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Poland

Summary. The article presents well known facts about eigenvalues of line-
ar transformation of a vector space (see [13]). I formalize main dependencies be-
tween eigenvalues and the diagram of the matrix of a linear transformation over a

finite-dimensional vector space. Finally, I formalize the subspace
∞⋃
i=0

Ker(f−λI)i

called a generalized eigenspace for the eigenvalue λ and show its basic properties.

MML identifier: VECTSP11, version: 7.9.03 4.108.1028

The articles [11], [33], [2], [3], [12], [34], [8], [10], [9], [5], [31], [27], [15], [7], [14],
[32], [35], [25], [30], [29], [28], [26], [6], [22], [16], [23], [20], [1], [19], [4], [21], [17],
[18], and [24] provide the notation and terminology for this paper.

1. Preliminaries

We adopt the following convention: i, j, m, n denote natural numbers, K
denotes a field, and a denotes an element of K.
Next we state several propositions:

(1) Let A, B be matrices over K, n1 be an element of Nn, and m1 be an
element of Nm. If rng n1 × rngm1 ⊆ the indices of A, then Segm(A +
B,n1,m1) = Segm(A,n1,m1) + Segm(B,n1,m1).

(2) For every without zero finite subset P of N such that P ⊆ Seg n holds
Segm(In×nK , P, P ) = IcardP×cardPK .

(3) Let A, B be matrices over K and P , Q be without zero finite subsets of
N. If P ×Q ⊆ the indices of A, then Segm(A+B,P,Q) = Segm(A,P,Q)+
Segm(B,P,Q).
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(4) For all square matrices A, B overK of dimension n such that i, j ∈ Seg n
holds Delete(A+B, i, j) = Delete(A, i, j) + Delete(B, i, j).

(5) For every square matrix A over K of dimension n such that i, j ∈ Seg n
holds Delete(a ·A, i, j) = a ·Delete(A, i, j).

(6) If i ∈ Seg n, then Delete(In×nK , i, i) = I(n−
′1)×(n−′1)

K .

(7) Let A, B be square matrices over K of dimension n. Then there exists
a polynomial P of K such that lenP ≤ n + 1 and for every element x of
K holds eval(P, x) = Det(A+ x ·B).

(8) Let A be a square matrix over K of dimension n. Then there exists a
polynomial P of K such that lenP = n+ 1 and for every element x of K
holds eval(P, x) = Det(A+ x · In×nK ).

Let us consider K. Observe that there exists a vector space over K which is
non trivial and finite dimensional.

2. Maps with Eigenvalues

Let R be a non empty double loop structure, let V be a non empty vector
space structure over R, and let I1 be a function from V into V . We say that I1
has eigenvalues if and only if:

(Def. 1) There exists a vector v of V and there exists a scalar a of R such that
v 6= 0V and I1(v) = a · v.
For simplicity, we follow the rules: V denotes a non trivial vector space over

K, V1, V2 denote vector spaces over K, f denotes a linear transformation from
V1 to V1, v, w denote vectors of V , v1 denotes a vector of V1, and L denotes a
scalar of K.
Let us considerK, V . One can verify that there exists a linear transformation

from V to V which has eigenvalues.
Let R be a non empty double loop structure, let V be a non empty vector

space structure over R, and let f be a function from V into V . Let us assume
that f has eigenvalues. An element of R is called an eigenvalue of f if:

(Def. 2) There exists a vector v of V such that v 6= 0V and f(v) = it · v.
Let R be a non empty double loop structure, let V be a non empty vector

space structure over R, let f be a function from V into V , and let L be a scalar
of R. Let us assume that f has eigenvalues and L is an eigenvalue of f . A vector
of V is called an eigenvector of f and L if:

(Def. 3) f(it) = L · it.
We now state several propositions:

(9) Let given a. Suppose a 6= 0K . Let f be a function from V into V with
eigenvalues and L be an eigenvalue of f . Then
(i) a · f has eigenvalues,
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(ii) a · L is an eigenvalue of a · f, and
(iii) w is an eigenvector of f and L iff w is an eigenvector of a · f and a ·L.
(10) Let f1, f2 be functions from V into V with eigenvalues and L1, L2 be
scalars of K. Suppose that
(i) L1 is an eigenvalue of f1,
(ii) L2 is an eigenvalue of f2, and
(iii) there exists v such that v is an eigenvector of f1 and L1 and an eige-
nvector of f2 and L2 and v 6= 0V .
Then

(iv) f1 + f2 has eigenvalues,
(v) L1 + L2 is an eigenvalue of f1 + f2, and
(vi) for every w such that w is an eigenvector of f1 and L1 and an eigenvector
of f2 and L2 holds w is an eigenvector of f1 + f2 and L1 + L2.

(11) idV has eigenvalues and 1K is an eigenvalue of idV and every v is an
eigenvector of idV and 1K .

(12) For every eigenvalue L of idV holds L = 1K .

(13) If ker f is non trivial, then f has eigenvalues and 0K is an eigenvalue of
f .

(14) f has eigenvalues and L is an eigenvalue of f iff ker f + (−L) · id(V1) is
non trivial.

(15) Let V1 be a finite dimensional vector space over K, b1, b′1 be ordered
bases of V1, and f be a linear transformation from V1 to V1. Then f has
eigenvalues and L is an eigenvalue of f if and only if DetAutEqMt(f +
(−L) · id(V1), b1, b′1) = 0K .

(16) Let K be an algebraic-closed field and V1 be a non trivial finite dimen-
sional vector space over K. Then every linear transformation from V1 to
V1 has eigenvalues.

(17) Let given f , L. Suppose f has eigenvalues and L is an eigenvalue of f .
Then v1 is an eigenvector of f and L if and only if v1 ∈ ker f+(−L) · id(V1).
Let S be a 1-sorted structure, let F be a function from S into S, and let

n be a natural number. The functor Fn yields a function from S into S and is
defined as follows:

(Def. 4) For every element F ′ of the semigroup of functions onto the carrier of S
such that F ′ = F holds Fn =

∏
(n 7→ F ′).

In the sequel S denotes a 1-sorted structure and F denotes a function from
S into S.
Next we state several propositions:

(18) F 0 = idS .

(19) F 1 = F.

(20) F i+j = F i · F j .
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(21) For all elements s1, s2 of S and for all n, m such that Fm(s1) = s2 and
Fn(s2) = s2 holds Fm+i·n(s1) = s2.

(22) Let K be an add-associative right zeroed right complementable Abelian
associative well unital distributive non empty double loop structure, V1
be an Abelian add-associative right zeroed right complementable vector
space-like non empty vector space structure over K, W be a subspace of
V1, f be a function from V1 into V1, and f3 be a function from W into W .
If f3 = f�W, then fn�W = f3n.

Let us consider K, V1, let f be a linear transformation from V1 to V1, and
let n be a natural number. Then fn is a linear transformation from V1 to V1.
We now state the proposition

(23) If f i(v1) = 0(V1), then f
i+j(v1) = 0(V1).

3. Generalized Eigenspace of a Linear Transformation

Let us consider K, V1, f . The functor UnionKers f yielding a strict subspace
of V1 is defined by:

(Def. 5) The carrier of UnionKers f = {v; v ranges over vectors of V1:
∨
n f
n(v) =

0(V1)}.
We now state a number of propositions:

(24) v1 ∈ UnionKers f iff there exists n such that fn(v1) = 0(V1).
(25) ker f i is a subspace of UnionKers f.

(26) ker f i is a subspace of ker f i+j .

(27) Let V be a finite dimensional vector space over K and f be a linear
transformation from V to V . Then there exists n such that UnionKers f =
ker fn.

(28) f� ker fn is a linear transformation from ker fn to ker fn.

(29) f� ker (f + L · id(V1))
n is a linear transformation from ker (f + L · id(V1))

n

to ker (f + L · id(V1))
n.

(30) f�UnionKers f is a linear transformation from UnionKers f to
UnionKers f.

(31) f�UnionKers(f+L·id(V1)) is a linear transformation from UnionKers(f+
L · id(V1)) to UnionKers(f + L · id(V1)).

(32) f� im(fn) is a linear transformation from im(fn) to im(fn).

(33) f� im((f + L · id(V1))
n) is a linear transformation from im((f + L · id(V1))

n)
to im((f + L · id(V1))

n).

(34) If UnionKers f = ker fn, then ker fn ∩ im(fn) = 0(V1).
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(35) Let V be a finite dimensional vector space over K, f be a linear trans-
formation from V to V , and given n. If UnionKers f = ker fn, then V is
the direct sum of ker fn and im(fn).

(36) For every linear complement I of UnionKers f holds f�I is one-to-one.

(37) Let I be a linear complement of UnionKers(f + (−L) · id(V1)) and f4 be
a linear transformation from I to I. If f4 = f�I, then for every vector v
of I such that f4(v) = L · v holds v = 0(V1).

(38) Suppose n ≥ 1. Then there exists a linear transformation h from V1 to
V1 such that (f + L · id(V1))

n = f · h + (L · id(V1))
n and for every i holds

f i · h = h · f i.
(39) Let L1, L2 be scalars of K. Suppose f has eigenvalues and L1 6= L2
and L1 is an eigenvalue of f and L2 is an eigenvalue of f . Let I be a
linear complement of UnionKers(f + (−L1) · id(V1)) and f4 be a linear
transformation from I to I. Suppose f4 = f�I. Then f4 has eigenvalu-
es and L1 is not an eigenvalue of f4 and L2 is an eigenvalue of f4 and
UnionKers(f + (−L2) · id(V1)) is a subspace of I.

(40) Let U be a finite subset of V1. Suppose U is linearly independent. Let u
be a vector of V1. Suppose u ∈ U. Let L be a linear combination of U \{u}.
Then U = (U \ {u}) ∪ {u+

∑
L} and (U \ {u}) ∪ {u +

∑
L} is linearly

independent.

(41) Let A be a subset of V1, L be a linear combination of V2, and f be a
linear transformation from V1 to V2. Suppose the support of L ⊆ f◦A.
Then there exists a linear combination M of A such that f(

∑
M) =

∑
L.

(42) Let f be a linear transformation from V1 to V2, A be a subset of V1, and
B be a subset of V2. If f◦A = B, then f◦(the carrier of Lin(A)) = the
carrier of Lin(B).

(43) Let L be a linear combination of V1, F be a finite sequence of elements
of V1, and f be a linear transformation from V1 to V2. Suppose f�((the
support of L) ∩ rngF ) is one-to-one and rngF ⊆ the support of L. Then
there exists a linear combination L3 of V2 such that
(i) the support of L3 = f◦((the support of L) ∩ rngF ),
(ii) f · (LF ) = L3 (f · F ), and
(iii) for every v1 such that v1 ∈ (the support of L) ∩ rngF holds L(v1) =
L3(f(v1)).

(44) Let A, B be subsets of V1 and L be a linear combination of V1. Suppose
the support of L ⊆ A∪B and

∑
L = 0(V1). Let f be a linear function from

V1 into V2. Suppose f�B is one-to-one and f◦B is a linearly independent
subset of V2 and f◦A ⊆ {0(V2)}. Then the support of L ⊆ A.
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Summary. In this paper I present the Jordan Matrix Decomposition The-
orem which states that an arbitrary square matrixM over an algebraically closed
field can be decomposed into the form

M = SJS−1

where S is an invertible matrix and J is a matrix in a Jordan canonical form, i.e.
a special type of block diagonal matrix in which each block consists of Jordan
blocks (see [13]).

MML identifier: MATRIXJ2, version: 7.9.01 4.101.1015

The terminology and notation used here are introduced in the following articles:
[11], [2], [3], [12], [34], [7], [10], [8], [4], [28], [33], [30], [18], [6], [14], [15], [36],
[23], [37], [35], [9], [29], [32], [31], [5], [19], [24], [22], [17], [1], [21], [20], [16], [25],
[27], and [26].

1. Jordan Blocks

We follow the rules: i, j, m, n, k denote natural numbers, K denotes a field,
and a, λ denote elements of K.
Let us consider K, λ, n. The Jordan block of λ and n yields a matrix over

K and is defined by the conditions (Def. 1).

(Def. 1)(i) len (the Jordan block of λ and n) = n,
(ii) width (the Jordan block of λ and n) = n, and
(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of the Jordan block of λ and n
holds if i = j, then (the Jordan block of λ and n)i,j = λ and if i+ 1 = j,
then (the Jordan block of λ and n)i,j = 1K and if i 6= j and i + 1 6= j,
then (the Jordan block of λ and n)i,j = 0K .
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Let us consider K, λ, n. Then the Jordan block of λ and n is an upper
triangular matrix over K of dimension n.
The following propositions are true:

(1) The diagonal of the Jordan block of λ and n = n 7→ λ.
(2) Det (the Jordan block of λ and n) = powerK(λ, n).

(3) The Jordan block of λ and n is invertible iff n = 0 or λ 6= 0K .
(4) If i ∈ Seg n and i 6= n, then Line(the Jordan block of λ and n, i) =
λ · Line(In×nK , i) + Line(In×nK , i+ 1).

(5) Line(the Jordan block of λ and n, n) = λ · Line(In×nK , n).

(6) Let F be an element of (the carrier of K)n such that i ∈ Seg n. Then
(i) if i 6= n, then Line(the Jordan block of λ and n, i) · F = λ · Fi + Fi+1,
and

(ii) if i = n, then Line(the Jordan block of λ and n, i) · F = λ · Fi.
(7) Let F be an element of (the carrier of K)n such that i ∈ Seg n. Then
(i) if i = 1, then (the Jordan block of λ and n)�,i · F = λ · Fi, and
(ii) if i 6= 1, then (the Jordan block of λ and n)�,i · F = λ · Fi + Fi−1.
(8) Suppose λ 6= 0K . Then there exists a square matrixM over K of dimen-
sion n such that
(i) (the Jordan block of λ and n)` =M, and
(ii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of M holds if i > j, then
Mi,j = 0K and if i ≤ j, then Mi,j = −powerK(−λ−1, (j −′ i) + 1).

(9) (The Jordan block of λ and n) + a · In×nK = the Jordan block of λ + a
and n.

2. Finite Sequences of Jordan Blocks

Let us consider K and let G be a finite sequence of elements
of ((the carrier of K)∗)∗. We say that G is Jordan-block-yielding if and only
if:

(Def. 2) For every i such that i ∈ domG there exist λ, n such that G(i) = the
Jordan block of λ and n.

Let us consider K. Observe that there exists a finite sequence of elements of
((the carrier of K)∗)∗ which is Jordan-block-yielding.
Let us consider K. One can verify that every finite sequence of elements

of ((the carrier of K)∗)∗ which is Jordan-block-yielding is also square-matrix-
yielding.
Let us consider K. A finite sequence of Jordan blocks of K is a Jordan-block-

yielding finite sequence of elements of ((the carrier of K)∗)∗.
Let us consider K, λ. A finite sequence of Jordan blocks of K is said to be

a finite sequence of Jordan blocks of λ and K if:
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(Def. 3) For every i such that i ∈ dom it there exists n such that it(i) = the
Jordan block of λ and n.

Next we state two propositions:

(10) ∅ is a finite sequence of Jordan blocks of λ and K.
(11) 〈the Jordan block of λ and n〉 is a finite sequence of Jordan blocks of λ
and K.

Let us consider K, λ. Observe that there exists a finite sequence of Jordan
blocks of λ and K which is non-empty.
Let us consider K. Note that there exists a finite sequence of Jordan blocks

of K which is non-empty.
Next we state the proposition

(12) Let J be a finite sequence of Jordan blocks of λ and K. Then J⊕lenJ 7→
a • ILen J×Len JK is a finite sequence of Jordan blocks of λ+ a and K.

Let us consider K and let J1, J2 be fininte sequences of Jordan blocks of K.
Then J1 a J2 is a finite sequence of Jordan blocks of K.
Let us consider K, let J be a finite sequence of Jordan blocks of K, and let

us consider n. Then J�n is a finite sequence of Jordan blocks of K. Then J�n is
a finite sequence of Jordan blocks of K.
Let us consider K, λ and let J1, J2 be finite sequences of Jordan blocks of

λ and K. Then J1 a J2 is a finite sequence of Jordan blocks of λ and K.
Let us consider K, λ, let J be a finite sequence of Jordan blocks of λ and

K, and let us consider n. Then J�n is a finite sequence of Jordan blocks of λ
and K. Then J�n is a finite sequence of Jordan blocks of λ and K.

3. Nilpotent Transformations

LetK be a double loop structure, let V be a non empty vector space structure
over K, and let f be a function from V into V . We say that f is nilpotent if
and only if:

(Def. 4) There exists n such that for every vector v of V holds fn(v) = 0V .

We now state the proposition

(13) Let K be a double loop structure, V be a non empty vector space struc-
ture over K, and f be a function from V into V . Then f is nilpotent if
and only if there exists n such that fn = ZeroMap(V, V ).

Let K be a double loop structure and let V be a non empty vector space
structure over K. Observe that there exists a function from V into V which is
nilpotent.
Let R be a ring and let V be a left module over R. Observe that there exists

a function from V into V which is nilpotent and linear.
Next we state the proposition
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(14) Let V be a vector space over K and f be a linear transformation from
V to V . Then f� ker fn is a nilpotent linear transformation from ker fn to
ker fn.

LetK be a double loop structure, let V be a non empty vector space structure
overK, and let f be a nilpotent function from V into V . The degree of nilpotence
of f yielding a natural number is defined by the conditions (Def. 5).

(Def. 5)(i) f the degree of nilpotence of f = ZeroMap(V, V ), and
(ii) for every k such that fk = ZeroMap(V, V ) holds the degree of nilpotence
of f ≤ k.
LetK be a double loop structure, let V be a non empty vector space structure

over K, and let f be a nilpotent function from V into V . We introduce deg f as
a synonym of the degree of nilpotence of f .
One can prove the following propositions:

(15) Let K be a double loop structure, V be a non empty vector space struc-
ture over K, and f be a nilpotent function from V into V . Then deg f = 0
if and only if ΩV = {0V }.

(16) Let K be a double loop structure, V be a non empty vector space struc-
ture over K, and f be a nilpotent function from V into V . Then there
exists a vector v of V such that for every i such that i < deg f holds
f i(v) 6= 0V .

(17) Let K be a field, V be a vector space over K, W be a subspace of V ,
and f be a nilpotent function from V into V . Suppose f�W is a function
from W into W . Then f�W is a nilpotent function from W into W .

(18) Let K be a field, V be a vector space over K, W be a subspace of V , f
be a nilpotent linear transformation from V to V , and f1 be a nilpotent
function from im(fn) into im(fn). If f1 = f� im(fn) and n ≤ deg f, then
deg f1 + n = deg f.

For simplicity, we adopt the following convention: V1, V2 denote finite di-
mensional vector spaces over K, W1, W2 denote subspaces of V1, U1, U2 denote
subspaces of V2, b1 denotes an ordered basis of V1, B1 denotes a finite sequence
of elements of V1, b2 denotes an ordered basis of V2, B2 denotes a finite sequence
of elements of V2, b3 denotes an ordered basis ofW1, b4 denotes an ordered basis
of W2, B3 denotes a finite sequence of elements of U1, and B4 denotes a finite
sequence of elements of U2.
Next we state a number of propositions:

(19) Let M be a matrix over K of dimension len b1 × lenB2, M1 be a ma-
trix over K of dimension len b3 × lenB3, and M2 be a matrix over K
of dimension len b4 × lenB4 such that b1 = b3 a b4 and B2 = B3 a B4
and M = the 0K-block diagonal of 〈M1,M2〉 and widthM1 = lenB3 and
widthM2 = lenB4. Then
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(i) if i ∈ dom b3, then (Mx2Tran(M, b1, B2))((b1)i) =
(Mx2Tran(M1, b3, B3))((b3)i), and

(ii) if i ∈ dom b4, then (Mx2Tran(M, b1, B2))((b1)i+len b3) =
(Mx2Tran(M2, b4, B4))((b4)i).

(20) Let M be a matrix over K of dimension len b1 × lenB2 and F be a fi-
nite sequence of matrices over K. Suppose M = the 0K-block diagonal of
F . Let given i, m. Suppose i ∈ dom b1 and m = min(LenF, i). Then
(Mx2Tran(M, b1, B2))((b1)i) =

∑
lmlt(Line(F (m), i −′

∑
Len(F �(m −′

1))), (B2�
∑
Width(F �m))�

∑
Width(F �(m−′1))) and

len((B2�
∑
Width(F �m))�

∑
Width(F �(m−′1))) = widthF (m).

(21) If lenB1 ∈ domB1, then
∑
lmlt(Line(the Jordan block of λ and

lenB1, lenB1), B1) = λ · (B1)lenB1 .
(22) If i ∈ domB1 and i 6= lenB1, then

∑
lmlt(Line(the Jordan block of λ

and lenB1, i), B1) = λ · (B1)i + (B1)i+1.
(23) LetM be a matrix overK of dimension len b1 × lenB2. SupposeM = the
Jordan block of λ and n. Let given i such that i ∈ dom b1. Then
(i) if i = len b1, then (Mx2Tran(M, b1, B2))((b1)i) = λ · (B2)i, and
(ii) if i 6= len b1, then (Mx2Tran(M, b1, B2))((b1)i) = λ · (B2)i + (B2)i+1.
(24) Let J be a finite sequence of Jordan blocks of λ and K and M be a
matrix over K of dimension len b1 × lenB2. Suppose M = the 0K-block
diagonal of J . Let given i, m such that i ∈ dom b1 and m = min(LenJ, i).
Then
(i) if i =

∑
Len(J�m), then (Mx2Tran(M, b1, B2))((b1)i) = λ · (B2)i, and

(ii) if i 6=
∑
Len(J�m), then (Mx2Tran(M, b1, B2))((b1)i) = λ · (B2)i +

(B2)i+1.

(25) Let J be a finite sequence of Jordan blocks of 0K and K and M be a
matrix over K of dimension len b1 × len b1. Suppose M = the 0K-block
diagonal of J . Let given m. If for every i such that i ∈ dom J holds
lenJ(i) ≤ m, then (Mx2Tran(M, b1, b1))m = ZeroMap(V1, V1).

(26) Let J be a finite sequence of Jordan blocks of λ andK andM be a matrix
over K of dimension len b1 × len b1. Suppose M = the 0K-block diagonal
of J . Then Mx2Tran(M, b1, b1) is nilpotent if and only if len b1 = 0 or
λ = 0K .

(27) Let J be a finite sequence of Jordan blocks of 0K and K and M be a
matrix over K of dimension len b1 × len b1. Suppose M = the 0K-block
diagonal of J and len b1 > 0. Let F be a nilpotent function from V1
into V1. Suppose F = Mx2Tran(M, b1, b1). Then there exists i such that
i ∈ dom J and lenJ(i) = degF and for every i such that i ∈ dom J holds
lenJ(i) ≤ degF.

(28) Let given V1, V2, b1, b2, λ. Suppose len b1 = len b2. Let F be a linear
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transformation from V1 to V2. Suppose that for every i such that i ∈ dom b1
holds F ((b1)i) = λ ·(b2)i or i+1 ∈ dom b1 and F ((b1)i) = λ ·(b2)i+(b2)i+1.
Then there exists a non-empty finite sequence J of Jordan blocks of λ and
K such that AutMt(F, b1, b2) = the 0K-block diagonal of J .

(29) Let V1 be a finite dimensional vector space over K and F be a nilpotent
linear transformation from V1 to V1. Then there exists a non-empty finite
sequence J of Jordan blocks of 0K and K and there exists an ordered basis
b1 of V1 such that AutMt(F, b1, b1) = the 0K-block diagonal of J .

(30) Let V be a vector space over K, F be a linear transformation from
V to V , V1 be a finite dimensional subspace of V , and F1 be a linear
transformation from V1 to V1. Suppose V1 = ker (F + (−λ) · idV )n and
F �V1 = F1. Then there exists a non-empty finite sequence J of Jordan
blocks of λ and K and there exists an ordered basis b1 of V1 such that
AutMt(F1, b1, b1) = the 0K-block diagonal of J .

4. The Main Theorem

The following two propositions are true:

(31) Let K be an algebraic-closed field, V be a non trivial finite dimensional
vector space over K, and F be a linear transformation from V to V . Then
there exists a non-empty finite sequence J of Jordan blocks of K and there
exists an ordered basis b1 of V such that
(i) AutMt(F, b1, b1) = the 0K-block diagonal of J , and
(ii) for every scalar λ of K holds λ is an eigenvalue of F iff there exists i
such that i ∈ dom J and J(i) = the Jordan block of λ and lenJ(i).

(32) Let K be an algebraic-closed field and M be a square matrix over K of
dimension n. Then there exists a non-empty finite sequence J of Jordan
blocks of K and there exists a square matrix P over K of dimension n
such that

∑
Len J = n and P is invertible and M = P · the 0K-block

diagonal of J · P`.
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The articles [15], [1], [16], [14], [11], [5], [12], [2], [3], [4], [8], [9], [13], [6], [7], and
[17] provide the terminology and notation for this paper.

1. Fatou’s Lemma

For simplicity, we adopt the following rules: X denotes a non empty set,
F denotes a sequence of partial functions from X into R with the same dom,
s1, s2, s3 denote sequences of extended reals, x denotes an element of X, a, r
denote extended real numbers, and n, m, k denote natural numbers.
We now state several propositions:

(1) If for every natural number n holds s2(n) ≤ s3(n), then inf rng s2 ≤
inf rng s3.

(2) Suppose that for every natural number n holds s2(n) ≤ s3(n). Then
(i) (the inferior real sequence of s2)(k) ≤ (the inferior real sequence of
s3)(k), and

(ii) (the superior real sequence of s2)(k) ≤ (the superior real sequence of
s3)(k).
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(3) If for every natural number n holds s2(n) ≤ s3(n), then lim inf s2 ≤
lim inf s3 and lim sup s2 ≤ lim sup s3.

(4) If for every natural number n holds s1(n) ≥ a, then inf s1 ≥ a.
(5) If for every natural number n holds s1(n) ≤ a, then sup s1 ≤ a.
(6) For every element n of N such that x ∈ dom inf(F ↑ n) holds (inf(F ↑
n))(x) = inf((F#x) ↑ n).
In the sequel S is a σ-field of subsets of X, M is a σ-measure on S, and E

is an element of S.
We now state the proposition

(7) Suppose E = domF (0) and for every n holds F (n) is non-negative and
F (n) is measurable on E. Then there exists a sequence I of extended
reals such that for every n holds I(n) =

∫
F (n) dM and

∫
lim inf F dM ≤

lim inf I.

2. Lebesgue’s Convergence Theorem

We now state three propositions:

(8) For all non empty subsets X, Y of R and for every extended real number
r such that X = {r} and r ∈ R holds sup(X + Y ) = supX + supY.

(9) For all non empty subsets X, Y of R and for every extended real number
r such that X = {r} and r ∈ R holds inf(X + Y ) = infX + inf Y.

(10) If r ∈ R and for every natural number n holds s2(n) = r + s3(n), then
lim inf s2 = r + lim inf s3 and lim sup s2 = r + lim sup s3.

We follow the rules: F1, F2 are sequences of partial functions from X into R
and f , g, P are partial functions from X to R.
We now state several propositions:

(11) Suppose that
(i) domF1(0) = domF2(0),
(ii) F1 has the same dom,
(iii) F2 has the same dom,
(iv) f−1({+∞}) = ∅,
(v) f−1({−∞}) = ∅, and
(vi) for every natural number n holds F1(n) = f + F2(n).
Then lim inf F1 = f + lim inf F2 and lim supF1 = f + lim supF2.

(12) s1 ↑ 0 = s1.
(13) If f is integrable onM and g is integrable onM , then f −g is integrable
on M .

(14) Suppose f is integrable on M and g is integrable on M . Then there
exists an element E of S such that E = dom f ∩ dom g and

∫
f − g dM =∫

f�E dM +
∫
(−g)�E dM.
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(15) If for every natural number n holds s2(n) = −s3(n), then lim inf s3 =
−lim sup s2 and lim sup s3 = −lim inf s2.

(16) Suppose domF1(0) = domF2(0) and F1 has the same dom and F2 has
the same dom and for every natural number n holds F1(n) = −F2(n).
Then lim inf F1 = −lim supF2 and lim supF1 = −lim inf F2.

(17) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) P is non-negative, and
(vi) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x).
Then

(vii) for every natural number n holds |F (n)| is integrable on M ,
(viii) | lim inf F | is integrable on M , and
(ix) | lim supF | is integrable on M .
(18) Suppose that
(i) E = domF (0),
(ii) E = domP,
(iii) for every natural number n holds F (n) is measurable on E,
(iv) P is integrable on M ,
(v) P is non-negative, and
(vi) for every element x of X and for every natural number n such that
x ∈ E holds |F (n)|(x) ≤ P (x).
Then there exists a sequence I of extended reals such that

(vii) for every natural number n holds I(n) =
∫
F (n) dM,

(viii) lim inf I ≥
∫
lim inf F dM,

(ix) lim sup I ≤
∫
lim supF dM, and

(x) if for every element x of X such that x ∈ E holds F#x is convergent,
then I is convergent and lim I =

∫
limF dM.

(19) Suppose that
(i) E = domF (0),
(ii) for every n holds F (n) is non-negative and F (n) is measurable on E,
(iii) for all x, n, m such that x ∈ E and n ≤ m holds F (n)(x) ≥ F (m)(x),
and

(iv)
∫
F (0)�E dM < +∞.

Then there exists a sequence I of extended reals such that for every
natural number n holds I(n) =

∫
F (n) dM and I is convergent and

lim I =
∫
limF dM.
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Let X be a set and let F be a sequence of partial functions from X into R.
We say that F is uniformly bounded if and only if:

(Def. 1) There exists a real number K such that for every natural number n and
for every set x such that x ∈ domF (0) holds |F (n)(x)| ≤ K.
Next we state the proposition

(20) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is measurable on E,
(iv) F is uniformly bounded, and
(v) for every element x of X such that x ∈ E holds F#x is convergent.
Then

(vi) for every natural number n holds F (n) is integrable on M ,
(vii) limF is integrable on M , and
(viii) there exists a sequence I of extended reals such that for every natu-
ral number n holds I(n) =

∫
F (n) dM and I is convergent and lim I =∫

limF dM.

Let X be a set, let F be a sequence of partial functions from X into R, and
let f be a partial function from X to R. We say that F is uniformly convergent
to f if and only if the conditions (Def. 2) are satisfied.

(Def. 2)(i) F has the same dom,
(ii) domF (0) = dom f, and
(iii) for every real number e such that e > 0 there exists a natural number
N such that for every natural number n and for every set x such that
n ≥ N and x ∈ domF (0) holds |F (n)(x)− f(x)| < e.
One can prove the following two propositions:

(21) Suppose F1 is uniformly convergent to f . Let x be an element of X. If
x ∈ domF1(0), then F1#x is convergent and lim(F1#x) = f(x).

(22) Suppose that
(i) M(E) < +∞,
(ii) E = domF (0),
(iii) for every natural number n holds F (n) is integrable on M , and
(iv) F is uniformly convergent to f .
Then

(v) f is integrable on M , and
(vi) there exists a sequence I of extended reals such that for every natu-
ral number n holds I(n) =

∫
F (n) dM and I is convergent and lim I =∫

f dM.
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[12] Andrzej Nȩdzusiak. σ-fields and probability. Formalized Mathematics, 1(2):401–407, 1990.
[13] Beata Perkowska. Functional sequence from a domain to a domain. Formalized Mathe-
matics, 3(1):17–21, 1992.

[14] Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics,
1(1):115–122, 1990.

[15] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[16] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,
1990.

[17] Hiroshi Yamazaki, Noboru Endou, Yasunari Shidama, and Hiroyuki Okazaki. Inferior
limit, superior limit and convergence of sequences of extended real numbers. Formalized
Mathematics, 15(4):231–236, 2007.

Received July 22, 2008





FORMALIZED MATHEMATICS

Vol. 16, No. 4, Pages 311–317, 2008

Extended Riemann Integral of Functions
of Real Variable

and One-sided Laplace Transform1

Masahiko Yamazaki
Shinshu University
Nagano, Japan

Hiroshi Yamazaki
Shinshu University
Nagano, Japan

Yasunari Shidama
Shinshu University
Nagano, Japan

Summary. In this article, we defined a variety of extended Riemann in-
tegrals and proved that such integration is linear. Furthermore, we defined the
one-sided Laplace transform and proved the linearity of that operator.

MML identifier: INTEGR10, version: 7.9.01 4.101.1015

The papers [11], [1], [5], [12], [10], [2], [7], [6], [8], [9], [3], [4], and [13] provide
the terminology and notation for this paper.

1. Preliminaries

In this paper a, b, r are elements of R.
We now state three propositions:

(1) For all real numbers a, b, g1, M such that a < b and 0 < g1 and 0 < M
there exists r such that a < r < b and (b− r) ·M < g1.

(2) For all real numbers a, b, g1, M such that a < b and 0 < g1 and 0 < M
there exists r such that a < r < b and (r − a) ·M < g1.

(3) exp b− exp a =
b∫
a

(the function exp)(x)dx.

1This work has been partially supported by the MEXT grant Grant-in-Aid for Young
Scientists (B)16700156.
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2. The Definition of Extended Riemann Integral

Let f be a partial function from R to R and let a, b be real numbers. We say
that f is right extended Riemann integrable on a, b if and only if the conditions
(Def. 1) are satisfied.

(Def. 1)(i) For every real number d such that a ≤ d < b holds f is integrable on
[a, d] and f�[a, d] is bounded, and

(ii) there exists a partial function I from R to R such that dom I = [a, b[

and for every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx

and I is left convergent in b.
Let f be a partial function from R to R and let a, b be real numbers. We say

that f is left extended Riemann integrable on a, b if and only if the conditions
(Def. 2) are satisfied.

(Def. 2)(i) For every real number d such that a < d ≤ b holds f is integrable on
[d, b] and f�[d, b] is bounded, and

(ii) there exists a partial function I from R to R such that dom I = ]a, b]

and for every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx

and I is right convergent in a.
Let f be a partial function from R to R and let a, b be real numbers. Let

us assume that f is right extended Riemann integrable on a, b. The functor

(R>)
b∫
a

f(x)dx yielding a real number is defined by the condition (Def. 3).

(Def. 3) There exists a partial function I from R to R such that dom I = [a, b[

and for every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx

and I is left convergent in b and (R>)
b∫
a

f(x)dx = lim
b−
I.

Let f be a partial function from R to R and let a, b be real numbers. Let
us assume that f is left extended Riemann integrable on a, b. The functor

(R<)
b∫
a

f(x)dx yielding a real number is defined by the condition (Def. 4).

(Def. 4) There exists a partial function I from R to R such that dom I = ]a, b]

and for every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx
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and I is right convergent in a and (R<)
b∫
a

f(x)dx = lim
a+
I.

Let f be a partial function from R to R and let a be a real number. We say
that f is extended Riemann integrable on a, +∞ if and only if the conditions
(Def. 5) are satisfied.

(Def. 5)(i) For every real number b such that a ≤ b holds f is integrable on [a, b]
and f�[a, b] is bounded, and

(ii) there exists a partial function I from R to R such that dom I = [a,+∞[

and for every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx

and I is convergent in +∞.
Let f be a partial function from R to R and let b be a real number. We say

that f is extended Riemann integrable on −∞, b if and only if the conditions
(Def. 6) are satisfied.

(Def. 6)(i) For every real number a such that a ≤ b holds f is integrable on [a, b]
and f�[a, b] is bounded, and

(ii) there exists a partial function I from R to R such that dom I = ]−∞, b]

and for every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx

and I is convergent in −∞.
Let f be a partial function from R to R and let a be a real number. Let

us assume that f is extended Riemann integrable on a, +∞. The functor

(R>)
+∞∫
a

f(x)dx yielding a real number is defined by the condition (Def. 7).

(Def. 7) There exists a partial function I from R to R such that dom I = [a,+∞[

and for every real number x such that x ∈ dom I holds I(x) =
x∫
a

f(x)dx

and I is convergent in +∞ and (R>)
+∞∫
a

f(x)dx = lim
+∞
I.

Let f be a partial function from R to R and let b be a real number. Let
us assume that f is extended Riemann integrable on −∞, b. The functor

(R<)
b∫

−∞

f(x)dx yields a real number and is defined by the condition (Def. 8).

(Def. 8) There exists a partial function I from R to R such that dom I = ]−∞, b]

and for every real number x such that x ∈ dom I holds I(x) =
b∫
x

f(x)dx
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and I is convergent in −∞ and (R<)
b∫

−∞

f(x)dx = lim
−∞
I.

Let f be a partial function from R to R. We say that f is ∞-extended
Riemann integrable if and only if:

(Def. 9) f is extended Riemann integrable on 0, +∞ and extended Riemann
integrable on −∞, 0.

Let f be a partial function from R to R. The functor (R)
+∞∫
−∞

f(x)dx yields a

real number and is defined by:

(Def. 10) (R)
+∞∫
−∞

f(x)dx = (R>)
+∞∫
0

f(x)dx+ (R<)
0∫

−∞

f(x)dx.

3. Linearity of Extended Riemann Integral

One can prove the following propositions:

(4) Let f , g be partial functions from R to R and a, b be real numbers.
Suppose that
(i) a < b,

(ii) [a, b] ⊆ dom f,
(iii) [a, b] ⊆ dom g,
(iv) f is right extended Riemann integrable on a, b, and
(v) g is right extended Riemann integrable on a, b.
Then f + g is right extended Riemann integrable on a, b and

(R>)
b∫
a

(f + g)(x)dx = (R>)
b∫
a

f(x)dx+ (R>)
b∫
a

g(x)dx.

(5) Let f be a partial function from R to R and a, b be real numbers. Suppose
a < b and [a, b] ⊆ dom f and f is right extended Riemann integrable on a,
b. Let r be a real number. Then r f is right extended Riemann integrable

on a, b and (R>)
b∫
a

(r f)(x)dx = r · (R>)
b∫
a

f(x)dx.

(6) Let f , g be partial functions from R to R and a, b be real numbers.
Suppose that
(i) a < b,

(ii) [a, b] ⊆ dom f,
(iii) [a, b] ⊆ dom g,
(iv) f is left extended Riemann integrable on a, b, and
(v) g is left extended Riemann integrable on a, b.
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Then f + g is left extended Riemann integrable on a, b and

(R<)
b∫
a

(f + g)(x)dx = (R<)
b∫
a

f(x)dx+ (R<)
b∫
a

g(x)dx.

(7) Let f be a partial function from R to R and a, b be real numbers. Suppose
a < b and [a, b] ⊆ dom f and f is left extended Riemann integrable on a,
b. Let r be a real number. Then r f is left extended Riemann integrable

on a, b and (R<)
b∫
a

(r f)(x)dx = r · (R<)
b∫
a

f(x)dx.

(8) Let f , g be partial functions from R to R and a be a real number. Suppose
that
(i) [a,+∞[ ⊆ dom f,
(ii) [a,+∞[ ⊆ dom g,
(iii) f is extended Riemann integrable on a, +∞, and
(iv) g is extended Riemann integrable on a, +∞.
Then f + g is extended Riemann integrable on a, +∞ and

(R>)
+∞∫
a

(f + g)(x)dx = (R>)
+∞∫
a

f(x)dx+ (R>)
+∞∫
a

g(x)dx.

(9) Let f be a partial function from R to R and a be a real number. Suppose
[a,+∞[ ⊆ dom f and f is extended Riemann integrable on a, +∞. Let r
be a real number. Then r f is extended Riemann integrable on a, +∞ and

(R>)
+∞∫
a

(r f)(x)dx = r · (R>)
+∞∫
a

f(x)dx.

(10) Let f , g be partial functions from R to R and b be a real number. Suppose
that
(i) ]−∞, b] ⊆ dom f,
(ii) ]−∞, b] ⊆ dom g,
(iii) f is extended Riemann integrable on −∞, b, and
(iv) g is extended Riemann integrable on −∞, b.
Then f + g is extended Riemann integrable on −∞, b and

(R<)
b∫

−∞

(f + g)(x)dx = (R<)
b∫

−∞

f(x)dx+ (R<)
b∫

−∞

g(x)dx.

(11) Let f be a partial function from R to R and b be a real number. Suppose
]−∞, b] ⊆ dom f and f is extended Riemann integrable on −∞, b. Let r
be a real number. Then r f is extended Riemann integrable on −∞, b and

(R<)
b∫

−∞

(r f)(x)dx = r · (R<)
b∫

−∞

f(x)dx.

(12) Let f be a partial function from R to R and a, b be real numbers.
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Suppose a < b and [a, b] ⊆ dom f and f is integrable on [a, b] and f�[a, b]

is bounded. Then (R>)
b∫
a

f(x)dx =
b∫
a

f(x)dx.

(13) Let f be a partial function from R to R and a, b be real numbers.
Suppose a < b and [a, b] ⊆ dom f and f is integrable on [a, b] and f�[a, b]

is bounded. Then (R<)
b∫
a

f(x)dx =
b∫
a

f(x)dx.

4. The Definition of One-sided Laplace Transform

Let s be a real number. The functor e−s·� yielding a function from R into
R is defined by:

(Def. 11) For every real number t holds e−s·�(t) = (the function exp)(−s · t).
Let f be a partial function from R to R. The one-sided Laplace transform of

f yielding a partial function from R to R is defined by the conditions (Def. 12).
(Def. 12)(i) dom (the one-sided Laplace transform of f) = ]0,+∞[, and

(ii) for every real number s such that s ∈ dom (the one-sided Lapla-
ce transform of f) holds (the one-sided Laplace transform of f)(s) =

(R>)
+∞∫
0

(f e−s·�)(x)dx.

5. Linearity of One-sided Laplace Transform

Next we state two propositions:

(14) Let f , g be partial functions from R to R. Suppose that
(i) dom f = [0,+∞[,
(ii) dom g = [0,+∞[,
(iii) for every real number s such that s ∈ ]0,+∞[ holds f e−s·� is extended
Riemann integrable on 0, +∞, and

(iv) for every real number s such that s ∈ ]0,+∞[ holds g e−s·� is extended
Riemann integrable on 0, +∞.
Then

(v) for every real number s such that s ∈ ]0,+∞[ holds (f + g) e−s·� is
extended Riemann integrable on 0, +∞, and

(vi) the one-sided Laplace transform of f + g = (the one-sided Laplace
transform of f) + (the one-sided Laplace transform of g).

(15) Let f be a partial function from R to R and a be a real number. Suppose
dom f = [0,+∞[ and for every real number s such that s ∈ ]0,+∞[ holds
f e−s·� is extended Riemann integrable on 0, +∞. Then
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(i) for every real number s such that s ∈ ]0,+∞[ holds a f e−s·� is extended
Riemann integrable on 0, +∞, and

(ii) the one-sided Laplace transform of a f = a the one-sided Laplace trans-
form of f .
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Summary. In this article, we formalized the notion of the integral of a
complex-valued function considered as a sum of its real and imaginary parts.
Then we defined the measurability and integrability in this context, and proved
the linearity and several other basic properties of complex-valued measurable
functions. The set of properties showed in this paper is based on [15], where the
case of real-valued measurable functions is considered.
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1. Definitions for Complex-valued Functions

One can prove the following proposition

(1) For all real numbers a, b holds R(a)+R(b) = a+ b and −R(a) = −a and
R(a)− R(b) = a− b and R(a) · R(b) = a · b.
Let X be a non empty set and let f be a partial function from X to C. The

functor <(f) yields a partial function from X to R and is defined as follows:
(Def. 1) dom<(f) = dom f and for every element x of X such that x ∈ dom<(f)

holds <(f)(x) = <(f(x)).
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The functor =(f) yields a partial function from X to R and is defined as follows:
(Def. 2) dom=(f) = dom f and for every element x of X such that x ∈ dom=(f)

holds =(f)(x) = =(f(x)).

2. The Measurability of Complex-valued Functions

For simplicity, we use the following convention: X is a non empty set, Y is
a set, S is a σ-field of subsets of X, M is a σ-measure on S, f , g are partial
functions from X to C, r is a real number, c is a complex number, and E, A, B
are elements of S.
Let X be a non empty set, let S be a σ-field of subsets of X, let f be a

partial function from X to C, and let E be an element of S. We say that f is
measurable on E if and only if:

(Def. 3) <(f) is measurable on E and =(f) is measurable on E.
One can prove the following propositions:

(2) r<(f) = <(r f) and r=(f) = =(r f).
(3) <(c f) = <(c)<(f)−=(c)=(f) and =(c f) = =(c)<(f) + <(c)=(f).
(4) −=(f) = <(i f) and <(f) = =(i f).
(5) <(f + g) = <(f) + <(g) and =(f + g) = =(f) + =(g).
(6) <(f − g) = <(f)−<(g) and =(f − g) = =(f)−=(g).
(7) <(f)�A = <(f�A) and =(f)�A = =(f�A).
(8) f = <(f) + i=(f).
(9) If B ⊆ A and f is measurable on A, then f is measurable on B.
(10) If f is measurable on A and f is measurable on B, then f is measurable
on A ∪B.

(11) If f is measurable on A and g is measurable on A, then f+g is measurable
on A.

(12) If f is measurable on A and g is measurable on A and A ⊆ dom g, then
f − g is measurable on A.

(13) If Y ⊆ dom(f+g), then dom(f�Y +g�Y ) = Y and (f+g)�Y = f�Y +g�Y.
(14) If f is measurable on B and A = dom f ∩B, then f�B is measurable on
A.

(15) If dom f , dom g ∈ S, then dom(f + g) ∈ S.
(16) If dom f = A, then f is measurable on B iff f is measurable on A ∩B.
(17) If f is measurable on A and A ⊆ dom f, then c f is measurable on A.
(18) Given an element A of S such that dom f = A. Let c be a complex
number and B be an element of S. If f is measurable on B, then c f is
measurable on B.
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3. The Integral of a Complex-valued Measurable Function

Let X be a non empty set, let S be a σ-field of subsets of X, let M be a
σ-measure on S, and let f be a partial function from X to C. We say that f is
integrable on M if and only if:

(Def. 4) <(f) is integrable on M and =(f) is integrable on M .
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a

σ-measure on S, and let f be a partial function from X to C. Let us assume
that f is integrable on M . The functor

∫
f dM yielding a complex number is

defined by:

(Def. 5) There exist real numbers R, I such that R =
∫
<(f) dM and I =∫

=(f) dM and
∫
f dM = R+ I · i.

We now state several propositions:

(19) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, f be a partial function from X to R, and A be an element
of S. Suppose there exists an element E of S such that E = dom f and f
is measurable on E and M(A) = 0. Then f�A is integrable on M .

(20) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, f be a partial function from X to R, and E, A be elements
of S. Suppose there exists an element E of S such that E = dom f and f
is measurable on E and M(A) = 0. Then f�A is integrable on M .

(21) Suppose there exists an element E of S such that E = dom f and f
is measurable on E and M(A) = 0. Then f�A is integrable on M and∫
f�AdM = 0.

(22) If E = dom f and f is integrable on M and M(A) = 0, then
∫
f�(E \

A) dM =
∫
f dM.

(23) If f is integrable on M , then f�A is integrable on M .

(24) If f is integrable on M and A misses B, then
∫
f�(A ∪ B) dM =∫

f�AdM +
∫
f�B dM.

(25) If f is integrable on M and B = dom f \ A, then f�A is integrable on
M and

∫
f dM =

∫
f�AdM +

∫
f�B dM.

Let k be a real number, let X be a non empty set, and let f be a partial
function from X to R. The functor fk yields a partial function from X to R and
is defined as follows:

(Def. 6) dom(fk) = dom f and for every element x of X such that x ∈ dom(fk)
holds fk(x) = f(x)k.

Let us consider X. Observe that there exists a partial function from X to R
which is non-negative.
Let k be a non negative real number, let us consider X, and let f be a

non-negative partial function from X to R. Observe that fk is non-negative.
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We now state a number of propositions:

(26) Let k be a real number, given X, S, E, and f be a partial function from
X to R. If f is non-negative and 0 ≤ k, then fk is non-negative.

(27) Let x be a set, given X, S, E, and f be a partial function from X to R.
If f is non-negative, then f(x)

1
2 =
√
f(x).

(28) For every partial function f from X to R and for every real number a
such that A ⊆ dom f holds A ∩ LE-dom(f, a) = A \A ∩GTE-dom(f, a).

(29) Let k be a real number, given X, S, E, and f be a partial function from
X to R. Suppose f is non-negative and 0 ≤ k and E ⊆ dom f and f is
measurable on E. Then fk is measurable on E.

(30) If f is measurable on A and A ⊆ dom f, then |f | is measurable on A.
(31) Given an element A of S such that A = dom f and f is measurable on
A. Then f is integrable on M if and only if |f | is integrable on M .

(32) If f is integrable on M and g is integrable on M , then dom(f + g) ∈ S.
(33) If f is integrable onM and g is integrable onM , then f +g is integrable
on M .

(34) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, and f , g be partial functions from X to R. Suppose f is
integrable on M and g is integrable on M . Then f − g is integrable on M .

(35) If f is integrable onM and g is integrable onM , then f −g is integrable
on M .

(36) Suppose f is integrable on M and g is integrable on M . Then there
exists an element E of S such that E = dom f ∩ dom g and

∫
f + g dM =∫

f�E dM +
∫
g�E dM.

(37) Let X be a non empty set, S be a σ-field of subsets of X, M be a σ-
measure on S, and f , g be partial functions from X to R. Suppose f is
integrable on M and g is integrable on M . Then there exists an element
E of S such that E = dom f ∩ dom g and

∫
f − g dM =

∫
f�E dM +∫

(−g)�E dM.
(38) If f is integrable on M , then r f is integrable on M and

∫
r f dM =

r ·
∫
f dM.

(39) If f is integrable on M , then i f is integrable on M and
∫
i f dM =

i ·
∫
f dM.

(40) If f is integrable on M , then c f is integrable on M and
∫
c f dM =

c ·
∫
f dM.

(41) For every partial function f from X to R and for all Y , r holds (r f)�Y =
r (f�Y ).

(42) Let f , g be partial functions from X to R. Suppose that
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(i) there exists an element A of S such that A = dom f ∩ dom g and f is
measurable on A and g is measurable on A,

(ii) f is integrable on M ,
(iii) g is integrable on M , and
(iv) g − f is non-negative.
Then there exists an element E of S such that E = dom f ∩ dom g and∫
f�E dM ≤

∫
g�E dM.

(43) Suppose there exists an element A of S such that A = dom f and f is
measurable on A and f is integrable on M . Then |

∫
f dM | ≤

∫
|f |dM.

Let X be a non empty set, let S be a σ-field of subsets of X, let M be
a σ-measure on S, let f be a partial function from X to C, and let B be an
element of S. The functor

∫
B
f dM yields a complex number and is defined by:

(Def. 7)
∫
B
f dM =

∫
f�B dM.

Next we state two propositions:

(44) Suppose f is integrable onM and g is integrable onM and B ⊆ dom(f+
g). Then f + g is integrable on M and

∫
B
f + g dM =

∫
B
f dM +

∫
B
g dM.

(45) If f is integrable on M and f is measurable on B, then
∫
B
c f dM =

c ·
∫
B
f dM.

4. Several Properties of Real-valued Measurable Functions

In the sequel f denotes a partial function from X to R and a denotes a real
number.
One can prove the following four propositions:

(46) If A ⊆ dom f, then A ∩GTE-dom(f, a) = A \A ∩ LE-dom(f, a).
(47) If A ⊆ dom f, then A ∩GT-dom(f, a) = A \A ∩ LEQ-dom(f, a).
(48) If A ⊆ dom f, then A ∩ LEQ-dom(f, a) = A \A ∩GT-dom(f, a).
(49) A ∩ EQ-dom(f, a) = A ∩GTE-dom(f, a) ∩ LEQ-dom(f, a).
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The articles [7], [22], [17], [15], [8], [5], [6], [19], [9], [3], [2], [4], [1], [21], [11],
[20], [18], [16], [10], [13], and [14] provide the terminology and notation for this
paper.

1. Definition by Independent Sets

A subset family structure is a topological structure.
LetM be a subset family structure and let A be a subset ofM . We introduce

A is independent as a synonym of A is open. We introduce A is dependent as
an antonym of A is open.
Let M be a subset family structure. The family of M yielding a family of

subsets of M is defined as follows:

(Def. 1) The family of M = the topology of M .

Let M be a subset family structure and let A be a subset of M . Let us
observe that A is independent if and only if:

(Def. 2) A ∈ the family of M .
Let M be a subset family structure. We say that M is subset-closed if and

only if:

(Def. 3) The family of M is subset-closed.

1This article was done under the Agreement of Cooperation between Białystok Technical
University and Shinshu University.
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We say that M has exchange property if and only if the condition (Def. 4) is
satisfied.

(Def. 4) Let A, B be finite subsets of M . Suppose A ∈ the family of M and
B ∈ the family of M and cardB = cardA + 1. Then there exists an
element e of M such that e ∈ B \A and A ∪ {e} ∈ the family of M .
One can check that there exists a subset family structure which is strict, non

empty, non void, finite, and subset-closed and has exchange property.
LetM be a non void subset family structure. One can verify that there exists

a subset of M which is independent.
Let M be a subset-closed subset family structure. One can verify that the

family of M is subset-closed.
We now state the proposition

(1) LetM be a non void subset-closed subset family structure, A be an inde-
pendent subset of M , and B be a set. If B ⊆ A, then B is an independent
subset of M .

Let M be a non void subset-closed subset family structure. Note that there
exists a subset of M which is finite and independent.
A matroid is a non empty non void subset-closed subset family structure

with exchange property.
One can prove the following proposition

(2) For every subset-closed subset family structure M holds M is non void
iff ∅ ∈ the family of M .
Let M be a non void subset-closed subset family structure. Note that

∅the carrier of M is independent.
The following proposition is true

(3) Let M be a non void subset family structure. Then M is subset-closed
if and only if for all subsets A, B of M such that A is independent and
B ⊆ A holds B is independent.
Let M be a non void subset-closed subset family structure, let A be an

independent subset of M , and let B be a set. One can check the following
observations:

∗ A ∩B is independent,
∗ B ∩A is independent, and
∗ A \B is independent.
Next we state the proposition

(4) Let M be a non void non empty subset family structure. Then M has
exchange property if and only if for all finite subsets A, B of M such that
A is independent and B is independent and cardB = cardA + 1 there
exists an element e of M such that e ∈ B \A and A∪ {e} is independent.
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Let A be a set. We introduce A is finite-membered as a synonym of A has
finite elements.
Let A be a set. Let us observe that A is finite-membered if and only if:

(Def. 5) For every set B such that B ∈ A holds B is finite.
Let M be a subset family structure. We say that M is finite-membered if

and only if:

(Def. 6) The family of M is finite-membered.

Let M be a subset family structure. We say that M is finite-degree if and
only if the conditions (Def. 7) are satisfied.

(Def. 7)(i) M is finite-membered, and
(ii) there exists a natural number n such that for every finite subset A of
M such that A is independent holds cardA ≤ n.
Let us note that every subset family structure which is finite-degree is also

finite-membered and every subset family structure which is finite is also finite-
degree.

2. Examples

Let us note that there exists a set which is mutually-disjoint and non empty
and has non empty elements.
The following propositions are true:

(5) For all finite sets A, B such that cardA < cardB there exists a set x
such that x ∈ B \A.

(6) For every mutually-disjoint non empty set P with non empty elements
holds every choice function of P is one-to-one.

Let us mention that every discrete subset family structure is non void and
subset-closed and has exchange property.
Next we state the proposition

(7) Every non empty discrete topological structure is a matroid.

Let P be a set. The functor ProdMatroidP yields a strict subset family
structure and is defined by the conditions (Def. 8).

(Def. 8)(i) The carrier of ProdMatroidP =
⋃
P, and

(ii) the family of ProdMatroidP = {A ⊆
⋃
P :

∧
D : set (D ∈ P ⇒∨

d : set A ∩D ⊆ {d})}.
Let P be a non empty set with non empty elements. One can verify that

ProdMatroidP is non empty.
Next we state the proposition

(8) Let P be a set and A be a subset of ProdMatroidP. Then A is indepen-
dent if and only if for every element D of P there exists an element d of
D such that A ∩D ⊆ {d}.
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Let P be a set. One can verify that ProdMatroidP is non void and subset-
closed.
Next we state two propositions:

(9) Let P be a mutually-disjoint set and x be a subset of ProdMatroidP.
Then there exists a function f from x into P such that for every set a
such that a ∈ x holds a ∈ f(a).

(10) Let P be a mutually-disjoint set, x be a subset of ProdMatroidP, and f
be a function from x into P . Suppose that for every set a such that a ∈ x
holds a ∈ f(a). Then x is independent if and only if f is one-to-one.

Let P be a mutually-disjoint set. Observe that ProdMatroidP has exchange
property.
Let X be a finite set and let P be a subset of 2X . One can check that

ProdMatroidP is finite.
Let X be a set. Observe that every partition of X is mutually-disjoint.
One can check that there exists a matroid which is finite and strict.
Let M be a finite-membered non void subset family structure. Observe that

every independent subset of M is finite.
Let F be a field and let V be a vector space over F . The matroid of linearly

independent subsets of V is a strict subset family structure and is defined by
the conditions (Def. 9).

(Def. 9)(i) The carrier of the matroid of linearly independent subsets of V = the
carrier of V , and

(ii) the family of the matroid of linearly independent subsets of V = {A ⊆
V : A is linearly independent}.
Let F be a field and let V be a vector space over F . Note that the matroid

of linearly independent subsets of V is non empty, non void, and subset-closed.
Let F be a field and let V be a vector space over F . Observe that there

exists a subset of V which is linearly independent and empty.
The following three propositions are true:

(11) Let F be a field, V be a vector space over F , and A be a subset of the
matroid of linearly independent subsets of V . Then A is independent if
and only if A is a linearly independent subset of V .

(12) Let F be a field, V be a vector space over F , and A, B be finite subsets
of V . Suppose B ⊆ A. Let v be a vector of V . Suppose v ∈ Lin(A) and
v /∈ Lin(B). Then there exists a vector w of V such that w ∈ A \ B and
w ∈ Lin((A \ {w}) ∪ {v}).

(13) Let F be a field, V be a vector space over F , and A be a subset of V .
Suppose A is linearly independent. Let a be an element of V . If a 6∈ the
carrier of Lin(A), then A ∪ {a} is linearly independent.
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Let F be a field and let V be a vector space over F . Observe that the matroid
of linearly independent subsets of V has exchange property.
Let F be a field and let V be a finite dimensional vector space over F . Note

that the matroid of linearly independent subsets of V is finite-membered.

3. Maximal Independent Subsets, Ranks, and Basis

Let M be a subset family structure and let A, C be subsets of M . We say
that A is maximal independent in C if and only if:

(Def. 10) A is independent and A ⊆ C and for every subset B of M such that B
is independent and B ⊆ C and A ⊆ B holds A = B.
The following propositions are true:

(14) Let M be a non void finite-degree subset family structure and C, A be
subsets of M . Suppose A ⊆ C and A is independent. Then there exi-
sts an independent subset B of M such that A ⊆ B and B is maximal
independent in C.

(15) Let M be a non void finite-degree subset-closed subset family structure
and C be a subset of M . Then there exists an independent subset of M
which is maximal independent in C.

(16) LetM be a non empty non void subset-closed finite-degree subset family
structure. ThenM is a matroid if and only if for every subset C ofM and
for all independent subsets A, B ofM such that A is maximal independent
in C and B is maximal independent in C holds cardA = cardB.

Let M be a finite-degree matroid and let C be a subset of M . The functor
RnkC yields a natural number and is defined by:

(Def. 11) RnkC =
⋃
{cardA;A ranges over independent subsets of M : A ⊆ C}.

One can prove the following propositions:

(17) Let M be a finite-degree matroid, C be a subset of M , and A be an
independent subset of M . If A ⊆ C, then cardA ≤ RnkC.

(18) Let M be a finite-degree matroid and C be a subset of M . Then there
exists an independent subsetA ofM such thatA ⊆ C and cardA = RnkC.

(19) Let M be a finite-degree matroid, C be a subset of M , and A be an
independent subset of M . Then A is maximal independent in C if and
only if A ⊆ C and cardA = RnkC.

(20) For every finite-degree matroid M and for every finite subset C of M
holds RnkC ≤ cardC.

(21) Let M be a finite-degree matroid and C be a finite subset of M . Then
C is independent if and only if cardC = RnkC.

Let M be a finite-degree matroid. The functor RnkM yielding a natural
number is defined by:
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(Def. 12) RnkM = Rnk(ΩM ).

Let M be a non void finite-degree subset family structure. An independent
subset of M is said to be a basis of M if:

(Def. 13) It is maximal independent in ΩM .

One can prove the following propositions:

(22) For every finite-degree matroid M and for all bases B1, B2 of M holds
cardB1 = cardB2.

(23) For every finite-degree matroid M and for every independent subset A
of M there exists a basis B of M such that A ⊆ B.
We follow the rules: M is a finite-degree matroid, A, B, C are subsets of M ,

and e, f are elements of M .
Next we state four propositions:

(24) If A ⊆ B, then RnkA ≤ RnkB.
(25) Rnk(A ∪B) + Rnk(A ∩B) ≤ RnkA+RnkB.
(26) RnkA ≤ Rnk(A ∪B) and Rnk(A ∪ {e}) ≤ RnkA+ 1.
(27) If Rnk(A ∪ {e}) = Rnk(A ∪ {f}) and Rnk(A ∪ {f}) = RnkA, then
Rnk(A ∪ {e, f}) = RnkA.

4. Dependence on a Set, Spans, and Cycles

Let M be a finite-degree matroid, let e be an element of M , and let A be a
subset of M . We say that e is dependent on A if and only if:

(Def. 14) Rnk(A ∪ {e}) = RnkA.
We now state two propositions:

(28) If e ∈ A, then e is dependent on A.
(29) If A ⊆ B and e is dependent on A, then e is dependent on B.
Let M be a finite-degree matroid and let A be a subset of M . The functor

SpanA yielding a subset of M is defined as follows:

(Def. 15) SpanA = {e ∈M : e is dependent on A}.
Next we state several propositions:

(30) e ∈ SpanA iff Rnk(A ∪ {e}) = RnkA.
(31) A ⊆ SpanA.
(32) If A ⊆ B, then SpanA ⊆ SpanB.
(33) Rnk SpanA = RnkA.

(34) If e is dependent on SpanA, then e is dependent on A.

(35) Span SpanA = SpanA.

(36) If f 6∈ SpanA and f ∈ Span(A ∪ {e}), then e ∈ Span(A ∪ {f}).
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Let M be a subset family structure and let A be a subset of M . We say that
A is cycle if and only if:

(Def. 16) A is dependent and for every element e of M such that e ∈ A holds
A \ {e} is independent.
Next we state the proposition

(37) If A is cycle, then A is non empty and finite.

Let us consider M . Note that every subset of M which is cycle is also non
empty and finite.
One can prove the following propositions:

(38) A is cycle iff A is non empty and for every e such that e ∈ A holds A\{e}
is maximal independent in A.

(39) If A is cycle, then RnkA+ 1 = A.

(40) If A is cycle and e ∈ A, then e is dependent on A \ {e}.
(41) If A is cycle and B is cycle and A ⊆ B, then A = B.
(42) If for every B such that B ⊆ A holds B is not cycle, then A is indepen-
dent.

(43) If A is cycle and B is cycle and A 6= B and e ∈ A ∩B, then there exists
C such that C is cycle and C ⊆ (A ∪B) \ {e}.

(44) If A is independent and B is cycle and C is cycle and B ⊆ A ∪ {e} and
C ⊆ A ∪ {e}, then B = C.
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one variable function SVF1 and SVF2. The main properties of partial differen-
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The articles [14], [4], [15], [5], [1], [8], [10], [9], [2], [3], [13], [6], [12], [11], and [7]
provide the notation and terminology for this paper.

1. Preliminaries

For simplicity, we adopt the following convention: x, x0, y, y0, r are real
numbers, z, z0 are elements of R2, Z is a subset of R2, f , f1, f2 are partial
functions from R2 to R, R is a rest, and L is a linear function.
Next we state two propositions:

(1) domproj(1, 2) = R2 and rng proj(1, 2) = R and for all elements x, y of
R holds (proj(1, 2))(〈x, y〉) = x.

(2) domproj(2, 2) = R2 and rng proj(2, 2) = R and for all elements x, y of
R holds (proj(2, 2))(〈x, y〉) = y.
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2. Partial Differentiation of Real Binary Functions

Let f be a partial function from R2 to R and let z be an element of R2. The
functor SVF1(f, z) yielding a partial function from R to R is defined by:
(Def. 1) SVF1(f, z) = f · reproj(1, z).
The functor SVF2(f, z) yields a partial function from R to R and is defined as
follows:

(Def. 2) SVF2(f, z) = f · reproj(2, z).
Next we state two propositions:

(3) If z = 〈x, y〉 and f is partially differentiable in z w.r.t. 1 coordinate, then
SVF1(f, z) is differentiable in x.

(4) If z = 〈x, y〉 and f is partially differentiable in z w.r.t. 2 coordinate, then
SVF2(f, z) is differentiable in y.

Let f be a partial function from R2 to R and let z be an element of R2. We
say that f is partial differentiable on 1st coordinate in z if and only if:

(Def. 3) There exist real numbers x0, y0 such that z = 〈x0, y0〉 and SVF1(f, z) is
differentiable in x0.

We say that f is partial differentiable on 2nd coordinate in z if and only if:

(Def. 4) There exist real numbers x0, y0 such that z = 〈x0, y0〉 and SVF2(f, z) is
differentiable in y0.

Next we state two propositions:

(5) Suppose z = 〈x0, y0〉 and f is partial differentiable on 1st coordinate in z.
Then there exists a neighbourhood N of x0 such that N ⊆ domSVF1(f, z)
and there exist L, R such that for every x such that x ∈ N holds
(SVF1(f, z))(x)− (SVF1(f, z))(x0) = L(x− x0) +R(x− x0).

(6) Suppose z = 〈x0, y0〉 and f is partial differentiable on 2nd coordina-
te in z. Then there exists a neighbourhood N of y0 such that N ⊆
domSVF2(f, z) and there exist L, R such that for every y such that y ∈ N
holds (SVF2(f, z))(y)− (SVF2(f, z))(y0) = L(y − y0) +R(y − y0).
Let f be a partial function from R2 to R and let z be an element of R2. Let

us observe that f is partial differentiable on 1st coordinate in z if and only if
the condition (Def. 5) is satisfied.

(Def. 5) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of x0 such that N ⊆ domSVF1(f, z)
and there exist L, R such that for every x such that x ∈ N holds
(SVF1(f, z))(x)− (SVF1(f, z))(x0) = L(x− x0) +R(x− x0).
Let f be a partial function from R2 to R and let z be an element of R2. Let

us observe that f is partial differentiable on 2nd coordinate in z if and only if
the condition (Def. 6) is satisfied.
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(Def. 6) There exist real numbers x0, y0 such that
(i) z = 〈x0, y0〉, and
(ii) there exists a neighbourhood N of y0 such that N ⊆ domSVF2(f, z)
and there exist L, R such that for every y such that y ∈ N holds
(SVF2(f, z))(y)− (SVF2(f, z))(y0) = L(y − y0) +R(y − y0).
Next we state two propositions:

(7) Let f be a partial function from R2 to R and z be an element of R2.
Then f is partial differentiable on 1st coordinate in z if and only if f is
partially differentiable in z w.r.t. 1 coordinate.

(8) Let f be a partial function from R2 to R and z be an element of R2.
Then f is partial differentiable on 2nd coordinate in z if and only if f is
partially differentiable in z w.r.t. 2 coordinate.

Let f be a partial function from R2 to R and let z be an element of R2. The
functor partdiff1(f, z) yielding a real number is defined by:

(Def. 7) partdiff1(f, z) = partdiff(f, z, 1).

The functor partdiff2(f, z) yielding a real number is defined as follows:

(Def. 8) partdiff2(f, z) = partdiff(f, z, 2).

One can prove the following propositions:

(9) Suppose z = 〈x0, y0〉 and f is partial differentiable on 1st coordinate
in z. Then r = partdiff1(f, z) if and only if there exist real numbers x0,
y0 such that z = 〈x0, y0〉 and there exists a neighbourhood N of x0 such
that N ⊆ domSVF1(f, z) and there exist L, R such that r = L(1) and
for every x such that x ∈ N holds (SVF1(f, z))(x) − (SVF1(f, z))(x0) =
L(x− x0) +R(x− x0).

(10) Suppose z = 〈x0, y0〉 and f is partial differentiable on 2nd coordinate
in z. Then r = partdiff2(f, z) if and only if there exist real numbers x0,
y0 such that z = 〈x0, y0〉 and there exists a neighbourhood N of y0 such
that N ⊆ domSVF2(f, z) and there exist L, R such that r = L(1) and
for every y such that y ∈ N holds (SVF2(f, z))(y) − (SVF2(f, z))(y0) =
L(y − y0) +R(y − y0).

(11) If z = 〈x0, y0〉 and f is partial differentiable on 1st coordinate in z, then
partdiff1(f, z) = (SVF1(f, z))′(x0).

(12) If z = 〈x0, y0〉 and f is partial differentiable on 2nd coordinate in z, then
partdiff2(f, z) = (SVF2(f, z))′(y0).

Let f be a partial function from R2 to R and let Z be a set. We say that f
is partial differentiable w.r.t. 1st coordinate on Z if and only if:

(Def. 9) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 1st coordinate in z.

We say that f is partial differentiable w.r.t. 2nd coordinate on Z if and only if:
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(Def. 10) Z ⊆ dom f and for every element z of R2 such that z ∈ Z holds f�Z is
partial differentiable on 2nd coordinate in z.

One can prove the following two propositions:

(13) Suppose f is partial differentiable w.r.t. 1st coordinate on Z. Then Z ⊆
dom f and for every z such that z ∈ Z holds f is partial differentiable on
1st coordinate in z.

(14) Suppose f is partial differentiable w.r.t. 2nd coordinate on Z. Then
Z ⊆ dom f and for every z such that z ∈ Z holds f is partial differentiable
on 2nd coordinate in z.

Let f be a partial function from R2 to R and let Z be a set. Let us assu-
me that f is partial differentiable w.r.t. 1st coordinate on Z. The functor f1st�Z
yielding a partial function from R2 to R is defined as follows:

(Def. 11) dom(f1st�Z ) = Z and for every element z of R2 such that z ∈ Z holds
f1st�Z (z) = partdiff1(f, z).

Let f be a partial function from R2 to R and let Z be a set. Let us assume
that f is partial differentiable w.r.t. 2nd coordinate on Z. The functor f2nd�Z
yielding a partial function from R2 to R is defined as follows:

(Def. 12) dom(f2nd�Z ) = Z and for every element z of R2 such that z ∈ Z holds
f2nd�Z (z) = partdiff2(f, z).

3. Main Properties of Partial Differentiation of Real Binary
Functions

We now state a number of propositions:

(15) Let z0 be an element ofR2 and N be a neighbourhood of (proj(1, 2))(z0).
Suppose f is partial differentiable on 1st coordinate in z0 and N ⊆
domSVF1(f, z0). Let h be a convergent to 0 sequence of real numbers and c
be a constant sequence of real numbers. Suppose rng c = {(proj(1, 2))(z0)}
and rng(h+c) ⊆ N. Then h−1 (SVF1(f, z0) ·(h+c)−SVF1(f, z0) ·c) is co-
nvergent and partdiff1(f, z0) = lim(h−1 (SVF1(f, z0)·(h+c)−SVF1(f, z0)·
c)).

(16) Let z0 be an element ofR2 and N be a neighbourhood of (proj(2, 2))(z0).
Suppose f is partial differentiable on 2nd coordinate in z0 and N ⊆
domSVF2(f, z0). Let h be a convergent to 0 sequence of real numbers and c
be a constant sequence of real numbers. Suppose rng c = {(proj(2, 2))(z0)}
and rng(h+c) ⊆ N. Then h−1 (SVF2(f, z0) ·(h+c)−SVF2(f, z0) ·c) is co-
nvergent and partdiff2(f, z0) = lim(h−1 (SVF2(f, z0)·(h+c)−SVF2(f, z0)·
c)).

(17) Suppose f1 is partial differentiable on 1st coordinate in z0 and f2
is partial differentiable on 1st coordinate in z0. Then f1 + f2 is par-
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tial differentiable on 1st coordinate in z0 and partdiff1(f1 + f2, z0) =
partdiff1(f1, z0) + partdiff1(f2, z0).

(18) Suppose f1 is partial differentiable on 2nd coordinate in z0 and f2
is partial differentiable on 2nd coordinate in z0. Then f1 + f2 is par-
tial differentiable on 2nd coordinate in z0 and partdiff2(f1 + f2, z0) =
partdiff2(f1, z0) + partdiff2(f2, z0).

(19) Suppose f1 is partial differentiable on 1st coordinate in z0 and f2
is partial differentiable on 1st coordinate in z0. Then f1 − f2 is par-
tial differentiable on 1st coordinate in z0 and partdiff1(f1 − f2, z0) =
partdiff1(f1, z0)− partdiff1(f2, z0).

(20) Suppose f1 is partial differentiable on 2nd coordinate in z0 and f2
is partial differentiable on 2nd coordinate in z0. Then f1 − f2 is par-
tial differentiable on 2nd coordinate in z0 and partdiff2(f1 − f2, z0) =
partdiff2(f1, z0)− partdiff2(f2, z0).

(21) Suppose f is partial differentiable on 1st coordinate in z0. Then r f
is partial differentiable on 1st coordinate in z0 and partdiff1(r f, z0) =
r · partdiff1(f, z0).

(22) Suppose f is partial differentiable on 2nd coordinate in z0. Then r f
is partial differentiable on 2nd coordinate in z0 and partdiff2(r f, z0) =
r · partdiff2(f, z0).

(23) Suppose f1 is partial differentiable on 1st coordinate in z0 and f2 is
partial differentiable on 1st coordinate in z0. Then f1 f2 is partial diffe-
rentiable on 1st coordinate in z0.

(24) Suppose f1 is partial differentiable on 2nd coordinate in z0 and f2 is
partial differentiable on 2nd coordinate in z0. Then f1 f2 is partial diffe-
rentiable on 2nd coordinate in z0.

(25) Let z0 be an element of R2. Suppose f is partial differentiable on 1st
coordinate in z0. Then SVF1(f, z0) is continuous in (proj(1, 2))(z0).

(26) Let z0 be an element of R2. Suppose f is partial differentiable on 2nd
coordinate in z0. Then SVF2(f, z0) is continuous in (proj(2, 2))(z0).

(27) If f is partial differentiable on 1st coordinate in z0, then there exists R
such that R(0) = 0 and R is continuous in 0.

(28) If f is partial differentiable on 2nd coordinate in z0, then there exists R
such that R(0) = 0 and R is continuous in 0.
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Summary. This text includes verification of the basic algorithm in Simple
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can be transformed to Buchi automaton, and this transforming algorithm is ma-
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rations for transforming. And then, we defined the Buchi automaton and verified
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articles: [5], [14], [6], [7], [1], [15], [3], [16], [2], [13], [4], [12], [10], [11], [8], and
[9].

1. Definition of Basic Operations to Build an Automaton for LTL
and Properties

For simplicity, we adopt the following rules: k, n, m, i, j are elements of N,
x, y, X are sets, L, L1, L2 are finite sequences, F , H are LTL-formulae, W , W1,
W2 are subsets of SubformulaeH, and v is an LTL-formula.
Let us consider F . Then SubformulaeF is a subset of WFFLTL.
Let us considerH. The functor LTLNew1H yields a subset of SubformulaeH

and is defined as follows:

(Def. 1) LTLNew1H =



{LeftArg(H),RightArg(H)}, if H is conjunctive,
{LeftArg(H)}, if H is disjunctive,
∅, if H has next operator,
{LeftArg(H)}, if H has until operator,
{RightArg(H)}, if H has release operator,
∅, otherwise.
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The functor LTLNew2H yields a subset of SubformulaeH and is defined as
follows:

(Def. 2) LTLNew2H =



∅, if H is conjunctive,
{RightArg(H)}, if H is disjunctive,
∅, if H has next operator,
{RightArg(H)}, if H has until operator,
{LeftArg(H),RightArg(H)}, if H has release operator,
∅, otherwise.

The functor LTLNextH yielding a subset of SubformulaeH is defined as follows:

(Def. 3) LTLNextH =



∅, if H is conjunctive,
∅, if H is disjunctive,
{Arg(H)}, if H has next operator,
{H}, if H has until operator,
{H}, if H has release operator,
∅, otherwise.

Let us consider v. We consider LTL-nodes over v as systems
〈 an old-component, a new-component, a next-component 〉,

where the old-component, the new-component, and the next-component are
subsets of Subformulae v.
Let us consider v, let N be an LTL-node over v, and let us consider H. Let

us assume that H ∈ the new-component of N . The functor SuccNode1(H,N)
yielding a strict LTL-node over v is defined by the conditions (Def. 4).

(Def. 4)(i) The old-component of SuccNode1(H,N) = (the old-component of
N) ∪ {H},

(ii) the new-component of SuccNode1(H,N) = ((the new-component of
N) \ {H}) ∪ (LTLNew1H \ the old-component of N), and

(iii) the next-component of SuccNode1(H,N) = (the next-component of
N) ∪ LTLNextH.
Let us consider v, let N be an LTL-node over v, and let us consider H. Let

us assume that H ∈ the new-component of N and H is either disjunctive or has
until operator or release operator. The functor SuccNode2(H,N) yields a strict
LTL-node over v and is defined by the conditions (Def. 5).

(Def. 5)(i) The old-component of SuccNode2(H,N) = (the old-component of
N) ∪ {H},

(ii) the new-component of SuccNode2(H,N) = ((the new-component of
N) \ {H}) ∪ (LTLNew2H \ the old-component of N), and

(iii) the next-component of SuccNode2(H,N) = the next-component of N .

Let us consider v, let N1, N2 be LTL-nodes over v, and let us consider H.
We say that N2 is a successor of N1 and H if and only if the conditions (Def. 6)
are satisfied.

(Def. 6)(i) H ∈ the new-component of N1, and
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(ii) N2 = SuccNode1(H,N1) or H is either disjunctive or has until operator
or release operator and N2 = SuccNode2(H,N1).

Let us consider v and let N1, N2 be LTL-nodes over v. We say that N2 is a
1st successor of N1 if and only if:

(Def. 7) There exists H such that H ∈ the new-component of N1 and N2 =
SuccNode1(H,N1).

We say that N2 is a 2nd successor of N1 if and only if the condition (Def. 8) is
satisfied.

(Def. 8) There exists H such that
(i) H ∈ the new-component of N1,
(ii) H is either disjunctive or has until operator or release operator, and
(iii) N2 = SuccNode2(H,N1).

Let us consider v and let N1, N2 be LTL-nodes over v. We say that N2 is a
successor of N1 if and only if:

(Def. 9) N2 is a 1st successor of N1 or a 2nd successor of N1.

Let us consider v and let N be an LTL-node over v. We say that N is failure
if and only if:

(Def. 10) There exist H, F such that H is atomic and F = ¬H and H ∈ the
old-component of N and F ∈ the old-component of N .
Let us consider v and let N be an LTL-node over v. We say that N is

elementary if and only if:

(Def. 11) The new-component of N = ∅.
Let us consider v and let N be an LTL-node over v. We say that N is final

if and only if:

(Def. 12) N is elementary and the next-component of N = ∅.
Let us consider v. The functor ∅v yielding a subset of Subformulae v is defined

as follows:

(Def. 13) ∅v = ∅.
Let us consider v. The functor Seed v yielding a subset of Subformulae v is

defined by:

(Def. 14) Seed v = {v}.
Let us consider v. Note that there exists an LTL-node over v which is ele-

mentary and strict.
Let us consider v. The functor FinalNode v yields an elementary strict LTL-

node over v and is defined by:

(Def. 15) FinalNode v = 〈∅v, ∅v, ∅v〉.
Let us consider x, v. The functor CastNode(x, v) yields a strict LTL-node

over v and is defined by:
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(Def. 16) CastNode(x, v) =

{
x, if x is a strict LTL-node over v,
〈∅v, ∅v, ∅v〉, otherwise.

Let us consider v. The functor init v yields an elementary strict LTL-node
over v and is defined by:

(Def. 17) init v = 〈∅v, ∅v,Seed v〉.
Let us consider v and let N be an LTL-node over v. The functor X N yields

a strict LTL-node over v and is defined as follows:

(Def. 18) X N = 〈∅v, the next-component of N , ∅v〉.
We follow the rules: N , N1, N2, M are strict LTL-nodes over v and w is an

element of the infinite sequences of AtomicFamily.
Let us consider v, L. We say that L is a successor sequence for v if and only

if:

(Def. 19) For every k such that 1 ≤ k < lenL there existN ,M such thatN = L(k)
and M = L(k + 1) and M is a successor of N .

Let us consider v, N1, N2. We say that N2 is next to N1 if and only if the
conditions (Def. 20) are satisfied.

(Def. 20)(i) N1 is elementary,
(ii) N2 is elementary, and
(iii) there exists L such that 1 ≤ lenL and L is a successor sequence for v
and L(1) = X N1 and L(lenL) = N2.
Let us consider v and let W be a subset of Subformulae v. The functor

CastLTLW yielding a subset of WFFLTL is defined by:

(Def. 21) CastLTLW =W.

Let us consider v, N . The functor ·N yields a subset of WFFLTL and is
defined by:

(Def. 22) ·N = (the old-component of N) ∪ (the new-component of N) ∪
X CastLTL (the next-component of N).
We now state three propositions:

(1) Suppose H ∈ the new-component of N and H is either atomic, or ne-
gative, or conjunctive, or has next operator. Then w |= ·N if and only if
w |= ·SuccNode1(H,N).

(2) Suppose H ∈ the new-component of N and H is either disjunctive or
has until operator or release operator. Then w |= ·N if and only if one of
the following conditions is satisfied:
(i) w |= ·SuccNode1(H,N), or
(ii) w |= ·SuccNode2(H,N).
(3) There exists L such that SubformulaeH = rngL.

Let us consider H. Observe that SubformulaeH is finite.
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Let us consider H, W , L, x. The length of L wrt W and x yields a natural
number and is defined as follows:

(Def. 23) The length of L wrt W and x =

{
lenCastLTL L(x), if L(x) ∈W,
0, otherwise.

Let us consider H,W , L. The partial sequence of L wrtW yields a sequence
of real numbers and is defined by the condition (Def. 24).

(Def. 24) Let given k. Then
(i) if L(k) ∈ W, then (the partial sequence of L wrt W )(k) =
lenCastLTL L(k), and

(ii) if L(k) /∈W, then (the partial sequence of L wrt W )(k) = 0.
Let us consider H, W , L. The functor len(L,W ) yields a real number and

is defined as follows:

(Def. 25) len(L,W ) =
∑lenL
κ=0 (the partial sequence of L wrt W )(κ).

We now state several propositions:

(4) len(L, ∅H) = 0.
(5) If F /∈W, then len(L,W \ {F}) = len(L,W ).
(6) If rngL = SubformulaeH and L is one-to-one and F ∈ W, then
len(L,W \ {F}) = len(L,W )− lenF.

(7) If rngL = SubformulaeH and L is one-to-one and F /∈ W and W1 =
W ∪ {F}, then len(L,W1) = len(L,W ) + lenF.

(8) If rngL1 = SubformulaeH and L1 is one-to-one and rngL2 =
SubformulaeH and L2 is one-to-one, then len(L1,W ) = len(L2,W ).

Let us consider H,W . The functor lenW yields a real number and is defined
by:

(Def. 26) There exists L such that rngL = SubformulaeH and L is one-to-one
and lenW = len(L,W ).

The following propositions are true:

(9) If F /∈W, then len(W \ {F}) = lenW.
(10) If F ∈W, then len(W \ {F}) = lenW − lenF.
(11) If F /∈W and W1 =W ∪ {F}, then lenW1 = lenW + lenF.
(12) len(W ∪ {F}) ≤ lenW + lenF.
(13) len(∅H) = 0.
(14) len({F}) = lenF.
(15) If W ⊆W1, then lenW ≤ lenW1.
(16) If lenW < 1, then W = ∅H .
(17) lenW ≥ 0.
(18) len(W1 ∪W2) ≤ lenW1 + lenW2.
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Let us consider v, H. Let us assume that H ∈ Subformulae v. The functor
LTLNew1(H, v) yielding a subset of Subformulae v is defined by:

(Def. 27) LTLNew1(H, v) = LTLNew1H.

The functor LTLNew2(H, v) yields a subset of Subformulae v and is defined by:

(Def. 28) LTLNew2(H, v) = LTLNew2H.

The following propositions are true:

(19) If N2 is a 1st successor of N1, then len (the new-component of N2) ≤
len (the new-component of N1)− 1.

(20) If N2 is a 2nd successor of N1, then len (the new-component of N2) ≤
len (the new-component of N1)− 1.
Let us consider v, N . The functor lenN yields a natural number and is

defined by:

(Def. 29) lenN = blen (the new-component of N)c.
The following propositions are true:

(21) If N2 is a successor of N1, then lenN2 ≤ lenN1 − 1.
(22) If lenN ≤ 0, then the new-component of N = ∅v.
(23) If lenN > 0, then the new-component of N 6= ∅v.
(24) There exist n, L, M such that 1 ≤ n and lenL = n and L(1) = N
and L(n) = M and the new-component of M = ∅v and L is a successor
sequence for v.

(25) Suppose N2 is a successor of N1. Then
(i) the old-component of N1 ⊆ the old-component of N2, and
(ii) the next-component of N1 ⊆ the next-component of N2.
(26) If L is a successor sequence for v and m ≤ lenL and L1 = L�Segm,
then L1 is a successor sequence for v.

(27) Suppose that
(i) L is a successor sequence for v,
(ii) F /∈ the old-component of CastNode(L(1), v),
(iii) 1 < n,
(iv) n ≤ lenL, and
(v) F ∈ the old-component of CastNode(L(n), v).
Then there exists m such that 1 ≤ m < n and F /∈ the old-component of
CastNode(L(m), v) and F ∈ the old-component of CastNode(L(m+1), v).

(28) Suppose N2 is a successor of N1 and F /∈ the old-component of N1 and
F ∈ the old-component of N2. Then N2 is a successor of N1 and F .

(29) Suppose that
(i) L is a successor sequence for v,
(ii) F ∈ the new-component of CastNode(L(1), v),
(iii) 1 < n,
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(iv) n ≤ lenL, and
(v) F /∈ the new-component of CastNode(L(n), v).
Then there exists m such that 1 ≤ m < n and F ∈ the new-component
of CastNode(L(m), v) and F /∈ the new-component of CastNode(L(m +
1), v).

(30) Suppose N2 is a successor of N1 and F ∈ the new-component of N1 and
F /∈ the new-component of N2. Then N2 is a successor of N1 and F .

(31) Suppose L is a successor sequence for v and 1 ≤ m ≤ n ≤ lenL. Then
(i) the old-component of CastNode(L(m), v) ⊆ the old-component of
CastNode(L(n), v), and

(ii) the next-component of CastNode(L(m), v) ⊆ the next-component of
CastNode(L(n), v).

(32) If N2 is a successor of N1 and F , then F ∈ the old-component of N2.
(33) Suppose L is a successor sequence for v and 1 ≤ lenL and the new-
component of CastNode(L(lenL), v) = ∅v. Then the new-component of
CastNode(L(1), v) ⊆ the old-component of CastNode(L(lenL), v).

(34) Suppose L is a successor sequence for v and 1 ≤ m ≤ lenL and the
new-component of CastNode(L(lenL), v) = ∅v. Then the new-component
of CastNode(L(m), v) ⊆ the old-component of CastNode(L(lenL), v).

(35) If L is a successor sequence for v and 1 ≤ k < lenL, then CastNode(L(k+
1), v) is a successor of CastNode(L(k), v).

(36) If L is a successor sequence for v and 1 ≤ k ≤ lenL, then
lenCastNode(L(k), v) ≤ (lenCastNode(L(1), v)− k) + 1.
In the sequel s, s0, s1, s2 denote elementary strict LTL-nodes over v.
The following propositions are true:

(37) If s2 is next to s1, then the next-component of s1 ⊆ the old-component
of s2.

(38) Suppose s2 is next to s1 and F ∈ the old-component of s2. Then there
exist L, m such that
1 ≤ lenL and L is a successor sequence for v and L(1) = X s1 and
L(lenL) = s2 and 1 ≤ m < lenL and CastNode(L(m+1), v) is a successor
of CastNode(L(m), v) and F .

(39) Suppose s2 is next to s1 and H has release operator and H ∈ the
old-component of s2 and LeftArg(H) /∈ the old-component of s2. Then
RightArg(H) ∈ the old-component of s2 and H ∈ the next-component of
s2.

(40) Suppose s2 is next to s1 and H has release operator and H ∈ the next-
component of s1. Then RightArg(H) ∈ the old-component of s2 and H ∈
the old-component of s2.

(41) Suppose s1 is next to s0 and H ∈ the old-component of s1. Then



346 kazuhisa ishida and yasunari shidama

(i) if H is conjunctive, then LeftArg(H) ∈ the old-component of s1 and
RightArg(H) ∈ the old-component of s1,

(ii) if H is either disjunctive or has until operator, then LeftArg(H) ∈ the
old-component of s1 or RightArg(H) ∈ the old-component of s1,

(iii) if H has next operator, then Arg(H) ∈ the next-component of s1, and
(iv) if H has release operator, then RightArg(H) ∈ the old-component of
s1.

(42) Suppose s1 is next to s0 and s2 is next to s1 and H ∈ the old-component
of s1 andH has until operator. Then RightArg(H) ∈ the old-component of
s1 or LeftArg(H) ∈ the old-component of s1 and H ∈ the old-component
of s2.

Let us consider v. The functor NodesLTL v yields a non empty set and is
defined as follows:

(Def. 30) x ∈ NodesLTL v iff there exists a strict LTL-node N over v such that
x = N.

Let us consider v. Note that NodesLTL v is finite.
Let us consider v. The functor StatesLTL v yields a non empty set and is

defined by:

(Def. 31) StatesLTL v = {x ∈ NodesLTL v : x is an elementary strict LTL-node
over v}.
Let us consider v. Observe that StatesLTL v is finite.
The following propositions are true:

(43) init v is an element of StatesLTL v.

(44) s is an element of StatesLTL v.

(45) x is an element of StatesLTL v iff there exists s such that s = x.

Let us consider v, let us consider w, and let f be a function. We say that f
is a successor homomorphism from v to w if and only if:

(Def. 32) For every x such that x ∈ NodesLTL v and CastNode(x, v) is non ele-
mentary and w |= ·CastNode(x, v) holds CastNode(f(x), v) is a successor
of CastNode(x, v) and w |= ·CastNode(f(x), v).

We say that f is a homomorphism of v into w if and only if:

(Def. 33) For every x such that x ∈ NodesLTL v and CastNode(x, v) is non ele-
mentary and w |= ·CastNode(x, v) holds w |= ·CastNode(f(x), v).
The following propositions are true:

(46) Let f be a function from NodesLTL v into NodesLTL v. Suppose f is a
successor homomorphism from v to w. Then f is a homomorphism of v
into w.

(47) Let f be a function from NodesLTL v into NodesLTL v. Suppose f is a
homomorphism of v into w. Let given x. Suppose x ∈ NodesLTL v and
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CastNode(x, v) is non elementary and w |= ·CastNode(x, v). Let given k.
If for every i such that i ≤ k holds CastNode(f i(x), v) is non elementary,
then w |= ·CastNode(fk(x), v).

(48) Let f be a function from NodesLTL v into NodesLTL v. Suppose f
is a successor homomorphism from v to w. Let given x. Suppose
x ∈ NodesLTL v and CastNode(x, v) is non elementary and w |=
·CastNode(x, v). Let given k. Suppose that for every i such that i ≤ k
holds CastNode(f i(x), v) is non elementary. Then CastNode(fk+1(x), v)
is a successor of CastNode(fk(x), v) and w |= ·CastNode(fk(x), v).

(49) Let f be a function from NodesLTL v into NodesLTL v. Suppose f is a suc-
cessor homomorphism from v to w. Let given x. Suppose x ∈ NodesLTL v
and CastNode(x, v) is non elementary and w |= ·CastNode(x, v).
Then there exists n such that for every i such that i < n holds
CastNode(f i(x), v) is non elementary and CastNode(fn(x), v) is elemen-
tary.

(50) Let f be a function from NodesLTL v into NodesLTL v. Suppose
f is a homomorphism of v into w. Let given x. Suppose x ∈
NodesLTL v and CastNode(x, v) is non elementary. Let given k. If
CastNode(fk(x), v) is non elementary and w |= ·CastNode(fk(x), v), then
w |= ·CastNode(fk+1(x), v).

(51) Let f be a function from NodesLTL v into NodesLTL v. Suppose f is a suc-
cessor homomorphism from v to w. Let given x. Suppose x ∈ NodesLTL v
and CastNode(x, v) is non elementary and w |= ·CastNode(x, v). Then
there exists n such that
(i) for every i such that i < n holds CastNode(f i(x), v) is non elementary
and CastNode(f i+1(x), v) is a successor of CastNode(f i(x), v),

(ii) CastNode(fn(x), v) is elementary, and
(iii) for every i such that i ≤ n holds w |= ·CastNode(f i(x), v).
In the sequel q denotes a sequence of StatesLTL v.
One can prove the following propositions:

(52) There exists s such that s = CastNode(q(n), v).

(53) Suppose H has until operator and H ∈ the old-component of
CastNode(q(1), v) and for every i holds CastNode(q(i + 1), v) is next
to CastNode(q(i), v). Suppose that for every i such that 1 ≤ i < n
holds RightArg(H) /∈ the old-component of CastNode(q(i), v). Let gi-
ven i. Suppose 1 ≤ i < n. Then LeftArg(H) ∈ the old-component of
CastNode(q(i), v) and H ∈ the old-component of CastNode(q(i), v).

(54) Suppose H has until operator and H ∈ the old-component of
CastNode(q(1), v) and for every i holds CastNode(q(i + 1), v) is next to
CastNode(q(i), v). Then
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(i) for every i such that i ≥ 1 holds H ∈ the old-
component of CastNode(q(i), v) and LeftArg(H) ∈ the old-component
of CastNode(q(i), v) and RightArg(H) /∈ the old-component of
CastNode(q(i), v), or

(ii) there exists j such that j ≥ 1 and RightArg(H) ∈ the old-component
of CastNode(q(j), v) and for every i such that 1 ≤ i < j holds H ∈ the
old-component of CastNode(q(i), v) and LeftArg(H) ∈ the old-component
of CastNode(q(i), v).

(55)
⋃
(2X+ ) = X.

(56) If N is non elementary, then the new-component of N 6= ∅ and the
new-component of N ∈ 2Subformulae v+ .

Let us consider v. One can verify that
⋃
(2Subformulae v+ ) is non empty and

2Subformulae v+ is non empty.
We now state the proposition

(57) There exists a choice function of 2Subformulae v+ which is a function from
2Subformulae v+ into Subformulae v.

In the sequel U denotes a choice function of 2Subformulae v+ .
Let us consider v, let us consider U , and let us consider N . Let us assume

that N is non elementary. The U -chosen formula of N yielding an LTL-formula
is defined as follows:

(Def. 34) The U -chosen formula of N = U(the new-component of N).

The following proposition is true

(58) If N is non elementary, then the U -chosen formula of N ∈ the new-
component of N .

Let us consider w, let us consider v, let us consider U , and let us consider
N . The U -chosen successor of N w.r.t. w, v yields a strict LTL-node over v and
is defined by:

(Def. 35) The U -chosen successor of N w.r.t. w, v

=



SuccNode1(the U -chosen formula of N,N),
if the U -chosen formula of Ndoes not have until operator and
w |= ·SuccNode1(the U -chosen formula of N,N) or
the U -chosen formula of N has until operator and
w 6|= RightArg(the U -chosen formula of N),

SuccNode2(the U -chosen formula of N , N), otherwise.
One can prove the following propositions:

(59) Suppose w |= ·N and N is non elementary. Then
(i) w |= ·(the U -chosen successor of N w.r.t. w, v), and
(ii) the U -chosen successor of N w.r.t. w, v is a successor of N .

(60) Suppose w |= ·N andN is non elementary. Suppose the U -chosen formula
of N has until operator and w |= RightArg(the U -chosen formula of N).
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Then
(i) RightArg(the U -chosen formula of N) ∈ the new-component of the
U -chosen successor of N w.r.t. w, v or RightArg(the U -chosen formula of
N) ∈ the old-component of N , and

(ii) the U -chosen formula of N ∈ the old-component of the U -chosen suc-
cessor of N w.r.t. w, v.

(61) Suppose w |= ·N and N is non elementary. Then
(i) the old-component ofN ⊆ the old-component of the U -chosen successor
of N w.r.t. w, v, and

(ii) the next-component of N ⊆ the next-component of the U -chosen suc-
cessor of N w.r.t. w, v.

Let us consider w, let us consider v, and let us consider U . The U -choice suc-
cessor function w.r.t. w, v yielding a function from NodesLTL v into NodesLTL v
is defined by the condition (Def. 36).

(Def. 36) Let given x. Suppose x ∈ NodesLTL v. Then (the U -choice successor
function w.r.t. w, v)(x) = the U -chosen successor of CastNode(x, v) w.r.t.
w, v.

We now state the proposition

(62) The U -choice successor function w.r.t. w, v is a successor homomorphism
from v to w.

2. Negation Inner most LTL

Let us consider H. We say that H is negation-inner-most if and only if:

(Def. 37) For every LTL-formula G such that G is a subformula of H holds if G
is negative, then Arg(G) is atomic.

Let us observe that there exists an LTL-formula which is negation-inner-
most.
Let us consider H. We say that H is sub-atomic if and only if:

(Def. 38) H is atomic or there exists an LTL-formula G such that G is atomic and
H = ¬G.
Next we state several propositions:

(63) If H is negation-inner-most and F is a subformula of H, then F is
negation-inner-most.

(64) H is sub-atomic iff H is atomic or H is negative and Arg(H) is atomic.

(65) Suppose H is negation-inner-most. Then H is either sub-atomic, or con-
junctive, or disjunctive, or has next operator, or until operator, or release
operator.

(66) If H is negation-inner-most and has next operator, then Arg(H) is
negation-inner-most.
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(67) Suppose that
(i) H is conjunctive, or
(ii) H is disjunctive, or
(iii) H is negation-inner-most.
Then LeftArg(H) is negation-inner-most and RightArg(H) is negation-
inner-most.

3. Definition of Buchi Automaton and Verification of the Main
Theorem

LetW be a non empty set. We consider Buchi automatons overW as systems
〈 a carrier, a transition, an initial state, final states 〉,

where the carrier is a set, the transition is a relation between the carrier×W
and the carrier, the initial state is an element of 2the carrier, and the final states
constitute a subset of 2the carrier.
Let W be a non empty set, let B be a Buchi automaton over W , and let w

be an element of the infinite sequences of W . We say that w is accepted by B
if and only if the condition (Def. 39) is satisfied.

(Def. 39) There exists a sequence r1 of the carrier of B such that
(i) r1(0) ∈ the initial state of B, and
(ii) for every natural number i holds 〈〈〈〈r1(i), (CastSeq(w,W ))(i)〉〉, r1(i +
1)〉〉 ∈ the transition of B and for every set F1 such that F1 ∈ the final
states of B holds {k ∈ N: r1(k) ∈ F1} is an infinite set.
For simplicity, we use the following convention: v denotes a negation-inner-

most LTL-formula, U denotes a choice function of 2Subformulae v+ , N denotes a
strict LTL-node over v, and s, s1 denote elementary strict LTL-nodes over v.
Let us consider v and let us consider N . The functor atomicLTLN yields a

subset of WFFLTL and is defined by:

(Def. 40) atomicLTLN = {x;x ranges over LTL-formulae: x is atomic ∧ x ∈ the
old-component of N}.

The functor NegAtomicLTLN yields a subset of WFFLTL and is defined as fol-
lows:

(Def. 41) NegAtomicLTLN = {x;x ranges over LTL-formulae: x is atomic ∧ ¬x ∈
the old-component of N}.
Let us consider v and let us consider N . The functor LabelN yielding a set

is defined by:

(Def. 42) LabelN = {x ⊆ atomicLTL: atomicLTLN ⊆ x ∧ NegAtomicLTLN
misses x}.
Let us consider v. The functor TranLTL v yields a relation between

StatesLTL v ×AtomicFamily and StatesLTL v and is defined as follows:
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(Def. 43) TranLTL v = {y ∈ StatesLTL v × AtomicFamily× StatesLTL v :∨
s,s1,x (y = 〈〈〈〈s, x〉〉, s1〉〉 ∧ s1 is next to s ∧ x ∈ Label s1)}.

The functor InitSLTL v yielding an element of 2StatesLTL v is defined as follows:

(Def. 44) InitSLTL v = {init v}.
Let us consider v and let us consider F . The functor FinalSLTL(F, v) yields

an element of 2StatesLTL v and is defined as follows:

(Def. 45) FinalSLTL(F, v) = {x ∈ StatesLTL v : F /∈ the old-component of
CastNode(x, v) ∨ RightArg(F ) ∈ the old-component of CastNode(x, v)}.
Let us consider v. The functor FinalSLTL v yields a subset of 2StatesLTL v and

is defined by:

(Def. 46) FinalSLTL v = {x ∈ 2StatesLTL v:
∨
F (F is a subformula of v ∧ F has

until operator ∧ x = FinalSLTL(F, v))}.
Let us consider v. The functor BAutomaton v yields a Buchi automaton over

AtomicFamily and is defined as follows:

(Def. 47) BAutomaton v = 〈StatesLTL v,TranLTL v, InitSLTL v,FinalSLTL v〉.
The following proposition is true

(68) If w is accepted by BAutomaton v, then w |= v.
Let us consider w, let us consider v, let us consider U , and let us consider N .

Let us assume that N is non elementary and w |= ·N. The U -chosen successor
end number of N w.r.t. w, v yields an element of N and is defined by the
conditions (Def. 48).

(Def. 48)(i) For every i such that i < the U -chosen successor end number of
N w.r.t. w, v holds CastNode((the U -choice successor function w.r.t. w,
v)i(N), v) is non elementary and CastNode((the U -choice successor func-
tion w.r.t. w, v)i+1(N), v) is a successor of CastNode((the U -choice suc-
cessor function w.r.t. w, v)i(N), v),

(ii) CastNode((the U -choice successor function w.r.t.
w, v)the U -chosen successor end number of N w.r.t. w, v(N), v) is elementary, and

(iii) for every i such that i ≤ the U -chosen successor end number of N
w.r.t. w, v holds w |= ·CastNode((the U -choice successor function w.r.t.
w, v)i(N), v).

Let us consider w, let us consider v, let us consider U , and let us consider
N . Let us assume that w |= · X N. The U -chosen next node to N w.r.t. w, v
yielding an elementary strict LTL-node over v is defined by:

(Def. 49) The U -chosen next node to N w.r.t. w, v

=


CastNode((the U -choice successor function w.r.t. w,
v)the U -chosen successor end number of X N w.r.t. w, v(X N), v),
if X N is non elementary,

FinalNode v, otherwise.
One can prove the following proposition



352 kazuhisa ishida and yasunari shidama

(69) Suppose w |= · X s. Then the U -chosen next node to s w.r.t. w, v is next
to s and w |= ·(the U -chosen next node to s w.r.t. w, v).
Let us consider w, let us consider v, and let us consider U . The U -chosen

run w.r.t. w, v yields a sequence of StatesLTL v and is defined by the conditions
(Def. 50).

(Def. 50)(i) (The U -chosen run w.r.t. w, v)(0) = init v, and
(ii) for every n holds (the U -chosen run w.r.t. w, v)(n + 1) = the U -
chosen next node to CastNode((the U -chosen run w.r.t. w, v)(n), v) w.r.t.
Shift(w, n), v.

The following propositions are true:

(70) If w |= ·N, then Shift(w, 1) |= · X N.
(71) If w |= X v, then w |= · init v.
(72) w |= v iff w |= · X init v.
(73) Suppose w |= v. Let given n. Then
(i) CastNode((the U -chosen run w.r.t. w, v)(n + 1), v) is next to
CastNode((the U -chosen run w.r.t. w, v)(n), v), and

(ii) Shift(w, n) |= · X CastNode((the U -chosen run w.r.t. w, v)(n), v).
(74) Suppose w |= v. Let given i. Suppose H ∈ the old-component of
CastNode((the U -chosen run w.r.t. w, v)(i+1), v) andH has until operator
and Shift(w, i) |= RightArg(H). Then RightArg(H) ∈ the old-component
of CastNode((the U -chosen run w.r.t. w, v)(i+ 1), v).

(75) w is accepted by BAutomaton v iff w |= v.
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provide the notation and terminology for this paper.

1. Some Properties of Circulant Matrices

For simplicity, we adopt the following convention: i, j, k, n, l denote elements
of N, K denotes a field, a, b, c denote elements of K, p, q denote finite sequences
of elements of K, and M1, M2, M3 denote square matrices over K of dimension
n.
Next we state two propositions:

(1) 1K · p = p.
(2) (−1K) · p = −p.
Let K be a set, let M be a matrix over K, and let p be a finite sequence.

We say that M is line circulant about p if and only if:

(Def. 1) len p = widthM and for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the
indices of M holds Mi,j = p(((j − i) mod len p) + 1).
Let K be a set and letM be a matrix over K. We say thatM is line circulant

if and only if:
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(Def. 2) There exists a finite sequence p of elements of K such that len p =
widthM and M is line circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K.
We say that p is first-line-of-circulant if and only if:

(Def. 3) There exists a square matrix over K of dimension len p which is line
circulant about p.

Let K be a set, let M be a matrix over K, and let p be a finite sequence.
We say that M is column circulant about p if and only if:

(Def. 4) len p = lenM and for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the
indices of M holds Mi,j = p(((i− j) mod len p) + 1).
Let K be a set and let M be a matrix over K. We say that M is column

circulant if and only if:

(Def. 5) There exists a finite sequence p of elements of K such that len p = lenM
and M is column circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K.
We say that p is first-column-of-circulant if and only if:

(Def. 6) There exists a square matrix over K of dimension len p which is column
circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K. Let
us assume that p is first-line-of-circulant. The functor LCirc p yields a square
matrix over K of dimension len p and is defined by:

(Def. 7) LCirc p is line circulant about p.

Let K be a non empty set and let p be a finite sequence of elements of K.
Let us assume that p is first-column-of-circulant. The functor CCirc p yielding
a square matrix over K of dimension len p is defined by:

(Def. 8) CCirc p is column circulant about p.

LetK be a field. One can verify that there exists a finite sequence of elements
of K which is first-line-of-circulant and first-column-of-circulant.
Let us consider K, n. Observe that 0n×nK is line circulant and column circu-

lant.
Let us consider K, let us consider n, and let a be an element of K. Observe

that (a)n×n is line circulant and (a)n×n is column circulant.
Let us consider K. Note that there exists a matrix over K which is line

circulant and column circulant.
In the sequel D denotes a non empty set, t denotes a finite sequence of

elements of D, and A denotes a square matrix over D of dimension n.
We now state a number of propositions:

(3) If A is line circulant and n > 0, then AT is column circulant.

(4) If A is line circulant about t and n > 0, then t = Line(A, 1).
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(5) If A is line circulant and 〈〈i, j〉〉 ∈ Seg n×Seg n and k = i+1 and l = j+1
and i < n and j < n, then Ai,j = Ak,l.

(6) If M1 is line circulant, then a ·M1 is line circulant.
(7) If M1 is line circulant and M2 is line circulant, then M1 +M2 is line
circulant.

(8) If M1 is line circulant and M2 is line circulant and M3 is line circulant,
then M1 +M2 +M3 is line circulant.

(9) If M1 is line circulant and M2 is line circulant, then a ·M1 + b ·M2 is
line circulant.

(10) If M1 is line circulant and M2 is line circulant and M3 is line circulant,
then a ·M1 + b ·M2 + c ·M3 is line circulant.

(11) If M1 is line circulant, then −M1 is line circulant.
(12) If M1 is line circulant and M2 is line circulant, then M1 −M2 is line
circulant.

(13) If M1 is line circulant and M2 is line circulant, then a ·M1 − b ·M2 is
line circulant.

(14) If M1 is line circulant and M2 is line circulant and M3 is line circulant,
then (a ·M1 + b ·M2)− c ·M3 is line circulant.

(15) If M1 is line circulant and M2 is line circulant and M3 is line circulant,
then a ·M1 − b ·M2 − c ·M3 is line circulant.

(16) If M1 is line circulant and M2 is line circulant and M3 is line circulant,
then (a ·M1 − b ·M2) + c ·M3 is line circulant.

(17) If A is column circulant and n > 0, then AT is line circulant.

(18) If A is column circulant about t and n > 0, then t = A�,1.

(19) If A is column circulant and 〈〈i, j〉〉 ∈ Seg n × Seg n and k = i + 1 and
l = j + 1 and i < n and j < n, then Ai,j = Ak,l.

(20) If M1 is column circulant, then a ·M1 is column circulant.
(21) If M1 is column circulant and M2 is column circulant, then M1 +M2 is
column circulant.

(22) If M1 is column circulant and M2 is column circulant and M3 is column
circulant, then M1 +M2 +M3 is column circulant.

(23) IfM1 is column circulant andM2 is column circulant, then a ·M1+b ·M2
is column circulant.

(24) Suppose M1 is column circulant and M2 is column circulant and M3 is
column circulant. Then a ·M1 + b ·M2 + c ·M3 is column circulant.

(25) If M1 is column circulant, then −M1 is column circulant.
(26) If M1 is column circulant and M2 is column circulant, then M1 −M2 is
column circulant.
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(27) IfM1 is column circulant andM2 is column circulant, then a ·M1−b ·M2
is column circulant.

(28) Suppose M1 is column circulant and M2 is column circulant and M3 is
column circulant. Then (a ·M1 + b ·M2)− c ·M3 is column circulant.

(29) Suppose M1 is column circulant and M2 is column circulant and M3 is
column circulant. Then a ·M1 − b ·M2 − c ·M3 is column circulant.

(30) Suppose M1 is column circulant and M2 is column circulant and M3 is
column circulant. Then (a ·M1 − b ·M2) + c ·M3 is column circulant.

(31) If p is first-line-of-circulant, then −p is first-line-of-circulant.
(32) If p is first-line-of-circulant, then LCirc(−p) = −LCirc p.
(33) Suppose p is first-line-of-circulant and q is first-line-of-circulant and
len p = len q. Then p+ q is first-line-of-circulant.

(34) If len p = len q and p is first-line-of-circulant and q is first-line-of-
circulant, then LCirc(p+ q) = LCirc p+ LCirc q.

(35) If p is first-column-of-circulant, then −p is first-column-of-circulant.
(36) For every finite sequence p of elements of K such that p is first-column-
of-circulant holds CCirc(−p) = −CCirc p.

(37) Suppose p is first-column-of-circulant and q is first-column-of-circulant
and len p = len q. Then p+ q is first-column-of-circulant.

(38) If len p = len q and p is first-column-of-circulant and q is first-column-of-
circulant, then CCirc(p+ q) = CCirc p+CCirc q.

(39) If n > 0, then In×nK is column circulant.

(40) If n > 0, then In×nK is line circulant.

(41) If p is first-line-of-circulant, then a · p is first-line-of-circulant.
(42) If p is first-line-of-circulant, then LCirc(a · p) = a · LCirc p.
(43) If p is first-line-of-circulant, then a·LCirc p+b·LCirc p = LCirc((a+b)·p).
(44) If p is first-line-of-circulant and q is first-line-of-circulant and len p = len q
and len p > 0, then a · LCirc p+ a · LCirc q = LCirc(a · (p+ q)).

(45) If p is first-line-of-circulant and q is first-line-of-circulant and len p =
len q, then a · LCirc p+ b · LCirc q = LCirc(a · p+ b · q).

(46) If p is first-column-of-circulant, then a · p is first-column-of-circulant.
(47) If p is first-column-of-circulant, then CCirc(a · p) = a · CCirc p.
(48) If p is first-column-of-circulant, then a ·CCirc p+b ·CCirc p = CCirc((a+
b) · p).

(49) Suppose p is first-column-of-circulant and q is first-column-of-circulant
and len p = len q and len p > 0. Then a · CCirc p+ a · CCirc q = CCirc(a ·
(p+ q)).



basic properties of circulant matrices . . . 359

(50) If p is first-column-of-circulant and q is first-column-of-circulant and
len p = len q, then a · CCirc p+ b · CCirc q = CCirc(a · p+ b · q).
Let K be a set and let M be a matrix over K. We introduce M is circulant

as a synonym of M is line circulant.

2. Some Properties of Anti-circular Matrices

Let K be a field, let M1 be a matrix over K, and let p be a finite sequence
of elements of K. We say that M1 is anti-circular about p if and only if the
conditions (Def. 9) are satisfied.

(Def. 9)(i) len p = widthM1,
(ii) for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M1 and
i ≤ j holds (M1)i,j = p(((j − i) mod len p) + 1), and

(iii) for all natural numbers i, j such that 〈〈i, j〉〉 ∈ the indices of M1 and
i ≥ j holds (M1)i,j = (−p)(((j − i) mod len p) + 1).
LetK be a field and letM be a matrix overK. We say thatM is anti-circular

if and only if:

(Def. 10) There exists a finite sequence p of elements of K such that len p =
widthM and M is anti-circular about p.

Let K be a field and let p be a finite sequence of elements of K. We say that
p is first-line-of-anti-circular if and only if:

(Def. 11) There exists a square matrix over K of dimension len p which is anti-
circular about p.

Let K be a field and let p be a finite sequence of elements of K. Let us
assume that p is first-line-of-anti-circular. The functor ACirc p yields a square
matrix over K of dimension len p and is defined by:

(Def. 12) ACirc p is anti-circular about p.

One can prove the following propositions:

(51) If M1 is anti-circular, then a ·M1 is anti-circular.
(52) If M1 is anti-circular and M2 is anti-circular, then M1 + M2 is anti-
circular.

(53) Let K be a Fanoian field, n, i, j be natural numbers, and M1 be a
square matrix over K of dimension n. Suppose 〈〈i, j〉〉 ∈ the indices of M1
and i = j and M1 is anti-circular. Then (M1)i,j = 0K .

(54) IfM1 is anti-circular and 〈〈i, j〉〉 ∈ Seg n×Seg n and k = i+1 and l = j+1
and i < n and j < n, then (M1)k,l = (M1)i,j .

(55) If M1 is anti-circular, then −M1 is anti-circular.
(56) If M1 is anti-circular and M2 is anti-circular, then M1 − M2 is anti-
circular.
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(57) If M1 is anti-circular about p and n > 0, then p = Line(M1, 1).

(58) If p is first-line-of-anti-circular, then −p is first-line-of-anti-circular.
(59) If p is first-line-of-anti-circular, then ACirc(−p) = −ACirc p.
(60) Suppose p is first-line-of-anti-circular and q is first-line-of-anti-circular
and len p = len q. Then p+ q is first-line-of-anti-circular.

(61) If p is first-line-of-anti-circular and q is first-line-of-anti-circular and
len p = len q, then ACirc(p+ q) = ACirc p+ACirc q.

(62) If p is first-line-of-anti-circular, then a · p is first-line-of-anti-circular.
(63) If p is first-line-of-anti-circular, then ACirc(a · p) = a ·ACirc p.
(64) If p is first-line-of-anti-circular, then a ·ACirc p+b ·ACirc p = ACirc((a+
b) · p).

(65) Suppose p is first-line-of-anti-circular and q is first-line-of-anti-circular
and len p = len q and len p > 0. Then a · ACirc p+ a · ACirc q = ACirc(a ·
(p+ q)).

(66) Suppose p is first-line-of-anti-circular and q is first-line-of-anti-circular
and len p = len q. Then a ·ACirc p+ b ·ACirc q = ACirc(a · p+ b · q).
Let us consider K, n. Observe that 0n×nK is anti-circular.
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Summary. This article contains some definitions and properties refering
to function spaces formed by partial functions defined over a measurable space.
We formalized a function space, the so-called L1 space and proved that the
space turns out to be a normed space. The formalization of a real function space
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is defined by point-wise addition of two functions. However it is not true for
partial functions. The set of partial functions does not form an additive group
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1. Preliminaries of Real Linear Space
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(Def. 1) For every real number a and for every vector v of V such that v ∈ V1
holds a · v ∈ V1.
The following proposition is true

(1) Let V be a real linear space and V1 be a subset of V . Then V1 is linearly
closed if and only if V1 is add closed and multiplicatively-closed.

Let V be a non empty RLS structure. Observe that there exists a subset of
V which is add closed, multiplicatively-closed, and non empty.
Let X be a non empty RLS structure and let X1 be a multiplicatively-closed

non empty subset of X. The functor ·(X1) yields a function from R × X1 into
X1 and is defined by:

(Def. 2) ·(X1) = (the external multiplication of X)�(R×X1).
In the sequel a, b, r denote real numbers.
Next we state four propositions:

(2) Let V be an Abelian add-associative right zeroed real linear space-like
non empty RLS structure, V1 be a non empty subset of V , d1 be an element
of V1, A be a binary operation on V1, andM be a function from R×V1 into
V1. Suppose d1 = 0V and A = (the addition of V ) � (V1) and M = (the
external multiplication of V )�(R × V1). Then 〈V1, d1, A,M〉 is Abelian,
add-associative, right zeroed, and real linear space-like.

(3) Let V be an Abelian add-associative right zeroed real linear space-
like non empty RLS structure and V1 be an add closed multiplicatively-
closed non empty subset of V . Suppose 0V ∈ V1. Then 〈V1, 0V (∈
V1), add |(V1, V ), ·(V1)〉 is Abelian, add-associative, right zeroed, and real
linear space-like.

(4) Let V be a non empty RLS structure, V1 be an add closed
multiplicatively-closed non empty subset of V , v, u be vectors of V , and w1,
w2 be vectors of 〈V1, 0V (∈ V1), add |(V1, V ), ·(V1)〉. If w1 = v and w2 = u,
then w1 + w2 = v + u.

(5) Let V be a non empty RLS structure, V1 be an add closed
multiplicatively-closed non empty subset of V , a be a real number, v be
a vector of V , and w be a vector of 〈V1, 0V (∈ V1), add |(V1, V ), ·(V1)〉. If
w = v, then a · w = a · v.

2. Quasi-Real Linear Space of Partial Functions

We adopt the following convention: A, B denote non empty sets and f , g, h
denote elements of A→̇R.
Let us consider A, B, let F be a binary operation on A→̇B, and let f , g be

elements of A→̇B. Then F (f, g) is an element of A→̇B.
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Let us consider A. The functor ·A→̇R yielding a binary operation on A→̇R
is defined as follows:

(Def. 3) For all elements f , g of A→̇R holds ·A→̇R(f, g) = f g.

Let us consider A. The functor ·RA→̇R yielding a function from R × (A→̇R)
into A→̇R is defined as follows:
(Def. 4) For every real number a and for every element f of A→̇R holds ·RA→̇R(a,

f) = a f.

Let us consider A. The functor 0A→̇R yielding an element of A→̇R is defined
as follows:

(Def. 5) 0A→̇R = A 7−→ 0.
Let us consider A. The functor 1A→̇R yields an element of A→̇R and is

defined as follows:

(Def. 6) 1A→̇R = A 7−→ 1.
The following propositions are true:

(6) h = +A→̇R(f, g) iff domh = dom f ∩ dom g and for every element x of
A such that x ∈ domh holds h(x) = f(x) + g(x).

(7) h = ·A→̇R(f, g) iff domh = dom f ∩ dom g and for every element x of A
such that x ∈ domh holds h(x) = f(x) · g(x).

(8) 0A→̇R 6= 1A→̇R.

(9) h = ·RA→̇R(a, f) iff domh = dom f and for every element x of A such
that x ∈ dom f holds h(x) = a · f(x).

(10) +A→̇R(f, g) = +A→̇R(g, f).

(11) +A→̇R(f, +A→̇R(g, h)) = +A→̇R(+A→̇R(f, g), h).

(12) ·A→̇R(f, g) = ·A→̇R(g, f).

(13) ·A→̇R(f, ·A→̇R(g, h)) = ·A→̇R(·A→̇R(f, g), h).

(14) ·A→̇R(1A→̇R, f) = f.

(15) +A→̇R(0A→̇R, f) = f.

(16) +A→̇R(f, ·RA→̇R(−1, f)) = 0A→̇R�dom f.

(17) ·RA→̇R(1, f) = f.

(18) ·RA→̇R(a, ·RA→̇R(b, f)) = ·RA→̇R(a · b, f).
(19) +A→̇R(·RA→̇R(a, f), ·RA→̇R(b, f)) = ·RA→̇R(a+ b, f).

(20) ·A→̇R(f, +A→̇R(g, h)) = +A→̇R(·A→̇R(f, g), ·A→̇R(f, h)).

(21) ·A→̇R(·RA→̇R(a, f), g) = ·RA→̇R(a, ·A→̇R(f, g)).

Let us consider A. The functor PFunctRLSA yields a non empty RLS struc-
ture and is defined by:

(Def. 7) PFunctRLSA = 〈A→̇R, 0A→̇R,+A→̇R, ·RA→̇R〉.
Let us consider A. One can verify that PFunctRLSA is strict, Abelian, add-

associative, right zeroed, and real linear space-like.
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3. Quasi-Real Linear Space of Integrable Functions

For simplicity, we use the following convention: X is a non empty set, x is
an element of X, S is a σ-field of subsets of X, M is a σ-measure on S, E is an
element of S, and f , g, h, f1, g1 are partial functions from X to R.
Next we state the proposition

(22) Let given X, S, M and f be a partial function from X to R. Suppose
there exists E such that E = dom f and for every x such that x ∈ dom f
holds 0 = f(x). Then f is integrable on M and

∫
f dM = 0.

Let X be a non empty set and let r be a real number. Then X 7−→ r is a
partial function from X to R.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M

be a σ-measure on S. The L1 functions of M yielding a non empty subset of
PFunctRLSX is defined by the condition (Def. 8).

(Def. 8) The L1 functions of M = {f ; f ranges over partial functions from X to
R:
∨
N1 : element of S (M(N1) = 0 ∧ dom f = N1

c ∧ f is integrable onM)}.
We now state two propositions:

(23) Suppose f ∈ the L1 functions ofM and g ∈ the L1 functions ofM . Then
f + g ∈ the L1 functions of M .

(24) If f ∈ the L1 functions of M , then a f ∈ the L1 functions of M .
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a

σ-measure on S. Observe that the L1 functions of M is multiplicatively-closed
and add closed.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M

be a σ-measure on S. The functor L1-FunctRLSM yielding a non empty RLS
structure is defined by the condition (Def. 9).

(Def. 9) L1-FunctRLSM = 〈the L1 functions of M , 0PFunctRLSX(∈ the L1 func-
tions ofM), add |(the L1 functions ofM , PFunctRLSX), ·the L1 functions of M 〉.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a

σ-measure on S. Observe that L1-FunctRLSM is strict, Abelian, add-associative,
right zeroed, and real linear space-like.

4. Quotient Space of Quasi-Real Linear Space of Integrable
Functions

In the sequel v, u are vectors of L1-FunctRLSM.
Next we state two propositions:

(25) (v) + (u) = v + u.

(26) a (u) = a · u.
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Let X be a non empty set, let S be a σ-field of subsets of X, let M be a
σ-measure on S, and let f , g be partial functions from X to R. The predicate
f =Ma.e. g is defined by:

(Def. 10) There exists an element E of S such that M(E) = 0 and f�Ec = g�Ec.

We now state several propositions:

(27) Suppose f = u. Then
(i) u+ (−1) · u = (X 7−→ 0)�dom f, and
(ii) there exist partial functions v, g from X to R such that v ∈ the L1
functions of M and g ∈ the L1 functions of M and v = u + (−1) · u and
g = X 7−→ 0 and v =Ma.e. g.

(28) f =Ma.e. f.

(29) If f =Ma.e. g, then g =
M
a.e. f.

(30) If f =Ma.e. g and g =
M
a.e. h, then f =

M
a.e. h.

(31) If f =Ma.e. f1 and g =
M
a.e. g1, then f + g =

M
a.e. f1 + g1.

(32) If f =Ma.e. g, then a f =
M
a.e. a g.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The functor AlmostZeroFunctionsM yielding a non empty
subset of L1-FunctRLSM is defined as follows:

(Def. 11) AlmostZeroFunctionsM = {f ; f ranges over partial functions from X to
R: f ∈ the L1 functions of M ∧ f =Ma.e. X 7−→ 0}.
The following proposition is true

(33) (X 7−→ 0) + (X 7−→ 0) = X 7−→ 0 and a (X 7−→ 0) = X 7−→ 0.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a

σ-measure on S. One can check that AlmostZeroFunctionsM is add closed and
multiplicatively-closed.
Next we state the proposition

(34) 0L1-FunctRLSM = X 7−→ 0 and 0L1-FunctRLSM ∈ AlmostZeroFunctionsM.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be

a σ-measure on S. The functor AlmostZeroFunctRLSM yielding a non empty
RLS structure is defined as follows:

(Def. 12) AlmostZeroFunctRLSM = 〈AlmostZeroFunctionsM, 0L1-FunctRLSM (∈
AlmostZeroFunctionsM), add |(AlmostZeroFunctionsM,L1-FunctRLSM),
·AlmostZeroFunctionsM 〉.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M

be a σ-measure on S. Note that L1-FunctRLSM is strict, strict, Abelian, add-
associative, right zeroed, and real linear space-like.
In the sequel v, u are vectors of AlmostZeroFunctRLSM.
Next we state two propositions:

(35) (v) + (u) = v + u.
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(36) a (u) = a · u.
Let X be a non empty set, let S be a σ-field of subsets of X, let M be a

σ-measure on S, and let f be a partial function from X to R. The functor [f ]Ma.e.
yielding a subset of the L1 functions of M is defined by the condition (Def. 13).

(Def. 13) [f ]Ma.e. = {g; g ranges over partial functions from X to R: g ∈ the L1
functions of M ∧ f ∈ the L1 functions of M ∧ f =Ma.e. g}.
The following propositions are true:

(37) If f ∈ the L1 functions of M and g ∈ the L1 functions of M , then
g =Ma.e. f iff g ∈ [f ]Ma.e..

(38) If f ∈ the L1 functions of M , then f ∈ [f ]Ma.e..
(39) If f ∈ the L1 functions of M and g ∈ the L1 functions of M , then
[f ]Ma.e. = [g]

M
a.e. iff f =

M
a.e. g.

(40) Suppose f ∈ the L1 functions ofM and g ∈ the L1 functions ofM . Then
[f ]Ma.e. = [g]

M
a.e. if and only if g ∈ [f ]Ma.e..

(41) Suppose that
(i) f ∈ the L1 functions of M ,
(ii) f1 ∈ the L1 functions of M ,
(iii) g ∈ the L1 functions of M ,
(iv) g1 ∈ the L1 functions of M ,
(v) [f ]Ma.e. = [f1]

M
a.e., and

(vi) [g]Ma.e. = [g1]
M
a.e..

Then [f + g]Ma.e. = [f1 + g1]
M
a.e..

(42) If f ∈ the L1 functions of M and g ∈ the L1 functions of M and
[f ]Ma.e. = [g]

M
a.e., then [a f ]

M
a.e. = [a g]

M
a.e..

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The functor CosetSetM yields a non empty family of subsets
of the L1 functions of M and is defined by:

(Def. 14) CosetSetM = {[f ]Ma.e.; f ranges over partial functions from X to R: f ∈
the L1 functions of M}.
Let X be a non empty set, let S be a σ-field of subsets of X, and let M

be a σ-measure on S. The functor addCosetM yields a binary operation on
CosetSetM and is defined by the condition (Def. 15).

(Def. 15) Let A, B be elements of CosetSetM and a, b be partial functions from
X to R. If a ∈ A and b ∈ B, then (addCosetM)(A, B) = [a+ b]Ma.e..
Let X be a non empty set, let S be a σ-field of subsets of X, and let M be

a σ-measure on S. The functor zeroCosetM yielding an element of CosetSetM
is defined by:

(Def. 16) There exists a partial function f from X to R such that f = X 7−→ 0
and f ∈ the L1 functions of M and zeroCosetM = [f ]Ma.e..
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Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor lmultCosetM yields a function from R ×
CosetSetM into CosetSetM and is defined by the condition (Def. 17).

(Def. 17) Let z be an element of R, A be an element of CosetSetM, and f be
a partial function from X to R. If f ∈ A, then (lmultCosetM)(z, A) =
[z f ]Ma.e..

Let X be a non empty set, let S be a σ-field of subsets of X, and let M
be a σ-measure on S. The functor pre-L-SpaceM yields a strict Abelian add-
associative right zeroed right complementable real linear space-like non empty
RLS structure and is defined by the conditions (Def. 18).

(Def. 18)(i) The carrier of pre-L-SpaceM = CosetSetM,
(ii) the addition of pre-L-SpaceM = addCosetM,
(iii) 0pre-L-SpaceM = zeroCosetM, and
(iv) the external multiplication of pre-L-SpaceM = lmultCosetM.

5. Real Normed Space of Integrable Functions

One can prove the following propositions:

(43) If f ∈ the L1 functions ofM and g ∈ the L1 functions ofM and f =Ma.e. g,
then

∫
f dM =

∫
g dM.

(44) If f is integrable on M , then
∫
f dM ,

∫
|f |dM ∈ R and |f | is integrable

on M .

(45) Suppose f ∈ the L1 functions of M and g ∈ the L1 functions of M and
f =Ma.e. g. Then |f | =Ma.e. |g| and

∫
|f |dM =

∫
|g|dM.

(46) Given a vector x of pre-L-SpaceM such that f , g ∈ x. Then f =Ma.e. g
and f ∈ the L1 functions of M and g ∈ the L1 functions of M .

(47) There exists a function N2 from the carrier of pre-L-SpaceM into R
such that for every point x of pre-L-SpaceM holds there exists a partial
function f from X to R such that f ∈ x and N2(x) =

∫
|f |dM.

In the sequel x is a point of pre-L-SpaceM.
The following two propositions are true:

(48) If f ∈ x, then f is integrable on M and f ∈ the L1 functions of M and
|f | is integrable on M .

(49) If f , g ∈ x, then f =Ma.e. g and
∫
f dM =

∫
g dM and

∫
|f |dM =

∫
|g|dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. The functor L1-Norm(M) yields a function from the carrier
of pre-L-SpaceM into R and is defined by:

(Def. 19) For every point x of pre-L-SpaceM there exists a partial function f from
X to R such that f ∈ x and (L1-Norm(M))(x) =

∫
|f |dM.
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Let X be a non empty set, let S be a σ-field of subsets of X, and let M be a
σ-measure on S. The functor L1-Space(M) yielding a non empty strict normed
structure is defined by:

(Def. 20) The RLS structure of L1-Space(M) = pre-L-SpaceM and the norm of
L1-Space(M) = L1-Norm(N).

In the sequel x, y are points of L1-Space(M).
Next we state several propositions:

(50)(i) There exists a partial function f from X to R such that f ∈ the L1
functions of M and x = [f ]Ma.e. and ‖x‖ =

∫
|f |dM, and

(ii) for every partial function f from X to R such that f ∈ x holds∫
|f |dM = ‖x‖.

(51) If f ∈ x, then x = [f ]Ma.e. and ‖x‖ =
∫
|f |dM.

(52) If f ∈ x and g ∈ y, then f + g ∈ x+ y and if f ∈ x, then a f ∈ a · x.
(53) If E = dom f and for every set x such that x ∈ dom f holds f(x) = r,
then f is measurable on E.

(54) If f ∈ the L1 functions of M and
∫
|f |dM = 0, then f =Ma.e. X 7−→ 0.

(55)
∫
|X 7−→ 0|dM = 0.

(56) If f is integrable on M and g is integrable on M , then
∫
|f + g|dM ≤∫

|f |dM +
∫
|g|dM.

Let X be a non empty set, let S be a σ-field of subsets of X, and let M be
a σ-measure on S. One can check that L1-Space(M) is real normed space-like,
real linear space-like, Abelian, add-associative, right zeroed, and right comple-
mentable.
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Summary. In this article the notion of the power of an element of BCI-
algebra and its period in the book [11], sections 1.4 to 1.5 are firstly given. Then
the definition of BCI-homomorphism is defined and the fundamental theorem
of homomorphism, the first isomorphism theorem and the second isomorphism
theorem are proved following the book [9], section 1.6.
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The notation and terminology used in this paper have been introduced in the
following articles: [6], [14], [3], [15], [5], [4], [2], [7], [10], [1], [13], [8], and [12].

1. The Power of an Element of BCI-algebras

In this paper X is a BCI-algebra and n is an element of N.
Let D be a set, let f be a function from N into D, and let n be a natural

number. Then f(n) is an element of D.
Let G be a non empty BCI structure with 0. The functor BCI-powerG

yielding a function from (the carrier of G) × N into the carrier of G is defined
as follows:

(Def. 1) For every element x of G holds (BCI-powerG)(x, 0) = 0G and for every
n holds (BCI-powerG)(x, n+ 1) = x \ (BCI-powerG)(x, n)c.

371
c© 2008 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://fm.mizar.org/miz/bcialg_6.miz
http://ftp.mizar.org/


372 yuzhong ding and fuguo ge and chenglong wu

For simplicity, we adopt the following convention: x, y are elements of X, a,
b are elements of AtomSetX, m, n are natural numbers, and i, j are integers.
Let us consider X, i, x. The functor xi yielding an element of X is defined

by:

(Def. 2) xi =

{
(BCI-powerX)(x, |i|), if 0 ≤ i,
(BCI-powerX)(xc, |i|), otherwise.

Let us consider X, n, x. Then xn can be characterized by the condition:

(Def. 3) xn = (BCI-powerX)(x, n).

One can prove the following propositions:

(1) a \ (x \ b) = b \ (x \ a).
(2) xn+1 = x \ (xn)c.
(3) x0 = 0X .

(4) x1 = x.

(5) x−1 = xc.

(6) x2 = x \ xc.
(7) (0X)

n = 0X .

(8) (a−1)−1 = a.

(9) x−n = ((xc)c)−n.

(10) (ac)n = a−n.

(11) If x ∈ BCK-partX and n ≥ 1, then xn = x.
(12) If x ∈ BCK-partX, then x−n = 0X .
(13) ai ∈ AtomSetX.
(14) (an+1)c = (an)c \ a.
(15) (a \ b)n = an \ bn.
(16) (a \ b)−n = a−n \ b−n.
(17) (ac)n = (an)c.

(18) (xc)n = (xn)c.

(19) (ac)−n = (a−n)c.

(20) xn ∈ BranchV(((xc)c)n).
(21) (xn)c = (((xc)c)n)c.

(22) ai \ aj = ai−j .
(23) (ai)j = ai·j .

(24) ai+j = ai \ (aj)c.
Let us consider X, x. We say that x is finite-period if and only if:

(Def. 4) There exists an element n of N such that n 6= 0 and xn ∈ BCK-partX.
One can prove the following proposition

(25) If x is finite-period, then (xc)c is finite-period.
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Let us consider X, x. Let us assume that x is finite-period. The functor
ord(x) yielding an element of N is defined as follows:
(Def. 5) xord(x) ∈ BCK-partX and ord(x) 6= 0 and for every element m of N such

that xm ∈ BCK-partX and m 6= 0 holds ord(x) ≤ m.
One can prove the following propositions:

(26) If a is finite-period and ord(a) = n, then an = 0X .

(27) X is a BCK-algebra iff for every x holds x is finite-period and ord(x) = 1.

(28) If x is finite-period and a is finite-period and x ∈ BranchV a, then
ord(x) = ord(a).

(29) If x is finite-period and ord(x) = n, then xm ∈ BCK-partX iff n | m.
(30) If x is finite-period and xm is finite-period and ord(x) = n and m > 0,
then ord(xm) = n÷ (m gcdn).

(31) If x is finite-period and xc is finite-period, then ord(x) = ord(xc).

(32) If x \ y is finite-period and x, y ∈ BranchV a, then ord(x \ y) = 1.
(33) Suppose that x \ y is finite-period and a \ b is finite-period and x is
finite-period and y is finite-period and a is finite-period and b is finite-
period and a 6= b and x ∈ BranchV a and y ∈ BranchV b. Then ord(a \ b) |
lcm(ord(x), ord(y)).

2. Definition of BCI-homomorphisms

For simplicity, we follow the rules: X, X ′, Y , Z, W are BCI-algebras, H ′

denotes a subalgebra of X ′, G denotes a subalgebra of X, A′ denotes a non
empty subset of X ′, I denotes an ideal of X, C1, K are closed ideals of X, x,
y are elements of X, R1 denotes an I-congruence of X by I, and R2 denotes an
I-congruence of X by K.
One can prove the following proposition

(34) Let X be a BCI-algebra, Y be a subalgebra of X, x, y be elements of
X, and x′, y′ be elements of Y . If x = x′ and y = y′, then x \ y = x′ \ y′.
Let X, X ′ be non empty BCI structures with 0 and let f be a function from

X into X ′. We say that f is multiplicative if and only if:

(Def. 6) For all elements a, b of X holds f(a \ b) = f(a) \ f(b).
Let X, X ′ be BCI-algebras. Note that there exists a function from X into

X ′ which is multiplicative.
Let X, X ′ be BCI-algebras. A BCI-homomorphism from X to X ′ is a mul-

tiplicative function from X into X ′.
In the sequel f denotes a BCI-homomorphism from X to X ′, g denotes a

BCI-homomorphism from X ′ to X, and h denotes a BCI-homomorphism from
X ′ to Y .
Let us consider X, X ′, f . We say that f is isotonic if and only if:
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(Def. 7) For all x, y such that x ≤ y holds f(x) ≤ f(y).
Let us consider X. An endomorphism of X is a BCI-homomorphism from

X to X.
Let us consider X, X ′, f . The functor Ker f is defined by:

(Def. 8) Ker f = {x ∈ X: f(x) = 0X′}.
The following proposition is true

(35) f(0X) = 0X′ .

Let us consider X, X ′, f . Observe that Ker f is non empty.
We now state several propositions:

(36) If x ≤ y, then f(x) ≤ f(y).
(37) f is one-to-one iff Ker f = {0X}.
(38) If f is bijective and g = f−1, then g is bijective.

(39) h · f is a BCI-homomorphism from X to Y .
(40) Let f be a BCI-homomorphism from X to Y , g be a BCI-homomorphism
from Y to Z, and h be a BCI-homomorphism from Z toW . Then h·(g·f) =
(h · g) · f.

(41) For every subalgebra Z of X ′ such that the carrier of Z = rng f holds f
is a BCI-homomorphism from X to Z.

(42) Ker f is a closed ideal of X.

Let us consider X, X ′, f . Observe that Ker f is closed.
Next we state several propositions:

(43) If f is onto, then for every element c of X ′ there exists x such that
c = f(x).

(44) For every element a of X such that a is minimal holds f(a) is minimal.

(45) For every element a of AtomSetX and for every element b of AtomSetX ′

such that b = f(a) holds f◦ BranchV a ⊆ BranchV b.
(46) If A′ is an ideal of X ′, then f−1(A′) is an ideal of X.

(47) If A′ is a closed ideal of X ′, then f−1(A′) is a closed ideal of X.

(48) If f is onto, then f◦I is an ideal of X ′.

(49) If f is onto, then f◦C1 is a closed ideal of X ′.

Let X, X ′ be BCI-algebras. We say that X and X ′ are isomorphic if and
only if:

(Def. 9) There exists a BCI-homomorphism from X to X ′ which is bijective.

Let us consider X, let I be an ideal of X, and let R1 be an I-congruence of
X by I. Note that X/R1 is strict, B, C, I, and BCI-4.
Let us consider X, let I be an ideal of X, and let R1 be an I-congruence

of X by I. The canonical homomorphism onto cosets of R1 yielding a BCI-
homomorphism from X to X/R1 is defined as follows:
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(Def. 10) For every x holds (the canonical homomorphism onto cosets of R1)(x) =
[x](R1).

3. Fundamental Theorem of Homomorphisms

The following four propositions are true:

(50) The canonical homomorphism onto cosets of R1 is onto.

(51) Suppose I = Ker f. Then there exists a BCI-homomorphism h from
X/R1 to X

′ such that f = h · the canonical homomorphism onto cosets of
R1 and h is one-to-one.

(52) Let given X, X ′, I, R1, f . Suppose I = Ker f. Then there exists a
BCI-homomorphism h from X/R1 to X

′ such that f = h · the canonical
homomorphism onto cosets of R1 and h is one-to-one.

(53) Ker (the canonical homomorphism onto cosets of R2) = K.

4. First Isomorphism Theorem

One can prove the following propositions:

(54) If I = Ker f and the carrier of H ′ = rng f, then X/R1 and H
′ are

isomorphic.

(55) If I = Ker f and f is onto, then X/R1 and X
′ are isomorphic.

5. Second Isomorphism Theorem

Let us considerX, G,K, R2. The functor Union(G,R2) yielding a non empty
subset of X is defined by:

(Def. 11) Union(G,R2) =
⋃
{[a](R2); a ranges over elements of G: [a](R2) ∈ the

carrier of X/R2}.
Let us consider X, G, K, R2. The functor HKOp(G,R2) yielding a binary

operation on Union(G,R2) is defined as follows:

(Def. 12) For all elements w1, w2 of Union(G,R2) and for all elements x, y of X
such that w1 = x and w2 = y holds (HKOp(G,R2))(w1, w2) = x \ y.
Let us consider X, G, K, R2. The functor zeroHK(G,R2) yields an element

of Union(G,R2) and is defined as follows:

(Def. 13) zeroHK(G,R2) = 0X .

Let us consider X, G, K, R2. The functor HK(G,R2) yielding a BCI struc-
ture with 0 is defined as follows:

(Def. 14) HK(G,R2) = 〈Union(G,R2),HKOp(G,R2), zeroHK(G,R2)〉.
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Let us consider X, G, K, R2. Observe that HK(G,R2) is non empty.
Let us consider X, G, K, R2 and let w1, w2 be elements of Union(G,R2).

The functor w1 \ w2 yielding an element of Union(G,R2) is defined by:
(Def. 15) w1 \ w2 = (HKOp(G,R2))(w1, w2).

We now state the proposition

(56) HK(G,R2) is a BCI-algebra.

Let us consider X, G, K, R2. Observe that HK(G,R2) is strict, B, C, I, and
BCI-4.
We now state three propositions:

(57) HK(G,R2) is a subalgebra of X.

(58) (The carrier of G) ∩K is a closed ideal of G.
(59) Let K1 be an ideal of HK(G,R2), R3 be an I-congruence of HK(G,R2)
by K1, I be an ideal of G, and R1 be an I-congruence of G by I. Suppose
K1 = K and R3 = R2 and I = (the carrier of G) ∩ K. Then G/R1 and
HK(G,R2)/R3 are isomorphic.
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Summary. To evaluate our formal verification method on a real-size cal-
culation circuit, in this article, we continue to formalize the concept of the 4-2
Binary Addition Cell primitives (FTAs) to define the structures of calculation
units for a very fast multiplication algorithm for VLSI implementation [11]. We
define the circuit structure of four-types FTAs, TYPE-0 to TYPE-3, using the
series constructions of the Generalized Full Adder Circuits (GFAs) that genera-
lized adder to have for each positive and negative weights to inputs and outputs
[15]. We then successfully prove its circuit stability of the calculation outputs
after four-steps. The motivation for this research is to establish a technique ba-
sed on formalized mathematics and its applications for calculation circuits with
high reliability.
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simplicity the following abbreviations are introduced

BitGFAiStr 7−→ Σi
BitGFAiCirc 7−→ Ci

GFAiAdderOutput 7−→ ai

GFAiCarryOutput 7−→ ci

InnerVertices 7−→ IV
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1. Stability of 4-2 Binary Addition Circuit Cell (TYPE-0)

Let a1, b1, c1, d1, c2 be sets. The functor BitFTA0Str(a1, b1, c1, d1, c2) yiel-
ding an unsplit non void strict non empty many sorted signature with arity held
in gates and Boolean denotation held in gates is defined by:

(Def. 1) BitFTA0Str(a1, b1, c1, d1, c2) = Σ0(a1, b1, c1)+·Σ0(a0(a1, b1, c1), c2,
d1).

Let a1, b1, c1, d1, c2 be sets. The functor BitFTA0Circ(a1, b1, c1, d1, c2)
yields a strict Boolean circuit of BitFTA0Str(a1, b1, c1, d1, c2) with denotation
held in gates and is defined as follows:

(Def. 2) BitFTA0Circ(a1, b1, c1, d1, c2) = C0(a1, b1, c1)+·C0(a0(a1, b1, c1), c2,
d1).

One can prove the following propositions:

(1) Let a1, b1, c1, d1, c2 be sets. Then IV(BitFTA0Str(a1, b1, c1, d1, c2)) =
{〈〈〈a1, b1〉, xor2 〉〉, a0(a1, b1, c1)} ∪ {〈〈〈a1, b1〉, and2 〉〉, 〈〈〈b1, c1〉, and2 〉〉, 〈〈〈c1,
a1〉, and2 〉〉, c0(a1, b1, c1)} ∪ {〈〈〈a0(a1, b1, c1), c2〉, xor2 〉〉, a0(a0(a1, b1, c1),
c2, d1)}∪{〈〈〈a0(a1, b1, c1), c2〉, and2 〉〉, 〈〈〈c2, d1〉, and2 〉〉, 〈〈〈d1, a0(a1, b1, c1)〉,
and2 〉〉, c0(a0(a1, b1, c1), c2, d1)}.

(2) For all sets a1, b1, c1, d1, c2 holds IV(BitFTA0Str(a1, b1, c1, d1, c2)) is
a binary relation.

(3) For all non pair sets a1, b1, c1, d1 and for every set c2 such that
c2 6= 〈〈〈d1, a0(a1, b1, c1)〉, and2 〉〉 and c2 /∈ IV(Σ0(a1, b1, c1)) holds
InputVertices(BitFTA0Str(a1, b1, c1, d1, c2)) = {a1, b1, c1, d1, c2}.

(4) Let a1, b1, c1, d1, c2 be sets. Then a1 ∈ the carrier of BitFTA0Str(a1,
b1, c1, d1, c2) and b1 ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and
c1 ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and d1 ∈ the carrier
of BitFTA0Str(a1, b1, c1, d1, c2) and c2 ∈ the carrier of BitFTA0Str(a1,
b1, c1, d1, c2) and 〈〈〈a1, b1〉, xor2 〉〉 ∈ the carrier of BitFTA0Str(a1, b1, c1,
d1, c2) and a0(a1, b1, c1) ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2)
and 〈〈〈a1, b1〉, and2 〉〉 ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and
〈〈〈b1, c1〉, and2 〉〉 ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and 〈〈〈c1,
a1〉, and2 〉〉 ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and c0(a1, b1,
c1) ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and 〈〈〈a0(a1, b1, c1), c2〉,
xor2 〉〉 ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and a0(a0(a1, b1, c1),
c2, d1) ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and 〈〈〈a0(a1, b1, c1),
c2〉, and2 〉〉 ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and 〈〈〈c2, d1〉,
and2 〉〉 ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and 〈〈〈d1, a0(a1, b1,
c1)〉, and2 〉〉 ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2) and c0(a0(a1,
b1, c1), c2, d1) ∈ the carrier of BitFTA0Str(a1, b1, c1, d1, c2).

(5) Let a1, b1, c1, d1, c2 be sets. Then 〈〈〈a1, b1〉, xor2 〉〉 ∈ IV(BitFTA0Str(a1,
b1, c1, d1, c2)) and a0(a1, b1, c1) ∈ IV(BitFTA0Str(a1, b1, c1, d1, c2)) and
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〈〈〈a1, b1〉, and2 〉〉, 〈〈〈b1, c1〉, and2 〉〉, 〈〈〈c1, a1〉, and2 〉〉 ∈ IV(BitFTA0Str(a1,
b1, c1, d1, c2)) and c0(a1, b1, c1) ∈ IV(BitFTA0Str(a1, b1, c1, d1, c2))
and 〈〈〈a0(a1, b1, c1), c2〉, xor2 〉〉, a0(a0(a1, b1, c1), c2, d1), 〈〈〈a0(a1, b1, c1),
c2〉, and2 〉〉, 〈〈〈c2, d1〉, and2 〉〉, 〈〈〈d1, a0(a1, b1, c1)〉, and2 〉〉, c0(a0(a1, b1, c1),
c2, d1) ∈ IV(BitFTA0Str(a1, b1, c1, d1, c2)).

(6) Let a1, b1, c1, d1 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d1,
a0(a1, b1, c1)〉, and2 〉〉 and c2 /∈ IV(Σ0(a1, b1, c1)). Then a1, b1, c1, d1,
c2 ∈ InputVertices(BitFTA0Str(a1, b1, c1, d1, c2)).
Let a1, b1, c1, d1, c2 be sets. The functor BitFTA0CarryOutput(a1, b1, c1,

d1, c2) yields an element of IV(BitFTA0Str(a1, b1, c1, d1, c2)) and is defined as
follows:

(Def. 3) BitFTA0CarryOutput(a1, b1, c1, d1, c2) = c0(a1, b1, c1).

The functor BitFTA0AdderOutputI(a1, b1, c1, d1, c2) yields an element of
IV(BitFTA0Str(a1, b1, c1, d1, c2)) and is defined as follows:
(Def. 4) BitFTA0AdderOutputI(a1, b1, c1, d1, c2) = a0(a1, b1, c1).

The functor BitFTA0AdderOutputP(a1, b1, c1, d1, c2) yielding an element of
IV(BitFTA0Str(a1, b1, c1, d1, c2)) is defined by:
(Def. 5) BitFTA0AdderOutputP(a1, b1, c1, d1, c2) = c0(a0(a1, b1, c1), c2, d1).

The functor BitFTA0AdderOutputQ(a1, b1, c1, d1, c2) yields an element of
IV(BitFTA0Str(a1, b1, c1, d1, c2)) and is defined by:
(Def. 6) BitFTA0AdderOutputQ(a1, b1, c1, d1, c2) = a0(a0(a1, b1, c1), c2, d1).

The following propositions are true:

(7) Let a1, b1, c1 be non pair sets, d1, c2 be sets, s be a sta-
te of BitFTA0Circ(a1, b1, c1, d1, c2), and a2, a3, a4 be elements of
Boolean. Suppose a2 = s(a1) and a3 = s(b1) and a4 = s(c1). Then
(Following(s, 2))(BitFTA0CarryOutput(a1, b1, c1, d1, c2)) = a2∧a3∨a3∧
a4 ∨ a4 ∧ a2 and (Following(s, 2))(BitFTA0AdderOutputI(a1, b1, c1, d1,
c2)) = a2 ⊕ a3 ⊕ a4.

(8) Let a1, b1, c1, d1 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d1,
a0(a1, b1, c1)〉, and2 〉〉 and c2 /∈ IV(Σ0(a1, b1, c1)). Let s be a state of
BitFTA0Circ(a1, b1, c1, d1, c2) and a2, a3, a4, a5, a6 be elements of
Boolean. Suppose a2 = s(a1) and a3 = s(b1) and a4 = s(c1) and
a5 = s(d1) and a6 = s(c2). Then (Following(s, 2))(a0(a1, b1, c1)) =
a2 ⊕ a3 ⊕ a4 and (Following(s, 2))(a1) = a2 and (Following(s, 2))(b1) =
a3 and (Following(s, 2))(c1) = a4 and (Following(s, 2))(d1) = a5 and
(Following(s, 2))(c2) = a6.

(9) Let a1, b1, c1, d1 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d1,
a0(a1, b1, c1)〉, and2 〉〉 and c2 /∈ IV(Σ0(a1, b1, c1)). Let s be a state of
BitFTA0Circ(a1, b1, c1, d1, c2) and a2, a3, a4, a5, a6 be elements of
Boolean. Suppose a2 = s(a1) and a3 = s(b1) and a4 = s(c1) and a5 = s(d1)
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and a6 = s(c2). Then (Following(s, 4))(BitFTA0AdderOutputP(a1, b1,
c1, d1, c2)) = (a2 ⊕ a3 ⊕ a4) ∧ a6 ∨ a6 ∧ a5 ∨ a5 ∧ (a2 ⊕ a3 ⊕ a4) and
(Following(s, 4))(BitFTA0AdderOutputQ(a1, b1, c1, d1, c2)) = a2 ⊕ a3 ⊕
a4 ⊕ a5 ⊕ a6.

(10) Let a1, b1, c1, d1 be non pair sets and c2 be a set. If c2 6= 〈〈〈d1, a0(a1, b1,
c1)〉, and2 〉〉, then for every state s of BitFTA0Circ(a1, b1, c1, d1, c2) holds
Following(s, 4) is stable.

2. Stability of 4-2 Binary Addition Circuit Cell (TYPE-1)

Let a1, b2, c1, d2, c2 be sets. The functor BitFTA1Str(a1, b2, c1, d2, c2) yiel-
ding an unsplit non void strict non empty many sorted signature with arity held
in gates and Boolean denotation held in gates is defined by:

(Def. 7) BitFTA1Str(a1, b2, c1, d2, c2) = Σ1(a1, b2, c1)+·Σ2(a1(a1, b2, c1), c2,
d2).

Let a1, b2, c1, d2, c2 be sets. The functor BitFTA1Circ(a1, b2, c1, d2, c2)
yields a strict Boolean circuit of BitFTA1Str(a1, b2, c1, d2, c2) with denotation
held in gates and is defined by:

(Def. 8) BitFTA1Circ(a1, b2, c1, d2, c2) = C1(a1, b2, c1)+·C2(a1(a1, b2, c1), c2,
d2).

Next we state several propositions:

(11) Let a1, b2, c1, d2, c2 be sets. Then IV(BitFTA1Str(a1, b2, c1, d2,
c2)) = {〈〈〈a1, b2〉, xor2c 〉〉, a1(a1, b2, c1)} ∪ {〈〈〈a1, b2〉, and2c 〉〉, 〈〈〈b2, c1〉,
and2a 〉〉, 〈〈〈c1, a1〉, and2 〉〉, c1(a1, b2, c1)}∪{〈〈〈a1(a1, b2, c1), c2〉, xor2c 〉〉, a2(a1
(a1, b2, c1), c2, d2)}∪{〈〈〈a1(a1, b2, c1), c2〉, and2a 〉〉, 〈〈〈c2, d2〉, and2c 〉〉, 〈〈〈d2,
a1(a1, b2, c1)〉, and2b 〉〉, c2(a1(a1, b2, c1), c2, d2)}.

(12) For all sets a1, b2, c1, d2, c2 holds IV(BitFTA1Str(a1, b2, c1, d2, c2)) is
a binary relation.

(13) For all non pair sets a1, b2, c1, d2 and for every set c2 such that
c2 6= 〈〈〈d2, a1(a1, b2, c1)〉, and2b 〉〉 and c2 /∈ IV(Σ1(a1, b2, c1)) holds
InputVertices(BitFTA1Str(a1, b2, c1, d2, c2)) = {a1, b2, c1, d2, c2}.

(14) Let a1, b2, c1, d2, c2 be sets. Then a1 ∈ the carrier of BitFTA1Str(a1,
b2, c1, d2, c2) and b2 ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and
c1 ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and d2 ∈ the carrier of
BitFTA1Str(a1, b2, c1, d2, c2) and c2 ∈ the carrier of BitFTA1Str(a1, b2,
c1, d2, c2) and 〈〈〈a1, b2〉, xor2c 〉〉 ∈ the carrier of BitFTA1Str(a1, b2, c1,
d2, c2) and a1(a1, b2, c1) ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2)
and 〈〈〈a1, b2〉, and2c 〉〉 ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and
〈〈〈b2, c1〉, and2a 〉〉 ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and 〈〈〈c1,
a1〉, and2 〉〉 ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and c1(a1, b2,
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c1) ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and 〈〈〈a1(a1, b2, c1), c2〉,
xor2c 〉〉 ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and a2(a1(a1, b2,
c1), c2, d2) ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and 〈〈〈a1(a1,
b2, c1), c2〉, and2a 〉〉 ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and
〈〈〈c2, d2〉, and2c 〉〉 ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and 〈〈〈d2,
a1(a1, b2, c1)〉, and2b 〉〉 ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2) and
c2(a1(a1, b2, c1), c2, d2) ∈ the carrier of BitFTA1Str(a1, b2, c1, d2, c2).

(15) Let a1, b2, c1, d2, c2 be sets. Then 〈〈〈a1, b2〉, xor2c 〉〉 ∈ IV(BitFTA1Str(a1,
b2, c1, d2, c2)) and a1(a1, b2, c1) ∈ IV(BitFTA1Str(a1, b2, c1, d2, c2)) and
〈〈〈a1, b2〉, and2c 〉〉, 〈〈〈b2, c1〉, and2a 〉〉, 〈〈〈c1, a1〉, and2 〉〉 ∈ IV(BitFTA1Str(a1,
b2, c1, d2, c2)) and c1(a1, b2, c1) ∈ IV(BitFTA1Str(a1, b2, c1, d2, c2)) and
〈〈〈a1(a1, b2, c1), c2〉, xor2c 〉〉, a2(a1(a1, b2, c1), c2, d2), 〈〈〈a1(a1, b2, c1), c2〉,
and2a 〉〉, 〈〈〈c2, d2〉, and2c 〉〉, 〈〈〈d2, a1(a1, b2, c1)〉, and2b 〉〉, c2(a1(a1, b2, c1),
c2, d2) ∈ IV(BitFTA1Str(a1, b2, c1, d2, c2)).

(16) Let a1, b2, c1, d2 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d2,
a1(a1, b2, c1)〉, and2b 〉〉 and c2 /∈ IV(Σ1(a1, b2, c1)). Then a1, b2, c1, d2,
c2 ∈ InputVertices(BitFTA1Str(a1, b2, c1, d2, c2)).
Let a1, b2, c1, d2, c2 be sets. The functor BitFTA1CarryOutput(a1, b2, c1,

d2, c2) yielding an element of IV(BitFTA1Str(a1, b2, c1, d2, c2)) is defined as
follows:

(Def. 9) BitFTA1CarryOutput(a1, b2, c1, d2, c2) = c1(a1, b2, c1).

The functor BitFTA1AdderOutputI(a1, b2, c1, d2, c2) yields an element of
IV(BitFTA1Str(a1, b2, c1, d2, c2)) and is defined by:

(Def. 10) BitFTA1AdderOutputI(a1, b2, c1, d2, c2) = a1(a1, b2, c1).

The functor BitFTA1AdderOutputP(a1, b2, c1, d2, c2) yields an element of
IV(BitFTA1Str(a1, b2, c1, d2, c2)) and is defined as follows:

(Def. 11) BitFTA1AdderOutputP(a1, b2, c1, d2, c2) = c2(a1(a1, b2, c1), c2, d2).

The functor BitFTA1AdderOutputQ(a1, b2, c1, d2, c2) yielding an element of
IV(BitFTA1Str(a1, b2, c1, d2, c2)) is defined as follows:

(Def. 12) BitFTA1AdderOutputQ(a1, b2, c1, d2, c2) = a2(a1(a1, b2, c1), c2, d2).

The following four propositions are true:

(17) Let a1, b2, c1 be non pair sets, d2, c2 be sets, s be a sta-
te of BitFTA1Circ(a1, b2, c1, d2, c2), and a2, a3, a4 be elements of
Boolean. Suppose a2 = s(a1) and a3 = s(b2) and a4 = s(c1). Then
(Following(s, 2))(BitFTA1CarryOutput(a1, b2, c1, d2, c2)) = a2 ∧ ¬a3 ∨
¬a3∧a4∨a4∧a2 and (Following(s, 2))(BitFTA1AdderOutputI(a1, b2, c1,
d2, c2)) = ¬(a2 ⊕ ¬a3 ⊕ a4).

(18) Let a1, b2, c1, d2 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d2,
a1(a1, b2, c1)〉, and2b 〉〉 and c2 /∈ IV(Σ1(a1, b2, c1)). Let s be a state
of BitFTA1Circ(a1, b2, c1, d2, c2) and a2, a3, a4, a5, a6 be elements of
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Boolean. Suppose a2 = s(a1) and a3 = s(b2) and a4 = s(c1) and
a5 = s(d2) and a6 = s(c2). Then (Following(s, 2))(a1(a1, b2, c1)) =
¬(a2⊕¬a3⊕a4) and (Following(s, 2))(a1) = a2 and (Following(s, 2))(b2) =
a3 and (Following(s, 2))(c1) = a4 and (Following(s, 2))(d2) = a5 and
(Following(s, 2))(c2) = a6.

(19) Let a1, b2, c1, d2 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d2,
a1(a1, b2, c1)〉, and2b 〉〉 and c2 /∈ IV(Σ1(a1, b2, c1)). Let s be a state
of BitFTA1Circ(a1, b2, c1, d2, c2) and a2, a3, a4, a5, a6 be elements of
Boolean. Suppose a2 = s(a1) and a3 = s(b2) and a4 = s(c1) and a5 = s(d2)
and a6 = s(c2). Then (Following(s, 4))(BitFTA1AdderOutputP(a1, b2,
c1, d2, c2)) = ¬((a2⊕¬a3⊕a4)∧a6∨a6∧¬a5∨¬a5∧ (a2⊕¬a3⊕a4)) and
(Following(s, 4))(BitFTA1AdderOutputQ(a1, b2, c1, d2, c2)) = a2⊕¬a3⊕
a4 ⊕ ¬a5 ⊕ a6.

(20) Let a1, b2, c1, d2 be non pair sets and c2 be a set. If c2 6= 〈〈〈d2, a1(a1,
b2, c1)〉, and2b 〉〉, then for every state s of BitFTA1Circ(a1, b2, c1, d2, c2)
holds Following(s, 4) is stable.

3. Stability of 4-2 Binary Addition Circuit Cell (TYPE-2)

Let a7, b1, c3, d1, c2 be sets. The functor BitFTA2Str(a7, b1, c3, d1, c2) yiel-
ding an unsplit non void strict non empty many sorted signature with arity held
in gates and Boolean denotation held in gates is defined by:

(Def. 13) BitFTA2Str(a7, b1, c3, d1, c2) = Σ2(a7, b1, c3)+·Σ1(a2(a7, b1, c3), c2,
d1).

Let a7, b1, c3, d1, c2 be sets. The functor BitFTA2Circ(a7, b1, c3, d1, c2) yiel-
ding a strict Boolean circuit of BitFTA2Str(a7, b1, c3, d1, c2) with denotation
held in gates is defined by:

(Def. 14) BitFTA2Circ(a7, b1, c3, d1, c2) = C2(a7, b1, c3)+·C1(a2(a7, b1, c3), c2,
d1).

Next we state several propositions:

(21) Let a7, b1, c3, d1, c2 be sets. Then IV(BitFTA2Str(a7, b1, c3, d1,
c2)) = {〈〈〈a7, b1〉, xor2c 〉〉, a2(a7, b1, c3)} ∪ {〈〈〈a7, b1〉, and2a 〉〉, 〈〈〈b1, c3〉,
and2c 〉〉, 〈〈〈c3, a7〉, and2b 〉〉, c2(a7, b1, c3)} ∪ {〈〈〈a2(a7, b1, c3), c2〉, xor2c 〉〉, a1
(a2(a7, b1, c3), c2, d1)} ∪ {〈〈〈a2(a7, b1, c3), c2〉, and2c 〉〉, 〈〈〈c2, d1〉, and2a 〉〉,
〈〈〈d1, a2(a7, b1, c3)〉, and2 〉〉, c1(a2(a7, b1, c3), c2, d1)}.

(22) For all sets a7, b1, c3, d1, c2 holds IV(BitFTA2Str(a7, b1, c3, d1, c2)) is
a binary relation.

(23) For all non pair sets a7, b1, c3, d1 and for every set c2 such that
c2 6= 〈〈〈d1, a2(a7, b1, c3)〉, and2 〉〉 and c2 /∈ IV(Σ2(a7, b1, c3)) holds
InputVertices(BitFTA2Str(a7, b1, c3, d1, c2)) = {a7, b1, c3, d1, c2}.
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(24) Let a7, b1, c3, d1, c2 be sets. Then a7 ∈ the carrier of BitFTA2Str(a7,
b1, c3, d1, c2) and b1 ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and
c3 ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and d1 ∈ the carrier of
BitFTA2Str(a7, b1, c3, d1, c2) and c2 ∈ the carrier of BitFTA2Str(a7, b1,
c3, d1, c2) and 〈〈〈a7, b1〉, xor2c 〉〉 ∈ the carrier of BitFTA2Str(a7, b1, c3,
d1, c2) and a2(a7, b1, c3) ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2)
and 〈〈〈a7, b1〉, and2a 〉〉 ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and
〈〈〈b1, c3〉, and2c 〉〉 ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and 〈〈〈c3,
a7〉, and2b 〉〉 ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and c2(a7, b1,
c3) ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and 〈〈〈a2(a7, b1, c3), c2〉,
xor2c 〉〉 ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and a1(a2(a7, b1,
c3), c2, d1) ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and 〈〈〈a2(a7,
b1, c3), c2〉, and2c 〉〉 ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and
〈〈〈c2, d1〉, and2a 〉〉 ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and 〈〈〈d1,
a2(a7, b1, c3)〉, and2 〉〉 ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2) and
c1(a2(a7, b1, c3), c2, d1) ∈ the carrier of BitFTA2Str(a7, b1, c3, d1, c2).

(25) Let a7, b1, c3, d1, c2 be sets. Then 〈〈〈a7, b1〉, xor2c 〉〉 ∈ IV(BitFTA2Str(a7,
b1, c3, d1, c2)) and a2(a7, b1, c3) ∈ IV(BitFTA2Str(a7, b1, c3, d1, c2)) and
〈〈〈a7, b1〉, and2a 〉〉, 〈〈〈b1, c3〉, and2c 〉〉, 〈〈〈c3, a7〉, and2b 〉〉 ∈ IV(BitFTA2Str(a7,
b1, c3, d1, c2)) and c2(a7, b1, c3) ∈ IV(BitFTA2Str(a7, b1, c3, d1, c2)) and
〈〈〈a2(a7, b1, c3), c2〉, xor2c 〉〉, a1(a2(a7, b1, c3), c2, d1), 〈〈〈a2(a7, b1, c3), c2〉,
and2c 〉〉, 〈〈〈c2, d1〉, and2a 〉〉, 〈〈〈d1, a2(a7, b1, c3)〉, and2 〉〉, c1(a2(a7, b1, c3),
c2, d1) ∈ IV(BitFTA2Str(a7, b1, c3, d1, c2)).

(26) Let a7, b1, c3, d1 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d1,
a2(a7, b1, c3)〉, and2 〉〉 and c2 /∈ IV(Σ2(a7, b1, c3)). Then a7, b1, c3, d1,
c2 ∈ InputVertices(BitFTA2Str(a7, b1, c3, d1, c2)).
Let a7, b1, c3, d1, c2 be sets. The functor BitFTA2CarryOutput(a7, b1, c3,

d1, c2) yields an element of IV(BitFTA2Str(a7, b1, c3, d1, c2)) and is defined as
follows:

(Def. 15) BitFTA2CarryOutput(a7, b1, c3, d1, c2) = c2(a7, b1, c3).

The functor BitFTA2AdderOutputI(a7, b1, c3, d1, c2) yields an element of
IV(BitFTA2Str(a7, b1, c3, d1, c2)) and is defined as follows:

(Def. 16) BitFTA2AdderOutputI(a7, b1, c3, d1, c2) = a2(a7, b1, c3).

The functor BitFTA2AdderOutputP(a7, b1, c3, d1, c2) yields an element of
IV(BitFTA2Str(a7, b1, c3, d1, c2)) and is defined by:

(Def. 17) BitFTA2AdderOutputP(a7, b1, c3, d1, c2) = c1(a2(a7, b1, c3), c2, d1).

The functor BitFTA2AdderOutputQ(a7, b1, c3, d1, c2) yielding an element of
IV(BitFTA2Str(a7, b1, c3, d1, c2)) is defined as follows:

(Def. 18) BitFTA2AdderOutputQ(a7, b1, c3, d1, c2) = a1(a2(a7, b1, c3), c2, d1).

One can prove the following propositions:
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(27) Let a7, b1, c3 be non pair sets, d1, c2 be sets, s be a sta-
te of BitFTA2Circ(a7, b1, c3, d1, c2), and a2, a3, a4 be elements of
Boolean. Suppose a2 = s(a7) and a3 = s(b1) and a4 = s(c3). Then
(Following(s, 2))(BitFTA2CarryOutput(a7, b1, c3, d1, c2)) = ¬(¬a2∧a3∨
a3∧¬a4∨¬a4∧¬a2) and (Following(s, 2))(BitFTA2AdderOutputI(a7, b1,
c3, d1, c2)) = ¬a2 ⊕ a3 ⊕ ¬a4.

(28) Let a7, b1, c3, d1 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d1,
a2(a7, b1, c3)〉, and2 〉〉 and c2 /∈ IV(Σ2(a7, b1, c3)). Let s be a state of
BitFTA2Circ(a7, b1, c3, d1, c2) and a2, a3, a4, a5, a6 be elements of
Boolean. Suppose a2 = s(a7) and a3 = s(b1) and a4 = s(c3) and
a5 = s(d1) and a6 = s(c2). Then (Following(s, 2))(a2(a7, b1, c3)) =
¬a2 ⊕ a3 ⊕¬a4 and (Following(s, 2))(a7) = a2 and (Following(s, 2))(b1) =
a3 and (Following(s, 2))(c3) = a4 and (Following(s, 2))(d1) = a5 and
(Following(s, 2))(c2) = a6.

(29) Let a7, b1, c3, d1 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d1,
a2(a7, b1, c3)〉, and2 〉〉 and c2 /∈ IV(Σ2(a7, b1, c3)). Let s be a state of
BitFTA2Circ(a7, b1, c3, d1, c2) and a2, a3, a4, a5, a6 be elements of
Boolean. Suppose a2 = s(a7) and a3 = s(b1) and a4 = s(c3) and a5 = s(d1)
and a6 = s(c2). Then (Following(s, 4))(BitFTA2AdderOutputP(a7, b1,
c3, d1, c2)) = (¬a2⊕a3⊕¬a4)∧¬a6∨¬a6∧a5∨a5∧ (¬a2⊕a3⊕¬a4) and
(Following(s, 4))(BitFTA2AdderOutputQ(a7, b1, c3, d1, c2)) = ¬(¬a2 ⊕
a3 ⊕ ¬a4 ⊕ a5 ⊕ ¬a6).

(30) Let a7, b1, c3, d1 be non pair sets and c2 be a set. If c2 6= 〈〈〈d1, a2(a7, b1,
c3)〉, and2 〉〉, then for every state s of BitFTA2Circ(a7, b1, c3, d1, c2) holds
Following(s, 4) is stable.

4. Stability of 4-2 Binary Addition Circuit Cell (TYPE-3)

Let a7, b2, c3, d2, c2 be sets. The functor BitFTA3Str(a7, b2, c3, d2, c2) yields
an unsplit non void strict non empty many sorted signature with arity held in
gates and Boolean denotation held in gates and is defined by:

(Def. 19) BitFTA3Str(a7, b2, c3, d2, c2) = Σ3(a7, b2, c3)+·Σ3(a3(a7, b2, c3), c2,
d2).

Let a7, b2, c3, d2, c2 be sets. The functor BitFTA3Circ(a7, b2, c3, d2, c2) yiel-
ding a strict Boolean circuit of BitFTA3Str(a7, b2, c3, d2, c2) with denotation
held in gates is defined by:

(Def. 20) BitFTA3Circ(a7, b2, c3, d2, c2) = C3(a7, b2, c3)+·C3(a3(a7, b2, c3), c2,
d2).

We now state several propositions:
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(31) Let a7, b2, c3, d2, c2 be sets. Then IV(BitFTA3Str(a7, b2, c3, d2, c2)) =
{〈〈〈a7, b2〉, xor2 〉〉, a3(a7, b2, c3)}∪ {〈〈〈a7, b2〉, and2b 〉〉, 〈〈〈b2, c3〉, and2b 〉〉, 〈〈〈c3,
a7〉, and2b 〉〉, c3(a7, b2, c3)} ∪ {〈〈〈a3(a7, b2, c3), c2〉, xor2 〉〉, a3(a3(a7, b2, c3),
c2, d2)}∪{〈〈〈a3(a7, b2, c3), c2〉, and2b 〉〉, 〈〈〈c2, d2〉, and2b 〉〉, 〈〈〈d2, a3(a7, b2, c3)〉,
and2b 〉〉, c3(a3(a7, b2, c3), c2, d2)}.

(32) For all sets a7, b2, c3, d2, c2 holds IV(BitFTA3Str(a7, b2, c3, d2, c2)) is
a binary relation.

(33) For all non pair sets a7, b2, c3, d2 and for every set c2 such that
c2 6= 〈〈〈d2, a3(a7, b2, c3)〉, and2b 〉〉 and c2 /∈ IV(Σ3(a7, b2, c3)) holds
InputVertices(BitFTA3Str(a7, b2, c3, d2, c2)) = {a7, b2, c3, d2, c2}.

(34) Let a7, b2, c3, d2, c2 be sets. Then a7 ∈ the carrier of BitFTA3Str(a7,
b2, c3, d2, c2) and b2 ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and
c3 ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and d2 ∈ the carrier
of BitFTA3Str(a7, b2, c3, d2, c2) and c2 ∈ the carrier of BitFTA3Str(a7,
b2, c3, d2, c2) and 〈〈〈a7, b2〉, xor2 〉〉 ∈ the carrier of BitFTA3Str(a7, b2, c3,
d2, c2) and a3(a7, b2, c3) ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2)
and 〈〈〈a7, b2〉, and2b 〉〉 ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and
〈〈〈b2, c3〉, and2b 〉〉 ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and 〈〈〈c3,
a7〉, and2b 〉〉 ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and c3(a7, b2,
c3) ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and 〈〈〈a3(a7, b2, c3), c2〉,
xor2 〉〉 ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and a3(a3(a7, b2, c3),
c2, d2) ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and 〈〈〈a3(a7, b2, c3),
c2〉, and2b 〉〉 ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and 〈〈〈c2, d2〉,
and2b 〉〉 ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and 〈〈〈d2, a3(a7, b2,
c3)〉, and2b 〉〉 ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2) and c3(a3(a7,
b2, c3), c2, d2) ∈ the carrier of BitFTA3Str(a7, b2, c3, d2, c2).

(35) Let a7, b2, c3, d2, c2 be sets. Then 〈〈〈a7, b2〉, xor2 〉〉 ∈ IV(BitFTA3Str(a7,
b2, c3, d2, c2)) and a3(a7, b2, c3) ∈ IV(BitFTA3Str(a7, b2, c3, d2, c2)) and
〈〈〈a7, b2〉, and2b 〉〉, 〈〈〈b2, c3〉, and2b 〉〉, 〈〈〈c3, a7〉, and2b 〉〉 ∈ IV(BitFTA3Str(a7,
b2, c3, d2, c2)) and c3(a7, b2, c3) ∈ IV(BitFTA3Str(a7, b2, c3, d2, c2))
and 〈〈〈a3(a7, b2, c3), c2〉, xor2 〉〉, a3(a3(a7, b2, c3), c2, d2), 〈〈〈a3(a7, b2, c3),
c2〉, and2b 〉〉, 〈〈〈c2, d2〉, and2b 〉〉, 〈〈〈d2, a3(a7, b2, c3)〉, and2b 〉〉, c3(a3(a7, b2,
c3), c2, d2) ∈ IV(BitFTA3Str(a7, b2, c3, d2, c2)).

(36) Let a7, b2, c3, d2 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d2,
a3(a7, b2, c3)〉, and2b 〉〉 and c2 /∈ IV(Σ3(a7, b2, c3)). Then a7, b2, c3, d2,
c2 ∈ InputVertices(BitFTA3Str(a7, b2, c3, d2, c2)).
Let a7, b2, c3, d2, c2 be sets. The functor BitFTA3CarryOutput(a7, b2, c3,

d2, c2) yields an element of IV(BitFTA3Str(a7, b2, c3, d2, c2)) and is defined
by:

(Def. 21) BitFTA3CarryOutput(a7, b2, c3, d2, c2) = c3(a7, b2, c3).

The functor BitFTA3AdderOutputI(a7, b2, c3, d2, c2) yields an element of
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IV(BitFTA3Str(a7, b2, c3, d2, c2)) and is defined by:
(Def. 22) BitFTA3AdderOutputI(a7, b2, c3, d2, c2) = a3(a7, b2, c3).

The functor BitFTA3AdderOutputP(a7, b2, c3, d2, c2) yields an element of
IV(BitFTA3Str(a7, b2, c3, d2, c2)) and is defined by:

(Def. 23) BitFTA3AdderOutputP(a7, b2, c3, d2, c2) = c3(a3(a7, b2, c3), c2, d2).

The functor BitFTA3AdderOutputQ(a7, b2, c3, d2, c2) yielding an element of
IV(BitFTA3Str(a7, b2, c3, d2, c2)) is defined by:

(Def. 24) BitFTA3AdderOutputQ(a7, b2, c3, d2, c2) = a3(a3(a7, b2, c3), c2, d2).

One can prove the following propositions:

(37) Let a7, b2, c3 be non pair sets, d2, c2 be sets, s be a
state of BitFTA3Circ(a7, b2, c3, d2, c2), and a2, a3, a4 be ele-
ments of Boolean. Suppose a2 = s(a7) and a3 = s(b2)
and a4 = s(c3). Then (Following(s, 2))(BitFTA3CarryOutput(a7,
b2, c3, d2, c2)) = ¬(¬a2 ∧ ¬a3 ∨ ¬a3 ∧ ¬a4 ∨ ¬a4 ∧ ¬a2) and
(Following(s, 2))(BitFTA3AdderOutputI(a7, b2, c3, d2, c2)) = ¬(¬a2 ⊕
¬a3 ⊕ ¬a4).

(38) Let a7, b2, c3, d2 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d2,
a3(a7, b2, c3)〉, and2b 〉〉 and c2 /∈ IV(Σ3(a7, b2, c3)). Let s be a state
of BitFTA3Circ(a7, b2, c3, d2, c2) and a2, a3, a4, a5, a6 be elements of
Boolean. Suppose a2 = s(a7) and a3 = s(b2) and a4 = s(c3) and a5 =
s(d2) and a6 = s(c2). Then (Following(s, 2))(a3(a7, b2, c3)) = ¬(¬a2 ⊕
¬a3 ⊕ ¬a4) and (Following(s, 2))(a7) = a2 and (Following(s, 2))(b2) =
a3 and (Following(s, 2))(c3) = a4 and (Following(s, 2))(d2) = a5 and
(Following(s, 2))(c2) = a6.

(39) Let a7, b2, c3, d2 be non pair sets and c2 be a set. Suppose c2 6= 〈〈〈d2,
a3(a7, b2, c3)〉, and2b 〉〉 and c2 /∈ IV(Σ3(a7, b2, c3)). Let s be a state
of BitFTA3Circ(a7, b2, c3, d2, c2) and a2, a3, a4, a5, a6 be elements of
Boolean. Suppose a2 = s(a7) and a3 = s(b2) and a4 = s(c3) and a5 = s(d2)
and a6 = s(c2). Then (Following(s, 4))(BitFTA3AdderOutputP(a7, b2,
c3, d2, c2)) = ¬((¬a2 ⊕ ¬a3 ⊕ ¬a4) ∧ ¬a6 ∨ ¬a6 ∧ ¬a5 ∨ ¬a5 ∧ (¬a2 ⊕
¬a3 ⊕ ¬a4)) and (Following(s, 4))(BitFTA3AdderOutputQ(a7, b2, c3, d2,
c2)) = ¬(¬a2 ⊕ ¬a3 ⊕ ¬a4 ⊕ ¬a5 ⊕ ¬a6).

(40) Let a7, b2, c3, d2 be non pair sets and c2 be a set. If c2 6= 〈〈〈d2, a3(a7,
b2, c3)〉, and2b 〉〉, then for every state s of BitFTA3Circ(a7, b2, c3, d2, c2)
holds Following(s, 4) is stable.

References

[1] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[2] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Ma-
thematics, 5(3):367–380, 1996.



stability of the 4-2 binary addition circuit . . . 387

[3] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[4] Yatsuka Nakamura and Grzegorz Bancerek. Combining of circuits. Formalized Mathema-
tics, 5(2):283–295, 1996.

[5] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Intro-
duction to circuits, II. Formalized Mathematics, 5(2):273–278, 1996.

[6] Yatsuka Nakamura, Piotr Rudnicki, Andrzej Trybulec, and Pauline N. Kawamoto. Preli-
minaries to circuits, II. Formalized Mathematics, 5(2):215–220, 1996.

[7] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics,
4(1):83–86, 1993.

[8] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25–34, 1990.
[9] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[11] E. Jean Vuillemin. A very fast multiplication algorithm for VLSI implementation, inte-
gration. The VLSI Journal, 1(1):39–52, 1983.

[12] Katsumi Wasaki and Pauline N. Kawamoto. 2’s complement circuit. Formalized Mathe-
matics, 6(2):189–197, 1997.

[13] Edmund Woronowicz. Many–argument relations. Formalized Mathematics, 1(4):733–737,
1990.

[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,
1(1):73–83, 1990.

[15] Shin’nosuke Yamaguchi, Katsumi Wasaki, and Nobuhiro Shimoi. Generalized full adder
circuits (GFAs). Part I. Formalized Mathematics, 13(4):549–571, 2005.

Received August 28, 2008





FORMALIZED MATHEMATICS

Vol. 16, No. 4, Pages 389–399, 2008

Several Differentiation Formulas of Special
Functions. Part VII

Fuguo Ge
Qingdao University of Science

and Technology
China

Bing Xie
Qingdao University of Science

and Technology
China

Summary. In this article, we prove a series of differentiation identities [2]
involving the arctan and arccot functions and specific combinations of special
functions including trigonometric and exponential functions.

MML identifier: FDIFF 11, version: 7.10.01 4.111.1036

The papers [13], [15], [1], [10], [16], [5], [12], [3], [6], [9], [4], [11], [8], [14], and [7]
provide the terminology and notation for this paper.
For simplicity, we adopt the following rules: x denotes a real number, n

denotes an element of N, Z denotes an open subset of R, and f , g denote partial
functions from R to R.
Next we state a number of propositions:

(1) Suppose Z ⊆ dom((the function arctan) ·(the function sin)) and for
every x such that x ∈ Z holds −1 < sinx < 1. Then
(i) (the function arctan) ·(the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
sin))′�Z(x) =

cosx
1+(sinx)2 .

(2) Suppose Z ⊆ dom((the function arccot) ·(the function sin)) and for every
x such that x ∈ Z holds −1 < sinx < 1. Then
(i) (the function arccot) ·(the function sin) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
sin))′�Z(x) = − cosx

1+(sinx)2 .

(3) Suppose Z ⊆ dom((the function arctan) ·(the function cos)) and for
every x such that x ∈ Z holds −1 < cosx < 1. Then
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(i) (the function arctan) ·(the function cos) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
cos))′�Z(x) = − sinx

1+(cosx)2 .

(4) Suppose Z ⊆ dom((the function arccot) ·(the function cos)) and for
every x such that x ∈ Z holds −1 < cosx < 1. Then
(i) (the function arccot) ·(the function cos) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
cos))′�Z(x) =

sinx
1+(cosx)2 .

(5) Suppose Z ⊆ dom((the function arctan) ·(the function tan)) and for
every x such that x ∈ Z holds −1 < tanx < 1. Then
(i) (the function arctan) ·(the function tan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
tan))′�Z(x) = 1.

(6) Suppose Z ⊆ dom((the function arccot) ·(the function tan)) and for
every x such that x ∈ Z holds −1 < tanx < 1. Then
(i) (the function arccot) ·(the function tan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
tan))′�Z(x) = −1.

(7) Suppose Z ⊆ dom((the function arctan) ·(the function cot)) and for
every x such that x ∈ Z holds −1 < cotx < 1. Then
(i) (the function arctan) ·(the function cot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
cot))′�Z(x) = −1.

(8) Suppose Z ⊆ dom((the function arccot) ·(the function cot)) and for
every x such that x ∈ Z holds −1 < cotx < 1. Then
(i) (the function arccot) ·(the function cot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
cot))′�Z(x) = 1.

(9) Suppose Z ⊆ dom((the function arctan) ·(the function arctan)) and
Z ⊆ ]−1, 1[ and for every x such that x ∈ Z holds −1 < arctanx < 1.
Then
(i) (the function arctan) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
arctan))′�Z(x) =

1
(1+x2)·(1+(arctanx)2) .

(10) Suppose Z ⊆ dom((the function arccot) ·(the function arctan)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds −1 < arctanx < 1. Then
(i) (the function arccot) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
arctan))′�Z(x) = − 1

(1+x2)·(1+(arctanx)2) .
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(11) Suppose Z ⊆ dom((the function arctan) ·(the function arccot)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds −1 < arccotx < 1. Then
(i) (the function arctan) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
arccot))′�Z(x) = − 1

(1+x2)·(1+(arccotx)2) .

(12) Suppose Z ⊆ dom((the function arccot) ·(the function arccot)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds −1 < arccotx < 1. Then
(i) (the function arccot) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
arccot))′�Z(x) =

1
(1+x2)·(1+(arccotx)2) .

(13) Suppose Z ⊆ dom((the function sin) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function sin) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function
arctan))′�Z(x) =

cos arctanx
1+x2 .

(14) Suppose Z ⊆ dom((the function sin) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function sin) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) ·(the function
arccot))′�Z(x) = − cos arccotx1+x2 .

(15) Suppose Z ⊆ dom((the function cos) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cos) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function
arctan))′�Z(x) = − sin arctanx1+x2 .

(16) Suppose Z ⊆ dom((the function cos) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cos) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cos) ·(the function
arccot))′�Z(x) =

sin arccotx
1+x2 .

(17) Suppose Z ⊆ dom((the function tan) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function tan) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function
arctan))′�Z(x) =

1
(cos arctanx)2·(1+x2) .

(18) Suppose Z ⊆ dom((the function tan) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function tan) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan) ·(the function
arccot))′�Z(x) = − 1

(cos arccotx)2·(1+x2) .
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(19) Suppose Z ⊆ dom((the function cot) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cot) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function
arctan))′�Z(x) = − 1

(sin arctanx)2·(1+x2) .

(20) Suppose Z ⊆ dom((the function cot) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cot) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cot) ·(the function
arccot))′�Z(x) =

1
(sin arccotx)2·(1+x2) .

(21) Suppose Z ⊆ dom((the function sec) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function sec) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sec) ·(the function
arctan))′�Z(x) =

sin arctanx
(cos arctanx)2·(1+x2) .

(22) Suppose Z ⊆ dom((the function sec) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function sec) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sec) ·(the function
arccot))′�Z(x) = − sin arccotx

(cos arccotx)2·(1+x2) .

(23) Suppose Z ⊆ dom((the function cosec) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cosec) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cosec) ·(the function
arctan))′�Z(x) = − cos arctanx

(sin arctanx)2·(1+x2) .

(24) Suppose Z ⊆ dom((the function cosec) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cosec) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cosec) ·(the function
arccot))′�Z(x) =

cos arccotx
(sin arccotx)2·(1+x2) .

(25) Suppose Z ⊆ dom((the function sin) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function sin) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) (the function
arctan))′�Z(x) = cosx · arctanx+ sinx1+x2 .

(26) Suppose Z ⊆ dom((the function sin) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function sin) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sin) (the function
arccot))′�Z(x) = cosx · arccotx− sinx1+x2 .
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(27) Suppose Z ⊆ dom((the function cos) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cos) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cos) (the function
arctan))′�Z(x) = −sinx · arctanx+ cosx1+x2 .

(28) Suppose Z ⊆ dom((the function cos) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cos) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cos) (the function
arccot))′�Z(x) = −sinx · arccotx− cosx1+x2 .

(29) Suppose Z ⊆ dom((the function tan) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function tan) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan) (the function
arctan))′�Z(x) =

arctanx
(cosx)2 +

tanx
1+x2 .

(30) Suppose Z ⊆ dom((the function tan) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function tan) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function tan) (the function
arccot))′�Z(x) =

arccotx
(cosx)2 −

tanx
1+x2 .

(31) Suppose Z ⊆ dom((the function cot) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cot) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cot) (the function
arctan))′�Z(x) = −arctanx(sinx)2 +

cotx
1+x2 .

(32) Suppose Z ⊆ dom((the function cot) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cot) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cot) (the function
arccot))′�Z(x) = −arccotx(sinx)2 −

cotx
1+x2 .

(33) Suppose Z ⊆ dom((the function sec) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function sec) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sec) (the function
arctan))′�Z(x) =

sinx·arctanx
(cosx)2 + 1

cosx·(1+x2) .

(34) Suppose Z ⊆ dom((the function sec) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function sec) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function sec) (the function
arccot))′�Z(x) =

sinx·arccotx
(cosx)2 − 1

cosx·(1+x2) .
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(35) Suppose Z ⊆ dom((the function cosec) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function cosec) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cosec) (the function
arctan))′�Z(x) = − cosx·arctanx(sinx)2 + 1

sinx·(1+x2) .

(36) Suppose Z ⊆ dom((the function cosec) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function cosec) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function cosec) (the function
arccot))′�Z(x) = − cosx·arccotx(sinx)2 − 1

sinx·(1+x2) .

(37) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan)+(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan)+(the function
arccot))′�Z(x) = 0.

(38) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan)−(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan)−(the function
arccot))′�Z(x) =

2
1+x2 .

(39) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function sin) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the function
arctan)+(the function arccot)))′�Z(x) = cosx · (arctanx+ arccotx).

(40) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function sin) ((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ((the function
arctan)−(the function arccot)))′�Z(x) = cosx·(arctanx−arccotx)+ 2·sinx1+x2 .

(41) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function cos) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function
arctan)+(the function arccot)))′�Z(x) = −sinx · (arctanx+ arccotx).

(42) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function cos) ((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ((the function
arctan)−(the function arccot)))′�Z(x) = −sinx · (arctanx− arccotx) +
2·cosx
1+x2 .

(43) Suppose Z ⊆ dom (the function tan) and Z ⊆ ]−1, 1[. Then
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(i) (the function tan) ((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ((the function
arctan)+(the function arccot)))′�Z(x) =

arctanx+arccotx
(cosx)2 .

(44) Suppose Z ⊆ dom (the function tan) and Z ⊆ ]−1, 1[. Then
(i) (the function tan) ((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function tan) ((the function
arctan)−(the function arccot)))′�Z(x) = arctanx−arccotx(cosx)2 + 2·tanx1+x2 .

(45) Suppose Z ⊆ dom (the function cot) and Z ⊆ ]−1, 1[. Then
(i) (the function cot) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ((the function
arctan)+(the function arccot)))′�Z(x) = −arctanx+arccotx(sinx)2 .

(46) Suppose Z ⊆ dom (the function cot) and Z ⊆ ]−1, 1[. Then
(i) (the function cot) ((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cot) ((the function
arctan)−(the function arccot)))′�Z(x) = −arctanx−arccotx(sinx)2 + 2·cotx1+x2 .

(47) Suppose Z ⊆ dom (the function sec) and Z ⊆ ]−1, 1[. Then
(i) (the function sec) ((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sec) ((the function
arctan)+(the function arccot)))′�Z(x) =

(arctanx+arccotx)·sinx
(cosx)2 .

(48) Suppose Z ⊆ dom (the function sec) and Z ⊆ ]−1, 1[. Then
(i) (the function sec) ((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sec) ((the function
arctan)−(the function arccot)))′�Z(x) =

(arctanx−arccotx)·sinx
(cosx)2 + 2·secx1+x2 .

(49) Suppose Z ⊆ dom (the function cosec) and Z ⊆ ]−1, 1[. Then
(i) (the function cosec) ((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cosec) ((the function
arctan)+(the function arccot)))′�Z(x) = −

(arctanx+arccotx)·cosx
(sinx)2 .

(50) Suppose Z ⊆ dom (the function cosec) and Z ⊆ ]−1, 1[. Then
(i) (the function cosec) ((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cosec) ((the function
arctan)−(the function arccot)))′�Z(x) = −

(arctanx−arccotx)·cosx
(sinx)2 + 2·cosecx1+x2 .

(51) Suppose Z ⊆ ]−1, 1[. Then
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(i) (the function exp) ((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the function
arctan)+(the function arccot)))′�Z(x) = expx · (arctanx+ arccotx).

(52) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function exp) ((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ((the function
arctan)−(the function arccot)))′�Z(x) = expx·(arctanx−arccotx)+

2·expx
1+x2 .

(53) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan)+(the function arccot)

the function exp is differentiable on Z, and
(ii) for every x such that x ∈ Z holds
( (the function arctan)+(the function arccot)the function exp )′�Z(x) = −arctanx+arccotxexpx .

(54) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan)−(the function arccot)

the function exp is differentiable on Z, and
(ii) for every x such that x ∈ Z holds

( (the function arctan)−(the function arccot)the function exp )′�Z(x) =
( 2
1+x2

−arctanx)+arccotx
expx .

(55) Suppose Z ⊆ dom((the function exp) ·((the function arctan)+(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function exp) ·((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·((the function
arctan)+(the function arccot)))′�Z(x) = 0.

(56) Suppose Z ⊆ dom((the function exp) ·((the function arctan)−(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function exp) ·((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function exp) ·((the function
arctan)−(the function arccot)))′�Z(x) =

2·exp(arctanx−arccotx)
1+x2 .

(57) Suppose Z ⊆ dom((the function sin) ·((the function arctan)+(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function sin) ·((the function arctan)+(the function arccot)) is dif-
ferentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function sin) ·((the function
arctan)+(the function arccot)))′�Z(x) = 0.

(58) Suppose Z ⊆ dom((the function sin) ·((the function arctan)−(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function sin) ·((the function arctan)−(the function arccot)) is dif-
ferentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((the function sin) ·((the function
arctan)−(the function arccot)))′�Z(x) =

2·cos(arctanx−arccotx)
1+x2 .

(59) Suppose Z ⊆ dom((the function cos) ·((the function arctan)+(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function cos) ·((the function arctan)+(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·((the function
arctan)+(the function arccot)))′�Z(x) = 0.

(60) Suppose Z ⊆ dom((the function cos) ·((the function arctan)−(the func-
tion arccot))) and Z ⊆ ]−1, 1[. Then
(i) (the function cos) ·((the function arctan)−(the function arccot)) is
differentiable on Z, and

(ii) for every x such that x ∈ Z holds ((the function cos) ·((the function
arctan)−(the function arccot)))′�Z(x) = −

2·sin(arctanx−arccotx)
1+x2 .

(61) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function arctan) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) (the function
arccot))′�Z(x) =

arccotx−arctanx
1+x2 .

(62) Suppose that
(i) Z ⊆ dom(((the function arctan) · 1f ) ((the function arccot) ·

1
f )), and

(ii) for every x such that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1.
Then

(iii) ((the function arctan) · 1f ) ((the function arccot) ·
1
f ) is differentiable on

Z, and
(iv) for every x such that x ∈ Z holds (((the function arctan) · 1f ) ((the

function arccot) · 1f ))
′
�Z(x) =

arctan( 1
x
)−arccot( 1

x
)

1+x2 .

(63) Suppose Z ⊆ dom(idZ ((the function arctan) · 1f )) and for every x such
that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) idZ ((the function arctan) · 1f ) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ ((the function arctan)
· 1f ))

′
�Z(x) = arctan(

1
x)−

x
1+x2 .

(64) Suppose Z ⊆ dom(idZ ((the function arccot) · 1f )) and for every x such
that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) idZ ((the function arccot) · 1f ) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ ((the function arccot)
· 1f ))

′
�Z(x) = arccot(

1
x) +

x
1+x2 .

(65) Suppose Z ⊆ dom(g ((the function arctan) · 1f )) and g = �2 and for
every x such that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) g ((the function arctan) · 1f ) is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds (g ((the function arctan) · 1f ))
′
�Z(x) =

2 · x · arctan( 1x)−
x2

1+x2 .

(66) Suppose Z ⊆ dom(g ((the function arccot) · 1f )) and g = �2 and for every
x such that x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) g ((the function arccot) · 1f ) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (g ((the function arccot) · 1f ))

′
�Z(x) =

2 · x · arccot( 1x) +
x2

1+x2 .

(67) Suppose Z ⊆ ]−1, 1[ and for every x such that x ∈ Z holds (the function
arctan)(x) 6= 0. Then
(i) 1

the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1

the function arctan)
′
�Z(x) =

− 1
(arctanx)2·(1+x2) .

(68) Suppose Z ⊆ ]−1, 1[. Then
(i) 1

the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1

the function arccot)
′
�Z(x) =

1
(arccotx)2·(1+x2) .

One can prove the following propositions:

(69) Suppose Z ⊆ dom( 1
n (the function arctan)n ) and Z ⊆ ]−1, 1[ and n > 0 and

for every x such that x ∈ Z holds arctanx 6= 0. Then
(i) 1

n (the function arctan)n is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
n (the function arctan)n )

′
�Z(x) =

− 1
((arctanx)n+1)·(1+x2) .

(70) Suppose Z ⊆ dom( 1
n (the function arccot)n ) and Z ⊆ ]−1, 1[ and n > 0.

Then
(i) 1

n (the function arccot)n is differentiable on Z, and

(ii) for every x such that x ∈ Z holds ( 1
n (the function arccot)n )

′
�Z(x) =

1
((arccotx)n+1)·(1+x2) .

(71) Suppose Z ⊆ dom(2 (the function arctan)
1
2 ) and Z ⊆ ]−1, 1[ and for

every x such that x ∈ Z holds arctanx > 0. Then
(i) 2 (the function arctan)

1
2 is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (2 (the function arctan)
1
2 )′�Z(x) =

(arctanx)−
1
2

1+x2 .

(72) Suppose Z ⊆ dom(2 (the function arccot)
1
2 ) and Z ⊆ ]−1, 1[. Then

(i) 2 (the function arccot)
1
2 is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (2 (the function arccot)
1
2 )′�Z(x) =

− (arccotx)
− 12

1+x2 .
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(73) Suppose Z ⊆ dom(23 (the function arctan)
3
2 ) and Z ⊆ ]−1, 1[ and for

every x such that x ∈ Z holds arctanx > 0. Then
(i) 2

3 (the function arctan)
3
2 is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (23 (the function arctan)
3
2 )′�Z(x) =

(arctanx)
1
2

1+x2 .

(74) Suppose Z ⊆ dom(23 (the function arccot)
3
2 ) and Z ⊆ ]−1, 1[. Then

(i) 2
3 (the function arccot)

3
2 is differentiable on Z, and

(ii) for every x such that x ∈ Z holds (23 (the function arccot)
3
2 )′�Z(x) =

− (arccotx)
1
2

1+x2 .
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Summary. In this article we formalize one of the most important the-
orems of linear operator theory the Open Mapping Theorem commonly used in a
standard book such as [8] in chapter 2.4.2. It states that a surjective continuous
linear operator between Banach spaces is an open map.

MML identifier: LOPBAN 6, version: 7.10.01 4.111.1036

The notation and terminology used here are introduced in the following papers:
[13], [14], [3], [9], [2], [7], [1], [4], [5], [10], [6], [12], [11], and [15].
The following proposition is true

(1) For all real numbers x, y such that 0 ≤ x < y there exists a real number
s0 such that 0 < s0 and x <

y
1+s0
< y.

The scheme RecExD3 deals with a non empty set A, an element B of A, an
element C of A, and a 4-ary predicate P, and states that:

There exists a function f from N into A such that f(0) = B and
f(1) = C and for every element n of N holds P[n, f(n), f(n +
1), f(n+ 2)]

provided the parameters meet the following requirement:
• For every element n of N and for all elements x, y of A there
exists an element z of A such that P[n, x, y, z].

In the sequel X, Y denote real normed spaces.
The following propositions are true:

(2) For every point y1 of X and for every real number r holds Ball(y1, r) =
y1 +Ball(0X , r).

(3) For every real number r and for every real number a such that 0 < a
holds Ball(0X , a · r) = a · Ball(0X , r).
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(4) For every linear operator T from X into Y and for all subsets B0, B1 of
X holds T ◦(B0 +B1) = T ◦B0 + T ◦B1.

(5) Let T be a linear operator from X into Y , B0 be a subset of X, and a
be a real number. Then T ◦(a ·B0) = a · T ◦B0.

(6) Let T be a linear operator from X into Y , B0 be a subset of X, and x1
be a point of X. Then T ◦(x1 +B0) = T (x1) + T ◦B0.

(7) For all subsets V , W of X and for all subsets V1, W1 of
LinearTopSpaceNormX such that V = V1 and W = W1 holds V +W =
V1 +W1.

(8) Let V be a subset of X, x be a point of X, V1 be a subset of
LinearTopSpaceNormX, and x1 be a point of LinearTopSpaceNormX.
If V = V1 and x = x1, then x+ V = x1 + V1.

(9) For every subset V of X and for every real number a and for every subset
V1 of LinearTopSpaceNormX such that V = V1 holds a · V = a · V1.

(10) For every subset V of TopSpaceNormX and for every subset V1 of
LinearTopSpaceNormX such that V = V1 holds V = V1.

(11) For every point x of X and for every real number r holds Ball(0X , r) =
(−1) · Ball(0X , r).

(12) For every point x of X and for every real number r and for every subset
V of LinearTopSpaceNormX such that V = Ball(x, r) holds V is convex.

(13) Let x be a point of X, r be a real number, T be a linear operator from X
into Y , and V be a subset of LinearTopSpaceNormY. If V = T ◦ Ball(x, r),
then V is convex.

(14) For every point x of X and for all real numbers r, s such that r ≤ s
holds Ball(x, r) ⊆ Ball(x, s).

(15) Let X be a real Banach space, Y be a real normed space, T be a boun-
ded linear operator from X into Y , r be a real number, B2 be a subset of
LinearTopSpaceNormX, and T1, B3 be subsets of LinearTopSpaceNormY.
If r > 0 and B2 = Ball(0X , 1) and B3 = Ball(0Y , r) and T1 =
T ◦ Ball(0X , 1) and B3 ⊆ T1, then B3 ⊆ T1.

(16) Let X, Y be real Banach spaces, T be a bounded linear operator
from X into Y , and T2 be a function from LinearTopSpaceNormX in-
to LinearTopSpaceNormY. If T2 = T and T2 is onto, then T2 is open.
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