative, and
) for every element x of X and for every natural number n such that
x € E holds |F(n)|(z) < P(z).
Then there exists a sequence I of extended reals such that
(vii)  for every natural number n holds I(n) = [ F(n)dM,
(viii)  liminf7 > [liminf F'dM,
(ix) limsup! < [limsup F'dM, and
(x) if for every element = of X such that x € E holds F#ux is convergent,
then I is convergent and lim [ = [ lim F dM.
(19) Suppose that
(i) FE =dom F(0),
(ii)  for every n holds F'(n) is non-negative and F'(n) is measurable on F,
(iii)  for all z, n, m such that x € E and n < m holds F(n)(z) > F(m)(z),
and
(iv) [F(0)[EdM < +oo.
Then there exists a sequence I of extended reals such that for every
natural number n holds I(n) = [F(n)dM and I is convergent and
lim7 = [lim FdM.
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Let X be a set and let F' be a sequence of partial functions from X into R.
We say that F' is uniformly bounded if and only if:

(Def. 1) There exists a real number K such that for every natural number n and
for every set x such that € dom F'(0) holds |F(n)(z)| < K.
Next we state the proposition
(20) Suppose that
(i) M(E) < +oo,
(i) E =dom F(0),
(ili)  for every natural number n holds F(n) is measurable on F,
)
)

=

jay

(iv

(v

F' is uniformly bounded, and
for every element x of X such that x € E holds F#x is convergent.
Then
(vi)  for every natural number n holds F'(n) is integrable on M,
(vii)  lim F' is integrable on M, and
(viii)  there exists a sequence I of extended reals such that for every natu-

ral number n holds I(n) = [ F(n)dM and I is convergent and lim I =
[ lim F dM.

Let X be a set, let F' be a sequence of partial functions from X into R, and
let f be a partial function from X to R. We say that I is uniformly convergent
to f if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i)  F has the same dom,
(i) dom F'(0) = dom f, and
(ili)  for every real number e such that e > 0 there exists a natural number

N such that for every natural number n and for every set x such that
n > N and z € dom F(0) holds |F(n)(z) — f(x)| <.
One can prove the following two propositions:
(21) Suppose Fj is uniformly convergent to f. Let x be an element of X. If
x € dom F1(0), then Fy#x is convergent and lim(Fy#z) = f(x).
(22) Suppose that
(i) M(E) < 4o,
(il) FE =dom F(0),
(ili)  for every natural number n holds F'(n) is integrable on M, and
(iv)  F' is uniformly convergent to f.
Then
(v)  f is integrable on M, and
(vi)  there exists a sequence I of extended reals such that for every natu-
ral number n holds I(n) = [ F(n)dM and I is convergent and lim [ =
J fdM.
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The papers [11], [1], [5], [12], [10}, [2], [7], [6], [8], [9], [3], [4], and [13] provide
the terminology and notation for this paper.

1. PRELIMINARIES

In this paper a, b, r are elements of R.
We now state three propositions:
(1) For all real numbers a, b, g1, M such that a < band 0 < g; and 0 < M
there exists r such that a <r <band (b—7r)-M < g1.
(2) For all real numbers a, b, g1, M such that a < band 0 < g; and 0 < M
there exists r such that a <r <band (r —a)- M < g1.
b

(3) expb—expa= / (the function exp)(z)dz.

!This work has been partially supported by the MEXT grant Grant-in-Aid for Young
Scientists (B)16700156.
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2. THE DEFINITION OF EXTENDED RIEMANN INTEGRAL

Let f be a partial function from R to R and let a, b be real numbers. We say
that f is right extended Riemann integrable on a, b if and only if the conditions
(Def. 1) are satisfied.

(Def. 1)(i)  For every real number d such that a < d < b holds f is integrable on
[a,d] and f[[a,d] is bounded, and
(ii)  there exists a partial function Z from R to R such that domZ = [a, b]

and for every real number z such that x € domZ holds Z(x) = / f(z)dx

and 7 is left convergent in b.

Let f be a partial function from R to R and let a, b be real numbers. We say
that f is left extended Riemann integrable on a, b if and only if the conditions
(Def. 2) are satisfied.

(Def. 2)(i)  For every real number d such that a < d < b holds f is integrable on
[d,b] and f[d,b] is bounded, and
(ii)  there exists a partial function Z from R to R such that domZ = |a, b]

b
and for every real number z such that x € domZ holds Z(z) = / f(z)dx
T

and 7 is right convergent in a.

Let f be a partial function from R to R and let a, b be real numbers. Let

us assume that f is right extended Riemann integrable on a, b. The functor
b

(R™) / f(z)dz yielding a real number is defined by the condition (Def. 3).

(Def. 3) There exists a partial function Z from R to R such that domZ = [a, b]

and for every real number z such that z € domZ holds Z(x) = / f(x)dx

b
and 7 is left convergent in b and (R>)/ f(z)dz = lli)EnI.

Let f be a partial function from R to R and let a, b be real numbers. Let
us assume that f is left extended Riemann integrable on a, b. The functor

b
(R%) / f(z)dz yielding a real number is defined by the condition (Def. 4).
(Def. 4) There exists a partial function Z from R to R such that domZ = ]a, b]

b
and for every real number z such that € domZ holds Z(x) = / f(z)dx
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and Z is right convergent in a and (R<)/ f(z)dx = lil}rnl'.

Let f be a partial function from R to R and let a be a real number. We say
that f is extended Riemann integrable on a, 4+oc0 if and only if the conditions
(Def. 5) are satisfied.

(Def. 5)(i)  For every real number b such that a < b holds f is integrable on [a, b]
and f[[a,b] is bounded, and
(ii)  there exists a partial function Z from R to R such that domZ = [a, +00]

and for every real number x such that € domZ holds Z(x / f(z

and 7 is convergent in +o0.

Let f be a partial function from R to R and let b be a real number. We say
that f is extended Riemann integrable on —oo, b if and only if the conditions
(Def. 6) are satisfied.

(Def. 6)()  For every real number a such that a < b holds f is integrable on [a, b]
and f[[a,b] is bounded, and
(ii)  there exists a partial function Z from R to R such that domZ = ] 00, b]

and for every real number z such that z € domZ holds Z(x / f(z

and 7 is convergent in —oo.

Let f be a partial function from R to R and let a be a real number. Let
us assume that f is extended Riemann integrable on a, +o0o. The functor

(R™) / f(x)dx yielding a real number is defined by the condition (Def. 7).

(Def. 7) There exists a partial function Z from R to R such that domZ = [a, +00]

and for every real number x such that x € domZ holds Z(x / f(x

and 7 is convergent in +o00 and (R”) / f(z)dx = Eml'.

a
Let f be a partial function from R to R and let b be a real number. Let
us assume that f is extended Riemann integrable on —oo, b. The functor

(R%) / f(z)dz yields a real number and is defined by the condition (Def. 8).

(Def. 8) There exists a partial function Z from R to R such that domZ = |—o0, b]
b

and for every real number z such that z € domZ holds Z(x) = / f(x)dx

T
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b
and 7 is convergent in —oco and (R<) / f(z)dz =1limT.

o
Let f be a partial function from R to R. We say that f is co-extended
Riemann integrable if and only if:

(Def. 9) f is extended Riemann integrable on 0, +oco and extended Riemann
integrable on —oo, 0.

Let f be a partial function from R to R. The functor (R) / f(z)dz yields a

real number and is defined by:
0

+oo +oo
(Def. 10) (R) / f(x)de = (R>) / f(x)dz + (RY) / f(x)de.
—00 0

—00

3. LINEARITY OF EXTENDED RIEMANN INTEGRAL

One can prove the following propositions:
(4) Let f, g be partial functions from R to R and a, b be real numbers.
Suppose that
(i) a<b,
(i) [a,6] C dom ,
(iii) [a,b] € domg,
(iv)  f is right extended Riemann integrable on a, b, and
(v) g is right extended Riemann integrable on a, b.

Then f + ¢ is right extended Riemann integrable on a, b and
b

<R>>/<f +g)(a)dz = (R?) /f o+ (R?) [ g(a)do.
(5) Let f be a partial function from R to R and a, b be real numbers. Suppose
a < band [a,b] C dom f and f is right extended Riemann integrable on a,

b. Let r be a real number. Then r f is right extended Riemann integrable
b b

on a, b and (R>)/(r f@)de =r- (R>)/f(a:)dx
(6) Let f, g be partial functions from R to R and a, b be real numbers.
Suppose that
) a<b,
) la,b] C dom f,
(iii) [a,b] € domyg,
) f is left extended Riemann integrable on a, b, and
) g is left extended Riemann integrable on a, b.
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Then f + g is left extended Riemann integrable on a, b and
b

<R<>/<f +g)(@)da = (R) /f o+ (R) [ g(a)da.
(7) Let f be a partial function from R to R and a, b be real numbers. Suppose
a < b and [a,b] C dom f and f is left extended Riemann integrable on a,

b. Let r be a real number. Then r f is left extended Riemann integrable
b

on a, b and (R<)/(rf)( (R /f
a
(8) Let f, g be partial functions from R to R and a be a real number. Suppose
that
) [a,+oo[ C dom f,
(ii) [a,4o0] € domyg,
) f is extended Riemann integrable on a, +00, and
) g is extended Riemann integrable on a, +oc.

Then f + g is extended Riemann integrable on a, +oo and
+00 oo

(R) [ (¢ +9)(@)iz = (R?) / fla)dz + () [ go)ds.
(9) Let f be a partial function frorn R to R and a be a real number. Suppose
[a, +0o[ C dom f and f is extended Riemann integrable on a, +00. Let r

be a real number. Then r f is extended Riemann integrable on a, +oco and
+oo

() [ ¢ D@)ds =7+ (R?) ymf(w)dx

a
(10) Let f, g be partial functions from R to R and b be a real number. Suppose
that
) ]=00,b] € dom f,
(H) ]—OO, b] C dompg,
) f is extended Riemann integrable on —oo, b, and
) g is extended Riemann integrable on —oo, b.

Then f + g is extended Riemann integrable on —oo, b and
b

(R¥) / (f +9)(@)da = (R / fla)da + () [ go)ds.
(11) Let f be a partial function from R to R and b be a real number. Suppose
|—00,b] C dom f and f is extended Riemann integrable on —oo, b. Let

be a real number. Then r f is extended Riemann integrable on —oo, b and
b b

(1) [ e = () [ f(@)da

—00

(12) Let f be a partial function from R to R and a, b be real numbers.
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Suppose a < b and [a,b] C dom f and f is integrable on [a,b] and f[[a, b]
b b
is bounded. Then (R>)/f(ac)dx = /f(:c)d:z

(13) Let f be a partial function from R to R and a, b be real numbers.
Suppose a < b and |[a, b] C dom f and f is integrable on [a,b] and f[[a, D]

is bounded. Then (R< / f(z)dx = / f(z

4. THE DEFINITION OF ONE-SIDED LAPLACE TRANSFORM
Let s be a real number. The functor e=5U
R is defined by:
(Def. 11)  For every real number ¢ holds e~*5(t) = (the function exp)(—s - t).
Let f be a partial function from R to R. The one-sided Laplace transform of
f yielding a partial function from R to R is defined by the conditions (Def. 12).
(Def. 12)(1)  dom (the one-sided Laplace transform of f) = ]0, 4+o0[, and
(ii)  for every real number s such that s € dom (the one-sided Lapla-

ce transform of f) holds (the one-sided Laplace transform of f)(s) =
+oo

(%) [ (1 e D).

0

yielding a function from R into

5. LINEARITY OF ONE-SIDED LAPLACE TRANSFORM

Next we state two propositions:

(14) Let f, g be partial functions from R to R. Suppose that
() dom f = [0, +oo],
(i) domg = [0, +o0],
(iii) ~ for every real number s such that s € ]0, +-00[ holds f e~*H is extended
Riemann integrable on 0, +o00, and
(iv)  for every real number s such that s € |0, +oo[ holds g e~
Riemann integrable on 0, +oc.
Then
(v)  for every real number s such that s € ]0,4oo[ holds (f + g)e " is
extended Riemann integrable on 0, 400, and
(vi)  the one-sided Laplace transform of f + g = (the one-sided Laplace
transform of f) + (the one-sided Laplace transform of g).

s i5 extended

(15) Let f be a partial function from R to R and a be a real number. Suppose
dom f = [0, +oo[ and for every real number s such that s € |0, +o00[ holds
f e *H is extended Riemann integrable on 0, +o0o. Then
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(i) for every real number s such that s € ]0, +oo[ holds a f e~ is extended
Riemann integrable on 0, 400, and

(ii)  the one-sided Laplace transform of a f = a the one-sided Laplace trans-
form of f.
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1. DEFINITIONS FOR COMPLEX-VALUED FUNCTIONS

One can prove the following proposition
(1) For all real numbers a, b holds R(a) +R(b) = a+b and —R(a) = —a and
R(a) —R(b) =a — b and R(a) - R(b) = a - b.

Let X be a non empty set and let f be a partial function from X to C. The
functor R(f) yields a partial function from X to R and is defined as follows:
(Def. 1) dom R(f) = dom f and for every element = of X such that x € dom R(f)

holds R(f)(z) = R(f(x)).

(© 2008 University of Bialystok
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The functor (f)
(Def. 2) dom (f) = dom f and for every element = of X such that x € dom J(f)
holds 3(f)(z) = I(f(2))-

yields a partial function from X to R and is defined as follows:

2. THE MEASURABILITY OF COMPLEX-VALUED FUNCTIONS

For simplicity, we use the following convention: X is a non empty set, Y is
a set, S is a o-field of subsets of X, M is a o-measure on S, f, g are partial
functions from X to C, r is a real number, ¢ is a complex number, and F, A, B
are elements of S.

Let X be a non empty set, let S be a o-field of subsets of X, let f be a
partial function from X to C, and let E be an element of S. We say that f is
measurable on F if and only if:

(Def. 3) R(f) is measurable on E and (f) is measurable on E.

One can prove the following propositions:

(2) rR(f)=R(rf) and r I(f) =S(r f).
(3) R(cf)=R(e)R(f) — S3(c) 3(f) and S(c f) = I(c) R(f) + R(c) ().
(4) —=S(f) =R f) and R(f) = 3@ [f).
(5) R(f +g) =R(f)+R(g) and I(f +g) = I(f) +3(g)-
(6) R(f - ) R(f) — R(g) and S(f — g) = 3(f) — S(9)-
(7) R(TA=R(fTA) and S(f)[A=S(f[A4).
(8) f=R(f)+iS().
(9) If BC A and f is measurable on A, then f is measurable on B.
(10) If f is measurable on A and f is measurable on B, then f is measurable
on AUB.
(11) If f is measurable on A and g is measurable on A, then f+g¢ is measurable
on A.

(12) If f is measurable on A and g is measurable on A and A C dom g, then
f — g is measurable on A.

(13) IfY C dom(f+g),thendom(f[Y+g[Y)=Y and (f+g)|Y = f|Y +g]Y.
(14) 1If f is measurable on B and A = dom f N B, then f[B is measurable on

) If dom f, domg € S, then dom(f + g) € S.

16) If dom f = A, then f is measurable on B iff f is measurable on AN B.
) If f is measurable on A and A C dom f, then ¢ f is measurable on A.
)

Given an element A of S such that dom f = A. Let ¢ be a complex
number and B be an element of S. If f is measurable on B, then ¢ f is
measurable on B.
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3. THE INTEGRAL OF A COMPLEX-VALUED MEASURABLE FUNCTION

Let X be a non empty set, let S be a o-field of subsets of X, let M be a
o-measure on S, and let f be a partial function from X to C. We say that f is
integrable on M if and only if:

(Def. 4)  R(f) is integrable on M and (f) is integrable on M.

Let X be a non empty set, let S be a o-field of subsets of X, let M be a
o-measure on S, and let f be a partial function from X to C. Let us assume
that f is integrable on M. The functor [ fdM yielding a complex number is
defined by:

(Def. 5) There exist real numbers R, I such that R = [R(f)dM and I =
JS(f)dM and [ fdM =R+ 1 -i.
We now state several propositions:

(19) Let X be a non empty set, S be a o-field of subsets of X, M be a o-
measure on S, f be a partial function from X to R, and A be an element
of §. Suppose there exists an element E of S such that £ = dom f and f
is measurable on E and M(A) = 0. Then f[A is integrable on M.

(20) Let X be a non empty set, S be a o-field of subsets of X, M be a o-
measure on S, f be a partial function from X to R, and E, A be elements
of S. Suppose there exists an element E of S such that £ = dom f and f
is measurable on E and M(A) = 0. Then f[A is integrable on M.

(21) Suppose there exists an element E of S such that £ = dom f and f
is measurable on E and M(A) = 0. Then f[A is integrable on M and
J fTAdM = 0.

(22) If F = dom f and f is integrable on M and M(A) = 0, then [ f[(E\
A)dM = [ fdM.

(23) If f is integrable on M, then f[A is integrable on M.

(24) If f is integrable on M and A misses B, then [ f[(A U B)dM =
[ fIAdM + [ fIBdM.

(25) If f is integrable on M and B = dom f \ A, then f[A is integrable on
M and [ fdM = [ flAdM + [ fIBdM.

Let k be a real number, let X be a non empty set, and let f be a partial
function from X to R. The functor f* yields a partial function from X to R and
is defined as follows:

(Def. 6) dom(f*¥) = dom f and for every element x of X such that x € dom(f*)
holds f*(z) = f(x)*.
Let us consider X. Observe that there exists a partial function from X to R
which is non-negative.
Let k be a non negative real number, let us consider X, and let f be a
non-negative partial function from X to R. Observe that f* is non-negative.
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We now state a number of propositions:

(26) Let k be a real number, given X, S, FE, and f be a partial function from
X to R. If f is non-negative and 0 < k, then f* is non-negative.

(27) Let = be a set, given X, S, E, and f be a partial function from X to R.
If f is non-negative, then f(:v)% =/ f(x).

(28) For every partial function f from X to R and for every real number a
such that A C dom f holds A N LE-dom(f,a) = A\ AN GTE-dom(f,a).

(29) Let k be a real number, given X, S, F, and f be a partial function from
X to R. Suppose f is non-negative and 0 < k and £ C dom f and f is
measurable on E. Then f* is measurable on E.

(30) If f is measurable on A and A C dom f, then |f| is measurable on A.

(31) Given an element A of S such that A = dom f and f is measurable on
A. Then f is integrable on M if and only if | f| is integrable on M.

(32) If f is integrable on M and g is integrable on M, then dom(f + g) € S.

(33) If f is integrable on M and g is integrable on M, then f+ g is integrable
on M.

(34) Let X be a non empty set, S be a o-field of subsets of X, M be a o-
measure on S, and f, g be partial functions from X to R. Suppose f is
integrable on M and g is integrable on M. Then f — g is integrable on M.

(35) 1If f is integrable on M and g is integrable on M, then f — g is integrable
on M.

(36) Suppose f is integrable on M and g is integrable on M. Then there
exists an element E of S such that E = dom f Ndomg and [ f+ gdM =
JIEAM + [glEdM.

(37) Let X be a non empty set, S be a o-field of subsets of X, M be a o-
measure on S, and f, g be partial functions from X to R. Suppose f is
integrable on M and g is integrable on M. Then there exists an element
E of S such that F = dom f Ndomg and [ f — gdM = [ f[EdM +
J(=g)TEdM.

(38) If f is integrable on M, then r f is integrable on M and [r fdM =
r- [ fdM.

(39) If f is integrable on M, then i f is integrable on M and [ifdM =
i [ fdM.

(40) If f is integrable on M, then c f is integrable on M and [c¢fdM =
c- [ fdM.

(41) For every partial function f from X to R and for all Y, r holds (r f)|Y =
r (fIY).

(42) Let f, g be partial functions from X to R. Suppose that
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(i)  there exists an element A of S such that A = dom f Ndomg and f is
measurable on A and g is measurable on A,
(ii)  f is integrable on M,
(iii) g is integrable on M, and
(iv) g — f is non-negative.
Then there exists an element E of S such that £ = dom f N dom g and
JfIEAM < [g[EdM.
(43) Suppose there exists an element A of S such that A = dom f and f is
measurable on A and f is integrable on M. Then | [ fdM| < [|f|dM.

Let X be a non empty set, let S be a o-field of subsets of X, let M be
a o-measure on S, let f be a partial function from X to C, and let B be an
element of S. The functor [ fdM yields a complex number and is defined by:
B

(Def. 7) [ fdM = [ fIBdM.
B

Next we state two propositions:

(44) Suppose f is integrable on M and g is integrable on M and B C dom(f+
g). Then f + g is integrable on M and [ f 4+ gdM = [ fdM + [ gdM.
B B B

(45) If f is integrable on M and f is measurable on B, then [c¢fdM =
B
c- [ fdM.
B

4. SEVERAL PROPERTIES OF REAL-VALUED MEASURABLE FUNCTIONS

In the sequel f denotes a partial function from X to R and a denotes a real
number.

One can prove the following four propositions:
(46) If A C dom f, then AN GTE-dom(f,a) = A\ AN LE-dom(f,a).
(47) If A Cdom f, then AN GT-dom(f,a) = A\ AN LEQ-dom(f,a).
(
(

D
=

48) If A C dom f, then ANLEQ-dom(f,a) =A\ AN GT-dom(f,a).
49) ANEQ-dom(f,a) = AN GTE-dom(f,a) N LEQ-dom(f,a).
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[20], [18], [16], [10], [13], and [14] provide the terminology and notation for this
paper.

1. DEFINITION BY INDEPENDENT SETS

A subset family structure is a topological structure.
Let M be a subset family structure and let A be a subset of M. We introduce
A is independent as a synonym of A is open. We introduce A is dependent as
an antonym of A is open.
Let M be a subset family structure. The family of M yielding a family of
subsets of M is defined as follows:
(Def. 1) The family of M = the topology of M.

Let M be a subset family structure and let A be a subset of M. Let us
observe that A is independent if and only if:
(Def. 2) A € the family of M.
Let M be a subset family structure. We say that M is subset-closed if and
only if:
(Def. 3) The family of M is subset-closed.

!This article was done under the Agreement of Cooperation between Biatystok Technical
University and Shinshu University.
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We say that M has exchange property if and only if the condition (Def. 4) is
satisfied.

(Def. 4) Let A, B be finite subsets of M. Suppose A € the family of M and
B € the family of M and card B = card A + 1. Then there exists an
element e of M such that e € B\ A and AU {e} € the family of M.

One can check that there exists a subset family structure which is strict, non
empty, non void, finite, and subset-closed and has exchange property.

Let M be a non void subset family structure. One can verify that there exists
a subset of M which is independent.

Let M be a subset-closed subset family structure. One can verify that the
family of M is subset-closed.

We now state the proposition

(1) Let M be a non void subset-closed subset family structure, A be an inde-

pendent subset of M, and B be a set. If B C A, then B is an independent
subset of M.

Let M be a non void subset-closed subset family structure. Note that there
exists a subset of M which is finite and independent.

A matroid is a non empty non void subset-closed subset family structure
with exchange property.

One can prove the following proposition

(2) For every subset-closed subset family structure M holds M is non void
iff () € the family of M.

Let M be a non void subset-closed subset family structure. Note that
(Dthe carrier of M 18 independent'
The following proposition is true
(3) Let M be a non void subset family structure. Then M is subset-closed

if and only if for all subsets A, B of M such that A is independent and
B C A holds B is independent.

Let M be a non void subset-closed subset family structure, let A be an
independent subset of M, and let B be a set. One can check the following
observations:

* AN B is independent,

% BN A is independent, and

x A\ B is independent.

Next we state the proposition

(4) Let M be a non void non empty subset family structure. Then M has
exchange property if and only if for all finite subsets A, B of M such that
A is independent and B is independent and card B = card A + 1 there
exists an element e of M such that e € B\ A and AU {e} is independent.
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Let A be a set. We introduce A is finite-membered as a synonym of A has
finite elements.
Let A be a set. Let us observe that A is finite-membered if and only if:
(Def. 5) For every set B such that B € A holds B is finite.

Let M be a subset family structure. We say that M is finite-membered if
and only if:

(Def. 6) The family of M is finite-membered.
Let M be a subset family structure. We say that M is finite-degree if and
only if the conditions (Def. 7) are satisfied.
(Def. 7)(i) M is finite-membered, and
(ii)  there exists a natural number n such that for every finite subset A of
M such that A is independent holds card A < n.
Let us note that every subset family structure which is finite-degree is also
finite-membered and every subset family structure which is finite is also finite-
degree.

2. EXAMPLES

Let us note that there exists a set which is mutually-disjoint and non empty
and has non empty elements.
The following propositions are true:
(5) For all finite sets A, B such that card A < card B there exists a set x
such that =z € B\ A.
(6) For every mutually-disjoint non empty set P with non empty elements
holds every choice function of P is one-to-one.
Let us mention that every discrete subset family structure is non void and
subset-closed and has exchange property.
Next we state the proposition
(7) Every non empty discrete topological structure is a matroid.
Let P be a set. The functor ProdMatroid P yields a strict subset family
structure and is defined by the conditions (Def. 8).
(Def. 8)(i) The carrier of ProdMatroid P = |J P, and
(ii)  the family of ProdMatroidP = {A C UP : Ap.wt (D € P =
\/d:set AND - {d})}
Let P be a non empty set with non empty elements. One can verify that
ProdMatroid P is non empty.
Next we state the proposition
(8) Let P be aset and A be a subset of ProdMatroid P. Then A is indepen-
dent if and only if for every element D of P there exists an element d of
D such that An D C {d}.
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Let P be a set. One can verify that ProdMatroid P is non void and subset-
closed.

Next we state two propositions:
(9) Let P be a mutually-disjoint set and = be a subset of ProdMatroid P.

Then there exists a function f from z into P such that for every set a
such that a € = holds a € f(a).

(10) Let P be a mutually-disjoint set, x be a subset of ProdMatroid P, and f

be a function from x into P. Suppose that for every set a such that a € z
holds a € f(a). Then x is independent if and only if f is one-to-one.

Let P be a mutually-disjoint set. Observe that ProdMatroid P has exchange
property.

Let X be a finite set and let P be a subset of 2%. One can check that
ProdMatroid P is finite.

Let X be a set. Observe that every partition of X is mutually-disjoint.

One can check that there exists a matroid which is finite and strict.

Let M be a finite-membered non void subset family structure. Observe that
every independent subset of M is finite.

Let F be a field and let V' be a vector space over F'. The matroid of linearly
independent subsets of V is a strict subset family structure and is defined by
the conditions (Def. 9).

(Def. 9)(i)  The carrier of the matroid of linearly independent subsets of V' = the
carrier of V', and

(ii)  the family of the matroid of linearly independent subsets of V' = {A C
V: A is linearly independent}.

Let F be a field and let V' be a vector space over F. Note that the matroid

of linearly independent subsets of V' is non empty, non void, and subset-closed.

Let F' be a field and let V' be a vector space over F'. Observe that there
exists a subset of V' which is linearly independent and empty.

The following three propositions are true:
(11) Let F be a field, V' be a vector space over F', and A be a subset of the

matroid of linearly independent subsets of V. Then A is independent if
and only if A is a linearly independent subset of V.

(12) Let F be a field, V' be a vector space over F, and A, B be finite subsets
of V. Suppose B C A. Let v be a vector of V. Suppose v € Lin(A) and
v ¢ Lin(B). Then there exists a vector w of V such that w € A\ B and
w € Lin((A\ {w}) U {v}).

(13) Let F be a field, V' be a vector space over F'; and A be a subset of V.
Suppose A is linearly independent. Let a be an element of V. If a & the
carrier of Lin(A), then AU {a} is linearly independent.
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Let F be a field and let V be a vector space over F'. Observe that the matroid
of linearly independent subsets of V' has exchange property.

Let F' be a field and let V' be a finite dimensional vector space over F'. Note
that the matroid of linearly independent subsets of V' is finite-membered.

3. MAXIMAL INDEPENDENT SUBSETS, RANKS, AND BASIS

Let M be a subset family structure and let A, C' be subsets of M. We say
that A is maximal independent in C' if and only if:
(Def. 10) A is independent and A C C and for every subset B of M such that B
is independent and B C C and A C B holds A = B.
The following propositions are true:

(14) Let M be a non void finite-degree subset family structure and C, A be
subsets of M. Suppose A C C and A is independent. Then there exi-
sts an independent subset B of M such that A C B and B is maximal
independent in C.

(15) Let M be a non void finite-degree subset-closed subset family structure
and C be a subset of M. Then there exists an independent subset of M
which is maximal independent in C.

(16) Let M be a non empty non void subset-closed finite-degree subset family
structure. Then M is a matroid if and only if for every subset C' of M and
for all independent subsets A, B of M such that A is maximal independent
in C and B is maximal independent in C holds card A = card B.

Let M be a finite-degree matroid and let C' be a subset of M. The functor
Rnk C yields a natural number and is defined by:
(Def. 11) Rnk C = [J{card A; A ranges over independent subsets of M: A C C}.
One can prove the following propositions:

(17) Let M be a finite-degree matroid, C' be a subset of M, and A be an
independent subset of M. If A C C, then card A < Rnk C.

(18) Let M be a finite-degree matroid and C' be a subset of M. Then there
exists an independent subset A of M such that A C C' and card A = Rnk C.

(19) Let M be a finite-degree matroid, C' be a subset of M, and A be an
independent subset of M. Then A is maximal independent in C' if and
only if A C C and card A = Rnk C.

(20) For every finite-degree matroid M and for every finite subset C' of M
holds Rnk C < card C.

(21) Let M be a finite-degree matroid and C be a finite subset of M. Then
C is independent if and only if card C = Rnk C.

Let M be a finite-degree matroid. The functor Rnk M yielding a natural
number is defined by:
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(Def. 12) Rnk M = Rnk(Qy).

Let M be a non void finite-degree subset family structure. An independent
subset of M is said to be a basis of M if:

(Def. 13) It is maximal independent in ;.
One can prove the following propositions:

(22) For every finite-degree matroid M and for all bases By, Bz of M holds
card By = card Bs.

(23) For every finite-degree matroid M and for every independent subset A
of M there exists a basis B of M such that A C B.

We follow the rules: M is a finite-degree matroid, A, B, C are subsets of M,
and e, f are elements of M.
Next we state four propositions:

(24) If AC B, then Rnk A < Rnk B.

(25) Rnk(AU B)+ Rnk(AN B) < Rnk A + Rnk B.

(26) Rnk A < Rnk(AU B) and Rnk(A U {e}) < Rnk A+ 1.
(27)

If Rnk(A U{e}) = Rnk(A U {f}) and Rnk(A U {f}) = Rnk A, then
Rnk(A U {e, f}) = Rnk A.

27

4. DEPENDENCE ON A SET, SPANS, AND CYCLES

Let M be a finite-degree matroid, let e be an element of M, and let A be a
subset of M. We say that e is dependent on A if and only if:

(Def. 14) Rnk(AU{e}) = Rnk A.
We now state two propositions:
(28) If e € A, then e is dependent on A.
(29) If AC B and e is dependent on A, then e is dependent on B.

Let M be a finite-degree matroid and let A be a subset of M. The functor
Span A yielding a subset of M is defined as follows:

(Def. 15) Span A = {e € M: e is dependent on A}.

Next we state several propositions:

(30) e € Span A iff Rnk(A U {e}) = Rnk A.

(31) A C SpanA.

(32) If AC B, then Span A C Span B.

(33) RnkSpan A = Rnk A.

(34) 1If e is dependent on Span A, then e is dependent on A.

(35) SpanSpan A = Span A.

(36) If f ¢ Span A and f € Span(A U {e}), then e € Span(A U {f}).
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Let M be a subset family structure and let A be a subset of M. We say that
A is cycle if and only if:
(Def. 16) A is dependent and for every element e of M such that e € A holds
A\ {e} is independent.
Next we state the proposition
(37) 1If Ais cycle, then A is non empty and finite.
Let us consider M. Note that every subset of M which is cycle is also non
empty and finite.
One can prove the following propositions:

(38) Aiscycleiff Aisnon empty and for every e such that e € A holds A\ {e}
is maximal independent in A.

If A is cycle, then Rnk A+ 1 = A.

If Ais cycle and e € A, then e is dependent on A \ {e}.

If Ais cycle and B is cycle and A C B, then A = B.

If for every B such that B C A holds B is not cycle, then A is indepen-
dent.
(43) 1If Ais cycle and B is cycle and A # B and e € AN B, then there exists

C such that C' is cycle and C' C (AU B) \ {e}.

(44) If A is independent and B is cycle and C'is cycle and B C AU {e} and
C C AU {e}, then B =C.

39
40
41

(
(
(
(42

)
)
)
)
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Summary. In this article, we define two single-variable functions SVF1
and SVF2, then discuss partial differentiation of real binary functions by dint of
one variable function SVF1 and SVF2. The main properties of partial differen-
tiation are shown [7].

MML identifier: PDIFF_2, version: 7.9.03 4.104.1021

The articles [14], [4], [15], [3], [1], [8], [10], (9], (2}, [3], [13], (6], [12], [11], and [7]
provide the notation and terminology for this paper.

1. PRELIMINARIES

For simplicity, we adopt the following convention: x, xg, y, yo, r are real
numbers, z, zg are elements of R?, Z is a subset of R?, f, fi, fo are partial
functions from R? to R, R is a rest, and L is a linear function.

Next we state two propositions:

(1) domproj(1,2) = R? and rng proj(1,2) = R and for all elements z, y of
R holds (proj(1,2))({z,y)) = x.

(2) domproj(2,2) = R? and rng proj(2,2) = R and for all elements z, y of
R holds (proj(2,2))({z,y)) = v.

(© 2008 University of Bialystok
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2. PARTIAL DIFFERENTIATION OF REAL BINARY FUNCTIONS

Let f be a partial function from R? to R and let z be an element of R?. The
functor SVF1(f, z) yielding a partial function from R to R is defined by:
(Def. 1) SVFI1(f,z) = f -reproj(1, 2).
The functor SVF2(f, z) yields a partial function from R to R and is defined as
follows:
(Def. 2) SVF2(f,z) = f -reproj(2, z).
Next we state two propositions:

(3) If z = (x,y) and f is partially differentiable in z w.r.t. 1 coordinate, then
SVF1(f, z) is differentiable in x.

(4) If z = (z,y) and f is partially differentiable in z w.r.t. 2 coordinate, then
SVFE2(f, z) is differentiable in y.

Let f be a partial function from R? to R and let z be an element of R?. We
say that f is partial differentiable on 1st coordinate in z if and only if:

(Def. 3) There exist real numbers xg, yo such that z = (zo, yo) and SVF1(f, z) is
differentiable in z.
We say that f is partial differentiable on 2nd coordinate in z if and only if:
(Def. 4) There exist real numbers xg, yo such that z = (zo, yo) and SVF2(f, z) is
differentiable in yyg.

Next we state two propositions:

(5) Suppose z = (g, yo) and f is partial differentiable on 1st coordinate in z.
Then there exists a neighbourhood NN of g such that N C dom SVF1(f, z)
and there exist L, R such that for every x such that x € N holds
(SVF1(f,2))(z) — (SVF1(f, 2))(x0) = L(z — x¢) + R(x — x0).

(6) Suppose z = (xo,yo) and f is partial differentiable on 2nd coordina-
te in z. Then there exists a neighbourhood N of yg such that N C
dom SVF2(f, z) and there exist L, R such that for every y such that y € N
holds (SVF2(, 2))() — (SVF2(f, 2))(s0) = L(y — o) + R(y — o).

Let f be a partial function from R? to R and let z be an element of R?. Let
us observe that f is partial differentiable on 1st coordinate in z if and only if
the condition (Def. 5) is satisfied.

(Def. 5) There exist real numbers xg, yo such that

(i) 2z = (xo,y0), and

(ii)  there exists a neighbourhood N of zg such that N C dom SVF1(f, z)
and there exist L, R such that for every z such that x € N holds
(SVF1(f,2))(x) — (SVF1(f, 2))(x0) = L(x — z9) + R(x — o).

Let f be a partial function from R? to R and let z be an element of R2. Let
us observe that f is partial differentiable on 2nd coordinate in z if and only if
the condition (Def. 6) is satisfied.
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(Def. 6) There exist real numbers xg, yo such that
(i) 2= (xo0,90), and
(ii)  there exists a neighbourhood N of yy such that N C dom SVF2(f, )
and there exist L, R such that for every y such that y € N holds

(SVF2(f, 2))(y) = (SVF2(f,2))(0) = L(y — %) + R(y — o)
Next we state two propositions:

(7) Let f be a partial function from R? to R and z be an element of R2.
Then f is partial differentiable on 1st coordinate in z if and only if f is
partially differentiable in z w.r.t. 1 coordinate.

(8) Let f be a partial function from R? to R and z be an element of R?.
Then f is partial differentiable on 2nd coordinate in z if and only if f is
partially differentiable in z w.r.t. 2 coordinate.

Let f be a partial function from R? to R and let z be an element of R2. The
functor partdiff1(f, z) yielding a real number is defined by:
(Def. 7) partdiff1(f, z) = partdiff(f, z, 1).
The functor partdiff2(f, z) yielding a real number is defined as follows:
(Def. 8) partdiff2(f, z) = partdiff(f, z, 2).
One can prove the following propositions:

(9) Suppose z = (xg,y0) and f is partial differentiable on 1st coordinate
in z. Then r = partdiffl(f, z) if and only if there exist real numbers z,
yo such that z = (zg, yo) and there exists a neighbourhood N of g such
that N C dom SVF1(f,z) and there exist L, R such that » = L(1) and
for every x such that € N holds (SVF1(f,z))(x) — (SVF1(f, 2))(x0) =
L(x — o) + R(x — o).

(10) Suppose z = (z9,yo) and f is partial differentiable on 2nd coordinate
in z. Then r = partdiff2(f, z) if and only if there exist real numbers z,
yo such that z = (xo,y0) and there exists a neighbourhood N of yg such
that N C dom SVF2(f,z) and there exist L, R such that »r = L(1) and
for every y such that y € N holds (SVF2(f, z))(y) — (SVF2(f,2))(yo) =
L(y — yo) + R(y — yo)-

(11) If z = (xo,y0) and f is partial differentiable on 1st coordinate in z, then
partdiff1(f, z) = (SVF1(f, 2))"(z0)-

(12) If z = (xo, yo) and f is partial differentiable on 2nd coordinate in z, then
partdiff2(f, z) = (SVF2(f, 2)) (yo).

Let f be a partial function from R? to R and let Z be a set. We say that f
is partial differentiable w.r.t. 1st coordinate on Z if and only if:
(Def. 9) Z C dom f and for every element z of R? such that z € Z holds f]Z is
partial differentiable on 1st coordinate in z.

We say that f is partial differentiable w.r.t. 2nd coordinate on Z if and only if:
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(Def. 10) Z C dom f and for every element z of R? such that z € Z holds f|Z is
partial differentiable on 2nd coordinate in z.
One can prove the following two propositions:
(13) Suppose f is partial differentiable w.r.t. 1st coordinate on Z. Then Z C
dom f and for every z such that z € Z holds f is partial differentiable on
1st coordinate in z.

(14) Suppose f is partial differentiable w.r.t. 2nd coordinate on Z. Then
Z C dom f and for every z such that z € Z holds f is partial differentiable
on 2nd coordinate in z.

Let f be a partial function from R? to R and let Z be a set. Let us assu-
me that f is partial differentiable w.r.t. 1st coordinate on Z. The functor f%}t

yielding a partial function from R? to R is defined as follows:
(Def. 11)  dom( frlgt) = Z and for every element z of R? such that z € Z holds
[ (2) = partdiff1(f, 2).
Let f be a partial function from R? to R and let Z be a set. Let us assume
that f is partial differentiable w.r.t. 2nd coordinate on Z. The functor fﬁgd
yielding a partial function from R? to R is defined as follows:

(Def. 12) dom( f?gd) = Z and for every element z of R? such that z € Z holds
f?gd(z) = partdiff2(f, z).

3. MAIN PROPERTIES OF PARTIAL DIFFERENTIATION OF REAL BINARY
FUNCTIONS

We now state a number of propositions:

(15) Let 29 be an element of R? and N be a neighbourhood of (proj(1,2))(zo)-
Suppose f is partial differentiable on 1st coordinate in zy and N C
dom SVF1(f, z0). Let h be a convergent to 0 sequence of real numbers and ¢
be a constant sequence of real numbers. Suppose rng ¢ = {(proj(1,2))(zo)}
and rng(h+¢) € N. Then h~! (SVF1(f, 29) - (h+¢) —SVF1(f, z9) - ¢) is co-
nvergent and partdiff1(f, zg) = lim(h~! (SVF1(f, 20)-(h+c)—SVF1(f, z0)-
c)).

(16) Let zp be an element of R? and N be a neighbourhood of (proj(2,2))(zo).
Suppose f is partial differentiable on 2nd coordinate in zyp and N C
dom SVF2(f, zp). Let h be a convergent to 0 sequence of real numbers and ¢
be a constant sequence of real numbers. Suppose rng ¢ = {(proj(2,2))(zo)}
and rng(h+c¢) € N. Then h~! (SVF2(f, 29) - (h+¢) —SVF2(f, 29) - ¢) is co-
nvergent and partdiff2(f, zo) = im(h~! (SVF2(f, 20)- (h-+c) —SVF2(f, z0)-
c)).

(17) Suppose f; is partial differentiable on 1st coordinate in zp and fo
is partial differentiable on 1st coordinate in zy. Then f; + fo is par-
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tial differentiable on 1st coordinate in zy and partdiffl(f; + fo2,20) =
partdiff1(fi1, zo) + partdiff1( fa, 2o).

(18) Suppose fi is partial differentiable on 2nd coordinate in zy and fo
is partial differentiable on 2nd coordinate in zy. Then f; + fo is par-
tial differentiable on 2nd coordinate in zp and partdiff2(f; + fo,20) =
partdiff2( f1, zo) + partdiff2( f2, zp).

(19) Suppose f is partial differentiable on 1st coordinate in zp and fo
is partial differentiable on 1st coordinate in zy. Then f; — fo is par-
tial differentiable on 1st coordinate in zy and partdiffl(f; — fo2,20) =
partdiff1(fi, zo) — partdiff1( f2, zp).

(20) Suppose f; is partial differentiable on 2nd coordinate in zy and fo
is partial differentiable on 2nd coordinate in zg. Then f; — fo is par-
tial differentiable on 2nd coordinate in zp and partdiff2(f; — fo,20) =
partdiff2( f1, zo) — partdiff2( f2, zp).

(21) Suppose f is partial differentiable on 1st coordinate in zy. Then r f
is partial differentiable on 1st coordinate in zy and partdiffl(r f, z9) =
r - partdiff1(f, zp).

(22) Suppose f is partial differentiable on 2nd coordinate in zy. Then r f
is partial differentiable on 2nd coordinate in zp and partdiff2(r f, zp) =
r - partdiff2(f, zp).

(23) Suppose fi is partial differentiable on 1st coordinate in zy and fa is
partial differentiable on 1st coordinate in zg. Then f; fo is partial diffe-
rentiable on 1st coordinate in zj.

(24) Suppose fi is partial differentiable on 2nd coordinate in zp and fy is
partial differentiable on 2nd coordinate in zy. Then f; fo is partial diffe-
rentiable on 2nd coordinate in zg.

(25) Let 2o be an element of R2. Suppose f is partial differentiable on 1st
coordinate in zp. Then SVF1(f, z9) is continuous in (proj(1,2))(zo).

(26) Let zp be an element of R%. Suppose f is partial differentiable on 2nd
coordinate in zg. Then SVF2(f, 29) is continuous in (proj(2,2))(zo).

(27) If f is partial differentiable on 1st coordinate in zp, then there exists R
such that R(0) = 0 and R is continuous in 0.

(28) If f is partial differentiable on 2nd coordinate in zp, then there exists R
such that R(0) =0 and R is continuous in 0.
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Summary. This text includes verification of the basic algorithm in Simple
On-the-fly Automatic Verification of Linear Temporal Logic (LTL). LTL formula
can be transformed to Buchi automaton, and this transforming algorithm is ma-
inly used at Simple On-the-fly Automatic Verification. In this article, we verified
the transforming algorithm itself. At first, we prepared some definitions and ope-
rations for transforming. And then, we defined the Buchi automaton and verified
the transforming algorithm.

MML identifier: MODELC_3, version: 7.9.03 4.108.1028

The notation and terminology used in this paper are introduced in the following
articles: [5], [14], [6], [7], [1], [15], [3], [16], [2], [13], [4], [12], [10], [11], 8], and
[9].

1. DEFINITION OF BASIC OPERATIONS TO BUILD AN AUTOMATON FOR LTL
AND PROPERTIES

For simplicity, we adopt the following rules: k, n, m, i, j are elements of N,
x,y, X are sets, L, Ly, Lo are finite sequences, F', H are LTL-formulae, W, Wy,
Ws are subsets of Subformulae H, and v is an LTL-formula.

Let us consider F'. Then Subformulae F' is a subset of WFFy ..

Let us consider H. The functor LTLNew; H yields a subset of Subformulae H
and is defined as follows:

{LeftArg(H), RightArg(H)}, if H is conjunctive,
{LeftArg(H)}, if H is disjunctive,

(), if H has next operator,

{LeftArg(H)}, if H has until operator,
{RightArg(H)}, if H has release operator,

(0, otherwise.

(Def. 1) LTLNew; H =

(© 2008 University of Bialystok
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The functor LTLNews H yields a subset of Subformulae H and is defined as
follows:

(0, if H is conjunctive,

{RightArg(H)}, if H is disjunctive,

(0, if H has newt operator,

{RightArg(H)}, if H has until operator,
{LeftArg(H), RightArg(H)}, if H has release operator,
(, otherwise.

The functor LTLNext H yielding a subset of Subformulae H is defined as follows:
(0, if H is conjunctive,

(0, if H is disjunctive,

{Arg(H)}, if H has nezt operator,

{H}, if H has until operator,

{H}, if H has release operator,

(), otherwise.

Let us consider v. We consider LTL-nodes over v as systems

( an old-component, a new-component, a next-component ),
where the old-component, the new-component, and the next-component are
subsets of Subformulae v.

Let us consider v, let N be an LTL-node over v, and let us consider H. Let
us assume that H € the new-component of N. The functor SuccNode;(H, N)
yielding a strict LTL-node over v is defined by the conditions (Def. 4).

(Def. 4)(i)  The old-component of SuccNode;(H, N) = (the old-component of
N)U{H],
(ii)  the new-component of SuccNode;(H,N) = ((the new-component of
N)\ {H}) U (LTLNew; H \ the old-component of N), and
(ili)  the next-component of SuccNode;(H, N) = (the next-component of
N) U LTLNext H.

Let us consider v, let N be an LTL-node over v, and let us consider H. Let
us assume that H € the new-component of N and H is either disjunctive or has
until operator or release operator. The functor SuccNodes(H, N) yields a strict
LTL-node over v and is defined by the conditions (Def. 5).

(Def. 5)(i)  The old-component of SuccNodey(H, N) = (the old-component of
N)U{H],
(ii)  the new-component of SuccNodes(H,N) = ((the new-component of
N)\ {H}) U (LTLNewsg H \ the old-component of N), and
(iii)  the next-component of SuccNodes(H, N) = the next-component of N.

Let us consider v, let N1, Ny be LTL-nodes over v, and let us consider H.
We say that Ny is a successor of Ny and H if and only if the conditions (Def. 6)
are satisfied.

(Def. 6)(i) H € the new-component of N, and

(Def. 2) LTLNewq H =

(Def. 3) LTLNext H =
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(ii) N2 = SuccNode; (H, Ny) or H is either disjunctive or has until operator
or release operator and Ny = SuccNodey(H, Ny).

Let us consider v and let N1, No be LTL-nodes over v. We say that s is a
1st successor of N if and only if:
(Def. 7) There exists H such that H € the new-component of N; and Ny =
SuccNode; (H, Ny).
We say that Ns is a 2nd successor of Ny if and only if the condition (Def. 8) is
satisfied.
(Def. 8) There exists H such that
(i) H € the new-component of N7,
(i)  H is either disjunctive or has until operator or release operator, and
(ili) Nz = SuccNodes(H, Ny).
Let us consider v and let Ny, No be LTL-nodes over v. We say that N» is a
successor of Ny if and only if:
(Def. 9) Ns is a 1st successor of Ny or a 2nd successor of Nj.
Let us consider v and let IV be an LTL-node over v. We say that IV is failure
if and only if:
(Def. 10) There exist H, F' such that H is atomic and F' = —H and H € the
old-component of N and F' € the old-component of N.
Let us consider v and let N be an LTL-node over v. We say that N is
elementary if and only if:
(Def. 11) The new-component of N = ().
Let us consider v and let N be an LTL-node over v. We say that N is final
if and only if:
(Def. 12) N is elementary and the next-component of N = ().
Let us consider v. The functor ), yielding a subset of Subformulae v is defined
as follows:
(Def. 13) 0, = 0.
Let us consider v. The functor Seed v yielding a subset of Subformulaev is
defined by:
(Def. 14) Seedwv = {v}.
Let us consider v. Note that there exists an LTL-node over v which is ele-
mentary and strict.

Let us consider v. The functor FinalNode v yields an elementary strict LTL-
node over v and is defined by:

(Def. 15) FinalNodewv = (0, 0y, 0,).

Let us consider x, v. The functor CastNode(x,v) yields a strict LTL-node
over v and is defined by:
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x, if x is a strict LTL-node over v,
(B, By, Dy,), otherwise.

Let us consider v. The functor init v yields an elementary strict LTL-node
over v and is defined by:

(Def. 17) initv = (@, 0,, Seed v).

Let us consider v and let N be an LTL-node over v. The functor X N yields
a strict LTL-node over v and is defined as follows:

(Def. 18) X N = (), the next-component of N, 0,).

We follow the rules: N, Ny, No, M are strict LTL-nodes over v and w is an
element of the infinite sequences of AtomicFamily.

(Def. 16) CastNode(z,v) = {

Let us consider v, L. We say that L is a successor sequence for v if and only
if:
(Def. 19) For every k such that 1 < k < len L there exist N, M such that N = L(k)
and M = L(k+ 1) and M is a successor of N.
Let us consider v, N1, No. We say that N, is next to Ny if and only if the
conditions (Def. 20) are satisfied.
(Def. 20)(1)  NN; is elementary,
(i) Ny is elementary, and
(iii)  there exists L such that 1 <len L and L is a successor sequence for v
and L(1) = X Ny and L(len L) = N.
Let us consider v and let W be a subset of Subformulaewv. The functor
Castrrr, W yielding a subset of WFF, is defined by:
(Def. 21) Casty, W = W.

Let us consider v, N. The functor -IN yields a subset of WFF 1, and is
defined by:
(Def. 22) ‘N = (the old-component of N) U (the new-component of N) U
X Castpyy, (the next-component of N).
We now state three propositions:

(1) Suppose H € the new-component of N and H is either atomic, or ne-
gative, or conjunctive, or has next operator. Then w = -N if and only if
w = - SuccNode; (H, N).

(2) Suppose H € the new-component of N and H is either disjunctive or
has wuntil operator or release operator. Then w |= -N if and only if one of
the following conditions is satisfied:

(i)  w = -SuccNode;(H, N), or

(i) w = -SuccNodey(H, N).
(3) There exists L such that Subformulae H = rng L.
Let us consider H. Observe that Subformulae H is finite.
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Let us consider H, W, L, x. The length of L wrt W and z yields a natural
number and is defined as follows:

len Castyrr, L(z), if L(x) € W,

(Def. 23) The length of L wrt W and z = { 0. otherwise.

Let us consider H, W, L. The partial sequence of L wrt W yields a sequence
of real numbers and is defined by the condition (Def. 24).

(Def. 24) Let given k. Then
(i) if L(k) € W, then (the partial sequence of L wrt W)(k) =
len Castypr, L(k), and
(ii) if L(k) ¢ W, then (the partial sequence of L wrt W)(k) = 0.
Let us consider H, W, L. The functor len(L, W) yields a real number and
is defined as follows:
(Def. 25) len(L, W) = Y10k (the partial sequence of L wrt W)(x).
We now state several propositions:
(4) len(L,0q) = 0.
(5) If F ¢ W, then len(L, W\ {F}) =len(L,W).
(6) If rngL = Subformulae H and L is one-to-one and F € W, then
len(L,W\ {F})=len(L,W) —len F.
(7) If rng L = Subformulae H and L is one-to-one and F' ¢ W and W; =
W U{F}, then len(L, W;) = len(L, W) + len F.

(8) If rngL; = SubformulaeH and L; is one-to-one and rnglLs =
Subformulae H and L is one-to-one, then len(Lq, W) = len(La, W).

Let us consider H, W. The functor len W yields a real number and is defined
by:
(Def. 26) There exists L such that rng L = Subformulae H and L is one-to-one
and len W = len(L, W).
The following propositions are true:
(9) If F¢ W, then len(W \ {F}) =len W.
(10) If F € W, then len(W \ {F'}) =len W —len F.
(11) If F¢ W and Wy, =W U{F}, then len W; =len W + len F.
(12) len(WU{F}) <lenW +lenF.
(13) len(dy) = 0.
(14) len({F}) =lenF.
(15) If W C Wy, then len W < len W7.
(16) IflenW <1, then W = 0y.
(17) lenW > 0.
(18) len(W; UWs) <len W + len W.
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Let us consider v, H. Let us assume that H € Subformulaev. The functor
LTLNew;(H,v) yielding a subset of Subformulae v is defined by:

(Def. 27) LTLNew;(H,v) = LTLNew; H.

The functor LTLNews(H, v) yields a subset of Subformulaev and is defined by:
(Def. 28) LTLNewy(H,v) = LTLNewy H.
The following propositions are true:

(19) If Ny is a 1st successor of Nj, then len (the new-component of Na) <
len (the new-component of Np) — 1.

(20) 1If Ny is a 2nd successor of Ny, then len (the new-component of Ny) <
len (the new-component of Np) — 1.

Let us consider v, N. The functor len N yields a natural number and is
defined by:

(Def. 29) len N = |len (the new-component of N)|.

The following propositions are true:
21) If Ny is a successor of Ny, then len Ny < len N7 — 1.
22) Iflen N <0, then the new-component of N = {),,.
23) Iflen N > 0, then the new-component of N # (.

)

24) There exist n, L, M such that 1 < n and lenL = n and L(1) = N
and L(n) = M and the new-component of M = (), and L is a successor
sequence for v.

(
(
(
(

(25) Suppose N is a successor of Nj. Then
(i)  the old-component of N C the old-component of Ny, and
(ii)  the next-component of Ny C the next-component of Ny.
(26) If L is a successor sequence for v and m < len L and L; = L[ Segm,
then L, is a successor sequence for v.
(27) Suppose that

(i L is a successor sequence for v,
F ¢ the old-component of CastNode(L(1),v),

)
)
(i) 1<mn,
)
)

G

n <len L, and
F € the old-component of CastNode(L(n),v).
Then there exists m such that 1 < m < n and F ¢ the old-component of
CastNode(L(m),v) and F' € the old-component of CastNode(L(m+1),v).
(28) Suppose Nj is a successor of N7 and F' ¢ the old-component of N7 and
F € the old-component of Ny. Then Nj is a successor of N; and F.
(29) Suppose that
(i) L is a successor sequence for v,
(ii)  F € the new-component of CastNode(L(1),v),
(i) 1<n,
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(iv) m<lenL, and
(v)  F ¢ the new-component of CastNode(L(n),v).
Then there exists m such that 1 < m < n and F € the new-component
of CastNode(L(m),v) and F ¢ the new-component of CastNode(L(m +
1),v).
(30) Suppose Nj is a successor of N; and F' € the new-component of N; and
F ¢ the new-component of Ny. Then N3 is a successor of N; and F'.
(31) Suppose L is a successor sequence for v and 1 < m < n <len L. Then
(i)  the old-component of CastNode(L(m),v) C the old-component of
CastNode(L(n),v), and
(ii)  the next-component of CastNode(L(m),v) C the next-component of
CastNode(L(n),v).
(32) If Ny is a successor of N; and F', then F' € the old-component of Na.
(33) Suppose L is a successor sequence for v and 1 < len L and the new-
component of CastNode(L(len L),v) = (},. Then the new-component of
CastNode(L(1),v) C the old-component of CastNode(L(len L), v).
(34) Suppose L is a successor sequence for v and 1 < m < len L and the
new-component of CastNode(L(len L),v) = (). Then the new-component
of CastNode(L(m),v) C the old-component of CastNode(L(len L), v).
(35) If L is a successor sequence for v and 1 < k < len L, then CastNode(L(k+
1),v) is a successor of CastNode(L(k),v).

(36) If L is a successor sequence for v and 1 < k < lenL, then
len CastNode(L(k),v) < (len CastNode(L(1),v) — k) + 1.

In the sequel s, sg, s1, so denote elementary strict LTL-nodes over v.
The following propositions are true:

(37) If s9 is next to s1, then the next-component of s; C the old-component
of S92.

(38) Suppose sz is next to s; and F' € the old-component of s3. Then there
exist L, m such that
1 < lenL and L is a successor sequence for v and L(1) = X s; and
L(len L) = sy and 1 < m < len L and CastNode(L(m+1),v) is a successor
of CastNode(L(m),v) and F'.

(39) Suppose sy is next to s; and H has release operator and H € the
old-component of so and LeftArg(H) ¢ the old-component of s3. Then
RightArg(H) € the old-component of so and H € the next-component of
S9.

(40) Suppose s9 is next to s; and H has release operator and H € the next-
component of s1. Then RightArg(H) € the old-component of so and H €
the old-component of ss.

(41) Suppose s1 is next to sp and H € the old-component of s;. Then
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(i) if H is conjunctive, then LeftArg(H) € the old-component of s; and
RightArg(H) € the old-component of sy,
(ii) if H is either disjunctive or has until operator, then LeftArg(H) € the
old-component of s; or RightArg(H) € the old-component of s,
(iii) if H has next operator, then Arg(H) € the next-component of s;, and
(iv) if H has release operator, then RightArg(H) € the old-component of
S1.

(42) Suppose s; is next to so and sg is next to s; and H € the old-component
of s1 and H has until operator. Then RightArg(H) € the old-component of
s1 or LeftArg(H) € the old-component of s; and H € the old-component
of s9.

Let us consider v. The functor Nodesyr, v yields a non empty set and is
defined as follows:

(Def. 30) x € Nodespr, v iff there exists a strict LTL-node N over v such that
xz = N.
Let us consider v. Note that Nodesyr, v is finite.

Let us consider v. The functor Statesypr, v yields a non empty set and is
defined by:

(Def. 31) Statespr,v = {z € Nodesprr, v : x is an elementary strict LTL-node
over v}.

Let us consider v. Observe that Statesyr, v is finite.
The following propositions are true:

(43) initwv is an element of Statesyy, v.
(44) s is an element of Statesyr, v.
(45) x is an element of Statesyy, v iff there exists s such that s = x.

Let us consider v, let us consider w, and let f be a function. We say that f
is a successor homomorphism from v to w if and only if:

(Def. 32) For every x such that € Nodesyrr, v and CastNode(z,v) is non ele-
mentary and w |= - CastNode(z, v) holds CastNode(f(z),v) is a successor
of CastNode(z,v) and w = - CastNode(f(z),v).

We say that f is a homomorphism of v into w if and only if:

(Def. 33) For every x such that z € Nodesprr, v and CastNode(z,v) is non ele-
mentary and w = - CastNode(z, v) holds w |= - CastNode(f(x), v).
The following propositions are true:
(46) Let f be a function from Nodesyrr, v into Nodesprr, v. Suppose f is a
successor homomorphism from v to w. Then f is a homomorphism of v
into w.

(47) Let f be a function from Nodesyrr, v into Nodesprr, v. Suppose f is a
homomorphism of v into w. Let given x. Suppose x € Nodesrr, v and
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CastNode(x, v) is non elementary and w |= - CastNode(z, v). Let given k.
If for every 4 such that i < k holds CastNode(f*(z),v) is non elementary,
then w = - CastNode(f*(z),v).

(48) Let f be a function from Nodesprr v into Nodesprr v. Suppose f
is a successor homomorphism from v to w. Let given z. Suppose
x € Nodesprr, v and CastNode(z,v) is non elementary and w [
- CastNode(x,v). Let given k. Suppose that for every i such that ¢ < k
holds CastNode(f%(x),v) is non elementary. Then CastNode(f**!(z),v)
is a successor of CastNode(f*(x),v) and w |= - CastNode(f*(z), v).

(49) Let f be a function from Nodesyy, v into Nodespr, v. Suppose f is a suc-
cessor homomorphism from v to w. Let given z. Suppose =z € Nodes 1, v
and CastNode(z,v) is non elementary and w | -CastNode(z,v).
Then there exists n such that for every ¢ such that ¢ < n holds
CastNode(f%(x),v) is non elementary and CastNode(f"(z),v) is elemen-
tary.

(50) Let f be a function from Nodesppr v into Nodespprv. Suppose
f is a homomorphism of v into w. Let given z. Suppose z €
Nodespr, v and CastNode(z,v) is non elementary. Let given k. If
CastNode(f*(z), v) is non elementary and w = - CastNode(f¥(x), v), then
w = - CastNode(f**1(x),v).

(51) Let f be a function from Nodesyr, v into Nodesyr, v. Suppose f is a suc-
cessor homomorphism from v to w. Let given z. Suppose z € Nodesy 1, v
and CastNode(z,v) is non elementary and w = - CastNode(z,v). Then
there exists n such that

(i)  for every i such that i < n holds CastNode(f%(x),v) is non elementary
and CastNode(f*1(x),v) is a successor of CastNode(f!(x),v),
(i)  CastNode(f"(x),v) is elementary, and
(iii)  for every i such that i < n holds w |= - CastNode(f(z), ).

In the sequel ¢ denotes a sequence of Statesy Ty, v.
One can prove the following propositions:

(52) There exists s such that s = CastNode(g(n),v).

(53) Suppose H has until operator and H & the old-component of
CastNode(gq(1),v) and for every i holds CastNode(g(i + 1),v) is next
to CastNode(q(i),v). Suppose that for every ¢ such that 1 < i < n
holds RightArg(H) ¢ the old-component of CastNode(q(i),v). Let gi-
ven i. Suppose 1 < i < n. Then LeftArg(H) € the old-component of
CastNode(q(i),v) and H € the old-component of CastNode(q(i),v).

(54) Suppose H has until operator and H & the old-component of
CastNode(g(1),v) and for every ¢ holds CastNode(q(i + 1),v) is next to
CastNode(q(i),v). Then
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(i) for every ¢ such that ¢« > 1 holds H € the old-
component of CastNode(q(i),v) and LeftArg(H) € the old-component
of CastNode(q(i),v) and RightArg(H) ¢ the old-component of
CastNode(q(i),v), or

(ii)  there exists j such that j > 1 and RightArg(H) € the old-component
of CastNode(q(j),v) and for every i such that 1 < i < j holds H € the
old-component of CastNode(q(7),v) and LeftArg(H) € the old-component
of CastNode(q(i),v).

(55) U(2Y) = X.
(56) If N is non elementary, then the new-component of N # () and the

new-component of N € 2§rubf°rm“13e“.

Let us consider v. One can verify that [J(23ubfermulacv)

QSubformulae v
Jr

is non empty and
is non empty.
We now state the proposition

(57) There exists a choice function of 25uPfermulacv which is a function from

Qi“bformulae” into Subformulae v.

In the sequel U denotes a choice function of 2§rubf°rmulae”.

Let us consider v, let us consider U, and let us consider N. Let us assume
that IV is non elementary. The U-chosen formula of N yielding an LTL-formula
is defined as follows:

(Def. 34) The U-chosen formula of N = U(the new-component of N).
The following proposition is true

(58) If N is non elementary, then the U-chosen formula of N € the new-
component of N.

Let us consider w, let us consider v, let us consider U, and let us consider

N. The U-chosen successor of N w.r.t. w, v yields a strict LTL-node over v and
is defined by:

(Def. 35) The U-chosen successor of N w.r.t. w, v
SuccNodej (the U-chosen formula of N, N),
if the U-chosen formula of Ndoes not have until operator and
w = - SuccNode; (the U-chosen formula of N, N) or
the U-chosen formula of N has until operator and
w B~ RightArg(the U-chosen formula of N),
SuccNodes(the U-chosen formula of N, N), otherwise.
One can prove the following propositions:

(59) Suppose w = -N and N is non elementary. Then
(i) w [= -(the U-chosen successor of N w.r.t. w, v), and
(ii)  the U-chosen successor of N w.r.t. w, v is a successor of N.
(60) Suppose w = -N and N is non elementary. Suppose the U-chosen formula
of N has until operator and w = RightArg(the U-chosen formula of N).
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Then

(i)  RightArg(the U-chosen formula of N) € the new-component of the
U-chosen successor of N w.r.t. w, v or RightArg(the U-chosen formula of
N) € the old-component of N, and

(ii)  the U-chosen formula of N € the old-component of the U-chosen suc-
cessor of N w.r.t. w, v.

(61) Suppose w = -N and N is non elementary. Then

(i)  the old-component of N C the old-component of the U-chosen successor
of N w.r.t. w, v, and

(ii)  the next-component of N C the next-component of the U-chosen suc-
cessor of N w.r.t. w, v.

Let us consider w, let us consider v, and let us consider U. The U-choice suc-
cessor function w.r.t. w, v yielding a function from Nodesr, v into Nodesy g, v
is defined by the condition (Def. 36).

(Def. 36) Let given x. Suppose = € Nodesprr, v. Then (the U-choice successor
function w.r.t. w, v)(z) = the U-chosen successor of CastNode(z,v) w.r.t.
w, v.
We now state the proposition
(62) The U-choice successor function w.r.t. w, v is a successor homomorphism
from v to w.

2. NEGATION INNER MOST LTL

Let us consider H. We say that H is negation-inner-most if and only if:
(Def. 37) For every LTL-formula G such that G is a subformula of H holds if G
is negative, then Arg(G) is atomic.
Let us observe that there exists an LTL-formula which is negation-inner-
most.
Let us consider H. We say that H is sub-atomic if and only if:
(Def. 38) H is atomic or there exists an LTL-formula G such that G is atomic and
H=-G.
Next we state several propositions:
(63) If H is negation-inner-most and F is a subformula of H, then F is
negation-inner-most.
(64) H is sub-atomic iff H is atomic or H is negative and Arg(H) is atomic.
(65) Suppose H is negation-inner-most. Then H is either sub-atomic, or con-
junctive, or disjunctive, or has next operator, or until operator, or release
operator.
(66) If H is negation-inner-most and has next operator, then Arg(H) is
negation-inner-most.
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(67) Suppose that
(i)  H is conjunctive, or
(i)  H is disjunctive, or
(iii)  H is negation-inner-most.
Then LeftArg(H) is negation-inner-most and RightArg(H) is negation-
inner-most.

3. DEFINITION OF BUCHI AUTOMATON AND VERIFICATION OF THE MAIN
THEOREM

Let W be a non empty set. We consider Buchi automatons over W as systems
( a carrier, a transition, an initial state, final states ),
where the carrier is a set, the transition is a relation between the carrierx W
and the carrier, the initial state is an element of 2the c@mier anq the final states
constitute a subset of 2the carrier
Let W be a non empty set, let B be a Buchi automaton over W, and let w
be an element of the infinite sequences of W. We say that w is accepted by B
if and only if the condition (Def. 39) is satisfied.
(Def. 39) There exists a sequence 7 of the carrier of B such that
(i)  r1(0) € the initial state of B, and
(ii)  for every natural number ¢ holds ((r1(i), (CastSeq(w, W))(7)), r1(i +
1)) € the transition of B and for every set Fj such that F} € the final
states of B holds {k € N: r1(k) € F}} is an infinite set.
For simplicity, we use the following convention: v denotes a negation-inner-
most LTL-formula, U denotes a choice function of 2§“bf°rm‘ﬂaev, N denotes a
strict LTL-node over v, and s, s; denote elementary strict LTL-nodes over v.

Let us consider v and let us consider IN. The functor atomicppr, N yields a
subset of WFFr 1, and is defined by:
(Def. 40) atomicyrr, N = {z;x ranges over LTL-formulae: x is atomic A = € the
old-component of N}.

The functor NegAtomicyr, IV yields a subset of WFFr 11, and is defined as fol-
lows:

(Def. 41) NegAtomicyp, N = {x; z ranges over LTL-formulae: z is atomic A -z €
the old-component of N}.
Let us consider v and let us consider V. The functor Label IV yielding a set
is defined by:
(Def. 42) Label N = {z C atomicppy: atomicpr, N € A NegAtomicypp, N
misses x}.

Let us consider v. The functor Tranppr,v yields a relation between
Statesprr, v X AtomicFamily and Statesyr, v and is defined as follows:
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(Def. 43) Tranpr,v = {y € Statespr,v X AtomicFamily x Statespry, v
Vst (y = (s, z), s1) A s1isnexttos A z & Labels;)}.

The functor InitSypr, v yielding an element of 25tatesLTL Y ig defined as follows:

(Def. 44) InitSppr, v = {init v}.

Let us consider v and let us consider F. The functor FinalSyyr (F,v) yields
an element of 25tatesLTLY and is defined as follows:

(Def. 45) FinalSyr,(F,v) = {z € StatesprLv : F ¢ the old-component of
CastNode(x,v) V RightArg(F') € the old-component of CastNode(z,v)}.

Let us consider v. The functor FinalSypr, v yields a subset of 25tatesurLv and
is defined by:

(Def. 46) FinalSyrpv = {x € 25t%@tesurne: \/ o (F is a subformula of v A F has
until operator A z = FinalSyrr,(F,v))}.

Let us consider v. The functor BAutomaton v yields a Buchi automaton over
AtomicFamily and is defined as follows:

(Def. 47) BAutomaton v = (Statesprr, v, Trangpy, v, InitSpr, v, FinalSyr, v).
The following proposition is true
(68) If w is accepted by BAutomaton v, then w = v.

Let us consider w, let us consider v, let us consider U, and let us consider N.
Let us assume that IV is non elementary and w |= -N. The U-chosen successor
end number of N w.r.t. w, v yields an element of N and is defined by the
conditions (Def. 48).

(Def. 48)(1)  For every ¢ such that i < the U-chosen successor end number of
N w.r.t. w, v holds CastNode((the U-choice successor function w.r.t. w,
v){(N),v) is non elementary and CastNode((the U-choice successor func-
tion w.r.t. w, v)"1(N),v) is a successor of CastNode((the U-choice suc-
cessor function w.r.t. w, v)'(N),v),

(ii) CastNode((the U-choice successor function w.r.t.
w, U)the U-chosen successor end number of N w.r.t. w, ’L)(N)’ U) is elementary, and
(ili)  for every i such that ¢ < the U-chosen successor end number of N
w.r.t. w, v holds w | - CastNode((the U-choice successor function w.r.t.
w, v)Y(N),v).
Let us consider w, let us consider v, let us consider U, and let us consider
N. Let us assume that w = - X N. The U-chosen next node to N w.r.t. w, v
yielding an elementary strict LTL-node over v is defined by:
(Def. 49) The U-chosen next node to N w.r.t. w, v
CastNode((the U-choice successor function w.r.t. w,
,U)the U-chosen successor end number of X N w.r.t. w, U(X N), U),
if X N is non elementary,
FinalNode v, otherwise.
One can prove the following proposition
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(69) Suppose w = - X' s. Then the U-chosen next node to s w.r.t. w, v is next
to s and w = -(the U-chosen next node to s w.r.t. w, v).

Let us consider w, let us consider v, and let us consider U. The U-chosen
run w.r.t. w, v yields a sequence of Statesyrr, v and is defined by the conditions
(Def. 50).

(Def. 50)(i)  (The U-chosen run w.r.t. w, v)(0) = init v, and

(ii)  for every n holds (the U-chosen run w.r.t. w, v)(n + 1) = the U-

chosen next node to CastNode((the U-chosen run w.r.t. w, v)(n),v) w.r.t.
Shift(w, n), v.
The following propositions are true:
(70) If w = -N, then Shift(w, 1) k= - X N.

(71) If w = X v, then w = -init v.

(72) wEviff w - Xinito.

(73) Suppose w = v. Let given n. Then

(i)  CastNode((the U-chosen run w.r.t. w, v)(n + 1),v) is next to
CastNode((the U-chosen run w.r.t. w, v)(n),v), and
(ii)  Shift(w,n) | - X CastNode((the U-chosen run w.r.t. w, v)(n),v).

(74) Suppose w = v. Let given i. Suppose H € the old-component of
CastNode((the U-chosen run w.r.t. w, v)(i+1),v) and H has until operator
and Shift(w, i) = RightArg(H). Then RightArg(H) € the old-component
of CastNode((the U-chosen run w.r.t. w, v)(i + 1), v).

(75) w is accepted by BAutomaton v iff w = v.

REFERENCES

[1] Grzegorz Bancereck. The fundamental properties of natural numbers. Formalized Mathe-
matics, 1(1):41-46, 1990.

[2] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107-114, 1990.

[3] Czestaw Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55—

65, 1990.

[4] Czestaw Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164,
1990.

[6] Czestaw Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53,
1990.

[6] Agata Darmochwal. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.

[7] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics,

1(1):35-40, 1990.

[8] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171-186, 2006.

[9] Kazuhisa Ishida. Model checking. Part II. Formalized Mathematics, 16(3):231-245, 2008.

[10] Jarostaw Kotowicz. Real sequences and basic operations on them. Formalized Mathema-
tics, 1(2):269-272, 1990.

[11] Konrad Raczkowski and Andrzej Nedzusiak. Series. Formalized Mathematics, 2(4):449—
452, 1991.

[12] Michatl J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.

[13] Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319,

1990.
[14] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.



MODEL CHECKING. PART III 353

[15] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73-83, 1990.

[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186,
1990.

Received August 19, 2008






FORMALIZED MATHEMATICS
vol. 16, No. 4, Pages 355-360, 2008

Basic Properties of Circulant Matrices
and Anti-Circular Matrices

Xiaopeng Yue Xiquan Liang
Xuchang University Qingdao University of Science
Henan, China and Technology
China

Summary. This article introduces definitions of circulant matrices, line-
and column-circulant matrices as well as anti-circular matrices and describes
their main properties.

MML identifier: MATRIX16, version: 7.9.03 4.108.1028

The articles [6], [9], [4], [10], [1], [14], [13], [2], [5], [8], [12], [11], [3], and [7]
provide the notation and terminology for this paper.

1. SOME PROPERTIES OF CIRCULANT MATRICES

For simplicity, we adopt the following convention: 7, j, k, n, [ denote elements
of N, K denotes a field, a, b, ¢ denote elements of K, p, ¢ denote finite sequences
of elements of K, and M7, My, M3 denote square matrices over K of dimension
n.

Next we state two propositions:

(1) 1x-p=p.
(2) (-1k)-p=-p.

Let K be a set, let M be a matrix over K, and let p be a finite sequence.
We say that M is line circulant about p if and only if:

(Def. 1) lenp = width M and for all natural numbers ¢, j such that (i, j) € the
indices of M holds M; ; = p(((j — i) mod lenp) + 1).

Let K be a set and let M be a matrix over K. We say that M is line circulant
if and only if:

(© 2008 University of Bialystok
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(Def. 2) There exists a finite sequence p of elements of K such that lenp =
width M and M is line circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K.
We say that p is first-line-of-circulant if and only if:

(Def. 3) There exists a square matrix over K of dimension lenp which is line
circulant about p.

Let K be a set, let M be a matrix over K, and let p be a finite sequence.
We say that M is column circulant about p if and only if:

(Def. 4) lenp = len M and for all natural numbers 4, j such that (i, j) € the
indices of M holds M; ; = p(((i — j) mod lenp) + 1).
Let K be a set and let M be a matrix over K. We say that M is column
circulant if and only if:

(Def. 5) There exists a finite sequence p of elements of K such that len p = len M
and M is column circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K.
We say that p is first-column-of-circulant if and only if:

(Def. 6) There exists a square matrix over K of dimension len p which is column
circulant about p.
Let K be a non empty set and let p be a finite sequence of elements of K. Let
us assume that p is first-line-of-circulant. The functor LCircp yields a square
matrix over K of dimension len p and is defined by:

(Def. 7) LCircp is line circulant about p.
Let K be a non empty set and let p be a finite sequence of elements of K.

Let us assume that p is first-column-of-circulant. The functor CCircp yielding
a square matrix over K of dimension lenp is defined by:
(Def. 8) CCircp is column circulant about p.
Let K be a field. One can verify that there exists a finite sequence of elements
of K which is first-line-of-circulant and first-column-of-circulant.
Let us consider K, n. Observe that 0%" is line circulant and column circu-
lant.
Let us consider K, let us consider n, and let a be an element of K. Observe
that (a)"*"™ is line circulant and (a)"*" is column circulant.
Let us consider K. Note that there exists a matrix over K which is line
circulant and column circulant.
In the sequel D denotes a non empty set, t denotes a finite sequence of
elements of D, and A denotes a square matrix over D of dimension 7.
We now state a number of propositions:

(3) If A is line circulant and n > 0, then AT is column circulant.
(4) If A is line circulant about ¢ and n > 0, then ¢ = Line(A4, 1).
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(5) If Ais line circulant and (i, j) € SegnxSegn and k =i+1andl = j+1
and ¢ <n and j <mn, then A; ; = Ay;.

(6) If My is line circulant, then a - M is line circulant.

(7) If Mj is line circulant and Ms is line circulant, then M; + My is line
circulant.

(8) If Mj is line circulant and Ms is line circulant and Mj is line circulant,
then My + Ms + Ms is line circulant.

(9) If My is line circulant and Mj is line circulant, then a - My + b - My is
line circulant.

(10) If Mj is line circulant and Ms is line circulant and M3 is line circulant,
then a - M7 + b- Ms + ¢ - My is line circulant.

(11) If M is line circulant, then —M; is line circulant.

(12) If M, is line circulant and Ms is line circulant, then M; — My is line
circulant.

(13) If M is line circulant and My is line circulant, then a - My — b - My is
line circulant.

(14) If M is line circulant and Ms is line circulant and Mj3 is line circulant,
then (a- My 4+ b- My) — ¢+ Ms is line circulant.

(15) If Mj is line circulant and Ms is line circulant and M3 is line circulant,
then a - M7 — b- My — ¢ - My is line circulant.

(16) If M is line circulant and Ms is line circulant and M3 is line circulant,
then (a- My —b- M) + ¢+ Mjs is line circulant.

(17) If A is column circulant and n > 0, then AT is line circulant.

(18) If Ais column circulant about ¢ and n > 0, then ¢t = A ;.

(19) If A is column circulant and (i, j) € Segn x Segn and k = i + 1 and
l=j+1andi<nand j<n,then A;; = Ay;.

(20) If M; is column circulant, then a - Mj is column circulant.

(21) If M; is column circulant and My is column circulant, then M; + My is
column circulant.

(22) If M; is column circulant and My is column circulant and M3 is column
circulant, then My + My + M3 is column circulant.

(23) If M is column circulant and My is column circulant, then a- M +b- Mo
is column circulant.

(24) Suppose M; is column circulant and My is column circulant and M3 is
column circulant. Then a - My + b - My + ¢ - M3 is column circulant.

(25) If M; is column circulant, then —M; is column circulant.

(26) If M; is column circulant and M; is column circulant, then M; — M; is
column circulant.
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(27) If M is column circulant and Ms is column circulant, then a- My —b- My
is column circulant.

(28) Suppose M; is column circulant and My is column circulant and Mj is
column circulant. Then (a - My 4+ b - Ms) — ¢+ M3 is column circulant.

(29) Suppose M; is column circulant and My is column circulant and M3 is
column circulant. Then a - My — b - My — ¢ - M3 is column circulant.

(30) Suppose M is column circulant and Ms is column circulant and M3 is
column circulant. Then (a - My — b - Ms) 4 ¢ - M3 is column circulant.

(31) If p is first-line-of-circulant, then —p is first-line-of-circulant.
(32) If p is first-line-of-circulant, then LCirc(—p) = —LCircp.

(33) Suppose p is first-line-of-circulant and ¢ is first-line-of-circulant and
lenp = len q. Then p + q is first-line-of-circulant.

(34) If lenp = leng and p is first-line-of-circulant and ¢ is first-line-of-
circulant, then LCirc(p + q) = LCircp 4 LCircgq.
(35) If p is first-column-of-circulant, then —p is first-column-of-circulant.

(36) For every finite sequence p of elements of K such that p is first-column-
of-circulant holds CCirc(—p) = —CCirc p.

(37) Suppose p is first-column-of-circulant and ¢ is first-column-of-circulant
and lenp = len q. Then p + q is first-column-of-circulant.

(38) Iflenp =lenq and p is first-column-of-circulant and ¢ is first-column-of-
circulant, then CCirc(p + ¢q) = CCircp 4 CCircgq.

If n > 0, then I*" is column circulant.
If n > 0, then 1" is line circulant.
If p is first-line-of-circulant, then a - p is first-line-of-circulant.
If p is first-line-of-circulant, then LCirc(a - p) = a - LCircp.
If p is first-line-of-circulant, then a-LCirc p+b-LCirc p = LCirc((a+b)-p).
If p is first-line-of-circulant and ¢ is first-line-of-circulant and len p = len ¢
and lenp > 0, then a - LCircp + a - LCirc g = LCirc(a - (p + q)).
(45) If p is first-line-of-circulant and ¢ is first-line-of-circulant and lenp =
len g, then a - LCircp + b - LCirc ¢ = LCirc(a-p+b - q).
(46) If p is first-column-of-circulant, then a - p is first-column-of-circulant.
(47) If p is first-column-of-circulant, then CCirc(a - p) = a - CCircp.
(48) If p is first-column-of-circulant, then a-CCirc p+b- CCirc p = CCirc((a+
b) - p).
(49) Suppose p is first-column-of-circulant and ¢ is first-column-of-circulant
and lenp = lenq and lenp > 0. Then a - CCircp 4 a - CCirc ¢ = CCirc(a -

(p+4q)
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(50) If p is first-column-of-circulant and ¢ is first-column-of-circulant and
lenp = len g, then a - CCircp + b - CCircq = CCirc(a-p+b-q).
Let K be a set and let M be a matrix over K. We introduce M is circulant
as a synonym of M is line circulant.

2. SOME PROPERTIES OF ANTI-CIRCULAR MATRICES

Let K be a field, let M7 be a matrix over K, and let p be a finite sequence
of elements of K. We say that M; is anti-circular about p if and only if the
conditions (Def. 9) are satisfied.

(Def. 9)(i) lenp = width My,
(ii)  for all natural numbers i, j such that (i, j) € the indices of M; and
i < j holds (M1);; = p(((j — i) mod lenp) + 1), and
(iii)  for all natural numbers i, j such that (i, j) € the indices of M; and
i > j holds (M1);; = (—=p)(((j — ) mod lenp) +1).

Let K be a field and let M be a matrix over K. We say that M is anti-circular
if and only if:

(Def. 10) There exists a finite sequence p of elements of K such that lenp =
width M and M is anti-circular about p.

Let K be a field and let p be a finite sequence of elements of K. We say that
p is first-line-of-anti-circular if and only if:

(Def. 11) There exists a square matrix over K of dimension lenp which is anti-
circular about p.

Let K be a field and let p be a finite sequence of elements of K. Let us
assume that p is first-line-of-anti-circular. The functor ACircp yields a square
matrix over K of dimension len p and is defined by:

(Def. 12) ACircp is anti-circular about p.

One can prove the following propositions:

(51) If Mj is anti-circular, then a - M; is anti-circular.

(52) If M is anti-circular and My is anti-circular, then M; + My is anti-
circular.

(53) Let K be a Fanoian field, n, ¢, j be natural numbers, and M; be a
square matrix over K of dimension n. Suppose (i, j) € the indices of M;
and ¢ = j and M; is anti-circular. Then (M;);; = Ok.

(54) If M is anti-circular and (i, j) € SegnxSegn and k =i+1andl = j+1
and ¢ <n and j <n, then (M), = (M1); .

(55) If M; is anti-circular, then — M is anti-circular.

(56) If M is anti-circular and My is anti-circular, then M; — My is anti-
circular.
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(57) If M; is anti-circular about p and n > 0, then p = Line(Mj, 1).

(58) If p is first-line-of-anti-circular, then —p is first-line-of-anti-circular.

(59) If p is first-line-of-anti-circular, then ACirc(—p) = —ACirc p.

(60) Suppose p is first-line-of-anti-circular and ¢ is first-line-of-anti-circular

and lenp = leng. Then p + ¢ is first-line-of-anti-circular.

(61) If p is first-line-of-anti-circular and ¢ is first-line-of-anti-circular and
lenp = len g, then ACirc(p 4+ q) = ACircp + ACircgq.

(62) If p is first-line-of-anti-circular, then a - p is first-line-of-anti-circular.

(63) If p is first-line-of-anti-circular, then ACirc(a - p) = a - ACircp.

(64) If p is first-line-of-anti-circular, then a- ACirc p+b- ACirc p = ACirc((a+
b) - p).

(65) Suppose p is first-line-of-anti-circular and ¢ is first-line-of-anti-circular

and lenp = lenq and lenp > 0. Then a - ACircp + a - ACirc ¢ = ACirc(a -

(p+4q))-
(66) Suppose p is first-line-of-anti-circular and ¢ is first-line-of-anti-circular

and lenp = lengq. Then a - ACircp + b - ACircq = ACirc(a-p+b-q).

Let us consider K, n. Observe that 03" is anti-circular.
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Summary. This article contains some definitions and properties refering
to function spaces formed by partial functions defined over a measurable space.
We formalized a function space, the so-called L' space and proved that the
space turns out to be a normed space. The formalization of a real function space
was given in [16]. The set of all function forms additive group. Here addition
is defined by point-wise addition of two functions. However it is not true for
partial functions. The set of partial functions does not form an additive group
due to lack of right zeroed condition. Therefore, firstly we introduced a kind of a
quasi-linear space, then, we introduced the definition of an equivalent relation of
two functions which are almost everywhere equal (=a.c.), thirdly we formalized a
linear space by taking the quotient of a quasi-linear space by the relation (=a.e.).
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1. PRELIMINARIES OF REAL LINEAR SPACE

Let V be a non empty RLS structure and let V7 be a subset of V. We say
that Vj is multiplicatively-closed if and only if:
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(Def. 1) For every real number a and for every vector v of V' such that v € V}
holds a - v € V7.

The following proposition is true

(1) Let V be a real linear space and V; be a subset of V. Then V; is linearly
closed if and only if V; is add closed and multiplicatively-closed.

Let V' be a non empty RLS structure. Observe that there exists a subset of
V' which is add closed, multiplicatively-closed, and non empty.
Let X be a non empty RLS structure and let X; be a multiplicatively-closed

non empty subset of X. The functor -(x,) yields a function from R x X7 into
X and is defined by:

(Def. 2) -(x,) = (the external multiplication of X)[(R x X7).

In the sequel a, b, r denote real numbers.
Next we state four propositions:

(2) Let V be an Abelian add-associative right zeroed real linear space-like
non empty RLS structure, V; be a non empty subset of V', d; be an element
of V1, A be a binary operation on V7, and M be a function from R x V7 into
Vi. Suppose d; = Oy and A = (the addition of V) [ (V1) and M = (the
external multiplication of V)[(R x Vj). Then (Vi,d;, A, M) is Abelian,
add-associative, right zeroed, and real linear space-like.

(3) Let V be an Abelian add-associative right zeroed real linear space-
like non empty RLS structure and V; be an add closed multiplicatively-
closed non empty subset of V. Suppose Oy € Vi. Then (Vi,0y(€
Vi),add |(V1,V), (1)) is Abelian, add-associative, right zeroed, and real
linear space-like.

(4) Let V be a non empty RLS structure, V; be an add closed
multiplicatively-closed non empty subset of V', v, u be vectors of V', and w1,
wg be vectors of (V1,0v(€ V1),add [(V1, V), (y)). If w1 = v and wa = w,
then wi + ws = v + .

(5) Let V be a non empty RLS structure, V4 be an add closed
multiplicatively-closed non empty subset of V', a be a real number, v be
a vector of V, and w be a vector of (V1,0v(€ Vi),add |(V1, V), (v)). If

w=wv,thena-w=a-v.

2. QUASI-REAL LINEAR SPACE OF PARTIAL FUNCTIONS

We adopt the following convention: A, B denote non empty sets and f, g, h
denote elements of A—-R.

Let us consider A, B, let F' be a binary operation on A—B, and let f, g be
elements of A~B. Then F(f, g) is an element of A—>B.
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Let us consider A. The functor -4 g yielding a binary operation on A->R
is defined as follows:

(Def. 3) For all elements f, g of A>R holds -4-r(f, 9) = fg.

Let us consider A. The functor -% . yielding a function from R x (A-5R)
into A—>R is defined as follows:
(Def. 4) For every real number a and for every element f of A->R holds & . 5 (a,
fl=af.
Let us consider A. The functor 0 4-g yielding an element of A—-R is defined
as follows:

(Def. 5) 04-p = A+— 0.
Let us consider A. The functor 14 yields an element of A>R and is
defined as follows:
(Def. 6) 1o = A+ 1.
The following propositions are true:
(6) h=4a-r(f, g)iff domh = dom f Ndomg and for every element z of
A such that € dom h holds h(z) = f(z) + g(x).
(7) h=-2-r(f, g) iff domh = dom f Ndom g and for every element = of A
such that z € domh holds h(x) = f(x) - g(x).
(8) 0a=r # 1asg.
(9) h =& g(a, f) iff domh = dom f and for every element x of A such
that € dom f holds h(z) = a - f(x).

(10) +a=r(f, 9) = +a=r(g, f)-

(11)  +a=r(f, +a=r(g; b)) = +a-r(+a=r(f; 9), h).
(12) -a=r(f, 9) = -a=r(9, f)-

(13) -a=r(f, ~a=r(g, ) = -a-r(-a=r(f, 9), h).

(14) -a=r(lasr, f) = f.

(15) +a-r(0a-R, f) = f.

(16) +a=r(f, Hor(=1, f)) = 04=r[dom f.

a7 Hog@, N =71

(18) -§_~>R(CL, 'E—'»R(bv )= '%—BR(G’ -b, f).

(19) +a-r(Gorla, ) Gop® ) = Gogla+b f).
(20) -a-r(f, +a-=r(g, h)) = ta-r(a=r(f; 9), -a=r(f, h)).
21) -asr(fogla, f), 9) = K gla, -a-r(f, 9)).

Let us consider A. The functor PFunctgryg A yields a non empty RLS struc-
ture and is defined by:
(Def. 7) PFunctrrs A = (ASR, 045k, + AR, ~§4R>.
Let us consider A. One can verify that PFunctryg A is strict, Abelian, add-
associative, right zeroed, and real linear space-like.
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3. QUASI-REAL LINEAR SPACE OF INTEGRABLE FUNCTIONS

For simplicity, we use the following convention: X is a non empty set, x is
an element of X, S is a o-field of subsets of X, M is a o-measure on S, F is an
element of S, and f, g, h, f1, g1 are partial functions from X to R.

Next we state the proposition

(22) Let given X, S, M and f be a partial function from X to R. Suppose
there exists E such that £ = dom f and for every = such that x € dom f
holds 0 = f(x). Then f is integrable on M and [ fdM = 0.

Let X be a non empty set and let r be a real number. Then X —— r is a
partial function from X to R.

Let X be a non empty set, let .S be a o-field of subsets of X, and let M
be a o-measure on S. The L' functions of M yielding a non empty subset of
PFunctrrs X is defined by the condition (Def. 8).

(Def. 8) The L' functions of M = {f; f ranges over partial functions from X to
R: VN, - element of § (M (N1) =0 A dom f = Ni¢ A fis integrable on M)}.
We now state two propositions:
(23) Suppose f € the L' functions of M and g € the L' functions of M. Then
f + g € the L' functions of M.
(24) If f € the L! functions of M, then a f € the L' functions of M.
Let X be a non empty set, let S be a o-field of subsets of X, and let M be a

o-measure on S. Observe that the L' functions of M is multiplicatively-closed
and add closed.

Let X be a non empty set, let S be a o-field of subsets of X, and let M
be a o-measure on S. The functor L'-FunctgrysM yielding a non empty RLS
structure is defined by the condition (Def. 9).

(Def. 9) L'-FunctgpsM = (the L! functions of M, OPFunctrs X (€ the L' func-
tions of M), add |(the L! functions of M, PFunctrrs X), the L' functions of M-

Let X be a non empty set, let S be a o-field of subsets of X, and let M be a
o-measure on S. Observe that L'-Functrp,gM is strict, Abelian, add-associative,
right zeroed, and real linear space-like.

4. QUOTIENT SPACE OF QUASI-REAL LINEAR SPACE OF INTEGRABLE
FuNcTIONS

In the sequel v, u are vectors of L'-FunctrygM.
Next we state two propositions:

(25) (v)+ (u) =v+u.
(26) a(u)=a-u.
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Let X be a non empty set, let S be a o-field of subsets of X, let M be a
o-measure on S, and let f, g be partial functions from X to R. The predicate
f =M gis defined by:
(Def. 10) There exists an element E of S such that M(F) =0 and f[E° = g[E°.
We now state several propositions:
(27) Suppose f = u. Then
(i) u+(-1)-u=(X+—0)]dom f, and
(ii)  there exist partial functions v, g from X to R such that v € the L!
functions of M and g € the L! functions of M and v = u + (—1) - u and
g:Xl—>Oandv:g_4e_ g.
28) f=u%
29) If f =M g, then g =
0) Iff— ~gand g = hthenf—
)
)

w

31) If f = flandg =ne. gl,thenf—l—g ne. L+ g1.
32) If f aeg,thenaf =M ayg.

Let X be a non empty set, let S be a o-field of subsets of X, and let M be
a o-measure on S. The functor AlmostZeroFunctions M yielding a non empty
subset of L'-FunctrgM is defined as follows:

(
(
(
(
(

(Def. 11)  AlmostZeroFunctions M = {f; f ranges over partial functions from X to
R: f € the L! functions of M A f=M X +—0}.

The following proposition is true

B3) X+—0)+(Xr—0=X+r—0anda(X+—0)=X+r—0.

Let X be a non empty set, let S be a o-field of subsets of X, and let M be a
o-measure on S. One can check that AlmostZeroFunctions M is add closed and
multiplicatively-closed.

Next we state the proposition

(34)  Op1-punctpgm = X —— 0 and 0p1_punctp o € AlmostZeroFunctions M.

Let X be a non empty set, let S be a o-field of subsets of X, and let M be
a o-measure on S. The functor AlmostZeroFunctrrg M yielding a non empty
RLS structure is defined as follows:

(Def. 12)  AlmostZeroFunctrps M = (AlmostZeroFunctions M, 071 pypctpyonr (€
AlmostZeroFunctions M), add |(AlmostZeroFunctions M, L'-Functrys M),
*AlmostZeroFunctions M> .

Let X be a non empty set, let S be a o-field of subsets of X, and let M
be a o-measure on S. Note that L'-FunctgysM is strict, strict, Abelian, add-
associative, right zeroed, and real linear space-like.

In the sequel v, u are vectors of AlmostZeroFunctgry,s M.

Next we state two propositions:

(35) (v)+ (u) =v+u.
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(36) a(u)=a-u.
Let X be a non empty set, let S be a o-field of subsets of X, let M be a
o-measure on S, and let f be a partial function from X to R. The functor [f]}

yielding a subset of the L' functions of M is defined by the condition (Def. 13).
(Def. 13) [f]M = {g;g ranges over partial functions from X to R: g € the L'

a.e.

functions of M A f € the L' functions of M A f =M g}.
The following propositions are true:
(37) If f € the L' functions of M and g € the L' functions of M, then
g=ue fiff g € [fl¥e.
(38) If f € the L' functions of M, then f € [f]M .
(39) If f € the L' functions of M and g € the L! functions of M, then
[flie. = lole. i f =25 g
(40) Suppose f € the L' functions of M and g € the L! functions of M. Then
[fla. = lglik. if and only if g € [f]1%.
(41) Suppose that
(i)  f € the L! functions of M,
) fi € the L functions of M,
) g € the L' functions of M,
(iv) g1 € the L' functions of M,
) [flie = [Alie, and
) ol = lo]de.-
Then [f + gl = [fi + g1li%.
(42) If f € the L' functions of M and g € the L' functions of M and
[l = lglie., then [a f1Y = [agli%.
Let X be a non empty set, let S be a o-field of subsets of X, and let M be a
o-measure on S. The functor CosetSet M yields a non empty family of subsets
of the L' functions of M and is defined by:

(Def. 14) CosetSet M = {[f]M, ; f ranges over partial functions from X to R: f €

a.e.’

the L! functions of M}.

Let X be a non empty set, let S be a o-field of subsets of X, and let M
be a o-measure on S. The functor addCoset M yields a binary operation on
CosetSet M and is defined by the condition (Def. 15).

(Def. 15) Let A, B be elements of CosetSet M and a, b be partial functions from
XtoR. Ifa € A and b € B, then (addCoset M)(A, B) = [a + b]M .

Let X be a non empty set, let S be a o-field of subsets of X, and let M be
a o-measure on S. The functor zeroCoset M yielding an element of CosetSet M
is defined by:

(Def. 16) There exists a partial function f from X to R such that f = X 0
and f € the L' functions of M and zeroCoset M = [f]M

a.e.’
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Let X be a non empty set, let .S be a o-field of subsets of X, and let M
be a o-measure on S. The functor lmultCoset M yields a function from R x
CosetSet M into CosetSet M and is defined by the condition (Def. 17).

(Def. 17) Let z be an element of R, A be an element of CosetSet M, and f be
a partial function from X to R. If f € A, then (ImultCoset M)(z, A) =
2 f13%.-
Let X be a non empty set, let S be a o-field of subsets of X, and let M
be a o-measure on S. The functor pre-L-Space M yields a strict Abelian add-

associative right zeroed right complementable real linear space-like non empty
RLS structure and is defined by the conditions (Def. 18).

(Def. 18)(1)  The carrier of pre-L-Space M = CosetSet M,

(ii)  the addition of pre-L-Space M = addCoset M,

(i)  Opre-I-Space M = zeroCoset M, and
)

(iv)  the external multiplication of pre-L-Space M = ImultCoset M.

5. REAL NORMED SPACE OF INTEGRABLE FUNCTIONS

One can prove the following propositions:

(43) If f € the L' functions of M and g € the L' functions of M and f =M. ¢,
then [ fdM = [ gdM.

(44) If f is integrable on M, then [ fdM, [|f|dM € R and |f| is integrable
on M.

(45) Suppose f € the L' functions of M and g € the L' functions of M and

=ne. 9. Then | f| =15 |g| and [|f|dM = [|g| dM.

(46) Given a vector x of pre-L-Space M such that f, g € 2. Then f =M ¢
and f € the L' functions of M and g € the L' functions of M.

(47) There exists a function Na from the carrier of pre-L-Space M into R
such that for every point x of pre-L-Space M holds there exists a partial
function f from X to R such that f € x and Na(z) = [|f|dM.

In the sequel x is a point of pre-L-Space M.
The following two propositions are true:

(48) If f € x, then f is integrable on M and f € the L' functions of M and
| f| is integrable on M.

(49) If f,g €z, then f =M gand [ fdM = [gdM and [|f|dM = [|g|dM.

Let X be a non empty set, let S be a o-field of subsets of X, and let M be
a o-measure on S. The functor L!-Norm(M) yields a function from the carrier
of pre-L-Space M into R and is defined by:

(Def. 19) For every point x of pre- L-Space M there exists a partial function f from
X to R such that f € x and (L'-Norm(M))(z) = [|f| dM.
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Let X be a non empty set, let S be a o-field of subsets of X, and let M be a
o-measure on S. The functor L!-Space(M) yielding a non empty strict normed
structure is defined by:

(Def. 20) The RLS structure of L!-Space(M) = pre-L-Space M and the norm of
L-Space(M) = L*-Norm(N).

In the sequel z, y are points of L'-Space(M).

Next we state several propositions:

(50)(1)  There exists a partial function f from X to R such that f € the L!
functions of M and z = [f]} and ||z|| = [|f|dM, and

(ii)  for every partial function f from X to R such that f € z holds
JIF1AM = [|z[|.
(51) If f € z, then x = [f]M and ||z| = [|f|dM.

(52) If fexandgey, then f+g€x+yandif fE€x, thenaf €a- .
(53) If E = dom f and for every set x such that x € dom f holds f(x) = r,
then f is measurable on F.

(54) If f € the L' functions of M and [|f|dM =0, then f =M X +— 0.

(65) [|X — 0]dM = 0.

(56) If f is integrable on M and g is integrable on M, then [|f + g|dM <
JIF1AM + [lg| dM.

Let X be a non empty set, let S be a o-field of subsets of X, and let M be
a o-measure on S. One can check that L'-Space(M) is real normed space-like,
real linear space-like, Abelian, add-associative, right zeroed, and right comple-
mentable.
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1. THE POWER OF AN ELEMENT OF BCI-ALGEBRAS

In this paper X is a BCl-algebra and n is an element of N.

Let D be a set, let f be a function from N into D, and let n be a natural
number. Then f(n) is an element of D.

Let G be a non empty BCI structure with 0. The functor BCI-power G
yielding a function from (the carrier of G) x N into the carrier of G is defined
as follows:

(Def. 1) For every element x of G holds (BCI-power G)(z, 0) = O¢ and for every
n holds (BCI-power G)(z, n + 1) = = \ (BCl-power G)(x, n)°.

(© 2008 University of Bialystok
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For simplicity, we adopt the following convention: x, y are elements of X, a,
b are elements of AtomSet X, m, n are natural numbers, and ¢, j are integers.
Let us consider X, 4, x. The functor z* yielding an element of X is defined
by:
BClI-power X)(z, |i]), if 0 <
(Def. 2) o = { EBCI—gower Xigx;,’ \L)];, othgrv&;ise.
Let us consider X, n, . Then z can be characterized by the condition:
(Def. 3) 2™ = (BCI-power X)(zx, n).

One can prove the following propositions:

[N ]
= O
8
3
m
us}
=
Q
B
o
=
<
= .
8
[e]
~—
\_9
\_5

[N
[\

a'\ad =a".
( ai)j -
atti =gt \ (aj)c.
Let us consider X, x. We say that x is finite-period if and only if:
(Def. 4) There exists an element n of N such that n # 0 and 2™ € BCK-part X.
One can prove the following proposition
(25) If x is finite-period, then (z¢)¢ is finite-period.

NN
-~ W

(1) a\(@\b)=b\(z\a).
(2) a"tl=2z\ (2™)°.
(3) 20 =0x
(4) zt==x
(5) z!=2a°
(6) 2% =x\ 2"
(7) (0x)" =0x
(8) (@) =a
(9) =7 =((@))™"
(10) (a®)" =a™
(11) If x € BCK-part X and n > 1, then 2" = z.
(12) If x € BCK-part X, then 27" = 0x.
(13) a' € AtomSet X.
(14) (a"*h)e = (a")°\ a.
(15) (a\b)" =a™\b".
(16) (a\b) " =a"\b "
(17) (@) = (@)
(18) ()" = (a")°
(19) (@)™ = (a ")
(20)
(21)
(22)
(23)
(24)
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Let us consider X, x. Let us assume that z is finite-period. The functor
ord(z) yielding an element of N is defined as follows:
(Def. 5)  2°4®) ¢ BCK-part X and ord(zx) # 0 and for every element m of N such
that ™ € BCK-part X and m # 0 holds ord(z) < m.

One can prove the following propositions:

(26) If a is finite-period and ord(a) = n, then a™ = 0x.

(27) X is a BCK-algebra iff for every x holds z is finite-period and ord(z) = 1.

(28) If z is finite-period and a is finite-period and x € BranchV a, then
ord(z) = ord(a).

(29) If x is finite-period and ord(z) = n, then 2" € BCK-part X iff n | m.

(30) If x is finite-period and z™ is finite-period and ord(xz) = n and m > 0,
then ord(z™) = n + (mgedn).

(31) If x is finite-period and z° is finite-period, then ord(x) = ord(z®).

(32) If x\ y is finite-period and z, y € BranchV a, then ord(z \ y) = 1.

(33) Suppose that = \ y is finite-period and a \ b is finite-period and z is
finite-period and y is finite-period and a is finite-period and b is finite-
period and a # b and x € BranchV a and y € BranchV b. Then ord(a \ b) |
lem(ord(x), ord(y)).

2. DEFINITION OF BCI-HOMOMORPHISMS

For simplicity, we follow the rules: X, X', Y, Z, W are BCl-algebras, H’
denotes a subalgebra of X', G denotes a subalgebra of X, A’ denotes a non
empty subset of X/, I denotes an ideal of X, C, K are closed ideals of X, z,
y are elements of X, R; denotes an I-congruence of X by I, and Ro denotes an
I-congruence of X by K.

One can prove the following proposition

(34) Let X be a BCI-algebra, Y be a subalgebra of X, z, y be elements of
X, and 2/, 3/ be elements of Y. If z =2’ and y = ¢/, then z \ y =2\ ¢/.

Let X, X’ be non empty BCI structures with 0 and let f be a function from

X into X’. We say that f is multiplicative if and only if:

(Def. 6) For all elements a, b of X holds f(a\b) = f(a)\ f(b).

Let X, X’ be BCl-algebras. Note that there exists a function from X into
X’ which is multiplicative.

Let X, X’ be BCl-algebras. A BCI-homomorphism from X to X’ is a mul-
tiplicative function from X into X'.

In the sequel f denotes a BCI-homomorphism from X to X', g denotes a
BCI-homomorphism from X’ to X, and h denotes a BCI-homomorphism from
X' toY.

Let us consider X, X', f. We say that f is isotonic if and only if:
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(Def. 7) For all z, y such that =z < y holds f(x) < f(y).

Let us consider X. An endomorphism of X is a BCI-homomorphism from
X to X.
Let us consider X, X', f. The functor Ker f is defined by:
(Def. 8) Ker f={z € X: f(x) =0x/}.
The following proposition is true
(35) f(0x)=0x".
Let us consider X, X', f. Observe that Ker f is non empty.
We now state several propositions:

(36) 1z <y, then f(z) < f(y).

(37)  f is one-to-one iff Ker f = {0x}.

(38) If fis bijective and g = f~!, then g is bijective.
(39) h- fis a BCl-homomorphism from X to Y.

(

40) Let f be a BCI-homomorphism from X to Y, g be a BCI-homomorphism
from Y to Z, and h be a BCI-homomorphism from Z to W. Then h-(g-f) =
(h-g)-f.

(41) For every subalgebra Z of X' such that the carrier of Z = rng f holds f
is a BCI-homomorphism from X to Z.

(42) Ker f is a closed ideal of X.

Let us consider X, X', f. Observe that Ker f is closed.
Next we state several propositions:

~— — ~— ~— ~—

(43) If f is onto, then for every element ¢ of X’ there exists z such that
c= f(z).
(44) For every element a of X such that a is minimal holds f(a) is minimal.

(45) For every element a of AtomSet X and for every element b of AtomSet X’
such that b = f(a) holds f°BranchV a C BranchV b.

(46) 1If A’ is an ideal of X', then f~1(A’) is an ideal of X.
(47) If A’ is a closed ideal of X', then f~!(A’) is a closed ideal of X.
(48) If f is onto, then f°I is an ideal of X'.
(49) If f is onto, then f°C} is a closed ideal of X'.
Let X, X’ be BCI-algebras. We say that X and X’ are isomorphic if and
only if:
(Def. 9) There exists a BCI-homomorphism from X to X’ which is bijective.

Let us consider X, let I be an ideal of X, and let R; be an I-congruence of
X by I. Note that X/, is strict, B, C, I, and BCI-4.

Let us consider X, let I be an ideal of X, and let R; be an I-congruence
of X by I. The canonical homomorphism onto cosets of R; yielding a BCI-
homomorphism from X to X /g, is defined as follows:
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(Def. 10) For every x holds (the canonical homomorphism onto cosets of R;)(x) =

3. FUNDAMENTAL THEOREM OF HOMOMORPHISMS

The following four propositions are true:
(50) The canonical homomorphism onto cosets of R; is onto.

(51) Suppose I = Ker f. Then there exists a BCI-homomorphism A from
X /R, to X" such that f = h - the canonical homomorphism onto cosets of
R; and h is one-to-one.

(52) Let given X, X', I, Ry, f. Suppose I = Ker f. Then there exists a
BCI-homomorphism A from X /g, to X’ such that f = h - the canonical
homomorphism onto cosets of Ry and h is one-to-one.

(53) Ker (the canonical homomorphism onto cosets of Ry) = K.

4. FIRST ISOMORPHISM THEOREM

One can prove the following propositions:
(54) If I = Ker f and the carrier of H' = rng f, then X /p, and H’ are
isomorphic.
(55) 1If I = Ker f and f is onto, then % /g, and X’ are isomorphic.

5. SECOND ISOMORPHISM THEOREM

Let us consider X, G, K, Ry. The functor Union(G, Ry) yielding a non empty
subset of X is defined by:

(Def. 11)  Union(G, R2) = U{[a](g,);a ranges over elements of G: [a]p,) € the
carrier of X /g, }.

Let us consider X, G, K, Rs. The functor HKOp(G, R3) yielding a binary
operation on Union(G, Rz) is defined as follows:

(Def. 12) For all elements wi, wy of Union(G, Re) and for all elements x, y of X
such that w; = x and we = y holds (HKOp(G, R2)) (w1, wa) =z \ y.
Let us consider X, G, K, Ry. The functor zeroHK(G, R3) yields an element
of Union(G, Ry) and is defined as follows:

(Def. 13) zeroHK(G, R2) = Ox.
Let us consider X, G, K, Ry. The functor HK(G, R2) yielding a BCI struc-
ture with 0 is defined as follows:
(Def. 14) HK(G, Ro) = (Union(G, Rs), HKOp(G, Rs), zeroHK (G, Ry)).
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Let us consider X, G, K, Ry. Observe that HK(G, R3) is non empty.
Let us consider X, G, K, Ry and let w;, wa be elements of Union(G, R2).
The functor w; \ wy yielding an element of Union(G, Ry) is defined by:
(Def. 15)  w; \ w2 = (HKOp(G, R2))(w1, wa).
We now state the proposition
(56) HK(G, R2) is a BCl-algebra.
Let us consider X, G, K, Ry. Observe that HK(G, Ry) is strict, B, C, I, and
BCI-4.
We now state three propositions:
(57) HK(G, Rp) is a subalgebra of X.
(58) (The carrier of G) N K is a closed ideal of G.
(59) Let K be an ideal of HK(G, R2), R3 be an I-congruence of HK(G, Rs)
by Ki, I be an ideal of G, and R; be an I-congruence of G by I. Suppose
K; = K and R3 = Ry and I = (the carrier of G) N K. Then ©/x, and

HK(G.R2) /- are isomorphic.
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Summary. To evaluate our formal verification method on a real-size cal-
culation circuit, in this article, we continue to formalize the concept of the 4-2
Binary Addition Cell primitives (FTAs) to define the structures of calculation
units for a very fast multiplication algorithm for VLSI implementation [11]. We
define the circuit structure of four-types FTAs, TYPE-0 to TYPE-3, using the
series constructions of the Generalized Full Adder Circuits (GFAs) that genera-
lized adder to have for each positive and negative weights to inputs and outputs
[15]. We then successfully prove its circuit stability of the calculation outputs
after four-steps. The motivation for this research is to establish a technique ba-
sed on formalized mathematics and its applications for calculation circuits with
high reliability.
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1. STABILITY OF 4-2 BINARY ADDITION CircUIT CELL (TYPE-0)

Let a1, b1, c1, di, c2 be sets. The functor BitFTAOStr(ay, b1, c1, d1, c2) yiel-
ding an unsplit non void strict non empty many sorted signature with arity held
in gates and Boolean denotation held in gates is defined by:

(Def. 1) BitFTAOStI‘(al, b1, c1, dy, CQ) = Eo(al, b1, 01)+' Eo(a(](al, by, Cl), Co,
dy).

Let ay, b1, c1, di, co be sets. The functor BitFTAOCirc(aq, b1, c1, di, ¢2)
yields a strict Boolean circuit of BitFTAOStr(a1, b, ¢1, d1, ¢2) with denotation
held in gates and is defined as follows:

(Def. 2) BitFTAOCiI‘C(CLl, by, c1, di, CQ) = Q:()(al, b1, Cl)—i-' Q()(Cl()(al, by, Cl), ca,
dy).

One can prove the following propositions:

(1) Let ay, by, c1, di, c2 be sets. Then ZV(BitFTAOStr(aq1, b1, c1, di, ¢2)) =
{((al, bl>, XO0r9 ), ao(al, bl, Cl)} U {<<a1, bl>, andg ), <<b1, Cl>, andg ), (<01,
a1>, andg),co(al, bl, Cl)} U {(<a0(a1, bl, Cl),62>, xorg),ag(ao(al, bl, 61),
Cc9, dl)}U{(<a0(a1, bl, cl), CQ), and2 ), ((CQ, d1>, and2 ), <<d1, ao(al, bl, Cl)>,
and2 ), Co(ao(al, bl, Cl), C2, dl)}

(2) For all sets a1, b1, c1, di, co holds ZV(BitFTAOStr(ay, b1, c1, di, c2)) is
a binary relation.

(3) For all non pair sets aj, by, ¢1, di and for every set cp such that
co # ({d1,a0(a1, b1, 1)), ande) and co ¢ ZV(Xo(a, b1, ¢1)) holds
InputVertices(BitFTAOStr(aq, b1, 1, d1, c2)) = {a1,b1,¢1,d1, e}

(4) Let a1, by, c1, di, ¢ be sets. Then a; € the carrier of BitFTAO0Str(ay,
b1, c1, di, c2) and by € the carrier of BitFTAOStr(a1, b1, c1, di, c2) and
c1 € the carrier of BitFTAOStr(ay, b1, ¢1, d1, c2) and d; € the carrier
of BitFTAOStr(ay, b1, ¢1, d1, c2) and co € the carrier of BitFTAO0Str(ay,
b1, c1, di, c2) and ({(a1,b1), xory ) € the carrier of BitFTAOStr(aq, b1, c1,
dl, 62) and Cl()(al, by, Cl) € the carrier of BitFTAOStl"(al, by, c1, dy, 62)
and ((a1,b1), anda) € the carrier of BitFTAOStr(a1, b1, c1, di, c2) and
((b1,c1), and2 ) € the carrier of BitFTAOStr(a1, b1, c1, d1, c2) and {{c1,
ai), anda ) € the carrier of BitFTAOStr(ay, b1, c1, di, c2) and co(aq, b,
¢1) € the carrier of BitFTAO0Str(as, b1, c1, di, c2) and {(ag(ay, b1, c1),c2),
xorg ) € the carrier of BitFTAOStr(a1, b1, c1, di, c2) and ag(ag(a, b1, 1),
o, dy) € the carrier of BitFTAOStr(ay, b1, ¢1, d1, c2) and {(ap(a1, b1, c1),
c2), andg ) € the carrier of BitFTAOStr(ay, b1, c1, d1, c2) and ({co,d1),
ands ) € the carrier of BitFTAOStr(ay, b1, ¢1, d1, c2) and {{(dy, ap(a1, b1,
c1)), andg ) € the carrier of BitFTAOStr(a1, b1, ¢1, d1, c2) and cg(ap(aq,
by, Cl), co, dl) € the carrier of BitFTAOStl“(al, by, c1, di, 02).

(5) Let ay, b1, 1, d1, c2 be sets. Then ((a1, b)), xore ) € ZV(BitFTA0Str(as,
b1, c1, di, c2)) and ag(ay, b1, ¢1) € ZV(BitFTAOStr(a1, b1, c1, di, ¢2)) and
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((a1,b1), ands ), ((b1,c1), ands ), ({(c1,a1), ands) € ZV(BitFTAO0Str(a;,
bl, C1, dl, 02)) and Co(al, bl, 01) S IV(BitFTAOStI"(al, bl, C1, dl, CQ))
and (<a0(a1, bl, 01),CQ>, XOI"Q), ao(ao(al, bl, Cl), Co, dl), (<Clo(a1, bl, Cl>,
CQ>, andg), (<Cg,d1>, andg), ((dl,ao(al, bl, 01)>, andg), Co(ao(al, bl, 01),
co, d1) € IV(BitFTAOStI‘(al, by, c1, di, 62)).

(6) Let ai, b1, c1, di be non pair sets and ¢y be a set. Suppose ca # {(d1,
ao(al, bl, Cl)>, andg) and (&) §é IV(E()(CLl, bl, 01)). Then ai, bl, C1, dl,
¢ € InputVertices(BitFTAOStr(a1, b1, c1, di, ¢2)).

Let ay, b1, c1, di, c2 be sets. The functor BitFTAOCarryOutput(ay, b1, c1,
dy, c2) yields an element of ZV(BitFTAOStr(a1, b1, c1, di, ¢2)) and is defined as
follows:

(Def. 3) BitFTA0CarryOutput(ay, b1, c1, di, c2) = ¢o(a, b1, c1).
The functor BitFTAOAdderOutputl(ai, by, c1, di, c2) yields an element of
IV (BitFTAOStr(a1, by, c1, di, ¢2)) and is defined as follows:

(Def. 4) BitFTAOAdderOutputl(ay, by, c1, d1, c2) = ap(ay, b1, c1).

The functor BitFTAOAdderOutputP(ay, b1, c1, di, c2) yielding an element of
IV (BitFTAOStr(a1, b1, c1, di, c2)) is defined by:

(Def. 5) BitFTAOAdderOutputP(al, by, c1, di, 02) = C()(Clo(al, b1, Cl), co, dl).
The functor BitFTAOAdderOutputQ(as, b1, c1, d1, c2) yields an element of
IV (BitFTAOStr(ay, b1, c1, di, c2)) and is defined by:

(Def. 6) BitFTAOAdderOutpth(al, bl, Cc1, dl, 02) = Cl()(a(](al, bl, Cl), Co, dl).

The following propositions are true:

(7) Let ai, by, ¢1 be non pair sets, dj, co be sets, s be a sta-
te of BitFTAOCirc(aq, b1, c1, di, c2), and ag, ag, as be elements of
Boolean. Suppose a2 = s(a;) and ag = s(b1) and a4 = s(c1). Then
(Following(s, 2))(BitFTAOCarryOutput(ay, b1, ¢1, d1, c2)) = agAazVazA
as V ay A ag and (Following(s,2))(BitFTAOAdderOutputl(ay, b1, ¢1, dy,
CQ)) =as D az D ay.

(8) Let ai, b1, ¢1, di be non pair sets and ¢y be a set. Suppose ¢y # {(d1,
ag(a1, b1, c1)), ande ) and co ¢ ZV(Xo(a1, b1, ¢1)). Let s be a state of
BitFTAO0Circ(aq, by, c1, di, ¢2) and ag, as, a4, as, ag be elements of
Boolean. Suppose as = s(a1) and az = s(b1) and a4 = s(c;) and
as = s(d1) and ag = s(c2). Then (Following(s,2))(ag(a1, b1, c1)) =
az ® az @ ag and (Following(s,2))(a1) = ag and (Following(s,2))(b1) =
a3 and (Following(s,2))(c1) = a4 and (Following(s,2))(d;) = as and
(Following(s, 2))(c2) = ag.

(9) Let ai, b1, c1, di be non pair sets and ¢y be a set. Suppose co # {(d1,
ap(ai, b1, c1)), anda ) and ca ¢ IV(So(a1, b1, ¢1)). Let s be a state of
BitFTAOCirc(a1, by, c1, di, c2) and ag, as, a4, as, ag be elements of
Boolean. Suppose az = s(ay) and a3 = s(by) and a4 = s(c1) and as = s(dy)

379
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and ag = s(c2). Then (Following(s,4))(BitFTAOAdderOutputP(aq, b1,
c1,di, c2)) = (a2 ®az @ ag) Nag Vag AasVas A (a2 ® az ® ag) and
(Following(s, 4))(BitFTAOAdderOutputQ(as, by, c1, di, ¢2)) = a2 ® a3 P
aq D as D ag.

(10) Let aq, b1, ¢1, di be non pair sets and cg be a set. If co # ((d1, ap(ay, b1,
1)), andsg ), then for every state s of BitFTAOCirc(ay, b1, ¢1, d1, c2) holds
Following(s, 4) is stable.

2. STABILITY OF 4-2 BINARY ADDITION CIrcuIT CELL (TYPE-1)

Let a1, ba, ¢1, d2, c2 be sets. The functor BitFTA1Str(aq, ba, 1, do, c2) yiel-
ding an unsplit non void strict non empty many sorted signature with arity held
in gates and Boolean denotation held in gates is defined by:

(Def. 7) BitFTAlStI"(al, ba, c1, do, CQ) = 21(&1, ba, 01)—|-' Zg(al(al, ba, Cl), co,
ds).

Let ai, by, c1, da, co be sets. The functor BitFTA1Circ(a1, ba, ¢1, da, ¢2)
yields a strict Boolean circuit of BitFTA1Str(a1, be, ¢1, da, ¢2) with denotation
held in gates and is defined by:

(Def. 8)  BitFTA1Circ(ay, by, 1, d2, ¢2) = €1(ar, bz, ¢1)+ €2(ai (a1, bz, ¢1), c2,
dy).

Next we state several propositions:

(11) Let a1, ba, c¢1, ds, co be sets. Then IV(BitFTAlStI“(CLl, bs, c1, do,
CQ)) = {(<6L1,b2>7 XOI‘2C),Cl1(CL1, bg, Cl)} U {(<6L1,b2>, and2c), <<b2761>,
andga ), <<Cl, a1>, andg ), cl(al, bz, cl)}U{(<a1(a1, b2, Cl), CQ>, XOI'QC), Clg(al
(al, bQ, Cl), Co, d2)}U{(<a1(a1, b2, Cl),02>, andga), (<C2,d2>, andQC), <<d2,
al(al, bg, Cl)>, andgb),C2(a1(a1, b2, 01), Co, dg)}

(12) For all sets a1, be, c1, da2, co holds ZV(BitFTA1Str(ay, be, c1, da, ¢2)) is
a binary relation.

(13) For all non pair sets a1, by, c¢1, d2 and for every set ca such that
co # <<d2,a1(a1, ba, Cl)>, andgb) and co ¢ IV(Zl(al, bo, Cl)) holds
InputVertices(BitFTA1Str(ay, by, c1, d2, c2)) = {a1, b2, c1,dz, c2}.

(14) Let ay, ba, c1, da, co be sets. Then a; € the carrier of BitFTA1Str(aq,
ba, c1, do, c2) and by € the carrier of BitFTA1Str(a1, be, c1, da2, c2) and
c1 € the carrier of BitFTA1Str(a1, be, c1, d2, ¢2) and do € the carrier of
BitFTA1Str(ay, be, c1, d2, ¢2) and c2 € the carrier of BitFTA1Str(aq, be,
c1, da, c2) and ({a1,b2), xor2c) € the carrier of BitFTA1Str(ay, ba, c1,
ds, C2) and al(al, ba, Cl) € the carrier of BitFTAlStI‘(CLl, ba, c1, ds, 02)
and ((a1,b2), and2c) € the carrier of BitFTA1Str(ay, be, c1, dg, c2) and
((b2,c1), anda, ) € the carrier of BitFTA1Str(ay, be, c1, da, c2) and ({(c1,
ay), andg ) € the carrier of BitFTA1Str(ay, ba, ¢1, d2, c2) and ¢q(ay, b,
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c1) € the carrier of BitFTA1Str(a1, b, c1, da2, c2) and {(ai(a1, ba, 1), c2),
xor2c) € the carrier of BitFTA1Str(ay, be, c1, da, c2) and as(ay(ai, ba,
1), c2, d2) € the carrier of BitFTA1Str(a1, ba, 1, d2, c2) and ({(a;(aq,
ba, c1),¢2), andg, ) € the carrier of BitFTA1Str(ay, ba, ¢1, d2, c2) and
((c2,d2), and2c) € the carrier of BitFTA1Str(a1, ba, c1, d2, c2) and ((ds,
ai(ay, be, c1)), andgy ) € the carrier of BitFTA1Str(ay, b, ¢1, da, c2) and
c2(a1(a1, b2, Cl), Co, dg) € the carrier of BitFTAlStr(al, bg, c1, d2, CQ).

(15) Let aq, ba, c1, da, ca be sets. Then ((ay, bs), xor2c) € ZV(BitFTA1Str(ay,
by, c1, dg, c2)) and aj(ay, by, ¢1) € IV(BitFTA1Str(a1, be, c1, dz2, ¢2)) and
((a1,b2), and2c), ({ba, c1), anda, ), {{c1,a1), andy ) € TV (BitFTA1Str(a;,
b, c1, da, 62)) and cl(al, ba, Cl) S IV(BitFTAlStI“(CLl, b, c1, da, CQ)) and
<<Cl1(a1, bQ, Cl),62>, XOTQC), ag(al(al, b2, 61), C2, dg), (<a1(a1, b2, 61),CQ>,
andag ), ((c2,dz), and2c), ((da,a1(a1, b2, c1)), anday ), c2(a1(az, ba, c1),
co, dg) € IV(BitFTAlStI‘(al, ba, c1, do, Cg)).

(16) Let ai, b, ¢1, do be non pair sets and ¢y be a set. Suppose ¢y # ((da,
al(al, b2, Cl)>, andgb) and C2 §é IV(El((M, bg, Cl)). Then ai, bg, Cq, dg,
¢ € InputVertices(BitFTA1Str(aq, be, c1, da, ¢2)).

Let aq, be, c1, da2, co be sets. The functor BitFTA1CarryOutput(ay, ba, c1,
da, c2) yielding an element of ZV(BitFTA1Str(a1, be, c1, da, c2)) is defined as
follows:

(Def. 9) BitFTA1CarryOutput(ay, ba, c1, d2, c2) = ¢1(ay, ba, c1).
The functor BitFTA1AdderOutputl(a, be, c1, do2, c2) yields an element of
IV (BitFTA1Str(ay, ba, c1, da2, c2)) and is defined by:

(Def. 10) BitFTA1AdderOutputl(ay, be, ¢1, da, c2) = ai(a1, be, ¢1).

The functor BitFTA1AdderOutputP(aq, be, c1, d2, c2) yields an element of
IV (BitFTA1Str(a1, be, c1, da, ¢2)) and is defined as follows:

(Def. 11) BitFTAlAdderOutputP(al, b, c1, da, C2) = Cg(al (al, ba, Cl), ca, dg)
The functor BitFTA1AdderOutputQ(ai, ba, c1, d2, c2) yielding an element of
IV (BitFTA1Str(ay, be, c1, da, ¢2)) is defined as follows:

(Def 12) BitFTAlAdderOutpth(al, bQ, Cc1, dg, 62) = ag(al(al, bg, Cl), Co, dg)

The following four propositions are true:

(17) Let aji, ba, ¢1 be non pair sets, ds, ca be sets, s be a sta-
te of BitFTA1Circ(a1, ba, 1, da, c2), and aa, as, as be elements of
Boolean. Suppose az = s(a;) and az = s(b2) and as = s(c1). Then
(Following(s, 2))(BitFTA1CarryOutput(a, b2, c1, d2, c2)) = a2 A —ag V
—as AaygVag Aaz and (Following(s, 2))(BitFTA1AdderOutputl(ay, b, c1,
da, ¢2)) = —(ag ® —a3 & aq).

(18) Let ay, be, c1, d2 be non pair sets and ¢y be a set. Suppose co # ((da,
al(al, ba, 01)>, ande) and ¢y ¢ IV(Zl(al, ba, 61)). Let s be a state
of BitFTA1Circ(ay, ba, ¢1, da, c2) and ag, as, a4, as, ag be elements of
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Boolean. Suppose az = s(a1) and az = s(b2) and ay = s(c¢1) and
as = $(da) and ag = s(c2). Then (Following(s,2))(ai(a1, b, c1)) =
—(ag®—-a3Day) and (Following(s,2))(a1) = ag and (Following(s, 2))(b2) =
as and (Following(s,2))(c1) = a4 and (Following(s,2))(d2) = as and
(Following(s, 2))(c2) = ag.

(19) Let ai, b, ¢1, da be non pair sets and ¢y be a set. Suppose co # {(da,
ai(a, be, c1)), andgy ) and co ¢ ZV(Z1(aq, b2, ¢1)). Let s be a state
of BitFTA1Circ(ay, ba, ¢1, da, c2) and a9, as, a4, as, ag be elements of
Boolean. Suppose as = s(aq) and a3 = s(b2) and a4 = s(c1) and a5 = s(d2)
and ag = s(c2). Then (Following(s,4))(BitFTA1AdderOutputP(aq, be,
1, da, ¢2)) = (a2 ® —ag @ ag) NagV ag A—asV —az A (as ® —ag B ayg)) and
(Following(s, 4))(BitFTA1AdderOutputQ(aq, be, c1, d2, ¢2)) = as®—azd
ayq D —as D ag.

(20) Let ai, b, 1, do be non pair sets and ¢y be a set. If co # ((da, a1(aq,
ba, 1)), andgy ), then for every state s of BitFTA1Circ(ay, be, c1, da, ¢2)
holds Following(s,4) is stable.

3. STABILITY OF 4-2 BINARY ADDITION CIrRcuUIT CELL (TYPE-2)

Let a7, by, c3, d1, ca be sets. The functor BitFTA2Str(ay, b1, c3, di, c2) yiel-
ding an unsplit non void strict non empty many sorted signature with arity held
in gates and Boolean denotation held in gates is defined by:

(Def. 13) BitFTAQStI"(CL'z, b1, cs, di, CQ) = 22(a7, b1, Cg)—l-' Zl(ag(a7, b1, 63), co,
dy).

Let a7, by, cs, di, c2 be sets. The functor BitFTA2Circ(az, by, cs, d1, c2) yiel-
ding a strict Boolean circuit of BitFTA2Str(az, b1, c3, d1, c2) with denotation
held in gates is defined by:

(Def. 14) BitFTAQCiI‘C(CW, by, cs, di, 62) = €2((17, b1, Cg)—i-' Cl(ag(cw, by, 03), c2,
dy).

Next we state several propositions:

(21) Let a7, b1, c3, di, co be sets. Then IV(BitFTA2StI“(CL7, by, c3, di,
CQ)) = {(<a7, bl>, XOI‘QC), Cl2((L7, bl, Cg)} U {(<6L7, b1>, andga ), <<b1, 03>,
and2c), ((c3,a7), andsy ), c2(ay, b1, c3)} U {{{az(az, b1, c3), c2), xor2c ), ay
(aQ(a7, bl, 63), Co, dl)} U {((ag(a7, bl, Cg),CQ}, and2c), <<02,d1>, andga),
(<d1,02(a7, bl, Cg)), andQ),Cl(CLQ(CW, bl, 03), Co, dl)}

(22) For all sets a7, by, cs, di, co holds ZV(BitFTA2Str(az, by, c3, di, c2)) is
a binary relation.

(23) For all non pair sets ay, by, c3, di and for every set ca such that
co F# (<d1,a2(a7, 61,03)>,and2) and ¢y ¢ IV(EQ(CL?, by, 03)) holds
InputVertices(BitFTA2Str(az, b1, c3, d1, c2)) = {ar, b1, c3,d1, e}
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(24) Let az, b1, c3, di, co be sets. Then a7 € the carrier of BitFTA2Str(az,
b1, c3, di, c2) and by € the carrier of BitFTA2Str(az, b1, c3, d1, c2) and
c3 € the carrier of BitFTA2Str(az, by, c3, d1, c2) and d; € the carrier of
BitFTA2Str(az, b1, c3, di, c2) and co € the carrier of BitFTA2Str(ar, by,
3, dy, c2) and ({(a7,b1), xor2c) € the carrier of BitFTA2Str(ay, b1, c3,
dy, c2) and as(az, by, c3) € the carrier of BitFTA2Str(ay, b1, cs, di, c2)
and ((ar,b1), andg, ) € the carrier of BitFTA2Str(ay, b1, cs3, di, c2) and
((b1,c3), and2c) € the carrier of BitFTA2Str(ar, b1, cs, di, c2) and ({cs,
ay), andgp ) € the carrier of BitFTA2Str(a7, by, c3, d1, ¢2) and ¢(a7, by,
c3) € the carrier of BitFTA2Str(az, b1, cs3, di, c2) and {(az(az, b1, c3),c2),
xor2c) € the carrier of BitFTA2Str(az, b1, c3, d1, c2) and aj(az(az, by,
c3), c2, di) € the carrier of BitFTA2Str(ay, b1, c3, d1, c2) and ((az(ay,
b1, c3),¢2), and2c) € the carrier of BitFTA2Str(ay, b1, c3, d1, c2) and
((c2,d1), anda, ) € the carrier of BitFTA2Str(a7, b1, c3, di, ¢c2) and ((di,
as(az, by, c3)), andy ) € the carrier of BitFTA2Str(ay, b1, c3, di, c2) and
cl(aQ(a7, bl, Cg), Co, d1> € the carrier of BitFTA2Str(6L7, bl, c3, dl, CQ).

(25) Let ay, b1, c3, d1, ca be sets. Then ((az, b1), xor2c) € ZV(BitFTA2Str(ay,
b1, cs, di, 02)) and Cl2<a7, b1, c3) € IV(BitFTAQStI"(a7, by, cs, di, CQ)) and
((az,b1), anda, ), {{b1, c3), and2c ), {{c3, ar), andg, ) € ZV(BitFTA2Str(az,
b1, c3, di, c2)) and ca(ay, by, c3) € ZV(BitFTA2Str(az, b1, c3, d1, c2)) and
<<a2(a7, bl, Cg),CQ), XOI"QC), al(ag(a7, bl, 03), C2, dl), (<a2(a7, bl, 63)762>,
and2c), <<02,d1>, andga ), (<d1, Cl2((L7, bl, 03)>, and2 ), C1(Cl2(CL7, bl, 03),
ca, dl) S IV(BitFTAQStI‘(CW, b1, c3, d1, 62)).

(26) Let a7, b1, c3, di be non pair sets and ¢y be a set. Suppose ca # ((d1,
02(a7, bl, Cg)), andg) and (6] §7_f IV(EQ(CL?, bl, Cg)). Then ay, bl, Cc3, dl,
¢o € InputVertices(BitFTA2Str(ay, by, c3, di, ¢2)).

Let a7, by, c3, di, ca be sets. The functor BitFTA2CarryOutput(az, b1, cs,
dy, cg) yields an element of ZV(BitFTA2Str(a7, b1, cs, di, ¢2)) and is defined as
follows:

(Def. 15) BitFTA2CarryOutput(ay, b1, c3, d1, c2) = ca(ay, b1, c3).

The functor BitFTA2AdderOutputl(ay, b1, c3, di, c2) yields an element of
IV (BitFTA2Str(az, by, c3, d1, ¢2)) and is defined as follows:

(Def. 16) BitFTA2AdderOutputl(az, b1, c3, d1, c2) = as(az, by, c3).

The functor BitFTA2AdderOutputP (a7, b1, c3, di, c2) yields an element of
IV(BitFTA2Str(ay, b1, c3, di, c2)) and is defined by:

(Def 17) BitFTAQAdderOutputP(a7, bl, Cc3, dl, 02) = Cl(ag(a7, bl, 03)7 Cc9, dl)

The functor BitFTA2AdderOutputQ(az, b1, c3, d1, c2) yielding an element of
IV (BitFTA2Str(az, b1, c3, di, c2)) is defined as follows:

(Def. 18) BitFTA2AdderOutputQ(az, b1, c3, di, c2) = aj(az(az, b1, c3), c2, d1).

One can prove the following propositions:
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(27) Let a7, b1, c3 be mnon pair sets, dj, co be sets, s be a sta-
te of BitFTA2Circ(ay, b1, c3, d1, c2), and aa, asg, as be elements of
Boolean. Suppose az = s(a7) and ag = s(by) and a4 = s(c3). Then
(Following(s, 2))(BitFTA2CarryOutput (a7, b1, c3, di, c2)) = =(—az AasgV
as A—aygV -ag A—ag) and (Following(s, 2))(BitFTA2AdderOutputI(ar, b,
cs, dy, 62)) = naz ® az D —ay.

(28) Let az, b1, c3, di be non pair sets and ¢y be a set. Suppose ca # ((d1,
az(az, b1, ¢3)), anda ) and co ¢ ZV(Xa(ar, b1, ¢3)). Let s be a state of
BitFTA2Circ(ay, by, c3, d1, c2) and ag, as, a4, as, ag be elements of
Boolean. Suppose az = s(ay) and az = s(b1) and a4 = s(c3) and
as = s(d1) and ag = s(cz2). Then (Following(s,2))(az(a7, b1, c3)) =
—ag @ az ® —ay and (Following(s, 2))(a7) = ag and (Following(s, 2))(b1) =
as and (Following(s,2))(c3) = a4 and (Following(s,2))(d1) = as and
(Following(s, 2))(c2) = ag.

(29) Let az, b1, c3, di be non pair sets and ¢y be a set. Suppose ¢y # {(d1,
as(az, by, c3)), ande ) and co ¢ ZV(Xo(a7, b1, c3)). Let s be a state of
BitFTA2Circ(a7, by, c3, d1, ¢2) and ag, as, a4, as, ag be elements of
Boolean. Suppose as = s(ay) and a3 = s(b1) and a4 = s(c3) and a5 = s(dy)
and ag = s(c2). Then (Following(s,4))(BitFTA2AdderOutputP (a7, by,
3, di, €2)) = (mag2 @ as® —ag) A—agV —ag AasVas A (—ag S ag ® —ayq) and
(Following(s, 4))(BitFTA2AdderOutputQ(az, b1, c3, di, ¢2)) = —(—az @
az P ayg P as P —\ag).

(30) Let az, b1, c3, di be non pair sets and cg be a set. If co # ((d1, az(az, b1,
c3)), ands ), then for every state s of BitFTA2Circ(ay, b1, c3, d1, ¢2) holds
Following(s,4) is stable.

4. STABILITY OF 4-2 BINARY ADDITION CIRCUIT CELL (TYPE-3)

Let a7, ba, c3, da, ¢ be sets. The functor BitFTA3Str(az, be, cs, da, c2) yields
an unsplit non void strict non empty many sorted signature with arity held in
gates and Boolean denotation held in gates and is defined by:

(Def. 19) BitFTABStr(a7, bg, Cc3, d2, CQ) = 23(0,7, b2, 63)+' Eg(ag(a7, bQ, 03), Cc9,
ds).

Let a7, ba, cs, da, co be sets. The functor BitFTA3Circ(az, be, c3, da, ¢2) yiel-
ding a strict Boolean circuit of BitFTA3Str(az, ba, c3, da2, c2) with denotation
held in gates is defined by:

(Def. 20) BitFTA3Circ(az, ba, c3, d2, c2) = €3(ay, be, c3)+- €3(as(az, be, c3), c2,
ds).

We now state several propositions:
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(31) Let az, by, c3, da, ¢ be sets. Then IV (BitFTA3Str(ay, be, cs, d2, ¢2)) =
{((a7, bQ>, XO0rg ), Cl3((l7, bQ, 03)} U {(<a7, b2>, andgb ), ((bQ, 03>, andgb ), (<03,
a7), andgb), C3<a7, bz, 03)} U {(<a3(a7, bg, 03)762>, X019 ), ag(ag(a7, bQ, 03),
C9, d2)}U{<<a3(a7, bg, C3),C2>, ande), (<027d2>, andgb), (<d2, 03(a7, bg, Cg)),
andgb), C3(a3(a7, bQ, Cg), C2, dz)}

(32) For all sets a7, ba, c3, da, co holds ZV(BitFTA3Str(az, be, c3, da, ¢2)) is
a binary relation.

(33) For all non pair sets ay, by, c3, do and for every set ce such that
co # ({da,a3(az, be, c3)), andgy ) and co ¢ ZIV(Xs(ar, ba, c3)) holds
InputVertices(BitFTA3Str(az, by, c3, do, c2)) = {ar, ba, c3,dz2, c2}.

(34) Let az, ba, c3, da, co be sets. Then a7 € the carrier of BitFTA3Str(az,
ba, c3, da, c2) and by € the carrier of BitFTA3Str(az, be, 3, da, c2) and
c3 € the carrier of BitFTA3Str(az, be, c3, da, c2) and da € the carrier
of BitFTA3Str(az, ba, c3, da, c2) and ca € the carrier of BitFTA3Str(ar,
ba, c3, do, CQ) and (<a7, bg>, XOI‘Q) € the carrier of BitFTA3Str(a7, by, c3,
ds, 02) and ag(a7, ba, 63) € the carrier of BitFTA3Str(a7, ba, c3, dsa, 62)
and ((ar,ba), andgy ) € the carrier of BitFTA3Str(ay, be, cs, d2, c2) and
((ba,c3), andgy ) € the carrier of BitFTA3Str(ay, be, c3, d2, c2) and {{cs,
ay), andgy ) € the carrier of BitFTA3Str(az, be, c3, da, ¢2) and ¢3(ay, b,
c3) € the carrier of BitFTA3Str(az, be, c3, da2, c2) and ((ag(az, ba, c3),c2),
XOI‘Q) € the carrier of BitFTABStr((m, by, c3, do, C2) and ag(ag(a7, ba, 03),
2, dg) € the carrier of BitFTA3Str(az, be, c3, da, c2) and ({(as(ay, ba, c3),
c2), andgy ) € the carrier of BitFTA3Str(az, ba, c3, da, c2) and ((c2,d2),
andgb) € the carrier of BitFTASStI‘(a7, bo, c3, ds, 62) and (<d2, ag(a7, bs,
c3)), andgp ) € the carrier of BitFTA3Str(ay, be, c3, d2, c2) and c3(ag(ay,
ba, c3), c2, d2) € the carrier of BitFTA3Str(ay, be, c3, d2, ¢2).

(35) Let az, by, c3, da, co be sets. Then ({(a7,bs), xory ) € ZV(BitFTA3Str(az,
ba, c3, do, c2)) and as(az, ba, c3) € IV(BitFTA3Str(ay, be, cs, dz2, ¢2)) and
((a7, b2>, andgb ), (<b2, C3>, andgb ), (<Cg, a7>, andgb) S IV(BitFTA3StI"(a7,
ba, c3, do, 02)) and C3(a7, ba, 03) € IV(BitFTASStr(a7, bo, c3, ds, CQ))
and (<a3(a7, b2, 03)762>, XOI‘Q), a3(a3(a7, bg, Cg), C2, dg), (<C13(a7, bg, Cg),
C2>, andgb), (<Cg,d2>, andgb), (<d2,a3(a7, bg, C3)>, andgb), C3(Cl3(6l7, bg,
63), Co, dg) S IV(BitFTA3Str(a7, ba, c3, do, CQ)).

(36) Let az, b, c3, do be non pair sets and cy be a set. Suppose ¢y # {(da,
Cl3(6L7, b2, 03)>, andgb) and C9 ¢ IV(Z:),(CW, b2, 03))‘ Then ar, bQ, Cc3, dg,
¢y € InputVertices(BitFTA3Str(ay, be, cs3, d2, ¢2)).

Let a7, ba, c3, da2, ca be sets. The functor BitFTA3CarryOutput(az, ba, cs,
da, c2) yields an element of ZV(BitFTA3Str(az, by, c3, d2, c2)) and is defined
by:

(Def. 21) BitFTA3CarryOutput(ay, be, cs, d2, c2) = ¢3(az, ba, c3).
The functor BitFTA3AdderOutputl(ay, ba, c3, d2, c2) yields an element of
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IV (BitFTA3Str(az, be, c3, da, ¢2)) and is defined by:
(Def. 22) BitFTA3AdderOutputl(az, be, c3, da, c2) = as(az, ba, c3).

The functor BitFTA3AdderOutputP (a7, ba, c3, d2, c2) yields an element of
IV (BitFTA3Str(az, ba, c3, d2, c2)) and is defined by:

(Def. 23) BitFTA3AdderOutputP (a7, ba, c3, da, c2) = c3(ag(ay, b, c3), ca, d2).

The functor BitFTA3AdderOutputQ(az, ba, c3, d2, c2) yielding an element of
IV (BitFTA3Str(az, be, c3, da, ¢2)) is defined by:

(Def. 24) BitFTA3AdderOutputQ(az, ba, c3, do, c2) = as(as(az, be, c3), ca, d2).
One can prove the following propositions:

(37) Let a7, by, c3 be non pair sets, d2, ca be sets, s be a
state of BitFTA3Circ(az, by, c3, d2, c2), and a2, a3, as be ele-
ments of Boolean. Suppose az = s(ay) and a3 = s(b2)
and a4 = S(c3). Then (Following(s,2))(BitFTA3CarryOutput(ayz,
ba, c3, do, c2)) = —(—ag A —az V —az A —ag V —ag A —ag) and
(Following(s, 2))(BitFTA3AdderOutputl(az, bs, c3, da, ¢2)) = —(-ag &
a3 D ﬁ614).

(38) Let az, ba, c3, da be non pair sets and ¢y be a set. Suppose co # ((d2,
ag(arz, ba, ¢3)), andgy ) and ca ¢ ZV(Z3(ar, be, c3)). Let s be a state
of BitFTA3Circ(az, by, c3, da, c2) and ag, as, a4, as, ag be elements of
Boolean. Suppose as = s(ay) and ag = s(b) and aq4 = s(c3) and a5 =
s(d2) and ag = s(c2). Then (Following(s,2))(as(ar, b2, c3)) = —(—as &
—az @ —aq) and (Following(s,2))(ay) = ag and (Following(s,2))(b2) =
as and (Following(s,2))(c3) = a4 and (Following(s,2))(d2) = as and
(Following(s, 2))(c2) = ag.

(39) Let az, ba, c3, da be non pair sets and ¢y be a set. Suppose co # ((d2,
ag(az, ba, ¢3)), andgy ) and co ¢ ZV(Z3(ar, be, ¢3)). Let s be a state
of BitFTA3Circ(az, by, c3, da, c2) and ag, as, a4, as, ag be elements of
Boolean. Suppose az = s(ay) and ag = s(b2) and a4 = s(c3) and as = s(d2)
and ag = s(c2). Then (Following(s,4))(BitFTA3AdderOutputP(ay, ba,
cs3, do, 62)) = —|((—|a2 D —az D —|a4) N —ag V —ag N\ —as V —as A (—|CLQ D
a3 @ —ay)) and (Following(s, 4))(BitFTA3AdderOutputQ(az, be, c3, da,
c2)) = —(—ag @ —az & —as B —as D —ag).

(40) Let az, ba, c3, da be non pair sets and ¢y be a set. If co # ((d2, a3(az,
ba, c3)), andgy ), then for every state s of BitFTA3Circ(ay, be, cs, da, ¢2)
holds Following(s,4) is stable.
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Summary. In this article, we prove a series of differentiation identities [2]
involving the arctan and arccot functions and specific combinations of special
functions including trigonometric and exponential functions.
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The papers [13], [15], [1], [10], [16], [5], [12], [3], [6], [9], [4], [11], [8], [14], and [7]
provide the terminology and notation for this paper.

For simplicity, we adopt the following rules: x denotes a real number, n
denotes an element of N, Z denotes an open subset of R, and f, g denote partial
functions from R to R.

Next we state a number of propositions:

(1) Suppose Z C dom((the function arctan) -(the function sin)) and for
every x such that x € Z holds —1 < sinx < 1. Then
(i)  (the function arctan) -(the function sin) is differentiable on Z, and
(ii) for every z such that x € Z holds ((the function arctan) -(the function

Sin))/[Z (CL‘) = 1+((:(S)isnxx)2 .

(2) Suppose Z C dom((the function arccot) -(the function sin)) and for every
x such that x € Z holds —1 < sinz < 1. Then
(i)  (the function arccot) -(the function sin) is differentiable on Z, and
(ii) for every x such that = € Z holds ((the function arccot) -(the function

Sin))/[Z (fL‘) = - 1_,_?;8;2)2 .

(3) Suppose Z C dom((the function arctan) -(the function cos)) and for
every x such that x € Z holds —1 < cosx < 1. Then
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(i)  (the function arctan) -(the function cos) is differentiable on Z, and

(ii)  for every x such that x € Z holds ((the function arctan) -(the function
c08))12(%) = — e )2

(4) Suppose Z C dom((the function arccot) -(the function cos)) and for
every x such that x € Z holds —1 < cosx < 1. Then

(i)  (the function arccot) -(the function cos) is differentiable on Z, and

(ii)  for every x such that = € Z holds ((the function arccot) -(the function
c09))12(%) = T 2"

(5) Suppose Z C dom((the function arctan) -(the function tan)) and for
every x such that x € Z holds —1 < tanz < 1. Then

(i)  (the function arctan) -(the function tan) is differentiable on Z, and

(ii)  for every x such that x € Z holds ((the function arctan) -(the function
tan))|,(z) = 1.

(6) Suppose Z C dom((the function arccot) -(the function tan)) and for
every x such that x € Z holds —1 < tanx < 1. Then

(i)  (the function arccot) -(the function tan) is differentiable on Z, and

(ii)  for every x such that = € Z holds ((the function arccot) -(the function
tan))’rz(x) = —1.

(7) Suppose Z C dom((the function arctan) -(the function cot)) and for
every x such that x € Z holds —1 < cotx < 1. Then

(i)  (the function arctan) -(the function cot) is differentiable on Z, and

(ii)  for every x such that z € Z holds ((the function arctan) -(the function
cot))jz(z) = —1.

(8) Suppose Z C dom((the function arccot) -(the function cot)) and for
every x such that x € Z holds —1 < cotx < 1. Then

(i)  (the function arccot) -(the function cot) is differentiable on Z, and

(ii) for every x such that = € Z holds ((the function arccot) -(the function
cot))|z(w) = 1.

(9) Suppose Z C dom((the function arctan) -(the function arctan)) and
Z C ]-1,1] and for every x such that x € Z holds —1 < arctanz < 1.
Then

(i)  (the function arctan) -(the function arctan) is differentiable on Z, and

(ii)  for every x such that z € Z holds ((the function arctan) -(the function
arctan))y () = (1+x2)-(1+1(arctanx)2)'

(10) Suppose Z C dom((the function arccot) -(the function arctan)) and Z C

|—1,1[ and for every x such that x € Z holds —1 < arctanz < 1. Then
(i)  (the function arccot) -(the function arctan) is differentiable on Z, and

(ii) for every x such that = € Z holds ((the function arccot) -(the function

arctan))’rz(ac) = - (1+x2).(1+1(arctan z)2)"
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(11) Suppose Z C dom((the function arctan) -(the function arccot)) and Z C
|—1,1[ and for every z such that x € Z holds —1 < arccotz < 1. Then

(i)  (the function arctan) -(the function arccot) is differentiable on Z, and

(ii)  for every x such that x € Z holds ((the function arctan) -(the function

arccot))| () =

o (1+3:2)-(1+1(arcc0t z)2)"
(12) Suppose Z C dom((the function arccot) -(the function arccot)) and Z C
]—1,1[ and for every x such that = € Z holds —1 < arccotz < 1. Then
(i)  (the function arccot) -(the function arccot) is differentiable on Z, and
(ii) for every x such that = € Z holds ((the function arccot) -(the function
arccot)),(z) =

(1+;v2)~(1+1(arccot z)2)"
(13) Suppose Z C dom((the function sin) -(the function arctan)) and Z C
]—1,1[. Then
(i)  (the function sin) -(the function arctan) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function sin) -(the function

arctan))i,(z) = “SEegne
(14) Suppose Z C dom((the function sin) -(the function arccot)) and Z C
]—1,1[. Then

(i) (the function sin) -(the function arccot) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function sin) -(the function

arccot)),(z) = _coslai%tm
(15) Suppose Z C dom((the function cos) -(the function arctan)) and Z C
|—1,1[. Then

(i)  (the function cos) -(the function arctan) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function cos) -(the function

arctan))’rz(x) = _%

(16) Suppose Z C dom((the function cos) -(the function arccot)) and Z C
|—1,1[. Then
(i)  (the function cos) -(the function arccot) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function cos) -(the function

arccot))| () = 7““??;3”
(17) Suppose Z C dom((the function tan) -(the function arctan)) and Z C
]—1,1[. Then

(i)  (the function tan) -(the function arctan) is differentiable on Z, and
(ii)  for every z such that z € Z holds ((the function tan) -(the function
arctan))|,(r) =

(cos arctan1x)2~(1+m2) )
(18) Suppose Z C dom((the function tan) -(the function arccot)) and Z C
|—1,1[. Then
(i)  (the function tan) -(the function arccot) is differentiable on Z, and
(ii)  for every z such that z € Z holds ((the function tan) -(the function

/ _ 1
arccot)) ¥4 ($) — 7 (cosarccotz)2-(1+x2) "

391
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(19) Suppose Z C dom((the function cot) -(the function arctan)) and Z C
|—1,1[. Then
(i)  (the function cot) -(the function arctan) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function cot) -(the function

— 1
arCtan))/fZ (x) — 7 (sinarctanx)2-(1+22)"

(20) Suppose Z C dom((the function cot) -(the function arccot)) and Z C
]—1,1[. Then
(i)  (the function cot) -(the function arccot) is differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function cot) -(the function

— 1
a’rCCOt)),fZ (z) = (sinarccot )2-(1+22)

(21) Suppose Z C dom((the function sec) -(the function arctan)) and Z C
|—1,1[. Then
(i)  (the function sec) -(the function arctan) is differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function sec) -(the function

/ _ sin arctan x
arctan)) 1z (.%') ~ (cosarctanz)2-(1+22)"

(22) Suppose Z C dom((the function sec) -(the function arccot)) and Z C
]—1,1[. Then
(i)  (the function sec) -(the function arccot) is differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function sec) -(the function

/ _ sin arccot x
arccot)) ¥4 ('T) —  (cosarccot x)2-(1+a2)"

(23) Suppose Z C dom((the function cosec) -(the function arctan)) and Z C
|—1,1[. Then
(i)  (the function cosec) -(the function arctan) is differentiable on Z, and
(ii)  for every z such that x € Z holds ((the function cosec) -(the function

/ _ cos arctan T
arctan)) 1Z (.%') —  (sinarctanx)?-(1+x2)"

(24) Suppose Z C dom((the function cosec) -(the function arccot)) and Z C
]—1,1[. Then
(i)  (the function cosec) -(the function arccot) is differentiable on Z, and
(ii)  for every x such that = € Z holds ((the function cosec) -(the function

/ _ cos arccot x
aTCCOt)) 1z (‘T) ~ (sinarccot z)2-(14+xz2) "

(25) Suppose Z C dom((the function sin) (the function arctan)) and Z C
|—1,1[. Then
(i)  (the function sin) (the function arctan) is differentiable on Z, and
(ii)  for every x such that € Z holds ((the function sin) (the function
arctan))|,(r) = cosz - arctanz + lsffz
(26) Suppose Z C dom((the function sin) (the function arccot)) and Z C
]-1,1[. Then
(i)  (the function sin) (the function arccot) is differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function sin) (the function

arccot))},(x) = cosz - arccotz — {155
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(27) Suppose Z C dom((the function cos) (the function arctan)) and Z C
|—1,1[. Then
(i)  (the function cos) (the function arctan) is differentiable on Z, and
(ii)  for every x such that € Z holds ((the function cos) (the function

arctan))i,(z) = —sinz - arctanz + {7°5.
(28) Suppose Z C dom((the function cos) (the function arccot)) and Z C
|—1,1[. Then

(i)  (the function cos) (the function arccot) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function cos) (the function

arccot))}(r) = —sinz - arccotx — {975
(29) Suppose Z C dom((the function tan) (the function arctan)) and Z C
|—1,1[. Then

(i)  (the function tan) (the function arctan) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function tan) (the function

arctan))z(2) = {G5F + 155

(30) Suppose Z C dom((the function tan) (the function arccot)) and Z C
]—1,1[. Then
(i)  (the function tan) (the function arccot) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function tan) (the function
arccot))’rz(az) _ arccotz tan x

(cosx)? 1+22°
(31) Suppose Z C dom((the function cot) (the function arctan)) and Z C
]—1,1[. Then
(i)  (the function cot) (the function arctan) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function cot) (the function

axctan)) () = 5 + 245,

(32) Suppose Z C dom((the function cot) (the function arccot)) and Z C
|—1,1[. Then
(i)  (the function cot) (the function arccot) is differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function cot) (the function

secon)f ) = ~ B ~ 25
(33) Suppose Z C dom((the function sec) (the function arctan)) and Z C
|—1,1[. Then

(i)  (the function sec) (the function arctan) is differentiable on Z, and
(ii) for every x such that z € Z holds ((the function sec) (the function

! __ sinz-arctanz
arctan)) I1Z (z) = (cosx)? + = z-(1+22)"

(34) Suppose Z C dom((the function sec) (the function arccot)) and Z C
|—1,1[. Then
(i)  (the function sec) (the function arccot) is differentiable on Z, and
(ii)  for every x such that € Z holds ((the function sec) (the function
sin x-arccot 1

arccot))'rz(x) = et T (D
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(35) Suppose Z C dom((the function cosec) (the function arctan)) and Z C
|—1,1[. Then
(i)  (the function cosec) (the function arctan) is differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function cosec) (the function
avctan) ) (x) = —Szagns | b
(36) Suppose Z C dom((the function cosec) (the function arccot)) and Z C
|—1,1[. Then
(i)  (the function cosec) (the function arccot) is differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function cosec) (the function

__cosz-arccot x 1

(sinz)? sinz-(14+x2)
(37) Suppose Z C |—1,1[. Then
(i)  (the function arctan)+(the function arccot) is differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function arctan)+(the function
arccot))}z(z) = 0.
(38) Suppose Z C |—1,1[. Then
(i)  (the function arctan)—(the function arccot) is differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function arctan)—(the function
arccot)),(z) = H%
(39) Suppose Z C |—1,1[. Then
(i)  (the function sin) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and
(ii)  for every x such that x € Z holds ((the function sin) ((the function
arctan)+(the function arccot)))’ (=) = cosz - (arctan x + arccot ).
(40) Suppose Z C ]—1,1[. Then
(i)  (the function sin) ((the function arctan)—(the function arccot)) is dif-
ferentiable on Z, and
(ii)  for every x such that € Z holds ((the function sin) ((the function
arctan)—(the function arccot)))},(z) = cos z- (arctan r —arccot =) + 2111%
(41) Suppose Z C |—1,1[. Then
(i)  (the function cos) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and
(ii)  for every x such that x € Z holds ((the function cos) ((the function
arctan)+(the function arccot)));(z) = —sinz - (arctanz + arccot x).
(42) Suppose Z C |—1,1[. Then
(i)  (the function cos) ((the function arctan)—(the function arccot)) is dif-
ferentiable on Z, and
(ii)  for every x such that x € Z holds ((the function cos) ((the function

arctan)—(the function arccot)))},(r) = —sinz - (arctanz — arccotz) +
2-COS2.1‘
1+x= °

(43) Suppose Z C dom (the function tan) and Z C |—1,1[. Then

arccot)),(z) =
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(i)  (the function tan) ((the function arctan)+(the function arccot)) is
differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function tan) ((the function

arctan)+(the function arccot)))',(z) = am&%

(44) Suppose Z C dom (the function tan) and Z C |—1,1[. Then
(i)  (the function tan) ((the function arctan)—(the function arccot)) is
differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function tan) ((the function

arctan)—(the function arccot)))’,(z) = arcm&ﬁs:;rfcom + 21'f£2x .

(45) Suppose Z C dom (the function cot) and Z C |—1,1[. Then
(i)  (the function cot) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and
(ii)  for every x such that € Z holds ((the function cot) ((the function

arctan)+(the function arccot)))’,(z) = —W.

(46) Suppose Z C dom (the function cot) and Z C |—1, 1[. Then
(i)  (the function cot) ((the function arctan)—(the function arccot)) is dif-
ferentiable on Z, and
(ii)  for every x such that x € Z holds ((the function cot) ((the function

arctan)—(the function arccot)))’,(z) = —arCta?an_xa)‘;CCOtz + 21?;323” .

(47) Suppose Z C dom (the function sec) and Z C |—1,1[. Then
(i)  (the function sec) ((the function arctan)+(the function arccot)) is dif-

ferentiable on Z, and
(ii)  for every x such that x € Z holds ((the function sec) ((the function

arctan)+(the function arccot)))’,(z) = (arctan I(j;rg‘;‘;t z)sine

(48) Suppose Z C dom (the function sec) and Z C |]—1,1[. Then
(i)  (the function sec) ((the function arctan)—(the function arccot)) is dif-
ferentiable on Z, and
(ii)  for every x such that x € Z holds ((the function sec) ((the function

arctan)—(the function arccot))),(z) = (arctan x(cjsr;(;g g)sinz Zoe0k,

(49) Suppose Z C dom (the function cosec) and Z C ]—1,1[. Then
(i)  (the function cosec) ((the function arctan)+(the function arccot)) is
differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function cosec) ((the function

(arctan x+arccot x)-cos
(sinz)?

(50) Suppose Z C dom (the function cosec) and Z C |—1,1[. Then
(i)  (the function cosec) ((the function arctan)—(the function arccot)) is
differentiable on Z, and
(ii)  for every z such that x € Z holds ((the function cosec) ((the function

(arctan z—arccot x)-cos ¢ + 2-cosec &
(sinz)? 1+z2 -

arctan)+(the function arccot)))’(z) = —

arctan)—(the function arccot)))’,(z) = —
(51) Suppose Z C |—1,1[. Then
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(i)  (the function exp) ((the function arctan)+(the function arccot)) is
differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function exp) ((the function
arctan)—+(the function arccot)))’rz(x) = expz - (arctan z + arccot x).
(52) Suppose Z C |—1,1[. Then
(i)  (the function exp) ((the function arctan)—(the function arccot)) is
differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function exp) ((the function
arctan)—(the function arccot)))|, () = exp z-(arctan x—arccot w)—i—i"f%.
(53) Suppose Z C |—1,1[. Then

(1) (the function arctan)+(the function arccot)
the function exp

(ii) for every x such that x € Z holds
((the function arctan)+(the function arccot) )/ ($) __ _ arctanz+tarccotz
the function exp 1Z - exp T
(54) Suppose Z C |—1,1[. Then
. (the function arctan)—(the function arccot)
(i) :
the function exp

(ii)  for every z such that x € Z holds

is differentiable on Z, and

is differentiable on Z, and

2 __
( 3.2 —rctan x)+arccot

((the function arctan)—(the function arccot) )/FZ (CC) _

the function exp exp T

(55) Suppose Z C dom((the function exp) -((the function arctan)+(the func-
tion arccot))) and Z C |—1,1[. Then
(i)  (the function exp) -((the function arctan)4(the function arccot)) is
differentiable on Z, and
(ii)  for every z such that z € Z holds ((the function exp) -((the function
arctan)+(the function arccot)))’ (z) = 0.

(56) Suppose Z C dom((the function exp) -((the function arctan)—(the func-
tion arccot))) and Z C ]—1,1[. Then
(i)  (the function exp) -((the function arctan)—(the function arccot)) is
differentiable on Z, and
(ii)  for every x such that x € Z holds ((the function exp) -((the function

__ 2-exp(arctan z—arccot )
- 142 )

(57) Suppose Z C dom((the function sin) -((the function arctan)+(the func-
tion arccot))) and Z C ]—1,1[. Then
(i)  (the function sin) -((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and
(ii)  for every x such that x € Z holds ((the function sin) -((the function
arctan)+(the function arccot)))’ () = 0.
(58) Suppose Z C dom((the function sin) -((the function arctan)—(the func-
tion arccot))) and Z C ]—1,1[. Then
(i)  (the function sin) -((the function arctan)—(the function arccot)) is dif-
ferentiable on Z, and

arctan)—(the function arccot)))’,(z)
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(ii)  for every x such that € Z holds ((the function sin) -((the function
2-cos(arctan x— arccotx)
1422

(59) Suppose Z C dom((the function cos) -((the function arctan)+(the func-
tion arccot))) and Z C |—1,1[. Then
(i)  (the function cos) -((the function arctan)+(the function arccot)) is
differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function cos) -((the function
arctan)+(the function arccot)))’,(z) = 0.

(60) Suppose Z C dom((the function cos) -((the function arctan)—(the func-
tion arccot))) and Z C |—1, 1[. Then
(i)  (the function cos) -((the function arctan)—(the function arccot)) is
differentiable on Z, and
(ii)  for every x such that z € Z holds ((the function cos) -((the function

2-sin(arctan x—arccot x)
142 :

arctan)—(the function arccot)))’,(z) =

arctan)—(the function arccot)))’,(z) = —
(61) Suppose Z C ]—1,1[. Then
(i)  (the function arctan) (the function arccot) is differentiable on Z, and

(ii) for every x such that = € Z holds ((the function arctan) (the function
arccot))’rz(x) _ arccot z—arctanx

1+22
(62) Suppose that
(i)  Z C dom(((the function arctan) 7) ((the function arccot) %)) and
(ii)  for every = such that z € Z holds f(z) =z and —1 < ( )(z) <
Then
(iii)  ((the function arctan) %) ((the function arccot) %) is differentiable on
Z, and
(iv)  for every x such that z € Z holds (((the function arctan) %) ((the

arctan( % )—arccot( %)
1+x2 )

function arccot) %))’rz(x) =

(63) Suppose Z C dom(idyz ((the function arctan) %)) and for every x such
that x € Z holds f(z) =z and —1 < (%)(z) < 1. Then
(i) idz ((the function arctan) %) is differentiable on Z, and
(i)  for every z such that z € Z holds (idz ((the function arctan)

-%))}Z(a:) = arctan(1) —

(64) Suppose Z C dom(idyz ((the function arccot) %)) and for every x such

that € Z holds f(z) =z and —1 < (%)( z) < 1. Then

(i)  idz ((the function arccot) f) is differentiable on Z, and
(i)  for every z such that x € Z holds (idz ((the function arccot)

%))’rz(x) = arccot(l) + 1fx2.
(65) Suppose Z C dom(g ((the function arctan) %)) and g = 0% and for
every x such that x € Z holds f(z) =z and —1 < (%)(3:) < 1. Then

(i) g ((the function arctan) %) is differentiable on Z, and

x
1422

397
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(ii)  for every z such t}21at x € Z holds (g ((the function arctan) -%))/FZ(.%) =
1$x2 )

2z -arctan(l) —
(66) Suppose Z C dom(g ((the function arccot) %)) and g = 0% and for every

x such that x € Z holds f(z) =z and —1 < (%)(az) < 1. Then
1

(i) g ((the function arccot) -5) is differentiable on Z, and
(ii)  for every x such that x € Z holds (g ((the function arccot) -%))’Fz(m) =

2 -arccot(1) + 1112.
(67) Suppose Z C |—1,1] and for every z such that x € Z holds (the function

arctan)(z) # 0. Then

(1) e functilon —ctan is differentiable on Z, and
. .
(ii)  for every z such that » € Z holds (gfunctionaretan)iz(T) =

1
(arctan x)2-(14x2) "

(68) Suppose Z C |—1,1[. Then

. 1 . . .
(1) the Fonction areeot 1S differentiable on Z, and 1
(ii)  for every x such that = € Z holds (irefunciionarcest)1z(T) =

1
(arccot z)2-(1+22) "

One can prove the following propositions:
(69) Suppose Z C dom(;; L )and Z C |—1,1[ and n > 0 and

(the function arctan)”
for every x such that x € Z holds arctanx # 0. Then
: 1
(l) n (the function arctan

(ii)  for every x such that z € Z holds ( 1 Niz(x) =

n (the function arctan)™

y is differentiable on Z, and

1
((arctan z)nF1)-(1422) *

(70) Suppose Z C dom(n(the — arccot)") and Z C |-1,1[ and n > 0.
Then

(i) :
n (the function arccot)

(ii)  for every z such that x € Z holds (n(

= is differentiable on Z, and

1 /
the function arccot)™ ) 1Z (l’) -

((arccot a:)’ll+1)-(1+a:2) :
(71) Suppose Z C dom(2 (the function arctan)%) and Z C ]—1,1[ and for
every x such that x € Z holds arctanz > 0. Then
(i) 2 (the function arctan)% is differentiable on Z, and
(ii)  for every z such that z € Z holds (2 (the function arctan)%)’rz(x) =

1
(arctanzx)” 2
1+22

(72) Suppose Z C dom(2 (the function arccot)%) and Z C ]—1,1[. Then
(i) 2 (the function arccot)% is differentiable on Z, and
(ii)  for every z such that # € Z holds (2 (the function arccot)%)’rz(x) =

1
__(arccotz)” 2
1422



SEVERAL DIFFERENTIATION FORMULAS OF SPECIAL ... 399

(73) Suppose Z C dom(Z (the function arctan)%) and Z C |-1,1[ and for
every x such that x € 7 hg)lds arctanx > 0. Then
(1) % (the function arctan)z is differentiable on Z, and

(i)  for every x such that € Z holds (2 (the function arctan)%)’rz(x) =

1
(arctanx)2
1422

(74) Suppose Z C dom(3 (th(z function arccot)%) and Z C |—1,1[. Then
(i) 2 (the function arccot)? is differentiable on Z, and
(i)  for every x such that z € Z holds (2 (the function arccot)%)’fz(x) =

1
(arccot z) 2
1422
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Summary. In this article we formalize one of the most important the-
orems of linear operator theory the Open Mapping Theorem commonly used in a
standard book such as [8] in chapter 2.4.2. It states that a surjective continuous
linear operator between Banach spaces is an open map.

MML identifier: LOPBAN_6, version: 7.10.01 4.111.1036

The notation and terminology used here are introduced in the following papers:
[13], [14], [3], [9], (2], [7], [1], [4], [5], [10], [6], [12], [11], and [15].
The following proposition is true

(1) For all real numbers z, y such that 0 < x < y there exists a real number

so such that 0 < sp and z < 1+yso <.

The scheme RecExD3 deals with a non empty set A, an element B of A, an

element C of A, and a 4-ary predicate P, and states that:
There exists a function f from N into A such that f(0) = B and
f(1) = C and for every element n of N holds P[n, f(n), f(n +
1), f(n+2)]
provided the parameters meet the following requirement:
e For every element n of N and for all elements x, y of A there
exists an element z of A such that P[n,z,y, z].
In the sequel X, Y denote real normed spaces.
The following propositions are true:
(2) For every point y; of X and for every real number r holds Ball(y;,r) =
Y1 + Ball(OX, T).
(3) For every real number r and for every real number a such that 0 < a
holds Ball(0x,a - 7) = a - Ball(0x, r).
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(4) For every linear operator 7" from X into Y and for all subsets By, B; of
X holds T°(By + B1) =T°By + T°B;.

(5) Let T be a linear operator from X into Y, By be a subset of X, and a
be a real number. Then T°(a - By) = a - T°By.

(6) Let T be a linear operator from X into Y, By be a subset of X, and z;
be a point of X. Then T°(z1 + By) = T'(z1) + T°Bo.

(7) For all subsets V, W of X and for all subsets Vi, W; of
LinearTopSpaceNorm X such that V =V and W = Wj holds V + W =
Vi+ Wi,

(8) Let V be a subset of X, = be a point of X, V; be a subset of
LinearTopSpaceNorm X, and z; be a point of LinearTopSpaceNorm X.
IfVv=Viand x =z, thenz+V =21 + V1.

(9) For every subset V of X and for every real number a and for every subset
V1 of LinearTopSpaceNorm X such that V =V; holds a -V =a - V.

(10) For every subset V of TopSpaceNorm X and for every subset V; of
LinearTopSpaceNorm X such that V = V; holds V = V;.

(11) For every point x of X and for every real number r holds Ball(0x,r) =
(—1) - Ball(0x, ).

(12) For every point x of X and for every real number r and for every subset
V of LinearTopSpaceNorm X such that V' = Ball(x, r) holds V is convex.

(13) Let x be a point of X, r be a real number, T be a linear operator from X
into Y, and V' be a subset of LinearTopSpaceNorm Y. If V' = T° Ball(x, r),
then V' is convex.

(14) For every point = of X and for all real numbers 7, s such that r < s
holds Ball(z,r) C Ball(z, s).

(15) Let X be a real Banach space, Y be a real normed space, T' be a boun-
ded linear operator from X into Y, r be a real number, By be a subset of
LinearTopSpaceNorm X, and T3, B3 be subsets of LinearTopSpaceNorm Y.
If » > 0 and By = Ball(0x,1) and Bs = Ball(Oy,r) and 71 =
T°Ball(0x, 1) and B3 C Ty, then By C T3.

(16) Let X, Y be real Banach spaces, T' be a bounded linear operator
from X into Y, and 75 be a function from LinearTopSpaceNorm X in-
to LinearTopSpaceNorm Y. If T5 = T and 75 is onto, then 75 is open.
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