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Model Checking. Part II

Kazuhisa Ishida
Shinshu University
Nagano, Japan

Summary. This article provides the definition of linear temporal logic
(LTL) and its properties relevant to model checking based on [9]. Mizar formali-
zation of LTL language and satisfiability is based on [2, 3].

MML identifier: MODELC 2, version: 7.9.01 4.101.1015

The articles [8], [11], [6], [5], [7], [1], [4], [12], and [10] provide the notation and
terminology for this paper.
Let x be a set. The functor CastNatx yielding a natural number is defined

by:

(Def. 1) CastNatx =

{
x, if x is a natural number,
0, otherwise.

Let W1 be a set. A sequence of W1 is a function from N into W1.
For simplicity, we adopt the following rules: k, n denote natural numbers, a

denotes a set, D, S denote non empty sets, and p, q denote finite sequences of
elements of N.
Let us consider n. The functor atom. n yielding a finite sequence of elements

of N is defined as follows:
(Def. 2) atom. n = 〈6 + n〉.

Let us consider p. The functor ¬p yielding a finite sequence of elements of
N is defined by:
(Def. 3) ¬p = 〈0〉 a p.

Let us consider q. The functor p∧q yields a finite sequence of elements of N and
is defined by:

(Def. 4) p ∧ q = 〈1〉 a p a q.

The functor p ∨ q yielding a finite sequence of elements of N is defined by:
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(Def. 5) p ∨ q = 〈2〉 a p a q.

Let us consider p. The functor X p yielding a finite sequence of elements of
N is defined as follows:
(Def. 6) X p = 〈3〉 a p.

Let us consider q. The functor p U q yielding a finite sequence of elements of N
is defined by:

(Def. 7) p U q = 〈4〉 a p a q.

The functor p R q yields a finite sequence of elements of N and is defined as
follows:

(Def. 8) pR q = 〈5〉 a p a q.

The non empty set WFFLTL is defined by the conditions (Def. 9).

(Def. 9) For every a such that a ∈WFFLTL holds a is a finite sequence of elements
of N and for every n holds atom. n ∈ WFFLTL and for every p such that
p ∈WFFLTL holds ¬p ∈WFFLTL and for all p, q such that p, q ∈WFFLTL
holds p ∧ q ∈ WFFLTL and for all p, q such that p, q ∈ WFFLTL holds
p ∨ q ∈ WFFLTL and for every p such that p ∈ WFFLTL holds X p ∈
WFFLTL and for all p, q such that p, q ∈WFFLTL holds p U q ∈WFFLTL
and for all p, q such that p, q ∈ WFFLTL holds pR q ∈ WFFLTL and for
every D such that for every a such that a ∈ D holds a is a finite sequence
of elements of N and for every n holds atom. n ∈ D and for every p such
that p ∈ D holds ¬p ∈ D and for all p, q such that p, q ∈ D holds p∧q ∈ D
and for all p, q such that p, q ∈ D holds p∨q ∈ D and for every p such that
p ∈ D holds X p ∈ D and for all p, q such that p, q ∈ D holds p U q ∈ D
and for all p, q such that p, q ∈ D holds pR q ∈ D holds WFFLTL ⊆ D.
Let I1 be a finite sequence of elements of N. We say that I1 is LTL-formula-

like if and only if:

(Def. 10) I1 is an element of WFFLTL.

Let us observe that there exists a finite sequence of elements of N which is
LTL-formula-like.
An LTL-formula is a LTL-formula-like finite sequence of elements of N.
Next we state the proposition

(1) a is an LTL-formula iff a ∈WFFLTL.
In the sequel F , F1, G, H, H1, H2 denote LTL-formulae.
Let us consider n. Observe that atom. n is LTL-formula-like.
Let us consider H. Note that ¬H is LTL-formula-like and X H is LTL-

formula-like. Let us consider G. One can check the following observations:

∗ H ∧G is LTL-formula-like,
∗ H ∨G is LTL-formula-like,
∗ H U G is LTL-formula-like, and
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∗ H RG is LTL-formula-like.
Let us consider H. We say that H is atomic if and only if:

(Def. 11) There exists n such that H = atom. n.

We say that H is negative if and only if:

(Def. 12) There exists H1 such that H = ¬H1.
We say that H is conjunctive if and only if:

(Def. 13) There exist F , G such that H = F ∧G.
We say that H is disjunctive if and only if:

(Def. 14) There exist F , G such that H = F ∨G.
We say that H has next operator if and only if:

(Def. 15) There exists H1 such that H = X H1.
We say that H has until operator if and only if:

(Def. 16) There exist F , G such that H = F U G.
We say that H has release operator if and only if:

(Def. 17) There exist F , G such that H = F RG.
Next we state two propositions:

(2) H is either atomic, or negative, or conjunctive, or disjunctive, or has
next operator, or until operator, or release operator.

(3) 1 ≤ lenH.
Let us consider H. Let us assume that H is either negative or has next

operator. The functor Arg(H) yields an LTL-formula and is defined by:

(Def. 18)(i) ¬Arg(H) = H if H is negative,
(ii) X Arg(H) = H, otherwise.
Let us consider H. Let us assume that H is either conjunctive or disjunctive

or has until operator or release operator. The functor LeftArg(H) yielding an
LTL-formula is defined as follows:

(Def. 19)(i) There exists H1 such that LeftArg(H)∧H1 = H if H is conjunctive,
(ii) there exists H1 such that LeftArg(H) ∨H1 = H if H is disjunctive,
(iii) there exists H1 such that LeftArg(H)UH1 = H if H has until operator,
(iv) there exists H1 such that LeftArg(H)RH1 = H, otherwise.
The functor RightArg(H) yields an LTL-formula and is defined by:

(Def. 20)(i) There exists H1 such that H1∧RightArg(H) = H if H is conjunctive,
(ii) there exists H1 such that H1 ∨ RightArg(H) = H if H is disjunctive,
(iii) there exists H1 such that H1 U RightArg(H) = H if H has until ope-
rator,

(iv) there exists H1 such that H1 R RightArg(H) = H, otherwise.
The following propositions are true:

(4) If H is negative, then H = ¬Arg(H).
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(5) If H has next operator, then H = X Arg(H).
(6) If H is conjunctive, then H = LeftArg(H) ∧ RightArg(H).
(7) If H is disjunctive, then H = LeftArg(H) ∨ RightArg(H).
(8) If H has until operator, then H = LeftArg(H) U RightArg(H).
(9) If H has release operator, then H = LeftArg(H)R RightArg(H).
(10) If H is either negative or has next operator, then lenH = 1+lenArg(H)
and lenArg(H) < lenH.

(11) Suppose H is either conjunctive or disjunctive or has until operator or
release operator. Then lenH = 1+lenLeftArg(H)+ lenRightArg(H) and
lenLeftArg(H) < lenH and lenRightArg(H) < lenH.

Let us consider H, F . We say that H is an immediate constituent of F if
and only if:

(Def. 21) F = ¬H or F = X H or there exists H1 such that F = H ∧ H1 or
F = H1∧H or F = H ∨H1 or F = H1∨H or F = H UH1 or F = H1UH
or F = H RH1 or F = H1 RH.
We now state a number of propositions:

(12) For all F , G holds (¬F )(1) = 0 and (F ∧G)(1) = 1 and (F ∨G)(1) = 2
and (X F )(1) = 3 and (F U G)(1) = 4 and (F RG)(1) = 5.

(13) H is an immediate constituent of ¬F iff H = F.
(14) H is an immediate constituent of X F iff H = F.
(15) H is an immediate constituent of F ∧G iff H = F or H = G.
(16) H is an immediate constituent of F ∨G iff H = F or H = G.
(17) H is an immediate constituent of F U G iff H = F or H = G.
(18) H is an immediate constituent of F RG iff H = F or H = G.
(19) If F is atomic, then H is not an immediate constituent of F .

(20) If F is negative, thenH is an immediate constituent of F iffH = Arg(F ).

(21) If F has next operator, then H is an immediate constituent of F iff
H = Arg(F ).

(22) If F is conjunctive, then H is an immediate constituent of F iff H =
LeftArg(F ) or H = RightArg(F ).

(23) If F is disjunctive, then H is an immediate constituent of F iff H =
LeftArg(F ) or H = RightArg(F ).

(24) If F has until operator, then H is an immediate constituent of F iff
H = LeftArg(F ) or H = RightArg(F ).

(25) If F has release operator, then H is an immediate constituent of F iff
H = LeftArg(F ) or H = RightArg(F ).

(26) Suppose H is an immediate constituent of F . Then F is either negative,
or conjunctive, or disjunctive, or has next operator, or until operator, or
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release operator.

In the sequel L denotes a finite sequence.
Let us consider H, F . We say that H is a subformula of F if and only if the

condition (Def. 22) is satisfied.

(Def. 22) There exist n, L such that
(i) 1 ≤ n,
(ii) lenL = n,
(iii) L(1) = H,
(iv) L(n) = F, and
(v) for every k such that 1 ≤ k < n there exist H1, F1 such that L(k) = H1
and L(k + 1) = F1 and H1 is an immediate constituent of F1.

We now state the proposition

(27) H is a subformula of H.

Let us consider H, F . We say that H is a proper subformula of F if and
only if:

(Def. 23) H is a subformula of F and H 6= F.
One can prove the following propositions:

(28) If H is an immediate constituent of F , then lenH < lenF.

(29) If H is an immediate constituent of F , then H is a proper subformula
of F .

(30) If G is either negative or has next operator, then Arg(G) is a subformula
of G.

(31) Suppose G is either conjunctive or disjunctive or has until operator or
release operator. Then LeftArg(G) is a subformula of G and RightArg(G)
is a subformula of G.

(32) If H is a proper subformula of F , then lenH < lenF.

(33) If H is a proper subformula of F , then there exists G which is an imme-
diate constituent of F .

(34) If F is a proper subformula of G and G is a proper subformula of H,
then F is a proper subformula of H.

(35) If F is a subformula of G and G is a subformula of H, then F is a
subformula of H.

(36) If G is a subformula of H and H is a subformula of G, then G = H.

(37) If G is either negative or has next operator and F is a proper subformula
of G, then F is a subformula of Arg(G).

(38) Suppose that
(i) G is either conjunctive or disjunctive or has until operator or release
operator, and

(ii) F is a proper subformula of G.
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Then F is a subformula of LeftArg(G) or a subformula of RightArg(G).

(39) If F is a proper subformula of ¬H, then F is a subformula of H.
(40) If F is a proper subformula of X H, then F is a subformula of H.
(41) If F is a proper subformula of G ∧H, then F is a subformula of G or a
subformula of H.

(42) If F is a proper subformula of G ∨H, then F is a subformula of G or a
subformula of H.

(43) If F is a proper subformula of G U H, then F is a subformula of G or a
subformula of H.

(44) If F is a proper subformula of GRH, then F is a subformula of G or a
subformula of H.

Let us consider H. The functor SubformulaeH yields a set and is defined
by:

(Def. 24) a ∈ SubformulaeH iff there exists F such that F = a and F is a subfor-
mula of H.

One can prove the following proposition

(45) G ∈ SubformulaeH iff G is a subformula of H.
Let us consider H. Observe that SubformulaeH is non empty.
Next we state two propositions:

(46) If F is a subformula of H, then SubformulaeF ⊆ SubformulaeH.
(47) If a is a subset of SubformulaeH, then a is a subset of WFFLTL.

In this article we present several logical schemes. The scheme LTLInd con-
cerns a unary predicate P, and states that:

For every H holds P[H]
provided the following conditions are satisfied:
• For every H such that H is atomic holds P[H],
• For every H such that H is either negative or has next operator
and P[Arg(H)] holds P[H], and

• Let given H. Suppose H is either conjunctive or disjunctive or
has until operator or release operator and P[LeftArg(H)] and
P[RightArg(H)]. Then P[H].

The scheme LTLCompInd concerns a unary predicate P, and states that:
For every H holds P[H]

provided the following condition is met:
• For every H such that for every F such that F is a proper sub-
formula of H holds P[F ] holds P[H].

Let x be a set. The functor CastLTL x yielding an LTL-formula is defined by:

(Def. 25) CastLTL x =

{
x, if x ∈WFFLTL,
atom. 0, otherwise.
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We introduce LTL-model structures which are systems
〈 assignations, basic assignations, a conjunction, a disjunction, a negation,

a next-operation, an until-operation, a release-operation 〉,
where the assignations constitute a non empty set, the basic assignations con-
stitute a non empty subset of the assignations, the conjunction is a binary ope-
ration on the assignations, the disjunction is a binary operation on the assigna-
tions, the negation is a unary operation on the assignations, the next-operation
is a unary operation on the assignations, the until-operation is a binary opera-
tion on the assignations, and the release-operation is a binary operation on the
assignations.
Let V be an LTL-model structure. An assignation of V is an element of the

assignations of V .
The subset atomicLTL of WFFLTL is defined by:

(Def. 26) atomicLTL = {x;x ranges over LTL-formulae: x is atomic}.
Let V be an LTL-model structure, let K1 be a function from atomicLTL

into the basic assignations of V , and let f be a function from WFFLTL into
the assignations of V . We say that f is an evaluation for K1 if and only if the
condition (Def. 27) is satisfied.

(Def. 27) Let H be an LTL-formula. Then
(i) if H is atomic, then f(H) = K1(H),
(ii) if H is negative, then f(H) = (the negation of V )(f(Arg(H))),
(iii) ifH is conjunctive, then f(H) = (the conjunction of V )(f(LeftArg(H)),
f(RightArg(H))),

(iv) if H is disjunctive, then f(H) = (the disjunction of V )(f(LeftArg(H)),
f(RightArg(H))),

(v) if H has next operator, then f(H) = (the next-operation of
V )(f(Arg(H))),

(vi) if H has until operator, then f(H) = (the until-operation of
V )(f(LeftArg(H)), f(RightArg(H))), and

(vii) if H has release operator, then f(H) = (the release-operation of
V )(f(LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K1 be a function from atomicLTL
into the basic assignations of V , let f be a function from WFFLTL into the
assignations of V , and let n be a natural number. We say that f is a n-pre-
evaluation for K1 if and only if the condition (Def. 28) is satisfied.

(Def. 28) Let H be an LTL-formula such that lenH ≤ n. Then
(i) if H is atomic, then f(H) = K1(H),
(ii) if H is negative, then f(H) = (the negation of V )(f(Arg(H))),
(iii) ifH is conjunctive, then f(H) = (the conjunction of V )(f(LeftArg(H)),
f(RightArg(H))),
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(iv) if H is disjunctive, then f(H) = (the disjunction of V )(f(LeftArg(H)),
f(RightArg(H))),

(v) if H has next operator, then f(H) = (the next-operation of
V )(f(Arg(H))),

(vi) if H has until operator, then f(H) = (the until-operation of
V )(f(LeftArg(H)), f(RightArg(H))), and

(vii) if H has release operator, then f(H) = (the release-operation of
V )(f(LeftArg(H)), f(RightArg(H))).

Let V be an LTL-model structure, let K1 be a function from atomicLTL
into the basic assignations of V , let f , h be functions from WFFLTL into the
assignations of V , let n be a natural number, and let H be an LTL-formula.
The functor GraftEval(V,K1, f, h, n,H) yields a set and is defined by:

(Def. 29) GraftEval(V,K1, f, h, n,H)

=



f(H), if lenH > n+ 1,
K1(H), if lenH = n+ 1 and H is atomic,
(the negation of V )(h(Arg(H))), if lenH = n+ 1 and H is negative,
(the conjunction of V )(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H is conjunctive,

(the disjunction of V )(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H is disjunctive,

(the next-operation of V )(h(Arg(H))),
if lenH = n+ 1 and H has next operator,

(the until-operation of V )(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H has until operator,

(the release-operation of V )(h(LeftArg(H)), h(RightArg(H))),
if lenH = n+ 1 and H has release operator,

h(H), if lenH < n+ 1,
∅, otherwise.

We adopt the following convention: V denotes an LTL-model structure, K1
denotes a function from atomicLTL into the basic assignations of V , and f , f1,
f2 denote functions from WFFLTL into the assignations of V .
Let V be an LTL-model structure, let K1 be a function from atomicLTL

into the basic assignations of V , and let n be a natural number. The functor
EvalSet(V,K1, n) yields a non empty set and is defined by:

(Def. 30) EvalSet(V,K1, n) = {h;h ranges over functions from WFFLTL into the
assignations of V : h is a n-pre-evaluation for K1}.
Let V be an LTL-model structure, let v0 be an element of the assignations

of V , and let x be a set. The functor CastEval(V, x, v0) yielding a function from
WFFLTL into the assignations of V is defined by:

(Def. 31) CastEval(V, x, v0) =

{
x, if x ∈ (the assignations of V )WFFLTL ,
WFFLTL 7−→ v0, otherwise.
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Let V be an LTL-model structure and let K1 be a function from atomicLTL
into the basic assignations of V . The functor EvalFamily(V,K1) yielding a non
empty set is defined by the condition (Def. 32).

(Def. 32) Let p be a set. Then p ∈ EvalFamily(V,K1) if and only if the following
conditions are satisfied:
(i) p ∈ 2(the assignations of V )WFFLTL , and
(ii) there exists a natural number n such that p = EvalSet(V,K1, n).

We now state two propositions:

(48) There exists f which is an evaluation for K1.

(49) If f1 is an evaluation for K1 and f2 is an evaluation for K1, then f1 = f2.

Let V be an LTL-model structure, let K1 be a function from atomicLTL
into the basic assignations of V , and let H be an LTL-formula. The functor
Evaluate(H,K1) yields an assignation of V and is defined by:

(Def. 33) There exists a function f from WFFLTL into the assignations of V such
that f is an evaluation for K1 and Evaluate(H,K1) = f(H).

Let V be an LTL-model structure and let f be an assignation of V . The
functor ¬f yielding an assignation of V is defined by:

(Def. 34) ¬f = (the negation of V )(f).
Let V be an LTL-model structure and let f , g be assignations of V . The

functor f ∧ g yields an assignation of V and is defined by:
(Def. 35) f ∧ g = (the conjunction of V )(f, g).
The functor f ∨ g yields an assignation of V and is defined as follows:

(Def. 36) f ∨ g = (the disjunction of V )(f, g).
Let V be an LTL-model structure and let f be an assignation of V . The

functor X f yielding an assignation of V is defined by:
(Def. 37) X f = (the next-operation of V )(f).

Let V be an LTL-model structure and let f , g be assignations of V . The
functor f U g yielding an assignation of V is defined by:

(Def. 38) f U g = (the until-operation of V )(f, g).
The functor f R g yields an assignation of V and is defined as follows:

(Def. 39) f R g = (the release-operation of V )(f, g).
One can prove the following propositions:

(50) Evaluate(¬H,K1) = ¬Evaluate(H,K1).
(51) Evaluate(H1 ∧H2,K1) = Evaluate(H1,K1) ∧ Evaluate(H2,K1).
(52) Evaluate(H1 ∨H2,K1) = Evaluate(H1,K1) ∨ Evaluate(H2,K1).
(53) Evaluate(X H,K1) = X Evaluate(H,K1).
(54) Evaluate(H1 U H2,K1) = Evaluate(H1,K1) U Evaluate(H2,K1).
(55) Evaluate(H1 RH2,K1) = Evaluate(H1,K1)R Evaluate(H2,K1).
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Let S be a non empty set. The infinite sequences of S yielding a non empty
set is defined by:

(Def. 40) The infinite sequences of S = SN.

Let S be a non empty set and let t be a sequence of S. The functor CastSeq t
yields an element of the infinite sequences of S and is defined by:

(Def. 41) CastSeq t = t.

Let S be a non empty set and let t be a set. Let us assume that t is an element
of the infinite sequences of S. The functor CastSeq(t, S) yielding a sequence of
S is defined by:

(Def. 42) CastSeq(t, S) = t.

Let S be a non empty set, let t be a sequence of S, and let k be a natural
number. The functor Shift(t, k) yielding a sequence of S is defined as follows:

(Def. 43) For every natural number n holds (Shift(t, k))(n) = t(n+ k).

Let S be a non empty set, let t be a set, and let k be a natural number. The
functor Shift(t, k, S) yielding an element of the infinite sequences of S is defined
as follows:

(Def. 44) Shift(t, k, S) = CastSeq Shift(CastSeq(t, S), k).

Let S be a non empty set, let t be an element of the infinite sequences of
S, and let k be a natural number. The functor Shift(t, k) yielding an element of
the infinite sequences of S is defined as follows:

(Def. 45) Shift(t, k) = Shift(t, k, S).

Let S be a non empty set and let f be a set. The functor Not0(f, S) yields an
element of ModelSP (the infinite sequences of S) and is defined by the condition
(Def. 46).

(Def. 46) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
¬Castboolean(Fid(f, the infinite sequences of S))(t) = true if and only
if (Fid(Not0(f, S), the infinite sequences of S))(t) = true.

Let S be a non empty set. The functor NotS yielding a unary operation on
ModelSP (the infinite sequences of S) is defined by:

(Def. 47) For every set f such that f ∈ ModelSP (the infinite sequences of S) holds
(NotS)(f) = Not0(f, S).

Let S be a non empty set, let f be a function from the infinite sequences of
S into Boolean, and let t be a set. The functor Next-univ(t, f) yields an element
of Boolean and is defined as follows:

(Def. 48) Next-univ(t, f) =


true, if t is an element of the infinite sequences
of S and f(Shift(t, 1, S)) = true,

false, otherwise.
Let S be a non empty set and let f be a set. The functor Next0(f, S) yielding

an element of ModelSP (the infinite sequences of S) is defined by the condition
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(Def. 49).

(Def. 49) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
Next-univ(t,Fid(f, the infinite sequences of S)) = true if and only if
(Fid(Next0(f, S), the infinite sequences of S))(t) = true.

Let S be a non empty set. The functor NextS yields a unary operation on
ModelSP (the infinite sequences of S) and is defined as follows:

(Def. 50) For every set f such that f ∈ ModelSP (the infinite sequences of S) holds
(NextS)(f) = Next0(f, S).

Let S be a non empty set and let f , g be sets. The functor And0(f, g, S)
yields an element of ModelSP (the infinite sequences of S) and is defined by the
condition (Def. 51).

(Def. 51) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
Castboolean(Fid(f, the infinite sequences of S))(t)∧Castboolean(Fid(g, the
infinite sequences of S))(t) = true if and only if (Fid(And0(f, g, S), the in-
finite sequences of S))(t) = true.

Let S be a non empty set. The functor AndS yielding a binary operation
on ModelSP (the infinite sequences of S) is defined by the condition (Def. 52).

(Def. 52) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of S)
and g ∈ ModelSP (the infinite sequences of S). Then (AndS)(f, g) =
And0(f, g, S).

Let S be a non empty set, let f , g be functions from the infinite sequences
of S into Boolean, and let t be a set. The functor Until-univ(t, f, g, S) yields an
element of Boolean and is defined as follows:

(Def. 53) Until-univ(t, f, g, S) =



true, if t is an element of the infinite sequences
of S and there exists a natural number m
such that for every natural number j
such that j < m holds f(Shift(t, j, S)) =
true and g(Shift(t,m, S)) = true,
false, otherwise.

Let S be a non empty set and let f , g be sets. The functor Until0(f, g, S)
yields an element of ModelSP (the infinite sequences of S) and is defined by the
condition (Def. 54).

(Def. 54) Let t be a set. Suppose t ∈ the infinite sequences of S. Then
Until-univ(t,Fid(f, the infinite sequences of S),Fid(g, the infinite sequen-
ces of S), S) = true if and only if (Fid(Until0(f, g, S), the infinite sequences
of S))(t) = true.

Let S be a non empty set. The functor UntilS yielding a binary operation
on ModelSP (the infinite sequences of S) is defined by the condition (Def. 55).

(Def. 55) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of S)
and g ∈ ModelSP (the infinite sequences of S). Then (UntilS)(f, g) =
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Until0(f, g, S).

Let S be a non empty set. The functor ∨S yields a binary operation on
ModelSP (the infinite sequences of S) and is defined by the condition (Def. 56).

(Def. 56) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of
S) and g ∈ ModelSP (the infinite sequences of S). Then ∨S(f, g) =
(NotS)((AndS)((NotS)(f), (NotS)(g))).

The functor ReleaseS yields a binary operation on ModelSP (the infinite sequ-
ences of S) and is defined by the condition (Def. 57).

(Def. 57) Let f , g be sets. Suppose f ∈ ModelSP (the infinite sequences of S)
and g ∈ ModelSP (the infinite sequences of S). Then (ReleaseS)(f, g) =
(NotS)((UntilS)((NotS)(f), (NotS)(g))).

Let S be a non empty set and let B1 be a non empty subset of ModelSP (the
infinite sequences of S). The functor ModelLTL(S,B1) yields an LTL-model
structure and is defined as follows:

(Def. 58) ModelLTL(S,B1) = 〈ModelSP (the infinite sequences of S), B1,AndS,
∨S ,NotS,NextS,UntilS,ReleaseS〉.
In the sequel B1 denotes a non empty subset of ModelSP (the infinite sequ-

ences of S), t denotes an element of the infinite sequences of S, and f , g denote
assignations of ModelLTL(S,B1).
Let S be a non empty set, let B1 be a non empty subset of ModelSP (the

infinite sequences of S), let t be an element of the infinite sequences of S, and
let f be an assignation of ModelLTL(S,B1). The predicate t |= f is defined by:

(Def. 59) (Fid(f, the infinite sequences of S))(t) = true.

Let S be a non empty set, let B1 be a non empty subset of ModelSP (the
infinite sequences of S), let t be an element of the infinite sequences of S, and
let f be an assignation of ModelLTL(S,B1). We introduce t 6|= f as an antonym
of t |= f.
The following propositions are true:

(56) f ∨ g = ¬(¬f ∧ ¬g) and f R g = ¬(¬f U ¬g).
(57) t |= ¬f iff t 6|= f.
(58) t |= f ∧ g iff t |= f and t |= g.
(59) t |= X f iff Shift(t, 1) |= f.
(60) t |= f U g if and only if there exists a natural number m such that
for every natural number j such that j < m holds Shift(t, j) |= f and
Shift(t,m) |= g.

(61) t |= f ∨ g iff t |= f or t |= g.
(62) t |= f R g if and only if for every natural number m such that for
every natural number j such that j < m holds Shift(t, j) |= ¬f holds
Shift(t,m) |= g.
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The non empty set AtomicFamily is defined as follows:

(Def. 60) AtomicFamily = 2atomicLTL .

Let a, t be sets. The functor AtomicFunc(a, t) yielding an element of Boolean
is defined as follows:

(Def. 61) AtomicFunc(a, t) =


true, if t ∈ the infinite sequences of AtomicFamily
and a ∈ (CastSeq(t,AtomicFamily))(0),

false, otherwise.
Let a be a set. The functor AtomicAsgn a yields an element of ModelSP (the

infinite sequences of AtomicFamily) and is defined by:

(Def. 62) For every set t such that t ∈ the infinite sequences of AtomicFamily
holds (Fid(AtomicAsgn a, the infinite sequences of AtomicFamily))(t) =
AtomicFunc(a, t).

The non empty subset AtomicBasicAsgn of ModelSP (the infinite sequences
of AtomicFamily) is defined by:

(Def. 63) AtomicBasicAsgn = {x ∈ ModelSP (the infinite sequences of
AtomicFamily):

∨
a : set x = AtomicAsgn a}.

The function AtomicKai from atomicLTL into the basic assignations
of ModelLTL(AtomicFamily,AtomicBasicAsgn) is defined as follows:

(Def. 64) For every set a such that a ∈ atomicLTL holds (AtomicKai)(a) =
AtomicAsgn a.

Let r be an element of the infinite sequences of AtomicFamily and let H be
an LTL-formula. The predicate r |= H is defined by:

(Def. 65) r |= Evaluate(H,AtomicKai).
Let r be an element of the infinite sequences of AtomicFamily and let H be

an LTL-formula. We introduce r 6|= H as an antonym of r |= H.
Let r be an element of the infinite sequences of AtomicFamily and let W be

a subset of WFFLTL. The predicate r |=W is defined by:
(Def. 66) For every LTL-formula H such that H ∈W holds r |= H.

Let r be an element of the infinite sequences of AtomicFamily and let W be
a subset of WFFLTL. We introduce r 6|=W as an antonym of r |=W.
Let W be a subset of WFFLTL. The functor X W yielding a subset of

WFFLTL is defined as follows:

(Def. 67) X W = {x;x ranges over LTL-formulae:
∨
u : LTL-formula (u ∈ W ∧ x =

X u)}.
In the sequel r denotes an element of the infinite sequences of AtomicFamily.
We now state a number of propositions:

(63) If H is atomic, then r |= H iff H ∈ (CastSeq(r,AtomicFamily))(0).
(64) r |= ¬H iff r 6|= H.
(65) r |= H1 ∧H2 iff r |= H1 and r |= H2.
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(66) r |= H1 ∨H2 iff r |= H1 or r |= H2.
(67) r |= X H iff Shift(r, 1) |= H.
(68) r |= H1 U H2 if and only if there exists a natural number m such that
for every natural number j such that j < m holds Shift(r, j) |= H1 and
Shift(r,m) |= H2.

(69) r |= H1 R H2 if and only if for every natural number m such that for
every natural number j such that j < m holds Shift(r, j) |= ¬H1 holds
Shift(r,m) |= H2.

(70) r |= ¬(H1 ∨H2) iff r |= ¬H1 ∧ ¬H2.
(71) r |= ¬(H1 ∧H2) iff r |= ¬H1 ∨ ¬H2.
(72) r |= H1 RH2 iff r |= ¬(¬H1 U ¬H2).
(73) r 6|= ¬H iff r |= H.
(74) r |= X ¬H iff r |= ¬X H.
(75) r |= H1 U H2 iff r |= H2 ∨H1 ∧ X (H1 U H2).
(76) r |= H1 RH2 iff r |= H1 ∧H2 ∨H2 ∧ X (H1 RH2).
In the sequel W is a subset of WFFLTL.
One can prove the following propositions:

(77) r |= X W iff Shift(r, 1) |=W.
(78)(i) If H is atomic, then H is not negative and H is not conjunctive and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(ii) if H is negative, then H is not atomic and H is not conjunctive and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(iii) if H is conjunctive, then H is not atomic and H is not negative and
H is not disjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(iv) if H is disjunctive, then H is not atomic and H is not negative and
H is not conjunctive and H does not have next operator and H does not
have until operator and H does not have release operator,

(v) if H has next operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
until operator and H does not have release operator,

(vi) if H has until operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
next operator and H does not have release operator, and

(vii) if H has release operator, then H is not atomic and H is not negative
and H is not conjunctive and H is not disjunctive and H does not have
next operator and H does not have until operator.

(79) For every element t of the infinite sequences of S holds Shift(t, 0) = t.
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(80) For every element s1 of the infinite sequences of S holds
Shift(Shift(s1, k), n) = Shift(s1, n+ k).

(81) For every sequence s1 of S holds CastSeq(CastSeq s1, S) = s1.

(82) For every element s1 of the infinite sequences of S holds
CastSeqCastSeq(s1, S) = s1.

(83) If H, ¬H ∈W, then r 6|=W.
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Summary. In this article we show the correctness of integer arithmetic ba-
sed on Chinese Remainder theorem as described e.g. in [11]: Integers are transfor-
med to finite sequences of modular integers, on which the arithmetic operations
are performed. Retransformation of the results to the integers is then accompli-
shed by means of the Chinese Remainder theorem. The method presented is a
typical example for computing in homomorphic images.
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The terminology and notation used here are introduced in the following articles:
[10], [9], [8], [2], [7], [5], [4], [3], [6], and [1].

1. Preliminaries

Let f be a finite sequence. Note that f�0 is empty.
Let f be a complex-valued finite sequence and let n be a natural number.

Observe that f�n is complex-valued.
Let f be an integer-valued finite sequence and let n be a natural number.

Note that f�n is integer-valued.
Let f be an integer-valued finite sequence and let n be a natural number.

Observe that f�n is integer-valued.
Let i be an integer. Observe that 〈i〉 is integer-valued.
Let f , g be integer-valued finite sequences. Note that f a g is integer-valued.
One can prove the following propositions:

1This work has been partially supported by grant BW 5100-5-0293-7.
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(1) For all complex-valued finite sequences f1, f2 holds len(f1 + f2) =
min(len f1, len f2).

(2) For all complex-valued finite sequences f1, f2 holds len(f1 − f2) =
min(len f1, len f2).

(3) For all complex-valued finite sequences f1, f2 holds len(f1 f2) =
min(len f1, len f2).

(4) Let m1, m2 be complex-valued finite sequences. Suppose lenm1 =
lenm2. Let k be a natural number. If k ≤ lenm1, then (m1m2)�k =
(m1�k) (m2�k).

Let F be an integer-valued finite sequence. Note that
∑
F is integer and∏

F is integer.
Next we state several propositions:

(5) Let f be a complex-valued finite sequence and i be a natural number. If
i+ 1 ≤ len f, then (f�i) a 〈f(i+ 1)〉 = f�(i+ 1).

(6) For every complex-valued finite sequence f such that there exists a na-
tural number i such that i ∈ dom f and f(i) = 0 holds

∏
f = 0.

(7) For all integers n, a, b holds (a − b) mod n = ((a mod n) − (b mod
n)) mod n.

(8) For all integers i, j, k such that i | j holds k · i | k · j.
(9) Let m be an integer-valued finite sequence and i be a natural number.

If i ∈ domm and mi 6= 0, then
∏
m

mi
is an integer.

(10) Let m be an integer-valued finite sequence and i be a natural number.
If i ∈ domm, then there exists an integer z such that z ·mi =

∏
m.

(11) Let m be an integer-valued finite sequence and i, j be natural numbers.

If i, j ∈ domm and j 6= i and mj 6= 0, then
∏
m

mi·mj is an integer.

(12) Let m be an integer-valued finite sequence and i, j be natural numbers.
Suppose i, j ∈ domm and j 6= i and mj 6= 0. Then there exists an integer
z such that z ·mi =

∏
m

mj
.

2. More on Greatest Common Divisors

Next we state a number of propositions:

(13) For every integer i holds |i| | i and i | |i|.
(14) For all integers i, j holds i gcd j = i gcd|j|.
(15) For all integers i, j such that i and j are relative prime holds lcm(i, j) =
|i · j|.

(16) For all integers i, j, k holds i · j gcd i · k = |i| · (j gcd k).
(17) For all integers i, j holds i · j gcd i = |i|.
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(18) For all integers i, j, k holds i gcd j gcd k = i gcd j gcd k.

(19) For all integers i, j, k such that i and j are relative prime holds i gcd j·k =
i gcd k.

(20) For all integers i, j such that i and j are relative prime holds i · j |
lcm(i, j).

(21) For all integers x, y, i, j such that i and j are relative prime holds if
x ≡ y (mod i) and x ≡ y (mod j), then x ≡ y (mod i · j).

(22) For all integers i, j such that i and j are relative prime there exists an
integer s such that s · i ≡ 1 (mod j).

3. Chinese Remainder Sequences

Let f be an integer-valued finite sequence. We introduce f is multiplicative-
trivial as an antonym of f is non-empty.
Let f be an integer-valued finite sequence. Let us observe that f is multiplica-

tive-trivial if and only if:

(Def. 1) There exists a natural number i such that i ∈ dom f and fi = 0.
One can verify the following observations:

∗ there exists an integer-valued finite sequence which is multiplicative-
trivial,

∗ there exists an integer-valued finite sequence which is non multiplicative-
trivial, and

∗ there exists an integer-valued finite sequence which is non empty and
positive yielding.

The following proposition is true

(23) For every multiplicative-trivial integer-valued finite sequence m holds∏
m = 0.

Let f be an integer-valued finite sequence. We say that f is Chinese rema-
inder if and only if:

(Def. 2) For all natural numbers i, j such that i, j ∈ dom f and i 6= j holds fi
and fj are relative prime.

One can verify that there exists an integer-valued finite sequence which is
non empty, positive yielding, and Chinese remainder.
A CR-sequence is a non empty positive yielding Chinese remainder integer-

valued finite sequence.
Let us note that every CR-sequence is non multiplicative-trivial.
One can verify that every integer-valued finite sequence which is

multiplicative-trivial is also non empty.
We now state the proposition
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(24) For every CR-sequence f and for every natural number m such that
0 < m ≤ len f holds f�m is a CR-sequence.
Let m be a CR-sequence. Observe that

∏
m is positive and natural.

Next we state the proposition

(25) Let m be a CR-sequence and i be a natural number. If i ∈ domm, then
for every integer m3 such that m3 =

∏
m

mi
holds

4. Integer Arithmetic based on CRT

let u be an integer and letm be an integer-valued finite sequence. The functor
mod(u,m) yields a finite sequence and is defined as follows:

(Def. 3) lenmod(u,m) = lenm and for every natural number i such that i ∈
dommod(u,m) holds (mod(u,m))i = u mod mi.

Let u be an integer and let m be an integer-valued finite sequence. Observe
that mod(u,m) is integer-valued.
Letm be a CR-sequence. A finite sequence is called a CR-coefficient sequence

for m if it satisfies the conditions (Def. 4).

(Def. 4)(i) len it = lenm, and
(ii) for every natural number i such that i ∈ dom it there exists an integer s
and there exists an integerm3 such thatm3 =

∏
m

mi
and s·m3 ≡ 1 (modmi)

and iti = s ·
∏
m

mi
.

Let m be a CR-sequence. Note that every CR-coefficient sequence for m is
integer-valued.
Next we state several propositions:

(26) Let m be a CR-sequence, c be a CR-coefficient sequence for m, and i be
a natural number. If i ∈ dom c, then ci ≡ 1 (modmi).

(27) Let m be a CR-sequence, c be a CR-coefficient sequence for m, and i, j
be natural numbers. If i, j ∈ dom c and i 6= j, then ci ≡ 0 (modmj).

(28) Let m be a CR-sequence, c1, c2 be CR-coefficient sequences for m, and
i be a natural number. If i ∈ dom c1, then (c1)i ≡ (c2)i (modmi).

(29) Let u be an integer-valued finite sequence and m be a CR-sequence.
Suppose lenm = lenu. Let c be a CR-coefficient sequence for m and i be
a natural number. If i ∈ domm, then

∑
u c ≡ ui (modmi).

(30) Let u be an integer-valued finite sequence and m be a CR-sequence.
Suppose lenm = lenu. Let c1, c2 be CR-coefficient sequences for m. Then∑
u c1 ≡

∑
u c2 (mod

∏
m).

Let u be an integer-valued finite sequence and let m be a CR-sequence. Let
us assume that lenm = lenu. The functor Z(u,m) yields an integer and is
defined as follows:
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(Def. 5) For every CR-coefficient sequence c for m holds Z(u,m) = (
∑
u c) mod∏

m.

We now state a number of propositions:

(31) For every integer-valued finite sequence u and for every CR-sequence m
such that lenm = lenu holds 0 ≤ Z(u,m) <

∏
m.

(32) For every integer u and for every CR-sequence m and for every natural
number i such that i ∈ domm holds u ≡ (mod(u,m))i (modmi).

(33) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then (mod(u,m) + mod(v,m))i ≡ u+ v (modmi).

(34) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then (mod(u,m) mod(v,m))i ≡ u · v (modmi).

(35) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then Z(mod(u,m) + mod(v,m),m) ≡ u+ v (modmi).

(36) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then Z(mod(u,m)−mod(v,m),m) ≡ u− v (modmi).

(37) Let u, v be integers, m be a CR-sequence, and i be a natural number. If
i ∈ domm, then Z(mod(u,m) mod(v,m),m) ≡ u · v (modmi).

(38) For all integers u, v and for every CR-sequence m such that 0 ≤ u+ v <∏
m holds Z(mod(u,m) + mod(v,m),m) = u+ v.

(39) For all integers u, v and for every CR-sequence m such that 0 ≤ u− v <∏
m holds Z(mod(u,m)−mod(v,m),m) = u− v.

(40) For all integers u, v and for every CR-sequence m such that 0 ≤ u · v <∏
m holds Z(mod(u,m) mod(v,m),m) = u · v.

5. Chinese Remainder Theorem Revisited

We now state two propositions:

(41) Let u be an integer-valued finite sequence and m be a CR-sequence.
Suppose lenu = lenm. Then there exists an integer z such that 0 ≤
z <

∏
m and for every natural number i such that i ∈ domu holds

z ≡ ui (modmi).
(42) Let u be an integer-valued finite sequence, m be a CR-sequence, and z1,
z2 be integers. Suppose that
(i) 0 ≤ z1,
(ii) z1 <

∏
m,

(iii) for every natural number i such that i ∈ domm holds z1 ≡ ui (modmi),
(iv) 0 ≤ z2,
(v) z2 <

∏
m, and

(vi) for every natural number i such that i ∈ domm holds z2 ≡ ui (modmi).
Then z1 = z2.
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Summary. It is known that commutative BCK-algebras form a variety,
but BCK-algebras do not [4]. Therefore H. Yutani introduced the notion of quasi-
commutative BCK-algebras. In this article we first present the notion and general
theory of quasi-commutative BCI-algebras. Then we discuss the reduction of
the type of quasi-commutative BCK-algebras and some special classes of quasi-
commutative BCI-algebras.
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The articles [7], [2], [3], [1], [5], and [6] provide the terminology and notation for
this paper.
Let X be a BCI-algebra, let x, y be elements of X, and let m, n be elements

of N. The functor Polynom(m,n, x, y) yields an element of X and is defined as
follows:

(Def. 1) Polynom(m,n, x, y) = ((x \ (x \ y))m+1 \ (y \ x))n.
We adopt the following convention: X denotes a BCI-algebra, x, y, z denote

elements of X, and i, j, k, l, m, n denote elements of N.
One can prove the following propositions:

(1) If x ≤ y ≤ z, then x ≤ z.
(2) If x ≤ y ≤ x, then x = y.
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(3) For every BCK-algebra X and for all elements x, y of X holds x \ y ≤ x
and (x \ y)n+1 ≤ (x \ y)n.

(4) For every BCK-algebra X and for every element x of X holds (0X \x)n =
0X .

(5) For every BCK-algebra X and for all elements x, y of X such thatm ≥ n
holds (x \ y)m ≤ (x \ y)n.

(6) Let X be a BCK-algebra and x, y be elements of X. Suppose m > n and
(x \ y)n = (x \ y)m. Let k be an element of N. If k ≥ n, then (x \ y)n =
(x \ y)k.

(7) Polynom(0, 0, x, y) = x \ (x \ y).
(8) Polynom(m,n, x, y) = ((Polynom(0, 0, x, y) \ (x \ y))m \ (y \ x))n.
(9) Polynom(m+ 1, n, x, y) = Polynom(m,n, x, y) \ (x \ y).
(10) Polynom(m,n+ 1, x, y) = Polynom(m,n, x, y) \ (y \ x).
(11) Polynom(n+ 1, n+ 1, y, x) ≤ Polynom(n, n+ 1, x, y).
(12) Polynom(n, n+ 1, x, y) ≤ Polynom(n, n, y, x).
Let X be a BCI-algebra. We say that X is quasi-commutative if and only if:

(Def. 2) There exist elements i, j, m, n of N such that for all elements x, y of X
holds Polynom(i, j, x, y) = Polynom(m,n, y, x).

Let us observe that BCI-EXAMPLE is quasi-commutative.
One can check that there exists a BCI-algebra which is quasi-commutative.
Let i, j, m, n be elements of N. A BCI-algebra is called a BCI-algebra

commutating with i, j and m, n if:

(Def. 3) For all elements x, y of it holds Polynom(i, j, x, y) = Polynom(m,n, y, x).

One can prove the following propositions:

(13) X is a BCI-algebra commutating with i, j and m, n if and only if X is
a BCI-algebra commutating with m, n and i, j.

(14) Let X be a BCI-algebra commutating with i, j and m, n and k be an
element of N. Then X is a BCI-algebra commutating with i+ k, j and m,
n+ k.

(15) Let X be a BCI-algebra commutating with i, j and m, n and k be an
element of N. Then X is a BCI-algebra commutating with i, j + k and
m+ k, n.

One can verify that there exists a BCK-algebra which is quasi-commutative.
Let i, j,m, n be elements of N. One can check that there exists a BCI-algebra

commutating with i, j and m, n which is BCK-5.
Let i, j, m, n be elements of N. A BCK-algebra commutating with i, j and

m, n is BCK-5 BCI-algebra commutating with i, j and m, n.
One can prove the following propositions:



general theory of quasi-commutative . . . 255

(16) X is a BCK-algebra commutating with i, j and m, n if and only if X is
a BCK-algebra commutating with m, n and i, j.

(17) Let X be a BCK-algebra commutating with i, j and m, n and k be an
element of N. Then X is a BCK-algebra commutating with i + k, j and
m, n+ k.

(18) Let X be a BCK-algebra commutating with i, j and m, n and k be an
element of N. Then X is a BCK-algebra commutating with i, j + k and
m+ k, n.

(19) For every BCK-algebra X commutating with i, j and m, n and for all
elements x, y of X holds (x \ y)i+1 = (x \ y)n+1.

(20) For every BCK-algebra X commutating with i, j and m, n and for all
elements x, y of X holds (x \ y)j+1 = (x \ y)m+1.

(21) Every BCK-algebra commutating with i, j and m, n is a BCK-algebra
commutating with i, j and j, n.

(22) Every BCK-algebra commutating with i, j and m, n is a BCK-algebra
commutating with n, j and m, n.

Let us consider i, j, m, n. The functor min(i, j,m, n) yielding an extended
real number is defined as follows:

(Def. 4) min(i, j,m, n) = min(min(i, j),min(m,n)).

The functor max(i, j,m, n) yielding an extended real number is defined by:

(Def. 5) max(i, j,m, n) = max(max(i, j),max(m,n)).

Next we state a number of propositions:

(23) min(i, j,m, n) = i or min(i, j,m, n) = j or min(i, j,m, n) = m or
min(i, j,m, n) = n.

(24) max(i, j,m, n) = i or max(i, j,m, n) = j or max(i, j,m, n) = m or
max(i, j,m, n) = n.

(25) If i = min(i, j,m, n), then i ≤ j and i ≤ m and i ≤ n.
(26) max(i, j,m, n) ≥ i and max(i, j,m, n) ≥ j and max(i, j,m, n) ≥ m and
max(i, j,m, n) ≥ n.

(27) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). If i = j, then X is a BCK-algebra commutating with
i, i and i, i.

(28) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). Suppose i < j and i < n. Then X is a BCK-algebra
commutating with i, i+ 1 and i, i+ 1.

(29) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). Suppose i < j and i = n and i = m. Then X is a
BCK-algebra commutating with i, i and i, i.
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(30) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). Suppose i < j and i = n and i < m < j. Then X is a
BCK-algebra commutating with i, m+ 1 and m, i.

(31) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i = min(i, j,m, n). Suppose i < j and i = n and j ≤ m. Then X is a
BCK-algebra commutating with i, j and j, i.

(32) Let X be a BCK-algebra commutating with i, j and m, n. Suppose l ≥ j
and k ≥ n. Then X is a BCK-algebra commutating with k, l and l, k.

(33) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
k ≥ max(i, j,m, n). Then X is a BCK-algebra commutating with k, k and
k, k.

(34) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i ≤ m and j ≤ n. Then X is a BCK-algebra commutating with i, j and i,
j.

(35) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
i ≤ m and i < n. Then X is a BCK-algebra commutating with i, j and i,
i+ 1.

(36) If X is a BCI-algebra commutating with i, j and j + k, i+ k, then X is
a BCK-algebra.

(37) X is a BCI-algebra commutating with 0, 0 and 0, 0 if and only if X is a
BCK-algebra commutating with 0, 0 and 0, 0.

(38) X is a commutative BCK-algebra iff X is a BCI-algebra commutating
with 0, 0 and 0, 0.

Let X be a BCI-algebra. We introduce p-Semisimple-partX as a synonym
of AtomSetX.
In the sequel B, P are non empty subsets of X.
One can prove the following propositions:

(39) For every BCI-algebra X such that B = BCK-partX and P =
p-Semisimple-partX holds B ∩ P = {0X}.

(40) For every BCI-algebra X such that P = p-Semisimple-partX holds X
is a BCK-algebra iff P = {0X}.

(41) For every BCI-algebra X such that B = BCK-partX holds X is a p-
semisimple BCI-algebra iff B = {0X}.

(42) If X is a p-semisimple BCI-algebra, then X is a BCI-algebra commuta-
ting with 0, 1 and 0, 0.

(43) Suppose X is a p-semisimple BCI-algebra. Then X is a BCI-algebra
commutating with n+ j, n and m, m+ j + 1.

(44) Suppose X is an associative BCI-algebra. Then X is a BCI-algebra com-
mutating with 0, 1 and 0, 0 and a BCI-algebra commutating with 1, 0 and
0, 0.
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(45) Suppose X is a weakly-positive-implicative BCI-algebra. Then X is a
BCI-algebra commutating with 0, 1 and 1, 1.

(46) If X is a positive-implicative BCI-algebra, then X is a BCI-algebra com-
mutating with 0, 1 and 1, 1.

(47) IfX is an implicative BCI-algebra, thenX is a BCI-algebra commutating
with 0, 1 and 0, 0.

(48) IfX is an alternative BCI-algebra, thenX is a BCI-algebra commutating
with 0, 1 and 0, 0.

(49) X is a BCK-positive-implicative BCK-algebra if and only if X is a BCK-
algebra commutating with 0, 1 and 0, 1.

(50) X is a BCK-implicative BCK-algebra iff X is a BCK-algebra commuta-
ting with 1, 0 and 0, 0.

One can check that every BCK-algebra which is BCK-implicative is also
commutative and every BCK-algebra which is BCK-implicative is also BCK-
positive-implicative.
The following propositions are true:

(51) X is a BCK-algebra commutating with 1, 0 and 0, 0 if and only if X
is a BCK-algebra commutating with 0, 0 and 0, 0 and a BCK-algebra
commutating with 0, 1 and 0, 1.

(52) Let X be a quasi-commutative BCK-algebra. Then X is a BCK-algebra
commutating with 0, 1 and 0, 1 if and only if for all elements x, y of X
holds x \ y = x \ y \ y.

(53) Let X be a quasi-commutative BCK-algebra. Then X is a BCK-algebra
commutating with n, n+ 1 and n, n+ 1 if and only if for all elements x,
y of X holds (x \ y)n+1 = (x \ y)n+2.

(54) If X is a BCI-algebra commutating with 0, 1 and 0, 0, then X is a
BCI-commutative BCI-algebra.

(55) If X is a BCI-algebra commutating with n, 0 and m, m, then X is a
BCI-commutative BCI-algebra.

(56) Let X be a BCK-algebra commutating with i, j andm, n. Suppose j = 0
and m > 0. Then X is a BCK-algebra commutating with 0, 0 and 0, 0.

(57) Let X be a BCK-algebra commutating with i, j and m, n. Suppose
m = 0 and j > 0. Then X is a BCK-algebra commutating with 0, 1 and
0, 1.

(58) LetX be a BCK-algebra commutating with i, j andm, n. Suppose n = 0
and i 6= 0. Then X is a BCK-algebra commutating with 0, 0 and 0, 0.

(59) Let X be a BCK-algebra commutating with i, j and m, n. Suppose i = 0
and n 6= 0. Then X is a BCK-algebra commutating with 0, 1 and 0, 1.
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Summary. In this paper I present basic properties of block diagonal matri-
ces over a set. In my approach the finite sequence of matrices in a block diagonal
matrix is not restricted to square matrices. Moreover, the off-diagonal blocks
need not be zero matrices, but also with another arbitrary fixed value.
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The papers [19], [1], [2], [6], [7], [3], [17], [16], [12], [5], [8], [9], [20], [13], [18],
[21], [4], [14], [15], [11], and [10] provide the terminology and notation for this
paper.

1. Preliminaries

For simplicity, we adopt the following rules: i, j, m, n, k denote natural
numbers, x denotes a set, K denotes a field, a, a1, a2 denote elements of K, D
denotes a non empty set, d, d1, d2 denote elements of D, M , M1, M2 denote
matrices over D, A, A1, A2, B1, B2 denote matrices over K, and f , g denote
finite sequences of elements of N.
One can prove the following propositions:

(1) Let K be a non empty additive loop structure and f1, f2, g1, g2 be finite
sequences of elements of K. If len f1 = len f2, then (f1 + f2) a (g1 + g2) =
f1

a g1 + f2 a g2.

(2) For all finite sequences f , g of elements of D such that i ∈ dom f holds
(f a g)�i = (f�i) a g.

(3) For all finite sequences f , g of elements of D such that i ∈ dom g holds
(f a g)�i+len f = f a (g�i).
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(4) If i ∈ Seg(n+ 1), then ((n+ 1) 7→ d)�i = n 7→ d.
(5)

∏
(n 7→ a) = powerK(a, n).

Let us consider f and let i be a natural number. Let us assume that i ∈
Seg(
∑
f). The functor min(f, i) yielding an element of N is defined by:

(Def. 1) i ≤
∑
f�min(f, i) and min(f, i) ∈ dom f and for every j such that

i ≤
∑
f�j holds min(f, i) ≤ j.

One can prove the following propositions:

(6) If i ∈ dom f and f(i) 6= 0, then min(f,
∑
f�i) = i.

(7) If i ∈ Seg(
∑
f), then min(f, i)−′ 1 = min(f, i)−1 and

∑
f�(min(f, i)−′

1) < i.

(8) If i ∈ Seg(
∑
f), then min(f a g, i) = min(f, i).

(9) If i ∈ Seg((
∑
f)+
∑
g)\Seg(

∑
f), then min(f ag, i) = min(g, i−′

∑
f)+

len f and i−′
∑
f = i−

∑
f.

(10) If i ∈ dom f and j ∈ Seg(fi), then j +
∑
f�(i −′ 1) ∈ Seg(

∑
f�i) and

min(f, j +
∑
f�(i−′ 1)) = i.

(11) For all i, j such that i ≤ len f and j ≤ len f and
∑
f�i =

∑
f�j and if

i ∈ dom f, then f(i) 6= 0 and if j ∈ dom f, then f(j) 6= 0 holds i = j.

2. Finite Sequences of Matrices

Let us consider D and let F be a finite sequence of elements of (D∗)∗. We
say that F is matrix-yielding if and only if:

(Def. 2) For every i such that i ∈ domF holds F (i) is a matrix over D.
Let us consider D. Observe that there exists a finite sequence of elements of

(D∗)∗ which is matrix-yielding.
Let us consider D. A finite sequence of matrices over D is a matrix-yielding

finite sequence of elements of (D∗)∗.
Let us consider K. A finite sequence of matrices over K is a matrix-yielding

finite sequence of elements of ((the carrier of K)∗)∗.
We now state the proposition

(12) ∅ is a finite sequence of matrices over D.
We adopt the following rules: F , F1, F2 are finite sequences of matrices over

D and G, G′, G1, G2 are finite sequences of matrices over K.
Let us consider D, F , x. Then F (x) is a matrix over D.
Let us consider D, F1, F2. Then F1 a F2 is a finite sequence of matrices over

D.
Let us consider D, M1. Then 〈M1〉 is a finite sequence of matrices over D.

Let us consider M2. Then 〈M1,M2〉 is a finite sequence of matrices over D.
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Let us consider D, F , n. Then F �n is a finite sequence of matrices over D.
Then F�n is a finite sequence of matrices over D.

3. Sequences of Sizes of Matrices in a Finite Sequence

Let us consider D, F . The functor LenF yielding a finite sequence of ele-
ments of N is defined as follows:
(Def. 3) domLenF = domF and for every i such that i ∈ domLenF holds

(LenF )(i) = lenF (i).

The functor WidthF yields a finite sequence of elements of N and is defined by:
(Def. 4) domWidthF = domF and for every i such that i ∈ domWidthF holds

(WidthF )(i) = widthF (i).

Let us consider D, F . Then LenF is an element of NlenF . Then WidthF is
an element of NlenF .
The following propositions are true:

(13) If
∑
LenF = 0, then

∑
WidthF = 0.

(14) Len(F1 a F2) = (LenF1) a LenF2.

(15) Len〈M〉 = 〈lenM〉.
(16)

∑
Len〈M1,M2〉 = lenM1 + lenM2.

(17) Len(F1�n) = LenF1�n.

(18) Width(F1 a F2) = (WidthF1) aWidthF2.

(19) Width〈M〉 = 〈widthM〉.
(20)

∑
Width〈M1,M2〉 = widthM1 +widthM2.

(21) Width(F1�n) = WidthF1�n.

4. Block Diagonal Matrices

Let us consider D, let d be an element of D, and let F be a finite sequence
of matrices over D. The d-block diagonal of F is a matrix over D and is defined
by the conditions (Def. 5).

(Def. 5)(i) len (the d-block diagonal of F ) =
∑
LenF,

(ii) width (the d-block diagonal of F ) =
∑
WidthF, and

(iii) for all i, j such that 〈〈i, j〉〉 ∈ the indices of the d-
block diagonal of F holds if j ≤

∑
WidthF �(min(LenF, i) −′

1) or j >
∑
WidthF �min(LenF, i), then (the d-block diagonal

of F )i,j = d and if
∑
WidthF �(min(LenF, i) −′ 1) < j ≤∑

WidthF �min(LenF, i), then (the d-block diagonal of F )i,j =
F (min(LenF, i))i−′

∑
LenF �(min(LenF,i)−′1),j−′

∑
WidthF �(min(LenF,i)−′1).
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Let us consider D, let d be an element of D, and let F be a finite sequence of
matrices over D. Then the d-block diagonal of F is a matrix over D of dimension∑
LenF ×

∑
WidthF.

Next we state a number of propositions:

(22) For every finite sequence F of matrices over D such that F = ∅ holds
the d-block diagonal of F = ∅.

(23) LetM be a matrix over D of dimension
∑
Len〈M1,M2〉 ×

∑
Width〈M1,

M2〉. ThenM = the d-block diagonal of 〈M1,M2〉 if and only if for every i
holds if i ∈ domM1, then Line(M, i) = Line(M1, i) a (widthM2 7→ d) and
if i ∈ domM2, then Line(M, i+ lenM1) = (widthM1 7→ d) a Line(M2, i).

(24) LetM be a matrix over D of dimension
∑
Len〈M1,M2〉 ×

∑
Width〈M1,

M2〉. Then M = the d-block diagonal of 〈M1,M2〉 if and only if for every
i holds if i ∈ SegwidthM1, then M�,i = ((M1)�,i) a (lenM2 7→ d) and if
i ∈ SegwidthM2, then M�,i+widthM1 = (lenM1 7→ d) a ((M2)�,i).

(25) The indices of the d1-block diagonal of F1 is a subset of the indices of
the d2-block diagonal of F1 a F2.

(26) Suppose 〈〈i, j〉〉 ∈ the indices of the d-block diagonal of F1. Then (the
d-block diagonal of F1)i,j = (the d-block diagonal of F1 a F2)i,j .

(27) 〈〈i, j〉〉 ∈ the indices of the d1-block diagonal of F2 if and only if i > 0 and
j > 0 and 〈〈i +

∑
LenF1, j +

∑
WidthF1〉〉 ∈ the indices of the d2-block

diagonal of F1 a F2.

(28) Suppose 〈〈i, j〉〉 ∈ the indices of the d-block diagonal of F2. Then
(the d-block diagonal of F2)i,j = (the d-block diagonal of F1 a

F2)i+
∑
LenF1,j+

∑
WidthF1 .

(29) Suppose 〈〈i, j〉〉 ∈ the indices of the d-block diagonal of F1 a F2 but
i ≤
∑
LenF1 and j >

∑
WidthF1 or i >

∑
LenF1 and j ≤

∑
WidthF1.

Then (the d-block diagonal of F1 a F2)i,j = d.

(30) Let given i, j, k. Suppose i ∈ domF and 〈〈j, k〉〉 ∈ the indices of F (i).
Then
(i) 〈〈j +

∑
LenF �(i −′ 1), k +

∑
WidthF �(i −′ 1)〉〉 ∈ the indices of the

d-block diagonal of F , and
(ii) F (i)j,k = (the d-block diagonal of F )j+

∑
LenF �(i−′1),k+

∑
WidthF �(i−′1).

(31) If i ∈ domF, then F (i) = Segm(the d-block diagonal
of F , Seg(

∑
LenF �i) \ Seg(

∑
LenF �(i −′ 1)),Seg(

∑
WidthF �i) \

Seg(
∑
WidthF �(i−′ 1))).

(32) M = Segm(the d-block diagonal of 〈M〉 a F,Seg lenM,SegwidthM).

(33) M = Segm(the d-block diagonal of F a 〈M〉,Seg(lenM +
∑
LenF ) \

Seg(
∑
LenF ),Seg(widthM +

∑
WidthF ) \ Seg(

∑
WidthF )).

(34) The d-block diagonal of 〈M〉 =M.
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(35) The d-block diagonal of F1 a F2 = the d-block diagonal of 〈the d-block
diagonal of F1〉 a F2.

(36) The d-block diagonal of F1 a F2 = the d-block diagonal of F1 a 〈the
d-block diagonal of F2〉.

(37) If i ∈ Seg(
∑
LenF ) and m = min(LenF, i), then Line(the d-block

diagonal of F , i) = ((
∑
Width(F �(m −′ 1))) 7→ d) a Line(F (m), i −′∑

Len(F �(m−′ 1))) a (((
∑
WidthF )−′

∑
Width(F �m)) 7→ d).

(38) If i ∈ Seg(
∑
WidthF ) and m = min(WidthF, i), then (the

d-block diagonal of F )�,i = ((
∑
Len(F �(m −′ 1))) 7→ d) a

(F (m)�,i−′
∑
Width(F �(m−′1)))

a (((
∑
LenF )−′

∑
Len(F �m)) 7→ d).

(39) Let M1, M2, N1, N2 be matrices over D. Suppose lenM1 = lenN1 and
widthM1 = widthN1 and lenM2 = lenN2 and widthM2 = widthN2 and
the d1-block diagonal of 〈M1,M2〉 = the d2-block diagonal of 〈N1, N2〉.
Then M1 = N1 and M2 = N2.

(40) Suppose M = ∅. Then
(i) the d-block diagonal of F a 〈M〉 = the d-block diagonal of F , and
(ii) the d-block diagonal of 〈M〉 a F = the d-block diagonal of F .

(41) Suppose i ∈ domA and widthA = width (the deleting of i-row in A).
Then the deleting of i-row in the a-block diagonal of 〈A〉aG = the a-block
diagonal of 〈the deleting of i-row in A〉 a G.

(42) Suppose i ∈ domA and widthA = width (the deleting of i-row in A).
Then the deleting of (

∑
LenG)+i-row in the a-block diagonal of Ga〈A〉 =

the a-block diagonal of G a 〈the deleting of i-row in A〉.
(43) Suppose i ∈ SegwidthA. Then the deleting of i-column in the a-block
diagonal of 〈A〉 aG = the a-block diagonal of 〈the deleting of i-column in
A〉 a G.

(44) Suppose i ∈ SegwidthA. Then the deleting of i+
∑
WidthG-column in

the a-block diagonal of Ga 〈A〉 = the a-block diagonal of Ga 〈the deleting
of i-column in A〉.
Let us consider D and let F be a finite sequence of elements of (D∗)∗. We

say that F is square-matrix-yielding if and only if:

(Def. 6) For every i such that i ∈ domF there exists n such that F (i) is a square
matrix over D of dimension n.

Let us consider D. One can verify that there exists a finite sequence of
elements of (D∗)∗ which is square-matrix-yielding.
Let us consider D. Observe that every finite sequence of elements of (D∗)∗

which is square-matrix-yielding is also matrix-yielding.
Let us consider D. A finite sequence of square-matrices over D is a square-

matrix-yielding finite sequence of elements of (D∗)∗.
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Let us consider K. A finite sequence of square-matrices over K is a square-
matrix-yielding finite sequence of elements of ((the carrier of K)∗)∗.
We use the following convention: S, S1, S2 denote finite sequences of square-

matrices over D and R, R1, R2 denote finite sequences of square-matrices over
K.
One can prove the following proposition

(45) ∅ is a finite sequence of square-matrices over D.
Let us consider D, S, x. Then S(x) is a square matrix over D of dimension

lenS(x).
Let us consider D, S1, S2. Then S1aS2 is a finite sequence of square-matrices

over D.
Let us consider D, n and let M1 be a square matrix over D of dimension n.

Then 〈M1〉 is a finite sequence of square-matrices over D.
Let us consider D, n, m, let M1 be a square matrix over D of dimension

n, and let M2 be a square matrix over D of dimension m. Then 〈M1,M2〉 is a
finite sequence of square-matrices over D.
Let us consider D, S, n. Then S�n is a finite sequence of square-matrices

over D. Then S�n is a finite sequence of square-matrices over D.
The following proposition is true

(46) LenS = WidthS.

Let us consider D, let d be an element of D, and let S be a finite sequence
of square-matrices over D. Then the d-block diagonal of S is a square matrix
over D of dimension

∑
LenS.

One can prove the following propositions:

(47) Let A be a square matrix over K of dimension n. Suppose i ∈ domA
and j ∈ Seg n. Then the deleting of i-row and j-column in the a-block
diagonal of 〈A〉 a R = the a-block diagonal of 〈the deleting of i-row and
j-column in A〉 a R.

(48) Let A be a square matrix over K of dimension n. Suppose i ∈ domA and
j ∈ Seg n. Then the deleting of i+

∑
LenR-row and j +

∑
LenR-column

in the a-block diagonal of R a 〈A〉 = the a-block diagonal of R a 〈the
deleting of i-row and j-column in A〉.
Let us consider K, R. The functor DetR yielding a finite sequence of ele-

ments of K is defined as follows:

(Def. 7) domDetR = domR and for every i such that i ∈ domDetR holds
(DetR)(i) = DetR(i).

Let us consider K, R. Then DetR is an element of (the carrier of K)lenR.
In the sequel N denotes a square matrix over K of dimension n and N1

denotes a square matrix over K of dimension m.
The following propositions are true:
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(49) Det〈N〉 = 〈DetN〉.
(50) Det(R1 a R2) = (DetR1) a DetR2.

(51) Det(R�n) = DetR�n.

(52) Det (the 0K-block diagonal of 〈N,N1〉) = DetN ·DetN1.
(53) Det (the 0K-block diagonal of R) =

∏
DetR.

(54) If lenA1 6= widthA1 and N = the 0K-block diagonal of 〈A1, A2〉, then
DetN = 0K .

(55) Suppose LenG 6= WidthG. Let M be a square matrix over K of dimen-
sion n. If M = the 0K-block diagonal of G, then DetM = 0K .

5. An Example of a Finite Sequence of Matrices

Let us considerK and let f be a finite sequence of elements of N. The functor
If×fK yielding a finite sequence of square-matrices over K is defined by:

(Def. 8) dom(If×fK ) = dom f and for every i such that i ∈ dom(If×fK ) holds

If×fK (i) = If(i)×f(i)K .

The following propositions are true:

(56) Len(If×fK ) = f and Width(If×fK ) = f.

(57) For every element i of N holds I〈i〉×〈i〉K = 〈Ii×iK 〉.

(58) I(f
ag)×(fag)

K = (If×fK ) a Ig×gK .

(59) I(f�n)×(f�n)K = If×fK �n.

(60) The 0K-block diagonal of 〈Ii×iK , I
j×j
K 〉 = I

(i+j)×(i+j)
K .

(61) The 0K-block diagonal of I
f×f
K = I

(
∑
f)×(
∑
f)

K .

In the sequel p, p1 are finite sequences of elements of K.

6. Operations on a Finite Sequence of Matrices

Let us consider K, G, p. The functor p • G yielding a finite sequence of
matrices over K is defined as follows:

(Def. 9) dom(p • G) = domG and for every i such that i ∈ dom(p • G) holds
(p •G)(i) = pi ·G(i).
Let us consider K and let us consider R, p. Then p • R is a finite sequence

of square-matrices over K.
The following propositions are true:

(62) Len(p •G) = LenG and Width(p •G) = WidthG.
(63) p • 〈A〉 = 〈p1 ·A〉.
(64) If lenG = len p and lenG1 ≤ len p1, then pap1•GaG1 = (p•G)a(p1•G1).
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(65) a·the a1-block diagonal ofG = the (a·a1)-block diagonal of lenG 7→ a•G.
Let us consider K and let G1, G2 be finite sequences of matrices over K.

The functor G1 ⊕G2 yields a finite sequence of matrices over K and is defined
by:

(Def. 10) dom(G1 ⊕ G2) = domG1 and for every i such that i ∈ dom(G1 ⊕ G2)
holds (G1 ⊕G2)(i) = G1(i) +G2(i).
Let us consider K and let us consider R, G. Then R⊕G is a finite sequence

of square-matrices over K.
The following propositions are true:

(66) Len(G1 ⊕G2) = LenG1 and Width(G1 ⊕G2) = WidthG1.
(67) If lenG = lenG′, then G a G1 ⊕G′ a G2 = (G⊕G′) a (G1 ⊕G2).
(68) 〈A〉 ⊕G = 〈A+G(1)〉.
(69) 〈A1〉 ⊕ 〈A2〉 = 〈A1 +A2〉.
(70) 〈A1, B1〉 ⊕ 〈A2, B2〉 = 〈A1 +A2, B1 +B2〉.
(71) Suppose lenA1 = lenB1 and lenA2 = lenB2 and widthA1 = widthB1
and widthA2 = widthB2. Then (the a1-block diagonal of 〈A1, A2〉)+ (the
a2-block diagonal of 〈B1, B2〉) = the (a1+a2)-block diagonal of 〈A1, A2〉⊕
〈B1, B2〉.

(72) Suppose LenR1 = LenR2 and WidthR1 = WidthR2. Then (the a1-
block diagonal of R1)+(the a2-block diagonal of R2) = the (a1+a2)-block
diagonal of R1 ⊕R2.
Let us consider K and let G1, G2 be finite sequences of matrices over K.

The functor G1G2 yielding a finite sequence of matrices over K is defined by:

(Def. 11) dom(G1G2) = domG1 and for every i such that i ∈ dom(G1G2) holds
(G1G2)(i) = G1(i) ·G2(i).
Next we state several propositions:

(73) If WidthG1 = LenG2, then Len(G1G2) = LenG1 and Width(G1G2) =
WidthG2.

(74) If lenG = lenG′, then (G a G1) (G′ a G2) = (GG′) a (G1G2).

(75) 〈A〉G = 〈A ·G(1)〉.
(76) 〈A1〉 〈A2〉 = 〈A1 ·A2〉.
(77) 〈A1, B1〉 〈A2, B2〉 = 〈A1 ·A2, B1 ·B2〉.
(78) Suppose widthA1 = lenB1 and widthA2 = lenB2. Then (the 0K-block
diagonal of 〈A1, A2〉) · (the 0K-block diagonal of 〈B1, B2〉) = the 0K-block
diagonal of 〈A1, A2〉 〈B1, B2〉.

(79) If WidthR1 = LenR2, then (the 0K-block diagonal of R1)·(the 0K-block
diagonal of R2) = the 0K-block diagonal of R1 R2.
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Summary. The paper is concerned with a generalization of concepts intro-
duced in [13], i.e. introduced are matrices of linear transformations over a finite-
dimensional vector space. Introduced are linear transformations over a finite-
dimensional vector space depending on a given matrix of the transformation.
Finally, I prove that the rank of linear transformations over a finite-dimensional
vector space is the same as the rank of the matrix of that transformation.
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1. Preliminaries

We adopt the following rules: i, j, m, n are natural numbers, K is a field,
and a is an element of K.
One can prove the following propositions:

(1) Let V be a vector space over K,W1,W2,W12 be subspaces of V , and U1,
U2 be subspaces ofW12. If U1 =W1 and U2 =W2, thenW1∩W2 = U1∩U2
and W1 +W2 = U1 + U2.

(2) Let V be a vector space over K and W1, W2 be subspaces of V . Suppose
W1∩W2 = 0V . Let B1 be a linearly independent subset ofW1 and B2 be a
linearly independent subset of W2. Then B1∪B2 is a linearly independent
subset of W1 +W2.
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(3) Let V be a vector space over K and W1, W2 be subspaces of V . Suppose
W1 ∩W2 = 0V . Let B1 be a basis of W1 and B2 be a basis of W2. Then
B1 ∪B2 is a basis of W1 +W2.

(4) For every finite dimensional vector space V over K holds every ordered
basis of ΩV is an ordered basis of V .

(5) Let V1 be a vector space over K and A be a finite subset of V1. If
dim(Lin(A)) = cardA, then A is linearly independent.

(6) For every vector space V over K and for every finite subset A of V holds
dim(Lin(A)) ≤ cardA.

2. More on the Product of Finite Sequence of Scalars and
Vectors

For simplicity, we follow the rules: V1, V2, V3 are finite dimensional vector
spaces over K, f is a function from V1 into V2, b1, b′1 are ordered bases of V1,
B1 is a finite sequence of elements of V1, b2 is an ordered basis of V2, B2 is a
finite sequence of elements of V2, B3 is a finite sequence of elements of V3, v1,
w1 are elements of V1, R, R1, R2 are finite sequences of elements of V1, and p,
p1, p2 are finite sequences of elements of K.
We now state a number of propositions:

(7) lmlt(p1 + p2, R) = lmlt(p1, R) + lmlt(p2, R).

(8) lmlt(p,R1 +R2) = lmlt(p,R1) + lmlt(p,R2).

(9) If len p1 = lenR1 and len p2 = lenR2, then lmlt(p1 a p2, R1
a R2) =

(lmlt(p1, R1)) a lmlt(p2, R2).

(10) If lenR1 = lenR2, then
∑
(R1 +R2) = (

∑
R1) +

∑
R2.

(11)
∑
lmlt(lenR 7→ a,R) = a ·

∑
R.

(12)
∑
lmlt(p, len p 7→ v1) = (

∑
p) · v1.

(13)
∑
lmlt(a · p,R) = a ·

∑
lmlt(p,R).

(14) Let B1 be a finite sequence of elements of V1, W1 be a subspace of
V1, and B2 be a finite sequence of elements of W1. If B1 = B2, then
lmlt(p,B1) = lmlt(p,B2).

(15) Let B1 be a finite sequence of elements of V1,W1 be a subspace of V1, and
B2 be a finite sequence of elements ofW1. If B1 = B2, then

∑
B1 =

∑
B2.

(16) If i ∈ domR, then
∑
lmlt(Line(I lenR×lenRK , i), R) = Ri.

3. More on the Decomposition of a Vector in a Basis

We now state a number of propositions:

(17) v1 + w1 → b1 = (v1 → b1) + (w1 → b1).
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(18) a · v1 → b1 = a · (v1 → b1).
(19) If i ∈ dom b1, then (b1)i → b1 = Line(I len b1×len b1K , i).

(20) 0(V1) → b1 = len b1 7→ 0K .
(21) len b1 = dim(V1).

(22)(i) rng(b1�m) is a linearly independent subset of V1, and
(ii) for every subset A of V1 such that A = rng(b1�m) holds b1�m is an
ordered basis of Lin(A).

(23)(i) rng((b1)�m) is a linearly independent subset of V1, and
(ii) for every subset A of V1 such that A = rng((b1)�m) holds (b1)�m is an
ordered basis of Lin(A).

(24) Let W1, W2 be subspaces of V1. Suppose W1 ∩W2 = 0(V1). Let b1 be an
ordered basis of W1, b2 be an ordered basis of W2, and b be an ordered
basis of W1+W2. Suppose b = b1a b2. Let v, v1, v2 be vectors of W1+W2,
w1 be a vector ofW1, and w2 be a vector ofW2. If v = v1+v2 and v1 = w1
and v2 = w2, then v → b = (w1 → b1) a (w2 → b2).

(25) Let W1 be a subspace of V1. Suppose W1 = Ω(V1). Let w be a vector of
W1, v be a vector of V1, and w1 be an ordered basis of W1. If v = w and
b1 = w1, then v → b1 = w → w1.

(26) Let W1, W2 be subspaces of V1. Suppose W1 ∩W2 = 0(V1). Let w1 be an
ordered basis of W1 and w2 be an ordered basis of W2. Then w1 a w2 is
an ordered basis of W1 +W2.

4. Properties of Matrices of Linear Transformations

Let us consider K, V1, V2, f , B1, b2. Then AutMt(f,B1, b2) is a matrix over
K of dimension lenB1 × len b2.
Let S be a 1-sorted structure and let R be a binary relation. The functor

R�S is defined as follows:

(Def. 1) R�S = R�the carrier of S.

The following proposition is true

(27) Let f be a linear transformation from V1 to V2, W1, W2 be subspaces
of V1, and U1, U2 be subspaces of V2. Suppose if dim(W1) = 0, then
dim(U1) = 0 and if dim(W2) = 0, then dim(U2) = 0 and V2 is the direct
sum of U1 and U2. Let f1 be a linear transformation from W1 to U1 and
f2 be a linear transformation from W2 to U2. Suppose f1 = f�W1 and
f2 = f�W2. Let w1 be an ordered basis of W1, w2 be an ordered basis
of W2, u1 be an ordered basis of U1, and u2 be an ordered basis of U2.
Suppose w1 a w2 = b1 and u1 a u2 = b2. Then AutMt(f, b1, b2) = the
0K-block diagonal of 〈AutMt(f1, w1, u1),AutMt(f2, w2, u2)〉.
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Let us consider K, V1, V2, let f be a function from V1 into V2, let B1 be a
finite sequence of elements of V1, and let b2 be an ordered basis of V2. Let us
assume that lenB1 = len b2. The functor AutEqMt(f,B1, b2) yielding a matrix
over K of dimension lenB1 × lenB1 is defined by:
(Def. 2) AutEqMt(f,B1, b2) = AutMt(f,B1, b2).

The following propositions are true:

(28) AutMt(id(V1), b1, b1) = I
len b1×len b1
K .

(29) AutEqMt(id(V1), b1, b
′
1) is invertible and AutEqMt(id(V1), b

′
1, b1) =

(AutEqMt(id(V1), b1, b
′
1))

`.

(30) If len p1 = len p2 and len p1 = lenB1 and len p1 > 0 and j ∈ dom b1
and for every i such that i ∈ dom p2 holds p2(i) = ((B1)i → b1)(j), then
p1 · p2 = (

∑
lmlt(p1, B1)→ b1)(j).

(31) If len b1 > 0 and f is linear, then LineVec2Mx(v1 → b1) ·
AutMt(f, b1, b2) = LineVec2Mx(f(v1)→ b2).

5. Linear Transformations of Matrices

Let us consider K, V1, V2, b1, B2 and letM be a matrix over K of dimension
len b1 × lenB2. The functor Mx2Tran(M, b1, B2) yielding a function from V1 into
V2 is defined by:

(Def. 3) For every vector v of V1 holds (Mx2Tran(M, b1, B2))(v) =∑
lmlt(Line(LineVec2Mx(v → b1) ·M, 1), B2).

Next we state two propositions:

(32) For every matrix M over K of dimension len b1 × len b2 such
that len b1 > 0 holds LineVec2Mx((Mx2Tran(M, b1, b2))(v1) → b2) =
LineVec2Mx(v1 → b1) ·M.

(33) For every matrix M over K of dimension len b1 × lenB2 such that
len b1 = 0 holds (Mx2Tran(M, b1, B2))(v1) = 0(V2).

Let us consider K, V1, V2, b1, B2 and letM be a matrix over K of dimension
len b1 × lenB2. Then Mx2Tran(M, b1, B2) is a linear transformation from V1 to
V2.
Next we state three propositions:

(34) If f is linear, then Mx2Tran(AutMt(f, b1, b2), b1, b2) = f.

(35) For all matrices A, B over K such that i ∈ domA and widthA = lenB
holds LineVec2MxLine(A, i) ·B = LineVec2MxLine(A ·B, i).

(36) For every matrix M over K of dimension len b1 × len b2 holds
AutMt(Mx2Tran(M, b1, b2), b1, b2) =M.

Let us consider n, m, K, let A be a matrix over K of dimension n × m, and
let B be a matrix over K. Then A+B is a matrix over K of dimension n × m.
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The following propositions are true:

(37) For all matrices A, B over K of dimension len b1 × lenB2 holds
Mx2Tran(A+B, b1, B2) = Mx2Tran(A, b1, B2) +Mx2Tran(B, b1, B2).

(38) For every matrix A over K of dimension len b1 × lenB2 holds a ·
Mx2Tran(A, b1, B2) = Mx2Tran(a ·A, b1, B2).

(39) For all matrices A, B over K of dimension len b1 × len b2 such that
Mx2Tran(A, b1, b2) = Mx2Tran(B, b1, b2) holds A = B.

(40) Let A be a matrix over K of dimension len b1 × len b2 and B be a
matrix over K of dimension len b2 × lenB3. Suppose widthA = lenB. Let
A1 be a matrix over K of dimension len b1 × lenB3. If A1 = A · B, then
Mx2Tran(A1, b1, B3) = Mx2Tran(B, b2, B3) ·Mx2Tran(A, b1, b2).

(41) Let A be a matrix overK of dimension len b1 × len b2. Suppose len b1 > 0
and len b2 > 0. Then v1 ∈ kerMx2Tran(A, b1, b2) if and only if v1 → b1 ∈
the space of solutions of AT.

(42) V1 is trivial iff dim(V1) = 0.

(43) Let V1, V2 be vector spaces over K and f be a linear transformation
from V1 to V2. Then f is one-to-one if and only if ker f = 0(V1).

Let us consider K and let V1 be a vector space over K. Then id(V1) is a linear
transformation from V1 to V1.
Let us consider K, let V1, V2 be vector spaces over K, and let f , g be linear

transformations from V1 to V2. Then f + g is a linear transformation from V1
to V2.
Let us consider K, let V1, V2 be vector spaces over K, let f be a linear

transformation from V1 to V2, and let us consider a. Then a · f is a linear
transformation from V1 to V2.
Let us consider K, let V1, V2, V3 be vector spaces over K, let f3 be a linear

transformation from V1 to V2, and let f4 be a linear transformation from V2 to
V3. Then f4 · f3 is a linear transformation from V1 to V3.
One can prove the following propositions:

(44) For every matrix A overK of dimension len b1 × len b2 such that rk(A) =
len b1 holds Mx2Tran(A, b1, b2) is one-to-one.

(45) MX2FinS(In×nK ) is an ordered basis of the n-dimension vector space over
K.

(46) Let M be an ordered basis of the len b2-dimension vector space over K.
Suppose M = MX2FinS(I len b2×len b2K ). Let v1 be a vector of the len b2-
dimension vector space over K. Then v1 →M = v1.

(47) Let M be an ordered basis of the len b2-dimension vector space over
K. Suppose M = MX2FinS(I len b2×len b2K ). Let A be a matrix over K of
dimension len b1 × lenM. If A = AutMt(f, b1, b2) and f is linear, then
(Mx2Tran(A, b1,M))(v1) = f(v1)→ b2.
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Let K be an add-associative right zeroed right complementable Abelian as-
sociative well unital distributive non empty double loop structure, let V1, V2
be Abelian add-associative right zeroed right complementable vector space-like
non empty vector space structures over K, let W be a subspace of V1, and let
f be a function from V1 into V2. Then f�W is a function from W into V2.
Let K be a field, let V1, V2 be vector spaces over K, let W be a subspace

of V1, and let f be a linear transformation from V1 to V2. Then f�W is a linear
transformation from W to V2.

6. The Main Theorems

The following propositions are true:

(48) For every linear transformation f from V1 to V2 holds rank f =
rk(AutMt(f, b1, b2)).

(49) For every matrix M over K of dimension len b1 × len b2 holds
rankMx2Tran(M, b1, b2) = rk(M).

(50) For every linear transformation f from V1 to V2 such that dim(V1) =
dim(V2) holds ker f is non trivial iff DetAutEqMt(f, b1, b2) = 0K .

(51) Let f be a linear transformation from V1 to V2 and g be a linear trans-
formation from V2 to V3. If g� im f is one-to-one, then rank(g ·f) = rank f
and nullity(g · f) = nullity f.
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Summary. The main result of the article is the solution to the problem
of short axiomatizations of orthomodular ortholattices. Based on EQP/Otter
results [10], we gave a set of three equations which is equivalent to the classical,
much longer equational basis of such a class. Also the basic example of the lattice
which is not orthomodular, i.e. benzene (or B6) is defined in two settings – as a
relational structure (poset) and as a lattice.
As a preliminary work, we present the proofs of the dependence of other axio-

matizations of ortholattices. The formalization of the properties of orthomodular
lattices follows [4].
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The articles [6], [11], [13], [5], [2], [1], [3], [14], [12], [7], [8], and [9] provide the
terminology and notation for this paper.

1. Preliminaries

Let L be a lattice. One can verify that the lattice structure of L is lattice-like.
Next we state the proposition

(1) For all lattices K, L such that the lattice structure of K = the lattice
structure of L holds Poset(K) = Poset(L).

Let us note that every non empty ortholattice structure which is trivial is
also quasi-meet-absorbing.
One can check that every ortholattice is lower-bounded and every ortholat-

tice is upper-bounded.
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In the sequel L denotes an ortholattice and a, b, c denote elements of L.
We now state three propositions:

(2) a t ac = >L and a u ac = ⊥L.
(3) Let L be a non empty ortholattice structure. Then L is an ortholattice
if and only if the following conditions are satisfied:
(i) for all elements a, b, c of L holds a t b t c = (cc u bc)c t a,
(ii) for all elements a, b of L holds a = a u (a t b), and
(iii) for all elements a, b of L holds a = a t (b u bc).
(4) Let L be an involutive lattice-like non empty ortholattice structure. Then
L is de Morgan if and only if for all elements a, b of L such that a v b
holds bc v ac.

2. Orthomodularity

Let L be a non empty ortholattice structure. We say that L is orthomodular
if and only if:

(Def. 1) For all elements x, y of L such that x v y holds y = x t (xc u y).
Let us observe that there exists an ortholattice which is trivial, orthomodu-

lar, modular, and Boolean.
Next we state the proposition

(5) Every modular ortholattice is orthomodular.

An orthomodular lattice is an orthomodular ortholattice.
One can prove the following proposition

(6) Let L be an orthomodular meet-absorbing join-absorbing join-associative
meet-commutative non empty ortholattice structure and x, y be elements
of L. Then x t (xc u (x t y)) = x t y.
Let L be a non empty ortholattice structure. We say that L satisfies OM if

and only if:

(Def. 2) For all elements x, y of L holds x t (xc u (x t y)) = x t y.
Let us observe that every meet-absorbing join-absorbing join-associative

meet-commutative non empty ortholattice structure which satisfies OM is also
orthomodular and every meet-absorbing join-absorbing join-associative meet-
commutative non empty ortholattice structure which is orthomodular satisfies
also OM.
Let us observe that every ortholattice which is modular is also orthomodular.
Let us mention that there exists an ortholattice which is quasi-join-

associative, quasi-meet-absorbing, de Morgan, and orthomodular.
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3. Examples: The Benzene Ring

The relational structure B6 is defined by:

(Def. 3) B6 = 〈{0, 1, 3 \ 1, 2, 3 \ 2, 3},⊆〉.
Let us note that B6 is non empty and B6 is reflexive, transitive, and anti-

symmetric.
Let us note that B6 has l.u.b.’s and g.l.b.’s.
One can prove the following propositions:

(7) The carrier of LB6 = {0, 1, 3 \ 1, 2, 3 \ 2, 3}.
(8) For every set a such that a ∈ the carrier of LB6 holds a ⊆ 3.
The strict ortholattice structure Benzene is defined by the conditions

(Def. 4).

(Def. 4)(i) The lattice structure of Benzene = LB6 , and
(ii) for every element x of the carrier of Benzene and for every subset y of
3 such that x = y holds (the complement operation of Benzene)(x) = yc.

The following three propositions are true:

(9) The carrier of Benzene = {0, 1, 3 \ 1, 2, 3 \ 2, 3}.
(10) The carrier of Benzene ⊆ 23.
(11) For every set a such that a ∈ the carrier of Benzene holds a ⊆ {0, 1, 2}.
Let us note that Benzene is non empty and Benzene is lattice-like.
The following propositions are true:

(12) Poset(the lattice structure of Benzene) = B6.

(13) For all elements a, b of B6 and for all elements x, y of Benzene such that
a = x and b = y holds a ≤ b iff x v y.

(14) For all elements a, b of B6 and for all elements x, y of Benzene such that
a = x and b = y holds a t b = x t y and a u b = x u y.

(15) For all elements a, b of B6 such that a = 3 \ 1 and b = 2 holds a t b = 3
and a u b = 0.

(16) For all elements a, b of B6 such that a = 3 \ 2 and b = 1 holds a t b = 3
and a u b = 0.

(17) For all elements a, b of B6 such that a = 3 \ 1 and b = 1 holds a t b = 3
and a u b = 0.

(18) For all elements a, b of B6 such that a = 3 \ 2 and b = 2 holds a t b = 3
and a u b = 0.

(19) For all elements a, b of Benzene such that a = 3 \ 1 and b = 2 holds
a t b = 3 and a u b = 0.

(20) For all elements a, b of Benzene such that a = 3 \ 2 and b = 1 holds
a t b = 3.
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(21) For all elements a, b of Benzene such that a = 3 \ 1 and b = 1 holds
a t b = 3.

(22) For all elements a, b of Benzene such that a = 3 \ 2 and b = 2 holds
a t b = 3.

(23) Let a be an element of Benzene. Then
(i) if a = 0, then ac = 3,
(ii) if a = 3, then ac = 0,
(iii) if a = 1, then ac = 3 \ 1,
(iv) if a = 3 \ 1, then ac = 1,
(v) if a = 2, then ac = 3 \ 2, and
(vi) if a = 3 \ 2, then ac = 2.
(24) For all elements a, b of Benzene holds a v b iff a ⊆ b.
(25) For all elements a, x of Benzene such that a = 0 holds a u x = a.
(26) For all elements a, x of Benzene such that a = 0 holds a t x = x.
(27) For all elements a, x of Benzene such that a = 3 holds a t x = a.
One can check that Benzene is lower-bounded and Benzene is upper-

bounded.
We now state two propositions:

(28) >Benzene = 3.
(29) ⊥Benzene = 0.
Let us note that Benzene is involutive and de Morgan and has top and

Benzene is non orthomodular.

4. Orthogonality

Let L be an ortholattice and let a, b be elements of L. We say that a, b are
orthogonal if and only if:

(Def. 5) a v bc.
Let L be an ortholattice and let a, b be elements of L. We introduce a ⊥ b

as a synonym of a, b are orthogonal.
Next we state the proposition

(30) a ⊥ a iff a = ⊥L.
Let L be an ortholattice and let a, b be elements of L. Let us note that the

predicate a, b are orthogonal is symmetric.
The following proposition is true

(31) If a ⊥ b and a ⊥ c, then a ⊥ b u c and a ⊥ b t c.
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5. Orthomodularity Conditions

One can prove the following propositions:

(32) L is orthomodular iff for all elements a, b of L such that bc v a and
a u b = ⊥L holds a = bc.

(33) L is orthomodular iff for all elements a, b of L such that a ⊥ b and
a t b = >L holds a = bc.

(34) L is orthomodular iff for all elements a, b of L such that b v a holds
a u (ac t b) = b.

(35) L is orthomodular iff for all a, b holds a u (ac t (a u b)) = a u b.
(36) L is orthomodular iff for all elements a, b of L holds a t b = ((a t b) u
a) t ((a t b) u ac).

(37) L is orthomodular iff for all a, b such that a v b holds (at b)u (btac) =
(a u b) t (b u ac).

(38) Let L be a non empty ortholattice structure. Then L is an orthomodular
lattice if and only if the following conditions are satisfied:
(i) for all elements a, b, c of L holds a t b t c = (cc u bc)c t a,
(ii) for all elements a, b, c of L holds atb = ((atb)u(atc))t((atb)uac),
and

(iii) for all elements a, b of L holds a = a t (b u bc).
One can verify that every quasi-join-associative quasi-meet-absorbing de

Morgan orthomodular lattice-like non empty ortholattice structure has top.
Next we state the proposition

(39) Let L be a non empty ortholattice structure. Then L is an orthomodular
lattice if and only if L is quasi-join-associative, quasi-meet-absorbing, and
de Morgan and satisfies OM.
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Summary. Here, we develop the theory of zero based finite sequences,
which are sometimes, more useful in applications than normal one based finite
sequences. The fundamental function Sgm is introduced as well as in case of
normal finite sequences and other notions are also introduced. However, many
theorems are a modification of old theorems of normal finite sequences, they are
basically important and are necessary for applications. A new concept of selec-
ted subsequence is introduced. This concept came from the individual Ergodic
theorem (see [7]) and it is the preparation for its proof.
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The articles [12], [1], [14], [5], [8], [2], [6], [4], [3], [13], [10], [9], and [11] provide
the notation and terminology for this paper.

1. Preliminaries

In this paper D is a set.
One can prove the following proposition

(1) For every set x and for every natural number i such that x ∈ i holds x
is an element of N.
Let us observe that every natural number is natural-membered.
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2. Additional Properties of Zero Based Finite Sequence

One can prove the following propositions:

(2) For every finite natural-membered set X0 there exists a natural number
m such that X0 ⊆ m.

(3) Let p be a finite 0-sequence and b be a set. If b ∈ rng p, then there exists
an element i of N such that i ∈ dom p and p(i) = b.

(4) Let D be a set and p be a finite 0-sequence. Suppose that for every
natural number i such that i ∈ dom p holds p(i) ∈ D. Then p is a finite
0-sequence of D.

The scheme XSeqLambdaD deals with a natural number A, a non empty set
B, and a unary functor F yielding an element of B, and states that:

There exists a finite 0-sequence z of B such that len z = A and
for every natural number j such that j ∈ A holds z(j) = F(j)

for all values of the parameters.
One can prove the following proposition

(5) Let p, q be finite 0-sequences. Suppose len p = len q and for every natural
number j such that j ∈ dom p holds p(j) = q(j). Then p = q.
Let f be a finite 0-sequence of R and let a be an element of R. Then f + a

is a finite 0-sequence of R.
We now state two propositions:

(6) Let f be a finite 0-sequence of R and a be an element of R. Then len(f+
a) = len f and for every natural number i such that i < len f holds
(f + a)(i) = f(i) + a.

(7) For all finite 0-sequences f1, f2 and for every natural number i such that
i < len f1 holds (f1 a f2)(i) = f1(i).

Let f be a finite 0-sequence. The functor Rev(f) yielding a finite 0-sequence
is defined as follows:

(Def. 1) lenRev(f) = len f and for every element i of N such that i ∈ domRev(f)
holds (Rev(f))(i) = f(len f − (i+ 1)).
We now state the proposition

(8) For every finite 0-sequence f holds dom f = domRev(f) and rng f =
rngRev(f).

Let D be a set and let f be a finite 0-sequence of D. Then Rev(f) is a finite
0-sequence of D.
We now state several propositions:

(9) For every finite 0-sequence p such that p 6= ∅ there exists a finite 0-
sequence q and there exists a set x such that p = q a 〈x〉.

(10) For every natural number n and for every finite 0-sequence f such that
len f ≤ n holds f�n = f.
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(11) For every finite 0-sequence f and for all natural numbers n, m such that
n ≤ len f and m ∈ n holds (f�n)(m) = f(m) and m ∈ dom f.

(12) For every element i of N and for every finite 0-sequence q such that
i ≤ len q holds len(q�i) = i.

(13) For every element i of N and for every finite 0-sequence q holds len(q�i) ≤
i.

(14) For every finite 0-sequence f and for every element n of N such that
len f = n+ 1 holds f = (f�n) a 〈f(n)〉.
Let f be a finite 0-sequence and let n be a natural number. The functor f�n

yielding a finite 0-sequence is defined by:

(Def. 2) len(f�n) = len f −′ n and for every natural number m such that m ∈
dom(f�n) holds f�n(m) = f(m+ n).

One can prove the following three propositions:

(15) For every finite 0-sequence f and for every natural number n such that
n ≥ len f holds f�n = ∅.

(16) For every finite 0-sequence f and for every natural number n such that
n < len f holds len(f�n) = len f − n.

(17) For every finite 0-sequence f and for all natural numbers n, m such that
m+ n < len f holds f�n(m) = f(m+ n).

Let f be an one-to-one finite 0-sequence and let n be a natural number. Note
that f�n is one-to-one.
We now state several propositions:

(18) For every finite 0-sequence f and for every natural number n holds
rng(f�n) ⊆ rng f.

(19) For every finite 0-sequence f holds f�0 = f.

(20) For every natural number i and for all finite 0-sequences f , g holds
(f a g)�len f+i = g�i.

(21) For all finite 0-sequences f , g holds (f a g)�len f = g.

(22) For every finite 0-sequence f and for every element n of N holds (f�n)a
(f�n) = f.

Let D be a set, let f be a finite 0-sequence of D, and let n be a natural
number. Then f�n is a finite 0-sequence of D.
Let f be a finite 0-sequence and let k1, k2 be natural numbers. The functor

mid(f, k1, k2) yields a finite 0-sequence and is defined as follows:

(Def. 3) For all elements k11, k21 of N such that k11 = k1 and k21 = k2 holds
mid(f, k1, k2) = (f�k21)�k11−′1.

We now state several propositions:

(23) For every finite 0-sequence f and for all natural numbers k1, k2 such
that k1 > k2 holds mid(f, k1, k2) = ∅.
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(24) For every finite 0-sequence f and for all natural numbers k1, k2 such
that 1 ≤ k1 and k2 ≤ len f holds mid(f, k1, k2) = f�k1−′1�((k2 + 1)−′ k1).

(25) For every finite 0-sequence f and for every natural number k2 holds
mid(f, 1, k2) = f�k2.

(26) For every finite 0-sequence f of D and for every natural number k2 such
that len f ≤ k2 holds mid(f, 1, k2) = f.

(27) For every finite 0-sequence f and for every element k2 of N holds
mid(f, 0, k2) = mid(f, 1, k2).

(28) For all finite 0-sequences f , g holds mid(f a g, len f+1, len f+len g) = g.

Let D be a set, let f be a finite 0-sequence of D, and let k1, k2 be natural
numbers. Then mid(f, k1, k2) is a finite 0-sequence of D.
Let f be a finite 0-sequence of R. The functor

∑
f yields an element of R

and is defined by the condition (Def. 4).

(Def. 4) There exists a finite 0-sequence g of R such that len f = len g and f(0) =
g(0) and for every natural number i such that i+1 < len f holds g(i+1) =
g(i) + f(i+ 1) and

∑
f = g(len f −′ 1).

Let f be an empty finite 0-sequence of R. Observe that
∑
f is zero.

We now state two propositions:

(29) For every empty finite 0-sequence f of R holds
∑
f = 0.

(30) For all finite 0-sequences h1, h2 of R holds
∑
h1

a h2 = (
∑
h1) +

∑
h2.

3. Selected Subsequences

Let X be a finite natural-membered set. The functor Sgm0X yields a finite
0-sequence of N and is defined as follows:
(Def. 5) rng Sgm0X = X and for all natural numbers l, m, k1, k2 such that

l < m < len Sgm0X and k1 = (Sgm0X)(l) and k2 = (Sgm0X)(m) holds
k1 < k2.

Let A be a finite natural-membered set. Note that Sgm0A is one-to-one.
Next we state three propositions:

(31) For every finite natural-membered set A holds len Sgm0A = A.

(32) For all finite natural-membered sets X, Y such that X ⊆ Y and X 6= ∅
holds (Sgm0 Y )(0) ≤ (Sgm0X)(0).

(33) For every natural number n holds (Sgm0{n})(0) = n.
Let B1, B2 be sets. The predicate B1 < B2 is defined by:

(Def. 6) For all natural numbers n,m such that n ∈ B1 andm ∈ B2 holds n < m.
Let B1, B2 be sets. The predicate B1 ≤ B2 is defined by:

(Def. 7) For all natural numbers n,m such that n ∈ B1 andm ∈ B2 holds n ≤ m.
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The following propositions are true:

(34) For all sets B1, B2 such that B1 < B2 holds B1 ∩B2 ∩ N = ∅.
(35) For all finite natural-membered sets B1, B2 such that B1 < B2 holds B1
misses B2.

(36) For all sets A, B1, B2 such that B1 < B2 holds A ∩B1 < A ∩B2.
(37) For all finite natural-membered sets X, Y such that Y 6= ∅ and the-
re exists a set x such that x ∈ X and {x} ≤ Y holds (Sgm0X)(0) ≤
(Sgm0 Y )(0).

(38) Let X0, Y0 be finite natural-membered sets and i be a natural number.
If X0 < Y0 and i < cardX0, then rng(Sgm0(X0 ∪ Y0)� cardX0) = X0 and
(Sgm0(X0 ∪ Y0)� cardX0)(i) = (Sgm0(X0 ∪ Y0))(i).

(39) For all finite natural-membered sets X, Y and for every natural number
i such that X < Y and i ∈ X holds (Sgm0(X ∪ Y ))(i) ∈ X.

(40) Let X, Y be finite natural-membered sets and i be a natural number. If
X < Y and i < len Sgm0X, then (Sgm0X)(i) = (Sgm0(X ∪ Y ))(i).

(41) Let X0, Y0 be finite natural-membered sets and i be a natural number.
If X0 < Y0 and i < cardY0, then rng((Sgm0(X0 ∪ Y0))�cardX0) = Y0 and
(Sgm0(X0 ∪ Y0))�cardX0(i) = (Sgm0(X0 ∪ Y0))(i+ cardX0).

(42) Let X, Y be finite natural-membered sets and i be a natural number.
If X < Y and i < len Sgm0 Y, then (Sgm0 Y )(i) = (Sgm0(X ∪ Y ))(i +
len Sgm0X).

(43) For all finite natural-membered sets X, Y such that Y 6= ∅ and X < Y
holds (Sgm0 Y )(0) = (Sgm0(X ∪ Y ))(len Sgm0X).

(44) Let l, m, n, k be natural numbers and X be a finite natural-membered
set. If k < l and m < len Sgm0X and (Sgm0X)(m) = k and
(Sgm0X)(n) = l, then m < n.

(45) For all finite natural-membered sets X, Y such that X 6= ∅ and X < Y
holds (Sgm0X)(0) = (Sgm0(X ∪ Y ))(0).

(46) For all finite natural-membered sets X, Y holds X < Y iff Sgm0(X ∪
Y ) = (Sgm0X)

a Sgm0 Y.

Let f be a finite 0-sequence and let B be a set. The B-subsequence of f
yields a finite 0-sequence and is defined as follows:

(Def. 8) The B-subsequence of f = f · Sgm0(B ∩ len f).
One can prove the following proposition

(47) Let f be a finite 0-sequence and B be a set. Then

(i) len (the B-subsequence of f) = B ∩ len f , and
(ii) for every natural number i such that i < len (the B-subsequence of f)
holds (the B-subsequence of f)(i) = f((Sgm0(B ∩ len f))(i)).
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Let D be a set, let f be a finite 0-sequence of D, and let B be a set. Then
the B-subsequence of f is a finite 0-sequence of D.
Let f be a finite 0-sequence. One can verify that the ∅-subsequence of f is

empty.
Let B be a set. Observe that the B-subsequence of ∅ is empty.
We now state the proposition

(48) Let B1, B2 be finite natural-membered sets and f be a finite 0-sequence
of R. Suppose B1 < B2. Then

∑
the B1 ∪ B2-subsequence of f = (

∑
the

B1-subsequence of f) +
∑
the B2-subsequence of f .
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