Contents

Model Checking. Part II
By Kazuhisa Ishida 231
Modular Integer Arithmetic
By Christoph Schwarzweller 247
General Theory of Quasi-Commutative BCI-algebras
By TaO SUN et al. 253
Block Diagonal Matrices
By Karol PąK 259
Linear Map of Matrices
By Karol PąK 269
Orthomodular Lattices
By Elżbieta Mądra and Adam Grabowski 277
Basic Properties and Concept of Selected Subsequence of Zero Based Finite Sequences
By Yatsuka Nakamura and Hisashi Ito 283
Addenda i

Model Checking. Part II

Kazuhisa Ishida
Shinshu University
Nagano, Japan

Abstract

Summary. This article provides the definition of linear temporal logic (LTL) and its properties relevant to model checking based on [9]. Mizar formalization of LTL language and satisfiability is based on $[2,3]$.

MML identifier: MODELC_2, version: $\underline{7.9 .014 .101 .1015}$

The articles [8], [11], [6], [5], [7], [1], [4], [12], and [10] provide the notation and terminology for this paper.

Let x be a set. The functor CastNat x yielding a natural number is defined by:
(Def. 1) CastNat $x=\left\{\begin{array}{l}x, \text { if } x \text { is a natural number, } \\ 0, \text { otherwise. }\end{array}\right.$
Let W_{1} be a set. A sequence of W_{1} is a function from \mathbb{N} into W_{1}.
For simplicity, we adopt the following rules: k, n denote natural numbers, a denotes a set, D, S denote non empty sets, and p, q denote finite sequences of elements of \mathbb{N}.

Let us consider n. The functor atom. n yielding a finite sequence of elements of \mathbb{N} is defined as follows:
(Def. 2) atom. $n=\langle 6+n\rangle$.
Let us consider p. The functor $\neg p$ yielding a finite sequence of elements of \mathbb{N} is defined by:
(Def. 3) $\neg p=\langle 0\rangle \wedge p$.
Let us consider q. The functor $p \wedge q$ yields a finite sequence of elements of \mathbb{N} and is defined by:
(Def. 4) $p \wedge q=\langle 1\rangle{ }^{\wedge} p^{\wedge} q$.
The functor $p \vee q$ yielding a finite sequence of elements of \mathbb{N} is defined by:
(Def. 5) $\quad p \vee q=\langle 2\rangle \frown p^{\frown} q$.
Let us consider p. The functor $\mathcal{X} p$ yielding a finite sequence of elements of \mathbb{N} is defined as follows:
(Def. 6) $\mathcal{X} p=\langle 3\rangle^{\wedge} p$.
Let us consider q. The functor $p \mathcal{U} q$ yielding a finite sequence of elements of \mathbb{N} is defined by:
(Def. 7) $\quad p \mathcal{U} q=\langle 4\rangle{ }^{\wedge} p^{\wedge} q$.
The functor $p \mathcal{R} q$ yields a finite sequence of elements of \mathbb{N} and is defined as follows:
(Def. 8) $\quad p \mathcal{R} q=\langle 5\rangle^{\wedge} p^{\wedge} q$.
The non empty set $\mathrm{WFF}_{\text {LTL }}$ is defined by the conditions (Def. 9).
(Def. 9) For every a such that $a \in \mathrm{WFF}_{\text {LTL }}$ holds a is a finite sequence of elements of \mathbb{N} and for every n holds atom. $n \in \mathrm{WFF}_{\text {LTL }}$ and for every p such that $p \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $\neg p \in \mathrm{WFF}_{\mathrm{LTL}}$ and for all p, q such that $p, q \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $p \wedge q \in \mathrm{WFF}_{\mathrm{LTL}}$ and for all p, q such that $p, q \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $p \vee q \in \mathrm{WFF}_{\mathrm{LTL}}$ and for every p such that $p \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $\mathcal{X} p \in$ $\mathrm{WFF}_{\mathrm{LTL}}$ and for all p, q such that $p, q \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $p \mathcal{U} q \in \mathrm{WFF}_{\mathrm{LTL}}$ and for all p, q such that $p, q \in \mathrm{WFF}_{\mathrm{LTL}}$ holds $p \mathcal{R} q \in \mathrm{WFF}_{\mathrm{LTL}}$ and for every D such that for every a such that $a \in D$ holds a is a finite sequence of elements of \mathbb{N} and for every n holds atom. $n \in D$ and for every p such that $p \in D$ holds $\neg p \in D$ and for all p, q such that $p, q \in D$ holds $p \wedge q \in D$ and for all p, q such that $p, q \in D$ holds $p \vee q \in D$ and for every p such that $p \in D$ holds $\mathcal{X} p \in D$ and for all p, q such that $p, q \in D$ holds $p \mathcal{U} q \in D$ and for all p, q such that $p, q \in D$ holds $p \mathcal{R} q \in D$ holds $\mathrm{WFF}_{\mathrm{LTL}} \subseteq D$.

Let I_{1} be a finite sequence of elements of \mathbb{N}. We say that I_{1} is LTL-formulalike if and only if:
(Def. 10) $\quad I_{1}$ is an element of $\mathrm{WFF}_{\text {LTL }}$.
Let us observe that there exists a finite sequence of elements of \mathbb{N} which is LTL-formula-like.

An LTL-formula is a LTL-formula-like finite sequence of elements of \mathbb{N}.
Next we state the proposition
(1) a is an LTL-formula iff $a \in \mathrm{WFF}_{\mathrm{LTL}}$.

In the sequel $F, F_{1}, G, H, H_{1}, H_{2}$ denote LTL-formulae.
Let us consider n. Observe that atom. n is LTL-formula-like.
Let us consider H. Note that $\neg H$ is LTL-formula-like and $\mathcal{X} H$ is LTL-formula-like. Let us consider G. One can check the following observations:

* $H \wedge G$ is LTL-formula-like,
* $H \vee G$ is LTL-formula-like,
* $\quad H \mathcal{U} G$ is LTL-formula-like, and
* $H \mathcal{R} G$ is LTL-formula-like.

Let us consider H. We say that H is atomic if and only if:
(Def. 11) There exists n such that $H=$ atom. n.
We say that H is negative if and only if:
(Def. 12) There exists H_{1} such that $H=\neg H_{1}$.
We say that H is conjunctive if and only if:
(Def. 13) There exist F, G such that $H=F \wedge G$.
We say that H is disjunctive if and only if:
(Def. 14) There exist F, G such that $H=F \vee G$.
We say that H has next operator if and only if:
(Def. 15) There exists H_{1} such that $H=\mathcal{X} H_{1}$.
We say that H has until operator if and only if:
(Def. 16) There exist F, G such that $H=F \mathcal{U} G$.
We say that H has release operator if and only if:
(Def. 17) There exist F, G such that $H=F \mathcal{R} G$.
Next we state two propositions:
(2) H is either atomic, or negative, or conjunctive, or disjunctive, or has next operator, or until operator, or release operator.
(3) $1 \leq$ len H.

Let us consider H. Let us assume that H is either negative or has next operator. The functor $\operatorname{Arg}(H)$ yields an LTL-formula and is defined by:
(Def. 18)(i) $\neg \operatorname{Arg}(H)=H$ if H is negative,
(ii) $\mathcal{X} \operatorname{Arg}(H)=H$, otherwise.

Let us consider H. Let us assume that H is either conjunctive or disjunctive or has until operator or release operator. The functor $\operatorname{Left} \operatorname{Arg}(H)$ yielding an LTL-formula is defined as follows:
(Def. 19)(i) There exists H_{1} such that $\operatorname{Left} \operatorname{Arg}(H) \wedge H_{1}=H$ if H is conjunctive,
(ii) there exists H_{1} such that $\operatorname{Left} \operatorname{Arg}(H) \vee H_{1}=H$ if H is disjunctive,
(iii) there exists H_{1} such that $\operatorname{Left} \operatorname{Arg}(H) \mathcal{U} H_{1}=H$ if H has until operator,
(iv) there exists H_{1} such that $\operatorname{Left} \operatorname{Arg}(H) \mathcal{R} H_{1}=H$, otherwise.

The functor $\operatorname{Right} \operatorname{Arg}(H)$ yields an LTL-formula and is defined by:
(Def. 20)(i) There exists H_{1} such that $H_{1} \wedge \operatorname{Right} \operatorname{Arg}(H)=H$ if H is conjunctive,
(ii) there exists H_{1} such that $H_{1} \vee \operatorname{Right} \operatorname{Arg}(H)=H$ if H is disjunctive,
(iii) there exists H_{1} such that $H_{1} \mathcal{U} \operatorname{Right} \operatorname{Arg}(H)=H$ if H has until operator,
(iv) there exists H_{1} such that $H_{1} \mathcal{R} \operatorname{Right} \operatorname{Arg}(H)=H$, otherwise.

The following propositions are true:
(4) If H is negative, then $H=\neg \operatorname{Arg}(H)$.
(5) If H has next operator, then $H=\mathcal{X} \operatorname{Arg}(H)$.
(6) If H is conjunctive, then $H=\operatorname{Left} \operatorname{Arg}(H) \wedge \operatorname{Right} \operatorname{Arg}(H)$.
(7) If H is disjunctive, then $H=\operatorname{Left} \operatorname{Arg}(H) \vee \operatorname{Right} \operatorname{Arg}(H)$.
(8) If H has until operator, then $H=\operatorname{Left} \operatorname{Arg}(H) \mathcal{U} \operatorname{Right} \operatorname{Arg}(H)$.
(9) If H has release operator, then $H=\operatorname{Left} \operatorname{Arg}(H) \mathcal{R} \operatorname{Right} \operatorname{Arg}(H)$.
(10) If H is either negative or has next operator, then len $H=1+\operatorname{len} \operatorname{Arg}(H)$ and len $\operatorname{Arg}(H)<\operatorname{len} H$.
(11) Suppose H is either conjunctive or disjunctive or has until operator or release operator. Then len $H=1+$ len $\operatorname{Left} \operatorname{Arg}(H)+$ len $\operatorname{Right} \operatorname{Arg}(H)$ and len $\operatorname{Left} \operatorname{Arg}(H)<$ len H and len $\operatorname{Right} \operatorname{Arg}(H)<\operatorname{len} H$.
Let us consider H, F. We say that H is an immediate constituent of F if and only if:
(Def. 21) $F=\neg H$ or $F=\mathcal{X} H$ or there exists H_{1} such that $F=H \wedge H_{1}$ or $F=H_{1} \wedge H$ or $F=H \vee H_{1}$ or $F=H_{1} \vee H$ or $F=H \mathcal{U} H_{1}$ or $F=H_{1} \mathcal{U} H$ or $F=H \mathcal{R} H_{1}$ or $F=H_{1} \mathcal{R} H$.
We now state a number of propositions:
(12) For all F, G holds $(\neg F)(1)=0$ and $(F \wedge G)(1)=1$ and $(F \vee G)(1)=2$ and $(\mathcal{X} F)(1)=3$ and $(F \mathcal{U} G)(1)=4$ and $(F \mathcal{R} G)(1)=5$.
(13) H is an immediate constituent of $\neg F$ iff $H=F$.
(14) H is an immediate constituent of $\mathcal{X} F$ iff $H=F$.
(15) H is an immediate constituent of $F \wedge G$ iff $H=F$ or $H=G$.
(16) H is an immediate constituent of $F \vee G$ iff $H=F$ or $H=G$.
(17) H is an immediate constituent of $F \mathcal{U} G$ iff $H=F$ or $H=G$.
(18) H is an immediate constituent of $F \mathcal{R} G$ iff $H=F$ or $H=G$.
(19) If F is atomic, then H is not an immediate constituent of F.
(20) If F is negative, then H is an immediate constituent of F iff $H=\operatorname{Arg}(F)$.
(21) If F has next operator, then H is an immediate constituent of F iff $H=\operatorname{Arg}(F)$.
(22) If F is conjunctive, then H is an immediate constituent of F iff $H=$ Left $\operatorname{Arg}(F)$ or $H=\operatorname{Right} \operatorname{Arg}(F)$.
(23) If F is disjunctive, then H is an immediate constituent of F iff $H=$ Left $\operatorname{Arg}(F)$ or $H=\operatorname{Right} \operatorname{Arg}(F)$.
(24) If F has until operator, then H is an immediate constituent of F iff $H=\operatorname{Left} \operatorname{Arg}(F)$ or $H=\operatorname{Right} \operatorname{Arg}(F)$.
(25) If F has release operator, then H is an immediate constituent of F iff $H=\operatorname{Left} \operatorname{Arg}(F)$ or $H=\operatorname{Right} \operatorname{Arg}(F)$.
(26) Suppose H is an immediate constituent of F. Then F is either negative, or conjunctive, or disjunctive, or has next operator, or until operator, or
release operator.
In the sequel L denotes a finite sequence.
Let us consider H, F. We say that H is a subformula of F if and only if the condition (Def. 22) is satisfied.
(Def. 22) There exist n, L such that
(i) $1 \leq n$,
(ii) $\operatorname{len} L=n$,
(iii) $L(1)=H$,
(iv) $L(n)=F$, and
(v) for every k such that $1 \leq k<n$ there exist H_{1}, F_{1} such that $L(k)=H_{1}$ and $L(k+1)=F_{1}$ and H_{1} is an immediate constituent of F_{1}.
We now state the proposition
(27) H is a subformula of H.

Let us consider H, F. We say that H is a proper subformula of F if and only if:
(Def. 23) H is a subformula of F and $H \neq F$.
One can prove the following propositions:
(28) If H is an immediate constituent of F, then len $H<\operatorname{len} F$.
(29) If H is an immediate constituent of F, then H is a proper subformula of F.
(30) If G is either negative or has next operator, then $\operatorname{Arg}(G)$ is a subformula of G.
(31) Suppose G is either conjunctive or disjunctive or has until operator or release operator. Then $\operatorname{Left} \operatorname{Arg}(G)$ is a subformula of G and $\operatorname{Right} \operatorname{Arg}(G)$ is a subformula of G.
(32) If H is a proper subformula of F, then len $H<\operatorname{len} F$.
(33) If H is a proper subformula of F, then there exists G which is an immediate constituent of F.
(34) If F is a proper subformula of G and G is a proper subformula of H, then F is a proper subformula of H.
(35) If F is a subformula of G and G is a subformula of H, then F is a subformula of H.
(36) If G is a subformula of H and H is a subformula of G, then $G=H$.
(37) If G is either negative or has next operator and F is a proper subformula of G, then F is a subformula of $\operatorname{Arg}(G)$.
(38) Suppose that
(i) G is either conjunctive or disjunctive or has until operator or release operator, and
(ii) F is a proper subformula of G.

Then F is a subformula of $\operatorname{Left} \operatorname{Arg}(G)$ or a subformula of $\operatorname{Right} \operatorname{Arg}(G)$.
(39) If F is a proper subformula of $\neg H$, then F is a subformula of H.
(40) If F is a proper subformula of $\mathcal{X} H$, then F is a subformula of H.
(41) If F is a proper subformula of $G \wedge H$, then F is a subformula of G or a subformula of H.
(42) If F is a proper subformula of $G \vee H$, then F is a subformula of G or a subformula of H.
(43) If F is a proper subformula of $G \mathcal{U} H$, then F is a subformula of G or a subformula of H.
(44) If F is a proper subformula of $G \mathcal{R} H$, then F is a subformula of G or a subformula of H.
Let us consider H. The functor Subformulae H yields a set and is defined by:
(Def. 24) $\quad a \in$ Subformulae H iff there exists F such that $F=a$ and F is a subformula of H.
One can prove the following proposition
(45) $G \in$ Subformulae H iff G is a subformula of H.

Let us consider H. Observe that Subformulae H is non empty.
Next we state two propositions:
(46) If F is a subformula of H, then Subformulae $F \subseteq$ Subformulae H.
(47) If a is a subset of Subformulae H, then a is a subset of $\mathrm{WFF}_{\text {LTL }}$.

In this article we present several logical schemes. The scheme LTLInd concerns a unary predicate \mathcal{P}, and states that:

For every H holds $\mathcal{P}[H]$
provided the following conditions are satisfied:

- For every H such that H is atomic holds $\mathcal{P}[H]$,
- For every H such that H is either negative or has next operator and $\mathcal{P}[\operatorname{Arg}(H)]$ holds $\mathcal{P}[H]$, and
- Let given H. Suppose H is either conjunctive or disjunctive or has until operator or release operator and $\mathcal{P}[\operatorname{Left} \operatorname{Arg}(H)]$ and $\mathcal{P}[\operatorname{Right} \operatorname{Arg}(H)]$. Then $\mathcal{P}[H]$.
The scheme LTLCompInd concerns a unary predicate \mathcal{P}, and states that:
For every H holds $\mathcal{P}[H]$
provided the following condition is met:
- For every H such that for every F such that F is a proper subformula of H holds $\mathcal{P}[F]$ holds $\mathcal{P}[H]$.
Let x be a set. The functor Cast ${ }_{\text {LTL }} x$ yielding an LTL-formula is defined by:
(Def. 25) Cast $_{\text {LTL }} x=\left\{\begin{array}{l}x, \text { if } x \in \mathrm{WFF}_{\mathrm{LTL}}, \\ \text { atom. } 0, \text { otherwise }\end{array}\right.$

We introduce LTL-model structures which are systems
< assignations, basic assignations, a conjunction, a disjunction, a negation, a next-operation, an until-operation, a release-operation \rangle,
where the assignations constitute a non empty set, the basic assignations constitute a non empty subset of the assignations, the conjunction is a binary operation on the assignations, the disjunction is a binary operation on the assignations, the negation is a unary operation on the assignations, the next-operation is a unary operation on the assignations, the until-operation is a binary operation on the assignations, and the release-operation is a binary operation on the assignations.

Let V be an LTL-model structure. An assignation of V is an element of the assignations of V.

The subset atomic LTLL of $\mathrm{WFF}_{\text {LTL }}$ is defined by:
(Def. 26) atomic $_{\text {LTL }}=\{x ; x$ ranges over LTL-formulae: x is atomic $\}$.
Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, and let f be a function from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V. We say that f is an evaluation for K_{1} if and only if the condition (Def. 27) is satisfied.
(Def. 27) Let H be an LTL-formula. Then
(i) if H is atomic, then $f(H)=K_{1}(H)$,
(ii) if H is negative, then $f(H)=($ the negation of $V)(f(\operatorname{Arg}(H)))$,
(iii) if H is conjunctive, then $f(H)=($ the conjunction of $V)(f(\operatorname{Left} \operatorname{Arg}(H))$, $f(\operatorname{Right} \operatorname{Arg}(H)))$,
(iv) if H is disjunctive, then $f(H)=($ the disjunction of $V)(f(\operatorname{Left} \operatorname{Arg}(H))$, $f(\operatorname{Right} \operatorname{Arg}(H)))$,
(v) if H has next operator, then $f(H)=$ (the next-operation of $V)(f(\operatorname{Arg}(H)))$,
(vi) if H has until operator, then $f(H)=$ (the until-operation of $V)(f(\operatorname{Left} \operatorname{Arg}(H)), f(\operatorname{Right} \operatorname{Arg}(H)))$, and
(vii) if H has release operator, then $f(H)=$ (the release-operation of $V)(f(\operatorname{Left} \operatorname{Arg}(H)), f(\operatorname{Right} \operatorname{Arg}(H)))$.
Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, let f be a function from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V, and let n be a natural number. We say that f is a n-preevaluation for K_{1} if and only if the condition (Def. 28) is satisfied.
(Def. 28) Let H be an LTL-formula such that len $H \leq n$. Then
(i) if H is atomic, then $f(H)=K_{1}(H)$,
(ii) if H is negative, then $f(H)=($ the negation of $V)(f(\operatorname{Arg}(H)))$,
(iii) if H is conjunctive, then $f(H)=($ the conjunction of $V)(f(\operatorname{Left} \operatorname{Arg}(H))$, $f(\operatorname{Right} \operatorname{Arg}(H)))$,
(iv) if H is disjunctive, then $f(H)=($ the disjunction of $V)(f(\operatorname{Left} \operatorname{Arg}(H))$, $f(\operatorname{Right} \operatorname{Arg}(H)))$,
(v) if H has next operator, then $f(H)=$ (the next-operation of $V)(f(\operatorname{Arg}(H)))$,
(vi) if H has until operator, then $f(H)=$ (the until-operation of $V)(f(\operatorname{Left} \operatorname{Arg}(H)), f(\operatorname{Right} \operatorname{Arg}(H)))$, and
(vii) if H has release operator, then $f(H)=$ (the release-operation of $V)(f(\operatorname{Left} \operatorname{Arg}(H)), f(\operatorname{RightArg}(H)))$.
Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, let f, h be functions from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V, let n be a natural number, and let H be an LTL-formula. The functor $\operatorname{Graft} \operatorname{Eval}\left(V, K_{1}, f, h, n, H\right)$ yields a set and is defined by:
(Def. 29) GraftEval $\left(V, K_{1}, f, h, n, H\right)$
$\left\{\begin{array}{l}f(H), \text { if len } H>n+1, \\ K_{1}(H), \text { if len } H=n+1 \text { and } H \text { is atomic, }\end{array}\right.$ (the negation of $V)(h(\operatorname{Arg}(H)))$, if len $H=n+1$ and H is negative, (the conjunction of $V)(h(\operatorname{Left} \operatorname{Arg}(H)), h(\operatorname{Right} \operatorname{Arg}(H)))$, if len $H=n+1$ and H is conjunctive,
(the disjunction of $V)(h(\operatorname{Left} \operatorname{Arg}(H)), h(\operatorname{Right} \operatorname{Arg}(H)))$,
if len $H=n+1$ and H is disjunctive,
$=\{\quad($ the next-operation of $V)(h(\operatorname{Arg}(H)))$, if len $H=n+1$ and H has next operator, (the until-operation of $V)(h(\operatorname{Left} \operatorname{Arg}(H)), h(\operatorname{Right} \operatorname{Arg}(H)))$, if len $H=n+1$ and H has until operator, (the release-operation of $V)(h(\operatorname{Left} \operatorname{Arg}(H)), h(\operatorname{Right} \operatorname{Arg}(H)))$, if len $H=n+1$ and H has release operator, $h(H)$, if len $H<n+1$,
\emptyset, otherwise.
We adopt the following convention: V denotes an LTL-model structure, K_{1} denotes a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, and f, f_{1}, f_{2} denote functions from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V.

Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, and let n be a natural number. The functor $\operatorname{EvalSet}\left(V, K_{1}, n\right)$ yields a non empty set and is defined by:
(Def. 30) EvalSet $\left(V, K_{1}, n\right)=\left\{h ; h\right.$ ranges over functions from $\mathrm{WFF}_{\mathrm{LTL}}$ into the assignations of $V: h$ is a n-pre-evaluation for $\left.K_{1}\right\}$.
Let V be an LTL-model structure, let v_{0} be an element of the assignations of V, and let x be a set. The functor $\operatorname{CastEval}\left(V, x, v_{0}\right)$ yielding a function from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V is defined by:
(Def. 31) CastEval $\left(V, x, v_{0}\right)=\left\{\begin{array}{l}x, \text { if } x \in(\text { the assignations of } V)^{\mathrm{WFF}_{\mathrm{LTL}}}, \\ \mathrm{WFF}_{\mathrm{LTL}} \longmapsto v_{0}, \text { otherwise. }\end{array}\right.$

Let V be an LTL-model structure and let K_{1} be a function from atomic LTL $^{\text {L }}$ into the basic assignations of V. The functor EvalFamily $\left(V, K_{1}\right)$ yielding a non empty set is defined by the condition (Def. 32).
(Def. 32) Let p be a set. Then $p \in \operatorname{EvalFamily}\left(V, K_{1}\right)$ if and only if the following conditions are satisfied:
(i) $\quad p \in 2^{(\text {the assignations of } V)^{\mathrm{WFF}_{\text {LTL }}}}$, and
(ii) there exists a natural number n such that $p=\operatorname{EvalSet}\left(V, K_{1}, n\right)$.

We now state two propositions:
(48) There exists f which is an evaluation for K_{1}.
(49) If f_{1} is an evaluation for K_{1} and f_{2} is an evaluation for K_{1}, then $f_{1}=f_{2}$.

Let V be an LTL-model structure, let K_{1} be a function from atomic ${ }_{\text {LTL }}$ into the basic assignations of V, and let H be an LTL-formula. The functor Evaluate $\left(H, K_{1}\right)$ yields an assignation of V and is defined by:
(Def. 33) There exists a function f from $\mathrm{WFF}_{\text {LTL }}$ into the assignations of V such that f is an evaluation for K_{1} and Evaluate $\left(H, K_{1}\right)=f(H)$.
Let V be an LTL-model structure and let f be an assignation of V. The functor $\neg f$ yielding an assignation of V is defined by:
(Def. 34) $\neg f=($ the negation of $V)(f)$.
Let V be an LTL-model structure and let f, g be assignations of V. The functor $f \wedge g$ yields an assignation of V and is defined by:
(Def. 35) $f \wedge g=($ the conjunction of $V)(f, g)$.
The functor $f \vee g$ yields an assignation of V and is defined as follows:
(Def. 36) $f \vee g=($ the disjunction of $V)(f, g)$.
Let V be an LTL-model structure and let f be an assignation of V. The functor $\mathcal{X} f$ yielding an assignation of V is defined by:
(Def. 37) $\mathcal{X} f=($ the next-operation of $V)(f)$.
Let V be an LTL-model structure and let f, g be assignations of V. The functor $f \mathcal{U} g$ yielding an assignation of V is defined by:
(Def. 38) $f \mathcal{U} g=($ the until-operation of $V)(f, g)$.
The functor $f \mathcal{R} g$ yields an assignation of V and is defined as follows:
(Def. 39) $f \mathcal{R} g=($ the release-operation of $V)(f, g)$.
One can prove the following propositions:
(50) Evaluate $\left(\neg H, K_{1}\right)=\neg \operatorname{Evaluate}\left(H, K_{1}\right)$.
(51) Evaluate $\left(H_{1} \wedge H_{2}, K_{1}\right)=\operatorname{Evaluate}\left(H_{1}, K_{1}\right) \wedge \operatorname{Evaluate}\left(H_{2}, K_{1}\right)$.
(52) Evaluate $\left(H_{1} \vee H_{2}, K_{1}\right)=\operatorname{Evaluate}\left(H_{1}, K_{1}\right) \vee \operatorname{Evaluate}\left(H_{2}, K_{1}\right)$.
(53) Evaluate $\left(\mathcal{X} H, K_{1}\right)=\mathcal{X}$ Evaluate $\left(H, K_{1}\right)$.
(54) Evaluate $\left(H_{1} \mathcal{U} H_{2}, K_{1}\right)=\operatorname{Evaluate}\left(H_{1}, K_{1}\right) \mathcal{U} \operatorname{Evaluate}\left(H_{2}, K_{1}\right)$.
(55)

Evaluate $\left(H_{1} \mathcal{R} H_{2}, K_{1}\right)=\operatorname{Evaluate}\left(H_{1}, K_{1}\right) \mathcal{R}$ Evaluate $\left(H_{2}, K_{1}\right)$.

Let S be a non empty set. The infinite sequences of S yielding a non empty set is defined by:
(Def. 40) The infinite sequences of $S=S^{\mathbb{N}}$.
Let S be a non empty set and let t be a sequence of S. The functor CastSeq t yields an element of the infinite sequences of S and is defined by:
(Def. 41) CastSeq $t=t$.
Let S be a non empty set and let t be a set. Let us assume that t is an element of the infinite sequences of S. The functor $\operatorname{CastSeq}(t, S)$ yielding a sequence of S is defined by:
(Def. 42) $\operatorname{CastSeq}(t, S)=t$.
Let S be a non empty set, let t be a sequence of S, and let k be a natural number. The functor $\operatorname{Shift}(t, k)$ yielding a sequence of S is defined as follows:
(Def. 43) For every natural number n holds $(\operatorname{Shift}(t, k))(n)=t(n+k)$.
Let S be a non empty set, let t be a set, and let k be a natural number. The functor $\operatorname{Shift}(t, k, S)$ yielding an element of the infinite sequences of S is defined as follows:
(Def. 44) $\quad \operatorname{Shift}(t, k, S)=\operatorname{CastSeq} \operatorname{Shift}(\operatorname{CastSeq}(t, S), k)$.
Let S be a non empty set, let t be an element of the infinite sequences of S, and let k be a natural number. The functor $\operatorname{Shift}(t, k)$ yielding an element of the infinite sequences of S is defined as follows:
(Def. 45) $\quad \operatorname{Shift}(t, k)=\operatorname{Shift}(t, k, S)$.
Let S be a non empty set and let f be a set. The functor $\operatorname{Not}_{0}(f, S)$ yields an element of ModelSP (the infinite sequences of S) and is defined by the condition (Def. 46).
(Def. 46) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then $\neg \operatorname{Castboolean}(\operatorname{Fid}(f$, the infinite sequences of $S))(t)=$ true if and only if $\left(\operatorname{Fid}\left(\operatorname{Not}_{0}(f, S)\right.\right.$, the infinite sequences of $\left.\left.S\right)\right)(t)=$ true.
Let S be a non empty set. The functor Not S yielding a unary operation on ModelSP (the infinite sequences of S) is defined by:
(Def. 47) For every set f such that $f \in \operatorname{ModelSP}$ (the infinite sequences of S) holds $(\operatorname{Not} S)(f)=\operatorname{Not}_{0}(f, S)$.
Let S be a non empty set, let f be a function from the infinite sequences of S into Boolean, and let t be a set. The functor $\operatorname{Next-univ}(t, f)$ yields an element of Boolean and is defined as follows:
(Def. 48) Next-univ $(t, f)=\left\{\begin{array}{c}\text { true, if } t \text { is an element of the infinite sequences } \\ \text { of } S \text { and } f(\operatorname{Shift}(t, 1, S))=\text { true, } \\ \text { false, otherwise. }\end{array}\right.$
Let S be a non empty set and let f be a set. The functor $\operatorname{Next}_{0}(f, S)$ yielding an element of ModelSP (the infinite sequences of S) is defined by the condition
(Def. 49).
(Def. 49) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then $\operatorname{Next-univ}(t, \operatorname{Fid}(f$, the infinite sequences of $S))=$ true if and only if $\left(\operatorname{Fid}\left(\operatorname{Next}_{0}(f, S)\right.\right.$, the infinite sequences of $\left.\left.S\right)\right)(t)=$ true.
Let S be a non empty set. The functor Next S yields a unary operation on ModelSP (the infinite sequences of S) and is defined as follows:
(Def. 50) For every set f such that $f \in \operatorname{ModelSP}$ (the infinite sequences of S) holds $(\operatorname{Next} S)(f)=\operatorname{Next}_{0}(f, S)$.
Let S be a non empty set and let f, g be sets. The functor $\operatorname{And}_{0}(f, g, S)$ yields an element of ModelSP (the infinite sequences of S) and is defined by the condition (Def. 51).
(Def. 51) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then Castboolean $(\operatorname{Fid}(f$, the infinite sequences of $S))(t) \wedge$ Castboolean $(\operatorname{Fid}(g$, the infinite sequences of $S))(t)=$ true if and only if $\left(\operatorname{Fid}\left(\operatorname{And}_{0}(f, g, S)\right.\right.$, the infinite sequences of $S)(t)=$ true.
Let S be a non empty set. The functor And S yielding a binary operation on ModelSP (the infinite sequences of S) is defined by the condition (Def. 52).
(Def. 52) Let f, g be sets. Suppose $f \in \operatorname{ModelSP}$ (the infinite sequences of S) and $g \in$ ModelSP (the infinite sequences of S). Then $($ And $S)(f, g)=$ $\operatorname{And}_{0}(f, g, S)$.
Let S be a non empty set, let f, g be functions from the infinite sequences of S into Boolean, and let t be a set. The functor $\operatorname{Until-univ}(t, f, g, S)$ yields an element of Boolean and is defined as follows:
(Def. 53) Until-univ $(t, f, g, S)=\{$ true, if t is an element of the infinite sequences of S and there exists a natural number m such that for every natural number j such that $j<m$ holds $f(\operatorname{Shift}(t, j, S))=$ true and $g(\operatorname{Shift}(t, m, S))=$ true, false, otherwise.
Let S be a non empty set and let f, g be sets. The functor $\operatorname{Until}{ }_{0}(f, g, S)$ yields an element of ModelSP (the infinite sequences of S) and is defined by the condition (Def. 54).
(Def. 54) Let t be a set. Suppose $t \in$ the infinite sequences of S. Then $\operatorname{Until}-u \operatorname{niv}(t, \operatorname{Fid}(f$, the infinite sequences of $S), \operatorname{Fid}(g$, the infinite sequences of $S), S)=$ true if and only if $\left(\operatorname{Fid}\left(\operatorname{Until}_{0}(f, g, S)\right.\right.$, the infinite sequences of $S)(t)=$ true.
Let S be a non empty set. The functor Until S yielding a binary operation on ModelSP (the infinite sequences of S) is defined by the condition (Def. 55).
(Def. 55) Let f, g be sets. Suppose $f \in \operatorname{ModelSP}$ (the infinite sequences of S) and $g \in \operatorname{ModelSP}$ (the infinite sequences of S). Then (Until $S)(f, g)=$
$\operatorname{Until}_{0}(f, g, S)$.
Let S be a non empty set. The functor \vee_{S} yields a binary operation on ModelSP (the infinite sequences of S) and is defined by the condition (Def. 56).
(Def. 56) Let f, g be sets. Suppose $f \in \operatorname{ModelSP}$ (the infinite sequences of $S)$ and $g \in \operatorname{ModelSP}($ the infinite sequences of $S)$. Then $\vee_{S}(f, g)=$ $(\operatorname{Not} S)((\operatorname{And} S)((\operatorname{Not} S)(f),(\operatorname{Not} S)(g)))$.
The functor Release S yields a binary operation on ModelSP (the infinite sequences of S) and is defined by the condition (Def. 57).
(Def. 57) Let f, g be sets. Suppose $f \in \operatorname{ModelSP}$ (the infinite sequences of S) and $g \in \operatorname{ModelSP}$ (the infinite sequences of S). Then (Release $S)(f, g)=$ $(\operatorname{Not} S)((\operatorname{Until} S)((\operatorname{Not} S)(f),(\operatorname{Not} S)(g)))$.
Let S be a non empty set and let B_{1} be a non empty subset of ModelSP (the infinite sequences of S). The functor $\operatorname{Model}_{\text {LTL }}\left(S, B_{1}\right)$ yields an LTL-model structure and is defined as follows:
(Def. 58) $\operatorname{Model}_{\text {LTL }}\left(S, B_{1}\right)=\left\langle\operatorname{ModelSP}(\right.$ the infinite sequences of $S), B_{1}$, And S, $\vee_{S}, \operatorname{Not} S$, Next S, Until S, Release $\left.S\right\rangle$.
In the sequel B_{1} denotes a non empty subset of ModelSP (the infinite sequences of S), t denotes an element of the infinite sequences of S, and f, g denote assignations of $\operatorname{Model}_{\mathrm{LTL}}\left(S, B_{1}\right)$.

Let S be a non empty set, let B_{1} be a non empty subset of ModelSP (the infinite sequences of S), let t be an element of the infinite sequences of S, and let f be an assignation of $\operatorname{Model}_{\text {LTL }}\left(S, B_{1}\right)$. The predicate $t \models f$ is defined by:
(Def. 59) $\quad(\operatorname{Fid}(f$, the infinite sequences of $S))(t)=$ true.
Let S be a non empty set, let B_{1} be a non empty subset of ModelSP (the infinite sequences of S), let t be an element of the infinite sequences of S, and let f be an assignation of $\operatorname{Model}_{\text {LTL }}\left(S, B_{1}\right)$. We introduce $t \not \vDash f$ as an antonym of $t \models f$.

The following propositions are true:
(56) $f \vee g=\neg(\neg f \wedge \neg g)$ and $f \mathcal{R} g=\neg(\neg f \mathcal{U} \neg g)$.

$$
\begin{equation*}
t \models \neg f \text { iff } t \not \models f . \tag{57}
\end{equation*}
$$

$t \models f \wedge g$ iff $t \models f$ and $t \models g$.
$t \models \mathcal{X} f$ iff $\operatorname{Shift}(t, 1) \models f$.
(60) $t \vDash f \mathcal{U} g$ if and only if there exists a natural number m such that for every natural number j such that $j<m$ holds $\operatorname{Shift}(t, j) \models f$ and $\operatorname{Shift}(t, m) \models g$.
(61) $t \models f \vee g$ iff $t \models f$ or $t \models g$.
(62) $t \models f \mathcal{R} g$ if and only if for every natural number m such that for every natural number j such that $j<m$ holds $\operatorname{Shift}(t, j) \models \neg f$ holds $\operatorname{Shift}(t, m) \models g$.

The non empty set AtomicFamily is defined as follows:
(Def. 60) AtomicFamily $=2^{\text {atomic }_{\text {LTL }}}$.
Let a, t be sets. The functor AtomicFunc (a, t) yielding an element of Boolean is defined as follows:
$\left(\right.$ Def. 61) AtomicFunc $(a, t)=\left\{\begin{array}{c}\text { true, if } t \in \text { the infinite sequences of AtomicFamily } \\ \text { and } a \in(\operatorname{CastSeq}(t, \text { AtomicFamily }))(0), \\ \text { false, otherwise. }\end{array}\right.$
Let a be a set. The functor AtomicAsgn a yields an element of ModelSP (the infinite sequences of AtomicFamily) and is defined by:
(Def. 62) For every set t such that $t \in$ the infinite sequences of AtomicFamily holds $(\operatorname{Fid}($ AtomicAsgn a, the infinite sequences of AtomicFamily $))(t)=$ AtomicFunc (a, t).
The non empty subset AtomicBasicAsgn of ModelSP (the infinite sequences of AtomicFamily) is defined by:
(Def. 63) AtomicBasicAsgn $=\{x \in \operatorname{ModelSP}$ (the infinite sequences of AtomicFamily): $\bigvee_{a \text { :set }} x=$ AtomicAsgn $\left.a\right\}$.
The function AtomicKai from atomic LTL into the basic assignations of Model ${ }_{\text {LTL }}$ (AtomicFamily, AtomicBasicAsgn) is defined as follows:
(Def. 64) For every set a such that $a \in$ atomic $_{\text {LTL }}$ holds (AtomicKai) $(a)=$ AtomicAsgn a.
Let r be an element of the infinite sequences of AtomicFamily and let H be an LTL-formula. The predicate $r \models H$ is defined by:
(Def. 65) $\quad r \equiv \operatorname{Evaluate(~} H$, AtomicKai).
Let r be an element of the infinite sequences of AtomicFamily and let H be an LTL-formula. We introduce $r \not \vDash H$ as an antonym of $r \mid=H$.

Let r be an element of the infinite sequences of AtomicFamily and let W be a subset of $\mathrm{WFF}_{\mathrm{LTL}}$. The predicate $r \models W$ is defined by:
(Def. 66) For every LTL-formula H such that $H \in W$ holds $r \models H$.
Let r be an element of the infinite sequences of AtomicFamily and let W be a subset of $W_{F F}$ LTL . We introduce $r \not \models W$ as an antonym of $r \models W$.

Let W be a subset of $W_{F F}$ LTL . The functor $\mathcal{X} W$ yielding a subset of $\mathrm{WFF}_{\text {LTL }}$ is defined as follows:
(Def. 67) $\mathcal{X} W=\left\{x ; x\right.$ ranges over LTL-formulae: $\bigvee_{u: \text { LTL-formula }}(u \in W \wedge x=$ $\mathcal{X} u)\}$.
In the sequel r denotes an element of the infinite sequences of AtomicFamily.
We now state a number of propositions:
(63) If H is atomic, then $r \neq H$ iff $H \in(\operatorname{CastSeq}(r$, AtomicFamily $))(0)$.
(64) $r \neq \neg H$ iff $r \notin H$.
(65) $r \models H_{1} \wedge H_{2}$ iff $r \models H_{1}$ and $r \models H_{2}$.
(66)

$$
r \models H_{1} \vee H_{2} \text { iff } r \models H_{1} \text { or } r \models H_{2} .
$$

$$
r \models \mathcal{X} H \text { iff } \operatorname{Shift}(r, 1) \models H
$$

$r \vDash H_{1} \mathcal{U} H_{2}$ if and only if there exists a natural number m such that for every natural number j such that $j<m$ holds $\operatorname{Shift}(r, j) \models H_{1}$ and $\operatorname{Shift}(r, m) \models H_{2}$.
(69) $r \models H_{1} \mathcal{R} H_{2}$ if and only if for every natural number m such that for every natural number j such that $j<m$ holds $\operatorname{Shift}(r, j) \models \neg H_{1}$ holds $\operatorname{Shift}(r, m) \models H_{2}$.
(70) $r \models \neg\left(H_{1} \vee H_{2}\right)$ iff $r \models \neg H_{1} \wedge \neg H_{2}$.
(72) $\quad r \models H_{1} \mathcal{R} H_{2}$ iff $r \models \neg\left(\neg H_{1} \mathcal{U} \neg H_{2}\right)$.
(73) $r \not \models \neg H$ iff $r \models H$.

$$
\begin{equation*}
r \models \mathcal{X} \neg H \text { iff } r \models \neg \mathcal{X} H \tag{74}
\end{equation*}
$$

$$
\begin{equation*}
r \models H_{1} \mathcal{U} H_{2} \text { iff } r \models H_{2} \vee H_{1} \wedge \mathcal{X}\left(H_{1} \mathcal{U} H_{2}\right) \tag{75}
\end{equation*}
$$

$$
r \models H_{1} \mathcal{R} H_{2} \text { iff } r \equiv H_{1} \wedge H_{2} \vee H_{2} \wedge \mathcal{X}\left(H_{1} \mathcal{R} H_{2}\right)
$$

In the sequel W is a subset of $W_{F F}$ LTL.
One can prove the following propositions:
(77) $\quad r \vDash \mathcal{X} W$ iff $\operatorname{Shift}(r, 1) \models W$.
(78)(i) If H is atomic, then H is not negative and H is not conjunctive and H is not disjunctive and H does not have next operator and H does not have until operator and H does not have release operator,
(ii) if H is negative, then H is not atomic and H is not conjunctive and H is not disjunctive and H does not have next operator and H does not have until operator and H does not have release operator,
(iii) if H is conjunctive, then H is not atomic and H is not negative and H is not disjunctive and H does not have next operator and H does not have until operator and H does not have release operator,
(iv) if H is disjunctive, then H is not atomic and H is not negative and H is not conjunctive and H does not have next operator and H does not have until operator and H does not have release operator,
(v) if H has next operator, then H is not atomic and H is not negative and H is not conjunctive and H is not disjunctive and H does not have until operator and H does not have release operator,
(vi) if H has until operator, then H is not atomic and H is not negative and H is not conjunctive and H is not disjunctive and H does not have next operator and H does not have release operator, and
(vii) if H has release operator, then H is not atomic and H is not negative and H is not conjunctive and H is not disjunctive and H does not have next operator and H does not have until operator.
(79) For every element t of the infinite sequences of S holds $\operatorname{Shift}(t, 0)=t$.
(80) For every element s_{1} of the infinite sequences of S holds $\operatorname{Shift}\left(\operatorname{Shift}\left(s_{1}, k\right), n\right)=\operatorname{Shift}\left(s_{1}, n+k\right)$.
(81) For every sequence s_{1} of S holds CastSeq(CastSeq $\left.s_{1}, S\right)=s_{1}$.
(82) For every element s_{1} of the infinite sequences of S holds $\operatorname{CastSeq} \operatorname{CastSeq}\left(s_{1}, S\right)=s_{1}$.
(83) If $H, \neg H \in W$, then $r \not \equiv W$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. A model of ZF set theory language. Formalized Mathematics, 1(1):131-145, 1990.
[3] Grzegorz Bancerek. Models and satisfiability. Formalized Mathematics, 1(1):191-199, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[9] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2000.
[10] Kazuhisa Ishida. Model checking. Part I. Formalized Mathematics, 14(4):171-186, 2006.
[11] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[12] Edmund Woronowicz. Many-argument relations. Formalized Mathematics, 1(4):733-737, 1990.

Received April 21, 2008

Modular Integer Arithmetic ${ }^{1}$

Christoph Schwarzweller
Institute of Computer Science
University of Gdańsk
Wita Stwosza 57, 80-952 Gdańsk, Poland

Summary. In this article we show the correctness of integer arithmetic based on Chinese Remainder theorem as described e.g. in [11]: Integers are transformed to finite sequences of modular integers, on which the arithmetic operations are performed. Retransformation of the results to the integers is then accomplished by means of the Chinese Remainder theorem. The method presented is a typical example for computing in homomorphic images.

MML identifier: INT_6, version: $\underline{7.9 .014 .103 .1019}$

The terminology and notation used here are introduced in the following articles: [10], [9], [8], [2], [7], [5], [4], [3], [6], and [1].

1. Preliminaries

Let f be a finite sequence. Note that $f \upharpoonright 0$ is empty.
Let f be a complex-valued finite sequence and let n be a natural number. Observe that $f \upharpoonright n$ is complex-valued.

Let f be an integer-valued finite sequence and let n be a natural number. Note that $f\lceil n$ is integer-valued.

Let f be an integer-valued finite sequence and let n be a natural number. Observe that $f_{\downharpoonright n}$ is integer-valued.

Let i be an integer. Observe that $\langle i\rangle$ is integer-valued.
Let f, g be integer-valued finite sequences. Note that $f \sim g$ is integer-valued.
One can prove the following propositions:

[^0](1) For all complex-valued finite sequences f_{1}, f_{2} holds $\operatorname{len}\left(f_{1}+f_{2}\right)=$ $\min \left(\operatorname{len} f_{1}\right.$, len f_{2}).
(2) For all complex-valued finite sequences f_{1}, f_{2} holds $\operatorname{len}\left(f_{1}-f_{2}\right)=$ $\min \left(\operatorname{len} f_{1}\right.$, len $\left.f_{2}\right)$.
(3) For all complex-valued finite sequences f_{1}, f_{2} holds $\operatorname{len}\left(f_{1} f_{2}\right)=$ $\min \left(\right.$ len f_{1}, len f_{2}).
(4) Let m_{1}, m_{2} be complex-valued finite sequences. Suppose len $m_{1}=$ len m_{2}. Let k be a natural number. If $k \leq \operatorname{len} m_{1}$, then $\left(m_{1} m_{2}\right) \upharpoonright k=$ $\left(m_{1} \upharpoonright k\right)\left(m_{2} \upharpoonright k\right)$.
Let F be an integer-valued finite sequence. Note that $\sum F$ is integer and ΠF is integer.

Next we state several propositions:
(5) Let f be a complex-valued finite sequence and i be a natural number. If $i+1 \leq \operatorname{len} f$, then $(f \backslash i) \wedge\langle f(i+1)\rangle=f \upharpoonright(i+1)$.
(6) For every complex-valued finite sequence f such that there exists a natural number i such that $i \in \operatorname{dom} f$ and $f(i)=0$ holds $\Pi f=0$.
(7) For all integers n, a, b holds $(a-b) \bmod n=((a \bmod n)-(b \bmod$ n)) $\bmod n$.
(8) For all integers i, j, k such that $i \mid j$ holds $k \cdot i \mid k \cdot j$.
(9) Let m be an integer-valued finite sequence and i be a natural number. If $i \in \operatorname{dom} m$ and $m_{i} \neq 0$, then $\frac{\prod_{m} m}{m_{i}}$ is an integer.
(10) Let m be an integer-valued finite sequence and i be a natural number. If $i \in \operatorname{dom} m$, then there exists an integer z such that $z \cdot m_{i}=\Pi m$.
(11) Let m be an integer-valued finite sequence and i, j be natural numbers. If $i, j \in \operatorname{dom} m$ and $j \neq i$ and $m_{j} \neq 0$, then $\frac{\prod_{m_{i}} m}{m_{j}}$ is an integer.
(12) Let m be an integer-valued finite sequence and i, j be natural numbers. Suppose $i, j \in \operatorname{dom} m$ and $j \neq i$ and $m_{j} \neq 0$. Then there exists an integer z such that $z \cdot m_{i}=\frac{\prod_{m}}{m_{j}}$.

2. More on Greatest Common Divisors

Next we state a number of propositions:
(13) For every integer i holds $|i| \mid i$ and $i||i|$.
(14) For all integers i, j holds $i \operatorname{gcd} j=i \operatorname{gcd}|j|$.
(15) For all integers i, j such that i and j are relative prime holds $\operatorname{lcm}(i, j)=$ $|i \cdot j|$.
(16) For all integers i, j, k holds $i \cdot j \operatorname{gcd} i \cdot k=|i| \cdot(j \operatorname{gcd} k)$.
(17) For all integers i, j holds $i \cdot j \operatorname{gcd} i=|i|$.
(18) For all integers i, j, k holds $i \operatorname{gcd} j \operatorname{gcd} k=i \operatorname{gcd} j \operatorname{gcd} k$.
(19) For all integers i, j, k such that i and j are relative prime holds $i \operatorname{gcd} j \cdot k=$ $i \operatorname{gcd} k$.
(20) For all integers i, j such that i and j are relative prime holds $i \cdot j \mid$ $\operatorname{lcm}(i, j)$.
(21) For all integers x, y, i, j such that i and j are relative prime holds if $x \equiv y(\bmod i)$ and $x \equiv y(\bmod j)$, then $x \equiv y(\bmod i \cdot j)$.
(22) For all integers i, j such that i and j are relative prime there exists an integer s such that $s \cdot i \equiv 1(\bmod j)$.

3. Chinese Remainder Sequences

Let f be an integer-valued finite sequence. We introduce f is multiplicativetrivial as an antonym of f is non-empty.

Let f be an integer-valued finite sequence. Let us observe that f is multiplica-tive-trivial if and only if:
(Def. 1) There exists a natural number i such that $i \in \operatorname{dom} f$ and $f_{i}=0$.
One can verify the following observations:

* there exists an integer-valued finite sequence which is multiplicativetrivial,
* there exists an integer-valued finite sequence which is non multiplicativetrivial, and
* there exists an integer-valued finite sequence which is non empty and positive yielding.
The following proposition is true
(23) For every multiplicative-trivial integer-valued finite sequence m holds $\Pi m=0$.
Let f be an integer-valued finite sequence. We say that f is Chinese remainder if and only if:
(Def. 2) For all natural numbers i, j such that $i, j \in \operatorname{dom} f$ and $i \neq j$ holds f_{i} and f_{j} are relative prime.
One can verify that there exists an integer-valued finite sequence which is non empty, positive yielding, and Chinese remainder.

A CR-sequence is a non empty positive yielding Chinese remainder integervalued finite sequence.

Let us note that every CR-sequence is non multiplicative-trivial.
One can verify that every integer-valued finite sequence which is multiplicative-trivial is also non empty.

We now state the proposition
(24) For every CR-sequence f and for every natural number m such that $0<m \leq \operatorname{len} f$ holds $f\lceil m$ is a CR-sequence.
Let m be a CR-sequence. Observe that Πm is positive and natural.
Next we state the proposition
(25) Let m be a CR-sequence and i be a natural number. If $i \in \operatorname{dom} m$, then for every integer m_{3} such that $m_{3}=\frac{\prod m}{m_{i}}$ holds

4. Integer Arithmetic based on CRT

let u be an integer and let m be an integer-valued finite sequence. The functor $\bmod (u, m)$ yields a finite sequence and is defined as follows:
(Def. 3) len $\bmod (u, m)=\operatorname{len} m$ and for every natural number i such that $i \in$ dom $\bmod (u, m)$ holds $(\bmod (u, m))_{i}=u \bmod m_{i}$.
Let u be an integer and let m be an integer-valued finite sequence. Observe that $\bmod (u, m)$ is integer-valued.

Let m be a CR-sequence. A finite sequence is called a CR-coefficient sequence for m if it satisfies the conditions (Def. 4).
(Def. 4)(i) len it $=$ len m, and
(ii) for every natural number i such that $i \in$ dom it there exists an integer s and there exists an integer m_{3} such that $m_{3}=\frac{\prod m}{m_{i}}$ and $s \cdot m_{3} \equiv 1\left(\bmod m_{i}\right)$ and $\mathrm{it}_{i}=s \cdot \frac{\prod m}{m_{i}}$.
Let m be a CR-sequence. Note that every CR-coefficient sequence for m is integer-valued.

Next we state several propositions:
(26) Let m be a CR-sequence, c be a CR-coefficient sequence for m, and i be a natural number. If $i \in \operatorname{dom} c$, then $c_{i} \equiv 1\left(\bmod m_{i}\right)$.
(27) Let m be a CR-sequence, c be a CR-coefficient sequence for m, and i, j be natural numbers. If $i, j \in \operatorname{dom} c$ and $i \neq j$, then $c_{i} \equiv 0\left(\bmod m_{j}\right)$.
(28) Let m be a CR-sequence, c_{1}, c_{2} be CR-coefficient sequences for m, and i be a natural number. If $i \in \operatorname{dom} c_{1}$, then $\left(c_{1}\right)_{i} \equiv\left(c_{2}\right)_{i}\left(\bmod m_{i}\right)$.
(29) Let u be an integer-valued finite sequence and m be a CR-sequence. Suppose len $m=\operatorname{len} u$. Let c be a CR-coefficient sequence for m and i be a natural number. If $i \in \operatorname{dom} m$, then $\sum u c \equiv u_{i}\left(\bmod m_{i}\right)$.
(30) Let u be an integer-valued finite sequence and m be a CR-sequence. Suppose len $m=\operatorname{len} u$. Let c_{1}, c_{2} be CR-coefficient sequences for m. Then $\sum u c_{1} \equiv \sum u c_{2}(\bmod \Pi m)$.
Let u be an integer-valued finite sequence and let m be a CR-sequence. Let us assume that len $m=\operatorname{len} u$. The functor $\mathbb{Z}(u, m)$ yields an integer and is defined as follows:
(Def. 5) For every CR-coefficient sequence c for m holds $\mathbb{Z}(u, m)=\left(\sum u c\right) \bmod$ П m.
We now state a number of propositions:
(31) For every integer-valued finite sequence u and for every CR-sequence m such that len $m=$ len u holds $0 \leq \mathbb{Z}(u, m)<\Pi m$.
(32) For every integer u and for every CR-sequence m and for every natural number i such that $i \in \operatorname{dom} m$ holds $u \equiv(\bmod (u, m))_{i}\left(\bmod m_{i}\right)$.
(33) Let u, v be integers, m be a CR-sequence, and i be a natural number. If $i \in \operatorname{dom} m$, then $(\bmod (u, m)+\bmod (v, m))_{i} \equiv u+v\left(\bmod m_{i}\right)$.
(34) Let u, v be integers, m be a CR-sequence, and i be a natural number. If $i \in \operatorname{dom} m$, then $(\bmod (u, m) \bmod (v, m))_{i} \equiv u \cdot v\left(\bmod m_{i}\right)$.
(35) Let u, v be integers, m be a CR-sequence, and i be a natural number. If $i \in \operatorname{dom} m$, then $\mathbb{Z}(\bmod (u, m)+\bmod (v, m), m) \equiv u+v\left(\bmod m_{i}\right)$.
(36) Let u, v be integers, m be a CR-sequence, and i be a natural number. If $i \in \operatorname{dom} m$, then $\mathbb{Z}(\bmod (u, m)-\bmod (v, m), m) \equiv u-v\left(\bmod m_{i}\right)$.
(37) Let u, v be integers, m be a CR-sequence, and i be a natural number. If $i \in \operatorname{dom} m$, then $\mathbb{Z}(\bmod (u, m) \bmod (v, m), m) \equiv u \cdot v\left(\bmod m_{i}\right)$.
(38) For all integers u, v and for every CR-sequence m such that $0 \leq u+v<$ Πm holds $\mathbb{Z}(\bmod (u, m)+\bmod (v, m), m)=u+v$.
(39) For all integers u, v and for every CR-sequence m such that $0 \leq u-v<$ Πm holds $\mathbb{Z}(\bmod (u, m)-\bmod (v, m), m)=u-v$.
(40) For all integers u, v and for every CR-sequence m such that $0 \leq u \cdot v<$ Πm holds $\mathbb{Z}(\bmod (u, m) \bmod (v, m), m)=u \cdot v$.

5. Chinese Remainder Theorem Revisited

We now state two propositions:
(41) Let u be an integer-valued finite sequence and m be a CR-sequence. Suppose len $u=\operatorname{len} m$. Then there exists an integer z such that $0 \leq$ $z<\Pi m$ and for every natural number i such that $i \in \operatorname{dom} u$ holds $z \equiv u_{i}\left(\bmod m_{i}\right)$.
(42) Let u be an integer-valued finite sequence, m be a CR-sequence, and z_{1}, z_{2} be integers. Suppose that
(i) $0 \leq z_{1}$,
(ii) $z_{1}<\Pi m$,
(iii) for every natural number i such that $i \in \operatorname{dom} m$ holds $z_{1} \equiv u_{i}\left(\bmod m_{i}\right)$,
(iv) $0 \leq z_{2}$,
(v) $z_{2}<\Pi m$, and
(vi) for every natural number i such that $i \in \operatorname{dom} m$ holds $z_{2} \equiv u_{i}\left(\bmod m_{i}\right)$. Then $z_{1}=z_{2}$.

References

[1] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Bylinski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.
[7] Artur Korniłowicz. On the real valued functions. Formalized Mathematics, 13(1):181-187, 2005.
[8] Rafał Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.
[9] Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.
[10] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[11] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge University Press, 1999.

Received May 13, 2008

General Theory of Quasi-Commutative BCI-algebras

Tao Sun
Qingdao University of Science
and Technology
China
Chenglong Wu
Qingdao University of Science
and Technology
China

Weibo Pan
Qingdao University of Science
and Technology
China
Xiquan Liang
Qingdao University of Science
and Technology
China

Abstract

Summary. It is known that commutative BCK-algebras form a variety, but BCK-algebras do not [4]. Therefore H. Yutani introduced the notion of quasicommutative BCK-algebras. In this article we first present the notion and general theory of quasi-commutative BCI-algebras. Then we discuss the reduction of the type of quasi-commutative BCK-algebras and some special classes of quasicommutative BCI-algebras.

MML identifier: BCIALG_5, version: $\underline{7.9 .014 .103 .1019}$

The articles [7], [2], [3], [1], [5], and [6] provide the terminology and notation for this paper.

Let X be a BCI-algebra, let x, y be elements of X, and let m, n be elements of \mathbb{N}. The functor $\operatorname{Polynom}(m, n, x, y)$ yields an element of X and is defined as follows:
(Def. 1) $\operatorname{Polynom}(m, n, x, y)=\left((x \backslash(x \backslash y))^{m+1} \backslash(y \backslash x)\right)^{n}$.
We adopt the following convention: X denotes a BCI-algebra, x, y, z denote elements of X, and i, j, k, l, m, n denote elements of \mathbb{N}.

One can prove the following propositions:
(1) If $x \leq y \leq z$, then $x \leq z$.
(2) If $x \leq y \leq x$, then $x=y$.
(3) For every BCK-algebra X and for all elements x, y of X holds $x \backslash y \leq x$ and $(x \backslash y)^{n+1} \leq(x \backslash y)^{n}$.
(4) For every BCK-algebra X and for every element x of X holds $\left(0_{X} \backslash x\right)^{n}=$ 0_{X}.
(5) For every BCK-algebra X and for all elements x, y of X such that $m \geq n$ holds $(x \backslash y)^{m} \leq(x \backslash y)^{n}$.
(6) Let X be a BCK-algebra and x, y be elements of X. Suppose $m>n$ and $(x \backslash y)^{n}=(x \backslash y)^{m}$. Let k be an element of \mathbb{N}. If $k \geq n$, then $(x \backslash y)^{n}=$ $(x \backslash y)^{k}$.
(7) $\operatorname{Polynom}(0,0, x, y)=x \backslash(x \backslash y)$.
(8) $\operatorname{Polynom}(m, n, x, y)=\left((\operatorname{Polynom}(0,0, x, y) \backslash(x \backslash y))^{m} \backslash(y \backslash x)\right)^{n}$.
(9) $\operatorname{Polynom}(m+1, n, x, y)=\operatorname{Polynom}(m, n, x, y) \backslash(x \backslash y)$.
(10) $\operatorname{Polynom}(m, n+1, x, y)=\operatorname{Polynom}(m, n, x, y) \backslash(y \backslash x)$.
(11) $\operatorname{Polynom}(n+1, n+1, y, x) \leq \operatorname{Polynom}(n, n+1, x, y)$.
(12) $\operatorname{Polynom}(n, n+1, x, y) \leq \operatorname{Polynom}(n, n, y, x)$.

Let X be a BCI-algebra. We say that X is quasi-commutative if and only if:
(Def. 2) There exist elements i, j, m, n of \mathbb{N} such that for all elements x, y of X holds $\operatorname{Polynom}(i, j, x, y)=\operatorname{Polynom}(m, n, y, x)$.
Let us observe that BCI-EXAMPLE is quasi-commutative.
One can check that there exists a BCI-algebra which is quasi-commutative.
Let i, j, m, n be elements of \mathbb{N}. A BCI-algebra is called a BCI-algebra commutating with i, j and m, n if:
(Def. 3) For all elements x, y of it holds $\operatorname{Polynom}(i, j, x, y)=\operatorname{Polynom}(m, n, y, x)$.
One can prove the following propositions:
(13) X is a BCI-algebra commutating with i, j and m, n if and only if X is a BCI-algebra commutating with m, n and i, j.
(14) Let X be a BCI-algebra commutating with i, j and m, n and k be an element of \mathbb{N}. Then X is a BCI-algebra commutating with $i+k, j$ and m, $n+k$.
(15) Let X be a BCI-algebra commutating with i, j and m, n and k be an element of \mathbb{N}. Then X is a BCI-algebra commutating with $i, j+k$ and $m+k, n$.
One can verify that there exists a BCK-algebra which is quasi-commutative.
Let i, j, m, n be elements of \mathbb{N}. One can check that there exists a BCI-algebra commutating with i, j and m, n which is BCK- 5 .

Let i, j, m, n be elements of \mathbb{N}. A BCK-algebra commutating with i, j and m, n is BCK-5 BCI-algebra commutating with i, j and m, n.

One can prove the following propositions:
(16) X is a BCK-algebra commutating with i, j and m, n if and only if X is a BCK-algebra commutating with m, n and i, j.
(17) Let X be a BCK-algebra commutating with i, j and m, n and k be an element of \mathbb{N}. Then X is a BCK-algebra commutating with $i+k, j$ and $m, n+k$.
(18) Let X be a BCK-algebra commutating with i, j and m, n and k be an element of \mathbb{N}. Then X is a BCK-algebra commutating with $i, j+k$ and $m+k, n$.
(19) For every BCK-algebra X commutating with i, j and m, n and for all elements x, y of X holds $(x \backslash y)^{i+1}=(x \backslash y)^{n+1}$.
(20) For every BCK-algebra X commutating with i, j and m, n and for all elements x, y of X holds $(x \backslash y)^{j+1}=(x \backslash y)^{m+1}$.
(21) Every BCK-algebra commutating with i, j and m, n is a BCK-algebra commutating with i, j and j, n.
(22) Every BCK-algebra commutating with i, j and m, n is a BCK-algebra commutating with n, j and m, n.
Let us consider i, j, m, n. The functor $\min (i, j, m, n)$ yielding an extended real number is defined as follows:
(Def. 4) $\min (i, j, m, n)=\min (\min (i, j), \min (m, n))$.
The functor $\max (i, j, m, n)$ yielding an extended real number is defined by:
(Def. 5) $\max (i, j, m, n)=\max (\max (i, j), \max (m, n)$).
Next we state a number of propositions:
(23) $\min (i, j, m, n)=i$ or $\min (i, j, m, n)=j$ or $\min (i, j, m, n)=m$ or $\min (i, j, m, n)=n$.
(24) $\max (i, j, m, n)=i$ or $\max (i, j, m, n)=j$ or $\max (i, j, m, n)=m$ or $\max (i, j, m, n)=n$.
(25) If $i=\min (i, j, m, n)$, then $i \leq j$ and $i \leq m$ and $i \leq n$.
(26) $\max (i, j, m, n) \geq i$ and $\max (i, j, m, n) \geq j$ and $\max (i, j, m, n) \geq m$ and $\max (i, j, m, n) \geq n$.
(27) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $i=\min (i, j, m, n)$. If $i=j$, then X is a BCK-algebra commutating with i, i and i, i.
(28) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $i=\min (i, j, m, n)$. Suppose $i<j$ and $i<n$. Then X is a BCK-algebra commutating with $i, i+1$ and $i, i+1$.
(29) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $i=\min (i, j, m, n)$. Suppose $i<j$ and $i=n$ and $i=m$. Then X is a BCK-algebra commutating with i, i and i, i.
(30) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $i=\min (i, j, m, n)$. Suppose $i<j$ and $i=n$ and $i<m<j$. Then X is a BCK-algebra commutating with $i, m+1$ and m, i.
(31) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $i=\min (i, j, m, n)$. Suppose $i<j$ and $i=n$ and $j \leq m$. Then X is a BCK-algebra commutating with i, j and j, i.
(32) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $l \geq j$ and $k \geq n$. Then X is a BCK-algebra commutating with k, l and l, k.
(33) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $k \geq \max (i, j, m, n)$. Then X is a BCK-algebra commutating with k, k and k, k.
(34) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $i \leq m$ and $j \leq n$. Then X is a BCK-algebra commutating with i, j and i, j.
(35) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $i \leq m$ and $i<n$. Then X is a BCK-algebra commutating with i, j and i, $i+1$.
(36) If X is a BCI-algebra commutating with i, j and $j+k, i+k$, then X is a BCK-algebra.
(37) X is a BCI-algebra commutating with 0,0 and 0,0 if and only if X is a BCK-algebra commutating with 0,0 and 0,0 .
(38) X is a commutative BCK-algebra iff X is a BCI-algebra commutating with 0,0 and 0,0 .
Let X be a BCI-algebra. We introduce p-Semisimple-part X as a synonym of AtomSet X.

In the sequel B, P are non empty subsets of X.
One can prove the following propositions:
(39) For every BCI-algebra X such that $B=$ BCK-part X and $P=$ p-Semisimple-part X holds $B \cap P=\left\{0_{X}\right\}$.
(40) For every BCI-algebra X such that $P=p$-Semisimple-part X holds X is a BCK-algebra iff $P=\left\{0_{X}\right\}$.
(41) For every BCI-algebra X such that $B=$ BCK-part X holds X is a p semisimple BCI-algebra iff $B=\left\{0_{X}\right\}$.
(42) If X is a p-semisimple BCI-algebra, then X is a BCI-algebra commutating with 0,1 and 0,0 .
(43) Suppose X is a p-semisimple BCI-algebra. Then X is a BCI-algebra commutating with $n+j, n$ and $m, m+j+1$.
(44) Suppose X is an associative BCI-algebra. Then X is a BCI-algebra commutating with 0,1 and 0,0 and a BCI-algebra commutating with 1,0 and 0,0 .
(45) Suppose X is a weakly-positive-implicative BCI-algebra. Then X is a BCI-algebra commutating with 0,1 and 1,1 .
(46) If X is a positive-implicative BCI-algebra, then X is a BCI-algebra commutating with 0,1 and 1,1 .
(47) If X is an implicative BCI-algebra, then X is a BCI-algebra commutating with 0,1 and 0,0 .
(48) If X is an alternative BCI-algebra, then X is a BCI-algebra commutating with 0,1 and 0,0 .
(49) X is a BCK-positive-implicative BCK-algebra if and only if X is a BCKalgebra commutating with 0,1 and 0,1 .
(50) X is a BCK-implicative BCK-algebra iff X is a BCK-algebra commutating with 1,0 and 0,0 .
One can check that every BCK-algebra which is BCK-implicative is also commutative and every BCK-algebra which is BCK-implicative is also BCK-positive-implicative.

The following propositions are true:
(51) X is a BCK-algebra commutating with 1,0 and 0,0 if and only if X is a BCK-algebra commutating with 0,0 and 0,0 and a BCK-algebra commutating with 0,1 and 0,1 .
(52) Let X be a quasi-commutative BCK-algebra. Then X is a BCK-algebra commutating with 0,1 and 0,1 if and only if for all elements x, y of X holds $x \backslash y=x \backslash y \backslash y$.
(53) Let X be a quasi-commutative BCK-algebra. Then X is a BCK-algebra commutating with $n, n+1$ and $n, n+1$ if and only if for all elements x, y of X holds $(x \backslash y)^{n+1}=(x \backslash y)^{n+2}$.
(54) If X is a BCI-algebra commutating with 0,1 and 0,0 , then X is a BCI-commutative BCI-algebra.
(55) If X is a BCI-algebra commutating with $n, 0$ and m, m, then X is a BCI-commutative BCI-algebra.
(56) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $j=0$ and $m>0$. Then X is a BCK-algebra commutating with 0,0 and 0,0 .
(57) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $m=0$ and $j>0$. Then X is a BCK-algebra commutating with 0,1 and 0,1 .
(58) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $n=0$ and $i \neq 0$. Then X is a BCK-algebra commutating with 0,0 and 0,0 .
(59) Let X be a BCK-algebra commutating with i, j and m, n. Suppose $i=0$ and $n \neq 0$. Then X is a BCK-algebra commutating with 0,1 and 0,1 .

References

[1] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[2] Yuzhong Ding. Several classes of BCI-algebras and their properties. Formalized Mathematics, 15(1):1-9, 2007.
[3] Yuzhong Ding and Zhiyong Pang. Congruences and quotient algebras of BCI-algebras. Formalized Mathematics, 15(4):175-180, 2007.
[4] Jie Meng and YoungLin Liu. An Introduction to BCI-algebras. Shaanxi Scientific and Technological Press, 2001.
[5] Tao Sun, Dahai Hu, and Xiquan Liang. Several classes of BCK-algebras and their properties. Formalized Mathematics, 15(4):237-242, 2007.
[6] Andrzej Trybulec and Agata Darmochwał. Boolean domains. Formalized Mathematics, 1(1):187-190, 1990.
[7] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.

Received May 13, 2008

Block Diagonal Matrices

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Abstract

Summary. In this paper I present basic properties of block diagonal matrices over a set. In my approach the finite sequence of matrices in a block diagonal matrix is not restricted to square matrices. Moreover, the off-diagonal blocks need not be zero matrices, but also with another arbitrary fixed value.

MML identifier: MATRIXJ1, version: $\underline{7.9 .014 .103 .1019}$

The papers [19], [1], [2], [6], [7], [3], [17], [16], [12], [5], [8], [9], [20], [13], [18], [21], [4], [14], [15], [11], and [10] provide the terminology and notation for this paper.

1. Preliminaries

For simplicity, we adopt the following rules: i, j, m, n, k denote natural numbers, x denotes a set, K denotes a field, a, a_{1}, a_{2} denote elements of K, D denotes a non empty set, d, d_{1}, d_{2} denote elements of D, M, M_{1}, M_{2} denote matrices over $D, A, A_{1}, A_{2}, B_{1}, B_{2}$ denote matrices over K, and f, g denote finite sequences of elements of \mathbb{N}.

One can prove the following propositions:
(1) Let K be a non empty additive loop structure and $f_{1}, f_{2}, g_{1}, g_{2}$ be finite sequences of elements of K. If len $f_{1}=\operatorname{len} f_{2}$, then $\left(f_{1}+f_{2}\right)^{\wedge}\left(g_{1}+g_{2}\right)=$ $f_{1} \wedge g_{1}+f_{2} \wedge g_{2}$.
(2) For all finite sequences f, g of elements of D such that $i \in \operatorname{dom} f$ holds $(f \wedge g)_{\mid i}=\left(f_{\mid i}\right)^{\wedge} g$.
(3) For all finite sequences f, g of elements of D such that $i \in \operatorname{dom} g$ holds $(f \frown g)_{\mid i+\operatorname{len} f}=f \frown\left(g_{\mid i}\right)$.
(4) If $i \in \operatorname{Seg}(n+1)$, then $((n+1) \mapsto d)_{\upharpoonright i}=n \mapsto d$.
(5) $\Pi(n \mapsto a)=\operatorname{power}_{K}(a, n)$.

Let us consider f and let i be a natural number. Let us assume that $i \in$ $\operatorname{Seg}\left(\sum f\right)$. The functor $\min (f, i)$ yielding an element of \mathbb{N} is defined by:
(Def. 1) $i \leq \sum f \upharpoonright \min (f, i)$ and $\min (f, i) \in \operatorname{dom} f$ and for every j such that $i \leq \sum f \backslash j$ holds $\min (f, i) \leq j$.
One can prove the following propositions:
(6) If $i \in \operatorname{dom} f$ and $f(i) \neq 0$, then $\min \left(f, \sum f \upharpoonright i\right)=i$.
(7) If $i \in \operatorname{Seg}\left(\sum f\right)$, then $\min (f, i)-^{\prime} 1=\min (f, i)-1$ and $\sum f \upharpoonright\left(\min (f, i)-^{\prime}\right.$ $1)<i$.
(8) If $i \in \operatorname{Seg}\left(\sum f\right)$, then $\min \left(f^{\wedge} g, i\right)=\min (f, i)$.
(9) If $i \in \operatorname{Seg}\left(\left(\sum f\right)+\sum g\right) \backslash \operatorname{Seg}\left(\sum f\right)$, then $\min \left(f^{\wedge} g, i\right)=\min \left(g, i-^{\prime} \sum f\right)+$ len f and $i-^{\prime} \sum f=i-\sum f$.
(10) If $i \in \operatorname{dom} f$ and $j \in \operatorname{Seg}\left(f_{i}\right)$, then $j+\sum f \upharpoonright\left(i-^{\prime} 1\right) \in \operatorname{Seg}\left(\sum f \upharpoonright i\right)$ and $\min \left(f, j+\sum f \upharpoonright\left(i-^{\prime} 1\right)\right)=i$.
(11) For all i, j such that $i \leq \operatorname{len} f$ and $j \leq \operatorname{len} f$ and $\sum f \upharpoonright i=\sum f \upharpoonright j$ and if $i \in \operatorname{dom} f$, then $f(i) \neq 0$ and if $j \in \operatorname{dom} f$, then $f(j) \neq 0$ holds $i=j$.

2. Finite Sequences of Matrices

Let us consider D and let F be a finite sequence of elements of $\left(D^{*}\right)^{*}$. We say that F is matrix-yielding if and only if:
(Def. 2) For every i such that $i \in \operatorname{dom} F$ holds $F(i)$ is a matrix over D.
Let us consider D. Observe that there exists a finite sequence of elements of $\left(D^{*}\right)^{*}$ which is matrix-yielding.

Let us consider D. A finite sequence of matrices over D is a matrix-yielding finite sequence of elements of $\left(D^{*}\right)^{*}$.

Let us consider K. A finite sequence of matrices over K is a matrix-yielding finite sequence of elements of $\left((\text { the carrier of } K)^{*}\right)^{*}$.

We now state the proposition
(12) \emptyset is a finite sequence of matrices over D.

We adopt the following rules: F, F_{1}, F_{2} are finite sequences of matrices over D and $G, G^{\prime}, G_{1}, G_{2}$ are finite sequences of matrices over K.

Let us consider D, F, x. Then $F(x)$ is a matrix over D.
Let us consider D, F_{1}, F_{2}. Then $F_{1} \wedge F_{2}$ is a finite sequence of matrices over D.

Let us consider D, M_{1}. Then $\left\langle M_{1}\right\rangle$ is a finite sequence of matrices over D. Let us consider M_{2}. Then $\left\langle M_{1}, M_{2}\right\rangle$ is a finite sequence of matrices over D.

Let us consider D, F, n. Then $F \upharpoonright n$ is a finite sequence of matrices over D. Then $F_{l n}$ is a finite sequence of matrices over D.

3. Sequences of Sizes of Matrices in a Finite Sequence

Let us consider D, F. The functor Len F yielding a finite sequence of elements of \mathbb{N} is defined as follows:
(Def. 3) domLen $F=\operatorname{dom} F$ and for every i such that $i \in \operatorname{dom} \operatorname{Len} F$ holds $($ Len $F)(i)=\operatorname{len} F(i)$.
The functor Width F yields a finite sequence of elements of \mathbb{N} and is defined by: (Def. 4) dom Width $F=\operatorname{dom} F$ and for every i such that $i \in \operatorname{dom}$ Width F holds $($ Width $F)(i)=$ width $F(i)$.
Let us consider D, F. Then Len F is an element of $\mathbb{N}^{\operatorname{len} F}$. Then Width F is an element of $\mathbb{N}^{\operatorname{len} F}$.

The following propositions are true:
(13) If $\sum \operatorname{Len} F=0$, then \sum Width $F=0$.
(16) $\sum \operatorname{Len}\left\langle M_{1}, M_{2}\right\rangle=\operatorname{len} M_{1}+\operatorname{len} M_{2}$.
(17) $\operatorname{Len}\left(F_{1} \upharpoonright n\right)=\operatorname{Len} F_{1} \upharpoonright n$.
(18) $\operatorname{Width}\left(F_{1} \wedge F_{2}\right)=\left(\text { Width } F_{1}\right)^{\wedge}$ Width F_{2}.
(19) $\operatorname{Width}\langle M\rangle=\langle$ width $M\rangle$.
(20) $\sum \operatorname{Width}\left\langle M_{1}, M_{2}\right\rangle=$ width $M_{1}+$ width M_{2}.
(21) $\operatorname{Width}\left(F_{1} \upharpoonright n\right)=$ Width $F_{1} \upharpoonright n$.

4. Block Diagonal Matrices

Let us consider D, let d be an element of D, and let F be a finite sequence of matrices over D. The d-block diagonal of F is a matrix over D and is defined by the conditions (Def. 5).
(Def. 5)(i) \quad len (the d-block diagonal of $F)=\sum \operatorname{Len} F$,
(ii) \quad width (the d-block diagonal of F) $=\sum \mathrm{Width} F$, and
(iii) for all i, j such that $\langle i, j\rangle \in$ the indices of the d block diagonal of F holds if $j \leq \sum \operatorname{Width} F \upharpoonright\left(\min (\operatorname{Len} F, i)-^{\prime}\right.$ 1) or $j>\sum \operatorname{Width} F \upharpoonright \min (\operatorname{Len} F, i)$, then (the d-block diagonal of $F)_{i, j}=d$ and if $\sum \operatorname{Width} F \upharpoonright\left(\min (\operatorname{Len} F, i)-^{\prime} 1\right)<j \leq$ \sum Width $F \upharpoonright \min (\operatorname{Len} F, i)$, then (the d-block diagonal of $\left.F\right)_{i, j}=$ $F(\min (\operatorname{Len} F, i))_{i-^{\prime}} \sum \operatorname{Len} F \upharpoonright\left(\min (\operatorname{Len} F, i)-^{\prime} 1\right), j-^{\prime} \sum \operatorname{Width} F \upharpoonright\left(\min (\operatorname{Len} F, i)-^{\prime}\right)$.

Let us consider D, let d be an element of D, and let F be a finite sequence of matrices over D. Then the d-block diagonal of F is a matrix over D of dimension \sum Len $F \times \sum$ Width F.

Next we state a number of propositions:
(22) For every finite sequence F of matrices over D such that $F=\emptyset$ holds the d-block diagonal of $F=\emptyset$.
(23) Let M be a matrix over D of dimension $\sum \operatorname{Len}\left\langle M_{1}, M_{2}\right\rangle \times \sum \operatorname{Width}\left\langle M_{1}\right.$, $\left.M_{2}\right\rangle$. Then $M=$ the d-block diagonal of $\left\langle M_{1}, M_{2}\right\rangle$ if and only if for every i holds if $i \in \operatorname{dom} M_{1}$, then $\operatorname{Line}(M, i)=\operatorname{Line}\left(M_{1}, i\right)^{\wedge}\left(\right.$ width $\left.M_{2} \mapsto d\right)$ and if $i \in \operatorname{dom} M_{2}$, then Line $\left(M, i+\operatorname{len} M_{1}\right)=\left(\right.$ width $\left.M_{1} \mapsto d\right) \wedge \operatorname{Line}\left(M_{2}, i\right)$.
(24) Let M be a matrix over D of dimension $\sum \operatorname{Len}\left\langle M_{1}, M_{2}\right\rangle \times \sum \operatorname{Width}\left\langle M_{1}\right.$, $\left.M_{2}\right\rangle$. Then $M=$ the d-block diagonal of $\left\langle M_{1}, M_{2}\right\rangle$ if and only if for every i holds if $i \in \operatorname{Seg}$ width M_{1}, then $M_{\square, i}=\left(\left(M_{1}\right)_{\square, i}\right)^{\wedge}\left(\operatorname{len} M_{2} \mapsto d\right)$ and if $i \in \operatorname{Seg}$ width M_{2}, then $M_{\square, i+\text { width } M_{1}}=\left(\operatorname{len} M_{1} \mapsto d\right) \wedge\left(\left(M_{2}\right)_{\square, i}\right)$.
(25) The indices of the d_{1}-block diagonal of F_{1} is a subset of the indices of the d_{2}-block diagonal of $F_{1} \wedge F_{2}$.
(26) Suppose $\langle i, j\rangle \in$ the indices of the d-block diagonal of F_{1}. Then (the d-block diagonal of $\left.F_{1}\right)_{i, j}=\left(\text { the } d \text {-block diagonal of } F_{1} \wedge F_{2}\right)_{i, j}$.
(27) $\langle i, j\rangle \in$ the indices of the d_{1}-block diagonal of F_{2} if and only if $i>0$ and $j>0$ and $\left\langle i+\sum \operatorname{Len} F_{1}, j+\sum\right.$ Width $\left.F_{1}\right\rangle \in$ the indices of the d_{2}-block diagonal of $F_{1}{ }^{\wedge} F_{2}$.
(28) Suppose $\langle i, j\rangle \in$ the indices of the d-block diagonal of F_{2}. Then (the d-block diagonal of $\left.F_{2}\right)_{i, j}=$ (the d-block diagonal of F_{1} $\left.F_{2}\right)_{i+\sum \operatorname{Len} F_{1}, j+\sum \text { Width } F_{1}}$.
(29) Suppose $\langle i, j\rangle \in$ the indices of the d-block diagonal of $F_{1} \wedge F_{2}$ but $i \leq \sum \operatorname{Len} F_{1}$ and $j>\sum$ Width F_{1} or $i>\sum \operatorname{Len} F_{1}$ and $j \leq \sum$ Width F_{1}. Then (the d-block diagonal of $\left.F_{1} \wedge F_{2}\right)_{i, j}=d$.
(30) Let given i, j, k. Suppose $i \in \operatorname{dom} F$ and $\langle j, k\rangle \in$ the indices of $F(i)$. Then
(i) $\left\langle j+\sum \operatorname{Len} F \upharpoonright\left(i-^{\prime} 1\right), k+\sum \operatorname{Width} F \upharpoonright\left(i-^{\prime} 1\right)\right\rangle \in$ the indices of the d-block diagonal of F, and
(ii) $\quad F(i)_{j, k}=(\text { the } d \text {-block diagonal of } F)_{j+\sum \operatorname{Len} F \upharpoonright\left(i-^{\prime}\right), k+\sum \text { Width } F \upharpoonright\left(i-^{\prime} 1\right)}$.
(31) If $i \in \operatorname{dom} F$, then $F(i)=\operatorname{Segm}($ the d-block diagonal of $\quad F, \quad \operatorname{Seg}\left(\sum \operatorname{Len} F \upharpoonright i\right) \backslash \operatorname{Seg}\left(\sum \operatorname{Len} F \upharpoonright\left(i-^{\prime} 1\right)\right), \operatorname{Seg}\left(\sum \operatorname{Width} F \upharpoonright i\right) \backslash$ $\operatorname{Seg}\left(\sum \operatorname{Width} F \upharpoonright\left(i-^{\prime} 1\right)\right)$).
(32) $\quad M=\operatorname{Segm}\left(\right.$ the d-block diagonal of $\langle M\rangle{ }^{\wedge} F$, Seg len M, Seg width $\left.M\right)$.
(33) $\quad M=\operatorname{Segm}\left(\right.$ the d-block diagonal of $F \frown\langle M\rangle, \operatorname{Seg}\left(\operatorname{len} M+\sum \operatorname{Len} F\right) \backslash$ $\operatorname{Seg}\left(\sum \operatorname{Len} F\right), \operatorname{Seg}\left(\right.$ width $M+\sum$ Width $\left.F\right) \backslash \operatorname{Seg}\left(\sum\right.$ Width $\left.\left.F\right)\right)$.
(34) The d-block diagonal of $\langle M\rangle=M$.
(35) The d-block diagonal of $F_{1} \frown F_{2}=$ the d-block diagonal of \langle the d-block diagonal of $\left.F_{1}\right\rangle^{\wedge} F_{2}$.
(36) The d-block diagonal of $F_{1} \wedge F_{2}=$ the d-block diagonal of F_{1} 〈 the d-block diagonal of $\left.F_{2}\right\rangle$.
(37) If $i \in \operatorname{Seg}\left(\sum \operatorname{Len} F\right)$ and $m=\min (\operatorname{Len} F, i)$, then Line(the d-block diagonal of $F, i)=\left(\left(\sum \operatorname{Width}\left(F \uparrow\left(m-^{\prime} 1\right)\right)\right) \mapsto d\right){ }^{\wedge} \operatorname{Line}\left(F(m), i-^{\prime}\right.$ $\left.\sum \operatorname{Len}\left(F \upharpoonright\left(m-^{\prime} 1\right)\right)\right)^{\wedge}\left(\left(\left(\sum \operatorname{Width} F\right)-^{\prime} \sum \operatorname{Width}(F \upharpoonright m)\right) \mapsto d\right)$.
(38) If $i \in \operatorname{Seg}\left(\sum \operatorname{Width} F\right)$ and $m=\min ($ Width $F, i)$, then (the d-block diagonal of $F)_{\square, i}=\left(\left(\sum \operatorname{Len}\left(F \upharpoonright\left(m-^{\prime} 1\right)\right)\right) \quad \mapsto \quad d\right)^{\wedge}$ $\left(F(m)_{\square, i-^{\prime}} \sum \operatorname{Width}\left(F \upharpoonright\left(m-^{\prime} 1\right)\right)\right)^{\wedge}\left(\left(\left(\sum \operatorname{Len} F\right)-^{\prime} \sum \operatorname{Len}(F \upharpoonright m)\right) \mapsto d\right)$.
(39) Let $M_{1}, M_{2}, N_{1}, N_{2}$ be matrices over D. Suppose len $M_{1}=$ len N_{1} and width $M_{1}=$ width N_{1} and len $M_{2}=\operatorname{len} N_{2}$ and width $M_{2}=$ width N_{2} and the d_{1}-block diagonal of $\left\langle M_{1}, M_{2}\right\rangle=$ the d_{2}-block diagonal of $\left\langle N_{1}, N_{2}\right\rangle$. Then $M_{1}=N_{1}$ and $M_{2}=N_{2}$.
(40) Suppose $M=\emptyset$. Then
(i) the d-block diagonal of $F^{\wedge}\langle M\rangle=$ the d-block diagonal of F, and
(ii) the d-block diagonal of $\langle M\rangle^{\wedge} F=$ the d-block diagonal of F.
(41) Suppose $i \in \operatorname{dom} A$ and width $A=$ width (the deleting of i-row in A). Then the deleting of i-row in the a-block diagonal of $\langle A\rangle^{\wedge} G=$ the a-block diagonal of \langle the deleting of i-row in $A\rangle{ }^{\wedge} G$.
(42) Suppose $i \in \operatorname{dom} A$ and width $A=$ width (the deleting of i-row in A). Then the deleting of $\left(\sum \operatorname{Len} G\right)+i$-row in the a-block diagonal of $G^{\wedge}\langle A\rangle=$ the a-block diagonal of $G^{\wedge}\langle$ the deleting of i-row in $A\rangle$.
(43) Suppose $i \in \operatorname{Seg}$ width A. Then the deleting of i-column in the a-block diagonal of $\langle A\rangle \wedge G=$ the a-block diagonal of \langle the deleting of i-column in $A\rangle{ }^{\wedge} G$.
(44) Suppose $i \in \operatorname{Seg}$ width A. Then the deleting of $i+\sum$ Width G-column in the a-block diagonal of $G^{\wedge}\langle A\rangle=$ the a-block diagonal of $G^{\wedge}\langle$ the deleting of i-column in $A\rangle$.
Let us consider D and let F be a finite sequence of elements of $\left(D^{*}\right)^{*}$. We say that F is square-matrix-yielding if and only if:
(Def. 6) For every i such that $i \in \operatorname{dom} F$ there exists n such that $F(i)$ is a square matrix over D of dimension n.
Let us consider D. One can verify that there exists a finite sequence of elements of $\left(D^{*}\right)^{*}$ which is square-matrix-yielding.

Let us consider D. Observe that every finite sequence of elements of $\left(D^{*}\right)^{*}$ which is square-matrix-yielding is also matrix-yielding.

Let us consider D. A finite sequence of square-matrices over D is a square-matrix-yielding finite sequence of elements of $\left(D^{*}\right)^{*}$.

Let us consider K. A finite sequence of square-matrices over K is a square-matrix-yielding finite sequence of elements of $\left((\text { the carrier of } K)^{*}\right)^{*}$.

We use the following convention: S, S_{1}, S_{2} denote finite sequences of squarematrices over D and R, R_{1}, R_{2} denote finite sequences of square-matrices over K.

One can prove the following proposition
(45) \emptyset is a finite sequence of square-matrices over D.

Let us consider D, S, x. Then $S(x)$ is a square matrix over D of dimension len $S(x)$.

Let us consider D, S_{1}, S_{2}. Then $S_{1} \cap S_{2}$ is a finite sequence of square-matrices over D.

Let us consider D, n and let M_{1} be a square matrix over D of dimension n. Then $\left\langle M_{1}\right\rangle$ is a finite sequence of square-matrices over D.

Let us consider D, n, m, let M_{1} be a square matrix over D of dimension n, and let M_{2} be a square matrix over D of dimension m. Then $\left\langle M_{1}, M_{2}\right\rangle$ is a finite sequence of square-matrices over D.

Let us consider D, S, n. Then $S \upharpoonright n$ is a finite sequence of square-matrices over D. Then $S_{l n}$ is a finite sequence of square-matrices over D.

The following proposition is true
(46) Len $S=$ Width S.

Let us consider D, let d be an element of D, and let S be a finite sequence of square-matrices over D. Then the d-block diagonal of S is a square matrix over D of dimension \sum Len S.

One can prove the following propositions:
(47) Let A be a square matrix over K of dimension n. Suppose $i \in \operatorname{dom} A$ and $j \in \operatorname{Seg} n$. Then the deleting of i-row and j-column in the a-block diagonal of $\langle A\rangle^{\wedge} R=$ the a-block diagonal of \langle the deleting of i-row and j-column in $A\rangle \wedge R$.
(48) Let A be a square matrix over K of dimension n. Suppose $i \in \operatorname{dom} A$ and $j \in \operatorname{Seg} n$. Then the deleting of $i+\sum$ Len R-row and $j+\sum$ Len R-column in the a-block diagonal of $R^{\frown}\langle A\rangle=$ the a-block diagonal of $R \frown\langle$ the deleting of i-row and j-column in $A\rangle$.
Let us consider K, R. The functor Det R yielding a finite sequence of elements of K is defined as follows:
(Def. 7) $\operatorname{dom} \operatorname{Det} R=\operatorname{dom} R$ and for every i such that $i \in \operatorname{dom} \operatorname{Det} R$ holds $(\operatorname{Det} R)(i)=\operatorname{Det} R(i)$.
Let us consider K, R. Then Det R is an element of (the carrier of $K)^{\text {len } R}$.
In the sequel N denotes a square matrix over K of dimension n and N_{1} denotes a square matrix over K of dimension m.

The following propositions are true:
(49) $\operatorname{Det}\langle N\rangle=\langle\operatorname{Det} N\rangle$.
(50) $\operatorname{Det}\left(R_{1} \wedge R_{2}\right)=\left(\operatorname{Det} R_{1}\right)^{\wedge} \operatorname{Det} R_{2}$.
(51) $\operatorname{Det}(R \upharpoonright n)=\operatorname{Det} R \upharpoonright n$.
(52) $\operatorname{Det}\left(\right.$ the 0_{K}-block diagonal of $\left.\left\langle N, N_{1}\right\rangle\right)=\operatorname{Det} N \cdot \operatorname{Det} N_{1}$.
(53) $\operatorname{Det}\left(\right.$ the 0_{K}-block diagonal of $\left.R\right)=\Pi \operatorname{Det} R$.
(54) If len $A_{1} \neq$ width A_{1} and $N=$ the 0_{K}-block diagonal of $\left\langle A_{1}, A_{2}\right\rangle$, then Det $N=0_{K}$.
(55) Suppose Len $G \neq$ Width G. Let M be a square matrix over K of dimension n. If $M=$ the 0_{K}-block diagonal of G, then $\operatorname{Det} M=0_{K}$.

5. An Example of a Finite Sequence of Matrices

Let us consider K and let f be a finite sequence of elements of \mathbb{N}. The functor $I_{K}^{f \times f}$ yielding a finite sequence of square-matrices over K is defined by:
(Def. 8) $\operatorname{dom}\left(I_{K}^{f \times f}\right)=\operatorname{dom} f$ and for every i such that $i \in \operatorname{dom}\left(I_{K}^{f \times f}\right)$ holds $I_{K}^{f \times f}(i)=I_{K}^{f(i) \times f(i)}$.
The following propositions are true:
(56) $\operatorname{Len}\left(I_{K}^{f \times f}\right)=f$ and $\operatorname{Width}\left(I_{K}^{f \times f}\right)=f$.
(57) For every element i of \mathbb{N} holds $I_{K}^{\langle i\rangle \times\langle i\rangle}=\left\langle I_{K}^{i \times i}\right\rangle$.
$I_{K}^{(f \subset g) \times(f \subset g)}=\left(I_{K}^{f \times f}\right) \wedge I_{K}^{g \times g}$.
(59) $I_{K}^{(f\lceil n) \times(f\lceil n)}=I_{K}^{f \times f} \upharpoonright n$.
(60) The 0_{K}-block diagonal of $\left\langle I_{K}^{i \times i}, I_{K}^{j \times j}\right\rangle=I_{K}^{(i+j) \times(i+j)}$.
(61) The 0_{K}-block diagonal of $I_{K}^{f \times f}=I_{K}^{\left(\sum f\right) \times\left(\sum f\right)}$.

In the sequel p, p_{1} are finite sequences of elements of K.

6. Operations on a Finite Sequence of Matrices

Let us consider K, G, p. The functor $p \bullet G$ yielding a finite sequence of matrices over K is defined as follows:
(Def. 9) $\operatorname{dom}(p \bullet G)=\operatorname{dom} G$ and for every i such that $i \in \operatorname{dom}(p \bullet G)$ holds $(p \bullet G)(i)=p_{i} \cdot G(i)$.
Let us consider K and let us consider R, p. Then $p \bullet R$ is a finite sequence of square-matrices over K.

The following propositions are true:
(62) $\operatorname{Len}(p \bullet G)=\operatorname{Len} G$ and $\operatorname{Width}(p \bullet G)=\operatorname{Width} G$.
(63) $p \bullet\langle A\rangle=\left\langle p_{1} \cdot A\right\rangle$.
(64) If len $G=\operatorname{len} p$ and len $G_{1} \leq \operatorname{len} p_{1}$, then $p^{\wedge} p_{1} \bullet G^{\wedge} G_{1}=(p \bullet G)^{\wedge}\left(p_{1} \bullet G_{1}\right)$.
(65) $a \cdot$ the a_{1}-block diagonal of $G=$ the $\left(a \cdot a_{1}\right)$-block diagonal of len $G \mapsto a \bullet G$.

Let us consider K and let G_{1}, G_{2} be finite sequences of matrices over K. The functor $G_{1} \oplus G_{2}$ yields a finite sequence of matrices over K and is defined by:
(Def. 10) $\operatorname{dom}\left(G_{1} \oplus G_{2}\right)=\operatorname{dom} G_{1}$ and for every i such that $i \in \operatorname{dom}\left(G_{1} \oplus G_{2}\right)$ holds $\left(G_{1} \oplus G_{2}\right)(i)=G_{1}(i)+G_{2}(i)$.
Let us consider K and let us consider R, G. Then $R \oplus G$ is a finite sequence of square-matrices over K.

The following propositions are true:
(66) $\operatorname{Len}\left(G_{1} \oplus G_{2}\right)=\operatorname{Len} G_{1}$ and $\operatorname{Width}\left(G_{1} \oplus G_{2}\right)=\operatorname{Width} G_{1}$.
(67) If len $G=\operatorname{len} G^{\prime}$, then $G^{\wedge} G_{1} \oplus G^{\prime} \frown G_{2}=\left(G \oplus G^{\prime}\right)^{\wedge}\left(G_{1} \oplus G_{2}\right)$.
(68) $\langle A\rangle \oplus G=\langle A+G(1)\rangle$.
(69) $\left\langle A_{1}\right\rangle \oplus\left\langle A_{2}\right\rangle=\left\langle A_{1}+A_{2}\right\rangle$.
(70) $\left\langle A_{1}, B_{1}\right\rangle \oplus\left\langle A_{2}, B_{2}\right\rangle=\left\langle A_{1}+A_{2}, B_{1}+B_{2}\right\rangle$.
(71) Suppose len $A_{1}=\operatorname{len} B_{1}$ and len $A_{2}=\operatorname{len} B_{2}$ and width $A_{1}=$ width B_{1} and width $A_{2}=$ width B_{2}. Then (the a_{1}-block diagonal of $\left.\left\langle A_{1}, A_{2}\right\rangle\right)+$ (the a_{2}-block diagonal of $\left.\left\langle B_{1}, B_{2}\right\rangle\right)=$ the $\left(a_{1}+a_{2}\right)$-block diagonal of $\left\langle A_{1}, A_{2}\right\rangle \oplus$ $\left\langle B_{1}, B_{2}\right\rangle$.
(72) Suppose Len $R_{1}=\operatorname{Len} R_{2}$ and Width $R_{1}=\operatorname{Width} R_{2}$. Then (the $a_{1}-$ block diagonal of $\left.R_{1}\right)+\left(\right.$ the a_{2}-block diagonal of $\left.R_{2}\right)=$ the $\left(a_{1}+a_{2}\right)$-block diagonal of $R_{1} \oplus R_{2}$.
Let us consider K and let G_{1}, G_{2} be finite sequences of matrices over K. The functor $G_{1} G_{2}$ yielding a finite sequence of matrices over K is defined by:
(Def. 11) $\operatorname{dom}\left(G_{1} G_{2}\right)=\operatorname{dom} G_{1}$ and for every i such that $i \in \operatorname{dom}\left(G_{1} G_{2}\right)$ holds $\left(G_{1} G_{2}\right)(i)=G_{1}(i) \cdot G_{2}(i)$.
Next we state several propositions:
(73) If Width $G_{1}=\operatorname{Len} G_{2}$, then $\operatorname{Len}\left(G_{1} G_{2}\right)=\operatorname{Len} G_{1}$ and $\operatorname{Width}\left(G_{1} G_{2}\right)=$ Width G_{2}.
(74) If len $G=\operatorname{len} G^{\prime}$, then $\left(G^{\wedge} G_{1}\right)\left(G^{\prime} \wedge G_{2}\right)=\left(G G^{\prime}\right)^{\wedge}\left(G_{1} G_{2}\right)$.
(75) $\langle A\rangle G=\langle A \cdot G(1)\rangle$.
(76) $\left\langle A_{1}\right\rangle\left\langle A_{2}\right\rangle=\left\langle A_{1} \cdot A_{2}\right\rangle$.
(77) $\left\langle A_{1}, B_{1}\right\rangle\left\langle A_{2}, B_{2}\right\rangle=\left\langle A_{1} \cdot A_{2}, B_{1} \cdot B_{2}\right\rangle$.
(78) Suppose width $A_{1}=\operatorname{len} B_{1}$ and width $A_{2}=\operatorname{len} B_{2}$. Then (the 0_{K}-block diagonal of $\left.\left\langle A_{1}, A_{2}\right\rangle\right)$. (the 0_{K}-block diagonal of $\left.\left\langle B_{1}, B_{2}\right\rangle\right)=$ the 0_{K}-block diagonal of $\left\langle A_{1}, A_{2}\right\rangle\left\langle B_{1}, B_{2}\right\rangle$.
(79) If Width $R_{1}=$ Len R_{2}, then (the 0_{K}-block diagonal of $\left.R_{1}\right) \cdot\left(\right.$ the 0_{K}-block diagonal of R_{2}) $=$ the 0_{K}-block diagonal of $R_{1} R_{2}$.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[4] Czesław Bylinski. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[5] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.
[6] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[8] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[9] Katarzyna Jankowska. Transpose matrices and groups of permutations. Formalized Mathematics, 2(5):711-717, 1991.
[10] Andrzej Kondracki. The Chinese Remainder Theorem. Formalized Mathematics, 6(4):573-577, 1997.
[11] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[13] Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.
[14] Karol Pąk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007.
[15] Karol Pa̧k and Andrzej Trybulec. Laplace expansion. Formalized Mathematics, 15(3):143150, 2007.
[16] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[17] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[18] Wojciech A. Trybulec. Lattice of subgroups of a group. Frattini subgroup. Formalized Mathematics, 2(1):41-47, 1991.
[19] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[20] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[21] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.

Linear Map of Matrices

Karol Pąk
Institute of Computer Science
University of Białystok
Poland

Abstract

Summary. The paper is concerned with a generalization of concepts introduced in [13], i.e. introduced are matrices of linear transformations over a finitedimensional vector space. Introduced are linear transformations over a finitedimensional vector space depending on a given matrix of the transformation. Finally, I prove that the rank of linear transformations over a finite-dimensional vector space is the same as the rank of the matrix of that transformation.

MML identifier: MATRLIN2, version: 7.9.03 4.104.1021

The notation and terminology used here are introduced in the following papers: [24], [2], [3], [9], [25], [6], [8], [7], [4], [23], [19], [12], [10], [27], [28], [26], [22], [20], [18], [29], [5], [15], [13], [17], [11], [14], [21], [1], and [16].

1. Preliminaries

We adopt the following rules: i, j, m, n are natural numbers, K is a field, and a is an element of K.

One can prove the following propositions:
(1) Let V be a vector space over K, W_{1}, W_{2}, W_{12} be subspaces of V, and U_{1}, U_{2} be subspaces of W_{12}. If $U_{1}=W_{1}$ and $U_{2}=W_{2}$, then $W_{1} \cap W_{2}=U_{1} \cap U_{2}$ and $W_{1}+W_{2}=U_{1}+U_{2}$.
(2) Let V be a vector space over K and W_{1}, W_{2} be subspaces of V. Suppose $W_{1} \cap W_{2}=\mathbf{0}_{V}$. Let B_{1} be a linearly independent subset of W_{1} and B_{2} be a linearly independent subset of W_{2}. Then $B_{1} \cup B_{2}$ is a linearly independent subset of $W_{1}+W_{2}$.
(3) Let V be a vector space over K and W_{1}, W_{2} be subspaces of V. Suppose $W_{1} \cap W_{2}=\mathbf{0}_{V}$. Let B_{1} be a basis of W_{1} and B_{2} be a basis of W_{2}. Then $B_{1} \cup B_{2}$ is a basis of $W_{1}+W_{2}$.
(4) For every finite dimensional vector space V over K holds every ordered basis of Ω_{V} is an ordered basis of V.
(5) Let V_{1} be a vector space over K and A be a finite subset of V_{1}. If $\operatorname{dim}(\operatorname{Lin}(A))=\operatorname{card} A$, then A is linearly independent.
(6) For every vector space V over K and for every finite subset A of V holds $\operatorname{dim}(\operatorname{Lin}(A)) \leq \operatorname{card} A$.

2. More on the Product of Finite Sequence of Scalars and Vectors

For simplicity, we follow the rules: V_{1}, V_{2}, V_{3} are finite dimensional vector spaces over K, f is a function from V_{1} into $V_{2}, b_{1}, b_{1}^{\prime}$ are ordered bases of V_{1}, B_{1} is a finite sequence of elements of V_{1}, b_{2} is an ordered basis of V_{2}, B_{2} is a finite sequence of elements of V_{2}, B_{3} is a finite sequence of elements of V_{3}, v_{1}, w_{1} are elements of V_{1}, R, R_{1}, R_{2} are finite sequences of elements of V_{1}, and p, p_{1}, p_{2} are finite sequences of elements of K.

We now state a number of propositions:
(7) $\operatorname{lmlt}\left(p_{1}+p_{2}, R\right)=\operatorname{lmlt}\left(p_{1}, R\right)+\operatorname{lmlt}\left(p_{2}, R\right)$.
(8) $\operatorname{lmlt}\left(p, R_{1}+R_{2}\right)=\operatorname{lmlt}\left(p, R_{1}\right)+\operatorname{lmlt}\left(p, R_{2}\right)$.
(9) If len $p_{1}=\operatorname{len} R_{1}$ and len $p_{2}=\operatorname{len} R_{2}$, then $\operatorname{lmlt}\left(p_{1} \wedge p_{2}, R_{1} \wedge R_{2}\right)=$ $\left(\operatorname{lmlt}\left(p_{1}, R_{1}\right)\right)^{\wedge} \operatorname{lmlt}\left(p_{2}, R_{2}\right)$.
(10) If len $R_{1}=\operatorname{len} R_{2}$, then $\sum\left(R_{1}+R_{2}\right)=\left(\sum R_{1}\right)+\sum R_{2}$.
(11) $\sum \operatorname{lmlt}(\operatorname{len} R \mapsto a, R)=a \cdot \sum R$.
(12) $\sum \operatorname{lmlt}\left(p, \operatorname{len} p \mapsto v_{1}\right)=\left(\sum p\right) \cdot v_{1}$.
(13) $\sum \operatorname{lmlt}(a \cdot p, R)=a \cdot \sum \operatorname{lmlt}(p, R)$.
(14) Let B_{1} be a finite sequence of elements of V_{1}, W_{1} be a subspace of V_{1}, and B_{2} be a finite sequence of elements of W_{1}. If $B_{1}=B_{2}$, then $\operatorname{lmlt}\left(p, B_{1}\right)=\operatorname{lmlt}\left(p, B_{2}\right)$.
(15) Let B_{1} be a finite sequence of elements of V_{1}, W_{1} be a subspace of V_{1}, and B_{2} be a finite sequence of elements of W_{1}. If $B_{1}=B_{2}$, then $\sum B_{1}=\sum B_{2}$.
(16) If $i \in \operatorname{dom} R$, then $\sum \operatorname{lmlt}\left(\operatorname{Line}\left(I_{K}^{\text {len } R \times \operatorname{len} R}, i\right), R\right)=R_{i}$.

3. More on the Decomposition of a Vector in a Basis

We now state a number of propositions:

$$
\begin{equation*}
v_{1}+w_{1} \rightarrow b_{1}=\left(v_{1} \rightarrow b_{1}\right)+\left(w_{1} \rightarrow b_{1}\right) . \tag{17}
\end{equation*}
$$

$a \cdot v_{1} \rightarrow b_{1}=a \cdot\left(v_{1} \rightarrow b_{1}\right)$.
If $i \in \operatorname{dom} b_{1}$, then $\left(b_{1}\right)_{i} \rightarrow b_{1}=\operatorname{Line}\left(I_{K}^{\operatorname{len} b_{1} \times \operatorname{len} b_{1}}, i\right)$.
(20)
$0_{\left(V_{1}\right)} \rightarrow b_{1}=\operatorname{len} b_{1} \mapsto 0_{K}$.
(21) $\operatorname{len} b_{1}=\operatorname{dim}\left(V_{1}\right)$.
(22)(i) $\quad \operatorname{rng}\left(b_{1} \upharpoonright m\right)$ is a linearly independent subset of V_{1}, and
(ii) for every subset A of V_{1} such that $A=\operatorname{rng}\left(b_{1} \upharpoonright m\right)$ holds $b_{1} \upharpoonright m$ is an ordered basis of $\operatorname{Lin}(A)$.
(23)(i) $\quad \operatorname{rng}\left(\left(b_{1}\right)_{\mid m}\right)$ is a linearly independent subset of V_{1}, and
(ii) for every subset A of V_{1} such that $A=\operatorname{rng}\left(\left(b_{1}\right)_{l_{m}}\right)$ holds $\left(b_{1}\right)_{l_{m}}$ is an ordered basis of $\operatorname{Lin}(A)$.
(24) Let W_{1}, W_{2} be subspaces of V_{1}. Suppose $W_{1} \cap W_{2}=\mathbf{0}_{\left(V_{1}\right)}$. Let b_{1} be an ordered basis of W_{1}, b_{2} be an ordered basis of W_{2}, and b be an ordered basis of $W_{1}+W_{2}$. Suppose $b=b_{1} b_{2}$. Let v, v_{1}, v_{2} be vectors of $W_{1}+W_{2}$, w_{1} be a vector of W_{1}, and w_{2} be a vector of W_{2}. If $v=v_{1}+v_{2}$ and $v_{1}=w_{1}$ and $v_{2}=w_{2}$, then $v \rightarrow b=\left(w_{1} \rightarrow b_{1}\right)^{\wedge}\left(w_{2} \rightarrow b_{2}\right)$.
(25) Let W_{1} be a subspace of V_{1}. Suppose $W_{1}=\Omega_{\left(V_{1}\right)}$. Let w be a vector of W_{1}, v be a vector of V_{1}, and w_{1} be an ordered basis of W_{1}. If $v=w$ and $b_{1}=w_{1}$, then $v \rightarrow b_{1}=w \rightarrow w_{1}$.
(26) Let W_{1}, W_{2} be subspaces of V_{1}. Suppose $W_{1} \cap W_{2}=\mathbf{0}_{\left(V_{1}\right)}$. Let w_{1} be an ordered basis of W_{1} and w_{2} be an ordered basis of W_{2}. Then $w_{1}{ }^{\wedge} w_{2}$ is an ordered basis of $W_{1}+W_{2}$.

4. Properties of Matrices of Linear Transformations

Let us consider $K, V_{1}, V_{2}, f, B_{1}, b_{2}$. Then $\operatorname{AutMt}\left(f, B_{1}, b_{2}\right)$ is a matrix over K of dimension len $B_{1} \times \operatorname{len} b_{2}$.

Let S be a 1 -sorted structure and let R be a binary relation. The functor $R \upharpoonright S$ is defined as follows:
(Def. 1) $\quad R \upharpoonright S=R \upharpoonright$ the carrier of S.
The following proposition is true
(27) Let f be a linear transformation from V_{1} to V_{2}, W_{1}, W_{2} be subspaces of V_{1}, and U_{1}, U_{2} be subspaces of V_{2}. Suppose if $\operatorname{dim}\left(W_{1}\right)=0$, then $\operatorname{dim}\left(U_{1}\right)=0$ and if $\operatorname{dim}\left(W_{2}\right)=0$, then $\operatorname{dim}\left(U_{2}\right)=0$ and V_{2} is the direct sum of U_{1} and U_{2}. Let f_{1} be a linear transformation from W_{1} to U_{1} and f_{2} be a linear transformation from W_{2} to U_{2}. Suppose $f_{1}=f \upharpoonright W_{1}$ and $f_{2}=f \upharpoonright W_{2}$. Let w_{1} be an ordered basis of W_{1}, w_{2} be an ordered basis of W_{2}, u_{1} be an ordered basis of U_{1}, and u_{2} be an ordered basis of U_{2}. Suppose $w_{1} \wedge w_{2}=b_{1}$ and $u_{1} \wedge u_{2}=b_{2}$. Then $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)=$ the 0_{K}-block diagonal of $\left\langle\operatorname{AutMt}\left(f_{1}, w_{1}, u_{1}\right), \operatorname{AutMt}\left(f_{2}, w_{2}, u_{2}\right)\right\rangle$.

Let us consider K, V_{1}, V_{2}, let f be a function from V_{1} into V_{2}, let B_{1} be a finite sequence of elements of V_{1}, and let b_{2} be an ordered basis of V_{2}. Let us assume that len $B_{1}=\operatorname{len} b_{2}$. The functor $\operatorname{AutEqMt}\left(f, B_{1}, b_{2}\right)$ yielding a matrix over K of dimension len $B_{1} \times$ len B_{1} is defined by:
(Def. 2) $\quad \operatorname{AutEqMt}\left(f, B_{1}, b_{2}\right)=\operatorname{AutMt}\left(f, B_{1}, b_{2}\right)$.
The following propositions are true:
(28) $\quad \operatorname{AutMt}\left(\mathrm{id}_{\left(V_{1}\right)}, b_{1}, b_{1}\right)=I_{K}^{\operatorname{len} b_{1} \times \operatorname{len} b_{1}}$.
(29) AutEqMt($\left.\operatorname{id}_{\left(V_{1}\right)}, b_{1}, b_{1}^{\prime}\right)$ is invertible and $\operatorname{AutEqMt}\left(\mathrm{id}_{\left(V_{1}\right)}, b_{1}^{\prime}, b_{1}\right)=$ $\left(\operatorname{AutEqMt}_{\left.\left(\mathrm{id}_{\left(V_{1}\right)}, b_{1}, b_{1}^{\prime}\right)\right)^{\smile} \text {. } ~}^{\text {. }}\right.$
(30) If $\operatorname{len} p_{1}=\operatorname{len} p_{2}$ and $\operatorname{len} p_{1}=\operatorname{len} B_{1}$ and $\operatorname{len} p_{1}>0$ and $j \in \operatorname{dom} b_{1}$ and for every i such that $i \in \operatorname{dom} p_{2}$ holds $p_{2}(i)=\left(\left(B_{1}\right)_{i} \rightarrow b_{1}\right)(j)$, then $p_{1} \cdot p_{2}=\left(\sum \operatorname{lmlt}\left(p_{1}, B_{1}\right) \rightarrow b_{1}\right)(j)$.
(31) If $\operatorname{len} b_{1}>0$ and f is linear, then $\operatorname{LineVec} 2 \operatorname{Mx}\left(v_{1} \rightarrow b_{1}\right)$. $\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)=\operatorname{LineVec} 2 \operatorname{Mx}\left(f\left(v_{1}\right) \rightarrow b_{2}\right)$.

5. Linear Transformations of Matrices

Let us consider $K, V_{1}, V_{2}, b_{1}, B_{2}$ and let M be a matrix over K of dimension len $b_{1} \times$ len B_{2}. The functor $\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)$ yielding a function from V_{1} into V_{2} is defined by:
(Def. 3) For every vector v of $V_{1} \operatorname{holds}\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)\right)(v)=$ $\sum \operatorname{lmlt}\left(\operatorname{Line}\left(\operatorname{LineVec} 2 \mathrm{Mx}\left(v \rightarrow b_{1}\right) \cdot M, 1\right), B_{2}\right)$.
Next we state two propositions:
(32) For every matrix M over K of dimension len $b_{1} \times \operatorname{len} b_{2}$ such that len $b_{1}>0$ holds LineVec $2 \mathrm{Mx}\left(\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, b_{2}\right)\right)\left(v_{1}\right) \rightarrow b_{2}\right)=$ LineVec $2 \mathrm{Mx}\left(v_{1} \rightarrow b_{1}\right) \cdot M$.
(33) For every matrix M over K of dimension len $b_{1} \times$ len B_{2} such that len $b_{1}=0$ holds $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)\right)\left(v_{1}\right)=0_{\left(V_{2}\right)}$.
Let us consider $K, V_{1}, V_{2}, b_{1}, B_{2}$ and let M be a matrix over K of dimension len $b_{1} \times$ len B_{2}. Then $\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, B_{2}\right)$ is a linear transformation from V_{1} to V_{2}.

Next we state three propositions:
(34) If f is linear, then $\operatorname{Mx} 2 \operatorname{Tran}\left(\operatorname{AutMt}\left(f, b_{1}, b_{2}\right), b_{1}, b_{2}\right)=f$.
(35) For all matrices A, B over K such that $i \in \operatorname{dom} A$ and width $A=\operatorname{len} B$ holds LineVec $2 \mathrm{Mx} \operatorname{Line}(A, i) \cdot B=\operatorname{LineVec} 2 \mathrm{Mx} \operatorname{Line}(A \cdot B, i)$.
(36) For every matrix M over K of dimension len $b_{1} \times \operatorname{len} b_{2}$ holds $\operatorname{AutMt}\left(\operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, b_{2}\right), b_{1}, b_{2}\right)=M$.
Let us consider n, m, K, let A be a matrix over K of dimension $n \times m$, and let B be a matrix over K. Then $A+B$ is a matrix over K of dimension $n \times m$.

The following propositions are true:
(37) For all matrices A, B over K of dimension len $b_{1} \times \operatorname{len} B_{2}$ holds $\operatorname{Mx} 2 \operatorname{Tran}\left(A+B, b_{1}, B_{2}\right)=\operatorname{Mx} 2 \operatorname{Tran}\left(A, b_{1}, B_{2}\right)+\operatorname{Mx} 2 \operatorname{Tran}\left(B, b_{1}, B_{2}\right)$.
(38) For every matrix A over K of dimension len $b_{1} \times \operatorname{len} B_{2}$ holds a. $\operatorname{Mx} 2 \operatorname{Tran}\left(A, b_{1}, B_{2}\right)=\operatorname{Mx} 2 \operatorname{Tran}\left(a \cdot A, b_{1}, B_{2}\right)$.
(39) For all matrices A, B over K of dimension len $b_{1} \times \operatorname{len} b_{2}$ such that $\operatorname{Mx} 2 \operatorname{Tran}\left(A, b_{1}, b_{2}\right)=\operatorname{Mx} 2 \operatorname{Tran}\left(B, b_{1}, b_{2}\right)$ holds $A=B$.
(40) Let A be a matrix over K of dimension len $b_{1} \times \operatorname{len} b_{2}$ and B be a matrix over K of dimension len $b_{2} \times \operatorname{len} B_{3}$. Suppose width $A=\operatorname{len} B$. Let A_{1} be a matrix over K of dimension len $b_{1} \times$ len B_{3}. If $A_{1}=A \cdot B$, then $\operatorname{Mx} 2 \operatorname{Tran}\left(A_{1}, b_{1}, B_{3}\right)=\operatorname{Mx} 2 \operatorname{Tran}\left(B, b_{2}, B_{3}\right) \cdot \operatorname{Mx} 2 \operatorname{Tran}\left(A, b_{1}, b_{2}\right)$.
(41) Let A be a matrix over K of dimension len $b_{1} \times \operatorname{len} b_{2}$. Suppose len $b_{1}>0$ and len $b_{2}>0$. Then $v_{1} \in \operatorname{ker} \operatorname{Mx} 2 \operatorname{Tran}\left(A, b_{1}, b_{2}\right)$ if and only if $v_{1} \rightarrow b_{1} \in$ the space of solutions of A^{T}.
(42) V_{1} is trivial iff $\operatorname{dim}\left(V_{1}\right)=0$.
(43) Let V_{1}, V_{2} be vector spaces over K and f be a linear transformation from V_{1} to V_{2}. Then f is one-to-one if and only if $\operatorname{ker} f=\mathbf{0}_{\left(V_{1}\right)}$.
Let us consider K and let V_{1} be a vector space over K. Then $\mathrm{id}_{\left(V_{1}\right)}$ is a linear transformation from V_{1} to V_{1}.

Let us consider K, let V_{1}, V_{2} be vector spaces over K, and let f, g be linear transformations from V_{1} to V_{2}. Then $f+g$ is a linear transformation from V_{1} to V_{2}.

Let us consider K, let V_{1}, V_{2} be vector spaces over K, let f be a linear transformation from V_{1} to V_{2}, and let us consider a. Then $a \cdot f$ is a linear transformation from V_{1} to V_{2}.

Let us consider K, let V_{1}, V_{2}, V_{3} be vector spaces over K, let f_{3} be a linear transformation from V_{1} to V_{2}, and let f_{4} be a linear transformation from V_{2} to V_{3}. Then $f_{4} \cdot f_{3}$ is a linear transformation from V_{1} to V_{3}.

One can prove the following propositions:
(44) For every matrix A over K of dimension len $b_{1} \times \operatorname{len} b_{2}$ such that $\operatorname{rk}(A)=$ len b_{1} holds $\operatorname{Mx} 2 \operatorname{Tran}\left(A, b_{1}, b_{2}\right)$ is one-to-one.
(45) MX2FinS $\left(I_{K}^{n \times n}\right)$ is an ordered basis of the n-dimension vector space over K.
(46) Let M be an ordered basis of the len b_{2}-dimension vector space over K. Suppose $M=\operatorname{MX2FinS}\left(I_{K}^{\operatorname{len} b_{2} \times \operatorname{len} b_{2}}\right)$. Let v_{1} be a vector of the len $b_{2}{ }^{-}$ dimension vector space over K. Then $v_{1} \rightarrow M=v_{1}$.
(47) Let M be an ordered basis of the len b_{2}-dimension vector space over K. Suppose $M=\operatorname{MX2FinS}\left(I_{K}^{\operatorname{len} b_{2} \times \operatorname{len} b_{2}}\right)$. Let A be a matrix over K of dimension len $b_{1} \times$ len M. If $A=\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)$ and f is linear, then $\left(\operatorname{Mx} 2 \operatorname{Tran}\left(A, b_{1}, M\right)\right)\left(v_{1}\right)=f\left(v_{1}\right) \rightarrow b_{2}$.

Let K be an add-associative right zeroed right complementable Abelian associative well unital distributive non empty double loop structure, let V_{1}, V_{2} be Abelian add-associative right zeroed right complementable vector space-like non empty vector space structures over K, let W be a subspace of V_{1}, and let f be a function from V_{1} into V_{2}. Then $f \upharpoonright W$ is a function from W into V_{2}.

Let K be a field, let V_{1}, V_{2} be vector spaces over K, let W be a subspace of V_{1}, and let f be a linear transformation from V_{1} to V_{2}. Then $f \mid W$ is a linear transformation from W to V_{2}.

6. The Main Theorems

The following propositions are true:
(48) For every linear transformation f from V_{1} to V_{2} holds $\operatorname{rank} f=$ $\operatorname{rk}\left(\operatorname{AutMt}\left(f, b_{1}, b_{2}\right)\right)$.
(49) For every matrix M over K of dimension len $b_{1} \times \operatorname{len} b_{2}$ holds $\operatorname{rank} \operatorname{Mx} 2 \operatorname{Tran}\left(M, b_{1}, b_{2}\right)=\operatorname{rk}(M)$.
(50) For every linear transformation f from V_{1} to V_{2} such that $\operatorname{dim}\left(V_{1}\right)=$ $\operatorname{dim}\left(V_{2}\right)$ holds ker f is non trivial iff $\operatorname{Det} \operatorname{AutEqMt}\left(f, b_{1}, b_{2}\right)=0_{K}$.
(51) Let f be a linear transformation from V_{1} to V_{2} and g be a linear transformation from V_{2} to V_{3}. If $g \upharpoonright \operatorname{im} f$ is one-to-one, then $\operatorname{rank}(g \cdot f)=\operatorname{rank} f$ and nullity $(g \cdot f)=$ nullity f.

References

[1] Jesse Alama. The rank+nullity theorem. Formalized Mathematics, 15(3):137-142, 2007.
[2] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[3] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[4] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.
[5] Czesław Byliński. Binary operations applied to finite sequences. Formalized Mathematics, 1(4):643-649, 1990.
[6] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[7] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.
[8] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.
[9] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[10] Katarzyna Jankowska. Matrices. Abelian group of matrices. Formalized Mathematics, 2(4):475-480, 1991.
[11] Jarosław Kotowicz. Functions and finite sequences of real numbers. Formalized Mathematics, 3(2):275-278, 1992.
[12] Eugeniusz Kusak, Wojciech Leończuk, and Michał Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.
[13] Robert Milewski. Associated matrix of linear map. Formalized Mathematics, 5(3):339345, 1996.
[14] Michał Muzalewski. Rings and modules - part II. Formalized Mathematics, 2(4):579-585, 1991.
[15] Karol Pąk. Basic properties of the rank of matrices over a field. Formalized Mathematics, 15(4):199-211, 2007.
[16] Karol Pąk. Block diagonal matrices. Formalized Mathematics, 16(3):259-267, 2008.
[17] Karol Pąk. Solutions of linear equations. Formalized Mathematics, 16(1):81-90, 2008.
[18] Wojciech A. Trybulec. Basis of vector space. Formalized Mathematics, 1(5):883-885, 1990.
[19] Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.
[20] Wojciech A. Trybulec. Linear combinations in vector space. Formalized Mathematics, 1(5):877-882, 1990.
[21] Wojciech A. Trybulec. Operations on subspaces in vector space. Formalized Mathematics, 1(5):871-876, 1990.
[22] Wojciech A. Trybulec. Subspaces and cosets of subspaces in vector space. Formalized Mathematics, 1(5):865-870, 1990.
[23] Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.
[24] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[25] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.
[26] Xiaopeng Yue, Xiquan Liang, and Zhongpin Sun. Some properties of some special matrices. Formalized Mathematics, 13(4):541-547, 2005.
[27] Katarzyna Zawadzka. The sum and product of finite sequences of elements of a field. Formalized Mathematics, 3(2):205-211, 1992.
[28] Katarzyna Zawadzka. The product and the determinant of matrices with entries in a field. Formalized Mathematics, 4(1):1-8, 1993.
[29] Mariusz Żynel. The Steinitz theorem and the dimension of a vector space. Formalized Mathematics, 5(3):423-428, 1996.

Received May 13, 2008

Orthomodular Lattices

Elżbieta Mądra
Institute of Mathematics
University of Białystok
Akademicka 2, 15-267 Białystok Poland

Adam Grabowski
Institute of Mathematics
University of Białystok
Akademicka 2, 15-267 Białystok
Poland

Summary. The main result of the article is the solution to the problem of short axiomatizations of orthomodular ortholattices. Based on EQP/Otter results [10], we gave a set of three equations which is equivalent to the classical, much longer equational basis of such a class. Also the basic example of the lattice which is not orthomodular, i.e. benzene (or B_{6}) is defined in two settings - as a relational structure (poset) and as a lattice.

As a preliminary work, we present the proofs of the dependence of other axiomatizations of ortholattices. The formalization of the properties of orthomodular lattices follows [4].

MML identifier: ROBBINS4, version: $\underline{7.9 .034 .104 .1021}$

The articles [6], [11], [13], [5], [2], [1], [3], [14], [12], [7], [8], and [9] provide the terminology and notation for this paper.

1. Preliminaries

Let L be a lattice. One can verify that the lattice structure of L is lattice-like. Next we state the proposition
(1) For all lattices K, L such that the lattice structure of $K=$ the lattice structure of L holds $\operatorname{Poset}(K)=\operatorname{Poset}(L)$.
Let us note that every non empty ortholattice structure which is trivial is also quasi-meet-absorbing.

One can check that every ortholattice is lower-bounded and every ortholattice is upper-bounded.

In the sequel L denotes an ortholattice and a, b, c denote elements of L.
We now state three propositions:
(2) $a \sqcup a^{\mathrm{c}}=\top_{L}$ and $a \sqcap a^{\mathrm{c}}=\perp_{L}$.
(3) Let L be a non empty ortholattice structure. Then L is an ortholattice if and only if the following conditions are satisfied:
(i) for all elements a, b, c of L holds $a \sqcup b \sqcup c=\left(c^{\mathrm{c}} \sqcap b^{\mathrm{c}}\right)^{\mathrm{c}} \sqcup a$,
(ii) for all elements a, b of L holds $a=a \sqcap(a \sqcup b)$, and
(iii) for all elements a, b of L holds $a=a \sqcup\left(b \sqcap b^{\mathrm{c}}\right)$.
(4) Let L be an involutive lattice-like non empty ortholattice structure. Then L is de Morgan if and only if for all elements a, b of L such that $a \sqsubseteq b$ holds $b^{\mathrm{c}} \sqsubseteq a^{\mathrm{c}}$.

2. Orthomodularity

Let L be a non empty ortholattice structure. We say that L is orthomodular if and only if:
(Def. 1) For all elements x, y of L such that $x \sqsubseteq y$ holds $y=x \sqcup\left(x^{\mathrm{c}} \sqcap y\right)$.
Let us observe that there exists an ortholattice which is trivial, orthomodular, modular, and Boolean.

Next we state the proposition
(5) Every modular ortholattice is orthomodular.

An orthomodular lattice is an orthomodular ortholattice.
One can prove the following proposition
(6) Let L be an orthomodular meet-absorbing join-absorbing join-associative meet-commutative non empty ortholattice structure and x, y be elements of L. Then $x \sqcup\left(x^{\mathrm{c}} \sqcap(x \sqcup y)\right)=x \sqcup y$.
Let L be a non empty ortholattice structure. We say that L satisfies OM if and only if:
(Def. 2) For all elements x, y of L holds $x \sqcup\left(x^{\mathrm{c}} \sqcap(x \sqcup y)\right)=x \sqcup y$.
Let us observe that every meet-absorbing join-absorbing join-associative meet-commutative non empty ortholattice structure which satisfies OM is also orthomodular and every meet-absorbing join-absorbing join-associative meetcommutative non empty ortholattice structure which is orthomodular satisfies also OM.

Let us observe that every ortholattice which is modular is also orthomodular.
Let us mention that there exists an ortholattice which is quasi-joinassociative, quasi-meet-absorbing, de Morgan, and orthomodular.

3. Examples: The Benzene Ring

The relational structure B_{6} is defined by:
(Def. 3) $\quad B_{6}=\langle\{0,1,3 \backslash 1,2,3 \backslash 2,3\}, \subseteq\rangle$.
Let us note that B_{6} is non empty and B_{6} is reflexive, transitive, and antisymmetric.

Let us note that B_{6} has l.u.b.'s and g.l.b.'s.
One can prove the following propositions:
(7) The carrier of $\mathbb{L}_{B_{6}}=\{0,1,3 \backslash 1,2,3 \backslash 2,3\}$.
(8) For every set a such that $a \in$ the carrier of $\mathbb{L}_{B_{6}}$ holds $a \subseteq 3$.

The strict ortholattice structure Benzene is defined by the conditions (Def. 4).
(Def. 4)(i) The lattice structure of Benzene $=\mathbb{L}_{B_{6}}$, and
(ii) for every element x of the carrier of Benzene and for every subset y of 3 such that $x=y$ holds (the complement operation of Benzene) $(x)=y^{\mathrm{c}}$.
The following three propositions are true:
(9) The carrier of Benzene $=\{0,1,3 \backslash 1,2,3 \backslash 2,3\}$.
(10) The carrier of Benzene $\subseteq 2^{3}$.
(11) For every set a such that $a \in$ the carrier of Benzene holds $a \subseteq\{0,1,2\}$.

Let us note that Benzene is non empty and Benzene is lattice-like.
The following propositions are true:
(12) $\operatorname{Poset}\left(\right.$ the lattice structure of Benzene) $=B_{6}$.
(13) For all elements a, b of B_{6} and for all elements x, y of Benzene such that $a=x$ and $b=y$ holds $a \leq b$ iff $x \sqsubseteq y$.
(14) For all elements a, b of B_{6} and for all elements x, y of Benzene such that $a=x$ and $b=y$ holds $a \sqcup b=x \sqcup y$ and $a \sqcap b=x \sqcap y$.
(15) For all elements a, b of B_{6} such that $a=3 \backslash 1$ and $b=2$ holds $a \sqcup b=3$ and $a \sqcap b=0$.
(16) For all elements a, b of B_{6} such that $a=3 \backslash 2$ and $b=1$ holds $a \sqcup b=3$ and $a \sqcap b=0$.
(17) For all elements a, b of B_{6} such that $a=3 \backslash 1$ and $b=1$ holds $a \sqcup b=3$ and $a \sqcap b=0$.
(18) For all elements a, b of B_{6} such that $a=3 \backslash 2$ and $b=2$ holds $a \sqcup b=3$ and $a \sqcap b=0$.
(19) For all elements a, b of Benzene such that $a=3 \backslash 1$ and $b=2$ holds $a \sqcup b=3$ and $a \sqcap b=0$.
(20) For all elements a, b of Benzene such that $a=3 \backslash 2$ and $b=1$ holds $a \sqcup b=3$.
(21) For all elements a, b of Benzene such that $a=3 \backslash 1$ and $b=1$ holds $a \sqcup b=3$.
(22) For all elements a, b of Benzene such that $a=3 \backslash 2$ and $b=2$ holds $a \sqcup b=3$.
(23) Let a be an element of Benzene. Then
(i) if $a=0$, then $a^{\mathrm{c}}=3$,
(ii) if $a=3$, then $a^{\mathrm{c}}=0$,
(iii) if $a=1$, then $a^{\mathrm{c}}=3 \backslash 1$,
(iv) if $a=3 \backslash 1$, then $a^{\mathrm{c}}=1$,
(v) if $a=2$, then $a^{\mathrm{c}}=3 \backslash 2$, and
(vi) if $a=3 \backslash 2$, then $a^{\mathrm{c}}=2$.
(24) For all elements a, b of Benzene holds $a \sqsubseteq b$ iff $a \subseteq b$.
(25) For all elements a, x of Benzene such that $a=0$ holds $a \sqcap x=a$.
(26) For all elements a, x of Benzene such that $a=0$ holds $a \sqcup x=x$.
(27) For all elements a, x of Benzene such that $a=3$ holds $a \sqcup x=a$.

One can check that Benzene is lower-bounded and Benzene is upperbounded.

We now state two propositions:
(28) $\top_{\text {Benzene }}=3$.
(29) $\perp_{\text {Benzene }}=0$.

Let us note that Benzene is involutive and de Morgan and has top and Benzene is non orthomodular.

4. Orthogonality

Let L be an ortholattice and let a, b be elements of L. We say that a, b are orthogonal if and only if:
(Def. 5) $a \sqsubseteq b^{c}$.
Let L be an ortholattice and let a, b be elements of L. We introduce $a \perp b$ as a synonym of a, b are orthogonal.

Next we state the proposition
(30) $a \perp a$ iff $a=\perp_{L}$.

Let L be an ortholattice and let a, b be elements of L. Let us note that the predicate a, b are orthogonal is symmetric.

The following proposition is true
(31) If $a \perp b$ and $a \perp c$, then $a \perp b \sqcap c$ and $a \perp b \sqcup c$.

5. Orthomodularity Conditions

One can prove the following propositions:
(32) L is orthomodular iff for all elements a, b of L such that $b^{c} \sqsubseteq a$ and $a \sqcap b=\perp_{L}$ holds $a=b^{\text {c }}$.
(33) L is orthomodular iff for all elements a, b of L such that $a \perp b$ and $a \sqcup b=\top_{L}$ holds $a=b^{\mathrm{c}}$.
(34) L is orthomodular iff for all elements a, b of L such that $b \sqsubseteq a$ holds $a \sqcap\left(a^{c} \sqcup b\right)=b$.
(35) L is orthomodular iff for all a, b holds $a \sqcap\left(a^{\mathrm{c}} \sqcup(a \sqcap b)\right)=a \sqcap b$.
(36) L is orthomodular iff for all elements a, b of L holds $a \sqcup b=((a \sqcup b) \sqcap$ a) $\sqcup\left((a \sqcup b) \sqcap a^{c}\right)$.
(37) L is orthomodular iff for all a, b such that $a \sqsubseteq b$ holds $(a \sqcup b) \sqcap\left(b \sqcup a^{\mathrm{c}}\right)=$ $(a \sqcap b) \sqcup\left(b \sqcap a^{c}\right)$.
(38) Let L be a non empty ortholattice structure. Then L is an orthomodular lattice if and only if the following conditions are satisfied:
(i) for all elements a, b, c of L holds $a \sqcup b \sqcup c=\left(c^{\mathrm{c}} \sqcap b^{\mathrm{c}}\right)^{\mathrm{c}} \sqcup a$,
(ii) for all elements a, b, c of L holds $a \sqcup b=((a \sqcup b) \sqcap(a \sqcup c)) \sqcup\left((a \sqcup b) \sqcap a^{c}\right)$, and
(iii) for all elements a, b of L holds $a=a \sqcup\left(b \sqcap b^{\mathrm{c}}\right)$.

One can verify that every quasi-join-associative quasi-meet-absorbing de Morgan orthomodular lattice-like non empty ortholattice structure has top.

Next we state the proposition
(39) Let L be a non empty ortholattice structure. Then L is an orthomodular lattice if and only if L is quasi-join-associative, quasi-meet-absorbing, and de Morgan and satisfies OM.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[3] Grzegorz Bancerek. Complete lattices. Formalized Mathematics, 2(5):719-725, 1991.
[4] Ladislav Beran. Orthomodular Lattices. Algebraic Approach. Academiai Kiado, 1984.
[5] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.
[7] Adam Grabowski. Robbins algebras vs. Boolean algebras. Formalized Mathematics, 9(4):681-690, 2001.
[8] Adam Grabowski and Robert Milewski. Boolean posets, posets under inclusion and products of relational structures. Formalized Mathematics, 6(1):117-121, 1997.
[9] Adam Grabowski and Markus Moschner. Formalization of ortholattices via orthoposets. Formalized Mathematics, 13(1):189-197, 2005.
[10] W. McCune, R. Padmanabhan, M. A. Rose, and R. Veroff. Automated discovery of single axioms for ortholattices. Algebra Universalis, 52(4):541-549, 2005.
[11] Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.
[12] Wojciech A. Trybulec and Grzegorz Bancerek. Kuratowski - Zorn lemma. Formalized Mathematics, 1(2):387-393, 1990.
[13] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[14] Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215222, 1990.

Received June 27, 2008

Basic Properties and Concept of Selected Subsequence of Zero Based Finite Sequences

Yatsuka Nakamura
Shinshu University
Nagano, Japan

Hisashi Ito
Shinshu University
Nagano, Japan

Abstract

Summary. Here, we develop the theory of zero based finite sequences, which are sometimes, more useful in applications than normal one based finite sequences. The fundamental function Sgm is introduced as well as in case of normal finite sequences and other notions are also introduced. However, many theorems are a modification of old theorems of normal finite sequences, they are basically important and are necessary for applications. A new concept of selected subsequence is introduced. This concept came from the individual Ergodic theorem (see [7]) and it is the preparation for its proof.

MML identifier: AFINSQ_2, version: 7.9.03 4.104.1021

The articles [12], [1], [14], [5], [8], [2], [6], [4], [3], [13], [10], [9], and [11] provide the notation and terminology for this paper.

1. Preliminaries

In this paper D is a set.
One can prove the following proposition
(1) For every set x and for every natural number i such that $x \in i$ holds x is an element of \mathbb{N}.

Let us observe that every natural number is natural-membered.

2. Additional Properties of Zero Based Finite Sequence

One can prove the following propositions:
(2) For every finite natural-membered set X_{0} there exists a natural number m such that $X_{0} \subseteq m$.
(3) Let p be a finite 0 -sequence and b be a set. If $b \in \operatorname{rng} p$, then there exists an element i of \mathbb{N} such that $i \in \operatorname{dom} p$ and $p(i)=b$.
(4) Let D be a set and p be a finite 0 -sequence. Suppose that for every natural number i such that $i \in \operatorname{dom} p$ holds $p(i) \in D$. Then p is a finite 0 -sequence of D.
The scheme $X \operatorname{SeqLambdaD}$ deals with a natural number \mathcal{A}, a non empty set \mathcal{B}, and a unary functor \mathcal{F} yielding an element of \mathcal{B}, and states that: There exists a finite 0 -sequence z of \mathcal{B} such that len $z=\mathcal{A}$ and for every natural number j such that $j \in \mathcal{A}$ holds $z(j)=\mathcal{F}(j)$ for all values of the parameters.

One can prove the following proposition
(5) Let p, q be finite 0 -sequences. Suppose len $p=\operatorname{len} q$ and for every natural number j such that $j \in \operatorname{dom} p$ holds $p(j)=q(j)$. Then $p=q$.
Let f be a finite 0 -sequence of \mathbb{R} and let a be an element of \mathbb{R}. Then $f+a$ is a finite 0 -sequence of \mathbb{R}.

We now state two propositions:
(6) Let f be a finite 0 -sequence of \mathbb{R} and a be an element of \mathbb{R}. Then $\operatorname{len}(f+$ $a)=\operatorname{len} f$ and for every natural number i such that $i<\operatorname{len} f$ holds $(f+a)(i)=f(i)+a$.
(7) For all finite 0 -sequences f_{1}, f_{2} and for every natural number i such that $i<\operatorname{len} f_{1}$ holds $\left(f_{1} \wedge f_{2}\right)(i)=f_{1}(i)$.
Let f be a finite 0 -sequence. The functor $\operatorname{Rev}(f)$ yielding a finite 0 -sequence is defined as follows:
(Def. 1) $\operatorname{len} \operatorname{Rev}(f)=\operatorname{len} f$ and for every element i of \mathbb{N} such that $i \in \operatorname{dom} \operatorname{Rev}(f)$ holds $(\operatorname{Rev}(f))(i)=f(\operatorname{len} f-(i+1))$.
We now state the proposition
(8) For every finite 0 -sequence f holds $\operatorname{dom} f=\operatorname{dom} \operatorname{Rev}(f)$ and $\operatorname{rng} f=$ rng $\operatorname{Rev}(f)$.
Let D be a set and let f be a finite 0 -sequence of D. Then $\operatorname{Rev}(f)$ is a finite 0 -sequence of D.

We now state several propositions:
(9) For every finite 0 -sequence p such that $p \neq \emptyset$ there exists a finite 0 sequence q and there exists a set x such that $p=q^{\wedge}\langle x\rangle$.
(10) For every natural number n and for every finite 0 -sequence f such that len $f \leq n$ holds $f \upharpoonright n=f$.
(11) For every finite 0 -sequence f and for all natural numbers n, m such that $n \leq \operatorname{len} f$ and $m \in n$ holds $(f \upharpoonright n)(m)=f(m)$ and $m \in \operatorname{dom} f$.
(12) For every element i of \mathbb{N} and for every finite 0 -sequence q such that $i \leq \operatorname{len} q$ holds len $(q \upharpoonright i)=i$.
(13) For every element i of \mathbb{N} and for every finite 0 -sequence q holds $\operatorname{len}(q\lceil i) \leq$ i.
(14) For every finite 0 -sequence f and for every element n of \mathbb{N} such that len $f=n+1$ holds $f=(f \backslash n)^{\wedge}\langle f(n)\rangle$.
Let f be a finite 0 -sequence and let n be a natural number. The functor $f_{\text {ln }}$ yielding a finite 0 -sequence is defined by:
(Def. 2) $\operatorname{len}\left(f_{\llcorner n}\right)=\operatorname{len} f-^{\prime} n$ and for every natural number m such that $m \in$ $\operatorname{dom}\left(f_{\text {ln }}\right)$ holds $f_{\text {ln }}(m)=f(m+n)$.
One can prove the following three propositions:
(15) For every finite 0 -sequence f and for every natural number n such that $n \geq \operatorname{len} f$ holds $f_{l n}=\emptyset$.
(16) For every finite 0 -sequence f and for every natural number n such that $n<\operatorname{len} f$ holds $\operatorname{len}\left(f_{\text {ln }}\right)=\operatorname{len} f-n$.
(17) For every finite 0 -sequence f and for all natural numbers n, m such that $m+n<\operatorname{len} f$ holds $f_{\text {ln }}(m)=f(m+n)$.
Let f be an one-to-one finite 0 -sequence and let n be a natural number. Note that $f_{\text {ln }}$ is one-to-one.

We now state several propositions:
(18) For every finite 0 -sequence f and for every natural number n holds $\operatorname{rng}\left(f_{\ln }\right) \subseteq \operatorname{rng} f$.
(19) For every finite 0 -sequence f holds $f_{l 0}=f$.
(20) For every natural number i and for all finite 0 -sequences f, g holds $\left(f{ }^{\wedge} g\right)_{\operatorname{len} f+i}=g_{\mid i}$.
(21) For all finite 0 -sequences f, g holds $\left(f^{\wedge} g\right)_{l \operatorname{len} f}=g$.
(22) For every finite 0 -sequence f and for every element n of \mathbb{N} holds $(f \upharpoonright n)^{\wedge}$ $\left(f_{\text {ln }}\right)=f$.
Let D be a set, let f be a finite 0 -sequence of D, and let n be a natural number. Then $f_{\text {ln }}$ is a finite 0 -sequence of D.

Let f be a finite 0 -sequence and let k_{1}, k_{2} be natural numbers. The functor $\operatorname{mid}\left(f, k_{1}, k_{2}\right)$ yields a finite 0 -sequence and is defined as follows:
(Def. 3) For all elements k_{11}, k_{21} of \mathbb{N} such that $k_{11}=k_{1}$ and $k_{21}=k_{2}$ holds $\operatorname{mid}\left(f, k_{1}, k_{2}\right)=\left(f \upharpoonright k_{21}\right)_{\mid k_{11}-_{1}^{\prime}}$.
We now state several propositions:
(23) For every finite 0 -sequence f and for all natural numbers k_{1}, k_{2} such that $k_{1}>k_{2}$ holds $\operatorname{mid}\left(f, k_{1}, k_{2}\right)=\emptyset$.
(24) For every finite 0 -sequence f and for all natural numbers k_{1}, k_{2} such that $1 \leq k_{1}$ and $k_{2} \leq \operatorname{len} f$ holds $\operatorname{mid}\left(f, k_{1}, k_{2}\right)=f_{\left\lfloor k_{1}-^{\prime} 1\right.} \uparrow\left(\left(k_{2}+1\right)-^{\prime} k_{1}\right)$.
(25) For every finite 0 -sequence f and for every natural number k_{2} holds $\operatorname{mid}\left(f, 1, k_{2}\right)=f \upharpoonright k_{2}$.
(26) For every finite 0 -sequence f of D and for every natural number k_{2} such that len $f \leq k_{2}$ holds $\operatorname{mid}\left(f, 1, k_{2}\right)=f$.
(27) For every finite 0 -sequence f and for every element k_{2} of \mathbb{N} holds $\operatorname{mid}\left(f, 0, k_{2}\right)=\operatorname{mid}\left(f, 1, k_{2}\right)$.
(28) For all finite 0 -sequences f, g holds $\operatorname{mid}(f \frown g, \operatorname{len} f+1, \operatorname{len} f+\operatorname{len} g)=g$.

Let D be a set, let f be a finite 0 -sequence of D, and let k_{1}, k_{2} be natural numbers. Then $\operatorname{mid}\left(f, k_{1}, k_{2}\right)$ is a finite 0 -sequence of D.

Let f be a finite 0 -sequence of \mathbb{R}. The functor $\sum f$ yields an element of \mathbb{R} and is defined by the condition (Def. 4).
(Def. 4) There exists a finite 0 -sequence g of \mathbb{R} such that len $f=\operatorname{len} g$ and $f(0)=$ $g(0)$ and for every natural number i such that $i+1<\operatorname{len} f$ holds $g(i+1)=$ $g(i)+f(i+1)$ and $\sum f=g\left(\operatorname{len} f-^{\prime} 1\right)$.
Let f be an empty finite 0 -sequence of \mathbb{R}. Observe that $\sum f$ is zero.
We now state two propositions:
(29) For every empty finite 0 -sequence f of \mathbb{R} holds $\sum f=0$.
(30) For all finite 0 -sequences h_{1}, h_{2} of \mathbb{R} holds $\sum h_{1}{ }^{\wedge} h_{2}=\left(\sum h_{1}\right)+\sum h_{2}$.

3. Selected Subsequences

Let X be a finite natural-membered set. The functor $\operatorname{Sgm}_{0} X$ yields a finite 0 -sequence of \mathbb{N} and is defined as follows:
(Def. 5) $\operatorname{rng} \operatorname{Sgm}_{0} X=X$ and for all natural numbers l, m, k_{1}, k_{2} such that $l<m<\operatorname{len} \operatorname{Sgm}_{0} X$ and $k_{1}=\left(\operatorname{Sgm}_{0} X\right)(l)$ and $k_{2}=\left(\operatorname{Sgm}_{0} X\right)(m)$ holds $k_{1}<k_{2}$.
Let A be a finite natural-membered set. Note that $\operatorname{Sgm}_{0} A$ is one-to-one.
Next we state three propositions:
(31) For every finite natural-membered set A holds $\operatorname{len} \operatorname{Sgm}_{0} A=\overline{\bar{A}}$.
(32) For all finite natural-membered sets X, Y such that $X \subseteq Y$ and $X \neq \emptyset$ holds $\left(\operatorname{Sgm}_{0} Y\right)(0) \leq\left(\operatorname{Sgm}_{0} X\right)(0)$.
(33) For every natural number n holds $\left(\operatorname{Sgm}_{0}\{n\}\right)(0)=n$.

Let B_{1}, B_{2} be sets. The predicate $B_{1}<B_{2}$ is defined by:
(Def. 6) For all natural numbers n, m such that $n \in B_{1}$ and $m \in B_{2}$ holds $n<m$. Let B_{1}, B_{2} be sets. The predicate $B_{1} \leq B_{2}$ is defined by:
(Def. 7) For all natural numbers n, m such that $n \in B_{1}$ and $m \in B_{2}$ holds $n \leq m$.

The following propositions are true:
(34) For all sets B_{1}, B_{2} such that $B_{1}<B_{2}$ holds $B_{1} \cap B_{2} \cap \mathbb{N}=\emptyset$.
(35) For all finite natural-membered sets B_{1}, B_{2} such that $B_{1}<B_{2}$ holds B_{1} misses B_{2}.
(36) For all sets A, B_{1}, B_{2} such that $B_{1}<B_{2}$ holds $A \cap B_{1}<A \cap B_{2}$.
(37) For all finite natural-membered sets X, Y such that $Y \neq \emptyset$ and there exists a set x such that $x \in X$ and $\{x\} \leq Y$ holds $\left(\operatorname{Sgm}_{0} X\right)(0) \leq$ $\left(\operatorname{Sgm}_{0} Y\right)(0)$.
(38) Let X_{0}, Y_{0} be finite natural-membered sets and i be a natural number. If $X_{0}<Y_{0}$ and $i<\operatorname{card} X_{0}$, then $\operatorname{rng}\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right) \upharpoonright \operatorname{card} X_{0}\right)=X_{0}$ and $\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right) \upharpoonright \operatorname{card} X_{0}\right)(i)=\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right)\right)(i)$.
(39) For all finite natural-membered sets X, Y and for every natural number i such that $X<Y$ and $i \in \overline{\bar{X}}$ holds $\left(\operatorname{Sgm}_{0}(X \cup Y)\right)(i) \in X$.
(40) Let X, Y be finite natural-membered sets and i be a natural number. If $X<Y$ and $i<\operatorname{len} \operatorname{Sgm}_{0} X$, then $\left(\operatorname{Sgm}_{0} X\right)(i)=\left(\operatorname{Sgm}_{0}(X \cup Y)\right)(i)$.
(41) Let X_{0}, Y_{0} be finite natural-membered sets and i be a natural number. If $X_{0}<Y_{0}$ and $i<\operatorname{card} Y_{0}$, then $\operatorname{rng}\left(\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right)\right)_{\mid \operatorname{card} X_{0}}\right)=Y_{0}$ and $\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right)\right)_{\mid c a r d} X_{0}(i)=\left(\operatorname{Sgm}_{0}\left(X_{0} \cup Y_{0}\right)\right)\left(i+\operatorname{card} X_{0}\right)$.
(42) Let X, Y be finite natural-membered sets and i be a natural number. If $X<Y$ and $i<\operatorname{len} \operatorname{Sgm}_{0} Y$, then $\left(\operatorname{Sgm}_{0} Y\right)(i)=\left(\operatorname{Sgm}_{0}(X \cup Y)\right)(i+$ len $\left.\operatorname{Sgm}_{0} X\right)$.
(43) For all finite natural-membered sets X, Y such that $Y \neq \emptyset$ and $X<Y$ holds $\left(\operatorname{Sgm}_{0} Y\right)(0)=\left(\operatorname{Sgm}_{0}(X \cup Y)\right)\left(\operatorname{len} \operatorname{Sgm}_{0} X\right)$.
(44) Let l, m, n, k be natural numbers and X be a finite natural-membered set. If $k<l$ and $m<\operatorname{len} \operatorname{Sgm}_{0} X$ and $\left(\operatorname{Sgm}_{0} X\right)(m)=k$ and $\left(\operatorname{Sgm}_{0} X\right)(n)=l$, then $m<n$.
(45) For all finite natural-membered sets X, Y such that $X \neq \emptyset$ and $X<Y$ holds $\left(\operatorname{Sgm}_{0} X\right)(0)=\left(\operatorname{Sgm}_{0}(X \cup Y)\right)(0)$.
(46) For all finite natural-membered sets X, Y holds $X<Y$ iff $\operatorname{Sgm}_{0}(X \cup$ $Y)=\left(\operatorname{Sgm}_{0} X\right)^{\wedge} \operatorname{Sgm}_{0} Y$.
Let f be a finite 0 -sequence and let B be a set. The B-subsequence of f yields a finite 0 -sequence and is defined as follows:
(Def. 8) The B-subsequence of $f=f \cdot \operatorname{Sgm}_{0}(B \cap \operatorname{len} f)$.
One can prove the following proposition
(47) Let f be a finite 0 -sequence and B be a set. Then
(i) len (the B-subsequence of $f)=\overline{\overline{B \cap \operatorname{len} f}}$, and
(ii) for every natural number i such that $i<\operatorname{len}$ (the B-subsequence of f) holds (the B-subsequence of $f)(i)=f\left(\left(\operatorname{Sgm}_{0}(B \cap \operatorname{len} f)\right)(i)\right)$.

Let D be a set, let f be a finite 0 -sequence of D, and let B be a set. Then the B-subsequence of f is a finite 0 -sequence of D.

Let f be a finite 0 -sequence. One can verify that the \emptyset-subsequence of f is empty.

Let B be a set. Observe that the B-subsequence of \emptyset is empty.
We now state the proposition
(48) Let B_{1}, B_{2} be finite natural-membered sets and f be a finite 0 -sequence of \mathbb{R}. Suppose $B_{1}<B_{2}$. Then \sum the $B_{1} \cup B_{2}$-subsequence of $f=\left(\sum\right.$ the B_{1}-subsequence of $\left.f\right)+\sum$ the B_{2}-subsequence of f.

References

[1] Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.
[2] Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.
[3] Grzegorz Bancerek. Increasing and continuous ordinal sequences. Formalized Mathematics, 1(4):711-714, 1990.
[4] Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.
[5] Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):5565, 1990.
[6] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.
[7] Paul R. Halmos. Lectures on Ergodic Theory. The Mathematical Society of Japan, 1956. No. 3 .
[8] Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, $1(\mathbf{1}): 35-40,1990$.
[9] Jarosław Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.
[10] Karol Pa̧k. Cardinal numbers and finite sets. Formalized Mathematics, 13(3):399-406, 2005.
[11] Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341347, 2003.
[12] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.
[13] Tetsuya Tsunetou, Grzegorz Bancerek, and Yatsuka Nakamura. Zero-based finite sequences. Formalized Mathematics, 9(4):825-829, 2001.
[14] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, $1(\mathbf{1}): 73-83,1990$.

Received June 27, 2008

Addenda

Authors

1. Grabowski, Adam 277
2. Ishida, Kazuhisa 231
3. Ito, Hisashi 283
4. Liang, Xiquan 253
5. Mądra, Elżbieta 277
6. Nakamura, Yatsuka 283
7. Pąk, Karol 259, 269
8. Pan, Weibo 253
9. Schwarzweller, Christoph 247
10. Sun, Tao 253
11. Wu, Chenglong 253
MML Identifiers
12. AFINSQ_2 283
13. BCIALG_5 253
14. INT_6 247
15. MATRIXJ1 259
16. MATRLIN2 269
17. MODELC_2 231
18. ROBBINS4 277

[^0]: ${ }^{1}$ This work has been partially supported by grant BW 5100-5-0293-7.

