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Summary. We prove, following [5, p. 92], that any family of subtrees of a
finite tree satisfies the Helly property.
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The articles [12], [4], [10], [3], [2], [1], [11], [9], [8], [7], and [6] provide the notation
and terminology for this paper.

1. General Preliminaries

One can prove the following proposition

(1) For every non empty finite sequence p holds 〈p(1)〉 aa p = p.
Let p, q be finite sequences. The functor maxPrefix(p, q) yields a finite se-

quence and is defined by:

(Def. 1) maxPrefix(p, q) � p and maxPrefix(p, q) � q and for every finite sequen-
ce r such that r � p and r � q holds r � maxPrefix(p, q).

Let us observe that the functor maxPrefix(p, q) is commutative.
Next we state several propositions:

(2) For all finite sequences p, q holds p � q iff maxPrefix(p, q) = p.
(3) For all finite sequences p, q holds lenmaxPrefix(p, q) ≤ len p.
(4) For every non empty finite sequence p holds 〈p(1)〉 � p.
(5) For all non empty finite sequences p, q such that p(1) = q(1) holds
1 ≤ lenmaxPrefix(p, q).

1This work has been partially supported by the NSERC grant OGP 9207.
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(6) For all finite sequences p, q and for every natural number j such that
j ≤ lenmaxPrefix(p, q) holds (maxPrefix(p, q))(j) = p(j).

(7) For all finite sequences p, q and for every natural number j such that
j ≤ lenmaxPrefix(p, q) holds p(j) = q(j).

(8) For all finite sequences p, q holds p � q iff lenmaxPrefix(p, q) < len p.
(9) For all finite sequences p, q such that p � q and q � p holds
p(lenmaxPrefix(p, q) + 1) 6= q(lenmaxPrefix(p, q) + 1).

2. Graph Preliminaries

Next we state three propositions:

(10) For every graph G and for every walkW of G and for all natural numbers
m, n holds len(W.cut(m,n)) ≤ lenW.

(11) Let G be a graph, W be a walk of G, and m, n be natural numbers. If
W.cut(m,n) is non trivial, then W is non trivial.

(12) Let G be a graph, W be a walk of G, and m, n, i be odd natural
numbers. Suppose m ≤ n ≤ lenW and i ≤ len(W.cut(m,n)). Then there
exists an odd natural number j such that (W.cut(m,n))(i) = W (j) and
j = (m+ i)− 1 and j ≤ lenW.
Let G be a graph. One can verify that every walk of G is non empty.
The following propositions are true:

(13) For every graph G and for all walks W1, W2 of G such that W1 � W2
holds W1.vertices() ⊆W2.vertices().

(14) For every graph G and for all walks W1, W2 of G such that W1 � W2
holds W1.edges() ⊆W2.edges().

(15) For every graph G and for all walks W1, W2 of G holds W1 �
W1.append(W2).

(16) For every graph G and for all trails W1, W2 of G such that W1.last() =
W2.first() andW1.edges() missesW2.edges() holdsW1.append(W2) is trail-
like.

(17) Let G be a graph and P1, P2 be paths of G. Suppose P1.last() = P2.first()
and P1 is open and P2 is open and P1.edges() misses P2.edges() and if
P1.first() ∈ P2.vertices(), then P1.first() = P2.last() and P1.vertices() ∩
P2.vertices() ⊆ {P1.first(), P1.last()}. Then P1.append(P2) is path-like.

(18) Let G be a graph and P1, P2 be paths of G. Suppose P1.last() =
P2.first() and P1 is open and P2 is open and P1.vertices()∩P2.vertices() =
{P1.last()}. Then P1.append(P2) is open and path-like.

(19) Let G be a graph and P1, P2 be paths of G. Suppose P1.last() = P2.first()
and P2.last() = P1.first() and P1 is open and P2 is open and P1.edges()
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misses P2.edges() and P1.vertices()∩P2.vertices() = {P1.last(), P1.first()}.
Then P1.append(P2) is cycle-like.

(20) Let G be a simple graph, W1, W2 be walks of G, and k be an odd
natural number. Suppose k ≤ lenW1 and k ≤ lenW2 and for every odd
natural number j such that j ≤ k holdsW1(j) =W2(j). Let j be a natural
number. If 1 ≤ j ≤ k, then W1(j) =W2(j).

(21) For every graph G and for all walks W1, W2 of G such that W1.first() =
W2.first() holds lenmaxPrefix(W1,W2) is odd.

(22) For every graph G and for all walks W1, W2 of G such that W1.first() =
W2.first() and W1 �W2 holds lenmaxPrefix(W1,W2) + 2 ≤ lenW1.

(23) For every non-multi graph G and for all walks W1, W2 of G such
that W1.first() = W2.first() and W1 � W2 and W2 � W1 holds
W1(lenmaxPrefix(W1,W2) + 2) 6=W2(lenmaxPrefix(W1,W2) + 2).

3. Trees

A tree is a tree-like graph. Let G be a graph. A subtree of G is a tree-like
subgraph of G.
Let T be a tree. Observe that every walk of T which is trail-like is also

path-like.
One can prove the following proposition

(24) For every tree T and for every path P of T such that P is non trivial
holds P is open.

Let T be a tree. Note that every path of T which is non trivial is also open.
The following propositions are true:

(25) Let T be a tree, P be a path of T , and i, j be odd natural numbers. If
i < j ≤ lenP, then P (i) 6= P (j).

(26) Let T be a tree, a, b be vertices of T , and P1, P2 be paths of T . If P1 is
walk from a to b and P2 is walk from a to b, then P1 = P2.

Let T be a tree and let a, b be vertices of T . The functor T .pathBetween(a, b)
yields a path of T and is defined as follows:

(Def. 2) T .pathBetween(a, b) is walk from a to b.

One can prove the following propositions:

(27) For every tree T and for all vertices a, b of T holds
(T .pathBetween(a, b)).first() = a and (T .pathBetween(a, b)).last() = b.

(28) For every tree T and for all vertices a, b of T holds a, b ∈
(T .pathBetween(a, b)).vertices().

Let T be a tree and let a be a vertex of T . Observe that T .pathBetween(a, a)
is closed.
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Let T be a tree and let a be a vertex of T .
One can check that T .pathBetween(a, a) is trivial.
We now state a number of propositions:

(29) For every tree T and for every vertex a of T holds
(T .pathBetween(a, a)).vertices() = {a}.

(30) For every tree T and for all vertices a, b of T holds
(T .pathBetween(a, b)).reverse() = T .pathBetween(b, a).

(31) For every tree T and for all vertices a, b of T holds
(T .pathBetween(a, b)).vertices() = (T .pathBetween(b, a)).vertices().

(32) Let T be a tree, a, b be vertices of T , t be a subtree of T , and a′,
b′ be vertices of t. If a = a′ and b = b′, then T .pathBetween(a, b) =
t.pathBetween(a′, b′).

(33) Let T be a tree, a, b be vertices of T , and t be a subtree of
T . Suppose a ∈ the vertices of t and b ∈ the vertices of t. Then
(T .pathBetween(a, b)).vertices() ⊆ the vertices of t.

(34) Let T be a tree, P be a path of T , a, b be vertices of T , and i, j be
odd natural numbers. If i ≤ j ≤ lenP and P (i) = a and P (j) = b, then
T .pathBetween(a, b) = P .cut(i, j).

(35) For every tree T and for all vertices a, b, c of T holds
c ∈ (T .pathBetween(a, b)).vertices() iff T .pathBetween(a, b) =
(T .pathBetween(a, c)).append((T .pathBetween(c, b))).

(36) For every tree T and for all vertices a, b, c of T holds
c ∈ (T .pathBetween(a, b)).vertices() iff T .pathBetween(a, c) �
T .pathBetween(a, b).

(37) For every tree T and for all paths P1, P2 of T such that
P1.last() = P2.first() and P1.vertices() ∩ P2.vertices() = {P1.last()} holds
P1.append(P2) is path-like.

(38) For every tree T and for all vertices a, b, c of T holds
c ∈ (T .pathBetween(a, b)).vertices() iff (T .pathBetween(a, c)).vertices() ∩
(T .pathBetween(c, b)).vertices() = {c}.

(39) Let T be a tree, a, b, c, d be vertices of T , and P1, P2 be paths of
T . Suppose P1 = T .pathBetween(a, b) and P2 = T .pathBetween(a, c)
and P1 � P2 and P2 � P1 and d = P1(lenmaxPrefix(P1, P2)). Then
(T .pathBetween(d, b)).vertices()∩ (T .pathBetween(d, c)).vertices() = {d}.
Let T be a tree and let a, b, c be vertices of T . The functor middleVertex(a, b, c)

yielding a vertex of T is defined as follows:

(Def. 3) (T .pathBetween(a, b)).vertices() ∩ (T .pathBetween(b, c)).vertices()∩
(T .pathBetween(c, a)).vertices() = {middleVertex(a, b, c)}.
We now state a number of propositions:
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(40) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(a, c, b).

(41) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(b, a, c).

(42) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(b, c, a).

(43) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(c, a, b).

(44) For every tree T and for all vertices a, b, c of T holds
middleVertex(a, b, c) = middleVertex(c, b, a).

(45) For every tree T and for all vertices a, b, c of T such that c ∈
(T .pathBetween(a, b)).vertices() holds middleVertex(a, b, c) = c.

(46) For every tree T and for every vertex a of T holds middleVertex(a, a, a) =
a.

(47) For every tree T and for all vertices a, b of T holds middleVertex(a, a, b) =
a.

(48) For every tree T and for all vertices a, b of T holds middleVertex(a, b, a) =
a.

(49) For every tree T and for all vertices a, b of T holds middleVertex(a, b, b) =
b.

(50) Let T be a tree, P1, P2 be paths of T , and a, b, c be vertices of
T . If P1 = T .pathBetween(a, b) and P2 = T .pathBetween(a, c) and
b /∈ P2.vertices() and c /∈ P1.vertices(), then middleVertex(a, b, c) =
P1(lenmaxPrefix(P1, P2)).

(51) Let T be a tree, P1, P2, P3, P4 be paths of T , and a, b, c be vertices
of T . Suppose P1 = T .pathBetween(a, b) and P2 = T .pathBetween(a, c)
and P3 = T .pathBetween(b, a) and P4 = T .pathBetween(b, c) and
b /∈ P2.vertices() and c /∈ P1.vertices() and a /∈ P4.vertices(). Then
P1(lenmaxPrefix(P1, P2)) = P3(lenmaxPrefix(P3, P4)).

(52) Let T be a tree, a, b, c be vertices of T , and S be a non empty set.
Suppose that for every set s such that s ∈ S holds there exists a subtree
t of T such that s = the vertices of t but a, b ∈ s or a, c ∈ s or b, c ∈ s.
Then

⋂
S 6= ∅.

4. The Helly Property

Let F be a set. We say that F has Helly property if and only if:

(Def. 4) For every non empty set H such that H ⊆ F and for all sets x, y such
that x, y ∈ H holds x meets y holds

⋂
H 6= ∅.
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One can prove the following proposition

(53) Let T be a tree and X be a finite set such that for every set x such that
x ∈ X there exists a subtree t of T such that x = the vertices of t. Then
X has Helly property.
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Summary. The goal of this article is to formalize some theorems that are
in the [17] on the web. These are elementary theorems included in every handbook
of Euclidean geometry and trigonometry: the law of cosines, the Heron’s formula,
the isosceles triangle theorem, the intersecting chords theorem and the Ptolemy’s
theorem.

MML identifier: EUCLID 6, version: 7.8.09 4.97.1001

The terminology and notation used here are introduced in the following articles:
[5], [16], [2], [1], [13], [14], [15], [18], [12], [6], [8], [7], [11], [4], [9], [10], and [3].

1. Law of Cosines and Meister-Gauss Formula

We adopt the following rules: p1, p2, p3, p4, p5, p6, p, p7 denote points of E2T
and a, b, c, r, s denote real numbers.
Next we state four propositions:

(1) If sin](p1, p2, p3) = sin](p4, p5, p6) and cos](p1, p2, p3) =
cos](p4, p5, p6), then ](p1, p2, p3) = ](p4, p5, p6).

(2) sin](p1, p2, p3) = −sin](p3, p2, p1).

(3) cos](p1, p2, p3) = cos](p3, p2, p1).

(4) ](p1, p4, p2)+](p2, p4, p3) = ](p1, p4, p3) or ](p1, p4, p2)+](p2, p4, p3) =
](p1, p4, p3) + 2 · π.
Let us consider p1, p2, p3. The area of M(p1, p2, p3) yields a real number and

is defined by:

(Def. 1) The area of M(p1, p2, p3) = 12 · (((p1)1 · (p2)2 − (p2)1 · (p1)2) + ((p2)1 ·
(p3)2 − (p3)1 · (p2)2) + ((p3)1 · (p1)2 − (p1)1 · (p3)2)).
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Let us consider p1, p2, p3. The perimeter of M(p1, p2, p3) yields a real number
and is defined by:

(Def. 2) The perimeter of M(p1, p2, p3) = |p2 − p1|+ |p3 − p2|+ |p1 − p3|.
One can prove the following three propositions:

(5) The area of M(p1, p2, p3) =
|p1−p2|·|p3−p2|·sin](p3,p2,p1)

2 .

(6) If p2 6= p1, then |p3 − p2| · sin](p3, p2, p1) = |p3 − p1| · sin](p2, p1, p3).

(7) (|p3 − p1|)2 = ((|p1 − p2|)2 + (|p3 − p2|)2) − 2 · (|p1 − p2|) · (|p3 − p2|) ·
cos](p1, p2, p3).

2. Some Elementary Facts about Euclidean geometry

Next we state a number of propositions:

(8) If p ∈ L(p1, p2) and p 6= p1 and p 6= p2, then ](p1, p, p2) = π.

(9) If p ∈ L(p2, p3) and p 6= p2, then ](p3, p2, p1) = ](p, p2, p1).

(10) If p ∈ L(p2, p3) and p 6= p2, then ](p1, p2, p3) = ](p1, p2, p).

(11) If ](p1, p, p2) = π, then p ∈ L(p1, p2).
(12) If p ∈ L(p1, p3) and p ∈ L(p1, p4) and p3 6= p4 and p 6= p1, then p3 ∈
L(p1, p4) or p4 ∈ L(p1, p3).

(13) If p ∈ L(p1, p3) and p 6= p1 and p 6= p3, then ](p1, p, p2)+](p2, p, p3) = π
or ](p1, p, p2) + ](p2, p, p3) = 3 · π.

(14) If p ∈ L(p1, p2) and p 6= p1 and p 6= p2 and ](p3, p, p1) = π
2 or

](p3, p, p1) = 32 · π, then ](p1, p, p3) = ](p3, p, p2).

(15) If p ∈ L(p1, p3) and p ∈ L(p2, p4) and p 6= p1 and p 6= p2 and p 6= p3 and
p 6= p4, then ](p1, p, p2) = ](p3, p, p4).

(16) If |p3 − p1| = |p2 − p3| and p1 6= p2, then ](p3, p1, p2) = ](p1, p2, p3).

(17) For all p1, p2, p3, p such that p ∈ L(p1, p2) and p 6= p2 holds |(p3−p, p2−
p1)| = 0 iff |(p3 − p, p2 − p)| = 0.

(18) If |p1 − p3| = |p2 − p3| and p ∈ L(p1, p2) and p 6= p3 and p 6= p1 and
](p3, p, p1) = π2 or ](p3, p, p1) = 32 · π, then ](p1, p3, p) = ](p, p3, p2).

(19) Let given p1, p2, p3, p such that |p1 − p3| = |p2 − p3| and p ∈ L(p1, p2)
and p 6= p3. Then
(i) if ](p1, p3, p) = ](p, p3, p2), then |p1 − p| = |p− p2|,
(ii) if |p1 − p| = |p− p2|, then |(p3 − p, p2 − p1)| = 0, and
(iii) if |(p3 − p, p2 − p1)| = 0, then ](p1, p3, p) = ](p, p3, p2).

Let us consider p1, p2, p3. We say that p1, p2 and p3 are collinear if and only
if:

(Def. 3) p1 ∈ L(p2, p3) or p2 ∈ L(p3, p1) or p3 ∈ L(p1, p2).
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Let us consider p1, p2, p3. We introduce p1, p2, p3 form a triangle as an
antonym of p1, p2 and p3 are collinear.
The following propositions are true:

(20) p1, p2, p3 form a triangle iff p1, p2, p3 are mutually different and
](p1, p2, p3) 6= π and ](p2, p3, p1) 6= π and ](p3, p1, p2) 6= π.

(21) Suppose p1, p2, p3 form a triangle and p4, p5, p6 form a triangle and
](p1, p2, p3) = ](p4, p5, p6) and ](p3, p1, p2) = ](p6, p4, p5). Then |p3 −
p2| · |p4−p6| = |p1−p3| · |p6−p5| and |p3−p2| · |p5−p4| = |p2−p1| · |p6−p5|
and |p1 − p3| · |p5 − p4| = |p2 − p1| · |p4 − p6|.

(22) Suppose p1, p2, p3 form a triangle and p4, p5, p6 form a triangle and
](p1, p2, p3) = ](p4, p5, p6) and ](p3, p1, p2) = ](p5, p6, p4). Then |p2 −
p3| · |p4−p6| = |p3−p1| · |p5−p4| and |p2−p3| · |p6−p5| = |p1−p2| · |p5−p4|
and |p3 − p1| · |p6 − p5| = |p1 − p2| · |p4 − p6|.

(23) If p1, p2, p3 are mutually different and ](p1, p2, p3) ≤ π, then
](p2, p3, p1) ≤ π and ](p3, p1, p2) ≤ π.

(24) If p1, p2, p3 are mutually different and ](p1, p2, p3) > π, then
](p2, p3, p1) > π and ](p3, p1, p2) > π.

(25) If p ∈ L(p1, p2) and p1, p2, p3 form a triangle and ](p1, p3, p2) =
](p, p3, p2), then p = p1.

(26) If p ∈ L(p1, p2) and p3 /∈ L(p1, p2) and ](p1, p3, p2) ≤ π, then
](p, p3, p2) ≤ ](p1, p3, p2).

(27) If p ∈ L(p1, p2) and p3 /∈ L(p1, p2) and ](p1, p3, p2) > π and p 6= p2, then
](p, p3, p2) ≥ ](p1, p3, p2).

(28) If p ∈ L(p1, p2) and p3 /∈ L(p1, p2), then there exists p4 such that p4 ∈
L(p1, p2) and ](p1, p3, p4) = ](p, p3, p2).

(29) If p1 ∈ InsideOfCircle(a, b, r) and p2 ∈ OutsideOfCircle(a, b, r), then
there exists p such that p ∈ L(p1, p2) ∩ Circle(a, b, r).

(30) If p1, p3, p4 ∈ Circle(a, b, r) and p ∈ L(p1, p3) and p ∈ L(p1, p4) and
p3 6= p4, then p = p1.

(31) If p1, p2, p ∈ Circle(a, b, r) and p7 = [a, b] and p7 ∈ L(p, p2) and p1 6= p,
then 2 · ](p1, p, p2) = ](p1, p7, p2) or 2 · (](p1, p, p2)− π) = ](p1, p7, p2).

(32) If p1 ∈ Circle(a, b, r) and r > 0, then there exists p2 such that p1 6= p2
and p2 ∈ Circle(a, b, r) and [a, b] ∈ L(p1, p2).

(33) If p1, p2, p ∈ Circle(a, b, r) and p7 = [a, b] and p1 6= p and p2 6= p, then
2 · ](p1, p, p2) = ](p1, p7, p2) or 2 · (](p1, p, p2)− π) = ](p1, p7, p2).

(34) Suppose p1, p2, p3, p4 ∈ Circle(a, b, r) and p1 6= p3 and p1 6= p4 and
p2 6= p3 and p2 6= p4. Then ](p1, p3, p2) = ](p1, p4, p2) or ](p1, p3, p2) =
](p1, p4, p2)− π or ](p1, p3, p2) = ](p1, p4, p2) + π.

(35) If p1, p2, p3 ∈ Circle(a, b, r) and p1 6= p2 6= p3, then ](p1, p2, p3) 6= π.
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(36) Suppose p1, p2, p3, p4 ∈ Circle(a, b, r) and p ∈ L(p1, p3) and p ∈ L(p2, p4)
and p1, p2, p3, p4 are mutually different. Then ](p1, p4, p2) = ](p1, p3, p2).

(37) If p1, p2, p3 ∈ Circle(a, b, r) and ](p1, p2, p3) = 0 and p1 6= p2 6= p3, then
p1 = p3.

(38) If p1, p2, p3, p4 ∈ Circle(a, b, r) and p ∈ L(p1, p3) and p ∈ L(p2, p4), then
|p1 − p| · |p− p3| = |p2 − p| · |p− p4|.

3. Heron’s Formula and Ptolemy’s Theorem

One can prove the following propositions:

(39) Suppose a = |p2 − p1| and b = |p3 − p2| and c = |p1 − p3| and
s = 12 · the perimeter of M(p1, p2, p3). Then |the area of M(p1, p2, p3)| =√
s · (s− a) · (s− b) · (s− c).

(40) If p1, p2, p3, p4 ∈ Circle(a, b, r) and p ∈ L(p1, p3) and p ∈ L(p2, p4), then
|p3 − p1| · |p4 − p2| = |p2 − p1| · |p4 − p3|+ |p3 − p2| · |p4 − p1|.

4. Appendix

In the sequel c1, c2, c3 denote elements of C.
One can prove the following propositions:

(41) (p1 − p2)1 = (p1)1 − (p2)1 and (p1 − p2)2 = (p1)2 − (p2)2.
(42) |p1 − p2| = 0 iff p1 = p2.
(43) |p1 − p2| = |p2 − p1|.
(44) ](p1, p2, p3) 6= 2 · ](p4, p5, p6) + 2 · π.
(45) ](p1, p2, p3) 6= 2 · ](p4, p5, p6) + 4 · π.
(46) ](p1, p2, p3) 6= 2 · ](p4, p5, p6)− 4 · π.
(47) ](p1, p2, p3) 6= 2 · ](p4, p5, p6)− 6 · π.
(48) ](p1, p2, p3) = ]((euc2cpx(p1 − p2)), (euc2cpx(p3 − p2))).
(49) ](c1, c2)+](c2, c3) = ](c1, c3) or ](c1, c2)+](c2, c3) = ](c1, c3)+2 ·π.
(50) Suppose c1 = euc2cpx(p1 − p2) and c2 = euc2cpx(p3 − p2). Then
<((c1|c2)) = ((p1)1−(p2)1) ·((p3)1−(p2)1)+((p1)2−(p2)2) ·((p3)2−(p2)2)
and =((c1|c2)) = −((p1)1 − (p2)1) · ((p3)2 − (p2)2) + ((p1)2 − (p2)2) ·
((p3)1 − (p2)1) and |c1| =

√
((p1)1 − (p2)1)2 + ((p1)2 − (p2)2)2 and |p1 −

p2| = |c1|.
(51) Let n be an element of N, q1 be a point of EnT, and f be a function from
EnT into R1. If for every point q of EnT holds f(q) = |q − q1|, then f is
continuous.
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(52) Let n be an element of N and q1 be a point of EnT. Then there exists
a function f from EnT into R1 such that for every point q of EnT holds
f(q) = |q − q1| and f is continuous.
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Summary. In the [20], it had been proven that the Integers modulo p, in
this article we shall refer as Z/pZ, constitutes a field if and only if p is a prime.
Then the prime modulo Z/pZ is an additive cyclic group and Z/pZ∗ = Z/pZ\{0}
is a multiplicative cyclic group, too. The former has been proven in the [23].
However, the latter had not been proven yet. In this article, first, we prove a
theorem concerning the LCM to prove the existence of primitive elements of
Z/p∗. Moreover we prove the uniqueness of factoring an integer. Next we define
the multiplicative group Z/pZ∗ and prove it is cyclic.
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The articles [31], [3], [9], [1], [25], [2], [32], [8], [24], [4], [19], [29], [28], [13], [7],
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[10] provide the terminology and notation for this paper.

1. Uniqueness of Factoring an Integer

In this paper x, X denote sets.
Next we state four propositions:

(1) For every many sorted set p indexed by X such that support p = {x}
holds p = (X 7−→ 0) +· (x, p(x)).

(2) Let X be a set and p, q, r be real-valued many sorted sets indexed by
X. If support p∩ support q = ∅ and support p∪ support q = support r and
p� support p = r� support p and q� support q = r� support q, then p+q = r.
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(3) For every set X and for all many sorted sets p, q indexed by X such that
p� support p = q� support q holds p = q.

(4) For every set X and for all bags p, q of X such that support p = ∅ and
support q = ∅ holds p = q.
Let p be a bag of Prime. We say that p is prime-factorization-like if and only

if:

(Def. 1) For every prime number x such that x ∈ support p there exists a natural
number n such that 0 < n and p(x) = xn.

Let n be a non empty natural number. Note that PPF(n) is prime-factorization-
like.
Next we state a number of propositions:

(5) For all prime numbers p, q and for all natural numbers n, m such that
p | m · qn and p 6= q holds p | m.

(6) Let f be a finite sequence of elements of N, b be a bag of Prime, and a
be a prime number. Suppose b is prime-factorization-like and

∏
b 6= 1 and

a |
∏
b and

∏
b =
∏
f and f = b · CFS(support b). Then a ∈ support b.

(7) For all bags p, q of Prime such that support p ⊆ support q and
p� support p = q� support p holds

∏
p |
∏
q.

(8) Let p be a bag of Prime and x be a prime number. If p is prime-
factorization-like, then x |

∏
p iff x ∈ support p.

(9) For all non empty natural numbers n, m, k such that k = lcm(n,m)
holds support PPF(k) = support PPF(n) ∪ support PPF(m).

(10) For every set X and for all bags b1, b2 of X holds supportmin(b1, b2) =
support b1 ∩ support b2.

(11) For all non empty natural numbers n, m, k such that k = n gcdm holds
support PPF(k) = support PPF(n) ∩ support PPF(m).

(12) Let p, q be bags of Prime. Suppose p is prime-factorization-like and q
is prime-factorization-like and support p misses support q. Then

∏
p and∏

q are relative prime.

(13) For every bag p of Prime such that p is prime-factorization-like holds∏
p 6= 0.

(14) For every bag p of Prime such that p is prime-factorization-like holds∏
p = 1 iff support p = ∅.

(15) Let p, q be bags of Prime. Suppose p is prime-factorization-like and q is
prime-factorization-like and

∏
p =
∏
q. Then p = q.

(16) Let p be a bag of Prime and n be a non empty natural number. If p is
prime-factorization-like and n =

∏
p, then PPF(n) = p.

(17) Let n, m be elements of N. Suppose 1 ≤ n and 1 ≤ m. Then there exist
elements m0, n0 of N such that lcm(n,m) = n0 · m0 and n0 gcdm0 = 1
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and n0 | n and m0 | m and n0 6= 0 and m0 6= 0.

2. Multiplicative Group Z/pZ∗

Let n be a natural number. Let us assume that 1 < n. The functor Z∗n yields
a non empty finite subset of N and is defined by:
(Def. 2) Z∗n = Zn \ {0}.

We now state the proposition

(18) For every natural number n such that 1 < n holds Z∗n = n− 1.
Let n be a prime number. The functor ·Z∗n yielding a binary operation on Z∗n

is defined by:

(Def. 3) ·Z∗n = ·Zn � Z∗n.
One can prove the following proposition

(19) For every prime number p holds 〈Z∗p, ·Z∗p〉 is associative, commutative,
and group-like.

Let p be a prime number. The functor Z/pZ∗ yielding a commutative group
is defined by:

(Def. 4) Z/pZ∗ = 〈Z∗p, ·Z∗p〉.
The following three propositions are true:

(20) Let p be a prime number, x, y be elements of Z/pZ∗, and x1, y1 be
elements of ZRp . If x = x1 and y = y1, then x · y = x1 · y1.

(21) For every prime number p holds 1Z/pZ∗ = 1 and 1Z/pZ∗ = 1ZRp .

(22) For every prime number p and for every element x of Z/pZ∗ and for
every element x1 of ZRp such that x = x1 holds x−1 = x1−1.
Let p be a prime number. One can verify that Z/pZ∗ is finite.
We now state several propositions:

(23) For every prime number p holds ord(Z/pZ∗) = p− 1.
(24) Let G be a group, a be an element of G, and i be an integer. Suppose a
is not of order 0. Then there exist elements n, k of N such that ai = an
and n = k · ord(a) + i.

(25) LetG be a commutative group, a, b be elements ofG, and n,m be natural
numbers. If G is finite and ord(a) = n and ord(b) = m and n gcdm = 1,
then ord(a · b) = n ·m.

(26) For every non empty zero structure L and for every polynomial p of L
such that 0 ≤ deg p holds p is non-zero.

(27) For every field L and for every polynomial f of L such that 0 ≤ deg f
holds Roots f is a finite set and Roots f ≤ deg f.
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(28) Let p be a prime number, z be an element of Z/pZ∗, and y be an element
of ZRp . If z = y, then for every element n of N holds powerZ/pZ∗(z, n) =
powerZRp (y, n).

(29) Let p be a prime number, a, b be elements of Z/pZ∗, and n be a natural
number. If 0 < n and ord(a) = n and bn = 1, then b is an element of
gr({a}).

(30) Let G be a group, z be an element of G, and d, l be elements of N. If G
is finite and ord(z) = d · l, then ord(zd) = l.

(31) For every prime number p holds Z/pZ∗ is a cyclic group.
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ve ideals, commutative ideals, implicative ideals and positive implicative ideals,
and their elementary properties. Some of their properties and the relationships
between them have not been proven yet, and will be completed in the following
article.
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The papers [4], [1], [2], and [3] provide the terminology and notation for this
paper.

1. Preliminaries

For simplicity, we use the following convention: X denotes a BCI-algebra,
X1 denotes a non empty subset of X, A, I denote ideals of X, x, y, z denote
elements of X, and a denotes an element of A.
The following four propositions are true:

(1) For all elements x, y, z, u ofX such that x ≤ y holds u\(z\x) ≤ u\(z\y).
(2) For all elements x, y, z, u of X holds x \ (y \ z) \ (x \ (y \ u)) ≤ z \ u.
(3) For all elements x, y, z, u, v of X holds x\(y\(z\u))\(x\(y\(z\v))) ≤
v \ u.

(4) For all elements x, y of X holds 0X \ (x \ y) \ (y \ x) = 0X .
Let us consider X and let a be an element of X. The initial section of a is

defined by:

(Def. 1) The initial section of a = {x ∈ X: x ≤ a}.
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The following propositions are true:

(5) If x ≤ a, then x ∈ A.
(6) For all elements x, a, b of AtomSetX such that x is an element of
BranchV b holds a \ x = a \ b.

(7) For every element a of X and for all elements x, b of AtomSetX such
that x is an element of BranchV b holds a \ x = a \ b.

(8) The initial section of a ⊆ A.
(9) If AtomSetX is an ideal of X, then for every element x of BCK-partX
and for every element a of AtomSetX such that x \ a ∈ AtomSetX holds
x = 0X .

(10) If AtomSetX is an ideal of X, then AtomSetX is a closed ideal of X.

Let us consider X, I. We say that I is positive if and only if:

(Def. 2) Every element of I is positive.

Next we state three propositions:

(11) Let X be a BCK-algebra and A, I be ideals of X. Then A ∩ I = {0X}
if and only if for every element x of A and for every element y of I holds
x \ y = x.

(12) For every associative BCI-algebra X holds every ideal of X is closed.

(13) For every BCI-algebra X and for every ideal A of X such that X is
quasi-associative holds A is closed.

2. Definitions of Associative Ideals

Let X be a BCI-algebra and let I1 be an ideal of X. We say that I1 is
associative if and only if:

(Def. 3) 0X ∈ I1 and for all elements x, y, z of X such that x \ (y \ z), y \ z ∈ I1
holds x ∈ I1.
Let X be a BCI-algebra. One can verify that there exists an ideal of X which

is associative.
LetX be a BCI-algebra. A non empty subset ofX is said to be an associative-

ideal of X if:

(Def. 4) 0X ∈ it and for all elements x, y, z of X such that x \ y \ z, y \ z ∈ it
holds x ∈ it.
We now state four propositions:

(14) If X1 is an associative-ideal of X, then X1 is an ideal of X.

(15) I is an associative-ideal of X iff for all x, y, z such that x \ y \ z ∈ I
holds x \ (y \ z) ∈ I.

(16) If I is an associative-ideal of X, then for every element x of X holds
x \ (0X \ x) ∈ I.
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(17) If for every element x of X holds x\ (0X \x) ∈ I, then I is a closed ideal
of X.

Let X be a BCI-algebra. A non empty subset of X is said to be a p-ideal of
X if:

(Def. 5) 0X ∈ it and for all elements x, y, z of X such that x \ z \ (y \ z), y ∈ it
holds x ∈ it.
We now state several propositions:

(18) If X1 is a p-ideal of X, then X1 is an ideal of X.

(19) For all X, I such that I is a p-ideal of X holds BCK-partX ⊆ I.
(20) BCK-partX is a p-ideal of X.

(21) I is a p-ideal of X iff for all x, y such that x ∈ I and x ≤ y holds y ∈ I.
(22) I is a p-ideal of X iff for all x, y, z such that x \ z \ (y \ z) ∈ I holds
x \ y ∈ I.

3. Definitions of Commutative Ideals

Let X be a BCK-algebra and let I1 be an ideal of X. We say that I1 is
commutative if and only if:

(Def. 6) For all elements x, y, z ofX such that x\y\z, z ∈ I1 holds x\(y\(y\x)) ∈
I1.

Let X be a BCK-algebra. One can verify that there exists an ideal of X
which is commutative.
Next we state two propositions:

(23) For every BCK-algebra X holds BCK-partX is a commutative ideal of
X.

(24) Let X be a BCK-algebra. Suppose X is a p-semisimple BCI-algebra.
Then {0X} is a commutative ideal of X.
In the sequel X denotes a BCK-algebra.
One can prove the following proposition

(25) BCK-partX = the carrier of X.

In the sequel X denotes a BCI-algebra.
We now state several propositions:

(26) If for every BCI-algebra X and for all elements x, y of X holds x\y\y =
x \ y, then the carrier of X = BCK-partX.

(27) If for every BCI-algebraX and for all elements x, y ofX holds x\(y\x) =
x, then the carrier of X = BCK-partX.

(28) If for every BCI-algebraX and for all elements x, y ofX holds x\(x\y) =
y \ (y \ x), then the carrier of X = BCK-partX.
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(29) If for every BCI-algebra X and for all elements x, y, z of X holds (x \
y) \ y = x \ z \ (y \ z), then the carrier of X = BCK-partX.

(30) If for every BCI-algebra X and for all elements x, y of X holds x \ y \
(y \ x) = x \ y, then the carrier of X = BCK-partX.

(31) If for every BCI-algebra X and for all elements x, y of X holds x \ y \
(x \ y \ (y \ x)) = 0X , then the carrier of X = BCK-partX.

(32) For every BCK-algebra X holds the carrier of X is a commutative ideal
of X.

In the sequel X denotes a BCK-algebra and I denotes an ideal of X.
One can prove the following propositions:

(33) I is a commutative ideal of X iff for all elements x, y of X such that
x \ y ∈ I holds x \ (y \ (y \ x)) ∈ I.

(34) Let I, A be ideals of X. Suppose I ⊆ A and I is a commutative ideal of
X. Then A is a commutative ideal of X.

(35) Every ideal of X is a commutative ideal of X iff {0X} is a commutative
ideal of X.

(36) {0X} is a commutative ideal of X iff X is a commutative BCK-algebra.
(37) X is a commutative BCK-algebra iff every ideal of X is a commutative
ideal of X.

(38) {0X} is a commutative ideal of X iff every ideal of X is a commutative
ideal of X.

In the sequel I denotes an ideal of X.
One can prove the following propositions:

(39) For all elements x, y ofX such that x\(x\y) ∈ I holds x\(x\y\(x\y\x)),
y \ (y \ x) \ x, y \ (y \ x) \ (x \ y) ∈ I.

(40) {0X} is a commutative ideal of X iff for all elements x, y of X holds
x \ (x \ y) ≤ y \ (y \ x).

(41) {0X} is a commutative ideal of X iff for all elements x, y of X holds
x \ y = x \ (y \ (y \ x)).

(42) {0X} is a commutative ideal of X iff for all elements x, y of X holds
x \ (x \ y) = y \ (y \ (x \ (x \ y))).

(43) {0X} is a commutative ideal of X iff for all elements x, y of X such that
x ≤ y holds x = y \ (y \ x).

(44) Suppose {0X} is a commutative ideal of X. Then
(i) for all elements x, y of X holds x \ y = x iff y \ (y \ x) = 0X ,
(ii) for all elements x, y of X such that x \ y = x holds y \ x = y,
(iii) for all elements x, y, a of X such that y ≤ a holds a\x\ (a\ y) = y \x,
(iv) for all elements x, y ofX holds x\(y\(y\x)) = x\y and x\y\(x\y\x) =
x \ y, and
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(v) for all elements x, y, a ofX such that x ≤ a holds (a\y)\(a\y\(a\x)) =
a \ y \ (x \ y).

(45) Every ideal of X is a commutative ideal of X iff for all elements x, y of
X holds x \ (x \ y) ≤ y \ (y \ x).

(46) Every ideal of X is a commutative ideal of X iff for all elements x, y of
X holds x \ y = x \ (y \ (y \ x)).

(47) Every ideal of X is a commutative ideal of X iff for all elements x, y of
X holds x \ (x \ y) = y \ (y \ (x \ (x \ y))).

(48) Every ideal of X is a commutative ideal of X iff for all elements x, y of
X such that x ≤ y holds x = y \ (y \ x).

(49) Suppose every ideal of X is a commutative ideal of X. Then
(i) for all elements x, y of X holds x \ y = x iff y \ (y \ x) = 0X ,
(ii) for all elements x, y of X such that x \ y = x holds y \ x = y,
(iii) for all elements x, y, a of X such that y ≤ a holds a\x\ (a\ y) = y \x,
(iv) for all elements x, y ofX holds x\(y\(y\x)) = x\y and x\y\(x\y\x) =
x \ y, and

(v) for all elements x, y, a ofX such that x ≤ a holds (a\y)\(a\y\(a\x)) =
a \ y \ (x \ y).

4. Definitions of Implicative Ideals and Positive Implicative Ideals

LetX be a BCK-algebra. A non empty subset ofX is said to be an implicative-
ideal of X if:

(Def. 7) 0X ∈ it and for all elements x, y, z of X such that x \ (y \ x) \ z, z ∈ it
holds x ∈ it.
In the sequel X denotes a BCK-algebra and I denotes an ideal of X.
Next we state the proposition

(50) I is an implicative-ideal of X iff for all elements x, y of X such that
x \ (y \ x) ∈ I holds x ∈ I.
Let X be a BCK-algebra. A non empty subset of X is said to be a positive-

implicative-ideal of X if:

(Def. 8) 0X ∈ it and for all elements x, y, z of X such that x \ y \ z, y \ z ∈ it
holds x \ z ∈ it.
We now state several propositions:

(51) I is a positive-implicative-ideal of X if and only if for all elements x, y
of X such that x \ y \ y ∈ I holds x \ y ∈ I.

(52) Suppose that for all elements x, y, z ofX such that x\y\z, y\z ∈ I holds
x\z ∈ I. Let x, y, z be elements of X. If x\y\z ∈ I, then x\z\(y\z) ∈ I.

(53) Suppose that for all elements x, y, z of X such that x \ y \ z ∈ I holds
x \ z \ (y \ z) ∈ I. Then I is a positive-implicative-ideal of X.
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(54) I is a positive-implicative-ideal of X if and only if for all elements x, y,
z of X such that x \ y \ z, y \ z ∈ I holds x \ z ∈ I.

(55) I is a positive-implicative-ideal of X if and only if for all elements x, y,
z of X such that x \ y \ z ∈ I holds x \ z \ (y \ z) ∈ I.

(56) Let I, A be ideals of X. Suppose I ⊆ A and I is a positive-implicative-
ideal of X. Then A is a positive-implicative-ideal of X.

(57) Suppose I is an implicative-ideal of X. Then I is a commutative ideal
of X and a positive-implicative-ideal of X.
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1. Some Properties of Rings

Let V be a non empty additive loop structure and let V1 be a subset of V .
We say that V1 has inverse if and only if:

(Def. 1) For every element v of V such that v ∈ V1 holds −v ∈ V1.
Let V be a non empty additive loop structure and let V1 be a subset of V .

We say that V1 is additively-closed if and only if:

(Def. 2) V1 is add closed and has inverse.

Let V be a non empty additive loop structure. One can verify that ΩV is
add closed and has inverse.
Let V be a non empty double loop structure. One can verify that every

subset of V which is additively-closed is also add closed and has inverse and
every subset of V which is add closed and has inverse is also additively-closed.
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Let V be a non empty additive loop structure. Observe that there exists a
subset of V which is add closed and non empty and has inverse.
Let V be a ring. A ring is called a subring of V if it satisfies the conditions

(Def. 3).

(Def. 3)(i) The carrier of it ⊆ the carrier of V ,
(ii) the addition of it = (the addition of V ) � (the carrier of it),
(iii) the multiplication of it = (the multiplication of V ) � (the carrier of it),
(iv) 1it = 1V , and
(v) 0it = 0V .

For simplicity, we follow the rules: X is a non empty set, x is an element
of X, d1, d2 are elements of X, A is a binary operation on X, M is a function
from X ×X into X, V is a ring, and V1 is a subset of V .
We now state the proposition

(1) Suppose V1 = X and A = (the addition of V ) � (V1) and M = (the
multiplication of V ) � (V1) and d1 = 1V and d2 = 0V and V1 has inverse.
Then 〈X,A,M, d1, d2〉 is a subring of V .
Let V be a ring. One can check that there exists a subring of V which is

strict.
Let V be a non empty multiplicative loop with zero structure and let V1 be

a subset of V . We say that V1 is multiplicatively-closed if and only if:

(Def. 4) 1V ∈ V1 and for all elements v, u of V such that v, u ∈ V1 holds v ·u ∈ V1.
Let V be a non empty additive loop structure and let V1 be a subset of V .

Let us assume that V1 is add closed and non empty. The functor Add(V1, V )
yielding a binary operation on V1 is defined as follows:

(Def. 5) Add(V1, V ) = (the addition of V ) � (V1).

Let V be a non empty multiplicative loop with zero structure and let V1 be a
subset of V . Let us assume that V1 is multiplicatively-closed and non empty. The
functor mult(V1, V ) yields a binary operation on V1 and is defined as follows:

(Def. 6) mult(V1, V ) = (the multiplication of V ) � (V1).

Let V be an add-associative right zeroed right complementable non empty
double loop structure and let V1 be a subset of V . Let us assume that V1 is
add closed and non empty and has inverse. The functor Zero(V1, V ) yields an
element of V1 and is defined by:

(Def. 7) Zero(V1, V ) = 0V .

Let V be a non empty multiplicative loop with zero structure and let V1 be
a subset of V . Let us assume that V1 is multiplicatively-closed and non empty.
The functor One(V1, V ) yields an element of V1 and is defined as follows:

(Def. 8) One(V1, V ) = 1V .

We now state the proposition
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(2) If V1 is additively-closed, multiplicatively-closed, and non empty, then
〈V1,Add(V1, V ),mult(V1, V ),One(V1, V ),Zero(V1, V )〉 is a ring.

2. Some Properties of Algebras

In the sequel V is an algebra, V1 is a subset of V , M1 is a function from R×
X into X, and a is a real number.
Let V be an algebra. An algebra is called a subalgebra of V if it satisfies the

conditions (Def. 9).

(Def. 9)(i) The carrier of it ⊆ the carrier of V ,
(ii) the addition of it = (the addition of V ) � (the carrier of it),
(iii) the multiplication of it = (the multiplication of V ) � (the carrier of it),
(iv) the external multiplication of it = (the external multiplication of
V )�(R× the carrier of it),

(v) 1it = 1V , and
(vi) 0it = 0V .

The following proposition is true

(3) Suppose that V1 = X and d1 = 0V and d2 = 1V and A = (the ad-
dition of V ) � (V1) and M = (the multiplication of V ) � (V1) and
M1 = (the external multiplication of V )�(R × V1) and V1 has inverse.
Then 〈X,M,A,M1, d2, d1〉 is a subalgebra of V .
Let V be an algebra. Observe that there exists a subalgebra of V which is

strict.
Let V be an algebra and let V1 be a subset of V . We say that V1 is additively-

linearly-closed if and only if:

(Def. 10) V1 is add closed and has inverse and for every real number a and for
every element v of V such that v ∈ V1 holds a · v ∈ V1.
Let V be an algebra. One can check that every subset of V which is additively-

linearly-closed is also additively-closed.
Let V be an algebra and let V1 be a subset of V . Let us assume that V1

is additively-linearly-closed and non empty. The functor Mult(V1, V ) yielding a
function from R× V1 into V1 is defined by:

(Def. 11) Mult(V1, V ) = (the external multiplication of V )�(R× V1).
Let V be a non empty RLS structure. We say that V is scalar-multiplcation-

cancelable if and only if:

(Def. 12) For every real number a and for every element v of V such that a ·v = 0V
holds a = 0 or v = 0V .

One can prove the following propositions:

(4) Let V be an add-associative right zeroed right complementable algebra-
like non empty algebra structure and a be a real number. Then a·0V = 0V .



118 yasunari shidama et al.

(5) Let V be an Abelian add-associative right zeroed right complemen-
table algebra-like non empty algebra structure. Suppose V is scalar-
multiplcation-cancelable. Then V is a real linear space.

(6) Suppose V1 is additively-linearly-closed, multiplicatively-closed, and non
empty.
Then 〈V1,mult(V1, V ),Add(V1, V ),Mult(V1, V ),One(V1, V ),Zero(V1, V )〉
is a subalgebra of V .

Let X be a non empty set. Observe that RAlgebraX is Abelian, add-
associative, right zeroed, right complementable, commutative, associative, right
unital, right distributive, and algebra-like.
One can prove the following two propositions:

(7) RAlgebraX is a real linear space.

(8) Let V be an algebra and V1 be a subalgebra of V . Then
(i) for all elements v1, w1 of V1 and for all elements v, w of V such that
v1 = v and w1 = w holds v1 + w1 = v + w,

(ii) for all elements v1, w1 of V1 and for all elements v, w of V such that
v1 = v and w1 = w holds v1 · w1 = v · w,

(iii) for every element v1 of V1 and for every element v of V and for every
real number a such that v1 = v holds a · v1 = a · v,

(iv) 1(V1) = 1V , and
(v) 0(V1) = 0V .

3. Banach Algebra of Bounded Functionals

Let X be a non empty set. The functor BoundedFunctionsX yielding a non
empty subset of RAlgebraX is defined as follows:

(Def. 13) BoundedFunctionsX = {f : X → R: f is bounded on X}.
We now state the proposition

(9) BoundedFunctionsX is additively-linearly-closed and multiplicatively-
closed.

Let us consider X. Note that BoundedFunctionsX is additively-linearly-
closed and multiplicatively-closed.
The following proposition is true

(10) 〈BoundedFunctionsX,mult(BoundedFunctionsX,RAlgebraX),
Add(BoundedFunctionsX,RAlgebraX),Mult(BoundedFunctionsX,
RAlgebraX),One(BoundedFunctionsX,RAlgebraX),
Zero(BoundedFunctionsX,RAlgebraX)〉 is a subalgebra of RAlgebraX.
Let X be a non empty set. The R-algebra of bounded functions on X yields

an algebra and is defined by:
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(Def. 14) The R-algebra of bounded functions on X = 〈BoundedFunctionsX,
mult(BoundedFunctionsX,RAlgebraX),Add(BoundedFunctionsX,
RAlgebraX),Mult(BoundedFunctionsX,RAlgebraX),One(Bounded
FunctionsX,RAlgebraX),Zero(BoundedFunctionsX,RAlgebraX)〉.
The following proposition is true

(11) The R-algebra of bounded functions on X is a real linear space.
We adopt the following rules: F , G, H are vectors of the R-algebra of boun-

ded functions on X and f , g, h are functions from X into R.
Next we state several propositions:

(12) If f = F and g = G and h = H, then H = F +G iff for every element x
of X holds h(x) = f(x) + g(x).

(13) If f = F and g = G, then G = a · F iff for every element x of X holds
g(x) = a · f(x).

(14) If f = F and g = G and h = H, then H = F ·G iff for every element x
of X holds h(x) = f(x) · g(x).

(15) 0the R-algebra of bounded functions on X = X 7−→ 0.
(16) 1the R-algebra of bounded functions on X = X 7−→ 1.
Let X be a non empty set and let F be a set. Let us assume that F ∈

BoundedFunctionsX. The functor modetrans(F,X) yielding a function from X
into R is defined by:

(Def. 15) modetrans(F,X) = F and modetrans(F,X) is bounded on X.

Let X be a non empty set and let f be a function from X into R. The functor
PreNorms(f) yielding a non empty subset of R is defined as follows:

(Def. 16) PreNorms(f) = {|f(x)| : x ranges over elements of X}.
Next we state three propositions:

(17) If f is bounded on X, then PreNorms(f) is non empty and upper boun-
ded.

(18) f is bounded on X iff PreNorms(f) is upper bounded.

(19) There exists a function N1 from BoundedFunctionsX into R such that
for every set F such that F ∈ BoundedFunctionsX holds N1(F ) =
supPreNorms(modetrans(F,X)).

Let X be a non empty set. The functor BoundedFunctionsNormX yields a
function from BoundedFunctionsX into R and is defined by:

(Def. 17) For every set x such that x ∈ BoundedFunctionsX holds
(BoundedFunctionsNormX)(x) = supPreNorms(modetrans(x,X)).

We now state two propositions:

(20) If f is bounded on X, then modetrans(f,X) = f.

(21) If f is bounded on X, then (BoundedFunctionsNormX)(f) =
supPreNorms(f).
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Let X be a non empty set. The R-normed algebra of bounded functions on
X yielding a normed algebra structure is defined as follows:

(Def. 18) The R-normed algebra of bounded functions on X =
〈BoundedFunctionsX,mult(BoundedFunctionsX,RAlgebraX),
Add(BoundedFunctionsX,RAlgebraX),Mult(BoundedFunctionsX,
RAlgebraX),One(BoundedFunctionsX,RAlgebraX),
Zero(BoundedFunctionsX,RAlgebraX),BoundedFunctionsNormX〉.
Let X be a non empty set. Note that the R-normed algebra of bounded

functions on X is non empty.
Let X be a non empty set. Observe that the R-normed algebra of bounded

functions on X is unital.
We now state the proposition

(22) LetW be a normed algebra structure and V be an algebra. If the algebra
structure of W = V and 1V = 1W , then W is an algebra.

In the sequel F , G, H denote points of the R-normed algebra of bounded
functions on X.
We now state a number of propositions:

(23) The R-normed algebra of bounded functions on X is an algebra.
(24) (Mult(BoundedFunctionsX,RAlgebraX))(1, F ) = F.

(25) The R-normed algebra of bounded functions on X is a real linear space.
(26) X 7−→ 0 = 0the R-normed algebra of bounded functions on X .

(27) If f = F and f is bounded on X, then |f(x)| ≤ ‖F‖.
(28) 0 ≤ ‖F‖.
(29) 0 = ‖(0the R-normed algebra of bounded functions on X)‖.
(30) If f = F and g = G and h = H, then H = F +G iff for every element x
of X holds h(x) = f(x) + g(x).

(31) If f = F and g = G, then G = a · F iff for every element x of X holds
g(x) = a · f(x).

(32) If f = F and g = G and h = H, then H = F ·G iff for every element x
of X holds h(x) = f(x) · g(x).

(33)(i) ‖F‖ = 0 iff F = 0the R-normed algebra of bounded functions on X ,

(ii) ‖a · F‖ = |a| · ‖F‖, and
(iii) ‖F +G‖ ≤ ‖F‖+ ‖G‖.
(34) The R-normed algebra of bounded functions on X is real normed space-
like.

Let X be a non empty set.
Note that the R-normed algebra of bounded functions on X is real normed

space-like, real linear space-like, Abelian, add-associative, right zeroed, and right
complementable.
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We now state three propositions:

(35) If f = F and g = G and h = H, then H = F −G iff for every element x
of X holds h(x) = f(x)− g(x).

(36) Let X be a non empty set and s1 be a sequence of the R-normed algebra
of bounded functions on X. If s1 is Cauchy sequence by norm, then s1 is
convergent.

(37) The R-normed algebra of bounded functions onX is a real Banach space.
Let X be a non empty set.
Observe that the R-normed algebra of bounded functions on X is complete.
The following proposition is true

(38) The R-normed algebra of bounded functions on X is a Banach algebra.
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1. Complex Linear Combinations

Let V be a non empty zero structure. An element of Cthe carrier of V is said
to be a C-linear combination of V if:
(Def. 1) There exists a finite subset T of V such that for every element v of V

such that v /∈ T holds it(v) = 0.
Let V be a non empty additive loop structure and let L be an element of

Cthe carrier of V . The support of L yielding a subset of V is defined by:
(Def. 2) The support of L = {v ∈ V : L(v) 6= 0C}.

Let V be a non empty additive loop structure and let L be a C-linear com-
bination of V . One can check that the support of L is finite.
The following proposition is true
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(1) Let V be a non empty additive loop structure, L be a C-linear combina-
tion of V , and v be an element of V . Then L(v) = 0C if and only if v /∈ the
support of L.

Let V be a non empty additive loop structure. The functor ZeroCLCV yields
a C-linear combination of V and is defined by:
(Def. 3) The support of ZeroCLCV = ∅.

Let V be a non empty additive loop structure. Note that the support of
ZeroCLCV is empty.
We now state the proposition

(2) For every non empty additive loop structure V and for every element v
of V holds (ZeroCLCV )(v) = 0C.

Let V be a non empty additive loop structure and let A be a subset of V .
A C-linear combination of V is said to be a C-linear combination of A if:
(Def. 4) The support of it ⊆ A.

Next we state three propositions:

(3) Let V be a non empty additive loop structure, A, B be subsets of V ,
and l be a C-linear combination of A. If A ⊆ B, then l is a C-linear
combination of B.

(4) Let V be a non empty additive loop structure and A be a subset of V .
Then ZeroCLCV is a C-linear combination of A.

(5) Let V be a non empty additive loop structure and l be a C-linear com-
bination of ∅the carrier of V . Then l = ZeroCLCV.
In the sequel i is a natural number.
Let V be a non empty CLS structure, let F be a finite sequence of elements

of the carrier of V , and let f be a function from the carrier of V into C. The
functor f F yields a finite sequence of elements of the carrier of V and is defined
as follows:

(Def. 5) len(f F ) = lenF and for every i such that i ∈ dom(f F ) holds (f F )(i) =
f(Fi) · Fi.
For simplicity, we follow the rules: V denotes a non empty CLS structure,

v, v1, v2, v3 denote vectors of V , A denotes a subset of V , l denotes a C-linear
combination of A, x denotes a set, a, b denote complex numbers, F denotes a
finite sequence of elements of the carrier of V , and f denotes a function from
the carrier of V into C.
The following propositions are true:

(6) If x ∈ domF and v = F (x), then (f F )(x) = f(v) · v.
(7) f ε(the carrier of V ) = ε(the carrier of V ).

(8) f 〈v〉 = 〈f(v) · v〉.
(9) f 〈v1, v2〉 = 〈f(v1) · v1, f(v2) · v2〉.
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(10) f 〈v1, v2, v3〉 = 〈f(v1) · v1, f(v2) · v2, f(v3) · v3〉.
In the sequel L, L1, L2, L3 are C-linear combinations of V .
Let V be an Abelian add-associative right zeroed right complementable non

empty CLS structure and let L be a C-linear combination of V . The functor∑
L yields an element of V and is defined by the condition (Def. 6).

(Def. 6) There exists a finite sequence F of elements of the carrier of V such that
F is one-to-one and rngF = the support of L and

∑
L =
∑
LF.

One can prove the following propositions:

(11) For every Abelian add-associative right zeroed right complementable non
empty CLS structure V holds

∑
ZeroCLCV = 0V .

(12) Let V be a complex linear space and A be a subset of V . Suppose A 6= ∅.
Then A is linearly closed if and only if for every C-linear combination l of
A holds

∑
l ∈ A.

(13) Let V be an Abelian add-associative right zeroed right complemen-
table non empty CLS structure and l be a C-linear combination of
∅the carrier of V . Then

∑
l = 0V .

(14) Let V be a complex linear space, v be a vector of V , and l be a C-linear
combination of {v}. Then

∑
l = l(v) · v.

(15) Let V be a complex linear space and v1, v2 be vectors of V . Suppose
v1 6= v2. Let l be a C-linear combination of {v1, v2}. Then

∑
l = l(v1) ·

v1 + l(v2) · v2.
(16) Let V be an Abelian add-associative right zeroed right complementable
non empty CLS structure and L be a C-linear combination of V . If the
support of L = ∅, then

∑
L = 0V .

(17) Let V be a complex linear space, L be a C-linear combination of V , and
v be a vector of V . If the support of L = {v}, then

∑
L = L(v) · v.

(18) Let V be a complex linear space, L be a C-linear combination of V , and
v1, v2 be vectors of V . If the support of L = {v1, v2} and v1 6= v2, then∑
L = L(v1) · v1 + L(v2) · v2.

Let V be a non empty additive loop structure and let L1, L2 be C-linear
combinations of V . Let us observe that L1 = L2 if and only if:

(Def. 7) For every element v of V holds L1(v) = L2(v).

Let V be a non empty additive loop structure and let L1, L2 be C-linear
combinations of V . Then L1 + L2 is a C-linear combination of V and it can be
characterized by the condition:

(Def. 8) For every element v of V holds (L1 + L2)(v) = L1(v) + L2(v).

One can prove the following propositions:

(19) The support of L1 + L2 ⊆ (the support of L1) ∪ (the support of L2).
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(20) Suppose L1 is a C-linear combination of A and L2 is a C-linear combi-
nation of A. Then L1 + L2 is a C-linear combination of A.
Let us consider V , A and let L1, L2 be C-linear combinations of A. Then

L1 + L2 is a C-linear combination of A.
The following three propositions are true:

(21) For every non empty additive loop structure V and for all C-linear com-
binations L1, L2 of V holds L1 + L2 = L2 + L1.

(22) L1 + (L2 + L3) = (L1 + L2) + L3.

(23) L+ ZeroCLCV = L.

Let us consider V , a and let us consider L. The functor a · L yielding a
C-linear combination of V is defined as follows:
(Def. 9) For every v holds (a · L)(v) = a · L(v).

One can prove the following propositions:

(24) If a 6= 0C, then the support of a · L = the support of L.
(25) 0C · L = ZeroCLCV.
(26) If L is a C-linear combination of A, then a ·L is a C-linear combination
of A.

(27) (a+ b) · L = a · L+ b · L.
(28) a · (L1 + L2) = a · L1 + a · L2.
(29) a · (b · L) = (a · b) · L.
(30) 1C · L = L.
Let us consider V , L. The functor −L yielding a C-linear combination of V

is defined as follows:

(Def. 10) −L = (−1C) · L.
We now state three propositions:

(31) (−L)(v) = −L(v).
(32) If L1 + L2 = ZeroCLCV, then L2 = −L1.
(33) −−L = L.
Let us consider V and let us consider L1, L2. The functor L1 − L2 yields a

C-linear combination of V and is defined by:
(Def. 11) L1 − L2 = L1 +−L2.

One can prove the following propositions:

(34) (L1 − L2)(v) = L1(v)− L2(v).
(35) The support of L1 − L2 ⊆ (the support of L1) ∪ (the support of L2).
(36) Suppose L1 is a C-linear combination of A and L2 is a C-linear combi-
nation of A. Then L1 − L2 is a C-linear combination of A.

(37) L− L = ZeroCLCV.
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Let us consider V . The functor C-LinCombV yields a set and is defined as
follows:

(Def. 12) x ∈ C-LinCombV iff x is a C-linear combination of V .
Let us consider V . One can verify that C-LinCombV is non empty.
In the sequel e, e1, e2 denote elements of C-LinCombV.
Let us consider V and let us consider e. The functor @e yields a C-linear

combination of V and is defined as follows:

(Def. 13) @e = e.

Let us consider V and let us consider L. The functor @L yielding an element
of C-LinCombV is defined by:

(Def. 14) @L = L.

Let us consider V . The functor C-LCAddV yields a binary operation on
C-LinCombV and is defined by:

(Def. 15) For all e1, e2 holds (C-LCAddV )(e1, e2) = (@e1) + @e2.
Let us consider V . The functor C-LCMultV yields a function from C ×

C-LinCombV into C-LinCombV and is defined as follows:
(Def. 16) For all a, e holds (C-LCMultV )(〈〈a, e〉〉) = a · (@e).

Let us consider V . The functor LC-CLSpaceV yielding a complex linear
space is defined by:

(Def. 17) LC-CLSpaceV = 〈C-LinCombV,@ZeroCLCV,C-LCAddV,C-LCMultV 〉.
Let us consider V . Note that LC-CLSpaceV is strict and non empty.
We now state four propositions:

(38) L1LC-CLSpaceV + L2LC-CLSpaceV = L1 + L2.
(39) a · LLC-CLSpaceV = a · L.
(40) −LLC-CLSpaceV = −L.
(41) L1LC-CLSpaceV − L2LC-CLSpaceV = L1 − L2.
Let us consider V and let us consider A. The functor LC-CLSpaceA yielding

a strict subspace of LC-CLSpaceV is defined as follows:
(Def. 18) The carrier of LC-CLSpaceA = {l}.

2. Preliminaries for Complex Convex Sets

Let V be a complex linear space and let W be a subspace of V . The functor
Up(W ) yields a subset of V and is defined by:

(Def. 19) Up(W ) = the carrier of W .

Let V be a complex linear space and let W be a subspace of V . One can
check that Up(W ) is non empty.
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Let V be a non empty CLS structure and let S be a subset of V . We say
that S is affine if and only if the condition (Def. 20) is satisfied.

(Def. 20) Let x, y be vectors of V and z be a complex number. If there exists a
real number a such that a = z and x, y ∈ S, then (1C − z) · x+ z · y ∈ S.
Let V be a complex linear space. The functor ΩV yields a strict subspace of

V and is defined as follows:

(Def. 21) ΩV = the CLS structure of V .

Let V be a non empty CLS structure. Observe that ΩV is affine and ∅V is
affine.
Let V be a non empty CLS structure. One can check that there exists a

subset of V which is non empty and affine and there exists a subset of V which
is empty and affine.
We now state three propositions:

(42) For every real number a and for every complex number z holds <(a ·z) =
a · <(z).

(43) For every real number a and for every complex number z holds =(a ·z) =
a · =(z).

(44) For every real number a and for every complex number z such that
0 ≤ a ≤ 1 holds |a · z| = a · |z| and |(1C − a) · z| = (1C − a) · |z|.

3. Complex Convex Sets

Let V be a non empty CLS structure, let M be a subset of V , and let r be
an element of C. The functor r ·M yielding a subset of V is defined by:

(Def. 22) r ·M = {r · v; v ranges over elements of V : v ∈M}.
Let V be a non empty CLS structure and let M be a subset of V . We say

that M is convex if and only if the condition (Def. 23) is satisfied.

(Def. 23) Let u, v be vectors of V and z be a complex number. Suppose there
exists a real number r such that z = r and 0 < r < 1 and u, v ∈M. Then
z · u+ (1C − z) · v ∈M.
One can prove the following propositions:

(45) Let V be a complex linear space-like non empty CLS structure, M be
a subset of V , and z be a complex number. If M is convex, then z ·M is
convex.

(46) Let V be an Abelian add-associative complex linear space-like non empty
CLS structure andM , N be subsets of V . IfM is convex and N is convex,
then M +N is convex.

(47) Let V be a complex linear space and M , N be subsets of V . If M is
convex and N is convex, then M −N is convex.
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(48) Let V be a non empty CLS structure and M be a subset of V . Then M
is convex if and only if for every complex number z such that there exists a
real number r such that z = r and 0 < r < 1 holds z ·M+(1C−z)·M ⊆M.

(49) Let V be an Abelian non empty CLS structure and M be a subset of V .
Suppose M is convex. Let z be a complex number. If there exists a real
number r such that z = r and 0 < r < 1, then (1C − z) ·M + z ·M ⊆M.

(50) Let V be an Abelian add-associative complex linear space-like non empty
CLS structure and M , N be subsets of V . Suppose M is convex and N is
convex. Let z be a complex number. If there exists a real number r such
that z = r, then z ·M + (1C − z) ·N is convex.

(51) For every complex linear space-like non empty CLS structure V and for
every subset M of V holds 1C ·M =M.

(52) For every complex linear space V and for every non empty subset M of
V holds 0C ·M = {0V }.

(53) For every add-associative non empty additive loop structure V and for
all subsets M1, M2, M3 of V holds (M1 +M2) +M3 =M1 + (M2 +M3).

(54) Let V be a complex linear space-like non empty CLS structure, M be a
subset of V , and z1, z2 be complex numbers. Then z1 ·(z2 ·M) = (z1 ·z2)·M.

(55) Let V be a complex linear space-like non empty CLS structure, M1,
M2 be subsets of V , and z be a complex number. Then z · (M1 +M2) =
z ·M1 + z ·M2.

(56) Let V be a complex linear space, M be a subset of V , and v be a vector
of V . Then M is convex if and only if v +M is convex.

(57) For every complex linear space V holds Up(0V ) is convex.

(58) For every complex linear space V holds Up(ΩV ) is convex.

(59) For every non empty CLS structure V and for every subsetM of V such
that M = ∅ holds M is convex.

(60) Let V be an Abelian add-associative complex linear space-like non empty
CLS structure, M1, M2 be subsets of V , and z1, z2 be complex numbers.
If M1 is convex and M2 is convex, then z1 ·M1 + z2 ·M2 is convex.

(61) Let V be a complex linear space-like non empty CLS structure, M be
a subset of V , and z1, z2 be complex numbers. Then (z1 + z2) · M ⊆
z1 ·M + z2 ·M.

(62) Let V be a non empty CLS structure, M , N be subsets of V , and z be
a complex number. If M ⊆ N, then z ·M ⊆ z ·N.

(63) For every non empty CLS structure V and for every empty subset M of
V and for every complex number z holds z ·M = ∅.

(64) Let V be a non empty additive loop structure, M be an empty subset
of V , and N be a subset of V . Then M +N = ∅.
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(65) For every right zeroed non empty additive loop structure V and for every
subset M of V holds M + {0V } =M.

(66) Let V be a complex linear space, M be a subset of V , and z1, z2 be
complex numbers. Suppose there exist real numbers r1, r2 such that z1 =
r1 and z2 = r2 and r1 ≥ 0 and r2 ≥ 0 and M is convex. Then z1 ·M + z2 ·
M = (z1 + z2) ·M.

(67) Let V be an Abelian add-associative complex linear space-like non empty
CLS structure, M1, M2, M3 be subsets of V , and z1, z2, z3 be complex
numbers. If M1 is convex and M2 is convex and M3 is convex, then z1 ·
M1 + z2 ·M2 + z3 ·M3 is convex.

(68) Let V be a non empty CLS structure and F be a family of subsets of
V . Suppose that for every subset M of V such that M ∈ F holds M is
convex. Then

⋂
F is convex.

(69) For every non empty CLS structure V and for every subsetM of V such
that M is affine holds M is convex.

Let V be a non empty CLS structure. One can check that there exists a
subset of V which is non empty and convex.
Let V be a non empty CLS structure. Observe that there exists a subset of

V which is empty and convex.
One can prove the following propositions:

(70) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : <((u|v)) ≥ r}, then M is convex.

(71) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : <((u|v)) > r}, then M is convex.

(72) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : <((u|v)) ≤ r}, then M is convex.

(73) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : <((u|v)) < r}, then M is convex.

(74) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : =((u|v)) ≥ r}, then M is convex.

(75) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : =((u|v)) > r}, then M is convex.

(76) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
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If M = {u;u ranges over vectors of V : =((u|v)) ≤ r}, then M is convex.
(77) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : =((u|v)) < r}, then M is convex.

(78) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : |(u|v)| ≤ r}, then M is convex.

(79) Let V be a complex unitary space-like non empty complex unitary space
structure,M be a subset of V , v be a vector of V , and r be a real number.
If M = {u;u ranges over vectors of V : |(u|v)| < r}, then M is convex.

4. Complex Convex Combinations

Let V be a complex linear space and let L be a C-linear combination of V .
We say that L is convex if and only if the condition (Def. 24) is satisfied.

(Def. 24) There exists a finite sequence F of elements of the carrier of V such that
(i) F is one-to-one,
(ii) rngF = the support of L, and
(iii) there exists a finite sequence f of elements of R such that len f = lenF
and
∑
f = 1 and for every natural number n such that n ∈ dom f holds

f(n) = L(F (n)) and f(n) ≥ 0.
We now state several propositions:

(80) Let V be a complex linear space and L be a C-linear combination of V .
If L is convex, then the support of L 6= ∅.

(81) Let V be a complex linear space, L be a C-linear combination of V , and
v be a vector of V . Suppose L is convex and there exists a real number r
such that r = L(v) and r ≤ 0. Then v /∈ the support of L.

(82) For every complex linear space V and for every C-linear combination L
of V such that L is convex holds L 6= ZeroCLCV.

(83) Let V be a complex linear space, v be a vector of V , and L be a C-
linear combination of V . Suppose L is convex and the support of L = {v}.
Then there exists a real number r such that r = L(v) and r = 1 and∑
L = L(v) · v.

(84) Let V be a complex linear space, v1, v2 be vectors of V , and L be
a C-linear combination of V . Suppose L is convex and the support of
L = {v1, v2} and v1 6= v2. Then there exist real numbers r1, r2 such that
r1 = L(v1) and r2 = L(v2) and r1 + r2 = 1 and r1 ≥ 0 and r2 ≥ 0 and∑
L = L(v1) · v1 + L(v2) · v2.
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(85) Let V be a complex linear space, v1, v2, v3 be vectors of V , and L be
a C-linear combination of V . Suppose L is convex and the support of
L = {v1, v2, v3} and v1 6= v2 6= v3 6= v1. Then
(i) there exist real numbers r1, r2, r3 such that r1 = L(v1) and r2 = L(v2)
and r3 = L(v3) and r1 + r2 + r3 = 1 and r1 ≥ 0 and r2 ≥ 0 and r3 ≥ 0,
and

(ii)
∑
L = L(v1) · v1 + L(v2) · v2 + L(v3) · v3.

(86) Let V be a complex linear space, v be a vector of V , and L be a C-linear
combination of {v}. Suppose L is convex. Then there exists a real number
r such that r = L(v) and r = 1 and

∑
L = L(v) · v.

(87) Let V be a complex linear space, v1, v2 be vectors of V , and L be a
C-linear combination of {v1, v2}. Suppose v1 6= v2 and L is convex. Then
there exist real numbers r1, r2 such that r1 = L(v1) and r2 = L(v2) and
r1 ≥ 0 and r2 ≥ 0 and

∑
L = L(v1) · v1 + L(v2) · v2.

(88) Let V be a complex linear space, v1, v2, v3 be vectors of V , and L be a
C-linear combination of {v1, v2, v3}. Suppose v1 6= v2 6= v3 6= v1 and L is
convex. Then
(i) there exist real numbers r1, r2, r3 such that r1 = L(v1) and r2 = L(v2)
and r3 = L(v3) and r1 + r2 + r3 = 1 and r1 ≥ 0 and r2 ≥ 0 and r3 ≥ 0,
and

(ii)
∑
L = L(v1) · v1 + L(v2) · v2 + L(v3) · v3.

5. Complex Convex Hull

Let V be a non empty CLS structure and let M be a subset of V . The
functor Convex-FamilyM yielding a family of subsets of V is defined by:

(Def. 25) For every subset N of V holds N ∈ Convex-FamilyM iff N is convex
and M ⊆ N.
Let V be a non empty CLS structure and let M be a subset of V . The

functor convM yielding a convex subset of V is defined as follows:

(Def. 26) convM =
⋂
Convex-FamilyM.

The following proposition is true

(89) Let V be a non empty CLS structure, M be a subset of V , and N be a
convex subset of V . If M ⊆ N, then convM ⊆ N.
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numbers, and we prove some of their properties.

MML identifier: QUATERN2, version: 7.8.10 4.100.1011

The articles [9], [1], [3], [4], [6], [5], [2], [7], and [8] provide the notation and
terminology for this paper.
We use the following convention: q, r, c, c1, c2, c3 are quaternion numbers

and x1, x2, x3, x4, y1, y2, y3, y4 are elements of R.
0H is an element of H.
1H is an element of H.
Next we state several propositions:

(1) For all real numbers x, y, z, w holds 〈x, y, z, w〉H = x+y · i+ z · j+w ·k.
(2) (c1 + c2) + c3 = c1 + (c2 + c3).

(3) c+ 0H = c.

(4) −〈x1, x2, x3, x4〉H = 〈−x1,−x2,−x3,−x4〉H.
(5) 〈x1, x2, x3, x4〉H − 〈y1, y2, y3, y4〉H = 〈x1 − y1, x2 − y2, x3 − y3, x4 − y4〉H.
(6) (c1 − c2) + c3 = (c1 + c3)− c2.
(7) c1 = (c1 + c2)− c2.
(8) c1 = (c1 − c2) + c2.
(9) (−x1) · c = −x1 · c.
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Let us consider q. Then |q| is an element of R.
i Is an element of H.
We now state a number of propositions:

(10) If r 6= 0, then |r| > 0.
(11) (0) · c = 0.
(12) c · (0) = 0.
(13) c · 1H = c.
(14) 1H · c = c.
(15) (c1 · c2) · c3 = c1 · (c2 · c3).
(16) c1 · (c2 + c3) = c1 · c2 + c1 · c3.
(17) (c1 + c2) · c3 = c1 · c3 + c2 · c3.
(18) −c = (−1H) · c.
(19) (−c1) · c2 = −c1 · c2.
(20) c1 · −c2 = −c1 · c2.
(21) (−c1) · −c2 = c1 · c2.
(22) (c1 − c2) · c3 = c1 · c3 − c2 · c3.
(23) c1 · (c2 − c3) = c1 · c2 − c1 · c3.
(24) 〈x1, x2, x3, x4〉H = 〈x1,−x2,−x3,−x4〉H.
(25) c = c.

Let us consider q, r. The functor qr is defined by the condition (Def. 1).

(Def. 1) There exist elements q0, q1, q2, q3, r0, r1, r2, r3 of R such that
(i) q = 〈q0, q1, q2, q3〉H,
(ii) r = 〈r0, r1, r2, r3〉H, and
(iii) q

r = 〈
r0·q0+r1·q1+r2·q2+r3·q3

|r|2 , (r0·q1−r1·q0−r2·q3)+r3·q2|r|2 , (r0·q2+r1·q3)−r2·q0−r3·q1|r|2 ,
((r0·q3−r1·q2)+r2·q1)−r3·q0

|r|2 〉H.
Let us consider q, r. One can check that qr is quaternion.
Let us consider q, r. Then qr is an element of H and it can be characterized

by the condition:

(Def. 2) q
r =

<(r)·<(q)+=1(q)·=1(r)+=2(r)·=2(q)+=3(r)·=3(q)
|r|2 +

(<(r)·=1(q)−=1(r)·<(q)−=2(r)·=3(q))+=3(r)·=2(q)
|r|2 · i+

(<(r)·=2(q)+=1(r)·=3(q))−=2(r)·<(q)−=3(r)·=1(q)
|r|2 · j+

((<(r)·=3(q)−=1(r)·=2(q))+=2(r)·=1(q))−=3(r)·<(q)
|r|2 · k.

Let us consider c. The functor c−1 yielding a quaternion number is defined
by:

(Def. 3) c−1 = 1Hc .

Let us consider r. Then r−1 is an element of H and it can be characterized
by the condition:
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(Def. 4) r−1 = <(r)|r|2 −
=1(r)
|r|2 · i−

=2(r)
|r|2 · j −

=3(r)
|r|2 · k.

We now state several propositions:

(26) <(r−1) = <(r)
|r|2 and =1(r

−1) = −=1(r)|r|2 and =2(r
−1) = −=2(r)|r|2 and

=3(r−1) = −=3(r)|r|2 .

(27)(i) <( qr ) =
<(r)·<(q)+=1(q)·=1(r)+=2(r)·=2(q)+=3(r)·=3(q)

|r|2 ,

(ii) =1( qr ) =
(<(r)·=1(q)−=1(r)·<(q)−=2(r)·=3(q))+=3(r)·=2(q)

|r|2 ,

(iii) =2( qr ) =
(<(r)·=2(q)+=1(r)·=3(q))−=2(r)·<(q)−=3(r)·=1(q)

|r|2 , and

(iv) =3( qr ) =
((<(r)·=3(q)−=1(r)·=2(q))+=2(r)·=1(q))−=3(r)·<(q)

|r|2 .

(28) If r 6= 0, then r · r−1 = 1.
(29) If r 6= 0, then r−1 · r = 1.
(30) If c 6= 0H, then cc = 1H.
(31) (−c)−1 = −c−1.
The unary operation complH on H is defined by:

(Def. 5) For every element c of H holds complH(c) = −c.
The binary operation +H on H is defined as follows:
(Def. 6) For all elements c1, c2 of H holds +H(c1, c2) = c1 + c2.

The binary operation −H on H is defined by:
(Def. 7) For all elements c1, c2 of H holds −H(c1, c2) = c1 − c2.
The binary operation ·H on H is defined as follows:
(Def. 8) For all elements c1, c2 of H holds ·H(c1, c2) = c1 · c2.
The binary operation /H on H is defined as follows:
(Def. 9) For all elements c1, c2 of H holds /H(c1, c2) = c1c2 .
The unary operation −1H on H is defined by:

(Def. 10) For every element c of H holds (−1H )(c) = c
−1.

The strict additive loop structure HG is defined as follows:
(Def. 11) The carrier of HG = H and the addition of HG = +H and 0HG = 0H.

Let us mention that HG is non empty.
Let us note that every element of HG is quaternion.
Let x, y be elements of HG and let a, b be quaternion numbers. One can

check that x+ y and a+ b can be identified when x = a and y = b.
One can prove the following proposition

(32) 0HG = 0H.

Let us observe that HG is Abelian, add-associative, right zeroed, and right
complementable.
Let x be an element of HG and let a be a quaternion number. Note that −x

and −a can be identified when x = a.
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Let x, y be elements of HG and let a, b be quaternion numbers. One can
verify that x− y and a− b can be identified when x = a and y = b.
Next we state the proposition

(33) For all elements x, y, z of HG holds x + y = y + x and (x + y) + z =
x+ (y + z) and x+ 0HG = x.

The strict double loop structure HR is defined as follows:
(Def. 12) The carrier of HR = H and the addition of HR = +H and the multipli-

cation of HR = ·H and 1HR = 1H and 0HR = 0H.
Let us note that HR is non empty.
Let us observe that every element of HR is quaternion.
Let a, b be quaternion numbers and let x, y be elements of HR. One can

check the following observations: x+ y can be identified with a+ b and x · y can
be identified with a · b when x = a and y = b.
One can check that HR is well unital.
Next we state three propositions:

(34) 1HR = 1H.

(35) 1HR = 1H.

(36) 0HR = 0H.

Let us mention that HR is add-associative, right zeroed, right complemen-
table, Abelian, associative, left unital, right unital, distributive, almost right
invertible, and non degenerated.
Let x be an element of HR and let a be a quaternion number. Observe that

−x and −a can be identified when x = a.
Let x, y be elements of HR and let a, b be quaternion numbers. Observe that

x− y and a− b can be identified when x = a and y = b.
Let z be an element of HR. Then z is an element of HR.
In the sequel z denotes an element of HR.
The following propositions are true:

(37) −z = (−1HR) · z.
(38) 0HR = 0HR .

(39) If z = 0HR , then z = 0HR .

(40) 1HR = 1HR .

(41) |0HR | = 0.
(42) If |z| = 0, then z = 0HR .
(43) |1HR | = 1.
(44) (1HR)

−1 = 1HR .

Let x, y be quaternion numbers. The functor (x|y) yielding an element of H
is defined as follows:

(Def. 13) (x|y) = x · y .
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The following propositions are true:

(45) (c1|c2) = 〈<(c1) · <(c2) + =1(c1) · =1(c2) + =2(c1) · =2(c2) + =3(c1) ·
=3(c2), ((<(c1) · −=1(c2) + =1(c1) · <(c2)) − =2(c1) · =3(c2)) + =3(c1) ·
=2(c2), ((<(c1) · −=2(c2) + <(c2) · =2(c1)) − =1(c2) · =3(c1)) + =3(c2) ·
=1(c1), ((<(c1)·−=3(c2)+=3(c1)·<(c2))−=1(c1)·=2(c2))+=2(c1)·=1(c2)〉H.

(46) (c|c) = |c|2.
(47) <((c|c)) = |c|2 and =1((c|c)) = 0 and =2((c|c)) = 0 and =2((c|c)) = 0.
(48) |(c1|c2)| = |c1| · |c2|.
(49) If (c|c) = 0, then c = 0.
(50) ((c1 + c2)|c3) = (c1|c3) + (c2|c3).
(51) (c1|(c2 + c3)) = (c1|c2) + (c1|c3).
(52) ((−c1)|c2) = −(c1|c2).
(53) −(c1|c2) = (c1|−c2).
(54) ((−c1)|−c2) = (c1|c2).
(55) ((c1 − c2)|c3) = (c1|c3)− (c2|c3).
(56) (c1|(c2 − c3)) = (c1|c2)− (c1|c3).
(57) ((c1 + c2)|(c1 + c2)) = (c1|c1) + (c1|c2) + (c2|c1) + (c2|c2).
(58) ((c1 − c2)|(c1 − c2)) = ((c1|c1)− (c1|c2)− (c2|c1)) + (c2|c2).
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Summary. In this paper, we proved some basic properties of higher diffe-
rentiation, and higher differentiation formulas of special functions [4].
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The notation and terminology used in this paper are introduced in the following
articles: [16], [13], [2], [3], [5], [1], [7], [9], [12], [10], [8], [18], [14], [11], [6], [15],
and [17].
For simplicity, we use the following convention: x, r, a, x0, p are real numbers,

n, i, m are elements of N, Z is an open subset of R, and f , f1, f2 are partial
functions from R to R.
Next we state a number of propositions:

(1) For every function f from R into R holds dom(f�Z) = Z.
(2) (−f1)−f2 = f1 f2.
(3) If n ≥ 1, then dom( 1�n ) = R \ {0} and (�n)−1({0}) = {0}.
(4) (r · p) 1�n = r (p

1
�n ).

(5) For all elements n, m of R holds n f +mf = (n+m) f.
(6) If f�Z is differentiable on Z, then f is differentiable on Z.
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(7) If n ≥ 1 and f is differentiable n times on Z, then f is differentiable on
Z.

(8) �n is differentiable on R.
(9) If x ∈ Z, then (the function sin)′(Z)(2)(x) = −sinx.
(10) If x ∈ Z, then (the function sin)′(Z)(3)(x) = −cosx.
(11) If x ∈ Z, then (the function sin)′(Z)(n)(x) = sin(x+ n·π2 ).
(12) If x ∈ Z, then (the function cos)′(Z)(2)(x) = −cosx.
(13) If x ∈ Z, then (the function cos)′(Z)(3)(x) = sinx.
(14) If x ∈ Z, then (the function cos)′(Z)(n)(x) = cos(x+ n·π2 ).
(15) If f1 is differentiable n times on Z and f2 is differentiable n times on Z,
then (f1 + f2)′(Z)(n) = f1′(Z)(n) + f2′(Z)(n).

(16) If f1 is differentiable n times on Z and f2 is differentiable n times on Z,
then (f1 − f2)′(Z)(n) = f1′(Z)(n)− f2′(Z)(n).

(17) If f1 is differentiable n times on Z and f2 is differentiable n times on Z
and i ≤ n, then (f1 + f2)′(Z)(i) = f1′(Z)(i) + f2′(Z)(i).

(18) If f1 is differentiable n times on Z and f2 is differentiable n times on Z
and i ≤ n, then (f1 − f2)′(Z)(i) = f1′(Z)(i)− f2′(Z)(i).

(19) If f1 is differentiable n times on Z and f2 is differentiable n times on Z,
then f1 + f2 is differentiable n times on Z.

(20) If f1 is differentiable n times on Z and f2 is differentiable n times on Z,
then f1 − f2 is differentiable n times on Z.

(21) If f is differentiable n times on Z, then (r f)′(Z)(n) = r f ′(Z)(n).

(22) If f is differentiable n times on Z, then r f is differentiable n times on
Z.

(23) If f is differentiable on Z, then f ′(Z)(1) = f ′�Z .

(24) If n ≥ 1 and f is differentiable n times on Z, then f ′(Z)(1) = f ′�Z .
(25) If x ∈ Z, then (r (the function sin))′(Z)(n)(x) = r · sin(x+ n·π2 ).
(26) If x ∈ Z, then (r (the function cos))′(Z)(n)(x) = r · cos(x+ n·π2 ).
(27) If x ∈ Z, then (r (the function exp))′(Z)(n)(x) = r · expx.
(28) (�n)′�Z = (n (�

n−1))�Z.

(29) If x 6= 0, then 1
�n is differentiable in x and (

1
�n )
′(x) = −n·xn−1(xn)2 .

(30) If n ≥ 1, then (�n)′(Z)(2) = ((n · (n− 1)) (�n−2))�Z.
(31) If n ≥ 2, then (�n)′(Z)(3) = ((n · (n− 1) · (n− 2)) (�n−3))�Z.
(32) If n > m, then (�n)′(Z)(m) = ((

(n
m

)
·m!) (�n−m))�Z.

(33) If f is differentiable n times on Z, then (−f)′(Z)(n) = −f ′(Z)(n) and
−f is differentiable n times on Z.

(34) If x0 ∈ Z, then (Taylor(the function sin, Z, x0, x))(n) =
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sin(x0+n·π2 )·(x−x0)
n

n! and (Taylor(the function cos, Z, x0, x))(n) =
cos(x0+n·π2 )·(x−x0)

n

n! .

(35) If r > 0, then (Maclaurin(the function sin, ]−r, r[, x))(n) = sin(n·π2 )·x
n

n!

and (Maclaurin(the function cos, ]−r, r[, x))(n) = cos(
n·π
2 )·x

n

n! .

(36) If n > m and x ∈ Z, then (�n)′(Z)(m)(x) =
(n
m

)
·m! · xn−m.

(37) If x ∈ Z, then (�m)′(Z)(m)(x) = m!.
(38) �n is differentiable n times on Z.

(39) If x ∈ Z and n > m, then (a (�n))′(Z)(m)(x) = a ·
(n
m

)
·m! · xn−m.

(40) If x ∈ Z, then (a (�n))′(Z)(n)(x) = a · n!.
(41) If x0 ∈ Z and n > m, then (Taylor(�n, Z, x0, x))(m) =

(n
m

)
· x0n−m ·

(x− x0)m and (Taylor(�n, Z, x0, x))(n) = (x− x0)n.
(42) Let n, m be elements of N and r, x be real numbers. If
n > m and r > 0, then (Maclaurin(�n, ]−r, r[, x))(m) = 0 and
(Maclaurin(�n, ]−r, r[, x))(n) = xn.

(43) 1
�n is differentiable on ]0, r[.

(44) If x0 ∈ ]0, r[, then ( 1�n )
′
�]0,r[(x0) = −

n
(�n+1)(x0)

.

(45) If x 6= 0, then 1�1 is differentiable in x and (
1

�1 )
′(x) = − 1

(x1)2 .

(46) If ]0, r[ ⊆ dom( 1�2 ), then (
1

�1 )
′
�]0,r[ = ((−1)

1
�2 )�]0, r[.

(47) If x 6= 0, then 1�2 is differentiable in x and (
1

�2 )
′(x) = − 2·x1(x2)2 .

(48) If ]0, r[ ⊆ dom( 1�3 ), then (
1

�2 )
′
�]0,r[ = ((−2)

1
�3 )�]0, r[.

(49) If n ≥ 1, then ( 1�n )
′
�]0,r[ = ((−n)

1
�n+1 )�]0, r[.

(50) Suppose f1 is differentiable 2 times on Z and f2 is differentiable 2 times
on Z. Then (f1 f2)′(Z)(2) = f1′(Z)(2) f2+2 ((f1)′�Z (f2)

′
�Z)+ f1 f2

′(Z)(2).

(51) If Z ⊆ dom (the function ln) and Z ⊆ dom( 1�1 ), then (the function
ln)′�Z =

1
�1 �Z.

(52) If n ≥ 1 and x0 ∈ ]0, r[, then ( 1�n )
′(]0, r[)(2)(x0) = n ·(n+1) ·( 1�n+2 )(x0).

(53) ((The function sin) (the function sin))′(Z)(2) = 2 (((the function cos)
(the function cos))�Z) + (−2) (((the function sin) (the function sin))�Z).

(54) ((The function cos) (the function cos))′(Z)(2) = 2 (((the function sin)
(the function sin))�Z) + (−2) (((the function cos) (the function cos))�Z).

(55) ((The function sin) (the function cos))′(Z)(2) =
4 (((−the function sin) (the function cos))�Z).

(56) Suppose Z ⊆ dom (the function tan). Then the function tan is differen-
tiable on Z and (the function tan)′�Z = (

1
the function cos

1
the function cos)�Z.

(57) Suppose Z ⊆ dom (the function tan). Then 1
the function cos is differentiable

on Z and ( 1
the function cos)

′
�Z = (

1
the function cos (the function tan))�Z.
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(58) Suppose Z ⊆ dom (the function tan). Then (the function tan)′(Z)(2) =
2 (((the function tan) 1

the function cos
1

the function cos)�Z).

(59) Suppose Z ⊆ dom (the function cot). Then
(i) the function cot is differentiable on Z, and
(ii) (the function cot)′�Z = ((−1) ( 1

the function sin
1

the function sin))�Z.

(60) Suppose Z ⊆ dom (the function cot). Then
(i) 1

the function sin is differentiable on Z, and
(ii) ( 1

the function sin)
′
�Z = (− 1

the function sin (the function cot))�Z.

(61) Suppose Z ⊆ dom (the function cot). Then (the function cot)′(Z)(2) =
2 (((the function cot) 1

the function sin
1

the function sin)�Z).

(62) ((The function exp) (the function sin))′(Z)(2) = 2 (((the function exp)
(the function cos))�Z).

(63) ((The function exp) (the function cos))′(Z)(2) = 2 (((the function exp)
−the function sin)�Z).

(64) Suppose f1 is differentiable 3 times on Z and f2 is differentiable 3 ti-
mes on Z. Then (f1 f2)′(Z)(3) = f1′(Z)(3) f2 + (3 (f1′(Z)(2) (f2)′�Z) +
3 ((f1)′�Z f2

′(Z)(2))) + f1 f2′(Z)(3).

(65) ((The function sin) (the function sin))′(Z)(3) = (−8) (((the function
cos) (the function sin))�Z).

(66) If f is differentiable 2 times on Z, then (f f)′(Z)(2) = 2 (f f ′(Z)(2)) +
2 (f ′�Z f

′
�Z).

(67) Suppose f is differentiable 2 times on Z and for every x0 such that

x0 ∈ Z holds f(x0) 6= 0. Then ( 1f )
′(Z)(2) =

2 f ′�Z f
′
�Z−f

′(Z)(2) f
f (f f) .

(68) ((The function exp) (the function sin))′(Z)(3) = (2 ((the function exp)
(−the function sin + the function cos)))�Z.
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The articles [17], [1], [2], [18], [3], [13], [19], [7], [15], [5], [9], [12], [16], [4], [6],
[8], [11], [14], and [10] provide the notation and terminology for this paper.

1. Function Arctan and Arccot

For simplicity, we adopt the following convention: x, r, s, h denote real
numbers, n denotes an element of N, Z denotes an open subset of R, and f , f1,
f2 denote partial functions from R to R.
The following propositions are true:

(1) ]−π2 ,
π
2 [ ⊆ dom (the function tan).

(2) ]0, π[ ⊆ dom (the function cot).
(3)(i) The function tan is differentiable on ]−π2 ,

π
2 [, and

(ii) for every x such that x ∈ ]−π2 ,
π
2 [ holds (the function tan)

′(x) = 1
(cosx)2 .

(4) The function cot is differentiable on ]0, π[ and for every x such that
x ∈ ]0, π[ holds (the function cot)′(x) = − 1

(sinx)2 .

(5) The function tan is continuous on ]−π2 ,
π
2 [.

(6) The function cot is continuous on ]0, π[.
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(7) The function tan is increasing on ]−π2 ,
π
2 [.

(8) The function cot is decreasing on ]0, π[.

(9) (The function tan)�]−π2 ,
π
2 [ is one-to-one.

(10) (The function cot)�]0, π[ is one-to-one.

Let us mention that (the function tan)�]−π2 ,
π
2 [ is one-to-one and (the func-

tion cot)�]0, π[ is one-to-one.
The partial function the function arctan from R to R is defined as follows:

(Def. 1) The function arctan = ((the function tan)�]−π2 ,
π
2 [)
−1.

The partial function the function arccot from R to R is defined by:
(Def. 2) The function arccot = ((the function cot)�]0, π[)−1.

Let r be a real number. The functor arctan r is defined by:

(Def. 3) arctan r = (the function arctan)(r).

The functor arccot r is defined by:

(Def. 4) arccot r = (the function arccot)(r).

Let r be a real number. Then arctan r is a real number. Then arccot r is a
real number.
We now state two propositions:

(11) rng (the function arctan) = ]−π2 ,
π
2 [.

(12) rng (the function arccot) = ]0, π[.

Let us mention that the function arctan is one-to-one and the function arccot
is one-to-one.
Let r be a real number. Then tan r is a real number. Then cot r is a real

number.
Next we state a number of propositions:

(13) For every real number x such that x ∈ ]−π2 ,
π
2 [ holds (the function

tan)(x) = tanx.

(14) For every real number x such that x ∈ ]0, π[ holds (the function cot)(x) =
cotx.

(15) For every real number x such that cosx 6= 0 holds (the function tan)(x) =
tanx.

(16) For every real number x such that (the function sin)(x) 6= 0 holds (the
function cot)(x) = cotx.

(17) tan(−π4 ) = −1.
(18) cot(π4 ) = 1 and cot(

3
4 · π) = −1.

(19) For every real number x such that x ∈ [−π4 ,
π
4 ] holds tanx ∈ [−1, 1].

(20) For every real number x such that x ∈ [π4 ,
3
4 · π] holds cotx ∈ [−1, 1].

(21) rng((the function tan)�[−π4 ,
π
4 ]) = [−1, 1].

(22) rng((the function cot)�[π4 ,
3
4 · π]) = [−1, 1].
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(23) [−1, 1] ⊆ dom (the function arctan).
(24) [−1, 1] ⊆ dom (the function arccot).
Let us observe that (the function tan)�[−π4 ,

π
4 ] is one-to-one and (the function

cot)�[π4 ,
3
4 · π] is one-to-one.

The following propositions are true:

(25) (The function arctan)�[−1, 1] = ((the function tan)�[−π4 ,
π
4 ])
−1.

(26) (The function arccot)�[−1, 1] = ((the function cot)�[π4 ,
3
4 · π])

−1.

(27) ((The function tan)�[−π4 ,
π
4 ] qua function) ·((the function arctan)�[−1, 1]) =

id[−1,1].

(28) ((The function cot)�[π4 ,
3
4 ·π] qua function) ·((the function arccot)�[−1, 1]) =

id[−1,1].

(29) ((The function tan)�[−π4 ,
π
4 ]) · ((the function arctan)�[−1, 1]) = id[−1,1].

(30) ((The function cot)�[π4 ,
3
4 · π]) · ((the function arccot)�[−1, 1]) = id[−1,1].

(31) (The function arctan qua function) ·((the function tan)�]−π2 ,
π
2 [) =

id]−π2 ,
π
2 [
.

(32) (The function arccot) ·((the function cot)�]0, π[) = id]0,π[.
(33) (The function arctan qua function) ·((the function tan)�]−π2 ,

π
2 [) =

id]−π2 ,
π
2 [
.

(34) (The function arccot qua function) ·((the function cot)�]0, π[) = id]0,π[.
(35) If −π2 < r <

π
2 , then arctan tan r = r.

(36) If 0 < r < π, then arccot cot r = r.

(37) arctan(−1) = −π4 .
(38) arccot(−1) = 34 · π.
(39) arctan 1 = π4 .

(40) arccot 1 = π4 .

(41) tan 0 = 0.

(42) cot(π2 ) = 0.

(43) arctan 0 = 0.

(44) arccot 0 = π2 .

(45) The function arctan is increasing on (the function tan) ◦]−π2 ,
π
2 [.

(46) The function arccot is decreasing on (the function cot) ◦]0, π[.

(47) The function arctan is increasing on [−1, 1].
(48) The function arccot is decreasing on [−1, 1].
(49) For every real number x such that x ∈ [−1, 1] holds arctanx ∈ [−π4 ,

π
4 ].

(50) For every real number x such that x ∈ [−1, 1] holds arccotx ∈ [π4 ,
3
4 · π].

(51) If −1 ≤ r ≤ 1, then tan arctan r = r.
(52) If −1 ≤ r ≤ 1, then cot arccot r = r.
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(53) The function arctan is continuous on [−1, 1].
(54) The function arccot is continuous on [−1, 1].
(55) rng((the function arctan)�[−1, 1]) = [−π4 ,

π
4 ].

(56) rng((the function arccot)�[−1, 1]) = [π4 ,
3
4 · π].

(57) If −1 ≤ r ≤ 1 and arctan r = −π4 , then r = −1.
(58) If −1 ≤ r ≤ 1 and arccot r = 34 · π, then r = −1.
(59) If −1 ≤ r ≤ 1 and arctan r = 0, then r = 0.
(60) If −1 ≤ r ≤ 1 and arccot r = π2 , then r = 0.
(61) If −1 ≤ r ≤ 1 and arctan r = π4 , then r = 1.
(62) If −1 ≤ r ≤ 1 and arccot r = π4 , then r = 1.
(63) If −1 ≤ r ≤ 1, then −π4 ≤ arctan r ≤

π
4 .

(64) If −1 ≤ r ≤ 1, then π4 ≤ arccot r ≤
3
4 · π.

(65) If −1 < r < 1, then −π4 < arctan r <
π
4 .

(66) If −1 < r < 1, then π4 < arccot r <
3
4 · π.

(67) If −1 ≤ r ≤ 1, then arctan r = −arctan(−r).
(68) If −1 ≤ r ≤ 1, then arccot r = π − arccot(−r).
(69) If −1 ≤ r ≤ 1, then cot arctan r = 1r .
(70) If −1 ≤ r ≤ 1, then tan arccot r = 1r .
(71) The function arctan is differentiable on (the function tan) ◦]−π2 ,

π
2 [.

(72) The function arccot is differentiable on (the function cot) ◦]0, π[.

(73) The function arctan is differentiable on ]−1, 1[.
(74) The function arccot is differentiable on ]−1, 1[.
(75) If −1 ≤ r ≤ 1, then (the function arctan)′(r) = 1

1+r2 .

(76) If −1 ≤ r ≤ 1, then (the function arccot)′(r) = − 1
1+r2 .

(77) The function arctan is continuous on (the function tan) ◦]−π2 ,
π
2 [.

(78) The function arccot is continuous on (the function cot) ◦]0, π[.

(79) dom (the function arctan) is open.

(80) dom (the function arccot) is open.

2. Several Differentiation Formulas of Arctan and Arccot

We now state a number of propositions:

(81) Suppose Z ⊆ ]−1, 1[. Then the function arctan is differentiable on Z and
for every x such that x ∈ Z holds (the function arctan)′�Z(x) = 1

1+x2 .

(82) Suppose Z ⊆ ]−1, 1[. Then the function arccot is differentiable on Z and
for every x such that x ∈ Z holds (the function arccot)′�Z(x) = − 1

1+x2 .
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(83) Suppose Z ⊆ ]−1, 1[. Then
(i) r the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (r the function arctan)′�Z(x) = r

1+x2 .

(84) Suppose Z ⊆ ]−1, 1[. Then
(i) r the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (r the function arccot)′�Z(x) = − r

1+x2 .

(85) Suppose f is differentiable in x and −1 < f(x) < 1. Then (the func-
tion arctan) ·f is differentiable in x and ((the function arctan) ·f)′(x) =
f ′(x)
1+f(x)2 .

(86) Suppose f is differentiable in x and −1 < f(x) < 1. Then (the func-
tion arccot) ·f is differentiable in x and ((the function arccot) ·f)′(x) =
− f ′(x)
1+f(x)2 .

(87) Suppose Z ⊆ dom((the function arctan) ·f) and for every x such that
x ∈ Z holds f(x) = r · x+ s and −1 < f(x) < 1. Then
(i) (the function arctan) ·f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·f)′�Z(x) =

r
1+(r·x+s)2 .

(88) Suppose Z ⊆ dom((the function arccot) ·f) and for every x such that
x ∈ Z holds f(x) = r · x+ s and −1 < f(x) < 1. Then
(i) (the function arccot) ·f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·f)′�Z(x) =
− r
1+(r·x+s)2 .

(89) Suppose Z ⊆ dom((the function ln) ·(the function arctan)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds arctanx > 0. Then
(i) (the function ln) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function
arctan))′�Z(x) =

1
(1+x2)·arctanx .

(90) Suppose Z ⊆ dom((the function ln) ·(the function arccot)) and Z ⊆
]−1, 1[ and for every x such that x ∈ Z holds arccotx > 0. Then
(i) (the function ln) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function ln) ·(the function
arccot))′�Z(x) = − 1

(1+x2)·arccotx .

(91) Suppose Z ⊆ dom((�n) · the function arctan) and Z ⊆ ]−1, 1[. Then
(i) (�n) · the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((�n) · the function arctan)′�Z(x) =
n·(arctanx)n−1

1+x2 .

(92) Suppose Z ⊆ dom((�n) · the function arccot) and Z ⊆ ]−1, 1[. Then
(i) (�n) · the function arccot is differentiable on Z, and
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(ii) for every x such that x ∈ Z holds ((�n) · the function arccot)′�Z(x) =
−n·(arccotx)

n−1

1+x2 .

(93) Suppose Z ⊆ dom(12 ((�
2) · the function arctan)) and Z ⊆ ]−1, 1[. Then

(i) 1
2 ((�

2) · the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((�

2)·the function arctan))′�Z(x) =
arctanx
1+x2 .

(94) Suppose Z ⊆ dom(12 ((�
2) · the function arccot)) and Z ⊆ ]−1, 1[. Then

(i) 1
2 ((�

2) · the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((�

2)·the function arccot))′�Z(x) =
−arccotx1+x2 .

(95) Suppose Z ⊆ ]−1, 1[. Then
(i) idZ the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ the function arctan)′�Z(x) =
arctanx+ x

1+x2 .

(96) Suppose Z ⊆ ]−1, 1[. Then
(i) idZ the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ the function arccot)′�Z(x) =
arccotx− x

1+x2 .

(97) Suppose Z ⊆ dom(f the function arctan) and Z ⊆ ]−1, 1[ and for every
x such that x ∈ Z holds f(x) = r · x+ s. Then
(i) f the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (f the function arctan)′�Z(x) =
r · arctanx+ r·x+s1+x2 .

(98) Suppose Z ⊆ dom(f the function arccot) and Z ⊆ ]−1, 1[ and for every
x such that x ∈ Z holds f(x) = r · x+ s. Then
(i) f the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (f the function arccot)′�Z(x) =
r · arccotx− r·x+s1+x2 .

(99) Suppose Z ⊆ dom(12 ((the function arctan) ·f)) and for every x such
that x ∈ Z holds f(x) = 2 · x and −1 < f(x) < 1. Then
(i) 1

2 ((the function arctan) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((the function arctan) ·f))

′
�Z(x) =

1
1+(2·x)2 .

(100) Suppose Z ⊆ dom(12 ((the function arccot) ·f)) and for every x such that
x ∈ Z holds f(x) = 2 · x and −1 < f(x) < 1. Then
(i) 1

2 ((the function arccot) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((the function arccot) ·f))

′
�Z(x) =

− 1
1+(2·x)2 .

(101) Suppose Z ⊆ dom(f1 + f2) and for every x such that x ∈ Z holds
f1(x) = 1 and f2 = �2. Then f1 + f2 is differentiable on Z and for every
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x such that x ∈ Z holds (f1 + f2)′�Z(x) = 2 · x.
(102) Suppose Z ⊆ dom(12 ((the function ln) ·(f1 + f2))) and f2 = �2 and for

every x such that x ∈ Z holds f1(x) = 1. Then
(i) 1

2 ((the function ln) ·(f1 + f2)) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (12 ((the function ln) ·(f1 +
f2)))′�Z(x) =

x
1+x2 .

(103) Suppose that
(i) Z ⊆ dom(idZ the function arctan−12 ((the function ln) ·(f1 + f2))),
(ii) Z ⊆ ]−1, 1[,
(iii) f2 = �2, and
(iv) for every x such that x ∈ Z holds f1(x) = 1.
Then

(v) idZ the function arctan−12 ((the function ln) ·(f1+ f2)) is differentiable
on Z, and

(vi) for every x such that x ∈ Z holds (idZ the function arctan−12 ((the
function ln) ·(f1 + f2)))′�Z(x) = arctanx.

(104) Suppose that
(i) Z ⊆ dom(idZ the function arccot+12 ((the function ln) ·(f1 + f2))),
(ii) Z ⊆ ]−1, 1[,
(iii) f2 = �2, and
(iv) for every x such that x ∈ Z holds f1(x) = 1.
Then

(v) idZ the function arccot+12 ((the function ln) ·(f1+ f2)) is differentiable
on Z, and

(vi) for every x such that x ∈ Z holds (idZ the function arccot+12 ((the
function ln) ·(f1 + f2)))′�Z(x) = arccotx.

(105) Suppose Z ⊆ dom(idZ ((the function arctan) ·f)) and for every x such
that x ∈ Z holds f(x) = xr and −1 < f(x) < 1. Then
(i) idZ ((the function arctan) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ ((the function arctan)
·f))′�Z(x) = arctan(xr ) +

x
r·(1+(x

r
)2) .

(106) Suppose Z ⊆ dom(idZ ((the function arccot) ·f)) and for every x such
that x ∈ Z holds f(x) = xr and −1 < f(x) < 1. Then
(i) idZ ((the function arccot) ·f) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (idZ ((the function arccot) ·f))′�Z(x) =
arccot(xr )−

x
r·(1+(x

r
)2) .

(107) Suppose Z ⊆ dom(f1 + f2) and for every x such that x ∈ Z holds
f1(x) = 1 and f2 = (�2) · f and for every x such that x ∈ Z holds
f(x) = xr . Then f1 + f2 is differentiable on Z and for every x such that
x ∈ Z holds (f1 + f2)′�Z(x) = 2·xr2 .
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(108) Suppose that
(i) Z ⊆ dom( r2 ((the function ln) ·(f1 + f2))),
(ii) for every x such that x ∈ Z holds f1(x) = 1,
(iii) r 6= 0,
(iv) f2 = (�2) · f, and
(v) for every x such that x ∈ Z holds f(x) = xr .
Then

(vi) r
2 ((the function ln) ·(f1 + f2)) is differentiable on Z, and

(vii) for every x such that x ∈ Z holds ( r2 ((the function ln) ·(f1 +
f2)))′�Z(x) =

x
r·(1+(x

r
)2) .

(109) Suppose that
(i) Z ⊆ dom(idZ ((the function arctan) ·f)− r2 ((the function ln) ·(f1+f2))),
(ii) r 6= 0,
(iii) for every x such that x ∈ Z holds f(x) = xr and −1 < f(x) < 1,
(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) f2 = (�2) · f, and
(vi) for every x such that x ∈ Z holds f(x) = xr .
Then

(vii) idZ ((the function arctan) ·f)− r2 ((the function ln) ·(f1 + f2)) is diffe-
rentiable on Z, and

(viii) for every x such that x ∈ Z holds (idZ ((the function arctan) ·f) −
r
2 ((the function ln) ·(f1 + f2)))

′
�Z(x) = arctan(

x
r ).

(110) Suppose that
(i) Z ⊆ dom(idZ ((the function arccot) ·f)+ r2 ((the function ln) ·(f1+f2))),
(ii) r 6= 0,
(iii) for every x such that x ∈ Z holds f(x) = xr and −1 < f(x) < 1,
(iv) for every x such that x ∈ Z holds f1(x) = 1,
(v) f2 = (�2) · f, and
(vi) for every x such that x ∈ Z holds f(x) = xr .
Then

(vii) idZ ((the function arccot) ·f) + r2 ((the function ln) ·(f1 + f2)) is diffe-
rentiable on Z, and

(viii) for every x such that x ∈ Z holds (idZ ((the function arccot) ·f)+ r2 ((the
function ln) ·(f1 + f2)))′�Z(x) = arccot(xr ).

(111) Suppose Z ⊆ dom((the function arctan) · 1f ) and for every x such that
x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) (the function arctan) · 1f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) · 1f )

′
�Z(x) =

− 1
1+x2 .
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(112) Suppose Z ⊆ dom((the function arccot) · 1f ) and for every x such that
x ∈ Z holds f(x) = x and −1 < ( 1f )(x) < 1. Then
(i) (the function arccot) · 1f is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) · 1f )

′
�Z(x) =

1
1+x2 .

(113) Suppose that
(i) Z ⊆ dom((the function arctan) ·f),
(ii) f = f1 + h f2,
(iii) for every x such that x ∈ Z holds −1 < f(x) < 1,
(iv) for every x such that x ∈ Z holds f1(x) = r + s · x, and
(v) f2 = �2.
Then

(vi) (the function arctan) ·(f1 + h f2) is differentiable on Z, and
(vii) for every x such that x ∈ Z holds ((the function arctan) ·(f1 +
h f2))′�Z(x) =

s+2·h·x
1+(r+s·x+h·x2)2 .

(114) Suppose that
(i) Z ⊆ dom((the function arccot) ·f),
(ii) f = f1 + h f2,
(iii) for every x such that x ∈ Z holds −1 < f(x) < 1,
(iv) for every x such that x ∈ Z holds f1(x) = r + s · x, and
(v) f2 = �2.
Then

(vi) (the function arccot) ·(f1 + h f2) is differentiable on Z, and
(vii) for every x such that x ∈ Z holds ((the function arccot) ·(f1 +
h f2))′�Z(x) = − s+2·h·x

1+(r+s·x+h·x2)2 .

(115) Suppose Z ⊆ dom((the function arctan) ·(the function exp)) and for
every x such that x ∈ Z holds expx < 1. Then
(i) (the function arctan) ·(the function exp) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan) ·(the function
exp))′�Z(x) =

expx
1+(expx)2 .

(116) Suppose Z ⊆ dom((the function arccot) ·(the function exp)) and for
every x such that x ∈ Z holds expx < 1. Then
(i) (the function arccot) ·(the function exp) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arccot) ·(the function
exp))′�Z(x) = −

expx
1+(expx)2 .

(117) Suppose that
(i) Z ⊆ dom((the function arctan) ·(the function ln)), and
(ii) for every x such that x ∈ Z holds −1 < (the function ln)(x) and (the
function ln)(x) < 1.
Then
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(iii) (the function arctan) ·(the function ln) is differentiable on Z, and
(iv) for every x such that x ∈ Z holds ((the function arctan) ·(the function
ln))′�Z(x) =

1
x·(1+(the function ln)(x)2) .

(118) Suppose that
(i) Z ⊆ dom((the function arccot) ·(the function ln)), and
(ii) for every x such that x ∈ Z holds −1 < (the function ln)(x) and (the
function ln)(x) < 1.
Then

(iii) (the function arccot) ·(the function ln) is differentiable on Z, and
(iv) for every x such that x ∈ Z holds ((the function arccot) ·(the function
ln))′�Z(x) = − 1

x·(1+(the function ln)(x)2) .

(119) Suppose Z ⊆ dom((the function exp) ·(the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function exp) ·(the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function exp) ·(the function
arctan))′�Z(x) =

exp arctanx
1+x2 .

(120) Suppose Z ⊆ dom((the function exp) ·(the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function exp) ·(the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function exp) ·(the function
arccot))′�Z(x) = −

exp arccotx
1+x2 .

(121) Suppose Z ⊆ dom((the function arctan)−idZ) and Z ⊆ ]−1, 1[. Then
(i) (the function arctan)−idZ is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function arctan)−idZ)′�Z(x) =
− x2

1+x2 .

(122) Suppose Z ⊆ dom(−the function arccot− idZ) and Z ⊆ ]−1, 1[. Then
(i) −the function arccot− idZ is differentiable on Z, and
(ii) for every x such that x ∈ Z holds (−the function arccot− idZ)′�Z(x) =
− x2

1+x2 .

(123) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function exp) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function exp) (the function
arctan))′�Z(x) = expx · arctanx+

expx
1+x2 .

(124) Suppose Z ⊆ ]−1, 1[. Then
(i) (the function exp) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function exp) (the function
arccot))′�Z(x) = expx · arccotx−

expx
1+x2 .

(125) Suppose Z ⊆ dom(1r ((the function arctan) ·f) − idZ) and for every x
such that x ∈ Z holds f(x) = r · x and r 6= 0 and −1 < f(x) < 1. Then
(i) 1

r ((the function arctan) ·f)− idZ is differentiable on Z, and



inverse trigonometric functions . . . 157

(ii) for every x such that x ∈ Z holds (1r ((the function arctan) ·f) −
idZ)′�Z(x) = −

(r·x)2
1+(r·x)2 .

(126) Suppose Z ⊆ dom((−1r ) ((the function arccot) ·f) − idZ) and for every
x such that x ∈ Z holds f(x) = r · x and r 6= 0 and −1 < f(x) < 1. Then
(i) (−1r ) ((the function arccot) ·f)− idZ is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((−1r ) ((the function arccot) ·f) −
idZ)′�Z(x) = −

(r·x)2
1+(r·x)2 .

(127) Suppose Z ⊆ dom((the function ln) (the function arctan)) and Z ⊆
]−1, 1[. Then
(i) (the function ln) (the function arctan) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function ln) (the function
arctan))′�Z(x) =

arctanx
x + (the function ln)(x)1+x2 .

(128) Suppose Z ⊆ dom((the function ln) (the function arccot)) and Z ⊆
]−1, 1[. Then
(i) (the function ln) (the function arccot) is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ((the function ln) (the function
arccot))′�Z(x) =

arccotx
x − (the function ln)(x)1+x2 .

(129) Suppose Z ⊆ dom( 1f the function arctan) and Z ⊆ ]−1, 1[ and for every
x such that x ∈ Z holds f(x) = x. Then
(i) 1

f the function arctan is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1f the function arctan)

′
�Z(x) =

−arctanx
x2
+ 1
x·(1+x2) .

(130) Suppose Z ⊆ dom( 1f the function arccot) and Z ⊆ ]−1, 1[ and for every
x such that x ∈ Z holds f(x) = x. Then
(i) 1

f the function arccot is differentiable on Z, and
(ii) for every x such that x ∈ Z holds ( 1f the function arccot)

′
�Z(x) =

−arccotx
x2
− 1
x·(1+x2) .
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The papers [1], [2], [16], [3], [12], [17], [13], [5], [8], [11], [14], [4], [6], [7], [10],
[15], and [9] provide the notation and terminology for this paper.
In this paper x, r denote real numbers.
The following propositions are true:

(1) [0, π2 [⊆ dom (the function sec).
(2) ]π2 , π] ⊆ dom (the function sec).
(3) [−π2 , 0[⊆ dom (the function cosec).
(4) ]0, π2 ] ⊆ dom (the function cosec).
(5) The function sec is differentiable on ]0, π2 [ and for every x such that
x ∈ ]0, π2 [ holds (the function sec)

′(x) = sinx
(cosx)2 .

(6) The function sec is differentiable on ]π2 , π[ and for every x such that
x ∈ ]π2 , π[ holds (the function sec)

′(x) = sinx
(cosx)2 .

(7)(i) The function cosec is differentiable on ]−π2 , 0[, and

159
c© 2008 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

http://ftp.mizar.org/
http://fm.mizar.org/miz/sincos10.miz


160 bing xie and xiquan liang and fuguo ge

(ii) for every x such that x ∈ ]−π2 , 0[ holds (the function cosec)
′(x) =

− cosx
(sinx)2 .

(8)(i) The function cosec is differentiable on ]0, π2 [, and
(ii) for every x such that x ∈ ]0, π2 [ holds (the function cosec)

′(x) =
− cosx
(sinx)2 .

(9) The function sec is continuous on ]0, π2 [.

(10) The function sec is continuous on ]π2 , π[.

(11) The function cosec is continuous on ]−π2 , 0[.
(12) The function cosec is continuous on ]0, π2 [.

(13) The function sec is increasing on ]0, π2 [.

(14) The function sec is increasing on ]π2 , π[.

(15) The function cosec is decreasing on ]−π2 , 0[.
(16) The function cosec is decreasing on ]0, π2 [.

(17) The function sec is increasing on [0, π2 [.

(18) The function sec is increasing on ]π2 , π].

(19) The function cosec is decreasing on [−π2 , 0[.
(20) The function cosec is decreasing on ]0, π2 ].

(21) (The function sec)�[0, π2 [ is one-to-one.

(22) (The function sec)�]π2 , π] is one-to-one.

(23) (The function cosec)�[−π2 , 0[ is one-to-one.
(24) (The function cosec)�]0, π2 ] is one-to-one.

One can verify the following observations:

∗ (the function sec)�[0, π2 [ is one-to-one,
∗ (the function sec)�]π2 , π] is one-to-one,
∗ (the function cosec)�[−π2 , 0[ is one-to-one, and
∗ (the function cosec)�]0, π2 ] is one-to-one.
The partial function the 1st part of arcsec from R to R is defined as follows:

(Def. 1) The 1st part of arcsec = ((the function sec)�[0, π2 [)
−1.

The partial function the 2nd part of arcsec from R to R is defined as follows:
(Def. 2) The 2nd part of arcsec = ((the function sec)�]π2 , π])

−1.

The partial function the 1st part of arccosec from R to R is defined by:
(Def. 3) The 1st part of arccosec = ((the function cosec)�[−π2 , 0[)

−1.

The partial function the 2nd part of arccosec from R to R is defined by:
(Def. 4) The 2nd part of arccosec = ((the function cosec)�]0, π2 ])

−1.

Let r be a real number. The functor arcsec1 r is defined by:

(Def. 5) arcsec1 r = (the 1st part of arcsec)(r).

The functor arcsec2 r is defined as follows:



inverse trigonometric functions . . . 161

(Def. 6) arcsec2 r = (the 2nd part of arcsec)(r).

The functor arccosec1 r is defined as follows:

(Def. 7) arccosec1 r = (the 1st part of arccosec)(r).

The functor arccosec2 r is defined by:

(Def. 8) arccosec2 r = (the 2nd part of arccosec)(r).

Let r be a real number. Then arcsec1 r is a real number. Then arcsec2 r is
a real number. Then arccosec1 r is a real number. Then arccosec2 r is a real
number.
We now state four propositions:

(25) rng (the 1st part of arcsec) = [0, π2 [.

(26) rng (the 2nd part of arcsec) = ]π2 , π].

(27) rng (the 1st part of arccosec) = [−π2 , 0[.
(28) rng (the 2nd part of arccosec) = ]0, π2 ].

One can check the following observations:

∗ the 1st part of arcsec is one-to-one,
∗ the 2nd part of arcsec is one-to-one,
∗ the 1st part of arccosec is one-to-one, and
∗ the 2nd part of arccosec is one-to-one.
Let t1 be a real number. Then sec t1 is a real number. Then cosec t1 is a real

number.
We now state a number of propositions:

(29) sin(π4 ) =
1√
2
and cos(π4 ) =

1√
2
.

(30) sin(−π4 ) = −
1√
2
and cos(−π4 ) =

1√
2
and sin(34 · π) =

1√
2
and cos(34 · π) =

− 1√
2
.

(31) sec 0 = 1 and sec(π4 ) =
√
2 and sec(34 · π) = −

√
2 and secπ = −1.

(32) cosec(−π2 ) = −1 and cosec(−
π
4 ) = −

√
2 and cosec(π4 ) =

√
2 and

cosec(π2 ) = 1.

(33) For every set x such that x ∈ [0, π4 ] holds secx ∈ [1,
√
2].

(34) For every set x such that x ∈ [34 · π, π] holds secx ∈ [−
√
2,−1].

(35) For every set x such that x ∈ [−π2 ,−
π
4 ] holds cosecx ∈ [−

√
2,−1].

(36) For every set x such that x ∈ [π4 ,
π
2 ] holds cosecx ∈ [1,

√
2].

(37) The function sec is continuous on [0, π2 [.

(38) The function sec is continuous on ]π2 , π].

(39) The function cosec is continuous on [−π2 , 0[.
(40) The function cosec is continuous on ]0, π2 ].

(41) rng((the function sec)�[0, π4 ]) = [1,
√
2].

(42) rng((the function sec)�[34 · π, π]) = [−
√
2,−1].
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(43) rng((the function cosec)�[−π2 ,−
π
4 ]) = [−

√
2,−1].

(44) rng((the function cosec)�[π4 ,
π
2 ]) = [1,

√
2].

(45) [1,
√
2] ⊆ dom (the 1st part of arcsec).

(46) [−
√
2,−1] ⊆ dom (the 2nd part of arcsec).

(47) [−
√
2,−1] ⊆ dom (the 1st part of arccosec).

(48) [1,
√
2] ⊆ dom (the 2nd part of arccosec).

One can check the following observations:

∗ (the function sec)�[0, π4 ] is one-to-one,
∗ (the function sec)�[34 · π, π] is one-to-one,
∗ (the function cosec)�[−π2 ,−

π
4 ] is one-to-one, and

∗ (the function cosec)�[π4 ,
π
2 ] is one-to-one.

One can prove the following propositions:

(49) (The 1st part of arcsec)�[1,
√
2] = ((the function sec)�[0, π4 ])

−1.

(50) (The 2nd part of arcsec)�[−
√
2,−1] = ((the function sec)�[34 · π, π])

−1.

(51) (The 1st part of arccosec)�[−
√
2,−1] = ((the function cosec)�[−π2 ,−

π
4 ])
−1.

(52) (The 2nd part of arccosec)�[1,
√
2] = ((the function cosec)�[π4 ,

π
2 ])
−1.

(53) ((The function sec)�[0, π4 ] qua function) ·((the 1st part of arcsec)�[1,
√
2]) =

id[1,
√
2].

(54) ((The function sec)�[34 · π, π] qua function) ·((the 2nd part of
arcsec)�[−

√
2,−1]) = id[−√2,−1].

(55) ((The function cosec)�[−π2 ,−
π
4 ] qua function) ·((the 1st part of

arccosec)�[−
√
2,−1]) = id[−√2,−1].

(56) ((The function cosec)�[π4 ,
π
2 ] qua function) ·((the 2nd part of

arccosec)�[1,
√
2]) = id[1,

√
2].

(57) ((The function sec)�[0, π4 ]) · ((the 1st part of arcsec)�[1,
√
2]) = id[1,

√
2].

(58) ((The function sec)�[34 · π, π]) · ((the 2nd part of arcsec)�[−
√
2,−1]) =

id[−
√
2,−1].

(59) ((The function cosec)�[−π2 ,−
π
4 ])·((the 1st part of arccosec)�[−

√
2,−1]) =

id[−
√
2,−1].

(60) ((The function cosec)�[π4 ,
π
2 ]) · ((the 2nd part of arccosec)�[1,

√
2]) =

id[1,
√
2].

(61) (The 1st part of arcsec qua function) ·((the function sec)�[0, π2 [) =
id[0,π2 [.

(62) (The 2nd part of arcsec qua function) ·((the function sec)�]π2 , π]) =
id]π2 ,π].

(63) (The 1st part of arccosec qua function) ·((the function cosec)�[−π2 , 0[) =
id[−π2 ,0[.
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(64) (The 2nd part of arccosec qua function) ·((the function cosec)�]0, π2 ]) =
id]0,π2 ].

(65) (The 1st part of arcsec) ·((the function sec)�[0, π2 [) = id[0,π2 [.
(66) (The 2nd part of arcsec) ·((the function sec)�]π2 , π]) = id]π2 ,π].
(67) (The 1st part of arccosec) ·((the function cosec)�[−π2 , 0[) = id[−π2 ,0[.
(68) (The 2nd part of arccosec) ·((the function cosec)�]0, π2 ]) = id]0,π2 ].
(69) If 0 ≤ r < π2 , then arcsec1 sec r = r.
(70) If π2 < r ≤ π, then arcsec2 sec r = r.
(71) If −π2 ≤ r < 0, then arccosec1 cosec r = r.
(72) If 0 < r ≤ π2 , then arccosec2 cosec r = r.
(73) arcsec1 1 = 0 and arcsec1

√
2 = π4 .

(74) arcsec2(−
√
2) = 34 · π and arcsec2(−1) = π.

(75) arccosec1(−1) = −π2 and arccosec1(−
√
2) = −π4 .

(76) arccosec2
√
2 = π4 and arccosec2 1 =

π
2 .

(77) The 1st part of arcsec is increasing on (the function sec) ◦[0, π2 [.

(78) The 2nd part of arcsec is increasing on (the function sec) ◦]π2 , π].

(79) The 1st part of arccosec is decreasing on (the function cosec) ◦[−π2 , 0[.
(80) The 2nd part of arccosec is decreasing on (the function cosec) ◦]0, π2 ].

(81) The 1st part of arcsec is increasing on [1,
√
2].

(82) The 2nd part of arcsec is increasing on [−
√
2,−1].

(83) The 1st part of arccosec is decreasing on [−
√
2,−1].

(84) The 2nd part of arccosec is decreasing on [1,
√
2].

(85) For every set x such that x ∈ [1,
√
2] holds arcsec1 x ∈ [0, π4 ].

(86) For every set x such that x ∈ [−
√
2,−1] holds arcsec2 x ∈ [34 · π, π].

(87) For every set x such that x ∈ [−
√
2,−1] holds arccosec1 x ∈ [−π2 ,−

π
4 ].

(88) For every set x such that x ∈ [1,
√
2] holds arccosec2 x ∈ [π4 ,

π
2 ].

(89) If 1 ≤ r ≤
√
2, then sec arcsec1 r = r.

(90) If −
√
2 ≤ r ≤ −1, then sec arcsec2 r = r.

(91) If −
√
2 ≤ r ≤ −1, then cosec arccosec1 r = r.

(92) If 1 ≤ r ≤
√
2, then cosec arccosec2 r = r.

(93) The 1st part of arcsec is continuous on [1,
√
2].

(94) The 2nd part of arcsec is continuous on [−
√
2,−1].

(95) The 1st part of arccosec is continuous on [−
√
2,−1].

(96) The 2nd part of arccosec is continuous on [1,
√
2].

(97) rng((the 1st part of arcsec)�[1,
√
2]) = [0, π4 ].

(98) rng((the 2nd part of arcsec)�[−
√
2,−1]) = [34 · π, π].

(99) rng((the 1st part of arccosec)�[−
√
2,−1]) = [−π2 ,−

π
4 ].
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(100) rng((the 2nd part of arccosec)�[1,
√
2]) = [π4 ,

π
2 ].

(101) If 1 ≤ r ≤
√
2 and arcsec1 r = 0, then r = 1 and if 1 ≤ r ≤

√
2 and

arcsec1 r = π4 , then r =
√
2.

(102) If −
√
2 ≤ r ≤ −1 and arcsec2 r = 34 · π, then r = −

√
2 and if −

√
2 ≤

r ≤ −1 and arcsec2 r = π, then r = −1.
(103) If −

√
2 ≤ r ≤ −1 and arccosec1 r = −π2 , then r = −1 and if −

√
2 ≤ r ≤

−1 and arccosec1 r = −π4 , then r = −
√
2.

(104) If 1 ≤ r ≤
√
2 and arccosec2 r = π4 , then r =

√
2 and if 1 ≤ r ≤

√
2 and

arccosec2 r = π2 , then r = 1.

(105) If 1 ≤ r ≤
√
2, then 0 ≤ arcsec1 r ≤ π4 .

(106) If −
√
2 ≤ r ≤ −1, then 34 · π ≤ arcsec2 r ≤ π.

(107) If −
√
2 ≤ r ≤ −1, then −π2 ≤ arccosec1 r ≤ −

π
4 .

(108) If 1 ≤ r ≤
√
2, then π4 ≤ arccosec2 r ≤

π
2 .

(109) If 1 < r <
√
2, then 0 < arcsec1 r < π4 .

(110) If −
√
2 < r < −1, then 34 · π < arcsec2 r < π.

(111) If −
√
2 < r < −1, then −π2 < arccosec1 r < −

π
4 .

(112) If 1 < r <
√
2, then π4 < arccosec2 r <

π
2 .

(113) If 1 ≤ r ≤
√
2, then sin arcsec1 r =

√
r2−1
r and cos arcsec1 r = 1r .

(114) If −
√
2 ≤ r ≤ −1, then sin arcsec2 r = −

√
r2−1
r and cos arcsec2 r = 1r .

(115) If −
√
2 ≤ r ≤ −1, then sin arccosec1 r = 1

r and cos arccosec1 r =

−
√
r2−1
r .

(116) If 1 ≤ r ≤
√
2, then sin arccosec2 r = 1r and cos arccosec2 r =

√
r2−1
r .

(117) If 1 < r <
√
2, then cosec arcsec1 r = r√

r2−1 .

(118) If −
√
2 < r < −1, then cosec arcsec2 r = − r√

r2−1 .

(119) If −
√
2 < r < −1, then sec arccosec1 r = − r√

r2−1 .

(120) If 1 < r <
√
2, then sec arccosec2 r = r√

r2−1 .

(121) The 1st part of arcsec is differentiable on (the function sec) ◦]0, π2 [.

(122) The 2nd part of arcsec is differentiable on (the function sec) ◦]π2 , π[.

(123) The 1st part of arccosec is differentiable on (the function cosec) ◦]−π2 , 0[.
(124) The 2nd part of arccosec is differentiable on (the function cosec) ◦]0, π2 [.

(125) (The function sec) ◦]0, π2 [ is open.

(126) (The function sec) ◦]π2 , π[ is open.

(127) (The function cosec) ◦]−π2 , 0[ is open.
(128) (The function cosec) ◦]0, π2 [ is open.

(129) The 1st part of arcsec is continuous on (the function sec) ◦]0, π2 [.

(130) The 2nd part of arcsec is continuous on (the function sec) ◦]π2 , π[.
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(131) The 1st part of arccosec is continuous on (the function cosec) ◦]−π2 , 0[.
(132) The 2nd part of arccosec is continuous on (the function cosec) ◦]0, π2 [.
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Summary. In this article we prove the Monotone Convergence Theorem
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1. Preliminaries

For simplicity, we adopt the following rules: X is a non empty set, S is a
σ-field of subsets of X, M is a σ-measure on S, E is an element of S, F , G are
sequences of partial functions from X into R, I is a sequence of extended reals,
f , g are partial functions from X to R, s1, s2, s3 are sequences of extended reals,
p is an extended real number, n, m are natural numbers, x is an element of X,
and z, D are sets.
Next we state a number of propositions:

(1) If f is without +∞ and g is without +∞, then dom(f + g) = dom f ∩
dom g.

(2) If f is without +∞ and g is without −∞, then dom(f − g) = dom f ∩
dom g.
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(3) If f is without −∞ and g is without −∞, then f + g is without −∞.
(4) If f is without +∞ and g is without +∞, then f + g is without +∞.
(5) If f is without −∞ and g is without +∞, then f − g is without −∞.
(6) If f is without +∞ and g is without −∞, then f − g is without +∞.
(7)(i) If s1 is convergent to finite number, then there exists a real number
g such that lim s1 = g and for every real number p such that 0 < p there
exists a natural number n such that for every natural number m such that
n ≤ m holds |s1(m)− lim s1| < p,

(ii) if s1 is convergent to +∞, then lim s1 = +∞, and
(iii) if s1 is convergent to −∞, then lim s1 = −∞.
(8) If s1 is non-negative, then s1 is not convergent to −∞.
(9) If s1 is convergent and for every natural number k holds s1(k) ≤ p, then
lim s1 ≤ p.

(10) If s1 is convergent and for every natural number k holds p ≤ s1(k), then
p ≤ lim s1.

(11) Suppose that
(i) s2 is convergent,
(ii) s3 is convergent,
(iii) s2 is non-negative,
(iv) s3 is non-negative, and
(v) for every natural number k holds s1(k) = s2(k) + s3(k).
Then s1 is non-negative and convergent and lim s1 = lim s2 + lim s3.

(12) Suppose for every natural number n holds G(n) = F (n)�D and x ∈ D.
Then
(i) if F#x is convergent to +∞, then G#x is convergent to +∞,
(ii) if F#x is convergent to −∞, then G#x is convergent to −∞,
(iii) if F#x is convergent to finite number, then G#x is convergent to finite
number, and

(iv) if F#x is convergent, then G#x is convergent.

(13) If E = dom f and f is measurable on E and f is non-negative and
M(E ∩ EQ-dom(f,+∞)) 6= 0, then

∫
f dM = +∞.

(14)
∫
χE,X dM =M(E) and

∫
χE,X�E dM =M(E).

(15) Suppose that
(i) E ⊆ dom f,
(ii) E ⊆ dom g,
(iii) f is measurable on E,
(iv) g is measurable on E,
(v) f is non-negative, and
(vi) for every element x of X such that x ∈ E holds f(x) ≤ g(x).
Then

∫
f�E dM ≤

∫
g�E dM.
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2. Selected Properties of Extended Real Sequence

Let f be an extended real-valued function and let x be a set. Then f(x) is
an element of R.
Let s be an extended real-valued function. The functor (

∑κ
α=0 s(α))κ∈N

yields a sequence of extended reals and is defined by:

(Def. 1) (
∑κ
α=0 s(α))κ∈N(0) = s(0) and for every natural number n holds

(
∑κ
α=0 s(α))κ∈N(n+ 1) = (

∑κ
α=0 s(α))κ∈N(n) + s(n+ 1).

Let s be an extended real-valued function. We say that s is summable if and
only if:

(Def. 2) (
∑κ
α=0 s(α))κ∈N is convergent.

Let s be an extended real-valued function. The functor
∑
s yielding an

extended real number is defined as follows:

(Def. 3)
∑
s = lim((

∑κ
α=0 s(α))κ∈N).

Next we state several propositions:

(16) If s1 is non-negative, then (
∑κ
α=0(s1)(α))κ∈N is non-negative and

(
∑κ
α=0(s1)(α))κ∈N is non-decreasing.

(17) If for every natural number n holds 0 < s1(n), then for every natural
number m holds 0 < (

∑κ
α=0(s1)(α))κ∈N(m).

(18) If F has the same dom and for every natural number n holds G(n) =
F (n)�D, then G has the same dom.

(19) Suppose that

(i) D ⊆ domF (0),
(ii) for every natural number n holds G(n) = F (n)�D, and

(iii) for every element x of X such that x ∈ D holds F#x is convergent.
Then limF �D = limG.

(20) Suppose F has the same dom and E ⊆ domF (0) and for every natural
number m holds F (m) is measurable on E and G(m) = F (m)�E. Then
G(n) is measurable on E.

(21) Suppose that

(i) E ⊆ domF (0),
(ii) G has the same dom,

(iii) for every element x of X such that x ∈ E holds F#x is summable, and
(iv) for every natural number n holds G(n) = F (n)�E.

Let x be an element of X. If x ∈ E, then G#x is summable.
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3. Partial Sums of Functional Sequence and their Properties

Let X be a non empty set and let F be a sequence of partial functions from
X into R. The functor (

∑κ
α=0 F (α))κ∈N yields a sequence of partial functions

from X into R and is defined as follows:
(Def. 4) (

∑κ
α=0 F (α))κ∈N(0) = F (0) and for every natural number n holds

(
∑κ
α=0 F (α))κ∈N(n+ 1) = (

∑κ
α=0 F (α))κ∈N(n) + F (n+ 1).

Let X be a set and let F be a sequence of partial functions from X into R.
We say that F is additive if and only if:

(Def. 5) For all natural numbers n, m such that n 6= m and for every set x such
that x ∈ domF (n) ∩ domF (m) holds F (n)(x) 6= +∞ or F (m)(x) 6= −∞.
Next we state a number of propositions:

(22) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and m ≤ n, then z ∈

dom(
∑κ
α=0 F (α))κ∈N(m) and z ∈ domF (m).

(23) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and (

∑κ
α=0 F (α))κ∈N(n)(z) = +∞, then

there exists a natural number m such that m ≤ n and F (m)(z) = +∞.
(24) If F is additive and z ∈ dom(

∑κ
α=0 F (α))κ∈N(n) and

(
∑κ
α=0 F (α))κ∈N(n)(z) = +∞ and m ≤ n, then F (m)(z) 6= −∞.

(25) If z ∈ dom(
∑κ
α=0 F (α))κ∈N(n) and (

∑κ
α=0 F (α))κ∈N(n)(z) = −∞, then

there exists a natural number m such that m ≤ n and F (m)(z) = −∞.
(26) If F is additive and z ∈ dom(

∑κ
α=0 F (α))κ∈N(n) and

(
∑κ
α=0 F (α))κ∈N(n)(z) = −∞ and m ≤ n, then F (m)(z) 6= +∞.

(27) If F is additive, then (
∑κ
α=0 F (α))κ∈N(n)−1({−∞}) ∩ F (n +

1)−1({+∞}) = ∅ and (
∑κ
α=0 F (α))κ∈N(n)−1({+∞})∩F (n+1)−1({−∞}) =

∅.
(28) If F is additive, then dom(

∑κ
α=0 F (α))κ∈N(n) =

⋂
{domF (k); k ranges

over elements of N: k ≤ n}.
(29) If F is additive and has the same dom, then dom(

∑κ
α=0 F (α))κ∈N(n) =

domF (0).

(30) If for every natural number n holds F (n) is non-negative, then F is
additive.

(31) If F is additive and for every n holds G(n) = F (n)�D, then G is additive.

(32) If F is additive and has the same dom and D ⊆ domF (0) and x ∈ D,
then (

∑κ
α=0(F#x)(α))κ∈N(n) = ((

∑κ
α=0 F (α))κ∈N#x)(n).

(33) Suppose F is additive and has the same dom and D ⊆ domF (0) and
x ∈ D. Then
(i) (

∑κ
α=0(F#x)(α))κ∈N is convergent to finite number iff

(
∑κ
α=0 F (α))κ∈N#x is convergent to finite number,

(ii) (
∑κ
α=0(F#x)(α))κ∈N is convergent to +∞ iff (

∑κ
α=0 F (α))κ∈N#x is

convergent to +∞,
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(iii) (
∑κ
α=0(F#x)(α))κ∈N is convergent to −∞ iff (

∑κ
α=0 F (α))κ∈N#x is

convergent to −∞, and
(iv) (

∑κ
α=0(F#x)(α))κ∈N is convergent iff (

∑κ
α=0 F (α))κ∈N#x is conver-

gent.

(34) If F is additive and has the same dom and dom f ⊆ domF (0) and
x ∈ dom f and F#x is summable and f(x) =

∑
F#x, then f(x) =

lim((
∑κ
α=0 F (α))κ∈N#x).

(35) Suppose that for every natural number m holds F (m) is simple function
in S. Then F is additive and (

∑κ
α=0 F (α))κ∈N(n) is simple function in S.

(36) If for every natural number m holds F (m) is non-negative, then
(
∑κ
α=0 F (α))κ∈N(n) is non-negative.

(37) If F has the same dom and x ∈ domF (0) and for every natural number
k holds F (k) is non-negative and n ≤ m, then (

∑κ
α=0 F (α))κ∈N(n)(x) ≤

(
∑κ
α=0 F (α))κ∈N(m)(x).

(38) Suppose F has the same dom and x ∈ domF (0) and for every natural
number m holds F (m) is non-negative. Then (

∑κ
α=0 F (α))κ∈N#x is non-

decreasing and (
∑κ
α=0 F (α))κ∈N#x is convergent.

(39) If for every natural number m holds F (m) is without −∞, then
(
∑κ
α=0 F (α))κ∈N(n) is without −∞.

(40) If for every natural number m holds F (m) is without +∞, then
(
∑κ
α=0 F (α))κ∈N(n) is without +∞.

(41) Suppose that for every natural number n holds F (n) is measurable on
E and F (n) is without −∞. Then (

∑κ
α=0 F (α))κ∈N(m) is measurable on

E.

(42) Suppose that
(i) F is additive and has the same dom,
(ii) G is additive and has the same dom,
(iii) x ∈ domF (0) ∩ domG(0), and
(iv) for every natural number k and for every element y of X such that
y ∈ domF (0) ∩ domG(0) holds F (k)(y) ≤ G(k)(y).
Then (

∑κ
α=0 F (α))κ∈N(n)(x) ≤ (

∑κ
α=0G(α))κ∈N(n)(x).

(43) Let X be a non empty set and F be a sequence of partial functions from
X into R. If F is additive and has the same dom, then (

∑κ
α=0 F (α))κ∈N

has the same dom.

(44) Suppose that
(i) domF (0) = E,
(ii) F is additive and has the same dom,
(iii) for every natural number n holds (

∑κ
α=0 F (α))κ∈N(n) is measurable on

E, and
(iv) for every element x of X such that x ∈ E holds F#x is summable.
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Then lim((
∑κ
α=0 F (α))κ∈N) is measurable on E.

(45) Suppose that for every natural number n holds F (n) is integrable onM .
Let m be a natural number. Then (

∑κ
α=0 F (α))κ∈N(m) is integrable on

M .

(46) Suppose that
(i) E = domF (0),
(ii) F is additive and has the same dom, and
(iii) for every natural number n holds F (n) is measurable on E and F (n)
is non-negative and I(n) =

∫
F (n) dM.

Then
∫
(
∑κ
α=0 F (α))κ∈N(m) dM = (

∑κ
α=0 I(α))κ∈N(m).

4. Sequence of Measurable Functions

Next we state two propositions:

(47) Suppose that
(i) E ⊆ dom f,
(ii) f is non-negative,
(iii) f is measurable on E,
(iv) F is additive,
(v) for every n holds F (n) is simple function in S and F (n) is non-negative
and E ⊆ domF (n), and

(vi) for every x such that x ∈ E holds F#x is summable and f(x) =∑
F#x.
Then there exists a sequence I of extended reals such that for every n
holds I(n) =

∫
F (n)�E dM and I is summable and

∫
f�E dM =

∑
I.

(48) Suppose E ⊆ dom f and f is non-negative and f is measurable on E.
Then there exists a sequence g of partial functions from X into R such
that
(i) g is additive,
(ii) for every natural number n holds g(n) is simple function in S and g(n)
is non-negative and g(n) is measurable on E,

(iii) for every element x of X such that x ∈ E holds g#x is summable and
f(x) =

∑
g#x, and

(iv) there exists a sequence I of extended reals such that for every natural
number n holds I(n) =

∫
g(n)�E dM and I is summable and

∫
f�E dM =∑

I.

Let X be a non empty set. Observe that there exists a sequence of partial
functions from X into R which is additive and has the same dom.
Let C, D, X be non empty sets, let F be a function from C×D into X→̇R,

let c be an element of C, and let d be an element of D. Then F (c, d) is a partial
function from X to R.
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Let C, D, X be non empty sets, let F be a function from C × D into X,
and let c be an element of C. The functor curry(F, c) yields a function from D
into X and is defined as follows:

(Def. 6) For every element d of D holds (curry(F, c))(d) = F (c, d).

Let C, D, X be non empty sets, let F be a function from C × D into X,
and let d be an element of D. The functor curry′(F, d) yields a function from C
into X and is defined as follows:

(Def. 7) For every element c of C holds (curry′(F, d))(c) = F (c, d).

Let X, Y be sets, let F be a function from N×N into X→̇Y, and let n be a
natural number. The functor curry(F, n) yielding a sequence of partial functions
from X into Y is defined by:

(Def. 8) For every natural number m holds (curry(F, n))(m) = F (n, m).

The functor curry′(F, n) yields a sequence of partial functions from X into Y
and is defined by:

(Def. 9) For every natural number m holds (curry′(F, n))(m) = F (m, n).

Let X be a non empty set, let F be a function from N into (X→̇R)N, and
let n be a natural number. Then F (n) is a sequence of partial functions from X
into R.
The following four propositions are true:

(49) Suppose E = domF (0) and F has the same dom and for every natural
number n holds F (n) is non-negative and F (n) is measurable on E. Then
there exists a function F1 from N into (X→̇R)N such that for every natural
number n holds
(i) for every natural number m holds F1(n)(m) is simple function in S and
domF1(n)(m) = domF (n),

(ii) for every natural number m holds F1(n)(m) is non-negative,
(iii) for all natural numbers j, k such that j ≤ k and for every element x of
X such that x ∈ domF (n) holds F1(n)(j)(x) ≤ F1(n)(k)(x), and

(iv) for every element x of X such that x ∈ domF (n) holds F1(n)#x is
convergent and lim(F1(n)#x) = F (n)(x).

(50) Suppose that
(i) E = domF (0),
(ii) F is additive and has the same dom, and
(iii) for every natural number n holds F (n) is measurable on E and F (n)
is non-negative.
Then there exists a sequence I of extended reals such that for every natural
number n holds
I(n) =

∫
F (n) dM and

∫
(
∑κ
α=0 F (α))κ∈N(n) dM = (

∑κ
α=0 I(α))κ∈N(n).

(51) Suppose that
(i) E ⊆ domF (0),
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(ii) F is additive and has the same dom,
(iii) for every natural number n holds F (n) is non-negative and F (n) is
measurable on E, and

(iv) for every element x of X such that x ∈ E holds F#x is summable.
Then there exists a sequence I of extended reals such that for every
natural number n holds I(n) =

∫
F (n)�E dM and I is summable and∫

lim((
∑κ
α=0 F (α))κ∈N)�E dM =

∑
I.

(52) Suppose that
(i) E = domF (0),
(ii) F (0) is non-negative,
(iii) F has the same dom,
(iv) for every natural number n holds F (n) is measurable on E,
(v) for all natural numbers n, m such that n ≤ m and for every element x
of X such that x ∈ E holds F (n)(x) ≤ F (m)(x), and

(vi) for every element x of X such that x ∈ E holds F#x is convergent.
Then there exists a sequence I of extended reals such that for every natural
number n holds I(n) =

∫
F (n) dM and I is convergent and

∫
limF dM =

lim I.
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Summary. This paper is a continuation of [5] and concerns if-while alge-
bras over integers. In these algebras the only elementary instructions are assign-
ment instructions. The instruction assigns to a (program) variable a value which
is calculated for the current state according to some arithmetic expression. The
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A variable is a function from the states into the locations and an expression
is a function from the states into integers. Additional conditions (computabili-
ty) limit the set of variables and expressions and, simultaneously, allow to write
algorithms in a natural way (and to prove their correctness).
As examples the proofs of full correctness of two Euclid algorithms (with

modulo operation and subtraction) and algorithm of exponentiation by squaring
are given.
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(1) Let x, y, z, a, b, c be sets. Suppose a 6= b 6= c 6= a. Then there exists a
function f such that f(a) = x and f(b) = y and f(c) = z.

Let F be a non empty functional set, let x be a set, and let f be a set. The
functor F �x6=f yields a subset of F and is defined by:

(Def. 1) F �x6=f = {g ∈ F : g(x) 6= f}.
One can prove the following proposition

(2) Let F be a non empty functional set, x, y be sets, and g be an element
of F . Then g ∈ F �x6=y if and only if g(x) 6= y.
Let X be a set, let Y , Z be sets, and let f be a function from ZX × Y into

Z.

(Def. 2) An element of X is called a variable in f .

Let f be a real-yielding function and let x be a real number. We introduce
f · x as a synonym of x f.
Let t1, t2 be integer-yielding functions. The functors: t1 ÷ t2, t1 mod t2,

leq(t1, t2), gt(t1, t2), and eq(t1, t2) yield integer-yielding functions and are defi-
ned as follows:

(Def. 3) dom(t1÷t2) = dom t1∩dom t2 and for every set s such that s ∈ dom(t1÷
t2) holds (t1 ÷ t2)(s) = t1(s)÷ t2(s).

(Def. 4) dom(t1 mod t2) = dom t1 ∩ dom t2 and for every set s such that s ∈
dom(t1 mod t2) holds (t1 mod t2)(s) = t1(s) mod t2(s).

(Def. 5) dom leq(t1, t2) = dom t1 ∩ dom t2 and for every set s such that s ∈
dom leq(t1, t2) holds (leq(t1, t2))(s) = (t1(s) > t2(s)→ 0, 1).

(Def. 6) domgt(t1, t2) = dom t1 ∩ dom t2 and for every set s such that s ∈
domgt(t1, t2) holds (gt(t1, t2))(s) = (t1(s) > t2(s)→ 1, 0).

(Def. 7) dom eq(t1, t2) = dom t1 ∩ dom t2 and for every set s such that s ∈
domeq(t1, t2) holds (eq(t1, t2))(s) = (t1(s) = t2(s)→ 1, 0).
Let X be a non empty set, let f be a function from X into Z, and let x be

an integer number. Then f + x, f − x, and f · x are functions from X into Z
and they can be characterized by the conditions:

(Def. 8) For every element s of X holds (f + x)(s) = f(s) + x.

(Def. 9) For every element s of X holds (f − x)(s) = f(s)− x.
(Def. 10) For every element s of X holds (f · x)(s) = f(s) · x.

Let X be a set and let f , g be functions from X into Z. Then f÷g, f mod g,
leq(f, g), gt(f, g), and eq(f, g) are functions from X into Z.
Let X be a non empty set and let t1, t2 be functions from X into Z. Then

t1 − t2 and t1 + t2 are functions from X into Z and they can be characterized
by the conditions:

(Def. 11) For every element s of X holds (t1 − t2)(s) = t1(s)− t2(s).
(Def. 12) For every element s of X holds (t1 + t2)(s) = t1(s) + t2(s).
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Let A be a non empty set and let B be an infinite set. Note that BA is
infinite.
Let N be a set, let v be a function, and let f be a function. The functor

v ◦N f yields a function and is defined by the conditions (Def. 13).
(Def. 13)(i) There exists a set Y such that for every set y holds y ∈ Y iff there

exists a function h such that h ∈ dom v and y ∈ rng h and for every set a
holds a ∈ dom(v ◦N f) iff a ∈ Y N and there exists a function g such that
a = g and g · f ∈ dom v, and

(ii) for every function g such that g ∈ dom(v ◦N f) holds (v ◦N f)(g) =
v(g · f).
Let X, Y , Z, N be non empty sets, let v be an element of ZY

X
, and let f

be a function from X into N . Then v ◦N f is an element of ZY
N
.

The following three propositions are true:

(3) For all functions f1, f2, g such that rng g ⊆ dom f2 holds (f1+·f2) · g =
f2 · g.

(4) Let X, N , I be non empty sets, s be a function from X into I, and c be
a function from X into N . Suppose c is one-to-one. Let n be an element
of I. Then (N 7−→ n)+·s · c−1 is a function from N into I.

(5) LetN ,X, I be non empty sets and v1, v2 be functions. Suppose dom v1 =
dom v2 = IX . Let f be a function from X into N . If f is one-to-one and
v1 ◦N f = v2 ◦N f, then v1 = v2.
Let X be a set. Observe that there exists a function from X into X which

is one-to-one and onto and there exists a function from X into X which is
one-to-one and onto.
Let X be a set. An enumeration of X is an one-to-one onto function from X

into X . A denumeration of X is an one-to-one onto function from X into X.
One can prove the following propositions:

(6) Let X be a set and f be a function. Then f is an enumeration of X if
and only if dom f = X and rng f = X and f is one-to-one.

(7) Let X be a set and f be a function. Then f is a denumeration of X if
and only if dom f = X and rng f = X and f is one-to-one.

(8) Let X be a non empty set, x, y be elements of X, and f be an enume-
ration of X. Then f +· (x, f(y)) +· (y, f(x)) is an enumeration of X.

(9) For every non empty set X and for every element x of X there exists an
enumeration f of X such that f(x) = 0.

(10) For every non empty set X and for every denumeration f of X holds
f(0) ∈ X.

(11) For every countable set X and for every enumeration f of X holds
rng f ⊆ N.
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LetX be a set and let f be an enumeration ofX. Then f−1 is a denumeration
of X.
LetX be a set and let f be a denumeration ofX. Then f−1 is an enumeration

of X.
We now state two propositions:

(12) For all natural numbers n, m holds 0n+m = 0n · 0m.
(13) For every real number x and for all natural numbers n, m holds (xn)m =
xn·m.

2. If-while Algebra over Integers

Let X be a non empty set. A Z-variable of X is a function from ZX into X.
A Z-expression of X is a function from ZX into Z. A Z-array of X is a function
from Z into X.
In the sequel A is a pre-if-while algebra.
Let us consider A, let I be an element of A, let X be a non empty set, let

T be a subset of ZX , and let f be an execution function of A over ZX and T .
We say that I is an assignment w.r.t. A, X, and f if and only if the conditions
(Def. 14) are satisfied.

(Def. 14)(i) I ∈ ElementaryInstructionsA, and
(ii) there exists a Z-variable v of X and there exists a Z-expression t of X
such that for every element s of ZX holds f(s, I) = s+· (v(s), t(s)).
Let us consider A, let X be a non empty set, let T be a subset of ZX , let f

be an execution function of A over ZX and T , let v be a Z-variable of X, and
let t be a Z-expression of X. We say that v and t form an assignment w.r.t. f
if and only if:

(Def. 15) There exists an element I of A such that I ∈ ElementaryInstructionsA
and for every element s of ZX holds f(s, I) = s+· (v(s), t(s)).
Let us consider A, let X be a non empty set, let T be a subset of ZX , and

let f be an execution function of A over ZX and T . Let us assume that there
exists an element of A which is an assignment w.r.t. A, X, and f . A Z-variable
of X is said to be a Z-variable of A w.r.t. f if:

(Def. 16) There exists a Z-expression t of X such that it and t form an assignment
w.r.t. f .

Let us consider A, let X be a non empty set, let T be a subset of ZX , and let
f be an execution function of A over ZX and T . Let us assume that there exists
an element of A which is an assignment w.r.t. A, X, and f . A Z-expression of
X is said to be a Z-expression of A w.r.t. f if:

(Def. 17) There exists a Z-variable v of X such that v and it form an assignment
w.r.t. f .
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Let X, Y be non empty sets, let f be an element of Y X , and let x be an
element of X. Then f(x) is an element of Y .
Let X be a non empty set and let x be an element of X. The functor ẋ

yielding a Z-expression of X is defined as follows:
(Def. 18) For every element s of ZX holds (ẋ)(s) = s(x).

Let X be a non empty set and let v be a Z-variable of X. The functor v̇
yielding a Z-expression of X is defined by:

(Def. 19) For every element s of ZX holds (v̇)(s) = s(v(s)).
Let X be a non empty set and let x be an element of X. The functor x̂ yields

a Z-variable of X and is defined by:
(Def. 20) x̂ = ZX 7−→ x.

The following proposition is true

(14) For every non empty set X and for every element x of X holds ẋ = ˙̂x.

Let X be a non empty set and let i be an integer number. The functor iX
yields a Z-expression of X and is defined by:

(Def. 21) iX = ZX 7−→ i.
One can prove the following proposition

(15) For every non empty set X and for every Z-expression t of X holds
t+ 0X = t and t 1X = t.

Let us consider A, let X be a non empty set, let T be a subset of ZX , and
let f be an execution function of A over ZX and T . We say that f is Euclidean
if and only if the conditions (Def. 22) are satisfied.

(Def. 22) For every Z-variable v of A w.r.t. f and for every Z-expression t of A
w.r.t. f holds v and t form an assignment w.r.t. f and for every integer
number i holds iX is a Z-expression of A w.r.t. f and for every Z-variable
v of A w.r.t. f holds v̇ is a Z-expression of A w.r.t. f and for every element
x of X holds x̂ is a Z-variable of A w.r.t. f and there exists a Z-array a
of X such that a�X is one-to-one and for every Z-expression t of A w.r.t.
f holds a · t is a Z-variable of A w.r.t. f and for every Z-expression t of A
w.r.t. f holds −t is a Z-expression of A w.r.t. f and for all Z-expressions
t1, t2 of A w.r.t. f holds t1 t2 is a Z-expression of A w.r.t. f and t1 + t2 is
a Z-expression of A w.r.t. f and t1÷ t2 is a Z-expression of A w.r.t. f and
t1 mod t2 is a Z-expression of A w.r.t. f and leq(t1, t2) is a Z-expression
of A w.r.t. f and gt(t1, t2) is a Z-expression of A w.r.t. f .
Let us consider A. We say that A is Euclidean if and only if:

(Def. 23) For every non empty countable set X and for every subset T of ZX holds
there exists an execution function of A over ZX and T which is Euclidean.
The infinite missing N set Z-ElemIns is defined by:

(Def. 24) Z-ElemIns = NZN × ZZN
.
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An execution function of F(S,Z-ElemIns) over ZN and ZN�06=0 is said to be
a Z-execution if it satisfies the condition (Def. 25).

(Def. 25) Let s be an element of ZN, v be an element of NZN
, and e be an element

of ZZN
. Then it(s, the root tree of 〈〈v, e〉〉) = s+· (v(s), e(s)).

Let X be a non empty set. The functor Z-ElemInsX yielding an infinite
missing N set is defined as follows:

(Def. 26) Z-ElemInsX = XZX × ZZX .

Let X be a non empty set and let x be an element of X. An execution
function of F(S,Z-ElemInsX) over ZX and ZX�x6=0 is said to be a Z-execution
with x if it satisfies the condition (Def. 27).

(Def. 27) Let s be an element of ZX , v be an element of XZX , and e be an element
of ZZX . Then it(s, the root tree of 〈〈v, e〉〉) = s+· (v(s), e(s)).
Let X be a non empty set, let T be a subset of ZX , and let c be an

enumeration of X. Let us assume that rng c ⊆ N. An execution function of
F(S,Z-ElemIns) over ZX and T is said to be a Z-execution with c over T if it
satisfies the condition (Def. 28).

(Def. 28) Let s be an element of ZX , v be an element of XZX , and e be an element
of ZZX . Then it(s, the root tree of 〈〈c · v ◦N c, e ◦N c〉〉) = s+· (v(s), e(s)).
We now state three propositions:

(16) Let f be a Z-execution, v be a Z-variable of N, and t be a Z-expression
of N. Then v and t form an assignment w.r.t. f .

(17) For every Z-execution f holds every Z-variable of N is a Z-variable of
F(S,Z-ElemIns) w.r.t. f .

(18) For every Z-execution f holds every Z-expression of N is a Z-expression
of F(S,Z-ElemIns) w.r.t. f .
Let us mention that every Z-execution is Euclidean.
One can prove the following three propositions:

(19) Let X be a non empty countable set, T be a subset of ZX , c be an
enumeration of X, f be a Z-execution with c over T , v be a Z-variable of
X, and t be a Z-expression of X. Then v and t form an assignment w.r.t.
f .

(20) Let X be a non empty countable set, T be a subset of ZX , c be an
enumeration of X, and f be a Z-execution with c over T . Then every
Z-variable of X is a Z-variable of F(S,Z-ElemIns) w.r.t. f .

(21) Let X be a non empty countable set, T be a subset of ZX , c be an
enumeration of X, and f be a Z-execution with c over T . Then every
Z-expression of X is a Z-expression of F(S,Z-ElemIns) w.r.t. f .
Let X be a countable non empty set, let T be a subset of ZX , and let c be an

enumeration of X. Observe that every Z-execution with c over T is Euclidean.
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Let us observe that F(S,Z-ElemIns) is Euclidean.
One can check that there exists a pre-if-while algebra which is Euclidean

and non degenerated.
Let A be an Euclidean pre-if-while algebra, let X be a non empty countable

set, and let T be a subset of ZX . Observe that there exists an execution function
of A over ZX and T which is Euclidean.
In the sequel A is an Euclidean pre-if-while algebra, X is a non empty

countable set, T is a subset of ZX , and f is an Euclidean execution function of
A over ZX and T .
Let us consider A, X, T , f and let t be a Z-expression of A w.r.t. f . Then

−t is a Z-expression of A w.r.t. f .
Let us consider A, X, T , f , let t be a Z-expression of A w.r.t. f , and let i

be an integer number. Then t+ i, t− i, and t · i are Z-expressions of A w.r.t. f .
Let us consider A, X, T , f and let t1, t2 be Z-expressions of A w.r.t. f .

Then t1− t2, t1+ t2, and t1 t2 are Z-expressions of A w.r.t. f . Moreover, t1÷ t2,
t1 mod t2, leq(t1, t2), and gt(t1, t2) are also Z-expressions of A w.r.t. f and they
can be characterized by the conditions:

(Def. 29) For every element s of ZX holds (t1 ÷ t2)(s) = t1(s)÷ t2(s).
(Def. 30) For every element s of ZX holds (t1 mod t2)(s) = t1(s) mod t2(s).
(Def. 31) For every element s of ZX holds (leq(t1, t2))(s) = (t1(s) > t2(s)→ 0, 1).
(Def. 32) For every element s of ZX holds (gt(t1, t2))(s) = (t1(s) > t2(s)→ 1, 0).

Let us consider A, X, T , f and let t1, t2 be Z-expressions of A w.r.t. f .
Then eq(t1, t2) is a Z-expression of A w.r.t. f and it can be characterized by the
condition:

(Def. 33) For every element s of ZX holds (eq(t1, t2))(s) = (t1(s) = t2(s)→ 1, 0).
Let us consider A, X, T , f and let v be a Z-variable of A w.r.t. f . The

functor v̇ yields a Z-expression of A w.r.t. f and is defined by:
(Def. 34) v̇ = ẋ where x = v qua Z-variable of X.

Let us consider A, X, T , f and let x be an element of X. The functor x̂A,f
yields a Z-variable of A w.r.t. f and is defined as follows:

(Def. 35) x̂A,f = x̂.

Let us consider A, X, T , f and let x be a variable in f . We introduce x̂ as
a synonym of x̂A,f .
Let us consider A, X, T , f and let x be a variable in f . The functor ẋ

yielding a Z-expression of A w.r.t. f is defined as follows:
(Def. 36) ẋ = ˙̂x.

The following proposition is true

(22) For every variable x in f and for every element s of ZX holds (ẋ)(s) =
s(x).



184 grzegorz bancerek

Let us consider A, X, T , f and let i be an integer number. The functor iA,f
yields a Z-expression of A w.r.t. f and is defined as follows:

(Def. 37) iA,f = iX .

Let us consider A, X, T , f , let v be a Z-variable of A w.r.t. f , and let t be a
Z-expression of A w.r.t. f . The functor v:= t yielding an element of A is defined
as follows:

(Def. 38) v:= t = choose({I ∈ A: I ∈ ElementaryInstructionsA ∧∧
s : element of ZX f(s, I) = s+· (v(s), t(s))}).

One can prove the following proposition

(23) Let v be a Z-variable of A w.r.t. f and t be a Z-expression of A w.r.t.
f . Then v:= t ∈ ElementaryInstructionsA .
Let us consider A, X, T , f , let v be a Z-variable of A w.r.t. f , and let t be

a Z-expression of A w.r.t. f . Observe that v:= t is absolutely-terminating.
Let us consider A, X, T , f , let v be a Z-variable of A w.r.t. f , and let t be

a Z-expression of A w.r.t. f . The functors v+= t and v*= t yielding absolutely-
terminating elements of A are defined by:

(Def. 39) v+= t = v:= (v̇ + t).

(Def. 40) v*= t = v:= (v̇ t).

Let us consider A, X, T , f , let x be an element of X, and let t be a Z-
expression of A w.r.t. f . The functor x:= t yielding an absolutely-terminating
element of A is defined as follows:

(Def. 41) x:= t = x̂A,f:= t.

Let us consider A, X, T , f , let x be an element of X, and let y be a variable
in f . The functor x:= y yields an absolutely-terminating element of A and is
defined by:

(Def. 42) x:= y = x:= ẏ.

Let us consider A,X, T , f , let x be an element ofX, and let v be a Z-variable
of A w.r.t. f . The functor x:= v yields an absolutely-terminating element of A
and is defined by:

(Def. 43) x:= v = x:= v̇.

Let us consider A, X, T , f and let v, w be Z-variables of A w.r.t. f . The
functor v:=w yielding an absolutely-terminating element of A is defined as
follows:

(Def. 44) v:=w = v:= ẇ.

Let us consider A, X, T , f , let x be a variable in f , and let i be an integer
number. The functor x:= i yielding an absolutely-terminating element of A is
defined by:

(Def. 45) x:= i = x:= (iA,f ).
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Let us consider A, X, T , f , let v1, v2 be Z-variables of A w.r.t. f , and let x
be a variable in f . The functor swap(v1, x, v2) yields an absolutely-terminating
element of A and is defined by:

(Def. 46) swap(v1, x, v2) = x:= v1; v1:= v2; v2:= ẋ.

Let us consider A, X, T , f , let x be a variable in f , and let t be a Z-
expression of A w.r.t. f . The functors x+= t, x*= t, x%= t, and x/= t yielding
absolutely-terminating elements of A are defined by:

(Def. 47) x+= t = x:= (ẋ+ t).

(Def. 48) x*= t = x:= (ẋ t).

(Def. 49) x%= t = x:= (ẋ mod t).

(Def. 50) x/= t = x:= (ẋ÷ t).
Let us consider A, X, T , f , let x be a variable in f , and let i be an integer

number. The functor x+= i, x*= i, x%= i, and x/= i yield absolutely-terminating
elements of A and are defined as follows:

(Def. 51) x+= i = x:= (ẋ+ i).

(Def. 52) x*= i = x:= (ẋ · i).
(Def. 53) x%= i = x:= (ẋ mod iA,f ).

(Def. 54) x/= i = x:= (ẋ÷ iA,f ).
The functor x÷ i yields a Z-expression of A w.r.t. f and is defined as follows:

(Def. 55) x÷ i = ẋ÷ iA,f .
Let us consider A, X, T , f , let v be a Z-variable of A w.r.t. f , and let i be an

integer number. The functors v:= i, v+= i, and v*= i yield absolutely-terminating
elements of A and are defined by:

(Def. 56) v:= i = v:= (iA,f ).

(Def. 57) v+= i = v:= (v̇ + i).

(Def. 58) v*= i = v:= (v̇ · i).
Let us consider A, X, let b be an element of X, let g be an Euclidean

execution function of A over ZX and ZX�b6=0, and let t1 be a Z-expression of A
w.r.t. g. Absolutely-terminating elements “t1 is odd” and “t1 is even” of A are
defined by:

(Def. 59) t1 is odd = b:= (t1 mod 2A,g).

(Def. 60) t1 is even = b:= ((t1 + 1) mod 2A,g).

Let t2 be a Z-expression of A w.r.t. g. The functors t1 leq t2, t1 gt t2, and t1 eq t2
yield absolutely-terminating elements of A and are defined as follows:

(Def. 61) t1 leq t2 = b:= leq(t1, t2).

The functor t1 gt t2 yields an absolutely-terminating element of A and is defined
as follows:

(Def. 62) t1 gt t2 = b:= gt(t1, t2).
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(Def. 63) t1 eq t2 = b:= eq(t1, t2).

Let us consider A, X, let b be an element of X, let g be an Euclidean
execution function of A over ZX and ZX�b6=0, and let t1, t2 be Z-expressions of A
w.r.t. g. We introduce t2 geq t1 as a synonym of t1 leq t2 and t2 lt t1 as a synonym
of t1 gt t2.
Let us consider A, X, let b be an element of X, let g be an Euclidean

execution function of A over ZX and ZX�b6=0, and let v1, v2 be Z-variables of A
w.r.t. g. The functors v1 leq v2 and v1 gt v2 yield absolutely-terminating elements
of A and are defined as follows:

(Def. 64) v1 leq v2 = v̇1 leq v̇2.

(Def. 65) v1 gt v2 = v̇1 gt v̇2.

Let us consider A, X, let b be an element of X, let g be an Euclidean
execution function of A over ZX and ZX�b6=0, and let v1, v2 be Z-variables of
A w.r.t. g. We introduce v2 geq v1 as a synonym of v1 leq v2 and v2 lt v1 as a
synonym of v1 gt v2.
Let us consider A, X, let b be an element of X, let g be an Euclidean

execution function of A over ZX and ZX�b6=0, and let x1 be a variable in g.
Absolutely-terminating elements “x1 is odd” and “x1 is even” of A are defined
by:

(Def. 66) x1 is odd = (ẋ1) is odd.

(Def. 67) x1 is even = (ẋ1) is even.

Let x2 be a variable in g. The functors x1 leqx2 and x1 gtx2 yield absolutely-
terminating elements of A and are defined by:

(Def. 68) x1 leqx2 = ẋ1 leq ẋ2.

(Def. 69) x1 gtx2 = ẋ1 gt ẋ2.

Let us consider A, X, let b be an element of X, let g be an Euclidean
execution function of A over ZX and ZX�b6=0, and let x1, x2 be variables in g.
We introduce x2 geqx1 as a synonym of x1 leqx2 and x2 ltx1 as a synonym of
x1 gtx2.
Let us consider A, X, let b be an element of X, let g be an Euclidean

execution function of A over ZX and ZX�b6=0, let x be a variable in g, and let
i be an integer number. The functors x leq i, x geq i, x gt i, and x lt i yielding
absolutely-terminating elements of A are defined as follows:

(Def. 70) x leq i = ẋ leq iA,g.

(Def. 71) x geq i = ẋ geq iA,g.

(Def. 72) x gt i = ẋ gt iA,g.

(Def. 73) x lt i = ẋ lt iA,g.

The functor xi yielding a Z-expression of A w.r.t. g is defined as follows:
(Def. 74) x

i = ẋ÷ iA,g.
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Let us consider A, X, T , f and let x1, x2 be variables in f . The functors
x1+=x2, x1*=x2, x1%=x2, and x1/=x2 yielding absolutely-terminating elements
of A are defined as follows:

(Def. 75) x1+=x2 = x1+= ẋ2.

(Def. 76) x1*=x2 = x1*= ẋ2.

(Def. 77) x1%=x2 = x1:= (ẋ1 mod ẋ2).

(Def. 78) x1/=x2 = x1:= (ẋ1 ÷ ẋ2).
The functors x1 + x2, x1 · x2, x1 mod x2, and x1 ÷ x2 yield Z-expressions of A
w.r.t. f and are defined as follows:

(Def. 79) x1 + x2 = ẋ1 + ẋ2.

(Def. 80) x1 · x2 = ẋ1 ẋ2.
(Def. 81) x1 mod x2 = ẋ1 mod ẋ2.

(Def. 82) x1 ÷ x2 = ẋ1 ÷ ẋ2.
For simplicity, we follow the rules: A denotes an Euclidean pre-if-while al-

gebra, X denotes a non empty countable set, x, y, z denote elements of X, s
denotes an element of ZX , T denotes a subset of ZX , f denotes an Euclidean
execution function of A over ZX and T , v denotes a Z-variable of A w.r.t. f , t
denotes a Z-expression of A w.r.t. f , and i denotes an integer number.
Next we state a number of propositions:

(24) f(s, v:= t)(v(s)) = t(s) and for every z such that z 6= v(s) holds f(s,
v:= t)(z) = s(z).

(25) Let x be a variable in f and i be an integer number. Then f(s,
x:= i)(x) = i and for every z such that z 6= x holds f(s, x:= i)(z) = s(z).

(26) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then f(s,
x:= t)(x) = t(s) and for every z such that z 6= x holds f(s, x:= t)(z) =
s(z).

(27) For all variables x, y in f holds f(s, x:= y)(x) = s(y) and for every z
such that z 6= x holds f(s, x:= y)(z) = s(z).

(28) For every variable x in f holds f(s, x+= i)(x) = s(x) + i and for every z
such that z 6= x holds f(s, x+= i)(z) = s(z).

(29) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then
f(s, x+= t)(x) = s(x) + t(s) and for every z such that z 6= x holds f(s,
x+= t)(z) = s(z).

(30) For all variables x, y in f holds f(s, x+= y)(x) = s(x) + s(y) and for
every z such that z 6= x holds f(s, x+= y)(z) = s(z).

(31) For every variable x in f holds f(s, x*= i)(x) = s(x) · i and for every z
such that z 6= x holds f(s, x*= i)(z) = s(z).

(32) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then
f(s, x*= t)(x) = s(x) · t(s) and for every z such that z 6= x holds f(s,
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x*= t)(z) = s(z).

(33) For all variables x, y in f holds f(s, x*= y)(x) = s(x) ·s(y) and for every
z such that z 6= x holds f(s, x*= y)(z) = s(z).

(34) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, x be a variable in g, and i be an integer number.
Then
(i) if s(x) ≤ i, then g(s, x leq i)(b) = 1,
(ii) if s(x) > i, then g(s, x leq i)(b) = 0,
(iii) if s(x) ≥ i, then g(s, x geq i)(b) = 1,
(iv) if s(x) < i, then g(s, x geq i)(b) = 0, and
(v) for every z such that z 6= b holds g(s, x leq i)(z) = s(z) and g(s,
x geq i)(z) = s(z).

(35) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x, y be variables in g. Then if s(x) ≤ s(y), then
g(s, x leq y)(b) = 1 and if s(x) > s(y), then g(s, x leq y)(b) = 0 and for
every z such that z 6= b holds g(s, x leq y)(z) = s(z).

(36) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, x be a variable in g, and i be an integer number.
Then
(i) s(x) ≤ i iff g(s, x leq i) ∈ ZX�b6=0, and
(ii) s(x) ≥ i iff g(s, x geq i) ∈ ZX�b6=0.

(37) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x, y be variables in g. Then
(i) s(x) ≤ s(y) iff g(s, x leq y) ∈ ZX�b6=0, and
(ii) s(x) ≥ s(y) iff g(s, x geq y) ∈ ZX�b6=0.

(38) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, x be a variable in g, and i be an integer number.
Then
(i) if s(x) > i, then g(s, x gt i)(b) = 1,
(ii) if s(x) ≤ i, then g(s, x gt i)(b) = 0,
(iii) if s(x) < i, then g(s, x lt i)(b) = 1,
(iv) if s(x) ≥ i, then g(s, x lt i)(b) = 0, and
(v) for every z such that z 6= b holds g(s, x gt i)(z) = s(z) and g(s,
x lt i)(z) = s(z).

(39) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x, y be variables in g. Then
(i) if s(x) > s(y), then g(s, x gt y)(b) = 1,
(ii) if s(x) ≤ s(y), then g(s, x gt y)(b) = 0,
(iii) if s(x) < s(y), then g(s, x lt y)(b) = 1,
(iv) if s(x) ≥ s(y), then g(s, x lt y)(b) = 0, and
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(v) for every z such that z 6= b holds g(s, x gt y)(z) = s(z) and g(s,
x lt y)(z) = s(z).

(40) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, x be a variable in g, and i be an integer number.
Then
(i) s(x) > i iff g(s, x gt i) ∈ ZX�b6=0, and
(ii) s(x) < i iff g(s, x lt i) ∈ ZX�b6=0.

(41) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x, y be variables in g. Then
(i) s(x) > s(y) iff g(s, x gt y) ∈ ZX�b6=0, and
(ii) s(x) < s(y) iff g(s, x lt y) ∈ ZX�b6=0.

(42) For every variable x in f holds f(s, x%= i)(x) = s(x) mod i and for every
z such that z 6= x holds f(s, x%= i)(z) = s(z).

(43) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then
f(s, x%= t)(x) = s(x) mod t(s) and for every z such that z 6= x holds f(s,
x%= t)(z) = s(z).

(44) For all variables x, y in f holds f(s, x%= y)(x) = s(x) mod s(y) and for
every z such that z 6= x holds f(s, x%= y)(z) = s(z).

(45) For every variable x in f holds f(s, x/= i)(x) = s(x)÷ i and for every z
such that z 6= x holds f(s, x/= i)(z) = s(z).

(46) Let x be a variable in f and t be a Z-expression of A w.r.t. f . Then
f(s, x/= t)(x) = s(x) ÷ t(s) and for every z such that z 6= x holds f(s,
x/= t)(z) = s(z).

(47) For all variables x, y in f holds f(s, x/= y)(x) = s(x) ÷ s(y) and for
every z such that z 6= x holds f(s, x/= y)(z) = s(z).

(48) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and t be a Z-expression of A w.r.t. g. Then
(i) g(s, t is odd)(b) = t(s) mod 2,
(ii) g(s, t is even)(b) = (t(s) + 1) mod 2, and
(iii) for every z such that z 6= b holds g(s, t is odd)(z) = s(z) and g(s, t is
even)(z) = s(z).

(49) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x be a variable in g. Then
(i) g(s, x is odd)(b) = s(x) mod 2,
(ii) g(s, x is even)(b) = (s(x) + 1) mod 2, and
(iii) for every z such that z 6= b holds g(s, x is odd)(z) = s(z).
(50) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and t be a Z-expression of A w.r.t. g. Then
(i) t(s) is odd iff g(s, t is odd) ∈ ZX�b6=0, and
(ii) t(s) is even iff g(s, t is even) ∈ ZX�b6=0.
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(51) Let b be an element of X, g be an Euclidean execution function of A
over ZX and ZX�b6=0, and x be a variable in g. Then
(i) s(x) is odd iff g(s, x is odd) ∈ ZX�b6=0, and
(ii) s(x) is even iff g(s, x is even) ∈ ZX�b6=0.

In this article we present several logical schemes. The scheme ForToIteration
deals with an Euclidean pre-if-while algebra A, a countable non empty set B,
an element C of B, elements D, E of A, an Euclidean execution function F of A
over ZB and ZB�C6=0, variables G, H in F , an element I of ZB, a Z-expression J
of A w.r.t. F , and a unary predicate P, and states that:

P[F(I, E)] and if J (I) ≤ I(H), then F(I, E)(G) = I(H) + 1
and if J (I) > I(H), then F(I, E)(G) = J (I) and F(I, E)(H) =
I(H)

provided the following conditions are met:
• E = forG:=J until G leqH step G+= 1 do D done,
• P[F(I, G:=J )],
• For every element s of ZB such that P[s] holds P[F(s, D;G+= 1)]
and P[F(s, G leqH)],

• For every element s of ZB such that P[s] holds F(s, D)(G) = s(G)
and F(s, D)(H) = s(H), and

• H 6= G and H 6= C and G 6= C.
The scheme ForDowntoIteration deals with an Euclidean pre-if-while algebra

A, a countable non empty set B, an element C of B, elements D, E of A, an
Euclidean execution function F of A over ZB and ZB�C6=0, variables G, H in F ,
an element I of ZB, a Z-expression J of A w.r.t. F , and a unary predicate P,
and states that:

P[F(I, E)] and if J (I) ≥ I(H), then F(I, E)(G) = I(H) − 1
and if J (I) < I(H), then F(I, E)(G) = J (I) and F(I, E)(H) =
I(H)

provided the following conditions are satisfied:
• E = forG:=J until Ḣ leq Ġ step G+= (−1) do D done,
• P[F(I, G:=J )],
• For every element s of ZB such that P[s] holds P[F(s, D;G+= (−1))]
and P[F(s, H leqG)],

• For every element s of ZB such that P[s] holds F(s, D)(G) = s(G)
and F(s, D)(H) = s(H), and

• H 6= G and H 6= C and G 6= C.

3. Termination in If-while Algebras over Integers

In the sequel b denotes an element ofX and g denotes an Euclidean execution
function of A over ZX and ZX�b6=0.
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One can prove the following four propositions:

(52) Let I be an element of A and i, n be variables in g. Suppose there exists
a function d such that d(b) = 0 and d(n) = 1 and d(i) = 2 and for every s
holds g(s, I)(n) = s(n) and g(s, I)(i) = s(i). Then iteration of g started
in I; i+= 1; i leqn terminates w.r.t. g(s, i leqn).

(53) Let P be a set, I be an element of A, and i, n be variables in g. Suppose
that
(i) there exists a function d such that d(b) = 0 and d(n) = 1 and d(i) = 2,
and

(ii) for every s such that s ∈ P holds g(s, I)(n) = s(n) and g(s, I)(i) = s(i)
and g(s, I), g(s, i leqn), g(s, i+= 1) ∈ P.
Suppose s ∈ P. Then iteration of g started in I; i+= 1; i leqn terminates
w.r.t. g(s, i leqn).

(54) Let I be an element of A. Suppose I is terminating w.r.t. g. Let i, n
be variables in g. Suppose there exists a function d such that d(b) = 0
and d(n) = 1 and d(i) = 2 and for every s holds g(s, I)(n) = s(n) and
g(s, I)(i) = s(i). Then for i:= t until i leqn step i+= 1 do I done is
terminating w.r.t. g.

(55) Let P be a set and I be an element of A. Suppose I is terminating w.r.t.
g and P . Let i, n be variables in g. Suppose that
(i) there exists a function d such that d(b) = 0 and d(n) = 1 and d(i) = 2,
(ii) for every s such that s ∈ P holds g(s, I)(n) = s(n) and g(s, I)(i) = s(i),
and

(iii) P is invariant w.r.t. i:= t and g, invariant w.r.t. I and g, invariant w.r.t.
i leqn and g, and invariant w.r.t. i+= 1 and g.
Then for i:= t until i leqn step i+= 1 do I done is terminating w.r.t. g
and P .

4. Examples

Let us consider X, A, T , f , s and let I be an element of A. Then f(s, I) is
an element of ZX .
One can prove the following propositions. Let F denotes the program:
s:= 1;
for i:= 2 until i leqn step i+= 1 do
s*= i
done

(56) Let n, s, i be variables in g. Given a function d such that d(n) = 1 and
d(s) = 2 and d(i) = 3 and d(b) = 4. Then F is terminating w.r.t. g.
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(57) Let n, s, i be variables in g. Given a function d such that d(n) = 1 and
d(s) = 2 and d(i) = 3 and d(b) = 4. Let q be an element of ZX and N be
a natural number. If N = q(n), then g(q, F )(s) = N !.

Let P0 denotes the program:
s:= 1;
for i:= 1 until i leqn step i+= 1 do
s*=x
done

(58) Let x, n, s, i be variables in g. Given a function d such that d(x) = 0 and
d(n) = 1 and d(s) = 2 and d(i) = 3 and d(b) = 4. Then P0 is terminating
w.r.t. g.

(59) Let x, n, s, i be variables in g. Given a function d such that d(x) = 0
and d(n) = 1 and d(s) = 2 and d(i) = 3 and d(b) = 4. Let q be an element
of ZX and N be a natural number. If N = q(n), then g(q, P0)(s) = q(x)N .

Let Fib denotes the program:
x:= 0;
y:= 1;
for i:= 1 until i leqn step i+= 1 do
z:=x;x:= y; y+= z
done

(60) Let n, x, y, z, i be variables in g. Given a function d such that d(b) = 0
and d(n) = 1 and d(x) = 2 and d(y) = 3 and d(z) = 4 and d(i) = 5. Then
Fib is terminating w.r.t. g.

(61) Let n, x, y, z, i be variables in g. Given a function d such that d(b) = 0
and d(n) = 1 and d(x) = 2 and d(y) = 3 and d(z) = 4 and d(i) = 5.
Let s be an element of ZX and N be an element of N. If N = s(n), then
g(s, F ib)(x) = Fib(N).

Let GCD1 denotes the program:
while y gt 0 do
z:=x; z%= y;
x:= y; y:= z
done

(62) Let x, y, z be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(z) = 3. Then GCD1 is terminating w.r.t. g
and {s : s(x) > s(y) ∧ s(y) ≥ 0}.

(63) Let x, y, z be variables in g. Given a function d such that d(b) = 0
and d(x) = 1 and d(y) = 2 and d(z) = 3. Let s be an element of ZX
and n, m be elements of N. If n = s(x) and m = s(y) and n > m, then
g(s,GCD1)(x) = gcd(n,m).

Let GCD2 denotes the program:
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while y gt 0 do
z:= (ẋ− ẏ);
if z lt 0 then z*=−1 fi;
x:= y;
y:= z
done

(64) Let x, y, z be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(z) = 3. Then GCD2 is terminating w.r.t. g
and {s : s(x) ≥ 0 ∧ s(y) ≥ 0}.

(65) Let x, y, z be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(z) = 3. Let s be an element of ZX and n,
m be elements of N. Suppose n = s(x) and m = s(y) and n > 0. Then
g(s,GCD2)(x) = gcd(n,m).

Let P1 denotes the program:
y:= 1;
whilem gt 0 do
ifm is odd then y*=x fi;
m/= 2;
x*=x
done

(66) Let x, y, m be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(m) = 3. Then P1 is terminating w.r.t. g and
{s : s(m) ≥ 0}.

(67) Let x, y, m be variables in g. Given a function d such that d(b) = 0 and
d(x) = 1 and d(y) = 2 and d(m) = 3. Let s be an element of ZX and n be
a natural number. If n = s(m), then g(s, P1)(y) = s(x)

n.
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Summary. In this paper the theory of invertibility of matrices of field
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1. Preliminaries

We use the following convention: x, y denote sets, n, m, i, j denote elements
of N, and K denotes a field.
Let K be a non empty zero structure and let us consider n. The functor 0nK

yields a finite sequence of elements of K and is defined by:

(Def. 1) 0nK = n 7→ 0K .
Let K be a non empty zero structure and let us consider n. Then 0nK is an

element of (the carrier of K)n.
In the sequel L denotes a non empty additive loop structure.
The following three propositions are true:
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(1) Every finite sequence x of elements of L is an element of (the carrier of
L)lenx.

(2) For all finite sequences x1, x2 of elements of L such that lenx1 = lenx2
holds len(x1 + x2) = lenx1.

(3) For all finite sequences x1, x2 of elements of L such that lenx1 = lenx2
holds len(x1 − x2) = lenx1.
In the sequel G is a non empty multiplicative loop structure.
Next we state four propositions:

(4) Let x1, x2 be finite sequences of elements of G and given i. If i ∈ dom(x1•
x2), then (x1 • x2)(i) = (x1)i · (x2)i and (x1 • x2)i = (x1)i · (x2)i.

(5) Let x1, x2 be finite sequences of elements of L and i be a natural number.
If lenx1 = lenx2 and 1 ≤ i ≤ lenx1, then (x1 + x2)(i) = (x1)i + (x2)i and
(x1 − x2)(i) = (x1)i − (x2)i.

(6) For every element a of K and for every finite sequence x of elements of
K holds −a · x = (−a) · x and −a · x = a · −x.

(7) For all finite sequences x1, x2, y1, y2 of elements of G such that lenx1 =
lenx2 and len y1 = len y2 holds x1 a y1 • x2 a y2 = (x1 • x2) a (y1 • y2).
Let us consider K and let e1, e2 be finite sequences of elements of K. We

introduce |(e1, e2)| as a synonym of e1 · e2.
Next we state several propositions:

(8) Let x, y be finite sequences of elements of K and a be an element of K.
If lenx = len y, then a · x • y = a · (x • y) and x • a · y = a · (x • y).

(9) For all finite sequences x, y of elements of K and for every element a of
K such that lenx = len y holds |(a · x, y)| = a · |(x, y)|.

(10) For all finite sequences x, y of elements of K and for every element a of
K such that lenx = len y holds |(x, a · y)| = a · |(x, y)|.

(11) Let x, y1, y2 be finite sequences of elements of K and a be an element
of K. If lenx = len y1 and lenx = len y2, then |(x, y1 + y2)| = |(x, y1)| +
|(x, y2)|.

(12) For all finite sequences x1, x2, y1, y2 of elements of K such that lenx1 =
lenx2 and len y1 = len y2 holds |(x1 a y1, x2

a y2)| = |(x1, x2)|+ |(y1, y2)|.
(13) For every element p1 of (the carrier of K)n holds p1 •n 7→ 0K = n 7→ 0K .
Let us consider n, let us consider K, and let A be a square matrix over K

of dimension n. We introduce InvA as a synonym of A`.

2. Zero Vector and Base Vectors of Field Elements

Next we state several propositions:

(14) I0×0K = 00×0K and I0×0K = ∅.
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(15) For every square matrix A over K of dimension 0 holds A = ∅ and
A = I0×0K and A = 00×0K .

(16) Every square matrix over K of dimension 0 is invertible.

(17) For all square matrices A, B, C over K of dimension n holds (A ·B) ·C =
A · (B · C).

(18) Let A, B be square matrices over K of dimension n. Then A is invertible
and B = A` if and only if B ·A = In×nK and A ·B = In×nK .

(19) Let A be a square matrix over K of dimension n. Then A is invertible
if and only if there exists a square matrix B over K of dimension n such
that B ·A = In×nK and A ·B = In×nK .

(20) For every finite sequence x of elements of K holds |(x, 0lenxK )| = 0K .
(21) For every finite sequence x of elements of K holds |(0lenxK , x)| = 0K .
(22) For every element a of K holds |(〈0K〉, 〈a〉)| = 0K .
LetK be a non empty set, let n be a natural number, and let a be an element

of K. Then n 7→ a is a finite sequence of elements of K.
Let us consider K and let n, i be natural numbers. The i-versor in Kn yields

a finite sequence of elements of K and is defined by:

(Def. 2) The i-versor in Kn = Replace(n 7→ 0K , i, 1K).
Next we state several propositions:

(23) For all natural numbers n, i holds len (the i-versor in Kn) = n.

(24) For all natural numbers i, n such that 1 ≤ i ≤ n holds (the i-versor in
Kn)(i) = 1K .

(25) Let i, j, n be natural numbers. Suppose 1 ≤ i ≤ n and 1 ≤ j ≤ n and
i 6= j. Then (the i-versor in Kn)(j) = 0K .

(26) For all natural numbers i, n such that 1 ≤ i ≤ n holds In×nK (i) = the
i-versor in Kn.

(27) For all i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds In×nK i,j = (the
i-versor in Kn)(j).

(28) Let A be a square matrix over K of dimension n. Then A = 0n×nK if and
only if for all elements i, j of N such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds
Ai,j = 0K .

(29) Let A be a square matrix over K of dimension n. Then A = In×nK if and
only if for all elements i, j of N such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds
Ai,j = (i = j → 1K , 0K).
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3. Conditions of Invertibility

One can prove the following propositions:

(30) For all square matrices A, B over K of dimension n holds (A · B)T =
BT ·AT.

(31) For every square matrix A overK of dimension n such that A is invertible
holds AT is invertible and (AT)` = (A`)T.

(32) Let x be a finite sequence of elements of K and a be an element of K.
Given i such that 1 ≤ i ≤ lenx and x(i) = a and for every j such that
j 6= i and 1 ≤ j ≤ lenx holds x(j) = 0K . Then

∑
x = a.

(33) Let f1, f2 be finite sequences of elements of K. Then dom(f1 • f2) =
dom f1∩dom f2 and for every i such that i ∈ dom(f1•f2) holds (f1•f2)(i) =
(f1)i · (f2)i.

(34) Let x, y be finite sequences of elements ofK and given i. Suppose lenx =
m and y = x • the i-versor in Km and 1 ≤ i ≤ m. Then y(i) = x(i) and
for every j such that j 6= i and 1 ≤ j ≤ m holds y(j) = 0K .

(35) Let x be a finite sequence of elements of K. Suppose lenx = m and
1 ≤ i ≤ m. Then |(x, the i-versor in Km)| = x(i) and |(x, the i-versor in
Km)| = xi.

(36) For all m, i such that 1 ≤ i ≤ m holds |(the i-versor in Km, the i-versor
in Km)| = 1K .

(37) Let a be an element of K and P , Q be square matrices over K of di-
mension n. Suppose that n > 0 and a 6= 0K and P1,1 = a−1 and for every
i such that 1 < i ≤ n holds P (i) = the i-versor in Kn and Q1,1 = a and
for every j such that 1 < j ≤ n holds Q1,j = −a · P1,j and for every i such
that 1 < i ≤ n holds Q(i) = the i-versor in Kn. Then P is invertible and
Q = P`.

(38) Let a be an element of K and P be a square matrix over K of dimension
n. Suppose n > 0 and a 6= 0K and P1,1 = a−1 and for every i such that
1 < i ≤ n holds P (i) = the i-versor in Kn. Then P is invertible.

(39) Let A be a square matrix over K of dimension n. Suppose n > 0 and
A1,1 6= 0K . Then there exists a square matrix P over K of dimension n
such that
(i) P is invertible,
(ii) (A · P )1,1 = 1K ,
(iii) for every j such that 1 < j ≤ n holds (A · P )1,j = 0K , and
(iv) for every i such that 1 < i ≤ n and Ai,1 = 0K holds (A · P )i,1 = 0K .
(40) Let A be a square matrix over K of dimension n. Suppose n > 0 and
A1,1 6= 0K . Then there exists a square matrix P over K of dimension n
such that
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(i) P is invertible,
(ii) (P ·A)1,1 = 1K ,
(iii) for every i such that 1 < i ≤ n holds (P ·A)i,1 = 0K , and
(iv) for every j such that 1 < j ≤ n and A1,j = 0K holds (P ·A)1,j = 0K .
(41) Let A be a square matrix over K of dimension n. Suppose n > 0 and
A1,1 6= 0K . Then there exist square matrices P , Q over K of dimension n
such that
(i) P is invertible,
(ii) Q is invertible,
(iii) (P ·A ·Q)1,1 = 1K ,
(iv) for every i such that 1 < i ≤ n holds (P ·A ·Q)i,1 = 0K , and
(v) for every j such that 1 < j ≤ n holds (P ·A ·Q)1,j = 0K .

4. A Transformation of Matrix to Some Canonical Form

We now state the proposition

(42) Let D be a non empty set, m, n, i, j be elements of N, and A be a
matrix over D of dimension m × n. Then Swap(A, i, j) is a matrix over
D of dimension m × n.
Let us consider K, let n be an element of N, and let i0 be a natural number.

The functor SwapDiagonal(K,n, i0) yields a square matrix over K of dimension
n and is defined as follows:

(Def. 3) SwapDiagonal(K,n, i0) = Swap(In×nK , 1, i0).

Next we state a number of propositions:

(43) Let n be an element of N, i0 be a natural number, and A be a squ-
are matrix over K of dimension n. Suppose 1 ≤ i0 ≤ n and A =
SwapDiagonal(K,n, i0). Let i, j be natural numbers. Suppose 1 ≤ i ≤ n
and 1 ≤ j ≤ n. Suppose i0 6= 1. Then
(i) if i = 1 and j = i0, then Ai,j = 1K ,
(ii) if i = i0 and j = 1, then Ai,j = 1K ,
(iii) if i = 1 and j = 1, then Ai,j = 0K ,
(iv) if i = i0 and j = i0, then Ai,j = 0K , and
(v) if i 6= 1 and i 6= i0 or j 6= 1 and j 6= i0, then if i = j, then Ai,j = 1K
and if i 6= j, then Ai,j = 0K .

(44) Let n be an element of N, A be a square matrix over K of dimension n,
and i be a natural number. If 1 ≤ i ≤ n, then (SwapDiagonal(K,n, 1))i,i =
1K .

(45) Let n be an element of N, A be a square matrix over K of dimension n,
and i, j be natural numbers. If 1 ≤ i ≤ n and 1 ≤ j ≤ n, then if i 6= j,
then (SwapDiagonal(K,n, 1))i,j = 0K .
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(46) Let given K, n, i0 be elements of N, and A be a square matrix over K
of dimension n. Suppose that
(i) 1 ≤ i0,
(ii) i0 ≤ n,
(iii) i0 = 1, and
(iv) for all natural numbers i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds if
i = j, then Ai,j = 1K and if i 6= j, then Ai,j = 0K .
Then A = SwapDiagonal(K,n, i0).

(47) Let given K, n, i0 be elements of N, and A be a square matrix over K
of dimension n. Suppose that
(i) 1 ≤ i0,
(ii) i0 ≤ n,
(iii) i0 6= 1, and
(iv) for all natural numbers i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds if
i = 1 and j = i0, then Ai,j = 1K and if i = i0 and j = 1, then Ai,j = 1K
and if i = 1 and j = 1, then Ai,j = 0K and if i = i0 and j = i0, then
Ai,j = 0K and if i 6= 1 and i 6= i0 or j 6= 1 and j 6= i0, then if i = j, then
Ai,j = 1K and if i 6= j, then Ai,j = 0K .
Then A = SwapDiagonal(K,n, i0).

(48) Let A be a square matrix over K of dimension n and i0 be an element
of N. Suppose 1 ≤ i0 ≤ n. Then
(i) for every j such that 1 ≤ j ≤ n holds (SwapDiagonal(K,n, i0) ·A)i0,j =
A1,j and (SwapDiagonal(K,n, i0) ·A)1,j = Ai0,j , and

(ii) for all i, j such that i 6= 1 and i 6= i0 and 1 ≤ i ≤ n and 1 ≤ j ≤ n
holds (SwapDiagonal(K,n, i0) ·A)i,j = Ai,j .

(49) For every element i0 of N such that 1 ≤ i0 ≤ n holds
SwapDiagonal(K,n, i0) is invertible and (SwapDiagonal(K,n, i0))` =
SwapDiagonal(K,n, i0).

(50) For every element i0 of N such that 1 ≤ i0 ≤ n holds
(SwapDiagonal(K,n, i0))T = SwapDiagonal(K,n, i0).

(51) Let A be a square matrix over K of dimension n and j0 be an element
of N. Suppose 1 ≤ j0 ≤ n. Then
(i) for every i such that 1 ≤ i ≤ n holds (A · SwapDiagonal(K,n, j0))i,j0 =
Ai,1 and (A · SwapDiagonal(K,n, j0))i,1 = Ai,j0 , and

(ii) for all i, j such that j 6= 1 and j 6= j0 and 1 ≤ i ≤ n and 1 ≤ j ≤ n
holds (A · SwapDiagonal(K,n, j0))i,j = Ai,j .

(52) Let A be a square matrix over K of dimension n. Then A = 0n×nK if and
only if for all i, j such that 1 ≤ i ≤ n and 1 ≤ j ≤ n holds Ai,j = 0K .



invertibility of matrices of field elements 201

5. Left/Right Invertibility and Invertibility

The following four propositions are true:

(53) Let A be a square matrix over K of dimension n. Suppose A 6= 0n×nK .
Then there exist square matrices B, C over K of dimension n such that
(i) B is invertible,
(ii) C is invertible,
(iii) (B ·A · C)1,1 = 1K ,
(iv) for every i such that 1 < i ≤ n holds (B ·A · C)i,1 = 0K , and
(v) for every j such that 1 < j ≤ n holds (B ·A · C)1,j = 0K .
(54) Let A, B be square matrices over K of dimension n. Suppose B · A =
In×nK . Then there exists a square matrix B2 over K of dimension n such
that A ·B2 = In×nK .

(55) Let A be a square matrix over K of dimension n. Then the following
statements are equivalent
(i) there exists a square matrix B1 overK of dimension n such that B1·A =
In×nK ,

(ii) there exists a square matrix B2 overK of dimension n such that A·B2 =
In×nK .

(56) For all square matrices A, B over K of dimension n such that A · B =
In×nK holds A is invertible and B is invertible.
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Summary. The goal of this article is to formalize two versions of Ramsey’s
theorem. The theorems are not phrased in the usually pictorial representation of
a coloured graph but use a set-theoretic terminology. After some useful lemma,
the second section presents a generalization of Ramsey’s theorem on infinite set
closely following the book [9]. The last section includes the formalization of the
theorem in a more known version (see [1]).
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The notation and terminology used here are introduced in the following papers:
[15], [16], [17], [4], [3], [6], [12], [7], [2], [5], [8], [14], [13], [10], and [11].

1. Preliminaries

For simplicity, we adopt the following convention: n, m, k are natural num-
bers, X, Y , Z are sets, f is a function from X into Y , and H is a subset of
X.
Let us consider X, Y , H and let P be a partition of [X]Y . We say that H is

homogeneous for P if and only if:

(Def. 1) There exists an element p of P such that [H]Y ⊆ p.
Let us consider n and let X be an infinite set. One can check that [X]n is

non empty.
Let us consider n, X, Y , f . Let us assume that f is one-to-one and n ⊆ X

and X is non empty and Y is non empty. The functor f ||n yields a function
from [X]n into [Y ]n and is defined by:

(Def. 2) For every element x of [X]n holds (f ||n)(x) = f◦x.
Next we state four propositions:
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(1) If f is one-to-one and n ⊆ X and X is non empty and Y is non empty,
then [f◦H]n = (f ||n)◦([H]n).

(2) If X is infinite and X ⊆ ω, then X = ω.
(3) If X is infinite, then X ∪ Y is infinite.
(4) If X is infinite and Y is finite, then X \ Y is infinite.
Let X be an infinite set and let Y be a set. Note that X ∪ Y is infinite.
Let X be an infinite set and let Y be a finite set. One can verify that X \ Y

is infinite.
The following propositions are true:

(5) [X]0 = {0}.
(6) For every finite set X such that cardX < n holds [X]n is empty.

(7) If X ⊆ Y, then [X]Z ⊆ [Y ]Z .
(8) If X is finite and Y is finite and Y = X, then [Y ]X = {Y }.
(9) If X is non empty and Y is non empty, then f is constant iff there exists
an element y of Y such that rng f = {y}.

(10) For every finite set X such that k ≤ cardX there exists a subset Y of
X such that cardY = k.

(11) If m ≥ 1, then n+ 1 ≤
(n+m
m

)
.

(12) If m ≥ 1 and n ≥ 1, then m+ 1 ≤
(n+m
m

)
.

(13) Let X be a non empty set, p1, p2 be elements of X, P be a partition of
X, and A be an element of P . Suppose p1 ∈ A and (the projection onto
P )(p1) = (the projection onto P )(p2). Then p2 ∈ A.

2. Infinite Ramsey Theorem

We now state two propositions:

(14) Let F be a function from [X]n into k. Suppose k 6= 0 and X is infinite.
Then there exists H such that H is infinite and F �[H]n is constant.

(15) Let X be an infinite set and P be a partition of [X]n. If P = k, then
there exists a subset of X which is infinite and homogeneous for P .

3. Ramsey’s Theorem

The scheme BinInd2 concerns a binary predicate P, and states that:
P[m,n]

provided the following conditions are satisfied:
• P[0, n] and P[n, 0], and
• If P[m+ 1, n] and P[m,n+ 1], then P[m+ 1, n+ 1].
We now state two propositions:
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(16) Suppose m ≥ 2 and n ≥ 2. Then there exists a natural number r such
that
(i) r ≤

((m+n)−′2
m−′1

)
,

(ii) r ≥ 2, and
(iii) for every finite set X and for every function F from [X]2 into Seg 2
such that cardX ≥ r there exists a subset S of X such that cardS ≥ m
and rng(F �[S]2) = {1} or cardS ≥ n and rng(F �[S]2) = {2}.

(17) Let m be a natural number. Then there exists a natural number r such
that for every finite set X and for every partition P of [X]2 if cardX ≥ r
and P = 2, then there exists a subset S of X such that cardS ≥ m and
S is homogeneous for P .
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Summary. The aim of this paper is to develop a formal theory of Mizar lin-
guistic concepts following the ideas from [14] and [13]. The theory here presented
is an abstract of the existing implementation of the Mizar system and is devoted
to the formalization of Mizar expressions. The base idea behind the formali-
zation is dependence on variables which is determined by variable-dependence
(variables may depend on other variables). The dependence constitutes a Galois
connection between opposite poset of dependence-closed set of variables and the
sup-semilattice of widening of Mizar types (smooth type widening).
In the paper the concepts strictly connected with Mizar expressions are for-

malized. Among them are quasi-loci, quasi-terms, quasi-adjectives, and quasi-
types. The structural induction and operation of substitution are also introdu-
ced. The prefix quasi is used to indicate that some rules of construction of Mizar
expressions may not be fulfilled. For example, variables, quasi-loci, and quasi-
terms have no assigned types and, in result, there is no possibility to conduct
type-checking of arguments. The other gaps concern inconsistent and out-of-
context clusters of adjectives in types. Those rules are required in the Mizar
identification process. However, the expression appearing in later processes of
Mizar checker may not satisfy the rules. So, introduced apparatus is enough and
adequate to describe data structures and algorithms from the Mizar checker (like
equational classes).
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The notation and terminology used in this paper are introduced in the following
papers: [24], [41], [33], [30], [42], [20], [43], [39], [23], [17], [34], [21], [22], [32], [2],
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[38], [35], [26], [1], [4], [15], [19], [28], [3], [7], [8], [9], [36], [25], [5], [40], [6], [11],
[12], [27], [18], [37], [29], [31], [10], and [16].

1. Variables

We adopt the following convention: i is a natural number, j is an element of
N, and X, Y , x, y, z are sets.
One can prove the following propositions:

(1) For every function f holds f(x) ⊆
⋃
f.

(2) For every function f such that
⋃
f = ∅ holds f(x) = ∅.

(3) For every function f and for all sets x, y such that f = 〈〈x, y〉〉 holds
x = y.

(4) (idX)◦Y ⊆ Y.
(5) Let Σ be a non void signature and X be a non-empty many sorted set
indexed by the carrier of Σ. Then every term of Σ over X is non pair.

Let Σ be a non void signature and let X be a non empty yielding many
sorted set indexed by the carrier of Σ. Observe that every element of FreeΣ(X)
is non pair.
We now state the proposition

(6) For all sets x, y, z such that x, y ∈ {z}∗ and x = y holds x = y.
Let us note that ∅ is decorated tree yielding.
Let Σ be a non void signature and let A be an algebra over Σ. A subset of

A is a subset of
⋃
(the sorts of A). A finite sequence of elements of A is a finite

sequence of elements of
⋃
(the sorts of A).

Let Σ be a non void signature and let X be a non empty yielding many
sorted set indexed by Σ. Note that every finite sequence of elements of FreeΣ(X)
is decorated tree yielding.
Next we state the proposition

(7) Let Σ be a non void signature, X be a non empty yielding many sorted
set indexed by the carrier of Σ, and τ be an element of FreeΣ(X). Then
(i) there exists a sort symbol s of Σ and there exists a set v such that
τ = the root tree of 〈〈v, s〉〉 and v ∈ X(s), or

(ii) there exists an operation symbol o of Σ and there exists a finite sequence
p of elements of FreeΣ(X) such that τ = 〈〈o, the carrier of Σ〉〉-tree(p) and
len p = lenArity(o) and p is decorated tree yielding and an argument
sequence of Sym(o,X ∪ ((the carrier of Σ) 7−→ {0})).
Let A be a set. The functor varclA is defined by the conditions (Def. 1).

(Def. 1)(i) A ⊆ varclA,
(ii) for all x, y such that 〈〈x, y〉〉 ∈ varclA holds x ⊆ varclA, and
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(iii) for every set B such that A ⊆ B and for all x, y such that 〈〈x, y〉〉 ∈ B
holds x ⊆ B holds varclA ⊆ B.

Let us observe that the functor varclA is projective.
We now state three propositions:

(8) varcl ∅ = ∅.
(9) For all sets Y , Z such that Y ⊆ Z holds varclY ⊆ varclZ.
(10) For every set Z holds varcl

⋃
Z =

⋃
{varcl z : z ranges over elements of

Z}.
The scheme Sch14 deals with a set A, a unary functor F yielding a set, and

a unary predicate P, and states that:
varcl

⋃
{F(z); z ranges over elements ofA : P[z]} =

⋃
{varclF(z); z

ranges over elements of A : P[z]}
for all values of the parameters.
Next we state three propositions:

(11) varcl(X ∪ Y ) = varclX ∪ varclY.
(12) For every non empty set Z such that for every element z of Z holds
varcl z = z holds varcl

⋂
Z =

⋂
Z.

(13) varcl(varclX ∩ varclY ) = varclX ∩ varclY.
Let Z be an empty set. Observe that varclZ is empty.
The functor Vars is defined by the condition (Def. 2).

(Def. 2) There exists a many sorted set V indexed by N such that
(i) Vars =

⋃
V,

(ii) V (0) = {〈〈∅, i〉〉 : i ranges over elements of N}, and
(iii) for every natural number n holds V (n + 1) = {〈〈 varclZ, j〉〉;Z ranges
over subsets of V (n), j ranges over elements of N: Z is finite}.
Next we state a number of propositions:

(14) Let V be a many sorted set indexed by N. Suppose that
(i) V (0) = {〈〈∅, i〉〉 : i ranges over elements of N}, and
(ii) for every natural number n holds V (n + 1) = {〈〈 varclZ, j〉〉;Z ranges
over subsets of V (n), j ranges over elements of N: Z is finite}.
Let i, j be elements of N. If i ≤ j, then V (i) ⊆ V (j).

(15) Let V be a many sorted set indexed by N. Suppose that
(i) V (0) = {〈〈∅, i〉〉 : i ranges over elements of N}, and
(ii) for every natural number n holds V (n + 1) = {〈〈 varclZ, j〉〉;Z ranges
over subsets of V (n), j ranges over elements of N: Z is finite}.
Let Z be a finite subset of Vars. Then there exists an element i of N such
that Z ⊆ V (i).

(16) {〈〈∅, i〉〉 : i ranges over elements of N} ⊆ Vars .
(17) For every finite subset Z of Vars and for every natural number i holds
〈〈 varclZ, i〉〉 ∈ Vars .
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(18) Vars = {〈〈 varclZ, j〉〉;Z ranges over subsets of Vars, j ranges over ele-
ments of N: Z is finite}.

(19) varclVars = Vars .

(20) For every X such that rk(X) is finite holds X is finite.

(21) rk(varclX) = rk(X).

(22) For every finite subset X of Rω holds X ∈ Rω.
(23) Vars ⊆ Rω.
(24) For every finite subset Z of Vars holds varclZ is a finite subset of Vars.

One can verify that Vars is non empty.
A variable is an element of Vars.
Let x be a variable. Observe that x1 is finite.
Let x be a variable. We introduce vars(x) as a synonym of x1.
Let x be a variable. Then vars(x) is a subset of Vars.
The following propositions are true:

(25) 〈〈∅, i〉〉 ∈ Vars .
(26) For every subset Z of Vars holds varcl{〈〈 varclZ, j〉〉} = varclZ ∪
{〈〈 varclZ, j〉〉}.

(27) For every variable x holds varcl{x} = vars(x) ∪ {x}.
(28) For every variable x holds 〈〈 vars(x) ∪ {x}, i〉〉 ∈ Vars .

2. Quasi-loci

Let R be a binary relation and let X be a set. We introduce R domX as a
synonym of R�X.
The set QuasiLoci of finite sequences of Vars is defined by the condition

(Def. 3).

(Def. 3) Let p be a finite sequence of elements of Vars. Then p ∈ QuasiLoci if
and only if the following conditions are satisfied:
(i) p is one-to-one, and
(ii) for every i such that i ∈ dom p holds p(i)1 ⊆ rng(p dom i).
One can prove the following proposition

(29) εVars ∈ QuasiLoci .
Let us observe that QuasiLoci is non empty.
A quasi-locus sequence is an element of QuasiLoci.
One can verify that every quasi-locus sequence is one-to-one.
Next we state several propositions:

(30) Let l be an one-to-one finite sequence of elements of Vars. Then l is a
quasi-locus sequence if and only if for every natural number i and for every
variable x such that i ∈ dom l and x = l(i) and for every variable y such
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that y ∈ vars(x) there exists a natural number j such that j ∈ dom l and
j < i and y = l(j).

(31) Let l be a quasi-locus sequence and x be a variable. Then l a 〈x〉 is a
quasi-locus sequence if and only if x /∈ rng l and vars(x) ⊆ rng l.

(32) Let p1, p2 be finite sequences. Suppose p1 a p2 is a quasi-locus sequence.
Then p1 is a quasi-locus sequence and p2 is a finite sequence of elements
of Vars.

(33) For every quasi-locus sequence l holds varcl rng l = rng l.

(34) For every variable x holds 〈x〉 is a quasi-locus sequence iff vars(x) = ∅.
(35) For all variables x, y holds 〈x, y〉 is a quasi-locus sequence iff vars(x) = ∅
and x 6= y and vars(y) ⊆ {x}.

(36) Let x, y, z be variables. Then 〈x, y, z〉 is a quasi-locus sequence if and
only if vars(x) = ∅ and x 6= y and vars(y) ⊆ {x} and x 6= z and y 6= z and
vars(z) ⊆ {x, y}.
Let l be a quasi-locus sequence. Then l−1 is a partial function from Vars to

N.

3. Mizar Constructor Signature

The functor type is defined by:

(Def. 4) type = 0.

The functor adj is defined by:

(Def. 5) adj = 1.

The functor term is defined as follows:

(Def. 6) term = 2.

The functor ∗ is defined by:
(Def. 7) ∗ = 0.
The functor non is defined as follows:

(Def. 8) non = 1.

Let C be a signature. We say that C is constructor if and only if the conditions
(Def. 9) are satisfied.

(Def. 9) The carrier of C = {type,adj, term} and {∗,non} ⊆ the operation
symbols of C and (the arity of C)(∗) = 〈adj, type〉 and (the arity of
C)(non) = 〈adj〉 and (the result sort of C)(∗) = type and (the result sort
of C)(non) = adj and for every element o of the operation symbols of C
such that o 6= ∗ and o 6= non holds (the arity of C)(o) ∈ {term}∗.
Let us note that every signature which is constructor is also non empty and

non void.
The strict signature MinConstrSign is defined by:
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(Def. 10) MinConstrSign is constructor and the operation symbols of MinConstrSign =
{∗,non}.
Let us observe that MinConstrSign is constructor.
Let us observe that there exists a signature which is constructor and strict.
Let C be a constructor signature and let o be an operation symbol of C. We

say that o is constructor if and only if:

(Def. 11) o 6= ∗ and o 6= non .
We now state the proposition

(37) Let Σ be a constructor signature and o be an operation symbol of Σ. If
o is constructor, then Arity(o) = lenArity(o) 7→ term .
Let C be a non empty non void signature. We say that C is initialized if and

only if the condition (Def. 12) is satisfied.

(Def. 12) There exist operation symbols m, α of C such that the result sort of m =
type and Arity(m) = ∅ and the result sort of α = adj and Arity(α) = ∅.
Let C be a constructor signature. The functor typeC is a sort symbol of C

and is defined by:

(Def. 13) typeC = type .

The functor adjC is a sort symbol of C and is defined as follows:

(Def. 14) adjC = adj .

The functor termC is a sort symbol of C and is defined by:

(Def. 15) termC = term .

The functor nonC yielding an operation symbol of C is defined as follows:

(Def. 16) nonC = non .

The functor ∗C yielding an operation symbol of C is defined as follows:
(Def. 17) ∗C = ∗.

We now state the proposition

(38) Let C be a constructor signature. Then Arity(nonC) = 〈adjC〉 and the
result sort of nonC = adjC and Arity(∗C) = 〈adjC, typeC〉 and the result
sort of ∗C = typeC .
The functor Modes is defined as follows:

(Def. 18) Modes = {type} × (QuasiLoci×N).
The functor Attrs is defined as follows:

(Def. 19) Attrs = {adj} × (QuasiLoci×N).
The functor Funcs is defined by:

(Def. 20) Funcs = {term} × (QuasiLoci×N).
One can verify the following observations:

∗ Modes is non empty,
∗ Attrs is non empty, and
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∗ Funcs is non empty.
The non empty set Constructors is defined by:

(Def. 21) Constructors = Modes∪Attrs∪Funcs .
Next we state the proposition

(39) {∗,non} misses Constructors.
Let x be an element of QuasiLoci×N. Then x1 is a quasi-locus sequence.

Then x2 is an element of N.
Let c be an element of Constructors. We introduce the kind of c as a synonym

of c1.
Let c be an element of Constructors. Then the kind of c is an element of

{type,adj, term}. Then c2 is an element of QuasiLoci×N.
Let c be an element of Constructors. The loci of c yields a quasi-locus sequ-

ence and is defined as follows:

(Def. 22) The loci of c = (c2)1.

The index of c yielding a natural number is defined as follows:

(Def. 23) The index of c = (c2)2.

We now state the proposition

(40) Let c be an element of Constructors. Then
(i) the kind of c = type iff c ∈ Modes,
(ii) the kind of c = adj iff c ∈ Attrs, and
(iii) the kind of c = term iff c ∈ Funcs .
The strict constructor signature MaxConstrSign is defined by the conditions

(Def. 24).

(Def. 24)(i) The operation symbols of MaxConstrSign = {∗,non}∪Constructors,
and

(ii) for every operation symbol o of MaxConstrSign such that o is
constructor holds (the result sort of MaxConstrSign)(o) = o1 and

(the arity of MaxConstrSign)(o) = (o2)1 .

Let us note that MinConstrSign is non initialized and MaxConstrSign is
initialized.
Let us observe that there exists a constructor signature which is initialized

and strict.
Let C be an initialized constructor signature. One can check that there exists

an operation symbol of C which is constructor.

4. Mizar Expressions

Let C be a constructor signature. The functor VarsC yielding a many sorted
set indexed by the carrier of C is defined as follows:
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(Def. 25) (VarsC)(type) = ∅ and (VarsC)(adj) = ∅ and (VarsC)(term) = Vars .
Let C be a constructor signature. Note that VarsC is non empty yielding.
Let C be an initialized constructor signature. Observe that FreeC(VarsC) is

non-empty.
Let Σ be a non void signature, let X be a non empty yielding many sorted

set indexed by the carrier of Σ, and let τ be an element of FreeΣ(X). We say
that τ is ground if and only if:

(Def. 26)
⋃
VarΣ τ = ∅.

We say that τ is compound if and only if:

(Def. 27) τ(∅) ∈ (the operation symbols of Σ)× {the carrier of Σ}.
In the sequel C denotes an initialized constructor signature, s denotes a sort

symbol of C, o denotes an operation symbol of C, and c denotes a constructor
operation symbol of C.
Let us consider C. An expression of C is an element of FreeC(VarsC).
Let us consider C, s. An expression of C is called an expression of C from s

if:

(Def. 28) It ∈ (the sorts of FreeC(VarsC))(s).
Next we state the proposition

(41) z is an expression of C from s iff z ∈ (the sorts of FreeC(VarsC))(s).
Let us consider C and let us consider c. Let us assume that lenArity(c) = 0.

The functor ct yielding an expression of C is defined by:

(Def. 29) ct = 〈〈c, the carrier of C〉〉-tree(∅).
The following proposition is true

(42) Let given o. Suppose lenArity(o) = 1. Let α be an expression of C. Given
s such that s = Arity(o)(1) and α is an expression of C from s. Then 〈〈o,
the carrier of C〉〉-tree(〈α〉) is an expression of C from the result sort of o.
Let us consider C, o. Let us assume that lenArity(o) = 1. Let η be an

expression of C. Let us assume that there exists a sort symbol s of C such that
s = Arity(o)(1) and η is an expression of C from s. The functor o(η) yielding an
expression of C is defined by:

(Def. 30) o(η) = 〈〈o, the carrier of C〉〉-tree(〈η〉).
In the sequel α, β are expressions of C from adjC.
One can prove the following two propositions:

(43) nonC(α) is an expression of C from adjC and nonC(α) = 〈〈non, the
carrier of C〉〉-tree(〈α〉).

(44) If nonC(α) = nonC(β), then α = β.

Let us consider C, α. Observe that nonC(α) is compound.
Let us consider C. Note that there exists an expression of C which is com-

pound.
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Next we state the proposition

(45) Let given o. Suppose lenArity(o) = 2. Let α, β be expressions of C. Given
sort symbols s1, s2 of C such that s1 = Arity(o)(1) and s2 = Arity(o)(2)
and α is an expression of C from s1 and β is an expression of C from s2.
Then 〈〈o, the carrier of C〉〉-tree(〈α, β〉) is an expression of C from the result
sort of o.

Let us consider C, o. Let us assume that lenArity(o) = 2. Let η1, η2 be
expressions of C. Let us assume that there exist sort symbols s1, s2 of C such
that s1 = Arity(o)(1) and s2 = Arity(o)(2) and η1 is an expression of C from s1
and η2 is an expression of C from s2. The functor o(η1, η2) yielding an expression
of C is defined as follows:

(Def. 31) o(η1, η2) = 〈〈o, the carrier of C〉〉-tree(〈η1, η2〉).
In the sequel τ , τ1, τ2 are expressions of C from typeC.
We now state two propositions:

(46) ∗C(α, τ) is an expression of C from typeC and ∗C(α, τ) = 〈〈∗, the carrier
of C〉〉-tree(〈α, τ〉).

(47) If ∗C(α, τ1) = ∗C(β, τ2), then α = β and τ1 = τ2.
Let us consider C, α, τ . One can check that ∗C(α, τ) is compound.
Let Σ be a non void signature and let s be a sort symbol of Σ. Let us assume

that there exists an operation symbol o of Σ such that the result sort of o = s.
An operation symbol of Σ is said to be an operation symbol of s if:

(Def. 32) The result sort of it = s.

Let C be a constructor signature. Then nonC is an operation symbol of adjC.
Then ∗C is an operation symbol of typeC.
The following proposition is true

(48) Let s1, s2 be sort symbols of C. Suppose s1 6= s2. Let τ1 be an expression
of C from s1 and τ2 be an expression of C from s2. Then τ1 6= τ2.

5. Quasi-terms

Let us consider C. The functor QuasiTermsC yields a subset of FreeC(VarsC)
and is defined as follows:

(Def. 33) QuasiTermsC = (the sorts of FreeC(VarsC))(termC).

Let us consider C. One can check that QuasiTermsC is non empty and con-
stituted of decorated trees.
Let us consider C. A quasi-term of C is an expression of C from termC.
We now state the proposition

(49) z is a quasi-term of C iff z ∈ QuasiTermsC.
Let x be a variable and let us consider C. The functor xC yields a quasi-term

of C and is defined by:
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(Def. 34) xC = the root tree of 〈〈x, term 〉〉.
One can prove the following proposition

(50) For all variables x1, x2 and for all initialized constructor signatures C1,
C2 such that (x1)C1 = (x2)C2 holds x1 = x2.

Let x be a variable and let us consider C. One can check that xC is non
compound.

We now state the proposition

(51) Let p be a decorated tree yielding finite sequence. Then 〈〈c, the carrier
of C〉〉-tree(p) is an expression of C if and only if len p = lenArity(c) and
p ∈ (QuasiTermsC)∗.

In the sequel p is a finite sequence of elements of QuasiTermsC.

Let us consider C, c and let us consider p. Let us assume that len p =
lenArity(c). The functor c~(p) yields a compound expression of C and is de-
fined as follows:

(Def. 35) c~(p) = 〈〈c, the carrier of C〉〉-tree(p).
Next we state several propositions:

(52) If len p = lenArity(c), then c~(p) is an expression of C from the result
sort of c.

(53) Let η be an expression of C. Then

(i) there exists a variable x such that η = xC, or

(ii) there exists a constructor operation symbol c of C and there exists a
finite sequence p of elements of QuasiTermsC such that len p = lenArity(c)
and η = c~(p), or

(iii) there exists an expression α of C from adjC such that η = nonC(α), or

(iv) there exists an expression α of C from adjC and there exists an expres-
sion τ of C from typeC such that η = ∗C(α, τ).

(54) If len p = lenArity(c), then c~(p) 6= nonC(α).

(55) If len p = lenArity(c), then c~(p) 6= ∗C(α, τ).
(56) nonC(α) 6= ∗C(β, τ).

In the sequel η is an expression of C.

Next we state two propositions:

(57) If η(∅) = 〈〈non, the carrier of C〉〉, then there exists α such that η =
nonC(α).

(58) If η(∅) = 〈〈∗, the carrier of C〉〉, then there exist α, τ such that η =
∗C(α, τ).
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6. Quasi-adjectives

In the sequel α, α′ denote expressions of C from adjC.
Let us consider C, α. The functor nonα yields an expression of C from adjC

and is defined by:

(Def. 36) nonα =

{
α�〈0〉, if there exists α′ such that α = nonC(α′),
nonC(α), otherwise.

Let us consider C, α. We say that α is positive if and only if:

(Def. 37) It is not true that there exists α′ such that α = nonC(α′).

Let us consider C. Note that there exists an expression of C from adjC which
is positive.
Next we state the proposition

(59) For every positive expression α of C from adjC holds nonα = nonC(α).

Let us consider C, α. We say that α is negative if and only if:

(Def. 38) There exists α′ such that α′ is positive and α = nonC(α′).

Let us consider C and let α be a positive expression of C from adjC. Note
that nonα is negative and non positive.
Let us consider C. One can check that there exists an expression of C from

adjC which is negative and non positive.
Next we state three propositions:

(60) For every non positive expression α of C from adjC there exists an expres-
sion α′ of C from adjC such that α = nonC(α′) and nonα = α′.

(61) Let α be a negative expression of C from adjC. Then there exists a
positive expression α′ of C from adjC such that α = nonC(α′) and nonα =
α′.

(62) For every non positive expression α of C from adjC holds nonC(nonα) =
α.

Let us consider C and let α be a negative expression of C from adjC. Note
that nonα is positive.
Let us consider C, α. We say that α is regular if and only if:

(Def. 39) α is positive or negative.

Let us consider C. Observe that every expression of C from adjC which is
positive is also regular and non negative and every expression of C from adjC
which is negative is also regular and non positive.
Let us consider C. Note that there exists an expression of C from adjC which

is regular.
Let us consider C. The functor QuasiAdjsC yields a subset of FreeC(VarsC)

and is defined as follows:

(Def. 40) QuasiAdjsC = {α : α is regular}.
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Let us consider C. Note that QuasiAdjsC is non empty and constituted of
decorated trees.
Let us consider C. A quasi-adjective of C is a regular expression of C from

adjC.
Next we state two propositions:

(63) z is a quasi-adjective of C iff z ∈ QuasiAdjsC.
(64) z is a quasi-adjective of C if and only if z is a positive expression of C
from adjC or a negative expression of C from adjC.

Let us consider C. Note that every quasi-adjective of C which is non positive
is also negative and every quasi-adjective of C which is non negative is also
positive.
Let us consider C. Note that there exists a quasi-adjective of C which is

positive and there exists a quasi-adjective of C which is negative.
The following propositions are true:

(65) Let α be a positive quasi-adjective of C. Then there exists a constructor
operation symbol v of C such that the result sort of v = adjC and there
exists p such that len p = lenArity(v) and α = v~(p).

(66) Let v be a constructor operation symbol of C. Suppose the result sort of
v = adjC and len p = lenArity(v). Then v~(p) is a positive quasi-adjective
of C.

Let us consider C and let α be a quasi-adjective of C. One can check that
nonα is regular.
We now state three propositions:

(67) For every quasi-adjective α of C holds non nonα = α.

(68) For all quasi-adjectives α1, α2 of C such that nonα1 = nonα2 holds
α1 = α2.

(69) For every quasi-adjective α of C holds nonα 6= α.

7. Quasi-types

Let us consider C and let ϑ be an expression of C from typeC. We say that
ϑ is pure if and only if:

(Def. 41) It is not true that there exist α, τ such that ϑ = ∗C(α, τ).
The following propositions are true:

(70) Let m be an operation symbol of C. Suppose the result sort of m = type
and Arity(m) = ∅. Then there exists τ such that τ = the root tree of 〈〈m,
the carrier of C〉〉 and τ is pure.

(71) Let v be an operation symbol of C. Suppose the result sort of v = adj
and Arity(v) = ∅. Then there exists α such that α = the root tree of 〈〈v,
the carrier of C〉〉 and α is positive.
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Let us consider C. Note that there exists an expression of C from typeC
which is pure.
In the sequel ϑ denotes a pure expression of C from typeC and A denotes a

finite subset of QuasiAdjsC.
Let us consider C. The functor QuasiTypesC is defined as follows:

(Def. 42) QuasiTypesC = {〈〈A, τ〉〉 : τ is pure}.
Let us consider C. Note that QuasiTypesC is non empty.
Let us consider C. Quasi-type of C is defined by:

(Def. 43) It ∈ QuasiTypesC.
The following two propositions are true:

(72) z is a quasi-type of C iff there exist A, ϑ such that z = 〈〈A, ϑ〉〉.
(73) 〈〈x, y〉〉 is a quasi-type of C if and only if x is a finite subset of QuasiAdjsC
and y is a pure expression of C from typeC.

In the sequel θ is a quasi-type of C.
Let us consider C. Observe that every quasi-type of C is pair.
Next we state four propositions:

(74) There exists a constructor operation symbol m of C such that the result
sort of m = typeC and there exists p such that len p = lenArity(m) and
ϑ = m~(p).

(75) Let m be a constructor operation symbol of C. Suppose the result sort
of m = typeC and len p = lenArity(m). Then m~(p) is a pure expression
of C from typeC.

(76) QuasiTermsCmisses QuasiAdjsC and QuasiTermsCmisses QuasiTypesC
and QuasiTypesC misses QuasiAdjsC.

(77) Let η be a set. Then
(i) if η is a quasi-term of C, then η is not a quasi-adjective of C,
(ii) if η is a quasi-term of C, then η is not a quasi-type of C, and
(iii) if η is a quasi-type of C, then η is not a quasi-adjective of C.

Let us consider C, A, ϑ. We introduce A ∗ ϑ as a synonym of 〈〈A, ϑ〉〉.
Let us consider C, A, ϑ. Then A ∗ ϑ is a quasi-type of C.
Let us consider C, θ. Note that θ1 is finite.
Let us consider C, θ. We introduce adjs θ as a synonym of θ1. We introduce

the base of θ as a synonym of θ2.
Let us consider C, θ. Then adjs θ is a subset of QuasiAdjsC. Then the base

of θ is a pure expression of C from typeC.
One can prove the following propositions:

(78) adjs(A ∗ ϑ) = A and the base of A ∗ ϑ = ϑ.
(79) LetA1,A2 be finite subsets of QuasiAdjsC and ϑ1, ϑ2 be pure expressions
of C from typeC. If A1 ∗ ϑ1 = A2 ∗ ϑ2, then A1 = A2 and ϑ1 = ϑ2.

(80) θ = adjs θ ∗ the base of θ.
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(81) For all quasi-types θ1, θ2 of C such that adjs θ1 = adjs θ2 and the base of
θ1 = the base of θ2 holds θ1 = θ2.

Let us consider C, θ and let α be a quasi-adjective of C. The functor α ∗ θ
yields a quasi-type of C and is defined by:

(Def. 44) α ∗ θ = 〈〈{α} ∪ adjs θ, the base of θ〉〉.
We now state three propositions:

(82) For every quasi-adjective α of C holds adjs(α ∗ θ) = {α}∪ adjs θ and the
base of α ∗ θ = the base of θ.

(83) For every quasi-adjective α of C holds α ∗ (α ∗ θ) = α ∗ θ.
(84) For all quasi-adjectives α, β of C holds α ∗ (β ∗ θ) = β ∗ (α ∗ θ).

8. Variables in Quasi-types

Let Σ be a non void signature, let s be a sort symbol of Σ, let X be a non-
empty many sorted set indexed by the carrier of Σ, and let τ be a term of Σ
over X. Note that (Var τ)(s) is finite.
Let Σ be a non void signature, let s be a sort symbol of Σ, let X be a non

empty yielding many sorted set indexed by the carrier of Σ, and let τ be an
element of FreeΣ(X). Observe that (VarΣ τ)(s) is finite.
Let Σ be a non void signature, let X be a non empty yielding many sorted

set indexed by the carrier of Σ, and let s be a sort symbol of Σ. The functor
varsXs yielding a function from

⋃
(the sorts of FreeΣ(X)) into 2X(s) is defined

by:

(Def. 45) For every element τ of FreeΣ(X) holds (varsXs )(τ) = (VarΣ τ)(s).

Let C be an initialized constructor signature and let η be an expression of
C. The functor Var η yielding a subset of Vars is defined by:

(Def. 46) Var η = (VarC η)(termC).

Let us consider C, η. Note that Var η is finite.
Let us consider C, η. The functor vars(η) yielding a finite subset of Vars is

defined as follows:

(Def. 47) vars(η) = varclVar η.

The following propositions are true:

(85) varcl vars(η) = vars(η).

(86) For every variable x holds Var(xC) = {x}.
(87) For every variable x holds vars(xC) = {x} ∪ vars(x).
(88) Let p be a decorated tree yielding finite sequence. Suppose η = 〈〈c, the
carrier of C〉〉-tree(p). Then Var η =

⋃
{Var τ ; τ ranges over quasi-terms of

C: τ ∈ rng p}.
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(89) Let p be a decorated tree yielding finite sequence. Suppose η = 〈〈c, the
carrier of C〉〉-tree(p). Then vars(η) =

⋃
{vars(τ); τ ranges over quasi-terms

of C: τ ∈ rng p}.
(90) If len p = lenArity(c), then Var(c~(p)) =

⋃
{Var τ ; τ ranges over quasi-

terms of C: τ ∈ rng p}.
(91) If len p = lenArity(c), then vars(c~(p)) =

⋃
{vars(τ); τ ranges over quasi-

terms of C: τ ∈ rng p}.
(92) For every many sorted signature Σ and for every set o holds VarΣ(〈〈o,
the carrier of Σ〉〉-tree(∅)) = 0the carrier of Σ.

(93) Let Σ be a many sorted signature, o be a set, and τ be a decorated tree.
Then VarΣ(〈〈o, the carrier of Σ〉〉-tree(〈τ〉)) = VarΣ τ.

(94) Var(nonC(α)) = Varα.

(95) vars(nonC(α)) = vars(α).

(96) Let Σ be a many sorted signature, o be a set, and τ1, τ2 be decorated
trees. Then VarΣ(〈〈o, the carrier of Σ〉〉-tree(〈τ1, τ2〉)) = VarΣ τ1 ∪VarΣ τ2.

(97) Var(∗C(α, τ)) = Varα ∪Var τ.
(98) vars(∗C(α, τ)) = vars(α) ∪ vars(τ).
(99) Var nonα = Varα.

(100) vars(nonα) = vars(α).

Let us consider C and let θ be a quasi-type of C. The functor Var θ yields a
subset of Vars and is defined as follows:

(Def. 48) Var θ =
⋃
((varsVarsCtermC

)◦ adjs θ) ∪Var (the base of θ).
Let us consider C and let θ be a quasi-type of C. Note that Var θ is finite.
Let us consider C and let θ be a quasi-type of C. The functor vars(θ) yields

a finite subset of Vars and is defined by:

(Def. 49) vars(θ) = varclVar θ.

We now state several propositions:

(101) For every quasi-type θ of C holds varcl vars(θ) = vars(θ).

(102) For every quasi-type θ of C and for every quasi-adjective α of C holds
Var(α ∗ θ) = Varα ∪Var θ.

(103) For every quasi-type θ of C and for every quasi-adjective α of C holds
vars(α ∗ θ) = vars(α) ∪ vars(θ).

(104) Var(A∗ϑ) =
⋃
{Varα;α ranges over quasi-adjectives of C: α ∈ A}∪Varϑ.

(105) vars(A ∗ ϑ) =
⋃
{vars(α);α ranges over quasi-adjectives of C: α ∈ A} ∪

vars(ϑ).

(106) Var(∅QuasiAdjsC ∗ ϑ) = Varϑ.
(107) η is ground iff Var η = ∅.
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Let us consider C and let θ be a quasi-type of C. We say that θ is ground if
and only if:

(Def. 50) Var θ = ∅.
Let us consider C. Observe that there exists an expression of C from typeC

which is ground and pure and there exists a quasi-adjective of C which is ground.
Next we state the proposition

(108) For every ground pure expression τ of C from typeC holds ∅QuasiAdjsC ∗τ
is ground.

Let us consider C and let τ be a ground pure expression of C from typeC.
Note that ∅QuasiAdjsC ∗ τ is ground.
Let us consider C. Note that there exists a quasi-type of C which is ground.
Let us consider C, let θ be a ground quasi-type of C, and let α be a ground

quasi-adjective of C. Observe that α ∗ θ is ground.

9. Smooth Type Widening

The strict non empty poset VarPoset is defined by:

(Def. 51) VarPoset = (〈{varclA : A ranges over finite subsets of Vars},⊆〉)op.
One can prove the following propositions:

(109) For all elements x, y of VarPoset holds x ≤ y iff y ⊆ x.
(110) For every x holds x is an element of VarPoset iff x is a finite subset of

Vars and varclx = x.

One can check that VarPoset has g.l.b.’s and l.u.b.’s.
The following proposition is true

(111) For all elements V1, V2 of VarPoset holds V1tV2 = V1∩V2 and V1uV2 =
V1 ∪ V2.
Let V1, V2 be elements of VarPoset. One can verify that functors V1tV2 and

V1 ∩ V2 and functors V1 u V2 and V1 ∪ V2 can be identified.
One can prove the following proposition

(112) For every non empty subsetX of VarPoset holds supX exists in VarPoset
and supX =

⋂
X.

One can verify that VarPoset is up-complete.
The following proposition is true

(113) >VarPoset = ∅.
Let us consider C. The functor vars-functionC yielding a function from

QuasiTypesC into the carrier of VarPoset is defined by:

(Def. 52) For every quasi-type T of C holds (vars-functionC)(T ) = vars(T ).

Let L be a non empty poset. We say that L is smooth if and only if the
condition (Def. 53) is satisfied.
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(Def. 53) There exists an initialized constructor signature C and there exists a
function f from L into VarPoset such that
(i) the carrier of L ⊆ QuasiTypesC,
(ii) f = vars-functionC�the carrier of L, and
(iii) for all elements x, y of L holds f preserves sup of {x, y}.
Let C be an initialized constructor signature and let T be a ground quasi-

type of C. One can check that 〈{T}, id{T}〉 is smooth.

10. Structural Induction

The scheme StructInd deals with an initialized constructor signature A, an
expression B of A, and a unary predicate P, and states that:

P[B]
provided the following conditions are satisfied:
• For every variable x holds P[xA],
• Let c be a constructor operation symbol of A and p be a finite se-
quence of elements of QuasiTermsA. Suppose len p = lenArity(c)
and for every quasi-term τ of A such that τ ∈ rng p holds P[τ ].
Then P[c~(p)],

• For every expression α of A from adjA such that P[α] holds
P[nonA(α)], and

• Let α be an expression of A from adjA. Suppose P[α]. Let τ be
an expression of A from typeA. If P[τ ], then P[∗A(α, τ)].

Let Σ be a many sorted signature. We say that Σ has an operation for each
sort if and only if:

(Def. 54) The carrier of Σ ⊆ rng (the result sort of Σ).
Let X be a many sorted set indexed by the carrier of Σ. We say that X has
missing variables if and only if:

(Def. 55) X−1({∅}) ⊆ rng (the result sort of Σ).
The following proposition is true

(114) Let Σ be a non void signature and X be a many sorted set indexed by
the carrier of Σ. Then X has missing variables if and only if for every sort
symbol s of Σ such that X(s) = ∅ there exists an operation symbol o of
Σ such that the result sort of o = s.

Observe that MaxConstrSign has an operation for each sort. Let C be a
constructor signature. Observe that VarsC has missing variables.
Let Σ be a many sorted signature. Observe that every many sorted set

indexed by the carrier of Σ which is non-empty has also missing variables.
Let Σ be a many sorted signature. Observe that there exists a many sorted

set indexed by the carrier of Σ which has missing variables.
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One can verify that there exists a constructor signature which is initialized
and strict and has an operation for each sort.
Let C be a many sorted signature with an operation for each sort. Observe

that every many sorted set indexed by the carrier of C has missing variables.
Let G be a non empty tree construction structure. Then the terminals of G

is a subset of G. Then the nonterminals of G is a subset of G.
Next we state a number of propositions:

(115) Let D1, D2 be non empty tree construction structures. Suppose the rules
of D1 ⊆ the rules of D2. Then
(i) the nonterminals of D1 ⊆ the nonterminals of D2,
(ii) (the carrier of D1) ∩ (the terminals of D2) ⊆ the terminals of D1, and
(iii) if the terminals of D1 ⊆ the terminals of D2, then the carrier of D1 ⊆
the carrier of D2.

(116) Let D1, D2 be non empty tree construction structures. Suppose the
terminals of D1 ⊆ the terminals of D2 and the rules of D1 ⊆ the rules of
D2. Then TS(D1) ⊆ TS(D2).

(117) Let Σ be a many sorted signature and X, Y be many sorted sets indexed
by the carrier of Σ. If X ⊆ Y, then if X has missing variables, then Y has
missing variables.

(118) For every set Σ and for all many sorted sets X, Y indexed by Σ such
that X ⊆ Y holds

⋃
coprod(X) ⊆

⋃
coprod(Y ).

(119) Let Σ be a non void signature and X, Y be many sorted sets indexed
by the carrier of Σ. If X ⊆ Y, then the carrier of DTConMSA(X) ⊆ the
carrier of DTConMSA(Y ).

(120) Let Σ be a non void signature and X be a many sorted set indexed by
the carrier of Σ. Suppose X has missing variables. Then the nonterminals
of DTConMSA(X) = (the operation symbols of Σ) × {the carrier of Σ}
and the terminals of DTConMSA(X) =

⋃
coprod(X).

(121) Let Σ be a non void signature and X, Y be many sorted sets inde-
xed by the carrier of Σ. Suppose X ⊆ Y and X has missing variables.
Then the terminals of DTConMSA(X) ⊆ the terminals of DTConMSA(Y )
and the rules of DTConMSA(X) ⊆ the rules of DTConMSA(Y ) and
TS(DTConMSA(X)) ⊆ TS(DTConMSA(Y )).

(122) For every set τ holds τ ∈ the terminals of DTConMSA(VarsC) iff there
exists a variable x such that τ = 〈〈x, termC 〉〉.

(123) Let τ be a set. Then τ ∈ the nonterminals of DTConMSA(VarsC) if and
only if one of the following conditions is satisfied:
(i) τ = 〈〈∗C, the carrier of C〉〉, or
(ii) τ = 〈〈nonC, the carrier of C〉〉, or
(iii) there exists a constructor operation symbol c of C such that τ = 〈〈c,
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the carrier of C〉〉.
(124) Let Σ be a non void signature, X be a many sorted set indexed by the

carrier of Σ with missing variables, and τ be a set. Suppose τ ∈
⋃
(the sorts

of FreeΣ(X)). Then τ is a term of Σ over X ∪ ((the carrier of Σ) 7−→ {0}).
(125) Let Σ be a non void signature, X be a many sorted set indexed by the

carrier of Σ with missing variables, and τ be a term of Σ over X ∪ ((the
carrier of Σ) 7−→ {0}). If τ ∈

⋃
(the sorts of FreeΣ(X)), then τ ∈ (the

sorts of FreeΣ(X))(the sort of τ).

(126) Let G be a non empty tree construction structure, s be an element of G,
and p be a finite sequence. Suppose s⇒ p. Then p is a finite sequence of
elements of the carrier of G.

(127) Let Σ be a non void signature, X, Y be many sorted sets indexed by
the carrier of Σ, g1 be a symbol of DTConMSA(X), g2 be a symbol of
DTConMSA(Y ), p1 be a finite sequence of elements of the carrier of
DTConMSA(X), and p2 be a finite sequence of elements of the carrier
of DTConMSA(Y ). If g1 = g2 and p1 = p2 and g1 ⇒ p1, then g2 ⇒ p2.

(128) Let Σ be a non void signature and X be a many sorted set indexed by
the carrier of Σ with missing variables. Then

⋃
(the sorts of FreeΣ(X)) =

TS(DTConMSA(X)).

Let Σ be a non void signature and let X be a many sorted set indexed by
the carrier of Σ. A unary operation on

⋃
(the sorts of FreeΣ(X)) is said to be a

transformation of Σ-terms over X if:

(Def. 56) For every sort symbol s of Σ holds it◦(the sorts of FreeΣ(X))(s) ⊆ (the
sorts of FreeΣ(X))(s).

The following two propositions are true:

(129) Let Σ be a non void signature, X be a non empty many sorted set
indexed by the carrier of Σ, and f be a unary operation on

⋃
(the sorts of

FreeΣ(X)). Then f is a transformation of Σ-terms over X if and only if
for every sort symbol s of Σ and for every set α such that α ∈ (the sorts
of FreeΣ(X))(s) holds f(α) ∈ (the sorts of FreeΣ(X))(s).

(130) Let Σ be a non void signature, X be a non empty many sorted set
indexed by the carrier of Σ, f be a transformation of Σ-terms over X, s
be a sort symbol of Σ, and p be a finite sequence of elements of (the sorts
of FreeΣ(X))(s). Then f · p is a finite sequence of elements of (the sorts of
FreeΣ(X))(s) and (f · p qua set) = len p.
Let Σ be a non void signature, let X be a many sorted set indexed by the

carrier of Σ, and let τ be a transformation of Σ-terms over X. We say that τ is
substitution if and only if the condition (Def. 57) is satisfied.

(Def. 57) Let o be an operation symbol of Σ and p, p′ be finite sequences of ele-
ments of FreeΣ(X). Suppose 〈〈o, the carrier of Σ〉〉-tree(p) ∈

⋃
(the sorts of
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FreeΣ(X)) and p′ = τ · p. Then τ(〈〈o, the carrier of Σ〉〉-tree(p)) = 〈〈o, the
carrier of Σ〉〉-tree(p′).
The scheme StructDef deals with an initialized constructor signature A, two

unary functors F and G yielding expressions of A, and two binary functors H
and I yielding expressions of A, and states that:

There exists a transformation f of A-terms over VarsA such that
(i) for every variable x holds f(xA) = F(x),
(ii) for every constructor operation symbol c of A and for
all finite sequences p, p′ of elements of QuasiTermsA such that
len p = lenArity(c) and p′ = f · p holds f(c~(p)) = H(c, p′),
(iii) for every expression α of A from adjA holds f(nonA(α)) =
G(f(α)), and
(iv) for every expression α of A from adjA and for every expres-
sion τ of A from typeA holds f(∗A(α, τ)) = I(f(α), f(τ))

provided the parameters meet the following requirements:
• For every variable x holds F(x) is a quasi-term of A,
• Let c be a constructor operation symbol of A and p be a finite se-
quence of elements of QuasiTermsA. Suppose len p = lenArity(c).
Then H(c, p) is an expression of A from the result sort of c,

• For every expression α of A from adjA holds G(α) is an expression
of A from adjA, and

• Let α be an expression of A from adjA and τ be an expression of
A from typeA. Then I(α, τ) is an expression of A from typeA.

11. Substitution

Let A be a set, let x, y be sets, and let α, β be elements of A. Then
IFIN(x, y, α, β) is an element of A.
Let C be an initialized constructor signature. A valuation of C is a partial

function from Vars to QuasiTermsC.
Let C be an initialized constructor signature and let f be a valuation of C.

We say that f is irrelevant if and only if:

(Def. 58) For every variable x such that x ∈ dom f there exists a variable y such
that f(x) = yC.

Let C be an initialized constructor signature and let f be a valuation of C.
We introduce f is relevant as an antonym of f is irrelevant.
Let X, Y be sets. Observe that there exists a partial function from X to Y

which is empty.
Let C be an initialized constructor signature. Observe that every valuation

of C which is empty is also irrelevant.
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Let C be an initialized constructor signature. Note that there exists a valu-
ation of C which is empty, irrelevant, and one-to-one.
Let C be an initialized constructor signature and let X be a subset of Vars.

The functor idvalCX yielding a valuation of C is defined by:

(Def. 59) idvalCX = {〈〈x, xC〉〉;x ranges over variables: x ∈ X}.
Next we state the proposition

(131) For every subset X of Vars holds dom idvalCX = X and for every varia-
ble x such that x ∈ X holds (idvalCX)(x) = xC.
Let C be an initialized constructor signature and let X be a subset of Vars.

One can check that idvalCX is irrelevant and one-to-one.
Let C be an initialized constructor signature and let X be an empty subset

of Vars. One can check that idvalCX is empty.
Let us consider C and let f be a valuation of C. The functor f# yielding a

transformation of C-terms over VarsC is defined by the conditions (Def. 60).

(Def. 60)(i) For every variable x holds if x ∈ dom f, then f#(xC) = f(x) and if
x /∈ dom f, then f#(xC) = xC,

(ii) for every constructor operation symbol c of C and for all finite sequences
p, p′ of elements of QuasiTermsC such that len p = lenArity(c) and p′ =
f# · p holds f#(c~(p)) = c~(p′),

(iii) for every expression α of C from adjC holds f
#(nonC(α)) =

nonC(f#(α)), and
(iv) for every expression α of C from adjC and for every expression τ of C
from typeC holds f

#(∗C(α, τ)) = ∗C(f#(α), f#(τ)).
Let us consider C and let f be a valuation of C. Observe that f# is substi-

tution.
In the sequel f denotes a valuation of C.
Let us consider C, f , η. The functor η[f ] yielding an expression of C is defined

as follows:

(Def. 61) η[f ] = f#(η).

Let us consider C, f and let p be a finite sequence. Let us assume that
rng p ⊆

⋃
(the sorts of FreeC(VarsC)). The functor p[f ] yields a finite sequence

and is defined as follows:

(Def. 62) p[f ] = f# · p.
Let us consider C, f and let p be a finite sequence of elements of QuasiTermsC.

Then p[f ] is a finite sequence of elements of QuasiTermsC and it can be cha-
racterized by the condition:

(Def. 63) p[f ] = f# · p.
In the sequel x is a variable.
The following propositions are true:

(132) If x /∈ dom f, then xC[f ] = xC.
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(133) If x ∈ dom f, then xC[f ] = f(x).
(134) If len p = lenArity(c), then c~(p)[f ] = c~(p[f ]).

(135) nonC(α)[f ] = nonC(α[f ]).

(136) ∗C(α, τ)[f ] = ∗C(α[f ], τ [f ]).
(137) For every subset X of Vars holds η[idvalCX] = η.

(138) For every subsetX of Vars holds (idvalCX)# = id⋃ (the sorts of FreeC(VarsC)).
(139) For every empty valuation f of C holds η[f ] = η.

(140) For every empty valuation f of C holds f# = id⋃ (the sorts of FreeC(VarsC)).
Let us consider C, f and let τ be a quasi-term of C. Then τ [f ] is a quasi-term

of C.
Let us consider C, f and let α be an expression of C from adjC. Then α[f ]

is an expression of C from adjC.
Let us consider C, f and let α be a positive expression of C from adjC. Note

that α[f ] is positive.
Let us consider C, f and let α be a negative expression of C from adjC.

Observe that α[f ] is negative.
Let us consider C, f and let α be a quasi-adjective of C. Then α[f ] is a

quasi-adjective of C.
We now state the proposition

(141) (nonα)[f ] = non(α[f ]).

Let us consider C, f and let τ be an expression of C from typeC. Then τ [f ]
is an expression of C from typeC.
Let us consider C, f and let τ be a pure expression of C from typeC. Observe

that τ [f ] is pure.
One can prove the following two propositions:

(142) Let f be an irrelevant one-to-one valuation of C. Then there exists an
irrelevant one-to-one valuation g of C such that for all variables x, y holds
x ∈ dom f and f(x) = yC if and only if y ∈ dom g and g(y) = xC.

(143) Let f , g be irrelevant one-to-one valuations of C. Suppose that for all
variables x, y such that x ∈ dom f and f(x) = yC holds y ∈ dom g and
g(y) = xC. Let given η. If Var η ⊆ dom f, then η[f ][g] = η.
Let us consider C, f and let A be a subset of QuasiAdjsC. The functor A[f ]

yielding a subset of QuasiAdjsC is defined as follows:

(Def. 64) A[f ] = {α[f ];α ranges over quasi-adjectives of C: α ∈ A}.
The following three propositions are true:

(144) For every subset A of QuasiAdjsC and for every quasi-adjective α of C
such that A = {α} holds A[f ] = {α[f ]}.

(145) For all subsets A, B of QuasiAdjsC holds (A ∪B)[f ] = A[f ] ∪B[f ].
(146) For all subsets A, B of QuasiAdjsC such that A ⊆ B holds A[f ] ⊆ B[f ].
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Let C be an initialized constructor signature, let f be a valuation of C, and
let A be a finite subset of QuasiAdjsC. One can check that A[f ] is finite.
Let C be an initialized constructor signature, let f be a valuation of C, and

let θ be a quasi-type of C. The functor θ[f ] yields a quasi-type of C and is defined
by:

(Def. 65) θ[f ] = (adjs θ)[f ] ∗ (the base of θ)[f ].
Next we state two propositions:

(147) For every quasi-type θ of C holds adjs(θ[f ]) = (adjs θ)[f ] and the base
of θ[f ] = (the base of θ)[f ].

(148) For every quasi-type θ of C and for every quasi-adjective α of C holds
(α ∗ θ)[f ] = α[f ] ∗ θ[f ].
Let C be an initialized constructor signature and let f , g be valuations of C.

The functor f [g] yields a valuation of C and is defined by:

(Def. 66) dom(f [g]) = dom f ∪ dom g and for every variable x such that x ∈
dom(f [g]) holds f [g](x) = xC[f ][g].

Let C be an initialized constructor signature and let f , g be irrelevant valu-
ations of C. One can check that f [g] is irrelevant.
The following three propositions are true:

(149) For all valuations f1, f2 of C holds η[f1][f2] = η[f1[f2]].

(150) For every subset A of QuasiAdjsC and for all valuations f1, f2 of C holds
A[f1][f2] = A[f1[f2]].

(151) For every quasi-type θ of C and for all valuations f1, f2 of C holds
θ[f1][f2] = θ[f1[f2]].
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